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In memory 
of our friend and colleague, Paul-Jean Cahen 



Preface 

This volume was originally planned to be the joint proceedings of two conferences: 
The Conference on Rings and Polynomials which was to be held in July 2020 at the 
Technische Universität, in Graz, Austria, and The Fourth International Meeting on 
Integer-Valued Polynomials and Related Topics which was to be held in December 
2020 at the CIRM in Luminy, France. The COVID-19 pandemic and the associated 
cancelation of most international travel forced the cancellation of the second of these 
and the rescheduling of the first to July 19–24, 2021, and its conversion to a hybrid 
format in which many of the speakers and attendees participated remotely by video 
link. This volume is, therefore, a combination of papers intended for the second 
conference and papers presented, either remotely or in person, at the first. Their 
high quality is a testament to how effectively the participants met and overcame a 
considerable challenge. 

The papers in the collection range widely over the algebraic, number theoretic 
and topological aspects of rings, algebras and polynomials. There are, however, 
two areas of particular note: topological methods in ring theory and integer-valued 
polynomials. These were two areas of concentration at the Graz conference, and 
the second was, of course, to be the focus of the Luminy conference. An additional 
note is that the volume as a whole is dedicated to the memory of Paul-Jean Cahen, 
a co-author or research collaborator with some of the conference participants and 
a friend to many, many of the others. This collection contains a memorial article 
about Paul-Jean, written by his long-time research collaborator and co-author Jean-
Luc Chabert with a translation of it from French by Sophie Frisch. Sadly, Paul-Jean 
is not the only loss that the commutative algebra community has suffered recently. 
Robert Gilmer, Wolmer Vasconcelos, Muhammad Zafrullah, Nicholas Baeth and 
Dan Anderson have all recently died. The last two of these, Nick Baeth and Dan 
Anderson, each have a paper that is appearing posthumously in this collection, and 
for each, there is a short obituary appended. 

Among the people who helped to make this volume possible are Sabine Evrard, 
who did most of the organizational work for the Luminy conference, and the 
local organizing committee for the Graz conference consisting of Amr Al-Maktry, 
Chimere Anabanti, Victor Fadinger, Sarah Nakato and Daniel Windisch. 
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viii Preface 

We would like to thank the following sponsors of the Graz conference: Tech-
nische Universität Graz (Graz University of Technology), FWF (the Austrian 
Science Foundation), Land Steiermark (the state of Styria) and Österreichische 
Mathematische Gesellschaft (the Austrian Mathematical society). 

Last but not least, we thank the editorial staff at Springer, in particular Elizabeth 
Loew and Saveetha Balasundaram, for their care, patience and encouragement 
during the preparation of this volume. 
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Rome, Italy Marco Fontana 
Graz, Austria Sophie Frisch 
Storrs, USA Sarah Glaz 
Halifax, Canada Keith Johnson 



Contents 

Paul-Jean Cahen (1946–2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Jean-Luc Chabert 

Bhargava’s Exponential Functions and Bernoulli Numbers 
Associated to the Set of Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
David Adam and Jean-Luc Chabert 

Polynomial Root Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 
D. D. Anderson and David F. Anderson

Absorbing Ideals in Commutative Rings: A Survey . . . . . . . . . . . . . . . . . . . . . . . . .  51 
Ayman Badawi 

Complement-Finite Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 
N. Baeth

When Is a Group Algebra Antimatter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 
Mohamed Benelmekki, and Said El Baghdadi 

Yosida, Martínez, and A + B Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99 
Papiya Bhattacharjee, Lee Klingler, and Warren Wm. McGovern 

Functional Identities and Maps Preserving Two-Sided Zero Products . . . .  113 
Matej Brešar 

Bounded Factorization and the Ascending Chain Condition on 
Principal Ideals in Generalized Power Series Rings . . . . . . . . . . . . . . . . . . . . . . . . .  135 
H. E. Bruch, J. R. Juett, and Christopher Park Mooney 

Probabilities and Fixed Divisors of Integer Polynomials . . . . . . . . . . . . . . . . . . . .  155 
Jean-Luc Chabert 

Modules over Trusses vs. Modules over Rings: Internal Direct Sums . . . . .  171 
Devi Fitri Ferdania, Irawati, and Hanni Garminia 

ix 



x Contents 

A Survey on Essential-Like Properties of Prüfer .v-Multiplication 
Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 
Carmelo Antonio Finocchiaro and Francesca Tartarone 

On the Subatomicity of Polynomial Semidomains . . . . . . . . . . . . . . . . . . . . . . . . . . .  197 
Felix Gotti and Harold Polo 

Invertibility, Semistar Operations, and the Ring of Finite Fractions . . . . . . .  213 
Kaiser A. Grap and Jason R. Juett 

The Quadratic Tree of a Two-Dimensional Regular Local Ring . . . . . . . . . . . .  237 
William Heinzer, K. Alan Loper, Bruce Olberding, 
and Matthew Toeniskoetter 

Reductions and Core of Ideals in Integral Domains: Some Recent 
Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253 
Salah Kabbaj 

Valuative Lattices and Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275 
Henri Lombardi and Assia Mahboubi 

Building Three-Variable Homogeneous Integer-Valued 
Polynomials Using Generalized Projective Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  343 
Marie MacDonald 

Around Prüfer Extensions of Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  351 
Gabriel Picavet and Martine Picavet-L’Hermitte 

A Survey on Algebraic and Homological Properties of 
Amalgamated Algebras of Commutative Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  383 
Maryam Salimi, Elham Tavasoli, and Siamak Yassemi 

The Ring of Integer-Valued Polynomials on .3× 3 Matrices and 
Its Integral Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  405 
Asmita C. Sodhi 

Simultaneous p-Orderings and Equidistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . .  427 
Anna Szumowicz 

A Survey on Flatness in Integer-Valued Polynomial Rings . . . . . . . . . . . . . . . . . .  443 
Ali Tamoussit 

Equivalent Characterizations of Non-Archimedean Uniform Spaces . . . . . .  463 
Daniel Windisch 



Paul-Jean Cahen (1946–2019) 

Jean-Luc Chabert 

Paul-Jean Cahen, born on February 10, 1946, in La Flèche (France), died on June 
14, 2019, in Aix en Provence. He was the fifth of seven siblings. Growing up in La 
Flèche, he received his secondary education at the military academy Le Prytanée. In 
1963, in his senior year of high school (which, at the time, was called the class 
of elementary mathematics), Paul-Jean’s mathematics professor happened to be 
the future Abel prize laureate Yves Meyer. He instilled in Paul-Jean a taste for 
mathematics (and still remembers him in 2019 in an interview for the journal of 
the CNRS [1]). In 1965, Paul-Jean Cahen entered the École Polytechnique. 

J.-L. Chabert (�) 
Université de Picardie, Amiens, France 
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In the summer of 1967, he obtained his engineering diploma from the École 
Polytechnique and married Martine Taton. A son was born: Alexandre. At that time, 
Paul-Jean was employed as a researcher at the Centre National de la Recherche 
Scientifique (CNRS) in Paris. In 1970, he defended his doctoral thesis (thèse de 
3ème cycle) directed by Pierre Samuel. 

The following year, he went as a postdoc to Canada and spent 3 years there: 
first at Queen’s university in Kingston, where he defended a doctoral thesis directed 
by Paulo Ribenboim, then at McGill in Montreal, and finally as a visiting assistant 
professor at the University of British Columbia. In 1973, back in France, he earned 
his Doctorat d’État (the advanced degree corresponding to the current habilitation 
à diriger des recherches) at Orsay (Université Paris XI), again supervised by Pierre 
Samuel. 

In 1974, he was appointed professor at the University of Tunis, where he stayed 
for 14 years. During his time in Tunisia, Paul-Jean and Martine divorced. In a 
discussion group on “mathematics and philosophy,” Paul-Jean met Thérèse Baduel. 
In 1981, they married. With Thérèse, Paul-Jean had two children, Raphaël and 
Anne-Sophie. Also, Paul-Jean cared for Thérèse’s two children from a previous 
marriage, Talel and Amina, as for his own children. 

In 1988, Paul-Jean returned to France, to accept a professorship at the faculty 
of sciences and technology at the Université Aix-Marseille III, where he remained 
until his retirement. 

He took a very active role at his university, even beyond the mathematics 
department. For a period of 5 years, he was director of the faculty of sciences and 
technology (UFR Sciences et Techniques) of the university, and collaborated closely 
with the university’s board of administration. 

Later, he was vice-president of the Mathematical Society of France (SMF) [2] 
for 6 years and, during this time, engaged himself a lot for the CIRM, the center of 
research in mathematics at Luminy, Marseilles. 

Paul-Jean has eight mathematical descendants, whose doctoral theses he guided: 
Othman Echi (1990), Ahmed Ayache (1991), Mohamad El-Hajjar (1995), Nathalie 
Gonzales (1997), Francesca Tartarone (1998), Richard Robert (2001), Sébastien 
Pellerin (2002), and Julie Yeramian (2004). 

In addition to attending and organizing conferences, Paul-Jean often visited 
universities abroad, for instance, the University la Sapienza in 1992 and later at 
least four times the University Roma Tre (invited by Marco Fontana), the University 
of North Carolina at Charlotte (invited by Evan Houston) for the Fall semester of 
1996, Florida State University in Tallahassee (invited by Robert Gilmer) for the 
Spring semester of 1997, Technische Universität Graz (invited by Sophie Frisch) in 
June 2001, the University of Connecticut in Storrs (invited by Sarah Glaz) in Fall 
2005, the University of North Carolina again in Spring 2006, and Princeton (invited 
by Manjul Bhargava) for a month in 2006. 

Paul-Jean’s research specialty was commutative algebra, with one recurring 
theme—integer-valued polynomials—that he investigated throughout his academic 
life, from his two theses until his last papers in 2018.
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According to Math Reviews (MathSciNet), Paul-Jean Cahen published 66 
papers, .40% of which do not concern polynomials. They are often the fruit of 
international collaborations (in particular, with Tunisia, Morocco, Italy, and the 
USA) and encompass many and varied topics: 

Henselian fields (his first paper), torsion theory and associated prime ideals 
(subject of his doctoral thesis at Queen’s university), pairs of rings sharing an ideal, 
Krull dimension and valuative dimension, the “dimension formula,” saturated chains 
of rings, minimal extensions of rings, Jaffard rings, Nagata rings, Mori rings, Hilbert 
rings, pseudo-valuation rings, and quasi-Prüfer rings, among others. 

The profusion of collaborations is explained by Paul-Jean’s ease of entering into 
discussions and his capacity to give intense thought to any question proposed by 
others (or by himself). 

The remaining .60% of his papers treat various questions concerning integer-
valued polynomials. The topic had been introduced by Pólya et Ostrowski in 1919, 
in the context of number fields, and then forgotten (except by Skolem, who wrote 
a beautiful paper on integer-valued polynomials in 1936) until Paul-Jean initiated 
the study of integer-valued polynomials in the context of commutative algebra in 
his theses. The subject is situated between algebra and number theory, but also 
touches p-adic analysis, and later also combinatorics, topology, dynamic systems, 
probability theory, and, in recent years, even non-commutative algebra. Paul-Jean 
entered into many international collaborations, but, it turns out that his principal 
collaborator was myself. 

I met Paul-Jean when we were both preparing our doctoral theses in Paris under 
Pierre Samuel. We regularly met as a small group to work on problems posed by 
Benzaghou concerning the so-called Fatou property. To show that this property 
passes from a ring D to its polynomial ring .D[X], Paul-Jean had the idea to use 
integer-valued polynomials on . D :

. Int(D) = {f ∈ K[X] | f (D) ⊆ D},

where K denotes the quotient field of the integral domain D. (Actually, the notation 
.Int(D) became standard only in the 1990s under the influence of Robert Gilmer.) 
The integer-valued polynomials thus introduced as a tool became our thesis topic. 
We defended our theses, the first part of which was a joint work, in 1970 in Paris 
before the same jury. 

Three years later, we each defended our thesis for the Doctorat d’État at Orsay, 
again both before the same jury. Our theses bore the same title, but had very different 
content. Paul-Jean had used his work on torsion theory to study polynomial torsion. 
He generalized Pólya’s and Ostrowski’s results from rings of integers in number 
fields to arbitrary Dedekind rings, and also to the case of polynomials in several 
indeterminates. 

He had the idea to define and study the so-called Pólya-Ostrowski group of a 
Dedekind ring D, meaning the subgroup of the class group generated by the classes 
of products of all prime ideals of the same finite norm. This group measures how far
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.Int(D) is from having a regular basis. Paul-Jean showed that this group is trivial in 
the case of cyclotomic fields. 

Using the density of the ring .Int(V ), where V is a discrete valuation domain with 
finite residue field in the ring of continuous functions .C(̂V , ̂V ), he gave a new proof 
of the characterization of the spectrum of .Int(V ). By the same principle, he was able 
to describe the spectrum of .Int(D) for more general domains than Dedekind rings, 
for example, analytically irreducible Noetherian domains. 

During the first International Meeting on Integer-Valued Polynomials that we 
had organized at the CIRM in Marseilles in 1990, the idea was born to write a 
comprehensive monograph on the subject. This was intensive work, but working 
with Paul-Jean was very stimulating. We rewrote each chapter several times, because 
there was always a better way to present our stuff. Our book Integer-Valued 
Polynomials was published in 1997 by the AMS in their Mathematical Surveys and 
Monographs series. The subject “rings of integer-valued polynomials” first appeared 
in the mathematics subject classification of the AMS in 2000, under (13F20). 

It is impossible to list exhaustively all of Paul-Jean’s work on the subject. Let us 
just mention polynomials that are integer-valued as well as their derivatives or their 
divided differences, integer-valued rational functions, Newton and Schinzel type 
sequences in number fields, etc. Also, he had the idea to study polynomials that 
are integer-valued on an arbitrary subset of a domain, and the polynomial closure 
of subsets. This enumeration does not do justice to Paul-Jean, because he always 
brought new ideas to each subject that he took up. 

The second International Meeting on Integer-Valued Polynomials took place 
in 2000, again at the CIRM, and we were happy to welcome Manjul Bhargava, 
whose first papers treated integer-valued polynomials. He presented some of his 
remarkably simple, but efficient, ideas, in particular the concept of P -ordering, 
which permits one to obtain in an algorithmic fashion the characteristic ideals of 
a ring of polynomials integer-valued on a subset, thus adding additional depth to a 
subject introduced by Paul-Jean. Paul-Jean later wrote a joint paper with Bhargava. 

There was a third International Meeting on Integer-Valued Polynomials at the 
CIRM in 2010, and a fourth, planned for 2020, was intended to be a tribute to the 
memory of Paul-Jean, but, alas, it could not take place. 

When Paul-Jean retired, one might have expected, and he himself might have, 
too, that he would give up mathematics in favor of his hobby, singing. (He could, 
however, not resist and published several more mathematical papers 2017–2018.) 

Paul-Jean’s musical career began in Tunis, where he used to accompany a singer 
on the piano at her recitals in the cultural center in the Medina. 

But mainly, Paul-Jean himself sang, in a tenor voice, wherever he went. In 
particular, in university choirs: in Tunis, in Storrs, in Charlotte with Randy 
Haldeman, at the university of St. Charles in Marseilles with Jérôme Conttenceau, 
and at the conservatory Darius Milhaud in Aix en Provence with Michel Piquemal. 
All who met him at a conference knew well his passion for singing, and especially, 
for Schumann’s Lieder. 

But he also played chess and bridge, loved poetry, wordplay, literature, theater, 
philosophy, etc.
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Paul-Jean died of cancer. He fought it with courage, uncomplainingly, always 
thinking of others, of those who would remain. Also, in spite of chemotherapy and 
radiotherapy, he continued to sing in the choir of the region of Marseilles. 

With Paul-Jean we lose a gifted mathematician, but also a colleague and friend 
of remarkable qualities. Those who knew him will certainly recognize him in 
the following two testimonies. The first is by a colleague from his university, a 
lawyer: “We will always remember our colleague’s great elegance of soul and mind, 
his infallible sense for public service, joyful intellectual curiosity, and immense 
culture.” 

The second testimony is by Thérèse: “He steadily rested a luminous, loving, 
patient, attentive, benevolent, admiring gaze on five children, seven grand-children, 
and many of those who were so lucky as to meet him.” 

Jean-Luc Chabert 
translated into English 

by Sophie Frisch 
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Bhargava’s Exponential Functions and 
Bernoulli Numbers Associated to the Set 
of Prime Numbers 

David Adam and Jean-Luc Chabert 

1 Introduction 

In [3], Bhargava associates to each infinite subset E of . Z a sequence of positive 
integers .{n!E}n≥0 called the factorial sequence of E. Such sequences have many 
properties of classical factorials. These integers .n!E are defined locally with 
combinatorial calculations which are then globalized. They may also be defined 
by means of the polynomials that are integer-valued on E. Recall that the ring of 
integer-valued polynomials on a subset E of . Z is 

. Int(E,Z) = {f ∈ Q[X] | f (E) ⊆ Z}.

Definition 1 The nth factorial of a subset E of . Z is the positive integer, denoted by 
. n!E , such that . 1

n!E Z is the fractional ideal formed by the leading coefficients of the 
polynomials of .Int(E,Z) with degree . ≤ n. 

At the end of his paper, Bhargava asked whether the generalization of some 
classical numbers and functions associated to the factorials could have interesting 
properties. For instance, the generalized binomial coefficients defined, for . 0 ≤ k ≤
n, by  

. 

(
n

k

)
E

= n!E
k!E (n − k)!E
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are integers. This is an obvious consequence of Definition 1. Does there exist 
a combinatorial interpretation of these integers? One does not know such an 
interpretation except in the case of the set .{qn | n ≥ 0} where q is an integer . ≥ 2
(cf. [11, §3]). We can also consider a generalization of the exponential function. 

Definition 2 The generalized exponential function associated to an infinite subset 
E of . Z is defined by 

. expE(x) =
+∞∑
n=0

1

n!E xn .

One can wonder if the values of the function are rational, irrational, algebraic, 
or transcendental numbers. We are also interested in a natural generalization of the 
Bernoulli numbers. 

Definition 3 The generalized Bernoulli numbers associated to an infinite subset E 
of . Z are defined by 

. 
x

expE(x) − 1
=
∑
n≥0

BE,n

n!E xn .

We will consider in particular the case where E is the set . P of prime numbers. 
We obtain in particular that .expP(r) is irrational for the rationals .r �= −2 of the 
form . ±1

d
or . ±2

d
where .d ∈ N and that the Bernoulli polynomials without constant 

term .BP,n(X) − BP,n(0) =∑n−1
k=0

(
n
k

)
P

BP,k Xn−k have integral coefficients. 

2 Bhargava’s Exponential Functions 

The power series 

. expE(x) =
+∞∑
n=0

1

n!E xn (1) 

converges everywhere since, for every .n ≥ 0, . n! divides . n!E . Obviously, . expE(0) =
1 and .| expE(x)| ≤ expE(|x|). The  generalized Euler number associated to E is 

. eE = expE(1) =
+∞∑
n=0

1

n!E .

Clearly, .1 < eE ≤ e. Mingarelli [13] proved that . eE is always irrational (cf. 
Proposition 1 below). Thanks to known examples where the factorials are easy
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to compute (for instance, see [1]), we may compute some generalized exponential 
functions. 

Examples 1 

(a) Let .aE + b = {ax + b | x ∈ E} where .a ∈ N∗ and .b ∈ Z. One knows that 
.n!aE+b = an n!E . Consequently, 

. expaE+b(x) =
+∞∑
n=0

xn

ann!E = expE

(x

a

)

In particular, 

. eaZ+b = e
1
a .

(b) For .E = N(2) = {n2 | n ∈ N}, one has .n!
N

(2) = 1
2 (2n)! (.n ≥ 1). Consequently, 

. exp
N

(2) (x) = 1 + 2
+∞∑
n=1

xn

(2n)! =
{
2 cosh

√
x − 1 if x ≥ 0

2 cos
√−x − 1 if x ≤ 0 .

(c) For .E =
{

n(n+1)
2 | n ≥ 0

}
, one has 

. exp{n(n+1)/2 | n≥0}(x) =
+∞∑
n=0

1
(2n)!
2n

xn =
+∞∑
n=0

(2x)n

(2n)! =
{
cosh

√
2x if x ≥ 0

cos
√−2x if x ≤ 0 .

Proposition 1 ([13, Theorem 53]) For every infinite subset E, the associated Euler 
number .eE = expE(1) =∑n≥0

1
n!E is irrational. 

Here is a short proof of this fact. 

Proof Assume that . eE is rational and write .eE = a
b
where .a, b ∈ N. For every 

.k ≥ b, let  

.ak = k!E
(

a

b
−

k∑
n=0

1

n!E

)
= k!E

( +∞∑
n=k+1

1

n!E

)
. (2) 

On the one hand, .b ≤ k implies that b divides . k!E , and on the other hand, . n ≤ k

implies that .n!E divides . k!E ; thus . ak is a positive integer. Since for .n ≥ k + 1 the 
binomial coefficient .

(
n

k+1

)
E
is an integer, . 1

n!E ≤ 1
(k+1)!E × 1

(n−(k+1))!E . Thus, 

.0 < ak ≤ k!E
(k + 1)!E

( +∞∑
n=k+1

1

(n − (k + 1))!E

)
= k!E

(k + 1)!E eE .
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Assume that there exists a constant A such that . kE

(k+1)!E < 1
A
for at most finitely 

many k. Then, there would exist a positive constant c such that, for every n, . 1
n!E =∏n−1

k=0
k!E

(k+1)!E ≥ c × 1
An . But the inequality . A

n

n!E ≥ c would contradict the fact 
that the power series .expE A converges. Consequently, there exist infinitely many 
k such that . k!E

(k+1)!E < 3, and hence, such that .0 < ak < 1 which leads again to a 
contradiction. 
�
Corollary 1 For all .d ∈ N∗, .expE

(
1
d

)
/∈ Q. 

Proof It follows from Example 1 (a) that for every positive integer d 

. expE

(
1

d

)
=

+∞∑
n=0

1

dn × n!E =
+∞∑
n=0

1

n!dE

= expdE(1).


�
Analogously, we have: 

Proposition 2 For every infinite subset E and for every integer .d ≥ 2, 

.expE

(−1
d

)
/∈ Q. 

Proof Assume that .expE

(−1
d

)
is rational and write .expE

(−1
d

)
= a

b
where . a, b ∈

N. For every .k ≥ b, the following number . ak is an integer: 

. ak = dkk!E
(

a

b
−

k∑
n=0

(−1)n

dnn!E

)
= dkk!E

∞∑
n=k+1

(−1)n

dnn!E .

The fact that . dnn!E
dn+1(n+1)!E ≤ 1

2 implies that 

. 0 < (−1)k+1ak <
1

d
× k!E

(k + 1)!E < 1.

This is a contradiction. 
�
In the case where .d = 1, the previous proof does not work because the 

inequalities .0 ≤ |ak| ≤ k!E
(k+1)!E ≤ 1 are not necessarily strict. In order to prove 

that .expE(−1) is irrational, we have to introduce a hypothesis about the behavior of 
the sequence .{ n!E

(n+1)!E }n≥0. As the sequence .{n!E}n≥0 is increasing, we always have 

.0 ≤ limn→+∞ n!E
(n+1)!E ≤ 1, but as .n!E divides .(n + 1)!E , we have more precisely 

.either limn→+∞
n!E

(n + 1)!E = 1 or 0 ≤ limn→+∞
n!E

(n + 1)!E ≤ 1

2
. (3)
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Note that the bounds of the second case are sharp: the limit is clearly 0 for . E = N
while, by (11), it is . 12 for .E = P. The first case corresponds to subsets E such that 
.k!E = (k + 1)!E for infinitely many k. Until now it was not known whether there 
exists a subset E satisfying this condition. Hence, 

Mingarelli’s Question ([13]) Does there exist an infinite subset E of . Z such that, 
for infinitely many k, . k!E = (k + 1)!E ?

In Sect. 7, we prove that the subset .E = P ∪ 2P is such an example. 

Proposition 3 If E is an infinite subset such that .limn→+∞ n!E
(n+1)!E < 1, then the 

number .expE(−1) is irrational. 

Proof Assume that .exp(−1) is rational. Then, for k large enough, we have . k!E �=
(k + 1)!E and the following number . ak is an integer: 

. ak = k!E
(
expE(−1) −

k∑
n=0

(−1)n

n!E

)
= k!E Rk.

Clearly, .|Rk| ≤ 1
(k+1)!E . Thus, .|ak| ≤ k!E

(k+1)!E < 1. As .Rk = (−1)k+1

(k+1)!E + Rk+1 and 

.|Rk+1| ≤ 1
(k+2)!E < 1

(k+1)!E , we have  .Rk �= 0. Finally, .0 < |ak| < 1. This is  
impossible. 
�
Remarks 1 

1. Mingarelli states Proposition 3 (see [13, Theorem 53]) without any assumption. 
However, it is not clear from his proof that . Rk is not zero. 

2. In the case .limn→+∞ n!E
(n+1)!E = 1, the conclusion of Proposition 3 still holds 

under the weaker condition that there exist infinitely many n such that . n!E <

(n + 1)!E < (n + 2)!E . Perhaps, this condition is always satisfied. Thus, the 
authors propose the following question. 

Open Problem Does there exist a subset E of . Z such that, for n large enough, 
either .n!E = (n + 1)!E or .(n + 1)!E = (n + 2)!E? 

Here is another condition on the behavior of the sequence .{ n!E
(n+1)!E }n≥0. 

Proposition 4 Let .τ+
E = lim n→+∞ n

√
(n+1)!E

n!E . For every positive rational number 

.α = c
d
where .c, d ∈ N and .c < τ+

E , .expE(α) is irrational. 

Proof Assume that .expE

(
c
d

) = a
b
where .a, b ∈ N. Similarly to the proof of 

Proposition 1, for .k ≥ b, the following number is a positive integer: 

.ak = dk × k!E
(
expE(α) −

k∑
n=0

αn

n!E

)
= dk × k!E

( +∞∑
n=k+1

αn

n!E

)
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and 

. ak <
k!E

(k + 1)!E × ck+1

d
×

+∞∑
n=0

αn

n!E = k!E
(k + 1)!E × ck+1

d
× expE(α) .

As .c < τ+
E , we may write .c = τ+

E (1 − 2δ) where .δ < 1
2 . By definition of . τ+

E , there 

exist infinitely many indices k such that . k

√
(k+1)!E

k!E > τ+
E (1 − δ). For such a k, we  

have 

. 
k!E

(k + 1)!E ck <

(
1 − 2δ

1 − δ

)k

and, for k large enough, the right hand side of this inequality is less than .
d
c
/ expE(α). 

This leads to a contradiction since the nonzero integer . ak would be less than 1. 
�
The constant . τ+

E is not always equal to 1 (cf. Example 2); it can even be infinite 
(cf. Proposition 6). 

Example 2 Fix an integer q such that .|q| ≥ 2 and let .Eq = {qn | n ≥ 0}. Then 
.n!Eq = |∏n−1

j=0(q
n − qj )| (cf. [3]) and .τ+

Eq
= q2. Consequently, for .0 < c < q2, 

.expEq

(
c
d

)
/∈ Q. In fact, a more particular study of the function .expEq

allows to 
conclude that .expEq

(c/d) is irrational for any nonzero rational .c/d (see [16]). 

For negative rational numbers, we have the counterpart. 

Proposition 5 Let .τ−
E = limn→+∞ n

√
(n+1)!E

n!E . For every nonzero rational number 

.α = − c
d
where .c, d ∈ N and .c < τ−

E , .expE(α) is irrational. 

Proof Without loss of generality, one can assume .τ−
E > 1. Let  .ε > 0 be such that 

.1 ≤ c < τ−
E − ε < τ−

E . For  n large enough, . (n+1)!E
n!E ≥ (τ−

E − ε)n. Thus 

. 

∣∣∣∣∣∣
αn+1

(n+1)!E
αn

n!E

∣∣∣∣∣∣ =
|α|n!E

(n + 1)!E ≤ |α|
(τ−

E − ε)n
≤ c

τ−
E − ε

< 1.

Hence the sequence .
( |α|n

n!E
)

n≥k
is strictly decreasing. Assume that .expE(α) is 

rational, then for k large enough the following number . ak is an integer: 

. ak = dk × k!E
(
expE(α) −

k∑
n=0

αn

n!E

)
= dk × k!E × Rk,

where .Rk = ∑+∞
n=k+1

αn

n!E . As  .Rk = αk+1

(k+1)!E + Rk+1, . |Rk+1| ≤ |α|k+2

(k+2)!E <
|α|k+1

(k+1)!E
implies that .Rk �= 0, and hence, .ak �= 0. Moreover,
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. |ak| ≤ dkk!E |α|k+1

(k + 1)!E ≤ ck+1k!E
d(k + 1)E

≤ |α|
(

c

τ−
E − ε

)k

.

Since . c

τ−
E −ε

< 1, .limk→+∞
(

c

τ−
E −ε

)k

= 0, and again, for k large enough, . 0 <

|ak| < 1 
�
Corollary 2 Let E be a subset of . Z for which there exist two positive constants 
C and . ε such that, for n large enough, .(n + 1)!E ≥ C (n!E)1+ε. Then, for every 
nonzero rational number . α, .expE(α) is irrational. 

Proof By Stirling’s formula, for n large enough, we have 

.n!E ≥ n! ≥
(n

e

)n

. (4) 

As a consequence, for n large enough 

. 
n

√
(n + 1)!E

n!E ≥ n
√

(n!E)ε ≥
(n

e

)ε

.

This implies that .τ−
E = τ+

E = +∞ and, by Propositions 4 and 5, .expE(α) is 
irrational. 
�

The following example shows that the hypothesis of Corollary 2 may be realized. 

Proposition 6 Let .f (X) = adXd + · · · + a1X + a0 ∈ Z[X] be a polynomial 
of degree .d ≥ 2, and let a be an integer that is not preperiodic for f . Denote 
by .f [n] the nth iterate of f . Then, for the set .Ef,a = {

f [n](a) | n ≥ 0
}
, one has 

.(n + 1)!Ef,a
≥ (n!Ef,a

)d− 1
4 for n large enough. 

Proof One knows (see [1]) that the sequence .{f [n](a)}n≥0 is self-simultaneously 
ordered, and hence, the n-th factorial of the set .Ef,a = {

f [n](a) | n ≥ 0
}
is equal 

to 

. n!Ef,a
=

n−1∏
j=0

∣∣∣f [n](a) − f [j ](a)

∣∣∣ .

Let .un = f [n](a) and .vn = |un|. As  a is not preperiodic, . limn→+∞ vn = +∞
and .vn+1 ∼

n→+∞ |ad |vd
n . Let  .n0 ∈ N be such that .n ≥ n0 implies . vn ≥ 24d+7 ≥

4 and .vn+1 ≥ 1
2 |ad |vd

n . Now, let  .n1 ≥ n0 be such that .n ≥ n1 implies . vn >

2max(v0, · · · , vn0). Then 

.( n ≥ n1 and 0 ≤ k < n ) ⇒ vk

vn

<
1

2
.



16 D. Adam and J.-L. Chabert

Indeed, if .k ≤ n0, the inequality follows from the fact that .n ≥ n1 and, if .k > n0, it  
follows from the inequalities: 

. 
vk

vk+1
≤ 1

1
2 |ad |vd−1

k

<
1

4d−1 × 1
2

≤ 1

2
.

Consequently, 

. n!Ef,a
= vn

n ×
n−1∏
k=0

(1 − uk

un

) ≤ vn
n ×

n−1∏
k=0

(1 + vk

vn

) ≤ 2n × vn
n

while 

. (n + 1)!Ef,a
≥ vn+1

n+1 ×
n∏

k=0

(1 − vk

vn+1
) ≥ 1

2n+1 × vn+1
n+1 .

Finally, for all .n ≥ n1, one has 

.
(n + 1)!Ef,a

(n!Ef,a)d−1/4
≥ 1

2(d+3/4)n
.
vn+1

2

(
vn+1

v
d−1/4
n

)n

≥ 1

2(d+3/4)n
.
vn+1

2

(
1

2
|ad |v1/4n

)n

≥ vn+1

2
≥ 1. 
�

For instance, let .F = {22n + 1 | n ≥ 0} be the set formed by Fermat numbers. In 
fact, . F is the orbit of 3 under the iteration of the polynomial .X2 − 2X + 2. Then, for 
every .α ∈ Q∗, .expF(α) /∈ Q. 

Hermite’s theorem says that, if . α is a nonzero rational number, then . exp(α)

is transcendental. The following theorem shows that such a result holds for the 
exponential function of some subsets E of . Z. 

Theorem 1 Let E be a subset of . Z for which there are two positive constants C and 
.δ > 2 such that, for n large enough, .(n + 1)!E ≥ C (n!E)δ . Then, for every nonzero 
rational number . α, .expE(α) is transcendental. 

Proof By Corollary 2, .expE(α) is irrational. Write .α = c
d
with .c ∈ Z and .d ∈ N. 

Analogously to the proof of Proposition 4, we have  

.

∣∣∣∣∣expE(α) −
k∑

n=0

αn

n!E

∣∣∣∣∣ ≤
|α|k+1

(k + 1)!E expE(|α|) ≤ |α|k+1

C(k!E)δ
expE(|α|).
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Equivalently, 

. 

∣∣∣∣∣expE(α) −
∑k

n=0 cn dk−n k!E
n!E

dk k!E

∣∣∣∣∣ ≤
|c|k+1

C dk+1 (k!E)δ
expE(|α|).

Let . ε be such that .0 < δ − ε < δ. By inequality (4), for k large enough, we have 

. C dk+1 (k!E)δ ≥
(
dk k!E

)δ−ε × |c|k+1 expE(|α|),

and hence, 

.

∣∣∣∣∣expE(α) −
∑k

n=0 cn dk−n k!E
n!E

dk k!E

∣∣∣∣∣ ≤
1(

dk k!E
)δ−ε

. (5) 

Clearly, .
∑k

n=0 cn dk−n k!E
n!E is an integer. Choosing . ε such that .δ − ε > 2, by Roth  

theorem [17], .expE(α) is transcendental. 
�
One cannot assert the transcendence of .expF(1) by Theorem 1, since for every 

.ε > 0, one may check that .limn→+∞
(n+1)!

F
(n!
F

)2+ε = 0. However, for this very specific 

set, for all nonzero rational . α, the transcendence of .expF(α) is a consequence of a 
Lang’s conjecture. For the reader’s convenience, we announce it. 

Lang’s Conjecture ([12, Chapter IX]) Let . α be a real non-rational algebraic 
number. Then, for every .ε > 0, the following inequality 

. |α − p

q
| ≤ 1

q2 ln1+ε|q|
has only a finite number of solutions in rationals .p/q. 

Proposition 7 Suppose Lang’s conjecture is true. Let .a ∈ Z \ {−1, 0, 1}. Then for 
every nonzero rational . α, .expE

X2,a
(α) is transcendental. 

Proof Put .E = EX2,a . Obviously, a is not a preperiodic point of the map .z �→ z2. 
Let k be a positive integer. Clearly, 

. k!E =
k−1∏
j=0

(a2
k − a2

j

).

It follows that this inequality holds: 

.k!E ≤ 2ak2k

. (6)
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Moreover, one has 

. (k + 1)!E = (a2
k+1 − a)

k∏
l=1

(a2
k+1 − a2

l

) = (a2
k+1 − a)

k−1∏
l=0

(a2
k+1 − a2

l+1
)

. = (a2
k+1 − a)

k−1∏
l=0

(a2
k − a2

l

)(a2
k + a2

l

) = (a2
k+1 − a)k!E

k−1∏
l=0

(a2
k + a2

l

).

Hence, one obtains for all . k ≥ 3

.(k + 1)!E ≥ 1

2
(a2

k+1 − a)(k!E)2 ≥ 1

4
a2

k+1
(k!E)2. (7) 

Writing .α = c
d
as in the proof of Theorem 1, inequalities (6) and (7) imply that 

.limk→+∞ (k+1)!E
(k!Edk)2(ln(k!Edk))3/2|α|k+1 expE(|α|) = +∞. In particular, one obtains that 

for k large enough 

. (k + 1)!E ≥ (k!Edk)2 (ln(k!Edk))3/2 |α|k+1 expE(|α|).

On another side, the usual estimate leads to 

. 

∣∣∣∣∣expE(α) −
∑k

n=0 cndk−n k!E
n!E

dkk!E

∣∣∣∣∣ ≤
|α|k+1

(k + 1)!E expE(|α|) ≤ 1

(k!Edk)2(ln(k!Edk))3/2
.

By Lang’s conjecture, .expE(α) is transcendental. 
�
Corollary 3 Under Lang’s conjecture, for every .α ∈ Q∗, .expF(α) is transcenden-
tal. 

Proof Remark that the sets . F and .EX2,2 have the same sequence of factorials. 
�
Conjecture The authors dare to conjecture that, if E is a subset of . Z for which 
there are two positive constants C and .δ > 1 such that, for every .n ∈ N, one has 
.(n + 1)!E ≥ C(n!E)δ then, for all .α ∈ Q∗

, .expE(α) is transcendental. 

Hermite’s theorem can be rephrased also as: for any nonzero distinct rationals 
.r1, · · · , rs , the numbers .1, er1 , · · · , ers are .Q-linearly independent. Now, we prove 
the analogous result for the exponential associated to a subset of . Z satisfying the 
conditions of Corollary 2. 

Theorem 2 Let E be a subset of . Z for which there are two positive constants 
C and . ε such that, for n large enough, .(n + 1)!E ≥ C (n!E)1+ε. The numbers 
.1, expE(r1), · · · , expE(rs) are .Q-linearly independent for any nonzero distinct 
rational numbers .r1, · · · , rs .
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Proof Let .A0, A1, · · · , As be integers such that 

. A0 +
s∑

i=1

Ai expE(ri) = 0.

Write .ri = pi/qi with .(pi, qi) ∈ Z × N∗, let  .d = LCM(qi)1≤i≤s and, for every n, 
consider the equality 

. dnn!E
(

A0 +
s∑

i=1

Ai

n∑
k=0

rk
i

k!E

)
+ Rn = 0

where 

. Rn := dnn!E
s∑

i=1

Ai

∑
k≥n+1

rk
i

k!E .

Clearly, .dnn!E
(

A0 +∑s
i=1 Ai

∑n
k=0

rk
i

k!E

)
is an integer and . Rn is too. For every 

.i ∈ [1, s], one has 

.

∑
k≥n+1

rk
i

k!E = rn+1
i

(n + 1)!E + rn+2
i

∑
k≥0

rk
i

(k + n + 2)!E ∼
n→+∞

rn+1
i

(n + 1)!E . (8) 

The equivalence follows from the inequality .

∣∣∣∣∑k≥0
rk
i

(k+n+2)!E

∣∣∣∣ ≤ expE(|ri |)
(n+2)!E and the 

preponderance .n!E = o((n + 1)!E). Consequently, for n large enough, say .n ≥ N , 

. |Rn| < 2dn n!E
(n + 1)!E

s∑
i=1

|Ai ||ri |n+1 < 1

because of (4). As . Rn is an integer, necessarily, for .n ≥ N , .Rn = 0. Finally, . Rn+1
dn+1 −

Rn

dn
(n+1)!E

n!E = 0 implies that, for .n ≥ N , .
∑s

i=1 Air
n+1
i = 0, which implies that all 

the . Ai’s are equal to 0. 
�
Corollary 4 Let E be a subset of . Z for which there are two positive constants C 
and . ε such that, for n large enough, .(n + 1)!E ≥ C (n!E)1+ε. There are at most 
.�1/ε� nonzero rationals r such that .expE(r) is algebraic. 

Proof Suppose that there are . m nonzero rationals .r1, · · · , rm such that . expE(ri) ∈
Q for every .i ∈ [1,m] and that .m > 1

ε
. Fix  some  . ε′ such that .0 < ε′ < ε − 1

m
. By  

the previous theorem, .expE(r1), · · · , expE(rm) are .Q-linearly independent. Write 
.ri = pi/q with .pi ∈ Z and .q ∈ N.
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Following the now classical way of proof, for all integers n large enough 

. 

∣∣∣∣∣∣∣
expE(ri) −

∑n
k=0

n!Eqnpk
i

k!Eqk

n!Eqn

∣∣∣∣∣∣∣
≤ |ri |n+1 expE(|ri |)

(n + 1)!E ≤ 1

(n!Eqn)1+ 1
m

+ε′ .

Since for every .i ∈ [1,m], .∑n
k=0

n!Eqnpk
i

k!Eqk is an integer, by Schmidt’s extension 
of Roth’s theorem [20, Corollary of Theorem 1], at least one of the .expE(ri)’s is 
transcendental. 
�

An immediate consequence of this corollary is 

Corollary 5 Let .P ∈ Z[X] of degree 2 and a be an integer that is not a preperiodic 
point of P . Then, there is at most one nonzero rational such that .expEP,a

(r) is 
algebraic. 

Proof By Proposition 6, there is a positive constant C such that for every .n ∈ N, 
.(n + 1)!EP,a

≥ C(n!EP,a
)7/4. By the previous corollary, there are at most . �4/3� = 1

nonzero rational such that .expEP,a
(r) is algebraic. 
�

Remark 2 Corollary 4 allows to prove Theorem 1 too. 

3 The Factorial Sequence of the Set of Prime Numbers 

Thanks to Definition 1, Bhargava’s factorial sequence .{n!P}n≥0 of the set . P of prime 
numbers was known before its formal introduction (see [4] or [6]). Its elements can 
be easily computed with the formula 

.n!P =
∏
p∈P

p
w
P,p

(n)
where wP, p =

∑
k≥0

⌊ n − 1

(p − 1)pk

⌋
(9) 

and we have the following equivalence: 

n!P = n! eCn+o(n) where C =
∑
p∈P 

ln p 
(p − 1)2 

(Diaz [8]) . (10) 

Remark 3 Sequence (9) is Sequence A053657 of The On-Line Encyclopedia of 
Integer Sequences [19] which begins with .1, 1, 2, 24, 48, 5760, 11520, . . .. It turns  
out that this sequence appears in different contexts, especially: 

– in group theory: .(n + 1)!P is equal to the n-th Minkowski number . Mn, that is, 
the least common multiple of the orders of all finite subgroups of .GLn(Q) (cf. 
Minkowski [14] and Schur [18]).
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– in algebraic topology: the . n!P’s are the denominators of the Laurent polynomials 
forming a regular basis for the Hopf algebroid of stable cooperations for complex 
K-theory (cf. Johnson [9]). 

– in power series expansions: for instance in 

. 

(
− ln(1 − x)

x

)m

=
(+∞∑

k=1

xk

k + 1

)m

. = 1 + m

2
x + m(3m + 5)

24
x2 + · · · =

+∞∑
n=0

Cn(m)

(n + 1)!P
xn

where .Cn(X) ∈ Z[X] is primitive with degree n (cf. [5]). 

Clearly, 

. wP,2(2k) = 1 + wP,2(2k − 1) and, for p �= 2, wP,p(2k) = wP,p(2k − 1).

So that, for . k ≥ 1 :

.(2k)!P = 2 × (2k − 1)!P . (11) 

The following lemma gives the value of all the quotients .
(n+1)!

P
n!
P

of two consecutive 

factorials, that is the value of .
(
n+1
n

)
P
. 

Lemma 1 For every .n ≥ 1, 

.
(2n + 1)!P

(2n)!P
=

∏
p∈P, p−1|2n

p1+vp(2n) and
(2n)!P

(2n − 1)!P
= 2 . (12) 

Proof 

. vp

((
2n + 1

2n

)
P

)
=
∑
k≥0

⌊ 2n

(p − 1)pk

⌋
−
∑
k≥0

⌊ 2n − 1

(p − 1)pk

⌋
.

If .p − 1 � 2n, this difference is zero and, if .p − 1|2n, it is equal to 

. 

⌊ 2n

p − 1

⌋
−
⌊2n − 1

p − 1

⌋
+
∑
k≥1

⌊ 2n

(p − 1)pk

⌋
−
∑
k≥1

⌊ 2n − 1

(p − 1)pk

⌋

. = 1 + vp

(
(

2n

p − 1
)!
)

− vp

(
(

2n

p − 1
− 1)!

)
= 1 + vp

(
2n

p − 1

)
= 1 + vp(2n).

The second equality is already known; this is Formula (11). 
�
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This lemma shows in particular that 

. limn→+∞
n!P

(n + 1)!P
= 1

2
.

We said in the introduction that, whatever the infinite subset E of . Z, for .0 ≤ k ≤ n, 
the binomial coefficient 

. 

(
n

k

)
E

= n!E
k!E(n − k)!E

is an integer. This is obvious because the product of an integer-valued polynomial 
on E of degree k by another of degree .n − k is itself integer-valued with degree n. 
But, in the case of the subset . P, we have a stronger result. 

Lemma 2 Whatever the integers .k1, · · · , kr ∈ N such that . k1 + · · · + kr = n

.
(n + 1)!P

(k1 + 1)!P · · · (kr + 1)!P
∈ N . (13) 

Proof For every .p ∈ P, we have:  

. vp

(
(n + 1)!P

(k1 + 1)!P · · · (kr + 1)!P

)
=
∑
s≥0

⎧⎨
⎩
[

n

(p − 1)ps

]
−

r∑
j=1

[
kj

(p − 1)ps

]⎫⎬
⎭ ≥ 0

since .n =∑r
j=1 kj . 
�

For instance, for every .n ≥ 1, .3!P = 24 divides . 
(n+2)!

P
n!
P

.

4 The Exponential Function Associated to P 

It follows from Formula (9) that 

. expP(x) =
+∞∑
n=0

1

n!P
xn = 1 + x + 1

2
x2 + 1

24
x3 + 1

48
x4 + · · · (14) 

In particular, 

.
5

2
< eP < e . (15)
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Formula (11) leads to 

. expP(x) = 1 + (2 + x)

+∞∑
k=1

1

(2k)!P
x2k−1 . (16) 

Formula (16) shows that 

. expP(x)

⎧⎨
⎩

> 1 for x < −2 or x > 0
= 1 for x = −2 or x = 0
< 1 for −2 < x < 0.

(17) 

Formula (16) shows also that the function .
exp
P

(x)−1
x+2 is odd. Consequently, we have 

the following functional equation 

.(x − 2)(expP(x) − 1) = (x + 2)(expP(−x) − 1) . (18) 

By Corollary 1 and Propositions 2 and 3, we know that, for each integer .d �= 0, 

.expP

(
1
d

)
/∈ Q. Can we say more? Here, Proposition 4 is useless since .τP = 1 as 

easily shown using (10). Nevertheless we can say a little more. 

Proposition 8 If a rational .r �= −2 is of the form . ±1
d

or . ±2
d

where .d ∈ N∗, then 
.expP(r) is irrational. 

Proof The assertion is already known for .r = ±1
d
. The case .r = − 2

d
will follow 

from the case .r = 2
d
thanks to the functional equation (16). Let us assume now that 

.r = 2
d
where .d ∈ N∗. Then, by Formula (16), we have: 

. expP(r) = 1 +
(
1 + 1

d

) +∞∑
n=0

1

(2n + 1)!P

(
2

d

)2n+1

.

Assume that .expP(r) ∈ Q, and hence, that there exist a and .b ∈ N∗ such that 

. 
a

b
= (expP(r) − 1) × d

d + 1
=

+∞∑
n=0

1

(2n + 1)!P

(
2

d

)2n+1

.

For every positive integer . m, let  

.m!
P

∗ =
∏

p∈P, p �=2

p
w
P,p

(m)
.
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Note that .wP,2(2n + 1) = 2n + v2((2n)!) = 3n + v2(n!) = 4n − σ2(n) where 
.σ2(n) denotes the sum of the digits of n in base 2. The last equality follows from the 
classical formula 

. vp(n!) = n − σp(n)

p − 1
.

Thus, we have 

. (2n + 1)!P = 24n−σ2(n) × (2n + 1)!
P

∗ .

Consequently, the following number is a positive integer 

. ak = b × (2d)2k+1 × (2k + 1)!
P

∗

(
a

b
−

k∑
n=0

1

(2n + 1)!P

(
2

d

)2n+1
)

.

Equivalently, 

. ak = b × (2d)2k+1 × (2k + 1)!
P

∗

( +∞∑
n=k+1

1

(2n + 1)!P

(
2

d

)2n+1
)

.

Thus, 

. ak ≤ 4b × (2k + 1)!
P

∗
+∞∑

n=k+1

1

22(n−k)−σ2(n)
× 1

(2n + 1)!
P

∗
.

The inequality .(2n + 1)!
P

∗ ≥ (2k + 3)!
P

∗ implies that 

. ak ≤ b × (2k + 1)!
P

∗

(2k + 3)!
P

∗

+∞∑
m=0

1

22m−σ2(m+k+1)
.

As .σ2(m + k + 1) ≤ σ2(m) + σ2(k) + 1 and .σ2(m) ≤ m, 

. ak ≤ b × 22+σ2(k)
(2k + 1)!

P
∗

(2k + 3)!
P

∗
.

To be able to control the number .σ2(k), we consider integers k of the form .2s−1 and, 

by Formula (12), .v3

(
(2s+3)!

P
∗

(2s+1)!
P

∗

)
= 1 + v3(2s + 2). For every .n ∈ N∗, 2 spans the 

multiplicative group .(Z/3n
Z)× (see [15, Lemma 1.10]); thus there exists a positive 

integer . sn such that .2sn = −2 (mod 3n). Therefore . limn→+∞ v3

(
(2sn+3)!

P
∗

(2sn+1)!
P

∗

)
=

+∞ and the sequence .(a2sn )n≥1 converges to 0. This is a contradiction. 
�
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5 Bernoulli Numbers Associated to P 

For every infinite subset E of . Z, we define the Bernoulli numbers .BE,n by 

.
x

expE(x) − 1
=

+∞∑
n=0

BE,n

n!E xn . (19) 

Consequently, 

. 

(+∞∑
n=0

1

(n + 1)!E xn

) (+∞∑
n=0

BE,n

n!E xn

)
= 1 .

Thus, 

. BE,0 = 1 and, for n ≥ 1,
∑

r+s=n

1

(r + 1)!E
BE,s

s!E = 0 .

Equivalently, for . n ≥ 1

.

n∑
k=0

(
n + 1

k

)
E

BE,k = 0 where

(
n

k

)
E

= n!E
k!E(n − k)!E . (20) 

It is the analogue of the induction formula for the classical Bernoulli numbers. From 
now on, we only consider the Bernoulli numbers associated to the set of prime 
numbers. They are defined either by the equation: 

.
x

expP(x) − 1
=

+∞∑
n=0

BP,n

n!P
xn (21) 

or by the induction formula: 

.BP,0 = 1 et ∀ n ≥ 1
n∑

k=0

(
n + 1

k

)
P

BP,k = 0 . (22) 

The first values are the following: 

. BP,0 = 1 , BP,1 = −1

2
, BP,2 = 5

12
, BP,3 = −5

2
, BP,4 = 103

40
, · · ·

From Eq. (21) and the functional equation (18) satisfied by .expP(x), we deduce:
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Proposition 9 

.∀n ≥ 0 2BP,2n+1 = − (2n + 1)!P
(2n)!P

BP,2n . (23) 

Proof The functional equation may be written: 

. (2 + x) × x

expP(x) − 1
= (2 − x) × x

expP(−x) − 1
.

Thus, 

. (2 + x)
∑
n≥0

BP, n

n!P
xn = (2 − x)

∑
n≥0

BP,n

n!P
(−x)n ,

and by identification: 

. ∀n ≥ 1 2
BP,n

n!P
(1 − (−1)n) = − BP,n−1

(n − 1)!P
(1 + (−1)n−1) .

This leads to Formula (23) which holds also for .n = 0. 
�
On the other hand, the induction formula (22) leads to the following “explicit” 

formula: 

Proposition 10 For every .n ≥ 1, we have: 

.BP,n = n!P ×
n∑

k=1

(−1)k
∑

i1,...,ik≥1
i1+···+ik=n

1

(i1 + 1)!P · · · (ik + 1)!P
. (24) 

Proof The formula holds for .n ≤ 2 : .BP,1 = − 1
2 and .BP,2 = 5

12 . Assume that the 
formula is true up to rank .n − 1. Formulas (22) and (24) up to rank .n − 1 together 
lead to 

. 

BP,n = − n!
P

(n+1)!
P

(
1 +

n−1∑
k=1

(
n+1
k

)
P
k!P

×
k∑

j=1
(−1)j

∑
i1+···+ij =k

1
(i1+1)!

P
···(ij +1)!

P

)
.

that may be written 

.−BP,n

n!P
= 1

(n+1)!P
+

n−1∑
k=1

1

(n+1−k)!P
k∑

j=1

(−1)j
∑

i1+···+ij =k

1

(i1 + 1)!P · · · (ij + 1)!P
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. = 1

(n + 1)!P
+

n−1∑
k=1

k∑
j=1

(−1)j
∑

i1+···+ij =k

1

(i1 + 1)!P · · · (ij + 1)!P(n + 1 − k)!P

. = − 1

(n + 1)!P
+

n−1∑
j=1

(−1)j
n−1∑
k=j

∑
i1+···+ij =k

1

(i1 + 1)!P · · · (ij + 1)!P(n − k + 1)!P

. = 1

(n + 1)!P
+

n−1∑
j=1

(−1)j
∑

i1+···+ij +ij+1=n

1

(i1 + 1)!P · · · (ij + 1)!P(ij+1 + 1)!P

. = 1

(n + 1)!P
+

n∑
j=2

(−1)j+1
∑

i1+···+ij =n

1

(i1 + 1)!P · · · (ij + 1)!P
.

This is Formula (24). 
�
Proposition 11 

.∀ n ≥ 0
(n + 1)!P

n!P
BP,n ∈ Z . (25) 

Proof Formula (24) may also be written: 

.
(n + 1)!P

n!P
BP,n = −1 +

n−1∑
k=2

(−1)k+1
∑

i1,...,ik≥1
i1+···+ik=n

(n + 1)!P
(i1 + 1)!P · · · (ik + 1)!P

(26) 

We can conclude with Lemma 2 which shows that all the fractions of the right hand 
side are integers. 
�

Since .
(2n+2
2n+1

) = 2, a first obvious consequence of assertion (25) is that 
.2BP,2n+1 ∈ Z. In fact, one can say more starting with Formula (26). 

Proposition 12 

.∀n ≥ 0 BP,2n+1 ∈ 1

2
+ Z . (27) 

Proof We know that .2BP,2n+1 ∈ Z, we have to show that this integer is odd. It 
follows from (11) that 

.BP,2n+1 = −1

2
+

n−1∑
k=2

(−1)k+1

2

∑
i1,...,ik≥1

i1+···+ik=2n+1

(2n + 2)!P
(i1 + 1)!P · · · (ik + 1)!P

.
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Thus, we just have to prove that . 
∑

i1,...,ik≥1
i1+···+ik=2n+1

(2n+2)!
P

(i1+1)!
P

···(ik+1)!
P

∈ 2Z(2) .

If at least two of the integers . ij are equal, then the value of the corresponding 
fraction is even. Indeed, assume, for instance, that .i1 = i2. Then 

. 
(2n + 2)!P

(i1 + 1)!P · · · (ik + 1)!P
= (2n + 2)!P

(2i1 + 1)!P(i3 + 1)!P · · · (ik + 1)!P
× (2i1 + 1)!P

(i1 + 1)!2
P

.

By (13), we know that both terms of the product are integers. Moreover, the second 

one is even since .v2

(
(2i1+1)!

P
(i1+1)!2

P

)
= v2((2i1)!) − 2v2(i1!) > 0. 

As to the remaining fractions, we have 

. 
∑

i1,...,ik distinct
i1+···+ik=2n+1

(2n + 2)!P
(i1 + 1)!P · · · (ik + 1)!P

= k!
∑

1≤i1<i2<···<ik
i1+···+ik=2n+1

(2n + 2)!P
(i1 + 1)!P · · · (ik + 1)!P

where .2|k! since .k ≥ 2. 
�
Noticing that, by (27), the left hand side of Formula (23) is the numerator of 

.BP,2n+1, we have the following relations between numerators and denominators of 
the Bernoulli numbers. 

Proposition 13 For every .n ≥ 0, 

. num(BP,2n+1) × den(BP,2n) = − (2n + 1)!P
(2n)!P

× num(BP,2n) .

In particular, 

• . num(BP,2n) | num(BP,2n+1)

• if .p − 1|2n then, either .p | den(BP,2n), or . p | num(BP,2n+1),

• if .p | den(BP,2n), then .p − 1 | 2n and .vp(den(BP,2n)) ≤ 1 + vp(2n), 
• for every .m ≥ 1, . v2(den(BP,m)) = 1 + v2(m) .

Proof It suffices to recall that, by (12), p divides .
(2n+1)!

P
(2n)!
P

if and only if . p − 1

divides 2n, and then, .vp

(
(2n+1)!

P
(2n)!
P

)
= 1 + vp(2n). For the last assertion, note that 

the numerators of all the Bernoulli numbers are odd. 
�
Examples 3 For .p = 3 and .2n = 4, .p − 1|4, .p � den(B4), but .p|num(B5). 

For .p = 5 and .2n = 2, .p|num(B3), but .p − 1 � 2, 

Thanks to Proposition 13, Formula  (27) is more precise for prime indices. 

Corollary 6 If p is an odd prime number, then 

.2BP,p ≡ 1 (mod p) . (28)
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Proof Consider Formula (20) for . n = p :

. 2BP,p + 1 +
p−1∑
k=1

(
p + 1

k

)
P

BP,k = 0 .

For .2 ≤ k ≤ p − 1, we have  

. vp

((
p + 1

k

)
P

)
= vp((p + 1)!P) − vp(k!P) − vp((p + 1 − k)!P) = 1,

while, for .1 ≤ k ≤ p−2, following Formula (27) and Proposition 13, .vp(BP,k) ≥ 0. 
Thus, 

. 2BP,p + 1 +
(

p + 1

p

)
P

BP,1 +
(

p + 1

p − 1

)
P

BP,p−1 ≡ 0 (mod p) .

Moreover, 

. 

(
p + 1

p

)
P

BP,1 = 2 × (−1

2
) = −1 et

(
p + 1

p − 1

)
P

= p!P
(p − 1)!P

.

Consequently, 

. 2BP,p ≡ − p!P
(p − 1)!P

BP,p−1 (mod p) .

By Formula (20) again, we have:  

. 
p!P

(p − 1)!P
BP,p−1 + 1 +

p−2∑
k=1

(
p

k

)
P

BP,k = 0 .

For .1 ≤ k ≤ p − 2, .vp(BP,k) ≥ 0 and .vp(
(
p
k

)
P
) = 1. Thus, 

. 
p!P

(p − 1)!P
BP,p−1 + 1 ≡ 0 and 2BP,p ≡ 1 (mod p) .


�
The classical Bernoulli numbers have the following property: 

∀ n ≥ 1 ∀ a ∈ Z an (an − 1) 
Bn 
n 

∈ Z (Sylvester [22]) .
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We have a similar result for the .BP,n’s if we replace the integer .n = n!
(n−1)! by the 

integer .
n!
P

(n−1)!
P
. 

Proposition 14 

. ∀ n �= 2 ∀ a ∈ Z an(a2�n/2� − 1)
(n − 1)!P

n!P
BP,n ∈ Z .

Proof Fix .n �= 2, .a ∈ Z, and .p ∈ P. Write . An = an(a2�n/2� − 1)

• Assume that .n = 2m (.m �= 1). 

As .
(2m−1)!

P
2m!
P

= 1
2 , we have to show that .

1
2 A2m × BP,2m ∈ Z(p). 

. ◦ If .p − 1 � 2m, then .vp(BP,2m) ≥ 0, and hence, . 12 A2m × BP,2m ∈ Z(p). 

. ◦ If .p − 1 | 2m, then .vp(BP,2m) ≥ −(1 + vp(2m)) and it is enough to prove 

. (∗) v2(A2m) ≥ 2 + v2(2m) and, for p �= 2, vp(A2m) ≥ 1 + vp(2m).

• Assume that .n = 2m + 1. 

As .BP,2m+1 ∈ 1
2 + Z, we have to show that . 12 A2m+1

(2m)!
P

(2m+1)!
P

∈ Z(p). 

. ◦ If .p − 1 � 2m, then .vp(
(2m)!
P

(2m+1)!
P

) ≥ 0, and hence, . 12 A2m+1
(2m)!
P

(2m+1)!
P

∈ Z(p). 

. ◦ If .p − 1|2m, then .vp(
(2m)!
P

(2m+1)!
P

) = −(1 + vp(2m)) and, as in the even case, 

it is enough to prove that 

. (∗) v2(A2m+1) ≥ 2 + v2(2m) and, for p �= 2, vp(A2m+1) ≥ 1 + vp(2m).

• It remains to prove that inequalities (*) are satisfied when .p − 1|2m. Let us write 
.2m = (p − 1)pαr where .α = vp(2m). 

. ◦ If .p | a, .vp(An) ≥ n ≥ 2m ≥ 2 + vp(2m). 

. ◦ If .p � a, then .vp(ap−1 − 1) ≥ 1 and, by Lemma 3 below, 
– if .p �= 2, .vp(a2m − 1) = vp(a((p−1)q)×pα − 1) ≥ 1 + α = 1 + vp(2m), 
– if .p = 2, .v2(a2m − 1) ≥ 2 + v2(2m). 
�

Lemma 3 ([7]) For every integer a and every prime p, 

. vp(a − 1) ≥ α ⇒ vp(ap − 1) ≥ 1 + α .

Moreover, 

.v2(a − 1) ≥ 1 ⇒ v2(a
2m − 1) ≥ 2 + v2(2m) .
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Proof One has 

. vp(ap − 1) = vp(((a − 1) + 1)p − 1) = vp

(
p∑

k=1

(
p

k

)
(a − 1)k

)
≥ 1+ vp(a − 1).

The inequality .v2(a − 1) ≥ 1 implies that .v2(a2 − 1) ≥ 3 and . v2(a2m − 1) ≥
3 + v2(m) = 2 + v2(2m). 
�

6 Generalized Bernoulli Polynomials 

Similarly, we may also consider generalized Bernoulli polynomials associated to a 
subset E of . Z as defined by the power series 

.
x expE(tx)

expE(x) − 1
=
∑
n≥0

BE,n(t)
xn

n!E (29) 

From (1) and (21), we easily deduce that the nth Bernoulli polynomial associated to 
E is equal to 

. BE,n(X) =
n∑

k=0

(
n

k

)
E

BE,kX
n−k .

As in the classical case, we have 

. BE,n(0) = BE,n (n ≥ 0) , BE,0(X) = 1 and BE,n(1) = BE,n (n �= 1).

Following Alkmvist and Meurman [2], the classical Bernoulli polynomials 
satisfy: .Bn(X) − Bn(0) ∈ Int(Z). In fact, for all positive integers a and b, 
.bn
(
Bn

(
a
b

)− Bn(0)
) ∈ Z (see also [21]). We have a similar property, in fact a 

much stronger property, for .BP,n(X). 

Proposition 15 For every n, 

. BP,n(X) − BP,n(0) =
n−1∑
k=0

(
n

k

)
P

BP,k Xn−k ∈ Z[X] .

Proof We have to prove that, for .0 ≤ k ≤ n− 1, .
(
n
k

)
P

BP,k ∈ Z. By Proposition 11, 
we know that .

(
k+1
k

)
P

BP,k ∈ Z. It is then easy to conclude with Lemma 4 below. 
�

Lemma 4 For .0 ≤ k ≤ n, .
(k+1)!

P
k!
P

divides .
(
n+1
k

)
P

.
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Proof The assertion is obvious for .k = 0 or n. Thus, we assume now that . 0 < k <

n. Let us prove first that 

.∀ 1 ≤ k ≤ n 2
∣∣∣
(

n + 1

k

)
P

(30) 

We know that .v2((n + 1)!P) = n + v2(n!). Consequently, 
. v2(
(
n+1
k

)
P
) = v2((n + 1)!P) − v2(k!P) − v2((n + 1 − k)!P)

. = 1 + v2(n!) − v2((k − 1)!) − v2((n − k)!)

. ≥ 1 + v2(n!) − v2((n − 1)!) = 1 + v2(n).

Consider now the following equalities of fractions: 

. 

(
n + 1

k

)
P

/
(k + 1)!P

k!P
=
(

n + 1

k + 1

)
P

/
(n + 1 − k)!P

(n − k)!P
=
(

n + 2

k + 1

)
P

/
(n + 2)!P
(n + 1)!P

We know that, if n is odd, then .(n + 1)!P = 2× n!P. Thus, the denominators of the 
fractions are respectively equal to 2 when .k + 1, .n + 1 − k and n are respectively 
even. All the possible cases having been considered, we can conclude with (30). 
�

The first Bernoulli polynomials associated to . P are as follows: 

. BP,1(X) = X − 1

2
, BP,2(X) = X2 −X + 5

12
, BP,3(X) = X3 −6X2 +5X − 5

2
,

. BP,4(X) = X4 − X3 + 5X2 − 5X + 103

40
, · · ·

7 A Subset E Such That k!E = (k + 1)!E for Infinitely 
Many k 

For each subset E of . Z and each .p ∈ P, denote by . Ep the topological closure for the 
p-adic topology of E in .Z(p). It is clear from Definition 1 that .n!E Z(p) = n!Ep Z(p), 
or equivalently, writing .n!E =∏p∈P pwE, p(n), that we have .wE,p(n) = wEp,p(n). 

From now on, we let .E = P ∪ 2P. 

Lemma 5 For .E = P ∪ 2P, we have: 

(a) . Ep = {p, 2p} ∪ (Z(p) \ pZ(p)) (p �= 2),
(b) . E2 = {4} ∪ (Z(2) \ 4Z(2)).

Proof Thanks to Dirichlet’s theorem about arithmetical sequences, it is known that 
.Pp = {p} ∪ (Z(p) \ pZ(p) ) (see [4] or [6]). Assertion (a) follows from the fact 
that .2P ⊂ {2p} ∪ (Z \ pZ) and Assertion (b) from .P2 = {2} ∪ (Z(2) \ 2Z(2)) and 
.2P2 = {4} ∪ (2Z(2) \ 4Z(2)). 
�
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Lemma 6 For every odd prime p, we have 

. wE,p(n) =
⎧⎨
⎩

0 if 0 ≤ n < p

1 if p ≤ n < 2p
h + vp(h!) if 2 + (p − 1)h ≤ n ≤ p + (p − 1)h for h ≥ 2.

In particular, if .n �= p is odd, .wE,p(n) = wE,p(n − 1). 

Proof Let . Ep = ∪p−1
j=0Ej where E0 = {p, 2p} and Ej = j+pZ(p) for 1 ≤ j < p.

Then .wE0,p(0) = 0, .wE0,p(1) = 1 and, for .n ≥ 2, .wE0,p(n) = +∞ and, for . 1 ≤
j ≤ p−1, .wEj , p(n) = wpZ(p), p

(n) = n+vp(n!). As for .0 ≤ i < j ≤ p−1, . x ∈ Ei

and .y ∈ Ej , we have  .vp(x − y) = 0; the sequence .{wE,p(n)}n≥0 is the increasing 
shuffle of the p previous sequences, that is, the disjoint union of these sequences 
sorted into a nondecreasing order [10, §2]. Noticing that all the p sequences begin 
with 0 and 1, we obtain the announced formula. 

The last assertion is an obvious consequence since an odd integer n distinct from 
p is strictly greater than the lower bound of the interval to which it belongs, and 
hence, n and .n − 1 belong to the same interval. 
�
Lemma 7 The sequence .{wE,2(n)}n≥0 is the increasing shuffle of the sequences 
.{n + v2(n!)}n≥0 and .{0} ∪ {2m − 1 + v2((m − 1)!)}m≥1 . 

In particular, if n and . m are two integers such that 

. 2n − σ2(n) = 3m − 2 − σ2(m − 1)

where .σ2(k) denotes the sum of the digits of k in base 2, then 

. wE,2(n + m + 1) = wE,2(n + m).

Proof Let us write .E2 = {4} ∪ (1 + 4Z(2)) ∪ (2 + 4Z(2)) ∪ (3 + 4Z(2)). As  . (1 +
4Z(2)) ∪ (3 + 4Z(2)) = 1 + 2Z(2), we have  

. w(1+4Z(2))∪(3+4Z(2)), 2
(n) = w2Z(2), 2

(n) = n + v2(n!) = 2n − σ2(n).

On the other hand, as .{4} ∪ (2 + 4Z(2)) = 2 × ({2} ∪ (1 + 2Z(2))
)
, we have  

. w{4}∪(2+4Z(2)), 2
(m) = m + w{2}∪(1+2Z(2)), 2

(m) = m + w2Z(2), 2
(m − 1)

. = 2m − 1 + wZ(2), 2(m − 1) = 2m − 1 + v2((m − 1)!) = 3m − 2 − σ2(m − 1).

The last assertion of the proposition follows from the fact that, in the shuffle of the 
two sequences, .wE, 2(n + m) belongs to the constant subsequence formed by the 
values equal to .wE, 2(n + m + 1). 
�
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Proposition 16 Let .E = P ∪ 2P. There are infinitely many integers n such that 
.n!E = (n − 1)!E , namely, for instance, the integers .5F 2

k + 6 where . Fk denotes the 
kth Fermat number and k is divisible by 4. 

Proof Let .n = 3 (42
k + 2 · 22k + 2) and .m = 2 (42

k + 2 · 22k + 2). For  .k ≥ 2, 
.σ2(n) = 6 and .σ2(m − 1) = 4. Thus, .3m − 2n = 0 = 2 + σ2(m − 1) − σ2(n). 
Consequently, by Lemma 7, .w2(n + m + 1) = w2(n + m). 

Noticing that .n + m + 1 = 5F 2
k + 6 is odd and, for .k ≡ 0 (mod 4), is also  

divisible by 11, we thus have by Lemma 6 that .wp(5F 2
k + 6) = wp(5F 2

k + 5) for 
every odd prime p. 
�
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1 Introduction 

All rings are commutative with .1 �= 0, and all ring extensions .R ⊆ S are unitary 
(i.e., R and S have the same identity element). In this paper, we study several 
generalizations of the integral closure of R in S by replacing monic polynomials 
in .R[X] with other subsets of .R[X]. Examples include the algebraic closure, root 
closure, .(2, 3)-closure, and complete integral closure of R in S. 

In Sect. 2, we define the .S -closure of R in S for .S ⊆ R[X] as . RS = {s ∈
S | f (s) = 0 for some .f (X) ∈ S } and give many results and examples. In Sect. 3, 
we give a more general definition of closure which includes the complete integral 
closure and .(2, 3)-closure. For .S ⊆ P(

∏
α∈� R[X]), we define the .S-closure of R 

in S as .RS = {s ∈ S | for some .A ∈ S and .(fα(X)) ∈ A, fα(s) = 0 for every 

.α ∈ �}. For .S ⊆ R[X], we have .R
S = R

S
, where .S = {S } ⊆ P(R[X]). 

Let . N, . Z, . Q, . R, and .Fpn denote the set of positive integers, the ring of integers, 
the field of rational numbers, the field of real numbers, and the finite field with 
. pn elements, respectively. For a commutative ring R, let  .Z(R) be the set of zero-
divisors of R, .Reg(R) = R\Z(R) the set of regular elements of R, . T (R) = RReg(R)

D. D. Anderson (�) 
Department of Mathematics, University of Iowa, Iowa City, IA, USA 
e-mail: dan-anderson@uiowa.edu 

D. F. Anderson 
Department of Mathematics, The University of Tennessee, Knoxville, TN, USA 
e-mail: danders5@utk.edu 

© Springer Nature Switzerland AG 2023 
J.-L. Chabert et al. (eds.), Algebraic, Number Theoretic, and Topological Aspects 
of Ring Theory, https://doi.org/10.1007/978-3-031-28847-0_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28847-0protect T1	extunderscore 3&domain=pdf

 885 52970 a 885 52970
a
 
mailto:dan-anderson@uiowa.edu
mailto:dan-anderson@uiowa.edu
mailto:dan-anderson@uiowa.edu

 885 56845
a 885 56845 a
 
mailto:danders5@utk.edu
mailto:danders5@utk.edu
https://doi.org/10.1007/978-3-031-28847-0_3
https://doi.org/10.1007/978-3-031-28847-0_3
https://doi.org/10.1007/978-3-031-28847-0_3
https://doi.org/10.1007/978-3-031-28847-0_3
https://doi.org/10.1007/978-3-031-28847-0_3
https://doi.org/10.1007/978-3-031-28847-0_3
https://doi.org/10.1007/978-3-031-28847-0_3
https://doi.org/10.1007/978-3-031-28847-0_3
https://doi.org/10.1007/978-3-031-28847-0_3
https://doi.org/10.1007/978-3-031-28847-0_3
https://doi.org/10.1007/978-3-031-28847-0_3


38 D. D. Anderson and D. F. Anderson

the total quotient ring of R, and .A∗ = A \ {0} for .A ⊆ R. The power set of a set A 
will be denoted by .P(A), and .X, Y will be indeterminates. If .R ⊆ S is an extension 
of commutative rings and .R = R1 × · · · × Rn, then also .S = S1 × · · · × Sn with 
each .Ri ⊆ Si a unitary ring extension since .R ⊆ S is unitary. Let .{Rα}α∈� be a 
family of commutative rings and .R = ∏

α∈� Rα . We will often identify .R[X] as a 
subring of .

∏
α∈�(Rα[X]); it is a proper subring precisely when . � is infinite. For an 

extension .R ⊆ S of commutative rings and .s ∈ S, let  . degR(s) = min{degf (X) |
0 �= f (X) ∈ R[X] and .f (s) = 0}; if no such .f (X) exist, we let .degR(s) = ∞. 
In a similar manner, we define .mdegR(s) (resp., .rdegR(s)) by restricting to monic 
polynomials (resp., polynomials whose leading coefficient is in .Reg(R)) in .R[X]. 

General references for ring theory are [4] and [5]. For a detailed study of root 
closure, see the survey article [2]. 

2 The S -Closure 

Let .R ⊆ S be a (unitary) extension of commutative rings. As usual, an element 
.s ∈ S is integral over R if .f (s) = 0 for some monic polynomial .f (X) ∈ R[X]. 
The set .R = {s ∈ S | s is integral over R}, called the integral closure of R in S, is  
a subring of S containing R, and the extension .R ⊆ R enjoys many nice properties 
concerning prime ideals of the two rings (see [4, Sections 11 and 12] and [5, Section 
1.6]). If .S = T (R), we just call . R the integral closure of R. More generally, an 
element .s ∈ S is algebraic over R if .f (s) = 0 for some .0 �= f (X) ∈ R[X]. Let  
.R

alg = {s ∈ S | s is algebraic over R} be the algebraic closure of R in S. Then . R
alg

contains R, but unlike the integral closure, .R
alg

need not be a subring of S. Indeed, 

we can have .a, b ∈ R
alg
, but  .a ± b, ab /∈ R

alg
when R is not an integral domain 

(see Example 2.12(a) and Corollary 2.6). 
Let .S ⊆ R[X] (we usually assume that .∅ �= S ⊆ R[X]∗). We define the .S -

closure of R in S as .RS = {s ∈ S | f (s) = 0 for some .f (X) ∈ S }. We have  

.R
S ⊆ S, but .R

S
need not be a subring of S, need not contain R, and may even be 

empty (e.g., .R
S = ∅ when .R = Z ⊆ Q = S and .S = {X2 + 1}). We say that 

R is .S -closed in S if .RS ⊆ R, and R is .S -closed if .R
S ⊆ R when .S = T (R). 

Thus .R = R
S

for .S = {f (X) ∈ R[X] | f (X) monic. }, while .Ralg = R
S

for 
.S = R[X]∗. 

Note that we may have .∅ �= R
S

� R (e.g., if .R = Z ⊆ Q = S and . S =
{X2 − n | n ∈ N}, then .RS = R∗

� R). One way around this would be to define 

.S∗ = S ∪ {X − r | r ∈ R}. Then .R ⊆ R
S∗ = R ∪ R

S
(see Example 2.22(b)). 

Another way would be to consider the ring .R[RS ], the subring of S generated by 
.R ∪ RS , i.e., the smallest subring of S containing .R ∪ RS . 

For .∅ �= T ⊆ R∗, let  .ST = {f (X) ∈ R[X] | the leading coefficient of . f (X)

is in . T } and .RT = R
ST . Then .R

T = R for .{1} ⊆ T ⊆ U(R), while .R
T = R

alg
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for .T = R∗. For  .T = Reg(R), we define the regular closure of R in S as . Rreg =
R
Reg(R)

. If  R is an integral domain, then .SReg(R) = R[X]∗. Thus .R
reg = R

alg
when 

R is an integral domain. Clearly, .R ⊆ R
T
, but  . R

T
need not be a subring of S (see 

Theorems 2.4, 2.5, and Example 2.7). 
As another example of .S -closure, let .S = {Xn − r | n ∈ N, r ∈ R}. Then 

.R
rt = R

S = {s ∈ S | sn ∈ R for some .n ∈ N} is the root closure of R in S. More  

generally, for a fixed .n ∈ N, let .Sn = {Xn − r | r ∈ R} and . R
rtn = R

Sn = {s ∈ S |
sn ∈ R} be the n-root closure of R in S. Thus . R ⊆ R

rtn ⊆ R
rt ⊆ R ⊆ R

reg ⊆ R
alg

for every .n ∈ N. Also, note that .R
rt1 = R, .R

rtn ⊆ R
rtkn for every .k, n ∈ N, and 

.R
rt = ⋃

n∈N R
rtn = R

S
, where .S = ⋃

n∈NSn (cf. Theorem 2.21(e)). Even more 

generally, for .∅ �= T ⊆ N, let  .R
rtT = {s ∈ S | sn ∈ R for some .n ∈ T }. Then 

.R
rtT = ⋃

n∈T R
rtn = R

⋃
n∈T Sn (cf. Theorem 2.21(e) again). 

More generally, suppose that A is only a subset of S. Then we define . A[X] =
{f (X) ∈ S[X] | f (x) = anX

n + · · · + a0 with every .ai ∈ A} and . Aalg = {s ∈ S |
f (s) = 0, where .0 �= f (X) ∈ A[X]}. For example, . R

alg
alg

= {s ∈ S | f (s) = 0

for some .0 �= f (X) = anX
n + · · · + a0 with every .ai ∈ R

alg}. In a similar manner, 

we can define .A
reg = A

Reg(A)
, .A

rt = {s ∈ S | sn ∈ A for some .n ∈ N}, and 
.A

rtn = {s ∈ S | sn ∈ A} for any .A ⊆ S. 
We next state some well-known results concerning integral closure. 

Theorem 2.1 Let .R ⊆ S be an extension of commutative rings and . R the integral 
closure of R in S. 

(a) . R is a subring of S containing R and .R = R. 
(b) Let T be a multiplicatively closed subset of R. Then .RT = RT , the integral 

closure of . RT in . ST . 
(c) .R[X] = R[X], the integral closure of .R[X] in .S[X]. 
(d) Let I be an ideal of S. Then .R/(I ∩ R) ⊆ R/(I ∩ R), the integral closure of 

.R/(I ∩ R) in . S/I . 
(e) Let .{Rα ⊆ Sα | α ∈ �} be a family of extensions of commutative rings, . R =∏

α∈� Rα , and .S = ∏
α∈� Sα . Then .R ⊆ ∏

α∈� Rα . Moreover, . R = ∏
α∈� Rα

when . � is finite. 

Proof (a)–(c) are well known and may be found in almost any book on commutative 
algebra; see, for example, [4, Proposition 10.2 and Theorem 10.7, pp. 86-87]. 

(d) We have .R/(I ∩ R) ⊆ R/(I ∩ R) ⊆ S/I . Let .x ∈ R and . x = x + (I ∩ R) ∈
R/(I ∩ R). Then .xn + rn−1x

n−1 + · · · + r0 = 0 for some .ri ∈ R with every 
.ri ∈ R/(I ∩ R); so  .xn + rn−1x

n−1 + · · · + r0 = 0, that is, . x is integral over 
.R/(I ∩ R). Thus .x ∈ R/(I ∩ R); so .R/(I ∩ R) ⊆ R/(I ∩ R). 

(e) Let .s = (sα) ∈ R ⊆ ∏
α∈� S. Then .f (s) = 0, where . f (X) ∈ R[X] ⊆∏

α∈�(Rα[X]) is monic of degree n. Thus .f (X) = (fα(X)), where every . fα(X) ∈
Rα[X] is monic of degree n. Then .fα(sα) = 0 for every .α ∈ �; so  .sα ∈ Rα for 
every .α ∈ �. Hence .s = (sα) ∈ ∏

α∈� Rα; so .R ⊆ ∏
α∈� Rα .
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Suppose that . � is finite, say .Ri ⊆ Si , .i = 1, . . . , n. Then . R = R1 × · · · ×
Rn ⊆ S1 × · · · × Sn = S. For  .si ∈ Ri , let  .fi(si) = 0, where . fi(X) ∈ Ri[X]
is monic of degree . m. For  .j �= i, .1 ≤ j ≤ n, let  .fj (X) = Xm. Then . f (X) =
(f1(X), . . . , fn(X)) ∈ R[X] is monic of degree . m and . f (0, . . . , 0, si , 0, . . . , 0) =
0; so  .(0, . . . , 0, si , 0, . . . , 0) ∈ R. If  .si ∈ Ri for .i = 1, . . . , n, then . (s1, . . . , sn) =
(s1, 0, . . . , 0) + (0, s2, 0, . . . , 0) + · · · + (0, . . . , 0, sn) ∈ R since . R is a subring of 
S. Thus .R1 × · · · × Rn ⊆ R; so .R = R1 × · · · × Rn. ��

The following example shows that the inclusions in parts (d) and (e) of 
Theorem 2.1 may be strict. 

Example 2.2 

(a) (We may have .R/(I ∩ R) � R/(I ∩ R) in Theorem 2.1(d).) Let . R = Z ⊆
Z[X] = S, and .I = (X2); so .R/(I ∩ R) = Z ⊆ Z[X]/(X2) = S/I . Then . R =
Z; so  .R/(I ∩ R) = Z/((X2) ∩ Z) = Z, but  .R/(I ∩ R) = S/I = Z[X]/(X2). 
Thus .R/(I ∩ R) � R/(I ∩ R). 

(b) (For . � infinite, we may have .
∏

α∈� Rα �
∏

α∈� Rα in Theorem 2.1(e).) Let 
.Rn = F2 � F2n = Sn for every .n ∈ N, and .R = ∏

n∈N F2 �
∏

n∈N F2n = S. 
Let .tn ∈ F2n with .〈tn〉 = F

∗
2n ; so the minimal polynomial for . tn (over . F2) has 

degree n. Let  .t = (tn)n∈N. Then every .tn ∈ F2n = F2; so  . t ∈ ∏
n∈N F2n =

∏
n∈N F2. But .t /∈ R. Thus .

∏
n∈N Rn �

∏
n∈N Rn. 

The next result identifies .
∏

α∈� Rα as a subset of .
∏

α∈� Rα and recovers the 
“moreover” statement in Theorem 2.1(e). 

Theorem 2.3 Let .{Rα ⊆ Sα | α ∈ �} be a family of extensions of commutative 
rings, .R = ∏

α∈� Rα , and .S = ∏
α∈� Sα . Then . R = {(sα) ∈ S | {mdegRα (sα)}α∈�

is bounded.} ⊆ ∏
α∈� Rα . 

Proof Let .T = {(sα) ∈ S | {mdegRα (sα)}α∈� is bounded. }. Then the proof of 
Theorem 2.1(e) shows that .R ⊆ T . For the reverse inclusion, let .s = (sα) ∈ T , and 
for every .α ∈ �, let  .fα(sα) = 0 for a monic .fα(X) ∈ Rα[X] with . deg(fα(X)) =
nα ≤ N . Then .f (X) = (XN−nαfα(X)) ∈ R[X] is monic of degree N and . f (s) =
0. Thus .s ∈ R; so .T ⊆ R. Hence .R = T . ��

We have already observed several of the inclusions in the following theorem. 

Theorem 2.4 Let .∅ �= T1 ⊆ T2 ⊆ R∗ and .n ∈ N. Then . R ⊆ R
rtn ⊆ R

rt ⊆ R ⊆
R

T1 ⊆ R
T2 ⊆ R

alg
. In particular, .R ⊆ R

rt ⊆ R ⊆ R
reg ⊆ R

alg
. 

Proof Clearly .R ⊆ R
rtn ⊆ R

rt ⊆ R and .R
T1 ⊆ R

T2 ⊆ R
alg
. Suppose that .s ∈ R; 

so .f (s) = 0, where .f (X) ∈ R[X] is monic. Then .(tf )(s) = 0 for every .t ∈ T1, and 

.tf (X) ∈ ST1 ; so .s ∈ R
T1 . Thus .R ⊆ R

T1 ; so . R ⊆ R
rtn ⊆ R

rt ⊆ R ⊆ R
T1 ⊆ R

T2 ⊆
R
alg
. 

The “in particular” statement is clear. ��
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We next show that .R
reg

, like . R, but unlike .R
alg
, . R

rt
, and .R

rtn is always a subring 
of S (see Examples 2.12(a) and 2.14). In the next several results, by the usual abuse 
of notation, we let .RT ∩ S = {s ∈ S | st/t ∈ RT for some .t ∈ T }. 
Theorem 2.5 Let .∅ �= T ⊆ Reg(R) be multiplicatively closed. Then .R

T = RT ∩S; 

so . R
T
is a subring of S. In particular, .R

reg = T (R) ∩ S; so .R
reg

is a subring of S. 

Proof For notational convenience, we assume that .1 ∈ T . Let  .s ∈ R
T
, say  . f (s) =

0, where .f (X) = tXn + an−1X
n−1 + · · · + a0 ∈ R[X] and .t ∈ T . Then . f (X)/t

is monic over . RT . Thus .s/1 ∈ ST is integral over . RT ; so  .s ∈ RT ∩ S. Hence 

.R
T ⊆ RT ∩ S. 
For the reverse inclusion, let .s ∈ RT ∩ S. Then .s/1 ∈ ST is integral over . RT ; 

so .s/1 satisfies a monic polynomial .f (X) ∈ RT [X] of degree .n ≥ 1. Thus . (tsn +
an−1s

n−1 + · · · + a0)/1 = 0/1 for some .t ∈ T and .ai ∈ R, and hence . (t t ′)sn +
t ′an−1s

n−1 + · · · + t ′a0 = 0 for some .t ′ ∈ T . Thus .s ∈ R
T
since .t t ′ ∈ T ; so  

.RT ∩ S ⊆ R
T
. Hence .R

T = RT ∩ S. 
The “in particular” statement is clear since .Reg(R) is always multiplicatively 

closed. ��
Corollary 2.6 Let D be an integral domain with quotient field K and .D ⊆ S. Then 

.D
alg = K ∩ S is a subring of S, where . K is the integral closure of K in . SD∗ . 

The following example shows that the “multiplicatively closed” hypothesis is 
needed in Theorem 2.5. 

Example 2.7 Let .R = Z ⊆ Q = S and .T = {2} ⊆ Reg(Z) = Z
∗. Then . R ⊆ R

T

and .1/2 ∈ R
T
, but .1/4 = 1/2 · 1/2 �∈ R

T
. Thus . R

T
is not a subring of S. 

However, we may have . R
T
a subring of  S when T is not multiplicatively closed. 

For example, let .R = Z ⊆ Q = S and .T = {−n | n ∈ N} ⊆ Reg(R). Then T is not 
multiplicatively closed, but .R

T = R
reg = S. 

We next show that .R
reg

is always .S
Reg(R

reg
)
-closed. 

Theorem 2.8 

(a) Let .R ⊆ S be an extension of commutative rings. Then .

(
R
reg

)reg
= R

reg
. 

(b) Let .Ri ⊆ Si , .i = 1, . . . , n, be extensions of commutative rings and . R = R1 ×
· · · × Rn ⊆ S1 × · · · × Sn = S. Then .R

reg = R1
reg × · · · × Rn

reg
. 

Proof 

(a) By Theorem 2.5, .R
reg = T (R) ∩ S and .R

reg ⊆
(
R
reg

)reg
= T (R

reg
) ∩ S. Thus 

.

(
R
reg

)reg
= T (R

reg
) ∩ S = T (R) ∩ S ∩ S ⊆ T (R) ∩ S = T (R) ∩ S = R

reg
, 

and hence .

(
R
reg

)reg
= R

reg
.
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(b) Observe that for . f (X) = (f1(X), . . . , fn(X)) ∈ R[X] = R1[X] × · · · ×
Rn[X], .f (X) ∈ SReg(R) ⇔ deg f1(X) = · · · = deg fn(X) and every 
.fi(X) ∈ SReg(Ri). So  .s = (s1, . . . , sn) ∈ R

reg ⇒ every .si ∈ Ri
reg

. Thus 
.R

reg ⊆ R1
reg × · · · × Rn

reg
. Next, suppose that .si ∈ Ri

reg
, with .fi(si) = 0, 

where .fi(X) ∈ SReg(Ri). For  .j �= i, .1 ≤ j ≤ n, let  .fj (X) = Xm, where 
.m = deg fi(X). Then .f (X) = (f1(X), . . . , fn(X)) ∈ SReg(R) has degree . m
and .f (0, . . . , 0, si , 0, . . . , 0) = 0; so .(0, . . . , 0, si , 0, . . . , 0) ∈ R

reg
. Since . R

reg

is a subring of S by Theorem 2.5, if  .si ∈ Ri
reg

for .i = 1 ≤ i ≤ n, then 
.(s1, . . . , sn) = (s1, 0, . . . , 0) + (0, s2, 0, . . . , 0) + · · · + (0, . . . , 0, sn) ∈ R

reg
. 

Thus .R1
reg × · · · × Rn

reg ⊆ R
reg

, and hence .R
reg = R1

reg × · · · × Rn
reg

. 
��

Example 2.2(b) also shows that we may have .
∏

α∈� Rα
reg

�
∏

α∈� Rα
reg

when 

. � is infinite. The next result identifies .
∏

α∈� Rα
reg

as a subset of .
∏

α∈� Rα
reg

and 
recovers Theorem 2.8(b). 

Theorem 2.9 Let .{Rα ⊆ Sα | α ∈ �} be a family of extensions of commutative 
rings, .R = ∏

α∈� Rα , and .S = ∏
α∈� Sα . Then . R

reg = {(sα) ∈ S |
{rdegRα (sα)}α∈� is bounded.} ⊆ ∏

α∈� Rα
reg

. 

Proof The proof is similar to that of Theorem 2.3, but replace .mdeg with rdeg. ��
It is interesting to compare the following theorem with Theorem 2.1(e) and 

Example 2.2(b); being integral versus algebraic behaves very differently with 
respect to direct products. 

Theorem 2.10 Let .{Rα ⊆ Sα | α ∈ �} be a family of commutative ring extensions, 
.R = ∏

α∈� Rα , and .S = ∏
α∈� Sα . Then .s = (sα) ∈ S is algebraic over R if and 

only if .sβ ∈ Sβ is algebraic over . Rβ for some .β ∈ �. 

Proof . (⇒) Suppose that s is algebraic over R; so  .f (s) = 0, where . 0 �= f (X) ∈
R[X] ⊆ ∏

α∈�(Rα[X]). Since .0 �= f (X) = (fα(X))α∈� with every . fα(X) ∈
Rα[X], we have  .fβ(X) �= 0 for some .β ∈ �. Thus .fβ(sβ) = 0 gives that . sβ is 
algebraic over . Rβ . 

.(⇐) Suppose that .s = (sα) ∈ S and .sβ ∈ Sβ is algebraic over . Rβ for some 
.β ∈ �, say  .fβ(sβ) = 0, where .0 �= fβ(X) ∈ Rβ [X]. For  .α ∈ � \ {β}, let  
.fα(X) = 0, and then let .f (X) = (fα(X)). Thus .0 �= f (X) ∈ R[X] and .f (s) = 0; 
so s is algebraic over R. ��
Corollary 2.11 Let .{Rα ⊆ Sα | α ∈ �} be a family of commutative ring extensions, 
.R = ∏

α∈� Rα , and .S = ∏
α∈� Sα . Then .R

alg = ⋃
α∈� Aα , where . Aα = ∏

β∈� Tβ

with .Tβ = Sβ if .β �= α and .Tα = Rα
alg

. In particular, if .Ri ⊆ Si , .i = 1, . . . , n, are  

extensions of commutative rings and .R = R1 × · · · × Rn, then . R
alg = R1

alg × S2 ×
· · · × Sn ∪ S1 × R2

alg × S3 × · · · × Sn ∪ · · · ∪ S1 × · · · × Sn−1 × Rn
alg
. 

We can use Theorem 2.10 to provide the promised example where .R
alg

is not a 
subring of S.
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Example 2.12 

(a) (.R
alg

need not be a subring of S.) Let A be a commutative ring and . R = A×A �

A[X] × A[X] = R[X] = S. Let  .a = (X, 1) and .b = (1, X); so  .a, b ∈ S are 
algebraic over R by Theorem 2.10. But .a±b = (X±1, 1±X) and . ab = (X,X)

are not algebraic over R by Theorem 2.10. Thus .R
alg

is not a subring of S. 

(b) (We may have .R
alg

� R
alg

alg
.) Let . R = A × A � A[X] × A[X] = R[X] = S

as in part (a). Then .R
alg = (A × A[X]) ∪ (A[X] × A) by Corollary 2.11. By  

Theorem 2.10, .(X,X) ∈ S is algebraic over .R
alg
; so  .(X,X) ∈ R

alg
alg

\ R
alg
. 

Thus .R
alg

� R
alg

alg
. In fact, .R

alg
alg

= A[X] × A[X] (see Example 2.19(a), 
Theorem 2.16, and Theorem 2.20). 

We next consider . R
rt
and .R

rtn for .n ∈ N (recall that .R
rt1 = R). 

Theorem 2.13 Let .R ⊆ S be an extension of commutative rings and .m, n ∈ N. 

Then . R
rt
and .R

rtn are closed under multiplication, .R
rtrt = R

rt
, and . R

rtm
rtn = R

rtmn

for every .m, n ∈ N. 

Proof Clearly, .R
rt
and .R

rtn are both closed under multiplication. To show that 

.R
rtm

rtn = R
rtmn , let  .x ∈ R

rtmn . Then .(xn)m = xmn ∈ R; so  .xn ∈ R
rtm , and thus 

.x ∈ R
rtm

rtn
. Hence .R

rtmn ⊆ R
rtm

rtn
. Conversely, let .x ∈ R

rtm
rtn
. Then .xn ∈ R

rtm , and 

thus .xmn = (xn)m ∈ R. Hence .x ∈ R
rtmn ; so  .R

rtm
rtn ⊆ R

rtmn . Thus .R
rtm

rtn = R
tmn . 

The proof that .R
rtrt = R

rt
is similar. ��

Although . R
rt
and .R

rtn are always closed under multiplication and contain R, the  
following example shows that neither need be closed under addition, and thus need 
not be a subring of S (for .n ≥ 2). 

Example 2.14 

(a) (. R
rt
and .R

rtn need not be subrings of S.) Although . R
t
is always closed under 

multiplication, . R
rt
need not be closed under addition. Let .R = Z ⊆ R = S. 

Then .
√
2, 1 ∈ R

rt
, but  .

√
2 + 1 �∈ R

rt
since (.

√
2 + 1)n �∈ Z for every .n ∈ N. 

Thus . R
rt
is not a subring of S. Similar examples show that .R

rtn need not be a 
subring of S for .n ≥ 2. If we let .R = Z + YR[Y ] ⊆ R[Y ], then we can choose 
.S = T (R) = R(Y ), and .R

rtn is not a subring of S for every .n ≥ 2. 
(b) Let .R = K[Y 2, Y 3] ⊆ K(Y) = T (R) = S, where K is a field. If . char(K) =

p > 0, then .R
rt = K[Y ] is a subring of S, and . Rrtn , for  .n ≥ 2, is a subring 

of S if and only if .p | n. However, if .char(K) = 0, then .R
rtn

� K[Y ] is 
not a subring of S for every integer .n ≥ 2; in fact, . R

rtn = R ∪ YK[Y ] =
K[Y ] \ {amYm + · · · + a1Y + a0 ∈ K[Y ] | a1, a0 �= 0} for every integer .n ≥ 2. 

Thus .R
rtn

rtn = R
rtn .
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(c) (We may have .R
rtn

� R
rtn

rtn
). For .n ≥ 2, let . R = K[Y 2n−1, Y 2n, . . . , Y 4n−3] ⊆

K(Y) = T (R) = S, where K is a field. Then .Y ∈ R
rtn

rtn \ R
rtn since . n2 ≥

2n − 1; so .R
rtn

� R
rtn

rtn
. 

Example 2.2(b) again  shows that  we  may have  .
∏

α∈� Rα
rt
�

∏
α∈� Rα

rt
when 

. � is infinite. The next result identifies .
∏

α∈� Rα
rt
as a subset of .

∏
α∈� Rα

rt
. 

Theorem 2.15 Let .{Rα ⊆ Sα | α ∈ �} be a family of extensions of commutative 
rings, .R = ∏

α∈� Rα , and .S = ∏
α∈� Sα . Then .R

rtn = ∏
α∈� Rα

rtn for every 

.n ∈ N and .R
rt = ⋃

n∈N R
rtn = ⋃

n∈N
∏

α∈� Rα
rtn . 

Proof This follows easily from the definitions. ��
The next theorem clarifies when .R

alg
is a subring of S when R is a direct product 

(also see Example 2.19 and Theorem 2.20). 

Theorem 2.16 Let .R ⊆ S be an extension of commutative rings, where R is not 
indecomposable. Then .R

alg
is a subring of S if and only if .Ralg = S. 

Proof If .R
alg = S, then .R

alg
is certainly a subring of S. Conversely, suppose that 

.R
alg

is a subring of S and R is not indecomposable. Let . R = R1 × R2 ⊆ S1 × S2 =
S and .(s1, s2) ∈ S. Then .(s1, 0), (0, s2) ∈ R

alg
by Theorem 2.10; so  . (s1, s2) =

(s1, 0) + (0, s2) ∈ R
alg

since .R
alg

is a subring of S. Thus .R
alg = S. ��

We have seen in Example 2.12(c) (resp., Example 2.14(b)) that .R
alg

(resp., . R
rtn ) 

need not be algebraically closed (resp., n-root closed) in S. However, by iterating the 
closure, we do obtain an algebraically closed (resp., n-root closed) set. Specifically, 

let .R
alg0 = R, .R

algn+1 =
(
R
algn

)alg
for every integer .n ≥ 0, and . R

alg∞ =
⋃∞

n=0 R
algn . In a similar manner, we define .R

(rtn)0 = R, . R
(rtn)m+1 =

(
R

(rtn)m
)rtn

for every integer .m ≥ 0, and .R
(rtn)∞ = ⋃∞

m=0 R
(rtn)m . We next show that . R

alg∞

(resp., .R
(rtn)∞) is indeed algebraically closed (resp., n-root closed) in S (also see 

Theorem 3.6). 

Theorem 2.17 Let .R ⊆ S be an extension of commutative rings. Then . R
alg∞

alg
=

R
alg∞ and .R

(rtn)∞
rtn

= R
(rtn)∞ . 

Proof Let .R′ = R
alg∞ . Of course, .R′ ⊆ R′alg. Let .s ∈ R′alg; so .f (s) = 0 for some 

.0 �= f (X) ∈ R′[X]. Then .f (X) = anX
n + · · · + a0, where every . ai ∈ R

algmi

for some .mi ∈ N. Thus .f (X) ∈ R
algm[X] for .m = max{m0, . . . , mn}; so  . s ∈

R
algm+1 ⊆ R′. Hence .R′alg ⊆ R′, and thus .R′alg = R′. The proof for .R(rtn)∞ is 

similar. ��



Polynomial Root Extensions 45

Remark 2.18 Another approach would be to let . Rrt be the smallest root closed 
subring of S containing R, and .R0 = R, .Rm+1 = Rm[(Rm)

rt] for every integer 
.m ≥ 0, and .R∞ = ⋃∞

m=0 Rm. Then .Rrt = R∞. (Similarly, we can define .Rrtn for 
every .n ∈ N.) See [2, Section 5] and [3] for more details. 

The following example shows that if R is a direct product, then .R
alg∞ = R

alg2 is 
a subring of S. 

Example 2.19 Let .R = R1 ×R2 ⊆ S1 ×S2 = S. Then . R
alg = (R1

alg ×S2)∪ (S1 ×
R2

alg
) by Corollary 2.11. Now .R1

alg × S2

alg
= S1 × S2 by Corollary 2.11 again; so 

.R
alg∞ = ⋃∞

n=0 R
algn = R

alg2 = S1 × S2 = S. 

We next give several additional criteria for .R
alg

to  be a subring of  S when R is a 
direct product of rings. 

Theorem 2.20 Let .R ⊆ S be an extension of commutative rings, where R is not 
indecomposable. Then the following statements are equivalent. 

(1) .R
alg

is a subring of S. 

(2) .R
alg

is closed under addition. 

(3) .R
alg

is closed under subtraction. 

(4) .R
alg

is closed under multiplication. 

(5) .R
alg

is algebraically closed in S. 

(6) .R
alg = S. 

Proof Let .R = R1 × R2 and .S = S1 × S2, where each .Ri ⊆ Si . Let .(s1, s2) ∈ S. 
(1) . ⇔ (6): This is Theorem 2.16. 
(1) . ⇒ (2),(3),(4): This is clear. 

(2) . ⇒ (6): Let .(s1, s2) ∈ S. Then .(s1, 0), (0, s2) ∈ R
alg

by Theorem 2.10; so  

.(s1, s2) = (s1, 0)+(0, s2) ∈ R
alg

since .R
alg

is closed under addition. Thus .S ⊆ R
alg
, 

and hence .R
alg = S. 

(3) . ⇒ (6): Let.(s1, s2) ∈ S. Then .(s1, 0), (0,−s2) ∈ R
alg

by Theorem 2.10; so  

.(s1, s2) = (s1, 0) − (0,−s2) ∈ R
alg

since .R
alg

is closed under subtraction. Thus 
.S ⊆ R

alg
, and hence .R

alg = S. 
(4) . ⇒ (6): Let .(s1, s2) ∈ S. Then .(s1, 1), (1, s2) ∈ R

alg
by Theorem 2.10; so  

.(s1, s2) = (s1, 1)(1, s2) ∈ R
alg

since .R
alg

is closed under multiplication. Thus 

.S ⊆ R
alg
, and hence .R

alg = S. 
(6) . ⇒ (5): This is clear. 
(5) . ⇒ (6): This follows from Example 2.19. ��
The following theorem gives some general results about the .S -closure of R in 

S. Note that here we allow .0 ∈ S and .S = ∅. 
Theorem 2.21 Let .R ⊆ S be an extension of commutative rings and 
.S ,S1,S2,Sα ⊆ R[X], .α ∈ �.
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(a) .R
R[X] = R

0 = S. 

(b) .R
∅ = ∅. 

(c) If .S ⊆ R[X]∗, then .R
S ⊆ R

alg = R
R[X]∗

. 

(d) If .S1 ⊆ S2, then .R
S1 ⊆ R

S2 . 

(e) .R
⋃

α∈� Sα = ⋃
α∈� R

Sα . 

(f) .R
⋂

α∈� Sα ⊆ ⋂
α∈� R

Sα . 

Proof (a)–(d) These are all clear. 

(e) We have .R
Sα ⊆ R

⋃
α∈� Sα for every .α ∈ � by part (d); so . 

⋃
α∈� R

Sα ⊆
R

⋃
α∈� Sα . Let  .s ∈ R

⋃
α∈� Sα ; so  .f (s) = 0, where .f ∈ Sβ for some .β ∈ �. 

Thus .s ∈ R
Sβ ⊆ ⋃

α∈� R
Sα ; so  .R

⋃
α∈� Sα ⊆ ⋃

α∈� R
Sα . Hence . R

⋃
α∈� Sα =

⋃
α∈� R

Sα . 

(f) Let .β ∈ �. Then .
⋂

α∈� Sα ⊆ Sβ gives .R
⋂

α∈� Sα ⊆ R
Sβ by part (d). Thus 

.R

⋂
α∈� Sα ⊆ ⋂

α∈� R
Sα . ��

The next example shows that the inclusion in part (f) of Theorem 2.21 may be 
strict. 

Example 2.22 (a) (We may have .R
⋂

α∈� Sα
�

⋂
α∈� R

Sα in Theorem 2.21(f).) 

Let .S1 = {X} and .S2 = {2X}. Then .0 ∈ R
S1 ∩ R

S2 , but .R
S1∩S2 = R

∅ = ∅. 
Thus .R

S1∩S2
� R

S1 ∩ R
S2 . 

For a less trivial example, let .R = Z ⊆ R = S, .S1 = {X−r,X2−r | r ∈ R}, 
and .S2 = {X − r,X4 − r | r ∈ R}. Then .S1 ∩ S2 = {X − r | r ∈ R}; so  

.R
S1∩S2 = R = Z. However, .

√
2 ∈ R

S1 ∩ R
S2 ; so .R

S1∩S2
� R

S1 ∩ R
S2 . 

(b) We have seen that we need not have .R ⊆ R
S

for .S ⊆ R[X]. If we let  . S ′ =
{x − r | r ∈ R}, then .RS ′ = R. Thus, if we define .S∗ = S ∪ S ′, then 
.R ⊆ R

S∗ = R
S ′ ∪ R by Theorem 2.21(e). 

(c) Let .R ⊆ S be an extension of commutative rings and . S = {rX − b | r ∈
Reg(R), b ∈ R} ⊆ R[X]. Then .R

S = {s ∈ S | rs ∈ R for some . r ∈ Reg(R)}
is a subring of S. If  .Reg(R) ⊆ Reg(S), then .R

S = T (R) ∩ S, where .T (R) is 
the total quotient ring of R. 

3 The S-Closure 

There are several other types of polynomial root extensions that do not fit into the 
.S -closure scheme of Sect. 2. In this section, we discuss two of them, the complete 
integral closure and .(2, 3)-closure of R in S. We then introduce the .S-closure of 
R, which includes the .S -closure, complete integral closure, and .(2, 3)-closure as 
special cases.
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For an extension .R ⊆ S of commutative rings, recall that .s ∈ S is almost integral 
over R if there is an .a ∈ Reg(R) such that .asn ∈ R for every .n ∈ N, and the 

complete integral closure of R in S is .Rcic = {s ∈ S | s is almost integral over 
. R}. We say that R is completely integrally closed in S (resp., completely integrally 
closed) if  .R

cic = R (resp., .R
cic = R when .S = T (R)). We have . R ⊆ R

cic ⊆ R
reg

and .R
cic

is a subring of S (cf. [4, Theorem 13.1(1)]). 
We define the .(2, 3)-closure of R in S as .Rsem = {s ∈ S | s2, s3 ∈ R} (here, 

we use “sem” since a .(2, 3)-closed ring is often called seminormal). We say that 
R is .(2, 3)-closed in S (resp., .(2, 3)-closed) if  .Rsem = R (resp., .R

sem = R when 
.S = T (R)). We have .R ⊆ R

sem ⊆ R
rtn for every integer .n ≥ 2, but the following 

examples show that .R
sem

need not be a subring of S and .Rsem
need not be .(2, 3)-

closed. 

Example 3.1 

(a) (.R
sem

need not be a subring of S.) Let .R = K[Y 2, Y 3] ⊆ K(Y) = T (R) = S, 
where K is a field, as in Example 2.14(a). Then .R

sem ⊆ K[Y ] is not a subring 
of S since .Y, 1 ∈ R

sem
, but  .Y + 1 �∈ R

sem
. In fact, it may easily be shown that 

.R
sem = R ∪ YK[Y ] = K[Y ] \ {amYm + · · · + a1Y + a0 ∈ K[Y ] | a1, a0 �= 0}, 

and thus .R
semsem = R

sem
. 

(b) (We may have .R
sem

� R
semsem

.) Let . R = K[Y 3, Y 4, Y 5] ⊆ K(Y) = T (R) =
S, where K is a field. Then .Rsem

is not a subring of S since .Y 2, 1 ∈ R
sem

, but  

.Y 2 + 1 �∈ R
sem

. Also, .R
sem

� R
semsem

since .Y ∈ R
semsem \ R

sem
. 

We next show that these two closures commute with direct products. 

Theorem 3.2 Let .{Rα ⊆ Sα | α ∈ �} be a family of extensions of commutative 
rings, .R = ∏

α∈� Rα , and .S = ∏
α∈� Sα . Then .R

cic = ∏
α∈� Rα

cic
and . R

sem =
∏

α∈� Rα
sem

. 

Proof These both follow easily from the definitions since . Reg(
∏

α∈� Rα) =∏
α∈� Reg(Rα). ��

Remark 3.3 More generally, for .∅ �= T ⊆ N, we can define the T -closure of R in 
S as .RT−clos = {s ∈ S | sn ∈ R for every .n ∈ T }. We say that R is T -closed 

in S (resp., T -closed) if  .R
T−clos = R (resp., .R

T−clos = R when .S = T (R)). 

Thus .R
{2,3}−clos = R

sem
and .R

{n}−clos = R
rtn . However, this generalization yields 

nothing new. Let . [T ] be the additive subsemigroup of . N generated by T ; so  . [T ] =
[n1, . . . , nt ] for some .n1, . . . nt ∈ N. If  .[T ] � N and .d = gcd{n1, . . . , nt }, then 
.R

T−clos = R
sem

if .d = 1 and .R
T−clos = R

rtd if .d > 1 by [1, Theorem 3.2]. 

We now give the promised generalization of .S -closure. 

Let .S ⊆ P(
∏

α∈� R[X]). We define the .S-closure of R in S as . RS = {s ∈ S |
for some .A ∈ S and .(fα(X)) ∈ A, fα(s) = 0 for every .α ∈ �}. We say that 

R is .S-closed in S if .RS ⊆ R, and R is .S-closed if .RS ⊆ R when .S = T (R).
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For .S ⊆ R[X], let  .S = {S } ⊆ P(R[X]). Then .RS = R
S
. Thus the .S-closure 

generalizes the .S -closure from Sect. 2. 

We next show that .R
sem

and .R
cic

are both special cases of the .S-closure. 
Example 3.4 

(a) Let .W2 = {X2 − r | r ∈ R},W3 = {X3 − r | r ∈ R} ⊆ R[X]; so  . W2 × W3 ⊆
R[X] × R[X]. For .S = {W2 × W3} ⊆ P(R[X] × R[X]), we have .R

S = R
sem

. 
(b) For every .r ∈ Reg(R) and .n ∈ N, let  . Tn,r = {rXn − s | s ∈ R} ⊆ R[X]

and .Ar = ∏
n∈N Tn,r ⊆ ∏

n∈N R[X]; so  . S = {Ar | r ∈ Reg(R)} ⊆
P(

∏
n∈N R[X]). For .S = {Ar | r ∈ Reg(R)}, we have .R

S = R
cic
. 

We next give some general results for the .S-closure which are analogous to 
Theorem 2.21. Example 2.22(a) shows that the inclusion in part (c) may be strict. 

Theorem 3.5 Let .R ⊆ S be an extension of commutative rings and . S1,S2,Sβ ⊆
P(

∏
α∈� R[X]), .β ∈ �. 

(a) If .S1 ⊆ S2, then .R
S1 ⊆ R

S2 . 

(b) .R
⋃

β∈� Sβ = ⋃
β∈� R

Sβ . 

(c) .R
⋂

β∈� Sβ ⊆ ⋂
β∈� R

Sβ . 

Proof (a) and (b) are clear, and (c) follows directly from (a). ��
It is well known that .R

cic
need not be completely integrally closed. For . R ⊆ S

an extension of commutative rings, we define .R
cic0 = R, .R

cicα+1 = R
cicα

cic
for 

. α any ordinal number, and .R
cicβ = ⋃

α<β R
cicα for . β a limit ordinal. D. Lantz 

[6] has shown (1) for every countable ordinal number . α, there is a Bézout domain 

. Dα such that .Dα
cicα

� Dα
cicα+1 = Dα

cicα+2 and (2) for any integral domain D, 

.D
cic�

cic
= D

cic� , where . � is the first uncountable ordinal number. Also, in a similar 

manner, we define .R
sem0 = R, .R

semn+1 = (R
semn

)
sem

for every integer .n ≥ 0, 

and .R
sem∞ = ⋃∞

n=0 R
semn . We next show that .R

cic� (resp.,.R
sem∞ ) is completely 

integrally closed (resp., .(2, 3-closed) in S (also see Theorem 2.17). 

Theorem 3.6 Let .R ⊆ S be an extension of commutative rings. Then . R
cic�

cic
=

R
cic� , where . � is the first uncountable ordinal number, and .R

sem∞ sem = R
sem∞ . 

Proof We first show that .R
cic�

cic
= R

cic� . Let  .R′ = R
cic� . Clearly .R′ ⊆ R′cic. 

Conversely, let .s ∈ R′cic. Then .asn ∈ R′ for some .a ∈ Reg(R′) and every .n ∈ N. 

Thus .asn ∈ R
cicβ for some .a ∈ Reg(R

cicβ
) and every .n ∈ N; so .s ∈ R

cicβ+1 ⊆ R′. 
Hence .R′cic ⊆ R′; so .R′cic = R′.
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We now show that .R
sem∞ sem = R

sem∞ . Let  .R′ = R
sem∞ . Clearly .R′ ⊆ R′sem. 

Conversely, let .s ∈ R′sem. Then .s2, s3 ∈ R′; so  .s2, s3 ∈ R
semn for some .n ∈ N. 

Thus .s ∈ R
semn+1 ⊆ R′; so .R′sem = R′. 

��
Corollary 3.7 (Lantz [6]) Let D be an integral domain. Then .Dcic�

cic
= D

cic� , 
where . � is the first uncountable ordinal number. 

We can also define the u-closure and t-closure of R in S. Let  .R ⊆ S be an 
extension of commutative rings. Then R is u-closed in S (resp., t-closed in S) if  
.t2 − t, t3 − t2 ∈ R for .t ∈ S implies .t ∈ R (resp., .t2 − rt, t3 − rt2 ∈ R for . t ∈ S

and some .r ∈ R implies .t ∈ R). We define . R
uclos = {s ∈ S | s2 − s, s3 − s2 ∈ R}

and .R
tclos = {s ∈ S | s2 − rs, s3 − rs2 ∈ R for some .r ∈ R}. We have  . R ⊆

R
uclos ⊆ R

tclos ⊆ R. See [2, Section 7] for connections between these two concepts 
and seminormal and quasinormal rings and other related references. 

The final example shows that .R
uclos

and .R
tclos

can both be realized as .S-closures. 
Example 3.8 

(a) Let .W = {X2 − X − r | r ∈ R} × {X3 − X2 − r | r ∈ R} ⊆ R[X] × R[X] and 
.Su = {W } ⊆ P(R[X] × R[X]). Then .R

Su = R
uclos

. 
(b) Let . Ar = {X2 − rX − s | s ∈ R} × {X3 − rX2 − s | s ∈ R} ⊆ R[X] × R[X]

for .r ∈ R and .St = {Ar | r ∈ R} ⊆ P(R[X] × R[X]). Then .R
St = R

tclos
. 

Appendix 

Dan Anderson (1948–2022) by David F. Anderson 

After a long battle with esophageal cancer, my twin brother, Daniel D. Anderson 
(Dan), died on April 24, 2022. Dan has had a lasting effect on the mathematical 
community through his research, Ph.D. students, and service at the University of 
Iowa. This was recognized by being named an AMS Fellow in 2018. 

Dan received his BA from the University of Iowa in 1971 and his Ph.D. from 
the University of Chicago in 1974 under Irving Kaplansky; his thesis title was 
Multiplicative Lattices. His first job was as a visiting assistant professor at the 
University of Iowa (1974–1975). After being an assistant professor at Virginia Tech 
(1975–1976) and then at the University of Missouri (1976–1977), he returned to 
Iowa in the fall of 1977 as an assistant professor. He quickly rose through the ranks 
to full professor in 1983, and then the Chairman of the Mathematics Department 
(2011–2017). 

Dan published many influential papers covering a wide range of topics in 
commutative algebra and related areas, including factorization and divisibility, rings
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with zero-divisors, and lattice theory (abstract ideal theory). MathSciNet lists Dan’s 
over 235 publications, with over 3000 citations and 80 coauthors. These publications 
include short notes, very long articles, survey/expository articles, lectures notes, and 
edited conference proceedings. Dan had 36 Ph.D. students and coauthored about 75 
papers with 30 of these students. Dan was also a serious collector of US coins. He 
was a leading expert on (Iowa) trade tokens and has written several scholarly articles 
on tokens. 

Dan is survived by his wife of 51 years, Kathy, his daughter, Caitlin, two 
grandsons, and one great grandson. For more on Dan’s life and mathematics, 
see his obituary at www.gayandciha.com and my article Dan Anderson and his 
Mathematics in Rings, Monoids and Module Theory, Springer, 2021, edited by A. 
Badawi and J. Coykendall. 
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Absorbing Ideals in Commutative Rings: 
A Survey 

Ayman Badawi 

In memory of Paul-Jean Cahen 

1 Introduction 

Let R be a commutative ring with .1 �= 0 and I be a proper ideal of R. Then I is 
called a 2-absorbing ideal of R as in [10] if whenever .abc ∈ I for some . a, b, c ∈
R, then .ab ∈ I or .bc ∈ I or .ac ∈ I . Over the past 15 years, there has been 
considerable attention in the literature to 2-absorbing ideals of commutative rings 
and their generalizations, for example, see [1–5, 9–11, 13–21, 23–26, 30–38, 40– 
56]. A more general concept than 2-absorbing ideals is the concept of n-absorbing 
ideals. Let .n ≥ 1 be a positive integer. A proper ideal I of R is called an n-
absorbing ideal of R as in [2] if .a1, a2, . . . , an+1 ∈ R and .a1a2 · · · an+1 ∈ I , then 
there are n of the . ai’s whose product is in I . In this article, we survey some recent 
developments on conjectures (see, [2, 9], and [23]) concerning n-absorbing ideals 
of commutative rings. We survey some classifications of factorization-commutative 
rings in terms of absorbing ideals. We survey some properties of n-absorbing ideals 
in ring extensions. We strongly recommend that the reader keeps the first survey 
article [9] in hand while reading this paper. 

2 Conjectures on n-Absorbing Ideals of Commutative Rings 

Let I be a proper ideal of a commutative ring R. Then .
√

I denoted the radical ideal 
of R. A proper ideal of R is called a strongly n-absorbing ideal of R as in [2] if  
whenever .I1 · · · In+1 ⊆ I for ideals .I1, . . . , In+1 of R, then the product of some 
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n of the . Ij ’s is contained in I . It is clear that a strongly-n-absorbing ideal of a 
commutative ring R is an n-absorbing ideal of R. 

Anderson and Badawi in [2] made the following conjectures: 

Conjecture I If I is an n-absorbing ideal of a commutative ring R, then . (
√

I )n ⊆
I . 

Conjecture II If I is an n-absorbing ideal of a commutative ring R, then I is a 
strongly n-absorbing ideal of R. 

Conjecture III If I is an n-absorbing ideal of a commutative ring R, then . I [X]
is an n-absorbing ideal of .R[X]. 
Choi and Walker in [28] gave an affirmative answer for Conjecture I for any 

positive integer n, and G. Donadze independently in [35] gave an alternative proof 
of Conjecture I. It was shown in [10] that Conjecture II is correct for .n = 2. 
Conjectures II and III were verified in [2] for any positive integer n when R is a 
Prüfer domain. Also, Conjecture III was verified in [2] when .n = 2. Laradji in [47] 
proved that Conjectures II and III are valid for any positive integer n when R is an 
arithmetical ring (e.g., if R is a Prufer domain). It was shown in [47] that if .I [X] is 
an n-absorbing ideal of .R[X], then I is a strongly n-absorbing ideal of R, and hence 
if Conjecture III is true, then Conjecture II is true. 

We recall that a commutative ring R is said to be a U -ring provided R has the 
property that an ideal contained in a finite union of ideals must be contained in one 
of those ideals. Recall that a Prufer domain is a U -ring. The authors in [53] proved 
the following result. 

Theorem 2.1 ([53, Theorem 2.4]) If R is a U -ring, then Conjecture II holds. 

We recall from [39] and [6] that an integral domain R is called a pseudo-valuation 
domain (PVD) if R has exactly one maximal ideal M such that .(M : M) is a 
valuation domain. We recall that if .f (x) = anx

n + · · · + a0 ∈ R[x], then .C(f ) is 
the ideal .(an, . . . , a0)R. A ring  R is called a Gaussian ring if . C(fg) = C(f )C(g)

for every .f, g ∈ R[x]. The authors in [53] proved the following result. 

Theorem 2.2 

(1) [53, Theorem 2.6]. If R is a U -ring that is a Gaussian ring, then Conjecture III 
holds. 

(2) [53, Theorem 2.7]. Let .n ≥ 2. Suppose that R is a PVD with maximal ideal M 
and I is a proper ideal of R such that .

√
I �= M . Then I is an n-absorbing ideal 

of R if and only if .I [x] is an n-absorbing ideal of .R[x]. 
Since if Conjecture III holds, then Conjecture II holds by [47, Theorem 2.9(i)], 

in light of Theorem 2.2 we have the following result. 

Corollary 2.3 

(1) If R is a U -ring that is a Gaussian ring, then Conjectures II and III hold. 
(2) Let .n ≥ 2. Suppose that R is a PVD with maximal ideal M and I is a proper 

ideal of R such that .
√

I �= M . Then I is an n-absorbing ideal of R if and only if
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.I [x] is an n-absorbing ideal of .R[x], if and only if I is a strongly n-absorbing 
ideal of R. 

We recall from [33] and [12] that a commutative ring R is called a divided ring 
if .Q ⊂ xR for every prime ideal Q of R, and .x ∈ R \ Q and it is called a locally 
divided ring as in [15] if .RP is a divided ring for every prime ideal P of R. 

Recently, Choi in [27] proved the following result. 

Theorem 2.4 ([27, Corollary 13]) Let R be a locally divided ring. Then Conjec-
tures II and III hold. 

Since a PVD is a divided ring (and hence locally divided), we conclude that 
Corollary 2.3(ii) is a particular case of Theorem 2.4. 

We recall from [1] that the AF -dimension of a ring R, denoted by AF -dim(R), 
is the smallest positive integer n such that each proper ideal of R can be written as 
a finite product of n-absorbing ideals of R; if no such n exists, then AF -dim(R) = 
. ∞. A ring  R is an FAF -ring if AF -dim(R) . < . ∞. 

The following are examples of FAF -rings. 

Example 2.5 

(1) [1, Corollary 3.9]. Let .d ∈ Z−{0, 1} be a square-free integer such that . 4 | (d−1)

and .8 | (d − 5). Then .R = Z[√d] is an FAF -ring and AF -.dim(R) = 2. 
(2) [1, Corollary 4.4]. Let R be a finite direct product of fields. Then R and . R[X]

are FAF -rings. 

Choi in [27] proved the following result. 

Theorem 2.6 ([27, Theorem 39 (4)]) Assume that R is an FAF -ring. Then 
Conjectures II and III hold. 

3 2-AB-Rings and Factorization Rings 

We recall from [21] that a commutative ring R is called a 2-AB-ring if every 2-
absorbing ideal of R is prime. 

The authors in [21] proved the following results. 

Theorem 3.1 ([21, Theorem 2.3]) Let R be a commutative ring with .1 �= 0. The 
following statements are equivalent. 

(1) R is a 2-AB-ring. 
(2) R has exactly one maximal ideal, say M , such that the prime ideals of R are 

linearly ordered (by inclusion) and .IM = P for every 2-absorbing ideal I of 
R and every minimal prime ideal P over I . 

(3) R has exactly one maximal ideal, say M , such that the prime ideals of R are 
linearly ordered (by inclusion) and P is the only minimal 2-absorbing ideal 
over . P 2 for every prime ideal P of R.



54 A. Badawi

Let .n ≥ 2 be a positive integer. The authors in [43] extended the concept of 2-
AB-rings to n-AB-rings. We recall from [43] that a commutative ring R is called 
an n-AB-ring if every n-absorbing ideal of R is a prime ideal of R. They obtained 
similar results to those in Theorem 3.1. 

Theorem 3.2 ([43, Theorem 2.13]) Let R be a commutative ring with .1 �= 0. The 
following statements are equivalent. 

(1) R is an n-AB-ring. 
(2) R has exactly one maximal ideal, say M , such that the prime ideals of R are 

linearly ordered (by inclusion) and .IM = P for every n-absorbing ideal I of 
R and every minimal prime ideal P over I . 

(3) R has exactly one maximal ideal, say M , such that the prime ideals of R are 
linearly ordered (by inclusion) and P is the only minimal n-absorbing ideal 
over . P n for every prime ideal P of R. 

4 Commutative Rings with 2-Absorbing Factorization 

Let R be a commutative ring with .1 �= 0. Then R is called a TAF-ring if every 
ideal of R is a finite product of 2-absorbing ideals. The authors in [50] obtained the 
following results. 

Theorem 4.1 ([50, Theorem 3.3]) Any T AF -ring is a finite direct product of 
one-dimensional domains and zero-dimensional quasi-local rings having nilpotent 
maximal ideal. In particular, a T AF -ring of dimension one having a unique height-
zero prime ideal is a domain. 

Theorem 4.2 ([50, Corollary 3.4]) Let R be a commutative ring. The following 
are equivalent. 

(1) .R[X] is a T AF -ring. 
(2) R is a von Neumann regular T AF -ring. 
(3) R is a finite direct product of fields. 

In view of Theorem 4.2, we have the following example. 

Example 4.3 Let .R = Z5 × Q × R × Z11. Then R and .R[X] are T AF -rings by 
Theorem 4.2. 

The authors in [22] proved the following result. 

Theorem 4.4 ([22, Theorem 2.3]) Let R be a commutative ring. Then .R[X] is a 
principal ideal ring if and only if R is ring-isomorphic to a finite direct product of 
fields. 

In view of Theorems 4.4 and 4.2, we have the following result. 

Corollary 4.5 Let R be a commutative ring. The following are equivalent.
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(1) .R[X] is a T AF -ring. 
(2) R is a von Neumann regular TAF-ring. 
(3) R is a finite direct product of fields. 
(4) .R[X] is a principal ideal ring. 
Let R be an integral domain. We recall the following definitions. 

(1) We say R has finite character if every .x ∈ R−{0} belongs to only finitely many 
maximal ideals of R. 

(2) R is called an atomic domain if every nonzero non-unit can be written in at least 
one way as a finite product of irreducible elements. 

(3) R is a discrete valuation ring (DVR) if R is a principal ideal domain (PID) with 
exactly one nonzero maximal ideal. 

(4) R is an ACCP-domain if there is no infinite strictly ascending chain of principal 
ideals. 

We recall from [50] that a proper ideal I of R is called a T A-ideal if I is a finite 
product of 2-absorbing ideals. 

Theorem 4.6 ([50, Theorem 4.3]) Let R be an integral domain that is not a field 
with exactly one maximal ideal M . The following are equivalent. 

(1) R is a T AF -domain. 
(2) R is one-dimensional and every principal ideal of R is a T A-ideal. 
(3) R is atomic, one-dimensional and every atom of R generates a T A-ideal. 
(4) R is atomic and .M2 is universal (i.e. .M2 ⊆ aR for each atom .a ∈ R). 
(5) R is an atomic PVD. 
(6) R is a PVD which satisfies ACCP. 
(7) .(M : M) is a DVR with maximal ideal M . 

Furthermore, if R is Noetherian, then the integral closure . R′ of R is a DVR 
with maximal ideal M . 

Theorem 4.7 ([50, Theorem 4.4]) 
Let R be an integral domain. The following are equivalent. 

(1) R is a T AF -domain. 
(2) R has finite character and .RM is a TAF-domain for each maximal ideal M of R. 
(3) R has finite character and .RM is an atomic PVD for each maximal ideal M 

of R. 
(4) R has finite character and .RM is an ACCP PVD for each maximal ideal M 

of R. 
(5) R is a one-dimensional domain which has finite character and every principal 

ideal of R is a TA-ideal. 
(6) R is a one-dimensional ACCP-domain that has finite character and every 

principal ideal generated by an atom is a TA-ideal. 

If R is a Noetherian domain, then we have the following result.
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Theorem 4.8 ([50, Corollary 4.5]) For a Noetherian domain R that is not a field, 
the following are equivalent. 

(1) R is a TAF-domain. 
(2) .RM is a TAF-domain for each maximal ideal M of R. 
(3) .RM is a PVD for each maximal ideal M of R. 
(4) .R′

M is a DVR with maximal ideal .MRM for each maximal ideal M of R. 
(5) R is one-dimensional and every principal ideal generated by an atom is a TA-

ideal. 

Theorem 4.9 

(1) [50, Corollary 4.7]. Let R be a Noetherian domain. If R is a TAF-domain, then 
so is every overring of R. 

(2) [50, Corollary 4.8]. Let .K ⊆ L be a field extension. Then .K + XL[X] is a 
TAF-domain. 

(3) [50, Corollary 4.11]. Let .d ∈ Z − {0, 1} be a square-free integer such that 
.4 | (d − 1). Then .Z[√d] is a TAF-domain if and only if .8 | (d − 5). 

5 Commutative Rings with Absorbing Factorization 

We recall from [1] that the AF -dimension of a ring R, denoted by AF -dim(R), is 
the smallest positive integer n such that each proper ideal of R can be written as a 
finite product of n-absorbing ideals of R; if no such n exists, then AF -dim(R) = . ∞. 
A ring R is an FAF -ring if AF -dim(R) . < . ∞. Recall that a ZPI-ring is a ring whose 
proper ideals can be written as a product of prime ideals. Hence, . AF − dim(R)

measures, in some sense, how far R is from being a ZPI-ring. 
The following is a structure theorem for the FAF-rings. 

Theorem 5.1 ([1, Theorem 4.2]) Any FAF-ring is a finite direct product of one-
dimensional domains and zero-dimensional local rings with nilpotent maximal 
ideal. In particular, an FAF-ring of Krull dimension one having unique height-zero 
prime ideal is a domain. 

Recall that a ring R is said to be special primary if R has exactly one maximal 
ideal M and every proper ideal of R is a power of M . Note that if R is a ZPI ring, 
then R is a special primary ring. 

Recall that R is called a chained ring if .a | b or .b | a for every .a, b ∈ R. 

Theorem 5.2 ([1, Proposition 3.4]) A chained ring R is an FAF-ring if and only if 
R is a special primary ring. 

The next result says that the AF-dimension of a factor (resp. fraction) ring is 
bounded above by the AF-dimension of the ring. 

Theorem 5.3 ([1, Proposition 3.5]) Let R be an FAF-ring and T a factor or a 
fraction ring of R. Then .AF − dim(T ) ≤ AF − dim(R).
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Theorem 5.4 ([1, Proposition 3.6]) Let .R1, . . . , Rk be FAF-rings and . R = R1 ×
· · · × Rk . Then .AF − dim(R) = max{AF − dim(Ri) | 1 ≤ i ≤ k}. 

Denote by .Min(I) the set of minimal prime ideals over an ideal I . 

Theorem 5.5 ([1, Proposition 3.7]) Let R be an FAF-ring and I a proper ideal. 
Then .Min(I) is finite. 

Theorem 5.6 ([1, Proposition 3.8]) Let R be a finite ring of order . m such that 
.pn+2 � m for each prime p. Then .AF − dim(R) ≤ n. Moreover, . AF −
dim(Zpn+1 [X]/(X2, pX)) = n + 1. 

Recall that if R is a ring, then .Spec(R) = {P | P is a prime ideal of . R}. 
Theorem 5.7 ([1, Theorem 5.4]) Let R be a commutative Noetherian one-
dimensional domain with nonzero conductor .(R : R′), where . R′ is the integral 
closure of R. The following are equivalent. 

(1) R is an FAF-domain. 
(2) .RM is an FAF-domain for each maximal ideal M of R. 
(3) The spectral map .Spec(R′) → Spec(R) is bijective. 

In view of Theorem 5.7, we have the following example. 

Example 5.8 ([1, Example 5.5]) 

(1) .AF − dim(Z[2i]) = 3. 
(2) .R = Z[ 3

√
4] is an FAF-ring. Since .R′ = Z[ 3

√
2] and .R ⊆ R′ is a root extension 

(i.e., .z2 ∈ R for each .z ∈ R′), the map .Spec(R′) → Spec(R) is bijective. 
Hence R is an FAF-domain by Theorem 5.7. 

(3) .R = Z[ 3
√

10] is not an FAF-ring. Note that .R′ = Z[t] with .t = 1+ 3√10+ 3√100
3 . 

Furthermore, .(3, t) and .(3, t −1) are two distinct prime ideals lying over . (3, 1−
3
√

10) in .Z[ 3
√

10]. Thus R is not an FAF-ring by Theorem 5.7. 
(4) Let K be a field. Consider the Noetherian one-dimensional domains . A =

K + X(X − 1)K[X] and .B = K + XnK[X] for some .n ≥ 2. Their integral 
closure is .K[X]. Consider the spectral maps .Spec(K[X]) → Spec(A) and 
.Spec(K[X]) → Spec(B). Since only the second one is bijective, we get that B 
is an FAF-domain while A is not. 

Theorem 5.9 ([1, Corollary 4.4]) Let R be a commutative ring. The following are 
equivalent. 

(1) .R[X] is an FAF-ring. 
(2) R is a von Neumann regular FAF-ring. 
(3) R is a finite direct product of fields. 
(4) .R[X] is a ZPI-ring. 

Since .R[X] is a T FT -ring if and only if R is a finite direct product of fields by 
Corollary 4.5 if and only if R is an FAF-ring by Theorem 5.9, we have the following 
result.
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Corollary 5.10 Let R be a commutative ring. The following are equivalent. 

(1) .R[X] is a T AF -ring. 
(2) R is a von Neumann regular TAF-ring. 
(3) R is a finite direct product of fields. 
(4) .R[X] is a principal ideal ring. 
(5) .R[X] is an FAF-ring. 
(6) R is a von Neumann regular FAF-ring. 
(7) .R[X] is a ZPI-ring. 
For a one-dimensional domain R, we have the following result. 

Theorem 5.11 ([1, Theorem 4.3]) Let R be a one-dimensional domain. The 
following are equivalent. 

(1) R is an FAF-domain. 
(2) R has finite character and there is some positive integer d such that . AF −

dim(RM) ≤ d for each maximal ideal M of R. 

Acknowledgments The author would like to thank the referee for a careful reading of the paper. 
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Complement-Finite Ideals 

N. Baeth 

1 Introduction and Motivation 

Let .F = F(P ) be a free abelian monoid with basis P , the  set of primes in  F . 
Then every element in F is uniquely a product of elements in P ; that is, for . f ∈
F there are unique .νp(f ) ∈ N0, all but finitely many of which are zero, so that 
.f = ∏

p∈P pνp(f ). Let  .S �= F be a submonoid of F satisfying the following two 
properties. 

(CF1) .|F \ S| < ∞ and 
(CF2) .f s ∈ S for all .f ∈ F and all .s ∈ S \ {1}. 

That is, S has finite complement in the free monoid F and .S \ {1} is an ideal of 
F . We call a proper submonoid S of a free monoid F with identity 1 and satisfying 
Properties (CF1) and (CF2) a complement-finite ideal (of F ). Properties (CF1) and 
(CF2) are quite strong and, from a set theoretic point of view, make S quite similar 
to the free monoid F . However, as we shall see in the subsequent sections, S is 
extremely far from being free, both algebraically and arithmetically. The purpose 
of this manuscript is to initiate a study of such monoids and to illustrate that while 
the two defining conditions appear to be rather strong, the resulting monoids are 
nontrivial, have an interesting arithmetic, and are related to several other well-
studied commutative monoids. 
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We begin by fixing some notation. A more detailed structure will be outlined in 
Set-up 2.1. With .F = F(P ), we set  .P \ S = {q1, . . . , qt }, by  (CF1) a necessarily 
finite set of primes in P . It is clear from the defining properties of S that each of 
its elements is either divisible by some .p ∈ P \ {q1, . . . , qt } or is a product of 
the form .qm1

1 · · · qmt
t for sufficiently large . mi . To set the stage, we now introduce 

several examples of complement-finite ideals related to more familiar algebraic 
structures, namely, numerical semigroups, affine semigroups, and monoids of zero-
sum sequences. 

Example 1.1 

(1) Let N be a numerical monoid, that is, an additive submonoid of . N0 with 
.|N0 \ N | < ∞. The algebraic and arithmetic properties of numerical monoids 
have been studied extensively; see, for example, [2, 6, 7, 13, 20]. Clearly, each 
numerical monoid is also closed under multiplication. In fact, if .n ∈ N and 
.m ∈ N0, then .mn ∈ N and so .(N \ {0}) ∪ {1} is a complement-finite ideal 
of .(N, ·). The study of multiplicative factorization in numerical monoids was 
introduced in [4]. As we will see, many of the results of that work can be 
extended to the more general setting of complement-finite ideals. 

(2) Let . Np

0 denote the free affine monoid with .p > 0. Fix  t incomparable (with 
respect to the standard component-wise ordering) elements . α1, . . . , αt ∈ N

p

0
and set .I = ⋃t

i=1 αi + N
p

0 , an ideal of . N
p

0 . With the assumption that for each 
.j ∈ {1, . . . , p} there exists .kj ∈ N such that .kjej ∈ I , take  .S = I ∪ {0}. 
Then S is a complement-finite ideal of . N

p

0 . Moreover, S belongs to the class of 
generalized numerical monoids studied in [9] and [8]. 

(3) Let G be an additive finite abelian group with identity 0, and let .F(G) denote 
the free abelian monoid with basis G, that is, the set of all formal products of 
elements in G without regard to order. The classical monoid .B(G) of zero-sum 
sequences is the submonoid of .F(G) consisting of all sequences . g1 · . . . · gt ∈
F(G) such that .g1 + · · · + gt = 0 in G. These monoids play a central role 
in factorization theory and are also interesting in their own right. See [11] and 
[23] for surveys of work devoted to .B(G). Here we introduce a similarly defined 
monoid .FB(G) consisting of all sequences in .F(G) that are not zero-sum free; 
that is, 

. FB(G) =
{

g1 · · · gt ∈ F(G) : ∃ I ⊆ [1, t] with
∑

i∈I

gI = 0

}

⊆ F(G).

It is clear that .B(G) ⊆ FB(G) ⊆ F(G) and that .|F(G) \ FB(G)| < ∞. 
Consequently, .FB(G) is a complement-finite ideal of .F(G). To further motivate 
this particular example, which will be studied in Sect. 5, we note the following. 
Let H be a Krull monoid with finite class group G, and let .S ⊂ I∗

v (H) be the 
subsemigroup of v-invertible v-ideals consisting of ideals that are divisible by 
a principle ideal. Then there is a transfer homomorphism from S to the monoid
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.FB(G). This parallels nicely the fact that there is a transfer homomorphism 
from H to .B(G). 

In Sect. 2 we provide the necessary background and set the notation for the 
subsequent sections. Section 3 provides an alternate way to view each complement-
finite ideal and investigates the algebraic properties. In particular, it is shown that 
complement-finite ideals are never Krull but are always C-monoids. In fact, the class 
semigroup of each complement-finite ideal S has a nice structure that can be utilized 
to define a newmonoid .B̃(S), analogous to the monoid .B(H) of zero-sum sequences 
for a Krull monoid H and whose arithmetic is related to the Erdös-Burgess constant. 
In Sect. 4 we classify the irreducible elements of complement-finite ideals and 
investigate their arithmetic. Finally, in Sect. 5, we investigate more thoroughly the 
monoid .FB(G) introduced in Example 1.1(3). 

2 Background and Terminology 

Throughout, a monoid is a set S together with a commutative, associative binary 
operation. Usually we write this operation multiplicatively unless .S ⊆ Nt

0 in which 
case we use additive notation. We further assume that the operation is cancellative 
(if .x, y, z ∈ S with .xy = xz, then .y = z) and that S has an identity element . 1S

(.1Sx = x for all .x ∈ S). The monoid S is said to be finitely generated provided 
there is some finite subset .A ⊂ S so that every element in S can be written as 
a finite product of elements from A. We will be particularly interested in several 
families of monoids that we now describe. Additional information can be found in 
the following volumes: [15] and [22]. 

With P a (not necessarily finite) set, we denote by .F = F(P ) the free abelian 
monoid with basis P . Each element f in F is a unique product of the form . f =∏

p∈P pνp(f ) for some .νp(f ) ∈ N0, all but finitely many zero. We put a partial 

ordering . � on F by declaring .f � f ′ whenever .f = ∏
p∈P pνp(f ) and . f ′ =

∏
p∈P pν′

p(f ′) if and only if .νp(f ) ≤ ν′
p(f ′) for all .p ∈ P . For a subset X of F , 

we denote by .min(X), the set of minimal elements in X with respect to this partial 
ordering. For convenience, if .1 ∈ X, then .min+(X) denotes the set of minimal 
elements, again with respect to the partial ordering . �, of .X \ {1}. 

For a positive integer t , any finitely generated submonoid S of . Nt
0 is called 

an affine monoid. Such monoids are part of the larger class of monoids that can 
be embedded in a finite-rank free abelian monoid. Such monoids appear often 
in the literature, especially because of their intrinsic geometric and combinatorial 
properties. See [17] and the references therein. 

The so-called block monoid .B(G) of zero-sum sequences was introduced in 
Example 1.1(3). If G is a finite abelian group, .B(G) is the subset of the free monoid 
.F(G) consisting of formal products .g1 · · · gt with .g1 + · · · + gt = 0 in G. With 
operation given by concatenation and with identity element the empty string, .B(G)
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is a monoid. The largest t such that .g1 · · · gt is in .B(G) with no proper subsequence 
also in .B(G) is called the Davenport constant and is denoted with .D(G). This  
constant, though difficult to compute for most groups, appears often in formulas 
related to the arithmetic of certain Krull monoids. See, for example, [5]. It is known, 
for example, that .D(G) ≤ |G| for each finite abelian group G and that . D(Cn) = n

when . Cn is a cyclic group of order n. 
Let H be a commutative cancellative monoid, written multiplicatively. Then H 

embeds naturally into .q(H) = {
a
b
: a, b ∈ H

}
, the group of formal quotients of 

elements in H . If  X and Y are subsets of H , then .(X : Y ) = {z ∈ q(H) : zY ⊆ X}. 
We then denote by .X−1 = (H : X) and .Xv = (X−1)−1. The subset X of .q(H) is a 
v-ideal provided that .X = Xv and that there is .h ∈ H with .hX ⊆ H . The  complete 
integral closure of H is 

. Ĥ = {x ∈ q(H) : there is c ∈ H so that cxn ∈ H for all n ∈ N}

and H is said to be completely integrally closed if .H = Ĥ . We also recall that a 
monoid H is seminormal provided that 

. H = {x ∈ q(H) : ∃ N ∈ N so that xn ∈ H ∀ n ≥ N}

and note that all completely integrally closed monoids are seminormal. Although 
there are several equivalent ways to define a Krull monoid (see, e.g., [15]), here 
we recall that H is Krull provided that H is completely integrally closed and v-
noetherian (satisfies the ascending chain condition on v-ideals). We now define 
the more general concept of a C-monoid (see [15, §2.8-2.9] for a more thorough 
treatment). With H a multiplicative subsemigroup of a free monoid F , we define 
the class relation . ∼ on F by .y ∼ y′ if for all .x ∈ F , .xy ∈ H ⇐⇒ xy′ ∈ H . The  
set of equivalence classes together with the binary operation .[x][y] = [xy] gives the 
class semigroup .C∗(H, F ). When .C∗(H, F ) is finite, we say that H is a C-Monoid. 
If .x2αF ∩ H = xα(xαF ∩ H) for all .x ∈ F\{1}, then we say that H is a C-monoid 
with exponent . α. We also say that a subsemigroup H of F is simple if whenever 
.{p1, . . . , pt } is a finite subset of the primes in F , there exist .r1, . . . , rt ∈ N with 
.x = p

r1
1 · · · prt

t ∈ H . A multiplicative (necessarily noncancellative) semigroup H is 
a nulloid provided H has a multiplicative identity 1 and a zero element 0 such that 
.x · 0 = 0 for all .x ∈ H . 

We now briefly introduce the factorization-theoretic terms that we will use in 
Sect. 4. Take  H to be a commutative cancellative monoid. A unit in H is an element 
.u ∈ H so that there is .v ∈ H with .uv = 1, the identity of H . We restrict now 
to reduced monoids where the identity element 1 is the only unit. In this case, an 
element .a ∈ H is an atom (or is irreducible) provided that one cannot write . a = bc

in H with .b, c �= 1. We denote the set of atoms of H by .A(H). The irreducible 
element a is prime if whenever .a | bc in H , either .a | b or .a | c and is absolutely 
irreducible if a is the only atom of H that divides any power . an of a. The  .ω-value 
of an atom a, .ω(a), is the smallest .t ∈ N so that whenever .a | h1 · · · hn in H ,
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there is .I ⊆ [1, t] such that .a | ∏
i∈I hi . Clearly .ω(a) = 1 precisely when a is 

prime. In general, .ω(a) quantifies how far the atom a is from being prime. Then 
.ω(H) = sup{ω(a) : a ∈ A(H)} gives a measure of how nonunique factorization 
can be in H . 

A factorization . z of an element .h ∈ H is a formal product . z := a1 · · · al

of atoms where the product .a1 · · · al = h in H . The  length of the factorization 
.z = a1 · · · al is l and the set of lengths of an element .h ∈ H is . L(h) =
{l : h has a factorization of length l}. If, for each .h ∈ H , there are only finitely many 
atoms .a ∈ A(H) with .a | h, we say that H is a finite factorization monoid (FFM). 
If, for each .h ∈ H , .L(h) is finite, we say that H is a bounded factorization monoid 
(BFM). Of course .|L(h)| = 1 for all .h ∈ H precisely when H is a half-factorial 
monoid (HFM). Note that this includes the class of unique factorization monoids 
(UFMs). When this is not the case, the length sets and related invariants provide a 
quantification of how far from being a UFM the monoid is. In particular, we consider 
unions of sets of lengths, elasticities, and the delta set. The elasticity of a nonunit 
.h ∈ H is .ρ(h) = supL(h)/min L(h). With .ρ(u) = 1 for each unit u of H , we  
set .ρ(H) = sup{ρ(h) : h ∈ H } to be the elasticity of H . The elasticity is accepted 
if there is .h ∈ H so that .ρ(H) = ρ(h) and is full if .ρ(H) < ∞ and for each 
.q ∈ [1, ρ(H)] there is .h ∈ H so that .ρ(h) = q. With k an integer at least two, 

. Uk =
⋃

k∈L(h)

L(h)

is the union of sets of lengths containing k. Then the refined elasticity .ρk(H) is 
.ρk(H) = supUk(H). It is not hard to see that .ρ(H) = limk→∞ ρk(H)/k. If . L(h) =
{l1 < l2 < · · · }, we set .�(h) = {li+1 − li : i ≥ 1} to be the set of distances of a and 
.�(H) = ⋃

h∈H �(h). The  set  .�∗(H) denotes the set of all .d = min�(K) where 
K is a divisor-closed submonoid of H with .�(K) �= ∅. Finer invariants such as the 
catenary degree .c(H) and tame degree .t(H)measure how distinct two factorizations 
of a given element can be, regardless of the lengths of these factorizations. We do not 
define these invariants here since we mention them only briefly in Proposition 4.9 
and Theorem 5.5. See [12] for a recent survey on these invariants. We note that if G 
is a finite abelian group, then .ρ(B(G)) = D(G)

2 . We will present similar results for 
a similarly defined constant in Sect. 5. 

Finally, we set the stage for all subsequent sections by introducing notation we 
will be using throughout. 

Set-up 2.1 Let .F = F(P ) be the free abelian monoid with basis P and let . � be 
the standard partial ordering on F (see Sect. 2). Let S be a complement-finite ideal 
of F ; that is, .S �= F is a submonoid of F such that .|F \ S| < ∞ where . S \ {1}
is an ideal of F . Since .|F \ S| < ∞, .P \ S = {q1, . . . , qt } for some nonempty 
finite collection .{q1, . . . , qt } ⊆ P . Moreover, for each .i ∈ [1, t], there is a minimal 
.mi ∈ N≥2 so .qmi

i ∈ S. We denote by .m(S) and .M(S) the minimal and maximal 
values in the set .{m1 + · · · + mt : q

m1
1 · · · qmt

t ∈ min+(S)}.
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3 Additional Structure and Algebraic Properties 

In this section we consider the algebraic properties of complement-finite ideals 
and show that complement-finite ideal is closely related to a certain kind of 
affine monoid. We begin by giving an alternative definition for complement-finite 
ideals that illustrates that such a monoid is completely determined by its minimal 
nonidentity elements. 

Proposition 3.1 Let X and Y be subsets of .F \ {1} with .F = F(P ) a free abelian 
monoid with basis P . 

(1) .S = XF ∪ {1} = min(X)F ∪ {1} is a complement-finite ideal of F if and only 
if the following two properties hold: 

(a) For all .p ∈ P there exists (a minimal) .μp ∈ N with .pμp ∈ X. 
(b) For all but finitely many .p ∈ P , .μp = 1. 

In particular, if .S = XF ∪ {1} and .T = YF ∪ {1} are complement-finite ideals, 
then .S = T if and only if .min(X) = min(Y ). 

(2) If S is a complement-finite ideal of a free abelian monoid F , then . S = XF ∪{1}
whenever .min(X) = min(S \ {1}). 

Proof First note that for any subset X of .F \ {1}, .min(X)F ∪ {1} ⊆ XF ∪ {1}. 
Suppose .xf ∈ XF . If  .x �∈ min(X), then . x

g
= y with .y ∈ min(X) and .g ∈ F . Then 

.xf = y(fg) ∈ min(X)F . Thus .min(X)F∪{1} = XF ∪{1}. Set .S = min(X)F ∪{1}. 
If there is .p ∈ P such that .pn �∈ X for any .n ∈ N, then . {pn : n ∈ N} ⊆ F \ S

and so .|F \ S| = ∞ and S is not a complement-finite ideal. Suppose now that 
properties (a) and (b) hold and let .f ∈ F . If  .νp(f ) > 0 for some . p ∈ P ∩ X

(and hence .p ∈ min(X)), then .f = pg for some .g ∈ F and so .f ∈ S. Thus 
.F \ S ⊆ {f ∈ F : νp(f ) = 0∀p ∈ P ∩ X}. Let  .q1, . . . , qt be the finitely many 
primes from P that are not in X (so that .μqi

�= 1). Since for each i, .qmi

i g ∈ S for all 
.g ∈ F , .F \ S ⊆ {qm1

1 · · · qmt
t : mi < μqi

∀ i} is finite. Since .S = XF ∪ {1}, clearly 
.sf ∈ S for all .f ∈ F and .s ∈ S \ {1}. Thus S is a complement-finite ideal of F . 
Conversely, suppose that S is a complement-finite ideal and set .X = S \ {1}. Since 
.sf ∈ S for all .s ∈ X and .f ∈ F , .S = XF ∪{1} and so from (1) .S = min(X)F ∪{1}. 
This proves (1). Claim (2) follows immediately. ��

Proposition 3.1 gives rise to the following corollary which gives a simple and 
useful way to think about complement-finite ideals. 

Corollary 3.2 Let S be a complement-finite ideal of a free monoid . F = F(P )

endowed with the partial ordering . � given in Set-up 2.1. Then . S = {f ∈ F : x �
f for some x ∈ min+(S)}. Moreover, .p ∈ min+(S) for all but finitely many . p ∈ P

and for all .qi ∈ P \ S, .qmi

i ∈ min+(S). 

Suppose that S is a complement-finite ideal of a free monoid .F = F(P ) with 
P finite. Identifying F with .N|P |

0 , S embeds in this free monoid. We now argue 
that S is finitely generated. Writing .P = {p1, . . . , pt }, set  .B = {pn1

1 · · ·pnt
t : ni <
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mi for some i} and, for each .i ∈ [1, t], .Bi = {pni

i : mi ≤ ni ≤ 2mi − 1}. With 

.X = B ∪ ⋃t
i=1 Bi , a finite set, we show that .S = 〈X〉. Let  .s = p

k1
1 · · · pkt

t with 
each .ki ∈ N0. If .ki < mi for some i, then .s ∈ B. Otherwise .ki ≥ mi for all i. Now,  
for each .i ∈ [1, t], write .ki = miqi + ri where .qi ∈ N and .ri ∈ N0 with .ri < mi . 
Then .pki

i = p
mi (qi−1)
i pmi+ri . Since .mi ≤ mi + ri ≤ 2mi − 1, .pki

i ∈ B
qi

i . Thus 
.s ∈ ∏t

i=1 B
qi

i ⊆ 〈X〉. As a consequence, we have the following result. 
Proposition 3.3 If S is a complement-finite ideal of a free monoid .F = F(P ) with 
P finite, then S is isomorphic to an affine monoid. If P is not finite, then S is a 
product of an affine semigroup and a free monoid. 

As a consequence, if S is a complement-finite ideal of .F = F(P ) with P finite, 
S is a FFM, and is hence a BFM, satisfies the ACCP, and is atomic (see [1]). In fact, 
the finite generation criterion is not required to obtain these properties (see [17]). In 
fact, since every complement-finite ideal is a reduced submonoid of a free monoid, 
it is a FFM (see [15, Theorem 1.5.6(2)]). 

Before we move on, we consider the following elementary lemma. We will use 
these basic facts throughout. 

Lemma 3.4 Let S be a complement-finite ideal of a free monoid .F = F(P ) with 
basis P . 

(1) For every .f ∈ F , there is .N ∈ N such that .f n ∈ S for all .n ≥ N . 
(2) There is .c ∈ F \ S with .c2 ∈ S. 
(3) If .q ∈ P \ S, there exists .x ∈ F \ S with .qx ∈ S. 

Proof We first prove (1). If .f ∈ S, take  .N = 1. Otherwise, .f �∈ S, and so .f �= 1. 
Consider the set .U = {f i : i ∈ N}. As  F is reduced, .f i �= f j unless .i = j , and so 
U is infinite. By (CF1), .U ∩ S �= ∅ and so .f N ∈ S for some N . Now by property 
(CF2) .f n = f Nf n−N ∈ S for all .n ≥ N , proving (1). Choose .d ∈ F \ S. By (1)  
there must be some smallest .K ≥ 2 such that .dk ∈ S for all .k ≥ K . With .c = dK−1, 
.c �∈ S, yet .c2 ∈ S. This proves (2). Suppose (3) is false. Then for all .x ∈ F \ S, 
.qx ∈ F \ S. Write .F \ S = {x1, . . . , xn}. Then .{qx1, . . . , qxn} ⊆ {x1, . . . , xn}. If  
.qxi = qxj , then by cancellation .xi = xj . In fact, . {qx1, . . . , qxn} = {x1, . . . , xn}
and .qix1 ∈ F \ S for all i. If  .qix1 = qjx1, then by cancellation .i = j . Now  
.{qix1 : i ∈ N} ⊆ {x1, . . . , xn}, a contradiction to .|F \ S| < ∞, proving (3). ��

3.1 Restrictions of Primes 

In this section we consider a certain divisor-closed submonoid of each complement-
finite ideal that, itself, is also a complement-finite ideal. With notation as in Set-
up 2.1, let  S be a complement-finite ideal of a free abelian monoid .F = F(P ). With 
.P \ S = {q1, . . . , qt } =: PC, set  .FC = F(PC) and .C(S) = S ∩ FC. We show now  
that .C(S) is a divisor-closed submonoid of S and also a complement-finite ideal of 
. FC. As will be seen in the exposition after Proposition 4.1, .C(S) is the submonoid 
of S generated by a core set of atoms. For this reason we call .C(S) the core of S.
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Proposition 3.5 Let S be a complement-finite ideal of the free monoid . F = F(P )

with basis P . 

(1) The core of S, .C(S), is divisor-closed in S. 
(2) .S \ C(S) is an s-ideal of S. 
(3) .C(S) is a complement-finite ideal in .FC = F(PC). 
(4) .C(S) is isomorphic to an affine monoid. 

Proof Let .c ∈ C(S) and write .c = q
n1
1 · · · qnt

t with each .qi ∈ PC and each .ni ∈ N0. 
If .s ∈ S with .s | c in S, then .s | c in F and so .s = q

m1
1 · · · qmt

t with .mi ≤ ni for 
each .i ∈ [1, t]. Thus .s ∈ C(S) as well, proving (1). 

If .P ∩ S = P ; that is, .PC = ∅, then .S \ C(S) = ∅ is, by definition, an s-ideal of 
S. Otherwise, if  .x ∈ S \ C(S), then .x = py with .y ∈ F and .p ∈ P ∩ S. Then, if 
.s ∈ S, .sx = p(sy) ∈ S \ C(S), and so .S(S \ C(S)) = S \ C(S). 

Clearly .C(S) is a submonoid of .FC = F(PC). Observe that . FC\C(S) = FC\(S∩
FC) = FC\S ⊆ F \S is finite. If .s = q

m1
1 · · · qmt

t ∈ C(S) and .f = q
n1
1 · · · qnt

t ∈ FC, 
then .f s ∈ FC. Moreover, .f s ∈ S, and so .f s ∈ FC ∩ S = C(S). That is, .C(S) is a 
complement-finite ideal of . FC proving (3). Since .C(S) is finitely generated, fact (4) 
follows immediately from Proposition 3.3. ��

3.2 Algebraic Properties 

We now consider some algebraic properties of complement-finite ideals. Proposi-
tion 3.7 generalizes the results from [4, Section 4] on the multiplicative structure 
of numerical monoids to more general complement-finite ideals. Before giving the 
result we introduce a new object. 

Definition 3.6 Let C be a commutative semigroup, not necessarily cancellative or 
with identity. Let .F(C) denote the free abelian monoid with basis C. Then we 
denote by .B̃(C) to be the submonoid 

. ̃B(C) =
{

c1 · · · ct :
t∏

i=1

ci is idempotent in C

}

⊆ F(C).

With operation given by concatenation and with identity given by the empty 
string in .F(C), it is clear (since the product of two idempotent elements is again 
idempotent) that .B̃(C) is a commutative cancellative monoid. 

Proposition 3.7 Let S be a complement-finite ideal of a free monoid .F = F(P ). 

(1) S is not seminormal, root-closed, or completely integrally closed, and so is not 
Krull. 

(2) S is a simple C-monoid with exponent .M(S) and .C∗(S, F ) is a nulloid with . {1}
and .S \ {1} the only idempotent elements of .C∗(S, F ). 

(3) There is a transfer homomorphism from S to .B̃(C∗(S, F )).
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(4) .B̃(C∗(S, F )) is a complement-finite ideal of .F(C∗(S, F )). 

The proofs of (1) and (2) are similar to the arguments in [4], and we include them 
here for convenience. To prove (3) and (4) we require the following result from [15], 
restated within the current context. 

Proposition 3.8 ([15], Theorem 3.3.4) Let .F = F(P ) be a free monoid and . H ⊂
F a C-monoid with identity .1H = 1F . Set .P0 = {p ∈ P : p−1H ∩ F = H \ {1}}, 
.P̃ = {[p] : p ∈ P \ P0} ⊆ C∗(H, F ), and .F̃ = F(P̃ ) be the free monoid with 
basis . ̃P . Let .β̃ : F → F̃ be the unique homomorphism satisfying .β̃(p) = [p] for 
all .p ∈ P \ P0, .β̃(p) = [1] for all .p ∈ P0, and .β̃(1) = [1]. With .H̃ = β̃(H) and 
.β = β̃|H : H → H̃ , . β is a transfer homomorphism. 

Proof of Proposition 3.7 Observe that if .x = a
b

∈ q(F ), then for any .y ∈ S, . x =
ay
by

∈ q(S). In particular, .F ⊆ q(F ) = q(S). Take  .f ∈ F \ S. By Lemma 3.4 
there is .N ∈ N such that .f n ∈ S for all .n ≥ N and so S is not seminormal. As a 
consequence, it is not root-closed, completely integrally closed, or Krull. 

By definition, the equivalence classes in .C∗(S, F ) partition F . If  .s ∈ S \ {1}, 
then by one of the defining properties of complement-finite ideals (Property (CF2)), 
.sf ∈ S for all .f ∈ F . As a consequence, for any .s ∈ S \ {1}, .[s] = S \ {1} is 
an element of .C∗(S, F ). As  F is reduced, .[1] = {1}. Now, for any .f ∈ F with 
.[f ] ∈ C∗(S, F ) \ {[1], S \ {1}}, .f ∈ F \ S, a finite set (by Property (CF1)). Thus 
.|C∗(S, F )| ≤ |F \ S| + 2 is finite and so S is a C-monoid. In fact, S is a simple 
C-monoid since for any set .{p1, . . . , pt } ⊆ P , .pm1

1 · · ·pmt
t ∈ S. 

We now show that S has exponent .M(S). Let  .f ∈ F and write . f =
p

m1
1 · · ·pms

s q
n1
1 · · · qnt

t with primes .p1, . . . , ps ∈ P ∩ S and .q1, . . . qt ∈ P \ S and 
nonnegative integers .m1, . . . , ms, n1, . . . , nt . Then for .ε ∈ {1, 2}, . f εM(S)F ⊆ S

and .f εM(S)F ∩ S = f εM(S)F . Thus 

. fM(S)(fM(S)F ∩ S) = fM(S)(fM(S)F ) = f 2M(S)F = fM(S)F ∩ S.

The multiplicative identity of .C∗(S, F ) is . [1] and the zero element is . S\{1} = [s]
for each .s ∈ S \ {1} since for any .[x] ∈ C∗(S, F ), .[x][s] = [xs] = [s] by Property 
(CF2). Thus .C∗(S, F ) is a nulloid. 

We now prove (3). Let .p ∈ P . If  .p ∈ S, then for any .f ∈ F , .pf ∈ S and 
.f = p−1(pf ) ∈ p−1S ∩ F . If  .p �∈ S, then there is some .x ∈ F \ S with . pf ∈ S

(see Lemma 3.4(3)). Again, .f = p−1(pf ) ∈ p−1S ∩F . In either case, . p−1S ∩F �=
S \ {1} and so, with notation as in Proposition 3.8, .P0 = ∅. Thus . ̃P = {[p] : p ∈ P }
and, by (2) and Proposition 3.8, there is a transfer homomorphism to 

.

⎧
⎪⎨

⎪⎩
[p1] · · · [pt ] ∈ F(P̃ ) : p1 · · · pt ∈ S

︸ ︷︷ ︸
[p1]···[pt ] idempotent

⎫
⎪⎬

⎪⎭
= B̃(C∗(S, F )).
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To prove (4), we note that for any .p ∈ P , .pm ∈ S for some .m ∈ N, for each . [p] ∈
P̃ there is .m ∈ N so that .[p]m ∈ B̃(C∗(S, F )). Since . |P̃ | is finite, Proposition 3.1 
implies that .B̃(C∗(S, F )). is a complement-finite ideal. ��

Continuing with the notation in this section and recalling Proposition 3.7, write 

. C∗(S, F ) = {[1], [a1], . . . , [ar ], [z]}

with .[1] = {1} the identity of .C∗(S, F ), .[z] = S \ {1} the zero element, and 
where .[a1], . . . , [ar ] are the r non-idempotent elements of .C := C∗(S, F ). With 
.B̃(C), defined in Definition 3.6, the monoid of formal products in the free monoid 
with basis .{[a1], . . . , [ar ], [z]} whose actual product in .C∗(S, F ) is idempotent, 
the irreducible elements in .B̃(C) are the idempotent products containing no proper 
idempotent subsequence. In [16] (answering a question of Paul Erdős) it was shown 
that if S is a finite semigroup with r nonidempotent elements, then every product 
of at least .r + 1 elements in S contains an idempotent subproduct. The maximal 
length of an idempotent sequence having no idempotent subproduct is referred to 
the Erdős-Burgess constant. It has been studied for various semigroups (e.g., [24]) 
and is related to the analogous Davenport constant for groups (cf. [18]). We propose 
a careful study of the arithmetic of the monoid .B̃(C) as has been done extensively 
with the monoid .B(H) of zero-sum sequences (see, e.g., [23] and the references 
therein). Here we give one general result about the elasticity in semigroups of 
idempotent products, the corollary of which gives an upper bound on the elasticity 
for complement-finite ideals. 

Proposition 3.9 Let .T = {1, a1, . . . , ar , z} be a commutative semigroup with 
identity 1, zero element z, and where .a1, . . . , ar are nonidempotent elements of T . 
Let .B̃(T ) be the submonoid of .F(T ) from Definition 3.6. Then .ρ(B̃(T )) ≤ r + 1

2 . 

Proof Suppose that .α1, . . . , αs , .α′
1, . . . , α

′
t , .β1, . . . , βu, .β ′

1, . . . , β
′
v are irreducible 

elements of .B̃(T ) such that, in .F(T ), .z | αi and .z | βj for each i and j , yet . z � α′
i

and .z � β ′
j for each i and j . Observe that since z itself is an irreducible element of 

.B̃(T ), .z2 � αi and .z2 � βj for each i and j . Suppose that . γ = α1 · · ·αsα
′
1 · · · α′

t =
β1 · · · βuβ

′
1 · · · β ′

v in .B̃(T ) with .
s+t
u+v

as large as possible; that is, .ρ(γ ) = s+t
u+v

. Since 
each . αi and . βj is irreducible and as .z2 � αi and .z2 � βj for each i and j , .s = u. 
With .v ≤ t , . s+t

s+v
≤ t

v
and so to obtain an upper bound on the elasticity we may as 

well assume that .s = u = 0. In  .F(T ), write .γ = f1 · · · f
. Since no . α′
i involves z, 

the length of each . α′
i in .F(T ) is at least two and so .t ≤ 


2 . Since T contains exactly 
r nonidempotent elements, by Gillam et al. [16], the length in .F(T ) of each . β ′

i is at 

most .2r + 1. Thus .v ≥ 

2r+1 . Now  .ρ(γ ) ≤ t

v
≤ 
/2


/(2r+1) = 2r+1
2 = r + 1

2 . As  . γ
was arbitrary, the result follows. ��

In particular, if S is a complement-finite ideal, then we immediately obtain a 
bound on the elasticity of S, an improvement on the general bound on elasticities 
for C-monoids given in [15, Theorem 3.3.1]. In particular, if S is a complement-
finite ideal of the free monoid F , we have that .ρ(S) ≤ |F \ S| − 1+ 1

2 . This bound 
will be greatly improved in the next section.
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Corollary 3.10 Let S be a complement-finite ideal of a free monoid F . Then 

. ρ(S) ≤ |C∗(S, F )| + 1

2
.

Remark 3.11 With the same proof, the result of Proposition 3.9 can be easily 
strengthened by replacing .r + 1 with .I(T ), the Erdös-Burgess constant of T . Then, 
this result nicely matches the analogous result for the monoid .B(G) of zero-sum 
sequences over an abelian group G: .ρ(B(G)) = D(G)

2 , where .D(G) is the Davenport 
constant of G. 

Example 3.12 Let n be a positive integer and let .S = 〈n, . . . , 2n − 1〉 be the 
numerical monoid generated by the full interval .[n, 2n−1]. Let . S1 be the associated 
multiplicative semigroup, a complement-finite ideal of .(N, ·), so that .S = {1}∪N≥n. 
Then 

. C∗(S1,N) =
{

[1],
[

� n

�n/2��
]

, . . . ,
[
�n

2
�
]
, [n] = S1 \ {1}

}

.

Take, for example, .n = 4 so that .C∗(S1,N) = {[1], [2], [4]}. Now  .r = 1 and 
Corollary 3.10 gives that .ρ(B̃(C∗(S, F ))) ≤ 1 + 1

2 = 3
2 . This bound is obtained by 

the following two factorizations in . ̃B(C∗(S, F )).

. ([2] · [2] · [2])3 = ([2] · [2])3 .

Now if .n = 8, then .C∗(S1,N) = {[1], [2], [3], [4], [8]}. In this case .r = 3 and 
Corollary 3.10 gives that .ρ(B̃(C∗(S, F ))) ≤ 3 + 1

2 = 7
2 . We now argue that 

this elasticity cannot be obtained. As in the proof of Corollary 3.10, to obtain 
an upper bound on the elasticity, we need only consider elements involving . [2], 
. [3], and . [4]. Thus we can instead consider the elasticity of the affine submonoid 
T of . N3

0 (Proposition 3.3) wherein . [2], . [3], and . [4] are mapped to . e1, . e2, and 
. e3, respectively. Consider the function .ϕ : T → N0 given by . ϕ(a, b, c) =
a + b + c. It is not hard to see that this is a semilength function. A bit of 
computation shows that .min{ϕ(a, b, c) : (a, b, c) is an atom of T } = 2 and that 
.max{ϕ(a, b, c) : (a, b, c) is an atom of T } = 5. Thus . ρ(B̃(C∗(S, F )) = ρ(T ) ≤
5
2 < 7

2 . Alternatively, one could note that the Erdös-Burgess constant here is 3, also 
giving the upper bound . 52 for the elasticity. 

4 Atoms and Arithmetic 

In this section we establish some results about the arithmetic of complement-finite 
ideals, some of which are straight-forward extensions of what was already done for 
multiplicative numerical semigroups in [4]. We begin by classifying the atoms of a
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given complement-finite ideal. The classification, and its proof, is very much like 
that for multiplicative numerical semigroups. But, for the general case we must use 
Lemma 3.4. 

We are now able to give a classification of the atoms as well as state that there are 
no prime elements and that only certain types of atoms are absolutely irreducible. 

Proposition 4.1 Let S be a complement-finite ideal of a free monoid .F = F(P ) as 
in Step-up 2.1. 

(1) .A(S) = A1 ∪ A2 ∪ A3, a disjoint union where 

(I) .A1 = {p : ∈ P ∩ S}, 
(II) .A2 = {pf : p ∈ P ∩ S and f ∈ F \ S}, and 
(III) .A3 = A(C(S)). 

(2) No atom of S is prime. 
(3) Only atoms of type (I) are absolutely irreducible. 

Proof Let .p ∈ P ∩ S and let .f ∈ F \ S. If .pf = s1s2 with .s1, s2 ∈ S, then . p | s1s2
in F . Since p is prime in F , without loss of generality, .p | s1 in F . Then . s1 = px

with .x ∈ F . But then .pf = pxs1 and by cancellation .f = xs1 ∈ S, a contradiction. 
If .s ∈ S and .p � s for any .p ∈ P ∩ S, then .s ∈ C(S). Since .C(S) is divisor-closed 
in S, any atom of S of this form is an atom of the core .C(S). 

We now show that no atom of S is prime. Let .p ∈ P ∩ S, an atom of type (I), 
and choose, by Lemma 3.4, .c ∈ F \ S such that .c2 ∈ S. Then .p | p(pc2) = (pc)2, 
yet .p � pc. Let  pf be an atom of type (II) with .p ∈ P ∩ S and .f �∈ S. Then 
.pf | (pf )2 = p · (pf 2), yet .pf � p and .pf � pf 2. Finally, let .s = q

m1
1 · · · qmt

t be an 

atom of type (III). Then .
∑t

i=1 mi ≥ 2 and we can write . q
m1
1 · · · qmt

t = (q
l1
1 · · · qlt

t
︸ ︷︷ ︸

r

) ·

(q
m1−l1
1 · · · qmt−lt

t
︸ ︷︷ ︸

r ′

)with .li ≤ mi for all i and with .lj > 0 for some j and . mk−lk > 0

for some k. With .p ∈ P ∩S, obviously .s | p2s in S. However, . p2s = (p · r) · (p · r ′)
and yet .s � p · r and .s � p · r ′. Thus S has no prime elements. 

From the classification of atoms in S, and because of unique prime factorization 
in F , it is clear that each atom of type (I) is absolutely irreducible. If pf is an 
atom of type (II), then .(pf )2 = p · pf 2 and so .p | (pf )2. Thus atoms of type 
(II) are not absolutely irreducible. Finally, let .s = q

m1
1 · · · qmt

t be an atom of type 

(III). By Lemma 3.4, we can choose N so that .qN
1 ∈ S. Then . 

(
q

m1
1 · · · qmt

t

)N =
qN
1 ·

(
q

Nm1−m1
1 q

Nm2
2 · · · qNmt

t

)
in S and so .qN

1 | sN , whence s is not absolutely 
irreducible. ��
Remark 4.2 Observe that the atoms of type (III) are precisely the elements of S the 
form .q

m1
1 · · · qmt

t so that .(m1, . . . , mt ) ∈ A(T )where T is the affine semigroup . T =
{(n1, . . . , nt ) ∈ Nt

0 : q
n1
1 · · · qnt

t ∈ S} (see the paragraph preceding Proposition 3.3). 
With the partial ordering . � and .min+(S) as defined in Step-up 2.1, we can describe
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the atoms of type (III) as those elements in .C(S) satisfying the following two 
conditions. 

• .q
m1
1 · · · qmt

t � q
n1
1 · · · qnt

t with .q
n1
1 · · · qnt

t ∈ min+(S). 

• .q
m1
1 · · · qmt

t �� q
k1
1 · · · qkt

t · ql1
1 · · · qlt

t whenever .q
k1
1 · · · qkt

t , q
l1
1 · · · qlt

t ∈ min+(S). 

That is, atoms of type (III) correspond to elements in .C(S) “between” (via the partial 
ordering . �) .min+(S) and .min+(S)2. 

Remark 4.3 Let .q ∈ P \S and let . m be as in Step-up 2.1 so that . m = min{m : qm ∈
S}. Now, if  .qk ∈ S, then .k ≥ m. On the other hand, if .k ≥ 2m, then . qk =(
qm

) (
qk−m

)
and so . qk is not irreducible. Conversely, suppose that .m ≤ k < 2m. 

Then . qk is irreducible since the only way to factor . qk (in F ) is as  .qm · qn with 
.1 < m, n < k, an impossibility in S if .m ≤ k < 2m. Thus we observe that . qk is an 
atom in S if and only if .m ≤ k < 2m. 

Because the atoms of S of type (III) are atoms in the core of S, we refer to them 
as core atoms. We refer to atoms of types (I) and (II) as peripheral atoms. While no 
atom in S is prime (see Proposition 4.1), as we will see in Lemma 4.7, the peripheral 
atoms do have some prime-like properties, namely, that the number of such atoms in 
a factorization of a fixed element of S is unchanged, regardless of the factorization. 
Moreover in Corollary 4.10, we will  see that  .ω(p) = 2 for atoms of type (I), while 
. ω values are largest for the core atoms. 

The following result shows how lengths sets in complement-finite ideals are, 
in general, much more well-structured than in more general C-monoids, or even 
general Krull monoids. 

Theorem 4.4 Let S be a complement-finite ideal in a free monoid .F = F(P ). 

(1) S is half-factorial if and only if S is factorial. 
(2) There is .M ∈ N such that every .L ∈ L(S) is an AAP with distance 1 and bound 

M . 

Proof If .S �= F , then there is .q ∈ P \ S. With . m as in Remark 4.3, .m ≥ 2 and 
both . qm and .qm+1 are atoms of S. Then .

(
qm

)m+1 = (
qm+1

)m
, showing that S is 

not half-factorial. Clearly S is half-factorial if .S = F . This proves (1). 
Item (2) is immediate if S is half-factorial, so assume otherwise. Since S is a C-

monoid, by Geroldinger and Halter-Koch [15, Theorem 4.6.6] there is .M ∈ N such 
that every .L ∈ L(S) is an AAMP with some distance .d ∈ �∗(S) and bound M . 
Thus we need only show that .�∗(S) = {1}. Let  T be a divisor-closed submonoid 
of S with T not half-factorial. Then there is .q ∈ P \ T , and we can again let 
.m = m(q) ≥ 2 so that . qm and .qm+1 are atoms of T . Then .qm2+m factors both 
as .

(
qm+1

)m
and as .(qm)m+1, factorizations of lengths . m and .m + 1. In particular, 

.min�(T ) = 1 and so .�∗(S) = {1}. ��
In fact, if we take for T in the above proof, the submonoid . T =

{1, qm, qm+1, qm+2, . . .} of S with .q ∈ P \S, then we can note that T is isomorphic 
to the additive numerical monoid .M = 〈m,m + 1, . . . , 2m − 1〉. Then from [2]
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we immediately obtain that .�(T ) = �(M) = {1}. Not only is every length set in 
S an AAP with distance 1, but the system of sets of lengths contains length sets 
containing arbitrarily large intervals as is evidenced by the following proposition, 
adapted from [4]. 

Proposition 4.5 Let S be a complement-finite ideal as in Step-up 2.1. For each . i ∈
[1, t], and each .k ∈ N0, .L(qk

i ) =
[⌈

k
2mi−1

⌉
,
⌊

k
mi

⌋]
. Moreover, if . k1, . . . , kt ∈ N0

with .ki ≥ mi for each i, 

. L(q
k1
1 · · · qkt

t ) ⊇
[

t∑

i=1

⌈
ki

2mi − 1

⌉

,

t∑

i=1

⌊
k

mi

⌋]

.

Proof For each .i ∈ [1, t], the only atoms of S that divide . qk
i are the atoms 

.q
mi

i , . . . , q
2mi−1
i of type (III). Thus multiplicative factorizations of . qk

i in S cor-
respond exactly to the additive factorizations of k in the numerical monoid 

.〈mi , . . . , 2mi − 1〉. By Amos et al.  [2, Theorem 2.2], .L(qk
i ) =

[⌈
k

2mi−1

⌉
,
⌊

k
mi

⌋]
. 

The moreover statement follows by subadditivity of length sets. ��
We now consider an example illustrating Theorem 4.4. In particular we show that 

because the monoid .FB(G), introduced in Example 1.1(3), has so many more atoms 
than the corresponding monoid .B(G), even if  .B ∈ B(G) ∩ FB(G), .LFB(Cn)(B) is 
much larger than .LB(Cn)(B). 

Example 4.6 Let .Cn = 〈g〉 be a cyclic group of order n and consider . B = gn(−g)n

in the monoid of zero-sum sequences .B(Cn). The only atoms of .B(Cn) that divide 
B are .g(−g), . gn, and .(−g)n and so the only factorizations in .B(Cn) of B are . B =
gn · (−g)n and .B = (g(−g))n. Consequently, .LB(Cn)(B) = {2, n}. 

We now consider the same element B in .FB(Cn). In this monoid there are many 
more atoms. In particular, the atoms of .FB(Cn) that divide B are: . gk and . (−g)k

with .k ∈ [n, 2n − 1] as well as .gl(−g) and .g(−g)l for .l ∈ [1, n]. As in  .B(Cn), 
.min LFB(Cn)(B) = 2 since .B = gn · g−n. Similarly, .maxLFB(Cn)(B) = n as 
evidenced by the factorization .(g(−g))n. But, in  .FB(Cn), for all .l ∈ [2, n] there 
is a factorization . zl of B with .|zl | = l, namely, 

. zl := (g(−g))l−2 · gn−l+1(−g) · g(−g)n−l+1.

Thus .LFB(Cn)(B) = [2, n]. 
Lemma 4.7 Let S be a complement-finite ideal of .F = F(P ) as in Step-up 2.1, 
and let .C(S) denote the submonoid of S generated by the core atoms. 

(1) Let .w1 · · · wax1 · · · xb = y1 · · · ycz1 · · · zd be two factorizations of an element 
in S with each .wi, xj , yk, zl ∈ A(S). With the notation as in Proposition 4.1, 
if .wi, yk ∈ A1 ∪ A2 for all .i ∈ [1, a] and .k ∈ [1, c] and .xj , zl ∈ A3 for all 
.i ∈ [1, b] and .l ∈ [1, d], then .a = c.
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(2) .ρ(S) = ρ(C(S)). 
(3) .C(S), and hence S, is fully elastic. 
(4) If .y = p1 · · · psx ∈ S with .p1, . . . , ps ∈ P ∩ S and .x ∈ C(S), . s ≤ minL(y) ≤

s + minL(x) and .max L(y) = s + max L(x). 

Proof (1) follows from unique factorization in F and since elements in .A1∪A2 are 
precisely those atoms of S divisible, in F , by some prime .p ∈ P ∩ S. 

Since .C(S) is a divisor-closed submonoid of S (Proposition 3.5), . ρ(C(S)) ≤
ρ(S). Let  .s ∈ S \ C(S). Let  .w1 · · ·wax1 · · · xb = y1 · · · ycz1 · · · zd be two 
factorizations of s. By (1),  .a = c. With .d ≥ b, . d+c

b+a
≤ d

b
, and so .ρ(S) ≤ ρ(C(S)). 

This proves (2). 
Now, since .C(S) is (locally) finitely generated, so is . S′ = {rnx : n ∈ N0, x ∈

C(S)} ⊆ F ′ = F({q1, . . . , qt , r}). Now, by Zhong [25, Theorem 1.1], . S′ is fully 
elastic if there is .s ∈ S′ with .ρ(s) = limn→∞ ρ(sn) = 1. Taking .s = r and noting 
that r is absolutely irreducible in . S′ (see Lemma 3.4) completes the proof of (3). 

By (1), every factorization of y involves exactly s atoms of type (I) and (II) and 
so .s ≤ minL(y). On the other hand, for each factorization .z := a1 · · · al of x, 
.p1 · · ·psz is a factorization of y. Thus .minL(y) ≤ s + minL(x) and . max L(x) ≥
s + max L(x). If  .maxL(y) > s + max L(x), then there is a factorization . z :=
p1 · · ·prxr+1 · · · xsx

′
1 · · · x′

t of y with each . xi and . x′
j irreducible and with . pi | xi

(in F ) for each .i ∈ [r + 1, s] and .pi � x′
j for any i or j . That is, each . xi is an atom 

of type (II) and each . x′
j is in .C(S). But then .max L(x′

1 · · · x′
t ) > max L(x) which is 

impossible since .x′
1 · · · x′

t | x in F . ��
Remark 4.8 Observe that if, for example, .x = q

r1
1 · · · qrt

t in Lemma 4.7(4) with 
.
∑t

i=1 ri ≤ s, y has a factorization as a product involving only atoms of types (I) 
and (II) and so .minL(y) = s, the stated lower bound. But, if .

∑t
i=1 ri is considerably 

larger than s, .min L(y) may be much larger than s. 

As a consequence of Lemma 4.7, it makes sense to restrict our attention to 
complement-finite ideals S with .S = C(S). We now briefly consider the catenary 
degree, tame degree, and the . ω invariant of complement-finite ideals. 

Proposition 4.9 Let S be a complement-finite ideal of .F = F(P ) as in Step-
up 2.1. 

(1) .ω(S) ∈ {M(S),M(S) + 1}. 
(2) .c(S) ≤ M(S) + 1. 
(3) .M(S) ≤ t(S) ≤ (M(S) + 1)2. 

Proof Let .a ∈ A(S) and suppose that .a | x1 · · · xk for some .x1, . . . , xk ∈ S. 
Write .a = p1 · · ·p|a| with .p1, . . . , p|a| ∈ F . After reordering the . xis as necessary, 
for each .i ∈ [1, |a|], .xi = pix

′
i in F . Then clearly .a | x1 · · · x|a| in F and so 

.ay = x1 · · · x|a| for some .y ∈ F . If  .y ∈ S, then .a | x1 · · · x|a| in S. Otherwise, 
writing .a(yx|a|+1) = x1 · · · x|a|+1 and noting that .yx|a|+1 ∈ S, .a | x1 · · · x|a|+1 in 
S. Thus .ω(a) ∈ {|a|, |a| + 1} and .ω(S) ∈ {M(S),M(S) + 1}, proving (1).
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(2) follows directly from the general result [15, Chapter 1] that if H is an atomic 
monoid .c(H) ≤ ω(H). By Geroldinger and Halter-Koch [15, Chapter 8] we have 
that .ω(H) ≤ t(H) ≤ ω2(H) whenever H is an atomic monoid. This proves (3). ��

Putting together Propositions 4.1 and 4.9, we have the following corollary. 

Corollary 4.10 Let S be a complement-finite ideal of .F = F(P ) as in Step-up 2.1 
and let .a ∈ A(S) as characterized in Proposition 4.1. 

(1) .ω(a) = 2 if .a ∈ A1. 
(2) .2 ≤ ω(a) ≤ ∑t

i=1mi − t if .a ∈ A2. 
(3) .m(S) ≤ ω(a) ≤ M(S) + 1 if .a ∈ A3. 

Proof By (1) of Proposition 4.9 .ω(p) ∈ {1, 2} for each atom p of type (I). But 
since no element in S is prime (Proposition 4.1), .ω(p) = 2 for each .p ∈ A1. If  
.a ∈ A2, then .a = pq

m1
1 · · · qmt

t with .p ∈ P ∩ S and .qm1
1 · · · qmt

t �∈ S. The  lower  
bound follows since .

∑t
i=1 mi ≥ 1. The upper bound follows since .mi ≤ mi − 1 for 

each i. Finally, if .a ∈ A3, then .a = q
m1
1 · · · qmt

t with .m(S) ≤ ∑t
i=1 mi ≤ M(S). 

The result then follows from Proposition 4.9(1). ��
We now consider the elasticity of complement-finite ideals. 

Lemma 4.11 Let S be a complement-finite ideal of .F = F(P ) as in Step-up 2.1. 
With .m1 ≤ · · · ≤ mt , 

. ρ(S) ≤
(t + 1)

∏t
i=1mi − ∑t

i=1
∏t

j=1
j �=i

mj

minx∈S\{1}
∑t

i=1
∏t

j=1
j �=i

mj xi

.

Proof By Lemma 4.7 we may suppose that .S = C(S). Consider the function . ϕ :
F → N0 defined by 

. ϕ(q
x1
1 , . . . , q

xt
t ) =

t∑

i=1

t∏

j=1
j �=i

mj xi .

Restricted to S, .ϕ|S : S → N0 is a semilength function. As a consequence, 
.ρ(S) ≤ max{ϕ(x) : x∈A(S)}

min{ϕ(x) : x∈A(S)} . It is clear that . max{ϕ(x) : x ∈ A(S)} ≤ (t +1)
∏t

i=1mi −
∑t

i=1
∏t

j=1
j �=i

mj as evidenced by the element .qm1−1
1 · · · qmt−1−1

t−1 · q
2mt−1
t . ��

With the following example, generalized in Proposition 4.15, we illustrate that 
the bound in Lemma 4.11 is sometimes obtained.
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Example 4.12 Consider the affine complement-finite ideal 

. S = {(0, 0)} ∪ {(x, y) : x ≥ 3 or y ≥ 4} ⊆ N2
0.

Then .m1 = 3, .m2 = 4, and the set of atoms of S is: 

. {(x, y) : 3 ≤ x ≤ 5 and 0 ≤ y ≤ 3} ∪ {(x, y) : 0 ≤ x ≤ 2 and 4 ≤ y ≤ 7}.

The upper bound given in Lemma 4.11 gives 

. ρ(S) ≤
(t + 1)

∏t
i=1mi − ∑t

i=1
∏t

j=1
j �=i

mj

minx∈S\{1}
∑t

i=1
∏t

j=1
j �=i

mj xi

≤ 29/12.

This upper bound is obtained since 

. 12 · (2, 7) = 8 · (3, 0) + 21 · (0, 4).

We now illustrate that the upper bound in Lemma 4.11 may not be obtained if 
not all minimal elements of S lie on extremal rays. 

Example 4.13 Consider the affine complement-finite ideal 

. S = {(0, 0)} ∪ {(x, y) : x ≥ 3, y ≥ 4, or xy ≥ 1} ⊆ N2
0.

Then .m1 = 3, .m2 = 4, and the atoms of S are: 

. (3, 0), (4, 0), (5, 0), (0, 4), (0, 5), (0, 6), (0, 7), (1, 1), (1, 2), (1, 3), (1, 4),

(2, 1), and (3, 1).

The upper bound given in Lemma 4.11 gives 

. ρ(S) ≤
(t + 1)

∏t
i=1mi − ∑t

i=1
∏t

j=1
j �=i

mj

minx∈S\{1}
∑t

i=1
∏t

j=1
j �=i

mj xi

≤ 29/7.

Using the more basic fact from the proof, we have that 

. ρ(S) ≤ max{ϕ(x) : x ∈ A(S)}
min{ϕ(x) : x ∈ A(S)} = 21/7 = 3.

However, with a bit of computation [10, 14] we find that .ρ(S) = 35/12, less than 
either of these approximations.
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4.1 Complement-Finite Ideals Whose Minimal Elements Lie 
on Extremal Rays 

Observe that if S is a complement-finite ideal of . Nt
0, say with .C(S) = S for 

simplification, then there are .m1, . . . , mt ∈ N≥2 such that .mie1, . . . , mtet are the 
minimal nonzero elements of S. In this section we study semigroups S so that these 
are the only minimal nonzero elements of S; that is, all minimal elements lie on the 
extremal rays of the affine monoid. This work naturally generalizes what happens in 
an additive numerical semigroup .S = 〈m,m1, . . . , 2m−1〉 generated by a maximal 
length interval and give some credence to the forthcoming Lemma 4.16. By the  
classification of atoms of .C(S) and by Lemma 4.2, we see that the irreducible 
elements are those elements .α ∈ S such that .α � β for some minimal element . β of 
S but yet .α �� β + γ for any two minimal elements . β and . γ of S. Consequently, we 
have the following. 

Proposition 4.14 Let S be a complement-finite ideal of . Nt
0 (with .C(S) = S) so that 

the only minimal nonzero elements of S are .m1e1, . . . , mtet for some . m1, . . . , mt ∈
N≥2. Then the atoms of S are 

. A(S) = {(a1, . . . , at ) : mi ≤ ai < 2mi for some i and 0 ≤ aj < mj for all j �= i}.

In this special situation, we can describe precisely the length sets of each element 
in S. To do so, note that for each .i ∈ [1, t], .(0, . . . , 0, xi, 0, . . . , 0) ∈ S if and only 
if .xi ∈ 〈mi, . . . , 2mi − 1〉, an additive numerical semigroup generated by the full 
interval .[mi, 2mi − 1]. Moreover, .{(0, . . . , 0, xi, 0, . . . , 0) : xi = 0 or xi ≥ mi} is a 
divisor-closed subsemigroup of S, isomorphic to .〈mi, . . . , 2mi −1〉. Thus the results 
of [2] can be used to study some sets of lengths in S. 

Proposition 4.15 Let S be a complement-finite ideal of .F = F(P ) as in Lemma 2.1 
so that .qm1

1 , . . . , q
mt
t are the only minimal elements of .S \ {1}. Then every length set 

is an interval (so that .�(S) = {1}) and 

. ρ(S) = t + 1 −
t∑

i=1

1

mi

.

Proof We first show that for all .s ∈ S, .L(s) is an interval. For each .k ∈ [1, t] let 

. Ik = {qn1
1 · · · qnt

t : mk ≤ nk ≤ 2mk − 1, 0 ≤ ni ≤ mi − 1∀ i �= k}.

Then .A(S) = ∐t
k=1 Ik . Moreover, for any .s ∈ S, 

.L(s) =
{

t∑

k=1

ak : s ∈
t∏

k=1

I
ak

k

}

.
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Let .s = q
x1
1 · · · qxt

t with .l, l′ ∈ L(s) so that .l′ ≥ l + 2. Then .l = ∑t
k=1 ak and . l′ =

∑t
k=1 bk where .s ∈ (∏t

k=1 I
ak

k

)⋂(∏t
k=1 I

bk

k

)
. Since .

∑t
k=1 bk ≤ ∑t

k=1 ak + 2, 

without loss of generality .b1 ≥ a1 + 1. Since .s ∈ ∏t
k=1 I

ak

k , 

. aimi ≤ xi ≤ ai(2mi − 1) +
t∑

k=1
k �=i

ak(mi − 1) =
t∑

k=1

ak(mi − 1) + aimi .

Similarly, since .s ∈ ∏t
k=1 I

bk

k , 

. bimi ≤ xi ≤ bi(2mi − 1) +
t∑

k=1
k �=i

bk(mi − 1) =
t∑

k=1

bk(mi − 1) + bimi .

Because .a1 + 1 ≤ b1, replacing . a1 with .a1 + 1 we have that 

. (a1 + 1)m1 ≤ b1m1 ≤ x1 ≤
t∑

k=1

ak(m1 − 1) + a1m1 + (2m1 − 1) .

Consequently, .s ∈ I
a1+1
1

∏t
k=2 I

ak

k and so .l + 1 = (a1 + 1) + ∑t
k=2 ak ∈ L(s). 

Now, since whenever .l, l′ ∈ L(s) with .l′ ≥ l + 2, .l + 1 ∈ L(s), .L(s) is an interval. 
Lemma 4.11 immediately gives the upper bound of 

. ρ(S) ≤
(t + 1)

∏t
i=1mi − ∑t

i=1
∏t

j=1
j �=i

mj

∏t
i=1mi

= t + 1 −
t∑

i=1

1

mi

.

Equality follows as we can obtain the upper bound through the following two 
factorizations of an element: 

. 

(
q
m1−1
1 · · · qmt−1−1

t−1 · q
2mt−1
t

)∏t
i=1 mi

=
t−1∏

i=1

(
q
mi

i

)
(mi−1)

∏t−1
j=1
j �=i

mj (
q
mt
t

)(2mt−1)
∏t−1

i=1 mi
.

��
Now, based on Theorem 4.4, Proposition 4.5, Example 4.6, and Proposition 4.15, 

and many computations using [14], we make the following conjecture. 

Conjecture 4.16 Let S be a complement-finite ideal of a free monoid F . For every 
.x ∈ S, .L(x) is an interval.
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5 Sequences Over a Finite Abelian Group That Are Not 
Zero-sum Free 

In this final section we return to the monoid .FB(G) as introduced in Example 1.1(3). 
After examining more closely how .FB(G) sits between .B(G) and .F(G), we  
introduce a new constant related to the Davenport constant of the finite abelian 
group G. We then restate general results about the arithmetic of complement-finite 
ideals in the context of sequences that are not zero-sum free, and use the additional 
structure of .FB(G) to obtain further arithmetical results. We begin by recalling the 
definition of .FB(G). 

Let G be an additive finite abelian group with identity 0, and let .F(G) denote the 
free abelian monoid with basis G, that is, the set of all formal products of elements in 
G without regard to order. The classical block monoid .B(G) of zero-sum sequences 
is the submonoid of .F(G) consisting of all sequences .g1 · . . . · gt ∈ F(G) such 
that .g1 + · · · + gt = 0 in G. Here we consider a similarly defined monoid . FB(G)

consisting of all sequences in .F(G) that are not zero-sum free; that is, 

. FB(G) =
{

g1 · · · gt ∈ F(G) : ∃ I ⊆ [1, t] with
∑

i∈I

gI = 0

}

⊆ F(G).

It is clear that 

. B(G) ⊆ FB(G) = F(G) (B(G) \ {{ }}) ∪ { } ⊆ F(G)

and that .|F(G) \ FB(G)| < ∞. Consequently, .FB(G) is a complement-finite ideal 
of .F(G). Proposition 5.1 sheds more light on how .FB(G) sits between .B(G) and 
.F(G). However, we first define, as with .B(G), natural submonoids .FB(G0) of 
.FB(G) for any subset . G0 of G. 

Let . G0 be a nonempty subset of G. Then 

. FB(G0) = {g1 · · · gt ∈ FB(G) : g1, . . . , gt ∈ G0}.

Observe that .C(FB(G)) = FB(G \ {0}) and that each .FB(G0) is a divisor-closed 
submonoid of .FB(G). In fact, we see in Proposition 5.1 (4) that the converse holds. 
Also observe that .FB(G0) is a complement-finite ideal of the free abelian monoid 
.F(G0). Before stating the next result, recall that if .A = g1 · · · gt ∈ F(G), . σ(A) =
g1 + · · · + gt ∈ G and that .νg(A) = |{i ∈ [1, t] : gi = g}|. 
Proposition 5.1 Let G be an additive finite abelian group. 

(1) If .|G| = 1, then .B(G) = FB(G) = F(G). 
(2) If .|G| ≥ 2, then .B(G) is not divisor-closed in .FB(G), but is saturated. 
(3) .q(FB(G)) = q(F(G)) and .C(B(G),FB(G)) ∼= G. 
(4) If .S ⊆ FB(G) is divisor-closed, then .S = FB(G0) for some subset .G0 ⊆ G.
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Proof The proof of (1) is clear since if .G = {0}, .F(G) = {0n : n ∈ N0}. 
If .|G| ≥ 2, then there is an element .g ∈ G with order .n ≥ 2. Then 

.g2n−1 · gn+1 = g3n in .FB(G). However, neither .g2n−1 nor .gn+1 are in .B(G), and 
so .B(G) ⊆ FB(G) is not divisor closed. However, if .A,B ∈ B(G) with .A|FB(G)B, 
then .B = AC in .F(G). Since .σ(B) = σ(A) + σ(C) = 0 and .σ(B) = σ(A) = 0, 
.σ(C) = 0 as well and .C ∈ B(G). Thus .B(G) ⊆ FB(G) is saturated. This proves 
(2). 

That .q(FB(G)) = q(F(G)) follows from the first part of the proof of 
Proposition 3.7. Now .C(B(G),FB(G)) ∼= C(B(G),F(G)) ∼= G. 

Finally, we prove (4). Let S be a divisor-closed submonoid of .FB(G), and let 
. G0 denote the set of all .g ∈ G with .vg(B) > 0 for some .B ∈ S. Then clearly 
.S ⊆ FB(G0). To prove equality, note that if .B = g1 · · · gt ∈ FB(G0), then . gi ∈ G0
for each i and thus there are .Bi ∈ S with .vgi

(Bi) > 0. But then .B1 · · · Bt ∈ S and 
.B |FB(G) B1 · · · Bt . As  S is divisor-closed in .FB(G), .B ∈ S as well. ��

The next proposition is a restatement of Proposition 4.1 in the context of .FB(G). 

Proposition 5.2 Let G be a finite abelian group. The atoms of .FB(G) are: 

(I) 0, 
(II) .0g1 · · · gt where .g1 · · · gt ∈ F(G) \ FB(G), and 
(III) .A(B(G))F(G) \ A(B(G))2F(G). 

That is, the atoms of .FB(G) are precisely the sequences in .F(G) containing some 
subsequence in .B(G) but not any two disjoint subsequences in .B(G). 

We now provide an example to illustrate how many more atoms .FB(G) has 
than .B(G). Like the monoid in Proposition 4.6 this is a modification of a standard 
example in zero-sum theory. 

Example 5.3 Let G be a finite abelian group and let .e1, . . . , er be a set of 
independent elements of G, each of order n. Set .e0 = −(e1 + · · · er ) and . G0 =
{e0, e1, . . . , er }. We now consider .B(G0) and .FB(G0), submonoids of .F(G0). The  
monoid .B(G0) is considered in [15, Proposition 4.1.2]. There it is shown that there 
are .r+1 atoms: .Ui = en

i for each .i ∈ [1, r] and .W = e0e1 · · · er . It is also computed 
that if 

. A =
r∏

i=0

e
nki+s
i

with .s ∈ [0, n − 1], .k0, . . . , kr ∈ N0, and .k∗ = min{k0, . . . , kr}, then 

. LB(G0) = {
s + k0 + · · · + kr + ν(n − r − 1) : ν ∈ [0, k∗]} .

However, 

.A =
r∏

i=0

e
nki+s
i
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is in .FB(G0) if and only if either .ki > 0 for some i or .ki = 0 for all i and . si > 0
for all i. Thus A is an atom of .FB(G0) precisely when either .ki = 1 for some i and 
.kj = 0 when .j �= i or .ki = 0 for all i and .si ∈ {1, 2} for all i with .sj = 1 for some 
j . Because there are many more atoms in .FB(G0) than in .B(G0), length sets are 
also larger. In particular, .L(A) is again an interval. 

Before discussing the arithmetic of .FB(G), we introduce a new combinatorial 
invariant. Recall that if G is a finite abelian group, the Davenport constant .D(G) is 
the length of the longest atom (measured as the length of a sequence in .F(G)) in  
.B(G). We now define the constant .DB(G) to be the length of the longest atom in 
.FB(G). We now give a few minor results about .DB(G) and propose a further study 
of this constant. 

Proposition 5.4 Let G be a finite abelian group with .|G| ≥ 2. 

(1) .D(G) + 1 ≤ DB(G) ≤ 2D(G) − 1. 
(2) If G is cyclic of order n, then .DB(G) = 2D(G) − 1 = 2n − 1. 

Proof Let .B = g1 · · · gDB(G) ∈ A(FB(G)). If  .DB(G) ≥ 2D(G), then 
.g1 · · · gD(G), gD(G)+1 · · · gDB(G) ∈ B(G) ⊆ FB(G), contradicting the fact that 
B is irreducible. Thus .DB(G) ≤ 2D(G) − 1. Since .|G| ≥ 2, there is .g ∈ G \ {0}. 
Suppose that .g1 · · · gt is an atom of .B(G)with no .gi = 0, so that .t ≥ 2. If .t = 2, then 
.g2 = −g1. In this case, the only possible ways to nontrivially factor .g1g2g in . F(G)

are as .(g1g2)g, .(g1g)g2, and .(g2g)g, neither of which is a factorization in . FB(G)

since .g1, g2, g �= 0. Suppose now that .t ≥ 3. We claim that for any .g ∈ G \ {0}, 
.g1 · · · gt · g is an atom of .FB(G). Suppose this is not the case. Then . g1 · · · gt · g

factors in .FB(G) and so by the description of atoms of type (III) in Proposition 5.2 
there are positive integers k and l with .1 < k < l ≤ t so that after reordering the 
terms as necessary, either .g1 · · · gk and .gk+1 · · · gl are atoms of .B(G) or . g1 · · · gk

and .gk+1 · · · gl · g are atoms of .B(G). The former is impossible since .g1 · · · gt is 
an atom of .B(G) and is divisible (in .B(G)) by the product .g1 · · · gk · gk+1 · · · gl . In  
the later case, since .σ(g1 · · · gk) = σ(gk+1 · · · gl · g) = 0 and .σ(g1 · · · gt · g) = g, 
.σ(gl+1 · · · gt ) = g and .σ(gk+1 · · · gl) = −g. Then .gk+1 · · · gt ∈ B(G). Now  
.g1 · · · gk, gk+1 · · · gt ∈ B(G), contradicting the fact that .g1 · · · gt is an atom of 
.B(G). Taking .t = D(G) gives the lower bound in (1). 

From (1), .DB(G) ≤ 2n − 1 if G is cyclic of order n. If  G is generated by g, then 
.g2n−1 is an atom of .FB(G), giving the equality in (2). ��

In the following theorem we summarize results from previous sections, but in 
the context of .FB(G). In addition, we give more refined results about elasticities, 
results about unions of sets of lengths and the delta set, analogous to results about 
.B(G). Perhaps unsurprising, many of these arguments are similar to the standard 
arguments used in the case of .B(G). We note that (1) and (2) would be trivially 
obtained should Conjecture 4.16 be true.
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Theorem 5.5 Let G be an additive finite abelian group. The following arithmetical 
finiteness conditions hold for .FB(G). 

(1) There is .M ∈ N such that every .L ∈ L(FB(G)) is an AAP with distance 1 and 
with bound M . 

(2) For every .k ∈ N, .Uk(FB(G)) is an interval. 
(3) .ρ(FB(G)) = DB(G)

2 and, for each .k ∈ N, 

. ρ2k(FB(G)) = kDB(G) and 1 + kDB(G) ≤ ρ2k+1(FB(G))

≤ kDB(G) + �DB(G)

2
�.

(4) .FB(G) has full elasticity. 
(5) .ω(FB(G)) ∈ {DB(G),DB(G) + 1}. 
(6) .c(FB(G)) ≤ DB(G) + 1. 
(7) .DB(G) ≤ t(FB(G)) ≤ (DB(G) + 1)2. 

Proof The statements (1) and (4)–(7) follow from Theorem 4.4, Proposition 4.9, 
and the fact that .M(FB(G)) = DB(G). We now prove (2) and (3). 

Observe that if .[k, ρk(FB(G))] ⊆ Uk(FB(G)) and .l ∈ [minUk(FB(G)), k], then 
.l ≤ k ≤ ρl(FB(G)), and so .k ∈ Ul (FB(G)). Therefore .l ∈ Uk(FB(G)) and we need 
only prove that .[k, ρk(FB(G))] ⊆ Uk(FB(G)). 

Let l be the smallest element of .[k, ρk(FB(G))]with .[l, ρk(FB(G))] and assume, 
for the sake of contradiction, that .l > k. Choose .B ∈ FB(G) with . |B| (the length 
of B in .F(G)) minimal such that .{j, k} ⊆ L(B) for some .j ≥ l. Since 0 is the 
only absolutely irreducible element in .FB(G), .B �= 0k , and we can write . B =
U1 · · ·Uk = V1 · · · Vj for atoms .U1, . . . , Uk, V1, . . . , Vj . After reordering the terms 
as needed, .Uk = g1g2U

′ and .Vj−1Vj = g1g2V
′ in .F(G), possibly with . U ′ = ∅

and with .g1, g2 ∈ G not necessarily distinct. Observe that .U ′
k = (g1 + g2)U

′ is 
also an atom of .FB(G). Set .V ′′ = (g1 + g2)V

′ and factor . V ′′ as a product of 
atoms in .FB(G) as .V ′′ = W1 · · · Wt . Now  set  .B ′ = U1 · · · Uk−1U

′
k and observe 

that .|B ′| = |B| − 1 < |B|. Moreover, .B ′ = V1 · · · Vj−2W1 · · · Wt . Because of the 
minimality condition on . |B|, we know that .j − 2 + t < l. This can only happen if 
.t = 1 and .j = l, whence .l − 1 ∈ Uk(FB(G)), contradicting the definition of l. Thus 
.[kρk(FB(G))] ⊆ Uk(FB(G)) proving (2). 

Since .C(FB(G)) = FB(G \ {0}), by Lemma 4.7 we know that . ρ(FB(G)) ≤
ρ(FB(G \ {0})). Suppose .A1 · · ·Am = B1 · · · Bn are two factorizations of an 
element C in .FB(G \ {0}) with .n ≤ m. Write .C = g1 · · · gt in .F(G). In  .F(G), 
.|Ai | ≥ 2 for each i and .|Bj | ≤ DB(G) for each j . Thus .2m ≤ t ≤ nDB(G). Now  

. 
m

n
≤ t/2

t/DB(G)
= DB(G)

2
.

With .U = g1 · · · gDB(G) an atom in .FB(G) of maximal length, note that . −U =
(−g1) · · · (−gDB(G)) is an atom in .FB(G) as well. Set, for each .i ∈ [1,DB(G)],
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.Vi = (gi)(−gi) ∈ FB(G) .DB(G) additional atoms. The equality . U(−U) =
V1 · · · VDB(G) illustrates that .ρ(FB(G)) = DB(G)

2 . 
Because S is an atomic monoid, by Geroldinger and Halter-Koch [15, Proposition 

1.4.2] we now have that 

. ρk(FB(G)) ≤ kρ(FB(G)) ≤ k
DB(G)

2
.

With .U = g1 · · · gDB(G) an atom of maximal length, . Uk(−U)k = (g1(−g1))
k · · ·

(gDB(G)(−gDB(G)))
k shows that .kDB(G) ≤ ρ2k(FB(G)). Therefore . ρ2k(FB(G)) =

kDB(G). Finally, 

. 1 + kDB(G) = ρ1(FB(G)) + ρ2k(FB(G)) ≤ ρ2k+1(FB(G)) ≤ (2k + 1)DB(G)

2
.

This proves (3). ��
Remark 5.6 Recall that for a finite nonabelian group G, .B(G) denotes the set of 
product-one sequences; that is, .B(G) is the submonoid of the free abelian monoid 
.F(G) consisting of sequences (formal products) .g1 · · · gt so that there is some 
permutation . σ of .[1, t] so that in G (the actual product) .gσ(1) · · · gσ(t) = 1. See, 
for example, [21], for more on product-one sequences. As we defined .FB(G) as the 
submonoid of .F(G) consisting of sequences that are not zero-sum free whenever G 
is a finite abelian group, we can define, for any finite nonabelian group G, .FB(G), 
the monoid of sequences that are not product-one free. It is easy to see that such 
monoids are always complement-finite ideals of .F(G) and hence (1) and (4)–(7) 
of Theorem 5.5 hold. Using [21, Lemma 5.1], modifications of the proofs of [21, 
Theorem 5.5, Proposition 5.6] can be made to show that (2) and (3) of Theorem 5.5 
also hold for the monoid .FB(G) of sequences that are not product-one free. 

Appendix 

Nick Baeth (1978–2021) by Scott Chapman and James B. 
Coykendall 

After a brief battle with pancreatic cancer, Nick Baeth died on December 11, 
2021. Nick completed his Ph.D. degree at the University of Nebraska writing a 
dissertation in module theory under the direction of Roger Wiegand. During his 
16-year academic career, he spent 13 years at Central Missouri State University in 
Warrensburg, Missouri, and slightly more than 3 years at Franklin and Marshall 
College in Lancaster, Pennsylvania. 

Nick’s work in mathematics made him highly visible both nationally and 
internationally. He published in a number of subfields of commutative algebra
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including factorization theory, general monoid theory, and module theory. His 
research papers have been highly cited; since his 2005 Ph.D. thesis, MathSciNet 
records that his 31 publications have been cited 181 times by 100 authors (Google 
Scholar credits him with 372 citations of which 238 are since 2016). Additionally, 
he was a highly sought colleague and collaborator—in a field where collaboration 
is often difficult, he wrote papers with 32 distinct individuals. 

Nick’s recent work was heavily influenced by his 2013 NAWI-Graz Fulbright 
Visiting Professorship at Karl Franzens Universität—Graz, Austria. His work with 
the research group in Graz gave rise to several very influential and pioneering papers 
in factorization theory. Nick’s contribution to the current volume, “Complement-
finite ideals” is a great example of Nick’s later work and the kind of mathematics 
that he truly loved. 

Nick is survived by his wife Katherine and son George. He is already greatly 
missed by his numerous friends and colleagues. 
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When Is a Group Algebra Antimatter? 

Mohamed Benelmekki and Said El Baghdadi 

1 Introduction 

Let D be an integral domain. By an irreducible element or atom of D, we mean 
a nonzero nonunit .x ∈ D such that .x = ab, a, b ∈ D, implies a or b is a unit. 
The domain D is atomic if each nonzero nonunit element can be written as a finite 
product of atoms. A domain with no atoms is called an antimatter domain. The class 
of antimatter domains was introduced by Coykendall, Dobbs, and Mullins in [3]. 
The study of antimatter domains is very useful in factorization theory in non-atomic 
setting. 

Let D be an integral domain, and let S be a commutative cancellative torsion-free 
monoid, written additively. Denote by . 〈S〉 the quotient group of S and .(S,<) a total 
order on S. The monoid domain of S over D is defined by . D[S] = {∑i aiX

ri |ai ∈
D and ri ∈ S}. Note that .D[S] is an integral domain and each nonzero element 
.f ∈ D[S] has a unique representation in the form 

. f = a1X
r1 + · · · + anX

rn,

where .n ∈ Z+, .0 �= ai ∈ D and .ri ∈ S .(i = 1, . . . , n) such that .r1 < r2 < · · · < rn. 
The subset .Supp(f ) = {r1, . . . , rn} of S is called the support of f . Notice that the 
units of .D[S] are the monomials .aXs , where .a ∈ D and .s ∈ S are both units. In 
the case where S is a group, .D[S] is the group ring of S over D. If  K is a field and 
G is a torsion-free abelian group, the group algebra .K[G] is a GCD-domain. An 
excellent reference for monoid domains is [8]. 
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The goal of this paper is to study the following question. Given a commutative 
field K and a torsion-free abelian group G, under which conditions the group 
algebra .K[G] is an antimatter domain? Note that, if G contains an element g 
such that the subgroup .〈g〉 of G generated by g is pure in G (e.g., g of height 
.(0, 0, . . .); see  [6, p. 108] for definition), then it follows from [9, Corollary 7.7] that 
.1 − Xg is irreducible in .K[G]. In particular, .K[G] is not an antimatter domain. 
As a consequence, the condition that G contains no element of height . (0, 0, . . .)
is necessary for .K[G] to be an antimatter domain. This latter observation suggests 
that more attention should be devoted to antimatter group algebras with rational 
exponents, and this will be the subject of Sect. 2. Given a subgroup G of the additive 
group of rationals . Q, we investigate some irreducibility criteria in .K[G], and then 
we derive a characterization of the antimatter property for these group algebras. 
This extends some well-known results. Note that the case of the group algebra 
.K[Q] was investigated by the authors in [2]. As an application of Sect. 2, in Sect. 3, 
we give necessary and sufficient conditions under which the algebra .K[G] is an 
antimatter domain, in the case where K is a field of characteristic zero and G an 
arbitrary torsion-free abelian group. Examples in either characteristic are provided 
to illustrate our results. 

Throughout this paper, we let . N, . Z, and . Q denote the positive integers, the 
integers, and the rational numbers, respectively. The set of non-negative integers 
(resp., rationals) will be denoted by . Z+ (resp., . Q+). All monoids (resp., groups) 
considered in this paper will be assumed to be commutative. 

For .r = n
d

∈ Q, .(n, d) ∈ Z × N, reduced (i.e., .gcd(n, d) = 1), we call the 
unique pair of positive integers n and d, the numerator and denominator of r , and 
denote them by .n(r) and .d(r), respectively. All elements of . Q considered in the 
following will be assumed to be reduced. For a nonempty subset A of . Q, we set  
.d(A) = {d(r) | r ∈ A}, that is, the set of the denominators of all elements of A. 

General references for any undefined terminology or notation are [7, 8, 12]. 

2 Antimatter Group Algebras with Rational Exponents 

Throughout this section, K is a commutative field, T is an indeterminate over 
K , and G is a subgroup of the additive group of rationals . Q. In this section, we 
investigate some irreducibility criteria in .K[G], and as an application, we derive a 
characterization of the antimatter property for .K[G]. 

We start with the following lemma which gives a nice form of the elements of 
.K[G]. 
Lemma 1 Let K be a field, .K[T ] the polynomial ring in the indeterminate T , and 
G a subgroup of the additive group . Q. Let .f ∈ K[G] \ {0}, then .f = Xsh(Xg), 
where .g, s ∈ G, .g ≥ 0, and .h(T ) ∈ K[T ] such that .h(0) �= 0. 

Proof Let .f = ∑n
i=1 aiX

ri ∈ K[G] with .r1 < · · · < rn. Let  H be the 
subgroup of G generated by .Supp(f ). Since H is a finitely generated subgroup
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of the additive group . Q, H is cyclic. Hence .H = 〈g〉 for some .g ∈ G, .g ≥ 0. 
Thus, .f = ∑n

i=1 aiX
λig for some integers .λ1, . . . , λn. Set .λ = mini λi . Then 

.f = Xλg
∑n

i=1 aiX
(λi−λ)g . Consequently, .f = Xsh(Xg) where . s = λg ∈ G

and .h(T ) = ∑n
i=1 aiT

(λi−λ) ∈ K[T ] such that .h(0) �= 0. ��
To investigate the irreducibility in .K[G], the previous lemma leads to consider 

only those elements of the form .f (Xg) for some .g ∈ G and polynomial . f (T ) ∈
K[T ] with .f (0) �= 0. 

Let S be a monoid and .a ∈ S. Given an integer . m, we say that . m divides a in S 
and denote .m|a if .a = mα for some .α ∈ S. The following proposition is a version 
of [10, Proposition 5.7] for the group algebra .K[G]. 
Proposition 1 Let K be a field and G a subgroup of the additive group . Q. Let . f (T )

be an irreducible polynomial in .K[T ] such that .f (0) �= 0, and let .0 �= g ∈ G. Then 
the following conditions are equivalent. 

(1) .f (Xg) is irreducible in .K[G]. 
(2) For every positive integer . m dividing g in G, the polynomial .f (T m) is 

irreducible in .K[T ]. 
Proof (1). ⇒(2) Suppose that .f (Xg) is irreducible in .K[G]. Let  . m be a positive 
integer such that .g = mα for some .α ∈ G, and suppose that . f (T m) = ϕ1(T )ϕ2(T ),

where .ϕ1, ϕ2 ∈ K[T ]. Clearly, .ϕi(0) �= 0, .i = 1, 2. Then, . f (Xg) = ϕ1(X
α)ϕ2(X

α).

Since .f (Xg) is irreducible in .K[G] and .ϕi(0) �= 0 .(i = 1, 2), then either .ϕ1(T ) or 
.ϕ2(T ) is in K . Consequently, the polynomial .f (T m) is irreducible in .K[T ]. 

(2). ⇒(1) Suppose that .f (Xg) = h1h2, where .h1, h2 ∈ K[G]. Let  H be the 
subgroup of G generated by .Supp(h1) ∪ Supp(h2) ∪ {g}. Since H is a finitely 
generated subgroup of the additive group . Q, H is cyclic. Then, there exists an 
element .0 �= α ∈ G such that .H = 〈α〉 and .g = mα for some positive integer 
. m. Moreover, there exists .fi ∈ K[T , T −1] such that .hi = fi(X

α), .i = 1, 2. 
Thus .f (Xmα) = f1(X

α)f2(X
α), and hence .f (T m) = f1(T )f2(T ). Now, since 

.f (0) �= 0, condition .(2) implies that the polynomial .f (T m) is irreducible in 

.K[T , T −1], and then either . f1 or . f2 is a unit in .K[T , T −1]. Consequently, either 

. h1 or . h2 is a unit in .K[G]. Therefore, .f (Xg) is irreducible in .K[G]. ��
Example 1 Let .K = F2 be the finite field of 2 elements, .f (T ) = T 2 + T + 1, and 
G the subgroup of the additive group of rational numbers . Q generated by the subset 

.{ 1
3k | k ∈ N}. Fix an integer .n ≥ 1, then .f (X

1
3n ) = X

2
3n + X

1
3n + 1 is irreducible 

in .K[G]. Indeed, if . m is a positive integer such that . 13n = mα for some .α ∈ G, then 
.m = 3k for some non-negative integer k. By Coykendall and Gotti [4, Lemma 5.3], 
it follows that the polynomial .f (T m) = T 2.3k +T 3k + 1 is irreducible in .K[T ], and 
hence Proposition 1 implies that .f (X

1
3n ) is irreducible in .K[G]. In particular, the 

group algebra .K[G] is not an antimatter domain. 

The next result offers a Capelli’s type criterion for the irreducibility of binomials. 
For a field K and a positive integer n, set .Kn = {xn, x ∈ K}.
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Proposition 2 Let K be a field and G a subgroup of the additive group . Q. Let 
.0 �= g ∈ G and .a ∈ K . Then .Xg − a is irreducible in .K[G] if and only if . a /∈ Kp

for every prime number p dividing g in G, and .a /∈ −4K4 if . 4|g in G. 

Proof We may assume that .a �= 0. From Proposition 1, .Xg − a is irreducible in 
.K[G] if and only if the binomial .T m − a is irreducible in .K[T ] for every positive 
integer . m dividing g in G. Then, the result follows immediately from Capelli’s 
Theorem [12, Section 2.1; Theorem 19]. ��
Corollary 1 Let K be a field and G a subgroup of the additive group . Q. Let . 0 �=
g ∈ G, .f ∈ K[T ] an irreducible polynomial, and . α an element in an extension field 
of K such that .f (α) = 0. Then the following conditions are equivalent. 

1. .f (Xg) is irreducible in .K[G]. 
2. .Xg − α is irreducible in .K(α)[G]. 
3. .α /∈ [K(α)]p for every prime number p dividing g in G, and .α /∈ −4[K(α)]4 if 

. 4|g in G. 

Proof . (1) ⇔ (2) By Proposition 1, .f (Xg) is irreducible in .K[G] if and only if the 
polynomial .f (T m) is irreducible in .K[T ] for every positive integer . m dividing g in 
G. By Schinzel [12, Section 2.1; Theorem 22], this is equivalent to that .T m − α is 
irreducible in .K(α)[T ] for every positive integer . m dividing g in G. Thus, the result 
follows, again, from Proposition 1. 

.(2) ⇔ (3) Follows from Proposition 2. ��
As an application of the above results, the next theorem characterizes the 

antimatter property for the group algebra .K[G]. 
Theorem 1 Let K be a field and G a subgroup of the additive group . Q. Then the 
following conditions are equivalent. 

1. .K[G] is an antimatter domain. 
2. .Xg −α is reducible in .K(α)[G] for every .0 �= g ∈ G and every . α in an algebraic 

extension field of K . 
3. For every .0 �= g ∈ G and every . α in an algebraic extension field of K , either . 4|g

in G and .α ∈ −4[K(α)]4, or .α ∈ [K(α)]p for some prime number p dividing g 
in G. 

Proof .(1) ⇔ (2) Suppose that .K[G] is an antimatter domain. Let .0 �= g ∈ G, 
. α an algebraic element over K , and .f ∈ K[T ] the minimal polynomial of . α over 
K . Assume that .f (Xg) is a nonunit of .K[G]. Since .K[G] is antimatter, . f (Xg)

is reducible in .K[G]. Hence by Corollary 1, .Xg − α is reducible in .K(α)[G]. 
Conversely, let f be a nonzero nonunit element of .K[G]. By Lemma 1, there exist 
.s, g ∈ G, .g > 0, and .h ∈ K[T ], with .h(0) �= 0, such that .f = Xsh(Xg). We need 
only show that .h(Xg) is reducible in .K[G]. If  h is reducible in .K[T ], then . h(Xg)

is reducible in .K[G] since .h(0) �= 0, and we are done. Otherwise, assume that h is 
irreducible in .K[T ], and let .h(α) = 0. By the assumption .Xg − α is reducible in 
.K(α)[G]. Then, it follows from Corollary 1 that .h(Xg) is reducible in .K[G]. Hence 
.f = Xsh(Xg) is reducible in .K[G]. Therefore, .K[G] is an antimatter domain.
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. (2) ⇔ (3) Follows from Corollary 1. ��
Before giving another application, we recall some definitions about factorization 

in monoids. Let S be a commutative cancellative torsion-free monoid, written 
additively. For .s, t ∈ S, we say that s divides t , and write .s | t , if there exists 
.r ∈ S such that .t = r + s. If .t = u + s for some unit u of S, we say that s and t are 
associate. A nonzero nonunit element .s ∈ S is said to be irreducible (or atom) of S 
if .s = t + r , .t, r ∈ S, implies that t or r is a unit of S. The monoid S is antimatter if 
it contains no atoms. An element .x ∈ 〈S〉 is said to be integral over S, if .nx ∈ S for 
some integer .n ≥ 1, then .x ∈ S. The monoid S is integrally closed if every element 
of . 〈S〉 which is integral over S is in S. For more details, see [8]. 

Recently, the additive submonoids of .Q+ have received a lot of attention in 
nonunique factorization theory. F. Gotti called such monoids Puiseux monoids. 
Antimatter Puiseux monoid algebras (called Puiseux algebras) were considered in 
[1, 11]. Let G be a subgroup of the additive group . Q. Set .G+ = G ∩ Q+, the  
monoid of non-negative elements in G. Note that the monoid .G+ is an integrally 
closed Puiseux monoid. We next characterize the antimatter property for the Puiseux 
algebra .K[G+]. We need the following lemma. 

Lemma 2 Let K be a field, and let G be a subgroup of the additive group . Q. Then 
the following hold. 

1. Let .f ∈ K[G+] such that .f (0) �= 0. Then f is irreducible in .K[G+] if and only 
if it is irreducible in .K[G]. 

2. The monoid .G+ is not antimatter if and only if it is cyclic. In this case, . K[G+] =
K[X] and .K[G] = K[X,X−1]. 

Proof 

(1) Let .f ∈ K[G+] such that .f (0) �= 0. Then, a nontrivial factorization of f 
in .K[G+] is also a nontrivial factorization of f in .K[G]. Conversely, assume 
that .f = h1h2 is a nontrivial factorization in .K[G]. By Lemma 1, there exist 
nonzero elements .g1, g2 ∈ G+ such that, for .i = 1, 2, .hi = Xsi fi(X

gi ) for 
some .si ∈ G and a polynomial .fi ∈ K[T ] \ K with .fi(0) �= 0. Hence . s1 +
s2 = 0 and .f = f1(X

g1)f2(X
g2) is a nontrivial factorization of f in .K[G+]. 

Therefore, f is reducible in .K[G+]. 
(2) We need only to show that if the monoid .G+ is not antimatter, it is cyclic. Let 

.a, b ∈ G+ be atoms in . G+. The subgroup .〈a, b〉 of G is cyclic, so . 〈a, b〉 = 〈c〉
for some .c ∈ G, .c > 0. But  c will be a common divisor of a and b in . G+; 
this forces .a = b. Denote by a the unique atom of . G+. We next show that 
.G+ = aZ+. Let  .0 �= x ∈ G+. Since a is an atom, .a ≤ x. Let  n be a positive 
integer such that .na ≤ x < (n + 1)a. Then .x − na ∈ G+ and .x − na < a. 
So .x − na = 0, that is .x = na. Thus, if .G+ is not antimatter, .G+ is a cyclic 
monoid generated by its unique atom. 

��
Theorem 2 Let K be a field and G a subgroup of the additive group . Q. Then the 
following conditions are equivalent.
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1. .K[G+] is an antimatter domain. 
2. .K[G] is an antimatter domain. 
3. .Xg − α is reducible in .K(α)[G+] for every .0 �= g ∈ G+ and every . α in an 

algebraic extension field of K . 
4. For every .0 �= g ∈ G+ and every . α in an algebraic extension field of K , either 

.4|g in .G+ and .α ∈ −4[K(α)]4, or  .α ∈ [K(α)]p for some prime number p 
dividing g in . G+. 

Proof . (1) ⇔ (2) Suppose that .K[G+] is an antimatter domain. Let f be a nonzero 
nonunit element of .K[G]. Then by Lemma 1, .f = Xsh(Xg) for some .s ∈ G, 
.0 �= g ∈ G+, and .h ∈ K[T ] with .h(0) �= 0. Thus, .h(Xg) ∈ K[G+] is reducible 
in .K[G+]. Hence by Lemma 2(1), .h(Xg) is reducible in .K[G]. Therefore, f is 
reducible in .K[G], and hence .K[G] is antimatter. Conversely, suppose that .K[G] is 
an antimatter domain, and let f be a nonzero nonunit element of .K[G+]. Again, by  
Lemma 1, .f = Xsh(Xg) for some .s ∈ G+, .g ∈ G+, and .h ∈ K[T ] with .h(0) �= 0. 
If .h(Xg) /∈ K , Lemma 2(1) implies that .h(Xg) is reducible in .K[G+], since . K[G]
is antimatter. Hence f is reducible in .K[G+]. Otherwise, we need to show that . Xs

is reducible in .K[G+]. Since .K[G] is antimatter, by Lemma 2(2), the monoid . G+
is antimatter. Hence . Xs is reducible in .K[G+]. Therefore, .K[G+] is antimatter. 

The remaining equivalences follow from Theorem 1 and Lemmas 1 and 2. ��
Monoid algebras .K[M] such that M is an integrally closed Puiseux monoid 

containing 1 are an important class of Puiseux algebras (cf. [8, Theorem 13.5]). The 
antimatter property for these algebras was studied in [11, Section 5]. The following 
corollary gives a full characterization of the antimatter property for these Puiseux 
algebras. 

Corollary 2 Let K be a field and M an integrally closed Puiseux monoid contain-
ing 1. Then the following conditions are equivalent. 

1. .K[M] is an antimatter domain. 
2. .Xg−α is reducible in .K(α)[M] for every .0 �= g ∈ M and every . α in an algebraic 

extension field of K . 
3. For every .0 �= g ∈ M and every . α in an algebraic extension field of K , either . 4|g

in M and .α ∈ −4[K(α)]4, or .α ∈ [K(α)]p for some prime number p dividing g 
in M . 

Proof This follows from Theorem 2, since .〈M〉+ = 〈M〉 ∩ Q+ = M [8, Theorem 
13.5]. ��
Corollary 3 Let K be a field that is either algebraically closed or real closed, and 
let G be a subgroup of the additive group . Q. If  G is not cyclic, then .K[G] (resp., 
.K[G+]) is an antimatter domain. 
Proof This follows from Theorem 2 (4). Indeed, let .α /∈ K be an algebraic element 
over K and p a prime number. Then, if K is either algebraically closed (in this 
case, .K(α) = K) or real closed (in this case, .K(α) is algebraically closed), then 
.α ∈ [K(α)]p. If .α ∈ K , we have .α ∈ [K(α)]p = Kp in either case for every prime 
.p ≥ 3. ��
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3 Antimatter Group Algebras 

As an application of Sect. 2, we next give a complete characterization of when a 
group algebra .K[G] is antimatter in characteristic 0. 

We start our results of this section by studying the group algebra of the additive 
group .Q ⊕ Q over a field K defined by 

. K[Q ⊕ Q] = {
∑

i,j

ai,jX
ri Y sj |ai,j ∈ K and ri, sj ∈ Q},

where .X, Y are two indeterminates over K . 
For a nonzero element .F(X, Y ) = ∑

i,j ai,jX
ri Y sj of .K[Q ⊕ Q] with . ai,j �= 0

and .(ri, sj ) �= (rk, sl) for .(i, j) �= (k, l), let  .SuppX(F ) (resp., .SuppY (F )) denote 
the support of F with respect to the indeterminate X (resp., Y ). 

The following lemma is straightforward. 

Lemma 3 Let K be a field, and let .r, s ∈ Q \ {0}. The following map 

. 
φr,s : K[Q ⊕ Q] −→ K[Q ⊕ Q]

F(X, Y ) = ∑
i,j ai,jX

ri Y sj �−→ F(Xr, Y s) = ∑
i,j ai,jX

rri Y ssj

is an automorphism of .K[Q ⊕ Q]. 
Let .r, s ∈ Q \ {0}, by the substitution .(X, Y ) → (Xr, Y s) we mean the automor-
phism .φr,s of .K[Q⊕Q] defined in Lemma 3 such that .φr,s(F (X, Y )) = F(Xr, Y s). 
The next result gives a connection between the irreducibility in .K[Q ⊕ Q] and that 
in the polynomial ring .K[X, Y ]. 

Following the notation in [12], for a nonzero rational function . F(X, Y ) ∈
K[X±1, Y±1], we define 

. JF(X, Y ) = Xu1Yu2F(X, Y ),

where each .ui .(i = 1, 2) is an integer chosen as small as possible so that JF  
is a polynomial in X and Y (i.e., .JF ∈ K[X, Y ]). We set .J0 = 0. Note  
that the operation J is distributive with respect to multiplication, and for every 
.F ∈ K[X±1, Y±1], .F �= 0, the polynomial JF  is prime to . XY . Also, note that 
.JF ∈ K \ {0} if and only if F is a unit of .K[X±1, Y±1] (i.e., .F = aXuY v , for  some  
.0 �= a ∈ K and .u, v ∈ Z). 

Proposition 3 Let K be a field, and let .F ∈ K[X, Y ] irreducible in .K[X, Y ] such 
that F is not associate to either X or Y . The following conditions are equivalent. 

1. F is irreducible in .K[Q ⊕ Q]. 
2. For every positive integers . m and n, the polynomial .F(Xm, Y n) is irreducible in 

.K[X, Y ].
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Proof (1). ⇒(2) Suppose that F is irreducible in .K[Q ⊕ Q] and .F(Xm, Y n) is 
reducible in .K[X, Y ] for some positive integers .m, n. Then there exist . F1, F2 ∈
K[X, Y ] \ K such that 

. F(Xm, Y n) = F1(X, Y )F2(X, Y ).

Since .gcd(F (X, Y ),XY) = 1, then .gcd(F (Xm, Y n),XmYn) = 1 [12, Section 2.3; 
Lemma 6], and hence .gcd(F (Xm, Y n),XY ) = 1. It follows that . F1 and . F2 are 

not associate to monomials in .K[X, Y ]. Now, substituting .(X
1
m , Y

1
n ) for .(X, Y ), we  

obtain 

. F(X, Y ) = F1(X
1
m , Y

1
n )F2(X

1
m , Y

1
n ),

with .F1(X
1
m , Y

1
n ) and .F2(X

1
m , Y

1
n ) are nonunits of .K[Q⊕Q]. Hence F is reducible 

in .K[Q ⊕ Q], which is a contradiction. 
(2). ⇒(1) Suppose that .F(X, Y ) = F1(X, Y )F2(X, Y ), where . F1, F2 ∈ K[Q ⊕

Q]. Let  .AX = SuppX(F1) ∪ SuppX(F2), .AY = SuppY (F1) ∪ SuppY (F2), . m =
lcm{d(AX)}, and .n = lcm{d(AY )}, where .d(AX) and .d(AY ) are the sets of 
denominators of all (reduced) elements of .AX and . AY , respectively. Substituting 
.(Xm, Y n) for .(X, Y ), we get 

. F(Xm, Y n) = F1(X
m, Y n)F2(X

m, Y n).

Note that .F1(X
m, Y n) and .F2(X

m, Y n) are elements of .K[X±1, Y±1]. 
As above, we have .gcd(F (Xm, Y n),XY ) = 1, hence 

. F(Xm, Y n) = JF1(X
m, Y n)JF2(X

m, Y n).

By condition . (2), either .JF1(X
m, Y n) or .JF2(X

m, Y n) is in K , which implies that 
either .F1(X

m, Y n) or .F2(X
m, Y n) is a unit of .K[X±1, Y±1]. Consequently, either 

.F1(X, Y ) or .F2(X, Y ) is a unit of .K[Q⊕Q]. Therefore, F is irreducible in . K[Q⊕
Q]. ��

Let K be a field. Since .K[X, Y ] is a UFD, each nonzero nonunit polynomial 
.F ∈ K[X, Y ] is uniquely expressed as product of a constant and coprime powers of 
irreducible polynomials in .K[X, Y ], i.e., 

. F(X, Y ) = const

t∏

i=1

F
ei

i (X, Y ),

where . Fi is an irreducible polynomial over K and .t, ei ∈ Z+, .i = 1, . . . , t . This  
factorization will be called the standard form of F over K .
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The following result, Proposition 4, shows that there are some special elements 
of .K[Q⊕Q] that have a prime factorization in .K[Q⊕Q], in the case where K is a 
field of characteristic 0. 

Proposition 4 Let K be a field of characteristic 0, and let .F ∈ K[X, Y ] be 
an irreducible polynomial, different (up to associate) from X and . Y and from 
.JF0(X

δ1Y δ2) for any .F0(T ) ∈ K[T ] and any .δ = (δ1, δ2) ∈ Z2 \ {0}. Then F 
can be expressed as a finite product of prime elements of .K[Q ⊕ Q]. Moreover, F 
has no multiple divisor in .K[Q ⊕ Q]. 
Proof Let . m and . n be two positive integers. By Schinzel [12, Section 2.3; Corollary 
2], there exists .υ = (υ1, υ2) ∈ N2 such that 

(i) .lcm{υ1, υ2} ≤ (degF)2, 
(ii) .m = υ1u1 and .n = υ2u2, where .u1, u2 ∈ N, 

(iii) If .F(Xυ1 , Y υ2) = const
t∏

τ=1
Fτ (X, Y )eτ , in the standard form, then . eτ = 1

.(τ = 1, . . . , t) and .F(Xm, Y n) = const
t∏

τ=1
Fτ (X

u1 , Y u2), in the standard 

form. 

Since .lcm{υ1, υ2} ≤ (degF)2, there exists only a finite number of such .υ ∈ N2, for  
every positive integers .m, n. Let  . Λ be the subset of all . υ that satisfy the conditions 
(i)–(iii). Then 

. t ≤
(

max
υ∈Λ

{υ1 + υ2}
)

. degF ≤ 2 (degF)3 .

Thus, for every .(m, n) ∈ N2, the polynomial .F(Xm, Y n) has, say . tm,n, non-
associate irreducible divisors (with no multiple factor) in .K[X, Y ] such that . tm,n ≤
2 (degF)3. Let  .t0 = max

m,n∈N
{tm,n}, and let .(m0, n0) be any pair of positive integers 

such that .t0 = tm0,n0 . Then the standard form of .F(Xm0 , Y n0) over K is as follows: 

. F(Xm0 , Y n0) = const

t0∏

i=1

Gi(X, Y ),

where each .Gi ∈ K[X, Y ] is irreducible in .K[X, Y ]. On substituting . (X 1
m0 , Y

1
n0 )

for .(X, Y ), we obtain 

.(∗) F (X, Y ) = const

t0∏

i=1

Gi(X
1

m0 , Y
1
n0 ).
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Now, we proceed to prove that the expression . (∗) is a prime factorization of F in 
.K[Q⊕Q] by showing that each . Gi is irreducible in .K[Q⊕Q] .(i = 1, . . . , t0). Let  
k and l be two positive integers, then 

. F(Xkm0 , Y ln0) = const

t0∏

i=1

Gi(X
k, Y l).

Since the . Gi’s are non-associate irreducible elements in .K[X, Y ], .gcd(Gi,Gj ) = 1, 
for .i �= j . Hence by Schinzel [12, Section 2.3; Lemma 6], . gcd(Gi(X

k, Y l),

.Gj(X
k, Y l)) = 1 whenever .i �= j . By the maximality of . t0, each polynomial 

.Gi(X
k, Y l) must be irreducible in .K[X, Y ] .(i = 1, . . . , t0). On the other hand, 

as above, we have .gcd(Gi(X, Y ),XY) = 1 for every i; hence by Proposition 3, . Gi

is irreducible in .K[Q ⊕ Q] for every i. In view of the automorphism of . K[Q ⊕ Q]
defined in Lemma 3, each .Gi(X

1
m0 , Y

1
n0 ) is irreducible in .K[Q ⊕ Q]. Thus, . (∗) is 

the prime factorization of F in the GCD-domain .K[Q ⊕ Q]. ��
Corollary 4 Let K be a field of characteristic 0; the group algebra .K[Q ⊕ Q] is 
not an antimatter domain. 

Proof Consider any irreducible polynomial .F ∈ K[X, Y ] that is not a scalar 
multiple of any of the indeterminates .X, Y , and different from .JF0(X

δ1Y δ2) for 
any .F0(T ) ∈ K[T ] and any .δ = (δ1, δ2) ∈ Z2 \ {0}. For instance, . F(X, Y ) =
Xn + Y + 1 ∈ K[X, Y ] where n is an arbitrary positive integer. Then, Proposition 4 
implies that F has a prime factorization in .K[Q ⊕ Q]. Hence .K[Q ⊕ Q] is not an 
antimatter domain. ��
The condition in Corollary 4 that the field K is of characteristic 0 cannot be omitted 
as the following example shows: 

Example 2 Let K be a perfect field of characteristic .π > 0. Let  F be a nonzero 
nonunit element of .K[Q ⊕ Q]; say  .F(X, Y ) = ∑

i,j ai,jX
ri Y sj , where .ai,j ∈ K , 

and .ri, sj ∈ Q. Then 

. F(X, Y ) =
⎛

⎝
∑

i,j

a
1
π

i,jX
ri
π Y

sj
π

⎞

⎠

π

.

Hence F is not irreducible in .K[Q ⊕ Q], and therefore .K[Q ⊕ Q] is an antimatter 
domain. 

We next recall some results about the divisible hull of an abelian group. Let G be 
an abelian additive group. Recall that a positive integer n divides an element .g ∈ G, 
in G, if the equation .nx = g is solvable in G (i.e., .nα = g for some .α ∈ G). The 
group G is n-divisible if the equation .nx = g is solvable in G for every .g ∈ G (i.e., 
.G = nG). The group G is said to be divisible if it is n-divisible for every positive 
integer n. Also, every abelian group G can be embedded in a minimal divisible
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abelian group . G∗, called the divisible hull of G [5, Theorem 24.1]. For a torsion-
free abelian group G, . G∗ is isomorphic to a direct sum of copies of the additive 
group . Q [5, Theorem 23.1]. 

Lemma 4 Let D be an integral domain, and let G be a torsion-free abelian group 
with divisible hull . G∗. If .D[G] is an antimatter domain, then so is .D[G∗]. 
Proof Suppose that .D[G] is an antimatter domain. For a positive integer . m, let  
.Gm = {g ∈ G∗ : (m!)g ∈ G}. Clearly, each .Gm is a subgroup of . G∗ that is 
isomorphic to G, .Gm ⊆ Gm+1, and .G∗ = ∪∞

m=1Gm. Hence . D[Gm] � D[G]
is an antimatter domain for every positive integer . m. We claim that . D[G∗] =
∪∞

m=1D[Gm] is an antimatter domain as union of an ascending chain of antimatter 
domains. This follows from the fact that the sets .U(D[Gm]) of units of the domains 
.D[Gm] satisfy .U(D[Gm+1]) ∩ D[Gm] = U(D[Gm]) for every positive integer . m. 

��
Remark 1 In Example 1, we showed that the group algebra .K[G] is not an 
antimatter domain, where .K = F2 and .G = 〈 1

3k | k ∈ N〉. However . K[G∗] � K[Q]
is an antimatter domain since .K = F2 is a perfect field of positive characteristic and 
.(Q,+) is divisible (cf. Proposition 5). Thus the converse of Lemma 4 is not true in 
general. 

We next state our main result of this section, which characterizes the antimatter 
property of a group algebra .K[G] in characteristic 0, in terms of that of a group 
algebra with rational exponents studied in Sect. 1. 

Theorem 3 Let K be a field of characteristic 0, and let G be a torsion-free abelian 
group. The following conditions are equivalent. 

1. .K[G] is an antimatter domain. 
2. G is isomorphic to a subgroup . G′ of the additive group . Q and .K[G′] is an 

antimatter domain. 

Proof (1). ⇒(2) Let .G∗ be the divisible hull of G. Suppose that .K[G] is an 
antimatter domain. By Lemma 4, it follows that .K[G∗] is also an antimatter domain. 
We write . G∗ as .Q ⊕ H for some subgroup H of . G∗. Then we need only show 
that .H = {0}. Note that H is a torsion-free divisible group. Thus, assume that 
.H = Q ⊕ H1 for some subgroup . H1 of . G∗. Since . K[G∗] � K[Q ⊕ Q][H1]
and .K[G∗] is antimatter, then .K[Q ⊕ Q] must be an antimatter domain, which is 
a contradiction by Corollary 4. Hence .H = {0}, and so . G∗ is isomorphic to . Q. 
Consequently, G is isomorphic to a subgroup . G′ of the additive group of rational 
numbers . Q. 

(2). ⇒(1) This is obvious. ��
We end this section with some results in the positive characteristic side. As a 

consequence of Corollary 4 (see also Theorem 3), if K is a field of characteristic 
0 and G is a torsion-free divisible abelian group of .rank ≥ 2, .K[G] is never 
antimatter. However, in the case of positive characteristic the group algebra . K[G]
may be antimatter.
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Proposition 5 Let K be a field of characteristic .π > 0, and let G be a torsion-free 
abelian group. If K is perfect and G is . π−divisible, then .K[G] is an antimatter 
domain. 

Proof Let .f = ∑
i aiX

gi ∈ K[G] be a nonzero nonunit of .K[G]. Since K is 

perfect, .a
1
π

i ∈ K for every i. On the other hand, since G is . π−divisible, . gi

π
∈ G. 

Then .f = ∑
i aiX

gi =
(∑

i a
1
π X

gi
π

)π

is reducible in .K[G], and hence .K[G] is an 
antimatter domain. ��

Note that the converse of Proposition 5 is not true in general as the following 
example shows. 

Example 3 Let K be any algebraically closed field of characteristic .π > 0. Let  
G be the subgroup of the additive group of rational numbers generated by the set 
.{ 1

pn | n ∈ Z+}, where p is a prime number such that .p �= π . By Gotti [11, Corollary 
5.4] and Theorem 2, .K[G] is an antimatter domain. However, it is clear that G is 
not . π−divisible. 
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Yosida, Martínez, and A+ B Rings 

Papiya Bhattacharjee, Lee Klingler, and Warren Wm. McGovern 

1 Introduction 

Throughout, R denotes a commutative ring with identity, usually assumed to be 
reduced (i.e., semiprime) unless otherwise noted. We are interested in rings R of 
type A + B (see the next section for details of the construction). For a ring R, we  
denote by Rad(R) the collection of radical ideals of R. Recall that an ideal I is 
radical if x ∈ I whenever xn ∈ I for some n ∈ N. Under the Axiom of Choice, 
which we shall assume, this condition is equivalent to saying that I is an intersection 
of prime ideals. When ordered by inclusion, Rad(R) is a coherent frame (see [5] for  
more information on radical ideals and coherent frames). We let Spec(R) denote the 
space of prime ideals of the ring R. We also use  Max(R) and Min(R) to denote the 
subspaces of Spec(R) consisting of the maximal and minimal prime ideals of R, 
respectively. 

Our aim here is to study the frame of radical ideals of rings of type A + B. In  
particular, we are interested in characterizing when such a ring satisfies one of the 
following three conditions: 

1. Every prime ideal of R is an intersection of maximal ideals. 
2. Every prime ideal of R is an mz-ideal. 
3. Every prime ideal of R is a strong d-ideal. 

The A + B construction, Popularized by Huckaba and Lucas, is quite useful for 
finding interesting examples of rings with zero-divisors (see, e.g., [11] and [13]). 
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It shall be useful to recall the hull-kernel (or Zariski) topology on the prime 
spectrum Spec(R) and its subspaces. For any subset S ⊆ R, we let  V (S)  = {P ∈ 
Spec(R) : S ⊆ P }. Set U(S)  = Spec(R)�V (S)  . When S = {s1, . . . , sn} we instead 
write V (s1, . . . , sn). The subsets of the form V (S)  form the closed sets (and hence 
U(S)  form the open sets) of the hull-kernel topology. We set VM(S) = V (S)  ∩ 
Max(R) and VMin(R)(S) = V (S) ∩ Min(R). 

A ring satisfying (1) is called a Hilbert ring, and this class of rings is 
well-studied. A reduced Hilbert ring is necessarily Jacobson semisimple, that is, 
the Jacobson radical of R equals {0}. Examples of Hilbert rings include one-
dimensional Jacobson semisimple integral domains. Obviously, a von Neumann 
regular ring is a Hilbert ring. If R is a Hilbert ring, then so is R[X], and conversely. 
In general, even if not reduced, the ring R is a Hilbert ring if and only if R/n(R) is 
a Hilbert ring, where n(R) denotes the nilradical of R. A more esoteric example of a 
Hilbert ring is the ring C(X, Z) consisting of all integer-valued continuous functions 
for some compact zero-dimensional Hausdorff space X (see [ 2]). 

To understand (2), we first need to recall some notation. An ideal I is called a 
z-ideal if whenever f ∈ I and g ∈ R, then VM(f ) ⊆ VM(g) implies that g ∈ I . 
Replacing f ∈ I with a finite subset f1, . . . , fn ∈ I produces the definition of an 
mz-ideal. We recall also that an ideal I is said to be a strong z-ideal (or sz-ideal) 
if it is an intersection of maximal ideals. It is apparent that every sz-ideal is an mz-
ideal, and that every mz-ideal is a z-ideal. A z-ideal in a reduced ring is necessarily 
a radical ideal. 

From a frame-theoretic point of view, the work of Martinez and Zenk [15], in 
the context of the frame Rad(R), is aimed at studying the mz-ideals of a ring. The 
paper [12] fleshes out the differences between z-ideal and mz-ideal. We do wish to 
highlight that the zero ideal of R is a z-ideal if and only if the ring R is Jacobson 
semisimple. What we can say is that the ring satisfies condition (2) if and only if 
Rad(R) is a Yosida frame, and hence we make the following definition. 

Definition 1 We call a ring satisfying (2) a Yosida ring; that is, the ring R is a 
Yosida ring if every prime ideal of R is an mz-ideal. 

A reduced Yosida ring is necessarily Jacobson semisimple, and a Hilbert ring is 
necessarily a Yosida ring. 

Remark 1 According to [15, Definition 2.1], a coherent frame L is a Yosida frame 
if every compact element is the meet of maximal elements. For a coherent frame L 
one can define a nucleus z on L by first defining it for compact elements. If c ∈ L 
is compact, then z(c) is the meet of the maximal elements of L above c. Then for 
an arbitrary x ∈ L, z(x) is the join of z(c) ranging over all compact c ≤ x. Then 
zL = {x ∈ L : z(x) = x}. In [15, Proposition 2.5], it is shown that a coherent frame 
is Yosida if and only if L = zL. Since Rad(R) is coherent, this is tantamount to 
saying that every radical ideal of R is an mz-ideal, which is equivalent to condition 
(2), as mentioned above. 

It is straightforward to check that an intersection of mz-ideals (respectively sz-
ideals, z-ideals) is again an mz-ideal (respectively sz-ideal, z-ideal).
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Next, to understand condition (3), we recall that the notation AnnR(S) is used to 
symbolize the annihilator of the set S. We are interested in the double annihilator, 
and since the notation is somewhat cumbersome, we shall use the notation S⊥ and 
S⊥⊥ for the annihilator and double annihilator of S. An ideal I is called a d-ideal if 
for all f ∈ I , f ⊥⊥ ⊆ I . We say that the ideal I is a strong d-ideal (or sd-ideal for 
short) if for every finite subset F ⊆ I , F⊥⊥ ⊆ I . An  sd-ideal is obviously a d-ideal. 
Each minimal prime ideal is an sd-ideal and so is the intersection of any collection 
of sd-ideals. We shall use dRad(R) to denote the collection of sd-ideals of R. From  
a frame-theoretic point of view, this is the frame of d-elements of Rad(R). 

Theorem 1 (Theorem 2.3 [4]) The ring R is Jacobson semisimple if and only if 
every sd-ideal is an mz-ideal. 

Corollary 1 If the ring R is Jacobson semisimple and satisfies condition (3), then 
R is a Yosida ring. 

Remark 2 In [4] Definition 2.1, the authors define the ideal I to be a ζ -ideal if 
whenever F ⊆ I is a finite subset and U(F⊥) ⊆ V (a), then a ∈ I . An ideal is 
an sd-ideal if and only if it is a ζ -ideal; recall that we are assuming our rings are 
reduced. In [1] and the references mentioned there, the authors study what they call 
strong z◦-ideals. The ideal I is a strong z◦-ideal if for all finite F ⊆ I and for all 
a ∈ R, if  VMin(R)(F ) ⊆ VMin(R)(a), then a ∈ I . Interestingly, in a reduced ring, all 
three conditions, ζ -ideal, sd-ideal, and strong z◦-ideals, are equivalent. 

We are also interested in the class of rings satisfying condition (3), and we make 
the following definition. 

Definition 2 We call a ring satisfying (3) a Martínez ring; that is, the ring R is a 
Martínez ring if every prime ideal of R is an sd-ideal. 

Clearly, every von Neumann regular ring is a Martínez ring. As we already 
pointed out in Corollary 1, if we confine ourselves to the class of Jacobson 
semisimple rings, then we can say that every Martínez ring is a Yosida ring. 

Remark 3 The following diagram illustrates the relationship for Jacobson semisim-
ple rings. 

Martinez 

von Neumann regular Yosida 

Hilbert 

Observe that any Hilbert domain that is not a field is an example of a Hilbert ring 
that is not a Martínez ring, e.g., R = Z. In section 3, we construct an example of a 
Yosida (and hence Jacobson semisimple) ring that is not Hilbert. We then use this 
example to construct a Jacobson semisimple Martínez ring that is not Hilbert.
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As we already mentioned, the reduced ring R is a Martínez ring if and only if 
dRad(R) = Rad(R). This turns out to be a very strong condition. For example, in a 
Martínez ring every maximal ideal is a maximal sd-ideal, and since no sd-ideal can 
contain a regular element it follows that a Martínez ring is classical, that is, equals 
its classical ring of quotients. The converse of this statement is not true. 

Example 

Let C(X) denote the ring of real-valued continuous functions. It is well-known that 
if C(X) is not von Neumann regular, then there are prime ideals which are not z-
ideals ([9, 14.13]). It follows that C(X) is a Yosida ring if and only if C(X) is von 
Neumann regular if and only if C(X) is a Martínez ring. However, it is well-known 
that there are spaces X for which C(X) is a classical ring yet not von Neumann 
regular. (In topological parlance, there are almost P -spaces which are not P -spaces.) 

The interested reader is pointed to [8] where the author delved into the A + B 
construction and some of its variants, and examines Example 4.1 of [1], which uses 
the A + B construction to exhibit an example of a ring with a d-ideal which is not 
an sd-ideal. Our hope was to find a similar example of a ring with a z-ideal that is 
not an mz-ideal. Our attempts have been unsuccessful. 

2 A+ B Rings 

Throughout this section we assume that A is a reduced ring. We shall fix a collection 
of prime ideals, enumerated by the index set A: P = {Pα}α∈A ⊆ Spec(A). We  
further assume that ∩P = {0}. We let  I = A × N, and for i = (α, n), let  Pi = Pα 
and Ai = A/Pi . Set 

. B =
∑

i∈I
Ai ⊆

∏

i∈I
Ai.

We let ei ∈ B denote the element defined by 

. ei(i
′) =

{
1 + Pi′ , if i = i′

0 + Pi′ , otherwise.

Obviously, B is generated as a ring by the collection of ei . 
We identify A with its image inside of

∏
i∈I Ai via a 	→ (ai), where for a given 

i = (α, n), ai = a + Pα . We shall also use the notation a(i) to mean the i-th 
coordinate of a, i.e., a(i) = ai . Then A + B is the ring consisting of elements of 
the form a + b inside of

∏
i∈I Ai , and we note that each element has a unique such 

representation, because A ∩ B = {0}.
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Characterizing the prime ideals of A + B is straightforward. A prime of A + B 
either contains the ideal B or not. The primes containing B have the form P + B 
for some P ∈ Spec(A). The primes not containing B are of a different type. First of 
all, for i = (α, n) ∈ I, the  set  

. Mi = {r ∈ R : r(i) = 0}

as the kernel of the map from A + B onto Ai , is a minimal prime ideal. Moreover, 
the minimal prime ideals of A + B are precisely of the form Mi for some i ∈ I 
or of the form P + B for P ∈ Min(A). One easily checks that the minimal primes 
Mi are pairwise comaximal, and each is comaximal with the ideal B. Thus, since 
R/Mi ∼= A/Pi , it follows then that the prime ideals of A+B not containing B have 
the form 

. P + Mi = {r ∈ A + B : r(i) ∈ P/Pi}

where i ∈ I and P ∈ Spec(A) is such that Pi ⊆ P . 
Since a homomorphic image of a Hilbert ring is a Hilbert ring, characterizing 

Hilbert rings of the form A + B turns out to be quite easy. 

Theorem 2 The ring A + B is a Hilbert ring if and only if A is a Hilbert ring. 

Proof If A is a Hilbert ring, then for any Q ∈ Spec(A), the prime ideal Q + B is 
the intersection of ideals of the form P + B for P ∈ VM(Q), and for any i ∈ I and 
Q ∈ Spec(A) such that Pi ⊆ Q, the ideal Q+Mi is the intersection of ideals of the 
form P + Mi for P ∈ VM(Q). 

The converse is clear, since A ∼= A + B/B. �
Remark 4 Notice that Theorem 2 makes no mention of the  set of primes  P, 
essentially because the class of Hilbert rings is closed under homomorphic images. 

Lemma 1 If A is a reduced ring and P ∈ Spec(A), then the prime ideal P + B of 
A + B is an mz-ideal (respectively sz-ideal, z-ideal) if and only if P is an mz-ideal 
(respectively sz-ideal, z-ideal) of A. 

Proof We provide a proof for the case of mz-ideals and leave the other proofs to the 
interested reader. 

We begin by proving that if P +B is an mz-ideal of A+B, then P is an mz-ideal 
of A. To that end, let x1, . . . , xn ∈ P and a ∈ A and suppose that VM(x1, . . . , xn) ⊆ 
VM(a); this takes place in A. One checks that the collection of maximal ideals of 
A + B containing x1, . . . , xn is contained in the collection of maximal ideals of 
A + B containing a. Thus, a ∈ P + B, whence a ∈ P . 

For the reverse direction suppose that P is an mz-ideal of A. Let  x1+b1, . . . , xn+ 
bn ∈ P + B and VM(x1 + b1, . . . , xn + bn) ⊆ VM(a + b), where this takes place 
in A + B. Obviously, x1, . . . , xn ∈ P . Let  M be a maximal ideal of A that contains 
x1, . . . , xn. But then M + B ∈ VM(x1 + b1, . . . , xn + bn), whence a ∈ M , so that 
a ∈ P , and hence a + b ∈ P + B. �
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It follows that if A+B is a Yosida ring, then so is A. However, as we shall see in 
the next section, the class of Yosida rings is not closed under homomorphic images. 
In fact, if every homomorphic image of A (including A itself) is a Yosida ring, then 
A is a Hilbert ring, which follows from the fact that a Yosida domain is Jacobson 
semisimple. 

Proposition 1 For index i ∈ I, the following statements are equivalent. 
1. Mi is an sz-ideal of A + B. 
2. Mi is an mz-ideal of A + B. 
3. Mi is a z-ideal of A + B. 
4. Pi is an sz-ideal of A. 

Proof As noted before, (1) ⇒ (2) ⇒ (3), and (1) ⇔ (4) follows from A + B/Mi ∼= 
A/Pi . 

To complete the proof, suppose that Mi is a z-ideal; we need to show that Pi 
is the intersection of the maximal ideals of A which contain Pi . To this end, let a 
be an element of the intersection of the maximal ideals of A which contain Pi , and 
consider the element aei of A + B. Then by construction aei ∈ P + Mi for every 
maximal ideal P + Mi of A + B containing Mi , and since aei(i

′) = 0 for every 
index i′ �= i, it follows  that  aei ∈ P + Mi′ for every maximal ideal P + Mi′ of 
A + B containing Mi′ . Moreover, aei ∈ B, so  aei ∈ P +B for every maximal ideal 
P +B of A+B containing B, and hence VM(aei) = Max(A+B) = VM(0). Since 
Mi is a z-ideal of A + B, we conclude that aei ∈ Mi , which forces a ∈ Pi . �
Theorem 3 The ring A + B is a Yosida ring if and only if A is a Yosida ring and 
for all indices i, A/Pi is a Yosida ring. 

Proof Suppose first that A + B is a Yosida ring. By Lemma 1, A is also a Yosida 
ring. 

For index i and prime ideal Q ∈ Spec(A) such that Pi ⊆ Q, let  S = {a1 + 
Pi, . . . , an+Pi} ⊆  Q/Pi , and suppose that VM(S) ⊆ VM(a+Pi) in Max(A/Pi) for 
some a ∈ A. Consider the element aei ∈ A+B, and VM(aei) in Max(A+B). Since 
aei ∈ B, VM(aei) contains every maximal ideal of the form P +B for P ∈ Max(A), 
and since (aei)(i

′) = 0 for all indices i′ �= i, VM(aei) contains every maximal ideal 
of the form P + Mi′ for P ∈ Max(A) such that Pi′ ⊆ P and i′ �= i. If  P ∈ 
Max(A) such that Pi ⊆ P and a1, . . . , an ∈ P + Mi , then a1(i), . . . , an(i) ∈ P/Pi 
implies P/Pi ∈ VM(S) ⊆ VM(a + Pi) in Max(A/Pi), and therefore (aei)(i) = 
a(i) ∈ P/Pi , that is, aei ∈ P + Mi . It follows that VM(a1, . . . , an) ⊆ VM(aei) in 
Max(A + B), which in turn implies that aei ∈ Q + Mi , since a1, . . . , an ∈ Q and 
A + B is a Yosida ring. Thus a(i) = (aei)(i) ∈ Q/Pi shows that a + Pi ∈ Q/Pi , 
as required. 

Conversely, suppose that A is a Yosida ring and for all indices i, A/Pi is a Yosida 
ring. By Lemma 1, for each Q ∈ Spec(A), the prime ideal Q + B is an mz-ideal of 
A + B. 

For index i and prime ideal Q ∈ Spec(A) such that Pi ⊆ Q, let  S = 
{r1, . . . , rn} ⊆  Q + Mi and r ∈ A + B such that VM(S) ⊆ VM(r(i)) in
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Max(A + B). For all P ∈ Max(A) such that Pi ⊆ P , if  r1(i), . . . , rn(i) ∈ P/Pi , 
then r1, . . . , rn ∈ P + Mi , that is, P + Mi ∈ VM(S) ⊆ VM(r), so that r(i) ∈ P/Pi . 
Therefore, VM(r1(i), . . . , rn(i)) ⊆ VM(r) in Max(A/Pi), so that r(i) ∈ Q/Pi , 
since A/Pi is a Yosida ring, and hence r ∈ Q + Mi , as required. �

As we shall see shortly, if R = A + B is a Martínez ring, then P ⊆ Max(A), 
from which it follows then each Mi is a maximal ideal, and therefore R is Jacobson 
semisimple. Consequently, the A + B construction will not produce an example 
of a Martínez ring that is not Yosida. In the last section, we discuss a different 
construction and supply such an example. 

A useful characterization of when A + B is classical is the following. 

Lemma 2 ([8]) The ring A + B is a classical ring if and only if P ⊆ Max(A) and 
∪P = ∪Max(A). 

Next, we provide a useful characterization of the double annihilator of a subset 
of A + B. 

Lemma 3 ([8]) Let R = A + B and S ⊆ R. Then 

. S⊥⊥ = {r ∈ A + B : r(i) = 0 whenever s(i) = 0 for all s ∈ S}.

Next, we would like to characterize the prime sd-ideals of R = A + B. The  
following definition shall be useful. 

Definition 3 Let A be a reduced ring and P ⊆ Spec(A) satisfying ∩P = {0}. We  
call an ideal I of A a P-ideal if whenever F ⊆ I is a finite subset and VP(F ) ⊆ 
VP(a), then a ∈ I , where VP(F ) = V (F )  ∩ P = {Pα ∈ P : F ⊆ P }. 

For example, whenP = Max(A) then a P-ideal is precisely an mz-ideal of A. On  
a different note, when R is reduced and P = Min(R), then a P-ideal is an sd-ideal 
[1]. 

Lemma 4 If A and B are as in the previous definition and I is an ideal of A, then 
I + B is an sd-ideal of A + B if and only if I is a P-ideal of A. 

Proof Suppose first that I is a P-ideal of A, and let S = {a1 + b1, . . . , an + bn} ⊆  
I+B, with each aj ∈ I and bj ∈ B, and let r = a+b ∈ S⊥⊥, with a ∈ A and b ∈ B. 
If Pα ∈ VP(a1, . . . , an), then a1, . . . , an ∈ Pα , implies that each (aj + bj )(i) = 0 
for infinitely many i = (α, n), where n ∈ N. Hence by Lemma 3, r(i) = 0 for  
infinitely many such n, so that a ∈ Pα . Therefore, VP(a1, . . . , an) ⊆ VP(a), and 
since I is a P-ideal, it follows that a ∈ I . Thus, r ∈ I + B. 

Conversely, suppose that I +B is an sd-ideal of A+B for some ideal Q of A, and 
let a1, . . . , an ∈ I and a ∈ A such that VP(a1, . . . , an) ⊆ VP(a). For each index 
i = (α, n) ∈ I, if  aj (i) = 0 for all j , then a1, . . . , an ∈ Pα implies a ∈ Pα , by  
assumption, so that a(i) = 0 also. Hence by Lemma 3, a ∈ {a1, . . . , an}⊥⊥ ⊆ I+B, 
since I + B is  assumed to be an  sd-ideal of A + B. Thus, a ∈ I . �

This lemma allows us to characterize the A + B rings which are Martínez rings.
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Theorem 4 Let R = A + B. The following statements are equivalent. 

1. The ring R is a Martínez ring. 
2. dRad(R) = Rad(R). 
3. P ⊆ Max(A), and every prime ideal of A is a P-ideal. 
Proof Clearly, (1) and (2) are equivalent. 

Suppose that R is a Martínez ring; then as remarked above, R is classical, and 
hence P ⊆ Max(A). Moreover, if Q ∈ Spec(A), then Q + B ∈ Spec(R) is an 
sd-ideal by assumption, so that Q is a P-ideal of A by Lemma 4. 

Conversely, suppose that P ⊆ Max(A) and every prime ideal of A is a P-ideal. 
Then for each index i ∈ I, the ideal Mi = A/Pi is both maximal and minimal, 
so an sd-ideal. The only other prime ideals of R have the form Q + B for some 
Q ∈ Spec(A), and since Q is assumed to be a P-ideal, Q + B is an sd-ideal by 
Lemma 4. �

As noted above, if P = Max(A), then a P-ideal is precisely an mz-ideal of A, so  
we obtain the following immediate consequence. 

Corollary 2 If A is a Jacobson semisimple Yosida ring and P = Max(A), then 
every prime ideal of R = A + B is an sd-ideal, i.e., R is a Martínez ring. 

Using Corollary 1, we obtain the following. 

Corollary 3 If R = A + B is a Martínez ring, then R is Jacobson semisimple and 
hence a Yosida ring. 

Example 

Observe that if A = Z andP = Max(A), then A+B is a Hilbert ring and a Martínez 
ring. However, A + B is not von Neumann regular. 

3 Lattice-Ordered Groups 

To produce our examples we shall use the Jaffard-Ohm-Kaplansky theorem. We 
cite three references for the interested reader: [3, 7, 10]. Another good source for 
our discussion is [16]. 

For a domain A, we let  U(A)  denote its set of units and q(A) its classical field 
of fractions. The set U(A)  is a subgroup of q(A)∗ = q(A) � {0}. The factor group 
q(A)∗/U(A) is called the group of divisibility of A and is denoted by G(A). The  
group G(A) can be partially ordered by setting q1U(A)  ≤ q2U(A)  if and only if 
q2 

q1 
∈ A. This partial order makes G(A) into a partially ordered group. The order 

becomes a lattice-order precisely when A is a GCD-domain. In particular, if A is a 
Bézout domain, then G(A) is a lattice-ordered group, or �-group. Observe that for 
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nonzero a, b ∈ A, aU(A) = bU(A) if and only if aA = bA, and that aU(A) ≤ 
bU(A) if and only if a|b. This last fact is the reason that G(A) is called the group 
of divisibility. 

The Jaffard-Ohm-Kaplansky Theorem (JOK) states that if G is a lattice-ordered 
group, then there is a Bézout domain A for which G(A) ∼= G. The main point here 
is that one can translate certain ring-theoretic properties covering a Bézout domain 
into a property about �-groups. Thus, if one can construct an �-group with or without 
certain properties, then there are Bézout domains with or without said ring-theoretic 
properties. 

In [15], the authors used the JOK method to characterize when the frame of 
radical ideals of a Bézout domain is a Yosida frame. Unfortunately, there is a slight 
error in [15, Theorem 6.5]. One needs to include that the Jacobson radical of the 
domain is 0. The same needs to be done in Corollary 6.6, but then the result is trivial 
as such a valuation domain is in fact a field. In particular, if (A, M) is a valuation 
domain that is not a field, then Rad(A) is not a Yosida frame as the zero-ideal is not 
a meet of maximal elements. 

Throughout this section we assume that A is a Bézout domain. Observe that A 
is a valuation domain if and only if G(A) is a totally ordered group. Examples of 
totally ordered groups include the real numbers and each of its subgroups. 

The following theorem is well-known and can be found in several articles, e.g., 
[10, 16], and [3]. 

Theorem 5 Let A be a Bézout domain. There is a one-to-one order-reversing 
correspondence between nonzero prime ideals of A and prime subgroups of G(A), 
where a nonzero prime ideal P ∈ Spec(A) corresponds to the convex �-subgroup 
generated by {aU(A) : a ∈ A � P } .

Thus, it is not surprising that we can characterize when a Bézout domain is a 
Hilbert domain via its group of divisibility. Before we do that, we present some 
other useful notation for �-groups. 

Definition 4 Let (G,+,≤) be an �-group and 0 < g. 

1. The polar of g is the set g⊥ = {h ∈ G : g ∧ |h| = 0}. 
2. The element g is a weak order unit if g⊥ = {0}. 
3. For g ∈ G, we set  Um(g) = {Q ∈ Min(G) : g /∈ Q}, Vm(g) = {Q ∈ Min(G) : 

g ∈ Q}, and Vg = ∩Vm(g). 

We remark that g⊥⊥ = Vg . We also note that an element of G is a weak order 
unit if and only if it does not belong to any minimal prime subgroup of G. Thus, we  
obtain the following useful consequence. 

Proposition 2 Let A be a Bézout domain and G(A) its group of divisibility. Then 
weak order units of G(A) correspond to elements that belong to every maximal ideal 
of A, and hence A is Jacobson semisimple if and only if G(A) has no weak order 
units. 

The following theorem should now be apparent.
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Theorem 6 Suppose A is a Bézout domain and let G = G(A) be its group of 
divisibility. A is a Hilbert domain if and only if G does not have any weak order 
units and every prime subgroup of G is a union of minimal prime subgroups. 

We next turn to characterizing when a Bézout domain is a Yosida ring. We need 
the following �-group theorem. 

Proposition 3 Let G be an �-group. Every Q ∈ Spec(G) has the property that 
g /∈ Q and Um(g) ⊆ Um(x) implies x /∈ Q if and only if for every g ∈ G, 
G(g) = g⊥⊥. 

Proof Suppose every prime subgroup of G has the desired property and let g ∈ G. 
Without loss of generality, we assume that 0 < g. Suppose x ∈ g⊥⊥. If  x /∈ G(g), 
then there is some prime subgroup, say Q, maximal with respect to the property that 
G(g) ⊆ Q and x /∈ Q. Observe that Um(x) ⊆ Um(g), since x ∈ Vg by the above 
remark. The hypothesis forces g /∈ Q, a contradiction. 

Conversely, suppose every principal convex �-subgroup is a polar and let Q ∈ 
Spec(G). Let  g ∈ G+

� Q and suppose Um(g) ⊆ Um(x). Observe then that 
Vm(x) ⊆ Vm(g), and so consequently, Vg ⊆ Vx which means that g ∈ Vx = 
x⊥⊥ = G(x). If  x ∈ Q, then so is g ∈ Q, whence x /∈ Q. �
Theorem 7 Suppose A is a Bézout domain and let G = G(A) be its group of 
divisibility. Every nonzero prime ideal of A is a z-ideal if and only if every principal 
convex �-subgroup of G(A) is a polar. Moreover, A is a Yosida ring if and only if A 
is Jacobson semisimple and every principal convex �-subgroup of G(A) is a polar. 

Proof Suppose every nonzero prime ideal of A is a z-ideal. Let Q be a prime 
subgroup of G, g ∈ G+

� Q , and x ∈ G+ for which Um(g) ⊆ Um(x). We aim  
to show that x /∈ Q. We would then be able to apply Proposition 3 to conclude 
that every principal convex �-subgroup is a polar. Choose any a, b ∈ A such that 
g = aU(A) and x = bU(A). Let  P ∈ Spec(A) corresponding to Q and observe 
that a ∈ P . Note that VM(a) ⊆ VM(b). So since P is a z-ideal, it follows that b ∈ P , 
whence x /∈ Q. 

We leave the proof of the converse to the interested reader. �

Example 

We provide an example of an �-group G for which any Bézout domain A whose 
group of divisibility is isomorphic to G is a Yosida ring (i.e., every prime is an 
mz-ideal) but is not a Hilbert domain. 

In fact, the example of an �-group that we have in mind will be without weak 
order units, and also have the properties that every principal convex �-subgroup is a 
polar and not every prime subgroup is a union of minimal prime subgroups. Then, 
equipped with such a G we invoke JOK to obtain a Bézout domain whose group of 
divisibility is G. Such an A will be a Yosida ring that is not a Hilbert domain. 

Our example is a modification of the example used in [17]. Let K be an infinite 
compact zero-dimensional space and set Kn = K for n ∈ Z+. (For example, let
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K be the Cantor space.) Let X be the disjoint union of the spaces Kn. We denote 
Q with the discrete topology by Qd . Let  C = C0(X, Qd) be the set of continuous 
rational-valued functions on X with compact support (i.e., for each f ∈ C , the  
closure of the set of points where f takes nonzero values, cl coz(f ), is compact). It 
is known that C is a hyper-archimedean �-group and that the prime subgroups are 
classified as Mx = {f ∈ C : f (x)  = 0} for some x ∈ X. 

It is important to know that hyper-archimedean means that every �-
homomorphism is archimedean, or equivalently, that every prime subgroup is 
minimal. One more equivalent condition about hyper-archimedean �-groups is that 
every principal convex �-subgroup is a summand and is a polar. (See [6] for  more  
information as well as proofs.) 

Next, define the functions 

. f (x) =
{
1, if x ∈ K2n

0, otherwise.

and 

. e(x) =
{

1
4n , if x ∈ K4n

0, otherwise.

Finally, let A be the �-subgroup of C(X, Qd) generated by C , f , and e. Observe 
that 0 ≤ e ≤ f . Furthermore, every element of A can be written in the form 
g = c + nf + me for some c ∈ C and n, m ∈ Q. 

The argument in [17] shows that a (proper) prime subgroup of A is either of the 
form Mx for some x ∈ X or is C or is the subgroup generated by C and e. Denote 
the last of these by P . It follows that the minimal prime subgroups all have the form 
Mx . The union of these minimal prime subgroups is C . Thus, P is not a union of 
minimal prime subgroups. 

Clearly, A has no weak order units, and it is shown in [17] that A is an example 
of an existentially closed �-group. Furthermore, one of the criteria for an �-group 
to be existentially closed is that every principal convex �-subgroup is a polar (see 
[18]). Therefore, A is our desired example. 

Example 

Here is an example of a Martínez ring that is not a Hilbert ring. Let A be a Yosida 
ring that is not a Hilbert ring, and set P = Max(A). Then the ring R = A + B is 
a Martínez ring by Theorem 4, because P = Max(A), so a  P-ideal is an mz-ideal. 
Since A is not a Hilbert ring, neither is R. Observe that R is also not von Neumann 
regular.



110 P. Bhattacharjee et al.

4 A× QB 

We finish with an example of a Martínez ring that is not a Yosida ring. We notice 
that, if R = A + B is a Martínez ring, then by Theorem 4 it follows that P ⊆ 
Max(A), so that each Mi ∈ Max(R). Moreover, ∩Mi = {0}, so a Martínez A + B-
ring is Jacobson semisimple. Consequently, if R = A + B is a Martínez ring, then 
by Corollary 1, it is automatically a Yosida ring. Therefore, to construct an example 
of a Martínez ring that is not a Yosida ring, we need a different construction. 

We use a variation of the A+B-construction due to Lucas [14] (see also Chapter 2 
of [8]), which we shall call an A × QB-ring, defined as follows. In the construction 
of the ring A + B, we drop the assumption that ∩P = {0}. Let  Ki be the field 
of fractions of the integral domain Ai = A/Pi for each i ∈ I, and let QB =∑

i∈I Ki . Finally, we set R = A×QB, with addition defined component-wise, and 
multiplication by (r, a)(s, b) = (rs, rb + sa + ab). One easily checks that R is a 
commutative ring with identity (1, 0). As before, for b ∈ QB, let  b(i) be the i-th 
coordinate of b, and for a ∈ A, write a(i) for the image of a in Ki . 

From [14, Theorem 8.4], the ideal Mi = {(a, b) ∈ R : a(i) = −b(i)} is both a 
maximal ideal and minimal prime ideal of R, and the only other prime ideals of R 
are of the form P ×B, where P ranges over the prime ideals of A. (In the statement 
of the theorem, Lucas assumes that A is an integral domain, but in fact the proof 
holds for any commutative ring A with identity.) Using this fact, we construct a 
Martínez ring that is not a Yosida ring. 

Example 

Let R = A × QB, where A is a semilocal principal ideal domain with exactly two 
maximal ideals N1 and N2, and P = {N1, N2}. From the above remarks, we see that 
Max(R) = {Mi : i ∈ I} ∪ {N1 × B, N2 × B}, so that the Jacobson radical of R 
is N1N2 × {0}, and therefore R is not Jacobson semisimple. On the other hand, the 
above remarks imply that Spec(R) contains exactly one non-maximal prime ideal, 
{0} ×  B, from which it follows that R is reduced. Therefore, R cannot be a Yosida 
ring. (Note that {0} ×  B is a minimal prime ideal.) 

Since every minimal prime ideal is an sd-ideal, to show that R is a Martínez 
ring, we need only check that N1 × B and N2 × B are sd-ideals. Using the fact that 
R is reduced, it suffices to show that N1 × B and N2 × B are Min(R)-ideals (see 
Definition 3). That is, if F is a finite subset of Nj ×B, and VMin(R)(F ) ⊆ VMin(R)(r) 
for some r ∈ R, then r must be an element of Nj × B. 

Note that (a, b) ∈ {0} ×  B if and only if a = 0, while (a, b) ∈ Mi , for index 
i ∈ I, if and only if a(i)+ b(i) = 0. Suppose that (a1, b1), . . . , (am, bm) ∈ Nj ×B 
and 

.VMin(R)({(a1, b1), . . . , (am, bm)}) ⊆ VMin(R)((a, b))
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for some (a, b) ∈ R. Then a1, . . . , am ∈ Nj , so there are infinitely many indices 
i = (j, n) such that b1(i) = . . .  = bm(i) = 0, so infinitely many such indices i that 

. Mi ∈ VMin(R)({(a1, b1), . . . , (am, bm)})

and hence infinitely many such that Mi ∈ VMin(R)((a, b)). Then b(i) = 0 for at least 
one such index i, which implies that a ∈ Nj , and therefore (a, b) ∈ Nj × B. Thus, 
Nj × B is an sd-ideal. 
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Functional Identities and Maps 
Preserving Two-Sided Zero Products 
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1 Introduction 

A functional identity (FI for short) is an identical relation involving arbitrary 
elements of (a subset of) a ring along with some functions that are considered as 
unknowns. This is not a formal definition, but actually there is no formal definition. 
The concept of an FI can be understood through examples. We will give a very brief 
account of the FI theory in Sect. 2, focusing only on the most applicable aspects 
of the theory (but without discussing concrete applications). This theory has been 
developed since the 1990’s and is surveyed in the 2007 book [8]. There has been 
further development since its publication, but we will stick within the basic context. 

The main motivation for the development of the FI theory have always been 
applications to various areas. We will present one such application in Sect. 3. The  
result we will obtain is not entirely new, that is, it is a variation of the result obtained 
in the recent paper [9]. However, the proof we will give here is essentially different. 
The setting in which we will work is that of Banach algebras. Using some functional 
analytic tools is therefore unavoidable, but nevertheless our proof will be almost 
entirely algebraic. More precisely, using some standard analytic results we will 
reduce the problem to the situation where the methods of FI’s, presented in Sect. 2, 
will be applicable. 

Let us now introduce the problem we will study in Sect. 3. Let  A and B be 
associative, but not necessarily commutative algebras and let .T : A → B be a 
linear map. We say that T preserves two-sided zero products if for all .x, y ∈ A, 
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. xy = yx = 0 �⇒ T (x)T (y) = T (y)T (x) = 0.

Homomorphisms as well as antihomomorphisms are obvious examples of such 
maps. Their natural generalization are Jordan homomorphisms. These are linear 
maps .J : A → B satisfying 

. J (xy + yx) = J (x)J (y) + J (y)J (x)

for all .x, y ∈ A. Under mild assumptions, Jordan homomorphisms also preserve 
two-sided zero products, see [7, Lemma 7.20]. Further, we say that a linear map 
.W : B → B is a centralizer if 

. W(xy) = W(x)y = xW(y)

for all .x, y ∈ B (that is, W is an element of the centroid of B). If B is unital, then 
clearly W is of the form .W(x) = cx with .c = W(1) belonging to the center of 
B. However, we will work with algebras that do not necessarily possess unities. We 
say that .T : A → B is a weighted Jordan homomorphism if there exist an invertible 
centralizer W of B and a Jordan homomorphism .J : A → B such that .T = WJ . If  
J preserves two-sided zero products, then clearly so does T . 

Assume now that A and B are Banach algebras. The question that has been 
considered in [3, 9] is whether a surjective continuous linear map .T : A → B that 
preserves two-sided zero products is a weighted Jordan homomorphism. We will 
show in Theorem 3.4 that the answer is positive under certain assumptions that are 
very similar to those employed in [9]. Still, the result in [9] is slightly better (on the 
other hand, our theorem considerably improves the result from [3]). Anyhow, our 
main purpose is to present the applicability of FI’s to the problem that has occurred 
in an apparently entirely different mathematical area. 

Let us finally mention that our basic assumption on A will be that A is zero 
product determined. These algebras are the subject of the recent book [7]. We will 
introduce them in Sect. 3. 

2 Functional Identities 

By a ring we will always mean an associative ring which may not be unital and may 
not be commutative. If fact, the theory that we will expose is almost vacuous for 
commutative rings. 

Throughout this section we assume that A is a subring of a unital ring Q with 
center C. The reason for the notation Q is that we are particularly interested in the 
case where Q is one of the rings of quotients of A. However, this is not assumed in 
the definitions which we are about to present. 

We will consider functions .Ei, Fj : Ak → Q (where . Ak denotes the Cartesian 
product of k copies of A). These functions are entirely arbitrary, i.e., they are
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just functions in the set theoretic sense. We will assume that they satisfy certain 
identities, which we call functional identities (FI’s), and our goal is to describe their 
form. 

We start by giving several examples. 

Example 2.1 An extremely simple example of an FI satisfied by two functions 
.E1, F2 : A → Q is 

.E1(x2)x1 + x2F2(x1) = 0 (2.1) 

for all .x1, x2 ∈ A. What is the form of . E1 and . F2? By our assumption, Q has a unity 
1, but we are not assuming that A contains 1. However, let us assume temporarily 
that .1 ∈ A. Then (2.1) implies that .E1(x2) = x2p where .p = −F2(1) ∈ Q. Writing 
1 for . x2 in (2.1) it follows that .F2(x1) = −px1. Thus, a simple possibility when 
(2.1) holds is that there exists a .p ∈ Q such that 

.E1(x2) = x2p, F2(x1) = −px1 (2.2) 

for all .x1, x2 ∈ A. If .1 ∈ A, then this is also the only possibility. There may be other 
possibilities if 1 does not belong to A. For example, if A contains a nonzero element 
a such that .aA = {0}, then we may take 

. E1(x2) = a and F2(x1) = 0

for all .x1, x2 ∈ A. However, we are not interested in various special situations at this 
stage. We call (2.2) the standard solution of the FI (2.1). This is a formal solution of 
(2.1) which makes sense for any rings .A ⊆ Q, while other possible solutions may 
exist only if A has some special properties. 

Example 2.2 Another similarly simple FI is 

.E1(x2)x1 + E2(x1)x2 = 0 (2.3) 

for all .x1, x2 ∈ A. How to define the standard solution of (2.3)? To answer this, we 
again assume that A is unital. Setting .x1 = 1 in (2.3) we obtain .E1(x2) = ax2 for all 
.x2 ∈ A, where .a = −E2(1). Writing 1 for . x2 in (2.1) we thus obtain . E2(x1) = −ax1
and so (2.3) becomes 

. a(x2x1 − x1x2) = 0

for all .x1, x2 ∈ A. If  A is commutative, then this is fulfilled for every .a ∈ Q. 
However, if A is not commutative and Q has no zero-divisors, then this is possible 
only if .a = 0. Since standard solutions should not depend on the structure of the 
ring, we define the standard solution of (2.3) as 

.E1 = E2 = 0.
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As is evident from the above discussion, the existence of a nonstandard solution 
implies that A and Q have special properties. 

Example 2.3 Now consider .E1, E2, E3 : A2 → Q satisfying 

.E1(x2, x3)x1 + E2(x1, x3)x2 + E3(x1, x2)x3 = 0 (2.4) 

for all .x1, x2, x3 ∈ A. Observe that this FI is an extended version of (2.3) involving 
an additional variable. We thus define the standard solution of (2.4) as 

. E1 = E2 = E3 = 0.

It is interesting to add that, unlike in Example (2.2), the class of rings admitting 
nonstandard solutions includes .A = Q = M2(F ), the ring of .2 × 2 matrices over 
a field F . Indeed, the Cayley-Hamilton Theorem tells us that, for each .x ∈ A, 
.x2 − tr(x)x lies in the center C of A (=the set of scalar matrices). The linear map 

. H(x) = x − tr(x)1

thus satisfies .H(x)x ∈ C for all .x ∈ A, and hence, by linearizing, 

.H(x1)x2 + H(x2)x1 ∈ C (2.5) 

for all .x1, x2 ∈ A. That is, 

.[H(x1)x2 + H(x2)x1, x3] = 0 (2.6) 

for all .x1, x2, x3 ∈ A, where, as usual, 

. [x, y] = xy − yx.

Observe that (2.6) gives (2.4) with 

. E1(x2, x3) = −x3H(x2),

E2(x1, x3) = −x3H(x1),

E3(x1, x2) = H(x1)x2 + H(x2)x1.

These functions . Ei are nonzero, so they present a nonstandard solution of (2.4). 
Note that this solution could not be discovered by assuming that .1 ∈ A and then 
making some simple substitutions as in Examples 2.1 and 2.2. The question of the 
existence of nonstandard solutions is usually more subtle than these two examples 
suggest. 

Example 2.4 A slightly more complicated FI is
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.E1(x2, x3)x1 + E2(x1, x3)x2 + x1F1(x2, x3) + x3F3(x1, x2) = 0 (2.7) 

for all .x1, x2, x3 ∈ A. 
Assume for a moment that the terms involving . E1 and . F3 are absent. Then we 

are in the same situation as in Example 2.1 (with . x3 playing only a formal role), 
so we know how to define the standard solution. The cases where either the terms 
involving . E2 and . F1 or the terms involving . E1 and . F1 are absent are similar. Now 
assume that the terms involving .E2 and . F3 are absent. If .1 ∈ A, then it follows 
immediately that .E1(x2, x3) is equal to .−F1(x2, x3) and lies in C. 

These four special cases help us to discover that a natural solution of (2.7), which 
we define to be standard, is given by 

. E1(x2, x3) = x3p(x2) + λ(x2, x3),

E2(x1, x3) = x1p
′(x3) + x3p

′′(x1),

F1(x2, x3) = −p′(x3)x2 − λ(x2, x3),

F3(x1, x2) = −p(x2)x1 − p′′(x1)x2,

where .p, p′, p′′ are arbitrary functions from A to Q and . λ is an arbitrary function 
from . A2 to the center C. 

These examples should help the reader to grasp the definitions that we are about 
to give. Let us first introduce the necessary notation. Let . m be a positive integer. For 
any .x1, . . . , xm ∈ A we write 

. xm = (x1, . . . , xm) ∈ Am,

xi
m = (x1, . . . , xi−1, xi+1, . . . , xm) ∈ Am−1,

x
ij
m = x

ji
m = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1 . . . , xm) ∈ Am−2.

Let .I, J be subsets of .{1, 2, . . . , m} and let let 

. Ei : Am−1 → Q and Fj : Am−1 → Q,

where .i ∈ I and .j ∈ J , be arbitrary functions. (If .m = 1, then . Ei and . Fj are 
elements in Q.) The following are the fundamental FI’s upon which the general 
theory is based: 

.

∑

i∈I

Ei(x
i
m)xi +

∑

j∈J

xjFj (x
j
m) = 0 (2.8) 

for all .xm ∈ Am, and
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.

∑

i∈I

Ei(x
i
m)xi +

∑

j∈J

xjFj (x
j
m) ∈ C (2.9) 

for all .xm ∈ Am. Observe that the FI’s (2.1), (2.3), (2.4), and (2.7) are special cases 
of (2.8), and (2.5) is a special case of (2.9). 

Of course, (2.8) trivially implies (2.9), so these two FI’s should be treated 
separately; that is, we are not assuming that the same functions .Ei and . Fj

simultaneously satisfy both (2.8) and (2.9). 
We define the standard solution of the FI’s (2.8) and (2.9) as  

. Ei(x
i
m) =

∑

j∈J,
j �=i

xjpij (x
ij
m) + λi(x

i
m), i ∈ I,

Fj (x
j
m) = −

∑

i∈I,
i �=j

pij (x
ij
m)xi − λj (x

j
m), j ∈ J, (2.10)

λk = 0 if k �∈ I ∩ J,

where 

. pij : Am−2 → Q, i ∈ I, j ∈ J, i �= j,

λk : Am−1 → C, k ∈ I ∪ J,

are arbitrary functions (if .m = 1 this should be understood as that .pij = 0 and 
. λk is an element in C). A straightforward verification shows that (2.10) is indeed a 
solution of (2.8), and therefore also of (2.9). 

The case when one of the sets I and J is empty is of special interest. Following 
the convention that the sum over . ∅ is 0, (2.8) with .J = ∅ reads as 

. 
∑

i∈I

Ei(x
i
m)xi = 0

for all .xm ∈ Am, and the standard solution (2.10) is simply .Ei = 0 for each . i ∈ I

(see Examples 2.2 and 2.3). Similarly, .Ei = 0 is the standard solution of the slightly 
more general FI 

. 
∑

i∈I

Ei(x
i
m)xi ∈ C

for all .xm ∈ Am (see (2.5) in Example 2.3). 
The following is the central notion of the FI theory. 

Definition 2.5 Let d be a positive integer. We say that A is a d-free subset of Q if 
the following hold for all .m ≥ 1 and all .I, J ⊆ {1, 2, . . . , m}:
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(a) If .max{|I |, |J |} ≤ d, then (2.8) implies (2.10). 
(b) If .max{|I |, |J |} ≤ d − 1, then (2.9) implies (2.10). 

Thus, roughly speaking, A is a d-free subset of Q (or simply “A is d-free” as 
we say slightly inaccurately) if the FI’s (2.8) and (2.9) have only standard solutions 
whenever the sets I and J are sufficiently small. It is noteworthy that the definition 
implies that these standard solutions are unique. 

Note that the above definition makes sense if A is any nonempty subset (and not 
necessarily a subring) of Q. We have restricted ourselves to the case where A is a 
ring since this is the most basic case and the only one that will be needed in Sect. 3. 
There are other variations of the notion of d-freeness, but we wil not discuss them 
here. 

It is not immediately clear that d-free subrings actually exist. It turns out that 
not only that they do exist, but that many (if not most) noncommutative rings are 
d-free subsets of certain slightly larger rings, provided that they are “far enough” 
from commutativity. In order to state one of the fundamental results of the theory, 
we recall some facts about prime rings. 

First of all, recall that a ring A is said to be prime if the product of two nonzero 
ideals of A is always nonzero. Equivalently, for all .a, b ∈A, .aAb = {0} implies 
.a = 0 or .b = 0. A commutative ring is prime if and only if it is an integral domain, 
and prime rings play a similar role in noncommutative algebra as integral domains 
do in commutative algebra. Simple rings as well as primitive rings are all prime. 

For any prime ring A, one can define the maximal left ring of quotients .Qml(A) of 
A. We refer the reader to [4, Section 2.1] or [8, Appendix A] for details. The center 
C of .Qml(A) is a field, called the extended centroid of A. We write .deg(x) = n if 
.x ∈ A is algebraic of degree n over C, and .deg(x) = ∞ if x is not algebraic over 
C. Set 

. deg(A) = sup{deg(x) | x ∈ A}.

It is well known that .deg(A) ≤ n < ∞ if and only if A satisfies the standard 
polynomial identity of degree 2n, or equivalently, A can be embedded into the ring 
of .n × n matrices over a field. 

We can now state [8, Corollary 5.12]. 

Theorem 2.6 A prime ring A is a d-free subset of .Qml(A) if and only if . deg(A) ≥
d. 

If A is not a PI-ring (i.e., a ring satisfying a nontrivial polynomial identity), then 
A is d-free for every d. This is of course the most desirable situation from the point 
of view of the FI theory. It is interesting that the theory becomes more difficult in 
PI-rings, which are generally considered simpler and easier to handle than prime 
rings not satisfying polynomial identities. 

The following example is illustrative. 

Example 2.7 A prototype of a noncommutative ring is .Mn(F), the ring of . n × n

matrices over a field F . It is simple and hence prime, so we may ask what does
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Theorem 2.6 say for this ring. It is easy to see .Qml

(
Mn(F)

) = Mn(F), the extended 
centroid C of .Mn(F) is just F , and .deg(A) = n. Theorem 2.6 thus states that . Mn(F)

is d-free (as a subset of itself) if and only if .d ≤ n. For example, .M2(F ) is 2-free, 
but not 3-free. The latter has been actually observed in Example 2.3. That is, we 
saw that the Cayley-Hamilton Theorem yields the FI (2.5) which has a nonstandard 
solution. Similarly we see that the Cayley-Hamilton Theorem for .n × n matrices 
implies that .Mn(F) is not .(n + 1)-free (and neither d-free for any .d > n). The 
nontrivial part of the theorem is that .Mn(F) is n-free (and in fact d-free for any 
.d ≤ n). 

We proceed to a certain more general type of FI’s. Until the rest of the section, 
we fix a set S and a surjective function 

. T : S → A.

Similarly as above, let . m ≥ 1, let .I, J be subsets of .{1, 2, . . . , m}, and let 

. Ei : Sm−1 → Q and Fj : Sm−1 → Q,

where .i ∈ I and .j ∈ J , be arbitrary functions. We now consider the FI’s 

.

∑

i∈I

Ei(x
i
m)T (xi) +

∑

j∈J

T (xj )Fj (x
j
m) = 0 (2.11) 

for all .xm ∈ Sm, and 

.

∑

i∈I

Ei(x
i
m)T (xi) +

∑

j∈J

T (xj )Fj (x
j
m) ∈ C (2.12) 

for all .xm ∈ Sm. If .S = A and .T = idA, these are the FI’s  (2.8) and (2.9). The  
standard solutions of (2.11) and (2.12) are thus defined similarly as (2.10), that is, 

. Ei(x
i
m) =

∑

j∈J,
j �=i

T (xj )pij (x
ij
m) + λi(x

i
m), i ∈ I,

Fj (x
j
m) = −

∑

i∈I,
i �=j

pij (x
ij
m)T (xi) − λj (x

j
m), j ∈ J, (2.13)

λk = 0 if k �∈ I ∩ J,

where 

. pij : Sm−2 → Q, i ∈ I, j ∈ J, i �= j,

λk : Sm−1 → C, k ∈ I ∪ J,

are arbitrary functions.
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We will now state a special case of [8, Theorem 4.3], which shows that treating 
(2.11) and (2.12) is no harder than treating (2.8) and (2.9). That is, if .A = T (S) is 
d-free, than, under the natural assumptions on . |I | and . |J |, (2.11) and (2.12) have 
only standard solutions. 

Theorem 2.8 If A is a d-free subset of Q, then the following hold for all . m ≥ 1
and all .I, J ⊆ {1, 2, . . . , m}: 
(a) If .max{|I |, |J |} ≤ d, then (2.11) implies (2.13). 
(b) If .max{|I |, |J |} ≤ d − 1, then (2.12) implies (2.13). 

The last notion we have to introduce is that of a quasi-polynomial relative to our 
fixed function .T : S → A. A quasi-polynomial of degree 1 is a function . P : S → Q

of the form 

. P(x) = αT (x) + μ(x),

where .α ∈ C, .μ : S → C, and at least one of . α and . μ is nonzero. A quasi-
polynomial of degree 2 is a function .P : S2 → Q of the form 

. P(x1, x2) =α1T (x1)T (x2) + α2T (x2)T (x1)

+ μ1(x1)T (x2) + μ2(x2)T (x1) + ν(x1, x2),

where .αi ∈ C, .μi : S → C, .ν : S2 → C, and at least one of . αi , . μi , . ν is nonzero. In 
general, a quasi-polynomial of degree .d ≥ 1 is a function .P : Sd → Q that can be 
written as a sum of terms of the form 

. μ(xi1 , . . . , xik )T (xj1) . . . T (xjl
)

where .i1 < · · · < ik , .{i1, . . . , ik} ∪ {j1, . . . , jl} is a partition of .{1, . . . , d}, and at 
least one of the functions .μ : Sk → C is nonzero. The term .μ(x1, . . . , xd), i.e., 
the term corresponding to .{j1, . . . , jl} = ∅, is called the central coefficient of this 
quasi-polynomial. 

The following lemma is a slightly simplified version of [8, Lemma 4.4]. It follows 
easily from Theorem 2.8 and is one of the most frequently used results in the FI 
theory. 

Lemma 2.9 Let .P : Sd−1 → Q be a quasi-polynomial of degree .d − 1. Suppose 
one of the following two conditions holds: 

(a) A is a d-free subset of Q, or  
(b) A is a .(d − 1)-free subset of Q and the central coefficient of P is 0. 

Then .P(x1, . . . , xd−1) �= 0 for some .x1, . . . , xd−1 ∈ S. 

The desired conclusion when considering some FI’s is that the involved functions 
are quasi-polynomials. The following is a very special but also very useful case of 
[8, Theorem 4.13].
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Theorem 2.10 Let .Ei : Sd−1 → Q, .i = 1, . . . , d , be arbitrary functions. Suppose 
there exist .γi ∈ C, .i = 1, . . . , d, such that 

. 

d∑

i=1

Ei(x
i
d)T (xi) + γiT (xi)Ei(x

i
d) = 0

for all .xd ∈ Sd . If  A is a d-free subset of Q, then all . Ei are either 0 or quasi-
polynomials of degree .d − 1. 

To illustrate how Theorem 2.10 can be applied, we consider in the next example 
an extremely important FI (2.14) that naturally occurs in a number of applications 
of the FI theory and has in fact motivated its early development (most often one 
encounters the simplest case where .S = A and .T = idA). 

Example 2.11 Assume that S is now an additive group. Let .F : S2 → Q be a 
biadditive map satisfying 

.[F(x, x), T (x)] = 0 (2.14) 

for all .x ∈ S. Using the standard linearization process, based on replacing one 
variable by the sum of two variables, we derive from (2.14) that the symmetric 
biadditive map .E : S2 → Q given by 

. E(x1, x2) = F(x1, x2) + F(x2, x1)

satisfies 

.

E(x2, x3)T (x1) + E(x1, x3)T (x2) + E(x1, x2)T (x3)

−T (x1)E(x2, x3) − T (x2)E(x1, x3) − T (x3)E(x1, x2) = 0
(2.15) 

for all .x1, x2, x3 ∈ S. Assuming that A is a 3-free subset of Q it follows from 
Theorem 2.10 that there exist .α1, α2 ∈ C, .μ1, μ2 : S → C, and .ν : S2 → C such 
that 

.

E(x1, x2) =α1T (x1)T (x2) + α2T (x2)T (x1)

+ μ1(x1)T (x2) + μ2(x2)T (x1) + ν(x1, x2),
(2.16) 

for all .x1, x2 ∈ S, and hence 

.2F(x, x) = αT (x)2 + μ(x)T (x) + ν(x, x) (2.17) 

for all .x ∈ S, where .α = α1 +α2 and .μ(x) = μ1(x)+μ2(x). Assuming that . 12 ∈ C

(i.e., .1 + 1 is invertible in C), (2.17) gives the most complete conclusion that can be 
drawn from (2.14).
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Let us add that using Lemma 2.9 one can easily derive from (2.16) that . μ1 and 
. μ2 (and hence also . μ) are additive and . ν is biadditive if T is additive. 

With this example we conclude our brief and somewhat fragmentary survey of 
the FI theory. We have focused only on those results that will be needed in the next 
section, but nevertheless we hope this was enough to give the reader a taste of the 
theory. 

3 Maps Preserving Two-Sided Zero Products 

We now change the setting: in this section we consider Banach algebras (we 
recommend [11] as a general reference book). Throughout, we assume that A is a 
complex Banach algebra satisfying the following conditions which will be explained 
below: 

(a) A is zero product determined (zpd), 
(b) A is weakly amenable, 
(c) A has a bounded approximate identity. 

We now give the definitions. 
(a) We say that a Banach algebra A is zero product determined (zpd for short) 

if every continuous bilinear functional .ϕ : A × A → C satisfying . ϕ(x, y) = 0
whenever .xy = 0 is of the form .ϕ(x, y) = τ(xy) for some . τ in . A′, the dual space 
of A (i.e., the space of all continuous linear functionals on A). The theory of these 
algebras is surveyed in the recent book [7]. 

(b) If A is any Banach algebra, the dual space . A′ becomes a Banach A-bimodule 
by defining 

. (x · f )(y) = f (yx), (f · x)(y) = f (xy)

for all .x, y ∈ A, .f ∈ A′. We can therefore consider derivations from A to . A′; recall 
that these are linear maps .δ : A → A′ satisfying . δ(xy) = δ(x) · y + x · δ(y)

for all .x, y ∈ A. We call . δ an inner derivation if there exists a .τ ∈ A′ such that 
.δ(x) = τ · x − x · τ for every .x ∈ A. If every continuous derivation from A to . A′ is 
inner, then A is said to be weakly amenable. 

(c) A bounded approximate identity in A is a net .(eλ)λ∈Λ such that 

. lim
λ∈Λ

eλx = lim
λ∈Λ

xeλ = x

for every .x ∈ A and .‖eλ‖ ≤ M for some .M > 0 and all .λ ∈ Λ. 
The class of Banach algebras satisfying conditions (a), (b), (c) is fairly large. In 

particular, it contains .C∗-algebras and group algebras .L1(G) where G is any locally 
compact group.
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We also assume throughout this section that B is another Banach algebra and 
.T : A → B is a surjective continuous linear map which preserves two-sided 
zero products. Recall from the introduction that this means that . T (x)T (y) =
T (y)T (x) = 0 whenever .x, y ∈ A are such that .xy = yx = 0. We will show that, 
under some additional assumptions on B, T is a weighted Jordan homomorphism. 
Our approach is based on [7, Theorem 6.6] which states that if a continuous bilinear 
functional .ϕ : A × A → C satisfies .ϕ(x, y) = 0 whenever .xy = yx = 0, then there 
exist .τ1, τ2 ∈ A′ such that .ϕ(x, y) = τ1(xy) + τ2(yx) for all .x, y ∈ A. We remark 
that all the assumptions (a), (b), (c) are needed for proving this result (which was 
originally established in [2]). A simple consequence is the following basic lemma. 

Lemma 3.1 For each .ω ∈ B ′ there exist .τ1, τ2 ∈ A′ such that 

.ω
(
T (x)T (y)

) = τ1(xy) + τ2(yx) (3.1) 

for all .x, y ∈ A. 

Proof Observe that .ϕ(x, y) = ω
(
T (x)T (y)

)
is a continuous bilinear functional on 

A with the property that .xy = yx = 0 implies .ϕ(x, y) = 0. The lemma therefore 
follows immediately from the result just stated. ��

From now on we will not use the assumptions (a) and (b) anymore. 
Let us first handle the case where B is finite-dimensional and unital. The author 

would like to thank Armando Villena for his help in proving the following lemma. 

Lemma 3.2 If B is finite-dimensional and unital, then there exists an invertible 
element c from the center of B such that .T (x)2 = cT (x2) for every .x ∈ A (and 
hence T is a weighted Jordan homomorphism). 

Proof Let .(eλ)λ∈Λ be as above. Then .(T
(
eλ)

)
λ∈Λ

is a bounded net in the finite-
dimensional Banach space B, and so it has a convergent subnet. Hence, by passing 
to a subnet we can assume that .(eλ)λ∈Λ is a bounded approximate identity for A and 
that there exists a .c ∈ B such that 

. 
(
T (eλ)

)
λ∈Λ

→ c.

Take an .ω ∈ B ′. According to Lemma 3.1, there exist .τ1, τ2 ∈ A′ such that (3.1) 
holds. Writing . eλ for y in (3.1) we obtain 

.ω
(
T (x)T (eλ)

) = τ1(xeλ) + τ2(eλx). (3.2) 

Similarly, writing . eλ for x and x for y in (3.1), we obtain 

.ω
(
T (eλ)T (x)

) = τ1(eλx) + τ2(xeλ). (3.3) 

Taking limits in (3.2) and (3.3) we arrive at
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.ω
(
T (x)c

) = ω
(
cT (x)

) = (τ1 + τ2)(x). (3.4) 

We thus get 

. ω
(
T (x)c

) = ω
(
cT (x)

)

for every .ω ∈ B ′ and every .x ∈ A, and hence 

. T (x)c = cT (x)

for every .x ∈ A. Thus, c lies in the center of B. From  (3.1) and (3.4) we also see 
that 

. ω
(
T (x)2) = τ1(x

2) + τ2(x
2) = ω

(
cT (x2)

)

and therefore 

. T (x)2 = cT (x2)

for every . x ∈ A. Now, let .b ∈ A be such that .T (b) = 1. Writing b for x we see that 
c is invertible (and .c−1 = T (b2)). 

Observe that .T (x)2 = cT (x2) implies that .J (x) = c−1T (x) is a Jordan 
homomorphism, and hence .T (x) = cJ (x) is a weighted Jordan homomorphism 
(i.e., .T = WJ with .W(x) = cx). ��

In the proof of the next lemma we will use the machinery of FI’s presented in 
Sect. 2. The lemma considers the case where B is a primitive Banach algebra. Such 
an algebra B has the following properties: 

(1) B is prime, 
(2) the extended centroid of B is . C, 
(3) if B is infinite-dimensional, then it is not a PI-ring, 
(4) if B is finite-dimensional, then it is isomorphic to .Mn(C). 

The property (1) is standard, so is (2) (it can be, for example, deduced from [4, 
Corollary 4.1.2]), (3) follows from Kaplansky’s theorem on primitive PI-rings (see 
[6, Theorem 7.54]), and (4) is a version of the classical Wedderburn’s structure 
theorem. 

We remark that the idea to use FI’s for solving a similar problem on maps 
preserving zero Jordan products appeared in [10]. 

Lemma 3.3 If B is primitive, then there exists a nonzero .α ∈ C such that either 
.T (xy) = αT (x)T (y) for all .x, y ∈ A or .T (xy) = αT (y)T (x) for all . x, y ∈ A

(i.e., T is a scalar multiple of a homomorphism or an antihomomorphism). 

Proof If B is finite-dimensional, then the lemma follows from (4), Lemma 3.2, and 
the well known fact that surjective Jordan homomorphisms onto prime (complex)



126 M. Brešar

algebras are necessarily homomorhisms or antihomomorphisms [12]. We may there-
fore assume that B is infinite-dimensional and hence, by (1), (3), and Theorem 2.6, 
B is a d-free subset of .Q = Qml(B) for every .d ≥ 1. 

Take an .ω ∈ B ′ and let . τ1 and . τ2 be linear functionals from Lemma 3.1. 
Observing that 

. τ1
(
x(yxy)

) + τ2
(
(yxy)x

) = τ1
(
(xyx)y

) + τ2
(
y(xyx)

)
,

we see from (3.1) that 

. ω
(
T (x)T (yxy)

) = ω
(
T (xyx)T (y)

)

for all .x, y ∈ A. Since . ω is an arbitrary element of . B ′ it follows that 

.T (x)T (yxy) = T (xyx)T (y) (3.5) 

for all .x, y ∈ A. This is the first FI upon which our proof is based. To derive the 
second one, observe that 

. ω
([T (x), T (y)]) = (τ1 − τ2)([x, y])

for all .x, y ∈ A. Since .[xy, z] + [zx, y] + [yz, x] = 0 it follows that 

. ω
([T (xy), T (z)] + [T (zx), T (y)] + [T (yz), x]) = 0

for all .x, y, z ∈ A and all .ω ∈ B ′, which implies that 

.[T (xy), T (z)] + [T (zx), T (y)] + [T (yz), T (x)] = 0 (3.6) 

for all .x, y, z ∈ A. This is our second crucial FI. 
We remark that (3.5) is similar to an FI studied in [10], and (3.6) is a standard FI 

that was already encountered in Example 2.11 (see (2.15)). Some of the arguments 
that follow are therefore repetitions of the known ones. 

We start by considering (3.5). Incidentally, we could handle this FI by using a 
result on quasi-polynomials which is more general than Theorem 2.10. However, 
since this is a semi-expository article, we will use another approach which takes a 
bit more space but nicely illustrates how the d-freeness is used. 

Linearizing (3.5) we obtain 

.

T (x)T (yzw+wzy) + T (z)T (yxw + wxy)

=T (xyz + zyx)T (w) + T (xwz + zwx)T (y)
(3.7) 

for all .x, y, z,w ∈ A. Since B is a 4-free subset of Q it follows from Theorem 2.8 
that there exist functions .p1, p2, p3, p4 : A × A → Q such that



FI’s and Maps Preserving Two-Sided Zero Products 127

.T (yzw + wzy) = p1(z, y)T (w) + p2(z, w)T (y). (3.8) 

T (yxw + wxy) = p3(x, y)T (w) + p4(x, w)T (y). (3.9) 

T (xyz  + zyx) = T (x)p1(z, y) + T (z)p3(x, y). (3.10) 

T (xwz  + zwx) = T (x)p2(z, w) + T (z)p4(x, w) (3.11) 

for all .x, y, z,w ∈ A. 
Writing x for z in (3.8) and comparing the obtained identity with (3.9) we get 

. (p1(x, y) − p3(x, y))T (w) + (p2(x,w) − p4(x,w))T (y) = 0

and hence, since B is 2-free, 

. p1(x, y) = p3(x, y) and p2(x,w) = p4(x,w)

for all .x, y,w ∈ A. Similarly, by comparing (3.10) and (3.11) we obtain 

. p1(z, y) = p2(z, y) and p3(x, y) = p4(x, y)

for all .x, y, z ∈ A. Hence, 

. p := p1 = p2 = p3 = p4.

By changing the notation, we can write (3.8) as 

.T (xyz + zyx) = p(y, x)T (z) + p(y, z)T (x), (3.12) 

so comparing it with (3.10) we arrive at 

.p(y, x)T (z) + p(y, z)T (x) = T (x)p(z, y) + T (z)p(x, y) (3.13) 

for all .x, y, z ∈ A. Since B is 2-free and since (2) holds, there exist functions 
.q1, q2 : A → Q and .λ1, λ2 : A2 → C (here we identify . C with .C1) such that 

.p(y, x) = T (x)q1(y) + λ1(x, y). (3.14) 

p(y, z) = T (z)q2(y) + λ2(z, y). (3.15) 

p(z, y) = q1(y)T (z) + λ2(z, y). (3.16) 

p(x, y) = q2(y)T (x) + λ1(x, y). (3.17) 

for all .x, y, z ∈ A. Compare (3.14) and (3.15) (where we write  x for z). Since B is 
2-free it follows that 

.q := q1 = q2 and λ := λ1 = λ2.
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Further, comparing (3.14) and (3.16) (where we write  x for y and y for z) we obtain 

. T (x)q(y) − q(x)T (y) = λ(y, x) − λ(x, y)

for all .x, y ∈ A. As  B is 3-free it follows that 

. λ(y, x) = λ(x, y)

and there exists a .β ∈ Q such that 

. q(y) = βT (y) and q(x) = T (x)β

for all .x, y ∈ A. Therefore, .βT (x) = T (x)β for every . x ∈ A. It is a well known  
property of prime rings that elements in Q that commute with every element in B 
lie in the extended centroid. Thus, .β ∈ C. We thus have 

. p(y, x) = βT (x)T (y) + λ(x, y)

and hence, by (3.12), 

. T (xyz+ zyx) = β
(
T (x)T (y)T (z)+T (z)T (y)T (x)

)+λ(x, y)T (z)+λ(y, z)T (x)

for all .x, y, z ∈ A. Setting .z = x we get 

.T (xyx) = βT (x)T (y)T (x) + λ(x, y)T (x) (3.18) 

for all .x, y ∈ A. 
We now turn our attention to (3.6). Since B is 3-free, we may (as in Exam-

ple 2.11) use Theorem 2.10 to conclude that there exist .α1, α2 ∈ C and functions 
.μ1, μ2 : A → C, .ν : A2 → C such that 

. T (xy) = α1T (x)T (y) + α2T (y)T (x) + μ1(x)T (y) + μ2(y)T (x) + ν(x, y)

for all .x, y ∈ A. Moreover, applying Lemma 2.9 one easily shows that .μ1, μ2 are 
linear and . ν is bilinear. From (3.6) we now obtain 

. (μ1 − μ2)(x)[T (y), T (z)] + (μ1−μ2)(y)[T (z), T (x)]
+(μ1 − μ2)(z)[T (x), T (y)] = 0

for all .x, y, z ∈ A, and hence .μ := μ1 = μ2 by Lemma 2.9. Therefore, 

.T (xy) = α1T (x)T (y)+α2T (y)T (x)+μ(x)T (y)+μ(y)T (x)+ν(x, y) (3.19) 

for all .x, y ∈ A.
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We will now compute .T (xyz) in two different ways. Firstly, (3.19) gives 

. T ((xy)z)

=α1T (xy)T (z) + α2T (z)T (xy) + μ(xy)T (z)

+ μ(z)T (xy) + ν(xy, z)

=α2
1T (x)T (y)T (z) + α1α2T (y)T (x)T (z) + α1μ(x)T (y)T (z)

+ α1μ(y)T (x)T (z) + α1ν(x, y)T (z) + α1α2T (z)T (x)T (y) (3.20) 

+ α2 
2T (z)T (y)T (x)  + α2μ(x)T (z)T (y) + α2μ(y)T (z)T (x) 

+ α2ν(x, y)T (z) + μ(xy)T (z) + α1μ(z)T (x)T (y) 

+ α2μ(z)T (y)T (x) + μ(x)μ(z)T (y) + μ(y)μ(z)T (x) 

+ μ(z)ν(x, y) + ν(xy, z). 

Secondly, (3.19) gives 

. T (x(yz))

=α1T (x)T (yz) + α2T (yz)T (x) + μ(x)T (yz)

+ μ(yz)T (x) + ν(x, yz)

=α2
1T (x)T (y)T (z) + α1α2T (x)T (z)T (y) + α1μ(y)T (x)T (z)

+ α1μ(z)T (x)T (y) + α1ν(y, z)T (x) + α1α2T (y)T (z)T (x) (3.21) 

+ α2 
2T (z)T (y)T (x)  + α2μ(y)T (z)T (x) + α2μ(z)T (y)T (x)  

+ α2ν(y, z)T (x) + α1μ(x)T (y)T (z) + α2μ(x)T (z)T (y) 

+ μ(x)μ(y)T (z) + μ(x)μ(z)T (y) + μ(x)ν(y, z) 

+ μ(yz)T (x) + ν(x, yz). 

Comparing (3.20) and (3.21) we obtain 

. α1α2[T (y), [T (x), T (z)]]
+(

(α1 + α2)ν(x, y) + μ(xy) − μ(x)μ(y)
)
T (z) (3.22) 

−(
(α1 + α2)ν(y, z) + μ(yz) − μ(y)μ(z)

)
T (x)  ∈ C 

for all .x, y, z ∈ A. We may now again use Lemma 2.9 to conclude that 

.(α1 + α2)ν(x, y) + μ(xy) − μ(x)μ(y) = 0 (3.23) 

for all .x, y ∈ A and
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. α1α2 = 0.

Thus, either .α1 = 0 or .α2 = 0. 
Assume first that .α2 = 0. Then (3.19) reduces to 

.T (xy) = α1T (x)T (y) + μ(x)T (y) + μ(y)T (x) + ν(x, y) (3.24) 

for all .x, y ∈ A, and from (3.20) we see that 

. T (xyx) =α2
1T (x)T (y)T (x) + α1μ(x)T (y)T (x) + α1μ(y)T (x)2

+ (
α1ν(x, y) + μ(xy) + μ(y)μ(x)

)
T (x) + α1μ(x)T (x)T (y)

+ μ(x)2T (y) + μ(x)ν(x, y) + ν(xy, x).

Comparing this identity with (3.18) we obtain 

. (α2
1 − β)T (x)T (y)T (x) + α1μ(x)T (y)T (x) + α1μ(y)T (x)2

+ (
α1ν(x, y) + μ(xy) + μ(y)μ(x) − λ(x, y)

)
T (x) + α1μ(x)T (x)T (y)

+ μ(x)2T (y) + μ(x)ν(x, y) + ν(xy, x) = 0

for all .x, y ∈ A. Linearizing and invoking Lemma 2.9 it follows, in particular, 
that .μ(x)2, the coefficient at . T (y), is 0 for every .x ∈ A. This means that .μ = 0. 
Assuming that .α1 = 0 it follows from (3.24) that .T (xy) is always a scalar multiple 
of 1 which is impossible as every element in A can be written as xy since A is 
has an approximate identity (this is the content of Cohen’s Factorization Theorem). 
Therefore, .α1 �= 0 and so, since .α2 = 0, (3.23) implies that .ν = 0. Setting . α = α1
we thus have .T (xy) = αT (x)T (y) for all .x, y ∈ A. 

Similarly we see that .α1 = 0 implies .T (xy) = αT (y)T (x) for all .x, y ∈ A, 
where .α = α2 �= 0. ��

Recall that a Banach algebra B is said to be semisimple (or semiprimitive) if it 
has trivial Jacobson radical. Equivalently, the intersection of primitive ideals of B, 
i.e., ideals P such that .B/P is a primitive Banach algebra, is trivial. 

A semisimple algebra B is in particular semiprime, meaning that it has no 
nonzero nilpotent ideals. We can therefore define the extended centroid C of B, 
which, however, is a field only if B is prime. One of the important properties of C 
is that if I is an ideal of B such that .bI �= {0} for every nonzero .b ∈ B, then also 
.λI �= {0} for every nonzero .λ ∈ C (in particular, .λB = {0} with .λ ∈ C implies 
.λ = 0). In the proof that follows we will use another purely algebraic result [5, 
Theorem 3.1] which states that if f and g are functions from a set S to a semiprime  
ring B such that 

.f (s)yg(t) = g(s)yf (t) (3.25)
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for all .s, t ∈ S and .y ∈ B, then there exist idempotents .ε1, ε2, ε3 ∈ C and an 
invertible element .γ ∈ C such that .εiεj = 0, .i �= j , .ε1 + ε2 + ε3 = 1, . ε1f (s) =
γ ε1g(s), .ε2f (s) = 0, and .ε3g(s) = 0 for all .s ∈ S. 

We are now ready to establish our main theorem. 

Theorem 3.4 Let A and B be Banach algebras. Suppose that A is weakly 
amenable, zpd, and has a bounded approximate identity, and suppose that B is 
semisimple and is equal to its ideal generated by .{y2 | y ∈ B}. Then a surjective 
continuous linear map .T : A → B preserves two-sided zero products if and only if 
T is a weighted Jordan homomorphism. 

Proof From [7, Lemma 7.20] it follows that a Jordan homomorphism onto a 
semiprime algebra preserves two-sided zero products. The same is then true for 
a weighted Jordan homomorphism. This proves the “if” part. 

We start the proof of the “only if” part by taking a primitive ideal P of B. Define 
.TP : A → B/P by 

. TP (x) = T (x) + P.

Obviously, . TP is a surjective continuous linear map which preserves two-sided zero 
products. Lemma 3.3 tells us that there is an .αP ∈ C such that . TP (x2) = αP TP (x)2

for every .x ∈ A. In particular, 

. TP (x2)(y + P)TP (z)2 = TP (x)2(y + P)TP (z2)

for all .x, z ∈ A and .y ∈ B. That is, 

. T (x2)yT (z)2 + P = T (x)2yT (z2) + P.

Since B is semisimple and P is an arbitrary primitive ideal it follows that 

. T (x2)yT (z)2 = T (x)2yT (z2)

for all .x, z ∈ A, .y ∈ B. 
The functions .x �→ T (x2) and .x �→ T (x)2 thus satisfy the condition (3.25) of the 

aforementioned result. Therefore, there exist orthogonal idempotents . ε1, ε2, ε3 ∈ C

whose sum is 1 and an invertible element .γ ∈ C such that for all .x ∈ A, 

. ε1T (x)2 = γ ε1T (x2), ε2T (x)2 = 0, ε3T (x2) = 0.

The second identity can be read as .ε2y
2 = 0 for all .y ∈ B. Together with our 

assumption on B this gives .ε2B = {0}, and therefore, .ε2 = 0. 
We claim that the existence of an approximate identity implies that A is equal to 

.span{x2 | x ∈ A} (the linear span of all . x2, .x ∈ A). Indeed, by [1, Theorem II.16], 
every .w ∈ A can be written as .w = yzy for some .y, z ∈ B. Writing .u◦v for . uv+vu

we thus have
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. w = 1
2y ◦ (y ◦ z) − 1

2y2 ◦ z.

This proves that A is equal to .span{x ◦ y | x, y ∈ A}, which in turn is obviously 
equal to .span{x2 | x ∈ A}. Our claim is thus proved. As T is surjective, it follows 
that .ε3 = 0. 

Accordingly, .ε1 = 1 and 

.T (x)2 = γ T (x2) (3.26) 

for every .x ∈ A. This in particular shows that .γB ⊆ B, so . γ actually lies in the 
centroid of B, i.e., .W(x) = γ x is a centralizer. Similarly, . γ −1T (x)2 = T (x2)

shows that .γ −1B ⊆ B and so .γ −1 also lies in the centroid; thus, . γ is an invertible 
centralizer. 

Observe that (3.26) implies that .J (x) = γ −1T (x) is a Jordan homomorphism. 
Accordingly, 

. T (x) = γ J (x) = (WJ)(x)

is a weighted Jordan homomorphism. ��

Concluding Remarks 
1. If either A has no zero-divisors or if B has trivial multiplication (.xy = 0 for all 

.x, y ∈ B), then every linear map .T : A → B preserves two-sided zero products. 
By taking direct products one obtains slightly more sophisticated examples. 
Some restrictions on A and B are therefore necessary. 

2. The conclusion of Theorem 3.4 is that .T = WJ where W is an invertible 
centralizer and J is a Jordan homomorphism. Using the Closed Graph Theorem 
it is easy to see that W and .W−1 are automatically continuous. Since T is 
continuous, so is J . 

3. As mentioned in the introduction, a version of Theorem 3.4 was proved in [9]. 
More precisely, the main result in that paper differs from Theorem 3.4 only in 
the assumptions concerning B: instead of being semisimple and equal to its ideal 
generated by .{x2 | x ∈ B}, B is assumed to have a bounded approximate identity. 
However, from the proof, which is different and much more analytic, it is evident 
that Theorem 3.4 could be also established in [9]. Anyway, Theorem 3.4 covers 
the most important cases where A and B are either 

• .C∗-algebras or 
• group algebras .L1(G) for any locally compact group G. 

In [3], the result on .L1(G) was proved only for some special groups G. It is  
interesting that the complete result covering all locally compact groups can be 
obtained by an essentially algebraic method. What seems particularly striking in 
our proof is that it involves the maximal left ring of quotients .Qml(B) and the 
extended centroid C of the Banach algebra B, which are apparently unnatural 
objects in the functional analytic context. However, they have proved useful. 
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1 Introduction 

Throughout, all rings will be commutative with .1 �= 0 and all monoids and groups 
will be commutative. 

In a landmark paper for the modern theory of factorization in integral domains, 
Anderson et al. [2] studied several properties weaker than factoriality, considering 
(among other things) whether each property is preserved by polynomial/power 
series extensions. For example, if an integral domain D satisfies the ascending 
chain condition on principal ideals (ACCP) or is a bounded factorization ring 
(BFR) (i.e., every nonzero nonunit has a finite upper bound on the lengths of its 
factorizations into nonunits), then the same holds for .D[X] and .D[[X]] [2, p. 5  
and Proposition 2.5]. (We refer the interested reader to the work of authors such 
as Chapman, Geroldinger, F. Gotti, M. Gotti, and Halter-Koch, e.g., [21, 28, 31], 
for generalizations of concepts from [2] to the broader context of cancellative 
monoids.) Monoid rings and generalized power series rings are respectively natural 
generalizations of polynomial rings and power series rings. Anderson and Juett [5], 
Gilmer and Parker [30], and Kim [35] obtained many results about the ACCP and the 
bounded factorization property (BF-property) in these expanded contexts. We refer 
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the reader to a recent survey paper by Anderson and Gotti [10] for a reference on the 
current state of the art in the theory of bounded factorization in integral domains. 

The study of factorization is considerably more complex in rings in general 
than in integral domains. For example, in the presence of proper zero divisors, 
the ACCP and BF-property do not generally ascend from R to .R[X] or . R[[X]]
[4, Section 3; 25, Example; 34, Example] and the question of exactly when these 
properties do ascend remains open. Results about the ACCP and BF-property in 
polynomial/power series rings (which may have proper zero divisors) can be found 
in the work of Anderson et al. [4,8, p. 447], Frohn [25–27], and Heinzer and 
Lantz [33, 34]. Edmonds and Juett [23] have recently explored the ACCP and BF-
property within the realm of monoid rings (with zero divisors). In the present paper, 
we will examine these properties within the context of Ribenboim’s generalized 
power series rings (with zero divisors), of which all the aforementioned kinds of 
extensions are special cases. We will generalize much of the known theory of the 
above factorization-theoretic topics, but at the same time many of our results are 
new even when specialized to (Laurent) power series rings or the “large (Laurent) 
polynomial rings” of Halter-Koch [32]. We have taken care to always make an 
explicit note whenever a special case of one of our results has already appeared 
in the literature. 

For the reader’s convenience and ease of reference, in Sect. 2 we carefully review 
several definitions, conventions, and basic facts that are necessary for understanding 
our results in the later sections. We pay particular attention to the relationships 
among generalized power series rings and related algebraic constructions such as 
(Laurent) power series rings and large (Laurent) polynomial rings. A lot of subtle but 
necessary behind-the-scenes work is done in establishing these connections, which 
we will be implicitly using in proofs regarding special cases of our generalized 
power series results. A detailed development of the facts we cite as general 
background can be found in the work of Ribenboim et al. (e.g., [24, 36–41]) and 
Aylesworth and Juett [12, Section 2]. The latter paper is similar to our present one 
in that it studies factorization in generalized power series rings, but there is little 
overlap between the two besides general background, because the two papers study 
different factorization properties. 

It is easy to see that a BFR is présimplifiable [8, p. 456]. Additionally, while 
présimplifiability is certainly not a necessary precondition for the ACCP, the 
former property does sometimes simplify the study of the latter property. Thus 
we will begin our foray into factorization theory with présimplifiability. In Sect. 3 
we will investigate this property, together with the related properties of weakly 
présimplifiable and domainlike, in the context of generalized power series rings. 
We provide our general results about these properties in Theorem 3 and deduce 
several special cases of interest in Corollary 4. We give an example showing that, 
at least for the présimplifiable and domainlike properties, none of the hypotheses in 
our results are superfluous. 

Section 4 will build upon the groundwork laid in Sect. 3 to examine generalized 
power series rings that are BFRs or satisfy the ACCP. We extend two theorems of 
Juett et al.  [5, 23] about monoid domains and generalized power series domains to
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analogous results about generalized power series rings with (in some sense) “not too 
many zero divisors.” Many of our results in this section are new even in the (Laurent) 
power series and large (Laurent) polynomial ring special cases. Additionally, we 
will provide sharper versions of two past results about factorization in generalized 
power series domains. We will close the paper with a few examples illustrating our 
results and exploring the necessity of our hypotheses. 

2 Background 

This section develops the background necessary for understanding our results in 
Sects. 3 and 4. We remind the reader that all rings are commutative with .1 �= 0 and 
all monoids and groups are commutative. 

Let R be a ring. We respectively use .Nil(R), .J (R), .Z(R), and .U(R) to denote 
the nilradical, Jacobson radical, set of zero divisors, and group of units of R. The  
regular elements of R are those in .Reg(R) := R \ Z(R). A ring  is  quasilocal if it 
has only one maximal ideal, semi-quasilocal if it has only finitely many maximal 
ideals, and (semi-)local if it is Noetherian and (semi-)quasilocal. For ideals I and J 
of R, we define .(I :R J ) := {x ∈ R | xJ ⊆ I }. 

Let .(S,+) be a monoid. We use .U(S) to denote the group of units of S. We say  
S is reduced if .U(S) is trivial, torsion-free if .ns = nt with .s, t ∈ S and n a positive 
integer implies .s = t , and cancellative if .s + t = s + u with .s, t, u ∈ S implies 
.t = u. 

We call a monoid .(S,+) ordered if it is equipped with an order . ≤ that is 
compatible in the sense that .s ≤ t with .s, t ∈ S implies .s + u ≤ t + u for all .u ∈ S. 
(Following Ribenboim’s convention [39, p. 72], we do not assume all orders are 
total.) If S is ordered, we abbreviate .S+ := {s ∈ S | s > 0}, .S+

0 := {s ∈ S | s ≥ 0}, 
.S− := {s ∈ S | s < 0}, and .S−

0 := {s ∈ S | s ≤ 0}. When we write “. Z+,” etc., we 
are always referring to that notation as defined with respect to the standard order. 
We say a compatible order . ≤ on S is cancellative if .s + t ≤ s + u with . s, t, u ∈ S

implies .t ≤ u (cf. [40, p. 568]), negative if .S = S−
0 , potentially negative if it can be 

refined to a compatible negative order on S [12, Section 2], positive if .S = S+
0 (cf. 

[39, p. 76]),  subpositive if .Z+s ∩ S+ �= ∅ for all .0 �= s ∈ S [12, Subsection 2.2], 
potentially positive if it can be refined to a positive order on S, total if all elements 
of S are comparable, and subtotal if for all .s, t ∈ S we have .ks ≤ kt or . ks ≥ kt

for some .k ∈ Z
+ [39, p. 76]. We use phrases of the form “. P ordered” to indicate 

that a monoid is equipped with a compatible order with property . P . In the context 
of ordered cancellative monoids, (i) total . ⇒ cancellative + subtotal, (ii) positive 
. ⇒ subpositive . ⇒ potentially positive, and (iii) negative . ⇒ potentially negative, but 
none of the implications reverse [12, Section 2.2]. Note that a (potentially) positively 
or (potentially) negatively ordered cancellative monoid is reduced [12, Section 2.2]. 

We now begin our review of definitions directly related to generalized power 
series. We refer the reader to the extensive work done by Ribenboim et al. (e.g.,
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[24, 36–41]) and Aylesworth and Juett [12, Section 2] for further information. 
Let R be a ring and  .(S,+,≤) be a cancellative ordered monoid. The generalized 
power series ring .R[[S≤]] consists of all formal sums .f = ∑

s∈S asX
s (.as ∈ R) 

such that the support of f , namely .supp(f ) := {s ∈ S | as �= 0}, is  Artinian 
(i.e., contains no infinite strictly decreasing sequence) and narrow (i.e., contains no 
infinite antichain), with operations defined exactly analogously to the usual addition 
and multiplication of power series [36, p. 273]. (The fact that S is cancellative, 
coupled with the Artinian and narrow conditions, ensures that the operations are 
well defined. That is, for .f, g ∈ R[[S≤]], the computation of the coefficients 
of fg  does not involve any infinite sums [39, 1.16] and the supports of . f + g

and fg  are indeed Artinian and narrow [24, pp. 366-367].) For example, if . ≤
is the standard order on . Z, then .R[[(Z+

0 )≤]] = R[[X]] (the usual power series 
ring over R), .R[[Z≥]] ∼= R[[Z≤]] = R[[X]][X−1] (the Laurent power series 
ring over R), .R[[(Z+

0 )≥]] = R[[(Z+
0 )=]] = R[X] (the polynomial ring over R), 

.R[[Z=]] = R[X,X−1] (the Laurent polynomial ring over R), and . R[[S=]] = R[S]
(the monoid ring with coefficients in R and exponents in S). We will discuss the 
much more intricate matter of defining (Laurent) power series rings over an arbitrary 
set of variables below. The degree and trailing degree of .f ∈ R[[S≤]] \ (0) are 
respectively the maximum and minimum element of .supp(f ), provided that they 
exist. We analogously define notions like leading coefficient, trailing coefficient, 
trailing term, and constant term in the obvious way. If S is reduced, then . R[[S≤]] →
R : f �→ f (0) is a ring epimorphism, where .f (0) denotes the constant term of f . 
For .f ∈ R[[S≤]], the  content of f , denoted .c(f ), is the ideal of R generated by the 
coefficients of f . For ideals I of R and J of S, we define . I [[J≤]] := {f ∈ R[[S≤]] |
c(f ) ⊆ I and supp(f ) ⊆ J }, which is an ideal of .R[[S≤]]. When there is no danger 
of confusion, we will drop the superscript “. ≤” from the preceding notation. 

The remainder of this section will discuss the relationships among generalized 
power series rings and the various kinds of (Laurent) power series rings and large 
(Laurent) polynomial rings. The literature contains several distinct ways to define a 
power series ring over a ring R and a possibly infinite family .{Xλ}λ∈� of analytically 
independent indeterminates. The first and perhaps most natural definition is due 
to Cashwell and Everett, whose power series ring .R[[{Xλ}λ∈�]]3 consists of all 
formal sums .

∑
s as

∏
λ∈� X

s(λ)
λ (.as ∈ R), where s ranges over .

⊕
λ∈� Z

+
0 , with 

the operations defined in the obvious way [20, pp. 46-47]. The total degree of 
a monomial is the sum of the exponents of the indeterminates appearing in the 
monomial; the total degree of a series is the supremum of the total degrees of its 
terms. For a power series f and an .n ∈ Z

+
0 , the  homogeneous part of f of total 

degree n is the sum of all the terms of f that have total degree n. Gilmer studied 
the ring .R[[{Xλ}λ∈�]]2, which consists of the series whose homogeneous parts 
contain only finitely many indeterminates [29, p. 6]. For each infinite cardinal . α, 
Aylesworth and Juett defined .R[[{Xλ}λ∈�]]<α to be the subring of . R[[{Xλ}λ∈�]]3
consisting of the series whose defining set of indeterminates has cardinality strictly 
less than . α [12, Subsection 2.3]. Special cases of this definition include Gilmer’s 
ring .R[[{Xλ}λ∈�]]1 := R[[{Xλ}λ∈�]]<ℵ0 [29, p. 6], Benhissi and Eljeri’s ring
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.R[[{Xλ}λ∈�]]≤ℵ0 := R[[{Xλ}λ∈�]]<ℵ1 [14, Proposition 3.1], and Chang’s ring 

.R[[{Xλ}λ∈�]]≤α := R[[{Xλ}λ∈�]]<s(a), where .s(a) is the cardinal successor of 

. α. The choice of i in .R[[{Xλ}λ∈�]]i makes no difference when . � is finite, so in that 
case we often drop the subscript i. Furthermore, we will drop the braces when it is 
more convenient to list the indeterminates than represent them as an indexed set. 

Unfortunately, many further complications are introduced when defining Laurent 
power series rings. In this paper, we will confine our attention to Laurent power 
series rings of the forms .R〈〈{Xλ}λ∈�〉〉 and .R[[{Xλ}λ∈�]]i[{X−1

λ }λ∈�] for . i ∈
{1, 2, 3,<α}, where R is a ring, .{Xλ}λ∈� is a family of analytically independent 
indeterminates, and . α is an infinite cardinal number. Here Anderson and Juett 
defined .R〈〈{Xλ}λ∈�〉〉 (for . � well ordered) to be the ring consisting of all formal 
sums .

∑
s as

∏
λ∈� X

s(λ)
λ (.as ∈ R), where s ranges over a subset of .

⊕
λ∈� Z that is 

well ordered with respect to the colexicographic order [5, p. 338]—see Proposition 1 
below for the definition of this order. For . � finite, this definition coincides 
with Xin’s “iterated power series rings” [42, p. 3], i.e., . R〈〈X1, . . . , Xn〉〉 =
R[[X1]][X−1

1 ] · · · [[Xn]][X−1
n ] [38, 4.5(i)]. We note that well orders of . � with the 

same order type lead to isomorphic definitions of .R〈〈{Xλ}λ∈�〉〉, but different order 
types generally lead to non-isomorphic definitions. Other kinds of Laurent power 
series rings occur in the literature (e.g., the ring .R((({Xλ}λ∈�))) introduced by 
Cheng et al. [22, p. 1770]), but we will not be considering them. If . α is uncountable, 
then .R[[{Xλ}λ∈�]]1 ⊆ R[[{Xλ}λ∈�]]2 ⊆ R[[{Xλ}λ∈�]]<α ⊆ R[[{Xλ}λ∈�]]3, 
where the first two inclusions are proper if and only if .|�| ≥ ℵ0 and the last 
inclusion is proper if and only if .|�| ≥ α [12, Subsection 2.3]. The corresponding 
statement about inclusions among Laurent power series rings holds [12, Subsection 
2.3]. Additionally, we have .R[[{Xλ}λ∈�]]3[{X−1

λ }λ∈�] ⊆ R〈〈{Xλ}λ∈�〉〉 and this 
inclusion is proper if and only if .|�| ≥ 2 [12, Subsection 2.3]. 

Let R be a ring, .{Xλ}λ∈� be a family of analytically independent indeterminates, 
and . α be an infinite cardinal number. Halter-Koch defined two kinds of “large 
polynomial rings” [32, p. 124], namely the subring .R[{Xλ}λ∈�]L of . R[[{Xλ}λ∈�]]3
consisting of the power series with only finitely many homogeneous parts and 
.R[{Xλ}λ∈�]L<α := R[{Xλ}λ∈�]L ∩ R[[{Xλ}λ∈�]]<α—here we use Aylesworth 
and Juett’s notation [12, Subsection 2.3]. These “large polynomials” in many ways 
resemble polynomials more than power series, e.g., [12, Proposition 2.4.5(3); 32, 
Proposition 2]. Note that the class of (Laurent) polynomial rings is a subclass of the 
large (Laurent) polynomial rings, i.e., .R[{Xλ}λ∈�] = R[{Xλ}λ∈�]L<ℵ0 [32, p. 124] 

and .R[{Xλ,X
−1
λ }λ∈�] = R[{Xλ}λ∈�]L<ℵ0 [{X−1

λ }λ∈�]. 
The following proposition from Aylesworth and Juett’s paper [12] shows how 

various kinds of (Laurent) power series rings and large (Laurent) polynomial rings 
can be realized as generalized power series rings in some “nice” way. We will be 
implicitly using these facts throughout the rest of the paper to translate statements 
about (Laurent) power series or large (Laurent) polynomials into generalized power 
series terminology. We note that this proposition from Aylesworth and Juett’s paper 
[12] corrects a couple of erroneous past statements from other authors about which 
order corresponds to which power series ring—see [12, Subsection 2.3] for details.
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Proposition 1 ([12, Proposition 2.3.1]) Let R be a ring, .{Xλ}λ∈� be a nonempty 
family of analytically independent indeterminates, .F := ⊕

λ∈� Z
+
0 , and . G :=⊕

λ∈� Z. Well order . �. For  .s ∈ G, abbreviate .σ(s) := ∑
λ∈� s(λ). For distinct 

.s, t ∈ G, define 

• .φ(s, t) to be the first coordinate where s and t differ, 
• .ψ(s, t) to be the last coordinate where s and t differ, 
• .s <2 t (the “graded lexicographic order”) to hold if .σ(s) < σ(t) or . σ(s) = σ(t)

and .s(φ(s, t)) < t(φ(s, t)), 
• .s <3 t (the “colexicographic order”) to hold if .s(ψ(s, t)) < t(ψ(s, t)), and 
• .s <L t (the “reversely graded colexicographic order”) to hold if .σ(s) > σ(t) or 

.σ(s) = σ(t) and .s <3 t . 

1. . ≤2, . ≤3, and . ≤L are compatible total orders on G, . ≤2 and . ≤3 are positive on F , 
. ≤L is negative on F , and F is well ordered by . ≤3. 

2. The map .
∑

s asX
s �→ ∑

s as

∏
λ∈� X

s(λ)
λ (.as ∈ R) is a ring isomorphism from 

.R[[F≤i ]] onto .R[[{Xλ}λ∈�]]i for .i ∈ {2, 3}, from .R[[G≤3]] onto .R〈〈{Xλ}λ∈�〉〉, 
from .R[[F≥3 ]] = R[F ] onto .R[{Xλ}λ∈�], from .R[G] onto .R[{Xλ,X

−1
λ }λ∈�], 

and from .R[[F≤L ]] onto .R[{Xλ}λ∈�]L. 

3 Présimplifiability and Related Notions in Generalized 
Power Series Rings 

In this section, we study generalized power series rings that possess properties 
related to présimplifiability. 

Following Bouvier [16–19], we call a ring R présimplifiable if .x = λx with 
.x, λ ∈ R implies .x = 0 or .λ ∈ U(R). It is not hard to see that R is 
présimplifiable if and only if .Z(R) ⊆ J (R) [9, p. 203], so R is présimplifiable 
if it is domainlike (i.e., .Z(R) = Nil(R) [15, Definition 10]). More recently, 
Anderson and Chun defined R to be weakly présimplifiable if .x = λx with 
.x, λ ∈ R implies .x = 0 or .λ ∈ Reg(R) [3, Definition 5]. Examples of (weakly) 
présimplifiable rings include (polynomial rings over) quasilocal rings; examples 
of domainlike rings include domains, (polynomial rings over) zero-dimensional 
quasilocal rings, and power series rings over Artinian local rings [11, p. 153]. None 
of the following implications reverse: domain . ⇒ domainlike . ⇒ présimplifiable 
. ⇒ weakly présimplifiable. For instance, the ring .Z/4Z is domainlike but not 
a domain, .Z(2)[Z/2Z] is présimplifiable but not domainlike [1, Theorem 3.8], 
and .Q[X, Y,Z]/(X − XYZ) is weakly présimplifiable but not présimplifiable [3, 
Example 11(3)]. 

The following facts from Aylesworth and Juett’s paper [12] will be useful in 
many of our proofs.
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Lemma 2 ([12, Proposition 2.4.5]) Let R be a ring, .(S,+,≤) be a torsion-free 
cancellative ordered monoid, and .μ ∈ R[[S]]. 
1. If .Nil(R) is nilpotent and . ≤ is subtotal, then .μ ∈ U(R[[S]]) if and only if the .≤′-

trailing term of . μ is a unit, where .R := R/Nil(R) and . ≤′ is the unique refinement 
of . ≤ to a compatible total order on S [12, p. 6].  

2. If . ≤ is subpositive, then .U(R[[S]]) = U(R) + R[[S \ {0}]]. 
3. If .Nil(R) is nilpotent and . ≤ is potentially negative, then . U(R[[S]]) = U(R) +

Nil(R)[[S \ {0}]]. 
Let R be a ring and  .(S,+) be a monoid. Edmonds and Juett have completely 

characterized when .R[S] is présimplifiable or domainlike [23, Theorem 2.3]. Under 
the hypothesis that S is torsion-free cancellative, they also characterized when 
.R[S] is weakly présimplifiable [23, Theorem 2.2(3)]. The situation with generalized 
power series rings is considerably more complex, but the following theorem gives 
a partial answer that will be good enough for our purposes. To state this result 
and its corollary in the strongest possible form, we recall that a strongly primary 
decomposition of an ideal I is a primary decomposition .I = ⋂n

i=1 Qi where each 
. Qi contains a power of .

√
Qi . By the Lasker-Noether theorem, every ideal in a 

Noetherian ring has a strongly primary decomposition. 

Theorem 3 Let R be a ring and .(S,+,≤) be a nontrivial torsion-free cancellative 
ordered monoid. 

1. If . ≤ is potentially positive or . (0) has a strongly primary decomposition in R, then 
.R[[S]] is weakly présimplifiable if and only if R is weakly présimplifiable. 

2. If . ≤ is subpositive, then .R[[S]] is présimplifiable if and only if R is présimplifi-
able. 

3. If .Nil(R) is nilpotent and . ≤ is subtotal or cancellative, then .R[[S]] is présimpli-
fiable if and only if either (i) R is domainlike or (ii) R is présimplifiable and . ≤ is 
subpositive. 

4. If .Nil(R) is nilpotent and . ≤ is potentially negative, then .R[[S]] is présimplifiable 
(or equivalently domainlike) if and only if R is domainlike. 

5. If .Nil(R) is nilpotent, then .R[[S]] is domainlike if and only if R is domainlike. 

Proof Because S is torsion-free cancellative, there is a compatible total order . ≤′ on 
S that refines . ≤ [24, Proposition 2] and .R[[S≤]] ⊆ R[[S≤′]] [24, p. 368]. 

.(⇒): If  .R[[S]] is domainlike or weakly présimplifiable, then so is its subring 
R. If  .Nil(R) is nilpotent, . ≤ is potentially negative, and .R[[S]] is présimplifiable, 
then .R[[S]] is in fact domainlike since .Nil(R[[S]]) = J (R[[S]]) [12, Proposition 
2.4.5(3)]. If .R[[S]] is présimplifiable, then so is R since .U(R) = R∩U(R[[S]]). All  
that remains is the “only if” part of (3). Assume .R[[S]] is présimplifiable and . ≤ is 
subtotal or cancellative. We may assume R is présimplifiable but not domainlike, so 
.ab = 0 for some .a ∈ R\Nil(R) and .b ∈ R\(0). To show that . ≤ is subpositive, pick 
.0 �= s ∈ S. Then .0 �= b = b(1 − aXs), so  . 1 − aXs ∈ U(R[[S≤]]) ⊆ U(R[[S≤′]])
since .R[[S≤]] is présimplifiable.
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Suppose that .s <′ 0. Because .a ∈ R \Nil(R), there is a prime ideal P of R with 
.a /∈ P . Let .R := R/P . Then .aXs is the .≤′-trailing term of .1−aXs ∈ U(R[[S≤′]]), 
so .a ∈ U(R) by Lemma 2(1). Therefore . R = P + aR ⊆ P + Z(R) ⊆ P +
J (R), where the last inclusion holds since R is présimplifiable. Thus .P = R, a  
contradiction. 

Therefore .s >′ 0, so the inverse of .1 − aXs in .R[[S≤′]] (and consequently in 
.R[[S≤]]) is  .

∑∞
n=0 anXns . Because .a /∈ Nil(R), we have  . supp(

∑∞
n=0 anXns) =

{ns}∞n=0, so  . ms and ns are .≤-comparable for some .m < n in . Z+
0 . But  . ms <′ ns

since .s >′ 0, so .ms < ns = ms + (n−m)s. Thus .(n−m)s > 0 if . ≤ is cancellative. 
So let us assume . ≤ is subtotal. Then ks and 0 are .≤-comparable for some .k ∈ Z

+. 
If .ks ≤ 0, then .(n − m)ks ≤ 0, so .kns ≤ kms, contradicting the fact that .ns > ms. 
Therefore .ks > 0, as desired. 

.(⇐): If  R is domainlike and .Nil(R) is nilpotent, then .R[[S≤′]] (and therefore 
.R[[S≤]]) is domainlike [39, 3.4(ii)]. The “if” parts of (4) and (5) are now 
established. 

For the “if” parts of (2) and (3), assume R is présimplifiable and . ≤ is subpositive. 
Pick .f, λ ∈ R[[S≤]] with .0 �= f = λf . Because . ≤′ is positive, the .≤′-trailing 
coefficient of .f = λf is .a = λ(0)a, where a is the .≤′-trailing coefficient of f . So  
.λ(0) ∈ U(R) since R is présimplifiable. Therefore .λ ∈ U(R[[S≤]]) by Lemma 2(2). 

All that remains is the “if” part of (1). Assume R is weakly présimplifiable. We 
need to show that .f − 1 ∈ Reg(R[[S]]) for each .f ∈ Z(R[[S]]) [3, Theorem 6]. 
Pick .g ∈ R[[S]] with .fg = 0 �= g. 

First consider the case where . ≤ is potentially positive. Then we can choose . ≤′
to be positive [24, Proposition 2]. Because .fg = 0, we have .f (0)b = 0, where b is 
the .≤′-trailing coefficient of g. Thus .f (0) ∈ Z(R) ⊆ 1 − Reg(R) [3, Theorem 6] 
since R is weakly présimplifiable. So .f −1 is regular since its .≤′-trailing coefficient 
.f (0) − 1 is regular, as desired. 

Finally, assume there is an irredundant strongly primary decomposition . (0) =⋂n
i=1 Qi in R. Then .(0) = ⋂n

i=1 Qi[[S]] is an irredundant strongly primary 
decomposition in .R[[S]] with each .

√
Qi[[S]] = √

Qi[[S]] [39, 1.21]. We have  
.g /∈ Qj [[S]] for some j since .g �= 0, so  .f ∈ √

Qj [[S]]. Note that . Qj ⊆ Z(R)

(and therefore .
√

Qj ⊆ Z(R)) since .Qj

(⋂
i �=j Qi

)
= (0) �= ⋂

i �=j Qi . This shows 

that every element of .R[[S]] with a regular coefficient is regular. Thus the constant 
term of .f − 1 is in .−1 + Z(R) ⊆ Reg(R), where the inclusion holds [3, Theorem 
6] since R is weakly présimplifiable, so .f − 1 ∈ Reg(R[[S]]), as desired. ��

Ribenboim proved special cases of parts (2) and (5) of Theorem 3 [39, 3.4  
and 3.9]. We collect other special cases of interest in the following corollary. For 
completeness and purposes of comparison, we also collect the known results about 
weakly présimplifiable, présimplifiable, or domainlike (Laurent) polynomial rings. 

Corollary 4 Let R be a ring, .{Xλ}λ∈� be a nonempty family of analytically 
independent indeterminates, . α be an infinite cardinal number, .i ∈ {1, 2, 3,<α}, 
.j ∈ {L,L<α}, .A := R[[{Xλ}λ∈�]]i , .A′ := A[{X−1

λ }λ∈�], .B0 := R[{Xλ}λ∈�],
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.B ′
0 := R[{Xλ,X

−1
λ }λ∈�], .B := R[{Xλ}λ∈�]j , .B ′ := B[{X−1

λ }λ∈�], and . C :=
R〈〈{Xλ}λ∈�〉〉. 
1. If .D ∈ {A,B0, B

′
0, B}, then D is weakly présimplifiable if and only if R is 

weakly présimplifiable. 
2. If .D ∈ {A′, B ′, C} and . (0) has a strongly primary decomposition in R, then D is 

weakly présimplifiable if and only if R is weakly présimplifiable. 
3. A is présimplifiable if and only if R is présimplifiable. 
4. If .D ∈ {B0, B

′
0}, then D is présimplifiable (or equivalently domainlike) if and 

only if R is domainlike [1, Theorem 3.11(b)]. 
5. If .D ∈ {A′, B, B ′, C} and .Nil(R) is nilpotent, then D is présimplifiable (or 

equivalently domainlike) if and only if R is domainlike. 
6. If .Nil(R) is nilpotent, then A is domainlike if and only if R is domainlike. 

Proof All statements about . B0 and . B ′
0 are special cases of results of Anderson et 

al. [3, Theorem 18; 1, Theorem 3.11(b)] and/or Edmonds and Juett [23, Theorems 
2.2(3) and 2.3]. 

.(⇒): Let  .D ∈ {A,A′, B, B ′, C}. If  D is weakly présimplifiable or domainlike, 
then so is its subring R. If  D is présimplifiable, then so is R since .R∩U(D) = U(R). 
All that remains is the “only if” part of (5). Assume .Nil(R) is nilpotent. Pick 
.γ ∈ �. If  B or C is présimplifiable, then R is domainlike by Theorem 3. If  . B ′
is présimplifiable, then so is . B ′

0 since .B ′
0 ∩ U(B ′) = U(B ′

0), so  R is domainlike 
[1, Theorem 3.11(b)]. (To demonstrate the equality, it suffices to show that each 
.f ∈ B0 ∩ U(B ′) is invertible in . B ′

0. There is a .g ∈ B with .h := fg a monic 
monomial. Let .Xλ1 , . . . , Xλn be the indeterminates appearing in f or h. Then 
.h = f π(g), where . π is the canonical ring epimorphism of B onto .R[Xλ1 , . . . , Xλn ], 
so .f ∈ U(B ′

0), as desired.) Thus we may assume . A′ is présimplifiable. We claim that 
.R〈〈Xγ 〉〉∩U(A′) = U(R〈〈Xγ 〉〉). It suffices to show that each . f ∈ R[[Xγ ]]∩U(A′)
is invertible in .R〈〈Xγ 〉〉. With a trivial adjustment to the above parenthetical argu-
ment, we see that .f ∈ U(R[[Xγ ,Xλ1 , . . . , Xλn ]][X−1

γ ,X−1
λ1

, . . . , X−1
λn

]) for some 
.λ1, . . . , λn ∈ � (.n ≥ 0). Thus . f ∈ R〈〈Xγ 〉〉 ∩ U(R〈〈Xγ 〉〉〈〈Xλ1 , . . . , Xλn〉〉) =
U(R〈〈Xγ 〉〉), as desired. Therefore .R〈〈Xγ 〉〉 is présimplifiable, so R is domainlike 
by Theorem 3(5). 

.(⇐): Assume R is weakly présimplifiable. Then .A3 := R[[{Xλ}λ∈�]]3 is 
weakly présimplifiable by Theorem 3(1), so its subrings A and B are weakly 
présimplifiable. If .(0) has a strongly primary decomposition in R, then C and 
its subrings . A′ and . B ′ are weakly présimplifiable by Theorem 3(1). If R is 
présimplifiable, then . A3 is présimplifiable by Theorem 3(2) and . A∩U(A3) = U(A)

by Lemma 2(2), so A is présimplifiable. If .Nil(R) is nilpotent and R is domainlike, 
then C and its subrings .A,A′, B, and . B ′ are domainlike by Theorem 3(5), as 
desired. ��

We note that some special cases of parts of Corollary 4 are already known. 
The statements about . B0 and . B ′

0 have already been proven by Anderson et al. [3, 
Theorem 18; 1, Theorem 3.11(b); 8, pp. 471–472], Bouvier [17], and/or Edmonds 
and Juett [23, Theorems 2.2(3) and 2.3]. Ribenboim proved the “if” direction of the
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.D = C part of (5) [39, 3.4]. The remaining assertions of Corollary 4 appear to be 
new, although slightly weaker versions of a few of them have already appeared in 
the literature. The results regarding the (weak) présimplifiability of power series, in 
the special case with only finitely many indeterminates, can be found in the work of 
Anderson et al. [3, Theorem 20(1); 8, p. 471] and/or Ribenboim [39, 3.10]. Part (5), 
in the special case where R is Noetherian and . � is finite, was proven by Axtell et 
al. [11, Proposition 9]. 

We close the section with an example showing that the nilpotency hypotheses 
cannot be removed from Theorem 3 parts (3)–(5) or Corollary 4 parts (5) and (6). 
We do not know if the strongly primary decomposition hypotheses in Theorem 3(1) 
and Corollary 4(2) are necessary. 

Example 5 (A Zero-Dimensional Quasilocal Ring R for Which Neither .R[[X]] nor 
.R〈〈X〉〉 Is Domainlike and Neither .R[X1, X2, . . .]L nor . R[X1, X2, . . .]L[X−1

1 , X−1
2 , . . .]

Is Présimplifiable.)) Let .R := Z2[Y,Z,Z1/2, Z1/3, . . .]/(Z, Y 2, YZ1/2, YZ1/3, . . .), 
where .Z2 is the field of cardinality 2. Then R is domainlike since it has 
a unique prime ideal. We know from Corollary 4 that .R[[X]] and . R〈〈X〉〉
are at least présimplifiable. However, they are not domainlike. To see this, 
let .f := ∑∞

n=1 Z1/2n
Xn ∈ R[[X]]. Then .Yf = 0 �= Y , yet . f (2m) =

∑∞
n=m+1 Z1/2n−m

X(n2m) �= 0 for each .m ∈ Z
+, as desired. We also know from 

Corollary 4 that every (Laurent) polynomial ring over R is présimplifiable. But 
neither .B := R[X1, X2, . . .]L nor .B ′ := B[X−1

1 , X−1
2 , . . .] is présimplifiable. 

To see this, let .g := ∑∞
n=1 Z1/2n

Xn ∈ B. Then .Yg = 0 �= Y and 

.g(2m) = ∑∞
n=m+1 Z1/2n−m

X
(2m)
n �= 0 for each .m ∈ Z

+, so  .g ∈ Z(B) \ Nil(B). 
Suppose that .g ∈ J (B) or .g ∈ J (B ′). Then there is an .h ∈ B with . w := (1 + g)h

a non-constant monic monomial. We will contradict the fact that h has bounded 
total degree by showing that .hn = 0 for all .0 ≤ n < m and . hn = wgn−m �= 0
for all .n ≥ m, where . m is the total degree of w and . hn is the homogeneous part 
of h of total degree n. The homogeneous part of .w = (1 + g)h of total degree 
0 is  .0 = 1 · h0 = h0. So let us assume .n > 0. If  .n < m, then . hn−1 = 0
by induction on n, so the homogeneous part of .w = (1 + g)h of total degree 
n is .0 = 1 · hn + ghn−1 = hn. So let us assume .n ≥ m. If  .n = m, then 
.hn−1 = 0 by induction on n, so the homogeneous part of .w = (1 + g)h of total 
degree n is .w = 1 · hn + ghn−1 = hn. If  .n > m, then .hn−1 = wgn−1−m by 
induction on n, so the homogeneous part of .w = (1 + g)h of total degree n is 
.0 = 1 · hn + ghn−1 = hn + wgn−m, so .hn = wgn−m, as desired. 

4 Bounded Factorization and the ACCP in Generalized 
Power Series Rings 

In this final section we will consider the question of when a generalized power series 
ring is a BFR or satisfies the ACCP.
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One of the main tools we will use is the theory of recursive factorization 
length developed by Juett et al. [5–7, 23]. Let R be a ring and .a ∈ R. If every  
sequence of ascending principal ideals of R starting with . (a) stabilizes, then the 
(recursive) factorization length of a, denoted .LR(a), is the least ordinal number 
strictly greater than .LR(b) for each proper divisor b of a; otherwise .LR(a) is 
left undefined [23, p. 1845]. If R satisfies the ACCP, then .L(R) is defined to 
be the least ordinal number strictly greater than .LR(a) for all .0 �= a ∈ R [6, 
pp. 1590–1591]. We sometimes drop the subscript R in the preceding notation if 
there is no danger of confusion. The ACCP, the BF-property, recursive factorization 
length, etc., are defined analogously for monoids. Examples of BFRs include 
présimplifiable Noetherian rings [8, Theorem 3.9] and factorial (or more generally 
Krull [2, Proposition 2.2]) domains; examples of bounded factorization monoids 
(BFMs) include finitely generated cancellative monoids and factorial (or more 
generally Krull) cancellative monoids [28, Proposition 2.7.8(4)]. Clearly the BF-
property implies the ACCP, but the converse is false even in the integral domain and 
reduced cancellative monoid cases [2, Example 2.1]. 

We will need the following facts from the work of Juett et al. [5–7, 23]. 

Lemma 6 ([6, Proposition 4.1; 23, Proposition 3.2]) Let R be a ring and  .a ∈ R. 

1. .L(a) exists if and only if there is an ordinal-valued function . φ on . {b ∈ R |
(a) ⊆ (b)} such that .φ(c) < φ(b) whenever .(a) ⊆ (b) � (c), in which case 
.L(a) ≤ φ(a). Therefore R satisfies the ACCP if and only if there is an ordinal-
valued function . φ on R such that .φ(b) < φ(a) whenever .(a) � (b). 

2. If R is présimplifiable and .0 �= a ∈ R, then . L(a) = L(a) := sup{n ∈ Z
+
0 |

(a) = (a1 · · · an) with each .ai ∈ R \ U(R)}, where we interpret . L(a) = ∞
to hold if .L(a) is an infinite ordinal or does not exist. Therefore R is a BFR if 
and only if it is présimplifiable and there is a function .φ : R → Z

+
0 such that 

.φ(b) < φ(a) whenever .(a) � (b). 
3. If R is présimplifiable and .a, b ∈ R \ (0), then .L(ab) ≥ L(a) ⊕ L(b), where . ⊕

is the Hessenberg sum (see [5, p. 329] for the definition). 

Analogous statements hold for recursive factorization length in monoids. 

Although we are mainly interested in generalized power series rings with proper 
zero divisors in this paper, we will still need to understand the integral domain 
case, as our proofs will often reduce to it. To this end, we present the following 
sharpened version of two results from Anderson and Juett’s paper [5]. They proved 
the following proposition under the stronger hypothesis that . ≤ is total or positive 
[5, Theorem 17]. They also proved a related result for monoid rings .R[S] with S 
reduced torsion-free cancellative [5, Theorem 13]. This is also a special case of our 
next result. Indeed, if .(S,+) is a reduced torsion-free cancellative monoid, then . =
is potentially negative on S [12, Proposition 2.2.1(3)] and .R[S] = R[[S=]]. 
Proposition 7 Let D be a domain and .(S,+,≤) be a torsion-free cancellative 
ordered monoid. Further assume that . ≤ is subpositive, subtotal, or potentially
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negative. Then .D[[S]] satisfies the ACCP or has the BF-property if and only if the 
same holds for D and S, in which case .L(D[[S]]) = max {L(D),L(S)}. 
Proof Because .D[[S]] is a domain [39, 1.20], it suffices to prove the ACCP part— 
see Lemma 6(2). Since S is torsion-free cancellative, there is a compatible total 
order . ≤′ on S that refines . ≤ [24, Proposition 2] and .D[[S≤]] ⊆ D[[S≤′]] [24, p.  
368]. If . ≤ is potentially negative, then we can choose . ≤′ to be negative. In all cases 
we have .D[[S≤]] ∩ U(D[[S≤′]]) = U(D[[S≤]]) by Lemma 2. Therefore . D[[S≤]]
satisfies the ACCP if .D[[S≤′]] satisfies the ACCP, in which case . L(D[[S≤]]) ≤
L(D[[S≤′]]) [5, p. 330]. On the other hand, we have . D ∩ U(D[[S≤]]) = U(D)

and .ψ[S] ∩ U(D[[S≤]]) = U(ψ[S]), where .ψ : S → D[[S≤]] is the monoid 
monomorphism .s �→ Xs . Thus D and S satisfy the ACCP if .D[[S≤]] satisfies the 
ACCP, in which case .max {L(D),L(S)} ≤ L(D[[S≤]]) [5, p. 330]. With the above 
observations in mind, we may pass from . ≤ to . ≤′ and assume . ≤ is total. This case is 
covered by [5, Theorem 17]. ��

Now we open our consideration to rings with proper zero divisors. The following 
weaker version of our main result will prove to be a useful stepping stone. 

Lemma 8 Let R be a quasilocal ring with .J (R) nilpotent and .(S,+,≤) be a 
torsion-free cancellative ordered monoid. Further assume . ≤ is subtotal, subpositive, 
or potentially negative. Then .R[[S]] satisfies the ACCP or has the BF-property if 
and only if the same holds for S. 

Proof The “only if” part is clear. For the converse, let .P ∈ {ACCP, BF-property. }
and assume S has the . P . We proceed by induction on the nilpotency N of . M :=
J (R). The  .N = 1 case is covered by Proposition 7, so let us assume .N > 1. 
Because .R[[S]] is domainlike (see Theorem 3(5)), we just need to show that 
.LR[[S]](f ) exists (and additionally that .LR[[S]] < ω if .P = BF-property) for each 
nonzero nonunit .f ∈ R[[S]]. 

First consider the case where .f /∈ MN−1[[S]]. Let .R := R/MN−1. By induction 
on N , the ring .R[[S]] has the . P . Note that .R[[S]] and .R[[S]] are domainlike 
and nonunits of .R[[S]] have nonunit images in .R[[S]] (since . MN−1[[S]] ⊆
Nil(R[[S]])). Thus, if .f R[[S]] ⊆ gR[[S]] � hR[[S]], then . f R[[S]] ⊆ gR[[S]] �
hR[[S]] and therefore .LR[[S]](g) > LR[[S]](h). By Lemma 6(1), it follows that 

.LR[[S]](f ) exists and is bounded above by .LR[[S]](f ), as desired. 

Now assume .f ∈ MN−1[[S]]. Let  .R := R/M and a be a nonzero coefficient of 
f . Then .R[[S]] is a domain [39, 1.20] and it has the . P by induction on N . Because 
.((0) :R M) is a semisimple ideal of R containing a, we have . ((0) :R M) = aR ⊕ I

for some ideal I of R. 
Suppose that there is an infinite properly ascending sequence . f R[[S]] �

f1R[[S]] � f2R[[S]] � f3R[[S]] � · · · (.fi ∈ R[[S]]). Then each . fi ∈
MN−1[[S]] ⊆ ((0) :R M)[[S]] = aR[[S]] ⊕ I [[S]] by the previous case. Thus 
for each .n ∈ Z

+ there is an .hn ∈ R[[S]] with .fn − ahn ∈ I [[S]]. Note that 
each .hn /∈ M[[S]], for otherwise .a ∈ c(f ) ⊆ c(fn) = c(fn − ahn) ⊆ I . 
Write .fn = gnfn+1 with .gn ∈ R[[S]] \ U(R[[S]]). Then each .a(hn − gnhn+1) ≡
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fn − gnfn+1 ≡ 0 modulo .I [[S]], so  . hn − gnhn+1 ∈ (I [[S]] :R[[S]] aR[[S]]) =
(I :R aR)[[S]] ⊆ M[[S]]. Therefore .(0) � h1R[[S]] � h2R[[S]] � · · · , where the 
inclusions are proper since .R[[S]] is a domain and each .gn /∈ U(R[[S]]) (because 
.M[[S]] ⊆ Nil(R[[S]])). But this contradicts the fact that .R[[S]] satisfies the ACCP. 

We are done unless .P = BF-property. As above, there is a . g ∈ R[[S]] \ M[[S]]
with .f − ag ∈ I [[S]]. Every factorization of f into nonunits of .R[[S]] has the form 
.f = f1 · · · fm with .f1, . . . , fk ∈ M[[S]] and .fk+1, . . . , fm ∈ R[[S]] \M[[S]] (. 0 ≤
k ≤ m). Then .k ≤ N since .f �= 0 and .fk+1, . . . , fm ∈ Reg(R[[S]]) since . R[[S]]
is domainlike and .Nil(R[[S]]) = M[[S]] [37, 3.2]. Because . f1 · · · fmM[[S]] =
f M[[S]] = (0), it follows  that  . f1 · · · fk ∈ ((0) :R[[S]] M[[S]]) = ((0) :R
M)[[S]] = aR[[S]] ⊕ I [[S]] and therefore .f1 · · · fk − ah ∈ I [[S]] for some 
.h ∈ R[[S]]. Thus .ag ≡ f ≡ f1 · · · fm ≡ ahfk+1 · · · fm modulo .I [[S]], so  
.g − hfk+1 · · · fm ∈ (I [[S]] :R[[S]] aR[[S]]) = (I :R aR)[[S]] ⊆ M[[S]]. 
So .gR[[S]] ⊆ fk+1 · · · fmR[[S]], where each .fi /∈ U(R[[S]]) since . M[[S]] =
Nil(R[[S]]), and therefore .LR[[S]](g) ≥ m − k. Thus . m = k + (m − k) ≤
N + LR[[S]](g) < ∞, as desired. ��

We are now ready to present the main result of our paper. Edmonds and Juett 
have proven two simlarly-flavored monoid ring results [23, Theorems 4.4 and 4.7]. 

Theorem 9 Let R be a ring with  .Nil(R) nilpotent and .(S,+,≤) be a torsion-free 
cancellative monoid. 

1. If R is a finite direct product of domainlike rings and . ≤ is subtotal, subpositive, 
or potentially negative, then .R[[S]] satisfies the ACCP if and only if R and S 
satisfy the ACCP. 

2. If . ≤ is subpositive and R is domainlike, then .R[[S]] is a BFR if and only if R is 
a BFR and S is a BFM. 

3. If . ≤ is subtotal or potentially negative, then .R[[S]] is a BFR if and only if R is a 
domainlike BFR and S is a BFM. 

Proof Because S is torsion-free cancellative, there is a compatible total order . ≤′
on S that refines . ≤ [24, Proposition 2] and .R[[S≤]] ⊆ R[[S≤′]] [24, p. 368]. We 
may arrange for . ≤′ to be negative if . ≤ is potentially negative. Lemma 2 implies 
that .R[[S≤]] ∩ U(R[[S≤′]]) = U(R[[S≤]]), so we may pass from . ≤ to . ≤′ and 
assume . ≤ is total. Let K be the total quotient ring of R. For .0 �= g ∈ R[[S]], define 
.ψ(g) := max{n ∈ Z

+
0 | gNil(R)n[[S]] �= (0)}. The “only if” parts of (1) and (2) 

are clear, while the “only if” part of (3) follows from Theorem 3. 
For the converses, we begin by assuming R and S satisfy the ACCP and . R =∏n

i=1 Ri with each . Ri domainlike. Then .R[[S]] ∼= ∏n
i=1 Ri[[S]] [12, Proposition 

2.4.1(1)] satisfies the ACCP if and only if each .Ri[[S]] satisfies the ACCP [8, 
Theorem 3.4]. Thus we may pass from R to an . Ri and assume R is domainlike. 
Then K is quasilocal with .J (K) nilpotent since .P := Nil(R) = Z(R) is nilpotent. 
So .R[[S]] and .K[[S]] are domainlike by Theorem 3(5) and .K[[S]] satisfies the 
ACCP by Lemma 8.
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Suppose that there is a sequence .{fn}∞n=1 ⊆ R[[S]] \ (0) with each . fn = unfn+1
for some .un ∈ R[[S]] \ U(R[[S]]). Because .0 ≤ ψ(f1) ≤ ψ(f2) ≤ · · · ≤ N − 1, 
where N is the nilpotency of P , we may pass to a suitable subsequence of . {fn}∞n=1
and assume .ψ(f1) = ψ(f2) = · · · . Since .K[[S]] is domainlike and satisfies the 
ACCP, we may again pass to a subsequence of .{fn}∞n=1 and assume each . un ∈
U(K[[S]]). Pick  .z ∈ P ψ(f1) with .zf1 �= 0. Each .zfn+1 ∈ ((0) :R[[S]] P [[S]]), 
so .zfn = unzfn+1 = vnzfn+1, where . vn is the sum of the terms of . un that have 
non-nilpotent (or equivalently regular) coefficients. For each .n ∈ Z

+, let .anX
sn and 

.bnX
tn (.an, bn ∈ R and .sn, tn ∈ S) respectively be the trailing terms of .zfn and 

. vn. Since each .bn ∈ Reg(R), it follows that .an = bnan+1 and .sn = tn + sn+1. 
Also note that each .LR(bn) ⊕ LS(tn) > 0, for otherwise .vn ∈ U(R[[S]]) (see 
Lemma 2), which would imply .un ∈ U(R[[S]]) + P [[S]] = U(R[[S]]) (since P 
is nilpotent). Therefore each . LR(an) ⊕ LR(sn) ≥ LR(bn) ⊕ LR(an+1) ⊕ LS(tn) ⊕
LS(sn+1) > LR(an+1) ⊕ LS(sn+1) by Lemma 6(4), leading to an absurd infinite 
strictly decreasing sequence of ordinals. 

It only remains to show that .R[[S]] is a BFR if R is a domainlike BFR and 
S is a BFM. Then .K[[S]] is a BFR by Lemma 8. Let  f be a nonzero nonunit of 
.R[[S]]. Each factorization of f into nonunits of .R[[S]] has the form . f = f1 · · · fm

with .f1, . . . , fk ∈ (R[[S]] ∩ U(K[[S]])) \ U(R[[S]]) and . fk+1, . . . , fm ∈ R[[S]] \
U(K[[S]]) (.0 ≤ k ≤ m). Then .LK[[S]](f ) ≥ m − k. Pick  .z ∈ P ψ(f ) with . zf �=
0. Then .zf1 · · · fm = zf ∈ ((0) :R[[S]] P [[S]]), so  . zfk+1 · · · fm ∈ ((0) :R[[S]]
P [[S]]) since .f1 · · · fk ∈ Reg(R[[S]]). Thus .zf = v1 · · · vkzfk+1 · · · fm, where 
each . vi is the sum of the terms of . fi that have non-nilpotent (or equivalently regular) 
coefficients. Let .aXs , .biX

ti , and .cXw respectively be the trailing terms of zf , . vi , 
and .zfk+1 · · · fm. Then .a = b1 · · · bkc and .s = t1 + · · · + tk + w since the . bi’s are 
regular. Also note that each .LR(bi)+LS(ti) > 0, for otherwise .vi ∈ U(R[[S]]) (see 
Lemma 2),  which would imply  .fi ∈ U(R[[S]]) + P [[S]] = U(R[[S]]) (since P is 
nilpotent). Therefore . m = (m − k) + k ≤ LK[[S]](f ) + ∑k

i=1(LR(bi) + LS(ti)) ≤
LK[[S]](f ) + LR(a) + LS(s) < ∞, as desired. ��

We now collect several results about the ACCP and BF-property in rings of 
(Laurent) polynomials, large polynomials, and (Laurent) power series. We have 
focused here on the kinds of extensions for which we were able to determine 
nice results, omitting large Laurent polynomial rings and only considering Laurent 
power series rings of the form .R〈〈{Xλ}λ∈�〉〉. There are several known results about 
the ACCP in the polynomial/power series special case that do not appear to have 
analogs in the general setting we are exploring. There one can achieve more if one 
assumes some stronger/different hypotheses on the coefficient ring than the kinds of 
conditions we consider here. We refer the reader to the work of Frohn [25–27] and 
Heinzer and Lantz [33, 34] for further information on that topic. In order to state 
some of the parts of Corollary 10 in the strongest and most useful way, we need to 
review the notion of ordinal powers of ideals. Let I be an ideal of a ring R. Define 
.I 0 := R and for each positive ordinal . β recursively define .Iβ := ⋂

α<β IIα . Then 
. In has the usual meaning for .0 ≤ n < ω. In addition, we have .Iω = ⋂∞

n=1 In,
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.Iω+1 = I
(⋂∞

n=1 In
)
, etc. We refer the reader to [13, Section 6] and [7, Lemma 2.9] 

for further information on properties of ordinal powers of ideals. 

Corollary 10 Let R be a ring, .{Xλ}λ∈� be a nonempty family of analytically 
independent indeterminates, . α be an infinite cardinal number, .i ∈ {1, 2, 3,<α}, 
.j ∈ {L,L<α}, .A := R[[{Xλ}λ∈�]]i , .B0 := R[{Xλ}λ∈�], .B ′

0 := R[{Xλ,X
−1
λ }λ∈�], 

.B := R[{Xλ}λ∈�]j , and .C := R〈〈{Xλ}λ∈�〉〉. 
1. If R is a finite direct product of présimplifiable rings, then A satisfies the ACCP 

if and only if R satisfies the ACCP. 
2. If R is a finite direct product of domainlike rings and .Nil(R)μ = (0) for some 

ordinal . μ, then . B0 satisfies the ACCP if and only if R satisfies the ACCP. 
3. If .D ∈ {B ′

0, B,C}, R is a finite direct product of domainike rings, and .Nil(R) is 
nilpotent, then D satisfies the ACCP if and only if R satisfies the ACCP. 

4. If .Nil(R)ω = (0), then . B0 is a BFR if and only if R is a domainlike BFR [23, 
Corollary 4.12(2)]. 

5. If .Nil(R) is nilpotent and R is domainlike, then A is a BFR if and only if R is a 
BFR. 

6. If .D ∈ {B ′
0, B,C} and .Nil(R) is nilpotent, then D is a BFR if and only if R is a 

domainlike BFR. 

Proof The “only if” parts are each either clear or follow from Corollary 4. For  the  
converses, we first argue as in the second paragraph of Theorem 9 to reduce (if 
necessary) to the case where R is indecomposable. (Note that, if .R = ∏n

i=1 Ri , 
then an easy inductive proof shows that .Nil(R)β = ∏n

i=1 Nil(Ri)
β for each ordinal 

. β.) The statements about . B0 and . B ′
0 now follow from [23, Corollary 4.12]. If 

.(D,D′) ∈ {(A,R[[{Xλ}λ∈�]]3), (B,R[{Xλ}λ∈�]L)} and . D′ is a BFR, then so 
is D since .U(D) = D ∩ U(D′) (see Lemma 2). If R is domainlike, .Nil(R) is 
nilpotent, and .R[{Xλ}λ∈�]L satisfies the ACCP, then B satisfies the ACCP since 
.R[{Xλ}λ∈�]L is domainlike and .U(B) = B ∩U(R[{Xλ}λ∈�]L) (see Corollary 4(5) 
and Lemma 2(3)). With the above comments in mind, Theorem 9 finishes all the 
remaining “ifs” except for (1). Assume R is présimplifiable and satisfies the ACCP. 
Suppose that there is a sequence .{fn}∞n=1 ⊆ A \ (0) with each .fn = gnfn+1 for 
some .gn ∈ A \ U(A). Then each .gn(0) /∈ U(R) by Lemma 2(2). Well order . �. 
Let .Xλ1 , . . . , Xλk

be the variables appearing in the trailing term of . f1. Let  . π be 
the canonical ring epimorphism from A onto .A0 := R[[Xλ1 , . . . , Xλn ]]. Then each 
.π(fn) = π(gn)π(fn+1), where .π(gn) /∈ U(A0) since .π(gn)(0) = gn(0) /∈ U(R), 
so .π(fn)A0 � π(fn+1)A0 since . A0 is présimplifiable (see Corollary 4(3)). Thus we 
may pass from A to . A0 and assume . � is finite. Induction then reduces our proof to 
the case where .A = R[[X]]. Let  .Xmn (.mn ≥ 0) be the largest power of X dividing 
. fn. Then .m1 ≥ m2 ≥ · · · ≥ 0, so we can pass to a suitable subsequence of . {fn}∞n=1
and assume .m1 = m2 = · · · . Then we can pass from .{fn}∞n=1 to .{X−m1fn}∞n=1 and 
assume each .fn(0) �= 0. Then each .fn(0) = gn(0)fn+1(0), where .gn(0) /∈ U(R), 
so .fn(0)R � fn+1(0)R since R is présimplifiable, contradicting the fact that R 
satisfies the ACCP. ��
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We review which (special cases of) parts of Corollary 10 have already appeared 
in the literature. The key présimplifiable special case of (1) was an observation of 
Frohn [25, p. 2961], although he did not give a proof or an elaboration on which 
value(s) of i he had in mind. Edmonds and Juett (at least implicitly) proved all the 
parts about . B0 and . B ′

0 [23, Corollary 4.12]. The various remaining assertions of 
Corollary 10 and its generalizations of the aforementioned results all appear to be 
new. 

We close the paper with some examples exploring the degree to which the 
hypotheses in Corollary 10 are necessary or might be improved. 

Example 11 (An Example Where R Satisfies the ACCP but .R[[X]] and .R〈〈X〉〉 Do 
Not) Let .D := Q[{Yn, Zn}∞n=0], .I := ∑

m≤n Ym(Zn − 1)D, . Pi := ∑i−1
n=0 YiD +∑∞

n=i (Zn −1)D, .P := ∑∞
n=0 YnD, .M := P +∑∞

n=0 ZnD, . Q := P +∑∞
n=0(Zn −

1)D, .D := D/I , .S := D \ (M ∪ Q), and .R := DS . Frohn showed that R satisfies 
the ACCP but .R[[X]] does not [25, Example]. We will build upon his proof to 
show that .R〈〈X〉〉 also fails the ACCP. Frohn showed that . f1R[[X]] � f2R[[X]] �
· · · , where .fn := ∑∞

i=0

(∏i−1
j=n Zj

)
YiX

i [25, Example(2)]. Suppose that some 

.fnR〈〈X〉〉 = fn+1R〈〈X〉〉. Then .Xmfn+1 = gfn for some .m ∈ Z
+
0 and .g ∈ R[[X]]. 

In .(R/PiS)[[X]], the images of . fn and .fn+1 both have trailing degree i, so the  
image of g in .(R/PiS)[[X]] must have trailing degree . m. Because .

⋂∞
i=1 Pi = I [25, 

Example(1)], it follows that .Nil(R) = (0) and g has trailing degree . m in .R[[X]]. 
Therefore .X−mg ∈ R[[X]] and .fn+1 = (X−mg)fn, a contradiction. This example 
shows that the hypotheses on R cannot be dropped for the portions of Corollary 10 
discussing the ACCP in the extensions A or C. 

Example 12 (A Quasilocal BFR R with .J (R)ω = (0) for Which Neither .R[X] nor 
.R[X,X−1] Satisfies the ACCP) Let .D := Q[Y1, Y2, . . .], . I := ∑∞

n=1 Yn+1(Yn −
Yn+1)D, .M := ∑∞

n=1 YiD, .D := D/I , and .R := DM . Heinzer and Lantz showed 
that R satisfies the ACCP while .R[X] does not [34, Example]; a careful reading of 
their proof and their comments in [34, Remark] shows that R is in fact a quasilocal 
BFR with .J (R)ω = (0). We will adapt their proof to show that .R[X,X−1] also 
fails the ACCP. Setting .fn := YnX + 1, we have  .f1R[X] � f2R[X] � · · · [34, p.  
976], so it will suffice to show that each .fnR[X,X−1] � fn+1R[X,X−1]. Suppose 
to the contrary that .Xmfn+1 = gfn for some .m, n ∈ Z

+ and .g ∈ R[X]. Let  
. ak denote the coefficient of . Xk in g. Because . fn and .fn+1 each have a trailing 
coefficient of . 1, the equation .Xmfn+1 = gfn implies .a0 = · · · = am−1 = 0. 
Therefore the coefficient of .Xm in .Xmfn+1 = gfn is .1 = am + am−1Yn = am. 

We claim that .ak = (−1)k−m−1Yn
k−m−1

(Yn+1 − Yn) for each .k > m. The  
coefficient of .Xm+1 in .Xmfn+1 = gfn is .Yn+1 = am+1 + amYn = am+1 + Yn, 
which implies .am+1 = Yn+1 − Yn. So let us assume .k > m + 1. Then the 
coefficient of . Xk in .Xmfn+1 = gfn is .0 = ak + ak−1Yn, so  . ak = −ak−1Yn =
−(−1)(k−1)−m−1Yn

(k−1)−m−1
(Yn+1 − Yn)Yn = (−1)k−m−1Yn

k−m−1
(Yn+1 − Yn)

by induction on k, as desired. But then .ak �= 0 for all .k ≥ m [34, p. 975], 
contradicting the fact that .g ∈ R[X]. This example shows that, at least for the
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assertions about .B0, B
′
0, and B in Corollary 10 parts (2) and (3), the “domainlike” 

in the hypotheses cannot be weakened to “présimplifiable.” We do not know to what 
extent the hypotheses about .Nil(R) in those assertions are necessary. 

Example 13 (A Zero-Dimensional Quasilocal BFR R with . J (R)ω+1 = (0)
for Which .R[X], .R[X,X−1], .R[[X]], and .R〈〈X〉〉 Are Not BFRs) Let . D :=
Z2[Y1, Y2, . . .], where . Z2 is the field of cardinality 2. Partition .{Yk}∞k=1 = ⊔∞

n=0 Bn, 

where .B0 := {Y1} and .Bn := {Yi}n2+5n+1
i=n2+3n−2

for .n ≥ 1. For each .n ≥ 1 and . 0 ≤ k ≤
n+2, let .gn,k ∈ D be the coefficient of . Xk in .

∏n+1
k=0(Yn2+3n−2+2k +Yn2+3n−1+2kX). 

Let J be the ideal of D generated by elements of the forms (i) .YiYj with . Yi and . Yj

in different . Bn’s, (ii) . Y 2
1 , (iii) .

∏n+3
i=1 Yki

with .n ≥ 1 and each .Yki
∈ Bn, (iv) .gn,k with 

.k /∈ {1, 2}, and (v) .Y1 − gn,k with .k ∈ {1, 2}. (See [4, Section 3] for a more detailed 
discussion of the definitions.) Anderson and Ganatra showed that .R := D/J is a 
zero-dimensional quasilocal BFR for which neither .R[X] nor .R[[X]] is a BFR [4, 
Section 3]; Juett and Edmonds later observed that .J (R)ω+1 = (0) �= J (R)ω [23, 
p. 1855]. We will show that .R[X,X−1] and .R〈〈X〉〉 also fail to be BFRs. Conditions 
(iv) and (v) imply that . 0 �= Y 1X + Y 1X

2 = ∏n+1
k=0(Yn2+3n−2+2k + Yn2+3n−1+2kX)

for each .n ∈ Z
+ [4, p. 3897]. Each of the factors in the preceding equation is in 

.J (R)〈〈X〉〉 and therefore not invertible in .R〈〈X〉〉. Thus neither .R[X], nor .R[[X]], 
nor .R[X,X−1], nor .R〈〈X〉〉 is a BFR, but they do satisfy the ACCP. Indeed, 
the rings .R[[X]] and .R[X] satisfy the ACCP by Corollary 10, while . R[X,X−1]
satisfies the ACCP by [23, Lemma 4.5(1)] since R is a zero-dimensional quasilocal 
ring with .J (R)ω+1 = (0). Our first step in showing that .R〈〈X〉〉 satisfies the 
ACCP is to demonstrate that it is quasilocal with maximal ideal .J (R)〈〈X〉〉. That 
ideal is indeed maximal by [12, Proposition 2.4.2(2)]. So we need to show that 
.1 − gf ∈ U(R〈〈X〉〉) for each .f ∈ J (R)〈〈X〉〉. Because .supp(1 − gf ) is well 
ordered and .(1 − gf )(0) ∈ 1 − J (R) ⊆ U(R), there is a smallest .m ∈ Z such 
that .Xm has a unit coefficient in .1 − gf . Then the sum of the terms of .1 − gf of 
degree at least . m is a unit in .R〈〈X〉〉 [39, 2.6(ii)] and the finitely many terms of 
.1 − gf of degree less than . m are nilpotent, so .1 − gf ∈ U(R〈〈X〉〉), as desired. An 
easy inductive proof now shows that .J (R〈〈X〉〉)β ⊆ J (R)β〈〈X〉〉 for each ordinal 
. β. Because .R〈〈X〉〉 is a quasilocal ring with .J (R〈〈X〉〉)ω+1 = (0), it satisfies the 
ACCP [7, Theorem 3.22]. This example shows that the statement of Corollary 10(4) 
is in some sense the best possible and places limits on how much the results in 
Corollary 10 parts (5) and (6) could potentially be improved. 
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Probabilities and Fixed Divisors of 
Integer Polynomials 

Jean-Luc Chabert 

1 Turk’s Formula 

Turk [6] stated the following nice formula which gives the probability that the fixed 
divisor of a polynomial with integer coefficients is equal to one: 

.Prob ( d(f ) = 1 | f ∈ Z[X] ) =
∏

p∈P
(1 − p−p) [Turk, 1986] (1) 

Fixed Divisor Recall that the fixed divisor of a polynomial .f ∈ Z[X], denoted by 
.d(f ), is defined as the greatest common divisor of all the values of f on . Z. 

. d(f ) = gcd { f (n) | n ∈ N } = max{ d ∈ N | f (Z) ⊆ dZ } .

More generally, if f is an integer-valued polynomial, that is, a polynomial f such 
that .f (Z) ⊆ Z, we can still consider the fixed divisor .d(f ) of f as the .gcd of the 
values of f on . Z. It is known that every such polynomial may be written as 

. f (X) =
d∑

k=0

bk

(
X

k

)
where bk ∈ Z .

It is then easy to see that, if .deg f = d, then 
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. d(f ) = gcd{f (0), f (1), . . . , f (d)} = gcd{b0, b1, · · · , bd}.

Probability and Asymptotic Density In fact, the probability in Formula (1) is not  
really a probability since there is no probability neither on . Z nor on .Z[X] which 
corresponds to the intuition of an arithmetician (see for instance [5, § III.1.1]). This 
is an asymptotic density obtained by means of the height. 

Recall that the height .H(f ) of a polynomial .f (X) = ∑d
k=0 ckX

k ∈ Z[X] is 
defined by: 

. H(f ) = max{ |ck| | 0 ≤ k ≤ d } .

Let T be a subset of .Z[X]. The probability that a polynomial .f ∈ Z[X] of degree 
.≤ d and height .≤ H belongs to T is clearly the rational number: 

. 
Card{ f ∈ T | deg f ≤ d,H(f ) ≤ H }

Card{f ∈ Z[X] | deg f ≤ d,H(f ) ≤ H } .

Then, for a fixed integer d, the density of T in the set of integer polynomials with 
degree less or equal to d is defined as the limit of the previous rational numbers 
when the height tends to infinity, of course if such a limit exists: 

. “Prob” (f ∈ T | deg f ≤ d ) = lim
H→+∞

Card{ f ∈ T | deg f ≤ d,H(f ) ≤ H }
Card{f ∈ Z[X] | deg f ≤ d,H(f ) ≤ H } .

Finally, the asymptotic density of T in .Z[X] is defined as the limit of the previous 
density when the degree d tends to infinity, once more if such a limit exists: 

. “Prob” ( f ∈ T | f ∈ Z[X] ) = lim
d→+∞ “Prob” ( f ∈ T | deg f ≤ d ) .

Notation We will systematically write Prob to designate a classical probability 
while .“Prob” will designate an asymptotic density obtained by means of a limit. 

Of course, Turk was aware of this fact, but at some step of his proof he argues 
as if he considered ‘real probabilities’. Let us be more precise. He proved first by 
means of the height that whatever the positive integers d and . δ: 

.“Prob”(f (Z) ⊆ δZ | f ∈ Z[X], deg f ≤ d ) =
d∏

k=0

gcd(k!, δ)
δ

. (2) 

Then, from the formula 

.Prob ( f (Z) ⊆ δZ | deg f ≤ d ) =
∞∑

t=1

Prob ( d(f ) = t × δ | deg f ≤ d ) (3)
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and, using Möbius inversion formula, he obtained that: 

. Prob (d(f ) = δ | deg f ≤ d) =
+∞∑

t=1

μ(n) Prob ( f (Z) ⊆ t × δZ | deg f ≤ d )

(4) 

where . μ denotes the Möbius function . μ(t) =
⎧
⎨

⎩

1 if t = 1
(−1)r if t = p1 · · · pr .

0 else
But, as in Formula (3), we do not consider real probabilities, we don’t have in 

general the countable additivity. Thus, we have to be careful when considering limits 
as countable sums of limits. 

Second Comment on Turk’s Proof In the right hand side of Formula (2), we can 
recognize the inverse of Kempner’s formula which gives the number of polynomial 
functions .ϕ : Z/δZ → Z/δZ of degree . ≤ d, namely [3]: 

.

d∏

k=0

δ

gcd(k!, δ) [Kempner, 1921] (5) 

where the functions . ϕ are induced by polynomials .f ∈ Z[X] of degree . ≤ d. 

There is a generalization of Kempner’s formula obtained by Manjul Bhargava 
which extends this formula, first by replacing the ring . Z by the ring of integers 
.OK of a number field K and the positive integer . δ by a proper ideal . I of . OK , and 
then, by considering polynomial functions not only from .OK/I to itself but also 
polynomial functions from any subset S of . OK to .OK/I. This suggests us to extend 
Turk’s formula by means of Kempner-Bhargava’s formula, and we obtain: 

.“Prob” ( d(S, f ) = OK | f ∈ OK [X] ) =
∏

p∈Max(OK)

(
1 − 1

N(p)νp(S)

)
(6) 

where .N(p) denotes the norm of . p that is, .Card(OK/p), while .νp(S) denotes the 
number of classes of S modulo . p. 

Recall that the fixed divisor of a polynomial .f ∈ OK [X] on a subset S of .OK is 
defined as the ideal of . OK generated by the values of f on . S :

. d(S, f ) = (f (S)) .

So, we first recall Kempner-Bhargava’s formula and then, step by step, we compute 
the aymptotic density of the polynomial functions whose fixed divisor on S is the 
whole ring . OK .
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2 Kempner-Bhargava’s Formula 

Notation Let K be a number field of degree n and denote by . OK its ring of integers, 
by . I a nonzero ideal of . OK , and by S an infinite subset of . OK . 

The first natural generalization of Kempner’s formula (5) is obtained by replac-
ing 

– the positive integer δ by a proper ideal I of OK , 
– the factorial number k! by the factorial ideal k!OK introduced by Zantema 

. k!OK
=

∏

p

p

∑
t≥1

⌊
k

N(p)t

⌋
[Zantema, 1982]

analogously to Legendre’s formula: k! = ∏
p∈P p

∑
t≥1

⌊
k 
pt

⌋
[Legendre, 1808], 

– the gcd of the numbers δ and k! by the gcd of the ideals I and k!OK
, that is, the 

ideal generated by these ideals, 
– the integers in the previous rational fractions by the norm of the corresponding 

ideals, that is the cardinality of the corresponding residue rings. 

Finally, the number of functions ϕ : OK/I → OK/I induced by polynomials 
f ∈ OK [X] of degree ≤ d should be 

. 

d∏

k=0

N(I)

N(I, k!OK
)

[Bhargava, 1997]

where N(I, k!OK ) denotes the norm of the ideal generated by I and k!OK
. 

In fact, Manjul Bhargava gave a powerful generalization of the previous factorial 
ideals k!OK

. For every infinite subset S of OK , he defined factorial ideals k!S 
associated to S which have many properties of the classical factorials. In general, 
there is no more an explicit formula for a subset as for the whole ring OK . 
Bhargava’s definition is of combinatorial nature but we can introduce these factorial 
ideals more easily by means of integer-valued polynomials. Let us consider the OK -
algebra formed by the integer-valued polynomials on S: 

. Int(S,OK) = {f ∈ K[X] | f (S) ⊆ OK }

and denote by Ik(S,OK) the fractional ideal formed by the leading coefficients of 
the polynomials of Int(S, OK) of degree ≤ k. Then, the factorial ideal k!S may be 
defined as the inverse of Ik(S,OK): 

.k!S = Ik(S,OK)−1 = { t ∈ K | t × Ik(S,OK) ⊆ OK } .
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With these factorial ideals, Bhargava obtained the following strong generalization 
of Kempner’s formula. 

Theorem 2.1 ([1, Theorem 5]) The number of functions ϕ : S → OK/I induced 
by polynomials f ∈ OK [X] of degree ≤ d is equal to 

.

d∏

k=0

N(I)

N( I, k!S)
(Bhargava, 1997) . (7) 

Note that, if νI(S) denotes the number of classes of S modulo I, then k!S ⊆ I for 
k ≥ νI(S). Consequently, for d ≥ νI(S)−1, the formula does not depend on d and 
is equal to 

. 

νI(S)−1∏

k=0

N(I)

N( I, k!S)
.

As it is very difficult to recognize this extension of Kempner’s formula in the 
statement of Theorem 5 of [1], it seems simpler to us to sketch a direct proof. 

Proof For every maximal ideal p dividing the ideal d!S × I, consider a p-ordering 
of S of length d, that is, a sequence ap,0, ap,1, . . . , ap,d of elements of S such that, 

. vp

(
k−1∏

l=0

(ap,k − ap,l)

)
= minx∈S vp

(
k−1∏

l=0

(x − ap,l)

)
(1 ≤ k ≤ d)

where vp denotes the valuation of K associated to the ideal p. 
By the Chinese remainder theorem, there exists a sequence b0, b1, . . . , bd of 

elements of OK such that 

. ∀k ∈ {0, 1, . . . , d} ∀p | d!S × I vp(bk − ap,k) > vp(d!S × I) .

Now, consider the polynomials 

. gk(X) = (X − b0)(X − b1) · · · (X − bk−1) (0 ≤ k < d).

By definition of p-orderings (cf. [2, § 2]),  

. ∀p | d!S × I ∀x ∈ S vp(gk(x)) ≥ vp(k!S) and vp(gk(ap,k) = vp(k!S) .

Every polynomial g(X) ∈ OK [X] of degree ≤ d may be written 

.g(X) =
d∑

k=0

ck gk(X) with ck ∈ OK . (8)
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Clearly, the following conditions (9) on the coefficients ck in (8) 

.∀k ≤ d ∀p | k!S × I vp(ck) ≥ vp(I) − vp(k!S) (9) 

are sufficient to imply that g(S) ⊆ I. Conversely, one may prove by induction on 
the degree of g that these conditions are necessary to have g(S) ⊆ I. 

Note that conditions (9) may also be written 

. vp(ck) ≥ max(0, vp(I) − vp(k!S)) = vp(I) − min(vp(I), vp(k!S)) ,

that is, 

. ck ∈ I × (I, k!S)−1 .

Thus, the functions from S to OK/I induced by two polynomials of OK [X] whose 
coefficients are congruent modulo I × (I, k!S)−1 are equal. We may impose to the 
ck’s to belong to a fixed system of representatives of OK modulo I× (I, k!S)−1 and 
then the representation of polynomial functions is unique. To count the cardinality of 
the set of polynomial functions it suffices to count, for each k ≤ d, the cardinality of 
the values taken by ck modulo I×(I, k!S)−1, that is, N(I×(I, k!S)−1) = N(I) 

N((I,k!S)) . 	


3 “Prob” (f (S)  ⊆ I | f ∈ OK[X], deg f ≤ d) 

We are going to compute asymptotic densities on the polynomial ring .OK [X]. As  
said previously, we should use the notion of height. In fact, we will use a notion 
which extends the height in the case of . Z and which is more manageable than the 
classical notion of height in number fields when computing our asymptotic densities. 
We call it the broadness. Using the fact that . OK is a free .Z-module, we define it by 
means of a .Z-basis of . OK . 

Definition 3.1 Let us fix some basis .(ei)
n
i=1 of the .Z-module . OK . With respect to 

this basis, the broadness of 

. • an element .x = ∑n
i=1 xiei of . OK is the integer . B(x) = max 1≤i≤n |xi |,

. • a polynomial .f (X) = ∑d
k=0 ckX

k ∈ OK [X] is the integer . B(f ) =
max 0≤k≤d B(ck) .

If we change the basis, we have another broadness . B ′. But these two measures 
of the size of an element x of . OK are equivalent since there exist constants . α and . β

such that 

.∀x ∈ OK α B ′(x) ≤ B(x) ≤ β B ′(x) .
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Thus, in the following, we will forget the choice of the basis and we consider a fixed 
basis. 

For elements, there are links with the norm: there exists a constant . γK only 
depending on K such that 

.∀x ∈ OK |N(x)| ≤ γK × B(x)n . (10) 

Indeed, .N(
∑n

i=1 xiei) is a homogeneous polynomial of degree n in the . xi’s. 
For polynomials, there are links with the norm of the content: 

.N(cont(f )) ≤ γK × B(f )n . (11) 

Recall that the content of a polynomial f is the ideal generated by its coefficients. 
Indeed, if .f (X) = ∑d

k=0 ckX
d then, for every k, one has . (c0, c1, . . . , cd) ⊆

(cont(f )), and hence, .N(cont(f )) ≤ |N(ck)|. 
Proposition 3.2 For every nonzero ideal . I of .OK and positive integers d and B, 

. Prob(f (S) ⊆ I | f ∈ OK [X], deg f ≤ d, B(f ) ≤ B ) =
d∏

k=0

N(I, k!S)

N(I)
+ ε(I, d, B).

where 

. |ε(I, d, B)| ≤ δd

N(I)d
× 1

B
(δd depends only on d, K and S ) .

Notation (for our Proofs) 

. P(I, d, B) = Prob ( f (S) ⊆ I | f ∈ OK [X], deg f ≤ d, B(f ) ≤ B ) .

Proof For the time of proof, as K and d are fixed, we will forget to say, in the 
notation, that the polynomials we consider have coefficients in . OK and degrees . ≤ d. 
Moreover, we let .N = N(I). 

In order to compute .P(I, d, B), we let  

. η(I, B) = # {f ∈ OK [X] | deg f ≤ d, B(f ) ≤ B, f (S) ⊆ I }.

Clearly, 

. P(I, d, B) = η(I, B)

η(OK,B)
= η(I, B)

(2B + 1)n(d+1)
.

On the other hand, we compute now the number of polynomial functions from 
S to .OK/I of degree .≤ d. To add elements of the ideal .NOK to the coefficients 
of a polynomial f does not change the values of f modulo . I since N belongs to
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. I. Indeed, for each prime . p of .OK lying over a prime number p, p belongs to . p, 
and hence, .N(p) = pf ∈ p. Consequently, if .B ≥ N , the polynomials f such that 
.B(f ) ≤ B induce all the polynomial functions from S to .OK/I. 

Thus, when B is a multiple of N , say  .λN where .λ ∈ N∗, every polynomial 
function from S to .OK/I of degree .≤ d is induced by a polynomial . f with 
coefficients in .OK/(λN), that is, a polynomial . f belonging to the .OK -module 
.Mλ = (OK/(λN) )[X]d formed by the polynomials of degree .≤ d. Two such 
polynomials . f and . g induce the same polynomial function if and only if their 
difference induces the null function, that is, belongs to the sub-.OK -module . Nλ

formed by the polynomials with values in .I = I/(λN). 
Consequently, the cardinality of the set of polynomial functions from S to . OK/I

of degree .≤ d is equal to .
#Mλ

#Nλ
. Let us introduce another notation: 

. η∗(I, λN) = #Nλ = # {f ∈ (OK/(λN)[X]d | f (S) ⊆ I}.

In particular, 

. η∗(OK, λN) = #Mλ = (λN)n(d+1).

Thanks to Kempner-Bhargava’s formula (7), we then have: 

. ∀λ ∈ N∗ η∗(OK, λN)

η∗(I, λN)
=

d∏

k=0

N(I)

N( I, k!S)
.

But, there are obvious links between .η(I, B) and .η∗(I, λN). Indeed, 

. λN ≤ B < (λ + 1)N ⇒ η∗(I, 2λN) ≤ η(I, B) ≤ η∗(I, 2(λ + 1)N).

Consequently, assuming that .λN ≤ B < (λ + 1)N , we have  

. 
η∗(I, 2λN)

η∗(OK, 2λN)
· η∗(OK, 2λN)

η(OK,B)
≤ η(I, B)

η(OK,B)
≤ η∗(I, 2(λ + 1)N)

η∗(OK, 2(λ + 1)N)

· η∗(OK, 2(λ + 1)N)

η(OK,B)
,

that is, 

.

d∏

k=0

N( I, k!S)

N(I)
×

(
2λN

2B + 1

)n(d+1)

≤ P(I, d, B) ≤
d∏

k=0

N( I, k!S)

N(I)

×
(
2(λ + 1)N

2B + 1

)n(d+1)

.
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Letting 

.P(I, d, B) =
d∏

k=0

N(I, k!S)

N(I)
+ ε(I, d, B), (12) 

we get 

. − 1 +
(

2λN

2B + 1

)n(d+1)

≤ ε(I, d, B)
∏d

k=0
N(I,k!S)

N(I)

≤ −1 +
(
2(λ + 1)N

2B + 1

)n(d+1)

As the extreme sides of these inequalities are bounded by: 

. n(d + 1) × 2N × (2(B + N))n(d+1)−1

(2B + 1)n(d+1)
≤ 2n(d+1)n(d + 1)

N

B
,

we have . |ε(I, d, B)| ≤ δd

Nd × 1
B
where δd = 2n(d+1)n(d + 1) × ∏d

k=0 N(k!S) . 	

Corollary 3.3 For every nonzero ideal . I of .OK and every positive integer d, 

. “Prob”(f (S) ⊆ I | f ∈ OK [X], deg f ≤ d) =
d∏

k=0

N(I, k!S)

N(I)
.

4 “Prob”(d(S, f ) = I | f ∈ OK[X], deg f ≤ d) 

Notation 

. Q(I, d, B) = Prob( d(S, f ) = I | f ∈ OK [X], deg f ≤ d, B(f ) ≤ B ).

Now we are going to compute .Q(I, d, B) by means of .P(I, d, B). 

Lemma 4.1 For every nonzero ideal I and every positive integers d and B, 

.Q(I, d, B) =
∑

J finite⊂Max(OK)

(−1)Card(J ) P (I
∏

p∈J

p, d, B) (13) 

Moreover, this sum has only finitely many nonzero terms. 

Proof Clearly, 

. d(f, S) = I ⇔ f (S) ⊆ I and, for all p ∈ Max(OK), f (S) �⊆ Ip .

Consequently,
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. Q(I, d, B) = P(I, d, B, ) −
∑

p

P(Ip, d, B) +
∑

p�=q

P(Ipq, d, B) − · · ·

that is, 

. Q(I, d, B) =
∑

J⊂Max(OK)

(−1)Card(J ) P (I
∏

p∈J

p, d, B)

where the subsets J are finite. 
Let us prove that this sum on the subsets J is itself a finite sum. We use Bhar-

gava’s following result [2, Theorem 2] concerning the properties of its generalized 
factorials: 

.∀f ∈ OK [X] [ deg(f ) ≤ d ⇒ d(S, f ) | d!S × cont(f ) ] . (14) 

If follows from (14) that 

. f (S) ⊆ I
∏

p∈J

p ⇒ I
∏

p∈J

p
∣∣ d(S, f ) ⇒ I

∏

p∈J

p
∣∣ d!S × cont(f ) .

Thus, by (10): 

. N(I
∏

p∈J

p) ≤ N(d!S × cont(f )) ≤ N(d!S) × γK × B(f )n .

Finally, if P(I
∏

p∈J p, d, B) �= 0, then there exists at least a polynomial f ∈ 
OK [X] with deg f ≤ d and B(f ) ≤ B such that f (S)  ⊆ I

∏
p∈J p which shows 

that 

. P(I
∏

p∈J

p, d, B) �= 0 ⇒ N

⎛

⎝
∏

p∈J

p

⎞

⎠ ≤ γK × N(d!S)

N(I)
× Bn .

Consider the subset 

.JB =
⎧
⎨

⎩J ⊂ Max(OK) | N

⎛

⎝
∏

p∈J

p

⎞

⎠ ≤ γK × N(d!S)

N(I)
× Bn

⎫
⎬

⎭ . (15) 

The set JB is finite since there are at most finitely many prime ideals p of OK such 
that N(p) ≤ γK × N(d!S) 

N(I) × Bn and we have 

.Q(I, d, B) =
∑

J∈JB

(−1)Card(J ) P (I
∏

p∈J

p, d, B) . (16)
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We then deduce from (13) a second asymptotic density. 

Proposition 4.2 For every d, “Prob”( d(S, f  )  = I | f ∈ OK [X], deg f ≤ d )  

. =
∑

Jfinite

(−1)Card(J )
d∏

k=0

N((I
∏

p∈J p, k!S))

N(I
∏

p∈J p)
. (17) 

Proof First, note that the family on the right hand side is summable. Indeed, the 
general term satisfies the inequality: 

. 

d∏

k=0

N((I
∏

p∈J p, k!S))

N(I
∏

p∈J p)
≤ 1

N(I)d+1 ×
d∏

k=0

N(k!S) ×
∏

p∈J

1

N(p)d+1 .

As 

. 
∑

J

∏

p∈J

1

N(p)d+1 ≤
∑

a∈IK

1

N(a)d+1 = ζK(d + 1)

where IK denotes the set of entire ideals of OK and ζK denotes the Dedekind zeta 
function of the number field K , the  sum  

. 
∑

J

(−1)Card(J )
d∏

k=0

N((I
∏

p∈J p, k!S))

N(I
∏

p∈J p)

is well defined. By Equalities (12) and (16), we have 

. Q(I, d, B) =
∑

J∈JB

(−1)Card(J )

⎡

⎣
d∏

k=0

N((I
∏

p∈J p, k!S))

N(I
∏

p∈J p)
) + ε(I

∏

p∈J

p, d, B)

⎤

⎦

and 

. 

∣∣∣∣∣∣
Q(I, d, B) −

∑

J∈JB

(−1)Card(J )
d∏

k=0

N((I
∏

p∈J p, k!S))

N(I
∏

p∈J p)

∣∣∣∣∣∣
≤

. 

∣∣∣∣∣∣

∑

J∈JB

ε(I
∏

p∈J

p, d, B)

∣∣∣∣∣∣
≤ δd

N(I)d
× 1

B
×

∑

J

1
∏

p∈JB
N(p)d

≤ δd

N(I)d
× 1

B
× ζK(d).

This last inequality, that is true for d >  1, shows that, when B → +∞, Q(I, d, B)  
tends to the limit that we gave since ζK(d) is finite. 

For d = 1, we have to take care because ζK(1) is infinite. Using (15), we compute 
a more precise bound. First, we have:
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. 

∣∣∣∣∣∣

∑

J∈JB

ε(I
∏

p∈J

p, d, B)

∣∣∣∣∣∣
≤ δ1

N(I)
× 1

B
×

∑

J∈JB

1∏
p∈J N(p)

and 

. 
∑

J∈JB

1∏
p∈J N(p)

≤
∑

{a∈IK |N(a)≤ γK
N(I)

Bn}

1

N(a)
.

By [4, VI § 3 Theorem 3], there exits βK depending only on K such that 

. ∀n ∈ N an = #{a ∈ IK | N(a) ≤ n} ≤ βK n .

Consequently, for every M, 

. 
∑

{a|N(a)≤M}

1

N(a)
=

∑

1≤n≤M

an − an−1

n
= aM

M
+

∑

1≤n≤M−1

an

n(n + 1)
≤ βK(1 + lnM).

Finally, there exists a constant μ which depends only on K, S, and I such that 

. 

∣∣∣∣∣∣

∑

J∈JB

ε(I
∏

p∈J

p, d, B)

∣∣∣∣∣∣
≤ δ1

N(I)
× 1

B
× βK ×

(
1 + ln

(
γK

N(I)
Bn

))
≤ μ × lnB

B

and we may conclude in the same way. 	

By means of the extension of Möbius function to the ideals of number fields, 

Formula (17) may also be written in the following way: 

Proposition 4.3 For every d, one has 

.“Prob”( d(S, f ) = I | f ∈ OK [X], deg f ≤ d ) =
∑

a

μ(a)

d∏

k=0

N(Ia, k!S)

N(Ia)
(18) 

where 

.μ(a) =

⎧
⎪⎨

⎪⎩

1 if a = OK

(−1)r if a = p1 · · · pr where the pi ∈ Max(OK) are distinct

0 if not.



Probabilities and Fixed Divisors 167

5 “Prob” (d(S, f ) = OK | f ∈ OK[X], deg f ≤ d) 

We were interested in the case where the fixed divisor is one, that is, in fact, the 
whole ring . OK . In this case, the previous formula can be more easily written. 

Proposition 5.1 For every d, one has 

. “Prob” ( d(S, f ) = OK | f ∈ OK [X], deg f ≤ d ) =
∏

p

(
1 − 1

N(p)min(d+1, νp(S))

)

. = ζ−1
K (d + 1) ×

∏

p|d!S

1 − 1
N(p)νp(S)

1 − 1
N(p)d+1

.

where .νp(S) denotes the number of classes of S modulo . p. 

Note that the second factor is a finite product that can be quite easily computed. 

Proof Following Turk’s proof for the case of . Z, we first note that the arithmetic 
application: 

. I �→
d∏

k=0

N(I, k!S)

N(I)

is multiplicative with respect to . I, that is, 

. (I1,I2) = OK ⇒
d∏

k=0

N(I1I2, k!S)

N(I1I2)
=

d∏

k=0

N(I1, k!S)

N(I1)
×

d∏

k=0

N(I2, k!S)

N(I2)
.

Applying this result to the asymptotic formula (17), we obtain: 

. “Prob”( d(S, f ) = OK | f ∈ OK [X], deg f ≤ d )

. =
∑

J

(−1)Card(J )
d∏

k=0

N(
∏

p∈J p, k!S)

N(
∏

p∈J p)
=

∏

p

(
1 −

d∏

k=0

N(k!S, p)

N(p)

)

provided that the infinite product is absolutely convergent. 
Noticing that 

. (k!S, p) =
{

p if p|k!S
OK if p � k!S

and that, by definition of the factorial ideal . k!S (cf [1, §  2]),
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. p | k!S ⇔ k ≥ νp(S) ,

we have 

. 

d∏

k=0

N(k!S, p)

N(p)
=

∏

0≤k≤d, k<νp(S)

1

N(p)
= 1

N(p)min(d+1, νp(S))
.

As there is only a finite number of . p dividing . d!S , .∏d
k=0

N(k!S,p)
N(p)

= 1
N(p)d+1 for 

almost all . p. Consequently, the infinite product is absolutely convergent and is equal 
to: 

. 
∏

p

(
1 − 1

N(p)min(d+1, νp(S))

)
=

∏

p

(
1 − 1

N(p)d+1

)
×

∏

p|d!S

1 − 1
N(p)νp(S)

1 − 1
N(p)d+1

=

. ζ−1
K (d + 1) × ∏

p|d!S
1− 1

N(p)
νp(S)

1− 1
N(p)d+1

. 	


Corollary 5.2 

. “Prob”( (a, b) = OK | a, b ∈ OK ) = ζ−1
K (2) .

Proof To say that a et .b ∈ OK generate the ideal .OK is equivalent to say that 
the fixed divisor on .OK of the polynomial .aX + b of degree .≤ 1 is . OK . By  
Proposition 5.1, this “probability” is equal to 

. 
∏

p

(
1 − 1

N(p)min(2, νp(OK))

)
=

∏

p

(
1 − 1

N(p)2

)
= ζ−1

K (2) .

	

When d tends to infinity, we obtain: 

Theorem 5.3 For every infinite subset S of . OK , 

. “Prob” ( d(S, f ) = OK ] | f ∈ OK [X] ) =
∏

p∈Max(OK)

(
1 − 1

N(p)νp(S)

)

where .νp(S) denotes the number of classes of S modulo . p. In particular, 

.“Prob” ( d(OK, f ) = OK | f ∈ OK [X] ) =
∏

p∈Max(OK)

(
1 − 1

N(p)N(p)

)
.
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Proof Let .s �= s′ ∈ S. If  .νp(S) = 1, then .s − s′ ∈ p. Thus, .νp(S) ≥ 2 for all but 

finitely many . p and the infinite product .
∏

p

(
1 − 1

N(p)νp(S)

)
is absolutely convergent. 

Consequently, 

. lim
d→+∞

∏

p|d!S

(
1 − 1

N(p)νp(S)

)
=

∏

p

(
1 − 1

N(p)νp(S)

)
.

On the other hand, .limd→+∞
∏

p�d!S
(
1 − 1

N(p)d+1

)
= 1 since . 

∏
p

(
1 − 1

N(p)d+1

)

converges. Finally, 

. 
∏

p

(
1 − 1

N(p)min(d+1, νp(S))

)
=

∏

p|d!S

(
1 − 1

N(p)νp(S)

)
×

∏

p�d!S

(
1 − 1

N(p)d+1

)

tends to . 
∏

p

(
1 − 1

N(p)νp(S)

)
. 	


Example 5.4 Let . P be the subset of . Z formed by the prime numbers, then . νp(P) =
p for every prime p, and hence, 

. “Prob” ( d(P, f ) = 1 | f ∈ Z[X] ) =
∏

p∈P

(
1 − 1

pp

)
.

References 

1. M. Bhargava, P -orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. 
reine angew. Math., 490 (1997), 101-127. 

2. M. Bhargava, Generalized Factorials and Fixed Divisors over Subsets of a Dedekind Domain, J. 
Number Theory 72 (1998), 67–75. 

3. A.J. Kempner, Polynomials and their residue systems, Amer. Math. Soc. Trans., 22 (1921), 240– 
288. 

4. S. Lang, Algebraic Number Theory, Addison-Wesley, 1970. 
5. G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University 

Press, 1995. 
6. J. Turk, The fixed divisor of a polynomial, Amer. Math. Monthly 93 (1986), 282–286.



Modules over Trusses vs. Modules over 
Rings: Internal Direct Sums 

Devi Fitri Ferdania, Irawati, and Hanni Garminia 

1 Introduction 

In algebra, it is well-studied that many algebraic structures have many applications 
in real life, such as groups, rings, vector spaces, and modules over rings. Among 
each of the structures mentioned above, the existence of the neutral element (identity 
element) is essential. But, the fact that sometimes it is not easy to have or to find the 
neutral element of an algebraic structure occasionally restrains the construction of 
a structure. R. Baer [2] and H. Prufer [8] introduced a group-like structure without 
specifying the neutral element by changing the associative binary operation to the 
associative ternary operation that satisfies the Mal’cev identities. That structure is 
called a heap or herd. Moreover, they explained that a choice of any element in a 
heap is needed to convert its ternary operation into a binary operation and make the 
underlying set into a group structure. Later, the chosen element will play a role as 
the neutral element of the group retracts from its heap. By following the progression 
from a group to a ring, one can augment a heap by equipping it with an associative 
binary operation that distributes over the ternary heap operation. This structure is 
called a truss and was introduced by Brzezinski [3]. 

From an algebraist point of view, the introduction of trusses seems to be a natural 
progression when there is a concept of a group-like structure. Aforementioned, a 
choice of any element in a truss converts the underlying Abelian heap addition into 
a binary Abelian group addition. Interestingly, only some trusses can be viewed as 
rings that have no specified neutral element of their Abelian group addition (later, 
this type of truss will be called a ring-type truss and the chosen element will be its 
zero element), but also some of them can be viewed as a brace structure (later, this 
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type of truss will be called a unital truss or braceable truss) [4]. A set B together 
with two group operations: a commutative . + operation and . ∗ operation is called a 
left brace if it satisfies the brace distributive law. Specifically, for all . x, y, z ∈ B

. x ∗ (y + z) = x ∗ y − x + y ∗ z.

Braces, as introduced in [9], play an important role in the existence of the non-
degenerate solution of the Yang–Baxter equation. As one of the basic equations 
in mathematical physics, the Yang–Baxter equation is the foundation of the theory 
of quantum groups [7]. By having a truss structure that contains an identity element 
under its binary operation, one can convert it to have a brace structure. Consequently, 
the study of trusses turns out to be necessary and beneficial. 

As a natural continuation of truss studies, the definition of a module over a truss 
was introduced in [4]. This categorical construction on modules over trusses and 
its contrast to modules over rings are explored in [6]. Precisely, the product and 
coproduct of modules over trusses are constructed in [5]. It is shown that the direct 
sum of two non-empty Abelian heaps is isomorphic to the heap associated with the 
group’s direct sum retract of both heaps and . Z. This condition affects the internal 
direct sum of a module over a truss. As a consequence, the concept of internal direct 
sum of modules over trusses will have some differences from the one that arises in 
modules over rings. On modules over rings, internal direct sums are fundamental 
in the concept of decomposition of a module from its submodules. Moreover, the 
decomposition of a ring was derived from the internal direct sum of its regular 
modules. Hence, a rigorous definition of internal direct sum of modules over trusses 
is needed not only to know the difference between modules over rings but can be 
seen as the first step to building a concept of the decomposition of a truss. 

This chapter aims to construct a rigorous definition of the internal direct sum 
of modules over trusses, how it behaves, and contrast it to the internal direct sum 
of modules over rings. In general, the objective is to continue the study of the 
categorical properties of modules over trusses. 

The organization of this chapter is as follows. The first section is the introduction. 
Next, in the second section, we present some necessary definitions, notation, 
lemmas, and theorems that are used to construct the internal direct sums concept. 
The main results are in the third section and are divided into 2 parts. In its first 
subsection, the definition of internal direct sums of modules over trusses is presented 
together with an example. Some characteristics of the internal direct sum of modules 
over trusses are brought in the next subsection and are contrasted with what we 
usually have in modules over rings. 

2 Preliminaries 

It is assumed that the readers are familiar enough with the basic notions of various 
algebraic structures, such as groups, rings, and modules over rings. Below, some 
important preliminary definitions and terms are explained for convenience.
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2.1 Heaps 

Referring to [7, 8], and [3], a heap is a pair .(H, [−,−,−]) that consists of a non-
empty set H equipped with a ternary operation .[−,−,−] : H ×H ×H → H that 
satisfies the following two conditions, for all . v,w, x, y, z ∈ H

.[v,w, [x, y, z]] = [[v,w, x], y, z] and [x, x, y] = y = [y, x, x]. (1) 

The above equations are known as the associativity property and the Mal’cev 
identities, respectively. Regarding the commutativity, a heap .(H, [−,−,−]) is said 
to be Abelian if it is commutative, i.e., if for all .x, y, z ∈ H , 

. [x, y, z] = [z, y, x].

A heap morphism between two heaps .(H1, [−,−,−]1) and .(H2, [−,−,−]2) is 
a function .φ : H1 → H2 preserving the ternary operation, or simply . φ([x, y, z]1) =
[φ(x), φ(y), φ(z)]2 for all .x, y, z ∈ H1. 

A subset S of a heap .(H, [−,−,−]) is called a sub-heap if for .x, y, z ∈ S, 
.[x, y, z] ∈ S, i.e., it is closed under its ternary operation. In addition, a sub-heap S 
is said to be a normal sub-heap if there exists .e ∈ S such that for all .x ∈ H and 
.s ∈ S there exists .t ∈ S such that .[x, e, s] = [t, e, x]. Similar to groups, every sub-
heap of an Abelian heap is normal. The definition of quotient heaps is constructed 
by defining a relation . ∼S on a sub-heap S of a heap H as .x ∼S y if and only if there 
exists .s ∈ S such that .[x, y, s] ∈ S. This idea is introduced in [3], and it is proved 
there that this relation is an equivalence relation. 

Interestingly, a heap can be seen as a group without specifying its neutral 
element. This corresponds to the following lemma: 

Lemma 1 [7], [8] 

1. Let .(G,�, 1�) be a group. If a ternary operation is defined by 

.[−,−,−]� : G × G × G → G , [x, y, z] = x � y−1 � z, (2) 

then .(G, [−,−,−]�), often notated as .H(G), forms a heap. Moreover, every 
homomorphism of groups is a homomorphism of corresponding heaps. 

2. Let .(H, [−,−,−]) be a heap and .e ∈ H . If a binary operation is defined by 

. − �e− : H × H → H x, x �e y = [x, e, y], (3) 

then .(H,�e, e), often notated as .G(H, e), forms a group. Moreover, if . ϕ is a 
morphism of heaps from .(H1, [−,−,−]) to .(H2, [−,−,−]), then for all . e1 ∈ H1
and .e2 ∈ H2, the functions below
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. 
ϕ̂ : H1 → H2

x �→ [ϕ(x), ϕ(e1), e2]
and

ϕ̂◦ : H1 → H2

x �→ [e2, ϕ(e1), ϕ(x)]

are homomorphism of groups from .G(H1, e1) to .G(H2, e2). 

Lemma 1 leads to the concept of converting a group into a heap by specifying 
the ternary operation and, conversely, converting a heap into a group by specifying 
the binary operation and by choosing a specific element to be its neutral element. 
Thus, a heap can be seen as a group that has not specified its neutral element. Later, 
Lemma 1 will often be used in the main results. 

2.2 Trusses 

Following [3] and [4], a truss .(T , [−,−,−]) consists of a non-empty set T , a ternary 
operation .[−,−,−] making T into an Abelian heap, and an associative binary 
operation . · (denoted by juxtaposition) that distributes over .[−,−,−], that is, for 
all .w, x, y, z ∈ T satisfy 

.w[x, y, z] = [wx,wy,wz] and [x, y, z]w = [xw, yw, zw]. (4) 

Furthermore, a commutative truss is obtained if its binary operation is commu-
tative. Let .(T1, [−,−,−], .) and .(T2, [−,−,−], .) be trusses and .ϕ : T1 → T2 be 
a function. The function . ϕ is called a truss homomorphism if . ϕ is both a morphism 
of heaps with respect to the ternary operation and a morphism of semigroup with 
respect to the binary operation. Also, a sub-truss of a truss .(T , [−,−,−], .) is 
defined as a non-empty subset that is closed under both operations. 

Recall from [3], a truss .(T , [−,−,−], .) is called a unital truss, if .(T , .) forms 
a monoid. Additionally, an element .0 ∈ T is said to be an absorber if it satisfies 
.x0 = 0 = 0x for all .x ∈ T . It is easy to prove that if a truss has an absorber, then it 
is a unique element. 

It has already been mentioned in the introduction section that trusses interpolate 
between two other algebraic structures, rings and braces. Ergo, it is interesting to 
observe the types of trusses that have a close relationship to either rings or braces. 

Lemma 2 [4, Lemma 3.9] Let .(T , [−,−,−], .) be a truss, and . +e denotes a binary 
operation obtained from the ternary operation such that .x +e y = [x, e, y]. 
1. If T is a unital truss with 1 as its identity element, then for all .x, y, z ∈ T the 

binary operations . +1 and . · satisfy 

.x(y +1 z) = (xy) −1 x +1 (xz) and (y +1 z)x = (yx) −1 x +1 (zx), (5) 

which are the left and right brace distributive laws.
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2. If T contains an absorber 0, then for all .x, y, z ∈ T the binary operations . +0
and . · satisfy 

.x(y +0 z) = (xy) +0 (xz) and (y +0 z)x = (yx) +0 (zx). (6) 

Thus, .(T ,+0, .) forms a ring structure. 

By the above lemma, a unital truss can be seen as braceable or a brace-type 
structure, whereas a truss that contains an absorber is a ring-type structure. 

Let .(H, [−,−,−]) be an Abelian heap. According to [3, Proposition 3.38], the 
set of all endomorphism of .(H, [−,−,−]), denoted as .E(H), is a truss with the 
following operation, for all . α, β, γ ∈ E(H)

. [α, β, γ ] : H → H and x �→ [α(x), β(x), γ (x)]

and the composition function. By this fact, the action from a truss to an Abelian 
heap is feasible and leads to the concept of modules over trusses. 

2.3 Modules over Trusses 

From the previous subsections, it can be seen that rings and trusses have many 
similarities. Interestingly, the behaviors of modules over them are not alike. To 
begin with, let .(T , [−,−,−], .) be a truss. From [3, Definition 4.1], an Abelian heap 
.(M, [−,−,−]) together with a morphism of trusses .ϕM : T → E(M) resulting in a 
triple .(M, [−,−,−], ϕM) is called a left T -module. In another way, if .t 	m denotes 
.ϕ(t,m), then for all .t1, t2, t3 ∈ T and .m1,m2,m3 ∈ M: 

1. .(t1t2) 	 m1 = t1 	 (t2 	 m1). 
2. .t1 	 [m1,m2,m3] = [t1 	 m1, t1 	 m2, t3 	 m3]. 
3. .[t1, t2, t3] 	 m1 = [t1 	 m1, t2 	 m1, t3 	 m1]. 

In addition, the morphism . ϕM satisfying properties 1, 2, 3 is called the action of 
truss T on M . Thus, for convenience, a left T -module M can be written as a module 
.(M, ϕM) over T or simply a module M over T if the morphism is clear. 

The definition of a right T -module follows symmetrically by changing the 
morphism to be .ϕ◦

M : T op → E(M), where .T op is the opposite truss of T in 
which its binary operation is opposite to the binary operation of T . 

Now, let M be a left  T -module. An element .e ∈ M is said to be an absorber if it 
satisfies 

. t.e = e

for all .t ∈ T . Further, denote by .Abs(M) the set of all absorbers contained in M .
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Fig. 1 Homomorphism of 
modules diagram T � M 

i ��j 

jM jN 

j 

T � N 

NM 

Let .(M, ϕM) and .(N, ϕN) be left T -modules. A module homomorphism from 
M to N is a homomorphism of heaps .ϕ : M → N that makes the above diagram 
commutative (Fig. 1). 

The set of all module homomorphisms from M to N will be denoted as 
.HomT (M,N). 

Now, to define the coproduct of modules over trusses, a clear construction of the 
coproduct of Abelian heaps is needed, and this is explained in [4]. First, let X be 
a non-empty set and define .W(X) as a set of reduced words in X. A reduced word 
from set X is an odd-length word whose letters are from the elements of X and 
which contains no consecutive identical letters. 

.W(X) := {x1x2 . . . x2n+1|xi 
= xi+1}, (7) 

where .xi ∈ X, for all .1 ≤ i ≤ 2n + 1 and .n ∈ N. Every word should contain 
an odd number of elements since we will equip this set with a ternary operation. 
Moreover, it cannot have consecutive letters with the same elements since it should 
satisfy the Mal’cev identities property. Also, define the opposite of a reduced word 
.w = x1x2 . . . x2n+1 as .w◦ = x2n+1...x2x1. 

For the ternary operation, define .[−,−,−] on .W(X) as a grafting and pruning 
operation. This means, given words .u, v,w ∈ W(X), then .[u, v,w] is obtained 
by concatenating .u, v◦, w and systematically removing all pairs of the consecutive 
similar letter. Furthermore, one can easily check that this operation satisfies asso-
ciativity and the Mal’cev identities properties. Thus .(W(X), [−,−,−]), denoted as 
.H(X), forms a heap, and it is proven in [4, Lemma 3.1] that this heap is a free heap. 

The next construction involves making the free heap .H(X) to be commutative 
to form an Abelian free heap. A free Abelian heap of a set X, denoted as .A(X), is  
constructed by defining the set of all symmetric words of odd length in which no two 
consecutive letters are the same. Consequently, a symmetric word can be defined as 
follows: 

.

w = : x1y1x2y2 . . . ynxn+1 :
= {xτ(1)yσ(1)xτ(2)yσ(2) . . . yσ(n)xτ(n+1)|τ ∈ Sn+1 and σ ∈ Sn},

(8) 

where .xi, yi ∈ X. This construction makes .: w◦ :=: w :, and this will lead to the 
commutative property. Furthermore, a symmetric word is said to be a symmetric 
reduced word if the set contains only reduced words. The set of all symmetric 
reduced words of a set X is denoted by .W(X). Thus, together with a ternary
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Fig. 2 Universal property of 
coproduct diagram jA 

iA iB 

jB 

H 

BA A B  

operation obtained by concatenating the representatives of symmetric reduced 
words and symmetric pruning, it results in a free Abelian heap .A(X). 

The direct sum or coproduct of Abelian heaps can be constructed as follows. 
Let .(A, [−,−,−]A) and .(B, [−,−,−]B) be Abelian heaps. Apply the ternary 
operations of A and B to the free Abelian heap .A(A � B) of disjoint union of 
sets A and B whenever possible to reduce the words. Specifically, fix any element 
.e ∈ A(A � B) and form a sub-heap . Ce of the .A(A � B) generated by 

. [[a, a′, a′′], [a, a′, a′′]A, e] [[b, b′, b′′], [b, b′, b′′]B, e],

where .a, a′, a′′ ∈ A, .b, b′, b′′ ∈ B, and .[−,−,−] is the ternary operation in . A(A �
B). One can prove that . Ce forms a normal sub-heap; thus we can form a quotient 
heap .A(A�B)/Ce. This quotient heap is the coproduct of A and B since it satisfies 
the universal property of coproduct as stated below. 

Proposition 1 [5, Proposition 3.7] Let .A,B and H be Abelian heaps. Suppose that 
.iA : A → A � B and .iB : B → A � B are the inclusion maps. Then .A � B is a 
coproduct in the category of Abelian heaps (Fig. 2). 

Proof Choose .ϕ : A � B → H to be .ϕA � ϕB in the sense . ϕA � ϕB(a) = ϕA(a)

whenever .a ∈ A and .ϕA � ϕB(b) = ϕB(b) whenever .b ∈ B and then extend this 
definition letter-by-letter for the remaining elements of .A � B. ��

Explicitly, the elements of .A � B as a quotient heap can be specified as follows. 

Proposition 2 (5, Proposition 3.6) Let A and B be Abelian heaps: 

1. The direct sum of A and B contains only three types of elements (symmetric 
reduced words) that are: 

a. The single-letter words from the element of A or the element of B, i.e., . a ∈ A

and .b ∈ B. 
b. The triple-letter words in the form of either .: abb′ : or .: aa′b, where . a, a′ ∈ A

and .b ∈ B with .a 
= a′ and .b 
= b′. 
c. The alternating words .: a1b1a2 . . . anbnan+1 and .b1a1b2 . . . bnanbn+1, where 

.ai ∈ A and .bi ∈ B. 

2. By fixing any .eA ∈ A and .eB ∈ B, the triple-letter words and the alternating 
words in the first statement can be written as: 

a. The triple words: .: abeB : and .: baeA :.
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b. The alternating words: .abeAeB . . . eAeBeA : and .: baeBeA . . . eBeAeB :. 
Interestingly, despite the seemingly similar construction between heaps and 

groups, the coproduct of heaps is not isomorphic to the heap associated with the 
coproduct of groups retract from those heaps, i.e., . A � B � H(G(A, eA) ⊕
G(B, eB)). This follows the proposition below. 

Proposition 3 [5, Proposition 3.9] Let A and B be Abelian heaps, for any . eA ∈ A

and .eB ∈ B, and then 

.A � B ∼= H(G(A, eA) ⊕ G(B, eB) ⊕ Z). (9) 

This fact makes a significant difference between the coproduct of modules over 
trusses and over rings. In addition, the existence of . Z in Proposition 3 analogous to 
the types of elements in .A�B as shown in Proposition 2, especially for the existence 
of alternating elements. The alternating part of .A � B is often called the tail part. 

By specifying the action from a truss, one can define the coproduct of modules 
over a truss. Let M and N be left modules over a truss T whose action is notated 
by a juxtaposition. The coproduct of T -modules M and N is defined by fixing any 
.em ∈ M and .en ∈ N , and for all .t ∈ T , and defining the action on the coproduct 
heap .M � N letter-by-letter as follows: 

. t. : mneMeNeM . . . eMeNeM : := : (t.m)(t.n)(t.eM)(t.eN)(t.eM) . . .

(t.eM)(t.eN)(t.eM) : .

Generally, if .(Mα)α∈A is an indexed set of left modules over a truss T , then for 
each . t ∈ T

. 

ϕt
α : Mα →�

α∈A

Mα

m �→ t.m,

which is a homomorphism of heaps. Thus, the family .(ϕt
α)α∈A can be extended to 

.�α∈A ϕt
α : �α∈A Mα → �α∈A Mα . So that, there is an action from T that is 

. 

T ×�
α∈A

Mα �→�
α∈A

Mα

(t,m) �→�
α∈A

ϕt
α(t,m),

and it makes .�α∈A Mα a left  T -module.
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3 Main Results 

Throughout this section, the symbol . � denotes the coproduct of modules over 
trusses. Meanwhile, the symbol . ⊕ is related to the coproduct of modules over rings. 

3.1 Internal Direct Sums of Modules over Trusses 

Before the internal direct sums of modules over trusses are constructed, consider 
the definition of internal direct sums of modules over rings [1]. Let N be a left  
module over a ring R and .N1, N2 be its R-submodules. Suppose that . ι1 : N1 → N

and .ι2 : N2 → N are the inclusion maps. Then, the R-module N is said to be the 
internal direct sum of its submodules . N1 and . N2, denoted by .N = N1 ⊕ N2, if  
.ι = ι1 ⊕ ι2 is an isomorphism. A diagram that illustrates this condition is given in 
Fig. 3. 

Furthermore, if a module over a ring is the internal direct sum, then every element 
of the module can be written uniquely as the sum of elements from its submodules. 
This phenomenon also appears equivalently in the other algebraic structures. In this 
sense, the internal direct sum for a module over a truss is defined as follows. 

Definition 1 Let M be a T -module and .M1,M2 be its T -submodules. Suppose that 
.i1 : M1 → M and .i2 : M2 → M are the inclusion maps. Then, the T -module 
M is said to be the internal direct sum of its submodules . M1 and . M2 denoted by 
.M = M1 � M2 if .i = i1 � i2 is an isomorphism. 

For convenience, see the diagram Fig. 4. More generally, suppose that . (Mα)α∈A

is an indexed set of submodules of a left T -module M , where .α ∈ A a set of index. 
Let .iα : Mα → M be inclusion maps. Generalizing the definition stated above, M 
is the internal direct sum of its submodules .(Mα)α∈A if the coproduct morphism 

Fig. 3 Internal direct sums of 
modules over rings diagram 

N1 

i1 

i 

i2 
N1 

N2 

N2N 

Fig. 4 Internal direct sums 
of a module over a truss

M1 

MM1 

M2 

M2 

i1 i2 

i 
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.i =�
A

iα :�
A

Mα → M (10) 

is an isomorphism. 
As previously mentioned, the existence of the tail part on the coproduct of heaps 

forces the coproduct of heaps to not be isomorphic to the heap associated with 
the coproduct of groups retracts from both heaps. The tail part is the main reason 
that makes the behavior of the internal direct sum of a module over a truss behave 
differently from what is familiar with a module over a ring. 

To begin with, consider an interesting example below. Consider a module whose 
heap is associated with a group of integers over a unital truss. To be specific, 
consider a unital truss .(T , [−,−,−]T , ∗) where its identity is denoted by 1 (it is 
still valid if .T = {1} is chosen). Let .H(Z) be an Abelian heap associated with the 
group of integers with the following ternary operation: 

.[x, y, z] = x − y + z (11) 

for all .x, y, z ∈ H(Z). Define the action of T to .H(Z) as 

.t 	 x = x (12) 

for all .t ∈ T and .x ∈ H(Z). Observe that for all .t, t ′, t ′′ ∈ T and .x, y, z ∈ H(Z): 

• .(t ∗ t ′) 	 x = x = t 	 x = t 	 (t ′ 	 x). 
• .t 	 [x, y, z] = [x, y, z] = [t 	 x, t 	 y, t 	 z]. 
• .[t, t ′, t ′′]T 	 x = x = [x, x, x] = [t 	 x, t ′ 	 x, t ′′ 	 x]. 
• .1 	 x = x. 

Thus, .H(Z) is a T -module. 
Now, consider two subsets of .H(Z) that are the singleton . {0} and . {1}. Since every 

singleton forms a sub-heap then so for . {0} and . {1}. It is clear that the action from 
T is closed on both sub-heaps. Thus, . {0} and . {1} are the T -submodules of .H(Z). 
Therefore, according to Proposition 2, the elements of .{0} � {1} are: 
• Single elements: 0 and 1. 
• Alternating elements: Let .n ∈ N: 

– Element 1 appears n times, i.e., 

. : 01010 . . . 010 : = [[[[0, 1, 0], 1, 0], . . . ], 1, 0] = −n.

– Element 0 appears n times, i.e., 

.: 10101 . . . 101 : = [[[[1, 0, 1], 0, 1], . . . ], 1, 0] = n + 1.
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The coproduct .{0} � {1} contains no triple elements type since by the Mal’cev 
identities .[0, 1, 1] = 0 and .[1, 0, 0] = 1 that are the single elements. Thus, there is 
an isomorphism from .{0} � {1} to .H(Z) as a T -module. Ergo, .H(Z) is the internal 
direct sum of its submodules . {0} and . {1}. 

The above example shows that a module of integer over a unital truss with the 
given action can be decomposed by its two singleton submodules. This phenomenon 
is rarely seen on modules over rings since the direct sum of two singleton 
submodules only produces finite elements. Meanwhile, on modules over trusses, 
it is possible to produce an infinity of elements from the coproduct. Moreover, 
the existence of the tail part in the direct sum of two singleton submodules over 
a truss makes it possible to reach all elements of its module. This example works 
well since all elements of T -module .H(Z) form absorbers. Other than that, this 
example cannot be converted into a module over a ring, since T is a unital truss. 
Consequently, it will not form a ring if the Abelian heap structure is converted into 
the Abelian group. 

3.2 Modules over Trusses vs. Modules over Rings 

It is well-known that in modules over rings, a left R-module N is the internal direct 
sum of its submodules .N1, N2 if and only if .N1, N2 are independent and span N . 
To be specific, . N1 and . N2 are said to be independent if .N1 ∩ N2 = {0} where 
0 is the neutral element of the Abelian group N , whereas it is said to be span N 
if .N1 + N2 = N . This bi-implication works well since the independency of the 
submodules implies injectivity, while span submodules imply the surjectivity of the 
coproduct homomorphism. 

Therefore, it is interesting to observe this characteristic on modules over trusses. 
Remember that the neutral element of an Abelian heap structure of a module is not 
specified, and the operation is ternary. In consequence, the definition of spanning 
submodule is slightly different compared to what we have on modules over trusses. 
So are independent submodules. 

Note that the initial object in the category of modules over trusses is an 
empty set [3]. Hence, the submodules of a module over a truss are said to be 
independent modules if the intersection is empty. Moreover, define the addition 
of two submodules as the image of the coproduct of their inclusion maps. For 
example in the case of two submodules, if .M1,M2 are T -submodules of M , then 
.M1 +M2 = Im(i1� i2), where .i1, i2 are the inclusion maps defined in Definition 1. 

Definition 2 Let M be a left T -module and .M1,M2 be its T -submodules. Submod-
ules . M1 and . M2 are said to be independent if they satisfy .M1 ∩ M2 = ∅, whereas 
. M1 and . M2 are said to be span M if they satisfy .M1 + M2 = M . 

In general, a set of indexed submodules .(Mα)α∈A of a left T -module M is said 
to be independent if for all .α ∈ A
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. Mα ∩ (
∑

β 
=α

Mβ) = ∅.

Note that it is possible for .(Mα)α∈A to be independent in pairs without being 
independent, whereas it is said to be span M if 

. 

M =
∑

α∈A

Mα

= Im(�
α∈A

iα) = Im(i).

Now, first observe the relation between internal direct sums with the above 
definition of spanning and independent submodules. For convenience, observe for 
the case of two submodules below. 

Theorem 1 Let M be a left  T -module and .M1,M2 be its T -submodules. If . M =
M1 � M2, then . M1 and . M2 are independent and span M . 

Proof It is clear that .M = M1 + M2 since the coproduct morphism is onto. Then 
. M1 and . M2 span M . Suppose that .M1∩M2 
= ∅ and let .x ∈ M1∩M2, .m1 ∈ M1, and 
.m2 ∈ M2, where .m1 
= x 
= m2. Consider the alternating element on .M1 � M2. By  
Proposition 2, fix any .e1 ∈ M1 and .e2 ∈ M2, and then the tail part of any alternating 
words in .M1 � M2 can be written as the alternating of . e1 and . e2. Let  .e1 = x; then 
the construction of the coproduct of modules over a truss forces to reduce every 3-
letter words that come from the same direct summand. Thus, x as an element of . M2
makes the alternating element .m = : m1m2xe2x : to be 

. m = : m1m2xe2x : = [m1,m2, [x, e2, x]] = [m1,m2,m
′
2]

with .m′
2 = [x, e2, x] ∈ M2, whereas it can also be written as 

. m = : m1m2xe2x : = [m1, [m2, x, e2], x] = [m1,m
′′
2, x]

with .m′′
2 = [m2, x, e2] ∈ M2. As the consequence, 

. i([m1,m2,m
′
2]) = m = i([m1,m

′′
2, x]),

where i be the coproduct morphism. Hence, there will be an element .m ∈ M that 
has more than one pre-image in .M1 � M2. It is a contradiction since the coproduct 
morphism is injective. Then, .M1 ∩ M2 should be an empty set that means . M1 and 
. M2 are independent. ��

An interesting question is, does the converse hold true? Observe the heap 
of integers .H(Z, [−,−,−]) and a unital truss .T = ({1}, [−,−,−], ∗) where 
.[−,−,−] is obtained by converting the binary addition operation into ternary
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operation (see Eq. 11) and . ∗ is the ordinary binary multiplication operation. The 
action is similar to Eq. 12. Then, .H(Z) is a left T -module. Let . O(Z, [−,−,−])
be a heap of odd integers and .E(Z, [−,−,−]) be a heap of even integers and 0. 
It is clear that .O(Z) and .E(Z) are sub-heaps of .H(Z, [−,−,−]) and also they are 
closed under the T -action. Thus, .O(Z) and .E(Z) are T -submodules of .H(Z). 

Now, one can observe that .O(Z) ∩ E(Z) = ∅ and .O(Z) + E(Z) = H(Z) since 
every element in .H(Z) can be reached by the single elements of .O(Z) � E(Z). 

However, we have .[1, 2, 6] = 1− 2+ 6 = 5 and .5 ∈ O(Z). This means 5 can be 
written as a single element in .O(Z) itself and also as a triple element .: 126 :. Since 
not unique, then .H(Z) 
= O(Z)�E(Z). This indicates that the coproduct morphism 
i is not injective. Summing up, the converse of Theorem 1 is not true. 

Generalizing Theorem 1 for a family of T -submodules, we have the following. 

Theorem 2 Let .(Mα)α∈A be an indexed set of submodules of a left module M over 
a truss T . If .M = �α∈A Mα , then: 

1. .(Mα)α∈A span M . 
2. .(Mα)α∈A is independent. 
3. .(Mα)α∈A is independent for every finite subset .F ⊆ A. 
4. For every pair of indexed set .B,C ⊆ A, if .B ∩ C = ∅, then 

. (
∑

β∈B

Mβ) ∩ (
∑

γ∈C

Mγ ) = ∅.

Proof (1) It is clear that .(Mα)α∈A span M since the coproduct morphism is onto. 
(2,3,4) If their intersection is not empty, then the coproduct morphism will not be 
injective. ��

Another characteristic of the internal direct sum found in modules over rings is 
the unique expression of every element in the module. Specifically, let N be a left  
module over a ring R and .N1, N2 be its R-submodules. If .N = N1 ⊕N2, then every 
element .n ∈ N has a unique representation as 

. n = n1 + n2,

where .n1 ∈ N1 and .n2 ∈ N2. 
Whereas, in modules over trusses, the expression is unique as one of the element 

types mentioned in Proposition 2. In this section, a unique representation without 
depending on the types of the element will be searched for. To this aim, let M be a 
left module over a truss T and .M1,M2 be its submodules such that .M = M1 �M2. 
Fix .e1 ∈ M1 and .e2 ∈ M2. Define 

.

nei := : eiej eiej ei . . . eiej :
= [[. . . [[ei, ej , ei], ej , ei], . . . ], ei , ej ],
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where . ei appears n times, .i, j ∈ {1, 2}, and .i 
= j . 
Based on Proposition 2, the element of .M1�M2 is one of the following types: 

1. The single-letter words: 
It is either .m1 ∈ M1 or .m2 ∈ M2, and both elements can be written as 

. m1 = [m1, e2, e2] = [m1, e2, 1e2]

and 

. m2 = [m2, e1, e1] = [m2, e1, 1e1].

2. The triple-letter words: 
It is in the form of either .: m1e1e2 : or .: m2e2e1 :, and both elements can be 
written as 

. 

: m1e1e2 : = [[m1, e2, e2], e1, e2]
= [m1, e2, [e2, e1, e2]]
= [m1, e2, 2e2]

and 

. 

: m2e2e1 : = [[m2, e1, e1], e2, e1]
= [m2, e1, [e1, e2, e1]]
= [m2, e1, 2e1].

3. The alternating element: 
It is in the form of either .: m1m2e1e2e1...e1e2e1 :, where . e1 appears . n1 times, 
or .: m2m1e2e1e2...e2e1e2 :, where . e2 appears . n2 times. Both elements can be 
written as 

. 

: m1m2e1e2e1...e1e2e1 : =[[. . . [[m1,m2, e1], e2, e1], ...], e2, e1]︸ ︷︷ ︸
e1 appears n1-times

=[m1,m2, [[...[[e1, e2, e1], e2, e1], ...]e2, e1]
=[m1,m2, n1e1]

and 

.

: m2m1e2e1e2...e2e1e2 : =[[. . . [[m2,m1, e2], e1, e2], . . . ], e1, e2]︸ ︷︷ ︸
e2 appears n2-times

=[m2,m1, [[...[[e2, e1, e2], e1, e2], ...]e1, e2]
=[m2,m1, n2e2].
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It can be seen that there is a pattern for every types of element. Thus, the unique 
expression has been found and stated as follows. 

Theorem 3 Let .M = M1�M2. Fix any .e1 ∈ M1 and .e2 ∈ M2; then every element 
.m ∈ M has a unique representation as 

.m = [mi1,mi2 , nei], (13) 

where .i1, i2 ∈ {1, 2}, .mik ∈ Mik , and .i1 
= i2. ��
The last observation of the internal direct sums of a module over a ring is that 

it does not preserve the internal direct sum if the structure is being converted into 
a module over its truss. To be more precise, let .(R,+, ∗) be a ring; then by using 
Lemma 2, .T (R) = (R, [−,−,−]+, ∗) forms a truss. Also, let N be a left  R-module. 
If the Abelian group structure on N is changed to be an Abelian heap, then N forms 
a left .T (R)-module (see [4]), call it .T (N). Observe the following lemma. 

Lemma 3 Let R be a ring and N be a left R-module. If .N = N1 ⊕ N2, for  some  
. N1 and . N2 the R-submodules of N , then .T (N) 
= T (N1) � T (N2) as a left .T (R)-
module. 

Proof If .N = N1⊕N2, then .N1, N2 are independent submodules. Hence, it implies 
that .N1 ∩ N2 = {0N }, where . 0N is the identity element under addition of N . Thus, 
.T (N1) ∩ T (N2) 
= ∅. By Theorem 1, .T (N) 
= T (N1) � T (N2) as a T -module. ��
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Introduction 

A globalization of the concept of a valuation domain is obtained through the 
definition of a Prüfer domain (H. Prüfer, 1932), i.e., a domain whose localizations 
at prime ideals are valuation domains (recent developments on this topic are, for 
instance, [9, 16]). 

Prüfer v-multiplication domains further generalize the concept of a Prüfer 
domain. To define this class of rings, we first recall some notation and terminology. 

First, we recall some notation and terminology. Let D be an integral domain with 
quotient field K . Given a fractional ideal I of D, let  . I−1 := {x ∈ K | xI ⊆ D}.
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The divisorial closure of I is the fractional ideal .Iv := (I−1)−1, and the t-closure 
of I is the fractional ideal .It := ⋃

Jv , where J ranges among the finitely generated 
subideals of I . An ideal I is said to be divisorial (resp., a t-ideal) if either  . I = (0)
or .I = Iv (resp., either .I = 0 or .I = It ). We say that an ideal I of D is t-invertible 
if .(IJ )t = D, for some fractional ideal J of D. A  t-ideal I is said to be t-finite if 
there exists some finitely generated ideal J of D such that .I = Jt . 

An integral ideal I of D is called t-maximal if it is maximal among the proper 
t-ideals of D. It is well-known that t-maximal ideals are prime and for any domain 
D we have that .D = ⋂

M∈t−Max(D) DM , where .t − Max(D) denotes the set of all 
t-maximal ideals of D. We will denote by .t − Spec(D) the set of all prime ideals of 
D that are also t-ideals, and we will call them t-prime ideals. 

The notion of Prüfer v-multiplication domain (briefly, PvMD) was introduced 
to enlarge the class of Prüfer domains (for instance, integrally closed Noetherian 
domains of dimension greater than 1 are PvMD but not Prüfer). More precisely, an 
integral domain is a PvMD if and only if it is t-locally a valuation domain, i.e., each 
localization at a t-prime ideals is a valuation domain. Equivalently, a domain D is a 
PvMD if and only if each t-finite t-ideal is t-invertible while a domain D is Prüfer 
if and only if each nonzero finitely generated ideal is invertible. 

Interesting examples of PvMD’s, besides Prüfer domains, are, for instance, Krull 
domains and polynomial rings over PvMDs. 

We also recall that PvMDs are central to the theory of divisibility of integral 
domains; indeed a domain is GCD if and only if it is a PvMD with trivial class 
group (see [2]). 

There is a wide and very interesting literature on PvMD; for instance, [11, 
12, 14, 17]. In this short note we focus on some topological aspects of their t-
prime spectrum and on the contribution that P-J. Cahen, among others, gave to 
the characterization of when the integer-valued polynomial ring on a domain is a 
PvMD (see, in particular, Theorem 2). The second section is entirely dedicated to 
the connections between integer-valued polynomial rings and PvMD’s, with regard 
to the more general essential property. 

1 Some General Properties and the t-Finite Character 

A domain D is essential if it can be represented as an intersection of valuations 
overrings which are essential for D (i.e., they are localizations at some prime ideal 
of D). A prime ideal . p of D is called essential if . Dp is a valuation domain. Let . E(D)

denote the set of all the essential prime ideals of D. 
From the definition it follows that PvMD’s are essential domains. This immedi-

ately follows from the equality 

.D =
⋂

M∈t−Max(D)

DM
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and the fact that .DM (where .M ∈ t − Max(D)) is a valuation domain whenever D 
is PvMD. 

But the essential property for a domain D, in general, is too weak to force D to 
be a PvMD. Examples of this fact have been given in [14] and [5, Theorem 5.1]. In 
this last case, we will see in Sect. 2 that the authors use integer-valued polynomial 
rings. 

One of the first questions raised around the PvMD notion is related to the 
characterization of PvMD’s with the t-finite character. We recall that a domain 
D has the t-finite character if each nonzero element of D belongs at most to 
finitely many t-maximal ideals; this is equivalent to saying that the intersection 
.
⋂

M∈t−Max(D) DM is locally finite (i.e., each nonzero element of D is invertible 
in all but finitely many rings . DM ’s). An important class of domains with the t-
finite character is the class of Noetherian domains (see [15, Theorem 1.3]). M. 
Griffin in [11] showed that essential domains with the t-finite character are PvMDs. 
These domains are also known as Krull-type domains, i.e., domains of the type 
.D = ⋂

P∈P DP where .DP is a valuation domain and . P is a set of prime ideals of 
D such that and the intersection .

⋂
P∈P DP is locally finite. More precisely Griffin’s 

result ([11, Proposition 4, Theorems 5 and 7]) states the following equivalence: 

Theorem 1 Let D be an integral domain. The following conditions are equiva-
lent. 

(i) D is a Krull-type domain. 
(ii) D is a PvMD with t-finite character. 

The following question then arises from what we have seen: are there other 
interesting extra conditions that allow an essential domain to be a PvMD? This is the  
focus of the paper [8] in which a topological approach to this question is carried on 
by using the tool of ultrafilter limits of prime ideals and the constructible topology. 
We briefly recall some notions and basic results. 

For a ring R we denote, as usual, by 

. V (I) := {p ∈ Spec(R) | I ⊆ p}

the typical closed set of the Zariski topology (here I runs in the set of all ideals of 
R). If .f : R → S is a ring homomorphism, let .f � : Spec(S) → Spec(R) denote 
the canonical mapping defined by setting .f �(q) := f −1(q), for every prime ideal . q
of S. 

The constructible topology is the coarsest topology on .Spec(R) for which all 
quasi-compact open (in the Zariski topology) subsets of .Spec(R) are clopen sets. 
The closed subsets of .Spec(R), with respect to the constructible topology, are 
called proconstructible. By [1, Exercise 28 of Chapter 3] a subset X of . Spec(R)

is proconstructible if and only if .X = f �(Spec(S)), for some ring homomorphism 
.f : R → S. However, the previous characterization is not particularly useful in 
some applications. So in what follows we will recall an alternative way to describe
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proconstructible subsets of the spectrum of a ring, based on the notion of ultrafilter 
limit point. 

Proposition 1 Let R be a ring and let .Y ⊆ Spec(R). 

1. If . U is an ultrafilter on Y , then the subset 

. YU := {r ∈ R | V (r) ∩ Y ∈ U }

of R is prime ideal of R, called the ultrafilter limit point of Y with respect to . U
(see [5, Lemma 2.4]). 

2. Y is proconstructible if and only if .YU ∈ Y , for every ultrafilter . U on Y (see 
[10, Theorem 8] or [7, Corollary 2.17]). 

3. Let .Clc(Y ) denote the closure of Y , with respect to the constructible topology. 
Then 

. Clc(Y ) = {YU | U ultrafilter on Y }

(see [7, Remark 2.7 and Proposition 2.13]). 
4. If R is an integral domain, then .t − Spec(R) is proconstructible (see [5, 

Proposition 2.5]). 

In the case D is essential, we also have that the t-maximal ideals are ultrafilter 
limits of the prime ideals which are centers of the valuation overrings. In other 
words: 

Proposition 2 ([5, Proposition 2.8]) Let D be an essential domain and let . Y ⊆
E(D) be such that .D = ⋂

p∈Y Dp. Then 

. t − Max(D) ⊆ Clc(Y ).

The above proposition gives the intuition for the fact that an extra condition on 
essential domains which can make them to be PvMDs should involve ultrafilter 
limits points of families of t-ideals. 

The following theorem gives a possible answer to this question. 

Theorem 2 Let D be an integral domain. Then, the following conditions are 
equivalent. 

(i) D is a PvMD; 
(ii) D is an essential domain and there is an essential representation 

.V := {Dp | p∈ Y } of D for some .Y ⊆ Spec(D) such that .Clc(Y ) ⊆ E(D). 

As an example of application of the previous theorem, we show that any 
localization of a PvMD is still a PvMD. 

Corollary 1 ([14, Proposition 1.8]) Any ring of fractions of a PvMD is a PvMD.
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Proof First, recall that prime ideal of any domain D is an associated prime of D 
if it is minimal over an ideal of the type .(aD :D bD) := {x ∈ D | xb ∈ aD}, for  
some .a, b ∈ D satisfying .b ∈ D \aD. If .Ass(D) denotes the set of associated prime 
ideals of D, it is clear that .Ass(D) ⊆ t − Spec(D), since every associated prime is 
minimal over an integral divisorial ideal of D (each ideal of the type . (aD :D bD)

is, by definition, divisorial). 
In view of [3, Proposition 4], we have the equality 

. DS =
⋂

{Dp | p ∈ Ass(D) and p ∩ S = ∅},

and a fortiori .DS = ⋂{Dp | p ∈ t − Spec(D) and p ∩ S = ∅}, since . Ass(D) ⊆
t − Spec(D). Notice that the collection 

. {Dp | p ∈ t − Spec(D) and p ∩ S = ∅}

is an essential representation of . DS : indeed for every .p ∈ t − Spec(D), . Dp is a 
valuation domain, since D is a PvMD, and moreover .p∩ S = ∅ implies . (DS)pDS

=
Dp. If  .i : D → DS is the inclusion, then the mapping . i� : Spec(DS) → Spec(D)

is continuous and closed with respect to the constructible topology, by [1, Exercise  
29 of Chapter 3]. Thus 

. {p ∈ t − Spec(D) | p ∩ S = ∅} = i�(Spec(DS)) ∩ t − Spec(D)

is proconstructible, being an intersection of proconstructible subsets of .Spec(D). 
By Theorem 2 the conclusion is now clear. ��

2 Integer-Valued Polynomials 

Given a domain D with quotient field K , the integer-valued polynomial ring over 
D is defined as .Int(D) = {f (X) ∈ K[X] | f (D) ⊆ D}. A prime ideal . p is 
called to be an  int prime if .Int(D) 	⊆ Dp[X], and it is called a polynomial prime 
if .Int(D) ⊆ Dp[X]. In this case it is easily seen that .Int(D)p = Dp[X], where 
.Int(D)p := Int(D)D\p. It is well-known that if a prime ideal . p has infinite residue 
field, then it is a polynomial prime ([4, Proposition I.3.4]). 

If .Int(D) is a PvMD, then D is a PvMD too ([5, Proposition 1.10]). 
In general, as we will see further, the fact that D is a PvMD is not sufficient to 

get that .Int(D) is a PvMD but, however, .Int(D) is essential. 

Proposition 3 Let D be a PvMD. Then .Int(D) is essential. 

Proof We first recall the following well-known equality
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. Int(D) =
⋂

p∈t−Max(D)

Int(D)p

(see [11, Proposition 4] and [6, Corollaire 1]). 
For all the upper to zero of .Int(D) (i.e., the prime ideals . H of .Int(D) such that 

.H ∩ D = 0), the localizations of .Int(D) at these primes are localizations of .K[X], 
whence they are valuation domains, and .K[X] is exactly the intersection of all 
localizations of .Int(D) at the upper to zero primes. 

If . q is a t-polynomial prime (so, .Int(D)q = Dq[X]) ), then .qDq[X] is a t-prime 
and its contraction to .Int(D) is still a t-prime. Moreover, . Int(D)qDq[X]∩Int(D) =
Dq[X]qDq[X] = Dq(X), the  Nagata ring of . Dq, which is a valuation domain, and 
. Int(D)q = Dq[X] = Dq(X) ∩ K[X]

If . m is an int prime, for each prime ideal . M of .Int(D) above . m, we have that  
.Int(D)M is a valuation domain ([5, Lemma 31]). 

Thus, .Int(D) is the intersection of its localizations at the following primes: 

(i) uppers to zero; 
(ii) .qDq[X] ∩ Int(D), where . q is a t-maximal polynomial prime of D; 
(iii) primes above int primes . p. 

Since these localizations are valuation domains, .Int(D) is essential. 

A first result which describes domains D such that .Int(D) is a PvMD deals with 
domains D that are Krull-type. 

Theorem 3 ([19, Theorem 3.2]) Let D be a Krull-type domain. Then .Int(D) is a 
PvMD if and only if .Dp is one dimensional for each int prime ideal . p of D. 

The condition for int primes to be height-one is also necessary for the general 
case, when D is PvMD not necessarily Krull-type ([5, Proposition 1.7]). 

A complete characterization of domains D such that .Int(D) is PvMD has been 
given by Cahen, Loper, and Tartarone as follows: 

Theorem 4 ([5, Theorem 3.4]) Let D be a domain. Then .Int(D) is a PvMD if and 
only if the following conditions hold: 

(a) D is a PvMD; 
(b) each int prime ideal of D is height-one; 
(c) each nonzero polynomial t-prime ideal of D contains a finitely generated ideal 

which is not contained in any int prime ideal. 

Remark 1 Conditions (a) and (b) in the above theorem are analogous to the 
conditions given in Theorem 3 and, if D is Krull-type, condition (c) is automatically 
satisfied. Indeed, if . q is a polynomial prime of D, take any  .x ∈ q. Since the int 
primes are t-maximal ideals and D has the t-finite character, there are only finitely 
many int prime ideals of D containing x, say  .p1, · · · , ps . From (b),  . q cannot be 
contained in any . pi , .i = 1, · · · , s. For each .i = 1, · · · , s, choose .yi ∈ q\pi . Thus 
.(x, x1, · · · , xs) ⊆ q and it is not contained in any int prime.
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Remark 2 Using the characterization given in Theorem 4, it is possible to get a 
domain .Int(D) which is essential but not PvMD. This is what the authors do in 
[5, Example 5.1] by constructing a particular almost Dedekind domain D. By  
definition, an almost Dedekind domain always satisfies conditions (a) and (b) of 
Theorem 4, but this domain D does not verify condition (c); thus .Int(D) is not 
PvMD. Neverthless, .Int(D) is essential. 

This last fact is claimed in [5], but it is proved in more detail in [18]. Before this, 
another essential ring which is not a PvMD was constructed by W. Heinzer and J. 
Ohm many years before (see [14]) by using a very technical construction involving 
polynomial rings. 

The example given in [5, Example 5.1] also shows that conditions (a) and (b) of 
Theorem 4 do not imply condition (c). 

Let . �0 be the set of int prime ideals of D and . �1 be the set of polynomial prime 
ideals of D. We put .D0 := ⋂

p∈�0
Dp and .D1 := ⋂

p∈�1
Dp, whence we have that 

.D = D0 ∩ D1. By [5, Lemma 4.1], .Int(D) = Int(D0) ∩ D1[X]. 
If D is a PvMD, then both . D0 and . D1 are PvMDs. Moreover .D1[X] is a PvMD. 

From [5, Corollary 4.9], if .Int(D) is a PvMD, then .Int(D0) is Prüfer. The domain 
constructed in [5, Example 5.1] shows that, assuming that D is a PvMD, . Int(D0)

being Prüfer is not sufficient to get that .Int(D) is a PvMD. However, this works if 
D is Krull-type. 

Theorem 5 ([8, Theorem 3.1]) Let D be a Krull-type domain. Then .Int(D) is a 
PvMD if and only if .Int(D0) is Prüfer. 

It is possible to generalize Theorem 5 considering the well-behavior under 
localization (WBL) of .Int(D), which means that .S−1Int(D) = Int(S−1D), if  
S is a multiplicative subset of D. In particular, when .S = D\p, we have that 
.Int(D)p = Int(Dp). In some cases, when this last equality holds, we are able to 
describe the primes of .Int(D) above . p. For instance, if . Dp is a valuation domain, we 
have a complete description of the prime spectrum of .Int(Dp) and a good control 
of its localizations. These kind of arguments fit very well to the case of essential 
domains. 

It is well-known ([19, Proposition 2.3]) that if .D = ∩p∈PDp, where . P ⊆
Spec(D) and the intersection is locally finite, then .Int(D)p = Int(Dp), for each 
.p ∈ P . In particular, if D is Krull-type, then .Int(D)p = Int(Dp), for each t-maximal 
ideal . p of D. 

By replacing the Krull-type hypothesis with the weaker WBL condition, it is 
possible to obtain an analogous of Theorem 3 as follows: 

Theorem 6 ([8, Theorem 3.7]) With the notation above, let D be an integral 
domain such that .Int(D)p = Int(Dp), for each t-maximal ideal . p of D. Then . Int(D)

is a PvMD if and only if D is a PvMD and .Int(D0) is a Prüfer domain. 

It is easily seen that a locally essential domain is essential, but the property of 
being essential for a domain is not, in general, a local property. As far as we know,
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examples of essential, but not locally essential domains are not trivial. For instance, 
the reader can look at [13]. 

An interesting characterization of locally essential domains has been given by 
J. Mott and M. Zafrullah in [17]. Here, the authors define a P-domain to be a 
domain such that its localizations at associated primes are valuation domains. 
Since .Ass(D) ⊆ t − Spec(D), P-domains generalize well the notion of PvMD. 
In particular, [17, Proposition 1.1] states the following equivalence: 

Proposition 4 For a domain D the following conditions are equivalent: 

(i) D is a P-domain; 
(ii) D is an essential domain such that each ring of fractions of D is essential. 

A characterization of integer-valued polynomials that are locally essential is 
given in [18, Theorem 2.9]. 

Theorem 7 Let D be an integral domain. Then .Int(D) is locally essential if and 
only if D is locally essential and each int prime ideal of D is height-one. 

In [18, Section 1], it is shown that the domain constructed in [5, Example 5.1] is 
locally essential too. This domain is an example of a P-domain that is not PvMD. 

Acknowledgments The authors would like to thank the referee for his/her useful suggestions that 
helped to improve the presentation. 
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On the Subatomicity of Polynomial 
Semidomains 

Felix Gotti and Harold Polo 

2010 Mathematics Subject Classification Primary: 16Y60, 11C08; Secondary: 
20M13, 13F05 

1 Introduction 

A semidomain is an additive submonoid of an integral domain that is closed 
under multiplication and contains a multiplicative identity element. Let S be a 
semidomain, and set .S∗ := S \ {0}; that is, . S∗ is the multiplicative monoid of S. 
We say that S is atomic provided that every non-invertible element of . S∗ can be 
written as a finite product of atoms (i.e., irreducible elements). Factorizations in 
atomic domains have been systematically studied for more than three decades, 
considerably motivated by the landmark paper [2] by D. D. Anderson, D. F. 
Anderson, and M. Zafrullah. However, factorizations in the more general context 
of atomic semidomains have been investigated just recently by N. R. Baeth, S. 
T. Chapman, and the first author [3]. In the present paper, we investigate atomic 
properties that are weaker than being atomic in the setting of semidomains. We put 
special emphasis on the ascent of such properties from the semidomain S to the 
polynomial semidomain .S[x] and the Laurent polynomial semidomain .S[x±1]. 

Special cases of polynomial semidomains and Laurent polynomial semidomains 
have been the focus of a great deal of attention lately in the factorization the-
ory community. For instance, methods to factorize polynomials in .N0[X] were 
investigated by H. Brunotte in [7], and, more recently, F. Campanini and A. 
Facchini in [8] carried out a more systematic investigation of factorizations in 
the semidomain .N0[X]. More generally, semigroup semirings were studied by 
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V. Ponomarenko in [26] from the factorization perspective. The arithmetic of 
polynomial semidomains with coefficients in .R≥0 has also been considered; for 
instance, P. Cesarz, S. T. Chapman, S. McAdam, and G. J. Schaeffer in [9] studied 
the elasticity of .R≥0[X], where .R≥0 is the set of nonnegative real numbers. 

Positive semirings, that is, subsemirings of .R≥0, have been actively studied 
in the last few years. Factorizations in positive semirings consisting of rational 
numbers were considered in [10] by S. T. Chapman, M. Gotti, and the first 
author, and then in [1] by S. Albizu-Campos, J. Bringas, and H. Polo. The same 
semidomains were studied in [4] by Baeth and the first author in connection with 
factorizations of matrices. This, in turn, motivated the paper [3] by Baeth, Chapman, 
and the first author, where several examples of positive semirings were constructed. 
Positive semirings can also be produced as valuations of polynomial and Laurent 
polynomial semidomains, and such valuations have also been investigated recently: 
the arithmetic of factorizations of .N0[α], where . α is a positive algebraic number, 
was studied recently for rational valuations in [10] by Chapman, Gotti, and the first 
author and for algebraic valuations in [14] by J. Correa-Morris and the first author, 
and in [24] by N. Jiang, B. Li, and S. Zhu. On the other hand, the atomic structure of 
the algebraic valuations of the Laurent polynomial semidomain .N0[X±1] has been 
recently studied in [28] by Zhu. 

Following the terminology introduced by P. Clark in [11], we say that the 
semidomain S is a Furstenberg semidomain if every nonunit element in . S∗ is 
divisible by an atom. It is clear that each atomic semidomain is a Furstenberg 
semidomain. Furstenberg domains have been studied by N. Lebowitz-Lockard 
in [25] in connection with the properties of almost atomicity and quasi-atomicity, 
which we define in the next two paragraphs. In addition, Furstenberg domains have 
been recently considered in [22] by the first author and Zafrullah in connection 
with idf-domains (i.e., integral domains whose elements have only finitely many 
irreducible divisors up to associates). Finally, Furstenberg domains have been 
considered in [21, Section 5] by B. Li and the first author in the context of integer-
valued polynomials. In Sect. 3, we prove that the property of being Furstenberg 
ascends from the semidomain S to both .S[x] and .S[x±1]. We also construct an 
example of a Furstenberg semidomain that is neither an integral domain nor an 
atomic semidomain. 

The semidomain S is said to be almost atomic provided that, for every nonunit 
.b ∈ S∗, there exist atoms .a1, . . . , ak of . S∗ such that .a1 · · · akb factors into atoms in 
. S∗. Observe that each atomic semidomain is almost atomic. The notion of almost 
atomicity was introduced in [6] by J. G. Boynton and J. Coykendall, and it was 
later studied in parallel to various other subatomic properties in [25] by Lebowitz-
Lockard. In Sect. 4, we study almost atomicity in the context of semidomains. 
Unlike the Furstenberg property, we do not know whether the property of being 
almost atomic ascends in general from the semidomain S to either .S[x] or . S[x±1]
(see Question 4.3). We provide in Sect. 4 an example of an almost atomic 
semidomain that is not atomic as well as an example of an antimatter semidomain 
whose polynomial extension is almost atomic.
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As the notion of almost atomicity, that of quasi-atomicity was introduced in [6] 
and further studied in [25] in the context of integral domains. Motivated by this, we 
say that the semidomain S is quasi-atomic provided that, for every nonunit .b ∈ S∗, 
there exists an element a of . S∗ such that ab factors into atoms in . S∗. It follows 
directly from definitions that each almost atomic semidomain is quasi-atomic. 
In Sect. 5, we provide a simple ideal-theoretical characterization of quasi-atomic 
semidomains. In addition, as for the property of being almost atomic, we prove that 
the property of being quasi-atomic ascends from the semidomain S to both .S[x] and 
.S[x±1] under the same divisibility conditions referred to in the previous paragraph. 

2 Background 

In this section, we introduce the notation and terminology necessary to follow our 
exposition. Reference material on factorization theory and semiring theory can be 
found in the monographs [16] by A. Geroldinger and F. Halter-Koch and [18] by J.  
Golan, respectively. Throughout this paper, we let . P, .Z,Q, and . R denote the set of 
primes, integers, rational numbers, and real numbers, respectively. Additionally, we 
let . N denote the set of positive integers, and we set .N0 := {0} ∪ N. Given  . r ∈ R
and .S ⊆ R, we set  .S<r := {s ∈ S | s < r}, and we define .S>r and .S≥r in a similar 
way. For .m, n ∈ Z, we denote by .�m, n� the discrete interval from . m to n, that is, 
.�m, n� := {k ∈ Z | m ≤ k ≤ n}. 

2.1 Monoids 

A monoid1 is defined here to be a semigroup with identity that is cancellative 
and commutative. Since our interest lies in the multiplicative structure of certain 
semirings, we will use multiplicative notation for monoids unless we specify 
otherwise. For the rest of this section, let M be a monoid with identity 1. We 
set .M• := M \ {1}, and we let .U (M) denote the group of units (i.e., invertible 
elements) of M . In addition, we let .Mred denote the quotient .M/U (M), which 
is also a monoid. We say that M is reduced provided that .U (M) is the trivial 
group, in which case we identify .Mred with M . The  Grothendieck group of M , 
denoted here by .G (M), is the abelian group (unique up to isomorphism) satisfying 
the property that any abelian group containing a homomorphic image of M also 
contains a homomorphic image of .G (M). For a subset S of M , we let  . 〈S〉 denote 
the smallest submonoid of M containing S, and if .M = 〈S〉, then we say that S is a 
generating set of M .

1 The standard definition of a monoid does not assume the cancellative and the commutative 
conditions. 
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Puiseux monoids and positive monoids are used several times throughout this 
paper to construct needed examples. Following [20], a Puiseux monoid is simply an 
additive submonoid of .Q≥0. The class of Puiseux monoids is, therefore, a natural 
generalization of that consisting of numerical monoids (i.e., additive submonoids of 
. N0 up to isomorphism). Puiseux monoids account up to isomorphism for all rank-1 
torsion-free monoids that are not groups (see [15, Theorem 3.12.1]). Following [19], 
a positive monoid is an additive submonoid of .R≥0. It follows from the definitions 
that every Puiseux monoid is a positive monoid. 

For .b, c ∈ M , it is said that b divides c in M if there exists .b′ ∈ M such that 
.c = bb′, in which case we write .b |M c, dropping the subscript precisely when 
.M = (N,×). We say that .b, c ∈ M are associates if .b |M c and .c |M b. A  
submonoid N of M is divisor-closed if for each .b ∈ N and .d ∈ M the relation 
.d |M b implies that .d ∈ N . Let  S be a nonempty subset of M . An element .d ∈ M is 
called a common divisor of S provided that .d |M s for all .s ∈ S. A common divisor 
d of S is called a greatest common divisor of S if d is divisible by all common 
divisors of S. Also, a common divisor of S is called a maximal common divisor if 
every greatest common divisor of the set .S/d := {s/d | s ∈ S} belongs to .U (M). 
We let .gcdM(S) (resp., .mcdM(S)) denote the set consisting of all greatest common 
divisors (resp., maximal common divisors) of S. The monoid M is called a GCD-
monoid (resp., an MCD-monoid) if each finite nonempty subset of M has a greatest 
common divisor (resp., a maximal common divisor). It is clear that the inclusion 
.gcdM(S) ⊆ mcdM(S) holds, whence each GCD-monoid is an MCD-monoid. The 
converse does not hold in general, as the following easy example illustrates. 

Example 2.1 Let M be the numerical monoid .N0 \ {1}; that is, .M = 〈2, 3〉. The  set  
of common divisors of .{5, 6} in M is .{0, 2, 3}. As .2 �M 3 and .3 �M 2, it follows  that  
.gcdM(5, 6) is empty. However, the only common divisor of both sets . {5− 2, 6− 2}
and .{5− 3, 6− 3} is 0 and, therefore, .mcdM(5, 6) = {2, 3}. Indeed, one can readily 
argue that every numerical monoid is an MCD-monoid. 

An element .a ∈ M \ U (M) is called an atom if for all .b, c ∈ M the equality 
.a = bc implies that either .b ∈ U (M) or .c ∈ U (M). We let  .A (M) denote the set 
consisting of all atoms of M . Following Cohn [12] we say that M is atomic if each 
element in .M \U (M) can be written as a (finite) product of atoms, while following 
Coykendall, Dobbs, and Mullin [13], we say that M is antimatter if .A (M) is empty. 
One can readily check that M is atomic (resp., antimatter) if and only if .Mred is 
atomic (resp., antimatter). Assume for the rest of this paragraph that M is atomic. 
We let .Z(M) denote the free (commutative) monoid on .A (Mred). The elements of 
.Z(M) are called factorizations, and if .z = a1 · · · a� ∈ Z(M) for some . a1, . . . , a� ∈
A (Mred), then . � is called the length of z, which is denoted by . |z|. Let . π : Z(M) →
Mred be the unique monoid homomorphism satisfying that .π(a) = a for all . a ∈
A (Mred). For each .b ∈ M , the  sets  

. ZM(b) := π−1(bU (M)) ⊆ Z(M) and LM(b) := {|z| : z ∈ ZM(b)} ⊆ N0
(2.1)
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are of crucial importance to study the atomicity of M . When there seems to be no 
risk of ambiguity, we drop the subscript M from the notations in (2.1). Following [2] 
and [23], we say that M is a bounded factorization monoid if .L(b) is finite for all 
.b ∈ M . 

Following [11], we say that a monoid is Furstenberg provided that every nonunit 
has a divisor that is an atom. On the other hand, extending the terminology in [6], 
a monoid M is called almost atomic (resp., quasi-atomic) provided that, for every 
nonunit .c ∈ M , there exists .a1, . . . , ak ∈ A (M) (resp., .b ∈ M) such that . a1 · · · akc

(resp., bc) can be written as a product of atoms in M . 

2.2 Semirings 

A semiring S is a nonempty set endowed with two binary operations denoted by “. +” 
and “. ·” and called addition and multiplication, respectively, such that the following 
conditions hold: 

(1) .(S,+) is a monoid with its identity element denoted by 0; 
(2) .(S, ·) is a commutative semigroup with an identity element denoted by 1; 
(3) .b · (c + d) = b · c + b · d for all .b, c, d ∈ S. 

With notation as in the previous definition and for any .b, c ∈ S, we write . bc instead 
of .b · c when there seems to be no risk of confusion. It follows from conditions (1) 
and (3) in the definition of a semiring S that .0 · b = 0 for all .b ∈ S. A more general 
notion of a “semiring” S does not assume that the semigroup .(S, ·) is commutative. 
However, this more general type of algebraic objects is not of interest in the scope 
of this paper. A subset . S′ of a semiring S is a subsemiring of S if .(S′,+) is a 
submonoid of .(S,+) that contains 1 and is closed under multiplication. Observe 
that every subsemiring of S is a semiring. 

Definition 2.2 We say that a semiring S is a semidomain provided that S is a 
subsemiring of an integral domain. 

Let S be a semidomain. We set .S∗ := (S \ {0}, ·) and call it the multiplicative 
monoid of S. It is worth emphasizing that a semiring S may not be a semidomain 
even if . S∗ is a monoid; for instance, consider .{(0, 0)} ∪ (N × N) under the usual 
component-wise addition and multiplication. Following standard notation from ring 
theory, we refer to the units of the multiplicative monoid . S∗ simply as units of S, 
and we denote the set of units of S by . S×. We never consider in this paper the units 
of the monoid .(S,+), so the use of the term “unit” in the context of the semidomain 
S should not generate any ambiguity. In addition, we write .A (S) instead of . A (S∗)
for the set of atoms of the multiplicative monoid . S∗, while we let .A+(S) denote the 
set of atoms of the additive monoid .(S,+). Finally, for any .b, c ∈ S such that b 
divides c in . S∗, we write .b |S c instead of .b |S∗ c. 

Lemma 2.3 For a semiring S, the following conditions are equivalent.



202 F. Gotti and H. Polo

(a) The multiplication of S extends to .G (S) turning .G (S) into an integral domain. 
(b) S is a semidomain. 

Proof (a) . ⇒ (b): This is clear. 
(b) . ⇒ (a): Let S be a semidomain, and suppose that S is embedded into an 

integral domain R. We can identify the Grothendieck group .G (S) of .(S,+) with 
the subgroup .{r − s | r, s ∈ S} of the underlying additive group of R. It is easy 
to see then that .G (S) is closed under the multiplication it inherits from R, and it 
contains the multiplicative identity because .0, 1 ∈ S. Hence .G (S) is an integral 
domain having S as a subsemiring. �

We say that a semidomain S is atomic (resp., Furstenberg, almost atomic, quasi-
atomic) if its multiplicative monoid . S∗ is atomic (resp., Furstenberg, almost atomic, 
quasi-atomic). Similarly, we say that S is a bounded factorization semidomain 
(resp., a unique factorization semidomain) if  . S∗ is a bounded factorization monoid 
(resp., a unique factorization monoid). We let BFS and UFS stand for bounded 
factorization semidomain and unique factorization semidomain, respectively. A 
subset I of S is an ideal2 of S provided that .(I,+) is a submonoid of . (S,+)

and .IS ⊆ I . We say that an ideal I is prime if .I �= S and, for .b, c ∈ S, the  
containment .bc ∈ I implies that either .b ∈ I or .c ∈ I . Although a semidomain S 
can be embedded into an integral domain R, the semidomain S may not inherit any 
(sub)atomic property from R as, after all, the integral domain .Q[x] is a UFD but it 
contains as a subring the integral domain .Z+xQ[x], which is not even quasi-atomic 
(see [25, Lemma 17]). 

The set consisting of all polynomial expressions with coefficients in the semiring 
S is also a semiring, which we denote by .S[x] and call the semiring of polynomials 
over S. Additionally, if S is a semidomain embedded into an integral domain R, then 
it is clear that .S[x] is also a semidomain, and the elements of .S[x] are, in particular, 
polynomials in .R[x]. Consequently, when S is a semidomain all the standard 
terminology for polynomials can be applied to elements of .S[x], including constant 
polynomial, degree, order, and leading coefficient. Observe that . S∗ is a divisor-
closed submonoid of .S[x]∗ and, therefore, .S[x]× = S× and .A (S[x]) ∩ S = A (S). 
Following [27], we say that a nonzero polynomial in .S[x] is indecomposable if it is 
not a product of two nonconstant polynomials in .S[x]. 

Following the terminology in [3], we call a subsemiring of . R consisting of 
nonnegative numbers a positive semiring. The fact that underlying additive monoids 
of positive semirings are reduced makes them more tractable. The reader can 
check the recent paper [3] for several examples of positive semirings. The class 
of semidomains clearly contains those of integral domains and positive semirings.

2 Golan [18] defines an ideal in a more restrictive way: if I is an ideal of a semiring S, then by  
definition .I �= S. Consequently, any result we cite from [18] is interpreted here as a statement 
about the proper ideals of a semiring. 
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3 Furstenbergness 

In this section, we analyze under which conditions the Furstenberg property ascends 
from a semidomain to its semidomain of (Laurent) polynomials. 

The Furstenberg property is a relaxation of being atomic, and the reader can find 
interesting examples of non-atomic Furstenberg domains in [21, Section 5] and [25, 
Section 4]. We now construct an example of a Furstenberg positive semiring that 
is not atomic. In the construction, we use Lindemann-Weierstrass Theorem from 
transcendental number theory (see [5, Chapter 1]), which states that, for distinct 
algebraic numbers .α1, . . . , αn, the  set  .{eα1 , . . . , eαn} is linearly independent over 
the algebraic numbers. 

Example 3.1 Consider the Puiseux monoid .P = 〈 1
p

| p ∈ P
〉
, and set . M := P ∪

Q≥1. It is clear that M is also a Puiseux monoid. It is well known and not difficult 
to argue that .A (P ) = { 1

p
| p ∈ P

}
. This implies that .

{ 1
p

| p ∈ P
} ⊆ A (M). 

Clearly, .1 /∈ A (M). In addition, for any .q ∈ M>1, we can find .p ∈ P large enough 
so that . 1

p
|M q. Putting the three previous observations together, we conclude that 

.A (M) = { 1
p

| p ∈ P
}
. This implies that M is not atomic as, for instance, . 5/4

cannot be written as a sum of atoms in M . On the other hand, it follows from our 
previous observations that M is a Furstenberg monoid. 

Now consider the additive monoid .E(M) := 〈em | m ∈ M〉, which is free on 
the set .{em | m ∈ M} by Lindemann-Weierstrass Theorem. Observe that . E(M)

is closed under multiplication and, consequently, it is a positive semiring. Since 
.M ⊆ R≥0, it follows that .minE(M)∗ = 1, which implies that the multiplicative 
monoid .E(M)∗ is reduced. 

We argue that .E(M) is a Furstenberg semidomain that is not atomic. Clearly, 
the multiplicative submonoid .e(M) := {em | m ∈ M} of .E(M)∗ is isomorphic 
to .(M,+), which implies that .e(M) is not atomic. Since .e(M) is a divisor-closed 
submonoid of .E(M)∗, the semidomain .E(M) cannot be atomic. To argue that . E(M)

is Furstenberg, take a nonunit .x ∈ E(M)∗ (i.e., .x ∈ E(M)∗ \ {1}) and write . x =
c1e

q1 + · · · + cke
qk , where .c1, . . . , ck ∈ N and .q1, . . . , qk ∈ M . We split the rest of 

the argument into the following two cases. 

Case 1: There exists a positive common divisor d of the elements .q1, . . . , qk in 
M . In this case, we can factor x in .E(M)∗ as . x = ed(c1e

q1−d + · · · +
cke

qk−d). Because .d > 0 and M is a Furstenberg monoid, there exists 
.a ∈ A (M) such that .a |M d, in which case, it is clear that . ea is an atom 
of .E(M) satisfying that .ea |E(M) x. 

Case 2: The only common divisor of the elements .q1, . . . , qk in M is 0. In this 
case, we can choose elements .y1, . . . , ym ∈ E(M)∗ \ {1} satisfying that 
.x = y1 · · · ym. For each .i ∈ �1,m�, let  . �i be the length of . yi in the 
(additive) free monoid .E(M). Since no element of the form . ed with . d ∈
M• divides any of the factors .y1, . . . , ym in .E(M)∗, we see that . �i ≥ 2
for every .i ∈ �1,m�. Hence from the equality .y1 · · · ym = c1e

q1 · · · cke
qk , 

we deduce that .2m ≤ �1 · · · �m = c1 + · · · + ck , and so .m ≤ log2(c1 +
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· · · +  ck) . Now, we can assume that . m has been taken as large as it can 
possibly be to conclude that . y1 is an atom of .E(M) such that .y1 |E(M) x. 

Thus, .E(M) is a Furstenberg semidomain, which concludes our construction. 

Next we prove that the Furstenberg property ascends from a semidomain to its 
semidomain of (Laurent) polynomials. 

Theorem 3.2 For a semidomain S, the following statements are equivalent. 

(a) S is Furstenberg. 
(b) .S[x] is Furstenberg. 
(c) .S[x±1] is Furstenberg. 
Proof 

(a) . ⇒ (b): Suppose that S is a Furstenberg semidomain. Take a nonzero nonunit 
.f ∈ S[x]. Suppose first that .f ∈ S. Then the fact that . S∗ is a Furstenberg 
monoid guarantees the existence of .a ∈ A (S) with .a |S f . As  . S∗ is a divisor-
closed submonoid of .S[x]∗, it follows that a is also an atom of .S[x], and so f 
is divisible by an atom in .S[x]. Suppose now that .deg f ≥ 1. Take the largest 
.m ∈ N such that .f = rg1 · · · gm for some .r ∈ S∗ and .g1, . . . , gm ∈ S[x] with 
.deg gi ≥ 1 for every .i ∈ �1,m�. If .g1 ∈ A (S[x]) we are done. If . g1 is reducible, 
then the maximality of . m guarantees that .g1 = s(g1/s) for some nonunit element 
.s ∈ S∗ dividing . g1 in .S[x]∗. Because s is a nonunit of . S∗ and . S∗ is a Furstenberg 
monoid, s must be divisible by an atom b in . S∗. Since . S∗ is a divisor-closed 
submonoid of .S[x]∗, we see that b is an atom of .S[x] that divides f in .S[x]∗. 
Hence .S[x] is also a Furstenberg semidomain. 

(b) . ⇒ (c): First, observe that every irreducible f in .S[x] with .ord f = 0 is an 
irreducible in .S[x±1]. Now take a nonzero nonunit .g ∈ S[x±1], and write . g =
xdh for some .d ∈ Z and .h ∈ S[x]with .ord h = 0. As  g is not a unit in .S[x±1], we  
see that h is not a unit in .S[x], and so there is an .a ∈ A (S[x]) such that .a |S[x] h. 
Note that .ord a = 0 because the same holds for h. Thus, a is an irreducible in 
.S[x±1] dividing g. Therefore .S[x±1] is also a Furstenberg semidomain. 

(c) . ⇒ (a): This follows from the fact that .{sxn | s ∈ S∗ and n ∈ Z} is a divisor-
closed submonoid of .S[x±1]∗ whose reduced monoid is isomorphic to that of 
. S∗. 

�
Observe that Theorem 3.2 can help us identify Furstenberg semidomains that are 

not atomic. For instance, M. Roitman [27] provided the first example of an atomic 
domain D such that .D[x] is not atomic. By virtue of Theorem 3.2, we can now 
assert that .D[x] is a non-atomic Furstenberg domain.
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4 Almost Atomicity 

In this section, we focus on the property of being almost atomic which, as being 
Furstenberg, is a property weaker than being atomic. As the following example 
illustrates, there are almost atomic semidomains (indeed positive semirings) that 
are not atomic. 

Example 4.1 Let .B := {(1/2)n+2 | n ∈ N}, and let .(pn)n∈N be the strictly 
increasing sequence consisting of all primes greater than 4. Set 

. A :=
{

1

pn

,
1

2n+2
+ 1

2
− 1

pn

∣∣∣∣ n ∈ N

}
,

and consider the monoid .M = 〈A∪B〉. It is not hard to see that .A (M) = A, which 
implies that M is not atomic. Note that every element .x ∈ M can be written as 
.x = c(1/2)N + x′, where .c ∈ N0, .N ∈ N≥3, and . x′ factors into atoms in M . Thus, 
.x + c = x′ + 2c

(
(1/2)N+1 + 1/2

)
. Therefore M is almost atomic. Now pick an 

arbitrary element .x ∈ M . Clearly, we can write 

. x = c

2n
+ c1

pn1

+ · · · + ck

pnk

+ d1

(
1

2m1+2 + 1

2
− 1

pm1

)
+ · · ·

+ dl

(
1

2ml+2
+ 1

2
− 1

pml

)
, (4.1) 

where either .c = 0 or .gcd(c, 2n) = 1, .0 < ci < pni
, .0 < dj < pmj

, and . pni
�= pmj

for .i ∈ �1, k� and .j ∈ �1, l�. We also assume that if .pni
= pni′ (resp., .pmj

= pmj ′ ) 
for .i, i′ ∈ �1, k� (resp., for .j, j ′ ∈ �1, l�), then .i = i′ (resp., .j = j ′). We claim 
that .x ∈ M has finitely many representations of the form (4.1). Consider another 
representation of x having this form: 

. x = α

2�
+ α1

p′
n1

+ · · · + αt

p′
nt

+ β1

(
1

2m′
1+2

+ 1

2
− 1

pm′
1

)

+ · · ·

+ βr

(
1

2m′
r+2

+ 1

2
− 1

pm′
r

)

. (4.2) 

After cancelling similar terms in expressions (4.1) and (4.2), we may assume that 
either .α = 0 or .c = 0 and .pni

�= p′
nj

for any .i ∈ �1, k� and any .j ∈ �1, t�. 
Then .pm′

j
= pn1 for some .j ∈ �1, r�; otherwise, we would obtain a contradiction 

after clearing denominators. This, in turn, implies that .βj = pn1 − c1. Using an 
inductive argument, it is not hard to see that, if we fix the representation (4.1), then 
the representation (4.2) is completely determined by the similar terms we can cancel 
in both expressions, which proves our claim. Consequently, M is an MCD-monoid.
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Indeed, if .(αn)n∈N is a nonconstant sequence of common divisors of . x1, . . . , xm ∈
M for some .m ∈ N>1 such that .αn |M αn+1 for every .n ∈ N, then . xj has infinitely 
many representations of the form (4.1) for some .j ∈ �1,m�. 

As in Example 3.1, consider the positive semiring .E(M). As we mentioned 
before, the multiplicative monoid .e(M) is isomorphic to .(M,+), which implies 
that .e(M) is not atomic. Since .e(M) is a divisor-closed submonoid of .E(M)∗, the  
monoid .E(M)∗ is not atomic either. Let x be a nonzero nonunit element of .E(M), 
and write .x = c1e

q1 + · · · + cke
qk , where .c1, . . . , ck ∈ N and .q1, . . . , qk ∈ M . We  

can assume, without loss of generality, that .c1, . . . , ck are relatively prime positive 
integers. Now take .d ∈ mcdM(q1, . . . , qk), and then write 

. x = ed(c1e
q1−d + · · · + cke

qk−d) = edy1 · · · ym

for some .y1, . . . , ym ∈ E(M) \ {0, 1}. Since no element of the form . ed ′
(with . d ′ ∈

M•) divides any of the factors .y1, . . . , ym in .E(M), the inequality . m ≤ log2(c1 +
· · ·+ck) holds. Now, we can assume that . m has been taken as large as it can possibly 
be to conclude that .y1, . . . , ym ∈ A (E(M)). Since M is almost atomic, there exists 
.a1, . . . , at ∈ A (M) such that .a1 + · · · + at + d is the sum of atoms in M . As a  
result, .ea1+···+at x factors into atoms in .E(M). Hence .E(M) is almost atomic. 

For almost atomic semidomains, we have a result similar to Theorem 3.2. 

Theorem 4.2 For a semidomain S, each of the following statements implies the 
next. 

(a) S is almost atomic and .mcd (s1, . . . , sn) �= ∅ for any coefficients .s1, . . . , sn of 
an indecomposable polynomial in .S[x]. 

(b) .S[x] is almost atomic. 
(c) .S[x±1] is almost atomic. 
Moreover, conditions (b) and (c) are equivalent. 

Proof 

(a) . ⇒ (b): Let f be a nonzero nonunit element of .S[x] such that . deg f = n

for some .n ∈ N0. If  .n = 0, then our result follows from the fact that S is 
almost atomic and .〈A (S)〉 ⊆ 〈A (S[x])〉. Consequently, we may assume that 
.n > 0. Write .f = f1 · · · fm, where .fi ∈ S[x] and .deg fi > 0 for each . i ∈
�1,m�. Without loss of generality, assume that . m is maximal. Fix an arbitrary . j ∈
�1,m�. Since . m is maximal, the polynomial . fj is indecomposable in .S[x]. Now  
write .fj = s1x

n1 + · · · + skx
nk with coefficients .s1, . . . , sk ∈ S∗ and exponents 

.n1, . . . , nk ∈ N0. Take  .s ∈ mcd(s1, . . . , sk), and note that .s−1fj ∈ A (S[x]). 
Since S is almost atomic, there exists . βj , which is a product of atoms in S, such 
that .βj s factors into atoms in S. Consequently, after setting .β := ∏m

i=1 βi , we  
see that . β factors into atoms in .S[x] and satisfies that . βf also factors into atoms 
in .S[x]. Hence .S[x] is almost atomic. 

(b) . ⇒ (c): First, observe that .A (S[x]) \ {x} ⊆ A (S[x±1]). In fact, assume 
towards a contradiction that .f = gh, where .f ∈ A (S[x]) \ {x} and .g, h ∈
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S[x±1] \  S[x±1]× . Then .f = xng′(x) · xmh′(x) for some .m, n ∈ Z and 
.g′, h′ ∈ S[x] such that .ord g′ = ordh′ = 0. It is not hard to see that 
.n + m = 0, which implies that either . g′ or . h′ is a unit of .S[x]. This, in turn, 
implies that either g or h is a unit of .S[x±1], a contradiction. Now let f be 
a nonzero nonunit element of .S[x±1], and write .f = xkg for some . k ∈ Z
and .g ∈ S[x] such that .ord g = 0. Since .S[x] is almost atomic, there exist 
.a1, . . . , at ∈ A (S[x]) such that .a1 · · · atg factors into atoms in .S[x]. Observe 
that .〈A (S[x])〉 ⊆ 〈A (S[x±1])〉; this is because . A (S[x]) \ {x} ⊆ A (S[x±1])
and .{x} ∪ S[x]× ⊆ S[x±1]×. Since .xk ∈ S[x±1]× for every .k ∈ Z, our result 
follows. 

(c) . ⇒ (b): Let f be a nonzero nonunit element of .S[x]. Given that .x ∈ A (S[x]), 
we can assume, without loss of generality, that .ord f = 0. Because .S[x±1] is 
almost atomic, there exists g, which is a product of atoms in .S[x±1] such that 
gf is also a product of atoms in .S[x±1]. As  .xk ∈ S[x±1]× for every .k ∈ Z, we  
may assume .ord g = 0 (consequently, .ord gf = 0 because S contains no zero-
divisors). If .g ∈ S[x±1]×, then .g ∈ S×, which trivially implies that g factors 
into atoms in .S[x]. Otherwise, we can write .g = g1 · · · gn, where . g1, . . . , gn ∈
A (S[x±1]). Again, without loss of generality, we can assume that .ord gi = 0 for 
every .i ∈ �1, n� which, in turn, implies that .gi ∈ A (S[x]) for all .i ∈ �1, n�. 
Hence g factors into atoms in .S[x]. By the same argument, gf factors into atoms 
in .S[x]. Therefore .S[x] is almost atomic. 

�
In general, we do not know whether the polynomial extension of an almost 

atomic semidomain is almost atomic, so we pose the following question. 

Question 4.3 Is there an almost atomic semidomain S such that .S[x] is not almost 
atomic? 

We conclude this section by providing an example of an antimatter semidomain 
S whose polynomial extension .S[x] is almost atomic. 

Example 4.4 Consider the positive semiring .S = {0}∪Q≥1, which is antimatter (see 
[3, Example 3.10]). We shall prove that .S[x] is almost atomic. Take an arbitrary 
nonzero nonunit element .f ∈ S[x], and observe that we can write .f = cg, where 
.c ∈ Q≥1 and .g = cnx

n + · · · + c1x + c0 with .cj = 1 for some .j ∈ �0, n�. 
Then our problem reduces to show that every element of .Q≥1 and every polynomial 
.g = cnx

n + · · · + c1x + c0 with .cj = 1 for some .j ∈ �0, n� can be expressed as a 
quotient of a (finite) product of atoms of .S[x]. Let us start with the latter case: write 
.g = f1 · · · fm as a product of indecomposable polynomials .f1, . . . , fm ∈ S[x]. 
Note that every .c ∈ Q≥1 dividing all coefficients .c0, c1, . . . , cn is necessarily a unit 
of S, which means that . fi is an atom of .S[x] for every .i ∈ �1,m�. To tackle the first 
case, observe that every .c ∈ Q≥1 can be written as 

.c = (cx + 1)(x + c)

x2 +
(
c + 1

c

)
x + 1

, (4.3)
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where each of the polynomials in (4.3) factors into atoms in .S[x] by the previous 
argument. Thus .S[x] is almost atomic. 

5 Quasi-atomicity 

In this section, we provide an ideal-theoretical characterization of quasi-atomic 
semidomains, and then we study when quasi-atomicity ascends from a semidomain 
to its semidomain of (Laurent) polynomials. 

The fact that almost atomic semidomains are quasi-atomic follows immediately 
from the corresponding definitions. Next we construct a semidomain that is quasi-
atomic but not almost atomic, and our construction is based on that given in 
[25, Example 7] for integral domains. First, we need to introduce the notion of 
a semifield. A semifield is a semiring in which every nonzero element has a 
multiplicative inverse. 

Example 5.1 Now let S be a BFS that is not a semifield (for instance, . N0). Let K 
be a field properly containing the field of fractions of .G (S), and then consider the 
semidomain .R = S[x] + x2K[x] = S + Sx + x2K[x]. Take an arbitrary . f =
c0 + c1x + · · · + cnx

n ∈ R∗ with .n ∈ N0, and suppose that .ord f = m for some 
.m ∈ N0. 

We shall prove that f factors into atoms in R if and only if .cm ∈ S. Assume that 
.cm �∈ S, and write .f = g1 · · · g� with .g1, . . . , g� ∈ R∗. As  .cm /∈ S, we see that 
for some .j ∈ �1, �� the coefficient corresponding to the term .xord gj in . gj is not an 
element of S. This implies that .ord gj ≥ 2. Thus, .gj /∈ S and every element of . S∗
divides . gj in R. Observe that .R× = S×. Since S is not a semifield, some nonunit 
of S divides . gj in R; in other words, f cannot factor into atoms in R. To argue 
the reverse implication, assume that .cm ∈ S, and then write .f = g1 · · · g�, where 
.gi �∈ R× for any .i ∈ �1, ��. Since S is a BFS, we see that if .m = 0 (resp., .m = 1), 
then the inequality .� ≤ n +max L(c0) (resp., .� ≤ n +maxL(c1)) holds: indeed, for 
each .i ∈ �1, ��, either .deg gi ≥ 1 or . gi is a divisor of . c0 (resp., . c1) in  S that is not a 
unit. Consequently, if .m ∈ {0, 1}, then f factors into atoms in R. On the other hand, 
if .m ≥ 2, then .f = xm−1cmg with .g := x + (cm+1/cm)x2 + · · · + (cn/cm)xn−m+1, 
and the reverse implication follows from the fact that x is an atom of R and g is the 
product of finitely many atoms. 

Observe now that if .cm �∈ S, then .(x2/cm) ·f factors into atoms in R. This, along 
with the argument in the previous paragraph, ensures that R is quasi-atomic. On the 
other hand, if . cm is not in the field of fractions of .G (S), then for any . a1, . . . , ak ∈
A (R) the element .h := a1 · · · akf does not factor into atoms in R as the constant 
coefficient of .x−ord hh does not belong to S. Consequently, the semidomain R is not 
almost atomic. 

We proceed to characterize quasi-atomic semidomains. To do so, we mimic the 
proof of [25, Theorem 8].
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Theorem 5.2 A semidomain S is quasi-atomic if and only if every nonzero prime 
ideal of S contains an irreducible element. 

Proof For the direct implication, suppose that S is quasi-atomic. Let P be a nonzero 
prime ideal of S. Take a nonzero .x ∈ P (clearly, .x �∈ S×). Since S is quasi-atomic, 
there exist .b ∈ S∗ and .a1, . . . , an ∈ A (S) such that .a1 · · · an = bx ∈ P . Because 
P is a prime ideal, .ai ∈ P for some .i ∈ �1, n�. Thus, each nonzero prime ideal 
of S contains an irreducible element. For the reverse implication, assume towards a 
contradiction that there exists .x ∈ S∗ such that none of the elements in Sx factors 
into irreducibles. Let A be the subset of S consisting of all elements that can be 
factored into irreducibles. Let P be an ideal of S that is maximal among those ideals 
disjoint from A. By virtue of [18, Proposition 7.12], the ideal P is prime, and it is 
clear that P contains no irreducible elements, which concludes the proof. �

The following result is a version of Theorem 4.2 in the context of quasi-atomicity. 

Theorem 5.3 For a semidomain S, each of the following statements implies the 
next. 

(a) S is quasi-atomic and .mcd (s1, . . . , sn) �= ∅ for any coefficients .s1, . . . , sn of an 
indecomposable polynomial in .S[x]. 

(b) .S[x] is quasi-atomic. 
(c) .S[x±1] is quasi-atomic. 
Moreover, conditions (b) and (c) are equivalent. 

Proof 

(a) . ⇒ (b): Let f be a nonzero nonunit of .S[x] such that .deg f = n for some 
.n ∈ N0. If  .n = 0, then our result follows from the fact that S is quasi-atomic 
and .〈A (S)〉 ⊆ 〈A (S[x])〉. Consequently, we may assume that .n ≥ 1. Write 
.f = f1 · · · fm, where .fi ∈ S[x] and .deg fi ≥ 1 for every .i ∈ �1,m�. Without 
loss of generality, assume that . m has been taken as large as it can possibly be. Fix 
an arbitrary .j ∈ �1,m�. It follows from the maximality of . m that the polynomial 
. fj is indecomposable. Now write .fj = s1x

n1 + · · · + skx
nk with coefficients 

.s1, . . . , sk ∈ S∗ and exponents .n1, . . . , nk ∈ N0. Take  .s ∈ mcd(s1, . . . , sk), and 
note that .s−1fj ∈ A (S[x]). Since S is quasi-atomic, there exists .bj ∈ S∗ such 
that . bj s factors into atoms in S. Now  set .b := b1 · · · bm. It is clear that . b ∈ S[x]∗
satisfies that . bf factors into atoms in .S[x]. Therefore .S[x] is quasi-atomic. 

(b) . ⇒ (c): We have already established that .A (S[x]) \ {x} ⊆ A (S[x±1]). Now  
let f be a nonzero nonunit element of .S[x±1], which can be written as . f = xkg

for some .k ∈ Z and .g ∈ S[x] such that .ord g = 0. Since .S[x] is quasi-
atomic, there exists .h ∈ S[x]∗ such that hg factors into atoms in .S[x]. From  
.A (S[x]) \ {x} ⊆ A (S[x±1]) and .{x} ∪ S[x]× ⊆ S[x±1]×, we infer that 
.〈A (S[x])〉 ⊆ 〈A (S[x±1])〉. Therefore the desired result follows from the fact 
that .xk ∈ S[x±1]× for every .k ∈ Z. 

(c) . ⇒ (b): Let f be a nonzero nonunit element of .S[x]. Given that .x ∈ A (S[x]), 
we can assume, without loss of generality, that .ord f = 0. Since .S[x±1] is quasi-
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atomic, there exists .g ∈ S[x±1]∗ such that gf factors into atoms in .S[x±1]. As  
.xk ∈ S[x±1]× for every .k ∈ Z, we may assume .ord g = 0, which, in turn, 
implies that .ord gf = 0. If  .gf ∈ S[x±1]×, then .gf ∈ S×, and so gf is trivially 
a product of atoms in .S[x]. Otherwise, we can write .gf = g1 · · · gn for some 
.g1, . . . , gn ∈ A (S[x±1]). Once again, we can assume, without loss of generality, 
that .ord gi = 0 for every .i ∈ �1, n� which, in turn, implies that .gi ∈ A (S[x]) for 
all .i ∈ �1, n�. Hence gf factors into atoms in .S[x]. We can, therefore, conclude 
that .S[x] is quasi-atomic. 

�
As a corollary of Theorem 5.3, we obtain that, in a GCD-semidomain S, 

quasi-atomicity ascends from S to its semidomain of (Laurent) polynomials. The 
following result sheds some light upon this observation. 

Proposition 5.4 Let M be a monoid. Then M is a UFM if and only if M is a quasi-
atomic GCD-monoid. 

Proof The direct implication clearly holds. As for the reverse implication, it is well 
known that an atomic GCD-monoid is a UFM (see, e.g., [23, Section 10.7]). Thus, 
it suffices to show that M is atomic. Let x be a nonunit element of M . Since M 
is quasi-atomic, there exists .b ∈ M• such that bx factors into atoms in M . Write 
.bx = p1 · · ·pn for some .p1, . . . , pn ∈ A (M). It follows from [17, Theorem 6.7(2)] 
that .p1, . . . , pn are primes. Thus, for each .i ∈ �1, n�, either .pi |M b or .pi |M x. 
Therefore x must be the product of some of the factors .p1, . . . , pn. Hence M is 
atomic. �
Corollary 5.5 Let S be a semidomain. Then S is a UFS if and only if it is quasi-
atomic and GCD. 

To ensure that a GCD-monoid is a UFM, some sort of subatomic property needs 
to be assumed as the following example illustrates. 

Example 5.6 Let .α =
√
5−1
2 , and consider the additive monoid .N0[α]. Observe that 

. α is an algebraic number with minimal polynomial .mα(X) = X2 + X − 1. Since 

.1 �∈ A+(N0[α]), the monoid .N0[α] is antimatter by [14, Theorem 4.1]. Next we 
show that .N0[α] is a GCD-monoid. We start by proving that . gcd(mαn, kαn+1) =
min(mαn, kαn+1) for all .k,m ∈ N and .n ∈ N0. Let  

. S =
{
(m, k) ∈ N × N | gcd(mαn, kαn+1) �= min(mαn, kαn+1) for some n ∈ N0

}
.

By way of contradiction, assume that S is nonempty. Let .(m′, k′) ∈ S such that 
.m′ + k′ is minimal. Clearly, there exists .n′ ∈ N0 such that . gcd(m′αn′

, k′αn′+1) �=
min(m′αn′

, k′αn′+1). Observe that .k′ > m′ > 0 since the equality . αn′ = αn′+1 +
αn′+2 holds. Thus, 

. gcd((k′ − m′)αn′+1,m′αn′+2) = min((k′ − m′)αn′+1,m′αn′+2),
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which in turn implies that .m′αn′+1 + min((k′ − m′)αn′+1,m′αn′+2) is a common 
divisor of .m′αn′

and .k′αn′+1 in .N0[α]. Now if the inequality . (k′ − m′)αn′+1 <

m′αn′+2 holds, then .gcd(m′αn′
, k′αn′+1) = k′αn′+1, which is a contradiction. We 

obtain a similar contradiction if .(k′ − m′)αn′+1 ≥ m′αn′+2. Consequently, S is an 
empty set. Let .x, y be nonzero elements of .N0[α]. Since .αn = αn+1 + αn+2 for all 
.n ∈ N0, it is not hard to see that there exist .m ∈ N and .c1, c2, c3, c4 ∈ N0 such 
that .x = c1α

m + c2α
m+1 and .y = c3α

m + c4α
m+1. We may assume that .c1 ≥ c3. 

If .c2 ≥ c4 then it follows readily that .gcd(x, y) = min(x, y). On the other hand, 
if .c2 < c4 then .c3αm + c2α

m+1 + gcd((c1 − c3)α
m, (c4 − c2)α

m+1) is a common 
divisor of x and y in .N0[α]. Since . gcd((c1 − c3)α

m, (c4 − c2)α
m+1) = min((c1 −

c3)α
m, (c4 − c2)α

m+1), a simple computation shows that .gcd(x, y) = min(x, y). 
By [17, Corollary 6.3], .N0[α] is a GCD-monoid. 
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Throughout, all rings will be commutative, unital, and nontrivial. 
In this article we will investigate a notion of “Dedekindness” of a ring R 

defined with respect to a different “quotient ring” than its total quotient ring 
.T (R). Specifically, we wish to consider “invertibility” of ideals in the ring of finite 
fractions of R, which is .Q0(R) := {h ∈ T (R[X]) | hJ ⊆ R for some semiregular 
ideal J of . R} (cf. [60, p. 1257]). (Here we call an ideal regular if it has a principal 
faithful subideal and semiregular if it has a finitely generated faithful subideal [5, p.  
105].) Thus .T (R) = Q0(R) in rings with Property A (i.e., where every semiregular 
ideal is regular [35, p. 4]), but in general the inclusion .T (R) ⊆ Q0(R) may be 
proper [54, p. 60]. Defining “invertibility” with respect to .Q0(R) rather than . T (R)

leads to the kind of “Dedekind” ring we consider in this article, which Elliott 
has called a “.Q0-Dedekind” ring [22, p. xiv]. (Precise definitions of terms in this 
introductory paragraph will appear below.) The main popularizer of the ring of finite 
fractions has been Lucas (e.g., [52–62]), who has demonstrated its applicability to a 
number of important problems. The following are just a few natural questions that do 
not directly refer to the ring of finite fractions, but whose solution at least indirectly 
involves this ring and/or “invertibility” with respect to it—see [5, Theorem 3.2(1); 9, 
Theorem 3.11; 52, Corollary 4; 53, Theorem 1.6(2); 56, Corollary 15; 57, Theorem 
14; 59, Theorem 6; 60, Theorems 6.7 and 7.9] for details. When is .R[X] or . R(X)

(completely) integrally closed? When does the content formula . c(fg) = c(f )c(g)

hold for all regular .f, g ∈ R[X]? When is the lattice consisting of the zero or 
semiregular ideals of R an r-lattice? When is the Nagata ring .R(X) a Krull or Prüfer 
(v-multiplication) ring? With this background in mind, it is unsurprising that .Q0-
Dedekind rings have several natural characterizations not directly referring to rings 
of finite fractions, justifying their study as more than a mere mental exercise in 
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reformulating “Dedekindness.” For instance, in Theorems 6 and 9(2) below we will 
see that a ring R is .Q0-Dedekind if and only if every semiregular proper ideal is a 
product of prime ideals, if and only if every semiregular proper ideal is a unique up 
to order product of unfactorable ideals, if and only if .R/I is a principal ideal ring 
(PIR) for every semiregular proper ideal I , if and only if .R(X) is Dedekind. Thus, 
although .Q0-Dedekind rings have received little explicit attention in the previous 
literature, we find them to be a significant class of rings worthy of investigation. In 
order to make our results as broadly applicable as possible, we have taken a general 
approach involving .Q0-semistar operations, which enabled us to simultaneously 
prove new results about .Q0-Dedekind rings and Lucas’s .Q0-Krull rings [60, p.  
1253]. Although our focus has been on the extension .R ⊆ Q0(R), we have also  
considered general ring extensions and the traditional extension .R ⊆ T (R). Thus, 
we also have several new results about traditional notions defined with respect 
to .T (R), e.g., Dedekind rings, Krull rings, and Prüfer (v-multiplication) rings. In 
particular, in Lemmas 7 and 8 we have answered a few (previously) open questions 
posed by Elliott concerning t-linked overrings [22, pp. 281 and 284]. Along the way 
to our main results, we have developed/refined several tools (e.g., Lemmas 2 and 4) 
for working with (.Q0-)semistar operations, which we expect will prove useful to 
many researchers even if they have no immediate interest in “Dedekindness.” All 
results we provide proofs for are new (to the best of our knowledge), but we have 
taken care to document which past results we have built on, either with an explicit 
explanation or (more often) a simple “cf.” citation to compare our result with the 
strongest/most general previously known special case. 

Now that we have explained our motivations for investigating these topics, let 
us establish some general conventions and terminology and make the definitions of 
“.Q0-Dedekind” and “.Q0-Krull” precise. Let R be a ring. We respectively use .I(R), 
.Ir (R), .Isr (R), .Spec(R), and .Max(R) to denote the sets of ideals, regular ideals, 
semiregular ideals, prime ideals, and maximal ideals of R. By a  multiplicative 
subset of R, we mean a submonoid of .(R, ·) that does not contain 0. For an 
R-module C and .A,B ⊆ C, we set .ModR(C) := {R-submodules of .C} and 
.(A :R B) := {x ∈ R | xB ⊆ A}. The  zero divisors of R are the elements of 
.Z(R) := ⋃

0 �=a∈R((0) :R Ra) and the regular elements are those in . Reg(R) :=
R \Z(R). We say  R is additively regular if for each .x ∈ T (R) there is a .y ∈ R with 
.x + y ∈ Reg(T (R)) [29, p. 421]. See [31, Proposition 3.1] for a list of equivalent 
ways one could define additive regularity. Additively regular rings are Marot [35, 
Theorem 7.2], which means their regular ideals are generated by regular elements 
[35, p. 31]. Let I be an R-submodule of .Q0(R). We abbreviate . I−1 := (R :T (R) I )

and .I−10 := (R :Q0(R) I ). Thus .I−1 ⊆ I−10 , with equality if .I ∩Reg(R) �= ∅, but in  
general the inclusion may be proper [60, p. 1257]. Following Lucas and Elliott, we 
call I invertible if .II−1 = R and .Q0-invertible if .II−10 = R and we say R is (.Q0-
)Dedekind if every (semi)regular ideal is (.Q0-)invertible [22, p. xiv;  54, p. 64]. Thus 
Dedekind and .Q0-Dedekind are equivalent for rings with Property A (e.g., integral 
domains, Noetherian rings, and polynomial rings [35, Corollary 2.9; 45, Theorem 
82]), but in general .Q0-Dedekind is a strictly stronger property. Indeed, while a total 
quotient ring is vacuously Dedekind, a total quotient ring (or even a ring of finite
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fractions) need not be .Q0-Dedekind [54, Example 12]. For an interesting example 
of a .Q0-Dedekind ring without Property A, we refer the reader to [54, Example 14]. 

One traditionally defines “(.Q0-)Krull” rings in valuation-theoretic terms [7, p.
23; 46, p. 132; 60, p. 1253], but for our purposes it will be most useful to define a 
ring R to be (.Q0-)Krull if .(II−1)t0 = R for every (semi)regular .I ∈ I(R) (cf. [44,
Theorem 13; 60, Theorem 4.2]), where . t0 is a certain “(.Q0-)semistar operation” that 
we will precisely define below. We will now summarize the necessary terminology 
and concepts to set up this approach. Excellent textbooks with more details about 
such topics include those written by Elliott [22], Halter-Koch [33], Kaiser and 
Knesbusch [41], and Kim and Wang [51]. One can find thorough coverage of the 
above “t-invertibility” and its applications in a series of papers by Zafrullah et al. 
[11, 12, 63, 76, 77]. Let T be a ring extending R. By a  (unital) T -semistar operation 
on R, we mean a closure operation .� : ModR(T ) → ModR(T ), .� : I �→ I �, 
such that .R� = R and .(IJ )� = (I �J �)� for all .I, J ∈ ModR(T ) [22, Definition 
3.6.16]. Note that the restriction of . � to .I(R) is a semiprime operation on R 
(i.e., an R-semistar operation [22, Definition 4.1.1(1)]), a special case of what 
Halter-Koch called a “weak ideal system” on .(R, ·) [33, Definition 2.1(a)]. We 
respectively shorten “.T (R)-semistar operation” and “.Q0(R)-semistar operation” 
to semistar operation [22, Definition 2.4.2] and .Q0-semistar operation. Two  T -
semistar operations induced by . � are .�t : I �→ I �t := ⋃{J � | J ∈ ModR(I) is 
finitely generated. } and .� : I �→ I � := ⋃{(I :T J ) | J ∈ I(R) and . J � = R}
[41, Proposition 1.6.3; 22, Corollary 5.7.10]. We will introduce a third induced 
T -semistar operation, namely, .�w : I �→ I �w := ⋃{(I :T J ) | J ∈ I(R) is 
finitely generated, .((0) :T J ) = (0), and .J � = R}, in Lemma 1(1) below. Note 
that, if T is a subring of .T (R[X]) (e.g., .T = Q0(R) or .T = T (R)), then . �w is 
given by .I �w = ⋃{(I :T J ) | J ∈ Isr (R) is finitely generated and . J � = R}
(see Lemma 1(1) below). We also note that Elliott uses “. �w” to mean “. �t” in
his book [22, pp. 428–429]; we have defined the symbol as we have in order to 
be consistent with how Wang et al. defined the “w-operation” (see Lemma 1(3) 
below). Observe that .I � = I �t for finitely generated .I ∈ ModR(T ). We will show 
in Lemma 1(2) below that, if T is a subring of .Q0(R), then .J �t = J �w for all 
semiregular .J ∈ ModR(T ). (Here we call an R-submodule of T (semi)regular if it 
contains a (semi)regular ideal of R; this is not to be confused with the concept of 
“T -regular” as defined in [22, Definition 2.1.21; 40, p. 84].) Our results will mostly 
concern the case where . � is finite type (i.e., .� = �t ), stable (i.e., .� = �), and/or 
reduced (i.e., .(0)� = (0)) (cf. [22, Definition 5.4.8 and Corollary 5.7.10; 41, p.
157]), because these assumptions are key to .�-ideals possessing a theory analogous 
to that of classical ideal theory. The following are some useful identities that we 
will frequently be implicitly using: (i) . (I � :T J ) = (I � :T J )� = (I � :T J �)

for all .I, J ∈ ModR(T ) [41, Proposition 4.4], (ii) .
(⋂

λ∈� I�
λ

)� = ⋂
λ∈� I�

λ for 

.∅ � {Iλ}λ∈� ⊆ ModR(T ) [22, Proposition 5.2.6(2)], (iii) .
(⋂n

i=1 Ii

)� = ⋂n
i=1 I �

i for 
all .I1, . . . , In ∈ ModR(T ), and (iv) .(I :T J )� = (I � :T J ) for all . I, J ∈ ModR(T )

with J finitely generated—here (iii) and (iv) can be readily proven directly. The 
T -semistar operations on R are partially ordered by declaring .�1 ≤ �2 to hold if
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.I �1 ⊆ I �2 for each .I ∈ ModR(T ) [41, p. 142]. With this partial ordering, the 
smallest and largest T -semistar operations on R are respectively . d : I �→ I d := I

and .vR,T : I �→ I vR,T := (R :T (R :T I )) [41, Subexample 3.5 and Proposition 
3.6]. The .�t -, .�-, .�t -, and .�w-operations are respectively the largest finite type, largest 
stable, largest finite type stable, and largest reduced finite type stable T -semistar 
operations on R bounded above by . �—see [22, pp. 428–429 and Theorem 6.6.9(1)] 
and Lemma 1(1) below. Therefore .tR,T := (vR,T )t and . wR,T := (vR,T )w = (tR,T )w
are respectively the largest finite type and largest reduced finite type stable T -
semistar operations on R. We abbreviate .v := vR,T (R), .t := tR,T (R), .w := wR,T (R), 
.v0 := vR,Q0(R), .t0 := tR,Q0(R), and .w0 := wR,Q0(R). We note that “w” in fact 
usually means “. w0” in the literature (see Lemma 1(3) below), but we will keep the 
subscript “0” for consistency with the rest of our notational conventions. We will 
verify in Lemma 1(4) below that .I v = I v0 for each regular fractional ideal I of R 
(meaning that .I ∈ ModR(T (R)) is regular and .I−1 is also regular [22, Definition 
2.2.19]) and that .J t0 = J t and .Jw0 = Jw for all regular .J ∈ ModR(T (R)). We  
call .I ∈ ModR(T ) .�-invertible if .(I (R :T I ))� = R [41, p. 147]. If one wishes 
to emphasize or clarify what the extension is, one can write “T -.�-invertible.” For 
instance, the above notions of “invertible” and “.Q0-invertible” are respectively the 
same as .T (R)-d-invertible and .Q0(R)-d-invertible. Finally, if . � is a (.Q0-)semistar 
operation on R, then we call R (.Q0-).�-Dedekind if every (semi)regular ideal is .�-
invertible and (strongly) .�-Prüfer if every finitely generated (semi)regular ideal is 
.�-invertible (cf. [22, Definition 2.5.5]). A (.Q0-)Prüfer v-multiplication ring ((.Q0-
)PVMR) is a (strongly) .t0-Prüfer ring and of course a (strongly) Prüfer ring is 
a (strongly) d-Prüfer ring [5, p. 103; 22, Definitions 2.5.2(2) and 2.5.9(1); 54, 
Theorem 8; 60, p. 1254]. Here we have sacrificed a little bit of internal consistency 
in our naming schema so that it is consistent with the literature’s established 
terminology for the cases .� = d and .� = t0. Additionally, we avoid calling strongly 
.�-Prüfer rings “.Q0-.�-Prüfer” to avoid possible confusion between strongly Prüfer 
rings and Lucas’s strictly weaker notion of “.Q0-Prüfer” rings [54, p. 61]. We will  
return to this topic in more detail in Lemma 8 and the paragraph above it. 

In our first lemma, we prove the aforementioned properties of the .�w-operation. 

Lemma 1 Let .R ⊆ T be an extension of rings and . � be a T -semistar operation 
on R. 

1. The map .�w : ModR(T ) → ModR(T ), .I �→ I �w := ⋃{(I :T J ) | J ∈ I(R) is 
finitely generated, .((0) :T J ) = (0), and .J � = R}, is the largest reduced finite 
type stable T -semistar operation on R bounded above by . �. If  T is a subring 
of .T (R[X]), then .I �w = ⋃{(I :T J ) | J ∈ Isr (R) is finitely generated and 
.J � = R} for all .I ∈ ModR(T ). 

2. If T is a subring of .Q0(R), then .J �t = J �w for all semiregular .J ∈ ModR(T ). 
3. An ideal J of R is a Glaz-Vasconcelos ideal (meaning that J is finitely generated 

and the natural homomorphism .R → HomR(J,R) is an isomorphism [18, 
Definition 1.1]) if and only if J is a finitely generated semiregular ideal with 
.J−10 = R (or equivalently with .J v0 = R). This shows that our .w0 := (v0)w is
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the same .Q0-semistar operation as the “w-operation” defined by Wang et al. [18, 
Definition 3.1; 70, Lemma 3.3]. 

4. .I v = I v0 for each regular fractional ideal I of R and .J t0 = J t and . Jw0 = Jw

for all regular .J ∈ ModR(T (R)). In particular, every finite type .Q0-semistar 
operation on R restricts to a finite type semistar operation on R. 

Proof 

1. The last sentence of (1) follows immediately from the fact that . ((0) :T (R[X])
J ) = ((0) :R J )T (R[X]) for all .J ∈ I(R). We have .(0)�w = (0) by definition 
and .R�w = (R :T R) = R since .(R :T J ) = (R :T J �) for each .J ∈ ModR(T ). 
Let .A,B ∈ ModR(T ). Note that .A�w , being a directed union of R-submodules 
of T , is indeed an R-submodule of T . If .A ⊆ B, then . A = (A :T R) ⊆ A�w ⊆
B�w ⊆ B�t ⊆ B�. Therefore .A(�w)w ⊆ A�w ⊆ (A�w)�w , where .A(�w)w is defined 
in the obvious way. To show that those two inclusions are equalities, pick . b ∈
(A�w)�w . Then .b ∈ (A�w :T J0) for some finitely generated .J0 ∈ I(R) with 
.((0) :T J0) = (0) and .J �

0 = R. Write .J0 = (c1, . . . , cn). Then there are finitely 
generated .J1, . . . , Jn ∈ I(R) with each .bci ∈ (A :T Ji), .((0) :T Ji) = (0), and 
.J �

i = R. So .J := J0 · · · Jn ∈ I(R) is finitely generated, .((0) :T J ) = (0), and 
.J � = R. Thus .R ⊆ (J :T J ) ⊆ J �w ⊆ R and .b ∈ (A :T J ) ⊆ A(�w)w , as  
desired. 

We have now shown that . �w is a closure operation on .ModR(T ), so . (AB)�w ⊆
(A�wB�w)�w . For the reverse inclusion, it suffices to show that .ab ∈ (AB)�w for 
each .a ∈ A�w and .b ∈ B�w . Then .a ∈ (A :T J1) and .b ∈ (B :T J2) for some 
finitely generated .J1, J2 ∈ I(R) with each .((0) :T Ji) = (0) and .J �

i = R. 
Therefore .J1J2 ∈ I(R) is finitely generated, .((0) :T J1J2) = (0), .(J1J2)

� = R, 
and .ab ∈ (AB :T J1J2) ⊆ (AB)�w , as desired. We have now demonstrated that 
. �w is a reduced T -semistar operation on R bounded above by . �. We have also  
shown that .�w = (�w)w ≤ (�w)t ≤ �w, so . �w is finite type stable. 

Finally, let . �′ be a reduced finite type stable T -semistar operation on R with 
.�′ ≤ �. Then .A�′ = ⋃{(A :T J ) | J ∈ I(R) is finitely generated with . J �′ = R}
since . �′ is finite type stable. If J is an ideal with .J �′ = R, then . (0) ⊆ ((0) :T
J ) ⊆ (((0) :T J )J )�

′ = (0)�
′ = (0). Therefore .A�′ = A(�′)w ⊆ A�w , as desired. 

2. Assume T is a subring of . Q0(R). Pick a .J ∈ ModR(T ) containing a finitely 
generated .B ∈ Isr (R). We have already noted that .J �w ⊆ J �t . For the reverse 
inclusion, let .x ∈ J �t . Then .x ∈ (J :T A) for some finitely generated . A ∈ I(R)

with .A� = R. Because .T ⊆ Q0(R), we also have .x ∈ (R :T C) for some finitely 
generated .C ∈ Isr (R). Then .x ∈ (J :T A + BC), where .A + BC ∈ Isr (R) is 
finitely generated and .(A + BC)� = R, as desired. 

3. In view of [50, Lemma 4.7; 51, Exercise 6.10(3)], we only need to verify the 
minor detail that .J−10 = R if and only if .J v0 = R. If .J−10 = R, then . J v0 =
R−10 = R. Conversely, if .J v0 = R, then .J−10 = (J v0)−10 = R−10 = R, as  
desired. 

4. We have .I−10 = I−1 since I is regular, so .I v0 = (I−1)−10 = Iv since . I−1

is regular. Because .t, t0, w, and . w0 are finite type, we may assume J is finitely
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generated and therefore a regular fractional ideal. Then .J t0 = J v0 = J v = J t . 
The second sentence of (4) now follows from the fact that .T (R)t0 = T (R). So  
.Jw0 ⊆ Jw by (1). For the reverse inclusion, let .x ∈ Jw. Then . x ∈ (J :T (R) A)

for some finitely generated .A ∈ Isr (R) with .At = R. Pick .r ∈ Reg(R) ∩ J and 
.s ∈ Reg(R)∩ (x)−1. Then .A+ (sr) ∈ Ir (R) is finitely generated, . (A+ (sr))t0 =
(A + (sr))t = R, and .x ∈ (J :Q0(R) A + (sr)) ⊆ Jw0 , as desired. 

��
Before we can prove our classifications of “Dedekindness,” we will need to 

spend four more lemmas establishing some tools for working with (.Q0-)semistar 
operations. The first of these lemmas involves localization. For its statement (and 
the remainder of the paper), we will need the following definitions. We begin 
with the following variant of the “generalized transform” studied by Arnold and 
Brewer [14, p. 255]. Let .R ⊆ T be an extension of rings, . S be a nonempty 
multiplicatively closed set of ideals of R, and .I ∈ ModR(T ). We will verify 
in Lemma 2(2) below that .RT

S := ⋃
B∈S(R :T B) is a T -overring of R and 

.IT
S := ⋃

B∈S(I :T B) ∈ ModRT
S
(T ). (We recall that a T -overring of R is a ring 

between R and T , an  overring of R is a .T (R)-overring, and a .Q0-overring of R is a 
.Q0(R)-overring [14, p. 254; 41, p. 37; 54, p. 61].) For a multiplicative subset S of R, 
we set .IT[S] := RT

{(s)}s∈S
and we abbreviate .IT[P ] := IT[R\P ] for .P ∈ Spec(R). We note 

that .R
T (R)
[S] and .R

Q0(R)
[S] are respectively the large quotient ring and .Q0-quotient ring 

introduced by Griffin and Lucas [32, p. 56; 54, p. 62]. We call I .�-closed if .I = I �; 
a .�-closed ideal of R is called a .�-ideal (cf. [22, Definitions 0.2.5 and 4.2.14(1)]). 
The set .Mod�

R(R) of .�-closed R-submodules of T is a commutative monoid under 
the .�-product .I � J := (IJ )� [41, p. 147]. We respectively use .I�(R), .I�

r (R), and 
.I�

sr (R) to denote the sets of integral, regular, and semiregular .�-ideals of R. We call 
I .�-finite if .I � = J � for some finitely generated .J ∈ ModR(T ) (cf. [22, Definition 
2.6.9(1)]). We define .Max�(R) to be the set of .�-maximal .�-ideals of R, where a 
.�-ideal is .�-maximal if it is a maximal element of .I�(R) \ {R} (cf. [22, Definition 
2.4.14]). For a property . P of R-modules, we say an R-module A (.�-)locally satisfies 
. P if .AM satisfies . P as an .RM -module for every (.�-)maximal (.�-)ideal M . We note 
that .Max�(R) ⊆ Spec�(R) := Spec(R) ∩ I�(R) and that, if . � has finite type, every 
proper .�-ideal is contained in a .�-maximal .�-ideal [33, Theorem 6.4]. Observe that 
.Max�(R) = Max�(R) since . � and . � map the same ideals to R. Also note that, if 
.J ∈ I(R), .P ∈ Spec(R), and .P � �= R = J �, then .(P :T J ) = (P :R J ) = P . 
It follows that .Spec�(R) = {P ∈ Spec(R) | P � �= R}. We will constantly be 
implicitly using the facts developed in this paragraph. 

Lemma 2 Let .R ⊆ T be an extension of rings, . � be a finite type stable T -semistar 
operation on R, . S be a nonempty multiplicatively closed set of ideals of R, and 
.I, J ∈ ModR(T ). 

1. .I � ⊆ J � if and only if .IM ⊆ JM for each (.�-maximal) .M ∈ Spec�(R) (cf. [51, 
Theorem 6.2.17]).
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2. .RT
S := ⋃

B∈S(R :T B) is a T -overring of R, . I ⊆ IT
S := ⋃

B∈S(I :T B) ∈
ModRT

S
(T ), and .(IT

S )� = (I �)TS . 

3. .I � = ⋂
P∈Spec�(R) I T[P ] = ⋂

M∈Max�(R) I T[M] (cf. [22, Theorem 3.11.6(3)]). 

Proof 

1. .(⇒): Assume .I � ⊆ J �. Let .P ∈ Spec�(R) and .a ∈ I . Then .Ba ⊆ J for some 
.B ∈ I(R) with .B� = R. Thus . B � P , so .(Ra)P = (Ba)P ⊆ JP , as desired. 

.(⇐): By contrapositive. Assume .I �
� J �. Then .(J :R Ra)� �= R for some 

.a ∈ I . Therefore there is a .�-maximal .�-ideal .M ⊇ (J :R Ra) and . RM � (J :R
Ra)M = (JM :RM

(Ra)M), showing that .(Ra)M � JM , as desired. 
2. Of course .I ⊆ (I :T B) ⊆ IT

S for each .B ∈ S . To prove the remainder of the first 
two assertions in (2), it suffices to show that .xa + yb ∈ IT

S for all .x, y ∈ RT
S and 

.a, b ∈ IT
S . There are .B1, B2, B3, B4 ∈ S with .xB1 +yB2 ⊆ R and . aB3 +bB4 ⊆

I , so .B1B2B3B4 ∈ S and . (xa + yb)B1B2B3B4 ⊆ (xB1)(aB3) + (yB2)(bB4) ⊆
I , as desired. Finally, we have .(IT

S )� = ⋃
B∈S(I :T B)� = (I �)TS since finite 

type stable T -semistar operations distribute into directed unions and residuations. 
3. Let .A := ⋂

M∈Max�(R) I T[M]. Then . AM ⊆ (IT[M])M = ⋃
s∈R\M(I :T Rs)M =

(IM :TM
RM) = IM for each .M ∈ Max�(R), so .A ⊆ A� ⊆ I � by (1). To show 

that .I � ⊆ ⋂
P∈Spec�(R) I T[P ], let .x ∈ I � and .P ∈ Spec�(R). Then . x ∈ (I :T J )

for some .J ∈ I(R) with .J � = R. Pick .s ∈ J \ P . Then .x ∈ (I :T Rs) ⊆ IT[P ]. ��
Several of our results and/or their proofs will require knowledge of a gener-

alization of a classic construction of Nagata [68, p. 18]. We develop this notion 
and its basic properties in the following lemma. Further details on (special cases) 
of this topic can be found in [24, 25, 28, 35, 42, 43, 51]. In a couple of proofs, 
including that of the following lemma, we will make use of McCoy’s classic 
theorem about zero divisors in polynomial rings. Let R be a ring and .{Xλ}λ∈� be a 
family of algebraically independent indeterminates. McCoy’s theorem asserts that a 
polynomial .f ∈ R[{Xλ}λ∈�] is regular if and only if .c(f ) is semiregular. Here . c(f )

denotes the content of f , i.e., the ideal of R generated by the coefficients of f [27, 
p. 68]. 

Lemma 3 Let .R ⊆ T be an extension of rings, .{Xλ}λ∈� be a nonempty family 
of algebraically independent indeterminates, and . � be a reduced finite type stable 
T -semistar operation on R. Define .N (�) := {f ∈ R[{Xλ}λ∈�] | c(f )� = R}. 
1. .N (�) = R[{Xλ}λ∈�] \ ⋃

M∈Max�t (R) MR[{Xλ}λ∈�] is a multiplicative subset 
of .R[{Xλ}λ∈�] consisting of regular elements (cf. [28, Proposition 33.1(1); 
43, pp. 152–153; 51, Proposition 6.6.16(1)]). Therefore . R({Xλ}λ∈�, �) :=
R[{Xλ}λ∈�]N (�), which we call the .�-Nagata ring of R in the variables .{Xλ}λ∈�, 
is an overring of .R[{Xλ}λ∈�] and consequently additively regular with Property 
A [35, Corollary 2.6 and Theorems 2.7 and 7.5]. For future reference, the Nagata 
ring of R in the variables .{Xλ}λ∈� is .R({Xλ}λ∈�) := R({Xλ}λ∈�, d) [68, p. 18] 
and we abbreviate .R(X, �) := R({X}, �) and .R(X) := R({X}).
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2. .Max(R({Xλ}λ∈�, �)) = {MR({Xλ}λ∈�, �)}M∈Max�(R) (cf. [28, Proposition 
33.1(3); 43, Proposition 2.1(1); 24, p. 4787]). 

3. .R({Xλ}λ∈�, �)PR({Xλ}λ∈�,�) = RP ({Xλ}λ∈�) for each .P ∈ Spec�(R) (cf. [35, 
pp. 86–87; 51, Proposition 6.6.17]). 

4. .IR({Xλ}λ∈�, �) = I �R({Xλ}λ∈�, �) and .T ∩ IR({Xλ}λ∈�, �) = I � for each 
.I ∈ ModR(T ) (cf. [17, Lemma 2.3(2); 51, Theorem 6.6.19(1)]). 

Proof Let .A := R[{Xλ}λ∈�] and .B := R({Xλ}λ∈�, �). 

1. The equality follows immediately from the fact that every proper .�-ideal of R 
is contained in a .�-maximal .�-ideal. Therefore .N (�), being the complement of 
a union of a nonempty set of prime ideals of A, is multiplicative. If . f ∈ N (�)

and .a ∈ ((0) :R c(f )), then .(a) ⊆ (ac(f ))� = (0)� = (0). Therefore . N (�) ⊆
Reg(A) by McCoy’s theorem. 

2. It suffices to show that each .J ∈ I(A) with .J ∩ N (�) = ∅ is contained in MA 
for some .M ∈ Max�(R). Note that .c(J ) := ∑

f ∈J c(f ) is an ideal of R [51, 
Definition 1.7.11(2)] and .J ⊆ c(J )A. Thus it will suffice to show that . c(J )� �=
R. Suppose not. Then .c(I )� = R for some finitely generated .I ∈ ModA(J ) since 
. � has finite type. Because I is finitely generated, we have .c(I ) = c(f ) for some 
.f ∈ I [51, Proposition 1.7.15]. So .f ∈ J ∩ N (�), a contradiction. 

3. We have .BPB .= .(AN (�))PAN (�) .= .APA .= .(AR\P )PAR\P .= .RP ({Xλ}λ∈�), 
where the second and third equalities hold [28, Exercise 5.11] since . N (�) ∪ (R \
P) ⊆ A \ PA. 

4. Combining (3) and Lemma 2(1), we see that . IBMB = IMRM({Xλ}λ∈�) =
I �BMB for each .M ∈ Max�(R). Part (2) now implies .IB = I �B holds locally 
and therefore globally. Finally, we compute .T ∩ IB = {a ∈ T | af ∈ IA for 
some .f ∈ N (�)} = I �, where the last equality holds since . � is stable. 

��
We will be implicitly using the facts discussed in Lemma 3 throughout the sequel. 

Our next lemma will provide several useful facts related to “invertibility.” 

Lemma 4 Let R be a ring, .T ∈ {T (R),Q0(R)}, . � be a finite type T -semistar 
operation on R, and .I ∈ Mod�

R(T ). 

1. If I is semiregular and .t0-finite, then .(I−10)S = I
−10
S and .(I v0)

v0
S = I

v0
S for each 

multiplicative .S ⊆ R (cf. [22, Proposition 3.3.2; 75, Lemma 4]). 
2. If I is .�w-locally flat, then .I = Iw0 (cf. [51, Theorem 6.7.24; 71, 1.1]). If  I is 

semiregular and .�w-locally flat, then .I = I t0 (cf. [48, Lemma 1; 69, Theorem 
1.4]). 

3. An R-submodule of T is .�-invertible if and only if it is .�-invertible (cf. [22, 
Lemma 2.5.15]). So a semiregular R-submodule of T is .�-invertible if and only 
if it is .�w-invertible. If .T = Q0(R) (resp., .T = T (R)), then I is .�-invertible 
if and only if it is semiregular (resp., regular), .�-locally cyclic, and .�-finite (or 
equivalently .t0-finite) (cf. [33, Theorem 12.3; 50, Theorem 4.15; 63, Corollary 
1.6; 54, p. 64]).
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Proof 

1. Let .S ⊆ R be multiplicative. Assume I is semiregular and .t0-finite. So 
.I t0 = J t0 for some finitely generated semiregular .J ∈ ModR(T ). Write 
.J = ∑k

i=1 Rai . Because . t0 has finite type, each .ai ∈ (Ii)
t0 for some finitely 

generated semiregular .Ii ∈ ModR(I). By passing from J to . 
∑k

i=1 Ii , we may  
assume .J ⊆ I . Because J is finitely generated and semiregular, we have 
.(J−10)S = (R :T (R[X]) J )S = (RS :T (R[X])S JS) ⊆ (RS :T (RS [X]) JS) = J

−10
S . 

For the reverse inclusion, pick .h ∈ J
−10
S . Write .J = ∑n

i=1 Rfig
−1
i with 

.fi ∈ R[X] and .gi ∈ Reg(R[X]). For each i we have .(fi/1)(gi/1)−1h = bi/si for 
some .bi ∈ R and .si ∈ S, where for .f ∈ R[X] we use .f/1 to denote the image 
of f in .RS[X]. Choose .m1, . . . , mn ∈ Z

+
0 so that . g := ∑n

i=1 fiX
mi

∏n
j �=i gj

has content .
∑n

i=1 c(fi

∏
j �=i gj ), which is faithful since .J

∏n
i=1 gi is faithful. 

So .g ∈ Reg(R[X]) by McCoy’s theorem. We have .(sg/1)h = f/1, where 
.s := ∏n

i=1 si and f .:= .g1 · · · gn

∑n
i=1 biX

mi
∏

j �=i sj . So . h = (fg−1)/s ∈
(RS :T (R[X])S JS) = (J−10)S . Therefore .(J−10)S = J

−10
S . Thus . I v0

S ⊇ J
v0
S =

(J−10)
−10
S ⊇ (J v0)

v0
S = (I v0)

v0
S ⊇ I

v0
S and . (I−10)S = (J−10)S = J

−10
S =

(J
v0
S )−10 = (I

v0
S )−10 = I

−10
S , as desired. 

2. Let .B := R(X, �w). Assume I is .�w-locally flat. Then . (IB)MB = IMRM(X)

is a flat module over .BMB = RM(X) for each .M ∈ Max�w (R) [65, Theorem 
7.7 and Exercise 7.1] since .RM(X) is a faithfully flat extension of .RM [5, p. 97]. 
Thus IB  is B-flat [65, Theorem 7.1]. We need to show .I ⊇ (I :Q0(R) J ) for each 
finitely generated .J ∈ Isr (R) with .J v0 = R. Since B has Property A, there is 
an .r ∈ Reg(B) ∩ JB. Then .r(I :Q0(R) J )B . ⊆ .(rIB :T (B) JB) ∩ IB . = . (rB :B
JB)IB . = .(rB :B (JB)v)IB . = .(rB :B (J [X]vB)v)IB . = . (rB :B (J v0B)v)IB

. = .(rB :B B)IB . = rIB, where the first equality holds [15, Exercise I.2.22; 22, 
Lemma 2.2.8] since IB  is B-flat and JB  is a finitely generated ideal of B, the  
third equality holds by (1), and the fourth equality holds [60, Lemma 5.1(b)] 
since .J ∈ Isr (R). Canceling the regular element r , we obtain . (I :Q0(R) J )B ⊆
IB. So .(I :Q0(R) J ) ⊆ Q0(R) ∩ IB = I �w = I , as desired. 

Now further assume I is semiregular. We need to show .I ⊇ J v0 for each 
finitely generated faithful .J ∈ ModR(I). Since B is Marot with Property 
A, we have .JB = ∑n

i=1 fiB with each .fi ∈ Reg(T (B)). Pick . g ∈
Reg(B) with each .gf −1

i ∈ Reg(B). Then .I (JB)−1
.= .IB

(⋂n
i=1 f −1

i B
)

. =
.g−1IB

(⋂n
i=1 gf −1

i B
)

= .
⋂n

i=1 f −1
i IB . ⊇ B, where the last equality holds [22, 

Lemma 2.2.8] since .g−1IB ∼= IB is B-flat and each .gf −1
i B is an ideal of B. 

Therefore .J v0B = J [X]vB ⊆ (JB)v ⊆ I (JB)−1(JB)v ⊆ IB, where the 
equality holds [60, Lemma 5.1(b)] since .J ∈ Isr (R) and the first inclusion is by 
(1). So .J v0 ⊆ Q0(R) ∩ IB = I �w = I , as desired. 

3. First note that .�-invertible and .�-invertible are equivalent since . � and . � map 
the same ideals to R. We prove (3)’s final assertion in the case where .T =
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Q0(R). The .T = T (R) case’s proof can be obtained by simply replacing each 
“semiregular” with “regular.” 

.(⇒): Assume I is .�-invertible. Since . � has finite type, we have 
.(
∑n

i=1 Rxiyi)
� = R with each .xi ∈ I and .yi ∈ (R :T I ). Then 

.I = (
∑n

i=1 xi(yiI ))� ⊆ (
∑n

i=1 Rxi)
� ⊆ I . There is a semiregular . B ∈ I(R)

with each .yiB ⊆ R. So .I ⊇ (
∑n

i=1 xi(yiB))� ⊇ B. To show that I is .�-
locally cyclic, let .M ∈ Max�(R). Because .RM is quasilocal, it suffices to prove 
.JM = (J I−10)MIM for each .J ∈ ModR(I) [4, Theorem 2.1]. This follows from 
Lemma 2(1) since .J � = ((J I−10)I )�. 

.(⇐): Assume I is semiregular, .�-locally cyclic, and .t0-finite. By (1), we have 
.(II−10)M = IMI

−10
M = RM for each .M ∈ Max�(R), so .(II−10)� = R by 

Lemma 2(1). 
��

The last of our initial lemmas will develop some lattice-theoretic facts. We refer 
the reader to [1, pp. 131–134] for definitions related to multiplicative lattices. 

Lemma 5 Let .R ⊆ T be an extension of rings, . � be a reduced finite type stable 
T -semistar operation on R, and .I ∈ {I�

sr (R), I�
r (R)}. 

1. .I�(R) and .{(0)} ∪ I , when endowed with the .�-product and the inclusion partial 
order, are compactly generated modular multiplicative lattices where the identity 
is compact (cf. [9, pp. 409–410; 33, p. 82]). Specifically, residuation in .I�(R) and 
.{(0)} ∪I is the usual residuation of ideals, the join in .I�(R) or .{(0)} ∪I is given 
by .

∨
λ∈� Iλ = (∑

λ∈� Iλ

)�, the meet in .I�(R) is given by .
∧

λ∈� Iλ = ⋂
λ∈� Iλ, 

and the meet in .{(0)} ∪ I is .
∧

λ∈� Iλ = ⋂
λ∈� Iλ if .

⋂
λ∈� Iλ ∈ I and otherwise 

.
∧

λ∈� Iλ = (0) (cf. [9, pp. 409–410; 33, p. 82]).  
2. An element of .I�(R) or .{(0)} ∪ I is compact if and only if it is .�-finite (cf. [9, 

Theorems 3.1(a) and 3.10(a); 33, Proposition 3.1(iii)]). 
3. An element of .I�(R) or .{(0)} ∪ I is principal (in the lattice-theoretic sense) if 

and only if it is .�-finite and .�-locally principal (cf. [33, Theorem 8.2(iv); 66, 
Theorem 2]). Therefore, if .T = Q0(R) (resp., .T = T (R)), then an element of 
.{(0)} ∪ I�

sr (R) (resp., .{(0)} ∪ I�
r (R)) is principal if and only if it is zero or .�-

invertible (cf. [9, Theorems 3.1(b) and 3.10(b)]). So .I�(R) is an r-lattice (cf. [1, 
p. 134]) and, if .T = Q0(R) (resp., .T = T (R)), then .{(0)}∪I�

sr (R) (resp., . {(0)}∪
I�

r (R)) is an  r-lattice if and only if every semiregular (resp., regular) .�-ideal has 
the form .(

∑
λ∈� Iλ)

� with each . Iλ a .�-invertible .�-ideal (cf. [9, Theorems 3.1(a) 
and 3.10(a)]). 

Proof Let .L ∈ {I�(R), {(0)} ∪ I}. We have already noted that (i) the intersection 
of a nonempty family of .�-ideals is a .�-ideal and (ii) .(I :R J ) ∈ L for all .I, J ∈ L. 
With these two facts in mind, it follows directly from the definitions that . L is a 
multiplicative lattice with the given meets, joins, and residuations. Because every 
element of . L is the join of a family of .�-finite elements of L, it follows that every 
compact element of . L is .�-finite. Conversely, the fact that .�-finite elements of . L are 
compact follows from the fact that . � has finite type. The fact that . L is modular can
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be reduced to the known .� = d special case [9, p. 409] by using the fact that stable 
T -semistar operations distribute over finite intersections. All that is left is the first 
sentence of (3). We recall that the principal elements of . L are those .I ∈ L for which 
.((A ∩ (B :R I))I )� = (AI)� ∩ B and .((A + BI)� :R I) = ((A :R I) + B)� for 
all .A,B ∈ L [19, p. 1]. Statements (1) and (2) imply principal elements of . L are 
.�-finite [1, Theorem 1.3]. Thus, we can use Lemma 2(1) to see that an . I ∈ I�(R)

is a principal element of .I�(R) if and only if .IM is a principal element of . I(RM)

(or equivalently .IM is principal [66, Theorem 2]) for each .M ∈ Max�(R). It only 
remains to show that a nonzero principal element I of .{(0)}∪I is .�-locally principal. 
Let M be a .�-maximal .�-ideal containing I . Because I is .�-finite, Lemma 2(1) 
implies .IM = (a1, . . . , an)M for some .a1, . . . , an ∈ I . Choose so that n is as small 
as possible and let .J := (a3, . . . , an). Suppose .n ≥ 2. Because .I 3

M = BMIM , where 
.B := ((a2

1 + a2
2, a1a2) + J 2 + I 3)� ∈ I, we have . BM ⊆ I 2

M ⊆ (BMIM :RM
IM) =

(((0) + BI)� :R I)M = ((((0) :R I) + B)�)M = BM . Nakayama’s lemma implies 
.I 2
M = (a2

1 + a2
2, a1a2)M + J 2

M , so .sa2
1 = λ(a2

1 + a2
2) + b for some .s ∈ R \ M , 

.λ ∈ R, and .b ∈ (a1a2) + J 2. Suppose .λ ∈ M . Then . (a2
1)M = ((s − λ)a2

1)M ⊆
(a2

2, a1a2)M + J 2
M . Thus .I 2

M = CMIM , where .C := ((a2) + J + I 2)� ∈ I, and we 
argue as above to conclude .IM = (a2)M +JM , a contradiction. Therefore . λ /∈ M . So  
.(a2

2)M = (−λa2
2)M ⊆ (a2

1, a1a2)M + J 2
M , leading to a contradiction as above. ��

We are almost ready to present our first major theorem. Let .R ⊆ T be an 
extension of rings and . � be a T -semistar operation on R. One of the major 
themes we wish to pursue, in line with earlier investigations of Juett et al. into 
factorization of ideals [6, 38, 39], is how one might characterize “Dedekindness” 
in terms of “unique .�-factorization.” We call a .�-ideal I .�-unfactorable if it is an 
irreducible element of .(I�(R), �) in the sense of Anderson and Valdes-Leon [10, 
Definition 2.4], i.e., (i) .I �= R and (ii) .I = (AB)� with .A,B ∈ I�(R) implies 
.I ∈ {A,B}. Thus d-unfactorable d-ideals are the same as the unfactorable or 
weakly nonfactorable ideals defined by Juett et al. [6, p. 1744; 39, p. 2102]. When 
studying factorization in non-cancellative monoids, there are multiple reasonable 
but generally unequivalent ways one might define “uniqueness” of factorizations. 
For simplicity, we will confine our attention to the two notions we find most natural. 
We say two .�-products .(I1 · · · Im)� and .(J1 · · · Jn)

� (.Ii, Jj ∈ I�(R)) are  equal up to 
order if .m = n and each .Ii = Ji after a suitable reordering and equal up to factors if 
.{I1, . . . , Im} = {J1, . . . , Jn} (cf. [10, Definition 4.1; 39, p. 2103]). We will now give 
our first characterization of “Dedekindness” and then discuss what special cases of 
the theorem are known afterwards. 

Theorem 6 Let R be a ring, .T ∈ {T (R),Q0(R)}, and . � be a reduced finite type 
stable T -semistar operation on R. 

1. The following are equivalent if .T = Q0(R). 

a. R is .Q0-.�-Dedekind. 
b. For all .I ⊆ P in .I�

sr (R) (with P prime) we have .P = (I + (y))� for some 
.y ∈ P .
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c. R is integrally closed in .Q0(R) and every semiregular prime .�-ideal of R is 
.�-maximal, .�-finite, and contains a .�-invertible .�-ideal. 

d. Every (.�-finite) .I ∈ I�
sr (R) \ {R} is a .�-product of prime .�-ideals. 

e. Every (.�-finite) .I ∈ I�
sr (R) \ {R} is a unique up to order (or equivalently 

factors) .�-product of .�-unfactorable .�-ideals. 
f. R is strongly .�-Prüfer and every semiregular prime .�-ideal contains a .�-

unfactorable .�-invertible .�-ideal. 
g. .P � PP −10 for each semiregular prime .�-ideal P that is either .�-maximal or 

directly below a .�-maximal .�-ideal. 
h. There is a Euclidean domain D with .I(D) ∼= {(0)} ∪ I�

sr (R) as multiplicative 
lattices. 

2. The following are equivalent if .T = T (R). 

a. R is .�-Dedekind. 
b. For all (prime) .P ∈ I�

r (R) and .x ∈ Reg(R) ∩ P we have .P = (x, y)� for 
some .y ∈ P . 

c. R is integrally closed in .T (R) and every regular prime .�-ideal of R is .�-
maximal and .�-finite. 

d. Every .I ∈ I�
r (R) \ {R} is a .�-product of prime .�-ideals. 

e. .(a, b)� is a .�-product of prime .�-ideals for all .a ∈ Reg(R) and .b ∈ R. 
f. Every (.�-finite) .I ∈ I�

r (R)\{R} is a unique up to order (or equivalently factors) 
.�-product of .�-unfactorable .�-ideals. 

g. R is .�-Prüfer and every regular prime .�-ideal contains a .�-unfactorable .�-
invertible .�-ideal. 

h. .P � PP −1 for each regular prime .�-ideal P that is either .�-maximal or 
directly below a .�-maximal .�-ideal. 

i. There is a Euclidean domain D with .I(D) ∼= {(0)} ∪ I�
r (R) as multiplicative 

lattices. 

Proof 

1. Assume .T = Q0(R). 
(g) . ⇒ (b): Assume (g) holds. Pick .I ⊆ J ⊆ M in .I�

sr (R) with M .�-maximal. 
Then .M � (MM−10)� = R by (g). Pick .P ∈ ModR(M) with .PM = ⋂∞

n=1 Mn
M . 

Then .PM = MMPM is the largest prime ideal of .RM properly contained in . MM

[8, Corollary 2.3] since .MM is regular and principal by Lemma 4(3). Adjust 
notation if necessary so that P is the largest prime (.�-)ideal properly contained 
in M . 

We claim that P is not semiregular. Suppose it is. Then .P � PP −10 (or 
equivalently .PM � (PP −10)M ) by (g). Thus there is a maximum . n ∈ Z

+
0

with .(PP −10)M ⊆ Mn
M . Because .Mn

M is a regular principal ideal, we have 
.(PP −10)M = ((PP −10)M :RM

Mn
M)Mn

M , where . MM � ((PP −10)M :RM
Mn

M)

(or equivalently .(PP −10)M = Mn
M ) by the maximality of n. So . Mn+1

M =
(MPP −10)M = (PP −10)M = Mn

M , which is absurd.
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It follows that .MM = √
IM . Because .MM is a regular principal ideal, there 

is a maximum .n ∈ Z
+ with .IM ⊆ Mn

M . In fact .IM = Mn
M as in the previous 

paragraph. By the arbitrariness of I and M , we have shown that every semiregular 
.�-ideal is .�-locally principal and every semiregular prime .�-ideal is .�-maximal 
and .�-invertible (and therefore .�-finite by Lemma 4(3)). It follows that I is 
contained in only finitely many .�-maximal .�-ideals .M1, . . . , Mk [33, Proposition 

6.6]. Each .JMi
= (yi)Mi

for some . yi ∈ J . Pick .xi ∈
(⋂

j �=i Mj

)
\ Mi . Let  

.y := ∑k
i=1 xiyi . Then each . JMi

= (xiyi)Mi
= (y)Mi

+ (Mi)Mi
JMi

= (y)Mi

by Nakayama’s lemma. Thus .JM = (I + (y))M holds for all .M ∈ Max�(R), so  
.I = (J + (y))� by Lemma 2(1), as desired. 

(b) . ⇒ (a): Assume the formally weaker version of (b) holds. We first show 
that each prime .P ∈ I�

sr (R) is .�-invertible. By Lemma 4(3), we need to show 
.PM is cyclic for each .M ∈ Max�(R). Pick a finitely generated semiregular . I ∈
ModR(P ). Then .P = ((I 2)� + (y))� for some . y ∈ P , so . PM = I 2

M + (y)M =
(y)M by Lemma 2(1) and Nakayama’s lemma, as desired. By “(g) . ⇒ (b),” it 
follows that the formally stronger version of (b) holds. A trivial adjustment to 
the above argument now shows that R is .Q0-.�-Dedekind. 

(a) . ⇒ (f): Follows from the fact that every prime .�-ideal is .�-unfactorable. 
(f) . ⇒ (h): Assume (f) holds. Then Lemma 5(3) implies .{(0)} ∪ I�

sr (R) is an 
r-lattice. Because R is strongly .�-Prüfer, this r-lattice satisfies the weak union 
condition, i.e., for all .A,B,C ∈ I�

sr (R) with .A � B and .A � C, there is 
a .�-invertible .�-ideal .I ⊆ A with .I � B and .I � C [37, p. 1]. We claim that 
.{(0)}∪I�

sr (R) is also distributive, i.e., that .(A∩B+A∩C)� = A∩(B+C)� for all 
.A,B,C ∈ I�

sr (R) [74, p. 629]. Because . � has finite type, it is enough to verify 
this for A, B, and C .�-finite. For each .M ∈ Max�(R), Lemmas 2(1) and 4(3) 
imply .BM + CM = ((B + C)�)M is a regular principal ideal of . RM , so .BM and 
.CM are comparable and therefore . (A∩B +A∩C)M = AM ∩BM +AM ∩CM =
AM ∩ (BM + CM) = (A ∩ (B + C))M . So . (A ∩ B + A ∩ C)� = A ∩ (B + C)�

by Lemma 2(1), as desired. 
Because .{(0)} ∪ I�

sr (R) is a distributive r-lattice satisfying the weak union 
condition, it is isomorphic to .I(D) for some Prüfer domain D [1, Theorem 3.4]. 
In fact, if we carefully unravel the proof of [1, Theorem 3.4], we see that D is 
produced via the Krull-Kaplansky-Jaffard-Ohm theorem [36, p. 78]. Thus, due to 
Heinzer’s observation about the proof of the latter theorem [34, pp. 1369–1370], 
we may take D to be a Bézout domain with stable rank 1. The isomorphism 
implies D is a Bézout domain where every nonzero prime ideal contains a 
nonzero irreducible (or equivalently prime [33, Proposition 10.5(1)]) element. 
So D is a factorial Bézout domain [45, Theorem 5] (or equivalently a principal 
ideal domain [33, Theorem 10.7]) with stable rank 1 and therefore Euclidean [23, 
Theorem 5.3]. 

(h) . ⇒ (d). +(e): Clear. 
(d) . ⇒ (b): Assume the formally weaker version of (d) holds. It suffices to 

prove that for each .I ∈ I�
sr (R)\{R} and finitely generated faithful .J ∈ ModR(I), 

we have .I = (J + (y))� for some .y ∈ I .
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We first claim that .RM/J 2
M is an Artinian local PIR for each . M ∈ Max�(R)

containing J . Nakayama’s lemma implies .JM �= J 2
M , so .RM/J 2

M is a quasilocal 
ring with proper zero divisors. Thus it will suffice to show that . ((x)M + J 2

M)/J 2
M

is a product of prime ideals of .RM/J 2
M for each .x ∈ M [28, Theorem 

46.11]. Because .((x) + J 2)� is a .�-product of prime .�-ideals, this follows from 
Lemma 2(1). 

The above paragraph shows .I�
sr (R) ∩ Spec(R) ⊆ Max�(R). So  J is a .�-

product of .�-maximal .�-ideals, and consequently there are only finitely many 
.M1, . . . ,Mn ∈ Max�(R) containing J . Each .RMi

/J 2
Mi

is a PIR, so . IMi
= J 2

Mi
+

(yi)Mi
for some . yi ∈ I . Pick .xi ∈

(⋂
j �=i Mj

)
\ Mi . Let .y := ∑n

i=1 xiyi . Then 

each .IMi
= (xiyi)Mi

+ J 2
Mi

= (y)Mi
+ (Mi)Mi

IMi
= (y)Mi

by Nakayama’s 
lemma. Thus .IM = (J + (y))M holds for all .M ∈ Max�(R), so . I = (J + (y))�

by Lemma 2(1). 
(e) . ⇒ (f): (We adapt Juett et al.’s proof of [39, Theorem 3.6].) By Lemma 4(3), 

we need to show the formally weakest version of (e) implies . IM is principal for 
each .M ∈ Max�(R) and .�-finite .I ∈ I�

sr (R) \ {R}. Throughout, we note that 
.�-finite semiregular proper .�-ideals have no redundant .�-factorizations. (To see 
this, combine Lemma 2(1) with Nakayama’s lemma.) Let .I = (I

m1
1 · · · Imk

k )� be 
a .�-product of .�-unfactorable .�-ideals with the . Ii’s distinct. Because . � has finite 
type and I is .�-finite, we have .I = (J

m1
1 · · · Jmk

k )� with each . Ji ∈ ModR(Ii)

.�-closed and .�-finite. By uniqueness up to factors, each . Ji = (I
li,1
1 · · · I li,k

k )�

for some .li,1, . . . , li,k ∈ Z
+
0 . Because .I = (I

mi li,i
i

∏
j �=i I

mj +mili,j
j )� has no 

redundant .�-factorizations, we have .li,j = 0 for .j �= i and consequently 
.li,i = 1. Because .IM = (I1)

m1
M · · · (Ik)

mk

M (see Lemma 2(1)), we may pass 
from I to an . Ii and assume I is .�-unfactorable. Because I is .�-finite, there is 
a minimum .n ∈ Z

+ with .I = ((x1, . . . , xn) + MI)� for some .x1, . . . , xn ∈ I . 
Then .IM = (x1, . . . , xn)M + MMIM = (x1, . . . , xn)M by Lemma 2(1) and 
Nakayama’s lemma. Suppose . n > 1. Let .A := ((x3, . . . , xn) + MI)�. It is  
straightforward to check that .(I 3)� = (IB)� for some finitely generated . B ∈
ModR((x2

1 + x2
2 , x1x2)+ (x1, x2)A+A2). Since .(I 3)� has a unique up to factors 

.�-factorization into .�-unfactorable .�-ideals and no redundant .�-factorizations, it 
follows that .B� = (I 2)�. Because . � is stable, this implies .x2

1(y1, . . . , ys) ⊆ B for 
some .y1, . . . , ys ∈ R with .(y1, . . . , ys)

� = R. Thus (. ∗): . x2
1yi = λi(x

2
1 +x2

2)+ zi

for some .λi ∈ R and .zi ∈ (x1x2) + (x1, x2)A + A2. 
Suppose that each .λi ∈ M . Then each . λix

2
1 ∈ MI 2 ⊆ AI ⊆ ((x1, x2)A +

A2)�, so .x2
1yi ∈ ((x1x2, x

2
2) + (x1, x2)A + A2)� by (. ∗). It is then straightforward 

to check that .(I 2)� = (I 2(y1, . . . , ys))
� = (IC)� for some finitely generated . C ∈

ModR((x2)+A). Arguing as above yields .C� = I , so .I = ((x2, . . . , xn)+MI)�, 
a contradiction. Thus some .λj /∈ M , so .(a1 + w1λj , . . . , ar + wrλj )

� = R for 
some .a1, . . . , ar ∈ M and .w1, . . . , wr ∈ R. Then each . aix

2
2 ∈ MI 2 ⊆ ((x1x2)+

(x1, x2)A + A2)�. By (. ∗), each . x2
2(ai + wiλj ) = wi((yj − λj )x

2
1 − zi) + aix

2
2 ∈

((x1x2, x
2
1) + (x1, x2)A + A2)�. From here we obtain a contradiction as above.
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(a) . ⇒ (c): In view of “(a) . ⇔ (h)” and Lemma 4, it suffices to note that R is 
integrally closed in .Q0(R) if R is .Q0-Krull [60, Theorem 4.2]. 

(c) . ⇒ (g): By contradiction. Suppose (c) holds but .M = MM−10 for some 
semiregular .M ∈ Max�(R). Then .MM = MM(M−10)M , where .MM is finitely 
generated and faithful by Lemma 2(1), so .(M−10)M is integral over .RM [45, 
Theorem 12]. But .RM is integrally closed in .Q0(R)M [28, Proposition 10.2] 
since R is integrally closed in . Q0(R), so .RM = (M−10)M = M

−10
M , where the 

last equality is by Lemma 4(1). Pick a .�-invertible .�-ideal .I ⊆ M . Since the 
minimal primes of I are .�-ideals [33, Proposition 6.6], we have .

√
IM = MM , 

so there is a minimum .k ∈ Z
+ with .Mk

M ⊆ IM since .MM is finitely generated. 
Lemma 4(3) implies .IM is a regular principal ideal but .MM is not, so .k ≥ 2. 
Thus .Mk−1

M = Mk−1
M I−1

M IM ⊆ M
−10
M IM = IM , a contradiction. 

2. This is virtually identical to the proof of (1): just make the obvious substitutions 
like changing each “semiregular” to “regular,” etc., change the “finitely gener-
ated” to “principal” in the second sentence of the proof of “(1d) . ⇒ (1b)” when 
constructing the proof of “(2e) . ⇒ (2b),” and in the proof of “(2a) . ⇒ (2c)” use 
[46, Proposition 2.2] to justify the fact that R is integrally closed in .T (R). 

��
We note that in the special case .� = d of Theorem 6(2), which characterizes 

Dedekind rings, the equivalence of (2a)–(2g) is essentially already known [39, 
Theorem 3.6]. If we further specialize to characterizations of Dedekind domains, 
then (2h) and (2i) are also known [2, Theorem 8(2); 5, Theorem 5.4; 16, Theorem]. 
We note that (2i) is really only a novel characterization for Dedekind rings with zero 
divisors, because a domain D is Dedekind if and only if .D(X) is a Euclidean domain 
[5, Theorem 5.4], in which case .I(D) ∼= I(D(X)) as multiplicative lattices [2, 
Theorem 8(2)]. The special case .� = w of Theorem 6(2) characterizes Krull rings. 
Here “(2a) . ⇔ (2d) ” is implicit in [44, Theorem 13], but the other characterizations 
of Krull rings with zero divisors appear to be new. If one specializes further 
to integral domains, then the characterization of Krullness in (2b) and (2h) are 
essentially given by [49, Theorem 4.4; 67, Proposition 1.2] and the characterization 
in the formally stronger version of (2f) is given by [47, Theorem 3.6]. The remaining 
characterizations of Krullness appear to be new, even in the domain case. The special 
cases .� = d and .� = w0 of Theorem 6(1) respectively characterize .Q0-Dedekind 
rings and .Q0-Krull rings. There all parts are new. Of course, all the characterizations 
in Theorem 6 are new in the general case. We note that including the formally 
weaker versions of (1e) and (2f) considerably increases the strength of the results. 

It is well known that every overring of a Dedekind ring is Dedekind [22, Exercise  
3.8.1]. In Corollary 10 we will prove the analogous result that every .Q0-overring 
of a .Q0-Dedekind ring is .Q0-Dedekind. But it is far from true that every (.Q0-
)overring of a (.Q0-)Krull ring is (.Q0-)Krull. Indeed, a domain is Dedekind if and 
only if each of its overrings is Krull [30, Theorem 18]. On the positive side, we can 
show that (.Q0-)Krullness is inherited by a special kind of (.Q0-)overring called “.t0-
linked.” Let us spend a moment developing the necessary terminology to describe 
such overrings. Let .R ⊆ T be an extension of rings and . � be a finite type T -
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semistar operation on R. We call a T -overring V of R .�-linked if .V = V � (cf. 
[72, p. 337]). In Lemma 7 we will verify that this definition is consistent with 
the traditional definition of a “t-linked” overring [22, Definition 3.3.1] and develop 
several properties of .�-linked T -overrings. (We emphasize that we are only defining 
“.�-linked” for . � of finite type, which is all we need for our purposes. So, for example, 
our results about .�-linked extensions do not apply to the “v-linked” extensions 
studied in [21, pp. 4139–4140].) Some examples of .t0-linked .Q0-overrings include 
.Q0-quotient rings (or more generally .Q0-generalized transforms) and flat .Q0-
overrings—see Lemmas 2(2) and 4(2). We highlight a convention we will be using 
throughout the sequel. If V is a .�-linked T -overring of R, then by Lemma 7(2) we 
can regard . � as a finite type stable T -semistar operation on V . One point of caution 
about this: If V is a .wR,T -linked T -overring of R, then .wR,T ≤ wV,T as T -semistar 
operations on V , but the inequality might be strict [73, Example]. 

Lemma 7 Let .R ⊆ T be an extension of rings and . � be a finite type stable T -
semistar operation on R. 

1. A .Q0-overring V of R is .t0-linked (or equivalently .w0-linked) if and only if 
.(IV )tV,Q0(R) = V for each (finitely generated semiregular) .I ∈ I(R) with 
.I tR,Q0(R) = R (cf. [72, Lemma 3.3]). An overring V of R is t-linked (or 
equivalently w-linked) if and only if .(IV )tV,T (R) = V for each (finitely generated 
regular) .I ∈ I(R) with .I tR,T (R) = R. 

2. If V is a .�-linked T -overring of R, then . � restricts to a finite type stable T -
semistar operation on V (cf. [73, p. 1]).  

3. The following are equivalent for a .�-linked T -overring V of R (cf. [14, Theorem 
1.3; 32, Proposition 10; 70, Propositions 2.1 and 3.8]). 

a. V is .�-locally flat as an R-module. 
b. For each .P ∈ Spec�(R), either .V = (PV )� or .V ⊆ RT[P ]. 
c. .V T[M] = RT[R∩M] for each (.�-maximal) .M ∈ Spec�(V ). 

d. .V = ⋂
M∈Max�(V ) RT[R∩M] = ⋂

P∈Spec�(V ) RT[R∩P ]. 
e. .V = ((R :R J )V )� for each finitely generated (cyclic) .J ∈ ModR(V ). 
f. .(AV :T BV )� = ((A :T B)V )� and .

((⋂n
i=1 Ai

)
V

)� = ⋂n
i=1(AiV )� for all 

.A,B,A1, . . . , An ∈ ModR(T ) with B finitely generated. 
g. .V = RT

S for some nonempty multiplicatively closed set . S of (finitely 
generated) ideals of R with .V = (IV )� for each .I ∈ S . 

Proof 

1. We will prove the first sentence of (1). To prove the second sentence, just make 
the obvious substitutions, replacing “semiregular” with “regular,” etc. 

.(⇒): Assume .V = V wR,Q0(R) . Pick .I ∈ I(R) with .I tR,Q0(R) = R. Then 
.J tR,Q0(R) = R for some finitely generated .J ∈ ModR(I) since .tR,Q0(R) has finite 
type. It suffices to show that .(V :Q0(R) JV ) ⊆ V , for then . V ⊇ (IV )tV,Q0(R) ⊇
(JV )vV,Q0(R) ⊇ V . Let .x ∈ (V :Q0(R) JV ). Then there is a finitely generated 
.B ∈ Isr (R) with .xB ⊆ R. So .B + J ∈ Isr (R) is finitely generated, . (B +
J )tR,Q0(R) = R, and .x(B + J ) ⊆ V . Thus .x ∈ V wR,Q0(R) = V , as desired.
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.(⇐): Assume .(IV )tV,Q0(R) = V for each finitely generated semiregular . I ∈
I(R) with .I tR,Q0(R) = R. Let .x ∈ V tR,Q0(R) . Then .xJ ⊆ V for some finitely 
generated .J ∈ I(R) with .J tR,Q0(R) = R and .xB ⊆ R for some finitely generated 
.B ∈ Isr (R). So .x ∈ (V :Q0(R) (B + J )V ) = V , as desired. 

2. Assume .V = V �. For each .I ∈ ModV (T ), we have .I �V ⊆ (IV )� = I �, so . I � ∈
ModV (T ). Thus . � is a T -semistar operation on V . To prove that it is a finite type 
stable T -semistar operation on V , we need to show that for each . I ∈ ModV (T )

and .x ∈ I � we have .xJ ⊆ I for some finitely generated .J ∈ ModV (T ) with 
.J � = V . Since . � is a finite type stable T -semistar operation on R, we have  
.xB ⊆ I for some finitely generated .B ∈ I(R) with .B� = R. So .BV ∈ I(V ) is 
finitely generated, .xBV ⊆ I , and .(BV )� = V � = V , as desired. 

3. (e) . ⇒ (b): By contrapositive. Assume there is a .P ∈ Spec�(R) with . V �= (PV )�

and .V � RT[P ]. Let .x ∈ V \ RT[P ]. Then .((R :R xR)V )� ⊆ (PV )� � V . 
(b) . ⇒ (c): Assume (b) holds. Let .P ∈ Spec�(V ). Then . ((R ∩ P)V )� ⊆ P �

V , so .V ⊆ RT[R∩P ] ⊆ V T[P ] by (b). Now let .x ∈ V T[P ]. Then .sx ∈ V ⊆ RT[R∩P ] for 

some .s ∈ V \ P ⊆ RT[R∩P ] \ P . Therefore .ts, usx ∈ R for some .t, u ∈ R \ P . 

Thus .(ts)ux ∈ R, where .(ts)u ∈ R \ P , so .x ∈ RT[R∩P ], as desired. 
(c) . ⇒ (d): First note that the second equality in (d) always holds. This follows 

from the fact that each .P ∈ Spec�(V ) is contained in some .M ∈ Max�(V ) and 
.RT[R∩M] ⊆ RT[R∩P ]. With this in mind, the result follows from Lemma 2(3). 

(d) . ⇒ (g): Assume (d) holds. Let .S := {I ∈ I(R) | I is d-finite and . V =
(IV )�}. Then . S is nonempty and multiplicatively closed and . RT

S ⊆ ⋃
I∈S((R :T

I )V )� ⊆ ⋃
I∈S((R :T I )(IV ))� ⊆ V . For the reverse inclusion, let . x ∈ V . By  

(d), for each .M ∈ Max�(V ) there is a .bM ∈ R \ M with .bMx ∈ R. Let . I :=∑
M∈Max�(V ) bMR. Then .(IV )� = V since .IV � M for each .M ∈ Max�(V ). 

Since . � has finite type, we have .1 ∈ (
∑n

i=1 yiziR)� with each .yi ∈ I and .zi ∈ V . 
So .J := ∑n

i=1 Ryi ∈ S and .x ∈ (R :T I ) ⊆ (R :T J ) ⊆ RT
S , as desired. 

(g) .⇒ (f): Assume the formally weaker version of (g) holds. Let 
.A,B,Ai be as in (f). Then .

⋂n
i=1(AiV )� .= . 

⋂n
i=1

⋃
I∈S(Ai(R :T I ))�

.= .
⋃

I∈S
⋂n

i=1(Ai(R :T I ))� .⊆ .
⋃

I∈S
((⋂n

i=1 Ai(R :T I )
)
IV

)�
.⊆ . 

⋃
I∈S((⋂n

i=1 Ai

)
V

)�
.⊆ .

⋂n
i=1(AiV )�, where the second equality holds because 

.{(R :T I )}I∈S is directed and the first equality holds since finite type T -semistar 
operations distribute into directed unions. We have . ((A :T B)V )� ⊆ ((AV )� :T
BV ) = (AV :T BV )�, where the equality holds since .BV ∈ ModV (T ) is 
finitely generated and . � is a stable T -semistar on V . For the reverse inclusion, 
pick .x ∈ ((AV )� :T BV ). We have .(AV )� = ⋃

I∈S(A(R :T I ))� as above, 
so .xB ⊆ (A(R :T J ))� for some .J ∈ S since B is finitely generated and 
.{(A(R :T I ))�}I∈S is directed. So . x ∈ (xV )� = (xJV )� ⊆ ((A� :T B)V )� =
((A :T B)V )�, where the last equality holds since . � is stable, as desired. 

(f) . ⇒ (a): Assume (f) holds. By Bourbaki’s flatness criterion [15, Exercise  
I.2.22], we need to show that .(IMVM :VM

(xV )M) = (IM :RM
(xR)M)VM for 

each .M ∈ Max�(R), .x ∈ R, and finitely generated .I ∈ I(R). Using (f) and 
Lemma 2(1), we compute .(IMVM :VM

(xV )M) = ((IV :V xV )�)M = ((IV :T
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xV )� ∩ V )M = (((I :T xR)V )� ∩ V )M = ((((I :T xR) ∩ R)V )�)M = ((I :R 
xR)V )�)M = (IM :RM (xR)M)VM , as desired. 

(a) . ⇒ (e): Assume (a) holds. Let .x1, . . . , xn ∈ V . For each .M ∈ Max�(R), we  
have . ((R :R ∑n

i=1 Rxi)V )M = (⋂n
i=1(RM :RM

(Rxi)M)
)
VM = ⋂n

i=1(RM :RM

(Rxi)M)VM = ⋂n
i=1(VM :VM

(V xi)M) = VM [15, Exercise I.2.22; 22, Lemma 
2.2.8] since .VM is .RM -flat. Thus .((R :R ∑n

i=1 Rxi)V )� = V by Lemma 2(1). 
��

The fact that Prüfer rings are characterized by having every overring integrally 
closed [32, Theorem 13] leads us to consider the following definitions. Let . R ⊆ T

be an extension of rings and . � be a finite type T -semistar operation on R. We call 
R quasi-.�-Prüfer if every .�-linked T -overring of R is integrally closed in T . If  
one wishes to emphasize or clarify what T is, one can write “quasi-T -.�-Prüfer.” In 
particular, one calls R a quasi-.Q0-Prüfer v-multiplication ring (quasi-.Q0-PVMR) 
if it is quasi-.Q0(R)-.t0-Prüfer [70, p. 4028] and quasi-.Q0-Prüfer (or simply “.Q0-
Prüfer” in Lucas’s terminology [54, p. 61]) if it is quasi-.Q0(R)-d-Prüfer. In the case 
where R is a domain, it has long been known that R is a PVMR if and only if it 
is quasi-t-Prüfer [20, Theorem 2.10], in which case every t-linked overring of R 
has the form .

⋂
P∈� R

T (R)
[P ] for some .� ⊆ Spect (R) [43, Theorem 3.8]. Elliott has 

asked whether this remains true without the domain hypothesis, and, if so, whether 
this generalizes to a characterization of .�-Prüfer rings [22, p. 284]. By combining 
Lemmas 7 and 8, we obtain affirmative answers to both questions. But (i) strongly 
Prüfer . ⇒ quasi-.Q0-Prüfer . ⇒ Prüfer and (ii) .Q0-PVMR . ⇒ quasi-.Q0-PVMR . ⇒
PVMR, with none of the implications reversing [54, p. 61;  70, pp. 4037–4038]. 

Lemma 8 (cf. [20, Theorem 2.10; 32, Theorem 13; 54, Theorem 7; 70, Lemma 
4.5]) Let .R ⊆ T be an extension of rings and . � be a finite type stable T -semistar 
operation on R. The following are equivalent. 

1. R is quasi-.�-Prüfer. 
2. Every .�-linked T -overring of R is quasi-.�-Prüfer. 
3. Every .�-linked T -overring of R is .�-locally flat as an R-module. 
4. .(RT[P ], P T[P ]) is a valuation pair of T (see [64, p. 735]) for each .P ∈ Spec�(R). 

If .T = T (R), then R is quasi-.�-Prüfer if and only if it is .�-Prüfer. If R is quasi-.�-
Prüfer, then each finitely generated .I ∈ I(R) with .(IT )� = T is .�-invertible. 

Proof The “only if” for the penultimate assertion will follow immediately from the 
lemma’s final assertion since .IT (R) = T (R) for all .I ∈ Ir (R). For the “if” part, 
assume .T = T (R) and R is .�-Prüfer. In view of our forthcoming proof of “(3) . ⇒
(1),” it suffices to show that each regular .I ∈ ModR(T (R)) is .�-locally flat. Because 
a directed union of flat modules is flat, we may assume I is finitely generated. Then 
.rI ∈ Ir (R) is finitely generated for some .r ∈ Reg(R), so  rI (or equivalently . I �) is  
.�-invertible. Lemmas 2(1) and 4(3) now imply I is .�-locally flat. 

(3) . ⇒ (1): Assume (3) holds. Let V be a .�-linked T -overring of R and . V ′ be the 
integral closure of V in T . Suppose that there is an .x ∈ V ′ \ V . Then .(V :V V x) is 
contained in some .P ∈ Spec�(V ). By the lying-over theorem for integral extensions,
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there is a .Q ∈ Spec(V ′) with .V ∩ Q = P . Then . (V ′)� ⊇ Q� ⊇ ((V :V V x)V ′)� ⊇
((R :R Rx)V ′)� = (V ′)�, where the equality holds by Lemma 7(3). Therefore 
.V = (V ′)� ∩V = Q� ∩V = (Q∩V )� = P � = P since . � is stable, a contradiction. 

(1) . ⇒ (4): (We adapt the proof of “(1) . ⇒ (2)” in [70, Theorem 4.2].) Assume R 
is quasi-.�-Prüfer. Let .P ∈ Spec�(R). We need to show that for each . z ∈ T \ RT[P ]
there is a .y ∈ P T[P ] with .yz ∈ RT[P ] \ P T[P ] [64, p. 735]. Because .(RT[P ][z2])� is 

integrally closed in T and . � is stable, we have .Jz ⊆ RT[P ][z2] for some . J ∈ I(R)

with .J � = R. Then . J � P , so (. ∗): .bz = ∑n
k=0 akz

2k for some .b ∈ R \ P and 
.a0, . . . , an ∈ RT[P ] with .an �= 0, where .n > 0 since .z /∈ RT[P ]. Choose so that 
n is as small as possible. Because R is integrally closed in T , the same holds for 
.RT[P ]. (To see this, pick .t ∈ T with .tn + an−1t

n−1 + · · · + a1t + a0 = 0 for some 

.a1, . . . , an−1 ∈ RT[P ]. Multiply both sides by . sn, where s is an element of .R \P with 

each .sai ∈ R. The result is . (st)n + san−1(st)
n−1 + · · · + sn−1a1(st) + sna0 =

0, where .san−1, . . . , s
n−1a1, s

na0 ∈ R. So .st ∈ R and therefore .t ∈ RT[P ], 
as desired.) Multiplying both sides of (. ∗) by .a2n−1

n and rearranging, we obtain 

.(anz)
2n − ba2n−2

n (anz) + ∑n−1
k=0 aka

2(n−k)−1
n (anz)

2k = 0, so .anz ∈ RT[P ]. Thus 
.san, (san)z ∈ R for some .s ∈ R \ P , so . san ∈ P . If .n > 1, then we can 
multiply (. ∗) by .an−1 and rearrange to obtain . (anz

2)n + (a0a
n−1
n − ban−2

n (anz)) +
∑n−1

k=1 aka
n−k−1
n (anz

2)k , conclude that .anz
2 ∈ RT[P ], and then rearrange (. ∗) to obtain 

.bz = (an−1 + anz
2)z2(n−1) + ∑n−2

k=0 akz
2k , contradicting the minimality of n. 

Therefore . n = 1. Pick .t ∈ R \ P with .ta0 ∈ R. For each .u ∈ R \ P , we have  
.stu(b − a1z) ∈ R and .stu(b − a1z)z = stua0 ∈ R, so .stu(b − a1z) ∈ P and 
therefore .usa1z /∈ P . Thus .sa1 ∈ P T[P ] and .(sa1)z ∈ RT[P ] \ P T[P ], as desired. 

(4) .⇒ (3): Assume (4) holds. Let V be a .�-linked T -overring of R. By  
Lemma 7(3), we need to prove .V T[M] = RT[R∩M] for each .M ∈ Max�(V ). Then 

.P := R ∩ M ∈ Spec�(R) since . � is stable. Because .(RT[P ], P T[P ]) is a valuation pair 

of T and .RT[P ] ⊆ V T[M], it suffices to show that .MT[M] ∩ RT[P ] = P T[P ] [54, Theorem 

1]. For the nontrivial inclusion, let .x ∈ MT[M] ∩ RT[P ]. Then there are .s ∈ V \ M and 
.t ∈ R \ M with .sx ∈ M and .tx ∈ R. Because .s(tx) ∈ M , we have . tx ∈ P , as  
desired. 

Now we will adapt the proof of [70, Lemma 4.5] to show that each finitely 
generated .I ∈ I(R) with .(IT )� = T is .�-invertible. We need to prove that 
.I (R :T I ) � M for each .M ∈ Max�(R). Let . ν be a valuation on T associated with 
the pair .(RT[M],MT[M])—see [54, p. 61]. By Lemma  2(2), there is an .a ∈ IT \ MT[M]. 
Write .I = ∑n

i=1 Rxi and .a = ∑n
i=1 xiyi with each .xi ∈ I and . yi ∈ T . If  

.xiyj ∈ RT[M] for all . i, j , then there is an .s ∈ R \ M with each .sxiyj ∈ R, but  

.xk(syl) ∈ I (R :T I ) \ M for some .k, l since .sa /∈ M . So let us assume some 

.xkyl /∈ RT[M]; pick such a pair of indices with .ν(xkyl) as small as possible and choose 

.z ∈ MT[M] with .ν(z) = −ν(xkyl). Then .zxiyj ∈ RT[M] for all . i, j , but .zxkyl /∈ MT[M]. 
Thus there is an .s ∈ R\M with .szxiyj ∈ R for all . i, j , so .xk(szyl) ∈ I (R :T I )\M , 
as desired.
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(1) . ⇔ (2): Follows immediately from the fact that, if V is a .�-linked T -overring 
of R, then any .�-linked T -overring of V is also a .�-linked T -overring of R. ��

Before arriving at our promised result about “Dedekindness” and (.Q0-)overrings, 
we pause to characterize “.Q0-Dedekindness” via .Q0-semistar Nagata rings. 

Theorem 9 Let . � be a reduced finite type stable .Q0-semistar operation on a ring R 
and .{Xλ}λ∈� be a nonempty set of algebraically independent indeterminates. 

1. The following are equivalent (cf. [5, Theorems 2.2(5), 3.2(1), and 3.3(2)]). 

a. R is strongly .�-Prüfer. 
b. .R({Xλ}λ∈�, �) is (strongly) Prüfer. 
c. Every finitely generated (semi)regular ideal of .R({Xλ}λ∈�, �) is principal. 
d. The map .θ : {(0)} ∪ I�

sr (R) → {(0)} ∪ Ir (R({Xλ}λ∈�, �)), . θ : I �→
IR({Xλ}λ∈�, �), is a multiplicative lattice isomorphism. 

e. Every semiregular R-submodule of .Q0(R) (or equivalently every finitely 
generated faithful ideal of R) is .�-locally flat. 

f. R is quasi-.�-Prüfer and .(IQ0(R))� = Q0(R) for every .I ∈ Isr (R). 
g. Every .�-linked .Q0-overring of R is strongly .�-Prüfer. 

2. The following are equivalent (cf. [5, Theorem 5.4(1); 13, Theorem 6; 26, 
Theorem 2.2; 42, Lemma 3.8]). 

a. R is .Q0-.�-Dedekind. 
b. .R({Xλ}λ∈�, �) is (.Q0-)Dedekind. 
c. Every (semi)regular ideal of .R({Xλ}λ∈�, �) is principal. 

Proof Let .A := R[{Xλ}λ∈�]. Throughout, we recall that .B := R({Xλ}λ∈�, �) is 
Marot with Property A. Part (2) will follow from (1) via Lemma 5. 

(1a) . ⇒ (1c)+(1d): Assume R is strongly .�-Prüfer. Note that . θ does indeed map 
.{(0)} ∪ I�

sr (R) into .{(0)} ∪ Ir (B) by McCoy’s theorem. The fact that . θ is an order-
preserving monoid monomorphism follows nearly immediately from Lemma 3. 
Thus, since .{(0)}∪I�

sr (R) and .{(0)}∪Ir (B) are complete lattices, the only thing we 
need to verify for (1d) is the surjectivity of . θ . Let .J ∈ Ir (B). Lemma 4(3) implies 
.c(f )� is semiregular and .�-locally principal for each .f ∈ Reg(A), so . c(f )B = f B

holds locally [2, Theorem 7] and therefore globally. Since B is Marot, we have . J =
∑

f ∈J0
f B = ∑

f ∈J0
c(f )B = θ

((∑
f ∈J0

c(f )
)�)

, where .J0 := J ∩ Reg(A), as  

desired. For (1c), assume J is finitely generated. Then .J = IB for some finitely 
generated regular ideal I of A and there is a .g ∈ Reg(A) ∩ I with . c(f ) ⊆ c(g)

for all .f ∈ I [51, Proposition 6.6.3(1)]. Therefore .gB ⊆ J ⊆ θ(c(g)�) = gB, as  
desired. 

(1c) . ⇒ (1b); (1g) . ⇒ (1a): Clear. 
(1b) . ⇒ (1a); (1d) . ⇒ (1a): By Lemma 4(3), we need to show that (1b) and (1d) 

each imply .c(f )� is .�-locally principal (or equivalently .c(f )B is locally principal) 
for each .f ∈ Reg(A). We are done if (1b) holds, so let us assume (1d) holds. Then 
.f B = IB for some .I ∈ I�

sr (R). Because IB  is principal, the ideal I is .�-locally 
principal [3, Theorem 1]. We will show that .I = c(f )�. Of course .I = I � =
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R ∩ IB  ⊆ R ∩ c(f )B = c(f )�. For the reverse inclusion, we have .fg ∈ IA for 
some .g ∈ R[X] with .c(g)� = R. By the Dedekind-Mertens lemma, there is an 
.n ∈ Z

+ with .c(f )c(g)n+1 = c(fg)c(g)n. Therefore .c(f )� = c(fg)� ⊆ I � = I , as  
desired. 

(1a) . ⇒ (1e): Assume R is strongly .�-Prüfer. Because a directed union of flat 
modules is flat, it suffices by Lemmas 2(1) and 4(3) to show that every finitely 
generated faithful .I ∈ ModR(Q0(R)) is .�-invertible. Because I is finitely generated, 
there is a finitely generated .J ∈ Isr (R) with .JI ∈ Isr (R). Then JI  (and therefore 
I ) is .�-invertible since R is strongly .�-Prüfer. 

(1e) . ⇒ (1a): This follows from Lemmas 2(1) and 4(3) and the fact that finitely 
generated flat ideals of quasilocal rings are principal [65, Theorem 7.10]. 

(1a) .⇒ (1f): Assume R is strongly .�-Prüfer. Then R is quasi-.�-Prüfer by 
Lemma 8 and “(1a) . ⇒ (1e).” Let .I ∈ Isr (R). Then there is a finitely gener-
ated semiregular .J ∈ ModR(I) and . Q0(R) ⊇ (IQ0(R))� ⊇ (JQ0(R))� =
(JJ−10Q0(R))� = Q0(R) since J is .�-invertible, as desired. 

(1f) . ⇒ (1g): Let V be a .�-linked .Q0-overring of R. By Lemma 8, we need 
to show that (1f) implies .(IQ0(R))� = Q0(R) for each finitely generated . I ∈
Isr (V ). Write .I = ∑n

i=1 V xi with each .xi ∈ I . Then there is a finitely generated 
.J0 ∈ Isr (R) with each .xiJ0 ⊆ R. So .J := ∑n

i=1 xiJ0 ∈ Isr (R) and . Q0(R) ⊇
(IQ0(R))� ⊇ (JQ0(R))� = Q0(R) by (1f), as desired. ��

We close the paper with our result on “Dedekindness” and (.Q0-)overrings. It 
is well known that overrings of Dedekind rings are Dedekind [22, Exercise 3.8.1] 
and that t-linked overrings of Krull domains are Krull [20, Corollary 2.22], but 
the following corollary appears to be new except in those two special cases. In 
particular, it affirmatively answers a (previously) open question posed by Elliott 
[22, p. 281]: is every t-linked overring of a Krull ring Krull? 

Corollary 10 If R is a ring, . � is a finite type (.Q0-)semistar operation on R, and R 
is (.Q0-).�-Dedekind, then every .�-linked (.Q0-)overring of R is (.Q0-).�-Dedekind. 

Proof We prove the “. Q0” version. The proof of the other version can be obtained 
by just making the obvious substitutions, changing “semiregular” to “regular,” etc., 
and replacing references to Theorem 9(1) with references to Lemma 8. We may  
pass from . � to . �w and assume . � is reduced finite type stable. Assume R is .Q0-
.�-Dedekind. Let V be a .�-linked .Q0-overring of R. Lemma 7(3), Lemma 8, and 
Theorem 9(1) together imply .V = R

Q0(R)

S for some nonempty multiplicatively 
closed set . S of .�-invertible ideals of R with .(IV )� = V for each . I ∈ S. By  
Theorem 9(1), it suffices to show each semiregular .B ∈ I�(V ) is .�-finite. Let 
.A := R ∩ B ∈ I�(R). Because B is a semiregular ideal of V , it has a finitely 
generated semiregular subideal . B0. Then .JB0 ⊆ R for some semiregular ideal J 
of R. So  A has a semiregular subideal (namely .JB0) and consequently is .�-finite 
by Lemma 4(3). We have .AQ0(R)

S ⊆ ⋃
I∈S((A :Q0(R) I )(IV ))� ⊆ B. On the other 

hand, if .x ∈ B, then .xI ⊆ R for some . I ∈ S, so .x ∈ (A :Q0(R) I ) ⊆ A
Q0(R)

S . 

Thus .B = A
Q0(R)

S = ⋃
I∈S(I−10A)� = (AV )� since each .I ∈ S is .�-invertible,
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.{I−10}I∈S is directed, and finite type .Q0-semistar operations distribute over directed 
unions. Since A is .�-finite, the same holds for .B = (AV )�, as desired. ��
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1 Introduction 

The birational algebra of two-dimensional regular local rings plays a fundamental 
role in the study of algebraic surfaces and embedded resolution of singularities of 
plane curves. A point on a variety is nonsingular if and only if the local ring of 
the point is a regular local ring. Singularities of a curve on a nonsingular algebraic 
surface can be resolved by blowing up appropriate closed points where the curve 
has a singularity and then iterating this process for the curve and surface that result. 

Since blowing up is a birational transformation, the focus moves from intrinsic 
properties of a two-dimensional regular local ring D to the regular local rings 
between D and its quotient field F . The process of successively blowing up closed 
points leads to a sequence of regular local rings between D and F . There are a 
number of classical theorems regarding this process of quadratic transformation and 
the regular local rings that result, and many of these are special for dimension two; 
see Sect. 2. 
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Less is known about the non-regular integrally closed domains between a two-
dimensional regular local ring and its quotient field. The restriction to dimension 
two in the classical theory of surfaces and their blowups motivates us to ask whether 
a classification of all integrally closed domains between a two-dimensional regular 
local ring D and its quotient field is possible. This is a rich and varied class of both 
Noetherian and non-Noetherian rings. As the work of Loper and Tartarone [23] 
shows, even describing the integrally closed rings between the very specific two-
dimensional regular ring .D = Z[X](x,p) (with p a prime) and the PID overring1 . QD

is a difficult task that draws on deep results in valuation theory and multiplicative 
ideal theory. For other special cases, see [26] and [28]. 

In a series of recent papers, as well as current work in progress, we have 
attempted to establish a framework for thinking about the integrally closed rings 
between a two-dimensional regular local ring D and its quotient field F . A first step 
in this direction, undertaken in [12, 14, 15], is to describe the intersection of a set of 
two-dimensional regular local rings between D and F . The remarkable explicitness 
of the two-dimensional regular local rings between D and F , as described in Sect. 2, 
motivated our study of this class of rings. 

Some examples of the types of rings obtained as intersections of two-dimensional 
regular local rings are given in later sections. We also consider integrally closed 
overrings of a two-dimensional regular local ring that do not arise this way. In 
future work we will show how one-dimensional non-Noetherian integrally closed 
overrings of a two-dimensional regular local ring can arise from intersections of 
valuation rings. Such examples include a recasting into our setting of Nagata’s 
difficult example from [24, 25] of a one-dimensional completely integrally closed 
local domain that is not a valuation ring, a ring Krull had conjectured in [19, p. 666] 
could not exist. A version of this example was also given by Ribenboim [29], 
and our variation on these ideas in the form of what we call a Nagata-Ribenboim 
constructed ring is inspired by their construction but is approached quite differently 
by means of the quadratic and valuative trees. There do also exist one-dimensional 
integrally closed local overrings of a two-dimensional regular local ring that are not 
completely integrally closed. Such an example was given by Krull in [19, p. 670] 
and is a pseudo-valuation ring in the sense of Houston and Hedstrom [18]. We will 
show in future work how the rings arising from his construction, are ubiquitous in 
the context of overrings of a two-dimensional regular local ring. 

In a different direction, there exist many interesting classes of integrally closed 
overrings of a two-dimensional regular local ring that are not intersections of two-
dimensional regular overrings. These include the Prüfer overrings of D. We mention 
one such class at the end of Sect. 5, but another example is the localization of the 
ring of integer-valued polynomials at a maximal ideal of .Z[X]. This is a particularly 
interesting class of Prüfer domains, and much of the theory for these rings and 
their generalizations was developed by Paul-Jean Cahen and Jean-Luc Chabert (see, 
e.g., [2, 3] and their references), and it is Paul-Jean to whose memory this article is 
dedicated.

1 An overring of D is understood to be a subring of F that contains D. 
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2 Local Quadratic Transforms 

One of the main tools in working with two-dimensional regular local rings is that 
of a local quadratic transform. These transforms can be defined more generally 
for a Noetherian local domain, with no restriction on dimension. They can be 
viewed algebraically as local rings obtained from a Noetherian local domain 
through a certain process of extension and localization, or geometrically as local 
rings of points in the exceptional fiber of the blowup along the maximal ideal 
of the base domain. If D is a Noetherian local domain with maximal ideal . m
minimally generated by elements .x1, . . . , xn, then for each i we form the ring 
.Di = D[ x1

xi
, . . . , xn

xi
]. A  local quadratic transform of D is a localization of any of 

the rings . Di at a prime ideal of . Di that contains . m. Thus a local quadratic transform 
is the local ring of any point in the fiber over . m of the blowup of .SpecD at the closed 
point . m. Different choices of generators for . m produce different rings . Di but yield 
the same localizations at prime ideals as the original choice .x1, x2, . . . , xn, and so 
the set of local quadratic transforms obtained from D is independent of the choice 
of generators of . m. 

Our focus is on the case in which D is a two-dimensional regular local ring, 
and we assume for the rest of the article that D denotes such a ring. In this case, 
the maximal ideal . m of D is generated by two elements, say . x1 and . x2. A local 
quadratic transform of D is a localization of either the ring .D1 = D[ x2

x1
] or the 

ring .D2 = D[ x1
x2

] at a prime ideal P containing . m. This localization has Krull 
dimension 1 if P is a nonmaximal prime ideal, and in this case, the localization is 
a one-dimensional regular local ring, i.e., a discrete rank-one valuation ring (DVR). 
Otherwise, the localization at P is a two-dimensional regular local ring. The only 
nonmaximal prime ideal of . D1 that contains . m is .P1 = mD1 = x1D1. Similarly, 
the only nonmaximal prime ideal of . D2 that contains . m is .P2 = mD2 = x2D2. 
It is straightforward to see that .(D1)P1 = (D2)P2 . Thus the only one-dimensional 
local quadratic transform of D is the DVR .(D1)P1 = (D2)P2 . This DVR has an 
important interpretation as the valuation ring of the order valuation of D, which 
is the valuation that sends each nonzero element x of D to the largest nonnegative 
integer k such that .x ∈ mk . 

The height-two maximal ideals in the rings . D1 and . D2 may also be described 
explicitly. All of these necessarily contain the maximal ideal . m of D. For each i, 

. Di/xiDi = Di/mDi
∼= (D/mD)[t],

where t is an indeterminate over the field .D/mD. Since .(D/mD)[t] is a PID, there 
is for each height-two maximal ideal . M1 of . D1 a polynomial .f ∈ D[t] such that the 
image of f in .(D/m)[t] is irreducible and .M1 =

(
f

(
x2
x1

)
, x1

)
D1. Consequently, 

.(D1)M1 is a two-dimensional regular local ring. We may describe the height-two 
maximal ideals . M2 of . D2 similarly and obtain two-dimensional regular local rings 
.(D2)M2 . In almost all cases, a localization of . D1 at a height-two maximal ideal is 
also a localization of . D2 at a height-two maximal ideal. The only localizations for
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which this is not true are the localization of . D1 at the maximal ideal .(x1,
x2
x1

)D1 and 
the localization of . D2 at the maximal ideal .(x2,

x1
x2

)D2. In other words, every local 
quadratic transform of D but one is obtainable as a localization of . D1. In summary, 
we have 

Theorem 2.1 The unique local quadratic transform of D of dimension 1 is 
.(D1)x1D1 = (D2)x2D2 , the order valuation ring of D. The residue field of this ring is 
purely transcendental of degree 1 over .D/m. Every other local quadratic transform 
of D has dimension 2 with residue field algebraic over .D/m, and is of the form 

(a) .(D2)M2 , where .M2 = (x2,
x1
x2

)D2, or  
(b) .(D1)M1 , where .M1 = (x1, f ( x2

x1
))D1 for some .f ∈ D[t] such that the image 

of f in .(D/m)[t] is irreducible. 
We denote by .Q1(D) the set of local quadratic transforms of D that have 

dimension 2. (The reason for the subscript 1 here is that in the next section 
we will iterate and consider local quadratic transformations of local quadratic 
transformations.) The set .Q1(D) consists of the rings described in (a) and (b) of 
Theorem 2.1. Following Lipman [22], we view the rings in .Q1(D) as points and 
denote these points with Greek letters, e.g., .α ∈ Q1(D). 

There remain many localizations of . D1 and . D2 that are not captured by local 
quadratic transformations. These are the localizations at prime ideals that do not 
contain . m. For such a nonzero prime ideal P of . Di , the contraction .P ∩ D to D is 
necessarily of height 1 since D is local and P does not contain the maximal ideal 
of D. Since D is integrally closed, .DP∩D is then a DVR. Such a DVR, arising as a 
localization of D, is called an essential prime divisor of D. Since . DP∩D ⊆ (Di)P
and .DP∩D is  a DVR, so is .(Di)P . It follows that the nonzero prime ideals of . Di are 
(a) the height-one prime ideals that contract to height-one prime ideals of D, (b)  the  
only height-one prime ideal that does not contract to a height-one prime ideal of D 
(namely, .xiDi), and (c) the height-two maximal ideals described in Theorem 2.1(b). 

There is a more elegant way to express some of these ideas. We may glue . SpecD1
and .SpecD2 by identifying prime ideals .P1 ∈ SpecD1 and .P2 ∈ SpecD2 whenever 
.(D1)P1 = (D2)P2 . The resulting topological space .SpecD1 ∪ SpecD2, equipped 
with the structure sheaf whose ring of sections over a nonempty open set, is the 
intersection of the localizations at the prime ideals in this set, is a projective scheme 
over .SpecD. With .φ : SpecD1 ∪ SpecD2 → SpecD the contraction mapping, 
the local quadratic transforms of D are the local rings of the points in the fiber 
.φ−1(m) over the closed point . m of .SpecD. The  set  .Q1(D) consisting of the two-
dimensional local quadratic transforms of D is the set of closed points of . SpecD1 ∪
SpecD2. The closed subscheme .φ−1(m) of .SpecD1 ∪ SpecD2, the  exceptional fiber 
of . φ, is isomorphic to the projective line .Proj((D/m)[U,V ]), where U and V are 
indeterminantes. Thus the set .Q1(D) is parameterized by the projective line over 
.D/m. With this interpretation, we can recast the closed point . (x2,

x1
x2

)D2 ∈ SpecD2
from Theorem 2.1 as the point at infinity for the closed points in .SpecD1 described 
in Theorem 2.1(b).
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One of the themes in later sections is the description of rings obtained as 
intersections of two-dimensional regular local overrings of D. For those rings in 
.Q1(D), these intersections are Noetherian: 

Theorem 2.2 ([14, Theorem 8.3]) The intersection of rings in each nonempty 
subset . U of .Q1(D) is a Noetherian normal domain and is irredundant in the sense 
that no ring in . U can be omitted from the intersection. Moreover, if . U is a nonempty 
proper subset of .Q1(D), then each ring in . U is a localization of the intersection. 

One way to see that such an intersection is Noetherian is to observe that since 
each ring . α in .Q1(D) is an integrally closed Noetherian domain, each . α is an 
intersection of its essential prime divisors. The essential prime divisors of . α are the 
essential prime divisors of D that contain . α and the localization of . α at the unique 
height-one prime ideal of . α that contains the maximal ideal of D. The  set of essential  
prime divisors of D has finite character, meaning that each nonzero element in D 
is a unit in all but finitely many of the rings in the collection. It follows that the 
intersection of any rings in .Q1(D) is a Krull domain. By [10, Theorem 9], a Krull 
overring of a two-dimensional Noetherian domain is a Noetherian ring. 

This argument and Theorem 2.1 should be contrasted with the situations 
discussed in the rest of the article, where describing the intersections of two-
dimensional regular local overrings of D not necessarily in .Q1(D) is more subtle 
and produces complicated rings that need not be Noetherian. 

3 The Quadratic Tree 

For the rest of the article, we continue to assume D is a two-dimensional regular 
local ring, and we denote by . m the maximal ideal of D. As we saw in the last section, 
a local quadratic transform . α of D is again a regular local ring, either of dimension 
1 or of dimension 2. If . α has dimension 1, then . α is a DVR, and taking a local 
quadratic transform of . α results in simply . α again. However, if . α has dimension 2, 
then a local quadratic transform of . α produces a DVR or a new two-dimensional 
regular local ring, and the process can be iterated. In so doing, we obtain a sequence 
of regular local rings: 

. α = α1 ⊆ α2 ⊆ α3 ⊆ · · · ⊆ αi ⊆ · · · .

This sequence is stationary as soon as . αi has dimension 1. Otherwise, each ring 
. αi is a distinct two-dimensional regular local ring, and the sequence is infinite. 
Remarkably, by a theorem of Abhyankar, every two-dimensional regular local 
overring of D is obtainable in this way: 

Theorem 3.1 ([1, Theorem 3]) Every two-dimensional regular local overring 
dominating D is obtained from a unique sequence of iterated local quadratic 
transforms.
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In light of the theorem, we define the quadratic tree .Q(D) of D to be the set of 
two-dimensional regular local overrings of D. Since each ring in .Q(D) is obtained 
by a unique sequence of iterated local quadratic transforms, the set .Q(D) is a tree 
with respect to set inclusion. We say that a regular local overring .α ∈ Q(D) occurs 
at level n if there is a sequence .D = α0 ⊆ α1 ⊆ · · · ⊆ αn = α of iterated local 
quadratic transforms. We denote by .Qn(D) the set of regular local overrings of D 
that occur at level n in the tree. Note that 

. Q2(D) =
⋃

α∈Q1(D)

Q1(α),

and for greater choices of n, .Qn(D) can be expressed similarly using the lower 
levels of the tree. Moreover, if .α ∈ Qn(D) for some .n > 0, then .Q1(α) and . Q1(D)

have the same cardinality, namely, that of the algebraic closure of the residue field 
of D. In this sense, when viewed as a partially ordered set, the quadratic tree . Q(D)

has a simple structure consisting of copies of .Q1(D), and as a partially ordered set, 
the structure of .Q(D) is completely determined by the cardinality of the residue 
field. 

The paths up the tree .Q(D) are significant also. If .{αi} is an infinite chain in 
.Q(D), then the union of the . αi is a valuation ring that dominates D: 

Theorem 3.2 ([1, Lemma 12]) Every dominating valuation overring V of D is the 
union of a chain of iterated local quadratic transforms. If the residue field of V is 
algebraic over .D/m, the chain is infinite. If the residue field of V is not algebraic 
over .D/m, then the chain is finite, and V is a DVR that is a local quadratic transform 
of its predecessor in the chain. 

In the last case of the theorem, V is said to be a prime divisor dominating D,2 

and V is the order valuation of its predecessor in the chain. 
Otherwise, if V is a valuation overring that is residually algebraic over D, then V 

is by Theorem 3.2 a union of infinitely many regular local rings in .Q(D), namely, 
the local rings in .Q(D) that V dominates. Each such valuation ring can be viewed as 
an endpoint of the tree, and we may extend the partially ordered set .Q(D) to include 
the valuation rings that dominate D. The  extended quadratic tree .Q∗(D) consists 
of .Q(D) and the valuation rings that dominate D, including the prime divisors 
dominating D. While .Q∗(D) remains a partially ordered set under inclusion, it is no 
longer a tree. This is because each prime divisor dominating D contains infinitely 
many valuation rings of Krull dimension 2 that dominate D, and these valuation 
rings are pairwise incomparable. In addition to the prime divisors dominating D, the  
set of valuation overrings dominating D includes also the discrete valuation rings of 
Krull dimension 2 and the residually algebraic valuation rings of Krull dimension 1.

2 Zariski refers to these DVRs as “prime divisors of the second kind,” whereas the essential prime 
divisors of D are “prime divisors of the first kind.” Abhyankar refers to prime divisors dominating 
D as “hidden prime divisors” since these are prime divisors that come out on a blowup. 
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In higher dimensions—indeed, even in dimension 3—many of the results of this 
section break down. If D is a regular local ring of dimension .d > 2, then the 
quadratic tree of d-dimensional iterated quadratic transforms still makes sense, but 
there are regular local overrings that are not obtainable from an iterated sequence 
of quadratic transforms, nor is every valuation ring dominating D obtainable as 
a union of regular local rings in .Q(D). However, much can still be said about 
the directed unions of iterated quadratic transforms in higher dimensions; see, for 
example, [5, 7–9, 13, 16, 30]. 

Extending in a different direction, if we require D only to be a normal Noetherian 
local domain of dimension 2, and not regular, then it is possible to obtain the 
dominating valuation overrings of D as unions of iterated local quadratic transforms 
alternating with normalization and localization; see [20, p. 202]. 

4 The Topology of the Quadratic Tree 

So far we have described the quadratic tree .Q(D) and the extension .Q∗(D) of . Q(D)

as partially ordered sets, both of which admit a simple structure. In fact, as a poset, 
.Q(D) is entirely determined by the cardinality of the algebraic closure of the residue 
field of D. Now we enrich the structure of .Q(D) and .Q∗(D) by considering these 
as topological spaces. The Zariski topology on .Q∗(D) has as a basis of open sets 
the sets of the form 

. U(x1, . . . , xn) = {R ∈ Q∗(D) : x1, . . . , xn ∈ R},

where .x1, . . . , xn are in the quotient field of D. 

Theorem 4.1 ([12, Corollary 4.9]) .Q∗(D) is a spectral space with respect to the 
Zariski topology; i.e., .Q∗(D) is a quasicompact . T0 space such that each irreducible 
closed set has a unique generic point and the intersection of any two quasicompact 
open sets is quasicompact. 

Hochster showed in [17] that a spectral space is homeomorphic to the prime 
spectrum of a commutative ring. While .Q∗(D) is therefore homeomorphic to . SpecR
for some ring R, we do not know of a natural choice of R for .Q∗(D). However, 
there is a natural choice for the spectral subspace consisting of the valuation 
rings in .Q∗(D). (For a proof that this subspace is spectral, see, for example, [14, 
Lemma 3.2].) In this case, the Kronecker function ring defined via the valuations 
rings in .Q∗(D) has prime spectrum homeomorphic to the space of valuation rings 
in .Q∗(D). This follows, for example, from [27, Proposition 5.6]. 

The Zariski topology on .Q(D) is completely determined by the order-theoretic 
properties of the poset .Q∗(D). To formulate this more precisely, for a nonempty 
subset S of .Q(D), let  .S∞ be the set of prime divisors dominating D that contain 
infinity many incomparable rings in S. For a collection T of rings in the extended
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quadratic tree .Q∗(D), denote by .↓ T the set of rings in the quadratic tree .Q(D) that 
are contained in rings in T . 

Theorem 4.2 ([12, Theorem 5.2]) If S is a nonempty subset of .Q(D), then the 
Zariski closure of S in .Q(D) is . ↓ (S ∪ S∞).

The Zariski topology on .Q∗(D) is not Hausdorff but can be refined to a Hausdorff 
topology, the patch topology, whose basic open sets are of the form 

. U(x1, . . . , xn; y) = {R ∈ Q∗(D) : x1, . . . , xn ∈ R, y �∈ R},

where .x1, . . . , xn, y are in the quotient field of D. 

The complement of such a basic open set is also open, so the sets 
.U(x1, . . . , xn; y) form a clopen basis of .Q∗(D), making .Q∗(D) a Stone space, 
a zero-dimensional compact Hausdorff space. 

Theorem 4.3 ([12, Corollary 4.11]) In the patch topology, .Q(D) is an open 
discrete dense subspace of .Q∗(D), and thus each valuation ring in .Q∗(D) is a 
patch limit point of .Q(D). 

A topological space is Noetherian if the open subsets of the space satisfy the 
ascending chain condition. The next theorem shows that whether a subspace of 
.Q(D) is Noetherian is determined by the order-theoretic properties of the extended 
quadratic tree .Q∗(D). We will see in the next section that the intersection of rings 
in an open subset of a Noetherian subset of .Q∗(D) is a Noetherian domain. 

Theorem 4.4 ([12, Theorem 5.6]) The following are equivalent for a nonempty 
subset S of .Q∗(D). 

(1) S is a Noetherian space in the subspace Zariski topology. 
(2) There are valuation rings .V1, . . . , Vn ∈ Q∗(D) such that each ring in S is 

contained in one of the . Vi . 
(3) The Zariski closure of S in .Q∗(D) is a Noetherian space. 

There is a special case of the theorem that is worth singling out because of the 
role proximity plays in the study of quadratic transforms. If .α, β ∈ Q(D) such that 
.α ⊆ β and . β is contained in the order valuation ring of . α, then . β is proximate to . α. 
The set of rings . β in .Q(D) that are proximate to . α is denoted .P(α). 

Corollary 4.5 ([12, Remark 3.4.3 and Corollary 5.11]) Let .α ∈ Q(D). Then 
.P(α) is a Noetherian subspace of .Q(D) that consists of . α, the rings in .Q1(α), 
and, for each .β ∈ Q1(α), the rings in the infinite ascending ray of points in . Q(β)

that are contained in the order valuation ring of . α. 

With notation as in Corollary 4.5, the rank-two valuation domains contained in 
the order valuation ring of . α are precisely the valuation rings associated to these 
rays. 

Using ideas from [4, 5], there is another way to view the space of valuation 
rings birationally dominating D with a tree structure. Take the quadratic tree
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.Q(D), and in place of each two-dimensional regular local ring, instead consider 
the order valuation ring associated to it. This yields a .N-tree consisting of the prime 
divisors dominating D. The order of the .N-tree is inherited from the order on the 
quadratic tree. The remaining valuation rings birationally dominating D, which are 
the minimal valuation rings, are in one-to-one correspondence with the infinite paths 
up the tree. With .N = N∪{∞}, add these points to the tree to obtain a .N-tree that is a 
subspace of the space of all valuation overrings of D. Its patch topology is precisely 
the topology induced by the .N-tree structure, where the sets corresponding to sub-
trees .Q(α) and their complements form a subasis of open sets [4, Proposition 5.28]. 

By considering proximity, one can recover the Zariski topology on the .N-tree. 
Given a patch-closed set in the .N-tree, its Zariski closure is obtained by adding the 
rank-two valuations associated to each prime divisor in the set. Intuitively, for a path 
up the tree, following a ray of proximity for a prime divisor V as in Corollary 4.5 
is moving “closer” to V in the Zariski topology, whereas leaving that ray creates a 
separation from V . 

By gluing together each prime divisor dominating D with the set of rank-two 
valuation rings contained in it using the quotient topology, one obtains the valuative 
tree as in [4, Theorem 5.24]. The valuative tree can be viewed as folding all rays 
of proximity in on themselves. Let .α ∈ Q(D), .β ∈ Q1(α), and let . δ be the unique 
point in .Q1(β) which is proximate to . α. Then . δ has a regular system of parameters 
.(x, y) where .δxδ = Vα is the order valuation ring of . α and .δyδ = Vβ is the order 
valuation ring of . β. Using continued fractions, one can view the tree of monomial 
local quadratic transforms of . δ as the rational numbers on an open real line segment, 
say .(1, 2). The endpoints 1 and 2 are the limits of the rays of proximity of . α and 
. β, and each other rational point is similarly the limits of two rays of proximity. 
The paths up the monomial tree that don’t follow a ray of proximity correspond to 
irrational monomial valuations and to the irrational numbers in .(1, 2). The following 
diagram illustrates this process, where . γ1 is the unique point in .Q1(δ) proximate to 
. α and . γ2 is the unique point in .Q1(δ) proximate to . β and where dashed lines indicate 
this proximity. 

1 2 

1 

2 

4 3  

3 2  

5/  

/ 

/ 

3 

1 

2 

In this way, the discrete .N-structure of the quadratic tree gives way to the con-
tinuous structure of the valuative tree. In future work we will draw out connections 
between the quadratic tree and the valuative tree to help describe integrally closed 
overrings between D and F .
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5 Intersections of Rings in the Quadratic Tree 

The articles [12, 14] examine the structure of overrings of D that arise as the 
intersection of a nonempty subset of the quadratic tree .Q(D). Since the regular local 
rings in .Q(D) are the intersections of DVRs, a ring having this form is necessarily 
completely integrally closed. It also has Krull dimension 2: 

Proposition 5.1 If R is the intersection of the two-dimensional regular local rings 
in a nonempty subset of .Q(D), then .dimR = 2. 

Proof Let T be a two-dimensional regular local ring in .Q(D) such that . D ⊆ R ⊆
T . Since D is a Noetherian domain of Krull dimension 2, the ring R has dimension 
at most 2. To show that .dimR = 2, consider the inclusion map .R ↪→ T and the 
spectral map .SpecT → SpecR. Since T is a two-dimensional regular local ring. T 
has infinitely many height-one prime ideals and a nonzero element of T is contained 
in only finitely many height-one primes. Thus the height-one primes of T intersect 
in zero. 

Let . mT denote the maximal ideal of T , and let .p = mT ∩R. Since T is an overring 
of R, the  map .SpecT → SpecR sends every nonzero prime ideal of T to a nonzero 
prime ideal of R. Since . mT is the unique maximal ideal of T , every nonzero prime 
ideal of T maps to a nonzero prime ideal of R that is contained in . p. 

If . p has height one, then every height-one prime of T contains . p. But as 
we observed above, the height-one prime ideals of T intersect in zero. This 
contradiction implies that .dimR = 2 for every ring R that is the intersection of 
rings in the quadratic tree .Q(D). �

It is not necessarily the case that every maximal ideal has height 2 in a ring that 
is an intersection of rings from .Q(D). The next theorem can be used to show such 
examples exist. Specifically, if V is a rank-one minimal valuation overring of D, 
then the following theorem asserts that V occurs as the localization at a maximal 
ideal M of a ring obtained by intersecting local rings in .Q(D). Since V has rank-
one, this maximal ideal has height 1. 

Theorem 5.2 [[12, Theorem 6.8]] Let V be a minimal valuation overring of D. 
There is .X ⊆ Q(D) such that V is a localization of the intersection of the rings in 
X. 

While there exist interesting Prüfer overrings of D (see [15] for example), these 
rings are never obtained as an intersection of two-dimensional regular overrings, 
since every overring of a Prüfer ring is Prüfer and a Noetherian normal ring is Prüfer 
if and only if it has dimension 1. Beyond these constraints, the intersections of rings 
in .Q(D) can exhibit diverse behavior as Theorem 5.2 suggests. We collect more 
evidence for this in this section. However, at least in the case of finite subsets of 
.Q(D), the intersection has a transparent structure:



The Quadratic Tree of a Two-Dimensional Regular Local Ring 247

Theorem 5.3 ([14, Corollary 5.6]) If .α1, . . . , αn are incomparable rings in .Q(D), 
then the ring .R = α1 ∩ · · · ∩ αn is a regular Noetherian domain of Krull dimension 
2 having finitely many maximal ideals .m1, . . . ,mn. For each i, .αi = Rmi

. 

Not every normal Noetherian overring of D is an intersection of rings from 
.Q(D). This is a consequence of the following theorem. 

Theorem 5.4 ([14, Theorem 7.4]) A normal Noetherian overring R of D is the 
intersection of rings in .Q(D) if and only if every maximal ideal of R has height 2. 

Thus every Noetherian normal local overring of R of dimension 2 is obtained as 
an intersection of rings in .Q(D). On the other hand, no Noetherian local overring 
of dimension 1 can be obtained as such an intersection, since as discussed above no 
Prüfer overring can be obtained. 

What is lacking from Theorem 5.4 is a criterion for determining when an 
intersection of regular local overrings of D is Noetherian. To fully address this, 
the language of projective models is needed, and so we postpone a definitive 
answer until the next section, where such models are discussed. For the moment, 
we mention in keeping with the spirit of the last section a topological criterion 
for when an intersection is Noetherian. The following theorem is a consequence 
of Theorem 5.4 and [12, Theorem 5.10]. 

Theorem 5.5 Let .V1, . . . , Vn be valuation overrings of D, and let . U be a subset of 
a Zariski open subset of .Q(D) such that each .α ∈ U is contained in . Vi for some i. 
Then the intersection of the rings in . U is a Noetherian normal domain for which 
each maximal ideal has height 2. 

By either Theorem 5.4 or 5.5, in order for an intersection of rings in .Q(D) to be 
non-Noetherian, the intersection must involve infinitely many rings in .Q(D) and, as 
we will see in the next section, must also involve a collection of rings that cannot 
be captured on a blowup of an ideal of D. Theorem 5.2 shows that not only can an 
intersection of rings in .Q(D) fail to be Noetherian, but it can fail in a strong way to 
be locally Noetherian also. 

The next theorem can be compared to Theorem 5.3, in which we saw that 
an intersection R of finitely many incomparable rings .α1, . . . , αn in .Q(D) is 
Noetherian and each . αi is obtained as a localization of R. Theorem 5.6 shows that 
it is possible to intersect rings in .Q(D) in such a way that each of the rings is 
obtainable as a localization yet the intersection is not a Noetherian ring. 

Theorem 5.6 ([12, Theorem 6.15]) If .D = k + mD for an algebraically closed 
field k, then there exists a subset X of .Q(D) such that the intersection R of the rings 
in X is non-Noetherian yet every ring in X is a localization of R. 

The proof of Theorem 5.6 is technical and intricate, but since the construction of 
the ring in the theorem is important for understanding the richness of the class of 
rings obtained as intersections of rings from the quadratic tree, we outline here the 
heuristic thinking that led to this example.
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Recall that .Q1(D) is an infinite collection of two-dimensional regular local rings 
that intersect to D. Let  .m = (x, y) be the maximal ideal of D. We can place the 
rings in .Q1(D) into three categories using natural choices for the parameters of 
their maximal ideals. 

1. . 
(
y, x

y

)

2. .
(
y, f

(
x
y

))
, where f is a non-monomial irreducible polynomial over .D/m. 

3. . 
(
x,

y
x

)

Clearly, categories 1 and 3 each contain only one ring, while category 2 contains 
infinitely many. The substance of the analysis we go into now involves valuations. 
However, we will approach things on a much more simplistic level: 

• The local ring in category 1 contains . x
y
as a non-unit. We consider this to be the 

arena in which x is strictly larger than y. 
• All the rings in category 2 contain both . x

y
and . 

y
x
. We consider this to be the arena 

in which x and y are the same size. 
• The ring in category 3 contains . 

y
x
as a non-unit. We consider this to be the arena 

in which y is strictly larger than x. 

Let . α be the ring in category 1. If we intersect just the rings in categories 2 and 3, 
omitting . α, we get a ring which is not local. However, . α can be represented as the 
intersection of the rings in .Q1(α). Is it possible that we can intersect all the rings in 
categories 2 and 3 with just one of the rings in .Q1(α) and obtain a local ring as a 
result? We, crudely, think of a local intersection resulting from the rings intersected 
as being tightly clustered together. Along that line of thinking, we geometrically 
characterize the rings in .Q1(α) via the parameters used to generate their maximal 
ideals just as we did with .Q1(D). 

1. . 
(
y, x

y2

)

2. .
(
y, f

(
x
y2

))
where f is a non-monomial irreducible polynomial over .D/m. 

3. . 
(

x
y
,

y2

x

)

Now we want to see if it is possible to intersect all of the rings in categories 2 
and 3 of .Q1(D) with just one of the rings in .Q1(α) and obtain a local ring as a 
result. To this end, we characterize the three categories above just as we did with the 
rings in .Q1(D). We should keep in mind as we proceed that we are starting from 
the ring . α, which means that we are assuming that we have x greater than y. What 
we can say about the three categories of rings in .Q1(α) then is: 

• The ring in category 1 contains . x
y2

as a non-unit. We consider this to be the arena 

in which x is strictly larger than y and x is also strictly larger than . y2

• All the rings in category 2 contain both . x
y2

and . y
2

x
. We consider this to be the 

arena in which x and . y2 are the same size.
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• The ring in category 3 contains . 
y2

x
as a non-unit. We consider this to be the arena 

in which x is strictly larger than y and . y2 is strictly larger than x. 

Categories 2 and 3 of .Q1(D) involve rings where y is greater than x or y and x 
are the same size. If we are going to include something from .Q1(α) and have the 
entire collection be tightly clustered, then we would want to allow x to be larger 
than y but only slightly larger. This would indicate that we should include the third 
of the choices immediately above. 

The example cited in Theorem 5.6 is constructed by making exactly the type of 
substitution described above but for all of the rings in .Q1(D) rather than for just 
one. 

The rings in Theorems 5.2 and 5.6 are obtained by intersecting large collections 
of rings in .Q(D). For example, although the set X in Theorem 5.6 is a subset 
of .Q2(D), there do not exist .α1, . . . , αn ∈ Q1(D) such that all the rings in 
the collection occur in .Q1(α1) ∪ · · · ∪ Q1(αn). On the other hand, the set X in 
Theorem 5.2 is not contained in .Q1(D) ∪ · · · ∪ Qn(D) for any .n ≥ 0. With regard 
to this last form of unboundedness, it would be interesting to have a comprehensive 
description of the rings obtained by intersecting rings from a subset of .Q(D) of 
bounded level. In lieu of such a description, we can at least give a representation 
theorem for such an intersection. Recall that an integral domain R is an almost 
Dedekind domain if each localization of R is a Dedekind domain, i.e., a DVR. 

Theorem 5.7 ([12, Corollary 4.14]) Let .n > 0. An intersection of rings in a 
nonempty subset of .Q1(D) ∪ · · · ∪ Qn(D) is the intersection of a flat PID and 
an almost Dedekind overring. 

The theorem relies on the fact that if X is a nonempty collection of prime divisors 
dominating D and there is .n > 0 such that every prime divisor dominating D 
occurs at level at most n, then the ring .

⋂
V ∈X V is an almost Dedekind domain 

[12, Corollary 4.13]. (A version of this remains true if D is  only assumed to be a  
two-dimensional Noetherian local ring; see [15].) 

6 Projective Models and the Quadratic Tree 

The quadratic tree can be used to give a different perspective on the classical topic 
of desingularization of surfaces. Let .x0, x1, . . . , xn be nonzero elements of D, and 
for each i let 

. Di = D

[
x0

xi

, . . . ,
xn

xi

]
.

The projective model over D defined by .x0, . . . , xn is the set of local overrings:
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. X =
n⋃

i=0

{(Di)P : P is a prime ideal of Di} .

Alternatively, the projective model is the blowup of D at the ideal .(x0, . . . , xn) of 
D and can be identified with the projective scheme .ProjD[(x0, . . . , xn)t], where t 
is an indeterminate. The Zariski topology on X has basic open sets 

. U(t1, . . . , tm) = {R ∈ X : t1, . . . , tm ∈ R},

where .t1, . . . , tm are in the quotient field of D. The closed points in the model are 
the two-dimensional rings in the model. For example, if .x0, x1 generate the maximal 
ideal of D, then the projective model defined by .x0, x1 has as its closed points the 
set .Q1(D) of local quadratic transforms of D. In this case, the projective model 
is nonsingular, meaning that every local ring in the model is a regular local ring. 
However, a projective model over D need not be nonsingular nor even normal. (A 
projective model is normal if all its local rings are normal.) The closed points of 
a nonsingular projective model X over D that are not equal to D are contained in 
“small” subsets of the quadratic tree: There exist .α1, . . . , αn ∈ Q(D) such that the 
closed points of X are in .Q1(α1) ∪ · · · ∪ Q1(αn). For a more precise description of 
how the closed points of a nonsingular projective model sit in the quadratic tree, see 
[14, Theorem 4.6]. 

A desingularization of a projective model X is a nonsingular projective model Y 
over D such that each local ring in Y dominates a local ring in X. Every projective 
model over the two-dimensional regular local ring D has a desingularization; see 
[21]. Since a projective model is a blowup of .SpecD along an ideal of D, it is natural 
to ask precisely which ideals give the nonsingular blowups. This is answered in [11, 
Proposition 5.12], where it is shown that if X is a normal projective model that is the 
blowup of an integrally closed .m-primary ideal I of D, then X is nonsingular if and 
only if I is “saturated.” The definition of saturated ideal is somewhat technical and 
lengthy, so we omit it here and refer to [11] or [14] for details. In any case, using the 
concept of saturation, it is shown in [14, Theorem 5.2] that saturation corresponds 
to desingularization, in that if the ideal I is integrally closed, then the blowup of the 
saturation of I is the desingularization of the projective model obtained by blowing 
up . I . It is in fact  the  minimal desingularization of X in the sense that every other 
desingularization of X dominates Y . (If there exists a desingularization, then there 
exists a unique minimal desingularization [20, Corollary 27.3].) Using this fact, 
desingularization has a simple interpretation in terms of the quadratic tree. 

Theorem 6.1 ([14, Theorem 5.3]) Let X be a normal projective model over D. 
The closed points of the minimal desingularization of X are the points in .Q(D) that 
are minimal with respect to dominating a closed point in X. 

Using similar ideas, it is shown in [14, Theorem 5.5(2)] that if . α1, . . . , αn ∈
Q(D) \ {D} and these local rings are incomparable, then there is a unique
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nonsingular projective model X over D such that .α1, . . . , αn ∈ X and every 
nonsingular projective model over D containing .α1, . . . , αn dominates X. 

We saw in Theorem 5.4 that every normal Noetherian overring R of D for which 
every maximal ideal has height 2 is the intersection of local rings from the quadratic 
tree. These rings can even be taken from a nonsingular projective model: 

Theorem 6.2 ([14, Theorem 7.4]) An overring R of D is a normal Noetherian 
domain whose maximal ideals have height 2 if and only if there is a nonsingular 
projective model X of D such that R is an intersection of rings in X. 

Acknowledgments We thank Dave Lantz for helpful comments on a previous draft of the article. 
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Reductions and Core of Ideals in Integral 
Domains: Some Recent Developments 

Salah Kabbaj 

Dedicated to the memory of Paul-Jean Cahen. 

1 Introduction 

Let R be a commutative ring, and let I be an ideal of R. A subideal J of I is called 
a reduction of I if JIn = In+1, for some positive integer n. The ideal I is called 
basic if it has no proper reduction. The concept of (minimal) reduction was initially 
introduced and studied by Northcott and Rees in their work on the analytic theory 
of ideals in Noetherian local rings. In this class of rings, if I is nonbasic, then it 
has always a minimal reduction J , and, moreover, in the special case of infinite 
residue field, the minimal number of generators of J agrees with the analytic spread 
of I [50]. A comprehensive reference on this topic is Huneke and Swanson’s book 
Integral Closure of Ideals, Rings, and Modules [33]. 

Hays investigated reductions in more general settings and proved that most 
results do not extend outside the class of Noetherian rings, including those results 
on the existence of minimal reductions [24, 25]. Song and Kim generalized some 
of Northcott-Rees’ results on analytic spread and minimal reductions to Noetherian 
semi-local rings [56]. Heinzer, Ratliff, and Rush proved the existence of minimally 
generated reductions through an extension to finite free local unramified rings [30]. 
Fouli and Olberding studied the existence of proper reductions and their number of 
generators in the case of finite residue field [18]. 

The core of I , denoted core(I ), is the intersection of all reductions of I . It was  
initially introduced by Judith Sally in the late 1980s [53] and then appeared in the 
context of Briancon and Skoda’s theorem, which asserts that if R is regular with 
dim(R) = n, then core(I ) contains the integral closure of In. In 1995, Huneke and 
Swanson investigated the core for the special case of integrally closed ideals in the 
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class of regular local rings of dimension 2 [32]. During 2001–2005, Corso, Polini, 
and Ulrich extended the results of [32] by providing an explicit description for the 
core of some classes of ideals in Cohen-Macaulay local rings [9, 10, 52]. In 2003, 
Hyry and Smith extended the results of [32] to commutative rings of arbitrary Krull 
dimension [35]. In 2005, Huneke and Trung resolved some open questions in the 
literature on core [34]. In 2008 and 2009, Fouli [16] and Fouli-Polini-Ulrich [19] 
studied the core in arbitrary characteristic. In 2012, Fouli and Morey probed the 
special case of edge ideals [17] .  

The core appears difficult to compute, and most of the works were carried out 
in the class of Noetherian rings, particularly, Cohen-Macaulay rings. In 2016, we 
undertook the first study of the notion of core beyond Noetherian settings. This 
paper consists of four parts surveying four works which investigate reductions 
and core of ideals in various settings of integral domains such as Prüfer domains, 
Noetherian domains, and pullback constructions. The four papers involved in this 
survey are [41–44], co-authored with A. Mimouni. Results are presented and 
discussed without proofs, and numerous examples are provided (with full details 
from the original papers). 

In Part 2, which covers [41], we appeal to techniques from multiplicative ideal 
theory to develop formulas for the core in some classes of integral domains, 
particularly valuation domains and Prüfer domains. In Part 3, which relates to [42], 
we study the core in the class of Noetherian rings. Here too, we consider objects 
from multiplicative ideal theory to prove formulas for the core in some classes of 
one-dimensional Noetherian domains. In Part 4, which relates to [43], we deal with 
reductions of ideals in diverse contexts of pullbacks. In Part 5, which covers [44], 
we investigate minimal reductions and core of ideals in various settings of pullback 
constructions. The main objective is to enrich the literature with new and original 
examples with explicit formulas for the core. 

Throughout, for a domain R, qf(R) will denote its quotient field, R its integral 
closure, Spec(R) the set of its prime ideals, and Max(R) the set of its maximal 
ideals. If R/M is infinite for each M ∈ Max(R), R is said to have infinite residue 
fields. For a nonzero ideal I of R, let  (I : I )  := {

x ∈ qf(R) | xI ⊆ I
}
and 

I−1 = (R : I )  := {
x ∈ qf(R) | xI ⊆ R

}
. The ideal I is invertible in R if II−1 = 

R. Any unreferenced material on reduction theory, multiplicative ideal theory, or 
commutative ring theory is standard as in [14, 22, 33], or [45], respectively. 

2 Core of Ideals in Integral Domains 

This part covers [41], where techniques from multiplicative ideal theory are 
used to establish a formula for the core of ideals in some classes of integral 
domains, including valuation domains and Prüfer domains. Namely, in Sect. 2.1 
we investigate the formula core(I ) = I 2I−1 for nonzero ideals I and probe it, 
further, under the effect of stability conditions. We also study the important case of
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powers of prime ideals in Prüfer domains. Section 2.2 investigates the existence of 
minimal reductions for Noetherian domains and non-Noetherian domains. Minimal 
reductions were initially studied by Rees and Sally for local Noetherian rings [53]. 
Throughout this part, we give illustrative examples and answer some open questions 
on the core. 

2.1 Core of Ideals 

This section features formulas for the core of ideals in valuation domains and 
pseudo-valuation domains and the core of prime ideals in Prüfer domains and 
pseudo-valuation domains. We also investigate the core under stability condition 
in various classes of domains. 

Recall that an ideal is said to be basic if it has no proper reduction. Observe that 
invertible ideals and idempotent ideals are basic. Indeed, suppose I is invertible, and 
let J ⊆ I be a reduction of I ; i.e., JIn = In+1 for some positive integer n. Then, 
JIn I−1 = In+1I−1 so that JIn−1 = In. Reiterate the process n times to reach 
J = I . Now, if  I is idempotent; i.e., I 2 = I , then I = In+1 = JIn ⊆ J ⊆ I , so  
that J = I . 

A domain R has the trace property if II−1 = R or I (R  : I )  ∈ Spec(R), for every 
ideal I of R [13, 14, 47]. Typical examples of domains with the trace property are 
valuation domains [2] and, more generally, pseudo-valuation domains [29]. In this 
vein, it is worthwhile noting that in a domain with the trace property, every nonzero 
ideal I satisfies the inclusion I 2I−1 ⊆ core(I ). Indeed, let J be a reduction of I ; 
i.e., JIn = In+1, for  some  n ≥ 1. Then, the trace property yields II−1 = In I−n 

[29, Remark 2.13 (b)]. Hence I 2I−1 = In+1I−n = JIn I−n ⊆ J and thus 

. I 2I−1 ⊆ core(I ).

The first main result of this section asserts that equality holds in the class of 
valuation domains. As invertible ideals are basic, we restrict to non-invertible ideals. 
In the sequel, we denote by Z(R, I ) the set of all zero-divisors of R modulo I . 

Theorem 2.1 In a valuation domain V , every non-invertible ideal I satisfies the 
equality core(I ) = I 2I−1 = IZ(V,  I ). 

Notice that if I is an invertible ideal of V with maximal ideal m, then Z(V, I ) = 
m and so IZ(V,  I )  = I m � I = core(I ). Two open questions in the literature on 
core ask whether (1) core(I ) compares to core(In ) and (2) core(I ) ⊆ core(J ) for 
any integrally closed ideals I ⊆ J . Huneke and Swanson proved that (2) always 
holds in the class of two-dimensional regular local rings with infinite residue field 
[32, Proposition 3.15] and core(In ) = I 2n−2 core(I ), provided I is an integrally 
closed ideal [32, Proposition 4.4]. Later, in 2008, Lee answered (2) in the negative 
in general [46]. Recall, for convenience, that the integral closure of I is the ideal I 
of all elements x of R which satisfies xn + a1xn−1 + · · · + an = 0, where ai ∈ I i
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for i = 1, · · ·  , n. Then, I is called integrally closed if I = I [33]. Every ideal in a 
valuation domain is integrally closed [33, Proposition 6.8.1]. 

Theorem 2.1 offers complete answers to the above questions (1) and (2) in the 
class of valuation domains. Indeed, first observe that, for any nonzero ideal I and 
n ≥ 1, core(In ) = I 2n I−n = In In I−n = In II−1 = In−1I 2I−1 and hence 
core(In ) = In−1 core(I ). 

The next example shows that (2) does not hold in valuation domains (i.e., the 
notion of core is not stable under inclusion). 

Example 2.2 Let k be a field and X, Y two indeterminates over k. Consider the 
valuation domain V := k[[X]] + M , where M := Yk((X))[[Y ]], and let Q := 
YV  = Yk[[X]]+M2 � M . By [31, Corollary 3.6 and Theorem 3.8], MM−1 = M , 
so that M is not invertible in V . By Theorem 2.1, core(M) = MZ(V, M) = M2 �
Q = core(Q). 

Theorem 2.1 does not extend to the class of Prüfer domains. If I is a nonzero ideal 
of a Prüfer domain, then each reduction J of I satisfies JI  = I 2 [25, Proposition 
1]. Hence I 2I−1 = JII−1 ⊆ J and so I 2I−1 ⊆ core(I ). This inequality can be 
strict as shown by the next example. 

Example 2.3 Let R be an non-Noetherian almost Dedekind domain [22, Example 
42.6]. Then, R is a one-dimensional Prüfer domain with no idempotent maximal 
ideals [22, Theorem 36.5]. Since R is not Dedekind, it contains a non-invertible 
maximal ideal m. Since R is completely integrally closed, m−1 = (m : m) = R. 
Now, recall Hays’ result that, for a domain R, every ideal has no proper reduction 
if and only if R is a one-dimensional Prüfer domain [24, Theorem 6.1] and [25, 
Theorem 10]. By this result, we get m2 m−1 = m2 � m = core(m). 

The next result establishes an explicit formula for the core of prime ideals and 
their powers in Prüfer domains. 

Theorem 2.4 Let R be a Prüfer domain and P a nonzero prime ideal of R. Then, 

for any integer n ≥ 1, we have core(P n ) =
〈

P n , if P is maximal 

P n+1, if P is not maximal 

Next, we provide an example of an ideal I in a (Prüfer) domain R such that 
I 2I−1 � core(I ) � I . It draws  on  [15, Example 8.4.1]. 

Example 2.5 Let B be the (Bézout) ring of entire functions, m a maximal ideal of 
B of infinite height and residue field K , V a nontrivial valuation domain on K , and 
R the pullback determined by the following diagram of canonical homomorphisms: 

.
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Let I := m2. Then, I 2I−1 � core(I ) � I . Indeed, by [15, Example 8.4.1], R is 
Prüfer, m is a non-maximal prime ideal of R with m2 � m, (R : m) = (B : m) = 
(m : m) = B, and P := ⋂

n≥1 m
n ∈ Spec(R) with 0 �= P � m. By Theorem 2.4, 

core(I ) = core(m2) = m3 and I 2I−1 = m4(R : m2) = m4((R : m) : m) = m4(B : 
m) = m4 B = m4. Further, we have that mn+1 � mn, for every positive integer 
n: Otherwise, assume mn+1 = mn for some n. Then, by induction on k, we have  
mn = mk for all k ≥ n. Hence P = mn and whence P = m, this is a contradiction. 
It follows that m4 � m3 � m2. 

At this point, recall that R is called a pseudo-valuation domain if it is local 
and shares its maximal ideal with a valuation overring V or, equivalently, if R is 
a pullback determined by the following diagram of canonical homomorphisms: 

. 

where m is the maximal ideal of V , k is a subfield of K (cf. [26, 27], and m is the 
maximal ideal of R with residue field k [3, Proposition 2.6]. 

The formula in Theorem 2.1 holds for the class of pseudo-valuation domains 
issued from algebraic field extensions, as stated below. 

Theorem 2.6 Let R be a pseudo-valuation domain, and let (V ,m) be its associated 
valuation overring. Then, core(I ) = I 2I−1, for each nonzero ideal I of R, if and  
only if V/  m is an algebraic extension of R/m. 

For the prime ideals and their powers, we have the following result. 

Proposition 2.7 Let R be a nontrivial pseudo-valuation domain, P a nonzero 
prime ideal of R, and n a positive integer. Then, core(P n ) = P n+1. 

We close this section with a discussion of the reductions and core under stability 
conditions. A nonzero ideal I in a domain is called strongly stable (resp., stable) 
if I is principal (resp., invertible) in its endomorphism ring (I : I )  [2, 39, 54]. In 
[51], Olberding prepared the ground to address the correlation between stability and 
several concepts in multiplicative ideal theory [7, 23, 40]. The next result shed light 
on the effect of stability and strong stability on the core. 

Theorem 2.8 Let R be a domain and I a nonzero ideal of R. 

(1) Suppose I is stable. Then, J is a reduction of I if and only if JI  = I 2 if and 
only if JT  = I . Moreover, I 2I−1 ⊆ core(I ). 

(2) Suppose I is strongly stable. If either R is Prüfer or (R : T )  is maximal in R or 
(I : I )  is local, then core(I ) = I 2I−1. 

In Sect. 2.2, Example 2.10 (Noetherian) and Example 2.15 (non-Noetherian) 
provide two illustrative examples for Theorem 2.8.
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2.2 Minimal Reductions 

Let (R, m) be a Noetherian local ring and let I be a nonbasic ideal of R (i.e., 
I admits a proper reduction). A reduction J of I is called minimal if no ideal 
strictly contained in J is a reduction of I . It is known that I admits at least one 
minimal reduction [33, 50], and it is not unique in general. In [53], Rees and Sally 
investigated the intersection of minimal reductions with the aim to counteract the 
lack of uniqueness of minimal reductions. If the residue field is infinite, then any 
l non-special elements of I generate a minimal reduction of I , where l denotes 
the analytic spread of I [50]. Consequently, in a Noetherian local ring with infinite 
residue field, we have 

.“ core(I ) is a reduction of I �⇒ I is basic.” (1) 

This section investigates the existence of minimal reductions beyond the setting 
of Noetherian local rings. Precisely, we show that there are no minimal reductions 
in Prüfer domains and characterize the existence of minimal reductions in pseudo-
valuation domains. We also examine the validity of (1) beyond the class of 
Noetherian local rings. Next, we appeal to Theorem 2.8 to compute the core and 
all minimal reductions for some maximal ideal of a Cohen-Macaulay domain. This 
example supports a conjecture by Corso, Polini, and Ulrich [10, Conjecture 5.1] (cf. 
[34, 52, 57]), which asserts that if R is a Cohen-Macaulay ring, I is an ideal of 
analytic spread ≥ 1, and J is a minimal reduction of I with reduction number r , 
then (under some additional assumptions) we have 

. core(I ) = (J r+1 : I r ). (2) 

Throughout, let Red(I ) (resp., MinRed(I )) denote the set of all reductions (resp., 
minimal reductions) of I and |S| denote the cardinality of a set S. Our example 
requires the following lemma. For this purpose, recall that an ideal I is said to 
be divisorial if I = Iv := (I−1)−1 and a domain is divisorial if all its nonzero 
(fractional) ideals are divisorial. We will get back to this notion in Sect. 3.1. 

Lemma 2.9 k[X2, X3] is a divisorial domain. 
Example 2.10 Let k be a field and X an indeterminate over k. Let  R := k[X2, X3] 
and I := (X2, X3). Then: 

(1) core(I ) = I 2 = X4k[X]. 
(2) Every proper (minimal) reduction of I has reduction number equal to 1 and is 

of the form Jx := X2(1 + xX, X2), x ∈ k. 
(3)

∣∣Red(I )
∣∣ = ∣∣MinRed(I )

∣∣ + 1 = ∣∣k
∣∣ + 1. 

(4) ∀x ∈ k, core(I ) = (J 2 
x : I ).
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Proof 

(1) Notice that I is a maximal ideal in R. Set T := (I : I )  = I−1. Then T = k[X], 
which is the (complete) integral closure of R. Hence I = X2T , whence I is 
strongly stable. By Theorem 2.8, core(I ) = X2(R : T )  = X2I = X4k[X], as  
desired. Also, one can view R as k[u, v]/(v2 −u3), which is a one-dimensional 
Cohen-Macaulay domain with a-invariant a = 0. By [20], core(I ) = I a+2 = 
I 2 since I is the maximal ideal of R. 

(2) Let x ∈ k. Clearly, (1+ xX, X2)T = T so JxT = X2T = I , that is, JxI = I 2. 
Hence Jx is a reduction of I . Conversely, let J be a proper reduction of I . By  
Theorem 2.8, JT  = I , hence T = (R : I )  = (R : JT  )  = ((R : T )  : J )  = (I : 
J )  which yields I = JT  = J (I  : J )  ⊆ J (R  : J )  = JJ−1 ⊆ R. If  JJ−1 � R, 
then I = JJ−1. Therefore J−1 = (I : J )  = T . Hence, as R is divisorial 
(Lemma 2.9), J = Jv = (R : J−1) = (R : T )  = I , this is a contradiction. It 
follows that J is an invertible ideal of R. By [37, pages 27-42], J necessarily 
has the form J = (f/g)(1 + xX, X2) for some f, g ∈ R and x ∈ k. We obtain 
X2T = I = JT  = (f/g)(1 + xX, X2)T = (f/g)T , which yields f/g = cX2 

for some nonzero c ∈ k. So  J = cJx = Jx since c is a unit in R. 
(3) Obvious by (2) and the facts that Jx � I ∀ x and Jx � Jy ∀ x �= y. 
(4) Let x ∈ k and let J := Jx = X2(1 + xX, X2). Notice that the analytic spread 

of I is 1 since J0 = (X2). 

Claim 1: I 2 ⊆ (J 2 : I )  ⊆ I = X2T . Indeed, J 2 = JI  implies that I 3 = JI 2 = 
J 2I ⊆ J 2 so that I 2 ⊆ (J 2 : I ), as desired. Next, for x ∈ k, let  f ∈ (J 2 : I ). 
Then f I  = f IT  ⊆ J 2T = I 2. So  f ∈ (I 2 : I )  = (X4T : X2T )  = X2T = I . 
Consequently, (J 2 : I )  ⊆ I . 
Claim 2: X5 /∈ J 2. Deny and let X5 = (X4 + 2xX5 + x2X6)f1 + (X6 + xX7)f2 + 
X8f3, for  some  f1, f2, f3 ∈ R. This yields f1(0) = 0 and 2xf1(0) = 1, this is a 
contradiction. 
Claim 3: X−2(J 2 : I )  is a proper ideal of T . Indeed, (J 2 : I )  is an ideal of T and so 
is X−2(J 2 : I )  by Claim 1. Assume by way of contradiction that X−2(J 2 : I )  = T ; 
i.e., (J 2 : I )  = I . Then I 2 = I (J 2 : I )  ⊆ J 2, this is a contradiction by Claim 2 
since X5 ∈ I 2 = X4T . 

By Claim 3, there is m ∈ Max(T ) such that X−2(J 2 : I )  ⊆ m. However, by 
Claim 1, X2T = X−2I 2 ⊆ X−2(J 2 : I ). So that m = XT and thus (J 2 : I )  ⊆ 
X3T . By Claim 2, (J 2 : I ) � X3T . It follows that m = X−3I 2 ⊆ X−3(J 2 : I ) �
T . By maximality, m = X−3(J 2 : I ). Consequently, (J 2 : I )  = X3 m = X4T = 
core(I ), as desired. 

The first result of this section deals with the case of Prüfer domains. In particular, 
it proves that, in Prüfer domains, nonbasic ideals have no minimal reductions. 

Theorem 2.11 Let R be a Prüfer domain. Then, a nonzero ideal I has a minimal 
reduction if and only if core(I ) is a reduction of I if and only if I is basic. 

Example 2.5 features Prüfer domains with nonzero ideals I such that I 2I−1 �
core(I ) � I . The next example features Prüfer domains with nontrivial basic ideals.
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Example 2.12 Let R be a Prüfer domain with two maximal ideals M and N such 
that M−1 = R and N is invertible. Then the ideal I := MN is basic. 

Indeed, for such an example, one can take R to be the ring of entire functions 
which possess infinite height maximal ideals and (height-one) invertible maximal 
ideals (cf. [15, Corollary 3.1.3, Proposition 8.1.1 (5) and Example 8.4.1]). Now 
notice that I−1 = (R : MN) = ((R : M) : N)  = (R : N)  = N−1. So that 
II−1 = M . Suppose by way of contradiction that I is not basic. Let J be a proper 
reduction of I , that is, JI  = I 2. Then, JM  = I 2I−1 = IM . Since JRM � IRM , 
let a ∈ IRM \ JRM . Necessarily, we have JRM � aRM . Therefore a−1JRM ⊆ 
MRM . We get JRM ⊆ aMRM ⊆ IMRM = JMRM ⊆ JRM and then JRM = 
aMRM = IMRM .It follows that I 2RM = I 2MRM = a2MRM . Consequently, 
a2 ∈ a2MRM and thus 1 ∈ MRM ; this is a contradiction. 

The next two results deal with the case of pseudo-valuation domains. For the 
reader’s convenience, we recall that if R is a pseudo-valuation domain issued 
from V , then Spec(R) = Spec(V ), and if P is a non-maximal prime ideal of R, 
then RP = VP . For ample details about spectra of pseudo-valuation domains and 
pullbacks, in general, we refer to [1, 3, 11, 36]. 

The first result addresses the problem of when the core is a reduction. Then we 
use it to establish our main result on the existence of minimal reductions in pseudo-
valuation domains in which, unlike Prüfer domains and valuation domains, nonbasic 
ideals admit minimal reductions. 

Proposition 2.13 Let R be a pseudo-valuation domain, (V ,m) its associated 
valuation overring, and I a nonzero ideal of R. 

(1) If I is an ideal of V , then core(I ) is a reduction of I if and only if I is basic. 
(2) If I is not an ideal of V , then core(I ) is a reduction of I only if either I is 

invertible or I 2I−1 � core(I ). 

As a consequence of Theorem 2.6 and Proposition 2.13, if  V/m is algebraic over 
R/m, then core(I ) is a reduction of I if and only if I is basic. A possible occurrence 
for (2) in the above proposition happens when I is a non-invertible basic ideal of R. 
For instance, if V/m is not algebraic over R/m, x is a transcendental element of 
V/m over R/m, and 0 �= a ∈ m. Then the ideal I := aϕ−1(k + kx) of R satisfies 
I 2I−1 � core(I ) = I as settled in the proof of Theorem 2.6. 

The next result characterizes the ideals which possess minimal reductions in 
pseudo-valuation domains and describes these minimal reductions. We will break 
our findings into two separate and unrelated cases for a given ideal I of R, 
namely, when I is or is not an ideal of V . In the latter case, we restrict to those 
pseudo-valuation domains issued from finite extensions. This result also validates 
Corso-Polini-Ulrich’s conjecture mentioned in (2) for pseudo-valuation domains. 

Throughout, U(A)  denotes the set of all units of a ring A and Frac(A) denotes 
the set of all fractional ideals of A. 

Theorem 2.14 Let R be a pseudo-valuation domain and (V ,m) its associated 
valuation overring with R � V . Let I be a nonzero ideal of R.
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(1) Assume I is an ideal of V . Then I has a proper minimal reduction if and only 
if I = aV for some 0 �= a ∈ I . Moreover, MinRed(I ) = {

auR | u ∈ U(V  )
}
. 

(2) Assume I is not an ideal of V and [K : k] < ∞. Then I has a proper minimal 
reduction if and only if I = aϕ−1(W) for some 0 �= a ∈ I and k-vector space 
W such that k � W � K and Wn = Wn+1 for some (minimal) integer n ≥ 1. 
Moreover, MinRed(I ) = {

aϕ−1(kw) | w ∈ W \ {0}}. 
Moreover, for both cases, core(I ) = (J 2 : I ), for each minimal reduction J of I . 

We close this section with an illustrative example for Theorem 2.8 (non-
Noetherian context) and Theorem 2.14. 

Example 2.15 Let Q denote the field of rational numbers and X an indeterminate 
over Q. Consider the pseudo-valuation domain R := Q + m issued from 
Q(

√
2, 

√
3)[[X]], where m := XQ(

√
2,

√
3)[[X]]. Consider the ideal of R given 

by I := X
(
Q(

√
2)+m

)
. Clearly, T := (I : I )  = Q(

√
2)+m. By Theorem 2.8 and 

Theorem 2.14, we get core(I ) = m2 and MinRed(I ) = {
wXQ + m2 | 0 �= w ∈ 

Q(
√
2)

}
. 

3 Core of Ideals in One-Dimensional Noetherian Domains 

This part covers [42], which contributes to the study of the core in the class of 
Noetherian rings. Similarly to Part 2, we appeal to objects from multiplicative 
ideal theory to develop formulas for the core in some classes of one-dimensional 
Noetherian domains. A first result asserts that, in Noetherian settings, the class of 
domains satisfying core(I ) = I 2I−1 for all nonzero ideals lies strictly between the 
two classes of one-dimensional domains and TP domains. The equivalence holds in 
a large class of Noetherian domains. A second result sheds light on the core of ideals 
on a special class of one-dimensional Gorenstein local domains. The two results are 
backed with several illustrative examples, where we explicitly compute the core. 

3.1 Two Results 

In a domain R, if for each nonzero ideal I either II−1 = R or II−1 ∈ Spec(R), then 
R is said to have the trace property, or, for brevity, R is a TP domain [13, 14, 47]. 
Typical examples of TP domains are valuation domains, pseudo-valuation domains, 
and Dedekind domains [2, 14, 29]. 

In [14, Theorem 3.5], it is proved that a Noetherian domain with the trace 
property is either Dedekind or a one-dimensional domain with a unique non-
invertible maximal ideal M such that M−1 is equal to its integral closure. Also, , 
for the reader’s convenience, let us recall Hays’ result that “in a Noetherian domain 
R with infinite residue fields, each nonzero ideal of R has an invertible reduction
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if and only if dim(R) ≤ 1” [24, Theorem 4.4]; and Huckaba-Papick’s result that 
“given a Noetherian local domain (R, M), the fractional ideal M−1 is a domain if 
and only if either dim(R) ≥ 2 or dim(R) = 1 with R � R [31, Theorem 3.0]. 

The first main result (Theorem 4.1) of this section asserts that the class of 
Noetherian domains satisfying core(I ) = I 2I−1 for all nonzero ideals lies strictly 
between the two classes of one-dimensional domains and TP domains and the 
equivalence holds in a special class of Noetherian domains. The proof of this 
theorem draws on the following lemma, which is interesting on its own. 

Lemma 3.1 Let R be a domain, I a finitely generated ideal, and S := ⋃
n≥1(I

n : 
In ). Suppose I has an invertible reduction Jo, and let no be the smallest positive 
integer such that JoI

no = Ino+1. Then: 

(1) S = (In : In ), for any n ≥ no. 
(2) JS  = JoS = IS, for any reduction J of I . 
(3) Jo(R : S) = I (R  : S) ⊆ core(I ). 

Theorem 3.2 Let R be a Noetherian domain with infinite residue fields. Consider 
the following conditions: 

(1) R is a TP domain, 
(2) core(I ) = I 2I−1, for each nonzero ideal I of R, 
(3) dim(R) ≤ 1. 

Then, (1) �⇒ (2) �⇒ (3), and both implications are irreversible in general. 
Moreover, if (R, M) is local such that M−1 is a local domain with maximal ideal 

M , then the above three conditions are equivalent. 

Observe that the assumption “infinite residue fields” is used only for the proof 
of (1) �⇒ (2). Further, the assumption “M−1 is local with maximal ideal M” 
is neither necessary nor superfluous. Indeed, Examples 3.5 and 3.6 feature one-
dimensional Noetherian local domains (R, M) such that M−1 is local with maximal 
ideal �= M and Condition (2) above holds in Example 3.5 but not in Example 3.6. 

Recall, once more, that a domain is divisorial if all its nonzero (fractional) ideals 
are divisorial. Divisorial domains were investigated by Bass [4] and Matlis [48] in  
the class of Noetherian rings, Heinzer [28] in the class of integrally closed rings, 
Bastida-Gilmer [5] for  the  D + M rings, and Bazzoni [6] for more general settings. 
At this point, recall Matlis’ result that a nontrivial Noetherian local domain is 
divisorial if and only if dim(R) = 1 and M−1/R is a simple R-module [6, Theorem 
A]. Also, two of Hays’ results state that, in a one-dimensional local Noetherian 
domain with infinite residue field, every nonzero ideal has a principal reduction; and 
a nonzero ideal is basic if and only if it is principal [24, Theorem 4.4 & Corollary 
4.5]. Moreover, a recent result, due to Fouli and Olberding, asserts that if (R, M) is 
a one-dimensional local Noetherian domain, then

∣∣Max(R)
∣∣ ≤ ∣∣R/M

∣∣ if and only 
if every ideal of R has a principal reduction [18, Corollary 3.3]. 

Throughout, for an ideal I , we denote by pcore(I ) the principal core of I , 
i.e., the intersection of all principal reductions of I . The second main result of 
this paper (Theorem 4.3) establishes correlation between the core and principal
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core in a special class of Noetherian local divisorial domains and will be used to 
compute the core in the next section. It is worthwhile noticing that, in general, 
core(I ) � pcore(I ), as shown by Example 3.10. 

The following lemma sheds light on principal reductions of an ideal and is used 
in the proof of Theorem 4.3 as well as in the examples of the next section. 

Lemma 3.3 Let R be a domain and I a finitely generated ideal. Suppose I has a 
principal reduction aoR, and let S := ⋃

n≥1(I
n : In ), Uo := U(S)∩ (I : aoR), and 

Po := ⋂
u∈Uo uR. Then, J is a principal reduction of I if and only if J = aouR for 

some u ∈ Uo. Moreover, pcore(I ) = aoPo. 

Theorem 3.4 Let (R,m) be a nontrivial Noetherian divisorial (i.e., one-
dimensional Gorenstein) local domain such that

∣∣Max(R)
∣∣ ≤ ∣∣R/m

∣∣ and m−1 

is a TP domain. Let I be a nonbasic ideal of R and aR any principal reduction of 
I . 

(1) Suppose m−1 is local. Then, core(I ) = pcore(I ). 
(2) Suppose m−1 is not local. Then, core(I ) = a m∩ pcore(I ). 

3.2 Illustrative Examples 

In this section, all results obtained in the previous section are illustrated with explicit 
examples, where we compute the core. Examples are provided with full details from 
the original papers. The first example presents a Noetherian local non-TP domain in 
which core(I ) = I 2I−1 holds for each nonzero ideal I , showing that the implication 
(1) �⇒ (2) of Theorem 4.1 is irreversible in general. Recall that a nonzero ideal I 
is stable (resp., strongly stable) if it is invertible (resp., principal) in the ring (I : I ). 

Example 3.5 Let k be a field and X an indeterminate over k. Let  R := k[[X2, X5]]. 
Then, R is a one-dimensional Noetherian local domain with maximal ideal M = 
(X2, X5). We claim that R is a strongly stable divisorial domain. Indeed, it is easy 
to check that M−1 = k[[X2, X3]]. Further, k[[X2, X5]] � k[[X2, X3]] is a minimal 
extension; that is, M−1/R is a simple R-module. Hence R is a divisorial domain by 
[6, Theorem A]. Next, let I be a non-invertible ideal of R and set T := (I : I ). Then 
II−1 ⊆ M and so k[[X2, X3]] = M−1 ⊆ (II−1)−1 = (Iv : Iv) = (I : I )  = T ⊆ 
k[[X]]. Since the extension k[[X2, X3]] � k[[X]] is minimal, either T = k[[X]] or 
T = k[[X2, X3]]. In the first case, k[[X]] is a DVR and so I would be invertible 
in T . Next, assume T = k[[X2, X3]] and I (T  : I )  ⊆ (X2, X3). Then, we obtain 
k[[X]] = (X2, X3)−1 ⊆ (T : (I (T : I ))) = (Iv1 : Iv1). where v1- denotes the 
v-operation with respect to T . Similar arguments as above ensure (via [6, Theorem 
A]) that T is a divisorial domain. So (Iv1 : Iv1) = (I : I )  = T forcing k[[X]] = T , 
which is absurd. Necessarily, I is invertible in T . Consequently, in both cases, I is 
strongly stable. Since T is local, by Theorem 2.8, core(I ) = I 2I−1, as desired. But, 
R is not a T P -domain as M−1 � R = k[[X]].
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Next, we show that (2) �⇒ (3) of Theorem 4.1 is irreversible in general. 

Example 3.6 Let k be a field and X an indeterminate over k. Let  R := k[[X3, X4]]. 
Then, R is a one-dimensional Noetherian local domain with maximal ideal M := 
(X3, X4) and hence T := (M : M) = M−1 = k[[X3, X4, X5]]. Since R � T 
is a minimal extension, R is a divisorial domain [6, Theorem A]. Also, we have 
S := RM = (M2 : M2) = k[[X]] and so (R : S) = M2 = X6k[[X]]. Now,  
let f ∈ core(M), say  f = X3

(
ao + a3X3 + a4X4 + a6X

6 + . . .
)
and let J1 := 

X3(X + 1)R and J−1 := X3(X − 1)R. Both  J1 and J−1 are subideals of M with 
J1M

2 = J−1M
2 = M3, that is, both are (principal) reductions of M in R. Hence 

f ∈ J1 ∩ J−1 and a routine verification shows that ao = a3 = a4 = 0. So f ∈ 
X9k[[X]] = M3; i.e., core(M) ⊆ M3. On the other hand, let J be any reduction of 
M in R. By Lemma 3.1, JS  = MS and so JM2 = M3 ⊆ J . Hence M3 ⊆ core(M) 
and so core(M) = M3 � M2 = M2T = M2M−1. �

Follow three illustrative examples for Theorem 4.3. The first two examples 
provide local Noetherian divisorial domains (R, M) such that M−1 is a local TP 
domain and R is a strongly stable domain in the first example, but not in the second 
example. The third example provides a local Noetherian divisorial domain (R, M) 
such that M−1 is a TP domain which is not local. 

Example 3.7 Let k be an infinite field and X an indeterminate over k, and let R := 
k[[X2, X5]]. In Example 3.5, we saw that R is a local Noetherian strongly stable 
divisorial domain with maximal ideal M = (X2, X5) and M−1 = k[[X2, X3]]. 
Since

(
M−1 : (X2, X3)

) = M−1 = k[[X]], M−1 is a local T P -domain [14, 
Theorem 3.5]. Next, let I := (X4, X5)R = X4k[[X]]. Now, consider S, Uo, 
and Po from Lemma 3.3. Clearly, X4I = I 2 and then Lemma 3.1 yields S = 
(I : I )  = k[[X]]. Moreover, Uo = U(S)  and Po ⊆ M . Let  f ∈ Po. Then, 
f ∈ (1 + X)R ∩ M , and, through polynomial identification, one can check that 
f ∈ X4k[[X]], that is, Po ⊆ X4k[[X]]. The reverse inclusion trivially holds since 
I is an ideal of S. It follows that pcore(I ) = X4Po = X8k[[X]]. By Theorem 4.3, 
core(I ) = pcore(I ) = X8k[[X]]. �
Example 3.8 Let k be an infinite field, X an indeterminate over k, and let R := 
k[[X3, X4]] and I := (X7, X8) ⊆ M := (X3, X4). Then, (R, M) is divisorial 
[49, Theorem 2.2] and T := M−1 = k[[X3, X4, X5]] is local with maximal ideal 
N := (X3, X4, X5). Since (T : N)  = T = k[[X]], T is a T P -domain [14, Theorem 
3.5]. Notice that I (and a fortiori R) is not stable since (I : I )  = T and so I (T  : 
I )  = I

(
X−4k[[X]]) = N . Next, consider S, Uo, and Po from Lemma 3.3. Clearly 

I 2 = (X14, X15, X16) and I 3 = (X21, X22, X23), yielding X7I = (X14, X15) � I 2 

and X7I 2 = I 3; that is, X7R is a principal reduction of I and so S = (I 2 : I 2) = 
k[[X]] by Lemma 3.1. Moreover, one can easily check that Uo =

{
a + bX + X3g | 

a, b ∈ k and g ∈ k[[X]]}. Let  f ∈ Po. Then, f ∈ M ∩ ( ⋂
p(1 + pX)R

)
, where 

p ranges over the positive prime integers. Through polynomial identification, we 
get f ∈ X6k[[X]]; that is, Po ⊆ X6k[[X]]. On the other hand, for every u ∈ Uo, 
u−1X6k[[X]] = X6k[[X]] ⊆ R and so X6k[[X]] ⊆ uR. Hence X6k[[X]] ⊆ Po
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and therefore Po = X6k[[X]]. It follows that pcore(I ) = X7Po = X13k[[X]]. By  
Theorem 4.3, core(I ) = pcore(I ) = X13k[[X]]. �
Example 3.9 Let k be an infinite field, X an indeterminate over k, and let R := 
k + X(X − 1)k[X](X)∪(X+1). Then R is one-dimensional local Noetherian domain 
with maximal ideal M := X(X − 1)k[X](X)∪(X+1). Since M−1 = k[X](X)∪(X+1) 
is a semi-local Dedekind domain with exactly two maximal ideals N1 and N2 with 
M = N1N2, M−1/M is a 2-dimensional R/M-vector space. Hence R is a divisorial 
domain [6, Theorem A]. Also, since M−1 = R̄ is Dedekind, R is a T P -domain [14, 
Theorem 3.5]. Next, let I be a nonbasic ideal of R with a principal reduction aoR 
and consider S, Uo, and Po from Lemma 3.3. Then, II−1 = M and so M−1 = 
(II−1)−1 = (II−1 : II−1) = (Iv : Iv) = (I : I ). Hence, M−1 ⊆ S ⊆ R = M−1; 
that is, S = (I : I )  = M−1. It follows  that  Uo = U(S)  and so, for every u ∈ U(S)  
and m ∈ M , mu−1 ∈ M ⊆ R. Hence m ∈ uR, whence M ⊆ Po. Thus Po = M . 
Consequently, pcore(I ) = aoP = aoM and therefore core(I ) = aoM ∩ pcore(I ) = 
aoM by Theorem 4.3. �

Beyond the scope of Theorem 4.3, the next example features a non-local 
Noetherian divisorial domain R with a maximal ideal M such that M−1 is a non-
local TP domain and with a non-basic ideal I ⊆ M that has a principal reduction 
aR with core(I ) = aM ∩ pcore(I ) � pcore(I ). 

Example 3.10 Let k be an infinite field, X an indeterminate over k, R := k[X2, X5] 
and I := (X4, X5)R ⊆ M := (X2, X5)R. Then, M−1 = k[X2, X3] and, by [49, 
Theorem 2.2], R is divisorial. Moreover,

(
M−1 : (X2, X3)

) = M−1 = k[X] and, 
for any N ∈ Max(M−1), N(M−1 : N)  = N implies (M−1 : N)  = (N : N)  ⊆ 
k[X] and so N = (X2, X3). Hence, by [14, Theorem 3.5], M−1 is a TP domain. 
Further, X4I = I 2, that is, X4R is a principal reduction of I . By Lemma 3.1, 
S := ⋃

n≥1(I
n : In ) = (I : I )  = k[X] and X4k[X] =  I . Since U(R)  = U(S), 

by Lemma 3.3, X4R is the unique principal reduction of I and so pcore(I ) = X4R. 
Moreover, it is easy to check that I−1 = k[X] and hence Q := (R : S) = (R : 
I−1) = Iv = I . By Lemma 3.1, X8k[X] =  X4Q ⊆ core(I ). On the other hand, 
let f := X4g ∈ core(I ) ⊆ pcore(I ) with g = ao + a2X2 + X4g′, for  some  
ao, a2 ∈ k and g′ ∈ k[X], and let J := X4(1 + X, X4)R ⊂ I . The basic fact that 
1 − X4 ∈ (1 + X)S yields (1 + X, X4)S = S and so JS  = X4S. Hence JI  = I 2; 
that is, J is a reduction of I . Therefore f ∈ J . It follows  that  g = (1+X)h+X4h′, 
for some h, h′ ∈ R, which forces ao = a2 = 0 and so f ∈ X8k[X]. Consequently, 
we have core(I ) = X8k[X] = X4M ∩ pcore(I ) � X4R = pcore(I ). �

4 Reductions of Ideals in Pullbacks 

This part covers [43], which deals with reductions of ideals in diverse contexts 
of pullbacks. We study reductions of several types of ideals in both classical 
and generic pullback constructions. Moreover, we characterize pullbacks in which
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reductions of ideals extend to reductions of their respective extended ideals. All 
results are backed with new examples, where we explicitly determine the reductions. 

Let T be a domain, M a maximal ideal of T , K its residue field, ϕ : T −→ K 
the canonical surjection, D a proper subring of K , and k := qf(D). Let  R be the 
pullback issued from the following diagram of canonical homomorphisms: 

. 

So, R := ϕ−1(D) � T . We shall refer to the diagram (�) as generic, and we say 
R is a generic pullback issued from (T ,M,D). If  T = V is a valuation domain, 
we say R is a classical pullback issued from (V ,M,D), and in the special case 
when D = k, we say  R is a pseudo-valuation domain (PVD, for short) issued from 
(V ,M, k). Also, we will assume familiarity with the prime ideal structure along 
with basic ideal-theoretic properties of generic and classical pullbacks as in [1, 3, 5, 
8, 11, 12, 21, 26, 36, 38]. 

Recall that, for a ring homomorphism R −→ S, if  J is a reduction of I in R, then 
JS  is a reduction of IS  in S. The converse holds if the homomorphism is faithfully 
flat [33]. Also, in a Prüfer domain, if J is a reduction of I then JI  = I 2 [25]. 

Let us recall some basic facts on the structure of ideals in a pullback R issued 
from (T ,M,D). If  I is an ideal of R with M � I , then I = ϕ−1(A) for some 
nonzero ideal A of D; and if T is local, then every ideal of R is comparable to M . 
Further, if T is a valuation domain and I � M , then either I is an ideal of T or 
IT  = aT , for some nonzero a ∈ M; and in this case, if I is not an ideal of T , then 
I = aϕ−1(W) for some D-submodule W of K with D ⊆ W � K [5, 11]. 

Throughout, we denote by PRedR(I) the set of all principal reductions of I in R; 
and recall that RedR(I) denotes the set of all reductions of I in R. The first result 
of this section investigates reductions in generic pullbacks for three types of ideals: 
I = M , I � M , and I + M = R. 

Theorem 4.1 Let R be a pullback issued from (T ,M,D)  and I an ideal of R. 

(1) If I = M , then RedR(M) = RedT (M) ⇔ M is basic in R ⇔ M = M2. 
(2) If M � I := ϕ−1(A), then RedR(I) = {

ϕ−1(B) | B ∈ RedD(A)
}
. 

(3) If I + M = R, then: RedR(I) = {
J ⊆ I | JT  ∈ RedT (IT ) with J + M = 

R
} = {

H ∩ R | H ∈ RedT (IT )
}
. 

Here is an illustrative example for Theorem 4.1. 

Example 4.2 Let T := R[X, Y ] =  R+M , where M := (X, Y )T , R := Q+M , and 
I := (X−1, Y )R. Note that T is Noetherian with dimension 2, R is non-Noetherian 
with dimension 2 [8, Theorem 4], and M is a maximal ideal of T with I + M = R. 
Now, IT  = (X − 1, Y )T  is a 2-generated height-two ideal in T . Hence IT  is 
of the principal class and whence a basic ideal of T by [24, Theorem 2.3]. This 
argument cannot apply to I since R is not Noetherian. However, Theorem 4.1(3)
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yields RedR(I) = {
H ∩ R | H ∈ RedT (IT )

} = {
IT  ∩ R

} = {
I
}
. That is, I is a 

basic ideal of R. 

The next result deals with the special case of classical pullbacks, for all four 
types of ideals; I = M , M � I , 0 �= I � M with I an ideal of V , and I � M 
with I not an ideal of V . The first two cases I = M and M � I are similar to 
Theorem 4.1(1)&(2). The last two cases are handled below. 

Theorem 4.3 Let R be a pullback issued from (V ,M,D)  and I an ideal of R. 

(1) If 0 �= I � M and I is an ideal of V , then RedR(I) = RedV (I ) ⇐⇒ 
PRedR(I) = ∅ ⇐⇒ PRedV (I ) = ∅. 

(2) If I � M and I is not an ideal of V , i.e., I = aϕ−1(W), for  some  0 �= a ∈ 
M and D-submodule W with D ⊆ W � K , then RedR(I) = {

aϕ−1(H) | 
H submodule of W with HWn = Wn+1 for some n ≥ 0

}
. 

Here is an illustrative example for Theorem 4.3. 

Example 4.4 Let V := Q
(√

2,
√
3
)

[[X]] = Q
(√

2,
√
3
)

+ M , with M := XV , 

R := Z + M , and I := X(W + M), with W := Q
(√

2
)
. Since W is a 

field, Wn = W for every positive integer n. So, RedR(I) = {
X(H + M) | 

H Z-submodule of W with HW  = W
}
by Theorem 4.3 (e.g., X(Q + M) and 

X(nZ + M), for any integer n ≥ 1, are proper reductions of I in R). 

The next example shows that Theorem 4.3(1) does not carry up, in general, to 
generic pullbacks. 

Example 4.5 Let T1 := Q
(√

2,
√
3
)

[[X, Y ]] = Q
(√

2,
√
3
)

+ M , with M := 

(X, Y )T1, T := Q
(√

2
)

+ M , R := Q + M . Observe that T1, T , and R are local 
Noetherian wit dimension 2 and share the same maximal ideal M . Let  0 �= a ∈ 
M and I := aM . Clearly, M is not basic in T since J = (X, Y )T is a proper 
reduction of M in T ; and however M is basic in T1 by the principal class property 
[24, Theorem 2.3]. Further, a−1 /∈ T1 = (M : M) and so I � M . We claim that 
PRedR(I) = ∅. Assume, for contradiction, that I has a principal reduction bR in R, 
for some 0 �= b ∈ R. Then, a−1bT1 � M and bIn = In+1 for some integer n ≥ 1. 
Hence a−1bMn = Mn+1 and whence a−1bT1 is a proper reduction of M in T1, this  
is a contradiction. 

On the other hand, let J := (aX, aY )R. Since JT1 = aM = I and I is an ideal 
of T1, JI  = I 2 and so J is a reduction of I in R. But  J is not an ideal of T and so 
J �∈ RedT (I ). Therefore, RedT (I ) � RedR(I). 

The next result examines the extension of reductions in classical pullbacks, 
showing that this extension property characterizes a special class of PVDs. 

Theorem 4.6 Let R be a classical pullback issued from (V ,M,D). Then, the 
following assertions are equivalent:
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(1) For each ideal I ⊆ M of R, J ⊆ I is a reduction of I ⇔ JV  is a reduction of 
IV . 

(2) R is a PVD issued from (V ,M, k), where K is algebraic over k and, for every 
k-vector subspace W of K ⊇ k, Wn is a field for some positive integer n. 

Follow an illustrative example for Theorem 4.6 (and also Theorem 4.3). 

Example 4.7 Let V := Q
(√

2,
√
3
)

[[X]] = Q
(√

2,
√
3
)

+ M , with M := XV , 

R := Q+M , and I := X
(
Q

(√
2
)

+ M
)
. Observe that I � M and I is not an ideal 

of V . Further, since W := Q
(√

2
)
is a field, Wn = W for every positive integer 

n. Then, RedR(I) = {
X(H + M) | H Q-subspace of W with HW  = W

}
. by 

Theorem 4.3(2). Let J := X(H + M) ∈ RedR(I). If dimQ H = 1, then H = aQ, 
for some 0 �= a ∈ W and so J = aXR. If dimQ H = 2, then H = W and so 
J = I . Moreover, by Theorem 4.3(2), RedR(I) = {

J ⊆ I | JV  ∈ RedV (IV )
}
. 

Now, IV  = M is basic in V and so RedR(I) = {
J ⊆ I | JV  = M

} =
{
I
}∪PRedR(I) = {

I
}∪{

aXR | 0 �= a ∈ Q
(√

2
) }

. Consequently, a combination 

of both theorems points to the fact that the proper subideals of I which extend to M 
in V are exactly the principal reductions of I ; i.e., they have the form aXR, where 

0 �= a ranges over Q
(√

2
)
. 

5 Minimal Reductions and Core of Ideals in Pullbacks 

This part covers [44], which deals with minimal reductions and core of ideals in 
various setting of pullback constructions. The aim is to build new and original 
examples, where we explicitly compute the core. Once more, we use methods 
and objects from multiplicative ideal theory to probe the existence of minimal 
reductions in Sect. 5.1 and then develop explicit formulas for the core in Sect. 5.2, 
with illustrative examples and counterexamples to delimit the scoops of the main 
results. 

5.1 Minimal Reductions 

This section studies the existence of minimal reductions for some classes of ideals 
in pullbacks. Based on Part 4, the case when M � I is simple, as shown below. 

Proposition 5.1 Let R be a generic pullback issued from (T ,M,D)  and I an 
ideal of R. Suppose M � I := ϕ−1(Io), for some nonzero ideal Io of D. Then, 
the minimal reductions of I have the form J := ϕ−1(Jo), where Jo is a minimal 
reduction of Io.
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Notice that if I is an ideal of R with IT  = T , then M � I . Therefore, we restrict 
our investigation to the ideals of R that survive in T . We start with two results 
which link the existence of minimal reductions to the maximality of the conductor 
in pullbacks (and, in fact, in the general setting of extensions of domains). 

Proposition 5.2 Let A ⊆ B an extension of domains such that the conductor ideal 
(A : B) is maximal in B. Let I be a nonzero ideal of A and B that is finitely 
generated in (I : I ). If  (A : B) is maximal in A, then I has a minimal reduction in 
A. 

Note that Example 5.9 shows that Proposition 5.2 does not hold, necessarily, if 
I is not an ideal of both A and B. The second result establishes the converse for a 
special category of ideals. 

Proposition 5.3 Let A ⊆ B an extension of domains such that the conductor ideal 
(A : B) is maximal in B. Let I be an ideal of A with I = aB, for  some  0 �= a ∈ 
(A : B). If  aA is a minimal reduction of I in A, then (A : B) is maximal in A. 

As an application of Propositions 5.2 &5.3, the next result probes the existence 
of minimal reductions, in generic pullbacks, for a special category of stable ideals. 

Proposition 5.4 Let R be a generic pullback issued from (T ,M,D)  and I ⊆ M 
be a strongly stable (resp., stable) ideal of R with (I : I )  = T ; i.e., I = aT (resp., 
IRM = aTM ), for some 0 �= a ∈ I . Then, aR (resp., aR + IM) is a proper minimal 
reduction of I in R if and only if I has a proper minimal reduction in R if and only 
if D = k. 

In particular, if R is a classical pullback issued from (V ,M,D)  such that M is 
not basic, then the above result implies that M has a minimal reduction in R if and 
only if R is a PVD. The first main result of this section characterizes the existence 
of minimal reductions, in classical pullbacks, for (strongly) stable ideals. 

Theorem 5.5 Let R be a classical pullback issued from (V ,M,D). Then, every 
stable ideal of R has a minimal reduction if and only if every strongly stable ideal 
of R has a minimal reduction if and only if R is a one-dimensional PVD. 

The second main result of this section examines the existence of minimal 
reductions, in generic pullbacks, for the ideals which are incomparable to M . 

Theorem 5.6 Let R be a generic pullback issued from (T ,M,D)  and I an ideal of 
R with I + M = R. Then, J ⊆ I is a minimal reduction of I if and only if JT  is 
a minimal reduction of IT  with J + M = R if and only if J = H ∩ R, for  some  
minimal reduction H of IT .
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5.2 Core 

This section investigates the core of ideals in pullback constructions. Recall, for 
convenience, that the core of an ideal I of R, denoted coreR(I), is the intersection 
of all (minimal) reductions of I in R. 

As an application of Theorem 5.6, the next result investigates the core and basic 
property, in generic pullbacks, for the ideals of R which are incomparable to M . 

Corollary 5.7 Let R be a generic pullback issued from (T ,M,D), and let I be an 
ideal of R such that I + M = R. Then, coreR(I) = coreT (IT ) ∩ R. Moreover, I is 
basic in R if and only if IT  is basic in T . 

Follow an illustrative example for Corollary 5.7. 

Example 5.8 Let T1 = Q(
√
2)((Y ))[[X]] and T2 = Q(

√
2)[[X]] + YQ(

√
2) 

((X))[[Y ]]. Then, T1 is a one-dimensional valuation domain with Spec(T1) ={
0 � M1

}
, and T2 is a two-dimensional valuation domain with Spec(T2) ={

0 � P2 � M2
}
. Then, T := T1 ∩ T2 is a two-dimensional Prüfer domain with 

Spec(T ) = {
0 � P � M, 0 � N

}
. Here  N is a one-height maximal ideal of T 

and T/N  contains Q. Now, consider the pullback R issued from (T , N,Q). Then, 
p := P ∩ R is a prime ideal of R with p + N = R. So, by [41, Theorem 2.6], 
coreT (P ) = P 2. Further, pTN = PTN and pTM = PTM so that pT = P . By  
Corollary 5.7, coreR(p) = coreT (pT ) ∩ R = coreT (P ) ∩ R = P 2 ∩ R = p2. 

The next example shows that Corollary 5.7 does not hold, in general, if I is 
comparable to M in R; and also Proposition 5.2 is not valid if I is not an ideal of B. 

Example 5.9 Let T := Q[X, Y ] :=  Q + M , where M := (X, Y )T , R := Z + M , 
and I := (X, Y )R. Then, I � M with IT  = M . As  M is a 2-generated height-two 
ideal of the Noetherian domain T [8, Theorem 4], it is of the principal class and 
hence a basic ideal of T [24, Theorem 2.3]. Therefore, coreR(I) � coreT (IT ) ∩ R. 

Next, let I := (X − 1, Y )R. Then, I + M = R and similar arguments show 
that IT  = (X − 1, Y )T  is a basic ideal of T . By Corollary 5.7, I is basic in R. 
Therefore, I is a minimal reduction of itself (in R), despite (R : T )  = M is not a 
maximal ideal of R. 

The first main result of this section investigates, in generic pullbacks, the core 
for the category of ideals of both R and T . 

Theorem 5.10 Let R be a generic pullback issued from (T ,M,D), and let I be a 
nonzero ideal of both R and T . Then 

(1) coreR(I) is an ideal of T with M coreT (I ) ⊆ coreR(I) ⊆ coreT (I ). Moreover, 
If TM is a valuation domain, then coreR(I) = coreT (I ) or M coreT (I ). 

(2) If k � K , then M coreT (I ) ⊆ coreR(I) ⊆ MI ∩ coreT (I ). Moreover, if I is 
basic in T , then coreR(I) = MI . 

Follow an illustrative example for Theorem 5.10, which also shows that the ‘k �
K’ assumption is not necessary.
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Example 5.11 Let T := Q(X)[Y ] =  Q(X) + M , where M := YT , S := 
Q[X] +  M , and R := Z + M . Consider the ideal I of T , S, and R given by 
I := Y (Y  − 1)T . Then, coreT (I ) = I and, since Y (Y  − 1)S is a reduction of I 
in S, coreS(I ) � I = coreT (I ). Moreover, since TM is a valuation domain, then 
Theorem 5.10(1)&(2) applied respectively to the pullbacks S ⊂ T and R ⊂ T , 
yields coreS(I ) = M coreT (I ) = MI = coreR(I) � I � M . 

The next two examples show that the inclusions of Theorem 5.10 can be strict. 

Example 5.12 Let K be a field containing (strictly) a domain D and X an 
indeterminate over K . For the first inequality, let T := K[[X2, X3]] = K + M , 
where M := (X2, X3)T , and R := D + M . Then, M−1 = (R : M) = (M : 
M) = (T : M) = K[[X]]. Note that M is strongly stable, since M = X2K[[X]], 
and (M : M) is local. By [41, Theorem 2.12] applied to R and T , we obtain 
coreT (M) = M2(T : M) = M2 = M2M−1 = coreR(M). It follows that 
M coreT (M) = X6K[[X]] � coreR(M) = X4K[[X]]. For the second inequality, 
let T := K[[X]] = K + M , where M := XT , and R = D + M . Then, 
coreR(M) = M2 � coreT (M) = M by Corollary 5.14 

The next result investigates the core of ideals in the classical pullbacks for all 
four types of ideals; I = M , M � I , 0 �= I ⊆ M with I an ideal of the valuation 
domain V , and I � M with I not an ideal of V . 

Theorem 5.13 Let R be a pullback issued from (V ,M,D)  and I an ideal of R. 

(1) If M � I := ϕ−1(A), for some nonzero ideal A of D, then coreR(I) = 
ϕ−1

(
coreR(A)

)
. Moreover, I is basic in R if and only if A is basic in D. 

(2) If 0 �= I ⊆ M and I is an ideal of V , then coreR(I) = I 2I−1. Moreover, I is 
basic in R if and only if I is not strongly stable in R. 

(3) If I � M and I is not an ideal of V , i.e., I = aϕ−1(W), for  some  
nonzero a ∈ M and D-submodule W with D ⊆ W � K , then coreR(I) = 
aϕ−1

(⋂
H∈H H

)
, where H := {

all D-submodules H of W with HWn = 
Wn+1 for some n ≥ 0

}
. Moreover, I is basic in R if and only if W = ⋂

H∈H H . 

The special case when I = M is given below. 

Corollary 5.14 Let R be a classical pullback issued from (V ,M,D). Then, for any 
positive integer n ≥ 1, coreR(Mn ) = Mn+1. 

Next, we recover two known results on PVDs. 

Corollary 5.15 ([41, Proposition 2.10]) Let R be a nontrivial PVD and P ∈ 
Spec(R). Then, coreR(P n ) = P n+1, for any integer n ≥ 1. 

Corollary 5.16 ([41, Proposition 3.5(a)]) Let R be a PVD issued from (V ,M, k)  
and I a nonzero ideal of R and V . Then, core(I ) is a reduction of I if and only if I 
is basic. 

Follow three illustrative examples for Theorem 5.13(1-2-3).
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Example 5.17 Let K be a field and let X, Y be two indeterminates over K . 

(1) Let V := K((X))[[Y ]] = K((X)) + M , where M := YV , R := 
K[[X2, X3]] + M , and I := (X2, X3)K[[X2, X3]] + M . Then, coreR(I) = 
coreK[[X2,X3]](X2, X3) + M by Theorem 5.13(1). Moreover, in Example 5.12, 
we saw that coreK[[X2,X3]](X2, X3) = X4K[[X]]. Therefore, coreR(I) = 
X4K[[X]] + YK((X))[[Y ]]. 

(2) Let V := K[[X]] + YK((X))[[Y ]] = K + M , where M := XK[[X]] + 
YK((X))[[Y ]], R := D + M , where D is any domain strictly contained in K . 
Let I := Y 2K((X))[[Y ]] = N2, where N := YK((X))[[Y ]]. Clearly, I � M 
is an ideal of both R and V , and I−1 = (R : I )  = (R : N2) = ((R : N)  : 
N)  = ((N : N)  : N)  = (V1 : N)  = Y−1V1 where V1 := K((X))[[Y ]]. By  
Theorem 5.13(2), coreR(I) = N4Y−1V1 = N3 = Y 3K((X))[[Y ]]. 

(3) Let V := K(X)[[Y ]] = K(X) + M , where M := YV , R := K + M , W := 
K + KX, and I := Y (W  + M). By Theorem 5.13(3), we get coreR(I) = 
Y

(( ⋂
H∈H H

) + M
)
, where H := {

all K-subspaces H of W with HWn = 
Wn+1 for some n ≥ 0

}
. Next, let H ∈ H. If dimK(H) = 2, then H = W . 

Suppose dimK(H) = 1. Then, H = (a + bX)K , for  some  a, b ∈ K such that 
a + bX �= 0. If a = 0, then the assumption HWn = Wn+1, for  some  n ≥ 1, 
yields KX + KX2 + · · · +  KXn+1 = K + KX + KX2 + · · · + KXn+1, which 
is absurd. So, a �= 0. Further, b �= 0 since K /∈ H. It follows that

⋂
H∈H H =⋂

a,b∈K\{0}
(
a+bX

)
K ⊆ (

1+X
)
K∩(

1−X
)
K . Now, let  f ∈ ⋂

H∈H H . Then, 
f ∈ K[X] with degree equal to 1 and f (1) = f (−1) = 0. Consequently, for 
K := Z/2Z, we obtain coreR(I) = Y

(
(1+X)K +M

) = Y (1+X)K + M2 = 
Y (1 + X)K + Y 2K(X)[[Y ]] and, for any K �= Z/2Z, we have

⋂
H∈H H = 0. 

So coreR(I) = YM  = M2 = Y 2K(X)[[Y ]]. Notice that I is not an ideal of V 
and not stable in R, and coreR(I) = I 2I−1. 
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Valuative Lattices and Spectra 

Henri Lombardi and Assia Mahboubi 

1 Introduction 

This paper is written in the style of constructive mathematics à la Bishop, see [5, 6, 
8, 38, 43, 53]. An updated French version of [38] is [39]. 

We use the terminology and notations of dynamical theories. See [3, 4, 11, 21, 
32, 34, 35]. 

We continue the constructive approach to algebraic curves and valuation domains 
initiated in [12, 15, 17, 21] and [38, section XIII-8]. 

We hope to open the way for a simple constructive approach to the following 
topics.

• Understand (constructively) the theory of divisors of Weil-Kronecker when 
applied to a geometric ring1 (continuing the study made in [15]).

• Understand (constructively) the theorem stating that the theory of the ring of 
algebraic integers is complete [45, 46, 50, 51].

• Understand (constructively) the Riemann-Roch’s theorem in its general algebraic 
version [24, 25].

• Understand (constructively) the Grothendieck version of Riemann-Roch’s theo-
rem in [7]. 

1 A finitely presented algebra over a discrete field. 
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The three first sections of the present article provide an overview of the construc-
tive dynamical method. This method relies on dynamical theories and on dynamical 
algebraic structures. Its purpose is to unveil a computational content hidden in a 
number of abstract objects in classical mathematics. Dynamical methods provide 
effective counterparts even for objects seemingly inaccessible to a constructive 
treatment, e.g., the algebraic closure of a (discrete) field. They are typically able 
to turn a classical proof of a concrete result into an effective algorithm. 

The second part of the article uses this method to study the theory of divisibility. 
In particular, we compare two notions of valuative spectrum present in the literature. 
The first one arises in the theory of valuation domains, where [27] introduced the 
valuative spectrum of an arbitrary commutative ring, akin to the Zariski spectrum 
and to the real spectrum. The second one is the constructive version of the valuative 
spectrum of an integral domain, introduced by Coquand [12]. 

Sections 2 to 4 give general facts about distributive lattices, spectral spaces, 
geometric theories, dynamical algebraic structures and relations between these 
objects. The central notion of dynamical algebraic structure intuitively corresponds 
to that of an incompletely specified algebraic structure. The existence of models for 
these structures is a pervasive tool in classical mathematics. Most of the time, the 
only constructive counterpart to the existence of such a purely idealistic existence 
is the fact that the corresponding dynamical algebraic structure does not collapse. 
But in general, this is in fact sufficient to establish constructively results obtained in 
classical mathematics via the purely ideal existence of these models. 

Section 5 develops several dynamical theories for valuation domains, in relation 
with val and Val , which correspond, respectively, to the approaches of [27] and of 
[12]. Theorem 5.5.6 establishes the isomorphism of distributive lattices (and hence 
that of spectral spaces) corresponding to the dynamical algebraic structures defined 
in theories val and Val , for an algebra k → K when k is a sub-ring of a discrete 
field K. 

Section 6 addresses the valuative dimension of commutative rings. In particular, 
we prove that the valuative dimension of a commutative ring A is the Krull dimen-
sion of the associated distributive lattice with the dynamical algebraic structure 
val (A, A). In the case of an integral domain, the isomorphism of distributive lattices 
of Theorem 5.5.6 establishes the correspondence with the valuative dimension 
defined constructively by Coquand [12]. We also show constructively the equiva-
lence of several constructive approaches to the valuative dimension of a ring, or of 
an algebra. For this purpose, we introduce the minimal pp-closure of a ring A, which 
replaces the too hypothetical “integral domain generated by A.” 

Section 7 revisits the dynamical theory of valued discrete fields given in [21]. 
The objective of this section is akin to that of Sect. 5: showing that the dynamical 
algebraic structures associated with the theories val , Val , and Vdf are essentially 
the same. We rely on the formal Valuativstellensätze established for Vdf and 
we develop analogue formal Valuativstellensätze for val and Val. This provides 
an interesting historical perspective on various results à la Valuativstellensatz. In 
particular, the formal Valuativstellensatz 7.4.8 explains the identity between the
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algebraic certificates associated with the formal theories, respectively, developed 
(implicitly or explicitly) in [21, 27] and [12]. 

2 Distributive Lattices and Spectral Spaces 

References: [10, 14, 48] and [38, Chapters XI and XIII]. 

2.1 The Seminal Paper by Stone 

In modern language, the main result of the seminal paper [48] can be stated as 
follows: 
The category of distributive lattices is, in classical mathematics, antiequivalent to 
the category of spectral spaces. 

Let us explain this with some details. 

Ideals and Filters in a Distributive Lattice 

If ϕ : T → T′ is a distributive lattice homomorphism, ϕ−1(0) is called an ideal of 
T. An ideal b of T is a subset of T subjected to the following constraints 

.

0 ∈ b

x, y ∈ b �⇒ x ∨ y ∈ b

x ∈ b, z ∈ T �⇒ x ∧ z ∈ b

⎫
⎬

⎭
(1) 

(the last is rewritten as (x ∈ b, y � x) ⇒ y ∈ b). A principal ideal is an ideal 
generated by a single element a, it is equal to ↓a := { x ∈ T; x � a }. 

The ideal ↓ a, equipped with the laws ∧ and ∨ of T, is a distributive lattice 
in which the maximum element is a. The canonical injection ↓ a → T is not a 
morphism of distributive lattices because the image of a is not equal to 1T. However, 
the map T→↓a, x 
→ x ∧ a is a surjective morphism, which therefore defines ↓a 
as a quotient structure T/(a = 1). 

The opposite notion to that of an ideal is the notion of a filter. The principal filter 
generated by a is equal to ↑a. 

Let a be an ideal and f be a filter of T, we say that (a, f) is a saturated pair in T 
if we have the following implications 

.(g ∈ f, x ∧ g ∈ a) �⇒ x ∈ a and (a ∈ a, x ∨ a ∈ f) �⇒ x ∈ f.
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A saturated pair can also be defined as being (ϕ−1(0), ϕ−1(1)) for a morphism 
ϕ : T → T′ of distributive lattices. When (a, f) is a saturated pair, we have the 
equivalences 

. 1 ∈ a ⇐⇒ 0 ∈ f ⇐⇒ (a, f) = (T,T).

If A and B are two subsets of T we denote 

.A∨ B = {
a ∨ b | a ∈ A, b ∈ B

}
and A∧ B = {

a ∧ b | a ∈ A, b ∈ B
}
. (2) 

Then the ideal generated by two ideals a and b is equal to 

.IT(a ∪ b) = a ∨ b. (3) 

The set of ideals of T itself forms a distributive lattice2 w.r.t. the inclusion and for 
greatest lower bound of a and b, the ideal 

.a ∩ b = a ∧ b. (4) 

Thus the operations ∨ and ∧ defined in (2) correspond to the supremum and the 
infimum in the lattice of ideals. 

When we consider the lattice of filters, we must pay attention to what the 
reversing of the order relation produces: f ∩ g = f ∨ g is the infimum of the filters f 
and g, whereas their supremum is equal to FT(f ∪ g) = f ∧ g. 

The Spectrum of a Distributive Lattice 

In classical mathematics, a prime ideal p of a distributive lattice T �= 1 is an ideal 
whose complement f is a filter (a prime filter). The quotient lattice T/(p = 0, f = 1) 
is isomorphic to 2. Giving a prime ideal of T is the same thing as giving a lattice 
morphism T → 2. We will write θp : T → 2 the morphism corresponding to the 
prime ideal p. 

If S is a system of generators for a distributive lattice T, a prime ideal p of T is 
characterized by its trace p ∩ S (see [10]). 

Definition 2.1.1 The (Zariski) spectrum of the distributive lattice T is the set 
Spec T whose elements are prime ideals of T, with the following topology:

2 Actually we need to introduce a restriction to truly obtain a set, in order to have a well-defined 
procedure to construct the ideals under consideration. For example, we can consider the set of 
ideals obtained from principal ideals via certain predefined operations, such as countable unions 
and intersections. 
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an open basis is provided by the subsets DT(a) def= {
p ∈ Spec T; a /∈ p

} ={
p; θp(a) = 1

}
. 

In classical mathematics we have 

.
DT(a ∧ b) = DT(a) ∩DT(b), DT(0) = ∅,
DT(a ∨ b) = DT(a) ∪DT(b), DT(1) = Spec T.

}

(5) 

The complement of DT(a) is a basic closed set denoted by VT(a). 

This notation is extended to I ⊆ T: we let  VT(I ) def= ⋂
x∈I VT(x). If I is the 

ideal generated by I , one has VT(I ) = VT(I). The closed set VT(I ) is also called 
the subvariety of Spec T defined by I . 

The closure of a point p ∈ Spec T is provided by all q ⊇ p. Maximal ideals are 
the closed points of Spec T. The spectrum Spec T is empty iff 0 =T 1. 

Definition 2.1.2 A topological space homeomorphic to a space Spec(T) is called 
a spectral space. 

Spectral spaces come from [48]. Johnstone [28] calls them coherent spaces. 
Balbes and Dwinger [1] give them the name Stone space. Hochster [26] uses the  
name spectral space in a famous paper where he proves that all spectral spaces can 
be obtained as Zariski spectra of commutative rings. 

With classical logic and choice axiom, the space Spec(T) has “enough points”: 
the lattice T can be recovered from its spectrum. 

An element (a point) x of a spectral space X is the generic point of the 
closed subset F if F = {x}. This point (when it exists) is necessarily unique 
because spectral spaces are Kolmogoroff. In fact, closed subsets {x} are (in classical 
mathematics) all irreducible closed subsets of X. The order relation y ∈ {x} will be 
denoted as x �X y, and we have equivalences 

.x �X y ⇐⇒ {y} ⊆ {x} . (6) 

When X = Spec(T) the order relation p �X q is merely the usual inclusion relation 
p ⊆ q between prime ideals of T. 

Stone’s Antiequivalence 

First we have Krull’s theorem. 

Krull’s theorem (In Classical Mathematics) Let a be an ideal and v a filter of a 
distributive lattice T. Suppose that a∩v = ∅. Then there exists a prime ideal p such 
that a ⊆ p and p ∩ v = ∅.
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One deduces the following.

• The map a ∈ T 
→ DT(a) ∈ P(Spec T) is injective: it identifies T with a 
lattice of sets (Birkhoff representation theorem).

• If ϕ : T → T′ is an injective homomorphism the dual map ϕ� : Spec T′ → 
Spec T is onto.

• Any ideal of T is the intersection of prime ideals above it.
• The map I 
→ VT(I), from ideals of T to closed subsets of Spec T, is an  

isomorphism of posets (w.r.t. to inclusion and reversed inclusion). 

One proves also the following results.

• The quasi-compact open sets of SpecT are exactly the DT(a)’s.
• The quasi-compact open sets of SpecT form a distributive lattice of subsets 

of SpecT, isomorphic to T (equalities (5)).
• If X is a spectral space, its quasi-compact open sets form a distributive lattice, 

denoted as Oqc(X).
• For a distributive lattice T, Oqc(Spec(T)) is canonically isomorphic to T and 

for a spectral space X, Spec(Oqc(X)) is canonically homeomorphic to X. 

Definition 2.1.3 A morphism ϕ : T → T′ of distributive lattices gives by duality a 
continuous map 

. ϕ� : Spec T′ → Spec T, p 
→ ϕ−1(p)

which is called a spectral map. 

A map between spectral spaces is spectral if and only if the preimage of any 
quasi-compact open set is a quasi-compact open set. So it is necessarily continuous. 

The seminal paper by Stone gives the following characterization of spectral 
spaces. They are the topological spaces satisfying the following properties (see 
[28, 48, II-3.3, coherent locales]):

• The space is quasi-compact.3 

• Every open set is a union of quasi-compact open sets.
• The intersection of two quasi-compact open sets is a quasi-compact open set.
• For two distinct points, there is an open set containing one of them but not the 

other.
• For any closed set F and any set S of quasi-compact open sets such that 

. F ∩⋂
U∈S′ U �= ∅ for any finite subset S′ of S

we have also F ∩⋂
U∈S U �= ∅. 

Hochster [26] shows that the last property can be replaced with:

3 The nowadays standard terminology is quasi-compact, as in Bourbaki and Stacks, rather than 
compact.
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• Every irreducible closed set is the closure of a point. 

The precise modern formulation of Stone’s antiequivalence is Theorem 2.1.4. 

Theorem 2.1.4 The contravariant functors Spec and Oqc between the categories 
of distributive lattices and spectral spaces define an antiequivalence. 

In constructive mathematics, spectral spaces may have no points, and we try to 
translate the discourse in classical mathematics on spectral spaces (very frequent in 
algebra) in a constructive discourse on corresponding distributive lattices. 

A topological subspace Y of a spectral space X is called a subspectral space if 
the inclusion morphism Y → X is a spectral map. The notion of subspectral space 
is translated by the notion of quotient distributive lattice (Theorem 2.3.8). We have 
also good translations for the notions of Krull dimension, normal spectral space, 
lying over morphisms, going up and going down (see Sect. 2.4). 

When we replace T with the opposite lattice Top, by reversing the order, points 
of X remain the same ones in classical mathematics and the topology is replaced 
with the opposite topology, where quasi-compact open sets are the subsets VT(a). 

There is also the constructible topology (or patch topology) where quasi-compact 
open sets are Boolean combinations of OT(a) and VT(b). This spectral space is the 
dual of the Boolean algebra Bo(T) generated by the distributive lattice T. This kind  
of spectral space is a Stone’s space in the today terminology. 

Finite Spectral Spaces 

Finite distributive lattices correspond to finite spectral spaces. These ones are merely 
finite posets since it suffices to know the closure of points for defining the topology. 
Basic opens are the ↓a’s. In classical mathematics all open sets are quasi-compacts. 
These are the initial parts, and closed subsets are the final parts. Finally, a map 
between finite spectral spaces is spectral if and only if it is non-decreasing. 

So, we see that the general notion of spectral space is a relevant generalization 
of the notion of finite poset. See [38, Theorem XI-5.6, duality between finite posets 
and finite distributive lattices ]. 

In the finite case, if we identify the underlying sets of Spec T and Spec Top, we  
get two opposite posets (reversing the order). 

2.2 Distributive Lattices and Entailment Relations 

A particularly important rule for distributive lattices, known as cut, is  

.
(
x ∧ a � b

)
&

(
a � x ∨ b

) �⇒ a � b. (7) 

For A ∈ Pfe(T) (finitely enumerated subsets of T) we write
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. 
∨

A :=∨
x∈A x and

∧
A :=∧

x∈A x.

We denote by A � B or A �T B the relation defined as follows over the set Pfe(T) 

. A � B
def⇐⇒

∧
A �

∨
B.

This relation satisfies the following axioms, in which we write x for {x} and A, B 
for A ∪ B. 

. 

a � a (R)

A � B �⇒ A,A′ � B,B ′ (M)

(A, x � B) & (A � B, x) �⇒ A � B (T ).

We say that the relation is reflexive, monotone, and transitive. The third rule 
(transitivity) can be seen as a version of rule (7) and is also called the cut rule. 

Definition 2.2.1 For an arbitrary set S, a relation over Pfe(S) which is reflexive, 
monotone, and transitive is called an entailment relation. 

The following theorem is fundamental. It says that the three properties of 
entailment relations are exactly what is needed for the interpretation in the form 
of a distributive lattice to be adequate. 

Theorem 2.2.2 (Fundamental Theorem of Entailment Relations) See [10, The-
orem 1], [38, XI-5.3], [40, Satz 7]. Let S be a set with an entailment relation �S on 
Pfe(S). We consider the distributive lattice T defined by generators and relations as 
follows: the generators are the elements of S and the relations are the 

. A �T B

each time that A �S B. Then, for all A, B in Pfe(S), we have 

. A �T B �⇒ A �S B.

Remark The relation x �S y is a priori a preorder, and not an order, on S. Let  
us denote by x the element x seen in the ordered set S defined by this preorder. 
For a subset A of S let us denote A = { x; x ∈ A }. In the theorem we consider a 
distributive lattice T which gives on S the same entailment relation as �S . Strictly 
speaking, we should have written A �T B instead of A �T B since the equality 
in T is coarser than in S. In particular, it is S, and not S, which can be identified 
with a subset of T. �
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2.3 Gluing Distributive Lattices and Spectral Subspaces 

Quotients, Covers, Gluing Procedures 

A quotient lattice T′ of a lattice T can also be given by a binary relation � over T 
satisfying the following properties 

.

a � b �⇒ a � b

a � b, b � c �⇒ a � c

a � b, a � c �⇒ a � b ∧ c

b � a, c � a �⇒ b ∨ c � a

⎫
⎪⎪⎬

⎪⎪⎭

(8) 

The relation � then induces a lattice structure over the quotient set T′ obtained with 
the new equality 

. (a, b ∈ T) : a =T′ b
def⇐⇒ (a � b and b � a)

Naturally if T is distributive, the same goes for T′. 

Proposition 2.3.1 Let T be a distributive lattice and (J, U) be a pair of subsets of 
T. Consider the quotient T′ of T defined by the relations x = 0 for each x ∈ J , and 
y = 1 for each y ∈ U . Then the inequality a �T′ b is satisfied if and only if there 
exist J0 ∈ Pfe(J ) and U0 ∈ Pfe(U) such that 

.a ∧
∧

U0 �T b ∨
∨

J0. (9) 

We will denote by T/(J = 0, U  = 1) this quotient lattice T′. 

In particular, for an ideal a, the natural morphism ϕ : T → T′ = T/(a = 0) 
satisfies ϕ−1(0T′) = a. In the case of the quotient by a principal ideal ↓a we obtain 
T/(↓a = 0) �↑a with the morphism y 
→ y ∨ a from T to ↑a. 

We see in the example of totally ordered sets that a quotient structure of a 
distributive lattice is not generally characterized by the equivalence classes of 0 
and 1. 

In commutative algebra, when a and b are two ideals of a ring A, there is an exact 
sequence of A-modules 

. 0→ A/(a∩b) j−→ (A/a)×(A/b)
δ−→ A/(a+b)→ 0 (δ(x, y) = x−y mod a+b)

otherwise said: the congruences system x ≡ a mod a, x ≡ b mod b has a solution 
if and only if a ≡ b mod a+b, and in this case, the solution is unique modulo a∩b. 
It is remarkable that this “Chinese remainder theorem” generalizes to an arbitrary 
system of congruences if and only if the ring is arithmetic [38, Theorem XII-1.6], 
i.e., if the lattice of ideals is distributive. By contrast, the usual Chinese remainder
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theorem concerns the special case of a family of pairwise comaximal ideals, and it 
works for an arbitrary ring. 

Localizations provide other epimorphisms of the category of commutative 
rings. They enjoy a fruitful gluing principle, analogous to the Chinese remainder 
theorem, in this instance the basic local-global principle. This principle asserts 
that: if (x1, . . . , xn) is a system of comaximal elements in a ring A, the morphism 
A → ∏

i∈�1..n� A[1/xi] identifies A to a subproduct4 of its localized rings (see 
the concrete local-global principle XV-4.2 in [38], and also II-2.3, XV-2.1, XV-2.2, 
XV-2.3, XV-2.4 and XV-2.5). These principles are constructive versions of abstract 
local-global principles. They ensure that certain properties of an A-module or an A-
algebra are satisfied if and only if they are satisfied after localization in any prime 
ideal (or, sometimes, in the neighborhood of any prime ideal). 

Similarly, it is possible to reconstruct a distributive lattice from a finite number 
of quotients when the latter carry “enough” information. This can be seen either as 
a gluing procedure or as a Chinese remainder theorem for distributive lattices. 

Covering a distributive lattice by quotient lattices is dual to covering a spectral 
space by spectral subspaces. Note, however, that a set-theoretical cover of the total 
space by a family of spectral subspaces does not suffice to reconstruct the spectral 
topology of the total space from those of the subspaces. Similarly, the three-by-
three compatibility conditions on gluing isomorphisms do not suffice to glue spectral 
spaces: usually, gluing also requires some additional properties on their spectral 
subspaces. 

Therefore, Theorems 2.3.3 and 2.3.6 consider very specific quotient distributive 
lattices. These results provide analogues, for the category of distributive lattices, 
to the similar results available in the category of �-groups [38, Covering principles 
XI-2.10 and XI-2.21] and in the category of modules over a commutative ring [38, 
Covering principles XI-4.19 and XIII-3.3, Gluing principles XV-4.4, XV-4.4 bis and 
XV-4.6]. We can now describe the situation in detail. 

Definition 2.3.2 Let T be a distributive lattice and (ai )i∈�1..n� (respectively, 
(fi )i∈�1..n�) a finite family of ideals (respectively, of filters) of T. We say that 
the ideals ai cover T if

⋂
i ai = {0}. Similarly we say that the filters fi cover T 

if
⋂

i fi = {1}. 
Let b be an ideal of T; we write x ≡ y mod b as meaning x ≡ y mod (b = 0). 

Let us recall that for s ∈ T the quotient T/(s = 0) is isomorphic to the principal 
filter ↑s (one sees this filter as a distributive lattice with s as 0 element). 

Theorem 2.3.3 (Covering a Distributive Lattice by Suitable Quotients) Let T 
be a distributive lattice, (ai )i∈�1..n� a finite family of principal ideals (ai =↓si) and 
a =⋂

i ai . 

1. If (xi) is a family in T s.t. for each i, j one has xi ≡ xj mod ai ∨ aj , then there 
exists a unique x modulo a satisfying: x ≡ xi mod ai (i ∈ �1..n�).

4 A subobject of the considered finite product, in the category of commutative rings. 
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2. Let us write Ti = T/(ai = 0), Tij = Tj i  = T/(ai ∨ aj = 0), πi : T → Ti 
and πij : Ti → Tij the canonical maps. If the ideals ai cover T, the system 
(T, (πi)i∈�1..n�) is the inverse limit of the diagram 

. ((Ti )1�i�n, (Tij )1�i<j�n; (πij )1�i �=j�n).

3. The analogous result works with quotients by principal filters. 

There is also a gluing procedure for quotient distributive lattices Ti → Tij in 
certain particular cases. 

Definition 2.3.4 (Morphism of Passage to Quotient) Let T be a distributive 
lattice and u ∈ T. We identify ↑ u to the quotient T/(↓ u = 0) via the morphism 
pu : x 
→ x ∨ u. More generally, a morphism of distributive lattices α : T → T′
is called a morphism of passage to quotient by the ideal ↓ u if there exists an 
isomorphism (necessarily unique) λ : T′ → T/(u = 0) such that α = λ ◦ pu. 

Lemma 2.3.5 (In a Distributive Lattice, Principal Quotients Are “Split”) Let 
π :T→ T′ be a morphism of distributive lattices and s ∈ T. T.F.A.E. 

1. π is a morphism of passage to quotient of T by the principal ideal a =↓s. 
2. There exists a morphism ϕ : T′ →↑s such that π ◦ ϕ = IdT′ . 

In this case ϕ is uniquely determined by π and s. 
Naturally, the “reversed” lemma is valid for a quotient by a principal filter. 

Theorem 2.3.6 (Gluing Distributive Lattices) Let I be a finite set, a diagram of 
distributive lattices 

. 
(
(Ti )i∈I , (Tij )i<j∈I , (Tijk)i<j<k∈I ; (πij )i �=j , (πijk)i<j,j �=k �=i

)

and a family of elements (sij )i �=j∈I ∈∏
i �=j∈I Ti satisfying the following proper-

ties

• The diagram is commutative.
• If i �= j , πij is a quotient morphism w.r.t. the ideal ↓sij .
• If i, j , k are distinct, πij (sik) = πji(sjk) and πijk is a quotient morphism w.r.t. 

the ideal ↓πij (sik).
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Let
(
T ; (πi)i∈I

)
be the limit of the diagram. Then there exist si’s in T such that 

the principal ideals ↓ si cover T and the diagram is isomorphic to the one in 
Theorem 2.3.3. More precisely each πi is a quotient morphism w.r.t. the ideal ↓ si 
and πi(sj ) = sij for all i �= j . 

The analogous result works with quotients by principal filters. 

The Dual Viewpoint 

Definition 2.3.7 A subset X′ of a spectral space X is called a subspectral 
space when the topology on X′ induced by X is spectral and Oqc(X′) ={
U ∩ X′; U ∈ Oqc(X)

}
(in other words the canonical injection is a spectral 

morphism). 

The following theorem explains that the notion of spectral subspace is translated 
by the notion of quotient distributive lattice. Some details are added. See also 
Theorem 2.4.1. 

Theorem∗ 2.3.8 (Subspectral Spaces) 

1. Let T′ be a quotient lattice of T and π : T → T′ the quotient morphism. Let us 
write X′ = Spec T′, X = Spec T and π� : X′ → X the dual map of π . Then 
π� identifies X′ with a subspectral space of X. 

2. A subset X′ of a spectral space X is a subspectral space if and only if it is closed 
for the patch topology. 

3. If Z is an arbitrary subset of X = Spec T, its closure for the patch topology 
is given by X′ = Spec T′, where T′ is the quotient lattice of T defined by the 
following preorder �: 

.a � b ⇐⇒ (DT(a) ∩ Z) ⊆ (DT(b) ∩ Z) (10) 

A gluing of distributive lattices as in Theorem 2.3.6 corresponds to a gluing of 
topological spaces along 2 by 2 intersections when they are compatible 3 by 3. In 
this way we glue spectral spaces along suitable quasi-compact open sets5 when they 
are 3 by 3 compatible.6 

5 Variant: closed subsets complement of quasi-compact open sets. This corresponds to the opposite 
distributive lattices and the opposite topology on spectral spaces. 
6 In Theorem 2.3.6 the compatibility is described thanks to a distributive lattice Tijk . When gluing 
topological spaces we have a priori three distinct version of U1 ∩U2 ∩ U3, respectively, subspaces 
of U1, U2 and U3. So it is necessary to first identify the two versions of Ui ∩ Uj inside Ui and Uj 
through homeomorphisms. And the three identifications have to give the same U1 ∩ U2 ∩ U3.
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Here, the gluing of spectral spaces corresponding to the figure is intuitively 
evident and easy to prove in classical mathematics. In contrast, Theorem 2.3.6 has 
a rather subtle proof (see [18]). 

U1U1 

U2 

U2 

U3 

U3 

In the following subsection we give other relevant comparisons between distribu-
tive lattices and dual spectral spaces. 

2.4 Short Dictionary of Stone’s Antiequivalence 

References: Krull’s theorem page 279, [1, 10, 16, 36, Theorem IV-2.6]. 
We now recall a few results about Stone’s antiequivalence of categories between 

distributive lattices and spectral spaces and provide references to the proofs 
available in the literature. We also prove Theorem 2.4.7, which finds applications 
in Sect. 6. 

We are in the following context: f : T → T′ is a morphism of distributive 
lattices and Spec(f ), denoted as f �, is the dual morphism, from X′ = Spec(T′) 
to X = Spec(T). 

We first recall some usual definitions in classical mathematics.

• The morphism f is said to be lying over when f � is onto: any prime ideal of T 
is the preimage of a prime ideal in T′.

• The morphism f is said to be going up when one has: if q ∈ X′, f �(q) = p, and 
p ⊆ p2 in X, then there exists q2 ∈ X′ such that q ⊆ q2 and f

�(q2) = p2.
• In a similar way f is said to be going down when one has: if q ∈ X′, f �(q) = p, 

and p ⊇ p2 in X, then there exists q2 ∈ X′ such that q ⊇ q2 and f
�(q2) = p2.

• The morphism f has the incomparability property when one has: if q1 ⊆ q2 ∈ X 
and f �(q1) = f �(q2) in X′ then q1 = q2.
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• The spectral space X is said to be normal if for all x, the closure {z} contains a 
unique closed point.

• The spectral space Spec T is said to be completely normal if for all x, y, z such 
that x ∈ {z} and y ∈ {z} one has x ∈ {y} or y ∈ {x}. 

Properties of Morphisms 

Theorem 2.4.1 [1, Theorem IV-2.6] In classical mathematics we have the follow-
ing equivalences. 

1. f � is onto (f is lying over)⇐⇒ f is injective⇐⇒ f is a monomorphism ⇐⇒ 
f � is an epimorphism. 

2. f is an epimorphism⇐⇒ f � is a monomorphism ⇐⇒ f � is injective. 
3. f is onto7 ⇐⇒ f � is an isomorphism on its image, which is a subspectral space 

of X. 

There are bijective morphisms of spectral spaces that are not isomorphisms. For 
example, the morphism Spec(Bo(T)) → Spec T is rarely an isomorphism and the 
lattice morphism T→ Bo(T) is an injective epimorphism which is rarely onto. 

Theorem 2.4.2 ([16]) In classical mathematics we have the following equiva-
lences 

1. f is going up⇐⇒ for each a, c ∈ T and y ∈ T′ we have 

. f (a) � f (c) ∨ y ⇒ ∃x ∈ T (a � c ∨ x and f (x) � y).

2. f is going down ⇐⇒ for each a, c ∈ T and y ∈ T′ we have 

. f (a) � f (c) ∧ y ⇒ ∃x ∈ T (a � c ∧ x and f (x) � y).

3. f has the property of incomparability⇐⇒ f is zero-dimensional.8 

Theorem 2.4.3 (Open Spectral Map [36]) In classical mathematics t.f.a.e. 

1. Spec(f ) is an open map. 
2. There exists a map f̃ : T′ → T with the following properties. 

(a) For c ∈ T and b ∈ T′, one has b � f (c)  ⇔ f̃ (b) � c. 
In particular, b � f (f̃ (b))  and f̃ (b1 ∨ b2) = f̃ (b1) ∨ f̃ (b2). 

(b) For a, c ∈ T and b ∈ T′, one has f (a) ∧ b � f (c)  ⇔ a ∧ f̃ (b) � c. 
(c) For a ∈ T and b ∈ T′, one has f̃ (f (a)  ∧ b) = a ∧ f̃ (b). 
(d) For a ∈ T, one has f̃ (f (a))  = f̃ (1) ∧ a.

7 In other words, f is a quotient morphism. 
8 See Theorem 2.4.8. 
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3. There exists a map f̃ : T′ → T satisfying property 2. 
4. For b ∈ T the g.l.b.

∧

b�f (c)  
c exists, and if we write it f̃ (b), the property 2 holds. 

Dimension Properties 

In classical mathematics, the dimension of a spectral space, based on chains of 
irreducible closed subsets, is called its Krull dimension. The dimension of the 
empty spectral space is −1. Theorem 2.4.4 explains why the definition of the Krull 
dimension of a distributive lattice in constructive mathematics, denoted Kdim T, is  
rather based on its Item 2. The base case is for the trivial, singleton lattice, which 
has dimension−1. Since the equivalence between Item 2 and Item 3 is constructive, 
Item 3 also provides an appropriate constructive definition of the Krull dimension 
of a distributive lattice in non-trivial cases. 

Coquand and Lombardi [13] explain the relation between Item 1 and Item 3 of 
the theorem, as well as the connection with the pioneering approach of [29]. Item 2 
in the theorem goes back to [19]. 

Theorem 2.4.4 (Dimension of Spaces) See [13, 19]. Let n ∈ N, in classical 
mathematics t.f.a.e. 

1. The spectral space Spec(T) has Krull dimension � n (defined using chains of 
primes). 

2. For any x ∈ T the quotient lattice T/(x = 0, Ix = 0), where Ix = 
{ y; x ∧ y = 0 }, has dimension � n− 1. 

3. For each sequence (x0, . . . , xn) in T there exists a complementary sequence 
(y0, . . . , yn), which means 

.

1 � yn, xn

yn, xn � yn−1, xn−1
...

...
...

y1, x1 � y0, x0

y0, x0 � 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(11) 

For example, in dimension n � 2, the inequalities in (11) correspond to the 
following diagram in T.
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A zero-dimensional distributive lattice is a Boolean algebra. 
Items 2 and 3 give a constructive meaning to the statement Kdim(T) � n for 

n � −1. But in the general case, it seems impossible to understand constructively 
the statement Kdim(T) = n (for n � 0). 

Regarding the Krull dimension of commutative rings, see [13, 34] and [38, 
Chapter XIII]. This definition of the Krull dimension is close to (and probably more 
general than) the one given by Lurie [41, page 584], which was motivated by the 
case of certain non-Noetherian rings. 

In addition, it is impossible to prove constructively Kdim(R) � 0. As R is a 
reduced local ring, Kdim(R) � 0 is equivalent to the assertion any x is null or 
invertible, i.e., LPO. 

Lemma 2.4.5 If T′ is a quotient of T, then Kdim(T′) � Kdim(T). 

Proof Use Item 3 in Theorem 2.4.4. ��
Lemma 2.4.6 Let T1 and T2 be distributive lattices and T = T1 × T2. Then, for 
n � −1 we have 

. Kdim(T) � n if and only if Kdim(Ti ) � n for i = 1, 2.

In a shortened form: Kdim(T1 × T2) = sup(Kdim T1,Kdim T2). 

Proof First, each Ti is a quotient of T. In the other direction, assume each Ti is 
of dimension � n and let (x0, . . . , xn) in T, with xi = (ai, bi). If  (a0, . . . , an) has 
the complementary sequence (y0, . . . , yn) in T1 and (b0, . . . , bn) has the comple-
mentary sequence (z0, . . . , zn) in T2, then (u0, . . . , un) (where ui = (yi, zi)) is  
complementary of (x0, . . . , xn) in T. ��
Theorem 2.4.7 (Dimension of Distributive Lattices, Case of a Closed Cover) 
Let T be a distributive lattice, a, b two ideals such that a∩b = {0}, Ta = T/(a = 0) 
and Tb = T/(b = 0). Then Kdim T = sup(Kdim Ta,Kdim Tb). 

Proof We have a natural morphism ja,b : T → Ta × Tb, x 
→ (πa(x), πb(x)). 
Lemmas 2.4.5 and 2.4.6 imply we have sup(Kdim Ta, Kdim Tb) � Kdim T. 

Let us see the opposite inequality.
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We begin by a proof in classical mathematics. Let p be a prime ideal of T. If p 
disappears in Ta we have p∨ a = T. In this case we have an x ∈ a such that x /∈ p, 
and for any y ∈ b, since x ∧ y = 0 and p is prime, y ∈ p. So  b ⊆ p and p remains 
a prime ideal in Tb. Symmetrically, if p disappears in Tb, it persists in Ta. Let us 
now consider a chain of prime ideals in T of maximal length. The minimal element 
in the chain contains a or b, so all the chain persists in Ta or Tb. 

Finally let us give a proof in constructive mathematics.9 

First we assume that a and b are principal ideals: a =↓a and b =↓b with a∧b = 
0. We have a morphism of unbounded distributive lattices10 Ta → T, πa(x) 
→ 
a∨x. Let us consider the morphism ra,b : Ta×Tb → T, (x, y) 
→ (a∨x)∧(b∨y). 
We see that it is a morphism of distributive lattices because ra,b(0, 0) = 0. We have 
ra,b ◦ ja,b = IdT. Indeed, for x ∈ T, one has (a ∨ x) ∧ (b ∨ x) = (a ∧ b) ∨ x = x. 
So ra,b is a surjective morphism and T is a quotient of Ta × Tb. 

Let us see the general case, where a and b are not necessarily finitely generated. 
The quotient Ta is the filtered colimit of Ta’s for a ∈ a (a is seen as a small filtered 
category). The lattice Ta × Tb is the filtered colimit of Ta × Tb’s. Morphisms ra,b 
are compatible,11 so they induce (by the universal property of a filtered colimit) 
a morphism ra,b : Ta × Tb → T. For each (a, b) we have the filtered colimit 
morphism ιa,b : Ta × Tb → Ta × Tb and we have the commutative diagram: 

Hence ra,b ◦ ja,b = IdT. ��
Theorem 2.4.8 (Dimension of Morphisms) See [16], [38, section XIII-7]. Let 
T ⊆ T′ and f be the inclusion morphism. In classical mathematics t.f.a.e. 

1. The morphism Spec(f ) : Spec(T′) → Spec(T) has Krull dimension � n. 
2. For any sequence (x0, . . . , xn) in T′ there exists an integer k � 0 and elements 

a1, . . . , ak ∈ T such that for each partition (H, H ′) of {1, . . . , k}, there exist 
y0, . . . , yn ∈ T′ such that

9 It should be interesting to check the constructive proof being a faithful translation of the classical 
one. 
10 The image of this morphism is ↑a. We have  πa(1) = 1, but πa(0) = a. 
11 For all a � a′ and b � b′, the triangle constituted by ra′,b′ , ra,b and the morphism of passage to 
quotient Ta × Tb → Ta′ × Tb′ is commutative. 
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.

∧
j∈H ′ aj � yn, xn

yn, xn � yn−1, xn−1
...

...
...

y1, x1 � y0, x0

y0, x0 � ∨
j∈H aj

(12) 

For example, for the relative dimension n � 2, the inequalities in (12) correspond 
to the following diagram in T. with u =∧

j∈H ′ aj and i =∨
j∈H aj . 

Note that the dimension of the morphism T → T′ is bounded by the dimension 
of T′: take the empty list (k = 0) in Item 2 of Theorem 2.4.8. 

More generally we have a constructive proof of the fundamental inequality given 
in [47, A note on the dimension theory of rings] for the case of commutative rings: 
1+ dimT′ � (1 + dimT)(1+ dim f ). 

Properties of Spaces 

A distributive lattice T is said to be normal if each time one has a ∨ b = 1 in  T 
there exist x, y such that a ∨ x = b ∨ y = 1 and x ∧ y = 0. See [23, 52]. Note 
that when replacing x and y with x1 = x ∨ (a ∧ b) and y1 = y ∨ (a ∧ b) we get 
a ∨ x1 = b ∨ y1 = 1 and x1 ∧ y1 = a ∧ b. 

Theorem 2.4.9 T.F.A.E. 

1. The spectral space Spec(T) is normal. 
2. The distributive lattice T is normal. 

Theorem 2.4.10 T.F.A.E. 

1. The spectral space Spec(T) is completely normal. 
2. Each interval [a, b] in T, seen as a distributive lattice, is normal. 
3. For all a, b ∈ T there exist x, y such that a ∨ b = a ∨ y = x ∨ b and x ∧ y = 0.
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Theorem 2.4.11 T.F.A.E. 

1. Any quasi-compact open set in Spec(T) is a finite union of irreducible quasi-
compact open sets. 

2. For all a1, . . . , an, b1, . . . , bm one has a1, . . . , an �T b1, . . . , bm if and only if 
there is a j such that a1, . . . , an �T bj . 

3. The distributive lattice T is constructed from a dynamical algebraic structure 
corresponding to a Horn theory. 

3 Finitary Dynamical Theories and Dynamical Algebraic 
Structures 

References: [21, 32, 35]. A more detailed text is in preparation [37]. 

3.1 Finitary Dynamical Theories 

Finitary dynamical theories have been introduced in [21]. They are a version 
“without logic, purely computational” of coherent theories (first order theories 
where all axioms are translations of dynamical rules).12 

In this paper the authors introduce the notions of “dynamical theory” and of 
“dynamical proof.” See also the paper [3] describing some advantages of this 
approach, and pioneering articles [42, 44, Sections 1.5 and 4.2] and [31]. 

Dynamical theories use only dynamical rules, i.e., deduction rules of the form 

. � � Introduce y1 such that �1 or · · · or Introduce ym such that �m

(13) 

where � and the �i’s are lists of atomic formulae in the language L of the theory 
T = (L,A). 

A shortened form is 

.� � ∃y1�1 or · · · or ∃ym�m (14)

12 A usual terminology in mathematical logic speaks about “formal first order theories” when 
quantifiers are only applied to usual variables, corresponding to elements of the reference set 
considered as a model of the theory. Second order is used for formal theories using quantifiers 
on variables in the powerset of the reference set. General geometric theory, with infinite or , is not 
exactly first order, but absolutely not second order. As a consequence general geometric theories 
are considered as first order theories in the corresponding literature. We use more or less this 
tradition in our use of geometric theories by omitting to speak of “first order geometric theories.” 
We use instead “finitary geometric theories.” 
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Axioms are dynamical rules, and theorems are valid dynamical rules (validity is 
described in a simple way and uses only a computational machinery). 

If T is a coherent theory, the corresponding (finitary) dynamical theory uses 
limited methods of proof.

• First, only atomic formulae are used: no use of new formulae involving con-
nectors or quantifiers. We manipulate only lists of atomic formulae in the 
language L.

• Second, axioms are not seen as true formulae, but as deduction rules: an axiom 
such that (14) is used as a dynamical rule. Variables in the lists yj are bound 
variables.

• Third, proofs are only proofs of dynamical rules.
• Forth, the unique way for proving a dynamical rule is a computational tree 

“without logic.” At the root of the tree we find hypotheses of the theorem we want 
to prove. The tree is developed by applying axioms along a pure computational 
algebraic machinery in the structure described by T. Precise formal definitions 
are given in [21]. 
When using an axiom as (14), we substitute arbitrary terms ti to free variables 
xi in the rule. If these hypotheses are valid at a leaf of the proof tree, this 
leave becomes a node from which start branches of computation. In each branch 
one introduces fresh variables corresponding to bound variables yk (these fresh 
variables must be distinct of free variables seen in the terms ti) and each 
conclusion of the list �k is valid in its branch. Finally, a conclusion is valid 
when it is proved at each leave of a proof tree. 

In a dynamical theory, each sort S has an equality predicate · =S ·. Axioms 
allow us to substitute a term t by a term t ′, when the rule � t = t ′ is valid, in any 
occurrence of an atomic formula in a valid dynamical rule.13 

Simplest axioms for this scope are the following ones. First, equality has to be 
an equivalence relation 

. 
eq1 � x = x eq2 x = y � y = x

Eq3 x = y, y = z � x = z

Second, for each function symbol f and each predicate P in the signature (we 
take them with arity one for simplicity) we have suitable compatibility axioms. 

. eqf x = y � f (x) = f (y) EqP x = y, P(x) � P(y)

13 Naturally, it is not allowed that t or t ′ contains a variable x under the scope of an ∃ x. 
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Collapsus 

A dynamical rule is called a collapsus rule when the right member is “False,” 
denoted by ⊥. The symbol ⊥ is necessarily in the language. It is an atomic formula, 
a predicate of arity 0. On can also see ⊥ as the empty disjunction. When ⊥ is proved, 
the universe of the discourse collapses, and all atomic formulae become “true,” or 
at least “valid.” This is the meaning of “ex falso quod libet,” which is the relevant 
meaning of False in constructive mathematics. So, in a dynamical theory, the rules 

FalseP ⊥ � P 

are valid for all atomic formulae. 
The language has also the logical constant � meaning “True,” with the following 

axiom. 

True � �
The symbol � can also be seen as the empty conjunction.14 Constants ⊥ and �

are the unique logical symbols used in dynamical theories. 

Classification of Dynamical Rules 

A dynamical theory is termed propositional when it does not involve any sort. In 
this case, constants are � and ⊥, plus possibly other constants of arity zero, seen as 
propositional constants. 

A dynamical rule with neither ∃ nor ⊥, nor or on the right of � is called Horn 
rule. A dynamical theory is a Horn theory when all axioms are Horn rules. A Horn 
theory with a single, equality predicate, is called an algebraic theory.15 

A Horn rule is direct when its hypothesis (on the left of �) features a 
list of predicates over variables only, and when these variables are moreover 
pairwise distinct. Coste et al. [21] make use of direct rules for constructing formal 
Nullstellensätze and their variants. The latter are algebraic certificates of collapsus 
for certain dynamical theories. 

A Horn rule which is not direct is a simplification rule. 
We use the following typographical conventions: names of direct rules are in 

lower case, names of simplification rules start with a capital letter and names of 
other dynamical rules are in capital letters. 

A dynamical theory is weakly disjunctive if in the axioms if its conclusion 
features no ∃. A dynamical rule is existential simple if its conclusion is of the form 
∃x �, where � is a finite list of atomic formulae. A Horn rule can be considered

14 When there is nothing to prove, prove nothing and all is OK. In a dynamical theory with at least 
one sort S, � is equivalent to x =S x. 
15 In [21], Horn rules are called algebraic rules; Horn theories are called algebraic theories and 
algebraic theories are called purely equational. theories. 



296 H. Lombardi and A. Mahboubi

as a particular case of existential simple rule. A dynamical theory is regular if its 
axioms are Horn rules or existential simple rules . The theory of Bézout rings (each 
finitely generated ideal is principal) is clearly regular. 

A theory is existentially rigid if its existential axioms are simple and correspond 
to provably unique existences. This is a slight generalization of weakly disjunctive 
theories. A regular theory which is existentially rigid is called cartesian. This is a  
slight generalization of Horn theories. 

A theory is rigid (or disjunctive) when all its axioms are:

• Horn rules
• Disjunctive rules of type � � P or Q with the provable rule �, P , Q � ⊥
• Existentially rigid existential rules 

The theory of discrete fields can be stated as a rigid dynamical theory using the 
invertibility predicate. The theory of discrete real closed fields can also be stated as 
a rigid dynamical theory, as opposed to the theory of discrete algebraically closed 
fields. 

A Basic Example 

The theory Cr of commutative rings is the paradigmatic example of a purely 
equational theory. The signature is Cr = (· =  0; · + ·, · × ·,− ·, 0, 1) with only 
three axioms (direct rules): 

cr1 � 0 = 0 cr2 x = 0 � x × y = 0 
cr3 x = 0, y = 0 � x + y = 0 

The term “x − y” is an abbreviation of “x + (−y)” and the predicate “· = ·” is  
defined by the convention: “x = y” is an abbreviation for “x − y = 0.” 

Explanation The computational machinery of polynomials with integer coefficients 
is added to the computational machinery of dynamical proofs. This machinery, 
external to the dynamical theory, rewrites any term as a polynomial with integer 
coefficients in a normal form. For example, the distributivity axiom x(y + z) = 
xy + xz is replaced with the automatic computation which reduces to 0 the term 
x(y+z)− (xy+xz). Similarly, transitivity of equality is obtained using axiom cr3. 

3.2 Dynamic Algebraic Structures 

Dynamical algebraic structures are explicit in [32, 35] and implicit in [21], where 
they are described through their presentations. They are also implicit in [34] and, 
last but not least, in [22, D5], which was a main source: it is possible to compute 
inside the algebraic closure of a discrete field, even if it is impossible to construct the 
structure. So it suffices to consider the algebraic closure as a dynamical algebraic
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structure à la D5 rather than a usual algebraic structure: lazy evaluation à la D5 
gives a constructive semantic for the algebraic closure of a discrete field. 

If T = (L, A) is a dynamical theory, a dynamical algebraic structure of type T 
is given by a set G of generators and a set R of relations. 

By definition a relation is a closed atomic formula P(t) on the language L ∪ G 
with closed terms ti in this language. Such a relation gives the axiom “ � P(t)” in  
the dynamical algebraic structure. 

From a constructive viewpoint, G can be seen as a set à la Bishop. So if two 
objects a, b give elements of G and if we have a =G b, the relation a = b is 
automatically present in the set R of relations that define the dynamical algebraic 
structure

(
(G, R), T

)
. 

Notation 3.2.1 We shall indicate that the rule “ � � . . . ” is valid in the dynamical 
algebraic structure S = (

(G, R), T
)

in the following abridged form: “ � �S . . . ”. 

Definition and notation 3.2.2 Let S = (
(G, R), T

)
be a dynamical algebraic 

structure of type T = (L, A). The set of closed terms of S, i.e., terms constructed on 
L∪G, is denoted by Clt(S). The set of closed atomic formulae is denoted by Clat(S). 
A Horn rule � P with P ∈ Clat(S) is called a fact of S. The set of valid facts in S 
is denoted by VClat(S). 

Intuitively, a dynamical algebraic structure is an incompletely specified usual 
algebraic structure. 

Example 3.2.3 For instance, we obtain a dynamical algebraic structure of discrete 
field 

. K = (
(G,R),Df

)

by taking G = {a, b} and R = {
105 = 0, a2 + b2 − 1 = 0

}
. This dynamical 

discrete field corresponds to an arbitrary field of characteristic 3 or 5 or 7 generated 
by two elements α and β such that α2 + β2 = 1. 

In addition to the dynamical rules valid in all discrete fields, we now also have 
all the ones obtained by extending the language with constants in G and by adding 
to the axioms the relations in R. �

Note that a valid dynamical rule in a dynamical algebraic structure uses for 
its proof a computational tree, without logic, with a finite number of generators, 
relations and axioms. 

Notation 3.2.4 When A is a usual algebraic structure on the language of T we note 
T (A) the dynamical algebraic structure we get by taking the following presentation 
(G, R): G is the set of elements of A and R is the set of valid facts in A. For example, 
if T is the theory of Bézout rings, and A is an arbitrary commutative ring, we put 
in R relations a + b − c = 0, a′b′ − c′ = 0 and a + a′′ = 0 when a,  b  . . . , a′′ are 
elements of A and when the relations hold in A. We say that we have added to the 
theory T the positive diagram of A.
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Constructive Models Versus Classical Models 

Let us consider a dynamical algebraic structure A = (
(G, R), T

)
of type T. For  

simplifying notations we assume there is only one sort. A model of A is a usual 
(static) algebraic structure M on the language associated to A and satisfying axioms 
of A (the ones of T and those given by the presentation of A). 

When A is defined by the empty presentation, we have models of T. 
So, the notion of model is based on the intuitive notion of algebraic structure 

à la Bourbaki. We can say that these algebraic structures are “static” in contrast 
to general dynamical algebraic structures. Note that here the underlying set of the 
structure is a naive set (or several naive sets if there are several sorts) which is 
structured by giving predicates and functions (in the naive meaning) subject to 
certain axioms. 

From a constructive viewpoint, axioms in models must hold with the constructive 
meaning of “or” and “there exists”: in order to prove that a given algebraic structure 
satisfies the axioms, we have to use the intuitionist logic. Let us note also that the 
set theory we use in our (external) reasoning about dynamical algebraic structures 
is the informal set theory of Bishop. 

3.3 Conservative Extensions 

A dynamical theory T is defined by a pair of sets (L,A) where L is (the signature 
of) the formal language we use, and A is the set of axioms, which are dynamical 
rules on the language L. From our constructive viewpoint, these two sets are 
intuitive sets à la Bishop. These sets are in all cases very different of sets which 
are usually considered in categorical logic, where the external framework is given 
as purely formal, in ZFC or in an extension of ZFC. In a similar way, it should 
be possible to use a formalization of constructive mathematics compatible with 
Bishop’s set theory for studying general properties of dynamical theories. In this 
paper we work within the informal set theory of Bishop. 

A dynamical theory (L′,A′) is a simple extension of (L,A) if L and A are 
subsets of L′ and A′ (with the categorical meaning in Bishop’s book). In this case, 
the dynamical rules formulated in the language L and valid in T are valid in T ′. 

Definition 3.3.1 Two dynamical theories on the same language are said to be 
identical if they prove the same dynamical rules, i.e., if axioms of each one are valid 
rules of the other one. In this case, models are the same in constructive mathematics 
as they are in classical mathematics. 

Definition 3.3.2 We say that a dynamical theory T ′ is a simple conservative 
extension of the theory T if it is a simple extension of T and if dynamical rules 
of T which are valid in T ′ are valid in T.
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Informal definition Other extensions, more general than those of Definition 3.3.1, 
have to be considered as “changing nothing to the theory” on one hand because 
they are conservative and on the other hand because constructive models of any 
dynamical algebraic structure are the same. In this case we say that T ′ is an 
intuitively equivalent extension of the theory T. 

We are now looking at a number of these extensions. 

Essentially Identical Extensions

• Adding abbreviations in the language 

For example, we may introduce a function symbol “Som(·, ·, ·)” as an abbrevia-
tion: Som(x, y, z)  is an abridged notation for (x + y)+ z. 

Clearly this type of definitions “changes nothing” to the dynamical theory, it is 
an intuitively equivalent extension.

• Adding predicates: conjunction, disjunction, existence 

Let � = (A1, . . . , An) be a list of predicates. 
One may consider that the following introduction and elimination rules define 

the conjunction, as in natural deduction. 

Intro-∧� A1, . . . , An � A1 ∧ · · · ∧ An 
Elim-∧� A1 ∧ · · · ∧ An � A1, . . . , An 

Last rule is equivalent to the conjunction of rules A1 ∧ · · · ∧ An � Ai . 
Disjunction is more complicated, because in dynamical proofs there is no or on 

the left of �. One may introduce the disjunction connector ∨ in the language by 
using rules inspired by natural deduction. 

Elim-∨� A1 ∨ · · · ∨ An � A1 or . . .  or An 
Intro-∨�,1 A1 � A1 ∨ · · · ∨ An 

... 
Intro-∨�,n An � A1 ∨ · · · ∨ An 

We introduce the existential quantifier ∃ by the following introduction and 
elimination rules (note that it is not a joke). 

Intro-∃x,A A(x) � ∃x A(x)  
Elim-∃x,A ∃x A(x) � ∃x A(x)

• Adding a function symbol in case of unique existence 

We consider a dynamical theory T = (L,A). Assume that L has a predicate 
P(u, x, y) of arity k + 1 (we give the example with k = 2) and that T prove the 
following dynamical rules
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ExP,u � ∃u  P(u, x, y) UniqP,u  P(u, x, y), P(v, x, y) � u = v 

Let T ′ be the dynamical theory we get by adding to T a new function symbol f and 
the following axiom 

dfP,u,f  P(u, x, y) � u = f (x, y) 

We say that the rule dfP,u,f  defines the function symbol f . 
In this case the dynamical theory T ′ is a conservative extension of T. 

Lemma 3.3.3 For a dynamical theory using previously defined extensions (abbrevi-
ations, conjunction predicate, disjunction predicate, existential quantifier, function 
symbols in case of unique existence) produces a conservative extension which does 
not change constructive models. 

Definition 3.3.4 

1. Such an extension is called essentially identical simple. 
2. Two dynamical theories T 1 and T 2 are said to be essentially identical if we 

have a dynamical theory which is, perhaps after renamings in the signatures, an 
essentially identical extension of T 1 and T 2. 

Essentially Equivalent Extensions 

References: [2, 49]. We now examine situations obtained by extending a dynamical 
theory by adding well defined new sorts. This corresponds to allowable set 
constructions in Bishop’s set theory.

• Introducing a subsort 

Let us consider a dynamical theory T and a sort S in this theory. Let us consider 
a unary predicate P(·) on objects of type S. We define a new dynamical theory by 
adding the subsort U of S defined by the predicate P in the following way. 

1. We add U in the sorts. 
2. We add a function symbol jP : U → S. 
3. We add the following axioms. 

ssoP �u:U P(jP (u)) SSOP P(a) �a:S ∃u jP (u) = a. 

4. We define the equality predicate x =U y on U as an abbreviation of jP (x) = 
jP (y).

• Introducing a sort for a finite product of sorts 

Let us consider a dynamical theory T and sorts S1, . . . , Sn in this theory. We define 
a new dynamical theory by adding the finite product S of sorts Si in the following 
way.
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1. We add a sort S. 
2. For each i ∈ �1..n� we add a function symbol πi of type S → Si . 
3. We define x =S y on S as an abbreviation of

∧n 
i=1πi(x) = πi(y). 

4. We add a function symbol Pr of type S1 × · · · ×  Sn → S. 
5. We add axioms 

fpsi �x1:S1,...,xn:Sn πi

(
Pr(x1, . . . , xn)

) = xi

• Introducing a quotient sort 

Let us consider a dynamical theory T and a sort S of this theory. Let us consider 
a binary predicate E(x, y) on S. We assume that the rules saying that E(x, y) is 
an equivalence relation on S are valid in T . We define a new dynamical theory by 
adding the quotient sort B of S w.r.t. the equivalence relation E in the following 
way. 

1. We add the sort B and an equality predicate x =B y on B. 
2. We add a function symbol πE of type S → B. 
3. We add axioms 

qs1E E(a, b) �a,b:S πE(a) =B πE(b) 
QSE �x:B ∃a πE(a) =B x 
Qs2E πE(a) =B πE(b) �a,b:S E(a, b)

• Introducing a sort for a finite disjoint sum of sorts 

Let us consider a dynamical theory T and sorts S1, . . . ,  Sn in this theory. We define a 
new dynamical theory by adding the disjoint sum of sorts Si in the following way. 

1. We add the sort S and an equality predicate x =S y on S. 
2. For each i ∈ �1..n� we add a function symbol jSi ,S of type Si → S. 
3. We add the following axioms (we use ji as an abbreviation for jSi ,S) 

Fdsi ji(a) =S ji(b) �a,b:Si a =Si b for 1 � i � n 
FDSi,k ji(a) =S jk(b) �a:Si ,b:Sk ⊥ for i � i <  k � n 

FDS �x:S ∃a1 j1(a1) =S x or · · ·  or ∃an jn(an) =S x 

Lemma 3.3.5 Consider a dynamical theory obtained by using previously defined 
extensions, as in Lemma 3.3.3 or by introducing a new sort as in the previous 
examples. Then the new theory is intuitively equivalent to the first one. 

Definition 3.3.6 

1. Such an extension is called essentially equivalent simple. 
2. Two dynamical theories T 1 and T 2 are said to be essentially equivalent if we 

have a dynamical theory which is, perhaps after renamings in the signatures, an 
essentially equivalent extension of T 1 and T 2.
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3. One says that the dynamical theory T ′ is an extension of the dynamical theory T 
if it is a simple extension of a theory which is essentially equivalent to T. 

Essentially equivalent extensions do not change constructive models of dynam-
ical algebraic structures. Other conservative extensions may change constructive 
models. We are now looking at a number of these extensions. 

Other Conservative Extensions

• Adding classical logic 

For a dynamical theory, accepting classical logic is the same thing as allowing 
systematically beyond Definition 3.3.4, the introduction of a predicate negating a 
previously defined predicate P . 

When introducing the opposite predicate Q (denoted as ¬P or P ) we add the 
axioms of Boolean logic. 

• P , Q � ⊥ • � P or Q 

From a constructive viewpoint, adding classical logic means in models of 
dynamical algebraic structures that all predicates be decidable. 

Theorem 3.3.7 (Cut Elimination) When computing in a dynamical theory the use 
of classical logic produces a conservative extension. 

The use of classical logic is often seen by classical mathematicians as the 
possibility of transforming all proofs in proofs by contradiction. For example, the 
following rules are now equivalent. 

• A, B � C or D • A, B, C, D � ⊥  
• B, C, D � A • A, C, D � B

• Skolemization 

In the following theorem, not only classical logic but also Skolemization is 
authorized. This can be viewed as a local form of Choice. 

Theorem 3.3.8 (Skolemization [4]) Let us consider a dynamical theory T and 
define T ′ to be the “Skolemized” theory: all existential axioms are transformed 
by replacing ∃ by the use of Skolem function symbols. Then T ′ is a conservative 
extension of T.
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4 Distributive Lattices and Spectral Spaces Associated to a 
Dynamical Algebraic Structure 

4.1 Zariski Spectrum and Zariski Lattice of a Commutative 
Ring 

The Zariski lattice of a commutative ring can be defined using different extensions 
of the theory Cr of commutative rings. 

We choose the theory of local rings since it plays a fundamental role in 
Grothendieck schemes. 

We consider precisely the dynamical theory Lr1 of local rings with units, based 
on the signature ( · =  0, Un(·); · + ·, · × ·,− ·, 0, 1 ). 

The predicate Un(x) is defined as the invertibility predicate with the suitable 
axioms. We add a collapsus axiom and Axiom LR of local rings. 

CLLr1 Un(0) � ⊥ LR Un(x + y) � Un(x) or Un(y) 

Let A be a commutative ring. We consider the entailment relation �A,Zar on the 
underlying set of A which is defined by the following equivalence. 

.
a1, . . . , an �A,Zar c1, . . . , cm

def⇐⇒
Un(a1), . . . , Un(an) �Al1 (A) Un(c1) or . . . or Un(cm)

(15) 

We define the Zariski lattice of A, denoted by Zar A or Zar(A), as the one 
generated by the entailment relation �A,Zar. 

The corresponding map DA : A → Zar A is called the Zariski support of A. 
When A is fixed by the context we merely note D. 

The usual Zariski spectrum in classical mathematics is the dual spectral space 
of ZarA. 

Note that since D(a1) ∧ · · · ∧  D(an) = D(a1 · · · an), elements of Zar A can be 
written as D(c1, . . . , cm) := D(c1) ∨ · · · ∨  D(cm). 

A more elementary theory is the theory Wzdr of without zerodivisor nontrivial 
rings. It is obtained by adding to Cr a collapsus axiom and Axiom WZD 

CLR 1 = 0 � ⊥ WZD xy = 0 � x = 0 or y = 0. 

One proves the equivalences in the following theorem. Item (4) is called a formal 
Nullstellensatz. Hilbert’s Nullstellensatz is a more difficult topic. 

Theorem 4.1.1 (Formal Nullstellensatz) Let A be a commutative ring, and 
a1, . . . , an, c1, . . . cm ∈ A. T.F.A.E.
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. 

(1) D(a1), . . . , D(an) �ZarA D(c1), . . . , D(cm)

(2) Un(a1), . . . , Un(an) �Al1 (A) Un(c1) or . . . or Un(cm)

(3) c1 = 0, . . . , cm = 0 �Asdz (A) a1 = 0 or . . . or an = 0

(4) ∃k > 0 (a1 · · · an)
k ∈ 〈c1, . . . , cm〉

As a consequence the element D(c1, . . . , cm) of Zar A can be identified with the 
ideal A

√〈c1, . . . , cm〉. Modulo this identification, the order relation is set inclusion. 

Corollary 4.1.2 The lattice Zar A is generated by the least entailment relation on 
(the underlying set of) A such that 

• 0 � 0 • 1 � 1 
• ab � a • a, b � ab 
• a + b � a, b 

In other words, the map D : A→ Zar A satisfies the relations 

. D(0) = 0, D(1) = 1, D(ab) = D(a) ∧ D(b), D(a + b) � D(a) ∨ D(b),

and any other map D′ : A → T satisfying these relations factorizes via Zar A with 
a unique lattice morphism Zar A→ T . 

4.2 Real Lattice and Real Spectrum of a Commutative Ring 

Let us consider a dynamical theory of discrete ordered fields, based on the signature 
( · =  0, · � 0, · > 0; · + ·,− ·, 0, 1 ), for example, the theory Dof given in [21, 
Section 3]. 

The real lattice of a commutative ring A, denoted by Real(A), is generated by 
the entailment relation �A,Real on A defined by the following equivalence. 

.
a1, . . . , an �A,Real c1, . . . , cm

def⇐⇒
a1 > 0, . . . , an > 0 �Dof (A) c1 > 0 or . . . or cm > 0

(16) 

We note R : A → Real(A) the corresponding map. One proves the following 
equivalence (formal Positivstellensatz) 

.R(a1), . . . , R(an) �Real(A) R(c1), . . . , R(cm)⇐⇒ ∃k ∈ N ∃p ∈ C (a1 · · · an)
k

+ p = 0,
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where C is the positive cone generated by the ai’s and −cj ’s. If n = 0 we replace 
(a1 · · ·  an)

k with 1A. 
The usual real spectrum Sper(A) is the dual spectral space of Real(A). One  

can identify elements of Sper(A) to prime cones of A. The quasi-compact open set 
corresponding to the element R(a) ∈ Real A is given by

{
c ∈ Sper A;−a /∈ c

}
. 

One proves that the lattice Real(A) is generated by the least entailment relation 
on A satisfying the following relations 

• −x2 � • � 1 
• x + y � x, y • x, y � xy 
• xy � x,−y

More generally we can define Real(A) and Sper(A) for any dynamical algebraic 
structure A of type Dof. 

For more details see [10, 36]. 

4.3 Other Examples

• First example. Let us consider a dynamical algebraic structure A = (
(G, R), T

)

for a dynamical theory T = (L,A). If P(x, y) is a binary predicate in the 
signature, and if Clt = Clt(A) is the set of closed terms of A, we get an 
entailment relation �A,P on Clt × Clt by letting 

.
(a1, b1), . . . , (an, bn) �A,P (c1, d1), . . . , (cm, dm)

def⇐⇒
P(a1, b1), . . . , P(an, bn) �A P(c1, d1) or . . . or P(cm, dm)

(17) 

Intuitively the distributive lattice generated by this entailment relation is the lattice 
of “truth values” of the predicate P in A.

• More generally. Let us consider a dynamical algebraic structure A = (
(G, R), T

)

for a dynamical theory T = (L,A). Let  S be a set of closed atomic formulae of 
A. We define the entailment relation on S associated to A in the following way: 

.
A1, . . . , An �A,S B1, . . . , Bm

def⇐⇒
A1, . . . , An �A B1 or . . . or Bm

(18) 

We can note Zar(A, S)  the distributive lattice generated by this entailment relation.

• A conservative extension T1 of a dynamical theory T gives isomorphic Zariski 
lattices for dynamical algebraic structures T (A) and T1 (A), with a same set  S of 
closed terms. The lattice therefore gives a diminished image of the dynamical 
algebraic structure. For example, adding classical logic and Skolemizing a 
dynamical theory do not change associated lattices. Sometimes the study of the
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lattice is easier in the second theory. But to recover the wealth of dynamical 
theories seen from a constructive viewpoint, it becomes necessary in classical 
mathematics to use sheaves or toposes. 

4.4 The Absolute Zariski Lattice of a Dynamical Algebraic 
Structure A 

The (absolute) Zariski lattice of a dynamical algebraic structure A = (
(G, R), T

)

is defined by taking S as the set Clat(A) of all closed atomic formulae of A. We  
denote it Zar(A, T ) or with a suitable name corresponding to the theory T . For  
example, val(A) for the theory val (see page 310). The spectral space dual is called 
the Zariski spectrum of the dynamical algebraic structure A (the valuative spectrum 
in the case of the theory val ). 

When the theory T is weakly disjunctive, Zar(A) is (up to a canonical iso-
morphism) the distributive lattice defined by the entailment relation on Clat(A) 
generated by axioms in R and instantiations of axioms of T obtained by substituting 
variables by closed terms. 

For example, for A a commutative ring, (Zar A)op can be seen as the absolute 
Zariski lattice of Wzdr (A). 

4.5 Spectrum and Models in Classical Mathematics 

Here models are generally seen from the viewpoint of classical mathematics. 
One chooses for set S of closed atomic formulae few predicates in the language, 

such that other predicates can be defined in classical mathematics from those of S. 
Giving a point of the spectrum Spec(Zar(A, S)), i.e., a morphism α : 

Zar(A, S)  → 2 means to give the truth value True or False to closed atomic 
formulae in S (α(B) = 1 or 0). This implies giving also a truth value True or False 
to all closed atomic formulae in A. This allows us to construct a model of A in the 
case of a weakly disjunctive theory. We get in this way a minimal model with the 
meaning that all elements are constructed from generators in G by using function 
symbols in the signature. 

The choice of the set S is crucial for the topology of the dual spectral space. 
Two distinct choices for S can give the same points of the spectrum in classical 
mathematics but may define two distinct spectral spaces.
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5 Valuative Lattice and Spectrum of a Commutative Ring 

5.1 Valuative Divisibility Relation 

Reference: [27]. 

Valuation Domains, Valuative Divisibility Relation 

Remember that a subset P of a E is detachable when the property x ∈ P is 
decidable for x ∈ E. For describing this situation in dynamical theories it is 
necessary to introduce a predicate R(x) opposite to the predicate Q(x) meaning 
x ∈ P . So the following rules hold: � Q(x) or R(x), Q(x), R(x) � ⊥. 

A ring is  integral (or it is a  domain) when each element is null or regular, and a 
ring is a discrete field when each element is null or invertible. These definitions do 
not exclude the trivial ring. 

A ring is  without zerodivisor when the nullity of a product ab of two elements 
induces an explicit alternative, a = 0 or b = 0. An integral domain is without 
zerodivisor. In classical mathematics the reciprocal is valid but not in constructive 
mathematics. 

We say that an ideal is prime if the quotient ring is without zerodivisor. This 
definition does not exclude the ideal 〈1〉. The latter conventions are used in [38]. 
They allow the authors to avoid negation and certain case by case reasonings, non-
legitimate from a constructive viewpoint. 

Nevertheless, for corresponding dynamical theories, we come back to the usual 
tradition for which local, without zerodivisor, or integral rings, and discrete fields, 
have to be nontrivial: this is necessary for introducing collapsus axioms giving ⊥ as 
a possible conclusion in a dynamical rule. 

A valuation domain V is an integral domain whose divisibility relation (on the 
multiplicative monoid V/V×) is a total order: ∀x, y (x | y ∨ y | x). 

If K is the fraction field of V, V is called a valuation ring of K and (K,V) is 
called a valued discrete field. More generally, a subring V of a discrete field K is 
called a valuation ring of K if for all x ∈ K×, x or x−1 ∈ V. 

From a constructive viewpoint, we define a valued discrete field by forcing the 
decidability of the relations x ∈ V and x ∈ V×: this means that the divisibility in V 
has to be explicit. 

A valuation domain can also be characterized a local residually discrete Bézout 
domain.16 

In [21, Section 4] a dynamical theory Vf is introduced for valued discrete fields 
with this constructive viewpoint. The signature has three predicates Vr(x), Un(x)

16 A local ring A is said residually discrete when the residual field A/RadA is discrete. If the ring 
is nontrivial this means that units are detachable. 
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and Rn(x), respectively, for x ∈ V, x ∈ V× and x ∈ V \ V×. We come back to this 
theory in Sect. 7. 

In a valued discrete field (K, V) we say that x divides y and we write x | y if 
there exists a z ∈ V such that xz = y. We note � = �(V) the group K×/V× (in 
additive notation), with the order relation � induced by the relation | in K×. We  
note �∞ = � ∪ {∞} (where ∞ is a purely formal maximum element). Thus, the 
natural map v : K → �∞ (with v(0) = ∞) is called the valuation of the valued 
discrete field. One has v(xy) = v(x) + v(y) and v(x + y) � min(v(x), v(y)) with 
equality if v(x) �= v(y). We have also  V = { x ∈ Kv(x) � 0 } and the unit group 

is characterized by V× = { x ∈ Kv(x) = 0 } . 
In classical mathematics one defines a valuative divisibility relation a | b on a 

commutative ring A as the reciprocal image of the divisibility relation on a valued 
discrete field (K, V) by a ring morphism ϕ : A → K. In other words, we have a | b 
in A if and only if ϕ(a) |ϕ(b) in (K,V). 

Points of the Valuative Spectrum in Classical Mathematics 

Definition 5.1.1 In classical mathematics, elements of the valuative spectrum 
Spev(A) of a commutative ring A are defined in the following way (see [27]): a 
point of Spev A is given by a pair (p,V) where p is a prime ideal of A and V a 
valuation ring of the fraction field K = Frac(A/p). 

This is analogous to the real spectrum: a point of Sper A is given by a pair (p,C) 
where p is a prime ideal of A and C a positive cone of the fraction field K = 
Frac(A/p) (i.e., C+ C ⊆ C, C · C ⊆ C, C ∪ −C = K, C ∩ −C = {0}). 

Distinct spectral topologies can be defined on the valuative spectrum, depending 
on the choice of basic quasi-compact open sets. 

This corresponds to suitable distributive lattices (as those described in Sect. 4) 
which are defined w.r.t. dynamical theories that describe properties of a valuative 
divisibility relation. 

We are now looking at a number of these theories. 

5.2 Weakly Disjunctive Theories for a Valuative Divisibility 
Relation 

The Theory val0 

Definition 5.2.1 One chooses the signature 

. val0 = ( · | ·, · = 0; · + ·, · × ·,− ·, 0, 1 ).

Axioms for x = 0 and a | b are the following ones.
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vr0 0 | x � x = 0 CLval 0 | 1 � ⊥  (collapsus) 
vr1 � 1 | −  1 Vr2 a | b, a | c � a | b + c 
vr2 a | b � ac | bc VR1 � a | b or b | a 
Vr1 a | b, b | c � a | c VR2 ax | bx � a | b or 0 | x 

We note val0 this weakly disjunctive theory. 

One proves easily � −1 | 1, � 1 | 1, � 1 | 0, � x | x, � x | 0 and x = 0 �
0 | x. Axioms cr1, cr2, and cr3 for commutative rings are satisfied. 

Here is a precise statement saying that our theory describes correctly a valuative 
divisibility relation. 

Theorem∗ 5.2.2 (Models of the Theory val0 in Classical Mathematics) In clas-
sical mathematics a binary relation a | b on a ring A satisfies axioms of val0 exactly 
in the following case.

• The set p = { x ∈ A; 0 | x } is a prime ideal. We note a the element a of A seen in 
A/p, and K the fraction field Frac(A/p).

• Fractions a/b ∈ K such that b �= 0 and b | a make a valuation ring of V of K. 

In other words, axioms for · | ·  in val0 correspond to the definition of a valuative 
divisibility relation (in classical mathematics). 

Proof First, one sees easily that the axioms hold if ϕ : A→ K is a morphism from 
A to a field K, if V is a valuation ring of K and if a | b means: ∃x ∈ V xϕ(a) = ϕ(b). 

Let us now prove that the axioms describe correctly this situation (in classical 
mathematics). 

Axioms vr1 and vr2 give valid rules � a | a and � a | 0. So, recalling axiom 
Vr1, the relation a | b defines a preorder. And if 0 | 1 we get 0 | b and a | b for all a, b 
without using Axiom CLval. 
A particular case of vr2 is the following valid rule. 

vr2’ 1 | a � b | ab 

Using Vr2 and vr2’, one sees that for all a ∈ A such that 1 | a, the set  

. ↑a := { b ∈ A; a | b }

is an ideal of A. In particular p =↑0 is an ideal. 
Let us prove that the relation · | · passes to the quotient by p =↑0. Indeed, assume 

0 | x, it suffices to prove that a | a + x and a + x | a. First,  a | 0 | x and a | a, hence 
a | a+x using axiom Vr2. Now, since we have a+x | a+x we get a+x | a+x−x, 
i.e., a + x | a. 

Let us prove that A/p is without zerodivisor: if 0 | yx then 0x | yx, and VR2 gives 
0 | xy � 0 | x or 0 | y. Using  vr2, Vr1, and Vr2 one sees that the fractions a/b of K 
make a subring V of K. Finally, two inverse elements in K are written a/b and b/a. 
So, Axiom VR1 implies V is a valuation ring of K. ��

Note that ϕ(A) is not necessarily a subring of V.
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Theorem 5.2.2 legitimates the following definition in constructive mathematics. 

Definition 5.2.3 A binary relation a | b on a commutative ring is called a valuative 
divisibility relation if axioms of val0 are satisfied. 

Remark 5.2.4 The three axioms of commutative rings are valid in val0. 

cr1 � 0 = 0 cr2 x = 0 � xy = 0 
cr3 � x = 0, y = 0 � x + y = 0 

So, we adopt the convention given in [21] that the purely computational part of 
commutative rings is treated outside the formal theory (see page 296). 

If we consider a commutative ring A and the dynamical algebraic struc-
ture val0 (A), all closed terms of val0 (A) are equal to elements of A and there is 
no need of the three axioms for proving closed dynamical rules. �
Remark 5.2.5 Without using the collapsus axiom, when the relation 0 | 1 is valid, 
the ring becomes a singleton. Adding the axiom 0 | 1 � ⊥  amounts to throw the 
trivial ring in the empty universe.17 �
Remark 5.2.6 In constructive mathematics if a ring A with a binary relation · | ·  is 
a model of val0 we get a prime ideal p of A and a suitable subring V of the total 
fraction ring K of A/p. But  K is not a priori a discrete field. So we prefer to think 
about A as the dynamical algebraic structure val0 (A), in which we can “do as if” 
we were in classical mathematics, where all fields are discrete. �

The Theory val and Some Dynamical Rules Provable in It 

Definition 5.2.7 The theory val is obtained from the theory val0 by removing the 
predicate · =  0, suppressing Axiom vr0 and defining x = 0 as an abbreviation 
of 0 | x. 

We have the same conclusion as in Theorem 5.2.2: in classical mathematics the 
models of the theory val are valuation domains. 

Without referring to models in classical mathematics, the dynamical theory val 
proves some usual properties of valued discrete fields as valid dynamical rules or, 
sometimes, as admissible dynamical rules. 

First the fact that a valuation domain is local, normal and without zerodivisor 
correspond to the following valid rules. Proofs are without surprise directly 
translated from those of Theorem 5.2.2. 

WZD 0 = bx � 0 = b or 0 = x. 

Proof consider Axiom VR2 with a = 0 = 0x. ��

17 Or, perhaps? In a black hole.
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In particular we have 0 | x2 � 0 | x. 

LOC 1 | x, 1 | y, x + y | 1 � x | 1 or y | 1. 

Using VR1 we open two branches, the one where x | y, the other where y | x. In the  
first one, since x | x, Vr2 gives x | x + y. So, by Vr1, x | 1. Symmetrically in the 
second branch y | 1. 

The third rule is algebraic. 

Nor 1 | a1, . . .  1 | an, y
( ∑n 

k=0 akx
k yn−k

) | xn+1 � y | x. 

We open branches x | y and y | x. We have to examine the first one; e.g., with n = 2. 
Since x | y, 1 | a0, 1 | a1 and 1 | a2, we get 

. x2 | y2 | a0y
2, x2 | xy | a1xy and x2 | a2x

2.

So, x2 | a2x
2 + a1xy + a0y

2 by Vr2, and yx2 | x3. From  yx2 | xx2 we deduce �
0 | x2 or y | x by VR2. And in the branch where 0 | x2, we have y | 0 | x. 

Now an admissible rule. 

DIV x | y � ∃a (1 | a, ax = y) 

Lemma 5.2.8 If a disjunctive rule is valid in the dynamical algebraic structure 
B = (

(G, R), val
)
when using DIV, it is also valid in B. 

The proof of this lemma seems rather difficult. We can catch it after having 
proved a formal Valuativstellensatz: see Remark 7.4.4. 

Dynamical Algebraic Structures of Type val 

Definition 5.2.9 

1. Let A be a commutative ring, we define the dynamical algebraic structure val(A) 
as usual by taking the presentation given by the positive diagram of A. 

2. Let k ⊆ A be two rings,18 or more generally let ϕ : k → A be an algebra. We 
note val(A,k) the dynamical algebraic structure whose presentation is given by

• The positive diagram of A as commutative ring.
• Axioms � 1 | ϕ(x) for elements x of k. 

The two dynamical algebraic structures val(A) and val(A, Z), where Z is the least 
subring of A, are canonically isomorphic. 

As a particular case of Rule WZD, if e is an idempotent of A, we get � e = 
0 or e = 1 in val(A). In particular, � 1 | e and � 1 | f (where f = 1 − e). We

18 We use k for the first ring as an intuition given by the frequent context where k is a discrete field. 
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deduce for any a, b ∈ A: ae | be, af | bf � a | b. Indeed a | ae | be and a | af | bf , 
so a | be + bf = b. Let us summarize the situation. 

Lemma 5.2.10 If e and f ∈ A are two complementary idempotents we have in 
val(A) 

• a | b � (ae | be, af | bf ) • ae | be, af | bf � a | b 

Now a consequence of the validity of Nor in val. 

Lemma 5.2.11 Let k ⊆ A be two rings and x ∈ A, y ∈ k. Then if x is integral19 

over the ideal 〈y〉 of k, the dynamical algebraic structure val(A,k) proves y | x. 
We shall see in Theorem 7.4.6 that this sufficient condition is also necessary. 

5.3 Valuative Lattice and Spectrum of a Commutative Ring 

Several Possible Spectral Topologies 

Let � = �(V), then the point (p,V) of Spev(A) is characterized by the associated 
valuation 

. w : A→ �∞, x 
→ v(πp(x)),

where πp : A→ A/p is the canonical surjection. 
We use the notation Spev A for the spectrum with the topology which seems 

most natural to us, where quasi-compact open sets generating the topology are the 
following O(a, b)’s: 

. O(a, b) := {w;w(b) � w(a) } , a, b ∈ A.

In [27] the topology is generated by the following U(a, b)’s: 

. U(a, b) := {w;w(b) � w(a), w(b) �= ∞ } , a, b ∈ A.

They note Spv(A) this spectral space. 
Thus, we get (with Y denoting the complementary set of Y ) the following 

equalities.

• U(b, b) = {w; w(b) �= ∞ } = O(b, 0)

• U(a, b) = O(a, b) ∩ O(b, 0)

• U(b, b) = {w; w(b) = ∞} = O(b, 0)

19 The element x is said to be integral over the ideal a of k if it is a zero of a polynomial xn+1 +∑n 
i=0 aix

n−i with ai ∈ ai for each i [38, Definition XII-2.1]. 
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• O(a, b) = U(a, b) ∪ (
U(b, b) ∩ U(a, a)

)

Hence Spev A and Spv A define the same patch topology. 
The topology of Spv A considers as essential the property “b | a and b �= 0.” 

This definition seems unnatural. In the same paper [27], another spectral topology 
Spv′(A) is introduced with basic open sets F(a, b) := { v; v(a) < v(b) } = 
O(a, b). This is the opposite spectral space of Spev A. 

We define now distributive lattices corresponding to these spectral spaces. 

The Lattice val(A) and Its Spectrum Spev A 

Definition 5.3.1 Let A be a commutative ring. We consider the set (underlying) A× 
A and we define on it the entailment relation �A,val by the following equivalence. 

.
(a1, b1), . . . , (an, bn) �A,val (c1, d1), . . . , (cm, dm)

def⇐⇒
a1 | b1, . . . , an | bn �val(A) c1 | d1 or . . . or cm | dm.

(19) 

The lattice val(A) is defined as generated by the entailment relation �A,val. 
We note DiA : A × A→ val(A) (or simply Di) the corresponding map. 

For example, with a, b, c ∈ A 

. Di(a, b) ∧ Di(a, c) � Di(a, b + c), in val(A).

In fact, since · | ·  is the unique predicate of the dynamical theory val , the lattice 
val(A) is the absolute Zariski lattice of the dynamical algebraic structure val(A). 

Since the theory val satisfies the rule WZD, the natural morphism val(A) → 
val(Ared) is an isomorphism. 

Theorem 5.2.2 says that the dynamical algebraic structure val(A) has in clas-
sical mathematics minimal models given by the points of the valuative spec-
trum Spev(A). After the explanations in paragraph Spectrum and models in 
classical mathematics page 306, and examining the definition of basic open sets 
O(a, b) generating the spectral topology, we get the following theorem in classical 
mathematics. 

Theorem∗ 5.3.2 The spectral spaces Spev(A) and Spec(val(A)) are canonically 
homeomorphic. 

In constructive mathematics, the pointfree topology given by the distributive 
lattice val(A) is generated by formal opens: the elements Di(a, b) of val(A). 

In classical mathematics, where spectral spaces have enough points, the topology 
of Spec(val(A)) is a usual one, On the other hand we have defined (on the 
same underlying set) a topology on SpevA generated by open sets O(a, b) := 
{w; w(b) � w(a) }. Clearly they correspond to formal Di(b, a)’s: this explains the 
homeomorphism between Spev A and Spec(val(A)).
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The Lattice val�(A) and the Spectrum Spv A 

Spaces Spev(A) and Spv(A) are different, but they have the same points given by 
suitable pairs (p,V). 

We consider the weakly disjunctive theory val1 we get from val by adding the 
predicate · �= 0 opposite to · = 0. The theory val1 is a conservative extension of val . 

Let us consider now the predicate J (a,  b)  def= (a | b ∧ a �= 0) .
We say that the spectral space Spv(A) is homeomorphic to the spectrum of the 

following distributive lattice val�(A). 

Definition 5.3.3 The distributive lattice val�(A) is generated by the entailment 
relation �A,val� on A× A defined by the equivalence 

.
(a1, b1), . . . , (an, bn) �A,val� (c1, d1), . . . , (cm, dm)

def⇐⇒
J (a1, b1), . . . , J (an, bn) �val1(A) J (c1, d1) or . . . or J (cm, dm).

(20) 

We note JA : A× A → val�(A) (or simply J) the corresponding map. 

Thus, the element J(b, a) of val�(A) corresponds to the open set U(a, b) of 
Spv(A). 

5.4 Valuative Lattice and Spectrum of an Algebra 

We consider in this section a k-algebra A, i.e., a morphism ϕ : k → A of 
commutative rings. 

The Lattice val(A,k) and the Spectrum Spev(A,k) 

We define the distributive lattice val(A,k) by using the dynamical algebraic 
structure val(A,k) (see definition 5.2.9) in the same way as  val(A) is defined by 
using the dynamical algebraic structure val(A). 

Definition 5.4.1 Let k be a subring of a ring A, or more generally let us consider a 
k-algebra ϕ : k → A. We define the distributive lattice val(A,k) as generated by 
the entailment relation �k,A,val on the set A× A, which is defined by the following 
equivalence. 

.
(a1, b1), . . . , (an, bn) �k,A,val (c1, d1), . . . , (cm, dm)

def⇐⇒
a1 | b1, . . . , an | bn �val(A,k) c1 | d1 or . . . or cm | dm

(21) 

We note Dik,A : A× A→ val(A,k) (or simply Di) the corresponding map.
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Remark 5.4.2 Since the theory val satisfies the rule Nor, if  k is the integral closure 
of (the image of) k in Ared, the dynamical algebraic structure val(A, k) proves 
1 | x for x ∈ k. Thus, the natural morphism val(A, k) → val(Ared,k) is an 
isomorphism. �

We note Spev(A, k) := Spec(val(A,k)). Points of this spectrum correspond to 
points (p,V) of Spev(A) such that V contains (the image of) k. Since the lattice 
val(A,k) is a quotient of val(A), Spev(A,k) is a subspectral space of Spev A. 

When K is a discrete field transcendent over a subfield k, the spectral space 
Spev(K,k) is often called the Zariski-Riemann spectrum of (K,k), or also, the 
abstract Riemann surface of (K,k). The points of this spectrum are the valuation 
rings of K containing k. 

In constructive mathematics we are mainly interested in the lattice val(K,k). The  
abstract Riemann surface is more than a spectral space, a Grothendieck scheme. It 
has a good constructive description and the most important object is this scheme. 

Another special case is given when A is the fraction field of a domain k, for  
example, when k is the ring of all algebraic integers. 

Lemma 5.4.3 Let k be a domain with fraction field K. The natural morphism 
val(k,k) → val(K, k) is an isomorphism. 

Proof There are more atomic formulae in val(K, k) than in val(k,k). But if x | y is 
an atomic formula of val(K, k) where x = u 

v and y = s 
t with u, v, s, t ∈ k and 

v, t �= 0, formulae x | y and ut | sv are provably equivalent in val(K,k). 
Thus it suffices to see that (for ai, bi, cj , dj ∈ k) 

. a1 | b1, . . . , an | bn �val(K,k) c1 | d1 or . . . or cm | dm

if and only if 

. a1 | b1, . . . , an | bn �val(k,k) c1 | d1 or . . . or cm | dm.

Indeed, one may always avoid fractions in a proof by using the art of getting rid of 
denominators. ��

The Center Map (1) 

Proposition 5.4.4 (The Center Map for Distributive Lattices val(A,A) and 
Zar A) There exists a unique morphism of distributive lattice γ : Zar A → 
val(A,A) such that γ (DA(a)) = DiA(a, 1) for all a ∈ A. 

Proof Using Corollary 4.1.2, it is sufficient to see that the following rules are valid 
in val(A, A). 

• 0 | 1 � ⊥ • � 1 | 1 
• ab | 1 � a | 1 • a | 1, b | 1 � ab | 1
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• a + b | 1 � a | 1 or b | 1 

And for this it is sufficient to see that the following rules are valid in val(A). 

• 0 | 1 � ⊥ • � 1 | 1 
• 1 | b, ab | 1 � a | 1 • a | 1, b | 1 � ab | 1 
• 1 | a, 1 | b, a + b | 1 � a | 1 or b | 1 

And this is easy. ��
In classical mathematics, the dual viewpoint is given by the center spectral map 

Spev(γ ) : Spev(A,A) → Spec A : the image of the point (p,V) of Spev(A,A), 
is the prime ideal ϕ−1(Rad(V)), where ϕ : A → Frac(A/p) is the canonical map 
(note that ϕ(A) ⊆ V because we have 1 | a when a ∈ A). 

Remark 5.4.5 Theorem 7.4.7 proves that the center map is injective. A more direct 
proof should be interesting. �
Theorem 5.4.6 If k is an integral arithmetic ring (a Prüfer domain), the morphism 
γ : Zar k→ val(k,k) in 5.4.4 is an isomorphism of distributive lattices. 

Proof Let us note K the fraction field of k. Using Lemma 5.4.3, we replace 
val(k,k) with val(K,k) in the proof. 

We assume now that γ is injective. 
Let us prove that γ is onto. By definition, in an arithmetic ring, for any couple 

(a, b) we have s, t, u, v satisfying 

. sa = ub, tb = va and s + t = 1.

Let us see the consequences of the hypothesis a | b in val(K, k). 
We have ub = sa and sa | sb (because a | b), thus ub | sb; and by VR2 we get 

a | b � u | s or b = 0. 
Since s + t = 1, the rule LOC gives � t | 1 or s | 1. 
If s | 1, we have � u | 1 or b = 0. If b �= 0, the branch b = 0 dies because b is 

invertible in K. We get in val(K,k): � u | 1. 
Thus in the dynamical algebraic structure val(K,k) we have the valid following 

rules. 

• a | b � t | 1 or u | 1 if  b �= 0 • u | 1 � a | b 
• t | 1 � a | b 

So in the lattice val(K, k) we have 

. Di(a, b) = Di(t, 1) ∨ Di(u, 1) if b �= 0.

As Di(a, 0) = 1 this proves that γ : Zar k → val(K, k) is onto. ��
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5.5 The Theory Val and the Lattice Val(K,k) 

The valuative lattice Val(K,k) is defined in the paper [12, Space of Valuations]. 
This lattice is very similar to val(K,k). But its definition is implicitly based on a 
weakly disjunctive theory Val , which is distinct from val. 

The theory Val is an extension of the theory Cr : one adds a predicate Vr(x) and 
axioms that are satisfied in a valuation ring of a discrete field. The predicate x | y is 
not used, and axioms for Vr are minimalist.20 The axioms we give are easily proved 
to be equivalent to those of [12, 20]. 

. 

vf1 x = 0, Vr(y) � Vr(x + y) vf2 � Vr(−1)

vf3 Vr(x), Vr(y) � Vr(xy) vf4 Vr(x), Vr(y) � Vr(x + y)

VF2 xy = 1 � Vr(x) or Vr(y) CLVal 0 | 1 � ⊥ (collapsus)

This theory is noted Val. First an easy lemma. 

Lemma 5.5.1 In the theory val , when reading Vr(x) as an abbreviation of 1 | x, 
axioms of Val are valid rules. 

Proof The only point to be proved is the validity VF2. We prove the following 
disjunctive rule, which is a priori stronger. 

• Vr(xy) � Vr(x) or Vr(y) 

As a special case of VR1 we get 

• � Vr(x) or x | 1 

If x | 1, then x | 1 | xy, thus 1.x | y.x and using VR3, 1 | y or x | 0; in the last case 
1 | xy | 0, collapsus! ��

Notations in the article [12] are slightly different of ours. In [12], k is always a 
domain contained in a field K. In this context our val(K, k) is the same as Val(K,k) 
in [12]. The notation Val(k) is an abbreviation of Val(Frac(k),k). This corresponds 
to our val(Frac(k), k), isomorphic to val(k,k). If we note Z the minimal subring of 
k, our val(k) � val(k,Z) corresponds to Val(Frac(k), Z), 

By comparison with the theory val , the only difficulty with the theory Val is it 
applies only for integral domains k. 

We prove now that val(K, k) and Val(K,k) are isomorphic distributive lattices 
in the context of the paper [12]. First we recall the definition of the lattice Val(K,k). 

Definition 5.5.2 Let K be a discrete field and k a subring of K. 

1. The dynamical algebraic structure Val(K,k) is obtained by adding to the axioms 
of Val the positive diagram of K as a commutative ring and the rules �
Vr(x) for x ∈ k.

20 Names vfi and VF2 come from the theory of valued discrete fields (see Sect. 7). 
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2. The lattice Val(K, k) defined in [12] is by definition the distributive lattice 
generated by the entailment relation �K,k,Val on K defined by the following 
equivalence. 

.
a1, . . . , an �K,k,Val c1, . . . , cm

def⇐⇒
Vr(a1), . . . , Vr(an) �Val(K,k) Vr(c1) or . . . or Vr(cm)

(22) 

We note VK,k : K→ Val(K,k) (or simply V) the corresponding map. 

In the paper [12], the entailment relation is taken on K∗ rather than on K. This  
does not change the generated distributive lattice since Vr(0) may be replaced with 
Vr(1) (or �). 

So the definition of Val(K,k) is similar to val(K,k) (definitions 5.2.9 and 5.4.1), 
and Lemma 5.5.1 gives a natural morphism 

.θ : Val(K,k)→ val(K,k). (23) 

We have to prove that this is an isomorphism when K is a discrete field. A 
preliminary little job is necessary. 

The Theory Val+ 

In order to prove that θ is an isomorphism, we first extend the theory Val by 
introducing the predicate y | z with the following axioms (they prove that this 
predicate is equivalent to ∃x (Vr(x) ∧ z = xy)). 

Div Vr(x), z = xy � y | z DIV y | z � ∃x (Vr(x), z = xy) 

One sees easily that Vr(x) is equivalent to 1 | x, and that y | z is equivalent to 
∃x (Vr(x) ∧ z = xy). 

We note Val+ this new dynamical theory. It is an essentially identical extension 
of Val (see Lemma 3.3.3). In particular, disjunctive valid rules do not change, and 
the lattice defined from Val+(K,k) is the same as the one defined from Val(K,k). 

Note now that if we have a valid rule 

. a1 | b1, . . . , an | bn �val(K,k) c1 | d1 or . . . or cm | dm (ai, bi, cj , dj ∈ K),

(24) 

a dynamical proof of this rule can use only terms in K. Indeed, val is a weakly 
disjunctive theory and it should be necessary to have an existential axiom in order 
that new elements appear as fresh variables. 

Lemma 5.5.3 Let K be a discrete field and k a subring.



Valuative Lattices and Spectra 319

1. For dynamical algebraic structures Val+(K, k) and val(K, k) axioms of val that 
are used for the definition of the lattice val(K,k), i.e., for the proof of a rule (24), 
are valid in Val+. 

2. Consequently if a rule (24) is valid in val(K,k) it is also valid in Val+(K,k). 
3. Consequently the morphism θ given in (23) is injective. 

Proof 

1. For example let us see the rule Vr2. Assume a | b, one introduces a fresh 
variable z such that az = b and Vr(z). So, acz = bc, and using Div, we get 
a | b. Other axioms have also direct proofs, except for disjunctive axioms VR1 
and VR2. In this case we shall use the fact that in a proof of a rule (24), elements 
are always in K. 

VR1 � a | b or b | a VR2 ax | bx � a | b or 0 | x 

Let us see VR1. In a proof, a and b are elements of K. If a = 0, then b | a in 
Val+(K,k) because a = 0.b and Vr(0). In a similar way, if b = 0, then a | b in 
Val+(K,k). When a and b are nonzero, one has in K an x = ba−1 and a y = ab−1, 
and xy = 1. So, in Val+(K, k), we have � Vr(x) or Vr(y). If Vr(x) is valid, then 
1 | x and a | ax = b by Vr2. Similarly if Vr(y), then b | a. 

Let us see VR2. Here  a, b, x are elements of K. If  x = 0 then 0 | x. If x �= 0, we 
have an inverse x−1 in K, and so a = axx−1 | bxx−1 = b (we use Vr2). ��
Remark 5.5.4 The proof of Lemma 5.5.3 uses the fact that K is a discrete field. 
It seems impossible to obtain an isomorphism val(K, k) � Val(K,k) without 
assuming K to be zero-dimensional reduced. Extending further Val+ so as to prove 
all the axioms of val would require adding additional axioms, but the latter would 
look too ad hoc. �

Isomorphism of Lattices val(K,k) and Val(K,k) 

In order to prove that the morphism θ given in (23) is an isomorphism, it is now 
sufficient to prove the following lemma. 

Lemma 5.5.5 Let K be a discrete field and k a subring. In Val+(K,k), any rule 

. a1 | b1, . . . , an | bn � c1 | d1 or . . . or cm | dm (ai, bi, cj , dj ∈ K)

is always equivalent to a rule 

. Vr(x1), . . . , Vr(xk) � Vr(y1) or . . . or Vr(y�) (xi, yj ∈ K∗).

Proof If bi = 0 we cancel ai | bi in the hypothesis (it is true). If we have a cj = 0 
with dj �= 0, we cancel cj | dj in the conclusion (this branch collapses). If there is 
an ai = 0 with bi �= 0, or if there is a dj = 0, the rule is valid. It remains to be
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seen what happens when all elements are nonzero. In this case, we replace ai | bi 
and cj | dj , respectively, with Vr(bia

−1 
i ) and Vr(dj c

−1 
j ). ��

We have proved the desired result. 

Theorem 5.5.6 Let k be a subring of a discrete field K. The natural morphism 
Val(K,k) → val(K,k) is an isomorphism. 

The following corollary applies to Theorem 5.5.6 the local-global elementary 
machinery no1 that will be explained in Sect. 6.1. 

Corollary 5.5.7 Let k be a pp-ring and K = Frac(k). The natural morphism 
Val(K,k) → val(K,k) is an isomorphism. 

Note that the previous result does not work for an arbitrary ring k. 

6 Valuative Dimensions 

In order to transfer results obtained in the case of integral domains to that of an 
arbitrary ring A, one could hope for defining an idealistic “integral domain generated 
by A.” Unfortunately, such a generated integral domain does not exists in general 
as a usual object. A dynamical variant of this strategy would consists in defining 
a dynamical theory Ai of integral domains, and in considering the dynamical 
algebraic structure Ai(A) as a reasonable replacement for the desired ideal object. 

In this section, devoted to the topic of valuative dimension, we propose instead to 
make use of the ring Amin, the “minimal pp-closure of A.” The latter was proposed 
by T. Coquand in an unpublished note about a substitute for the GCD algorithm in 
A[X] for the case of a commutative ring A. Using  Amin has indeed proved to be 
efficient for studying the valuative dimension in [38]. 

For this purpose, we give in Sect. 6.1 a detailed constructive account of the 
classical theory of pp-rings, before constructing the ring Amin in Sect. 6.2 and listing 
a few of its properties. We think that the zero-dimensional ring Frac(Amin) is the best 
possible replacement for the fraction field of an integral domain. In particular, the 
natural morphism A→ Amin is an isomorphism when A is an integral domain. 

In Sect. 6.3, we use the ring Amin in the comparison of three possible constructive 
variants for the valuative dimension of a ring A and of an algebra k→ A. 

6.1 pp-Rings 

Definitions and Notations When the ring A is clear form the context, we use the 
abbreviated form a⊥ := AnnA(a). We note also a⊥ the annihilator of the ideal a.
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An element a such that a⊥ = 0 is called a nonzerodivisor or is said to be regular. 
A ring morphism A → B is said to be regular if it sends any regular element on a 
regular element. 

We note Ared = A/A
√〈0〉 the reduced ring generated by A. 

We note Pn the set of finite subsets of {1, . . . , n}. 
Proposition and definition 6.1.1 Let B be a commutative ring and a ∈ B. 

1. If there is an element c such that ca = a and c⊥ = a⊥, then c is an idempotent. 
This element is necessarily unique and we say it is an attached idempotent to a 
in B; we note this c as ea or a◦. 

2. An idempotent e ∈ B is an idempotent attached to a if and only if ea = a and 
a + (1− e) is regular. 

3. If ϕ : B → C is regular and if a ∈ B has an attached idempotent ea in B, then 
ϕ(ea) is an attached idempotent to ϕ(a) in C. 

4. If a is an idempotent, it is an attached idempotent to itself. 
5. The element a is regular if and only if 1 is an attached idempotent to a. 
6. If a◦ and b◦ are attached idempotents to a and b, then a◦b◦ is an attached 

idempotent to ab. 

If each element of a ring A has an attached idempotent we say that A is a pp-ring 
(principal ideals are projective). Otherwise said, the annihilator of any element is 
generated by an idempotent. 

Proof Left to the reader. ��
In a pp-ring, for a ∈ A, let  ea be the unique attached idempotent to a. We have  

A � A[1/ea] ×  A
/〈ea〉. In the ring A[1/ea], a is regular, and in A

/〈ea〉, a is null. 
We then have eab = eaeb, eaa = a and e0 = 0. 

Conversely, suppose that a commutative ring is equipped with a unary law a 
→ 
a◦ which satisfies the following three axioms 

.a◦ a = a, (ab)◦ = a◦ b◦, 0◦ = 0. (25) 

Then, for all a ∈ A, a◦ is an attached idempotent to a, thus the ring is a pp-ring. 

Lemma 6.1.2 (Splitting Lemma for pp-Rings) Let x1,  . . . ,  xn be n elements in 
a pp-ring A. There exists a fundamental system of orthogonal idempotents (ej ) 
of cardinality 2n such that in each of the components A[1/ej ], each xi is null or 
regular. 

Knowing how to systematically split a pp-ring into two components leads to 
the following general method. The essential difference with the previous splitting 
lemma is that we do not know a priori the finite family of elements which will 
provoke the splitting. 

Local-Global Elementary Machinery no1 ([38, Section IV-6]) Most algorithms 
that work with nontrivial integral rings can be modified in order to work with pp-
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rings, by splitting the ring into two components each time that the algorithm written 
for the integral rings uses the “is this element null or regular ?” test. In the first 
component the element in question is null, in the second it is regular. 

We state now a lemma analogous to Lemma XI-4.21 in [38], where we replace 
“quasi-inverse of a” with “attached idempotent to a.” 

Lemma 6.1.3 (The Ring Generated by an Attached Idempotent) Let A be a 
reduced ring. 

1. Let a ∈ A ⊆ C. Assume that C is reduced and a has an attached idempotent a◦ 
in C. We note B = A[a◦] ⊆  C. 
As an A-module, we get B = a◦B⊕ (1− a◦)B, and as a ring 

. B � B
/〈

1− a◦
〉× B

/〈
a◦

〉= A1 × A2

with A1 � a◦B and A2 � (1− a◦)B as A-modules. 

(a) The natural homomorphism μ1 : A → A1 (via A → B → A1) is onto. Its 
kernel is a⊥ := AnnA(a). 

(b) The natural homomorphism μ2 : A → A2 (via A → B → A2) is onto. Its 
kernel is the intersection a = A ∩ a◦B and satisfies the double inclusion 

. 
(
a⊥

)⊥ = AnnA
(
AnnA(a)

) ⊇ a ⊇ DA(a). (∗)

In short A[a◦] =  B � A/a ⊥ × A/a . 
2. Conversely for a ∈ A, if an ideal a of A satisfies inclusions (∗), the element (1, 0) 

is an attached idempotent to (the image of) a in the ring 

. B := A/a⊥ × A/a =: A1 × A2

and the canonical homomorphism from A to B is injective. 

Proof Let us note πi : B → Ai the canonical morphisms. Since πi(a
◦) = 0 or 1,  

any element πi(x) is equal to a μi(y) for an y ∈ A, so each μi is onto. 

1a. The kernel of μ1 is A ∩ Kerπ1 = A ∩ AnnB(a) = AnnA(a). 
1b. The kernel of μ2 is a := A∩Kerπ2 = A∩a◦B. Clearly a ∈ a, thus DA(a) ⊆ a. 

Finally we prove that aAnnA(a) = 0, which implies a ⊆ AnnA
(
AnnA(a)

)
. 

Indeed if x ∈ a and y ∈ AnnA(a), we have  x = a◦z for a z ∈ B and y ∈ 
AnnB(a) = AnnB(a◦), thus xy = za◦y = 0. 

2. The image of a in B is (a1A1 , 0A2), thus (1A1 , 0A2) is an attached idempotent 
to a in B. Consider now an x ∈ A whose image in B is 0. On one hand x =A1 0, 
so ax =A 0. On the other hand x AnnA(a) = 0, so x2 =A 0, and x =A 0. ��

One sees that the notation A[a◦] is ambiguous when DA(a) �= AnnA
(
AnnA(a)

)
. 

This leads in particular to two natural notions of pp-closure of a reduced ring,
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depending on whether one decides to systematically favor the side DA(a) or the 
side AnnA

(
AnnA(a). 

Here is now a lemma which can simplify the construction of pp-rings. It is 
analogous to Lemma XI-4.22 in [38], by replacing “zero-dimensional reduced” with 
“pp-ring” and “quasi-inverse” with “attached idempotent.” 

Lemma 6.1.4 

1. When a ∈ A ⊆ C where C is a pp-ring, we note a◦ the attached idempotent to a 
in C. The smallest sub-pp-ring of C containing A is equal to A[(a◦)a∈A]. 

2. More generally, if A ⊆ B where B is reduced and if each element a of A has 
an attached idempotent a◦ in B, then the subring A[(a◦)a∈A] of B is a pp-ring. 
Moreover, each element of A[(a◦)a∈A] can be written in a standard form, i.e., as∑

j aj ej with aj ’s in A and a list (ej )j of orthogonal idempotents in the Boolean 
algebra generated by a◦’s. 
Finally,

∑
j aj ej has an attached idempotent in B written in standard form:∑

j 1fj =∑
j a
◦
j ej . 

Proof We prove Item 2, which implies clearly Item 1. 
Among elements of B, let us consider the ones written as sums of products ab◦ 

with a, b ∈ A. Clearly they form a subring of B21 which is equal to A[(a◦)a∈A]. This  
ring contains the Boolean algebra generated by idempotents a◦. So if an element is  
written in standard form, it is in A[(a◦)a∈A]. 

Let x =∑
j aj ej and y =∑

k bkfk be two elements written in standard form. 
Then xy = ∑

j,k(aj bk)ejfk , which is standard. Let us see the sum x + y. One  
may assume

∑
j ej = 1 by adding the idempotent e = (1−∑

j ej ) to the list. Same 
thing for

∑
k fk . Then x + y =∑

j,k(aj + bk)ejfk , which is standard. 
Finally, in a finite product of rings

∏
� A�, an element x = (x�)� has an attached 

idempotent if and only if each x� has an attached idempotent x�
◦ in A�, and in this 

case x◦ = (x�
◦)�. This provides the last statement and proves that A[(a◦)a∈A] is a 

pp-ring. ��

6.2 The Ring Amin 

Référence: [38, section XIII-7]. 

Lemma 6.2.1 Let A be a reduced ring and a ∈ A. We define 

. A{a}
def= A

/
a⊥ × A

/
(a⊥)⊥

and we note ψa : A→ A{a} the canonical homomorphism. 

1. ψa(a) = (π1(a), 0) and (1, 0) is an attached idempotent to ψa(a) in A{a}.

21 Use Item 4 in Lemma 6.1.1. 
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2. ψa is injective (we may consider A as a subring of A{a}). 
3. A{a} is a reduced ring. 
4. If a has an attached idempotent, ψa is an isomorphism. For example, this is the 

case when A is a pp-ring. 
5. Let b be an ideal in A{a}, then the ideal ψ−1 

a (b⊥) = b⊥ ∩ A is an annihilator 
ideal in A. 

6. The morphism ψa : A → A{a} is regular. 

For Item 6, see Exercice XIII-19 in [38]. 

Lemma 6.2.2 Let A be a reduced ring and a, b ∈ A. Then, with the notations of 
Lemma 6.2.1, the rings (A{a}){b} and (A{b}){a} are canonically isomorphic. 

Remark The case where ab = 0 is typical: when we meet it, we would like to split 
the ring into components where things are “clear.” The previous construction then 
gives the three components 

. A
/

(ab⊥)⊥ , A
/

(a⊥b)⊥ and A
/

(a⊥b⊥)⊥ .

In the first one, a is regular and b = 0, in the second one b is regular and a = 0, and 
in the third one a = b = 0. �
Theorem and definition 6.2.3 (Minimal pp-Closure) Let A be a reduced ring. 
We can define a ring Amin as a filtering colimit by iterating the basic construction 
which consists in replacing E (the “current” ring, which contains A) by  

. E{a}
def= E

/
a⊥ × E

/
(a⊥)⊥ = E

/
AnnE(a) × E

/
AnnE(AnnE(a)) ,

when a ranges over A. 

1. This ring Amin is a pp-ring, contains A, and is integral over A. 
2. For all x ∈ Amin, x⊥ ∩ A is an annihilator ideal in A. 

This ring Amin is called the minimal pp-closure of A. If  A is a pp-ring, the natural 
morphism A → Amin is an isomorphism. 

In the general case, we take Amin 
def= (Ared)min (when we do not know whether A is 

reduced or not). 

We give now a description of each ring we get at a finite stage of the construction 
of Amin. 

Lemma 6.2.4 Let A be a reduced ring and (a) = (a1, . . . , an) a list of n elements 
in A. For  I ∈ Pn, we note aI the ideal 

.aI =
( ∏

i∈I 〈ai〉⊥
∏

j /∈I aj

)⊥ = ( 〈ai, i ∈ I 〉⊥
∏

j /∈I aj

)⊥
.
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Then Amin contains the following ring, product of 2n quotient rings of A (some may 
be trivial): 

. A{a} =
∏

I∈Pn

A
/
aI .

6.3 Three Constructive Versions of Valuative Dimensions 

The valuative dimension of a commutative ring has many possible definitions. 
In classical mathematics the valuative dimension of a domain k, noted as 

Vdim(k), is equal to the maximum height of the valuation group �(V) of a valuation 
ring V satisfying k ⊆ V ⊆ Frac(k). The height of �(V) is also the Krull dimension 
of V. Another definition of Vdim(k) is the maximum length of a chain of valuation 
rings of Frac(k) containing k. 

Since the valuative dimension of a quotient domain of k is bounded by the 
valuative dimension of k, one extends the definition to an arbitrary ring in the 
following way: the valuative dimension of a ring A is the l.u.b. of valuative 
dimensions of its quotients by prime ideals [9]. 

In the book [38, section XIII-8], in the case of a domain k, authors use a 
classical characterization of the valuative dimension which is based on the Krull 
dimension of rings: the valuative dimension of a domain is the l.u.b. of Krull 
dimensions of overrings of k (the rings containing k and contained in its fraction 
field). We note it vdim(k). This definition of vdim(k) is easily extended to pp-
rings. Finally, for an arbitrary ring, the authors use the definition vdim(A) = 
vdim(Amin). They prove the following equivalence for their definition, for n � 0: 
vdim(A) � n ⇔ Kdim(A[X1, . . . , Xn]) � 2n . This characterization is known in 

classical mathematics. So the definition in [ 38] is an acceptable constructive version. 
On the other hand, for a domain k, it is clear in classical mathematics that 

the valuative dimension of k is equal to the dimension of the distributive lat-
tice val(Frac(k),k). So it is also the Krull dimension of Val(Frac(k), k) �
val(Frac(k),k) (see Theorem 5.5.6). So this is Vdim(k) introduced in [12, Space 
of Valuations]. 

Since val(Frac(k),k) � val(k, k) (Lemma 5.4.3), it is reasonable to propose as 
a constructive definition for the valuative dimension of an arbitrary ring A, the Krull 
dimension of the lattice val(A,A). We note this dimension Vdim(A).22 

Finally, in classical mathematics, [30] give a new constructive characterization 
of the valuative dimension of an arbitrary commutative ring. 

So we have three constructive definitions: the one given in [38, section XIII-
8], the Krull dimension of val(A,A), and the characterization given by Kemper

22 For the moment we are not sure that it coincides to the classical definition in classical 
mathematics. 
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and Yengui. We now need to prove constructively that these three constructive 
definitions are equivalent. 

This proof will be given in an article by Yengui, Neuwirth, and Lombardi. The 
paper proves constructively that the first and the third definition are equivalent, and 
that for the case of domains they are equivalent to the second one (given in [12]). 

In fact, we now need to prove the following lemma. 

Lemma 6.3.1 For an arbitrary commutative ring, the distributive lattices 
val(A,A) and val(Amin,Amin) have the same Krull dimension. 

Proof The ring Amin is a filtered colimit of rings we construct, starting with A, as  
described in Theorem 6.2.3. If  E is obtained at a preceding stage and if x ∈ E, the  
new ring is E/x⊥×E/(x⊥)⊥. This is E 
→ E/a1×E/a2 with a1a2 = 0. If we show 
that this kind of construction does not change the dimension of the valuative lattice, 
we are done. In fact, since dimensions of A and Ared are the equal, we may assume 
our ring is reduced. ��
Lemma 6.3.2 Let A be a reduced ring a1, a2 two ideals s.t. a1a2 = 0, A1 = A/a1 
and A2 = A/a2. Let us note av2(A) := val(A, A). Then we have 

. Kdim(av2(A)) = sup(Kdim(av2(A1)),Kdim(av2(A2))) = Kdim(av2(A1×A2)).

Proof First equality. From Ai = A/ai we deduce that av2(Ai ) = (av2 A)/(bi = 
1) for a suitable filter bi of av2(A). Precisely, from the equivalence (21) of  
Definition 5.4.1, we get for example for A1 the following equivalences:23 

. 

(a1, b1), . . . , (an, bn) �val(A1,A1) (c1, d1), . . . , (cm, dm)
def⇐⇒

a1 | b1, . . . , an | bn �val(A1,A1) c1 | d1 or . . . or cm | dm
def⇐⇒

0 | x1, . . . , 0 | xr , a1 | b1, . . . , an | bn �val(A,A) c1 | d1 or . . . or cm | dm
def⇐⇒

(a1, b1), . . . , (an, bn) �val(A,A)/(b1=1) (c1, d1), . . . , (cm, dm)

with some xj ’s in a1 and where b1 is the filter of val(A,A) generated by 
elements (0, x)  with x ∈ a1. 

Then let us prove that b1 ∩ b2 = {1}. Indeed, the filter b1 ∩ b2 is generated by 
elements (0, x)  ∨ (0, y)  with x ∈ a1 and y ∈ a2, and since 0 | xy we get by WZD, 
the valid rule �val(A,A) 0 | x or 0 | y. 

We conclude with Theorem 2.4.7. 
Second equality. First av2(A1×A2) � av2(A1)×av2(A2). Next, the dimension 

of the product of two lattices is the sup of the two dimensions. ��

23 Note the dynamical algebraic structure val(A1,A1) is obtained by adding relations 0 | x when 
x ∈ a1 to the dynamical algebraic structure val(A, A)). 



Valuative Lattices and Spectra 327

Note Since Amin is a pp-ring, val(Amin,Amin) � val(Frac(Amin),Amin). So, 
Vdim(A) is equal to Vdim(Amin) with the meaning in the article [12]. 

Definition 6.3.3 The dimension of the distributive lattice valA � val(A,Z) (where 
Z is the minimal subring of A) is called the absolute valuative dimension of the ring 
A and is noted as vdima(A). 

The dimension vdima(A) := Kdim(valA) is a priori greater than or equal to 
vdim(A) := Kdim(val(A,A)) and it is often strictly greater, as for the ring Q: 
vdima(Q) = Kdim(val(Q, Z)) = Kdim(val(Z, Z)) = 1, and vdim(Q) = 
Kdim(val(Q, Q)) = 0. �
Remark 6.3.4 Same proofs work for the dimension of distributive lattices Zar(A), 
val(A), Real(A) and Heit(A).24 So we have the following analogous results. 

. 

Kdim(A) = Kdim(Amin) = Kdim(A1× A2)

vdima(A) = vdima(Amin) = vdima(A1× A2)

Rdim(A) = Rdim(Amin) = Rdim(A1× A2)

Jdim(A) = Jdim(Amin) = Jdim(A1× A2)

�

7 Comparisons with a Theory of Valued Discrete Fields 

7.1 Introduction 

In this section we prove that the weakly disjunctive theory val and the dynamical 
theory Vdf of valued discrete fields, which is introduced in [21, Section 4], are 
more or less identical. This is obtained through the formal Valuativstellensatz 7.3.1 
for valued discrete fields. This implies various formal Valuativstellensätze for val. 

We compare also with the formal Valuativstellensatz for the theory Val given in 
[12]. 

Note that Theorem 5.5.6 is already an essential comparison result for the 
distributive lattices val and Val. 

7.2 The Theory Vdf of Valued Discrete Fields 

Section 4 in [21] gives a formal Positivstellensatz for the theory Vdf of valued 
discrete fields and a Positivstellensatz à la Hilbert for algebraically closed valued 
discrete fields. We prefer here the name of Valuativstellensatz. We are mainly

24 See [18]. 
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interested in formal Valuativstellensätze, they give algebraic certificates for the 
provability in diverse dynamical theories for some dynamical rules. 

First we recall axioms given in [21] for the theory Vdf of valued discrete fields. 
The language is the one commutative rings to which we add predicates · �= 0, 
Vr(·), Rn(·), Un(·). The first one, · �= 0, is seen as the invertibility predicate, 
the predicate Vr(·) interprets belonging to the valuation ring, the predicate Rn(·) 
interprets elements residually null and Un(·) the units (invertible elements in the 
valuation ring). So we have the following signature 

. Vdf = ( · = 0, · �= 0, Vr(·), Rn(·), Un(·); · + ·, · × ·,− ·, 0, 1 ).

Axioms of the theory Vdf are the following dynamical rules. As consequence, the 
field is discrete and the divisibility relation is explicit. 

• First we have direct rules. 

cr1 � 0 = 0 cr2 x = 0 � xy = 0 
cr3 x = 0, y = 0 � x + y = 0 
vf1 x = 0, Vr(y) � Vr(x + y) vf2 � Vr(−1) 
vf3 Vr(x), Vr(y) � Vr(xy) vf4 Vr(x), Vr(y) � Vr(x + y) 
vf5 x = 0, Rn(y) � Rn(x + y) vf6 � Rn(0) 
vf7 Rn(x), Vr(y) � Rn(xy) vf8 Rn(x), Rn(y) � Rn(x + y) 
vf9 Rn(x) � Vr(x) 

vf10 x = 0, Un(y) � Un(x + y) vf11 � Un(1) 
vf12 Un(x), Un(y) � Un(xy) vf13 Rn(x), Un(y) � Un(x + y) 
vf14 Un(x) � Vr(x) 
vf15 x = 0, y �= 0 � x + y �= 0 vf16 x �= 0, y �= 0 � xy �= 0 
vf17 Un(x) � x �= 0 

• The collapsus is the same as for domains. 

CL 0 �= 0 � ⊥  

• Finally, we have simplification rules Vf1 and Vf2 followed by 4 dynamical rules. 

Vf1 xy = 1 � x �= 0 Vf2 Vr(xy), Un(x) � Vr(y) 
VF1 x �= 0 � ∃y xy  = 1 VF2 � x = 0 or x �= 0 
VF3 xy = 1 � Vr(x) or Vr(y) VF4 Vr(x) � Un(x) or Rn(x) 

If we want to force the valuation to be nontrivial, we introduce a constant c with 
the axiom 

vf0 Vr(c) � ⊥
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There is only one existential axiom, VF1, and it corresponds to a unique 
existence: the theory is very near to a weakly disjunctive theory. 

For the dynamical theory Vdfsc of separably closed valued discrete fields we add 
to the theory Vdf axioms of separable algebraic closure. 

VF6n discY (f ) �= 0 � ∃y f  (y)  = 0, where f (Y )  = Yn +∑n−1 
k=0 akY

k . 

For the dynamical theory Vdfac of algebraically closed valued discrete fields we 
add to the theory Vdf axioms of algebraic closure. 

VF5n � ∃y yn + an−1y
n−1 + · · · + a1y + a0 = 0. 

Lemma 7.2.1 Let A be a commutative ring and Vdf(A) the dynamical algebraic 
structure of type Vdf constructed on (the positive diagram of) A. To give a minimal 
model of Vdf(A) is the same thing as giving a couple (p,V) where p is a detachable 
prime ideal of A and V is a valuation ring of K = Frac(A/p). Moreover divisibility 
has to be decidable. 

Proof The prime ideal p is the set of x ∈ A such that x = 0 is valid in the model. 
The quotient ring B = A/p is integral, we note K its fraction field, present in the 
model thanks to Axiom VF1. The valuation ring V is then the set of fractions z in 
K such that Vr(z) is valid in the model. 

The divisibility relation is decidable because V is a detachable subset of K: if  
x �= 0, we have an inverse y by VF1. Then we have Vr(x) or Vr(y). In the second 
case, we have Un(y) or Rn(y), and Vr(x) if and only if Un(y). ��

It seems that VF1 is necessary at the end of the proof. It implies that the model 
contains only fractions of elements in V. 

So, dynamical algebraic structures Vdf(A) and val1(A) have the same minimal 
models in classical mathematics. But not necessarily in constructive mathematics 
since in val1(A) the divisibility relation is not forced to be decidable. 

We now define some theories closely related to the theory Vdf , which share a 
number of theorems with the latter. We make use of the terminology of direct rules, 
simplification rules and dynamical rules, as explained in page 295. 

Definitions 7.2.2 (Geometric Theories Closely Related to Vdf) 

1. Let us note Apv25 the direct theory we get from the theory Vdf when keeping 
only direct axioms, from cr1 to vf17, and the collapsus. 

2. The Horn theory Aqv26 is intermediate between Apv and Vdf : we replace in Vdf 
Axioms VF1 to VF4 with the following simplification axioms, which are valid 
rules in Vdf : 

Vf3 Un(xy), Vr(x), Vr(y) � Un(y) Vf4 Rn(xy), Un(x) � Rn(y) 
Vf5 Rn(x2) � Rn(x) Vf6 xy �= 0 � x �= 0

25 Proto-valued rings in [21]. 
26 Quasi-valued rings in [21]. 
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Vf7 xy = 0, x �= 0 � y = 0 Vf8 x2 = 0 � x = 0 
Vf9n xn =∑n−1 

k=0 akx
k, Vr(an−1), . . . , Vr(a0) � Vr(x) 

The last axiom scheme says that V is integrally closed. 
3. The weakly disjunctive theory Vdf− is obtained from Aqv by adding the three 

disjunctive axioms VF2, VF3 and VF4. 
4. The theory Vdf+ is the extension of Vdf we get when we add

• The predicate x | y as abbreviation of “∃z (Vr(z) ∧ xz = y)”
• The predicate x � y as abbreviation of “y �= 0 ∧ ∃z (Rn(z) ∧ yz = x)” 

We shall see that the theories Apv and Vdf collapse simultaneously (7.3.2) and 
that the theories Aqv and Vdf prove the same Horn rules (7.3.7). Theories Vdf− 

and Vdf prove the same disjunctive rules, but we do not prove this result here. 
The theory Vdf+ is by construction an essentially identical extension of Vdf (a 

fortiori a conservative extension). 

Definition 7.2.3 Let k ⊆ A be two rings, or more generally let ϕ : k → A be an 
algebra, we note Vdf(A,k) the dynamical algebraic structure whose presentation is 
given by

• The positive diagram of A as commutative ring.
• Axioms � Vr(ϕ(x)) for x’s in k. 

The dynamical algebraic structure Vdf(A) is identical to Vdf(A,Z) where Z is the 
minimal subring of A. 

We define in a similar way dynamical algebraic structures Apv(A, k), Aqv(A,k), 
Vdf−(A,k) and Vdf+(A,k). 

7.3 Formal Valuativstellensatz for Vdf and Consequences 

Valuativstellensatz 7.3.1 (Formal Valuativstellensatz for the Theory Apv) Let 
GR = (G; R=0, R�=0, RVr, RRn, RUn) be a presentation over the signature Vdf 

27 

for a dynamical algebraic structure. We note

• I=0 the ideal of Z[G] generated by R=0
• M �=0 the monoid generated by R�=0
• VVr the subring of Z[G] generated by RVr ∪ RRn ∪ RUn
• IRn the ideal of VVr generated by RRn
• MUn the monoid generated by RUn 

T.F.A.E.

27 More precisely, R=0 is the subset of Z[G] whose elements p are assumed to be = 0 in the  
dynamical algebraic structure. Same thing for R �=0, RVr, RRn, RUn. 
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1. The dynamical algebraic structure (GR, Apv ) collapses. 
2. There is in Z[G] an equality 

. s(u+ t)+ z = 0

with s ∈ M �=0, u ∈ MUn, t ∈ IRn and z ∈ I=0. 

The following theorem is a crucial result in [21]. It gives the condition of 
collapsus for dynamical algebraic structures of type Vdfac. 

Theorem 7.3.2 (Simultaneous Collapsus) [21, Theorem 4.3] A dynamical alge-
braic structure of type Apv collapses if and only if it collapses as a dynamical 
algebraic structure of type Vdf , or of type Vdfac , or of any other theory between 
Apv and Vdfac. 

Remark 7.3.3 If (K,V) is a valued discrete field and if L is a field extension of K 
we deduce in classical mathematics that the valuation domain V can be extended in 
a valuation domain W of L such that W ∩ K = V [21, Remark 4.6]. �

Theorem 4.18 in [21] is a Valuativstellensatz à la Hilbert for algebraically closed 
valued discrete field. It is obtained from Theorem 7.3.2 by using the fact that the 
formal theory which corresponds to Vdfac is complete (when the characteristic of K 
and the one of the residual field are fixed). 

The following theorem describes provable facts in dynamical algebraic structures 
of type Vdf. 

Theorem 7.3.4 [21, Proposition 4.14] Let GR = (G; R=0, R�=0, RVr, RRn, RUn) 
be a presentation over the signature Vdf . Let p be an element of Z[G]. We define 
I=0, M �=0, VVr, IRn and MUn as in Theorem 7.3.1. We consider proofs in the 
dynamical algebraic structure (GR,Vdf ). 

(a) A dynamical proof of p = 0 gives an equality in Z[G] of type 

. pnm(u+ j)+ i = 0

with m ∈ M �=0, u ∈ MUn, j ∈ IRn and i ∈ I=0. 
(b) A dynamical proof of p �= 0 gives an equality in Z[G] of type 

. m(u+ j)+ i + bp = 0

with m ∈ M �=0, u ∈ MUn, j ∈ IRn, i ∈ I=0 and b ∈ Z[G]. 
(c) A dynamical proof of Vr(p) gives an equality in Z[G] of type 

. m((u+ j)pn+1 + anp
n + · · · + a1p + a0)+ i = 0

with m ∈ M �=0, u ∈ MUn, j ∈ IRn, les  ak ∈ VVr and i ∈ I=0.
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(d) A dynamical proof of Rn(p) gives an equality in Z[G] of type 

. m((u+ j)pn+1 + jnp
n + · · · + j1p + j0)+ i = 0

with m ∈ M �=0, u ∈ MUn, j and jk′s ∈ IRn and i ∈ I=0. 
(e) A dynamical proof of Un(p) gives an equality in Z[G] of type 

. m((u+ j)pn+1 + anp
n + · · · + a1p + (u′ + j ′))+ i = 0

with m ∈ M �=0, u, u′ ∈ MUn, j, j ′ ∈ IRn, ak′s in VVr and i ∈ I=0. 

Corollary 7.3.5 Let k ⊆ A be two rings, x ∈ A and y1, . . . , yn ∈ k. 

1. The rule � x = 0 is valid in Vdf(A,k) if and only if x is nilpotent. 
2. The rule � x �= 0 is valid in Vdf(A,k) if and only if x is invertible in A. 
3. The rule � Vr(x) is valid in Vdf(A, k) if and only if x is integral over k. 
4. The rule Rn(y1), . . . , Rn(yn) � Rn(x) is valid in Vdf(A, k) if and only if x is 

weakly integral28 over the ideal 〈y1, . . . , yn〉 of k. 
Remark 7.3.6 From Item 3 we deduce easily in classical mathematics that a 
domain k has for integral closure in its fraction field K the intersection of valuation 
rings of K containing k [21, Remark 4.15]. 

From Item 4, we deduce in classical mathematics that if (k, m) is a local domain, 
the ideal m is the intersection of k with the maximal ideal of a valuation ring of the 
fraction field K [21, Corollary 4.7]. �

A remarkable consequence of theorem 7.3.4 is theorem 7.3.7. 

Theorem 7.3.7 [21, Theorem 4.17] Theories Aqv and Vdfac prove the same Horn 
rules. Same thing for any intermediate theory. 

7.4 Formal Valuativstellensätze for val and Vdf+ 

In this section we prove a crucial result: a formal Valuativstellensatz for the 
theory val , a consequence of Theorems 7.3.1 and 7.3.2. 

We consider a ring A, we are searching for a formal Valuativstellensatz for the 
dynamical algebraic structure val(A). 

Recall that the theory Vdf+ is defined at Item 4 of Definition 7.2.2 and that the 
theory val1 is the conservative extension of val we get when we add the predicate 
· �= 0 opposite to · = 0.

28 This means that x is a zero of a monic polynomial whose nondominant coefficients are in the 
ideal. 
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Lemma 7.4.1 

1. The predicate x � y is the opposite predicate to x | y in the theory Vdf+. 
2. Axioms of val are valid in Vdf+. 
3. The following Horn rule is valid in val1. 

VR2.5 x �= 0, ax | bx � a | b 

Proof Left to the reader. ��

A Formal Valuativstellensatz for val(A) 

Valuativstellensatz 7.4.2 (A Formal Valuativstellensatz for val(A) and 
Vdf+(A)29 ) Let A be a commutative ring and ai , bi , cj , dj ∈ A. T.F.A.E. 

1. 

.(a1, b1), . . . , (an, bn) �val(A) (c1, d1), . . . , (cm, dm) (26) 

2. 

.a1 | b1, . . . , an | bn �val1(A) c1 | d1or . . . or cm | dm (27) 

3. 

.a1 | b1, . . . , an | bn �Vdf+(A) c1 | d1 or . . . or cm | dm (28) 

4. Introducing indeterminates Xi (i ∈ �1..n�) and Yj (j ∈ �1..m�) we have in the 
ring A[X, Y ] an equality in the following form 

. d
(
1+

∑m

j=1
YjPj (X, Y )

) ≡ 0 mod
〈
(Xiai − bi)i∈�1..n�, (Yj dj − cj )j∈�1..m�

〉

(29) 

where d is in the monoid generated by dj ’s, and Pj (X, Y )’s are in Z[X, Y ] 
5. Let us note yj = cj 

dj 
vied in B = A[ 1 

d1···dm
]. Let us introduce indeterminates Xi 

(i ∈ �1..n�). One has in the ring B[X] an equality in the following form 

.1+
∑m

j=1
yjPj (X, y) ≡ 0 mod

〈
(Xiai − bi)i∈�1..n�

〉
(30) 

where Pj (X, Y )’s are in Z[X, Y ].

29 Note that if A = Z and if ai , bi , cj and dj are indeterminates we get a general formal 
Valuativstellensatz for the theory Vdf+ or for the theory val. 
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Proof Item 5 is a simple rewriting of Item 4. 
1⇔ 2. By definition, Item 1 means that the following rule is valid: 

.a1 | b1, . . . , an | bn �val(A) c1 | d1 or . . . or cm | dm (31) 

But val1 is a conservative extension of val. 
1⇒ 3. By Item 2 of Lemma 7.4.1, the rule (28) is valid. 
3⇒ 4. The rule (28) is equivalent to the following collapsus 

.a1 | b1, . . . , an | bn, c1 � d1, . . . , cm � dm �Vdf+(A) ⊥. (32) 

Inside the theory Vdf+, ai | bi is equivalent to the existence of an xi such that Vr(xi) 
and xiai = bi . This  xi can be represented by a fresh variable Xi . Similarly cj � dj 
is equivalent to the existence of an yj such that Rn(yj ), yjdj = cj and dj �= 0. 
This yj can be represented by a fresh variable Yj . The validity of collapsus (32) is  
then equivalent to the collapsus of the family of conditions 

. (Vr(Xi), Xiai − bi = 0)i∈�1..n�, (Rn(Yj ), Yjdj − cj = 0, dj �= 0)j∈�1..m�

in the dynamical algebraic structure constructed on the positive diagram of A 
by adding generators Xi and Yj , i.e., in the ring A[X, Y ]. We conclude with 
Valuativstellensatz 7.3.1 (with s = u = 1 and z = 0). 

4 ⇒ 2. Let us assume an identity (29). We have to prove the validity of the 
rule (27). We make a case by case reasoning using � x = 0 or x �= 0 and �
a | b or b | a. 

In a branch where one dj is supposed null the rule (27) is valid. So we can assume 
the dj ’s are nonzero, hence regular (rule VR2.5). 

In a branch where ai = 0, the hypothesis of (27) implies bi = 0 and we can 
replace ai , bi and Xi with 0 in (29). 

Finally, we need to prove (27) in the case where ai’s and dj ’s are nonzero, hence 
regular. Let us consider now B, the total fraction ring of A. We get in B an equality 

.0 =B 1+
∑

j

cj

dj

Pj

(
b1

a1
, . . . ,

bn

an

,
c1

d1
, . . . ,

cm

dm

)

, (33) 

where polynomials Pj ’s have coefficients in Z. Let  δ be a bound of degrees in Yk’s 
in Pj ’s and εi a bound of degrees in Xi’s. We let d := ∏

k dk , we multiply the 
preceding equality by u = dδ

∏
i a

εi 
i and we get 

.u =B

∑

j

cj

dj

Qj (b1, a1, . . . , bn, an, c1, d1, . . . , cm, dm), (34) 

where each Qj is homogeneous of degree δ in each (ck, dk) and of degree εi in 
(ai, bi). We let  ej = ∏

k:k �=j dk and we multiply the preceding equality by d. We  
get an equality in A
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. ud =
∑

j
cj ej qj .

We now proceed by case analysis, and for the desired conclusion, we still need to 
deal with the case where we suppose dj | cj for each j . By case analysis again, we 
assume that one cj ej , e.g., c1e1, divides all the other ones. Then we get

• u | qj for each qj (u divides each coefficient of qj ’s)
• uc1e1 | cj ej qj for each qj

• so c1e1u | ∑j cj ej qj = ud = d1e1u 

Finally, the rule VR2.5 allows us to simplify by e1u: we get c1 | d1. 
Phew! ��
Remark 7.4.3 Perhaps a more direct proof of the implication 1 ⇒ 4 is possible, 
without using the formal Valuativstellensatz 7.3.1 for valued discrete fields. On one 
hand one should prove that property (29) defines an entailment relation over A×A 
(the cut rule seems difficult), on the other hand that this entailment relation satisfies 
axioms of val. For example the rule Vr2, a | b, a | c � a | b + c corresponds to the 
following equality 

.(b + c)(1− y(x1 + x2)) ≡ 0 mod 〈x1a − b, x2a − c, y(b + c)− a〉 .

�

Admissibility of the Rule DIV for the Weakly Disjunctive Theory val 

Remark 7.4.4 A corollary of Valuativstellensatz 7.4.2 is Lemma 5.2.8 concerning 
the admissibility of the existential rule DIV in the theory val. Indeed, the formal Val-
uativstellensatz is established for the theory Vdf+ (see Item 4 in Definition 7.2.2), 
where we introduce · | ·  with its definition. So, in this theory the rule DIV is valid. 
But the formal Valuativstellensatz works for the theory val. Thus, disjunctive rules 
that are valid for the predicate x | y remain the same for the theory val when we add 
the axiom DIV. �

A Formal Valuativstellensatz for val(A,k) 

A slight variant of Valuativstellensatz 7.4.2. 

Valuativstellensatz 7.4.5 (A Formal Valuativstellensatz for val(A, k) and 
Vdf+(A,k)) Let k ⊆ A be two commutative rings and ai , bi , cj , dj ∈ A. 
T.F.A.E. 

1. One has 

.(a1, b1), . . . , (an, bn) �val(A,k) (c1, d1), . . . , (cm, dm). (35)
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2. One has 

.a1 | b1, . . . , an | bn �val(A,k) c1 | d1 or . . . or cm | dm. (36) 

3. One has 

.a1 | b1, . . . , an | bn �Vdf+(A,k) c1 | d1 or . . . or cm | dm. (37) 

4. Let us note yj = cj 
dj 

viewed in B = A[ 1 
d1···dm

]. Consider indeterminates Xi 

(i ∈ �1..n �). One has in the ring B[X] an equality in the following form 

.1+
∑m

j=1
yjPj (X, y) ≡ 0 mod

〈
(Xiai − bi)i∈�1..n�,

〉
(38) 

where Pj (X, Y )’s are in k[X, Y ]. 
Variant. We are interested in understanding the equivalence between Items 2, 3 and 4 
when some ai and cj are null, i.e., when we assume that some bi or dj are null. Let 
us note ei and fj the elements of A assumed to be null on the left and on the right 
of �. T.F.A.E. 
5. One has 

. 
a1 | b1, . . . , an | bn, e1 = 0, . . . , ek = 0 �val(A,k)

c1 | d1 or . . . or cm | dm or f1 = 0 or . . . or f� = 0.

6. Let us note yj = cj 
dj 

viewed in B = A[ 1 
d1···dm·f1···f�

]. Consider indeterminates Xi 

(i ∈ �1..n�). One has in the ring B[X] an equality in the following form 

.1+
∑m

j=1
yjPj (X, y) ≡ 0 mod

〈
(Xiai − bi)i∈�1..n�, (ei)i∈�1..k�,

〉
(39) 

where Pj (X, Y )’s are in k[X, Y ]. 
Proof Equivalence of Items 1, 3 and 4 corresponds to the equivalence of Items 1, 3 
and 5 in Valuativstellensatz 7.4.2. Note that Z[X, Y ] (in Item 5) is now replaced 
with k[X, Y ] (in Item 4) since by hypothesis elements of k are now integral. 
We now need to add a few words explaining the variant (a similar variant work also 
for Valuativstellensatz 7.4.2): Eq. (39) is simply the analogous of Eq. (38) for the  
ring B

/〈e1, . . . , e�〉. ��
As corollary of Valuativstellensatz 7.4.5 we get the result which was announced 

after Lemma 5.2.11. 

Theorem 7.4.6 Let k ⊆ A be two rings, x ∈ A and y ∈ k. 

1. A dynamical algebraic structure val(A,k) proves y | x if and only if x is integral 
over the ideal 〈y〉 of k.
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2. Same thing for Vdf+(A,k). 

Proof 

1. This is a consequence of the equivalence of Items 2 and 4 in Valuativstellen-
satz 7.4.5 when n = 0 and m = 1. 

2. Use Item 1 and the equivalence of Items 2 and 3 in Valuativstellensatz 7.4.5. 
��

The Center Map (2) 

We are now fulfilling the promise made in Remark 5.4.5. In particular, this finishes 
the proof of Theorem 5.4.6. 

Theorem 7.4.7 (The Morphism γ : Zar A → val(A,A) Is Injective) Let A be a 
commutative ring and ai , cj ∈ A. T.F.A.E. 

1. One has 

. (a1, 1), . . . , (an, 1) �val(A,A) (c1, 1), . . . , (cm, 1).

2. One has in the ring A an equality 

. 
(∏n

i=1 ai

)r +∑m
j=1 cjpj = 0.

3. One has in the Zariski lattice of A 

. D(a1), . . . , D(an) �Zar(A) D(c1), . . . , D(cm).

In particular the center map (definition 5.4.4) γ : Zar A→ val(A,A) is injective. 

Proof Equivalence of Items 1 and 2 is a special case of the one given in 
Valuativstellensatz 7.4.5 (Items 1 and 4 equality (38)): computing modulo Xa − 1 
in A[X] amounts to calculate in A[ 1 

a
]). Equivalence of Items 2 and 3 is the formal 

Nullstellensatz 4.1.1. ��

Another Formal Valuativstellensatz for val(A, k) 

Another slight variant of Valuativstellensatz 7.4.2, which is particularly useful after 
Remark 7.4.9. 

Valuativstellensatz 7.4.8 (Another Formal Valuativstellensatz for val(A,k) and 
Vdf+(A,k)) Let k ⊆ A be two commutative rings and bi, dj ∈ A. T.F.A.E.
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1. One has 

.(1, b1), . . . , (1, bn) �val(A,k) (1, d1), . . . , (1, dm). (40) 

2. One has 

.Vr(b1), . . . , Vr(bn) �Vdf(A,k) Vr(d1) or . . . or Vr(dm). (41) 

3. One has 

.vr(b1), . . . , vr(bn) �val2(A,k) vr(d1) or . . . or vr(dm). (42) 

4. Let us note B = A[ 1 
d1···dm

], we have in the ring B an equality 

.1 =
∑m

j=1
d−1
j Pj (b1, . . . , bn, d

−1
1 , . . . , d−1

m ), (43) 

where Pj (X1, . . . , Xn, Y1, . . . , Ym)’s are in k[X, Y ]. 
5. (Case when A = K is a discrete field) One has 

.Vr(b1), . . . , Vr(bn) �Val(K,k) Vr(d1) or . . . or Vr(dm). (44) 

6. (Case when A = K is a discrete field) One has 

.V(b1), . . . , V(bn) �Val(K,k) V(d1), . . . , V(dm). (45) 

Proof First items are a special case of Valuativstellensatz 7.4.2. The equivalence 
with two last items (they are equivalent by definition ) is a consequence of the lattice 
isomorphism between val(K,k) and Val(K,k) (Theorem 5.5.6). So we have B = 
K. ��
Remark 7.4.9 As it was expected, we recover here the formal Valuativstellensatz 
for the predicate Vr given in the article [12] for the case where A is a discrete field 
and bi’s and dj ’s are nonzero. See also [20] and [33]. �
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Building Three-Variable Homogeneous 
Integer-Valued Polynomials Using 
Generalized Projective Planes 

Marie MacDonald 

1 Introduction 

This paper will present a method of generating examples of homogeneous integer-
valued polynomials (IVPs) in three variables. When constructing these polynomials, 
we are interested in finding examples of the form .f = g

pk with .g ∈ Z[x, y, z], p a 
prime, and k as large as possible. This method will only construct IVPs where the 
numerator is a product of linear polynomials. We will be working locally at a prime, 
usually .p = 2 although our methods carry over to all primes. The two-variable case 
of this problem is covered in [7]; however, the methods used there do not extend to 
three or more variables. 

One reason for interest in integer-valued polynomials and homogeneous ones in 
particular is their occurrence in stable homotopy theory. One of the first instances 
of this is from 1971 when Adams, Harris, and Switzer [1] explained some of the K-
theory of BU through IVPs. Building on these results, Clarke [5] showed that the 
complex K-theory homology of the infinite complex projective space, . K0(CP ∞)

is isomorphic to .Int(Z,Z), and this can be extended to .K0(BT n) � Int(Zn,Z). 
The connection to homogeneous polynomials was made by Baker, Clarke, Ray, and 
Schwartz [4] who identified the primitive elements of .K0(BU(n)) as the symmetric 
homogeneous IVPs in n-variables. A survey of this application of integer-valued 
polynomials to topology can be found in [6]. 
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2 Projective Planes over Finite Fields 

Definitions 1 For K a field the projective n-space KPn is defined to be the quotient 
of Kn+1 \ 0 by the equivalence relation (w0, . . . , wn) ≡ (λw0, . . . , λwn) for every 
λ ∈ K \ 0 (thus a point in KP n is an equivalence class of n + 1 tuples in Kn+1 \ 0, 
which we will denote [w0, . . . , wn]. 
Definitions 2 A hyperplane in KPn is the zero set of a nontrivial homogeneous 
linear polynomial in n + 1 variables, i.e., if the polynomial is a0x0 + · · · +  anxn, 
then 

. L[a0,...,an] = {[w0, . . . , wn] ∈ KP n : a0w0 + · · · + anwn = 0}

Implicit in this notation in this definition is the observation that n + 1 tuples 
(a0 . . . , an) and (λa0, . . . , λan) for λ ∈ K \ 0 determine the same line in KPn and 
that conversely that two lines coincide only if their determining polynomials are 
related in this way. 

Specializing to the case n = 2 we have  

Lemma 3 Any two distinct points in KP2 lie on a unique line and any two distinct 
lines in KP 2 meet in a unique point. 

This result shows that KP2 is a model for the projective plane developed 
axiomaticly as described in [10] for example. It also shows the duality between 
points and lines that the axiomatic approach emphasizes. 

Specializing further to the case n = 2, K = F2, the finite field with two elements, 
we have the following from [2]: 

Proposition 4 The finite projective plane F2P2 has the following properties: 

(a) F2P2 has seven points. 
(b) Each line in F2P2 contains three points. 
(c) Each point of F2P2 lies on three lines. 
(d) The three lines through a given point in F2P2 cover F2P2 

The finite projective space F2P2 is sometimes called the Fano plane, and has the 
graphic representation (Fig. 1) [2]: 

Parts (c) and (d) of this proposition will be used below to illustrate the connection 
between finite projective planes and homogeneous integer-valued polynomials. 

Proposition 5 

(a) If p1, p2, and p3 are homogeneous linear polynomials in Z[x, y, z] whose 
reductions modulo 2 determine the three lines through a given point in F2P2, 
then g = p1p2p3/2 is a homogeneous integer-valued polynomial. 

(b) If q1,  . . . ,  q7 are seven homogeneous linear polynomials in Z[x, y, z] whose 
reductions modulo 2 determine the seven lines in F2P2, then h = q1 . . . q7/23 
is a homogeneous integer-valued polynomial.
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Fig. 1 F2P2, the Fano plane (0,1,0) 

(1,1,0) 

(1,0,0)(1,0,1)(0,0,1) 

(0,1,1) 
(1,1,1) 

Proof If (a, b, c)  ∈ Z3 has all entries divisible by 2, then any homogeneous 
polynomial in Z[x, y, z] will take an even value at this point and so g and h are 
integer-valued there. If not all of the entries are divisible by 2, then the reduction of 
(a, b, c)  modulo 2 determines a point in F2P2 and so lies on one of the lines in part 
(a), by part (d) of the previous proposition. The polynomial pi which determines 
that line therefore takes an even value at (a, b, c), and so g takes an integral value 
there. By part (c) of the previous proposition the reduction of (a, b, c)  must lie on 
three of the lines in F2P2 hence three of the polynomials qi must take even values 
at (a, b, c), and so h must be integer-valued there. ��

To extend these results to obtain higher-degree homogeneous integer-valued 
polynomials with larger denominators, we need the extension of the finite projective 
plane in which F2 is replaced by the ring Z/2k Z. 

3 Finite Projective Hjelmslev Planes 

The extension of the idea of finite projective spaces to spaces over rings rather than 
fields was originally investigated by the Danish mathematician Johannes Hjelmslev. 
Early accounts are in [9] and, in English, [8]. 

Definitions 6 For p a prime the projective Hjelmslev space, or projective H -
space, .Z/(pk)Pn over the ring .Z/(pk) is the quotient of the set of .n + 1 tuples 
from .(Z/(pk))n+1, such that not all entries in the .n + 1 tuple are divisible by 
p by the equivalence relation .(w0, . . . , wn) ∼ (λw0, . . . , λwn) for all units . λ
in .Z/(pk) (thus a point in .Z/(pk)Pn is an equivalence class of .n + 1 tuples in 
.(Z/(pk))n+1 \ p(Z/(pk))n+1, which we will denote .[w0, . . . , wn].
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Definitions 7 A line in .Z/(pk)Pn is the zero set of a homogeneous linear polyno-
mial in .n + 1 variables with at least one coefficient not divisible by p, i.e., if the 
polynomial is .a0x0 + · · · + anxn then 

. L[a0,...,an] = {[w0, . . . , wn] ∈ Z/(pk)Pn : a0w0 + · · · + anwn = 0}

As for the finite projective spaces, the .n+1 tuples .(a0 . . . , an) and . (λa0, . . . , λan)

for . λ a unit in .Z/(pk) determine the same line in .Z/(pk)Pn and conversely two lines 
coincide in .Z/(pk)Pn only if their determining polynomials are related in this way. 

Proposition 8 

(a) The projective H -space of dimension 1, .Z/(pk)P1, contains . (p2k −
p2(k−1))/(pk − pk−1) = pk−1(p + 1) points. 

(b) The H -plane, .Z/(pk)P2, contains . (p3k−p3(k−1))/(pk−pk−1) = p2(k−1)(p2+
p + 1) points. 

(c) Each line in .Z/(pk)P2 contains .pk−1(p + 1) points. 
(d) Each point in .Z/(pk)P2 lies on .pk−1(p + 1) lines. 

Proof Since one of the coefficients in a pair .(a0, a1) representing an element of 
.Z/(pk)P1 is not divisible by p, if .(λa0, λa1) = (λ′a0, λ′a1), then .λ = λ′, and so the 
equivalence class .[a0, a1] contains a distinct element for each unit of .Z/(pk), and 
so .pk − pk−1 in all. Since .Z/(pk)2 \ p(Z/(pk))2) contains .p2k − p2(k−1) elements 
the size of .Z/(pk)P1 is as stated. A similar argument applies to part (b). 

Among the homogeneous linear polynomials, determining a given line in 
.Z/(pk)P2 must be one for which one of the coefficients is 1. Without loss of 
generality, assume it is . a0 so that the line is 

. L[1,a1,a2] = {[w0, w1, w2] : w0 + a0w1 + a2w2 = 0}

It follows that the map .φ : [w1, w2] = [−a1w1 + a2w2, w1, w2] maps . Z/(pk)P1

bijectively to .L[1,a1,a2] and so the size of .L[1,a1,a2] is as given in part (c). Part (d) 
follows by a similar arguement. ��
Definitions 9 Let .r� : Z/(pk) → Z/(p�) be the reduction modulo . p� map and for 
.k > � define 

. πk,� : Z/(pk)P2 → Z/(p�)P2

by .πk,�([w0, w1, w2]) = [r�(w0), r�(w1), r�(w2)]. 
Lemma 10 .πk,� is surjective, .pk−� to 1 and acts on lines by . πk,�(L[a0,a1,a2]) =
Lπk,�([a0,a1,a2]). 

These maps formalize the geometric idea of points or lines in .Z/(pk)P2 sitting 
over, or projecting to, points or lines of .Z/(p�)P2. The following two results assume 
that .k > �.
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Lemma 11 Two lines .L[a0,a1,a2] and .L[b0,b1,b2] in .Z/(pk)P2 sit over the same line 
in .Z/(p�)P2 if and only if all of the .2 × 2 minors of the matrix 

. 

[
a0 a1 a2

b0 b1 b2

]

are all divisible by . p�. 

Proof If the lines coincide, then .πk,�([a0, a1, a2]) = πk,�([b0, b1, b2]), and so there 
is a unit .λ ∈ Z/(p�) such that .r�(bi) = λr�(ai) for .i = 0, 1, 2 in which case the 
reduction of the matrix modulo . p� is of rank 1 and all of the .2× 2 minors vanish as 
required. 

Conversely, one of the . ai’s is a unit in .Z/(pk). Assume without loss of generality 
that it is . a0, and take .λ = r�(b0a

−1
0 ). The vanishing of the .2 × 2 minors modulo . 2�

implies that .r�(bi) = λr�(ai) for .i = 1, 2 and the fact that one of the . bi’s is a unit 
implies that . λ is a unit also. ��
Proposition 12 If .L[a0,a1,a2] and .L[b0,b1,b2] are lines in .Z/(pk)P2 which lie over the 
same line in .Z/(p�)P2 but are distinct in .Z/(p�+1)P2 then .L[a0,a1,a2] and . L[b0,b1,b2]
meet in . p� points in .Z/(pk)P2. 

Proof The points of intersection of these lines are the equivalence classes of triples 
.(w0, w1, w2) ∈ Z/(pk)3 \ p(Z/(pk))3) which are in the null space of the matrix: 

. 

[
a0 a1 a2

b0 b1 b2

]

If .h = 0, i.e., if the lines are distinct modulo p, then there is a unique equivalence 
class in the null space modulo p, and Hensel’s lemma applies to show this lifts to a 
unique solution modulo . pk . 

Now suppose .h > 0. One of the entries in .(a0, a1, a2) is a unit in .Z/(pk). Assume 
without loss of generality that it is . a0. Since .h > 0 we must also have that . b0 is a 
unit in .Z/(ph) and so in .Z/(pk) as well, and so we can pick representatives in which 
.a0 = b0 = 1. Since the .2 × 2 minors of 

. 

[
1 a1 a2

1 b1 b2

]

are divisible by . ph, and one of them is not divisible by .ph+1, we have  .ai − bi is 
divisible by . ph for .i = 1, 2 and one is not divisible by .ph+1. This linear system is 
equivalent to 

.

[
1 a1 a2

0 b1 − a1 b2 − a2

]
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If .[w0, w1, w2] is in the null space, then the first row implies . w0 is determined by 
. w1 and . w2 and that at least one of these is a unit. Choosing the representative with 
this unit equal to 1, the second row determines a congruence of the form . cx ≡
d (mod pk) with .c, d divisible by . ph and c not divisible by .ph+1. Such a linear 
congruence has exactly . ph solutions. ��
Corollary 13 If .[a0, a1, a2] and .[b0, b1, b2] are points in .Z/(pk)P2 which lie over 
the same point in .Z/(p�)P2 but are distinct in .Z/(p�+1)P2, then .[a0, a1, a2] and 
.[b0, b1, b2] lie on exactly . p� lines in .Z/(pk)P2. 

Specializing to the case .k = 2, .p = 2 we have 

Lemma 14 

(a) Any point of .Z/(4)P2 lies on six lines. 
(b) The six lines through a given point in .Z/(4)P2 cover .Z/(4)P2. 
(c) The six lines through a given point in .Z/(4)P2 divide into two sets of three 

lines in .Z/(4)P2 each of which project to the three lines through the projection 
of the given point in .Z/(2)P2. 

Proposition 15 If .p1, . . . , p6 are homogeneous linear polynomials in . Z[x, y, z]
representing the six lines through a given point in .Z/(4)P2 and .f = p1 · · · · · p6, 
then .f/23 is an integer-valued polynomial. 

Proof If .(a, b, c) ∈ Z has all entries divisible by 2, then, since f is homogeneous, 
.f (a, b, c) is divisible by . 26. If not all entries are divisible by 2, then . (a, b, c)

represents a point of .Z/(4)P2, and so lies on a line determined by one of the . pi’s; 
hence .pi(a, b, c) is divisible by 4. Since the lines doubly cover .Z/(2)P2, one of the 
other . pj has .pj (a, b, c) is divisible by 2. ��
Proposition 16 

(a) If .f = x ·y ·z ·(x+y) ·(x+z) ·(y+z) ·(x+y+z), then .f/23 is a homogeneous 
integer-valued polynomial. 

(b) If g is any one of the homogeneous linear polynomials .2x + y + 3z, .y + z, 
.y + 3z, .2x + y + z, .x + 2y + 3z, .x + z, .x + 3z, .x + y + 2z, .x + y, .x + 3z, 
.x + 3y + 2z and .x + 2y + z, then .f · g/24 is a homogeneous integer-valued 
polynomial. 

Proof Since the linear polynomials used to construct f represent the seven lines in 
.Z/(2)P2, part (a) follows from Proposition 5. 

If the points on the lines in .Z/(4)P2 determined by the seven homogeneous 
linear polynomials used to construct f are enumerated (42 points in total), it will 
be discovered that every point of .Z/(4)P2 occurs with the exception of .[1, 1, 1]. 
It follows that .f (a, b, c) is divisible by . 24 for any .(a, b, c) ∈ Z3 except if 
.[a, b, c] = [1, 1, 1] in .Z/(4)P2. The linear polynomials listed in part (b) are all 
ones taking an even value at .[1, 1, 1]. ��
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Proposition 17 

(a) If . pi for .i = 1, . . . , 28 are the linear homogeneous polynomials in . Z[x, y, z]
whose coefficent triples are as in the following table: 

. (0, 0, 1), (4, 1, 0), (0, 1, 5), (1, 0, 1), (1, 1, 4), (1, 0, 4), (1, 1, 1), (0, 2, 1),

(0, 1, 2), (0, 1, 3), (1, 4, 3), (1, 1, 2), (1, 0, 6), (1, 1, 3), (2, 0, 3), (2, 1, 0),

(2, 3, 3), (1, 6, 0), (1, 6, 1), (1, 3, 0), (1, 3, 5), (2, 6, 1), (2, 1, 2), (2, 1, 7),

(1, 2, 6), (1, 2, 3), (1, 3, 2), (1, 7, 7)

then the lines in .Z/(8)P2 determined by these polynomials cover all of the 
points of .Z/(8)P2 and their projections to .Z/(4)P2 cover all 28 lines of 
.Z/(4)P2. 

(b) If f is the product of the 28 linear homogeneous polynomials in part (a) then 
.f/219 is integer-valued. 

Proof Part (a) is a simple but tedious computation. For part (b) let .(a, b, c) ∈ Z3. 
If all three entries are even, then .f (a, b, c) is divisible by . 228. If at least one entry 
is odd, then .(a, b, c) represents a point in .Z/(8)P2, and so .pi(a, b, c) is divisible 
by . 23 for at least one i. Since the lines project to all of the lines in .Z/(4)P2, six  of  
them .pj1, . . . , pj6 must contain the point in .Z/(4)P2 represented by .(a, b, c), i.e., 
.pjk(a, b, c) is divisible by . 22, for six values of k. At most one of those polynomials, 
.pjk is the previously identified . pi . The triple .(a, b, c) will also represent a point in 
.Z/(2)P2 which lies on three lines in .Z/(2)P2 each of which is covered by f our  of 
the lines in .Z/(4)P2. Thus .pk�(a, b, c) is divisible by 2 for at least 12 values of . �. 
At most six of these are the previously identified . pjk’s. Combining these we find 
that .f (a, b, c) is divisible by .23 · (22)6−1 · 212−6 = 219. ��
Remark 18 By picking certain subsets of size 14 from the set of linear factors in 
the previous proposition it is possible to find degree 14 homogeneous 3 variable 
integer-valued polynomials with denominator . 28. This is not optimal however. 
In [3] bases for the .Z(2)-modules of homogeneous three-variable integer-valued 
polynomials are computed in degrees up to 20. Those calculations reveal that there 
is a degree 14 polynomial in 3 variables which is homogeneous integer-valued and 
has a denominator . 29. It does not factor as a product of linear polynomials however. 

The argument in the last proof can be generalized, although it depends on finding 
a collection of lines with a special property. 

Proposition 19 If a collection of .7 · 22(k−1) lines in .Z/(2k+1)P2 can be found 
that both cover all of .Z/(2k+1)P2 and reduce to the set of lines of .Z/(2k)P2 then, 
taking the product of the homogeneous linear polynomials representing those lines 
will give a homogeneous integer-valued polynomial with denominator . (2k)3·2k−1 ·
(2k−1)3·2k−1 · · · (2)3·2k−1

.
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Around Prüfer Extensions of Rings 
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Secondary 13B30 

1 Introduction and Notation 

We consider the category of commutative and unital rings, whose flat epimorphisms 
will be strongly involved, like localizations with respect to a multiplicatively closed 
subset. 

If .R ⊆ S is an (ring) extension, we denote by .[R, S] the set of all R-subalgebras 
of S and by .[R, S]fg the set of all .T ∈ [R, S], such that T is of finite type over 
R. Any undefined material is explained in the next subsection and in the following 
sections. 

1.1 An Overview of the Paper 

We present some properties of Prüfer extensions of rings and derive from them 
new results, using the properties and definitions of Knebusch and Zhang [20]. It is 
well known that Prüfer extensions are nothing but normal pairs. Prüfer extensions 
are defined by flat epimorphisms, while normal pairs are defined by the integrally 
closed property. We will deal with the Prüfer aspect, except in Sect. 6. 

In Sect. 2, we recall some facts about Prüfer extensions. We also give rules on 
flat epimorphisms and direct limits, in order to make our proofs easier. 

If .R ⊂ S is a ring extension, an ideal I of R is called S-regular by [20] if  
.IS = S. Such ideals are a useful concept in the next sections. Moreover, these 
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ideals I permit us to factorize the extension through the ring of sections defined by 
the open subset associated to I . This is developed in Sect. 3, with some applications 
to Prüfer extensions. By the way, we give rules allowing us to calculate rings of 
sections. 

In Sect. 4, we show that the integral closure . R of a ring extension .R ⊂ S is the set 
intersection of all .T ∈ [R, S] such that .T ⊆ S is Prüfer. This statement generalizes 
a classical result on integral closures. 

As an application, we show that an avoidance lemmawith respect to finitely many 
integrally closed subrings holds. The proof is not easy and uses Manis valuations. 
We also show an avoidance lemma with respect to finitely many flat epimorphisms. 
This is explained in Sect. 5. 

Section 6 deals with pullbacks results. Olivier proved that integrally closed 
extensions are characterized by pullbacks in which some morphism is of the form 
.V → K , where V is a semi-hereditary ring with total quotient ring K . We adapt 
this result to the Prüfer case and evidently reuse the normal pairs. Another result 
concerns a more classical situation. 

In Sect. 7, we deal with extensions over local rings and introduce the strong 
divisors considered by Knebusch and Zhang [20]. A strong divisor is a regular 
element t of a ring R, such that Rt is comparable to each ideal of R. The maximal 
Prüfer extension of a local ring R is the localization of R with respect to the 
multiplicatively closed subset of all strong divisors of R. We develop a theory of 
strong divisors. The most striking results are that a regular element x of a local ring 
is a strong divisor if and only if .R → Rx is Prüfer and that an extension of finite 
type of R is Prüfer if and only if it is of the form .R → Rx , where x is a strong 
divisor. 

QR extensions .R ⊂ S are studied in Sect. 8: they are extensions such that each 
.T ∈ [R, S] is (isomorphic to) a localization. They are evidently Prüfer. We also 
look at the Bezout extensions of [20] and examine the Bezout and Prüfer hull of 
an extension. Over a local ring or a Nagata ring .R(X), the Prüfer, Bezout and QR 
properties are equivalent. To go further, we have introduced locally strong divisors. 
As locally strong divisors appear each time we are dealing with Prüfer extensions, 
we see that a ring . R admits non-trivial Prüfer extensions if R has locally strong 
divisors that are non-units. This concept is more stable than that of strong divisors. 
An interesting result is that QR extensions are characterized by using locally strong 
divisors. Another one is that a QR extension .R ⊂ S satisfies that for each . s ∈ S

there is a locally strong divisor . ρ, such that .ρs ∈ R. The section ends on extensions 
whose supports are finite. 

Section 9 is devoted to minimal or FCP extensions of a local ring that are 
either Prüfer or have the QR property. A special attention is paid to . B extensions 
(extensions that are locally determined in some sense). 

The paper ends by considering the set of all primitive elements in an extension, a 
study initiated by Dobbs and Houston. There is a link with quasi-Prüfer extensions.
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1.2 Basics Concepts 

As usual, Spec.(R) and Max.(R) are the set of prime and maximal ideals of a ring R 
and .U(R) is the set of all its units. 

We now give some notation for a ring morphism .f : R → S. We denote by . af
the spectral map .Spec(S) → Spec(R). Then .XR(S) (or .X(S)) is the image of the 
map . 

af , and we say that f is an i-morphism if . 
af is injective. If Q is a prime ideal 

of S lying over P in R, the ring morphism .RP → SQ is called the local morphism 
at Q of the morphism. 

Then .(R : S) is the conductor of an extension .R ⊆ S. The integral closure of R 
in S is denoted by . R

S
(or by . R if no confusion can occur). 

A local ring is here what is called elsewhere a quasi-local ring. For an extension 
.R ⊆ S and an ideal I of R, we write .VS(I ) := {P ∈ Spec(S) | I ⊆ P } and . DS(I )

for its complement. If R is a ring, then .Z(R) denotes the set of all its zero divisors. 
The support of an R-module E is .SuppR(E) := {P ∈ Spec(R) | EP �= 0}, and 
.MSuppR(E) := SuppR(E) ∩ Max(R). When .R ⊆ S is an extension, we will set 
.Supp(T /R) := SuppR(T /R) and .Supp(S/T ) := SuppR(S/T ) for each .T ∈ [R, S], 
unless otherwise specified. 

If .R ⊆ S is a ring extension and . � a mcs of R (i.e., a multiplicatively closed 
subset of R), then . S� is both the localization . S� as a ring and the localization at . �
of the R-module S, that is, .S ⊗R R� . 

Let . �1 and . �2 be two mcs of a ring R. We denote by .�2/1 the image of . �2 in 
.R�1 . We recall that .R�1�2 = (R�1)�2/1. It follows that if .x ∈ R and . � is a mcs of 
R, then .(Rx)� = (R�)x/1. 

Flat epimorphisms and their properties are the main tools in this chapter. We use 
the theory that was developed by D. Lazard [22, Chapter IV]. The reader may also 
use the scholium of our paper [31]. 

When .R → S and .R → T are ring morphisms, we will write .S ∼=R T (or 
.S ∼= T ) if there is an isomorphism of R-algebras .S → T . It may happen that . ∼= is 
replaced with . =. 

Let .R ⊆ S be an extension. A chain of R-subalgebras of S is a set of elements 
of .[R, S] that are pairwise comparable with respect to inclusion. We say that . R ⊆ S

is chained if .[R, S] is a chain. We also say that the extension has FCP (or is an 
FCP extension) if each chain in .[R, S] is finite, or equivalently, the poset . [R, S]
is Artinian and Noetherian. An extension is called FIP if .[R, S] has finitely many 
elements. An extension .R ⊂ S is called minimal if .[R, S] = {R, S}. According to 
[14, Théorème 2.2], a minimal extension is either integral or a flat epimorphism. 
Finally, . |X| is the cardinality of a set X, and . ⊂ denotes proper inclusion (contrary 
to [20] where . ⊂ denotes the large inclusion). A compact topological space does not 
need to be separated. For a positive integer n, we set .Nn := {1, . . . , n}.
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2 Some Definitions, Notation, and Useful Results 

An extension .R ⊆ S is called Prüfer if .R ⊆ T is a flat epimorphism for each 
.T ∈ [R, S] (or equivalently, if .R ⊆ S is a normal pair) [20, Theorem 5.2, p. 47]. A 
Prüfer integral extension is trivial. 

We denote by .Q(R) the complete ring of quotients (Utumi–Lambeck) of a ring 
R. 

Definition 2.1 ([20]) A ring extension .R ⊆ S has: 

(1) A greatest flat epimorphic subextension .R ⊆ ̂RS , called the Morita hull of R in 
S 

(2) A greatest Prüfer subextension .R ⊆ ˜RS , called the Prüfer hull of R in S 

We set .̂R := ̂RS and .˜R := ˜RS , if no confusion can occur. 

A ring  R has: 

(1) Lazard [22] a maximal flat epimorphic extension .R ⊆ M(R) := ̂RQ(R) (also 
termed the maximal flat epimorphic extension by some authors, like [22]) 

(2) Knebusch and Zhang [20] a maximal Prüfer extension . R ⊆ P(R) := ˜RQ(R)

Note that . ˜RS is denoted by .P(R, S) in [20] and . ̂RS coincides with the weakly 
surjective hull .M(R, S) of [20]. Our terminology is justified because Morita’s 
construction is earlier [23, Corollary 3.4]. The Morita hull can be computed by 
using an (transfinite) induction [23]. Let . S′ be the set of all .s ∈ S, such that there is 
some ideal I of R, such that .IS = S and .Is ⊆ R. Then .R ⊆ S′ is a subextension of 
.R ⊆ S. We set .S1 := S′ and .Si+1 := (Si)

′ ⊆ Si . By [23, p.36], if .R ⊂ S is an FCP 
extension, then .̂R = Sn for some integer n. 

We also note the following known consequence: 

Proposition 2.2 An extension .R ⊆ S is a flat epimorphism if and only if for each 
.s ∈ S there is some ideal I of R such that .IS = S and .Is ⊆ R (or equivalently 
(.R :R s)S = S). 

Corollary 2.3 An extension .R ⊆ S is Prüfer if and only if .R[s] = (R :R s)R[s] for 
each .s ∈ S. 

Proof Use the definition of Prüfer extensions by flat epimorphisms. ��
If an extension .R ⊆ S is Prüfer and . � is a mcs of R, then .R� ⊆ S� is Prüfer. 

We have a converse. 

Proposition 2.4 ([31, Proposition 1.1]) An extension .R ⊂ S is Prüfer if and only 
if .RM ⊆ SM is Prüfer for each .M ∈ Max(R) (resp., for each .M ∈ Spec(R)). 

Proposition 2.5 ([31, Corollary 3.15]) Prüfer extensions are descended by faith-
fully flat morphisms.
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Proposition 2.6 The Prüfer property of extensions .R ⊆ S is local on the spectrum; 
that is if .Spec(R) = D(r1) ∪ · · · ∪ D(rn) for some elements .r1, . . . , rn ∈ R and 
.Rri ⊆ Sri is Prüfer for each .i = 1, . . . , n, then .R ⊆ S is Prüfer. 

Proof The extension .Rr1 × · · · × Rrn ⊆ Sr1 × · · · × Srn is Prüfer [20, Proposition 
5.20, p.56]. To conclude, use Proposition 2.5 since .R → Rr1 ×· · ·×Rrn is faithfully 
flat. ��

In [31], a minimal flat epimorphism is called a Prüfer minimal extension. An FCP 
Prüfer extension has FIP and is a tower of finitely many Prüfer minimal extensions 
[31, Proposition 1.3]. Aminimal extension .R ⊂ S is such that there exists a maximal 
ideal M of R satisfying .Supp(S/R) = {M}. Such a prime ideal M is called the 
crucial (maximal) ideal .C(R, S) of .R ⊂ S [9, Theorem 2.1]. 

In [31], we defined an extension .R ⊆ S to be quasi-Prüfer if it can be factored 
.R ⊆ R′ ⊆ S, where .R ⊆ R′ is integral and .R′ ⊆ S is Prüfer. In this case, . R′ is 
necessarily . R. An FCP extension is quasi-Prüfer [31, Corollary 3.4]. 

An extension .R ⊆ S is called almost-Prüfer if it can be factored .R ⊆ S′ ⊆ S, 
where the first extension is Prüfer and the second is integral. In this case, . S′ is 
necessarily . ˜R. An almost-Prüfer extension is quasi-Prüfer [31]. 

We now give some rules on flat epimorphisms. The following result of Lazard 
is a key result. Let R be a ring. We denote by . FE the collection of classes up to an 
isomorphism of flat epimorphisms whose domain is R and by . X the set of subsets 
of .Spec(R) that are affine schemes, when endowed with the induced sheaf. The 
elements of . X are compact and stable under generalization. 

Proposition 2.7 ([22, Proposition 2.5, p.112]) The map .FE → Spec(R), defined 
by .T �→ X(T ), is a bijection onto . X. The inverse map is as follows: an affine scheme 
X of .Spec(R) gives .R → �(X), the ring of sections over X. 

The next result, proved in [18, Proposition 3.4.10, p.242], will be useful in the 
sequel. 

Proposition 2.8 . (L)-rule Let .R → E be a ring morphism and .E = lim−→ Ei where 
each . Ei is an R-algebra, then .X(E) = ∩X(Ei). 

We will use Proposition 2.7 under the following form. 

Proposition 2.9 . (X)-rule Let .R → E be a flat epimorphism and .R → F a ring  
morphism: 

(1) There is a factorization .R → E → F if and only if .X(F ) ⊆ X(E). 
(2) If .R → F is a flat epimorphism, then .E ∼= F if and only if .X(F ) = X(E). 

Proof (1) The ring morphism .α : F → F ⊗R E is a flat epimorphism. If . X(F ) ⊆
X(E), then the spectral morphism of . α is surjective, because there is a surjective 
map .Spec(F ⊗R E) → Spec(E) ×Spec(R) Spec(F ) [18, Corollaire 3.2.7.1, p.235]. 
It follows that . α is a faithfully flat epimorphism, whence an isomorphism by [22, 
Lemme 1.2, p.109] and one implication is proved. Its converse is obvious. Now (2) 
can be proved by using (1). But it is also a consequence of Proposition 2.7. ��
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Corollary 2.10 .(MCS)-rule Let .R → E be a ring morphism: 

(1) If .E = R� , where . � is a mcs of R, then .X(E) = ∩{D(s)|s ∈ �}. 
(2) If .E = lim−→ Rsi , where .{si} is a family of elements of R, then .E = R� , where . �

is the mcs of R generated by the family. 

Proof The proof is a consequence of the above rules. ��
The reader may find some other information about Prüfer extensions in the recent 

paper [3] from Campanini and Finocchiaro. 

3 S-Regular Ideals and Rings of Sections 

If I is an ideal of a ring R, then .�(D(I ), R) (or .�(D(I ))) denotes the ring of sections 
of the scheme .Spec(R) over the open subset .D(I ). All that we need to know is that 
.�(D(R)) = R, .�(∅) = 0, and if .f : R → S is a ring morphism, there is a 
commutative diagram, because .

af −1(D(I )) = D(IS): 

. 

R S

Γ(D(I)) Γ(D(IS))

We denote by .Ass(R) the set of all (Bourbaki) prime ideals P associated to the R-
module R; that is, .P ∈ Min(V(0 : r)) for some .r ∈ R. Recall that a ring morphism 
.f : R → S is called schematically dominant if for each open subset U of .Spec(R), 
the map .�(U,R) → �(af −1(U), S) is injective [18, Proposition I.5.4.1]. The first 
author proved that a flat ring morphism .f : R → S is schematically dominant if 
and only if .Ass(R) ⊆ X(S) [29, Proposition 52]. Clearly, if . Min(R) = Ass(R)

(for example, if R is an integral domain) and f is injective and flat, then f is 
schematically dominant. 

Lemma 3.1 A flat extension .R ⊆ S is schematically dominant. 

Proof If .P ∈ Ass(R), there is some .a ∈ R, such that .P ∈ Min(V(0 : a)). From  
.(0 :S a) ∩ R = 0 : a, we deduce that .R/(0 : a) → S/(0 :S a) is injective and then 
.P/(0 : a) can be lifted up to a minimal prime ideal .Q/(0 :S a). Hence, . Q ∈ Ass(S)

is above P . ��
Let .R ⊆ S be an extension and an ideal I of R. Then I is called S-regular if . IS =

S [20]. Note that S-regular ideals play a prominent role in [20]. They are involved 
in certain questions. For example, if .f : R → S is a ring morphism, the fiber at a 
prime ideal P of R is .af −1(P ). This fiber is homeomorphic to the spectrum of the 
ring .SP /PSP . Therefore, the fiber is empty if and only if .SP = PSP , which means
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that .PRP is .SP -regular. If f is a flat epimorphism, the fiber at P is empty if and 
only if .S = PS [22, Proposition 2.4, p.111]. 

Remark 3.2 Let .f : R ↪→ S be an extension: 

(1) An ideal I of R is S-regular if and only if .X(S) ⊆ D(I ) [28, Lemma 2.3]. 
Such an ideal I is dense; that is, .0 : I = 0. 

(1(a)) I is S-regular if and only if .
√

I is S-regular, because . D(
√

IS) =
af −1(D(

√
I )) = af −1(D(I )) = D(IS). 

(1(b)) I is S-regular if and only if . IP is .SP -regular for each .P ∈ Spec(R). We need 
only to show that if the local condition holds, then I is S-regular. Suppose 
that .IS ⊂ S, then there is some prime ideal Q of S, such that .IS ⊆ Q. 
If .P = Q ∩ R, then .QP is a prime ideal of . SP , such that .IP SP ⊆ QP , a  
contradiction. 

(2) If I is S-regular, we have .Spec(S) = D(IS) = af −1(D(I )), so that there 
is a factorization .R → �(D(I )) → S. If, in addition, f is flat, then f is 
schematically dominant (Lemma 3.1), so that we can consider that there is a 
tower of extensions .R ⊆ �(D(I )) ⊆ S. Moreover, .D(I ) is an open subset 
that is (topologically) dense in .Spec(R) because a schematically dominant 
morphism is dominant [18, Proposition I.5.4.3], i.e., its spectral image is 
dense. The density follows from .X(S) ⊆ D(I ). 
This result holds if the extension is Prüfer and then .R → �(D(I )) is Prüfer. 

(3) We will use the following consequence of Proposition 2.7. If  I is an ideal 
of R, then .R → �(D(I )) is a flat epimorphism and . X(�(D(I ))) = D(I )

if and only if .D(I ) is an affine open subset of .Spec(R) (for example if I is 
principal), in which case .D(I ) = D(J ) where J is a finitely generated ideal. 

We can say more after looking at the following result adapted to ring morphisms 
(the reader is referred to [18, Definition I.4.2.1, p.260] for the definition of an open 
immersion of schemes). We will say that a ring morphism is an open immersion if 
the morphism of schemes associated is an open immersion. 

Proposition 3.3 Let .f : R → S be a ring morphism: 

(1) Grothendieck and Dieudonné [18, I.4.2.2] f is an open immersion if and only 
if .Spec(S) → X(S) is a homeomorphism, .X(S) is an open subset, and the local 
morphisms of f are isomorphisms. 

(2) A flat epimorphism .R → S, such that .X(S) is Zariski open, is an open 
immersion. 

(3) Grothendieck [17, Théorème 17.9.1, p.79] f is an open immersion if and only 
if f is a flat epimorphism of finite presentation. 

(4) Cox and Rush [4, Theorem 1.1] An injective flat epimorphism of finite type is of 
finite presentation, whence is an open immersion. 

Proof We need only to prove (2) and using (1). Since f is a flat epimorphism, its 
spectral map is an homeomorphism onto its image by [22, Corollaire 2.2, p.111] 
that is an open subset of the form .D(I ). Moreover, the local morphisms of the map 
are isomorphisms. ��
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Proposition 3.4 Let .R ⊂ S be an injective flat epimorphism of finite type. Then 
.X(S) is an open affine subset .D(I ), where I is a S-regular ideal, and there is an 
R-isomorphism .�(D(I )) ∼= S, .R ⊂ S is of finite presentation, and I is a dense 
ideal. 

Conversely, if .D(I ) is an open affine subset, where . I is a finitely generated 
dense ideal, then .R → �(D(I )) is an injective flat epimorphism, of finite type 
(presentation), such that .X(�(D(I ))) = D(I ). 

Proof To apply Proposition 2.7, we need only to look at injective flat epimorphisms 
of finite type .R → S. We know that such a ring morphism .f : R ⊂ S is of finite 
presentation according to Proposition 3.3(4). By the Chevalley Theorem, .X(S) is a 
Zariski quasi-compact open subset of .Spec(R), therefore of the form .D(I ), where I 
is an ideal of R, of finite type. We have .af −1(D(I )) = D(IS) = Spec(S) because 
.X(S) = D(I ), so that .IS = S, and then I is dense because it is S-regular. Moreover, 
.�(D(I )) ∼= S by Proposition 2.9(2) because .X(S) = D(I ) = X(�(D(I ))). 

Assume that the hypotheses of the converse hold. Since the morphism . R →
�(D(I )) is an open immersion by Proposition 3.3, we get that .R → �(D(I )) is of 
finite presentation. Moreover, .0 : I = 0 (which is equivalent to .Ass(R) ⊆ D(I ) [22, 
Corollaire 1.14, p.93]), so that .R → �(D(I )) is injective, by [22, Proposition 3.3, 
p.96]. ��

We note the following result: 

Proposition 3.5 ([20, Theorem 2.8, p.101, Theorem 2.6, p.100]) Let .R ⊆ S be an 
extension that is a flat epimorphism. Then the extension is Prüfer if and only if for 
every finitely generated S-regular ideal I of R, the ring .R/I is arithmetical (resp., 
I is locally principal). 

Proposition 3.6 Let .R ⊆ S be a flat epimorphism. Then, .R ⊆ S is Prüfer if and 
only if for each .P ∈ Spec(R), the set of .SP -regular ideals of .RP is a chain. 

Proof According to [31, Proposition 1.1(2)], the extension is Prüfer if and only if 
.RP ⊆ SP is Manis for each .P ∈ Spec(R) and equivalently .RP ⊆ SP is Prüfer– 
Manis. The result follows from [20, Theorem 3.5, p.190]. ��

We recall that the dominion of a ring morphism .f : R → S is the subring 
.Dom(f ) = {x ∈ S | x⊗1 = 1⊗x in S⊗RS} of S, which contains the subring .f (R). 
Actually, .Dom(f ) is the kernel of the morphism of R-modules . i1−i2 : S → S⊗R S

where .i1, i2 are the natural ring morphisms .S → S ⊗R S. 

Proposition 3.7 If .f : R → S is a flat morphism and I an ideal of R, such that 
.XR(S) = D(I ), then: 

(1) .�(D(I )) = Dom(f ) and .�(D(I )) → S is an injective flat morphism. 
(2) If in addition f is a ring extension, .˜R ⊆ ̂R ⊆ �(D(I )), each of the extensions 

in S being flat. In particular, if .D(I ) is affine, then .̂R = �(D(I )). 
(3) If .g : R → B is a flat morphism, setting .C := S ⊗R B, then . XB(C) = D(IB)

and .�(D(I )) ⊗R B ∼= �(D(IB)).
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(4) If P is a prime ideal of R, then .�(D(IP )) = (�(D(I )))P . In particular if . P ∈
D(I ), then .(�(D(I )))P = RP . 

(5) .D(I ) ⊆ X(�(D(I ))). 
(6) If .I�(D(I )) = �(D(I )), then .D(I ) = X(�(D(I ))), so that .D(I ) is an open 

affine subset if in addition .R → �(D(I )) is a flat epimorphism. 

Proof 

(1) is a translation of [28, Theorem 2.7]. The flatness of .�(D(I )) → S follows 
from [22, Proposition 3.1 (2), p.112]. 

(2) If f is a ring extension, observe that .̂R ⊆ Dom(f ), because .R → ̂R is an 
epimorphism and then .y ⊗ 1 = 1 ⊗ y for each .y ∈ ̂R [22, Lemme 1.0, p.108]. 
The flatness of the extensions .˜R, ̂R ⊆ S results from [22, Proposition 3.1(2), 
p.112]. At last, if .D(I ) is affine, then .R → �(D(I )) is a flat epimorphism by 
Remark 3.2(2), so that .̂R = �(D(I )). 

(3) Because .Spec(C) → Spec(B) ×Spec(R) Spec(S) is a surjective map [18, 
Corollaire 3.2.7.1, p.235], we have .XB(C) = ag−1(D(I )) = D(IB). To  
conclude use (1) and the fact that a kernel tensorized by B, which is flat over R, 
is the kernel of the tensorized map. 

(4) is gotten by taking .B = RP in (3). 
(5) According to (4), an element P of .D(I ) is such that .(�(D(I )))P = RP . It  

follows that there is a prime ideal Q of .�(D(I)) lying over P . 
(6) holds because I is .�(D(I ))-regular. 

��
We can apply the above result in the following three contexts, when . I = (r1, . . . , rn)

is an ideal of finite type of R (the hypothesis of this result entails that .
√

I = √
J , 

where J is an ideal of finite type). We can suppose that .D(I ) �= ∅ and that the set 
.{D(r1), . . . ,D(rn)} is an antichain, so that the .ri ′s cannot be nilpotent. The first 
example is certainly the most interesting, because when .I = Rr , we recover that 
.�(D(r)) = Rr . 

(1) We can consider the flat ring morphism .ϕ : R → Rr1 × · · · × Rrn := SI , which 
is such that .X(SI ) = D(I ). Actually, . ϕ is of finite presentation [18, Proposition 
6.3.11, p.306] and its local morphisms are isomorphisms. But . ϕ may not be a 
flat epimorphism, when it is not an i-morphism. 
In case .{D(ri)} defines a partition on .D(I ), . ϕ is an i-morphism, whence a flat 
epimorphism. In this case, .�(D(I )) = ∏

Rri . 
(2) Let .FI := R[X1, . . . , Xn]/(r1X1+· · ·+rnXn−1) be the forcing R-algebra with 

structural morphism . fI , associated to a finitely generated ideal . I = (r1, . . . , rn)

(it would be more correct to write: associated to the sequence .{r1, . . . , rn}). This 
ring is not zero, for otherwise .1 = (r1X1 + · · ·+ rnXn − 1)P (X1, . . . , Xn), for  
some .P(X1, . . . , Xn) ∈ R[X1, . . . , Xn], implies that . 1−(r1X1+· · ·+rnXn) ∈
U(R[X1, . . . , Xn]), so that .r1X1 + · · ·+ rnXn would be nilpotent and then also 
the . ri’s. Then I is .FI -regular and for every ring morphism .R → S for which 
I is S-regular, there is a factorization .R → FI → S. But  .FI → S does not 
need to be unique. According to [28, Theorem 2.7 and Remark 2.8(1)], the
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ring morphism . fI is flat, .X(FI ) = D(I ) and .�(D(I )) = Dom(fI ). Moreover, 
.�(D(I )) → FI is an injective flat ring morphism. 

(3) The first author introduced in [27] the following construction that we adapt 
to the present context. Let R be a ring and I an ideal of R. Denoting by 
.C(p(X)) the content of a polynomial .p(X) ∈ R[X], we consider the mcs 
.� := {p(X) ∈ R[X] | D(I ) ⊆ D(C(p(X)))}. Setting .R(D(I )) =: R[X]� , 
we get a flat morphism .R → R(D(I )), such that .X(R(D(I ))) = D(I ). 

4 Integral Closures as Intersections 

We start by giving some results that do not seem to have been observed. They 
are consequences of a paper by P. Samuel [34]. Let v be a valuation on a ring  R. 
Following [20], we denote by . Av the valuation ring of v. 

Lemma 4.1 ([34, Théorème 1(d)]) An extension .R ⊂ S, such that .S \ R is 
multiplicatively closed, is integrally closed. For example, .R ⊆ S is integrally closed 
if there is some valuation v on S such that .R = Av , the valuation ring of v. 

We will use the next result. 

Lemma 4.2 ([34, Théorème 4]) Let .R ⊆ S be an extension and P a prime ideal 
of R. Due to Zorn Lemma, there is a maximal pair .(R′, P ′) dominating .(R, P ) and 
.S \ R′ is a mcs. 

A Manis valuation v on a ring  S is a valuation such that .v : S → �v ∪ ∞ is 
surjective, where . �v is the value group of v. 

A ring extension .R ⊆ S is called Manis if .R = Av for some Manis valuation 
v on S. Prüfer–Manis extensions are defined as Prüfer extensions .R ⊂ S such that 
there is some Manis valuation v on S such that .Av = R [20, Definition 1, p. 58]. 

By Knebusch and Zhang [20, Theorem 3.5, p.190], a flat epimorphism .R ⊆ S is 
Prüfer–Manis if and only if the set of all S-regular ideals of R is a chain. 

Lemma 4.3 ([20, Theorem 3.3, p.187, Theorem 3.1, p.187, Proposition 5.1(iii), 
p. 46-47]) The following statements are equivalent for an extension .R ⊆ S: 

(1) .R ⊆ S is Prüfer–Manis. 
(2) .S \ T is a mcs for each .T ∈ [R, S[. 
(3) .R ⊆ S is integrally closed and chained. 
(4) .R ⊆ S is Prüfer and .S \ R is a mcs. 

If the above condition (3) holds for an FCP extension, then .R ⊆ S has FIP. 
By Knebusch and Zhang [20], we know that for a Prüfer extension .R ⊂ S and 

.P ∈ Supp(S/R), the subset .SP \RP is multiplicatively closed. Also [20, Proposition 
5.1(iii), p. 46-47] shows that if .U ∈ [R, S] and .S\U is a mcs, then .U ⊂ S is Prüfer– 
Manis.
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Corollary 4.4 A minimal extension .R ⊂ S is a flat epimorphism if and only if it is 
Prüfer and if and only if it is Prüfer–Manis. 

Proof The extension is a flat epimorphism if and only if it is integrally closed. To 
complete the proof, it is enough to use [14, Proposition 3.1] that states that .S \ R is 
a mcs when .R ⊂ S is a flat epimorphism. ��
Corollary 4.5 An FCP Prüfer extension has FIP and is a tower of finitely many 
Prüfer–Manis minimal extensions. 

We will need the two following results. They generalize known results about the 
integral closure of an integral domain, which is the intersection of valuation rings. 

Lemma 4.6 Let .R ⊂ S be an extension and .x ∈ S \ R. Then there is some . T ∈
[R, S], such that .T ⊂ S is Prüfer (respectively, Prüfer–Manis) and x is not integral 
over T , and then .x /∈ T . 

Proof It is enough to mimic the first part of the proof of [34, Théorème 8]. More 

precisely, let T be a maximal element of the .∪-inductive set .{U ∈ [R, S] | x /∈ U
S}. 

We intend to show that .T ⊂ S is Prüfer–Manis. In view of the above results, we need 
only to show that any .V ∈ [T , S] with .V �= S is such that .S \ V is multiplicatively 
closed and then such that .T ⊂ S is integrally closed. Now replace A with V in the 
second paragraph of the proof of [34, Théorème 8], and the result follows. ��
Theorem 4.7 Let .R ⊂ S be an extension, then .R

S
is the intersection of all . T ∈

[R, S] such that .T ⊂ S is Prüfer (resp., Prüfer–Manis) and also the intersection of 
all .U ∈ [R, S], such that .S \ U is a mcs. 

Proof The second result is [34, Théorème 8]. Now Lemma 4.6 shows that . R
S

contains the intersection of all .T ∈ [R, S] such that .T ⊂ S is Prüfer (resp., Prüfer– 
Manis). 

For the reverse inclusion, consider an element .x ∈ S, integral over R. Then 
.T ⊆ T [x] is integral and a flat epimorphism for any .T ∈ [R, S] such that .T ⊂ S is 
Prüfer. We deduce from [22, Lemme 1.2, p. 109] that .T = T [x] and x belongs to 
T . ��
Remark 4.8 As a consequence of the above theorem, we get that an extension . R ⊆
S is quasi-Prüfer if and only if the set of all .T ∈ [R, S], such that .T ⊆ S is Prüfer, 
has a smallest element. 

5 Avoidance Lemmata 

Some of the following results are known in the context of integral domains and 
valuation domains. We will use the framework of their proofs but shorter different 
argumentations. Kostra proved the next Theorem [21, Lemma 2 and Theorem 2], in
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case S is a field. To prove it in our context, we follow the steps of his difficult proof 
by using Theorem 4.7. 

If .V ⊆ S is Prüfer–Manis, S is endowed with a valuation .v : S → �v ∪ {∞}, 
which is surjective. There is no need to consider invertible elements that may not 
exist but elements .x ∈ V , such that .v(x) = 0, that is .x /∈ Pv , the center of v. 
Moreover, if .v(x) > 0, then .v(1 + x) = 0. 

Lemma 5.1 Let .R, T , V, V1, . . . , Vn be subrings of a ring S, where n is a positive 
integer and such that .V ⊆ S and .Vi ⊆ S are Prüfer–Manis for each .i ∈ Nn. Let . vi

be the valuation associated to . Vi . Assume that there is some .b ∈ [T ∩(∩i∈Nn
Vi)]\V . 

Then, there exists .c ∈ [T ∩ (∩i∈Nn
Vi)] \ V such that .vi(c) = 0 for any .i ∈ Nn. 

Moreover, for any .W ∈ [R, S] such that .W ⊆ S is Prüfer–Manis with .b �∈ W , 
then .c �∈ W . 

Proof We build by induction the sequence .S := {bi}ni=0 in the following way: set 

.b0 := b and .bk := 1 + ∏k−1
i=0 bi for any .k ∈ Nn. Then, .bk ∈ T ∩ (∩i∈Nn

Vi) for any 
.k ∈ {0, . . . , n}, so that .vi(bk) ≥ 0 for any .i ∈ Nn and any .k ∈ {0, . . . , n}. 

If .bl = bk for some .k �= l, assume that .k > l. Then, .bk = 1 + bk

∏k−1
j=0,j �=l bj , 

giving that .bk(1 − ∏k−1
j=0,j �=l bj ) = 1, so that . vi(bk) + vi(1 − ∏k−1

j=0,j �=l bj ) =
vi(1) (∗), with . bk and .1 − ∏k−1

j=0,j �=l bj both in . Vi for any .i ∈ Nn. It follows  that  

.vi(bk) ≥ 0 and .vi(1 − ∏k−1
j=0,j �=l bj ) ≥ 0. As .vi(1) = 0, . (∗) leads to .vi(bk) = 0 for 

any .i ∈ Nn and the proof of the Lemma is gotten for . bk . 
Assume now that .bj �= bk for any .k, j ∈ {0, . . . , n}, k �= j , so that .|S| = n + 1. 
We claim that for any .i ∈ Nn, there is at most one .bij ∈ S such that . vi(bij ) >

0 (∗∗). 
If .vi(bk) = 0 for any .k ∈ {0, . . . , n}, then .(∗∗) holds. Otherwise, let . j0 be the 

least integer of .{0, . . . , n} such that .vi(bj0) �= 0, that is, .vi(bj0) > 0. It follows that 
for any .k ≥ j0, we have  .vi(

∏k
j=0 bj ) > 0, so that . vi(bk+1) = vi(1 + ∏k

j=0 bj ) =
vi(1) = 0. Since .vi(bk) = 0 for any .k < j0, we get that .vi(bk) �= 0 if and only if 
.k = j0. Then .(∗∗) holds. Hence, .|{bj ∈ S | ∃i ∈ Nn such that . vi(bj ) �= 0}| ≤ n <

|S|. It follows that there exists some .c := bk ∈ [T ∩ (∩i∈Nn
Vi)] such that . vi(c) = 0

for any .i ∈ Nn. 
It remains to show that .c �∈ V . We prove by induction on .j ∈ {0, . . . , k} that 

.bj �∈ V for any .j ∈ {0, . . . , k}. This is satisfied for .j = 0 since .b0 = b. Assume that 

.bj �∈ V for any .j ∈ {0, . . . , l} where .l < k. But .S\V is a mcs, so that .
∏l

j=0 bj �∈ V , 

which implies that .bl+1 �∈ V and then .c = bk = 1 + ∏k−1
j=0 bj �∈ V . 

Now, let .W ∈ [R, S] be such that .W ⊆ S is Prüfer–Manis with .b �∈ W . We follow 
the proof of [21, Remark, page 173]. We consider the previous sequence .{bj } with 
.b0 := b and .bj = 1 + ∏j−1

i=0, bi . We still have .c ∈ T ∩ (∩i∈Nn
Vi). Obviously, since 

.b �∈ W , so is any . bi , and then .bk = c �∈ W because .S \ W is a mcs. ��
Theorem 5.2 Let .R,B1, . . . , Bn be subrings of a ring S, where n is a positive 
integer, . n > 1. If the . Bis are integrally closed in S, except at most two of them, 
and .R ⊆ B1 ∪ · · · ∪ Bn, then R is contained in some of the subrings . Bi .
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Proof First, we may remark that .R ⊆ B1 ∪ B2 implies that R is contained in one 
of the subrings .B1, B2 by an obvious property of additive subgroups. So, we may 
assume that .n ≥ 3 with . Bi integrally closed in S for any .i ≥ 3. There is no harm 
to assume that n is the least integer such that .R ⊆ B1 ∪ · · · ∪ Bn, that is . R �⊆
∪i∈Nn,i �=jBi for each .j ∈ Nn (∗). 

To prove the theorem, it is enough to show that if R is not contained in any of 
the subrings . Bi , we get a contradiction, that is .R �⊆ B1 ∪ · · · ∪ Bn, or equivalently, 
there exists some .x ∈ R \ (B1 ∪ · · · ∪ Bn). This  x is gotten after five steps. 

Step 1 Assume that .R ⊆ B1 ∪ · · · ∪Bn with R not contained in any of the subrings 
. Bi . According to . (∗), for any .j ∈ Nn, there exists .aj ∈ (R ∩ Bj ) \ (∪i∈Nn,i �=jBi). 

Fix some .i ∈ Nn, i �= j, i > 2. Since .Bi ⊆ S is integrally closed, by 
Theorem 4.7, there exists a family .{Vk,i} ⊆ [Bi, S] such that .Vk,i ⊆ S is Prüfer– 
Manis, with .Bi = ∩Vk,i . Let  .vk,i be the Manis valuation associated to . Vk,i . As  
.aj �∈ Bi , there exists some .Vj,i such that .aj �∈ Vj,i . Moreover, .aj ∈ Vk,j for any k 
if .j ≥ 2. 

Set .M := {Vj,i | i > 2, i �= j}. Then, . B3 ∪ · · · ∪ Bn ⊆ ∪i>2,i �=jVj,i =
∪Vj,i∈MVj,i . For each . ak , set  .M

(k) := {Vj,i ∈ M | ak ∈ Vj,i} so that . Vk,j ∈ M(j)

for any k if .j ≥ 2. 

Step 2. If .M(k) �= ∅, then .ak ∈ [R ∩ (∩
Vj,i∈M(k)Vj,i)] \ Vk,i . It follows from 

Lemma 5.1 that there exists .ck ∈ R such that .vj,i(ck) = 0 for any .Vj,i ∈ M(k) and 
.ck �∈ Vk,i . In particular, .ck ∈ Vj,i for any .Vj,i ∈ M(k). 

If .M(k) = ∅, set  .ck := ak ∈ R. Since .ak �∈ Vj,i for any .Vj,i ∈ M, it follows that 
.ck �∈ Vj,i for any .Vj,i ∈ M. 

Step 3 Set .d0 := ∏n
k=1 ck . Then, .d0 ∈ R. We claim that .d0 �∈ V , for any .V ∈ M. 

Let .V ∈ M. Then, there exist .i0, j0, i0 > 2, i0 �= j0 such that .V = Vj0,i0 , so that 
.aj0 �∈ V . Whatever is .M(j0), we have that .cj0 �∈ V . It is obvious if .M(j0) �= ∅. If  
.M(j0) = ∅, then .cj0 �∈ Vj,i for any .Vj,i ∈ M. In particular, .cj0 �∈ V . It follows that 
.vj0,i0(cj0) < 0. 

Consider . ck for some .k �= j0. If  .ck �∈ V , then .vj0,i0(ck) < 0. If  .ck ∈ V , we  
cannot have .M(k) = ∅, so that .M(k) �= ∅. If  .V ∈ M(k), then .vj0,i0(ck) = 0 and 
.ak ∈ Vj0,i0 . If  .V �∈ M(k), then .ak �∈ Vj0,i0 and .ck �∈ Vj0,i0 by Lemma 5.1, which 
leads to .vj0,i0(ck) < 0. In any case, .vj0,i0(ck) ≤ 0. 

To conclude .vj0,i0(d0) = ∑n
k=1 vj0,i0(ck) ≤ vj0,i0(cj0) < 0. This implies that 

.d0 �∈ V for any .V ∈ M, and then .d0 �∈ B3 ∪ · · · ∪ Bn. 
Set .M0 := {V1,i | i > 2}∪{V2,i | i > 2}∪{V3,i | i > 3}, with . {V3,i | i > 3} = ∅

if .n = 3. Obviously, .M0 ⊆ M, so that .d0 �∈ Vj,i for any .Vj,i ∈ M0. 
Let .t1, t2 ∈ N, t1 �= t2. We claim that .vj,i(d

t1
0 ) �= vj,i(d

t2
0 ) for any .Vj,i ∈ M0. 

Assume that .t1 > t2 and set .t := t1 − t2, that is, .t1 = t + t2. It follows  that  
.d

t1
0 = d

t2
0 dt

0, so that .vj,i(d
t1
0 ) = vj,i(d

t2
0 ) + vj,i(d

t
0). Now,  .vj,i(d

t1
0 ) = vj,i(d

t2
0 )
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implies .vj,i(d
t
0) = 0, that is, .dt

0 ∈ Vj,i . But  .Vj,i ⊆ S is Prüfer–Manis, and then 
integrally closed, so that .d0 ∈ Vj,i , a contradiction. Then, .vj,i(d

t1
0 ) �= vj,i(d

t2
0 ). 

Let .l ∈ {1, 2, 3} and consider the corresponding . al defined at the beginning of 
the proof. Then, there exists at most one .tj,i,l ∈ N such that .vj,i(al) = vj,i(d

tj,i,l
0 ). If  

there does not exist such .tj,i,l , we have .vj,i(al) �= vj,i(d0). In this case, set .tj,i,l = 1. 
It follows that in any case and for any .t > tj,i,l , we have .vj,i(al) �= vj,i(d

t
0). Let  

. t0 := sup{1 + tj,i,l | j, l ∈ {1, 2, 3}, i ∈ {3, . . . , n}, i > j}.
Then, .v(d

t0
0 ) �= v(al) for any .V ∈ M0 and any .l ∈ {1, 2, 3}. 

Step 4 Set .d := d
t0
0 . Then, .v(d) �= v(al) for any .V ∈ M0 (∗∗). Moreover, for any 

.V ∈ M, we have .d0 �∈ V , which implies .d �∈ V since .V ⊂ S is integrally closed. In 
particular, .d �∈ B3 ∪ · · · ∪Bn, but .d0 ∈ R implies .d ∈ R ⊆ B1 ∪B2 ∪B3 ∪ · · · ∪Bn, 
so that .d ∈ B1 ∪ B2. Now, .B1 ∪ B2 = (B1 ∩ B2) ∪ (B1 \ B2) ∪ (B2 \ B1). 

Step 5 We are going to consider the three possible cases for d. 

(1) .d ∈ B1 ∩ B2. 
Set .x := a3+d ∈ R. Since .a3 ∈ (R∩B3)\(∪i∈Nn,i �=3Bi), we have .a3 �∈ B1∪B2, 

so that .x �∈ B1 ∪ B2. Moreover, .d �∈ B3, which implies that .x �∈ B3. Let .i > 3. 
If .v3,i (d) < v3,i (a3), then .v3,i (x) = v3,i (a3+d) = v3,i (d) < 0 because .d �∈ V3,i . 

Then, .x �∈ Bi . 
If .v3,i (d) ≥ v3,i (a3), then .v3,i (d) > v3,i (a3) by .(∗∗), so that . v3,i (x) =

v3,i (a3) < 0 because .a3 �∈ V3,i . Then, .x �∈ Bi . 
It follows that .x �∈ B1 ∪ B2 ∪ B3 ∪ · · · ∪ Bn, a contradiction. 
(2) .d ∈ B1 \ B2. 
Set .x := a2 + d ∈ R. Since .a2 �∈ B1, we have  .x �∈ B1, and since .a2 ∈ B2, this  

implies that .x �∈ B2, so that .x �∈ B1 ∪ B2. Let .i > 2. 
If .v2,i (d) < v2,i (a2), then .v2,i (x) = v2,i (d) < 0 because .d �∈ V2,i . Then, .x �∈ Bi . 
If .v2,i (d) ≥ v2,i (a2), then .v2,i (d) > v2,i (a2) by .(∗∗), so that . v2,i (x) =

v2,i (a2) < 0 because .a2 �∈ V2,i . Then, .x �∈ Bi . 
It follows that .x �∈ B1 ∪ B2 ∪ B3 ∪ · · · ∪ Bn, a contradiction. 
(3) .d ∈ B2 \ B1. 
The proof is similar as in (2) by changing . B1 and . B2. 
To conclude, we get a contradiction in any case, so that there exists some i such 

that .R ⊆ Bi . ��
Proposition 5.3 Let .R ⊆ S be a Prüfer extension and .U,B1, . . . , Bn ∈ [R, S] such 
that .B1 ∩ · · · ∩ Bn ⊂ U and .U ⊆ S is Prüfer–Manis. Then there is some i such that 
.Bi ⊆ U . 

Proof Actually, this result is given under an equivalent form in [19, Theorem 1.4, 
p.4]. Let .B1, . . . , Bn ∈ [R, S] be such that .B1 ∩ · · · ∩ Bn ⊂ U . Then, we have 
.U = U(B1 ∩ · · · ∩ Bn) = UB1 ∩ · · · ∩ UBn by Knebusch and Zhang [20, Theorem 
1.4(4), p.86-87]. Now .[U, S] is a chain [20, Theorem 3.1, p. 187], so that . U = UBi

for some i and then .Bi ⊆ U . ��
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Note that if the extension .R ⊆ S is Prüfer–Manis, so is .U ⊆ S for any . U ∈ [R, S]
[20, Corollary 3.2, P. 187]. 

Gotlieb proved the following result for a ring extension .R ⊂ K , where R is an 
integral domain with quotient field K [16, Theorem 6]. 

Theorem 5.4 Let .R ⊂ S be an extension and .T , T1, . . . , Tn ∈ [R, S], such that 
.T = R� , where . � is a mcs of R and .R → Ti is a flat epimorphism for . i = 1, . . . , n
such that .T ⊆ T1 ∪ · · · ∪ Tn. Then T is contained in some . Ti . 

Proof Assume that T is not contained in any . Ti . By the  . (X)-rule, there are prime 
ideals .Pi ∈ X(Ti) \ X(T ) and .X(T ) = {P ∈ Spec(R) | P ∩ � = ∅}. We set  
.I := P1 ∩ · · · ∩ Pn. We deduce from .T ⊆ T1 ∪ · · · ∪ Tn that .I ∩ � = ∅. There 
exists some prime ideal P of R such that .I ⊆ P and .P ∩ � = ∅. Then some . Pi is 
contained in P : so that .Pi ∈ X(T ). Hence, we get a contradiction. ��

6 Pullback Results 

Consider the following pullback diagram (D) in the category of commutative unital 
rings: 

. 

R
i

S

f

⏐
⏐

⏐
⏐

g

V
j

K

where i and j are ring extensions. It can be considered as a composite of the two 
diagrams: 

. 

Ker(D):

R S

R/Ker(f) S/Ker(g)

and Im(D):

f(R) g(S)

V K

The first diagram is a pullback because .Ker(f ) = Ker(g) thanks to the pullback 
diagram (D). It follows that .R = f (R) ×g(S) S. It is of the form 

.

A B

A/I B/I
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where I is an ideal shared by the rings A and B. We recall that in this case, . A ⊆ B

is Prüfer if and only if .A/I ⊆ B/I is Prüfer ([20, Proposition 5.8, p.52]). 
It is easy to prove that the second diagram is a pullback and is such that .f (R) is 

isomorphic to .V ∩ g(S). 
Recall that a ring R is called semi-hereditary if each of its finitely generated 

ideals is a projective R-module. 
Olivier proved that an extension of rings .R ⊂ S is integrally closed if and only if 

there is a pullback diagram (D), where V is a semi-hereditary ring with a (absolutely 
flat) total quotient ring K [25, Corollary p.56] or [24, Théorème de Ker Chalon 
(2.1)]. In this case, we call (DO) the diagram (D). Therefore, the Prüfer property is 
not descended in pullbacks, since .V ⊂ K is Prüfer [11, Theorem 2] and there are 
integrally closed extensions that are not Prüfer. 

On the other hand, we have a pullback example provided by the following result. 

Proposition 6.1 ([9, Theorem 6.8 and Theorem 6.10]) If R is a local ring, an 
extension .R ⊆ S is Prüfer if and only if there exists .P ∈ Spec(R) such that .S = RP , 
.P = SP , and .R/P is a valuation domain. Under these conditions, .S/P is the 
quotient field of .R/P and P is a divided prime ideal of R (i.e., comparable to each 
ideal of R). In particular, .[R, S] is a chain. 

Proof To complete the proof, observe that there is an order isomorphism . [R, S] →
[R/P, S/P ] given by .T �→ T/P for .T ∈ [R, S]. ��

We now use Olivier’s result to find a characterization of Prüfer extensions. 

Theorem 6.2 Let .R ⊂ S be an integrally closed extension and (DO) the pullback 
diagram where V is semi-hereditary with total quotient ring K . Then, .R ⊂ S is 
Prüfer if and only if .g(T )V ∩ g(S) = g(T ) for each .T ∈ [R, S] or equivalently, the 
following diagram (. DT ) is a pullback, for each .T ∈ [R, S]: 

. 

T S

g(T )V K

In that case, we have .R = V ×g(T )V T and .g(T )V ∼= V ⊗R T . 

Proof We use the characterization of Prüfer extensions by normal pairs and flat 
epimorphisms. Suppose that .(DT ) is a pullback. Since an overring of a semi-
hereditary ring is semi-hereditary ([2, Corollary p.143]), Olivier’s result implies that 
.T ⊂ S is integrally closed. Hence, .R ⊂ S is Prüfer. We now prove the converse. 
Suppose that .R ⊂ S is Prüfer. Then .R ⊂ T is a flat epimorphism. Tensoring the 
diagram (D) by .⊗RT , we get another pullback diagram because the pullback R is 
a kernel of a morphism of R-modules and T is flat over R. We next identify the 
rings of the new pullback. We have clearly .T ∼= R ⊗R T . Moreover, we also have 
.S ⊗R T ∼= S. This is a consequence of [35, Satz 2.2 (d)] that states that if M is 
a T -module and .R → T an epimorphism, then .M ⊗R T ∼= M (an isomorphism
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of T -modules). We next show that .V ⊗R T ∼= g(T )V . Consider the natural map 
.V ⊗R T → K; its image is .g(T )V . Then .V → V ⊗R T is a flat epimorphism 
deduced from .R → T by the base change .R → V and . V → V ⊗R T → g(T )V

is injective. It follows that .V ⊗R T → g(T )V is an isomorphism because a flat 
epimorphism is essential by Lazard [22, Lemme 1.2, p.109]. Then we show that 
.K ⊗R T ∼= K . We first observe that .K → K ⊗R T is a flat epimorphism whose 
domain is an absolutely flat ring. This map is surjective. To see this, if J is the kernel 
of the morphism, then .K/J → K ⊗R T is a faithfully flat epimorphism because 
.K/J is absolutely flat whence is an isomorphism by Lazard [22, Lemme 1.2, p.109]. 
Moreover, .V → V ⊗R T identifies to .V → g(T )V , whence is injective. As . V → K

is flat, the map .K → (V ⊗R T )⊗V K ∼= K ⊗R T is injective, so that .K ∼= K ⊗R T . 
Therefore, we have proved that there is a pullback diagram .(DT ). To complete 

the proof, it is enough to consider .Im(DT ), in which case the pullback condition on 
T can be written .g(T )V ∩ g(S) = g(T ). ��

Nevertheless, we give some examples of pullbacks where the ascent property 
holds. 

Proposition 6.3 Let I be an ideal of a ring S and set .S′ = S/I . Denote by . ϕ the 
canonical map .S → S/I . Let . R′ be a subring of . S′ and R the pullback ring in the 
following diagram: 

. 

R S

R′ S ′

.

Then .R ⊂ S is Prüfer if and only if .R′ ⊂ S′ is Prüfer. 

Proof Clearly, I is an ideal shared by R and S. Now, observe that . R′ identifies to 
.(R + I )/I ∼= R/(I ∩ R) ∼= R/I . It is then enough to apply [20, Proposition 5.8, 
p.52]. ��

7 The Case of a Local Base Ring 

When the base ring R is local, we already gave a characterization of Prüfer 
extensions in Proposition 6.1. 

Definition 7.1 An extension .R ⊆ S is called module distributive if . R ∩ (X + Y ) =
(R ∩ X) + (R ∩ Y ) for each pair of R-submodules .(X, Y ) of S (cf. [20, p.119]). We 
say that .R ⊆ S is distributive if the lattice .[R, S] endowed with compositum and 
intersection as laws is distributive. 

Knebusch and Zhang [20, Theorem 5.4, p.121] show that an extension .R ⊆ S is 
module distributive if and only if it is Prüfer. As a consequence, we get that the set of
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.RP -submodules of .SP /RP is a chain [12, Corollary 2], when the extension is Prüfer. 
This gives a stronger result than that of Proposition 6.1. Moreover, we see that a 
Prüfer extension is both module distributive and distributive. For the distributivity, 
use [30, Proposition 5.18] since a Prüfer extension .R ⊂ S is arithmetical (that is 
.RM ⊂ SM is chained for any .M ∈ Max(R)). 

In order to get more results, we introduce the following considerations. 
In view of [20, Proposition 5.2, p.119], an ideal I of a ring R is called distributive 

if .I + (J ∩ K) = (I + J ) ∩ (I + K) for all ideals .J,K of R. When R is local, an 
ideal I is distributive if and only if I is comparable to each ideal (principal) of R. 
In this case (R is local), we will call I a strong divisor if in addition .0 : I = 0. The  
following result will be useful. 

Proposition 7.2 ([20, Example 5.1, p.119]) Let .R ⊂ S be a Prüfer extension. An 
S-regular ideal I of R is distributive. In particular, such an ideal is a strong divisor 
if R is local. 

We can translate some results of [12, Lemma 1.1, Corollary] as follows. Let R 
be a ring and set .� := {σ ∈ R \ Z(R) | Rσ is distributive}. Then . � is a saturated 
mcs of R. Moreover, if . T is a mcs of R, such that .T ⊆ R \ Z(R) and .R ⊆ RT is 
Prüfer, then .T ⊆ �. 

We next examine the local case. We may find in [20, p.123] the following 
definition and result. 

Definition 7.3 A strong divisor t of a local ring R is an element t of R, such that 
the ideal Rt is a strong divisor. The set .	(R) of all strong divisors of R is a saturated 
mcs of R and .U(R) ⊆ 	(R). 

We observe that for .t ∈ 	(R), the open subset . D(t) = {Q ∈ Spec(R) | Q ⊂
Rt}. 

Recall that a ring R has a maximal Prüfer extension .R ⊆ P(R) := ˜RQ(R), where 
.Q(R) is the complete ring of quotients of R (Utumi–Lambeck) [20]. Then .P(R) is 
called the Prüfer hull of R. 

It is known that a Prüfer extension .R ⊂ S, where R is local, is a QR extension; 
that is, is such that each .T ∈ [R, S] satisfies .T ∼= R� (an isomorphism of R-
algebras) for some mcs . � of R. For more information, see Proposition 8.3. Next  
result refines this observation. 

Proposition 7.4 Let R be a local ring and .R ⊂ S an extension: 

(1) .P(R) = R	(R). 
(2) An extension .R ⊂ S is Prüfer if and only if .S = R� , for some mcs . � ⊆ 	(R)

and, if and only if .R ⊆ Rs (i.e., .s−1 exists and belongs to R), for each .s ∈ S\R. 
In this case, .S ⊆ Tot(R). 

Proof The proof is a consequence of the following facts: .R	(R) is the Prüfer hull 
of R. If  .R ⊂ S is Prüfer, there is some mcs .� ⊆ 	(R) such that .S = R� in which 
case .R ⊆ R� ⊆ R	(R) [20, Remark 5.9, Proposition 5.10 p.123]. The last assertion 
is [6, Proposition 3.1]. ��
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Lemma 7.5 Let .R ⊂ R� := S be an extension of finite type, where . � is a mcs of 
R. Then there is some .x ∈ � such that .S = Rx . 

Proof It follows from [4, Theorem 1.1] that .R ⊂ R� := S is of finite presentation 
because it is an injective flat epimorphism of finite type. Therefore, according to 
the (.MCS)-rule, .X(S) = ∩{D(r)|r ∈ �} is an open subset of the patch topology 
(constructible topology) by the Chevalley Theorem and is even open because a 
flat morphism of finite presentation is open for the Zariski topology. As the patch 
topology is compact and the sets .D(r) for .r ∈ � are closed in this topology, we get 
that .X(S) is the intersection of finitely many .D(ri) for .i = 1, . . . , n with .ri ∈ �. 
Setting .x = r1 · · · rn, we get that .X(S) = D(x) and then .S = Rx by the (. X)-rule. 

��
The next result is now clear. 

Proposition 7.6 An extension .R ⊂ S of finite type over a local ring R is Prüfer if 
and only if there is some .s ∈ 	(R) such that .S = Rs . 

Proof Suppose that .R ⊂ S is Prüfer, then .S = R� for some mcs . � ⊆ 	(R)

(Proposition 7.4). We deduce from Lemma 7.5 that .S = Rs for some .s ∈ 	(R). 
The converse is obvious. ��

The following results will be useful. 

Proposition 7.7 Let R be a local ring and .x ∈ R a regular element. Then x is a 
strong divisor if and only if .R ⊆ Rx is Prüfer. 

Proof Proposition 7.6 gives one implication. Suppose that .R ⊂ Rx is Prüfer. From 
Proposition 7.6, we deduce that .Rx = Rs for some strong divisor .s ∈ R. It follows 
that .

√
Rx = √

Rs and then .sn = yx for some .n ∈ N and .y ∈ R. Therefore, x is a 
strong divisor. ��
Example 7.8 Let R be a local arithmetical ring. The set of all its ideals is a chain. 
It follows that each regular element x of R is a strong divisor and then .R ⊆ Rx is 
Prüfer. 

Proposition 7.9 Let .f : R → R′ be a faithfully flat ring morphism between local 
rings and . x ∈ R. If .f (x) is a strong divisor, so is x. 

Proof Observe that . x is regular in R. To conclude, use Proposition 2.5, because 
.R′

f (x) = Rx ⊗R R′. ��
Let .R ⊆ S be an extension and . 	 a mcs of R. The large quotient ring .R[	] of R 

(in S) with respect to . 	 is the set of all .x ∈ S such that there is some .s ∈ 	 with 
.sx ∈ R. In case .	 = R \ P , where P is a prime ideal of R, we set .R[P ] := R	. 

Proposition 7.10 Let R be a local ring and .R ⊂ S a flat extension; then . ˜R =
R[	(R)] = R� , where .� := 	(R) ∩ U(S).
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Proof By Proposition 7.4, there is some multiplicatively closed subset . 
 of . 	(R)

such that .˜R = R
. We have clearly .
 ⊆ U(S), so that .
 ⊆ �. It follows that 
.R
 ⊆ R� , while .R ⊆ R� is Prüfer and therefore .R
 = R� . 

Now let .z ∈ R[	(R)]; there is some .t ∈ 	(R) such that (*): .x = tz ∈ R. Since 
. Rt is a strong divisor, Rt and Rx are comparable. Moreover, since .R ⊂ S is flat, t 
is also regular in S. 

If .Rx ⊆ Rt , then .x = at , so that .z = a ∈ R, because t is regular. 
If .Rt ⊆ Rx, then .t = bx, and since .	(R) is saturated, we get that . x ∈ 	(R)

and x is regular. We deduce from (*) that .bz = 1 in S. It follows that .z ∈ U(S) and 
.z = b−1, with .b ∈ 	(R) ∩ U(S), so that .z ∈ R� . 

To conclude, we have .R[	(R)] ⊆ R� . As the reverse inclusion is obvious, we get 
finally that .R[	(R)] = R� . ��

If Q is a prime ideal of a ring R, we denote by .Q↓ its generization i.e., . {P ∈
Spec(R) | P ⊆ Q}. The first author defined a prime g-ideal as a prime ideal Q 
such that . Q↓ is an open subset of .Spec(R) [26]. If Q is a g-ideal of R, then Q is a 
Goldman ideal of R; that is .R/P ⊆ κ(P ) is of finite type as an algebra [26]. 

Proposition 7.11 Let s be a non-unit strong divisor of a local ring R and . R ⊂ S :=
Rs the Prüfer extension associated. Then .P = ∩{Rsn | n ∈ N} is a prime g-ideal, 
.S = RP , .PS = P is a divided prime ideal of R and .R/P is a valuation domain 
with quotient field .S/P . We will denote by . Ps the ideal P . 

Proof There exists .P ∈ Spec(R) such that .S = RP , .PS = P is a divided prime 
ideal of R, and .R/P is a valuation domain with quotient field .S/P according to 
Proposition 6.1. Note  . 〈s〉 the saturated mcs generated by s and set . I := ∩{Rsn |
n ∈ N}. Remark that .〈s〉 = {usn | n ∈ N, u ∈ U(R)}. Note that .P = R \ 〈s〉. 
We are aiming to show that .I = P . We have  .I ⊆ P , because if not, there is some 
.x ∈ I ∩ 〈s〉 and then .xy = sp = bsp+1 for some .y, b ∈ R and .p ∈ N. Since s is 
regular, it follows that s is a unit, a contradiction. Now let .x ∈ P and suppose that 
.x /∈ I . Then .x /∈ Rsn for some positive integer n. Because . sn is a strong divisor, we 
get .Rsn ⊆ Rx, and then x belongs to . 〈s〉, a contradiction. Now P is a prime g-ideal 
because .P ↓ = D(s) is an open subset. ��
If .R ⊂ S is a Prüfer extension of finite type over a local ring, there is some . s ∈ 	(R)

such that .S = Rs by Proposition 7.6. 

Remark 7.12 We use the notation of Proposition 7.11. 
It is easy to prove that .P = RsP because s is regular and .P = ∩{Rsn | n ∈ N}. 

Therefore, if .(R,M) is Noetherian and local and s is not a unit, from .P = MP , we  
deduce that .P = 0 and R needs to be an integral domain, so that R is a Noetherian 
valuation domain, that is a discrete valuation domain, and S is the quotient field 
of R. Another consequence is that if R is not an integral domain, the only strong 
divisors of R are the units. 

The next result is now clear.
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Proposition 7.13 Let .R ⊂ S be an extension over a local ring. The set of rings 
.F := {Rs ∈ [R, S] | s ∈ 	(R) ∩ U(S)} is a chain and . ˜R is the set union of all 
elements of . F. It follows that .˜R ↪→ Tot(R). 

Definition 7.14 We say that two ideals I and J of a ring R are equivalent if . 
√

I =√
J (equivalently .D(I ) = D(J )). We also say that two elements .x, y of R are 

equivalent if .D(x) = D(y), and we write .x � y. This condition is equivalent to 
.Rx

∼= Ry and also to .
√

Rx = √
Ry. Note that if x is a strong divisor and .x � y, 

then y is a strong divisor because .
√

Rx = √
Ry and the set of all strong divisors is 

a saturated mcs. 

Remark 7.15 We reconsider the context of Proposition 7.11, and we set . δ(R) :=
	(R) \ U(R). There is a surjective map .δ(R) → {Ps | s ∈ δ(R)}, defined by 
.s �→ Ps . Setting .	Spec(R) := {Ps | s ∈ δ(R)}, there is therefore a bijective map 
.(δ(R)/ �) → 	Spec(R). 

Then .	Spec(R) is a chain. It follows that the set intersection of all its elements 
is a prime ideal . R that could be called the strong radical of the local ring R. Now,  
according to Proposition 7.13 and the .(MCS)-rule, .X(P(R)) . = ∩{D(s) | s ∈
	(R)} = ∩{P ↓

s | s ∈ δ(R)} = R↓. It follows  that  .P(R) = RR. If  .R ⊂ S is a 
ring extension, then .˜R = P(R) ∩ S = R[R]. 

We think that the set .	Spec(R) deserves a deeper study, especially with respect 
to some classes of rings. 

Proposition 7.16 Let .R ⊂ S be a Prüfer extension, where R is local and I an ideal 
of finite type of R. Then I is S-regular if and only if .I = Rρ where . ρ is a strong 
divisor of R, invertible in S. 

Proof Assume that I is S-regular. From .IS = S, we deduce that I is a principal 
ideal . Rρ by Knebusch and Zhang [20, Theorem 1.13, p. 91 and Proposition 2.3, 
p.97], because .IS = S means that I is S-regular and, R being local, is S-invertible, 
whence principal of the form .I = Rρ. An appeal to Proposition 7.2 yields that 
. Rρ is a strong divisor and .Sρ = S shows that . ρ is invertible in S. The converse is 
obvious. ��

8 QR Extensions 

We first give some notation and definitions for an extension .R ⊂ S. For .T ∈ [R, S], 
we set .�T := U(T ) ∩ R, which is a mcs of R whose elements are regular and such 
that .R ⊆ R�T

⊆ T . 
A Prüfer extension .R ⊆ S is called Bezout, if each finitely generated S-regular 

ideal of R is principal [20, Definition 1; Theorem 10.2, p.145]. 
Let .(R,M) be a local ring, then an extension .R ⊆ S is Bezout if and only if it is 

Prüfer, and if and only if .(R,M) is Manis in S [20, Scholium 10.4 p.147].
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We call a QR extension any extension .R ⊆ S such that each .T ∈ [R, S] is of 
the form .T ∼= R� (an isomorphism of R-algebras) for some mcs . � of R, in which 
case the elements of . � are regular, invertible in S, and .T = R�T

. It is easy to show 
that .R ⊆ S is a QR extension if and only if the defining property holds for each 
.T ∈ [R, S]fg . Moreover, an extension .R ⊂ S is a QR extension if and only if it is 
Prüfer, and each finitely generated S-regular ideal I of . R satisfies .

√
I = √

Rx for 
some .x ∈ R (which implies that .D(I ) = D(x) is (special) affine) [20, Proposition 
4.15, p.116]. 

A Prüfer extension does not need to be a QR extension: look at the example [15, 
Section 4, Examples]. 

Proposition 8.1 A Bezout extension .R ⊆ S is a QR extension. 

Proof We first observe that a subextension .R ⊆ T is Bezout. Then [20, Proposition 
10.16, p.152] shows that .T = R� , for some mcs . � of R and therefore the extension 
is QR. ��
Corollary 8.2 Each extension .R ⊆ S has a unique Bezout subextension . R ⊆ T

that contains any .T ′ ∈ [R, S], such that .R ⊆ T ′ is Bezout. Then T is called the 
Bezout hull of R and denoted here by .β(R). 

Proof It is enough to use [20, Theorem 10.14, p.151]. ��
Moreover, we have the next result. 

Proposition 8.3 Let .R ⊂ S be an extension where projective R-modules of rank 
one are free. Then .R ⊂ S is Prüfer if and only if it is a QR extension, and if and 
only if .R ⊂ S is Bezout. If the above statements hold, then a finitely generated 
S-regular ideal I of R is of the form .I = Rρ, where . ρ is a locally strong divisor. 

Proof The first equivalence is [20, Proposition 4.16 p.116]. The second is a 
consequence of [20, Proposition 2.3, p.97] because under the hypotheses on R, a  
Prüfer extension is Bezout and the converse holds for an arbitrary ring R. The  last  
statement is a consequence of Proposition 7.16. ��

The conditions on projective modules that are involved in this paper are either R 
is semilocal or a Nagata ring .A(X) [13]. In particular, we recover Proposition 6.1 in 
case R is a local ring. 

We will need an extension of the notion of strong divisors. A regular element of 
a ring  R is called a locally strong divisor (shorten to lsd) if  .R ⊆ Rx is Prüfer. In 
order to justify this definition, we recall that an extension .R ⊆ S is Prüfer if and 
only if all its localizations by a prime ideal of R are Prüfer. Hence if .x ∈ R is an lsd 
and P is a prime ideal of R, then .x/1 ∈ RP is a strong divisor. For the converse, use 
that if .x ∈ R is regular in every ring . RP , where P is a prime ideal, so is x because 
.R → ∏{RM | M ∈ Max(R)} is injective. The set of all locally strong divisors is a 
saturated mcs . �	. Clearly, a strong divisor of a local ring is an lsd. Now if . R ⊆ S

is a ring extension, we denote by .λδ(R) the ring .R�	∩U(S).



Around Prüfer Extensions 373

Remark 8.4 Let .f : R → S be a ring morphism: 

(1) If f is a flat morphism and .x ∈ R is such that .f (x) is an lsd, then so is x. Indeed 
for .Q ∈ Spec(S) lying over P , then .RP → SQ is faithfully flat. 

(2) If f is a flat epimorphism and .x ∈ R is an lsd so is .f (x), because for each 
.Q ∈ Spec(S) and .P := f −1(Q), the natural map .RP → SQ is an isomorphism. 

Theorem 8.5 Let .R ⊂ S be an extension. Then .R ⊂ S is a QR extension if and only 
if each .T ∈ [R, S] of finite type over R is of the form .T = Rs for some lsd . s ∈ R. In  
particular, if these conditions hold, each .T ∈ [R, S] is of the form .T = RT, where 
.T ⊆ �	 is a mcs. 

Proof One implication is clear. Suppose that the extension is QR. To see that 
the condition holds, it is enough to suppose that it is of finite type. According to 
Lemma 7.5, there is some .s ∈ R such that .S = Rs . Then .R ⊆ S is Prüfer, whence 
so is .RP ⊆ SP for each prime ideal P of R and .SP = (RP )s/1. We also have  
.SP = (RP )y , where .y ∈ 	(RP ) by Proposition 7.6. It follows that .D(s/1) = D(y), 
and by Definition 7.14, .s/1 is a strong divisor. The last statement follows from the 
.(MCS)-rule applied to the flat epimorphism .R ⊆ T , since T is a union of finitely 
generated QR extensions. ��
Theorem 8.6 Any extension .R ⊂ S has a QR hull; that is, there exists a largest 
QR extension .χ(R) ∈ [R, S], contained in . ˜R. As a consequence, .χ(R) is the 
compositum of all QR extensions in .[R, S]. 
Proof Let X be the set of all QR extensions in .[R, S]fg , which is directed upward: 
take .T ,U ∈ X. They are of the form . Rx and . Ry , where x and y are regular in 
R, because they are units in S. Then we have .Rx,Ry ⊆ Rxy . We can now use the 
proof of [5, Theorem 5] that holds for an arbitrary extension .R ⊂ S and show that 
.Rxy ∈ X. 

Denote by .χ(R) the set union of the elements of X. Since a QR extension in 
.[R, S] is a union of finitely generated QR extensions, it is contained in .χ(R). 
To complete the proof, observe that an element of .[R, χ(R)]fg is contained in 
an element of X, whence is in X, from which we infer that .R ⊆ χ(R) is a QR 
extension. ��

Actually, the proof of Davis shows that the set of all elements .x ∈ R such that 
.R → Rx is a QR extension is a mcs .�(R) (also denoted . �) contained in the mcs 
. �	. Moreover, in case R is either local or a Nagata ring, projective R-modules of 
rank one are free, so that an extension .R ⊂ S is Prüfer if and only if it is a QR 
extension by Proposition 8.3, giving .�∩U(S) = �	∩U(S). An application of the 
.(X)-rule gives the following result. 

Corollary 8.7 If .R ⊂ S is an extension, then .χ(R) = R�∩U(S). It follows that an 
extension .R ⊂ S is a QR extension if and only if for each .s ∈ S there is some 
.ρ ∈ � ∩ U(S) such that .ρs ∈ R. 

We remark that .β(R) ⊆ χ(R) ⊆ λδ(R) ⊆ ˜R.
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Proposition 8.8 An extension .R ⊂ S is a QR extension if and only if each S-regular 
finitely generated ideal is equivalent to a principal ideal of R and there exists a mcs 
.� ⊆ �	 ∩ U(S) such that .S = R� . If these conditions hold, then .S = R�	∩U(S). 

Proof Assume first that .R ⊆ S is a QR extension. By the results mentioned before 
Proposition 8.1, each S-regular finitely generated ideal is equivalent to a principal 
ideal of R. According to Theorem 8.5, there exists a mcs . �, whose elements are 
some lsd of R, and such that .S = R� . 

Conversely, assume that each S-regular finitely generated ideal is equivalent to a 
principal ideal of R and there exists a mcs . � whose elements are some lsd of R, and 
such that .S = R� . Let  .M ∈ Max(R). It follows  that  .SM = (R�)M = (RM)�′ , 
where . �′ is a mcs whose elements are some lsd of . RM . Then, Proposition 7.4 
implies that .RM ⊆ SM is Prüfer. Since this holds for any .M ∈ Max(R), we get 
that .R ⊂ S is Prüfer, and then a QR extension by the recall before Proposition 8.1. 

If these conditions hold, set .�′ := �	 ∩ U(S) ⊆ S. Since . �′ is a mcs whose 
elements are units of S, it follows that .R�′ ⊆ S. But  .� ⊆ �′ implies . S = R� ⊆
R�′ ⊆ S, so that .S = R�′ . ��

We end this section by considering ring extensions .R ⊂ S that are flat 
epimorphisms, such that the support .Supp(S/R) of the R-module .(S/R) is finite. 
We recall that .R ⊂ S is a flat epimorphism . ⇔ for all .P ∈ Spec(R), either . RP = SP

is an isomorphism or .S = PS, these two conditions being mutually exclusive [22, 
Proposition 2.4, p.112]. 

It is known that the support .Supp(S/R) of the R-module .S/R is the set of all 
.P ∈ Spec(R), such that .PS = S. Therefore, each element of the support is S-
regular. Moreover, the support is closed because as any support, it is stable under 
specialization. Hence, the support equals to .V(J ), where J is the intersection of 
all elements .P1, . . . , Pn of the support. Now each . Pi is the radical of an S-regular 
finitely generated ideal, as an examination of the proof of [1, Corollary 13] by Abbas 
and Ayache shows. Moreover, assume that .R ⊂ S is a QR extension. Using [20, 
Proposition 4.15, p.116], we get that . Pi is of the form .

√
Rxi for some .xi ∈ R. Then 

.J = √
Rx, where .x = x1 · · · xn. Now  if  I is an S-regular finitely generated ideal 

and Q is a prime ideal of R containing I , then Q is S-regular. Reasoning as above, 
we see that .

√
I = √

Ry, for  some  .y ∈ R. Taking into account the characterization 
of QR extensions at the beginning of the section, we see that we have proved the 
following result: 

Proposition 8.9 Let .R ⊂ S be a Prüfer extension where .Supp(S/R) is finite (in 
particular, if .R ⊂ S has FCP). We set .J := ∩{P | P ∈ Supp(S/R)}. The following 
statements are equivalent: 

(1) .R ⊂ S is a QR extension. 
(2) Each element of .Supp(S/R) is equivalent to a principal ideal. 
(3) Each S-regular finitely generated ideal of R is equivalent to a principal ideal. 

In case one of the above statements holds, J is a S-regular ideal equivalent to a 
principal ideal Rx and .�(D(J )) = Rx .
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Proof We only need to prove the following. By the flatness of the extension, . JS =
∩{PS | P ∈ Supp(S/R)} = S. ��
Remark 8.10 Proposition 20 of [1] states that if, in addition to the above hypotheses, 
S is an integral domain, then each .T ∈ [R, S] is of the form . Rx for some .x ∈ R. This  
proves that the extension is strongly affine. Actually, in the proof of [1, Proposition 
20], we can replace the Kaplansky transform of an ideal by a ring of sections. 

9 Prüfer FCP Extensions over a Local Ring 

Clearly, a minimal extension is a flat epimorphism if and only if it is Prüfer. So 
we call such extensions Prüfer minimal. We note as a first result the following 
Proposition, which results from Proposition 8.9. 

Proposition 9.1 A Prüfer minimal extension with crucial maximal ideal M is a QR 
extension if and only if M is equivalent to a principal ideal. 

Proposition 6.1 takes the following form, observing that a Prüfer extension is 
integrally closed. 

Proposition 9.2 ([9, Theorem 6.8 and Theorem 6.10]) If R is a local ring, an 
extension .R ⊆ S is Prüfer FCP (resp., minimal) if and only if there exists . P ∈
Spec(R) such that .S = RP , .P = SP and .R/P is a finite-dimensional (resp., one-
dimensional) valuation domain. Under these conditions, .S/P is the quotient field of 
.R/P and P is a divided prime ideal of R. 

The conductor of a ring extension .R ⊂ S is denoted by .(R : S). The following 
Corollary recalls, for a Prüfer minimal extension .R ⊂ S, the link between the crucial 
maximal ideal .C(R, S) and .(R : S). 

Corollary 9.3 If .R ⊂ S is a Prüfer minimal extension with crucial maximal ideal 
M , then .P := (R : S) is a prime ideal of R, .P ⊂ M , and there is no prime ideal of 
R contained strictly between P and M . 

Proof First, .P := (R : S) is a prime ideal of R by Ferrand and Olivier [14, 
Lemme 3.2]. Moreover, .PM = PRM = (RM : SM) with .RM �= SM shows that 
.P ⊂ M . At last,  .RM ⊂ SM is also a Prüfer minimal extension. Then, according to 
Proposition 9.2, .RM/PM is a one-dimensional valuation domain, so that there is no 
prime ideal of .RM contained strictly between .PM and .MRM giving that there is no 
prime ideal of R contained strictly between P and M . ��
Corollary 9.4 Let .R ⊂ S be a Prüfer minimal extension over a local ring .(R,M). 
Then, with the notation of Proposition 9.2, each element .t ∈ M \ P is a strong 
divisor of R, .S ∼= Rt , .P = ∩{Rtn|n ∈ N}, and .M = √

Rt . 

Proof Because .t /∈ P , we have  .t ∈ U(S) and then a factorization .R ⊆ Rt ⊆ S, 
so that .S = Rt by minimality. By Proposition 7.6, t is a strong divisor. The third
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statement follows from Corollary 7.11. Because .R/P is one-dimensional, M is the 
only prime ideal containing P , so that .M = √

Rt . ��
Proposition 9.5 Let .R ⊂ S be a ring extension where .(R,M) is a local ring. The 
following statements are equivalent: 

(1) .R ⊂ S is a Prüfer minimal extension. 
(2) There is a strong divisor .a ∈ R \U(R) such that .S = Ra and . 

√
Ra ⊆ √

Rb ⇒√
Ra = √

Rb (or equivalently, .D(a) ⊆ D(b) ⇒ D(a) = D(b)) for each 
.b ∈ R \ U(R). 

(3) There is a strong divisor .a ∈ R \ U(R) such that .S = Ra and .M = √
Ra. 

(4) There is a strong divisor .a ∈ R \ U(R), such that .S = Ra , and such that . D(a)

is an open affine subset, maximal in the set of proper open affine subsets. 

Proof We clearly have (2) . ⇔ (3) by Corollary 9.4, once (1) . ⇔ (2) is proved.  
We then prove that (1) is equivalent to (2). Suppose that .R ⊂ S is a minimal 
extension, that is a flat epimorphism. Then .R ⊂ S is clearly a Prüfer extension. 
By Proposition 7.10, there is a mcs . � of R, whose elements are strong divisors 
and such that the extension identifies with .R ⊂ R� . Picking an arbitrary element 
.a ∈ �, we get a factorization .R → Ra → R� . Its factors are injective because the 
flat epimorphism .R → Ra satisfies [22, Lemme 3.4, p.114]. 

As a is not invertible, .R �= Ra implies .S = Ra , by minimality of .R ⊂ S. In  
the same way, a factorization .R ⊂ Rb ⊆ Ra implies .Rb = Ra , or equivalently 
.D(a) ⊆ D(b) ⇒ D(a) = D(b), which means that .

√
Ra ⊆ √

Rb ⇒ √
Ra = √

Rb. 
We prove the converse. Observe that for any mcs . � of R and .a ∈ R, such that 

there is a factorization .R → R� → Ra , we have  .D(a) ⊆ ∩{D(σ ) | σ ∈ �}. 
Suppose that .R ⊂ S satisfies the conditions of the proposition. Then .S = Ra , where 
.a ∈ R \U(R) is a strong divisor, and then .R ⊂ S is Prüfer, so that any subextension 
.R ⊂ T ⊆ S is Prüfer. By Proposition 7.10, we get that .T = R� , for some mcs 
. � of R. The above observation shows that .D(a) ⊆ D(σ ) for any .σ ∈ �. The  last  
condition entails that .� = 〈a〉, and then .T = Ra . Therefore, .R ⊂ S is minimal and 
a flat epimorphism. 

Clearly, (4) implies (2). The converse is a consequence of the following facts. 
If .D(a) ⊆ D(I ), where .D(I ) is an open affine subset different from .Spec(R), we  
have a factorization .R ⊂ �(D(I )) ⊆ Ra and .R → �(D(I )) is an injective flat 
epimorphism whose spectral image is .D(I ). ��
Lemma 9.6 Let R be a ring and .a ∈ R. Then, there exists some .M ∈ Max(R) such 
that .M = √

Ra if and only if .Supp(Ra/R) = {M}. 
Proof Let .M ∈ Max(R). Then .M = √

Ra ⇔ M is the only . P ∈ Spec(R)

containing .a ⇔ for any .P ∈ Spec(R) \ {M}, a �∈ P and .a ∈ M ⇔ for 
any .P ∈ Spec(R) \ {M}, a/1 ∈ U(RP ) and .a/1 �∈ U(RM) ⇔ for any . P ∈
Spec(R) \ {M}, RP = (Ra)P and .RM �= (Ra)M ⇔ Supp(Ra/R) = {M}. ��
Proposition 9.7 Let .R ⊂ S be a ring extension. The following statements are 
equivalent:
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(1) .R ⊂ S is a minimal QR extension. 
(2) There exists some .M ∈ Max(R) such that .Supp(S/R) = {M}, and there is an 

lsd .a ∈ R \ U(R) such that .S = Ra . 
(3) There is an lsd .a ∈ R \ U(R) such that .S = Ra , and there exists some . M ∈

Max(R) such that .M = √
Ra. 

If these conditions are satisfied, then .M �⊆ ∪{P ∈ Max(R) | P �= M}. 
Proof (1) . ⇒ (2) Assume that .R ⊂ S is a minimal QR extension. Then, there exists 
some .M ∈ Max(R) such that .Supp(S/R) = {M}. Since .R ⊂ S is a minimal QR 
extension, Theorem 8.5 asserts that there is an lsd .a ∈ R \ U(R) such that .S = Ra , 
since S is of finite type over R. It follows  that  .Supp(Ra/R) = {M}, which gives 
.M = √

Ra by Lemma 9.6, so that .a ∈ M \ ∪{P ∈ Max(R) | P �= M}, giving  
.M �⊆ ∪{P ∈ Max(R) | P �= M}, proving the last assertion. 

(2) . ⇒ (1) Assume that there exists some .M ∈ Max(R) such that . Supp(S/R) =
{M}, and there is an lsd .a ∈ R \ U(R) such that .S = Ra . These two conditions 
lead to .M = √

Ra by Lemma 9.6. As  .a/1 is a strong divisor of .RM and . SM =
(Ra)M = (RM)(a/1), Proposition 9.5 shows that .RM ⊂ SM is minimal Prüfer. 
Moreover, .RP = SP for any .P ∈ Max(R), P �= M implies that .R ⊂ S is minimal 
Prüfer. At last, Theorem 8.5 shows that .R ⊂ S is a QR extension, since minimal. 

(2) . ⇔ (3) by Lemma 9.6. ��
Corollary 9.8 A minimal Prüfer extension .R ⊂ S such that .S = Rs for some lsd s 
of R is a QR extension. 

Proof Since .R ⊂ S is minimal, there exists some .M ∈ Max(R) such that 
.Supp(S/R) = {M}. Then Proposition 9.7 shows that .R ⊂ S is a QR extension. ��
Example 9.9 Set .R := Z, P := pZ, where p is a prime integer and .S := Zp. 
Obviously, .Supp(S/R) = {P }, so that .S = Rp and .P = √

Rp. Then, .p/1 is a 
strong divisor of . RP and .p/1 ∈ U(RM) for any .M ∈ Spec(R) \ {P }, showing that 
p is an lsd of R. We recover the fact that .Z ⊂ Zp is a minimal Prüfer QR extension. 

The next result shows that Prüfer FCP extensions can be described in a special 
manner. 

Proposition 9.10 ([31, Proposition 1.3]) Let .R ⊂ S be an FCP extension. Then 
.R ⊂ S is integrally closed .⇔ .R ⊂ S is Prüfer .⇔ .R ⊂ S is a tower of Prüfer 
minimal extensions. 

Theorem 9.11 An FCP QR extension .R ⊆ S admits a tower of Prüfer minimal 
extensions .R ⊂ R1 ⊂ · · · ⊂ Ri ⊂ Ri+1 ⊂ · · · ⊂ Rn = S, where . Ri+1 = (Ri)ai

=
Rai

for some lsd .ai ∈ R and .S = Ra1···an = Ran . The integer n is independent of 
the sequence and is equal to .|Supp(S/R)|. 
Proof There is a tower of Prüfer minimal extensions .Ri ⊂ Ri+1 by Proposition 9.10 
because a QR extension is Prüfer. Therefore, each .T ∈ [R, S] is a localization . Ra , 
for some lsd .a ∈ R by Theorem 8.5 and .Ri ⊂ Ri+1 identifies to .Ri ⊂ Rai

for some 
lsd .ai ∈ R \ U(Ri).
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Then by minimality, we get that .Ri+1 = Rai
= (Ri)ai

and the result follows. 
The last result is [9, Proposition 6.12]. ��
The above result applies when .R ⊆ S is an FCP extension .A(X) ⊆ B(X), or  
equivalently, .A ⊆ B has FCP [10, Theorem 3.9]. We recall the definition of a 
Nagata ring [10, Section 3]. Let R be a ring and .R[X] the polynomial ring in 
the indeterminate X over R. We denote by .C(p) the content of any polynomial 
.p ∈ R[X]. Then .�R := {p ∈ R[X] | C(p) = R} is a saturated mcs of .R[X], each 
of whose elements is a non-zero-divisor of .R[X]. The  Nagata ring of R is defined 
to be .R(X) := R[X]�R

. 

Proposition 9.12 Let .R ⊂ S be an FCP Prüfer extension over a local ring 
.(R,M): 

(1) There is a sequence of Prüfer minimal extensions between local rings . R ⊂
R1 ⊂ · · · ⊂ Ri ⊂ Ri+1 ⊂ · · · ⊂ Rn = S, where .Ri+1 = (Ri)ai

= Rai
for 

some .ai ∈ 	(R) and .S = Ra1···an = Ran . In fact, .[R, S] = {Ri}ni=0. Moreover, 
.R ⊂ S is a QR extension. 

(2) There is some subset .{P0, P1, . . . , Pn} of .Spec(R), with .P0 = M and . Pi ⊂ Pi−1
for .i = 1, . . . , n, such that .Ri = RPi

, .PiRi = Pi , and .R/Pi is a valuation 
domain whose dimension is i. 

(3) For all .i = 1, . . . , n and .t ∈ Pi−1 \ Pi , we have .Ri = Rt . Moreover, each 
element of .M \ Pn is a strong divisor. 

(4) Any finitely generated S-regular ideal is equivalent to a principal ideal. 

Proof 

(1) We know that .R ⊂ S is chained because R is local [9, Theorem 6.10], and each 
. Ri is local by Proposition 9.2. Moreover, this proposition shows that for each 
.i ∈ Nn, there exists .Pi ∈ Spec(R) such that .Ri = RPi

, PiRi = Pi and .R/Pi is 
an i-dimensional valuation domain. Therefore, .R ⊂ S is a QR extension. Then 
apply Theorem 9.11. 

(2) Since .R ⊂ R1 is Prüfer minimal, .P0 := M = C(R,R1). As .S = Rn, it follows 
that .R/Pn is a n-dimensional valuation domain and . {P0, P1, . . . , Pn−1} :=
Supp(S/R) according to [9, Proposition 6.12] with .Pi ⊂ Pi−1 for each .i ∈ Nn. 

(3) Let .t ∈ Pi−1 \ Pi . Then, t is a unit of .RPi
= Ri and .Rt ⊆ Ri . As .t ∈ Pi−1, this  

implies that t is a not a unit of .RPi−1 = Ri−1, so that .Rt �⊆ Ri−1. But  .[R, S] is 
a chain, which leads to .Rt = Ri . 
Let .x ∈ M\Pn. Since .{P0, P1, . . . , Pn} is a chain, there exists some .i ∈ Nn such 
that .x ∈ Pi−1\Pi . Then, .Rx = Ri by the first part of (3). To end, Proposition 7.6 
and Definition 7.14 show that x is a strong divisor. 

(4) Since .R ⊂ S is a QR extension, any finitely generated S-regular ideal is 
equivalent to a principal ideal according to the results at the beginning of Sect. 8. 

��
We end this section by a generalization of Proposition 9.12 to . B extensions. 

We recall that an extension .R ⊂ S is a . B extension if the map . β : [R, S] →
∏{[RM, SM ] | M ∈ MSupp(S/R)} defined by .T �→ (TM)M∈MSupp(S/R) is
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bijective. Actually, an FCP extension .R ⊆ S is a . B extension if and only if . R/P

is a local ring for each .P ∈ Supp(S/R) [32, Proposition 2.21]. The following 
lemma gives a first special case of . B extensions. For any extension .R ⊆ S, the  
length .�[R, S] of .[R, S] is the supremum of the lengths of chains of R-subalgebras 
of S. Notice that if .R ⊆ S has FCP, then there does exist some maximal chain of 
R-subalgebras of S with length .�[R, S] [10, Theorem 4.11]. 

Lemma 9.13 Let .R ⊂ S be an FCP Prüfer extension such that .|MSupp(S/R)| = 1. 
Then, .R ⊂ S is a . B extension where .Supp(S/R) and .[R, S] are chains with . n :=
|Supp(S/R)| = |[R, S]| − 1. There is a tower of Prüfer minimal extensions . R ⊂
R1 ⊂ · · · ⊂ Ri ⊂ Ri+1 ⊂ · · · ⊂ Rn = S, such that .[R, S] = {Ri}ni=0. We define as 
follows a subset .{P0, P1, . . . , Pn} of .Spec(R) by . Supp(S/R) = {P0, P1, . . . , Pn−1}
and .Pn := R ∩ (Rn−1 : S), where .Pi ⊂ Pi−1 for each .i ∈ Nn. In particular, 
.Supp(Ri/R) = {P0, P1, . . . , Pi−1}. 
Proof From .|MSupp(S/R)| = 1, we deduce that .R ⊂ S is a . B extension by [32, 
Proposition 2.21]. If .{M} := MSupp(S/R), the  map  . β : [R, S] → [RM, SM ]
defined by .β(T ) = TM for any .T ∈ [R, S] is bijective. But, . RM ⊂ SM

is chained by Proposition 9.12, whence .R ⊂ S is chained. According to [33, 
Theorem 3.10], .Supp(S/R) has a least element P and .Supp(S/R) = V(P ) is 
chained. Moreover, .|Supp(S/R)| = |[R, S]| − 1 = �[R, S] by [9, Proposition 
6.12]. If .n := |[R, S]| − 1, there is a sequence of Prüfer minimal extensions 
.R ⊂ R1 ⊂ · · · ⊂ Ri ⊂ Ri+1 ⊂ · · · ⊂ Rn = S such that .[R, S] = {Ri}ni=0 since 
.R ⊂ S is chained. Moreover, there is some subset .{P0, P1, . . . , Pn} of . Spec(R)

such that .Supp(S/R) = {P0, P1, . . . , Pn−1} where .Pi ⊂ Pi−1 for each .i ∈ Nn−1. 
In particular, .Supp(Ri/R) = {P0, P1, . . . , Pi−1} for each .i ∈ Nn. In fact, we have  
.Pi = R ∩ C(Ri, Ri+1) for each .i = 0, . . . , n − 1 by [9, Corollary 3.2] and also 
.Pi = R ∩ (Ri−1 : Ri) for each .i ∈ Nn−1 by Corollary 9.3. ��
Proposition 9.14 Let .R ⊂ S be an FCP Prüfer extension such that 
.|MSupp(S/R)| = 1. Set .[R, S] = {Ri}ni=0, Pn := R ∩ (Rn−1 : S) and 
.Supp(S/R) = {P0, P1, . . . , Pn−1} as defined in Lemma 9.13. The following 
conditions are equivalent: 

(1) .R ⊂ S is a QR extension. 
(2) For each .i ∈ Nn, there is some lsd .ai ∈ R such that .Ri = Rai

. 
(3) For each .i ∈ Nn, there is some .ai ∈ R such that .Pi−1 = √

Rai . 

If these conditions hold, then, for each .i ∈ Nn, we have .Ri = (Ri−1)ai
and . ai ∈

Pi−1 \ Pi . Moreover, . ai satisfies (2) if and only if it satisfies (3). 

Proof (1) . ⇔ (2) by Theorem 8.5 and (3) . ⇔ (1) by Proposition 8.9. 
Assume that (2) holds with . ai an lsd such that .Ri = Rai

. Obviously, . Ri =
(Ri−1)ai

(∗). 
Let .P ∈ Spec(R). Then, .ai ∈ P implies that .PRi = Ri , so that . P ∈

Supp(Ri/R) = {P0, P1, . . . , Pi−1}. Then, there is some .j < i such that . P = Pj

and .ai �∈ Pi . To prove that .ai ∈ Pi−1, we localize the extension .R ⊂ S at M . Set
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.R′
j := (Rj )M, P ′

j := PjRM for each .j = 0, . . . , n and .a′
i := ai/1. Then, . R′ ⊂ S′

is an FCP Prüfer extension over the local ring .(R′,M ′) with .n = �[R′, S′]. Using  
Proposition 9.12, we get that .{P ′

0, P
′
1, . . . , P

′
n} is the subset of .Spec(R′) such that 

.R′
i = R′

P ′
i

, .P ′
i R

′
i = P ′

i . It follows that . (∗) gives .R′
i = R′

a′
i

= (R′
i−1)a′

i
, with .R′

i−1 a 

local ring with maximal ideal .P ′
i−1. Then .a

′
i ∈ P ′

i−1 since .R
′
i = (R′

i−1)a′
i
�= R′

i−1, 

which gives .ai ∈ Pi−1 \Pi . To conclude, .Pi−1 = √
Rai is the least prime ideal of R 

containing . ai , and also the least element of .Supp(Ri/R). It follows  that  . ai satisfies 
(3). 

Conversely, if there is some . bi such that .Pi−1 = √
Rbi , then . 

√
Rai = √

Rbi

implies .Ri = Rai
= Rbi

by Definition 7.14. ��
In order to generalize Lemma 9.13 to an arbitrary FCP Prüfer . B extension, we 

need the following definition introduced in [33]. Let .R ⊆ S be an FCP . B extension 
and .M ∈ MSupp(S/R). The elementary splitter .σ(M) := T , associated to M , is  
defined by .MSupp(T /R) = {M} and .MSupp(S/T ) = MSupp(S/R) \ {M}. Such a 
T always exists (see [33, Theorem 4.6 and the paragraph after Corollary 5.5]). 

Proposition 9.15 Let .R ⊂ S be an FCP Prüfer . B extension and QR extension. Let 
.T ∈ [R, S], T �= R and set .MSupp(T /R) =: {M1, . . . , Mn}. For each . i ∈ Nn, let  
. Pi be the least element of .Supp(T /R) contained in . Mi . Then, there exists some lsd 
.t ∈ R such that .T = Rt and .

√
Rt = ∩{Pi | i ∈ Nn}. 

Proof Since .R ⊂ S is an FCP Prüfer . B and QR extension, so is .R ⊂ T by 
Picavet and Picavet-L’Hermitte [33, Proposition 3.5] for the . B extension property. 
Set .MSupp(T /R) =: {M1, . . . ,Mn}. For each .i ∈ Nn, according to [33, Theorem 
3.10], there is a least element . Pi of .Supp(T /R) contained in . Mi . The same reference 
gives that .V(Pi) is a chain, whose greatest element is . Mi and least element is . Pi . 

For each .i ∈ Nn, set  .Ti := σ(Mi), so that .|MSupp(Ti/R)| = 1. Moreover, for 
any .P ∈ V(Pi), we have  .P ∈ Supp(Ti/R). Then, .Supp(Ti/R) = V(Pi) because 
.MSupp(Ti/R) = {Mi}, and we can apply Proposition 9.14. For each .i ∈ Nn, we  
have .Ti = Rai

for some lsd .ai ∈ R and .Pi = √
Rai for each .i ∈ Nn. Set . t :=

a1 · · · an, which is still an lsd. Now, [33, Proposition 5.11] asserts that . T = ∏{Ti |
i ∈ Nn} = ∏{Rai

| i ∈ Nn} = Rt . Moreover, . 
√

Rt = √
∏{Rai | i ∈ Nn} =

∩{√Rai | i ∈ Nn} = ∩{Pi | i ∈ Nn}. ��

10 The Set of All Primitive Elements 

Let .R ⊆ S be an extension. An element .s ∈ S is called primitive (over R) if there  
exists a polynomial .p(X) ∈ R[X] whose content is R and such that .p(s) = 0. An  
extension .R ⊆ S is called a . P extension if all the elements of S are primitive over 
R. Important examples of . P extensions are given by the Prüfer extensions of [20] 
(equivalently normal pairs [20, Theorem 5.2, p.47]). We recall that an element s of 
S is primitive if and only if .R ⊆ R[s] has the INC property [7, Theorem 2.3] and
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that an extension .R ⊆ S is a . P extension if and only if .R ⊆ S is an INC pair [7, 
Corollary 2.4]. We proved that an INC pair is nothing but a quasi-Prüfer extension 
[31, Theorem 2.3]. 

It follows easily that an extension is quasi-Prüfer if and only if it is a . P extension. 
Therefore, an FCP extension is a . P extension [31, Corollary 3.4]. 

For an extension .R ⊆ S, we denote by .PS(R) the set of all elements of S that are 
primitive over R, a set studied by Dobbs–Houston in [8]. 

We defined in [31, Theorem 3.18] the quasi-Prüfer closure (or hull) . 
�⇒
R of an 

extension .R ⊆ S. This closure is the greatest quasi-Prüfer subextension .R ⊆ T of 

.R ⊆ S and is equal to . 
˜R. It follows that .

�⇒
R ⊆ PS(R). Obviously, .R ⊆ PS(R). 

Proposition 10.1 Let .R ⊆ S be an extension. Then .PS(R) is a ring if and only if 

.PS(R) = �⇒
R . 

Proof It is enough to show that if .PS(R) is a ring, it is contained in . 
�⇒
R , that is 

.R ⊆ PS(R) is Prüfer. But we may assume that .R ⊂ S is integrally closed because 
an element of S primitive over R is primitive over . R. 

By Dobbs and Houston [8, Proposition 2.6], we can also assume that R is local. 
Let .s ∈ PS(R). Then, either .s ∈ R or s is a unit of S such that .s−1 ∈ R according to 
[8, Corollary 2.5]. If .s ∈ R, then .R[s] = R[s2]. If  s is a unit of S such that .s−1 ∈ R, 
then .s−1 ∈ R[s2] implies .s ∈ R[s2], and we still have .R[s] = R[s2]. Therefore, for 
each .s ∈ PS(R), we have  .R[s2] = R[s]. We deduce from [20, Chapter 1, Theorem 

5.2] that the ring .PS(R) is Prüfer over R and then .PS(R) = �⇒
R . ��

It may happen that an extension .R ⊆ S is such that .PS(R) = S. For example, if 
we denote by .Tot(R) the total ring of quotients of a ring R, then .PTot(R)R is a ring if 
and only if .PTot(R)R = Tot(R) [8, Corollary 2.9]. If .R ⊆ S defines a lying-over pair, 

then .PS(R) = �⇒
R [8, Proposition 3.11]. The next result generalizes some results of 

[8]. 

Corollary 10.2 An extension .R ⊆ S is such that .PS(R) = S if and only if . R ⊆ S

is quasi-Prüfer. 
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A Survey on Algebraic and Homological 
Properties of Amalgamated Algebras of 
Commutative Rings 

Maryam Salimi, Elham Tavasoli, and Siamak Yassemi 

1 Introduction 

Throughout this paper all rings are considered commutative with identity. In [14], 
D’Anna and Fontana considered a construction obtained involving a ring A and an 
ideal .I ⊂ A that was denoted by .A �� I , called amalgamated duplication, and it 
was defined as the following subring of .A × A: 

. A �� I = {(r, r + i) | r ∈ A, i ∈ I }.

This construction was studied from different points of view in [8, 13, 14, 27, 33, 34], 
and [37]. In [15], it is initiated a systematic study of a new ring construction 
called the amalgamation of A with B along J with respect to f , for a given 
homomorphism of rings .f : A → B and ideal J of B. This construction finds 
its roots in a paper by J.L. Dorroh appeared in [18] and provides a general frame for 
studying the amalgamated duplication of a ring along an ideal. The amalgamation 
of A with B along J with respect to f is a subring of .A × B which is defined as 
follows: 

. A ��f J = {(r, f (r) + j) | r ∈ A, j ∈ J }.
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This construction is a generalization of the amalgamated duplication of a ring along 
an ideal and several classical constructions (such as .A + XB[X], .A + XB[[X]] and 
.D + M constructions) can be studied as particular cases of the amalgamation (see 
[15, Examples 2.5 and 2.6]). Moreover, other classical constructions, such as the 
Nagata’s idealization [15, Example 2.7 and Remark 2.8], and the CPI extensions (in 
the sense of Boisen and Sheldon [10]) are related to it (see [15, Example 2.7]). One 
of the key tools for studying .A ��f J is based on the fact that the amalgamation 
can be studied in the frame of pullback constructions [15]. This point of view allows 
to deepen the study initiated in [15] and continued in [17] and to provide an ample 
description of various properties of .A ��f J , in connection with the properties 
of A, J , and f . In [15], it is provided necessary and sufficient conditions for 
.A ��f J to inherit the properties of Noetherian ring, integral domain, and reduced 
ring and characterized pullbacks that can be expressed as amalgamations. In [17], 
the authors provided a complete description of the prime spectrum of . A ��f J

and gave bounds for its dimension. In [16], the prime spectrum of .A ��f J , 
some of its invariants . (like the embedding dimension. ), and relevant properties . (like 
Cohen-Macaulayness and Gorensteiness. ) are studied. In particular, in [16, Remark 
5.1], assuming A is a Cohen-Macaulay local ring, J is finitely generated as an 
A-module, and J is contained in the Jacobson radical of B, it is observed that 
.A ��f J is a Cohen-Macaulay ring if and only if it is a Cohen-Macaulay A-module 
if and only if J is a maximal Cohen-Macaulay A-module. Then in [32], the authors 
improved this observation as well as, in the case that J is not finitely generated, it 
provides conditions implying .A ��f J is Cohen-Macaulay. The above results lead 
to investigate further when the amalgamated algebra .A ��f J is (quasi-)Gorenstein, 
in [32]. Also, in [5] determined when the amalgamated algebra .A ��f J is Cohen-
Macaulay (in the sense of Hamilton and Marley). Moreover, in [4] the property 
of Cohen-Macaulay in the sense of ideals, which is a general notion of the usual 
Cohen-Macaulay property (in the Noetherian case), is studied on the ring .A ��f J . 

It is known that the ring A is always embedded into the ring .A ��f J , and the 
natural image of the ring A into .A ��f J is a retract of .A ��f J (see [15, Remark 
4.6 or Proposition 4.7]). This leads to describe the transfer of Prüfer-like conditions 
of the amalgamations in [19]. Also in [11], necessary and sufficient conditions under 
which Prüfer-like properties transfer between a local ring A and the amalgamated 
duplication .A �� I is investigated. Later, in [6], the authors attempted to generalize 
the results mentioned above to the case of the amalgamated algebra .A ��f J . In  
[26], the stability of the divided ring, locally divided ring, going-down ring, and 
Gaussian ring properties in terms of amalgamation of rings are studied. In addition, 
the authors provided examples of new classes of commutative rings satisfying the 
above mentioned properties. 

The study of algebraic structures by way of graph theory is an exciting research 
topics. There are many papers on assigning a graph to a ring. In this way, the zero-
divisor graph of the amalgamated algebra .A ��f J is studied in [1] and [3]. In 
addition, in [35] the authors investigated some properties of the comaximal graph 
of the ring A which are transferred to the comaximal graph of .A ��f J and vice 
versa. In order to study of some graph-theoretic properties of the comaximal graph
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of .A ��f J , certain algebraic properties of the ring .A ��f J were given by way 
of graph theory. The purpose of this paper is to survey briefly recent algebraic and 
homological properties of the amalgamated algebra .A ��f J . The graph-theoretic 
properties of the ring .A ��f J are not mentioned in this paper. 

2 Algebraic Properties 

Let .f : A → B be a ring homomorphism, and let J be an ideal of B. In [15] the  
following subring of . A × B

. A ��f J = {(a, f (a) + j) | a ∈ A, j ∈ J }

called the amalgamation of A with B along J with respect to f is introduced. In 
this paper, we survey briefly recent algebraic and homological properties of the 
amalgamated algebra .A ��f J . 

Notation 2.1 Let .Reg(A) be all regular elements of A. We also denote, respectively, 
by .Nilp(A), .J(A), and .Idem(A) the ideal of all nilpotent elements of the ring A, 
Jacobson radical of A, and the set of all idempotent elements of A. ��

Recall that, if .α : A → C and .β : B → C are ring homomorphisms, the subring 
.D := α ×C β := {(a, b) ∈ A × B | α(a) = β(b)} of .A × B is called the pullback 
(or fiber product) of . α and . β. In the following, we will denote by .pA (resp,. .pB ) 
the restriction to .α ×C β of the projection of .A × B onto A (resp,. B). The level 
of generality that we have choosen is due to the fact that the amalgamation can 
be studied in the frame of pullback constructions. This point of view allows us to 
provide easily an ample description of the properties of .A ��f J , in connection with 
the properties of A, J , and f . The following result is a straightforward consequence 
of the definitions. 

Proposition 2.2 ([15, Proposition 4.2]) Let .π : B → B/J be the canonical 
projection and .f̆ := πof . Then .A ��f J = f̆ ×B/J π . ��

In the following, the ideal-theoretic structure of the amalgamation .A ��f J is 
investigated, which are collected from [15, Proposition 5.1] and [16, Proposition 
3.1]. 

Proposition 2.3 The following statements hold. 

(i) Let .ι := ιA,f,J : A → A ��f J be the natural ring homomorphism defined 
by .ι(a) := (a, f (a)), for all .a ∈ A. Then . ι is an embedding, making . A ��f J

a ring extension of A with .ι(A) = Γ (f )(:= {(a, f (a)) | a ∈ A} subring of 
. A ��f J ).

(ii) Let I be an ideal of A and set .I ��f J := {(i, f (i)+ j) | i ∈ I, j ∈ J }. Then 
.I ��f J is an ideal of .A ��f J , the composition of canonical homomorphisms
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. A ↪→ A ��f J � A ��f J

I ��f J
,

is a surjective ring homomorphism and its kernel coincides with I . Hence, we 
have the following canonical isomorphism: 

. 
A ��f J

I ��f J
∼= A

I
.

(iii) If I . (resp,. . H) is an ideal of A . (resp,. of .f (A)+J ) such that .f (I)J ⊆ H ⊆ J , 
then .I ��f H := {(i, f (i) + h) | i ∈ I, h ∈ H } is an ideal of .A ��f J . 

(iv) If I is an ideal of A, then the extension .I (A ��f J ) of I to .A ��f J coincides 
with .I ��f (f (I )B)J := {(i, f (i) + β) | i ∈ I, β ∈ (f (I )B)J }. 

(v) If I is an ideal of A such that .f (I)B = B, then . I (A ��f J ) = I ′f =
{(i, f (i) + j) | i ∈ I, j ∈ J } = I ��f J . 

(vi) Let .pA : A ��f J → A and .pB : A ��f J → B be the natural projections 
of .A ��f J ⊆ A × B into A and B, respectively. Then . pA is surjective and 
.Ker(pA) = {0} × J . Moreover, .pB(A ��f J ) = f (A) + J and . Ker(pB) =
f −1(J ) × {0}. Hence, the following canonical isomorphisms hold: 

. 
A ��f J

({0} × J )
∼= A and

A ��f J

f −1(J ) × {0}
∼= f (A) + J.

.(vii) Let .γ : A ��f J → (f (A)+J )/J be the natural ring homomorphism, defined 
by .(a, f (a)+j) �→ f (a)+J . Then . γ is surjective and .Ker(γ ) = f −1(J )×J . 
Thus, there exists a natural isomorphism: 

. 
A ��f J

f −1(J ) × J
∼= f (A) + J

J
.

In particular, when f is surjective we have 

.
A ��f J

f −1(J ) × J
∼= B

J
.

��
Corollary 2.4 Let .(A,m) be a local ring. Then the following statements hold. 

(i) [16, Corollary 3.2] Assume that .f −1(Q) = m, for each .Q ∈ Spec(B) \ V(J ). 
Then the extension in .A ��f J of any .m-primary ideal of A is .(m ��f J )-
primary. 

(ii) [16, Remark 3.3] Assume that J is a finitely generated A-module and . J ⊆
J(B). Then for every .Q ∈ Spec(B)\V(J ), we have .f −1(Q) = m. In particular, 
the extension in .A ��f J of any .m-primary ideal of A is .(m ��f J )-primary.

��



A Survey on Algebraic and Homological Properties of Amalgamated 387

2.1 Prime Ideals and Localization 

In the following proposition, some results about the structure of the prime ideals of 
the ring .A ��f J are collected from [17, Proposition 2.6] and [16, Corollary 2.8 and 
Proposition 2.9]. The proof of the following proposition is based on well-known 
properties of rings arising from pullbacks. 

Proposition 2.5 Set .X := Spec(A), .Y := Spec(B), .W := Spec(A ��f J ), . J0 :=
{0}×J (⊆ A ��f J ), .J1 := f −1(J )×{0}, and . X := X(f,J ) := ⋃

q∈Y\V(J )

V(f −1(q+
J )). For all .p ∈ X and .q ∈ Y , set  

. p′f := p ��f J := {(p, f (p) + j) | p ∈ p, j ∈ J },

. qf := {(a, f (a) + j) | a ∈ A, j ∈ J, f (a) + j ∈ q}.

Then the following statements hold. 

(i) The prime ideals of .A ��f J are of the type .p′f or . qf , for  .p ∈ X and 
.q ∈ Y \ V(J ). In particular 

. Max(A ��f J ) = {p′f | p ∈ Max(A)} ∪ {qf | q ∈ Max(B) \ V(J )}.

(ii) For any prime .q ∈ Y \ V(J ), the ring .(A ��f J )qf is canonically isomorphic 
to . Bq. 

(iii) For any prime .p ∈ X \ V(f −1(J )), the ring .(A ��f J )p′f is canonically 
isomorphic to . Ap. 

(iv) Let .p ∈ Spec(A) containing .f −1(J ). Consider the multiplicative subset . S :=
S(f,p,J ) := f (A \ p) + J of B, and set .BS := S−1(B) and .JS := S−1(J ). 
If .fp : Ap → BS is the ring homomorphism induced by f , then the ring 
.(A ��f J )p′f is canonically isomorphic to .Ap ��fp JS . 

(v) The map .p �→ p′f establishes a closed embedding of X into W , so its image, 
which coincides with .V(J0), is homeomorphic to X. Also, this map establishes 
a homomorphism of .Min(A) \ X with .Min(A ��f J ) ∩ V(J0). 

(vi) The map .q �→ qf is a homeomorphism of .Y \ V(J ) onto .W \ V(J0). Also,  
this map establishes a homomorphism of .Min(B) \ V(J ) with . Min(A ��f

J ) \ V(J0).
��

Proposition 2.6 The following statements hold. 

(i) [17, Proposition 4.1] .dim(A ��f J ) = max{dim(A), dim(f (A) + J )}. In  
particular, if f is surjective, then . dim(A ��f J ) = max{dim(A), dim(B)} =
dim(A).
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(ii) [17, Proposition 4.2] Let .f� : A → B� := f (A) + J be the ring 
homomorphism induced from f . If  . f� is integral . (e.g., f is integral. ), then 
.dim(A ��f J ) = dim(A).

��

2.2 Zero-Divisors 

Let M be an A-module. An element .m ∈ M is called a torsion element if there exists 
.r ∈ Reg(A) such that .rm = 0. Also,  M is called a torsion module if all its elements 
are torsion elements. 

Proposition 2.7 The following statements hold. 

(i) [6, Lemma 2.1] The inclusion . Z(A ��f J ) ⊆ {(a, f (a) + j) | a ∈ Z(A), j ∈
J } ∪ {(a, f (a) + j) | a ∈ A, j ∈ J, ∃j ′ ∈ J \ {0} : j ′(f (a) + j) = 0}
always holds. In particular, the equality holds if at least one of the following 
conditions hold. 

(1) .f (Z(A)) ⊆ J and .f −1(J ) = 0. 
(2) .f (Z(A))J = 0 and .f −1(J ) = 0. 
(3) .J ⊆ f (A). 
(4) J is a torsion A-module. 

(ii) [25, Proposition 2.1] Let .J = 0 and suppose that at least one of the following 
conditions hold: 

(1) .J ⊆ f (A). 
(2) J is a torsion A-module. 
(3) .J 2 = 0. 

Then . Z(A ��f J ) = {Z(A) ��f J } ∪ {(a, 0) | f (a) ∈ J } ∪ {(0, x) | x ∈
J } ∪ {(a, f (a) + i) | a ∈ Reg(A), ∃ j ∈ J \ {0} : j (f (a) + i) = 0}. 

(iii) [24, Lemma 2.7] Let .J = 0 be a proper ideal of B such that .f −1(J ) = 0, 
and .J 2 = 0. Then . Z(A ��f J ) = {Z(A) ��f J } ∪ {(a, f (a) + i) | ∃ 0 = j ∈
J : j (f (a) + i) = 0}.

��

2.3 Integral Domain and Reduced Property 

Note that, Proposition 2.3. (i) implies that if .A ��f J is an integral domain, then A 
is also an integral domain. Also, we have the following result. 

Proposition 2.8 ([15, Proposition 5.2]) The following statements are equivalent. 

.(i) .A ��f J is an integral domain.
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.(ii) .f (A) + J is an integral domain and . f −1(J ) = {0}.
In particular, if B is an integral domain and .f −1(J ) = {0}, then .A ��f J is an 
integral domain. ��

The following proposition implies that the property of being reduced for . A ��f J

is independent of the nature of f . 

Proposition 2.9 ([15, Proposition 5.4]) The following statements are equivalent. 

(i) .A ��f J is a reduced ring. 
(ii) A is a reduced ring and . Nilp(B) ∩ J = {0}.
In particular, if A and B are reduced, then .A ��f J is reduced; conversely, if J is a 
radical ideal of B and .A ��f J is reduced, then B . (and . A) is reduced. ��
Remark 2.10 Note that Proposition 2.9 implies that if A and .f (A) + J are reduced 
rings, then .A ��f J is a reduced ring. But the converse is not true in general (see 
[15, Remark 5.5 . (3)]). ��

The ring .A ��f J satisfies the property .(∗) if every ideal of .A ��f J has one of 
the following three forms: 

(i) .I × 0, where .I ⊆ f −1(J ) is an ideal of A. 
(ii) .0 × K , where .K ⊆ J is an ideal of .f (A) + J . 

(iii) .I ��f J , where I is an ideal of A. 

The following theorem provides necessary and sufficient conditions for the ring 
.A ��f J to satisfy the property . (∗). 

Theorem 2.11 ([26, Theorem 2.1]) Let .J = 0 be a proper ideal of B. Then the 
following statements hold. 

(1) If .A ��f J satisfies the property . (∗), then the following statements hold: 

(i) .f (A) is an integral domain. 
(ii) .f (A) ∩ J = 0. 

(iii) .0×J ⊆ ((a, f (a)+j)) for all .a ∈ A\{0} and .j ∈ J such that . f (a)+j =
0. 

(2) If f is injective and .A ��f J satisfies the property . (∗), then A is an integral 
domain. 

(3) If f is not injective and A is a ring with zero-divisors with .A ��f J satisfies the 
property . (∗), then .Annf (A)+J (f (a) + j) ⊆ J for all .a ∈ A \ {0}, and . j ∈ J

with .f (a) = 0. Moreover, if .f −1(J ) � Z(A), then . f (a) + j ∈ Reg(f (A) +
J ) for all .a ∈ Reg(A), and .j ∈ J with .f (a) = 0, and . Annf (A)+J (j) ⊆
f (Z(A) f −1(J )) + J for all .j ∈ J . 

(4) If f is not injective and A is an integral domain with .A ��f J satisfies the 
property . (∗), then the following conditions hold: 

(i) .f (A) + J is an integral domain.
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(ii) J is idempotent. 

(5) If .{0}×J ⊆ ((a, f (a)+j)) for all .a ∈ A\{0} and .j ∈ J such that .f (a)+j = 0, 
then .A ��f J satisfies the property . (∗).

��

2.4 Noetherian and Coherent Property 

In the following, some results about Noetherian property of the amalgamation are 
collected. 

Proposition 2.12 ([15, Proposition 5.6]) The following statements are equiva-
lent: 

(i) .A ��f J is a Noetherian ring. 
(ii) A and .f (A) + J are Noetherian rings.

��
In order to obtain more useful criteria for the Noetherianity of .A ��f J , the  

following result specialize Proposition 2.12 in some relevant cases. 

Proposition 2.13 The following statements hold. 

(i) [15, Proposition 5.7] Assume that at least one of the following conditions 
holds: 

(a) J is a finitely generated A-module. 
(b) J is a Noetherian A-module. 
(c) .f (A) + J is Noetherian as A-module. 
(d) f is a finite homomorphism. 

Then .A ��f J is Noetherian if and only if A is Noetherian. In particular, if 
A is a Noetherian ring and B is a Noetherian A-module . (e.g., if f is a finite 
homomorphism. ), then .A ��f J is a Noetherian ring for all ideal J of B. 

(ii) [15, Proposition 5.8] If B is a Noetherian ring and the ring homomorphism 
.f̆ : A → B/J is finite, then .A ��f J is a Noetherian ring if and only if A is a 
Noetherian ring.

��
Proposition 2.14 ([19, Proposition 4.14]) The following statements hold. 

(i) If .A ��f J is a coherent ring, then A is a coherent ring. 
(ii) If A is a coherent ring, and J is a coherent A-module, then .A ��f J is a 

coherent ring.
��
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2.5 Embedding Dimension 

Let A be a ring and I be an ideal of A. If  I is finitely generated, we denote, by .ν(I ), 
the minimum number of generators of the ideal I . Assume that .(A,m) is a local ring 
and set .k = A/m. If we suppose that . m is finitely generated, we call the embedding 
dimension of A the natural number 

. embdim(A) := ν(m) = dimk(m/m2).

In the following, some bounds for the embedding dimension of .A ��f J is given, 
when A is a local ring with finitely generated maximal ideal. 

Proposition 2.15 Assume that .(A,m) is a local ring and .J ⊆ J(B). Then the 
following statements hold: 

(i) [16, Proposition 4.1] If .A ��f J has finitely generated maximal ideal, then A 
has also finitely generated maximal ideal and . embdim(A) � embdim(A ��f

J ). 
(ii) [16, Proposition 4.1] If A has finitely generated maximal ideal and J is 

finitely generated, then .A ��f J has finitely generated maximal ideal and 
.embdim(A ��f J ) � embdim(A) + ν(J ). 

(iii) [16, Proposition 4.3] Let .f (m)B = B. Then, for every ideal J of B contained 
in the Jacobson radical of B, the amalgamation .A ��f J is a local ring with 
finitely generated maximal ideal, and .embdim(A) � embdim(A ��f J ). 

(iv) [16, Theorem 4.4] Suppose that J is a finitely generated ideal of B. If  
.f (m)B ⊆ J(B) and .J ⊆ J(B), then .A ��f J is a local ring with finitely 
generated maximal ideal, and .embdim(A) = embdim(A ��f J ) + ν(J ).

��

3 Cohen-Macaulay and Gorenstein Property 

3.1 Cohen-Macaulay Property 

In this subsection, assuming that .A ��f J is local and Noetherian, we investigate 
the problem of when .A ��f J is a Cohen-Macaulay ring. 

Theorem 3.1 ([16, Remark 5.1]) Let .(A,m) be a Noetherian local ring, . J ⊆
J(B), and let J be a finitely generated A-module. Then the ring .A ��f J is Cohen-
Macaulay if and only if it is a Cohen-Macaulay A-module if and only if J is a 
maximal Cohen-Macaulay A-module. ��

In [16, Remark 5.2], the authors mentioned that, if J is not finitely generated as 
an A-module, it is more problematic to find conditions implying .A ��f J Cohen-
Macaulay. One can get more information if the embedding .ι : A → A ��f J is
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flat . (or, equivalently, if the A-module J is flat. ). In this case, .A ��f J is Cohen-
Macaulay if and only if both A and .(A ��f J )/(m(A ��f J )) are Cohen-Macaulay. 
In [32], the authors provided conditions implying .A ��f J is Cohen-Macaulay. 
Recall that a finitely generated module M over a Noetherian local ring A is called a 
maximal Cohen-Macaulay A-module if .depth M = dim A. An  A-module N is said 
to be big Cohen-Macaulay if .depth N = dim A. 

Theorem 3.2 ([32, Theorem 2.3]) Let .(A,m) be a local ring, and let . J ⊆ J(B)

such that .f −1(q) = m for each .q ∈ Spec(B) \ V(J ). Then the following statements 
hold: 

(i) If .A ��f J is Cohen-Macaulay, then so does A. 
(ii) Further assume that .depthA(J ) < ∞. Then .A ��f J is Cohen-Macaulay if 

and only if A is Cohen-Macaulay and J is a big Cohen-Macaulay module.

��
Using the fact that a finitely generated big Cohen-Macaulay module is maximal 

Cohen-Macaulay, we have the following result. 

Corollary 3.3 ([32, Corollary 2.5]) Let .(A,m) be a local ring, and let . J ⊆ J(B)

be an ideal of B such that J is a finitely generated A-module. Assume that . A ��f

J is Noetherian. Then .A ��f J is Cohen-Macaulay if and only if A is Cohen-
Macaulay and J is a maximal Cohen-Macaulay A-module. ��
Corollary 3.4 ([32, Corollary 2.7]) Assume that .f −1(q) = m for each . q ∈
Spec(B) \ V(J ) and each .m ∈ Max(A). If  .A ��f J is Cohen-Macaulay, then 
so does A. ��
Theorem 3.5 ([2, Theorem 3.1]) Let .(A,m) be a local ring, and let .J ⊆ J(B). 
Then the following statements hold. 

(1) Let .dim(A ��f J ) = dim A. If  A is Cohen-Maculay and .depthA(J ) � dim A, 
then .A ��f J is Cohen-Maculay. 

(2) Suppose that for every .q ∈ Spec(B)\V(J ) with property .f −1(q) = m, we have 
.ht(f −1(q)) � ht(q). If  .A ��f J is Cohen-Maculay, then A is Cohen-Maculay 
and .depthA(J ) � dim A.

��

3.2 Serre’s Conditions 

A finitely generated module M over a Noetherian ring A satisfies Serre’s condition 
.(Sn) if .depth Mp = min{n, dim Mp}, for all .p ∈ Spec(A). Note that if M is Cohen-
Macaulay, then it satisfies Serre’s condition .(Sn) for any integer n. Also, when 
.dim M = d and M satisfies Serre’s condition .(Sd), then M is Cohen-Macaulay. In
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the following results, the property .(Sn) for the amalgamated algebra is investigated. 
Recall that an ideal is called a nil ideal if each of its elements is nilpotent. 

Proposition 3.6 Let .A ��f J be a Noetherian ring. Then the following statements 
hold: 

(i) [32, Corollary 2.9] Assume that for each .p ∈ V(f −1(J )) and each . q ∈
Spec(B) \ V(J ), .f −1(q) = p . (e.g., if f is surjective or J is a nil ideal of 
. B). If .A ��f J satisfies .(Sn), then so does A. 

(ii) [32, Corollary 2.9] Assume that .J 2 = 0 and that J is a finitely generated 
A-module. If .A ��f J satisfies .(Sn), then so does J . 

(iii) [32, Proposition 2.11] If A and B satisfy .(Sn), and .JSp is a maximal Cohen-
Macaulay .Ap-module for each prime ideal . p of A, where .Sp = f (A \ p) + J , 
then .A ��f J satisfies .(Sn).

��
Recall that a finitely generated module M over a Noetherian local ring .(A,m) is 

said to be a generalized Cohen-Macaulay A-module if .Hi
m(M) is of finite length 

for all .i < dim M . A local ring is called generalized Cohen-Macaulay if it is 
a generalized Cohen-Macaulay module over itself. It is clear that every Cohen-
Macaulay module is a generalized Cohen-Macaulay module. 

Theorem 3.7 ([32, Theorem 2.13]) Let .(A,m) be a local ring, and .J ⊆ J(B) be 
an ideal of B such that J is a finitely generated A-module. Assume that .A ��f J is 
Noetherian. Then .A ��f J is a generalized Cohen-Macaulay ring if and only if A 
and J are generalized Cohen-Macaulay and .dim J ∈ {0, dim A}. ��
Theorem 3.8 The following statements hold: 

(i) [16, Remark 5.4] If .(A,m) is a local Cohen-Macaulay ring, having a canonical 
module isomorphic . (as an A-module. ) to J , then .A ��f J is Gorenstein. 

(ii) [16, Proposition 5.5] Assume that A is a local Cohen-Macaulay ring and that 
.Annf (A)+J (J ) = (0). If  .A ��f J is Gorenstein, then A has a canonical 
module isomorphic to .f −1(J ).

��

3.3 Gorenstein and Quasi-Gorenstein Properties 

In the sequel, we investigate Gorenstein and quasi-Gorenstein properties of the 
amalgamation collected from [16] and [32]. 

Proposition 3.9 ([16, Proposition 5.7]) Assume that .(A,m) is Noetherian local 
ring, .0 = J ⊆ J(B), and J is a finitely generated A-module, and moreover, 
we assume that A is a Cohen-Macaulay ring, .f (A) + J satisfies .(S1) and
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equidimensional, and that .f −1(J ) is a regular ideal of A. Then, the following 
conditions are equivalent: 

(i) .A ��f J is Gorenstein. 
(ii) .f (A) + J is a Cohen-Macaulay ring, J is a canonical module of .f (A) + J , 

and .f −1(J ) is a canonical module of A.

��
Definition 3.10 Let R be a local ring with maximal ideal . m of dimension d. An  
R-module K is called a canonical module of R if 

.K ⊗R R̂ ∼= HomR(Hn
m(R), ER(R/m)).

��
The following notion of a quasi-Gorenstein ring is from [30]. 

Definition 3.11 A local ring R is said to be a quasi-Gorenstein ring if a canonical 
module of R exists and is a free R-module . (of rank one. ). This is equivalent to saying 
that .Hd

m(R) ∼= ER(R/m), where .d = dim R and . m is the maximal ideal of R. ��
It is known that a local ring R is quasi-Gorenstein if and only if so is . R̂. Also  R 

is Gorenstein if and only if it is a quasi-Gorenstein and Cohen-Macaulay ring. 

Theorem 3.12 Let A be a Noetherian local, and let .J ⊆ J(B), which is finitely 
generated A-module. Then the following statements hold: 

(i) [32, Theorem 3.2] If . Â satisfies .(S2) and J is a canonical module of A, then 
.A ��f J is quasi-Gorenstein. 

(ii) [32, Theorem 3.2] Let .J 2 = 0 and .AnnA(J ) = 0. If  .A ��f J is quasi-
Gorenstein, then A satisfies .(S2), and J is canonical module of A. 

(iii) [32, Theorem 3.2] Let .Annf (A)+J (J ) = 0 and .A ��f J be quasi-Gorenstein. 
Then .f −1(J ) is a canonical module of A. Furthermore, if f is surjective, then 
. Â satisfies .(S2). 

(iv) [32, Theorem 3.2] Let J be a flat A-module and .A ��f J be quasi-Gorenstein. 
Then A is quasi-Gorenstein. 

(v) [32, Corollary 3.3] Let A be Cohen-Macaulay and J be a canonical module 
of A. Then .A ��f J is Gorenstein. 

(vi) [32, Corollary 3.4] Assume that at least one of the following conditions 
holds. 

(1) f is isomorphism and .AnnB(J ) = 0. 
(2) .J 2 = 0 and .AnnA(J ) = 0. 

Then .A ��f J is Gorenstein if and only if A is Cohen-Macaulay and J is a 
canonical module of A. 

(vii) [32, Corollary 3.5] Let .Annf (A)+J (J ) = 0. If  .A ��f J is Gorenstein, then A 
is Cohen-Macaulay and .f −1(J ) is a canonical ideal of A. ��
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3.4 Cohen-Macaulay Property in the Sense of Ideals 

In Theorems 3.1 and 3.2, the Cohen-Macaulay property of .A ��f J in the case 
that A is a Noetherian local ring is investigated. In [4], the authors investigated 
the property of Cohen-Macaulayness in the sense of ideals (respectively, maximal 
ideals, finitely generated ideals) on the amalgamation. 

Definition 3.13 Let . b be an ideal of A such that is generated by the sequence . x =
x1, · · · , x
, and let M be an A-module. We denote the Koszul complex related to . x
by . K•(x). The  Koszul grade of . b on M is defined by 

. K . gradeA(b,M) := inf{i ∈ N ∪ {0} | Hi (HomA (K•(x),M) = 0},

and it is shown that this does not depend upon the choice of generating sets of . b. 
Let . a be an arbitrary ideal of A. The Koszul grade of . a on M can then be defined 
. K . gradeA(a,M) := sup{K . gradeA(b,M) | b is a finitely generated subideal of a}.
This definition coincides with the original one for finitely generated ideals. Let . A
be a non-empty subclass of the class of all ideals of the ring A. We say that M is 
Cohen-Macaulay in the sense of . A if .htM(a) = K . gradeA(a,M) for all ideals . a
in . A. ��
Theorem 3.14 ([4, Theorem 4.1]) Let .(A,m) be a local ring such that . m is finitely 
generated, and let .J ⊆ J(B) be a finitely generated A-module. Then .A ��f J is 
Cohen-Macaulay . (ring. ) in the sense of maximal ideals if and only if A is Cohen-
Macaulay in the sense of maximal ideals and .K . gradeA(m, J ) = dim A. ��
Theorem 3.15 ([4, Theorem 4.6]) Let .J ⊆ Nil(B). Then .A ��f J is Cohen-
Macaulay . (ring. ) in the sense of ideals if and only if A is Cohen-Macaulay in the 
sense of ideals and .K . gradeA(a, J ) � ht a for every ideal . a of A. ��
Corollary 3.16 ([4, Corollary 4.9]) Let A be a Noetherian ring, and let . J ⊆
Nil(B) be a finitely generated A-module. Then .A ��f J is Cohen-Macaulay if and 
only if A is Cohen-Macaulay and . Jp is maximal Cohen-Macaulay for every ideal 
.p ∈ SuppA(J ). ��
Theorem 3.17 With the notation of Proposition 2.3, the following statements 
hold: 

(i) [4, Theorem 4.11] Let . A be a non-empty class of ideals of A. Assume 
that the homomorphism f satisfies the going-down property. If .A ��f J is 
Cohen-Macaulay . (ring. ) in the sense of .Ae := {ae | a ∈ A}, then A is Cohen-
Macaulay in the sense of . A, and .K . gradeA(a, J ) � ht a for every .a ∈ A. 

(ii) [4, Theorem 4.11] Assume that . ιA is an integral ring extension. If A is Cohen-
Macaulay in the sense of ideals and .K . gradeA(a, J ) � ht a for every ideal . a
of . A, then .A ��f J is Cohen-Macaulay . (ring. ) in the sense of ideals. 

(iii) [4, Corollary 4.13] Assume that the homomorphism .f : A → B satisfies the 
going-down property and that J is finitely generated as an A-module. Then,
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.A ��f J is Cohen-Macaulay . (ring. ) in the sense of ideals if and only if A is 
Cohen-Macaulay in the sense of ideals and .K . gradeA(a, J ) = ht a for every 
ideal . a of A. 

(iv) [4, Corollary 4.14] Assume that .f : A → B is a monomorphism of integral 
domains, A is integrally closed, and that B is integral over A. Then, . A ��f J

is Cohen-Macaulay . (ring. ) in the sense of ideals if and only if A is Cohen-
Macaulay in the sense of ideals and .K . gradeA(a, J ) � ht a for every ideal . a
of A. 

(v) [4, Corollary 4.15] Assume that .f : A → B is flat and integral homomor-
phism. Then, .A ��f J is Cohen-Macaulay . (ring. ) in the sense of ideals if and 
only if A is Cohen-Macaulay in the sense of ideals and . K . gradeA(a, J ) � ht a
for every ideal . a of A.

��

3.5 Cohen-Macaulay Property in the Sense of Hamilton and 
Marley 

One generalization of the usual concept of Cohen-Macaulayness to non-Noetherian 
rings has been given by Hamilton and Marley [21]. This notion then extended 
to modules in [23]. An A-module M is called Cohen-Macaulay if every strong 
parameter sequence on M is an M-regular sequence. This definition agrees with 
the usual definition of Cohen-Macaulay finitely generated modules over Noetherian 
rings [23]. 

Theorem 3.18 ([5, Theorem 3.3]) Assume that .J ⊆ Nil(B) and that every A-
weakly proregular sequence is a J -weakly proregular sequence. Then .A ��f J is 
Cohen-Macaulay if and only if A is Cohen-Macaulay and every A-regular sequence 
is a weak J -regular sequence. ��

4 Clean Property and Prüfer-Like Conditions 

4.1 Clean Property 

The concept of clean rings was introduced by Nicholson [29]. Recall that a ring 
A is called (uniquely) clean if each element in A can be written (uniquely) as the 
sum of a unit and an idempotent. Examples of clean rings (uniquely clean rings) 
include all commutative von-Neumann regular rings (Boolean rings) and local rings 
(with residue field . Z2). A basic property of clean rings is that any homomorphic 
image of a clean ring is again clean. This leads to the definition of a neat rings [28].
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In the following, the transfer of clean property between A and its amalgamation is 
investigated. 

Proposition 4.1 The following statements hold: 

(i) [12, Proposition 2.1] If .A ��f J is a clean . (resp., uniquely clean. ) ring, then A 
is a clean . (resp., uniquely clean. ) ring and .f (A) + J is a clean ring. 

(ii) [12, Proposition 2.1] Let .(f (A) + J )/J be uniquely clean. Then .A ��f J is a 
clean ring if and only if A and .f (A) + J are clean rings. 

(iii) [12, Theorem 2.4] Assume that .f (u) + j is invertible for each .u ∈ U(A) and 
.j ∈ J . Then .A ��f J is clean . (resp., uniquely clean. ) if and only if A is clean 
. (resp., uniquely clean. ). 

More generally, if .J ∩ Idem(B) = 0 then, the following are equivalent: 

(1) .A ��f J is clean . (resp., uniquely clean. ). 
(2) A is clean . (resp., uniquely clean. ) and .J ⊆ J(B). 

(iv) [12, Corollary 2.6] Let .J ⊆ J(B). Then .A ��f J is clean . (resp., uniquely 
clean. ) if and only if A is clean . (resp., uniquely clean. ). 

(v) [12, Corollary 2.11] Let .J ⊆ Nil(B) . Then .A ��f J is clean . (resp. uniquely 
clean. ) if and only if A is clean . (resp. uniquely clean. ). 

(vi) [12, Corollary 2.16] The following statements are equivalent. 

(i) .A ��f J is local and uniquely clean. 
(ii) A is local and uniquely clean and .J ⊆ J(B). 

(vii) [12, Proposition 2.19] If .J ⊆ Idem(B), then .A ��f J is clean if and only if A 
is clean.

��
It is well-known that von-Neumann regular rings are particular cases of clean 

rings. In the following proposition, von-Neumann regular property of amalgamation 
is investigated. 

Proposition 4.2 ([12, Proposition 2.21]) The following statements hold. 

(i) If A and .f (A) + J are von-Neumann regular rings, then so is .A ��f J . 
(ii) If .A ��f J is von-Neumann regular, then A is von-Neumann regular and . J ∩

Nil(B) = (0), and the converse holds if f is surjective.

��

4.2 Prüfer-Like Conditions 

Prüfer domains are introduced by H. Prüfer in [31]. This class was deeply studied 
by several authors, and many equivalent definitions of Prüfer domain were given.
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Among the many equivalent conditions that make an integral domain A a Prüfer 
domain, we recall the following: 

(1) Every finitely generated ideal of A is projective. 
(2) . Ap is a valuation domain, for every .p ∈ Spec(A). 
(3) Every finitely generated ideal of A is locally principal. 
(4) If T is an indeterminate over A, every polynomial .f ∈ A[T ] is a Gauss 

polynomial over A. 
(5) Every non-zero finitely generated ideal of A is invertible. 

In [20], the notion of Prüfer domain was generalized to arbitrary commutative 
ring possibly with zero-divisors. In [9], the authors showed that none of the previous 
conditions is equivalent to the others, when A is a ring with zero-divisors. In general, 
the rings satisfying previous Prüfer-like conditions are distinct classes of rings leads 
us to recall the following definition. 

Definition 4.3 Let A be a ring. 

(P1) A is called a semi-hereditary ring if every finitely generated ideal of A is 
projective. 

(P2) A has weak global dimension at most 1 if . Ap is a valuation domain, for every 
.p ∈ Spec(A). 

(P3) A is called an arithmetical ring if every finitely generated ideal of A is locally 
principal. 

(P4) A is called a Gauss ring if every polynomial .f ∈ A[T ] is a Gauss polynomial 
over A. 

(P5) A is called a Prüfer ring if every regular and finitely generated ideal of A is 
invertible.

��
Theorem 4.4 ([19, Theorem 3.1 and Corollary 3.2]) Let .n ∈ {1, 2, 3, 4, 5}, and 
let .f −1(J ) and J be regular ideals. Then the following statements are equivalent: 

(i) .A ��f J satisfies Prüfer-like conditions .(Pn). 
(ii) A and B satisfy Prüfer-like conditions .(Pn) and .J = B.

��
Theorem 4.5 The following statements hold: 

(i) [19, Proposition 4.2] Let .f (Reg(A)) ⊆ Reg(B), and let .A ��f J be a Prüfer  
ring. Then A is Prüfer. 

(ii) [19, Corollary 4.5] Let .A ��f J be a Prüfer ring. If .{0} × J is a regular ideal 
of .A ��f J , then A is a Prüfer ring. 

(iii) [19, Corollary 4.5] Let .A ��f J be a Prüfer ring. If .f −1(J ) × {0} is a regular 
ideal of .A ��f J , then .f (A) + J is a Prüfer ring. 

(iv) [25, Theorem 2.2] Let .(A,m) be a local ring, and let .J ⊆ J(B). Assume that 
.J ⊆ f (A), and .f (Reg(A)) = Reg(B). Then .A ��f J is Prüfer if and only if 
so is A and .J = f (a)J for all .a ∈ m \ Z(A). ��
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Total ring of quotients are important source of Prüfer rings. The next proposition 
studies when the amalgamation is total ring of quotient in case .J 2 = 0. 

Proposition 4.6 ([25, Proposition 2.10]) Let .f −1(J ) = 0, .f (Z(A)) ⊆ J , and 
.J 2 = 0. Suppose that A is a total ring of quotient. Then the following statements 
hold: 

(i) .Q(A ��f J ) = A ��f J . In particular, .A ��f J is Prüfer. 
(ii) .W. dim(A ��f J ) � 1.

��
We say that the amalgamated ring .A ��f J has condition . � if the equality 

. Z(A ��f J ) = {(a, f (a) + j) | a ∈ Z(A), j ∈ J } ∪ {(a, f (a) + j) | a ∈
A, j ∈ J, ∃j ′ ∈ J \ {0} : j ′(f (a) + j) = 0} holds. 

Theorem 4.7 With the notation of Proposition 2.5, suppose that . f (Reg(A)) ⊆
Reg(B). Then the following statements hold: 

(i) [6, Theorem 3.5] If .A ��f J is a Prüfer ring, then A is a Prüfer ring and 
.JSm = f (r)JSm for every .m ∈ max(A) and .r ∈ Reg(A). 

(ii) [6, Theorem 3.5] Let .A ��f J has condition . �, and let . Z(A ��f J ) ⊆ J(A ��f

J ). If  A is a Prüfer ring and .JSm = f (r)JSm for every .m ∈ max(A) and 
.r ∈ Reg(A), then .A ��f J is a Prüfer ring. 

(iii) [6, Corollary 3.6] Let .(A,m) be a local ring, .J ⊆ J(B). Then the following 
statements hold: 

(1) If .A ��f J is a Prüfer ring, then A is a Prüfer ring and .J = f (r)J for 
every .r ∈ Reg(A). 

(2) Let .A ��f J has condition . �. If  A is a Prüfer ring and .J = f (r)J for 
every .r ∈ Reg(A), then .A ��f J is a Prüfer ring.

��
Proposition 4.8 ([6, Proposition 3.15]) The following statements hold: 

(i) Let .J ⊆ J(B), and let .A ��f J has condition . �. Then .A ��f J is a total ring 
of quotients, provided that A is a total ring of quotients. 

(ii) Let .f (Reg(A)) ⊆ Reg(B). Then A is a total ring of quotients, provided that 
.A ��f J is a total ring of quotients.

��
Theorem 4.9 ([6, Theorem 4.1]) Let .(A,m) be a local ring, and let . J ⊆ f (A) ∩
J(B) . (e.g., f is surjective. ). Then .A ��f J is Gaussian if and only if A is Gaussian, 
.J 2 = 0 and .f (r)J = f (r)2J for every .r ∈ m. ��
Corollary 4.10 ([6, Corollary 4.2]) Let .J ⊆ f (A) ∩ J(B). Then .A ��f J is 
Gaussian if and only if A is Gaussian, .J 2

m = 0 and .f (r)Jm = f (r)2Jm for every 
.m ∈ max(A) ∩ V(f −1(J )) and .r ∈ m. ��
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Theorem 4.11 ([26, Theorem 5.1]) Let .(A,m) be a local ring, and let .J ⊆ J(B). 
Then .A ��f J is Gaussian if and only if the following conditions hold: 

(1) A is Gaussian. 
(2) .(f (a) + j)J = (f (a) + j)2J for each .a ∈ A, and each .j ∈ J . 
(3) .J 2 = 0. 

or 
(4) A and .f (A) + J are Gaussian. 
(5) .x2 = 0 for each .x ∈ f −1(J ). 
(6) .(f (a) + j)J = (f (a) + j)2J for each .a ∈ A, and each .j ∈ J . 
(7) If .f (a2) = 0, then .a2 = 0.

��
Corollary 4.12 ([26, Corollary 5.2]) With the notation of Proposition 2.5, the ring 
.A ��f J is Gaussian if and only if the following statements hold: 

(1) A is Gaussian. 
(2) . BQ is Gaussian for each .Q ∈ Max(B) \ V(J ). 
(3) For each .m ∈ Max(A) containing .f −1(J ), for each .a ∈ Am, and each . j ∈

JSm . .(fm(a) + j)JSm = (fm(a) + j)2JSm , 
(4) For each .m ∈ Max(A) containing .f −1(J ), .J 2

Sm
= 0. 

or 
(5) A is Gaussian. 
(6) For each .m ∈ Max(A) containing .f −1(J ), .fm(Am) + JSm is Gaussian. 
(7) . BQ is Gaussian for each .Q ∈ Max(B) \ V(J ). 
(8) .x2 = 0 for each .m ∈ Max(A) containing .f −1(J ), and for each . x ∈

f −1
m (JSm). 

(9) For each .m ∈ Max(A) containing .f −1(J ). for each .a ∈ Am, and each . j ∈
JSm . 

(10) If .fm(a2) = 0, then .a2 = 0, for each .m ∈ Max(A) containing .f −1(J ), and 
for each .a ∈ Am.

��

5 Other Properties 

Note that Proposition 3.9 provides the necessary and sufficient conditions of self-
injectivity of the ring .A ��f J . As a nice generalization of injectivity for modules, 
Xu in [38] introduced the terminology of strongly cotorsion modules. Recall that an 
A-module M is called a strongly cotorsion module if .Ext1A(F,M) = 0 for all A-
modules F with finite flat dimension. In [36], the authors investigated the strongly 
cotorsion property of .Hdim A

m��f J
(A ��f J ), where .(A,m) is a Noetherian local ring. 

Theorem 5.1 ([36, Theorem 2.2]) Let .(A,m) be a Noetherian local ring with 
dimension d and .0 = J ⊆ J(B), such that J is a finitely generated A-module.
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Then .Hd
m��f J

(A ��f J ) is a strongly cotorsion A-module if and only if .Hd
m(A) and 

.Hd
m(J ) are strongly cotorsion A-modules. ��
In the sequel, we investigate some homological properties of the amalgamation 

collected from [36]. 

Proposition 5.2 Let J be a flat A-module. Then the following statements hold for 
any A-module M: 

(i) . fdA(M) = fdA��f J (M ⊗A (A ��f J )) = fdA(M ⊗A (A ��f J )).

(ii) . pdA(M) = pdA��f J (M ⊗A (A ��f J )).

(iii) .idA(M) = idA(M ⊗A (A ��f J )).

��
Proposition 5.3 The following statements hold for every A-module M: 

(i) If M is a . (faithfully. ) injective A-module, then .HomA (A ��f J,M) is a 
. (faithfully. ) injective .(A ��f J )-module. 

(ii) Every injective .(A ��f J )-module is a direct summand of the A-module 
.HomA(A ��f J,M), where M is an injective A-module.

��
Recall that an A-module M is said to be uniserial if the set of its (cyclic) 

submodules is totally ordered by inclusion and A is a chained ring if it is uniserial 
as A-module. 

Theorem 5.4 ([6, Theorem 5.1]) Let .J = 0, and let .A ��f J be a chained ring. 
Then A is a valuation domain and .J = (f (a) + j)J for every .0 = a ∈ A and 
.j ∈ J . The converse holds provided that J is a uniserial A-module. ��
Corollary 5.5 ([6, Corollary 5.2]) The following statements hold: 

(i) Let .J = 0 such that .J 2 = 0. Then .A ��f J is a chained ring if and only if A 
is a valuation domain, J is a uniserial A-module, and .J = f (a)J for every 
.0 = a ∈ A. 

(ii) Let .J ⊆ f (A). Then .A ��f J is a chained ring if and only if A is a chained 
ring and .J = 0.

��
Recall that .p ∈ Spec(A) is a divided prime ideal in A if . p is comparable under 

inclusion to each ideal of A and A is a divided ring if .p ∈ Spec(A) is divided 
in A (see [7]). A ring A is called locally divided if .Ap is a divided ring for each 
.p ∈ Spec(A). Each divided ring is locally divided [7, Proposition 4]. In the following 
theorem, the transfer of the properties of being a divided ring and a locally divided 
ring between rings A, B, and .A ��f J is studied. 

Theorem 5.6 ([26, Theorem 3.1]) With the notation of Proposition 2.5, the follow-
ing statements hold:
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(1) Let A be an integral domain. Then .A ��f J is a divided ring if and only if the 
following statements hold: 

(i) .f −1(J ) = 0. 
(ii) A and .f (A) + J are divided rings. 
(iii) .{0} × J ⊆ ((a, f (a) + j)) for all .a ∈ A − {0} and .j ∈ J . 

(1. ′) Let .A ��f J be a locally divided ring. Then A is locally divided and the 
following statements hold: 

(a) For each .p ∈ Spec(A) containing .f −1(J ) such that . Ap is an integral 
domain, the following statements hold: 

(i) .f −1
p (JSp) = 0, where .Sp = f (A \ p) + J . 

(ii) .fp(Ap) + JSp is a divided ring. 
(iii) .{0} × JSp ⊆ ((a/s, fp(a/s) + j/t)) for all .a/s ∈ Ap − {0} and 

.j/t ∈ JSp . 

(b) For each .p ∈ Spec(A) containing .f −1(J ) such that . Ap is a ring with zero-
divisors, the following statements hold: 

(i) .JSp ⊆ Nil(BSp). 
(ii) .{0} × JSp ⊆ ((a/s, fp(a/s) + j/t)) for all .q ∈ V(p), . a/s ∈ Ap \ qp

and .j/t ∈ JSp . 

(2) Let .Z(A) = {0}. Then .A ��f J is a divided ring if and only if the following 
statements hold. 

(i) .J ⊆ Nil(B). 
(ii) A is a divided ring. 
(iii) .{0}×J ⊆ ((a, f (a)+j)) for all .p ∈ Spec(A), for all .i ∈ A\p and .j ∈ J . 

(2. ′) If moreover B is locally divided, then A is locally divided.
��

Recall that a domain A is called a going-down domain if .A ⊆ T satisfies the 
going-down property GD for each domain T . The ring A is called going-down ring 
if .A/p is going-down domain for each .p ∈ Spec(A). 

In the following theorem, the transfer of the notion of going-down rings to their 
amalgamation is studied. 

Theorem 5.7 ([26, Theorem 4.1]) Let .J = 0. Then the following statements 
hold: 

(i) If .A ��f J is a going-down ring, then A is a going-down ring. 
(ii) If .J ⊆ Nil(B), then A is a going-down ring if and only .A ��f J if is a going-

down ring. 
(iii) Suppose that .q ∈ Spec(f (A)+J ) for each .q ∈ Spec(B)\V(J ). Then . A ��f J

if is a going-down ring provided that A and .f (A) + J are going-down rings.
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(iv) If .f −1(J ) = 0, then .A ��f J is a going-down ring if and only if .f (A) + J is 
a going-down ring.

��
Recall that the ring A is called .(A)-ring if for every finitely generated ideal I of 

A such that .I ⊂ Z(A), we have .Ann(I ) = 0, (see [22]). 

Theorem 5.8 The following statements hold: 

(i) [24, Theorem 2.1] Let .f −1(J ) be a regular ideal of A, and let .f −1(J ) be a 
regular ideal of .f (A) + J . Then .A ��f J is an .(A)-ring if and only if so are 
A and B. 

(ii) [24, Proposition 2.8] Let .J = 0 be a proper ideal of B such that .f −1(J ) = 0, 
and .J 2 = 0. Then .A ��f J is an .(A)-ring, provided that A is .(A)-ring. 

(iii) [24, Corollary 2.9] Let .J = 0 be a proper ideal of B such that .f −1(J ) = 0, 
and .J 2 = 0. Suppose that A is a total ring of quotient which is .(A)-ring and 
.f (Z(A)) ⊆ J . Then the following statements hold: 

(1) .A ��f J is an .(A)-ring. 
(2) .Q(A ��f J ) = A ��f J is not von-Neumann regular ring.

��
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The Ring of Integer-Valued Polynomials 
on .3× 3 Matrices and Its Integral Closure 

Asmita C. Sodhi 

Mathematics Subject Classification: Primary: 13F20, Secondary: 11C08, 16S36 

1 Introduction 

Let .Mn(Z) be the ring of .n × n matrices with integer entries. Then we can denote 
by 

. IntQ(Mn(Z)) = {f ∈ Q[x] : f (M) ∈ Mn(Z) for all M ∈ Mn(Z)}

the set of rational polynomials mapping integer matrices to integer matrices. This is 
a .Z-module for which we have the inclusion: 

.Z[x] ⊆ IntQ(Mn(Z)) ⊆ Int(Z) . (1) 

We can see that .IntQ(Mn(Z)) has a regular basis—a basis containing exactly one 
polynomial for every degree k—via the following result of Cahen and Chabert: 

Corollary 1 ([2, II.1.6]) Let B be a domain such that .D[x] ⊆ B ⊆ Int(E,D) for 
some infinite fractional subset E of D. If  D is a principal ideal domain, then B has 
a regular basis. 

Since . Z is a principal ideal domain and is an infinite fractional subset of itself, we 
may conclude from this corollary and Eq. (1) that .IntQ(Mn(Z)) has a regular basis. 
Unlike for .Int(Z), however, it turns out that this regular basis is not easy to describe 
in closed form [3]. 

For our interests, the integral closure of .IntQ(Mn(Z)), the set of all polynomials 
.f (x) ∈ Q[x] which are integral over .IntQ(Mn(Z)), is a very useful object (however, 
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it should be noted that there are polynomials in the integral closure that are not in 
the ring of integer-valued polynomials itself; see [8] for a method of construction 
of such polynomials). We can learn information about computing regular bases for 
both of these rings by making use of the following two results of Frisch, and Loper 
and Werner, respectively. 

Theorem 1 ([4, Lemma 3.4]) Let .f (x) = g(x)
c

with .g(x) ∈ Z[x] and .c ∈ Z� {0}. 
Then .f (x) maps .Mn(Z) to itself if and only if .g(x) is divisible modulo .cZ[x] by all 
monic polynomials in .Z[x] of degree n. 
Theorem 2 ([7, 3.8 and 4.6]) Let .On denote the set of all algebraic integers in 
number fields .Q(θ) with .[Q(θ) : Q] = n. Then the integral closure of . IntQ(Mn(Z))

is equal to 

. 
⋂

θ∈On

IntQ(Oθ ) ,

where . Oθ denotes the ring of algebraic integers in .Q(θ) and .IntQ(Oθ ) denotes the 
algebra of rational polynomials preserving . Oθ . 

To study the integral closure of .IntQ(Mn(Z)), we would like to describe its 
localizations at rational primes, which can be done using the localizations of the 
algebras .IntQ(Oθ ) from Theorem 2. Loper and Werner [7] suggest that a basis for 
the integral closure of .Int(Mn(Z)) can be found by computing .IntQ(Oθ )(p) for all 
possible .Oθ and a given rational prime p and then intersect, but computing the 
intersection becomes complicated. 

Another way by which we can study the integral closure of .IntQ(Mn(Z)) is by 
using results about division algebras over local fields. 

Theorem 3 (Embedding Theorem, in Appendix of [10]) If D is a division 
algebra of degree . n2 over a local field K and F is a field extension of degree n 
of K , then F can be embedded as a maximal commutative subfield of D. 

From this theorem, it follows that if .Rn is the maximal order of D, then by 
inclusion .IntQ(Rn) lies in the intersection of all the rings .IntQ(Oθ ) (since each . Q(θ)

can be embedded as a maximal commutative subfield of D). The rings .IntQ(Rn) and 
.
⋂

θ∈On
IntQ(Oθ ) are, in fact, equal, and so constructing an .Rn-basis for . IntQ(Rn)

via p-orderings will give the means to describe the integral closure of .IntQ(Mn(Z)). 
Let p be a fixed prime, let  D be a division algebra of degree . n2 over K a local 

field, and let . Rn denote the maximal order in D. In all applications, we will take 
.K = Qp the p-adic numbers, equipped with the usual p-adic valuation. 

Proposition 1 ([7, 4.6],  [3, 2.1])  The integral closure of .IntQ(Mn(Z)(p)) is 
.IntQ(Rn). 

Proposition 1 demonstrates that the problem of describing the integral closure of 
.IntQ(Mn(Z)(p)) is exactly that of describing .IntQ(Rn), so we can move our attention
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toward studying integer-valued polynomials over maximal orders. In so doing, we 
must recall the definition of a minimal polynomial of a finite set in a division ring: 

Theorem 4 (Bray-Whaples, [6, 16.13]) Let D be a division ring and . c1, . . . , cn

be n pairwise nonconjugate elements of D. Then there exists a unique polynomial 
.g(x) ∈ D[x] with .deg(g) = n that is monic and such that .g(c1) = · · · = g(cn) = 0. 
Moreover, .g(x) has the following properties: 

1. .c1, . . . , cn are all the roots of .g ∈ D. 
2. If .h(x) ∈ D[x] vanishes on all . ci with .1 ≤ i ≤ n, then .h(x) ∈ D[x] · g(x). 

We can therefore refer to .g(x) as the minimal polynomial of the set .{c1, . . . , cn}. 
To describe .IntQ(Rn), we require results analogous to Bhargava’s p-ordering [1] 

for maximal orders of division algebras over a local field. 

Definition 1 ([5, 1.1])  Let K be a local field with valuation . ν, D be a division 
algebra over K to which . ν extends, R the maximal order in D, and S a subset of 
R. Then a .ν-ordering of S is a sequence .{ai : i = 0, 1, 2, . . . } ⊆ S such that 
for each .k > 0, the element . ak minimizes the quantity . ν(fk(a0, . . . , ak−1)(a))

over .a ∈ S, where .fk(a0, . . . , ak−1)(x) is the minimal polynomial of the set 
.{a0, a1, . . . , ak−1}, with the convention that .f0 = 1. We call the sequence of 
valuations .{ν(fk(a0, . . . , ak−1)(ak)) : k = 0, 1, . . . } the .ν-sequence of S. 

Proposition 2 ([5, 1.2])  As in Definition 1, let  K be a local field with valuation . ν, 
D be a division algebra over K to which . ν extends, R the maximal order in D, 
and S a subset of R. Additionally, let .π ∈ R be a uniformizing element, meaning 
an element for which .(πn) = (p), let  .{ai : i = 0, 1, 2, . . . } ⊆ S be a .ν-ordering, 
and let .fk(a0, . . . , ak−1) be the minimal polynomial of .{a0, a1, . . . , ak−1}. Then the 
sequence .{αS(k) = ν(fk(a0, . . . , ak−1)(ak)) : k = 0, 1, 2, . . . } depends only on the 
set S, and not on the choice of .ν-ordering. The sequence of polynomials 

. {π−αS(k)fk(a0, . . . , ak−1)(x) : k = 0, 1, 2, . . . }

forms a regular R-basis for the R-algebra of polynomials which are integer-valued 
on S. 

To utilize Proposition 2, we first need to be able to construct a .ν-ordering of our 
maximal order . Rn. A recursive method for constructing .ν-orderings for elements of 
a maximal order is based on two lemmas. 

Lemma 1 (see [5, 6.2])  Let .{ai : i = 0, 1, 2, . . . } be a .ν-ordering of a subset S of 
R with associated .ν-sequence .{αS(i) : i = 0, 1, 2, . . . }, and let b be an element in 
the center of R. Then: 

(i) .{ai + b : i = 0, 1, 2, . . . } is a .ν-ordering of .S + b, and the .ν-sequence of . S + b

is the same as that of S.
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(ii) If p is the characteristic of the residue field of K (so that .(p) = (π)n in R), 
then .{pai : i = 0, 1, 2, . . . } is a .ν-ordering for pS and the .ν-sequence of pS is 
.{αS(i) + in : i = 0, 1, 2, . . . }. 

Definition 2 The shuffle of two nondecreasing sequences of integers is their disjoint 
union sorted into nondecreasing order. If the sequences are .{bi} and .{ci}, their 
shuffle is denoted .{bi} ∧ {ci}. 
Lemma 2 ([5, 5.2])  Let . S1 and . S2 be disjoint subsets of S with the property that 
there is a nonnegative integer k such that .ν(s1 −s2) = k for any .s1 ∈ S1 and . s2 ∈ S2
and that . S1 and . S2 are each closed with respect to conjugation by elements of R, by  
which we mean .rsr−1 ∈ S1 for all .r ∈ R and .s ∈ S1, and, respectively, for . S2. If  
.{ai} is a .ν-ordering of .S1 ∪ S2 then the subsequence of this ordering consisting of 
those elements in . S1 is a .ν-ordering of . S1 and similarly for . S2. 

Conversely, if .{bi} and .{ci} are .ν-orderings of . S1 and . S2, respectively, with 
associated .ν-sequence .{αS1(i)} and .{αS2(i)}, then the .ν-sequence of .S1 ∪ S2 is the 
sum of the linear sequence .{ki : i = 0, 1, 2, . . . } with the shuffle . {αS1(i) − ki} ∧
{αS2(i) − ki}, and this shuffle applied to .{bi} and .{ci} gives a .ν-ordering of .S1 ∪ S2. 

As the linear sequence mentioned in the above Lemma will come up multiple 
times in this paper, we formalize its notation here: 

Definition 3 The sequence .(kn) denotes the linear sequence .{kn : n = 0, 1, 2, . . . }, 
whose nth term is kn. 

The case where .n = 2, in which D is a division algebra of degree 4, has been 
described for the case where .p = 2 in [5] and extended to the case where p is 
an odd prime in [3]. This paper will describe the case where .n = 3 and .p = 2. 
The author’s PhD thesis [11], written under the supervision of Keith Johnson at 
Dalhousie University, examines the more general case where n is an odd prime and 
.p = 2. 

2 The Maximal Order �3 

When R is a complete discrete valuation ring with unique maximal ideal P , K is 
the quotient field of R, and D is a division ring whose center contains K and is such 
that .[D : K] = m is finite, then D contains a unique maximal R-order . �. When the 
residue class field .R/P is finite and .[D : K] = n2, the structures on the division 
ring D and maximal order . � can be described explicitly and can be chosen to only 
depend on the index n. 

The proof of Theorem 14.6 in [9] gives a construction for D. The proof shows 
that there exists a division ring D with any Hasse invariant .r/n for any choice of 
.r ∈ Z such that .1 ≤ r ≤ n and .gcd(r, n) = 1. Since we only care about the 
existence of some division ring of index n and not a specific one, we can take .r = 1. 
Doing so provides a description of the division algebra .D3 and its maximal order
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. �3, represented as subsets of the .3 × 3 matrices: 

. D3 = Q2[ω, π] �3 = Z2[ω, π]

where .Q2,Z2 denote the 2-adic numbers and integers, respectively, and 

. ω =
⎛

⎝
ζ7 0 0
0 ζ 2

7 0
0 0 ζ 4

7

⎞

⎠ π =
⎛

⎝
0 1 0
0 0 1
2 0 0

⎞

⎠

with . ζ7 a primitive 7th root of unity. Note that we have the relations .π3 = 2I3 and 
.π · ω · π−1 = ω2 and also a valuation . ν in .�3 described by .ν(z) = ν2(det(z)) for 
.z ∈ �3 realized as a matrix, where . ν2 denotes the 2-adic valuation. 

2.1 Conjugacy Classes of �3 Modulo π 

Each element in .�3 is expressible as a .Z2-linear combination of the nine elements 
.{ωi · πj : 0 ≤ i, j ≤ 2}. The quotient .�3/(π) is isomorphic to the finite field 
.F23 = F8 with nonzero residue classes modulo . π represented by powers of . ω. 
We would like to decompose .�3 using the conjugacy classes of .�3 modulo . π and 
denote these classes as follows: 

Definition 4 Define the sets 

. T = {z ∈ �3 : z ≡ 0 (mod π)} = π�

T + 1 = {z ∈ �3 : z ≡ I3 (mod π)}
S = {z ∈ �3 : z ≡ ω or ω2 or ω4 (mod π)}

S + 1 = {z ∈ �3 : z ≡ ω3 or ω6 or ω5 (mod π)}
= {z ∈ �3 : z ≡ ω + I3 or ω2 + I3 or ω4 + I3 (mod π)} .

Lemma 3 

(i) If .z ∈ T , then the characteristic polynomial of z is congruent to .x3 (mod 2). 
(ii) If .z ∈ T + 1, then the characteristic polynomial of z is congruent to 

.(x − 1)3 (mod 2). 
(iii) if .z ∈ S, then the characteristic polynomial of z is congruent to . x3 + x + 1

.(mod 2). 
(iv) if .z ∈ S+1, then the characteristic polynomial of z is congruent to . x3 +x2 +1

.(mod 2). 
(v) Each of the sets .T , T + 1, S, S + 1 is closed with respect to conjugation by 

elements of . �3, where “a conjugated by b” is the element .bab−1.
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(vi) Each element of . �3 lies in exactly one of the sets .T , T + 1, S, S + 1, so that 
their disjoint union is all of . �3. 

(vii) If .z,w ∈ �3 are not both simultaneously in one of T , .T + 1, S, or .S + 1, then 
.ν(z − w) = 0. 

Proof 

(i) If .z ∈ T , then .z3 ≡ 0 (mod π3) so .z3 ≡ 0 (mod 2), and hence z is a root of 
.x3 (mod 2). 

(ii) If .z ∈ T + 1, then .(z − I3)
3 ≡ 0 (mod π3) so .(z − I3)

3 ≡ 0 (mod 2), and 
hence z is a root of .(x − 1)3 (mod 2). 

(iii) When viewed as a matrix, . ω has characteristic polynomial .x3 +x +1 (mod 2). 
As it is a diagonal matrix, it is easily seen that . ω has the same eigenvalues 
as .ω2 and . ω4, so all three elements of .�3 have the same characteristic 
polynomial. If instead .z ≡ ω,ω2, or .ω4 (mod π) then z is still a root of the 
polynomial .x3 + x + 1 (mod 2). Since this is an irreducible cubic polynomial, 
we can be certain that this is actually the characteristic polynomial of z. 

(iv) When viewed as a matrix, .ω + I3 has characteristic polynomial . x3 + x2 +
1 (mod 2). This matrix is diagonal, and it is easily seen that .ω2+I3 and . ω4+I3
have the same entries as .ω+I3, only permuted, and hence all three elements of 
. �3 have the same characteristic polynomial. If instead .z ≡ ω+ I3, ω

2 + I3, or  
.ω4 + I3 (mod π) then z is still a root of the polynomial .x3 + x2 + 1 (mod 2). 
Since this is an irreducible cubic polynomial, we can be certain that this is 
actually the characteristic polynomial of z. 

(v) This follows from Dickson’s Theorem [6, 16.8]. Since all nonconstant ele-
ments .z ∈ �3 have irreducible characteristic polynomials (see Lemma 6), 
here characteristic and minimal polynomials coincide. Since by Dickson’s 
Theorem conjugate elements share a characteristic polynomial, this implies 
that each of the subsets T , .T + 1, S, and .S + 1 is closed under conjugation by 
elements of . �3. 

(vi) It is easy to see, since all nonzero residue classes of .�3 (mod π) are 
represented by powers of . ω, that .T ∪ (T + 1) ∪ S ∪ (S + 1) = �3. The  
fact that each element of .�3 lies in exactly one of these four sets follows by 
the uniqueness of the characteristic polynomial. 

(vii) If .z,w are in different sets .T , T +1, S, S +1, then z and w are by definition in 
different residue classes modulo . π . Therefore .z − w �≡ 0 (mod π) and hence 
.ν(z − w) = 0 for all choices of .z,w ∈ �3 such that z and w are not in the 
same subset of . �3 given in Definition 4. 

	

Knowing this decomposition of .�3 into the union of disjoint sets, we can apply 

Lemma 2 to determine a recursive definition for the .ν-ordering of . �3. Also by  
Lemma 1, we need only concern ourselves with the .ν-sequences of the sets T and 
S, as .T + 1 and .S + 1 are simply translates, under which .ν-sequences are invariant. 
However, we can further decompose .�3 by examining the subsets closed under 
conjugation modulo higher powers of . π within the set T .
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2.2 Decomposition of T 

Definition 5 Let 

. T1 = {z ∈ �3 : z ≡ 0 (mod π2)} = π2�

T2 = {z ∈ �3 : z ≡ ωiπ (mod π2) for some 0 ≤ i ≤ 6}

Lemma 4 

(i) Every element in T is in exactly one of T1 and T2. 
(ii) Each of T1 and T2 is closed with respect to conjugation by elements of �3. 

(iii) If z ∈ T1 and w ∈ T2, then ν(z − w) = 1. 

Proof 

(i) As all z ∈ T are such that z ≡ 0 (mod π), the fact that either z ∈ T1 or z ∈ T2 
follows from the definition of these sets. 

(ii) The fact that T1 is closed under conjugation is clear from its definition. In the 
case of T2, we can write any element of �3 as a linear combination of the 
elements ωk π	 with 0 ≤ k ≤ 6, 0 ≤ 	 ≤ 2. Using the known relations 
between ω and π , it follows that conjugating π ∈ �3 by an arbitrary element 
ωk π	 of �3 gives ωk π	 · π · π−	ω−k = ω7−k π . Thus every element ωi π is in 
the same orbit as π under the action of conjugation; hence T2 is closed under 
conjugation by elements of �3. 

(iii) If z ∈ T1 and w ∈ T2, then z − w ≡ ωi π (mod π2) for some 0 ≤ i ≤ 6. 
Therefore ν(z − w) = ν(ωi π)  = 1 for any choice of z ∈ T1 and w ∈ T2. 

	

We can, in fact, break the set T1 into components even further. 

Definition 6 Let 

. T3 = {z ∈ �3 : z ≡ 0 (mod π3)} = 2�3

T4 = {z ∈ �3 : z ≡ ωiπ2 (mod π3) for some 0 ≤ i ≤ 6}

Lemma 5 

(i) Every element of T1 is in exactly one of T3 and T4. 
(ii) Each of T3 and T4 is closed with respect to conjugation by elements of �3. 

(iii) If z ∈ T3 and w ∈ T4, then ν(z − w) = 2. 

Proof 

(i) As all z ∈ T1 are such that z ≡ 0 (mod π2), the fact that either z ∈ T3 or z ∈ T4 
follows from the definition of these sets. 

(ii) The fact that T3 is closed under conjugation is clear from its definition. In 
the case of T4, we can write any element of �3 as a linear combination of the
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Fig. 1 Tree summarizing decomposition of �3 

elements ωk π	 with 0 ≤ k ≤ 6, 0 ≤ 	 ≤ 2. Using the known relations between 
ω and π , it follows that conjugating π2 ∈ �3 by an arbitrary element ωk π	 of
�3 gives ωk π	 · π2 · π−	ω−k = ω4k π2. Since the equation 4k ≡ n (mod 7) 
has a solution for every n ∈ Z/(7), it follows that every element ωi π2 is in 
the same orbit as π2 under the action of conjugation; hence T4 is closed under 
conjugation by elements of �3. 

(iii) If z ∈ T3 and w ∈ T4, then z − w ≡ ωi π2 (mod π3) for some 0 ≤ i ≤ 6. 
Therefore ν(z − w) = ν(ωi π2) = 2 for any choice of z ∈ T3 and w ∈ T4. 

	

From this analysis, it follows that 

. T = T1 ∪ T2

= (T3 ∪ T4) ∪ T2

= 2�3 ∪ T4 ∪ T2

with all unions disjoint and with all sets fulfilling the conditions of Lemma 2. The  
decomposition of �3 into sets is demonstrated graphically in Fig. 1. By Lemma 1, 
the ν-sequence of T3 = 2�3 can be written in terms of the ν-sequence for �3, which 
provides the eventual recursive definition of α�3 we seek, given in Proposition 3. 
Thus, to define the ν-sequence of T , it is sufficient to determine the ν-sequences of 
T2 and T4. 

3 The ν-Sequence of �3 

From the description of the decomposition of .�3 into appropriate disjoint sets as 
in Sect. 2.2, coupled with the results of Lemmas 1 and 2, we obtain the following 
result. 

Proposition 3 The .ν-sequence of . �3, denoted . α�3 , satisfies and is determined by 
the formula
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. α�3 = ([
(
[
(α�3 + (n)) ∧ (αT4 − (2n))

] + (n)) ∧ (αT2 − (n))
] + (n)

)∧2 ∧ (αS)∧2 ,

where .(kn) denotes the linear sequence whose nth term is kn. 

Proof This formula follows from Lemmas 1, 2, 3, 4, and 5. 
Since .T3 = 2�3, we have .αT3 = α�3 + (3n). We then know that 

. αT1 = [
(α�3 + (3n) − (2n)) ∧ (αT4 − (2n))

] + (2n)

= [
(α�3 + (n)) ∧ (αT4 − (2n))

] + (2n)

and therefore 

. αT = [
(αT1 − (n)) ∧ (αT2 − (n))

] + (n)

= [
(
[
(α�3 + (n)) ∧ (αT4 − (2n))

] + (2n) − (n)) ∧ (αT2 − (n))
] + (n)

= [
(
[
(α�3 + (n)) ∧ (αT4 − (2n))

] + (n)) ∧ (αT2 − (n))
] + (n) .

We know that .T + 1 is a translate of T and .S + 1 of S, so that .αT = αT +1 and 
.αS = αS+1. Therefore 

. α�3 = αT ∧ αT +1 ∧ αS ∧ αS+1

= (α∧2
T ) ∧ (α∧2

S )

= (
[
(
[
(α�3 + (n)) ∧ (αT4 − (2n))

] + (n)) ∧ (αT2 − (n))
] + (n))∧2 ∧ (αS)∧2

as claimed. 	

Once we have determined the .ν-sequences for S, . T2, and . T4, this formula will 

uniquely determine .α�3(i) for all i. For every . i > 0, the  ith term on the right-hand 
side consists of terms from . αS , . αT2 , and . αT4 , and also terms .α�3(j) for some .j < i. 
As the first term of any .ν-sequence is always 0, this formula gives an expression of 
.α�3 for all i. 

3.1 Characteristic Polynomials of Subsets of �3 

We would like to be able to completely describe the subsets of . �3 in terms of the 2-
adic valuation of coefficients in their characteristic polynomials in order to describe 
the appropriate .ν-sequences. 

Lemma 6 Let .z ∈ �3 be a nonconstant element. The characteristic polynomial of 
z is irreducible over . Q2.
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The fact that characteristic polynomials of nonconstant elements of .�3 are 
irreducible allows us to make use of the following result, which has been restated 
for the degree 3 case with the convention of writing general polynomials as . f (x) =∑n

i=0 aix
i . 

Lemma 7 ([9, 12.9 restated]) Let .f (x) = a0 + a1x + a2x
2 + x3 ∈ K[x] be 

irreducible. Then 

. ν(aj ) ≥ 3 − j

3
ν(a0) , 0 ≤ j ≤ 2 .

This lemma does not give us much information when it comes to the set S, as  
here .ν(a0) = 0. In the case of this set, we do know definitively that the characteristic 
polynomial of .z ∈ S is equivalent to .x3 + x + 1 (mod 2). This gives the result that 
if .f (x) = a0 + a1x + a2x

2 + x3 the minimal polynomial of .z ∈ S, then 

.ν2(a0) = 0 ν2(a1) = 0 ν2(a2) ≥ 1 . (2) 

However, the aforementioned lemma does give us useful information for deter-
mining coefficients of the characteristic polynomial for elements in . T2 and . T4. 

Proposition 4 

(i) Let .z ∈ T2, with .f (x) = a0 + a1x + a2x
2 + x3 the minimal polynomial of 

.z ∈ Q2[x]. Then 

. ν2(a0) = 1 ν2(a1) ≥ 1 ν2(a2) ≥ 1

(ii) Let .z ∈ T4, with .f (x) = a0 + a1x + a2x
2 + x3 the minimal polynomial of 

.z ∈ Q2[x]. Then 

. ν2(a0) = 2 ν2(a1) ≥ 2 ν2(a2) ≥ 1

Proof 

(i) We can write .T2 = π�3 � π2�3, so that every element .z ∈ T2 has .ν(z) = 1. 
Therefore .ν(a0) = ν2(det(z)) = ν(z) = 1. Since .a0 ≡ 0 (mod 2) but . a0 �≡
0 (mod 4), it must be the case that .a0 ≡ 2 (mod 4). Lemma 7 gives the result. 

(ii) We can write .T4 = π2�3 � 2�3, so that every element .z ∈ T4 has .ν(z) = 2. 
Therefore .ν(a0) = ν2(det(z)) = ν(z) = 2. Since .a0 ≡ 0 (mod 4) but . a0 �≡
0 (mod 8), it must be the case that .a0 ≡ 4 (mod 8). Lemma 7 gives the result. 

	

With this knowledge of the 2-adic valuations of coefficients of the characteristic 

polynomials, we can begin to construct elements that will feature in the integer-
valued polynomials for these sets.
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4 Toward Computing ν-Sequences 

Given the expression of our sets in terms of characteristic polynomials given in 
Eq. (2) and Lemma 4, we can compute the .ν-orderings and .ν-sequences for S, 
. T2, and . T4. In this section, we establish some facts about the valuation of certain 
polynomials, with the goal of establishing these as the minimal polynomials of 
elements within their respective sets. 

Given an element .z ∈ �3, we can denote its characteristic polynomial by 

. x3 − T r(z)x2 + β(z)x − det(z)

where .T r(z) and .det(z) are the usual trace and determinant when z is viewed as a 
.3 × 3 matrix, and .β(z) is defined in terms of the .2 × 2 minors. 

4.1 Characteristic Polynomials for Elements in S 

For elements . z ∈ S, we have  

. T r(z) ≡ 0 (mod 2) β(z) ≡ 1 (mod 2) det(z) ≡ 1 (mod 2)

Let us define the function 

. φ = (φ2, φ1, φ0) : Z≥0 → 2Z≥0 × (1 + 2Z≥0) × (1 + 2Z≥0)

φ(n) =
⎛

⎝2
∑

i≥0

n3i2
i , 1 + 2

∑

i≥0

n3i+12i , 1 + 2
∑

i≥0

n3i+22i

⎞

⎠

where .n = ∑
i≥0 ni2i is the expansion of n in base 2. Let 

. fn(x) =
n−1∏

k=0

(
x3 − φ2(k)x2 + φ1(k)x − φ0(k)

)
.

Lemma 8 If .z ∈ S then 

. ν(fn(z)) ≥ 3n + 3
∑

k>0

⌊ n

8k

⌋

with equality if .T r(z) = φ2(n), .β(z) = φ1(n), and .det(z) = φ0(n). 

Proof Let .z ∈ S, and let .T r(z) = 2
∑

k≥0 ak2k be the expansion of .T r(z) in base 
2. Similarly, let .β(z) = 1 + 2

∑
k≥0 bk2k and .det(z) = 1 + 2

∑
k≥0 ck2k be the base
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2 expansions of .β(z), det(z). Define .m := ∑
k≥0 ak23k +bk23k+1 +ck23k+2, so that 

.φ(m) = (T r(z), β(z), det(z)). 
For any .0 ≤ k ≤ n, 

. z3 − φ2(k)z2 + φ1(k)z − φ0(k)

= z3 − φ2(k)z2 + φ1(k)z − φ0(k) − (z3 − T r(z)z2 + β(z)z − det(z))

= (T r(z) − φ2(k))z2 + (φ1(k) − β(z))z + (det(z) − φ0(k))

= (φ2(m) − φ2(k))z2 + (φ1(k) − φ1(m))z + (φ0(m) − φ0(k)) .

Since the characteristic polynomial for .z ∈ S is .x3 + x + 1 (mod 2) and is 
irreducible over . F2, it follows by Hensel’s lemma that if . az2 + bz + c ≡ 0 (mod π)

in . �3 then .a ≡ b ≡ c ≡ 0 (mod 2). 
Letting .a = 2t1 â, .b = 2t2 b̂, and .c = 2t3 ĉ with .â, b̂, ĉ odd and .ti > 0, we obtain 

. az2 + bz + c = 2t1 âz2 + 2t2 b̂z + 2t3 ĉ

= 2mini ti
(

2t1−mini ti âz2 + 2t2−mini ti b̂z + 2t3−mini ti ĉ
)

with at least one of the .tj − mini ti = 0. Therefore, the expression . 2t1−mini ti âz2 +
2t2−mini ti b̂z + 2t3−mini ti ĉ has at least one odd coefficient, and so it follows that 

. ν
(

2t1−mini ti âz2 + 2t2−mini ti b̂z + 2t3−mini ti ĉ
)

= 0 .

Therefore, 

. ν(az2 + bz + c) = ν
(

2mini ti
(

2t1−mini ti âz2 + 2t2−mini ti b̂z + 2t3−mini ti ĉ
))

= 3ν2(2
mini ti ) + ν

(
2t1−mini ti âz2 + 2t2−mini ti b̂z + 2t3−mini ti ĉ

)

= 3ν2(2
mini ti )

= 3 min
i

ti

= 3 min(ν2(a), ν2(b), ν2(c))

We abuse notation and let .ν2(φj ) = ν2(φj (m) − φj (k)) for .j = 0, 1, 2 and so 
that 

. ν(z3 − φ2(k)z2 + φ1(k)z − φ0(k)) = 3 min(ν2(φ2), ν2(φ1), ν2(φ0))

which gives
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. ν(fn(z)) = 3
n−1∑

k=0

min(ν2(φ2), ν2(φ1), ν2(φ0)) .

If .k = ∑
ki2i , .m = ∑

mi2i denote the expansions of k and . m in base 2, then 

. ν2(m − k) = min(i : ki �= mi)

ν2(φ2) = min(i : k3i �= m3i ) + 1

ν2(φ1) = min(i : k3i+1 �= m3i+1) + 1

ν2(φ0) = min(i : k3i+2 �= m3i+2) + 1

Thus, we have 

. min(ν2(φ2), ν2(φ1), ν2(φ0)) =
⌊

ν2(m − k)

3

⌋
+ 1 .

Since .

⌊
ν2(m−k)

3

⌋
is the highest power of 8 dividing .m−k, for simplicity let us denote 

.ν8(m − k) :=
⌊

ν2(m−k)
3

⌋
. 

Using the fact that .νp(n!) = ∑n
i=1 νp(i) = ∑

i>0

⌊
n
pi

⌋
= n−∑

ni

p−1 with . n =
∑

nip
i for any prime p extends also to powers of primes [5, proof of Lemma 6.5], 

we obtain the result 

. 

n∑

i=1

ν8(i) =
∑

i>0

⌊ n

8i

⌋
= n − ∑

ni

7

where .n = ∑
ni8i is the expansion of n in base 8. Thus, we have 

.ν(fn(z)) = 3
n−1∑

k=0

(⌊
ν2(m − k)

3

⌋
+ 1

)

= 3n + 3

(
m∑

k=1

⌊
ν2(k)

3

⌋
−

m−n∑

k=1

⌊
ν2(k)

3

⌋)

= 3n + 3

(
∑

i>0

⌊m

8i

⌋
−

∑

i>0

⌊
m − n

8i

⌋)

= 3n + 3

(
m − ∑

mi

7
− (m − n) − ∑

(m − n)i

7

)
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with .m = ∑
mi8i , .m − n = ∑

(m − n)i8i as expansions base 8. 
Noting that 

. 
m − ∑

mi

7
− (m − n) − ∑

(m − n)i

7
− n − ∑

ni

7

=
∑

(m − n)i + ∑
ni − ∑

mi

7
≥ 0

since this is the number of carries in adding n and .m − n in base 8, and so is always 
nonnegative and equals zero only if .n = m, we see that 

. ν(fn(z)) ≥ 3n + 3
∑

k>0

⌊ n

8k

⌋

for .z ∈ S, with equality if .φ(n) = (T r(z), β(z), det(z)). 	

Lemma 9 Let a be a root of the polynomial . f (x) = x3−φ2(n)x2+φ1(n)x−φ0(n)

in S, with . θ the automorphism in . �3 given by .θ(t) = πtπ−1. The set of roots 
.a, θ(a), θ2(a) are distinct modulo . π , so that .ν(θ i(a) − θj (a)) = 0 for .i �= j . 

Proof By Dickson’s Theorem [6, 16.8], if a is a root of .f (x) then so too are 
.θ(a) and .θ2(a). The element .a ≡ ωj (mod π) for some choice of . 1 ≤ j ≤
7, and since .θ(ωj ) = ω2j , it follows that the set of roots . {a, θ(a), θ2(a)} ≡
{ωj , ω2j , ω4j } (mod π) and that these roots are distinct modulo . π , as . gcd(j, 7) =
gcd(2j, 7) = gcd(4j, 7) = 1. The result .ν(θ i(a) − θj (a)) = 0 for .i �= j follows. 

	

Lemma 10 The .ν-sequence . αS of .S ⊆ �3 is given by 

. αS(3n) = αS(3n + 1) = αS(3n + 2) = 3n + 3
∑

i>0

⌊ n

8i

⌋

Proof The polynomial .x3 − φ2(n)x2 + φ1(n)x − φ0(n) is congruent to . x3 + x +
1 (mod 2), which is irreducible. Via Theorem 3, for any .n ∈ Z≥0 there exists an 
element .an ∈ �3 which is a root of the polynomial .x3 −φ2(n)x2 +φ1(n)x −φ0(n). 
Recalling that 

. fn(x) =
n−1∏

k=0

(
x3 − φ2(k)x2 + φ1(k)x − φ0(k)

)
,

the inequality in Lemma 8 then implies that .fn(x) is the minimal polynomial of the 
set 

. {a0, θ(a0), θ
2(a0), a1, θ(a1), θ

2(a1), . . . , an−1, θ(an−1), θ
2(an−1)}

where . θ is a non-trivial automorphism in . �3. This shows that
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.{a0, θ(a0), θ
2(a0), a1, θ(a1), θ

2(a1), . . . } forms a .ν-ordering for S, and that . fn(x)

is the minimal polynomial for the first 3n elements of this .ν-ordering. Thus, 

. αS(3n) = ν(fn(an)) = 3n + 3
∑

i>0

⌊ n

8i

⌋
,

the minimum value of .ν(fn(z)) attained for .z ∈ S in Lemma 8. By Lemma 9, the  
elements .ai, θ(ai), and .θ2(ai) will give rise to the same value in the .ν-sequence for 
S, and so 

. αS(3n) = αS(3n + 1) = αS(3n + 2) = 3n + 3
∑

i>0

⌊ n

8i

⌋
.

	


4.2 Characteristic Polynomials for Elements in T2 

For elements . z ∈ T2, we have  

. T r(z) ≡ 0 (mod 2) β(z) ≡ 0 (mod 2) det(z) ≡ 2 (mod 4)

Let us define the function 

. ψ = (ψ2, ψ1, ψ0) : Z≥0 → 2Z≥0 × 2Z≥0 × (2 + 4Z≥0)

ψ(n) =
⎛

⎝2
∑

i≥0

n3i+12i , 2
∑

i≥0

n3i2
i , 2 + 4

∑

i≥0

n3i+22i

⎞

⎠

where .n = ∑
i≥0 ni2i is the expansion of n in base 2. Let 

. gn(x) =
n−1∏

k=0

(
x3 − ψ2(k)x2 + ψ1(k)x − ψ0(k)

)
.

Lemma 11 If .z ∈ T2 then 

. ν(gn(z)) ≥ 4n +
∑

i>0

⌊ n

2i

⌋
.

Proof Let .z ∈ T2, and let .T r(z) = 2
∑

k≥0 ak2k be the expansion of .T r(z) in base 
2. Similarly, let .β(z) = 2

∑
k≥0 bk2k and .det(z) = 2 + 4

∑
k≥0 ck2k be the base 2
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expansions of .β(z), det(z). Define .m := ∑
k≥0 ak23k+1 + bk23k + ck23k+2, so that 

.ψ(m) = (T r(z), β(z), det(z)). 
For any .0 ≤ k ≤ n, 

. z3 − ψ2(k)z2 + ψ1(k)z − ψ0(k)

= z3 − ψ2(k)z2 + ψ1(k)z − ψ0(k)−(z3−T r(z)z2+β(z)z − det(z))

= (ψ2(m) − ψ2(k))z2 + (ψ1(k) − ψ1(m))z + (ψ0(m) − ψ0(k))

Since .z ∈ T2 we have .ν(z) = 1, and therefore .ν(az2) = 2 + 3ν2(a), . ν(bz) =
1 + 3ν2(b), and .ν(c) = 3ν2(c). Because these have different residues modulo 3, we 
have 

. ν(az2 + bz + c) = min(2 + 3ν2(a), 1 + 3ν2(b), 3ν2(c)) .

For the sake of simplicity, we abuse notation and let . ν2(ψj ) = ν2(ψj (m) − ψj (k))

for .j = 0, 1, 2 and so 

. ν(z3 − ψ2(k)z2 + ψ1(k)z − ψ0(k)) = min(2 + 3ν2(ψ2), 1 + 3ν2(ψ1), 3ν2(ψ0)) ,

giving 

. ν(gn(z)) =
n−1∑

k=0

min(2 + 3ν2(ψ2), 1 + 3ν2(ψ1), 3ν2(ψ0)) .

If .k = ∑
ki2i , .m = ∑

mi2i denote the expansions of k and . m in base 2, then 

. ν2(m − k) = min(i : ki �= mi)

ν2(ψ2) = min(i : k3i+1 �= m3i+1) + 1

ν2(ψ1) = min(i : k3i �= m3i ) + 1

ν2(ψ0) = min(i : k3i+2 �= m3i+2) + 2

In this case, we find that the lower bounds on the .ν(ψj ) change depending on the 
residue of .ν2(m − k) (mod 3). We summarize the results in Table 1. 

From the table, we see that 

. min(2 + 3ν2(ψ2), 1 + 3ν2(ψ1), 3ν2(ψ0)) = 4 + ν2(m − k) ,

giving
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Table 1 Summary of lower bounds in . T2

.ν2(m − k) (mod 3) : 0 1 2 

.2 + 3ν2(ψ2) .≥ 5 + ν2(m − k) .= 4 + ν2(m − k) . ≥ 6 + ν2(m − k) 

.1 + 3ν2(ψ1) .= 4 + ν2(m − k) .≥ 6 + ν2(m − k) . ≥ 5 + ν2(m − k) 

.3ν2(ψ0) .≥ 6 + ν2(m − k) .≥ 5 + ν2(m − k) . = 4 + ν2(m − k) 

. ν(gn(z)) = 
n−1∑

k=0 

(4 + ν2(m − k)) 

= 4n + 
n−1∑

k=0 

ν2(m − k) 

= 4n + 
m∑

k=1 

ν2(k) − 
m−n∑

k=1 

ν2(k) 

= 4n +
∑

i>0

⌊m 
2i

⌋
−

⌊
m − n 

2i

⌋

≥ 4n +
∑

i>0

⌊ n 
2i

⌋

for .z ∈ T2, with equality if .ψ(n)  = (T r(z), β(z), det(z)). 	

Lemma 12 Let b be a root of the polynomial . g(x) = x3 − ψ2(n)x2 + ψ1(n)x − 
ψ0(n) in . T2, with . θ the automorphism in . �3 given by .θ(t)  = πtπ−1. The set of 
roots .b, θ(b), θ2(b) are distinct modulo . π2, so that .ν(θ i (b) − θj (b)) = 1 for .i �= j . 

Proof If .b ≡ π (mod π2), take instead .b ≡ ωπ (mod π2)—this choice can be made 
since . π and .ωπ are conjugates: .ω−1πω  = ωπ . By Dickson’s Theorem [6, 16.8], if 
b is a root of .g(x), then so too are .θ(b)  and .θ2(b). The element . b ≡ bπ (mod π2) 
for some choice of .b �≡ 0 (mod π). Applying our automorphism, we obtain modulo 
. π2 

. θ(b)  = θ(bπ) = θ(b)θ(π) = θ(b)π . 

As in the proof of Lemma 9, the collection of elements .{b, θ(b), θ2(b)} are distinct 
modulo . π , and hence .{b, θ(b), θ2(b)} are distinct modulo . π2. The result . ν(θ i (b) − 
θj (b)) = 1 for .i �= j follows. 	

Lemma 13 The .ν-sequence . αT2 of .T2 ⊆ �3 is given by 

.αT2(3n) = αT2(3n + 1) − 1 = αT2(3n + 2) − 2 = 4n +
∑

i>0

⌊ n 
2i

⌋
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Proof Via Theorem 3, for any .n ∈ Z≥0, there exists an element .bn ∈ �3 which is 
a root of the polynomial .x3 − ψ2(n)x2 + ψ1(n)x − ψ0(n), which is irreducible by 
Eisenstein’s criterion. Recalling that 

. gn(x) = 
n−1∏

k=0

(
x3 − ψ2(k)x2 + ψ1(k)x − ψ0(k)

)
, 

the inequality in Lemma 11 then implies that .gn(x) is the minimal polynomial of 
the set 

. {b0, θ(b0), θ2(b0), b1, θ(b1), θ2(b1), . . . , bn−1, θ(bn−1), θ2(bn−1)} 

where . θ is a non-trivial automorphism in . �3. This shows that 
.{b0, θ(b0), θ2(b0), b1, θ(b1), θ2(b1), . . . } forms a .ν-ordering for . T2, and that . gn(x) 
is the minimal polynomial for the first 3n elements of this .ν-ordering. Thus, 

. αT2(3n) = ν(gn(an)) = 4n +
∑

i>0

⌊ n 
2i

⌋
, 

the minimum value of .ν(gn(z)) attained for .z ∈ T2 in Lemma 11. Since . ν(bn − 
θ(bn)) = 1 by Lemma 12, we have  

. αT2(3n) = αT2(3n + 1) − 1 = αT2(3n + 2) − 2 = 4n +
∑

i>0

⌊ n 
2i

⌋
.

	


4.3 Characteristic Polynomials for Elements in T4 

For elements . z ∈ T4, we have  

. T r(z)  ≡ 0 (mod 2) β(z)  ≡ 0 (mod 4) det(z) ≡ 4 (mod 8) 

Let us define the function 

. σ = (σ2, σ1, σ0) : Z≥0 → 2Z≥0 × 4Z≥0 × (4 + 8Z≥0) 

σ(n)  = 

⎛ 

⎝2
∑

i≥0 

n3i2
i , 4

∑

i≥0 

n3i+12i , 4 + 8
∑

i≥0 

n3i+22i 

⎞ 

⎠ 

where .n = ∑
i≥0 ni2i is the expansion of n in base 2. Let 
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. hn(x) = 
n−1∏

k=0

(
x3 − σ2(k)x2 + σ1(k)x − σ0(k)

)
. 

Lemma 14 If .z ∈ T4 then 

. ν(hn(z)) ≥ 7n +
∑

i>0

⌊ n 
2i

⌋

with equality if .T r(z)  = σ2(n), .β(z) = σ1(n), and .det(z) = σ0(n). 

Lemma 15 Let c be a root of the polynomial . h(x) = x3−σ2(n)x2+σ1(n)x−σ0(n) 
in . T4, with . θ the automorphism in . �3 given by .θ(t)  = πtπ−1. The set of roots 
.c, θ(c), θ2(c) are distinct modulo . π3, so that .ν(θ i (c) − θj (c)) = 2 for .i �= j . 

Lemma 16 The .ν-sequence . αT4 of .T4 ⊆ �3 is given by 

. αT4(3n) = αT4(3n + 1) − 2 = αT4(3n + 2) − 4 = 7n +
∑

i>0

⌊ n 
2i

⌋

The proofs of Lemmas 14, 15, and 16 are virtually identical to the proofs of 
Lemmas 11, 12, and 13, respectively, and so have been omitted from this paper. 

5 A Regular Basis for �3 

Having written the .ν-sequence for .�3 in terms of the .ν-sequences for subsets in 
Proposition 3 and subsequently determined formulas for the .ν-sequences of the 
subsets S, . T2, and . T4 in Sect. 4, we can now compute .α�3 . 

Corollary 2 (To Proposition 3) 
The first 200 terms of .α�3 are 

.0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 6, 6, 6, 

6, 6, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 12, 12, 12, 12, 12, 

12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 

18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 21, 21, 21, 21, 21, 21, 21, 

21, 23, 23, 25, 25, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 

30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 32, 32, 33, 33, 33, 33, 33, 

33, 33, 33, 36, 36, 36, 36, 36, 36, 36, 36, 37, 37, 38, 38, 39, 39, 

39, 39, 39, 39, 39, 39, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 43, 
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43, 45, 45, 45, 45, 45, 45, 45, 45, 47, 47, 48, 48, 48, 48, 48, 48, 

49, 49, 51, 51, 52, 52, 53, 53, 54, 54, 54, 54, 54, 54, 54, 54, 56, 

56, 57, 57, 57, 57, 57, 57, 57, 57, 58, 58, 60, 60, 60, 60, 60, 60. 

The above results were generated using Mathematica. The code for the algorithm 
used to compute .α�3 can be found in Appendix A.1 of [11]. 

Following the results of Lemmas 10, 13, and 16, we obtain the following result 
as a corollary of Proposition 2. 

Corollary 3 (c.f. [3, 2.14]) 

(i) The sequence of polynomials 

. 

{
π−αS(2n) fn(x), π−αS(3n+1) xfn(x), π−αS(3n+2) x2fn(x) : n = 0, 1, 2 . . .

}

forms a regular .�3-basis for .Int(S,�3). 
(ii) The sequence of polynomials 

. 

{
π−αT2 (3n) gn(x), π−αT2 (3n+1) xgn(x), π−αT2 (3n+2) x2gn(x) : n = 0, 1, 2 . . .

}

forms a regular .�3-basis for .Int(T2,�3). 
(iii) The sequence of polynomials 

. 

{
π−αT4 (3n) hn(x), π−αT4 (3n+1) xhn(x), π−αT4 (3n+2) x2hn(x) : n = 0, 1, 2 . . .

}

forms a regular .�3-basis for .Int(T4,�3). 

The results in [3] regarding regular bases for subsets of .�2 in no way relies on 
the fact that the maximal order is of index 2 and can be extended without any trouble 
to . �3. 

Lemma 17 (c.f. [3, 2.15]) If two subsets of .�3 satisfying the hypotheses of 
Lemma 2 each have a regular basis whose elements are each quotients of poly-
nomials in .Z[x] by powers of . π , then their union has a basis of this form also. 
Corollary 4 (c.f. [3, 2.16]) .Int(�3) has a regular basis whose elements are each a 
quotient of a polynomial in .Z[x] by a power of . π . 

To conclude, it is noted that a very similar process to this extends to all n for 
which n is an odd prime over .Q2 (as investigated in [11]). It seems there is no 
reason these results should not hold more generally over a different local field . Qp, 
with p an odd prime. However, it is noted that this construction in this paper will 
not work precisely as given for n composite, and some adjustments will be needed 
in this case. 
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Simultaneous p-Orderings and 
Equidistribution 

Anna Szumowicz 

1 Introduction 

1.1 Integer-Valued Polynomials and Test Sets 

Let D be a domain and let F be its field of fractions. We say that a polynomial 
P(X)  ∈ F [X] is integer-valued if P(D)  ⊆ D. The sum, the product, and the 
difference of integer-valued polynomials are again integer-valued, so the set of 
integer-valued polynomials forms a ring: 

. Int(D) = {f (X) ∈ F [X]| f (D) ⊆ D}.

More generally, for any subset E ⊆ D we can consider 

. Int(E,D) = {f ∈ F [X]| f (E) ⊆ D}.

Integer-valued polynomials do not necessarily have coefficients in D. For example, 
consider the case D = Z, F = Q. Then, any polynomial of the form 

. 

(
X

n

)
= X(X − 1) . . . (X − n + 1)

n!
with n ∈ N is integer-valued. In fact, any integer-valued polynomial P(X)  ∈ Q[X] 
of degree n can be uniquely written as a linear combination: 
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. P(X) =
n∑

i=0

αi

(
X

i

)
,

where αi ∈ Z. 
This example shows that to check whether a degree n polynomial P(X)  ∈ Z[X] 

is integer-valued, it is enough to check its values on the set {0, 1 . . . , n}. Such testing 
sets can be defined in greater generality. Volkov and Petrov [13] introduced the 
notion of an n-universal set. 

Definition 1 Let D be a domain and let F be its field of fractions. We say that a 
finite subset S ⊆ D is n-universal if the following holds: 

For every P(X)  ∈ F [X] of degree at most n, if  P(S)  ⊆ D then P(D)  ⊆ D, i.e., 
P(X)  is integer-valued polynomial. 

We have the related notion of a Newton sequence. 

Definition 2 Let D be a domain. A sequence a0, a1, . . . , an is called a Newton 
sequence if for every 0 ≤ m ≤ n the set {a0, . . . am} is m-universal. The integer n is 
called the length of the Newton sequence. 

Using the Lagrange interpolation it is easy to give a lower bound on the cardinality 
of an n-universal set. 

Lemma 1 Let D be a domain which is not a field. Then, every n-universal subset 
of D has at least n + 1 elements. 

Proof Indeed, for any fixed pairwise different elements d0, d1, . . . , dn ∈ D, we can 
construct a polynomial P that takes value 0 on d0, . . . , dn−1 but a non-integer value 
α at dn: 

. P(X) = α

n−1∏
i=0

X − di

dn − di

.

Therefore P is not integer-valued, so d0, . . . , dn−1 cannot be an n-universal set. ��
On the other hand any Dedekind domain will contain an n-universal set with n+2 

elements (see Theorem 3). Therefore, the case of n-universal sets of cardinality n+1 
is particularly interesting. Some Dedekind domains will contain such sets, and as we 
shall see later, many do not. 

Definition 3 Let D be a Dedekind domain. A subset S ⊆ D with |S| =  n + 1 is  
called n-optimal if it is n-universal. 

Example 

The set {x, x + 1, . . . , x  + n} is n-optimal in Z for every x ∈ Z.
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The property of being n-optimal can be also understood as optimal equidistri-
bution modulo all prime powers, hence the name. We expand more on that in the 
following section, after reviewing what is known on the minimal cardinality of an n-
universal set. Petrov and Volkov [13] showed that there are no n-optimal sets in Z[i], 
for large enough n. Building on their method, together with Byszewski and Fraczyk, 
we generalized their result to the ring of integers in any quadratic imaginary number 
field. 

Theorem 1 ([6]) Let K be a quadratic imaginary number field and let OK be its 
ring of integers. Then, there is no n-optimal sets in OK for large enough n. 

For general quadratic number fields, Chabert and Cahen [8] proved that there are 
no 2-optimal sets except possibly in Q(

√
d) with d = −3,−1, 2, 3, 5 and d ≡ 1 

mod 8. The proof of Theorem 1 as well as the original method of Petrov and Volkov 
heavily relies on the fact that the norm of the field extension K/Q is convex. This 
is not the case in any number field beyond the imaginary quadratic extensions of Q 
and Q itself. Together with Fraczyk we used a new potential theoretic approach to 
extended the result to all number fields K 	= Q. 

Theorem 2 ([12]) Let K 	= Q be a number field and let OK be its ring of integers. 
There exists n0 ∈ N dependent on K such that for any n ≥ n0 there is no n-optimal 
sets in OK . 

The picture becomes complete when we combine the above theorem with a very 
general upper bound on the minimal cardinality of an n-universal set. 

Theorem 3 ([6]) Let D be a Dedekind domain. Then for any n ∈ N there exists an 
n-universal set in D of size n + 2. 

The proof is an iterative construction using the Chinese Remainder Theorem. From 
Theorem 2 we can now deduce 

Corollary 1 ([12]) Let K 	= Q be a number field. For n large enough, the minimal 
cardinality of an n-universal set in OK is n + 2. 

1.2 Equidistribution and Simultaneous p-Orderings 

The methods of proving the nonexistence of large n-optimal sets are based on the 
almost equidistribution property of n-optimal sets. 

Definition 4 Let A be a ring and  let  I be an ideal in A. A finite subset E ⊆ A is 
called almost uniformly equidistributed modulo I if for any a, b ∈ A we have 

. |{x ∈ E| x − a ∈ I }| − |{x ∈ E| x − b ∈ I }| ∈ {−1, 0, 1}.

Lemma 2 ([6, 13]) Let K be a number field and let OK be its ring of integers. Let 
S ⊆ OK be a finite subset with |S| =  n + 1. Then S is n-optimal if and only if S is
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almost uniformly equidistributed modulo pl for every prime ideal p in OK and all 
l ∈ N. 

This characterization of n-optimal sets is reminiscent of the notion of a simulta-
neous p-ordering, introduced by Bhargava [4]. 

Definition 5 Let E ⊆ OK and let p be a non-zero proper prime ideal in OK . A  
sequence (ai)i∈N ⊆ E is called a p-ordering in E if for every n ∈ N we have 

. vE(p, n) := vp

(
n−1∏
i=0

(ai − an)

)
= min

x∈E
vp

(
n−1∏
i=0

ai − x

)
,

where vp denotes the additive p-adic valuation on K . 

The value vE(p, n)  does not depend on the choice of a p-ordering. Bhargava defined 
the generalized factorial as the ideal n!E := ∏

p p
vE(p,n) where p runs over all 

prime ideals in OK . A sequence of elements in E is called a simultaneous p-
ordering if it is a p-ordering for every prime ideal p in OK at the same time. 
One can show that (ai)i∈N ⊆ OK is a simultaneous p-ordering in OK if and 
only if the set {a0, . . . , an} is n-optimal (see Lemma 2). In [4, 5] Bhargava asked 
which subsets of Dedekind domains admit simultaneous p-orderings. In particular, 
he asked for which number fields K , the ring of integers OK admits a simultaneous 
p-ordering. A partial progress was made by Wood in [15] where she showed that 
there are no simultaneous p-orderings in OK when K is a quadratic imaginary 
number field. Adam and Cahen [1] extended this result to any quadratic number field 
Q(

√
d), d ∈ Z square-free, except for possibly finitely many exceptional d’s. Using 

a simultaneous p-ordering, one could construct n-optimal sets for every n ∈ N. 
Therefore, Theorem 2 yields: 

Corollary 2 ([12]) Q is the only number field whose ring of integers admits a 
simultaneous p-ordering. 

This result answers the question of Bhargava [4, 5]. We remark that the methods 
used to prove Corollary 2 differ substantially from the methods used by Adam, 
Cahen and Wood. 

1.3 Notation 

By |S| we denote the cardinality of the set S. For any x ∈ R denote by �x� the 
largest integer less than or equal to x. Write NK/Q for the norm of the extension 
K/Q. We use the standard big-O and little-o notation. We write BR(x, r) (resp. 
BC(x, r)) for a ball in R (resp. C) of radius r around a point x ∈ R (resp. x ∈ C). 
Denote by Leb the Lebesgue measure on R, C and their products. We denote by �K 
the discriminant of a field K .
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1.4 Structure of the Paper 

In Sect. 2 we give a sketch of the proof of nonexistence of large n-optimal sets in 
the ring of integers of quadratic imaginary number fields (Theorem 1). In Sect. 3, 
we estimate the energy of n-optimal sets. In Sect. 4 we describe the methods used 
to prove Theorem 2 in [12]. In Sect. 5 we state some questions and open problems. 

2 n-Optimal Sets for Quadratic Imaginary Number Fields 

In this section we give a sketch of the proof of nonexistence of large n-optimal sets 
in the ring of integers of a quadratic imaginary number field. 

Theorem 4 ([6]) Let K be a quadratic imaginary number field and let OK be its 
ring of integers. There is no n-optimal sets for large enough n. 

The condition for a subset to be n-optimal can be expressed in terms of the energy 
ideal of a set. 

Definition 6 Let S = {x0, . . . , xn} be a finite subset of OK . The principal ideal 
E(S) := ∏

i 	=j (xi − xj ) is called the energy of the set S. 

The energy ideal was called the volume in [6, 13], but in the subsequent work, 
[12] it became clear that it is the arithmetic analogue of the energy functional 
in potential theory, hence the new name. The energy ideal of an n-optimal set is 
minimal possible in the sense that it should divide the energy of any other set of 
equal size. This can be made more precise using the factorial ideals: 

Definition 7 ([4, 11]) Let K be a number field and let OK be its ring of integers. 
The K-factorial of n is defined as the principal ideal: 

. n!K = n!OK
=

∏
p∈Spec(OK)

pwp(n),

where wp(n) = ∑∞ 
i=1� n 

N(pi )
�. 

Proposition 1 ([6, 13]) Let S ⊆ OK with |S| =  n + 1. Then, the following 
conditions are equivalent: 

1. S is n-optimal. 
2. E(S) = (

∏n 
i=1 i!K)2. 

3. E(S) divides E(T ) for any subset T of OK with n + 1 elements. 

In other words, n-optimal sets are the sets with n + 1 elements which “minimize” 
the energy among all subsets of OK with n + 1 elements.
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Proof of Theorem 1 For the sake of contradiction, assume that for any n0 there 
exists an n-optimal set with n ≥ n0. Identify OK with its image via a fixed 
embedding K → C. The idea of the proof is as follows. Let S be an n-optimal 
set. We sketch the proof why S has to be contained in a polygon with n + o(n) 
points from OK . With such a fine description of S, one can use the prime number 
theorem for number fields to show that there exists a prime power pl such that S 
fails to be almost uniformly equidistributed modulo pl . Together with Proposition 1, 
this leads to a contradiction. 

To show that an n-optimal set is contained in a suitable polygon with n + o(n) 
points from OK , we use Proposition 1 and a procedure called discrete collapsing. 
Roughly speaking, the collapsing procedure takes a finite subset of OK and makes 
it symmetric about a line � by moving the points towards the line as close as 
possible. For the proof we will only need the formal definition of what it means 
to be collapsed with respect to a line. 

Definition 8 ([6]) Let K be a quadratic imaginary number field. Let T be a finite 
subset of OK . Let  l be a line in C. The line � divides the complex plane into two 
closed half-planes, say H1 and H2. Distinguish one of them, say H1. The  set  T is 
collapsed along the pair (l, H1) if the following conditions hold: 

1. Let m be a line which is perpendicular to � and contains at least one point from 
the set T . Let  x ∈ T ∩ m. Then every point in OK which lies between m ∩ l and 
x is in T . 

2. Let m be a line perpendicular to �. Then |H1 ∩ m ∩ T | − |H2 ∩ m ∩ T | ∈ {0, 1}.
�

The discrete collapsing procedure produces collapsed sets, and one can show that if 
the set was not collapsed to begin with, it strictly decreases the norm of the energy 
[6]. One can show that an n-optimal set has to be collapsed in every direction. More 
precisely, from Proposition 1 we deduce the following. 

Lemma 3 Let K be a quadratic imaginary number field and let OK be its ring of 
integers. Let T be an n-optimal set in OK and let l be a line in the complex plane. 
Then there exists a line m parallel to l such that the set T is collapsed along the line 
m for some choice of the distinguished half-plane. �
For the proof we refer to [6]. 

Definition 9 Let l be a line in the complex plane. A strip along l is a closed domain 
which is bounded by two lines parallel to l and symmetric with respect to l. A strip 
parallel to l is a strip along a line parallel to l. �
Let K = Q(

√
d). The proof differs in the cases d 	≡ −1 mod 4 and d ≡ −1 

mod 4. We start with the case d 	≡ −1 mod 4. Then, OK = Z + Z
√

d. By  
Lemma 3, the  set  S has to be collapsed along some vertical line �1 and some 
horizontal line �2. By the Dirichlet’s theorem on prime numbers in arithmetic 
progressions, one can find a rational prime number p1 such that p1 = 

√
n + 

o(
√

n), p1 > n  + 1 and p1 is prime in OK . Since S is supposed to be almost
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Fig. 1 d 	≡ −1 mod  4  

uniformly equidistributed modulo p1 by Lemma 2, the intersection of S with 
any horizontal or vertical line can contain at most p1 consecutive points of OK . 
Therefore, S has to contained in the intersection of two stripes along �1, �2 of widths 
p1 and p1 

√
d, respectively (see Fig. 1). This intersection is a rectangle containing 

roughly n + o(n) lattice points. Since the set S has n + 1 elements, this means that 
it has to fill the rectangle perfectly, missing only o(n) points. 

In the case d ≡ −1 mod 4, by Lemma 3, S is collapsed along the lines 

. k0 parallel to {iy| y ∈ R} ,

k1 parallel to

{
x + iy| y = − x√

d

}
,

k2 parallel to

{
x + iy| y = x√

d

}
.

Again, using Lemma 2, we deduce that in the case d ≡ −1 mod  4  an  n-optimal set 
has to be contained in a hexagon with n+o(n) points fromOK (see Fig. 2). Since S 
has n + 1 points, this means that the set S fills the hexagon perfectly, missing only 
o(n) points. Using Dirichlet’s theorem on prime numbers in arithmetic progressions, 
we can find a rational prime p1, non-split in OK , modulo which the set S fails to 
be almost uniformly equidistributed. The last part of the argument uses only the
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Fig. 2 d ≡ −1 mod  4  

Fig. 3 Points congruent modulo p1 

geometry of the rectangle and the hexagon. For an appropriate size of p1, both 
shapes contain too many points congruent mod p1 (see Fig. 3). ��

Remark 1 The key ingredient in the proof for the quadratic imaginary number fields 
is the fact that an n-optimal set must be collapsed in any direction. The proof of this 
property relies crucially on the fact that the norm x �→ |NK/Q(x)| is a convex 
function. This is no longer the case in a general number field.
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3 Estimate on the Energy of n-Optimal Sets 

Let K be a number field, this time not necessarily quadratic imaginary. Using 
Proposition 1 and an estimate on the norm of the factorial ideals due to Lamoureux 
[11], it is possible to estimate the energy of n-optimal sets. The formulas will use 
the Euler-Kronecker constants, defined below. 

Definition 10 ([9]) Let K be a number field and let ζK(z) be the Dedekind zeta 
function of K . Let  

. ζK(z) = c−1

z − 1
+ c0 + c1(z − 1) + . . .

be the Laurent expansion of ζK at s = 1. The quotient c0 
c−1 

is called the Euler-
Kronecker constant of K and we denote it by γK . 

In the case K = Q, the Euler-Kronecker constant γQ is called the Euler-Mascheroni 
constant and is given by the following formula: 

. γQ = lim
n→∞

(
n∑

i=1

1

i
− log n

)
.

For more information on the Euler-Kronecker constants, see [9]. By Proposition 1, 
to estimate the energy of n-optimal sets, it is enough to estimate K-factorials. 
Thanks to Lamoureux [11] we have the following estimate. 

Theorem 5 ([11]) Let K be a number field. Then, 

. logNK/Q(n!K) = n log n − n(1 + γK − γQ) + o(n).

Using Proposition 1 we deduce 

Corollary 3 ([6]) Let K be a number field and let OK be its ring of integers. Let S 
be an n-optimal subset of OK . Then 

. logNK/Q(E(S)) = n2 log n − n2(
3

2
+ γK − γQ) + o(n2).

Moreover, for every subset T ⊆ OK with |T | =  n + 1, we have 

. logNK/Q(E(T )) ≥ n2 log n − n2(
3

2
+ γK − γQ) + o(n2).
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4 n-Optimal Sets for an Arbitrary Number Field 

As we already mentioned, the methods for quadratic imaginary number fields cannot 
be adapted to the case of a general number field, as in general the norm is not convex. 
In this section we sketch the proof for an arbitrary number field [12]. Fix a number 
field K of degree N and write OK for the ring of integers. 

We argue by contradiction. Assume there exists a sequence Sni of ni-optimal sets 
where ni tends to infinity. Let V = K ⊗Q R ∼= Rr1 × Cr2 . Write d = r1 + r2. The  
absolute value of the norm |NK/Q(·)| extends to the map ‖ · ‖ :  V → R defined by
‖v‖ = ∏r1 

i=1 |vi | ∏d 
i=r1+1 |vi |2 for v = (v1, . . . , vd). 

4.1 Enclosure of n-Optimal Sets in Cylinders 

The first step is to show that we can enclose Sni in a cylinder of the volume ni + 
o(ni). 

Definition 11 A cylinder C in V is a coordinate-wise product of balls: 

. C =
r1∏

i=1

BR(xi, ri) ×
d∏

i=r1+1

BC(xi, ri),

where xi ∈ R for i = 1, . . . , r1, xi ∈ C for i = r1 + 1, . . . , d  and ri ∈ R≥0 for 
i = 1, . . . , d.  

The volume of a cylinder C is defined as its Lebesgue measure. 

Theorem 6 ([12, Theorem 3.1]) There exists a positive constant θ dependent only 
on K such that for every n-optimal set S ⊆ OK there exists a cylinder C of volume 
θn  with S ⊆ C. 
And as a consequence we get: 

Corollary 4 There exists a positive constant A >  0 depending only on K such that 
the set � = BR(0, A)r1 × BC(0, A)r2 has the following property. Let S ⊆ OK 
be an n-optimal set. Then, there exist s, t ∈ V such that ||s|| = n|�K |1/2 and 
s−1(S − t)  ⊆ �. 

Theorem 6 was implicit in the proof of Theorem 2 for K = Q(i) [13] and for K 
quadratic imaginary [6]. Indeed, in Sect. 2 we remark that S is contained in a convex 
polygon of volume |�K |1/2n + o(n) which can be always enclosed in a cylinder of 
volume θn. It was proved using the collapsing procedure which heavily relies on the 
fact that the norm NK/Q is convex for imaginary quadratic number field K . Proving 
Theorem 6 for a general case was one of the main difficulties in proving Theorem 2. 
One of the main ingredients is a result on counting the number of x ∈ OK such that
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‖x(a − x)‖ ≤  X2 for some X >  0 and a ∈ OK such that ‖a‖ ≥  Xe−B where 
B ∈ R is fixed. This result, in a sense, substitutes for the role of the convexity of the 
norm. To give a precise statement of the result, we introduce the notion of a good 
fundamental domain. 

Definition 12 A good fundamental domain of O× 
K in V × is a set F which is 

a finite union of convex closed cones in V × such that F/R× is compact in the 
projective space P(V ), V × = ⋃

λ∈O× 
K 

λF , intF ∩ λ(intF) = ∅  for every λ ∈ O× 
K , 

λ 	= 1 and ∂F does not contain non-zero points from OK . 

Fix a good fundamental domain F . Let  a ∈ OK , a 	= 0 and X >  0. Define 

. S(a,X) = {(x, λ) ∈ (F ∩ OK) × O×
K | ‖x(a − xλ−1)‖ ≤ X2, ‖x‖ ≤ X}.

Denote log†x := log x if x >  1 and log†x := 0 otherwise. 

Proposition 2 ([12, Proposition 2.5]) Let K be a number field of degree N 
with d Archimedean places. Let B ∈ R. Let κ = 1 

3 if N = 1 and κ = 
min

{
1 

2N(N−1) , 
1 

4N−1

}
otherwise. Fix a good fundamental domain F . There exist 

constants θ1, θ2, θ3, θ4 dependent only on K, B and F such that for every X >  0 
and a ∈ OK such that ‖a‖ ≥  Xe−B we have 

1. |S(a, X)| ≤  θ1X1+κ‖a‖−κ + θ2(log X)2d−2 + θ3log†log†log† log ‖a‖ +  θ4. 
2. Suppose a ∈ F . Then, for every ε >  0 there exists M such that 

. |{(x, λ) ∈ S(a,X)| ‖λ‖∞ ≥ M}| ≤
εX1+κ‖a‖−κ + θ2(logX)2d−2 + θ3log

†log†log† log ‖a‖ + θ4.

The proof of the proposition is based on Aramaki-Ikehara Tauberian theorem [2], 
Baker-Wüstholz’s inequality on linear forms in logarithms [3, Theorem 7.1] and on 
some elementary estimates on the number of integer points in cylinders. 

As a consequence we obtain the following result which may be of independent 
interest. 

Theorem 7 Let K be a number field of degree N with d Archimedean places. Let 
B ∈ R and let κ = 1 3 if N = 1 and κ = min

{
1 

2N(N−1) , 
1 

4N−1

}
otherwise. There 

exist constants C1, C2, C3, C4 dependent only on K and B such that for every X >  
0 and a ∈ OK such that ‖a‖ ≥  Xe−B we have 

.|{x ∈ OK | ‖x(a − x)‖ ≤ X2}| ≤
C1X

1+κ‖a‖−κ + C2(logX)2d−2 + C3log
†log†log† log ‖a‖ + C4.
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4.2 Limit Measures 

For the sake of contradiction, we assumed that there exists a sequence of ni-optimal 
sets (Sni ) in OK where ni tends to infinity. Theorem 6 shows that, up to translation 
and suitable rescaling, all of the sets Sni can be enclosed in one compact set. Using 
that fact we construct a tight family of measures associated to sets Sni and consider 
their weak-∗ limits. In this section we study properties of such limits. 

By Corollary 4, there exist sequences (sni ), (tni ) ⊆ V with ‖sni
‖ =  ni |�K |1/2 

and a compact set � such that s−1 
ni (Sni − tni ) ⊆ �. Define the measures 

. μni
:= 1

ni

∑
x∈Sni

δ
s−1
ni

(x−tni
)
.

Since� is compact we can consider, passing to a subsequence if necessary, a weak-* 
limit of μni

. Existence of such limits crucially uses the fact that � is compact. In 
this section we study the properties of such weak-* limits. 

Definition 13 A probability measure μ on V is a limit measure if it is a weak-* 
limit measure of the measures μni defined above. 

A limit measure is a probability measure supported on �, absolutely continuous 
with respect to the Lebesgue measure and of density at most one (see [12, Lemma 
5.2]). The measure μ encodes some information about the large-scale geometry of 
the sets Sni

. The idea for the rest of the proof is to use the properties of n-optimal 
sets to show that such limit measures cannot exist. 

By analogy with the finite subsets of OK , one can define the energy of compactly 
supported, probability measures on V , absolutely continuous with respect to the 
Lebesgue measure and of bounded density. 

Definition 14 Let ν be a compactly supported measure on V , absolutely continuous 
with respect the Lebesgue measure and of bounded density. The energy of ν is given 
by 

. I (ν) =
∫

V

∫
V

log ‖x − y‖dν(x)dν(y).

The estimate on the energy of n-optimal sets (Corollary 3) leads to a formula for the 
energy of limit measures. 

Proposition 3 ([12, Proposition 5.3]) Let μ be a limit measure. Then, 

.I (μ) = −1

2
log |�K | − 3

2
− γK + γQ.
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Using the estimate on the energy of n-optimal sets (Corollary 3) and the fact that 
n-optimal sets are energy minimizing, one can give a lower bound on the energy of 
a compactly supported probability measure on V with density at most 1. 

Lemma 4 ([12, Lemma 5.4]) Let ν be a compactly supported probability measure 
on V with density at most 1. Then 

. I (ν) ≥ −1

2
log |�K | − 3

2
− γK + γQ.

The idea of the proof of this estimate is to construct a sequence of sets En, |En| =  
n+1 such that the rescaled normalized counting measures 1 

n

∑
x∈En δn−1/N |�K |−1/2Nx 

weakly-* converges to ν. Then, one can relate the asymptotic growth of the energies 
of En with the energy of ν and use Proposition 1. 

Lemma 4 together with Proposition 3 implies that limit measures minimize the 
energy among all compactly supported probability measures on V of density at most 
1. This gives a strong constrains on the structure of limit measures. 

Proposition 4 ([12, Proposition 5.5]) Let ν be a compactly supported probability 
measure on V of density at most 1 which is realizing the minimal energy among all 
such measures. Then, there exists an open set U and v ∈ V such that 

1. ν = Leb|U . 
2. λ(U − v) ⊆ U − v for every 0 ≤ λ <  1. 
3. (∂U − v) ∩ V × is a codimension 1 submanifold of V × of class C1. 

The proof uses a procedure of collapsing measures which is a continuous version of 
the discrete collapsing. As opposed to the quadratic imaginary case, here one can 
collapse the measure only along the hyperplanes parallel to a hyperplane contained 
in V \ V ×. 

Since any limit measure μ minimizes the energy among all compactly supported 
probability measures on V of density at most 1, μ satisfies the conclusion of 
Proposition 4. In particular, the set Sni is equal to (sni U + tni ) ∩ OK , modulo o(n) 
points. In the remainder of the argument, the sets (sni U + tni ) will play the role of 
the rectangles or the hexagons from the proof in the quadratic imaginary case. 

4.3 Discrepancy 

In the last step of the proof, one needs to find a prime power pl ⊂ OK modulo which 
the set Sni fails to be almost uniformly equidistributed. In the quadratic imaginary 
case, it was possible to describe the shape of Sni quite explicitly and find the prime 
power by hand. This is no longer possible, since one only knows that the shape is 
given by the set U from Proposition 4. The existence of a prime power with the 
desired properties can be shown using the discrepancy of the set U .
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Definition 15 Let W be a bounded measurable subset of V . For  x ∈ V ×, v ∈ V 
define Nx(W, v) := |(xU + v) ∩ OK |. We define the discrepancy as 

. Dx(W, v) := Nx(W, v) − |�K |− 1
2 Leb(W)‖x‖

and the maximal discrepancy 

. Dx(W) := ess sup
v∈V

|Dx(W, v)|.

Using the fact that n-optimal sets are almost uniformly equidistributed modulo every 
power of every prime ideal in OK together with a version of the prime number 
theorem, one can give a uniform upper bound on Dx(U) for all x ∈ V ×. 

Lemma 5 ([12, Lemma 6.3]) Let μ be a limit measure on V . Let U be a non-empty 
open-bounded subset of V such that μ = Leb|U and ∂U is Jordan measurable of 
Jordan measure 0. Then Dx(U) < 1 for all x ∈ V ×. 

On the other hand, using the smoothness of the boundary of U , we have:  

Lemma 6 ([12, Lemma 6.4]) Assume V = Rr1 × Cr2 with r1 + 2r2 > 1. Let W 
be an open-bounded subset of V such that ∂W ∩ V × is a submanifold of V × of 
class C1 and λU ⊆ U for every 0 ≤ λ <  1. Then, there exists x ∈ V × such that 
Dx(U) > 1. 

4.4 Proof of Theorem 2 

In this section we gather results described earlier to sketch the proof that large n-
optimal sets do not exist. 

Proof of Theorem 2 Let V = K ⊗Q R = Rr1 × Cr2 . For the sake of contradiction, 
let us assume that there exists a sequence of ni-optimal sets Sni ⊆ OK with 
ni → ∞. By Corollary 4, there exists a compact set � ⊆ V and sequences 
(sni )i∈N, (tni )i∈N ⊆ V with ‖sni

‖ =  ni |�K |1/2 such that s−1 
ni (Sni − tni ) ⊆ �. 

We define 

. μni
= 1

ni

∑
x∈Sni

δ
s−1
ni

(x−tni
)
.

Since � is compact, after passing to a subsequence if necessary, these measures 
converge weak-* to a probability measure μ. This is a limit measure. By Sect. 4.2, μ 
is compactly supported, absolutely continuous with respect to the Lebesgue measure 
of density at most 1, so by Proposition 3 and Lemma 4, it minimizes the energy 
among all such measures. By Proposition 4, μ = Leb|U where U is an open 
set with piecewise C1 boundary. Finally using Lemma 5 and Lemma 6, we get a 
contradiction, since the discrepancy would be at the same time bigger and smaller 
than 1. ��
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5 Open Problems 

5.1 Function Fields 

Let Fq be a finite field with q elements, Fq = {a0, . . . , aq−1}. Let  n ∈ N. Write 
n = ∑k 

i=0 diq
i with di ∈ {0, . . . , q  − 1}. It was observed by Bhargava in [4] that 

the sequence sn := ∑k 
i=0 adi t

i ∈ Fq [t] is a simultaneous p-ordering in Fq [t]. 
More generally one can consider a protective curve C over Fq , select a finite set

� ⊂ C(Fq) and consider the ring �(C \ �,O) of the regular functions on C \ �. 
The case of the ring Fq [t] is recovered by taking C = P1 and � consisting of the 
point at infinity. 

•? Question 

For which curves and sets � does the ring �(C \ �,O) admits a simultaneous 
p-orderings or arbitrarily large n-optimal sets? 

It seems that the answer might depend of the genus of the curve, with high genus 
unlikely to contain large n-optimal sets. 

5.2 Schinzel’s Problem 

The question on existence of simultaneous p-orderings seems a bit similar to an old 
problem called Schinzel’s problem: 

•? Schinzel’s Problem [10] 

Let K 	= Q be a number field and letOK be its field of fractions. Does there exist a 
sequence (ai)i∈N ⊆ OK such that for every ideal I in OK with the norm N(I), the  
sequence a0, . . . , aN(I)−1 is a complete system of representatives of OK/I . 

There have been partial results obtained: Wantula (1969) (unpublished) showed 
that K cannot be a quadratic number field and Wasén [14] showed that OK has to 
be a principal ideal domain. 

Definition 16 A sequence (ai)i∈N satisfying the condition from Question 5.2 is 
called a Schinzel sequence. 

Frisch [7] showed that if OK admits a Schinzel sequence, then it is Euclidean.
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Proposition 5 ([7, p.102]) Let K be a number field and let OK be its ring of 
integers. Let N(x)  denote the norm of the principal ideal (x) in OK . If  OK admits 
a Schinzel sequence, then OK is Euclidean with the norm N . 

Proof Assume there exists a Schinzel sequence (ai)i∈N in OK . We can assume 
a0 = 0. By the definition of Schinzel sequence, N(aj ) ≤ j for every j ∈ N \ {0}. 
Let a, b ∈ OK with a 	= 0 and a not a unit. By the definition of a Schinzel sequence, 
there exists m ∈ {0, . . . , N(a)  − 1} such that b = ca + am. As observed before, 
N(am) ≤ m < N(a). ��

Could the methods used to prove Theorem 2 be used to address the Schinzel’s 
problem? If one could construct limit measures attached to a Schinzel sequence, 
what would be their properties? 
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A Survey on Flatness in Integer-Valued 
Polynomial Rings 

Ali Tamoussit 

1 Introduction 

Historically, the notion of flatness was first introduced and studied in 1956 by J.-
P. Serre [43] as follows: a module M over an integral domain D is said to be flat 
if whenever .N1 → N2 → N3 is an exact sequence of D-modules, the sequence 
.M ⊗D N1 → M ⊗D N2 → M ⊗D N3 is exact as well (cf. [43, Définition 3, 
page 34]). Bourbaki treated extensively on this notion in their 1961 book Algèbre 
Commutative [3]. In 1969, D. Lazard, published his thesis titled “Autour de la 
platitude” completely concerned with the problem of flatness [33]. Earlier in 1965, 
F. Richman studied the notion of flatness in the context of overrings of an integral 
domain, and thus he was the first to characterize the flat overrings of integral 
domains. Particularly, he showed that an overring R of an integral domain D is 
a flat D-module if and only if .Rm = Dm∩D for every maximal ideal . m of R [41, 
Theorem 2, page 795]. The theory of flatness plays an important role in commutative 
algebra, in particular; it provides a useful tool in the characterization of some classes 
of commutative rings, for instance, an integral domain D is Prüfer if and only if 
each overring of D is D-flat, and flat overrings of a Noetherian domain remain 
Noetherian. The notion of faithful flatness seems to have first appeared in Bourbaki’s 
book Algèbre Commutative in the chapter on flatness and localization. Recently, a 
constructive approach to the study of flat modules and (faithfully) flat algebras has 
been developed [34, Chapter VIII]. 
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Let D be an integral domain with quotient field K and X an indeterminate over 
K . The set, denoted .Int(D), of polynomials with coefficients in K that take values 
(on elements of D) in  D, i.e., .Int(D) = {f ∈ K[X] : f (D) ⊆ D} forms a 
commutative D-algebra. 

Originally, the theory of integer-valued polynomials goes back to 1919 publica-
tions of Pólya [40] and Ostrowski [38]. Their works focused on the study of the 
D-module structure of .Int(D) if D is the ring of integers of a number field. Later, in 
1936, T. Skolem [44] considered, for the first time, the structure of .Int(Z) not only 
as a .Z-module but as a commutative ring also. 

Major ring-theoretic studies of integer-valued polynomials began in the early 
1970s independently in three different places and by various authors: Cahen and 
Chabert at the University of Paris, Gunji and McQuillan at the University of 
Wisconsin, and Brizolis at University of California, Los Angeles. They general-
ized the concept of “integer-valued polynomial ring” to the case of an arbitrary 
integral domain D. Since, a circle of investigations began about these constructions 
including their ring-theoretic properties, their module structure, their (prime) ideal 
structures, and the calculation of their Krull dimensions. Remarkable results were 
obtained over various classes of integral domains, and many questions about their 
ring-theoretic properties were formulated [9]. Note that this rich theory provides an 
excellent source of examples and counterexamples in various settings, particularly 
in the non-Noetherian commutative rings setting. 

Since 2007, J. Elliott has published a series of articles involving a category-
theoretic viewpoint in studying rings of integer-valued polynomials [18–22]. Much 
of his work, in this regard, is based on or dealt with the flatness of .Int(D) as a 
D-module. Firstly, in [18, page 85], he pointed out the following open problem: 

Determine those Krull domains D, or more generally those integral domains D, for  which  
.Int(D) is flat as a D-module. 

Two years later, in [19, Section 4], he wrote: 

The question of the flatness of .Int(D) over D is motivated by considering that for 
any domain D and any set . X there exists a canonical D-algebra homomorphism . θX :
⊗

X∈X Int(D) → Int(DX) sending .X ∈ Int(D) to .X ∈ Int(DX) for all .X ∈ X, where the 
(possibly infinite) tensor product is a tensor product of D-algebras. One might hope, if not 
expect, that this homomorphism be an isomorphism, at least if integer-valued polynomials 
are expected to behave anything like ordinary polynomials in this regard. After all, one 
does have .Int(Int(DX)Y ) = Int(DX�Y ) for any infinite domain D and any sets . X and 
. Y , in perfect analogy with ordinary polynomial rings over anything but a finite field; and 
indeed for several large classes of domains it turns out that . θX is an isomorphism for all 
. X. However, it has not been proved that . θX is always an isomorphism, nor has there been 
found a counterexample. Proving injectivity is equivalent to showing that the given tensor 
product is D-torsion-free, and the easiest way to do that seems to be to prove that .Int(D) is 
flat as a D-module. 

Till now, there is no example in the literature of an integral domain D such that 
.Int(D) is neither flat nor free as a D-module. In this vein, Elliott conjectured that 
if either .D = F2 + T F4[[T ]] or .D = F2[[T 2, T 3]], then .Int(D) is not flat as a 
D-module [20, Conjectures 2.15 and 2.17], and this conjecture is still open.
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All of these studies motivate the main open problems as stated in [10, Problem 
19]: 

[10, Problem 19a] Is .Int(D) a flat D-module for any domain D? 
[10, Problem 19b] Is .Int(D) a free  D-module for any domain D? 

In 2020, under the supervision of Lahoucine Izelgue, the current author devoted 
a large part of his Ph.D. thesis [45] to studying the problems of flatness and local 
freeness of rings of integer-valued polynomials. 

It is worth noting that, in 1919, Pólya [40] established that for any PID D, . Int(D)

is a free D-module. Cahen and Chabert, [8, conséquence du Corollaires (3), page 
303] and [6, conséquence du Théorème 2, page 753], showed that for any Dedekind 
domain D, .Int(D) is a (faithfully) flat D-module. Zantema in [50] asserted that 
.Int(D) is D-free, for any ring of integers of a number field D. 

Keeping in mind the containments .D ⊆ D[X] ⊆ Int(D) and the fact that . D[X]
is always a flat D-algebra, one can easily see that the transitivity of the flatness (cf. 
[36, page 46]) guarantees that whenever the flatness of .Int(D) holds over .D[X], it  
necessarily holds over D. So we are led to investigate the flatness in parallel to the 
following diagram of homomorphisms: 

. 

This fact motivated the authors of [30] and [29] to treat the problem of when 
.Int(D) is flat over .D[X]. 

2 Flatness of Int(D), or More Generally Int(E, D), as a  
D-Module 

We start with some well-known results concerning domains D such that . Int(D)

admits a regular basis, that is, it has a free D-module basis consisting of exactly one 
polynomial of each degree. 

The following result is due to S. Frisch. 

Proposition 1 ([24, Theorem 3.6 and Corollary 1]) For any unique factorization 
domain D, the  D-module .Int(D) is free with a regular basis. 

A similar result holds for valuation domains. 

Proposition 2 ([9, Remark II.2.14]) For any valuation domain V , the  V -module 
.Int(V ) is free with a regular basis. 

For Dedekind domains, we have:
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Proposition 3 ([9, Remark II.3.7(iii)]) For any Dedekind domain D, .Int(D) is a 
free D-module. 

We say that .Int(D) is a locally free D-module if .Int(D)m is a free .Dm-module 
for each maximal ideal . m of D. An integral domain D is said to be a Prüfer v-
multiplication domain, in short a PvMD, if .Dm is a valuation domain for each t-
maximal ideal . m of D (the notion of t-maximal ideal to be defined later). 

Proposition 4 ([19, Proposition 3.5]) Let D be a PvMD such that . Int(Dp) =
Int(D)p for every prime ideal . p of D. Then .Int(Dp) has a regular basis for every 
prime ideal . p of D, and therefore the D-module .Int(D) is locally free, hence 
faithfully flat. 

From [11, Proposition 2.1] it follows that the ring .Int(D) has the property of good 
behavior under localization for Krull domains D, that is, . S−1Int(D) = Int(S−1D)

for each multiplicative subset S of D, and then we derive the following: 

Corollary 1 ([18, Corollary 3.6]) For any Krull domain D, the  D-module . Int(D)

is locally free, hence faithfully flat. 

As the integral closure of any Noetherian domain is Krull (cf. [23, Theorem 4.3]), 
we deduce the following: 

Corollary 2 Let D be a Noetherian domain with integral closure . D′. Then . Int(D′)
is a locally free .D′-module. 

Further, it is worth noting that J. Elliott in [19] pointed out that the question of 
the flatness of the D-module .Int(D) can be reduced to the question of the flatness 
of Bhargava rings. So, let us recall the following: 

For any element x of an integral domain D, the  Bhargava ring over D at x is 
defined as follows: 

. Bx(D) := {f ∈ K[X] : ∀a ∈ D, f (xX + a) ∈ D[X]},

where K is the quotient field of D. 

Proposition 5 ([19, Proposition 6.4]) Let D be an integral domain. If .Bx(D) is 
flat as a D-module for every nonzero element x of D, then .Int(D) is also flat as a 
D-module 

Let .Intn(D) := {f ∈ Int(D) : deg f � n}. Thus, as a particular case of [19, 
Proposition 7.1], we have: 

Proposition 6 Let D be an integral domain. Then .Int(D) is flat as a D-module 
whenever the D-module .Intn(D) is flat for every nonnegative integer n. 

For a nonzero fractional ideal I of an integral domain D, we set  . I−1 := {x ∈
K| xI ⊆ D} and .Iv := (I−1)−1, where K is the quotient field of D. On  D the 
t-operation is defined by .It := ⋃

Jv , where J ranges over the set of all nonzero
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finitely generated ideals contained in I . When .It = I we say that I is a t-ideal. A  
t-maximal ideal is a maximal ideal among all t-ideals of D. 

Theorem 1 ([20, Theorem 1.2(a)]) Let D be an integral domain such that .mDm is 
principal and .Int(Dm) = Int(D)m for every t-maximal ideal . m of D. Then . Int(D)

is a locally free, and hence faithfully flat, D-module. 

Recall that a Krull-type domain is a PvMD of finite t-character, that is, each 
nonzero non-unit is contained in only finitely many t-maximal ideals. Then, as a 
consequence of the previous result and [20, Theorem 1.2(b)], we have: 

Corollary 3 For any Krull-type domain D, the  D-module .Int(D) is locally free, 
hence faithfully flat. 

In the light of [12, Corollary 1.3], Theorem 1 can be viewed as a generalization 
of Proposition 4. 

For polynomial rings, we always have .S−1 (D[X]) = S−1D[X] for any integral 
domain D and any multiplicative subset S of D. However, in the case of .Int(D), 
the inclusion .S−1Int(D) ⊆ Int(S−1D) always holds and when the reverse inclusion 
holds we say that .Int(D) has the property of good behavior under localization. This  
last property is a key tool for studying both the local freeness and the flatness of 
.Int(D) over D: particularly in Proposition 4 and Theorem 1. Remarkably, the good 
behavior under localization does not hold in general. First we recall that an integral 
domain D is said to be almost Dedekind if .Dm is a rank-one discrete valuation 
domain (a DVR for short) for all maximal ideals . m of D. We next notice that 
each of Examples 6.2 and 6.5 of [14] provides an almost Dedekind domain . D with 
finite residue fields such that .Int(D) does not behave well under localization, i.e., 
.Int(Dm) 
= Int(D)m for some maximal ideal . m of . D. In that case, .Int(D) is a flat 
D-module because any almost Dedekind domain is Prüfer, and every torsion-free 
module over a Prüfer domain is always flat (see [42, Corollary 4.36, page 173] for 
the second statement). 

In [29], Izelgue et al. continued the previous investigations and focused on 
the local freeness and flatness of rings of integer-valued polynomials over locally 
essential domains. 

Given an integral domain D and a (non-empty) subset . P of .Spec(D), we say that 
D is an essential domain with defining family . P if .D = ∩p∈PDp and each . Dp is a 
valuation domain. As this notion does not carry up to localizations as established in 
[27], D is said to be a locally essential domain if . Dq is an essential domain for each 
.q ∈ Spec(D). Recall also that a prime ideal . p of an integral domain D is called an int 
prime of D if .Int(D)p 
= Dp[X]. Notice that int prime ideals are both maximal and 
t-maximal (cf. [9, Proposition I.3.4 and Remarks I.3.5(i)] and [19, Proposition 3.3]). 

Theorem 2 ([29, Theorem 1]) Let D be a locally essential domain. Then: 

1. .Int(D) is a flat D-module. 
2. If .Int(Dm) = Int(D)m for every int prime ideal . m of D of height at least two, 

then .Int(D) is a locally free, and hence faithfully flat, D-module.
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Recall that an integral domain D is said to be t-almost Dedekind if .Dm is a DVR 
for short) for all t-maximal ideals . m of D. Recall also that an almost Krull domain 
is any integral domain D with .Dm is Krull for each maximal ideal . m of D. 

Corollary 4 ([29, Corollary 1]) Let D be an integral domain. If either D is almost 
Krull, t-almost Dedekind or .Int(D) is a PvMD, then .Int(D) is locally free as a 
D-module. 

From the previous two results, we deduce that the good behavior under localiza-
tion hypothesis is no longer necessary when dealing with the flatness of .Int(D) over 
a locally essential domain D and with the local freeness of .Int(D) over domains D 
that are either (t-)almost Dedekind or almost Krull. 

Now, we turn our attention to two particular generalizations of the “classical” 
ring of integer-valued polynomials. 

In 1991, Anderson et al. [1] treated the ring of D-valued R-polynomials: 

. I (R,D) := {f ∈ R[X] : f (D) ⊆ D},

where .D ⊆ R is an extension of integral domains, as a generalization of rings of 
integer-valued polynomials. In the sequel of this paper, we will use the notation 
.IntR(D) instead of .I (R,D). Thereafter, in 1993, Cahen [7] considered another 
generalization of .Int(D), namely, the ring of integer-valued polynomials over a 
subset E of K , to be  

. Int(E,D) := {f ∈ K[X] : f (E) ⊆ D},

where D is an integral domain with quotient field K . 
In [22], the author showed that .IntR(D) is locally free as a D-module if D is 

a PvMD such that .Int(D)m = Int(Dm) for every maximal ideal . m of D and R is 
an overring of D (cf. [22, Theorem 7.11]). That includes the case of when D is a 
Krull-type domain. Recently, in [47], the current author generalized this last result 
as follows: 

Theorem 3 ([47, Theorem 18]) Let .D ⊆ R be an extension of integral domains 
with D a locally essential domain. Then: 

1. .IntR(D) is a faithfully flat D-module. 
2. Assume that each int prime ideal of D is of height-one (this holds, e.g., if either 

D is almost Krull or of dimension one). Then .IntR(D) is a locally free D-module. 
3. Assume that R is an overring and for each int prime ideal . m of D of height at 

least two .Int(D)m = Int(Dm). Then .IntR(D) is a locally free D-module. 

Moreover, we investigate the faithful flatness of multivariable D-valued R-
polynomial rings as a D-module. We first recall that, for any set . X: 

• The ring of D-valued R-polynomials on . DX: 

.IntR(DX) := {f ∈ R[X] : f (DX) ⊆ D},
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• The canonical D-algebra homomorphism 

. θX :
⊗

X∈X
IntR(D) → IntR(DX), X �−→ X for all X ∈ X,

where the tensor product is over D. 

Proposition 7 ([47, Theorem 18]) Let D be an integral domain and R be an 
overring of D. If  . θX is an isomorphism for all finite sets . X and .IntR(D) is a 
faithfully flat D-module, then .IntR(DX) is a faithfully flat D-module for any set 
. X. In particular, for any Krull-type domain D and for any set . X, the  D-module 
.IntR(DX) is a faithfully flat. 

In the remainder of this section, we are interested in rings of integer-valued 
polynomials on a subset. Precisely, we pose to classify locally essential domains 
D and subsets E such that .Int(E,D) is a locally free, or at least faithfully flat, 
D-module. 

First notice that Chabert et al. [15] showed that .Int(P,Z) is a free .Z-module (with 
a regular basis), where . P denotes the set of all prime integers. Then, Boulanger et al. 
[5] proved that, for an infinite subset E of a DVR V , .Int(E, V ) is a free V -module. 
More generally, if D is a principal ideal domain (in short PID) and E is an infinite 
fractional subset E of D, then .Int(E,D) admits a regular basis and hence is a free 
D-module [9, Corollary II.1.6]. Once more, there is no example, in the literature, of 
an integral domain D such that .Int(E,D) is not either flat or free as a D-module for 
some subset E of the quotient field of D. 

Proposition 8 ([46, consequence of Lemma 1] and [31, Corollary 1]) Let D be 
a Prüfer domain with quotient field K and let E be a fractional subset of K . We  
have: 

1. .Int(E,D) is a faithfully flat D-module. 
2. Assume that D is almost Dedekind and E is an infinite subset of D. Then 

.Int(E,D) is a locally free D-module. 

Example 1 

The integral domain .D = Z+TQ[T ], where T is an indeterminate over . Q, is known 
to be Prüfer. Then, by Proposition 8(1), .Int(E,D) is a faithfully flat D-module for 
any subset E of .Q(T ). 

Example 2 

Let T be an indeterminate over . Q, and set .R = ∪∞
n=0Q[T 1

2n ] and . S = Q[T ] \
(1 − T )Q[T ]. According to [16, Section 3], .D := S−1R is a non-Noetherian
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almost Dedekind domain. Thus, by Proposition 8(2), .Int(E,D) is locally free as 
a D-module for any infinite subset E of D. 

Most of the results established in the case of .Int(D) are due to the fact that, for 
each .p ∈ Spec(D) with infinite residue field, either .Int(Dp) ⊆ Dp[X] or . Int(D)

behaves well under localization. However, the inclusion .Int(E,Dp) ⊆ Dp[X], or at  
least .Int(E,D)p ⊆ Dp[X], may not hold, which makes it harder to characterize the 
local freeness or the (faithful) flatness of .Int(E,D) as a D-module. Thus, under a 
restrictive condition on the subset E, we recover some well-known results stated in 
Sect. 2. 

In [37], Mulay studied the ring .Int(E,D) under an extra condition on E. In fact, 
he introduced the concept of residual cofiniteness to extend some well-known results 
about .Int(D) to the case of .Int(E,D). 

Recall that a non-empty subset E of an integral domain D is said to be residually 
cofinite with D [37] if  E and D are either both finite or both infinite modulo any 
prime ideal of D. Obviously, D is residually cofinite with itself, and for more 
examples, we refer to [37, page 335]. 

In what follows, we give sufficient conditions for .Int(E,D) to be locally free, or 
at least (faithfully) flat, as a D-module. 

Theorem 4 ([46, Theorem 1]) Let D be a locally essential domain with defining 
family . P and let .E ⊆ D be residually cofinite with D. We have: 

1. .Int(E,D) is a faithfully flat D-module. 
2. Assume that E is infinite and . Dp is a DVR, for each .p ∈ P with .D/p finite. Then 

.Int(E,D) is a locally free D-module. 

As an application of Theorem 4, we have:  

Corollary 5 ([46, Corollary 2]) Let D be an integral domain and .E ⊆ D be 
infinite and residually cofinite with D. If  D is either almost Krull or t-almost 
Dedekind, then .Int(E,D) is a locally free D-module. 

Example 3 

Let .D = Z
[{T/pn}∞n=1

]
, where .{pn}∞n=1 is the set of all positive prime integers 

and T is an indeterminate over . Z. By [28, Example 166], D is a two-dimensional 
almost Krull domain which is neither Noetherian nor Krull. Then, by Corollary 5, 
for any infinite and residually cofinite subset E of D, the  D-module .Int(E,D) is 
locally free. 

When dealing with the integral domain D as a locally finite intersection of its 
localizations at some elements of .Spec(D), we have:
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Proposition 9 Let .D = ∩p∈PDp, where .P ⊆ Spec(D), be an integral domain and 
let .E ⊆ D be infinite and residually cofinite with D. Assume that the intersection 
.∩p∈PDp is locally finite and for each .m ∈ P ∩ Max(D) with finite residue field, 
.Dm is a DVR. Then .Int(E,D) is a locally free D-module. 

Proof First, we note that .Int(E,D)m = Int(E,Dm) for each prime ideal . p of D 
(cf. [30, Proposition 3.12]). Let consider the following partition of .Max(D): 

. M0 := {m ∈ P ∩ Max(D), D/m is finite} and M1 := Max(D)\M0.

Now, let . m be a maximal ideal of D. So, we need to discuss the following cases: 

Case 1: .m ∈ M0. Then, by assumption, .Dm is a DVR and hence, by [5, 
Proposition 2.2], .Int(E,D)m = Int(E,Dm) is free as a .Dm-module. 

Case 2: .m ∈ M1. Then, by [30, Proposition 3.12], . Int(E,D)m = Int(E,Dm) =
Dm[X] is a free .Dm-module. 

Therefore, .Int(E,D) is a locally free D-module, as desired. 

We close this section with sufficient conditions for .Int(E,D) to be flat as a D-
module in terms of .Bx(E,D) and .Intn(E,D), which are defined as follows: 

For any element x of an integral domain D and any subset E of D, the  Bhargava 
ring over E at x is defined as follows: 

. Bx(E,D) := {f ∈ K[X] : ∀a ∈ E, f (xX + a) ∈ D[X]},

where K is the quotient field of D. 
For any subset E of an integral domain D, let .Intn(E,D) be the D-module . {f ∈

Int(E,D) : deg f � n}.
Proposition 10 ([19, Propositions 6.4 and 7.1]) Let D be an integral domain and 
let E be a subset of D. Assume one of the following holds. 

1. .Bx(E,D) is flat as a D-module for every nonzero element x of D. 
2. .Intn(E,D) is flat as a D-module for every nonnegative integer n. 

Then .Int(E,D) is flat as a D-module 

3 Flatness of Int(D) as an Overring of D[X] 

Given a nonzero fractional ideal I of an integral domain D, we recall that on D 
the w-operation is defined by .Iw := {x ∈ K| xJ ⊆ I for some nonzero finitely 
generated ideal J of D with .J−1 = D}, where K is the quotient field of D. When 
.Iw = I we say that I is a w-ideal. An integral domain D is said to be Strong 
Mori if it satisfies the ascending chain condition (a.c.c.) on integral w-ideals. Thus, 
the class of Strong Mori domains includes Noetherian domains and (infra-)Krull
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domains. We also recall that an integral domain D has t-dimension one if it is not a 
field and each t-maximal ideal of D has height one. Lastly, .Int(D) is called trivial 
if .Int(D) = D[X]. 

The following result characterizes the flatness of .Int(D) over .D[X] when D is a 
Strong Mori domain. 

Theorem 5 ([29, Theorem 2]) Let D be a Strong Mori domain and consider the 
following statements: 

1. .Int(D) is flat over .D[X]. 
2. .Int(D) is trivial. 
3. .Int(D) is Strong Mori. 
4. Each height-one prime ideal of D has infinite residue field. 

Then .(1) ⇔ (2) ⇒ (3) and .(2) ⇒ (4). 
If, moreover, D is either integrally closed or of t-dimension one, then . (3) ⇒ (2)

and .(4) ⇒ (2), and hence the four statements are equivalent. 

Notice that statements . (2) and . (3) are not, in general, equivalent as Example 11 
shows. 

Corollary 6 ([30, Proposition 2.1]) Let D be a Noetherian domain and consider 
the following statements: 

1. .Int(D) is flat over .D[X]. 
2. .Int(D) is trivial. 
3. .Int(D) is Noetherian. 
4. Each height-one prime ideal of D has infinite residue field. 

Then .(1) ⇔ (2) ⇒ (3) and .(2) ⇒ (4). 
If, moreover, D is either integrally closed or of dimension one, then . (3) ⇒ (2)

and .(4) ⇒ (2), and hence the four statements are equivalent. 

Let .I := (D : D′) = {x ∈ K : xD′ ⊆ D} be the conductor of . D′ in D. 

Corollary 7 Let D be a Noetherian domain such that .I := (D : D′) 
= (0) and 
.D/I is finite. Assume one of the following holds. 

1. Each height-one prime ideal of . D′ has infinite residue field (this holds, e.g., if . D′
has no height-one maximal ideal). 

2. .(D′ : I ) 
= D′. 

Then .Int(D) is not flat over .D[X]. 
Proof If . (1) holds then, by [25, Corollary 3.4], .Int(D) is not trivial (and Noethe-
rian). Hence, by Corollary 6, .Int(D) is not flat over .D[X]. 

If . (2) holds then, by [25, Corollary 3.5], .Int(D) is not Noetherian. Hence, by 
Corollary 6, .Int(D) is not flat over .D[X].



On Flatness in Integer-Valued Polynomial Rings 453

Let .X1(D) be the set of all height-one prime ideals of an integral domain D. 
Then D is called an infra-Krull domain [35]; if .D = ∩p∈X1(D)Dp, the intersection 
is locally finite and . Dp is Noetherian for each .p ∈ X1(D). 

Proposition 11 ([29, Proposition 2]) The following statements are equivalent for 
an infra-Krull domain D: 

1. .Int(D) is flat over .D[X]. 
2. .Int(D) is trivial. 
3. .Int(D) is infra-Krull. 
4. Each height-one prime ideal of D has infinite residue field. 

Recall that an overring T of D is said to be t-linked over D if for each finitely 
generated fractional ideal I of D, .I−1 = D implies that .(IT )−1 = T . Notice that 
any flat overring is a t-linked overring. 

Corollary 8 Let D be an infra-Krull domain. Then .Int(D) is t-linked over .D[X] if 
and only if .Int(D) is trivial. 

Proof As any t-linked overring of an infra-Krull domain is still infra-Krull (cf. [35, 
Lemma 2]), the desired conclusion follows immediately from Proposition 11. 

An integral domain D is said to be t-locally Strong Mori if .Dm is Strong Mori 
for all t-maximal ideals . m of D. As any localization of a Strong Mori domain is also 
Strong Mori, then Strong Mori domains are t-locally Strong Mori, but the converse 
is not true in general. Indeed, any non-Noetherian almost Dedekind domain is t-
locally Strong Mori but not Strong Mori because any almost Dedekind domain is 
Prüfer, and any Prüfer Strong Mori domain is Dedekind. 

Recently, in [48], the current author extended Theorem 5 to t-locally Strong Mori 
with the condition of good behavior under localization as follows: 

Theorem 6 ([48, Theorem 2.4]) Let D be a t-locally Strong Mori domain such 
that .Int(Dm) = Int(D)m, for each int prime ideal . m of D. Consider the following 
statements: 

1. .Int(D) is flat over .D[X]; 
2. .Int(D) is trivial; 
3. Each height-one prime ideal of D has infinite residue field. 

Then .(1) ⇔ (2) ⇒ (3). If, in addition, D is either integrally closed or of 
t-dimension one, then .(3) ⇒ (2), and hence the three statements are equivalent. 

The next theorem shows that .Int(D) is flat over .D[X] only in the trivial case when 
D is an essential domain. 

Theorem 7 ([29, Theorem 3 and Remark 1(2)]) Let D be an essential domain 
with defining family . P and consider the following statements: 

1. .Int(D) is flat over .D[X]. 
2. .Int(D) is trivial.
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3. . Dp has infinite residue field or nonprincipal maximal ideal, for each .p ∈ P . 

Then .(1) ⇔ (2) and .(3) ⇒ (2). 
If, moreover, .Int(D)p = Int(Dp) for each .p ∈ P with finite residue field, then 

.(2) ⇒ (3), and hence the three statements are equivalent. 

Corollary 9 ([29, Corollary 4]) Let .D = ∩p∈PDp, where .P ⊆ Spec(D), be a  
Krull-type domain. The following statements are equivalent: 

1. .Int(D) is flat over .D[X]. 
2. .Int(D) is trivial. 
3. . Dp has infinite residue field or nonprincipal maximal ideal, for each .p ∈ P . 

The following result shows that .Int(D) may be locally free, and hence flat, over 
D without being so over .D[X]. 
Corollary 10 Let D be an almost Dedekind domain which is not a field such that 
.Int(D) is a Prüfer domain (this holds, e.g., if .Int(Dm) = Int(D)m for each maximal 
ideal . m of D with finite residue field). Then, .Int(D) is locally free over D but not 
flat over .D[X]. 
Proof By Corollary 4, .Int(D) is locally free as a D-module. However, since . Int(D)

is Prüfer and D is not a field, .Int(D) 
= D[X], and then it follows from Theorem 7 
that .Int(D) is not flat over .D[X]. 

We recall that an integral domain D is GCD, if every pair of nonzero elements 
of D has a greatest common divisor, or equivalently, the intersection of any two 
principal ideals of D is principal. Clearly, UFDs and valuation domains are GCD 
and any GCD domain is a PvMD (cf. [49, page 95]). 

The next result characterizes when .Int(D) is flat over .D[X] for a GCD domain 
D. 

Proposition 12 ([29, Proposition 3]) Let D be a GCD domain and consider the 
following statements: 

1. .Int(D) is flat over .D[X]. 
2. .Int(D) is trivial. 
3. .Int(D) is GCD. 
4. . Dp has infinite residue field or nonprincipal maximal ideal, for each t-maximal 

ideal . p of D. 

Then .(4) ⇒ (1) ⇔ (2) ⇒ (3). 
If, moreover, .Int(Dp) = Int(D)p for each t-maximal ideal . p of D with finite 

residue field, then .(3) ⇒ (2) ⇒ (4), and the four statements are equivalent. 

As an immediate corollary of Proposition 12, we have the following characteri-
zation: 

Corollary 11 ([29, Corollary 5]) Let V be a valuation domain. The following 
statements are equivalent:
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1. .Int(V ) is flat over .V [X]. 
2. .Int(V ) is trivial. 
3. V has infinite residue field or nonprincipal maximal ideal. 

Since GCD domains have the property that every t-linked overring is a localiza-
tion (cf. [17, Corollary 3.8]), we deduce from Proposition 12 the following corollary. 

Corollary 12 Let D be a GCD domain. Then .Int(D) is t-linked over .D[X] if and 
only if .Int(D) is trivial. 

The goal of the remaining part of this section is to investigate the (faithful) 
flatness of .Int(E,D) as a .D[X]-module, when E is a subset of D (not necessary 
residually cofinite). 

Proposition 13 ([30, Proposition 3.1]) Let D be a Noetherian domain and let E 
be a subset of D. If  .Int(E,D) is not Noetherian, then .Int(E,D) is not flat over 
.D[X]. 

So, as a consequence of the previous proposition, we have: 

Corollary 13 ([30, Corollaries 3.5 and 3.7]) Let D be a Noetherian domain and 
let E be a non-empty subset of D. Assume one of the following two conditions 
holds: 

1. There exists a height-one prime ideal of . D′ with finite residue field (this holds, 
e.g., if D is a Dedekind domain with finite residue fields). 

2. The subset E is finite. 

Then .Int(E,D) is not flat over .D[X]. 
Corollary 14 Let D be a Noetherian domain such that .I := (D : D′) 
= (0) and 
let E be a subset of D. If  .Int(D) is not Noetherian (this holds, e.g., if .D/I is finite 
and .(D′ : I ) 
= D′ [25, Corollary 3.5]), then .Int(E,D) is not flat over .D[X]. 
Proof It follows from [25, Proposition 3.8] and Proposition 13. 

The following example shows that it is possible to have .Int(E,D) free over D 
but not over .D[X]. 

Example 4 

The ring . Z of integers is Dedekind (in fact, it is a PID). For any subset E 
of . Q, .Int(E,Z) is a faithfully flat .Z-module (cf. Proposition 8(1)). In particular, 
since . P, the set of all prime integers, is an infinite subset of . Z, by [9, Corollary 
II.1.6], .Int(P,Z) is a free .Z-module. However, by Corollary 13(1), the .Z[X]-module 
.Int(P,Z) is not flat and hence not free. 

The following proposition can be proved by adapting the arguments used in [29, 
Theorem 3].
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Proposition 14 Let D be an essential domain and let E be a subset of D. Then 
.Int(E,D) is flat over .D[X] if and only if .Int(E,D) = D[X]. 

We end this section with a complete characterization of the faithful flatness of 
.Int(E,D) over .D[X] for any integral domain D and any subset E of D. With some 
slight modifications in the proof of [29, Proposition 4], we get the following: 

Proposition 15 Let D be an integral domain and let E be a subset of D. Then 
.Int(E,D) is faithfully flat over .D[X] if and only if .Int(E,D) = D[X]. 

4 Some Illustrating Examples 

Next, we give a list of examples that illustrate the originality of our results which 
can be found in [29, 30, 45]. In fact, we distinguish three types of examples: 

4.1 Examples of Integral Domains D Such That Int(D) Is 
Either Locally Free or Faithfully Flat Over D 

Example 5 

1. [14, Example 6.3] provides an almost Dedekind domain R such that Int(R) is not 
Prüfer. By Corollary 4, Int(R) is a locally free, and thus faithfully flat, R-module. 

2. Example 6.5 of [14] provides an almost Dedekind, and thus an almost Krull, 
domain D with finite residue fields, such that Int(D) does not behave well under 
localization, i.e., Int(D)m 
= Int(Dm) for some maximal ideal m of D. However, 
by Corollary 4, Int(D) is a locally free, and thus faithfully flat, D-module. 

Example 6 

Set D = Z[{T/pn,U/pn}∞n=1], where T and U are indeterminates over Z and 
{pn}∞n=1 is the set of all positive prime integers. 

In [2, Example, page 52], the authors established that D is an almost Krull 
domain which is neither a Krull domain nor a PvMD. Then, by Corollary 4, Int(D) 
is a locally free, and hence faithfully flat, D-module.
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Example 7 

Let A be the domain of all algebraic integers and {pn}∞n=1 is the set of all positive 
prime integers. For each n choose a maximal ideal Mn of A lying over pnZ, and set 
S = A\∪∞

n=1Mn. In [26, Example 1, page 338], Gilmer proved that D := S−1A is a 
one-dimensional Prüfer domain which is not almost Dedekind (and hence not almost 
Krull since Prüfer almost Krull domains are exactly almost Dedekind domains). So, 
by taking R = qf (D) in Theorem 3(2), we deduce that Int(D) is a locally free 
D-module. 

Example 8 

Let E be the ring of entire functions and set D := E + T ES[T ], where T is an 
indeterminate over E and S is the set generated by the principal primes of E . 

According to [49, Example 2.6], D is a locally essential domain which is 
neither PvMD nor almost Krull. Then, as in the previous example, it follows 
from Theorem 3(1) that Int(D) is a faithfully flat D-module. Notice that this last 
conclusion can be obtained by taking E = D in Theorem 4(1). 

4.2 Examples of Integral Domains D Such That Int(D) Is Not 
Flat Over D[X] 

Example 9 

Let k be a finite field, T be an indeterminate over k. The domain D = k[T 2, T  3] is a 
one-dimensional Noetherian domain. Set f = ∏

a∈k(X−a) and g = f 3/T 4. Since 
g is lies in Int(D) but not in D[X], Int(D) is not trivial and then, by Corollary 6, 
Int(D) is neither Noetherian nor flat over D[X]. 

Example 10 

Let k be a finite field, u, v two indeterminates over k and B = k[[u, v]]. We have  B 
is a two-dimensional local Noetherian domain with maximal ideal M = (u, v) such 
that each height-one prime ideal of B has infinite residue field. 

Consider the following pullback diagram:
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. 

Then D is a local Noetherian domain with maximal ideal M2 such that D′ = B, 
I := (D : D′) = M2 and D/M2 = k is finite. Hence, by Corollary 7(a), Int(D) is 
not flat over D[X]. However, Int(D) is Noetherian. 

Example 11 

Let R be a non-Noetherian Krull domain with a maximal ideal m, of finite residue 
field, such that Rm is Noetherian. Assume that R/m contains properly a finite field 
k and that the residue fields at height-one prime ideals of R are all infinite. 

Park and Tartarone in [39, Example 3.5] assert the existence of such a domain and 
use it to construct a non-Noetherian Strong Mori domain D with Int(D) 
= D[X], 
and Int(D) is not Noetherian. In fact, Int(D) is a Strong Mori domain which is 
neither Noetherian nor Krull. Moreover, it follows from Theorem 5 that Int(D) is 
not flat over D[X] because Int(D) 
= D[X]. 

In [20], Elliott conjectured that if either D = F2[[T 2, T  3]] or D = F2 + 
T F4[[T ]], then D ↪→ Int(D) is not flat. The conjecture is still open. The following 
example shows, in particular, that Int(D) is not flat as a D[X]-module. 

Example 12 

If either D = F2[[T 2, T  3]] or D = F2 + T F4[[T ]], we have  D is one-dimensional 
Noetherian domain such that Int(D) is not trivial because f (X)  = (X2 + X)/T 2 ∈ 
Int(D) \ D[X] for D = F2[[T 2, T  3]], and g(X) = (X2 + X)/T ∈ Int(D) \ D[X] 
for D = F2 + T F4[[T ]]. Then, by Corollary 6, Int(D) is not flat over D[X]. 

4.3 Examples of Integral Domains D Such That Int(D) Is Flat 
Over D But Not Over D[X] 

The following examples show that .Int(D) can be locally free and hence (faithfully) 
flat, over D, without being flat over .D[X].
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Example 13 

1. It is well-known that . Z is one-dimensional Noetherian domain such that . Int(Z) 
=
Z[X]. Then, by Corollary 6, .Int(Z) is not flat as a .Z[X]-module. However, . Int(Z)

is free, and hence flat, as a .Z-module. 
2. In [14, Example 6.4], Chabert constructed an almost Dedekind domain . D that is 

not Dedekind, such that .Int(D) is a Prüfer domain. In fact, he established that 
. D has finite residue fields and .Int(D)m = Int(Dm) for each maximal ideal . m of 
. D. By Corollary 4, .Int(D) is a locally free, and then faithfully flat, .D-module. 
Furthermore, it follows from Corollary 10 that .Int(D) is not flat over .D[X]. 

3. The domain D in [12, Example 5.1], is an almost Dedekind domain such that 
.Int(D) is not a PvMD. So, by Corollary 4, .Int(D) is locally free, and hence 
faithfully flat, as a D-module. Moreover, .Int(D) is not flat over .D[X]. Deny,  
then it follows from Theorem 7 and [32, Theorem 3.7] that .Int(D) = D[X] is a 
PvMD, a contradiction. 

Example 14 

The domain .D = Z + TQ[T ], where T is an indeterminate over . Q, is a two-
dimensional Prüfer domain that is not of finite t-character (and then D is not a ring 
of Krull-type). Then, if we take .R = qf (D) in Theorem 3(1), we infer that . Int(D)

is a faithfully flat D-module. 
On the other hand, since each maximal ideal . m of D is principal, . Int(D)m =

Int(Dm) [13, Proposition 1.8(ii)]. Hence, by Theorem 3(3), .Int(D) is a locally free 
D-module. However, there exists a principal maximal ideal of D with finite residue 
field, then it follows from Proposition 12 that .Int(D) is neither flat over .D[X] nor 
GCD. Moreover, by Corollary 12, .Int(D) is not t-linked over .D[X]. 

Notice also that D is an H -domain, that is, every t-maximal ideal is divisorial, 
which is neither almost Krull nor TV, that is, .t < v. Then, by [19, Proposition 3.3], 
int prime ideals of D are exactly the maximal ideals of D with finite residue fields. 
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Equivalent Characterizations of 
Non-Archimedean Uniform Spaces 

Daniel Windisch 

1 Introduction 

Throughout this manuscript, let X be a set. A  uniform space is a pair .(X,M), where 
M is a system of pseudo-metrics on X, that is, 

(i) The elements of M are generalizations of metrics for which two distinct points 
of X may have distance 0. 

(ii) M is closed under the operation .max(·, ·), where .d = max(d1, d2) is the 
pseudo-metric defined by .d(x, y) = max(d1(x, y), d2(x, y)) for . d1, d2 ∈ M

and .x, y ∈ X. 

Equivalently, one can define a uniform space by a diagonal uniformity or by a 
covering uniformity, respectively, and the three concepts easily translate back and 
forth, see Sect. 2.1. For a general introduction to uniform spaces, see [5]. 

Following Monna [4], a uniform space .(X,M) is called non-Archimedean if the 
pseudo-metrics .d ∈ M satisfy the non-Archimedean triangle inequality 

. d(x, z) ≤ max(d(x, y), d(y, z))

for all .x, y, z ∈ X. In many settings, especially in commutative algebra and Abelian 
group theory, non-Archimedean uniformities are used extensively. For instance, 
the completion of a commutative ring R with respect to a valuation or a directed 
system of ideals is a special case of the more general concept of completions of 
uniform spaces, and the original uniformity defined on R is non-Archimedean, 
cf. [1, Chapter 10]. In this context, one often freely uses the correspondence of 
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diagonal uniformities, covering uniformities and systems of pseudo-metrics. So the 
following question arises naturally: 

Question Is it possible to characterize those diagonal uniformities and covering 
uniformities, respectively, that correspond to systems of pseudo-metrics satisfying 
the non-Archimedean triangle inequality? 

We give a positive answer to this question in Theorem 1: the analogs of systems 
of pseudo-metrics satisfying the non-Archimedean triangle inequality are diagonal 
uniformities admitting a basis of equivalence relations and covering uniformities 
with a basis of partitions, respectively. 

It is well-known that uniformizability for a topological space is equivalent to T. 3 1
2

(Willard [5] uses the  term  completely regular for T. 3 1
2
). We introduce the following 

stronger separation axiom to characterize in Theorem 2 those topological spaces X 
stemming from a uniform space of non-Archimedean pseudo-metrics: 

(. TA) For every closed subset .A ⊆ X and every .x ∈ X \ A, there are open sets 
.U1, U2 ⊆ X such that 

(i) .U1 ∩ U2 = ∅, .U1 ∪ U2 = X. 
(ii) .A ⊆ U1, .x ∈ U2. 

Moreover, we are able to characterize when a non-Archimedean uniform space 
is pseudo-metrizable by a single non-Archimedean pseudo-metric. Results closely 
related to ours were given by Monna [4, Théorème 13], Banaschewski [2, Satz 6] 
and de Groot [3, Theorem II]. These authors assume uniformities to be separating 
(i.e., the induced topology is Hausdorff), and therefore they prove results dealing 
with metrizability. Our Theorem 3 is similar to the general result that a uniform 
space is pseudo-metrizable if and only if there is a countable system of pseudo-
metrics inducing the uniformity (cf. [5, Theorem 38.3]). 

Overview of results 

General uniform space Non-Arch. uniform space 

Diagonal uniformity Basis of relations Basis of equivalence relations 

Covering uniformity Basis of covers Basis of partitions 

Pseudo-metrics System of pseudo-metrics System of non-Arch. 
pseudo-metrics 

Uniformizability .T3 1 
2 

. TA 

Pseudo-metrizability Countable system of pseudo-metrics Countable system of 
non-Arch. pseudo-metrics 
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2 Equivalent Approaches to Non-Archimedean Uniform 
Spaces 

2.1 The General Case 

We first want to recall the various approaches to uniformities in the general case. 
We follow the text book by Willard [5]. It is worth noting that the definitions of 
uniformities and their bases, which might seem a bit clumsy and unnatural in the 
general case, simplify a lot when passing over to non-Archimedean uniformities. In 
general, for all of the three types of uniformities introduced, a set X together with a 
uniformity of the respective type is called a uniform space. 

We begin with the definition of diagonal uniformities. For relations . E, F ⊆ X × 
X, we denote 

. E ◦ F = {(x, z) ∈ X × X | ∃y ∈ X ((x, y) ∈ E ∧ (y, z) ∈ F)} 

and 

. E−1 = {(y, x) ∈ X × X | (x, y) ∈ E}. 

Definition 1 ([5, Definition 35.2]) A diagonal uniformity . D on the set X is a set 
of relations on X satisfying: 

(a) .(x, x) ∈ D for all .x ∈ X and .D ∈ D. 
(b) .D1 ∩ D2 ∈ D whenever .D1,D2 ∈ D. 
(c) For each .D ∈ D there is .E ∈ D such that .E ◦ E ⊆ D. 
(d) For each .D ∈ D there is .E ∈ D such that .E−1 ⊆ D. 
(e) .D ∈ D and .D ⊆ E ⊆ X × X implies .E ∈ D. 

Note that, assuming (a), the assertions (c) and (d) may be seen as a generalization 
of asking that all relations in . D be equivalence relations. 

Definition 2 ([5, Definition 35.2]) A basis of a diagonal uniformity . D on X is a 
subset .B ⊆ D such that each .D ∈ D contains some .E ∈ B. 

It is easy to see that a basis . B of a diagonal uniformity satisfies (a), (c), and (d) 
of Definition 1 (substituting . D with . B). Moreover, the following modified form of 
(b) holds: 

(b’) For all .D1,D2 ∈ B there exists some .E ∈ B such that .E ⊆ D1 ∩ D2. 

Conversely, given a set . B of relations on X satisfying (a), (b’), (c) and (d), . B is a 
basis of the diagonal uniformity: 

.D = {D ⊆ X × X | ∃E ∈ B E ⊆ D}. 
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We now recall the concept of covering uniformities. It is an equivalent description 
of diagonal uniformities that uses covers of X rather than relations on X. A  cover 
. U of a set X is a collection of subsets of X such that .

⋃
U∈U U = X. A cover . U is a 

refinement of a cover . V if each .U ∈ U is contained in some .V ∈ V . In this case, we 
write .U < V . 

For a cover . U of X and .A ⊆ X define the star of A with respect to . U as 

. star(A,U) =
⋃

U ∈ U 
A ∩ U �= ∅  

U. 

. U is a star-refinement of a cover . V if for each .U ∈ U there exists .V ∈ V such that 

.star(U,U) ⊆ V . In this case, we write .U <∗ V . 
Definition 3 ([5, page 244 ff.]) A covering uniformity on a set  X is a collection . μ 
of covers of X satisfying: 

(a) For all .U1,U2 ∈ μ there exists .U3 ∈ μ such that .U3 <
∗ U1 and .U3 <

∗ U2. 
(b) For all covers . V of X, if .U < V for some .U ∈ μ then .V ∈ μ. 

Definition 4 ([5, Definition 36.3]) A basis of a covering uniformity . μ on X is a 
subset . β of . μ such that for every .V ∈ μ there exists .U ∈ β such that .U < V . 

Like for diagonal uniformities, every basis of a covering uniformity satisfies (a) 
of Definition 3. Conversely, any collection . β of covers of X satisfying (a) is a basis 
of the covering uniformity: 

. μ = {V covering of X | ∃U ∈ β U < V}. 

Finally, one can approach uniformities from a more analytic point of view, 
namely, via pseudo-metrics. A pseudo-metric on a set X is a function . d : X × X → 
R≥0 satisfying for all .x, y, z ∈ X: 

(a) .d(x, x) = 0. 
(b) .d(x, y) = d(y, x). 
(c) .d(x, z) ≤ d(x, y) + d(y, z). 

.d(x, y) can be seen as a distance between two points .x, y ∈ X. In contrast to 
metrics, it can happen that two distinct points have distance 0 with respect to a 
pseudo-metric. 

Let .d1, d2 : X × X → R≥0 be two pseudo-metrics on X. It is easy to see that 

. max(d1, d2) : X × X → R≥0 

(x, y) �→ max(d1(x, y), d2(x, y)) 

is again a pseudo-metric on X. 
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Definition 5 A system of pseudo-metrics on X is a set M whose elements are 
pseudo-metrics on X such that .max(d1, d2) ∈ M for all .d1, d2 ∈ M . 

The following standard observations on uniformities follow immediately from 
the definitions. 

Proposition 1 

(1) Let . D be a diagonal uniformity on X, and let . B be a basis of . D. For .x ∈ X and 
.D ∈ B, let  .D[x] := {y ∈ X | (x, y) ∈ D} and .UD := {D[x] |  x ∈ X}. Then 
.βD := {UD | D ∈ B} is a basis of a covering uniformity .μD on X, and .μD is 
independent of the choice of . B. 

(2) Let . β be a basis of a covering uniformity . μ on X. For .U ∈ β, we define . DU := 
{(x, y) ∈ X × X | ∃U ∈ U x, y ∈ U}. Then .Bμ := {DU | U ∈ β} is a basis of 
a diagonal uniformity .Dμ on X, and .Dμ is independent of the choice of . β. 

(3) [5, Theorem 36.4] The maps .D �→ μD, .μ �→ Dμ are bijections of the set of all 
diagonal uniformities on X and the set of all covering uniformities on X which 
are inverse to each other. 

(4) Let M be a system of pseudo-metrics on X. For every .d ∈ M and every . ε ∈ R>0 
we consider the binary relation .Dd 

ε := {(x, y) ∈ X × X | d(x, y) < ε}. The 
set .BM := {Dd 

ε | d ∈ M, ε ∈ R>0} is a basis of a diagonal uniformity on X, 
denoted by . DM . 

Proposition 1(3) shows that the covering uniformities and the diagonal unifor-
mities on a set X are in one-to-one correspondence. This is not true in general 
for systems of pseudo-metrics and diagonal uniformities (respectively covering 
uniformities). Thus, it makes sense to consider systems of pseudo-metrics up to 
equivalence. Two systems M and N of pseudo-metrics on X are said to be equivalent 
if .DM = DN . 

2.2 The Non-Archimedean Case 

It is probably most natural to motivate non-Archimedean uniformities from the 
view-point of pseudo-metrics. A pseudo-metric d on X is called non-Archimedean 
if it satisfies the non-Archimedean triangle inequality, i.e., 

. d(x, y) ≤ max(d(x, z), d(z, y)) 

for all .x, y, z ∈ X. Pseudo-metrics of this type appear in several different areas of 
mathematics, most prominently as absolute values induced by prime ideals (or more 
generally by rank-one valuations) in algebraic number theory. 

If . d1 and . d2 are non-Archimedean pseudo-metrics on X, then so is . d = 
max(d1, d2). Indeed, if .x, y, z ∈ X then 
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. d(x, y) = max(d1(x, y), d2(x, y)) 

≤ max(max(d1(x, z), d1(z, y)), max(d2(x, z), d2(z, y))) 

= max(d1(x, z), d2(x, z), d1(z, y), d2(z, y)) 

= max(max(d1(x, z), d2(x, z)),max(d1(z, y), d2(z, y))) 

= max(d(x, z), d(z, y)). 

Definition 6 A non-Archimedean uniform space is a pair .(X, M), where X is a set 
and M is a system of pseudo-metrics on X whose elements are non-Archimedean. 

In what follows, we see that the sensible analog of non-Archimedean uniform 
spaces is that of diagonal uniformities admitting a basis whose elements are equiv-
alence relations. Note that a collection of equivalence relations on X automatically 
satisfies (a), (c), and (d) from Definition 1 and is therefore always a basis of 
a uniformity provided it has property (b’) from Definition 2. Also, it is rather 
convenient that in the special case of partitions, star-refinements and refinements 
are the same and thus, every partition is a star-refinement of itself. 

Proposition 2 A diagonal uniformity . D on a set  X admits a basis of equivalence 
relations if and only if .D = DM for a system M of non-Archimedean pseudo-metrics 
on X. 

Proof First, we show that a diagonal uniformity induced by a system of non-
Archimedean pseudo-metrics M on X admits a basis of equivalence relations. Let 
.ε ∈ R>0 and .d ∈ M . Clearly, . Dd 

ε is reflexive and symmetric. So let . (x, z), (z, y) ∈ 
Dd 

ε . Then .d(x, y) ≤ max(d(x, z), d(z, y)) < ε, which means that .(x, y) ∈ Dd 
ε . 

Now, assume that . D admits a basis . B whose elements are equivalence relations. 
For .E ∈ B, define a pseudo-metric . dE on X by 

. dE(x, y) =
{
0 if  (x, y) ∈ E, 
1 else.  

Let M be the system of pseudo-metrics generated by the pseudo-metrics of the 
form . dE for .E ∈ B. In other words, M is the set of all pseudo-metrics . d = 
max(dE1 , . . . , dEn), where n varies over all positive integers, .E1, . . . , En ∈ B and 
.max(dE1 , . . . , dEn) = max(max(dE1 , . . . , dEn−1), dEn) recursively. By induction, 
the elements of M are non-Archimedean pseudo-metrics. 

M induces a diagonal uniformity on X which admits a basis . B′ formed by the 
relations 

. {(x, y) ∈ X × X | d(x, y) < ε} 

where .d ∈ M and .ε >  0 is a real number. This diagonal uniformity coincides with 
. D. Indeed, .dE ∈ M for each .E ∈ B, and hence .B ⊆ B′. Conversely, let .d ∈ M , .ε >  
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0 and .E = {(x, y) ∈ X × X | d(x, y) < ε} ∈ B′. Then .d = max(dE1 , . . . , dEn) for 
some .Ei ∈ B and .E = ⋂n 

i=1{(x, y) | dEi (x, y) < ε}. If  .ε ≤ 1 then . E = ⋂n 
i=1 Ei 

contains an element of . B by definition of a basis. If .ε >  1 then .E = X × X also 
contains an element of . B. 

Next, we see that the covering uniformities analogous to non-Archimedean 
uniform spaces are those admitting a basis whose elements are partitions. 

Proposition 3 

(1) If a diagonal uniformity . D has a basis of equivalence relations, then the 
covering uniformity .μD has a basis whose elements are partitions. 

(2) If a covering uniformity . μ has a basis consisting of partitions then the diagonal 
uniformity . Dμ admits a basis of equivalence relations. 

(3) The maps in Proposition 1(3) restrict to bijections of diagonal uniformities 
having a basis of equivalence relations and covering uniformities having a basis 
of partitions. 

Proof 

(1) Let .B ⊆ D be a basis consisting of equivalence relations. Then, for all .D ∈ B, 
we have that .UD = {D[x] |  x ∈ X} is a partition of X. 

(2) Let .β ⊆ μ be a basis consisting of partitions of X. For .U ∈ β, . DU = {(x, y) ∈ 
X × X | ∃U ∈ U : x, y ∈ U} is an equivalence relation. 

(3) is an immediate consequence of (1) and (2). 

Theorem 1 For a diagonal uniformity . D on X, the following are equivalent: 

(A) . D admits a basis of equivalence relations. 
(B) There exists a system M of non-Archimedean pseudo-metrics on X that induces 

the uniformity . D. 
(C) The corresponding covering uniformity .μD of . D has a basis consisting of 

partitions of X. 

3 An Equivalent Separation Axiom 

3.1 The General Case 

A diagonal uniformity . D on a set X canonically induces a topology on X in the 
following way: let .B ⊆ D be any basis and define . E[x] = {y ∈ X | (x, y) ∈ E} 
for .x ∈ X and .E ∈ B. For  .x ∈ X, the collection .Ux = {E[x] |  E ∈ B} forms 
a neighborhood basis of a topology on X; see  [5, Theorem 35.6]. This topology is 
called the topology induced by . D and is independent of the choice of . B. 
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Definition 7 ([5, Definition 35.7]) Let .(X, τ) be a topological space. X is called 
uniformizable if there exists a uniformity . D such that . τ is the topology induced 
by . D. 

In the general case, the uniformizable topological spaces can be characterized by 
the following separation axiom: a topological space X is T. 3 1 

2 
(or, in the terminology 

of Willard [5], completely regular) if for every closed set A in X and every . x ∈ 
X \ A there exists a continuous function .f : X → [0, 1] such that .f (x)  = 0 and 
.f (A)  = {1}, where .[0, 1] denotes the unit interval with the canonical topology of 
real numbers. 

Proposition 4 ([5, Theorem 38.2]) A topological space is uniformizable if and 
only if it is T. 3 1 

2 
. 

3.2 The Non-Archimedean Case 

Considering a stronger version of T. 3 1 
2 
, we are able to give a characterization of 

topologies induced by non-Archimedean uniformities analogous to Proposition 4. 

Definition 8 Let .(X, τ) be a topological space. 

(1) X is called uniformizable by a non-Archimedean uniformity if there exists a 
diagonal uniformity on X that admits a basis of equivalence relations and 
induces . τ in the sense of Sect. 3.1. 

(2) X is said to satisfy . TA if for every closed subset .A ⊆ X and every .x ∈ X \ A, 
there are open sets .U1, U2 ⊆ X such that 

(i) .U1 ∩ U2 = ∅, .U1 ∪ U2 = X. 
(ii) .A ⊆ U1, .x ∈ U2. 

(3) X is said to be zero-dimensional (with respect to the small inductive dimension) 
if it has a basis of clopen sets. 

The equivalence of (A) and (C) in the following theorem was shown by 
Banaschewski [2] for Hausdorff spaces. 

Theorem 2 For a topological space .(X, τ), the following are equivalent: 

(A) X is uniformizable by a non-Archimedean uniformity. 
(B) X satisfies . TA. 
(C) X is zero-dimensional. 
(D) For every closed set A in X and every .x ∈ X \ A there exists a continuous 

function .f : X → {0, 1} such that .f (x)  = 0 and .f (A)  = {1}, where . {0, 1} 
carries the discrete topology. 

Proof The equivalence of (B) and (D) is obvious. 
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“(B) . ⇒ (A)” Assume that X satisfies . TA. We consider the set of continuous 
functions .S = {f : X → {0, 1} |  f is continuous}, where .{0, 1} carries the discrete 
topology. For every .f ∈ S, we define an equivalence relation: 

. Df = {(x, y) ∈ X × X | f (x)  = f (y)}. 

It is immediate that .B := {Df1 ∩ ... ∩ Dfn | fi ∈ S} is a basis consisting of 
equivalence relations for a non-Archimedean uniformity . D on X. We denote by . σ 
the topology on X induced by . D and assert that .τ = σ . 
Let .A ⊆ X be closed with respect to . τ and .x ∈ X \ A. Let  .U1, U2 ⊆ X open 
with respect to . τ such that .U1 ∩ U2 = ∅, .U1 ∪ U2 = X, .x ∈ U2, .A ⊆ U1 and let 
.fx : X → {0, 1} be such that . fx takes the value 0 on . U2 and the value 1 on . U1. 
Then clearly . fx is continuous with respect to . τ . Per definition, 

. Dfx [x] = {y ∈ X | fx(y) = fx(x) = 0} =  U2 

is open with respect to . σ and disjoint from A. Since .x ∈ X \ A was arbitrarily 
chosen, we conclude that 

. A = X \
⋃

x∈X\A 
Dfx [x] 

is closed with respect to . σ . So . σ is finer than . τ . 
For the reverse direction, it suffices to show that .D[x] is open with respect to . τ 

for all .x ∈ X and .D ∈ B. But since .D = Df1 ∩ ... ∩ Dfn for some . f1, ..., fn ∈ S 
and .D[x] =  Df1[x] ∩  ... ∩ Dfn[x] for all .x ∈ X, we just have to show this for 
.Df with .f ∈ S. For every .x ∈ X, we have  . Df [x] = {y ∈ X | f (x)  = f (y)} =  
f −1({f (x)}). Since f is continuous and .{f (x)} is open, it follows that .Df [x] ∈  τ . 

So X is uniformizable by a non-Archimedean uniformity. 
“(A) . ⇒ (C)” Let . D be a non-Archimedean diagonal uniformity inducing . τ and let 
.B ⊆ D be a basis consisting of equivalence relations. For every .x ∈ X, the  sets  
.D[x] where D runs through . B form a neighborhood basis for x. Since every .D[x] is 
a neighborhood of each of its points, it is an open set. Conversely, given an open set 
.U ∈ τ , for every .x ∈ U there exists .Dx ∈ B such that .Dx[x] ⊆ U , since these sets 
form neighborhood bases as said before. Now clearly, .U = ⋃

x∈U Dx[x]. Therefore 

. {D1[x1] ∩  ... ∩ Dn[xn] |  Di ∈ B, xi ∈ X} 

is a basis of clopen sets for . τ , since .D[x] is clopen for every .D ∈ B and every 
.x ∈ X. 
“(C) . ⇒ (B)” Let .A ⊆ X be closed and .x ∈ X \A. Since .X \A is open and therefore 
a union of clopen sets, there exists some .U2 ⊆ X \ A that is clopen and contains x. 
Set .U1 = X \ U2. 
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On the one hand, . TA implies .T3 1 
2 
by assertion (D) in Theorem 2. On the other 

hand, . TA does not fit into the classical hierarchy of separation axioms, as normal 
spaces are not necessarily . TA. Consider for instance . R carrying the canonical 
topology. This space is normal, but it is connected, hence does not satisfy . TA. 

4 Pseudo-Metrizability 

Finally, we give a characterization of uniform spaces that are pseudo-metrizable by 
a single non-Archimedean pseudo-metric. We first recall the situation for arbitrary 
uniform spaces. 

4.1 The General Case 

Definition 9 A diagonal uniformity D on a set X is pseudo-metrizable if there 
exists a single pseudo-metric d on X such that D = D{d} in the sense of 
Proposition 1(4). 

Proposition 5 ([5, Theorem 38.3]) Let D be a diagonal uniformity on a set X. 
Then the following are equivalent: 

(1) D pseudo-metrizable. 
(2) D is induced by a countable system of pseudo-metrics in the sense of Proposi-

tion 1(4). 
(3) D possesses a countable basis. 

4.2 The Non-Archimedean Case 

Inspired by the general case, we give the following definition. 

Definition 10 A diagonal uniformity . D on a set  X is pseudo-metrizable by a non-
Archimedean pseudo-metric if there exists a single non-Archimedean pseudo-metric 
d on X such that .D = D{d} in the sense of Proposition 1(4). 

Theorem 3 Let . D be a diagonal uniformity on a set X. Then the following are 
equivalent: 

(A) . D is pseudo-metrizable by a non-Archimedean pseudo-metric. 
(B) . D is induced by a countable system of non-Archimedean pseudo-metrics in the 

sense of Proposition 1(4). 
(C) . D possesses a countable basis consisting of equivalence relations. 
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Proof (A). ⇒(B) is trivial.  
For (B). ⇒(C), let .(dn)n∈N be a countable system of non-Archimedean pseudo-

metrics inducing . D. Then .(D dn 
1/m)n,m∈N is a countable basis of . D consisting of 

equivalence relations. 
To see (C). ⇒(A), let .(En)n∈N be a basis for . D consisting of equivalence 

relations and assume without restriction that .E1 = X × X. We get 
another countable basis .(Dn)n∈N (of equivalence relations) by applying the 
properties of a basis of a uniformity and iterating the following recursion: 

. D1 := E1 
. Choose Di+1 ∈ {En | n ∈ N} such that Di+1 ⊆ Di ∩ Ei+1, 

. for i ∈ N. 
Note that .(Dn)n∈N is a decreasing chain, i.e., .X × X = D1 ⊇ D2 ⊇ D3 ⊇ . . ., 

which allows us to define a non-Archimedean pseudo-metric as follows: 

. d : X × X → R≥0 

(x, y) �→
{
0 if  ∀n ∈ N : (x, y) ∈ Dn 
1 
n if n = max{m ∈ N | (x, y) ∈ Dm}. 

To see that d induces . D, let .ε >  0 and .n ∈ N such that . 1 
n < ε. For .(x, y) ∈ Dn, we  

have .d(x, y) ≤ 1 
n < ε, which implies .(x, y) ∈ Dd 

ε . 
On the other hand, let .n ∈ N. For .(x, y) ∈ Dd 

1 
n+1 

, it follows that .d(x, y) ≤ 1 
n+1 < 1 

n
, 

hence .(x, y) ∈ Dn. This completes the proof. 

We want to illustrate the concepts and results of this manuscript by an easy 
and well-known example that is frequently used in algebraic number theory and 
commutative algebra. 

Let R be a commutative ring and let M be a maximal ideal of R. The  map  

. d : R × R → R≥0 

(x, y) �→ 2−ord(x−y) , 

where .ord(z) = max{n ∈ N0 | z ∈ Mn} for .z ∈ R and .2−∞ = 0, is a pseudo-
metric on R. Its induced uniformity has as a basis the equivalence relations . {(x, y) ∈ 
R × R | x − y ∈ Mn} for .n ∈ N0. The topology on R induced by this uniformity 
admits as a neighborhood basis for .x ∈ R the residue classes .x + Mn for .n ∈ N0. 

This topology is Hausdorff if and only if d is a metric which is the case if and only 
if .∩n∈N0M

n = 0. This is true, for instance, for a Noetherian integral domain R by 
Krull’s Intersection Theorem. It follows from [5, Theorem 39.9] that the completion 
of R with respect to d is compact if and only if the residue rings .R/Mn are finite 
for all positive integers n. 
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