

Bayesian Optimization in Action MEAP V12

1. MEAP_VERSION_12
2. Welcome
3. 1_Introduction_to_Bayesian_optimization
4. 2_Gaussian_processes_as_distributions_over_functions
5. 3_Customizing_a_Gaussian_process_with_the_mean_and_covariance_functions
6. 4_Refining_the_best_result_with_improvement-based_policies
7. 5_Exploring_the_search_space_with_bandit-style_policies
8. 6_Leveraging_information_theory_with_entropy-based_policies
9. 7_Maximizing_throughput_with_batch_optimization

10. 8_Satisfying_extra_constraints_with_constrained_optimization
11. 9_Balancing_utility_and_cost_with_multi-fidelity_optimization
12. 10_Learning_from_pairwise_comparisons_with_preference_optimization
13. 11_Optimizing_multiple_objectives_at_the_same_time
14. 12_Scaling_Gaussian_processes_to_large_datasets
15. 13_Combining_Gaussian_processes_with_neural_networks
16. Appendix._Solutions_to_the_exercises

MEAP VERSION 12

Welcome
Thank you for purchasing the MEAP version of Bayesian Optimization in
Action!

While an incredibly interesting topic (albeit from my biased perspective),
Bayesian optimization may appear elusive to many machine learning
practitioners. The main culprit is the accessibility and quality of available
resources: a full, in-depth treatment of the topic can only be found in
textbooks and research papers, while online tutorials and blog posts lack the
depth, structure, and consistency necessary for a solid understanding. I
remember when I first learned about Bayesian optimization, it took me a long
time to synthesize what I had read from these various sources and understand
what they meant as a whole.

This book sets out to address this problem for newcomers who’d like to learn
about Bayesian optimization—after all, every book is what the author wishes
had existed when they first learned a topic. In the text, you will find a
practical guide to what Bayesian optimization is, how it facilitates decision-
making under uncertainty to optimize expensive processes, what different
variations of Bayesian optimization there are, and last but not least, how to
implement them with code. To be able to hit the ground running immediately,
you will need a firm grasp on core concepts in machine learning, statistics,
and Bayesian probability, as well as experience in Python programming.

Presented in accessible language, each chapter tells the story of each
component of the Bayesian optimization framework. These components
range from building a machine learning model, equipping the model with
assumptions and prior knowledge, to using that model to make effective
decisions. The book as a whole makes up a comprehensive narrative that
starts you off from the ground up and introduces you to state-of-the-art
techniques. Aiming to be a practical and hands-on resource, the text includes
many code examples and exercises that will help solidify theoretical
discussions with concrete use cases.

As you will see, one of the recurring themes of this book is that effective
decision-making relies on intelligently collecting information relevant to our
goal. The goal of this platform is to make the book better, and I rely on you,
the readers, to provide the relevant information, that is, your feedback, to
steer the book in the right direction. I look forward to seeing your comments,
questions, and suggestions in the liveBook Discussion forum!

— Quan Nguyen

In this book

MEAP VERSION 12 About this MEAP Welcome Brief Table of Contents 1
Introduction to Bayesian optimization 2 Gaussian processes as distributions
over functions 3 Customizing a Gaussian process with the mean and
covariance functions 4 Refining the best result with improvement-based
policies 5 Exploring the search space with bandit-style policies 6 Leveraging
information theory with entropy-based policies 7 Maximizing throughput
with batch optimization 8 Satisfying extra constraints with constrained
optimization 9 Balancing utility and cost with multi-fidelity optimization 10
Learning from pairwise comparisons with preference optimization 11
Optimizing multiple objectives at the same time 12 Scaling Gaussian
processes to large datasets 13 Combining Gaussian processes with neural
networks
Appendix. Solutions to the exercises

1 Introduction to Bayesian
optimization
This chapter covers

What motivates Bayesian optimization and how it works
Real-life examples of Bayesian optimization problems
A toy example of Bayesian optimization in action

You’ve made a wonderful choice reading this book, and I’m excited for your
upcoming journey! On a high level, Bayesian optimization is an optimization
technique that may be applied when the function (or, in general, any process
that generates an output when an input is passed in) one is trying to optimize
is a black box and expensive to evaluate in terms of time, money, or other
resources. This setup encompasses many important tasks, including
hyperparameter tuning, which we define shortly. Using Bayesian
optimization can accelerate this search procedure and help us locate the
optimum of the function as quickly as possible.

While Bayesian optimization has enjoyed enduring interest from the machine
learning (ML) research community, it’s not as commonly used or talked
about as other ML topics in practice. But why? Some might say Bayesian
optimization has a steep learning curve: one needs to understand calculus, use
some probability, and be an overall experienced ML researcher to use
Bayesian optimization in an application. The goal of this book is to dispel the
idea that Bayesian optimization is difficult to use and show that the
technology is more intuitive and accessible than one would think.

Throughout this book, we encounter many illustrations, plots, and–of course–
code, which aim to make the topic of discussion more straightforward and
concrete. We learn how each component of Bayesian optimization works on
a high level and how to implement them using state-of-the-art libraries in
Python. The accompanying code also serves to help you hit the ground
running with your own projects, as the Bayesian optimization framework is

very general and "plug and play." The exercises are also helpful in this
regard.

Generally, I hope this book is useful for your ML needs and is an overall fun
read. Before we dive into the actual content, let’s take some time to discuss
the problem that Bayesian optimization sets out to solve.

1.1 Finding the optimum of an expensive black box
function

As mentioned previously, hyperparameter tuning in ML is one of the most
common applications of Bayesian optimization. We explore this problem, as
well as a couple of others, in this section as an example of the general
problem of black box optimization. This will help us understand why
Bayesian optimization is needed.

1.1.1 Hyperparameter tuning as an example of an expensive
black box optimization problem

Say we want to train a neural network on a large data set, but we are not sure
how many layers this neural net should have. We know that the architecture
of a neural net is a make-or-break factor in deep learning (DL), so we
perform some initial testing and obtain the results shown in table 1.1.

Table 1.1. An example of a hyperparameter tuning task

Number of layers Accuracy on the test set

5 0.72

10 0.81

20 0.75

Our task is to decide how many layers the neural network should have in the
next trial in the search for the highest accuracy. It’s difficult to decide which
number we should try next. The best accuracy we have found, 81%, is good,
but we think we can do better with a different number of layers.
Unfortunately, the boss has set a deadline to finish implementing the model.
Since training a neural net on our large data set takes several days, we only
have a few trials remaining before we need to decide how many layers our
network should have. With that in mind, we want to know what other values
we should try, so we can find the number of layers that provides the highest
possible accuracy.

This task, in which we want to find the best setting (hyperparameter values)
for our model to optimize some performance metric, such as predictive
accuracy, is typically called hyperparameter tuning in ML. In our example,
the hyperparameter of our neural net is its depth (the number of layers). If we
are working with a decision tree, common hyperparameters are the maximum
depth, the minimum number of points per node, and the split criterion. With a
support-vector machine, we could tune the regularization term and the kernel.
Since the performance of a model very much depends on its hyperparameters,
hyperparameter tuning is an important component of any ML pipeline.

If this were a typical real-world data set, this process could take a lot of time
and resources. figure 1.1 from OpenAI (https://openai.com/blog/ai-and-
compute/) shows that as neural networks keep getting larger and deeper, the
amount of computation necessary (measured in petaflop/s-days) increases
exponentially.

Figure 1.1. The compute cost of training large neural networks has been steadily growing,
making hyperparameter tuning increasingly difficult.

This is to say that training a model on a large data set is quite involved and
takes significant effort. Further, we want to identify the hyperparameter
values that give the best accuracy, so training will have to be done many
times. How should we go about choosing which values to parameterize our
model, so we can zero in on the best combination as quickly as possible?
That is the central question of hyperparameter tuning.

Getting back to our neural net example in table 1.1, what number of layers
we should try next, so we can find an accuracy greater than 81%? Some value
between 10 layers and 20 layers is promising, since at both 10 and 20, we
have more than 5 layers. But what exact value we should inspect next is still
not obvious, since there may still be a lot of variability in numbers between
10 and 20. When we say variability, we implicitly talk about our uncertainty
regarding how the test accuracy of our model behaves as a function of the
number of layers. Even though we know 10 layers lead to 81% and 20 layers
lead to 75%, we cannot say for certain what value, say, 15 layers would yield.
This is to say we need to account for our level of uncertainty when
considering these values between 10 and 20.

Further, what if some number greater than 20 gives us the highest accuracy
possible? This is the case for many large data sets, where a sufficient depth is
necessary for a neural net to learn anything useful. Or though unlikely, what
if a small number of layers (fewer than 5) is actually what we need?

How should we explore these different options in a principled way, so when
our time runs out and we have to report back to our boss, we can be
sufficiently confident that we have arrived at the best number of layers for
our model? This question is an example of the expensive black box
optimization problem, which we discuss next.

1.1.2 The problem of expensive black box optimization

In this subsection, we formally introduce the problem of expensive black box
optimization, which is what Bayesian optimization aims to solve.
Understanding why this is such a difficult problem will help us understand
why Bayesian optimization is preferred over simpler, more naïve approaches,

such as grid search (where we divide the search space into equal segments) or
random search (where we leverage randomness to guide our search).

In this problem, we have black box access to a function (some input–output
mechanism), and our task is to find the input that maximizes the output of
this function. The function is often called the objective function, as
optimizing it is our objective and we want to find the optimum of the
objective function—the input that yields the highest function value.

Characteristics of the objective function

The term black box necessitates that we don’t know what the underlying
formula of the objective is; all we have access to is the function output when
we make an observation by computing the function value at some input. In
our neural net example, we don’t know how the accuracy of our model will
change if we increase the number of layers one by one (otherwise, we would
just pick the best one).

The problem is expensive because in many cases, making an observation
(evaluating the objective at some location) is prohibitively costly, rendering a
naïve approach, such as an exhaustive search, intractable. In ML and,
especially, DL, time is usually the main constraint, as we already discussed.

Hyperparameter tuning belongs to this class of expensive black box
optimization problems, but it is not the only one! Any procedure in which we
are trying to find some settings or parameters to optimize a process without
knowing how the different settings influence and control the result of the
process qualifies as a black box optimization problem. Further, trying out a
particular setting and observing its result on the target process (the objective
function) is time-consuming, expensive, or costly in some other sense.

 Important

The act of trying out a particular setting—that is, evaluating the value of the
objective function at some input—is called making a query or querying the
objective function. The entire procedure is summarized in figure 1.2.

Figure 1.2. The framework of a black box optimization problem. We repeatedly query the
function values at various locations to find the global optimum.

1.1.3 Other real-world examples of expensive black box
optimization problems

Now, let’s consider a few real-world examples that fall into the category of
expensive black box optimization problems. We will see that such problems
are common in the field; we often find ourselves with a function we’d like to
optimize but that can only be evaluated a small number of times. In these
cases, we’d like to find a way to intelligently choose where to evaluate the
function.

The first example is drug discovery—the process in which scientists and
chemists identify compounds with desirable chemical properties that may be
synthesized into drugs. As you can imagine, the experimental process is quite
involved and costs a lot of money. Another factor that makes this drug
discovery task daunting is the decreasing trend in the productivity of drug
discovery R&D that has been robustly observed in recent years. This
phenomenon is known as Eroom’s law—a reverse of Moore’s law—which
roughly states that the number of new drugs approved per billion US dollars
halves over a fixed period of time. Eroom’s law is visualized in figure 1.3
from a Nature paper (see "Diagnosing the Decline in Pharmaceutical R&D
Efficiency" by Jack W. Scannell, Alex Blanckley, Helen Boldon, and Brian
Warrington, https://www.nature.com/articles/nrd3681), where drug discovery
throughput resulting from each billion-dollar investment decreases on the
logarithmic scale. This scale means the decrease in throughput is exponential.

Figure 1.3. Eroom’s law dictates that it will cost increasingly more money to produce effective
drugs; therefore, drug discovery is also a fundamentally hard problem.

The same problem, in fact, applies to any scientific discovery task in which
scientists search for new chemicals, materials, or designs that are rare, novel,
and useful, with respect to some metric, using experiments that require top-
of-the-line equipment and may take days or weeks to finish. In other words,
they are trying to optimize for their respective objective functions, where
evaluations are extremely expensive.

As an illustration, table 1.2 shows a couple of data points in a real-life data
set from such a task. The objective is to find the alloy composition (from the
four parent elements) with the lowest mixing temperature, which is a black
box optimization problem. Here, materials scientists worked with
compositions of alloys of lead (Pb), tin (Sn), germanium (Ge), and
manganese (Mn). Each given combination of percentages of these
compositions corresponds to a potential alloy that could be synthesized and
experimented on in a laboratory.

Table 1.2. Data from a materials discovery task, extracted from the author’s research work

% of Pb % of Sn % of Ge % of Mn Mixing temp.

0.50 0.50 0.00 0.00 192.08

0.33 0.33 0.33 0.00 258.30

0.00 0.50 0.50 0.00 187.24

0.00 0.33 0.33 0.33 188.54

As a low temperature of mixing indicates a stable, valuable structure for the
alloy, the objective is to find compositions whose mixing temperatures are as
low as possible. But there is one bottleneck: determining this mixing
temperature for a given alloy generally takes days. The question we set out to
solve algorithmically is similar: given the data set we see, what is the next
composition we should experiment with (in terms of how much lead, tin,
germanium, and manganese should be present) to find the minimum
temperature of mixing?

Another example is in mining and oil drilling, or, more specifically, finding
the region within a big area that has the highest yield of valuable minerals or
oil. This involves extensive planning, investment, and labor—again an
expensive undertaking. As digging operations have significant negative
impacts on the environment, there are regulations in place to reduce mining
activities, placing a limit on the number of function evaluations that may be
done in this optimization problem.

The central question in expensive black box optimization is this: what is a
good way to decide where to evaluate this objective function, so its optimum
may be found at the end of the search? As we see in a later example, simple
heuristics—such as random or grid search, which are approaches

implemented by popular Python packages like Scikit-learn—may lead to
wasteful evaluations of the objective function and, thus, overall poor
optimization performance. This is where Bayesian optimization comes into
play.

1.2 Introducing Bayesian optimization

With the problem of expensive black box optimization in mind, we now
introduce Bayesian optimization as a solution to this problem. This gives us a
high-level idea of what Bayesian optimization is and how it leverages
probabilistic ML to optimize expensive black box functions.

 Important

Bayesian optimization is an ML technique that simultaneously maintains a
predictive model to learn about the objective function and makes decisions
about how to acquire new data to refine our knowledge about the objective,
using Bayesian probability and decision theory.

By data, we mean input–output pairs, each mapping an input value to the
value of the objective function at that input. This data is different, in the
specific case of hyperparameter tuning, from the training data for the ML
model we aim to tune.

In a Bayesian optimization procedure, we make decisions based on the
recommendation of a Bayesian optimization algorithm. Once we have taken
the Bayesian optimization-recommended action, the Bayesian optimization
model is updated based on the result of that action and proceeds to
recommend the next action to take. This process repeats until we are
confident we have zeroed in on the optimal action.

There are two main components of this workflow:

1. An ML model that learns from the observations we make and makes
predictions about the values of the objective functions on unseen data
points

2. An optimization policy that makes decisions about where to make the
next observation by evaluating the objective to locate the optimum

We introduce each of these components in the following subsection.

1.2.1 Modeling with a Gaussian process

Bayesian optimization works by first fitting a predictive ML model on the
objective function we are trying to optimize—sometimes, this is called the
surrogate model, as it acts as a surrogate between what we believe the
function to be from our observations and the function itself. The role of this
predictive model is very important, as its predictions inform the decisions
made by a Bayesian optimization algorithm and, therefore, directly affect
optimization performance.

In almost all cases, a Gaussian process (GP) is employed for this role of the
predictive model, which we examine in this subsection. On a high level, a
GP, like any other ML model, operates under the tenet that similar data points
produce similar predictions. GPs might not be the most popular class of
models, compared to, say, ridge regression, decision trees, support vector
machines, or neural networks. However, as we see time and again throughout
this book, GPs come with a unique and essential feature: they do not produce
point estimate predictions like the other models mentioned; instead, their
predictions are in the form of probability distributions. Predictions, in the
form of probability distributions or probabilistic predictions, are key in
Bayesian optimization, allowing us to quantify uncertainty in our predictions,
which, in turn, improves our risk–reward tradeoff when making decisions.

Let’s first see what a GP looks like when we train it on a dataset. As an
example, say we are interested in training a model to learn from the data set
in table 1.3, which is visualized as black _x_s in figure 1.4.

Table 1.3. An example regression dataset corresponding to figure 1.4

Training data point Label

1.1470 1.8423

-4.0712 0.7354

0.9627 0.9627

1.2471 1.9859

Figure 1.4. Non-Bayesian models, such as ridge regressors, make pointwise estimates, while GPs
produce probability distributions as predictions. GPs, thus, offer a calibrated quantification of
uncertainty, which is an important factor when making high-risk decisions.

We first fit a ridge regression model on this dataset and make predictions

within a range of -5 and 5; the top panel of figure 1.4 shows these
predictions. A ridge regression model is a modified version of a linear
regression model, where the weights of the model are regularized so that
small values are preferred to prevent overfitting. Each prediction made by
this model at a given test point is a single-valued number, which does not
capture our level of uncertainty about how the function we are learning from
behaves. For example, given the test point at 2, this model simply predicts
2.2.

We don’t need to go into too much detail about the inner workings of this
model. The point here is that a ridge regressor produces point estimates
without a measure of uncertainty, which is also the case for many ML
models, such as support vector machines, decision trees, and neural networks.

How, then, does a GP make its predictions? As shown on the bottom panel of
figure 1.4, predictions by a GP are in the form of probability distributions
(specifically, normal distributions). This means at each test point, we have a
mean prediction (the solid line) as well as what’s called the 95% credible
interval, or CI (the shaded region).

Note that the acronym CI is often used to abbreviate confidence interval in
frequentist statistics; throughout this book, we use CI exclusively to denote
credible interval. Many things can be said about the technical differences
between the two concepts, but on a high level, we can still think of this CI as
a range in which it’s likely that a quantity of interest (in this case, the true
value of the function we’re predicting) falls.

Gaussian process versus ridge regression

Interestingly, when using the same covariance function (also known as the
kernel), a GP and a ridge regression model produce the same predictions
(mean predictions for the GP), as illustrated in figure 1.4. We discuss
covariance functions in greater depth in chapter 3. This is to say that a GP
receives all the benefits a ridge regression model possesses, while offering
the additional CI predictions.

Effectively, this CI measures our level of uncertainty about the value at each
test location. If a location has a large predictive CI (at -2 or 4 in figure 1.4,
for example), then there is a wider range of values that are probable for this
value. In other words, we have higher uncertainty about this value. If a
location has a narrow CI (0 or 2, in figure 1.4), then we are more confident

about the value at this location. A nice feature of the GP is that for each point
in the training data, the predictive CI is close to 0, indicating we don’t have
any uncertainty about its value. This makes sense; after all, we already know
what that value is from the training set.

Noisy function evaluations

While not the case in figure 1.4, it’s possible that the labels of the data points
in our dataset are noisy. It’s very possible that in many situations in the real
world, the process of observing data can be corrupted by noise. In these
cases, we can further specify the noise level with the GP, and the CI at the
observed data points will not collapse to 0 but, instead, to the specified noise
level. This goes to show the flexibility modeling with GPs offers.

This ability to assign a number to our level of uncertainty, which is called
uncertainty quantification, is quite useful in any high-risk decision-making
procedure, such as Bayesian optimization. Imagine, again, the scenario in
table 1.1, where we tune the number of layers in our neural net, and we only
have time to try out one more model. Let’s say after being trained on those
data points, a GP predicts that 25 layers will give a mean accuracy of 0.85
and the corresponding 95% CI is (0.81, 0.89). On the other hand, with 15
layers, the GP predicts our accuracy will also be 0.85 on average, but the
95% CI is (0.84, 0.86). Here, it’s quite reasonable to prefer 15 layers, even
though both numbers have the same expected value. This is because we are
more certain 15 will give us a good result.

To be clear, a GP does not make any decision for us, but it does offer us a
means to do so with its probabilistic predictions. Decision-making is left to
the second part of the Bayesian optimization framework: the policy.

1.2.2 Making decisions with a Bayesian optimization policy

In addition to a GP as a predictive model, in Bayesian optimization, we also
need a decision-making procedure, which we explore in this subsection. This
is the second component of Bayesian optimization, which takes in the
predictions made by the GP model and reasons about how to best evaluate the
objective function, so the optimum may be located efficiently.

As mentioned previously, a prediction with a (0.84, 0.86) CI is considered
better than one with (0.81, 0.89), especially if we only have one more try.
This is because the former is more of a sure thing, guaranteed to get us a
good result. How should we make this decision in a more general case, in
which the two points might have different predictive means and predictive
levels of uncertainty?

This is exactly what a Bayesian optimization policy helps us do: quantify the
usefulness of a point, given its predictive probability distribution. The job of
a policy is to take in the GP model, which represents our belief about the
objective function, and assign each data point with a score denoting how
helpful that point is in helping us identify the global optimum. This score is
sometimes called the acquisition score. Our job is then to pick out the point
that maximizes this acquisition score and evaluate the objective function at
that point.

We see the same GP in figure 1.5 that we have in figure 1.4, where the
bottom panel shows the plot of how a particular Bayesian optimization policy
called _Expected Improvement_ scores each point on the _x_-axis between
-5 and 5 (which is our search space). We learn what this name means and
how the policy scores data points in chapter 4. For now, let's just keep in
mind that if a point has a large acquisition score, this point is valuable for
locating the global optimum.

Figure 1.5. A Bayesian optimization policy scores each individual data point by its usefulness in
locating the global optimum. The policy prefers high predictive values (where the payoff is more
likely) as well as high uncertainty (where the payoff may be large).

In figure 1.5, the best point is around 1.8, which makes sense, as according to
our GP in the top panel, that’s also where we achieve the highest predictive
mean. This means we will then pick this point at 1.8 to evaluate our
objective, hoping to improve from the highest value we have collected.

We should note that this is not a one-time procedure but, instead, a learning
loop. At each iteration of the loop, we train a GP on the data we have
observed from the objective, run a Bayesian optimization policy on this GP to
obtain a recommendation that will hopefully help us identify the global
optimum, make an observation at the recommended location, add the new
point to our training data, and repeat the entire procedure until we reach some
condition for terminating. Things might be getting a bit confusing, so it is
time for us to take a step back and look at the bigger picture of Bayesian
optimization.

Connection to design of experiments

The description of Bayesian optimization at this point might remind you of
the concept of design of experiments (DoE) in statistics, which sets out to
solve the same problem of optimizing an objective function by tweaking the

controllable settings. Many connections exist between these two techniques,
but Bayesian optimization can be seen as a more general approach than DoE
that is powered by the ML model GP.

1.2.3 Combining the Gaussian process and the optimization
policy to form the optimization loop

In this subsection, we tie in everything we have described so far and make the
procedure more concrete. We see the Bayesian optimization workflow as a
whole and better understand how the various components work with each
other.

We start with an initial dataset, like those in table 1.1, table 1.2, and table 1.3.
Then, the Bayesian optimization workflow is visualized in figure 1.6, which
is summarized as follows:

1. We train a GP model on this set, which gives us a belief about what our
objective looks like everywhere, based on what we have observed from
the training data. This belief is represented by the solid curve and shaded
region, like those in figure 1.4 and figure 1.5.

2. A Bayesian optimization policy then takes in this GP and scores each
point in the domain in terms of how valuable the point is in helping us
locate the global optimum. This is indicated by the green curve, as in
figure 1.5.

3. The point that maximizes this score is the point we will choose to
evaluate the objective at next and is then added to our training data set.

4. The process repeats, until we cannot afford to evaluate the objective
anymore.

Figure 1.6. The Bayesian optimization loop, which combines a GP for modeling and a policy for
decision-making. This complete workflow may now be used to optimize black box functions.

Unlike a supervised learning task in which we just fit a predictive model on a
training dataset and make predictions on a test set (which only encapsulates
steps 1 and 2), a Bayesian optimization workflow is what is typically called
active learning. Active learning a subfield in ML in which we get to decide
which data points our model learns from, and that decision-making process

is, in turn, informed by the model itself.

As we have said, the GP and the policy are the two main components of this
Bayesian optimization procedure. If the GP does not model the objective
well, then we will not be able to do a good job informing the policy of the
information contained in the training data. On the other hand, if the policy is
not good at assigning high scores to "good" points and low scores to "bad"
points (where good here means helpful at locating the global optimum), then
our subsequent decisions will be misguided and will most likely achieve bad
results.

In other words, without a good predictive model, such as a GP, we won’t be
able to make good predictions with calibrated uncertainty. Without a policy,
we can make good predictions, but we won’t make good decisions.

An example we consider multiple times throughout this book is weather
forecasting. Imagine a scenario in which you are trying to decide whether to
bring an umbrella with you before leaving the house to go to work, and you
then look at the weather forecasting app on your phone.

Needless to say, the predictions made by the app need to be accurate and
reliable, so you can confidently base your decisions on them. An app that
always predicts sunny weather just won’t do. Further, you need a sensible
way to make decisions from these predictions. Never bringing an umbrella,
regardless of how likely rainy weather is, is a bad decision-making policy and
will get you in trouble when it does rain. On the other hand, always bringing
an umbrella, even with 100% sunny weather, is also not a smart decision.
You want to adaptively decide to bring your umbrella, based on the weather
forecast.

Adaptively making decisions is what Bayesian optimization is all about, and
to do it effectively, we need both a good predictive model and a good
decision-making policy. Care needs to go into both components of the
framework; this is why the two main parts of the book, following this
chapter, cover modeling with GPs and decision-making with Bayesian
optimization policies, respectively.

1.2.4 Bayesian optimization in action

At this point, you might be wondering if all of this heavy machinery really
works—or works better than some simple strategy like random sampling. To
find out, let’s take a look at a "demo" of Bayesian optimization on a simple
function. This will also be a good way for us to move away from the abstract
to the concrete and tease out what we are able to do in future chapters.

Let’s say the black box objective function we are trying to optimize
(specifically, in this case, maximize) is the one-dimensional function in figure
1.7, defined from -5 to 5. Again, this picture is only for our reference; in
black box optimization, we, in fact, do not know the shape of the objective.
We see the objective has a couple of local maxima around -5—roughly, -2.4
and 1.5—but the global maximum is on the right at approximately 4.3. Let’s
also assume we are allowed to evaluate the objective function a maximum of
10 times.

Figure 1.7. The objective function that is to be maximized, where random search wastes resources
on unpromising regions.

Before we see how Bayesian optimization solves this optimization problem,
let’s look at two baseline strategies. The first is a random search, where we
uniformly sample between -5 and 5; whatever points we end up with are the
locations we will evaluate the objective at. figure 1.7 is the result of one such
scheme. The point with the highest value found here is at roughly x = 4,
having the value of f(x) = 3.38.

How random search works

Random search involves choosing points uniformly at random within the
domain of our objective function. That is, the probability we end up at a point

within the domain is equal to the probability we end up at any other point.
Instead of uniform sampling, we can draw these random samples from a non-
uniform distribution if we believe there are important regions in the search
space we should give more focus to. However, this non-uniform strategy
requires knowing which regions are important, before starting the search.

Something you might find unsatisfactory about these randomly sampled
points is that many of them happen to fall into the region around 0. Of course,
it’s only by chance that many random samples cluster around 0, and in
another instance of the search, we might find many samples in another area.
However, the possibility remains that we could waste valuable resources
inspecting a small region of the function with many evaluations. Intuitively, it
is more beneficial to spread out our evaluations, so we learn more about the
objective function.

This idea of spreading out evaluations leads us to the second baseline: grid
search. Here, we divide our search space into evenly spaced segments and
evaluate at the endpoints of those segments, as in figure 1.8.

Figure 1.8. Grid search is still inefficient at narrowing down a good region.

The best point from this search is the very last point on the right at 5,
evaluating at roughly 4.86. This is better than random search but is still
missing the actual global optimum.

Now, we are ready to look at Bayesian optimization in action! Bayesian
optimization starts off with a randomly sampled point, just like random
search, shown in figure 1.9.

Figure 1.9. The start of Bayesian optimization is similar to random search.

The top panel represents the GP trained on the evaluated point, while the
bottom panel shows the score computed by the Expected Improvement
policy. Remember this score tells us how much we should value each
location in our search space, and we should pick the one that gives the
highest score to evaluate next. Interestingly enough, our policy at this point
tells us that almost the entire range between -5 and 5 we’re searching within
is promising (except for the region around 1, where we have made a query).
This should make intuitive sense, as we have only seen one data point and we
don’t yet know how the rest of the objective function looks in other areas.
Our policy tells us we should explore more! Let’s now look at the state of our
model from this first query to the fourth query in figure 1.10.

Figure 1.10. After four queries, we have identified the second-best optimum.

Three out of four queries are concentrating around the point 1, where there is
a local optimum, and we also see that our policy is suggesting to query yet
another point in this area next. At this point, you might be worried we will
get stuck in this locally optimal area and fail to break out to find the true
optimum, but we will see this is not the case. Let’s fast-forward to the next
two iterations in figure 1.11.

Figure 1.11. After exploring a local optimum sufficiently, we are encouraged to look at other
areas.

After having five queries to scope out this locally optimal region, our policy
decides there are other, more promising regions to explore—namely, the one
to the left around -2 and the one to the right around 4. This is very reassuring,
as it shows that once we have explored a region enough, Bayesian
optimization does not get stuck in that region. Let’s now see what happens
after eight queries in figure 1.12.

Figure 1.12. Bayesian optimization successfully ignores the large region on the left.

Here, we have observed two more points on the right, which update both our
GP model and our policy. Looking at the mean function (the solid line,
representing the most likely prediction), we see that it almost matches with
the true objective function from 4 to 5. Further, our policy (the green curve)
is now pointing very close to the global optimum and basically no other area.
This is interesting because we have not thoroughly inspected the area on the
left (we only have one observation to the left of 0), but our model believes
that regardless of how the function looks like in that area, it is not worth
investigating compared to the current region. This is, in fact, true in our case
here.

Finally, at the end of the search with 10 queries, our workflow is now
visualized in figure 1.13. There is now little doubt that we have identified the
global optimum around 4.3.

Figure 1.13. Bayesian optimization has found the global optimum at the end of the search.

This example has clearly shown us that Bayesian optimization can work a lot
better than random search and grid search. This should be a very encouraging
sign for us, considering that the latter two strategies are what many ML
practitioners use when faced with a hyperparameter tuning problem.

For example, Scikit-learn is one of the most popular ML libraries in Python,
and it offers the model_selection module for various model selection tasks,
including hyperparameter tuning. However, random search and grid search
are the only hyperparameter tuning methods implemented in the module. In
other words, if we are indeed tuning our hyperparameters with random or
grid search, there is a lot of headroom to do better.

Overall, employing Bayesian optimization may result in a drastic
improvement in optimization performance. We can take a quick look at a
couple of real-world examples:

A research paper entitled "Bayesian Optimization is Superior to Random
Search for Machine Learning Hyperparameter Tuning" (2020,
https://arxiv.org/pdf/2104.10201.pdf), which was the result of a joint
study by Facebook, Twitter, Intel, and others, found that Bayesian
optimization was extremely successful across many hyperparameter

tuning tasks.
Frances Arnold, Nobel Prize winner in 2018 and professor at Caltech,
uses Bayesian optimization in her research to guide the search for
enzymes efficient at catalyzing desirable chemical reactions.
A study entitled "Design of Efficient Molecular Organic Light-Emitting
Diodes by a High-Throughput Virtual Screening and Experimental
Approach" (https://www.nature.com/articles/nmat4717) published in
Nature applied Bayesian optimization to the problem of screening for
molecular organic light-emitting diodes (an important type of
molecules) and observed a large improvement in efficiency.

And there are many more of these examples out there.

When not to use Bayesian optimization

It’s also important to know when the problem setting isn’t appropriate and
when not to use Bayesian optimization. As we have said, Bayesian
optimization is useful when our limited resources prevent us from evaluating
the objective function many times. If this is not the case, and evaluating the
objective is cheap, we have no reason to be frugal with how we observe the
objective function.

Here, if we can inspect the objective thoroughly across a dense grid, that will
ensure the global optimum is located. Otherwise, other strategies, such as the
DIRECT algorithm or evolutionary algorithms, which are algorithms that
often excel at optimization when evaluations are cheap, may be used. Further,
if information about the gradient of the objective is available, gradient-based
algorithms will be better suited.

I hope this chapter was able to whet your appetite and get you excited for
what’s to come. In the next section, we summarize the key skills you will be
learning throughout the book.

1.3 What will you learn in this book?

This book provides a deep understanding of the Gaussian process model and
the Bayesian optimization task. You will learn how to implement a Bayesian

optimization pipeline in Python using state-of-the-art tools and libraries. You
will also be exposed to a wide range of modeling and optimization strategies
when approaching a Bayesian optimization task. By the end of the book, you
will be able to do the following:

Implement high-performance Gaussian process models using GPyTorch,
the premiere GP modeling tool in Python; visualize and evaluate their
predictions; choose appropriate parameters for these models; and
implement extensions, such as variational Gaussian processes and
Bayesian neural networks, to scale to big data
Implement a wide range of Bayesian optimization policies using the
state-of-the-art Bayesian optimization library BoTorch, which integrates
nicely with GPyTorch, and inspect as well as understand their decision-
making strategies
Approach different specialized settings, such as batch, constrained, and
multiobjective optimization, using the Bayesian optimization framework
Apply Bayesian optimization to a real-life task, such as tuning the
hyperparameters of an ML model

Further, we use real-world examples and data in the exercises to consolidate
what we learn in each chapter. Throughout the book, we run our algorithms
on the same data set in many different settings, so we can compare and
analyze the different approaches taken.

1.4 Summary

Many problems in the real world may be cast as expensive black box
optimization problems. In these problems, we only observe the function
values, without any additional information. Further, observing one
function value is expensive, rendering many cost-blind optimization
algorithms unusable.
Bayesian optimization is an ML technique that solves this black box
optimization problem by designing intelligent evaluations of the
objective function, so the optimum may be found as quickly as possible.
In Bayesian optimization, a Gaussian process acts as a predictive model,
predicting what the value of the objective function is at a given location.
A Gaussian process produces not only a mean prediction but also a 95%

credible interval, representing uncertainty via normal distributions.
To optimize a black box function, a Bayesian optimization policy
iteratively makes decisions about where to evaluate the objective
function. The policy does this by quantifying how helpful each data
point is in terms of optimization.
A Gaussian process and a policy go hand in hand in Bayesian
optimization. The former is needed to make good predictions, and the
latter is needed to make good decisions.
By making decisions in an adaptive manner, Bayesian optimization is
better at optimization than random search or grid search, which are often
used as the default strategies in black box optimization problems.
Bayesian optimization has seen significant success in hyperparameter
tuning in ML and other scientific applications, such as drug discovery.

2 Gaussian processes as
distributions over functions
This chapter covers

A crash course on multivariate Gaussian distributions and their
properties
Understanding Gaussian processes as multivariate Gaussian
distributions in infinite dimensions
Implementing Gaussian processes in Python

Having seen what Bayesian optimization can help us do, we are now ready to
embark on our journey toward mastering Bayesian optimization. As we saw
in chapter 1, a Bayesian optimization workflow consists of two main parts: a
Gaussian process (GP) as a predictive, or surrogate, model and a policy for
decision-making. With a GP, we don’t obtain only point-estimates as
predictions for a test data point, but instead, we have an entire probability
distribution representing our belief about the prediction.

With a GP, we produce similar predictions from similar data points. For
example, in weather forecasting, when estimating today’s temperature, a GP
will look at the climatic data of days that are similar to today, either the last
few days or this exact day a year ago. Days in another season wouldn’t
inform the GP when making this prediction. Similarly, when predicting the
price of a house, a GP will say that similar houses in the same neighborhood
as the prediction target are more informative than houses in another state.

How similar a data point is to another is encoded using the covariance
function of a GP, which, in addition, models the uncertainty in the GP’s
predictions. Remember from chapter 1 our comparison of a ridge regression
model and a GP, as shown again in figure 2.1. Here, while the ridge regressor
only produces single-valued predictions, the GP outputs a normal distribution
at each test point. Uncertainty quantification is what sets the GP apart from
other ML models, specifically in the context of decision-making under

uncertainty.

Figure 2.1. Predictions by ridge regression vs. those by a Gaussian process. While the mean
prediction of the GP is the same as the prediction of ridge, the GP also offers credible intervals
indicating the predictive level of uncertainty.

We will see how correlation modeling and uncertainty quantification are
mathematically realized with Gaussian distributions and learn to actually
implement a GP in GPyTorch, the premiere GP modeling tool in Python.
Being able to model a function with a GP is the first step toward Bayesian
optimization—a step we will take in this chapter.

Why GPyTorch?

There are other GP modeling libraries in Python, such as GPy or GPflow, but
we have chosen GPyTorch for this book. Built on top of PyTorch and

actively maintained, GPyTorch offers a streamlined workflow from array
manipulation to GP modeling and, eventually, to Bayesian optimization with
BoTorch, which we start using in chapter 4.

The library is also actively maintained and has many state-of-the-art methods
implemented. For example, chapter 12 covers using GPyTorch to scale a GP
to large datasets, and in chapter 13, we learn to integrate a neural network
into a GP model.

2.1 How to sell your house the Bayesian way

Before we jump right into GPs, let’s consider an example scenario in the
domain of housing price modeling and how the price of a house is determined
in relation to other houses. This discussion serves as an example of how
correlation works in a multivariate Gaussian distribution, which is a central
part of a Gaussian process.

Say you are a homeowner in Missouri who is looking to sell your house. You
are trying to set an appropriate asking price and are talking to a friend about
how to do this:

You: I’m not sure what to do. I just don’t know exactly how much my house
is worth.

Friend: Do you have a rough estimate?

You: Somewhere between 150k and 300k would be my guess.

Friend: That’s a pretty big range.

You: Yeah, I wish I knew people who have sold their houses. I need some
references.

Friend: I heard Alice sold her house for 250k.

You: Alix who’s in California? That’s really surprising! Also, I don’t think a
house in California will help me make a better estimate for my own house. It
could still be anything between 150k and 300k.

Friend: No, it’s Alice who lives right next to you.

You: Oh, I see. That’s very useful actually, since her house is really similar
to mine! Now, I would guess that my house will be valued at somewhere
between 230k and 270k. Time to talk to my realtor!

Friend: Glad I could help.

In this conversation, you said that using your neighbor Alice’s house as a
reference is a good strategy of estimating your own price. This is because the
two houses are similar in attributes and physically close to each other, so you
expect them to sell for similar amounts. Alix’s house, on the other hand, is in
California and is entirely irrelevant to our house, so even if you know for
how much she sold her house, you won’t be able to gain any new information
about what you’re interested in: how much your own house is worth.

The calculation we just went through is a Bayesian update to our belief about
the price of our house. You might be familiar with Bayes' theorem, which is
shown in figure 2.2. For an excellent introduction to Bayes' theorem and
Bayesian learning, check out chapter 8 of Luis Serrano’s Grokking Machine
Learning (Manning).

Bayes' theorem gives us a way of updating our belief about a quantity we’re
interested in, which, in this case, is the appropriate price for our house. When
applying Bayes' theorem, we go from our prior belief, which is our first
guess, to a posterior belief about the quantity in question. This posterior
belief combines the prior and the likelihood of any data we observe.

Figure 2.2. Bayes' theorem, which gives a method of updating a belief about a quantity of
interest, represented as a probability distribution of a random variable. Before observing any
data, we have the prior belief about X. After being updated with data, we obtain the posterior
belief about X.

In our example, we start out with a prior belief that the price is between 150k
and 300k. The range from 150k to 300k, like your friend remarked, is quite
big, so there’s not much information contained in this initial prior belief—
anything between 150k and 300k is possible for this price. Now, an
interesting thing happens when we update this range to a posterior belief,
considering new information about either of two houses' prices.

First, assuming that Alix’s house in California is valued at 250k, our
posterior belief about our own house remains unchanged: from 150k to 300k.
Again, this is because Alix’s house is not relevant to ours, and the price of
her house doesn’t inform us about the quantity we’re interested in.

Second, if the new information is that Alice’s house, which is right next to
our own, is valued at 250k, then our posterior belief significantly changes
from the prior: to the 230k–270k range. Having Alice’s house as a reference,
we have updated our belief to be around the observed value, 250k, while
narrowing down the range of our belief (going from a 150k difference to a
40k difference). This is a very reasonable thing to have, as the price of
Alice’s house is very informative with respect to the price of our house.
Figure 2.3 visualizes this entire process.

Figure 2.3. Updating the belief about the price of our house in a Bayesian way. Depending on how
similar the house whose price was observed to our house, the posterior belief either stays the
same or is drastically updated.

Note that the numbers in the example are not exact and are only used so that
the example makes intuitive sense. However, we will see that by using a
multivariate Gaussian distribution to model our belief, we can realize this
intuitive update procedure in a quantifiable way. Further, with such a
Gaussian distribution, we can determine whether a variable (someone’s

house) is similar enough to the variable we’re interested in (our own house)
to influence our posterior belief and to what extent.

2.2 Modeling correlations with multivariate
Gaussian distributions and Bayesian updates

In this section, we learn about multivariate Gaussian distributions (or
multivariate Gaussians—or simply Gaussians) and see how they facilitate the
update rule we saw previously. This serves as the basis for our subsequent
discussion on Gaussian processes.

2.2.1 Using multivariate Gaussian distributions to jointly model
multiple variables

Here, we first cover what multivariate Gaussians are and what they can
model. We will see that with a covariance matrix, a multivariate Gaussian
describes not only the behavior of the individual random variables but also
the correlation of these variables.

First, let’s consider normal distributions—aka the bell curve. Normal
distributions are highly common in the real world and are used to model a
wide range of quantities; examples include height, IQ, income, and weight at
birth.

A multivariate Gaussian distribution is what we would use when we want to
model more than one quantity. To do this, we aggregate these quantities into
a vector of random variables, and this vector is then said to follow a
multivariate Gaussian distribution. This aggregation is depicted in figure 2.4.

Figure 2.4. A multivariate Gaussian distribution groups multiple normally distributed random
variables together. While the mean vector of the multivariate Gaussian concatenates the mean
values, the covariance matrix models the correlations between the individual variables.

 Important

Consider a random vector X = [X1 X2 … Xn] that follows a Gaussian
distribution denoted by N (μ, Σ), where μ is a vector of length n and Σ is an n-
by-n matrix. Here, μ is called the mean vector, whose individual elements
denote the expected values of corresponding random variables in x, and Σ is
the covariance matrix, which describes the variance of individual variables as
well as correlations between variables.

Let’s take a moment to parse the definition of a multivariate Gaussian
distribution:

First, due to the convenient properties of a multivariate Gaussian, each
random variable in the vector x follows a normal distribution.
Specifically, the i-th variable Xi has the mean value of μi, which is the i-
th element of the mean vector μ of the multivariate Gaussian.
Further, the variance of Xi is the i-th diagonal entry of the covariance
matrix Σ.
If we have a vector of random variables following a multivariate
Gaussian, then each individual variable corresponds to a known normal
distribution.

If the diagonal entries in the covariance matrix Σ are the variances of the
individual variables, what about the off-diagonal entries? The entry in the i-th
row and j-th column of this matrix denotes the covariance between Xi and Xj,
which is related to the correlation between the two random variables.
Assuming the correlation is positive, the following is true:

If this correlation is high, then the two random variables Xi and Xj are
said to be correlated. This means if the value of one increases, the value
of the other also tends to increase—if the value of one decreases, the
value of the other will decrease. Your neighbor Alice’s house and your
own are examples of correlated variables.
On the other hand, if this correlation is low and close to zero, then no
matter what the value of Xi is, what we know about the value of Xj most

likely does not change much. This is because there is no correlation
between the two variables. Both Alix’s house in California and our
house fall into this category.

Negative correlations

The previous description is for positive correlations. A correlation can also be
negative, indicating that the variables move in opposite directions: if one
variable increases, the other will decrease, and vice versa. Positive
correlations illustrate the important concepts we aim to learn here, so we
won’t worry about the negative correlation case.

To make our discussion more concrete, let’s define a multivariate Gaussian
distribution that jointly models three random variables: the price of our
house, A; the price of our neighbor Alice’s house, B; and the price of Alix’s
house in California, C. This three-dimensional Gaussian also has a
covariance matrix described in figure 2.4.

 Note

It’s usually convenient to assume that the mean vector of this Gaussian is
normalized to be the zero vector. This normalization is usually done, in
practice, to simplify a lot of mathematical details.

Once again, the diagonal cells tell us the variances of individual random
variables. B has a slightly larger variance (3) than A (1), meaning we are
more uncertain about the value of B, due to the fact that we don’t know
everything about our neighbor’s house, so a more accurate estimate cannot be
done. The third variable, C, on the other hand, has the largest variance, to
denote the fact that houses in California have an overall wider price range.

 Note

The values being used here (1, 3, 10) are example values to make the point
that the larger a variance of a random variable is, the more uncertain we are
about the value of the variable (before learning what its value is).

Further, the covariance between our house, A, and our neighbor’s, B, is 0.9,
which indicates the prices of the two houses are correlated in a non-negligible
way. This makes sense, since if we know the price of our neighbor’s house,
we will be able to obtain a better estimate for our own house that is on the
same street. Also notice that neither A nor B has any correlation with the
price of the house in California, since location-wise, C has nothing in
common with A or B. Another way to say this is even if we know how much
the house in California costs, we won’t learn anything about the price of our
own house. Let’s now visualize this three-dimensional Gaussian using a
parallel coordinates plot in figure 2.5.

Figure 2.5. Parallel coordinates plot visualizing a mean-normalized multivariate Gaussian from
the housing price example. The error bars indicate 95% credible intervals of corresponding
normal distributions, while the faded lines show samples drawn from the multivariate Gaussian.

Note the bold diamonds and corresponding error bars in the figure:

The bold diamonds represent the mean vector of our Gaussian, which is
simply the zero vector.
The error bars denote the 95% credible intervals, or CIs, of the three
individual variables. Going from A to B to C, we observe larger and

larger CIs, corresponding to the increasing values of the respective
variances.

Credible intervals

A (1 − α) credible interval (CI) of a normal distribution of a random variable
x is a range in which the probability that x falls inside this range is exactly (1
-−α). Statisticians typically use 95% CIs for normal distributions. There is
nothing really special about the number 95% here, except for the fact that
95% is the threshold many statistical procedures use to determine whether
something is meaningful or not. For example, a t-test typically uses a
confidence level of 1 − α = 0.95, corresponding to the fact that a p-value less
than α = 0.05 indicates significant results. A convenient fact about normal
distributions is that μ ± 1.96σ is a 95% CI (some even use μ ± 2σ), where μ
and Σ are the mean and standard deviation of the variable x, which is an easy-
to-compute quantity.

Figure 2.5 represents our prior belief about the normalized prices of the three
houses. Starting from this prior, we guess that all three have a normalized
price of zero, and we have varying levels of uncertainty regarding our
guesses. Further, as we are working with a random distribution, we could
draw samples from this multivariate Gaussian. These samples are shown as
connected faded diamonds.

2.2.2 Updating multivariate Gaussian distributions

With a multivariate Gaussian distribution in hand, we will see how we can
update this distribution, given some data we observe in this subsection.
Specifically, following our example at the beginning of the chapter, we’d like
to derive the posterior belief about these prices upon observing the value of
either B or C. This is an important task, as it is how a multivariate Gaussian,
as well as a Gaussian process, learns from data.

 Important

This update process is sometimes called conditioning: deriving the

conditional distribution of a variable, given that we know the value of some
other variable. More specifically, we are conditioning our belief—which is a
joint trivariate Gaussian—on the value of either B or C, obtaining the joint
posterior distribution for these three variables.

Here, using the Bayes' theorem in figure 2.2, we can derive this posterior
distribution in closed form. However, the derivation is rather math-heavy, so
we won’t be going into it here. We just need to know that we have a formula
in which we can plug the value of B or C that we’d like to condition on, and
the formula will tell us what the posterior distributions of A, B, and C are.
Surprisingly, the posterior distribution of a Gaussian is conditioned on data
that is also Gaussian, and we can obtain the exact posterior means and
variances that specify the posterior Gaussians. (Later in the chapter, we see
that when we implement a Gaussian process in Python, GPyTorch takes care
of this math-heavy update for us.)

 Note

For the interested reader, this formula and its derivation can be found in
chapter 2, section 2 of the Gaussian Processes for Machine Learning book
(MIT Press, 2006), which is often considered the bible of Gaussian processes.

Let’s now regenerate the parallel coordinates plot, conditioning the
multivariate Gaussian on B = 4 as an example value for B. The result is
shown in figure 2.6.

Figure 2.6. Parallel coordinates plot visualizing the multivariate Gaussian from figure 2.5,

conditioned on B = 4. Here, the distribution of A is updated, and all drawn samples interpolate B
= 4.

Upon updating our belief with an observation about B, a few things have
changed in our posterior belief:

The distribution of A changes, taking on a slightly larger mean value
due to the positive correlation between A and B. Further, its error bars
now have a smaller range.
The posterior distribution of B simply becomes a special normal
distribution with zero variance, since we know for sure what its value is
in the posterior. In other words, there is no uncertainty about the value
of B anymore.
Meanwhile, the distribution of C stays the same after the update, as it
has no correlation with B.

All of this makes sense and corresponds with our intuition from the housing
price example. Specifically, when we find out about our neighbor’s house,
the belief about our own house is updated to be similar to the observed price,
and our uncertainty also decreases.

What happens when we condition on C then? As you might have guessed, for
the same reason that C stays the same after conditioning on a value of B, both
the posterior distribution of A and that of B remain unchanged when we
condition on C. Figure 2.7 shows this for C = 4.

Figure 2.7. Parallel coordinates plot visualizing the multivariate Gaussian from figure 2.5,
conditioned on C = 4. Here, no other marginal distribution changes. All drawn samples
interpolate C = 4.

This is when we find out that a house in California was sold. As this house
has nothing to do with our own house in Missouri, the belief about the price
of our house stays the same.

There is another interesting thing about figure 2.6 and figure 2.7. Notice that
when we condition on B = 2 in figure 2.6, all the samples we draw of the
posterior multivariate Gaussian pass through the point (B, 2). This is because
in our posterior belief, we don’t have any uncertainty about what value B
takes anymore, and any sample drawn from the posterior distribution needs to
satisfy the constraints from this condition. The same thing goes for the point
(C, 2) in figure 2.7.

Visually, you could think of this as when we condition on a variable, we "tie"

the samples drawn from the prior distribution (in figure 2.5) into a knot at the
same point corresponding to the variable we condition on, as shown in figure
2.8.

Figure 2.8. Conditioning a Gaussian on an observation is similar to tying a knot around that
observation. All samples from the posterior distribution need to pass through the knot, and
there’s no uncertainty at the observed point.

Finally, we can picture the Bayesian conditioning procedure we have just
gone through with a diagram analogous to figure 2.3. This is shown in figure
2.9.

Figure 2.9. Updating the belief about the price of our house in a Bayesian way. Depending on how
similar the house whose price was observed in relation to our house, the posterior belief either
stays the same or is drastically updated.

Again, if we condition our Gaussian on C, the posterior distributions of the
uncorrelated variables remain unchanged. If we condition on B, however, the
variable that is correlated to it, A, gets updated.

2.2.3 Modeling many variables with high-dimensional Gaussian

distributions

A multivariate Gaussian distribution need not only contain three random
variables; it can, in fact, simultaneously model any finite number of variables.
In this subsection, we learn that a higher-dimensional Gaussian works in the
same way as what we have seen so far. So, let’s say instead of a 3-
dimensional Gaussian representing three houses, we have a 20-dimensional
Gaussian encoding information about an array of houses on a street. An even
higher-dimensional Gaussian would model houses in a city or country.

Further, with these parallel coordinates plots, we can visualize all individual
variables of a high-dimensional Gaussian at the same time. This is because
each variable corresponds to a single error bar, occupying only one slot on
the x-axis.

We once again normalize its mean vector to be the zero vector, and while it’s
not convenient to show its 20-by-20 covariance matrix, we could plot a heat
map visualizing this matrix, as in figure 2.10.

Figure 2.10. Heat map showing the covariance matrix of a 20-dimensional Gaussian distribution.
Neighboring variables are more correlated than those that are far away, as indicated by a darker
shade.

The diagonal entries, or the variance of individual variables, are all 1s, in this
case. Further, variables are ordered so that those that are close to each other
are correlated; that is, their covariance takes a larger value. Variables that are
far away from each other are, on the other hand, less correlated, and their
covariances are close to zero. For example, any pair of consecutive variables
in this Gaussian (the first and the second, the second and the third, etc.) have
a covariance of roughly 0.87. That is, any two houses that are next to each
other have a covariance of 0.87. If we consider the 1st and the 20th variable
—that is, the house at one end of the street and the house at the other end—
their covariance is effectively zero.

This is very intuitive, as we expect houses that are close by to have similar
prices, so once we know the price of a house, we gain more information
about the prices of those that are around that area than about the prices of
those that are far away.

Figure 2.11. Error bars and samples drawn from a prior (left) and a posterior (right) Gaussian

distribution, conditioned on the 10th variable having a value of 2. Uncertainty in variables close
to the 10th reduces in the posterior, and their mean values are updated to be close to 2.

How does this play out in a parallel coordinates plot? Figure 2.11 shows our
prior Gaussian on the left and the posterior Gaussian conditioned on the 10th
variable having a value of 2 on the right. Basically, we are simulating the
event in which we find out the price of the 10th house is 2 (whose exact unit
is omitted).

First, we once again see this phenomenon in which the error bars and
samples are tied into a knot around the observation we condition on in
the posterior distribution.
Also, due to the correlation structure imposed by the covariance matrix,
variables close to the 10th have their mean values "dragged up" so that
the mean vector now smoothly interpolates the point (10, 2). This means
we have updated our belief, as the surrounding houses now have their
prices increased to reflect the information we have learned.
Finally, the uncertainty (denoted by the error bars) around this point (10,
2) decreases after the conditioning. This is a very good property to have,
as intuitively, if we know the value of a variable, we should become
more certain about the values of other variables correlated with the
variable we know. That is, if we know the price of a house, we become
more certain about the prices of nearby houses. This property is the basis

of the calibrated quantification of uncertainty GPs offer, which we see in
the next section of this chapter.

2.3 Going from a finite to an infinite Gaussian

We are now ready to discuss what a Gaussian process is. In the same manner
as when we have three variables, A, B, and C, or 20, as in the previous
section, let’s say we now have an infinite number of variables, all belonging
to a multivariate Gaussian. This infinite-dimensional Gaussian is called a
Gaussian process.

Imagine predicting housing prices across a very large, densely populated
area. The scale of the entire area is so large that if we move away from a
house by a very small amount, we will arrive at a different house. Given the
high density of the variables (houses) in this Gaussian, we can treat this
whole area as having infinitely many houses; that is, the Gaussian
distribution has infinitely many variables.

Figure 2.12. Modeling housing prices in California, using different numbers of variables. The
more variables we have, the smoother our model becomes and the closer we approach an infinite-
dimensional model.

This is illustrated in figure 2.12, using a dataset containing 5,000 house prices
in California. In the top-left panel, we show the individual data points in a
scatter plot. In the remaining panels, we model the data using various
numbers of variables, where each variable corresponds to a region inside the
map of California. As the number of variables increases, our model becomes
more fine-grained. When this number is infinite—that is, when we can make
a prediction in any region on this map, however small—our model exists in

an infinite-dimensional space.

This is exactly what a Gaussian process is: a Gaussian distribution in an
infinite-dimensional space. The ability to make a prediction in any region
helps us move away from a finite-dimensional multivariate Gaussian and
obtain an ML model. Strictly speaking, the concept of a Gaussian distribution
doesn’t apply when there are infinitely many variables, so the technical
definition is the following.

 Important

A Gaussian process is a collection of random variables such that the joint
distribution of every finite subset of those variables is a multivariate
Gaussian.

This definition means if we have a GP model to describe a function ƒ, then
the function values at any set of points are modeled by a multivariate
Gaussian distribution. For example, the vector of variables [ƒ(1) ƒ(2) ƒ(3)]
follows a three-dimensional Gaussian; [ƒ(1) ƒ(0) ƒ(10) ƒ(5) ƒ(3)] follows a
different, five-dimensional Gaussian; and [ƒ(0.1) ƒ(0.2) … ƒ(9.9) ƒ(10)]
follows yet another Gaussian.

Figure 2.13. Parallel coordinates plots of different Gaussian distributions. Any finite subset of a
GP is a multivariate Gaussian. As the number of variables approaches infinity, we obtain a GP
and can make predictions everywhere in the domain.

This is illustrated in figure 2.13. The first three panels show, in parallel
coordinates, plots a trivariate Gaussian for [ƒ(−2) ƒ(0.2) ƒ(12) ƒ(4)], an 11-
variate Gaussian for [ƒ(−4.5) ƒ(−4) … ƒ(4) ƒ(4.5)], and a 101-variate
Gaussian across a denser grid. Finally, in the last panel, we have infinitely
many variables, which gives us a GP.

Since we are now in infinite dimensions, it doesn’t make sense to talk about
the mean vector and covariance matrix anymore. Instead, what we have with
a GP is a mean function and a covariance function, but the respective roles of
these two objects are still the same as with a multivariate Gaussian:

First, the mean function, which takes in one input, x, computes the
expectation of the function value ƒ(x).
Second, the covariance function takes in two inputs, x1 and x2, and
computes the covariance between the two variables, ƒ(x1) and ƒ(x2). If x1
is the same as x1, then this covariance value is simply the variance of the
normal distribution of ƒ(x). If x1 is different from x2, the covariance
denotes the correlation between the two variables.

As the mean and covariance are functions, we are no longer tied to a fixed
number of variables—instead, we effectively have infinitely many variables
and can make our predictions anywhere, as illustrated in figure 2.13. This is
why while a GP has all the properties of a multivariate Gaussian, the GP
exists in infinite dimensions.

For the same reason, a GP can be considered as a distribution over functions,
as the title of this chapter suggests. The progression we have gone through in
this chapter, from a one-dimensional normal to a GP, is summarized in table
2.1.

Table 2.1. Gaussian distribution objects and what they model. With a Gaussian process, we
operate under infinite dimensions, modeling functions instead of numbers or vectors.

Distribution type Number of modeled
variables Description

A one-dimensional
normal distribution One A distribution over

numbers

A multivariate Gaussian
distribution Finitely many A distribution over

vectors of finite length

A Gaussian process Infinitely many
A distribution over
functions

To see a GP in action, let’s reexamine the curve-fitting procedure in figure
2.1 at the beginning of this chapter, where we limit our domain to between −5
and 5. This is shown in figure 2.14.

Figure 2.14. Predictions made by a GP conditioned on zero, one, two, and four observations.

In each of the panels, the following is true:

The solid line in the middle is the mean function, which is analogous to
the solid line connecting the diamonds in figure 2.11.
The shaded region, on the other hand, is the 95% CI across the domain,
corresponding to the error bars in figure 2.11.

The various "wiggly" lines are samples drawn from the corresponding
GP.

Before observing any data, we start out with the prior GP in the top-left
panel. Just like a prior multivariate Gaussian, our prior GP produces constant
mean prediction and uncertainty in the absence of training data. This is a
reasonable behavior to have.

The interesting part comes when we condition our GP on various data points.
This is visualized in the remaining panels of figure 2.14. Exactly like the
discrete case of a multivariate Gaussian, with a GP working in a continuous
domain, the mean prediction as well as samples drawn from the posterior
distribution smoothly interpolate data points in the training set, while our
uncertainty about the function value, quantified by the CI, smoothly
decreases in the areas around these observations. This is what we call a
calibrated quantification of uncertainty, which is one of the biggest selling
points of a GP.

Smoothness of a Gaussian process

The smoothness property refers to the constraint that requires similar points
to be correlated with each other. In other words, points that are similar should
result in similar function values. This is, again, why when we condition on
the data point at 3 in the top-right panel, the mean predictions at 2.9 and 3.1
are updated to take on larger values than their prior means. These points, 2.9
and 3.1, are similar to 3 because they are close to each other. This
smoothness is set using the covariance function of the GP, which is the topic
of chapter 3. While the examples we have seen so far are in one dimension,
this smoothness is preserved when our search space is higher-dimensional, as
we see later.

Overall, we have seen that a GP is a multivariate Gaussian distribution when
extended to infinite dimensions, and thanks to many convenient mathematical
properties of Gaussian distributions, a GP not only produces a mean
prediction but also quantifies our uncertainty about the function values in a
principled way via its predictive covariances. The mean prediction exactly
goes through the training data points, and the uncertainty collapses at these
data points.

Modeling non-Gaussian data

In real life, not all data follow Gaussian distributions. For example, for values
that are limited within a numerical range or variables that don’t follow bell-
shaped distributions, Gaussian distributions are inappropriate and might lead
to low-quality predictions.

In these cases, we can apply various data processing techniques to "convert"
our data points to follow Gaussian distribution. For example, the Box–Muller
transform is an algorithm that generates pairs of normally distributed random
numbers from uniformly distributed random numbers. The interested reader
can find more details about this algorithm on Wolfram’s MathWorld
(https://mathworld.wolfram.com/Box-MullerTransformation.html).

2.4 Implementing Gaussian processes in Python

In this final section of the chapter, we take our first step toward implementing
GPs in Python. Our goal is to become familiar with the syntax and API of the
libraries we will be using for this task and learn how to recreate the
visualizations we have seen thus far. This hands-on section will also help us
understand GPs more deeply.

First, make sure you have downloaded the accompanying code for the book
and installed the necessary libraries. Detailed instructions on how to do this
are included in the front matter. We use the code included in the Jupyter
notebook CH02/01 - Gaussian processes.ipynb.

2.4.1 Setting up the training data

Before we start implementing the code for our GP model, let’s first spend
some time creating an objective function we’d like to model and a training
dataset. To do this, we need to import PyTorch for calculating and
manipulating tensors and Matplotlib for data visualization:

import torch

import matplotlib.pyplot as plt

Our objective function in this example is the one-dimensional Forrester

function. The Forrester function is multimodal with one global maximum and
one local maximum (https://www.sfu.ca/~ssurjano/forretal08.html), making
fitting and finding the maximum of the function a nontrivial task. The
function has the following formula:

This is implemented as follows:

def forrester_1d(x):

 y = -((x + 1) ** 2) * torch.sin(2 * x + 2) / 5 + 1

 return y.squeeze(-1)

Let us quickly plot this function in a graph. Here, we restrict ourselves to the
domain between −3 and 3 and compute this Forrester function on a dense grid
of 100 points in this range. We also need some sample points for training,
which we generate by randomly sampling with torch.rand() and store in
train_x; train_y contains the labels of these training points, which can be
obtained by evaluating forrester_1d(train_x). This plot is generated by
the following code, which produces figure 2.15:

xs = torch.linspace(-3, 3, 101).unsqueeze(1)

ys = forrester_1d(xs)

torch.manual_seed(0)

train_x = torch.rand(size=(3, 1)) * 6 - 3

train_y = forrester_1d(train_x)

plt.figure(figsize=(8, 6))

plt.plot(xs, ys, label="objective", c="r")

plt.scatter(train_x, train_y, marker="x", c="k", label="observations")

plt.legend(fontsize=15);

Figure 2.15. The objective function that is used in the current example, as shown by the solid line.
The markers indicate points in the training dataset.

The three markers we see are points that we randomly select to include in our
training dataset. The locations of these training data points are stored in
train_x, and their labels (the values of the Forrester function at these
locations) are stored in train_y. This sets up our regression task:
implementing and training a GP on these three data points and visualizing its
predictions on the range between −3 and 3. Here, we have also created xs,
which is a dense grid over this range.

2.4.2 Implementing a Gaussian process class

In this subsection, we learn how to implement a GP model in Python. We use
the GPyTorch library, a state-of-the-art tool for modern GP modeling.

 Important

The design philosophy of GPyTorch is to follow the DL library PyTorch and
have all of its model classes extend a base model class. If you are familiar
with implementing neural networks in PyTorch, you might know that this
base is torch.nn.Module. With GPyTorch, we typically extend the
gpytorch.models.ExactGP class.

To implement our model class, we use the following structure:

import gpytorch

class BaseGPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 ...

 def forward(self, x):

 ...

Here, we implement a class called BaseGPModel, which has two specific
methods: __init__() and forward(). The behavior of our GP model heavily
depends on how we write these two methods, and no matter what kind of GP
model we’d like to implement, our model class needs to have these methods.

Let’s discuss the __init__() method first. Its job is to take in the training
dataset defined by the first and second arguments, train_x and train_y, as
well as a likelihood function, stored in the variable likelihood, and initialize
the GP model, which is a BaseGPModel object. We implement the method as
follows:

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ZeroMean()

 self.covar_module = gpytorch.kernels.RBFKernel()

Here, we simply pass the three input arguments to the __init__() method of
our super class, and the built-in implementation of
gpytorch.models.ExactGP takes care of the heavy lifting for us. What
remains is the definition of the mean and the covariance functions, which, as
we have said, are the two main components of a GP.

In GPyTorch, there are a wide range of choices for both the mean and the
covariance function, which we explore in chapter 3. For now, we use the
most common options for a GP:

gpytorch.means.ZeroMean() for the mean function, which outputs zero
mean predictions in prior mode
gpytorch.kernels.RBFKernel() for the covariance function, which

implements the radial basis function (RBF) kernel—one of the most
commonly used covariance function for GPs, which implements the idea
that data points close to each other are correlated to each other

We store these objects in the mean_module and covar_module class attributes,
respectively. That’s all we need to do for the __init__() method. Now, let’s
turn our attention to the forward() method.

The forward() method is very important, as it defines how the model should
process its input. If you have worked with neural networks in PyTorch, you
know that the forward() method of a network class sequentially passes its
input through the layers of the network, and the output of the final layer is
what the neural network produces. In PyTorch, each layer is implemented as
a module, which is a term to denote the basic building block of any object in
PyTorch that processes data.

Figure 2.16. How PyTorch and GPyTorch process data in their respective forward() methods.
The input is processed by different modules to produce the final output, either a number for a
feed-forward neural network or a multivariate Gaussian distribution (MVN) for a Gaussian
process.

The forward() method of a GP in GPyTorch works in a similar way: the
GP’s mean and covariance functions are implemented as modules, and the
input of the method is passed to these modules. Instead of sequentially

passing the result through different modules, we pass the input to the mean
and the covariance functions simultaneously. The output of these modules is
then combined to create a multivariate Gaussian distribution. This difference
between PyTorch and GPyTorch is illustrated in figure 2.16.

The forward() method is implemented in the following code:

 def forward(self, x):

 mean_x = self.mean_module(x)

 covar_x = self.covar_module(x)

 return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)

The logic here is pretty straightforward: as we have a mean function and a
covariance function, we simply call them on the input x to compute the mean
and covariance predictions. Finally, what we need to return is a multivariate
Gaussian distribution, implemented by the
gpytorch.distributions.MultivariateNormal class, with corresponding
mean and covariance. In other words, we are doing nothing more than
creating a multivariate Gaussian distribution with a mean vector and a
covariance matrix computed from the mean_module and covar_module
attributes of our model class.

And that is all there is to it! It’s quite surprising how easy it is to implement a
GP model with GPyTorch. The biggest takeaway for us is that we need to
implement a mean and covariance function in the __init__() method. In the
forward() method when we need to make a prediction, we simply call these
two functions on the input passed in.

2.4.3 Making predictions with a Gaussian process

With the BaseGPModel class in hand, we are ready to make predictions with a
GP! Recall that in the __init__() method, we need to pass in a likelihood
function, likelihood, in addition to our training data. In many regression
tasks, a gpytorch.likelihoods.GaussianLikelihood object suffices. We
create this object like so:

likelihood = gpytorch.likelihoods.GaussianLikelihood()

Now, we can initialize our BaseGPModel object. But before we initialize it

with our three-entry training data, we would like to first make predictions
with the prior GP.

To initialize a GP object without any training data, we pass None as both the
training features (train_x) and labels (train_y). So our prior GP is created

as follows:

model = BaseGPModel(None, None, likelihood)

Finally, some bookkeeping is necessary before we can make any predictions.
First, we set the hyperparameters of the GP:

lengthscale = 1

noise = 1e-4

model.covar_module.lengthscale = lengthscale

model.likelihood.noise = noise

model.eval()

likelihood.eval()

We discuss what each of these hyperparameters controls in chapter 3. For
now, we just use the values that I personally like to use as the default: 1 for
the length scale and 0.0001 for the noise variance. The very last detail is to
enable prediction mode in both the GP model and its likelihood by calling the
eval() method from the corresponding objects.

With these bookkeeping tasks out of the way, we can now finally call this GP
model on our test data to make predictions. We do this like so:

with torch.no_grad():

 predictive_distribution = likelihood(model(xs))

Remember in the forward() method of the model class, we return the
multivariate Gaussian distribution, so that is the output when we pass some
test data through our model using model(xs). (In the syntax of PyTorch,
calling model(xs) is a shorthand for calling the forward() method on the test
data xs.) We also pass that same output through the likelihood function
likelihood, which incorporates the noise variance into our predictions. In
short, what we store in predictive_distribution is a multivariate Gaussian
distribution that represents our prediction for the test points xs. Moreover, we
compute this object within a torch.no_grad() context, which is good
practice when we don’t want PyTorch to keep track of the gradients of these
computations.

 Note

We only want to compute the gradients of operations when we’d like to
optimize some parameters of our model using gradient descent. But when we
want to make predictions, we should keep our model completely fixed, so
disabling gradient checking is appropriate.

2.4.4 Visualizing predictions of a Gaussian process

With this predictive Gaussian distribution in hand, we can now recreate the
GP plots we have seen so far. Each of these plots consists of a mean function,
μ, which we could obtain from the multivariate Gaussian with

 predictive_mean = predictive_distribution.mean

Additionally, we want to show the 95% CI. Mathematically, this can be done
by extracting the diagonal elements of the predictive covariance matrix, Σ
(remember that these elements denote the individual variances σ2), taking the
square roots of these values to compute the standard deviations, Σ, and
computing the CI range of μ ± 1.96σ.

Fortunately for us, computing the 95% CI is a common operation when
working with a GP, so GPyTorch offers a convenient helper method called
confidence_region() that we may call directly from a multivariate Gaussian
distribution object:

predictive_lower, predictive_upper =

 <linearrow /> predictive_distribution.confidence_region()

This method returns a tuple of two Torch tensors, which store the lower and
upper endpoints of the CI, respectively.

Finally, we may want samples drawn for our plot from our current GP model.
We can do this directly by calling the method sample() from the Gaussian
object predictive_distribution. If we don’t pass in any input argument,
the method will return a single sample. Here, we want to sample from our GP
five times, which is done as follows:

 torch.manual_seed(0)

 samples = predictive_distribution.sample(torch.Size([5]))

We pass in a torch.Size() object to denote that we want five samples to be
returned. Setting the random seed before sampling is a good practice to
ensure reproducibility of our code. And with that, we are ready to make some
plots!

The first thing to do is simply plot the mean function:

plt.plot(xs, predictive_mean.detach(), label="mean")

As for the 95% CI, we typically use a shaded region like what we have seen
so far, which can be done using Matplotlib’s fill_between() function:

plt.fill_between(

 xs.flatten(),

 predictive_upper,

 predictive_lower,

 alpha=0.3,

 label="95% CI"

)

Finally, we plot the individual samples:

for i in range(samples.shape[0]):

 plt.plot(xs, samples[i, :], alpha=0.5)

This code will produce the plot in figure 2.17.

Figure 2.17. Predictions made by a prior GP with a zero mean and RBF kernel. While the mean
and CI are constant, individual samples exhibit complex, nonlinear behaviors.

We see that across the domain, our prior GP produces a mean function that is
constant at zero as well as that our 95% CI is constant. This is to be expected,
as we used a gpytorch.means.ZeroMean() object to implement the mean
function, and without any training data, our prior predictions default to this 0
value.

With that said, the mean and CI are only measurements of expectation: they
denote the average behavior of our predictions across many many different
realizations of what could be. When we draw individual samples, however,
we see that each of these samples has a very complex shape that is not at all
constant. All of this is to say that while the expected value of our prediction
at any point is zero, there is a wide range of values it could take. This
demonstrates that a GP can model complex, nonlinear behaviors in a flexible
manner.

So we have learned to make and visualize predictions from a prior GP
without any training data. Now, let’s actually train a GP model on the
training set we randomly generated and see how the predictions change. The
nice thing about what we have coded so far is that everything may be
repeated exactly, except we now initialize our GP with our training data
(remember that we used None for the first and second arguments before):

model = BaseGPModel(train_x, train_y, likelihood)

Rerunning the code will give us figure 2.18.

Figure 2.18. Predictions made by a posterior GP. The mean function and randomly drawn
samples smoothly interpolate the training data points, while uncertainty vanishes in the regions
surrounding these data points.

This is exactly the type of predictions we’d like to see: the mean line and
samples nicely interpolate our observed data points, and our uncertainty
(measured by the CI) also reduces around those data points.

We can already see how this uncertainty quantification is useful in terms of
modeling the objective function. Only after observing three data points, our
GP has obtained a rather good approximation of the true objective function.
In fact, almost all of the objective lies inside the 95% CI, indicating our GP is
successfully accounting for how the objective function might behave, even in
regions where we don’t have any data from the function yet. This calibrated
quantification is especially beneficial when we actually need to make
decisions based on our GP model—that is, when we decide at which points
we should observe the function value to find the optimum, but let’s save that
for the next part of the book.

2.4.5 Going beyond one-dimensional objective functions

So far, we have only seen examples of GPs trained on one-dimensional
objective functions. However, there is nothing inherent about a GP that
confines us to just one dimension. In fact, as long as our mean and covariance
function can handle high-dimensional inputs, a GP can operate in high
dimensions without difficulty. In this subsection, we learn how to train a GP
on a two-dimensional dataset.

We follow the procedure in the previous section. First, we need a training
dataset. Here, I’m artificially creating a dummy set with points at (0, 0), (1,
2), and (−1, 1) with respective labels of 0, −1, and 0.5. In other words, the
objective function we’re learning from has a value of 0 at (0, 0), −1 at (1, 2),
and 0.5 at (−1, 1). We’d like to make predictions within the [−3, 3]-by-[−3, 3]
square.

This is set up in Python as follows:

training data

train_x = torch.tensor(

 [

 [0., 0.],

 [1., 2.],

 [-1., 1.]

]

)

train_y = torch.tensor([0., -1., 0.5])

test data

grid_x = torch.linspace(-3, 3, 101) #1

grid_x1, grid_x2 = torch.meshgrid(grid_x, grid_x,

[CA]indexing="ij") #2

xs = torch.vstack([grid_x1.flatten(), grid_x2.flatten()]).transpose(-1, -2)

The variable xs is a 10,201-by-2 matrix that contains the lattices of a grid
over the square we’d like to predict on.

 Important

There are 10,201 points because we are taking a 101-endpoint grid in each of
the two dimensions. Now, we simply rerun the GP code we previously ran to
train a GP and make predictions on this two-dimensional dataset. Note that
no modification to our BaseGPModel class or any of the prediction code is
needed, which is quite amazing!

One thing we do need to change though is how we visualize our predictions.
As we are operating in two dimensions, plotting the predictive mean and CI
in one single plot becomes more difficult. Here, a typical solution is to draw a
heat map for the predictive mean and another heat map for the predictive
standard deviation. While the standard deviation is not exactly the 95% CI,
these two objects, in essence, do quantify the same thing: our uncertainty
about the function values.

So instead of calling predictive_distribution.confidence_region(), as
we did before, we now extract the predictive standard deviation like so:

 predictive_stddev = predictive_distribution.stddev

Now, to draw the heat maps, we use the imshow() function from Matplotlib.
We need to be careful with the shape of our predictions in predictive_mean
and predictive_stddev here. Each of them is a tensor of length 10,000, so it
will need to be reshaped into a square matrix before being passed to the
imshow() function. This can be done as follows:

fig, ax = plt.subplots(1, 2)

ax[0].imshow(

 predictive_mean.detach().reshape(101, 101).transpose(-1, -2),

 origin="lower",

 extent=[-3, 3, -3, 3]

) #1

ax[1].imshow(

 predictive_stddev.detach().reshape(101, 101).transpose(-1, -2),

 origin="lower",

 extent=[-3, 3, -3, 3]

) #2

This code produces the two heat maps in figure 2.19.

Figure 2.19. Predictions made by a two-dimensional GP. The mean function still agrees with the
training data, and uncertainty once again vanishes in the regions surrounding these data points.

We see that what we have in the one-dimensional case extends to this
example too:

The left panel shows that our mean prediction agrees with our training
data: the bright blob on the left corresponds to (−1, 1), which has a value
of 0.5, while the dark blob on the right corresponds to (1, 2), which has a
value of −1 (our observation at (0, 0) has a value of 0, which is also the
prior mean, so it is not as obvious to point out in the left panel as the
other two).
Our uncertainty (measured by the predictive standard deviation) is close
to zero around the three points in our training data, as demonstrated by
the right panel. Going away from these data points, the standard
deviation smoothly increases to the normalized maximum uncertainty of
1.

This means all of the nice properties of a GP, such as smooth interpolation
and uncertainty quantification, are preserved when we go to higher
dimensions.

This marks the end of chapter 2. We have gained a conceptual understanding
of what a Gaussian process is and learned how to implement a base GP
model in Python using GPyTorch. As mentioned, we dive deeper into the
mean and covariance functions of a GP in chapter 3, including their
hyperparameters, and see how each of these components controls the
behavior of our GP model.

2.5 Summary

A multivariate Gaussian distribution models the joint distribution of
many random variables. The mean vector denotes the expected values of
the variables, while the covariance matrix models both the variances and
the covariances among these variables.
By applying Bayes' theorem, we can compute the posterior distribution
of a multivariate Gaussian. Through this Bayesian update, variables that
are similar to the observed variable are updated to reflect this similarity.
Overall, similar variables produce similar predictions.
A Gaussian process extends a multivariate Gaussian distribution to
infinite dimensions, making it a distribution over functions. However,
the behavior of a Gaussian process is still similar to that of a
multivariate Gaussian distribution.
Even without any training data, a Gaussian process may still produce
predictions specified by the prior GP.
Once trained on a dataset, the mean prediction of a Gaussian process
smoothly interpolates the training data points.
One of the biggest advantages of using a Gaussian process is the
calibrated quantification of uncertainty the model offers: predictions
around observed data points are more confident; predictions far away
from training data, on the other hand, are more uncertain.
Conditioning with a multivariate Gaussian distribution or a Gaussian
process is visually similar to tying a knot at an observation. This forces
the model to exactly go through the observation and reduces the
uncertainty to zero.
When using GPyTorch to implement Gaussian processes, we can write a
model class that extends the base class in a modular way. Specifically,
we implement two specific methods: __init__(), which declares the
mean and covariance functions of the GP, and forward(), which

constructs a multivariate Gaussian distribution for a given input.

2.6 Exercise

In this exercise, we train a Gaussian process on a real-world dataset we saw
in chapter 1, which is shown again in table 2.2. Each data point (row)
corresponds an alloy (a kind of metal) created by mixing lead (Pb), tin (Sn),
germanium (Ge), and manganese (Mn)—these are called the parent
compounds—at different ratios. The features are contained in the first four
columns, which are the percentages of the parent compounds. The prediction
target, mixing temperature, is in the last column, denoting the lowest
temperature at which an alloy can form. The task is to predict mixing
temperature, given the compositional percentages of an alloy.

Table 2.2. Data from a materials discovery task. The features are the structure of a material
expressed in percentages of parent compounds, and the prediction target is the mixing
temperature.

% of Pb % of Sn % of Ge % of Mn Mixing temp.

0.50 0.50 0.00 0.00 192.08

0.33 0.33 0.33 0.00 258.30

0.00 0.50 0.50 0.00 187.24

0.00 0.33 0.33 0.33 188.54

There are multiple steps:

1. Create the four-dimensional dataset included in table 2.2.
2. Normalize the fifth column by subtracting the mean from all values and

dividing the results by their standard deviation.

3. Treat the first four columns as features and the fifth as labels. Train a
Gaussian process on this data. You can reuse the GP model class we
implemented in the chapter.

4. Create a test dataset containing compositions with zero percent
germanium and manganese. In other words, the test set is a grid over the
unit square whose axes are percentages of lead and tin.

The test set should look like the following PyTorch tensor:

tensor([[0.0000, 0.0000, 0.0000, 0.0000],

 [0.0000, 0.0100, 0.0000, 0.0000],

 [0.0000, 0.0200, 0.0000, 0.0000],

 ...,

 [1.0000, 0.9800, 0.0000, 0.0000],

 [1.0000, 0.9900, 0.0000, 0.0000],

 [1.0000, 1.0000, 0.0000, 0.0000]])

Notice that the third and fourth columns are all zeros.

5. Predict the mixing temperature on this test set. That is, compute the
posterior mean and standard deviation of the normalized mixing
temperature for every point in the test set.

6. Visualize the predictions. This involves showing the mean and standard
deviation as heat maps in the same way as in figure 2.19. The solution is
included in CH02/02 - Exercise.ipynb.

3 Customizing a Gaussian process
with the mean and covariance
functions
This chapter covers

Controlling the expected behavior of a Gaussian process using mean
functions
Controlling the smoothness of a Gaussian process using covariance
functions
Learning the optimal hyperparameters of a Gaussian process using
gradient descent

In Chapter 2, we saw that the mean and covariance functions are the two core
components of a Gaussian process (GP). Even though we used the zero mean
and the RBF covariance function when implementing our GP, you can
choose from many options when it comes to these two components.

By going with a specific choice for either the mean or the covariance
function, we are effectively specifying prior knowledge for our GP.
Incorporating prior knowledge into prediction is something we need to do
with any Bayesian model, including GPs. Although I say we "need to" do it,
being able to incorporate prior knowledge into a model is always a good
thing, especially under settings in which data acquisition is expensive, like
Bayesian optimization.

For example, in weather forecasting, if we’d like to estimate the temperature
of a typical day in January in Missouri, we won’t have to do any complex
calculation to be able to guess the temperature will be fairly low. At the other
end of the spectrum, we can make a good guess that a summer day in
California will be relatively hot. These rough estimates may be used as initial
first guesses in a Bayesian model, which are, in essence, the model’s prior
knowledge. If we didn’t have these first guesses, we would have to do more

involved modeling to produce predictions.

As we learn in this chapter, incorporating prior knowledge into a GP can
drastically change the model’s behavior, which can lead to better predictive
performance (and, eventually, more effective decision-making). We should
only use no prior knowledge when we have absolutely no good guess about
the behavior of the function; otherwise, this equates to wasting information.

In this chapter, we discuss the different options when it comes to the mean
and covariance functions and how they impact the resulting GP model.
Unlike in chapter 2, we take a hands-on approach here and revolve our
discussions around code implementation in Python. By the end of this
chapter, we develop a pipeline for selecting appropriate mean and covariance
functions as well as optimizing their hyperparameters.

3.1 The importance of priors in Bayesian models

Question: why can’t you seem to change some people’s mind? Answer:
because of their priors. To show how important priors are in a Bayesian
model, consider the following scenario.

Let’s say you are hanging out with your friends, Bob and Alice, at a carnival,
and you are talking to someone who claims they are a psychic. The way they
allow you to test this claim is via the following procedure: you and your
friends each think of a number between 0 and 9, and the "psychic" will tell
you what number each of you are thinking of. You can repeat this process
however many times you’d like.

Now, all three of you are curious about this supposed psychic, and you decide
to conduct this test 100 times. Amazingly, after these 100 tests, the supposed
psychic at the carnival correctly guesses the numbers you each think of.
However, after you are done, you each have different reactions, as seen in
figure 3.1.

Figure 3.1. Reaction among your group of friends after seeing a person correctly guess a secret
number 100 times. Each person reached a different conclusion due to their prior belief.

Further reading on Bayes' theorem

If you need to refresh your memory, feel free to return to figure 2.2, in which
we studied Bayes' theorem. We only sketch this out on a high level in this
book, but I recommend chapters 1 and 2 of Will Kurt’s Bayesian Statistics

the Fun Way if you’d like to examine this process in greater depth.

How can all three of you observe the same event (the person at the carnival
guessing correctly 100 times) but arrive at different conclusions? To answer
this question, consider the process of updating one’s belief using Bayes'
theorem:

1. Each person starts out with a specific prior probability that the person is
a psychic.

2. Then, you each observe the event that they guess your number correctly
once.

3. You each then compute the likelihood terms. First, the likelihood their
guess is correct, given that they’re indeed a psychic, is exactly 1, since a
true psychic can always pass this test. Second, the likelihood their guess
is correct, given that they’re not a psychic, is 1 out of 10. This is because
each time, you are randomly choosing a number between 0 and 9, so any
guess among these 10 options has an equal chance of being correct: 1
out of 10.

4. Finally, you update your belief by computing posterior probability that
this person is not a psychic by combining your prior with these
likelihood terms. Specifically, this posterior will be proportional to the
prior and the first likelihood term multiplied together.

5. You then repeat this process 100 times, each time using the posterior
probability of the previous iteration as your prior for the current
iteration.

What is important on a high level here is that after each test, you and your
friends' posterior belief that this person is a psychic never decreases, since
that statement doesn’t agree with the data you observe. Specifically, figure
3.2 shows the progressive posterior probability of each person in your group
as a function of how many tests the "psychic" at the carnival has passed.

Figure 3.2. Progressive posterior probability that the person at the carnival is a psychic as a
function of the number of successful guesses. This posterior never decreases but behaves
differently, depending on the initial prior.

As we can see, each of the three curves either increases or stays flat—none of
them actually decreases, since a decreasing probability of being a psychic
doesn’t match the 100 successful guesses in a row. But why do the three
curves look so different? As you might have already guessed, the starting
position of the curve—that is, each person’s prior probability that the person
is a psychic—is the cause.

In Bob’s case, in the left panel, he started out with a relatively high prior that
the person is a psychic: 1%. Bob is a believer. As he observes more and more
data that agrees with this belief, his posterior probability increases more and
more.

In your own case, in the middle, being a skeptic, you started with a much
lower prior: 1 in 10 raised to the 14th power. However, since your
observations do suggest the person is a psychic, your posterior probability
also increases as more data come in, reaching 1% at the end.

Alice’s case, on the right, on the other hand, is different. From the start, she
didn’t believe psychics are real, so she assigned exactly zero probability to
her prior. Now, remember that according to Bayes' theorem, the posterior
probability is proportional to the prior multiplied by the likelihood. Since
Alice’s prior is exactly zero, this multiplication in the Bayesian update will
always produce another zero.

Since Alice started out with zero probability, even after a successful test, this
probability stays the same. After 1 correct guess, Alice’s posterior is zero.
After 2 guesses, it’s still zero. After all 100 correct guesses, this number is

still zero. Everything is consistent with the Bayesian update rule, but because
Alice’s prior doesn’t allow for the possibility that psychics exist, no amount
of data could convince her otherwise.

This highlights an important aspect of Bayesian learning—our prior
determines how learning is done (see figure 3.3):

Bob’s prior is fairly high, so by the end of the 100 tests, he’s completely
convinced the person is psychic.
You, on the other hand, are more skeptical, in that your initial prior is
much lower than Bob’s. This means it would take more evidence for you
to arrive at a high posterior.
Alice’s complete disregard of the possibility, denoted by her zero prior,
prevents her posterior probability from changing from zero.

Figure 3.3. How each person’s prior belief is updated by the same data. Comparing to Bob’s,
your prior is much lower and increases more slowly. Alice’s prior is 0 and stays at 0 throughout.

Although the claim in our example is about the event that someone is a
psychic, the same Bayesian update procedure applies to all situations in
which we have a probabilistic belief about some event and frequently update
it in light of data. In fact, this is actually the reason we can’t seem to be able
to change someone’s mind sometimes, even in the face of overwhelming

evidence: because they start out with zero prior probability, and nothing will
update the posterior to anything other than zero.

This discussion is philosophically interesting, in that it shows that to be able
to convince someone of something, they need to at least entertain the idea by
assigning non-zero prior probability to that event. More relevant to our topic,
the example shows the importance of having good prior knowledge for a
Bayesian model. As we have said, we specify a GP’s prior knowledge with
the mean and covariance functions. Each choice leads to a different behavior
in the GP’s prediction.

3.2 Incorporating what you already know into a
Gaussian process

In this section, we identify situations in which specifying prior knowledge in
a GP is important. This discussion motivates our discussions in the remaining
portion of this chapter.

A prior GP may start out having a constant mean and CI everywhere. This
GP then gets updated to smoothly interpolate the observed data points, as
figure 3.4 denotes. That is, the mean prediction exactly goes through the data
points, and the 95% CI vanishes in those regions.

Figure 3.4. Comparison between a prior and a posterior GP. The prior GP contains prior
information about the objective function, while the posterior GP combines that information with
actual observations.

The prior GP in figure 3.4 assumes nothing about the objective function we
are modeling. That’s why this GP’s mean prediction is zero everywhere. In
many cases, however, even though we don’t know the exact form of our
objective function, there are aspects of the objective that we do know.

Take the following, for example:

When modeling the accuracy of a model in a hyperparameter tuning
application, we know that the range of the objective function is between
0 and 1.
In our housing price example from section 2.1, the function values (the
prices) are strictly positive and should increase when a desirable
property of the house, such as living area, increases.
Again in the housing example, the function value is more sensitive to
some features than others. For instance, the price of a house increases
more quickly as a function of the number of stories than as a function of
living area—one extra story increases the price of a house more than one
extra square foot of living area.

This kind of information is exactly the prior knowledge that we’d like to
represent with a GP, and one of the biggest advantages of using a GP is that
we have many ways to incorporate prior knowledge. Doing so helps close the

gap between the GP surrogate and the actual objective function it models,
which will also more effectively guide optimization down the line.

Incorporating prior knowledge with a Gaussian process

We incorporate prior knowledge by selecting appropriate mean and
covariance functions for our GP and setting their parameters' values.
Specifically,

The mean function defines the expected behavior of the objective
function.
The covariance function defines the structure of the objective, or, more
specifically, the relationship between any pair of data points and how
quickly and smoothly the objective function changes across its domain.

Each of the preceding choices leads to drastically different behavior in the
resulting GP. For example, a linear mean function will lead to a linear
behavior in the GP’s predictions, while a quadratic mean function will lead to
a quadratic behavior. By using different parameters in the covariance
function, we can also control for the variability of our GP.

3.3 Defining the functional behavior with the mean
function

First, we cover the mean function of a GP, which defines the expected
behavior of the GP, or what we believe the function looks like on average,
across all possible scenarios of the function. This, as we will see, helps us
specify any prior knowledge related to the function’s general behavior and
shape. The code we use throughout this section is included in CH03/01 -
Mean functions.ipynb. To make our discussions concrete, we use a housing
price dataset with five data points in table 3.1.

Table 3.1. Example training dataset. The prediction target (price) increases as a function of the
feature (living area).

Living area (in squared foot times
1000) Price (in dollars times 100,000)

0.5 0.0625

1 0.25

1.5 0.375

3 2.25

4 4

In this dataset, the function values we model are the housing prices, which
are strictly positive and increase with larger values of living area. These
properties make intuitive sense, and even without knowing the prices of
unobserved houses, we know for sure that those unseen prices also have these
properties.

Our goal here is to incorporate these properties into our mean function, as
they describe how we expect the function to behave. Before we jump right to
modeling, we first write a helper function that takes in a GP model (along
with its likelihood function) and visualizes its predictions in the range from 0
to 10 (that is, a 10,000 square foot living area). This is implemented as
follows:

def visualize_gp_belief(model, likelihood):

 with torch.no_grad(): #1

 predictive_distribution = likelihood(model(xs)) #1

 predictive_mean = predictive_distribution.mean #1

 predictive_upper, predictive_lower = #1

 <linearrow /> predictive_distribution

 [CA].confidence_region() #1

 plt.figure(figsize=(8, 6))

 plt.plot(xs, ys, label="objective", c="r")

 plt.scatter(train_x, train_y, marker="x", c="k", label="observations")

 plt.plot(xs, predictive_mean, label="mean") #2

 plt.fill_between(

 xs.flatten(), predictive_upper, predictive_lower, alpha=0.3,

 label="95% CI"

) #3

 plt.legend(fontsize=15);

We saw how this code works in section 2.4.3, and now we are putting it into
a convenient function. And with that, we are ready to implement our GP
models and see how our choices affect the predictions being produced.

3.3.1 Using the zero mean function as the base strategy

The simplest form of the mean is a constant function at zero. In the absence
of data, this function will produce zero as its default prediction. The zero
mean function is used when there is no extra information about the objective
function that we may incorporate into the GP as prior knowledge.

A GP with a zero mean function is implemented as follows:

class ConstantMeanGPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ConstantMean() #1

 self.covar_module = gpytorch.kernels.RBFKernel()

 def forward(self, x):

 mean_x = self.mean_module(x)

 covar_x = self.covar_module(x)

 return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)

Remember from section 2.4.2 that to build a GP model with GPyTorch, we
implement the __init__() and forward() methods. In the first method, we
initialize our mean and covariance functions; in the second, we push the input
x through these functions and return the corresponding multivariate Gaussian
distribution.

 Note

Instead of the gpytorch.means.ZeroMean class in our implementation from
section 2.4.2, we are using the gpytorch.means.ConstantMean class to
initialize our mean function. However, this constant mean function has a
default value of zero, so effectively, we are still implementing the same GP
model. While these two choices lead to identical models for now, in this
chapter, we show how gpytorch.means.ConstantMean allows us to adjust
the constant mean value to obtain a better model shortly.

Let’s now initialize an object of this class, train it on our training data, and
visualize its predictions. We do this with the following code:

lengthscale = 1

noise = 1e-4

likelihood = gpytorch.likelihoods.GaussianLikelihood() #1

model = ConstantMeanGPModel(train_x, train_y, likelihood) #1

model.covar_module.lengthscale = lengthscale #2

model.likelihood.noise = noise #2

model.eval()

likelihood.eval()

visualize_gp_belief(model, likelihood)

Here, we initialize the GP model and set its hyperparameters—the length
scale and noise variance—to 1 and 0.0001, respectively. We will see how to
set the values of these hyperparameters appropriately later in this chapter; for
now, let’s just stick with these values. Finally, we call the helper function we
just wrote, visualize_gp_belief(), on our GP model, which produces
figure 3.5.

Figure 3.5. Predictions by a GP with a zero mean function. The posterior mean function
interpolates the observed data points and reverts back to zero in regions that are far away from
these observations.

All the nice properties about the GP that we pointed out in section 2.4.4 are
still here:

The posterior mean function smoothly interpolates the xs that are our
training data points.
The 95% CI vanishes around these data points, denoting a well-
calibrated quantification of uncertainty.

We also notice from this plot that once we have gone sufficiently far away
from our training data points (the right side of the plot), our posterior mean
function reverts back to the prior mean, which is zero. This is, in fact, an
important feature of a GP: in the absence of data (in regions without
observations), the prior mean function is the main driving force of the
inference procedure. This makes intuitive sense, as without actual
observations, the best thing that a predictive model can do is simply appeal to
the prior knowledge encoded in its mean function.

 Note

At this point, we see why having well-defined prior knowledge encoded into

the prior GP is so important: in the absence of data, the only thing that drives
predictions is the prior GP.

A natural question then arises: is it possible to use a non-zero mean function
to induce a different behavior for our GP in these unexplored regions, and if
so, what are our options? The remaining portion of this section aims to
answer this question. We start by using a constant mean function that is not
zero.

3.3.2 Using the constant function with gradient descent

A constant mean function that is not zero is appropriate when we expect the
objective function we are modeling to take on some range of values that we
know a priori. As we are modeling housing prices, using a constant mean
function with a constant greater than zero makes sense, as we indeed expect
the prices to be positive.

Of course, it’s not possible to know what value the objective function takes
on average, in many cases. How, then, should we find an appropriate value
for our mean function? The strategy we use is to appeal to a specific quantity:
how likely the training dataset is, given the value for our mean function.
Roughly speaking, this quantity measures how well our model explains its
training data. We show how to leverage this quantity to select the best mean
function for our GP in this subsection.

If the likelihood of the training data given some value c1 is higher than that
given another value c2, then we prefer using c1 to using c2. This quantifies
our previous intuition about using nonzero mean functions to model positive
functions: a constant mean function whose value is positive explains
observations from an exclusively positive function better than a function

whose value is zero (or negative) does.

How can we compute this likelihood? GPyTorch offers a convenient class,
gpytorch.mlls.ExactMarginalLogLikelihood, that takes in a GP model and
computes the marginal log likelihood of its training data, given the
hyperparameters of the model.

To see that this likelihood quantity is effective at quantifying data fit,
consider figure 3.6. This figure visualizes the predictions made by two
separate GP models: a zero mean GP we saw in the previous subsection, on
the left, and the GP with a mean function whose value is 2, on the right.
Notice how in the second panel, the mean function reverts to 2 instead of 0
on the right side of the plot. Here, the second GP has a higher (log) likelihood
than the first, which means the value 2 explains our training data better than
the value 0.

Figure 3.6. GP predictions, given two different constant mean functions. The value 2 gives a
higher likelihood value than the value 0, indicating the former mean function is a better fit than
the latter.

With this log likelihood computation in hand, our last step is to simply find
the value for our mean function such that the log likelihood is maximized. In
other words, we aim to seek the mean value that explains our training data the
best. Since we have access to the log likelihood computation, we can use
gradient-based optimization algorithms, such as gradient descent, to

iteratively refine the mean value we have. Upon convergence, we will have
arrived at a good mean value that gives high data likelihood. If you need a
refresher on how gradient descent works, I recommend appendix B of Luis
Serrano’s Grokking Machine Learning, which does a good job explaining the
concept.

Now, let’s see how we can implement this process with code. Since we
implemented our GP model with the gpytorch.means.ConstantMean class
for our mean function, we don’t need to change anything here. So for now,
let’s initialize our GP model again:

declare the GP

lengthscale = 1

noise = 1e-4

likelihood = gpytorch.likelihoods.GaussianLikelihood()

model = ConstantMeanGPModel(train_x, train_y, likelihood)

fix the hyperparameters

model.covar_module.lengthscale = lengthscale

model.likelihood.noise = noise

The central step of this procedure is to define the log likelihood function as
well as a gradient descent algorithm. As mentioned previously, the former is
an instance of the gpytorch.mlls.ExactMarginalLogLikelihood class,
implemented like so:

mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model)

For the gradient descent algorithm, we use Adam, which is a state-of-the-art
algorithm that has enjoyed a lot of success in many ML tasks, especially deep
learning. We declare it using PyTorch as follows:

optimizer = torch.optim.Adam([model.mean_module.constant], lr=0.01)

Note that we are passing to the torch.optim.Adam class
model.mean_module.constant, which is the mean value we seek to optimize.
When we run the gradient descent procedure, the Adam algorithm iteratively
updates the value of model.mean_module.constant to improve the likelihood
function.

The last thing we need to do now is to run gradient descent, which is
implemented as follows:

model.train() #1

likelihood.train() #1

losses = []

constants = []

for i in tqdm(range(500)):

 optimizer.zero_grad()

 output = model(train_x)

 loss = -mll(output, train_y) #2

 loss.backward() #3

 losses.append(loss.item())

 constants.append(model.mean_module.constant.item())

 optimizer.step() #3

model.eval() #4

likelihood.eval() #4

The calls to train() at the beginning and eval() at the end are the
bookkeeping steps we always need to take, enabling training mode and
prediction mode of our GP model, respectively. Resetting the gradients at
each step with optimizer.zero_grad() is another bookkeeping task to make
sure we don’t incorrectly compute the gradients.

In the middle, we have a 500-step gradient descent procedure, in which we
iteratively compute the loss (which is the negative of our log likelihood) and
descend on this loss based on its gradients. During this for loop, we keep
track of the negative log likelihood values that we obtain as well as the mean
value, adjusted in each step. This is so that after training, we can visually
inspect these values to determine whether they have converged.

Figure 3.7 includes this visualization, showing the running values for the
negative log likelihood (which we aim to minimize) and the value for the
mean function of the GP. Our loss consistently decreases (which is a good
thing!) with increasing values of the mean constant, showing that a positive
constant does give a higher likelihood than zero. Both curves plateau after

500 iterations, indicating we have converged at an optimal value for the mean
constant.

Figure 3.7. Running negative log likelihood (lower is better) and mean value during gradient
descent. In both panels, the values have converged, indicating we have arrived at an optimum.

 Note

I recommend that you always plot out the progressive loss, like we just did
here, when using gradient descent to see whether you have converged at an
optimal value. Stopping before convergence might lead to poor performance
for your model. While we won’t be showing these progressive loss plots
again throughout this chapter, the accompanying code does include them.

So far, we have learned how to use a zero mean function as the default for
our GP model as well as optimize the mean constant value with respect to the
data likelihood. However, in many use cases, you might have prior
knowledge about how the objective function is expected to behave and, thus,
prefer to incorporate more structure into your mean function.

For example, how can we implement the idea that the price of a house

increases with a larger living area? Moving forward, we learn to do this with
a GP by using a linear or quadratic mean function.

3.3.3 Using the linear function with gradient descent

We proceed with the linear mean function, which is in the form of μ = wTx +
b. Here, μ is the predictive mean value at the test point x, while w is the
weight vector that concatenates the coefficients for each of the features in x,
and b is a constant bias term.

By using the linear mean function, we are encoding the assumption that the
expected behavior of our objective function is equal to a linear combination
of the features of the data point x. For our housing price example, we only
have one feature, the living area, and we expect it to have a positive weight,
so by increasing the living area, our model will predict a higher price.

Another way to think about this linear mean model is that we have a linear
regression model (which also assumes the target label to be a linear
combination of the features) and we put a probabilistic belief, a GP model, on
top of our predictions. This gives us the power offered by a linear regression
model, while maintaining all the benefits of modeling with a GP—namely,
uncertainty quantification.

 Note

Under a constant mean function, the weight vector w is fixed at the zero
vector, and the bias b is the mean value that we learned to optimize in the
previous subsection. In other words, the linear function is a more general
model than the constant mean function.

Regarding implementation, building a GP model with a linear mean function
is quite straightforward: we simply swap out our constant mean and replace it
with a gpytorch.means.LinearMean instance, as follows (our forward()
method remains unchanged):

class LinearMeanGPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.LinearMean(1) #1

 self.covar_module = gpytorch.kernels.RBFKernel()

Here, we use 1 to initialize our mean module, indicating we are working with
a one-dimensional objective function. When working with a higher-
dimensional function, you can simply pass in the dimensionality of that
function here. Aside from this, everything else about our model is similar to
what we had before. Fitting and training this new model on our three-point
dataset, we obtain the predictions in figure 3.8.

Figure 3.8. Predictions by a GP with a linear mean function. The GP has an upward trend, which
is a direct result of the positive slope of the linear mean function.

Unlike what we have seen so far with the constant mean, the linear mean
function we’re using here drives the entire GP model to have an upward
trend. This is because the best-fit line of the five data points in our training
data is one with a positive slope, which is exactly what we wanted to model
as a relationship between living area and price.

3.3.4 Using the quadratic function by implementing a custom
mean function

Our linear mean function here successfully captures the increasing trend of
the price, but it assumes the rate of price increase is constant. That is, adding
an extra square foot to the living area leads to, in expectation, a constant
increase in price.

In many cases, however, we might have prior knowledge that our objective
function increases at a non-constant rate, which a linear mean cannot model.
In fact, the data points we’ve been using were generated so that the price is a
quadratic function of the living area. This is why we see the larger houses
become more expensive faster than the smaller houses. In this subsection, we
implement our GP mean as a quadratic function.

At the time of this writing, GPyTorch only provides implementations for the
constant and linear mean functions. But the beauty of this package, as we will
see again and again in the book, is its modularity: all components of a GP
model, such as the mean function, the covariance function, the prediction
strategy, and even the marginal log likelihood function, are implemented as
modules, and therefore, they can be modified, reimplemented, and extended
in an object-oriented manner. We see this first-hand when implementing our
own quadratic mean function.

The first thing for us to do is define a mean function class:

class QuadraticMean(gpytorch.means.Mean):

 def __init__(self, batch_shape=torch.Size(), bias=True):

 ...

 def forward(self, x):

 ...

This class extends the gpytorch.means.Mean class, which is the base for all
GPyTorch mean function implementations. To implement our custom logic,
we need to rewrite two methods: __init__() and forward(), which are
exactly the same as when we implement a GP model!

In __init__(), we need to declare what parameters our mean function
contains. This process is called parameter registration.

While a linear function has two parameters, a slope and an intercept, a

quadratic function has three: a coefficient for the second-order term x2; a
coefficient for the first-order term x; and a coefficient for the zeroth-order
term, which is typically called the bias. This is illustrated in figure 3.9.

Figure 3.9. The functional forms of a linear function and a quadratic function. The linear
function has two parameters, while the quadratic function has three. When these functions are
used as a GP’s mean function, the corresponding parameters are the GP’s hyperparameters.

With that in mind, we implement the __init__() method like so:

class QuadraticMean(gpytorch.means.Mean):

 def __init__(self, batch_shape=torch.Size(), bias=True):

 super().__init__()

 self.register_parameter(

 name="second",

 parameter=torch.nn.Parameter(torch.randn(*batch_shape, 1, 1))

) #1

 self.register_parameter(

 name="first",

 parameter=torch.nn.Parameter(torch.randn(*batch_shape, 1, 1))

) #2

 if bias:

 self.register_parameter(

 name="bias",

 parameter=torch.nn.Parameter(torch.randn(*batch_shape, 1))

) #3

 else:

 self.bias = None

We sequentially call register_parameter() to register the second-order
coefficient, the first-order coefficient, and the bias. As we don’t have a good
idea of what values these coefficients should take, we simply initialize them
randomly using torch.randn().

 Note

We need to register these parameters as instances of the torch.nn.Parameter
class, which allows their values to be adjusted (trained) during gradient
descent.

For the forward() method, we need to define how our mean function should
process an input. As we have said, a quadratic function is in the form of ax2 +
bx + c, where a, b, and c are the second-order coefficient, first-order
coefficient, and the bias, respectively. So we only need to implement that
logic, as below:

class QuadraticMean(gpytorch.means.Mean):

 def __init__(self, train_x, train_y, likelihood):

 ... #1

 def forward(self, x):

 res = x.pow(2).matmul(self.second).squeeze(-1) \

 + x.matmul(self.first).squeeze(-1) #2

 if self.bias is not None:

 res = res + self.bias

 return res

With this quadratic mean function in hand, we can now write a GP model that
initializes its mean module using the custom QuadraticMean class we just
implemented:

class QuadraticMeanGPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = QuadraticMean()

 self.covar_module = gpytorch.kernels.RBFKernel()

 def forward(self, x):

 ... #1

Rerunning our entire training procedure with gradient descent gives us the
predictions in figure 3.10.

Figure 3.10. Predictions by a GP with a quadratic mean function. This GP predicts that with
larger living area, the price increases at a faster rate.

Here, we successfully model the non-constant rate of increase in housing
prices with respect to living area. Our predictions increase much more
quickly on the right side of the plot than on the left.

We can do this for any functional form we want to assume about the
objective, such as a higher-degree polynomial or a sublinear function. All we
need to do is implement a mean function class with appropriate parameters
and use gradient descent to assign values to these parameters that will give us
a good fit of our training data.

Our discussion so far demonstrates the mathematical flexibility of GP
models, in that they can make use of a mean function of any structure and
still produce probabilistic predictions. This flexibility motivates and drives
the design of GPyTorch, whose emphasis on modularity helps us extend and
implement our own custom mean function effortlessly. We see the same
flexibility and modularity in GPyTorch’s covariance functions, which we
discuss next.

3.4 Defining variability and smoothness with the
covariance function

While the mean function defines our expectation of the overall behavior of
the objective function, the covariance function, or the kernel, of a GP plays a
more complex role: defining the relationship between data points within the
domain and controlling for the structure and smoothness of the GP. In this
section, we compare how the predictions by a GP change as we change
different components of our model. From there, we gain practical insights on
how to select an appropriate covariance function for a GP model. The code
that we use is in CH03/02 - Covariance functions.ipynb.

Throughout these examples, we use the Forrester function, which we saw in
section 2.4.1, as our objective. We, once again, randomly sample three data
points between -3 and 3 and use them as our training dataset. All predictions
visualized in this section are from a GP trained on these three points.

3.4.1 Setting the scales of the covariance function

The first way of controlling the behavior of a GP via its covariance function
is to set the length scale and the output scale. These scales, just like the
constant or the coefficients in the mean function, are the hyperparameters of
the covariance function:

A length scale controls the scale of the GP’s input and, thus, how fast
the GP can change along an axis—that is, how much we believe the
objective function varies with respect to an input dimension.
The output scale defines the range of the GP’s output or, in other words,
the range of its predictions.

By setting these scales to different values, we can either increase or decrease
the uncertainty in our GP’s predictions as well as scale the range of our
predictions. We use the following implementation:

class ScaleGPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ZeroMean()

 self.covar_module =

 <linearrow /> gpytorch.kernels.ScaleKernel(

 gpytorch.kernels.RBFKernel()) #1

 def forward(self, x):

 ... #2

Notice that our code for the covar_module attribute here is different from
before: we are placing a gpytorch.kernels.ScaleKernel object outside of
our usual RBF kernel. This effectively implements the output scale that scales
the output of the RBF kernel by some constant factor. The length scale, on
the other hand, is already included within gpytorch.kernels.RBFKernel.

In the code we have been using thus far, there is one line where we set the
length scale of our kernel with
model.covar_module.base_kernel.lengthscale = lengthscale. This is
where the value of the length scale is stored. Using a similar API, we can set
the output scale of our kernel with model.covar_module.outputscale =
outputscale. Now, to see that the length scale effectively controls how fast
the function varies, we compare the predictions made by two GPs—one with
a length scale of 1, and the other with a length scale of 0.3, in figure 3.11.

Figure 3.11. The GP’s predictions with the length scale set to 1 (left) and to 0.3 (right). With a
small length scale, the GP predictions have more variability, leading to more uncertainty.

The stark difference between the two panels makes clear the effect of our
length scale:

A shorter length scale corresponds with more variability in the objective
function, given a constant change in the input.
A longer length scale, on the other hand, forces the function to be
smoother, in the sense that it varies less, given the same input change.

For instance, going one unit along the x-axis, the samples in the left panel in
figure 3.11 vary less than those in the right panel.

What about the output scale, then? We said earlier that this parameter scales
the output of the covariance function to a different range. This is done by
simply multiplying the covariance output with this parameter. Hence, a large
output scale leads to the range of the GP’s predictions being wider, while a
small output scale shrinks this prediction range. To see that this is true, let’s

once again run our code and regenerate the predictions, this time setting the
output scale to 3. The produced output is shown in figure 3.12.

Figure 3.12. The GP’s predictions with the output scale set to 3. With a large output scale, the GP
models the function to have a wider range, also allowing more uncertainty in the predictions.

While the left panel of figure 3.11 and figure 3.12 may look the same in that
the GP and its samples have the same shape across the two plots, we notice
that figure 3.12 has a larger y-axis, as both its predictions and its samples take
on larger values (both negative and positive). This is the direct result of
scaling the covariance values from the RBF kernel with a large output scale.
With just two hyperparameters for our covariance function, we have seen that
we can account for a wide range of functional behaviors that are modeled by
our GP, which we summarize in table 3.2. I invite you to rerun this code with
different values for the length and output scales to see their effects and verify
table 3.2 for yourself!

Table 3.2. Summary of the roles that the length and output scales of a GP play.

Parameter With a large value With a small value

Length scale Smoother predictions,
less uncertainty

More variability, more
uncertainty

Output scale Larger output values,
more uncertainty

Narrower output range,
less uncertainty

 Note

This flexibility in modeling gives rise to a natural question: how should you
appropriately set the values for these hyperparameters? Luckily, we already
know a good way of setting the hyperparameters of a GP model. We can do
this by choosing the values that explain our data the best or, in other words,
maximizing the marginal log likelihood, specifically via gradient descent.

Just like when we wanted to optimize the hyperparameters of the mean
function, we now do this by simply passing the variables we’d like to
optimize—the parameters of the covariance function—to Adam:

optimizer = torch.optim.Adam(model.covar_module.parameters(), lr=0.01)

By running gradient descent, we can arrive at good values for these
parameters. Specifically, I obtained a length scale of roughly 1.3 and an
output scale of roughly 2.1. That is, to fit the three-point training dataset well,
we want the GP to be slightly smoother (with a length scale greater than 1)
and we also want the range of our predictions to be larger (with a larger
output scale). This is certainly a reassuring result, as our objective function
does have a wide range of values—at input 3, it takes on a value of −2, which
is well outside of the CI with an output scale of 1.

3.4.2 Controlling smoothness with different covariance
functions

Thus far, we have exclusively used the RBF kernel as our covariance
function. It is, however, entirely possible to use a different kernel for our GP
if RBF is not appropriate. In this subsection, we learn to use another family

of kernels, the Matérn kernel, and see what effect this kernel would have on
our GP.

 Note

By using a Matérn kernel, we are specifying the smoothness of the function
our GP models. Smoothness is a technical term here that refers to the
differentiability of the function; the more times a function is differentiable,
the smoother it is. We can roughly think of this as how much the function
values "jump" up and down in a jagged manner.

The RBF kernel models functions that are infinitely differentiable, which is a
property that not many functions in the real world have. Meanwhile, a Matérn
kernel produces functions that are finitely differentiable, and exactly how
many times these functions may be differentiated (that is, how smooth these
functions are) is controlled by a settable parameter, as we discuss shortly.

To see the Matérn kernel in action, we first reimplement our GP model class:

class MaternGPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood, nu):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ZeroMean()

 self.covar_module = gpytorch.kernels.MaternKernel(nu)

 def forward(self, x):

 ... #1

Here, our covar_module attribute is initialized as an instance of the
gpytorch.kernels.MaternKernel class. This initialization takes in a
parameter nu that defines the level of smoothness our GP will have, which is
also a parameter of our __init__() method.

 Important

At the time of this writing, three values for nu are supported by GPyTorch,
1/2, 3/2, and 5/2, corresponding to functions being non-, once-, and twice-
differentiable. In other words, the larger this nu parameter is, the smoother

our GP is.

Let’s try nu = 0.5 first by setting that value when we initialize the GP:

likelihood = gpytorch.likelihoods.GaussianLikelihood()

model = MaternGPModel(train_x, train_y, likelihood, 0.5)

... #1

visualize_gp_belief(model, likelihood)

This code produces figure 3.13.

Figure 3.13. The GP’s predictions with the Matérn 1/2 kernel, which induces the belief that the
objective function is not differentiable, corresponding to very rough samples.

Unlike what we have seen before with RBF, the samples from this Matérn
kernel are all very jagged. In fact, none of them are differentiable. The value
nu = 0.5 is a good value for the Matérn kernel when modeling time-series
data, such as stock prices.

However, this value is typically not used in Bayesian optimization, as jagged
functions like those in figure 3.13 are highly volatile (they can jump up and

down in an unpredictable way) and are usually not the target for automated
optimization techniques. We need a certain level of smoothness from our
objective function that is to be optimized; otherwise, effective optimization is
an unrealistic goal.

The Matérn 5/2 kernel is commonly preferred. Its predictions, along with
those generated by Matérn 3/2, are visualized in figure 3.14.

Figure 3.14. The GP’s predictions with the Matérn 5/2 (left) and Matérn 3/2 (right) kernel. The
samples here are smooth enough for the GP to effectively learn from data but are also jagged
enough to realistically model real-life processes.

We see that the samples from this 5/2 kernel are much smoother, which leads
to more effective learning by the GP. However, these samples are also rough
enough that they resemble functions we might see in the real world. For this
reason, most efforts, both research and applied, in Bayesian optimization
utilize this Matérn 5/2 kernel. In future chapters when we discuss decision-
making for Bayesian optimization, we default to this kernel, accordingly.

 Note

While we do not include the corresponding details here, a Matérn kernel has

its own length scale and output scale, which may be specified to further
customize the behavior of the resulting GP in the same manner as in the
previous subsection.

By pairing a mean function with a kernel, we can induce complex behavior in
the predictions of the GP. Just like our prior affects the conclusion each
person in our group of friends reaches after seeing someone correctly guesses
a secret number one hundred times, our choice of the mean function and the
kernel determines the predictions made by a GP. Figure 3.15 shows three
examples in which each combination of a mean function and a kernel leads to
a drastically different behavior.

Figure 3.15. Three different choices for the mean function and kernel and the predictions made
by their respective posterior GPs when trained on the same dataset. Each choice leads to a
different behavior in prediction.

3.4.3 Modeling different levels of variability with multiple
length scales

As we have only been considering one-dimensional objective functions

(functions whose inputs have one feature), there is only one length scale that
we need to consider. However, we can imagine scenarios in which a high-
dimensional objective function (whose inputs have more than one feature)
has more variability in some dimensions and is smoother in others. That is,
some dimensions have small length scales, while others have large length
scales. Remember our motivating example at the beginning of this chapter:
the price prediction of a house increases by a larger amount with an extra
story than with an extra square foot in living area. We explore how to
maintain multiple length scales in a GP to model these functions in this
subsection.

If we were to only use a single length scale for all dimensions, we wouldn’t
be able to faithfully model the objective function. This situation calls for the
GP model to maintain a separate length scale for each dimension, to fully
capture the variability in each of them. In this final section of the chapter, we
learn how to do this with GPyTorch.

To aid our discussion, we use a concrete two-dimensional objective function
called Ackley, which can be modified to have various levels of variability in
different dimensions. We implement the function as follows:

def ackley(x):

 # a modification of https://www.sfu.ca/~ssurjano/ackley.html

 return -20 * torch.exp(

 -0.2 * torch.sqrt((x[:, 0] ** 2 + x[:, 1] ** 2) / 2)

)

 <linearrow /> - torch.exp(torch.cos(2 * pi * x[:, 0] / 3)

 <linearrow /> + torch.cos(2 * pi * x[:, 1]))

We specifically restrict the domain of this function to the square region
between -3 and 3 in both dimensions, which is typically denoted as [-3,
3]^2^. To visualize this objective function, we use the heat map in figure
3.16.

Figure 3.16. The two-dimensional Ackley function to be used as our objective. Here, the x-axis
has less variability (it changes less) than the y-axis, requiring different length scales.

Each dark blob in the heat map can be thought of as a "valley" that has a low
value across the surface of the objective function. Here, there are many more
valleys across the y-axis than across the x-axis, indicating that the second
dimension has more variability than the first—that is, the objective function
goes up and down many times across the y-axis, more often than across x-
axis.

Once again, this means using only one length scale for both dimensions is not
a good choice. Instead, we should have a length scale for each dimension
(two, in this case). Each length scale can then be independently optimized
using gradient descent.

 Important

Using a kernel with a length scale for each dimension is called automatic
relevance determination (ARD). This term denotes the fact that after using

gradient descent to optimize these length scales, we can infer how relevant
each dimension of the objective function is with respect to the function
values. A dimension with a large length scale has low variability and is,
therefore, less relevant in modeling the objective function values than a
dimension with a small length scale.

Implementing ARD is very easy with GPyTorch: we simply specify the
ard_num_dims parameter to be equal to the number of dimensions our
objective function has when initializing our covariance function. This is done
with the RBF kernel like so:

class ARDGPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ZeroMean()

 self.covar_module = gpytorch.kernels.ScaleKernel(

 gpytorch.kernels.RBFKernel(ard_num_dims=2)

)

 def forward(self, x):

 ... #1

Let’s see whether, when trained on our Ackley function, this model gives us
different length scales for the two dimensions. To do this, we first construct a
randomly sampled training dataset consisting of 100 points:

torch.manual_seed(0)

train_x = torch.rand(size=(100, 2)) * 6 - 3

train_y = ackley(train_x)

After training the model using gradient descent, like we have been doing, we
could inspect the optimized values for the length scales by printing out

>>> model.covar_module.base_kernel.lengthscale

tensor([[0.7175, 0.4117]])

This is, indeed, the result we expected: a larger length scale for the first
dimension, where there is less variability in the function values, and a smaller
length scale for the second dimension, where there is more variability.

More reading on kernels

Kernels, in and of themselves, have enjoyed a lot of interest from the ML
community. One thing to note in addition to what we have covered so far, is
that kernels can also encode complex structures, such as periodicity, linearity,

and noise. For a more thorough and technical discussion on kernels and their
roles in ML, the interested reader may refer to David Duvenaud’s The Kernel
Cookbook (https://www.cs.toronto.edu/~duvenaud/cookbook/).

This discussion marks the end of chapter 3. Throughout this chapter, we have
extensively investigated how our GP model is influenced by the mean and
covariance functions, specifically by their various parameters. We use this as
a way to incorporate what we know about the objective function—that is,
prior information—into our GP models. We have also learned to use gradient
descent to estimate the values for these parameters to obtain the GP model
that explains our data the best.

This also marks the end of the first part of the book, where we focus on
Gaussian processes. Starting from the next chapter, we begin learning about
the second component of the Bayesian optimization framework: decision-
making. We begin with two of the most commonly used Bayesian
optimization policies that seek to improve from the best point seen:
probability of improvement and expected improvement.

3.5 Exercise

This exercise provides practice for implementing a GP model with automatic
relevance determination (ARD). To do this, we create an objective function
that varies along one axis more than it does along another axis. We then train
a GP model, with and without ARD, on data points from this function and
compare the learned length scale values. The solution is included in CH03/03
- Exercise.ipynb.

There are multiple steps to this process:

1. Implement the following two-dimensional function in Python using
PyTorch:

This function simulates the accuracy surface of a support-vector machine
(SVM) model in a hyperparameter tuning task. The x-axis denotes the value
of the penalty parameter c, while the y-axis denotes the value for the RBF
kernel parameter γ. (We use this function as our objective in future chapters
as well.) . Visualize the function over the domain [0, 2] 2. The heat map
should look like figure 3.17.

Figure 3.17. The accuracy of an SVM model on a test dataset, as a function of the penalty
parameter c and the RBF kernel parameter γ. The function changes more quickly with respect to
γ than to c.

1. Randomly draw 100 data points from the domain [0, 2] 2. This will be
used as our training data.

2. Implement a GP model with a constant mean function and a Matérn 5/2
kernel with an output scale implemented as a
gpytorch.kernels.ScaleKernel object.

3. Don’t specify the ard_num_dims parameter when initializing the kernel

object or set the parameter to None. This will create a GP model without
ARD.

4. Train the hyperparameters of the GP model using gradient descent, and
inspect the length scale after training.

5. Redefine the GP model class, this time setting ard_num_dims = 2.
Retrain the GP model with gradient descent, and verify that the two
length scales have significantly different values.

3.6 Summary

Prior knowledge plays an important role in a Bayesian model and can
heavily influence the posterior predictions of the model.
With a GP, prior knowledge can be specified using the mean and the
covariance functions.
The mean function describes the expected behavior of the GP model. In
the absence of data, a GP’s posterior mean prediction reverts to the prior
mean.
A GP’s mean function can take on any functional form, including a
constant, a linear function, and a quadratic function, which can be
implemented with GPyTorch.
A GP’s covariance function controls the smoothness of the GP model.
The length scale specifies the level of variability of the input with
respect to the function output. A large length scale leads to more
smoothness and, thus, less uncertainty in predictions.
Each dimension in a GP can have its own length scale. This is called
automatic relevance determination (ARD) and is used to model
objective functions that have different levels of variability in different
dimensions.
The output scale specifies the range of the function output. A large
output scale leads to a larger output range and, thus, more uncertainty in
the predictions.
The Matérn kernel class is a generalization of the RBF kernel class. By
specifying its parameter nu, we can model various levels of smoothness
in the GP’s predictions.
The hyperparameters of a GP can be optimized by maximizing the
marginal likelihood of the data using gradient descent.

4 Refining the best result with
improvement-based policies
This chapter covers

The Bayesian optimization loop
The tradeoff between exploitation and exploration in a Bayesian
optimization policy
Improvement as a criterion for finding new data points
Bayesian optimization policies that leverage improvement

In this chapter, we first remind ourselves of the iterative nature of Bayesian
optimization (BayesOpt): we alternate between training a Gaussian process
on the collected data and finding the next data point to label using a
BayesOpt policy. This forms a virtuous cycle in which our past data inform
future decisions. We then talk about what we look for in a BayesOpt policy: a
decision-making algorithm that decides which data point to label. A good
BayesOpt policy needs to balance sufficiently exploring the search space and
zeroing in on the high-performing regions.

Finally, we learn about two policies that seek to improve upon the best-seen
data point in the BayesOpt loop so far, probability of improvement, and one
of the most commonly used BayesOpt policies, expected improvement. For
example, if we have a hyperparameter tuning application where we want to
identify the neural network that gives the highest validation accuracy on a
dataset, and the highest accuracy we have seen so far is at 90%, we will likely
want to improve upon this 90% threshold. The policies we learn in this
chapter attempt to create this improvement. In the material discovery task we
saw in table 1.2, where we’d like to search for metal alloys that mix at low
temperature (corresponding to high stability) and 187.24 is the lowest
temperature we have found, the two aforementioned policies will seek to find
values lower than this 187.24 benchmark.

Amazingly, thanks to the Gaussianity of our belief about the objective

function, how likely or how much we can expect to improve from the best-
seen point may be computed in closed form. This is to say that while we
don’t know what the objective function looks like at unseen locations,
computing improvement-based quantities can still be done easily under a
Gaussian process. By the end of the chapter, we gain a thorough
understanding of what a BayesOpt policy needs to do and how this is done
with the two improvement-based policies. We also learn how to integrate
BoTorch, the BayesOpt library in Python
(https://botorch.org/docs/introduction) that we use in this chapter through the
end of the book, to implement BayesOpt policies.

4.1 Navigating the search space in Bayesian
optimization

How can we make sure we are using our past data to inform future decisions
correctly? What are we looking for in a BayesOpt policy as an automated
decision-making procedure? This section answers these questions and gives
us a clear idea of how BayesOpt works when using a Gaussian process (GP).

Specifically, in the following subsection, we reinspect the BayesOpt loop that
was briefly introduced in section 1.2.2 to see how decision-making via
BayesOpt policies is done in tandem with training a GP. Then, we discuss the
main challenge BayesOpt policies need to address: the balance between
exploring regions with high uncertainty and exploiting good regions in the
search space.

Take, as an example, figure 4.1, which shows a GP trained on two data points
at 1 and 2. Here, a BayesOpt policy needs to decide at which point between
-5 and 5 we should evaluate the objective function next. The exploration–
exploitation tradeoff is clear: we need to decide whether to inspect the
objective function at the left and right extremes of our search space (around
-5 and 5), where there’s considerable uncertainty in our predictions, or stay
within the region around 0, where the mean prediction is at the highest.

Figure 4.1. The exploration–exploitation tradeoff in Bayesian optimization. Each policy needs to
decide whether to query regions with high uncertainty (exploration) or to query regions with high
predicted mean.

The exploration–exploitation tradeoff will set the stage for the different
BayesOpt policies that we discuss in this and following chapters.

4.1.1 The Bayesian optimization loop and policies

First, let’s remind ourselves what the BayesOpt loop looks like and the role
BayesOpt policies play in this process. In this chapter, we also implement a
scaffold of this loop, which we use to inspect BayesOpt policies in future
chapters. Review figure 4.2, which is a repeat of figure 1.6 and shows how
BayesOpt works on a high level.

Figure 4.2. The Bayesian optimization loop, which combines a GP for modeling and a policy for
decision making. This complete workflow may now be used to optimize black-box functions.

Specifically, BayesOpt is done via a loop that alternates between the
following:

Training a GP on the current training set. We have thoroughly covered
how to do this in previous chapters.
Using the trained GP to score data points in the search space by how
valuable they are at helping us identify the optimum of the objective
function (step 2 in figure 4.2). The point that maximizes this score is
selected to be labeled and added to the training data (step 3 in figure
4.2). How this scoring is done is determined by the BayesOpt policy
used. We learn more about different policies in this chapter and chapters
5 and 6.

We repeat this loop until we reach a termination condition, most often once
we have evaluated the objective function for a target number of loop
iterations. This procedure is end to end, as we don’t just use a GP to make
predictions for the sake of making predictions—these predictions inform the
decisions we make about which data points to collect next, which, in turn,
drive how future predictions are generated.

 Note

The Bayesian optimization loop is a virtuous cycle of model training (the
Gaussian process) and data collection (the policy), each of which helps and
benefits from the other, with the goal of locating the optimum of the
objective function. The virtuous cycle of BayesOpt is a feedback loop that
iterates toward an equilibrium with desired properties; its components act in
concert to achieve the desired result, rather than aggravating one another in a
vicious cycle that results in an undesirable outcome.

 Important

A Bayesian optimization policy scores each potential query according to their
value and thus decides where we should query the objective function next
(where the score is maximized). This score computed by the policy is called
the acquisition score, as we are using it as a method of data acquisition.

The rule that dictates how data points are scored according to their value in
helping us achieve this goal is decided by a BayesOpt policy and is, therefore,

essential to optimization performance. A good policy that assigns high scores
to data points that are truly valuable to optimization will point us toward the
optimum of the objective function more quickly and efficiently, while a badly
designed policy might misguide our experiments and waste valuable
resources.

Connection to reinforcement learning policies

If you have had experience with reinforcement learning (RL), you might
notice a connection between a Bayesian optimization policy and an RL
policy. In both techniques, the policy tells us which action to take in a
decision-making problem. While in RL, a policy might assign a score to each
action and we, in turn, pick the one with the highest score, or the policy
might simply output the action we should take. In Bayesian optimization, it’s
always the former, where the policy outputs a score quantifying the value of
each possible query, so it’s our job to identify the query maximizing this
score.

Unfortunately, there’s no perfect solution to the problem of designing a good
BayesOpt policy. That is, there’s no single BayesOpt policy that consistently
excels across all objective functions. Different policies, as we see in this and
following chapters, use different focuses and heuristics. While some
heuristics work well on one type of objective function, others might prove
effective on different types of functions. This means we need to expose
ourselves to a wide range of BayesOpt policies and understand what they aim
to do to be able to apply them to appropriate situations—which is exactly
what we will be doing in chapters 4–6.

What is a policy?

Each Bayesian optimization policy is a decision rule that scores data points in
terms of usefulness in optimization according to a given criterion or heuristic.
Different criteria and heuristics give rise to different policies, and there is no
predetermined set of Bayesian optimization policies. In fact, Bayesian
optimization researchers still publish papers proposing new policies. In this
book, we only discuss the most popular and commonly used policies in
practice.

Let us now take a moment to implement a placeholder BayesOpt loop, which
we will be using from now on to inspect various BayesOpt policies. This
code is implemented in CH04/01 - BayesOpt loop.ipynb. The first component
we need is an objective function that we’d like to optimize using BayesOpt.
Here, we use the familiar one-dimensional Forrester function, which is
defined to be between –5 and 5, as the objective function to be maximized.
We also compute the value of the Forrester function inside its domain [–5, 5],
with xs and ys as the ground truth.

def forrester_1d(x): #1

 y = -((x + 1) ** 2) * torch.sin(2 * x + 2) / 5 + 1 #1

 return y.squeeze(-1) #1

bound = 5 #2

xs = torch.linspace(-bound, bound, bound * 100 + 1).unsqueeze(1) #2

ys = forrester_1d(xs) #2

Another thing we need to do is to modify how GP models are implemented
so that they can be used with BayesOpt policies in BoTorch. Implementing
the GP makes up the first step of our BayesOpt loop.

Since BoTorch is built right on top of GPyTorch, only minimal modifications
are required. Specifically, we use the following GP implementation, in which
we inherit from the botorch.models.gpytorch.GPyTorchModel class in
addition to our usual gpytorch.models.ExactGP class. Further, we declare
the class-specific attribute num_outputs and set it to 1. These are the minimal
modifications we need to make to use our GPyTorch model with BoTorch,
which implements the BayesOpt policies we use later in this chapter:

class GPModel(gpytorch.models.ExactGP,

 botorch.models.gpytorch.GPyTorchModel): #1

 num_outputs = 1 #1

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ConstantMean()

 self.covar_module = gpytorch.kernels.ScaleKernel(

 gpytorch.kernels.RBFKernel()

)

 def forward(self, x):

 mean_x = self.mean_module(x)

 covar_x = self.covar_module(x)

 return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)

Aside from these, everything else in our GP implementation remains the
same. We now write a helper function that trains the GP on our training data:

def fit_gp_model(train_x, train_y, num_train_iters=500):

 noise = 1e-4 #1

 likelihood = gpytorch.likelihoods

 [CA].GaussianLikelihood() #1

 model = GPModel(train_x, train_y, likelihood) #1

 model.likelihood.noise = noise #1

 optimizer = torch.optim.Adam(model.parameters(),

 [CA]lr=0.01) #2

 mll = gpytorch.mlls.ExactMarginalLogLikelihood

 [CA](likelihood, model) #2

 model.train() #2

 likelihood.train() #2

 for i in tqdm(range(num_train_iters)): #2

 optimizer.zero_grad() #2

 output = model(train_x) #2

 loss = -mll(output, train_y) #2

 loss.backward() #2

 optimizer.step() #2

 model.eval() #2

 likelihood.eval() #2

 return model, likelihood

 Note

We have used all the preceding code in previous chapters. If you are having
trouble understanding a piece of code, refer to section 3.3.2 for more details.

This covers step 1 of figure 4.2. For now, we are skipping step 2, in which we

implement BayesOpt policies, and saving it for the next section and future
chapters. The next component to be implemented is the visualization of the
data that has been collected so far, the current GP belief, and how a BayesOpt
policy is scoring the rest of the data points. The target of this visualization is
shown in figure 4.3, which we saw in chapter 1. Specifically, the top panel of
the plot shows the predictions made by a GP model against the true objective
function, while the bottom panel shows the acquisition scores, as computed
by a BayesOpt policy.

Figure 4.3. A typical visualization of progress in Bayesian optimization. The top panel shows the
GP predictions and the ground truth objective function, while the bottom panel shows the
acquisition scores made by a Bayesian optimization policy named Expected Improvement, which
we will learn about in section 4.3.

We are already familiar with how to generate the top panel, and generating
the bottom panel is just as simple. This will be done using a helper function
similar to the one we used in section 3.3. The function takes in a GP model
and its likelihood function as well as two optional inputs:

1. policy refers to a BayesOpt policy object, which can be called in a way
similar to any PyTorch module. Here, we are calling it on the grid xs

that represents our search space to obtain the acquisition scores across
the space. We discuss how to implement these policy objects with
BoTorch in the next section, but we don’t need to know more about
these objects right now.

2. next_x is the location of the data point that maximizes the acquisition
score, which is to be added to the running training data.

def visualize_gp_belief_and_policy(

 model, likelihood, policy=None, next_x=None

):

 with torch.no_grad():

 predictive_distribution = likelihood(model(xs)) #1

 predictive_mean = predictive_distribution.mean #1

 predictive_upper, predictive_lower = #1

 <linearrow /> predictive_distribution

 [CA].confidence_region() #1

 if policy is not None: #2

 acquisition_score = policy(xs.unsqueeze(1)) #2

 ... #3

Here, we are generating the predictions from the GP and the acquisition
scores on the test data xs. Note that we don’t compute the acquisition scores
if policy is not passed in, in which case we also visualize the GP predictions
in the way we’re already familiar with: scattered points to indicate the
training data, a solid line for the mean predictions, and shaded regions for the
95% credible intervals:

 if policy is None:

 plt.figure(figsize=(8, 3))

 plt.plot(xs, ys, label="objective", c="r") #1

 plt.scatter(train_x, train_y, marker="x", c="k",

 label="observations") #2

 plt.plot(xs, predictive_mean, label="mean") #3

 plt.fill_between(#3

 xs.flatten(), #3

 predictive_upper, #3

 predictive_lower, #3

 alpha=0.3, #3

 label="95% CI", #3

) #3

 plt.legend()

 plt.show()

 Note

Refer to section 2.4.4 for a refresher on this visualization.

If, on the other hand, a policy object is passed in, we create another subplot to
show the acquisition scores across the search space:

 else:

 fig, ax = plt.subplots(

 2,

 1,

 figsize=(8, 6),

 sharex=True,

 gridspec_kw={"height_ratios": [2, 1]}

)

 ... #1

 if next_x is not None: #2

 ax[0].axvline(next_x, linestyle="dotted", c="k") #2

 ax[1].plot(xs, acquisition_score, c="g") #3

 ax[1].fill_between(#3

 xs.flatten(), #3

 acquisition_score, #3

 0, #3

 color="g", #3

 alpha=0.5 #3

) #3

 if next_x is not None: #2

 ax[1].axvline(next_x, linestyle="dotted", c="k") #2

 ax[1].set_ylabel("acquisition score")

 plt.show()

This function, when policy and next_x are passed in, will create a lower
panel showing the acquisition score according to the BayesOpt policy.
Finally, we need to implement step 3 of the BayesOpt loop in figure 4.2,

which (1) finds the point with the highest acquisition score and (2) adds it to
the training data and updates the GP. For the first task of identifying the point
giving the highest acquisition score, while it’s possible in our Forrester
example to scan over a one-dimensional search space, an exhaustive search
becomes more and more expensive as the number of dimensions of the
objective function increases.

 Using a helper function to maximize the acquisition score

We can use BoTorch’s helper function
botorch.optim.optimize.optimize_acqf(), which finds the point that
maximizes the score of any BayesOpt policy. The helper function uses L-
BFGS, a quasi-Newton optimization method that generally works better than
gradient descent.

We do this as follows:

policy is the BayesOpt policy object, which we learn about shortly.
bounds stores the boundary of our search space, which is -5 and 5, in
this case.
q = 1 specifies the number of points we’d like the helper function to
return, which is one. (In chapter 7, we learn about the setting where we
are allowed to make multiple queries to the objective functions at the
same time.)
num_restarts and raw_samples denote the number of repeats and initial
data points L-BFGS uses when searching for the optimal candidate that
gives the highest acquisition score. Generally, I recommend using 20
times and 50 times the number of dimensions for these parameters,
respectively.
The returned values, next_x and acq_val, are the location of the point
giving the highest acquisition score and the corresponding maximized
acquisition score, respectively.

next_x, acq_val = botorch.optim.optimize_acqf(

 policy,

 bounds=torch.tensor([[-bound * 1.0], [bound * 1.0]]),

 q=1,

 num_restarts=20,

 raw_samples=50,

)

Setting the number of restarts and raw samples

The higher the values of num_restarts and raw_samples are, the more
exhaustive L-BFGS will be when searching for the optimal candidate
maximizing the acquisition score. This also means the L-BFGS algorithm
will take longer to run. You can increase these two numbers if you see that L-
BFGS is failing at maximizing the acquisition score or decrease them if the
algorithm is taking too long to run.

As the last step, we put together what we have implemented so far in a
BayesOpt loop. We do the following at each iteration of this loop:

1. We first print out the best value we have seen so far (train_y.max()),
which shows how optimization is progressing.

2. Then, we retrain the GP on the current training data and redeclare the
BayesOpt policy.

3. Using the helper function botorch.optim.optimize_acqf() from
BoTorch, we identify the point in the search space that maximizes the
acquisition score.

4. We call the helper function visualize_gp_belief_and_policy(),
which visualizes our current GP belief and optimization progress.

5. Finally, we query the function value at the identified point (next_x) and
update our observed data.

This entire procedure is summarized in figure 4.4, which shows the steps in
the BayesOpt loop and the corresponding code that implements them. Each
step is implemented by modular code from our helper functions or BoTorch,
making the entire procedure easy to follow.

Figure 4.4. Steps in the Bayesian optimization loop and the corresponding code. The code for
each step is modular, which makes the entire loop easy to follow.

The actual code implementation is as follows:

num_queries = 10 #1

for i in range(num_queries):

 print("iteration", i)

 print("incumbent", train_x[train_y.argmax()], train_y.max())

 model, likelihood = fit_gp_model(train_x, train_y) #2

 policy = ... #3

 next_x, acq_val = botorch.optim.optimize_acqf(#4

 policy, #4

 bounds=torch.tensor([[-bound * 1.0],

 [CA][bound * 1.0]]), #4

 q=1, #4

 num_restarts=20, #4

 raw_samples=50, #4

) #4

 visualize_gp_belief_and_policy(model, likelihood, policy,

 next_x=next_x) #5

 next_y = forrester_1d(next_x) #6

 train_x = torch.cat([train_x, next_x]) #6

 train_y = torch.cat([train_y, next_y]) #6

With that, we have implemented a skeleton of a BayesOpt loop. All that’s left
to do is fill in the initialization of policy with an actual BayesOpt policy we
would like to use, and the notebook will be able to run Bayesian optimization
on the Forrester function. Note that while calling
visualize_gp_belief_and_policy() isn’t necessary (that is, the previous
BayesOpt loop will still be able to run without that line of code), the function
is useful in helping us observe the behavior and characteristics of BayesOpt
policies as well as diagnosing any potential problems, as we discuss later in
this chapter.

One of the most important characteristics of a BayesOpt policy is the balance
between exploration and exploitation, a classical tradeoff in many AI and ML
problems. Here, the possibility of discovering a high-performance region we

currently don’t know about (exploration) is traded off against the chance of
zeroing in on a known good region (exploitation). We discuss this tradeoff in
greater detail in the next subsection.

4.1.2 Balancing exploration and exploitation

In this subsection, we discuss one of the problems inherent in any decision-
making procedure, including BayesOpt: the balance between sufficient
exploration of the entire search space and timely exploitation of regions that
yield good results. This discussion will help us form an idea of what a good
BayesOpt policy should do and make us aware of how each of the policies
we learn about addresses this tradeoff.

To illustrate the exploration–exploitation tradeoff, imagine you are dining at
a restaurant you have only been to a few times before (see figure 4.5). You
know that this restaurant has great burgers, but you’re not sure if their fish
and steaks are any good. Here, you are faced with a exploration–exploitation
problem, where you need to choose between ordering something new that
might be an excellent dish (exploration) and ordering your usual but reliable
meal (exploitation).

Figure 4.5. Ordering from a menu at a restaurant has an inherent exploration (trying something
new) vs. exploitation (ordering the usual) tradeoff.

Excessive exploration might cause you to order something you don’t like,
while constant exploitation runs the risk of causing you to miss out on a dish
you will really like. Therefore, a reasonable balance between the two is
crucial.

This ubiquitous problem is found not only in ordering food but in common
problems in AI, such as reinforcement learning, product recommendation,

and scientific discovery. In BayesOpt, we face the same tradeoff: we need to
sufficiently explore the search space, so we don’t miss out on a good region,
but we should also focus on regions with high objective values to ensure we
are making progress in terms of optimization.

 Note

By "regions with high objective values," we mean the regions that comprise
of inputs x that yield high values of outputs f(x), which are the target of our
optimization (specifically maximization) task.

Let’s return to our code example and assume that when we first start out, our
training data set contains two observations from the Forrester objective
function, at x = 1 and at x = 2:

train_x = torch.tensor([

 [1.],

 [2.]

])

train_y = forrester_1d(train_x)

model, likelihood = fit_gp_model(train_x, train_y)

print(torch.hstack([train_x, train_y.unsqueeze(1)]))

which gives the output:

tensor([[1.0000, 1.6054],

 [2.0000, 1.5029]])

This indicates that the point at 1 evaluates at roughly 1.6, while the point at 2
evaluates at 1.5. Visualizing the predictions made by the trained GP, we
obtain the familiar-looking plot in figure 4.6. This figure shows the
exploration–exploitation tradeoff we face: should we evaluate the objective
function where uncertainty is high, or should we stay within the region where
the mean prediction is high?

Figure 4.6. Predictions by a GP trained on two data points from the Forrester function.

Each BayesOpt policy has a different way of addressing the tradeoff and,
therefore, offers different advice on how to best explore the search space. In
figure 4.6, some policies might lead us to further explore unknown regions,
while others might suggest zeroing in on what we know to give high values.
Again, there’s usually no one-size-fits-all approach (that is, no policy that
always works well).

4.2 Finding improvement in Bayesian optimization

We almost have everything ready to run BayesOpt on a given objective
function. We now need a policy with a scoring rule about how valuable each
data point we could potentially label is in our search for the optimum of the
objective. Again, each policy we will see gives a different scoring rule,
motivated by different heuristics for optimization.

In this section, we learn about one such heuristic that makes intuitive sense
when the goal is optimization. It comes in the form of seeking to improve
from the best point we have seen so far throughout optimization. In the
upcoming subsection, we learn that GPs are amenable to facilitating the
computation of this measure of improvement. Then, we cover how different

ways to defining improvement give rise to two of the most common
BayesOpt policies: probability of improvement and expected improvement.

4.2.1 Measuring improvement with a Gaussian process

In this subsection, we examine how improvement in BayesOpt is defined,
how it constitutes a good measure of utility, and that working with
improvement-related quantities is straightforward with normal distributions.
As our final goal in BayesOpt is to identify the global optimum of the
objective function—the point that gives the highest objective value—the
higher the values are that we observe while making evaluations of the
objective function, the higher our utility should be. Suppose as we make an
evaluation of the objective function at some point x1, we observe the value 2.
In another situation in which we evaluate another point x2, we observe the
value 10. Intuitively, we should value the second point more, as it gives us a
higher function value.

However, what if before observing x1 and x2, we have already seen a point x0
that yields a value of 20? In this case, it’s natural to think that even though x2
is better than x1, neither points result in any additional utility, as we already
have a much better observation in x0. On the other hand, if we were to have a
point x3 that yields a value of 21, then we would be happier, as we would
have found a better value than that of x0. This is illustrated in figure 4.7.

Figure 4.7. Seeking improvement from the best-seen point. Although point x2 is better than point
x1, both are "bad" in the sense that they don’t improve on point x0.

These comparisons point to the idea that in BayesOpt, we care about not only
the raw values of our observations but also whether the newly found
observations are better than our observations. In this case, since x0 sets a very
high bar in terms of function values, neither x1 nor x2 constitute improvement
—at least the kind of improvement we care about in optimization. In other
words, a reasonable goal in optimization is to seek to improve from the best
point that we have seen so far because as long as we improve from the best-
seen point, we are making progress.

 Definition

The best-seen point, or the point that yields the highest function value we
have found so far, is often called the incumbent. This term denotes the fact
that this point currently holds the highest value among all points queried
during our search.

Given that we have a GP belief about the objective function, inspecting how
likely or how much we can expect to improve from the best-seen point may
be easily accomplished. Let’s start from our running example of the Forrester

function, where our current GP is shown in figure 4.6.

Out of the two data points in our training set, (x = 1, y = 1.6) is the better one,
as it has a higher function value. This is our current incumbent. Again, we are
focusing on improving from this 1.6 threshold; that is, we’d like to find data
points that will yield function values higher than 1.6.

Visually, we can imagine this improvement-based idea as cutting off the GP
horizontally at the incumbent, as shown in figure 4.8. The portion highlighted
in the darker color corresponds to "improving from the incumbent" (at 1.6).
Anything below this line does not constitute improvement and, therefore,
won’t give us any additional optimization utility. Whether a point—for
instance, x = 0—will yield a higher function value is unknown, but we can
still try to reason about the probability that it is true using what we know
from the GP model.

Figure 4.8. Improvement from the incumbent from the perspective of a Gaussian process. The
portion of the Gaussian process’s predictions that corresponds to improvement from the
incumbent is highlighted darker.

Reasoning about the probability that x = 0 will yield a higher function value
is easy to do, as by querying point x = 0, the improvement from the

incumbent that we may observe exactly corresponds to a normal distribution
that is partially truncated, as shown in figure 4.9.

The left panel of figure 4.9 contains the same GP in figure 4.8 that is cut off
at the incumbent, with an addition showing the CI of the normal distribution
prediction at x = 0. Slicing the GP vertically at this point 0, we obtain the
right panel of figure 4.9, where the CIs in the two panels are the same. We
see that only the highlighted portion of the normal distribution in the right
panel represents the improvement we may observe from the incumbent,
which is what we care about. This highlighted portion is part of a normal
distribution, which as we cover in the upcoming subsections, leads to many
mathematical conveniences.

Figure 4.9. Improvement from the incumbent at 0, highlighted in a darker shade. The left panel
shows the entire Gaussian process, while the right panel only shows the normal distribution
corresponding to the prediction at 0 (the error bars are the same across the two panels). Here,
improvement from the incumbent follows a truncated normal distribution.

These conveniences don’t only apply to x = 0. Since the prediction made by
the GP at any given point is a normal distribution, the improvement at any
point also follows a normal distribution that is cut off, as shown in figure
4.10.

We see that compared with figure 4.9, where a large portion of the normal
distribution at 0 is highlighted as possible improvements, the following is
true:

The prediction at –2 (center panel) is worse in the sense that only half of
it shows possible improvements. This is because the mean prediction at
–2 is roughly equal to the incumbent, so there’s a 50–50 chance that the
function value at –2 will improve from 1.6.
As another example, the right panel shows the prediction at 3, where it is
almost impossible (according to our GP belief about the objective) to
improve from the incumbent, as almost the entire normal distribution at
3 lies below the incumbent threshold.

This shows that different points will lead to different possible improvements,
depending on the GP’s predictions.

Figure 4.10. Improvement from the incumbent at –2 and 3, highlighted in a darker shade. The
left panel shows the entire Gaussian process, the center panel shows the prediction at –2, and the
right panel shows the prediction at 3. The highlighted portions show possible improvements,
which depend on the normal distribution at a given point.

4.2.2 Computing the probability of improvement

Having isolated what we aim to achieve in BayesOpt—namely, improving
from the current incumbent—we are now ready to finally begin discussing
the BayesOpt policies that seek to achieve this goal. In this subsection, we
learn about probability of improvement (PoI), which is a policy that measures
how likely a candidate point is able to improve.

The idea of measuring how likely it is that a candidate point improves from
the incumbent corresponds to the probability a point is a "good" one,
according to figure 4.7. This was also hinted at in section 4.2.1 with the GP,
where we said the following:

1. The point at 0 (figure 4.9) has a large portion of its normal distribution
highlighted as possible improvements. In other words, it has a high
probability of improving.

2. The point at -2 (the center panel of figure 4.10) has a 0.5 probability of
improving, as only half of its normal distribution exceeds the incumbent.

3. The point at 3 (the right panel of figure 4.10) has most of its normal
distribution below the threshold, so it has a very low probability of
improving.

We can make this computation more concrete by noticing that the probability

that a point improves from the incumbent is equal to the area of the
highlighted portion in figure 4.9 and figure 4.10.

 Definition

The entire area under any normal curve is 1, so the area of the highlighted
portion in figure 4.9 and figure 4.10 exactly measures how likely it is that the
normal random variable in question (the function value at a given point)
exceeds the incumbent.

The quantity corresponding to the area of the highlighted region is related to
the cumulative density function (CDF), which is defined as the probability
that a random variable will take a value less than or equal to a target. In other
words, the CDF measures the area of the region not highlighted, which is 1
minus the area of the highlighted region.

Thanks to how mathematically convenient normal distributions and GPs are,
we can easily compute the area of this highlighted region using the CDF,
which requires the mean and the standard deviation of the normal distribution
in question. Computationally, we can make use of PyTorch’s
torch.distributions.Normal class, which implements normal distributions
and offers the useful cdf() method. Specifically, suppose we are interested in
calculating how likely the point at 0 is able to improve from the incumbent.
We will follow the procedure describe in figure 4.11:

1. First, we use the GP to compute the mean and standard deviation
predictions at the point at 0.

2. We then compute the area under the normal curve defined by the mean
and standard deviation above, with the incumbent being the cutoff. We
use the CDF for this computation.

3. Finally, we subtract the CDF value from 1 to obtain the PoI for the
candidate point.

Figure 4.11. Flowchart of how the PoI score is computed. By following this procedure, we can
compute how likely any candidate point is able to improve from the incumbent.

 Note

Technically, the CDF computes the area of the portion of a normal
distribution to the left of a threshold, so we need to subtract from 1 the output
of the CDF to get the area of the portion to the right of the threshold, which
corresponds to possible improvements.

We first generate the GP’s prediction at this point:

with torch.no_grad():

 predictive_distribution = likelihood(model(torch.tensor([[0.]])))

 predictive_mean = predictive_distribution.mean #1

 predictive_sd = predictive_distribution.stddev #2

Then, we initialize a one-dimensional normal distribution with the
corresponding mean and standard deviation:

normal = torch.distributions.Normal(predictive_mean, predictive_sd)

This normal distribution is the one visualized in the right panel of figure 4.9.
Finally, to compute the area of the highlighted portion, we call the cdf()
method, with the incumbent as its input (which is train_y.max(), the

maximum value of our training data) and subtract the result from 1:

>>> 1 - normal.cdf(train_y.max())

tensor([0.8305])

Here, our code shows that at point 0, we have more than 80% chance of
improving from the incumbent, which agrees with the fact that a large portion
of the normal distribution in figure 4.9 is highlighted. Using the same
computation, we can find out that there is a 0.4948 PoI at −2 and 0.0036 at 3.
Looking at figure 4.10, we see that these numbers make sense. Beyond these
three points (0, −2, and 3), we can also compute how likely a given point is
able to improve—that is, the PoI of a given point—across our search space,
using the same formula.

 Definition

The procedure in figure 4.11 gives us the scoring rule for the PoI policy,
where the score of each point in the search space is equal to how likely the
point can improve from the incumbent. Again, this score is also called the
acquisition score, as we are using it as a method of data acquisition.

We can realize this PoI policy using the cdf() method, but it’s cleaner to
leverage BoTorch, the Python library that implements BayesOpt policies, for
this task. BoTorch is built on top of and works seamlessly with PyTorch and
GPyTorch. As we saw earlier, we only needed to change two lines of code in
our GP class to make the model compatible with BoTorch. Further, BoTorch
implements its policies as modules, allowing us to swap different policies in
and out of a BayesOpt loop in a modular manner.

The modularity of BoTorch’s policies

By modular, we mean that we can replace the policy currently in use with
another policy in a BayesOpt loop by only changing the initialization of the
policy. The rest of the BayesOpt loop (training the Gaussian process model,
visualizing optimization progress, and updating the training data) doesn’t
have to change. We have seen a similar modularity with GPyTorch’s mean

functions and kernels in sections 3.3 and 3.4.2.

To implement the PoI policy with BoTorch, we do the following:

policy = botorch.acquisition.analytic.ProbabilityOfImprovement(#1

 model, best_f=train_y.max() #1

) #1

with torch.no_grad(): #2

 scores = policy(xs.unsqueeze(1)) #2

The BoTorch class ProbabilityOfImprovement implements the PoI as a
PyTorch module, taking in a GP as the first argument and the incumbent
value as the second. The variable scores now stores the PoI scores of the
points in xs, which is a dense grid between −5 and 5.

Again, the acquisition score of each point equals the probability that the point
will improve from the incumbent, according to our GP belief. figure 4.12
shows this score across our search space, together with our GP.

We observe some interesting behavior in the PoI scores:

The region to the left of the incumbent (from 0 to 1) has relatively high
PoI scores. This corresponds to the high mean predictions in this area.
The region on the left of the plot has slightly lower scores. This is
because the mean predictions are not as high, but there is enough
uncertainty in this region that there’s still a considerable probability of
improving.
The region around 2 has a PoI close to 0. As we saw, the predictive
normal distributions of the points here mostly lie below the incumbent
threshold.

Figure 4.12. Gaussian process predictions (top) and PoI (bottom), where the dotted line indicates
the point that maximizes the PoI score. This point is where we query the objective function at the
next iteration of optimization.

Now, all that’s left for us to do is identify the point between -5 and 5 that has
the highest PoI score—that is, the point that maximizes the probability of
improving from the incumbent. As mentioned, we take advantage of
BoTorch’s helper function botorch.optim.optimize.optimize_acqf(),
which finds the point that maximizes the score of any BayesOpt policy. We
do this using the following code, which is a part of the code that implements
the BayesOpt loop:

next_x, acq_val = botorch.optim.optimize.optimize_acqf(

 policy,

 bounds=torch.tensor([[-bound], [bound]], dtype=torch.float),

 q=1,

 num_restarts=10,

 raw_samples=20,

)

The returned values are the location of the point giving the highest
acquisition score that L-BFGS finds and the corresponding maximized

acquisition score. Upon inspection, we have the following:

>>> next_x, acq_val

(tensor([[0.5985]]), tensor(0.9129))

This output indicates that the candidate point maximizing the PoI score at
0.91 PoI is at roughly 0.6, which corresponds to the dotted vertical line in
figure 4.12. This point is where we will query the objective function (that is,
evaluate the function) to collect the next data point in BayesOpt.

The candidate with the highest predictive mean

Interestingly, the point we select to query (roughly at 0.6) is not the point
with the highest predictive mean (which is around -0.5). The latter has a
slightly lower PoI because our uncertainty at this point is high, so it is, in
fact, less likely to be able to upon from the incumbent, despite the high
predictive mean.

And that’s all there is to deciding which point to query using the PoI policy at
a single iteration of BayesOpt. But remember the BayesOpt loop in figure
4.2, where we alternate between finding the next data point to query using a
policy (step 2) and updating our GP with that new data (steps 1 and 3). We
will do this in section 4.2.3.

4.2.3 Diagnosing the probability of improvement policy

In this subsection, we finally run the PoI policy and analyze its behavior.
Once again, we repeat the entire process—training the model, declaring the
PoI policy, and using optimize_acqf() to find the best point—multiple
times until we reach a termination condition. As we saw, this loop is
implemented in notebook 01 - BayesOpt loop.ipynb. Now, we need to
initialize the PoI policy within the appropriate for loop.

This code produces a series of plots generated by the helper function
visualize_gp_belief_and_policy(), each showing the current state of our
BayesOpt loop throughout the 10 queries we make. These plots look similar
to figure 4.12, with the addition of the objective function for our reference:

num_queries = 10

for i in range(num_queries):

 print("iteration", i)

 print("incumbent", train_x[train_y.argmax()], train_y.max())

 model, likelihood = fit_gp_model(train_x, train_y)

 policy = botorch.acquisition.analytic.ProbabilityOfImprovement(#1

 model, best_f=train_y.max() #1

) #1

 next_x, acq_val = botorch.optim.optimize_acqf(

 ... #2

The number of function evaluations in Bayesian optimization

The number of queries we use in Bayesian optimization entirely depends on
how many function evaluations we can afford to make. Section 1.1 defines
the problem of expensive, black box optimization, which assumes the number
of queries we can make is relatively low, due to the cost-of-function
evaluation.

There are other criteria that could be used to determine when to terminate the
BayesOpt loop. For example, we can stop when we have achieved a targeted
objective value or when there hasn’t been significant improvement among the
last 5 or 10 queries. Throughout the book, we stick with the assumption that
we have a predetermined number of function evaluations that can be made.

We use 10 queries as the default to run the Bayesian optimization policies for
the one-dimensional Forrester function and inspect the behavior of the
policies. Exercise 2 of this chapter deals with a two-dimensional function and
uses 20 queries.

figure 4.13 shows these plots at the first, fifth, and final iterations. We see
that the PoI policy stays inside the region between 0 and 2, and at the 10th
and final iteration, we have converged at a local optimum. This means we are
failing to adequately explore the search space and, therefore, missing out on
the global optimum of the objective function in the right area, around 4.

Figure 4.13. Progress made by the PoI policy. As the policy seeks to pursue improvement of any

magnitude, progress gets stuck at the local optimum near 2, and we fail to explore other regions
of the search space.

The BoTorch warning when using the helper function optimize_acqf()

When running the code for the BayesOpt with the PoI above, you might
receive the following warning from BoTorch:

RuntimeWarning: Optimization failed in `gen_candidates_scipy` with the following warning(s):

[OptimizationWarning('Optimization failed within `scipy.optimize.minimize` with status 2 and message ABNORMAL_TERMINATION_IN_LNSRCH.')]

Trying again with a new set of initial conditions.

 warnings.warn(first_warn_msg, RuntimeWarning)

This warning is displayed when the helper function optimize_acqf()
(specifically, the line search subroutine) fails to successfully optimize the
acquisition score (the PoI score, in this case). This failure often happens
when the acquisition score function is highly non-smooth (e.g., in the last
panel of figure 4.13, where there’s a sharp peak around x = 1.5), making
numerical optimization unstable.

Without going into the details of the optimization routine, we can resort to
increasing the number of restarts (the num_restarts argument) and the
number of raw samples (the raw_samples argument) when using
optimize_acqf(), which increases our chance of finding the data point with
the highest acquisition score.

For ease of exposition, from this point onward, we turn off this warning when
running the helper function optimize_acqf() in our code, using a context
manager with the warnings module as follows:

with warnings.catch_warnings():

 warnings.filterwarnings('ignore', category=RuntimeWarning)

 next_x, acq_val = botorch.optim.optimize_acqf(...)

 Note

Although the performance of the PoI in figure 4.13 might be disappointing
(after all, we have spent a lot of time building up to this PoI policy that seems
overly exploitative), analyzing what is happening will give us insights into
how to refine and improve (no pun intended) our performance.

We note that although the PoI gets stuck at the local optimum above, it is
doing what it’s supposed to do. Specifically, since the PoI seeks to improve
from the current incumbent, the policy finds that slowly moving to the right
of 1 will achieve that with high probability. Although the PoI constantly finds
more and more improvement by slowly moving to the right, we view this
behavior as overly exploitative, as the policy is not exploring other regions
thoroughly enough.

 Important

In other words, even though what the PoI is doing is consistent with what we
initially wanted to achieve—namely, improving from the incumbent—the
resulting behavior isn’t what we want. This means that simply pursuing
improvement of any kind from the incumbent shouldn’t be what we care
about.

There are two ways to fix this overly exploitative behavior. The first is to
restrict what we mean by improvement. Our experiment with the PoI shows
that at each iteration, the policy only finds marginal improvement from the
incumbent by slowly moving in the direction that the GP believes the
function moves upward in.

If we were to redefine what we mean by improvement by saying that an
improvement from the incumbent is only valid if it is at least ε greater than
the current incumbent value and modifying the PoI accordingly, then the
policy will be more likely to explore the search space more effectively. This
is because the GP will know that staying at a local optimum won’t lead to
significant improvement from the incumbent. figure 4.14 illustrates this idea.

Figure 4.14. Defining a stricter definition of improvement by requiring an improvement of at least
ε = 0 (left) and ε = 2 (right). The larger the requirement is, the more explorative the PoI policy
becomes. See exercise 2 for more details.

We won’t be looking into more detail here, but exercise 1 in section 6.2.4
explores this approach. Interestingly, we will observe that the more
improvement we require the PoI to observe, the more explorative the policy
becomes.

4.2.4 Exercise 1: Encouraging exploration with probability of

improvement

One way to address the PoI’s tendency to over-exploit is to set a higher bar
for what constitutes improvement. Specifically, we saw that naïvely finding
points that maximize the probability of improving from the incumbent
prevents us from escaping local optima.

As a solution to this, we can modify the policy to specify that we only accept
improvements by at least ε. This would guide the PoI to look for
improvement in other regions in the search space, once a local region has
been sufficiently covered. This exercise, implemented in CH04/02 - Exercise
1.ipynb, walks us through this modification and showcases the positive effect
it has on the PoI. Its steps are as follows:

1. Recreate the Bayesian optimization (BayesOpt) loop in CH04/01 -
BayesOpt loop.ipynb, which uses the one-dimensional Forrester
function as the optimization objective.

2. Before the for loop that implements BayesOpt, declare a variable named
epsilon. This variable will act as the minimum improvement threshold
to encourage exploration. Set this variable to 0.1 for now.

3. Inside the for loop, initialize the PoI policy as before, but this time,
specify that the incumbent threshold, set by the best_f argument, is the
incumbent value plus the value stored in epsilon.

4. Rerun the notebook, and observe whether this modification leads to
better optimization performance than the original PoI policy by
encouraging more exploration.

5. How much more explorative PoI becomes heavily depends on the
minimum improvement threshold stored in epsilon. Set this variable to
0.001 to observe that an improvement threshold that is not sufficiently
large may not necessarily encourage exploration successfully. What
happens when this value is set to 0.5?

6. In the previous step, we saw that setting the improvement threshold to
an appropriate value is crucial for PoI. However, it’s not obvious how to
do this across multiple applications and objective functions. A
reasonable heuristic is to dynamically set it to some α percentage of the
incumbent value, specifying that we would like to see 1 + α increase in
the incumbent value. Implement this in the code with a 110%

improvement requirement.

In the next section, we discuss the second approach to addressing overly
exploitative behavior of a PoI, which is taking into account not only whether
a candidate data point will yield an improvement but how much we expect the
improvement to be as well.

4.3 Optimizing the expected value of improvement

As we saw in the previous section, naïvely seeking to improve from the
incumbent leads to over-exploitation from the PoI. This is because simply
moving away from the incumbent by a small amount in the appropriate
direction can achieve a high PoI. Therefore, optimizing this PoI is not what
we want to do. In this section, we learn to further account for the magnitude
of the possible improvements we may observe. In other words, we also care
about how much improvement we can make from the incumbent. This leads
us to one of the most popular BayesOpt policies: expected improvement (EI).

The motivation for seeking to account for the magnitude of the improvement
is clear. Consider the example in figure 4.15.

The left panel shows the computation made by the PoI policy, which
considers only whether each candidate data point improves from the
incumbent. Therefore, a point that improves by a small amount and one that
significantly improves from the incumbent are treated equally.

On the other hand, the right panel shows what happens if we were to also
consider the magnitude of the possible improvements. Here, although points
x1 and x2 are still treated as undesirable (since they don’t improve from the
incumbent x0), x4 is considered better than x3, as the former offers a larger
improvement. Similarly, x5 is considered the best out of the five candidate
points.

Figure 4.15. The difference between probability of improvement (left) and expected improvement
(right). The former only cares whether we improve from the incumbent, while the latter
considers how much improvement is made.

Of course, this doesn’t mean we now can simply design the policy that picks
out the data point that offers the largest improvement from the incumbent.
We still need to know how much (if any) improvement we will observe,
which we only discover once we actually query the objective function.

 Note

Despite not knowing the exact value of the improvement we will observe, we
can reason about the magnitude of the improvement of each candidate point
in a probabilistic manner.

Recall that in figure 4.9 and figure 4.10, we have a truncated normal
distribution representing the improvement we will observe at a given point.
By computing the area of the highlighted region, we obtain the probability
that a point will improve from the incumbent, giving us the PoI policy.

However, we can perform other computations as well.

 Definition

In addition to the PoI, we may compute the expected value of the random
variable corresponding to the highlighted region. The fact that we are dealing
with truncated normal distributions enables us to compute this expected value
in closed form. The Bayesian optimization policy that scores data points
using this measure is called expected improvement (EI).

While the closed-form formula for the expected improvement score isn’t as
simple as the CDF, like for PoI, EI’s scoring formula is still just as easy to
calculate. Intuitively, using the expected value of improvement may allow us
to better balance between exploration and exploitation than PoI. After all,
points around the current incumbent may improve with high probability, but
their improvements are likely to be minimal (which is what we empirically
observed in our code).

A point that is far away, which we don’t know much about, might give a
lower improvement probability, but because there’s a chance that this point
will give a large improvement, EI might assign a higher score to it. In other
words, while PoI might be considered a risk-averse BayesOpt policy that
cares about improving from the incumbent, however small the improvement
is, EI balances between the risk and reward to find the point that best
balances the tradeoff. This is illustrated in figure 4.16, which compares PoI
and EI using the same dataset and trained GP.

We see that the candidate data point chosen by PoI (around 0.6) is different
from one chosen by EI (around –0.7). The former is close to the current
incumbent, so it’s likely that querying it will help us improve. However, EI
sees that there’s more uncertainty in other regions far away from the
incumbent, which may lead to a larger improvement. Thanks to this
reasoning, EI favors data points that better provide a better balance between
exploration and exploitation.

Figure 4.16. The difference between probability of improvement (left) and expected improvement
(right). Expected improvement balances exploration and exploitation better.

Another nice property of EI that showcases this balance is the way it assigns
the acquisition scores to data points with the same predictive mean or
standard deviation. Specifically, it does this in the following ways:

If two data points have the same predictive mean but different predictive
standard deviations, then the one with the higher uncertainty will have a
higher score. The policy, therefore, rewards exploration.
If two data points have the same predictive standard deviations but
different predictive means, then the one with the higher mean will have
a higher score. The policy, therefore, rewards exploitation.

This is a desideratum of a BayesOpt policy, as it expresses our preference for

exploration when all else is equal (that is, when the predictive means are
equal) but also for exploitation when all else is equal (that is, when
uncertainties are equal). We see this property again in chapter 5 with another
BayesOpt policy called upper confidence bound.

Computationally, we can initialize EI as a BayesOpt policy object using code
that is almost identical to the code for PoI:

policy = botorch.acquisition.analytic.ExpectedImprovement(

 model, best_f=train_y.max()

)

Now, let’s rerun our entire BayesOpt loop with the EI policy, making sure we
are starting with the same intial dataset. This generates figure 4.17, which is
to be compared to figure 4.13 of PoI.

Here, we see that while EI still focuses on the local optimal region around 2
initially, the policy quickly explores other regions in the search space to look
for larger improvements from the incumbent. At the fifth iteration, we see
that we are now inspecting the region on the left. Finally, after spending all
10 queries, EI has successfully identified the global optimum of the objective
function, outperforming PoI in the previous section.

Figure 4.17. Progress made by the expected improvement policy. The policy balances exploration
and exploitation better than probability of improvement and finds the global optimum at the end.

 Note

Due to its simplicity and natural balance between exploration and
exploitation, EI is one of the most, if not the most, commonly used policies in
Bayesian optimization. The policy is a good default option if there’s no
reason to prefer other policies.

4.4 Exercise 2: Bayesian optimization for
hyperparameter tuning

This exercise, implemented in CH04/03 - Exercise 2.ipynb, applies BayesOpt
to an objective function that simulates the accuracy surface of a support-
vector machine model in a hyperparameter tuning task. The x-axis denotes
the value of the penalty parameter C, while the y-axis denotes the value for
the RBF kernel parameter γ. See the exercise in chapter 3 for more detail. The
steps are as follows:

1. Recreate the Bayesian optimization (BayesOpt) loop in CH04/01 -
BayesOpt loop.ipynb.

1. We don’t need the Forrester function anymore; instead, copy the
code for the two-dimensional function described in the exercise in
chapter 3, and use it as the objective function.

2. Note that the domain for this function is [0, 2]^2.
2. Declare the corresponding test data with xs for a two-dimensional grid

representing the domain and ys for the function values of xs.

3. Modify the helper function that visualizes optimization progress. For
one-dimensional objective functions, it’s easy to visualize the GP
predictions along with the acquisition scores. For this two-dimensional
objective, the helper function should generate a plot of two panels: one
showing the ground truth and the other showing the acquisition scores.
Both panels should also show the labeled data. The plot should look
similar to figure 4.18.

Figure 4.18. A reference of what the helper function that visualizes BayesOpt progress

should look like. The left panel shows the true objective function, while the right panel
shows the acquisition scores.

4. Copy the GP class from the exercise in chapter 3, which implements a
Matérn 2.5 kernel with ARD. Further modify this class to make it
integratable with BoTorch.

5. Reuse helper function fit_gp_model() and the for loop that
implements BayesOpt.

1. The initial training data set should contain the point in the middle
of the domain: (1, 1).

2. As our search space is two-dimensional, make the search for the
point maximizing the acquisition score more exhaustive by setting
num_restarts = 40 and raw_samples = 100 in
botorch.optim.optimize_acqf().

3. Set the number of queries we can make (the number of times we
can evaluate the objective function) to 20.

6. Run the PoI policy on this objective function. Observe that the policy,
once again, gets stuck at a local optimum.

7. Run the modified version of PoI, where the minimum improvement
threshold is set at 0.1.

1. See Exercise 1 for more detail about setting the minimum
improvement threshold for PoI.

2. Observe that this modification, again, leads to better optimization
performance.

3. What is the first iteration where we reach an accuracy of at least
90%? What are the model’s parameters achieving this accuracy?

8. Run the Expected Improvement policy on this objective function.

1. Observe that the policy outperforms PoI.
2. What is the first iteration where we reach an accuracy of at least

90%? What are the model’s parameters achieving this accuracy?

9. Inspecting the performance of a policy based on a single run of
BayesOpt can be misleading. It’s better for a BayesOpt experiment to be
repeated multiple times with different starting data.

1. Implement this idea of repeated experiments, and visualize the
average incumbent values and error bars across 10 experiments.

2. Each experiment should start with a single data point uniformly
sampled from the search space.

3. Run the policies we have listed, and compare their performance.

This marks the end of our chapter on improvement-based BayesOpt policies.
It’s important to keep the code that implements the BayesOpt loop for the
Forrester function we used here in mind, as we use it again to benchmark
other policies in future chapters. Specifically, in chapter 5, we learn about
BayesOpt policies inspired by the multi-armed bandit problem.

4.5 Summary

A Bayesian optimization policy uses the trained Gaussian process to
score how valuable each data point is in our quest of finding the
optimum of the objective function. The score computed by the policy is

called the acquisition score.
In each iteration of a Bayesian optimization loop, a Gaussian process is
trained on the observed data, a policy suggests a new data point to
query, and the label of this point is added to the training set. This repeats
until we cannot make more function evaluations.
A GPyTorch model only needs minimal modifications to be integrated
into BoTorch, which implements Bayesian optimization policies.
BoTorch provides a helper function named optimize_acqf() from the
optim.optimize module that takes in a policy object and returns the
datapoint that maximizes the acquisition score.
A good Bayesian optimization policy needs to balance between
exploration (learning about regions with high uncertainty) and
exploitation (narrowing down high-performing regions).
Different Bayesian optimization policies address the exploration–
exploitation tradeoff differently. It is important to inspect optimization
progress to analyze and adjust the performance of the policy in use.
One heuristic that could be used in Bayesian optimization is to find
points that improve upon the best-seen value.
Finding the point that gives the best chance of improving from the best-
seen value results in the probability of improvement policy.
Finding the point that gives the highest expected improvement from the
best-seen value results in the expected improvement policy.
Probability of improvement may be considered an overly exploitative
and risk-averse policy, as the policy only aims to improve from the best-
seen value, however small the improvement is. Without any further
modification, expected improvement tends to balance exploration and
exploitation better than probability of improvement.
Thanks to the Gaussian belief about the function values, computing
scores by probability of improvement and expected improvement may
be done in closed form. We, therefore, can compute and optimize the
scores defined by these policies easily.

5 Exploring the search space with
bandit-style policies
This chapter covers

The multi-armed bandit problem and how it’s related to Bayesian
optimization
The Upper Confidence Bound policy in Bayesian optimization
The Thompson sampling policy in Bayesian optimization

Which slot machine should you play at a casino to maximize your winnings?
How can you develop a strategy to intelligently try out multiple slot machines
and narrow down the most profitable machine? What does this problem have
to do with Bayesian optimization (BayesOpt)? These are the questions this
chapter will help us answer.

Chapter 4 was our introduction to BayesOpt policies, which decide how the
search space should be explored and inspected. The exploration strategy of a
BayesOpt policy should guide us toward the optimum of the objective
function we’d like to optimize. The two particular policies we learned about
were Probability of Improvement and Expected Improvement, which leverage
the idea that we’d like to improve from the best objective value we have seen
so far. This improvement-based mindset is only a heuristic and, therefore,
doesn’t constitute the only approach to BayesOpt.

In this chapter, we learn about two more BayesOpt policies that are directly
taken from the heavily related decision-making problem called multi-armed
bandit (MAB). Posed as a question of which is the most profitable slot
machine to play at a casino, the MAB problem sets the stage for many
decision-making-under-uncertainty problems. MAB has enjoyed a long
history and extensive research, and many good solutions have been
developed for this problem. As we learn in this chapter, MAB and BayesOpt
are very similar problems—both deal with decision-making under uncertainty
for optimization—so the expectation is that solutions to the MAB problem

will work well on BayesOpt too.

First, we briefly talk about the MAB problem and how it is related to
BayesOpt. This discussion provides some background on the problem and
puts into perspective how BayesOpt is related to other problems in AI. Then,
we learn about the two most popular policies in MAB and apply them to
BayesOpt. The first is the Upper Confidence Bound policy, which uses the
optimism in the face of uncertainty principle to reason about its decisions.
The second policy is called Thompson sampling, which is a randomized
solution that actively leverages the probabilistic nature of our predictive
models. We then implement and run these policies on our running examples
and analyze their performance.

By the end of this chapter, we gain an understanding of the MAB problem
and its relationship with BayesOpt. More importantly, we add two more
items to our portfolio of BayesOpt policies, exposing ourselves to more ways
of exploring the search space in a black box optimization problem.

5.1 Introduction to the multi-armed bandit problem

In this section, we learn about the multi-armed bandit problem on a high
level. We start by discussing its problem statement and setting in the first
subsection.

 Important

In a MAB problem, we need to choose an action to take at each step over a
long horizon. Each action yields reward according to an unknown reward
rate, and our goal is to maximize the total reward we receive at the end of the
long horizon.

We also explore its connections to Bayesian optimization (BayesOpt) as well
as other problems in AI and ML. This provides us with context, relating
MAB to the rest of the text.

5.1.1 Finding the best slot machine at a casino

While multi-armed bandit may evoke a mysterious image in your mind, the
term actually refers to a gambler’s problem of choosing which slot machines
to play at a casino to obtain the largest amount of reward. Imagine you’re at a
casino and there’s a slot machine with an "arm" you can pull.

Figure 5.1. A slot machine with an arm that can be pulled. The machine may return coins
according to its reward probability when its arm is pulled.

Upon pulling the arm of the slot machine, you may receive coins as reward;
however, there’s randomness in this process. Specifically, programmed
within the inner-workings of this slot machine is a reward probability p. Each
time the arm of the machine is pulled, the machine returns coins according to
that probability. This slot machine is visualized in Figure 5.1. If p = 0.5, then
the machine rewards its players half of the time. If p = 0.01, then roughly
only 1 in 100 pulls will result in coins being returned. Since this probability is
programmed inside the machine—and therefore hidden away from us—
there’s no way for us to know for sure what that probability is.

In this hypothetical setting, the casino programs its slot machines so that the
rate at which these machines reward players with coins is lower than that of
the machines being played and receiving coins. In other words, even if there
are occasional winners who receive rewards from these slot machines, on
average, it’s the casino that makes a profit.

 Definition

A particularly unsuccessful player who is losing coins faster than winning
them might begrudgingly call the slot machine they have been playing "a
bandit," thinking the machine is stealing their money. Since the machine has
an arm that may be pulled, it can be called a one-armed bandit.

Now, imagine there’s not just one slot machine but a row of machines we
may choose to play, each with its own reward probability p, as visualized in
figure 5.2.

Figure 5.2. A slot machine with an arm that can be pulled. The machine may return coins
according to its reward probability when its arm is pulled.

With this row of slot machines, a strategic player may turn this setting into a
decision-making challenge and aim to try out the slot machines in some
intelligent manner, so they can most quickly identify the machine that has the
highest reward probability. Their intent here is to maximize the amount of
reward they receive, given they can only pull the arms of these machines a
specific number of times.

 Definition

This decision-making problem is called the multi-armed bandit (or MAB), as
there are multiple arms we may pull. The goal is to design a policy of
deciding which machine whose arm we should pull next to maximize the
total reward we obtain at the end.

We see that MAB possesses many characteristics of an optimization-under-
uncertainty problem, like BayesOpt:

We can take specific actions. Each action corresponds to pulling the arm
of a specific slot machine.
We have a limited budget. We can only pull these arms for a specific
number of times until we have to stop.
There’s uncertainty in the outcomes of the actions that may be taken.
We don’t know what the reward probability of each slot machine is, and
we can’t even estimate it until we have pulled its arm multiple times.
Further, upon pulling an arm, we can’t know for sure whether we will
receive coins, as there’s randomness in the reward.
We’d like to optimize for an objective. We aim to maximize the
cumulative reward, which is the total number of coins we receive while
pulling the arms of these machines until we stop.

Perhaps most importantly, in MAB, we face the same exploration–
exploitation tradeoff we discussed in section 4.1.2. In particular, each time
we decide to pull the arm of a machine, we need to choose between the
machine that has been giving us a good success rate so far (exploitation) and
those others with a reward probability we don’t know too much about
(exploration).

The problem we face is a tradeoff because by exploring, we run the risk of
wasting our pulls on machines that have low reward probability, but
excessive exploitation means we might completely miss out on a machine
that has a higher reward rate than what we currently observe. Figure 5.3
shows an example of this, where

1. We have collected 70 coins over 100 pulls of the first machine. That is,
the first machine offers the highest empirical success rate so far, at 70%.

2. We have more data from the second machine, so we have the least
uncertainty about its reward rate, which is around 50%.

3. Although the empirical success rate of the third machine is the lowest
(0%), we may need to try pulling its arm more times to be more certain
of its reward rate.

Figure 5.3. An example of a MAB data set showing the exploration–exploitation dilemma. A
MAB policy must choose between a machine with a consistently high success rate and one with a
reward rate that is uncertain.

It is the job of a MAB policy, similar to that of a BayesOpt policy, to look at
the data on past rewards and decide which arm we should pull next, while
balancing this tradeoff between exploration and exploitation. The MAB
problem models a wide range of applications you might see in the real world:

In product recommendation, an engine needs to pick from a number of
products in a store to suggest to a user. Each product can be seen as the
arm of a slot machine, and pulling the arm means the engine picks that
product to present to the user. If the user clicks on the advertisement for
the product, we may see it as receiving a reward, as the user’s click is
something we want to achieve.
Many resource management problems may be framed as MAB, where
we need to consider how to best allocate different resources to different
organizations to best optimize some high-level objective (e.g., profit or
productivity) without knowing in advance how well each organization
will operate. Portfolio management can also be framed as a MAB
problem in the same way.
MAB also has seen application in the design of clinical trials, where
each patient needs to be assigned to a specific treatment. We wish to
optimize the treatment outcome across all patients but need to contend
with limited resources and determining how likely each patient is to
benefit from a given treatment.

In each of these applications, we can take a set of actions—that is, a set of
arms we can pull—to optimize an objective under uncertainty.

5.1.2 From multi-armed bandit to Bayesian optimization

We have seen that MAB and Bayesian optimization (BayesOpt) have many
shared characteristics. In both problems, we need to reason about what
decision we should take so that we can maximize a quantity we care about.
Further, the outcome of each action is not deterministic. This means we don’t
know whether an action will yield a good result until we actually take it.

However, these two problems are not equivalent. In MAB, we aim to
maximize the cumulative reward over time—that is, the total number of coins

one receives. With BayesOpt, we seek to simply find an input of a function
that leads to a high value; so as long as among the dataset we collect there is
a good objective value, we will succeed at optimization. This single-valued
objective is sometimes called the simple reward. This difference means we
need to make sure we are frequently receiving rewards in MAB to maintain a
good cumulative reward, while in BayesOpt, we could afford to be more
explorative to potentially find a good objective value.

 Definition

The term simple reward doesn’t mean the objective is easier or simpler to
optimize, just that the objective is a single number as opposed to a sum that is
the cumulative reward.

Further, there are only a finite number of actions to take in MAB (a finite
number of arms we could pull). In BayesOpt, as we are attempting to
optimize an objective function in a continuous domain, there are infinitely
many actions. Since we assume with a Gaussian process that function values
at nearby points are similar to one another, we can think of this as actions
close to each other yielding similar reward rates. This is illustrated as figure
5.4, where each infinitesimal point is a slot machine whose arm we could pull
(that is, query the objective function value at), and machines that are close to
each other have similar colors.

Figure 5.4. Bayesian optimization is similar to an MBA problem with infinitely many actions.
Each infinitesimal point is a slot machine whose arm we could pull. Further, machines that are
close to each other are correlated, in the sense that they have similar reward rates.

Most formalizations of the MAB problem consider the binary setting, where
a slot machine, when pulled, either returns a coin or doesn’t return anything.
The function value we may observe in BayesOpt, on the other hand, could
take on any real value.

The main differences between MAB and BayesOpt are summarized in Table
5.1. Although these are fundamental differences, the tradeoff between
exploration and exploitation in decision-making is present in both problems,
so it’s reasonable to aim to repurpose MAB policies to BayesOpt.

Table 5.1. The differences between the multi-armed bandit and Bayesian optimization.

Criterion Multi-armed bandit Bayesian optimization

Objective to be
maximized Cumulative reward Simple reward

Type of
observation/reward Binary Real-valued

Number of actions Finite Infinite

Correlation between
actions No Yes for similar actions

In the rest of this chapter, we learn about two such policies, the motivations
behind them, and how to implement them with BoTorch. We start with the
Upper Confidence Bound policy in the next section.

5.2 Being optimistic under uncertainty with the
Upper Confidence Bound policy

How should we account for the infinitely many possibilities for the value we
may observe when we evaluate the objective function at a particular location?
Further, how should we reason about these possibilities in a simple, efficient
way that is conducive to decision-making? In this section, we explore the
Upper Confidence Bound (UCB) policy from MAB, which results in a
BayesOpt policy of the same name.

UCB operates under the optimism in the face of uncertainty principle. In
MAB, the idea is to use an upper bound of our estimate for each slot
machine’s reward rate as a substitute for the true, unknown reward rate. That
is, we optimistically estimate the reward rate of each machine using an upper
bound of what we believe it to be and, finally, choose the one with the

highest upper bound.

We first discuss this principle and how it aids our decision-making reasoning.
Afterwards, we learn how to implement the UCB policy using BoTorch and
analyze its behavior.

5.2.1 Optimism under uncertainty

Let’s consider a simple example to make this idea concrete. Say you wake up
one day and observe that even though it’s sunny outside, there are dark
clouds on the horizon. You check the weather app on your phone to see if it
will stay sunny throughout the day and whether you should bring an umbrella
with you to work in case it rains later. Unfortunately, the app can’t tell you
with absolute certainty whether it will stay sunny. Instead, you only see an
estimate that the probability of sunny weather is between 30% and 60%.

You think to yourself that if the probability that it will stay sunny is less than
50%, then you will bring an umbrella. However, you don’t have a single-
valued estimate here but, instead, a range between 30% and 60%. How, then,
should you decide whether an umbrella is necessary?

A pessimist might say that since the probability of sunny weather could be as
low as 30%, you should be on the safe side and prepare for the worst.
Someone who considers the average case might look further into the app to
see what the mean estimate for the probability it will stay sunny is and make
their decision accordingly. From the perspective of an optimist, on the other
hand, a 60% chance is enough to think it will stay sunny, so this person
wouldn’t bother bringing an umbrella with them to work. These ways of
thinking are shown in figure 5.5.

In figure 5.5, the third person’s reasoning corresponds to the idea behind the
UCB policy: being optimistic about the outcome of an unknown event and
making decisions based on this belief. In the MAB problem, the UCB would
construct an upper bound of the reward rate of each slot machine and proceed
to pick the machine with the highest bound.

Figure 5.5. Different ways of thinking about the future and making decisions. The last person
corresponds to the Upper Confidence Bound policy, which reasons about an unknown quantity in

an optimistic manner.

 Note

The way this policy is realized in BayesOpt is particularly simple, since with
a Gaussian process as our predictive model of the objective function, we
already have an upper bound of the reward rate of each action. That is, we
have an upper bound of the objective value at any given input location.

Specifically, we know that the objective value at a given location follows a
normal distribution, and a commonly used measure to quantify uncertainty of
a normal distribution is the 95% credible interval (CI), which contains 95%
of the probability mass of the distribution. With a Gaussian process (GP), we
visualize this 95% CI across the input space as the shaded region in figure
5.6. The upper bound of this 95% CI, which is the upper boundary of the
shaded region highlighted in figure 5.6, is exactly what the UCB policy uses
as the acquisition scores for the data points in the search space, and the point
that gives the highest score is the one at which we will evaluate the objective
function next, which, in this case, is the location indicated by the dotted line
around –1.3.

Figure 5.6. The upper confidence bound of a Gaussian process that corresponds to the 95%
credible interval. This bound can be used as the acquisition score of the Upper Confidence Bound
policy.

 Definition

Acquisition scores quantify how valuable a data point is in guiding us
towards the optimum of the objective function. We first learned about
acquisition scores in section 4.1.1.

You might think this form of decision-making might not be appropriate,
especially in high-stakes situations where the cost of a bad decision is high.
In our umbrella example, by optimistically underestimating the probability of
rain, you might run the risk of getting caught in the rain without an umbrella.

However, it is a particularly computationally efficient way of reasoning, as
we simply need to extract an upper bound of our estimate of a quantity of
interest and use that bound for decision-making. Moreover, as we see in the
next subsection, by choosing which CI we’d like to use (as opposed to
sticking with the 95% CI), we have complete control over how optimistic the
UCB is. This control also allows the policy to balance between exploration
and exploitation, which is the core question that needs to be addressed by any
BayesOpt policy.

5.2.2 Balancing exploration and exploitation

In this subsection, we further talk about how the UCB policy may be adjusted
by us: the BayesOpt user. This offers a level of control that balances between
regions with high uncertainty (exploration) and regions with high predictive
mean (exploitation). This discussion aims to provide a deeper understanding
of UCB, before moving ahead with BoTorch implementation in the next
subsection.

Remember that with a normal distribution, going two standard deviations
away from the mean (that is, mean μ plus/minus 2 times standard deviation σ)
gives us the 95% credible interval (CI). The upper bound of this interval (μ +
2σ) is the acquisition score of UCB we saw in the previous subsection.

However, the 95% CI is not the only CI of a normal distribution. By setting
the multiplier, denoted as β, for the standard deviation σ in the formula μ +
βσ, we obtain other CIs. For example, the following is true in a one-

dimensional normal distribution, as shown in figure 5.7:

Going one standard deviation above the mean (μ + σ)—that is, setting β
= 1—gives the 68% CI: 68% of the probability mass of the normal
distribution lies between μ - σ and μ + σ.
Similarly, three standard deviations away from the mean (β = 3) gives us
the 99.7% CI.

Figure 5.7. Different credible intervals of standard normal distributions. Going away from the
mean to one, two, and three standard deviations, we obtain the 68%, 95%, and 99.7% credible
intervals. The upper bounds of these intervals are used by the Upper Confidence Bound policy.

In fact, any value of β would give us a unique CI for the normal distribution.
Since the UCB only dictates that we should use an upper bound from our
predictive model to make decisions, any value of the form μ + βσ can serve as
the upper bound used in UCB. By setting this parameter β, we can control for
the behavior of the UCB policy.

Figure 5.8 shows three different upper bounds, corresponding to β = 1, 2, 3,
while the mean function, in fact, corresponds to setting β = 0. We see that
although the upper bounds are of roughly the same shape, these bounds go up
and down at different rates. Further, since the data point maximizing this
bound is the point the UCB selects to query for optimization—different
bounds, that is—different values of β will induce different optimization
behaviors.

Figure 5.8. Different upper bounds of a Gaussian process, corresponding to different credible
intervals and β values. The larger β is, the more explorative the UCB policy becomes.

 Important

The smaller β is, the more exploitative UCB becomes. Conversely, the larger
β is, the more explorative UCB becomes.

We can see that the value of β controls the behavior of UCB by inspecting the
formula for the acquisition score: μ + βσ. When β is small, the mean μ
contributes the most to the acquisition score. So the data point with the
highest predictive mean will maximize this score. This selection corresponds
to pure exploitation, as we are simply picking out the point with the largest
predicted value. When β is large, on the other hand, the standard deviation σ,
which quantifies our uncertainty, becomes more important in the UCB score,
emphasizing the need for exploration.

We see this distinction in figure 5.8, where around 0 is where we achieve the
highest predictive mean, indicating it is the region of exploitation. As β
increases, the point at which the different upper bounds peak gradually
moves to the left, where there is more uncertainty in our prediction.

 Note

Interestingly, in the limit where β → ∞, the point that maximizes UCB’s
acquisition score is where the standard deviation σ is maximized—that is,
where our uncertainty is at its highest. This behavior corresponds to pure
exploration, as we are selecting data points with high uncertainty.

Finally, UCB correctly assigns higher scores to data points that offer better
balance between exploration and exploitation.

If two data points have the same predictive mean but different predictive
standard deviations, then the one with the higher uncertainty will have a
higher score. The policy, therefore, rewards exploration.
If two data points have the same predictive standard deviations but
different predictive means, then the one with the higher mean will have
a higher score. The policy, therefore, rewards exploitation.

Remember that one of the policies discussed in chapter 4, Expected
Improvement, also has this property, which is a desideratum of any BayesOpt
policy.

All in all, this parameter, β, controls UCB and how the policy explores and
exploits the search space. This means that by setting the value of this
parameter, we have direct control over its behavior. Unfortunately, beyond
the fact that the value for β corresponds to the level of exploration, there’s not
a straightforward, principled way of setting this parameter, and some values
might work on some problems but not others. Exercise 1 of this chapter
further discusses a more-involved method of setting β that might generally
work sufficiently well.

 Note

The documentation of BoTorch usually shows UCB with β = 0.1, while many
research papers that use UCB for BayesOpt opt for β = 3. So 0.1 could be
your go-to value when using this policy if you prefer exploitation, and 3
should be the default if you lean toward exploration.

5.2.3 Implementation with BoTorch

Having thoroughly discussed the motivation and math behind UCB, we now
learn how to implement the policy using BoTorch. The code we look at here
is included in CH05/01 - BayesOpt loop.ipynb. Remember from section 4.2.2
that although we could manually implement the Probability of Improvement
policy ourselves, declaring the BoTorch policy object, using it with the GP
model, and optimizing the acquisition score using BoTorch’s helper function
optimize_acqf() makes it easier to implement our BayesOpt loop.

For this reason, we do the same thing here and use the built-in UCB policy
class, even though we could simply compute the quantity μ + βσ ourselves.
This can be done with

policy = botorch.acquisition.analytic.UpperConfidenceBound(

 model, beta=1

)

Here, the UCB class implementation in BoTorch takes in the GP model as its
first input and a positive value for its second input beta. As you might
expect, this second input denotes the value for the UCB parameter β in the
score formula μ + βσ, which trades off between exploration and exploitation.
Here, we set it to 1 for now.

 Note

Believe it or not, this is all we need to change from our BayesOpt code from
the previous chapter to run the UCB policy on the objective functions we
have. This demonstrates the benefit of BoTorch’s modularity, which allows
us to plug and play any policy we’d like to use into our BayesOpt pipeline.

Running our UCB policy with β = 1 on our familiar Forrester objective
function generates Figure 5.9, which shows optimization progress throughout
10 function evaluations. We see that like what happened to the Probability of
Improvement policy, UCB with β = 1 fails to sufficiently explore the search
space and is stuck at a local optimum in the case of the Forrester function.
This means the value for β is too small.

Figure 5.9. Progress made by the UCB policy with the tradeoff parameter β = 1. The value of the
parameter is not sufficiently large to encourage exploration, causing progress to be stuck at a
local optimum.

 Note

We learn about the Probability of Improvement policy in section 4.2.

Let us try again, this time setting this tradeoff parameter to a larger value:

policy = botorch.acquisition.analytic.UpperConfidenceBound(

 model, beta=2

)

The progress of this version of the UCB policy is shown in figure 5.10. This
time, the UCB is able to find the global optimum thanks to the higher level of
exploration induced by the larger value of β. However, if β is so large that the
UCB only spends its budget exploring the search space, then our optimization
performance might also suffer. (We see an example of this in this chapter’s
exercises later on.)

Figure 5.10. Progress made by the UCB policy with the tradeoff parameter β = 2. The policy
successfully finds the global optimum.

Overall, the importance of using a good value for this tradeoff parameter
while using the UCB policy is clear. However, again, it’s difficult to say what
value will work well for a given objective function. Exercise 1 of this chapter
explores a certain strategy to adjust the value of this parameter as we progress
throughout the search.

This marks the end of our discussion on UCB. We have seen that by adopting
the optimism in the face of uncertainty mindset from the multi-armed bandit
(MAB) problem, we obtain a BayesOpt policy whose explorative behavior
can be directly controlled and tuned with a tradeoff parameter. In the next
section, we move on to the second policy taken from MAB, which has an
entirely different motivation and strategy.

5.3 Smart sampling with the Thompson sampling
policy

In this section, we learn about another heuristic in MAB that directly
translates to a widely used BayesOpt policy called Thompson sampling (TS).
As we will see, this policy uses an entirely different motivation from that of
UCB and, therefore, induces different optimization behavior. Similar to
section 5.2 with UCB, we learn the general idea behind this BayesOpt policy
first and then move on to its code implementation later.

5.3.1 One sample to represent the unknown

With UCB, we make decisions based on an optimistic estimate of the
unknown quantity we care about. This offers a simple way to reason about
the consequences of the actions we take and the rewards we receive that
trades off exploration and exploitation. What about TS?

 Definition

The idea of Thompson sampling is to first maintain a probabilistic belief
about the quantity we care about and then sample from that belief and treat
that sample as a replacement of the true unknown quantity in question. This
sampled replacement is then used to pick out the best decision we should
make.

Let’s come back to our weather forecast example to see how this works.
Again, we are interested in the problem of deciding whether we should bring
an umbrella to work, where we are given an estimate of the probability that
the weather will stay sunny throughout the day. Remember that the UCB
relies on an upper bound of this estimate to inform its decisions, but what will
the TS policy do?

The TS first draws a sample from the probability distribution we use to model
the unknown quantity—whether it will stay sunny, in this case—and make
decisions based on this sample. Let’s say instead of a range like we saw in
the previous section, the weather app on our phone now announces there’s a
66% (roughly two out of three) chance the weather will say sunny. This
means by following the TS policy, we first flip a coin with a two-thirds bias
for heads.

If the coin lands on heads (with a 66% chance), then we treat it as if the
weather will stay clear throughout the day and conclude we won’t need
an umbrella.
If the coin lands on tails (with 34% chance), then we treat it as if it will
rain and conclude we should bring an umbrella to work.

This process of TS is visualized in figure 5.11 as a decision tree, where at the

beginning, we flip a biased coin to obtain a sample from the probability
distribution of sunny weather. Based on whether the coin lands on heads
(representing a sample of sunny weather) or tails (a sample of rain), we
decide whether we should bring an umbrella to work or not.

Figure 5.11. The Thompson sampling policy as a decision tree. We flip a biased coin to obtain a
sample from the probability distribution of sunny weather and decide whether to bring an
umbrella based on this sample.

While this might seem like an arbitrary method of decision-making at first,
TS is particularly effective in both MAB and BayesOpt. First of all, given a
probability distribution representing a quantity of interest, a sample of that
distribution is a possible realization of that quantity, so that sample may be
used as a representation of the distribution. In optimization under uncertainty
problems, TS offers the same benefit as UCB, in that sampling from a
probability distribution is often easy to do. Just as UCB’s optimistic estimates

of the reward rates may be generated in an efficient manner, sampling may be
done just as efficiently.

Let’s consider how TS works in BayesOpt. From a GP trained on the current
observed data, we draw one sample. Remember from chapter 3 that a sample
from a GP is a function representing a particular realization of the objective
function according to our GP belief. However, unlike the true objective
function, which is unknown in regions without observed data, a sample
drawn from a GP is entirely known. This means we can find the location at
which this sample is maximized.

Figure 5.12 shows the GP we trained on the Forrester function and three
samples drawn from it as dashed lines. Further, along each of the samples, we
use a diamond to indicate the location at which the sample is maximized. As
we can see, one sample is maximized around -3.2, another around -1.2, and
the third at 5.

Figure 5.12. Samples drawn from a Gaussian process and data points that maximize the
corresponding samples. Whichever sample is drawn, Thompson sampling selects the data point
that maximizes that sample as the next point at which to evaluate the objective function.

When using the TS policy, it’s entirely up to chance which of the three

samples above (or a completely different sample) we draw from the GP.
However, whichever sample we draw, the data point that maximizes the
sample is the one we will query next. That is, if we draw the sample
maximized at -3.2, then -3.2 is where we will evaluate the objective function
next. If we draw the sample maximized at 5, then we will query the point x =
5 next.

 Definition

The acquisition scores Thompson sampling computes are the values of a
random sample drawn from the Gaussian process. The data point that
maximizes this sample is the one we will query next.

Unlike other policies we have seen so far, Thompson sampling is a
randomized policy, which means that when faced with the same training data
and Gaussian process, it’s not guaranteed that the policy will make the same
decision (unless we computationally set the random seed). However, this
randomness is in no way a disadvantage. We have said that drawing a sample
from a GP is easy, so computing the TS acquisition score may be done
efficiently. Further, maximization of a random sample inherently balances
between exploration and exploitation, which, as we know, is the main
concern in BayesOpt:

If a data point has a high predictive mean, then the value of a random
sample at that data point is likely to be high, making it more likely to be
the one maximizing the sample.
If a data point has a high predictive standard deviation (that is,
uncertainty), then a random sample at that data point will also have a
higher variability and, thus, a higher chance of having a high value. This
higher variability, therefore, also makes the data point more likely to be
chosen as the next point to query.

TS is likely to exploit with a random sample that is maximized in a region
with high predictive mean, but the policy is just as likely to explore with
another sample given the same situation. We see this in Figure 5.12, where
one sample is maximized around -1.2, which has a relatively high predictive
mean. If this is the sample we draw, then by evaluating the objective at -1.2,

we will be exploiting the function. However, if we draw either of the other
two samples, then we will be exploring, as the regions where the samples are
maximized have high uncertainty.

This is quite an elegant tradeoff scheme. By using the randomness of the
samples, TS directly leverages the probabilistic nature of our predictive
model, the Gaussian process, to explore and exploit the search space. The
randomized nature of TS means that at any given iteration of the BayesOpt
loop, the policy might not make the best decision to tradeoff exploration and
exploitation, but over time, in the aggregation of its decisions, the policy will
be able to explore the space sufficiently and narrow down high-performing
regions.

5.3.2 Implementation with BoTorch

Let’s now move on to implementing this TS policy in Python. Once again,
the code is included in the CH05/01 - BayesOpt loop.ipynb notebook.
Remember that for the BayesOpt policies we have seen, implementation
comes down to declaring a BoTorch policy object and specifying the relevant
information. Then, to find the data point we should query next, we optimize
the acquisition score, as computed by the policy. This, however, is not the
case with TS.

The main challenge of implementing TS as a generic PyTorch module that
takes in a data point and scores it according to some criterion is that sampling
from a GP can only be done with a finite number of points. In the past, we
have represented a sample from a GP using a sample of a high-dimensional
multivariate Gaussian distribution of a dense grid over the search space.
When samples of this dense Gaussian are plotted, they appear to be actual
functions with smooth curves, but in reality, they are defined over a grid.

All of this is to say that it is computationally impossible to draw a sample as
a function from a GP, since that would require an infinite number of bits. A
typical solution is to draw the corresponding multivariate Gaussian over a
large number of points that span the input space so that all regions in the
search space are represented.

 Important

This is exactly what we do to implement Thompson sampling: generate a
large number of points throughout the search space and draw a sample from
the multivariate Gaussian distribution corresponding to predictions from a
Gaussian process over these points.

The procedure for TS is summarized in Figure 5.13, where we use a Sobol
sequence as the points that span the search space. (We discuss why a Sobol
sequence is preferred over other sampling strategies shortly.) We then draw a
sample from the GP on these points and pick out the point that yields the
highest value from the sample. This sample is then used to represent a sample
from the GP itself, and we evaluate the objective function at the location the
sampled value is maximized next.

Figure 5.13. Flowchart of the implementation of Thompson sampling in BoTorch. We use a Sobol
sequence to populate the search space, draw a sample from the Gaussian process on the sequence,
and choose the point in the sequence that maximizes the sample to evaluate the objective function
at.

 Definition

A Sobol sequence is an infinite list of points in a region in Euclidean space
that aims to cover the region evenly.

Let’s first discuss why we need to use a Sobol sequence to generate points
that span our search space. A simpler solution is to use a dense grid.
However, generating a dense grid quickly becomes intractable as the number
of dimensions of our search space grows, so this strategy is out of the
question. Another potential solution is to uniformly sample from that space,
but statistical theory shows that uniform sampling is, in fact, not the best way
to generate points that cover a space evenly, and a Sobol sequence does a
better job.

Figure 5.14 shows the comparison between a Sobol sequence of 100 points
and the same number of points uniformly sampled within the two-
dimensional unit square. We see that the Sobol sequence covers the square
more evenly, which is what we’d like to achieve with Thompson sampling.
This contrast is even more glaring in higher dimensions, giving us more
reason to prefer Sobol sequences than uniformly sampled data points. We
don’t discuss Sobol sequences in detail here; what is important for us to know
is that a Sobol sequence is the go-to method of sample generation if our goal
is to cover a space evenly.

Figure 5.14. Points from a Sobol sequence vs. uniformly sampled points in the two-dimensional
unit square. The Sobol sequence covers the square more evenly and, therefore, should be used by
Thompson sampling.

PyTorch provides an implementation of Sobol sequences, which can be used
as follows:

dim = 1 #1

num_candidates = 1000 #2

sobol = torch.quasirandom.SobolEngine(dim, scramble=True)

candidate_x = sobol.draw(num_candidates)

Here, sobol is an instance of the SobolEngine class, which implements the
sampling logic of Sobol sequences in the unit cube, and candidate_x is a
PyTorch tensor of the shape (num_candidates, dim), containing the
generated points with the correct dimensionality.

 Note

It’s important to remember that SobolEngine generates points that cover the
unit cube. To get candidate_x to cover the space we want, we need to resize
this tensor accordingly.

How many points the Sobol sequence should contain (that is, the value of

num_candidates) is up to us (the user) to decide; the preceding example
shows that we are using 1,000. In a typical case, you would want a value
large enough that the search space could be sufficiently covered. However, a
value that is too large will make sampling from the posterior GP numerically
unstable.

Numerical instability when drawing Gaussian process samples

The numerical instability when drawing Gaussian process samples could, at
times, lead to the following warning when we run Thompson sampling:

NumericalWarning: A not p.d., added jitter of 1.0e-06 to the diagonal

 warnings.warn(

This warning indicates that the code has encountered a numerical problem
due to the fact that the covariance matrix of the Gaussian process is not
positive definite (p.d.) when it should be. However, this code also applies an
automatic fix, where we add a "jitter" of 1e-6 to this covariance matrix,
making the matrix positive definite, so we, the users, don’t have to do
anything further.

Just as we did in section 4.2.3, we use the warnings module to disable this
warning to make the output of our code cleaner as follows:

with warnings.catch_warnings():

 warnings.filterwarnings('ignore', category=RuntimeWarning)

 ... #1

You could play around with multiple thousands of points to find the number
that works best for your use case, objective function, and trained Gaussian
process. However, you should always use at least 1,000 points.

Next, we move on to the second component of TS, which is the process of
sampling a multivariate Gaussian from our posterior GP and maximizing it.
First, the sampler object that implements the sampling may be declared as

ts = botorch.generation.MaxPosteriorSampling(model, replacement=False)

The MaxPosteriorSampling class in BoTorch implements the logic of TS:

sampling from the posterior of a GP and maximizing that sample. Here,
model refers to the GP trained on observed data. It is important to set
replacement to False, making sure we are sampling without replacement
(sampling with replacement isn’t appropriate for TS). Finally, to obtain the
data point that gives the highest sampled value among candidate_x, we pass
it to the sampler object:

next_x = ts(candidate_x, num_samples=1)

The returned value is, indeed, the point that maximizes the sample, which is
the point we query next. And with that, our implementation of the TS policy
is complete. We may plug this into the code we have been using so far for the
BayesOpt loop on the Forrester function with the following:

for i in range(num_queries):

 print("iteration", i)

 print("incumbent", train_x[train_y.argmax()], train_y.max())

 sobol = torch.quasirandom.SobolEngine(1, scramble=True) #1

 candidate_x = sobol.draw(num_candidates) #1

 candidate_x = 10 * candidate_x - 5 #2

 model, likelihood = fit_gp_model(train_x, train_y)

 ts = botorch.generation.MaxPosteriorSampling(model,

 [CA]replacement=False) #3

 next_x = ts(candidate_x, num_samples=1) #3

 visualize_gp_belief_and_policy(model, likelihood, next_x=next_x) #4

 next_y = forrester_1d(next_x)

 train_x = torch.cat([train_x, next_x])

 train_y = torch.cat([train_y, next_y])

Note that the overall structure of our BayesOpt loop remains the same.
What’s different is that, instead of a BoTorch policy object, we now have a
Sobol sequence to generate the set of points that cover our search space,
which are then fed into a MaxPosteriorSampling object that implements the
TS policy. The variable next_x, like before, contains the data point we will
query next.

 Note

Since we don’t have a BoTorch policy object when visualizing our progress
using the visualize_gp_belief_and_policy() helper function, we don’t
specify the policy argument anymore. This function, therefore, will only
show the trained Gaussian process at each iteration, without the acquisition
scores.

Optimization progress of TS is shown in figure 5.15, where we can observe
that the policy successfully zeros in on the global optimum throughout the
procedure—but not without spending a couple of queries exploring the space.
This showcases the ability to trade off exploration and exploitation of TS in
BayesOpt.

Figure 5.15. Progress made by the Thompson sampling policy. The policy explores the search
space for some iterations and then gradually zeros in on the global optimum.

Our discussion on BayesOpt policies inspired by policies under the multi-
armed bandit setting is thus concluded. We have seen that each of the two
policies we learned, Upper Confidence Bound and Thompson sampling, uses
natural heuristics to reason about unknown quantities in an efficient manner
and make decisions accordingly. One challenge in BayesOpt, the balance
between exploration and exploitation, is also addressed by both policies,
allowing the policies to have good optimization performance. In the next and
final chapter of the second part of the book, we learn about yet another
commonly used heuristic to decision-making in BayesOpt, this time by
leveraging information theory.

5.4 Exercises

There are two exercises in this chapter:

1. The first exercise explores a potential method to set the tradeoff
parameter for the UCB policy that considers how far along we are in
optimization.

2. The second exercise applies the two policies we have learned in this
chapter to the hyperparameter tuning problem seen in previous chapters.

5.4.1 Exercise 1: Setting an exploration schedule for the UCB

This exercise, implemented in CH05/02 - Exercise 1.ipynb, discusses a
strategy of adaptively setting the value of the tradeoff parameter β of the
UCB policy. As mentioned in the section on UCB, the performance of the
policy heavily depends on this parameter, but it’s not obvious how we should
set its value. A value might work well on some objective functions but poorly
on others.

Bayesian optimization practitioners have noticed that as we collect more and
more data, UCB can become too exploitative. This is because as the size of
our training data set increases, we gain more knowledge about the objective
function, and our uncertainty about the predictions made by the Gaussian
process decreases. This means the credible interval produced by the Gaussian
process will become tighter, moving the upper bound that makes up the
acquisition score used by UCB closer to the mean prediction.

However, if the UCB acquisition score is similar to the mean prediction, then
the policy is exploiting, as it will only query data points with high predictive
means. This phenomenon shows that the more data we have observed, the
more explorative we should be with UCB. Here, a natural way of gradually
encouraging more exploration from UCB is to slowly increase the value of
the tradeoff parameter β, which is what we learn to do in this exercise,
following these steps:

1. Recreate the Bayesian optimization (BayesOpt) loop in CH06/02 -
Exercise 1.ipynb, which uses the one-dimensional Forrester function as

the optimization objective.
2. We aim to slowly increase the value of the tradeoff parameter β by

multiplying it with a constant at each iteration of the loop. That is, at the
end of each iteration, we need to update the parameter with beta *=
multiplier.
Say we want β to start out having a value of 1 and to have a value of 10
at the end of the search (the 10th iteration). What is the value the
multiplier for β needs to have?

3. Implement this scheduling logic, and observe the resulting optimization
performance.

1. Specifically, even though this version of UCB starts out with β = 1,
does it get stuck at a local optimum like the version for which the
parameter is fixed at 1?

5.4.2 Exercise 2: Bayesian optimization for hyperparameter
tuning

This exercise, implemented in CH05/03 - Exercise 2.ipynb, applies BayesOpt
to an objective function that simulates the accuracy surface of a support-
vector machine model in a hyperparameter tuning task. The x-axis denotes
the value of the penalty parameter C, while the y-axis denotes the value for
the RBF kernel parameter γ. See the exercises in chapter 3 and chapter 4 for
more detail. Follow these steps:

1. Recreate the Bayesian optimization loop in CH04/03 - Exercise 2.ipynb,
including the outer loop that implements repeated experiments.

2. Run the UCB policy, setting the value of the tradeoff parameter to β ∈
{ 1, 3, 10, 30 }, and observe the values' aggregated performance.

1. Which value leads to over-exploitation, and which leads to over-
exploration? Which value works best?

3. Run the adaptive version of UCB (see exercise 1).

1. The tradeoff parameter should start at 3 and end at 10.

2. Observe that changing the end value from 10 to 30 doesn’t affect
optimization performance too much. We, therefore, say that this
strategy is robust against the value of this end value, which is a
desideratum.

3. Compare the performance of this adaptive version and that of other
versions with fixed β.

4. Run the Thompson sampling policy, and observe its aggregated
performance.

5.5 Summary

The multi-armed bandit problem consists of a set of actions that may be
performed (arms of slot machines that may be pulled), each of which
returns a reward according to its specific reward rate. The goal is to
maximize the sum of the reward (cumulative reward) we receive given a
number of iterations.
A multi-armed bandit policy selects which action to take next based on
past data. A good policy needs to balance under-explored actions and
high-performing actions.
Unlike the multi-armed bandit problem, where there are a finite set of
sections, there are infinitely many actions that we can take in Bayesian
optimization.
The goal of Bayesian optimization is to maximize the largest observed
reward, which is often called the simple reward.
The rewards in Bayesian optimization are correlated: similar actions
yield similar rewards. This is not necessarily true with the multi-armed
bandit.
The Upper Confidence Bound policy uses an optimistic estimate of the
quantity of interest to make decisions. This optimism in the face of
uncertainty heuristic can balance between exploration and exploitation,
with a tradeoff parameter that we, the users, can set.
The smaller the tradeoff parameter of the Upper Confidence Bound
policy is, the more exploitative the policy becomes, tending to stay
within regions known to give high rewards. The larger the tradeoff
parameter is, the more explorative the policy becomes, tending to query
regions far away from observed data.
The Thompson sampling policy draws a sample from a probabilistic

model of the quantity of interest and uses this sample to make decisions.
The random nature of Thompson sampling allows the policy to explore
or exploit the search space appropriately: both regions of high
uncertainty and those of high predictive mean are likely to be chosen by
Thompson sampling.
For computational reasons, more care is needed when implementing
Thompson sampling: we first generate a set of points to cover the search
space evenly, and then a sample from the Gaussian process posterior is
drawn for these points.
To cover a space evenly, we can use a Sobol sequence to generate the
points within the unit cube and scale them to the targeted space.

6 Leveraging information theory
with entropy-based policies
This chapter covers

Entropy as an information theoretic measure of uncertainty
Information gain as a method of reducing entropy
Bayesian optimization policies that leverage information theory for their
search

We saw in Chapter 4 that by aiming to improve from the best value that we
have achieved so far, we can design improvement-based Bayesian
optimization (BayesOpt) policies such as Probability of Improvement and
Expected Improvement. In Chapter 5, we leveraged multi-armed bandit
policies to obtain Upper Confidence Bound and Thompson sampling, each of
which uses a unique heuristic to balance between exploration and
exploitation in the search for the global optimum of the objective function.

In this chapter, we learn about another heuristic to decision making, this time
using information theory, to design BayesOpt policies that we can use in our
optimization pipeline. Unlike the heuristics that we have seen (seeking
improvement, optimism in the face of uncertainty, random sampling), which
might seem unique to optimization-related tasks, information theory in itself
is a major subfield of mathematics that has applications in a wide range of
topics. As we will see, by appealing to information theory, or more
specifically entropy, a quantity that measures uncertainty in terms of
information, we can design BayesOpt policies that seek to reduce our
uncertainty about the objective function to be optimized in a principled and
mathematically elegant manner.

The idea behind entropy-based search is quite simple: we go look at places
where our information about a quantity of interest will most increase. As we
will see later in the chapter, this is similar to looking for a lost remote control
in the living room where the TV is, as opposed to in the bathroom.

The first part of this chapter is a high-level exposition on information theory,
entropy, and ways to maximize gain in the amount of information we receive
upon performing an action. This will be done by reinterpreting the familiar
example of binary search. Armed with the fundamentals of information
theory, we then move on to discussing BayesOpt policies that maximize
information about the global optimum of an objective function. These
policies are the result of applying information theory to the task of BayesOpt.
As always, we will also learn how to implement these policies in Python.

By the end of the chapter, you will gain a working understanding of what
information theory is, how entropy as a measure of uncertainty is quantified,
and how it is translated to BayesOpt. This chapter adds another policy to our
BayesOpt toolkit and concludes the second part of the book on BayesOpt
policies.

6.1 Measuring knowledge with information theory

Information theory is a subfield of mathematics that studies how to best
represent, quantify, and reason about information in a principled,
mathematical manner. In this section, we will get introduced to information
theory on a high level and discuss how it is related to decision making under
uncertainty. We will do this by re-examining the idea behind binary search, a
popular algorithm in computer science, from the perspective of information
theory. This discussion will subsequently allow us to connect information
theory to Bayesian optimization and motivate an information-theoretic policy
for optimization.

6.1.1 Measuring uncertainty with entropy

Information theory is especially prevalent in computer science, where digital
information is represented as bits (zeros and ones). You might remember
doing calculations about how many bits are required to represent a given
number of integers—for example, a single bit is enough to represent two
numbers: 0 and 1, while five bits are necessary represent thirty two (two
raised to the fifth power) different numbers—these calculations are one of the
things that information theory concerns itself with.

The information-theoretic concept of interest within the context of decision
making under uncertainty is entropy. Entropy measures the level of
uncertainty we have in an unknown quantity. If this unknown quantity is
modeled as a random variable, entropy measures the variability in the
possible values of the random variable.

 Note

This uncertainty measure, entropy, is similar to but not quite the same as
what we’ve been calling uncertainty in the predictions made by a Gaussian
process thus far, which is simply the standard deviation of the predictive
distribution.

In this subsection, we will be learning more about entropy as a concept and
how it is computed for a simple Bernoulli distribution for binary events. We
will see how entropy successfully quantifies uncertainty in an unknown
quantity.

Let’s go back to the first example of any Introduction to Probability course:
coin flipping. Say you are about to flip a biased coin that will land on heads
with some probability p between 0 and 1, and you’d like to reason about the
event that the coin will indeed land on heads. Denote X to be the binary
random variable that indicates whether the event happens (that is, X = 1 if the
coin lands on heads and X = 0 otherwise). Then, we say that X follows a
Bernoulli distribution with parameter p, and the probability that X = 1 is
equal to p.

Here, the entropy of X is defined to be -p log p - (1 - p) log(1 - p), where log
is the logarithmic function in base 2. We see that this is a function of the
probability of heads p. Figure 6.1 shows the function of entropy for p in (0,
1), from which we can gain some insights:

The entropy is always non-negative.
The entropy increases when p increases before 0.5, reaches its highest at
p = 0.5, and then decreases afterwards.

Figure 6.1. Entropy of a Bernoulli random variable as a function of the success probability. The
entropy is maximized (uncertainty is at the highest) when the success probability is at 0.5.

Both insights are valuable when we study our uncertainty about whether the
coin will land on heads or not. First, we shouldn’t have negative uncertainty
about something, so it makes sense that the entropy is never negative. More
importantly, entropy is maximized right at the middle when p = 0.5. This is
quite reasonable: as p gets further and further away from 0.5, we will become

more certain about the outcome of the event, whether the coin will land on
heads or not.

For instance, if p = 0.7, then we are more certain that it will land on heads—
our entropy is around 0.9 here. If p = 0.1, then we are even more certain
about the outcome (this time, that it will land on tails)—the entropy here is
roughly 0.5. While entropy is not defined at the endpoints (due to the
logarithmic function), entropy approaches zero as we get closer to either
endpoint, indicating zero uncertainty. When p = 0.5, on the other hand, our
uncertainty is at its maximum, as we are maximally unsure whether the coin
will land on heads or on tails. These calculations demonstrate that entropy is
an appropriate measure of uncertainty.

Entropy versus standard deviation

When we used the term "uncertainty" in previous chapters, we referred to the
standard deviations of the predictive normal distributions produced by a
Gaussian process. The standard deviation of a distribution, as the name
suggests, measures how much the values within the distribution deviate from
the mean and is therefore a valid measure of uncertainty.

Entropy, on the other hand, is information-theoretically motivated and is also
a valid measure of uncertainty. In fact, it is a more elegant and general
approach to quantify uncertainty, and could more accurately model
uncertainty in the edge cases in many situations.

 Important

For a given probability distribution, the entropy is defined to be −∑ᵢ pᵢ log pᵢ,
where we sum over the different possible events indexed by i.

We see that what we used for the Bernoulli distribution above is a special
case of this formula. We will also use this formula later in the chapter when
we work with uniform distributions.

6.1.2 Looking for a remote control using entropy

As entropy measures how much uncertainty there is in our knowledge about a
quantity or event of interest, it could inform our decisions to help us most
efficiently reduce our uncertainty about the quantity or event. We will discuss
a toy example of this in this subsection, where we decide where to best look
for a lost remote control. Albeit simple, the example presents the
information-theoretic reasoning that we will use in subsequent discussions
where entropy is used for more complex decision-making problems.

Imagine that while trying to turn on the TV in your living room one day, you
realize that you can’t find the remote control on the table, which is where it
usually is. You therefore decide to conduct a search for this remote. First, you
reason that it should be in the living room somewhere, but you don’t have
any idea about where the remote is within the living room, so all locations are
equally likely. In the language of probabilistic inference that we’ve been
using, you can say that the distribution of the location of the remote is
uniform over the living room.

Figure 6.2. A sample floor plan for the toy example of finding the remote control. The living room
is uniformly shaded to indicate that the distribution of the location of the remote is uniform over
the living room.

Figure 6.2 visualizes this belief about the location of the remote control that
you have, indicated by the shaded living room, which is where the remote is
(according to your belief). Now, the question you might ask yourself is:
where in this house should you look for the remote? It’s reasonable to think
that you should look in the living room, as opposed to say the bathroom,
because that’s where the remote is. But how does one quantifiably justify that
choice?

Information theory, specifically entropy, offers a way of doing that, by
allowing us to reason about how much entropy remains after a search for a
remote in the living room vs. one in the bathroom, that is, how much
uncertainty about the location of the remote you have left after looking in the
living room vs. after looking in the bathroom.

Figure 6.3 shows how entropy of the location of the remote decreases once
the upper portion of the living room is searched.

If the remote is found within the searched region, then you will no
longer have any uncertainty about its location. In other words, the
entropy is zero.
If the remote is not found, then your posterior belief about the location
of the remote gets updated to the shaded region in the lower right
section. This distribution spans a smaller region than the one in Figure
6.2, so there is less uncertainty (entropy).

Figure 6.3. Entropy of the location of the remote after a portion of the living room is searched. If
the remote is found (upper right), then no uncertainty remains. Otherwise, entropy is still
reduced (lower right), as the distribution of the location of the remote is now narrower.

Either way, the entropy is reduced by looking in the specified portion of the
living room. What would happen, then, if you decided to search for the
remote in the bathroom? Figure 6.4 shows the corresponding reasoning:

If the remote is found in the bathroom, then entropy will still drop to
zero. However, this is unlikely to happen according to your belief about

the location of the remote.
If the remote is not found in the bathroom, then your posterior belief
about the location of the remote doesn’t change from Figure 6.2, and the
resulting entropy remains the same.

Figure 6.4. Entropy of the location of the remote after the bathroom is searched. As the remote
cannot be found in the bathroom, the entropy in the posterior distribution of the location of the
remote is unchanged.

Searching for and not finding the remote in the bathroom doesn’t reduce the
entropy of the location of the remote. Another way to put it is that looking in
the bathroom doesn’t provide any extra information about the location of the
remote, so it is the information-theoretically suboptimal decision.

This comparison would not be as cut-and-dried if the prior distribution of the

location of the remote (your initial guess about where it is) was over the
entire house, not just the living room. After all, there is always a small
probability that the remote got misplaced outside the living room. However,
the procedure of determining where to look, that is, the portion of the house
that will give you maximal information about the location of the remote, is
still the same:

1. Consider the posterior distribution of the location of the remote if it is
found, and compute the entropy of that distribution.

2. Compute the same entropy if the remote is not found.
3. Compute the average entropy over the two cases.
4. Repeat this computation for all locations you are considering looking in,

and pick the one that gives the lowest entropy.

Entropy gives us a way to quantify our uncertainty about a quantity of
interest from its probabilistic distribution in an information-theoretic manner,
and this procedure leverages entropy to identify the action that maximally
reduces entropy.

 The mathematical convenience of entropy

This is a mathematically elegant procedure that can be applied to many
situations of decision-making under uncertainty. We can think of this
entropy-based search procedure as a kind of the search for the truth, in which
we aim to take the action that takes us as close to the truth as possible, by
maximally reducing uncertainty.

6.1.3 Binary search using entropy

To understand entropy-based search further, we will now see how this
procedure manifests itself in one of the classic algorithms in computer
science, binary search. You are most likely already familiar with this
algorithm, so we won’t be going into much detail here. For an excellent and
beginner-friendly explanation of binary search, I recommend Chapter 1 of
Aditya Bhargava’s Grokking Algorithms (Manning, 2016).

On a high level, we employ binary search when we want to look for the

position of a specific targeted number within a sorted list such that the
elements in the list are increasing from the first to the last element.

 How binary search works

The idea behind binary search is to look at the middle element of the list and
compare it to the target. If the target is smaller than the middle element, then
we know to only look at the first half of the list; otherwise, we look at the
second half. We repeat this process of halving the list until we find the target.

Consider a concrete example in which we have a sorted list of 100 elements
[x1, x2, …, x100], and we’d like to find the location of a given target z,
assuming that z is indeed inside the sorted list.

As illustrated by Figure 6.5, binary search works by dividing the list into two
halves: the first 50 elements and the last 50 elements. Since we know that this
list is sorted:

If our target z is less than the 50th element x50, then we only need to
consider the first 50 elements, since the last 50 elements are all greater
than target z, and similarly
If our target is greater than x50, then we only need to look at the second
half of the list.

Figure 6.5. Illustration of binary search on a 100-element list. At each iteration of the search, the
target is compared against the middle element of the current list. Depending on the result of this
comparison, we remove either the first or second half of the list from the search space.

Terminating the search

For each comparison in Figure 6.5, we omit the situation where z is equal to
the number it’s being compared to, in which we can simply terminate the
search.

On average, this procedure helps us find the location of z within the list much
faster than sequentially searching through the list from one end to the other.

 Note

In fact, the binary search strategy is optimal in this regard, allowing us to
locate the location of z faster than any other strategy on average.

Interestingly, binary search is a realization of making the information-
theoretically optimal decision in this game of searching for the location of a
number within a sorted list, if we were to tackle the problem from a
probabilistic angle.

First, let’s use the random variable L to denote the location of our target z
within the sorted list. Here, we would like to use a distribution to describe our
belief about the variable. Since from our perspective, any location within the
list is equally likely to contain the value of z, we will use a uniform
distribution for modeling.

Figure 6.6 visualizes this distribution, which again represents our belief about
the location of z. Since each location is equally likely as any other, the
probability that a given location contains z is uniformly one divided by one
hundred, or one percent.

Figure 6.6. Prior distribution of the location of target z within the 100-element list. Since each
location is equally likely as any other, the probability that a given location contains z is one
percent.

 Entropy of a uniform distribution

Let’s try computing the entropy of this uniform distribution. Remember the
formula for the entropy is −∑ᵢ pᵢ log pᵢ, where we sum over the different
possible events indexed by i. This is equal to:

So, the amount of uncertainty we have in our prior distribution of L is
roughly 6.64.

We tackle the same question: how should we search over this 100-element
list in order to locate z as quickly as possible? We do this by following the
entropy search procedure described in Section 6.1.2, where we aim to
minimize the entropy in the posterior distribution of the quantity that we care

about, in this case the location L.

How do we compute the entropy of the posterior distribution of L after
inspecting a given location? This calculation requires us to reason about what
we can conclude about L upon inspecting a given location, which is quite
easy to do. Say we decide to inspect the first location x1. According to our
belief about L, there’s 1 percent that L is this location, and 99 percent that L
is one of the remaining slots.

If L is indeed this location, then our posterior entropy about L drops to 0,
as there’s no more uncertainty about this quantity.
Otherwise, the distribution of L gets updated to reflect this observation
that z is not the first number of the list.

Figure 6.7 shows this process as a diagram, in which we need to update the
distribution for L so that each of the 99 locations has 1 divided by 99, or
roughly 1.01 percent, probability of containing z. Each of the 99 locations is
still equally likely, but the probability of each location has gone up a bit,
since we have ruled out the first location in this hypothetical scenario.

Figure 6.7. Posterior distributions of the location of target z within the 100-element list upon
inspecting the first element. In each scenario, the probability that z is at a given location is
updated accordingly.

 Note

Again, we’re only considering the case where z exists in the list, so either the
smallest element in the list x1 is equal to z, or the former is less than the latter.

Following the same calculation, we can obtain the entropy for this new
distribution as

Again, this is the posterior entropy of L in the second case where z is not
present in the first location. The last step we need to take in order to compute
the overall posterior entropy after inspecting the first location is to take the
average of the two cases:

If z is in the first slot, which is one percent likely, then the posterior
entropy is 0.
If z is not in the first slot, which is ninety nine percent likely, then the
posterior entropy is 6.63.

Taking the average, we have 0.01 (0) + 0.99 (6.63) = 6.56. So, on average,
we expect to see a posterior entropy of 6.56 when we choose to look into the
first element of the array. Now, in order to see whether looking at the first
element is the optimal decision, or if there’s a better location that will help us
obtain more information about L, we need to repeat this procedure for the
other locations in the list. Specifically, for a given location, we need to

1. Iterate over the different scenarios that could happen when we inspect
the location,

2. Compute the posterior entropy of the distribution of L for each scenario,
3. Compute the average posterior entropy across the scenarios based on

how likely each of them is.

Let’s do this one more time for, say, the tenth location x10; the corresponding
diagram is shown in Figure 6.8. While things are slightly different from what
we just went through, the underlying idea is still the same. First, there are

various scenarios that can happen when we look at x10:

1. The tenth element x10 can be greater than z, in which case we can rule
out the last 91 elements in the list and focus our search on the first 9
elements. Here, each of the 9 locations has 11 percent chance of
containing z, and the posterior entropy, by using the same formula, can
be computed to be roughly 3.17.

2. The tenth element x10 can be exactly equal to z, in which case our
posterior entropy is once again zero.

3. The tenth element x10 can be less than z, in which case we narrow our
search to the last 90 elements. The posterior entropy in this case is
around 6.49.

Figure 6.8. Posterior distributions of the location of target z within the 100-element list upon
inspecting the tenth element. In each scenario, the probability that z is at a given location is
updated accordingly.

SIDEBAR

Make sure that you attempt the entropy computations yourself to understand
how we are getting these numbers.

Finally, we take the weighted average of these entropies using the
corresponding probabilities: 0.09 (3.17) + 0.01 (0) + 0.9 (6.49) = 6.13. This
number presents the expected posterior entropy, that is, the expected
posterior uncertainty we have about L, the location of z, after inspecting the
tenth element x10.

Compared to the same number for the first element x1, 6.56, we conclude that
looking at x10 on average gives us more information about L than looking at
x1. In other words, inspecting x10 is the information-theoretically better
decision.

But what is the information-theoretically optimal decision, the one that gives
us the most information about L? To determine this, we simply repeat the
same computation we just performed on x1 and x10 for the other locations in
the list and pick out the one giving the lowest expected posterior entropy.

Figure 6.9 shows this quantity, the expected posterior entropy in the location
of our target, as a function of the location that we choose to inspect. The first
thing we notice is the symmetry of the curve: looking at the last location
gives us the same expected posterior entropy (uncertainty) as looking at the
first; similarly, the tenth and the ninetieth locations give the same amount of
information, and so on.

More importantly, we see that inspecting the locations in the middle, either
the fiftieth or the fifty first numbers in the list, gives us the maximal amount
of information. This is because once we do, we will be guaranteed to rule out
half of the list, regardless of whether our target number is greater or less than
the number in the middle. This is not the case for other locations. As we saw
earlier, we may be able to rule out ninety numbers in the list when looking at
the tenth number, but this only happens with 0.1 probability. When looking at
the first number, there’s 99 percent probability that we will only be able to
rule out one number.

Figure 6.9. Expected posterior entropy in the location of the target as a function of the location

within the list to inspect. The middle location is optimal, minimizing the expected entropy.

 Note

All in all, inspecting the numbers in the middle maximizes the amount of
information we gain on average.

The rest of the search for the target follows the same procedure: computing
the expected posterior entropy that will result from each decision and then
choosing the decision that minimizes that entropy. As the probability
distribution we work with is always a uniform distribution after each update,
the optimal number to inspect is always the one in the middle of the array that
hasn’t been ruled out.

This is exactly the strategy of binary search! From the perspective of
information theory, binary search is the optimal solution to the problem of
search for a number in a sorted list.

Justifying binary search with information theory

I remember when I first learned about the algorithm, the strategy of searching
in the middle of an array seemed, although reasonable, quite unique and "out
of nowhere." However, we have just learned to derive the same solution from
an information-theoretic perspective, which concretely quantifies the idea of
ruling out half of our search space in the service of gaining as much
information as possible, or reducing as much entropy as possible.

The application of information theory and entropy doesn’t stop at binary
search. As we saw, the procedure we went through is generalizable to other
decision-making problems: if we could model the problem of interest in
terms of probability distributions for unknown quantities, actions we can
take, and how the distributions can be updated when an action is taken, then
we can once again choose the information-theoretically optimal action that
reduces our uncertainty about the quantity of interest the most.

 Entropy search as a search for the truth

You can think of this entropy-based search strategy as a search for the truth,
in which we choose to perform the experiment that helps us learn the most
about something we care about.

For the remainder of this chapter, we will learn to apply this idea to Bayesian
optimization and implement the resulting entropy search policy with
BoTorch.

6.2 Entropy search in Bayesian optimization

Taking the same approach presented in the previous section, we obtain
entropy search policies in Bayesian optimization (BayesOpt). The main idea
is to choose our actions, our experiments, so that we can reduce the most
amount of entropy in the posterior distribution of what we care about. In this
section, we will first discuss how to do this on a high level and then move on
to implementation in BoTorch.

6.2.1 Searching for the optimum using information theory

In our remote control example, we aim to search for the remote within an
apartment and thus want to reduce the entropy of the distribution of the
location of the remote. In binary search, the process is similar: our target is
the location of a specific number we’d like to search for within a list, and we
want to reduce the entropy of the distribution of that number. What we can
use to be our target in BayesOpt and how we can leverage information theory
to aid the search process are what we need to determine in order to design an
entropy search policy, which we will learn how to do here.

Recall our ultimate goal in using BayesOpt: to search within the domain D of
a black-box function the location at which the function is maximized. This
means a natural search target for us is the location x* that maximizes the
objective value of the function f. That is, f* = f(x*) ≥ f(x), for all x in D.

 The optimizer of a function

The optimal location x* is often called the optimizer of the objective function
f.

Given a Gaussian process (GP) belief about the objective function f, there is a
corresponding probabilistic belief about the optimizer x*, which is treated as
a random variable.

Figure 6.10 shows an example of a trained GP and the distribution of the
objective optimizer x* that is induced from the GP. We note a few interesting
characteristics of this distribution:

The distribution is complicated and multimodal (having several local
optima).
The most likely location for the optimizer x* is a bit to the left of zero.
This is where the predictive mean of the GP is maximized.
There is non-neligible probability that the optimizer x* is at an end point
-5 or 5.
The probability that x* is around 2 is almost zero, corresponding to the
fact that we already have observed a higher objective value than f(2).

These characteristics make modeling this distribution of x* very challenging.

The most simple method of gauging how this quantity x* is distributed is to
simply draw many samples from the Gaussian process and record the location
at which each sample is maximized. This is in fact how Figure 6.10 is
generated.

Figure 6.10. Gaussian process belief (top) and the distribution of the function optimizer x*
(bottom). The distribution of the optimizer is non-Gaussian and fairly complicated, posing a
challenge for modeling and decision making.

Making matters worse is the fact that we will need exponentially more
samples to estimate the distribution of x* when the dimensionality of the
objective function (the length of the input vector x, or the number of features
each x has) increases.

 The curse of dimensionality

This is an instance of the curse of dimensionality in machine learning, which
is often used to refer to the exponential cost of many procedures in machine

learning with respect to the dimensionality of an object of interest.

In order to leverage entropy search in BayesOpt, we need to model our belief
about the location of the optimum x* using a probability distribution.
However, we can’t exactly model the distribution of the optimizer x*;
instead, we have to approximate it using samples drawn from a GP.
Unfortunately, this process quickly becomes computationally expensive as
the number of dimensions in the objective function (the length of x)
increases.

SIDEBAR

There are in fact research papers in Bayesian optimization that seek to search
for the location of the optimizer x* using entropy. The resulting policies,
however, often prove too computationally expensive to run and are not
implemented in BoTorch.

But that doesn’t mean we will have to abandon the effort of using
information theory in BayesOpt altogether. It just means that we need to
modify our search procedure to make it more amenable to computational
methodologies. One easy way to achieve this is to target a quantity other than
the optimizer x* that is, on one hand, connected to the search for x*, and on
the other, easier to reason about.

A quantity of interest in optimization, other than the optimizer x*, is the
optimal value f* = f(x*), achieved at the optimizer, which is also a random
variable according to our GP belief about the objective function f. As one can
imagine, learning about the optimal value f* might tells us a lot about the
optimizer x*; that is, the two quantities are information-theoretically
connected. However, the optimal value f* is much easier to work with than
the optimizer x*, as the former is just a real-valued number, while the latter is
a vector of length equal to the number of dimensions of the objective
function.

Figure 6.11. Gaussian process belief (top left), the distribution of the function optimizer x*
(bottom), and the distribution of the optimal value f* (right). The distribution of the optimal
value is always one-dimensional and therefore easier to work with than that of the optimizer.

An example of the distribution of the optimal value f* induced by a GP is
shown in Figure 6.11, on the right panel. We see that this distribution is
roughly truncated around 1.6, which is exactly the value of the incumbent in
our training data set; this makes sense as the optimal value f* must be at least
the incumbent value 1.6.

 Note

The main advantage to focusing our effort on this distribution of f* is the fact
that the distribution is always one-dimensional, regardless of the
dimensionality of the objective function.

Specifically, we can draw samples from this one-dimensional distribution to
approximate the expected posterior entropy upon making a query. From this
point, we follow the same idea behind entropy search: choosing the query
that (approximately) minimizes the expected posterior entropy, or in other
words, maximizes the expected reduction in entropy.

 Definition of the Max-value Entropy Search policy

By using this expected-reduction-in-entropy quantity as the acquisition score,
we obtain the max-value entropy search (or MES) policy. The term "max-
value" denotes the fact that we are using information theory to search for the
max value, or the optimal value f*, of the objective function.

Figure 6.12. Gaussian process belief (top left), the distribution of the optimal value f* (right), and
the approximate expected reduction in entropy, which is used as the acquisition function score
(bottom). The distribution of the optimal value is always one-dimensional and therefore easier to
work with than that of the optimizer.

Figure 6.12 shows the MES acquisition score in our running example in the
bottom panel, where the point around -2 is where we should query next
according to this information-theoretic criterion. The MES policy prefers this
location because it has both a relative high mean and high CI, thus balancing
between exploration and exploitation.

Interestingly, the acquisition landscape here looks somewhat similar to the
distribution of the optimizer x* itself, which is shown in Figure 6.11, where
we see that the curve:

1. reaches its zenith somewhere in the middle,
2. achieves non-negligible value at the end points, and
3. bottoms out at zero around 2 where we know for certain that the location

is not optimal.

This is an indication that the optimal value f* is intimately linked to the
optimizer x*, and while we lose some information by altering our objective,
searching for f* is a good proxy for searching for x* and is much more
computationally tractable.

6.2.2 Implementing entropy search with BoTorch

Having discussed the high-level idea behind MES, we are now ready to
implement it using BoTorch and plug it in to our optimization pipeline. The
MES policy is implemented by the qMaxValueEntropy class in
botorch.acquisition.max_value_entropy_search as a PyTorch module,
similar to most BayesOpt policies we have seen. When initialized, this class
takes in two arguments: a GPyTorch GP model and a set of points that will be
used as samples in the approximation procedure described in the previous
section.

While there are many ways these sample points can be generated, one
particular way we have learned from Section 5.3.2 is to use a Sobol sequence,
which does a better job covering the targeted space. Overall, the MES policy
is implemented as follows:

num_candidates = 1000 #1

sobol = torch.quasirandom.SobolEngine(1, scramble=True) #1

candidate_x = sobol.draw(num_candidates) #1

candidate_x = 10 * candidate_x - 5 #2

policy = botorch.acquisition.max_value_entropy_search.qMaxValueEntropy(#3

 model, candidate_x #3

) #3

with torch.no_grad(): #4

 acquisition_score = policy(xs.unsqueeze(1)) #4

Here, num_candidates is a tunable parameter that sets the number of samples
you’d like to use in the MES computation. A larger value would mean an
approximation with higher fidelity but it would come at a higher
computational cost.

Let’s now apply this code to our running problem of optimizing the one-
dimensional Forrester function, as implemented in CH06/01 - BayesOpt
loop.ipynb. We are already familiar with most of this code, so we won’t go
into the details here.

Figure 6.13 shows the progress made by MES for ten queries, in which the
policy quickly finds the global optimum of Forrester after five queries.
Interestingly, as optimization progresses, we become more and more certain
that looking at other regions in the search space will not result in any
substantial reduction in entropy, which helps us stay close to the optimal
location.

Figure 6.13. Progress made by the Max-Value Entropy Search policy. The policy quickly finds
the global optimum after five queries.

We have seen that information theory gives us a principled, mathematically
elegant framework for decision making that revolves around trying to learn as

much as possible about a quantity of interest. This comes down to reducing
the expected posterior entropy in the distribution that models the quantity we
care about.

Within BayesOpt, we saw that a direct translation of this procedure poses
computational challenges in modeling the location of the optimal value of the
objective function, our primary search target. Instead, we shift our focus to
the optimal value of the objective function itself, making the computation
more tractable. Fortunately, all of this math is nicely abstracted away by
BoTorch, leaving us with a convenient, modular interface that we can plug
into any optimization problem.

This is also where the second part of the book on BayesOpt policies ends.
The last three chapters covered some of the most commonly used heuristics
to decision making in BayesOpt and the corresponding policies, ranging from
seeking improvement from the incumbent, to borrowing multi-armed bandit
methods, and in this chapter leveraging information theory.

The remainder of the book takes our discussion to the next level by
introducing special optimization settings that differ from what we have seen
so far, where we sequentially observe a single data point at each step of the
optimization. These chapters show that the methods we have learned can be
translated to practical settings in the real world to accelerate optimization.

6.3 Summary

Information theory studies the representation, quantification, and
transfer of information. One of the core concepts in this field is entropy,
which quantifies our uncertainty about a random variable from the
variable’s probability distribution.
An entropy search procedure considers the expected reduction in
entropy (and therefore in uncertainty) of a quantity of interest by taking
an action, and chooses the action that maximizes this reduction. We can
apply this generic procedure to many decision-making under uncertainty
problems.
Binary search may be obtained as the result of entropy search applied to
the problem of finding the location of a specific number in a sorted

array.
The curse of dimensionality refers to the exponential cost of many
procedures in machine learning with respect to the dimensionality of an
object of interest. As the number of dimensions increases, we need
exponentially more time to finish the procedure.
In Bayesian optimization, while entropy search may be applied to the
problem of finding the location of the function optimizer, it is
computationally expensive due to the curse of dimensionality.
To overcome the curse of dimensionality, we modify our goal to finding
the function optimized value, making it a one-dimensional search
problem. The resulting Bayesian optimization policy is called Max-
value Entropy Search, or MES.
Due to the complex behavior of the global optimum of a function
modeled by a Gaussian process, it’s not feasible to compute the
acquisition scores of MES in closed form. However, we can draw
samples from probability distributions to approximate the acquisition
scores.
Implementing MES in BoTorch follows the same procedure as
implementing other Bayesian optimization policies. To facilitate the
sampling procedure in the acquisition score approximation, we use a
Sobol sequence when initializing the policy object.

6.4 Exercise

There are two exercises in this chapter:

1. The first covers a variant of binary search in which prior information
could be taken into account when making decisions.

2. The second walks us through the process of implementing Max-value
Entropy Search in the hyperparameter tuning problem seen in previous
chapters.

6.4.1 Incorporating prior knowledge into entropy search

We saw in Section 8.1.3 that by placing a uniform prior distribution on the
location of the target within the array, the information-theoretically optimal
search decision is to cut the array in half. What happens if a uniform

distribution doesn’t represent your prior belief faithfully and you’d like to use
a different distribution? This exercise, implemented in CH06/02 - Exercise
1.ipynb, shows us an instance of this as well as how to derive the resulting
optimal decision, and will help us further appreciate the elegance and
flexibility of entropy search as a generic decision-making-under-uncertainty
procedure.

Imagine the following scenario: you work at a phone manufacturing company
in the quality control department, and your current project is to stress-test the
robustness of the casing of the company’s newest product. Specifically, your
team wants to find out from which floor of a 10-story building one can drop
the phone to the ground and not break it. A few rules apply:

The engineers who made the phone are sure that it won’t break if
dropped from the 1st floor.
If the phone breaks when dropped from a given floor, then it will also
break when dropped from a higher floor.

You are tasked with finding the highest floor that one can drop the phone
from and it still won’t break—we will denote this unknown floor as X—by
conducting trials. That is, you will drop actual copies of the phone from
specific floors in order to determine X. The question is, how should you
choose which floors to drop the phones from, in order to find X? Since the
phones are expensive, you need to conduct as few trials as possible and
would like to leverage information theory to aid the search.

1. Assume that by taking into account physics and the makings of the
phone, the engineers have an initial guess as to which floor might be
possible.

Specifically, the prior distribution of X is exponential in that the
probability that X is equal to a number is inversely exponential with
respect to that number: Pr(X = n) = 1 / 2n, for n = 1, 2, …, 9; the
probability corresponding to the highest, 10th floor is Pr(X = 10) = 1 /
29. So the probability that X = 1 is 50%, and this probability is cut in
half as the number increases.

Figure 6.14. Probability that X is equal to a number between 1 and 10 (that is, the

probability that a floor is the highest floor that doesn’t cause the phone to break when
dropped).

This probability distribution is visualized in Figure 6.14. Verify that this
is a valid probability distribution by proving that the probabilities sum to
one. That is, prove that Pr(X = 1) + Pr(X = 2) + … + Pr(X = 10) = 1.

2. Calculate the entropy of this prior distribution using the formula given at
the end of Section 8.1.1.

3. Given the prior distribution defined between 1 and 10, what is the
probability that the phone will break when dropped from the 2nd floor?
What is this probability for the 5th floor? The 1st floor?

4. Assume that after observing the result of any trial, the posterior
distribution for X is once again exponential and is defined between the
lowest and highest possible floors.

For example, if you observe that the phone doesn’t break when dropped
from the 5th floor, then we know that X is at least 5 and the posterior
distribution of X is such that Pr(X = 5) = 1 / 2, Pr(X = 6) = 1 / 4, …,
Pr(X = 9) = 1 / 32, Pr(X = 10) = 1 / 32. If, on the other hand, the phone

breaks from the 5th floor, then we know that X is at most 4 and the
posterior distribution is such that Pr(X = 1) = 1 / 2, Pr(X = 2) = 1 / 4,
Pr(X = 3) = 1 / 8, Pr(X = 4) = 1 / 8.

Figure 6.15. The posterior probability distributions of X in two scenarios when the phone is
dropped from the 5th floor. Each posterior distribution is still exponential.

Compute the entropy of this fictitious posterior distribution in the two

cases.

5. Given the prior distribution, compute the expected posterior entropy
after you conduct a trial on the 5th floor (that is, after you drop the
phone from the 5th floor and observe whether it breaks).

6. Compute this expected posterior entropy for other floors. Which floor
gives the highest reduction in entropy? Is this still the same result as
binary search? If not, what has changed?

6.4.2 Bayesian optimization for hyperparameter tuning

This exercise, implemented in CH06/03 - Exercise 2.ipynb applies
BayesOpt to an objective function that simulates the accuracy surface of a
support-vector machine model in a hyperparameter tuning task. The x-axis
denotes the value of the penalty parameter C, while the y-axis denotes the
value for the RBF kernel parameter γ. See the exercises in Chapter 3 and
Chapter 4 for more detail. There are multiple steps:

1. Recreate the Bayesian optimization loop in CH07/03 - Exercise
2.ipynb, including the outer loop that implements repeated experiments.

Repeated experiments in Bayesian optimization

Refer to Step 9 of Exercise 2 from Chapter 4 to see how we can run
repeated experiments in Bayesian optimization.

2. Run the Max-value Entropy Search (MES) policy. Since our objective
function is two-dimensional, we should increase the size of the Sobol
sequence used by MES. For example, you can set it at 2000. Observe its
aggregated performance.

7 Maximizing throughput with
batch optimization
This chapter covers

Making function evaluations in batches
Extending Bayesian optimization to the batch setting
Optimizing hard-to-compute acquisition scores

The Bayesian optimization (BayesOpt) loop we have been working with thus
far takes in one query at a time, and returns the function evaluation for the
query before the next query is made. We use this loop in settings where
function evaluations can only be made sequentially. However, many real-
world scenarios of black-box optimization allow the user to evaluate the
objective functions in batches. For example, when tuning the
hyperparameters of a machine learning model, we can try out different
hyperparameter combinations in parallel if we have access to multiple
processing units or computers, instead of running individual combinations
one by one. By taking advantage of all the resources available to us, we can
increase the number of experiments we conduct and maximize throughput
during the function evaluation step of the BayesOpt loop.

We call this variant of BayesOpt in which multiple queries can be made in
parallel batch Bayesian optimization. Other examples of batch BayesOpt than
hyperparameter tuning include drug discovery where a scientist uses each of
multiple machines in their laboratory to synthesize an individual drug
prototype, or product recommendation where the recommendation engine
presents multiple products to a customer at the same time. Overall, any black-
box optimization setting in which more than one experiment can be run
simultaneously calls for batch BayesOpt.

Given that computational and physical resources are often parallelizable,
batch BayesOpt is one of the most common settings of BayesOpt in the real
world. In this chapter, we will get introduced to batch BayesOpt and see how

the policies we have learned about in previous chapters can be extended to
this setting. We will see that extending a BayesOpt policy to the batch setting
is not a trivial endeavor and requires careful consideration. We will then learn
about various strategies that facilitate extending to the batch setting and how
to implement BayesOpt policies in Python using BoTorch.

By the end of the chapter, you will understand what batch BayesOpt is, when
the batch setting is applicable, and how to implement BayesOpt policies in
this setting. With the knowledge of how to parallelize BayesOpt in the batch
setting, we will be able to make BayesOpt more practical and applicable in
the real world.

7.1 Making multiple function evaluations
simultaneously

The ability to make multiple function evaluations at the same time in a black-
box problem is common in many real world scenarios, and batch Bayesian
optimization (BayesOpt) is the setting of BayesOpt in which this parallelism
of function evaluations is taken into account. In this section, we will talk
about the exact setting of batch BayesOpt and what challenges we might face
when using BayesOpt policies to make multiple queries to the objective
function. This section will motivate the various strategies to extend BayesOpt
policies to the batch setting. We cover these strategies later in the chapter,
starting from Section 7.2.

7.1.1 Making use of all available resources in parallel

One of the defining characteristics of an expensive, black-box optimization
problem is that making function evaluations is expensive. In Section 1.1, we
examined the high cost of making function evaluations in many applications:
hyperparameter tuning a neural network takes a lot of time and computational
resources, and the cost of creating new drugs has been exponentially
increasing in recent years, to name two examples. This cost of querying the
objective function in black-box optimization gives rise to the need to make
the process of querying the objective function more efficient, and one way of
doing that is via parallelism.

 What is parallelism?

Parallelism refers to the act of running independent processes at the same
time, so that the total time taken to complete these processes is cut short.

The benefits of parallelism is summarized in Figure 7.1, where three
processes (which can be programs to run, computations to complete, and so
on) run either sequentially or in parallel. When run in parallel, the three
processes only take one third of the total time taken if run sequentially.

Figure 7.1. Illustration of the benefits of parallelism. Three generic processes either run
sequentially (left) or in parallel (right). When running in parallel, the three processes only take
one third of the total time taken if run sequentially.

Parallelism is particularly common in computer science, where a computer
may use multiple processing units in parallel to process multiple programs at
the same time. If these programs are independent from each other (they don’t
use each other’s data or write to the same files), they can run in parallel
without any issue.

The same idea applies to optimization settings that employ BayesOpt. For
example, a machine learning engineer tuning a neural network may take
advantage of the multiple GPUs to which she has access to train multiple
models at the same time. A scientist looking to discover new drugs can
experiment with more than one recipe using the equipment in the lab to
synthesize the multiple recipes simultaneously. Making multiple queries at
the same time allows us to obtain more information given the same amount of
time spent learning about the objective function.

What are GPUs?

GPUs, or graphics processing units, are the hardware that is optimized to
perform parallel matrix multiplications and therefore commonly used for
training neural networks.

Perhaps the clearest example comes from baking, where multiple cookies are
baked simultaneously in batches. You could bake individual cookies one at a
time, but doing so would waste your resources such as power to heat up the
oven and time.

Bayesian optimization for baking cookies

On the topic of baking, there in fact is a research paper on batch Bayesian
optimization
(https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46507.pdf
that tackles optimizing cookie recipes by finding the optimal amount of eggs,
sugar, and cinnamon to use when making the cookie dough.

In BayesOpt, the batch setting allows multiple inputs of the objective
function to be evaluated at the same time. That is, we can send multiple
queries x1, x2, …, xk to the black box that evaluates the objective all at once,
and receive the corresponding objective values f(x1), f(x2), …, f(xk) in a batch.
In contrast, in the classic sequential BayesOpt setting, only after observing
f(x1) can we proceed to query at another location x2.

At each iteration of the batch BayesOpt loop, we pick out multiple input
locations to evaluate the objective function at, as opposed to a single location

like we’ve been doing thus far. This batch BayesOpt loop is illustrated in
Figure 7.2. The requirement for multiple queries at a time means that we need
new BayesOptp policies to score the usefulness of these input locations. We
will talk more about why the BayesOpt policies we have learned cannot be
easily extended to the batch setting in the next section. The other component
of the BayesOpt loop, the Gaussian process, remains unchanged, as we still
need a machine learning model that produces probabilistic predictions. In
other words, it’s the decision-making component of BayesOpt that needs to
be modified for us to adopt the batch setting.

Figure 7.2. The batch Bayesian optimization (BayesOpt) loop. Compared to sequential BayesOpt,
batch BayesOpt requires multiple query points to be identified at Step 2 and evaluates the
objective function at these points simultaneously at Step 3.

Acquisition scores of a policy

A Bayesian optimization policy assigns a score, called the acquisition score,
to each input location in the search space that quantifies how useful the input
is in our search for the global optimum of the objective function. Each policy

uses a different heuristic to compute this score, as detailed in Chapters 4 to 6.

The number of queries that could be made simultaneously, that is, the size of
the batch, is application-dependent. For example, how many cookies you
could bake at the same time depends on the size of your oven and baking
trays. The computing resources you have available (the number of CPUs and
GPUs) dictate how many neural networks you can train in parallel when
tuning the model’s hyperparameters. Figure 7.1 shows three processes
running at the same time as an example, so the batch size is 3.

7.1.2 Why can’t we use regular Bayesian optimization policies
in the batch setting?

We said in the previous section that the BayesOpt policies we have learned
under the sequential setting (where queries to the objective function are made
sequentially, one after another) cannot be repurposed and used in the batch
setting without modifications. In this section, we discuss in more detail why
this is the case, and why we need specialized policies for the batch setting.

Remember from Section 4.1 that a BayesOpt policy assigns a score to each
point in the search space that quantifies how useful the point is in our search
for the global optimum of the objective function. We then look for the point
that gives the highest score and choose it as the next query of the objective
function. Figure 7.3 shows the score computed by the Expected Improvement
(EI) policy (introduced in Section 4.3) as the curve in the bottom panel,
where 1.75, as indicated by the vertical mark on the lower curve, maximizes
the score and is our next query.

Figure 7.3. An example of Bayesian optimization. The top panel shows the Gaussian process
predictions and the ground truth objective function, while the bottom panel shows the acquisition
scores made by Expected Improvement, discussed in Section 4.3 of Chapter 4. The vertical tick
on the lower curve at 1.75 indicates the next query.

What would happen if we were to use the same EI score, the lower curve in
Figure 7.3, to pick out not one, but multiple points to query the objective
function with? We would need to identify the many points that give the
highest EI scores. However, these points that give high EI scores would
simply cluster around the point picked under the sequential setting. This is
because along the lower curve, if we were to move an infinitesimal distance
from 1.75, we would still receive a high EI score. That is, the points close to
the one giving the highest acquisition score also give high acquisition scores.

If we were to simply pick out the points with the highest acquisition scores,
our queries would cluster around a single region in the search space,
essentially putting all our eggs in one basket. This is illustrated in Figure 7.4,
where the queries giving the highest EI scores cluster around 1.75. This
clustering effect is undesirable, because we are wasting our valuable
resources evaluating the objective function at essentially one single input
location. These clustered points are less useful than points that are more
spread out.

Figure 7.4. Queries made in the batch setting, if we were to simply pick out the points with the
highest acquisition scores, denoted by the vertical ticks on the lower curve. These queries are
close to each other and are less useful than if they were more spread out.

Choosing all of our queries to be points clustered around one location
prevents us from benefiting from the parallelism inherent in the batch setting.
Our discussion so far shows that designing a batch of queries not as simple as
choosing the top points giving the highest acquisition scores of a BayesOpt
policy. For the remainder of this chapter, we will discuss BayesOpt policies
that are specifically designed for the batch setting. Conveniently for us, these
policies are extensions of the BayesOpt policies that we have learned in
Chapters 4–6, so we will only need to learn about extending the optimization
heuristics we have learned to the batch setting.

7.2 Computing the improvement and the upper
confidence bound of a batch of points

The first policies that we will extend to the batch setting is the improvement-
based policies, which are the topic of Chapter 4, and the Upper Confidence
Bound (UCB) policy, discussed in Section 5.2 of Chapter 5. The heuristics
used by these policies allow for the policies to be modified to work in the
batch setting, as we will see shortly.

1. In the next section, we will introduce the mathematical modification of

those heuristics and discuss how resulting batch policies work.
2. Afterwards, we will learn how to declare and run these batch policies

with BoTorch.

7.2.1 Extending optimization heuristics to the batch setting

The discussion in Section 7.1.2 shows that choosing a batch of points to
evaluate the objective function with is not as simple as finding the top points
that maximize the acquisition score of a sequential policy. Instead, we need to
redefine the mathematical formulations of these sequential policies to
repurpose them to the batch setting.

One strategy applies for three BayesOpt policies that we have learned:
Probability of Improvement (PoI), Expected Improvement (EI), and Upper
Confidence Bound (UCB), which formulate their acquisition scores as
averages over normal distributions. That is, the score each of the three
policies assigns to a given point can be written as the average of a quantity of
interest, over a normal distribution in the sequential setting. For PoI, this
quantity is whether we will observe an improvement; for EI, the quantity of
interest is the magnitude of the improvement.

As shown in the top portion of Figure 7.5, a sequential BayesOpt policy
scores a candidate query x using the average of some quantity G(f(x)) over
the normal distribution that is our belief about the value of the objective
function f(x). This quantity G depends on the heuristic that the BayesOpt
policy uses to balance between exploration and exploitation. With a batch of
queries x1, x2, …, xk, we instead compute the average of the maximum value
of the quantity G across the points in the batch, as shown in right box of
Figure 7.5. This average is computed across the multivariate Gaussian
distribution corresponding to the objective values f(x1), f(x2), …, f(xk).

Figure 7.5. Extending the mathematical formulation of a Bayesian optimization policy to the
batch setting. In both cases, we use the average of a quantity of interest. In the batch setting, we
take the maximum value across the points in a batch before taking the average to represent the
utility of the whole batch.

The balance between exploration and exploitation

All Bayesian optimization policies need to address the tradeoff between
zeroing in on a high-performing region in the search space (exploitation) and
inspecting unexplored regions (exploration). Refer to Section 4.1.2 for a more
thorough discussion of this tradeoff.

This strategy of using the maximum of the quantity of interest G to represent
the utility of the whole batch makes intuitive sense in the context of
optimization, which is our goal. The higher the maximum G is, the more
valuable the whole batch of queries is. With a way to quantify the value of
any given batch of queries, we can then proceed to find the batch maximizing
that quantity.

The heuristic we use is similar to what we do in sports competitions like the
Olympics: each country might train many athletes throughout the year, but
when the time comes, only the best individuals are chosen to take part in the
competition.

Figure 7.6. The batch Bayesian optimization heuristic picks out the best element with the highest
G value to represent the whole batch (bottom). This strategy is similar to team selection in the
Olympics, where only the best athletes are selected to represent a country.

How is this strategy realized with the three policies mentioned above? Let’s
first discuss the first two, improvement-based policies. Remember from
Chapter 4 that PoI uses the probability that the next query will improve from
the best-seen point (the incumbent) as the acquisition score. The more likely
a point will yield a better result than the incumbent, the higher the score that

PoI assigns to that point. The EI policy on the other hand takes into account
the magnitude of the improvement, assigning a high acquisition score to
points that are likely to both improve from the incumbent and improve by a
large amount.

The difference between these two policies is visualized in Figure 7.7, where
different outcomes lie on the x-axis, and the y-axis shows the objective value
that is to be optimized. PoI treats all points on the x-axis that yield higher
values than the incumbent equally, while EI considers how much each point
improves.

Figure 7.7. The difference between Probability of Improvement (left) and Expected Improvement
(right). The former only cares whether we improve from the incumbent or not, while the latter
considers how much improvement is made.

In the batch setting, we can reason about the improvement we observe after
the current iteration of the BayesOpt loop in a similar manner. Instead of

reasoning about the multiple points within a batch of queries, we can single
out the maximum value among the function evaluations at these points. That
is, if our batch of queries to the objective function were at x1, x2, …, xk, we
wouldn’t need to use all function evaluations f(x1), f(x2), …, f(xk) to reason
about the improvement we observe. We’d need just the maximum value max
{f(x1), f(x2), …, f(xk)}, since this maximum value defines the improvement we
observe.

Following the example in Figure 7.7 and assume that our incumbent has an
objective value of 20 and consider the following scenarios visualized in the
right panel of Figure 7.8:

If our batch of queries, with the batch size of 3, returned values that are
all lower than 20 (corresponding to X1 in the right panel), then we would
observe no improvement. The highest function evaluation in X1 is 3,
meaning that no function evaluation from this batch improved from the
incumbent.
If all returned values exceeded the incumbent (corresponding to X2),
then we would observe an improvement from the incumbent. In
particular, the maximum of this batch X2 is 30, leading to an
improvement of 10.
More important, if only some but not all returned function evaluations
were better than the incumbent (X3 as an example), then we would still
observe an improvement. The maximum of X3 is 22, which is indeed an
improvement from the incumbent 20.

By focusing on the maximum evaluated value returned from a batch of
queries, we can determine right away whether this batch has resulted in an
improvement from the incumbent. Figure 7.8 shows this improvement-based
reasoning of PoI, where batches X2 and X3 are treated equally, as they (or
more specifically, their maximum values) both lead to an improvement.

Figure 7.8. Whether a query (left) or a batch of queries (right) leads to an improvement from the
incumbent. In the batch setting on the right, we only consider the maximum value within each
batch to determine whether there is an improvement.

We now have a way to extend the idea of computing the probability of
improvement from the sequential to the batch setting.

 The acquisition score of batch Probability of Improvement

The acquisition score PoI assigns to a given batch of candidate queries equals
to the probability that the maximum among the returned function evaluations
will exceed the incumbent.

Mathematically, we go from computing the probability that the function
evaluation f(x) will exceed the incumbent f*, denoted as Pr(f(x) > f*), in the
sequential setting to computing the probability that the maximum function
evaluation will exceed the incumbent, Pr(max {f(x1), f(x2), …, f(xk)} > f*).
This probability Pr(max {f(x1), f(x2), …, f(xk)} > f*) is then used as the PoI
acquisition score for the batch of queries x1, x2, …, xk.

As mentioned earlier in this section, these probabilities, Pr(f(x) > f*) and
Pr(max {f(x1), f(x2), …, f(xk)} > f*), can be viewed as averages of quantities
that are important to our optimization progress, over Gaussian distributions.
Specifically, the probabilities are averages of the binary random variable
indicating whether f(x) > f* and max {f(x1), f(x2), …, f(xk)} > f* are true,
respectively.

Figure 7.9. Extending the Probability of Improvement policy to the batch setting. In the
sequential case (left), we consider whether the next query improves from the incumbent. In the
batch setting, we reason about whether the maximum value across the points in a batch improves
from the incumbent.

To complete the batch BayesOpt loop with this PoI policy, we then find the
batch x1, x2, …, xk that maximizes the acquisition score Pr(max {f(x1), f(x2),
…, f(xk)} > f*). As we have learned in Chapter 4’s Section 4.1.1, we can use
the helper function optimize_acqf() from BoTorch’s optim.optimize
module to facilitate this search for the batch x1, x2, …, xk that optimizes the
acquisition score score, as we will see in Section 7.2.2.

We now move on to the Expected Improvement (EI) policy, which computes
the expected value of the improvement from the incumbent that we will
observe from querying a particular point. Since we already have a way to
reason about improvement from the incumbent upon observing a batch of
function evaluations, the batch extension of EI presents itself. That is, we
only compute the expected value of the improvement from the incumbent that
results from the maximum function evaluation within the returned batch, max
{f(x1), f(x2), …, f(xk)}. Just as PoI computes the probability that this
maximum value exceeds the incumbent, EI considers how much the
maximum exceeds the improvement.

Figure 7.10. Extending the Expected Improvement policy to the batch setting. In the sequential
case (left), we use the average of how much the next query improves from the incumbent. In the
batch setting, we take the average of how much the maximum value across the points in a batch
improves from the incumbent.

To illustrate this reasoning, Figure 7.11 shows the distinction in how EI
scores different outcomes in the sequential (left panel) and the batch setting
(right panel). In the right panel:

A batch doesn’t possess any point that improves from the incumbent at
20 (X1 as an example) will constitute zero improvement.
The maximum value from batch X2 is 22, so we observe an
improvement of 2, even though there are values in this batch that fall
below the incumbent.
Although the values in batch X3 are all higher than the incumbent, the
improvement we observe is once again completely determined by the
maximum value 30.
Finally, even if most of batch X4 are lower than the incumbent 20, the
maximum value of X4 is 50, making this batch a very good outcome.

Figure 7.11. Whether a query (left) or a batch of queries (right) leads to an improvement from
the incumbent. In the batch setting on the right, we only consider the maximum value within each
batch to determine whether there is an improvement.

To proceed with batch EI, we compute the expected value of how much the
maximum value within a batch is higher than the incumbent. This expected
value of the improvement, or expected improvement, is the acquisition score
that batch EI uses to rank how valuable a given batch x1, x2, …, xk is. The
helper function optimize_acqf() can once again be used to find the batch
that gives the highest expected improvement.

The discussions so far help us extend the two improvement-based policies,
PoI and EI, to the batch setting. We are now left with the Upper Confidence
Bound (UCB) policy. Fortunately, the strategy of picking out the maximum
value from a batch of queries to compute the improvement also applies to
UCB. To apply the same strategy of picking out the maximum value (with
respect to a function G of interest) from a batch of queries to UCB, we need
to reframe the UCB acquisition score as an average across a normal
distribution.

The mathematical details of the Upper Confidence Bound policy

In Chapter 5’s Section 5.2.2, we learn that the UCB acquisition score is μ +
βσ. Here, the terms μ and σ are the predictive mean and standard deviations of
f(x), and β is an adjustable parameter that trades off exploration and
exploitation. We now need to rewrite μ + βσ as an average of some quantity
over the normal distribution N(μ, σ2) in order to extend UCB to the batch
setting. While this reformulation can be done, we won’t go into the math
here. The interested reader can refer to Appendix A of this paper
(https://arxiv.org/pdf/1712.00424.pdf), which lays out the mathematical
details.

The rest of extending UCB to the batch setting follows the same procedure.

1. We take the average of the maximum of the quantity that is the rewritten
μ + βσ across the whole batch and use it as the batch UCB acquisition
score.

2. We then use the helper function optimize_acqf() to find the batch to
gives the highest score.

That’s all we need to know about extending these three BayesOpt policies to
the batch setting. We will see how to implement these policies in BoTorch in
the next section.

7.2.2 Implementing batch improvement and upper confidence
bound policies

Similar to what we saw in Chapters 4–6, BoTorch makes it straightforward to
implement and use BayesOpt policies in Python, and the batch variants of the
three policies discussed in the previous section, Probability of Improvement
(PoI), Expected Improvement (EI), and Upper Confidence Bound (UCB), are
no exceptions. While it’s important for us to learn about the mathematical
formulations of these three policies, we will see that with BoTorch, we can
simply replace a single line of code in our Python program to run these
policies. The code that we will use can be found in the Jupyter notebook
named CH07/01 - Batch BayesOpt loop.ipynb.

You might think that as we are now working under a new setting where
queries to the objective function are done in batches, we will need to modify
the code that implements the Bayesian optimization (BayesOpt) loop
(obtaining multiple function evaluations at the same time, appending multiple
points to the training set, training the GP model). Amazingly, however, the
necessary modifications are minimum, thanks to BoTorch’s ability to
seamlessly support batch mode. In particular, when using the helper function
optimize_acqf() to find the next queries maximizing the acquisition score,
we only need to specify the parameter q = k to be the batch size (that is, the
number of function evaluations that can be run in parallel).

The entire batch BayesOpt loop can be summarized in Figure 7.12, which
mostly resembles Figure 4.4 in Chapter 4 under the sequential setting. The
few changes are annotated:

We specify q = k to be the batch size k when using the helper function
optimize_acqf().
This helper function returns next_x which contains k points. The
variable next_x is a k-by-d PyTorch tensor, where d is the number of
dimensions in our search space (that is, the number of features in our
data set).
We then query the objective function at the locations specified in next_x
and obtain next_y containing the function evaluations. Unlike the
sequential setting where next_y is a scalar or a one-element tensor,
next_y here is a tensor contains k elements, corresponding to the
function evaluations of next_x.

Figure 7.12. Steps in the batch Bayesian optimization loop and the corresponding code.
Compared to the sequential setting, we need minimum modifications to our code when moving to
the batch setting.

 Training a Gaussian process in batch Bayesian optimization

For Step 1 in Figure 7.12, we still need a class implementation of a Gaussian
process (GP) model and the helper function fit_gp_model() that trains the
GP on the training data. Fortunately, the same code that we use in the
sequential setting can be reused without any modification. Refer to Section
4.1.1 for the complete discussion of this code.

To facilitate our code demonstration, we will use the two-dimensional
synthetic objective function that simulates the model accuracy of a
hyperparameter tuning application. This function is first introduced in
Chapter 3’s exercise and is implemented as follows, where we specify that
the function domain, our search space, is between 0 and 2 in each of the two
dimensions:

def f(x): #1

 return (#1

 torch.sin(5 * x[..., 0] / 2 - 2.5) * torch.cos(2.5 - 5 * x[..., 1]) #1

 + (5 * x[..., 1] / 2 + 0.5) ** 2 / 10 #1

) / 5 + 0.2 #1

lb = 0 #2

ub = 2 #2

bounds = torch.tensor([[lb, lb], [ub, ub]], dtype=torch.float) #2

This objective function is visualized in Figure 7.13, where we see the global
optimum is achieved near the top left corner of the space, giving an accuracy
of 90%.

Figure 7.13. Accuracy of an SVM model on a test data set, as a function of the penalty parameter
C and the RBF kernel parameter γ. This is the objective function we aim to optimize in this
chapter.

To set up our batch optimization problem, we will assume that we can train
the model in four different processes at the same time. In other words, our
batch size is 4. Further, we can only retrain the model five times, so the
number of iterations of our batch BayesOpt loop is 5, and the total number of
queries we can make is 4 * 5 = 20.

num_queries = 20

batch_size = 4

num_iters = num_queries // batch_size #1

Now, all that’s left to do is run a batch BayesOpt policy. We do this with the
following code that first randomly picks out a point in the search space as the
training set:

torch.manual_seed(0)

train_x = bounds[0] + (bounds[1] - bounds[0]) * torch.rand(1, 2) #1

train_y = f(train_x) #2

We then, for each of the five iterations:

1. Keep track of the best accuracy seen so far,
2. Retrain the Gaussian process model with the current training set,
3. Initialize a batch BayesOpt policy,
4. Use the helper function optimize_acqf() to find the best batch of

queries,
5. Evaluate the objective function at the locations specifies by the batch of

queries,
6. Append the new observations to the training set and repeat.

incumbents = torch.zeros(num_iters)

for i in tqdm(range(num_iters)):

 incumbents[i] = train_y.max() #1

 model, likelihood = fit_gp_model(train_x, train_y) #2

 policy = ... #3

 next_x, acq_val = botorch.optim.optimize_acqf(#4

 policy,

 bounds=bounds,

 q=batch_size, #5

 num_restarts=40,

 raw_samples=100,

)

 next_y = f(next_x) #6

 train_x = torch.cat([train_x, next_x]) #7

 train_y = torch.cat([train_y, next_y]) #7

Again, this code is almost identical to the code we use in Section 4.1.1 of
Chapter 4 that implements the sequential setting of BayesOpt. All we need to
be careful with is setting argument q of the helper function optimize_acqf()
to the correct batch size.

To run a batch BayesOpt policy, we then initialize it using BoTorch’s class
implementation of the policy. For the Probability of Improvement (PoI)
policy, we use:

policy = botorch.acquisition.monte_carlo.qProbabilityOfImprovement(

 model, best_f=train_y.max()

)

Similarly, for the Expected Improvement (EI) policy, we use:

policy = botorch.acquisition.monte_carlo.qExpectedImprovement(

 model, best_f=train_y.max()

)

Note the q in front of the class names, which indicates that these classes
implement batch BayesOpt policies. Similar to argument best_f that
sequential PoI and EI take in, this argument best_f here specifies the current
incumbent value, which we set at train_y.max().

For Upper Confidence Bound (UCB), we use an equivalent API, where
argument beta sets the tradeoff parameter β in the acquisition score μ + βσ
where μ and σ are the mean and standard deviation of our prediction at a
given point:

policy = botorch.acquisition.monte_carlo.qUpperConfidenceBound(

 model, beta=2

)

Arguments Bayesian optimization policies take

We learn about the implementation of sequential Probability of Improvement,
Expected Improvement, and Upper Confidence Bound in Section 4.2.2,
Section 4.3, and Section 5.2.3, respectively. The arguments that each of these
policies takes in are identical to their batch counterparts, which makes
transitioning to the batch setting in BoTorch straightforward.

Since we now can run the batch version of PoI, EI, and UCB, let’s take a
moment to inspect the behavior of these policies. In particular, assume our
current BayesOpt progress is the same as in Figure 7.3 with the one-
dimensional objective function. This figure also shows the acquisition scores
computed by EI for a single point in the bottom panel. We’re interested in
seeing what EI’s acquisition scores look like for a batch of two points, that is,
the expected improvement from the incumbent of a given pair of queries.

We show these acquisition scores with a heatmap in Figure 7.14, where the
brightness of each location on the square denotes the expected improvement

of a given pair of queries, and the locations that give the highest acquisition
scores are denoted as stars. (The top and right panels show the observed data
and the current Gaussian process belief about the objective function along the
axes of the heatmap.) We observe a few interesting trends:

There are two straight bands on the heatmap denoting high acquisition
scores. These bands are close to the data point x = 2, meaning that any
batch of queries (of size 2) that has a member close to x = 2 will give a
high score. This makes sense, since around x = 2 is where the posterior
mean of the GP is maximized.
The diagonal of the heatmap is dark, meaning that querying a batch x1
and x2 where x1 is roughly equal to x2 is likely to yield a low
improvement. This observation verifies what we said earlier in Section
7.1.2 that choosing the queries in a batch to cluster around each other is
a bad strategy that essentially puts all our eggs in one basket.
Finally, the two optimal batches of queries, denoted by the stars, are the
same batch, since the locations are symmetric to each other. This batch
contains 1.68 and 2.12, which are still in the neighborhood of x = 2,
where the GP tells us the objective function yields high values. Further,
the two selected queries 1.68 and 2.12 are far away from each other and
thus help us escape the trap of clustering our queries around each other.

Batch versus sequential Expected Improvement

Interestingly, the two points selected by batch EI, 1.68 and 2.12, are different
from the point maximizing the sequential EI’s acquisition score, 1.75. This
difference between sequential EI and batch EI demonstrates that the optimal
decision in the sequential setting isn’t necessarily the optimal decision in the
batch setting.

Figure 7.14. A heatmap showing the acquisition scores of the batch Expected Improvement policy
for batches of size 2 with a one-dimensional objective function. The top and right panels show the
observed data and the current Gaussian process belief about the objective function along the axes
of the heatmap. The two optimal pairs of queries, denoted as the two stars, contain 1.68 and 2.12,
which are relatively far away from each other.

Overall, Figure 7.14 shows that the batch version of EI evaluates a given
batch of queries in a reasonable manner, prioritizing batches that are both
likely to yield high objective values and sufficiently spread out.

Getting back to our hyperparameter tuning example, we are ready to use the
initializations above to run the batch policies. After saving the running
incumbent values each policy achieves and plotting them against each other,
we can generate Figure 7.15, which shows the optimization progress each
policy makes in our example. We first observe that this progress is being
plotted in batches of four, which makes sense since four is the batch size we
use. In terms of performance, we see that EI and UCB are able to progress
faster than PoI in the beginning, but all three converge to roughly the same
accuracy at the end.

Figure 7.15. Progress made by various batch Bayesian optimization policies in the
hyperparameter tuning example. Progress is made in batches of four, which is the batch size
used.

Repeated experiments in Bayesian optimization

To accurately compare the performance of these policies in this
hyperparameter tuning application, we need to repeat this experiment using
different initial training sets that are randomly generated. Refer to Step 9 of
Exercise 2 from Chapter 4 to see how we can run repeated experiments in
Bayesian optimization.

We have now learned how to implement the batch versions of PoI, EI, and
UCB in BoTorch and have seen that the transition from the sequential to the
batch setting requires minimum modifications to our code. Let’s now move
on to the remaining BayesOpt policies, Thompson sampling and Max-value
Entropy Search, which require different strategies to be extended to the batch

setting.

7.3 Exercise 1: Extending Thompson sampling to
the batch setting via resampling

Unlike the other BayesOpt policies, Thompson sampling (TS) can be easily
extended to the batch setting thanks to its sampling strategy. We will see how
this extension is done in this exercise. Remember that TS in the sequential
setting, which we learned in Section 5.3, draws one sample from the current
GP belief about the objective function and queries the data point that
maximizes that sample.

In the batch setting, we simply repeat this process of sampling from the GP
and maximizing the sample multiple times to assemble a batch of queries of
the desired size. For example, if the batch size of our batch BayesOpt
problem is 3, then we draw three samples from the GP, and the batch of
queries we end up with contains the maximizers of the three samples (one
maximizer for each sample). This logic is illustrated in Figure 7.16, where we
keep sampling from the GP and adding to the running batch the point that
maximizes the latest sample, until the batch is full, that is, until we have
reached the appropriate batch size.

Figure 7.16. Flowchart of the implementation of the batch version of Thompson sampling. We
keep sampling from the Gaussian process and adding to the running batch the point that
maximizes the latest sample, until the batch is full.

Every time we draw a sample from the GP, we obtain a different realization
of what the objective function could be. By optimizing the multiple samples
drawn from the GP, we have an easy way of selecting multiple points that
could guide us to the global optimum of the objective function. To implement
and run this policy on the hyperparameter tuning example, we follow the

steps below, as implemented in CH07/02 - Exercise 1.ipynb:

1. Recreate the batch Bayesian optimization loop in CH07/01 - Batch
BayesOpt loop.ipynb.

2. Implement Thompson sampling with a Sobol sampler as described in
Section 5.3 of Chapter 5.

1. Use 2000 candidates for the Sobol sampler.

2. When calling the Thompson sampler object, specify that the
number of samples is equal to the batch size:

ts = botorch.generation.MaxPosteriorSampling(model, replacement=False)

next_x = ts(candidate_x, num_samples=batch_size)

3. Run this Thompson sampling policy on the hyperparameter tuning
objective function and observe its performance.

Sobol sequences

A Sobol sampler generates a Sobol sequence, which can cover a space better
than a uniformly sampled sequence. More discussion on Sobol sequences can
be found in Section 5.3.2.

7.4 Computing the value of a batch of points using
information theory

We now learn how to extend the final BayesOpt policy in our toolkit, Max-
value Entropy Search, to the batch setting. Unlike the improvement-based
and bandit policies, MES requires more careful consideration to run
efficiently in the batch setting. We will talk about the batch version of MES
and the problems we run into when extending it to the batch setting in the
next section, and finally how to implement the policy in BoTorch afterwards.

 Note

Max-value Entropy Search is the topic of Chapter 6, where we learn about
the basics of information theory and how to implement the Max-value
Entropy Search policy with BoTorch.

7.4.1 Finding the most informative batch of points with cyclic
refinement

In the sequential setting, Max-value Entropy Search (MES) scores each
candidate query with how much information about the objective function’s
maximum value f* we will gain after querying that candidate point. The more
information about the maximum value a candidate point offers, the more
likely that point will be to guide us towards the objective function’s global
optimum x*.

We’d like to use the same strategy for the batch setting. That is, we want to
compute how much information about the maximum objective value f* we
will gain after querying a batch of candidate points. This information-
theoretic value of a batch of points is a well-defined mathematical quantity,
and we can theoretically compute and use it as the acquisition score in the
batch setting. However, computing this information-theoretic quantity is
quite expensive to do in practice.

The main bottleneck comes from the fact that we have to consider all possible
function evaluations in the batch to know how much information about f* we
will gain. Although these function evaluations follow a multivariate Gaussian
distribution which offers many mathematical conveniences, computing the
information gain about f* is one of the tasks that aren’t simplified by
Gaussianity. This computational cost means that although we can compute
the acquisition score for a batch of points, this computation is expensive to do
and not amenable to optimization. That is, finding the batch of points that
maximizes information about f* is very hard to do.

 The difficulty of maximizing entropy of a batch

The search for the query maximizing the acquisition score is done by L-
BFGS, a quasi-Newton optimization method that generally works better than

gradient descent, in the helper function optimize_acqf(). However, due to
the way the batch version of the information-theoretic acquisition score is
computed, neither L-BFGS nor gradient descent can effectively optimize the
score.

Acquisition scores in Bayesian optimization

Remember that the acquisition score quantifies the value of a query or a batch
of queries in helping us locate the global optimum of the objective function,
so at every iteration of the Bayesian optimization loop, we need to identify
the query or the batch of queries that maximizes the acquisition score. See
Section 4.1 for the discussion on maximizing the acquisition score.

If the method we usually use to find the next, information-theoretically
optimal query, L-BFGS, only works in the sequential setting for one
candidate point, how can we still use it in the batch setting? Our strategy here
is to use the method to find individual members of the batch, one member at
a time in a cyclic manner until convergence. Specifically:

1. We start out with a starting batch x1, x2, …, xk. This batch can be
randomly selected from the search space.

2. Since L-BFGS cannot run on all members x1, x2, …, xk simultaneously,
we only run it on x1 while keeping the other members of the batch x2, x3,
…, xk fixed. L-BFGS can indeed optimize x1 individually, since this task
is similar to maximizing the acquisition score in the sequential setting.

3. Once L-BFGS returns a value for x1, we run L-BFGS on x2 while
keeping x1 and the other members x3, x4, …, xk fixed.

4. We repeat these individual routines until we have finished processing
the last member of the batch xk, at which point we return to x1 and repeat
the entire procedure.

5. We run these cycles of optimization until convergence, that is, until the
acquisition score we obtain doesn’t increase anymore.

These steps are summarized in Figure 7.17.

 Cyclic optimization

The entire procedure is called cyclic optimization, as we sequentially refine
each member of the batch in a cycle until we converge on a good acquisition
score.

Figure 7.17. Flowchart of cyclic optimization used in finding the batch that maximizes
information about the maximum objective value in batch Max-value Entropy Search. The
procedure is cyclic in that we sequentially refine each member of the batch in a cycle until we
converge on a good acquisition score.

 Cyclic optimization and drawing

We can draw an analogy between cyclic optimization and how an artist might
draw a painting. The artist might work on individual portions of the painting

separately and switch around as they make progress. They might work on the
foreground, move to the background for a bit, and then back to the
foreground, each time making small refinements to each section.

The cyclic optimization strategy allows us to bypass the challenge of running
L-BFGS on a batch of multiple points, as we instead only run L-BFGS on
individual points, making individual refinements to the acquisition score.
With this optimization strategy, we can realize the MES policy in the batch
setting.

7.4.2 Implementing batch entropy search with BoTorch

We now learn to declare the batch MES policy in BoTorch and hook it into
our batch BayesOpt loop. Luckily, the details of cyclic optimization
discussed in the previous section are abstracted away by BoTorch, and we
can initialize batch MES in a straightforward manner. The code we show
below is included in CH07/03 - Max-value Entropy Search.ipynb.

We still use the hyperparameter tuning example. First, we need to make a
minor modification to our GP model. Specifically, in order to reason about
the entropy of the posterior GP (that is, to "fantasize" about future
observations), the class implementation of our GP model needs to inherit
from the FantasizeMixin class from the botorch.models.model module:

class GPModel(

 gpytorch.models.ExactGP,

 botorch.models.gpytorch.GPyTorchModel,

 botorch.models.model.FantasizeMixin #1

):

 _num_outputs = 1

 ... #2

The rest of the code for this class implementation remains unchanged. Now,
inside the for loop that implements the iteration of BayesOpt, we declare
MES in the same way as we do in the sequential setting:

1. We draw samples from a Sobol sequence and use them as candidates for
the MES policy. These samples are initially drawn within the unit cube

and then resized to span our search space.
2. The MES policy is initialized with the Gaussian process model and the

candidate set generated above.

num_candidates = 2000

sobol = torch.quasirandom.SobolEngine(2, scramble=True) #1

candidate_x = sobol.draw(num_candidates)

candidate_x = (bounds[1] - bounds[0]) * candidate_x + bounds[0] #2

policy = botorch.acquisition.max_value_entropy_search.qMaxValueEntropy(

 model, candidate_x

)

Sobol sequences

The Sobol sequence is first discussed in Chapter 5’s Section 5.3.2 for the
Thompson sampling policy. The implementation of the Max-value Entropy
search policy also requires the Sobol sequence, which we learned about in
Section 6.2.2 of Chapter 6.

While the initialization of the batch MES policy is exactly the same as what
we do in the sequential setting, we need a helper function other than
optimize_acqf() for the cyclic optimization procedure described in the
previous section to identify the batch that maximizes posterior information
about f*.

Specifically, we use the helper function optimize_acqf_cyclic(), which
can be accessed from the same BoTorch module botorch.optim. Here, we
only switch out optimize_acqf() for optimize_acqf_cyclic(); the rest of
the arguments such as the bounds and the batch size remain the same.

next_x, acq_val = botorch.optim.optimize_acqf_cyclic(

 policy,

 bounds=bounds,

 q=batch_size,

 num_restarts=40,

 raw_samples=100,

)

BoTorch dimension warning

While running the code for batch MES, you might encounter a warning:

BotorchTensorDimensionWarning:

Non-strict enforcement of botorch tensor conventions. Ensure that target tensors Y has an explicit output dimension.

which indicates that we are not formatting the tensor containing the observed
values train_y according to BoTorch’s convention. However, this is not a
code-breaking error, so in order to be able to keep using the same Gaussian
process implementation as with other policies, we will simply ignore this
warning using the warnings module.

And with that, we are now ready to run batch MES on our hyperparameter
tuning example.

 Running the batch Max-value Entropy Search policy

Due to its algorithmic complexity, the batch MES policy can take quite some
time to run. Feel free to skip the portion of the code that runs the optimization
loop and proceed with the chapter.

Using the same initial training data, batch MES’s progress is visualized in
Figure 7.18, which shows that the policy is comparable with the other
policies in this particular run.

Figure 7.18. Progress made by various batch Bayesian optimization policies in the
hyperparameter tuning example, including Max-value Entropy Search (MES).

We have now learned how to convert BayesOpt policies to the batch setting
where multiple queries are made in parallel. Depending on the policy, this
conversion requires various levels of consideration. With the improvement-
based policies and Upper Confidence Bound, we leverage the heuristic that
the best-performing member should represent the entire batch. In Exercise 1,
we see that Thompson sampling can be extended to the batch setting by
simply repeating the sampling process to assemble a batch of the desired size.
Max-value Entropy Search, on the other hand, needs a modified routine that
leverages cyclic optimization to search for the batch that maximizes its
acquisition score.

In the next chapter, we will learn about another specialized BayesOpt setting
in which constraints need to be taken into account when the objective

function is being optimized.

7.5 Summary

Many black-box optimization settings in the real world allow multiple
experiments (function evaluations) to be carried out at the same time in
parallel. By taking advantage of this parallelism, we can conduct more
experiments in Bayesian optimization and potentially achieve better
performance.
At each iteration of the batch Bayesian optimization setting, a batch of
queries are selected and the objective function is evaluated at these
queries. This setting requires the Bayesian optimization policy used to
be able to score a batch of queries in accordance to the utility of the
queries in helping us locate the global optimum.
Extending Bayesian optimization policies to the batch setting isn’t as
simple as choosing the top data points that score the highest acquisition
value in the sequential setting. Doing so will lead to the selected queries
being extremely close to one another, defeating the purpose of
parallelism.
Three Bayesian optimization policies—Probability of Improvement,
Expected Improvement, and Upper Confidence Bound—can be
extended to the batch setting using the same strategy. This strategy uses
the maximum value within a batch of queries to quantify the value of the
whole batch. Mathematically, the strategy of using the maximum value
to represent an entire batch requires rewriting the acquisition score as an
average of some quantity of interest.
Due to its random nature, the Thompson sampling policy can be easily
extended to the batch setting. Instead of sampling from the Gaussian
process and maximizing the sample only once, batch Thompson
sampling repeats this sampling-and-maximizing process until we reach
the targeted batch size.
Computing the information-theoretic value of multiple points is
computationally challenging. This difficulty prevents the algorithm L-
BFGS, used by the helper function optimize_acqf() to find the point or
the batch of points that maximizes the acquisition score of a given
policy, from being used with the Max-value Entropy Search policy in
the batch setting.

To circumvent the computational challenge of using L-BFGS with batch
Max-value Entropy Search, we use cyclic optimization. This strategy
involves refining individual members of our current batch of queries in a
cyclic manner until the acquisition score converges. Cyclic optimization
can be used in BoTorch with the helper function
optimize_acqf_cyclic().
To maximize our optimization throughput, it’s important to specify the
correct batch size when using the helper functions optimize_acqf() and
optimize_acqf_cyclic() when searching for the batch that maximizes
the acquisition score of a given policy. We do this by setting the
argument q to be the desired batch size.
The BoTorch implementation of most Bayesian optimization policies
follows the same interface as the implementation in the sequential
setting. This consistency allows the programmer to transition to the
batch setting without having to significantly modify their code.

7.6 Exercise 2: Optimizing airplane designs

In this exercise, we will run the batch Bayesian optimization (BayesOpt)
policies we learn in this chapter on a simulated optimization problem in
physics. This problem is the highest-dimensional problem we have
encountered and will offer us an opportunity to see how BayesOpt tackles a
generic black-box optimization problem in high dimensions. More specific to
this chapter, we will see how various batch BayesOpt policies perform on a
real-world optimization problem.

We are interested in an aero-structural optimization problem that airplane
engineers typically deal with. In such an optimization problem, we have
various tunable parameters (each making up a dimension in our search space)
that control how an airplane works. These parameters could be the length and
width of the plane, the shape and the angle of the wings with respect to the
body of the plane, or the angle of the turbine blades and how fast they rotate.
It’s the job of an optimization engineer to tune the values of these parameters
to get the plane to work, or to optimize some performance metric such as
speed or energy efficiency.

While engineers might have a good idea about how some of these variables

affect the performance of an airplane, a good way to test out an experimental
plane design is to run various computer simulations and observe the
simulated behavior of the airplane. From these simulations, we score the
proposed plane design on how well it does on various performance metrics.
With the simulation program in hand, we can treat this tuning process as a
black-box optimization problem. That is, we don’t know how each tunable
parameter affects the final performance of the simulated airplane, but we’d
like to optimize these parameters to achieve the best result.

This exercise provides an objective function that simulates this process of
benchmarking the performance of an airplane design. The code is provided in
CH07/04 - Exercise 2.ipynb. There are multiple steps:

1. Implement the objective function that simulates the performance
benchmarking. This is a four-parameter function with the following
code, which computes a score quantifying the utility of the airplane
specified by the four input parameters. Since we treat this function as a
black box, we assume that we don’t know what goes on inside the
function and how the output is produced.

def flight_utility(X):

 X_copy = X.detach().clone()

 X_copy[:, [2, 3]] = 1 - X_copy[:, [2, 3]]

 X_copy = X_copy * 10 - 5

 return -0.005 * (X_copy**4 - 16 * X_copy**2 + 5 * X_copy).sum(dim=-1) + 3

The four parameters are the various settings of the plane, scaled to be
between 0 and 1. That is, our search space is the four-dimensional unit
hypercube. Though not essential to our black-box optimization
approach, the names of these parameters are as follows:

labels = [

 "scaled body length",

 "scaled wing span",

 "scaled ρ",

 "scaled ω"

]

While it’s not easy to visualize an entire four-dimensional function, we

can show how the function behaves in two-dimensional spaces. Figure
7.19 visualizes our objective function for various pairs of parameters
that we can tune, showing a complex nonlinear trend across these two-
dimensional spaces.

Figure 7.19. The objective function of the simulated airplane design optimization problem
in various two-dimensional subspaces corresponding to pairs of tunable parameters shown
as axis labels. Bright spots indicate high objective values, which are our optimization goal;
dark spots indicate low objective values.

Again, our goal is to find the maximum value of this function using
BayesOpt.

2. Implement a Gaussian process (GP) model with a constant mean
function and a Matérn 2.5 kernel with an output scale implemented as a
gpytorch.kernels.ScaleKernel object.

1. We need to specify the argument ard_num_dims = 4 when
initializing the kernel to account for the fact that our objective
function is four-dimensional.

Matérn kernels

We learn how to work with Matérn kernels in Section 3.4.2 as well
as the exercise in Chapter 3.

3. Implement a helper function that trains the GP on a given training data
set. This function should take in a training set, train a GP using gradient
descent to minimize the negative log likelihood, and return that GP and
its likelihood function. See Section 4.1.1 for a refresher on how to
implement this helper function.

4. Define the settings of our optimization problem.

1. The search space is the four-dimensional unit hypercube, so we
should have a variable named bounds that stored the following
tensor:

tensor([[0., 0., 0., 0.],

 [1., 1., 1., 1.]])

We will pass these bounds to the BayesOpt policies we run later in
the exercise.

2. In each run, a BayesOpt policy can make in total 100 queries to the
objective function (that is, 100 function evaluations) in batches of
5. We will also repeat our experiments for each policy 5 times.

5. Run each batch BayesOpt policy we learn in this chapter on the
objective function implemented above.

1. Each experiment should start with a randomly selected function
evaluation as the training set.

2. Record the best values found throughout the search.
3. Use a 5000-point Sobol sequence for Thompson sampling and

Max-Value Entropy Search (MES).

4. Running MES in a high-dimensional problem is computationally
expensive. A common strategy to relieve this burden is to limit the
number of cycles for cyclic optimization. For example, to terminate
the optimization of the MES acquisition score after 5 cycles, we
can pass cyclic_options={"maxiter": 5} to the helper function
optimize_acqf_cyclic(). Run this more lightweight version of
MES in the experiments.

6. Plot the optimization progress of the BayesOpt policies we have run,
and observe their performance. Each policy should have a curve
showing the average best-seen point as a function of the number of
queries used and the standard errors. See the last step of Chapter 4’s
Exercise 2 for more details on how to make this visualization.

8 Satisfying extra constraints with
constrained optimization
This chapter covers

The problem of black-box optimization with constraints
Taking constraints into account when making decisions in Bayesian
optimization
Implementing constraint-aware Bayesian optimization policies

In previous chapters, we tackled black-box optimization problems where we
aimed solely to maximize the objective function without any other
considerations. This is called an unconstrained optimization problem, as we
are free to explore the search space to look for the global optimum of the
objective function. Many real-life situations might not follow this
unconstrained formulation, however, and there might be a cost associated
with the objective function’s global optimum that makes the optimum
infeasible to achieve in practice.

For example, when tuning the architecture of a neural network, you might
find that increasing the number of layers in the network usually yields a
higher accuracy, and a network with millions and billions of layers will
perform the best. However, unless we have access to expensive, powerful
computing resources, running such large neural networks isn’t practical. That
is, there’s a cost associated with running a large neural network, which
otherwise would correspond to the global optimum of the objective function
in this hyperparameter tuning task. We therefore need to take this
computational cost into account while tuning this neural network and only
look for architectures that are actually feasible to implement in practice.

Another black-box optimization problem where we need to consider
additional constraints is scientific discovery, such as in chemistry and
materials science. For instance, scientists aim to design chemicals and
materials that optimize a desirable characteristic such as drugs that are

effective against a disease, glass that is resilient against pressure, or metals
that are malleable and thus easy to manipulate. Unfortunately, the drugs that
are the most effective against a disease might have many side effects that
make them dangerous to use, or the most resilient type of glass might be too
expensive to produce on a large scale.

These problems are examples of the constrained optimization problem,
where we need to optimize an objective function while satisfying other
constraints. Seeking to optimize the objective function alone might lead us to
solutions that violate important constraints, rendering the solutions we find
useless in practice. Instead, we need to identify other regions in the search
space that both yield high objective values and satisfy these important
constraints.

In this chapter, we will learn about the constrained optimization problem and
see examples where having extra constraints may completely change the
solution of an optimization problem. This need to account for these
constraints gives rise to constraint-aware optimization policies in Bayesian
optimization. We will be introduced to a variant of the Expected
Improvement policy that is constraint-aware and learn how to implement it in
BoTorch. By the end of the chapter, you will understand the problem of
constrained optimization, how it is solved using Bayesian optimization, and
see that the constraint-aware policy we use performs much better than
constraint-agnostic ones. What we learn in this chapter will help us tackle
more practical Bayesian optimization problems in real life and thus make
more effective decisions.

8.1 Accounting for constraints in a constrained
optimization problem

As mentioned in the introduction, many constrained optimization problems
exist in the real world: making drugs with high efficacy and minimal side
effects, finding materials that maximize desirable characteristics and are also
cheap to produce, or hyperparameter tuning while keeping the computational
cost low.

 Inequality constraints

We focus on inequality constraints, where we require a result y to be inside a
pre-determined numerical range a ≤ y ≤ b.

We will first take a closer look at the constrained optimization problem in the
next section and see why it’s mathematically different from the unconstrained
problem we see in previous chapters. We will then redefine the Bayesian
optimization framework we have been working with so far to account for
extra constraints.

8.1.1 Constraints can change the solution of an optimization
problem

How do constraints complicate optimization of a black-box function? In
many cases, regions within the search space that give high objective values
might violate the constraints that come with the optimization problem.

 The goal of finding high objective values

In an optimization problem, regions that give high objective values are what
we aim to find, since we want to maximize the value of the objective
function.

If it is the case that regions with high objective values violate the given
constraints, we will need to rule out these regions that violate the constraints,
and only conduct our search within other regions that satisfy the constraints.

 (In)feasibility in constrained optimization

A data point that violates the pre-defined constraints in a constrained
optimization problem is called an infeasible point, as it’s infeasible to use the
point as the solution to the optimization problem. On the other hand, a data
point that satisfies the constraints is called a feasible point. Our goal is to find
the feasible point that maximizes the value of the objective function.

Constraints can affect the quality of the optimal solution of the unconstrained
optimization problem, or change the optimal solution altogether. Consider the
example shown in Figure 8.1, where our objective function (the solid line) is
the Forrester function we have been using in previous chapters. In addition to
this objective function, we have a cost function shown as the dashed line.
Assume that in this constrained optimization problem, the constraint is that
the cost needs to be at most zero, that is, the cost c ≤ 0. This constraint means
that only the feasible points in the shaded regions in the right panel of Figure
8.1 can be used as the optimization result.

The Forrester function

We first used the Forrester function as an example objective function in
Bayesian optimization in Section 2.4.1.

As a result, the region where x > 4, which contains the true global optimum
of the objective value (denoted as the diamond marker in the right panel), is
cut off. That is, the global optimum that yields an objective value of more
than 8 is not feasible, and the constrained optimal solution (denoted as the
star) only achieves an objective value of roughly 4. An example of this
"cutoff" scenario is when an effective drug has too severe a side effect, so the
drug company decides to use a less effective variant of the same chemical to
make the product safe.

Figure 8.1. An example of a one-dimensional constrained optimization problem. The solid line is
the objective function we aim to maximize, and the dashed line is the cost function that constrains
the optimization problem. Only the shaded regions (right panel) that yield negative costs are
feasible. Here, the constraint of non-positive cost causes the highest objective value to decrease
from more than 8 to 4.

Another example of the same objective function and a slightly different cost
function is shown in Figure 8.2, where having this extra cost constraint
changes the optimal solution of our optimization problem. Without the
constraint, the global optimum of the objective function is located at x = 4.6.
This point, however, is an infeasible point that gives a positive cost and thus
violates our constraint. The optimal solution of the constrained problem is at
x = 1.6. This phenomenon can happen, for example, when the entire family
of some highly effective drug is dangerous to patients and cannot be
produced, so we need to look for other solutions that are chemically different
from the dangerous drug.

Figure 8.2. An example of a one-dimensional constrained optimization problem. Here, the
optimal solution changes to a different local optimum, as the non-positive cost constraint rules
out the region where x > 3.

Overall, inequality constraints may impose complex requirements on an
optimization problem and change its optimal solution. That is, constraints
may rule out the global optimum of a function as an infeasible point—a
common scenario in the real world:

The prohibitively large neural networks tend to achieve good predictive
performance but are infeasible to implement in practice.
The most effective drugs are often too aggressive and dangerous to
produce.
The best materials are too expensive to use.

Instead of using the unconstrained optimal point that violates our constraints,
we need to modify our optimization strategy to account for the constraints
and find the optimal feasible solution. That is, we need to pursue two goals:
optimizing the objective function and satisfying the given constraints. Solely
optimizing the objective function without accounting for the constraints will
lead to infeasible solutions that are not useable in practice. Instead, we need

to find points that both yield high objective values and satisfy the constraints.

8.1.2 The constraint-aware Bayesian optimization framework

How should we approach this constrained optimization problem from the

Bayesian optimization (BayesOpt) angle? In this section, we will learn how
to modify our BayesOpt framework to account for the constraints that are
given in a constrained optimization problem.

Remember in BayesOpt that we use a Gaussian process (GP) to train on the
data points we have observed from the objective function and make
predictions on unseen data. In constrained optimization, we have in addition
one or many functions that define the constraints that we need to satisfy. For
example, in Section 8.1.1, the cost function shown as the dashed line in
Figure 8.1 and Figure 8.2 defines the constraints that the solution needs to
have a non-positive cost.

 The Bayesian optimization framework

You can refer to Sections 1.2.3 and 4.1.1 for a refresher on the Bayesian
optimization framework.

We assume that, just like the objective function, we don’t know what the true
cost function looks like. In other words, the cost function is a black box. We
only get to observe the cost values at the data points that we query the
objective function with and from there determine whether those data points
satisfy the constraints or not.

 Treating constraint functions as black boxes

If we did know what the functions that define our constraints look like, we
could simply identify the feasible regions and restrict our search space to be
within those feasible regions. In our constrained optimization problem, we
assume that our constraints are also black boxes.

Since we only have black-box access to the functions that define our
constraints, we can also use a GP to model each of these functions. That is, in
addition to the GP that models our objective function, we will use more GPs,
one for each function that defines a constraint, to inform our decisions about
where to query the objective function next. We follow the same procedure to
train each of these GPs—it’s just a matter of using the appropriate training set

for each GP:

The GP that models the objective function trains on the observed
objective values.
A GP that models a constraint-defining function trains on the observed
cost values.

Our constrained BayesOpt framework, which is a modified version of Figure
1.6, is visualized in Figure 8.3 where:

At step 1, we train a GP on data from the objective function and another
GP on data from each function that defines a constraint.
At step 3, we use the point identified a BayesOpt policy to query both
the objective function and the constraint-defining functions.

Figure 8.3. The constrained Bayesian optimization loop. A separate Gaussian process models
either the objective function or a function that defines a constraint. A Bayesian optimization
policy recommends the next point for us to query both the objective function and the constraint-
defining functions.

Steps 1 and 3 of Figure 8.3 are straightforward to implement: we only need to
maintain multiple GPs at the same time, and keep track of the corresponding
data sets and keep those data sets updated. The more interesting question lies
in Step 2, decision making. That is, how should we design a BayesOpt policy
that can guide us towards feasible regions that yield high objective values?

This is the topic of our discussion in the next section.

8.2 Constraint-aware decision making in Bayesian
optimization

An effective constrained BayesOpt policy needs to pursue both optimization
and satisfying the constraints? One straightforward way to design such a
policy is to incorporate the constraints into how an unconstrained BayesOpt
policy makes its decisions. That is, we wish to modify a policy we already
know to take into account constraints in a constrained optimization problem
and derive a constraint-aware decision-making procedure.

The policy that we will choose for this modification is Expected
Improvement (EI), which we learned about in Section 4.3. (We will talk
about other Bayesian optimization policies later in this section.) Remember
that the EI policy scores each unseen data point with the expected value of
how much improvement from the current incumbent we will observe, if we
are to query the objective function at this unseen point.

The incumbent in Bayesian optimization

The term "incumbent" refers to the point having the highest objective value
within our training set, which is what we need to "beat" in order to make
progress with optimization.

The acquisition score that EI uses, which again computes the average value
of the improvement of each potential query, ignores the inequality constraints
in a constrained optimization problem, so we can’t use EI "as is" when
optimizing a constrained objective function. Fortunately, there’s an easy way
to account for these constraints: we can scale the EI acquisition score of each
unseen point by how likely the data point is to satisfy the constraints, that is,
the probability that the data point is a feasible point.

If the data point is likely to satisfy the constraints, then its EI score will
be multiplied by a large number (a high probability of feasibility), thus
keeping the EI score high.
If the data point is unlikely to satisfy the constraints, its EI score will be

multiplied by a small number (a low probability of feasibility), thus de-
prioritizing that data point.

 Acquisition score of constrained Expected Improvement

The acquisition score of the constrained variant of Expected Improvement is
the product of the regular Expected Improvement score and the probability
that a data point satisfies the constraints.

The formula for the acquisition score of this constraint-aware variant of EI is
shown in Figure 8.4. This acquisition score is the product of two terms: the
EI score encourages optimization of the objective function, and the
probability of feasibility encourages staying within the feasible regions. This
balance between optimizing the objective function and satisfying the
constraints is exactly what we want to achieve, as noted in Section 8.1.1.

Figure 8.4. Formula for the acquisition score of constrained Expected Improvement, which is the
product of the regular EI score and the probability of feasibility. This policy aims to optimize the
objective value and satisfy the constraints at the same time.

We already know how to compute the EI score, but how can we calculate the
second term, the probability that a given data point is a feasible point? As
noted in Figure 8.4, we do this with the Gaussian processes (GPs) modeling
the constraints. Specifically, each GP provides a probabilistic belief about the

shape of a function defining a constraint. From this probabilistic belief, we
can calculate the probability that an unseen data point will satisfy the
corresponding inequality constraint.

As an example, let’s say when solving the constrained optimization problem
defined in Figure 8.2, we have observed the objective function and the cost
function at x = 0, x = 3, and x = 4. From this training set, we train two GPs,
one for the objective function and the other for the cost function, and obtain
the predictions visualized in Figure 8.5.

Figure 8.5. Predictions about the objective function and the cost function made by corresponding
Gaussian processes. Each Gaussian process allows us to reason about the shape of the
corresponding function in a probabilistic manner.

Now, say we’d like to compute the constrained EI score for x = 1. We
already have a way to compute the regular EI score for any data point, so all
we need to do now is calculate the probability that x = 1 is a feasible data

point. To do this, we look at the normal distribution representing our
prediction about the cost value of x = 1, as illustrated in Figure 8.6.

The left panel of Figure 8.6 contains the same GP as in the bottom panel of
Figure 8.5 that is cut off at the constraint threshold 0, with an addition
showing the CI of the normal distribution prediction at x = 1. Slicing the GP
vertically at this point x = 1, we obtain the right panel of Figure 8.6, where
the CIs in the two panels are the same. In other words, going from the left to
the right panel of Figure 8.6, we have zoomed in on the vertical scale, and
instead of showing the cost function, we only keep the cost constraint (the
dotted line) and the GP prediction at x = 1, which is a normal distribution.
We see that only the highlighted portion of the normal distribution in the
right panel represents the probability that x = 1 obeys the cost constraint,
which is what we care about.

Figure 8.6. Probability of x = 1 being a feasible point, highlighted in a darker shade. The left
panel shows the entire Gaussian process, while the right panel only shows the normal distribution
corresponding to the prediction at x = 1 (the error bars are the same across the two panels). Here,
feasibility follows a truncated normal distribution.

If Figure 8.6 reminds you of Figures 4.9 and 4.10 when we talk about the
Probability of Improvement (PoI) policy, it’s because our thought process is
the same in the two cases:

With PoI, we compute the probability that a given data point yields an
objective value higher than the incumbent. We therefore use the
incumbent value as a lower bound, specifying that we only care about
scenarios where the objective value is higher than the incumbent.
With the probability of feasibility here, we compute the probability that
a given data point yields a cost value lower than the cost threshold at 0.
We use 0 as an upper bound to specify that we target scenarios where
the cost value is lower than the threshold (to obey our cost constraint).

Handling different inequality constraints

The constraint in our current example requires the cost to be less than 0. If we
had a constraint requiring a function value to be higher than some threshold,
then the probability of feasibility would be the probability that a given point
yields a function value higher than some threshold, and the shaded region in
Figure 8.6 would be to the right of the cutoff.

If there was a constraint requiring the value to be inside a range (a ≤ y ≤ b),
then the probability of feasibility would be the probability that the data point
gives a value between the lower and upper bounds of the range.

In our case, we want to compute the probability that the cost value at x = 1 is
lower than 0, which is the area of the shaded region under the curve in the
right panel of Figure 8.6. As we have seen in Section 4.2.2 of Chapter 4, the
normal distribution allows us to compute this area under the curve using the
cumulative density function (CDF). In Figure 8.6, the probability that x = 1 is
feasible is roughly 84 percent—this is the second term in Figure 8.4 that we
use to compute the constrained EI acquisition score.

Further, we can compute this probability-of-feasibility quantity at any point
inside our search space. For example, Figure 8.7 shows the truncated normal
distributions for x = -1 (center panel) and x = 2 (right panel). As we can see,
the probability that a given point is feasible depends on the predictive normal
distribution at that point:

At x = -1, almost the entire predictive normal distribution lies below the
cost threshold at 0, so the probability of feasibility here is high, almost
98 percent.

At x = 2, only a small portion of the normal distribution falls below the
cost threshold, causing the probability of feasibility to be much lower,
roughly 6 percent.

Figure 8.7. Probability of feasibility at x = -1 and x = 2, highlighted in a darker shade. The left
panel shows the entire Gaussian process, the center panel shows the prediction at x = -1-, and the
right panel shows the prediction at x = 2. The highlighted portions show the probability of
feasibility, which depends on the normal distribution at a given point.

With the ability to compute the probability of feasibility for any given point
in hand, we now can compute the constrained EI acquisition score described
in Figure 8.4. Again, this score balances between a potentially high objective
value, quantified by the regular EI score, and satisfying the inequality
constraint(s), quantified by the probability of feasibility.

Figure 8.8 shows this score in the bottom right panel, along with the regular
EI score and the current GPs. We see that constrained EI is aware of the cost
constraint we need to satisfy and assigns roughly zero score to the region to
the right of the space (where x > 2). This is because the cost GP (top right
panel) thinks that this is an infeasible region that should be avoided.
Ultimately, the regular EI policy recommends as the next point to query the
objective function with the infeasible point x = 4. Constrained EI, on the
other hand, recommends x = -0.8, which indeed satisfies the cost constraint
we have.

Figure 8.8. The acquisition score of Expected Improvement (bottom left) and that of constrained
Expected Improvement (bottom right), along with the current belief about the objective function
(top left) and about the cost function (top right). By being aware of the cost constraint,
constrained Expected Improvement can avoid the infeasible region and recommends an entirely
different point to query from regular Expected Improvement.

We have found a good heuristic of deriving a constraint-aware BayesOpt
policy from a regular one: by multiplying the acquisition score of the policy
with the probability of feasibility to factor in the inequality constraints.
Interestingly, adding the probability-of-feasibility factor to EI isn’t simply a
heuristic—the formula in Figure 8.4 can be obtained from a heuristic-free,
more mathematically rigorous procedure. The interested reader can refer to

the research paper that defines the constrained EI policy for more details at
(http://proceedings.mlr.press/v32/gardner14.pdf).

While we can use the same heuristic on other BayesOpt policies we have
learned such as Upper Confidence Bound, Thompson sampling, and Entropy
Search, the mathematically rigorous procedure won’t apply anymore. Further,
BoTorch at the time of this writing only supports constrained EI, which is
also widely used to solve constrained optimization problems in practice. We
will therefore only focus on constrained EI and its optimization results for the
rest of this chapter.

8.3 Exercise 1: Manual computation of constrained
Expected Improvement

We saw in Figure 8.4 that the acquisition score of the constrained Expected
Improvement (EI) policy is the product of the EI score and the probability of
feasibility. Although the ConstrainedExpectedImprovement class from
BoTorch provides an implementation of the constrained EI score, we can in
fact perform the computation manually. In this exercise, we will explore this
manual computation and verify our result against that of the
ConstrainedExpectedImprovement class. The solution of this exercise is in
the CH08/02 - Exercise 1.ipynb notebook.

1. Recreate the constrained Bayesian optimization (BayesOpt) problem
used in CH08/01 - Constrained optimization.ipynb, including the
objective function, the cost function, the Gaussian process (GP)
implementation, and the helper function that trains a GP on some
training data fit_gp_model().

2. Create a PyTorch tensor that is a dense grid between -5 and 5 for
example by using the torch.linspace() method. This tensor will act as
our test set.

3. Create a toy training data set by randomly sample 3 data points from our
search space (between -5 and 5) and evaluate the objective and cost
functions at these points.

4. Train a GP on the data from the objective function and another GP on
the data from the cost function using the helper function

fit_gp_model().
5. Use the GP trained on the data from the cost function to compute the

probability of feasibility for each point in the test set. You can use the
torch.distributions.Normal class to initialize a normal distribution
object, and call the cdf() method of this object on 0 (implemented as
torch.zeros(1)) to compute the probability that each data point yields
a cost lower than 0.

6. Initialize a regular EI policy with the model argument being the GP
trained on the data from the objective function, and the best_f argument
being the current feasible incumbent.

1. Compute the EI score for each point in the test set.
2. Refer to Section 4.3 for more details on how to implement the EI

policy.
7. Initialize a constrained EI policy and compute the constrained EI score

for each point in the test set.
8. Compute the product of the EI scores and the probabilities of feasibility,

and verify that this manual computation leads to the same results as
those from BoTorch’s implementation. You can use torch.isclose(a,
b, atol=1e-3), which performs element-wise comparisons between
two tensors a and b, specifying atol=1e-3 to account for numerical
instability, to verify that all corresponding scores match up.

9. Plot the EI scores and the constrained EI scores in a graph and visually
verify that the former is always greater than or equal to the latter. Prove
that this is the case using Figure 8.4.

8.4 Implementing constrained Expected
Improvement with BoTorch

While we can manually multiply two quantities, the EI score and the
probability of feasibility, to make a new acquisition score, BoTorch already
takes care of the low-level bookkeeping. This means that we can import the
constrained EI policy from BoTorch and use it like any other BayesOpt
policy without much overhead. We will learn how to do so in this section,
and the code we’ll be using is included in CH08/01 - Constrained

optimization.ipynb.

First, we will need the objective function and the cost function that defines
the constraint in Figure 8.2. In the code below, the objective function is
implemented as objective() and the cost function is cost(). Our search
space is between -5 and 5, and we make the variable bounds that contains
these numbers, which will be passed to BayesOpt policies later.

def objective(x): #1

 y = -((x + 1) ** 2) * torch.sin(2 * x + 2) / 5 + 1 + x / 3 #1

 return y #1

def cost(x): #2

 return -(0.1 * objective(x) + objective(x - 4)) / 3 + x / 3 - 0.5 #2

lb = -5 #3

ub = 5 #3

bounds = torch.tensor([[lb], [ub]], dtype=torch.float) #3

We also need a class implementation of our GP model and a helper function
fit_gp_model() that trains the GP given a training data set. As constrained
optimization doesn’t require any changes to the GP and how we train it, we
can reuse the class implementation and the helper function we used in
previous chapters. For a more in-depth discussion of this implementation,
you can refer to Section 4.1.1.

To benchmark the optimization performance of the policies we will use, we
specify that each BayesOpt run will have 10 queries, and we will have 10
runs in total:

num_queries = 10

num_repeats = 10

 Repeated experiments in Bayesian optimization

We run each Bayesian optimization policy multiple times to have a holistic
view of the performance of the policy. Refer to Exercise 2 of Chapter 4 for
the discussion on repeated experiments.

Finally, we need to modify our BayesOpt loop to account for the changes
visualized in Figure 8.3. At Step 1 of Figure 8.3, that is, at the beginning of
each step in the BayesOpt loop, we need to retrain multiple GPs, one for the
objective function and the other/others for the constraint(s).

As we already have the helper function fit_gp_model() that trains a GP, this
step comes down to passing appropriate data sets to this helper function. In
our current example, we only have one cost function defining the constraint,
so we have in total two GPs that can be retrained with the following code:

utility_model, utility_likelihood = fit_gp_model(#1

 train_x, train_utility.squeeze(-1) #1

) #1

cost_model, cost_likelihood = fit_gp_model(#2

 train_x, train_cost.squeeze(-1) #2

) #2

Here, the variable train_x contains the locations at which we have evaluated
the objective and cost functions, train_utility is the corresponding
objective values, and train_cost is the cost values.

Step 2 of Figure 8.3 refers to running a BayesOpt policy, which we will learn
to do shortly. For Step 3 of Figure 8.3, we evaluate the objective and cost
functions at the data point recommended by the chosen BayesOpt policy,
stored in the variable next_x. We do this by evaluating both the objective and
cost functions at next_x:

next_utility = objective(next_x) #1

next_cost = cost(next_x) #1

train_x = torch.cat([train_x, next_x]) #2

train_utility = torch.cat([train_utility, next_utility]) #2

train_cost = torch.cat([train_cost, next_cost]) #2

One more bookkeeping step we need to do is to keep track of our
optimization progress. Unlike in an unconstrained optimization problem
where we simply record the incumbent value (highest objective value seen
thus far) at every step, here we need to filter out the infeasible observations
before taking the maximum. We do this by first creating a tensor with
num_repeats rows (one for each repeated run) and num_queries columns

(one for each time step). This tensor will contain only one value by default,
denoting our utility if no feasible points are found throughout BayesOpt.

Inspecting Figure 8.2, our objective function is greater than -2 everywhere
within our search space (between -5 and 5), so we will use -2 as this default
value:

default_value = -2 #1

feasible_incumbents = torch.ones((num_repeats, num_queries)) * default_value

Then, at each step of the BayesOpt loop, we only record the feasible
incumbent by taking the maximum of the filtered observations:

feasible_flag = (train_cost <= 0).any() #1

if feasible_flag:

 feasible_incumbents[trial, i] = train_utility[train_cost <= 0].max()

The code above completes our constrained BayesOpt loop. All that’s left for
us to do is declare the BayesOpt policy we want to use to solve the
constrained optimization problem. We will use the constrained EI policy that
we discussed in Section 8.2 by using the BoTorch class
ConstrainedExpectedImprovement. This class takes in a number of
important arguments:

model: a list of GP models for the objective function (utility_model in
our case) and the functions that define the constraints (cost_model in
our case). We create this list using the
model_list_gp_regression.ModelListGP class from BoTorch’s
models module: ModelListGP(utility_model, cost_model).
objective_index: the index of the GP modeling the objective function
in the model list model. Since utility_model is the first GP we pass to
ModelListGP above, this index is 0 in our case.
constraints: a dictionary mapping the index of each function defining
a constraint to a two-element list storing the lower and upper bounds for
the constraint. If a constraint doesn’t have a lower bound or an upper
bound, we use None in lieu of an actual numerical value. Our example
requires the cost, corresponding to cost_model which has index 1, to be
at most 0, so we set constraints={1: [None, 0]}.

best_f: the current feasible incumbent, which is
train_utility[train_cost ⇐ 0].max() if we have found at least one
feasible point or the default value -2 otherwise.

Overall, we initialize the constrained EI policy as follows:

policy = botorch.acquisition.analytic.ConstrainedExpectedImprovement(

 model=botorch.models.model_list_gp_regression.ModelListGP(#1

 utility_model, cost_model #1

), #1

 best_f=train_utility[train_cost <= 0].max(), #2

 objective_index=0, #3

 constraints={1: [None, 0]} #4

)

With the implementation of constrained EI in hand, let’s now run this policy
on our one-dimensional constrained optimization problem and observe its
performance. As a baseline, we can also run the regular version of EI that is
constraint-agnostic.

Figure 8.9 shows the average feasible incumbent values found by these two
policies and error bars as a function of time. We see that compared to the
regular Expected Improvement, the constrained variant on average finds a
better feasible solution on average and almost always converges to the best
possible solution. Figure 8.9 highlights the benefit of our constraint-aware
optimization policy compared to a constraint-agnostic approach.

Figure 8.9. Optimization progress on a one-dimensional constrained optimization problem of
constrained Expected Improvement. Compared to the regular Expected Improvement, the
constrained variant finds a better feasible solution on average.

The Expected Improvement policy, which is blind to the constraint placed on
the optimization problem, tends to veer off toward the infeasible optimum.
Inspecting the incumbent values found by this policy, we notice that in many
runs, the policy fails to progress from its initial value.

torch.set_printoptions(precision=1)

print(ei_incumbents)

Output:

tensor([[0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8],

 [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0],

 [2.2, 2.2, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7],

 [2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5],

 [-2.0, 0.2, 1.9, 2.3, 2.6, 2.7, 2.7, 2.7, 2.7, 2.7],

 [-2.0, 0.5, 2.1, 2.4, 2.5, 2.5, 2.5, 2.5, 2.7, 2.7],

 [-2.0, 1.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5],

 [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0],

 [1.9, 1.9, 2.5, 2.5, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7],

 [2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7]])

In this chapter, we have learned about the problem of black-box, constrained
optimization and how it is different from the classic black-box optimization
problem discussed in previous chapters. We learned that an effective
optimization policy needs to pursue both optimizing the objective function
and satisfying the constraints. We then designed one such policy that is a
variant of Expected Improvement by adding to the acquisition score a factor
equal to the probability of feasibility. This new acquisition score biases our
search strategy towards feasible regions, thus better guiding us towards the
feasible optimum.

In the next chapter, we discuss a new Bayesian optimization setting where
there are different costs to querying the objective function in different regions
of the search space. This setting requires us to balance between finding a high
objective value and preserving our querying budget.

8.5 Summary

Constrained optimization is an optimization problem where in addition
to optimizing the objective function, we need to satisfy other constraints
in order to have practical solutions to the optimization problem.
Constrained optimization is common in materials and drug discovery as
well as hyperparameter tuning, where the objective function’s optimum
is too difficult or dangerous to be used in practice.
A data point that satisfies the constraints in a constrained optimization
problem is called a feasible point, while a data point that violates the
constraints is called infeasible. We aim to find the point that maximizes
the objective function among the feasible points.
Constraints can vastly change the solution to an optimization problem,
either cutting off or even excluding a region with high objective values.
We therefore need to actively account for the constraints when
optimizing the objective function.
In the framework of constrained Bayesian optimization, we train a
Gaussian process on each of the functions that define the constraints.

These Gaussian processes allow us to reason about whether a data point
will satisfy the constraints in a probabilistic manner. Specifically, the
probability that a given data point is feasible is easy to compute, thanks
to the fact that the predictive distributions from a Gaussian process are
normal distributions.
We can modify the Expected Improvement policy to account for the
constraints by adding in the probability of feasibility to its acquisition
score. The constrained Expected Improvement policy can balance
between optimizing the objective function and satisfying the constraints.
BoTorch provides a class implementation of the constrained Expected
Improvement policy. When implementing constrained Expected
Improvement, we need to pass in the Gaussian processes modeling the
objective and constraint functions, as well as declare the constraint
lower and upper bounds.

8.6 Exercise 2: Constrained optimization of airplane
design

In this exercise, we will tackle a constrained optimization problem using the
airplane-utility objective function in Chapter 7’s Exercise 2. This process
allows us to run constrained BayesOpt on a higher-dimensional problem
where it’s not obvious where the feasibility optimal solution is. The solution
to this exercise is included in CH08/03 - Exercise 2.ipynb.

1. Recreate the BayesOpt problem used in CH07/04 - Exercise 2.ipynb,
including the airplane-utility objective function named
flight_utility(), the bounds of our search space (the four-
dimensional unit hypercube), the GP implementation, and the helper
function that trains a GP on some training data fit_gp_model().

2. Implement the following cost function that simulates the cost of making
the airplane design specified by a four-dimensional input:

def flight_cost(X):

 X = X * 20 - 10

 part1 = (X[..., 0] - 1) ** 2

 i = X.new(range(2, 5))

 part2 = torch.sum(i * (2.0 * X[..., 1:] ** 2 - X[..., :-1]) ** 2, dim=-1)

 return -(part1 + part2) / 100_000 + 2

Figure 8.10 visualizes this cost function for various pairs of parameters
that we can tune, showing a complex nonlinear trend across these two-
dimensional spaces.

Figure 8.10. The cost function of the simulated airplane design optimization problem in
various two-dimensional subspaces corresponding to pairs of tunable parameters shown as
axis labels.

3. Our goal is to maximize the objective function flight_utility() while
following the constraint that the cost, as computed by flight_cost(), is
less than or equal to 0.

1. To this end, we set the number of queries a BayesOpt policy can
make in each experiment is 50, and each policy needs to run 10

repeated experiments.
2. The default value quantifying optimization progress if no feasible

solution is found should be set to -2.
4. Run the constrained EI policy as well as the regular EI policy on this

problem, visualize and compare their average progress (along with error
bars). The plot should look similar to Figure 8.9.

9 Balancing utility and cost with
multi-fidelity optimization
This chapter covers

The problem of multi-fidelity optimization with variable cost
Training a Gaussian process on data from multiple sources
Implementing a cost-aware multi-fidelity Bayesian optimization policy

Consider the following questions:

Should you trust the online reviews saying that the newest season of
your favorite TV show isn’t as good as the previous ones and you should
quit watching the show, or should you spend your next few weekends
watching it to find out for yourself whether you will like the new season
regardless?
After seeing her neural network model doesn’t perform well after being
trained for a few epochs, should a machine learning engineer cut her
losses and switch to a different model, or should she keep training for
more epochs in the hope of achieving better performance?
When a physicist wants to understand a physical phenomenon, can she
use a computer simulation to gain insights, or are real, physical
experiments necessary to study the phenomenon?

These questions are similar in that they demand the person in question to
choose between two possible actions that can help them answer a question
they’re interested in. On one hand, the person can take an action with a
relatively low cost, but the answer generated from the action might be
corrupted by noise and therefore not necessarily true. On the other hand, the
person can opt for the action with a higher cost, which will help them arrive
at a more definite conclusion.

Reading the online reviews about the newest season of your TV shows
would only take a few minutes, but there’s a chance that the reviewers

don’t have the same taste as you, and you will still enjoy the show
anyway. The only way to know for sure is to watch it yourself, but it’s a
big time commitment to do so.
The performance of a neural network after being trained for a few
epochs may be, but is not necessarily indicative of, its true performance.
However, more training means more time and resources spent on a
potentially non-value-adding task, if the model does end up not
performing well in the end.
A computer simulation can tell a physicist many things about a
phenomenon, but cannot capture everything in the real world, so it’s
possible that the simulation cannot offer the right insight. Performing
physical experiments, on the other hand, will for sure answer the
physicist’s question but will cost a lot of money and effort.

These situations belong to a class of problems called multi-fidelity decision
making, where we can decide to observe some phenomenon at various levels
of granularity and cost. Observing the phenomenon on a shallow level may
be inexpensive and easy to do, but doesn’t give us as much information as
possible. On the other hand, inspecting the phenomenon closely might entail
more effort. The term "fidelity" here refers to how closely an observation
reflects the truth about the phenomenon in question. An inexpensive, low-
fidelity observation is noisy and thus can lead us to the wrong conclusion,
while high-quality (or high-fidelity) observations are expensive and therefore
cannot be made liberally.

Black-box optimization has its own multi-fidelity variant.

 Definition of multi-fidelity optimization

Multi-fidelity optimization is an optimization problem where, in addition to
the true objective function to be maximized, we can observe approximations
that do not exactly match but still offer information about the objective
function. These low-fidelity approximations can be evaluated at lower costs
than the true objective function.

In a multi-fidelity optimization, we need to use these multiple sources of data
simultaneously in order to gain the most information about what we’re

interested in, which is the optimum of the objective function.

In this chapter, we will go into more detail about the problem of multi-fidelity
optimization and how to approach it from the angle of Bayesian optimization.
We will learn about a strategy that balances between learning about the
objective function and cost, which results in a cost-aware Bayesian
optimization policy for the multi-fidelity setting. We will then see how to
implement this optimization problem and the cost-aware policy in Python. By
the end of this chapter, we will learn how to perform multi-fidelity Bayesian
optimization and see that our cost-aware strategy is more efficient at
optimization than algorithms that only use the ground-truth function.

9.1 Using low-fidelity approximations to study an
expensive phenomenon

We first discuss the motivation of a multi-fidelity Bayesian optimization
(BayesOpt) problem, its setup, as well as real-world examples of the
problem. This discussion will help clarify what we look for in a decision-
making policy for this setting.

In the simplest setting of BayesOpt, we evaluate the objective function at
each search iteration, each time carefully reasoning about where to make this
evaluation to make the most optimization progress. The need for this careful
reasoning stems from the high cost of making function evaluations, as typical
in an expensive black-box optimization problem. This cost can refer to the
amount of time we spend waiting for a large neural network to finish training
while searching for the best network architecture, or in a drug discovery
procedure, the money and effort needed to synthesize an experimental drug
and afterward conduct experiments to test its effectiveness.

But what if there are ways to gauge the result of a function evaluation
without actually evaluating the objective function, denoted as f(x)? That is, in
addition to the objective function, we can query an inexpensive surrogate f̅(x).
This surrogate f̅(x) is an inexact approximation to the objective function, so
evaluating this surrogate won’t tell us everything about the true objective
function f(x). However, since f̅(x) is an approximation to f(x), knowledge
about the former still offers us insight into the latter. The question we need to

ask ourselves is, how should we balance between using the true objective
function f(x), which is expensive to query but offers exact information, and
using the surrogate f̅(x), which is inaccurate but inexpensive to query. This
balance is illustrated in Figure 9.1, where the ground truth f(x) is the high-
fidelity data source, while the surrogate f̅(x) is the low-fidelity approximation.

Figure 9.1. Model of a multi-fidelity decision-making problem, where the agent needs to balance
between querying the true objective function f(x) for accurate information and querying the
inexpensive surrogate f̅(x).

As noted in the introduction, using a low-fidelity approximation is common
in the real world:

Training a neural network only for a small number of epochs to gauge
its performance on some data set. The performance of the neural
network over, for example, 5 epochs is a low-fidelity approximation of
its optimized performance that can be achieved after 50 epochs.
Running a computer simulation in lieu of a real experiment to study
some scientific phenomenon. This computer simulation imitates the
physical processes happening in the real world and approximates the
phenomenon that the physicist wants to study. However, this
approximation is of low fidelity because the computer cannot accurately
mirror the real world.

In a multi-fidelity optimization problem where we aim to optimize the
objective function f(x), we get to choose between the high-fidelity f(x) or the
low-fidelity f̅(x) to query, to best learn about and optimize f(x). Of course,
querying f(x) will offer more information about f(x) itself, but the querying
cost prevents us from making such queries many times. Instead, we can
choose to take advantage of the low-fidelity approximation f̅(x) to learn as
much as possible about our target f(x), while minimizing our querying cost.

Having multiple low-fidelity approximations

To keep things simple, we will only work with one low-fidelity
approximation f̅(x) in the examples in this chapter. However, many real-world
settings might offer multiple low-fidelity approximations f̅1(x), f̅2(x), …, f̅k(x)
to the objective function, each having its own querying cost and accuracy.

The Bayesian approach we will learn in the next section doesn’t limit how
many low-fidelity approximations we have access to, and we will solve a
multi-fidelity optimization with two low-fidelity approximations f̅1(x) and
f̅2(x) in this chapter’s Exercise 2.

Having multiple low-fidelity approximations is applicable when, for
example, the computer simulation approximating the real experiment has a
setting that controls the quality of the approximation. If one were to set the
simulation quality to low, then the computer program would run a coarse
simulation of the real world and return the result faster. On the other hand, if
the simulation quality is set to high, then the program might need to run for a

longer duration to better approximate a real experiment.

For now, we will stick with one objective function and one low-fidelity
approximation.

Consider Figure 9.2, where in addition to the Forrester function as an
example objective function in BayesOpt, denoted as the solid line, we also
have a low-fidelity approximation to the objective, denoted as the dotted line.
Here, although the low-fidelity approximation doesn’t exactly match the
ground truth, the former captures the general shape of the latter and can
therefore be helpful in the search for the objective’s optimum.

Figure 9.2. The Forrester function (solid line) and a low-fidelity approximation to the function
(dotted line). Although the low-fidelity approximation doesn’t exactly match the ground truth,
the former offers information about the latter, as the two functions have roughly the same shape.

For example, since the low-fidelity approximation is informative of the true
objective function, we could query the approximation many times to study its
behavior across the search space, and only query the ground truth when we
want to "zero in" on the objective’s optimum. Our goal in this chapter is to
design a BayesOpt policy that navigates this search for us, and decides where
and which function to query in order to optimize our objective function as

quickly and cheaply as possible.

The multi-fidelity BayesOpt loop is summarized in Figure 9.3 with the
following notable changes from the traditional BayesOpt loop in Figure 1.6:

At Step 1, the Gaussian process is trained on data from both sources: the
high-fidelity, or ground truth, function and the low-fidelity
approximation. That is, our data are split into two sets: the set of data
points evaluated on the ground truth f(x), and the set of points evaluated
on the approximation f̅(x). Training on both data sets ensures that the
predictive model can reason about the objective function in regions
where there are low-fidelity data but not high-fidelity data.
At Step 2, the BayesOpt policy generates an acquisition score for each
data point in the search space to quantify the data point’s value in
helping us identify the objective’s optimum. However, it’s not just the
data points that are scored, but the data point–fidelity pairs; that is, the
policy quantifies the value of querying a given data point on a particular
function (either the high- or the low-fidelity function). This score needs
to balance between optimization of the objective and the querying cost.
At Step 3, we query the data point on the fidelity corresponding to the
pair maximizing the acquisition score of the BayesOpt policy. We then
update our training data sets with the new observation and loop back to
Step 1 to continue our BayesOpt procedure.

Figure 9.3. The multi-fidelity Bayesian optimization loop. The Gaussian process trains on data
from both the high- and low-fidelity functions, and the Bayesian optimization policy decides
where and which function to query at each iteration of the loop.

For the remainder of this chapter, we will learn about the components of the
multi-fidelity BayesOpt loop and how to implement them in Python, starting
with training a Gaussian process on a data set that includes both high- and
low-fidelity observations.

9.2 Multi-fidelity modeling with Gaussian processes

As noted in Figure 9.3, our Gaussian process (GP) model is trained on a
combined data set that includes observations from multiple fidelities. This
combined training allows the GP to make predictions about the objective
function even in regions where there are only low-fidelity observations,
which subsequently informs the BayesOpt policy that makes optimization-
related decisions. In this section, we will learn how to represent a multi-
fidelity data set and train a special variant of the GP on the data set; the code
we use is included in CH09/01 - Multi-fidelity modeling.ipynb.

9.2.1 Formatting a multi-fidelity data set

To set up the multi-fidelity optimization problem, we use the following code
for our one-dimensional Forrester objective function and its low-fidelity
approximation in Figure 9.2; our search space is between -5 and 5:

def objective(x): #1

 y = -((x + 1) ** 2) * torch.sin(2 * x + 2) / 5 + 1 + x / 3 #1

 return y #1

def approx_objective(x): #2

 return 0.5 * objective(x) + x / 4 + 2 #2

lb = -5 #3

ub = 5 #3

bounds = torch.tensor([[lb], [ub]], dtype=torch.float) #3

Of particular importance is a PyTorch tensor that stores the information about
the correlation between each fidelity function we have access to and the true
objective function, which we aim to maximize. We assume that we know the
values of these correlations and declare this tensor fidelities as follows:

fidelities = torch.tensor([0.5, 1.0])

This tensor has two elements corresponding to the two fidelities we have
access to: 0.5, which we use to indicate the correlation between the Forrester
function f(x) and its low-fidelity approximation f̅(x) (the solid and dotted lines

in Figure 9.2), and exactly 1, which is the correlation between the Forrester
function and itself.

These correlation values are important because they inform how much the
Gaussian process that we will train later should rely on data from a particular
fidelity.

If the correlation to the true objective function of a low-fidelity
approximation is high, then that approximation offers a lot of
information about the objective. An extreme example of this is the
objective function itself, which offers perfect information about what
we’re interested in and therefore has a correlation value of 1.
A low-fidelity approximation with a correlation value of 0.5, which we
have in our example, offers information about the objective that is
inexact but still valuable.
At the other end of the spectrum, an approximation with a correlation
value of 0 doesn’t tell us anything about the objective function; a
perfectly horizontal line is an example, since this "approximation" is
constant across the domain.

Figure 9.4 illustrates this scale of correlation: the higher a correlation, the
more information about the ground truth a low-fidelity approximation offers.

Figure 9.4. The scale of correlation from 0 to 1 between a low-fidelity approximation and the
ground truth. The higher the correlation, the more information about the ground truth the low-
fidelity approximation offers.

 Setting the fidelities variable

In general, fidelities is a tensor with k elements, where k is the number of
functions we can query, including the objective. The elements are numbers

between 0 and 1 denoting the correlation between the functions and the
objective. It’s more convenient for the subsequent learning and decision-
making tasks to have 1, the correlation between the true objective and itself,
at the end of the tensor.

Unfortunately, there’s not a concrete rule on how to set these fidelity values;
the decision is left to the Bayesian optimization engineer. If these values are
not known in your own use case, you can make a rough estimate based on
Figure 9.4 by estimating where your low-fidelity function lies between the
high-fidelity function (the ground truth) and an uninformative data source.

With the functions and correlation values in hand, let’s now create an
example training data set. We first randomly sample 10 locations inside the
search space and store them as a tensor in train_x:

n = 10 #1

torch.manual_seed(0) #2

train_x = bounds[0] + (bounds[1] - bounds[0]) * torch.rand(n, 1) #3

The tensor train_x has 10 rows and 1 column, since we have 10 data points
within a one-dimensional space. Each of these data points is associated with a
fidelity from which the observation comes (that is, each data point is either a
high-fidelity or a low-fidelity observation). We encode this information in
our data set by adding in an extra column to train_x to indicate the fidelity
of each data points, as illustrated in Figure 9.5.

Figure 9.5. Formatting the features in a multi-fidelity data set. Each data point is associated with
a fidelity; these fidelity values are stored in an extra column in the training set.

 Generating a multi-fidelity data set

Remember that we aim to train a Gaussian process on data coming from both
sources, the ground truth and the low-fidelity function. To this end, we will
randomly assign each of the 10 data points we have to either fidelity.

We use torch.randint(2) to randomly pick out an integer between 0
(inclusive) and 2 (exclusive), effectively choosing between 0 and 1. This

number determines from which function each data point comes from: 0
means that the data point is evaluated on the low-fidelity approximation f̅(x);
1 means that the data point is evaluated on the objective function f(x). We
then extract the corresponding correlation values in fidelities for each data
point and concatenate this array of correlation values to our training data:

train_f = fidelities[torch.randint(2, (n, 1))] #1

train_x_full = torch.cat([train_x, train_f], dim=1) #2

Taking a look at the full training data train_x_full, we see the first two data
points are:

tensor([[-0.0374, 1.0000], #1

 [2.6822, 0.5000], #2

 ...

The first column of train_x_full contains the locations of the data points
between -5 and 5, while the second column contains the correlation values.
The output above means that our first training point is at -0.0374, and it’s
evaluated on f(x). On the other hand, the second training point is at 2.6822,
this time evaluated on f̅(x).

Now, we need to generate the observations train_y appropriately, so that the
observations are computed with the correct function: the first element of
train_y is equal to f(-0.0374), while the second element is f̅(2.6822), and so
on. To do this, we write a helper function that takes in the full training set,
where the last column contains the correlation values, and call the appropriate
function to generate train_y. That is, if the correlation value is 1, we will
call objective(), which is f(x) as defined above; if the correlation value is
0.5, we will call approx_objective() for f̅(x):

def evaluate_all_functions(x_full):

 y = []

 for x in x_full: #1

 if torch.isclose(x[-1], torch.ones(1)): #2

 y.append(objective(x[:-1])) #2

 else: #3

 y.append(approx_objective(x[:-1])) #3

 return torch.tensor(y).unsqueeze(-1) #4

Calling evaluate_all_functions() on train_x_full will give us the
observed values train_y evaluated on appropriate functions. Our training set
is visualized in Figure 9.6, where there are 3 high-fidelity observations and 7
low-fidelity observations.

Figure 9.6. A randomly sampled, multi-fidelity training data set from the Forrester function and
its low-fidelity approximation. This training set contains 3 high-fidelity observations and 7 low-
fidelity observations.

That’s how we generate and format a training set in multi-fidelity BayesOpt.
Our next task is to train a Gaussian process on this data set in a way that uses
both the ground truth and the low-fidelity approximation.

9.2.2 Training a multi-fidelity Gaussian process

Our goal in this section is to have a Gaussian process (GP) that takes in a set
of multi-fidelity observations and outputs probabilistic predictions about the
target function, that is, the objective function f(x) to be maximized.

Remember from Section 2.2 that a GP is a multivariate Gaussian distribution
of infinitely many variables. The GP models the covariance (and therefore

correlation) between any pair of variables using the covariance function. It’s
with this correlation between any two variables that the GP can make
predictions about one variable when the value of the other is observed.

Refresher on correlation and updated belief about a variable

Say there are three variables A, B, and C, jointly modeled with a tri-variate
Gaussian distribution, where the correlation between A and B is high, but the
correlation between A and C and that between B and C are both low.

Now, when we observe the value of A, then the uncertainty in our updated
belief about B (represented as the posterior distribution of the value of B)
significantly reduces. This is because the correlation between A and B is high,
so observing the value A gives us a lot of information about the value of B.
This is not the case for C, however, since the correlation between A and C is
low, so the updated belief about C still has considerable uncertainty.

See Section 2.2.2 for a similar and detailed discussion about housing prices.

As we learned in Section 2.2.2, as long as we have a way to model the
correlation between any pair of variables (that is, the function values at any
two given locations), we can update the GP accordingly to reflect our updated
belief about the function anywhere in the domain. This is still true in the
multi-fidelity setting: as long as we have a way to model the correlation
between two observations, even if one is from the high fidelity f(x) and the
other is from the low fidelity f̅(x), we can update the GP on the objective
function f(x).

What’s left for us to do is use a covariance function that can compute the
covariance between two given observations, which may or may not be from
the same fidelity. Fortunately for us, BoTorch offers a modified version of
the Matérn kernel that accounts for the fidelity correlation value associated
with each data point in our training set:

If the correlation value of a data point is high, the kernel will produce a
high covariance between that observed data point and any nearby point,
thus allowing us to reduce the GP’s uncertainty with an informative
observation.

If the correlation value is low, the kernel will output a low covariance,
and the posterior uncertainty will remain high.

 The Matérn kernel and its multi-fidelity variant

We first learned about the Matérn kernel in Section 3.4.2. While we won’t go
into the details about the multi-fidelity Matérn kernel here, the interested
reader can find more information in BoTorch’s documentation,
http://mng.bz/81ZB.

Since the GP with the multi-fidelity kernel is implemented as a special GP
class, we can import it from BoTorch without having to write our own class
implementation. Specifically, this GP is an instance of the
SingleTaskMultiFidelityGP class, which takes in a multi-fidelity training
set train_x_full and train_y. The initialization also has a data_fidelity
argument, which should be set to the index of the column in train_x_full
that contains the correlation values; this, in our case, is 1.

from botorch.models.gp_regression_fidelity

 import SingleTaskMultiFidelityGP #1

model = SingleTaskMultiFidelityGP(

 train_x_full, train_y, data_fidelity=1) #2

After initializing the model, we now need to train it by maximizing the
likelihood of the observed data. (Refer to Section 3.3.2 for more on why we
choose to maximize the likelihood to train a GP.) Since the GP we have is an
instance of a special class from BoTorch, we can take advantage of
BoTorch’s helper function fit_gpytorch_mll(), which facilitates the
training process behind the scene. All we need to do is initialize a (log)
likelihood object as our training objective and pass it to the helper function:

from gpytorch.mlls.exact_marginal_log_likelihood import #1

<linearrow /> ExactMarginalLogLikelihood #1

from botorch.fit import fit_gpytorch_mll #1

mll = ExactMarginalLogLikelihood(model.likelihood, model) #2

fit_gpytorch_mll(mll); #3

These surprisingly few lines of code are all we need to train a multi-fidelity
GP on a set of observations.

BoTorch warnings about data type and scaling

When running the code above, newer versions of GPyTorch and BoTorch
might display the following two warnings, the first of which is:

UserWarning: The model inputs are of type torch.float32. It is strongly recommended to use double precision in BoTorch, as this improves both precision and stability and can help avoid numerical errors. See https://github.com/pytorch/botorch/discussions/1444

 warnings.warn(

This warning indicates that we should use a different data type for train_x
and train_y from the default torch.float32, to improve numerical
precision and stability. To do this, we can add the following to our code (at
the beginning of the script):

torch.set_default_dtype(torch.double)

The second warning concerns scaling the input features train_x to be in the
unit cube (each feature value being between 0 and 1) and the response values
train_y to be standardized to have zero mean and unit variance:

InputDataWarning: Input data is not contained to the unit cube. Please consider min-max scaling the input data.

 warnings.warn(msg, InputDataWarning)

InputDataWarning: Input data is not standardized. Please consider scaling the input to zero mean and unit variance.

 warnings.warn(msg, InputDataWarning)

Scaling train_x and train_y this way helps us fit the Gaussian process more
easily and in a more numerically stable way. To keep our code simple, we
won’t implement such scaling here and will be filtering out these warnings
using the warnings module. The interested reader can refer to Chapter 2’s
exercise for more details.

Now, to verify whether this trained GP is able to learn about the training set,
we visualize the GP’s predictions about f(x) between -5 and 5 with the mean
and the 95% credible intervals.

Our test set xs is a dense grid (with over 200 elements) between -5 and 5:

xs = torch.linspace(-5, 5, 201)

Different from what we saw in previous chapters, we need to augment this
test set with an extra column denoting the fidelity on which we’d like to
predict. In other words, the test set xs needs to be in the same format as the
training set train_x_full. Since we’re interested in the GP’s predictions
about f(x), we will add in an extra column full of ones (as 1 is the correlation
value of f(x)):

with torch.no_grad(): #1

 pred_dist = model(torch.vstack([xs, torch.ones_like(xs)]).T) #2

 pred_mean = pred_dist.mean #3

 pred_lower, pred_upper = pred_dist.confidence_region() #4

These predictions are visualized in Figure 9.7, which illustrates a number of
important features about our multi-fidelity GP:

1. The mean predictions about f(x) go through the high-fidelity
observations at roughly -3.6, 0, and 1.3. This interpolation makes sense,
as these data points were indeed evaluated on f(x).

2. In regions where we have low-fidelity observations but not high-fidelity
observations (such as at -2 and around 2.7), our uncertainty about f(x)
still reduced from the prior. This is because the low-fidelity observations
offer information about f(x), even though they weren’t evaluated on f(x).

3. Among these low-fidelity observations, we see that the data point at 4
could offer valuable information to an optimization policy, as the data
point captures the upward trend of the objective function around that
region. By exploiting this information, an optimization policy could
discover the global optimum nearby around 4.5.

Figure 9.7. The multi-fidelity Gaussian process’s predictions about the objective function (ground
truth). The mean predictions appropriately go through the high-fidelity observations, but
uncertainty is still reduced around low-fidelity observations.

Figure 9.7 shows that the GP successfully learned from a multi-fidelity data
set. To push our ability to learn from low-fidelity observations and predict
f(x) to the extreme, we could modify the way we generate our training set so
that the set only contains low-fidelity observations. We do this by setting the
correlation values in the extra column in train_x_full to 0.5:

train_f = torch.ones_like(train_x) * fidelities[0] #1

train_x_full = torch.cat([train_x, train_f], dim=1) #2

Rerunning the last of the code so far will generate the left panel of Figure 9.8,
where we see that all data points are indeed from the low-fidelity
approximation f̅(x). Compared to Figure 9.7, we are more uncertain about our
predictions here, which is appropriate because having observed only low-
fidelity observations, the GP doesn’t learn as much about the objective
function f(x).

To further show the flexibility of our multi-fidelity GP, we can play around
with the correlation values stored in fidelities (while assuming that we
know how to appropriately set these correlation values). As we learned earlier
in Section 9.2.1, the first element in this tensor denotes the correlation
between f(x) and f̅(x), which roughly translates to how much the GP should
"trust" the low-fidelity observations. By setting this first element to 0.9 (as
opposed to 0.5 as we currently do), we can assign more importance to the
low-fidelity observations. That is, we are telling the GP to learn more from
the low-fidelity data, as they offer a lot of information about f(x). The right
panel of Figure 9.8 shows the resulting GP, where our uncertainty is indeed
lower than in the left panel.

Figure 9.8. The predictions about the objective function (ground truth) by a Gaussian process
trained on only low-fidelity observations. The left panel shows the result when the correlation
value is 0.5; the right shows the result when the correlation value is 0.9, which exhibits less
uncertainty.

Aside from the flexibility of the multi-fidelity GP model, Figure 9.8 also
shows how important it is to have the correct correlation values in the
fidelities tensor. Comparing the two panels in Figure 9.8, we see that 0.5
is the better value for the correlation value between two fidelities than 0.9.

In the right panel, our predictions miss the true objective f(x) in most of
the space due to our over-reliance and trust on the low-fidelity
observations.
In the left panel, the 95% credible intervals are appropriately wider to
reflect our uncertainty about f(x).

In other words, we don’t want to overestimate how informative the low-
fidelity approximation f̅(x) is about the objective f(x).

At this point, we have learned how to model a function with a multi-fidelity
GP. For the remainder of this chapter, we will discuss the second part of the
multi-fidelity optimization problem: decision making. More specifically, we

will learn how to design a multi-fidelity optimization policy that selects at
which location and which function to query at each step of the Bayesian
optimization loop.

9.3 Balancing information and cost in multi-fidelity
optimization

In order to be able to trade off between the informativeness of a query (low-
or high-fidelity) and the cost of running that query, we need to have a way to
model and reason about the querying cost. In the next section, we will learn
how to represent the cost of query a given fidelity with a linear model. Using
this cost model, we will then implement a multi-fidelity BayesOpt policy that
trades off cost and making optimization progress. The code we use is stored
in CH09/02 - Multi-fidelity optimization.ipynb.

9.3.1 Modeling the costs of querying different fidelities

In the multi-fidelity optimization problem, we assume that we know how
much it costs to query each of the functions we have access to, either the
objective function f(x) itself or the low-fidelity approximation f̅(x). To
facilitate a modular optimization workflow, we need to represent this
information about the cost of querying each function as a cost model. This
model takes in a given data point (with an extra feature containing the
correlation value as we saw in Section 9.2.1) and returns the known cost of
querying that data point on the specified fidelity.

 The cost model is not a predictive model

Since the cost of querying a fidelity is known, there’s no prediction involved
in this cost model. We just need this model formulation to keep the
optimization procedure we will learn about in the next section.

BoTorch provides the class implementation for a linear cost model named
AffineFidelityCostModel from the botorch.models.cost module. This
linear cost model assumes that the querying costs obey the relationships

shown in Figure 9.9, where the cost of querying a data point on a fidelity
scales linearly with the correlation between that fidelity and the ground truth
f(x). The slope of this linear trend is the weight parameter in Figure 9.9, and
there’s a fixed cost to making any query.

Figure 9.9. The linear cost model for multi-fidelity optimization. The cost of querying a data
point on a fidelity scales linearly with the correlation between that fidelity and the ground truth
f(x).

We initialize this linear cost model with the following code, where we set the
fixed cost to be 0 and the weight to be 1. This means querying a low-fidelity
data point will cost us exactly the correlation value of the low-fidelity
approximation, which is 0.5 (units of cost). Similarly, querying a high-
fidelity data point will cost 1 (unit of cost). Here, the fidelity_weights
argument takes in a dictionary mapping the index of the column containing
the correlation values in train_x_full (1 in our case) to the weight.

from botorch.models.cost import AffineFidelityCostModel

cost_model = AffineFidelityCostModel(

 fixed_cost=0.0, #1

 fidelity_weights={1: 1.0}, #2

)

 The unit of cost

What the unit of cost is depends on the specific application. This cost comes
down to the difference in "convenience" between querying the objective and
querying the low-fidelity approximation, which can be time (the unit is in
minutes/hours/days), money (in dollars), or some measure of effort, and
should be set by the user.

The linear trend captures the relationship between the correlation value and
cost: a high-fidelity function with a high correlation value should have a high
querying cost, while a low-fidelity function should cost lower to query. The
two settable parameters—the fixed cost and weight—allow us to flexibly
model many types of querying costs. (We will see how different types of
querying costs can lead to different decisions being made in the next section.)
With this cost model in hand, we are now ready to learn how to balance
between cost and progress in a multi-fidelity optimization problem.

Modeling non-linear querying costs

We will only be using the linear cost model in this chapter. If your specific
use case demands the querying costs to be modeled by a non-linear trend (a
quadratic or an exponential trend, for example), you can implement your own
cost model.

This is done by extending the AffineFidelityCostModel class we are using
and rewriting its forward() method. The implementation of the
AffineFidelityCostModel class is shown in BoTorch’s official
documentation (https://botorch.org/api/_modules/botorch/models/cost.html),
where we see the forward() method implements the linear relationship
between querying cost and correlation value in Figure 9.9:

def forward(self, X: Tensor) -> Tensor:

 lin_cost = torch.einsum(#1

 "...f,f", X[..., self.fidelity_dims], self.weights.to(X) #1

) #1

 return self.fixed_cost + lin_cost.unsqueeze(-1) #2

In a new class for the custom cost model, you can then rewrite this

forward() method to implement the relationship between querying cost and
correlation value that you need. Even with a custom cost model, the rest of
the code we use in this chapter doesn’t need to be modified, which illustrates
the benefit of BoTorch’s modular design.

9.3.2 Optimizing the amount of information per dollar to guide
optimization

We now return to the questions posed at the beginning of this chapter: how
should we balance between the amount of information we can gain by
querying a function and the cost of querying that function? In multi-fidelity
optimization, a high-fidelity function (the ground truth) offers us exact
information about the objective f(x) in order to optimize f(x), but the querying
cost is high. On the other hand, a low-fidelity approximation is inexpensive
to evaluate, but can only provide inexact information about f(x). It is the job
of a multi-fidelity Bayesian optimization (BayesOpt) policy to decide how
this balancing is done.

We already have a model that computes the cost of querying any given data
point from Section 9.3.1. As for the other side of the scale, we need a method
of quantifying how much we will learn about the objective function from a
given query that can either be from the objective f(x) itself or the low-fidelity
approximation f̅(x).

 Quantifying information gain with entropy search

How much information about f(x), or more specifically about the optimum of
f(x), we will gain from a query is exactly what the Max-value Entropy Search
(MES) policy, which we learn about in Chapter 6, uses to rank its queries.
MES chooses the query that gives us the most information about the highest
value of f(x) in the single-fidelity setting where we can only query the
objective.

As this information gain measure is a general information-theoretic concept,
it can be applied to the multi-fidelity setting as well. In other words, we will
use MES as the base policy to compute how much information about the
optimum of f(x) we gain with each query during optimization. With both
components, cost and information gain, available to us, we now need to
design a way to balance the two, which gives us a cost-aware measure of
utility of a query.

 The return on investment quantity

To quantify the cost-aware utility of a query, we will use a metric common in
economics called the return on investment (ROI) measure, which is
calculated by dividing the profit from an investment by the investing cost. In
the context of using MES in multi-fidelity optimization, the profit is the
amount of information gained from querying a data point, and the cost is the
querying cost.

Remember that the acquisition score of a BayesOpt policy is the score the
policy assigns to each data point within the search space to quantity the
point’s value in helping us optimize the objective function. With the ROI
acquisition score we use here, each data point is scored by the amount of
information it provides about the objective’s optimum for each unit of cost.

Figure 9.10. The formula of the return-on-investment acquisition score for multi-fidelity
optimization. This score quantifies amount of information a query provides about the objective’s
optimum for each unit of cost.

We see that this ROI score is an appropriate measure that weights the
information gained from a query by how inexpensive it is to make that query:

If two queries we can potentially make have the same cost but result in
different information gains, we should pick the one offering more
information.
If two queries provide the same amount of information about the
objective’s optimum, we should pick the one that’s less expensive to
make.

The trade-off above allows us to acquire information about the objective
function f(x) from inexpensive, low-fidelity approximations if these
approximations are indeed informative. On the other hand, if and when the

low-fidelity queries stop offering information about f(x), we will switch to
high-fidelity data points. Essentially, we always choose the optimal cost-
aware decision that gives "the most bang for our buck."

To implement this cost-aware variant of MES, we can make use of
BoTorch’s qMultiFidelityMaxValueEntropy class implementation. This
implementation requires a number of components that it takes in as
arguments:

A cost utility object that does the return-on-investment computation in
Figure 9.10. This object is implemented with the
InverseCostWeightedUtility class, which weights the utility of a
query by the inverse of its cost. The initialization takes in the cost model
we made earlier:

from botorch.acquisition.cost_aware import InverseCostWeightedUtility

cost_aware_utility = InverseCostWeightedUtility(cost_model=cost_model)

A Sobol sequence that acts as the candidate set for the entropy
computation of MES. We first learned about using Sobol sequences with
MES in Section 6.2.2, and the procedure is the same here, where we
draw a 1000-element Sobol sequence from the unit cube (it’s just the
segment going from 0 to 1 in our one-dimensional case) and scale it to
our search space. One more thing we need to do in the multi-fidelity
setting is augment this candidate set with the extra column for the
correlation value of 1 (corresponding to the objective function f(x)) to
denote that we want to measure entropy in our target f(x):

torch.manual_seed(0) #1

sobol = SobolEngine(1, scramble=True) #2

candidate_x = sobol.draw(1000) #2

candidate_x = bounds[0] + (bounds[1] - bounds[0]) * candidate_x #3

candidate_x = torch.cat([candidate_x, torch.ones_like(

 candidate_x)], dim=1) #4

Finally, a helper function that projects a given data point from any
fidelity to the ground truth. This projection is necessary in the

computation of entropy that our policy uses to calculate the acquisition
scores. Here, BoTorch provides that helper function
project_to_target_fidelity, which doesn’t need any further
parameterization if the last column in our training set contains the
correlation values and the correlation value of the ground truth is 1, both
of which are true in our code.

Using the components above, we implement our cost-aware, multi-fidelity
MES policy as follows:

from botorch.acquisition.utils import project_to_target_fidelity

policy = qMultiFidelityMaxValueEntropy(

 model,

 candidate_x, #1

 num_fantasies=128,

 cost_aware_utility=cost_aware_utility, #2

 project=project_to_target_fidelity, #3

)

At this point, we can use this policy object to score each data point from any
fidelity by its cost-adjusted value in helping us find the objective’s optimum.
The last piece of the puzzle is the helper function we use to optimize the
acquisition score of this policy, to find the point with the highest ROI score at
each iteration of the search. In previous chapters, we use optimize_acqf
from the botorch.optim.optimize module to optimize the acquisition score
in the single-fidelity setting, which only works if our search space is
continuous.

 Dealing with a mixed search space

In our current multi-fidelity setting, the search space for the location of the
query is still continuous, but the choice for the function with which to query
is discrete. In other words, our search space is mixed. Fortunately, BoTorch
offers the analogous helper function for a mixed search space:
optimize_acqf_mixed.

In addition to the usual arguments that optimize_acqf takes, the new helper
function optimize_acqf_mixed also has a fixed_features_list argument,

which should be a list of dictionaries, each mapping the index of a discrete
column in train_x_full to the possible values that the column contains. In
our case, we only have one discrete column, the last column containing the
correlation values, so we will use [{1: cost.item()} for cost in
fidelities] for the fixed_features_list argument. Further, the bounds
variable we usually pass to the helper function now needs to contain the
bounds for the correlation values as well. Overall, we optimize our multi-
fidelity MES acquisition score with:

from botorch.optim.optimize import optimize_acqf_mixed

next_x, acq_val = optimize_acqf_mixed(

 policy,

 bounds=torch.cat(#1

 [bounds, torch.tensor([0.5, 1.0]).unsqueeze(-1)], dim=1 #1

), #1

 fixed_features_list=[{1: cost.item()} for cost in fidelities], #2

 q=1,

 num_restarts=20,

 raw_samples=50,

)

This helper function completes the code we need to use the multi-fidelity
MES policy. The bottom panel of Figure 9.11 visualizes the acquisition
scores computed by this policy with the multi-fidelity Gaussian process (GP)
we trained in Section 9.2.2. In this bottom panel, the boundary of the shaded
region (denoting the scores of low-fidelity queries) exceeds that of the hatch-
pattern region (the scores of high-fidelity queries), meaning that low-fidelity
queries are more cost-effective than high-fidelity ones, given our current
knowledge. Ultimately, the best query we make, denoted as the star, is
around 3.5 on the low-fidelity approximation f̅(x).

Figure 9.11. The current GP belief about the objective function (top) and the acquisition scores
computed by the multi-fidelity Max-value Entropy Search policy (bottom). In this example, low-
fidelity queries are preferred to high-fidelity ones thanks to their low cost.

A low-fidelity query is the optimal one to make in Figure 9.11, as it offers
more information relative to its cost than any high-fidelity query. However,
this is not always the case. By modifying our data generation procedure from
Section 9.2.2 to generate an all-low-fidelity-observation training set and
rerunning our code, we obtain the left panel of Figure 9.12, where this time,
the optimal decision is to query the high-fidelity function f(x). This is because
according to our GP belief, we have sufficiently learned from low-fidelity
data, and it’s time we inspected the ground truth f(x).

As a final analysis of the behavior of our policy, we can study the effect of
the querying costs on how decisions are made. To do this, we will change our
querying costs so that a low-fidelity query won’t be much less expensive than
a high-fidelity one, specifically by increasing the fixed querying cost
described in Section 9.3.1 from 0 to 10. This change means that a low-fidelity
query will now cost 10.5 units of cost, and a high-fidelity query will cost 11.
Compared to the costs of 0.5 and 1 from before, 10.5 and 11 are much closer
to each other, making the denominators in Figure 9.10 for the two fidelities
almost equal. This means that the low-fidelity approximation f̅(x) is almost as
expensive to query as the objective function f(x) itself. Given these querying
costs, the right panel of Figure 9.12 shows how the MES policy scores
potential queries. This time, because high-fidelity queries aren’t much more

expensive than low-fidelity ones, the former are preferred as they give us
more knowledge about f(x).

Figure 9.12. Situations where high-fidelity queries are preferred to low-fidelity ones. Left: the
training set contains only low-fidelity observations. Right: low-fidelity queries are almost as
expensive as high-fidelity queries.

These examples show that MES can identify the optimal decision that
balances between information and cost appropriately. That is, the policy
assigns higher scores to low-fidelity queries when they are inexpensive to
make and can offer substantial information about the objective function. If,
on the other hand, high-fidelity queries are either significantly more
informative or not much more expensive, these high-fidelity queries will be
preferred by the policy.

9.4 Measuring performance in multi-fidelity
optimization

Our discussion above shows that the multi-fidelity MES policy is able to
make appropriate decisions when choosing between the two fidelities to
query. But is this policy better than regular Bayesian optimization
(BayesOpt) policies that only query the ground truth f(x), and if so, how
much better? In this section, we will learn how to benchmark the
performance of a BayesOpt policy within the multi-fidelity setting, which
requires additional considerations. The code we show is in CH09/03 -
Measuring performance.ipynb.

 Measuring performance in the single-fidelity setting

To measure optimization progress in previous chapters, we recorded the
highest objective value (also known as the incumbent) that we have collected
in the training set throughout the search. If the incumbent values collected by
policy A exceed those collected by policy B, we say that policy A is more
effective at optimization than policy B.

Recording the incumbent values doesn’t work here in the multi-fidelity
setting. First, if we were to record the incumbent value in a training set, it
would only make sense to pick the high-fidelity data point with the highest-
valued label. However, this strategy ignores any contribution towards
learning about the objective f(x) that low-fidelity queries make. Take the two
possible scenarios visualized in Figure 9.13 for example.

In the first scenario on the left, we have made three high-fidelity
observations, and the highest observed value is roughly 0.8. Objectively
speaking, we have made no optimization progress in this situation; we
haven’t even explored the region where x is greater than 0.
In the second scenario on the right, we have only made low-fidelity
observations, so recording the high-fidelity incumbent value isn’t even
applicable. However, we see that we are very close to finding the
objective function’s optimum here, as our queries have discovered the
function’s peak around 4.5.

Figure 9.13. Measuring performance with the high-fidelity incumbent is inappropriate in multi-
fidelity optimization. Left: the high-fidelity incumbent is roughly 0.8 while we haven’t discovered
the objective’s optimum. Right: even though we are close to locating the objective’s optimum,
there’s no high-fidelity query to record the incumbent value with.

In other words, we should prefer the second scenario to the first, as one
illustrates near success at optimization while the other shows little
optimization progress. However, using the high-fidelity incumbent as a
measure of progress doesn’t help us make this distinction between the two
scenarios. Thus, we need another way of measuring optimization progress.

 Using the posterior mean maximizer

A common progress measure in the BayesOpt community is the objective
function’s value at the location that currently gives the highest posterior
mean. This measure corresponds to the answer to the question: If we were to
stop running Bayesian optimization and recommend a point as the solution to
the optimization problem, which point should we choose? Intuitively, we
should choose the point that, in the most plausible scenario (according to our
Gaussian process belief), gives the highest value, which is the posterior mean
maximizer.

We see that the posterior mean maximizer facilitates the comparison we
made in Figure 9.13, where on the left, the posterior mean maximizer is at 0,
which still gives an objective value of 0.8 (the mean maximizer usually
corresponds the incumbent in the single-fidelity case), while on the right, the
mean maximizer is around 4.5. In other words, the posterior-mean-maximizer
metric successfully helps us distinguish between the two scenarios and show
that the one on the left is less preferable than the one on the right.

To implement this metric, we make a helper policy that uses the posterior
mean as its acquisition score. Then, just as we optimize a regular policy’s
acquisition score in BayesOpt, we optimize the posterior mean using this
helper policy. This policy requires two components:

The class implementation of the BayesOpt policy that uses the posterior
mean as its acquisition score. This class is PosteriorMean, which can be
imported from botorch.acquisition.
A "wrapper" policy that only optimizes high-fidelity metrics. This
wrapper is required because our GP model is a multi-fidelity one, and
we always need to specify which fidelity we’d like to work with when
passing this model to an optimization policy. This wrapper policy is
implemented as an instance of FixedFeatureAcquisitionFunction
from botorch.acquisition.fixed_feature.

Overall, we make the posterior-mean-maximizer metric with the following
helper policy, where the wrapper policy takes in an instance of
PosteriorMean, and we specify the other arguments as:

The dimension of the search space is d = 2: our actual search space is
one-dimensional, and there’s an additional dimension for the correlation
values (that is, the fidelity to query).
The index of the dimension to be fixed during optimization columns =
[1] and its fixed value values = [1]: since we only want to find the
posterior mean maximizer corresponding to the objective function, the
high-fidelity function, we specify that the second column (index 1)
should always have the value 1.

from botorch.acquisition.fixed_feature

 import FixedFeatureAcquisitionFunction

from botorch.acquisition import PosteriorMean

post_mean_policy = FixedFeatureAcquisitionFunction(

 acq_function=PosteriorMean(model), #1

 d=2, #2

 columns=[1], #3

 values=[1], #4

)

We then use the familiar helper function optimize_acqf to find the point that
maximizes the acquisition score, which is the posterior mean of the objective
function. (We first learned about this helper function in Section 4.2.2.)

final_x, _ = optimize_acqf(

 post_mean_policy, #1

 bounds=bounds, #2

 q=1, #2

 num_restarts=20, #2

 raw_samples=50, #2

)

This final_x variable is the location that maximizes the posterior mean of
the objective function. In our Jupyter notebook, we put this code in a helper
function that returns final_x, augmented with a correlation value of 1
indicating the true objective function:

def get_final_recommendation(model):

 post_mean_policy = FixedFeatureAcquisitionFunction(...) #1

 final_x, _ = optimize_acqf(...) #2

 return torch.cat([final_x, torch.ones(1, 1)], dim=1) #3

Now, during the BayesOpt loop, instead of recording the incumbent value as
an indication of optimization progress, we will call this
get_final_recommendation helper function. Further, instead of a maximum
number of queries to be made in each run, we now have a maximum budget,
which can be spent on either low- or high-fidelity queries. In other words, we
keep running our optimization algorithm until the cumulative cost exceeds
our budget limit. The skeleton of our multi-fidelity BayesOpt loop is as
follows:

budget_limit = 10 #1

recommendations = [] #2

spent_budget = [] #3

... #4

current_budget = 0

while current_budget < budget_limit:

 ... #5

 rec_x = get_final_recommendation(model) #6

 recommendations.append(evaluate_all_functions(rec_x).item()) #6

 spent_budget.append(current_budget) #6

 ... #7

 current_budget += cost_model(next_x).item() #8

 ... #9

We are now ready to run multi-fidelity MES to optimize the Forrester
objective function. As a benchmark, we will also run the single-fidelity MES
policy, which only queries the ground truth f(x). The GP model we have is a
multi-fidelity one, so in order to run a single-fidelity BayesOpt policy with
this model, we need an wrapper policy of the
FixedFeatureAcquisitionFunction class to restrict the fidelity the policy
can query.

policy = FixedFeatureAcquisitionFunction(

 acq_function=qMaxValueEntropy(model, candidate_x, num_fantasies=128), #1

 d=2,

 columns=[1], #2

 values=[1], #2

)

next_x, acq_val = optimize_acqf(...) #3

Running the two policies generates the result in Figure 9.14, where we
observe that multi-fidelity MES greatly outperforms the single-fidelity
version. The cost-effectiveness of multi-fidelity MES illustrates the benefit of
balancing between information and cost. However, we note that this is only
the result of a single run; in Exercise 1, we will run this experiment multiple
times with different initial data sets and observe the average performance of

these policies.

Figure 9.14. The objective value of the posterior mean maximizer as a function of the budget
spent by two Bayesian optimization policies. Here, multi-fidelity Max-value Entropy Search
greatly outperforms the single-fidelity version.

In this chapter, we have learned about the problem of multi-fidelity
optimization, in which we balance between optimizing the objective function
and the cost of gaining knowledge about the objective. We learned how to
implement a Gaussian process model that can learn from multiple sources of
data. This model then allows us to reason about the information-theoretic
value of making a query in terms of locating the optimal value of the
objective. By combining this information-theoretic quantity with the querying
cost in a return-on-investment measure, we devise a cost-aware, multi-fidelity

variant of the Max-value Entropy Search policy that can trade off knowledge
and cost automatically.

9.5 Summary

Multi-fidelity optimization is an optimization setting where we have
access to multiple sources of information, each having its own level of
accuracy and cost. In this setting, we need to balance between the
amount of information gained from taking an action and the cost of
taking that action.
In multi-fidelity optimization, a high-fidelity function offers exact
information but is costly to evaluate, while a low-fidelity function is
inexpensive to query but might give inexact information. At each
iteration of the optimization loop, we need to decide where and which
function to query in order to find the objective function’s optimum as
quickly as possible.
The level of information each fidelity provides is quantified by the
correlation between itself and the ground truth, which is a number
between 0 and 1. The higher the correlation, the more closely the fidelity
matches the ground truth. In Python, we store the correlation value of
each data point as an extra column in the feature matrix.
A Gaussian process with a kernel that can process the correlation values
of the training data points can be trained on a multi-fidelity data set; we
can use the multi-fidelity variant of the Matérn kernel for this task. The
uncertainty in the predictions of the Gaussian process depends on which
function each observation comes from, and if it comes from a low-
fidelity function, what the correlation value of that function is.
We use a linear model to encode the querying cost of each fidelity we
have access to during optimization. By setting the parameters of this
model—the fixed cost and the weight—we can model the positively
correlated relationship between querying cost and the quality of the data.
Non-linear cost models can also be implemented using BoTorch.
To balance between informativeness and cost, we use a variant of the
Max-value Entropy Search policy that weights the amount of
information resulting from each query by the inverse of the querying
cost. This measure is analogous to the return-on-investment concept in
economics, and is implemented with the InverseCostWeightedUtility

class from BoTorch.
Exact calculation of information gain for the objective function’s
optimal value, the core task of Max-value Entropy Search, is intractable
due to the non-Gaussian distribution of the optimal value. To
approximate the information gain, we use a Sobol sequence to represent
the entire search space, alleviating the computational burden in the
calculation.
The multi-fidelity Max-value Entropy Search policy successfully
balances between information and cost, and successfully prioritizes cost-
effective queries.
To optimize the acquisition score of a multi-fidelity policy, we use the
optimize_acqf_mixed helper function, which can work with a mixed
search space whose dimensions can be either continuous or discrete.
To accurately measure performance in the multi-fidelity setting, we use
the maximizer of the posterior mean at each iteration as a final
recommendation before termination. This quantity captures what we
know about the objective function better than the high-fidelity
incumbent value.
To optimize a single-fidelity acquisition score in a multi-fidelity setting,
we use a wrapper policy that is an instance of the
FixedFeatureAcquisitionFunction class. To initialize a wrapper
policy, we declare which dimension in the search space is fixed and at
what value.

9.6 Exercise 1: Visualizing average performance in
multi-fidelity optimization

To compare the performance of our policies, Figure 9.14 visualizes the
objective value of the posterior mean maximizer throughout optimization
against the amount of budget spent. However, this is the result from just one
single optimization run, and we’d like to show the average performance by
each policy from multiple experiments. (We first discussed the idea of
repeated experiments in Chapter 4’s Exercise 2.) In this exercise, we will run
the optimization loop multiple times and learn how to take the average
performance to obtain a more holistic comparison. By the end of the exercise,
we will see that multi-fidelity Max-value Entropy Search balances between

information and cost well, and optimizes the objective function more
effectively than its single-fidelity counterpart. The solution is stored in the
CH09/04 - Exercise 1.ipynb notebook.

There are multiple steps:

1. Copy the problem setup and the multi-fidelity optimization loop from
CH09/03 - Measuring performance.ipynb and add another variable
denoting the number of experiments we want to run (10 by default).

2. To facilitate repeated experiments, add an outer loop to the optimization
loop code. This should be a for loop with 10 iterations, where a different
random observation is generated each time. (This random generation
could be done by setting PyTorch’s random seed to the iteration number,
which ensures the random number generator returns the same data
across different runs with the same seed.)

3. The code in CH09/03 - Measuring performance.ipynb uses two lists,
recommendations and spent_budget, to keep track of optimization
progress. Make each of these variables a list of lists, where each inner
list serves the same purpose as the corresponding list in CH09/03 -
Measuring performance.ipynb. These lists of lists will allow us to
keep track of optimization progress over the 10 experiments and
compare different optimization policies in later steps.

4. Run the multi-fidelity Max-value Entropy Search policy and its single-
fidelity version on our optimization problem.

5. Since the cost of querying the low-fidelity function is different from that
of querying the high-fidelity function, it’s likely that the lists in
spend_budget don’t exactly match with each other. In other words, the
points in the curves in Figure 9.14 don’t have the same x-coordinates
across the runs. This mismatch prevents us from taking the average
progress stored in recommendations across the multiple runs.
To address this problem, we will use a linear interpolation for each
progress curve, which allows us to "fill in" the progress values on a
regular grid. It is on this regular grid that we will average out the
performance of each policy across runs. For the linear interpolation, use
np.interp from NumPy, which takes in a regular grid as its first
argument; this grid can be an array of integers between 0 and
budget_limit: np.arange(budget_limit). The second and third

arguments are the x- and y-coordinates of the points making up each
progress curve, that is, each inner list in spend_budget and
recommendations.

6. Use the linearly interpolated values to plot the average performance and
error bars of the two policies we ran and compare their performance.

7. Due to the way we’re currently measuring optimization performance,
it’s possible that the list of recommendations we keep track of
throughout each run is not monotonically increasing. (That is, we might
end up with a recommendation that performs worse than the previous
iteration’s recommendation.) To inspect this phenomenon, we can plot
the linearly interpolated curves representing individual runs'
optimization progress, along with the average performance and error
bars. Implement this visualization for the two policies we ran and
inspect the non-monotonicity of the resulting curves.

9.7 Exercise 2: Multi-fidelity optimization with
multiple low-fidelity approximations

The approach we learned in this chapter can generalize to scenarios where
there are more than one low-fidelity approximation to the objective function
that we can query. Our strategy is the same: divide the amount of information
we will gain from each query by its cost, and then pick the query that gives
the highest return on investment. This exercise will show us that our multi-
fidelity Max-value Entropy Search policy can balance between multiple low-
fidelity functions. The solution is stored in the CH09/05 - Exercise
2.ipynb notebook.

There are multiple steps:

1. For our objective function, we will use the two-dimensional function
named Branin, which is a common test function for optimization like the
Forrester function. BoTorch comes with a multi-fidelity version of
Branin, so we will import it to our code with from
botorch.test_functions.multi_fidelity import AugmentedBranin.
For convenience, we will scale the domain and output of this function
using the following code, which makes objective the function to call

when we evaluate a query:

problem = AugmentedBranin() #1

def objective(X):

 X_copy = X.detach().clone() #2

 X_copy[..., :-1] = X_copy[..., :-1] * 15 - 5 #2

 X_copy[..., -2] = X_copy[..., -2] + 5 #2

 return (-problem(X_copy) / 500 + 0.9).unsqueeze(-1) #2

2. Define the bounds of our search space to be the unit square. That is, the
two lower bounds are 0, and the two upper bounds are 1.

3. Declare the fidelities variable that stores the correlation values of the
different functions we can query. Here, we have access to two low-
fidelity approximations with correlation values of 0.1 and 0.3, so
fidelities should contain these two numbers and 1 as the last element.

The three functions are visualized in Figure 9.15, where bright pixels
denote high objective values. We see that both low-fidelity
approximations follow the general trend exhibited by the ground truth,
and the resemblance to the ground truth increases with the fidelity value.
That is, the second approximation with fidelity 0.3 (middle) is more
similar to the true objective function (right) than the first approximation
with fidelity 0.1 (left).

Figure 9.15. The objective function Branin (right) and two low-fidelity approximations.

4. Set the fixed cost of the linear cost model to 0.2 and the weight to 1.
This means the cost of querying the low-fidelity function on the left of
Figure 9.15 is 0.2 + 1 x 0.1 = 0.3. Similarly, the cost of querying the
middle function is 0.5 and that of querying the true objective function is
1.2. Set the limit of our budget in each experiment to 10, and the number
of repeated experiments to 10 as well.

5. Set the number of candidates drawn from the Sobol sequence to 5000,
and use 100 restarts and 500 raw samples when using helper functions to
optimize the acquisition score of a given policy.

6. Redefine the helper function get_final_recommendation that finds the
posterior mean maximizer so that the arguments are appropriately set for
our two-dimensional objective function: d = 3 and columns = [2].

7. Run the multi-fidelity Max-value Entropy Search policy and its single-
fidelity version on our optimization problem and plot the average
optimization progress and error bars of each policy using the method
described in Exercise 1. Note that when creating the wrapper policy for
the single-fidelity policy, the arguments d and columns need to be set in
the same way as in the previous step. Verify that the multi-fidelity
policy performs better than the single-fidelity one.

10 Learning from pairwise
comparisons with preference
optimization
This chapter covers

The problem of learning about and optimizing preference using only
pairwise comparison data
Training a Gaussian process on pairwise comparisons
Optimization policies for pairwise comparisons

Have you ever found it difficult to rate something (food, product, or some
experience) on an exact scale? Asking for the customer’s numerical score for
a product is a common task in A/B testing and product recommendation
workflows.

 A/B testing

The term "A/B testing" refers to the method of measuring user’s experience
in two environments (referred to as A and B) via randomized experiments
and determining which environment is more desirable. A/B testing is
commonly conducted by technology companies.

However, A/B testers and product recommendation engineers often have to
deal with a high level of noise in the feedback collected from their customers.
By "noise", we mean any type of corruption that the feedback collected from
customers is subject to. Example sources of noise in product rating are the
amount of advertisements served on an online streaming service, the quality
of the delivery service for a package, or the general mood of the customer
when they consume a product. These factors affect how the customer rates
their product, potentially corrupting the signal that is the customer’s true
evaluation of the product.

Uncontrollable external factors make it hard for the customer to report their
true evaluation of a product. Customers therefore often find it hard to choose
a numerical score as their evaluation of a product when rating on a scale. The
prevalence of feedback noise in A/B testing and production recommendation
means that a service platform cannot rely on a few data points collected from
their users to learn about their preferences. Instead, the platform needs to
collect more data from the customers to become more certain about what the
customers truly want.

However, just as in other settings of black-box optimization, such as
hyperparameter tuning and drug discovery, querying the objective function is
expensive. In product recommendation, every time we query a customer,
asking for their rating of a product, we run the risk of intruding on the
customer’s experience and discouraging them from continuing using the
platform. Hence, there’s a natural tension between the need for a large
amount of data for better learning of the customers' preferences and being
intrusive, potentially leading to loss of customers.

Luckily, there’s a way around this problem. Research on the field of
psychology (http://hassler-
j.iies.su.se/COURSES/NewPrefs/Papers/KahnemanTversky%20Ec%2079.pdf
has found the intuitive result that we humans are much better at giving
preference-based responses in the form of pairwise comparisons ("product A
is better than product B") than rating products on a scale ("product A is an 8
out of 10").

 Pairwise comparisons

A pairwise comparison is a method of collecting preference data. Each time
we want to elicit information about a customer’s preference, we ask the
customer to pick (from two items) the item they prefer. Pairwise comparisons
are different from numerical ratings, where we ask the customer to rate an
item on a scale.

The reason for the difference in difficulty between pairwise comparisons and
ratings is that, comparing two items is a less cognitively demanding task, and
we therefore can compare two objects while being consistent with our true

preference better than providing numerical ratings.

Consider in Figure 10.1 two example interfaces of an online shopping site
that is trying to learn about your preference for Hawaiian shirts.

The first interface asks you to rate the shirt on the scale from 1 to 10.
This can be difficult to do, especially if you don’t have a frame of
reference.
The second interface asks you to instead pick the shirt that you like
better. This task is easier to complete.

Figure 10.1. Examples of user’s preference elicitation in production recommendation. Left: the
user is asked to rate a recommended product. Right: the user is asked to pick the product they
like better. The latter situation helps better elicit the user’s preference.

Given the potential of high-quality data we can collect using pairwise
comparisons, we’d like to apply this preference elicitation technique to
Bayesian optimization of a user’s preference. The question becomes, how can
we train a machine learning model on pairwise comparison data, and
afterwards how should we present new comparisons to the user, in order to

best learn and optimize their preference? We will answer these questions in
this chapter, first by using a Gaussian process model that can effectively learn
from pairwise comparisons. We then develop strategies that pit the best data
point (representing a product) we have found so far against a promising rival,
allowing us to optimize the user’s preference as quickly as possible.

This setting of learning and optimizing a user’s preference from pairwise
comparisons is a unique task that lies at the intersection of black-box
optimization and product recommendation and has been gaining interest from
both communities. By the end of this chapter, we will learn how to approach
this problem from the Bayesian optimization angle, trading off exploitation
and exploration as we collect data from the user.

10.1 Black-box optimization with pairwise
comparisons

In this section, we will further discuss the usefulness of pairwise comparisons
in the task of eliciting preference. We will then examine the Bayesian
optimization loop that is modified for this preference-based optimization
setting.

In addition to exact numerical evaluations as ratings, pairwise comparisons
offer a method of collecting information about a customer in a production
recommendation application. Compared to numerical ratings, pairwise
comparisons pose less of a cognitive burden on the user and are therefore
likely to result in higher-quality data (feedback that is consistent with the
user’s true preference).

Pairwise comparisons in multi-objective optimization

A setting where pairwise comparisons are particularly useful is decision
making when multiple criteria need to be considered. For example, say you
are looking to buy a car and are choosing between car A and car B. To make
your decision, you list out the different characteristics about a car that you
care about: appearance, practicality, energy efficiency, cost, and so on. You
then score both cars on each of these criteria, hoping to find a clear winner.

Unfortunately, car A scores higher on car B on some of the criteria but not
all, but car B scores higher on car A on the rest of the criteria.

So there’s no clear winner among the two cars, and combining the scores for
the different criteria into one single score could be difficult. You care about
some criteria more than others, so those criteria that you care about more
need to be weighted more heavily when being combined with the other
criteria to produce a single number. However, working out the exact values
for these weights could pose an even greater challenge than choosing
between the two cars itself! It can be much easier to ignore the specifics,
view each car as a whole, and compare the two cars "head-to-head".

The ease of using pairwise comparisons has therefore been exploited in
optimization situations where there are multiple criteria to be considered. For
example, this research project
(https://www.sciencedirect.com/science/article/pii/S0020025515003862)
used pairwise comparisons to tackle group decision making.

Of course, pairwise comparisons are not objectively better than numerical
evaluations. While the former are easier to elicit from users, they contain
considerably less information than the latter. The response that you like the
orange shirt better than the red shirt in Figure 10.1 contains exactly one bit of
information (the outcome of the comparison is binary: either orange is better
the red or red is better than orange, so observing the outcome information-
theoretically constitutes gaining one bit of information). Meanwhile, if you
were to report that you rate the orange shirt 8 out of 10 and the red 6 out of
10, we would have much more information than the fact that orange is valued
more highly than red.

In other words, there’s always a trade-off in choosing the method of eliciting
feedback from users. Numerical evaluations contain more information, but
they are prone to noise and can place a bigger cognitive burden on the user.
Pairwise comparisons, on the other hand, offer less information but are easier
for the user to report.

Figure 10.2. Differences between numerical ratings and pairwise comparisons in terms of
informativeness and difficulty in reporting. Each method of preference elicitation offers its own
advantages and disadvantages.

Keeping the trade-off between information and difficulty of reporting in
mind, we should stick to numerical evaluations if we are willing to ask users
to complete a more cognitively demanding task to gain more information and
if we can account for noise. On the other hand, if we place a bigger
importance on getting customers to accurately express their true preferences
and are willing to gain less information, pairwise comparisons should be our
method of choice to elicit customers' feedback.

Other ways of eliciting customers' preferences

Pairwise comparisons are not the only form of relieving the cognitive burden
of numerical evaluations. For example, the online streaming service Netflix
collects their viewers' ratings by asking them to choose between three
options: "thumbs down" to indicate you dislike something, "thumbs up" to
indicate you like something, and "double thumbs up" to indicate you love
something (http://mng.bz/XNgl). This setting constitutes an ordinal
classification problem, where items are classified into different categories,
and there’s an inherent order among the categories. The production
recommendation problem in this setting is just as interesting to consider, but
we will focus on pairwise comparisons in this chapter.

In this chapter, we will learn how to facilitate the task of using pairwise
comparisons to learn and optimize a customer’s preference using Bayesian
optimization (BayesOpt). First, we examine a modified version of the
BayesOpt loop we saw in Figure 1.6 as shown in Figure 10.3.

At Step 1, the Gaussian process (GP) is trained on pairwise comparison
data instead of numerical evaluations. The key challenge is to ensure the
GP belief about the objective function (the user’s true preference
function) reflects information in the observed comparisons.
At Step 2, the BayesOpt policy computes acquisition scores to quantify
how useful each potential new query to the user is. A query to the user
needs to come in the form of a pair of products for the user to compare.
Just as in other settings, the policy needs to balance between exploiting a
region where we know the user’s preference is high and exploring other
regions where we don’t know a lot about the user’s preference.
At Step 3, the user compares the two products that are presented to them
by the BayesOpt policy and reports the product they prefer. This new
information is then added to our training set.

Figure 10.3. The Bayesian optimization loop with pairwise comparisons for preference
optimization. The Gaussian process trains on pairwise comparison data, and the Bayesian
optimization policy decides which pair of data points it should ask the user to compare.

We seek to address two main questions in the remainder of this chapter:

1. How can we train a GP only on pairwise comparisons? A GP, when
trained on numerical responses, produces probabilistic predictions with
quantified uncertainty, which is crucial in decision making. Can we

leverage the same model here with pairwise comparison responses?
2. How should we generate new product pairs for the user to compare so as

to identify the maximizer of the user’s preference as quickly as possible?
That is, how do we best elicit the user’s feedback using pairwise
comparisons to optimize the user’s preference?

10.2 Formulating a preference optimization
problem and formatting pairwise comparison data

Before we start tackling the questions above, this section will introduce the
product recommendation problem we’ll be solving throughout the chapter
and how we simulate the problem in Python. Setting up the problem properly
will help us integrate the Bayesian optimization tools we will learn in
subsequent section more easily. The code we use here is included in the first
portion of the CH10/01 - Learning from pairwise comparisons.ipynb
Jupyter notebook.

As hinted in Figure 10.1 and Figure 10.3, the scenario we’re in is with a
product recommendation problem for Hawaiian shirts. That is, pretend we
run an online shopping site for Hawaiian shirts, and we are trying to
determine the product that maximizes the preference of a specific customer
who is currently shopping for a shirt.

For simplicity’s sake, let’s assume that after a brief survey, we learned the
factor that matters the most to the customer is the amount of flowers printed
on the shirt. Other factors such as style and color matter too, but the most
important thing to this customer about a Hawaiian shirt is how floral the shirt
is. Further assume that we have in our stock many Hawaiian shirts with
varying amounts of flowers, so we can roughly find a shirt with any given
specified degree of "floral-ness". So, our goal is to find the shirt with the
optimal amount of flowers, which is unknown to us, with respect to the
customer’s preference. We will conduct this search in a one-dimensional
search space, where the lower bound of the space corresponds to shirts
without floral patterns, and the upper bound of the space are shirts covered in
flowers.

Figure 10.4 visualizes our setup in more detail. In the top portion, the figure

shows the customer’s true preference and how it changes with respect to how
floral a shirt is.

The x-axis indicates the amount of flowers a shirt has: on one end of the
spectrum, we have shirts without any flowers; on the other are shirts
covered in flowers.
The y-axis is the customer’s preference for each shirt. The higher the
customer’s preference for a shirt is, the more the customer likes the
shirt.

We see that this customer likes floral shirts: there’s a local optimum in
preference passed the middle point of the shirt, and the global optimum of the
preference function is located near the upper bound of the search space. This
means that a shirt that has a lot of flowers, but is not completely covered in
them, maximizes the customer’s preference.

Figure 10.4. Searching for the shirt with the optimal amount of flowers in a product
recommendation problem. Our search space is one-dimensional, since we only search for the
amount of flowers on a shirt. A shirt that’s more than half covered in flowers is a local optimum,
while a shirt that’s almost fully covered maximizes the user’s preference.

Since what we have is a black-box optimization problem, the customer’s
preference curve in Figure 10.4 is actually inaccessible to us in the real
world, and we need to learn about this preference function using pairwise
comparisons and optimize it as quickly as possible. Now, let’s see how we
can set up this optimization problem in Python.

You might have noticed already that we are using the Forrester function used
in previous chapters to simulate the objective function, the customer’s true
preference, in Figure 10.4. As a result, the code for this function doesn’t
change from what we had in other chapters, which is the following formula,
defined to be between -5 and 5, the lower and upper bounds of our search
space.

def objective(x): #1

 y = -((x + 1) ** 2) * torch.sin(2 * x + 2) / 5 + 1 + x / 3 #1

 return y #1

lb = -5 #2

ub = 5 #2

bounds = torch.tensor([[lb], [ub]], dtype=torch.float) #2

Remember in previous chapters where the labels of our data have numerical
values, each data point in the training set, stored in variable train_x, has a
corresponding label in train_y. Our current setting is a little different. As our
data are in the form of pairwise comparisons, each observation results from
comparing two data points in train_x, and the label of the observation
indicates which data point is valued more by the customer.

 Formatting comparison results

We will follow BoTorch’s convention to encode the result of each pairwise
comparison between two data points in train_x as a PyTorch tensor of two
elements: the first is the index of the data point that is preferred within
train_x, and the second is the index of the data point not preferred.

For example, say from two queries to the user, we know that the user prefers
x = 0 to x = 3 (that is, f(0) > f(3), where f(x) is the objective function), and
the user also prefers x = 0 to x = -4 (so f(0) > f(-4)). A way for us to represent
these two pieces of information are expressed as a training data set is with
train_x having the following values:

tensor([[0.], #1

 [3.], #2

 [-4.]]) #3

These values here are the three x values we have queried the user. The
training labels train_comp on the other hand should be:

tensor([[0, 1], #1

 [0, 2]]) #2

Each row in train_y is a two-element tensor representing the result of a
pairwise comparison. In the first row, [0, 1] says that the data point with
index 0 in train_x, which is x = 0, is preferred to the point with index 1,
which is x = 3. Similarly, the second row [0, 2] encodes the comparison
that f(0) > f(-4).

To help streamline the process of comparing any pair of data points within
our search space, we will write a helper function that takes in the objective
values of any two data points and returns [0, 1] if the first objective value is
the greater of the two and [1, 0] otherwise:

def compare(y):

 assert y.numel() == 2 #1

 if y.flatten()[0] > y.flatten()[1]: #2

 return torch.tensor([[0, 1]]).long() #2

 else: #3

 return torch.tensor([[1, 0]]).long() #3

Let’s use this function to generate a sample training set. We first randomly
draw two data points within our search space:

torch.manual_seed(0) #1

train_x = bounds[0] + (bounds[1] - bounds[0]) * torch.rand(2, 1) #2

The variable train_x here contains the following two points:

tensor([[-0.0374],

 [2.6822]])

Now, we will obtain the result of the comparison between these two points by
evaluating the user’s true preference function and calling compare():

train_y = objective(train_x) #1

train_comp = compare(train_y) #2

The result of the comparison between the objective values of the data points
in train_x is stored in train_comp, which is:

tensor([[0, 1]])

This result means that the first data point in train_x is valued by the
customer more than the second point.

We also write another helper function named observe_and_append_data(),
whose role is to take in a pair of data points, compare them, and add the
result of the comparison to a running training set.

1. The function first calls the helper function compare() above to obtain
either [0, 1] or [1, 0] and then adjusts the values of the indices stored
in the two-element tensor so that the indices point to the correct
locations of the data points in the training set.

def observe_and_append_data(x_next, f, x_train, comp_train, tol=1e-3):

 x_next = x_next.to(x_train) #1

 y_next = f(x_next) #1

 comp_next = compare(y_next) #1

 n = x_train.shape[-2] #2

 new_x_train = x_train.clone() #2

 new_comp_next = comp_next.clone() + n #2

2. The function also checks for data points within the training set that are
close enough to each other to be considered the same point (for example
x = 1 and x = 1.001). These very similar data points can cause the
training of the preference-based Gaussian process we will learn in the
next section to become numerically unstable. Our solution is to flag
these similar data points, treat them as duplicates, and remove one of
them.

 n_dups = 0

 dup_ind = torch.where(#1

 torch.all(torch.isclose(x_train, x_next[0], atol=tol), axis=1) #1

)[0] #1

 if dup_ind.nelement() == 0: #2

 new_x_train = torch.cat([x_train, x_next[0].unsqueeze(-2)]) #2

 else: #3

 new_comp_next = torch.where(#3

 new_comp_next == n, dup_ind, new_comp_next - 1 #3

) #3

 n_dups += 1

 dup_ind = torch.where(#4

 torch.all(torch.isclose(new_x_train, x_next[1], atol=tol), axis=1) #4

)[0] #4

 if dup_ind.nelement() == 0: #5

 new_x_train = torch.cat([new_x_train, x_next[1].unsqueeze(-2)]) #5

 else: #6

 new_comp_next = torch.where(#6

 new_comp_next == n + 1 - n_dups, dup_ind, new_comp_next #6

) #6

 new_comp_train = torch.cat([comp_train, new_comp_next]) #7

 return new_x_train, new_comp_train #7

We will make use of these two helper functions in our downstream tasks of
training Gaussian processes and optimizing the user’s preference function,
the first of which we will learn how to do in the next section.

10.3 Training a preference-based Gaussian process

We will continue to use the code in CH10/01 - Learning from pairwise
comparisons.ipynb to implement our Gaussian process model in this
section.

We learned in Section 2.2.2 that under the Bayesian update rule (which
allows us to update our belief in light of data), we can obtain the exact
posterior form of a multivariate Gaussian distribution, given that we have
observed the values of some of the variables. This ability to compute a
posterior multivariate Gaussian distribution exactly is the basis for updating a
Gaussian process (GP) in light of new observations. Unfortunately, this exact
update is only applicable under numerical observations. That is, we can only
exactly update a GP with observations in the form of y = f(x) where x and y
are real-valued numbers.

Under our current setting, observations come in the form of pairwise
comparisons, and the posterior form of a GP when conditioned on this type of
preference-based data is not a GP anymore, which rules out most of the

methods we have developed in this book that rely on the fact that our
predictive model is a GP. However, this doesn’t mean we have to abandon
the entire project.

Approximating the posterior Gaussian process under pairwise comparisons

A common theme in machine learning (and computer science in general) is
when we can’t accomplish a task exactly, we should try to approximately
solve it. Within our context, this approximation equates to finding a posterior
form for our GP that gives the highest likelihood for the observed pairwise
comparisons.

Of course, the distribution that truly maximizes the likelihood of the data is a
non-GP posterior distribution. But as we’d like to have a GP as our predictive
model, enabling the Bayesian optimization policies we have learned, our goal
is to find the GP with the highest data likelihood. Note that finding the GP
maximizing the likelihood of the data is also what we do when we train a GP:
we find the best hyperparameters for the GP (such as length scale and output
scale) that maximize the data likelihood. (Section 3.3.2 is when we discussed
this method for the first time in this book.)

In terms of implementation, we can initialize and train a GP on pairwise
comparisons using the code below.

BoTorch provides a special class implementation for this GP model
named PairwiseGP, which can be imported from the
botorch.models.pairwise_gp module.
The likelihood of pairwise comparison data requires a different
computation from that of the likelihood of real-valued data. For this
computation, we use PairwiseLaplaceMarginalLogLikelihood,
imported from the same module as the class implementation.
To be able to visualize and inspect the predictions made by the GP, we
fix its output scale so that it retains its default value 1 during training.
We do this by disabling its gradient with
model.covar_module.raw_outputscale.requires_grad_(False). This
step is only for visualization purposes and therefore optional; we won’t
do this when running our optimization policies later in the chapter.
Finally, we use the helper function fit_gpytorch_mll from

botorch.fit to obtain the posterior GP that maximizes the likelihood of
our training data.

from botorch.models.pairwise_gp import PairwiseGP, #1

<linearrow /> PairwiseLaplaceMarginalLogLikelihood #1

from botorch.fit import fit_gpytorch_mll #1

model = PairwiseGP(train_x, train_comp) #2

model.covar_module.raw_outputscale.requires_grad_(False) #3

mll = PairwiseLaplaceMarginalLogLikelihood(model) #4

fit_gpytorch_mll(mll); #5

Using this trained GP model, we can now make and visualize predictions
across our search space in Figure 10.5. We note a few interesting points about
these predictions:

The mean predictions obey the relationship expressed in the training
data that f(-0.0374) > f(2.6822) in that the mean prediction at x =
-0.0374 is greater than 0, while that at x = 2.6822 is less than zero.
The uncertainty in our predictions at -0.0374 and 2.6822 is also lower
than in the rest of the predictions. This difference in uncertainty reflects
the fact that upon observing f(-0.0374) > f(2.6822), we have gained
some information about f(-0.0374) and f(2.6822), and our knowledge
about these two objective values should increase.
However, the uncertainty at these points doesn’t significantly decrease
to zero, as we see in settings where we train on numerical observations
(for example, in Figure 2.14). This is because, as we remarked in
Section 10.1, pairwise comparisons don’t offer as much information as
numerical evaluations, so a significant level of uncertainty remains.

Figure 10.5. Predictions made by the Gaussian process trained on a pairwise comparison
f(-0.0374) > f(2.6822). The posterior mean reflects the result of this comparison, while the
posterior standard deviation around the two data points slightly decreased from the prior.

Figure 10.5 shows that the GP we trained can effectively learn from a
pairwise comparison, where the mean function obeys the observed
comparison and the uncertainty is well-calibrated.

BoTorch warning when making predictions

You might encounter a warning from BoTorch similar to the below when
making predictions with the GP we just trained:

NumericalWarning: A not p.d., added jitter of 1.0e-06 to the diagonal

 warnings.warn(

This warning indicates the covariance matrix produced by the GP is not
positive definite, causing numerical stability-related issues, and BoTorch has
automatically added a "jitter" to the diagonal of the matrix as a fix, so we the
users don’t need to do anything further. Refer to Section 5.3.2 for the

instance where we encounter this warning.

To play around with this model further and see how it can learn from more
complicated data, let’s create a slightly bigger training set. Specifically, say
we’d like to train the GP on three individual comparisons: f(0) > f(3), f(0) >
f(-4), and f(4) > f(0), all of which are true for the objective function we have
in Figure 10.5. To this end, we set our training data points stored in train_x
to be:

train_x = torch.tensor([[0.], [3.], [-4.], [4.]])

This set contains all the data points involved in the observed comparisons
above. Now, as for train_comp, we encode the three comparisons using two-
element tensors in the way as discussed in Section 10.2:

train_comp = torch.tensor(

 [

 [0, 1], #1

 [0, 2], #2

 [3, 0], #3

]

)

Now, we simply re-declare the GP and re-fit it on this new training data:

model = PairwiseGP(train_x, train_comp) #1

mll = PairwiseLaplaceMarginalLogLikelihood(model) #2

fit_gpytorch_mll(mll) #3

The GP model produces the predictions shown in Figure 10.6, where we see
that all three comparison results in the training data are reflected in the mean
predictions, and uncertainty once again decreased around the training data
points.

Figure 10.6. Predictions made by the Gaussian process trained on the pairwise comparisons
shown on the right. The posterior mean reflects the result of this comparison, while the posterior
standard deviation around the data points in the training set decreased from the prior.

Figure 10.6 shows that our GP model can effectively train on pairwise
comparison data. We now have a means to learn from preference-based data
and make probabilistic predictions about the user’s preference function. This
leads us to the final topic of this chapter: decision making in preference
optimization. That is, how should we select data pairs to have the user
compare them, in order to find the most preferred data point as quickly as
possible?

The range of the objective function in preference learning

An interesting advantage of training a Gaussian process on pairwise
comparisons over doing so with numerical evaluations is that the range of the
objective function doesn’t need to be accounted for during training. This is
because all we care about is the relative comparisons between objective
values. In other words, learning about f(x) is equivalent to learning about f(x)

+ 5, or about 2 f(x), or about f(x) / 10.

Meanwhile, when training a traditional Gaussian process with numerical
evaluations, it’s crucial to account for the range of the objective function,
because only by doing so can we have a model with a well-calibrated
uncertainty quantification. (For example, to model an objective function that
ranges from -1 to 1, an output scale that’s equal to 1 is appropriate, while for
an objective function that ranges from -10 to 10, we need to larger output
scale.)

10.4 Preference optimization by playing king of the
hill

In this section, we learn to apply Bayesian optimization (BayesOpt) to
preference learning. The code we use is included in CH10/02 - Optimizing
preferences.ipynb.

The question we need to address is how to select the best pair of data points,
present them to the user, and ask for their preference in order to find the data
point the user prefers the most. As with any BayesOpt optimization policy,
our strategy needs to achieve a balance between exploitation (zeroing in on a
region in the search space where we know the user’s value is high) and
exploration (inspecting the regions we don’t know much about).

The BayesOpt policies we learned in Chapters 4–6 effectively address this
exploitation–exploration trade-off using various heuristics. We will therefore
develop a strategy to repurpose these policies for our preference-based
setting. Remember that in previous chapters, a Bayesian optimization policy
computes an acquisition score for each data point within the search space,
quantifying the data point’s value in helping us optimize the objective
function. By finding the data point maximizing this acquisition score, we
obtain the next point to evaluate the objective function with.

Using a Bayesian optimization policy to suggest pairwise comparisons

In our current preference-based setting, we need to present to the user a pair
of data points for them to compare. At each iteration of the optimization loop,

we assemble this pair with first, the data point that maximizes the acquisition
score of a given Bayesian optimization policy and second, the best point that
we have seen so far.

The strategy we use resembles the popular children’s game king of the hill,
where at each iteration, we attempt to "beat" the best data point we have
collected so far (the current "king of the hill") using a challenger chosen by a
BayesOpt policy.

By using this "king of the hill" strategy, we are outsourcing the task of
constructing a pair of data points for the user to compare to a regular
BayesOpt policy that can balance the exploitation–exploration trade-off well
and we already know how to work with.

Code-wise, this strategy is straightforward to implement. We simply declare a
BayesOpt policy object and optimize its acquisition score using the helper
function optimize_acqf(). For example, the code below uses the Upper
Confidence Bound (UCB) policy, which we learned in Section 5.2. The UCB
policy uses upper bounds of the predictive normal distributions made by the
GP as acquisition scores to quantify the value of inspecting a data point.

policy = UpperConfidenceBound(model, beta=2) #1

challenger, acq_val = optimize_acqf(#2

 policy, #2

 bounds=bounds, #2

 q=1, #2

 num_restarts=50, #2

 raw_samples=100, #2

) #2

Another policy we will use is Expected Improvement (EI), which we learned
in Section 4.3. One nice thing about EI that makes it suitable for our setting is
that the motivation of the policy matches exactly with the "king of the hill"
strategy we employ. That is, EI aims to search for data points that on average
can lead to the biggest improvement (in terms of the value of the objective
function, our optimization goal) from the best point seen so far. Exceeding
the best value found so far is exactly what the "king of the hill" strategy is all
about.

To implement EI in our setting, we will use a different class implementation
that can handle noisy observations named qNoisyExpectedImprovement.

Noisy observations in Bayesian optimization

The term "noisy observations" in Bayesian optimization refers to the situation
where we suspect the labels we observe are corrupted by noise in the same
way described in the beginning of this chapter.

As shown in Figure 10.5 and Figure 10.6, we still have substantial
uncertainty in our GP predictions, even at locations included in our training
data train_x. The noisy version of EI should be used here because this
policy handles this type of uncertain predictions better than the regular EI
policy. We implement noisy EI as follows:

policy = qNoisyExpectedImprovement(model, train_x) #1

challenger, acq_val = optimize_acqf(#2

 policy, #2

 bounds=bounds, #2

 q=1, #2

 num_restarts=50, #2

 raw_samples=100, #2

) #2

As a point of comparison, let’s also include a naïve strategy of picking the
challenger for the best point seen so far uniformly at random within the
search space:

challenger = bounds[0] + (bounds[1] - bounds[0]) * torch.rand(1, 1) #1

This random strategy will serve as a benchmark for us to determine whether
the BayesOpt policies we have can work better than random selection.

With these policies in hand, we are now ready to run our BayesOpt loop to
optimize a user’s preference in our example problem. The code for this loop
resembles what we used in previous chapters, except for the step where we
present the pair of data points to the user for their feedback to append the
result to our training set. This is done with the observe_and_append_data()
helper function we wrote in Section 10.2:

incumbent_ind = train_y.argmax() #1

next_x = torch.vstack([train_x[incumbent_ind, :], challenger]) #2

train_x, train_comp = observe_and_append_data(#3

 next_x, objective, train_x, train_comp #3

) #3

train_y = objective(train_x) #3

In the code in CH10/02 - Optimizing preferences.ipynb, each BayesOpt

run starts out with a randomly generated pair of data points and the feedback
from the objective function comparing those two points. Each run then
proceeds with 20 pairwise comparisons (that is, 20 queries to the user). We
also repeat the experiment 10 times for each policy so that we can observe the
aggregated performance of each strategy.

Figure 10.7 shows the average best value (and error bars) found by the
optimization strategies we have. EI performs the best, consistently
discovering the global optimum. Perhaps a large part of EI’s success can be
attributed to the agreement between our "king of the hill" method and the
algorithmic motivation behind EI. More surprisingly, UCB fails to
outperform the random strategy; perhaps a different value for the trade-off
parameter β can improve UCB’s performance.

 The trade-off parameter of Upper Confidence Bound

UCB’s trade-off parameter β directly controls how the policy balances
between exploration and exploitation. Refer to Section 5.2.2 for the
discussion regarding this parameter.

Figure 10.7. Optimization performance of various Bayesian optimization policies, aggregated
across 10 experiments. Expected Improvement (EI) performs the best, consistently discovering
the global optimum. Surprisingly, Upper Confidence Bound (UCB) fails to outperform the
random strategy.

In this chapter, we discuss the problem of preference learning and
optimization using pairwise comparisons. We learned about the motivation
behind this particular method of data collection and the advantages it has
over requiring users to report numerical evaluations.

We then tackled the optimization problem using Bayesian optimization, first
training a Gaussian process on pairwise comparisons using an approximate
method. This Gaussian process model can effectively learn about the
relations between data points expressed in the training set, while still offering
a well-calibrated quantification of uncertainty. Finally, we learned to apply
Bayesian optimization policies to this problem by pitting the best data point
we have seen against the point recommended by a given Bayesian
optimization policy.

In the next chapter, we will learn about a multi-objective variant of the black-
box optimization problem where there are multiple, competing objective
functions that we need to balance during optimization.

10.5 Summary

In production recommendation applications, comparing two items can
help us obtain feedback that is more consistent with the user’s true
preference than rating on a numerical scale. This is because the former
poses a less cognitively demanding task.
Pairwise comparisons contain less information than numerical
evaluations, so there’s a trade-off between relieving the user’s cognitive
burden and obtaining information in choosing between the two methods
of eliciting preference.
A Gaussian process can be trained to maximize the likelihood of a data
set of pairwise comparisons. This model approximates the true posterior
non-Gaussian process model when conditioned on pairwise comparison
data.
A Gaussian process trained on pairwise comparisons produces mean
predictions that are consistent with the comparison results in the training
set. In particular, the mean predictions at locations that are preferred are
higher than the mean predictions at locations not preferred.
The uncertainty of the Gaussian process trained on pairwise
comparisons slightly decreases from the prior Gaussian process but
doesn’t collapse to zero, which appropriately reflects our uncertainty
about the user’s preference function, because pairwise comparisons offer
less information than numerical evaluations.
A strategy for optimizing the user’s preference using Bayesian
optimization involves pitting the best data point found against the
candidate recommended by a Bayesian optimization policy. The
motivation of this strategy is to constantly try to improve from the best
point we have found so far.
The result of a pairwise comparison is represented as a two-element
tensor in BoTorch, where the first element is the index of the data point
that is preferred within the training set, while the second element is the
index of the data point not preferred.
To use the Expected Improvement policy in the optimization setting

with pairwise comparisons, we use the noisy version of the policy that
can handle high levels of uncertainty in the trained Gaussian process
better than regular Expected Improvement.

11 Optimizing multiple objectives at
the same time
"This coffee tastes good, but there’s too much sugar." "That shirt looks great,
but it’s out of my price range." "The neural network I just trained has a high
accuracy, but it is too big and takes too long to train."

Every day, we are faced with optimization trade-offs of the same flavor as
those above where, in an attempt to achieve a good performance on some
objective, we sacrifice another criterion that’s just as important: a coffee
drinker with a sweet tooth might optimize the taste of their coffee while using
an unhealthy amount of sugar; a shopper scores a clothing article high on
looks and low on affordability; a machine learning engineer develops a neural
network that has good predictive performance but is too large to be used in a
real time application.

By focusing on one optimization objective, we might perform badly on
another objective that needs to be accounted for. We should instead model all
objective functions that are to be optimized into our optimization procedure,
and attempt to jointly optimize them all. For example, we should look for
coffee recipes that are both tasty and low on sugar, or clothing items that are
both fashionable and affordable, or machine learning models that perform
well and are practical to implement. This type of optimization problem is
called multi-objective optimization.

 Definition of multi-objective optimization problems

A multi-objective optimization problem, as the name suggests, involves
multiple objective functions that are to be optimized at the same time. The
goal is to find data points that achieve high values on all of the objectives.

Of course, in any non-trivial multi-objective optimization problem, we might
have competing objectives, where the only way to achieve good performance

on one objective function is to sacrifice performance on another objective.
This inherent conflict between optimization objectives gives rise to the need
to balance between these objectives (very much like the need to balance
between exploitation and exploration discussed in Section 4.1.2, which are
the two "objectives" we need to optimize for inside the Bayesian optimization
loop).

In this chapter, we will learn about multi-objective optimization, how to
successfully address it by finding data points whose performance on one
objective cannot be improved without sacrificing another objective, and how
to apply Bayesian optimization to this problem when the objective functions
are expensive-to-query black boxes. Multi-objective optimization is a
common problem across many fields, and by the end of this chapter, we will
add to our toolkit the ability to tackle this problem using Bayesian methods.

11.1 Balancing multiple optimization objectives
with Bayesian optimization

Applications of multi-objective optimization are ubiquitous:

In engineering and manufacturing, engineers often face the trade-off
between multiple objectives such as the quality of a product versus the
manufacturing cost. For example, car manufacturers are constantly
optimizing their production line to maximize quality and minimize cost.
In resource allocation problems such as the distribution of monetary and
medical aid across poor communities or those affected by natural
disasters, decision makers need to balance between making the largest
impact on these communities and the various logistical difficulties in
distribution.
Similar to the examples of the cost-constrained optimization problem we
discussed in Section 8.1.1, scientists developing drugs against a certain
disease need to balance between maximizing effectiveness against the
disease and minimizing side effects on patients.
More relevant to machine learning engineers, a practical machine
learning model that can be deployed in the real world needs to achieve
good performance while maintaining a low training cost.

Unlike optimization settings discussed in previous chapters, we no longer
have one single optimization objective to focus on. In many of these
problems, the objectives we need to optimize are often in conflict with each
other: only by sacrificing our performance on one metric can we improve on
another. One way to think about this inherent conflict between the
optimization objectives is that we have to "juggle" the various objectives at
the same time: we can’t simply focus on certain objectives while ignoring the
others.

Figure 11.1. A cartoon illustrating the balance we must achieve in multi-objective optimization,
where we need to juggle between different objective functions.

Fortunately, the fact that there are now more than one objective function
doesn’t affect most of the Bayesian optimization (BayesOpt) workflow that
we have developed throughout this book.

 Modeling multiple objective functions using multiple Gaussian processes

In previous chapters, we trained a Gaussian process model on observed data
to model our belief about the single objective function to be optimized. In
this chapter, we have multiple objective functions to model, but each of these
objectives can still be modeled as a Gaussian process. By maintaining these
multiple Gaussian processes, we have a way to reason about all objective
functions in a probabilistic manner.

Figure 11.2 shows the BayesOpt loop in which there are two objective
functions to be optimized. Compared to Figure 1.6, Step 1 now has a
Gaussian process (GP) for each of the objectives, and each data point
identified by the BayesOpt policy is evaluated on all objective functions at
Step 3.

Figure 11.2. The multi-objective Bayesian optimization loop with two objective functions. A
Gaussian process trains on data from each objective function, and the Bayesian optimization
policy decides which data point to evaluate the objective functions with next.

Training a GP on data from each objective is straightforward to implement; in
fact, we already did this for constrained optimization in Chapter 8, where we
train one GP on the objective function and another on the constraint function.

In other words, we only need to focus on the design of the BayesOpt policy

in Step 2 of Figure 11.2 to help us make effective decisions during
optimization. How the BayesOpt policy should address the balance between
the multiple objectives so that we can find high-performing data points as
quickly as possible is what we will learn in the rest of this chapter.

11.2 Finding the boundary of the most optimal data
points

In this section, we will learn about mathematical concepts that are commonly
used in multi-objective optimization to quantify how much progress we have
made during optimization. These concepts will help us establish the target of
the optimization strategy that we will develop later in this chapter. To make
our discussion concrete, we will use the code in CH11/01 - Computing
hypervolume.ipynb.

We start out with the two objective functions that we need to optimize at the
same time.

The first objective is the familiar Forrester function used in previous
chapters. The global optimum of this objective function is located on the
right of the search space. This function is implemented as objective1()
below.
We also have another objective function, implemented as objective2(),
which has a different functional form and behavior from Forrester.
Crucially, the global optimum of this objective is located on the left of
the search space—the mismatch in the locations of the global optima of
the two objective functions simulates the trade-off that is common in
multi-objective optimization problems.
We write a helper function joint_objective() that returns the values
of the two objective functions in a PyTorch tensor for a given input data
point x. This function will help keep our code concise.
We finally define the search space of our optimization problem to be
between -5 and 5.

def objective1(x): #1

 return -((x + 1) ** 2) * torch.sin(2 * x + 2) / 5 + 1 + x / 20 #1

def objective2(x): #2

 return (0.1 * objective1(x) + objective1(x - 4)) / 3 - x / 3 + 0.5 #2

def joint_objective(x): #3

 y1 = objective1(x) #3

 y2 = objective2(x) #3

 return torch.vstack([y1.flatten(), y2.flatten()]).transpose(-1, -2) #3

lb = -5 #4

ub = 5 #4

bounds = torch.tensor([[lb], [ub]], dtype=torch.float) #4

Figure 11.3 shows these two objective functions in our search space. We see
that the data points that maximize the two objectives are different from each
other: the solid curve is maximized around x = 4.5, while the dashed curve is
maximized around x = -4.5. This difference means that we have two
conflicting objectives, and the joint optimization of these two functions
requires trading off their objective values.

Figure 11.3. The two objective functions that make up our current multi-objective optimization
problem. The data points that maximize the two objectives are different from each other, so
there’s a trade-off in the optimization of the two objectives.

By "trading off", we mean that there exist points x in our search space whose
values for the first objective (denoted as f1(x)) cannot be improved unless
their values for the second objective (denoted as f2(x)) are lowered. In other
words, there are data points that optimize one objective function in the sense
that their values cannot be exceeded unless we sacrifice another objective
function.

As an example, consider x = -5 as indicated in Figure 11.3, the data point on
the very far left of the search space. This point has an objective value f1(-5) of
roughly 4, and an objective value f2(-5) of roughly 1.5. Now, x = -5 is one of
the data points that, if we want to do better than 4 on the first objective f1(x),

we will have to do worse than 1.5 on f2(x). Indeed, the only way for us to
achieve a higher f1(x) value than 4 is to query on the rightmost portion of the
search space where x > 4. Here, the values of f2(x) fall below 0.

Conversely, the region on the right (x > 4) is also where the tension between
f1(x) and f2(x) exists: in order to increase the value of f2(x), we would have to
move away to the left of the space, in which case the value of f1(x) will
suffer.

 Definition of non-dominated points

A data point whose value for an objective cannot be exceeded unless its value
for another objective decreases is called non-dominated. The opposite, a
dominated point x1 is one such that there exists another point x2 whose
objective values all exceed those of x1. A non-dominated point can also be
called Pareto optimal, Pareto efficient, or non-inferior.

The point x = -5 therefore is a non-dominated point, and so are some of the
points where x > 4. An example of a dominated point is x = -1.9 in Figure
11.3, which gives f1(-1.9) ≈ f2(-1.9) ≈ 1. This point is dominated by x = -5,
since the former’s objective values are lower than those of the latter: f1(-1.9)
< f1(-5) and f2(-1.9) < f2(-5).

In many cases, we have infinitely many non-dominated points. Figure 11.4
shows the non-dominated points in our current problem as dash-shaded
regions. (We will talk about how to find these non-dominated points later in
this section; for now, let’s focus on the behavior of these non-dominated
points.)

We see that x = -5 is indeed a non-dominated point, along with many
points around that region that give high values for the second objective
f2(x). The points outside this region don’t yield higher f2(x) values, so
the points inside the region are non-dominated. We call this set of points
Group 1.
A smaller region on the right that gives high values for the first objective

f1(x) is also non-dominated. This set of points is called Group 2.
There’s a third, smallest region around x = 4 that’s also non-dominated,
whose values for f1(x) are not exceeded by the non-dominated points on
the far left of the search space. Though this region doesn’t contain the
global optimum of either objective function, the region trades off
between the values of the two objectives and is therefore non-
dominated. We call these points Group 3.

Figure 11.4. The two objective functions and the non-dominated points. There are infinitely many
non-dominated points in this multi-objective optimization problem.

The non-dominated points are valuable in multi-objective optimization
because they themselves are solutions to the optimization problem, as we
cannot improve upon them without sacrificing at least one objective. Further,
by studying the non-dominated points, their relationship to one another, and
how they are spread out within the search space, we can understand more
about the trade-off between the multiple objectives in our optimization
problem. Hence, a reasonable goal of multi-objective optimization is to find
many non-dominated points.

However, it’s not immediately clear how we should concretely quantify this

goal of finding non-dominated points. We shouldn’t simply seek to uncover
as many non-dominated points as possible, since there can be, and often are,
infinitely many of them. Instead, we will leverage a quantity that is easier to
think about if we were to visualize the data points in a different space.

In Figure 11.3 and Figure 11.4, the x-axis corresponds to the data points
themselves, and the y-axis corresponds to the objective values of these data
points. To study the trade-off between two conflicting objectives, we can also
use a scatter plot where the x-coordinate of a given data point x is the value
for the first objective f1(x), and the y-coordinate is the value for the second
objective f2(x).

Figure 11.5 shows this scatter plot for each point in a dense grid of 201
equally spaced points between -5 and 5, where dominated points are denoted
as dots and non-dominated points are stars. We see that whether a point is
dominated or not is more easily determined in this space: for each data point
x1, if there’s another data point x2 that’s placed above and to the right of x1,
then x1 is a dominated point; conversely, if there isn’t any point x2 that’s
simultaneously above and to the right of x1, then x1 is non-dominated.

We also see in Figure 11.5 the three groups of non-dominated points
corresponding to those in the discussion regarding Figure 11.4.

Figure 11.5. Scatter plot of data points based on their values for the two objective functions.
Dominated points are denoted as dots; non-dominated points are stars. The three groups of non-
dominated points correspond to those in the discussion regarding Figure 11.4.

From the set of non-dominated points, visualized in the space of the objective
values, we now introduce another concept called the Pareto frontier.

 Definition of the Pareto frontier

The curve that traces through the non-dominated points is called the Pareto
frontier. It’s called a frontier because when we view all data points as a set,
this curve of the non-dominated points makes up a boundary, or a frontier, of
the set beyond which no data point lies.

Figure 11.6 visualizes the Pareto frontier of our current optimization
problem.

Figure 11.6. The Pareto frontier that traces through the non-dominated points. No data point lies
beyond (above, to the right of) this Pareto frontier.

The concept of the Pareto frontier is crucial in multi-objective optimization,
because the frontier directly leads to a metric that can quantify progress in a
multi-objective optimization problem. In particular, we focus on how much
of the space—the one defined by the collected objective values from multiple
objectives—the Pareto frontier covers. That is, the area inside (below, to the
left of) the Pareto frontier. This area is shown as the shaded region in the left
panel of Figure 11.7.

 Definition of the dominated hypervolume

We use the term "dominated hypervolume" (or sometimes simply
"hypervolume") to denote how much of the space is covered by the Pareto
frontier. When there are two objective functions like our example, the space
is two-dimensional and the dominated hypervolume is the area of the
dominated region. When there are more than two objectives, the dominated
hypervolume measures the same quantity, but in higher dimensions.

The scattered points shown in the left panel of Figure 11.7 are generated
using a dense grid of 201 points across the search space, so that we can study
the behavior of the Pareto frontier and its hypervolume in full detail. In other
words, this dense grid represents the result of an exhaustive search of the
space to fully map out the Pareto frontier.

As a point of comparison, the right panel of Figure 11.7 shows the result of
20 points selected uniformly at random between -5 and 5. From the selected
points, we again find those that aren’t dominated by any other points within
the set of 20 points, and draw the Pareto frontier of this second data set.

Figure 11.7. The dominated hypervolume of a dense grid (left), which is equivalent to an
exhaustive search, and that of 20 data points randomly selected at random (right). The first data
set has a larger dominated volume, and therefore does a better job at multi-objective
optimization than the second data set.

Unlike the case on the left where we fully cover the search space, the small
data set on the right only has four non-dominated points. Under the context of
multi-objective optimization, we make more progress with the first data set
(from the exhaustive search) than we do with the second (from the random
search).

Compared to the data set from the exhaustive search, these four non-
dominated points make up a more jagged Pareto frontier, which in turn has a
much smaller dominated hypervolume. In other words, this measure of
dominated hypervolume can be used to quantify optimization progress in a
multi-objective optimization problem.

 Hypervolume as a metric of progress

In a multi-objective optimization problem, we measure optimization progress

by the hypervolume of the dominated region resulting from the current
collected data. The bigger the dominated hypervolume of our collected data
is, the more progress we have made in simultaneously optimizing our
objective functions.

According to the hypervolume metric, Figure 11.7 shows that an exhaustive
search does a better job than a random search (with fewer queries) at
optimization, which is an expected result. But in order to quantify how much
the former search strategy is better, we need a way to compute this
hypervolume metric. For this computation, a reference point is needed; this
reference point acts as an endpoint for the dominated region, setting a lower-
left bound for the region. We can think of this reference point as the worst
possible outcome that we can observe under a multi-objective optimization
setting, so the hypervolume of the region between this reference point and the
Pareto frontier quantifies how much we have improved from this worst
possible outcome. (The worst possible outcome for each objective function, if
not known to us the BayesOpt user, can be set at a particular value that we
think is the bare minimum that each query can achieve.)

 How to find the reference point

In multi-objective optimization, a common reference point is an array, each
of whose elements corresponds to the lowest value of an objective function to
be maximized.

For example, the reference point for our current optimization problem is
[-2.0292, -0.4444], since the first element -2.0292 is the minimum value of
the first objective function (the solid curve in Figure 11.3), and -0.4444 is the
minimum value of the second objective (the dashed curve in Figure 11.3).
This reference point is visualized in Figure 11.8 as the star, which again sets
a lower bound for the dominated space

Figure 11.8. The reference point in a multi-objective optimization problem, which sets a lower
bound for the dominated space. The hypervolume is computed to be the volume of the region
between the reference point and the Pareto frontier.

With this reference point, we can compute the hypervolume of the dominated
region of a data set collected by a multi-objective optimization policy. The
algorithm to do this computation involves dividing the dominated region into
multiple non-intersecting hyper-rectangles that collectively make up the
dominated region. From there, we can easily compute the hypervolume of
each hyper-rectangle and sum them up to obtain the hypervolume of the
entire region. The interested reader can refer to the research paper that
proposes this algorithm (http://arxiv-export-
lb.library.cornell.edu/pdf/1510.01963).

With BoTorch, we can import and run this algorithm without the need to
implement the low-level details. More specifically, assume we have stored
the collected labels found during optimization in variable train_y. As we
have two objective functions in our example, train_y should have a shape of
n-by-2, where n is the number of data points in the collected set. We then can
use the following code to compute the hypervolume measure, where:

The DominatedPartitioning class implements the partitioning of a
dominated region. To initialize this object, we pass in the reference point
and the collected labels train_y.

We then call the compute_hypervolume() method on the dominated
region object to compute its hypervolume.

from botorch.utils.multi_objective.box_decompositions.dominated import

<linearrow /> DominatedPartitioning #1

dominated_part = DominatedPartitioning(ref_point, train_y) #2

volume = dominated_part.compute_hypervolume().item() #2

Using this method, we can compute the hypervolumes of the exhaustive and
random search, as shown in the left and middle panels of Figure 11.9. We see
that the exhaustive search does achieve a higher hypervolume (31.49) than
that of the random search (25.72).

In the right panel of Figure 11.9, I also show the corresponding result
achieved by the Bayesian optimization (BayesOpt) strategy we will learn
about in the next section with just 20 data points. With only one tenth of the
budget (20 versus 201), BayesOpt achieves almost the same hypervolume as
the exhaustive search. Compared to the random search with the same budget,
BayesOpt is able to map out the true Pareto frontier more fully and achieve a
much higher hypervolume.

Figure 11.9. The multi-objective optimization results of various search strategies and the
corresponding hypervolumes. Bayesian optimization achieves almost the same hypervolume as an
exhaustive search with significantly fewer queries.

11.3 Seeking to improve the optimal data boundary

How should a Bayesian optimization (BayesOpt) policy aim to maximize the
hypervolume of the dominated region within its collected data? A simple
strategy is to alternate between optimizing each of the objectives in an
iteratively manner: at this iteration of the BayesOpt loop, we seek to
maximize the first objective f1(x); at the next iteration, we aim to maximize
the second objective f2(x), and so on. During an iteration, we have a specific
objective we want to optimize, which we can by using the various BayesOpt
policies we learned in Chapters 4–6. For the remainder of this chapter, we
will use Expected Improvement (EI), which we learned in Section 4.3. EI is a
policy commonly used in practice thanks to its algorithmic simplicity and
consistent performance.

Assume that in our multi-objective optimization problem, we have observed
the data points indicated by the X’s in the top panels of Figure 11.10. By
training a GP on the data set belonging to each objective function, we obtain
the GP predictions for the first objective (top left panel) and for the second
(top right panel).

In the bottom panels of Figure 11.10, we show the acquisition scores of the
individual EI policies on the corresponding objective functions. The bottom-
left EI seeks to maximize the first objective f1(x), while the bottom-right EI
searches for the optimum of the second objective f2(x). We see that the
conflict between the two objectives is clear here when the first EI focuses on
the right region of the search space where f1(x) is maximized, while the
second EI looks at the left region where f2(x) is maximized.

 The acquisition score of a Bayesian optimization policy

The acquisition score of a data point, as computed by a Bayesian
optimization policy, quantifies how valuable the data point is to our search
for an objective function’s optimum. The higher the acquisition score, the
more valuable the data point, and the point giving the highest acquisition
score is the point the policy recommends to be queried.

Figure 11.10. The current Gaussian process belief about each of the two objective functions (top)
and the corresponding Expected Improvement acquisition scores (bottom). Each Expected
Improvement policy seeks to optimize its own objective function and focuses on separate regions.

In the alternating strategy we came up with above, we will either follow the
first EI policy and query the point around x = 4.5 or follow the second EI and
query the point around x = -4.5, depending on whether it’s f1(x)'s or f2(x)'s

turn to be optimized. We will use this alternating strategy as a baseline to
compare our final solution against.

What should this solution be to allow us to do better than the simple strategy
of alternating between different objective functions? We note that by having
a Gaussian process (GP) to model each of the objectives to be maximized, we
have a way to probabilistically reason about the value each potential new
query gives on each objective simultaneously. Specifically, we know the
value each potential new query gives on each objective follows a known
normal distribution—this normal distribution is our prediction about the
value of the query.

This prediction allows us to reason about whether each potential new query is
a non-dominated point and if so, how much hypervolume of the dominated
region it will increase. Each newly observed non-dominated point extends the
boundary of the dominated region (that is, the Pareto frontier) and therefore
increases the dominated hypervolume. We therefore can use the increase in
the hypervolume that each new query leads to, on average, as the acquisition
score to quantify how valuable the query is. The bigger the increase in
hypervolume we can expect from a query, the more it will help us make
optimization progress.

Of course, we can’t know for sure how much of an increase in hypervolume
we will obtain from a query until we actually make the query on the objective
functions. However, again, we can reason about this hypervolume increase in
a probabilistic manner. That is, we can compute the expected value of the
increase in hypervolume that will result from a potential query.

Similar to the algorithm that determines the hypervolume of a dominated
region, this computation of the expected increase in hypervolume involves
dividing the dominated region into hyper-rectangles and is quite complicated.
We once again won’t go into the mathematical details here, but you can refer
to the research paper that proposes the corresponding BayesOpt policy, which
is called Expected Hypervolume Improvement, or EHVI, for more details
(https://link.springer.com/content/pdf/10.1007/s10898-019-00798-7.pdf).

 The Expected Hypervolume Improvement policy

The Expected Hypervolume Improvement policy uses the expected value of
the increase in hypervolume of the dominated region that a new data point
will result in as the acquisition score of that data point. This policy is the
generalization of Expected Improvement to the multi-objective setting, where
we aim to maximize the dominated hypervolume.

Figure 11.11 shows the acquisition scores of EHVI in the bottom right panel
on the same data set as in Figure 11.10. We see that compared to the
individual EI policies, EHVI nicely balances between the two objectives by
assigning high acquisition scores to multiple regions that likely extend the
Pareto frontier: the leftmost region of the search space has the highest score,
but the rightmost region, along with other regions in between, also has non-
negligible acquisition scores.

Figure 11.11. The current Gaussian process belief about each of the two objective functions (top),
the corresponding Expected Improvement acquisition scores (bottom left), and the Expected
Hypervolume Improvement acquisition scores (bottom right). Expected Hypervolume
Improvement balances between the two objectives, assigning high acquisition scores to multiple
regions that likely extend the Pareto frontier.

To verify that this EHVI strategy does indeed give us an advantage in multi-
objective optimization, we will implement the policy and run it on our current
problem. The code we use is included in CH11/02 - Multi-objective
BayesOpt loop.ipynb.

First, we need the class implementation of the GP model named and a helper
function fit_gp_model() that facilitates the training of each GP on observed

data. As we have implemented these components in previous chapters, we
won’t show the code for them here again; you can refer to Section 4.1.1 for a
refresher on this code. At each step of the BayesOpt loop, we call the helper
function to initialize and train a GP on each objective function’s data. In our
case, we have two objective functions, so we call the helper function twice,
each time with either train_y[:, 0], which are the labels observed from the
first objective f1(x), or train_y[:, 1], the labels from the second objective
f2(x):

model1, likelihood1 = fit_gp_model(train_x, train_y[:, 0])

model2, likelihood2 = fit_gp_model(train_x, train_y[:, 1])

We then implement the EHVI policy using the
ExpectedHypervolumeImprovement class from the
botorch.acquisition.multi_objective.analytic module. To initialize the
policy object, we set the following arguments:

The argument model takes in a list of GPs, each of which models an
objective function. This list of GPs is implemented as an instance of the
ModelListGP class, taking in the individual GP objects (model1,
model2).
The argument ref_point takes in the reference point, which is
necessary for the computation of hypervolume and potential
hypervolume increases.
Finally, the argument partitioning takes in an instance of the
FastNondominatedPartitioning class, which facilitates the
computation of hypervolume increases. The initialization of this object,
similar to a DominatedPartitioning object we saw above, takes in a
reference point and the observed labels train_y.

from botorch.acquisition.multi_objective.analytic import #1

<linearrow /> ExpectedHypervolumeImprovement #1

from botorch.utils.multi_objective.box_decompositions.non_dominated import

<linearrow /> FastNondominatedPartitioning #1

from botorch.models.model_list_gp_regression import ModelListGP

policy = ExpectedHypervolumeImprovement(

 model=ModelListGP(model1, model2), #2

 ref_point=ref_point, #3

 partitioning=FastNondominatedPartitioning(ref_point, train_y)

)

Using the policy object for the EHVI policy, we can then compute the
acquisition score denoting the expected hypervolume increase resulting from
a potential new observation, and find the data point that gives the highest
score using the helper function optimize_acqf():

next_x, acq_val = optimize_acqf(

 policy,

 bounds=bounds,

 q=1,

 num_restarts=20,

 raw_samples=50

)

The variable next_x stores the location of the query that we will query our
objective functions next with next_y = joint_objective(next_x).

That’s all we need in order to run EHVI on our current optimization problem.
As a point of reference, we will also test the alternating optimization strategy
described above, in which we use regular EI to optimize a selected objective
function. As we have two objectives, we will simply switch back and forth
between the two (num_queries here is the total number of evaluations we can
make in a BayesOpt run):

for i in range(num_queries):

 if i % 2 == 0: #1

 model = model1 #1

 best_f = train_y[:, 0].max() #1

 else: #2

 model = model2 #2

 best_f = train_y[:, 1].max() #2

 policy = ExpectedImprovement(model=model, best_f=best_f) #3

Finally, to quantify our optimization progress, we will record the
hypervolume of the dominated region resulting from the current data set
collected throughout the search. This recording is done with a tensor named
hypervolumes, which stores the current dominated hypervolume at each step
during an experiment, across many experiments. Overall, our BayesOpt loop
is the following, where for each policy, we run the experiment multiple times,
each with an initial data set chosen uniformly at random.

hypervolumes = torch.zeros((num_repeats, num_queries)) #1

for trial in range(num_repeats):

 torch.manual_seed(trial) #2

 train_x = bounds[0] + (bounds[1] - bounds[0]) * torch.rand(1, 1) #2

 train_y = joint_objective(train_x) #2

 for i in range(num_queries):

 dominated_part = DominatedPartitioning(ref_point, train_y) #3

 hypervolumes[trial, i] = dominated_part.compute_hypervolume().item() #3

 ... #4

The notebook CH11/02 - Multi-objective BayesOpt loop.ipynb runs the
two BayesOpt policies we have for 10 experiments, each with a budget of 20
queries to the objective functions. Figure 11.12 shows the average
hypervolume and error bars, as a function of the number of queries made by
the two policies. We see that EHVI consistently outperforms the alternating
EI policy, which illustrates the benefits of the hypervolume-based approach.

Figure 11.12. Average hypervolume and error bars as a function of the number of queries made
by two Bayesian optimization policies. Expected Hypervolume Improvement consistently
outperforms the alternating Expected Improvement policy.

In this chapter, we have learned about the multi-objective optimization
problem and how to approach it using Bayesian optimization. We discussed
the concept of hypervolume as a measure of optimization performance,
quantifying how much progress we have made in optimizing the objective
functions. By using a variant of the Expected Improvement policy to
optimize the increase in hypervolume, we obtained the Expected
Hypervolume Improvement policy that achieves strong performance.

Unfortunately, there are other aspects of multi-objective Bayesian
optimization that can’t be covered in this chapter. Specifically, in addition to
Expected Hypervolume Improvement, we can consider other optimization
policies. One common technique is scalarization, which combines multiple
competing objectives into one by taking a weighted sum. This strategy is a

generalization of the alternating EI policy, which we can think of as assigning
a weight of 1 to one objective and weights of 0 to the other at each iteration.
The interested reader can refer to BoTorch documentation
(https://botorch.org/docs/multi_objective,
https://botorch.org/tutorials/multi_objective_bo), which provides a brief
summary of different multi-objective optimization policies BoTorch offers.

11.4 Summary

The multi-objective optimization problem arises when there are
multiple, potentially conflicting objectives that are to be optimized at the
same time. This problem is common in the real world, as we often
contend with multiple competing goals in many real-life tasks.
When using Bayesian optimization for multi-objective optimization, we
use multiple Gaussian processes to model our belief about the objective
functions (one model for each objective). We can use these Gaussian
processes to reason about the objective functions simultaneously in a
probabilistic manner.
A non-dominated point achieves objective values that cannot be
improved upon unless we sacrifice performance on at least one
objective. Discovering non-dominated data points is a goal in multi-
objective optimization, as they allow us to study the trade-off between
the objective functions.
Non-dominated data points make up the Pareto frontier, which sets the
boundary that represents optimality in multi-objective optimization. No
data point lies beyond the Pareto frontier of all non-dominated points.
The hypervolume of the dominated space, that is, the region covered by
the Pareto frontier, measures optimization performance of a data set
collected by an algorithm. The bigger the hypervolume, the higher the
algorithm’s performance. The hypervolume of a data set can be
computed by calling the compute_hypervolume() method on an instance
of BoTorch’s DominatedPartitioning class.
To compute the hypervolume of a data set, we need a reference point
that serves as the endpoint of the dominated space. We usually set the
reference point to be the lowest values of the objective functions to be
optimized.
As the Gaussian processes allow us to make predictions about the

objective functions, we can seek to improve upon the hypervolume of
our current data set. This strategy corresponds to the Expected
Hypervolume Improvement policy, which is a variant of Expected
Improvement in multi-objective optimization. This policy successfully
balances between the competing objectives.

11.5 Exercise: Multi-objective optimization of
airplane design

In this exercise, we will apply the multi-objective optimization techniques we
have learned to the problem of optimizing the aero-structural design of an
airplane. This problem was first introduced in Chapter 7’s Exercise 2 and
modified to be a cost-constrained problem in Chapter 8’s Exercise 2. We will
be re-using the code from Chapter 8 here. This exercise will allow us to
observe the performance of the Expected Hypervolume Improvement (EHVI)
policy in a multi-dimensional problem. The solution is included in CH11/03 -
Exercise 1.ipynb.

1. Copy the code for the objective functions flight_utility() and
flight_cost() from Chapter 8’s Exercise 2. Negate the sign of the
returned value of the second function flight_cost(). We will use these
two functions as objectives for our multi-objective optimization
problem.

2. Write a helper function that takes in an input X (which could contain
multiple data points) and returns the values of X evaluated on the two
objective functions. The returned value should be a tensor of size n-by-
2, where n is the number of data points in X.

3. Declare the bounds of the search space to be the four-dimensional unit
square. That is, the four lower bounds are 0, and the four upper bounds
are 1.

4. To compute the hypervolume of a data set collected by an optimization
algorithm, we need a reference point. Declare this reference point to be
[-1.5, -2], which are the corresponding lowest values of the two
objective functions.

5. Implement the class for the Gaussian process model, which should have
a constant mean and a four-dimensional Matérn 2.5 kernel with ARD

(automatic relevance determination, see Section 3.4.2), and a helper
function fit_gp_model() that initializes and trains a Gaussian process
on a training set. Refer to Section 4.1.1 for how to implement these
components.

6. Set the number of experiments to run to be 10, and the budget (the
number of queries to be made) in each experiment to be 50.

7. Run the EHVI policy to optimize the two objective functions we have,
as well as the alternating Expected Improvement strategy discussed in
Section 11.3. Plot the average hypervolume and error bars achieved by
these two policies (similar to Figure 11.12) and compare their
performance.

12 Scaling Gaussian processes to
large datasets
This chapter covers

Training a Gaussian process on a large dataset
Using mini-batch gradient descent when training a Gaussian process
Using an advanced gradient descent technique to train a Gaussian
process faster

So far, we have seen that Gaussian processes (GPs) offer great modeling
flexibility. In chapter 3, we learned that we can model high-level trends using
the GP’s mean function as well as variability using the covariance function.
A GP also provides calibrated uncertainty quantification. That is, the
predictions for datapoints near observations in the training dataset have lower
uncertainty than those for points far away. This flexibility sets the GP apart
from other machine learning models that produce only point estimates, such
as neural networks. However, it comes at a price: speed.

Training and making predictions with a GP (specifically, computing the
inverse of the covariance matrix) scales cubically with respect to the size of
the training data. That is, if our dataset doubles in size, a GP will take eight
times as long to train and predict. If the dataset increases 10 fold, it will take
a GP 1,000 times longer. This poses a challenge to scaling GPs to large
datasets, which are common in many applications:

If we aim to model housing prices across an entire country, such as the
United States, where each data point represents the price of a single
house at a given time, the size of our dataset would contain hundreds of
millions of points. As an illustration, figure 12.1 from Statista
(https://www.statista.com/) shows that the number of housing units in
the United States has been steadily rising to over one hundred million.
In the drug discovery applications we discussed in section 1.1.3, a
database of possible molecules that could potentially be synthesized into

drugs could have billions of entries.
In weather forecasting, low-cost monitoring devices make it easy to
collect weather data on a large scale. A dataset could contain by-minute
measurements across multiple years.

Figure 12.1. The growth of available housing units, and therefore housing data, which raises a
need to scale ML models to large amounts of data ("Number of U.S. Housing Units 1975–2021,"
http://mng.bz/D4Ba)

Given the cubic running time of the normal GP model, it’s not feasible to
train it on datasets of this scale. In this chapter, we learn how we can leverage
a class of GP models called variational Gaussian process (VGPs) to tackle
this problem of learning from big data.

 Definition

A variational Gaussian process picks out a small subset of the data that
represents the whole set well. It does this by seeking to minimize the
difference between itself and the regular Gaussian process that is trained on
the full data. The term variational refers to the subfield of mathematics that
studies the optimization of functionals.

This idea of choosing to train on only a small subset of these representative
points is quite natural and intuitive. Figure 12.2 shows a VGP in action,
where by learning from a few selective data points, the model produces
almost identical predictions as a regular GP.

Figure 12.2. Predictions made by a regular Gaussian process (GP) and those by a variational
Gaussian process (VGP). The VGP produces almost identical predictions as the GP, while taking
significantly less time to train.

We cover how to implement this model and observe its computational
benefits in this chapter. Further, when working with a VGP, we can leverage
a more advanced version of gradient descent, which, as we saw in section
3.3.2, is used to optimize the hyperparameters of a GP. We learn to use this
version of the algorithm to train faster and more effectively and, ultimately,
scale our GPs to large datasets. The code accompanying this chapter can be
found in the CH11/01 - Approximate Gaussian process inference.ipynb
notebook.

12.1 Training a Gaussian process on a large dataset

In this section, to see firsthand how training a GP on a large dataset poses a
difficult challenge, we attempt to apply the GP model that we used in
chapters 2 and 3 to a medium-sized dataset of 1,000 points. This task will
make clear that using a regular GP is infeasible and motivate what we learn in
the next section: variational GPs.

12.1.1 Setting up the learning task

We first create our dataset in this subsection. We reuse the one-dimensional
objective function we saw in chapters 2 and 3, the Forrester function. Again,
we implement it as follows:

def forrester_1d(x):

 y = -((x + 1) ** 2) * torch.sin(2 * x + 2) / 5 + 1

 return y.squeeze(-1)

Similar to what we did in section 3.3, we will also have a helper function that
takes in a GP model and visualizes its predictions across the domain. The
function has the following header and takes in three parameters—the GP
model, the corresponding likelihood function, and a Boolean flag denoting
whether the model is a VGP:

The logic of this helper function is sketched out in figure 12.3, which consists
of four main steps: computing the predictions, plotting the ground truth and
the training data, plotting the predictions, and, finally, plotting the inducing
points if the model is a VGP.

 Definition

The inducing points are the small subset chosen by the variational Gaussian
process model to represent the entire dataset to train on. As the name
suggests, these points aim to induce knowledge about all of the data.

Figure 12.3. Flowchart of the helper function that visualizes the predictions of a Gaussian
process. The function also shows the inducing points of a variational Gaussian process if that is
the model passed in.

We now go through the steps in greater detail. In the first step, we compute
the mean and CI predictions with the GP:

with torch.no_grad():

 predictive_distribution = likelihood(model(xs))

 predictive_mean = predictive_distribution.mean

 predictive_upper, predictive_lower =

 <linearrow /> predictive_distribution.confidence_region()

In the second step, we make the Matplotlib plot and show the true function
stored in xs and ys (which we generate shortly) and our training data train_x
and train_y:

plt.figure(figsize=(8, 6))

plt.plot(xs, ys, label="objective", c="r") #1

plt.scatter(#2

 train_x, #2

 train_y, #2

 marker="x", #2

 c="k", #2

 alpha=0.1 if variational else 1, #2

 label="observations", #2

) #2

Here, if the model is a VGP (if variational is set to True), then we plot the
training data with lower opacity (by setting alpha = 0.1), making them look
more transparent. This is so we can plot the representative points learned by
the VGP more clearly later.

The predictions made by the GP are then shown with the solid mean line and
the shaded 95% CI region in the third step:

plt.plot(xs, predictive_mean, label="mean")

plt.fill_between(

 xs.flatten(),

 predictive_upper,

 predictive_lower,

 alpha=0.3,

 label="95% CI"

)

Finally, we plot the representative points selected by the VGP by extracting
out model.variational_strategy.inducing_points:

if variational:

 inducing_points =

 <linearrow /> model.variational_strategy.inducing_points.detach().clone()

 with torch.no_grad():

 inducing_mean = model(inducing_points).mean

 plt.scatter(

 inducing_points.squeeze(-1),

 inducing_mean,

 marker="D",

 c="orange",

 s=100,

 label="inducing pts"

) #1

Now, to generate our training and dataset, we randomly select 1,000 points
between −5 and 5 and compute the function values at these points:

torch.manual_seed(0)

train_x = torch.rand(size=(1000, 1)) * 10 - 5

train_y = forrester_1d(train_x)

To make our test set, we compute a dense grid between −7.5 and 7.5 using
the torch.linspace() function. This test set includes −7.5, 7.4, −7.3, and so
on to 7.5:

xs = torch.linspace(-7.5, 7.5, 151).unsqueeze(1)

ys = forrester_1d(xs)

To visualize what our training set looks like, we can once again make a
scatter plot with the following:

plt.figure(figsize=(8, 6))

plt.scatter(

 train_x,

 train_y,

 c="k",

 marker="x",

 s=10,

 label="observations"

)

plt.legend();

This code produces figure 12.4, where the black dots denote the individual
data points in our training set.

Figure 12.4. The training dataset for our learning task, containing 1,000 data points. It takes
considerable time to train a regular Gaussian process on this set.

12.1.2 Training a regular Gaussian process

We are now ready to implement and train a GP model on this dataset. First,
we implement the GP model class, which has a constant function (an instance
of gpytorch.means.ConstantMean) as its mean function and the RBF kernel
with an output scale (implemented with
gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())) as its
covariance function:

class GPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ConstantMean() #1

 self.covar_module = gpytorch.kernels.ScaleKernel(#2

 gpytorch.kernels.RBFKernel() #2

) #2

 def forward(self, x): #3

 mean_x = self.mean_module(x) #3

 covar_x = self.covar_module(x) #3

 return gpytorch.distributions.MultivariateNormal(mean_x, covar_x) #3

Now, we initialize this GP model with our training data and a
GaussianLikelihood object:

likelihood = gpytorch.likelihoods.GaussianLikelihood()

model = GPModel(train_x, train_y, likelihood)

Finally, we train our GP by running gradient descent to minimize the loss
function defined by the likelihood of the data. At the end of training, we
obtain the hyperparameters of the model (e.g., the mean constant, length
scale, and output scale) that give a low loss value. Gradient descent is with
the optimizer Adam (torch.optim.Adam), which is one of the most
commonly used gradient descent algorithms:

optimizer = torch.optim.Adam(model.parameters(), lr=0.01) #1

mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model) #2

model.train() #3

likelihood.train() #3

for i in tqdm(range(150)): #4

 optimizer.zero_grad() #4

 output = model(train_x) #4

 loss = -mll(output, train_y) #4

 loss.backward() #4

 optimizer.step() #4

model.eval() #5

likelihood.eval() #5

 Note

As a reminder, when training a Gaussian process, we need to enable training
mode for both the model and the likelihood (using model.train() and
likelihood.train()). After training and before making predictions, we need
to enable prediction mode (with model.eval() and likelihood.eval()).

Using GPUs to train Gaussian processes

A method of scaling up Gaussian processes to large datasets that is not the
focus of this chapter is to leverage graphics processing units (GPUs). GPUs
are often used to parallelize matrix multiplications and speed up training

neural networks.

The same principle applies here, and GPyTorch keeps training Gaussian
processes on GPUs simple by following PyTorch’s syntax of transferring
objects to the GPU (by calling the cuda() method on the objects). In
particular, we call train_x = train_x.cuda() and train_y =
train_y.cuda() to put our data onto the GPU, and model = model.cuda()
and likelihood = likelihood.cuda() to put the Gaussian process model
and its likelihood onto the GPU.

You can find more details on this topic in GPyTorch’s documentation at
http://mng.bz/lW8B.

We also ran gradient descent for 500 iterations, but as our current dataset is
significantly larger, this loop might take a while to complete (so grab a coffee
while you wait!). Once training is done, we call the visualize_gp_belief()
helper function we wrote earlier to show the predictions made by our trained
GP, which produces figure 12.5:

visualize_gp_belief(model, likelihood)

Figure 12.5. Predictions made by a regular Gaussian process. The predictions match the training
data well, but training takes a long time.

We see that our GP’s predictions match the training data points well—an
encouraging sign that our model successfully learned from the data.
However, there are several problems with this procedure.

12.1.3 Problems with training a regular Gaussian process

In this subsection, we discuss some of the challenges of training a GP on a
large dataset. The first challenge, as we’ve mentioned, is that training takes
quite a long time. On my MacBook, the 500 iterations of gradient descent
could take up to 45 seconds, which is significantly longer than what we
observed in chapters 2 and 3. This is a direct result of the GP’s cubic running
time that we mentioned earlier, and this long training time only becomes
more prohibitive as our dataset gets larger and larger, as indicated by table
12.1.

Table 12.1. Estimated training time of a Gaussian process given the size of the training dataset.
Training quickly becomes prohibitive.

Size of the training set Training time

500 points 45 seconds

2,000 points 48 minutes

3,000 points 2.7 hours

5,000 points 12.5 hours

10,000 points 4 days

The second, and perhaps more concerning, problem stems from the fact that
computing the loss function (the marginal log likelihood of the training data)
used in gradient descent becomes more and more difficult as the size of the
training data increases. This is indicated by the warning messages GPyTorch
prints out during training:

NumericalWarning: CG terminated in 1000 iterations with average

 residual norm...

These messages tell us that we are encountering numerical instability in the
computation of the loss.

 Note

Computing the loss across many data points is a computationally unstable
operation.

Numerical instability prevents us from correctly calculating the loss and,
therefore effectively minimizing that loss. This is illustrated by how this loss
changes across the 500 iterations of gradient descent, shown in figure 12.6.

Figure 12.6. Progressive loss of a regular Gaussian process during gradient descent. Due to
numerical instability, the loss curve is jagged and not effectively minimized.

Unlike what we saw in chapters 2 and 3, our loss here jumps up and down
erratically, indicating that gradient descent is not doing a good job
minimizing that loss. In fact, as we go through more iterations, our loss
actually increases, which means we have arrived at a suboptimal model! This
phenomenon is understandable: if we are miscalculating the loss of our
model, then by using that miscalculated term to guide learning in gradient
descent, we likely obtain a suboptimal solution.

You might be familiar with the analogy gradient descent as climbing down a
mountain: Say you are at the top of a mountain and want to come down. At
every step along the way, you find a direction to walk along that will allow
you to get to a lower place (that is, descend). Eventually, after taking enough
steps, you arrive at the bottom of the mountain. Similarly, in gradient
descent, we start out with a relatively high loss, and by adjusting the
hyperparameters of our model at each iteration, we iteratively decrease the
loss. With enough iterations, we arrive at the optimal model.

 Note

An excellent discussion on gradient descent and how it is analogous to
descending a mountain is included in Luis Serrano’s Grokking Machine
Learning.

This process works well only if we can compute the loss accurately—that is,
if we can see exactly which direction will get us to a lower place on the
mountain. If, however, this computation is prone to errors, we, naturally,
won’t be able to effectively minimize the loss of our model. This is similar to
trying to descend the mountain with a blindfold on! As we see in figure 12.6,
we actually ended up at a higher place on the mountain (our loss is higher
than its value before gradient descent).

Figure 12.7. Running gradient descent with a numerically unstable loss computation is similar to
descending a mountain with a blindfold on.

Overall, training a regular GP on a large dataset is not a good approach. Not
only does training scale cubically with the size of the training data, but the
computation of the loss value to be optimized is also unstable. In the
remainder of this chapter, we learn about variational GPs, or VGPs, as the
solution to this problem.

12.2 Automatically choosing representative points
from a large dataset

The idea behind VGPs is to select a set of points that are representative of the
whole dataset and train a GP on this smaller subset. We have learned to train
a GP on a small dataset well. The hope is that this smaller subset captures the
general trend of the entire dataset, so minimal information is lost when a GP
is trained on the subset.

This approach is quite natural. It’s common for a large dataset to contain
redundant information, so if we can learn only from the most informative
data points, we can avoid having to process these redundancies. We have
noted in section 2.2 that a GP, as any ML model, works under the assumption
that similar data points produce similar labels. When a large dataset contains
many similar data points, a GP needs only to focus on one of them to learn
about their trend. For example, even though by-minute weather data is
available, a weather forecasting model can effectively learn from just hourly
measurements. In this section, we learn how to do this automatically by
making sure that learning from the small subset leads to minimal information
loss, compared with when we learn from the large set, and how to implement
this model with GPyTorch.

12.2.1 Minimizing the difference between two models

How can we best select this smaller subset so that the final GP model can
gain the most information from the original dataset? In this subsection, we
discuss the high-level idea of how this is done by a VGP. The process equates
to finding the subset of inducing points that, when a GP is trained on this
subset, will induce a posterior GP that is as close as possible to the posterior

GP trained on the entire dataset.

Diving into some mathematical details, when training a VGP, we aim to
minimize the difference between the posterior GP conditioned on the
inducing points and the posterior GP conditioned on the entire dataset. This
requires a way to measure the difference between two distributions (the two
GPs), and the measure chosen for this is the Kullback–Leibler divergence, or
the KL divergence.

 Definition

The Kullback–Leibler (KL) divergence is a statistical distance that measures
the distance between two distributions. In other words, the KL divergence
computes how different a probability distribution is from another distribution.

Supplementary material for the KL divergence

An intuitive explanation the KL divergence can be found in Will Kurt’s
excellent "Kullback-Leibler Divergence Explained" blog post
(http://mng.bz/x4x7). The mathematically inclined reader may refer to
chapter 2 of David MacKay’s Information Theory, Inference, and Learning
Algorithms.

Just as the Euclidean distance between point A and point B (that is, the length
of the segment connecting the two points) measures how far apart those two
points are in Euclidean space, the KL divergence measures how far apart two
given distributions are in the space of probability distributions—that is, how
different they are from each other. This is illustrated in figure 12.8.

Figure 12.8. Euclidean distance measures the distance between two points on a plane, while the
KL divergence measures the distance between two probability distributions.

 Note

As a mathematically valid distance measure, the KL divergence is
nonnegative. In other words, the distance between any two distributions is at
least zero, and when it is equal to zero, the two distributions exactly match
up.

So if we could easily compute the KL divergence between the posterior GP
trained on the inducing points and the posterior GP trained on the entire
dataset, we should choose the inducing points that make the KL divergence
zero. Unfortunately, in a similar manner to how computing the marginal log
likelihood is computationally unstable, computing the KL divergence is not
easy either. However, due to its mathematical properties, we can rewrite the
KL divergence as the difference between two quantities, as illustrated in
figure 12.9.

Figure 12.9. The KL divergence is decomposed into the difference between the marginal log
likelihood and the evidence lower bound (ELBO). The ELBO is easy to compute and, therefore,
chosen as the metric to be optimized.

The third term in this equation, the evidence lower bound, or ELBO for short,
is exactly the difference between the marginal log likelihood and the KL
divergence. Even though these two terms, the marginal log likelihood and the
KL divergence, are hard to compute, the ELBO has a simple form and can be
computed easily. For this reason, instead of minimizing the KL divergence so
that the posterior GP trained on the inducing points is as close as possible to
the posterior GP trained on the complete dataset, we can maximize the ELBO

as a way to indirectly maximize the marginal log likelihood.

To summarize, to find the set of inducing points that will give us a posterior
GP that is the most similar to the GP we would obtain if we were able to train
on the large dataset, we aim to minimize the KL divergence between the two

GPs. However, this KL divergence is difficult to compute, so we choose to
optimize a proxy of the KL divergence, the ELBO of the model, which is
easier to compute. As we see in the next subsection, GPyTorch provides a
convenient loss function that computes this ELBO term for us. Before we
cover implementation, there’s one more thing for us to discuss: how to
account for all data points in a large training set when maximizing the ELBO
term.

12.2.2 Training the model in small batches

As we aim to find the set of inducing points that best represents the entire
training dataset, we still need to include all points in the training set in the
computation of the ELBO. But we said earlier that computing the marginal
log likelihood across many data points is numerically unstable, so gradient
descent becomes ineffective. Do we face the same problem here? In this
subsection, we see that when training a VGP by optimizing the ELBO term,
we can avoid this numerical instability problem by using a modified version
of gradient descent that is more amenable to large datasets.

The task of computing the loss function of an ML model across many data
points is not unique to GPs. For example, neural networks usually train on
thousands and millions of data points, and computing the loss function of the
network for all data points is not feasible either. The solution to this problem,
for both neural networks and VGPs, is to approximate the true loss value
across all data points using the loss value across a random subset of points.
For example, the following code snippet is from the official PyTorch
documentation, showing how to train a neural network on an image dataset
(http://mng.bz/8rBB). Here, the inner loop iterates over small subsets of the
training data and runs gradient descent on the loss values computed on these
subsets:

for epoch in range(2): #1

 running_loss = 0.0

 for i, data in enumerate(trainloader, 0):

 inputs, labels = data #2

 optimizer.zero_grad() #3

 outputs = net(inputs) #4

 loss = criterion(outputs, labels) #4

 loss.backward() #4

 optimizer.step() #4

When we calculate the loss of our model on a small number of points, the
computation can be done in a stable and efficient manner. Further, by
repeating this approximation many times, we can approximate the true loss
well. Finally, we run gradient descent on this approximated loss, which
hopefully also minimizes the true loss across all data points.

 Definition

The technique of running gradient descent on the loss computed with a
random subset of the data is sometimes called mini-batch gradient descent. In
practice, instead of randomly choosing a subset in each iteration of gradient
descent, we often split the training set into small subsets and iteratively
compute the approximate loss using each of these small subsets.

For example, if our training set contains 1,000 points, we can split it into 10
small subsets of 100 points. Then, we compute the loss with each subset of
100 for gradient descent and iteratively repeat for all 10 subsets. (This is
exactly what we do in our code example later.) Again, while this approximate
loss, computed from a subset of the data, is not exactly equal to the true loss,
in gradient descent, we repeat this approximation many times, which, in
aggregation, points us in the correct descent direction.

The difference between gradient descent minimizing the true loss and mini-
batch gradient descent minimizing the approximate loss is illustrated by the
example in figure 12.10. Compared to gradient descent (which, again, isn’t
possible to run with large data), the mini-batch version might not point to the
most effective descent direction, but by repeating the approximation multiple
times, we are still able to reach the goal.

Figure 12.10. An illustration of gradient descent and mini-batch gradient descent within a loss
"valley," where the center of the valley gives the lowest loss. Gradient descent, if feasible to
compute, leads straight to the target. Mini-batch gradient descent goes in directions that are not
optimal but still reaches the target in the end.

If we were thinking in terms of the climbing-down-the-mountain-while-

blindfolded analogy, mini-batch gradient descent would be similar to being
blindfolded by a thin cloth that can be partially seen through. It’s not always
guaranteed that with every step we take, we arrive at a lower location, but
given enough time, we will be able to descend successfully.

 Note

Not all loss functions can be approximated by the loss on a subset of the data.
In other words, not all loss functions can be minimized using mini-batch
gradient descent. The negative marginal log likelihood of a GP is an example;
otherwise, we could have run mini-batch gradient descent on this function.
Fortunately, mini-batch gradient descent is applicable to the ELBO of a
variational GP.

To recap, training a VGP follows a roughly similar procedure as training a
regular GP, in which we use a version of gradient descent to minimize the
appropriate loss of the model. table 12.2 summarizes the key differences
between the two model classes: a regular GP should be trained on small
datasets by running gradient descent to minimize the exact negative marginal
log likelihood, while a VGP can be trained on large datasets by running mini-
batch gradient descent to optimize the ELBO, which is an approximation of
the true log likelihood.

Table 12.2. Training a Gaussian process vs. training a variational Gaussian process. The high-
level procedure is similar; only the specific components and settings are replaced.

Training procedure Gaussian process Variational Gaussian
process

Training data size Small Medium to large

Training type Exact training Approximate training

Negative marginal log

Loss function likelihood ELBO

Optimization Gradient descent Mini-batch gradient
descent

12.2.3 Implementing the approximate model

We are now ready to implement a VGP in GPyTorch. Our plan is to write a
VGP model class, which is similar to the GP model classes we have worked
with, and minimize its ELBO using mini-batch gradient descent. The
differences in our workflow described in table 12.2 are reflected in our code
in this subsection. Table 12.3 shows the components required when
implementing a GP vs. a VGP in GPyTorch. In addition to a mean and
covariance module, a VGP requires two other components:

A variational distribution—Defines the distribution over the inducing
points for the VGP. As we learned in the previous section, this
distribution is to be optimized so that the VGP resembles the GP trained
on the full dataset.
A variational strategy—Defines how predictions are produced from the
inducing points. In section 2, we saw that a multivariate normal
distribution may be updated in light of an observation. This variational
strategy facilitates the same update for the variational distribution.

Table 12.3. Necessary components when implementing a GP vs. a VGP in GPyTorch. A VGP
requires a mean and covariance module like a GP but additionally needs a variational
distribution and a variational strategy.

Components Gaussian process Variational Gaussian
process

Mean module Yes Yes

Covariance module Yes Yes

Variational distribution No Yes

Variational strategy No Yes

With these components in mind, we now implement the VGP model class,
which we name ApproximateGPModel. We don’t take in the training data and
a likelihood function in the __init__() method anymore. Instead, we take in
a set of inducing points that will be used to represent the whole dataset. The
rest of the __init__() method consists of declaring the learning pipeline that
will be used to learn about what the best set of inducing points is:

The variational_distribution variable is an instance of the
CholeskyVariationalDistribution class, which takes in the number of
inducing points during initialization. The variational distribution is the
core of a VGP.
The variational_strategy variable is an instance of the
VariationalStrategy class. It takes in the set of inducing points as
well as the variational distribution. We set learn_inducing_locations
= True so that we can learn the best locations for these inducing points
during training. If this variable is set to False, the points passed to
__init__() (stored in inducing) will be used as the inducing points:

class ApproximateGPModel(gpytorch.models.ApproximateGP): #1

 def __init__(self, inducing_points): #2

 variational_distribution = #3

 <linearrow /> gpytorch.variational.CholeskyVariationalDistribution(

 inducing_points.size(0) #3

) #3

 variational_strategy = gpytorch.variational.VariationalStrategy(

 self, #3

 inducing_points, #3

 variational_distribution, #3

 learn_inducing_locations=True, #3

) #3

 super().__init__(variational_strategy) #3

 ... #4

As the last step in the __init__() method, we declare the mean and
covariance functions for the VGP. They should be whatever we’d like to use
in a regular GP if it were to be trained on the data. In our case, we use the
constant mean and the RBF kernel with an output scale:

class ApproximateGPModel(gpytorch.models.ApproximateGP):

 def __init__(self, inducing_points):

 ...

 self.mean_module = gpytorch.means.ConstantMean()

 self.covar_module = gpytorch.kernels.ScaleKernel(

 gpytorch.kernels.RBFKernel()

)

We also declare the forward() method in the same way as in a regular GP,
which we do not show here. Let’s now initialize this model with the first 50
data points in the training set as the inducing points:

model = ApproximateGPModel(train_x[:50, :]) #1

likelihood = gpytorch.likelihoods.GaussianLikelihood()

There is nothing special about these first 50 data points, and their values,
stored internally in the VGP model, will be modified during training. The
most important part about this initialization is that we are specifying that the
model should use 50 inducing points. If we’d like to use 100, we could pass
train_x[:100, :] to the initialization.

It’s hard to say exactly what number of inducing points is sufficient for a
VGP. The fewer points we use, the faster the model will train but the less
effective those inducing points will be at representing the whole set. As the
number of points increases, a VGP has more freedom in spreading out the
inducing points to cover the whole set, but training will become slower.

 Note

A general rule is not to go over 1,000 inducing points. As we discuss shortly,
50 points is enough for us to approximate the trained GP in the previous

subsection with high fidelity.

To set up mini-batch gradient descent, we first need an optimizer. We, once
again, use the Adam optimizer:

optimizer = torch.optim.Adam(

 [

 {"params": model.parameters()},

 {"params": likelihood.parameters()} #1

],

 lr=0.01

)

Parameters to optimize

Previously, we only needed to pass model.parameters() to Adam. Here, the
likelihood is not coupled with the VGP model—a regular GP is initialized
with a likelihood, while a VGP isn’t. So it’s necessary to pass
likelihood.parameters() to Adam in this case.

For the loss function, we use the gpytorch.mlls.VariationalELBO class,
which implements the ELBO quantity we aim to optimize with a VGP.
During initialization, an instance of this class takes in the likelihood function,
the VGP model, and the size of the full training set (which we can access
with train_y.size(0)). With that, we declare this object as follows:

mll = gpytorch.mlls.VariationalELBO(

 likelihood,

 model,

 num_data=train_y.size(0) #1

)

With the model, the optimizer, and the loss function set up, we now need to
run mini-batch gradient descent. To do this, we split our training dataset into
batches, each containing 100 points, using PyTorch’s TensorDataset and
DataLoader classes:

train_dataset = torch.utils.data.TensorDataset(train_x, train_y)

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=100)

This train_loader object allows us to iterate through mini batches of size

100 of our dataset in a clean way when running gradient descent. The loss—
that is, the ELBO, is computed with the following syntax:

output = model(x_batch)

loss = -mll(output, y_batch)

Here, x_batch and y_batch are a given batch (small subset) of the full
training set. Overall, gradient descent is implemented as follows:

model.train() #1

likelihood.train() #1

for i in tqdm(range(50)): #2

 for x_batch, y_batch in train_loader: #3

 optimizer.zero_grad() #4

 output = model(x_batch) #4

 loss = -mll(output, y_batch) #4

 loss.backward() #4

 optimizer.step() #4

model.eval() #5

likelihood.eval() #5

While running this mini-batch gradient descent loop, you will notice it is
significantly faster than the loop with the regular GP. (On the same Macbook,
this process took less than one second, a major improvement in speed!)

The speed of a variational Gaussian process

You might think that our comparison between the 150 iterations of gradient
descent with the regular GP and the 15 iterations of mini-batch gradient
descent with the VGP is not a fair one. But remember that in each iteration of
the outer for loop of mini-batch gradient descent, we also iterate over 10
mini batches in train_loader, so in the end, we did take 150 gradient steps
in total. Further, even if we did run 150 iterations of mini-batch gradient
descent, it would take less than 1 second times 10, still a 4x speedup from 45
seconds.

So with mini-batch gradient descent, our VGP model can be trained much

more efficiently. But what about the quality of the training? The left panel of
figure 12.11 visualizes the progressive ELBO loss during our mini-batch
gradient descent run. Compared with figure 12.6, although the loss didn’t
consistently decrease at every step (there is a zig-zag trend), the loss was
effectively minimized throughout the entire procedure.

Figure 12.11. Progressive loss and the corresponding length scale and output scale of a
variational Gaussian process during mini-batch gradient descent.

This shows that every step during the optimization might not be the best
direction to take to minimize the loss, but the mini-batch gradient descent is,
indeed, effective at minimizing the loss. This is shown more clearly in figure
12.12.

Figure 12.12. Progressive loss of a variational Gaussian process during mini-batch gradient
descent. Despite some variability, the loss is effectively minimized.

Now, let’s visualize the predictions made by this VGP model to see if it
produces reasonable results. Using the visualize_gp_belief() helper
function, we obtain figure 12.13, which shows that we have obtained a high-
quality approximation of the GP trained on the true loss at a small fraction of
the time cost.

Figure 12.13. Predictions made by a GP and a VGP. The predictions made by the VGP roughly
match those by the GP.

To end our discussion on VPGs, let’s visualize the locations of the inducing
points our VGP model has learned. We have said that these inducing points
should be representative of the whole dataset and capture its trend well. To
plot the inducing points, we can access their locations with
model.variational_strategy.inducing_points.detach() and plot them
as scattered points along the mean prediction. Our visualize_gp_belief()
helper function already has this implemented, and the only thing we need to
do is to set variational = True when calling this function:

visualize_gp_belief(model, likelihood, variational=True)

This produces figure 12.14, in which we see a very interesting behavior in
these inducing points. They are not equally spread out across our training
data; instead, they cluster around different parts of the data. These parts are
where the objective function curves up or down or exhibits some nontrivial
behavior. By allocating the inducing points to these locations, the VGP is
able to capture the most important trends embedded in the large training
dataset.

Figure 12.14. The inducing points of a variational Gaussian process. These points are positioned
so that they represent the entire data and capture the most important trends.

We have learned about how to train a VGP using mini-batch gradient descent
and have seen that this helps us approximate a regular GP, which is infeasible

to train, with high fidelity at a much lower cost. In the next section, we learn
about another gradient descent algorithm that can train a VGP even more
effectively.

12.3 Optimizing better by accounting for the
geometry of the loss surface

In this section, we learn about the algorithm called natural gradient descent,
which is another version of gradient descent that reasons more carefully
about the geometry of the loss function when computing the descent step. As
we see shortly, this careful reasoning allows us to quickly descend the loss
function, ultimately leading to more effective optimization with fewer
iterations (that is, faster convergence).

To understand the motivation for natural gradient descent and why it works
better than what we already have, we first distinguish between the two types
of parameters of a VGP:

The first type is the regular parameters of a GP, such as the mean
constant and the length and output scales of the covariance function.
These parameters take on regular numerical values that exist in the
Euclidean space.
The second type consists of the variational parameters that only a VGP
has. These have to do with the inducing points and the various
components necessary to facilitate the approximation with the
variational distribution. In other words, these parameters are associated
with probability distributions and have values that cannot be represented
well within the Euclidean space.

 Note

The difference between these two types of parameters is somewhat similar,
although not exactly analogous, to how the Euclidean distance can measure
the distance between two points in that space, but it can’t measure the
difference between two probability distributions

Although mini-batch gradient descent as we used it in the previous section
worked sufficiently well, the algorithm assumes that all parameters exist in
Euclidean space. For example, from the perspective of the algorithm, the
difference between a length scale of 1 and a length scale of 2 is the same as
the difference between an inducing point’s mean value of 1 and a mean value
of 2. However, this is not true: going from a length scale of 1 to a length scale
of 2 would affect the VGP model very differently from going from an
inducing point’s mean value of 1 to a mean value of 2. This is illustrated in
the example of figure 12.15, where the behavior of the loss with respect to
the length scale is quite different than that with respect to the inducing mean.

Figure 12.15. An example of how the loss to be minimized might behave very differently with
respect to a regular parameter and a variational parameter. This gives rise to the need to take
into account the geometry of the loss.

This difference in behavior exists because the geometry of the loss function
with respect to the regular parameters of a VGP is fundamentally different
from that with respect to the variational parameters. If mini-batch gradient
descent could account for this geometric difference when computing a
descent direction of the loss, the algorithm would be more effective at
minimizing that loss. This is where natural gradient descent comes in.

 Definition

Natural gradient descent uses information about the geometry of the loss
function with respect to the variational parameters to compute better descent
directions for these parameters.

By taking better descent directions, natural gradient descent can help us
optimize our VGP model more effectively and quickly. The end result is that
we converge to our final model in fewer steps. Continuing with our two-
dimensional illustration of the different gradient descent algorithms, Figure
12.16 shows how this geometric reasoning helps natural gradient descent
reach the goal faster than mini-batch gradient descent. That is, natural
gradient descent tends to require fewer steps during training to achieve the
same loss as mini-batch gradient descent. In our climbing-down-the-
mountain analogy, with natural gradient descent, we are still blindfolded by a
thin cloth when trying to climb down the mountain, but we are now wearing
special hiking shoes that help us traverse the terrain more effectively.

Figure 12.16. An illustration of gradient descent, mini-batch gradient descent, and natural
gradient descent within a loss "valley," where the center of the valley gives the lowest loss. By
accounting for the geometry of the loss function, natural gradient descent reaches the loss
minimum more quickly than mini-batch.

Supplementary material for natural gradient descent

For a more math-heavy explanation of natural gradient descent, I recommend
the excellent "Natural Gradient Descent" blog post by Agustinus Kristiadi:
http://mng.bz/EQAj.

 Note

It is important to note that the natural gradient descent algorithm only
optimizes the variational parameters of a VGP. The regular parameters, such
as the length and output scales, could still be optimized by a regular mini-
batch gradient descent algorithm. We see this when we implement our new
training procedure next.

And with that, let’s use natural gradient descent to train our VGP model.
With the same one-dimensional objective function in previous sections, we
implement a VGP model that works with natural gradient descent. The model
class in this case is similar to ApproximateGPModel, which we implemented
for mini-batch gradient descent in the previous section, in that it

still extends gpytorch.models.ApproximateGP;
needs a variational strategy to manage the learning process; and
has a mean function, covariance function, and forward() method, like a
regular GP model.

The only difference here is that the variational distribution needs to be an
instance of gpytorch.variational.NaturalVariationalDistribution for
us to use natural gradient descent when training the model. The whole model
class is implemented as follows:

class NaturalGradientGPModel(gpytorch.models.ApproximateGP):

 def __init__(self, inducing_points):

 variational_distribution = #1

 gpytorch.variational.NaturalVariationalDistribution(#1

 inducing_points.size(0) #1

) #1

 variational_strategy = gpytorch.variational.VariationalStrategy(#2

 self, #2

 inducing_points, #2

 variational_distribution, #2

 learn_inducing_locations=True, #2

) #2

 super().__init__(variational_strategy) #2

 self.mean_module = gpytorch.means.ConstantMean() #2

 self.covar_module = gpytorch.kernels.ScaleKernel(#2

 gpytorch.kernels.RBFKernel() #2

) #2

 def forward(self, x):

 ... #3

We, once again, initialize this VGP model with 50 inducing points:

model = NaturalGradientGPModel(train_x[:50, :]) #1

likelihood = gpytorch.likelihoods.GaussianLikelihood()

Now comes the important part, in which we declare the optimizers for our
training. Remember that we use the natural gradient descent algorithm to
optimize the variational parameters of our model. However, the other
parameters, such as the length and output scales, still must be optimized by
the Adam optimizer. We, thus, use the following code:

ngd_optimizer = gpytorch.optim.NGD(#1

 model.variational_parameters(), num_data=train_y.size(0), lr=0.1 #1

) #1

hyperparam_optimizer = torch.optim.Adam(#2

 [{"params": model.parameters()}, {"params":likelihood.parameters()}], #2

 lr=0.01 #2

) #2

mll = gpytorch.mlls.VariationalELBO(

 likelihood, model, num_data=train_y.size(0)

)

Now, during training, we still compute the loss using

output = model(x_batch)

loss = -mll(output, y_batch)

While computing the loss, we loop through mini-batches (x_batch and
y_batch) of our training data. However, now that we have two optimizers
running at the same time, we need to manage them by calling zero_grad()
(to clear out the gradients from the previous step) and step() (to take a

descent step) on each of them at each iteration of training:

model.train() #1

likelihood.train() #1

for i in tqdm(range(50)):

 for x_batch, y_batch in train_loader:

 ngd_optimizer.zero_grad() #2

 hyperparam_optimizer.zero_grad() #2

 output = model(x_batch)

 loss = -mll(output, y_batch)

 loss.backward()

 ngd_optimizer.step() #3

 hyperparam_optimizer.step() #3

model.eval() #4

likelihood.eval() #4

 Note

As always, we need to call model.train() and likelihood.train(), prior to
gradient descent, and model.eval() and likelihood.eval(), after training
has finished.

Notice that we call zero_grad() and step() on both the natural gradient
descent optimizer and Adam to optimize the respective parameters of a VGP
model. The training loop, once again, takes a very short time to finish, and
the trained VGP produces the predictions shown in figure 12.17. We see very
similar predictions as those of a regular GP in figure 12.5 and those of a VGP
trained with mini-batch gradient descent in figure 12.14.

Figure 12.17. Predictions made by a variational Gaussian process and the inducing points trained
via natural gradient descent. The quality of these predictions is excellent.

We can further inspect the progressive ELBO loss during training. Its
progress is visualized in the left panel of figure 12.18.

Figure 12.18. Progressive loss of a variational Gaussian process during natural gradient descent.
The loss was effectively minimized after a few number of iterations.

Remarkably, our ELBO loss dropped to a low value almost immediately
during training, indicating natural gradient descent was able to help us
converge to a good model quickly. This illustrates the benefits of this variant
of the gradient descent algorithm when training VGPs.

We have now reached the end of chapter 12. In this chapter, we learned to
scale GP models to large datasets by using inducing points, which is a set of
representative points that aim to capture the trends exhibited by a large
training set. The resulting model is called a variational GP, which is
amenable to mini-batch gradient descent and, therefore, can be trained
without the computation of the model loss across all data points. We also
examined natural gradient descent as a more effective version of the mini-
batch algorithm, allowing us to optimize more effectively. In chapter 13, we
cover another advanced usage of GPs, combining them with neural networks
to model complex, structured data.

12.4 Exercise

This exercise demonstrates the improvement in efficiency when going from a
regular GP model to a VGP one on a real-life dataset of housing prices in
California. Our goal is to observe the computational benefits of a VGP—this
time, in a real-world setting.

Complete the following steps:

1. Use the read_csv() function from the Pandas library to read in the
dataset stored in the spreadsheet named data/housing.csv, obtained
from Kaggle’s California Housing Prices dataset (http://mng.bz/N2Q7)
under a Creative Common Public Domain license. Once read in, the
Pandas dataframe should look similar to the output in figure 12.19.

Figure 12.19. The housing price dataset shown as a Pandas dataframe. This is the training
set for this exercise.

2. Visualize the median_house_value column, which is our prediction
target, in a scatter plot whose x- and y-axes correspond to the longitude
and latitude columns. The location of a dot corresponds to the location
of a house, and the color of the dot corresponds to the price. The
visualization should look similar to figure 12.20.

Figure 12.20. The housing price dataset shown as a scatter.

3. Extract all the columns, except the last (median_house_value), and store
them as a PyTorch tensor. This will be used as our training features,
train_x.

4. Extract the median_house_value column, and store its log
transformation as another PyTorch tensor. This is our training target,
train_y.

5. Normalize the training labels train_y by subtracting the mean and
dividing by the standard deviation. This will make training more stable.

6. Implement a regular Gaussian process model with a constant mean
function and a Matern 5/2 kernel with automatic relevance
determination (ARD) with an output scale. For a refresher on Matern
kernels and ARD, refer to sections 3.4.2 and 3.4.3, respectively.

7. Make a likelihood whose noise is constrained to be at least 0.1, using the

following code:

likelihood = gpytorch.likelihoods.GaussianLikelihood(

 noise_constraint=gpytorch.constraints.GreaterThan(1e-1) #1

)

This constraint helps us smooth out the training labels by raising the
noise tolerance.

8. Initialize the previously implemented GP model and train it with the
likelihood using gradient descent for 10 iterations. Observe the total
training time.

9. Implement a variational GP model with the same mean and covariance
functions as the GP. This model looks similar to the
ApproximateGPModel class we implemented in the chapter, except we
now need the Matern 5/2 kernel with ARD.

10. Train this VGP with the similarly initialized likelihood and 100 inducing
points, using natural gradient descent for 10 iterations. For mini-batch
gradient descent, you could split the training set into batches of size 100.

11. Verify that training the VGP takes less time than training the GP. For
timing functionalities, you can use time.time() to record the start and
end time of training each model, or you can use the tqdm library to keep
track of the duration of training, like in the code we’ve been using.

The solution is included in the CH11/02 - Exercise.ipynb notebook.

12.5 Summary

The computation cost of a Gaussian process scales cubically with the
size of the training dataset. Therefore, training the model becomes
prohibitive as the size of the dataset grows.
Computing the loss of an ML model across a large number of data
points is numerically unstable. A loss computed in an unstable way may
mislead optimization during gradient descent, leading to poor predictive
performance.
A variational Gaussian process scales to a large dataset by only training
on a small set of inducing points. These inducing points need to be
representative of the dataset, so the trained model can be as similar as

possible to the Gaussian process trained on the whole dataset.
To produce an approximate model that is as close as possible to the
model trained on all of the training data, the Kullback–Leibler
divergence, which measures the difference between two probability
distributions, is used in the formulation of a variational Gaussian
process.
The evidence lower bound (ELBO) acts as a proxy for the true loss
when training a variational Gaussian process. More specifically, the
ELBO lower bounds the marginal log likelihood of the model, which is
what we aim to optimize. By optimizing the ELBO, we indirectly
optimize the marginal log likelihood.
Training a variational Gaussian process may be done in small batches,
allowing for a more stable computation of the loss. The gradient descent
algorithm used in this procedure is mini-batch gradient descent.
Although each step of mini-batch gradient descent is not guaranteed to
completely minimize loss, the algorithm, when a large number of
iterations are run, can effectively reduce the loss. This is because many
steps of mini-batch gradient descent, in aggregation, can point toward
the right direction to minimize the loss.
Natural gradient descent accounts for the geometry of the loss function,
with respect to the variational parameters of a variational Gaussian
process. This geometric reasoning allows the algorithm to update the
variational parameters of the trained model and minimize the loss more
effectively, leading to faster convergence.
Natural gradient descent optimizes the variational parameters of a
variational Gaussian process. Regular parameters such as the length and
output scales, are optimized by mini-batch gradient descent.

13 Combining Gaussian processes
with neural networks
This chapter covers

The difficulty of processing complex, structured data with common
covariance functions
Using neural networks to handle complex, structured data
Combining neural networks with Gaussian processes

In chapter 2, we learned that the mean and covariance functions of a Gaussian
process (GP) act as prior information that we’d like to incorporate into the
model when making predictions. For this reason, the choice for these
functions greatly affects how the trained GP behaves. Consequently, if the
mean and covariance functions are misspecified or inappropriate for the task
at hand, the resulting predictions won’t be useful.

As an example, remember that a covariance function, or kernel, expresses the
correlation—that is, similarity—between two points. The more similar the
two points are, the more likely they are to have similar values for the labels
we’re trying to predict. In our housing price prediction example, similar
houses are likely to go for similar prices.

How does a kernel exactly compute the similarity between any two given
houses? Let’s consider two cases. In the first, a kernel only considers the
color of the front door and outputs 1 for any two houses of the same door
color and 0 otherwise. In other words, this kernel thinks two houses are
similar if and only if they have the same color for their front doors.

This kernel, as illustrated by figure 13.1, is a bad choice for a housing price
prediction model. The kernel thinks that the house on the left and the one in
the middle should have similar prices, while the house on the right and the
one in the middle should have different prices. This is not appropriate, as the
left house is much bigger than the other two, which are of similar size. The

misprediction happens because the kernel is wrong about which characteristic
of a house is a good predictive feature for how much the house costs.

Figure 13.1. The covariance between houses computed by an inappropriate kernel. Only looking
at the color of the front door, this kernel doesn’t produce appropriate covariances.

The other kernel is more sophisticated and accounts for relevant factors, such
as location and living area. This kernel is more appropriate, as it can describe
the similarity between the prices of two houses more reasonably. Having the
appropriate kernel—that is, the correct measure of similarity—is paramount
for GPs. If the kernel can correctly describe how similar or different a given
pair of data points are, the GP using the covariance will be able to produce
well-calibrated predictions. Otherwise, the predictions will be of low quality.

You might think a kernel for houses that only considers door color is
inappropriate, and no reasonable kernels in ML would behave this way.
However, as we show in this chapter, some common kernels we have been
using thus far (e.g., RBF and Matérn) fall apart in the same way when
processing structured input data, such as images. Specifically, they fail to
adequately describe the similarity between two images, which poses a
challenge for training GPs on these structured data types. The approach we
take is to leverage neural networks. Neural networks are flexible models that
can approximate any function well, given enough data. We learn to use a
neural network to transform input data that a GP’s kernel isn’t able to process
well. In doing this, we get the best of both worlds: flexible modeling with a

neural network and uncertainty-calibrated predictions from a GP.

In this chapter, we show that our usual RBF kernel doesn’t capture the
structure of a common dataset well, resulting in bad predictions from the GP.
We then combine a neural network model with this GP and see that the new
kernel can successfully reason about similarity. By the end of the chapter, we
obtain a framework to help a GP handle structured data types and improve
predictive performance.

13.1 Data that contains structures

In this section, we explain what exactly we mean by structured data. Unlike
the type of data we have been using to train our Gaussian processes (GPs) in
previous chapters, where each feature (column) in the dataset could take on
values within a continuous range, in many applications, data has more
complexity. Take the following, for instance:

The number of stories in a house can only be a positive integer.
In computer vision tasks, the pixel value in an image is an integer
between 0 and 255.
In molecular ML, a molecule is often represented as a graph.

That is, there are structures embedded in the data points in these applications,
or requirements that the data points need to follow: no house can have a
negative number of stories; a pixel cannot take a fraction as its value; a graph
denoting a molecule will have nodes and edges representing chemicals and
bindings. We call these kinds of data structured data. Throughout this
chapter, we use the popular MNIST handwritten digit dataset (see
https://huggingface.co/datasets/mnist) as a case study for our discussions.

 Definition

The Modified National Institute of Standards and Technology (MNIST))
dataset contains images of handwritten digits. Each image is a 28-by-28
matrix of integers between 0 and 255.

An example data point from this set is shown in figure 13.2, where a pixel is
shown with a shade corresponding to its value; 0 corresponds to a white
pixel, and 255 corresponds to a dark pixel. We see that this data point is an
image of the number five.

Figure 13.2. A data point from the MNIST dataset, which is an image with 28 rows and 28
columns of pixels, represented as a PyTorch tensor.

 Note

While this handwritten digit recognition task is technically a classification
problem, we use it to simulate a regression problem (which is the type of
problem we aim to solve in Bayesian optimization). Since each label is a
number (a digit), we pretend these labels exist in a continuous range and
directly use them as our prediction target.

Our task is to train a GP on a dataset of images labels (each label here is the
value of the digit written in the corresponding image) and then use it to
predict on a test set. This distinction is illustrated in figure 13.3, which shows
that unlike classification, where we choose one of the classes as a prediction
for each data point, each prediction here is a number inside a continuous
range in a regression task.

Figure 13.3. Classification vs. regression in the context of the MNIST data. Each prediction is a
classification task that corresponds to one of the classes; each prediction in regression is a
number inside a continuous range.

There are many real-world applications that follow this form of regression

problem on structured data.

In product recommendation, one wants to predict the probability
someone will click on a customized ad. The ads, which are images one
can customize, are the structured data, and the click probability is the
prediction target. This probability can be any number between 0 and 1.
In materials science, a scientist may want to predict the energy level of a
molecular composition when that composition is synthesized in a
laboratory. Each molecular composition can be represented as a graph of
a specific structure with nodes and edges, and the energy level can be
any number between the theoretical minimum and maximum energy
levels a composition can exhibit.
In drug discovery, we want to predict the effectiveness of a drug that
could be produced. As illustrated in Figure 13.4, each drug corresponds
to a chemical compound, which can also be represented as a graph. Its
effectiveness can be a real number on a scale (say from 0 to 10).

Figure 13.4. Drug discovery as an example of a structured regression problem. Each compound is
represented as a structured graph, and we aim to predict the effectiveness of the compound in
treating some disease on a scale from 0 to 10.

In all of these applications, the input data we’d like to perform prediction on
is structured, and our prediction target is a real-valued number. In short, they
are regression problems on structured data. Using the MNIST dataset, we
simulate one such problem.

13.2 Capturing similarity within structured data

In this section, we explore how common kernels, such as the radial basis
function (RBF) kernel (see section 2.4), fail to describe similarity within
structured data. The output of the kernel for any two inputs x1 and x2, which
quantifies the covariance of the two inputs, is defined as follows:

This output, which is the covariance between the two variables, is the
exponential of the negated difference in values between the two inputs
divided by a scale. The output is always between 0 and 1, and the bigger the
difference in values is, the smaller the output is.

This makes sense in many cases, as if the two inputs have similar values, and
hence a small difference, their covariance will be high, and if they have
different values, the covariance will be low. Two houses with roughly equal
living area are likely to have similar prices—that is, their prices have a high
covariance; the prices of a very large house and very small one, on the other
hand, are likely to have a low covariance.

13.2.1 Using a kernel with GPyTorch

Let’s verify this with code. We usually initialize an RBFKernel object when
creating a GP model. Here, we directly work with this kernel object. To do
this, we first create an RBF kernel object with GPyTorch:

import gpytorch

rbf_kernel = gpytorch.kernels.RBFKernel()

 Note

As always, GPyTorch is our library of choice for implementing Gaussian
process-related objects in Python. Refer to section 2.4 for a refresher on how
a kernel object is used by a Gaussian process in GPyTorch.

To compute the covariance between two inputs, we simply pass them to this
kernel object. For example, let’s compute the covariance between 0 and 0.1:

>>> rbf_kernel(torch.tensor([0.]), torch.tensor([0.1])).evaluate().item()

0.9896470904350281

These two numbers are close to each other on the real number line (that is,
they are similar), so their covariance is very high—almost 1. Let’s now
compute the covariance between 0 and 10, two numbers that are different:

>>> rbf_kernel(torch.tensor([0.]), torch.tensor([10.])).evaluate().item()

0.0

This time, as the difference between the two numbers is much larger, their
covariance drops to 0. This contrast, which is a reasonable behavior to have,
is illustrated by figure 13.5.

Figure 13.5. The covariance between various numbers. When the difference between two
numbers is small, the covariance increases. When the difference is large, the covariance
decreases.

The problem arises when the difference in value between two inputs doesn’t
capture the structural difference in the meaning of the data. This is often the
case for structured data, such as, as we will see now, images.

13.2.2 Working with images in PyTorch

In this subsection, we see how images are imported and stored as PyTorch
tensors as well as how value-based similarity metrics, such as the RBF
kernel, break down when processing this kind of data. First, we redefine our
RBF kernel with a large-length scale so that higher covariances are more
likely:

rbf_kernel = gpytorch.kernels.RBFKernel()

rbf_kernel.lengthscale = 100 #1

Now, we need to import images from the MNIST dataset into our Python
code. We can do this using PyTorch and its popular add-on library,
Torchvision:

import torch

from torchvision import datasets, transforms

transform = transforms.Compose([#1

 transforms.ToTensor(), #1

 transforms.Normalize((0.1307,), (0.3081,)) #1

]) #1

dataset = datasets.MNIST(#2

 "../data", train=True, download=True, transform=transform #2

) #2

train_x = dataset.data.view(-1, 28 * 28) #3

We won’t go deeply into this code, as it’s not the focus of our discussion. All
we need to know is that train_x contains the images in the MNIST dataset,
each of which is stored as a PyTorch tensor containing the pixel values that
represent an image of a handwritten digit.

As the data points are images, we can visualize them as heat maps, using the
familiar imshow() function from Matplotlib. For example, the following code
visualizes the first data point in train_x:

plt.figure(figsize=(8, 8))

plt.imshow(train_x[0, :].view(28, 28)); #1

This code produces figure 13.2, which we see is an image of the digit 5.
When we print out the actual values of this first data point, we see that it’s a
28 × 28 = 784-element PyTorch tensor:

>>> train_x[0, :]

tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 18,

 18, 18, 126, 136, 175, 26, 166, 255, 247, 127, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 30, 36, 94, 154, 170, 253,

 253, 253, 253, 253, 225, 172, 253, 242, 195, 64, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 49, 238, 253, 253, 253, 253, 253,

 253, 253, 253, 251, 93, 82, 82, 56, 39, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 18, 219, 253, 253, 253, 253, 253,

 198, 182, 247, 241, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 80, 156, 107, 253, 253, 205,

 11, 0, 43, 154, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 1, 154, 253, 90,

[output truncated]

Each element in this tensor, ranging between 0 and 255, represents a pixel we
see in figure 13.2. A value of 0 corresponds to the lowest signal, the
background in the figure, while higher values correspond to the bright spots.

13.2.3 Computing the covariance of two images

That’s all the background information we need to explore the problem that
common GP kernels face when processing structured data. To highlight the
problem, we single out three specific data points, which we call point A,
point B, and point C, respectively, indexed by the following numbers:

ind1 = 304 #1

ind2 = 786 #2

ind3 = 4 #3

Before checking the actual digits these images show, let’s compute their
covariance matrix using our RBF kernel:

>>> rbf_kernel(train_x[[ind1, ind2, ind3], :]).evaluate()

tensor([[1.0000e+00, 4.9937e-25, 0.0000e+00],

 [4.9937e-25, 1.0000e+00, 0.0000e+00],

 [0.0000e+00, 0.0000e+00, 1.0000e+00]], ...)

This is a 3-by-3 covariance matrix with a familiar structure: the diagonal
elements take on the value of 1, representing the variances of the individual
variables, while the off-diagonal elements represent the different covariances.

We see that the points A and C are completely uncorrelated, having a
covariance of zero, while points A and B are slightly correlated. According to
the RBF kernel, points A and B are similar to each other and are completely
different from point C.

We should, then, expect points A and B to share the same label. However,
this is not the case! Once again visualizing these data points as heat maps, we
obtain figure 13.6.

Figure 13.6. Three specific data points from the MNIST dataset. The first and second points have
a nonzero covariance, despite having different labels. The first and third points have a zero
covariance, despite having the same label.

Here, it’s points A and C that share the same label (digit 9). So why does the
RBF kernel think points A and B are correlated? Looking at figure 13.6, we
can take a good guess that while points A and B have different labels, the
images themselves are similar in the sense that many of the pixels match. In
fact, the stroke that makes up the tail of the digits almost matches exactly in
the two images. So in a sense, the RBF kernel is doing its job, computing the
difference between the images and outputting a number representing their
covariance based on that difference. However, the difference is computed by
comparing the pixels in and of themselves, which is not a metric that is
indicative of what we’re trying to learn: the values of the digits.

By only looking at the pixel values, the RBF kernel is overestimating the
covariance between points A and B, which have different labels, and
underestimating the covariance between points A and C, which share the
same label, as illustrated by figure 13.7. An analogy can be used here to
demonstrate the inappropriate house kernel we mentioned at the introduction
of the chapter: this kernel looks only at the color of the front door to decide
whether two houses are correlated, leading to inaccurate predictions of their
prices. In a similar (but not as extreme) manner, the RBF kernel only
considers the values of the pixels, rather than the higher-level patterns, when
comparing two images, which leads to inferior predictive performance.

Figure 13.7. The covariance between handwritten digits computed by the RBF kernel. Only
looking at the pixel values, the RBF kernel doesn’t produce appropriate covariances.

13.2.4 Training a Gaussian process on image data

By using the wrong metric for similarity, RBF confuses which of points B
and C is the one correlated to point A, which, as we see next, leads to poor
results when training a Gaussian process (GP). We once again use the
MNIST dataset, this time extracting 1,000 data points to make up the training
set and another 500 points as the test set. Our data preparation and learning
workflow is summarized in figure 13.8, the distinct steps of which we go
through in detail.

Figure 13.8. Flowchart of the case study of Gaussian process learning on MNIST. We extract
1,000 data points to make up the training set and another 500 points as the test set.

First, we import PyTorch and Torchvision—the latter of which is an
extension of PyTorch that manages computer vision-related functionalities
and datasets, such as MNIST. From Torchvision, we import the modules
datasets and transforms, which help us download and manipulate the
MNIST data, respectively:

import torch

from torchvision import datasets, transforms

In the second data preparation step, we again use the object that transforms
the images to PyTorch tensors (which is the data structure GPs implemented
in GPyTorch can process) and normalizes the pixel values. This
normalization is done by subtracting the pixel values by 0.1307 (the mean of
the data) and dividing the values by 0.3081 (the standard deviation of the
data). This normalization is considered common practice for the MNIST
dataset, and more details on this step can be found in a PyTorch’s official
forum discussion (http://mng.bz/BmBr):

transform = transforms.Compose([

 transforms.ToTensor(), #1

 transforms.Normalize((0.1307,), (0.3081,)) #2

])

This transformation object stored in transform can now be passed to a call to
any Torchvision dataset initialization, and the transformations (conversion to
PyTorch tensors and normalization) will be applied to our data. We initialize
the MNIST dataset with this transformation object as follows. Note that we
create the dataset twice, once setting train = True to create the training set
and once setting train = False for the test set:

dataset1 = datasets.MNIST(#1

 "../data", train=True, download=True, transform=transform #1

) #1

dataset2 = datasets.MNIST(#2

 "../data", train=False, download=True, transform=transform #2

) #2

As the last step of data preparation, we extract out the first 1,000 data points
from the training set and 500 points from the test set. We do this by accessing

from the dataset objects dataset1 and dataset2:

The data attribute to obtain the features, the pixel values making up the
image for each data point
The targets attribute to obtain the labels, the values of the handwritten
digits:

train_x = dataset1.data[:1000, ...].view(1000, -1).to(torch.float) #1

train_y = dataset1.targets[:1000] #1

test_x = dataset2.data[:500, ...].view(500, -1).to(torch.float) #2

test_y = dataset2.targets[:500] #2

We also implement a simple GP model with a constant mean and an RBF
kernel with an output scale:

class GPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ConstantMean() #1

 self.covar_module = gpytorch.kernels.ScaleKernel(#2

 gpytorch.kernels.RBFKernel() #2

) #2

 def forward(self, x): #3

 mean_x = self.mean_module(x) #3

 covar_x = self.covar_module(x) #3

 return gpytorch.distributions.MultivariateNormal(mean_x, covar_x) #3

 Note

The forward() method of a GPyTorch Gaussian process model was first
discussed in section 2.4.

Then, we initialize our GP and train it on the 1,000-point training set, using
gradient descent with the Adam optimizer. This code will optimize the values
of the hyperparameters of the GP (e.g., the mean constant and the length and
output scale) so that we achieve a high marginal likelihood of the data we
observe:

likelihood = gpytorch.likelihoods.GaussianLikelihood() #1

model = GPModel(train_x, train_y, likelihood) #1

optimizer = torch.optim.Adam(model.parameters(), lr=0.01) #2

mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model) #2

model.train() #3

likelihood.train() #3

for i in tqdm(range(500)): #4

 optimizer.zero_grad() #4

 output = model(train_x) #4

 loss = -mll(output, train_y) #4

 loss.backward() #4

 optimizer.step() #4

model.eval() #5

likelihood.eval() #5

 Note

Refer to section 2.3.2 for a discussion of how gradient descent optimizes the
likelihood of the data we observe—that is, how gradient descent trains a
Gaussian process.

Finally, to see how well our model performs on the test set, we compute the
average absolute difference between the GP’s prediction and the ground truth
(the value of label of each data point). This metric is often called the mean
absolute error.

 Note

The typical metric for the MNIST dataset is the percentage of the test set that
the model predicts correctly (that is, accuracy), which is the norm for a
classification problem. As we are using this dataset to simulate a regression
problem, the mean absolute error is appropriate.

This is done by comparing the mean predictions against the true labels stored
in test_y:

with torch.no_grad():

 mean_preds = model(test_x).mean

print(torch.mean(torch.abs(mean_preds - test_y)))

Output: 2.7021167278289795

This output means that, on average, the GP’s prediction for the value of the
digit depicted in an image is off by almost 3. This performance is quite low,
given that there are only 10 values to learn in this task. This result highlights
regular GP models' incapability to deal with structured data, such as images.

13.3 Using neural networks to process complex
structured data

The root cause for our GP’s inferior performance, as we have seen, is that the
kernels aren’t equipped to process the complex structure of the input data,
leading to poor covariance calculation. The RBF kernel specifically has a
simple form that only accounts for the difference in numeric values between
two inputs. In this section, we learn to address this problem by using a neural
network to process structured data, before feeding those processed data to a
GP’s mean function and kernel.

13.3.1 Why use neural networks for modeling?

We noted at the beginning of the book that neural networks aren’t great at
making uncertainty-calibrated predictions, especially when data is expensive
to obtain. (This is the whole reason why GPs are used in Bayesian
optimization.) However, what neural networks are good at is learning
complex structures. This flexibility is a result of having multiple layers of
computation (specifically, matrix multiplication) in a neural network, as
illustrated in figure 13.9.

Figure 13.9. A neural network is a collection of layered computations. By chaining multiple layers
of computation together, a neural network can model complex functions well.

In a neural network, each layer corresponds to a matrix multiplication whose
output is then put through a nonlinear activation function. By having many
such layers chained together in one forward pass, the input of the network
can be processed and manipulated in a flexible manner. The end result is that
a neural network can model complex functions well. For a thorough
explanation of neural networks and their usage, refer to François Chollet’s
excellent book, Deep Learning with Python.

The flexibility neural networks possess can help us tackle the problem
described in the previous section. If a GP’s kernel, such as the RBF kernel,
cannot process complex data structures well, we could leave that job to a
neural network and only feed the processed input to the GP’s kernel. This
procedure is visualized in Figure 13.10, where the input x first goes through

the neural network layers before being passed to the mean function and the
kernel of the GP.

Figure 13.10. Combining a neural network with a Gaussian process. The neural network
processes the structured data input X first and then feeds the output to the mean function and the
kernel of the Gaussian process.

While the end result is still a multivariate Gaussian normal (MVN)
distribution, the input of the mean function and the kernel is now the
processed input produced by a neural network. This approach is promising
because with its flexible modeling capability, the neural network will be able
to extract the important features from the structured input data (which is
important in terms of providing information for the similarity calculation) and
boil them down to numerical values that are amenable to the GP’s kernel.

 Definition

The neural network is often called the feature extractor of the combined
model because the network extracts features that are conducive to GP
modeling from the structured data.

In this way, we can take advantage of a neural network’s flexible learning,
while maintaining the ability to make uncertainty-calibrated predictions with
a Gaussian process. It’s the best of both worlds! Further, training this
combined model follows the same procedure of training a regular GP: we
define our loss function, which is the negative log likelihood, and use
gradient descent to find the values for our hyperparameters that best explain
our data (by minimizing the loss). Instead of optimizing only the mean
constant and the length and output scales, we now additionally optimize the
weights of the neural networks. In the next subsection, we see that
implementing this learning procedure with GPyTorch requires minimal
changes from what we have been doing in previous chapters.

 Note

This combined framework is a method of dynamically learning how to
process structured data, purely from our training dataset. Previously, we only
used a fixed kernel that processes data the same way across multiple
applications. Here, we learn "on the fly" the best way to process our input
data unique to the task at hand. This is because the weights of the neural
network are optimized, with respect to the training data.

13.3.2 Implementing the combined model in GPyTorch

Finally, we now implement this framework and apply it to our MNIST
dataset. Here, defining our model class is more involved, as we need to
implement the neural network as well as hook it into the GP model class.
Let’s tackle the first part—implementing the neural network—first. We
design a simple neural network with the architecture in figure 13.11. This
network has four layers with 1,000, 5,000, 50, and 2 nodes, respectively, as
indicated in figure 13.11. This is a common architecture for the MNIST

dataset.

Figure 13.11. The architecture of the neural network to be implemented. It has four layers and
produces an array of size two for each input data point.

 Note

We need to pay attention to the size of the last layer (2), which denotes the
dimensionality of the processed output to be fed into the mean function and
the kernel of the GP. By setting the size of this layer to 2, we aim to learn a
representation of the images that exists in a two-dimensional space. Values
other than 2 can also be used, but we opt for 2 here, for the purpose of
visualization.

We implement this architecture using the Linear() and ReLU() classes from
PyTorch. Here, each layer of our network is implemented as a
torch.nn.Linear module with the appropriate size, as defined by figure
13.11. Each module is also coupled with a torch.nn.ReLU activation function

module, which implements the nonlinear transformation mentioned earlier.
This is illustrated in figure 13.12, which annotates each component of the
network architecture with the corresponding code that implements it.

Figure 13.12. The architecture of the neural network to be implemented and the corresponding
PyTorch code. Each layer is implemented with torch.nn.Linear and each activation function
with torch.nn.ReLU.

By using the convenient add_module() method, we are implicitly defining
the logic of the forward() method of our neural network model. We
implement the model with the LargeFeatureExtractor class next. This class
passes its input x sequentially through the layers we implement in the
__init__() method, which takes in data_dim, the dimensionality of the input
data. In our case, this number is 28 × 28 = 784, which we compute with
train_x.size(-1):

data_dim = train_x.size(-1) #1

class LargeFeatureExtractor(torch.nn.Sequential):

 def __init__(self, data_dim):

 super(LargeFeatureExtractor, self).__init__()

 self.add_module('linear1', torch.nn.Linear(data_dim, 1000)) #2

 self.add_module('relu1', torch.nn.ReLU()) #2

 self.add_module('linear2', torch.nn.Linear(1000, 500)) #3

 self.add_module('relu2', torch.nn.ReLU()) #3

 self.add_module('linear3', torch.nn.Linear(500, 50)) #4

 self.add_module('relu3', torch.nn.ReLU()) #4

 self.add_module('linear4', torch.nn.Linear(50, 2)) #5

feature_extractor = LargeFeatureExtractor(data_dim) #6

Next, we discuss the combined model, which is a GP model class that makes
use of feature_extractor, the neural network feature extractor we just
initialized. We implement its __init__() method first, which comprises
several components:

1. The covariance module is wrapped around by a
gpytorch.kernels.GridInterpolationKernel object, which offers
computational speedup for our mid-sized training set of 1,000 points.
We declare the number of dimensions of the input data to be two, as that
is the dimensionality of the output produced by the feature extractor.

2. The feature extractor itself is the feature_extractor variable we
declared earlier.

3. The output of the feature extractor could take on extreme values
(negative or positive infinity) if the weights of the neural network are
badly initialized. To address this, we scale these output values to the
range between −1 and 1, using the
gpytorch.utils.grid.ScaleToBounds module.

The __init__() method is implemented as follows:

class GPRegressionModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super(GPRegressionModel, self).__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ConstantMean()

 self.covar_module = gpytorch.kernels.GridInterpolationKernel(#1

 gpytorch.kernels.ScaleKernel(#1

 gpytorch.kernels.RBFKernel(ard_num_dims=2) #1

), #1

 num_dims=2, #1

 grid_size=100 #1

) #1

 self.feature_extractor = feature_extractor #2

 self.scale_to_bounds = gpytorch.utils.grid.ScaleToBounds(-1., 1.) #3

In our forward() method, we bring all of these components together. First,
we use our neural network feature extractor to process the input. We then
feed the processed input to the mean and covariance modules of our GP
model. In the end, we still end up with a multivariate Gaussian distribution as
what the forward() method returns:

class GPRegressionModel(gpytorch.models.ExactGP):

 def forward(self, x):

 projected_x = self.feature_extractor(x) #1

 projected_x = self.scale_to_bounds(projected_x) #1

 mean_x = self.mean_module(projected_x) #2

 covar_x = self.covar_module(projected_x) #2

 return gpytorch.distributions.MultivariateNormal(mean_x, covar_x) #2

Finally, to train this combined model using gradient descent, we declare the
following objects. Here, in addition to the regular GP hyperparameters, such
as the mean constant and the length and output scales, we also want to
optimize the weights of our neural network feature extractor, which are stored
in model.feature_extractor.parameters():

likelihood = gpytorch.likelihoods.GaussianLikelihood() #1

model = GPRegressionModel(train_x, train_y, likelihood) #1

mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model) #1

optimizer = torch.optim.Adam([

 {'params': model.feature_extractor.parameters()}, #2

 {'params': model.covar_module.parameters()}, #2

 {'params': model.mean_module.parameters()}, #2

 {'params': model.likelihood.parameters()}, #2

], lr=0.01)

And with that, we are ready to run gradient descent the same way as before:

model.train() #1

likelihood.train() #1

for i in tqdm(range(500)): #2

 optimizer.zero_grad() #2

 output = model(train_x) #2

 loss = -mll(output, train_y) #2

 loss.backward() #2

 optimizer.step() #2

model.eval() #3

likelihood.eval() #3

 Note

As a reminder, when training a Gaussian process, we need to enable training
mode for both the model and the likelihood (using model.train() and
likelihood.train()). After training and before making predictions, we then
need to enable prediction mode (with model.eval() and
likelihood.eval()).

We have now trained the GP model combined with a neural network feature
extractor. Before we make our predictions on the test set using this model, we
can take a peek inside the model and see whether the neural network feature
extractor has learned to process our data well. Remember that each image is
transformed into a two-element array by the feature extractor. So we can pass
our training data through this feature extractor and visualize the output using
a scatter plot.

 Note

Training this combined model takes more time than training a regular GP.
This is because we now have many more parameters to optimize. However,
as we see shortly, this cost is well worth it, as we achieve a much higher
performance gain.

In this scatter plot, if we see points with the same label (that is, images
depicting the same digit) cluster together, that will be an indication that the
feature extractor was able to effectively learn from data. Again, we do this by
passing the training data through the feature extractor the same way that data
are processed in the forward() method of the model class:

with torch.no_grad():

 extracted_features = model.feature_extractor(train_x)

 extracted_features = model.scale_to_bounds(extracted_features)

Here, extracted_features is a 1,000-by-2 PyTorch tensor that stores the
two-dimensional extracted features of the 1,000 data points in our training
set. To visualize this tensor in a scatter plot, we use plt.scatter() from the
Matplotlib library, making sure each label corresponds to a color:

for label in range(10):

 mask = train_y == label #1

 plt.scatter(#2

 extracted_features[mask, 0], #2

 extracted_features[mask, 1], #2

 c=train_y[mask], #2

 vmin=0, #2

 vmax=9, #2

 label=label, #2

) #2

This code produces figure 13.13, although your result might vary, depending
on the library versions and the system your code runs on. Just as we
expected, data points of the same label cluster around one another. This
means our neural network feature extractor is successfully grouping points
with the same label together. After being processed by the network, two
images of the same label become two points that are close to each other in a
two-dimensional plane, which will then have a high covariance, if computed
by the RBF kernel. This is exactly what we wanted our feature extractor to
help us do!

Figure 13.13. Features extracted from the MNIST dataset by a neural network. Not only do data
points of the same label cluster together, but there is also a label gradient across the plot: going
from the bottom to the top, the value of the label increases.

Another interesting aspect of figure 13.13 is that there is a clear gradient with
respect to the label value: going from the bottom to the top cluster, the value
of the corresponding label gradually increases from 0 to 9. This is a great
feature to have from in feature extractor, as it indicates our model has found a

smooth representation of the MNIST images that respects the label values.

For example, consider the comparison in figure 13.14, where the left panel
shows figure 13.13 and the right panel shows a random swapping of the
labels of the same scatter plot, making the features "rougher." By "rough", we

mean that the label values jump around erratically: the bottom cluster
contains the 0s, some of the clusters in the middle correspond to 7s and 9s,
and the top cluster contains the 5s. In other words, the trend of the labels with
rough features is not monotonic, making it more difficult to train a GP.

Figure 13.14. A comparison between the smooth extracted features from figure 13.13 (left) and a
random swapping of the labels, making the features less smooth (right). The smooth features are
easier to learn with a Gaussian process than the rough features.

So it seems that the neural network is doing a good job extracting useful
features from images. To see whether this actually leads to better predictive

performance, we, again, compute the mean absolute error (MAE):

with torch.no_grad():

 mean_preds = model(test_x).mean

print(torch.mean(torch.abs(mean_preds - test_y)))

Output: 0.8524129986763

This result tells us that on average, our prediction is off by 0.85; this is a
significant improvement from the vanilla GP we had in the previous section,
whose MAE was roughly 2.7. This improvement illustrates the superior
performance of the combined model, which stems from the flexible modeling
capability of neural networks.

As we said at the beginning, this framework doesn’t only apply to
handwritten digits but also to various types of structured data that a neural
network can learn from, including other types of images and graph structures,
such as molecules and proteins. All we need to do is define an appropriate
DL architecture that extracts features from these structured data, which are
then passed to the GP’s mean function and kernel.

This concludes chapter 12. Throughout this chapter, we have learned about
the difficulty of learning from structured data, such as images, where
common kernels cannot effectively compute covariances between data points.
By attaching a neural network feature extractor in front of a GP, we learn to
transform these structured data into a form that the GP’s kernel can then
process. The end result is a combined model that can flexibly learn from
structured data but still produces probabilistic predictions with uncertainty
quantification.

13.4 Summary

Structured data are data whose features need to satisfy constraints, such
as being an integer or being nonnegative, and cannot be treated as
continuous, real-valued data. Examples include data from common
applications, such as images in computer vision and protein structures in
drug discovery.

Structured data poses a challenge to common kernels for Gaussian
processes. This is because these kernels only consider the numerical
values of input data, which may be poor predictive features.
A kernel using the wrong features to compute covariances could lead to
low-quality predictions from the resulting Gaussian process. Using the
wrong features is particularly common with structured data.
For image data specifically, the raw values of the pixels are not an
informative feature. A kernel that computes covariances using the raw
pixel values can lead to a low-quality Gaussian process.
Having multiple layers of nonlinear computation, neural networks are
effective at learning complex functions and can extract features from
structured data. By using a neural network to extract continuous, real-
valued features from structured data, a Gaussian process can still learn
effectively.
In combining a neural network with a Gaussian process, we dynamically
learn a way to process data that is dedicated to the problem at hand. This
flexibility allows this model to generalize to many kinds of structured
data.
It’s important to scale the output of a neural network to a small range
before passing it to a Gaussian process. In doing this, we avoid extreme
values that could result from a badly initialized neural network feature
extractor.
The representation learned from a neural network feature extractor
exhibits a smooth gradient, with respect to the labels. This smooth
gradient makes the extracted features more amenable to learning with a
Gaussian process.

Appendix. Solutions to the exercises

A.1 Chapter 2: Gaussian processes as distributions
over functions

In this exercise, we will train a Gaussian process on a real-world data set that
we saw in chapter 1, which is shown again in Table A.1.

Each data point (row) corresponds an alloy (a kind of metal) created by
mixing lead (Pb), tin (Sn), germanium (Ge), and manganese (Mn)—these are
called the parent compounds—at different ratios. The features are contained
in the first four columns, which are the percentages of the parent compounds.
The prediction target, mixing temperature, is in the last column, denoting the
lowest temperature at which an alloy can form. The task is to predict mixing
temperature given the compositional percentages of an alloy.

Table A.1. Data from a materials discovery task. The features are the structure of a material
expressed in percentages of parent compounds, and the prediction target is the mixing
temperature.

% of Pb % of Sn % of Ge % of Mn Mixing temp.

0.50 0.50 0.00 0.00 192.08

0.33 0.33 0.33 0.00 258.30

0.00 0.50 0.50 0.00 187.24

0.00 0.33 0.33 0.33 188.54

There are multiple steps:

1. Create the four-dimensional data set included in Table A.1.
2. Normalize the fifth column by subtracting the mean from all values and

dividing the results by their variance.
3. Treat the first four columns as features and the fifth as labels. Train a

Gaussian process on this data. You can reuse the GP model class we
implemented in the chapter.

4. Create a test data set containing compositions having zero percentage of
germanium and manganese. In other words, the test set is a grid over the
unit square whose axes are percentages of lead and tin.

The test set should look like the following PyTorch tensor.

tensor([[0.0000, 0.0000, 0.0000, 0.0000],

 [0.0000, 0.0100, 0.0000, 0.0000],

 [0.0000, 0.0200, 0.0000, 0.0000],

 ...,

 [1.0000, 0.9800, 0.0000, 0.0000],

 [1.0000, 0.9900, 0.0000, 0.0000],

 [1.0000, 1.0000, 0.0000, 0.0000]])

Notice that the third and forth columns are all zeros.

5. Predict the mixing temperature on this test set. That is, compute the
posterior mean and standard deviation of the normalized mixing
temperature for every point in the test set.

6. Visualize the predictions. This involves showing the mean and standard
deviation as heat maps.

The solution is included in CH02/02 - Exercise.ipynb, which is explained
as follows.

1. We first import the necessary libraries: PyTorch for array/tensor
manipulation, GPyTorch for GP modeling, and Matplotlib for
visualization.

import torch

import gpytorch

import matplotlib.pyplot as plt

We then store the numbers in Table A.1 in two PyTorch tensors,
train_x and train_y, which respectively contain the features and labels

of our data set.

train_x = torch.tensor(

 [

 [1 / 2, 1 / 2, 0, 0],

 [1 / 3, 1 / 3, 1 / 3, 0],

 [0, 1 / 2, 1 / 2, 0],

 [0, 1 / 3, 1 / 3, 1 / 3],

]

)

train_y = torch.tensor([192.08, 258.30, 187.24, 188.54])

2. We normalize the labels as follows.

normalize the labels

train_y = (train_y - train_y.mean()) / train_y.std()

When printed out, train_y should contain the following values:
tensor([-0.4183, 1.4974, -0.5583, -0.5207]).

3. We reimplement our GP model class as follows.

class BaseGPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ZeroMean()

 self.covar_module = gpytorch.kernels.RBFKernel()

 def forward(self, x):

 mean_x = self.mean_module(x)

 covar_x = self.covar_module(x)

 return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)

We then initialize an object of this class with our training data.

declare the GP

lengthscale = 1

noise = 1e-4

likelihood = gpytorch.likelihoods.GaussianLikelihood()

model = BaseGPModel(train_x, train_y, likelihood)

fix the hyperparameters

model.covar_module.lengthscale = lengthscale

model.likelihood.noise = noise

model.eval()

likelihood.eval()

4. To assemble our test data set, we first create a mesh grid for the first and
second columns that spans over the unit square.

grid_x = torch.linspace(0, 1, 101)

grid_x1, grid_x2 = torch.meshgrid(grid_x, grid_x, indexing="ij")

These first two columns are stored in grid_x1 and grid_x2. We then
append two additional, all-zero columns to grid_x1 and grid_x2,
completing test set with four columns.

xs = torch.vstack(

 [

 grid_x1.flatten(), #1

 grid_x2.flatten(), #2

 torch.zeros(101 ** 2), #3

 torch.zeros(101 ** 2), #4

]

).transpose(-1, -2)

5. To make predictions on this test set, we simply pass xs through our GP
model under the torch.no_grad() context.

with torch.no_grad():

 predictive_distribution = likelihood(model(xs))

 predictive_mean = predictive_distribution.mean

 predictive_stddev = predictive_distribution.stddev

6. To visualize these predictions, we first create a figure with two panels
(that is, two Matplotlib subplots).

fig, ax = plt.subplots(1, 2, figsize=(16, 6))

We then use plt.imshow() to visualize the mean and standard deviation
vectors as heat maps, making sure to reshape the two vectors into square
matrices

c = ax[0].imshow(

 predictive_mean.detach().reshape(101, 101).transpose(-1, -2),

 origin="lower",

 extent=[0, 1, 0, 1],

) #1

c = ax[1].imshow(

 predictive_stddev.detach().reshape(101, 101).transpose(-1, -2),

 origin="lower",

 extent=[0, 1, 0, 1],

) #2

plt.colorbar(c, ax=ax[1])

This will create plots similar to those in Figure A.1.

Figure A.1. Predictions made by a GP when trained on the data set in Table A.1.

 Note

If you are using a different GP implementation, it’s entirely possible to
produce heat maps that are slightly different from those in Figure A.1. As
long as the general trend of the heat maps is the same, your solution is
correct.

A.2 Chapter 3: Incorporating prior knowledge with
the mean and covariance functions

This exercise provides a practice for implementing a GP model with ARD
(automatic relevance determination). To do this, we will create an objective
function that varies along an axis more than it does along another axis. We
will then train a GP model, with and without ARD, on data points from this
function and compare the learned length scale values.

There are multiple steps:

1. Implement the following two-dimensional function in Python using
PyTorch:

This function simulates the accuracy surface of a Support Vector Machine
(SVM) model in a hyperparameter tuning task. The x-axis denotes the value
of the penalty parameter C, while the y-axis denotes the value for the RBF
kernel parameter γ. (We will be using this function as our objective in future
chapters as well.) . Visualize the function over the domain [0, 2]2. The heat
map should look like Figure A.2.

Figure A.2. Accuracy of an SVM model on a test data set, as a function of the penalty parameter
C and the RBF kernel parameter γ. The function changes more quickly with respect to γ than to
C.

1. Randomly draw 100 data points from the domain [0, 2]2. This will be
used as our training data.

2. Implement a GP model with a constant mean function and a Matérn 2.5
kernel with an output scale implemented as a
gpytorch.kernels.ScaleKernel object.

3. Don’t specify the ard_num_dims parameter when initializing the kernel
object, or set the parameter to None. This will create a GP model without
ARD.

4. Train the hyperparameters of the GP model using gradient descent, and
inspect the length scale after training.

5. Redefine the GP model class, this time setting ard_num_dims = 2.
Retraining the GP model with gradient descent, and verify that the two
length scales have significantly different values.

The solution is included in CH03/03 - Exercise.ipynb, which is explained
as follows.

1. We first import the necessary libraries: PyTorch for array/tensor
manipulation, GPyTorch for GP modeling, and Matplotlib for
visualization.

import torch

import gpytorch

import matplotlib.pyplot as plt

We then implement the objective function using the given formula.

def f(x):

 return (

 torch.sin(5 * x[..., 0] / 2 - 2.5) * torch.cos(2.5 - 5 * x[..., 1])

 + (5 * x[..., 1] / 2 + 0.5) ** 2 / 10

) / 5 + 0.2

2. To visualize the function, we need to create a mesh grid the domain. We
store this grid in xs.

lb = 0

ub = 2

xs = torch.linspace(lb, ub, 101) #1

x1, x2 = torch.meshgrid(xs, xs)

xs = torch.vstack((x1.flatten(), x2.flatten())).transpose(-1, -2) #2

We then can obtain the function values over this grid by passing xs to
f(). The results are stored in ys.

ys = f(xs)

We use plt.imshow() to visualize ys as a heat map.

plt.imshow(ys.reshape(101, 101).T, origin="lower", extent=[lb, ub, lb, ub])

This will produce Figure A.2.

3. To randomly sample 100 points within the domain, we use
torch.rand() to sample from the unit square, and then multiply the
result by 2 to scale it to our domain.

torch.manual_seed(0)

train_x = torch.rand(size=(100, 2)) * 2

The function values of these points can be obtained by calling
f(train_x).

train_y = f(train_x)

4. We implement our GP model as specified.

class GPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ConstantMean()

 self.covar_module = gpytorch.kernels.ScaleKernel(

 gpytorch.kernels.MaternKernel(

 nu=2.5,

 ard_num_dims=None #1

)

)

 def forward(self, x):

 mean_x = self.mean_module(x)

 covar_x = self.covar_module(x)

 return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)

5. We intialize our GP and train it using gradient descent for 500 iterations
as follows.

declare the GP

noise = 1e-4

likelihood = gpytorch.likelihoods.GaussianLikelihood()

model = GPModel(train_x, train_y, likelihood)

fix the hyperparameters

model.likelihood.noise = noise

train the hyperparameters

optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model)

model.train() #1

likelihood.train() #1

losses = []

for i in tqdm(range(500)): #2

 optimizer.zero_grad() #2

 output = model(train_x) #2

 loss = -mll(output, train_y) #2

 loss.backward() #2

 losses.append(loss.item()) #2

 optimizer.step() #2

model.eval() #3

likelihood.eval() #3

After these 500 iterations, we inspect the length scale by printing out the
following value.

>>> model.covar_module.base_kernel.lengthscale

tensor([[1.1535]])

In other words, the optimized length scale is equal to roughly 1.15.

6. Setting ard_num_dims=2 in the GPModel class and rerunning all the code
cells, we obtain the following values for the length scales.

>>> model.covar_module.base_kernel.lengthscale

tensor([[1.6960, 0.8739]])

Here, the length scale of the first dimension is large (roughly 1.70),
while the length scale of the second dimension is small (roughly 0.87).
This corresponds to the fact that the objective function varies more
along the second dimension.

A.3 Chapter 4: Refining the best result with
improvement-based policies

There are two exercises in this chapter:

1. The first covers a way of refining the Probability of Improvement
policy, allowing it to better explore the search space.

2. The second applies the two Bayesian optimization policies we have
learned to a simulated real-world task of hyperparameter tuning.

A.3.1 Encouraging exploration with Probability of
Improvement

This exercise, implemented in CH04/02 - Exercise 1.ipynb, walks us
through how to modify Probability of Improvement to encourage exploration.
There are multiple steps:

1. Recreate the Bayesian optimization (BayesOpt) loop in CH04/01 -
BayesOpt loop, which uses the one-dimensional Forrester function as
the optimization objective.

2. Before the for loop that implements BayesOpt, declare a variable named
epsilon.

epsilon = 0.1

3. Inside the for loop, initialize the PoI policy as before, but this time
specifying that the incumbent threshold, set by the best_f argument, is
the incumbent value plus the value stored in epsilon.

 policy = botorch.acquisition.analytic.ProbabilityOfImprovement(

 model, best_f=train_y.max() + epsilon

)

4. Rerun the notebook and observe whether this modification leads to
better optimization performance than the original PoI policy by
encouraging more exploration, as shown as Figure A.3.

Figure A.3. Optimization progress of the modified Probability of Improvement at the last
iteration. The policy has found the optimum.

Here, the modified PoI has found the optimum.

5. How much more explorative PoI becomes heavily depends on the
minimum improvement threshold stored in epsilon. Setting this
variable to 0.001 doesn’t sufficient encourage exploration, and the
policy once again gets stuck. Setting this variable to 0.5 works well.

6. Implement a relative minimum improvement threshold with a 110%
improvement requirement.

epsilon_pct = 0.1

for i in range(num_queries):

 ... #1

 policy = botorch.acquisition.analytic.ProbabilityOfImprovement(

 model, best_f=train_y.max() * (1 + epsilon_pct) #2

)

A.3.2 Bayesian optimization for hyperparameter tuning

This exercise, implemented in CH04/03 - Exercise 2.ipynb, applies
BayesOpt to an objective function that simulates the accuracy surface of a
support-vector machine model in a hyperparameter tuning task. There are
multiple steps:

1. Recreate the Bayesian optimization (BayesOpt) loop in CH04/01 -
BayesOpt loop, which uses the one-dimensional Forrester function as
the optimization objective. Our objective function is implemented as:

def f(x):

 return (

 torch.sin(5 * x[..., 0] / 2 - 2.5)

 * torch.cos(2.5 - 5 * x[..., 1])

 + (5 * x[..., 1] / 2 + 0.5) ** 2 / 10

) / 5 + 0.2

2. Declare the corresponding test data with xs for a two-dimensional grid
representing the domain and ys for the function values of xs.

lb = 0

ub = 2

num_queries = 20

bounds = torch.tensor([[lb, lb], [ub, ub]], dtype=torch.float)

xs = torch.linspace(lb, ub, 101)

x1, x2 = torch.meshgrid(xs, xs)

xs = torch.vstack((x1.flatten(), x2.flatten())).transpose(-1, -2)

ys = f(xs)

3. Modify the helper function that visualizes optimization progress. We
declare this function as visualize_progress_and_policy(), which
only needs to take in a policy object and next_x as the next point to
query. First, the function computes the acquisition scores for the test
data xs.

def visualize_progress_and_policy(policy, next_x=None):

 with torch.no_grad():

 acquisition_score = policy(xs.unsqueeze(1))

 ... #1

Next, we declare the two Matplotlib subplots and for the first, plot the

ground truth stored in ys.

 c = ax[0].imshow(#1

 ys.reshape(101, 101).T, origin="lower", extent=[lb, ub, lb, ub] #1

) #1

 ax[0].set_xlabel(r"C", fontsize=20)

 ax[0].set_ylabel(r"γ", fontsize=20)

 plt.colorbar(c, ax=ax[0])

 ax[0].scatter(train_x[..., 0], train_x[..., 1], marker="x", c="k") #2

Finally, we plot another heat map in the second subplot showing the
acquisition scores.

 c = ax[1].imshow(#1

 acquisition_score.reshape(101, 101).T, #1

 origin="lower", #1

 extent=[lb, ub, lb, ub] #1

) #1

 ax[1].set_xlabel(r"C", fontsize=20)

 plt.colorbar(c, ax=ax[1])

We optionally show next_x.

 if next_x is not None:

 ax[1].scatter(

 next_x[..., 0],

 next_x[..., 1],

 c="r",

 marker="*",

 s=500,

 label="next query"

)

4. Copy the GP class from Chapter 3’s exercise, which implements a
Matérn 2.5 kernel with ARD. Further modify this class to make it
integratable with BoTorch.

class GPModel(gpytorch.models.ExactGP, #1

 botorch.models.gpytorch.GPyTorchModel): #1

 _num_outputs = 1 #1

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ConstantMean()

 self.covar_module = gpytorch.kernels.ScaleKernel(#2

 gpytorch.kernels.MaternKernel(#2

 nu=2.5, #2

 ard_num_dims=2 #2

) #2

) #2

 def forward(self, x):

 ... #3

5. Reuse helper function fit_gp_model() and the for loop that implements
BayesOpt. We copy fit_gp_model() and declare the initial data set.

train_x = torch.tensor([

 [1., 1.],

])

train_y = f(train_x)

We then declare the BayesOpt loop:

num_queries = 20

for i in range(num_queries):

 print("iteration", i)

 print("incumbent", train_x[train_y.argmax()], train_y.max())

 model, likelihood = fit_gp_model(train_x, train_y)

 policy = ... #1

 next_x, acq_val = botorch.optim.optimize_acqf(

 policy,

 bounds=bounds,

 q=1,

 num_restarts=40, #2

 raw_samples=100, #2

)

 visualize_progress_and_policy(policy, next_x=next_x) #3

 next_y = f(next_x)

 train_x = torch.cat([train_x, next_x])

 train_y = torch.cat([train_y, next_y])

6. Run the Probability of Improvement (PoI) policy on this objective

function. Observe that the policy once again gets stuck at a local
optimum. Replace the line that initializes the BayesOpt policy with:

 policy = botorch.acquisition.analytic.ProbabilityOfImprovement(

 model, best_f=train_y.max()

)

Running the entire notebook shows that the policy once again gets stuck
at a local optimum, as shown in Figure A.4.

Figure A.4. Optimization progress of Probability of Improvement at the last iteration. The
policy is stuck at a local optimum in the lower right corner.

7. Run the modified version of PoI where the minimum improvement

threshold is set at 0.1. Replace the line that initializes the BayesOpt
policy with:

 policy = botorch.acquisition.analytic.ProbabilityOfImprovement(

 model, best_f=train_y.max() + 0.1

)

This policy is more explorative and outperforms regular PoI. Figure A.5
shows the progress of this policy at iteration 17, where it first achieves
an accuracy of at least 90 percent.

Figure A.5. Optimization progress of the modified Probability of Improvement at iteration
17, where the policy first achieves an accuracy of at least 90 percent.

Here, C = 1.6770 and γ = 1.9039 are the parameters giving this
accuracy.

8. Run the Expected Improvement policy on this objective function.
Replace the line that initializes the BayesOpt policy with:

 policy = botorch.acquisition.analytic.ExpectedImprovement(

 model, best_f=train_y.max()

)

This policy performs well on our objective function, finding an accuracy
of at least 90 percent at iteration 15, as shown in

Figure A.6. Optimization progress of Expected Improvement at iteration 4, where the
policy first achieves an accuracy of at least 90 percent.

Here, C = 1.6331 and γ = 1.8749 are the parameters giving this
accuracy.

9. Implement repeated experiments and visualize the average incumbent
values and error bars across ten experiments. We first put the code that
implements our BayesOpt loop in an outer loop that iterates over
multiple experiments. We store the best-seen value at each step across
the experiments in incumbents.

num_repeats = 10

incumbents = torch.zeros((num_repeats, num_queries))

for trial in range(num_repeats):

 print("trial", trial)

 torch.manual_seed(trial) #1

 train_x = bounds[0] + (bounds[1] - bounds[0]) * torch.rand(1, 2) #1

 train_y = f(train_x) #1

 for i in tqdm(range(num_queries)):

 incumbents[trial, i] = train_y.max() #2

 ... #3

torch.save(incumbents, [path to file]) #4

We then implement a helper function that plots the average incumbent
values and error bars. This function reads in a PyTorch tensor saved at
path, which should be the saved version of incumbents in the previous
step

def show_agg_progress(path, name):

 def ci(y): #1

 return 2 * y.std(axis=0) / np.sqrt(num_repeats) #1

 incumbents = torch.load(path) #2

 avg_incumbent = incumbents.mean(axis=0) #3

 ci_incumbent = ci(incumbents) #3

 plt.plot(avg_incumbent, label=name) #4

 plt.fill_between(#4

 np.arange(num_queries), #4

 avg_incumbent + ci_incumbent, #4

 avg_incumbent - ci_incumbent, #4

 alpha=0.3, #4

) #4

plt.figure(figsize=(8, 6))

show_agg_progress([path to EI data], "EI")

show_agg_progress([path to PoI data], "PoI")

show_agg_progress([path to modified PoI data], "PoI" + r"$(\epsilon = 0.1)$")

plt.xlabel("# queries")

plt.ylabel("accuracy")

plt.legend()

plt.show()

This generates Figure A.7, which shows the optimization performance
of PoI, the modified version of PoI, and EI.

Figure A.7. Optimization progress of various policies, aggregated across 10 repeated
experiments.

We see that Figure A.7 gives us more insight than inspecting the policies
in a single run. Here, not only does PoI perform worse than the other
two policies, but its performance is also less robust, as seen from the
large error bars. The modified PoI and EI perform comparably, and it’s
hard to tell if one is better than the other, as their error bars overlap.

A.4 Chapter 5: Exploring the search space with
bandit-style policies

There are two exercises in this chapter:

1. The first explores a potential method to set the tradeoff parameter for the
Upper Confidence Bound policy that considers how far along we are in
optimization.

2. The second applies the two policies we have learned in this chapter to
the hyperparameter tuning problem seen in previous chapters.

A.4.1 Setting an exploration schedule for Upper Confidence
Bound

This exercise, implemented in CH05/02 - Exercise 1.ipynb, discusses a
strategy of adaptively setting the value of the tradeoff parameter β of the
Upper Confidence Bound (UCB) policy. There are multiple steps:

1. Recreate the Bayesian optimization (BayesOpt) loop in CH04/02 -
Exercise 1.ipynb, which uses the one-dimensional Forrester function
as the optimization objective.

2. What is the value the multiplier for β needs to have?

Since there are ten iterations in the BayesOpt loop, β is multiplied by the
multiplier m ten times to go from 1 to 10. That is, 1 m10 = 10. Solving
this equation gives the code for the multiplier:

num_queries = 10

start_beta = 1

end_beta = 10

multiplier = (end_beta / start_beta) ** (1 / num_queries)

3. Implement this scheduling logic and observe the resulting optimization
performance.

We modify the BayesOpt loop as follows:

num_queries = 10

start_beta = 1

end_beta = 10

multiplier = (end_beta / start_beta) ** (1 / num_queries)

beta = start_beta

for i in range(num_queries):

 ... #1

 policy = botorch.acquisition.analytic.UpperConfidenceBound(

 model, beta=beta

)

 ... #2

 beta *= multiplier

This code produces Figure A.8.

Figure A.8. Progress made by the adaptive version of the Upper Confidence Bound policy.
The policy is able to escape the local optimum and get closer to the global optimum.

We see that the policy inspects a local optimum at the fifth iteration but

ultimately is able to escape and get closer to the global optimum at the
end.

A.4.2 Bayesian optimization for hyperparameter tuning

This exercise, implemented in CH05/03 - Exercise 2.ipynb applies
BayesOpt to an objective function that simulates the accuracy surface of a
support-vector machine model in a hyperparameter tuning task. There are
multiple steps:

1. Recreate the Bayesian optimization loop in CH04/03 - Exercise
2.ipynb, including the outer loop that implements repeated experiments.

2. Run the Upper Confidence Bound (UCB) policy, setting the value of the
tradeoff parameter β at 1, 3, 10, and 30, and observe their aggregated
performance.

The value of the tradeoff parameter could be set when the policy object
is initialized as below:

policy = botorch.acquisition.analytic.UpperConfidenceBound(

 model, beta=[some value]

)

Figure A.9. Progress made by the Upper Confidence Bound policy. The policy is able to
escape the local optimum and get closer to the global optimum.

Figure A.9 shows the optimization performance of the four versions of
UCB. We see that when β = 1, the policy is too exploitative and
achieves the worst performance. As the value of the tradeoff parameter
increases, performance increases, but when β = 30, over-exploration
causes UCB to be slower at locating an accuracy of 90 percent. Overall,
β = 10 achieves the best performance.

3. Run the adaptive version of UCB (see Exercise 1).

We modify the BayesOpt loop as follows:

num_repeats = 10

start_beta = 3

end_beta = 10

multiplier = (end_beta / start_beta) ** (1 / num_queries)

incumbents = torch.zeros((num_repeats, num_queries))

for trial in range(num_repeats):

 ... #1

 beta = start_beta

 for i in tqdm(range(num_queries)):

 ... #2

 policy = botorch.acquisition.analytic.UpperConfidenceBound(

 model, beta=beta

)

 ... #3

 beta *= multiplier

Figure A.10. Progress made by two adaptive versions of the Upper Confidence Bound
policy. The policy is robust against the end value of the tradeoff parameter.

Figure A.10 shows the optimization performance of the two adaptive
versions against the best performing fixed value β = 10. These versions
are comparable, and changing the end value from 10 to 30 doesn’t affect
optimization performance too much.

4. Run the Thompson sampling policy and observe its aggregated
performance.

We implement Thompson sampling as follows:

num_candidates = 2000

num_repeats = 10

incumbents = torch.zeros((num_repeats, num_queries))

for trial in range(num_repeats):

 ... #1

 for i in tqdm(range(num_queries)):

 ... #2

 sobol = torch.quasirandom.SobolEngine(1, scramble=True)

 candidate_x = sobol.draw(num_candidates)

 candidate_x = bounds[0] + (bounds[1] - bounds[0]) * candidate_x

 ts = botorch.generation.MaxPosteriorSampling(model, replacement=False)

 next_x = ts(candidate_x, num_samples=1)

 ... #3

Figure A.11. Progress made by Thompson sampling. The policy is comparable to Expected
Improvement and slightly worse than the best version of Upper Confidence Bound.

Figure A.11 shows the optimization performance of Thompson
sampling. We see that the policy makes significant progress at the
beginning and is comparable to Expected Improvement from Chapter 6
and slightly worse than the best version of UCB.

A.5 Chapter 6: Leveraging information theory with
entropy-based policies

There are two exercises in this chapter:

1. The first is mathematical in nature, covering a variant of binary search in
which prior information could be taken into account when making
decisions.

2. The second walks us through the process of implementing Max-value
Entropy Search in the hyperparameter tuning problem seen in previous
chapters.

A.5.1 Incorporating prior knowledge into entropy search

This exercise, implemented in CH06/02 - Exercise 1.ipynb, shows us an
instance of using different priors when finding the information-theoretically
optimal decision, and ultimately will help us further appreciate the elegance
and flexibility of entropy search as a generic decision-making-under-
uncertainty procedure.

1. Prove that Pr(X = 1) + Pr(X = 2) + … + Pr(X = 10) = 1.
We can do this by simply adding the probabilities together:
1 / 2 + 1 / 4 + … + 1 / 29 + 1 / 29 = 1 / 2 + 1 / 4 + … + 1 / 28 + 1 / 28 =
… = 1 / 2 + 1 / 2 = 1.

2. Calculate the entropy of this prior distribution.

Remember the formula for the entropy is −∑ᵢ pᵢ log pᵢ. We can write a
Python function that computes this sum:

def compute_entropy(first, last):

 entropy = 0

 for i in range(first, last + 1):

 p = marginal_probability(i, first, last) #1

 entropy += -p * np.log2(p) #2

 return entropy

This function takes first and last as parameters, which correspond to
the smallest and biggest numbers X could be (which start out as 1 and
10), respectively. We then iterate through the numbers between first
and last and add up the -pᵢ log pᵢ terms. Here,
marginal_probability() is a helper function that computes Pr(X = n),
which we implement as:

def marginal_probability(floor, first, last):

 if floor == last: #1

 return 2 ** -(last - first) #1

 return 2 ** -(floor - first + 1)

Run compute_entropy(1, 10) gives us 1.99609375. This is the entropy
of the prior distribution for X.

3. Given the prior distribution defined between 1 and 10, what is the
probability that the phone will break when dropped from the 2nd floor?
What is this probability for the 5th floor? The 1st floor?

The probability that the phone will break when dropped from the 2nd
floor is exactly Pr(X = 1), which is 0.5.

The probability that the phone will break from the 5th floor is the
probability that X ≤ 4, which is Pr(X = 1) + Pr(X = 2) + Pr(X = 3) +
Pr(X = 4) = 15 / 16 = 0.9375.

The two calculations above could be implemented as a function:

def cumulative_density(floor, first, last):

 return sum(#1

 [#1

 marginal_probability(i, first, last) #1

 for i in range(first, floor) #1

] #1

) #1

Since our prior knowledge dictates that the phone won’t break if
dropped from the 1st floor, this probability is 0.

4. Compute the entropy of the fictitious posterior distribution in the two

cases where we conduct a trial on the 5th floor.

Using the compute_entropy() function we implemented, we can
compute the entropy in two cases: if the phone breaks, we set first = 1
and last = 4, else we set first = 5 and last = 10.

>>> compute_entropy(1, 4)

Output: 1.75

>>> compute_entropy(5, 10)

Output: 1.9375

5. Given the prior distribution, compute the expected posterior entropy
after you conduct a trial on the 5th floor.
We already have done the necessary calculations for this expected
posterior entropy computation. First, the probability that the phone will
break from the 5th floor is 0.9375, in which case the posterior entropy is
1.75. Second, the probability that the phone won’t break from the 5th
floor is 1 - 0.9375 = 0.0625, in which case the posterior entropy is
1.9375.
Taking the average of the two cases gives: (0.9375) 1.75 + (0.0625)
1.9375 = 1.76171875. This is the expected posterior entropy after you
conduct a trial on the 5th floor.

6. Compute this expected posterior entropy for other floors.

We can implement a function that does the calculation we just went
through:

def compute_expected_posterior_entropy(floor, first, last):

 break_probability = cumulative_density(floor, first, last) #1

 return (#2

 break_probability * compute_entropy(first, floor - 1) #2

 + (1 - break_probability) * compute_entropy(floor, last) #2

) #2

Using this function, we can plot out the expected posterior entropy for
numbers between 1 and 10.

Figure A.12. The expected posterior entropy as a function of the location to conduct the
trial.

This plot is shown in Figure A.12, which tells us that the information-
theoretically optimal location for our first trial is the 2nd floor, since 2
gives us the lowest expected posterior entropy (and therefore
uncertainty).

We see that this is not the same as the decision binary search suggests,
5. This is a direct effect of the domain knowledge that we are encoding
using the prior distribution for X: since there’s a high chance that X = 2
(50%), it’s actually better to simply try out that number first, in case that
we can immediately find our answer if the phone breaks.

Interestingly, dropping the phone from the first floor gives us no
reduction in entropy. This is because we know for sure that the phone
won’t break from this floor, so our knowledge of the world won’t
change after conducting this trial.

A.5.2 Bayesian optimization for hyperparameter tuning

This exercise, implemented in CH06/03 - Exercise 2.ipynb applies
BayesOpt to an objective function that simulates the accuracy surface of a

support-vector machine model in a hyperparameter tuning task.

1. Recreate the Bayesian optimization loop in CH04/03 - Exercise
2.ipynb, including the outer loop that implements repeated experiments.

2. Run the Max-value Entropy Search (MES) policy.

Since our objective function is two-dimensional, we should set the size
of the Sobol sequence used by MES to be 2000.

num_candidates = 2000

num_repeats = 10

incumbents = torch.zeros((num_repeats, num_queries))

for trial in range(num_repeats):

 ... #1

 for i in tqdm(range(num_queries)):

 ... #2

 sobol = torch.quasirandom.SobolEngine(1, scramble=True)

 candidate_x = sobol.draw(num_candidates)

 candidate_x = bounds[0] + (bounds[1] - bounds[0]) * candidate_x

 policy = botorch.acquisition.max_value_entropy_search.qMaxValueEntropy(

 model, candidate_x

)

 ... #3

Figure A.13. Progress made by Max-value Entropy Search. The policy performs the best
out of the four policies shown.

Figure A.11 shows the optimization performance of MES. We see that
the policy is competitive against all the BayesOpt policies that we have
learned thus far.

A.6 Chapter 7: Maximizing throughput with batch
optimization

There are two exercises in this chapter:

1. The first covers the implementation of Thompson sampling under the
batch setting.

2. The second shows us how to run Bayesian optimization policies on a
four-dimensional aero-structural optimization problem.

A.6.1 Extending Thompson sampling to the batch setting via
resampling

Remember that TS in the sequential setting, which we learn in Section 5.3,
draws one sample from the current Gaussian process (GP) belief about the
objective function and queries the data point that maximizes that sample. In
the batch setting, we simply repeat this process of sampling from the GP and
maximizing the sample multiple times to assemble a batch of queries of the
desired size. The code for this exercise can be found in CH07/02 - Exercise
1.ipynb.

1. Recreate the batch Bayesian optimization loop in CH07/01 -
Improvement and confidence bound policies.ipynb.

2. Implement Thompson sampling with a Sobol sampler as described in
Section 5.3 of Chapter 5.

We implement the policy as follows, where we use a 2000-element
Sobol sequence and specify the number of samples as the batch size:

num_candidates = 2000 #1

... #2

for i in tqdm(range(num_iters)):

 ... #3

 sobol = torch.quasirandom.SobolEngine(2, scramble=True) #4

 candidate_x = sobol.draw(num_candidates) #4#5

 candidate_x = (bounds[1] - bounds[0]) * candidate_x + bounds[0] #4

 ts = botorch.generation.MaxPosteriorSampling(model, replacement=False)

 next_x = ts(candidate_x, num_samples=batch_size) #5

 ... #6

3. Run this Thompson sampling policy on the hyperparameter tuning
objective function and observe its performance.

After running batch Thompson sampling, we can plot the progress made
by the policy against other policies we have learned, as shown in Figure
A.14. Here, Thompson sampling is able to make significant progress
only after the first batch of queries.

Figure A.14. Progress made by batch Thompson sampling in the hyperparameter tuning
example. The policy makes significant progress only after the first batch of queries.

A.6.2 Optimizing airplane designs

This exercise provides an objective function that simulates this process of
benchmarking the performance of an airplane design. The code is provided in
CH07/04 - Exercise 2.ipynb. There are multiple steps:

1. Implement the objective function that simulates the performance
benchmarking.

The code for the objective function is already provided, so we simply
copy and paste it in our program:

def flight_utility(X):

 X_copy = X.detach().clone()

 X_copy[:, [2, 3]] = 1 - X_copy[:, [2, 3]]

 X_copy = X_copy * 10 - 5

 return -0.005 * (X_copy**4 - 16 * X_copy**2 + 5 * X_copy).sum(dim=-1) + 3

2. Implement a Gaussian process (GP) model with a constant mean
function and a Matérn 2.5 kernel with an output scale implemented as a
gpytorch.kernels.ScaleKernel object.

The class implementation of this GP model is mostly the same as before,
except for that we need to specify the correct number of dimensions in
the ARD kernel:

class GPModel(

 gpytorch.models.ExactGP,

 botorch.models.gpytorch.GPyTorchModel,

 botorch.models.model.FantasizeMixin

):

 _num_outputs = 1

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ConstantMean()

 self.covar_module = gpytorch.kernels.ScaleKernel(

 gpytorch.kernels.MaternKernel(#1

 nu=2.5, #1

 ard_num_dims=4 #1

) #1

)

 def forward(self, x):

 ...

3. Implement a helper function that trains the GP on a given training data
set.
We can simply copy the same helper function fit_gp_model() from
other notebooks in this chapter, namely 02 - Exercise 1.ipynb, as we
don’t need to modify anything in this helper function.

4. Define the settings of our optimization problem.

We first define the bounds of our search space:

lb = 0

ub = 1

bounds = torch.tensor([[lb] * 4, [ub] * 4], dtype=torch.float)

We then specify how many queries can be made, the batch size, as well
as the number of experiments to repeat for each policy:

num_experiments = 5

num_queries = 100

batch_size = 5

num_iters = num_queries // batch_size

5. Run each batch BayesOpt policy we learn in this chapter on the
objective function implemented above.

We first use this code to implement the optimization loop and the outer
loop that repeats the experiments for each policy. Specifically, for each
individual experiment, we randomly sample one data point inside the
search space and then run each BayesOpt policy until we run out of
queries. We will see how each policy is defined in the next step.

incumbents = torch.zeros((num_experiments, num_iters))

pbar = tqdm(total=num_experiments * num_iters)

for exp in range(num_experiments):

 torch.manual_seed(exp) #1

 train_x = bounds[0] + (bounds[1] - bounds[0]) * torch.rand(1, 4) #1

 train_y = flight_utility(train_x) #1

 for i in range(num_iters):

 incumbents[exp, i] = train_y.max() #2

 model, likelihood = fit_gp_model(train_x, train_y) #2

 ... #3

 next_y = flight_utility(next_x) #4

 train_x = torch.cat([train_x, next_x]) #4

 train_y = torch.cat([train_y, next_y]) #4

 pbar.update()

For the Probability of Improvement policy, we use the following code:

policy = botorch.acquisition.monte_carlo.qProbabilityOfImprovement(

 model, best_f=train_y.max()

)

For the Expected Improvement policy, we use the following code:

policy = botorch.acquisition.monte_carlo.qExpectedImprovement(

 model, best_f=train_y.max()

)

For the Upper Confidence Bound policy, we use the following code:

policy = botorch.acquisition.monte_carlo.qUpperConfidenceBound(

 model, beta=2

)

These three policies can then be optimized using the helper function
optimize_acqf() as follows:

next_x, acq_val = botorch.optim.optimize_acqf(

 policy,

 bounds=bounds,

 q=batch_size,

 num_restarts=100,

 raw_samples=200,

)

Otherwise, for either Thompson sampling or Max-value Entropy Search,
we first need to define the Sobol sequence:

sobol = torch.quasirandom.SobolEngine(4, scramble=True) #1

candidate_x = sobol.draw(5000)

candidate_x = (bounds[1] - bounds[0]) * candidate_x + bounds[0]

For the Thompson sampling policy, we use the following code:

ts = botorch.generation.MaxPosteriorSampling(model, replacement=False)

next_x = ts(candidate_x, num_samples=batch_size)

For the Max-value Entropy Search we use the following code, which

uses the helper function optimize_acqf_cyclic() to implement cyclic
optimization. Note that we are specifying that cyclic optimization should
only take at most 5 iterations.

policy = botorch.acquisition.max_value_entropy_search.qMaxValueEntropy(

 model, candidate_x

)

next_x, acq_val = botorch.optim.optimize_acqf_cyclic(

 policy,

 bounds=bounds,

 q=batch_size,

 num_restarts=40,

 raw_samples=100,

 cyclic_options={"maxiter": 5} #1

)

6. Plot the optimization progress of the BayesOpt policies we have run and
observe their performance.

Figure A.15 shows the optimization results obtained by the policies we
implement above. We see that most policies are comparable except for
Thompson sampling; batch Probability of Improvement has a slight
edge.

Figure A.15. Progress made by various Bayesian optimization policies in the airplane
design optimization example. Most policies are comparable except for Thompson
sampling; batch Probability of Improvement has a slight edge.

A.7 Chapter 8: Satisfying extra constraints with
constrained optimization

There are two exercises in this chapter:

1. The first verifies that the result we obtain from BoTorch’s
implementation of the constrained Expected Improvement (EI) policy is
the same as the product of the regular EI score and the probability of
feasibility.

2. The second shows us how to run constrained Bayesian optimization
(BayesOpt) on a four-dimensional aero-structural optimization problem.

A.7.1 Manual computation of constrained Expected
Improvement

The acquisition score of the constrained Expected Improvement (EI) policy is
the product of the EI score and the probability of feasibility. Although the
ConstrainedExpectedImprovement class from BoTorch provides an
implementation of the constrained EI score, we can in fact perform the
computation manually. In this exercise, we will explore this manual
computation and verify our result against that of the
ConstrainedExpectedImprovement class. The solution of this exercise is in
the CH08/02 - Exercise 1.ipynb notebook.

1. Recreate the constrained Bayesian optimization (BayesOpt) problem
used in CH08/01 - Constrained optimization.ipynb, including the
objective function, the cost function, the Gaussian process (GP)
implementation, and the helper function that trains a GP on some
training data fit_gp_model().

2. Create a PyTorch tensor that is a dense grid between -5 and 5. This
tensor will act as our test set. We use torch.linspace() to create a
dense grid:

lb = -5

ub = 5

xs = torch.linspace(lb, ub, 201)

3. Create a toy training data set by randomly sample 3 data points from our
search space (between -5 and 5) and evaluate the objective and cost
functions at these points. We use torch.rand() to randomly sample
between 0 and 1 and scale the samples to our search space:

n = 3

torch.manual_seed(0) #1

train_x = bounds[0] + (bounds[1] - bounds[0]) * torch.rand(n) #2

train_utility = objective(train_x)

train_cost = cost(train_x)

4. Train a GP on the data from the objective function and another GP on
the data from the cost function using the helper function
fit_gp_model().

utility_model, utility_likelihood = fit_gp_model(#1

 train_x.unsqueeze(-1), train_utility #1

) #1

cost_model, cost_likelihood = fit_gp_model(#2

 train_x.unsqueeze(-1), train_cost #2

) #2

5. Use the GP trained on the data from the cost function to compute the
probability of feasibility for each point in the test set.

We first compute the predictive distribution of the cost GP on our test
set:

with torch.no_grad():

 cost_pred_dist = cost_likelihood(cost_model(xs))

 cost_pred_mean = cost_pred_dist.mean

 cost_pred_lower, cost_pred_upper = \

 cost_pred_dist.confidence_region()

We then initialize a normal distribution object with the mean and
standard deviation corresponding to the means and standard deviations
of cost_pred_dist:

normal = torch.distributions.Normal(cost_pred_mean, cost_pred_dist.stddev)

Finally, we call the cdf() method on this object to compute the
probability of feasibility. The argument this method takes is the upper
bound of our cost constraint, which is 0:

feasible_prob = normal.cdf(torch.zeros(1))

6. Initialize a regular EI policy with the model argument being the GP
trained on the data from the objective function, and the best_f argument
being the current feasible incumbent.

We compute the current feasible incumbent with
train_utility[train_cost ⇐ 0].max():

ei = botorch.acquisition.analytic.ExpectedImprovement(

 model=utility_model,

 best_f=train_utility[train_cost <= 0].max(),

)

We then compute the EI score by calling the EI policy object on xs[:,
None, None], which is the test dense grid reshaped to make sure it’s of
appropriate shape:

with torch.no_grad():

 ei_score = ei(xs[:, None, None])

7. Initialize a constrained EI policy and compute the constrained EI score
for each point in the test set.

constrained_ei = botorch.acquisition.analytic.ConstrainedExpectedImprovement(

 model=botorch.models.model_list_gp_regression.ModelListGP(

 utility_model, cost_model

),

 best_f=train_utility[train_cost <= 0].max(),

 objective_index=0,

 constraints={1: [None, 0]}

)

We also compute the constrained EI score with the reshaped test set:

with torch.no_grad():

 constrained_ei_score = constrained_ei(xs[:, None, None])

8. Compute the product of the EI scores and the probabilities of feasibility,
and verify that this manual computation leads to the same results as
those from BoTorch’s implementation. We run an assertion to make sure
all corresponding terms match up:

assert torch.isclose(

 ei_score * feasible_prob, constrained_ei_score, atol=1e-3

).all()

9. Plot the EI scores and the constrained EI scores in a graph and visually
verify that the former is always greater than or equal to the latter. Prove
that this is the case.

We plot out the scores we have computed thus far as follows:

plt.plot(xs, ei_score, label="EI")

plt.plot(xs, constrained_ei_score, label="BoTorch constrained EI")

This code generates Figure A.16, which shows that the EI score is
indeed always at least the constrained EI score.

Figure A.16. The acquisition score of Expected Improvement (solid line) and that of
constrained Expected Improvement (dashed line). The former is always greater than or
equal to the latter.

We can mathematically prove this by noting that the constrained EI
score is equal to the regular EI score multiplied with the probability of
feasibility. This probability of feasibility is always at most 1, so the EI
score is always greater than or equal to the constrained EI score.

A.7.2 Constrained optimization of airplane design

In this exercise, we will tackle a constrained optimization problem using the
airplane-utility objective function in Chapter 7’s Exercise 2. This process
allows us to run constrained BayesOpt on a higher-dimensional problem
where it’s not obvious where the feasibility optimal solution is. The solution
to this exercise is included in CH08/03 - Exercise 2.ipynb.

1. Recreate the BayesOpt problem used in CH07/04 - Exercise 2.ipynb,
including the airplane-utility objective function named
flight_utility(), the bounds of our search space (the four-
dimensional unit hypercube), the GP implementation, and the helper
function that trains a GP on some training data fit_gp_model().

2. Implement the following cost function that simulates the cost of making
the airplane design specified by a four-dimensional input:

def flight_cost(X):

 X = X * 20 - 10

 part1 = (X[..., 0] - 1) ** 2

 i = X.new(range(2, 5))

 part2 = torch.sum(i * (2.0 * X[..., 1:] ** 2 - X[..., :-1]) ** 2, dim=-1)

 return -(part1 + part2) / 100_000 + 2

3. Our goal is to maximize the objective function flight_utility() while
following the constraint that the cost, as computed by flight_cost(), is
less than or equal to 0.

1. To this end, we set the number of queries a BayesOpt policy can
make in each experiment is 50, and each policy needs to run 10
repeated experiments.

num_queries = 50

num_repeats = 10

2. The default value quantifying optimization progress if no feasible
solution is found should be set to -2.

default_value = -2

feasible_incumbents = torch.ones((num_repeats, num_queries)) * default_value

4. Run the constrained EI policy as well as the regular EI policy on this
problem, visualize and compare their average progress (along with error
bars).

We implement the constrained EI policy in the same way as we did in
Chapter 8, where we set best_f to be either the current feasible
incumbent if a feasible solution has been found, or the default value -2
otherwise. Our model list contains the objective GP, which has an index
of 0, and the cost GP, which has an index of 1.

if (train_cost <= 0).any(): #1

 best_f = train_utility[train_cost <= 0].max() #1

else: #1

 best_f = torch.tensor(default_value) #1

policy = botorch.acquisition.analytic.ConstrainedExpectedImprovement(

 model=botorch.models.model_list_gp_regression.ModelListGP(

 utility_model, cost_model #2

), #2

 best_f=best_f,

 objective_index=0, #3

 constraints={1: [None, 0]} #4

)

We implement the regular EI policy as follows:

policy = botorch.acquisition.analytic.ExpectedImprovement(

 model=utility_model,

 best_f=train_utility.max(),

)

Figure A.17 shows the optimization results obtained by the two policies
we implement above. We see that constrained EI completely dominates
the regular EI policy by accounting to the cost constraint that we
impose.

Figure A.17. Progress made by various Bayesian optimization policies in the constrained
airplane design optimization example. Compared to the regular Expected Improvement,
the constrained variant on average finds a better feasible solution.

A.8 Chapter 9: Balancing utility and cost with
multi-fidelity optimization

There are two exercises in this chapter:

1. Exercise 1 walks through the process of measuring and visualizing the
average performance of an optimization policy across multiple
experiments.

2. Exercise 2 applies the optimization policies we know to a two-
dimensional problem with three functions that we can query from.

A.8.1 Visualizing average performance in multi-fidelity
optimization

In this exercise, we will run the optimization loop multiple times and learn
how to take the average performance to obtain a more holistic comparison.

1. Copy the problem setup and the multi-fidelity optimization loop from
CH09/03 - Measuring performance.ipynb and add another variable
denoting the number of experiments we want to run (10 by default).

2. To facilitate repeated experiments, add an outer loop to the optimization
loop code. This should be a for loop with 10 iterations, where a different
random observation is generated each time.

num_repeats = 10 #1

for trial in range(num_repeats):

 torch.manual_seed(trial) #2

 train_x = bounds[0] + (bounds[1] - bounds[0]) * torch.rand(1, 1)

 train_x = torch.cat(#2

 [train_x, torch.ones_like(train_x) * fidelities[0]], dim=1

) #2

 train_y = evaluate_all_functions(train_x) #2

 current_budget = 0 #3

 while current_budget < budget_limit: #3

 ... #3

3. Make each of the variables recommendations and spent_budget a list of
lists, where each inner list keeps track of optimization performance of an
individual experiment. We add to the code for the nested loop in the
previous step as follows:

num_repeats = 10

recommendations = [] #1

spent_budget = [] #1

for trial in range(num_repeats):

 torch.manual_seed(trial)

 train_x = bounds[0] + (bounds[1] - bounds[0]) * torch.rand(1, 1)

 train_x = torch.cat(

 [train_x, torch.ones_like(train_x) * fidelities[0]], dim=1

)

 train_y = evaluate_all_functions(train_x)

 current_budget = 0

 recommendations.append([]) #2

 spent_budget.append([]) #2

 while current_budget < budget_limit:

 ...

 rec_x = get_final_recommendation(model) #3

 recommendations[-1].append(evaluate_all_functions(rec_x).item())

 spent_budget[-1].append(current_budget) #3

 ...

4. Run the multi-fidelity Max-value Entropy Search policy and its single-
fidelity version on our optimization problem.

5. We first make the regular grid and the currently empty interpolated
recommended values that we will fill in later:

xs = np.arange(budget_limit)

interp_incumbents = np.empty((num_repeats, budget_limit))

We then iterate through each list in recommendations (renamed to
incumbents in our code) and spend_budget, compute the linear
interpolation, and then fill in the values in interp_incumbents:

for i, (tmp_incumbents, tmp_budget) in enumerate(

 zip(incumbents, spent_budget)

):

 interp_incumbents[i, :] = np.interp(xs, tmp_budget, tmp_incumbents)

6. Use the linearly interpolated values to plot the average performance and
error bars of the two policies we ran and compare their performance.
The comparison is visualize in Figure 10.7, where we see that the multi-
fidelity Max-value Entropy Search policy greatly outperforms its single-
fidelity competitor.

Figure A.18. Average optimization progress of the single- and multi-fidelity Max-value
Entropy Search policy on the Forrester function across 10 experiments. The multi-fidelity
policy greatly outperforms the single-fidelity one.

7. Plot the linearly interpolated curves representing individual runs'

optimization progress, along with the average performance and error
bars. The comparison is visualized in Figure A.19. Indeed, our
optimization progress in each run, as measured by the maximum
posterior mean recommendation, is not monotonically increasing.

Figure A.19. Linearly interpolated curves representing individual runs' optimization
progress across 10 experiments. Our optimization progress in each run, as measured by the
maximum posterior mean recommendation, is not monotonically increasing.

A.8.2 Multi-fidelity optimization with multiple low-fidelity
approximations

This exercise will show us that our multi-fidelity Max-value Entropy Search
policy can balance between multiple low-fidelity functions.

1. Implement the objective function. The code for this step has already
been provided in the instructions.

2. Define the bounds of our search space to be the unit square.

bounds = torch.tensor([[0.0] * 2, [1.0] * 2])

3. Declare the fidelities variable that stores the correlation values of the
different functions we can query.

fidelities = torch.tensor([0.1, 0.3, 1.0])

bounds_full = torch.cat(

 [

 bounds,

 torch.tensor([fidelities.min(), fidelities.max()]).unsqueeze(-1)

],

 dim=1

)

4. Set the fixed cost of the linear cost model to 0.2 and the weight to 1.

from botorch.models.cost import AffineFidelityCostModel

cost_model = AffineFidelityCostModel(fixed_cost=0.2)

Set the limit of our budget in each experiment to 10, and the number of
repeated experiments to 10 as well.

budget_limit = 10

num_repeats = 10

5. Set the number of candidates drawn from the Sobol sequence to 5000,
and use 100 restarts and 500 raw samples when using helper functions to
optimize the acquisition score of a given policy.

num_samples = 5000

num_restarts = 100

raw_samples = 500

6. Redefine the helper function get_final_recommendation that finds the
posterior mean maximizer.

from botorch.acquisition.fixed_feature import FixedFeatureAcquisitionFunction

from botorch.acquisition import PosteriorMean

from botorch.optim.optimize import optimize_acqf, optimize_acqf_mixed

def get_final_recommendation(model):

 post_mean_policy = FixedFeatureAcquisitionFunction(

 acq_function=PosteriorMean(model),

 d=3, #1

 columns=[2], #1

 values=[1],

)

 final_x, _ = optimize_acqf(

 post_mean_policy,

 bounds=bounds,

 q=1,

 num_restarts=num_restarts,

 raw_samples=raw_samples,

)

 return torch.cat([final_x, torch.ones(1, 1)], dim=1)

7. Run the multi-fidelity Max-value Entropy Search policy and its single-
fidelity version on our optimization problem and plot the average
optimization progress and error bars of each policy using the method
described in Exercise 1. Figure A.20 shows the comparison between the
two policies.

Figure A.20. Average optimization progress of the single- and multi-fidelity Max-value
Entropy Search policy on the Branin function across 10 experiments. The multi-fidelity
policy once again outperforms the single-fidelity one.

A.9 Chapter 11: Optimizing multiple objectives at
the same time

In this exercise, we will apply the multi-objective optimization techniques we
have learned to the problem of optimizing the aero-structural design of a
plane. This exercise will allow us to observe the performance of the Expected
Hyper-Volume Improvement (EHVI) policy in a multi-dimensional problem.

1. We copy the code for the objective functions as follows:

def objective1(X): #1

 X_copy = X.detach().clone() #1

 X_copy[:, [2, 3]] = 1 - X_copy[:, [2, 3]] #1

 X_copy = X_copy * 10 - 5 #1

 return (#1

 -0.005 #1

 * (X_copy ** 4 - 16 * X_copy ** 2 + 5 * X_copy).sum(dim=-1) #1

 + 3 #1

) #1

def objective2(X): #2

 X = X * 20 - 10 #2

 part1 = (X[..., 0] - 1) ** 2 #2

 i = X.new(range(2, 5)) #2

 part2 = torch.sum(i * (2.0 * X[..., 1:] ** 2 - X[..., :-1]) ** 2,

 dim=-1) #2

 return (part1 + part2) / 100_000 - 2 #2

2. We implement the helper function as follows:

def joint_objective(X):

 return torch.vstack(

 [

 objective1(X).flatten(),

 objective2(X).flatten(),

]

).transpose(-1, -2)

3. We declare the bounds of the search space:

bounds = torch.tensor([[0.0] * 4, [1.0] * 4])

4. We declare the reference point:

ref_point = torch.tensor([-1.5, -2.0])

5. The class implementation and helper function can be implemented using
the same code as, for example, in CH08/03 - Exercise 2.ipynb.

6. We set the experimental settings:

num_queries = 50

num_repeats = 10

7. We implement the two Bayesian optimization policies in the same way
as in CH11/02 - Multi-objective BayesOpt loop.ipynb. Figure A.21
shows the performance of the two policies aggregated across 10
experiments. Expected Hyper-Volume Improvement once again
outperforms the alternating Expected Improvement policy

Figure A.21. Average hyper-volume and error bars as a function of the number of queries
made by two Bayesian optimization policies. Expected Hyper-Volume Improvement
consistently outperforms the alternating Expected Improvement policy.

A.10 Chapter 12: Scaling Gaussian processes to
large data sets

This exercise demonstrates the improvement in efficiency when going from a
regular GP model to a VGP one on a real-life data set of housing prices in
California. Our goal is to once again observe the computational benefits of a
VGP, this time in a real-world setting.

There are multiple steps:

1. We use the Pandas library to read in the data set:

import pandas as pd

df = pd.read_csv("../data/housing.csv")

Once read in, the Pandas dataframe should look similar to the output in
Figure A.22.

Figure A.22. The housing price data set shown as a Pandas dataframe. This is the training
set for this exercise.

2. We create the scatter plot as follows:

plt.figure(figsize=(8, 6))

plt.scatter(df.longitude, df.latitude, c=np.log(df.median_house_value))

plt.colorbar();

The visualization should look similar to Figure A.23.

Figure A.23. The housing price data set shown as a scatter.

3. To extract our training features, we use the torch.from_numpy()
method to convert a NumPy array to a PyTorch tensor:

train_x = torch.from_numpy(df.drop(["median_house_value"], axis=1).values)

4. We similarly do this for the log of the house prices, which are our
training labels:

train_y = torch.from_numpy(

 df.median_house_value.values

).log().to(train_x.dtype)

5. We normalize the training labels train_y as follows:

train_y = (train_y - train_y.mean()) / train_y.std()

6. We implement the GP model as follows:

class GPModel(gpytorch.models.ExactGP):

 def __init__(self, train_x, train_y, likelihood):

 super().__init__(train_x, train_y, likelihood)

 self.mean_module = gpytorch.means.ConstantMean() #1

 self.covar_module = gpytorch.kernels.ScaleKernel(#2

 gpytorch.kernels.MaternKernel(

 nu=2.5, #2

 ard_num_dims=train_x.shape[1] #2

) #2

) #2

 def forward(self, x):

 mean_x = self.mean_module(x)

 covar_x = self.covar_module(x)

 return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)

7. Make a likelihood whose noise is constrained to be at least 0.1 using the
following code:

likelihood = gpytorch.likelihoods.GaussianLikelihood(

 noise_constraint=gpytorch.constraints.GreaterThan(1e-1) #1

)

8. We train the GP model implemented above using gradient descent as
follows:

model = GPModel(train_x, train_y, likelihood)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01) #1

mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model) #2

model.train() #3

likelihood.train() #3

for i in tqdm(range(10)):

 optimizer.zero_grad()

 output = model(train_x)

 loss = -mll(output, train_y)

 loss.backward()

 optimizer.step()

The total training time was 24 seconds on a Macbook.

9. We implement the variational GP model as follows:

class ApproximateGPModel(gpytorch.models.ApproximateGP):

 def __init__(self, inducing_points):

 variational_distribution = #1

 <linearrow /> gpytorch.variational.NaturalVariationalDistribution(

 inducing_points.size(0) #1

) #1

 variational_strategy = gpytorch.variational.VariationalStrategy(

 self, #1

 inducing_points, #1

 variational_distribution, #1

 learn_inducing_locations=True, #1

) #1

 super().__init__(variational_strategy)

 self.mean_module = gpytorch.means.ConstantMean()

 self.covar_module = gpytorch.kernels.ScaleKernel(

 gpytorch.kernels.MaternKernel(

 nu=2.5,

 ard_num_dims=inducing_points.shape[1]

)

)

 def forward(self, x):

 ... #2

10. This VGP is trained as follows:

num_datapoints = 100 #1

torch.manual_seed(0) #1

model = ApproximateGPModel(#1

 train_x[torch.randint(train_x.shape[0], (num_datapoints,)), :] #1

) #1

likelihood = gpytorch.likelihoods.GaussianLikelihood(

 noise_constraint=gpytorch.constraints.GreaterThan(1e-1)

)

train_data set = torch.utils.data.Tensordata set(train_x, train_y) #2

train_loader = torch.utils.data.DataLoader(#2

 train_data set, #2

 batch_size=100, #2

 shuffle=True #2

) #2

ngd_optimizer = gpytorch.optim.NGD(#3

 model.variational_parameters(), num_data=train_y.size(0), lr=0.1 #3

) #3

hyperparam_optimizer = torch.optim.Adam(#4

 [{"params": model.parameters()}, {"params": likelihood.parameters()}], #4

 lr=0.01 #4

) #4

mll = gpytorch.mlls.VariationalELBO(

 likelihood, model, num_data=train_y.size(0)

)

model.train()

likelihood.train()

for i in tqdm(range(10)):

 for x_batch, y_batch in train_loader:

 ngd_optimizer.zero_grad()

 output = model(x_batch)

 loss = -mll(output, y_batch)

 loss.backward()

 ngd_optimizer.step()

 hyperparam_optimizer.step()

11. On the same Macbook, training took 6 seconds, a 400% speedup.

The solution is included in CH12/02 - Exercise.ipynb.

	MEAP_VERSION_12
	Welcome
	1_Introduction_to_Bayesian_optimization
	2_Gaussian_processes_as_distributions_over_functions
	3_Customizing_a_Gaussian_process_with_the_mean_and_covariance_functions
	4_Refining_the_best_result_with_improvement-based_policies
	5_Exploring_the_search_space_with_bandit-style_policies
	6_Leveraging_information_theory_with_entropy-based_policies
	7_Maximizing_throughput_with_batch_optimization
	8_Satisfying_extra_constraints_with_constrained_optimization
	9_Balancing_utility_and_cost_with_multi-fidelity_optimization
	10_Learning_from_pairwise_comparisons_with_preference_optimization
	11_Optimizing_multiple_objectives_at_the_same_time
	12_Scaling_Gaussian_processes_to_large_datasets
	13_Combining_Gaussian_processes_with_neural_networks
	Appendix._Solutions_to_the_exercises

