


Driving Automation

The technology behind self-driving cars is being heavily promulgated as the 
solution to a variety of transport problems including safety, congestion, and 
impact on the environment. This text examines the key role that human fac-
tors plays in driving forward future vehicle automation in a way that realizes 
the benefits while avoiding the pitfalls.

Driving Automation: A Human Factors Perspective addresses a range of issues 
related to vehicle automation beyond the ‘can we’ to ‘how should we’. It cov-
ers important topics including mental workload and malleable attentional 
resources theory, effects of automation on driver performance, in-vehicle inter-
face design, driver monitoring, eco-driving, responses to automation failure, 
and human-centred automation.

The text will be useful for graduate students and professionals in diverse areas 
such as ergonomics/human factors, automobile engineering, industrial engi-
neering, mechanical engineering, and health and safety.
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For my Dad, who always drove.

-MSY
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Preface

Predicting the future is a dangerous game; fans of science fiction affection-
ately chuckle at optimistic visions in movies such as Back to the Future (specif-
ically, part two of the trilogy). Released in 1989, the movie transports Marty 
McFly and Doc Emmett Brown forward in time to 21st October 2015, where 
we are blessed with nuclear fusion-powered flying cars.

That date has long passed and we are still waiting for our flying cars. 
Ironically, if we go further back in time, we stumble across another vision of the 
future that may yet prove to be more prophetic. In 1953, Isaac Asimov’s short 
story Sally1 was published. Set in 2057, the eponymous Sally is an ‘automato-
bile’, a fully autonomous vehicle with her own intelligence and, even, personal-
ity (albeit, as it turns out, slightly malevolent). First introduced in 2015 (there 
is that year again), automatobiles were originally made to serve the less able 
and the privileged (a theme echoed in Chapter 8 of this book – except the privi-
leged bit). But by the time of the story they are the only vehicles on the road, 
thanks to the fact that they are patently safer than the ‘hand-driven’ cars.

Granted, the 2015 prediction now looks mildly optimistic – but only mildly 
so, as that was the year when the first fully driverless trip took place on public 
roads, to the benefit of a blind passenger. Meanwhile, component technolo-
gies that automate sub-tasks of driving became widely available around the 
same time (think adaptive cruise control, lane-keeping assist, and automatic 
emergency braking). Come 2045, when Sally herself was built, the common-
place sight of autonomous cars on our roads is a highly plausible scenario.

We realise the hypocrisy in that last sentence as we too, now, slip into the 
game of predicting the future. But we console ourselves in the company of 
other commentators, who variously anticipate self-driving technology to be 
on the market in anything from a few years to a few decades (see Chapter 1). 
And, to be honest, we have played the game before. Back in 1996, in the early 
days of our research together in this field, one of our first papers on the topic 
(Young & Stanton, 1997) quoted a press piece of the time which anticipated 
a concept vehicle of 100 years hence:

…designers and engineers have combined forces to come up with the car 
they envisage we will be driving 100 years from now, “Concept 2096.” 
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Concept 2096 is like no other car we know – it has no wheels (it moves 
on a moving rubber base); it has no gasoline (it runs on electrical power 
beamed to it from a satellite); and it has no windows (due to its most 
notable  distinction – it has no driver, only passengers). An onboard com-
puter receives and processes navigation information – the car drives itself.

(Young & Stanton, 1997, p. 325).

At that time, we were concerned with the effects of adaptive cruise control and 
lane centring – the early progenitors of vehicle automation – on driver mental 
workload and performance (see Chapters 3–7). Since then, we have spent a lot 
of time examining the human factors of in-car technology – what has, over 
the years, variously been called in-vehicle information systems or advanced 
driver assistance systems (though we discuss the nuances of such terminology 
in Chapter 1). In keeping with shifts in global priorities, this interest migrated 
towards using the technology to support independent mobility for older driv-
ers (Chapter 8) as well as encouraging more eco-driving styles (Chapter 9). 
The common thread throughout all of this work is the human-centred appli-
cation of automation to optimise driver performance.

This book represents a digest of the research that we have been involved 
with during that time, updated to incorporate the latest human factors lit-
erature. You will find at the end of each chapter a list of key references which 
form the source material for that chapter. Although some of this research was 
conducted several years ago now, we have brought it together in this book 
because the issues are still very current – if anything, even more so with the 
push towards connected and autonomous vehicles. As we have already noted 
above, self-driving cars may be just around the metaphorical corner, or they 
may be much further away yet (depending on who you talk to). But nobody 
can argue that we are entering a period of transition between humans in con-
trol and automation in control. The key question is about the duration of that 
transition, and what happens to the person in the driving seat in the meantime?

Despite the excitement surrounding the technology, it is crucial that we get 
the human factors right, lest we bump into similar problems as encountered 
with automation in aviation (see Chapter 2). We have already seen early signs 
of this going wrong with some high-profile accidents involving automated 
vehicles (also covered in Chapter 2). It would not be too much of a spoiler 
for the book ahead to suggest that these accidents result from a mismatch of 
expectations about the relative capabilities of human and machine.

Driving automation will undoubtedly result in benefits for safety, perfor-
mance, and the environment – eventually. And one day, the technology will 
be ready to fully assume control of our cars and we can sit back as genuine 
passengers. Our reckoning is more in line with that of Asimov, as we believe 
we will have to wait several years – possibly even decades – for that day to 
arrive. Until then, humans and automation will increasingly share control 
of the vehicle. And as long as we require a person to maintain some level of 
control in the car, we need to design the system around them.
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In the final chapter of this book, we share our thoughts about how we can 
do that, working towards a philosophy of human-centred design for auto-
mation. The roots of this go back to that early paper (Young & Stanton, 
1997), which took inspiration from one of the foremost thinkers in automa-
tion human factors, the late Professor Raja Parasuraman:

As Parasuraman (1987) asked, given the impact of automation on atten-
tion and the consequent effects on the human ability to monitor failures, 
when it comes to technology, it is very often not a case of whether we 
can, but whether we should. We are adapting this question to ask how we 
might, given that we probably will.

(Young & Stanton, 1997, p. 335).

And coincidentally, this philosophy is echoed in another classic vintage sci-
fi movie, Jurassic Park (1993 – based, of course on the 1990 bestseller by 
Michael Crichton), in which the mathematician character Dr Ian Malcolm 
comments in exasperation about the resurrection of the dinosaurs by saying, 
‘…scientists were so preoccupied with whether or not they could that they 
didn’t stop to think if they should’. We know much less about genetic engi-
neering than we do about human factors engineering, but it comforts us to 
presume that the dinosaurs went the same way as the flying cars in Back to 
the Future Part II.

NOTE

 1. I am grateful to Professor Nick Reed for introducing me to this story – and I 
highly recommend it. (MSY)
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Glossary

Term Meaning Definition

ABS Anti-lock Braking 
System

A system designed to stop a car from skidding when 
braking sharply by automatically applying rapid 
cadence braking. See also Electronic Stability 
Control (ESC).

ACC Adaptive Cruise 
Control

System that attempts to maintain the vehicle at a 
driver selected target speed following distance, 
using sensors and automation to regulate vehicle 
speed.*

ALKS Automated Lane 
Keeping System

Hardware and software for low-speed application 
which is activated by the driver and which keeps 
the vehicle within its lane for travelling speed of 
60 km/h or less by controlling the lateral and 
longitudinal movements of the vehicle for extended 
periods without the need for further driver input.*

AEB Automatic Emergency 
Braking

Vehicle system that uses sensors and computer 
processing to detect when the ego vehicle could 
collide with an object in its path and applies the 
brakes automatically attempting to mitigate or avoid 
the collision, even if the driver takes no action.*

CWA Cognitive Work 
Analysis

A structured framework for considering the driver’s 
information requirements, taking account of the 
environment within which the task takes place and 
the effects of constraints imposed on the system’s 
ability to perform its purpose.a

CRM Crew Resource 
Management

Using all the available resources – information, 
equipment, and people – to achieve safe and 
efficient operations.b

EID Ecological Interface 
Design

A theoretical framework for designing interfaces for 
complex sociotechnical systems, based on three 
principles: the capability for direct manipulation, the 
perceptual forms map uniquely onto work domain 
constraints, and the interface content represents all 
of the information identified by a model of the 
work domain.c See also Cognitive Work Analysis 
(CWA).

(Continued)
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Term Meaning Definition

ESC Electronic Stability 
Control

Vehicle system that continuously monitors steering 
and vehicle direction and compares intended 
direction to the vehicle’s actual direction and 
intervenes by applying the brakes independently to 
each of the wheels to correct loss of control much 
faster than a typical human driver.* ESC 
incorporates anti-lock brakes (ABS).

LC Lane Centring Vehicle system that uses cameras or other inputs 
and automated controls to help the vehicle stay in 
the centre of the driven lane.*

MART Malleable Attentional 
Resources Theory

Theoretical model in which the size of attentional 
resource pools varies according to the level of task 
demands imposed on the operator.d

MWL Mental Workload The level of attentional resources required to meet 
both objective and subjective performance criteria, 
which may be mediated by task demands, external 
support, and past experience.e

NASA-
TLX

NASA Task Load 
index

A multidimensional rating scale designed to obtain 
subjective workload estimates from operators.f

TLX See NASA-TLX

NB: Terms with an asterisk (*) are drawn from the British Standards Institution Connected and 
Autonomous Vehicles Vocabulary, version 4.0 (BSI Flex 1890 v4.0:2022-03). Available at: 
https://www.bsigroup.com/en-GB/CAV/cav-vocabulary/ (accessed 12 May 2022). Other 
sources are noted by superscript letters as follows:

a Stanton, Salmon, Walker & Jenkins (2017). See Chapter 9.
b Lauber (1984), cited in Flin et al. (2008). See Chapter 10.
c Vicente (2002). See Chapter 9.
d Young & Stanton (2002a).
e Young & Stanton (2001a). See Chapter 3.
f Hart & Staveland (1988).

https://www.bsigroup.com
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Chapter 1

Context

OVERVIEW

As we set out on our journey with this book, the first leg takes us through a 
potted history of automobile automation, establishes a number of definitions 
associated with such technology, and reviews a variety of classifications of 
automation from the human factors perspective. We consider where driving 
automation has been, where we currently stand (at the time of writing, at 
least), and where it might be going in the near- and long-term future. This 
gives us a basis to consider various contemporary definitions and classifica-
tions of automation, from classical approaches to more recent taxonomies. 
But more than anything, this chapter sets out our stall that the science of 
human factors is, and will be, critical in determining the success and safety 
of automated driving in the protracted transitional period as drivers start 
to let go of control. We stand on a tipping point with driving automation, 
whereby for the first time drivers will be able to legitimately ‘switch off’ from 
the driving task (albeit in limited circumstances). And until we reach full 
 automation – which may be several decades away yet – we must put those 
drivers at the centre of our thinking around automated driving.

PRELUDE

Paris, France, in the year 1498. Louis XII has just succeeded his father, 
King Charles VII, to the French throne. Whilst this was literally a crown-
ing moment for the new King, it also turned out to be career-defining for 
his loyal supporter, Archbishop Georges d’Amboise, who was made cardinal 
and prime minister on his friend’s accession.

The success of Cardinal d’Amboise’s administration is well-documented 
and, such was the confidence held in him by King Louis XII, there originated 
a satirical phrase in France around this time: ‘laissez faire à George’, or ‘let 
George do it’.

Fast forward to mid-20th century northern England and the heyday of 
George Formby, the ukulele-playing star, writer and producer of more than 

http://doi.org/10.1201/9781003374084-2


4 Driving Automation

20 films during the 1930s and 1940s, including the wartime classic ‘Let George 
do it’ in 1940. Formby’s accidental war hero holds a mirror to the popular 
usage of the phrase at the time, as this was an attitude to be stamped out dur-
ing the war years – you had to do ‘it’ yourself, or nobody else would do it.

Soon afterwards, though, when autopilots first became available in air-
craft, the phrase was re-adopted in its original sense, since the autopilot was 
the only ‘George’ that you could legitimately delegate to. Using the autopilot 
therefore became ‘letting George do it’, and the autopilot itself came to be 
known as George.

This ‘origin story’ of automation may or may not be apocryphal, in whole 
or in part; theories abound on the internet about the source of the phrase ‘let 
George do it’ and why autopilots are colloquially known as ‘George’. But 
what cannot be argued is the pervasiveness of automation in our modern, 
everyday lives. While George may have started out in aviation, automation is 
now commonplace in marine, rail, and space transportation. And, of course, 
automation is familiar on our roads. But up to now it has mostly relieved 
drivers of physical tasks, such as gear changing or rudimentary speed control. 
The latest generation of systems hitting the market takes this up a level by 
operating at a psychological level, taking over some decision-making elements 
of driving. We are on the cusp of a revolution in automotive technology as 
the balance of control is shifting towards the automation. In both literal and 
metaphorical terms, George has one hand on the steering wheel.

Such technology is heavily promulgated as the solution to a wide variety of 
transport problems including safety, congestion, and environmental impact. 
There is undoubtedly merit in this. But the focus on the technological push 
neglects the human impact, with potentially disastrous consequences. It may 
seem paradoxical to be concerned about the effects of automation on human 
performance – surely there is no human performance left to worry about, if 
we have automated the task? Is that not the point of automation (the engineers 
might say), to eradicate the unreliable ‘human factor’ from the equation?

But although we are gradually delegating more driving tasks to the vehicle, 
that level of full automation – where we can completely let go of human con-
trol or supervision, and completely trust in George – could still be several 
years away yet. Yes, there are several makes and models of vehicle available on 
today’s market capable of controlling their own speed, keeping themselves in 
lane, and trying to avoid collisions. However, there is a fundamental difference 
between individual systems that, together, look like a fully automated car, and 
the technological sophistication needed to be truly driverless. Most of the cur-
rent generation of so-called self-driving cars still require a human in the driv-
ing seat to watch over the automation and to deal with those scenarios that it 
is not yet capable of – or, more crucially, to take over should things go wrong.

In this protracted transitional period, then, we have to consider the role 
of the human, who faces fundamental changes in their familiar driving task. 
This is where the science of human factors comes in, for there is a wealth of 
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knowledge in the discipline about the capabilities and limitations of people. 
In particular, we know that humans are particularly ill-suited to supervising 
automation in this way, for reasons we shall see in the chapters that follow. 
A key concern in this book is for mental workload, particularly the under-
load that occurs when playing such a passive role. But we also know that, 
when designed appropriately, machines can work very well with people, 
providing support in situations where human performance might need it. If 
the benefits of automation are to be realised without introducing a host of 
new problems, then it is essential that we put the human at the centre of 
these developments. It is less a case of finding a place for the human to fit in 
with this brave new world, but more about fitting the automation around the 
human. We will consider such notions further towards the end of this book.

Before we get there, though, it is worth spending some time establishing 
the context of what we are discussing. We have just hinted at the history and 
future of automotive automation, so we begin this chapter by tracing a more 
detailed technological timeline from the past, through present developments, 
to anticipate what we might expect (and when) in the future. Then we set out 
a consistent language for the book, by considering published definitions and 
terminologies associated with vehicle automation. Finally, we complete the 
foundation for the book by reviewing the considerable human factors litera-
ture aimed at describing and categorising levels of automation.

TIMELINE

Past

We could start by considering the ‘auto-mobile’ itself as a holistic example of 
automation. In 1896, England saw its first horseless carriage hit the roads, in 
the form of the Daimler Wagonette. During the course of the 20th century 
and into the 21st, the automobile has grown into one of the most technologi-
cally advanced mass market commodities available.

Of course, vehicle automation is far from being a new phenomenon (Young, 
2013). Some readers may remember using a manual choke to start their car in 
the morning; the advent of automatic chokes has made this task all but invis-
ible. More conspicuously, automatic gearboxes have been around since the 
1940s, while conventional cruise control was invented in the 1950s. Towards 
the end of the millennium, cruise control evolved into adaptive cruise control 
(ACC). First introduced in consumer cars in 1995 (de Winter et al., 2014), 
ACC not only maintains a set speed (as with conventional cruise control) 
but also typically uses sensors (radar and/or lidar) to detect slower leading 
vehicles and adjust speed to maintain a consistent headway (see Richardson 
et al., 1997, for technical details). Whilst early versions of ACC had limited 
braking authority, being designed to work only at cruising speeds, in 2007 a 
‘stop-and-go’ capability was introduced to ACC, which could bring your car 
to a standstill (thus enabling the use of ACC in traffic queues; see Stanton 



6 Driving Automation

et  al., 2011). These kinds of systems are often referred to as ‘comfort and 
convenience’ features for drivers (e.g., Richardson et al., 1997).

Meanwhile, other devices throughout history have been more explicitly 
aimed at improving safety. The early 1970s saw the introduction of anti-
lock braking systems (ABS), which use rapid cadence braking to prevent the 
wheels locking up under extreme braking. By a similar token, electronic sta-
bility control (ESC), available since the mid-1990s, detects skids in cornering 
manoeuvres and applies braking (or power) individually to the four wheels 
in order to correct the skid and maintain control. Whilst ABS and ESC both 
apply a level of rapid corrective inputs that would be impossible for a human 
driver to achieve, systems soon began to influence vehicle control at a much 
more conscious level.

The first decade of the 21st century saw particular advancement in active 
safety systems – those which are designed to prevent, or mitigate the con-
sequences of, collisions by taking automatic control of the vehicle in some 
way (as opposed to passive safety, such as seatbelts and airbags, which pre-
vent or mitigate the consequences of injuries resulting from a collision). Such 
advanced safety features as emerged at that time include forward collision 
warning systems, blind spot monitoring, and lane departure warning systems 
(Jenkins et al., 2007).

Forward collision warning systems, introduced in 2006, take ACC a step 
further by using similar radar systems to detect an impending collision with 
a vehicle in front, and alerting the driver to it. Moving from warnings to 
actual vehicle control, the following year saw the extension of forward colli-
sion warnings to include automatic braking. By 2010, several manufacturers 
were offering what is now commonly known as automatic emergency brak-
ing (AEB), the system that detects a potential collision ahead and automati-
cally brakes to mitigate or avoid the collision, even if the driver takes no 
action (Banks & Stanton, 2015). Although most of these systems had limited 
braking authority (as with ACC), some actually guaranteed that they would 
prevent a collision at low speeds. These systems would still brake at higher 
speeds, so mitigating the consequences of a crash, but they could not guaran-
tee that the collision would be avoided.

Turning to lateral control, lane departure warning systems use on-board 
cameras and image processing technology to detect lane markings, and pro-
vide warnings to the driver if the vehicle is crossing one of these lines. The 
warnings vary between manufacturers, but are usually either auditory or 
haptic (e.g., vibrating the steering wheel or seat to provide a ‘virtual rum-
ble strip’). Typically, the warning will be cancelled if the driver is using the 
turn signals to indicate an intended lane change. Similarly, blind spot mon-
itoring systems, introduced in 2005, use cameras to detect vehicles in the 
driver’s blind spot when a turn has been indicated, and alert the driver usually 
with a visual warning in the relevant side mirror. The logical next step from 
lane departure warnings was to use the data gathered from the camera sys-
tems to control the vehicle instead of providing warnings; such lane-keeping 
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assist systems have been available since around 2006. Many of these do not 
actually assume full steering control of the vehicle, but instead provide some 
haptic feedback on the steering wheel (e.g., increased resistance) to gently 
nudge the driver back into lane.

In the 1990s and 2000s, the trend was turning from systems that warned 
the driver, or at most took control of low-level driving tasks (i.e., preventing 
skids), towards those that actively intervened in more conspicuous elements of 
driving (Bishop, 2020). It is probably no coincidence that these decades also 
saw an increase in research activity directed at automotive human factors 
(Young et al., 2015), as automation started to impinge on those tasks that 
were once the preserve of the human driver (Banks et al., 2014; Stanton et al., 
2001; Walker et al., 2001).

As far as driverless cars are concerned, the concept was first introduced 
by General Motors at the 1939 World’s Fair (Bishop, 2020; Reed & Sellick, 
2017). Further efforts in the 1950s and 1960s to develop automated road 
transport systems depended on electric cables embedded in the road infra-
structure which, whilst successful, was a costly constraint that ultimately led 
to the demise of this particular approach and the move towards automated 
vehicles instead (Merat et al., 2012; Reed & Sellick, 2017).

Nevertheless, the research interest in automated driving did not wane, and 
indeed accelerated from the 1980s onwards (see e.g., Hancock et al., 2019; 
Noy et al., 2018). In both Europe and the US, major projects attracted signifi-
cant funding to develop demonstrator systems, several of which proved suc-
cessful. A prominent example of an EU-funded project was PROMETHEUS, 
which culminated in research trials of automated vehicles without human 
intervention on open roads. More recently, the HUMANIST1 virtual cen-
tre of excellence established in 2007 addresses a number of human factors 
concerns with vehicle automation. Meanwhile, in the US the stimulus came 
from the Departments of Transportation and Defense, most notably with the 
Defense Advanced Research Projects Agency (DARPA) ‘grand challenges’ of 
the early 21st century (for more background on these, and other, develop-
ments, see Bishop, 2020; Reed & Sellick, 2017). The 2007 DARPA urban 
challenge saw driverless vehicles operating alongside human-driven vehicles 
on residential streets, handling various scenarios and manoeuvres (Bishop, 
2020). Then, in 2010, Google entered the fray.

Present

Innovations in sensor technology and advances in computing power enabled 
Google to reveal its self-driving car project to the world in October 2010 
(Reed & Sellick, 2017). Over the decade, this programme amassed millions 
of miles of on-road testing in four US states, and in 2016 it was spun out 
into the development company Waymo. In parallel, over the latter half of the 
decade Uber has conducted testing of its automated driving system in three 
US states2 as well as in Toronto, Canada. Waymo and Uber are not the only 
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companies eager to get in on the act either; as of March 2018, 52 companies 
possessed permits to test automated vehicles on the roads of California alone 
(Hancock et al., 2019). Similar trials were approved in China in late 2019, 
for self-driving taxis to carry passengers in Shanghai – albeit under limited 
circumstances and with a safety driver on board.

With these commercial projects perhaps acting as a catalyst, research and 
development into automated vehicles gathered a huge amount of momentum 
in the 2010s. Since 2014, the UK government has invested millions of pounds 
and has established a cross-governmental body, the Centre for Connected and 
Autonomous Vehicles (CCAV3), with the aim of coordinating this research 
and positioning the UK as a world leader in testing and development of auto-
mated vehicle technology (Jones & Holden, 2020; Reed & Sellick, 2017). 
Some of the more high-profile and large-scale projects funded under this ini-
tiative saw driverless prototype vehicles being tested on the streets of four UK 
cities and towns (Bristol, Coventry, Greenwich, and Milton Keynes; see Reed 
& Sellick, 2017, for more details).

One of the biggest achievements to date happened on 28 November 2019 
under the HumanDrive4 project, with the successful completion of the UK’s 
longest and most complex autonomous road journey. A Nissan Leaf, fitted 
with GPS, lidar, radar, and camera technology, drove itself (with two engi-
neers on board, one acting as a safety driver) 230 miles from Cranfield in 
Bedfordshire to Sunderland, Tyne and Wear, taking in a range of road envi-
ronments from rural to highway.

Meanwhile, back in the consumer marketplace, vehicle technology was 
becoming more advanced and more widely available. In 2011, Ford Motor 
Company released its latest Focus model in the UK with a ‘driver assistance 
pack’ offered as an all-in-one package option. The pack included a range of 
assistance technologies seen largely on prestige models over the previous few 
years (such as parking assist, blind spot monitoring, and low-speed AEB) but 
now in a car targeted at the mass market.

Subsequent advances in camera technology allowed detection and recogni-
tion of hazards and obstacles to enhance the capability of collision warning 
and avoidance systems. Some cars now on the roads can actually recognise 
an object as a pedestrian, classify it as a hazard, and brake to avoid a colli-
sion. When taking into account the myriad ancillary controls that are now 
routinely automated (such as lights or windscreen wipers), it is true to say 
that most current vehicles have some level of automation (Banks et al., 2014; 
Hancock, 2019).

Moving towards the automation of everyday driving, it is now relatively 
commonplace to see features that relieve the driver of some fundamental 
aspects of the driving task. Recent years have seen extensions to the func-
tionality of ACC, so that it can be used in a wider range of traffic and road 
scenarios, as well as lane centring (LC) or lane-keeping assist systems (which 
use cameras or other sensors to, respectively, keep the vehicle in the centre of 
its lane or away from the lane edges). Such is their market penetration, in fact, 
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that in 2018 the European New Car Assessment Programme (Euro NCAP5) 
started including ACC, LC, and speed assist in its safety tests. Moreover, from 
2022 in the EU, all new cars are mandated6 to include a range of automated 
systems as standard in the interests of safety, including AEB, driver attention 
monitoring, intelligent speed adaptation, and lane-keeping assist systems.

Although the technologies are function-specific, more recent applications 
have combined the longitudinal and lateral control functions into a ‘highly 
automated vehicle’ (Banks & Stanton, 2016; de Winter et al., 2014; Eriksson 
& Stanton, 2017b). Perhaps the most prominent example at the moment is 
Tesla’s Autopilot, introduced in 2016, although several other major manu-
facturers (such as BMW, General Motors, and Mercedes) also offer similarly 
branded packages.

As it stands, though, the ‘highly automated’ moniker is a misnomer 
(Eriksson & Stanton, 2017b). Although these cars may, on the face of it, 
appear to be driving themselves, the truly driverless car is not yet commer-
cially available (cf. Teoh, 2020). All of the systems currently on the market 
are limited in some sense (typically by the type of road or environment), and 
all still rely on a human in the driving seat being ultimately responsible for 
monitoring the technology as well as the road, and taking action, if appropri-
ate (Banks & Stanton, 2016; de Winter et al., 2014; Ulahannan et al., 2020).

Nevertheless, the very latest developments may see a step change in 
automation on the roads. In 2020, the UK government ran a consultation 
(CCAV, 2020, 2021) on the introduction of automated lane keeping systems 
(ALKS), anticipated to hit the market in the early 2020s. Innocuous though 
the system sounds, ALKS is a traffic jam chauffeur technology that controls 
lateral and longitudinal movement without driver input – and, crucially, 
without the need for human supervision or monitoring (albeit still under 
a fixed set of circumstances and at limited speeds up to 60 km/h). ALKS 
therefore presents, for the first time ever, the possibility for drivers to hand 
over full responsibility of driving to the vehicle. ALKS, then, paves the way 
for a fully automated future.

Future

Having discussed where we are in terms of vehicle automation, we move into 
the realms of uncertainty by trying to anticipate where we are going. It is 
worth prefacing this section with a heavy dose of caveats, as the market and 
the state of technological art changes so rapidly. The phrase ‘at the time of 
writing’ has never applied more.

We can illustrate this by going ‘back to the future’ and reviewing earlier 
predictions in this field. Around the turn of the 21st century, our colleague 
Guy Walker led a well-researched paper on the future of vehicle technology, 
based on a survey of seven motor industry professionals from five major man-
ufacturers (Walker et al., 2001). Looking at the results in hindsight, many 
of the predictions were not far off reality, with collision avoidance and ACC 
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amongst the automated systems that it was thought would be implemented by 
2015. Nevertheless, the paper posited two hypothetical scenarios for a 2015 
test drive, and even the pessimistic version presumed a level of autonomy that 
we have not yet reached.

More recently, Merat et al. (2014) wrote about three major manufacturers 
promising self-driving cars on sale by 2020. Now, whilst it could be argued 
that the so-called ‘highly automated’ offerings discussed earlier meet this 
promise, the limitations of those systems already noted mean that they are far 
from truly self-driving. Even the most highly automated vehicles in develop-
ment at the moment (including Waymo’s self-driving car) are constrained to 
specified roads (Reed & Sellick, 2017).

Indeed, the next milestone will only be another step towards that highly 
automated driving, in which the driver hands over responsibility to the vehi-
cle, at least in certain defined circumstances (de Winter et al., 2014). We have 
just mentioned the prospect of ALKS in the very near future, and manufactur-
ers are again lining up to offer this level of automation in the 2020s (Bishop, 
2020). Given the imminence of these developments, it seems reasonable to 
assume that we will be handing over full control to the vehicle, albeit perhaps 
just on highways, within the decade (Kyriakidis et al., 2019; Stanton et al., 
2021; Thatcham Research, 2019).

But what of full automation – the notion that a vehicle can negotiate any 
end-to-end journey, without any need for human supervision or intervention, 
in any road or traffic environment? Despite optimistic claims in the industry 
(Jones & Holden, 2020; Thatcham Research, 2019) – as well as public expec-
tation (Kyriakidis et al., 2019) – that this ‘autopia’ (cf. Hancock et al., 1996; 
Young & Stanton, 2000) will soon be on our roads, the consensus seems to 
be that it will be many years, perhaps decades, before that is realised to any 
great extent (Brooks, 2017; Hancock, 2019). Researchers (Noy et al., 2018) 
and industry experts (Williams, 2019) alike believe we will not see full auto-
mation on the roads until the second half of the 21st century, while earlier 
predictions cited by de Winter et al. (2014) suggest it may even be perpetually 
out of reach. That said, the pessimism is predicated on the assumption that we 
are referring to private cars; there may well be earlier and wider deployment 
of fully automated vehicles for commercial applications such as public trans-
port, taxis, goods deliveries, and agriculture (Brooks, 2017; House of Lords, 
2017; Kyriakidis et al., 2019; Stanton et al., 2020; Veoneer, 2020).

Nevertheless, the more realistic medium-term future for private motor-
ists will likely see a gradual evolution, rather than revolution (cf. Veoneer, 
2020), of current technologies becoming more advanced and more wide-
spread through the 2030s. It certainly seems that their penetration will peak 
in the latter half of that decade; moderate projections from the UK govern-
ment (Transport Systems Catapult, 2017) identify a 25% global market share 
for automated vehicles by 2035, while their more optimistic case is for 84% 
(the UK government separately estimates7 that the automated vehicle market 
will be worth £52bn by 2035). Similarly, Noy et al. (2018) anticipated a 75% 
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market share by 2040, although more pessimistic evidence presented by de 
Winter et al. (2014) suggests the figure will never reach 50%. For many years 
to come, then, we will have a mix of manually driven and (partially) auto-
mated cars on the roads (Brooks, 2017; Mueller et al., 2021), although the 
balance of numbers could tip in favour of the automated within the 2020s 
(Hancock, 2019).

And that is where the human factors problems will lie – apparently for some 
considerable time yet. Indeed, getting the technology right for user acceptance 
has been cited as a key reason for the delay in implementing it (Noy et al., 
2018). While the technology has been developing apace, this has not been 
matched by the integration of human factors into these systems (Hancock, 
2019). We are less worried about the endgame of full automation, because 
humans are cut out of the driving loop entirely by then. However, we are fac-
ing a prolonged interim period in which partial automation of driving gets 
gradually smarter, yet still relies on a human to be in some level of control of 
the vehicle. That is a situation which we know will cause problems (Banks, 
Eriksson et al., 2018; Banks, Plant et al., 2018; Brooks, 2017), and we will 
learn more about these in subsequent chapters of this book.

DEFINITIONS

Having alluded to various different types and levels of automation that have 
been, and will become, available, we should really define what we mean when 
we refer to ‘automation’. Parasuraman & Riley (1997) defined automation as 
‘the execution by a machine agent (usually a computer) of a function that was 
previously carried out by a human’ (p. 231). (Where Parasuraman said ‘usu-
ally’ a computer, we should probably rephrase that in this day and age to read 
‘almost always’ a computer – since there will inevitably be a microprocessor 
or two at the heart of any such technological system that you can think of.)

But just because a computer is taking over a task from a person, this does not 
necessarily mean the computer is smart. Hancock (2017a, 2019) went further 
to distinguish automated from autonomous, where ‘automated systems are 
those designed to accomplish a specific set of largely deterministic steps, most 
often in a repeating pattern, in order to achieve one of an envisaged and limited 
set of pre-defined outcomes’, while ‘autonomous systems are generative and 
learn, evolve and permanently change their functional capacities as a result of 
the input of operational and contextual information. Their actions necessarily 
become more indeterminate across time’ (Hancock, 2019; p. 481). In other 
words, in an automated system, the same input will always lead to the same 
response, whereas in an autonomous system, that is not necessarily true. More 
specifically, the responses of an automated system are limited to those for 
which it has been pre-programmed; those of an autonomous system, on the 
other hand, are not so constrained, as it learns and changes independently over 
time – sometimes unpredictably (de Visser et al., 2018; Endsley, 2015).
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As Hancock (2017a, 2019) notes, whilst there are many examples of auto-
mated vehicles available at the moment, by his definition we do not currently 
have autonomous vehicles on the roads (although we may not be far off, given 
developments from those such as Uber and Waymo). Indeed, in its standard 
on driving automation systems, the Society of Automotive Engineers (SAE, 
2018) suggests that the terms ‘autonomous’ and ‘self-driving’ have been incon-
sistently and confusingly applied, and similarly recommend that we refer to 
automated driving rather than autonomous vehicles, since it is the task that is 
being automated (Stanton et al., 1997).

This confusion is not just a matter of semantic pedantry. Popular usage 
of terms such as ‘autonomous vehicle’ or ‘self-driving car’ and brand names 
such as ‘autopilot’ are usually laden with overpromise and have unrealisti-
cally raised consumers’ expectations of what these vehicles are capable of. 
Names that suggest full automation, such as ‘autopilot’, are associated with 
the highest likelihood that drivers believe they can safely undertake non-
driving tasks (even passing the Turing test; Stanton et al., 2020), whereas 
terms such as ‘assist’ or ‘copilot’ are less likely to be perceived as a high 
level of automation (Teoh, 2020). One industry survey found that 71% of 
motorists wrongly believed that autonomous vehicles were already available 
(Jones & Holden, 2020), while another revealed that many drivers misun-
derstand not just how to use automated driving systems but also the limits 
of their capabilities (FIA, 2020). In turn, these perceptions can lead to an 
inappropriate understanding of what behaviours are safe while using the 
system (Teoh, 2020); the same survey (Jones & Holden, 2020) found that 
10% of drivers would consider taking a nap when a driver assistance system 
is activated. One need not look far on YouTube for plentiful evidence of these 
kinds of behaviours, despite all current systems requiring drivers to remain 
attentive and engaged with the driving task. In response, Euro NCAP now 
bases its safety tests8 for driver assistance technologies on whether the sup-
port provided by the automation matches up to the perceptions that a driver 
might hold based on the system’s name. Its 2020 tests9 found that Tesla’s 
Autopilot performed very well from a technical perspective, but quite poorly 
in terms of its interaction with the driver. According to Euro NCAP, this was 
partly due to the name ‘autopilot’ and its associated promotional material 
that implied full automation (even though the driver’s handbook correctly 
set out the system’s limitations).

From the human factors perspective, we are not just concerned with those 
systems that take over the entire driving task, whether or not that is limited 
to specific circumstances. Driving is a highly complex activity involving per-
ceptual, cognitive, and motor skills at many levels (Chi et al., 2019). Basic 
vehicle control, such as steering and acceleration/braking, are considered 
as ‘operational’ tasks; hazard avoidance and car-following are examples of 
 ‘tactical’ tasks, while ‘strategic’ tasks include route navigation (Carsten et al., 
2012; Ranney, 1994). These levels also map onto skill development, as opera-
tional tasks are largely automatic (cognitively speaking, now), while more 
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decision-making and conscious thought is needed when stepping up through 
tactical and strategic levels (Ranney, 1994; Stanton & Marsden, 1996). It 
is no coincidence that the evolution of driving automation systems has been 
steadily progressing up these levels (cf. Sheridan, 2017).

There are distinct echoes of this hierarchy in SAE’s (2018) definition of the 
dynamic driving task, which includes all of the operational and tactical func-
tions required to operate a vehicle in on-road traffic (such as longitudinal and 
lateral control, object and event detection and response, and manoeuvring). 
Any or all of these can be automated (for example, with ACC, LC, or AEB). 
Such systems have historically been collectively known as advanced driver 
assistance systems (ADAS), although some suggest that term is now out of 
favour and instead offer ‘driver support features’ as a substitute for ADAS 
(Fisher et al., 2020). Either of these terms would seem to suffice, though, since 
such systems purport to both assist and support the driver.

Victor et al. (2018) took a stronger view in suggesting that anything but full 
automation is merely driver assistance. Thatcham Research (2019) made a 
similar distinction between assisted and automated driving, whereby assisted 
is very much about supporting a driver who remains in charge if not in control 
(and hence cannot engage in non-driving tasks), while in automated driving 
the vehicle takes full control and responsibility. Automated driving therefore 
means the driver can engage in secondary tasks, although they may still need 
to remain available for the transition of control as necessary.

What this all comes down to, of course, is the fact that the limitations of 
present-day technologies mean they still rely on a human sitting in the driving 
seat, tasked with monitoring the system and picking up any loose ends that 
it cannot deal with. Thus, we should distinguish full automation (i.e., com-
pletely unsupervised) from a highly automated vehicle, in which the driver 
might still need to take over (de Winter et al., 2014) or otherwise monitor the 
system in some way (cf. Merat et al., 2012; Victor et al., 2018).

Many industry definitions of automated driving systems (ADS) echo that 
of the highly automated vehicle, explicitly acknowledging that the  system 
specification may be limited to certain scenarios or conditions – what the 
industry calls its operational design domain (SAE, 2018). In the UK’s 
Automated and Electric Vehicles Act 201810, automated vehicles are those 
which are ‘…designed or adapted to be capable, in at least some circum-
stances or situations [emphasis added], of safely driving themselves’, where 
‘driving themselves’ means they are not being controlled, and do not need 
to be monitored, by a person. Similarly, the SAE (2018) defines an ADS 
as one that is capable of performing the entire driving task on a sustained 
basis, regardless of whether it is limited to a specific operational design 
domain. This is distinct from a (confusingly named) driving automation 
system, which is the generic term for any system capable of performing part 
or all of the driving task (SAE, 2018). Clearly, these definitions overlap11, 
so we can imagine them as subsets of each other (see Figure 1.1), where 
driving automation is the superset (automates part or all of the driving task 
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in limited or all situations), encompassing the subset of (highly) automated 
driving (automates all of the driving task in limited or all conditions), which 
itself encompasses full automation (automates all of the driving task all of 
the time).

But automation is automation, even if it is of only some aspects of the 
driving task, because they are occurring without driver input (cf. Noy et al., 
2018). Since we have been thinking in terms of levels of the driving task, it 
makes sense to also think in terms of levels of automation.

TAXONOMIES

Classical taxonomies

Classical models of automation design in the human factors literature have 
focused on task-based divisions of labour. The original and well-known Fitts 
list, devised in 1951, was intended as a way of deciding how to allocate rel-
evant functions between human and machine by specifying those activities 
for which human skills surpass those of machines, and vice-versa (Table 1.1).

Straightforward as it appears, this approach is rather coarse and has not 
been without criticism over the years. Schutte (2017) proposed that we should 

Figure 1.1  Conceptual representation of the different definitions of driving automation.  
‘Driving automation’ can automate part or all of the driving task in part  
or all of the domain; ‘(highly) automated driving’ automates all of the driving  
task in part or all of the domain; ‘full automation’ automates all of the  
driving task in all domains.
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think in terms of skills rather than indivisible task units, and share out aspects 
of tasks in a more collaborative manner. Similarly, Phillips (2018) argued that 
it oversimplifies the dichotomy between humans and machines (just because a 
task can be automated, does not necessarily mean that it should be), and ques-
tioned its modern relevance in a world which has seen monumental increases 
in computer processing power, and where machine learning is encroaching on 
those skills where humans were once dominant. In response, Phillips (2018) 
proposed a revised version of the Fitts list taking into account these advances 
(Table 1.2), although clearly this does not address the concern that it is still a 
dichotomous approach.

Later developments of this approach put forward more subtle taxonomies 
based on levels of authority. Seminal amongst these is the work of Sheridan 
& Verplank (1978), who classified the role of humans and computers accord-
ing to the extent of their relative control of the task. For the human, they 
can either command (i.e., program the system), plan (consider alternatives), 
monitor, intervene, or trust (let the computer get on with it). Meanwhile, 
the computer can either extend the human’s abilities (beyond what they can 
perform unaided), partially relieve the human of a task, backup the human 
in case of error, or replace the human entirely. Importantly, the first two of 
these (extending the human’s abilities and relieving them of a task) are seen 

Table 1.1 The original Fitts list (1951; based on that cited in Hancock, 2019)

Humans are better at Machines are better at

Detecting small amount of visual or 
acoustic energy

Perceiving patterns of light or sound
Improvising and using flexible procedures
Storing very large amounts of information 
for long periods and recalling relevant 
facts at the appropriate time

Reasoning inductively
Exercising judgement

Responding quickly to control signals, and 
applying great force smoothly and precisely

Performing repetitive, routine tasks
Handling highly complex operations, i.e., 
doing many different things at once

Storing information briefly and then erasing 
it completely

Reasoning deductively, including 
computational ability

Table 1.2 Modern-day revised Fitts list (after Phillips, 2018)

Humans are better at Machines are better at

Abstractive reasoning
Exercising judgement and sanity checking
Recalling relevant information in an ad-hoc 
manner

Invoking morality in decision-making
Extracting meaning from qualitative information
Transferring learned knowledge and skills to new 
tasks through adaptation and flexibility in 
working methods

Deductive reasoning
Performing repetitive, routine tasks
Detecting and responding quickly to 
small nuances in signals

Storing data and recalling accurately 
and immediately

Identifying trends in quantitative data
Handling multiple operations 
simultaneously
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as human and computer sharing control, while backup and replacement are 
instances of trading control between the two entities.

But the Sheridan & Verplank (1978) report is probably best known for its 
hierarchy of ten levels of automation which, as with the Fitts list, was offered 
as a tool for designers to decide how to allocate resources:

1. Human does the whole job up to the point of turning it over to the com-
puter to implement

2. Computer helps by determining the options
3. Computer helps determine options and suggests one, which human need 

not follow
4. Computer selects action and human may or may not do it
5. Computer selects action and implements it if human approves
6. Computer selects action, informs human in plenty of time to stop it
7. Computer does whole job and necessarily tells human what it did
8. Computer does whole job and tells human what it did only if human 

explicitly asks
9. Computer does whole job and tells human what it did if it decides they 

should be told
10. Computer does whole job if it decides it should be done, and if so tells 

human, if it decides they should be told

In stepping through the levels, more and more of the task is gradually del-
egated to the computer (cf. Richards & Stedmon, 2016); the tipping point in 
terms of the balance between human and computer control is from level 6 
upwards (Inagaki, 2003; Inagaki & Sheridan, 2019). Indeed, the landmark 
of Sheridan & Verplank’s (1978) taxonomy was in the recognition that auto-
mation is not an all-or-none option, and that by exploiting different levels 
of automation it is possible to assist the operator rather than replacing them 
(Kaber & Endsley, 1997; Stanton et al., 2001).

Subsequent to the work of Sheridan & Verplank (1978), Endsley and Kaber 
(Endsley, 1987; Endsley & Kaber, 1999; Kaber & Endsley, 2004) further 
refined the levels of automation taxonomy to explicitly include consideration 
of supervisory control. Endsley & Kaber (1999) proposed another ten-level 
hierarchy, not dissimilar to Sheridan & Verplank’s (1978) version but with a 
more nuanced division of control around the middle levels:

1. Manual control
2. Action support (system assistance)
3. Batch processing (human selects options and hands over to automation 

to execute)
4. Shared control (human and automation generate options, human selects, 

human and automation execute)
5. Decision support (automation generates options, human selects, auto-

mation executes)
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6. Blended decision-making (automation generates options and executes if 
human consents, or human can generate alternatives for the automation 
to execute)

7. Rigid system (automation presents limited options, human selects, auto-
mation executes)

8. Automated decision-making (automation selects best options and exe-
cutes from its list of alternatives)

9. Supervisory control (automation generates, selects and executes options, 
human intervenes if necessary)

10. Full automation (human out of the loop completely).

Several studies have shown the differing effects of these levels on factors such 
as mental workload, situation awareness and, ultimately, performance (cf. 
Endsley, 1987; Endsley & Kaber, 1999), factors that we will explore in more 
detail in Chapter 2. For now, the most relevant point is the consistent find-
ing that whilst higher levels of automation are most beneficial under normal 
operating conditions, they can be detrimental if faced with an unanticipated 
situation requiring manual intervention (Endsley & Kaber, 1999; Sebok & 
Wickens, 2017). Such situations might involve a technical (software or hard-
ware) failure of the automation, or it might simply be a situation for which 
the automation was not designed, or the automation could even be working 
perfectly well according to its design intent but just not as the user anticipated 
(Sebok & Wickens, 2017). In these circumstances, intermediate levels of auto-
mation facilitate a better recovery from the abnormal event, owing to the 
increased interaction with the task leading to improved situation awareness 
(Endsley & Kaber, 1999; Kaber & Endsley, 2004). Similarly, there is evidence 
that whilst automated assistance of physical tasks is beneficial, performance 
is actually hindered with assistance of higher cognitive functions – probably 
because there is additional workload involved (in monitoring the system and 
in making decisions from an increased range of options) which can be dis-
tracting (Endsley & Kaber, 1999). Thus, there is no such thing as a ‘best’ level 
of automation; the question is about overall system performance, of which 
human cognitive processing is a key part (Kaber & Endsley, 2004).

Contemporary taxonomies

Further developments of the levels of automation approach in more contem-
porary human factors research sought to take account of this role of cogni-
tion. In a number of related papers, Parasuraman and Wickens (Parasuraman 
& Wickens, 2008; Parasuraman et al., 2000; Wickens et al., 2010, 2015) 
introduced a new dimension to the taxonomy, by considering the four key 
stages of human information processing: sensory processing, perception and 
working memory, decision-making, and response selection. As first set out 
by Parasuraman et al. (2000), these input functions can be overlaid on the 
output functions of the earlier ten-level taxonomies to result in a model of 
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types of automation: information acquisition, information analysis, decision 
and action selection, and action implementation. Table 1.3 represents these 
orthogonal dimensions.

In a given system, then, automation can be applied at any of the ten levels 
within each of these four types, and can vary both within and between tasks. 
Another way of thinking about this is to view automation as offering any-
thing from augmentation of driver performance (e.g., AEB), a prosthesis that 
replaces some aspect of driving (e.g., ACC), or an agent that acts on behalf 
of the driver (e.g., collision warning and avoidance; Lee & Seppelt, 2012). 
Automation is, therefore, far from binary: there can be a dynamic continuum 
of automation across all parts of a task. Increasing the level of automation 
within a stage, and/or implementing automation at later stages of informa-
tion processing, is said to increase the ‘degree of automation’ (Wickens et al., 
2010, 2015). Echoing the observations of Endsley and Kaber described above, 
Wickens et al. (2010) noted that higher degrees of automation improve per-
formance in routine situations but adversely affect performance when dealing 
with automation failures.

As much as these performance issues are associated with mental workload 
and situation awareness (Endsley, 2017; Onnasch et al., 2014; Wickens et al., 
2010), they may also be associated with the stage of information processing 
that is automated. A distinction can be drawn between the first two stages 
of processing, termed ‘information automation’, and the latter two stages or 
‘decision automation’ (Parasuraman & Wickens, 2008; Sebok & Wickens, 
2017). Information automation may be better for performance because 
the user is still engaged in generating courses of action based on what the 
automation has presented. If the automation is unreliable, the user may still 

Table 1.3  Model of types and levels of automation, after Parasuraman et al. (2000) Darker 
shading reflects higher degrees of automation (see text for explanation). 
Levels 1 to 10 represent the ten-level taxonomy of Sheridan & Verplank (1978) 
described earlier.

Information automation Decision automation

Level/Stage
Information
acquisition 

Information
analysis 

Decision and
action selection 

Action
implementation 

1
2
3
4
5
6
7
8
9

10
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evaluate it against the objective ground truth in the world. As such, high 
levels of information automation might be justified if reliability is extremely 
high (Parasuraman et al., 2000). Decision automation, on the other hand, 
causes performance problems if it is unreliable because the user has to effec-
tively monitor and, if necessary, override it (Endsley, 2017). Furthermore, 
the available opportunities to recover a failure become increasingly limited 
as more information-processing stages are automated (Li & Burns, 2017). 
Consequently, high levels of decision automation may not be suitable if the 
human is ever expected to take over control – which, as we have seen, will 
be the case for a long time yet (Parasuraman et al., 2000). Parasuraman & 
Wickens (2008) recommended that decision automation should only be used 
at a low level of automation in high-risk settings, so as to avoid users unthink-
ingly following the automation.

As an interesting aside, Lee & Seppelt (2012) revisited the Fitts list with the 
information processing stages of automation in mind (see Table 1.4). Whilst 
they noted that the ‘humans are better at’ list is diminishing, people are still 
unmatched for their adaptability, flexibility, and ‘seeing the big picture’.

One of the problems with implementing automation by degree, though, is 
that every step up in level of automation increases the risk of performance prob-
lems when returning to manual control (Onnasch et al., 2014). The implica-
tion of this is that humans should always be involved in decisions and actions 
if their performance is critical. Traditional levels-of-automation taxonomies 

Table 1.4  Fitts list categorised against information processing stages (based on Lee & 
Seppelt, 2012)

Information processing stage Humans are better at Automation is better at

Information acquisition Detecting small amounts of 
visual, auditory, or chemical 
signals

Detecting a wide range of 
stimuli

Monitoring processes
Detecting signals beyond 
human capability

Information analysis Perceiving patterns and 
making generalisations

Exercising judgement
Recalling related information 
and developing innovative 
associations between items

Ignoring extraneous factors 
and making quantitative 
assessments

Consistently applying precise 
criteria

Storing information for long 
periods and recalling specific 
parts and exact reproduction

Action selection Improvising and using flexible 
procedures

Reasoning inductively and 
correcting errors

Repeating the same 
procedure in precisely the 
same manner many times

Reasoning deductively
Action implementation Switching between actions as 

demanded by the situation
Adjusting dynamically to a 
wide range of conditions

Performing many complex 
operations at once

Responding quickly and 
precisely
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do not account for such involvement because, fundamentally, they are driven 
by technological capability rather than user requirements (Hoc et al., 2009), 
and assume that simple functional substitutions of humans by automation are 
zero-sum and do not otherwise affect human behaviour (Kaber, 2018).

Rather than think in terms of dividing tasks between humans and automa-
tion, then, an alternative is to consider human-machine cooperation, with 
each party pursuing its own goals while trying to facilitate a common task (in 
other words, teamwork; Annett & Stanton, 2000; Roberts et al., 2022). Hoc 
(2001) and Hoc et al. (2009) modelled this interaction from the perspective 
of human requirements, following the principle that automation should sup-
port, rather than replace, the human. The framework proposes three levels 
of cooperation, broadly relating to the operational-tactical-strategic levels of 
control described earlier: cooperation in action (i.e., task execution), coopera-
tion in planning (aimed at maintaining a shared understanding and goals), 
and meta-cooperation (establish models of each other’s operation and behav-
iour, in order to provide a platform for coordination).

Within each of the three cooperation levels are four cooperation modes, 
almost as a hybrid of Sheridan & Verplank’s (1978) taxonomy and the 
 information processing cycle in the model of Parasuraman et al. (2000). 
These modes cover perception, mutual control, function delegation, and full 
automation. Navarro et al. (2011) provides examples of these in the context of 
lateral vehicle control. The perception mode uses technology to augment the 
external world, such as vision enhancement of lane edges. Mutual control is 
about providing feedback on behaviour, so that could be represented by lane 
departure warning or lane-keeping assistance systems. Function delegation 
hands over part of the task to the automation, as with a LC system. Finally, 
full automation speaks for itself (although this does not necessarily rule out 
operating under driver supervision). Studies have demonstrated the advan-
tages of this human-machine cooperation approach both in terms of factors 
such as situation awareness and trust (Hoc et al., 2009) as well as driver pref-
erences (Navarro et al., 2018), suggesting that the quality of human-machine 
interaction is all-important (Eriksson & Stanton, 2017a; Stanton et al., 2021).

At the heart of Hoc’s model is the notion of a common frame of reference 
(COFOR) at the planning level of cooperation. This COFOR is essentially 
a shared mental representation of system operation, but one which must be 
held by both human and machine about the other’s behaviour. One of the key 
aspects of this is the mutual awareness of each other’s context and intent and, 
as such, the COFOR depends critically on two-way communication between 
human and automation. Hoc et al. (2009) provide the example of a lane-
keeping system in cars – which warns the driver when straying out of his/
her lane. Clearly, sometimes this activity is legitimate – when overtaking, 
for example. The system has access to the vehicle’s electronics, though, and 
so only provides a warning if the driver is moving across the lane markings 
without having used a turn signal. Whilst this is a crude rule, it illustrates 
the importance of intent and context in maintaining that common frame of 
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reference and hence the smooth dynamics of the team. However, many of the 
human factors problems with automation are a result of less optimal com-
munications between human and machine (Clark et al., 2019; Eriksson & 
Stanton, 2017a; Hoc et al., 2009). Hoc et al. (2009) commented that those 
automation systems which are commonly marketed as support devices are 
not really cooperative, as they remove parts of the driving task; the driver 
then has to manage the automation as well as their remaining driving task. 
‘True driver support should act as a human co-driver – providing advice when 
needed, assistance when necessary, but largely remaining in the background 
and invisible under normal conditions’ (Hoc et al., 2009; p. 154).

Driving automation taxonomies

Invisible automation caught the interest of Young et al. (2007), who distin-
guished the automation of low-level, vehicle control tasks from higher-level 
cognitive driving tasks, and termed these ‘vehicle automation’ and ‘driving 
automation’, respectively. This distinction is, in fact, consistent with the sub-
sequent definitions put forward by SAE (2018), who deprecated the term 
‘automated vehicle’ in favour of ‘automated driving’ when we are talking 
about the driving task.

Traditional automatic systems usually only carry out operational elements 
of driving. The actions of automatic gearboxes, or even conventional cruise 
control, are largely mechanical in nature or take place at the highly skilled 
(and hence unconscious) end of the driving continuum. Going further, sys-
tems such as ABS or ESC augment driver responses beyond human capabili-
ties and only reveal themselves to drivers in emergency situations. Navarro 
et al. (2011) viewed these kinds of systems as part of the vehicle dynamics 
from the driver’s point of view, rather than human-machine cooperation in 
the true sense. Hence, these may be thought of as vehicle automation.

Driving automation, on the other hand, assumes more tactical and even 
strategic aspects of driving (cf. Ranney, 1994). For instance, ACC removes a 
cognitive task from the driver – perceiving speed of a lead vehicle, deciding 
whether to adjust speed in response, and taking appropriate action. Collision 
avoidance and collision warning systems take this a step further, by making 
a potentially stressful decision about whether to take emergency action. Even 
LC, which might appear to be an example of vehicle automation, relieves the 
driver of a significant cognitive workload (Young & Stanton, 2002b), owing 
to the fact that steering is a second-order tracking task (Wickens et al., 1998). 
As is evident from the evolution of technology we reviewed earlier, more and 
more driving automation systems have become a reality in recent years; it is 
no coincidence that they constitute the types of systems we are mostly con-
cerned with in this book.

By relieving the driver of these more conscious cognitive tasks, driving 
automation has a much more conspicuous impact on human-machine coop-
eration. Drawing an analogy from marketing parlance, vehicle automation 
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can be thought of as ‘below-the-line’, being in most cases subtle, unnotice-
able, or even (as with systems such as ABS or ESC) opaque (cf. Hancock, 
2019). Driving automation, though, is ‘above-the-line’ – visible, obvious, and 
prominent in the driver’s attention. As we shall see more in the next chapter, 
these are the characteristics that cause particular human factors problems, 
especially when – despite being visible – it is not transparent. Opacity when 
you are trying to hide is one thing (i.e., with vehicle automation); however, it 
is not desirable when someone else needs to see what you are doing.

Young et al. (2007) went on to describe another dichotomy in automation, 
depending on whether the human or the machine has ultimate authority over 
task decisions. In aviation, two different philosophies have emerged on this 
front: hard and soft automation (Hughes & Dornheim, 1995). Hard protec-
tion employs automation to prevent error, protecting against any inadvertent 
exceedance of safety limits, and hence it can intervene and override the human 
operator’s actions. For instance, some aircraft have hard speed envelope pro-
tection features that will prevent the pilot from stalling the aircraft and from 
pulling excessive forces, even in an emergency (Hughes & Dorheim, 1995). 
The rationale behind hard protection is largely to protect the airframe – if the 
pilot should inadvertently take the aircraft beyond its performance envelope, 
automatic interventions will prevent damage and maintain flight dynamics. 
Hard automation, then, has ultimate authority and can override the pilot’s 
inputs. In a sense, it relates to higher levels of automation in the taxonomies 
reviewed earlier.

Meanwhile, soft protection uses automation as a tool to aid pilots, giving 
them full authority to override the automated systems if they want (or need) 
to, without being overridden by the automated systems. There are still auto-
mated advisories in this soft protection scheme; if the pilot wishes to exceed 
set limits, they are required to apply more force than normal on the controls. 
As such, soft automation aligns with more moderate levels of automation.

Hard and soft automation therefore use similar sensors and control devices, 
but to different ends. Hard automation takes the pilot’s input, determines 
whether it is sensible, and if necessary takes its own action before passing 
the instructions on to the control surfaces. Soft automation makes a similar 
assessment of pilot inputs, but will only give feedback if the control requests 
appear to represent a safety risk. If the pilot persists, the soft automation will 
then pass the inputs directly to the control surfaces without intervention.

Both philosophies have advantages in certain situations. A good exam-
ple is if the pilot has received a collision warning and, in a panic reaction, 
pulls hard back to gain altitude. Without an associated increase in thrust, 
the aircraft would soon stall. In that situation, the aircraft will itself apply 
the necessary amount of thrust to climb without stalling. However, there are 
 certain situations in which the pilot may legitimately wish to take the air-
frame beyond its performance limits. An incident involving an engine failure 
on a China Airlines Boeing 747 in 1985 was only recovered after the aircraft 
had lost 30,000 feet in an uncontrollable dive (see NTSB, 1986; Norman, 
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1990). Needless to say, the airframe was significantly stressed during both the 
descent and the recovery, and substantial damage was caused (though only a 
few injuries were sustained on board). Interestingly, though, if that aircraft 
had been fitted with a hard protection system that prevented the pilots from 
stressing the airframe, it would likely have crashed (Borst et al., 2015).

With respect to vehicle and driving automation, automatic gearboxes can 
be categorised as hard automation – whilst the driver may usually make lim-
ited gear selections (e.g., the use of ‘kickdown’ or rudimentary gear lever set-
tings), in the main the choice of gear is dictated by the automation. ABS and 
ESC systems are similar; their interventions are absolute and made purely on 
an assessment of the vehicle’s braking dynamics. Conventional cruise control 
(which, remember, is also an example of vehicle automation) can instead be 
classified as soft automation – the driver decides how and when to set the 
system, and can override the system at any time. Similarly, ACC and LC 
(driving automation) represent examples of soft automation systems, in that 
they are fully selectable by the driver and any manual control inputs will 
override them. Similarly, collision warning systems offer information and 
advice to the driver without necessarily assuming control – similar to the 
soft protection systems in aircraft. Conversely, a collision avoidance system, 
set up to intervene automatically in an impending collision, is more akin to 
hard protection.

Both vehicle and driving automation systems, therefore, can be designed 
for hard or soft protection (see Table 1.5). It is probably too early in this 
book to speculate, but it is notable that the human factors concerns tend to be 
focused on driving automation rather than vehicle automation (by definition, 
since drivers interact more with driving automation than vehicle automation), 
and on hard automation rather than soft automation. We have already noted 
several researchers’ concerns with the effects of higher levels of automation 
(comparable to hard automation) on human performance, particularly when 
having to deal with a failure of the automation (e.g., Onnasch et al., 2014). 
Similarly, Young et al. (2007) reviewed a number of aircraft accidents to 

Table 1.5  Matrix of hard and soft automation categories against vehicle and driving 
automation types (after Young et al., 2007)

Hard automation Soft automation

Vehicle automation Automatic gearbox
ABS
ESC
AEB

Conventional cruise control

Driving automation Collision avoidance
Intelligent speed adaptation
ALKS

ACC
Lane departure warning
LC / lane-keeping assist
Parking assist
Blind spot monitoring
Collision warning
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demonstrate the prevalence of hard automation aircraft in automation-related 
accidents. Nevertheless, there is compelling evidence that ESC (a hard-vehicle 
automation system) is effective in reducing road collisions (see Navarro et al., 
2011), while ABS and AEB are similarly advocated by road safety organisa-
tions. So, clearly, not all hard automation is bad, and we might start thinking 
in terms of different philosophies for different types or levels of automation. 
That would certainly be in keeping with the human-machine cooperation 
model (Hoc, 2001; Hoc et al., 2009), which advocates supporting the driver 
rather than replacing them, by undertaking some components of the task or 
ensuring redundancy for certain functions, while leaving the driver in charge. 
We will be revisiting these ideas later in the book.

Notwithstanding all of these efforts in human factors to classify automa-
tion along more cognitive lines, the automotive industry’s benchmark reverts 
to a more task-based levels-of-automation taxonomy of driving automation 
systems. The Society of Automotive Engineers standard J3016 (SAE, 2018) is 
positioned as a framework for discussion around aspects ranging from techni-
cal specifications to policy and legislation, and claims12 to be ‘the industry’s 
most cited reference for automated-vehicle (AV) capabilities’. The SAE tax-
onomy has six mutually exclusive levels (including level 0 – no driving auto-
mation) based on the elements of the driving task carried out by the driver or 
by the automation, and the roles that they respectively play. These levels are 
detailed in Table 1.6, alongside analogous descriptions offered by Thatcham 
Research (2019) to reflect the level of driver involvement. The US National 
Highway Traffic Safety Administration (NHTSA) has a similar taxonomy 
but with five levels, where its level 3 broadly covers levels 3 and 4 of the SAE 
taxonomy (see Hancock, 2019; Norman, 2015; Richards & Stedmon, 2016).

At levels 1 and 2, the automation performs longitudinal and/or lateral con-
trol, while the driver carries out the rest of the driving task, supervises the 
automation, intervenes as necessary, decides whether and when to dis/engage 
the automation, and steps in to perform the entirety of the driving task when-
ever required or desired. This latter point is critically important, as it depends 
on drivers monitoring the automation and understanding its status at all 
times (Mueller et al., 2020). Whilst driving at these levels can become hands- 
and feet-free, then, it cannot be mind-free (Banks et al., 2014). At level 3, 
the driver becomes the ‘fallback-ready user’, receptive to the need to take 
over manual control from the automation, if necessary. ‘Receptive’, accord-
ing to the SAE (2018), is the ability to reliably and appropriately focus their 
 attention in response to a stimulus, whether that stimulus be an overt request 
from the automation or some cue that the automation is failing. Because the 
system cannot deal with all situations, it should be classified as assisted rather 
than automated driving (Thatcham Research, 2019). Levels 4 and 5 have no 
need for a fallback-ready user and the driver can effectively become a pas-
senger (the distinction from level 4 to level 5 is the removal of any operational 
design limitation on the automation, such as environment or geography – at 
level 5, it is fully automated and can drive anywhere).
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Table 1.6 Taxonomy of driving automation systems (adapted from SAE, 2018)

Level Description Automation Driver Examplesa

Analogy 
(Thatcham 
Research, 2019)

Driver performs all or part of the dynamic driving task (driver support features)

0 No driving 
automation

None Entire dynamic 
driving task

AEB
Blind spot 
monitoring

Lane 
departure 
warning

‘Feet off ’ 
(driver 
monitors 
driving 
environment)

1 Driver 
assistance

Either lateral or 
longitudinal control 
(but not both 
simultaneously) 
within specific 
operational design 
domain

Remainder of 
dynamic driving 
task

ACC or LC

2 Partial 
driving 
automation

Both lateral and 
longitudinal 
control within 
specific 
operational design 
domain

Object and 
event detection 
and response; 
supervises the 
driving 
automation 
systems

ACC and LC

Automation performs the entire dynamic driving task while engaged 
(automated driving features)

3 Conditional 
driving 
automation

Entire dynamic 
driving task within 
specific 
operational design 
domain

Acts as 
fallback-ready 
user receptive 
to requests to 
intervene from 
automation, as 
well as to 
system failures, 
and responds 
appropriately

ALKS ‘Hands off ’ 
(driver 
monitored)

4 High driving 
automation

Entire dynamic 
driving task within 
specific 
operational design 
domain

None (while the 
automation is 
active within its 
operational 
design domain)

Local 
driverless 
taxi (e.g., 
Waymo/
Uber)

‘Eyes off ’ 
(system 
monitors 
driving 
environment)

‘Brain off?’5 Full driving 
automation

Unconditional and 
unlimited 
performance of 
the entire dynamic 
driving task

None As level 4, but 
can drive 
anywhere in 
all conditions

Note: aLevel 0 driving can be enhanced by active safety or driver assistance systems, but on their own 
these are not considered as driving automation systems in the SAE (2018) taxonomy because 
they do not perform the dynamic driving task on a sustained basis.
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To reframe this in more human-centred terms, there are essentially two 
dimensions each with two levels (Noy et al., 2018): part-time vs. full-time, 
and partial vs. full automation (or supervised vs. unsupervised; Ljung Aust, 
2020). Counterintuitively, the examples of level 0 automation (such as AEB) 
reflect full-time partial automation; levels 1 and 2 are largely part-time par-
tial automation, while level 3 is the first step into full automation, albeit part-
time. Only level 5 meets the criteria for full-time, full automation.

Relating the SAE levels of automation to the technology timeline we 
reviewed earlier, clearly level 1 automation has been around for many years 
(Inagaki & Sheridan, 2019), while we have recently seen more examples of 
level 2 automation on the roads, such as with Tesla’s Autopilot, Volvo’s Pilot 
Assist, or Audi’s Traffic Jam Assist (Jones & Holden, 2020). Although there 
are currently no vehicles with level 3 automation available on the market 
(Teoh, 2020), that is the focus of much technological and policy effort at the 
moment (Inagaki & Sheridan, 2019; Jones & Holden, 2020). Indeed, we are 
about to embark on this ground-breaking (in technological and human fac-
tors ways) stage of driving, as represented by the imminent developments in 
ALKS described earlier in this chapter. There remains a technological barrier 
to implementing level 3 automation on open roads in mixed traffic, though, 
hence the leapfrog to level 4 automation in limited circumstances or in test 
trials (such as airport shuttles on enclosed courses or, of course, the noted 
Waymo and Uber trials; Jones & Holden, 2020; Reed & Sellick, 2017; SAE, 
2018). Nevertheless, there are no signs of level 5 automation even on the 
horizon (Inagaki & Sheridan, 2019; Jones & Holden, 2020; Reed & Sellick, 
2017), such is the technological leap required to achieve it in a naturalistic 
environment (Noy et al., 2018).

Despite the dominance of level-of-automation taxonomies in both literature 
and industry, they have attracted criticism from human factors researchers 
for neglecting the bigger picture of joint human-system performance (Kaber, 
2018). Their arbitrary decomposition of functions is technology-centred 
and does not account for the cognitive work of deciding how and when to 
intervene (Dekker & Woods, 2002). There is a potential mismatch between 
drivers’ perceptions of their respective roles when using driving automation 
systems against the industry’s expectations of such as described in the SAE 
levels (cf. Ljung Aust, 2020): ‘…humans will not always do what engineers 
expect them to do’ (Kaber, 2018; p. 15). Even drivers of level 2 cars are more 
likely to disengage from driving and engage in a secondary task that can 
draw their attention away from the road (Carsten et al., 2012; Mueller et al., 
2021; Ulahannan et al., 2020), impairing their ability to resume control when 
required (Mueller et al., 2021).

As is evident from Table 1.6, the tipping point in the SAE (2018) taxonomy 
is level 3 upwards (Teoh, 2020), when the automation starts to perform the 
entire driving task on a sustained basis (SAE, 2018) – although the driver is 
still expected to be available to take over until we get to level 4 (Merat et al., 
2014; Seppelt & Victor, 2016). Ljung Aust (2020) argued that this means the 
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driver is still effectively driving. Level 3, therefore, presents a difficult transi-
tion because the driver no longer has control, may be free (and undoubtedly 
will want) to engage in non-driving tasks, yet must still monitor the system 
and the driving environment (Inagaki & Sheridan, 2019; Seppelt & Victor, 
2016) and be ready to take over. For this reason, if for no other, the role of the 
human factor in automated driving has never been more critical.

THE HUMAN FACTOR

In this chapter, we have set out a potted history of automated driving sys-
tems in anticipation of where automation is going next (which will almost 
certainly have changed by the time you are reading this), described a num-
ber of definitions associated with such technology, and reviewed a vari-
ety of classifications of automation from the human factors perspective. 
From the technology timeline, it appears that we are just about to enter 
the difficult adolescent years for driving automation, as it grows out of 
playing a supporting role to the driver and starts to take on some respon-
sibility, but has not yet matured enough to gain full independence. Or, in 
SAE (2018) terms, that transition from levels 1/2 at present, through level 3 
very soon, to levels 4/5 at some point in the future. We are in the ‘danger 
zone’ for automation as it starts to wrest control from the driver but still 
needs looking after, underlining the importance of considering human fac-
tors (Emmenegger & Norman, 2019). Only at level 5 can we really cut the 
apron strings, but that autopia seems to be an increasingly distant ideal (cf. 
Brooks, 2017; Noy et al., 2018; Sheridan, 2017). Harking back to the Fitts 
list, humans still offer an adaptability and flexibility currently unmatched 
by machines (Phillips, 2018), but such is required to deal with all of the 
unforeseeable situations that a fully automated vehicle must cope with. 
Until such complete automation exists that can cope with all circumstances 
in all environments, the human driver will play a key role up to (and includ-
ing) level 4 (Kyriakidis et al., 2019; Noy et al., 2018), even if that is in a 
supervisory capacity (Sheridan, 2017).

With the importance of the human, comes the importance of human factors 
if these systems are to be successful in bringing advantages for safety, perfor-
mance, and satisfaction. It is certainly not the case that more automation will 
reduce the significance of human factors, despite all of the technological rhet-
oric around the push towards higher levels. The SAE (2018) taxonomy has 
come in for criticism from the human factors quarter for not being human-
centred (Hancock, 2019; Noy et al., 2018), focusing as it does on the separa-
tion of tasks and roles rather than the interactions between driver and vehicle.

Fortunately, this is not representative of other standards and policy work 
in this area. Standardisation work at British13 and International14 level is con-
sidering the human performance implications of automated vehicles, while 
NHTSA’s statement of policy15 also has a research strand on human factors. 
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The issues are even recognised by the United Nations Economic Commission 
for Europe (UNECE) at its Global Forum for Road Traffic Safety, which 
adopted a resolution (ECE/TRANS/WP.1/2018/4/Rev.316) that takes into 
consideration the role of the human in highly and fully automated vehicles 
(i.e., SAE levels 4 and 5). This reflects a systems view by focusing on require-
ments for the system to interact with the user, as well as requirements on the 
users themselves, and even implications for government policy.

The central thesis of this book is that, until the need for a driver is com-
pletely eliminated, driving automation has a wealth of implications for human 
factors. As such, human factors should be front and centre in any discus-
sions about the design, implementation, and regulation of automated vehicles 
(Stanton et al., 2021). The trouble is, notwithstanding the considerable efforts 
of the human factors community to research these issues, the agenda has been 
very much driven by the technological imperative. In the next chapter, we will 
review the human factors concerns in detail and argue why it is a fallacy to 
think that automation will ‘solve’ human error.

KEY POINTS

• Historically, automobile automation has taken over lower-level, vehicle 
control tasks, but there is a fundamental difference between these and 
the more cognitive, driving tasks that are now being automated.

• We are now on the cusp of a revolution in driving automation, as the 
imminent arrival of level 3 systems will shift the balance of control away 
from the human driver and towards the technology.

• However, it will be many years before we will see full, level 5 automa-
tion, when humans can truly let go of driving in all situations; until that 
time, we must design automated systems around the people who will 
still play a crucial role.

NOTES

 1. https://www.humanist-vce.eu/ (accessed 4 May 2022)
 2. Uber infamously had to move to Arizona to test its vehicles after California 

refused the requisite permits; see Chapter 2 and Stanton et al. (2019).
 3. https://www.gov.uk/government/organisations/centre-for-connected-and-

autonomous-vehicles (accessed 4 May 2022)
 4. https://humandrive.co.uk/ (accessed 4 May 2022)
 5. https://www.euroncap.com/en/vehicle-safety/safety-campaigns/2018-automated- 

driving-tests/ (accessed 4 May 2022)
 6. EU General Safety Regulation 2019/2144, available at: https://eur-lex.europa.

eu/eli/reg/2019/2144/oj (accessed 9 June 2022).
 7. https://www.gov.uk/government /news/government-moves-forward-on-

advanced-trials-for-self-driving-vehicles (accessed 4 May 2022)
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 8. https://www.euroncap.com/en/vehicle-safety/safety-campaigns/2020-assisted-
driving-tests/whats-new/ (accessed 4 May 2022)

 9. https://www.euroncap.com/en/vehicle-safety/safety-campaigns/2020-assisted-
driving-tests/ (accessed 4 May 2022)

 10. https://www.legislation.gov.uk/ukpga/2018/18/pdfs/ukpga_20180018_en.pdf 
(accessed 4 May 2022)

 11. In this book, we use the terms ‘automated driving’ and ‘driving automation’ to 
represent systems which still retain some role – however small – for the driver 
(as distinct from full automation).

 12. https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-
graphic (accessed 4 May 2022)

 13. https://www.bsigroup.com/en-GB/about-bsi/media-centre/press-releases/2019/
july/bsi-launches-standards-programme-to-accelerate-british-leadership-in-
automated-vehicles/ (accessed 4 May 2022)

 14. https://www.iso.org/standard/78088.html (accessed 4 May 2022)
 15. https://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_Vehicles_Policy.

pdf (accessed 4 May 2022)
 16. https://unece.org/fileadmin/DAM/trans/doc/2018/wp1/ECE-TRANS-WP1-

165e.pdf (accessed 4 May 2022)
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Chapter 2

Promises, promises…

OVERVIEW

With our journey underway, we now begin to examine the human factors of 
automated driving more closely, considering first the advantages and then, in 
more detail, the potential disadvantages of automation. Many of these lessons 
learned have stemmed from the aviation domain, and this chapter spends 
some time discussing research and case studies of accidents involving aviation 
automation. From there, we go on to review some of the higher-profile inves-
tigations into automated driving collisions. In drawing out human factors 
commonalities across these cases, this then forms a platform to review six of 
the most salient human factors problems with automated systems: vigilance, 
trust, complacency, behavioural adaptation, situation awareness, and mental 
workload (MWL). It is the latter concern that constitutes a theme across all of 
the other areas, and which forms a core thesis of this book. Automation can 
at once impose underload and overload on an operator, principally through a 
lack of feedback and the ‘out of the loop’ phenomenon. We note that perfor-
mance problems with automation typically arise when the automation fails, 
and the operator struggles to intervene in a timely manner. But these are prob-
lems of automation design, and counter to the overriding technology-centred 
view that automation will eliminate human error.

INTRODUCTION

Let’s start with the good news: automated driving unarguably has the poten-
tial to make our roads safer, more efficient, and even more enjoyable (Noy 
et al., 2018). Taking these in reverse order, there has long been a vision that 
relieving the driver of tasks which are inherently difficult or demanding can 
increase the enjoyment of driving (Biesterbos & Zijderhand, 1995). Many of 
the level 1 and level 2 automated driving systems in the current vehicle parc 
have been deliberately designed first and foremost as ‘comfort and conve-
nience’ enhancements (cf. Richardson et al., 1997; Rudin-Brown & Parker, 
2004). Meanwhile, in terms of efficiency, systems such as adaptive cruise 
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control (ACC) smooth out driving by reducing harsh acceleration and braking 
events (Rudin-Brown & Parker, 2004; Seppelt & Victor, 2016), thus alleviat-
ing traffic congestion and increasing road capacity (Chira-Chavala & Yoo, 
1994; DfT, 2016).

But the big one, of course, is safety. Motor vehicle crashes are one of the 
leading causes of deaths worldwide with 1.35 million fatalities per year 
(WHO, 2018), and the leading cause of death for those in the 15–29 age 
group (Noy et al., 2018). Take rear-end collisions, which are estimated to be 
the cause of anything from a quarter to over a half of all road crashes (Gilling, 
1997; McKnight & Shinar, 1992; Zhang et al., 2021). These are, by defini-
tion, a matter of longitudinal control (accelerating and braking) and so, the 
argument goes, automating this element of driving should improve safety. In 
one study based on US data, automation of longitudinal control could save 
around 1,000 lives every year (Gilling, 1997; although some are more conser-
vative about the potential safety benefits; Chira-Chavala & Yoo, 1994). There 
has consequently been a lot of research focused on such devices as ACC, 
automatic emergency braking (AEB), or forward collision warning. Forward 
collision warning with AEB has been shown to reduce those rear-end colli-
sions by at least 50% (Mueller et al., 2021) and even up to 80% (FIA, 2020), 
while ACC can reduce tailgating and, consequently, the number and severity 
of such incidents (Rudin-Brown & Parker, 2004).

It is popularly quoted (typically in industry) that anything up to 90% of 
road collisions is due to ‘human error’ (e.g., CCAV, 2020; FIA, 2020; Foy & 
Chapman, 2018; NHTSA, 20031; Victor et al., 2018), with such errors associ-
ated with recognition, decision or performance (Seppelt & Victor, 2016). If 
humans are so poor at driving, the justification goes, then we can virtually 
eliminate road collisions by substituting the weak link with something that is 
allegedly far more competent – automation2 (cf. Williams, 2019).

But there is a fundamental fallacy with this argument (Read et al., 2021). 
The attribution of ‘human error’ is often really a proxy for ‘not mechanical 
failure’; however, human error can equally creep in with the design or con-
figuration of automation (Lee & Seppelt, 2012; Noy et al., 2018), which is 
potentially more insidious as it will affect all vehicles fitted with it, not just 
one errant driver (Banks, Plant et al., 2018). These problems are swept under 
the car mat, though, as automation cultivates an image of perfection by just 
opting out at the first sign of trouble (what is termed ‘brittle automation; 
Endsley, 2015; 2017; Lee & Seppelt, 2012), leaving the human to pick up the 
pieces. The reason ‘most’ accidents are then (and will continue to be) classified 
as human error is because humans are the last line of defence in the system 
and, consequently, bear the greatest burden – present to catch anything that 
has made it through previous barriers, including automation (Schutte, 20163). 
That some errors slip through the net to be blamed on the driver is therefore 
an inevitability (Banks, Eriksson et al., 2018) and an easy conclusion to jump 
to, referred to by Norman (1988) as ‘taught helplessness’. Automation will 
not ‘cure’ human error, though, merely push it deeper into the sociotechnical 



system (Stanton et al., 2019). Moreover, despite the unacceptably high death 
toll, the collision rate of human-driven cars is actually very low, so the per-
formance of automation will need to be exceptionally high in order to surpass 
that (Victor et al., 2018).

The purported benefits of automation therefore rest largely on the assump-
tion of it being perfect, but some remain sceptical about its potential in that 
regard too (e.g., Chira-Chavala & Yoo, 1994; Hancock et al., 2019). As it 
stands, automation cannot be programmed for the complexity of all traf-
fic situations (Noy et al., 2018), and it may struggle with ambiguities in the 
environment (Hancock et al., 2019) or less predictable contexts such as rural 
roads (Jones & Holden, 2020). Engineering estimates of the effectiveness of 
vehicle automation range from 100% (i.e., totally eliminating collisions) to 
0% (no effect) and possibly even negative effectiveness (i.e., increasing colli-
sions; Rudin-Brown & Parker, 2004). Official predictions also concede that 
the benefits of automation on traffic will be limited – possibly even negative – 
until some threshold of penetration in the fleet is reached (Brooks, 2017). One 
report (FIA, 2020) noted that if half of the vehicle parc was fitted with level 2 
automation, this could reduce motorway collisions by just under 18%.

From this perspective, then, the idea that driving can be made safer, more 
efficient, and more enjoyable by simply relieving the driver of certain tasks is 
flawed. The rest of this chapter delves into the related human factors issues 
in detail, starting with lessons and illustrations from aviation and automobile 
accidents involving automation, before going on to review the fundamental 
human factors work in this field that now spans four decades (e.g., Bainbridge, 
1983; Hancock, 2019; Hollnagel, 1993; Norman, 1990; Parasuraman & 
Wickens, 2008; Reason, 1990). To be clear, none of this is about being tech-
nophobic towards automation – we cannot, nor would we wish to, stop that 
particular tide. But if the promises of automated driving are to be realised, 
the system design has to take into account the human factor behind the wheel. 
Given that humans will continue to play a crucial role in automated vehicles 
for many years to come (Hancock, 2019), it is about ensuring that the benefits 
of the technology are maximised by considering how it fits around the driver 
(cf. Noy et al., 2018; Stanton et al., 2021) – a question we will return to in 
later chapters of this book.

LESSONS LEARNED FROM AVIATION

Suffice it to say that the road currently being explored by automobile automa-
tion has already been well trodden by another transport mode. Automation in 
aviation has been around for several decades and its complexity has reached 
the point where it is indispensable in some modern fighter jets, which are 
literally unflyable without the assistance of advanced avionics. In parallel, 
there is a considerable body of human factors knowledge about the ‘promises 
and problems’ (cf. Wiener & Curry, 1980) of aviation automation that can 
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be – and, indeed, has been – transferred into the automotive domain. Stanton 
& Marsden (1996) did just that, extrapolating from experience in aviation to 
anticipate that whilst there would be advantages with the ‘drive-by-wire’ car 
(such as improvements in safety or reduced stress), these would be traded off 
against potential concerns with technical reliability, training and skills main-
tenance, equipment designs, and overdependence on the automated system.

In the 1970s and 1980s, the philosophy in aviation was to automate every-
thing possible, with the overriding motivation being to reduce crew  workload – 
and crew numbers from three to two (Billings, 1991; Dekker & Woods, 
2002). Although this was achieved, it also brought a host of new problems 
with it. Any workload reduction that might have been offered by the automa-
tion was offset by the increase in workload on the remaining crew, because 
an automated system is not a pure substitute for a human crew member (Huey 
& Wickens, 1993). The nature of the automation also meant that workload 
was only reduced in cruise phases of flight when it was already low anyway; 
consequently, the majority of incidents involving vigilance failures and over-
reliance on the automation occurred during these phases when the pilot’s 
primary role is monitoring and supervising (Molloy & Parasuraman, 1996). 
Conversely, in the high demand phases of take-off and descent, the addition 
of automation served to increase workload further (Billings, 1991). Under 
high workload, pilots tended to revert to manual control because they did not 
have time to deal with the extra demands of the automation (Wiener, 1989). 
So although pilots generally saw the automation in a favourable light, they 
had mixed feelings about its impact on workload, situation awareness, skill 
degradation and errors (Huey & Wickens, 1993; McClumpha et al., 1991; 
Wiener, 1989). Current wisdom accepts that modern flight decks have neither 
increased nor decreased MWL, but this could be a result of workload reduc-
tions in some aspects of the task while other aspects have increased, resulting 
in no overall change.

It remains debatable whether aviation automation has actually reduced 
human error; the reduction in the accident rate of fourth-generation automated 
aircraft has stagnated (Mohrmann et al., 2015). What we can be certain of, 
though, is that automation has introduced new types of error (Billings, 1991), 
and potentially more serious errors at that (Wiener, 1989). For instance, an 
error in programming a flight management system might not result in visible 
consequences until some time later, making failure detection difficult (Sarter 
& Woods, 1995). We have already discussed how errors at the design stage 
can be more insidious, and nowhere is this more apparent than in program-
ming the computers that run the automation. It has been suggested that soft-
ware programs can contain 20–30 errors for every 1,000 lines of code – to 
put that in context, an automated vehicle may contain many millions of lines 
of code – so automation could introduce new accident types associated with 
software failures (Noy et al., 2018).

Back on the automated flight deck, one of the most prevalent types of error 
is the mode error (Sarter & Woods, 1995; Stanton & Marsden, 1996). A 



mode error occurs when executing an intention in a way that is appropriate 
to one mode, when the system is actually in another (Norman, 1981; Sarter 
& Woods, 1995). One of the simplest examples of a mode error is attempt-
ing to set the time on a digital clock, when the clock is actually in alarm 
mode. The flexibility and functionality of automation technology results in a 
proliferation of modes, which can change automatically without input from 
(or feedback to) the operator, making it both more important and more dif-
ficult to maintain awareness of the system state (Sarter & Woods, 1995). 
Furthermore, the processing speed of automation technology means it can 
cycle through system states much faster than any human can keep pace, 
making its functioning even more opaque to the operator (Hancock, 2017a). 
Working with such ‘strong and silent’ automation can create new cognitive 
demands as the user tries to keep track of what the system is doing, why it is 
doing it, and what it will do next – which can increase workload just when 
operators need the support, a situation some have referred to as ‘clumsy auto-
mation’ (see Sarter & Woods, 1995).

Sarter & Woods (1995) described two major aviation accidents caused by 
mode errors, both involving Airbus A320 aircraft. On 14 February 1990 in 
Bangalore, India, the pilot of an Indian Airlines flight unwittingly engaged 
a descent mode in which the autopilot controlled the pitch of the aircraft, 
rather than its speed. The pilot did not realise this because it was an indirect 
effect of selecting a lower altitude when the autopilot was in a particular 
mode. However, a pitch-controlled descent meant that the aircraft could not 
maintain the glidepath and speed at the same time, so it sacrificed altitude in 
favour of speed. The crew only realised ten seconds before it crashed into the 
ground, when it was too late to recover.

A similar set of circumstances transpired on 20 January 1992 near 
Strasbourg, France. In this case, the descent mode was confused on the basis 
of extremely subtle information on the instrument display. Instead of enter-
ing a desired flight path angle of 3.3°, the crew did not notice the absence of 
a decimal point on the display, which was the only indicator on the display 
of which mode the flight management system was in, and instead entered a 
much steeper vertical speed of 3300 feet per minute. As the descent was then 
entrusted to the automatic system, the crew did not pay attention to other 
available clues about the abnormally high descent rate, and the aeroplane 
crashed into a mountain range.

The absence of feedback from automation can cause ‘automation surprises’ 
(Sarter & Woods, 1995), in which the system behaves exactly according to 
specifications, yet this is quite different to that which the operator expects. 
Indeed, automation rarely suffers genuine technical failures; instead, prob-
lems are caused by a mismatch in expectations and intentions (Dekker & 
Woods, 2002). As a further indictment of (lack of) feedback, these problems 
are often only resolved by noticing what the actual aircraft is doing, rather 
than the automation status displays (Palmer, 1995; Sarter & Woods, 1995). 
Automation surprises can catch out even experienced pilots (Hughes, 1995; 
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Hughes & Dornheim, 1995) and may result in accidents if the pilot does 
not respond appropriately, overcompensating for whatever they perceive the 
problem to be and getting themselves into all sorts of trouble in the process. 
Consequently, automation surprises are often determined to be the cause 
of aviation accidents involving highly automated aircraft (e.g., Learmount, 
1994; Sedbon & Learmount, 1993).

A tangible and well-publicised example of this is described by Beaty (1995), 
in an account of an accident at an air show in Habsheim, France, on 26 June 
1988. Another Airbus A320, which at the time was one of the new generation 
of automated aircraft, made a low pass over the runway with the undercar-
riage lowered. Under these conditions, the aircraft automatically assumed a 
landing mode, which meant throttling back the engines and, crucially, dis-
abling many of the flight envelope protections. However, the pilot did not 
realise this was happening. Consequently, at the end of the pass, the pilot 
found that power was not available when he tried to pull up. The aircraft 
failed to gain height and crashed into trees at the end of the runway.

More recently, the crash of Air France flight 447 in the Atlantic Ocean on 
1 June 2009 also resulted from an automation surprise (see Inagaki & Sheridan,  
2019). At 35,000 feet, icing of an airspeed sensor called a pitot tube caused an 
automatic disconnection of the autopilot and autothrust systems. The autopi-
lot effectively gave up and suddenly returned control of the aircraft to unpre-
pared pilots. As if that was not enough, multiple alarms and alerts at the same 
time caused startle and confusion on the flight deck (Salmon et al., 2016). The 
pilots tried to take control but overcorrected, eventually resulting in the air-
craft stalling. In a 2016 webcast covering this accident, Schutte3 explained that 
icing of the pitot tubes was a design error that had previously been compen-
sated for by pilots, but unfortunately not in this case; the pilots on board had 
more experience flying with the automation than flying manually. Schutte’s 
point was that the pilots did not cause this accident, they just did not save it 
either: the aircraft would have definitely crashed if left to the automation.

Stanton & Marsden (1996) identified a range of psychological factors 
implicated in other automation-related aviation accidents, such as inatten-
tion under conditions of low workload, cognitive strain under conditions of 
high workload, and over-reliance on the technology. With echoes of the mode 
error accidents described above, Molloy & Parasuraman (1996) described 
two similar cases that demonstrate how overreliance can combine with dis-
traction to cause an incident. The crash of Eastern Airlines flight 401, a 
Lockheed L-1011 TriStar, in the Florida Everglades on 29 December 1972 
occurred when the crew did not detect the autopilot had disengaged, nor did  
they notice that they were losing altitude, because they were engrossed in diag-
nosing a possible fault with the landing gear. Meanwhile, the China Airlines 
Boeing 747 incident near San Francisco on 19 February 1985 ( mentioned 
in Chapter 1) also resulted from the crew being preoccupied with an engine 
problem and not noticing that the autopilot was gradually losing control of 
the aircraft.



In many cases, problems arise due to a mismatch in expectations, under-
standing and awareness of what the automation is doing (and vice-versa). 
On 25 February 2009, Turkish Airlines flight 1951 crashed on landing at 
Schiphol airport, Amsterdam, due to the failure of a radar altimeter. The 
pilots were aware of the faulty sensor but did not appreciate that the auto-
throttle depended on it during the approach; consequently, the engines were 
commanded to idle while the aircraft was still at 2,000 feet, resulting in a 
stall (Borst et al., 2015). Similarly, Air Asia flight 214, a Boeing 777, crashed 
just short of San Francisco airport on 6 July 2013. The crew were focused on 
the glideslope and did not notice the speed falling dangerously low. The pilot 
thought the autothrottle was set to automatically intervene, but only realised 
it was not when it was too late to recover (Thompson, 2015).

Perhaps the most prominent examples in recent years, though, involve 
the Boeing 737 MAX aircraft. Two similar crashes within months of each 
other – Lion Air flight 610 on 29 October 2018 and Ethiopian Airlines flight 
302 on 10 March 2019 – led to the aircraft being grounded (the details 
of this case study are drawn from NTSB, 2019a and Wilson, 2020). The 
737 MAX incorporated new, larger engines, mounted higher and further 
forward on the wing than previous models. This caused a tendency for the 
nose to pitch up at high angles of attack, so to counter this Boeing intro-
duced the Manoeuvring Characteristics Augmentation System (MCAS) 
which would automatically trim the nose down until the angle of attack fell 
below a threshold. Boeing assumed (incorrectly, as it turned out) that these 
automatic inputs would be readily apparent to pilots, and any necessary cor-
rections would be within their extant skills and training. So no information 
about MCAS was provided in flight crew manuals or training. In the Lion 
Air crash, maintenance activity had resulted in an undetected bias on the 
angle of attack sensor of 21 degrees. In flight the next day, this sensor bias 
caused MCAS to initiate unintended nose down trim actions 24 times. These 
were countered by the crew, but MCAS just kept trying. The multiple alerts 
being generated imposed significant workload on the crew, while they lacked 
awareness and understanding both of how MCAS worked and of previous 
problems on the aircraft.

Whether or not there is a causal relationship between the level of avia-
tion automation and accidents is moot. Wiener (1989) felt that there was not 
enough data at that time to determine whether high or low automation gen-
erate more errors; on the other hand, an analysis of automation incidents 
found that such errors were more frequent and severe in the more advanced 
aircraft (Kantowitz & Campbell, 1996). Using the dichotomy of hard and 
soft automation we introduced in Chapter 1, Young et al. (2007) analysed 
all of the major accidents involving aircraft of these types over the previous 
20 years (including many of those discussed above). They classified the acci-
dents according to whether they were deemed to be automation-related (that 
is, as having a direct cause attributable to some mismatch between human 
and automated activities) or non-automation-related (see Tables 2.1 and 2.2, 
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Table 2.1 Automation-related major aviation accidents (Young et al., 2007)

Date Automation Fatalities Location Description

26/6/88 Hard 3 Habsheim Automated mode transition at air show
14/2/90 Hard 92 Bangalore Engines in idle descent mode on approach; 

fell short of runway
20/1/92 Hard 87 Strasbourg Confused descent mode resulting in 

controlled flight into terrain
14/9/93 Hard 2 Warsaw Runway overrun as windshear on landing 

affected automatic braking systems
30/6/94 Hard 7 Toulouse Ground impact following test flight take-off 

due to misunderstanding of autopilot mode 
and overconfidence in aircraft abilities

7/2/01 Hard 0 Bilbao Heavy landing following turbulence on 
approach; crew attempted go-around but 
automatic protection envelope prevented it

20/12/95 Soft 160 Cali Hit mountain after confusion over directional 
beacon in flight management system

6/2/96 Soft 189 Dominican 
Republic

Faulty airspeed indicator caused confusion 
with autopilot

15/4/02 Soft 129 S. Korea Struck mountain on circling approach after 
captain had taken over from autopilot and 
lost situation awareness

Table 2.2 Non-automation-related major aviation accidents (Young et al., 2007)

Date Automation Fatalities Location Description

10/3/97 Hard 0 Abu Dhabi Take-off difficulties led to runway overrun
22/3/98 Hard 0 Philippines Thrust left forward on no. 1 on landing
23/8/00 Hard 143 Bahrain Crashed during go-around; autopilot 

disconnected on visual approach
28/8/02 Hard 0 Phoenix Poor reverse thrust control on landing
21/3/03 Hard 0 Taiwan Landed on utility vehicle
2/8/05 Hard 0 Toronto Runway overrun in poor weather
2/10/90 Soft 46 Guangzhou Hit by crashing 737
26/5/91 Soft 223 Thailand Reverse thrust isolator failed and deployed 

during flight
6/4/93 Soft 0 Guatemala Runway overrun
4/11/93 Soft 0 Hong Kong Runway overrun
5/8/98 Soft 0 Seoul Runway overrun
2/10/96 Soft 70 nr Lima Faulty instruments confused flight crew
14/9/99 Soft 0 Costa Brava Stormy conditions and loss of visual 

references destabilised approach
31/10/00 Soft 83 Taiwan Took off on wrong runway and hit 

construction vehicle
26/6/02 Soft 0 Japan Tail strike during training touch & go
1/7/02 Soft 2 Überlingen Mid-air collision after conflicting 

instructions from air traffic control and 
on-board collision avoidance system



respectively). These were contrasted against major accidents which are not 
automation related.

With twice as many major automation-related accidents being in hard auto-
mation aircraft, the data imply that this philosophy leads to more problems 
of human performance than the soft protection approach. Even the soft auto-
mation accidents in Table 2.1 are only tenuously related to automation, as 
they were primarily problems of situation awareness following some fault 
on the flight deck. Also clear is an almost reverse trend on non-automation-
related accidents (soft automation: 10; hard automation: 6), and the fact that 
despite all of them being hull-loss accidents, many did not result in fatalities. 
Nevertheless, this was a coarse analysis and did not control for absolute num-
bers of aircraft of each type, nor their relative exposure (i.e., distance trav-
elled, number of flights). As a rudimentary comparison, though, this analysis 
does suggest that the design of automation can have a significant impact on 
safety and performance in operation.

The lessons learned from aviation demonstrate, more than anything, that 
the people who once directly flew the aeroplanes are now relegated to the 
periphery, responsible more for hardware and software interfaces with a com-
puter than control surfaces on the airframe (cf. Billings, 1991). This detach-
ment under high levels of automation can cause mismatches in intent between 
human and machine, to the extent that flight crew end up fighting the aircraft 
for control. It has been said that instead, pilots should occasionally switch the 
computer off and look out of the window (Young, 2009).

Some might argue that these lessons are not transferable to the road domain, 
since aviation is such a complex environment and the autopilots more sophis-
ticated. If anything, though, there is even more variability in the driving con-
text (Hancock, 2019; Harris & Harris, 2004; Norman, 2015): time windows 
are much shorter as drivers have only seconds to react in emergencies; air 
traffic is tightly controlled compared to the relative free-for-all on the roads; 
aircraft design and maintenance follow strict standards; meanwhile, flight 
crews are much more highly trained than the average driver – and there are 
always at least two pilots ready to respond on the flight deck (Hancock et al., 
2019). Indeed, it may be for these reasons that we are only just beginning to 
see such technological developments in automated driving! Let us turn now to 
consider recent accidents of automotive automation, to see just how prescient 
these lessons from aviation were.

AUTOMOTIVE ACCIDENTS OF AUTOMATION

Until recently, road traffic collisions were not investigated to the same depth 
and detail as aviation accidents. But that is not to say there were no such 
things as accidents of automation on the roads before. Even before we con-
sider the higher levels of driving automation that are of most concern in this 
book, there is a notable history of collisions involving lower-level vehicle 
automation, in the phenomenon of unintended acceleration (Schmidt, 1993). 
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Typically associated with automatic gearboxes, the problem occurs when 
drivers unwittingly hold their foot on the accelerator pedal rather than the 
brake when selecting gear. Consequently, the car speeds off, and the driver – 
 thinking their foot is already on the brake – gets into a state of cognitive 
lockup (Moray & Rotenberg, 1989), presses even harder, and the vicious cir-
cle only ends when the car crashes into an obstacle. Unintended acceleration 
has also been observed with cruise control for similar reasons, while Young 
(2004) postulated that ACC could cause problems of uncommanded accelera-
tion. As described in Chapter 1, ACC uses sensors to detect slower leading 
vehicles and reduce speed accordingly; if the ACC’s sensors then lose sight 
of the lead vehicle (perhaps around a tight curve or if either vehicle is filter-
ing off the road), the system would then accelerate to resume its original set 
speed. This could cause confusion and problems for the driver if they did not 
understand what the ACC system was doing.

It was inevitable that the first time a self-driving car caused a crash would 
create a stir and, on 14 February 2016, the Google autonomous car took 
that unwanted accolade. Only a few miles from Google’s headquarters in 
Mountain View, California, it had been attempting to turn right but detected 
that the right-turn lane was blocked, so tried to merge back into the centre 
lane. It did so in front of a public bus, which did not give way (nor did it 
strictly have to), and the two vehicles collided at relatively slow speeds. The 
automation made an erroneous assumption about what the bus driver would 
do, the kind of assumption that is also fairly common among human drivers, 
since reading the behaviour of other road users is rather difficult for both 
human and machine (Brooks, 2017; Noy et al., 2018; Stanton et al., 2020). 
This was a minor crash in the grand scheme of things, but a significant mile-
stone as it was the first time that at least some responsibility lay with the 
 automated vehicle. There had been numerous occasions when the safety driv-
ers disengaged the automation, and two other crashes when they were trying 
to reclaim manual control of the vehicle (Noy et al., 2018).

With the advent of level 2 automation becoming widely available to the 
public, there has been a corresponding rise in fatal collisions directly impli-
cating these systems. These collisions have attracted the attention of the 
National Transportation Safety Board (NTSB) in the US, providing us with 
several examples of investigations that parallel the rigour of those carried out 
in other modes.

Collision between a Tesla Model S and a lorry, Williston, 
Florida, 7 May 2016 (NTSB, 2017)

A few months after the Google car collision, a Tesla was travelling eastbound 
on Highway 27A at 74 mph (119 km/h) when it crashed into an articulated 
lorry which was making a left turn across the carriageway ahead of it. The 
car’s autopilot systems (ACC and autosteer) were engaged, but its forward 
collision warning and AEB did not recognise the white side of the lorry’s 



trailer as an obstacle, because they are designed primarily for rear-end col-
lisions. There was no indication that the driver attempted any evasive action 
either, or that he was aware of the impending collision. The investigation 
(NTSB, 2017) found that the probable cause was the lorry driver’s failure to 
yield right-of-way to the car, coupled with the car driver’s inattention due to 
overreliance on the vehicle automation.

This overreliance was due in no small part to the design of the automation, 
which allowed prolonged disengagement from the driving task (Banks, Plant, 
et al., 2018). The Tesla’s handbook stated that drivers must keep their hands 
on the steering wheel at all times (which, it must be said, somewhat negates 
the benefit of an autosteer system), and the system measures driver engage-
ment through detecting if their hands are on the wheel. If not, it presents 
a series of visual and auditory alerts, but several minutes can elapse before 
an alert is given. On the crash journey, the autopilot was active for 37 of 
41   minutes (including the last six minutes before the crash), during which 
time it detected the driver’s hands on the steering wheel on seven different 
occasions for a total of 25 seconds. The longest period between alerts with no 
hands detected on the wheel was nearly six minutes.

The NTSB (2017) report concluded that since driving is a primarily visual 
task, this hands-on-wheel detection is a poor surrogate for driver engage-
ment, since it reveals nothing about where the driver’s attention is focused. 
Other manufacturers have been developing driver state monitoring through 
eye-tracking. The NTSB investigation recommended that manufacturers 
develop more effective ways to sense driver engagement and alert the driver. 
Following the collision, Tesla released a firmware update for the autopilot 
that reduced the amount of time that a driver’s hands can be off the wheel 
before an alert is given.

Tesla emphasised that responsibility lay with the driver, while also point-
ing out that its autopilot crash-fatality rate was lower than the US national 
average (Noy et al., 2018). Nevertheless, as the NTSB (2017) noted, there is 
evidence that the wider public misunderstands the limitations of partial auto-
mation. To address this, the NTSB recommended that manufacturers should 
incorporate system safeguards that limit automation use to those conditions 
for which they were designed.

Collision between Uber’s developmental automated 
vehicle and a pedestrian, Tempe, Arizona, 18 March 
2018 (NTSB, 2019b)

On the night of 18 March 2018, Uber, the ride-hailing company, was conducting 
a test of its developmental automated driving system (classified by the NTSB, 
2019b, as level 4 automation), which was fitted to a Volvo XC90 with a test 
operator in the driving seat to monitor the system and take over if necessary. 
As it negotiated the second loop of an established test route around the streets 
of Tempe, Arizona, a pedestrian pushing a bicycle at her side crossed the road 
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ahead of the car. Neither the car nor the driver responded to the pedestrian until 
it was too late; the car struck the pedestrian at a speed of 39 mph (63 km/h).

The automated driving system did actually detect the pedestrian 5.6 sec-
onds before impact, but never accurately classified her as a pedestrian, appar-
ently being confused by the presence of the bicycle. Because of the way the 
algorithms worked, this lack of classification meant that the system did not 
predict the pedestrian’s trajectory, and only determined a collision was immi-
nent 1.2 seconds before impact. By this point, the situation exceeded the 
system’s braking limitations; it was deliberately designed not to activate emer-
gency braking for collision mitigation, relying instead on the driver’s interven-
tion. In other words, the system behaved as designed. Ironically, the Volvo’s 
native forward collision warning and AEB systems could have prevented the 
crash, but Uber had deactivated these over concerns they might conflict with 
the automated driving system.

For more than a third of the time during the test drive, the vehicle operator’s 
visual attention had been directed towards her mobile phone in the centre con-
sole, on which she was streaming a TV show. In the last six seconds before the 
collision, the operator was looking towards the centre console, only returning 
her gaze to the road about one second before the car struck the pedestrian. She 
tried steering away from the pedestrian a fraction of a second before impact. 
The NTSB (2019b) report concluded that, had the operator been fully atten-
tive, she probably would have been able to take action to avoid the collision. 
Uber expected its vehicle operators to monitor the driving environment as well 
as the automated driving system, and to keep their hands and feet hovering 
above the steering wheel and pedals ready to take over. But her prolonged dis-
traction was, according to the NTSB (2019b), a consequence of automation-
related complacency. The NTSB found that Uber did not recognise this risk 
or develop effective countermeasures to control it (Stanton et al., 2019). After 
the collision, Uber installed a driver monitoring system that alerts the vehicle 
operator if they gaze away from the road for more than a few seconds.

Collision between a Tesla Model X and a crash attenuator, 
Mountain View, California, 23 March 2018 (NTSB, 2020)

While travelling at 71 mph (114 km/h) on a highway with the autopilot 
engaged, the Tesla’s autosteer vision system lost track of the lane markings 
that it used to maintain lane position. It drifted across a gore area separating 
the carriageway from the exit lanes, and struck a crash attenuator as well as 
two other cars.

The driver did not respond to what was happening because he was dis-
tracted by a mobile phone game, and because the autopilot system gave no 
warnings that it could no longer maintain autosteering. The NTSB (2020) 
report again cited the driver’s overreliance on the automation and Tesla’s 
ineffective monitoring of driver engagement, which facilitated the driver’s 
complacency and inattentiveness. The investigation also highlighted an issue 



with the timing of alerts: most crash events develop in just a few seconds, 
while international standards require intermittent warnings over the course 
of about a minute before the system disengages.

The UK’s Chartered Institute of Ergonomics and Human Factors published 
a paper (CIEHF, 2020b) critiquing the NTSB’s findings relating to this col-
lision, centring around the definition and use of the term ‘distraction’. The 
paper argues that, because ‘driver distraction’ has historically been bench-
marked against non-automated vehicles, its appropriateness to automated 
vehicles is questionable. The term ‘distraction’ implies some involuntary 
diversion from the primary task of driving (we will discuss some such distrac-
tions in Chapter 8), but partially automated driving facilitates a voluntary 
diversion of attention – even if the manufacturers’ would, strictly speaking, 
see that as a violation. If automation is to relieve drivers of substantial por-
tions of the driving task, it is to be expected that they will engage in other 
activities. Instead, the CIEHF (2020b) suggest that the driver in the Mountain 
View crash was inattentive, rather than distracted.

Lessons learned

Taken together, these collisions highlight consistent themes of driver inatten-
tion and overreliance on the automation, coupled with a lack of feedback from 
the system and ineffective monitoring of driver engagement by the automated 
systems. The manufacturers’ argument invariably places responsibility on the 
driver to maintain control and supervision of the system, while promoting the 
safety benefits of automated vehicles; Tesla claims4 that although its autopilot 
is not collision-proof, it has the potential to reduce road fatalities by a factor 
of 10. Research suggests that such claims are optimistic; crash rates for con-
ventional cars are substantially lower than for automated vehicles, although 
frequency counts in the latter category are still small so the differences are not 
statistically significant (Noy et al., 2018).

Nevertheless, it may be true that there is excessive focus at the moment on 
crashes involving automated vehicles, and we need to balance that against 
the systems-level advantages not just for safety, but also efficiency, economy, 
and mobility (Hancock et al., 2019). To some extent, it matters less whether 
automation results in more errors and collisions; instead, we should direct 
our efforts towards understanding and controlling the types of errors that are 
associated with automation (cf. Wiener, 1989). We now turn to consider these 
human factors in more detail.

PROBLEMS AND IRONIES

As we learned in Chapter 1, achieving fully automated driving across the 
entire vehicle fleet and completely removing the requirement for human 
involvement is not going to happen in the foreseeable future (Endsley, 2017). 
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Progress may have seemed impressive so far, but we have only automated the 
easiest-to-automate elements of driving (which, ironically, are also the opera-
tional elements that human drivers are most proficient at and find easiest; 
Huey & Wickens, 1993); getting from here to level 5 will be more technically 
challenging (cf. Norman, 2015). Until that time, we will still need to have a 
human in the driving seat who is ostensibly on constant watch over the auto-
mation and, in principle at least, remains in supervisory control of the vehicle 
(Noy et al., 2018). Even completely automated systems almost always rely on 
a human be on hand to at least monitor it and deal with those situations that 
the automation could not anticipate (Dekker & Woods, 2002), because – as 
evidenced by the Tesla and Uber collisions – it is virtually impossible to design 
for every eventuality.

Not only does this defeat the object of automation in the first place (Hancock 
et al., 2019), but there is also plenty of evidence that people are better able 
to detect and respond to problems when they are manually controlling a sys-
tem than when supervising an automated version of it (e.g., Desmond et al., 
1998; Ephrath & Young, 1981; Huey & Wickens, 1993; Kaber & Endsley, 
2004; Kessel & Wickens, 1982; Parasuraman, 1987; Seppelt & Victor, 2016; 
Wickens & Kessel, 1981; Young, 1969). What we have seen from the acci-
dents of automation is that problems typically arise with reclaiming manual 
control, either due to automation failure or even simply because the situation 
has gone beyond its operational design domain. This has become known as 
the ‘out-of-the-loop’ performance problem (OOTL; e.g., Kaber & Endsley, 
2004) and, in fact, this problem only reveals itself when things go wrong. 
Under normal circumstances, with the automation working within its design 
envelope, overall performance is usually improved. However, should the auto-
mation fail, or the human otherwise need to intervene, their ability to do so 
is diminished. These problems are further exacerbated by the level of auto-
mation, in that higher levels of automation result in a greater risk of perfor-
mance impairment when it fails (Navarro et al., 2018; Onnasch et al., 2014; 
Wickens et al., 2015). This has been referred to using a ‘lumberjack’ analogy 
(cf. Kaber, 2018; Sebok & Wickens, 2017); in other words, the higher they 
go, the harder they fall.

Automation, therefore, qualitatively and fundamentally changes the nature 
of the driver’s role from active controller to passive supervisor (Hancock 
2019; Parasuraman et al., 2000), a role for which people are ‘magnificently 
disqualified’ (Hancock, 2019). The driving task, such as it is, becomes one of 
undertaking whatever sub-tasks remain unautomated, which may not form a 
coherent whole as automation increasingly takes over tactical and even strate-
gic elements of driving (Hancock et al., 2019). Meanwhile, the ‘driver’ faces 
new tasks of configuring, engaging and monitoring the automation (Banks 
et al., 2014; Seppelt & Victor, 2016; Stanton et al., 2001).

These knock-on effects of automation introduce a plethora of new human 
factors concerns (Kantowitz & Campbell, 1996). Many authors have writ-
ten about the problems of automation; readers familiar with this literature 



will recognise that some of the headings in this chapter have been borrowed 
(somewhat shamelessly) from a few of the classics (e.g., Bainbridge, 1983; 
Norman, 1990; Wiener & Curry, 1980).

In an article that still stands the test of time, Bainbridge (1983) described 
the ‘ironies of automation’. The first irony lies in the designer’s view of the 
human operator as being unreliable or inefficient. As we have already dis-
cussed near the top of this chapter, automation is popularly assumed to cir-
cumvent human error – by simply removing the human element in the system. 
What designers overlook, though, is that they are human too – and their errors 
in the system design can be a major source of new problems. Furthermore, 
Bainbridge argues, the operator is often left to do the tasks which the designer 
cannot automate; in other words, there is not even any considered allocation 
of function, the human is just there as a makeweight to fill in the gaps in the 
system requirements specification (cf. Inagaki, 2003). These tasks left over 
typically include monitoring, diagnosis, and takeover, each of which require a 
skilled response, but ironically which also suffer from the skill degradation of 
an operator-turned-supervisor who is now starved of rehearsal and feedback 
from not carrying out the task manually. There is a long-standing consensus 
that automation can lead to skill degradation over time, such that operators 
do not know how to reclaim control when necessary (e.g., Bainbridge, 1983; 
Parasuraman, 2000). In order to take over control, a human operator must 
be practised at the task – which is impossible when the automation has been 
controlling it. Automation can therefore hinder the acquisition of experiential 
knowledge (Böhle et al., 1994), meaning that such knowledge and experience 
is required before entering into an automated task (Gopher & Kimchi, 1989). 
Operator training is not the answer, though, since it is impossible to train for 
the unforeseeable or to simulate unknown faults, so only general strategies 
may be learned. The irony is then training the operator to follow procedures 
yet expecting them to provide intelligence in the system. Bainbridge (1983) 
suggests slowing computer operations to a rate whereby the human operator 
may track them, but this negates the benefit of having an automated system 
in the first place. Perhaps the final irony, Bainbridge (1983) notes, is that it is 
the most successful automated systems, with little need for human interven-
tion, which require the greatest investment in operator training. We might 
even be so bold as to add one more, based on the observation that automation 
is sometimes used to support human performance of increasingly complex 
cognitive tasks – that is, those involving technology (Cuevas et al., 2007). Is it 
not ironic, then, that the greater use of technology gives rise to a greater need 
for automated support?

Reason (1987) expands on Bainbridge’s point about skill degradation with 
his ‘catch-22’ of human supervisory control, in that humans are only present 
in an automated system to deal with emergencies. They do this by drawing on 
their knowledge and experience of the system. But with limited opportunity to 
practice procedural responses when the task is automated – coupled with the 
uniqueness of each emergency – they have little such knowledge or experience 
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to draw upon. Reason (1990) states that supervisory control is a task specifi-
cally ill-suited to the limited cognitive capabilities of humans, a point echoed 
more recently by Hancock (2019). Reason (1988, 1990) concludes the catch-22 
by stating that automation is most effective when it is least required, and vice-
versa. That is to say, under normal operating conditions, automated systems 
can cope perfectly well. However, so do humans, thus begging the question of 
why automation has been implemented in the first place. In emergency situa-
tions, stressed humans can become overloaded and performance can deterio-
rate; it is under such circumstances when assistance would be most valuable. 
Ironically, it is in these situations when automation also surrenders, relying on 
the human to provide creativity and quell the emergency.

An alternative perspective maintains that it is not the presence of auto-
mation per se which is the problem, rather a case of inappropriate design 
(Norman, 1990, 1991). The problem with automation is in its intermediate 
level of intelligence, in many cases relieving the operator of perceptual-motor 
demands – which, ironically, are the tasks that people are typically most skil-
ful at – while leaving them with more mentally demanding cognitive tasks. 
Moreover, automation often imposes even more cognitive demands by pro-
viding insufficient feedback about what it is doing, meaning that the user has 
to expend effort in actively gathering and keeping track of that information. 
Norman (1990, 1991) used the case study of the China Airlines Boeing 747 
in 1985 (see Chapter 1) to illustrate the importance of feedback. In that inci-
dent, the autopilot attempted to compensate for an imbalance in the aircraft 
caused by a fuel leak. The autopilot waited until it could no longer cope before 
informing the crew, by which time the situation was much worse. Thus, the 
culprit is not necessarily the automation, rather a lack of continual feedback 
and interaction which keeps the operator uninformed and out of the loop. In 
the event of a failure scenario, operators are left without sufficient knowledge 
of the situation to be able to deal with it efficiently. All of this led Norman 
(1990) to a new irony of automation: that it is not powerful enough. Norman 
(1990) suggested either improving or removing automated systems by making 
them either more or less intelligent, but their present level is inappropriate 
under anything but normal conditions. If automation were perfect (i.e., never 
fails), feedback would be unnecessary. However, as we now know, technical 
(un)reliability precludes the possibility of a perfect automation system; for the 
foreseeable future, then, the unique skills and flexibility of human operators 
will continue to prove crucial in critical situations.

The treatises of Bainbridge, Reason, and Norman raise further concerns 
associated with human supervisors of automation who are mostly – but not 
quite totally – out of the loop. There is no doubt that monitoring perfor-
mance is impaired if the task is executed by automation instead of a human 
(Molloy & Parasuraman, 1996; Parasuraman, 1987), and the problems are 
usually manifest in recovering control from automation failure (Endsley & 
Kiris, 1995; Kaber & Endsley, 1997; Stanton et al., 1997). We have already 
seen numerous telling examples of these in the aviation and automotive 



accidents reviewed earlier in this chapter, and what those case studies par-
ticularly highlight are the deeper cognitive processes at play in many of them. 
Such problems have variously been attributed to vigilance failures (Molloy 
& Parasuraman, 1996), trust in the automation (Kaber & Endsley, 1997; 
Molloy & Parasuraman, 1996; Parasuraman & Riley, 1997), complacency 
(de Waard et al., 1999), behavioural adaptation (Rudin-Brown & Parker, 
2004), situation awareness (Endsley, 1995; 2015; 2017; Stanton, Salmon 
et al., 2017; Wickens et al., 2015), and/or MWL (Young & Stanton, 2002a). 
Whilst there is inevitable overlap between these areas (see e.g., Heikoop et al., 
2016; Stanton & Young, 2000; Young & Weldon, 2013 for summaries), we 
now briefly summarise the key points of each.

Vigilance

Vigilance tasks involve monitoring for low frequency signals from a back-
ground of noise. The classic example is the wartime radar operator’s task of 
spotting enemy submarines or aircraft, but vigilance principles are equally 
applicable to monitoring a highly reliable automated system for an infrequent 
failure. There is no doubt that monitoring performance is impaired if the task 
is executed by automation instead of a human (Molloy & Parasuraman, 1996).

It has been known for more than seven decades that it is virtually impos-
sible to maintain high performance on vigilance tasks for any length of time 
(Mackworth, 1948). A performance decrement can be observed from as early 
as two minutes into the task (Makeig & Inlow, 1993); by 20–30 minutes a 
robust and substantial decrease in vigilance is consistently evident (Singleton, 
1989; Warm et al., 1996). A plot of performance against time usually shows 
that this vigilance decrement follows an approximately exponential decay 
curve (Green, 1988). The vigilance decrement cannot be offset by feedback 
or motivation, although it is thought that cognitive automaticity (i.e., skilled 
performance) is immune to the detrimental effects of sustained monitoring 
(Fisk & Schneider, 1981; Tucker et al., 1997).

Contrary to popular opinion, the mental demands of sustained vigilance are 
quite substantial. Warm et al. (1996) advocated a resource depletion model 
of vigilance, whereby maintaining the effort required for vigilant monitoring 
eventually results in fewer resources than are necessary to carry out the task 
effectively (see also Sturman et al., 2020). Although others have suggested 
that the MWL of monitoring can still be considered to be low (Cain, 2007), 
it is generally accepted now that the workload of monitoring is considerable, 
while older arousal theories of the vigilance decrement (linked to underload 
or boredom) have been replaced by associations with trust or overreliance 
(Parasuraman et al., 1996b).

Failures of vigilance while monitoring an automated task are more common 
if the operator is engaged in concurrent activities (Molloy & Parasuraman, 
1996). For example, a pilot supervising an automated flight deck is less likely 
to detect any problems if they are also concentrating on filing a flight plan, 
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than if there are no distractions from the monitoring task. But, regardless 
of any secondary tasks, the very nature of the vigilance decrement shows 
that humans are just not designed for this kind of prolonged monitoring, and 
this is a relevant concern for automated vehicles: ‘If you build vehicles where 
drivers are rarely required to respond, then they will rarely respond when 
required’ (Hancock, 2019; p. 485).

Trust

Failures of vigilance with automation have been associated with excessive trust 
in the system (Molloy & Parasuraman, 1996; Parasuraman et al., 1996b), 
which can influence (over-)reliance on the automation (Lee & See, 2004; 
Parasuraman & Wickens, 2008). The level of trust that someone holds in an 
automated  system – whether too low or too high – determines how they moni-
tor and use (or misuse, or even disuse; Parasuraman & Riley, 1997) that system. 
As such, trust in automation is a topic that has attracted particular attention 
(e.g., Lee & Moray, 1994; Molloy & Parasuraman, 1996; Muir, 1994; Muir & 
Moray, 1996; Parasuraman & Riley, 1997; Parasuraman et al., 1992).

Muir (1994; see also Muir & Moray, 1996) developed a model of trust in 
machines, based on existing models of interpersonal trust. They proposed that 
trust is based on perceptions of competence and predictability, such that it can 
develop over time if there is little variability in system behaviour. Conversely, 
though, if trust has been broken (e.g., by a system failure), it will be slower to 
recover than it took to build it in the first place (Seong & Bisantz, 2008).

Trust is governed by self-confidence, confidence in the system, and the 
reliability of the system (Hancock & Parasuraman, 1992). Operators tend 
to choose automation when their trust in it exceeds their self-confidence in 
their own ability at the task (Lee & Moray, 1994; Parasuraman et al., 2008). 
Nevertheless, a general predisposition towards manual control was found in 
these studies, reflecting an underlying distrust in automation. For instance, 
one study found that operators are prepared to voluntarily incur increases 
in workload without increased satisfaction, purely for the sake of resuming 
manual control (Hockey & Maule, 1995).

Distrust and disuse can also be a consequence of high false alarm rates (Lees 
& Lee, 2007; Parasuraman & Riley, 1997), which are common with many 
automated warning systems (Parasuraman & Wickens, 2008; Sheridan & 
Parasuraman, 2000). However, such disuse (cf. Parasuraman & Riley, 1997) 
of automation negates any of its potential benefits. At the other extreme, mis-
use arising from overreliance could ultimately result in the kinds of serious 
accidents we reviewed earlier in this chapter (Mueller et al., 2021).

Banks, Eriksson et al. (2018) found that drivers using Tesla’s Autopilot 
system exhibited behaviours indicative of overtrust and misuse in driving 
hands-free. As we already noted in Chapter 1, there is plentiful evidence 
in popular and social media of such behaviours, with several examples5 of 
drivers asleep or otherwise inattentive while at the wheel. Although Tesla’s 



defence is invariably that the drivers are always responsible for the vehicle, 
Banks, Eriksson et al., (2018) also found that drivers are not supported by the 
system in their newfound monitoring role.

The calibration of trust is therefore crucial for the consequent ‘appropri-
ate’ use of automation (Lee & See, 2004; Parasuraman & Riley, 1997), and 
depends on the user’s understanding of the capabilities of the system, its limi-
tations, and its performance (Mallam et al., 2020; Mueller et al., 2021; Seong 
& Bisantz, 2008). In turn, this understanding depends on the design of the 
automated system as well as the feedback received from it (Lee & See, 2004; 
Parasuraman & Riley, 1997). If the system is designed to assume control 
with little input from or feedback to the driver, then the driver may have dif-
ficulty in developing an appropriate mental model of its operation in a given 
scenario. Without knowing exactly how it might behave, the driver could 
become distrustful of the system or develop misplaced trust (cf. Parasuraman 
& Riley, 1997). Parasuraman & Riley (1997) go further to suggest that 
abuse of automation in design – that is, a technology-centred approach which 
neglects the human operator – can promote both misuse and disuse of auto-
mation by human operators. Consistent with this assertion is the observation 
that higher degrees of automation may exacerbate the negative effects of over-
trust (Parasuraman et al., 2000).

As with vigilance, multitasking interacts with trust to influence reliance 
on the system – if the automation is highly reliable and the user’s attention is 
divided among multiple tasks, they can easily slip into overtrust and fail to 
detect automation failures. Conversely, when monitoring was the only task, 
operators detected almost all failures (Lee & See, 2004).

Equipment reliability is, therefore, a key determinant of trust, with associ-
ated problems having been observed in aviation and automotive automation 
(e.g., Kazi et al., 2005; Lee & See, 2004). Overreliance on a highly reliable 
automated system is closely associated with complacency (Parasuraman et al., 
2008), a term which is loaded with accusation as it implies that the operator 
has neglected their task. But, as we shall see next, that view far from reflects 
the human factors concept of automation-related complacency.

Complacency

Vigilance, trust and complacency are closely related to each other. Where vigi-
lance is about signal detection, overtrust in automation gives rise to overreliance 
and complacency in performance (Thornton et al., 1992), which can be particu-
larly critical in the event of automation failure (e.g., de Waard et al., 1999).

Automation-related complacency is in part an attitudinal construct 
(Parasuraman et al., 1992), but is as much influenced by interactions between 
the operator, the task, and the automation itself. People may be particularly 
susceptible to complacency if they are inexperienced, fatigued, or facing high 
workload (Bailey et al., 2006; Parasuraman et al., 1992). Conversely, automa-
tion can reduce workload, but this also induces complacency as it detaches the 
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operator from the task (Mohrmann et al., 2015). Higher degrees of automa-
tion can further disengage the operator as they learn to trust and rely on the 
system (Carsten et al., 2012; Wickens et al., 2015). Complacency therefore 
contributes to being ‘out of the loop’ (Sebok & Wickens, 2017).

As we just saw with trust, automation reliability is a key factor with compla-
cency. Complacency can occur if the automation is highly – but not  perfectly – 
reliable, as the operator might not monitor consistently or closely, and so fail 
to detect the very occasional failures (Onnasch et al., 2014; Parasuraman 
et  al., 2000). The effect of complacency is amplified when operators have 
other tasks to perform (Parasuraman et al., 2000) and when automation reli-
ability is imperfect but constant, as operators allocate attention away from the 
automation when they trust it (Parasuraman & Wickens, 2008; Parasuraman 
et al., 2008). It is a vicious circle: the more reliable the automation, the less 
the human has to do, so the less attention they pay to it (Endsley, 2017). Thus, 
more reliable systems inevitably make it difficult for operators to notice when 
something goes wrong (Ljung Aust, 2020).

Complacency might, therefore, seem to be a failure to pay enough attention 
to the automation. However, some argue that this should not be seen as com-
placency in the ‘non-vigilant’ sense at all (e.g., Moray & Inagaki, 2000), but 
instead might be a satisficing approach on the part of the operator to conserve 
effort (Kaber, 2018). In other words, what looks like complacency may actu-
ally be an optimal strategy to allocate limited attentional resources between 
highly reliable automation (that does not, in fact, need to be monitored very 
often), and other, more demanding, tasks (Wickens et al., 2015). Importantly, 
optimal sampling does not necessarily mean perfect – it is about detecting 
the  maximum number of signals, not detecting all of them. That is what 
sets  this argument apart from the traditional view of complacency, which 
expects the operator to detect all failures even in highly reliable systems, and 
any missed signals are somehow a failure on the part of the operator. The 
optimal level of sampling will depend on the rate of signals (i.e., faults or fail-
ures) as well as the need to monitor any other systems; it makes no sense to 
focus too much attention on the automation if it is highly reliable. Operators 
tend to allocate their attention to systems where they are expecting changes 
and which have higher value to their task; such expectations decrease as the 
reliability of automation decreases (Wickens et al., 2015). Continuous moni-
toring of the automation would not, therefore, be rational: paying too much 
attention to it (perhaps due to distrust) is counterproductive and wastes effort 
if the automation hardly ever goes wrong. Moreover, if your attention is on 
the automation, then it is not on anything else that might need it more.

Behavioural adaptation

Complacency can be seen as a form of behavioural adaptation, as operators 
become accustomed to the reliability of the automation and adapt their atten-
tion allocation strategies in response (Wickens et al., 2015). In the context of 



automation, behavioural adaptation occurs when it results in unintended or 
unanticipated behaviours, with negative consequences for the wider socio-
technical system (Dekker & Woods, 2002; Parasuraman et al., 2000; Rudin-
Brown, 2010).

To start with an anodyne example, lane departure warning and lane- 
keeping assist systems can be cancelled by use of the turn signals. But in some 
cases, it is not necessary to signal: in advanced driver training, signalling 
when there is no traffic around demonstrates a lack of situation awareness, 
since there is nobody to signal to. So drivers could end up being coerced into 
giving  redundant signals so as to avoid interventions from the system. More 
insidiously, the presence of systems such as AEB or ESC in a car could poten-
tially change the driver’s style and thus negate some of the expected safety 
benefits. If drivers come to believe that the safety net will always catch them, it 
may influence their driving towards more risky behaviours (such as increased 
speed or shorter headways; Janssen & Nilsson, 1993; Lee & Seppelt, 2012), 
thereby ‘pushing the envelope’ to its limits (e.g., Cacciabue & Saad, 2008; 
Stanton & Pinto, 2000). As with aviation, what was the last line of defence 
ultimately becomes the first point of control (cf. Billings, 1997).

As a counterpoint, these vehicle automation systems (cf. Young et al., 
2007), which mostly sit silently in the background until needed, may be less 
likely to elicit behavioural adaptation because there is no feedback from the 
system (Hedlund, 2000; Rudin-Brown, 2010). But as levels of automation 
increase, so too does the potential for unanticipated behavioural response. A 
classic case of behavioural adaptation is in drivers treating an ACC system as 
if it were a collision avoidance device, rather than as the ‘comfort and conve-
nience’ system for which it was designed (cf. Richardson et al., 1997). Rudin-
Brown & Parker (2004) found that drivers actively relied on the ACC system 
to keep a safe distance from the vehicle in front. However, the reduction in 
workload offered by ACC resulted in negative adaptation in the form of less 
attention to the driving task, more steering variability and worse reactions 
to a failure of the ACC system (Rudin-Brown & Parker, 2004). Behavioural 
adaptation is therefore an important variable in determining the effectiveness 
of vehicle automation; Rudin-Brown & Parker (2004) showed a 33% reduc-
tion in effectiveness of ACC as a result.

Ward et al. (1995) also explored the effects of ACC on driving behaviour, 
finding that steering and yielding behaviours were both adversely affected by 
the use of ACC, while drivers set higher speeds and shorter headways with 
ACC than they would normally drive. Similar studies of automated vehicle 
systems revealed problems with engaging and disengaging the automation 
(e.g., Rillings, 1997). In particular, when disengaging automation (such as 
when leaving a highway), the driver’s choice of speed is influenced by the set 
speed of the automated vehicle (Bloomfield et al., 1995).

Speed choice does seem to be one of the principal mechanisms for behav-
ioural adaptation in driving; as we have outlined above, people might speed 
up if they feel they are protected by an automated system. But the reverse 
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is true too, and it does not have to be related to automation. Drivers tend 
to slow down when their capabilities are hampered, such as when using a 
mobile phone (Haigney et al., 2000; Strayer et al., 2003), eating and drinking 
while driving (Young et al., 2008), or even when their eyesight is getting worse 
(Higgins & Wood, 2005). We would not advocate such strategies as an excuse 
to drive when under such conditions, not least because the evidence suggests 
the level of speed compensation might not match the level of degradation 
(Higgins & Wood, 2005). Later in this book, in Stage 3, we will explore how 
automation may help to mitigate the effects of these impairments.

The reasons for behavioural adaptation with automation can be many and 
varied; Rudin-Brown (2010) proposed a qualitative model of behavioural 
adaptation which invoked factors such as locus of control, trust, and men-
tal models. (Interestingly, this is a very similar set of factors as proposed by 
Stanton & Young (2000) in their psychological model of vehicle automation.) 
But perhaps the most prominent factor is the driver’s mental model of the 
automation (Rudin-Brown & Parker, 2004), since our understanding of a 
system very much guides our interactions with it. Anyone who has ever expe-
rienced an ABS intervention knows that it makes a very conspicuous noise, 
which can be disconcerting for a driver unfamiliar with it; this could lead to 
them releasing the brake, believing that something is wrong with the car (Lee 
& Seppelt, 2012) – but that would be, of course, an inappropriate reaction in 
the circumstances.

Behavioural adaptation is in large part dependent on the person’s belief 
about what the automation can do. There is evidence that drivers hold opti-
mistic expectations about the capabilities of automated vehicles (e.g., Hancock 
et al., 2019; Kyriakidis et al., 2019), which potentially results in people relin-
quishing their supervision of the system at a lower level of automation than 
would be appropriate (i.e., at level 2 rather than level 3; cf. Banks, Eriksson et 
al., 2018; Mueller et al., 2021). In one study (Teoh, 2020), some 14% of driv-
ers were unaware of what level 2 automation can and cannot do, and when 
they could legitimately engage in other, non-driving, activities; drivers were 
more likely to do so with level 2 automation as compared to level 1 or level 0 
automation. Meanwhile, about half of all drivers assumed that the option to 
engage the automation would be locked out if it was not designed for use in a 
particular situation (Teoh, 2020).

Is it any wonder, then, that drivers appear to demonstrate ‘risky’ behavioural 
adaptation when using these systems? In other words, apparent misuse of an 
automated system beyond its design limits is actually more about the driver’s 
(reasonable) expectations associated with the system’s design and capabilities. 
These expectations are developed through experience of using the system, 
coupled with feedback and other information about how it works (Rudin-
Brown & Parker, 2004), much of which is of course via the human-machine 
interface (Kyriakidis et al., 2019). To turn that around, behavioural adaptation 
could be mitigated by clear feedback from the system about its operating enve-
lope, perhaps even locking out the system when outside its domain (as many 



drivers expect; Teoh, 2020), rather than relying on drivers to read the manual 
(Mueller et al., 2021). We could even go so far as to support positive behav-
ioural adaptations through interface design (see Young & Carsten, 2013), rein-
forcing desired behaviours as much as minimising undesired ones (Stanton & 
Pinto, 2000). We will learn more about this in Chapter 9.

Thus, whilst it may be tempting to ascribe some blame to the human for 
their behavioural adaptations, as with all such human-machine interactions it 
is actually the design and implementation of the system that has ‘encouraged’ 
such use. By providing potentially misleading information about, or feedback 
from, a system, designers not only risk engendering inappropriate behavioural 
adaptations but also giving rise to problems with situation awareness.

Situation awareness

Out-of-the-loop performance problems, such as those involving vigilance or 
complacency (e.g., Molloy & Parasuraman, 1996), are arguably associated 
with reduced awareness of system states, caused by the lack of interaction with 
the system (Kaber & Endsley, 1997). Automated driving systems can induce 
drivers to engage in non-driving activities, causing distraction (or inattention; 
cf. CIEHF, 2020b) that can delay responses through reduced feedback, pas-
sive monitoring, and poor mental models (Lee & Seppelt, 2012). Being out of 
the loop degrades a driver’s perception, understanding and prediction of the 
situation as it unfolds – the key components of situation awareness.

Situation awareness has been defined as ‘…the perception of the elements 
in the environment within a volume of time and space, the comprehension of 
their meaning, and the projection of their status in the near future’ (Endsley, 
1995; p. 36). The concept has not met with universal approval, as some have 
highlighted the futility of trying to define in advance the most important 
elements of the situation that the operator is supposed to be aware of; such 
importance is dependent on context and only becomes obvious in hindsight 
(Moray & Inagaki, 2000; Sarter & Woods, 1995). To borrow a well-worn 
phrase, these are the ‘unknown unknowns’.

Truism or not, individual situation awareness does seem to deteriorate 
with automation. Some of this may be due to people engaging in other tasks 
while the automation is active (cf. Teoh, 2020). But, more than anything, it 
is the passivity of the monitoring task that affects situation awareness; peo-
ple are less aware of changes in the state of the system when those changes 
are under the control of another agent (Endsley & Kiris, 1995; Parasuraman 
et al., 2000).

It is these changes of state that are crucial in terms of situation awareness. 
Earlier in this chapter, we discussed the issue of ‘automation surprises’; these 
unexpected state transitions are fundamentally a loss of situation awareness 
about the mode of the system (Endsley, 2017). Moreover, as with many of the 
factors we have already discussed above, problems with situation awareness 
tend to be manifest when dealing with an automation failure, even if there are 
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no differences in MWL (Endsley & Kiris, 1995; Metzger & Parasuraman, 
2001). This might be because automation just places different demands upon 
the operator (Endsley & Kiris, 1995), or because the operator’s informa-
tion requirements are different between normal and failure circumstances 
(Parasuraman et al., 2008). Nevertheless, for a given level of automation, situ-
ation awareness is the crucial factor determining performance during both 
routine operation and failure conditions (Wickens et al., 2010).

More recent work (e.g., Salmon et al., 2020) considers situation awareness 
not just in terms of the individual human, but from the perspective of the 
overall human-automation system. Under this distributed cognition approach, 
situation awareness is held not just by the people in the system, but also by 
the technological agents (i.e., the automation; Stanton et al., 2017), and is 
thus distributed around the whole system (cf. Artman & Garbis, 1998; Moon 
et al., 2020; Plant & Stanton, 2016). Other ways of thinking about this relate 
to the shared understanding of a situation across human and machine (cf. 
Salas et al., 1995), the degree to which each has the information they need to 
do their job (Endsley, 2015; Kaber et al., 2001), the understanding of each oth-
ers’ activities and intentions (Shu & Furuta, 2005), or the overlap in situation 
awareness between human and automation (Endsley & Jones, 1997). Failures 
associated with situation awareness are therefore more about communication 
between system elements and agents, to ensure that the right agent has the 
right awareness at the right time (Stanton et al., 2006; Stanton et al., 2017).

Distributed situation awareness is, and will be, an increasingly prominent 
concept in the future world of connected and autonomous vehicles (de Winter 
et al., 2014; Stanton, Salmon et al., 2011), where vehicles are communicat-
ing with each other, the road infrastructure, as well as with the people in the 
vehicles (be they drivers or otherwise). In a mixed parc consisting of highly 
sophisticated, automated vehicles travelling alongside dumb, manually driven 
cars (Stanton, 2015), there will be drivers, non-automated, semi-automated 
and fully automated vehicles each possessing different levels of understanding 
about the ambient traffic situation (Banks & Stanton, 2015; 2016). Cognitive 
functions are distributed between drivers and automation (Banks et al., 
2014), but while automated systems can possess more accurate metrical infor-
mation about the kinematics of driving (Stanton & Salmon, 2009; Young 
et al., 2007), human drivers understand much more about the motivations 
and potential actions of other drivers (Walker et al., 2015). No single agent 
will have anything more than partial awareness, yet the need to organise this 
real-time on-road flow of information is crucial to support safe and effective 
road travel (Salmon et al., 2012).

Sarter & Woods (1995) explain that such problems are often a consequence of 
technology-centred automation, as the design and capabilities of advanced auto-
mation make it both more important and more difficult to maintain awareness 
of the state and behaviour of the system. Interface design thus comes to the fore 
once again, then; the ‘strong and silent’ automation creates cognitive demand 
for a user trying to maintain situation awareness with little salient feedback on 



current or future system status, mode states or transitions (cf. Sarter & Woods, 
1995; Stanton et al., 2011). This may seem counterintuitive; one might have 
expected situation awareness to be enhanced with automation as attentional 
resources have been released from carrying out the task manually. But it just 
serves to highlight another paradox (if not, strictly speaking, an irony) of auto-
mation: that it can both reduce and increase the MWL on operators.

Mental workload

For some time, MWL has become a predominant concern in the human fac-
tors literature, reflecting the increasing technologisation of our lives (Rumar, 
1993; Singleton, 1989; Young et al., 2015). As modern technology in many 
working environments imposes more cognitive demands upon operators than 
physical demands, the understanding of how MWL impinges on performance 
is critical. We explore the effects of automation on MWL in more detail in the 
next few chapters of this book, so for the time being this section just provides 
an overview of some key points. The focus of Chapter 3 is on mental under-
load but, as we have already alluded to, automation also has the potential to 
cause overload.

Whilst automation is ostensibly designed to reduce workload, it also 
qualitatively changes the nature of the task, often in ways that were unan-
ticipated or unintended by the designers (Metzger & Parasuraman, 2005). 
Such changes could, paradoxically, overload the operator, thus negating 
the intended benefits of automation in terms of comfort and convenience. 
Increases in MWL may arise from having to consider a whole new set of deci-
sion options generated by the automation (Endsley & Kaber, 1999; Hilburn, 
1997), through having to integrate and interpret information (Lee & Seppelt, 
2012), or through the increased demands of monitoring and managing the 
system (Endsley, 1987; Kantowitz & Campbell, 1996) and being ready to take 
over if necessary (Banks, Eriksson et al., 2018).

The design of the automation is a key factor in determining whether it 
has the potential to overload the operator (Onnasch et al., 2014; Verwey, 
1993). Reinartz (1993) argued that operators and automation are members of 
the same team. Performance is therefore dependent upon how well that team 
works and communicates together. But, as we saw with some of the case stud-
ies earlier, automated systems are typically poor at communicating with the 
operator – that is, providing appropriate and timely feedback. The operator 
then faces an increase in MWL resulting from the additional task of actively 
seeking out and gathering information about the system state.

In the driving context, such an increase in cognitive workload can cause a 
‘tunnelling’ of drivers’ useful visual field, leading to narrowed or inefficient 
attention allocation (i.e., spending less time looking at areas in the peripher-
ies, such as mirrors and instruments, and instead focus on looking centrally 
ahead; Harbluk et al., 2007; Liao & Moray, 1993; Summala et al., 1996), 
thus adversely affecting performance (Donmez et al., 2007; Horberry et al., 
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2006). This is particularly true if workload is already high (e.g., in urban driv-
ing; Liu & Lee, 2006) or if the driver has a lower capacity to respond (e.g., 
in the elderly; May et al., 2005; or simply by having less skill and experience; 
Summala et al., 1996). Conversely, automation has been shown to decrease 
drivers’ visual attention to the road centre (Merat et al., 2014), almost imply-
ing the opposite of attentional narrowing – though perhaps equally detrimen-
tal for performance.

There is an argument that high MWL in driving is the exception (Stanton 
& Marsden, 1996), with suggestions that drivers may have up to 50% spare 
visual capacity during ‘normal’ driving (Hughes & Cole, 1986). Reducing 
MWL in cases where the level is already manageable is not necessarily desir-
able as it only serves to remove the driver from the control loop (Ephrath & 
Young, 1981). Furthermore, we also know that higher degrees of automa-
tion can reduce MWL (e.g., de Winter et al., 2014; Evans & Fendley, 2017; 
Onnasch et al., 2014; Young & Stanton, 2002b). It follows that most of the 
time, vehicle automation will relieve the driver of demands they can quite 
readily cope with. Ironically, then, automated systems have the potential for 
imposing mental underload. There is wide consensus that underload is at least 
as serious an issue as overload (Brookhuis, 1993; Hancock & Parasuraman, 
1992; Leplat, 1978; Schlegel, 1993; Young et al., 2015), and can be detri-
mental to performance (Desmond & Hoyes, 1996), leading to performance 
decrements, attentional lapses, and errors (Wilson & Rajan, 1995). Indeed, 
underload is possibly of greater concern, as it is more difficult to detect than 
overload (Hancock & Verwey, 1997).

This apparent contradiction, that automation can both reduce and increase 
MWL, may be resolved by considering the suggestion that automation actu-
ally redistributes MWL across different stages of information processing as 
well as different aspects of a task (Lee et al., 2020; Tsang & Vidulich, 2006). 
Consequently, automation might only give the appearance of reducing MWL, 
whereas in fact it just imposes qualitatively different demands. Depending 
on the type of automation and the type of task, automation can variously 
increase or decrease workload associated with perceiving information, cen-
tral cognitive processing, or response execution (see Wickens & Kessel, 1981; 
Wickens et al., 2015). In a similar way, part-task automation (remembering 
that truly full driving automation is still unrealistic) can ostensibly reduce 
MWL for those aspects of the task that have been automated, but if there is 
a patchwork quilt of tasks left over that do not form a coherent whole, this 
actually increases MWL3 (see Stanton et al., 2021).

Meanwhile, it has been observed that autopilots in commercial aircraft can 
lead to mental underload during highly automated activities such as cruise 
flight, but mental overload during more critical operations such as take-off 
and landing (Endsley, 2015; Parasuraman et al., 1996b). This is the result of 
‘clumsy automation’ as we described earlier in this chapter – making the easy 
tasks easier and the hard tasks harder (Lee & Seppelt, 2012). Similar issues 
are applicable in both aircraft and automobiles (Labiale, 1997; Lovesey, 1995; 



Roscoe, 1992; Verwey, 1993). A human-centred approach would seek to do the 
opposite, optimising workload by providing automated support during high 
workload (flattening the peaks) but paring back that support when workload 
is low (filling in the troughs; cf. Parasuraman, 1987; Reichart, 1993; Rumar, 
1993). We will revisit this notion of adaptive automation in Chapter 9.

The problem of lumpy workload peaks associated with clumsy automation 
is compounded by the willingness of operators to, ironically, delegate tasks to 
the automation more during low workload than with high workload (Lee & 
Seppelt, 2012), which has been observed with cockpit automation (Metzger 
& Parasuraman, 2005). The reduction in MWL offered by automation then 
enables the operator to exploit that and allocate attention to other concurrent 
tasks instead (Onnasch et al., 2014), which drivers are wont to do when using 
higher degrees of automation (Lee et al., 2020). Moreover, if such competing 
tasks present high MWL, then they will even draw the operator’s attention 
away from the automated task (Endsley, 2017). However, now we are pre-
sented with one of the biggest problems of automation: the takeover scenario.

If attention has been drawn – voluntarily or otherwise – to secondary tasks 
in the vehicle, then reactions to a takeover request or automation failure will 
inevitably be affected (cf. Onnasch et al., 2014). Responses to unexpected 
takeover requests are slower when monitoring automation than when driv-
ing manually (Eriksson & Stanton, 2017b; Young & Stanton, 2007a), while 
takeover quality is impaired when the driver is distracted (Lee et al., 2020). 
Other studies showing adverse reactions to failures of vehicle automation 
have also observed reductions in MWL (e.g., de Waard et al., 1999; Stanton 
et al., 1997), although there are exceptions to this (e.g., Desmond et al., 
1998; Nilsson, 1995). Thus the reduced MWL associated with automation 
can improve routine performance but present difficulties in coping with an 
emergency or system failure (Norman, 1990; Wickens et al., 2010), as opera-
tors face a sudden surge in demand. So whilst being relieved of the task may 
reduce MWL, this by no means offsets the value of being in active control 
(Kessel & Wickens, 1982).

CONCLUSIONS

As with Stanton & Young’s (2000) psychological model of driving automa-
tion, the cognitive factors involved when interacting with automation that 
we reviewed here are all interdependent. For instance, mode confusions can 
both reduce situation awareness and increase MWL (Stanton et al., 2011), 
while increased vigilant monitoring demands can also overload the operator 
(Hancock & Verwey, 1997). Behavioural adaptation is linked to trust (Rudin-
Brown & Parker, 2004), which in turn can reduce MWL by relieving the 
burden of monitoring the system (Kantowitz & Campbell, 1996). However, 
that raises the spectre of complacency, which has also been associated with 
reductions in MWL (de Waard et al., 1999).
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The popular assumption set out at the start of this chapter, that automation 
will reduce or eliminate human error, is flawed, being rooted in technology-
centred thinking without due consideration for the role of the human in these 
systems (Navarro et al., 2018; Read et al., 2020). Automated systems are not 
error-free and, when automation errors occur, they can be more insidious 
than manual errors (Banks, Plant et al., 2018). At best, automation errors go 
unnoticed; at worst, they are compounded by human errors. Since no system 
is perfect, the problems raised in this chapter will remain important for the 
foreseeable future (Parasuraman & Wickens, 2008).

It is fair to say that many of these problems of automation centre around 
the issue of taking over manual control (cf. Endsley & Kiris, 1995; Kaber 
& Endsley, 1997), whether by design, arising from an automation surprise, 
or due to automation failure. Such issues were evident in all of the accident 
case studies presented earlier, in both aviation and automotive domains. 
The response of vehicle manufacturers to these crashes has typically been 
that drivers should not rely on the automation as it is their responsibility to 
maintain control of the car. But in the light of the human factors research 
reviewed above, this response is disingenuous: ‘Using the driver as a last line 
of defence is arguably a poor solution for addressing the shortcomings in 
the design and implementation of SAE Level 2 and 3 automation’ (Banks, 
Eriksson et al., 2018; p. 144). Failures in driver monitoring, then, are really 
failures in automation design. As we move towards level 3 automation in 
the very near future (see Chapter 1), this so-called ‘abuse’ of automation 
(cf. Parasuraman & Riley, 1997) is likely to be amplified as drivers can now 
legitimately rely on the system – in some circumstances, at least. How will 
we manage the ‘appropriate’ use of automation within its operational design 
domain?

Questions of automation design will be addressed later in this book. Before 
we get there, though, we spend the next few chapters delving deeper into 
one of the key human factors concerns with automation from those reviewed 
above. Through all these ‘problems of automation’, we can see that MWL has 
been an underlying factor – sometimes too high due to lack of feedback or 
vigilance demands, sometimes too low because of complacency or overtrust. 
We have already noted that underload is just as bad for performance as over-
load, but we need to understand why having too little to do can be detrimen-
tal. That is where the journey of this book takes us next.

KEY POINTS

• There are undoubtedly benefits to be had from driving automation in 
terms of road safety, but the technology-centred assumption that auto-
mation will ‘cure’ human error is flawed; technology is not perfect 
either, and people are being expected to pick up the pieces – a role for 
which humans are ‘magnificently disqualified’ (Hancock, 2019).



• Because of this, lessons learned from aviation automation and investi-
gations of accidents involving highly automated vehicles have demon-
strated shortfalls in the anticipated benefits, as well as new problems
arising from human interaction with the automated systems.

• There are multiple, interacting human factors concerns associated with
automated systems but these all revolve around the central theme of
MWL, which can be simultaneously too high and too low when faced
with automation – and both overload and underload are detrimental to
human performance.

NOTES

1. ht tps: //www.nhtsa.gov/sites /nhtsa.dot.gov/f i les /documents /13069a-
ads2.0_090617_v9a_tag.pdf (accessed 28 April 2022)

2. In a 2016 interview at the Future Transport Solutions conference in Oslo, Elon
Musk claimed that the probability of having an accident was 50% lower with
Tesla’s autopilot, making it ‘almost twice as good as a person’ (see https://www.
youtube.com/watch?v=j-_R3OV0bVE&t=1345s, accessed 29 April 2022).

3. How to Make the Most of Your Human: Design Considerations for Single
Pilot Operations. NASA Engineering & Safety Center Academy Webcast by
Paul Schutte, NASA Langley Research Center, 17 March 2016. https://mediaex-
server.larc.nasa.gov/Academy/Play/fdea070f17aa4ceaae5ab03dc8a6c2251d?cat
alog=6881410 (accessed 5 May 2022).

4. https://www.independent.co.uk/life-style/gadgets-and-tech/news/tesla-crash-
police-autopilot-self-driving-car-a8376881.html (accessed 28 April 2022).

5. https://www.independent.co.uk/life-style/gadgets-and-tech/news/tesla-driver-
sleeping-video-autonomous-car-model-x-autopilot-a8756261.html (accessed 28
April 2022).
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Chapter 3

Pay attention

OVERVIEW

Our journey through this book is nearing its first rest stop with the end of 
Stage 1, but before doing so we will examine the core human factors concepts 
that form the foundation of this book: attention, automaticity and, especially, 
mental workload. The reader is taken on the scenic route through the lit-
erature of the last 50 years as a lead-up to discussing the key problem of 
mental underload with automation. Mental underload is described as being 
a particular issue in an automation failure scenario, and several theories are 
considered as explanations for why that might be the case. Ultimately, we 
present our own hypothesis for this: malleable attentional resources theory 
(MART). Based on capacity theories of attention, MART posits that atten-
tional resources actually shrink when faced with underload, as capacity 
adapts to meet the demands of the task. However, should demands suddenly 
increase – such as in an automation failure scenario – the operator no longer 
has the capacity to cope, and performance problems inevitably result. The 
chapter closes with an overview of the next section of the book, which pres-
ents a series of empirical studies to test MART.

INTRODUCTION

Towards the end of Chapter 2, we briefly reviewed the effects of automation 
on mental workload (MWL), seeing that it can result in overload and under-
load, both of which are detrimental to performance (Wilson & Rajan, 1995) 
and so should be considered at least as seriously as each other (cf. Hancock & 
Parasuraman, 1992). We also reviewed research throughout Chapter 2 show-
ing that human operators of automated systems exhibit inferior performance 
than if they were controlling the system manually. Mental underload is a 
good candidate to explain some of these performance problems with auto-
mation, given the evidence that automation reduces MWL. What there has 
historically been less understanding of, though, is the mechanism of how and 
why underload leads to impaired performance. The present chapter (which 
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is largely based on our earlier work in Young & Stanton, 2002a) puts for-
ward our explanation for these effects. But in order to get there, we must first 
understand more about the nature of MWL itself.

MENTAL WORKLOAD REVISITED

In driving, MWL can be affected by a number of factors (Schlegel, 1993), 
which are either external to the individual (e.g., traffic, road type) or internal 
(e.g., age, experience). Dual carriageways, for example, impose lower work-
load than driving in a suburban environment (Foy & Chapman, 2018). In 
addition, different elements of the driving task (e.g., vehicle control and guid-
ance, navigation) can impose varying levels of MWL. For instance, steer-
ing appears to be a significant source of workload in vehicle control (Young 
& Stanton, 2002b). These factors can interact, as different levels of traffic 
do not affect the skilled driver, but high traffic increases workload for the 
unskilled  driver (Verwey, 1993). Harking back to the behavioural adapta-
tion theories discussed in Chapter 2, there is also some evidence of MWL 
homeostasis in driving, as drivers have control over a key determinant of 
task demand: speed (Foy & Chapman, 2018). As such, drivers may seek to 
increase demands when the task is easy (i.e., by driving faster), and reduce 
demands (speed) if it is more difficult, thereby maintaining a constant level 
of MWL (Foy & Chapman, 2018; Zeitlin, 1995). Similarly, when faced with 
a choice of levels of automation, about one-third of the time people chose to 
carry out the task manually when demands were low, apparently to maintain 
MWL in a comfortable envelope (Navarro et al., 2018).

Clearly, then, MWL is a multidimensional construct (Evans & Fendley, 
2017), determined by characteristics of the task (e.g., objective demands, 
performance), the operator (e.g., skill, attention; Leplat, 1978), and even the 
context within which the task takes place. Nevertheless, there is no univer-
sally accepted definition of MWL (see Young et al., 2015, for a discussion), 
although there are commonalities in the literature centred on the balance 
between task demands and the resources required to meet those demands 
(cf. Evans & Fendley, 2017; Schlegel, 1993). Collating this literature together 
enabled Young & Stanton (2001a, p. 507) to propose an operational defini-
tion of MWL:

The mental workload of a task represents the level of attentional resources 
required to meet both objective and subjective performance criteria, which 
may be mediated by task demands, external support, and past experience.

In this definition, the ‘level of attentional resources’ is assumed to have a 
finite capacity,1 which may be allocated to one or more tasks, but if the 
limit is reached then any further increases in demand are manifest in per-
formance degradation. ‘Performance criteria’ can be imposed by external 
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requirements, or may represent the internal goals of the individual. Examples 
of ‘task demands’ are time pressure or complexity. ‘External support’ may 
be in the form of peer assistance or technological aids. Finally, ‘past expe-
rience’ can influence MWL via changes in skill or knowledge. Essentially, 
then, MWL represents the proportion of resources required to meet the task 
demands (Welford, 1978). If demands begin to exceed capacity, the skilled 
operator either adjusts their strategy to compensate (Singleton, 1989), or per-
formance degrades.

The concept of MWL is, therefore, inextricably linked with theories of 
attentional resources, so let us turn to learn more about such theories in our 
continuing quest to understand the mechanism of mental underload.

ATTENTION

The classic and oft-cited early work in attentional resources is that of 
Kahneman (1973), who proposed a capacity model of attention as an alter-
native to bottleneck or filter theories (e.g., Broadbent, 1958; Deutsch & 
Deutsch, 1963; Treisman, 1964). Essentially, the capacity model proposes a 
single resource view of attention – that is, attention is viewed as one unitary 
pool of resources. This pool has a finite limit; therefore, the ability to per-
form two separate concurrent activities depends upon the effective allocation 
of attention to each. Interference between tasks depends upon the demands 
which each separately impose – when task demands drain the pool, perfor-
mance will suffer.

Others have echoed the notion of a common resource pool. Norman & 
Bobrow (1975) described how performance may be constrained by the quality 
of input (data-limited) or by processing resources (resource-limited). Again, 
this view holds that if the demands of two tasks exceed the upper limit of 
resources, interference will occur and performance will deteriorate.

Later research found some flaws with the single resource approach. For 
instance, Wickens (1984, 1992) described experiments whereby two tasks 
were perfectly time-shared (i.e., performed concurrently) even when the dif-
ficulty of either was manipulated (this latter point is important, since two tasks 
may impose different levels of MWL yet exhibit little variation in overt per-
formance if both are still within the total capacity of the operator). This was 
seen as a limitation of single resource theory, which predicted that the diffi-
culty manipulations should eventually lead to some change in performance on 
one or both tasks. Thus emerged multiple resources theory (Wickens, 1984; 
1992; 2002; Wickens & Liu, 1988). Multiple resources theory posits that there 
are separate pools of resources along three dichotomous dimensions. The first 
dimension is processing stages – early vs. late. Perception and central pro-
cessing (i.e., cognitive activity) are said to demand separate resources from 
response selection and execution. The second dimension is input modalities – 
auditory vs. visual. Performance of two simultaneous tasks will be better if 
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one is presented visually and the other presented auditorily, rather than using 
the same modality for both. Finally, the theory states that there are separate 
resources for whether a task is processed verbally or spatially. This dichotomy 
also holds for response execution, whereby less dual-task interference occurs 
if one task is responded to vocally and the other demands a manual response 
(see Figure 3.1 for an elaboration on the relationship between these dimen-
sions). Wickens (2002) later added a fourth dimension to the model, subdivid-
ing the visual modality into focal and ambient channels. According to multiple 
resources theory, there will only be a trade-off between task difficulty and 
performance to the extent that two concurrent tasks share resources on any of 
these dimensions (Wickens, 1992) – interference is a joint function of difficulty 
(resource demand) and shared processing mechanisms (resource competition).

Attentional resource models provide a rational framework for defining 
MWL as per the definition cited above (Young & Stanton, 2001a), reflecting 
as it does the relationship between demands and resources. There has been 
some debate as to whether single resource models are more appropriate than 
multiple resource theory for understanding MWL. Firstly, multiple resource 
explanations of MWL are context dependent, having been derived in dual-
task laboratory settings, making it difficult to draw quantitative predictions 
for real-world applied contexts (Hancock & Caird, 1993; Liao & Moray, 
1993). In addition, multiple resource models do not consider non-attentional 
factors, such as experience (Selcon et al., 1991). As an alternative, Liao & 
Moray (1993) posited that a single channel MWL model is of more use in real 
world situations, which generally have more than two tasks. However, they 
also stated that the multiple resource approach remains a superior model in 
purely dual task scenarios.

In practice, the reality probably sits somewhere between the two. The 
notion of a general reservoir of attentional resources underlying the sepa-
rate resource pools has some merit (cf. Brown, 1997; Matthews et al., 1996; 
Young & Stanton, 2007b); alternatively, there could be some dedicated cog-
nitive resource responsible for allocating attention between tasks (Tsang & 

Perceptual/Cognitive

Perceiving Central processing Response

Visual Auditory

Verbal Print Speech Problem solving
Mental arithmetic

Voice

Spatial Flow field (e.g., driving)
Spatial patterns

Mental rotation
Imagery

Manual response

Figure 3.1  Relation between the dimensions of multiple resources. Examples of tasks are 
defined by processing codes (verbal vs. spatial) and processing stages (percep-
tual/cognitive vs. response). Input modalities (auditory vs. visual) are relevant at 
the perception end of this diagram, and both modalities may receive verbal or 
spatial information. (Adapted from Wickens et al., 1998.)
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Velazquez, 1996), which would then have a blanket impact on their perfor-
mance. In his computational model of multiple resources, Wickens (2002) 
essentially acknowledged that there is unlikely to be any such thing as perfect 
time-sharing between two tasks since there will always be some baseline con-
flict between concurrent tasks, ‘or general capacity for which all tasks compete 
in a time sharing situation’ (Wickens, 2002; p. 170). The implications of this 
are that it will generally be better to divide attention between tasks drawing 
on different resource pools than common ones, but there will still be a per-
formance impact purely due to the fact that there is competition for attention.

An alternative perspective takes into account the level of operator skill, 
and the extent to which cognitive processing is automatic. Gopher & Kimchi 
(1989) reviewed evidence that MWL in real world tasks is determined by the 
balance of automatic and controlled processing involved. This is consistent 
with the attentional resources approach, as automaticity releases attentional 
resources for other tasks, with a resulting decrease in MWL. The natural 
analogue with automation leads us to consider the role of human automaticity 
and how it may interact with machine automation.

AUTOMATICITY

Automatic processing is defined as being fast, attention-free, unconscious, 
and unavoidable. By definition, automaticity is the converse of controlled pro-
cessing, which is slow, attention-demanding, under conscious control, and 
adaptable (see e.g., Anderson, 1995; Underwood & Everatt, 1996, for reviews 
of the groundwork in automaticity). As such, automaticity is associated with 
highly skilled performance.

Skill acquisition has often been described along three stages (Anderson, 
1995; Fitts & Posner, 1967; Norman & Shallice, 1980; Rasmussen, 1986). 
The first is associated with novice performance, whereby operators act in a 
declarative or knowledge-based manner. With no experience of working with 
a device, the operator is forced to calculate algorithms for the task at hand, 
perhaps referring to operating manuals, and relying heavily on feedback to 
check that the correct action has been taken. This reflects controlled process-
ing. As operators learn about their task, the need for cognitive control gradu-
ally diminishes and performance becomes proceduralised. This is the second 
stage, using rules-of-thumb to guide performance. Progression through these 
two stages eases feedback requirements, as operators come to depend less on 
instruction, and more on task-intrinsic feedback. Finally, a great deal of expe-
rience on an invariant task completely removes the dependence on conscious 
processing and the need for feedback, and automaticity is achieved. At this 
point, and with reference back to attentional resource models (cf. Norman 
& Bobrow, 1975), skilled performance has become data-limited, rather 
than resource-limited (Brown, 1978). The stages of skill acquisition are only 
meant as descriptive and there is no discrete boundary between them; the 
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development of automaticity is a continuous process (although see Hockey, 
1997, for a more dichotomous view of automatic and controlled processing).

An alternative (but compatible) perspective views automaticity as knowledge 
(Bainbridge, 1978; 1991; 1992). Skill acquisition is considered as a change in 
knowledge and decisions, such that the expert performs by implicit antici-
pation (i.e., ‘open-loop’ behaviour) rather than feedback. Learning increases 
the knowledge base, which allows such anticipative behaviour. Novices, on 
the other hand, make more control actions and task-unrelated decisions, thus 
increasing their workload. Where experts use their knowledge to describe the 
task and guide future actions, novices need their capacity simply to under-
stand the task, leaving less available to actually do it. Automaticity, then, is a 
situation of low uncertainty and high predictability, thus drawing little from 
attentional resources. If demand increases, the situation is no longer familiar; 
predictability then breaks down and the operator is forced to resort to a feed-
back (i.e., novice) strategy.

Along with the different stages of skill acquisition, there is also a hierarchy 
involved with skill itself (Underwood & Everatt, 1996). Low-level processing, 
typically associated with the execution of motor tasks, tends to be the most 
consistent and is therefore automatised easily. Higher cognitive functions and 
strategic tasks, however, are more variable and so more difficult (though not 
impossible; Logan, 1988) to process automatically. This leads to the idea of 
part-task automaticity, in that some lower-level elements of the task may be 
automatised, whilst higher functions remain to be processed in a controlled 
manner. In terms of driving, this broadly relates to the hierarchy of vehicle 
control covered in Chapter 1 (cf. Ranney, 1994). For instance, a learner driver 
may use automatic processing for operational elements of vehicle control 
functions (e.g., steering, changing gear), yet still need cognitive control for 
the higher strategic demands of driving (e.g., navigation, hazard perception; 
cf. Ranney, 1994). Indeed, all drivers lie at some point on the automaticity 
continuum, and individual differences in experience and perceptual-motor 
skills determine where cognitive control begins to be released.

Driving involves disparate skills from information acquisition, through 
perceptual-motor coordination, to situation assessment and risk estimation 
(Chi et al., 2019) and, at some levels at least, offers a classic example of auto-
maticity (Stanton & Marsden, 1996). Whilst some feel that the driving task is 
too variable to promote the development of automaticity (Groeger & Clegg, 
1997), the role of experience and skill in driving has led many to the con-
clusion that at least some elements of the task represent automatic behav-
iour (e.g., Stanton & Marsden, 1996). These are perhaps most evident in 
the low-level operational control elements of driving, such as vehicle control 
(Blaauw, 1982) and brake reaction time (Liebermann et al., 1995; Nilsson, 
1995; Young & Stanton, 2007a). Consistent with this is the observation that 
such physical skills can be acquired relatively quickly, whereas higher stra-
tegic elements can take years to develop (Helander, 1978), while some may 
never reach automaticity (Rumar, 1990).



Pay attention 67

On the face of it, there seems to be a lot in favour of automatic processing. 
Indeed, many place value on such tacit or experiential knowledge over techno-
logical support, as these skilled workers can cope with unplannable situations 
(Böhle et al., 1994; Hockey & Maule, 1995). Expertise is commonly associ-
ated with efficiency, and is consequently seen as a positive indicator of perfor-
mance. Differences in performance between novice and experienced operators 
increase as difficulty of the task increases (Anderson, 1995). Moreover, auto-
matic processing has been demonstrated to bypass the vigilance decrement 
of sustained attention tasks, tasks that apparently only suffer if controlled 
processing is used (Fisk & Schneider, 1981). Automaticity is also useful in 
multiple task situations, as the automatised process hardly interferes with 
concurrent tasks (Liu & Wickens, 1994). Finally, automaticity has been cited 
as a prerequisite for situation awareness (MacLeod, 1997; Svensson et  al., 
1997). The advantages of automaticity in driving are realised in areas such 
as vehicle control (Blaauw, 1982) and brake reaction time (Nilsson, 1995). In 
a study by Nilsson (1995), drivers avoided a collision when a car pulled out 
in front of them because braking was considered to be an overlearned and 
automatic response.

Automaticity and expertise, then, have definite advantages. Consistent 
performance of an invariant task leads to constraints on actions, which 
can increase speed and improve performance. These constraints, though, 
will upset performance if the task changes and they no longer apply, as 
the acquired expertise is no longer relevant. Therefore, the drawbacks of 
expert performance are associated with the fact that automatic processes 
are unconscious and unavoidable, and there can be adverse consequences 
when the overlearned and unconscious response takes precedence in an 
inappropriate situation. The classic example is the Stroop effect, whereby 
one highly practiced task interferes with the performance of another, con-
trolled task. Errors occur due to strong, inflexible expectations influenc-
ing selective attention (Rumar, 1990; Van Elslande & Faucher-Alberton, 
1997). Any change in the overlearned conditions will result in massive pro-
active interference and a disruption of skill-based performance as cogni-
tive resources are reallocated (Ranney, 1994). Performance decrements are 
especially apparent in such situations if the task has been learned by rote 
rather than understanding, as the operator cannot adapt to new circum-
stances (Norman, 1988). Another example is the challenge-response verbal 
checklist, typically used by aircraft crew to check the status of the aircraft 
systems. After numerous repetitions, the procedure can become automatic 
and very fast, but as a consequence, positive responses (i.e., system sta-
tus is acceptable) may be erroneously made. Barshi & Healy (1993) see a 
paradox in the checklist procedure – automatic performance is equated with 
expert performance; however, routine tasks are complex and susceptible to 
error, thus the operator must execute controlled processing in order to avoid 
errors. Yet, by definition, it is impossible to perform at once both in an auto-
matic and a controlled manner.
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Similar paradoxes exist in driving, for instance, when drivers have a strong 
expectation that a familiar junction will be clear and fail to see oncoming 
traffic (Hale et al., 1988), in what has come to be known as the ‘looked-
but-failed-to-see’ error (see e.g., Hole, 2007). Consider also advanced driving 
techniques taught by bodies such as the Institute of Advanced Motorists in 
the UK. By definition, these drivers are highly skilled. However, their train-
ing constantly reminds them to keep all elements of the driving task (from 
vehicle control to hazard perception) in conscious awareness at all times. On 
the advanced driving test, the examiner often asks for a concurrent verbal 
commentary on the drive to assess the extent to which drivers perceive the 
environment and their task. The paradox is thus in expecting drivers to pro-
cess their task and respond with the speed and accuracy of an expert, yet still 
asking them to maintain conscious awareness and an active control over all 
of their decisions.

There is, then, an irony involved with automaticity, in that expert per-
formance needs to be monitored in a controlled fashion if errors are to be 
detected and corrected, but controlled processing does not by definition 
equate with expert performance. Naturally, if the task is consistent and there 
are no problems, automatic processing should guarantee virtually error-free 
performance. However, if task demands change, a controlled monitoring pro-
cess is necessary to ensure flexibility in response. These two processes would 
inevitably be in competition. This point is highly relevant to technological 
automation too.

It will eventually become the case that any driver may step into a highly 
automated vehicle, regardless of their experience. Initially, novel technologies 
are fitted to prestige models only, implying that the drivers who have access 
to them are generally more experienced. However, just as with power assisted 
steering, anti-lock brakes, and even automatic transmission, these new devices 
will eventually filter down to become widely available. It is  conceivable that, 
in the not-too-distant future, a newly qualified driver with basic training 
could immediately use a vehicle equipped with, for instance, an automated 
lane keeping system (ALKS).

The interaction of skill and automation is important for a number of rea-
sons. We suggest that all operators – novices and experts alike – essentially 
satisfy the criteria for automaticity when faced with automation. Whilst inex-
perienced users almost certainly use different cognitive processes, many of the 
criteria for automaticity (e.g., fast, attention-free, unconscious) are essentially 
satisfied. This is just an analogy, though, and we should perhaps restrict it 
to observable performance, rather than underlying cognitive processes. But 
consider Bainbridge’s (1978) point in discussing the theory of automaticity 
as knowledge, that increased demand essentially transforms an expert into 
a novice. It is surely plausible to assume that the reverse would be true in a 
situation of unusually low demand (i.e., driving with automation). However, 
whereas the expert has an enhanced knowledge base and can anticipate events, 
the novice does not have this ability. Thus they will not react as experts in 
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critical situations, such as the overlearned braking response (e.g., Nilsson, 
1995). This is where the underload problem reveals itself.

THE ‘PROBLEM’ OF UNDERLOAD

So that brings us back to the question posed at the end of Chapter 2: why 
is underload detrimental to performance? Actually, even this has an air of 
nuance about it because, in fact, there are no such problems as long as every-
thing is working as it should be. There may even be benefits for performance; 
Ma & Kaber (2005) found that a reduction in workload when using ACC 
actually improved steering performance under normal (i.e., non-critical) driv-
ing situations. However, the underload problem manifests itself in an opera-
tor who has been subjected to excessively low mental demands (such as with 
automation), and then struggles to cope when workload suddenly increases 
(such as when the automation fails or the situation goes beyond its operational 
design domain). As a counterpoint to the Ma & Kaber (2005) study, Rudin-
Brown & Parker (2004) also found that ACC reduced workload, but this was 
associated with slower reaction times and fewer safe braking interventions in 
response to a hazard. In the automated vehicle, these kinds of takeover situ-
ations may occur in a matter of seconds, placing great demand on the driver 
with the rapid transition from low to high workload (Hancock et al., 2021).

To be clear, underload is not about being completely relieved of all relevant 
demands – it is not merely another word for boredom. Underload is about 
doing very little (such as ensuring safe progress of an automated vehicle), 
but it is not about doing nothing – there is, by necessity, some level of task 
engagement, even if that engagement is not very stimulating (Young, 2021). 
Current automated driving systems exemplify this kind of task – indeed, it is 
seen as a selling point, on the basis that it releases drivers’ attentional capacity 
to perform other activities (Hancock et al., 2021). But, as we now know, this 
is disingenuous if drivers are still expected to be responsible for control of the 
vehicle, since that capacity is not (or, at least, should not) be truly released.

That gives us some idea of what underload is, but it still does not tell us why 
having too little to do is detrimental. An intuitive answer would be to appeal 
to vigilance degradation, but it is uncertain whether this occurs with dynamic 
signals (Parasuraman, 1987), and driving is a dynamic task. Moreover, as we 
saw in Chapter 2, maintaining vigilant monitoring is a considerably demand-
ing task (cf. Warm et al., 1996) and, as such, depletes attentional resources, 
so quite the opposite of one that can induce underload. Along with vigilance, 
Chapter 2 reviewed a variety of other factors affecting performance with 
automation (trust, situation awareness etc.), but the reason we are particu-
larly interested in mental underload is that, in theory, it may also affect per-
formance in the absence of automation.

In several studies of simulated driving performance, stress and fatigue 
were demonstrated to have a more detrimental effect on easier driving than 
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when the driving demands were higher (Desmond et al., 1998; Matthews & 
Desmond, 1997; Matthews et al., 1996). Stressed or fatigued drivers show 
poorer vehicle control (lateral and longitudinal) on straight road sections than 
on curves (Matthews & Desmond, 1997), in single-task than in dual-task 
conditions (Matthews et al., 1996) and, yes, in automated than in manual 
driving (Desmond et al., 1998).

These studies led to another explanation for the effects of underload, con-
cerning the amount of effort the operator is investing in the task. Investing 
resources in a task is a voluntary and effortful process to meet demands, 
so performance can be maintained at the cost of individual strain or vice-
versa (Hockey, 1997). Desmond & Hoyes (1996) concluded that a decrease in 
performance at low levels of demand might be due to a failure to mobilise 
effort appropriately to match the task, which may be particularly susceptible 
if the operator is also stressed or fatigued (Desmond et al., 1998; Matthews 
& Desmond, 1997). Others have offered similar theories. The ‘par hypoth-
esis’ (Buck et al., 1994) states that, as demands fluctuate, operators increase 
or decrease the amount of effort invested in a task to maintain performance 
at their personal par. Similarly, ‘equifinality of effort’ (Hancock & Chignell, 
1988) is an adaptive strategy whereby effort is adjusted to attain a goal. In 
later research, Wickens et al. (2001) suggested effort conservation as the 
explanation as to why pilots in a simulated aviation task actually devoted 
more visual attention to an instrument panel when the task was easier. At 
the other end of the workload spectrum, Liao & Moray (1993) found that 
participants invest more effort with higher time pressure, which may increase 
capacity. Elsewhere, underload has also been associated with passivity, with 
optimal MWL reflecting a need to exercise a level of control or engagement 
with the task (Endsley, 2017; Hancock, 2017b; Hockey et al., 1989). In semi-
automated driving, there is a concern that this could lead drivers to seek out 
and engage in more stimulating activities (Biondi, 2017).

The notion of optimal workload is a natural corollary to the twin demons 
of overload and underload (Wilson & Rajan, 1995). Taken together, these 
predict the classic theoretical inverted-U shaped relationship between per-
formance and MWL (Figure 3.2), whereby performance decrements occur 
at both ends of the curve (e.g., Desmond & Hoyes, 1996; Foy & Chapman, 
2018; Huey & Wickens, 1993; Longo, 2015), while optimal MWL results 
in optimal performance (Hancock & Caird, 1993; Wilson & Rajan, 1995; 
Young et al., 2015). Such optimisation involves a balancing act between 
demands and resources (Byrne & Parasuraman, 1996; Gopher & Kimchi, 
1989), based on attentional resource theory. As we have already explained, 
overload occurs if the demands of a task are beyond the limited attentional 
capacity of the operator, while low MWL leads to difficulties in maintaining 
attention (Foy & Chapman, 2018; Longo, 2015).

One of the implications of this curve is that there will be some break point – 
or ‘redline’ – at each end where performance starts to significantly degrade, 
and one can notionally be said to have transitioned into underload (perhaps 
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at arrow 1) or overload (arrow 4), respectively. Identifying these redlines is an 
important practical challenge (Hancock, 2017b), some might say the ‘holy grail’ 
of MWL research, but it has long vexed human factors researchers (Young et al., 
2015). The overload redline represents the point at which demands approach 
the maximum available resources (Stokes et al., 1990); in pure time occupancy 
terms, some observations suggest that errors begin to occur around 80% capac-
ity, so the redline is not necessarily at the exact point where demands exceed 
resources (see Young et al., 2015, for a review). Similarly, the underload redline 
reflects an under-supply of resources relative to demands (Young et al., 2015).

Although we are of course concerned here with detrimental effects of 
underload, we can deduce from the curve that there are circumstances when a 
reduction in MWL can improve performance, if demands are otherwise high 
and the reduction moves the operator out of the overload zone (from arrow 4 
to arrow 3 on Figure 3.2). Sure enough, there is evidence that this is the case 
(although, notably, only with reliable automation; Metzger & Parasuraman, 
2005). Conversely, gradual increases in MWL (up to a point) might not nec-
essarily degrade performance and may even appear to be beneficial. If the 
operator is working on the ‘low’ side of the curve (i.e., underloaded; arrow 1 
on Figure 3.2), then an increase in MWL (towards arrow 2) would move them 
up towards the optimal level (e.g., Taylor et al., 2013). There is some evi-
dence consistent with this too. Using a low-fidelity flight simulator, Thornton 
et al. (1992) found that pilots’ solutions to difficult problems were better in 
manual conditions (with subjectively higher workload) than when using the 
autopilot. In addition, Moss & Triggs (1997) found that attention-switching 
during a simulated drive was faster under dual-task conditions. That is, the 
additional MWL actually facilitated performance. In a similar way, but some-
what controversially now, there is evidence that using a mobile phone when 
driving can improve performance if workload is otherwise low or manage-
able (Liu, 2003) – though we would urge the reader to balance that against 

Figure 3.2  Theoretical relationship between mental workload (or arousal) and perfor-
mance. See text for explanation of numbered arrows.
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the mass of research indicating how detrimental mobile phone use can be for 
driving performance (e.g., Haigney et al., 2000).

In reality, the peak of the curve is probably more of a plateau, as individuals 
can absorb a certain amount of MWL (Hancock, 2017b) either by investing 
more effort (Huey & Wickens, 1993) or adapting their strategy by load-shedding 
in order to manage their performance (Huey & Wickens, 1993; Parasuraman 
et al., 2008). As such, we might imagine two tasks of objectively different work-
load, but resulting in similar performance (arrows 2 and 3 on Figure 3.2). If 
there is a sustained increase in demand, though, it is difficult to maintain this 
as performance starts to become resource-limited (Huey & Wickens, 1993), 
leaving little capacity to respond to any further sudden increases in demand 
(Parasuraman et al., 2008). The problem is that we cannot tell, based on the 
current state of the science, where the purported ‘redlines’ for overload and 
underload lie (cf. Young et al., 2015) – there are just so many variables associ-
ated with the individual and the task, that it is a constantly moving target.

There has been some discussion of defining redlines according to some of 
the subjective MWL rating scales available in the literature (more on which 
in the next chapter). Whilst a handful of scales refer explicitly or implicitly to 
redlines, the relative nature of subjective ratings makes it difficult to define 
thresholds in absolute terms (Hancock et al., 2021; Hart, 2006). In relation 
to one of the most widely used subjective metrics, the NASA Task Load Index 
(TLX; Hart & Staveland, 1988), Hart (2006) called for a large-scale meta-
analysis to help towards this cause. That wish was granted in 2021 with a 
review of 556 studies resulting in reference values for the TLX across domains 
and applications (Hertzum, 2021). If we take 10th and 90th percentile values 
as arbitrary ‘redlines’ for now, overall workload at these points was 26 and 
57, respectively. We could potentially think of these values as the thresholds 
of underload and overload.

It may also be possible to define these redlines according to physiological 
arousal, seeing as the inverted-U curve mirrors the well-established one between 
arousal and performance (Yerkes & Dodson, 1908). Arousal fuels attentional 
resource supply (Kahneman, 1973) and thereby affects performance (Huey & 
Wickens, 1993; Lee et al., 2020), albeit with some lag (Young et al., 2015). 
Given a linear increase in demand, there will initially be a shortage of resources 
until arousal catches up; the underload redline is therefore at the crossover 
point when resources match demands. As demands continue to increase, they 
will eventually exceed the maximum capacity (as per the traditional overload 
model), thus defining the overload redline. Nevertheless, these remain theoreti-
cal explanations, and are difficult to quantify (Young et al., 2015).

On the face of it, then, it would seem that there is a relationship between 
MWL and physiological arousal. Indeed, many physiological measures of 
MWL depend on this relationship (Jorna, 1992; Roscoe, 1992). But we also 
know that such metrics are influenced by physiological noise and only account 
for part of the variance in MWL and performance (Jorna, 1992; Taylor 
et al., 2013). So, there must be a more direct connection between MWL and 
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performance without going via arousal. If arousal affects attentional resources, 
then perhaps MWL could have a similar effect. That is, attentional resources 
could fluctuate as a direct consequence of MWL. The influence of MWL (and 
underload in particular) on performance could then be explained as a relative 
insufficiency of resources to cope with demands. That led us to develop the 
hypothesis of malleable attentional resources (Young & Stanton, 2002a).

Malleable attentional resources theory (MART)

MART is grounded in the established theories of attentional resources we 
reviewed earlier in this chapter (Kahneman, 1973; Wickens, 1984; 1992; 2002). 
But most applied research in this field implicitly assumes that the size of resource 
pools is fixed. Capacity may change with fluctuations in arousal (according to 
the inverted-U curve), mood state (low mood leads to a loss of efficiency), or age 
(during the development of the young and the degradation of the elderly; Hasher 
& Zacks, 1979; Humphreys & Revelle, 1984; Kahneman, 1973). With the 
 possible exception of arousal, though, these effects would seem to be relatively 
long-term. In most research involving short-term tasks, these factors would be 
stable within participants, hence the assumption of fixed capacity. Performance 
therefore simply depends on demand not exceeding an upper limit.

Fixed capacity models assume that performance remains at ceiling, and 
is data-limited, as long as demands remain within the attentional capacity 
of the operator (Norman & Bobrow, 1975; Stokes et al., 1990). Figure 3.3 

Figure 3.3  Relation between task demands and performance under a fixed capacity model 
(adapted from Stokes et al., 1990). Upper limit of attentional capacity is fixed 
(dashed line), and as task demands (solid line) approach that limit, performance 
(dotted line) degrades.
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represents the textbook approach, in which performance remains constant 
until task demands begin to exceed capacity, when it starts to drop away. But 
this model still does not explain why an excess of capacity at low levels of 
MWL should result in impaired performance.

Under MART, capacity is still finite, so the mechanism of overload at the 
upper end of MWL remains the same. However, the theory posits that the 
size of attentional resource pools may change with short-term  variations in 
demand, ‘calibrating’ to periods of acute underload (cf. Hancock, 2017b) 
and shrinking when MWL reduces in response to the demands of the task. 
In the same way that sports players sometimes seem to raise or lower their 
game according to the ability of the opposition, so too attentional capacity 
fluctuates to match the demands of the task. However, where the sports 
player can voluntarily adjust their level of play if the game turns against 
them, the operator faced with mental underload is unable to exceed their 
reduced capacity limit. They simply cannot invest resources which are 
not there. This is where MART differs from other explanations of men-
tal underload. A maladaptive mobilisation of effort theory (e.g., Desmond 
et al., 1998; Desmond & Hoyes, 1996; Matthews et al., 1996) implies 
that there is some level of voluntary authority over investment of effort 
in performance. MART has no such mechanism – reduced capacity is an 
involuntary and inevitable consequence of reduced demands, so operators 
cannot instantly increase their attentional capacity on demand, even if 
they wanted to. Nevertheless, MART is not entirely incompatible with this 
theory, since effort is related to the supply of attentional resources (Young 
et al., 2015). Furthermore, since MART is an attempt to explain perfor-
mance in underload scenarios, it extends beyond previous explanations 
of human interaction with automation (such as inappropriate feedback 
or out-of-the-loop performance problems). If MWL is low, then perfor-
mance will suffer – irrespective of whether or not the source of underload 
is automation (e.g., Desmond et al., 1998; Matthews & Desmond, 1997; 
Matthews et al., 1996).

As can be seen in Figure 3.4, these ideas neatly predict the inverted-U 
relation between task demands and performance. In effect, the cause of 
underload is the same as that for overload – MART predicts that perfor-
mance is essentially resource-limited for the full range of task demands 
(cf. Norman & Bobrow, 1975). Others have noted that both high and low 
MWL can lead to low levels of attention (Foy & Chapman, 2018), in tacit 
support of MART.

MART therefore helps to explain the underload problem when there is a 
sudden increase in demand, such as an automation failure or abrupt transi-
tion to manual control. Imagine someone driving a highly automated vehicle. 
This is a situation which considerably reduces MWL. Under an attentional 
demand model of MWL as described earlier, this translates to low demand 
on resources. In the absence of any other task-related demands, MART pre-
dicts that the size of the relevant attentional resource pool will temporarily 
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diminish, as it is not required. But that does not matter just yet, because the 
reduced demand is within the reduced capacity of the driver. Now imagine 
that the driving situation has gone outside the design limitations of the auto-
mation, and it needs to hand back control to the driver. The shrinkage of 
attentional resources has momentarily limited the performance ceiling of the 
driver and, as per the standard model, if task demands exceed that ceiling, 
then performance degrades (e.g., through attentional narrowing; Hancock, 
2021). So when the demand on resources suddenly increases (i.e., to takeover 
manual control from automation), the driver is unable to devote the neces-
sary attention to the task, because the resources are simply not available (cf. 
Lee et al., 2020). Had the driver already been under higher MWL and faced 
with a similarly demanding situation, it is likely that they would have coped 
with it more effectively. Thus it is the increase in workload on resuming man-
ual control that can result in the kinds of performance problems observed in 
previous studies, whether the transition is planned (Scallen et al., 1995) or 
unexpected due to automation failure (Desmond et al., 1998; Nilsson, 1995; 
Stanton et al., 1997). Figure 3.5 illustrates this situation, with the bars rep-
resenting the level of MWL and, by the logic of MART, the respective atten-
tional resource level of the operator. The heavy line indicates the level of 
attentional resources a critical event (such as resuming manual control from 
automation) would demand. Crucially, this is within the ordinary capacity of 
the high MWL operator, but beyond that at low MWL. It is for this reason 
that performance in responding to critical situations is predicted to be worse 
in conditions of mental underload.

Figure 3.4  Relation between task demands and performance under the MART model 
(cf. Stokes et al., 1990). Note the ‘inverted-U’ shape of the dotted performance 
curve.
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Of course, there may be other possible reasons for performance problems 
in the face of sudden increases in demand (Matthews et al., 2015). An alter-
native explanation in this scenario is that resources have been reallocated to 
other tasks, rather than reduced. With highly reliable automation, operators 
reduce their monitoring of it and then take advantage of the reduced demand 
by redirecting attention to other tasks (Seppelt & Victor, 2016). But, again, 
this implies some voluntary change of strategy for allocating attention (cf. 
CIEHF, 2020b), whereas MART presumes that there is literally less attention 
available when the operator is underloaded.

Another interesting counterview to MART is the notion of a hysteresis 
effect in performance against demand, whereby performance levels during 
an increase in demand outshine those during the parallel decrease in demand 
(Farrell, 1999). In other words, in a situation when demands first increase 
and then symmetrically decrease, performance at a given demand level will 
be better on the way up than on the way back down. Farrell (1999) draws on 
evidence from air traffic control to support the idea, where more near misses 
were observed after a sustained period of high workload. Consequently, it is 
argued, this is not about capacity limits, but instead may be partly due to the 
operator’s expectancy or their sampling strategy.

Nevertheless, other studies have since given credence to MART in the context 
of human supervision of reliable automation (Bailey & Scerbo, 2007) and as 
a possible consequence of monotonous air traffic control tasks (Straussberger 
et al., 2005). Some have even offered physiological data ostensibly support-
ing MART, relating the supply of attentional resources to cerebral blood flow 

Figure 3.5  Hypothetical correlation of attentional capacity and MWL under MART.
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(Matthews et al., 2010) or autonomic nervous system activity (Ruscio et al., 
2017). In the next section of this book, we put MART to the test in a series of 
empirical studies involving a range of automated driving scenarios. We start 
out by looking for a relationship between MWL and attentional capacity. 
Given we have said that the underload problem occurs with sudden increases 
in workload, this implies there is some temporal factor in the shrinkage and 
recovery of attentional capacity, so we explore that too. The parallels between 
automaticity and automation are investigated by introducing driver skill as 
an independent variable. We then focus in on a particular wrinkle associated 
with the effect of ACC on MWL. Finally, the big question: whether any of 
this actually explains ‘the underload problem’ when automation fails.

KEY POINTS

• Driver mental workload can be affected by numerous factors associated 
with the person, the road or the environment, not least of which is the 
presence of automation.

• Mental workload itself is a multidimensional construct inextricably 
linked with theories of attentional resources.

• Driver skill can interact with both mental workload and automation – 
but automaticity in cognitive processing is not the same as automating 
a task with technology.

• Mental underload associated with automation is known to be detri-
mental to performance; malleable attentional resources theory (MART) 
explains this effect through a shrinkage of attentional capacity.

NOTE

 1. We tend to use ‘resources’ and ‘capacity’ interchangeably in this book.
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Chapter 4

How low is too low?

OVERVIEW

On stage 1 of our journey, we reviewed research that shows driving automation 
significantly reduces mental workload, and that this consequent underload can 
be detrimental to performance. We also hypothesised a link between attentional 
capacity and underload as a mechanism for this effect, which we termed mallea-
ble attentional resources theory (MART). Now we move on to the next major 
stage which takes us through a series of empirical studies to test MART. In 
the first experiment, presented in this chapter, 30 participants drove four auto-
mation conditions (manual, adaptive cruise control, lane centring, and adap-
tive cruise control plus lane centring) in a medium-fidelity driving simulator. 
Measures of driving performance and mental workload (using secondary task 
and subjective techniques) were recorded, along with direction of attentional 
gaze to infer attentional capacity. The results provided support for MART in 
that, as mental workload decreased with automation, so too did the inferred 
metric of attentional capacity. Further analysis demonstrated that such shrink-
age occurred relatively quickly, within the first minute of being underloaded. 
The results are discussed with reference to potential ‘redlines’ of underload and 
directions for future research, which form the topic of subsequent chapters.

INTRODUCTION

In Chapter 1, we argued that the latest generation of automation in vehicles 
has the potential to relieve drivers of psychological as well as physical ele-
ments of the driving task. Chapters 2 and 3 reviewed the various impacts of 
such automation, focusing in on mental workload (MWL) and, in particular, 
the effect of underload on performance. We presented MART as an explana-
tion for the underload effect, by positing a shrinkage of attentional capacity 
in response to excessively low MWL.

In this chapter, we revisit one of our first empirical studies (Young & Stanton, 
2002b) to investigate the predictions of MART by examining the effects 
of different automation conditions on MWL, attention and performance. 

http://doi.org/10.1201/9781003374084-6
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In particular, we were interested in testing adaptive cruise control (ACC) and 
lane centring (LC) systems (see Chapter 1 for more on these systems). At the 
time we conducted these studies, ACC had been available for a few years, and 
most of the extant research on automated vehicles had focused on ACC (e.g., 
Nilsson, 1995; Stanton et al., 1997; Ward et al., 1995). We extended that to 
also consider a rudimentary LC system, which was relatively new (and was 
then referred to as active steering). Part of the reason for researching these 
systems is that with both engaged, the vehicle control elements of driving 
are essentially fully automated, albeit with no object or event detection other 
than that provided from the ACC system. By today’s standards, using the 
SAE (2018) terminology, engaging ACC or LC alone would constitute Level 1 
automation, while the combined ACC+LC condition represents Level 2 auto-
mation (according to Mueller et al., 2021). To complete the picture, we also 
included manual (Level 0) driving. We expected MWL would decrease as 
more levels of automation were introduced, and that such reductions might 
be associated with decrements in attentional capacity.

As well as attempting to find evidence for attentional shrinkage per se, we 
were also interested in establishing the precise nature of any resource degrada-
tion over time, so that we might be able to predict exactly when performance 
may begin to suffer. If we can continuously plot attentional resources against 
time, we can analyse just how quickly capacity shrinks. In the present chapter, 
then, we also summarise the work we later published (Young & Stanton, 2006b) 
to derive a time-decay curve across the duration of the experimental trial.

GENERAL METHODOLOGY

The series of experiments presented in this and the following three chap-
ters all used the same underlying methodology. So, while the specifics of the 
design for each study will still be explained in each chapter, here we present 
the generic aspects of the method so as to avoid repetition.

Each experiment was designed to investigate aspects of MART in driving, 
looking at the potential effects of automation on driver mental workload and 
consequent performance. For the most part, the main independent variable 
was the automation condition as a within-subjects factor with four levels: 
the three combinations of system described above (ACC, LC, and ACC+LC), 
as well as a manual driving condition. In general, the manual condition was 
used as the reference category because it served as a conceptual baseline, as 
advocated by Young & Stanton (2002b). Since this programme of research 
was primarily concerned with performance differences when using automa-
tion, it was more sensible to compare (say) longitudinal control in the manual 
condition with that in the LC condition. This allowed comparison of human 
performance under fully manual and partially automated conditions.

We carried out the research in a driving simulator in our laboratory at the 
University of Southampton: the Southampton Driving Simulator (SDS; see 
Box 4.1). A simulated environment was chosen for several reasons. Firstly, 



How low is too low? 83

BOX 4.1 THE SOUTHAMPTON DRIVING SIMULATOR (SDS)

By the standards of the time, the SDS was a medium-fidelity, fixed-base driving 
simulator consisting of the front half of a Ford Orion (see Figure 4.1). The steer-
ing wheel, accelerator, and brake pedal produced analogue voltages. Appropriate 
hardware read these voltages and converted them into digital signals to be fed 
into the simulation computer. An Acorn Archimedes computer fitted with an 
analogue I/O card read the controls, ran the simulation, and generated the dis-
play image. A medium-resolution colour monitor displayed a view of the road 
and a simulated instrument panel on a forward projection screen. The area 
of the screen occupied by the road view was approximately 2 metres wide 
by 1.1 metres tall, and approximately 2.9 metres from the participant’s eyes, 
providing a visual angle at the driver’s eyepoint of approximately 40 degrees 
horizontal by 20 degrees vertical. The refresh rate was 25 frames per second.

The display showed: a single-carriageway road, in solid colour with a central 
broken white line; other traffic in both directions; and simple roadside objects 
such as speed limit signs. Collisions with other vehicles or the edge of the road 
were detected and led to simulated crashes. Other vehicles followed a fixed 
path with scripted speed changes.

The automated systems in the simulator were simplified versions of those 
which are now commonplace on the roads. The ACC system was operated via 
a button on the instrument panel, and was designed to engage at the current 
driving speed (i.e., if the participant was driving at 70 mph (113 km/h) when the 
button was pressed, the system maintained 70 mph). It was not possible to adjust 
the set speed without disengaging the system. Furthermore, headway control 
was set by the system at approximately 2 seconds time headway, and was not 
adjustable by the user. For lateral control, LC was simply designed to maintain 
the position of the user’s vehicle in the exact centre of the left-hand driving lane 
(bearing in mind this study was conducted in the UK, where the road rules are to 
drive on the left), and was also engaged via a pushbutton on the dashboard. Both 

Figure 4.1  The Southampton driving simulator (SDS).
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there are the classic advantages of laboratory research (Sanders, 1991), in 
that carefully controlled experimental studies can be conducted. In a real  
road environment, there is a wealth of uncontrollable factors (weather, traf-
fic density, road conditions) which can affect performance, so any significant 
results may not be attributable to the experimental manipulations. Simulator 
trials, on the other hand, can be repeated time and time again safe in the 
knowledge that there are no changes in task conditions. Furthermore, partici-
pants can encounter risky situations in the simulator which would be ethically 
unsound to create in the real world (e.g., the participants can crash without 
any danger to their health or safety). Finally, one compelling practical argu-
ment favoured the use of a driving simulator. At the time these studies began, 
the automation devices had not been fully developed, and were not available 
for road trials.

Driving performance data

The simulator software recorded data at a rate of 2 Hz on the following vari-
ables: speed, lateral position on the road, distance from the vehicle in front, 
distance from oncoming vehicle, steering wheel and pedal positions, and col-
lisions. The simulator software recorded collisions if a participant hit another 
vehicle, or if the subject vehicle drifted more than 2 metres from the edge of 
the road.

For the purposes of this research the dependent variables considered to be 
most relevant to driving performance were speed, lateral position, and dis-
tance headway. Various derivatives of these measures have been previously 
used in studies of driving performance (e.g., Bloomfield & Carroll, 1996; 
Fairclough, 1997; Verwey & Veltman, 1996; Wierwille & Gutmann, 1978), 
which can be divided into measures of longitudinal and lateral control.

Longitudinal control measures involve speed and headway. However, 
simple measures of location (i.e., mean, median) do not necessarily provide 
evaluative information about how well participants are performing. Given 
the instructions to participants (maintain constant speed and headway), it 
would be logical to adopt a measure of consistency (or rather, inconsistency) 
for these variables. Bloomfield & Carroll (1996) described such a measure, 
in their derivation of instability, being the standard error of the regression 
line for a series of data points on the relevant variable, which represents the 
driver’s ability to maintain stability in the measure. This is a better measure 

systems could be disengaged either by a repeat press of the relevant button, or 
by some manual control input (i.e., pressing a pedal would disengage ACC, turn-
ing the steering wheel would disengage LC). There was no physical movement 
of pedals or steering wheel by the automated systems when they were engaged. 
The simulator was set up to run with automatic transmission at all times.
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of driving performance than standard deviation, as it reflects the drivers’ 
(in)consistency in their own performance, rather than deviation from an 
absolute measure. The sampling rate of the SDS allowed such equations to be 
calculated for the 1200 data points (across a 10-minute trial) on each of the 
speed and headway variables.

For lateral control, we considered that instability measures would not be an 
appropriate reflection of driving performance on a road which involved both 
curved and straight sections. Popular measures of lateral control (such as stan-
dard deviation of lane position or time-to-line-crossing) assume that ‘good’ 
driving performance is characterised by the vehicle remaining consistently in 
the centre of the lane. These measures would be confounded if participants 
used modern driving techniques to negotiate the curves on the road, which 
advise drivers to approach a bend as far to the outside of the curve as is safe 
to do so, in order to obtain maximum vision around the curve. The driver 
should then cut across the apex, and exit on the inside of the curve. Good 
driving is therefore not necessarily characterised by maintaining a constant 
lane position, and the instability score described above would be inflated by 
an advanced driving style. Instead, then, simple measures of lane excursions 
were used to evaluate lateral control, with the assumption then being that good 
driving performance is rewarded with fewer lane excursions. Total number of 
lane excursions, and time spent out of lane, were the dependent variables for 
lateral control. All of the driving performance measures were filtered for outli-
ers and extreme values (i.e., any values outside two standard deviations from 
the mean), and these data points were removed prior to analysis.

Average lane position, speed, and headway across the trials were also 
recorded and analysed as a matter of course, to determine any differences in 
the location of these variables. The simulator recorded lane position in terms 
of deflection from the centre of the road, measured at the centre of the vehicle. 
Therefore, with the full road width set at 10 metres (i.e., two lanes of 5 metres 
each), a value of 0.0 means the participant is driving on the central white line, 
in the middle of the road. A value of -5.0 puts the participant over the left 
kerb, and consequently a lane position of -2.5 means the participant is driving 
in the middle of the left-hand lane.

Mental workload data

Given our discussion in the previous chapter of mental workload as a multidi-
mensional construct, there is an equally diverse range of techniques available 
to measure MWL (for concise summaries, see Hancock et al., 2021; Young 
et al., 2015). In keeping with advice in applied research to use a battery of 
measures to assess different aspects of workload (Foy & Chapman, 2018; 
Gopher & Kimchi, 1989; Hancock & Matthews, 2019; Hockey et al., 1989; 
Matthews et al., 2015), we used three of the main categories of metric in our 
studies: primary task performance, secondary task performance, and subjec-
tive ratings.
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Performance measures on primary and secondary tasks are widely used 
in workload assessment and it makes sense to use them in conjunction with 
each other. The basic premise is that a task with higher workload will be 
more difficult, resulting in degraded performance on that task compared to a 
low workload task. Of course, though, based on a capacity model of MWL 
(cf. Young & Stanton, 2001a), an increase in difficulty (workload) may not 
affect performance if the increase is still within the capacity of the opera-
tor. Thus an additional, secondary task, designed to compete for the same 
resources as the primary task, can be used as a measure of spare attentional 
capacity. According to our definition of MWL proposed in Chapter 3, the 
level of MWL in a task can be directly inferred from measures of attentional 
capacity. The level of secondary task performance represents the capacity 
remaining from the driving demands – thus increases in secondary task per-
formance (i.e., more spare capacity) imply decreases in primary task demands 
(Pew, 1979), and vice-versa. In other words, differences in workload between 
primary tasks are reflected in performance on the secondary task. In the sec-
ondary task technique, then, participants are instructed to maintain consis-
tent performance on the primary task, and to attempt the secondary task 
only when the primary task demands allow them to, so as to maintain that 
measure of spare capacity.

The secondary task is entirely appropriate for this kind of study, since it is 
useful for quantifying short periods of workload (Verwey & Veltman, 1996), 
spare attentional capacity (Wierwille & Gutmann, 1978), and even auto-
maticity (Liu & Wickens, 1994) and individual differences (Brown, 1978). 
Secondary task measures have also been used to discriminate MWL levels 
across varying driving demands (Harms, 1991; Verwey & Veltman, 1996). 
Notwithstanding these benefits, we need to be aware that the secondary task 
can also be intrusive, particularly at low levels of primary task workload, 
affecting both primary task performance and subjective ratings of MWL 
(Wierwille & Gutmann, 1978; Young & Stanton, 2007b).

We have already described above the primary (driving) task performance 
measures used in these studies. As for the secondary task, this was a self-
paced mental rotation task (as used by Baber, 1991, and proved by Stanton 
et al., 1997, in the SDS), presented in the lower left corner of the screen 
(see Figure 4.2). Each stimulus was a pair of stick figures (one upright; the 
other rotated through 0°, 90°, 180°, or 270°) holding one or two flags. 
The flags were simple geometric shapes, either squares or diamonds. The 
task was to make a judgement as to whether the figures were the same or 
different, based on the flags they were holding. Each stimulus was discrete 
and remained on screen until the participant made a response. Responses 
were made via buttons attached to the steering column stalks, and brief 
visual feedback was provided before presentation of the next stimulus. As 
per the underpinning premise of the secondary task technique as described 
above, participants were instructed to maintain their performance on the 
driving task and attend to the secondary task only when they had time 
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to do so. The dependent variable associated with the secondary task was 
number of correct responses. Since the secondary task was self-paced and 
participants only attended to it when the driving task allowed, response 
time was not used as a dependent variable since it did not provide meaning-
ful information.

The secondary task was visuospatial, requiring a manual response, and, as 
such, was intended to draw on the same attentional resource pools as driv-
ing (cf. Brown, 1978; Wickens, 1992). This ensured that the task was indeed 
a measure of spare mental capacity (based on multiple resources theory), 
and not some alternative cognitive resource. Driving is a primarily visuo-
spatial task (e.g., Kramer & Rohr, 1982; Wickens et al., 1998), while the 
rotated figures task is assumed to be a spatial secondary task (Baber, 1991). 
Furthermore, research has shown that drivers will prioritise driving over a 
visuospatial secondary task (Robbins et al., 2021). Therefore, the use of the 
rotated figures task as a secondary task to measure spare attentional capacity 
in the driving domain appears to be justified.

Alongside the primary and secondary task performance measures, we also 
used subjective ratings of MWL. Many authors claim that these may well 
be the only index of ‘true’ MWL (e.g., Hart & Staveland, 1988). In particu-
lar, subjective MWL scores are sensitive to the presence of automation where 
other measures of MWL may not be (Evans & Fendley, 2017; Liu & Wickens, 
1994). Criticisms of subjective techniques are primarily concerned with the 
metacognitive abilities of the operator (Petrusic & Cloutier, 1992; Praetorius 
& Duncan, 1988). That is, given the fact that the measures are necessarily 
administered post-task, one might question their reliability, particularly for 
long task durations.

Figure 4.2  Screenshot of the simulator display showing the secondary task in the lower-
left corner of the screen, alongside a schematic close-up of the secondary task 
stimulus (in this case, the figures are different).
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There is a wide selection of subjective rating scales available in the liter-
ature (e.g., the Cooper-Harper Scale, Cooper & Harper, 1969; Subjective 
Workload Assessment Technique – SWAT, Reid & Nygren, 1988); we used 
the NASA-Task Load Index (TLX; Hart & Staveland, 1988) in our stud-
ies. The TLX is one of the most widely used and widely respected subjective 
MWL techniques (Hart, 2006), and was selected over other measures for a 
number of reasons (Young et al., 2015). Firstly, a multidimensional technique 
was preferred over unidimensional measures to provide some diagnosticity 
for the components of MWL which characterised the experimental task. For 
instance, Warm et al. (1996) discovered a MWL signature for vigilance tasks 
using the subscales of the TLX. This kind of discovery would not be possible 
with a simple measure of overall workload (OWL). Of the multidimensional 
measures, TLX and SWAT were the most widely used (e.g., Hendy et al., 
1993). We settled on the TLX because it was more acceptable to participants, 
thus increasing the likelihood of genuine responses (Hill et al., 1992), as 
well as being more sensitive to MWL differences than SWAT, particularly at 
low workload levels (Nygren, 1991). Hart & Staveland (1988) claimed their 
procedure is practically and statistically superior to SWAT; the independent 
components of TLX provide additional diagnostic information unavailable 
in SWAT. Finally, and most importantly, the TLX is far easier to administer 
than other multidimensional scales. This is particularly true in the light of 
research suggesting that the weighting procedure of TLX is superfluous and 
may be omitted without compromising the measure (Hendy et al., 1993; Hill 
et al., 1992; Nygren, 1991). Thus, the modified ‘raw TLX’, as described by 
Hendy et al. (1993), was used in these studies.

The subscales of the TLX are: Mental Demand (MD), Physical Demand (PD), 
Temporal Demand (TD), Own Performance (PE), Effort (EF), and Frustration 
(FR). Each dimension was rated on a visual analogue scale, with five-point 
steps between 0 and 100. Participants were given definitions of the rating scales 
to assist them in making their assessments. As the purpose of the subjective 
ratings was to determine differences in perceived MWL between the automa-
tion conditions, participants were instructed to only rate the primary driving 
task, not the combined primary and secondary task demands. The dependent 
variables were simply the raw scores from each of the six subscales, and the 
arithmetic mean of these scores, which constitutes OWL. The OWL scores 
were of most interest in these studies; however, the subscales were also analysed 
to diagnose the nature of subjective MWL under these task conditions.

Finally, and for completeness as part of the present review, physiological 
measures (such as heart rate/heart rate variability, EEG, or brain oxygen-
ation; see Young et al., 2015, for more detail) offer advantages such as con-
tinuous monitoring of data, greater sensitivity, and that they do not interfere 
with primary task performance (Brookhuis, 1993; Fairclough, 1993). Whilst 
many physiological measures have been reliably associated with mental effort 
(e.g., Foy & Chapman, 2018; Helander, 1978; Matthews et al., 2015), there 
are also a number of disadvantages involved with these methods. First, these 
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measures are confounded easily, as they tend to be hypersensitive to extrane-
ous noise from sources such as muscle movements, and the rhythmic nature of 
circadian activity in the central and autonomic nervous systems. Also, there is 
a certain amount of physical obtrusiveness involved in using such bulky equip-
ment (Sanders & McCormick, 1993). Therefore, it is generally recommended 
that physiological measures are only applied if they are unobtrusive and reli-
able (Fairclough, 1993), and in conjunction with other measures of workload 
(e.g., Backs & Walrath, 1992). Considering these downsides, in particular the 
practical difficulties of collecting and analysing such data, for the most part 
we did not use physiological measures of MWL in this research. The excep-
tion, with its own justification, was one study presented in Chapter 7, and the 
details of the measurement used can be found in that chapter.

Attention data

To test the predictions of MART, a quantifiable measure of attentional capac-
ity was needed, but this had proved (and remains) difficult to achieve (Huey 
& Wickens, 1993; Wickens et al., 2015). Typical methods used static recall 
(e.g., Engle, 2002; Weber, 1988), which essentially measures working memory 
capacity, whereas we needed a continuous measure of total attentional capac-
ity to determine whether resources shrink as a result of mental underload.

We derived a measure of ‘attention ratio’ as a proxy for attentional capac-
ity (Young & Stanton, 2002a; 2002b). The attention ratio exploited the fact 
that we were using a secondary task to measure MWL, and is based on the 
premise that the primary and secondary tasks together occupy the partici-
pant’s total pool of resources. That is, if it is possible to combine primary 
and secondary task performance in an additive manner, they should always 
equal some unitary constant under a fixed resources model. The attention 
ratio attempts to tap that constant by recording two aspects of spare capacity: 
number of correct responses and time on task (cf. Grimes, 1991; Pew, 1979). 
We simply combined these measures into a ratio (Figure 4.3) reflecting the 
number of correct responses on the secondary task against the total duration 
of glances towards the secondary task (a measure which can vary indepen-
dently from secondary task responses themselves). This analysis does assume 
that attention and eye movements are related, but other research suggests 

AR = STcr Where AR = Attention Ratio
STt ST = Secondary Task

cr = correct responses
t = time

Figure 4.3  Derivation of attention ratio used to infer attentional resource capacity: num-
ber of correct responses on the secondary task is divided by total duration of 
glances directed at that task.
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that this is not an unreasonable assumption (Kahneman, 1973; Underwood 
& Everatt, 1996). To collect the data for glance duration, direction of visual 
gaze was recorded using an on-board low-light miniature camera, and time 
spent looking at the secondary task was later coded by video analysis.

The null hypothesis, then, expects no differences in attention ratio between 
workload (automation) conditions. In other words, under a fixed capacity 
model of attention the proportion of attention devoted the secondary task 
should correlate directly and positively with the number of correct responses. 
If, however, resources fluctuate with MWL (as predicted by MART), then 
any increase in attention on the secondary task will not be proportionate 
to the increase in correct responses on it, and the pattern of attention ratio 
scores should reflect the pattern of MWL results. Consistent with this predic-
tion, some studies have found longer visual fixation durations in lower MWL 
conditions, and vice-versa (Evans & Fendley, 2017; Foy & Chapman, 2018).

To illustrate the point, if participants direct twice as much attention to the 
secondary task in one condition compared to another (i.e., when objective 
demand is lower, and spare capacity is higher), under a fixed capacity model 
they should also be able to make twice as many correct responses. Any less, 
and it could indicate that their capacity had shrunk, providing evidence in 
favour of MART.

It is important to remember that the attention ratio is not being used 
as a measure of MWL, but of overall capacity. The rationale is based on 
the assumption that participants allocate the sum total of their attentional 
resources between the primary (driving) and secondary tasks. This total 
will be invariant under a fixed capacity model, regardless of primary task 
workload. Figure 4.4 presents this hypothetically, showing how a low MWL 

Figure 4.4  Hypothetical representation showing relative attentional demands of primary 
and secondary tasks under a fixed capacity model.
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primary task that demands less attention releases more spare capacity (and, 
by association, more time) to devote to the secondary task (cf. Schlegel, 1993). 
In this case, the low MWL primary task draws on approximately a quarter of 
the resources of the high MWL task. Crucially, though, the height of the two 
stacked bars remains constant, so the total resources has not changed.

If the attention ratio decreases, either due to fewer correct responses or 
increased time on task, this is seen as evidence of resource shrinkage. Under 
MART, the pattern of attention ratio scores should reflect the pattern of 
MWL results, indicating a reduction in total attentional capacity associated 
with reductions in MWL. Thus, whilst secondary task responses can still 
increase (indicating lower primary task workload), the proportional increase 
in spare capacity may not equate to ‘full’ capacity. Figure 4.5 illustrates how 
spare capacity (i.e., secondary task performance) increases when primary 
task demands are low, but the total capacity (represented by the height of the 
stacked bar) has shrunk overall.

METHOD – THE PRESENT STUDY

Design

For this study in particular, then, a within-subjects design was used, with 
30 participants, all of whom held full UK driving licences. The independent 
variable was automation condition, with four levels: manual (the participant 
controls speed, headway, and steering), ACC (longitudinal control is auto-
mated), LC (lateral control is automated), and ACC+LC (both longitudinal and 

Figure 4.5  Hypothetical representation showing relative attentional demands of primary 
and secondary tasks under MART.
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lateral control are automated). Order of presentation of these conditions was 
randomised to counterbalance practice effects. Dependent variables included 
the primary task performance measures of longitudinal and lateral control, sec-
ondary task and subjective (NASA-TLX) measures of MWL, and the attention 
ratio metric to evaluate MART, as described earlier. In order to plot the atten-
tion ratio curve over time, the data were divided into 10 one-minute blocks.

The design of this experiment served – to a certain extent – to rule out com-
peting explanations for any underload effect observed. By monitoring perfor-
mance on both primary and secondary tasks, it will be possible to determine 
whether boredom or motivation have influenced the results. If so, there should 
be a general decline in performance across both tasks. On the other hand, 
MART would predict a specific shrinkage in capacity (as inferred from the 
secondary task) while primary task performance is maintained at a constant 
level. The counterbalanced presentation of conditions also helps to reduce the 
influence of fatigue across the duration of the study. Finally, given the low lev-
els of physical interaction with the simulator in all conditions, it was assumed 
that physiological arousal would be roughly constant throughout.

Procedure

After entering the SDS, participants were first given a minimum 15-minute 
practice run to acclimatise to the conditions of driving a simulated vehicle. 
Following this, experimental instructions were given, including advice on how 
to operate the automated devices and how to respond to the secondary task. To 
check that the participants had understood the nature of the secondary task, 
three example stimuli were presented prior to the experimental trials beginning. 
Once participants were sufficiently familiar with the operation of the simulator, 
the experimental trials would begin, each of which lasted 10 minutes.

In all of the experimental conditions, participants were faced with a single-
carriageway road which was a mixture of curved and straight sections. The 
track was quite simple, with no hills or wind gusts to disturb longitudinal 
or lateral control. The experimental task used a ‘follow-that-car’ paradigm 
to standardise non-manipulated demand across the independent variables. 
Participants were instructed to first catch up and then follow a leading vehicle, 
which was travelling at a constant 70 mph (113 km/h) (cf. Stanton et al., 1997), 
for the duration of the trial. There were no other vehicles in the participants’ 
lane (so no overtaking was necessary), although oncoming traffic was encoun-
tered infrequently, encouraging participants to remain in their own lane. In 
the automation conditions, participants engaged the equipment themselves by 
means of a button on the instrument panel when they had achieved a constant 
speed (this was not necessarily when they had caught up with the lead vehicle). 
Participants were required to maintain a constant distance from the lead vehi-
cle, although the choice of that distance was left to the individual. There were 
a number of advantages to this approach. Firstly, it meant that participants did 
not have to disengage the automatic devices (for instance, in order to overtake), 
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thus avoiding contamination of conditions. Secondly, following a car motivated 
participants to drive at a relatively constant speed, thereby controlling objec-
tive demand across conditions. Otherwise, participants may have compensated 
for increased workload by reducing speed, which again would contaminate 
results. Finally, a constant speed implied that participants all drove approxi-
mately equal distances, again controlling for workload and attention differ-
ences which may otherwise have been incurred. While driving, participants 
were expected to attend to the secondary task only when they felt able to do so 
(this instruction was emphasised to participants in order to minimise secondary 
task interference). At the end of each 10-minute trial, participants completed 
the NASA-TLX. The whole procedure lasted approximately 75 minutes.

RESULTS

Driving performance data

To avoid confusion, in this section we focus mainly on the results where sig-
nificant differences were observed; descriptive statistics for these variables are 
presented in Table 4.1. Predictably, using LC improved lateral control, with a 
significant reduction in both number of lane excursions as well as time spent 
out of lane in both the LC and ACC+LC conditions. Leaving aside the fact that
automation controls steering more accurately than a human driver, the more 
interesting comparison for lateral control is between the manual and ACC 
conditions – because steering is controlled manually in both, while another 
element of the driving task (i.e., longitudinal control) has been relieved from 
the driver. However, there were no significant differences in either of the lat-
eral control measures between these two conditions.

For longitudinal control, when compared to manual driving speed instabil-
ity significantly reduced (i.e., performance was better) in the ACC+LC con-
dition, with a non-significant tendency towards lower instability in the LC 
condition as well.

Mental workload data

As a reminder, an increase in the number of correct responses on the secondary 
task implies more spare attentional capacity, or lower MWL. Analysis of these 
data showed a significant increase in mean number of correct responses in the 

Table 4.1 Descriptive statistics for driving performance variables

Manual ACC LC ACC+LC

Number of lane excursions 42.0 39.7 1.04 1.61
Time spent out of lane (s) 111.1 101.7 2.68 4.69
Speed instability (mph) 10.2 9.17 8.92 7.13
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LC condition, and a further significant increase in the ACC+LC condition; 
there was no difference between manual and ACC conditions (see Figure 4.6).

Subjective workload, as measured by the OWL score on the NASA-TLX, 
presented a very similar picture to the secondary task data. Again, whilst 
there was no difference between manual and ACC conditions, workload 
significantly reduced with LC, and reduced even further with ACC+LC 
(Figure 4.7).

Attention ratio data

The attention ratio is derived from the secondary task score and the amount 
of visual attention directed at the secondary task. The latter is gathered from 
the video data, which could not be analysed for all participants as in some 
cases the video recording was not clear enough to reliably code the eye move-
ments (e.g., due to the participant wearing glasses). Therefore, the attention 
ratio analysis was performed on a subset of 20 participants. Suffice it to say, 
the pattern of secondary task responses in this subset mirrored that of the 
main sample, as presented above.

The effect of automation on the attention ratio reflected the secondary task, 
with no difference between the manual and ACC conditions, but significant 
reductions in attention ratio in the LC condition and again in the ACC+LC 
condition (see Figure 4.8).

Figure 4.6  Secondary task scores in each condition. Higher score implies more spare atten-
tional capacity, and thus lower MWL.
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Figure 4.7  Mean overall workload (OWL) score on NASA-TLX across automation condi-

Figure 4.8  Attention ratio score in each condition. Lower score implies smaller attentional 

tions (high score indicates high workload).

resource capacity.
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Now, to determine the temporal decay of resources, we first needed to 
establish the pattern of MWL over time. For the present purposes, we have 
restricted the timeline analysis to the ACC+AS level of automation, as this
condition represented the lowest level of workload, and hence the greatest 
amount of resource decay. Figure 4.9a shows the pattern of secondary task 
responses across the duration of the trial (remember that the secondary task 
score is a measure of spare capacity, and thus a higher score implies a lower 
level of workload on the primary task). A visual inspection of the curve sug-
gests that mental workload gradually decreases until around the fourth minute 

Figures 4.9a and 4.9b  Timeline plots of secondary task responses and attention ratio scores 
for the underload condition. 
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of the trial, when it stabilises for the rest of the drive. Statistically speaking, 
though, when compared to the first minute of the trial as a baseline, workload 
actually reduces significantly straight away in the second minute of the trial.

Turning to the timeline plot of the attention ratio data (Figure 4.9b), again 
we see that resource capacity mirrored mental workload in this condition. 
Indeed, the effects on capacity appear even more dramatic than those for 
workload, with the graph displaying an immediate drop in capacity after the 
first minute before stabilising for the duration of the trial, which was again 
statistically significant. The attention ratio scores when underloaded appear 
to be around one-quarter of that in the baseline section. In other words, par-
ticipants are spending four times as long per response as they would do when 
under normal conditions.

DISCUSSION

Implications: mental workload and performance

The results of this study (Young & Stanton, 2002b) indicated that automa-
tion does indeed have a significant effect on driver MWL (both subjective and 
objective), although the specifics of this effect depend on the level of auto-
mation. Apparently, LC has a far greater influence on workload than ACC, 
despite both ostensibly being Level 1 automation systems, while MWL is low-
est when both systems are engaged together (i.e., Level 2 automation). Whilst 
not all research had observed such reductions in MWL (e.g., Desmond et al., 
1998, found that the combination of lateral and longitudinal automation did 
not affect subjective MWL), our results are consistent with other studies that 
found similar systems did reduce both subjective (de Waard et al., 1999; de 
Winter et al., 2014) and objective (Carsten et al., 2012; de Winter et al., 2014) 
metrics of workload. In particular, Carsten et al. (2012) used a similar set of 
automation conditions as Young & Stanton (2002b), but drivers were free to 
either pay attention to the roadway or engage with a range of in-vehicle non-
driving tasks. Unsurprisingly, with increasing support from the automation, 
drivers diverted more attention to these secondary tasks. Just as in the present 
study, automated lateral control had a bigger effect on drivers’ allocation of 
attention and their effort (as measured by heart rate) than automating longi-
tudinal control.

It should not be surprising that automated steering has a greater effect on 
MWL than automated longitudinal control. Controlling speed and headway 
is a first-order tracking task governed by feedback, whereas lateral control is 
a feed-forward, second-order tracking task (that is, involving accelerations 
rather than velocities; Carsten et al., 2012; Wickens et al., 1998). Since track-
ing difficulty increases with control order, it makes sense that LC should 
relieve MWL to a greater extent than ACC.

In general, the results of this experiment suggested that there are no adverse 
consequences of reductions in MWL for performance. Whilst automated 
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lateral control reduced MWL as measured by the secondary task, this did not 
have any significant effect on speed and headway maintenance (the remain-
ing manual subtask in the LC condition). On the face of it, this might seem 
to mitigate against any concerns of underload, as we may have expected a 
decline in performance particularly in the LC condition. However, compa-
rable studies of that era addressing similar questions (e.g., Desmond et al., 
1998; de Waard et al., 1999; Nilsson, 1995; Stanton et al., 1997) observed 
performance problems in critical driving scenarios (e.g., automation failure) 
rather than ‘normal’ driving as in the present study. The fact that reduced 
MWL did not affect performance may have been due to the fact attentional 
resources were shrinking to match task demands, as MART predicts.

Implications: malleable attentional resources theory

The attention ratio results are striking, being directly correlated with the 
secondary task data across the four automation conditions. It appears that, 
when MWL decreases, the allocation of attention to the secondary task 
becomes  less efficient. This could either represent shrinkage of attentional 
resources (as predicted by MART), or simply a change in strategy by the 
participants –  perhaps reflecting a speed-accuracy trade-off. However, an 
analysis of secondary task error rates found that the percentage of correct 
responses remained stable in all four conditions, so it is unlikely that such a 
strategic change in allocation of attention was occurring. Therefore, MART 
seems to be the most likely explanation for these data. This finding was pos-
sibly the single most important result to emerge from the experiment, provid-
ing the first piece of evidence in favour of MART. The fact that participants’ 
responses on the secondary task did not vary consistently with the amount of 
attention they were directing to the task suggested that the size of the resource 
pool can change. On the basis of MART, it was expected that the attention 
ratio score would decrease in line with the MWL data from the secondary 
task. This prediction was directly upheld by the observed data, providing 
strong evidence for an association between task demands and attentional 
resource capacity.

These are very encouraging results for MART. Further support is provided 
by the primary task performance data, as these reductions in demand are 
not accompanied by changes in driving performance. It could be argued that 
these results are due to different attention allocation strategies, or a quali-
tative change in the driving task (from active operator to passive monitor), 
allowing more time to be devoted to the secondary task in the light of a per-
ceived reduction in driving demands. If participants’ allocation policies were 
inappropriate to the relative task demands though, either a decrement in driv-
ing performance or an improvement in secondary task performance should 
be observed. This was not the case: driving performance remained constant 
regardless of attention ratio score, and no improvement in secondary task 
error rate was observed. Therefore, all attention devoted to the secondary 
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task really did represent spare capacity. Furthermore, the fact that driving 
performance did not improve with reductions in task demands implies that 
all spare capacity was allocated to the secondary task. It is reasonably safe to 
assume, then, that the sum of primary and secondary task demands reflected 
the total attentional capacity of the driver. Given this assumption, and the fact 
that increases in secondary task scores were not proportional to increases in 
visual attention, it is logical to conclude that attentional capacity had shrunk.

The study also gave us an insight into how attentional capacity responds 
to underload, by delineating the temporal nature of MART-related resource 
decay. By analysing the attention ratio score within a proven underload 
 condition, we demonstrated that presumed resource capacity appears to 
shrink directly in line with reductions in mental workload. Moreover, to all 
intents and purposes, this shrinkage appears to be virtually instantaneous, 
occurring within the first minute of the trial.

That resource decay occurs so quickly was surprising, to say the least, as it 
was anticipated that there may be some lag as attentional capacity adapts to 
the task demands (cf. Young et al., 2015). Nonetheless, the results provided 
further clarification of the mechanism by which MART explains the relation-
ship between underload and performance.

The obvious next step would be to look at the recovery curve for atten-
tional resources following a post-underload return to ‘normal’ MWL. That 
was the aim of a separate study by Young & Clynick (2005), which followed 
the model of Young & Stanton (2002b) but also broke new ground for MART 
by taking it outside the driving domain as well as looking to test it in a non-
automation scenario. Using a medium-fidelity fixed-base flight simulator at 
the University of New South Wales, a small sample of student pilots faced 
a flying task with two conditions: one at a high level of demand (induced by 
continually adjusting altitude to a changing target), the other at low demand 
(flying at constant altitude). These conditions aimed to represent normal 
MWL and underload, but in this case with no automation involved. After 
10 minutes, a critical event was instigated by the introduction of a stiff cross-
wind, which gradually pushed the aircraft off track and required the pilot 
to make correctional inputs in order to maintain their heading. Following 
the critical event, participants flew for another 10 minutes, but this time at 
normal workload in both conditions. The same secondary task was used to 
measure MWL, while participants’ direction of attentional gaze was recorded 
using a video camera to calculate attention ratio as before, with the analysis 
divided into one-minute segments across the full 20 minutes of each trial.

Disappointingly, however, the MWL manipulation appeared to be unsuc-
cessful for Young & Clynick (2005), as there were no substantive differ-
ences in responses to the critical event, MWL or attentional capacity (as 
inferred by the attention ratio) across the conditions. There was something 
of an increase in MWL around the midpoint in both conditions, associated 
with the critical event, while the attention ratio also appeared to peak at the 
same time, potentially indicating that capacity can recover as quickly as it 
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decays. However, this peak in attention ratio turned out to be statistically 
non-significant. Otherwise, the attention ratio was fairly flat throughout 
both conditions, negating the effort to track decay and recovery of resources. 
Young & Clynick (2005) wrote these results off to the experimental design, 
concluding that the two conditions were not sufficiently far apart (or just in 
the wrong places) on the inverted-U performance curve (refer back to the 
numbered points on Figure 3.2 in Chapter 3, which illustrate how tasks can 
differ in MWL without venturing into the underload region). However, they 
also considered whether the lack of an effect might also have been due either 
to differences in the nature of the flying task compared to driving (given that 
pilots are trained to continuously visually scan the instruments and the out-
side world, which could have served to maintain their attention and, hence, 
their workload) or, even, the possibility that MART might not be applicable 
in a non-automated scenario.

A related study by Merat et al. (2012) raised an alternative possibility. They 
compared responses to a critical scenario in manual and highly automated 
driving with explicit reference to MART, in terms of the transition from rela-
tively low to unexpectedly high workload. However, in their study, the pres-
ence or absence of a secondary task (in this case, a twenty questions game 
designed to be analogous to a telephone conversation) was manipulated as an 
independent variable, to determine its effect on performance. Interestingly, 
the worst performance in response to the critical event was in the automated 
condition with the secondary task – after a period of underload with the 
automation, drivers’ attentional resources had been distracted from the driv-
ing task. Without the secondary task, drivers were equally capable of dealing 
with the critical scenario whether in manual or automated conditions. The 
implication is that the secondary task draws attention away from driving. 
In support of this conclusion, there is other evidence that detrimental effects 
of automation are only evident when there are concurrent tasks competing 
for attention (Endsley & Kaber, 1999). For the experiment presented in this 
chapter (Young & Stanton, 2002b), then, the secondary task may be serv-
ing to draw attention away from the driving task. Whilst that did not result 
in performance decrements in the benign circumstances used here, it could 
be a factor if investigating critical scenarios. We will bear this in mind in 
Chapter 7 when we explore how drivers deal with an automation failure.

Another perspective might appeal to the classic vigilance decrement (e.g., 
Mackworth, 1948; Singleton, 1989) as an explanation for the results obtained 
here. However, the present experimental design does not qualify it as a 
 vigilance task. Observations elsewhere (Singleton, 1989; Warm et al., 1996) 
typically find that a vigilance decrement sets in after 20–30 minutes. Given 
the 10-minute trials in the current study, it is unlikely that vigilance would 
have caused a problem. Furthermore, Parasuraman (1987) argued that con-
tinuous, dynamic tasks do not lend themselves to vigilance problems, and it 
is easily arguable that the task of driving fits these criteria. Therefore, MART 
seems to be a more likely explanation for these data.
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Finally, other competing explanations relate to the nature of the task, and 
centre around issues of motivation and arousal. One might suggest that par-
ticipants were simply bored or less motivated to maintain performance on the 
secondary task in the underload conditions. If this were the case, it would 
be expected that a lack of motivation would have a general effect on perfor-
mance. Since manual performance on the remaining primary (driving) task 
was not affected (that is, when using ACC or LC individually), the balance of 
evidence favours MART. Similarly, although physiological arousal was not 
measured in the present study, all of the experimental conditions posed fairly 
equal levels of physical demand, so it is unlikely that physiological arousal 
influenced the results. Meanwhile, the counterbalanced conditions should 
have mitigated any confounding effects of motivation or arousal. However, it 
is acknowledged that mental demands might only have influenced attentional 
capacity via an effect on arousal. Again, we present a further study to address 
this question in Chapter 7.

CONCLUSIONS

In the last couple of chapters, we have argued that the introduction of auto-
mation into the automobile can significantly reduce driver MWL, and that 
this is a potential factor in explaining the problems that many drivers have 
with reclaiming control in critical situations. A possible mechanism for this is 
MART, whereby underload affects the attentional capacity of drivers. Under 
MART, the reason for such performance decrements would be a reduced abil-
ity to devote appropriate levels of attention to the situation. This potentially 
offers a definitive and parsimonious explanation of mental underload, as 
well as the opportunity to make practical predictions for performance with 
automation.

The study presented in this chapter (Young & Stanton, 2002b) supported 
the predictions of MART by showing that the (inferred) size of attentional 
resources shrank directly in line with reductions in mental workload. In other 
words, as drivers of automated vehicles – even at level 2 automation – become 
faced with underload, it is feasible that they would have less attentional capac-
ity available to deal with any unanticipated events. Perhaps surprisingly, the 
data also showed that this decay occurs relatively quickly, within the first 
minute of being underloaded. Unfortunately, a subsequent study was unsuc-
cessful in trying to establish how quickly (or otherwise) attentional capacity 
recovers after workload returns to normal.

Eventually, we would hope to identify a threshold of resource decay beyond 
which true underload (i.e., in terms of degradation of performance) can be 
predicted. If we accept the absolute figures on the attention ratio curve in 
the present study, we can venture to suggest that a shrinkage factor of 75% 
was necessary to produce underload. Now, we do not necessarily believe it 
is that straightforward and intermediate levels of workload would need to 
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be analysed to establish other relative shrinkage factors. But if we can plot 
similar curves under a number of other conditions, it may well be possible 
to isolate a cut-off point for underload. Levels of workload and attentional 
resources could then be used in an a priori manner to predict performance 
given a level of task demands – and thus putting us in a strong position to 
establish the elusive ‘redline’ of mental workload research.

From an applied perspective, though, there is a curiosity in the results of 
this study, in that ACC alone did not reduce MWL, but when combined with 
LC there was a significant reduction in workload. Why, then, should the same 
system produce differential effects on MWL depending on whether or not the 
driver is also steering? The next study in this series attempts to answer that 
question.

KEY POINTS

• A driving simulator study showed that although adaptive cruise control 
on its own did not affect mental workload, lane centring did signifi-
cantly reduce workload and there was a further reduction when using 
both systems together (level 2 automation).

• When only part of the driving task is automated, performance on the 
remaining manual task was largely unaffected, even when workload 
was reduced.

• A proxy measure for attentional capacity demonstrated that these reduc-
tions in mental workload were mirrored by a shrinkage in attentional 
resources, in support of malleable attentional resources theory (MART); 
moreover, this shrinkage occurred within the first minute of driving.

KEY REFERENCES
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Chapter 5

When is ACC not ACC?

OVERVIEW

Since the introduction of adaptive cruise control (ACC), the current generation 
of automated driving systems has offered the potential to relieve drivers of men-
tal as well as physical workload. Previous research, though, has raised some 
puzzling conflicts about the effects of ACC on driver mental workload (MWL). 
Some studies have reported reduced MWL with ACC compared to manual driv-
ing, whereas others have found no effect. Two hypotheses are proposed in an 
effort to explain these discrepancies: a) that any potential MWL reductions due 
to ACC could be masked by the overriding influence of steering demand; or 
b) that the tasks designed in some experiments does not exploit the adaptive 
 functionality of the ACC system. Two related experiments were conducted to 
test these hypotheses. In experiment 1, a constant-speed task was combined with 
a straight road to minimise the steering demands, in an effort to make the depen-
dent variables more sensitive to any effect of ACC. Experiment 2 reverted to a 
mixed (straight and curved) road design, but introducing a variable-speed task 
to test the adaptiveness of ACC. Taken together, the results favoured the  latter 
explanation: constant-speed tasks do not realise the MWL benefits of ACC.

INTRODUCTION

In the last chapter we established a pattern of mental workload (MWL) over 
four automation conditions, ostensibly representing levels 0 through 2 on the 
SAE (2018) taxonomy: manual, adaptive cruise control (ACC), lane centring 
(LC), and ACC+LC. Whilst using ACC alone did not really affect MWL com-
pared to manual driving, switching on LC did significantly reduce MWL. 
We explained this in terms of the greater demand of the steering task, being 
a second-order tracking task (cf. Carsten et al., 2012; Wickens et al., 1998). 
Interestingly, though, using ACC with LC (level 2 automation) resulted in a 
further significant reduction in MWL over LC alone. So ACC must have had 
some impact on the driving task, even though that was not apparent when 
drivers were still steering manually. In this chapter (which is based on Young 
& Stanton, 2004), we focus in on whether and how ACC might affect MWL.

http://doi.org/10.1201/9781003374084-7
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To recap, ACC was one of the first driving automation technologies 
to become available on the mainstream market. The introduction of ACC 
offered the capability not just to maintain a set speed, similar to conventional 
cruise control, but also to detect other vehicles in front and adjust speed to 
maintain a set headway. So, whereas standard cruise control simply relieves 
the driver of physical workload (keeping the foot on the accelerator pedal), 
ACC removes some of the decision-making elements from driving (perception 
of closing speed, time-to-contact; Stanton et al., 1997; Stanton & Young, 
1998). Consequently, it has the capability to relieve the driver of some MWL.

The results of previous research, however, are equivocal regarding the spe-
cific effects of ACC on driver MWL, with some studies reporting reduced 
MWL compared to manual driving, while others found no effect. Two of the 
earliest published studies on this question (Nilsson, 1995; Ward et al., 1995) 
found no differences in subjective MWL (using the NASA-TLX) between 
manual and ACC conditions. Later research did demonstrate reductions in 
MWL with ACC, both in a driving simulator (Ma & Kaber, 2005) and on a 
test track (Rudin-Brown & Parker, 2004).

More recently, a meta-analysis of 32 studies (de Winter et al., 2014) found 
workload was slightly lower with ACC compared to manual driving, but 
much lower with highly automated driving. The majority of the studies in the 
review were conducted in fixed-base simulators and variously used subjective 
or secondary task measures of MWL. To some extent the effects depended 
on the trial duration. In one of the reviewed studies, there were no differences 
in MWL after 10 minutes, but after 50 minutes there was significantly lower 
MWL in the highly automated drive, largely due to the fact that MWL in the 
manual condition had increased over that time.

Meanwhile, a study by Stanton et al. (1997), also in the Southampton 
Driving Simulator (SDS), found that ACC did cause a significant reduction 
in MWL on the secondary task measure. However, the Stanton et al. (1997) 
study used short trials (two minutes) and, because the experiment was also 
about testing responses to ACC failure, the conditions were not counterbal-
anced. Participants always drove the manual condition first, followed by 
ACC, then ACC with a failure, so the improvement in secondary task perfor-
mance is more likely due to a practice effect rather than differences in mental 
demands between the conditions.

Nevertheless, there is further evidence that ACC can reduce driver MWL 
in certain situations. Bar-Gera & Shinar (2005) suggested that car- following 
and headway monitoring is a demanding task, and that devices such as 
ACC can relieve these demands. Likewise, Ma & Kaber (2005) argued that 
ACC relieves MWL and hence improves situation awareness, which in turn 
enhances performance. They used a medium-fidelity driving simulator to 
show that ACC reduced workload and improved driving performance in 
terms of speed, headway, and lateral variability.

One explanation for the conflicting findings could relate to the experimen-
tal design. Our work in the SDS (Young & Stanton, 2002b) used a task which 
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involved following a constant-speed lead vehicle along a course which was 
a mixture of curved and straight sections. The lack of a MWL effect when 
using ACC alone could have been because processing of the longitudinal con-
trol task had become automatic (i.e., completely attention-free) for the expe-
rienced drivers used in these studies. Perhaps, then, the task used – following 
a constant-speed lead vehicle – was not appropriate to highlight any MWL 
effects when using ACC, as it did not test the ‘adaptiveness’ of the ACC sys-
tem and was more akin to using standard cruise control. Alternatively, the 
much heavier load imposed by steering during these tasks could have masked 
any MWL advantage of using ACC. This explanation would account for the 
fact that, when the steering load was no longer a factor (i.e., steering had been 
automated), ACC did significantly reduce MWL.

In order to test these explanations, we (Young & Stanton, 2004) designed 
a study using four automation conditions: manual (participant controls speed 
and steering), ACC (participant controls steering only), LC (participant con-
trols speed only), and ACC+LC (both speed and steering are automated – 
essentially a fully automated drive). The two manipulations – minimising 
steering load and increasing longitudinal load – were varied one at a time, to 
isolate their effects and evaluate each explanation independently.

Experiment 1 used a constant-speed vehicle-following task, as per Young 
& Stanton (2002b), but on a straight road. As such, the lateral demands of 
steering the vehicle were minimised. This is similar to using LC, so this exper-
iment would predict reduced MWL in the ACC and ACC+LC conditions 
(which are similar to each other), but no difference between manual driving 
and using LC. These predictions are illustrated in Figure 5.1.

Figure 5.1  Predicted MWL scores across automation conditions, experiment 1. These pre-
dictions are based on the hypothesis that ACC will only reduce MWL if steering 
demands are minimised.
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Experiment 2 used the original (Young & Stanton, 2002b) mixed course 
with curved and straight sections, but now with a variable-speed lead 
vehicle. This imposes additional longitudinal demand, so the prediction of 
experiment 2 was a stepwise reduction in MWL across the manual, ACC, 
LC, and ACC+LC conditions (assuming that steering is still more demand-
ing than the additional longitudinal task). These predictions are represented 
in Figure 5.2.

EXPERIMENT 1: STRAIGHT ROADS

Method

Experiment 1 was conducted in order to determine whether the effect of ACC 
on MWL has previously been masked by the dominant influence of steering. 
Therefore, participants were required to drive on a simple straight road for 
10 minutes in each of the four automation conditions (manual, ACC, LC, and 
ACC+LC). This removes most of the steering demand, presumably making 
the MWL measurements more sensitive to longitudinal demands. If there is 
an effect of ACC at constant speed, it should be revealed here.

The design was within-subjects, with 12 experienced drivers (i.e., those with 
a full UK driving licence) as participants. Dependent measures (see Chapter 4) 
included the primary task measures of longitudinal and lateral control, the 
visual-spatial secondary task, and the NASA-TLX (Hart & Staveland, 1988) 
in order to compare with previous studies using this subjective MWL scale 
(Nilsson, 1995; Ward et al., 1995).

Figure 5.2  Predicted MWL scores across automation conditions, experiment 2. These 
predictions are based on the hypothesis that ACC will only affect MWL if lon-
gitudinal demands are nontrivial.
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In all of the experimental conditions, participants were faced with a single-
carriageway road. The course was a simple straight road, with no hills or wind 
gusts to disturb longitudinal or lateral control. Participants were instructed 
to first catch up and then follow a leading vehicle, which was travelling at a 
constant 70 mph (113 km/h), for the 10-minute duration of the trial. There 
were no other vehicles in the participants’ lane (so no overtaking was neces-
sary), although oncoming traffic was encountered infrequently, encouraging 
participants to remain in their own lane. Participants were required to main-
tain a constant distance from the lead vehicle, although the choice of that 
distance was left to the individual. There were a number of advantages to 
this approach. Firstly, it meant that participants did not have to disengage the 
automatic devices (for instance, in order to overtake), thus avoiding contami-
nation of conditions. Secondly, following a car motivated participants to drive 
at a relatively constant speed, thereby controlling objective demand across 
conditions. Otherwise, participants may have compensated for increased 
workload by reducing speed, which again would contaminate results. Finally, 
a constant speed implied that participants all drove approximately equal dis-
tances, again controlling for workload and attention differences which may 
otherwise have been incurred.

Results

In terms of driving performance data, using LC unsurprisingly resulted in 
dramatically better (that is to say, perfect) steering performance when LC was 
engaged. The more interesting comparison for lateral control was between 
manual and ACC conditions, as both involved manual steering, but there was 
no significant difference in lane excursions nor time spent out of lane between 
these conditions.

Despite the fact that lateral control demands were minimised on the straight 
road design of this experiment, then, there was still some variability in man-
ual control of steering. Moreover, it seems that using ACC has no effect on 
human lateral control. In other words, steering performance was equivalent 
whether or not automation was used to relieve the subtask of longitudinal 
control.

The results for longitudinal control were less clear, with some spurious 
results muddying the waters. On the whole, though, it appeared that – on this 
straight road, at least – humans were equally capable of maintaining constant 
speed and headway as ACC.

For MWL, automation had a significant effect on secondary task scores, 
with no difference between manual and ACC conditions, but stepwise 
increases (i.e., decreases in MWL) with LC and again with ACC+LC (see 
Figure 5.3).

As for subjective MWL on the NASA-TLX, the overall workload (OWL) 
scale was significantly affected by automation, with a stepwise reduction from 
manual to ACC, from ACC to LC, and from LC to ACC+LC (Figure 5.4).
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Discussion

From the primary and secondary task performance data, it was apparent that 
minimising lateral demands does not release any extra spare capacity when 
using ACC. The hypothesis that the heavy demands of steering may have 
masked a MWL effect of ACC was therefore not supported, at least as far as 
the performance data are concerned. The secondary task scores also fit well 

Figure 5.3  Secondary task scores across automation conditions. Higher scores reflect 

Figure 5.4  Overall workload ratings across automation conditions. Higher scores reflect 

lower MWL.

higher MWL.
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with the primary task data. Longitudinal control was no better when ACC 
was engaged than if speed was controlled manually. As such, relieving the 
driver of this task did not decrease the driving demands, supporting the notion 
that constant-speed driving is processed in a fully automatic way for experi-
enced drivers. However, there was still a puzzling increase in spare capacity in 
the ACC+LC condition. Perhaps, in the LC condition, participants were peri-
odically checking the speedometer or road view as uncertainty built up about 
the road situation (cf. Senders et al., 1967). Even occasional glances could 
sufficiently disrupt secondary task performance. Lateral control, on the other 
hand, was worse for humans than the automated system. Therefore, some 
improvement on this control dimension can still be made, and that is reflected 
in the additional spare capacity which is observed when steering is automated.

Interestingly, participants did perceive a reduction in MWL when ACC 
was engaged, despite the fact that objectively (i.e., as determined from the 
secondary task data) the demands did not change. So the masking hypoth-
esis, initially rejected on the basis of the secondary task data, could apply to 
these subjective data. Actual spare capacity is not influenced by ACC, purely 
and simply because it does not relieve the experienced driver of any demands 
when the longitudinal control task is to maintain a constant speed. When 
other demands (i.e., steering) are high, participants understandably do not 
perceive a difference between the manual and ACC conditions. However, 
when the steering demands are minimised, drivers do become sensitive to the 
absence of driving subtasks, even though those subtasks were ostensibly auto-
matic (cognitively speaking) for this group of participants. In that respect, 
these results are consistent with the findings of Liu & Wickens (1994), in 
that the subjective metric is sensitive to the presence of automation, while the 
secondary task revealed automatic performance.

Overall, the results from this experiment showed that a constant speed lon-
gitudinal control task does not pose any additional demands for experienced 
drivers, presumably because automatic processing of this task has virtually 
reached its ceiling. In the absence of a demanding lateral control task, par-
ticipants did perceive a difference in MWL between the manual and ACC 
drives. The possibility that the subjective demands of longitudinal control are 
masked by the much greater demands of steering therefore remains credible.

Despite these encouraging results, the pattern of MWL data did not accu-
rately reflect the predictions made for this experiment. In particular, there was 
a substantial MWL decrease when using LC, even though steering demands 
were minimised. Taking this result alongside the lateral control performance 
data (which showed some lane excursions under manual control), it seems 
clear that steering was not a cognitively automatic task even on a straight 
road. Furthermore, a significant increase in spare capacity was observed in 
the ACC+LC condition, yet it had been concluded that longitudinal control 
in these task conditions did not draw any attentional demands. Therefore, the 
next step was to investigate the alternative approach – increasing the longitu-
dinal demands.
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EXPERIMENT 2: VARIABLE-SPEED LEAD VEHICLE

Method

In the light of the results from experiment 1, it was apparent that minimis-
ing the steering load did not reveal any advantages for ACC in terms of 
spare attentional capacity. Experiment 2 therefore considered an alternative 
hypothesis – that the task of following a constant-speed lead vehicle is not 
really a test of longitudinal control, and does not exploit the functionality of 
the ACC system. As with experiment 1, the design was completely within-
subjects, with 12 experienced driver participants.

In experiment 2, we used a course comprising a mix of curves and straight sec-
tions, and a change was made to the characteristics of the lead vehicle. At pseudo-
random intervals and without warning, the lead car would firmly brake (with 
brake lights illuminated) until it reached a speed of about 30 mph (48 km/h), 
when it would accelerate again to its default speed of 70 mph (113 km/h). The 
participant’s task was to match the speed of the lead vehicle, staying behind it 
and trying to maintain a constant headway as before. In this case, the additional 
longitudinal demands should theoretically lead to a MWL reduction when ACC 
relieves the participant of this task. Furthermore, car-following performance in 
these conditions also offers a measure of attention (Zhang et al., 2021).

The same primary task, secondary task, and subjective MWL measures as 
before were used as dependent variables. Primary task variables included the 
evaluative performance measures of longitudinal and lateral control, while 
the secondary task and NASA-TLX were as used in the previous experiments.

Results

Starting with driving performance, as with experiment 1 LC was significantly 
better in terms of both time spent out of lane and number of lane excursions 
than manual steering, with or without ACC engaged. There was no difference 
in steering performance between the manual and ACC conditions.

The longitudinal control data revealed some interesting results, with 
speed instability apparently getting worse in the two ACC conditions (ACC, 
ACC+LC) compared to manual control of accelerating and braking, while 
headway instability was significantly better with ACC engaged. There were 
no differences between the manual and LC conditions (that is, when longitu-
dinal control was manually performed).

Turning to MWL, automation significantly increased spare attentional 
capacity as measured by the secondary task, with stepwise increases in correct 
responses from manual to ACC, from ACC to LC, and from LC to ACC+LC 
(Figure 5.5). This pattern of responses differs from those in experiment 1, and 
fulfils the prediction made for the present study.

For subjective workload, the OWL scores on the NASA-TLX exhibited a 
similar pattern, except there was no difference between the ACC and LC con-
ditions; other comparisons were significant (Figure 5.6).
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Discussion

As in experiment 1, the lateral performance data simply indicate that LC is 
better than the human at maintaining lane position. This result is less sur-
prising in the current study, for which steering demands were relatively high, 
than in the previous experiment, when the only task was to keep the vehicle 
in a straight line. It was, however, notable that the longitudinal demands were 

Figure 5.5  Secondary task scores across automation conditions. Higher scores reflect 

Figure 5.6  Overall Workload ratings across automation conditions. Higher scores reflect 

lower MWL.

higher MWL.
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nontrivial in experiment 2, yet the use of ACC did not improve participants’ 
steering ability.

In our previous experiment (Young & Stanton, 2002b), longitudinal insta-
bility was generally reduced only in the ACC+LC drive. From this, it might be 
concluded that driving on a curved course increases longitudinal instability. 
Drivers were probably slowing down for corners or, in the case of the ACC 
condition, either disengaging ACC or drifting out of lane such that the system 
lost its target and attempted to reacquire set speed.

In the present study, ACC appeared to increase speed instability, while 
reducing headway instability. This apparent contradiction is explainable, 
though, when considering the nature of the ACC system. ACC was designed 
(in the simulator at least) to maintain set speed until a lead vehicle impeded 
progress. Once a lead vehicle was detected, speed was adjusted to match 
that of the target as closely as possible. Therefore, fluctuations in speed of 
the lead vehicle were almost exactly matched by the ACC car. In the present 
experiment, this feature served to maintain a more consistent headway, but 
at the same time increasing speed instability due to the designed oscillations 
in speed of the lead vehicle. Manual control, on the other hand, dampened 
these speed oscillations by adopting a greater following distance – a kind of 
behavioural adaptation in action. When the lead vehicle slowed down, it was 
not necessary to adjust speed a great deal, but distance headway was com-
promised. Such a driving style suggests that participants were economising 
on their physical demands (i.e., repeatedly slowing down and speeding up) 
to create a smoother drive, but perhaps at the expense of increased headway 
monitoring demands.

For spare attentional capacity, it is clear from these results that ACC can 
actually have a beneficial effect when longitudinal demands are increased. 
Therefore, whilst automaticity may dominate the task of maintaining a constant 
speed, following a variable-speed lead vehicle requires much more controlled 
processing. However, the steering demands of the present course are evidently 
still greater than those imposed by the car-following task. Nonetheless, the 
results show that experienced drivers can in fact be relieved of attentional 
demands by ACC under the right conditions. The stepwise pattern for the sec-
ondary task score perfectly matches the prediction for this study.

Similarly, the pattern of subjective MWL data is consistent with the pre-
dictions made for this study. Rather than stepwise reductions in subjective 
MWL, though, it seems the new longitudinal task imposed similar levels of 
perceived demand as the steering task. The pattern of TLX ratings further 
dissociates the subjective and secondary task measures of MWL, adding 
weight to the argument that subjective ratings are not sensitive to differences 
due to automaticity.

In sum, the hypothesis that ACC would only reduce MWL when longitu-
dinal demands were high was consistently supported by the results of experi-
ment 2. In particular, the predicted pattern of MWL was exactly matched by 
the secondary task data, and supported by the subjective data.
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One particularly notable finding from this study was the lack of a differ-
ence in lateral control performance between the manual and ACC conditions. 
In spite of the decreased demands when driving with ACC, participants did 
not translate this into a performance improvement for their steering. This 
could represent a ceiling of performance for human lateral control, or it could 
be indicative of a MWL homeostasis effect, with participants adjusting their 
performance to maintain a consistent level of MWL (cf. Buck et al., 1994; 
Zeitlin, 1995).

GENERAL DISCUSSION

Summary of results

In both experiments, LC was naturally better at maintaining lane position than 
the human driver. Similarly, participants tended to drive more slowly and with 
longer headways than the ACC system. The instability scores, a judgemental 
measure of performance, were mostly equivalent across automation conditions 
if the task was to maintain constant speed on a straight road (experiment 1). 
Under more demanding task conditions, the ACC system was significantly bet-
ter at maintaining a constant headway from the variable-speed lead vehicle.

In experiment 1, driving on a straight road with ACC did not free up any 
more attentional resources than maintaining a constant speed manually. 
However, participants did perceive a reduction in MWL. Meanwhile, driv-
ing on the mixed course with a variable-speed lead vehicle (experiment 2) did 
affect spare capacity in the stepwise fashion as predicted. Subjective MWL 
did not decrease in quite the same way, as there was no difference between 
ACC and LC, but the results were still arguably consistent with the predic-
tions, while indicating that the variable-speed task imposes similar levels 
of MWL as steering demands for this type of road. In both cases, the low-
est MWL on both measures was in the highly automated drive (ACC+LC). 
In that condition, drivers were able to divert their attention to the second-
ary task, whereas with just ACC the driver still has to pay attention to the 
roadway – the remaining steering task requires drivers to visually sample the 
road at least every three seconds (de Winter et al., 2014).

Taking the results of experiments 1 and 2 together, it can be concluded that 
our previous research with a constant-speed task (Young & Stanton, 2002b) 
has not exploited the functionality of the ACC system, hence the conflicting 
findings about the effect of ACC on MWL. Although perceptions of demand 
may have been masked by the extra steering load (which, as evidenced by the 
MWL data in the LC conditions, was quite substantial), the level of automatic-
ity achieved by experienced drivers in constant-speed driving meant that ACC 
could not relieve any attentional demands for that task. Forced variable-speed 
driving, on the other hand, is subject to more controlled (rule-based) process-
ing, providing the opportunity for ACC to relieve this element of driver MWL.
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Implications: mental workload and adaptive cruise control

The results in these two related experiments support the idea that ACC can 
relieve experienced drivers of MWL, but only in cases where the traffic flow is 
variable. At a constant speed, processing of longitudinal control is fully auto-
matic for these drivers, and they only perceive a benefit when other demands 
(i.e., steering) are minimised. Even in this case, though, objective demand 
(i.e., spare attentional capacity) does not increase over and above that when 
driving normally. Steering, being a second-order tracking task, is naturally 
more demanding than longitudinal control (Wickens et al., 1998), so LC 
reduces MWL even on a straight road.

A general conclusion to emerge from these experiments is that steering is a 
primary determinant of driver MWL. Objectively speaking, ACC does not 
actually relieve demand significantly unless the longitudinal demands are 
already high. Since ACC is essentially a coarse form of static automation, 
using it when actual demands are low will not significantly increase spare 
attentional capacity (indeed, in the constant-speed case, it is acting in a man-
ner akin to conventional cruise control).

From the applied viewpoint, these conclusions support the contention of 
vehicle manufacturers that ACC systems can offer added comfort and con-
venience to driving (Richardson et al., 1997). Indeed, the point of ACC is 
its adaptive nature: whereas standard cruise control has traditionally been 
more suited to highways that tend to be long, straight, and relatively empty, 
ACC is designed for roads with an increased traffic density and less con-
sistent speed profiles. Using standard cruise control would not provide any 
benefit in such an environment, and indeed may even increase workload and 
frustration, as it would be necessary to continually disengage and reengage 
the system. An ACC system, on the other hand, can cope with fluctuations in 
traffic flow, and thus lead to a reduction in MWL, as seen in experiment 2.

In addition, the results of these experiments indirectly support one of the 
presumptions made in this book: that such vehicle technologies can relieve 
driver load at a psychological level. Orthodox systems, such as conventional 
cruise control, are not thought to relieve the driver of any MWL, as there is 
little information processing involved in maintaining a constant speed. The 
results of this experiment indicate that this is indeed the case, at least as far as 
experienced drivers are concerned.

CONCLUSIONS

Findings from both this study and previous literature are in conflict about the 
effects of ACC on MWL. It was found that this conflict is mostly likely due 
to the design of the task used. Simple car-following at a constant speed does 
not exploit the ‘adaptiveness’ of the ACC system, whereas following a vari-
able speed vehicle does. However, there was also some evidence that effects 
of ACC on subjective MWL may have been masked by the much greater 
demands of steering the vehicle.
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One particular finding in experiment 2 also provides some further evidence 
supporting malleable attentional resources theory (MART). For the leftover 
human tasks in partial automation conditions (i.e., steering when ACC is 
engaged, longitudinal control when LC is engaged), there was no improve-
ment in performance compared to fully manual driving, despite objective and 
subjective workload reductions. It could be the case that human performance 
was already at ceiling in the manual condition, and could not improve any 
further. Nevertheless, there is obviously room for improvement as the auto-
mated  systems consistently exhibited superior performance over human con-
trol. If performance could improve, but did not, MART would suggest that the 
reduction in attentional capacity has consequently limited that performance 
 ceiling – in other words, performance has matched the available resources.

An alternative perspective on this considers the effects of skill. In this chap-
ter, we have toyed with the notion that the constant-speed following task is 
cognitively automatic for this experienced driver sample, as an explanation for 
the findings. Furthermore, in Chapter 3 we learned that automaticity in infor-
mation processing reduces an operator’s dependence on attentional resources. 
Clearly, then, there is an interaction between automation and automaticity. 
The next question to be addressed is, therefore, how the effects of automation 
might relate to automaticity, in terms of driver skill level. Possibly, a high level 
of automaticity might exacerbate underload, since there are very few demands 
on the driver’s attentional resources. On the other hand, the very nature of 
automatic processing might ameliorate the performance impacts of mental 
underload. In the next chapter, we compare the results of the previous study 
alongside data for three other levels of driver skill.

KEY POINTS

• Adaptive cruise control (ACC) is largely marketed as a comfort and con-
venience system, but it has the potential to affect driver mental workload.

• However, the research jury is out in terms of the effects of ACC on 
workload; these effects are likely dependent on task context.

• A simulator study demonstrated that the impact of ACC is most pro-
nounced in a variable-speed car-following task, which exploits the 
‘adaptive’ element of the system (since a simpler constant-speed task is 
more cognitively automatic anyway).
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Chapter 6

What’s skill got to do with it?

OVERVIEW

We are making good progress now and, having established that some levels 
of automated driving reduce workload and attention for experienced driv-
ers, this chapter considers how the development of automaticity within the 
driving task may influence performance in underload situations. In an exten-
sion of Young & Stanton’s (2002b) simulator study (presented in Chapter 4), 
driver skill was manipulated alongside driving automation, each with four 
levels. Driving performance, mental workload and attentional capacity were 
 measured. The data suggested that driver skill had little effect on subjective 
mental workload, but a secondary task measure did reveal an interaction 
between skill and automation, with distinct patterns of attentional demand 
observed at extreme levels of each variable. As before, though, the most 
intriguing results were from the attentional capacity data, which showed 
that  – with little exception – capacity and mental workload were directly 
related at all levels of driver skill, consistent with earlier studies. The results 
are discussed in the light of research on applied cognition and automation, 
further fleshing out the theory of malleable attentional resources.

INTRODUCTION

In the last two chapters, we have explored the intimate relationship between 
automation and mental workload (MWL), via the mediator of attention. So 
far, we have learned that some levels of automation can reduce MWL, and 
that there are some curious effects of combining automated systems which 
may be related to driver skill. Now, then, we are going to add that factor into 
the mix.

Skill and MWL are already intertwined, as the level of MWL, or atten-
tional demand operators experience, very much depends on their level of 
skill. As we learned in Chapter 3, skilled processing – or automaticity (e.g., 
Anderson, 1995; Underwood & Everatt, 1996) – is characterised by being 
free of attentional resource limitations (Schneider & Shiffrin, 1977; Shiffrin 
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& Schneider, 1977). As skill develops on a task, performance becomes 
more automatic and attentional resources are gradually released for other 
tasks, with a resulting decrease in MWL (cf. Chi et al., 2019; Gopher & 
Kimchi, 1989; Liu & Wickens, 1994). Thus, there is an inverse relationship 
between skill and MWL, as skilled operators experience less MWL than 
novices (Hancock & Chignell, 1988). At the highest skill levels, when task 
performance becomes automatic (skill-based), the demand on attentional 
resources is very low (although not entirely absent; Chi et al., 2019; Huey 
& Wickens, 1993).

In driving, skill acquisition can occur relatively quickly (Helander, 1978; 
Verwey, 2000) at lower, operational (i.e., vehicle control) levels of the task 
(cf. Ranney, 1994; Rasmussen, 1986), which become cognitively automatic 
for the skilled driver who operates at higher (strategic) levels of the control 
hierarchy (Stanton & Marsden, 1996). Although skill continues to develop 
at tactical and strategic levels of control, some researchers (e.g., Groeger & 
Clegg, 1997; Harms, 1991; Rumar, 1990) maintain that the variability of 
these tasks means that they might never develop automaticity. Thus, these 
aspects of driving will always impose higher workload (Huey & Wickens, 
1993). But, in another irony of automation (see Chapter 2), it is often the 
operational, skill-based tasks that are automated first (think of the automated 
lateral and longitudinal control we have been studying in the last couple of 
chapters), because they are the tasks that are technologically easier to auto-
mate. But this reduces workload where it was already low, while leaving the 
higher-workload, knowledge-based tasks entirely in the human’s hands (Huey 
& Wickens, 1993).

Since these operational tasks are more amenable to the development of 
automaticity, it is conceivable that automation may provide an alternative to 
the skill development process. It has been shown that automation can reduce 
the skills gap in driving (Shinar et al., 1998; Ward, 2000), allowing novices 
to exhibit performance more like their expert counterparts. There is thus a 
parallel between automaticity and automation, since all operators –  novices 
and experts alike – process the task in a fast, attention-free, and uncon-
scious  manner when using automation. Bainbridge (1978) makes the point 
that increasing task demands can basically transform an expert into a novice 
(cf. Beilock et al., 2002). It is plausible that the reverse could be true in a 
situation of unusually low demand – a novice using automation is essentially 
thinking (or rather ‘unthinking’) like an expert (at least in terms of MWL). 
Nevertheless, the novice is undoubtedly using different underlying cognitive 
mechanisms, even at these low-level operational aspects of driving.

Meanwhile, for skilled drivers, there is a potential paradox associated with 
the underload problem. A highly developed skill essentially looks after a task 
in the same way as automation. With very little conscious control, an expe-
rienced driver may actually be faced with similar conditions of underload as 
someone with less skill would if using automation. Therefore, performance in 
an unexpected critical situation – which arguably depends more on rule- and 
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knowledge-based processing – might suffer due to the lack of any controlled 
processing on the normal task. Over time, this may be exacerbated by the 
‘catch-22’ (cf. Reason, 1990) of skill degradation with automation.

We may therefore ask what the implications are for mental underload 
with groups of different skill levels – will experts be more prone to under-
load due to the already low level of MWL in the task, or will novices suf-
fer because they do not have the knowledge base to support the task (cf. 
Bainbridge, 1978)? Extrapolating from an early study to try and start 
answering this question, Blaauw (1982) imposed ACC-like conditions on 
participants by using forced longitudinal control. The performance of inex-
perienced drivers was found to be more variable in terms of velocity and 
lateral position than that of experienced drivers. This might suggest that 
when using ACC, less experienced drivers will be worse at steering control 
than those with more developed skills. However, this is a tentative predic-
tion as, in their study, all participants had to control speed as well as steer-
ing. Relieving drivers of the longitudinal element may have different effects 
than imposing a fixed speed task.

In another related study, Yanko & Spalek (2013) tested drivers in a simula-
tor with a variable-speed lead-vehicle following task (similar to the one we 
used in Chapter 5) on familiar and unfamiliar routes. On familiar routes, 
drivers followed the lead car more closely and also reacted more slowly to 
pedestrians approaching the road. Yanko & Spalek (2013) argued that the 
automaticity associated with the familiar route resulted in mind-wandering – 
but they also floated the possibility that malleable attentional resources the-
ory (MART) might be an explanation, on the basis of the low workload of 
the familiar route.

Examining the performance of drivers from a range of skill groups with 
automation allows us to explore the relation between MART and automatic-
ity. These perspectives are not mutually exclusive, as automatic processes are 
by definition resource-free. Other sources of variation in resource capacity 
(age, arousal, mood) only affect effortful processes. Automatic performance, 
not being dependent on resources, is unaffected by such variables (Hasher & 
Zacks, 1979). It would be interesting to find out if any resource fluctuations 
due to task demands follow the same pattern.

In the current chapter (which is based on Young & Stanton, 2007c), then, 
we explore these issues by extending the study presented in Chapter 4 (Young 
& Stanton, 2002b). That study tested experienced drivers under four levels of 
automation (manual, adaptive cruise control (ACC), lane centring (LC), and 
ACC+LC) in the Southampton Driving Simulator (SDS). As a reminder, it 
was found that MWL (on subjective and secondary task measures) decreased 
significantly in the LC and ACC+LC conditions, but not with ACC on its 
own. A similar pattern was observed for our metric of attentional capacity, 
the attention ratio, in support of MART.

We now compare those data with the performance of drivers at three 
alternative levels of skill (novice, learner, and advanced) in the SDS to 
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determine the relationships between skill, automation, performance, MWL, 
and attention. We expect that the general pattern of reduced workload with 
increased automation (as observed by Young & Stanton, 2002b) will be rep-
licated. However, given the discussion above, and based on the arguments 
of Bainbridge (1978), this effect may be moderated by skill level. One pos-
sibility is that lower skill groups will experience higher MWL when driv-
ing manually but, as more levels of automation are introduced, the MWL 
data will equalise across skill groups. Similarly, we may expect the manual 
element of driving performance to be worse for the less skilled drivers (cf. 
Blaauw, 1982), but again that this skills gap may be attenuated as more lev-
els of automation are introduced (cf. Anderson, 1995; Shinar et al., 1998; 
Ward, 2000). Meanwhile, the secondary task performance data should 
show a similar interaction pattern, as this is as much a measure of MWL 
as it is of automaticity (Liu & Wickens, 1994). That is, there should be 
significant differences in secondary task score at low levels of automation, 
when skilled drivers have more spare capacity than unskilled participants. 
At higher levels of automation, skill becomes less of an issue as far as spare 
capacity is concerned, and differences in secondary task score should be no 
greater than chance. Subjective MWL, on the other hand, should show a 
main effect of automation without any interaction, as this responds to task 
demands but is insensitive to level of skill (Liu & Wickens, 1994). In other 
words, automation will have a bigger impact on MWL and performance 
for less skilled drivers, reducing the gap to skilled drivers as more automa-
tion is used. These predictions are illustrated in Figure 6.1. Finally, MART 
(Young & Stanton, 2002a; 2002b) predicts that attentional capacity will 
diminish when MWL is reduced. What we do not know, however, is how 
this underload effect will be influenced by skill, and how this interacts with 
the performance of drivers in the different skill groups at the operational 
level of driving.

Figure 6.1  Notional representation of performance across skill groups and automation 
conditions, where a higher value indicates better performance.
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METHOD

Design

Essentially, this experiment was an extension of that conducted by Young & 
Stanton (2002b) presented in Chapter 4, but with the additional between-
subjects variable of driver skill. A mixed design was therefore used, compris-
ing the same four levels of automation for the within-subjects independent 
variable, and driver skill level as the between-subjects factor, again with four 
levels: novice (never driven before), learner (currently learning but does not 
hold a full licence), experienced (held a full licence for at least one year), and 
advanced (having passed a nationally recognised advanced driving qualifi-
cation in the UK). Learner drivers are assumed to be somewhere between 
knowledge- and rule-based processing on the automaticity continuum (cf. 
Chi et al., 2019), with novices operating at a purely knowledge-based level, 
while the experienced and advanced groups represent automatic processing 
(though, as we have previously noted and discuss further later, there is some-
thing of a paradox with advanced driving techniques in this regard).

Since the experimental tasks were focused at the operational level of driv-
ing, and it has been shown that automaticity at this level can develop within 
one month (Helander, 1978), a novice group was chosen as an absolute base-
line for unskilled performance. The advanced group was included as a high-
level skill group because these drivers have undertaken further coaching based 
on police driving skills which, it is claimed, makes them statistically 75% less 
likely to be involved in a collision than other drivers without such training. 
There is evidence that this kind of coaching does significantly decrease the 
collision risk (Hoinville et al., 1972) as well as improving driving skills – even 
for operational tasks such as steering and headway (Stanton et al., 2007).

As before, the dependent measures were divided into primary task per-
formance (longitudinal and lateral control), driver MWL (as per subjective 
and secondary task measures), and attentional capacity (the derived atten-
tion ratio).

There were 24 novice drivers in this experiment, and 30 participants in 
each of the learner, experienced and advanced conditions. The sample of 
experienced drivers in this experiment was the same as that used by Young 
& Stanton (2002b), and the results for this group in the present chapter are 
the same as those reported in Chapter 4. Although an attempt was made to 
 balance age and gender across groups as far as possible, participant availabil-
ity and population demographics made this difficult (e.g., the advanced driver 
population tends to be skewed towards older males).

Procedure

The procedure was the same for all participants, and followed that of Young 
& Stanton (2002b). Participants were given a minimum 15-minute practice 
run before full instructions were given and the experimental trials began. The 
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four experimental conditions lasted 10 minutes each, and were presented in a 
counterbalanced order to preclude practice effects.

As before, the driving task used the ‘follow-that-car’ paradigm, with a lead 
vehicle travelling at a constant 70 mph (113 km/h). While driving, participants 
were expected to attend to the secondary task when they felt able to do so.

RESULTS

Driving performance data

Lateral control was significantly affected by both automation and driver skill, 
with main effects for number of lane excursions and time spent out of lane. 
In all skill groups, there was no difference between manual and ACC condi-
tions, but lateral control significantly improved when LC was switched on 
(see Figures 6.2a and 6.2b). Furthermore, holding a driving licence improved 

Figures 6.2a (top) and 6.2b (bottom)  Lateral control performance measures across skill 
groups and automation conditions.
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lateral control, as both experienced and advanced drivers maintained better 
lane position than novices and learners.

Longitudinal control showed a similar pattern of results, as both indepen-
dent variables affected speed and headway instability. Significant interactions 
were observed for both these variables as well. Compared to manual driving, 
speed instability with ACC decreased for advanced drivers only. Speed insta-
bility for novice and learner drivers decreased significantly in the LC condi-
tion, while a marginal decrease was observed for experienced and advanced 
participants. Finally, there was a reduction in speed instability for all drivers in 
the ACC+LC condition. Headway instability was reduced in the LC condition 
for novices, learners, and advanced drivers, but not for the experienced group – 
most probably because their headway instability was already low in manual 
driving. There were no differences between the manual and ACC conditions, 
while all drivers found their headway instability was lower in the ACC+LC 
condition. Between-subjects differences generally manifested themselves in 
lower instability for the experienced group (see Figures 6.3a and 6.3b).

Figures 6.3a (top) and 6.3b (bottom)  Longitudinal control performance measures across skill 
groups and automation conditions.
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Mental workload data

Automation significantly affected secondary task performance. Generally, 
significantly more correct responses were made (that is, primary task 
demands were lower) in the LC and ACC+LC conditions (see Figure 6.4). 
Whilst the effect of skill was only marginal, there was an interaction between 
skill and automation. The reason for this interaction lay in the comparisons 
between the manual and ACC conditions. Novice drivers made significantly 
more responses with ACC than in the manual condition, while the learner, 
experienced, and advanced groups did not show a difference between these 
conditions.

On the NASA-TLX, the overall workload (OWL) score differed across the 
four automation conditions within each skill group, with stepwise reductions 
in OWL across automation conditions in each of the novice, learner, and 
advanced groups from manual, to ACC, to LC, to ACC+LC. However, in 
the experienced group, the difference between manual and ACC conditions 
was nonsignificant, although there were still significant reductions from ACC 
to LC, and from LC to ACC+LC. There was also an indication that overall 
workload in the ACC+LC condition increased with higher skill levels, as the 
advanced group reported higher subjective MWL than novices. OWL scores 
are summarised in Figure 6.5.

Attention ratio data

The attention ratio analyses were performed on a subset of participants 
from each of the driver groups (20 novices, 17 learners, 20 experienced and 
15 advanced), as the video data on which the measure is derived were not 
clear enough for all participants to code reliably (e.g., due to the participant 
wearing glasses).

Figure 6.4  Mean number of correct responses on secondary task across skill groups and 
automation conditions.
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A significant main effect of automation was found in each skill group, 
with no differences between manual and ACC conditions, but all groups 
showed a significant reduction in attention ratio from ACC to LC. 
Furthermore, a significant reduction between AS and ACC+AS was 
observed in the  novice, experienced and advanced groups, although this 
difference was not significant for learner drivers (see Figure 6.6). In other 
words, these decreases in attention ratio mean that time spent on the sec-
ondary task is increasing  disproportionately with number of secondary 
task responses – participants were being slower per response, which is 
indicative of reduced capacity (Grimes, 1991). Note also that these results 
are not due to any trade-off between accuracy and speed, since error 
rates on the secondary task were quite consistent (around 5%) across all 
conditions.

Figure 6.5  

Figure 6.6  Mean attention ratio score across skill groups and automation conditions.

Overall workload ratings across skill groups and automation conditions.
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DISCUSSION

Implications: mental workload and performance

The effects of automation on MWL observed in the present study were largely 
robust across skill groups, and a consistent pattern is emerging in these stud-
ies. Apart from novice drivers, ACC seems to have little effect on spare atten-
tional capacity (cf. Nilsson, 1995; Ward et al., 1995; Young & Stanton, 1997; 
2002b), while LC and ACC+LC do reduce MWL for all skill levels (cf. de 
Waard et al., 1999; Young & Stanton, 1997; 2002b). Subjective MWL, on 
the other hand, was sensitive to ACC for all except the experienced group. 
Clearly, there is a perceived impact of ACC on the driving task, even if it does 
not necessarily translate to an objective reduction in MWL; this is consistent 
with the notion that subjective MWL scores are sensitive to the presence of 
automation irrespective of automaticity (Liu & Wickens, 1994).

Interestingly, the only difference in subjective workload across skill groups 
was in the ACC+LC condition, being significantly higher for advanced drivers 
when compared to novices. There are two ways of interpreting this finding. One 
is simply a consequence of the advanced training regime, which encourages driv-
ers to maintain a conscious focus on the task at all times. So while the lower skill 
groups may have been content to trust the automation, perhaps the advanced 
drivers were less willing to do so. The second explanation is in terms of the auto-
maticity theories outlined earlier. Under normal circumstances, an increase in 
skill should result in a decrease in perceived workload, providing that the task 
and goals remain constant. However, the ACC+LC condition is somewhat 
unusual, in that vehicle control is essentially fully automated. For novice drivers, 
this situation is as familiar as regular driving. It is, however, a novel scenario 
for the more experienced driver. Consider Bainbridge’s (1978) point that uncer-
tainty increases demand and impairs skilled behaviour. The dramatic change in 
task situation for advanced drivers could introduce that uncertainty and hence 
increase subjective levels of demand.

In terms of performance, there was a clear divide between drivers (i.e., expe-
rienced and advanced) and non-drivers (i.e., novices and learners), particularly 
for lateral control. When using automation, the interesting comparisons are 
between the manual subtasks when part-task automation is used (i.e., manual 
steering when ACC is used, or longitudinal control when LC is used; unsurpris-
ingly, the automated systems were consistently better than humans in controlling 
the vehicle). Here, this had an influence on longitudinal control, with a greater 
improvement in speed maintenance when LC was engaged for novices and learn-
ers than for experienced and advanced drivers. It seems, then, that reductions in 
MWL are associated with improved performance, particularly for non-drivers.

Implications: malleable attentional resources theory and skill

As with the MWL data, a robust and consistent pattern has emerged regard-
ing attentional capacity, in that all skill groups appear to show a reduction in 
resources in line with changes in MWL. Thus we see that everyone, regardless 
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of skill level, is susceptible to malleable attentional resources in the face of 
underload.

For automaticity, the results support the significant role of attentional 
resources in controlled processing, reflecting previous research in driving 
(e.g., Lansdown, 2002) and other domains (e.g., Beilock et al., 2002). With 
the clear MWL and performance differences between skill groups, it seems 
that performance is very much resource-limited for non-drivers, but data-
limited for the skilled participants (cf. Norman & Bobrow, 1975). The fact 
that experienced drivers did not reap any performance benefits of automation 
is probably due to the resource-free nature of their processing. To a  certain 
extent, these conclusions are also supported by the secondary task data. 
Novice drivers actually differed in spare capacity between manual and ACC 
conditions, reflecting their lack of skill in the total driving task. The fact that 
this difference disappeared in the learner group may be indicative of the speed 
with which the physical skills of vehicle control are acquired – it has been 
found that these can develop within one month (Helander, 1978; Verwey, 
2000). Thus, it might be said that the learner drivers had developed an inter-
mediate level of automaticity (or rule-based processing, after Rasmussen, 
1986), at least as far as longitudinal control was concerned. The higher skill 
groups had presumably developed their skills such that longitudinal control 
did not demand a great deal of attention – this component of the driving task 
had become automatic or skill-based. Clearly, though, the driving task as 
a whole was not fully automatic even for skilled drivers, or there would be 
no MWL differences at all between automation conditions. These findings 
therefore support the view that automaticity is both resource-based and lies 
on a continuum, as with Rasmussen’s (1986) skill-rule-knowledge framework 
and reflected in the hierarchy of driving skills (operational, tactical, strategic; 
Ranney, 1994).

Overall, the predictions of this study appear to have been generally upheld, 
in that non-drivers exhibited inferior performance than more skilled drivers, 
but the skills gap was attenuated as more levels of automation were introduced 
(cf. Shinar et al., 1998; Ward, 2000). Contrary to conventional wisdom on 
underload, then, reductions in MWL were associated with improvements in 
performance for unskilled drivers – despite the fact that all skill groups were 
susceptible to resource shrinkage in underload conditions. Rather than facing 
a possible adverse situation of underload with automation, then, drivers with 
less skill are evidently being overloaded under normal (manual) conditions, 
and could thus ostensibly benefit from the introduction of automation.

However, consider the nature of the task used here – a highly controlled, 
normal driving scenario. That is, there were no emergency or abnormal events. 
Task demands were thus stable within each condition, and so by definition 
did not exceed the shrunken capacity predicted by MART. Earlier research 
into performance with automation had only found detrimental effects when 
there is a sudden increase in demand, such as an emergency scenario (Nilsson, 
1995; Stanton et al., 1997). Such findings are consistent with MART, since 
the sudden increase would be beyond the operator’s (shrunken) capacity, yet 
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are difficult to resolve with fixed-capacity models (when full resources should 
always be available). A replication of the present study incorporating an emer-
gency event would allow a direct test of MART’s predictions for performance 
within the current design. Moreover, such a design would also elucidate the 
qualitative difference between novices using automation and experts using 
automaticity, since the former would not be expected to have the knowledge 
base to support such performance. Of course, all of this assumes that the reduc-
tions in MWL evinced in the present study do actually represent underload 
(as opposed to just reduced MWL). We may be cautious about the conclusions 
in this regard until a study involving an emergency scenario reveals other-
wise (spoiler alert: we present such a study in Chapter 7). Nonetheless, the 
potential for such a study to elucidate the level of shrinkage which impairs 
 performance – that is, the underload ‘redline’ – is immensely valuable.

One final note here on the perplexing anomaly in secondary task scores for 
advanced drivers as alluded to earlier – that they were more akin to those for 
non-drivers than experienced. Although the advanced group was assumed to 
be more highly skilled than the experienced drivers, there is a certain irony 
in the training techniques for advanced drivers. Advanced driving techniques 
attempt to maintain conscious awareness of the driving task at all levels. 
Whilst this helps to maintain a high level of performance and situation aware-
ness (Stanton et al., 2007), it is paradoxical in that such controlled processing 
does not by definition equate with expert performance. In essence, then, such 
a level of skill brings cognitive processing full circle, and it is therefore pos-
sible to explain why the results of less skilled drivers should be similar to the 
advanced group (this might also account for their primary task performance 
data being apparently worse than experienced drivers). Rather than relying 
on open-loop, anticipatory control, advanced drivers deliberately force them-
selves to be aware of environmental feedback (cf. Bainbridge, 1978). In doing 
so, the benefits of controlled processing (i.e., adaptable in novel situations) 
are combined with the extended knowledge base of the skilled driver – with 
a concomitant reduction in collisions and ‘actions not as planned’ (Reason, 
1979). With such resource-demanding processing, a decrease in objective 
demand through automation should improve performance. Whether or not 
this higher MWL is a cost (in terms of overload) or a benefit (in terms of 
underload) remains to be seen.

CONCLUSIONS

The data presented in this chapter (Young & Stanton, 2007c) are consistent 
with the idea that automation and automaticity can overlap, as unskilled driv-
ers effectively behaved in an automatic manner when automation was used. 
There are a number of implications arising from these results. It seems that 
increasing levels of automation does indeed attenuate observable differences 
in performance between skill groups, as suggested earlier (cf. Shinar et al., 
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1998; Ward, 2000). That is, the performance of inexperienced drivers on 
speed control benefits more from lateral control being automated, bringing 
them in line with their more experienced counterparts.

On the face of it, this is a promising finding – everybody will apparently 
drive better with more automation. But, as we have discussed in earlier chap-
ters, we would not necessarily expect performance differences if the  situ-
ation with the automation is nominal, even with reduced MWL, because 
the reduced demand is within the reduced capacity of the operator. But we 
have also predicted that, if workload should suddenly increase, then perfor-
mance problems are likely – so what happens when the driver has to take over 
from the automation? Presumably the automatic behaviour of experts will 
quickly resume, save for any skill degradation (Stanton & Marsden, 1996). 
Those with less experience, though, may have more trouble recalling stored 
routines and responding in a controlled manner. The next study in this series 
explores this very question.

KEY POINTS

• Skill and mental workload are intertwined, as expert performance 
(automaticity in cognitive processing terms) is characterised by being 
largely free of attentional resource limitations, thus reducing workload.

• The driver’s level of automaticity has the potential to interact with level 
of automation, as the workload experienced by an expert is already low, 
while a novice does not have the background knowledge base to support 
the task.

• Data from a simulator study showed that automation can to some extent 
attenuate performance differences between driver skill levels, lending 
weight to the suggestion that automation can have a parallel (but quali-
tatively different) impact to automaticity.

• The study also confirmed that adaptive cruise control and lane centring 
systems had similar effects on driver mental workload and attentional 
resources across all skill levels, from novice to advanced.
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Chapter 7

I thought you were driving!

OVERVIEW

Having covered a lot of ground, it is nearly time for another rest stop on our 
journey. The final chapter for this stage presents the culmination of our series 
of experiments developing malleable attentional resources theory (MART). 
Building on the work so far, which has shown that attentional capacity 
shrinks in line with reductions in mental workload, we now examine the 
consequences of such shrinkage for performance by testing responses to an 
automation failure event. Research on reaction times to failures of different 
levels of automation is reviewed before going on to describe a study compar-
ing learners and experienced drivers in the Southampton Driving Simulator. 
Participants faced a failure of driving automation in two different workload 
conditions. Reaction times to the automation failure were increased when 
compared with analogous responses in manual driving from other research. 
Moreover, when participants had already been through an automation failure 
(and could therefore reasonably expect another failure), learner drivers were 
worse at recovering control than experienced drivers. Although the conclu-
sions for MART were tempered by evidence of vigilance and physiological 
arousal playing a part, on the whole there was support for the notion that all 
drivers would experience resource shrinkage, but the automaticity of experi-
enced drivers confers some immunity to the effects of such shrinkage.

INTRODUCTION

In the last few chapters, we have revisited a series of papers that built a case 
for an explanatory theory of the effects of mental underload on performance. 
Malleable attentional resources theory (MART) offers a solution by drawing 
on existing capacity theories of attention (Kahneman, 1973; Wickens, 1984; 
2002). MART challenges conventional assumptions by stating that resource 
size is not fixed, and can actually shrink with reductions in mental workload 
(MWL). In underload situations, it is hypothesised that resources shrink to 
such an extent that performance levels in otherwise normal situations are no 
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longer within the capacity of the operator. Young & Stanton (2002a, 2002b) 
established theoretical and empirical evidence for MART, while Young & 
Stanton (2007c) developed the theory by relating it to issues of skill and 
automaticity.

Young & Stanton (2002b) tested participants in a driving simulator under dif-
ferent levels of driving automation to provide support for MART. Although they 
found that reductions in MWL associated with automation were also reflected 
in a shrinkage of attentional resources, this did not translate into a detrimental 
effect on normal driving performance. Young & Stanton (2002b) concluded 
that this was because participants had adapted well to the reduced demands, 
matching resource capacity to objective demands. However, as we described 
in Chapter 3, the ‘problem’ with underload is manifest in workload transitions 
(Huey & Wickens, 1993; Young et al., 2015) – that is, sudden increases in 
demand that are above the shrunken capacity limit. Whilst automation can 
actually improve performance in routine tasks, people struggle to recover if 
something unexpected happens (Onnasch et al., 2014). MART assumes that 
underload has caused attentional resources to shrink below a level at which 
coping is ordinarily possible (refer back to Figure 3.5 for an illustration).

In the context of automated driving, these sudden workload transitions can 
occur when manual takeover of control is required. We might consider these 
situations as ‘failures’ of automation, but it is worth reminding ourselves 
that they may not be technical failures at all; even the latest technology can-
not deal with all unforeseen events, so it could just be a non-routine scenario 
that the automation has not been programmed to deal with (Endsley, 1987). 
And on the road, when the driver is required to step in, they have very little 
time to do so (Hancock, 2019; 2021); at highway speeds, the car will travel 
a great distance even in a few seconds. The fact that automation is becoming 
ever more reliable only exacerbates the problem – ‘failures’ might be rare but 
they will eventually happen, leaving the driver facing ‘hours of boredom fol-
lowed by moments of terror’, with very little to do until things go very wrong, 
very quickly (Hancock, 2019; 2021).

Numerous studies have demonstrated that, in these critical situations, driv-
ers exhibit worse responses with automation and are unable to reclaim  control 
in a safe and timely manner (see e.g., de Winter et al., 2014, and Victor et al., 
2018 for reviews). To set the context for the study we present in this chap-
ter, we now go on to review such research addressing two broad questions: 
whether (and how) drivers respond at all to critical events, and what effect the 
automation has on their reaction times to such events.

Responses to automation failure

Several studies have used driving simulators to explore the effects of auto-
mation failure on driver performance. These have consistently demonstrated 
performance in the automated conditions to be inferior to that in manual 
control, as well as being generally associated with reductions in MWL.
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One of the first such studies (Nilsson, 1995) compared critical situations 
between drivers using adaptive cruise control (ACC) and those driving manu-
ally, and found dramatically worse performance in the ACC condition. Of 
those who crashed (in a scenario when the car approached a stationary queue), 
participants were four times more likely to have been using ACC than driving 
manually. Later, Desmond et al. (1998) also compared failures of automa-
tion to a manual control condition. Participants drove a simulated vehicle 
under manual and level 2 automated (i.e., lateral and longitudinal) control. 
Lateral failure in the automation condition was balanced with simulated wind 
gusts to affect vehicle dynamics in the manual condition. Once again, recov-
ery from these situations was better in the manual condition. The authors 
concluded that this was due to a misperception of task demands leading to 
an inappropriately low investment of effort in the automated case, although 
there were no differences in subjective MWL between the conditions.

Like Nilsson (1995), others have found startling proportions of drivers fail-
ing to respond effectively in automation failure scenarios. Stanton et al. (1997) 
used the Southampton Driving Simulator (SDS) to explore the effects of ACC 
failure on driver performance. Participants were required to follow a lead 
vehicle with ACC engaged. At a predetermined point, the ACC system would 
fail to detect the lead vehicle braking, necessitating participant intervention to 
avoid a collision. It was found that one-third of all participants collided with 
the lead vehicle when ACC failed. In addition, the use of a secondary task 
demonstrated that under normal circumstances, workload is  significantly 
reduced when ACC is engaged. Similarly, another simulator study of an emer-
gency situation involving level 2 driving automation found that only half of 
the drivers reclaimed control effectively (de Waard et al., 1999), with the 
remainder facing a distance headway as low as 10 centimetres. The authors 
even claimed that this was an optimistic estimate, with demand characteris-
tics in the simulated environment essentially getting the best performance out 
of their participants.

More recently, in an on-road study of drivers’ responses to a system take-
over warning, Banks & Stanton (2016) found that nearly one-quarter of 
drivers did not regain complete control of the vehicle. In a series of related 
papers, Ljung Aust (2020) and colleagues (Tivesten et al., 2019; Victor et al., 
2018) reported on a test track study in which drivers used a perfectly reli-
able automated driving system for 30 minutes before facing a critical event 
that required manual intervention. Despite drivers’ visual attention largely 
being on the road ahead, nearly one-third still crashed in the critical event. 
Victor et al. (2018) pointed out that just because drivers were looking at the 
road, this is not the same as being in the loop – it requires recognition and 
a decision to act. Whilst the results were attributed to drivers’ expectations 
of and trust in the system (Ljung Aust, 2020), there was no ‘first failure’ 
effect in that experiencing one crash did not necessarily mitigate subsequent 
conflicts (Victor et al., 2018), contrary to results elsewhere (Seppelt & Lee, 
2007, found that drivers relied less on ACC after a failure). In fact, drivers’ 
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glance behaviour was a stronger predictor of whether they crashed than their 
reported trust (Tivesten et al., 2019).

There are exceptions to the rule. One is in a study by Eriksson et al. (2018), 
who devised a driving simulator study to test participants’ responses to a 
steering deviation while the driver was distracted with a secondary task. 
The ‘jerk’ response in trying to recover control was ostensibly worse under 
manual,  distracted driving than in the parallel situation of recovering con-
trol from failure of a lane centring (LC) system. Similarly, Gold et al. (2018) 
reported evidence of improved performance in a takeover situation from 
level 3 automation when carrying out a non-driving secondary task, which 
they suggested may be a demonstration of MART since the additional work-
load activated attentional resources.

Reaction times to automation failure

A number of studies have examined brake reaction times to a lead vehi-
cle decelerating when driving manually. In these studies, one of the main 
factors that can affect reaction time is whether the driver is aware of, or 
 expecting, the hazard; responses are generally slower where the driver is not 
expecting the hazard (Schweitzer et al., 1995; Sohn & Stepleman, 1998; van 
der Hulst et al., 1999; Warshawsky-Livne & Shinar, 2002). Reaction times 
are also longer if the lead vehicle decelerates more slowly, or with increased 
headway between the two vehicles. Table 7.1 summarises the data on reaction 
times found in these studies (note that the longer reaction times in the study 
by van der Hulst et al., 1999, were apparently due to the relatively slow rate 
of deceleration used compared to other research).

When adding automation into the mix, various studies have found increased 
brake reaction times in critical situations when using ACC (e.g., Hogema 
& Janssen, 1996; Hogema et al., 1997) as well as with conventional cruise 
control (Vollrath et al., 2011). A test track study by Rudin-Brown & Parker 
(2004) looked at reactions to critical events when using an ACC system. These 
critical events included responding to the lead vehicle braking and, towards 
the end of one condition, a failure of the ACC system in which it would lose 
detection of the lead vehicle and gradually accelerate to its set speed. If driv-
ers did not intervene, this would result in a collision at least 33 seconds later, 
depending on the exact speed of the vehicles. Rudin-Brown & Parker (2004) 

Table 7.1 Summary of brake reaction times (in seconds) from the studies reviewed

Aware Partially aware Unaware

Warshawsky-Livne & Shinar (2002) 0.540 0.565 0.590
Schweitzer et al. (1995) 0.550 0.632 0.739
Sohn & Stepleman (1998) 1.290 1.360
van der Hulst et al. (1999) 4.200 6.300
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found that whilst ACC reduced workload (as measured by a secondary task), 
it increased the reaction times to a lead vehicle braking, particularly when the 

There were also around one-third fewer safe braking events (defined as brak-
ing within 2 seconds) with ACC than when driving manually. In short,  drivers 
braked later, harder and more often than was necessary. Moreover, when 
faced with the ACC failure, drivers took an average of 23 seconds to respond. 
Interestingly, drivers waited until the average headway was 0.6 seconds 
before intervening, a value similar to the kinds of headways that a substantial 
minority of drivers adopt in other research (Taieb-Maimon & Shinar, 2001) 
and of the same order as the lower end of brake reaction times summarised 
in Table 7.1. So this kind of headway might seem to be a minimum thresh-
old that drivers use to decide whether to brake manually. Rudin-Brown & 
Parker (2004) also found that ACC resulted in more lane position variability,  
concluding – with some echoes of MART – that the reduction in workload led 
to the decrements in performance and reaction time, as the spare attentional 
capacity was diverted to other, non-driving, tasks.

Going beyond ACC, other research in highly automated vehicles has also 
demonstrated delayed responses to emergency situations that are outside the 
system’s operational design domain (Navarro et al., 2018). Considering the 
case of manual takeover from automation (emergency or otherwise), a review 
by Eriksson & Stanton (2017b) found a range of reaction times between 1 
and 15 seconds, with most studies agreeing on somewhere around 3 seconds. 
These reaction times may be affected by factors such as traffic, speed, or the 
presence of a secondary task – if drivers are engaging in something other than 
driving (which drivers using automation are wont to do), we might expect 
reaction times closer to 15 seconds than to 1 second (more on distractions 
from secondary tasks in the next chapter). Furthermore, the quality of the 
takeover response (in terms of lateral deviation) may also be worse when driv-
ers are distracted, even if reaction time is not (Zeeb et al., 2016).

Eriksson & Stanton (2017b) also conducted a simulator study of their own 
on planned transitions from automated to manual control, with drivers tak-
ing between 2 and 26 seconds depending on task engagement. Reaction times 
to warnings can also be slower when both longitudinal and lateral control are 
automated (Seppelt & Victor, 2016). A similar study by Merat et al. (2014) 
examined driver behaviour when resuming control from a highly automated 
vehicle, where these transitions were designed into the system (either at reg-
ular time intervals or if the driver looked away from the road). Although 
performance was better if the transition was predictable (i.e., time-based), 
drivers did not begin to resume control until at least 10 seconds after the sys-
tem disengaged, while both their steering performance and visual attention 
took up to 40 seconds to stabilise. Performance was also worse when work-
load was higher. There are echoes of this in the study by Zeeb et al. (2016), 

ACC was set with a longer headway (2.4 seconds time headway compared 
to 1.4 seconds). Average reaction times were 2 seconds for manual driving, 
2.6 seconds for the short headway ACC, and 2.8 seconds for long headway ACC. 
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who observed that drivers’ motor response (i.e., placing their hands back on 
the steering wheel) was relatively unaffected, but their ‘cognitive readiness’ 
was susceptible to distraction and adversely affected their performance in the 
immediate aftermath of the takeover.

The experiment

Following similar research elsewhere, then, this final study in the MART 
series (see also Young & Stanton, 2001b) centred on the performance of 
underloaded participants in response to an automation failure event. As with 
the Rudin-Brown & Parker (2004) test track study, the ACC system in our 
simulator was programmed to lose the target it was following and resume its 
set speed, accelerating towards the car in front. Participants had to respond 
by braking or steering if they were to avoid a crash.

Furthermore, as we reviewed in Chapter 6, the interaction of skill with MWL 
and automation has been relatively neglected in the applied literature. Automation 
has been demonstrated to reduce the performance gap between those of differ-
ing skill levels (Badham, 1992; Shinar et al., 1998; Ward, 2000). Whilst this 
may be true under normal circumstances, the reactions of different skill groups 
when faced with automation failure are less well researched. One study in an 
aviation context (Mohrmann et al., 2015) suggested that inexperienced pilots 
were overconfident with a highly reliable automated subsystem, which adversely 
affected their reactions when the system failed. More specifically, Larsson et al. 
(2014) demonstrated that reactions to a critical situation using either level 1 
(ACC) or level 2 (ACC+LC) automation were around 2 seconds slower than the 
same scenario while driving manually – but those experienced with using ACC 
were about half a second faster than novices. They put this down to knowledge 
of the system’s limitations (i.e., braking hard in response to a vehicle cutting 
in front) rather than anything to do with response to the hazard. This echoed 
earlier research that showed drivers’ reactions to ACC failure depended on the 
context, with more (over)reliance in a traffic situation that exceeded the ACC’s 
braking limits than in rain that had degraded the ACC’s sensors (see Seppelt & 
Lee, 2007). Moreover, drivers continued to rely less on the ACC after a failure. 
So, to some extent, drivers’ responses to ACC failure may depend on their appre-
ciation of its limitations (cf. Pampel et al., 2020).

Nevertheless, in terms of the workload effects between different skill groups, 
we have little evidence to go on. On the one hand, the enhanced knowledge 
base of experienced drivers may facilitate their responses; on the other, the 
sudden increase in demand might cause them to revert to a novice strategy 
(cf. Bainbridge, 1978; Beilock et al., 2002). The research in our laboratory 
found that automation had similar effects on attentional capacity regardless 
of skill level (Young & Stanton, 2007c), suggesting that automaticity does 
not prevent the resource shrinkage associated with underload. By examin-
ing the performance of drivers and non-drivers in critical automation failure 
scenarios, we may further elucidate the effects of underload on performance.
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The study in this chapter was therefore designed to investigate whether dif-
ferent levels of automation or driver skill would affect reactions in recovering 
control of the vehicle in an automation failure scenario. The combination 
of MART with the theory of automaticity when using automation suggests 
that responses to failure would vary according to levels of skill and MWL. 
MART would predict decreased MWL accompanied by impaired responses 
to automation failure under high levels of automation, when compared to 
low automation conditions. There should also be a main effect of skill, such 
that experienced driver performance is generally better than the less skilled 
drivers. Furthermore, the influence of automaticity is predicted to interact 
with level of automation. Unskilled drivers should suffer greater performance 
degradation than their skilled counterparts when responding to failures in the 
high automation condition. The main predictions are illustrated in Figure 7.1.

There is, however, an elephant in the car that we have not properly 
addressed so far. The essence of MART hinges on the direct relation between 
mental demands and attentional capacity. It predicts that, in addition to being 
affected by contextual factors such as physiological arousal, age, or mood 
(Hasher & Zacks, 1979), the size of resource pools can alter purely because of 
task intrinsic factors which reduce MWL. One problem with this explanation 
is that it is difficult to separate the effects of task demands from arousal – 
the two tend to be associated. Research has related decreases in arousal (as 
measured by heart rate) to subjective states of underload and boredom (Braby 
et al., 1993) as well as automation (de Winter et al., 2014). Meanwhile, arousal 
has been linked to the deployment of attentional resources, such that there is a 
positive relation between arousal and attentional capacity (Hasher & Zacks, 
1979; Humphreys & Revelle, 1984; Necka, 1996). In the original formula-
tion of a capacity theory of attention, Kahneman (1973) put these two aspects 
together, suggesting that task demands affect arousal, and that arousal in 

Figure 7.1  Predicted levels of response to automation failure across skill groups and auto-
mation conditions.
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turn is positively correlated with capacity, particularly at low arousal lev-
els (although the concept of flexible capacity proved difficult to test; Huey 
& Wickens, 1993). Finally, we have also known for a very long time that 
arousal and performance are related on the classic inverted-U curve (Yerkes & 
Dodson, 1908). Moreover, for simple tasks at low levels of MWL, the optimal 
arousal ‘peak’ of the inverted-U curve is higher than for a complex task (i.e., 
higher arousal is needed for optimal performance of a low MWL task); this 
has been linked to the mobilisation of attentional resources and a momentary 
shrinking of capacity similar to the effect of fatigue (Lee et al., 2020).

The detrimental effects of underload on performance may not, therefore, 
be a direct consequence of the mental demands. Instead, it could simply be 
the case that the arousal level of the operator has dropped, adversely affecting 
attention. As well as testing MART in an automation failure scenario, then, 
the present study attempts to dissociate physiological arousal from MWL to 
provide support for MART.

METHOD

Design

In a lot of previous research, the contrast has largely been drawn between 
manual and ACC-supported driving (see also de Winter et al., 2014). The 
problem with this approach, when investigating the effects of automation fail-
ure, is establishing equivalence between the two conditions – for instance, 
comparing an ACC failure with an analogous emergency situation in manual 
driving. Moreover, the main point of the present study is to try and isolate 
MWL (specifically, underload) as the key factor affecting performance in an 
automation failure scenario.

Therefore, we did not need to test all four levels of automation as in our 
previous studies, but we only needed two conditions which differed in their 
level of MWL. Comparing ACC against ACC+LC met this requirement, since 
we had already established that the MWL associated with using ACC+LC is 
significantly lower than with ACC (Young & Stanton, 2002b; see Chapter 4). 
As both conditions use ACC, we could then present the critical automation 
failure with the ACC system each time, meeting the equivalence require-
ment that we sought. As the point of the experiment was to try to prove that 
reduced MWL is the factor which affects performance, a control condition of 
manual driving was not necessary. This has the added advantage of mitigating 
against any automation-specific explanations for performance effects, such 
as situation awareness or out-of-the-loop performance (cf. Endsley & Kiris, 
1995; Kaber & Endsley, 2004). Some research has shown that reactions to 
critical events with such highly automated driving are worse than with ACC 
(de Winter et al., 2014).

Furthermore, by presenting the automation failure twice (once in each con-
dition), the possibility of different levels of anticipation (Huey & Wickens, 
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1993), effort or voluntary allocation of attention can be assessed (cf. Desmond 
et al., 1998; Kahneman, 1973), comparable with previous studies on driver 
awareness of an impending critical event (e.g., Dingus et al., 1998; Schweitzer 
et al., 1995; Sohn & Stepleman, 1998; van der Hulst et al., 1999; Warshawsky-
Livne & Shinar, 2002). Presumably, participants who were once naïve to the 
possibility of automation failure may then invest more effort in monitoring 
or recovering from a failure if they thought it could happen again, and we 
may see performance improve on the second trial. If, instead, responses to 
failures do not differ from first to second presentation, then this may point to 
an inability (rather than an unwillingness) to respond, in line with MART.

The automation failure occurred 51 seconds from the end of the run, and 
involved ACC disengaging without warning at the same time as the lead car brak-
ing. Participants had to intervene if a collision was to be avoided. If no action was 
taken, collision with the lead vehicle occurred approximately 4 seconds after the 
failure. Minimal feedback was given about the failure, except for the ‘CC’ icon 
on the screen extinguishing, and a very slight change in engine note.

Two groups of driver skill were compared as a between-subjects factor: 
learner (i.e., currently learning but does not hold a full licence), and expe-
rienced (holds a full UK driving licence). These groups were selected on 
the basis of previous research in the SDS (Young & Stanton, 2007c; see 
Chapter 6), which suggested a clear performance divide between skilled driv-
ers (i.e., those with a full UK driving licence) and non-drivers (those without 
a licence),  particularly for longitudinal control (Blaauw, 1982, found similar 
results in non-automated driving). There were 20 learners and 24 experienced 
drivers who took part in this study.

In keeping with the experimental design used previously, the simulated 
road was a mixture of straight and curved sections. Other research in our 
laboratory (Young & Stanton, 2004; see Chapter 5) provided the choice of 
experimental task. Mental workload differences with ACC were found to be 
most sensitive when following a variable speed lead vehicle, rather than one 
at constant speed. Thus in adopting the design of Young & Stanton (2004), 
participants were required to follow a lead vehicle which was programmed 
to travel at a maximum 70 mph (113 km/h), but at pseudo-random intervals 
would brake to around 30 mph (48 km/h) before accelerating back up to 
70 mph. This task also provided face validity for the failure event. It is feasible 
that in certain situations, ACC may not detect the braking of a lead vehicle, 
therefore this is a realistic failure scenario to use. Time headway of the ACC 
system was set at approximately 1.75 s.

Given the criticality of inducing an underload state for this experiment, 
we decided not to use a secondary task as there is evidence that it can affect 
both subjective workload ratings (Liu, 1996; Meshkati et al., 1990; Nees 
& Sampsell, 2021) and driving performance (Brouwer et al., 1991; Foy & 
Chapman, 2018; Verwey & Veltman, 1996). The intrusiveness of a second-
ary task on performance can be especially pronounced at low workload levels 
(Rudin-Brown & Parker, 2004; Wierwille & Gutmann, 1978), even in spite 
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of instructions emphasising that priority should be given to the primary task 
(Kantowitz, 2000). In a separate study in the SDS (Young & Stanton, 2007b), 
we also found that our secondary task interfered with steering performance as 
well as inflating scores on the NASA-TLX. Whilst the effect on steering may 
simply have represented manual response competition, since the secondary task 
buttons were on the steering column, this is still a concern for a study which is 
attempting to determine the ‘pure’ effects of underload on performance.

If the performance of a secondary task contributes to mental workload, it 
may not be possible to induce an underload state, regardless of the primary 
task demands (Liu, 2003, found that a mobile phone task actually improved 
driving performance in otherwise low workload situations). In that case, 
we might not be able to attribute differences in performance with automa-
tion (if any) to mental underload. Once we discovered that the secondary 
task can inflate overall workload, we decided it was probably sensible not to 
use it in experiments investigating the effects of underload on performance. 
Moreover, in Chapter 4 we also concluded that the secondary task may have 
been serving to draw attention away from the driving task, let alone interfer-
ing with workload. In that case, the underload explanation for any perfor-
mance effects in recovering control would be confounded.

Therefore, we took the decision not to use the secondary task in this auto-
mation failure experiment. A small pilot study was used to test subjective 
MWL with the proposed experimental design – a variable-speed lead vehicle 
but with no secondary task – though without the automation failure as this 
may have influenced the subjective responses. This pilot study confirmed that 
subjective MWL on the NASA-TLX still significantly reduced from ACC to 
ACC+LC in both skill groups, and the data compared well to those gathered 
by Young & Stanton (2002b). We could therefore be confident that there was 
still a significant MWL reduction in the ACC+LC condition compared to 
driving with ACC only.

In terms of dependent variables, reaction times to the failure event and/or 
time until the collision occurred were recorded. Whether or not the partici-
pant reacted and/or collided at all were also dependent variables. All of these 
data were analysed within each trial (i.e., failure-naïve vs. failure-primed – 
 analogous to the ‘unaware’ and ‘partially aware’ conditions used in the other 
studies of brake reaction times reviewed earlier) to determine whether expe-
rience of a previous failure event affects behaviour in subsequent trials (see 
Young & Stanton, 2007a, for a more detailed analysis of this part of the study).

For all participants who reacted to the failure, three reaction time variables 
were calculated: brake reaction time (BRT), foot movement time (MT), and 
total braking time (TBT). The simulator recorded data on TBT (i.e., time 
from onset of the automation failure to first pressure on the brake pedal), 
and an infra-red camera in the footwell was used to record MT (i.e., time to 
move the foot from its resting position to the brake pedal – note that the foot 
was resting on the floor since ACC made pedal inputs redundant). BRT was 
then calculated by subtracting MT from TBT (cf. Liebermann et al., 1995). 
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Therefore, BRT is the participants’ thinking time (i.e., time from the failure 
event to first reaction), while TBT is the time required to process information 
from the environment as well as implement the appropriate response.

To address the question of whether attention shrinks purely in response to 
MWL (as MART predicts) or via the moderator of physiological arousal, an 
appropriate measure of arousal was needed. A simple and reliable measure of 
arousal is heart rate (Humphreys & Revelle, 1984; Roscoe, 1992), measured 
in beats per minute (bpm). Whilst it is true that heart rate (HR) has been 
used to measure MWL (and, indeed, has tentatively been linked with reduced 
MWL of automated driving; de Winter et al., 2014), it has a much longer asso-
ciation with physiological arousal (Humphreys & Revelle, 1984; Jorna, 1992; 
Roscoe, 1992). Derivative measures, such as heart rate variability, are better 
indicators of MWL (Jorna, 1992); the simpler HR measure was used here 
purely to gauge arousal rather than MWL. Heart rate was recorded using a 
nonintrusive sports monitor with a chest belt sensor. For the purposes of anal-
ysis, the HR data were divided into six time blocks, which included a block 
for baseline data, and five two-minute blocks during the experimental trial; 
average HR was used as the dependent variable within each of these blocks.

Procedure

Participants were given a 5-minute practice run in the simulator, to allow 
them time to acclimatise to the controls. Following the practice run, the two 
automation conditions were explained to participants and operation of the 
automation controls was demonstrated. Participants then put on the chest belt 
for the heart rate monitor, which started recording before each condition to 
allow for baseline data to be collected.

The two experimental conditions, each of 10 minutes duration, were then 
presented to the participant in a randomised and counterbalanced order. 
In the experimental trials, participants were required to follow a lead vehicle 
travelling at a maximum speed of 70 mph (113 km/h). Participants were told 
that the lead vehicle would brake periodically, and they were instructed to 
stay behind it, relying on the ACC system to maintain headway as much as 
possible. However, participants were also informed that if they felt the need 
to intervene, they should do so, treating the drive as much like a real situation 
as possible.

Prior to the first condition, participants were given no specific instructions 
with regard to automation failure. They were simply told to treat it as much as 
possible like a real road situation, and to behave accordingly. However, after 
the failure in the first trial, participants were informed before the second trial 
that the automation was not perfect (as had been observed in the first run) and, 
should it fail again, they were to take over manual control as quickly and effec-
tively as possible. This was to test whether participants who were motivated 
to invest effort in monitoring for a failure were more effective than those who 
were naïve (cf. Desmond et al., 1998; Matthews & Desmond, 2002).
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RESULTS

Reaction frequencies

One of the key dependent variables was whether or not participants reacted at 
all to the failure event. In the learner driver group, 12 participants out of 20 
responded to the failure event in the ACC condition, while only 7 out of 20 
did so in the ACC+LC drive. Neither of these figures was significantly differ-
ent to chance responding.

Experienced drivers, on the other hand, performed slightly better. Of the 
24 experienced participants, 15 attempted to regain control in the ACC con-
dition, and 18 reacted when using ACC+LC. The latter statistic was signifi-
cantly more than would have been expected due to chance. These response 
frequencies are illustrated in Figure 7.2.

In the light of this unexpected result, we decided to examine the data more 
closely. Some of the studies reviewed earlier distinguished between ‘aware’ 
and ‘unaware’ participants when it came to reactions to a critical event. So 
we explored the possibility of a learning effect from trial 1 to trial 2, com-
paring reactions across the two trials, collapsing the automation variable. In 
trial 1, only five learner participants reacted, which was significantly less than 
expected due to chance. This effect disappeared in trial 2, although the trend 
reversed with 14 participants making an effort. For experienced drivers, the 
11 who responded in trial 1 was no different to a chance result. On the second 
trial though, a significantly high number of 22 attempted a recovery.

Given that there is apparently a strong learning effect in each group, exami-
nations of the automation effect were repeated, this time within each trial. In 
trial 1, when participants were expected to be naïve, there were no significant 
effects of automation in either skill group. However, by the second trial, all 12 

Figure 7.2  Proportion of drivers who responded overall, across skill groups and automa-
tion conditions.
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experienced drivers who used ACC reacted to the failure, and 10 of the 12 in 
the ACC+LC condition responded – significantly higher than a chance level of 
responding. The effect of automation for learners was especially pronounced, 
with nine out of the 10 learners using ACC attempting to respond (signifi-
cantly greater than chance), while exactly half responded in the ACC+LC 
condition (see Figure 7.3).

Figure 7.3 is quite an accurate reflection of the predictions for this study. 
The performance of experienced drivers is virtually at ceiling, with responses 
in both automation conditions being significantly higher than those which 
would be expected due to chance. However, the pattern for learner drivers is 
most supportive of MART. When naïve, all participants have a roughly equal 
chance of responding to automation failure. If a failure has already been pre-
sented, though, the responses of learner drivers only improve if task demands 
are high. In other words, mental underload has had a detrimental effect on 
the responses of unskilled participants. This result epitomises MART while 
incorporating the factor of automaticity with automation. When combined 
with the data collected by Young & Stanton (2007c), it is apparent that the 
low mental workload of the ACC+LC condition has shrunk the attentional 
capacity of all drivers. However, only learners suffer a consequent perfor-
mance decrement, probably due to the automatic nature of processing for 
experienced drivers.

Reaction time data

Not all participants reacted to the automation failure; for those participants 
who actually did react, there was no effect of automation on brake reaction 
time in either skill group. Again, a further analysis by trial was carried out 
in order to determine if there were any learning effects from trial 1 to trial 2.

Figure 7.3  Number of drivers who responded in trial 2 (failure-primed), across skill groups 
and automation conditions.
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In the learner driver group, differences in brake reaction time between 
trials were nonsignificant. Experienced drivers, however, were quicker to 
react  in trial 2. On average, experienced participants took 2.7 seconds to 
react in trial 1 compared to 2.14 seconds in trial 2. This suggests a significant 
learning effect between trials for experienced drivers; however, this occurred 
irrespective of automation level, and therefore does not have a bearing on the 
hypotheses of this study. Descriptive data are summarised across all condi-
tions in Table 7.2.

Physiological arousal

In order to determine what role (if any) physiological arousal played in these 
findings, the HR data were analysed across level of automation (two levels) 
and time block (six levels), referencing against the baseline HR recorded 
before the trial began. No between-subjects comparisons were made, as indi-
vidual differences in HR responses are too large to make statistical compari-
sons sensible (Roscoe, 1992). Separate analyses were therefore carried out for 
each skill group.

For learner drivers, HR in the ACC condition was not significantly differ-
ent from baseline HR, whereas in the ACC+LC condition every sector regis-
tered a significantly lower HR compared to the baseline. Mean heart rate in 
each sector across conditions is plotted in Figure 7.4.

Meanwhile, the analysis for experienced drivers only revealed an effect of 
time on task, with HR significantly decreasing in the second, third and fourth 
sectors of the experimental run (i.e., from the third minute to the ninth min-
ute). Mean heart rate in each sector by automation condition is presented in 
Figure 7.5. Despite appearances from the graph, there was not a statistical 
difference between the automation conditions.

One final analysis was carried out which is relevant to MART. This experi-
ment was an attempt to establish whether physiological arousal accounts for 
performance differences following automation failure over and above MWL. 
Given that the automation failure occurred in the final sector, it would seem 
logical to compare HR across automation conditions in the penultimate sector, 
immediately prior to the failure event. These analyses revealed a significant 
HR reduction in the ACC+LC condition for both learners and experienced 

Table 7.2  Means for brake reaction time (BRT) in seconds across skill groups and 
automation conditions.

Learner Experienced

BRT1 BRT2 BRToverall BRT1 BRT2 BRToverall

ACC 2.99 2.16 2.37 2.33 2.08 2.13
ACC+LC 2.41 2.37 2.38 2.90 2.14 2.48
Overall 2.76 2.24 2.74 2.10

Suffixes refer to experimental trial 1 or 2, or the overall statistics
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drivers. There were no differences in baseline HR prior to each trial, so it 
must be assumed that these differences were due to the driving condition. 
Mean heart rate values (bpm) across each of these conditions in the penulti-
mate sector are presented in Figure 7.6.

Subjective mental workload

One advantage of the NASA-TLX is in using the subscales to diagnose the 
source of MWL. In an effort to rule out vigilance as a competing explanation 
for the results, we can analyse the subscales to look for the MWL signature 

Figure 7.4  Mean heart rate across automation conditions and time sectors for learner 

Figure 7.5  Mean heart rate across automation conditions and time sectors for experienced 

drivers.

drivers.
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for vigilance tasks which has been observed by Warm et al. (1996). They 
found that the TLX scales of Mental Demand and Frustration were the most 
significant contributors to overall workload for vigilance tasks. To determine 
whether this signature existed at all in the present study, a regression analysis 
was performed on the TLX data from the pilot study for learners and experi-
enced drivers in both ACC and ACC+LC conditions. Overall workload was 
the dependent variable, and the six subscales were entered as the independent 
variables. The output, in terms of beta weights on each scale, is presented in 
Table 7.3.

As can be seen from these data, the vigilance footprint appears to be evi-
dent in the ACC+LC condition, particularly for the learner driver group. 
When one views the mean scores across all the NASA-TLX subscale ratings 
for that condition (Figure 7.7), it is clear that Mental Demand and Frustration 

Figure 7.6  Mean heart rate prior to automation failure across skill groups and automation 

Table 7.3  Regression coefficients for NASA-TLX subscales across skill groups and 
automation conditions

TLX subscale

Standardised beta coefficients

Learner Experienced

ACC ACC+AS ACC ACC+AS

Mental Demand 0.203 0.313 0.193 0.203
Physical Demand 0.127 0.071 0.167 0.073
Temporal Demand 0.167 0.167 0.163 0.186
Performance 0.184 0.147 0.177 0.186
Effort 0.191 0.110 0.181 0.124
Frustration 0.162 0.391 0.173 0.324

conditions.
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are the overriding influences on MWL. Possibly, then, the vigilance decre-
ment might play a part in any degradation of performance for learners when 
using ACC+LC.

DISCUSSION

Implications: malleable attentional resources theory  
and automaticity

We had to dig a little to figure out what was going on with the results in this 
study as, on the face of it, it looked like we did not have much support for 
MART. Surprisingly, and contrary to predictions, overall performance (in 
terms of responses to automation failure) did not decrease with the underload 
of ACC+LC. In fact, performance was actually better for experienced drivers 
in that condition (i.e., they were more likely to respond).

However, this result was mediated by a significant learning effect, as 
the responses of both groups were greatly improved in the second trial. A 
breakdown of analyses within each trial found that performance was gener-
ally at chance in each group when participants were naïve, but virtually at 
ceiling under most conditions when participants expected the failure. This 
is  consistent with the research reviewed earlier showing better reactions for 
drivers who were aware of the possibility of failure, and is supported by other 
research (Ruscio et al., 2017) suggesting that the underload effect as predicted 
by MART only holds for unexpected takeover situations. In other words, 
when drivers are prepared to take over control, they may be priming their 
attentional resources to ‘spin up’ capacity in advance, thus negating the impact 
of a sudden increase in demand against their previously shrunken capacity.

Figure 7.7  NASA-TLX subscale ratings for learners in ACC+LC condition.



148 Driving Automation

The interesting exception to this rule was that learners did not improve 
their responses with ACC+LC even when they were aware of the possibility 
of failure. This represented the key finding from this study: that learner driv-
ers did not perform any better than chance in the low workload condition 
whether they were naïve or aware of the possibility of failure.

This was a very interesting finding. It suggests that, just as other influ-
ences on capacity (such as arousal, mood, and age) only affect controlled pro-
cesses (Hasher & Zacks, 1979), task demands only have a main effect on 
performance if the operator is unskilled. That is, the resource-free nature of 
 automaticity allowed experienced drivers to bypass the underload decrement, 
since although resources have shrunk for skilled and unskilled alike, the per-
formance of skilled operators is not dependent on those resources, so was rela-
tively unaffected. In the present scenario, it seems that the emergency braking 
response is an overlearned reaction for experienced drivers (cf. Nilsson, 1995).

This finding was also contrary to the results of Kessel & Wickens (1982). 
Their experiment demonstrated that transfer of failure detection skill was 
better if a passive monitor had previously been an active controller, rather 
than vice-versa. That is, performance improves if the automated condition 
follows the manual condition, but not if the automated condition is presented 
first. Here, passive monitoring led to worse performance if the operator had 
been a prior controller. However, the situation is slightly different, as the 
system subject to failure (ACC) was never under active control. If partici-
pants were required to manually control speed and headway at some point, 
the results might have been more consistent with those of Kessel & Wickens 
(1982). As we explained earlier, though, such an experimental design would 
not have satisfied the aims of the study.

It was anticipated that resources would diminish in low workload condi-
tions irrespective of voluntary strategies, such that participants would not be 
able to resume control even if they wanted to. The distinct improvements in 
performance for primed participants does not support this and implied an 
effect of effort. However, there is a qualification to this. Learner drivers only 
improved across trials in the ACC condition – no improvement was observed 
in the ACC+LC condition, despite the same effort manipulation, and despite 
there being evidence of better skill transfer from manual to automated (Kessel 
& Wickens, 1982). This is actually strong support for MART and sets it apart 
from some other explanations of mental underload. A maladaptive mobilisa-
tion of effort theory (e.g., Desmond & Hoyes, 1996; Desmond et al., 1998; 
Matthews et al., 1996) implies that there is some level of voluntary author-
ity over investment of effort in performance – participants can consciously 
improve performance if motivated to do so (Matthews & Desmond, 2002). 
MART has no such mechanism – reduced capacity is an involuntary and inev-
itable consequence of reduced demands. Learner drivers were not unwilling to 
respond, they were simply unable to react.

Although these results were encouraging for MART, the heart rate data 
detracted from the picture somewhat. To rule out physiological arousal as 
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the source of fluctuations in attentional capacity, ideally there would have 
been no difference in HR between the two conditions. This was not the case. 
In the learner group especially, HR was significantly lower in the ACC+LC 
condition than both the ACC condition and the baseline recordings. Overall, 
HR for experienced drivers did not statistically differ across automation con-
ditions, although at the point when it most mattered (i.e., immediately prior 
to the automation failure), HR under full automation was significantly lower 
with full automation than with ACC. This result did not simply represent a 
time-on-task effect; therefore, the difference in HR between conditions in the 
penultimate time block must have been purely due to the level of automation. 
Moreover, the data collected in this series of studies suggests a reasonable cor-
relation between physiological arousal and attentional capacity. In Chapter 4, 
we presented a timeline plot of the attention ratio variable as a decay curve 
of attentional resources. When comparing the parallel data from experienced 
drivers using ACC+LC in that study against the HR data in this study, atten-
tion ratio and HR appear to decrease along similar epochs.

It is possible, of course, that the physical activity of steering was at least 
partly responsible for the HR differences between the automation conditions. 
Nevertheless, the fact that arousal changes did occur is indisputable, and in a 
sense the source of this is irrelevant. The idea of a relationship between capac-
ity and arousal is not new (e.g., Hasher & Zacks, 1979; Kahneman, 1973) 
and has been associated with rapid workload transitions (Huey & Wickens, 
1993). Meanwhile, established attentional resource theory simply predicts 
that demands and arousal are positively associated (Kahneman, 1973), 
whereas MART sought to dissociate capacity from arousal and instead link 
it directly to demand. It seems, though, that underload, attentional resources 
and performance are indubitably related to physiological arousal (see also 
Young et al., 2015) and we cannot eliminate the possibility of arousal as an 
alternative explanation for the effects of underload on performance.

That said, we still believe there is value and validity in MART. In our opin-
ion, the literature had not previously seen evidence of attentional resource 
shrinkage as convincing as the attention ratio data provided by Young & 
Stanton (2002b), nor had such shrinkage been explicitly attributed as the 
cause of mental underload performance problems. Furthermore, the influ-
ence of operator skill had not been addressed in past research. Combining 
the results of Young & Stanton (2002b) with the reactions to automation 
failure observed here provides strong support for the hypothesis that atten-
tional capacity can shrink in line with reductions in MWL, and that excessive 
shrinkage can be detrimental to performance, especially for less skilled driv-
ers. It could even be argued that the decrease in mental activity affects physi-
ology, in an evolutionary efficiency of the cognitive system (cf. Adi-Japha & 
Freeman, 2000). However, such shrinkage might not be directly due to mental 
workload, given the associated effect of physiological arousal. Whether this 
effect is a cause, consequence, or simply coincidental with resource shrinkage, 
is a moot point.
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Nevertheless, these are valuable findings from a practical perspective, 
since physiological arousal is more readily detected than mental underload. 
This factor may actually prove to be useful for purposes such as physiologi-
cal monitoring of underload states (e.g., Brookhuis, 1993; Fairclough, 1993), 
which we will cover in Chapter 9. Moreover, it may even ultimately help us to 
define the elusive ‘redline’ of underload (or, indeed, overload) as arousal may 
help us to gauge the supply of resources against demands (cf. Young et al., 
2015). Indeed, metrics of cerebral blood flow have been explicitly related to 
the supply of attentional resources in response to task demands, with direct 
reference to MART (Matthews et al., 2010). Such measures represent excit-
ing developments in that quest for the ‘holy grail’ of identifying redlines in 
overload and underload. Rather than trying to dissociate the effects of mental 
demands from arousal, then, it may be more constructive to accept that the 
two are related.

Given the design of this study – a low demand situation, monitoring for 
a single failure – it could also be argued that a vigilance decrement might 
explain the differences in observed performance. Whilst vigilance decrements 
are less likely with dynamic signals such as driving (Parasuraman, 1987), two 
aspects suggest that vigilance may be important to the results obtained in this 
study. Firstly, there is evidence that vigilance decrements occur only for tasks 
involving controlled processing – automaticity is immune to problems of vigi-
lance (Fisk & Schneider, 1981). The fact that performance decrements were 
only really evident in the learner driver group favours this explanation. The 
other aspect involves the MWL signature for vigilance observed in the TLX 
data (cf. Warm et al., 1996), which was particularly pronounced for learn-
ers in the ACC+LC condition, correlating with the distinctive performance 
effects in that condition.

However, these arguments may be countered by the fact that the experimen-
tal trials were still well below the timescales for vigilance problems – typically 
20–30 minutes, as opposed to the 10-minute trials used here (see also Endsley 
& Kiris, 1995). Analogous results have been found with automated driving, 
as drivers ‘switch off’ from monitoring the road after 20 minutes with the 
automation engaged (Mueller et al., 2021). Finally, passive monitoring and 
vigilance have been characterised as high MWL tasks, rather than being asso-
ciated with underload (Hancock, 2021; Hancock & Verwey, 1997; Metzger & 
Parasuraman, 2001). Given the reductions of MWL in the present task design 
(see also Young & Stanton, 2002b), we are reasonably confident that under-
load has played a greater part than vigilance in the effects on performance.

Another, related, explanation for performance decrements in automation 
involves situation awareness and the out-of-the-loop problem (Endsley, 1987). 
This is a general reference to the reduced ability of operators to detect or 
respond to critical events if the system had previously been under automated 
control (see e.g., Banks & Stanton, 2016; Mueller et al., 2021). The lack of 
interaction can reduce awareness of system states and can cause a decay of 
direct control skills (Kaber & Endsley, 1997). Endsley & Kiris (1995) found 
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that participants attempting to recover from a system breakdown performed 
significantly worse when the task had been automated, than when they had 
been controlling the system manually. However, they found no differences in 
MWL, concluding that the lack of a MWL effect was due to the processing 
demands being shifted from control to monitoring (cf. Wickens & Kessel, 
1981). The argument is that monitoring does not relieve workload, it just 
places different types of demands upon the operator. With no observed MWL 
differences across conditions, performance decrements were attributed to a 
loss of situation awareness, as participants’ understanding of the situation 
was poorer in the fully automated condition than in the manual trials. In our 
study, there were indeed differences in MWL between conditions, and the 
automation failure occurred to the same system (ACC) in both conditions 
with no comparison to manual control.

In a series of studies (Gustavsson et al., 2018; Ljung Aust, 2020; Victor 
et al., 2018), drivers’ (lack of) responses to critical scenarios were ascribed to 
their expectations or trust in the system’s capabilities, regardless of whether 
they had been given instructions about its limitations or experienced a criti-
cal event before. Drivers were ostensibly paying attention to the road ahead 
and were ready to take over, but they simply thought the automation would 
deal with more situations than it could actually handle. Given that we used 
the same automation failure event (ACC) in both conditions, it seems unlikely 
that these explanations would account for the observed effects just because an 
ancillary system (LC) was also switched on. Moreover, if expectations were 
influencing participants’ responses, this does not explain the differences in 
failure-primed performance observed across workload conditions for learner 
drivers in our study.

Similarly, there is evidence that operators of highly reliable automation 
tend to take advantage of it by redirecting their attention to secondary tasks 
(Merat et al., 2014), with consequent effects on performance (Rudin-Brown 
& Parker, 2004). Then, the problems with resuming control may be more 
about distraction than underload (cf. Lee et al., 2020; Victor et al., 2018; see 
also Endsley & Kaber, 1999; Large et al., 2018). Our experimental design 
deliberately did not include any secondary tasks for that very reason; there 
was nothing else for participants to do other than monitor the automation. 
Nevertheless, there remains an open question under MART as to what hap-
pens to the shrunken resources – why does it shrink and where does that 
lost capacity go? Indeed, has it really been lost or merely allocated elsewhere 
(internally or externally), in which case are we just talking about another 
form of distraction?

Implications: automation and driver skill

In addition to the well-known problems of skill degradation with automa-
tion (e.g., Parasuraman, 2000), the present experiment has demonstrated that 
drivers in the early stages of skill development can be adversely affected when 
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using a highly automated vehicle. Fewer opportunities to learn from experi-
ence with manual driving will impair the development of adaptive expertise 
(Ivancic & Hesketh, 2000), potentially leading to performance decrements 
in novel situations (which will be increasingly plentiful with an automated 
vehicle). Consequently, driver training and assessment programmes may have 
to become more thorough in maintaining the manual control skills of the 
driving population. There is clearly much further research to be done in deter-
mining the optimal implementation of vehicle automation and information 
systems in order to foster and maintain driver skill.

Brake reaction times

It has been suggested that ACC systems can reduce traffic congestion, increase 
road capacity and improve safety by eliminating irregular human driving 
styles and allowing for safe driving at higher speeds and shorter following 
distances (Chira-Chavala & Yoo, 1994; Gilling, 1997). However, the human 
driver’s capacity to cope with critical events could actually increase the risk 
associated with such devices. Most motoring authorities stipulate a minimum 
time headway of 1 to 2 seconds (Taieb-Maimon & Shinar, 2001), with more 
conservative criteria being based on worst case scenarios of driver reaction 
times. Sohn & Stepleman (1998) recommended using 85th or 99th percentile 
data to calculate these values, and from a meta-analysis determined that a 
headway of 1.75 seconds would be more appropriate. Despite the fact that 
these numbers represent realistically achievable reaction times, the majority 
of drivers choose actual headways of less than 1 second (Shinar, 2000; Taieb-
Maimon & Shinar, 2001). Moreover, since some ACC systems are set with a 
maximum time headway of 2 seconds, the question may reasonably be asked 
as to whether the driver can intervene in a timely fashion if they need to.

The present study (along with those of Rudin-Brown & Parker, 2004, and 
Mueller et al., 2021) demonstrated increased reaction times when resuming 
control from automated systems. When comparing our data to those gath-
ered during manual driving from previous literature (Tables 7.1 vs 7.2), there 
was a striking increase in reaction times for the automated conditions used 
here. Total braking time when driving with automation was around three 
times longer than equivalent data gathered under manual driving conditions 
in other studies. Mean brake reaction times in our study were around 2.4 sec-
onds, again a substantial increase over the 0.4 seconds average for manual 
driving observed by Liebermann et al. (1995). Although the results of van der 
Hulst et al. (1999) were apparently higher still, it was noted earlier that the 
design of that study was somewhat different to those of other researchers, in 
that the deceleration rate was relatively slow. Nonetheless, the results of the 
present experiment are more in line with textbook values of response times 
for unprimed drivers, which can be in the region of 2 to 4 seconds (Sanders 
& McCormick, 1993; Wickens et al., 1998). Perhaps, then, this indicates that 
drivers using automation are simply less anticipative of having to make an 
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emergency response than they would be when driving manually. However, 
even primed experienced drivers, who reacted more quickly than when they 
were naïve to the automation failure (conditions which are analogous to the 
aware/unaware conditions in the studies on reaction time we reviewed earlier 
in this chapter), took nearly 3 seconds on average to press the brake after 
the failure occurred. This result is consistent with previous research which 
found total braking time is generally slower when the driver is unaware of 
the hazard (Sohn & Stepleman, 1998). Nevertheless, the learners in our study 
who were aware of the possibility of automation failure still demonstrated 
slightly worse performance (in terms of a shorter time until the collision) in 
the ACC+LC condition.

In practical terms, many researchers favour the use of statistical upper 
fences (rather than means) as the basis upon which to make recommendations 
(e.g., Eriksson & Stanton, 2017b). The maximum total braking time value 
for primed experienced drivers here was 3.5 seconds. In previous studies, the 
highest latencies were under 2 seconds, whether the braking was expected 
or otherwise. Thus it seems that level 1/level 2 automation can slow driv-
ers’ braking responses by around 1 to 1.5 seconds. For planned transitions, 
research shows an average lead time of around 6 seconds but a maximum of 
30 seconds (Eriksson & Stanton, 2017b).

Since ACC and other longitudinal control devices are primarily aimed at 
reducing headway in order to increase road capacity, it seems ironic that the 
evidence suggests drivers actually need more time to react in emergency situ-
ations. Designers of ACC systems face a dilemma in trading off safe head-
way in terms of the vehicle’s capabilities against the driver’s reaction times 
(cf. Goodrich & Boer, 2003; Taieb-Maimon & Shinar, 2001). Clearly, the 
emphasis so far has been on the vehicle’s limitations, with typical systems 
providing headways of between 1 and 2 seconds – far below the drivers’ reac-
tion times in the present study. The problem becomes even more critical when 
drivers need to resume manual control from the automation. In planned take-
overs, the system typically gives the driver a few seconds’ warning to engage 
their attention, but the time for drivers to react, step back into the control 
loop and for their performance to stabilise can take anywhere between 5 and 
40 seconds (Eriksson & Stanton, 2017b; Merat et al., 2014; Seppelt & Victor, 
2016). A lot can happen in that time when travelling at highway speeds, rais-
ing the question of whether this is safe at all (Emmenegger & Norman, 2019) 
and whether the automation should somehow deal with the failure when the 
situation is time-critical (cf. Sheridan & Parasuraman, 2000).

CONCLUSIONS

This study tested learner and experienced drivers’ responses to automation 
failure under two levels of mental workload. What set this study apart from 
many others in the field is the fact that the nature of the automated failure 
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(i.e.,  ACC losing its lead vehicle target) was the same in each  condition – 
 workload was instead manipulated by using an additional automated sys-
tem (LC) to effectively compare level 1 versus level 2 automation. The results 
largely supported MART and also extended the theory to encompass automa-
ticity. There was an interactive relationship between automaticity and auto-
mation to the extent that, even when prepared for an automation failure, 
learner drivers who were underloaded could not respond at any better than 
chance levels. Only half of these participants responded to the failure event, 
compared to most in the normal workload condition. This suggested that 
the attentional capacity of this group had diminished as a result of the lower 
demands and reduced arousal levels. Meanwhile, the performance of experi-
enced drivers was unrelated to task demands, supporting the idea that these 
drivers were processing information in an automatic manner, free from the 
constraints of (shrunken) attentional capacity.

Whilst the study design helped us to support MART over alternative 
explanations such as situation awareness or the out-of-the-loop performance 
problem, an analysis of the subjective MWL data suggested that the classic 
vigilance problem may have influenced the results (even though the nature of 
the task should not have incurred a vigilance decrement). Moreover, heart 
rate data revealed that physiological arousal played a key role in the under-
load effect that was observed. Although this latter finding detracts from the 
unique proposition of MART (in relating attentional capacity directly to men-
tal underload), we argued that in practical terms this may actually prove use-
ful, for purposes such as physiological monitoring of underload states (e.g., 
Brookhuis, 1993; Fairclough, 1993).

In sum, the findings of Young & Stanton (2002b) coupled with those 
presented in this study allowed us to refine MART as follows. The size of 
attentional resource pools can vary according to the level of task demands 
imposed on the operator. This mechanism may be associated with physio-
logical arousal, and can be used to explain the detrimental effects of mental 
underload on performance. However, these effects can be mitigated by auto-
maticity. Although the skilled operator does suffer from capacity fluctuations 
with task demands, processes which are essentially resource-free do not show 
performance decrements in the same way as controlled, resource-dependent 
processes.

What we have shown from this series of studies is that attention shrinks in 
response to underload with automation, and that this is probably responsible 
(at least in part) for performance problems when needing to resume manual 
control as the increase in demand exceeds the reduced capacity of the opera-
tor. In practical terms, we can expect these problems to be worse with level 3 
automation as drivers are even less involved and might have diverted their 
attention to non-driving tasks (Seppelt & Victor, 2016). We also know that 
the sudden workload transition of an automation failure causes problems (cf. 
Young et al., 2015), and there will certainly be a lag in the cognitive response 
to the transition (see Hancock, 2021, for an exposition of this process), which 
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may be related to the change in arousal having to recruit attentional resources 
(Huey & Wickens, 1993). Our data presented in Chapter 4 tentatively imply 
that both reduction and recovery of resources happen within one minute; this 
would be consistent with other research suggesting reactions to takeover are 
impaired for anything up to 40 seconds (Eriksson & Stanton, 2017b; Merat 
et al., 2014). This all suggests that any handover, with its associated increases 
in demand, would have to be gradual in order to facilitate performance. These 
studies make the 10-second transition time anticipated for automated lane 
keeping systems (ALKS; CCAV, 2020) seem rather short, leading some (e.g., 
Thatcham Research, 2019) to recommend takeover request lead times of up 
to 60 seconds, to allow time to alert the driver, raise their engagement with 
the task, and stabilise performance. From a human-centred design perspec-
tive, takeover timing should arguably be paced by the driver (Stanton et al., 
2021). But there is a conflict in all this, because the longer the transition, the 
further the car will travel in a potentially unsafe state – we are trading off the 
consequences of an automated system that is becoming unable to cope against 
a human who is unready to take over. We might question, then, whether it is 
appropriate or even possible to rely on a driver as a fallback for automation in 
the timeframes of a speeding vehicle (Emmenegger & Norman, 2019; Victor 
et al., 2018).

Of course, it is all too easy to pick on the negatives in anything; much harder 
to try and accentuate and exploit the positives. But that is where we turn in 
the next section of this book before moving to close with a discussion of how 
to get the best out of automation so that we can address all of these problems.

KEY POINTS

• Concerns for the impact of mental underload on performance are typi-
cally realised when the human operator must suddenly resume man-
ual control, as the rapid increase in demand outweighs their shrunken 
capacity to respond.

• Such events may or may not be due to technical failures of the auto-
mation; they may simply be scenarios that are beyond the operational 
design domain of the system.

• Several studies have shown that when using automation, fewer drivers 
respond and reaction times are slower for these critical events as com-
pared to an equivalent scenario under manual driving; performance can 
be impaired for anything up to 40 seconds.

• Our research demonstrated that driver skill plays a crucial role, as auto-
maticity may confer some immunity to the shrinkage of attentional 
resources with underload – meaning that less skilled drivers are espe-
cially vulnerable when having to resume control from automation.

• Malleable attentional resources theory helped to explain these results, 
albeit moderated by physiological arousal.
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Chapter 8

What can automation do for us?

OVERVIEW

On this final stage of our journey, we turn to consider how automation could 
(or should) be best exploited to improve safety, efficiency, and performance 
on our roads. For the first leg, this chapter considers impairments of human 
performance as a means of identifying areas where automation can usefully 
assist. Such impairments are divided into transient and permanent, and the 
chapter offers a detailed literature review in each of these areas. Transient 
impairments are largely associated with workload or distraction, the sources 
of which may be internal to the vehicle (e.g., mobile phones, satnavs) or exter-
nal (e.g., roadside advertising). Even automation itself can be a  distraction – or, 
more likely, facilitate a driver’s distraction (or ‘inattention’) through engag-
ing in non-driving tasks. Longer term impairments may be associated with 
perception (e.g., eyesight) or cognition (e.g., ageing). Through understanding 
these impairments in more detail, the chapter closes by identifying specific 
applications of driving automation that may be able to compensate. Whilst we 
are cautious not to advocate the (ab)use of these systems as an excuse to drive 
when not fit to do so, we also feel there is room to exploit the technology with 
the aim of making the road system as safe as possible.

INTRODUCTION

So far in this book, the focus has been on largely negative aspects of auto-
mation in its relationship with the human operator. This may make us seem 
rather technophobic in our outlook, but in actual fact that is not the case. 
We recognise and, indeed, advocate the use of technology and automation to 
improve safety, performance, and satisfaction where it is appropriate to do 
so – but it must be designed and integrated in the right way. In these last few 
chapters, we discuss what ‘the right way’ means.

Firstly, then, we will look at circumstances where automation may make up 
for shortfalls in human performance. In the previous chapter, we considered 
failures of automation and the ability of the human driver to step in and save 
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the day (or otherwise, as the case may be). Now, we start to switch that per-
spective around, and consider limitations of the human condition for which 
automation may be able to support or compensate. Such impairments may be 
transient, such as workload or distractions associated with the driving task, 
or they could be longer-term – even permanent – associated with degradations 
in perceptual or cognitive ability. In these latter categories, the most pertinent 
aspects of concern for driving are eyesight and age (and, of course, these two 
factors are not mutually exclusive either).

In this chapter, we first review research on the effects of each type of 
 impairment – transient, perceptual, and cognitive – on driving performance. 
Then we take a rounded look at how automation might make a positive 
impact in mitigating these effects to improve safety. We would heavily preface 
all of this with the caveat that we are not endorsing the abuse of these systems 
in encouraging people to drive when impaired in any way, in the hope that 
the automation will save them. Nevertheless, knowingly or otherwise, drivers 
do get distracted, drive with substandard eyesight, or suffer cognitive impair-
ments. As we will argue in due course, the case for automation to maintain 
safe, independent mobility is compelling. Therefore, it is worth considering 
the role of automation in helping to improve safety and mobility in some or all 
of these cases. Ultimately, this is about embracing the technology in the right 
way and exploiting automation for what it should be used – helping drivers to 
do what they do best.

TRANSIENT IMPAIRMENT: DISTRACTION

The importance of attention (and visual attention, at that) in driving cannot 
be overstated. Driving is widely accepted as being a predominantly visual task 
(Kramer & Rohr, 1982; Spence & Ho, 2009), with 87% of driving informa-
tion coming through the visual modality (Zhang et al., 2021), and over 80% 
of that visual attention being allocated to the forward field of view (Robbins 
et  al., 2021). Driver attention is therefore a key predictor of performance 
(Ranney, 1994). Nevertheless, drivers have to share their attention between 
the road ahead and other distractors. Stanton & Marsden (1996) argued 
that dividing attention between the elements of the driving task is cognitively 
demanding as well as visually demanding (for instance, many drivers find it 
necessary to pause a conversation with a passenger while negotiating a diffi-
cult piece of road). The tasks of maintaining lane position, adapting speed, and 
reacting to obstacles are processed in parallel, and spare capacity is required to 
respond to unexpected events (Kramer & Rohr, 1982). That said, as we noted 
in Chapter 2, drivers have a good deal of spare visual capacity available during 
routine driving (Hughes & Cole, 1986), implying that some secondary tasks 
may be able to be conducted with no subsequent increase in crash risk.

Despite this, driver distraction is still a frequently cited causal factor in colli-
sions (Parnell et al., 2019; Regan et al., 2009), with 20–30% of crashes involving 
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some form of distraction or inattention (FIA, 2020). Research completed for 
the landmark 100-car naturalistic driving study by the US National Highway 
Traffic Safety Administration (NHTSA) in the US (Dingus et al., 2006; Klauer 
et al., 2006; Neale et al., 2005) concluded that 78% of all crashes and 65% 
of near-crashes involved some degree of driver inattention. Distraction is, by 
definition, taking attention away from the primary task of driving and towards 
some unrelated secondary task; such attention may be visual, cognitive, or both.

One of the original (and classic) studies on driver visual attention used an 
occlusion technique on a live highway1 to show that, as drivers look away 
from the road, uncertainty about their progress accumulates until they need 
to look back at the road (Senders et al., 1967). Over the years since, research 
on driver visual distractions has determined that 1.6 seconds is the maximum 
time that experienced drivers will accept looking away from the road (see 
Horrey, 2009, for a review). Meanwhile, novices will be more likely to glance 
away from the road for more than 3 seconds, and spending this amount of 
time looking away from the road has been associated with extreme steering 
errors (Wikman et al., 1998). Based on research showing that glances longer 
than 2 seconds away from the roadway are associated with higher crash risk 
(see Perez et al., 2012), NHTSA recommended2 that in-car devices should not 
require glances away from the roadway longer than this threshold.

Meanwhile, as we already know by now, cognitive overload from a distrac-
tor task can adversely affect performance, particularly if workload is already 
high (e.g., in urban driving; Liu & Lee, 2006; at junctions or in the face of 
unexpected events; Angell et al., 2006) or if the driver has a lower capacity 
to respond (e.g., if the driver has less skill or experience, as we have seen in 
the last section; or, as we shall discuss later in this chapter, in the elderly; 
May et al., 2005; Sixsmith & Sixsmith, 1993). Such factors can impair the 
reactions of a distracted driver since their spare attentional capacity has been 
absorbed by the secondary task.

Studies have also shown the overlap between cognitive and visual distraction. 
While conducting a cognitive secondary task, drivers spend less time looking 
at areas in the peripheries (such as mirrors and instruments) and instead focus 
on looking centrally ahead (Harbluk et al., 2007). Even though time looking 
outside of the vehicle remained unchanged, these results suggested a change in 
drivers’ allocation of attention associated with the higher workload.

Competition for visual attention is a crucial factor in driving performance 
(e.g., Antin, 1993). Since the sources of these visual and cognitive distractors 
can be either inside or outside the vehicle, let us focus our attention on these 
areas in turn.

In-car distractors

In the NHTSA 100-car naturalistic driving study, drivers distracted by an in-
car secondary task contributed to over 22% of all crashes and near-crashes 
(Klauer et al., 2006). Investigations of the sources of these distractions have 
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to a large extent focused on the myriad and increasing interfaces and nomadic 
devices available in the modern automobile. Perhaps one of the most familiar 
is the satellite navigation (satnav) system (Parnell et al., 2018). Many functions 
of satnavs take considerably longer to complete and place higher demand on 
visual attention than conventional controls and displays (Antin, 1993; Dingus 
et al., 1989; Wierwille et al., 1991), with tasks such as destination entry being 
worse even than entering a mobile phone number (Nowakowski et al., 2000; 
Tijerina et al., 1998). Nevertheless, other research suggests that the associ-
ated glance durations and eyes-off-road times for this task are still within the 
guidelines for safe operation (Chiang et al., 2004).

Of course, nowadays many users rely on their mobile phone for naviga-
tion rather than a bespoke device – and mobile phones are often cited as the 
test case for distraction, with many countries specifically banning the use 
of handheld phones while driving. In an observational study (Stutts et al., 
2005), just over a third of drivers used a mobile phone. But research con-
sistently shows that using a mobile phone while driving is associated with 
increased workload, worse reactions and increased crash risk, with the effects 
being at least as bad as drunk driving (e.g., Alm & Nilsson, 1995; Haigney 
et al., 2000; Redelmeier & Tibshirani, 1997; Strayer et al., 2003). Moreover, 
whilst some suggest that using a hand-held phone can affect steering ability 
(Haigney et al., 2000), on the whole the evidence does little to distinguish 
between hand-held or hands-free phones, with each having similar effects on 
reaction times (Consiglio et al., 2003; Lamble et al., 1999), lateral position 
and driver mental workload (MWL) (Törnros & Bolling, 2005; 2006). These 
findings imply that the effects are due to cognitive competition for attentional 
resources (Spence & Read, 2003), rather than the simple physical interfer-
ence from holding a handset, pointing towards little advantage for hands-free 
phones (cf. Haigney & Westerman, 2001).

Other in-car distractors have been benchmarked against mobile phone use: 
talking to a passenger increased brake reaction times just as much as using a 
hand-held or hands-free phone, while listening to the radio did not have such 
an effect (Consiglio et al., 2003). There are risks from even more mundane 
in-car activities such as eating and drinking, map-reading, grooming, etc. (cf. 
White et al., 2004). Observational (Stutts et al., 2005) and survey (NHTSA, 
2003) research showed that eating and drinking are among the most com-
mon in-car activities by drivers, second only to operating the radio and talk-
ing to passengers. About one-sixth of drivers reported having a coffee or a 
soft drink to fight fatigue (NHTSA, 2003), consistent with research which 
suggests that sugary snacks or drinks can indeed help stave off sleepiness 
and improve lane-keeping performance (Horne & Baulk, 2004; Parkes et al., 
2001; Smith & Rich, 1998). However, analyses of crash databases suggest 
that eating or drinking is implicated in at least a similar proportion of col-
lisions as mobile phone use (Stutts et al., 2005), while all of these activities 
increase crash risk, with drinking at the wheel nearly doubling the likelihood 
(Violanti & Marshall, 1996).
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A simulator study into the effects of eating on driving performance 
(Jenness et al., 2002) demonstrated that eating a cheeseburger disrupted 
performance (in terms of lane-keeping errors and speeding violations) and 
attention (eyes-off-road time) compared to baseline, but not as badly as 
using a CD player, reading directions, or operating a voice-activated phone. 
Similarly, the observational study of Stutts et al. (2005) noted that eating/
drinking increased the amount of time drivers had their hands off the wheel 
and their eyes off the road; preparing to eat and drink also resulted in more 
lane excursions.

In a similar study, we tested driver performance and subjective MWL when 
eating or drinking in critical situations using the Brunel University Driving 
Simulator (Box 8.1; see Young et al., 2008, for more details). Participants 
drove in an urban scenario with a speed limit of 50 mph (80 km/h), either 
driving normally or while taking food or drink (a sealed packet of sweets or 
bottle of water). At a designated point on the drive (timed to coincide with 
eating/drinking in the experimental condition), a critical incident was simu-
lated by a pedestrian walking in front of the car, programmed such that the 
car and the pedestrian would collide unless the driver intervened by braking 
and/or steering.

Whilst driving performance (longitudinal and lateral control) was rela-
tively unaffected by eating and drinking, perceived driver workload was 
significantly higher and there was a trend towards more crashes in the criti-
cal incident when compared to driving normally. The data suggested that 
 eating might have a greater effect than drinking on crash frequency, although 
the sample size meant that this was not statistically significant. Conversely, 
Violanti & Marshall (1996) found that drinking at the wheel was associated 
with higher levels of crash involvement.

Meanwhile, analysis of the subjective workload scales by Young et al. 
(2008) suggested that the physical demands of eating and drinking while driv-
ing made a more substantial contribution to MWL than the cognitive competi-
tion for attentional resources that is attributed in the mobile phone debate (cf. 
Haigney & Westerman, 2001). This is consistent with observations that these 
activities result in more time with the hands off the wheel and the eyes off the 
road (Stutts et al., 2005).

Although not statistically significant, a visual inspection of the data sug-
gested that drivers became more cautious when eating and drinking, implying 
that drivers may be able to adapt to the circumstances and task to a certain 
extent. This echoes previous research into mobile phone use while driving, 
which suggests that the increased workload of mobile phone use can lead 
to compensatory behaviours such as slowing down or increasing headway 
(Haigney et al., 2000; Strayer et al., 2003; Tornros & Bolling, 2005; 2006). 
Since drivers see eating and drinking as a relatively low-risk activity (White 
et al., 2004), they choose not to modify their behaviours by only eating when 
stopped, as they would for other, higher-risk activities (Stutts et al., 2005), 
and rely on adapting their driving instead (cf. Haigney et al., 2000). Whilst 
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this may appear to be inconsequential during normal driving (Jenness et al., 
2002), it can break down during abnormal or emergency situations as drivers 
are less able to cope with the sudden peak in demands, resulting in a greater 
risk of crashing (Violanti & Marshall, 1996). This is supported by our find-
ings relating to performance in the critical incident scenario, and parallels the 

BOX 8.1 THE BRUNEL UNIVERSITY DRIVING SIMULATOR

If we can beg the reader’s indulgence for a short interlude, as it will not escape 
your attention that several of the studies reviewed in this and the next chapter 
are, of course, from our own laboratory. By this time, though, that laboratory 
had moved to Brunel University and the driving simulator had been upgraded. 
Since the simulator features a number of times over the following pages, it is 
worth briefly describing it here.

The Brunel University Driving Simulator was a fixed-base simulator based on a 
2006 Jaguar S-Type full vehicle body (Figure 8.1). The simulation software (STISim 
Build 2.08.04) ran on a PC equipped with high-specification processor, graph-
ics, and sound cards. Forward images are projected onto three 2.4 × 2.0 metre 
screens at a resolution of 1280 × 1084 pixels, giving the central scene plus 
the left and right peripheral scenes for a total field of view of 150˚ horizontal 
and 45˚ vertical. Simulated images of the dashboard instrumentation as well as 
rear view and side mirrors are projected onto the viewing screens. Audio was 
reproduced in Dolby Pro Logic, with a low-frequency subwoofer under the car 
to suggest vibration. Driver inputs and haptic feedback were made via a games 
console steering wheel, gear lever and pedal block, integrated into the car’s 
original controls and fitted as a UK-standard right-hand drive vehicle. The simu-
lator was capable of capturing data at rates up to 30 Hz.

Figure 8.1  The Brunel University Driving Simulator.
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issue we discussed in the previous chapter about reclaiming manual control 
from automation.

External distractors

Whilst there has been a wealth of research investigating in-car distractions 
(e.g., Antin et al., 1990; Goodman et al., 1999; Jamson et al., 2004), less is 
known about distraction from objects outside the car (cf. Young et al., 2003). 
Of these external objects, roadside advertising billboards are designed by their 
very nature to attract attention. There has long been concern that roadside 
advertising presents a real risk to driving safety, with conservative estimates 
putting external distractors responsible for up to 10% of all road traffic colli-
sions (Wallace, 2003). Crucially, though, the related potential threat to road 
safety is generally not acknowledged by the industry (Crundall et al., 2006).

There is a substantial body of evidence demonstrating the impact of road-
side advertising on drivers’ visual attention. A study of drivers’ eye movements 
by Beijer et al. (2004) showed that 88 per cent of drivers were distracted by 
adverts, with 20 per cent glancing away from the road for more than that 
crucial 2 seconds. Similarly, Perez et al. (2012) found that both standard 
and electronic billboards reduced drivers’ gaze towards the road ahead with, 
again, some examples of dwell times over 2 seconds.

Once a driver’s attention has been captured, there are attentional resource 
costs associated with assessing and disregarding any task-irrelevant stimuli 
(cf. Smith, 1989). Horberry et al. (2004) cited evidence that drivers’ visual 
attention is often attracted by adverts or other irrelevant objects. If this should 
occur when the driver’s visual workload is already high (such as at a complex 
junction), the driver could fail to detect more relevant signage, hazards, or 
potentially lose proper control of their vehicle (cf. Engström et al., 2005). 
Crundall et al. (2006) also found that participants watching a video of a drive 
spent more time looking at street-level advertisements (e.g., bus shelters) when 
they were supposed to be monitoring for hazards. The implication from such 
studies is that roadside adverts can not only disrupt the identification of more 
relevant road signs (Castro et al., 2004), but also potentially affect hazard 
perception and, consequently, crash risk.

Early field studies investigating the relationship between collision rates and 
presence or absence of roadside billboards were conflicting and equivocal 
(e.g., Ady, 1967; Blanche, 1965; Rusch, 1951), possibly due to the conspicu-
ity and location of the billboards (Ady, 1967). A review of six studies con-
ducted by Wachtel & Netherton (1980) suggested that roadside advertising 
particularly at such visually demanding locations can affect collision rates. A 
later field study by Lee et al. (2003) showed that billboards had no effect on 
driver performance (in terms of speed or lane-keeping) or eye movements – 
although, in their case, the drivers were familiar with the test route.

Thus we can be relatively sure that roadside advertising affects drivers’ 
attention, but less so about the impact on performance and safety. Given 
this quandary, Young et al. (2009) reported a study in the Brunel University 



166 Driving Automation

Driving Simulator quantifying the effects of billboards on driver visual atten-
tion (using an eye-tracking system), MWL and performance in Urban, Rural 
and Highway environments. Subjective MWL was consistently higher in the 
presence of billboards, while in terms of visual attention, the presence of bill-
boards resulted in a shift towards more frequent but shorter glances, sug-
gesting an increase in visual demand (cf. Chapman & Underwood, 1998; 
Crundall & Underwood, 1998; Wierwille, 1993). Moreover, recall of bill-
boards was better than road signs in the Rural and Highway conditions, 
implying that drivers paid more attention to billboards at the expense of road 
signs (cf. Castro et al., 2004). It has been suggested that novel stimuli (such 
as billboards) might attract attention more when the driving task itself is rela-
tively monotonous, such as on a highway (Wallace, 2003). Finally, although 
longitudinal performance was unaffected by the presence of billboards, lane-
keeping was worse in the conditions with adverts. Whilst these data contra-
dict the field results of Lee et al. (2003), they do concur with the series of 
studies by Engström et al. (2005) and Östlund et al. (2006), who found that 
higher visual demands do increase lateral variation. Moreover, Young et al. 
(2009) tentatively suggested that more crashes occurred when billboards were 
present, although this was not borne out statistically.

Automation-related distractors

We have already hinted at how the kinds of distractions discussed above 
might be exacerbated under automated driving conditions. We mentioned 
in the previous chapter how drivers of automated vehicles take advantage 
of the released attention by engaging in non-driving secondary tasks (Merat 
et al., 2014). Where the task does not provide it, people will seek out novelty 
and stimulation (what Hancock, 2021, calls ‘infostasis’). Given free rein, the 
majority of drivers have been shown to engage in non-driving tasks (80% on 
their smartphones, 25% reading books or papers) while the automation was 
in control (Burnett et al., 2019). But these distractions can have an adverse 
impact on driver performance when reclaiming manual control from automa-
tion, whether in a planned transition or as the result of an automation failure, 
resulting in poorer lateral and longitudinal control in the 10 seconds after take-
over (Burnett et al., 2019). Similarly, drivers who were reading a newspaper 
took some 1.5 seconds longer over the transition than those who were focused 
on monitoring the system (Eriksson & Stanton, 2017b). Whilst non-driving 
secondary tasks might be the main concern, the automation interface itself 
can also cause a distraction as it tries to attract the driver’s attention  during 
takeover requests – one simulator study suggested that drivers rely more on the 
interface than the real world for such handovers (Large et al., 2018). This is a 
matter of interface design, which we discuss in the next chapter.

It is, of course, the allocation of attention to the non-driving task that 
affects the driver’s ability to respond (Huey & Wickens, 1993). Since opera-
tors who are engaged in a secondary task are poor at monitoring automation 
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(Molloy & Parasuraman, 1996), the distraction can impair their ability to 
detect the need to take over (Mueller et al., 2020). These effects on attention 
are more pronounced with higher levels of automation (Seppelt & Victor, 
2016), especially when both lateral and longitudinal control are automated 
(Pampel et al., 2020). As a consequence, response times in resuming manual 
control are slower (Mueller et al., 2020) as drivers are unprepared to take 
over (Shaw et al., 2020). Indeed, adverse visual attention patterns (such as not 
paying suitable attention to the road ahead) can predict crash involvement 
in critical scenarios with automation (Tivesten et al., 2019). Interestingly, it 
has been suggested that these problems are because drivers are focusing on 
resuming control at the operational level, and neglecting tactical control until 
after they have taken over (Burnett et al., 2019; Shaw et al., 2020). Some driv-
ers persist with a secondary task even after a takeover request (Large et al., 
2018). Providing drivers with a 60-second notification to prepare for the take-
over did not help much, only cueing them to disengage from the secondary 
task, rather than preparing for driving (Burnett et al., 2019).

It is perfectly understandable that drivers use the attention that has been 
released by automation on other tasks – there is little point in having auto-
mation and then continuing to attend and respond to the same task that the 
system does (Larsson et al., 2014). With this in mind, and as we discussed in 
Chapter 3, it has been argued (CIEHF, 2020b) that we should not consider 
such behaviour to be distraction at all, since it is a voluntary reallocation of 
attention; rather, we should consider the driver to be ‘inattentive’ to the driv-
ing task.

PERCEPTUAL IMPAIRMENT: EYESIGHT

We have already touched on the importance of vision for driving perfor-
mance, with most of the information that drivers use arriving through the 
visual modality (e.g., Evans, 2004; Hole, 2007; Kramer & Rohr, 1982). 
Consequently, visual function (in terms of visual acuity, visual field, contrast 
sensitivity etc.) is also crucial for driving safety (Molina et al., 2021). No won-
der, then, that most driver licensing regimes worldwide involve an element 
of eyesight testing, usually a test of static visual acuity (Higgins et al., 1998; 
Owsley & McGwin, 2010). But the effects of acuity (or, indeed, other visual 
impairments) are – pardon the pun – not exactly clear.

In one study, Molina et al. (2021) imposed a loss or deterioration of binocu-
lar vision (by monocular occlusion or monocular blur respectively) in a simu-
lated driving task. Their results showed that the reduction in visual function 
adversely affected driving performance (in terms of time spent out of lane and 
harsher braking) and increased driver MWL, particularly in complex traffic 
environments.

We investigated the effects of static visual acuity on a wide range of driving 
performance variables in the Brunel University Driving Simulator (see Young 
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et al., 2012). We manipulated acuity using blurring spectacles at two levels 
of blur (Snellen equivalents of 6/12 and 6/18) and compared performance 
against a control condition at standard acuity (6/6). Nineteen younger par-
ticipants (aged 25–45, all with normal or corrected-to-normal vision) were 
required to follow a (simulated) car at a set speed on an inter-urban single-
carriageway route. To explore hazard detection and response, participants 
were faced with two scripted critical events in the mould of our earlier study 
on automation failure: lead car braking, and either a pedestrian walking out 
into the road or a car pulling out from a driveway, all of which necessitated a 
response from the driver in order to avoid a collision. They also had to nego-
tiate three cyclists on the route, to see if safety margin would be affected by 
acuity. Finally, participants were asked to recall six road signs on the route, 
shortly after passing them.

The results were mixed as many of the driving performance variables did 
not show a clear relationship with acuity. But, among the notable findings, 
the study showed that reduced acuity (at either level) resulted in drivers stray-
ing off the road more often. Curiously, brake reaction time to the lead car 
braking event was significantly slower in the weak blur condition, but the 
strong blur condition was not statistically different from the control condi-
tion. There were also no differences in crashes between the conditions. On 
the whole, these results were consistent with previous research which suggests 
static visual acuity has little effect on either crash risk (e.g., Charman, 1997) 
or driving performance (e.g., Brooks et al., 2005). In particular, Brooks et al. 
(2005) found no effect of blur on steering performance but, as in this study, 
they did report that drivers strayed out of their lane more with reduced acuity.

Meanwhile, with each reduction in acuity, drivers more or less doubled 
the amount of room that they gave to cyclists, probably due to compensatory 
behaviour. Similar behavioural adaptations have been observed elsewhere, as 
drivers attempt to increase their safety margins in response to a loss of visual 
function (Molina et al., 2021). However, such compensation came at a price 
in our study, with perceived MWL increasing linearly in response to reduced 
acuity. In other words, drivers experiencing blurred vision had to concentrate 
harder on the road ahead. Whilst this may be sustainable in the short-term, 
on a longer drive this could increase the chances of acute fatigue – and hence 
increase crash risk as drivers struggle to maintain performance (cf. Arnedt 
et al., 2001).

In terms of sign reading ability, recall performance was at ceiling in the 
normal condition, but both levels of reduced acuity resulted in fewer road 
signs being recalled than in the control condition. Thus, anything other than 
normal visual acuity has a significant impact on drivers’ ability to recall road 
signs. These findings seem to accord with the suggestion that road signs are 
designed on the basis of much better levels of acuity (e.g., Higgins & Wood, 
2005; Owsley & McGwin, 2010). Focal vision is an important aspect in sign 
reading ability, and is in turn dependent on static visual acuity (Wood et al., 
2009). Previous research has found that sign recognition is affected at higher 
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levels of degradation (6/30 acuity – Higgins & Wood, 2005; Higgins et al., 
1998). Signs are an important source of information when driving, and miss-
ing such information can adversely affect drivers’ situation awareness for haz-
ards, as well as potentially causing them not to comply with instructions (such 
as posted speed limits) – all of which can increase risk on the roads.

But while acuity may be important for reading road signs, many argue that 
visual acuity alone is not related to various measures of driving performance 
and safety, such as steering, lanekeeping, or gap acceptance (Brooks et al., 
2005; Charman, 1997; Currie et al., 2000; Evans, 2004; Higgins & Wood, 
2005; Higgins et al., 1998; Hole, 2007; Owens & Tyrrell, 1999; Owsley & 
McGwin, 2010; Taylor, 2010; Wood et al., 2009). Some (e.g., Hole, 2007) 
suggest that detection is more important than identification (i.e., merely being 
able to see something is the minimum requirement; it is not necessary to know 
what that object is), the latter only being crucial for reading road signs (cf. 
Higgins & Wood, 2005; Higgins et al., 1998). But it is one thing to be able 
to see an object on the road; it is quite another to then do something about 
it (Taylor, 2010). In any case, visual acuity must be sufficient to allow time 
for the driver to detect and react to hazards when driving at the posted speed 
limits (Taylor, 2010). This may explain why some studies do show that acu-
ity is a determinant of hazard detection and avoidance (Brooks et al., 2005; 
Higgins & Wood, 2005; Higgins et al., 1998).

Moreover, visual acuity is only one aspect of vision. We have so far implic-
itly been discussing static visual acuity, but there is evidence that dynamic 
acuity is more closely associated with crash risk (Burg, 1971; Charman, 1997). 
Besides, there are many other internal and external factors related to vision 
that also affect performance and safety, such as fog (Owens et al., 2010), dark-
ness, contrast sensitivity and retinal adaptation (Wood & Owens, 2005), glare 
sensitivity and clinical conditions (such as cataracts; Wood & Troutbeck, 
1994; 1995), or – as we have already discussed in this chapter – distractions 
and eyes-off-road time (Liang et al., 2012; Young, 2012). Finally, field-of-view 
is often cited as a critical factor in vehicle control, since contrast and move-
ment are better detected in peripheral vision (e.g., Schieber et al., 2009).

There is an argument that peripheral vision plays more of a role in immedi-
ate steering corrections (cf. Schieber et al., 2009), whereas longitudinal con-
trol might be more dependent on central vision (e.g., Coeckelbergh et al., 
2002). This helps to explain why research finds that visual acuity (central 
vision) affects speed but not lanekeeping performance, while related stud-
ies investigating restricted fields of view (i.e., peripheral vision) do show a 
relationship with steering (e.g., Brooks et al., 2005; Owens & Tyrrell, 1999). 
In particular, experienced drivers make efficient use of information in the 
periphery to maintain lane position (Underwood & Everatt, 1996). Wood 
& Troutbeck (1992) found that a restricted field-of-view had a significant 
impact on speed, lateral position, reading road signs, hazard detection and 
gap manoeuvring. Although some of these tasks are arguably dependent on 
central vision (e.g., reading road signs, hazard detection), interestingly speed 
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estimation – traditionally thought to be served by ambient vision (cf. Schieber 
et al., 2009) – was not affected by visual field loss.

Field-of-view particularly stands out in the literature as being associated 
with crash risk, with the consensus of opinion being that field-of-view affects 
both safety and performance (Brooks et al., 2005; Evans, 2004), with visual 
field impairments apparently doubling crash risk (CIECA, 1999; Johnson & 
Keltner, 1983). Typically, it is degradation of the ambient or peripheral visual 
field (Rogé et al., 2004; Schieber et al., 2009) which predicts driving perfor-
mance and crash risk (e.g., Ball et al., 2006; Owsley et al., 1998). Others have 
argued for more refined metrics of field-of-view, such as ‘useful field-of-view’ 
(UFOV; e.g., Burridge et al., 2020; Owsley et al., 1998) or peripheral motion 
detection (Henderson et al., 2010). However, there is a significant body of evi-
dence to show that visual acuity and the UFOV test do not predict all aspects 
of driving performance (e.g., Owsley et al., 1998; Roenker et al., 2003), and 
that central cognitive processing plays more of a key role alongside visual 
perception and decision-making (Ball, 1997; Hole, 2007; Lees & Lee, 2009; 
Verhaegen, 1995).

Nevertheless, where correlations (albeit weak ones) have been observed 
between acuity and crashes, they have tended to be based on older drivers 
(e.g., Burg, 1968; Charman, 1997; Hole, 2007; Owens & Tyrrell, 1999; 
Owsley et al., 1998). Older drivers are undoubtedly affected by reduced visual 
acuity (Classen & Alvarez, 2020; Jones & Holden, 2020), peripheral detec-
tion (Burridge et al., 2020; Classen & Alvarez, 2020; Costa et al., 2018), 
contrast sensitivity (Classen & Alvarez, 2020) and visual search at junctions 
(e.g., DfT, 2009; Schieber et al., 2009). As older drivers are affected by both 
perceptual and cognitive impairments, we now turn to consider their cogni-
tive performance in more detail.

COGNITIVE IMPAIRMENT: AGEING

If the future of driving is automated, it is also about older drivers. The popula-
tion is undoubtedly ageing and, with it, people are continuing to drive later in 
life: the proportion of those over 70 years of age holding UK driving licences 
increased by about two-thirds in the first couple of decades of the 21st cen-
tury (Jones & Holden, 2020). It has been established for some time  (e.g., 
IAM, 2010) that the relative and absolute number of drivers over the age of 
70 is on a steep upward curve, with expectations that we will soon see 90% of 
men and 80% of women in that age group holding a driving licence, up from 
three-quarters of men and only 31% of women in 2010. In absolute terms, 
the number of drivers over 70 is set to hit 10 million by 2050 (IAM, 2010). 
Moreover, as the older driving population grows and becomes more mobile, 
it is anticipated that their mileages will also increase (DfT, 2001).

Before we go any further, though, we should be clear that age affects 
driving performance at both ends of the scale. It has been repeatedly found 
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(e.g., Evans, 2004; Kim et al., 1998) that younger drivers, especially young 
males, are involved in more crashes than other driver groups. There is a more 
modest increase in crash involvement for very old drivers, but the curve is 
 certainly at its steepest during the youngest driving ages. Part of the rea-
son for this is undoubtedly the level of driver skill, although a significant 
proportion is probably due to differences in behaviour and attitude. Young 
drivers have been shown to underrate dangerous elements in traffic scenes 
(Groeger & Chapman, 1996), and are probably motivated to take more risks 
(Evans, 2004). Very often, driving performance and driving behaviour are 
two different things, which could explain why crash involvement reaches a 
plateau around the age of 40. Optimal perceptual-motor performance occurs 
much earlier than this, but higher-level information processing improves 
over a number of years. It is therefore easy to speculate that two competing 
 processes – the degradation of perceptual-motor abilities and the development 
of driving ability – combine to produce the distorted U-shaped curve of crash 
involvement against age.

Nevertheless, with more older drivers, driving more miles, and for more 
years (PACTS, 2007), the potential impact on road safety in future is sig-
nificant. Although there is some debate over the prevalence of older drivers 
in road collision statistics, it is widely agreed that, on a mile-for-mile basis, 
drivers over 70 are at increased risk of fatal crashes (e.g., McGwin & Brown, 
1999; Pampel et al., 2019) and at-fault collisions – with the data being com-
parable to those for the under-25 age group (e.g., DfT, 2009; Evans, 2004; 
Groeger, 2000; Hole, 2007; Lees & Lee, 2009; McGwin & Brown, 1999; 
McGwin et al., 1998). Casualty rates per mile driven increase with age after 
70–75 years (Eberhard, 2008), and the risk increases exponentially for drivers 
in their 80s (DfT, 2009; Evans, 2004; Hole, 2007).

When the types of collisions are analysed, though, it is clear that older driv-
ers differ from younger groups in that their collisions are less about taking 
risks, but more about errors of perception or judgement (DfT, 2009; Evans, 
2004; Hole, 2007; McGwin & Brown, 1999). Rather than single-vehicle col-
lisions involving speed, alcohol or fatigue, older drivers have multiple-vehicle 
collisions at junctions involving giving way, or when turning or changing 
lanes. In terms of driving tasks, negotiating junctions and merging traffic are 
both known to cause particular difficulties. These difficulties tend to be due 
to deficits in ‘bottom-up’ visual and cognitive processing, as opposed to ‘top-
down’ failures of experience or expertise (Lees & Lee, 2009), factors which 
are consistent with the notion of age-related declines in cognitive function-
ing (Verhaegen, 1995), ‘…such as attention, anticipation, executive function-
ing and information processing [which mean] that older drivers tend to have 
difficulty in dealing with complex traffic situations and reduced capacity to 
respond quickly and flexibly to changing traffic situations’ (PACTS, 2007; 
p. 45). There is a wide body of scientific evidence to suggest that these declines 
can be a source of increased crash risk on the roads (e.g., Brouwer et al., 1991; 
Lundberg, 2003; Verhaegen, 1995).
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The literature on driving performance and cognitive functioning typically 
finds that decrements begin around the ages of 60–65 years (Brouwer et al., 
1991; Evans, 2004; Reid & Green, 1999; Stelmach & Nahom, 1992; Verwey, 
2000). Whilst this is slightly earlier than the apparent 70-year-old threshold 
for crash risk in the research reviewed above, it may be that some of this 
decline is offset by experience (Evans, 2004; Stamatiadis & Deacon, 1995) or 
automaticity in cognitive processing, which is believed to be resilient to the 
effects of ageing (Conway & Engle, 1994; Rogers & Fisk, 1991). Nevertheless, 
as age increases beyond 65 years, cognitive fitness to drive becomes more 
important in determining driving competence (Brouwer & Ponds, 1994).

Age thus brings with it a range of declining cognitive abilities that can have 
a detrimental effect on driving performance and MWL, including memory, 
spatial cognition, alertness, information processing speed, decision-making, 
reaction time, selective and divided attention, and executive function (see 
e.g., Adrian et al., 2019; Brouwer et al., 1991; Burridge et al., 2020; Classen &
Alvarez, 2020; Evans, 2004; Groeger, 2000; Jones & Holden, 2020; Lundberg, 
2003; Owsley et al., 1998; Pampel et al., 2019; Ranney, 1994; Schlegel, 1993;
Verhaegen, 1995; Wright et al., 2018; Young & Stanton, 2007a).

From our earlier foundation work to establish malleable attentional 
resources theory (MART; see Chapter 3 and Young & Stanton, 2002a), we 
know that age affects attentional capacity. Attention and executive function 
have both been implicated as predictors of driving performance (Adrian et al.,  
2019; Brouwer et al., 1991; Owsley et al., 1998), with older drivers being more 
susceptible to errors under conditions of high MWL (Groeger, 2000; Hole, 
2007). Various studies (e.g., Bunce et al., 2012; Tsimhoni & Green, 1999) 
have demonstrated that older drivers experience higher MWL associated with 
driving in a range of scenarios. This is consistent with the attentional resource 
models we have discussed throughout this book so far (e.g., Kahneman, 1973), 
which suggest that attentional capacity declines with age, impairing the abil-
ity to deal with unexpected events on the road. For older drivers in particular, 
then, highly demanding driving situations can reduce spare capacity and lead 
to competition for attentional resources. In turn, resource competition can 
result in performance degradation and errors. This has been shown to affect 
older drivers, who are less able than their younger counterparts to integrate 
their responses on a dual task competing for the same attentional resources 
(Brouwer et al., 1991).

To examine reaction times as another example, there is good evidence that 
it is actually an increased variability, or inconsistency, of reaction times that 
is particularly associated with older age, rather than accuracy or mean reac-
tion time, which are less sensitive measures (e.g., Bunce et al., 2012; Young & 
Bunce, 2011). These have parallels with the metrics of consistency for driving 
performance (Bloomfield & Carroll, 1996) successfully adopted in our labo-
ratory (see Young & Stanton, 2002b; 2007c; and the chapters in Stage 2 of 
this book), which can distinguish good from poor drivers (Young & Stanton, 
2007c). We have previously argued that such variables are more appropriate 
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indicators of driving performance than measures of mean or standard devia-
tion, in line with best practice for safe driving which suggests that smoothness 
and consistency is key (Young, Birrell & Stanton, 2011). Indeed, pilot stud-
ies in the Brunel University Driving Simulator indicated that, in comparison 
to a younger group, older adults exhibited higher inconsistency on a neuro-
psychological test battery as well as higher inconsistency on these driving 
performance metrics (Young & Bunce, 2011).

Bunce et al. (2012) explored this notion by assessing age differences in 
driving inconsistency in younger (mean age 21 years) and older (mean age 
71 years) drivers alongside their responses to a standardised cognitive test bat-
tery. Participants drove the Brunel University Driving Simulator in Residential, 
Urban and Highway conditions. For both longitudinal (headway) and lateral 
control, older drivers exhibited significantly greater performance inconsis-
tency, particularly in the Highway condition. Meanwhile, their performance 
was also more variable on the cognitive tasks, and many of the cognitive vari-
ability measures were significantly associated with the simulator variables, 
suggesting that similar cognitive processes may support the respective tasks. 
Their analyses suggested that some of the variability in driving performance 
is accounted for by variability in cognitive performance, and they attributed 
the greater variability in both cognitive and driving measures to age-related 
increases in attentional and executive control fluctuations. In other words, the 
cognitive changes associated with normal ageing could, in part, be respon-
sible for greater inconsistency in driving performance which, in turn, may 
compromise safe driving (cf. Young, Birrell & Stanton, 2011).

Currently, we rely on self-regulation (cf. Evans, 2004) to control these risks – 
either expecting older drivers to declare for themselves when they are unfit to 
drive, or alternatively many choose to adapt their behaviours to cope by restrict-
ing themselves to roads on which they feel safe and comfortable (Groeger, 2000; 
Haddad & Musselwhite, 2007; Hole, 2007; Pampel et al., 2019). Anecdotally, 
drivers report taking less complex routes (even if this means driving further), 
avoiding difficult road junctions and avoiding night-time driving. But the 
 evidence suggests this does not always work – many drivers are not aware of 
(or do not recognise) their own limitations (Groeger, 2000; Hole, 2007), and 
either do not cease driving early enough, or conversely, cease driving too soon 
(Berry, 2011). ‘Because of [a] lack of information, feedback, and insight, elderly 
drivers are not, I believe, in a good position to determine for themselves when 
they should reduce or cease driving’ (Groeger, 2000; p. 171).

Nevertheless, in an enlightened society, we have a responsibility to meet 
the mobility needs of older adults (Ball, 1997). It is no good to say that they 
should simply restrict their driving habits or even stop driving altogether, for 
this curtails their freedom, with a huge impact on their mental wellbeing. 
Wellbeing in older people depends to a large extent on their ability to suc-
cessfully engage with various practical and recreational activities in daily life 
(Menec & Chipperfield, 1997). In turn, many of these activities are dependent 
on being able to drive. Independent mobility is therefore a significant marker 
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of quality of life in ageing – driving enables older adults to ‘keep on living’ 
independently and maintain their quality of life (Box et al., 2010; Gilhooly 
et al., 2002).

Thus, the rise in the ageing driver population presents society with a sig-
nificant challenge – how to maintain safety and mobility on the roads. The 
aim is to prolong independence, rather than try to remove older drivers from 
their cars. This so-called ‘older driver problem’ (cf. Evans, 2004) requires a 
solution which not only supports older drivers, but also balances their needs 
with road safety targets to continue reducing the number of killed and seri-
ously injured on the roads.

One such solution would be to compensate for the cognitive limitations of 
older drivers by making ‘…changes to the driving environment to make driv-
ing safer for the older person, both inside the car in terms of design factors, 
and perhaps advanced driving information systems, but also outside in terms 
of traffic system design’ (DfT, 2001; p. 5). Both academic (e.g., Haddad & 
Musselwhite, 2007; Lees & Lee, 2009) and policy reports (e.g., Box et al., 
2010; DfT, 2001; IAM, 2010; PACTS, 2007) have suggested that this should 
exploit vehicle design and safety technology innovations inside the car, 
underpinned by a sound understanding of the older driver’s cognitive abilities 
and information requirements. ‘There is a very clear need for such research 
addressing appropriate technology to aid safe car driving behaviour amongst 
the older driver population’ (Haddad & Musselwhite, 2007). In that respect, 
we can turn to current and near future automation, which might have the 
potential to compensate not just for the specific cognitive decrements associ-
ated with ageing, but also the other transient and perceptual impairments 
related to driving that we have discussed in this chapter.

AUTOMATION LENDS A HAND

With a better understanding of the nature of these impairments, then, we 
can start to think about whether, how and which driving automation systems 
might compensate for such. Candidate systems include speed limit displays, 
vision enhancement, parking assist, blind spot monitoring, adaptive cruise 
control (ACC), lane centring (LC), forward collision warning, or automatic 
emergency braking (AEB). For the avoidance of doubt, we repeat the caveat 
that this is not about justifying impaired driving on the basis that automation 
provides a fallback. But there will always inevitably be times when drivers 
suffer from one of these impairments, so we should be aiming to make the 
system as safe as possible. If automation can play a part in that, then we 
should absolutely seek to exploit it (Stanton & Salmon, 2009).

Following the order in which the research was reviewed above, let us start 
by thinking about distractions. On the whole, the research we reviewed 
found some overlap but also some differences in the effects of in-car versus 
external distractors. In-car distractors primarily affected responses in critical 
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situations, while the main effects of external distractors were on visual atten-
tion patterns, steering performance, and road sign recall. Meanwhile, both 
types of distractor increased driver MWL.

We will treat these effects together with respect to the role of automation in 
mitigating the impact of distractions on driving, and there are two elements to 
consider: detecting and warning about the distraction, or intervening to pre-
vent it becoming a problem. For the former, and given the effects of external 
distractors on visual attention found in our study (Young et al., 2009), there 
is a good case for head or eye tracking systems to monitor whether drivers 
might be distracted. Such driver attention monitoring systems are becom-
ing increasingly popular and, whilst the focus of many of these is primar-
ily on fatigue, they can equally provide alerts for a driver whose attention 
might not be entirely on the driving task. With the appropriate algorithms, an 
eye- tracking system could make a reasonable guess at the driver’s attention 
 patterns, knowing where they are looking and, perhaps, what they are attend-
ing to. It could then provide visual, auditory, or haptic warnings if the driver’s 
gaze is diverted from the primary attention zone for too long (more than 
2 seconds, going by the NHTSA criterion).

Indeed, some studies have tested automation interfaces that provide prompts 
or warnings based on eye-tracking in an effort to maintain the driver’s atten-
tion on the driving task (e.g., Victor et al., 2018). Based on the findings that 
responses to critical situations were impaired when distracted, an obvious 
role for automation in this case would be a form of collision detection or 
avoidance, such as pedestrian detection, forward collision warning, or AEB. 
Putting these two ideas together, Smith et al. (2009) described an adaptive 
collision warning system that monitors the driver’s head position and adapts 
its warnings depending on whether the driver is watching the road or not. In 
other words, if it detects the driver is distracted, it could try to attract their 
attention by either presenting the collision warning earlier, in a different loca-
tion, or through a different modality. On the other hand, for an attentive 
driver, the system would attenuate its warnings so as not to cause annoyance 
or frustration (or, worse, an additional distraction).

Taking this a step further, driver attention state monitoring could be fed 
into an adaptive interface in order to manage workload and distractions on 
the driver. Discussed further in Chapter 9, adaptive automation adjusts the 
level of automated support or information provided to maintain driver MWL 
at optimal levels and prevent them from becoming overloaded. As well as eye-
tracking, workload might be derived from driver behaviour (steering, accel-
eration, and braking inputs) or environmental context (such as satnav data). 
Such systems have shown promise in the driving domain (e.g., Donmez et al., 
2007; Piechulla et al., 2003), with systems that can postpone or suppress low-
priority messages or telephone calls if driver workload is deemed to be too 
high (e.g., Broström et al., 2006).

To address the observed effects of distraction on steering and MWL, there 
is an argument for just automating lateral support through lane-keeping 
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assist or lane centring systems. Our research (Chapter 4; see also Young & 
Stanton, 2002b) has shown that such systems can both reduce driver work-
load while (in the simulator, at least) offering more consistent performance 
than the human. However, any automated support to mitigate in-car distrac-
tions must be tempered with the caution that things might not go so well if 
and when the driver has to take over control. We know from Chapter 7 that 
automation can have adverse effects on drivers’ responses in critical situa-
tions. We also know from the research reviewed in this chapter that similar 
problems arise with distracted drivers, even if they are trying to adapt their 
driving to cope. And we know that drivers using automation are likely to 
engage in non-driving (distractor) tasks. So offering up automation to offset 
the effects of distraction might, instead, create a perfect storm in the event 
of an emergency.

A more moderate approach picks up on one of the specific concerns with 
external distractors, that of recalling road signs. Many cars are now fitted 
with road sign recognition cameras that show a repeater of the sign in the 
instrument cluster or on a head-up display. These could help to maintain situ-
ation awareness, especially as road signs are transient by their nature – once 
the driver has gone past them, their information is lost. Moreover, such dis-
plays would also serve drivers with foveal acuity issues, as well as relieving the 
visual accommodation problems particularly faced by older adults.

Other systems that can compensate for low acuity or similar visual impair-
ments include parking aids, lane departure warning systems and vision 
enhancement (Classen & Alvarez, 2020). Again, though, we must caution 
about potential behavioural adaptation with vision enhancement systems, 
as drivers have been shown to drive at higher speeds when using them (see 
Stanton & Pinto, 2001). With these kinds of perceptual enhancement systems 
in mind, the particular visual demands of driving call for the exploitation 
of other sensory modalities and even multimodal displays, which can offer 
enhanced feedback whilst avoiding distraction or overload for the older driver 
(cf. Spence & Ho, 2009). At an even more fundamental level, if – as some 
have been calling for – driver eyesight testing is made more stringent, then 
we might see more people being restricted from driving and, hence, a greater 
need for driving automation so that they may maintain their independent 
mobility. This echoes the ‘older driver problem’.

Before we turn the focus towards automation for older drivers, though, it 
is worth pointing out that it is not just the older age bracket or those with 
overt disabilities who may benefit from automated driving systems. Classen 
& Alvarez (2020) discussed the cognitive difficulties faced by younger driv-
ers on the autistic spectrum, such as errors in steering or braking associ-
ated with difficulties in problem-solving or focused attention. Systems such as 
lane centring or intelligent speed adaptation (which helps drivers comply with 
speed limits) may help with these difficulties. Automation can certainly help 
to improve the situation awareness of those with low spatial ability to bring 
them on a par with others of high spatial ability (Wright et al., 2018).
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Similarly, Lees & Lee (2009) suggested that emerging vehicle technologies 
can be exploited to enhance the safety of older and younger drivers, by tailor-
ing such systems to support bottom-up or top-down processing respectively 
(i.e., to compensate for the perceptual or cognitive limitations associated with 
older age, as opposed to the lack of experience in younger drivers). Previous 
research on younger drivers supports this, indicating that automated driv-
ing systems can bring some improvements to driving performance (Nilsson, 
1995; Young & Stanton, 2004), while European projects such as PReVENT 
and EDDIT (Oxley & Mitchell, 1995) have explored the potential for extend-
ing these findings for the specific needs of older drivers.

But it is in later life where we really feel that driving automation can have 
a positive impact. Automated driving and other driver assistance systems 
can potentially compensate for the decline in cognitive abilities with ageing 
(Burridge et al., 2020; Classen & Alvarez, 2020; Haddad & Musselwhite, 
2007; Jones & Holden, 2020; PACTS, 2007) with multiple benefits for those 
older drivers whose driving is affected by cognitive impairment. As well as 
improving road safety for older drivers, automation can support their inde-
pendent mobility needs (Classen & Alvarez, 2020; Hancock et al., 2019; 
Young & Bunce, 2011). We discussed earlier how older drivers tend to restrict 
their driving to familiar roads by way of compensating for their abilities 
(Groeger, 2000; Haddad & Musselwhite, 2007; Hole, 2007; Pampel et al., 
2019); automation could therefore help this group to re-extend their mobility 
to areas that they were otherwise less comfortable with (cf. Burridge et al., 
2020; Hartwich et al., 2018). Moreover, since older people are less likely to 
use public transport for non-urgent travel, such independent mobility provides 
access to leisure, activity and social connection that is crucial in underpinning 
wellbeing, quality of life and even mortality (Burridge et al., 2020; Hartwich 
et al., 2018; Jones & Holden, 2020). As impairment increases, so too could 
the level of automation to compensate (Gaspar, 2020). In doing so, the very 
highest levels of automation (level 4 or level 5) may mean that these groups 
can still travel independently without needing to hold a driving licence (Grier, 
2020). This does bring a potential issue, though, if automation becomes a 
condition for older people to retain a driving licence, since the capability of 
automation itself may be limited on the less uniform rural roads frequented 
by older drivers (Jones & Holden, 2020).

So how can automation help older drivers? We have seen how reaction 
times and associated metrics of driving performance become less consistent 
with ageing (Bunce et al., 2012; Young & Bunce, 2011). Systems such as adap-
tive cruise control or lane centring could actually help to maintain consistency 
in vehicle control – in our studies reported in earlier chapters of this book, we 
hardly ever examined differences in performance data between manual and 
automated control, because the automation was invariably more consistent 
than the human. However, age-related impairments associated with reaction 
times (Bunce et al., 2012; Evans, 2004; Groeger, 2000; Jones & Holden, 
2020; Pampel et al., 2019; Young & Bunce, 2011; Young & Stanton, 2007a) 
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may make older drivers especially susceptible to the key problem of resuming 
manual control (cf. Classen & Alvarez, 2020). Nevertheless, one study found 
no differences in takeover times between younger and older age groups (see 
de Winter et al., 2014).

Picking up on the core theme of this book, the same systems could help to 
manage the MWL of older drivers. Whereas throughout this book and our 
research (e.g., Young & Stanton, 2007c) we have been concerned with the 
effects of mental underload thanks to the reduction in workload brought 
about by automation, if we think about the inverted-U curve of workload 
against performance (refer back to Figure 3.2), such a reduction could 
be  advantageous for older drivers if their starting point is higher up on 
the curve, in the overload region (as observed in the study by Bunce et al., 
2012). Whilst older drivers have more driving experience, they also have 
less spare attentional capacity (cf. Kahneman, 1973). This gives rise to con-
cerns about information overload, with the implication that older drivers 
would benefit more from automated driving systems that assume some ele-
ments of vehicle control, rather than in-vehicle information systems which 
provide feedback and warnings. For example, one study (Pampel et al., 
2019) found that a head-up navigation display improved performance for 
older drivers to put them more on a par with a younger group, albeit at the 
expense of increased MWL. As we have seen, adaptive cruise control and 
especially lane centring could help to reduce the demands of challenging 
driving situations. Early work in the DRIVAGE project (e.g., Fraser et al., 
1994; Harvey et al., 1995) set out to evaluate the driving abilities of older 
people, and to examine the potential benefits and distractions of provid-
ing additional information to the driver. Meanwhile, adaptive automation 
could equally (if not more so) apply to older drivers, perhaps with some 
tweaks to the workload algorithm in order to account for differences in 
attentional capacity (cf. Kahneman, 1973).

There is clearly great potential for automation to support the independent 
mobility of older drivers. Nevertheless, it is probably fair to say that few – if 
any – of these systems have been designed with older drivers in mind, being 
very much a result of technology ‘push’ rather than user ‘pull’, so their bene-
fits may be limited. Participatory research has highlighted that the theoretical 
opportunity for technology to assist with the specific limitations of older driv-
ers could not always be accessed by the older driver group for a variety of rea-
sons, including poor user interface design and technology immaturity (Keith 
et al., 2007). Some of the extant issues with automation that we have dis-
cussed earlier in this book may especially affect older drivers, whose require-
ments need to be taken into account with respect to issues such as trust, 
acceptability, perceived utility and concerns over complexity or distraction 
(see Burridge et al., 2020; Hartwich et al., 2018). More research is necessary 
to develop technologies and interfaces which are acceptable and accessible to 
the older driver population (see Stanton et al., 2021, for an example of the 
‘design for all’ approach). The design of automated driving systems should 
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therefore be matched not only to the cognitive abilities of older drivers, but 
also to their needs and wants (Bunce et al., 2012).

One project explored this very issue, and reported that most new in-car 
technologies have so far ignored older drivers’ needs (Haddad & Musselwhite, 
2007). Again using participatory methods, older drivers identified systems 
that provided enhanced feedback as having potential to assist their driving. 
Interestingly, another study (Hartwich et al., 2018) showed that older driv-
ers wanted automated driving systems to exhibit faster driving styles than 
they themselves used, by way of regaining some of the freedom that they 
had lost, in contrast to younger drivers who preferred the automation driving 
style to be more consistent with their own. However, these approaches could 
exacerbate problems of high MWL with older drivers (Groeger, 2000; Hole, 
2007). In particular, the diminished capacities of older drivers could render 
them more susceptible to overload with poorly designed assistance (cf. Harvey 
et al., 1995; Lundberg, 2003), although Horberry et al. (2006) found that 
older drivers were no more susceptible to distraction from in-car systems than 
younger drivers.

To resolve these issues, a user-centred approach to designing automated 
driving interfaces is needed. As a general rule, in-vehicle interfaces should be 
designed to minimise distraction and information overload, and thus must 
be sensitive to individual differences in drivers as well as different driving 
contexts. A UK government report (PACTS, 2007) noted that whilst in-car 
systems could help older drivers, their interface design and the limitations of 
divided attention might cancel out such benefits. Research suggests (e.g., Keith 
et al., 2007) that technological assistance inside the car will only be of ben-
efit if it has been designed from a user-centred perspective. As Waller (1996) 
noted, the extent to which ‘…new technology could assist [older drivers] is 
not known. Nevertheless, if new technology is designed, taking into account 
the abilities and limitations of older users, it holds promise of extending the 
self-sufficiency of many elderly drivers’ (p. 24). In the next chapter, then, we 
consider user-centred design of automated driving interfaces in depth.

KEY POINTS

• Limitations in human performance can have an adverse impact on 
driving under various circumstances, from short-term distractions to 
longer- term impairments in perceptual and cognitive ability.

• Research in our laboratory and elsewhere has explored these limita-
tions, showing detrimental effects on driving performance associated 
with mobile phones, eating, and drinking, roadside advertising, reduced 
visual acuity and ageing.

• Automation offers the potential to compensate for many of these limita-
tions, extending independent mobility and improving quality of life for 
many people.
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• However, we need to be cautious not to abuse the technology and 
encourage people to deliberately drive while impaired, relying on the 
automation to protect them.

• Moreover, automation itself can cause (or encourage) distractions, either 
from its own interface design or through people taking advantage of the 
reduced demands to engage in other, non-driving tasks.

NOTES

 1. It really is worth taking a moment to view the footage of Professor John Senders 
demonstrating this research at https://www.youtube.com/watch?v=kOguslSPpqo 
(accessed 4 February 2022).

 2. https://www.federalregister.gov/documents/2013/04/26/2013-09883/visual-
manual-nhtsa-driver-distraction-guidelines-for-in-vehicle-electronic-devices 
(accessed 4 February 2022).
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Chapter 9

How do we get along?

OVERVIEW

Having considered in the previous chapter some areas where driving automa-
tion can help compensate for human performance, we now focus on how it 
might best achieve that. The interface between human and automation is cru-
cial to ensure the benefits are maximised while avoiding any negative impacts 
for driver workload or distraction, and we argue a user-centred approach 
to interface design is essential. In some respects, the design principles for a 
driver-automation interface reflect those for any other interface, but there 
are also some particular considerations specific to automation. This chapter 
reviews generic design principles before focusing on the ecological interface 
design approach via a detailed case study about the development of an eco-
driving interface. From there, we consider how such interfaces might be adap-
tive to the situation, typically in response to the mental workload being faced 
by the driver. That takes us into a discussion of adaptive automation in its 
own right, followed by a brief summary of related developments in driver 
monitoring technologies that might feed the adaptation algorithms. The chap-
ter concludes with some views on how these issues might fit in with the near- 
and long-term future of driving automation.

INTRODUCTION

In Chapter 8, we examined the role of automation in managing, among other 
impairments, the various distractions that drivers face. These, of course, include 
the potential distraction from information and assistance systems inside the 
car, with the interface to any automation being no exception. Notwithstanding 
the claim (which we have cited elsewhere in this book) that drivers might have 
up to 50% spare attentional capacity when driving (Hughes & Cole, 1986), 
the proliferation of technology in the modern automobile (whether part of 
the original equipment or nomadic devices imported by the driver) could very 
quickly consume that capacity if not properly managed (Parnell et al., 2018). 
Indeed, as we already noted in Chapter 2, the complexity of technology in the 
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modern automobile has been used as a justification for automation to support 
human operators in dealing with it (Cuevas et al., 2007).

So, although we have spent a good portion of this book addressing the 
effects of automation on underload, many authors have also expressed their 
concerns about the other end of the spectrum, with potential adverse effects 
of distraction or overload arising from the need to deal with myriad addi-
tional information sources in the car (Donmez et al., 2007; Harbluk et al., 
2007; Horberry et al., 2006; Regan et al., 2009).

Legislation (such as the banning of mobile phones) may help to tackle the 
symptoms of the problem, but to treat the cause, in-car devices should be 
designed according to robust ergonomics principles to ensure positive benefits 
are gained while negative impacts on workload or distraction are avoided. 
Indeed, codes of practice for the design and development of such systems 
are available (e.g., Amditis et al., 2010; Cotter et al., 2006; van Driel et al., 
2002). We concluded Chapter 8 with a call for a user-centred design approach 
particularly with older drivers in mind, but the approach would doubtless 
benefit all drivers. In this chapter, then, we consider what that might look like 
by first reviewing good human factors practice in interface design, focusing 
on one particularly promising approach to user-centred displays. Towards the 
end of the chapter, we also consider the literal human-machine interface (i.e., 
the boundary between the driver and the automation) in discussing aspects of 
adaptive interfaces and driver monitoring.

IN-VEHICLE INTERFACE DESIGN

In-vehicle interfaces should be designed to support the driver’s situation 
awareness, their mental models of system operation, their attention alloca-
tion and, of course, their performance (Endsley, 2017; Kaber et al., 2001; 
Seong & Bisantz, 2008; Seppelt & Victor, 2016). However, any such inter-
face inevitably faces a trade-off between providing a richness of informa-
tion to achieve that, while not overloading or distracting the driver. It must, 
therefore, be designed for ease of perception (Franke et al., 2016) with the 
primary (driving) task in mind so as to support and, above all, preserve driv-
ing performance. Since driving is a predominantly visual task (Kramer & 
Rohr, 1982), any competition for the limited visual resources of driving could 
cause distraction (e.g., Donmez et al., 2007). The interface should therefore 
be designed to reduce visual demand by improving the availability of infor-
mation, compatible with the short glances used by drivers (cf. Dingus et al., 
1989). The NHTSA guidance1 referred to in Chapter 8 not only recommends 
that devices be designed such that drivers do not have to glance away from 
the road for more than 2 seconds at a time, but also that the total eyes-off-
road time for completing a task (to be clear, that is the total across multiple 
glances) should not exceed 12 seconds. Even the positioning of the interface 
matters – that is, whether it is in the driver’s central or peripheral visual field 
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(Franke et al., 2016) – as the further it is away from the primary field-of-view, 
the more it will affect the driver’s ability to detect trouble on the road ahead 
(Costa et al., 2018). This is where head-up displays have a big advantage, 
particularly for older drivers (Pampel et al., 2019).

As an alternative to competing for the intensively-used visual attention 
channel, it may be worth considering multimodal displays (cf. Spence & Ho, 
2009) to exploit the untapped resources of auditory or haptic attention (see 
Campbell et al., 2020, for a discussion of the relative merits). Under the mul-
tiple attentional resources model that (seeing as you have got this far in the 
book) we know so well now (Wickens, 2002), presenting information via 
other sensory modalities may reduce any excess demands on visual resources 
(Van Erp, 2001), leaving more for the primary task of driving and, thereby, 
theoretically improving performance (McIlroy & Stanton, 2015). Moreover, 
multimodal feedback is better for capturing attention and leads to faster 
responses (Mueller et al., 2020; Ulahannan et al., 2020), especially if the 
visual channel is overloaded (Lee & Seppelt, 2012).

The auditory modality is the most obvious choice for delivering warn-
ings when visual workload is high, particularly when speed of response is 
critical as in driving (cf. Edworthy & Stanton, 1995; Wickens, 1984). These 
may take the form of auditory icons, earcons, or speech warnings. Auditory 
icons have been defined as naturally occurring sounds that can convey infor-
mation about system events by analogy with everyday events (Gaver, 1986; 
1989). In the driving domain these may include sounds such as sirens, horns, 
engine noise, or rumble strips. Since they convey familiar meaning to driv-
ers, auditory icons should be easier to learn (Gaver, 1986). Earcons, on the 
other hand, are abstract tones that designate a particular meaning through 
a learned association (e.g., Brewster et al., 1993; Graham, 1999), such as the 
email alert on phones or computers. Earcons are the most common type of 
auditory warning used by vehicle manufacturers. Finally, speech messages do 
not need to be learned due to their verbal nature, and no inference is required. 
Whilst response accuracy to speech messages may therefore be greater than 
non-speech warnings, reaction times can be slower in emergency situations 
(Graham, 1999). This is because speech signals, even when only one or two 
words in length, take a relatively long time to present and interpret, as the user 
has to wait for most of the message to be delivered (Graham, 1999; Patterson, 
1982). Thus a key benefit of auditory over speech icons is that their informa-
tion can be processed more effectively, especially at times of high workload 
(Bliss & Kilpatrick, 2000). Graham (1999) assessed the use of auditory icons 
against more conventional warnings for a vehicle collision avoidance system, 
and found that the auditory icon warning produced significantly faster brake 
reaction times. So although users generally prefer speech icons over earcons 
and auditory icons, we cannot design systems just on users’ preferences (e.g., 
Jones & Furner, 1989; Lucas, 1994) and need to consider the effects on per-
formance. Meanwhile, there is considerable evidence that haptic interfaces 
impose significantly fewer demands than visual or auditory displays – and, 
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indeed, that haptic feedback can to some extent be automatically processed 
(Gustafson-Pearce, 2007; Sklar & Sarter, 1999; Van Erp & Van Veen, 2004).

When we talk about multimodal interfaces, though, we generally mean the 
presentation of redundant information simultaneously via multiple channels, 
rather than considering them as alternatives. But this does not mean just using 
multimodal feedback for the sake of it; if the visual display is already effec-
tive, then additional auditory information can just be distracting noise (Dunn 
et al., 2020). The point is to make the most of the relative advantages of each 
modality. Where a visual interface can display persistent status information, 
auditory or haptic warnings are more effective for conveying a change in sta-
tus (Mueller et al., 2020). It may therefore be better to use non-visual feed-
back to signal mode changes when the visual channel is already overloaded 
(Sarter & Woods, 1995). Moreover, research has shown that supplementing 
visual information with an auditory alert improves performance in a high 
workload takeover situation with automated vehicles (Dunn et al., 2020). 
Clearly, then, there is particular potential for visual distraction during auto-
mation takeover, since any alert will require some attention on it rather than 
the road during the handover (Large et al., 2018).

When it comes to automated driving interfaces, though, many have criti-
cised the lack of guidance (Campbell et al., 2020; Large et al., 2018) and test-
ing (Mueller et al., 2020). Current good practice and standards in interface 
design are largely focused on manual driving, but it has been argued that 
these are not applicable to interfaces for automated driving and so need to be 
extended to consider such (CIEHF, 2020b; Ulahannan et al., 2020). Clearly, 
some of the high-level principles would stand: the interface needs to support 
mental models and situation awareness of the automation mode and states, 
especially in takeover situations (Kaber et al., 2001; Seppelt & Victor, 2016), 
while not presenting so much information that it cognitively overloads the 
driver (Ulahannan et al., 2020).

Take adaptive cruise control (ACC) or lane centring (LC) as examples, see-
ing as we have focused on these systems a lot in this book. Drivers need to 
know how they function, the limits of their sensors and control, otherwise 
safety could be compromised (Seppelt & Lee, 2007). Yet these are precisely 
the nuances that people struggle to understand, such as when ACC loses a 
target vehicle ahead (Mueller et al., 2020). This may be a simple matter of 
paucity of feedback, one of the classic problems of automation we discussed in 
Chapter 2; we have heard anecdotal evidence of current level 2 systems being 
very prompt in chastising the driver for not playing their part (such as keeping 
their hands on the steering wheel as required), but being decidedly less forth-
coming if the system itself is struggling (such as the sensors losing detection of 
lane markings). A visual display providing continuous information about the 
ACC functionality can improve situation awareness (de Winter et al., 2014).

For automation in particular, then, the interface needs to support the driv-
er’s understanding of the system’s behaviour as well as its operational limits 
(Kaber et al., 2001; Ulahannan et al., 2020). Automation interfaces should 
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integrate the presentation of information to support direct perception of the 
performance of the automation (Cuevas et al., 2007). It is therefore important 
to design interfaces that convey the state and the intentions of vehicle, making 
it easier to understand and more acceptable (Pampel et al., 2020). Where this 
does not occur and the interface is opaque, it has led to problems with mode 
awareness (Sarter & Woods, 1995). On the other hand, many have called for 
transparency in interface design to facilitate mental models, understandabil-
ity and situation awareness – essentially offering a window on the inner work-
ings of system (CIEHF, 2020b; Kaber et al., 2001). Transparent interfaces 
convey the system’s limits (Banks & Stanton, 2016) and also influence appro-
priate trust in the automation (Gustavsson et al., 2018; Lee & See, 2004).

ECOLOGICAL INTERFACE DESIGN

One way of achieving this transparency would be to apply principles of eco-
logical interface design (EID; Burns & Hajdukiewicz, 2004; McIlroy & 
Stanton, 2015; Vicente, 2002), which is in turn based on the foundation of 
cognitive work analysis (CWA; Vicente, 1999). CWA is a structured frame-
work for considering the driver’s information requirements, taking account 
of the environment within which the task takes place and the effects of con-
straints imposed on the system’s ability to perform its purpose (Stanton, 
Salmon, Walker & Jenkins et al., 2017). By representing these constraints in 
a graphical format for direct perception, performance is improved and work-
load is reduced over conventional displays which require the user to integrate 
information in their heads (Davidsson et al., 2009; Hajdukiewicz & Vicente, 
2004; Hoff, 2004; Sanderson et al., 2003). Instead, an EID display integrates 
the information for the user (Lee & Seppelt, 2012; Metzger & Parasuraman, 
2005), therefore potentially improving performance at no cost to workload.

EID is based on the ecological psychology paradigm (cf. Gibson, 1979), exploit-
ing the precept that we directly perceive invariants in the world, rather than indi-
rectly through mental representations – meaning that, for interface design, we 
must study what is actually in the world (Hoff, 2004). It was developed to reflect 
the complexity of automated process control systems in an organised way, so 
that operators could visualise that complexity, make associations and meaning-
fully chunk the information, thus reducing processing demands and facilitating 
skill development (Borst et al., 2015). As such, EID does not oversimplify the 
system nor is it necessarily about intuitive displays, but what it does do is show 
the boundaries of the system so that operators can exploit its performance with-
out crossing its safety limits (Borst et al., 2015). For automated driving systems, 
EID could keep drivers in the loop (Seppelt & Victor, 2016) and improve per-
formance even at high levels of automation, by providing more transparency on 
what the system is ‘seeing’ and who is in control (Li & Burns, 2017).

Within the scientific literature a number of studies have used EID for driv-
ing automation; for instance, a lateral collision warning system (Jenkins 
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et al., 2007), lane change manoeuvres (Lee et al., 2006; Stoner et al., 2003), 
intelligent transport systems (Salmon et al., 2007) and ACC (Seppelt & Lee, 
2007). Seppelt & Lee (2007) used EID to visually and dynamically represent 
the behaviour and limits of ACC. Key variables to be shown on the display 
were derived from the CWA: headway, time-to-contact and relative velocity, 
making explicit the subtle cues of lead vehicle braking to provide drivers with 
better mental models and ensure their appropriate response when the braking 
limits were exceeded. Their simulator study showed EID resulted in better 
understanding of the ACC’s capabilities, leading to more appropriate reli-
ance on the ACC in failure situations, with better braking responses, longer 
time headways and fewer collisions. The EID even helped drivers’ awareness 
of headway and car following behaviour in manual driving. Seppelt & Lee 
(2007) concluded that the continuous display of automation state was better 
than just providing warnings when it fails, especially as ACC failures tend to 
be subtle, and at no costs to workload or distraction, as the EID reduced the 
demands of monitoring the lead vehicle.

In our own laboratory, Young & Birrell (2012) described the development 
of an EID display for ‘Foot-LITE’, a driver performance monitoring system 
which provides feedback on driving style to encourage both safe and eco- 
driving. We will detail that system shortly, but first, in order to set the con-
text, a brief foray into what we mean by eco-driving.

EID FOR ECO-DRIVING

Until relatively recently, the key focus of human factors research in trans-
portation has – quite properly – been to enhance road safety. However, road 
transport is also a significant environmental concern, producing nearly one-
quarter of the UK’s total greenhouse gas emissions in 2019 (DfT, 2021). While 
there is a welcome trend towards low-emission vehicles (i.e., electric or hybrid 
cars), there will still be petrol or diesel cars – not to mention commercial and 
heavy goods vehicles – on the road for several years yet (even after the UK 
bans the sale of internal combustion engine cars and vans in 2030, there will 
remain many extant petrol and diesel vehicles on the roads). In the meantime, 
drivers can turn to eco-driving practices to both save fuel and help save the 
planet (McIlroy & Stanton, 2017).

Eco-driving describes a driving style which results in an increase in fuel 
economy, such as keeping engine speeds down, anticipating traffic flows to 
avoid stopping, adopting more moderate and consistent speeds, and avoid-
ing harsh acceleration or braking (cf. Ericsson, 2001; Johansson et al., 2003; 
Pampel et al., 2015; Pampel et al., 2018; Pampel et al., 2020). Although the 
effects of eco-driving are relatively small when compared to longer-term strat-
egies such as infrastructure or technological change, studies suggest that it 
can reduce fuel consumption by up to 15% (af Wåhlberg, 2002; 2007; Pampel 
et al., 2015; van der Voort et al., 2001; Waters & Laker, 1980). Broadly 
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speaking, the techniques and behaviours that contribute to eco-driving also 
contribute to safe driving (af Wåhlberg, 2006; Haworth & Symmons, 2001; 
Hedges & Moss, 1996); a driving style that balances these priorities has been 
termed ‘smart’ driving (Young, Birrell & Stanton, 2011).

Encouraging smart driving techniques is easier said than done, though. 
People do seem to have an instinctive idea of how to drive economically 
(Pampel et al., 2017), so simply telling them to drive more economically can 
lead to some small reductions in fuel use (Pampel et al., 2015; Pampel et al., 
2018). Training may have a positive effect (e.g., Haworth & Symmons, 2001), 
but maintaining an eco-driving style can be demanding if it is not habitual 
for the driver so, without ongoing feedback, the effects are often short-lived 
(af Wåhlberg, 2007; Johansson et al., 2003; Pampel et al., 2018). Using in-
vehicle support systems to provide that real-time feedback can not only help 
sustain these changes in behaviour, but also enhance the reductions in fuel 
use (McIlroy et al., 2017; Pampel et al., 2014; Pampel et al., 2015; Pampel 
et al., 2018; van der Voort et al., 2001; Young, Birrell & Stanton, 2011). 
Various studies have shown that providing in-vehicle advice and feedback to 
help drivers anticipate traffic flows and adjust their speeds accordingly can 
lead to significant reductions in fuel use (e.g., Brookhuis et al., 2009; van der 
Voort et al., 2001; van Driel et al., 2007; Widodo et al., 2000). A system such 
as Foot-LITE could, therefore, provide real-time smart driving feedback to 
improve both safety and efficiency (Young & Birrell, 2011).

A number of vehicle manufacturers have already offered interfaces which 
provide eco-driving feedback to the driver, while a variety of smartphone 
apps and satnav options for eco-driving assistance have also emerged (e.g., 
Ericsson et al., 2006; van der Voort et al., 2001; van Driel et al., 2007). Such 
support tools hold great potential to positively influence driver behaviour 
(Gonder et al., 2011). However, they also present their own challenges, as 
providing the driver with more information in the vehicle may increase work-
load and cause distraction (e.g., Haworth & Symmons, 2001). The driver’s 
task and information needs must be taken into account when designing such 
a system in order to ensure that the positive benefits are gained while avoiding 
any negative impacts on safety (cf. Harbluk et al., 2007). This was the objec-
tive of the Foot-LITE project.

Development of the Foot-LITE EID

Young & Birrell (2012) argued that an ecological interface design for Foot-
LITE would achieve the objective of encouraging the desired smart driv-
ing behaviours while minimising the potential for distraction. So, following 
the EID process, a CWA for safe and eco-driving was developed (Birrell 
et al., 2012). As per the eco-driving techniques outlined above, the CWA 
pointed towards factors such as conserving momentum, accelerating and 
braking smoothly, planning ahead and gear selection being important for 
smart driving.
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The CWA also suggested that only skill-based (cf. Rasmussen, 1983) – or, 
in vehicle control terms (Ranney, 1994), operational level – elements of driv-
ing should be represented on the in-car interface. This seemed appropriate, 
given the assertion that operational control is a critical factor in eco-driving 
(Franke et al., 2016), coupled with concerns about knowledge-based pro-
cessing being attention-demanding (Rasmussen, 1983). Moreover, the Foot-
LITE EID aimed to make explicit the contextual cues that are automatically 
processed by skilled drivers (such as engine note, kinaesthetic feedback or 
advance visual information), of which most average drivers are likely to pro-
cess only a small proportion (cf. Hoff, 2004). Thus, the CWA highlighted sev-
eral aspects of operational driving feedback to be shown on the display, such 
as headway, lane deviation, and cornering speed for safety, complemented by 
engine speeds and acceleration forces for eco-driving.

The Foot-LITE EID sought to dynamically reflect the driving environment 
and integrate this complex information onto a single, direct perception dis-
play. Figure 9.1 shows a prototype of the EID interface that was developed 
for the Foot-LITE project. The principal aspects of the interface are based 
on the ecological notion of the ‘field of safe travel’, which was noted as ‘…a 
spatial field but it is not fixed in physical space. The car is moving and the 
field moves with the car through space’ (Gibson & Crooks, 1938; p. 456). 
On the EID display, the inner oval, which represents mainly safety param-
eters, directly illustrates the driver’s field of safe travel in the real world, as 
the representation of the car moves within the shape and warnings are given 
for reductions in headway or for lane departures. Thus the boundaries of 

Figure 9.1  Prototype EID interface.
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the oval represent the limits of the field of safe travel. The outer ring pres-
ents the dynamic parameters associated with eco-driving performance; these 
are essentially bars moving up or down with engine speed and acceleration 
(respectively), with the optimum level in the middle of the bar. In both safety 
and eco-driving cases, the driver’s goal is to maintain the car within a ‘green 
zone’ of performance (in the middle of the display), to optimise each set of 
parameters. The grouping of both safety and eco-driving elements around 
this green zone clearly identifies the constraints on desired performance, and 
suggests to drivers which actions ought to be taken to maintain such. Any 
behaviours which exceed set tolerances in the system result in amber or red 
indicators on the relevant aspect of the display, providing the driver with 
direct feedback about how their driving affects each parameter.

A key feature of the Foot-LITE EID was the integration of complex infor-
mation from two priorities (eco-driving and safe driving) onto a single direct 
perception display, in order to facilitate behaviour change while not distract-
ing the driver or causing an unacceptable increase in workload. For instance, 
the ecological representation of headway, showing an image of the car moving 
closer to a forward boundary, did not require any additional interpretation on 
the part of the driver (as, for example, a numerical distance readout would).

As an alternative to the EID concept, a more conventional dashboard-type 
interface (DB) was also developed according to best practice interface design 
guidelines in the human factors literature (such as the European Statement of 
Principles on Human Machine Interface for in-vehicle information and com-
munication systems; EC, 2008). Based on a vehicle instrument panel layout, 
the DB interface consisted of bar charts, warning icons (derived from ISO 
2575: 2004), pop-ups and textual information (see Figure 9.2). The basic prin-
ciples of the design were that driving information is grouped (as with the EID), 
with the eco-driving parameters all presented in the left-hand circle, while 

Figure 9.2  Example prototype DB interface, in this case showing gear change advice in the 
left circle, lane departure warnings in the right circle, and general driving tips 
along with a smart driving meter in the centre circle.
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safety-related information was shown in the circle on the right. The main 
centre circle has a smart driving meter situated at its crest, with additional 
driving related information or predefined smart driving tips presented under-
neath. The DB design was intended to offer familiarity to drivers, being akin 
to standard instrument binnacles available in most vehicles. The DB display 
was purposefully designed to impart exactly the same information as the EID 
to provide an opportunity to empirically evaluate them against each other.

Alongside development of the visual displays, similar work was undertaken 
to develop auditory and haptic interfaces for Foot-LITE as well (see Birrell 
et al., 2013; Young & Birrell, 2012). Auditory feedback is particularly suited 
to skill-based, operational elements of driving (i.e., those displayed on the 
Foot-LITE interface), since the auditory modality is limited in terms of the 
amount and complexity of data it can transmit. For each driving parameter 
(acceleration, headway etc.), three audio options were created: auditory icons, 
earcons, and speech icons.

From our perspective, auditory icons are the closest to an ecological inter-
face, as they convey information which should be familiar to the driver for a 
specific event. The auditory icons created for the Foot-LITE interface included 
a sound of rumble strips for lane deviation, a ‘sonar Doppler’ for headway 
(similar to that used for parking sensors), an over-revving engine for gear 
change, and the skidding of tyres for excessive braking. For earcons, a range 
of beeps were used to signify compromised headway and lane deviation (with 
increasing frequency to denote urgency for these safety-critical messages; cf. 
Hellier et al., 1993), two-tone chimes for gear change (mid-high for change up; 
mid-low for change down), and a set of three high or low pitched chimes for 
excessive acceleration or braking respectively. Finally, speech icons in our case 
comprised a synthetic voice verbalising a maximum of two units of informa-
tion (or three words) relating to the specific driving parameter presented: ‘too 
close’ (for headway), ‘out of lane’ (for lane deviation), ‘change up’ or ‘change 
down’ (for gear change), and ‘heavy braking’ and ‘excessive acceleration’.

Haptic feedback to facilitate eco-driving was provided through a vibrat-
ing accelerator pedal, which activated when the throttle was depressed past a 
50% threshold, in accordance with guidelines to optimise fuel efficiency. This 
reflected similar work elsewhere on congestion assistants that provide warn-
ings of traffic jams ahead (Brookhuis et al., 2009; van Driel et al., 2007), which 
found a haptic pedal reduced mean speeds on the approach to the congestion. 
However, the haptic pedal was not well accepted by drivers in their study, a 
finding in common with research suggesting that systems which restrict driv-
ers’ control are less likely to be accepted (van der Laan et al., 1997).

Evaluation

To refine the detail format of presentation on the display, the Foot-LITE EID 
and DB concepts went through user evaluation in an early human factors 
analysis phase (Young & Birrell, 2012). This phase comprised two studies. 
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The first was a questionnaire to determine user requirements. The question-
naire also sought users’ rankings of icons to represent different aspects of 
eco- and safe driving (headway, fuel economy, lane deviation, acceleration, 
and braking forces, inappropriate cornering speed, gear shift indicators, 
approaching hazard warning, and a driver alertness warning). These icons 
were derived from reviewing other standardised icons which are already 
present in existing vehicles (i.e., ACC, gear shift indicators etc.), following 
International Standards Organisation guidelines for in-vehicle icons (e.g., ISO 
15008:2003; ISO 11429: 1996), and other icons generated specifically for the 
project. The questionnaire study was followed by a static desktop rapid pro-
totyping study to gather objective and subjective data on the efficacy of the 
two designs. A minimum of 10 participants was needed for the desktop study 
in accordance with SAE Recommended Practice J2364, which suggests that 
for early development phases when using a mock-up or computer simulation, 
static task time averaged over 10 participants should be less than 15 seconds 
(Green, 1999).

The study revealed that despite the novelty of the EID, once participants 
had got over the initial learning curve the EID was at least as understand-
able as the comparable dashboard-style interface. Average response times for 
both interfaces were well within the 15 second rule, thus implying safe use 
of either while driving. There were no significant differences in subjective 
usability between the two displays; results suggested that participants rated 
EID as being more complex but more consistent compared to the DB design. 
Participants also made clearer links between their driving style and fuel econ-
omy with the EID interface, ratifying the integrated and direct perception 
nature of this design and suggesting that it can support effective action as 
well as users’ understanding of how these actions move them toward their 
goals (cf. Davidsson et al., 2009). This represents a significant achievement 
for the EID in helping drivers to understand key factors in eco-driving and 
linking these to positive changes in their driving behaviour. That said, par-
ticipants tended to prefer the DB display over the EID, echoing the findings of 
others (e.g., Jamieson et al., 2003) who have found initial resistance to EID 
displays when compared to traditional interfaces. However, it is interesting 
to note that those who preferred the DB design still performed better with 
EID, generally responding faster to each driving scenario and correctly iden-
tifying more EID scenarios when compared to DB information. Thus, it may 
just have been unfamiliarity with the EID which was holding it back; with 
extended use the advantages of EID may become even more apparent (e.g., 
Christoffersen et al., 1998).

A separate desktop rapid prototyping study was conducted to evaluate 
the different audio options. In general, users preferred auditory icons for 
safe driving feedback, but speech for eco-driving advice. Given that audi-
tory icons best align with the principles of EID, we concluded that these 
would be most suited to the ecological visual display for safety-related driv-
ing parameters.
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The next phase of the research was take the refined EID and DB visual 
interfaces forward to more rigorous dynamic testing in the Brunel University 
Driving Simulator (Birrell & Young, 2011). A working prototype of each 
interface was developed and installed in the simulator. Participants drove 
two simulated routes (urban and extra-urban), receiving real-time feedback 
from either the EID or DB interfaces. A baseline, no-interface condition was 
included as a control, in which participants were asked to drive according to 
the same principles of eco-driving but without the feedback. Measures were 
taken of driver attention and workload, as well as driving performance as 
recorded by the simulator software.

The results of the simulator study demonstrated that both designs had 
the desired effects on safe and eco-driving behaviour (in terms of reduced 
speed and acceleration) while avoiding negative impacts of increased work-
load or driver distraction (using a peripheral detection task). However, the 
EID performed better in terms of its perceived demand on driver attention 
(a 17% reduction over the dashboard-type interface), and was also preferred 
by  participants in the study. The haptic pedal was also tested in the driving 
simulator. Driving performance and workload measures suggested that it had 
many beneficial effects on acceleration and throttle parameters associated 
with safe and eco-driving, and reduced driver mental workload (MWL) when 
compared with the control condition.

Apparently, then, additional in-vehicle information need not increase work-
load and distraction if the interface is designed appropriately – and the EID 
seems to fit that bill. Positive and helpful information, such as that given to 
the driver by Foot-LITE, may actually improve driving performance while 
minimising additional workload and distraction. But driving is a dynamic 
task and its demands are constantly changing (Foy & Chapman, 2018), yet 
it remains crucial to maintain sufficient spare capacity throughout to deal 
with unexpected or emergency situations. This makes it difficult to propose 
a single, static interface design suitable for all driving situations. Instead, we 
might consider adaptive interfaces.

ADAPTIVE INTERFACES

Based on the now well-established premise of optimising MWL (e.g., Wilson 
& Rajan, 1995; Young et al., 2015), the potential for adaptive interfaces has 
been perennially studied (e.g., Byrne & Parasuraman, 1996; Hancock & 
Verwey, 1997; Parasuraman & Hancock, 2001). Adaptive systems infer the 
level of MWL on the operator by monitoring the task and/or the driver, and 
then regulate the level of information or assistance accordingly (cf. Verwey, 
1993). This is how Piechulla et al. (2003) developed their prototype adaptive 
interface for driver workload, which used complex task-based modelling of 
situational factors (such as road type, physical features etc.) to detect mental 
overload, and during overload periods it would route incoming phone calls 
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to voicemail. Their adaptive interface showed promising results in terms of 
managing driver MWL. Similar systems have also been offered in cars from 
some major manufacturers, which estimate workload from driver inputs 
(steering, acceleration, braking) in order to reschedule emails and phone calls 
(Engström & Victor, 2009).

The point of adaptive interfaces is to maintain a consistent, optimal 
state for the operator (Byrne & Parasuraman, 1996) while avoiding peaks 
and troughs of overload and underload which may degrade performance 
(Hancock & Parasuraman, 1992; Hancock & Verwey, 1997; Parasuraman, 
1987). This approach is the technological complement to behavioural adapta-
tion in response to workload – when faced with increases in task demands, 
drivers seek to balance that demand by slowing down, changing their priori-
ties or abandoning a secondary in-car activity (Cnossen et al., 2004). Having 
the system adapt, rather than the driver, should (theoretically) improve not 
just performance, but could also mitigate negative behavioural adaptation 
(such as overreliance), because the system context is not static.

Adaptive systems have been applied in the driving context (e.g., Donmez 
et al., 2007; Piechulla et al., 2003), and such systems have shown benefits 
in terms of operator behaviour and performance (Hoc & Lemoine, 1998). 
Young & Birrell (2011) proposed an adaptive framework for the Foot-LITE 
in-car interface, based on a rudimentary task-based workload model. Whilst 
the interface was carefully designed to minimise distraction, the adaptive ele-
ment had several levels of filtering for elements of the visual and auditory 
display, based primarily on characteristics of the road environment. These 
characteristics are picked up by the Foot-LITE sensor array, which includes 
GPS position monitoring, a forward-looking camera with object recognition, 
and numerous parameters from the vehicle’s on-board diagnostics. The inter-
face then dynamically provides appropriate levels of feedback in different 
driving situations, to manage the driver’s mental workload.

So what characteristics would the adaptive algorithm be based on? Previous 
research suggests that different driving manoeuvres demand different levels of 
visual attention (Groeger, 2000), and the literature on driver MWL offers sev-
eral task-related indicators of workload (see e.g., Dingus et al., 1989; Hancock 
et al., 1990; Schlegel, 1993). Factors of the environment, such as traffic and 
road situation, as well as different elements of the driving task (e.g., vehicle 
control and guidance, navigation) can influence MWL. For instance, steer-
ing appears to be a significant source of workload in vehicle control (Young 
& Stanton, 2004), while tuning a car radio or using a navigation system are 
amongst the most demanding of the conventional in-car tasks (Dingus et al., 
1989). In terms of driving manoeuvres, workload increases during a turn 
(Hancock et al., 1990), particularly when emerging from a junction when the 
driver has to cross a lane of traffic. Mental workload also increases in towns 
and cities when compared to highway or rural driving, due to the unpredict-
able nature of the former (Harms, 1991; Zeitlin, 1995). These high workload 
situations are also associated with collision involvement. This has led to the 
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idea of constructing mental load maps of towns, in order to predict collision 
rates and so design appropriate interventions (Wildervanck et al., 1978).

Such characteristics were taken into account along with pragmatic consid-
erations about what parameters could be measured, as well as other factors 
such as driving standards, to propose a set of rules for the adaptive interface. 
In the Foot-LITE model, driver mental workload had three levels:

• High – mental workload is deemed high when driving on urban roads 
with a high density of junctions (i.e., in a city or town centre). Speed 
limits of these roads may be between 20 and 40 mph (32 to 64 km/h), 
but actual speeds will probably be around 0 to 25 mph (40 km/h). The 
drive is characterised by numerous stop/starts, frequent turns, or highly 
inconsistent speed profiles.

• Medium – medium mental workload situations may still be in an urban 
or inter-urban setting but in the absence of many junctions, and with 
fewer stops and turns. Speed limits are likely to be 30 or 40 mph (48 or 
64 km/h), with probable speed ranges of 20 to 40 mph (32 to 64 km/h). 
The drive is characterised by lower mean driving speeds but more con-
sistency in speed profiles.

• Low – on roads with speed limits of 50 mph (80 km/h) or over, with 
relatively consistent actual speeds of approximately 45 mph (72 km/h) 
and over, low junction density and low numbers of turns. This category 
also incorporates any extra-urban highway.

With the rules for mental workload levels derived, the next step was to deter-
mine how these affected the adaptive nature of the display. Recall that the 
EID had several components – the inner oval for safety related information 
(headway, lane departures) and the outer oval for eco-driving feedback (accel-
eration, gear changing). Furthermore, within the oval, the status of the eco-
driving and safety parameters can be either green, amber or red. Each of these 
elements can be independently enabled or disabled on the display, providing 
various combinations of levels of information available to the driver.

The principle was established within the Foot-LITE project that, in the event of 
any conflicts in advice from safety or eco-driving perspectives, the safety-related 
information should always take precedence. With that in mind, it was deter-
mined that the feedback provided at each level of workload should be as follows:

• High – only ‘red’ safety warnings to be given; audio and eco-driving 
feedback are disabled

• Medium – all safety warnings active (red and amber), only red eco-
driving feedback is given, audio is active

• Low – all information active

The prioritisation rules for the display were ultimately founded on the skill-
rule-knowledge elements of driving derived from the CWA, and the adaptive 
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interface merely elaborates these in a dynamic fashion. Thus, by limiting feed-
back during high workload only to skill-based, safety-critical tasks, the inten-
tion was to optimise both the beneficial effects on driving performance as 
well as mitigating any consequences of distraction.

As an alternative to real-time adaptation to workload, Young, Birrell & 
Davidsson (2011) offered a kind of ‘temporal adaptation’, which they termed 
‘pre-loading’, as a means to smooth out longer-term peaks and troughs in 
workload, thus reducing problems of overload and underload and improving 
performance (Hancock, 2017b; Huey & Wickens, 1993; Young & Stanton, 
2007b). Based on resource theories of underload such as malleable attentional 
resources theory (MART; Young & Stanton, 2002a), pre-loading gives the 
operator an additional task to stimulate their attention during low workload 
periods to avoid underload and improve performance, which is then traded off 
against reduced demands during later workload peaks in the drive. The prem-
ise is that drivers have spare capacity during low workload periods of driving 
(e.g., highway cruising; cf. Hughes & Cole, 1986) which could usefully be 
occupied by presenting advance information about task-relevant activities in 
the near future. Huey & Wickens (1993) explicitly supported this kind of 
idea, suggesting that when the task is familiar and predictable, completing 
some of it ahead of time and developing contingencies during periods of low 
workload can alleviate later peaks in demand and so improve performance. A 
skilled operator can predict these peaks and so adapt their effort accordingly 
(Hancock & Chignell, 1988).

There is some evidence that additional tasks could improve driving perfor-
mance during conditions of underload. Specifically in level 3 driving automa-
tion, Gold et al. (2018) reported evidence that non-driving secondary tasks 
can improve performance in a takeover scenario. Elsewhere, Gershon et al. 
(2009) showed that an interactive cognitive task can suppress fatigue symp-
toms caused by underload in driving, while Nowosielski et al. (2018) similarly 
found that for drivers on a simple (i.e., underloading) route, hazard response 
times were improved by listening to an audiobook. It has even been suggested 
(Liu, 2003) that making a mobile phone call could improve performance for 
drivers facing low workload (e.g., a monotonous highway journey), an effect 
which has been interpreted in terms of MART (Zeeb et al., 2016). But such a 
strategy is controversial when it comes to safety-critical performance domains 
such as driving and does not sit well with road safety advice, or the signifi-
cant ergonomics and human factors evidence base on the increased crash risk 
associated with phoning and driving (see e.g., Collet et al., 2010). Problems 
will inevitably arise when primary (driving) task workload increases, causing 
conflict and overload. Rather, we prefer the notion that drivers engage in a 
task-related activity, so that if workload does increase, their attention is at 
least directed towards the driving task.

Instead, then, with task pre-loading the additional task is specifically 
designed as preparatory activity for a later, anticipated peak in demand. For 
example, one of the ironies with current satnav devices is that they provide the 
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driver with additional assistance at precisely the moment when driving task 
workload has increased – i.e., at a junction. One implementation of the pre-
loading concept might then be a satnav system which provides information 
about a forthcoming junction much further in advance than typical devices 
do, at a time when workload is lower. This has the additional advantage of 
priming the driver for the forthcoming hazard, giving them plenty of oppor-
tunity to plan how they deal with it. There is precedent for this in parallel 
human activity: Antrobus et al. (2017) highlighted how passengers naturally 
gave such preview information in their navigation instructions to drivers dur-
ing periods of inactivity, taking account of the driver’s context and workload.

Young, Birrell & Davidsson (2011) conducted a study in the Brunel 
University Driving Simulator to evaluate this concept with a view to design-
ing adaptive systems around a pre-loading activity. Participants drove in a 
simulator under low and normal workload conditions, with and without 
pre-loading. The pre-loading task consisted of a hazard identification task, 
intended to increase drivers’ attention to the driving task. In addition, at the 
mid-point of the run, a critical event occurred which required drivers to react 
in order to avoid a collision. The results showed that participants were clearly 
sensitive to the pre-loading task, reporting increased subjective MWL when 
using it. However, there was no effect on either objective metrics of atten-
tion or performance, suggesting that the pre-loading task does not have the 
anticipated effects in terms of compensating for underload – at least for the 
conditions in their experiment. Young, Birrell & Davidsson (2011) discussed 
potential reasons for this relating to the experimental design, or even the 
possibility that the underload ‘problem’ might be automation-specific, rather 
than relating to other low workload scenarios (a notion also posited by Young 
& Clynick, 2005; see Chapter 4). That is, the underload effect may actually 
be a qualitatively different phenomenon from very low workload, and may 
then not be so distinct from automation-related explanations such as out-of-
the-loop performance (e.g., Endsley & Kiris, 1995; see also Young, 2021). 
Although the results did not prove the hypotheses, then, the pre-loading task 
was clearly noticeable to participants and it may yet have some potential for 
cancelling out subjective peaks and troughs as anticipated.

ADAPTIVE AUTOMATION

Although we have above been discussing adaptiveness in the context of driv-
ing assistance interfaces, these principles equally apply to adaptive automa-
tion. Like adaptive interfaces, automation is adaptive when the allocation 
of control changes in response to either aspects of the physical environment 
or the human (Sheridan, 2011), and is often based on workload (Hancock 
& Chignell, 1988; Schlegel, 1993; Sheridan, 2011; Verwey, 1993). This 
approach, also known as dynamic task allocation, offers an alternative to 
blanket use of a high level of automation (Li & Burns, 2017). The relative 
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merits of human and machine will change across tasks as well as during a 
task, making dynamic allocation preferable to static function allocation in 
order to avoid extremes of underload and overload (Lee & Seppelt, 2012).

The aim of adaptive automation, of course, is to improve performance and 
workload (Hancock & Chignell, 1988; Kaber & Endsley, 2004). Studies show 
that adaptive automation can improve situation awareness and MWL (Bailey 
et al., 2006; Charles & Nixon, 2019; Parasuraman et al., 2008; Sheridan, 
2011). Adaptive automation could also cater for user preferences for more 
or less information during automated or manual control (Ulahannan et al., 
2020). Some even suggest that adaptive automation could mitigate against 
automation-related complacency (Bailey et al., 2006) while improving accept-
ability (Parasuraman & Wickens, 2008).

The idea that adaptive systems would be more acceptable was tested in a 
study of a forward collision warning system conducted in a driving simulator 
(Jamson et al., 2008). Drivers experienced two versions of the system: one 
that used fixed warning thresholds based on a constant reaction time to a for-
ward event, and an adaptive version that was trained on the basis of a driver’s 
observed reaction time. For non-aggressive drivers – defined as long followers 
and low sensation seekers – there was little difference in acceptance between 
the non-adaptive and the adaptive systems. However, for the more aggres-
sive drivers – those who generally engaged in close following and who scored 
higher on sensation-seeking – acceptance of the adaptive system was substan-
tially higher than acceptance of the non-adaptive system. In terms of objective 
safety, defined as the capability to avoid a crash, the two systems performed 
with roughly equal effectiveness. Thus, the adaptive system resulted in higher 
overall acceptance with no diminution of objective safety performance.

The benefits of adaptive automation result from maintaining meaningful 
operator involvement in active control while managing workload (Kaber & 
Endsley, 2004). However, some of these benefits may vary depending on the 
type of task (Kaber & Endsley, 2004) and type of cognitive processing, lead-
ing some to suggest that adaptive automation should take account of multiple 
attentional resources and be matched to the type of demand (Hancock & 
Chignell, 1988; Matthews et al., 2015; Taylor et al., 2013). Other studies have 
shown that performance with automation can be improved by occasionally 
interspersing periods of manual control, since it serves as a kind of rehearsal 
to offset skill degradation (see e.g., Endsley & Kaber, 1999; Kaber & Endsley, 
2004; Kaber et al., 2001; Parasuraman et al., 1996a). Although this is not truly 
adaptive automation, it does demonstrate another of its potential benefits.

It is worth distinguishing between adaptable (where the change in alloca-
tion is invoked by the human user) and adaptive (when the change is invoked 
by the automation; Scerbo, 2001; 2007). Both have pros and cons (see Scerbo, 
2007) – adaptive in terms of potential conflicts, distrust or automation sur-
prises (i.e., how does the human know what the automation is doing and who 
has control?); adaptable in terms of increasing the driver’s workload burden 
as it draws attention away from the task itself (Bailey et al., 2006; Inagaki 
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& Sheridan, 2019). Indeed, an adaptive system has been shown to result in 
better situation awareness, MWL and performance than an adaptable system 
(Bailey et al., 2006).

Whilst the principles of adaptive systems are sound in terms of managing 
the traditional problems of workload and situation awareness that are associ-
ated with static function allocation, their dynamic nature also brings its own 
design challenges. For one thing, there is the question of managing feedback 
for the driver so they know which level of the system is operating – otherwise 
it could lead to inconsistency and unpredictability. Indeed, Smith et al. (2009) 
warned that an inconsistent system could adversely affect user acceptance 
of it, if drivers cannot understand it. Furthermore, adaptive automation can 
increase the complexity of the task as the operator has to keep track of how 
their behaviour affects not just the task itself, but also how that impacts on the 
behaviour of the automation (cf. Cuevas et al., 2007; Kaber et al., 2001). 
There is also an inherent problem in constantly switching between human 
and machine control. When the automated system takes over, the task may 
stabilise quickly, resulting in reallocation to the human. Taking control back, 
though, might impose high MWL for the operator, and if workload is the 
basis for allocation decisions, this means the task would immediately come 
under computer control again. This can lead to rapid cycling of automation, 
which can lead to better performance, but higher subjective MWL (Scallen 
et al., 1995), even though physical workload may not change (Hilburn, 1997). 
Moreover, there is the important question of authority over the transition – 
that is, who (human or machine) decides when and how control transfers 
from one to the other (see Inagaki, 2003, for a discussion). Adaptive auto-
mation requires a part of the system (either human or machine) to act as 
the allocation agent, distinct from the automation controlling the function 
itself (Sheridan, 2011). The allocation algorithm that determines how, when 
and why to switch control, though, is one of the trickiest aspects of adaptive 
automation (Bailey et al., 2006; Kaber et al., 2001; Tsang & Vidulich, 2006).

Perhaps because of these challenges, actual examples demonstrating the 
value of adaptive automation in practice are scarce (Gustavsson et al., 2018). 
As much as anything, adaptive systems depend on the ability to define and 
monitor threshold limits of workload (Hancock & Chignell, 1988), something 
which has long proved notoriously difficult (Young et al., 2015). But advances 
in driver state monitoring offer promise for evaluating not just workload, but 
also distraction and fatigue. Such monitoring is now recognised as a central 
safety measure in next generation automated driving (Lenné et al., 2020).

DRIVER MONITORING

Adaptive interfaces typically work by inferring the driver’s MWL based on 
some metric of the task context, observable task performance or the driver 
themselves. Early investigations of systems for real-time driver monitoring 
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pursued physiological metrics (Byrne & Parasuraman, 1996; Fairclough, 
1993; Kramer et al., 1996), which proved more effective than either perfor-
mance measures (Brookhuis, 1993) or subjective measures (Lindh & Gårder, 
1993). As we have demonstrated in our own research (see Chapter 7), there 
seems to be an inextricable link between workload and physiological arousal, 
which may be exploited to detect situations of underload or overload (see 
also Brookhuis, 1993; Fairclough, 1993; Wildervanck et al., 1978). Interest 
in physiological measures has persisted since (e.g., Charles & Nixon, 2019; 
Inagaki, 2003; Kaber & Endsley, 2004; Parasuraman & Wickens, 2008; 
Scerbo, 2007), with more advanced brain-based physiological metrics (i.e., 
electroencephalogram or near infra-red spectroscopy) showing promising 
results (e.g., Bailey et al., 2006; Matthews et al., 2010; Scerbo, 2007).

Nevertheless, developments in technology and sensors meant that later 
systems moved away from physiological measurement in favour of more 
overt behavioural indices of driving style or stored models of the driver (e.g., 
Donmez et al., 2007). In the European AIDE project (Adaptive Integrated 
Driver-vehicle interfacE; see e.g., Amditis et al., 2010; Engström & Victor, 
2009), sensors monitored the driver-vehicle-environment system, using eye 
and head tracking, on-board diagnostics, and satnav data respectively. These 
data were compared against a stored model of driver workload for a range of 
scenarios, as defined by experts and empirical testing (e.g., Tango et al., 2010).

As driving becomes more automated, though, there are fewer behavioural 
indicators to monitor (Lenné et al., 2020). But there is still a need to moni-
tor the driver’s attention to ensure they are ready to reclaim control when 
the system needs to hand it over, so it knows whether they are ‘available 
and attentive’ (CCAV, 2020) or ‘fallback-ready’ (SAE, 2018). Current sys-
tems are therefore moving towards using infra-red camera-based approaches 
to monitor the driver’s eyes, head or face (Lenné et al., 2020), which are 
increasingly capable and are thus rapidly becoming the preferred solution. For 
instance, Tivesten et al. (2019) suggested that eye-tracking could be used to 
detect behavioural patterns associated with higher crash risk when reclaiming 
control from automation. Alternatively, other manufacturers check for physi-
cal (i.e., hands-on) contact with the steering wheel to determine whether the 
driver is ‘fallback-ready’ (Bishop, 2020).

While these systems have their place in automated driving, they can equally 
be applied to monitor fitness to drive in manual driving (Lenné et al., 2020). 
Eye- or head-tracking can be used to detect whether the driver is distracted 
and, if so, provide them with a warning (see e.g., de Winter et al., 2014). Some 
of these systems are designed to alert the driver purely to their own distrac-
tion, in an effort to ‘train’ the driver to be aware of potential distractions and 
thus adapt their behaviour (e.g., Donmez et al., 2007; Engström & Victor, 
2009). Similar systems have been developed as a countermeasure for fatigue, 
monitoring for predetermined patterns of behaviour or vehicle control that 
have been associated with tired drivers. When it detects a threshold level of 
these behaviours, the driver is given a warning message in the instrument 
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cluster suggesting that they take a break. As we touched on in Chapter 8, 
other systems are available that use eye-tracking cameras embedded in the 
dashboard, in order to detect signs of fatigue through eye movements, blink 
rate or eye closure.

Some of this technology could also be used to provide the basis for adap-
tive interfaces. For instance, Smith et al. (2009) described a collision warning 
system developed under the European SAVE-IT programme (SAfety VEhicles 
using adaptive Interface Technology) that monitors the driver’s head position 
and adapts its warnings depending on whether the driver is watching the 
road or not. If the driver is distracted, the system could present its warning 
earlier, in a different location, or through a different modality; alternatively, 
if the driver is detected as being attentive, then the warning could be attenu-
ated so as not to annoy them. In a similar way, driver monitoring can be 
used to prime the driver before resuming manual control from automation 
(Large et al., 2018) or to provide more takeover time for distracted drivers (cf. 
Eriksson & Stanton, 2017b).

Whilst such attention reminders can ostensibly improve visual attention 
patterns, this does not necessarily translate into drivers’ takeover perfor-
mance, which is as much based on higher-level cognitive expectations as it is 
on actually looking at the road ahead (Victor et al., 2018). Consistent with 
this, some evidence suggests that adaptive systems based on this kind of moni-
toring are not necessarily beneficial. A simulator study by Merat et al. (2014) 
examined how drivers resumed control from level 2 automation depending on 
whether control was handed over at regular intervals (i.e., a static allocation 
policy) or if it was based on drivers’ eye movement patterns (whether they 
were looking away from the road for more than 10 seconds). It turned out that 
the adaptive version resulted in worse driving performance and more erratic 
attention patterns. Bringing us full circle in this chapter, some of these issues 
may very well be down to how carefully the interface has been designed (cf. 
Ljung Aust, 2020; Stanton et al., 2021).

CONCLUSIONS

Whilst this chapter has taken us briefly outside the specific realm of automated 
driving, it was with good intent: to see how interfaces could be designed not 
just to minimise distraction and overload arising from the new technology in 
the automobile, but to go further and optimise the driver-automation inter-
action. The design of any in-vehicle interface, including those for automated 
driving, must be user-centred, taking into account (and supporting) the pri-
mary information needs, capabilities, and limitations of the driver. Techniques 
such as ecological interface design and adaptive automation offer promising 
ways of achieving that for the benefit of safety, efficiency, and performance.

Nevertheless, we have also highlighted some of the practical challenges in 
implementing these solutions, particularly with adaptive automation which, 
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in turn, depends on some form of driver monitoring. These challenges will be 
brought into sharp relief as we move towards level 3 automation. The auto-
mated lane keeping system (ALKS) being advocated for UK roads depends on 
a driver being ‘attentive’ and ‘available’ to resume control if needs be; such 
availability is determined every 30 seconds by a driver monitoring system 
which effectively checks whether the driver’s eyes are on the road and hands 
are on the wheel (CCAV, 2020). While this rather defeats the object of level 3 
systems allowing the driver to engage in non-driving tasks, it also very much 
depends on the assumption that in doing so, the driver is indeed ‘attentive’ 
(Ljung Aust, 2020) – which may or may not necessarily be true. The implicit 
recognition that drivers may have an impaired ability to respond due to the 
reduced demands on attention also speaks to the central concern of this book 
around mental underload – remembering that this is exactly the sort of task 
that Hancock (2019) said humans are ‘magnificently disqualified’ for.

In our human-centred ‘autopian’ future, then, we need human and machine 
to work in harmony, with the technology adapting to the driver rather than 
the other way around. Probably, this will mean a more sophisticated level of 
driver monitoring, such as brain-computer interfaces. Haufe et al. (2011) took 
a neuroergonomics approach to emergency braking in a driving simulator 
study, and managed to detect the driver’s intention to brake via muscle and 
brain activity fractions of a second earlier than via actual pedal movements. 
If the appropriate sensors could feasibly be installed in cars, this could be a 
prime source of data for the technology to know what the driver is  thinking – 
to sense their intent, and to match its actions accordingly. More broadly, 
future systems may draw on a suite of internal and external sensors to create 
an integrated picture of what is going on with the driver and the environment 
so that the automation can act in response, such as increasing headway if it 
senses the driver is distracted (e.g., Veoneer, 2018).

This kind of technology may have sounded like the stuff of science fiction 
even only a few years ago, but the possibilities are very real. And, if we are 
to truly achieve human-centred automation, both human and machine need 
to have a very good understanding of what is going on in the other’s head 
(Stanton, Salmon & Walker, 2017). Cutting-edge interface design and driver 
monitoring are therefore essential to two-way communications, fostering 
collaboration and cooperation. These bring us to philosophical elements of 
human-centred automation, which we turn to in our final chapter.

KEY POINTS

• The increased complexity in modern automobiles (including, of course, 
from automation) presents a risk of overloading the driver; user-centred 
design should play a key role in managing this issue.

• Guidance suggests that in-car interfaces should be designed such that 
drivers do not have to glance away from the road for more than 2 seconds 



202 Driving Automation

at a time, or for more than 12 seconds in total (across multiple glances) 
to complete a task; however, good practice and standards in interface 
design for manual driving might not be applicable to automated driving.

• Multimodal displays offer a useful alternative to the overused visual 
channel when designing driving interfaces.

• Interfaces should present a transparent and integrated view of the sys-
tem; ecological interface design (EID) principles have been shown to 
offer promise in doing so, managing complexity without causing an 
unacceptable increase in workload.

• Adaptive interfaces (and adaptive automation) take this further by mon-
itoring aspects of the task and/or the driver, and changing the nature of 
information presentation or automated support to suit, but the evidence 
for the effectiveness of these systems has so far been mixed.

NOTE

 1. https://www.federalregister.gov/documents/2013/04/26/2013-09883/visual-
manual-nhtsa-driver-distraction-guidelines-for-in-vehicle-electronic-devices 
(accessed 29 April 2022).
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Chapter 10

An autopian future?

OVERVIEW

So we finally reach our destination, and the last leg of our journey revisits the 
story so far, summarising the ‘promises and problems’ of automated driving, 
before going on to consider in detail what we have learned for the design of 
such systems from a human-centred perspective. More discussion is had on 
adaptive systems and interface design principles, but the bulk of the chapter is 
given over to advocating a number of high-level design philosophies for driv-
ing automation. We recap the dichotomies reviewed in earlier chapters about 
vehicle versus driving automation and hard versus soft automation; we argue 
that automation should be problem-driven rather than implemented for its 
own sake (and provide some examples to illustrate this point); we propose a 
‘cliff-edge’ approach to implementing automation, whereby the full capabili-
ties of the technology are constrained until it can truly take over all aspects of 
the task without any need for human supervision; and, finally, we detail the 
considerable human factors literature on human-automation teaming, apply-
ing principles of teamwork to the design and implementation of automated 
systems. Before closing, we also consider some implications for driver train-
ing with automation, but the book concludes by reiterating the point that 
driving automation has to be a team player if we are to realise the ‘autopian’ 
ideal in future.

INTRODUCTION

We have spent a good deal of this book highlighting the various potential 
human factors problems with automation in general, and driving automation 
in particular. But we are neither Luddites nor technophobes; whilst we cannot 
deny the satisfaction that many (including ourselves) gain from driving manu-
ally, the last couple of chapters have shown us that it is equally impossible to 
ignore the potential for automated driving to improve safety, mobility, and 
the environment. Automated driving systems are coming, and to some extent 
are already here. If not already, many of us will soon experience driving 
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automation, whether as a driver or a passenger (or both at the same time!). As 
we approach the end of our journey with this book, then, it is worth reflecting 
on what we have encountered so far, such that we can try to get the best out 
of automotive automation in future.

WHAT WAS THE PROBLEM WITH AUTOMATION AGAIN?

In the interests of balance, it seems only fair to start off by revisiting the 
benefits of automation. Automated driving systems have long been seen 
as having the potential to improve safety and traffic flow on future roads 
(Biesterbos & Zijderhand, 1995; Hancock & Parasuraman, 1992), as well as 
offering independent mobility for older drivers (see Chapter 8). Indeed, there 
is an argument1 that, even though current automation cannot yet cope with 
all the complexities of driving in the way a human driver can, it is still safer 
than a distracted driver, so we should embrace the technology as soon as pos-
sible. This is particularly true given that the proliferation of other technology 
in vehicles has been increasing the propensity for drivers to be distracted2 
(Landau, 2002). The argument continues that whilst accidents of automa-
tion will happen, there will not be as many as those caused by (distracted) 
human drivers.

Leaving aside the sticky issue of how society accepts (or otherwise) col-
lisions caused by automated vehicles (e.g., Krügel & Uhl, 2022), what this 
argument reminds us of is the spectre of mental workload (MWL) hanging 
over automation. Previous authors have suggested that in-vehicle technologies 
have the potential to overload and confuse the driver if they are not designed 
appropriately (Revell et al., 2020; Verwey, 1993). Meanwhile, justifying auto-
mation by recourse to the additional demands introduced by other technol-
ogy in the car betrays the presumption that automation will reduce mental 
workload. Yes, that reduction may be beneficial during peaks in workload 
that may otherwise cause problems for the driver (e.g., Liu, 2003). But, as 
several chapters in this book have expounded, under most normal driving cir-
cumstances, workload is actually manageable, so any reduction risks tipping 
the driver into underload.

But underload in and of itself might not necessarily be the problem; all the 
time things are working well, performance might even improve with reduced 
MWL (cf. Ma & Kaber, 2005). Rather, many of the ‘problems’ of automa-
tion are actually about reclaiming manual control, either in a scheduled 
takeover scenario (Eriksson & Stanton, 2017a; 2017b) or in an abnormal 
or emergency situation (Stanton et al., 1997). In these circumstances, the 
overwhelming evidence in human factors research is that people struggle to 
cope, and performance suffers as a consequence. Explanations for this have 
ranged from effort (Desmond et al., 1998; Matthews et al., 1996), through 
situation awareness (Endsley & Kiris, 1995; Kaber & Endsley, 1997) and 
trust (Lee & Moray, 1994; Parasuraman & Riley, 1997), to vigilance (Molloy 
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& Parasuraman, 1996; Parasuraman et al., 1996b). Whilst we do not disre-
gard these other explanations (they are all, in many ways, compatible with 
each other), in our work and throughout this book, we have focused on the 
common thread of MWL, having shown that underload with automation has 
a clear impact on takeover performance through a shrinkage of attentional 
resources (Young & Stanton, 2001b; 2002a; 2002b). Like the proverbial 
frog in the boiling pot of water, unexpected and sudden peaks in MWL are 
more disruptive to performance than a gradual increase in difficulty (Huey & 
Wickens, 1993). Under malleable attentional resources theory (MART), this 
is because capacity has been reduced below the level which the takeover situ-
ation demands, and the sudden increase in MWL outstrips the speed at which 
resources can be replenished. The general consensus – which is consistent 
with the MART model – is that MWL optimisation is crucial to maintaining 
effective task performance.

Determining the right level of automation for a task can help to optimise 
driver workload as well as situation awareness, performance, and satisfac-
tion. Rather than just blanket automation (Endsley, 1987), though, auto-
mation should be targeted where it is needed, so as to reduce overload and, 
indeed, compensate for underload (cf. Mueller et al., 2021). This is different 
to piecemeal automation, where subtasks are automated according to techni-
cal feasibility as much as anything (or even just for the sake of it; cf. Endsley, 
2019; Endsley & Kaber, 1999; Hancock, 2014), and which leaves the operator 
with an incoherent set of tasks that remain unautomated. But even traditional 
levels- of-automation approaches have been criticised for being engineering-
centred rather than human- or collaboration-centred (see also Wiener, 1989). 
All of the problems of automation that we have been warned about by the likes 
of Bainbridge (1983), Norman (1990) and Reason (1990) largely arise from a 
technology-centred approach to automation, which focuses on the limitations 
of human performance and justifying automation as a means to eliminate 
human error. But what this fails to recognise is that people bring a range of 
strengths to complex dynamic systems and, in most cases, make a positive 
contribution in creating safety (cf. Hollnagel, 2014; Reason, 2008).

This human contribution has proved time and time again to be pivotal in 
emergency situations. Learning more lessons from aviation, take the example 
of United Airlines Flight 232, which crash landed at Sioux City, Iowa, on 
20 July 1989 (see Faith, 1996; Huey & Wickens, 1993; Reason, 2008). The 
DC-10 aircraft had suffered an explosive failure of its number two engine3, 
which in the process had destroyed the hydraulics to the control surfaces. 
Unable to fly the aircraft by conventional means, the three flight crew enlisted 
the help of an off-duty pilot who was a passenger on the flight, and they man-
aged to fly to Sioux City airport purely by using differential thrust on the two 
remaining engines. The approach was going well considering such improvisa-
tion, but an unfortunate windshear on landing caused a catastrophic impact 
with the loss of 112 lives. That is of course a tragedy, but the fact that there 
were 184 survivors can be put down to the ingenuity and skill of the flight 
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crew. In a similar vein is the much-celebrated US Airways flight 1549 in 2009, 
ditched on the Hudson River in New York by Captain Chesley Sullenberger 
and First Officer Jeffrey Skiles, in which all 155 on board survived thanks in 
no small part to the teamworking of the crew (see Borst et al., 2015; Reason, 
2016). In the driving context, human drivers travel over 490,000 miles 
between collisions and over 95 million miles between fatal collisions; accord-
ing to Endsley (2019), this compared to 5,600 miles per manual intervention 
(i.e., a human having to take over in a situation that the automation cannot 
cope with) for the best automated vehicles of the time.

Despite the problem of automation being about manual takeover, it is also 
in out-of-course situations such as these that the value of human input is 
realised (another irony!). More than fifty years before writing this book, 
another Young (1969) presciently noted that the role of human operators of 
automated systems will be to bring ‘versatility, adaptability and reliability … 
to observe the environment … monitor instruments … control in parallel with 
the automatic system and take over in the event of a failure’ (p. 672). Tellingly, 
all of those observations – particularly the latter one about taking over in 
the event of failure – remain relevant today, especially given the presumption 
that it will (almost?) never be possible to design an automated system capable 
of dealing with all possible situations (Borst et al., 2015). In fact, it is in 
the abnormal situations where humans can adapt and shine (Mallam et al., 
2020). But that does not mean that we should continue to rely on people to 
mop up for clumsy automation (cf. Sarter & Woods, 1995), as this is just a 
sticking plaster for all of the other underlying problems with automation (Lee 
& Seppelt, 2012).

We have known for some time now that simply trying to automate the 
human out of the loop does not deliver the solutions that engineers crave (e.g., 
Parasuraman, 1987; Wiener & Curry, 1980). The keepers of future technolo-
gies should recognise this and forego efforts to design humans out of systems 
as an attempt to prevent ‘human error’ (cf. Bainbridge, 1983). Instead, they 
should integrate the human fully and nurture their abilities. Under a systems 
perspective, the user and the technology are not separate entities, but part 
of a single interactive system, and the goal should be to optimise the per-
formance of that system as a whole (Singleton, 1989). Neither component 
of the  system is infallible, but by capitalising on the strengths of each, the 
joint sociotechnical system really can be greater than the sum of its parts. 
The criteria for sharing tasks between human and machine should therefore 
be based on human performance over automation reliability (Parasuraman 
et al., 2000). This means exploiting the capabilities of each component of the 
system and being aware of their limitations. Particularly in the case of driv-
ing, we should appreciate that humans are actually very capable of perform-
ing the task, and any additional devices should be problem-driven rather than 
technology for its own sake.

This is not to say that technology should not be used, but that more thought 
needs to be given to its appropriate implementation and how it impacts on 
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the user’s goals (Read et al., 2020). Several luminaries in human factors (e.g., 
Hancock, 2014; Parasuraman, 1987; Wiener & Curry, 1980) have argued 
that, when it comes to automation, designers should ask not whether we can, 
but whether we should – or, as Hancock (2019) put it, whether we should just 
because we can. Now, the question of whether we should automate remains 
moot (Parasuraman & Wickens, 2008); in fact, the question is surely how 
we might best go about it (Harris & Smith, 1997; Young & Stanton, 1997), 
given that automation is coming anyway (cf. Billings, 1991; Hancock et al., 
2019). Technology should of course be embraced where appropriate, but it 
should be seen as a tool to support the unique skills and flexibility of human 
operators, rather than trying to replace them (cf. Borst et al., 2015; Endsley, 
2015; Read et al., 2020; Reason, 2008). While we still retain a human in 
the loop, we need to consider how the design of the automation fits around 
the driver.

HOW TO DESIGN AN AUTOMATED DRIVING SYSTEM 
(FROM A HUMAN FACTORS PERSPECTIVE)

The converse of the technology-centred approach is to adopt a human- 
centred design philosophy (cf. Billings, 1997; Navarro et al., 2018; Reichart, 
1993), and there have long been calls for human-centred design in vehicle 
systems (Hancock et al., 1996; Hancock & Verwey, 1997; Owens et al., 
1993; Reichart, 1993; Rumar, 1993; Stanton & Marsden, 1996). Following 
the arguments presented above, human-centred automation seeks to optimise 
overall performance of the human-machine system by designing it around not 
just what the technology can do but also the capabilities, the limitations and 
the needs of the human user (Endsley, 1987; Kaber & Endsley, 2004; Navarro 
et al., 2018).

These high-level principles are all very well, but they are also easier said than 
done. So let us try to turn them into something more concrete by addressing 
one of the key themes of this book: mental workload. To unashamedly labour 
the point, many agree that a key goal is to match task demands and human 
capacity, thereby optimising workload and avoiding underload or underload 
(e.g., Bainbridge, 1991; Gopher & Kimchi, 1989; Lovesey, 1995; Neerincx 
& Griffioen, 1996; Reichart, 1993; Rumar, 1993; Wiener & Curry, 1980). 
In accordance with MART, this strategy will help to maintain attentional 
resources too, thereby ensuring spare capacity is available if (and when) it 
might be needed. But this is not just about providing “make-work” for the 
sake of it in order to avoid underload; the activity has to be meaningful and 
directed towards the primary task (Wiener & Curry, 1980), lest it take the 
driver’s attention even further away from driving. And this seems to suit a 
sizeable proportion of drivers: research has shown us that more than one-
third prefer to carry out a low workload task manually, even in the face of 
perfectly reliable automation (Navarro et al., 2018). Varying workload and 
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ensuring the user interacts with the automation in some way – in other words, 
making the task more interesting – are also beneficial in counteracting both 
perceived and actual underload (Hancock, 2017b; 2021).

Some advocate the use of adaptive interfaces as a means of optimising 
driver mental workload and achieving human-centred automation (e.g., 
Byrne & Parasuraman, 1996; Hancock & Verwey, 1997; Verwey, 1993). The 
reader will recall from Chapter 9 that adaptive systems monitor the task, the 
driver (which we will return to later) or the environment so that they can 
adjust the level of support offered to the driver in real-time based on the level 
of workload. Designing and implementing an adaptive system is a challenge 
to get right, not least because of the problem of managing the handover of 
activities between human and computer, which can end up with the driver 
cycling between extremes of overload and underload (Scallen et al., 1995). 
Nevertheless, if adaptive automation can be properly achieved, it truly fits the 
system to the user.

Crucially, then, human-centred automation does not cut the user out of 
the loop, but rather involves them in the task at hand (cf. Wiener & Curry, 
1980) for both objective and subjective benefit. We know that it is important 
for performance to retain an active role for the human operator (Metzger & 
Parasuraman, 2005). In the Euro NCAP tests mentioned in Chapter 1, the 
best rated systems struck a balance between easing workload and keeping the 
driver in the loop without promoting over-reliance.

If there is one consistent message to emerge from all this work, it is the 
importance of system feedback to support the operator (e.g., Cuevas et al., 
2007; Hancock & Verwey, 1997). Quality feedback keeps the operator in 
the loop rather than out of it, helping to both prevent complacency setting in 
(Kaber, 2018) and to maintain situation awareness, which are both critical to 
responding effectively.

This feedback is provided through the system’s human-machine interface, 
so good interface design is fundamental in promoting good coordination 
and shared situation awareness between human and automation by ensuring 
that system operation is easily interpretable and understandable (Borst et al., 
2015; Endsley, 2017; Johnson et al., 2014; Wiener & Curry, 1980). Since the 
interface is the ‘window’ into the system, transparency in interface design is 
critical (Hancock et al., 2019) to maintain mental models, mode awareness 
and the ability to keep track of ‘what the automation is doing now’ (Endsley, 
2015; 2017; Hancock, 2019; Kaber et al., 2001; Richards & Stedmon, 2016; 
Sheridan & Verplank, 1978; Victor et al., 2018). In other words, the auto-
mation needs to let the user know clearly what it is doing, what it plans to 
do, and why (Stanton et al., 2021). For example, Eriksson & Stanton (2016) 
discussed vehicle displays that show what the car can ‘see’ through its sen-
sors, thus providing that transparent window into the what the system is 
thinking and arguably improving the driver’s understanding of, and trust in, 
the system (Young, 2013). Recent innovations in head-up displays have seen 
at least one manufacturer taking just such an approach with adaptive cruise 
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control (ACC), overlaying a marker on the lead vehicle that the ACC system 
is following.

Ecological interface design (EID) is one way of achieving this, as it allows 
the user to better understand the rationale behind the system’s behaviour (see 
Borst et al., 2015; Stanton et al., 2021). We discussed in Chapter 9 the benefits 
of EID in improving users’ understanding of the system while avoiding over-
load or distraction. Representing information on the display in a way that is 
more directly compatible with users’ mental models, as EID does, can help to 
manage mental workload since the automation is carrying out the necessary 
calculations and transformations of data to information (which, of course, is 
what it is good at), supporting the human and relieving them of this burden 
(Parasuraman et al., 2000).

However, we can (and probably should) also take a step back from these 
issues and consider a similar question at more of a macro level, before we even 
get into the specifics of designing automation. That is, what is our guiding 
philosophy when implementing automation?

DESIGN PHILOSOPHIES FOR HUMAN-
CENTRED AUTOMATION

All of the automation problems that we have been concerned with in this 
book are based on the presumption that there is still some human involve-
ment in the task. In SAE terms, we are talking about automation up to and 
including Level 4. We will soon discuss where Level 5 fits into this debate 
but, as we saw in Chapter 1, it seems unlikely that this will be realised any 
time soon (Endsley, 2015). Therefore, we need to consider the role that the 
human plays and, concomitantly, answering the question we posed earlier of 
how we should implement automation. In this section, we make the case for 
a selection of higher-level philosophical approaches to human-centred design 
for automated vehicles.

Hard or soft, vehicle or driving?

One of the fundamental questions concerns which party has ultimate author-
ity over decision-making: human or computer? In Chapter 1, we discussed the 
aviation philosophies of hard and soft automation, whereby in hard automa-
tion the computer has the final say, while in soft automation this is down to 
the human. The technology-centred approach would favour hard automation, 
recalling those arguments about accidents being caused by human error, so 
the human should be automated out of the equation. But there are circum-
stances in which this level of computer authority can cause problems rather 
than resolving them. The crash of an Airbus A320 at an air show near Paris 
in 1988 (described in Chapter 2) was arguably a consequence of hard automa-
tion systems taking charge.
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We also transposed the hard/soft dichotomy against one of our own (Young 
et al., 2007): vehicle automation (automation of low-level vehicle control 
aspects) against driving automation (in which the driver is relieved of more 
conscious, higher-level tactical or strategic tasks). Being less overtly visible to 
the driver, there can be advantages to vehicle automation systems that really 
act as safety nets and only impose their presence when the situation has gone 
past the point of no return. Systems such as automatic emergency braking and 
electronic stability control have proven effectiveness in reducing collisions 
(e.g., Navarro et al., 2011).

Concerns arise, though, when considering driving automation, whether 
hard or soft. Issues of mental workload have been identified with some soft 
driving automation systems. In our series of studies reported earlier in this 
book (see also Young & Stanton, 2002b), the mental underload associated 
with ACC and (especially) lane centring resulted in performance problems 
when drivers needed to reclaim control from the system. Hard driving auto-
mation, on the other hand, is largely associated with problems of trust, 
 situation awareness, and mental models. If the system is designed to assume 
control with little input from or feedback to the driver, then the driver may 
have difficulty in developing an appropriate mental model or situation aware-
ness of its operation in a given scenario. Without knowing exactly how it 
might behave, the driver could become distrustful of the system (i.e., lack 
of trust) or even develop misplaced trust (i.e., overtrust or complacency; cf. 
Parasuraman & Riley, 1997). Then, the driver’s situation awareness will be 
inadequate or inappropriate, resulting in potential performance problems in 
a critical situation.

In a nod to vehicle automation rather than driving automation, Endsley 
(2017) suggested that automation should be used for routine tasks rather than 
higher-level cognitive tasks. Meanwhile, Metzger & Parasuraman (2005) 
took this a step further and argued that operators should be supported in 
routine tasks to keep them in the loop, while it is the repetitive, less important 
tasks that should be given over to automation. Furthermore, Young et al. 
(2007) suggested that ‘strong-but-silent’ vehicle automation would have fewer 
human factors implications than driving automation because it is essentially 
invisible to the driver during normal operation, and only intervenes in abnor-
mal situations.

From this line of thinking, we could argue that hard automation should be 
restricted to the vehicle automation category, where it might cause fewer prob-
lems. Conversely, the human factors problems may be more significant when 
implementing hard driving automation. But that does not necessarily mean 
that soft automation is better for the driving automation category, since we 
have seen that even soft driving automation can cause problems of underload.

In all likelihood, the answer is to match different elements of the driving 
task with different philosophies. In a sense, this has already happened, with 
traditional vehicle automation mostly falling into the hard automation cat-
egory, while more driving automation systems straddle the boundaries of soft 



An autopian future? 213

and hard. Rather than an overarching philosophy of soft or hard automation 
for driving (as has been seen in aviation), a blend throughout the driving sub-
tasks may prove most effective.

Problem-driven automation

We have already argued the relative merits of human-centred over technology- 
centred design for automation. A problem-driven approach takes that a little 
further, maintaining that whatever solution is offered, it should address a 
need on the part of the driver. Crucially, though, the message is not to use 
technology for its own sake, when a more rudimentary solution may be avail-
able. This may mean implementing a low-technology solution, or possibly 
not using the full potential of the automation in favour of optimising human 
performance (Hancock et al., 1996; Owens et al., 1993).

Take ACC as an example. As we know, the argument for automation is 
often based on evidence from errors or accidents (e.g., Broughton & Markey, 
1996); the case for ACC was in part based on the fact that over a quarter of 
all road traffic collisions are due to rear-end collisions (Gilling, 1997). If we 
break this down, it follows that drivers have some difficulty perceiving rela-
tive speed in a car-following situation4. But do we really need a technologi-
cal solution for that problem, or would a low-tech approach suffice? Perhaps 
we should instead build on the success of centre high-mounted brake lights 
(Farmer, 1996) and improve the perception of vehicle rear-ends?

We said earlier that we are not technophobic, so we could alternatively use 
the same technology to different ends, providing the driver with  information 
to support the task that they normally do, rather than taking over that task 
for them (Billings, 1991; Wiener & Curry, 1980). This approach can reduce 
workload while maintaining situation awareness (Selcon & Taylor, 1991; 
Selcon et al., 1992) as well as facilitating the acquisition of experiential 
knowledge (Böhle et al., 1994). Meanwhile, any concerns about resuming 
control in the event of failure are negated (Wickens et al., 2015), as the driver 
maintains control of the task and the system simply provides them with extra 
information. As such, this would avoid many of the problems of automation 
associated with mental underload, skill degradation and being out of the loop.

Applying this to the ACC example, the system’s sensors could be used to 
provide drivers with advice and/or warnings (on an EID display, of course; 
cf. Seppelt & Lee, 2007) about the speed (relative or actual) of, or headway 
from, the lead vehicle. Instead of assuming longitudinal control for them, 
this would support their judgement of time-to-collision (Stanton & Young, 
2005), which is a complex perceptual judgement especially difficult for inex-
perienced drivers (e.g., Cavallo & Laurent, 1988). Huang (2020) argued that 
automated multi-sensory systems to support this vulnerable task are a good 
idea, particularly given the potential for change blindness in situations when 
distracted, for instance by roadside advertising (as we saw in Chapter 8). 
In a similar way, Navarro et al. (2011) suggested vision enhancement as an 
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example of perception support, for the 75% of crashes on rural roads that are 
a result of poor markings of lanes or road edges.

These kinds of solutions are in line with the general consensus towards 
technological support rather than automated replacement (Young & Stanton, 
2002b), fostering human strengths while compensating for their weaknesses 
(Grote et al., 1995). Much of this can be achieved through the interface dis-
play, without necessarily ‘automating’ in the traditional sense (cf. Endsley, 
1987), as improved sensor and display technology have shifted trends in dis-
play design from providing data towards supporting problem-solving and 
decision-making (Borst et al., 2015).

Using technology for information acquisition and analysis – ‘information 
automation’, in Parasuraman et al.’s (2000) parlance (see Chapter 1) – exploits 
the computing power to take care of calculating and integrating information 
(Seong & Bisantz, 2008), supporting drivers’ judgement and thereby add-
ing value to the human-automation relationship. Similarly, Endsley (2017) 
stated that automation at earlier stages of information processing (i.e., infor-
mation acquisition) is more beneficial for situation awareness than at action 
selection or implementation (see also Wickens et al., 2015), arguing that we 
should automate only where necessary and at the lowest possible level. In 
other words, it is better to use technology to support users’ perception than to 
replace control or make their decisions for them (Stanton et al., 2001).

‘Cliff-edge’ automation

The clear message by now is that a fundamental principle of automation – at 
least, automation that still requires some human involvement – is to support, 
rather than replace the operator (e.g., Endsley & Kaber, 1999; Hancock, 2014). 
As we have seen time and time again, humans should play an active part in a 
task rather than being a passive monitor of a system, so automation that relies 
on a human driver as a ‘fallback’ operator needs to retain a meaningful role 
for that driver. The point is, we cannot just increasingly cut people out of the 
loop and then expect them to jump right back in again when we need them to 
(cf. Noy et al., 2018). To be human-centred, then, this may mean restraining 
the full potential of the automation until its development reaches a point when 
it is good enough to cope with every conceivable situation in all contexts with-
out any need for monitoring or intervention (that is, SAE level 5 automation). 
This is what we mean by the cliff-edge: rather than a gradual slide towards full 
automation, transitioning through the problematic intermediate levels (Young 
& Stanton, 2006a), we should instead hold back until such a time when we can 
jump straight to level 5 (see Figure 10.1 for a conceptual illustration).

Notwithstanding the debate earlier in this chapter about whether even par-
tial automation would be safer than human drivers, there is widespread sup-
port in human factors for this cliff-edge type of philosophy in limiting the full 
functionality of automation (e.g., Hancock, 2017a; Kaber & Endsley, 2004; 
Mueller et al., 2021; Schutte, 1999). Norman (2015) made a convincing 
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argument that almost-full automation is most problematic, as drivers come 
to rely on it and so struggle to take over control when needed (see also Noy 
et al., 2018). If the system appears to be very able, but is actually imperfect, 
drivers might overtrust it and think it can do more than it is actually capable 
of (Banks, Eriksson et al., 2018; Banks, Plant et al., 2018; Ljung Aust, 2020). 
Lee & See (2004) suggested that, in some circumstances, a simpler but less 
capable automation may be better than a more complex but less trustable 
version. Indeed, it was argued a very long time ago that aviation automation 
had already passed its optimal point (Wiener & Curry, 1980). So full automa-
tion in itself is not the problem; the difficulties arise in transitioning through 
intermediate levels of automation to get there (Norman, 2015) – not to men-
tion concerns about automated vehicles sharing the roads with human drivers 
during that transition (Brooks, 2017).

We are starting to see shades of this approach in current practice, as some 
aviation models are indeed predicated on going straight to full autonomy, 
because this is seen as less complex than transitioning through a human-in-
the-loop model (CIEHF, 2020a). Even in the automotive domain, some of the 
trailblazers of automated vehicles have considered skipping partial  automation 
levels, in which the human might need to intervene, and instead pushing 
straight on to fully automated vehicles (Noy et al., 2018). Meanwhile, related 
concerns about the implementation of level 3 automation on UK roads (in the 
form of automated lane keeping system; ALKS) led one road safety expert to 
state in the UK media5 that ‘you can’t have steps towards automation – either 
the car is driving or it isn’t’. That is to say, we either hand over control fully 
and completely, or else keep a human in the driving seat –  literally and meta-
phorically (cf. Banks & Stanton, 2016; Stanton et al., 2020).

Figure 10.1  Conceptual illustration of the human-centred ‘cliff-edge’ principle. Rather than 
implementing each level of automation when it becomes technologically pos-
sible, thus reducing human involvement in a stepwise fashion (dotted line), we 
should maintain human involvement until we can step straight to full automa-
tion (solid line).
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But what of the technology in the meantime? Again, this is not about shy-
ing away from technology, but ensuring it is implemented in the right way. The 
answer is, of course, becoming all too familiar: support the driver, rather than 
replace them, in the same way as a human co-driver would (e.g., Hoc et al., 2009; 
Young et al., 2007). And that brings us to consider the driver and the automa-
tion as collaborative partners – in other words, as a team (Norman, 2015).

Human-automation teaming

So if the automation cannot (yet) be engineered so as to be completely inde-
pendent of the human driver (i.e., level 5 automation), then it should be seen 
as a teammate to support the driver. Lately, the mood music in the human fac-
tors literature has very much shifted towards a teaming approach of coopera-
tion and communication between human and machine (e.g., Dekker, 2004; de 
Visser et al., 2018; Endsley, 2017; Hoc et al., 2009; Moon et al., 2020; Roberts 
et al., 2022; Schutte, 1999; Young, 2013; Young et al., 2007), although it 
is notable that the importance of teaming was even implied in the original 
levels of automation report by Sheridan & Verplank (1978). There has been 
a lot of work discussing automation as a team player, moving the focus away 
from developing more autonomous systems (Klein et al., 2004) and instead 
following the philosophy of supporting rather than replacing humans (cf. Hoc 
et al., 2009). To borrow a quote we used in Chapter 1 (Hoc et al., 2009; 
p. 154): ‘[t]rue driver support should act as a human co-driver – providing 
advice when needed, assistance when necessary, but largely remaining in the 
background and invisible under normal conditions’. A good co-driver does 
not interfere, but provides assistance when needed. Billings (1991) similarly 
argued that automation should be restrained under nominal conditions but 
step up to assist when circumstances get more difficult. In cases where auto-
mation does have to intervene, it should communicate its intentions with the 
driver efficiently and work on the basis of the task context and driver’s inten-
tions (Clark et al., 2019). Genuine teaming is about the automation ‘picking 
up the slack’ for human capabilities and limitations (Norman, 2015), backfill-
ing tasks if and when the human has had to direct their attention elsewhere in 
an emergency or abnormal situation6.

Using cooperation as a principle for automation design is more human-
centred than basing it on technological capability (Kaber & Endsley, 2004; 
Navarro et al., 2018). Contrast this with classical, technology-centred 
approaches to implementing automation (which, by the way, includes the SAE 
taxonomy) that have divided tasks piecemeal between human and machine 
according to fixed rules about which is better at performing them. All this 
usually achieves is taking away parts of the task that drivers are already good 
at anyway (cf. Billings, 1991), because these have also been the easiest tasks 
to automate (cf. Norman, 2015).

Although the pace of technological development is now blurring some 
of the traditional dividing lines for allocation of function, it also opens the 
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potential to have a more integrated relationship designed around the human 
(cf. Hancock, 2019). Schutte (1999; 2017) talked about this integrated rela-
tionship as ‘complemation’, while Johnson et al. (2014) called it ‘coactive 
design’. This philosophy flips traditional automation design on its head, by 
giving a coherent set of tasks to the human and having them make the pri-
mary decisions, thus keeping them ‘in the loop’ and engaged in the task. 
Meanwhile, the piecemeal tasks left over are allocated to the automation, 
which monitors human performance (rather than the other way around). Such 
an approach to human-centred automation fosters human skills for the task 
while supporting the driver’s understanding of its behaviour.

Instead of just thinking about what the machine can do, then, we should 
take into account the impact on driver behaviour and the requirements for 
teamwork (Hoc et al., 2009). As Dekker (2004; Dekker & Woods, 2002) put 
it, rather than designing automation on a quantitative (even competitive) ‘who 
does what’ basis, successful automation depends on designers answering the 
more qualitative question of ‘how do we get along?’ The driver and the auto-
mation are part of a joint sociotechnical system and, as such, should be work-
ing together towards a common goal (Christoffersen & Woods, 2002), with 
the driver playing an active role (Banks & Stanton, 2016). After all, the point 
of introducing automation should be to improve performance of the overall 
human-automation system (Hancock & Parasuraman, 1992; Hancock et al., 
1996; Johnson et al., 2014).

This very much reflects established wisdom on human-human teams, who 
also work together dynamically, interdependently and adaptively towards a 
common goal (Annett & Stanton, 2000; Salas et al., 1995). In that litera-
ture, teamwork is defined as ‘the ability of team members to work together, 
communicate effectively, anticipate and meet each other’s demands … result-
ing in a coordinated collective action’ (Cannon-Bowers & Salas, 1997). 
These principles should equally apply regardless of whether any of the team 
members happen to be machine, rather than human. Accordingly, human- 
automation teams have been defined as ‘the dynamic, interdependent cou-
pling between one or more human operators and one or more automated 
systems requiring collaboration and coordination to achieve successful task 
completion’ (Cuevas et al., 2007, p. 864). Scerbo (2007) similarly describes 
human-automation teams in terms based on human-human teams, where it 
is key to communicate plans and intentions to each other as well as coordi-
nating task allocation.

For human-automation relationships to be human-centred, we need to 
think about them in the same way as human-human relationships, from a 
more social or anthropomorphic perspective (Clark et al., 2022; de Visser 
et al., 2018). People already behave as if they are working with another human 
when using automation (Lee & See, 2004). Sarter & Woods (1995) noted 
examples of pilots trying to interact with automation in similar ways as they 
would have with another human, making assumptions about what it would 
‘know’ based on the inputs they have made. ‘In human-human partnerships, 
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communication has always been viewed as a vital aspect of teamwork and 
collaboration – team members coordinate by anticipating and predicting each 
other’s needs through common understandings of the environment and com-
mon expectations of performance’ (de Visser et al., 2018; p. 1412).

The common characteristics of good teamworking, whether human-
human or human-automation, involve the coordination of resources and 
skills among team members, having a common understanding of each others’ 
goals and needs, and two-way communication to share information (Cuevas 
et al., 2007; Endsley, 2017; Gregory & Shanahan, 2017; Salas et al., 1995; 
Wickens et al., 1998). These aspects are explicitly considered in the human- 
automation cooperation framework (Hoc, 2001; Hoc & Blosseville, 2003; 
Hoc & Lemoine, 1998; Hoc et al., 2009; see also Navarro et al., 2011), which 
we reviewed in Chapter 1. Its central tenet of the ‘common frame of refer-
ence’ (COFOR) reflects the importance of the human and machine under-
standing each other’s goals and how they will work together to achieve them. 
The COFOR is essentially a complementary representation of the sociotech-
nical system held by both human and machine, a vital common ground in 
which information is shared to the extent that both parties understand not 
just what is going on, but also what the other knows and is doing about it 
(Cuevas et al., 2007; Eriksson & Stanton, 2016). Under the distributed situ-
ation awareness model (Stanton, Salmon & Walker, 2017), for teamworking 
to be effective both parties have to share their understanding with the other 
(Salmon et al., 2020).

The key to establishing the shared understanding that is so necessary for 
effective team performance, then, is communication (Salas et al., 1995; Stanton 
et al., 2006; Yee et al., 2020). Various researchers agree that, for automation 
to be a team player, its activities should be observable, directable, and predict-
able (Christoffersen & Woods, 2002; Dekker & Woods, 2002; Klein et al., 
2004). In being observable, information presentation should be as transpar-
ent as would the actions of another human team member – which could be 
achieved using ecological interface design to visually integrate information on 
the display (for example, see Metzger & Parasuraman, 2005). In being direct-
able, it should be possible to hand over tasks fluently between human and 
automation. This transfer of control is a scenario which particularly depends 
on breadth and depth of information communication regarding the current 
system status as well as when, how, and why the driver needs to take control 
(Campbell et al., 2020; Clark et al., 2019). Grappling with this most thorny 
of human-automation cooperation issues, Flemisch et al. (2012) discussed the 
importance of mutual awareness about who is in control. They suggested 
using a visual token (i.e., an icon on the display) to show who has control, 
and for there to be an explicit handover ritual (such as putting hands on the 
steering wheel) so that each party is clear that control has been  transferred. 
Finally, in being predictable, there should be shared knowledge, beliefs and 
assumptions about the system’s remit and responsibilities in a given situation. 
Automation needs to be matched to a driver’s mental models, to behave like 
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the driver so that they can detect and respond when the automation reaches 
its limits (Lee & Seppelt, 2012).

Whether you call it COFOR or situation awareness, then, it is critically 
dependent on information constantly flowing between the agents in the system 
(cf. Griffin et al., 2015). This reflects earlier points we covered in Chapter 2 
about the importance of feedback in automated systems (e.g., Norman, 1990; 
1991), since ‘perception of the elements in the environment’ is the foundation 
of situation awareness (Endsley, 1995; Jones & Endsley, 1996). The automa-
tion must be transparent in making its status and intentions obvious to the 
user (Endsley, 1987), and this includes its capabilities as much as its limita-
tions. If the system is struggling to deal with a situation – whether due to 
a malfunction or because the situation is outside its design limitations – it 
needs to clearly communicate this to the user, so as to maintain appropriate 
mental models and, hopefully, avoiding problems of complacency (Richards 
& Stedmon, 2016; Victor et al., 2018).

Poor feedback along these lines has been identified numerous times as an 
issue in aviation automation (cf. Dekker, 2004). Take Norman’s (1990) case 
study of the Boeing 747 with the loss of engine power (described in Chapter 1). 
In this example, an autopilot system attempted to compensate for the loss of 
power by balancing the control surfaces. However, as Norman pointed out, 
the autopilot did not provide feedback to the flight crew on its actions – so 
when it could compensate no more, the human team members were faced with 
a drastically worse situation than if they had been informed earlier. From the 
teamworking perspective, the absence of communication in this kind of auto-
mation drop-out scenario is unacceptable (Eriksson & Stanton, 2016).

In fairness, the UNECE (2018) resolution on automated driving systems 
recognises the importance of transparency, stating that these systems should 
communicate their status and intention clearly and enable an appropriate 
interaction. Christoffersen & Woods (2002) suggested that the higher the 
level of automation, the more feedback it needs to supply to make its behav-
iour observable. As an illustration, drawing again on good human-human 
interactions, Antrobus et al. (2017) showed that navigation instructions given 
by a passenger were better than those from a satnav, being enriched with 
contextual and non-verbal information and facilitated by the passenger being 
able to check if the driver had understood. But caution needs to be exercised 
here – more information is not always better, as this can lead to overload. 
Quality is more important than quantity (Kaber et al., 2001); communica-
tion needs to be effective, relevant (Stanton & Roberts, 2020), and timely 
(Yee et  al., 2020). In safety-critical industries, the ABC mnemonic is used 
to encourage communications to be Accurate, Brief, and Clear. Eriksson & 
Stanton (2016) discussed rules for optimum communication along similar 
lines, based around the quantity, quality and relevance of the information 
being communicated. Similarly, Clark et al. (2019; 2022) devised a set of 
principles based on human-human communication that can inform human-
machine dialogue in the transfer of control.



220 Driving Automation

Moreover, information has to flow in both directions between human and 
machine in order to share goals, intentions, and to develop good mental mod-
els of each other (Endsley, 2017). The Airbus A320 crash at the Paris air 
show was a prime example of how this can go wrong, and one which could 
have been prevented if both human and machine were more aware of each 
other’s intentions. The automation was unaware of the context of the flight 
(i.e., a low pass along the runway at an air show as opposed to a landing at 
an airport) and also the intent of the pilot (i.e., not to land). These kind of 
automatic mode transitions were one of the principal concerns identified in 
the implementation of automation on the flight deck (FAA, 1996).

So, as much as the interface must allow for effective monitoring of the sys-
tem state by the human, the system must also be able to monitor the human 
for the same (Klein et al., 2004). In order to achieve this, the automation 
needs to know about the driver – their intent, their current state etc. – and 
that is where the behavioural models and physiological sensors of adaptive 
systems come in, which we reviewed in Chapter 9. To pick some of the tech-
niques out, driver monitoring could include eye or head tracking (bearing in 
mind, though, that eyes-on-road does not necessarily mean mind-on-road; cf. 
Banks et al., 2014; Ljung Aust, 2020), steering or lane keeping, duration of 
drive, or reaction times to specific ‘attention reminders’ (Mueller et al., 2021). 
Using these kinds of metrics, the system could infer information about driver 
state and feed that into the interface to help manage the driver’s attention. For 
instance, it could be a real team player by providing alerts or cues to direct 
attention to relevant information (Campbell et al., 2020; Klein et al., 2004), 
or re-engaging the driver if it detects their attention is waning (Merat et al., 
2014). Physiological monitoring could even be used to automatically take over 
or hand back tasks in safety-critical situations, depending on the relative state 
of the driver (Endsley, 2015; Flemisch et al., 2012).

Historically, though, physiological monitoring in the messy environment of 
the real world has been fraught with difficulty. Physiological metrics tend to 
be unidimensional, and so may be limited in their ability to monitor the mul-
tidimensional nature of interacting with automation across tasks and stages 
of information processing (cf. Taylor et al., 2013). But the field is constantly 
developing and opening up new possibilities. In the previous chapter, we 
touched on the potential of brain-computer interfaces to detect drivers’ inten-
tions (e.g., Haufe et al., 2011). Similarly, eye-tracking systems could, with 
appropriate algorithms, make a reasonable guess at the driver’s attention pat-
terns, knowing where they are looking and, perhaps, what they are attending 
to. We might even envisage future systems that could ‘get to know’ the driver 
on a more emotional level, just as a human co-driver would – being sensitive 
not just to their workload or distraction but also to their particular driving 
style or priorities on any given day (see e.g., Rudin-Brown, 2010).

Driver state monitoring is now being widely promoted as a vehicle safety 
technology (Lenné et al., 2020). From the teamworking perspective, it is just 
the other side of the essential communication coin: the driver monitors the 
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system through a transparent interface, and the system monitors the driver. It 
has been argued (CIEHF, 2020b) that, if the system is unable to do so, then 
the loop is incomplete and the system should not operate – in the same way as 
a driver incapacitated through fatigue or alcohol should not operate a vehicle.

It is therefore crucial that if an automated system is to operate effectively 
as part of a human-automation team, it should be aware of the task  context – 
both in terms of the environment around the vehicle and of the driver’s inten-
tions. This recalls the analogy, as we have already noted, of considering 
automation in the same way as a human co-driver (e.g., Noy et al., 2018). 
This is a relationship in which the driver very much leads and shares control 
(Victor et al., 2018), as a manager of a set of resources which happens to 
include the automated system (Dekker, 2004). But exactly what this all looks 
like for automation is still an open question (de Visser et al., 2018; Larsson 
et al., 2014; Victor et al., 2018).

In aviation and other transport systems, the evolution of crew resource 
management (CRM; e.g., Helmreich et al., 1999; Kanki et al., 2010; Wiener 
et al., 1993), and non-technical skills (NTS; e.g., Flin et al., 2008) followed 
a series of aircraft accidents in the 1970s and 1980s in which teamwork-
ing between flight and cabin crew broke down. CRM is about using all the 
resources at the disposal of the crew – people, information and equipment – to 
achieve safe and efficient operations (Lauber, 1984; cited in Flin et al., 2008). 
Core themes of CRM have included communication, cooperation, shared sit-
uation awareness, leadership and team decision making (Jensen, 1997) – all 
those elements of good teamwork we have reviewed above. There is academic 
(Salas et al., 2006) and practical evidence of the success of such programmes 
in changing behaviour and improving safety. Indeed, the aircraft accidents at 
Sioux City and on the Hudson River (reviewed earlier in this chapter) could 
have been a lot worse, were it not for the CRM skills on the flight deck (see 
Reason, 2008; 2016). At Sioux City, Reason (2008, p. 228) quotes the DC-10 
captain as saying after the accident: ‘There were 103 years of flying expe-
rience in that cockpit … but not one minute of those 103 years had been 
spent operating an aircraft in the way we were trying to fly it. If we had not 
worked together, with everybody coming up with ideas and discussing what 
we should do next and how we were going to do it, I do not think we would 
have made it to Sioux City’. Similarly, the official investigation report into the 
Hudson River accident (NTSB, 2010, p. 91) concluded that the ‘professional-
ism of the flight crew members and their excellent CRM during the accident 
sequence contributed to their ability to maintain control of the airplane, con-
figure it to the extent possible under the circumstances and fly an approach 
that increased the survivability of the impact’.

Early in the development of CRM approaches, Wiener (1989) hinted at 
the importance of considering automation in a CRM context. Since then, in 
aviation and in maritime, automation has developed to such an extent that it 
is now seen as a vital non-human member of the team (Cuevas et al., 2007; 
Endsley, 2015; Kaber et al., 2001; Mallam et al., 2020; Roberts et al., 2022). 
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The principles of CRM therefore apply equally to machine agents as they do 
to human colleagues (Wiener, 1989), although this is typically from the per-
spective of training operators to use the automation as an additional resource 
(EASA, 2013; Shively et al., 2018; Wiener & Curry, 1980).

Rather than thinking of CRM purely in terms of human-to-human or 
human-to-automation (cf. Fitzgerald, 1997), though, why not also invoke it 
for automation-to-human scenarios? In other words, if we are expecting the 
automation to behave as a team member – coordinating and cooperating with 
the driver – then we should be thinking in terms of applying CRM prin-
ciples to the design of automated systems (Schutte, 2017; Shively et al., 2018; 
Young et al., 2007). As a set of principles for human-human cooperation, 
it has worked very well – so perhaps it would work equally well as a set of 
design principles for human-machine cooperation (Clark et al., 2022). After 
all, good human-centred practice should be about the design of the system, 
not training the operators (Jensen, 1997).

A CRM-designed automation can be achieved in two ways. Firstly, by erring 
on the side of ‘soft’ automation, thus leaving the human in active control and 
able to delegate tasks as appropriate – in line with the frameworks proposed by 
Parasuraman et al. (2000) and Hoc (2001). Secondly, as argued earlier in this 
chapter, the teamworking aspect ultimately comes down to communication 
in both directions – which means a significant design effort on the control-
display interface to optimise the flow of information (cf. Griffin et al., 2010).

Let us illustrate this by again thinking about Norman’s (1990) case study of 
the Boeing 747 with the loss of engine power. If we substitute the automation 
with a good co-pilot, they might have noticed early on that they were having 
to compensate for the yaw imbalance, and alerted the captain, rather than 
staying silent. This could have led them to investigate the problem and solve it 
without the near-catastrophic consequences that actually did occur.

The idea of CRM-designed automation is not entirely without precedent. 
Scerbo (2007) described developments in the 1990s in military aviation for 
the ‘crew-automation team’, in which the system was designed to function 
as an assistant or junior crew member, managing information and acting as 
a cognitive decision aid. One application of this was in the F-16D Ground 
Collision Avoidance System which, if the aircraft was getting too close to 
the ground, would first warn the pilot and then, if no action was taken, take 
 control to get the aircraft safely away from the terrain, before handing back to 
the pilot with a suitable ‘you have control’ message (Scerbo, 2007). Contrast 
this with what a lot of current automated vehicle systems do, which discour-
age shared participation by instantly giving up control the moment the driver 
dares to make any input (Mueller et al., 2021).

It is worth noting the explicit distinction between the non-technical, team-
work skills (i.e., cooperation, coordination, and communication) which 
are required to work together effectively, against the technical taskwork 
skills, which are necessary to actually get the job done (Wickens et al., 
1998). Teamworking itself comes with additional demands associated with 
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coordination of resources (cf. Endsley, 2017), and we have to be careful that 
these do not outweigh the reductions in taskwork and impact on performance 
(for instance, having to actively seek out information instead of the automa-
tion communicating it effectively; Christoffersen & Woods, 2002; Hoc et al., 
2009; Parasuraman et al., 2000). We might draw parallels with technology-
centred approaches to allocation of function (which are firmly taskwork-
based) as opposed to the human-centred, teamwork-based philosophy that 
we have been advocating here. In designing optimal human-human teams, 
the aims are to have a balance of skills and good communication and under-
standing between team members (Roberts et al., 2022). Likewise for human-
machine teams, the objective should be to design an automated system with 
complementary taskwork skills (cf. Schutte, 1999) and good teamworking 
abilities (cf. Hoc, 2001).

Designing the automation to be a team player is in keeping with the socio-
technical systems perspective, with both human and machine working in har-
mony towards a common goal. Being able to delegate tasks to an automated 
co-driver should address the core theme of this book, optimising  mental 
workload by literally sharing the load (cf. Hancock, 2021; Parasuraman, 
1987; Parasuraman & Wickens, 2008). Good coordination can even coun-
teract some of the detrimental effects of sudden transitions in workload, 
such as when taking over control from automation (Huey & Wickens, 1993). 
Similarly, human-like automation should ameliorate the other problems of 
automation covered in Chapter 2: mental models, situation awareness, and 
trust, especially in those all-important takeover situations (Hancock, 2019). 
It has even been said that human-machine collaboration is actually better 
than semi- or full automation (Hancock et al., 2019; Hoc et al., 2009).

DRIVER TRAINING

It only seems fair to balance out our focus on designing the automation with 
some consideration of training needs for drivers of future automated vehicles 
(Merriman et al., 2021a). To be clear, our position is that design solutions 
should indeed be the primary focus; we should not be relying on upskilling 
drivers in order to mask a badly designed system. But training and design are 
two sides of the same coin and, for all the efforts on design, there is still an 
important role for training (Victor et al., 2018). As we have noted many times 
in this book, introducing automation into vehicles qualitatively changes the 
driving task and so there is an argument for properly integrating it into driver 
training (Rigner & Dekker, 2000).

Professional bodies in road safety7 and human factors (CIEHF, 2020b) 
have called for driver training with automated vehicles to be legislated. The 
question for driver licensing is therefore whether special training will be 
required to operate an automated vehicle. As it currently stands, the only 
level of automation that is treated differently is automatic transmission, but 
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training drivers in the abilities and limitations of automation is being consid-
ered at governmental level (CCAV, 2020) as part of the introduction of level 3 
automation on UK roads.

To some extent, this training may cover how to use the new technology 
itself (i.e., taskwork), but it should also focus on utilising automation as a 
resource, and coordinating its input to the task (i.e., teamwork). That would 
follow the aviation model of incorporating automation into CRM training 
(EASA, 2013; FAA, 1996; Wiener & Curry, 1980). Whilst there is some merit 
in this, as Norman (2015) explained, there are problems in comparing the 
automotive domain to aviation. Compared to airline pilots, drivers are much 
less well trained and there is a wider degree of variability in skill amongst 
the driver population (Stanton et al., 2007). Furthermore, the time available 
for drivers to react in emergency situations is in the order of seconds, rather 
than minutes, so expecting even trained drivers to be able to take over from 
automation is unreasonable (Stanton et al., 1997).

The role of the human driver in these conditions becomes more and more 
critical as the level of automation approaches – but has not yet reached – 
level  5 (Noy et al., 2018). As we learned through our series of studies 
reviewed in Stage 2 of this book, skilled drivers may be able to draw on their 
overlearned reactions to critical situations to mitigate the effects of under-
load. Ironically, though, as automation increases, these drivers face their 
skills being stripped away through a lack of practice with the actual driv-
ing task, because the automation is in control (Bainbridge, 1983; Hancock, 
2014). Conversely, it is conceivable that – in the not-too-distant future – a 
newly-qualified driver with basic training could immediately get into a vehi-
cle equipped with more advanced level 2 or 3 (or higher) automation. Again 
based on our research, we anticipate that this may improve their perfor-
mance in the short term, but they would be even less able to cope if (when) 
they have to take over control from the automation. Consequently, increas-
ing levels of automation will perversely result in higher investments in driver 
(re)training (Parasuraman, 2000) – at least until we reach level 5 and can 
remove any role for the human completely.

Fortunately, the human factors community has risen to this challenge, 
with numerous studies addressing driver training for automation (Merriman 
et al., 2021b). For instance, at least one large-scale project8 has been explor-
ing the need for training and licensing associated with new levels of automa-
tion. Meanwhile, several studies have shown promise that training improves 
trust (Lee & See, 2004) and situation awareness (Mueller et al., 2020) with 
automation, even in takeover scenarios (Shaw et al., 2020). Another option 
would be providing drivers with simulator training of automation failures, to 
help establish their mental models about the limitations of automation (Sebok 
& Wickens, 2017) as well as gaining that all-important practice for emer-
gency responses. This kind of technical knowledge about a system has been 
labelled ‘automation awareness’, emulating situation awareness (Mohrmann 
et al., 2015). Taking a slightly different tack, some argue that interactions 
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with future systems will require different skill sets, more akin to operating 
computers and even serious gaming (cf. Mallam et al., 2020).

Notwithstanding the clear need for training drivers with automation, our 
stance remains that this should be part of a holistic philosophy in which the 
first principle should be ‘training’ the automation through human-centred 
design. A CRM-type approach is compatible with this, playing as it does to 
the strengths of each team member (whether human or machine), and can 
actually serve to develop the skills of the human by keeping them engaged in 
the task, as they should be.

WHICH WAY NOW?

As we finally reach the end of our journey with this book, it is apposite to 
review where we have got to and, more importantly, where we are going next.

We started out by reviewing the various taxonomies of automation. As we 
have seen since, many of these are technology-centred, allocating functions 
according to what machines can do rather than necessarily what they should 
do (cf. Hancock, 2014). But these traditional frameworks are rather passé 
now; apart from anything else, computers are getting better at most tasks and 
will almost certainly be better than humans in practically all areas at some 
point this century (Hancock, 2014).

More to the point, the descriptions used in the SAE levels of automation 
(such as ‘fallback-ready user’) assume a level of attention and readiness on the 
part of the user that is not appropriate with highly reliable – but not perfect – 
automation. With such systems, users are strongly inclined to engage in non-
driving tasks (de Winter et al., 2014) and inevitably reduce their monitoring 
of the automation (Onnasch et al., 2014; Victor et al., 2018). As Hancock 
(2014) said, humans should not remain in systems purely to watch over the 
automation in case it goes wrong, a task for which they are ‘magnificently 
disqualified’, and then take the blame when it does. If you build systems in 
which people are rarely required to respond, they will rarely respond when 
required (Hancock, 2014).

We saw illustrations of how it can all go wrong in Chapter 2, through 
case studies of automation-related accidents in aviation as well as automo-
tive. One issue we did not confront there was the question of legal and moral 
accountability (cf. Awad et al., 2018; Hancock et al., 1996): if a system fail-
ure results in an accident, who should be held responsible? Many current 
systems (and their manufacturers) disclaim liability by positioning themselves 
as ‘support’ systems (i.e., rather than control systems – despite using names 
such as ‘autopilot’; Teoh, 2020) and by stating in the owner’s manuals that 
the driver always has responsibility for the vehicle. This obfuscation puts 
the driver legally in control even if they were in all practical senses a mere 
supervisor, and had no actual control over the subsystem that was automated 
(cf. Pöllänen et al., 2020). At the turn of the millennium, a mock legal trial 
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(Noy et al., 2000) put this to the test with a case of a driver making a claim 
against the manufacturer of an ACC system for inappropriate design that led 
to a collision, with the underlying issue being the transfer of control from the 
vehicle to the driver. Whilst the exercise drew no firm conclusions, what it 
did demonstrate was the need for human factors expertise in these kinds of 
proceedings.

In any case, the legal landscape may be changing as we transition to level 3 
automation, when the driver can genuinely – and legally – detach themselves 
from the driving task (at least in very defined circumstances). At this point, 
perceived and actual liability will shift from the human to the car, the manu-
facturer, even potentially to governments, putting highly automated vehicles 
more on a par with transport service industries such as rail or aviation and, 
as such, may need to be regulated accordingly (Brooks, 2017; Pöllänen et al., 
2020). Suffice it to say, these questions are being dealt with at governmen-
tal level9 as part of the introduction of ALKS on UK roads (CCAV, 2020). 
Ultimately, such system-wide factors will need systems-level research and 
methods in order to properly address them (e.g., Pöllänen et al., 2020; Stanton 
et al., 2019). It will no longer be acceptable to rely on exhortations of ‘driver 
error’ to explain accidents involving automated systems and hope to fix the 
problem with driver education or enforcement.

These accidents of automation gave us a platform to then start looking at 
all of the human factors problems with automation, with a focus throughout 
the next section of the book on the detrimental effects of mental underload – 
especially when reclaiming control from automation. In short, some levels 
of automation can underload drivers, resulting in their attentional resources 
shrinking in response to the reduced demands. Then, when required to resume 
manual control, the underloaded driver no longer has the requisite capacity 
to deal with the sudden increase in workload. To some extent, skilled drivers 
can circumvent these effects, because their responses in emergency situations 
are automatic and so do not rely on those attentional resources. But, as we 
have explained, protracted use of automation can see those skills degrade 
over time.

On reflection, we have since pondered whether the underload effect we have 
observed stands in and of itself, outside of the automation context (Young, 
2021). Given that some of our research (Young & Clynick, 2005; Young, 
Birrell & Davidsson, 2011) failed to elicit non-automation-related underload, 
even in spite of ostensibly different levels of demand, there is an argument for 
suggesting it is automation-specific. Nevertheless, the practical implications 
for drivers of future automated vehicles cannot be ignored.

In Stage 3, we looked at the positive sides of automation and considered 
its potential benefits in supporting limitations in driver performance. Such 
limitations may be intrinsic (e.g., vision, ageing) or situational (e.g., distrac-
tions). We described approaches to interface design that promise to maxi-
mise these benefits while minimising the negative impacts of the technology. 
Finally, in this chapter, we took that a step further to set out some design 
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philosophies for human-centred automation, primarily advocating a team-
working approach in which both parties work together for the good of overall 
system performance.

This means exploiting the capabilities of both human and automation while 
compensating for each other’s weaknesses – not in a Fitts’ list-type manner 
(see Hancock, 2019), but as part of a healthily functioning team. In fact, 
what we are advocating is almost a reverse Fitts’ list, identifying those areas 
of human performance where technological support is necessary (such as in 
time-critical situations, when the computer will react more quickly than a 
human; Sheridan & Parasuraman, 2000), and treating the automation as a 
co-driver to pick up the slack (cf. Schutte, 2017).

Rather than seeing humans as error-prone and, as such, trying to automate 
the problem away, we should recognise the fact that they are actually quite 
good at the task of driving, when you bear in mind all of the variabilities and 
different ways that it can go wrong. Indeed, one reason that full (level 5) auto-
mation is such a long way off (Brooks, 2017) is that only a human can cur-
rently deal with the unpredictable environment of the roads, proactively using 
their experience to anticipate others’ behaviour in a way that automation can-
not (Endsley, 2019). So we should capitalise on these strengths by integrating 
the driver into the design of the sociotechnical system in a holistic manner.

This teamworking approach, using the principles of CRM to emphasise 
coordination, cooperation and communication, can overcome the problems 
in human-automation interaction and may actually lead to better overall sys-
tem performance (Hancock et al., 2019; Hoc et al., 2009). We all know that 
machines can and will go wrong; it is hard to imagine even level 5 automation 
being 100% reliable. People, on the other hand, bring a level of flexibility and 
adaptability (CIEHF, 2020a; Johnson et al., 2014) that can – and often does – 
make a valuable contribution to system safety (cf. Hollnagel, 2014; Reason, 
2008). Indeed, the reason many of these systems work well at all is due to the 
human’s resourcefulness in spite of uncooperative automation (Christoffersen 
& Woods, 2002). But we should design this into the system from first prin-
ciples, instead of relying on the human as a ‘fallback’ when things go wrong 
with the technology.

Given that people will still be involved in the control loop for some time to 
come10, they should actually be in control of the vehicle (cf. Billings, 1991). 
Using the terminology of Young et al. (2007), there is therefore a case for 
development to focus on vehicle automation, only taking on routine, repeti-
tive tasks (Xu et al., 2019) until driving automation has matured sufficiently 
(cf. Kyriakidis et al., 2019). But vehicle automation does not represent true 
human-machine teaming; this occurs more at the mutual control, driving 
automation level (Navarro et al., 2011). On that basis, and given the argu-
ments we made earlier in this chapter, keeping the driver in control of the 
vehicle means adopting soft-driving automation. If that means holding off on 
full automation until the technology is capable enough for true hands- and 
mind-free driving (cf. Banks, Eriksson et al., 2018), then so be it.



228 Driving Automation

Technology marches on, though; we have long since passed the tipping 
point with automation (cf. Wiener & Curry, 1980) and we remain in this 
limbo where it can do a lot of things, but it cannot do everything (cf. Norman, 
1990). More to the point, as we write this book, automated driving systems 
are on the cusp of a particularly challenging stage in their evolution, with the 
transition to level 3 automation. From a human factors perspective, level 3 
presents the most concerns (Kyriakidis et al., 2019), taking the driver out of 
the loop yet still expecting them to take over control as necessary (Seppelt 
& Victor, 2016) – which we know is far from ideal (e.g., Kaber & Endsley, 
2004). Based on these concerns, researchers and industry experts agree that 
we should skip level 3 entirely (e.g., Seppelt & Victor, 2016; Williams, 2019).

But, as Seppelt & Victor (2016) also point out, this puts us in a bind where 
if we automate then human performance gets worse, but if we do not auto-
mate then we negate any potential benefits of automation for road safety 
(cf. Norman, 2015). This argument has some statistical traction, as models 
suggest that even if automated vehicles are only slightly safer than human 
performance, hundreds of thousands of lives can be saved over a period of 
15–30 years (Kalra & Groves, 2017). There will still be crashes, of course, 
and there is a moral question about whether society will accept automation-
caused accidents (cf. Awad et al., 2018), regardless of how few there may be.

From the human factors perspective, we believe the teamworking approach 
offers the middle ground to navigate through this dilemma. As automation 
increases, the need for effective coordination will also increase (Borst et al., 
2015). And such cooperation is all-important for system performance, espe-
cially in the automation takeover event (Eriksson & Stanton, 2016; Inagaki 
& Sheridan, 2019). As we have seen, having a strong and silent type for a co-
driver can cause all manner of problems (Stanton, 2015). When it comes to 
human-centred driving automation, communication is key. It is not so much 
about ‘letting George do it’, but working together for the greater good. We 
need to start thinking of George as a co-pilot rather than an autopilot, not 
there to supplant all the ills of the human condition, but instead to work 
alongside the human as a team player. That would be the true ‘autopia’ of 
the future.

KEY POINTS

• While the debate rages on about acceptance (or acceptability) of driving 
automation against the potential safety and economic benefits, there is 
no denying the fact that automation will have (and, indeed, has had) a 
massive impact on the human in the driving seat, particularly concern-
ing mental workload.

• The technology-centred assumption that automation will eliminate 
human error is a folly; history is replete with examples in which the 
flexibility and adaptability of human ingenuity has saved the day.
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• A human-centred design approach exploits these human capabilities and 
puts the driver at the heart of the system, using automation to address 
a problem rather than implementing the technology for its own sake.

• Given that completely hands- and mind-free driving is a long time com-
ing, we should seek to keep drivers involved in the task for as long as 
possible, using technology to support rather than replace them, until we 
can make a ‘cliff-edge’ transition all at once to full (level 5) automation 
only when it is available.

• In the meantime, we should think of automation as a co-driver and apply 
principles of good teamworking to its design – exploiting the strengths 
of both human and machine while compensating for their respective 
weaknesses, and engendering the automation with the ability to coor-
dinate, cooperate, and communicate well with its human counterpart.

NOTES

 1. Put forward by Professor Don Norman in a 2015 blog post at: https://jnd.org/
automatic_cars_or_distracted_drivers_we_need_automation_sooner_not_
later/ (accessed 11 May 2022).

 2. As we noted in Chapter 2, it is ironic that more technology has led to a greater 
need for automation to help us deal with the technology!

 3. The DC-10 has three engines, one on each wing and one mounted on the tail 
structure; it was the latter engine which failed.

 4. There is a whole literature on driver perception of time-to-collision which is beyond 
the scope of this book, but see, for instance, Groeger (2000) and Huang (2020).

 5. https://www.theguardian.com/uk-news/2020/oct/23/uk-insurers-warn-against-
go-ahead-for-self-driving-cars-on-motorways (accessed 29 April 2022).

 6. See the excellent webcast by Paul Schutte of NASA Langley Research Center, 
for the NASA Engineering and Safety Center Academy on 17 March 2016, titled 
‘How to make the most of your human: Design considerations for single pilot 
operations’. Available at: https://nescacademy.nasa.gov/video/fdea070f17aa4ceaae 
5ab03dc8a6c2251d (accessed 22 April 2022).

 7. IAM RoadSmart Manifesto 2019. Available at: https://www.iamroadsmart.
com/docs/default-source/default-document-library/iam-roadsmart-manifesto- 
2019.pdf?sfvrsn=6b4a15a6_0 (accessed 19 April 2022).

 8. https://www.drive2thefuture.eu/ (accessed 29 April 2022).
 9. The UK Automated and Electric Vehicles Act 2018 addresses the liability of 

insurers in collisions with automated vehicles (see https://www.legislation.gov.
uk/ukpga/2018/18/pdfs/ukpga_20180018_en.pdf, accessed 29 April 2022), 
while the UK Law Commissions report on Automated Vehicles defines the 
boundaries of self-driving and the legal responsibilities of users, manufactur-
ers and service operators (see https://www.lawcom.gov.uk/project/automated-
vehicles/, accessed 29 April 2022).

 10. It is worth noting again, given the extensive reliance on lessons from aviation in 
this field, that the same is true in that industry, where it is thought that humans 
will play a key role for the foreseeable future (perhaps up to 2050 or beyond), 
since the equivalent of level 5 automation is very hard to achieve (CIEHF, 2020a).
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