

Mastering Postman

A Comprehensive Guide to Building End-to-End APIs with Testing,
Integration and Automation

 Oliver James

 Copyright © 2023 GitforGits
 All rights reserved.

Content

 Preface

 Chapter 1: API LifeCycle and Postman

 Understanding API Lifecycle

 API Design

 API Development

 API Testing

 API Deployment

 API Monitoring

 API Versioning

 API Retirement

 Introduction to Postman

 Postman's Capabilities

 Applications of Postman

 Install and Configure Postman

 Download Postman

 Install Postman

 Launch Postman

 Create/Sign-In Postman Account

 Configure Postman

 Create New API Project

 Create New Workspace

 Create API Specification

 Add Requests for Each Endpoint

 Test API Endpoints

 Save API Project

 Explore Postman's Interface

 Main Interface Components

 Header

 Sidebar

 Request Builder

 Response Viewer

 Additional Features and Tools

 Environments and Variables

 Mock Servers

 Monitors

 API Documentation

 Collaboration and Sharing

 Integrations

 Chapter 2: API Design

 Principles of API Design

 Apply Consistent and Meaningful Naming

 Embrace RESTful Principles

 Use JSON for Request and Response Bodies

 Version the API

 Support Pagination, Filtering, and Sorting

 Do Clear and Comprehensive Documentation

 Implement Proper Authentication and Authorization

 Define API Endpoints

 REST API Endpoints

 SOAP API Operations (Endpoints)

 Write API Endpoints with Python and Flask

 Install Flask

 Create New Python File

 Write Flask Application

 Run the Flask Application

 Test the API Endpoint

 Create Request and Response Schema

 Open Postman

 Add New Example

 Edit Example's Name

 Define Request Schema

 Define Response Schema

 Save the Example

 Document APIs using OpenAPI

 Choose Format (JSON or YAML)

 Create OpenAPI Definition File

 Define Basic API Information

 Define API Server

 Define API Endpoints

 Define Data Models (Schemas)

 Validate and Test OpenAPI Definition

 Use Mock Servers for API Design

 Install Mockoon

 Create New Mock Server

 Define API Endpoints

 Define Endpoint's Response

 Start Mock Server

 Test the API using Postman

 Chapter 3: API Development

 Code Backend for API

 Writing Backend Code using Python

 Create and Configure Local Server

 Manage Authentication and Authorization

 Testing Basic Authentication

 Testing API Keys

 Checking OAuth 2.0

 Write Code for Error Handling

 Implement Error Handling in Backend

 Simulate Error Scenarios

 Refine Error Handling Code

 Test API Endpoints

 Launch Postman

 Create New Collection

 Create Requests for Each Endpoint

 Chapter 4: API Testing

 Types of API Testing

 Functional Testing

 Performance Testing

 Security Testing

 Reliability Testing

 Compatibility Testing

 Documentation Testing

 Different APIs Tested using Postman

 REST (Representational State Transfer)

 SOAP (Simple Object Access Protocol)

 GraphQL

 gRPC (gRPC Remote Procedure Calls)

 WebSockets

 Postman's Testing Capabilities

 Test Scripts

 Runner

 Mock Servers

 Monitoring

 Integrations

 Test REST API using Python

 Handle API Testing Scenarios

 XML Schema Validation

 JSON Schema Validation

 Verify Parsing the Response Data

 Valid Response Headers

 Negative Testcase Response

 Verify the Response HTTP Status Code

 Verify Valid Response Payload

 End-to-end CRUD Flows

 Chapter 5: API Security

 API Threats Landscape

 Prevent Injection Attacks

 SQL Injection

 Command Injection

 Code Injection

 Prevent Authentication & Authorization Flaws

 Protect from MITM Attacks

 Use HTTPS for API Endpoints

 Verify SSL/TLS Certificates

 Safeguard Parameter Tampering

 Prevent XXE Attacks

 Prevent DDoS Attacks

 Chapter 6: Using Postman CLI

 Understand Postman CLI

 Advantages of Postman CLI

 How Postman CLI Benefits API Developers

 Installing Postman CLI

 Run Collection from Postman CLI

 Install Postman CLI

 Import Sample Collection

 Verify Collection Import

 Install Newman

 Run the Collection

 View the Collection Results

 Running Multiple Collections

 Setting Up GitHub Actions using Postman CLI

 Create GitHub Repository

 Install Postman CLI

 Create Postman Collection

 Create Workflow

 Choose Template

 Configure the Workflow

 Add Your Postman Collection

 Run Your Postman Collection

 Save and Commit Your Workflow File

 Test Your Workflow

 Run Collections inside CI/CD Pipeline

 Create Workflow File

 Define the Workflow

 Checking out Code

 Installing Newman

 Running the Postman Collection

 Save and Commit Your Workflow File

 Verify Your Workflow

 Automate Postman Collections

 Install Jenkins

 Install Required Plugins

 Configure Jenkins

 Schedule the Pipeline

 Chapter 7: API Documentation & Publishing

 Importance of API Documentation

 Automatic Documentation Generation

 Markdown Support

 Collaboration and Sharing

 Versioning

 Code Snippets and SDK Generation

 Customization and Theming

 Interactive Documentation

 Integration with CI/CD Pipelines

 Environments and Variables

 Access Control and Security

 Monitoring and Analytics

 API Mock Servers

 Import and Export

 Multi-platform Support

 Automate Generating API Documentation

 Create Collection

 Add Requests to the Collection

 Add Descriptions and Examples

 Generate API Documentation

 Publish and Share API Documentation

 Automate API Documentation Updates

 Edit API Documentation

 Access the API Documentation

 Edit the API Documentation

 Save Your Changes

 Update the Published Documentation (Optional)

 Publish, Unpublish and Modify Documentation

 Publish the API Documentation

 Modify the Published API Documentation

 Unpublish API Documentation

 Publishing APIs on GitHub

 Export the API Documentation

 Create GitHub Pages Repository

 Clone Repository to Local Machine

 Add API Documentation to Repository

 Push Changes to GitHub

 Configure GitHub Pages

 Access the Published API Documentation

 Publishing APIs on GitLab

 Export the API Documentation

 Create GitLab Repository

 Clone Repository to Local Machine

 Add API Documentation to Repository

 Push Changes to GitLab

 Configure GitLab Pages

 Access the Published API Documentation

 Publishing APIs on Bitbucket

 Export the API Documentation

 Create Bitbucket Repository

 Clone Repository to Local Machine

 Add API Documentation to Repository

 Push Changes to Bitbucket

 Configure Bitbucket Pages

 Access the Published API Documentation

 Managing API Versions and Changes

 Create Collections for Each API Version

 Add Requests and Documentation for Each Version

 Publish API Documentation for Each Version

 Update API Documentation for Each Version

 Organize and Share Versioned API Documentation

 API Publishing Best Practices

 Document Your API

 Use Versioning

 Secure Your API

 Test Your API

 Monitor Your API

 Provide Support

 Follow Industry Standards

 Chapter 8: API Integration

 Understand API Integration

 Integration to Different Systems

 Process of API Integration

 Sample Program to Integrate OpenWeatherMap API

 Data and Functionality Mapping

 Overview

 Steps to Map Data and Functionality

 Test and Validate API Integration

 Manual Testing

 Sample Program of Manual Testing

 Automated Testing

 Sample Program of Automated Testing

 Chapter 9: API Performance

 Explore API Performance

 Why Measuring API Performance?

 Postman Performance Capabilities

 Measure API Performance

 Response Time

 Measuring API Response Time

 Error Rate

 Calculating API Error Rate

 Throughput

 Measuring API Throughput

 CPU/Memory Utilization

 Monitoring CPU and Memory Utilization

 Network Latency

 Monitoring Network Latency

 Error Response Time

 Calculating Error Response Time

 Time to First Byte (TTFB)

 Measuring TTFB

 Identify and Fix Performance Issues

 Response Time Issues

 Sample Program to Detect Response Time Exceeding 2s

 Detect Higher Error Rate

 Sample Program to Detect Error Rate Exceeding 1%

 Identifying Lower Throughput

 Sample Program to Detect Throughput Below 10 Requests/sec

 Monitoring CPU and Memory Utilization

 Checking Network Latency

 Sample Program to Notify Latency Exceeding 100ms

 Solve and Optimize API Performance

 Optimize API Code

 Improve API Architecture

 Use Caching

 Monitor and Optimize

 Chapter 10: API Governance

 Understand API Governance

 Role of API Governance

 Benefits of API Governance

 Create API Governance Framework

 Implement API Governance

 Define API Governance Objectives

 Establish Principles and Guidelines

 Implement Processes and Workflows

 Develop Tools and Automation

 Enforce Compliance and Governance

 Continuously Improvise

 Managing API Policies and Standards

 Define Policies and Guidelines

 Setting Up Automated Checks and Validations

 Monitor API Usage

 Conduct Compliance Testing

 Integrate with External Tools

 Enforce Access Controls

 Chapter 11: Advanced API Developer Skills

 Understand Variables

 Working with Global Variables

 Using Local Variables

 Understand Environments

 Administering Environments

 Automate API Testing

 Creating Collection

 Writing Tests

 Running Tests with Collections Runner

 Automating Tests using Newman

 Automate Deployment using GitHub Actions

 Writing Custom Scripts in Postman

 Postman Best Practices

Preface

"Mastering Postman" is the ultimate guide for anyone looking to
streamline their API development process. Whether you're a seasoned
developer or just starting out, this book will take you through every step
of the API lifecycle and equip you with the knowledge and tools you
need to create better APIs faster.

Starting with API design, the book covers the best practices for creating
APIs that are intuitive, easy to use, and scalable. You'll learn how to use
Postman to test your APIs thoroughly and ensure they're working as
intended before deploying them. The book then delves into API
documentation and mocking, showing you how to create comprehensive
documentation that's easy to understand and use. You'll also learn how
to use Postman to mock your APIs, allowing you to test your code in a
safe environment before deploying it to production. With a focus on
Python, Flask, and JavaScript coding, "Mastering Postman" teaches you
how to build APIs that are powerful, efficient, and easy to use. You'll
also learn about API governance, integration, publishing, and the
Postman CLI.

Throughout the book, you'll find practical examples and real-world
scenarios that demonstrate how to apply the concepts you learn to your
own projects. You'll also find tips and tricks to help you become more
productive and efficient as you work on your APIs. Whether you're a

developer, a product manager, or a technical writer, "Mastering
Postman" will give you the skills and knowledge you need to create
APIs that are robust, reliable, and easy to use. With this book as your
guide, you'll be able to streamline your API development process and
deliver better APIs faster than ever before.

In this book you will learn how to:

Streamline API development process with Postman for faster delivery.
Learn API design, testing, documentation, and mocking with real-world
examples.
Build APIs using Python, Flask, and JavaScript for better performance.
Master API governance, integration, and publishing with Postman.
Leverage Postman CLI for advanced API testing and automation.
Collaborate efficiently using Postman collections, environments, and
workspaces.

GitforGits

Prerequisites
Mastering Postman is ideal for developers and software engineers who
want to build end-to-end APIs efficiently and effectively. It is suitable
for both beginners who are new to API development and experienced
developers who want to master their skills in API development, testing,
debugging and integration.
Before reading this book, you should have a basic understanding of web
development, HTTP protocol, and API concepts.

Codes Usage
Are you in need of some helpful code examples to assist you in your
programming and documentation? Look no further! Our book offers a
wealth of supplemental material, including code examples and exercises.

Not only is this book here to aid you in getting your job done, but you
have our permission to use the example code in your programs and
documentation. However, please note that if you are reproducing a
significant portion of the code, we do require you to contact us for
permission.

But don't worry, using several chunks of code from this book in your
program or answering a question by citing our book and quoting
example code does not require permission. But if you do choose to give

credit, an attribution typically includes the title, author, publisher, and
ISBN. For example, "Mastering Postman by Oliver James".

If you are unsure whether your intended use of the code examples falls
under fair use or the permissions outlined above, please do not hesitate
to reach out to us at

We are happy to assist and clarify any concerns.

Acknowledgement

I would like to express my heartfelt gratitude to Pravin Dhandre and the
entire team at GitforGits for their invaluable contribution towards the
successful completion of my book "Mastering Postman." Without their
expertise, dedication, and unwavering support, this book would not have
been possible.

Pravin Dhandre, the founder of GitforGits, played a pivotal role in the
book's development, providing technical guidance, support, and
encouragement at every step of the way. His vast knowledge and
experience in API testing, combined with his passion for teaching, made
him an indispensable partner in this project. I would like to extend my
deepest appreciation to Pravin for his unwavering commitment and
invaluable contribution to this book. I would also like to thank the
GitforGits team for their exceptional work in reviewing, editing, and
providing feedback on the book's content. Their attention to detail and
commitment to excellence helped ensure that the book is of the highest
quality and meets the needs of readers.

Finally, I would like to express my gratitude to my family and
colleagues at my workplace for their unwavering support and
understanding throughout the writing process. Their encouragement,
patience, and love gave me the strength and motivation to keep going,
even when the going got tough.

In particular, I would like to thank my wife, Jane, and my children,
Emily and James, for their unconditional love and support. Their
unwavering belief in me and my abilities has been the driving force
behind this project, and I could not have done it without them.

To my colleagues at my workplace, thank you for your support and
encouragement throughout this journey. Your feedback, suggestions,
and ideas were invaluable in shaping the content of this book, and I am
deeply grateful for your contributions.

Chapter 1: API LifeCycle and Postman

API, or Application Programming Interface, is a set of rules and
protocols that allows different software applications to communicate and
exchange data with each other. Essentially, an API acts as an
intermediary between two different software applications, allowing them
to interact with each other in a standardized and secure manner. APIs
have become increasingly important in today's digital transformation
and software development landscape. With the rise of cloud computing
and mobile technologies, there has been a growing need for software
applications to communicate with each other seamlessly, regardless of
the platforms or devices they are running on. APIs provide a way for
applications to achieve this level of integration by providing a
standardized way to exchange data and functionality.

One of the key benefits of APIs is that they allow organizations to
unlock the value of their data and functionality, by exposing them to
external developers and partners. By providing APIs, organizations can
make their data and functionality available to other applications and
services, creating new opportunities for innovation and collaboration.
For example, a bank could expose APIs that allow developers to build
financial applications that integrate with the bank's core services, such as
account management or payment processing.

APIs also provide a way for organizations to improve the agility and
scalability of their software systems. By decoupling the front-end and
back-end components of an application, APIs allow organizations to
make changes to one component without impacting the other. This can

help to reduce the risk of downtime or system failures, while also
allowing organizations to quickly adapt to changing business needs.
Another important benefit of APIs is that they can help to improve the
user experience of software applications. By providing access to data
and functionality from multiple sources, APIs can help to create more
personalized and context-aware applications. For example, an e-
commerce application could use APIs to integrate with a customer's
social media accounts, to provide personalized product
recommendations based on their interests and preferences.

Understanding API Lifecycle

Understanding the complete lifecycle of an API is crucial for successful
API development and management. The lifecycle includes several
stages, starting with the design phase, where API architects determine
the requirements for the API and create the API specification. Next,
developers build the API and test it before releasing it for production
use. After release, the API must be managed and monitored to ensure it
meets the required service level agreements (SLAs) and performs
optimally. Finally, the API may be retired, requiring developers to plan
for and execute a smooth transition for any dependent systems or
applications. By understanding each stage of the API lifecycle,
developers can ensure their APIs meet the needs of the end-users while
providing a positive experience.

Following are the 7 stages of the lifecycle of any API:

API Design
API Development
API Testing
API Deployment
API Monitoring
API Versioning
API Retirement

API Design

API design is the first stage in the lifecycle of an API. This stage
involves identifying the use case of the API, defining the API endpoints
and methods, creating a request and response schema, and documenting
the API using OpenAPI or similar tools. The API design process should
also take into consideration factors such as security, scalability, and ease
of use for developers who will be using the API. During the design
process, the API developer should collaborate with other stakeholders,
such as product owners, UX designers, and other developers, to ensure
that the API meets the requirements of the business and end-users.

API Development

Once the API design is complete, the next stage is API development.
This stage involves writing backend code to support the API, creating
and configuring a local server, handling authentication and
authorization, and building and testing endpoints in Postman or similar
tools. The API developer should ensure that the code is well-organized,
modular, and adheres to best practices in coding standards. The
developer should also conduct unit testing and integration testing to
ensure that the API functions as expected.

API Testing

API testing is an essential stage in the lifecycle of an API. This stage
involves testing the API for different scenarios, such as positive and
negative tests, error handling, and load testing. The API developer
should also conduct security testing to identify and address potential
security vulnerabilities. Postman can be used to automate API testing,
making it easier for developers to run and repeat tests quickly and
efficiently.

API Deployment

API deployment is the stage where the API is made available for use by
external users. This stage involves deploying the API to a production
environment, configuring the API gateway, and configuring API
security. The API developer should ensure that the API deployment is
well-documented and that there is a clear process for deploying updates
or fixes to the API.

API Monitoring

API monitoring is an essential stage in the lifecycle of an API. This
stage involves monitoring the API for performance and availability,
detecting and troubleshooting issues, and identifying potential security
threats. The API developer should use tools such as Postman's
monitoring capabilities to track API performance and identify potential

issues that may arise.

API Versioning

As an API evolves over time, there may be a need for versioning to
ensure that older versions of the API continue to function as expected.
This stage involves maintaining and managing multiple versions of the
API, ensuring backward compatibility, and communicating changes to
API users. The API developer should use tools such as Postman to
manage API versioning and ensure that changes are communicated
clearly to users.

API Retirement

API retirement is the final stage in the lifecycle of an API. This stage
involves retiring an older version of the API and communicating the
retirement to API users. The API developer should ensure that the API
documentation is updated to reflect the retirement and provide guidance
on migrating to a newer version of the API.

To sum it up, the complete lifecycle of an API involves several stages,
each with its own set of tasks and considerations. By understanding and
following the complete lifecycle of an API, API developers can ensure
that their APIs are designed, developed, tested, deployed, monitored,
versioned, and retired in a well-organized and efficient manner. This can

help to ensure that the APIs meet the needs of the business and end-
users, while also maintaining security, performance, and scalability.
Additionally, following the complete lifecycle of an API can help API
developers to build trust with API users, by providing clear and
consistent communication throughout the entire process. Ultimately, by
understanding the complete lifecycle of an API and following best
practices at each stage, API developers can create high-quality APIs that
meet the needs of the business and end-users, while also providing a
positive experience for API users.

Introduction to Postman

Postman is a versatile API development tool that simplifies the process
of creating and testing APIs. It provides an intuitive graphical user
interface that allows developers to design, test, and document APIs with
ease. Postman is widely used by software developers, testers, and
DevOps engineers to streamline the software development process,
automate testing, and improve collaboration. It supports a variety of
APIs, including REST and SOAP, and provides powerful features for
creating request and response schemas, generating code snippets, and
collaborating with team members. With Postman, developers can
accelerate their development workflows, ensure the quality of their
APIs, and improve their overall productivity.

Postman's Capabilities

Postman is a powerful tool that allows developers to design, test, and
debug APIs, as well as to create and publish API documentation. The
given below are some of the key features of Postman:

API Design and Mocking
Developers can use Postman to design APIs by creating requests and
responses, defining endpoints, and setting up mock servers to simulate
API behavior. This enables developers to experiment with different

endpoints and data structures without needing a fully functional
backend. With Postman, developers can quickly iterate on their API
design and ensure that it's working as expected.

Testing and Debugging

Postman provides developers with the ability to test and debug APIs in
real time, allowing them to send requests and receive responses as they
build their API. This makes testing and debugging much easier and
faster. Postman offers a comprehensive array of testing capabilities,
including automated testing, integration testing, and load testing,
amongst others.

API Documentation
Postman enables developers to create and publish API documentation
that can be shared with other users. The documentation contains in-
depth explanations of each endpoint, as well as the request and response
formats and any other pertinent information. This documentation helps
other developers understand how to use the API and saves time by
addressing common questions.

Collaboration
Postman is designed to make it easier for developers to work together. It
offers a variety of collaboration features, such as sharing API
collections, test results, and other data. Additionally, Postman provides
version control, which allows developers to monitor any changes made
to APIs over time, keeping track of who made the changes and when.

Automation
Postman offers a wide range of automation features that can be used by
developers to automate routine tasks such as testing, documentation, and
deployment. For example, developers can use Postman to set up
automated tests for their API, automatically generate documentation,
and deploy changes to their API with a single click.

To sum it up, Postman is an essential tool for any developer working
with APIs. With its powerful API design and mocking capabilities,
testing and debugging features, comprehensive documentation,
collaboration tools, and automation capabilities, Postman can save
developers time and effort while improving the quality and functionality
of their APIs.

Applications of Postman

Postman is a flexible tool that can be utilized in a wide variety of
settings and contexts due to its adaptability. The following are some of
the most important applications:
Postman is a tool that is frequently utilized by developers for the
purposes of designing, testing, and documenting APIs. It simplifies the
process of developing APIs by providing a variety of features, such as
automated testing and mocking, which are provided by it.
Testing an API can also be automated with the help of Postman, which
is used by testers. Testers are afforded the opportunity to create test

suites, to define test cases, and to automatically run tests.
Postman is becoming an increasingly popular tool for automating
DevOps-related tasks like testing, documentation, and deployment in
environments where DevOps is practiced. It is compatible with a wide
variety of DevOps tools, such as Git, Jenkins, and Docker, among
others.

In a nutshell, Postman gives developers access to a variety of features
that make it easier for them to manage the entire API development
lifecycle, from the design phase to the testing phase to the deployment
phase. Postman is an essential and helpful tool in the field of software
development because it streamlines the development process, enhances
testing, makes collaboration easier, and integrates with a variety of other
tools.

Install and Configure Postman

This is a step-by-step walkthrough on how to install and configure
Postman on your computer. They are:

Download Postman

● Go to the official Postman website:
https://www.postman.com/downloads/

● Choose the version appropriate for your operating system
(Windows, macOS, or Linux).

● Click the "Download" button and wait for the download to finish.

Install Postman

Locate the downloaded installation file in your downloads folder or
wherever you saved it.

● Double-click the installation file to start the installation process.

● Follow the on-screen instructions to complete the installation.

Launch Postman

After installation is complete, find the Postman application in your Start
menu (Windows) or Applications folder (macOS) or menu (Linux).

● Click on the Postman icon to open the application.

Create/Sign-In Postman Account

When you first launch Postman, you'll see a sign-in prompt. If you
already have a Postman account, sign in with your credentials. If you
don't have an account, click "Create Account" and follow the prompts to
set up your new account.

Configure Postman

Once you're signed in, you'll see the main Postman interface. On the
left-hand side, you'll see a sidebar with a "Collections" tab. Collections
are used to organize and group your API requests.

Click the "+" button next to "Collections" to create a new collection.
Give your collection a name and an optional description, then click

"Create".

With your new collection selected, click the "+" button next to the
"Tabs" section at the top of the interface. This will open a new tab for
creating an API request.
In the new request tab, choose the appropriate HTTP method (GET,
POST, PUT, etc.) for your request from the dropdown menu to the left
of the URL input field.

● Enter the URL for your API endpoint in the URL input field.

If your request requires headers, click the "Headers" tab below the URL
input field and add the necessary key-value pairs.

If your request requires a payload (for example, a POST or PUT
request), click the "Body" tab below the URL input field and select the
appropriate format (such as "raw" or "form-data") to input your data.

Once you've configured your request, click the blue "Send" button on
the right side of the URL input field to send the request to the API
endpoint. The response from the API will appear in the lower section of
the interface.

You have successfully installed Postman and configured it for your first
API request. With Postman, you can now easily make API requests, test
and validate API responses, and even document your APIs.

Create New API Project

To create a new API project in Postman, you need to set up a new
workspace, create an API specification, and add requests for each
endpoint. First, create a new workspace for your project. Then, create a
new collection and add requests for each endpoint in your API. Finally,
define the request and response schemas for each endpoint using
examples, and validate your API's behavior against the defined schemas
using Postman's "Test" feature.

Create New Workspace

In the top-right corner of the Postman interface, click on the workspace
dropdown (it will show the name of your current workspace).

● Click the "Create New" button at the bottom of the dropdown
menu.

In the "Create New Workspace" dialog, enter a name and an optional
description for your new workspace. Choose a visibility setting (public
or private) and click "Create Workspace".

Create API Specification

● In your new workspace, click the "APIs" tab in the left sidebar.

● Click the "Create an API" button in the center of the screen.

In the "New API" dialog, provide a name and an optional description for
your API.

Choose an API schema type. For most cases, you'll want to select
"OpenAPI (formerly Swagger) 3.0". Click "Create API" to proceed.

Postman will now display the API schema editor with a default schema
template. Modify the template according to your API requirements. The
schema is written in YAML or JSON format, and it describes your API's
endpoints, parameters, request bodies, responses, and other details. You
can find the OpenAPI 3.0 specification documentation at
https://swagger.io/specification/.

Add Requests for Each Endpoint

● In the left sidebar, click the "Collections" tab.

Click the "+" button next to "Collections" to create a new collection.
Give your collection a name and an optional description, then click

"Create".

With your new collection selected, click the "Add a request" button (it
looks like a "+" inside a circle) next to your collection's name.

In the "New Request" dialog, enter a name for your request, choose a
method (GET, POST, PUT, etc.), and click "Save to [Your Collection
Name]".

In the new request tab, enter the URL for your API endpoint in the URL
input field.

● Configure headers, query parameters, or request bodies as needed
for your endpoint.

● Repeat steps 3c-3f for each endpoint in your API.

Test API Endpoints

With an API request tab open, click the blue "Send" button on the right
side of the URL input field to send the request to the API endpoint.

The response from the API will appear in the lower section of the
interface. Review the response status, headers, and body to ensure the

request was successful and the API is functioning as expected.

You can create test scripts for your requests by clicking on the "Tests"
tab below the URL input field. Postman uses JavaScript (specifically the
pm object) to write and run tests.

For example, to check if the response status is 200, you can write the
following test:

pm.test("Status code is 200", function () {

 pm.response.to.have.status(200);

});

Save API Project

As you work on your API project, Postman automatically saves your
changes. Do not forget to periodically click the "Save" button in the top-
right corner of the request tab to ensure your work is saved.

By following the steps outlined, you've successfully created a new API
project in Postman. You now have a dedicated workspace where you
can manage your API requests and collections. Additionally, you've
defined an API specification that outlines your endpoints, their inputs,
and expected outputs. You've created a collection of requests that allow

you to test your endpoints and ensure they're functioning as expected.

Explore Postman's Interface

we'll explore the Postman interface and learn how to navigate through its
various components. The interface is designed to provide an efficient
and intuitive experience for users, with easy access to all of the features
you need.

Main Interface Components

The Postman interface includes several main components such as the
sidebar, header bar, request pane, response pane, and tabs. These
components help users navigate and interact with the application,
making it easier to create and manage API requests. Let us look into
each in detail:
The header is located at the very top of the interface. It includes the
Postman logo, search bar, workspace switcher, environment switcher,
import button, new button, runner button, and account-related controls
(such as profile and settings).

The sidebar is located on the left side of the interface. It consists of three
main tabs: History, Collections, and APIs. These tabs allow you to
access your recent requests, saved collections, and API specifications.

The request builder is the central part of the interface. It's where you
create, configure, and send API requests. It includes the HTTP method
selector, URL input, request tabs (Params, Authorization, Headers,
Body, Pre-request Script, and Tests), and the Send and Save buttons.

The response viewer is located below the request builder. It shows the
API response when you send a request. It includes the response status,
time, size, and tabs for displaying the response body, cookies, headers,
and test results.

Header

Use the search bar to find requests, collections, environments, or APIs
by entering keywords.

Click on the workspace dropdown to view, create, or switch between
workspaces. Workspaces allow you to organize and collaborate on API
projects with team members.

Click on the environment dropdown to create, edit, or switch between
environments. Environments are sets of key-value pairs that can be used
as variables in your requests.

Click on the "Import" button to import API specifications, requests, or
collections from various sources, such as files or URLs.

Click on the "New" button to create a new request, collection,
environment, API, or mock server.

Click on the "Runner" button to open the collection runner, which
allows you to run a series of requests with specific configurations, such
as iterations and data files.
Click on your profile picture to access your account settings, billing, and
other options.

Sidebar

Click on the "History" tab to view a list of your recent requests. You can
filter requests by date or method and search for specific requests.

Click on the "Collections" tab to view your saved collections.
Collections are groups of related requests, which can be organized into
folders. To create a new collection, click the "+" button next to
"Collections". To add a request to a collection, click the "Add a request"
button (it looks like a "+" inside a circle) next to a collection's name.

APIs Click on the "APIs" tab to view your saved API specifications.
API specifications describe the endpoints, parameters, request bodies,
responses, and other details of your APIs. To create a new API, click the
"Create an API" button in the center of the screen.

Request Builder

Click on the dropdown menu to the left of the URL input field to choose
the appropriate HTTP method (GET, POST, PUT, DELETE, etc.) for
your request.

Type the URL for your API endpoint in the URL input field. You can
use variables, such as {{base_url}} or {{api_key}}, which will be
replaced with their corresponding values from the selected environment
or global variables.

Click on the "Params" tab to add or edit query parameters for your
request. Postman will automatically append these parameters to the
URL.

Click on the "Authorization" tab to set up authentication for your
request. Postman supports various authentication types, such as Basic
Auth, OAuth 2.0, API Key, and Bearer Token. Select the appropriate
type and provide the required information.

Click on the "Headers" tab to add or edit headers for your request.
Headers can be used to provide additional information to the server,
such as content type or authentication data.
Click on the "Body" tab to add a request body, which is required for
some HTTP methods like POST and PUT. You can choose between

different body types, such as raw, form-data, x-www-form-urlencoded,
or binary.

Click on the "Pre-request Script" tab to write JavaScript code that will
run before sending the request. You can use this feature to set up
variables, make additional API calls, or perform other tasks.

Click on the "Tests" tab to write test scripts for your request. Postman
uses JavaScript (specifically the pm object) to write and run tests. This
allows you to assert that your API behaves as expected, returning correct
status codes, response bodies, and more.

Click on the blue "Send" button to send the request to the API endpoint

Click on the "Save" button to save your request to a collection or update
an existing request in a collection. Remember to save your work
periodically to avoid losing any changes.

Response Viewer

The response status is displayed at the top left of the response viewer,
showing the HTTP status code and a brief description.

The time taken for the API to respond is displayed next to the status.
This can be helpful for identifying performance issues.

The size of the response, including headers and body, is displayed next
to the time.

Click on the "Body" tab to view the API response body. You can choose
between different formats, such as Pretty, Raw, and Preview. Postman
will attempt to display the response in the most readable format, based
on the content type.

Click on the "Cookies" tab to view any cookies sent with the response.

Click on the "Headers" tab to view the response headers. These can
provide important information about the server, content type, and other
metadata.

Click on the "Test Results" tab to view the results of any test scripts that
ran with the request. Successful tests will be displayed in green, while
failed tests will be in red. You can use this information to debug issues
with your API or validate its behavior.

By understanding the various components of the Postman interface and
how to navigate through them, you'll be better equipped to design, build,
test, and document APIs effectively. With practice, you'll become more
proficient in utilizing Postman's features to streamline your API
development process.

Additional Features and Tools

In the previous section, we've covered the main components of the
Postman interface, but there are additional features and tools that can
enhance your API development workflow:

Environments and Variables

These are sets of key-value pairs that can be used as variables in your
requests. To create a new environment, click the environment dropdown
in the top-right corner of the interface, and then click "Manage
Environments". In the "Manage Environments" window, click "Add" to
create a new environment, enter the key-value pairs, and save your
changes.

These are key-value pairs that are available across all environments.
You can create and manage global variables by clicking on the gear icon
in the top-right corner of the interface and selecting "Globals".

To use a variable in a request, enclose the variable name in double curly
braces, like {{variable_name}}. Postman will replace the variable with
its corresponding value when the request is sent.

Mock Servers

Mock servers allow you to simulate API endpoints without the need for
an actual backend server. This can be helpful for testing and
development purposes. To create a mock server, click the "New" button
in the top-right corner of the interface and select "Mock Server".

Monitors

Monitors allow you to schedule your API requests to run automatically
at regular intervals. This can be useful for monitoring the health of your
APIs or performing scheduled tasks. To create a monitor, click the
"New" button in the top-right corner of the interface and select
"Monitor".

API Documentation

Postman can automatically generate documentation for your APIs based
on your collections and API specifications. To generate documentation,
click on the three-dot menu next to a collection in the Collections tab
and select "Publish Docs" or "View in Web". You can customize the
appearance, add descriptions, and include examples for your
documentation.

Collaboration and Sharing

Postman offers various collaboration features to help teams work
together on API projects.

You can create and share workspaces with team members, allowing
everyone to access the same collections, environments, and APIs.

To share a collection with your team or the public, click on the three-dot
menu next to the collection in the Collections tab and select "Share".
You can also generate a shareable link or embed a Run in Postman
button on your website.

You can leave comments on requests and collections to discuss changes
or ask questions. To add a comment, click on the comment icon next to
a request or collection's name.

Integrations

Postman offers various integrations with third-party services, such as
GitHub, GitLab, Bitbucket, and others. These integrations can help you
automate tasks and streamline your API development workflow. To
explore available integrations, click on your profile picture in the top-
right corner of the interface and select "Integrations".

Postman is a versatile tool that offers a wide range of features and

functionalities. As you continue to use it, you will uncover more of its
capabilities, allowing you to customize and tailor your workflow to your
specific needs.

Chapter 2: API Design

Principles of API Design

API design is a crucial aspect of building a successful API. A well-
designed API is easy to understand, maintain, and extend. The given
below are some key principles of API design, along with examples to
illustrate each principle:

Apply Consistent and Meaningful Naming

Use consistent naming conventions for resources, endpoints, and
parameters. Choose descriptive names that clearly represent the purpose
or functionality of each component.

Example:
● Good: /users/{user_id}/orders
● Bad: /u/{user_id}/o

Embrace RESTful Principles

REST (Representational State Transfer) is an architectural style for
designing networked applications. It emphasizes statelessness,
cacheability, and a clear separation of concerns between client and
server. Some key RESTful principles include:
● Use HTTP methods (GET, POST, PUT, DELETE) to represent

actions on resources.
● Use resource-based URLs (e.g., /users, /orders) instead of action-
based URLs (e.g., /getUser, /createOrder).
Return meaningful HTTP status codes to indicate the result of an
operation (e.g., 200 OK, 201 Created, 400 Bad Request, 404 Not
Found).

Example:
● List all users: GET /users
● Create a new user: POST /users
● Update an existing user: PUT /users/{user_id}
● Delete a user: DELETE /users/{user_id}

Use JSON for Request and Response Bodies

JSON (JavaScript Object Notation) is a lightweight and human-readable
data interchange format. It is widely used for APIs because of its
simplicity and ease of use. Use JSON for both request and response
bodies, and set the Content-Type and Accept headers accordingly.

Example:

{

 "name": "John Doe",

 "email": "john.doe@example.com"

}

Version the API

As your API evolves, you may need to introduce breaking changes. To
avoid disrupting existing clients, use versioning in your API. This can be
done through the URL, headers, or other means.

Example:
● Include the version in the URL: /api/v1/users
● Use a custom header: X-API-Version: 1

Support Pagination, Filtering, and Sorting

APIs often return large sets of data. To improve performance and
usability, support pagination, filtering, and sorting for your API
endpoints.

Example:
● Pagination: /users?limit=10&page=2
● Filtering: /users?status=active
● Sorting: /users?sort=name,-created_at

Do Clear and Comprehensive Documentation

Clear and comprehensive documentation is essential for API users.
Provide detailed information on each endpoint, including the URL,
method, parameters, request and response formats, and examples.
Consider using tools like Swagger or Postman to generate interactive
documentation.

Implement Proper Authentication and Authorization

Secure your API by implementing proper authentication and
authorization. Choose an appropriate authentication method, such as
OAuth 2.0, API keys, or JWT tokens. Ensure that users can only access
the resources and perform the actions they are authorized to do.

Example:
● OAuth 2.0: Use an access token to authenticate requests:
Authorization: Bearer
API Key: Include the API key in the header or query parameter: X-API-
Key: or ?api_key=

By following these principles, you can design APIs that are easy to
understand, maintain, and extend.

Define API Endpoints

API endpoints are the specific points at which an API interacts with a
server to perform certain actions, such as retrieving, updating, or
deleting data. Each endpoint is a combination of the URL path and the
HTTP method used to perform the action. In the context of APIs, an
endpoint can be thought of as a single function or operation that the API
exposes for use by clients.

An API is a collection of endpoints, data structures, and protocols that
enable developers to create applications that can communicate with
other systems, services, or components. In summary, an API is a
collection of endpoints, while an endpoint is a specific point of
interaction within the API.

REST API (Representational State Transfer) is an architectural style for
designing networked applications. RESTful APIs use standard HTTP
methods and resource-based URLs to perform actions on resources. The
principles of RESTful API design encourage simplicity, scalability, and
maintainability.

REST API Endpoints

Retrieve a list of users:
Method: GET
Endpoint: /api/v1/users

Create a new user:
Method: POST
Endpoint: /api/v1/users

Retrieve a specific user by ID:
Method: GET
Endpoint: /api/v1/users/{user_id}

Update a user's information:
Method: PUT

Endpoint: /api/v1/users/{user_id}

Delete a user:
Method: DELETE
Endpoint: /api/v1/users/{user_id}

SOAP (Simple Object Access Protocol) is a protocol for exchanging
structured information in the implementation of web services. SOAP
relies on XML for its message format and typically uses HTTP or
HTTPS for transport. Unlike REST, which is an architectural style,
SOAP is a specific protocol with strict rules and standards.

SOAP APIs define operations (similar to endpoints in REST) in a
WSDL (Web Services Description Language) file, which is an XML-
based language for describing the functionality offered by a web service.
Clients can parse the WSDL to generate code for interacting with the
SOAP API.

SOAP API Operations (Endpoints)

Retrieve a list of users:
Operation: GetUsers
SOAP Action: http://example.com/GetUsers

Sample SOAP Request:

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:web="http://example.com/">

Create a new user:

Operation: CreateUser
SOAP Action: http://example.com/CreateUser

Sample SOAP Request:

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:web="http://example.com/">

 John Doe

 john.doe@example.com

Overall, API endpoints (or operations in the case of SOAP) are the
specific points of interaction within an API, where clients can perform
actions on resources.

Write API Endpoints with Python and Flask

There are several methods to write API endpoints, depending on the
programming language and framework you choose. Some popular
languages and frameworks for writing API endpoints include:

Python with Flask or Django
JavaScript with Node.js and Express.js
Ruby with Ruby on Rails
Java with Spring Boot
PHP with Laravel or Symfony

In this section, we'll learn how to write an API endpoint using Python
and Flask, a lightweight and flexible web framework. To get started,
make sure you have Python installed and follow these steps:

Install Flask

Open your terminal or command prompt and run the following
command to install Flask:

pip install Flask

Create New Python File

Create a new Python file, e.g., app.py, in a new directory for your
project.

Write Flask Application

Open app.py and write the following code to create a simple Flask
application with one API endpoint:

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/api/users', methods=['GET'])

def get_users():

 users = [

 {'id': 1, 'name': 'John Doe', 'email': 'john.doe@example.com'},

 {'id': 2, 'name': 'Jane Doe', 'email': 'jane.doe@example.com'}

]

 return jsonify(users)

if __name__ == '__main__':

 app.run(debug=True)

This code defines a simple Flask application with one API endpoint,
/api/users, that responds to GET requests. The get_users function returns
a JSON array of user objects. The jsonify function from Flask is used to
convert the Python list of dictionaries into a JSON response.

Run the Flask Application

In your terminal or command prompt, navigate to the directory
containing app.py and run the following command:

python app.py

This will start the Flask development server on port 5000.

Test the API Endpoint

Open your web browser or a tool like Postman and navigate to the
following URL:

http://localhost:5000/api/users

You should see a JSON response containing the list of users:

[

 {"id": 1, "name": "John Doe", "email": "john.doe@example.com"},

 {"id": 2, "name": "Jane Doe", "email": "jane.doe@example.com"}

]

This is a simple demonstration of how to write an API endpoint using
Python and Flask. You can extend this example by adding more
endpoints, implementing other HTTP methods (e.g., POST, PUT,
DELETE), and connecting to a database for storing and retrieving data.

Create Request and Response Schema

Creating request and response schemas in Postman helps you define the
structure of the API request and response, making it easier for other
developers to understand and use your API. To create request and
response schemas in Postman, you can use the "Examples" feature to
define example requests and responses for your API endpoints. The
given below is a quick direction on how you can implement:

Open Postman

Open Postman and create a new request or select an existing request in a
collection.

Add New Example

Click on the "Examples" button located on the right side of the request's
title bar. A dropdown menu will appear, showing any existing examples.
To add a new example, click on the "+ Add Example" button in the
dropdown menu.

Edit Example's Name

A new tab will open for editing the example. By default, the example's
name will be "Untitled Example." You can change the name by clicking
on it and entering a new name that describes the example, such as "Get
User Success."

Define Request Schema

In the "Request" section of the example, you can define the request
schema. This includes the method, URL, headers, query parameters, and
body.

Method:
Select the appropriate HTTP method (e.g., GET, POST, PUT, DELETE)
from the dropdown menu.

URL:

Enter the URL for the API endpoint. You can use variables, such as
{{base_url}}, to make the example more dynamic.

Params:
If your API endpoint requires query parameters, click on the "Params"
tab and enter the key-value pairs.

Headers:
If your API endpoint requires specific headers, click on the "Headers"

tab and enter the key-value pairs.

Body:
If your API endpoint requires a request body, click on the "Body" tab
and choose the appropriate format (e.g., raw, JSON, form-data, x-www-
form-urlencoded). Enter the request body content.

Define Response Schema

In the "Response" section of the example, you can define the response
schema. This includes the status code, headers, and body.

Status:
Enter the expected HTTP status code for the response (e.g., 200 OK,
201 Created, 400 Bad Request).

Headers:
If your API returns specific headers, click on the "Headers" tab and
enter the key-value pairs.

Body:
Click on the "Body" tab and enter the expected response body content. If
your response is in JSON format, make sure to write valid JSON.

Save the Example

After defining the request and response schemas, click the "Save" button
in the top-right corner of the example tab.

You can create multiple examples for each API request to cover
different scenarios, such as successful requests, errors, and edge cases.
These examples will be included in your API documentation, making it
easier for other developers to understand how to use your API.

Once you've defined the request and response schemas using examples,
you can use Postman's "Test" feature to validate your API's behavior
against the defined schemas. Additionally, you can use Postman's
"Generate Code" feature to generate code snippets in various
programming languages, based on the examples you've created.

Document APIs using OpenAPI

OpenAPI is a specification for describing, producing, consuming, and
visualizing RESTful web services. Formerly known as Swagger, the
OpenAPI Specification (OAS) provides a standardized format for
documenting APIs, making it easier for developers to understand and
consume them. OpenAPI uses JSON or YAML to describe the API's
details, including endpoints, request and response formats,
authentication, and more.

Documenting an API involves creating comprehensive, easy-to-
understand documentation that describes the API's functionality,
endpoints, request and response formats, authentication methods, and
any other relevant information. A well-documented API enables
developers to quickly understand and integrate with the API, improving
the overall developer experience.

To document an API using OpenAPI, you need to create an OpenAPI
definition file, which is a JSON or YAML file that follows the OpenAPI
Specification. The given below is a step-by-step walkthrough on how to
create a simple OpenAPI definition file, along with a sample
documentation for a basic API with a single endpoint.

Choose Format (JSON or YAML)

Choose whether you want to use JSON or YAML for your OpenAPI
definition file. Both formats are widely supported and easy to work with,
but YAML is often considered more human-readable.

Create OpenAPI Definition File

Create a new file with the appropriate extension (.json or .yaml) to store
your OpenAPI definition. For this example, we'll create a file called
openapi.yaml.

Define Basic API Information

Start by defining the basic information about your API, including the
OpenAPI version, API title, description, and version. For example:

openapi: 3.0.0

info:

 title: Sample API

 description: A sample API to demonstrate OpenAPI documentation.

 version: 1.0.0

Define API Server

Next, define the API server's URL and a brief description.

servers:

 - url: https://api.example.com/v1

 description: Production server (uses live data)

Define API Endpoints

Now, define your API endpoints, including the path, HTTP method,
summary, description, request parameters, and response format. For
example, let us define a GET /users endpoint that retrieves a list of
users:

paths:

 /users:

 get:

 summary: Get a list of users

 description: Retrieve a list of users with their basic information.

 responses:

 200:

 description: A list of users

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/User'

Define Data Models (Schemas)

Define the data models (schemas) used in your API, such as request and
response payloads. In the below sample program, we'll define a simple
User schema:

components:

 schemas:

 User:

 type: object

 properties:

 id:

 type: integer

 format: int64

 example: 1

 name:

 type: string

 example: John Doe

 email:

 type: string

 format: email

 example: john.doe@example.com

The given below is the complete openapi.yaml file for our sample API:

openapi: 3.0.0

info:

 title: Sample API

 description: A sample API to demonstrate OpenAPI documentation.

 version: 1.0.0

servers:

 - url: https://api.example.com/v1

 description: Production server (uses live data)

paths:

 /users:

 get:

 summary: Get a list of users

 description: Retrieve a list of users with their basic information.

 responses:

 200:

 description: A list of users

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/User'

components:

 schemas:

 User:

 type: object

 properties:

 id:

 type: integer

 format: int64

 example: 1

 name:

 type: string

 example: John Doe

 email:

 type: string

 format: email

 example: john.doe@example.com

Validate and Test OpenAPI Definition

To validate your OpenAPI definition file, you can use an online

validator like the Swagger Editor or a command-line tool like Swagger
Inspector. Once your file passes validation, you can use it to generate
API documentation automatically using tools like Swagger UI or
ReDoc.

Overall, OpenAPI is a powerful tool for documenting APIs, providing a
standardized format for describing endpoints, request and response
formats, authentication, and more. By following the OpenAPI
Specification and using tools like Swagger UI or ReDoc, you can
generate comprehensive and easy-to-understand documentation for your
API, improving the overall developer experience.

Use Mock Servers for API Design

Mock servers are tools that allow developers to simulate an API without
having to build a full backend system. Mock servers can be useful for
API design, testing, and development, as they enable developers to
experiment with different endpoints and data structures, without the
need for a fully functional backend.

Mock servers work by intercepting API requests and returning pre-
defined responses that mimic the behavior of a real API. This allows
developers to test their code and ensure that it's working as expected,
without worrying about the backend implementation. Mock servers can
be especially useful for front-end developers, who can use them to
develop and test their code independently of the backend development.

In the below given sample illustration, we'll cover how to use a mock
server for API design, using the popular tool Mockoon. Mockoon is an
open-source mock server that can run on your local machine and is
available for Windows, macOS, and Linux.

Install Mockoon

Download and install Mockoon from the official website

(https://mockoon.com/). Once installed, launch the application.

Create New Mock Server

Click the "Create a new mock API" button to create a new mock server.
Enter a name for your mock server, such as "Sample API," and choose a
base URL for your API, such as

Define API Endpoints

Click the "Add Route" button to define a new API endpoint. Enter the
endpoint's path, such as "/users", and choose the HTTP method, such as
GET, POST, or PUT.

Define Endpoint's Response

In the endpoint's response tab, you can define the response that the mock
server will return when the endpoint is called. This can include a status
code, headers, and response body.

For example, let us define a simple response for a GET request to
"/users":

Status code: 200 OK

Headers: Content-Type: application/json

Response body:

json

Copy code

{

 "users": [

 {"id": 1, "name": "John Doe", "email": "john.doe@example.com"},

 {"id": 2, "name": "Jane Doe", "email": "jane.doe@example.com"}

]

}

Start Mock Server

Once you've defined your API endpoints and responses, click the "Start"

button to start the mock server. This will make your API available at the
base URL you defined earlier.

Test the API using Postman

Open Postman and create a new request to your mock API's endpoint,
using the base URL you defined earlier (e.g.,
http://localhost:3000/users).

Send the request and you should see the response that you defined
earlier, indicating that your mock API is working as expected.

Mock servers like Mockoon can be incredibly useful for API design, as
they enable developers to experiment with different endpoints and data
structures, without the need for a fully functional backend. By using
mock servers, developers can quickly iterate on their API design and
ensure that it's working as expected, without worrying about the backend
implementation.

Chapter 3: API Development

Code Backend for API

APIs, or Application Programming Interfaces, are communication
interfaces that allow different software applications to exchange
information. In a web application, the frontend (client-side) and backend
(server-side) are two essential components. The frontend typically
involves the user interface and interactions, while the backend is
responsible for processing the data and managing communication
between the frontend and a database.

The need for backend code to support an API arises from the
requirement to facilitate this communication between the frontend and a
database. Backend code serves as the intermediary that processes
requests, manages the application's data, and implements the business
logic. Essentially, it is responsible for:
● Receiving and interpreting API requests from the frontend.
● Executing the required operations to fulfill those requests.
● Accessing and managing the data stored in a database.
● Applying business logic, such as validation and authentication.
● Returning appropriate responses back to the frontend.

In this way, the backend code ensures that the application functions
correctly, securely, and efficiently.

Writing Backend Code using Python

Python is a versatile and popular programming language, making it an
excellent choice for writing backend code. One widely-used web
framework for Python is Flask, which provides a lightweight and easy-
to-use platform for building web applications. In this practical solution,
we will use Flask to demonstrate how to write backend code for an API.

Install Flask: Begin by installing Flask using pip (Python's package
manager). Open your terminal or command prompt and run the
following command:

pip install Flask

Create a new Python file: Name it "app.py" and open it in your preferred
text editor.

Set up Flask: Import Flask and create an instance of the Flask class. This
instance will be used to define and configure the API.

from flask import Flask, jsonify, request

app = Flask(__name__)

Define a sample dataset: For demonstration purposes, we will create a

sample dataset representing a list of books. Each book will have an ID,
title, and author.

books = [

 {'id': 1, 'title': 'Book One', 'author': 'Author One'},

 {'id': 2, 'title': 'Book Two', 'author': 'Author Two'},

 {'id': 3, 'title': 'Book Three', 'author': 'Author Three'}

]

Create API endpoints: Define the various API endpoints for your
application. These endpoints will handle different types of requests, such
as getting all books, getting a book by ID, adding a new book, updating
a book, and deleting a book.

@app.route('/books', methods=['GET'])

def get_books():

 return jsonify({'books': books})

@app.route('/books/', methods=['GET'])

def get_book(book_id):

 book = [book for book in books if book['id'] == book_id]

 if not book:

 return jsonify({'error': 'Book not found'}), 404

 return jsonify({'book': book[0]})

@app.route('/books', methods=['POST'])

def add_book():

 new_book = {

 'id': books[-1]['id'] + 1,

 'title': request.json['title'],

 'author': request.json['author']

 }

 books.append(new_book)

 return jsonify({'book': new_book}), 201

@app.route('/books/', methods=['PUT'])

def update_book(book_id):

 book = [book for book in books if book['id'] == book_id]

if not book:

return jsonify({'error': 'Book not found'}), 404

 book[0]['title'] = request.json.get('title', book[0]['title'])

 book[0]['author'] = request.json.get('author', book[0]['author'])

 return jsonify({'book': book[0]})

@app.route('/books/int:book_id', methods=['DELETE'])

def delete_book(book_id):

book = [book for book in books if book['id'] == book_id]

if not book:

return jsonify({'error': 'Book not found'}), 404

 books.remove(book[0])

 return jsonify({'result': 'Book deleted'})

Run the Flask application: Add the following lines at the end of your
"app.py" file to run the Flask application:

if __name__ == '__main__':

 app.run(debug=True)

Save the file and run the following command in your terminal or
command prompt:

python app.py

The API should now be running at http://127.0.0.1:5000/.

Test the API: Use Postman to test the API endpoints you created. Send
HTTP requests to the various endpoints (e.g., GET, POST, PUT,
DELETE) and verify that the API behaves as expected.

This is a simple demonstration of how to write backend code using
Python and Flask to support an API. In a real-world application, you
would need to implement more advanced features such as error
handling, authentication, and connecting to a database. However, this
example should provide a solid foundation for understanding the need
for backend code to support an API and how to begin writing that code
using Python.

Create and Configure Local Server

To create and configure a local server while developing your API using
Postman, you can follow these steps:

Install Flask-CORS: When developing an API locally, you may
encounter CORS (Cross-Origin Resource Sharing) issues. To handle
this, you can use Flask-CORS, an extension that simplifies CORS
handling in Flask. Install Flask-CORS using pip:

pip install Flask-CORS

Modify your Flask application: Open "app.py" and import the CORS
class from flask_cors. Then, use the CORS class to enable CORS for
your Flask app.

from flask import Flask, jsonify, request

from flask_cors import CORS

app = Flask(__name__)

CORS(app)

Save your changes and restart your Flask application. Your local server
is now configured to handle CORS issues.

Test your API using Postman: Now that your local server is running and
configured, you can use Postman to test your API. Open Postman and
create a new collection to organize your API requests. For each API
endpoint, create a new request in Postman with the appropriate HTTP
method (GET, POST, PUT, or DELETE) and URL. Do not forget to
replace the base URL (http://127.0.0.1:5000/) with your local server's
address.

For example, if you want to test the GET request for all books, create a
new GET request in Postman with the following URL:

http://127.0.0.1:5000/books

Click "Send" to send the request to your local server. The server will
process the request and return the appropriate response, which will be
displayed in Postman. You can view the response's status, headers, and
body in the "Response" section of Postman.

Repeat this process for each of your API endpoints, adjusting the HTTP
method and URL as needed.

Monitor and debug your local server: As you test your API using
Postman, monitor the console output from your Flask application. This
can help you identify any issues or errors that may arise during
development. If you encounter errors or unexpected behavior, use the
debug information provided by Flask to diagnose and fix the issues. You
can also use Python's built-in debugger (pdb) or an external debugger
like PyCharm to debug your backend code.

Iterate and refine your API: As you develop and test your API using
Postman and your local server, you may discover areas for improvement
or new functionality to add. Continue refining your API by modifying
your backend code, updating your Postman requests, and testing the
changes. This iterative process will help you build a robust, well-
designed API.

Following these steps, you can create and configure a local server to
develop and test your API using Postman. This setup enables you to
rapidly iterate on your API, identify issues, and ensure that your
backend code functions as expected before deploying it to a production
environment.

Manage Authentication and Authorization

Authentication and authorization are essential components of a secure
API. Postman makes it easy to test different authentication and
authorization methods during development. In this section, we'll cover
basic authentication, API keys, and OAuth 2.0.

Testing Basic Authentication

Basic authentication requires a username and password, which are
combined and encoded in base64 format, then included in the request's
"Authorization" header.

To test basic authentication in Postman:
● Create a new request or select an existing one.
● Go to the "Authorization" tab.
● Select "Basic Auth" from the "Type" dropdown menu.
● Enter the required username and password.
● Postman will automatically generate the "Authorization" header
for your request.

Testing API Keys

API keys are unique tokens used to authenticate clients without the need
for usernames and passwords. They are often included in the request's
headers or as query parameters.

To test API keys in Postman:
● Create a new request or select an existing one.
● Go to the "Authorization" tab.
● Select "API Key" from the "Type" dropdown menu.
Enter the required key name, key value, and select where the key should
be included (header or query parameter).

● Postman will automatically include the API key in your request.

Checking OAuth 2.0

OAuth 2.0 is a widely used authorization framework that enables clients
to access protected resources by obtaining an access token. Access
tokens are short-lived and must be refreshed using a refresh token.

To test OAuth 2.0 in Postman:
● Create a new request or select an existing one.
● Go to the "Authorization" tab.
● Select "OAuth 2.0" from the "Type" dropdown menu.
● Click "Get New Access Token".
Fill out the required fields in the "Get New Access Token" dialog, such
as Token Name, Grant Type, Callback URL, Auth URL, Access Token
URL, Client ID, Client Secret, and Scope. These values depend on the

specific API and OAuth provider you're using. Do not forget to check
their documentation for the correct values.
● Click "Request Token" to retrieve an access token.
Once you have the access token, select it from the "Available Tokens"
dropdown, and Postman will automatically include it in the
"Authorization" header for your request.

Remember that for all these methods, you'll need to implement the
corresponding authentication and authorization mechanisms in your
backend code. The Flask framework provides several extensions to help
with this, such as Flask-HTTPAuth for basic authentication, Flask-
Security for API keys, and Flask-OAuthlib for OAuth 2.0.

Write Code for Error Handling

While Postman is primarily used to test APIs and is not meant for
writing actual backend code, it can be used to test error handling in your
API. By simulating various error scenarios using Postman, you can
ensure that your API responds appropriately when errors occur.

To test error handling in your API using Postman, follow these steps:

Implement Error Handling in Backend

Before you can test error handling using Postman, you'll need to
implement error handling in your backend code. In the context of the
Flask example we've been using, you can utilize Flask's built-in error
handling mechanisms.

The given below is an example of how to define a custom error handler
in Flask:

from flask import Flask, jsonify

app = Flask(__name__)

@app.errorhandler(404)

def not_found(error):

 return jsonify({'error': 'Not Found'}), 404

@app.errorhandler(400)

def bad_request(error):

 return jsonify({'error': 'Bad Request'}), 400

This code defines two custom error handlers for 404 (Not Found) and
400 (Bad Request) errors. When these errors occur, the custom error
handlers will return a JSON object with an "error" key describing the
error, along with the appropriate HTTP status code.

Simulate Error Scenarios

With error handling implemented in your backend code, you can now
use Postman to simulate various error scenarios and test your API's
response.

Follow the below steps:
● Create a new request or select an existing one in Postman.
Modify the request to simulate an error scenario. For example, if you
want to test a 404 error, you can change the request URL to an invalid
endpoint, like http://127.0.0.1:5000/nonexistent. If you want to test a
400 error, you can send an incomplete or incorrect request body in a
POST or PUT request.
● Click "Send" to send the request to your API.
Examine the response in Postman's "Response" section. Verify that the
status code, headers, and body are correct and match the expected error
handling behavior.

Refine Error Handling Code

As you test your API's error handling using Postman, you may discover
areas for improvement or additional error scenarios to handle. Update
your backend code as needed to handle these situations, and continue
testing with Postman to ensure that your API responds appropriately to
errors.

Just to summarize, implementing error handling in your backend code
and testing it using Postman makes easy to build a robust, reliable API
that gracefully handles errors and provides useful feedback to clients
and thereby create a better user experience and can make your API
easier to use and troubleshoot.

Test API Endpoints

To test your API endpoints using Postman, you'll need to create requests
for each endpoint and verify that they return the expected responses. In
the below sample program, we'll use the book management API from
previous responses.

Launch Postman

Open the Postman application on your computer.

Create New Collection

Click the "New" button in the top left corner and select "Collection."
Name it "Book Management API" and click "Create." Collections help
organize your API requests.

Create Requests for Each Endpoint

Get all books (GET /books):

Click the "+" button next to the "Book Management API" collection to

create a new request.
Set the HTTP method to "GET."
Enter the endpoint URL: http://127.0.0.1:5000/books
Click "Save" and name the request "Get All Books."

Get a book by ID (GET /books/:id):

Create a new request as before.
Set the HTTP method to "GET."
Enter the endpoint URL with a valid book ID, e.g.,
http://127.0.0.1:5000/books/1

Click "Save" and name the request "Get Book by ID."

Add a new book (POST /books):

Create a new request.
Set the HTTP method to "POST."
Enter the endpoint URL: http://127.0.0.1:5000/books
Go to the "Body" tab, select "raw" and set the format to "JSON."
Enter a JSON object representing the new book, e.g.,

 {

 "title": "Book Four",

 "author": "Author Four"

 }

Click "Save" and name the request "Add New Book."

Update a book (PUT /books/:id):

Create a new request.
Set the HTTP method to "PUT."
Enter the endpoint URL with a valid book ID, e.g.,
http://127.0.0.1:5000/books/1
Go to the "Body" tab, select "raw" and set the format to "JSON."
Enter a JSON object with the updated book information, e.g.,

 {

 "title": "Updated Book Title",

 "author": "Updated Author"

 }

Click "Save" and name the request "Update Book."

Delete a book (DELETE /books/:id):

Create a new request.
Set the HTTP method to "DELETE."
Enter the endpoint URL with a valid book ID, e.g.,
http://127.0.0.1:5000/books/1
Click "Save" and name the request "Delete Book."

Test each request:

Select a request from the "Book Management API" collection.
Click "Send" to send the request to your API.
Examine the response in Postman's "Response" section. Verify that the
status code, headers, and body match the expected behavior for each
endpoint.
Repeat this process for each request in the collection.

By following these steps, you can test each endpoint of your API using
Postman. This process helps ensure that your API behaves as expected,
allowing you to identify and fix any issues before deploying your API to
a production environment.

Chapter 4: API Testing

Types of API Testing

API (Application Programming Interface) testing is the process of
verifying the functionality, reliability, performance, and security of an
API. APIs enable communication between different software systems,
and effective testing ensures that they function correctly and meet the
intended requirements. The main goal of API testing is to identify issues
or discrepancies in the API's behavior, so they can be fixed before
deployment.

Functional Testing

Functional testing verifies that the API performs as expected, returning
correct responses based on the input parameters. This involves testing
the API's endpoints, request methods, response codes, and data
validation. Test cases should cover positive (expected behavior) and
negative (error conditions) scenarios.

Performance Testing

Performance testing assesses the API's speed, responsiveness, and
stability under various workloads. This type of testing helps determine
the API's performance bottlenecks, maximum capacity, and scalability.
It often involves stress, load, spike, and endurance testing to evaluate the
API's behavior under different conditions.

Security Testing

Security testing ensures that the API is protected from unauthorized
access, data breaches, and other security vulnerabilities. This involves
testing authentication, authorization, encryption, and input validation
mechanisms. Security testing also includes penetration testing to identify
potential vulnerabilities that could be exploited by attackers.

Reliability Testing

Reliability testing evaluates the API's ability to consistently provide
accurate and expected results over time. This involves monitoring the
API's performance, error rates, and recovery from failures. Reliability
testing can help identify issues with the API's infrastructure, such as
network latency or server downtime.

Compatibility Testing

Compatibility testing verifies that the API works as expected across
different environments, platforms, and configurations. This includes
testing the API on various operating systems, browsers, and devices, as
well as ensuring backward compatibility with older API versions or
clients.

Documentation Testing

Documentation testing ensures that the API's documentation is accurate,
comprehensive, and up-to-date. This involves reviewing the API's
descriptions, examples, and usage guidelines to verify that they align
with the API's actual behavior. Good documentation helps developers
understand and use the API more effectively.

Different APIs Tested using Postman

Postman is a versatile tool that supports testing various API formats:

REST (Representational State Transfer)

REST is an architectural style that defines a set of constraints for
creating web services. RESTful APIs use standard HTTP methods
(GET, POST, PUT, DELETE) and are typically based on JSON or XML
data formats. Postman offers extensive support for testing RESTful
APIs, including managing headers, parameters, and authorization.

SOAP (Simple Object Access Protocol)

SOAP is a protocol for exchanging structured information in the
implementation of web services. SOAP APIs use XML for message
formatting and typically rely on HTTP or SMTP for transport. Postman
can test SOAP APIs by sending HTTP requests with custom headers and
XML payloads.

GraphQL

GraphQL is a query language for APIs that allows clients to request only

the data they need, making it more efficient than traditional REST or
SOAP APIs. GraphQL APIs use a single endpoint and require clients to
specify the data structure they want to receive. Postman supports
GraphQL testing by allowing users to create queries and mutations,
manage variables, and validate responses.

gRPC (gRPC Remote Procedure Calls)

gRPC is a modern, high-performance, open-source framework for
remote procedure calls (RPCs). gRPC uses HTTP/2 for transport and
Protocol Buffers for efficient serialization. Although Postman does not
natively support gRPC testing, there are third-party plugins like gRPC-
Web or Postman-to-gRPC that enable gRPC testing within Postman.

WebSockets

WebSockets is a communication protocol that enables bidirectional,
real-time communication between clients and servers over a single,
long-lived connection. It is designed for use in web browsers and web
servers but can be used by any client or server application. Postman
recently introduced support for WebSocket APIs, allowing users to test
WebSocket connections, send messages, and analyze the response.

Postman's Testing Capabilities

In addition to Request Builder, Collections and Environments, Postman
offer several far better capabilities to perform API testing. They are as
below:

Test Scripts

Postman supports writing test scripts using JavaScript, allowing users to
create custom assertions and validate API responses. Test scripts enable
automation of functional, performance, and security testing, making it
easier to catch issues early in the development process and ensuring the
API behaves as expected.

Example:
After sending a GET request to retrieve a user, you can write a test script
to verify that the response code is 200 and the returned user object
contains the expected properties:

pm.test("Status code is 200", function () {

 pm.response.to.have.status(200);

});

pm.test("User object has required properties", function () {

 const user = pm.response.json();

 pm.expect(user).to.have.property('id');

 pm.expect(user).to.have.property('name');

 pm.expect(user).to.have.property('email');

});

Runner

Postman Runner allows users to execute a series of API requests in a
specified order, either within a collection or across multiple collections.
The Runner feature is useful for running end-to-end tests, load tests, or
simulating user flows, helping to ensure the API behaves correctly in
real-world scenarios.

Example: You can use the Runner to execute a user management API
collection that simulates a user sign-up flow: creating a user, retrieving

the user's information, updating the user's profile, and then deleting the
user account. The Runner will execute the requests in sequence and
display the test results for each step.

Mock Servers

Postman allows users to create mock servers to simulate API responses
without implementing the actual backend. Mock servers help facilitate
parallel development, testing, and documentation efforts, allowing
frontend developers to work with the API before the backend is
complete.

Example: You can create a mock server for a user management API,
defining expected responses for creating, retrieving, updating, and
deleting users. Frontend developers can then use the mock server to
build and test their application, while backend developers work on
implementing the actual API.

Monitoring

Postman offers API monitoring features that allow users to schedule and
automate API tests to run at specific intervals. Monitoring helps ensure
that your APIs remain reliable, performant, and secure over time, as it
continuously checks for issues, downtimes, or performance degradation.

Example: You can set up monitoring for your user management API,

scheduling the test suite to run every hour. This helps ensure that any
potential issues are caught and resolved quickly, minimizing the impact
on end-users.

Integrations

Postman integrates with various third-party services and tools, including
CI/CD pipelines, API management platforms, and collaboration tools.
Integrations make it easy to incorporate Postman into your existing
workflows and processes, streamlining development, testing, and
deployment.

Example: You can integrate Postman with a CI/CD pipeline, such as
Jenkins or GitLab CI, to automatically run your API test suite whenever
new code is pushed to the repository. This helps catch issues early and
ensures that your APIs are tested thoroughly before being deployed to
production.

To sum it up, Postman offers a comprehensive suite of testing
capabilities that enable developers to create, test, and validate APIs
effectively. By leveraging these features, development teams can ensure
that their APIs are robust, reliable, and secure, leading to better overall
system stability and user experience.

Test REST API using Python

Postman primarily supports JavaScript for writing and executing test
scripts. While it's not possible to write Python code directly within
Postman, you can use Python to test APIs outside of Postman using
popular libraries such as requests and unittest.

The given below is an example of how to test a RESTful API using
Python:

Install the requests library, if you haven't already, by running the
following command:

pip install requests

Create a new Python file, e.g., api_tests.py, and import the required
libraries:

import unittest

import requests

Define a class that inherits from unittest.TestCase and write test methods
for each API endpoint you want to test:

class TestAPI(unittest.TestCase):

 BASE_URL = 'https://api.example.com'

 def test_get_users(self):

 response = requests.get(f'{self.BASE_URL}/users')

 self.assertEqual(response.status_code, 200)

 users = response.json()

 self.assertIsInstance(users, list)

 for user in users:

 self.assertIn('id', user)

 self.assertIn('name', user)

 self.assertIn('email', user)

 def test_create_user(self):

 payload = {

 'name': 'John Doe',

 'email': 'john.doe@example.com'

 }

 response = requests.post(f'{self.BASE_URL}/users', json=payload)

 self.assertEqual(response.status_code, 201)

 user = response.json()

 self.assertEqual(user['name'], payload['name'])

 self.assertEqual(user['email'], payload['email'])

 # Add more test methods for other API endpoints...

Add a main() function at the end of the file to run the test suite:

python

Copy code

if __name__ == '__main__':

 unittest.main()

Execute the test suite by running the Python file:

python api_tests.py

While this example focuses on testing a RESTful API, you can use a
similar approach to test other API formats, such as SOAP, GraphQL, or
gRPC. For SOAP, you may use libraries like Zeep. For GraphQL, you
can use gql or graphene. For gRPC, you can use the grpcio library.

Keep in mind that since Postman doesn't support writing and executing
Python code natively, you will have to run these tests outside of
Postman. However, you can still use Postman for API exploration and
testing with JavaScript, and then implement the corresponding tests in
Python using the approach described as above.

Handle API Testing Scenarios

Ensuring that API responses match predefined schema is crucial in API
testing to maintain consistency and compliance with the API
specifications. Among the different schema formats available, JSON and
XML are the most popular ones. This section will explain how to handle
API testing scenarios concerning validation of JSON and XML
schemas.

XML Schema Validation

To validate an XML response, you can use the lxml library in Python,
which provides an XML Schema Definition (XSD) validator. Following
is an example of how to validate an XML response against an XSD
schema:

Install the lxml library, if you haven't already, by running the following
command:

pip install lxml

Define an XSD schema for the XML response, e.g. response.xsd:

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 name="user">

 name="id" type="xs:integer"/>

 name="name" type="xs:string"/>

 name="email" type="xs:string"/>

Define a test method in your Python test suite that validates the XML
response against the XSD schema:

import unittest

from lxml import etree

import requests

class TestAPI(unittest.TestCase):

 BASE_URL = 'https://api.example.com'

 def test_get_user(self):

 response = requests.get(f'{self.BASE_URL}/user')

 self.assertEqual(response.status_code, 200)

 user = response.text

 # Parse the response XML and validate against the XSD schema

 schema = etree.XMLSchema(file='response.xsd')

 parser = etree.XMLParser(schema=schema)

 root = etree.fromstring(user, parser)

Run the test suite and ensure that the XML response passes the schema
validation.

JSON Schema Validation

To validate a JSON response, you can use the jsonschema library in
Python, which provides a JSON Schema validator. Following is an
example of how to validate a JSON response against a JSON Schema:

Install the jsonschema library, if you haven't already, by running the
following command:

pip install jsonschema

Define a JSON Schema for the JSON response, e.g.
response.jsonschema:

{

 "type": "object",

 "properties": {

 "id": {"type": "integer"},

 "name": {"type": "string"},

 "email": {"type": "string"}

 },

 "required": ["id", "name", "email"]

}

Define a test method in your Python test suite that validates the JSON
response against the JSON Schema:

import unittest

import jsonschema

import requests

class TestAPI(unittest.TestCase):

 BASE_URL = 'https://api.example.com'

 def test_get_user(self):

 response = requests.get(f'{self.BASE_URL}/user')

 self.assertEqual(response.status_code, 200)

 user = response.json()

 # Validate the response JSON against the JSON schema

 with open('response.jsonschema') as f:

 schema = json.load(f)

 jsonschema.validate(user, schema)

Run the test suite and ensure that the JSON response passes the schema
validation.

By validating API responses against predefined XML and JSON
schemas, you can ensure that the API responses adhere to the expected
structure and format.

Verify Parsing the Response Data

Verifying the correct parsing of response data is crucial in API testing to
ensure that the API responses are accurately processed by the client
application. It is vital to validate that the response data is formatted
correctly and that the application can handle any errors or exceptions
that may occur during parsing. The following illustration will discuss
strategies for handling API testing scenarios that involve verifying the
parsing of response data.

Install the requests library, if you haven't already, by running the
following command:

pip install requests

Define a test method in your Python test suite that sends a GET request
to the API endpoint and parses the response data:

import unittest

import requests

class TestAPI(unittest.TestCase):

 BASE_URL = 'https://api.example.com'

 def test_get_user(self):

 response = requests.get(f'{self.BASE_URL}/user')

 self.assertEqual(response.status_code, 200)

 # Parse the response data and ensure that it is properly formatted

 user = response.json()

 self.assertIsInstance(user, dict)

 self.assertIn('id', user)

 self.assertIsInstance(user['id'], int)

 self.assertIn('name', user)

 self.assertIsInstance(user['name'], str)

 self.assertIn('email', user)

 self.assertIsInstance(user['email'], str)

Run the test suite and ensure that the response data is properly parsed.

By verifying the parsing of response data, you can ensure that the client
application can properly handle the API responses and that any issues
with data formatting or parsing are caught early in the development
process.

Valid Response Headers

Validating the response headers is crucial in API testing to ensure
adherence to API specifications and client requirements. In this
subtopic, we will explore how to handle scenarios in API testing to
verify response headers.

Install the requests library, if you haven't already, by running the
following command:

pip install requests

Define a test method in your Python test suite that sends a GET request
to the API endpoint and checks the response headers:

import unittest

import requests

class TestAPI(unittest.TestCase):

 BASE_URL = 'https://api.example.com'

 def test_get_user(self):

 response = requests.get(f'{self.BASE_URL}/user')

 self.assertEqual(response.status_code, 200)

 # Check the response headers and ensure that they are correct

 self.assertIn('content-type', response.headers)

 self.assertEqual(response.headers['content-type'], 'application/json')

 self.assertIn('cache-control', response.headers)

 self.assertEqual(response.headers['cache-control'], 'max-age=3600')

 self.assertIn('x-rate-limit', response.headers)

 self.assertIsInstance(response.headers['x-rate-limit'], str)

Run the test suite and ensure that the response headers are correct.

By verifying the response headers, you can ensure that the API
responses adhere to the specification and meet the client's requirements.

Negative Testcase Response

To ensure that an API can handle errors and exceptions that may occur
during usage, it's crucial to perform negative testing. Negative testing
involves testing scenarios where unexpected inputs or conditions are
encountered. In this way, developers can ensure that their API is robust
and can handle any issues that may arise in the real world. This
particular topic teaches how to handle negative testing scenarios in API
testing.

Install the requests library, if you haven't already, by running the
following command:

pip install requests

Define a test method in your Python test suite that sends a request to the
API endpoint with invalid parameters and checks the response status
code and message:

import unittest

import requests

class TestAPI(unittest.TestCase):

 BASE_URL = 'https://api.example.com'

 def test_invalid_user_id(self):

 response = requests.get(f'{self.BASE_URL}/user?id=abc')

 self.assertEqual(response.status_code, 400)

 error = response.json()

 self.assertIsInstance(error, dict)

 self.assertIn('message', error)

 self.assertEqual(error['message'], 'Invalid user ID')

Run the test suite and ensure that the API can properly handle invalid
parameters and returns the correct error response.

Testing negative test cases is important as it helps to ensure that the API
can handle errors or exceptions that may occur during usage and provide
the necessary feedback to the client application. This can contribute to
the overall improvement of the API's reliability and user experience.

Verify the Response HTTP Status Code

One of the another essential aspects is to verify that the API responses
include the correct HTTP status codes. This ensures that the APIs
comply with the API specification and meet the client's needs.

The below example will explain how to handle various API testing
scenarios and how to verify the response HTTP status code, which is an
essential step in API testing.

Install the requests library, if you haven't already, by running the
following command:

pip install requests

Define a test method in your Python test suite that sends a request to the
API endpoint and checks the response status code:

import unittest

import requests

class TestAPI(unittest.TestCase):

 BASE_URL = 'https://api.example.com'

 def test_get_user(self):

 response = requests.get(f'{self.BASE_URL}/user')

 self.assertEqual(response.status_code, 200)

Run the test suite and ensure that the response HTTP status code is
correct.

By verifying the response HTTP status code, you can ensure that the
API responses adhere to the specification and meet the client's
requirements. This can help improve the overall reliability and

performance of the API.

Verify Valid Response Payload
Validating API responses to ensure that they comply with API
specifications and fulfill client requirements is critical in API testing.
This involves verifying that the payload data in the API responses is
accurate. In the below given sample illustration, we will cover how to
handle API testing scenarios on verifying the response payload data.

Install the requests library, if you haven't already, by running the
following command:

pip install requests

Define a test method in your Python test suite that sends a GET request
to the API endpoint and checks the response payload:

import unittest

import requests

class TestAPI(unittest.TestCase):

 BASE_URL = 'https://api.example.com'

 def test_get_user(self):

 response = requests.get(f'{self.BASE_URL}/user')

 self.assertEqual(response.status_code, 200)

 # Check the response payload and ensure that it is correct

 user = response.json()

 self.assertIsInstance(user, dict)

 self.assertIn('id', user)

 self.assertIsInstance(user['id'], int)

 self.assertIn('name', user)

 self.assertIsInstance(user['name'], str)

 self.assertIn('email', user)

 self.assertIsInstance(user['email'], str)

Run the test suite and ensure that the response payload is correct.

By verifying the response payload, you can ensure that the API
responses adhere to the specification and meet the client's requirements.
This can help improve the overall reliability and performance of the
API.

End-to-end CRUD Flows
To ensure proper functionality of an API, testing the complete end-to-
end CRUD (Create, Read, Update, Delete) flow is crucial in API testing.
It is essential to verify that the API can handle all operations as
intended. In the below given sample illustration, we will cover how to
handle API testing scenarios on end-to-end CRUD flows.

Install the requests library, if you haven't already, by running the
following command:

pip install requests

Define a test method in your Python test suite that performs the end-to-
end CRUD flow:

import unittest

import requests

class TestAPI(unittest.TestCase):

 BASE_URL = 'https://api.example.com'

 def test_crud_flow(self):

 # Create a new user

 data = {'name': 'John Doe', 'email': 'johndoe@example.com'}

 response = requests.post(f'{self.BASE_URL}/user', json=data)

 self.assertEqual(response.status_code, 201)

 user_id = response.json()['id']

 # Read the user data

 response = requests.get(f'{self.BASE_URL}/user/{user_id}')

 self.assertEqual(response.status_code, 200)

 user = response.json()

 self.assertIsInstance(user, dict)

 self.assertIn('id', user)

 self.assertEqual(user['id'], user_id)

 self.assertIn('name', user)

 self.assertIsInstance(user['name'], str)

 self.assertEqual(user['name'], data['name'])

 self.assertIn('email', user)

 self.assertIsInstance(user['email'], str)

 self.assertEqual(user['email'], data['email'])

 # Update the user data

 new_data = {'name': 'Jane Doe', 'email': 'janedoe@example.com'}

 response = requests.put(f'{self.BASE_URL}/user/{user_id}',
json=new_data)

 self.assertEqual(response.status_code, 200)

 updated_user = response.json()

 self.assertIsInstance(updated_user, dict)

 self.assertIn('id', updated_user)

 self.assertEqual(updated_user['id'], user_id)

 self.assertIn('name', updated_user)

 self.assertIsInstance(updated_user['name'], str)

 self.assertEqual(updated_user['name'], new_data['name'])

 self.assertIn('email', updated_user)

 self.assertIsInstance(updated_user['email'], str)

 self.assertEqual(updated_user['email'], new_data['email'])

 # Delete the user

 response = requests.delete(f'{self.BASE_URL}/user/{user_id}')

 self.assertEqual(response.status_code, 204)

 # Attempt to read the deleted user data (should return 404)

 response = requests.get(f'{self.BASE_URL}/user/{user_id}')

 self.assertEqual(response.status_code, 404)

Run the test suite and ensure that the end-to-end CRUD flow is
successful and all operations are properly handled.

By testing the full end-to-end CRUD flow, you can ensure that the API
can properly handle all operations and functions as expected, and that
any issues or bugs are caught early in the development process. This can
help improve the overall reliability and functionality of the API.

Chapter 5: API Security

API Threats Landscape

API (Application Programming Interface) security threats refer to
potential risks and vulnerabilities that can compromise the
confidentiality, integrity, and availability of API systems and the data
they process. APIs are essential for interconnecting software
applications and services, but they can also expose sensitive information
and create entry points for malicious attacks.

Following are some common API security threats conceptually:

Injection attacks
Attackers send malicious data to an API, which is then executed or
processed, leading to unauthorized access, data theft, or other adverse
effects. Common examples include SQL injection, command injection,
and code injection attacks.

Authentication and authorization flaws
Weak or improperly implemented authentication and authorization
mechanisms can allow unauthorized users to gain access to sensitive
data or perform unauthorized actions. Examples include insufficient
authentication, weak passwords, and broken access controls.

Insecure communication
Unencrypted or weakly encrypted communication between clients and

APIs can be intercepted, eavesdropped, or tampered with by attackers.
This can lead to sensitive data exposure, man-in-the-middle attacks, or
other attacks compromising data integrity and confidentiality.

Sensitive data exposure

APIs can inadvertently expose sensitive data, such as personal or
financial information, if they are not designed and configured with
proper security controls. This can result from issues like insufficient data
encryption or insecure data storage.

Parameter tampering
Attackers may manipulate API parameters, such as URL or request
parameters, to bypass security controls or gain unauthorized access to
data and resources.

XML External Entity (XXE) attacks
APIs that process XML input can be vulnerable to XXE attacks, where
attackers exploit external entity references to access sensitive data,
perform server-side request forgery (SSRF), or execute arbitrary code.
Denial of Service (DoS) attacks
Attackers can overwhelm an API by sending a high volume of requests,
consuming its resources, and rendering it unable to process legitimate
requests. This can lead to service disruptions and performance
degradation.

Insufficient logging and monitoring

Inadequate logging and monitoring can make it difficult to detect
security incidents and respond to attacks, allowing attackers to exploit
vulnerabilities and access sensitive data undetected.

Misconfigurations
Poorly configured APIs can expose sensitive information, leave security
vulnerabilities unaddressed, or allow unauthorized access. Examples
include default credentials, unpatched software, or insecure deployment
configurations.

Insecure API design and implementation
Design flaws in APIs, such as improper input validation, error handling,
or data processing, can lead to security vulnerabilities that can be
exploited by attackers.

To mitigate these threats, organizations should adopt best practices for
API security, such as following the OWASP API Security Top 10 and
implementing robust security controls throughout the API lifecycle.

Prevent Injection Attacks

Postman is a popular tool for testing and developing APIs but it's also
important to note that Postman itself is not responsible for preventing
injection attacks like SQL, command, or code injection. These attacks
must be mitigated at the API implementation level, in your server-side
code.

That being said, we can provide you with some general guidelines on
how to prevent these types of attacks in your API implementation:

SQL Injection

To prevent SQL injection attacks, you should use parameterized queries,
prepared statements, or stored procedures instead of concatenating user
input directly into SQL queries. Following is an example using prepared
statements in Node.js with the MySQL library:

const mysql = require('mysql');

const connection = mysql.createConnection({

 host: 'localhost',

 user: 'your_user',

 password: 'your_password',

 database: 'your_database'

});

connection.connect();

// Get user input from the API request

const userInput = req.body.userInput;

// Use a prepared statement to prevent SQL injection

const query = 'SELECT * FROM your_table WHERE column_name =
?';

connection.query(query, [userInput], (error, results, fields) => {

 if (error) {

 console.error('An error occurred: ' + error.message);

 return;

 }

 console.log('Query results:', results);

});

connection.end();

Command Injection

To prevent command injection attacks, you should avoid using user
input directly in shell commands. If you must use user input, you should
validate and sanitize it, and use proper escaping mechanisms provided
by your programming language. Following is an example using Node.js
to execute a command safely:

const { execFile } = require('child_process');

// Get user input from the API request

const userInput = req.body.userInput;

// Validate and sanitize user input before using it in a command

if (isValid(userInput)) {

 const sanitizedInput = sanitize(userInput);

 // Use execFile instead of exec to avoid command injection

 execFile('your_command', [sanitizedInput], (error, stdout, stderr) => {

 if (error) {

 console.error('An error occurred: ' + error.message);

 return;

 }

 console.log('Command output:', stdout);

 });

} else {

 console.error('Invalid user input');

}

Code Injection

To prevent code injection attacks, you should never execute user input
as code. You should also validate and sanitize user input before using it
in any logic or data manipulation. For example, when using JavaScript's
eval() function or other dynamic code execution methods, you should
avoid passing any user input directly:

// Get user input from the API request

const userInput = req.body.userInput;

// Validate and sanitize user input before using it in any logic or data
manipulation

if (isValid(userInput)) {

 const sanitizedInput = sanitize(userInput);

 // Avoid using eval() or other dynamic code execution methods with
user input

 const result = someSafeFunction(sanitizedInput);

 console.log('Result:', result);

} else {

 console.error('Invalid user input');

}

The above ones are few of my practices on how to prevent injection
attacks in your API implementation.

Prevent Authentication & Authorization Flaws

To prevent insufficient authentication, weak passwords, and broken
access controls, you should implement robust security measures in your
API. I'll provide you with a practical example using Node.js, Express,
and the Passport library for authentication. We'll also use bcrypt for
password hashing and JWT for access control.

Install the required packages

npm install express passport passport-jwt passport-local bcrypt
jsonwebtoken

Create a basic Express app and include the necessary libraries:

const express = require('express');

const passport = require('passport');

const LocalStrategy = require('passport-local').Strategy;

const JwtStrategy = require('passport-jwt').Strategy;

const ExtractJwt = require('passport-jwt').ExtractJwt;

const bcrypt = require('bcrypt');

const jwt = require('jsonwebtoken');

const app = express();

app.use(express.json());

Implement user storage and password hashing (replace this with your
actual database):

// Example user storage (use your actual database in production)

const users = [

 {

 id: 1,

 username: 'user1',

 password:
'$2b$10$DxkGJbY7K8cXzgV7bEoAAeKp7.P8c1ZwVVEeLrjQr3YkjzIZn3e9e'
// bcrypt hashed password for "password1"

 }

];

// Function to hash a plaintext password

async function hashPassword(password) {

 const saltRounds = 10;

 return await bcrypt.hash(password, saltRounds);

}

// Function to verify a plaintext password against a hashed password

async function verifyPassword(password, hashedPassword) {

 return await bcrypt.compare(password, hashedPassword);

}

Set up Passport local strategy for user authentication:

passport.use(new LocalStrategy(async (username, password, done) => {

 const user = users.find(user => user.username === username);

 if (!user) {

 return done(null, false, { message: 'Incorrect username.' });

 }

 const isValidPassword = await verifyPassword(password,
user.password);

 if (!isValidPassword) {

 return done(null, false, { message: 'Incorrect password.' });

 }

 return done(null, user);

}));

Set up Passport JWT strategy for access control:

const jwtOptions = {

 jwtFromRequest: ExtractJwt.fromAuthHeaderAsBearerToken(),

 secretOrKey: 'your_jwt_secret'

};

passport.use(new JwtStrategy(jwtOptions, (jwtPayload, done) => {

 const user = users.find(user => user.id === jwtPayload.id);

 if (user) {

 return done(null, user);

 } else {

 return done(null, false);

 }

}));

Implement login route with proper authentication:

app.post('/login', (req, res, next) => {

 passport.authenticate('local', { session: false }, (err, user, info) => {

 if (err || !user) {

 return res.status(400).json({ message: 'Login failed', user: user });

 }

 req.login(user, { session: false }, (err) => {

 if (err) {

 return res.status(400).send(err);

 }

 const token = jwt.sign({ id: user.id }, jwtOptions.secretOrKey, {
expiresIn: '1h' });

 return res.json({ user, token });

 });

 })(req, res);

});

Protect routes with JWT authentication:

app.get('/protected', passport.authenticate('jwt', { session: false }), (req,
res, next) => {

res.json({ message: 'This is a protected route', user: req.user });

});

Start the server:

const port = process.env.PORT || 3000;

app.listen(port, () => {

 console.log(`Server running on port ${port}`);

});

Now, you have a Node.js API that demonstrates proper authentication
using Passport's local strategy, password hashing using bcrypt, and
access control using JWT tokens. Users can log in with their credentials,
receive a JWT token, and use that token to access protected routes. This
demontration should be adapted to your specific use case, and you
should replace the example user storage with your actual database,
without fail.

Remember, this is just one example using Node.js, Express, and
Passport but the principles remain the same across different
programming languages and frameworks, i.e., implement strong
authentication, use password hashing for storing passwords, and enforce
access control using tokens or other mechanisms. Always follow best
practices for secure coding in your specific language and framework.

Protect from MITM Attacks

The key to preventing man-in-the-middle (MITM) attacks is to secure
the communication between the client and the server. Postman is an API
testing and development tool that doesn't directly prevent MITM attacks,
but it can be leveraged to ensure secure communication when sending
requests to your API. With Postman, you can specify the protocol
(HTTP or HTTPS), the request headers, and the request body, all of
which can help secure your communication. Postman also supports
setting up and using client-side SSL certificates, which can provide an
extra layer of security. While Postman is not a comprehensive security
tool, it can be a useful component of a broader security strategy for your
API.

The given below procedure is how you can configure Postman to send
requests securely:

Use HTTPS for API Endpoints

When setting up your API, make sure to use HTTPS instead of HTTP.
HTTPS encrypts the communication between the client and the server,
making it difficult for an attacker to intercept, read, or modify the data
being transmitted.

In Postman, when sending requests to your API, use the HTTPS
protocol in your URL:

https://your-api.example.com/your-endpoint

Verify SSL/TLS Certificates

By default, Postman will verify SSL/TLS certificates to ensure that the
server you are communicating with is the legitimate server and not an
imposter. This helps prevent MITM attacks where an attacker poses as
the server to intercept or modify data.

To ensure that Postman verifies SSL/TLS certificates, go to the Postman
settings:
Click on the gear icon in the top-right corner to open the Settings modal.
In the "General" tab, make sure that the "SSL certificate verification"
option is enabled (toggle set to "ON").
● Use client certificates if necessary:

In some cases, you might need to use client certificates for additional
security. Client certificates are used to authenticate the client to the
server, ensuring that the server only accepts connections from trusted
clients. This can help prevent MITM attacks by ensuring that the server
only communicates with authorized clients.

To configure client certificates in Postman:
Click on the gear icon in the top-right corner to open the Settings modal.
● Go to the "Certificates" tab.
● Click on "Add Certificate."
Enter the hostname for your API and upload the certificate (CRT) and
private key (KEY) files. Optionally, you can also upload a CA
(Certificate Authority) file.

Remember, preventing MITM attacks involves more than just
configuring Postman. You should also configure your server to enforce
strong SSL/TLS settings and keep your server's software up-to-date with
security patches. Additionally, ensure your API users are aware of
security best practices, such as not clicking on suspicious links or
downloading untrusted software that could facilitate MITM attacks.

Safeguard Parameter Tampering

Parameter tampering is a type of cyber attack where a hacker
manipulates URL or request parameters to exploit vulnerabilities in a
system, gain access to sensitive data, or bypass security controls. To
protect against parameter tampering, it is important to implement input
validation, use parameterized queries, and avoid revealing sensitive
information in URL parameters. Input validation ensures that user input
is valid and meets specific requirements, while parameterized queries
protect against SQL injection attacks. Avoiding sensitive information in
URL parameters reduces the risk of exposing data to attackers. By
implementing these measures, organizations can better protect their
systems and data from parameter tampering attacks.
The given below is an example of how to prevent parameter tampering
in an API implemented with Node.js and Express:

Install express-validator package for input validation:

npm install express-validator

Create a basic Express app and include the necessary libraries:

const express = require('express');

const { body, validationResult } = require('express-validator');

const app = express();

app.use(express.json());

Implement a route that receives user input from the request parameters
and apply input validation:

app.post('/submit', [

 // Validate user input

 body('userId').isInt().toInt(),

 body('email').isEmail().normalizeEmail(),

 body('comment').trim().isLength({ min: 1, max: 500 })

], (req, res) => {

 // Check for validation errors

 const errors = validationResult(req);

 if (!errors.isEmpty()) {

 return res.status(400).json({ errors: errors.array() });

 }

 // Process the request safely with validated parameters

 const { userId, email, comment } = req.body;

 console.log(`User ID: ${userId}, Email: ${email}, Comment:
${comment}`);

 res.json({ message: 'Request processed successfully', data: { userId,
email, comment } });

});

In the above sample program, the express-validator middleware is used
to validate and sanitize the input parameters before they are processed
by the route. This helps prevent parameter tampering by ensuring that
only valid and properly formatted input is accepted.

Remember that this is just one of my experience of using Node.js and
Express. The principles of input validation and secure handling of
request parameters apply across different programming languages and
frameworks and as said previously, do not forget to implement proper
input validation and adhere to best practices for secure coding in your
selected language and respective framework.

Prevent XXE Attacks

XML External Entity (XXE) attacks exploit vulnerabilities in XML
parsers by including malicious external entity references in XML
documents, resulting in unauthorized data access or denial of service
attacks. To prevent XXE attacks, it is crucial to configure XML parsers
to disable external entities and implement secure handling of XML
input. This can be achieved by using secure coding practices and
implementing input validation to ensure that only trusted sources can
provide XML input. By taking these precautions, developers can
mitigate the risk of XXE attacks and improve the security of their
applications.

The given below is an example of how to prevent XXE attacks in a
Node.js application using the libxmljs library for XML parsing:

Install the libxmljs package:

npm install libxmljs

Create a basic Express app and include the necessary libraries:

const express = require('express');

const libxmljs = require('libxmljs');

const app = express();

app.use(express.text({ type: 'application/xml' }));

Implement a route that receives an XML document in the request body
and configure the XML parser to disable external entities:

app.post('/process-xml', (req, res) => {

 // Get the XML input from the request body

 const xmlInput = req.body;

 // Check if the request contains XML data

 if (!xmlInput || typeof xmlInput !== 'string') {

 return res.status(400).json({ message: 'Invalid XML data' });

 }

 try {

 // Parse the XML input with external entities disabled

 const xmlDoc = libxmljs.parseXmlString(xmlInput, { noent: false,
dtdload: false });

 // Process the parsed XML document safely

 const result = processXmlSafely(xmlDoc);

 res.json({ message: 'XML processed successfully', data: result });

 } catch (error) {

 console.error('An error occurred while processing the XML:',
error.message);

 res.status(500).json({ message: 'Failed to process the XML' });

 }

});

function processXmlSafely(xmlDoc) {

 // Implement your XML processing logic here, using the parsed
xmlDoc

 // ...

 return {}; // Return the result of your processing

}

In the above sample program, the libxmljs library is used to parse the
XML input with the noent and dtdload options set to false. This disables
the processing of external entities, effectively preventing XXE attacks.

Prevent DDoS Attacks

Mitigating Distributed Denial of Service (DDoS) attacks involves
implementing measures on the server-side infrastructure to detect and
block malicious traffic. While Postman cannot directly prevent DDoS
attacks, it can be utilized to test server-side protections such as rate-
limiting. By running a Postman Collection that simulates high traffic
requests to your API, you can test whether your rate-limiting and other
server-side protections are functioning as intended to mitigate DDoS
attacks. Postman's testing capabilities enable developers to proactively
test and identify vulnerabilities in their server-side infrastructure before
an actual attack occurs. By regularly testing and improving your server-
side protections, you can minimize the impact of DDoS attacks on your
API's performance and uptime, ensuring that your users have
uninterrupted access to your services.

For this example, I'll show you how to implement rate-limiting in a
Node.js application using Express and the express-rate-limit package.
You can then use Postman to test the rate-limiting functionality.

Install the express-rate-limit package:

npm install express-rate-limit

Create a basic Express app and include the necessary libraries:

const express = require('express');

const rateLimit = require('express-rate-limit');

const app = express();

Implement rate-limiting middleware:

const limiter = rateLimit({

 windowMs: 1 * 60 * 1000, // 1 minute

 max: 5, // Limit each IP to 5 requests per windowMs

 message: "Too many requests, please try again later."

});

// Apply the rate-limiting middleware to all routes

app.use(limiter);

Implement a simple route for testing:

app.get('/test', (req, res) => {

 res.json({ message: 'This route is rate-limited' });

});

Start the server:

const port = process.env.PORT || 3000;

app.listen(port, () => {

 console.log(`Server running on port ${port}`);

});

Now that you have a rate-limited API, you can use Postman to test the
rate-limiting functionality:
● Open Postman.
● Create a new GET request to your API endpoint, for example:

http://localhost:3000/test

Send multiple requests in a short period. After you hit the rate limit (5
requests in this example), you should receive a response with the
message "Too many requests, please try again later."
Keep in mind that rate-limiting is just one of the many measures that can
help protect your server against DDoS attacks. You may also need a
combination of strategies, including traffic filtering, content delivery
networks (CDNs), and other security best practices. Postman is a useful
tool for testing these server-side protections but is not a direct solution
for preventing DDoS attacks.

Chapter 6: Using Postman CLI

Understand Postman CLI

Postman CLI is a command line tool that helps API developers automate
and streamline their API testing and integration workflows. It enables
users to run, manage, and monitor API requests, collections, and
environments without a graphical user interface. Postman CLI offers a
flexible and powerful solution for executing API tests and integrations,
making it a valuable tool for API developers in their daily work. With
Postman CLI, developers can quickly test and verify API functionality,
integrate APIs with other systems, and automate testing and integration
workflows. Postman CLI can be easily integrated with CI/CD pipelines,
making it an essential tool for building and deploying reliable and high-
performance APIs. By leveraging Postman CLI, developers can improve
the quality, performance, and efficiency of their APIs, enabling them to
deliver high-quality services to their users.

Advantages of Postman CLI

Automation
One of the main advantages of using Postman CLI is automation. With
the CLI, you can automate your API testing and integration tasks and
reduce the time and effort required to perform these tasks manually. You
can write scripts to run your collections and tests, which can be
scheduled to run at specific intervals or triggered by events such as code
changes or deployments.

Customization

Postman CLI provides a high degree of customization, allowing you to
tailor your API testing and integration workflows to your specific
requirements. You can customize your environment variables, headers,
and request bodies, and write scripts to perform custom actions based on
the results of your tests. This level of customization makes Postman CLI
a powerful tool for API developers who need to perform complex tasks
and workflows.

Collaboration
Postman CLI also enables collaboration between team members
working on the same API project. You can share your collections, tests,
and environments with other team members, and they can run these
from their local machines using the CLI. This helps to ensure
consistency and accuracy in testing and integration, and reduces the risk
of errors and inconsistencies.

Reusability
Postman CLI provides a high degree of reusability, allowing you to
reuse collections, tests, and environments across different projects and
workflows. You can create templates and variables that can be reused
across different collections, and write scripts that can be used across
different tests. This helps to reduce the time and effort required to create
and maintain your API testing and integration workflows.

Scalability
Postman CLI provides scalability, allowing you to run your API tests
and integrations at scale. You can run your tests and integrations across
multiple environments and configurations, and scale your tests to handle
large volumes of requests. This helps to ensure that your API is
performing as expected under various load conditions and helps to
identify and fix performance issues before they impact your users.

How Postman CLI Benefits API Developers

Faster API Testing
API testing is an essential part of API development, and Postman CLI
can help API developers to perform this task more efficiently. By
automating API testing, Postman CLI reduces the time and effort
required to run tests manually, and provides a consistent and reliable
way to test your APIs. This helps API developers to identify and fix
issues quickly and ensure that their APIs are functioning as expected.

Streamlined API Integration
API integration is another critical aspect of API development, and
Postman CLI can help API developers to streamline this process. By
automating API integrations, Postman CLI reduces the time and effort
required to integrate APIs, and provides a consistent and reliable way to
integrate APIs. This helps API developers to build better integrations
more quickly and efficiently.

Consistent API Testing and Integration
Postman CLI provides a consistent way to test and integrate APIs, which
helps to ensure that your APIs are performing as expected across
different environments and configurations. This consistency helps to
reduce the risk of errors and inconsistencies, and ensures that your APIs
are reliable and consistent for your users.

Better Collaboration

Postman CLI enables better collaboration between API developers, QA
engineers, and other stakeholders involved in API development. By
sharing collections, tests, and environments, team members can work
together more effectively and ensure that everyone is on the same page
when it comes to API testing and integration.
Improved API Quality and Performance
Postman CLI can help API developers to improve the quality and
performance of their APIs. By automating API testing and integration,
Postman CLI helps API developers to identify and fix issues quickly and
efficiently, which can improve the quality of their APIs. By scaling API
tests, Postman CLI helps API developers to identify and fix performance
issues before they impact users, which can improve the performance of
their APIs.

Reduced Development Time and Costs
Postman CLI can help API developers to reduce development time and
costs by streamlining API testing and integration workflows. By
automating these tasks, Postman CLI reduces the time and effort

required to perform them manually, which can help API developers to
develop APIs more quickly and efficiently. This, in turn, can help to
reduce development costs and improve the overall efficiency of the API
development process.

Increased Flexibility
Postman CLI provides API developers with a high degree of flexibility
when it comes to API testing and integration. By providing a wide range
of customization options and scripting capabilities, Postman CLI enables
API developers to tailor their workflows to their specific requirements.
This flexibility helps API developers to build better APIs more
efficiently and can help to improve the overall quality of their APIs.

Installing Postman CLI

To install Postman CLI, follow the steps below:
● Step 1: Open your terminal or command prompt.
Step 2: Check if Node.js is installed on your system by running the
command node -v. If Node.js is not installed, download and install it
from the official website.
Step 3: Install Postman CLI by running the command npm install -g
postman-cli. This will install the Postman CLI globally on your system.
Step 4: Verify that Postman CLI is installed correctly by running the
command postman --version. This should display the version number of
Postman CLI installed on your system.
Step 5: Since you already have Postman installed and configured, you
can now import your collections and environments to Postman CLI. To
do this, navigate to your Postman collection and click the Export button.
Choose the format as Collection v2.1 and save the file.
Step 6: Open your terminal and navigate to the directory where you
saved the exported collection file.
Step 7: To import the collection to Postman CLI, run the command
postman import collection /path/to/collection.json. Replace
/path/to/collection.json with the actual path to your collection file.
Step 8: You can now run your collection using Postman CLI by running
the command postman run . Replace with the name of your collection.

Step 9: To view the results of your collection run, run the command
postman run --reporters cli,html --reporter-html-export
/path/to/report.html. This will generate an HTML report of your
collection run, which you can view in your web browser.

With this, you have successfully installed and configured Postman CLI
and executed your first collection. There are many other features and
commands provided by Postman CLI that you can explore to further
enhance your API testing and integration workflows. These features and
commands can help streamline your API testing process, improve the
quality and performance of your APIs, and ensure that they meet the
needs of your users.

Run Collection from Postman CLI

Postman Collections are a set of requests that are grouped together to
form a suite of API tests. Collections can be organized into folders, and
each request within a collection can have its own set of parameters, such
as headers, query parameters, and request body. Collections can be
imported and exported in various formats, making it easy to share
collections with other team members.

To run a collection from Postman CLI, you first need to import the
collection into Postman. Once you have done that, you can use the
newman command-line tool, which is a part of Postman CLI, to run the
collection.

The given below is a step-by-step solution on how to run a collection
from Postman CLI using a sample demonstration of more than 10
collections:

Install Postman CLI

To install Postman CLI, follow the instructions provided in the previous
section.

Import Sample Collection

For this demonstration, we will use a sample collection called "Postman
Echo." You can download this collection from the Postman API
Network by clicking on this link:
https://explore.postman.com/templates/8062/postman-echo

Once you have downloaded the collection, import it into Postman by
following these steps:
Open Postman and click on the "Import" button in the top left corner.

Select the "Import From Link" option.

Paste the link to the Postman Echo collection and click on the "Import"
button.

Verify Collection Import

To verify that the collection has been imported successfully, click on the
"Collections" tab in the left-hand navigation menu. You should see the
Postman Echo collection listed there.

Install Newman

Newman is a command-line tool that is used to run Postman collections
from the CLI. To install Newman, open your terminal or command
prompt and run the following command:

npm install -g newman

Run the Collection

To run the Postman Echo collection using Newman, open your terminal
or command prompt and navigate to the directory where the collection is
located. Then, run the following command:

newman run "Postman Echo.postman_collection.json"

This will start the collection run, and you will see the results in your
terminal or command prompt window. The output will look something
like this:

Postman Echo

→ GET /get

 OK

 ...

→ POST /post

 OK

 ...

→ PUT /put

 OK

 ...

→ PATCH /patch

 OK

 ...

→ DELETE /delete

 OK

 ...

→ GET /status/200

 OK

 ...

→ GET /status/201

 OK

 ...

→ GET /status/400

 OK

 ...

→ GET /status/401

 OK

 ...

→ GET /status/403

 OK

 ...

→ GET /status/404

 OK

 ...

→ GET /status/500

 OK

 ...

→ GET /stream/5

 OK

 ...

→ GET /delay/3

 OK

 ...

→ GET /gzip

 OK

 ...

→ GET /deflate

 OK

 ...

→ GET /brotli

 OK

 ...

→ GET /cache

 OK

 ...

→ GET /response-headers?key=value

 OK

 ...

→ GET /cookies

 OK

 ...

→ GET /headers

 OK

 ...

→ GET /image/png

 OK

 ...

→ GET /xml

 OK

 ...

→ GET /json

 OK

 ...

→ GET /html

 OK

 ...

→ GET /

View the Collection Results

Once the collection run is complete, you can view the results in your
terminal or command prompt window. The results will show whether
each request in the collection was successful or not, along with any
response data or errors that were returned.

Running Multiple Collections

If you want to run multiple collections, you can do so by specifying the
path to each collection file in the newman run command. For example, if
you have 10 collections in a directory called "collections," you can run
all of them using the following command:

newman run collections/*.json

This will run all the collections in the "collections" directory.

Setting Up GitHub Actions using Postman CLI

GitHub Actions is a powerful tool that enables developers to automate
their software development workflows. With GitHub Actions,
developers can build, test, and deploy their code directly from their
GitHub repositories, without the need for separate CI/CD tools.

Setting up GitHub Actions with Postman CLI can be a powerful way to
automate API testing and integration workflows as part of the software
development process. Following is a step-by-step walkthrough on how
to set up GitHub Actions with Postman CLI using a sample
demonstration:

Create GitHub Repository

If you haven't already, create a new GitHub repository or select an
existing repository that you want to use for your API testing and
integration workflows.

Install Postman CLI

Before you can use Postman CLI with GitHub Actions, you need to
install it on your local machine. Follow the instructions provided in the

previous section to install Postman CLI.

Create Postman Collection

Create a new Postman Collection or use an existing one that you want to
use for your API testing and integration workflows.

Create Workflow

To create a new GitHub Actions workflow, navigate to your GitHub
repository and click on the "Actions" tab. Then, click on the "New
workflow" button.

Choose Template

GitHub provides several workflow templates to choose from. For this
demonstration, we will use the "Node.js with Postman" template. Select
the template and click on the "Set up this workflow" button.

Configure the Workflow

The template will create a basic workflow file in YAML format. You
can customize this file to meet your specific requirements. In this
demonstration, we will use the default configuration.

Add Your Postman Collection

In the workflow file, add a step to download your Postman Collection
from your repository. You can use the following code to do this:

- name: Download Postman Collection

 uses: actions/checkout@v2

Run Your Postman Collection

Next, add a step to run your Postman Collection using Newman. You
can use the following code to do this:

- name: Run Postman Collection

 run: newman run /path/to/your/collection.json

Replace /path/to/your/collection.json with the actual path to your
Postman Collection.

Save and Commit Your Workflow File

Once you have configured your workflow file, save it and commit it to

your GitHub repository.

Test Your Workflow

To test your workflow, navigate to the "Actions" tab in your GitHub
repository and click on the workflow that you just created. GitHub
Actions will automatically run your workflow and display the results in
the "Actions" tab.

By and after integrating GitHub Actions with Postman CLI, developers
can automate their API testing and integration workflows as part of the
software development process, improving the quality, performance, and
efficiency of their APIs.

Run Collections inside CI/CD Pipeline

Integrating Postman Collections in CI/CD pipelines ensures that APIs
are thoroughly tested and integrated before they are deployed. The
process involves defining a workflow with GitHub Actions, installing
Postman CLI, creating a Postman Collection, and running it using
Newman. To run the collections inside a CI/CD pipeline, you can use
Jenkins and schedule the pipeline to run regularly. This automates the
testing and integration process and ensures the quality, performance, and
reliability of your APIs.

The given below procedure is how to run Postman Collections inside a
CI/CD pipeline:

Create Workflow File

Create a new workflow file in your repository. This file should be saved
in the .github/workflows directory of your repository and should be
named postman.yml (or any name you choose).

Define the Workflow

In the workflow file, define the steps that your CI/CD pipeline should

perform. The following example demonstrates how to use GitHub
Actions to run a Postman Collection using Newman:

name: Postman CI

on:

 push:

 branches:

 - main

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout code

 uses: actions/checkout@v2

 - name: Install Newman

 run: npm install -g newman

 - name: Run Postman Collection

 run: newman run /path/to/your/collection.json

In the above demonstrated sample, the workflow will be triggered when
code is pushed to the main branch. The build job will run on an Ubuntu
environment and consists of three steps:

Checking out Code

The first step in running a Postman Collection inside a CI/CD pipeline is
to check out the code from your repository. This can be done using the
actions/checkout GitHub Action. Following is an example of how to
check out the code:

- name: Checkout code

 uses: actions/checkout@v2

This will clone your repository to the runner machine, making it
available for the following steps.

Installing Newman

The next step is to install Newman on the runner machine. This can be
done using the npm command, as follows:

- name: Install Newman

 run: npm install -g newman

This will install the latest version of Newman globally on the runner
machine.

Running the Postman Collection

Once Newman is installed, you can use it to run your Postman
Collection. Following is an example of how to run a Postman
Collection:

- name: Run Postman Collection

 run: newman run /path/to/your/collection.json

Replace /path/to/your/collection.json with the actual path to your
Postman Collection. This will execute the Postman Collection using
Newman and output the results to the console.

Save and Commit Your Workflow File

Once you have defined your workflow file, save it and commit it to your
GitHub repository.

Verify Your Workflow

To verify your workflow, navigate to the "Actions" tab in your GitHub
repository and click on the workflow that you just created. GitHub
Actions will automatically run your workflow and display the results in
the "Actions" tab.

To sum it up, running Postman Collections inside CI/CD pipelines is an
effective way to automate API testing and integration as part of the
software development process. By integrating Postman CLI and
Newman with your CI/CD pipeline, you can ensure that your APIs are
thoroughly tested and integrated before they are deployed to production.
This helps to improve the quality, performance, and reliability of your
APIs, and helps to ensure that they meet the needs of your users.

Automate Postman Collections

Automating Postman collections involves running the collections on a
scheduled basis, such as daily or weekly, without the need for manual
intervention. This can be accomplished using various tools and services,
such as Jenkins, CircleCI, or Travis CI. Following is an example of how
to automate Postman collections using Jenkins:

Install Jenkins

First, install Jenkins on your server or local machine. Jenkins is a
popular open-source automation server that can be used to automate
various tasks, including Postman collections.

Install Required Plugins

Once Jenkins is installed, you need to install the necessary plugins.
Install the "NodeJS" and "GitHub" plugins, which will be used to
execute the Postman collections and fetch the code from your GitHub
repository.

Configure Jenkins

Configure Jenkins by creating a new pipeline project. In the pipeline
configuration, define the following stages:
Checkout: This stage will fetch the code from your GitHub repository
using the git command.
Install: This stage will install Newman on the Jenkins machine using the
npm command.
Test: This stage will execute the Postman Collection using Newman,
with the newman command.

The given below procedure is an example of a pipeline configuration:

pipeline {

 agent any

 stages {

 stage('Checkout') {

 steps {

 git 'https://github.com/username/repo.git'

 }

 }

 stage('Install') {

 steps {

 nodejs(nodeJSInstallationName: 'node') {

 sh 'npm install -g newman'

 }

 }

 }

 stage('Test') {

 steps {

 sh 'newman run /path/to/your/collection.json'

 }

 }

 }

}

Replace https://github.com/username/repo.git with the URL of your
GitHub repository, and /path/to/your/collection.json with the actual path
to your Postman Collection.

Schedule the Pipeline

Finally, schedule the pipeline to run on a regular basis, such as daily or
weekly. This can be done using the Jenkins UI or the Jenkinsfile, which
is the file that defines the pipeline.

The given below is an example of a Jenkinsfile that schedules the
pipeline to run every day at 2am:

pipeline {

 agent any

 triggers {

 cron('0 2 * * *')

 }

 stages {

 // Define stages as before

 }

}

This will run the pipeline every day at 2am, without the need for manual
intervention. Automating Postman collections involves running the
collections on a scheduled basis, without the need for manual
intervention. This can be accomplished using various tools and services,
such as Jenkins, CircleCI, or Travis CI. By automating your Postman
collections, you can ensure that your APIs are thoroughly tested and
integrated on a regular basis, improving the quality, performance, and
reliability of your APIs.

Chapter 7: API Documentation & Publishing

Importance of API Documentation

Postman is a popular and powerful API (Application Programming
Interface) development tool used by developers and testers to design,
develop, test, and debug APIs. Postman allows developers to create and
maintain API documentation, making it easy for users to understand and
work with APIs. In this section, we will discuss the features and benefits
of Postman API documentation in detail.

Automatic Documentation Generation

Postman automatically generates API documentation based on your API
collections. This live documentation updates as you make changes to
your API, ensuring that your documentation remains accurate and up-to-
date. You can also customize the generated documentation by adding
descriptions, code snippets, and examples to provide comprehensive
information about your API.

Markdown Support

Postman supports Markdown, a lightweight markup language for
creating formatted text. This feature enables you to add rich text,
images, and code snippets to your API documentation. You can format
descriptions, provide examples, and enhance the readability of your API
documentation using Markdown syntax.

Collaboration and Sharing

Postman's collaboration features allow you to share your API
documentation with your team members and other stakeholders. You
can publish the documentation to a custom URL or embed it in your
website or application. Additionally, Postman allows you to share your
API documentation through a public or private link, making it accessible
to specific users or teams.

Versioning

Postman supports versioning, enabling you to maintain different
versions of your API documentation. You can create new versions or
update existing ones as your API evolves, ensuring that your
documentation remains in sync with the changes. Versioning allows you
to maintain historical records and provide access to previous versions of
your API documentation if needed.

Code Snippets and SDK Generation

Postman can generate code snippets in multiple programming languages
(such as Python, JavaScript, and Ruby) based on your API requests. You
can include these code snippets in your API documentation, making it
easy for developers to understand and use your API in their applications.

Additionally, Postman can generate SDKs (Software Development Kits)
for your API, providing developers with pre-built libraries and tools for
interacting with your API.

Customization and Theming

Postman allows you to customize the appearance of your API
documentation to match your brand's visual identity. You can change the
color scheme, fonts, and other elements of your documentation's layout
to create a consistent look and feel. This customization enhances the
user experience and helps promote brand recognition.

Interactive Documentation

Postman's API documentation is interactive, allowing users to send
requests and view responses directly from the documentation. This
feature makes it easy for users to test and explore your API without the
need for additional tools or setup. Interactive documentation helps users
understand your API's functionality and improves their overall
experience.

Integration with CI/CD Pipelines

Postman API documentation can be integrated with your CI/CD
(Continuous Integration/Continuous Deployment) pipelines to ensure

that your documentation remains up-to-date as your API evolves. By
automating the documentation update process, you can save time, reduce
manual effort, and ensure that your documentation is always accurate.

Environments and Variables

Postman supports the use of environments and variables, allowing you
to manage different configurations for your API documentation. You
can define environment-specific variables (such as API keys, access
tokens, and base URLs) and use them in your API requests and
documentation. This feature simplifies configuration management and
makes it easy to switch between different environments.

Access Control and Security

Postman offers access control and security features to protect your API
documentation. You can restrict access to your documentation using
role-based permissions, ensuring that only authorized users can view or
edit the content. Additionally, Postman provides options to secure your
API documentation using password protection or using API keys,
ensuring that your sensitive information remains secure.

Monitoring and Analytics

Postman provides monitoring and analytics features to help you track

the usage of your API documentation. You can monitor user
engagement, view usage statistics, and gain insights into how your API
is being used. This data can help you identify trends, improve your API's
performance, and optimize your documentation for better user
experience.

API Mock Servers

Postman allows you to create mock servers for your APIs, enabling you
to simulate API responses and test your API documentation without the
need for a live backend. This feature is particularly useful during the
development phase when the backend is not yet ready or during
maintenance periods. Mock servers help developers and testers to work
concurrently and accelerate the development process.

Import and Export

Postman supports importing and exporting API documentation in
various formats such as OpenAPI, RAML, and WSDL. This feature
allows you to easily migrate your existing API documentation to
Postman or integrate Postman with other tools and platforms. By
supporting multiple formats, Postman ensures seamless compatibility
and interoperability with different API documentation standards.

Multi-platform Support

Postman is available on multiple platforms, including Windows, macOS,
and Linux, ensuring that your API documentation can be accessed and
managed from any operating system. This cross-platform compatibility
ensures that your team members can work with your API
documentation, regardless of their preferred platform.

To summarize, Postman API documentation is a robust, feature-rich
solution that simplifies the process of creating, managing, and sharing
API documentation. Its automatic documentation generation,
collaboration features, versioning, and customization options make it an
essential tool for developers and testers. By using Postman API
documentation, you can ensure that your APIs are well-documented,
easy to understand, and accessible to your users, ultimately leading to
better adoption and success of your APIs.

Automate Generating API Documentation

Generating and automating API documentation in Postman is a
straightforward process. Follow the steps below to generate
documentation for your collections and automate the process:

Create Collection

● Open Postman and click on the 'New' button in the top left corner.

● Choose 'Collection' from the dropdown menu.

● Enter a name and description for your collection, and click
'Create'.

Add Requests to the Collection

Within the collection, click on the ellipsis (three dots) on the right side,
and choose 'Add Request' from the dropdown menu.

● Enter a name for your request and click 'Save'.

Choose the appropriate HTTP method (GET, POST, PUT, etc.) from the
dropdown menu next to the request URL.

● Enter the request URL and any required parameters, headers, or
body content.

● Click 'Send' to test your request.

After receiving the expected response, click 'Save' to save the request to
your collection.

Add Descriptions and Examples

● Click on the request in your collection.

● In the request pane, click on the 'Descriptions' tab.

● Use Markdown syntax to format your description, and click 'Save'.

● Click on the 'Examples' tab in the response pane.

Click 'Save as example' and enter a name for the example. You can add
multiple examples if needed.

Generate API Documentation

Click on the ellipsis (three dots) next to your collection, and choose
'View documentation' from the dropdown menu.

Postman will generate the API documentation based on your collection.
You can customize the documentation by clicking on the 'Edit' button in
the top right corner.

To change the appearance, click on the 'Settings' tab and customize the
color scheme, fonts, and other elements.

Publish and Share API Documentation

Click on the 'Publish' button in the top right corner of the API
documentation.

● Choose a version and environment for your API documentation.

● Click 'Publish Collection'.

Share the generated URL with your team members or stakeholders, or
embed the API documentation in your website or application.

Automate API Documentation Updates

To automate API documentation updates, you can integrate Postman
with your CI/CD pipeline using the Postman API or the Newman CLI
tool.

Postman API: You can use the Postman API to programmatically update
your collections and documentation. To obtain an API key, go to your
Postman dashboard, click on your avatar in the top right corner, and
choose 'Account Settings'. Then, navigate to the 'Postman API Keys' tab
and generate a new API key.
Newman CLI tool: Newman is a command-line tool that allows you to
run Postman collections and update documentation. To install Newman,
run npm install -g newman in your terminal or command prompt. Once
installed, you can use Newman commands to run your collections and
update your documentation.

With these steps, you can generate, customize, and automate your API
documentation in Postman, making it easy for your users to understand
and work with your APIs.

Edit API Documentation

Editing an existing API documentation in Postman is simple. Following
is a step-by-step walkthrough to help you edit your API documentation:

Access the API Documentation

● Open Postman and navigate to the 'Collections' tab on the left
sidebar.

● Locate the collection containing the API documentation you want
to edit.

Click on the ellipsis (three dots) next to the collection name, and choose
'View documentation' from the dropdown menu.

Edit the API Documentation

● In the documentation view, click the 'Edit' button in the top right
corner.

● You can now edit the following elements of your API

documentation:
Collection Name and Description: Click on the collection name or
description to edit them. Use Markdown syntax for formatting and
styling your text.
Request Name and Description: Click on a request in the left sidebar to
edit its name and description. Use Markdown syntax for formatting and
styling your text.
Request Parameters, Headers, and Body: Click on the 'Params',
'Headers', or 'Body' tabs in the request pane to edit the corresponding
details. Add or modify the parameters, headers, or body content as
needed.

Response Examples: In the response pane, click on the 'Examples' tab.
You can edit the existing examples or add new ones by clicking 'Save as
example'. Provide a name for the example and edit the response content.

Save Your Changes

After editing your API documentation, click the 'Save' button in the top
right corner.

If you've made changes to the collection name or description, click on
the 'Update' button in the collection pane to save your changes.

Update the Published Documentation (Optional)

If you've previously published your API documentation, you'll need to
update the published version to reflect your recent changes.

● In the documentation view, click the 'Publish' button in the top
right corner.

Review the changes you've made and click the 'Update' button to update
the published documentation.

By following the practical steps outlined for managing API policies and
standards in Postman, you can easily edit and update your existing API
documentation. It is important to save your changes and update the
published documentation regularly to ensure that your users have access
to the most recent version of your API documentation. This ensures that
your users have access to accurate and up-to-date information about
your APIs.

Publish, Unpublish and Modify Documentation

Assuming you have already created a collection with API
documentation in Postman, you can easily publish it to make it available
to your API consumers. You can then modify the documentation as
needed, and unpublish it when it is no longer relevant or accurate. This
process ensures that your API documentation is up-to-date and
accessible to your API consumers.

The given below procedure is a step-by-step walkthrough for each
action:

Publish the API Documentation

Access the API Documentation
● Open Postman and navigate to the 'Collections' tab on the left
sidebar.

● Locate the collection containing the API documentation you want
to publish.

Click on the ellipsis (three dots) next to the collection name, and choose
'View documentation' from the dropdown menu.

Publish the API Documentation
● In the documentation view, click the 'Publish' button in the top
right corner.
Select a version and environment for your API documentation. You can
also customize the appearance of your documentation under the
'Settings' tab.

Click 'Publish Collection'.

After publishing, you'll be provided with a URL for your API
documentation. Share this URL with your team members, stakeholders,
or embed it in your website or application.

Modify the Published API Documentation

Edit the API Documentation (as described in the previous section)
● In the documentation view, click the 'Edit' button in the top right
corner.

Edit the desired elements of your API documentation (e.g., collection
name, request description, response examples, etc.).

● Click the 'Save' button in the top right corner to save your changes.

Update the Published API Documentation
● In the documentation view, click the 'Publish' button in the top
right corner.

Review the changes you've made and click the 'Update' button to update
the published documentation. This will ensure that the published version
reflects your recent changes.

Unpublish API Documentation

Access the Published API Documentation
● In the documentation view, click the 'Publish' button in the top
right corner.

Unpublish the API Documentation
● In the 'Publish Collection' window, scroll down to the 'Unpublish'
section.

● Click the 'Unpublish' button. A confirmation dialog will appear.

Click 'Unpublish' again in the confirmation dialog to remove the
published documentation. The API documentation will no longer be
accessible via the previously generated URL.

By publishing your API documentation in Postman, you make it easily

accessible to your API consumers, improving their ability to consume
your APIs. With Postman, you can modify your API documentation as
needed, and unpublish it when necessary. It's important to keep your
API documentation up-to-date and accurate, and to publish it only when
it meets your organization's quality, security, and performance
standards. By updating your published documentation regularly, you
ensure that your users have access to the most recent version of your
API documentation, helping to improve their experience and satisfaction
with your API program.

Publishing APIs on GitHub

Postman offers integrations with popular documentation platforms such
as Swagger and API Blueprint, allowing you to export your API
documentation directly from Postman and publish it on various
platforms. This automation saves you time and effort and ensures that
your API documentation remains up-to-date and consistent across all
platforms. With just a few clicks, you can share your API documentation
with your team members, API consumers, and other stakeholders,
making it easily accessible and understandable.

The given below procedure is a step-by-step walkthrough on how to
publish your API documentation on GitHub Pages, a popular platform
for hosting static websites:

Export the API Documentation

● In Postman, navigate to the 'Collections' tab on the left sidebar.

Click on the ellipsis (three dots) next to the collection containing the
API documentation you want to publish.

● Choose 'Export' from the dropdown menu.

Select the desired format for your documentation (e.g., HTML,
Markdown, JSON), and choose a location to save the exported file.

Create GitHub Pages Repository

● Go to GitHub.com and sign in to your account.

Create a new repository by clicking on the 'New' button in the top left
corner of the dashboard.

Choose a name for your repository, and ensure that it is set to public.

● Check the 'Initialize this repository with a README' box, and
click 'Create Repository'.

Clone Repository to Local Machine

On the repository page, click on the 'Code' button, and copy the HTTPS
URL provided.

Open a terminal or command prompt on your local machine, and
navigate to the desired directory where you want to clone the repository.

Run the command git clone URL> and replace URL> with the URL you

copied earlier.

Add API Documentation to Repository

Move the exported API documentation file to the cloned repository
directory on your local machine.

● In the terminal or command prompt, navigate to the repository
directory.

● Run the command git add . to stage all changes in the repository.

Run the command git commit -m "Added API documentation" to
commit the changes to the repository.

Push Changes to GitHub

● Run the command git push to upload the changes to GitHub.

● Enter your GitHub credentials if prompted.

Configure GitHub Pages

● On the repository page, click on the 'Settings' tab.

Scroll down to the 'GitHub Pages' section and select the branch that
contains your API documentation file. For example, if your file is named
index.html and is located in the master branch, select master from the
dropdown menu.

● Click 'Save'.

Access the Published API Documentation

On the repository page, click on the link provided under the 'GitHub
Pages' section to access your published API documentation.

By following these steps, you can publish your API documentation on
GitHub Pages. You can also use similar integration features to publish
your documentation on other platforms, such as AWS S3, Azure Blob
Storage, or your own web server. By automating the process of
exporting and publishing your API documentation, you can save time
and ensure that your users have easy access to your documentation,
regardless of the platform they use.

Publishing APIs on GitLab

If you want to share your API documentation on GitLab, you can easily
do so by utilizing GitLab Pages. This convenient built-in feature enables
you to host static websites straight from your GitLab repository. By
publishing your API documentation on GitLab Pages, you can make it
accessible to your team members, clients, and other stakeholders. Plus,
since it's hosted on GitLab, you can easily manage and update the
documentation as needed.

The given below procedure is a step-by-step walkthrough on how to
publish your API documentation on GitLab Pages:

Export the API Documentation

● In Postman, navigate to the 'Collections' tab on the left sidebar.

Click on the ellipsis (three dots) next to the collection containing the
API documentation you want to publish.

● Choose 'Export' from the dropdown menu.

Select the desired format for your documentation (e.g., HTML,

Markdown, JSON), and choose a location to save the exported file.

Create GitLab Repository

● Go to GitLab.com and sign in to your account.

Create a new project by clicking on the '+' button in the top right corner
of the dashboard.
Choose a name for your project, and ensure that it is set to public.

● Check the 'Initialize repository with a README' box, and click
'Create Project'.

Clone Repository to Local Machine

● On the repository page, copy the HTTPS URL provided.

Open a terminal or command prompt on your local machine, and
navigate to the desired directory where you want to clone the repository.

Run the command git clone URL> and replace URL> with the URL you
copied earlier.

Add API Documentation to Repository

Move the exported API documentation file to the cloned repository
directory on your local machine.

● In the terminal or command prompt, navigate to the repository
directory.

● Run the command git add . to stage all changes in the repository.

Run the command git commit -m "Added API documentation" to
commit the changes to the repository.

Push Changes to GitLab

● Run the command git push to upload the changes to GitLab.

● Enter your GitLab credentials if prompted.

Configure GitLab Pages

● On the repository page, click on the 'Settings' tab.

Scroll down to the 'Pages' section and select the branch that contains
your API documentation file. For example, if your file is named
index.html and is located in the master branch, select master from the

dropdown menu.

In the 'Domain' field, enter a subdomain for your API documentation.
For example, if you enter myapi, your documentation will be accessible
at

● Click 'Save Changes'.

Access the Published API Documentation

● On the repository page, click on the 'Pages' tab.

● Click on the link provided to access your published API
documentation.

By following these steps, you can publish your API documentation on
GitLab Pages. You can also use similar integration features to publish
your documentation on other platforms, such as GitHub Pages, AWS S3,
Azure Blob Storage, or your own web server. By automating the process
of exporting and publishing your API documentation, you can save time
and ensure that your users have easy access to your documentation,
regardless of the platform they use.

Publishing APIs on Bitbucket

The given below procedure is a step-by-step walkthrough on how to
publish your API documentation on Bitbucket Pages:

Export the API Documentation

● In Postman, navigate to the 'Collections' tab on the left sidebar.

Click on the ellipsis (three dots) next to the collection containing the
API documentation you want to publish.

● Choose 'Export' from the dropdown menu.

Select the desired format for your documentation (e.g., HTML,
Markdown, JSON), and choose a location to save the exported file.

Create Bitbucket Repository

● Go to Bitbucket.org and sign in to your account.

Create a new repository by clicking on the '+' button in the top right

corner of the dashboard.
Choose a name for your repository, and ensure that it is set to public.

● Check the 'Initialize repository' box, and click 'Create Repository'.

Clone Repository to Local Machine

● On the repository page, copy the HTTPS URL provided.

Open a terminal or command prompt on your local machine, and
navigate to the desired directory where you want to clone the repository.

Run the command git clone URL> and replace URL> with the URL you
copied earlier.

Add API Documentation to Repository

Move the exported API documentation file to the cloned repository
directory on your local machine.

● In the terminal or command prompt, navigate to the repository
directory.

● Run the command git add . to stage all changes in the repository.

Run the command git commit -m "Added API documentation" to
commit the changes to the repository.

Push Changes to Bitbucket

● Run the command git push to upload the changes to Bitbucket.

● Enter your Bitbucket credentials if prompted.

Configure Bitbucket Pages

● On the repository page, click on the 'Settings' tab.

Scroll down to the 'Bitbucket Pages' section and select the branch that
contains your API documentation file. For example, if your file is named
index.html and is located in the master branch, select master from the
dropdown menu.

In the 'Path' field, enter a subdirectory for your API documentation. For
example, if you enter myapi, your documentation will be accessible at

● Click 'Save'.

Access the Published API Documentation

● On the repository page, click on the 'Bitbucket Pages' tab.

● Click on the link provided to access your published API
documentation.

By following these steps, you can publish your API documentation on
Bitbucket Pages. You can also use similar integration features to publish
your documentation on other platforms, such as GitHub Pages, GitLab
Pages, AWS S3, Azure Blob Storage, or your own web server. By
automating the process of exporting and publishing your API
documentation, you can save time and ensure that your users have easy
access to your documentation, regardless of the platform they use.

Managing API Versions and Changes

In Postman, managing documentation for different API versions requires
a systematic approach. You need to create collections for each version
of your API and organize them in a structured way. Once the collections
are set up, you should update the documentation to reflect the changes
made to each API version. This helps to ensure that your documentation
is accurate and up-to-date, making it easier for users to understand the
different API versions and how they can interact with them. Overall,
proper documentation management in Postman can help you streamline
your API development process and improve communication with your
users.

The given below procedure is a step-by-step walkthrough on how to
manage API documentation for multiple versions:

Create Collections for Each API Version

● In Postman, navigate to the 'Collections' tab on the left sidebar.

Click the 'New' button in the top left corner, and choose 'Collection'
from the dropdown menu.

Enter a name for your collection (e.g., "My API v1") and a description,
then click 'Create'.

Repeat this process for each API version you want to manage (e.g., "My
API v2", "My API v3", etc.).

Add Requests and Documentation for Each Version

● For each collection, add requests and document them as described
in previous responses.

Ensure that you accurately document the unique features, parameters,
and responses of each API version.

Publish API Documentation for Each Version

For each collection, follow the steps outlined in the previous response to
publish the API documentation.

● Make sure to select the appropriate version and environment for
each collection.

● Keep track of the generated URLs for each published API
documentation version.

Update API Documentation for Each Version

If you need to make changes to the API documentation for a specific
version, edit the corresponding collection and update the published
documentation as described in previous responses.

● Remember to republish the documentation to reflect the changes
made.

Organize and Share Versioned API Documentation

To make it easier for users to find and navigate between different
versions of your API documentation, you can create a central index or
landing page that lists all available versions.

Create a separate web page or a Markdown file to serve as an index or
landing page for your API documentation.

Add a brief introduction to your API and list all available API versions
with links to their corresponding published API documentation URLs.

Optionally, include a section on your index or landing page to provide
information on the differences between the versions, migration guides,
or any other relevant details.

Share the index or landing page URL with your users to help them find
and navigate between the different versions of your API documentation.

Managing and organizing API documentation for multiple versions can
be a challenging task, especially when dealing with complex APIs.
However, by following the above couple of simple steps, you can
efficiently manage your API documentation. This approach involves
creating separate collections for each API version, using descriptive
names and labels, and adding relevant information and documentation to
each version. By doing so, you can ensure that users have access to
accurate and up-to-date information for the version of the API they are
working with, which can help improve their experience and save time.
Overall, effective API documentation management is essential for
ensuring the success of your API and the satisfaction of your users.

API Publishing Best Practices

To ensure successful API publishing, follow best practices such as
thoroughly documenting APIs, providing developer support, and
ensuring API security and scalability for efficient performance. Below
are:

Document Your API

Good documentation is critical to the success of your API. Developers
rely on documentation to understand how to use an API and integrate it
into their applications. Your API documentation should include all the
necessary information, such as the endpoints, parameters, responses, and
error codes. Use clear and concise language, and provide examples and
code snippets to help developers understand how to use your API.
Ensure that your documentation is up-to-date and reflects any changes
made to your API.

Use Versioning

As your API evolves, you may need to make changes that are not
backwards-compatible. To avoid breaking existing integrations, use
versioning to manage changes and allow developers to choose the

version of the API they want to use. By versioning your API, you can
ensure that developers who rely on your API can continue to use it
without interruption, even as you make changes and improvements.

Secure Your API

APIs are often targeted by attackers, so it's important to implement
proper security measures. Use authentication and authorization to
restrict access to your API, and use encryption to protect data in transit.
Implementing security measures is crucial to protect user data and
prevent unauthorized access or misuse of your API. As the owner of the
API, it's your responsibility to ensure that your users' data is protected.

Test Your API

Before publishing your API, make sure to thoroughly test it to ensure
that it works as expected. Use automated testing tools to catch issues
early on and reduce the risk of introducing bugs in production. By
testing your API, you can ensure that it functions correctly and meets the
needs of your users. Thorough testing can prevent costly errors and
downtime, which can negatively impact the user experience.

Monitor Your API

After publishing your API, monitor it regularly to ensure that it is

performing well and meeting the needs of your users. Use analytics tools
to track usage patterns and identify areas for improvement. By
monitoring your API, you can identify any performance issues and make
necessary changes to improve its functionality. You can also use the
data collected to identify trends and patterns in user behavior, which can
help you improve the API's functionality and meet users' needs more
effectively.

Provide Support

When developers encounter issues with your API, they will need support
to resolve them. Provide clear and responsive support channels, such as
a forum, email, or chat, and respond to queries promptly. By providing
support, you can help developers integrate your API into their
applications more effectively, reducing the likelihood of issues and
improving the user experience.

Follow Industry Standards

To ensure interoperability and ease of integration, follow industry
standards and conventions when designing and publishing your API.
Use common data formats, such as JSON or XML, and follow RESTful
design principles. By following these standards, you can ensure that
your API is easy to use and integrates seamlessly with other
applications.

Overall, creating a successful API requires careful planning, design, and
execution. By following the above enlisted best practices for API
development, including documentation, versioning, security, testing,
monitoring, support, and adherence to industry standards, you can create
a reliable and effective API that meets the needs of your users. A well-
designed and maintained API can help you attract and retain users,
improve the user experience, and promote the success of your
application or business.

Chapter 8: API Integration

Understand API Integration

API integration refers to the process of connecting different software
applications or systems via APIs (Application Programming Interfaces)
in order to exchange data or functionality. APIs are interfaces that allow
different software programs to communicate with each other, and API
integration involves using these interfaces to connect systems and enable
them to share data and functionality seamlessly.

Integration to Different Systems

When it comes to integrating your APIs with other systems, there are a
variety of options available to you.

The given below are some of the most common systems that you can
integrate your APIs with:
Mobile Applications: One of the most popular use cases for APIs is
integrating them into mobile applications. APIs can enable your mobile
app to retrieve data from your backend systems and present it to users in
real-time.
Web Applications: APIs can also be integrated into web applications,
allowing you to retrieve data and functionality from other systems and
present it to users within your web application.
Cloud Services: APIs can be integrated with various cloud services like
AWS, Google Cloud, Azure, etc. to enable you to utilize their services

and functionalities in your own application or system.
IoT Devices: APIs can be integrated with IoT (Internet of Things)
devices, allowing you to retrieve and analyze data from sensors or
control and monitor devices remotely.

Enterprise Applications: APIs can be integrated with other enterprise
applications like CRM, ERP, and SCM systems to streamline business
processes and improve operational efficiency.

Process of API Integration

The process of integrating APIs involves several steps, including:
Identifying the systems you want to integrate: The first step is to identify
the systems you want to integrate with your APIs. This involves
understanding the business requirements and objectives of the
integration.
Choosing the integration method: Once you've identified the systems
you want to integrate, you need to choose the integration method that
best suits your needs. This could involve using middleware, webhooks,
or custom integration solutions.
Mapping data and functionality: The next step is to map the data and
functionality you want to share between the systems. This involves
defining the data elements and functionality that need to be shared, and
creating the necessary mappings and transformations.
Implementing the integration: Once you've mapped the data and
functionality, you need to implement the integration by creating the
necessary APIs, middleware, and other integration components.

Testing and validation: Finally, you need to test and validate the
integration to ensure that it's working as expected and meeting your
business requirements.

Overall, API integration is a critical process for modern software
development, as it enables you to connect different systems and
streamline business processes. By understanding the different systems
you can integrate with and following best practices for integration, you
can ensure that your APIs are integrated effectively and efficiently.

Sample Program to Integrate OpenWeatherMap API

Let's say we want to integrate with the OpenWeatherMap API to retrieve
the current weather data for a specific city. The given below are the
steps we can follow:

Identify the API endpoint: The OpenWeatherMap API has a REST
endpoint for retrieving weather data, which we can use for our
integration. The endpoint URL is
https://api.openweathermap.org/data/2.5/weather.

Create a new request: In Postman, we can create a new request by
clicking on the "New" button on the top left corner of the application
and selecting the "GET" request type from the dropdown menu.

Enter the API endpoint: In the request editor, we can enter the API
endpoint URL https://api.openweathermap.org/data/2.5/weather in the
"Enter request URL" field.

Add headers and authorization: The OpenWeatherMap API requires an
API key to access the data. We can add this key to our request by
clicking on the "Headers" tab in the request editor and adding a new
header with the key appid and the value of our API key. For example,

appid: YOUR_API_KEY.

Enter request parameters: The OpenWeatherMap API allows us to
retrieve weather data for a specific city by passing a q parameter with
the name of the city in the request URL. We can enter this parameter in
the "Params" tab by adding a new key-value pair with the key q and the
value of the city name. For example, q: London.

Send the request: Once we've set up our request, we can send it by
clicking on the "Send" button in the request editor. Postman will send
the request to the OpenWeatherMap API and display the response in the
"Response" pane.

Validate the response: In the response pane, we can see the weather data
for the city of London in JSON format. We can use Postman's built-in
tools to validate the data, such as checking the status code, response
time, and response body.

The given below is an example of the code you can use in Postman to
retrieve weather data for a specific city using the OpenWeatherMap
API:

// Set the API endpoint URL

const apiUrl = "https://api.openweathermap.org/data/2.5/weather";

// Set the API key

const apiKey = "YOUR_API_KEY";

// Set the city name

const cityName = "London";

// Set up the request

pm.sendRequest({

 url: apiUrl,

 method: 'GET',

 header: {

 'Content-Type': 'application/json',

 'appid': apiKey

 },

 params: {

 'q': cityName

 }

}, function (err, response) {

 // Handle any errors

 if (err) {

 console.log(err);

 return;

 }

 // Retrieve the response data

 const responseData = response.json();

 // Validate the response data

 console.log("Response status code: " + response.code);

 console.log("Response time: " + response.responseTime + "ms");

 console.log("Temperature: " + responseData.main.temp);

 console.log("Humidity: " + responseData.main.humidity);

 console.log("Weather description: " +
responseData.weather[0].description);

});

In the above demonstrated program, we're setting the API endpoint
URL, API key, and city name as variables. We're then using the
pm.sendRequest() function to send a GET request to the
OpenWeatherMap API with the appropriate headers and parameters.
Finally, we're validating the response data by logging the status code,
response time, temperature, humidity, and weather description to the
console. By using this code in Postman, you can easily retrieve weather
data for any city using the OpenWeatherMap API and validate the
response data to ensure that it's accurate.

Data and Functionality Mapping

Overview

Mapping data and functionality is an important step in API integration,
as it involves defining the data elements and functionality that need to
be shared between systems. In the case of the OpenWeatherMap API,
we can map the data and functionality as follows:

Data Elements
The OpenWeatherMap API returns weather data for a specific city in
JSON format. We can map the data elements we want to retrieve from
the API, such as the current temperature, humidity, wind speed, and
weather description. For example, we can access the temperature data
using the main.temp property in the JSON response.
Functionality
The OpenWeatherMap API allows us to retrieve weather data for a
specific city by passing a q parameter with the name of the city in the
request URL. We can map this functionality to our own application or
system by providing a user interface where users can enter the name of a
city and retrieve the current weather data.

Steps to Map Data and Functionality

To integrate the OpenWeatherMap API using Postman and map the data
and functionality, we can follow these steps:
● Create a new request in Postman and enter the API endpoint URL:
https://api.openweathermap.org/data/2.5/weather

Add an appid header with your API key to authenticate the request. You
can do this by clicking on the "Headers" tab and adding a new header
with the key appid and the value of your API key.
Enter the q parameter with the name of the city you want to retrieve
weather data for. You can do this by clicking on the "Params" tab and
adding a new key-value pair with the key q and the value of the city
name.
Send the request and retrieve the JSON response. You can do this by
clicking on the "Send" button in the request editor and reviewing the
response in the "Response" pane.
Map the data elements you want to retrieve from the JSON response.
For example, if you want to retrieve the current temperature data, you
can access the main.temp property in the JSON response.
Map the functionality you want to provide to your users. For example,
you can provide a user interface where users can enter the name of a city
and retrieve the current weather data using the OpenWeatherMap API.

By mapping the data elements and functionality of the
OpenWeatherMap API in this way, we can integrate the API into our
own application or system and provide real-time weather data to our
users.

Test and Validate API Integration

testing and validating your API integration is a critical step in ensuring
that your application or system is working as expected. There are several
techniques you can use to test and validate your API integration using
Postman. The given below are some examples:

Manual Testing

Manual testing involves manually sending requests to the API endpoint
using Postman and reviewing the response data. This can be done by
creating a new request in Postman and entering the API endpoint URL,
headers, and parameters. Once you've sent the request, you can review
the response in the "Response" pane and validate that the data is correct.

Following are the steps to perform manual testing:
● Create a new request in Postman and enter the API endpoint URL
https://api.openweathermap.org/data/2.5/weather.
Add an appid header with your API key to authenticate the request. You
can do this by clicking on the "Headers" tab and adding a new header
with the key appid and the value of your API key.
Enter the q parameter with the name of the city you want to retrieve
weather data for. You can do this by clicking on the "Params" tab and
adding a new key-value pair with the key q and the value of the city

name.
Send the request and retrieve the JSON response. You can do this by
clicking on the "Send" button in the request editor and reviewing the
response in the "Response" pane.

Validate the response data manually. For example, you can check that
the response status code is 200 OK, the response time is within an
acceptable range, and the response data contains the expected data
elements (e.g. temperature, humidity, wind speed, etc.).

Sample Program of Manual Testing

The given below is an example of how you can validate the response
data manually:

// Send the request

pm.sendRequest({

 url: "https://api.openweathermap.org/data/2.5/weather",

 method: 'GET',

 header: {

 'Content-Type': 'application/json',

 'appid': 'YOUR_API_KEY'

 },

 params: {

 'q': 'London'

 }

}, function (err, response) {

 // Handle any errors

 if (err) {

 console.log(err);

 return;

 }

 // Retrieve the response data

 const responseData = response.json();

 // Validate the response data manually

 console.log("Response status code: " + response.code);

 console.log("Response time: " + response.responseTime + "ms");

 console.log("Temperature: " + responseData.main.temp);

 console.log("Humidity: " + responseData.main.humidity);

 console.log("Weather description: " +
responseData.weather[0].description);

});

In the above demonstrated program, we're using the pm.sendRequest()
function to send a GET request to the OpenWeatherMap API with the
appropriate headers and parameters. We're then retrieving the response
data and manually validating it by logging the status code, response
time, temperature, humidity, and weather description to the console. By

using this code in Postman, you can easily manually test your API
integration and ensure that it's working as expected.

Automated Testing

Automated testing involves creating automated test scripts in Postman
that can be run automatically to validate your API integration. This can
be done using Postman's built-in testing framework, which allows you to
write JavaScript code to perform tests and assertions on the response
data.

Following are the steps to perform automated testing:
● Create a new request in Postman and enter the API endpoint URL
https://api.openweathermap.org/data/2.5/weather.
Add an appid header with your API key to authenticate the request. You
can do this by clicking on the "Headers" tab and adding a new header
with the key appid and the value of your API key.

Enter the q parameter with the name of the city you want to retrieve
weather data for. You can do this by clicking on the "Params" tab and
adding a new key-value pair with the key q and the value of the city
name.
Send the request and retrieve the JSON response. You can do this by
clicking on the "Send" button in the request editor and reviewing the
response in the "Response" pane.
Validate the response data manually. For example, you can check that
the response status code is 200 OK, the response time is within an

acceptable range, and the response data contains the expected data
elements (e.g. temperature, humidity, wind speed, etc.).

Sample Program of Automated Testing

The given below is an example of an automated test script for the
OpenWeatherMap API integration:

pm.test("Status code is 200", function () {

 pm.response.to.have.status(200);

});

pm.test("Response time is less than 200ms", function () {

 pm.expect(pm.response.responseTime).to.be.below(200);

});

pm.test("Temperature is a number", function () {

 pm.expect(typeof pm.response.json().main.temp).to.eql("number");

});

pm.test("City name is London", function () {

 pm.expect(pm.response.json().name).to.eql("London");

});

pm.test("Humidity is between 0 and 100", function () {

 pm.expect(pm.response.json().main.humidity).to.be.within(0, 100);

});

In the above demonstrated program, we're testing several aspects of the
response data, including the status code, response time, temperature, city
name, and humidity.

Chapter 9: API Performance

Explore API Performance

API performance refers to the speed, reliability, and efficiency of how
an application program interface (API) works. It plays a crucial role in
the overall success of any software development project. An API that
delivers high performance can improve user experience, enhance
productivity, and increase customer satisfaction.

Why Measuring API Performance?

The importance of API performance can be understood by the fact that it
directly impacts the end-users of the application. A slow, unreliable, or
inefficient API can cause delays in executing user requests, leading to
frustration and dissatisfaction. Moreover, in today's fast-paced digital
world, users have a low tolerance for slow and unreliable systems, and
they are likely to abandon an application that doesn't perform well.

The importance of API performance can be further elaborated as
follows:

User Experience:
The API is the backbone of any software application. The speed and
responsiveness of an API directly impact the user experience. If the API
is slow or unresponsive, users will have a negative experience, leading
to a loss of customers.

Business Performance:
The success of any software project is measured by its business
performance. APIs play a critical role in the performance of the
application. A high-performance API can result in improved
productivity, faster processing times, and increased revenue.

Scalability:

APIs should be designed to handle increasing loads as the application
grows. If the API is not scalable, it will lead to a bottleneck, resulting in
performance degradation.

Reliability:
APIs should be designed to handle errors gracefully. A reliable API will
return appropriate error messages that help developers quickly identify
and fix issues.

Postman Performance Capabilities

Postman is an API testing and development tool that provides several
features that help to ensure high API performance. Some of these
features include:

Automated Testing:
Postman provides a powerful framework for automated API testing.

With this feature, developers can create and run automated tests to
validate API functionality and performance. Automated testing helps to
identify performance issues before they impact users, allowing
developers to fix issues proactively. By automating the testing process,
developers can quickly and easily identify bugs and performance issues
and address them before they become bigger problems.

Load Testing:
Postman provides load testing features that help to simulate high user
loads on APIs. Load testing helps to identify performance bottlenecks
and ensure that APIs can handle high user loads. With this feature,
developers can test the performance of their APIs under a variety of
scenarios and identify areas that need optimization. Load testing helps to
ensure that APIs can handle high traffic volumes and that the response
time remains acceptable for users.

Real-Time Monitoring:

Postman provides real-time monitoring of APIs. This feature allows
developers to track API performance metrics such as response time,
error rate, and throughput in real-time. Real-time monitoring enables
developers to identify and fix issues quickly. By monitoring the
performance of their APIs in real-time, developers can identify and
address performance issues proactively, before they become bigger
problems.

Collaboration:

Postman provides collaboration features that allow multiple developers
to work on the same API. Collaboration ensures that APIs are developed
efficiently and that performance issues are addressed proactively. By
collaborating on API development, developers can identify potential
performance issues early on and address them before they become
bigger problems. Collaboration also helps to ensure that APIs are well-
documented and that developers have the resources they need to
optimize performance.

Documentation:
Postman provides a comprehensive documentation feature that helps to
ensure that APIs are well-documented. Good documentation helps to
ensure that APIs are easy to use, and developers can quickly understand
how to use them. By providing detailed documentation, developers can
ensure that their APIs are used correctly, which can help to prevent
performance issues. Documentation also helps to ensure that developers
have the resources they need to optimize performance.

To summarize, Postman provides a suite of features that can help to
identify and address performance issues in APIs. By using Postman's
automated testing, load testing, real-time monitoring, collaboration, and
documentation features, developers can proactively identify and address
performance issues before they impact users. These features help to
ensure that APIs perform optimally and provide a good user experience.

Measure API Performance

Measuring the performance of APIs is critical to ensure that they are
providing a fast, reliable, and efficient service to the end-users. To
monitor API performance, developers rely on a set of performance
indicators or metrics that help them identify bottlenecks, track trends,
and optimize the system's overall performance. In this section, We will
enlist and explain some of the most important performance indicators to
measure the performance of APIs.

Response Time

Response time is the amount of time it takes for an API to respond to a
request from the client. This metric measures the end-to-end time it
takes to complete a request and includes network latency, server
processing time, and other overheads. Response time is one of the most
critical performance indicators as it directly impacts user experience.

Measuring API Response Time

To measure the response time of your API, you can use the following
code snippet in Python using the requests library:

import requests

import time

start_time = time.time()

response = requests.get('https://your-api-endpoint.com')

end_time = time.time()

response_time = end_time - start_time

print("API Response Time: ", response_time)

This code sends a GET request to your API endpoint and measures the
time it takes for the API to respond. The time module is used to
calculate the difference between the start and end times, giving you the
response time in seconds.

Error Rate

The error rate is the percentage of requests that result in an error. This
metric measures the reliability of the API and its ability to handle errors
gracefully. A high error rate indicates that there are issues with the API's

functionality or configuration that need to be addressed.

Calculating API Error Rate

To measure the error rate of your API, you can use a tool like Postman
to send multiple requests and track the error responses. Following is an
example of how to measure the error rate using Postman:
● Create a collection of requests to your API endpoint in Postman.
Run a load test on the collection, sending a high number of requests
simultaneously.
In the Postman console, you can view the error responses and calculate
the error rate as a percentage of the total requests sent.

Alternatively, you can use Python to measure the error rate using the
requests library:

import requests

response = requests.get('https://your-api-endpoint.com')

if response.status_code != 200:

 print("Error: ", response.status_code)

This code sends a GET request to your API endpoint and checks if the
response code is not 200 (which indicates an error). You can then count

the number of error responses and calculate the error rate as a percentage
of the total requests sent.

Throughput

Throughput measures the number of requests that an API can handle per
unit time. It is an essential metric for assessing the capacity of an API to
handle high loads. High throughput is critical for applications with high
traffic volumes.

Measuring API Throughput

To measure the throughput of your API, you can use a load testing tool
like Apache JMeter. Following is an example of how to measure
throughput using JMeter:
Create a test plan in JMeter with a Thread Group that simulates the
number of concurrent users you expect to have.
Add a HTTP Request sampler to the Thread Group with the API
endpoint URL.
● Set the Ramp-Up Period to gradually increase the number of
threads over time.
● Run the test and monitor the throughput in the Summary Report.

Alternatively, you can use Python to measure the throughput using the
requests library:

import requests

import time

start_time = time.time()

for i in range(100):

 response = requests.get('https://your-api-endpoint.com')

end_time = time.time()

total_time = end_time - start_time

throughput = 100 / total_time

print("API Throughput: ", throughput)

This code sends 100 GET requests to your API endpoint and calculates
the time it took to complete all requests. The throughput is then
calculated as the number of requests divided by the total time.

CPU/Memory Utilization

CPU Utilization measures the percentage of the CPU that is used by an
API. High CPU utilization can lead to performance degradation and
decreased response time. It is essential to monitor CPU utilization and
ensure that it is optimized for efficient performance. Memory Utilization
measures the amount of memory that an API is using. High memory
utilization can lead to performance issues and system crashes. It is
essential to monitor memory utilization and ensure that it is optimized
for efficient performance.

Monitoring CPU and Memory Utilization

To measure CPU and memory utilization of your API, you can use
monitoring tools like Prometheus and Grafana. Following is an example
of how to set up Prometheus and Grafana to monitor CPU and memory
utilization:
● Install Prometheus and Grafana on your server.
● Configure Prometheus to collect CPU and memory usage data
from your server.
● Create a Grafana dashboard with CPU and memory utilization
metrics.
● Monitor the dashboard to track CPU and memory utilization.

Network Latency

Network Latency measures the amount of time it takes for a request to
travel from the client to the server and back. High network latency can
result in slower response times and a poor user experience. It is
important to monitor network latency and optimize it for efficient
performance.

Monitoring Network Latency

To measure network latency of your API, you can use the following
code snippet in Python using the ping command:

import os

hostname = 'your-api-endpoint.com'

response = os.system("ping -c 1 " + hostname)

if response == 0:

 print(hostname, 'is up!')

This code sends a ping request to your API endpoint and measures the
round-trip time. The output will show the hostname and whether it's up
or not. You can use this code to monitor the network latency of your
API over time.

Error Response Time

Error Response Time measures the amount of time it takes for an API to
respond to an error. This metric is critical for assessing the API's ability
to handle errors gracefully and respond quickly to issues.

Calculating Error Response Time

To measure the error response time of your API, you can modify the
code snippet in Step 2 above to measure the time it takes for an error
response to be returned. Following is an example of how to do this in
Python:

import requests

import time

start_time = time.time()

response = requests.get('https://your-api-endpoint.com')

end_time = time.time()

if response.status_code != 200:

 error_response_time = end_time - start_time

 print("Error Response Time: ", error_response_time)

This code sends a GET request to your API endpoint and measures the
time it takes for an error response to be returned (if the response code is
not 200). You can use this code to monitor the error response time of
your API over time.

Time to First Byte (TTFB)

TTFB measures the amount of time it takes for an API to start sending
data after receiving a request. A slow TTFB can indicate issues with
server processing time, network latency, or other performance
bottlenecks.

Measuring TTFB

To measure the TTFB of your API, you can use a tool like Pingdom.
Following is an example of how to measure TTFB using Pingdom:
Create a Pingdom account and add your API endpoint to the list of
monitored websites.
Run a test on your API endpoint and view the results in the Performance
tab.

Look for the "Time to First Byte" metric, which measures the time it
takes for the server to respond to the first byte of the request.

Alternatively, you can use Python to measure the TTFB using the
requests library:

import requests

response = requests.get('https://your-api-endpoint.com')

ttfb = response.elapsed.total_seconds() -
response.elapsed.content.total_seconds()

print("Time to First Byte: ", ttfb)

This code sends a GET request to your API endpoint and measures the
time it takes for the server to respond to the first byte of the request. The
total_seconds() method is used to calculate the time in seconds.

To summarize, these are some practical ways to measure the key
performance indicators of your APIs. By monitoring these KPIs, you
can identify bottlenecks, track trends, and optimize the overall
performance of your API.

Identify and Fix Performance Issues

Performance issues in APIs can cause slow response times, high error
rates, and poor user experience. These issues can occur due to various
factors, such as inefficient code, poor API architecture, and high user
loads. Slow response times can be caused by network latency, database
queries, or inefficient code. High error rates can be caused by bugs in
the code or incorrect handling of user inputs. Poor user experience can
result from slow response times, frequent errors, or poor documentation.
To address performance issues, developers can optimize their API code,
improve the API architecture, use caching and asynchronous processing,
and monitor and optimize the API performance.

Response Time Issues

To identify performance issues related to response time in Postman, you
can use the Collection Runner to run multiple requests simultaneously
and measure the response time for each request.

The given below step-by-step procedure is how you can do this:
Open your collection in Postman and click on the "Runner" button in the
top-right corner.
Select the environment and the collection that you want to run, and click
on the "Run" button.

Once the collection has finished running, you can view the response
time for each request in the "Run Summary" tab.

To set a threshold for response time, you can use industry-standard
values as benchmarks. For example, Google recommends that web
pages should load in under 2 seconds. However, the response time for
APIs can vary based on the complexity of the request and the server
load. Therefore, you should establish an internal benchmark that reflects
the expectations of your users and the nature of your API.

Sample Program to Detect Response Time Exceeding 2s

The given below is a sample program to check if the response time is
higher than the threshold and print an error message if it is:

import requests

import time

start_time = time.time()

response = requests.get('https://your-api-endpoint.com')

end_time = time.time()

response_time = end_time - start_time

threshold = 2 # set the threshold in seconds

if response_time > threshold:

 print("Error: Response Time exceeded threshold")

In the above sample program, if the response time exceeds the threshold
of 2 seconds, an error message is printed.

Detect Higher Error Rate

To identify performance issues related to error rate in Postman, you can
use the Collection Runner to run multiple requests and track the error
rate for each request.

The given below step-by-step procedure is how you can do this:
Open your collection in Postman and click on the "Runner" button in the
top-right corner.
Select the environment and the collection that you want to run, and click
on the "Run" button.

Once the collection has finished running, you can view the error rate for
each request in the "Run Summary" tab.
To set a threshold for error rate, you can use the industry standard

values, which is typically less than 1%. However, this can vary based on
the type of API and the criticality of the requests. For example, an API
that performs financial transactions should have a lower error rate than
an API that displays news articles.

Sample Program to Detect Error Rate Exceeding 1%

The given below is an example of Python code to check if the error rate
is higher than the threshold and print an error message if it is:

import requests

response = requests.get('https://your-api-endpoint.com')

if response.status_code != 200:

 error_rate = 1 # set the error rate threshold as 1%

 if (1 - (response.status_code / response.elapsed.total_seconds())) *
100 > error_rate:

 print("Error: Error Rate exceeded threshold")

In the above sample program, if the error rate exceeds the threshold of
1%, an error message is printed.

Identifying Lower Throughput

To identify performance issues related to throughput in Postman, you
can use the Collection Runner to run multiple requests simultaneously
and measure the number of requests per second.

Below are the steps on how you can do this:
Open your collection in Postman and click on the "Runner" button in the
top-right corner.

Select the environment and the collection that you want to run, and click
on the "Run" button.
Once the collection has finished running, you can view the number of
requests per second in the "Run Summary" tab.
To set a threshold for throughput, you can use the expected number of
requests per second for your API. This can vary based on the nature of
your API and the expected traffic volume. You can also compare your
throughput with industry benchmarks for similar APIs.

Sample Program to Detect Throughput Below 10 Requests/sec

The given below is an example to check if the throughput is lower than
the threshold and print an error message if it is:

import requests

import time

start_time = time.time()

for i in range(100):

 response = requests.get('https://your-api-endpoint.com')

end_time = time.time()

total_time = end_time - start_time

requests_per_second = 100 / total_time

threshold = 10 # set the threshold in requests per second

if requests_per_second < threshold:

 print("Error: Throughput below threshold")

In the above sample program, if the throughput is lower than the
threshold of 10 requests per second, an error message is printed.

Monitoring CPU and Memory Utilization

To identify performance issues related to CPU and memory utilization
in Postman, you can use monitoring tools like New Relic or Datadog.
These tools provide detailed metrics on CPU and memory usage, as well
as other performance indicators.

To set a threshold for CPU and memory utilization, you can use the
recommended guidelines for your server or cloud environment. For
example, AWS recommends that CPU utilization should be below 70%
for optimal performance, while memory utilization should be below
80%.

Checking Network Latency

To identify performance issues related to network latency in Postman,
you can use the Collection Runner to run multiple requests
simultaneously and measure the round-trip time for each request.

Below ae steps on how you can do this:

Open your collection in Postman and click on the "Runner" button in the
top-right corner.
Select the environment and the collection that you want to run, and click
on the "Run" button.

Once the collection has finished running, you can view the round-trip
time for each request in the "Run Summary" tab.
To set a threshold for network latency, you can use the recommended
guidelines for your network infrastructure. For example, Google
recommends that network latency should be below 100 milliseconds for
optimal user experience.

Sample Program to Notify Latency Exceeding 100ms

The given below is an example to check if the network latency is higher
than the threshold and print an error message if it is:

import os

hostname = 'your-api-endpoint.com'

response = os.system("ping -c 1 " + hostname)

threshold = 100 # set the threshold in milliseconds

if response > threshold:

 print("Error: Network Latency exceeded threshold")

In the above sample program, if the network latency exceeds the
threshold of 100 milliseconds, an error message is printed.

Overall, setting thresholds for performance indicators is critical for
identifying performance issues of APIs. By using tools like Postman and
monitoring tools, you can track these indicators and measure them
against the established thresholds. If the indicators exceed the
thresholds, you can take corrective actions to optimize the performance
of your API.

Solve and Optimize API Performance

If the performance thresholds are hit, it's important to take corrective
actions to rectify and optimize the performances of the APIs..
Improvising API performance requires a combination of techniques,
including optimizing the API code, improving the API architecture,
using caching, and monitoring and optimizing the API.

Optimize API Code

Optimizing your API code means writing efficient code that reduces the
response time and improves the throughput.

Following are some ways to optimize your API code:
Reduce the number of database queries by using efficient SQL
statements and minimizing joins.
Use pagination to limit the amount of data returned in each request and
reduce the load on the server.
Use caching to store frequently accessed data in memory and reduce the
number of requests to the server.

The given below is an example of how to use caching in Python to store
frequently accessed data in memory:

import requests

import time

cache = {}

def get_data_from_api(key):

 if key not in cache:

 response = requests.get('https://your-api-endpoint.com/data/' + key)

 cache[key] = response.json()

 return cache[key]

start_time = time.time()

data = get_data_from_api('key1')

end_time = time.time()

response_time = end_time - start_time

print("Response Time: ", response_time)

In the above sample program, the get_data_from_api function checks if
the requested data is in the cache. If it's not in the cache, it sends a
request to the API endpoint and stores the data in the cache. If it's in the
cache, it returns the data directly from the cache. By using caching, you
can significantly reduce the response time and improve the throughput
of your API.

Improve API Architecture

Improving your API architecture means designing your API in a way
that reduces the response time and improves the throughput.

Following are some ways to improve your API architecture:
Use a load balancer to distribute the traffic across multiple servers and
reduce the load on each server.
Use a content delivery network (CDN) to cache frequently accessed
content and reduce the network latency.
● Use asynchronous processing to reduce the response time and
improve the throughput.

The given below is an example of how to use asynchronous processing
in Python to improve the response time of your API:

import requests

import asyncio

import time

async def get_data_from_api():

 response = await asyncio.get_event_loop().run_in_executor(None,
requests.get, 'https://your-api-endpoint.com/data/')

 return response.json()

start_time = time.time()

loop = asyncio.get_event_loop()

data = loop.run_until_complete(get_data_from_api())

end_time = time.time()

response_time = end_time - start_time

print("Response Time: ", response_time)

In the above sample program, the get_data_from_api function uses
asyncio to send a request to the API endpoint asynchronously. This
allows other requests to be processed while waiting for the response
from the API endpoint, reducing the response time and improving the
throughput of your API.

Use Caching

Using caching means storing frequently accessed data or content in
memory or on disk to reduce the number of requests to the server.

The given below are some ways to use caching:
Use in-memory caching to store frequently accessed data in memory and
reduce the response time.
Use browser caching to cache static content on the client side and reduce
the load on the server.
● Use cache expiration to ensure that the cached data is always up-
to-date.

The given below is an example of how to use in-memory caching in
Python to store frequently accessed data in memory:

import requests

import time

import functools

Define a cache dictionary to store data

cache = {}

Define a function to retrieve data from the API

def get_data_from_api(key):

 # Check if data is already in cache

 if key in cache:

 print("Retrieving data from cache...")

 return cache[key]

 # If data is not in cache, retrieve it from API endpoint

 print("Retrieving data from API...")

 response = requests.get('https://your-api-endpoint.com/data/' + key)

 # Store data in cache

 cache[key] = response.json()

 return cache[key]

Call the function multiple times with the same key to demonstrate
caching

start_time = time.time()

for i in range(5):

 data = get_data_from_api('key1')

end_time = time.time()

response_time = end_time - start_time

print("Response Time: ", response_time)

In the above sample program, the get_data_from_api function first
checks if the requested data is already in the cache dictionary. If the data
is already in the cache, it is immediately returned and the API is not
called. If the data is not in the cache, the API is called to retrieve the
data and the data is stored in the cache for future use.

Monitor and Optimize

Monitoring your API performance means keeping track of the
performance metrics and identifying performance issues.

Following are some ways to monitor and optimize your API:
● Use monitoring tools to track the performance metrics and identify
performance issues.
● Set up alerts for performance thresholds to proactively identify
issues.
Continuously optimize the API code and architecture based on the
performance metrics and user feedback.

The given below is an example of how to use monitoring tools to track
the performance metrics of your API:

import requests

import time

import newrelic.agent

newrelic.agent.initialize('newrelic.ini')

@newrelic.agent.background_task()

def get_data_from_api():

 response = requests.get('https://your-api-endpoint.com/data/')

 return response.json()

start_time = time.time()

data = get_data_from_api()

end_time = time.time()

response_time = end_time - start_time

print("Response Time: ", response_time)

In the above sample program, we're using New Relic to track the
performance metrics of our API. We've added the
@newrelic.agent.background_task() decorator to the get_data_from_api
function to track its performance. New Relic provides detailed metrics
on response time, error rate, throughput, and other performance
indicators, allowing you to proactively identify performance issues and
optimize your API.

To sum it up, by implementing these techniques, you can significantly
improve the performance of your API and provide a better user
experience.

Chapter 10: API Governance

Understand API Governance

API governance is a set of principles, practices, and processes that help
organizations ensure the consistent, secure, and efficient design,
implementation, and management of APIs (Application Programming
Interfaces) throughout their lifecycle. As APIs have become a critical
component of modern software development, understanding and
implementing API governance is essential for any organization that
seeks to manage and maintain its APIs effectively. In this section, we
will discuss the role of API governance and its benefits in an end-to-end
API context.

Role of API Governance

Standardization: API governance provides guidelines for the consistent
design and development of APIs, ensuring that they are aligned with the
organization's architectural principles and industry best practices.
Standardization simplifies API consumption, minimizes technical debt,
and improves overall maintainability.

Security: APIs are often the primary means by which systems and
applications interact with each other. Therefore, ensuring the security of
APIs is critical to protect sensitive data and mitigate potential risks. API
governance defines and enforces security policies, such as
authentication, authorization, and data protection, to guarantee the safety

and integrity of APIs.

Quality: API governance ensures that APIs meet performance,
reliability, and scalability requirements. This is achieved by establishing
and enforcing quality standards, monitoring API performance, and
implementing best practices for error handling, caching, and throttling.

Lifecycle Management: APIs have a lifecycle that includes design,
development, testing, deployment, maintenance, and retirement. API
governance manages the entire lifecycle by providing guidelines, tools,
and processes to ensure seamless transitions between different stages,
thus preventing inconsistencies and reducing the risk of issues arising
from outdated or deprecated APIs.

Collaboration: API governance fosters a collaborative environment
within the organization, enabling cross-functional teams to work
together effectively during API development. By providing a centralized
repository for API documentation, design artifacts, and other related
assets, API governance simplifies knowledge sharing and promotes a
culture of continuous learning and improvement.

Compliance: API governance helps organizations adhere to industry
standards, regulatory requirements, and legal obligations. By defining
and enforcing compliance policies, organizations can mitigate the risk of
non-compliance and avoid potential fines, reputational damage, and
other consequences.

Benefits of API Governance

Improved API Consistency: API governance promotes the development
of consistent APIs, which simplifies their consumption by developers
and external partners. Consistency reduces the learning curve and
accelerates the integration of APIs into applications.

Enhanced Security: API governance helps organizations protect their
APIs from security threats by defining and enforcing security policies.
This ensures that APIs are developed and maintained with security best
practices in mind, thus reducing the risk of data breaches and
cyberattacks.

Higher Quality APIs: By enforcing quality standards and monitoring
API performance, API governance ensures that APIs meet the
organization's expectations for reliability, performance, and scalability.
High-quality APIs lead to better end-user experiences and increased
trust in the organization's offerings.

Faster Time to Market: API governance streamlines the API
development process by providing clear guidelines, tools, and processes
that help teams work more efficiently. This accelerates the delivery of
new APIs, allowing organizations to quickly respond to changing
market demands and maintain a competitive edge.

Reduced Technical Debt: API governance minimizes technical debt by
ensuring that APIs are designed, developed, and maintained following
best practices. This reduces the need for extensive refactoring or rework
in the future and frees up resources for innovation and growth.

Better Compliance: API governance helps organizations adhere to
industry standards and regulatory requirements, reducing the risk of
non-compliance and the associated penalties.

Create API Governance Framework

An API governance framework is a structured approach that defines the
principles, guidelines, processes, and tools to effectively manage APIs
throughout their lifecycle. The framework helps organizations ensure
consistency, security, maintainability, and compliance across all APIs.
To create an API governance framework for API development, follow
these steps:

Define API Governance Objectives
In Postman, start by discussing and documenting your organization's
API governance objectives. These objectives may include enhancing
security, promoting reusability, improving API quality, or ensuring
compliance with industry standards and regulations. To document these
objectives, you can use Postman's documentation feature. Create a new
collection for your API governance framework and add a
"Documentation" section to it. In this section, describe your
organization's goals related to APIs and the desired outcomes. This
documentation will serve as a reference point for your team, helping
them understand the purpose and benefits of implementing API
governance within your organization.

By defining clear objectives, you set the foundation for your API
governance framework in Postman, ensuring that your team has a shared

understanding of what you aim to achieve through effective API
management.

Establish Principles and Guidelines

Using Postman, establish a set of principles and guidelines that will
guide the design, development, and maintenance of APIs. Create a new
folder within your API governance collection to store these principles
and guidelines. Develop a document outlining API design conventions
such as naming conventions, URL structures, and data formats. You
may also want to include guidelines for versioning strategies, error
handling, and documentation best practices.

Additionally, create templates for API requests and responses within
your governance collection. These templates can be used by your team
members as a starting point when designing new APIs, ensuring
consistency and adherence to established guidelines.

Implement Processes and Workflows
To implement processes and workflows in Postman, first, define the
roles and responsibilities of different team members and stakeholders
involved in the API development process. Create a document within
your API governance collection outlining these roles and their
associated responsibilities. Next, establish workflows for each stage of
the API development lifecycle. Utilize Postman's collaboration features,
such as workspaces, to create separate environments for API design,
development, testing, and production. You can also leverage Postman's

version control system to manage changes to your API artifacts
throughout their lifecycle.

Additionally, set up a process for reviewing and approving API changes.
You can use Postman's pull request feature to facilitate this process,
allowing team members to submit proposed changes for review and
approval by designated approvers.

Choose Appropriate Tools and Technologies

Although Postman offers a wide range of built-in tools for API design,
development, and testing, you may need to integrate additional tools and
technologies to support your API governance framework fully. Create a
document within your API governance collection that lists the chosen
tools and technologies, along with their intended purpose and
instructions for use. This document will serve as a reference guide for
your team members when working with these tools.

Ensure that any external tools and technologies you choose integrate
seamlessly with Postman. For example, you might integrate a version
control system like GitHub or GitLab with Postman, allowing your team
to manage API artifacts directly from the Postman interface.

Define Security and Compliance Policies
In Postman, create a document within your API governance collection
that outlines your organization's security and compliance policies. This
document should cover aspects such as authentication, authorization,

data protection, and auditing. To implement these policies, use
Postman's features to define and enforce security best practices within
your APIs. For example, you can configure authentication schemes for
your APIs using Postman's built-in support for various authentication
methods, such as OAuth2 and API keys.

Additionally, create and share a set of pre-defined Postman environment
variables containing sensitive information like API keys, ensuring that
your team members can access these credentials securely without
exposing them in API requests or responses.

Setup Performance Metrics and Monitoring

In Postman, define performance metrics and Key Performance
Indicators (KPIs) to measure the success of your API governance
framework. These metrics may include API response time, error rates,
availability, and adoption rates. To track these metrics in Postman,
leverage the monitoring feature to create and schedule monitors for your
APIs. These monitors can periodically test your APIs against predefined
criteria, such as response times and error rates. You can also set up
notifications to alert you if an API fails to meet the specified thresholds,
enabling you to identify and address issues proactively.

Additionally, you can use Postman's reporting and analytics features to
visualize your API performance data. Generate reports and dashboards
that provide insights into API usage, trends, and potential bottlenecks,
helping your team make data-driven decisions to improve your APIs and

ensure they meet your governance objectives.

Provide Training and Support
To provide training and support on your API governance framework,
utilize Postman's extensive documentation and learning resources.
Create a folder within your API governance collection dedicated to
training materials, including detailed guides, tutorials, and examples that
demonstrate how to apply the principles, guidelines, and processes
defined in your framework. Additionally, use Postman's collaboration
features, such as workspaces and comments, to facilitate knowledge
sharing and communication among team members. Encourage your
team to ask questions, provide feedback, and contribute to the ongoing
improvement of your API governance framework.

Lastly, consider organizing workshops, webinars, or training sessions to
help your team members better understand and adopt your API
governance framework. These sessions can be tailored to specific roles,
such as developers, testers, or product managers, to ensure that each
team member has the necessary skills and knowledge to contribute
effectively to API governance.

Review and Iterate
Regularly review and evaluate the effectiveness of your API governance
framework in Postman. Use the performance metrics and KPIs you've
established to analyze your APIs' performance, identify trends, and
pinpoint areas for improvement. Gather feedback from your team

members and stakeholders on the framework's usability, effectiveness,
and areas for potential enhancement. Utilize Postman's collaboration
features, such as comments and team discussions, to facilitate open
dialogue and encourage a culture of continuous improvement.

Periodically update your API governance documentation, principles,
guidelines, and processes to ensure they remain relevant and aligned
with your organization's evolving objectives and industry best practices.
By continuously reviewing and iterating on your API governance
framework, you can ensure it remains effective and adaptable, helping
your organization consistently deliver high-quality, secure, and
maintainable APIs.

By following these steps and creating a comprehensive API governance
framework, your organization can effectively manage APIs throughout
their lifecycle, ensuring consistency, security, maintainability, and
compliance. This will ultimately lead to higher-quality APIs, improved
collaboration, and a faster time to market for new API-driven products
and services.

Implement API Governance

Define API Governance Objectives

When defining API governance objectives, it's crucial to involve all
relevant stakeholders, including developers, product managers, security
experts, and business leaders. This ensures a comprehensive
understanding of the organization's needs, priorities, and expectations.

Identify key stakeholders: Start by identifying the main stakeholders
involved in the API development process. These stakeholders will
provide valuable insights into the objectives and requirements of your
API governance framework.

Conduct workshops and interviews: Organize workshops, interviews, or
brainstorming sessions with stakeholders to gather their input and
perspectives on the API governance objectives. Encourage open
discussions and make sure to capture and document their feedback.

Categorize objectives: Categorize the objectives into different areas,
such as security, reusability, performance, compliance, and
maintainability. This will help you prioritize and focus on the most
critical aspects of API governance.

Prioritize objectives: Assess the relative importance of each objective
based on factors such as business impact, technical feasibility, and
stakeholder requirements. Assign a priority level to each objective,
which will help you allocate resources and focus on the most crucial
aspects of API governance.

Set measurable goals: For each objective, set measurable goals that can
be tracked and evaluated over time. These goals should be Specific,
Measurable, Achievable, Relevant, and Time-bound (SMART). For
example, a goal related to API security could be: "Implement OAuth2
authentication for all APIs by the end of Q2."

Document objectives and goals: In Postman, create a new collection
dedicated to your API governance framework. Add a "Documentation"
section and describe the objectives, goals, and priorities you've
identified during this process. This documentation will serve as a
reference point for your team and help them understand the purpose and
benefits of implementing API governance.

Communicate objectives and goals: Share the documented objectives
and goals with your team and other stakeholders. Make sure they
understand the importance of API governance and how it aligns with the
organization's strategic goals.

Schedule regular reviews: Set up a schedule for regular reviews of your
API governance objectives and goals. This will help you track progress,
identify any deviations or obstacles, and make adjustments as needed.

Establish Principles and Guidelines

After defining your API governance objectives, the next step is to
establish a set of principles and guidelines to direct the design,
development, and maintenance of your APIs.

Research best practices: Begin by researching industry best practices for
API design, development, and management. Consult resources such as
API style guides, industry standards, and technical articles. Use this
research to inform your API governance principles and guidelines.

Define API design principles: Establish principles for API design,
focusing on aspects such as consistency, simplicity, and scalability.
These principles should guide your team in designing APIs that are easy
to understand, use, and maintain. Examples of API design principles
include using consistent naming conventions, preferring RESTful
architecture, and using standard HTTP methods and status codes.

Develop API development guidelines: Create guidelines for API
development, covering topics such as versioning, error handling, and
documentation. These guidelines should help your team build APIs that

are reliable, maintainable, and easy to integrate. For example, you might
recommend using semantic versioning for API releases, providing
detailed error messages, and documenting APIs using the OpenAPI
Specification.

Establish API maintenance and deprecation policies: Define policies for
API maintenance, including how to handle bug fixes, performance
improvements, and feature additions. Also, create a deprecation policy
outlining the process for retiring outdated or unused APIs. These
policies will ensure that your APIs remain up-to-date, secure, and
performant, while minimizing disruptions to consumers.

Create API templates and examples: Develop API request and response
templates that adhere to your design principles and guidelines. These
templates will serve as a starting point for your team when designing
new APIs, promoting consistency and adherence to best practices.
Additionally, create examples of well-designed APIs to help your team
better understand and apply the principles and guidelines.

Document principles and guidelines: In Postman, create a new folder
within your API governance collection to store your principles and
guidelines. Develop a document outlining the principles and guidelines
you've established, along with any relevant examples or templates. This
documentation will serve as a reference guide for your team members as
they design, develop, and maintain APIs.

Provide training and support: Organize training sessions or workshops to
familiarize your team with the API governance principles and
guidelines. Use these sessions to address any questions or concerns and
ensure that everyone understands the expectations and best practices for
API development.

Implement peer review and approval processes: Encourage your team to
review each other's work, ensuring adherence to the principles and
guidelines. Set up a process for submitting API designs for review and
approval before moving on to development. In Postman, you can use the
pull request feature to facilitate this process, allowing team members to
submit proposed changes for review and approval by designated
approvers.

Monitor and enforce compliance: Regularly review your APIs to ensure
compliance with your principles and guidelines. Use Postman's built-in
tools, such as the API schema validation and test scripts, to automate
this process. Identify and address any deviations or inconsistencies, and
provide feedback to help your team improve their API development
practices.

Review and update principles and guidelines: Schedule periodic reviews
of your API governance principles and guidelines. Gather feedback from
your team, analyze industry trends and best practices, and make updates
as needed. By keeping your principles and guidelines up-to-date, you
can ensure that your APIs continue to meet the evolving needs of your
organization and its consumers.

Implement Processes and Workflows

Implementing processes and workflows in your API governance
framework is crucial for streamlining the API development lifecycle and
promoting collaboration among team members.

Define roles and responsibilities: Begin by outlining the roles and
responsibilities of different team members involved in the API
development process. These roles may include developers, testers,
product managers, and security experts. Ensure that each role's
responsibilities are clearly defined and communicated.

Establish development stages: Break down the API development
lifecycle into distinct stages, such as design, development, testing, and
deployment. This will help your team understand the progression of an
API from conception to production and ensure that each stage is
properly executed.

Set up collaboration environments: Utilize Postman's workspaces feature
to create separate environments for each stage of the API development
lifecycle. These environments allow your team to collaborate on API
design, development, and testing without affecting the production
environment.

Integrate version control: Leverage Postman's integration with version
control systems like Git to manage changes to your API artifacts
throughout their lifecycle. This will help your team track revisions,
compare differences, and ensure that only approved changes are merged
and deployed.

Implement review and approval processes: Establish a process for
reviewing and approving changes to your APIs before they are promoted
to the next stage of the development lifecycle. In Postman, you can use
the pull request feature to facilitate this process, allowing team members
to submit changes for review and approval by designated approvers.

Define testing procedures: Develop a comprehensive testing strategy for
your APIs, including unit testing, functional testing, and performance
testing. Use Postman's built-in testing capabilities to create and automate
test scripts, ensuring that your APIs meet your quality and performance
standards.

Implement monitoring and analytics: Set up monitoring and analytics
tools to track the performance and usage of your APIs in production. In
Postman, you can use the monitoring feature to schedule automated tests
and monitor API response times, error rates, and availability. Configure
alerts and notifications to keep your team informed of any issues or
anomalies.

Establish API retirement processes: Define a process for retiring

outdated or unused APIs, ensuring that they are decommissioned in a
controlled and orderly manner. This process should include steps for
notifying API consumers, updating documentation, and removing the
API from your infrastructure.

Document processes and workflows: In Postman, create a new folder
within your API governance collection to store your processes and
workflows. Develop a document outlining each stage of the API
development lifecycle, the roles and responsibilities of team members,
and the tools and techniques used at each stage.

Train and support your team: Provide training and support to your team
members on the processes and workflows defined in your API
governance framework. Encourage open communication and
collaboration, and foster a culture of continuous improvement.

Develop Tools and Automation

Leveraging tools and automation is essential for ensuring consistency,
reducing manual effort, and improving the efficiency of your API
governance framework.

Utilize Postman's built-in tools: Postman offers a comprehensive suite of
tools for API design, development, testing, and monitoring. Use these
tools to facilitate collaboration, streamline the API development

lifecycle, and automate critical tasks, such as testing and monitoring.

Integrate external tools: Integrate external tools and services, such as
version control systems, CI/CD pipelines, and API gateways, to enhance
your API governance capabilities. Postman's extensive integration
options enable you to connect with a wide range of tools, streamlining
your processes and workflows.

Automate testing: Develop test scripts using Postman's built-in testing
capabilities to automate the testing of your APIs. Create tests that cover
various aspects, such as functionality, performance, and security,
ensuring that your APIs meet your quality and performance standards.

Implement monitoring and alerting: Use Postman's monitoring feature to
periodically test your APIs against predefined criteria, such as response
times and error rates. Configure alerts and notifications to keep your
team informed of any issues or anomalies, allowing you to proactively
address potential problems.

Automate API documentation: Leverage Postman's automatic API
documentation generation capabilities to maintain up-to-date, accurate
documentation for your APIs. This not only reduces the manual effort
required to maintain documentation but also ensures that your API
consumers have access to the latest information.

Automate API schema validation: Use Postman's schema validation
features to automatically validate your API requests and responses
against a predefined schema, such as the OpenAPI Specification. This
helps ensure consistency and adherence to your API design principles
and guidelines.

Automate code generation: Utilize Postman's code generation
capabilities to automatically generate client libraries and SDKs for your
APIs in various programming languages. This reduces the manual effort
required to create and maintain these libraries and ensures that your API
consumers have access to consistent, up-to-date resources.

Implement security testing and scanning: Integrate security testing and
scanning tools into your API governance framework to automatically
identify potential vulnerabilities and ensure that your APIs adhere to
your security guidelines. Postman can integrate with various security
testing tools, such as OWASP ZAP, to automate security assessments.

Create reusable templates and components: Develop reusable API
request and response templates, test scripts, and monitoring
configurations to promote consistency and reduce manual effort across
your APIs. Store these reusable components in your Postman collection
to make them easily accessible to your team.

Train your team on tools and automation: Provide training and support
to your team members on the tools and automation techniques used in
your API governance framework. This will help them understand and

adopt the tools effectively and maximize the benefits of automation.

Enforce Compliance and Governance

Enforcing compliance and governance is critical for ensuring that your
APIs meet your organization's quality, security, and performance
standards, and adhere to industry regulations and standards.

Establish compliance policies: Define policies that outline the regulatory
and industry compliance requirements that your APIs must adhere to.
These policies should cover aspects such as data privacy, security, and
accessibility, depending on your industry and geography.

Develop API contracts: Establish API contracts that outline the terms
and conditions for consuming your APIs. These contracts should cover
aspects such as usage limits, data ownership, and liability, providing
clarity and transparency to your API consumers.

Implement access controls: Use Postman's built-in access control
features to manage who has access to your APIs and what actions they
can perform. Set up roles and permissions for different user groups,
ensuring that only authorized users can access and modify your APIs.

Monitor and audit API activity: Monitor and audit API activity to ensure
compliance with your policies and contracts. Use Postman's monitoring

and analytics features to track API usage, identify anomalies and
potential violations, and generate audit trails.

Implement version control: Use version control systems like Git to
manage changes to your API artifacts and track revisions. This helps
you maintain a historical record of changes, identify the source of
potential issues or violations, and roll back changes if needed.

Conduct compliance testing: Develop compliance tests using Postman's
testing capabilities to ensure that your APIs meet your regulatory and
industry compliance requirements. Test for aspects such as data privacy,
security, and accessibility, identifying any deviations or non-compliant
behavior.

Establish incident response processes: Develop processes for responding
to incidents, such as security breaches, data breaches, and downtime.
These processes should include steps for notification, escalation, and
resolution, ensuring that incidents are addressed quickly and effectively.

Conduct regular compliance reviews: Schedule regular reviews of your
APIs to ensure ongoing compliance with your policies and contracts.
Gather feedback from your team, analyze industry trends and best
practices, and make updates as needed.

Provide compliance training: Provide training and support to your team

members on compliance policies and regulations relevant to your APIs.
Ensure that they understand the importance of compliance and are
equipped with the knowledge and skills to adhere to regulatory and
industry standards.

Conduct compliance audits: Conduct periodic compliance audits to
ensure that your APIs meet regulatory and industry standards. Use
Postman's monitoring and analytics features to generate compliance
reports and identify areas for improvement.

Continuously Improvise

Continuous improvement is a critical aspect of any API governance
framework. By regularly evaluating and improving your processes,
tools, and governance policies, you can ensure that your APIs remain
relevant, secure, and performant, and continue to meet the evolving
needs of your organization and its consumers.

Collect and analyze feedback: Collect feedback from your API
consumers and team members, and analyze it to identify areas for
improvement. Use Postman's feedback and collaboration features to
gather input and suggestions, and incorporate them into your API
governance framework.

Measure and track performance: Use Postman's monitoring and

analytics features to measure and track the performance and usage of
your APIs. Analyze the data to identify areas for improvement, such as
response times, error rates, and usage patterns.

Conduct regular reviews: Schedule regular reviews of your API
governance framework to identify areas for improvement. Analyze the
effectiveness of your processes, tools, and policies, and make updates as
needed.

Incorporate industry best practices: Stay up-to-date with industry trends
and best practices, and incorporate them into your API governance
framework. Attend industry events and conferences, read industry
publications, and participate in industry forums to stay informed.

Conduct internal audits: Conduct periodic internal audits to ensure that
your APIs meet your organization's quality, security, and performance
standards. Use Postman's testing and monitoring capabilities to identify
areas for improvement and implement corrective actions.

Foster a culture of innovation: Foster a culture of innovation and
experimentation within your team, encouraging them to try new
approaches and technologies to improve your API governance practices.

Continuously train and upskill your team: Provide ongoing training and
support to your team members to ensure that they stay up-to-date with

the latest API governance practices, technologies, and industry trends.

Implement continuous integration and delivery: Use continuous
integration and delivery (CI/CD) pipelines to automate the testing,
deployment, and delivery of your APIs. This helps you reduce manual
effort, accelerate delivery, and improve the quality and reliability of
your APIs.

Develop a roadmap: Develop a roadmap for the evolution of your API
governance framework, outlining the planned updates, improvements,
and new initiatives. Use Postman's collections and workspaces features
to store and track your roadmap, making it easily accessible to your
team.

Celebrate successes: Celebrate the successes of your API governance
framework, recognizing the achievements of your team members and
API consumers. This helps foster a positive and collaborative culture,
motivating your team to continue improving your API governance
practices.

Overall, implementing an effective API governance framework is
critical for managing APIs throughout their lifecycle, ensuring
consistency, security, maintainability, and compliance. By following the
six key steps outlined above, you can develop an API governance
framework that meets your organization's needs and maximizes the
value of your APIs. Through defining objectives, developing design

principles and guidelines, implementing processes and workflows,
developing tools and automation, enforcing compliance and governance,
and continuously improving, you can establish a comprehensive and
effective API governance framework in Postman. By leveraging
Postman’s features and integrations, you can streamline your API
development lifecycle, promote collaboration and communication
among team members, and ensure that your APIs meet your
organization's quality, security, and performance standards. Overall,
implementing an API governance framework is a critical step for any
organization looking to establish a successful API program. With
Postman's powerful tools and features, you can establish a robust and
effective API governance framework that maximizes the value of your
APIs, improves your organization's agility and flexibility, and drives
innovation and growth.

Managing API Policies and Standards

Managing API policies and standards in Postman involves establishing
policies and guidelines, setting up automated checks and validations,
and monitoring API usage to ensure compliance. Following are the
detailed steps you can follow to manage API policies and standards in
Postman:

Define Policies and Guidelines

Define policies and guidelines for API development, such as data
privacy, security, and accessibility, and establish API contracts that
outline the terms and conditions for consuming your APIs. Use
Postman's documentation feature to create and maintain up-to-date,
accurate documentation for your APIs, outlining your policies and
guidelines.

Steps to define policies and guidelines:

Open the Postman app and navigate to the documentation tab.
Create a new documentation page or update an existing one with your
policies and guidelines for API development.
Include information such as data privacy, security, accessibility, and

API contracts that outline the terms and conditions for consuming your
APIs.

Setting Up Automated Checks and Validations

Use Postman's built-in validation capabilities to implement automated
checks for adherence to your policies and guidelines. For example, you
can use Postman's schema validation feature to validate requests and
responses against a predefined schema, such as the OpenAPI
Specification. This ensures consistency and adherence to your API
design principles and guidelines.
Steps to set up automated checks and validations:

Create a new API request in Postman, and define the request body and
response schema using the OpenAPI Specification.
Save the API request as part of your collection in Postman.
Configure schema validation using the built-in feature in Postman by
specifying the OpenAPI Specification schema.
Run the validation test to ensure that the request and response adhere to
the predefined schema.

Monitor API Usage

Use Postman's monitoring and analytics features to track the
performance and usage of your APIs in production. Monitor API

response times, error rates, and availability, and configure alerts and
notifications to keep your team informed of any issues or anomalies.
This allows you to proactively address potential problems and ensure
compliance with your policies and guidelines.

Steps to monitor API usage:

Use Postman's built-in monitoring feature to periodically test your APIs
against predefined criteria such as response times and error rates.

Configure alerts and notifications to receive real-time alerts when API
performance falls below predefined thresholds.
Use the analytics feature to track API usage, response times, and error
rates, and identify potential issues or trends in usage patterns.

Conduct Compliance Testing

Develop compliance tests using Postman's testing capabilities to ensure
that your APIs meet your regulatory and industry compliance
requirements. Test for aspects such as data privacy, security, and
accessibility, identifying any deviations or non-compliant behavior.

Steps to conduct compliance testing:
Develop compliance tests using Postman's testing capabilities to ensure
that your APIs meet your regulatory and industry compliance
requirements.

Test for aspects such as data privacy, security, and accessibility by
defining test cases that validate compliance requirements.
Run the compliance tests regularly to ensure ongoing compliance with
your policies and guidelines.

Integrate with External Tools

Integrate Postman with external tools and services, such as security
scanning tools or API gateways, to enhance your API governance
capabilities. For example, you can integrate Postman with OWASP ZAP
to automate security assessments and identify potential vulnerabilities.

Steps to integrate with external tools:

Integrate Postman with external tools such as security scanning tools or
API gateways using the available integrations in Postman.
Configure the integration to run security assessments or monitor API
traffic for potential threats.
Set up alerts and notifications to be notified of potential vulnerabilities
or non-compliant behavior.

Enforce Access Controls

Use Postman's access control features to manage who has access to your
APIs and what actions they can perform. Set up roles and permissions

for different user groups, ensuring that only authorized users can access
and modify your APIs.

Step to enforce access controls:

Use Postman's access control features to manage who has access to your
APIs and what actions they can perform.
Set up roles and permissions for different user groups, ensuring that only
authorized users can access and modify your APIs.
Monitor API access using Postman's analytics feature, and identify any
unauthorized access attempts or modifications to your APIs.

By following these steps, you can effectively manage your API policies
and standards in Postman, ensuring compliance with your organization's
quality, security, and performance standards, and adherence to industry
regulations and standards.

Chapter 11: Advanced API Developer Skills

Understand Variables

Variables in Postman allow developers to store and reuse values within
requests and scripts. They can be used to create dynamic requests that
can adapt to different scenarios, without having to manually update each
request individually. For example, you might use a variable to store an
authentication token that is used across multiple requests, or to store a
URL that changes depending on the environment.

Variables in Postman are useful for a number of reasons:

Reusability: Variables allow you to reuse values across multiple
requests, reducing the need for duplication and manual updates.

Dynamic requests: By using variables in your requests, you can create
dynamic requests that can adapt to different scenarios. For example, you
might use a variable to store a URL that changes depending on the
environment.

Easy management: Variables can be easily managed and updated in
Postman, making it easy to make changes to multiple requests at once.

There are two types of variables in Postman: global and local. Global

variables are accessible across all requests and environments. A global
variable in Postman is a variable that can be accessed and used across all
requests and environments in a Postman collection. Global variables are
created and managed in the 'Variables' tab of the Postman app, and can
be used to store values that are used across multiple requests, such as
authentication tokens, endpoints, or other common values. While local
variables are specific to a particular request or environment. A local
variable in Postman is a variable that is specific to a particular request or
environment. Local variables are created and managed within the
request builder, and can be used to store values that are unique to each
request, such as parameters or headers.

Global variables in Postman are useful for many purposes, including:
Storing values that are used across multiple requests, such as
authentication tokens or endpoints.
● Creating dynamic requests that can adapt to different
environments or scenarios.
● Reducing the need for duplication and manual updates.
● Improving the organization and scalability of your API
development and testing efforts.

Local variables in Postman are useful for many purposes, including:
● Storing values that are unique to each request, such as parameters
or headers.
● Creating dynamic requests that can adapt to different scenarios.
● Reducing the need for duplication and manual updates.
● Improving the organization and scalability of your API
development and testing efforts.

Working with Global Variables

Let us try how you can create and work with global variables in
Postman:

Create a Global Variable
Open the Postman app and select the collection in which you want to
create the global variable.
● Click on the 'Variables' tab at the top of the screen.
● Click the 'Add' button to create a new global variable.
Enter a name for the variable, and the initial value you want to assign to
it.
● Click 'Save' to create the variable.

Use the Global Variable in a Request
● Open the request in which you want to use the global variable.
In the request builder, use double curly braces ({{}}) to enclose the
name of the global variable.
For example, if you created a global variable named 'baseUrl', you
would use {{baseUrl}} in the request URL or headers.
When you send the request, Postman will automatically replace the
variable placeholder with the value of the global variable.

Update a Global Variable

● Navigate to the 'Variables' tab in the Postman app.
● Locate the global variable you want to update.
● Click the 'Edit' button next to the variable.
● Update the value of the variable, and click 'Save' to save your
changes.

Delete a Global Variable

● Navigate to the 'Variables' tab in the Postman app.
● Locate the global variable you want to delete.
● Click the 'Delete' button next to the variable.
● Confirm that you want to delete the variable.

Using Local Variables

Let us try this as well on how you can create and work with local
variables in Postman:

Create a Local Variable
Open the Postman app and select the request in which you want to create
the local variable.
In the request builder, click on the 'Params' or 'Headers' tab, depending
on where you want to use the variable.
● Click the 'Add' button to create a new parameter or header.
In the 'Key' field, enter the name of the local variable, enclosed in
double curly braces ({{}}).
For example, if you want to create a local variable named 'apiKey', you

would enter {{apiKey}} in the 'Key' field.
In the 'Value' field, enter the initial value you want to assign to the
variable.
● Click 'Save' to create the variable.

Use the Local Variable in the Request
In the request builder, use double curly braces ({{}}) to enclose the
name of the local variable wherever you want to use it. For example, if
you created a local variable named 'apiKey', you would use {{apiKey}}
in the URL or headers of the request.

When you send the request, Postman will automatically replace the
variable placeholder with the value of the local variable.

Update a Local Variable
● Open the request in which you want to update the local variable.
In the request builder, locate the parameter or header that contains the
local variable you want to update.
● Update the value of the local variable.
● Click 'Save' to save your changes.

Delete a Local Variable
● Open the request in which you want to delete the local variable.
In the request builder, locate the parameter or header that contains the
local variable you want to delete.
● Delete the local variable from the 'Key' field.
● Click 'Save' to save your changes.

Understand Environments

Environments in Postman allow developers to manage sets of variables
that are specific to a particular environment, such as development,
staging, or production. Environments are used to store values that are
unique to each environment, such as different API keys, endpoints, or
credentials.

Environments in Postman are useful for several reasons:
Organization: Environments allow you to organize sets of variables by
environment, making it easier to manage and update values that are
specific to each environment.
Scalability: Environments make it easier to scale your API development
and testing efforts, by allowing you to manage different sets of variables
for different environments.
Consistency: By using environments to manage sets of variables, you
can ensure that requests and tests are consistent across different
environments, reducing the risk of errors and improving overall quality.

Administering Environments

To administer environments in Postman, follow these steps:

Open Postman:
Launch the Postman application on your computer.

Create a new environment:
In the top right corner of the Postman app, click on the gear icon, which
will open the "Manage Environments" modal. Click on the "Add" button
to create a new environment. Give your environment a name, such as
"Development" or "Production."

Add key-value pairs:

In the new environment, you can add key-value pairs that represent the
variables you want to use in your requests. For example, if you have a
base URL that changes between environments, you could add a key
called "base_url" and set its value to the appropriate URL for this
environment.

Example:

Key: base_url

Value: https://api-dev.example.com

Save the environment:
Click the "Add" button at the bottom of the modal to save your new
environment.

Switch between environments:
You can now switch between environments using the dropdown menu in
the top right corner of the Postman app. This will automatically update
the values of the variables used in your requests.

Use environment variables in requests:
To use an environment variable in a request, wrap the key in double
curly braces {{ }}. For example, if you have a variable called
"base_url", you could use it in your request like this:

GET {{base_url}}/endpoint

When you switch between environments, Postman will automatically
replace the {{base_url}} placeholder with the corresponding value from
the selected environment.

Update environment variables:

If you need to update the value of an environment variable, go back to
the "Manage Environments" modal by clicking on the gear icon, then
click on the environment you want to edit. Update the value of the
variable and click "Update" to save your changes.

To sum it up, variables and environments are powerful features in
Postman that can greatly improve the efficiency and effectiveness of the

API lifecycle. By using variables and environments, developers can
create dynamic requests, reuse values across multiple requests, and
manage sets of variables for different environments. This can improve
organization, scalability, and consistency, and reduce the risk of errors
and improve overall quality.

Automate API Testing

Automating API testing in Postman can be done using the "Collections
Runner" or the command-line tool "Newman". In this explanation, we'll
cover both methods.

Creating Collection

First, you need to organize your API requests into a collection. A
collection is a group of related requests that can be executed together.
Proceed with the following steps:
● In the Postman app, click on the "Collections" tab on the left
sidebar.
Click on the "Create a collection" button (a folder icon with a plus sign).
● Give your collection a name and description, then click "Create".

Now you can add requests to your collection by clicking the "Add
requests" button within the collection, or by dragging existing requests
from your workspace into the collection.

Writing Tests

For each request in your collection, you can write tests using JavaScript

in the "Tests" tab.
Proceed with the following steps:
● Select a request in your collection.
● Click on the "Tests" tab in the request panel.
● Write your tests using Postman's built-in pm.test() function and the
pm.* API.

Example:
Test JSON response with a status code of 200:

pm.test("Status code is 200", function () {

 pm.response.to.have.status(200);

});

pm.test("Response is JSON", function () {

 pm.response.to.be.json;

});

Running Tests with Collections Runner

Click on the "Runner" button at the top left of the Postman app.

In the Collections Runner window, select the collection you want to run
from the "Collection" dropdown.

Choose the environment (if any) from the "Environment" dropdown.

Click the "Run" button to start running your tests. The test results will be
displayed in the "Run Results" tab.

Automating Tests using Newman

Newman is a command-line tool that enables you to run your Postman
collections, making it an essential tool for integration into your CI/CD
pipeline. With Newman, you can run your tests in an automated and
streamlined manner, making it an ideal choice for continuous integration
and delivery. This tool provides a simple and efficient way to test your
APIs, making it a valuable addition to your testing arsenal. Additionally,
Newman allows you to generate custom HTML reports, making it easier
to analyze your test results and communicate your findings to other
members of your team.

Install Newman using npm (Node.js package manager):

npm install -g newman

Export your collection and environment (if any) as JSON files:

In Postman, right-click on your collection and select "Export". Choose
the export format as "Collection v2.1" and save the file.
If you have an environment, click the gear icon at the top right corner,
click on the environment, and select "Download" to export it as a JSON
file.

Run your tests using Newman:

newman run -e

Replace with the path to your exported collection JSON file and with the
path to your exported environment JSON file (if you have one).

Newman will run your tests and display the results in the command-line
interface.

By following these steps, you can automate your API testing in Postman
and use it as part of your continuous integration and deployment
processes.

Automate Deployment using GitHub Actions

To automate API deployment in Postman using GitHub Actions, you
can set up a CI/CD pipeline that automatically runs your Postman tests
using Newman whenever you push changes to your GitHub repository.

Following is a step-by-step directions to automate deployment:

Install Newman and export your collection and environment:
Follow the instructions provided in the previous section to install
Newman and export your Postman collection and environment as JSON
files.

Create a GitHub repository:
If you haven't already, create a new GitHub repository and clone it to
your local machine.

Add your Postman collection and environment files:
Place your exported Postman collection and environment JSON files
into your GitHub repository's root directory or a designated folder.

Set up a GitHub Actions workflow:
In your GitHub repository, create a new folder called ".github" in the

root directory.
● Inside the ".github" folder, create another folder called
"workflows".
● In the "workflows" folder, create a new YAML file, e.g.,
"postman_tests.yml".

Configure the GitHub Actions workflow:
Open the "postman_tests.yml" file and configure your GitHub Actions
workflow. The given below is an example:

name: Postman Tests

on:

 push:

 branches:

 - main

jobs:

 test:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout repository

 uses: actions/checkout@v2

 - name: Set up Node.js

 uses: actions/setup-node@v2

 with:

 node-version: 14

 - name: Install dependencies

 run: npm ci

 - name: Install Newman

 run: npm install -g newman

 - name: Run Postman tests

 run: newman run -e

Replace and with the paths to your exported collection and environment
JSON files, respectively.

This workflow is configured to run on the "main" branch. It checks out
your repository, sets up Node.js, installs Newman, and runs your
Postman tests using Newman.

Commit and push your changes:

Add your Postman collection, environment files, and GitHub Actions
workflow to your repository, then commit and push your changes:

git add .

git commit -m "Add Postman tests and GitHub Actions workflow"

git push

Monitor your GitHub Actions workflow:
After pushing your changes, navigate to the "Actions" tab in your
GitHub repository to see the progress of your GitHub Actions workflow.

You can check the logs and test results for each step in the workflow.

By following these steps, you can automate API deployment in Postman
using GitHub Actions, ensuring your APIs are tested and validated each
time you push changes to your repository.

Writing Custom Scripts in Postman

To become an expert at writing custom scripts in Postman, you'll need to
practice and familiarize yourself with the various features and
functionalities Postman offers as discussed thus far in this book. Custom
scripts in Postman are written in JavaScript and can be used for pre-
request scripts or tests.

The given below is a step-by-step walkthrough to help you develop this
skill:
Understand JavaScript: To write custom scripts in Postman, you need a
strong understanding of JavaScript. If you're not already familiar with
JavaScript, there are numerous resources available online, such as
Mozilla Developer Network (MDN), freeCodeCamp, and W3Schools, to
help you learn.
Learn Postman Basics: Familiarize yourself with the basic features of
Postman, such as creating requests, managing collections, and using
environments. Understanding these basics will help you write effective
custom scripts. If you have come so far, then you must have learned the
required skill set of using Postman.
Explore Postman Scripting API: Postman provides a scripting API
called pm.* that allows you to interact with various aspects of your
requests, responses, and environment. Study the official Postman
documentation for the pm.* API and understand its different methods

and properties. Some important ones include pm.request, pm.response,
pm.environment, pm.variables, and pm.test. These are also covered in
the book so you should be good to begin with writing custom scripts.

Pre-request Scripts: Pre-request scripts are executed before sending a
request. They can be used to set up variables, modify request data, or
perform calculations. To write a pre-request script, select a request and
click on the "Pre-request Script" tab in the request panel. Here, you can
write your JavaScript code to manipulate your request data or
environment variables.
Test Scripts: Test scripts are executed after receiving a response. They
are used to validate the response data, check for expected values, or set
environment variables. To write a test script, select a request and click
on the "Tests" tab in the request panel. Write your JavaScript code using
the pm.test() function and the pm.* API to create assertions and validate
the response.
The key to becoming an expert at writing custom scripts in Postman is
practice. Create sample APIs or use existing public APIs to write pre-
request scripts and test scripts for various scenarios. As you practice,
you'll become more familiar with the pm.* API and improve your
scripting skills.
and Learn from Others: Join the Postman community and participate in
discussions, ask questions, and share your knowledge. Learning from
others' experiences and sharing your own will help you develop expert
skills in writing custom scripts in Postman.

By following these steps and dedicating time to practice and exploration,
you can develop expert skills in writing custom scripts in Postman and
significantly enhance your API development and testing capabilities.
Check below on some examples to write custom scripts in postman.

Sample Custom Script: Generating Timestamp & Setting Environment
Variable

const timestamp = Date.now();

pm.environment.set("current_timestamp", timestamp);

Sample Custom Script: Testing JSON Response for Specific Value

pm.test("Check if response has user ID 1", function () {

 const jsonData = pm.response.json();

 pm.expect(jsonData.id).to.equal(1);

});

Postman Best Practices

Make use of meaningful names and descriptions: Provide your requests,
collections, and folders with names that are descriptive, and include
pertinent information in the descriptions of those items. This makes it
easier for you and your team to quickly understand the purpose of each
item as well as how it functions.
Create collections and folders to organize your API requests as follows:
Create collections of API requests that are related to one another, and
then use folders to further organize them. This contributes to the
maintenance of a well-structured workspace, which in turn makes it
much simpler to locate and manage requests.
Utilize environment variables: Make use of environment variables to
store configuration data, such as base URLs, API keys, and access
tokens, since these are the kinds of things that can vary depending on the
environment (e.g., development, staging, and production). Because of
this, switching between environments can be accomplished with less
effort and without requiring individual requests to be modified.

Utilize global variables: Make use of global variables for data that must
be shared across all requests and environments. When using them,
however, you should exercise extreme caution because, if they are not
managed correctly, they can inadvertently have an effect on other
requests.

Collaborate on the creation of collections and environments with your
team by using shared workspaces to share and discuss the environments
and collections you've created. This ensures that everyone is working
with the same data and configurations by providing a unified source of
information.
Postman templates should be created: To save time and ensure that all of
your API requests are processed in the same manner, you should create
templates for the most frequently used request structures, such as
authentication and pagination.
Use pre-request scripts: Write pre-request scripts to set up or manipulate
request data before sending requests. The creation of timestamps, the
setting of headers, and the calculation of values are all potential
applications for this.

Write test scripts: Develop test scripts for every request in order to
validate response data, status codes, and other aspects of your
application programming interface (API). This makes it easier to spot
errors and inconsistencies in your API and helps to ensure that it
behaves as expected.
Leverage the Postman pm.* API: When working with requests,
responses, and variables in scripts, it is helpful to leverage the Postman
pm.* API. This application programming interface (API) offers a potent
toolkit for interacting with API data and validating it.
Utilize Postman's built-in code snippets: Postman provides built-in code
snippets for common test scenarios, such as checking status codes or
parsing JSON. These built-in code snippets can be used to accomplish a
variety of tasks. Make use of these snippets so that you can write test
scripts more quickly.

Maintain regular updates for Postman: Maintaining an up-to-date
version of the Postman application allows you to take advantage of
newly added features, bug fixes, and improvements in performance.
Import/export collections and environments: Make backups, share
environments, and transfer collections by utilizing the import/export
feature that is available in Postman. This helps to maintain consistency
across all devices and members of the team.

Configure request timeouts and retries: In order to prevent unneeded
delays or failures in your tests, it is important to configure request
timeouts and retries for APIs that are unreliable or slow.
Make use of authentication settings as well as request headers: Postman
includes built-in support for a variety of authentication methods,
including OAuth and Basic Auth, which can be used to add required
headers and authentication information to API requests.
Create mock servers by utilizing the mock server feature that is available
in Postman to simulate API response data while you are developing or
testing. You are able to construct and test API clients with this without
having to rely on live APIs.
Utilize Postman as your monitor: Postman monitors allow for the
scheduling and automation of API tests. This assists in identifying
potential problems before they have an impact on end-users.
Postman's API documentation feature allows you to automatically
generate and share documentation for your APIs. By using this feature,
you can ensure that both your team and the people who use your APIs
have access to information that is accurate and up to date.

Utilize version control: Postman includes support for version control for

collections, which enables you to track changes, create branches, and
merge updates, thereby assisting you in maintaining a clear history of
your API development.
Utilize Postman's Visualizer: The visualizer feature of Postman allows
you to display response data in a format that is both easier to read and
more visually appealing. This makes it much simpler to comprehend
complicated data structures.
Postman can be integrated with CI/CD by using Newman: As a
component of your continuous integration and deployment pipeline, you
can execute Postman scripts with the help of the command-line tool
Newman.
Take advantage of the Postman Console: Make use of the Postman
Console to diagnose issues with requests, scripts, and tests. It displays
detailed information about each request, including headers, cookies, and
script execution logs, which assists you in identifying problems and
finding solutions to them in a timely manner.

Perform routine cleanups: Get rid of collections, requests, and variables
that aren't being used to keep your workspace organized and clutter-free.
This helps ensure that your team is working with the most up-to-date
information and reduces the likelihood of confusion occurring.
Consider the following examples: Utilizing the examples feature of
Postman, you can generate multiple examples for each request. This
helps demonstrate various use cases, response formats, and possible
error scenarios for your application programming interface (API).
Use JSON schema validation: Compare the data received as a response
to a JSON schema in order to check that the structure and data types are
accurate. This makes it easier to spot inconsistencies and ensures that

your API is compliant with the anticipated schema.
Make use of the GraphQL support provided by Postman: You'll have a
much easier time working with GraphQL APIs if you use Postman
because it comes with built-in support for GraphQL queries and
mutations.
Utilize dynamic variables: Use Postman's dynamic variables, such as
"$randomInt," to generate random data for your requests. This will
ensure that your responses are as unique as possible. This assists in the
creation of diverse test scenarios and the discovery of potential edge
cases.

Make use of request chaining, in which you take information from the
response of one request and use it in another request by making use of
variables. This makes it easier to model intricate workflows as well as
the dependencies that exist between API endpoints.
Make use of tags to improve your organization: It will be much simpler
for you to search and filter your workspace if you apply tags to your
requests, collections, and folders.
Make use of the collaboration features offered by Postman: To enhance
the level of communication and coordination that exists within your
team, make use of features such as real-time collaboration, commenting,
and activity feeds.
Manipulate the cookies: Utilizing Postman's built-in support for cookies,
you can manage and manipulate the cookies that are included in your
requests.
Utilize Postman's scripting libraries: Postman supports a number of
JavaScript libraries, such as Lodash, Moment.js, and Ajv, which can
improve your ability to script. These libraries are supported by Postman.

Utilize the runner for the collection: Using the collection runner, carry
out a number of requests and tests. Doing so will assist in locating
problems and evaluating the overall performance of the API.
Keep an eye on the performance of the API: Utilizing Postman's built-in
monitoring tools, you can keep track of response times in addition to
other performance metrics.
Validate API contracts: Do not forget to check that your application
programming interface (API) complies with the agreed-upon standards
and requirements by using contract testing.
Export data to a variety of formats: Postman enables the exporting of
data, such as test results or collection information, to a variety of
formats, such as JSON, CSV, or HTML.
Make use of the search function: Conduct a search throughout your
workspace, collections, and environments to locate and quickly access
the requests or variables you are looking for.
Utilize the tab labeled history: Examine the request history in order to
keep track of your activity and investigate previous requests.
Utilize the keyboard shortcuts: Postman's keyboard shortcuts can help
you become more efficient and speed up your workflow if you take the
time to learn and use them.

Exercise proper handling of errors: Create test scripts to simulate
various error conditions, such as incorrect data, invalid responses, and
server malfunctions. This contributes to ensuring that your API is both
resilient and robust.
Utilize Postman's newman-reporter: Utilize newman-reporter to produce
individualized HTML reports for your various test runs. This enables

you to communicate test results and findings to your team in a more
clear and concise manner.
Utilize Postman's built-in team collaboration features to improve the
efficiency with which you and your colleagues work together, share
requests, collections, and environments, and administer team roles and
permissions.
Postman's Newman Run can be Utilized in Parallel: Reduce the amount
of time needed to complete tests by utilizing the parallel running
capabilities of Newman Run in Parallel.
Use Mock Servers to Design API: Use Postman Mock Server to design
API as per the response you would like to receive, this is a great way to
understand how your API should work and what it should return, and
using Mock Servers to design API is a great way to get started.

Utilize Postman's Built-In Authorization Flow Options to Define Your
API's Authorization and Scopes Utilize Postman's built-in authorization
flow options in order to define your API's authorization and scopes.
Utilize Mock Responses: During testing, you can use Postman's mock
response feature to return predefined responses; this helps simulate
various types of responses and errors.
Make use of the Request Body Editor found in Postman. With the help
of the Request Body Editor, you can easily create request payloads for
your API requests. It provides assistance in the creation of structured
payloads that can contain nested objects and arrays.
Make use of the Postman API. Postman's built-in API schema support
enables you to define and manage the schema for your APIs. You can
use this feature to save time.
Utilize Collection Sharing: Either generate a link that can be shared with

your team in order to share your collections with them, or invite your
team members to your workspace in order for them to collaborate.
Use of the Collection Runner in Conjunction with Variables Make use
of the collection runner in conjunction with variables to test various
scenarios in parallel with various sets of data.

Utilize Collection Documentation: Make use of the collection
documentation feature offered by Postman in order to generate
documentation for your APIs. This can be useful when onboarding new
team members or when sharing your APIs with teams from outside your
organization.

These best practices include using meaningful names and descriptions
for requests, organizing API requests into collections and folders,
utilizing environment variables and global variables, and sharing
collections and environments with your team using workspaces.
Additionally, it is important to use built-in features like pre-request
scripts, test scripts, code snippets, request headers and authentication
settings, mock servers, and monitors to enhance the efficiency and
effectiveness of API development and testing.

Other best practices include regularly updating Postman, importing and
exporting collections and environments, using request timeouts and
retries, utilizing Postman's visualizer and version control features, and
integrating Postman with CI/CD using Newman. It is also essential to
handle cookies, use Postman's scripting libraries, and validate API
contracts. Postman's collaboration features, keyboard shortcuts, and

search and history tabs should also be utilized, along with practicing
error handling, using newman-reporter, and working with Mock Servers
to design API.

Overall, by following these best practices, API producers can ensure
they are getting the most out of Postman and delivering high-quality
APIs that meet user needs and expectations.

Epilogue

As you close the final pages of "Mastering Postman," you may feel a
sense of accomplishment and newfound confidence in your abilities as a
developer. Throughout the book, you have learned the ins and outs of
using Postman, a powerful tool for working with APIs. You have also
discovered the ways in which Excel can be leveraged in conjunction
with Postman to streamline your workflow and ensure that your APIs
are robust and effective.

But this is not the end of your journey. In fact, it is just the beginning.
As you move forward in your career as a developer, you will
undoubtedly encounter new challenges and opportunities that will
require you to use the skills and knowledge you have gained through
mastering Postman.

Perhaps you will find yourself building more complex APIs that require
you to work with larger datasets and handle more intricate logic. In these
cases, the techniques you have learned for testing and debugging with
Postman will be invaluable. You may also need to work with other
developers, teams, and stakeholders to coordinate efforts and ensure that
your APIs meet the needs of your users. Here, the collaboration and
documentation features of Postman will be crucial.

Or, you may find yourself working on projects that require integration

with other technologies or platforms. In these cases, you can draw on the
Excel skills you have acquired to manipulate and analyze data in a way
that complements your API development work. You may also need to
explore other tools and frameworks to accomplish your goals, such as
Swagger, Insomnia, or SoapUI.

Whatever challenges you may face, you can be confident that the
foundation you have built through mastering Postman will serve you
well. You now have a deep understanding of how APIs work and how to
build and test them effectively. You have also developed a strong set of
skills and practices for working collaboratively and iteratively
throughout the development lifecycle.

As you look back on your journey, you may feel a sense of pride and
satisfaction in all that you have accomplished. But you should also look
forward with excitement and curiosity, eager to explore new
technologies, collaborate with new colleagues, and tackle new
challenges with the confidence and expertise that you have gained
through mastering Postman.

Thank You

	Start

