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ix

Thomas’ Calculus, Fourteenth Edition, provides a modern introduction to calculus that fo-

cuses on developing conceptual understanding of the underlying mathematical ideas. This 

text supports a calculus sequence typically taken by students in STEM fields over several 

semesters. Intuitive and precise explanations, thoughtfully chosen examples, superior fig-

ures, and time-tested exercise sets are the foundation of this text. We continue to improve 

this text in keeping with shifts in both the preparation and the goals of today’s students, 

and in the applications of calculus to a changing world.

Many of today’s students have been exposed to calculus in high school. For some, 

this translates into a successful experience with calculus in college. For others, however, 

the result is an overconfidence in their computational abilities coupled with underlying 

gaps in algebra and trigonometry mastery, as well as poor conceptual understanding. In 

this text, we seek to meet the needs of the increasingly varied population in the calculus 

sequence. We have taken care to provide enough review material (in the text and appen-

dices), detailed solutions, and a variety of examples and exercises, to support a complete 

understanding of calculus for students at varying levels. Additionally, the MyMathLab 

course that accompanies the text provides adaptive support to meet the needs of all stu-

dents. Within the text, we present the material in a way that supports the development of 

mathematical maturity, going beyond memorizing formulas and routine procedures, and 

we show students how to generalize key concepts once they are introduced. References are 

made throughout, tying new concepts to related ones that were studied earlier. After study-

ing calculus from Thomas, students will have developed problem-solving and reasoning 

abilities that will serve them well in many important aspects of their lives. Mastering this 

beautiful and creative subject, with its many practical applications across so many fields, 

is its own reward. But the real gifts of studying calculus are acquiring the ability to think 

logically and precisely; understanding what is defined, what is assumed, and what is de-

duced; and learning how to generalize conceptually. We intend this book to encourage and 

support those goals.

New to This Edition

We welcome to this edition a new coauthor, Christopher Heil from the Georgia Institute 

of Technology. He has been involved in teaching calculus, linear algebra, analysis, and 

abstract algebra at Georgia Tech since 1993. He is an experienced author and served as a 

consultant on the previous edition of this text. His research is in harmonic analysis, includ-

ing time-frequency analysis, wavelets, and operator theory.

This is a substantial revision. Every word, symbol, and figure was revisited to en-

sure clarity, consistency, and conciseness. Additionally, we made the following text-wide 

updates:

Preface
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• Updated graphics to bring out clear visualization and mathematical correctness.

• Added examples (in response to user feedback) to overcome conceptual obstacles. See 

Example 3 in Section 9.1.

• Added new types of homework exercises throughout, including many with a geomet-

ric nature. The new exercises are not just more of the same, but rather give different 

perspectives on and approaches to each topic. We also analyzed aggregated student 

 usage and performance data from MyMathLab for the previous edition of this text. The 

 results of this analysis helped improve the quality and quantity of the exercises.

• Added short URLs to historical links that allow students to navigate directly to online 

information.

• Added new marginal notes throughout to guide the reader through the process of prob-

lem solution and to emphasize that each step in a mathematical argument is rigorously 

justified.

New to MyMathLab®

Many improvements have been made to the overall functionality of MyMathLab (MML) 

since the previous edition. Beyond that, we have also increased and improved the content 

specific to this text.

• Instructors now have more exercises than ever to choose from in assigning homework. 

There are approximately 8080 assignable exercises in MML.

• The MML exercise-scoring engine has been updated to allow for more robust coverage 

of certain topics, including differential equations.

• A full suite of Interactive Figures have been added to support teaching and learning. 

The figures are designed to be used in lecture, as well as by students independently. 

The figures are editable using the freely available GeoGebra software. The figures were 

created by Marc Renault (Shippensburg University), Kevin Hopkins (Southwest  Baptist 

University), Steve Phelps (University of Cincinnati), and Tim Brzezinski (Berlin High 

School, CT).

• Enhanced Sample Assignments include just-in-time prerequisite review, help keep skills 

fresh with distributed practice of key concepts (based on research by Jeff Hieb of Uni-

versity of Louisville), and provide opportunities to work exercises without learning aids 

(to help students develop confidence in their ability to solve problems  independently).

• Additional Conceptual Questions augment text exercises to focus on deeper, theoretical 

understanding of the key concepts in calculus. These questions were written by faculty 

at Cornell University under an NSF grant. They are also assignable through Learning 

Catalytics.

• An Integrated Review version of the MML course contains pre-made quizzes to assess 

the prerequisite skills needed for each chapter, plus personalized remediation for any 

gaps in skills that are identified.

• Setup & Solve exercises now appear in many sections. These exercises require students 

to show how they set up a problem as well as the solution, better mirroring what is re-

quired of students on tests.

• Over 200 new instructional videos by Greg Wisloski and Dan Radelet (both of 

 Indiana University of PA) augment the already robust collection within the course. 

These videos support the overall approach of the text—specifically, they go beyond 

routine procedures to show students how to generalize and connect key concepts.
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Content Enhancements

Chapter 1

• Shortened 1.4 to focus on issues arising in use of mathe-

matical software and potential pitfalls. Removed peripheral 

material on regression, along with associated exercises.

• Added new Exercises: 1.1: 59–62, 1.2: 21–22; 1.3: 64–65, 

PE: 29–32.

Chapter 2

• Added definition of average speed in 2.1.

• Clarified definition of limits to allow for arbitrary domains. 

The definition of limits is now consistent with the defini-

tion in multivariable domains later in the text and with more 

general mathematical usage.

• Reworded limit and continuity definitions to remove impli-

cation symbols and improve comprehension.

• Added new Example 7 in 2.4 to illustrate limits of ratios of 

trig functions.

• Rewrote 2.5 Example 11 to solve the equation by finding a 

zero, consistent with previous discussion.

• Added new Exercises: 2.1: 15–18; 2.2: 3h–k, 4f–i; 2.4:  

19–20, 45–46; 2.6: 69–72; PE: 49–50; AAE: 33.

Chapter 3

• Clarified relation of slope and rate of change.

• Added new Figure 3.9 using the square root function to 

 illustrate vertical tangent lines.

• Added figure of x sin (1>x) in 3.2 to illustrate how oscilla-

tion can lead to nonexistence of a derivative of a continuous 

function.

• Revised product rule to make order of factors consistent 

throughout text, including later dot product and cross prod-

uct formulas.

• Added new Exercises: 3.2: 36, 43–44; 3.3: 51–52; 3.5:  

43–44, 61bc; 3.6: 65–66, 97–99; 3.7: 25–26; 3.8: 47;  

AAE: 24–25.

Chapter 4

• Added summary to 4.1.

• Added new Example 3 with new Figure 4.27 to give basic 

and advanced  examples of concavity.

• Added new Exercises: 4.1: 61–62; 4.3: 61–62; 4.4: 49–50, 

99–104; 4.5: 37–40; 4.6: 7–8; 4.7: 93–96; PE: 1–10; AAE: 

19–20, 33. Moved Exercises 4.1: 53–68 to PE.

Chapter 5

• Improved discussion in 5.4 and added new Figure 5.18 to 

illustrate the Mean Value Theorem.

• Added new Exercises: 5.2: 33–36; PE: 45–46.

Chapter 6

• Clarified cylindrical shell method.

• Converted 6.5 Example 4 to metric units.

• Added introductory discussion of mass distribution along a 

line, with figure, in 6.6.

• Added new Exercises: 6.1: 15–16; 6.2: 45–46; 6.5: 1–2; 

6.6: 1–6, 19–20; PE: 17–18, 35–36.

Chapter 7

• Added explanation for the terminology “indeterminate 

form.” 

• Clarified discussion of separable differential equations in 7.4.

• Replaced sin-1 notation for the inverse sine function with 

arcsin as default notation in 7.6, and similarly for other trig 

functions.

• Added new Exercises: 7.2: 5–6, 75–76; 7.3: 5–6, 31–32, 

123–128, 149–150; 7.6: 43–46, 95–96; AAE: 9–10, 23.

Chapter 8

• Updated 8.2 Integration by Parts discussion to emphasize 

u(x) y′(x) dx form rather than u dy. Rewrote Examples 1–3 

accordingly.

• Removed discussion of tabular integration and associated 

exercises.

• Updated discussion in 8.5 on how to find constants in the 

method of partial fractions.

• Updated notation in 8.8 to align with standard usage in sta-

tistics.

• Added new Exercises: 8.1: 41–44; 8.2: 53–56, 72–73; 8.3: 

75–76; 8.4: 49–52; 8.5: 51–66, 73–74; 8.8: 35–38, 77–78; 

PE: 69–88.

Chapter 9

• Added new Example 3 with Figure 9.3 to illustrate how to 

construct a slope field.

• Added new Exercises: 9.1: 11–14; PE: 17–22, 43–44.
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Chapter 10

• Clarified the differences between a sequence and a series.

• Added new Figure 10.9 to illustrate sum of a series as area 

of a histogram.

• Added to 10.3 a discussion on the importance of bounding 

errors in approximations.

• Added new Figure 10.13 illustrating how to use integrals to 

bound remainder terms of partial sums.

• Rewrote Theorem 10 in 10.4 to bring out similarity to the 

integral comparison test.

• Added new Figure 10.16 to illustrate the differing behaviors 

of the harmonic and alternating harmonic series.

• Renamed the nth-Term Test the “nth-Term Test for Diver-

gence” to emphasize that it says nothing about convergence.

• Added new Figure 10.19 to illustrate polynomials converg-

ing to ln (1 + x), which illustrates convergence on the half-

open interval (-1, 14 .
• Used red dots and intervals to indicate intervals and points 

where divergence occurs, and blue to indicate convergence, 

throughout Chapter 10.

• Added new Figure 10.21 to show the six different possibili-

ties for an interval of convergence.

• Added new Exercises: 10.1: 27–30, 72–77; 10.2: 19–22, 

73–76, 105; 10.3: 11–12, 39–42; 10.4: 55–56; 10.5: 45–46, 

65–66; 10.6: 57–82; 10.7: 61–65; 10.8: 23–24, 39–40; 10.9: 

11–12, 37–38; PE: 41–44, 97–102.

Chapter 11

• Added new Example 1 and Figure 11.2 in 11.1 to give a 

straightforward first example of a parametrized curve.

• Updated area formulas for polar coordinates to include con-

ditions for positive r and nonoverlapping u.

• Added new Example 3 and Figure 11.37 in 11.4 to illustrate 

intersections of polar curves.

• Added new Exercises: 11.1: 19–28; 11.2: 49–50; 11.4: 21–24.

Chapter 12

• Added new Figure 12.13(b) to show the effect of scaling a 

vector.

• Added new Example 7 and Figure 12.26 in 12.3 to illustrate 

projection of a vector.

• Added discussion on general quadric surfaces in 12.6, with 

new Example 4 and new Figure 12.48 illustrating the de-

scription of an ellipsoid not centered at the origin via com-

pleting the square.

• Added new Exercises: 12.1: 31–34, 59–60, 73–76; 12.2: 

43–44; 12.3: 17–18; 12.4: 51–57; 12.5: 49–52.

Chapter 13

• Added sidebars on how to pronounce Greek letters such as 

kappa, tau, etc.

• Added new Exercises: 13.1: 1–4, 27–36; 13.2: 15–16, 

 19–20; 13.4: 27–28; 13.6: 1–2.

Chapter 14

• Elaborated on discussion of open and closed regions in 14.1.

• Standardized notation for evaluating partial derivatives, gra-

dients, and directional derivatives at a point, throughout the 

chapter.

• Renamed “branch diagrams” as “dependency diagrams,” 

which clarifies that they capture dependence of variables.

• Added new Exercises: 14.2: 51–54; 14.3: 51–54, 59–60, 

71–74, 103–104; 14.4: 20–30, 43–46, 57–58; 14.5: 41–44; 

14.6: 9–10, 61; 14.7: 61–62.

Chapter 15

• Added new Figure 15.21b to illustrate setting up limits of a 

double integral.

• Added new 15.5 Example 1, modified Examples 2 and 3, and 

added new Figures 15.31, 15.32, and 15.33 to give basic ex-

amples of setting up limits of integration for a triple integral.

• Added new material on joint probability distributions as an 

application of multivariable integration.

• Added new Examples 5, 6 and 7 to Section 15.6.

• Added new Exercises: 15.1: 15–16, 27–28; 15.6: 39–44; 

15.7: 1–22.

Chapter 16

• Added new Figure 16.4 to illustrate a line integral of a 

 function.

• Added new Figure 16.17 to illustrate a gradient field.

• Added new Figure 16.18 to illustrate a line integral of a 

 vector field.

• Clarified notation for line integrals in 16.2.

• Added discussion of the sign of potential energy in 16.3.

• Rewrote solution of Example 3 in 16.4 to clarify connection 

to Green’s Theorem.

• Updated discussion of surface orientation in 16.6 along with 

Figure 16.52.

• Added new Exercises: 16.2: 37–38, 41–46; 16.4: 1–6; 16.6: 

49–50; 16.7: 1–6; 16.8: 1–4.

Appendices: Rewrote Appendix A7 on complex numbers.
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Continuing Features

Rigor The level of rigor is consistent with that of earlier editions. We continue to distin-

guish between formal and informal discussions and to point out their differences. Starting 

with a more intuitive, less formal approach helps students understand a new or difficult 

concept so they can then appreciate its full mathematical precision and outcomes. We pay 

attention to defining ideas carefully and to proving theorems appropriate for calculus stu-

dents, while mentioning deeper or subtler issues they would study in a more advanced 

course. Our organization and distinctions between informal and formal discussions give 

the instructor a degree of flexibility in the amount and depth of coverage of the various 

topics. For example, while we do not prove the Intermediate Value Theorem or the Ex-

treme Value Theorem for continuous functions on a closed finite interval, we do state these 

theorems precisely, illustrate their meanings in numerous examples, and use them to prove 

other important results. Furthermore, for those instructors who desire greater depth of cov-

erage, in Appendix 6 we discuss the reliance of these theorems on the completeness of the 

real numbers.

Writing Exercises Writing exercises placed throughout the text ask students to explore 

and explain a variety of calculus concepts and applications. In addition, the end of each 

chapter contains a list of questions for students to review and summarize what they have 

learned. Many of these exercises make good writing assignments.

End-of-Chapter Reviews and Projects In addition to problems appearing after each 

section, each chapter culminates with review questions, practice exercises covering the 

entire chapter, and a series of Additional and Advanced Exercises with more challenging 

or synthesizing problems. Most chapters also include descriptions of several Technology 

Application Projects that can be worked by individual students or groups of students over 

a longer period of time. These projects require the use of Mathematica or Maple, along 

with pre-made files that are available for download within MyMathLab.

Writing and Applications This text continues to be easy to read, conversational, and 

mathematically rich. Each new topic is motivated by clear, easy-to-understand examples 

and is then reinforced by its application to real-world problems of immediate interest to 

students. A hallmark of this book has been the application of calculus to science and engi-

neering. These applied problems have been updated, improved, and extended continually 

over the last several editions.

Technology In a course using the text, technology can be incorporated according to the 

taste of the instructor. Each section contains exercises requiring the use of technology; 

these are marked with a T if suitable for calculator or computer use, or they are labeled 

Computer Explorations if a computer algebra system (CAS, such as Maple or Math-

ematica) is required.

Additional Resources

MyMathLab® Online Course (access code required)

Built around Pearson’s best-selling content, MyMathLab is an online homework, tutorial, 

and assessment program designed to work with this text to engage students and improve 

results. MyMathLab can be successfully implemented in any classroom environment—

lab-based, hybrid, fully online, or traditional.
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Used by more than 37 million students worldwide, MyMathLab delivers consistent, 

 measurable gains in student learning outcomes, retention, and subsequent course success. 

Visit www.mymathlab.com/results to learn more.

Preparedness One of the biggest challenges in calculus courses is making sure stu-

dents are adequately prepared with the prerequisite skills needed to successfully complete 

their course work. MyMathLab supports students with just-in-time remediation and key-

concept review.

• Integrated Review Course can be used for just-in-time 

prerequisite review. These courses contain pre-made 

quizzes to assess the prerequisite skills needed for each 

chapter, plus personalized remediation for any gaps in 

skills that are identified.

Motivation Students are motivated to succeed when they’re engaged in the learning ex-

perience and understand the relevance and power of mathematics. MyMathLab’s online 

homework offers students immediate feedback and tutorial assistance that motivates them 

to do more, which means they retain more knowledge and improve their test scores.

• Exercises with immediate feedback—the over 8080 assignable exercises for this text 

regenerate algorithmically to give students unlimited opportunity for practice and mas-

tery. MyMathLab provides helpful feedback when students enter incorrect answers and 

includes optional learning aids such as Help Me Solve This, View an Example, videos, 

and an eText.

• Setup and Solve Exercises ask students to irst describe how they will set up and ap-

proach the problem. This reinforces students’ conceptual understanding of the process 

they are applying and promotes long-term retention of the skill. 

http://www.mymathlab.com/results
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• Additional Conceptual Questions focus on deeper, theoretical understanding of the 

key concepts in calculus. These questions were written by faculty at Cornell University 

under an NSF grant and are also assignable through Learning Catalytics.

Learning and Teaching Tools

• Interactive Figures illustrate key concepts and allow manipulation for use as teaching 

and learning tools. We also include videos that use the Interactive Figures to explain 

key concepts.

• Learning Catalytics™ is a student response tool that uses students’ smartphones, tab-

lets, or laptops to engage them in more interactive tasks and thinking during lecture. 

Learning Catalytics fosters student engagement and peer-to-peer learning with real-

time analytics. Learning Catalytics is available to all MyMathLab users.
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• Instructional videos—hundreds of videos are available as learning aids within exer-

cises and for self-study. The Guide to Video-Based Assignments makes it easy to as-

sign videos for homework by showing which MyMathLab exercises correspond to each 

video.

• The complete eText is available to students through their MyMathLab courses for the 

lifetime of the edition, giving students unlimited access to the eText within any course 

using that edition of the text.

• Enhanced Sample Assignments These assignments include just-in-time prerequisite 

 review, help keep skills fresh with distributed practice of key concepts, and provide oppor-

tunities to work exercises without learning aids so students can check their understanding.

• PowerPoint Presentations that cover each section of the book are available for down-

load.

• Mathematica manual and projects, Maple manual and projects, TI Graphing Cal-

culator manual—These manuals cover Maple 17, Mathematica 8, and the TI-84 Plus 

and TI-89, respectively. Each provides detailed guidance for integrating the software 

package or graphing calculator throughout the course, including syntax and commands.

• Accessibility and achievement go hand in hand. MyMathLab is compatible with 

the JAWS screen reader, and it enables students to read and interact with multiple-

choice and free-response problem types via keyboard controls and math notation  input. 

 MyMathLab also works with screen enlargers, including ZoomText, MAGic, and 

 SuperNova. And, all MyMathLab videos have closed-captioning. More information is 

available at http://mymathlab.com/accessibility.

• A comprehensive gradebook with enhanced reporting functionality allows you to 

 efficiently manage your course.

• The Reporting Dashboard ofers insight as you view, analyze, and report learning 

outcomes. Student performance data is presented at the class, section, and program 

levels in an accessible, visual manner so you’ll have the information you need to 

keep your students on track.

• Item Analysis tracks class-wide understanding of particular exercises so you can 

 reine your class lectures or adjust the course/department syllabus. Just-in-time 

teaching has never been easier!

MyMathLab comes from an experienced partner with educational expertise and an eye 

on the future. Whether you are just getting started with MyMathLab, or have a question 

along the way, we’re here to help you learn about our technologies and how to incorporate 

them into your course. To learn more about how MyMathLab helps students succeed, visit 

www.mymathlab.com or contact your Pearson rep.

http://mymathlab.com/accessibility
http://www.mymathlab.com
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Instructor’s Solutions Manual (downloadable)
ISBN: 0-13-443918-X | 978-0-13-443918-1

The Instructor’s Solutions Manual contains complete worked-out solutions to all the exer-

cises in Thomas’ Calculus. It can be downloaded from within MyMathLab or the Pearson 

Instructor Resource Center, www.pearsonhighered.com/irc.

Just-In-Time Algebra and Trigonometry for Calculus,  
Fourth Edition
ISBN: 0-321-67104-X | 978-0-321-67104-2

Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time 

Algebra and Trigonometry for Calculus by Guntram Mueller and Ronald I. Brent is de-

signed to bolster these skills while students study calculus. As students make their way 

through calculus, this brief supplementary text is with them every step of the way, show-

ing them the necessary algebra or trigonometry topics and pointing out potential problem 

spots. The easy-to-use table of contents has topics arranged in the order in which students 

will need them as they study calculus. This supplement is available in printed form only 

(note that MyMathLab contains a separate diagnostic and remediation system for gaps in 

algebra and trigonometry skills).

Technology Manuals and Projects (downloadable)
Maple Manual and Projects by Marie Vanisko, Carroll College

Mathematica Manual and Projects by Marie Vanisko, Carroll College

TI-Graphing Calculator Manual by Elaine McDonald-Newman, Sonoma State University

These manuals and projects cover Maple 17, Mathematica 9, and the TI-84 Plus and TI-

89. Each manual provides detailed guidance for integrating a specific software package or 

graphing calculator throughout the course, including syntax and commands. The projects 

include instructions and ready-made application files for Maple and Mathematica. These 

materials are available to download within MyMathLab.

TestGen®

ISBN: 0-13-443922-8 | 978-0-13-443922-8

TestGen® (www.pearsoned.com/testgen) enables instructors to build, edit, print, and ad-

minister tests using a computerized bank of questions developed to cover all the objectives 

of the text. TestGen is algorithmically based, allowing instructors to create multiple but 

equivalent versions of the same question or test with the click of a button. Instructors can 

also modify test bank questions or add new questions. The software and test bank are avail-

able for download from Pearson Education’s online catalog, www.pearsonhighered.com.

PowerPoint® Lecture Slides
ISBN: 0-13-443911-2 | 978-0-13-443911-2

These classroom presentation slides were created for the Thomas’ Calculus series. Key 

graphics from the book are included to help bring the concepts alive in the classroom. 

These files are available to qualified instructors through the Pearson Instructor Resource 

Center, www.pearsonhighered.com/irc, and within MyMathLab.

Student’s Solutions Manual
Single Variable Calculus (Chapters 1–11), ISBN: 0-13-443907-4 | 978-0-13-443907-5

Multivariable Calculus (Chapters 10–16), ISBN: 0-13-443916-3 | 978-0-13-443916-7

The Student’s Solutions Manual contains worked-out solutions to all the odd-numbered 

exercises in Thomas’ Calculus. These manuals are available in print and can be down-

loaded from within MyMathLab.

http://www.pearsonhighered.com/irc
http://www.pearsoned.com/testgen
http://www.pearsonhighered.com
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1

OVERVIEW Functions are fundamental to the study of calculus. In this chapter we review 

what functions are and how they are visualized as graphs, how they are combined and 

transformed, and ways they can be classified.

1.1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be 

represented by an equation, a graph, a numerical table, or a verbal description; we will use 

all four representations throughout this book. This section reviews these ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level. The inter-

est paid on a cash investment depends on the length of time the investment is held. The 

area of a circle depends on the radius of the circle. The distance an object travels depends 

on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another 

variable quantity, which we often call x. We say that “y is a function of x” and write this 

symbolically as

y = ƒ(x)  (“y equals ƒ of x”).

The symbol ƒ represents the function, the letter x is the independent variable represent-

ing the input value to ƒ, and y is the dependent variable or output value of ƒ at x.

Functions

1

DEFINITION A function ƒ from a set D to a set Y is a rule that assigns a unique 

value ƒ(x) in Y  to each x in D.

The set D of all possible input values is called the domain of the function. The set of 

all output values of ƒ(x) as x varies throughout D is called the range of the function. The 

range might not include every element in the set Y. The domain and range of a function 

can be any sets of objects, but often in calculus they are sets of real numbers interpreted as 

points of a coordinate line. (In Chapters 13–16, we will encounter functions for which the 

elements of the sets are points in the plane, or in space.)

Often a function is given by a formula that describes how to calculate the output value 

from the input variable. For instance, the equation A = pr2 is a rule that calculates the 

area A of a circle from its radius r. When we define a function y = ƒ(x) with a formula 

and the domain is not stated explicitly or restricted by context, the domain is assumed to 
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be the largest set of real x-values for which the formula gives real y-values. This is called 

the natural domain of ƒ. If we want to restrict the domain in some way, we must say so. 

The domain of y = x2 is the entire set of real numbers. To restrict the domain of the func-

tion to, say, positive values of x, we would write “y = x2, x 7 0.”

Changing the domain to which we apply a formula usually changes the range as well. 

The range of y = x2 is [0, q). The range of y = x2, x Ú 2, is the set of all numbers 

obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1), 

the range is 5x2 � x Ú 26  or 5y � y Ú 46  or 34, q).

When the range of a function is a set of real numbers, the function is said to be real-

valued. The domains and ranges of most real-valued functions we consider are intervals or 

combinations of intervals. Sometimes the range of a function is not easy to find.

A function ƒ is like a machine that produces an output value ƒ(x) in its range  whenever 

we feed it an input value x from its domain (Figure 1.1). The function keys on a calculator 

give an example of a function as a machine. For instance, the 2x key on a calculator gives 

an output value (the square root) whenever you enter a nonnegative number x and press the 

2x key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associ-

ates to an element of the domain D a single element in the set Y. In Figure 1.2, the arrows 

indicate that ƒ(a) is associated with a, ƒ(x) is associated with x, and so on. Notice that a func-

tion can have the same output value for two different input elements in the domain (as occurs 

with ƒ(a) in Figure 1.2), but each input element x is assigned a single output value ƒ(x).

EXAMPLE 1  Verify the natural domains and associated ranges of some simple func-

tions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range (y)

y = x2 (-q, q) 30, q)

y = 1>x (-q, 0) ∪ (0, q) (-q, 0) ∪ (0, q)

y = 2x 30, q) 30, q)

y = 24 - x (-q, 44 30, q)

y = 21 - x2 3-1, 14 30, 14
Solution The formula y = x2 gives a real y-value for any real number x, so the domain 

is (-q, q). The range of y = x2 is 30, q) because the square of any real number is non-

negative and every nonnegative number y is the square of its own square root: y = 12y22 

for y Ú 0.

The formula y = 1>x gives a real y-value for every x except x = 0. For consistency 

in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1>x, the 

set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since 

y = 1>(1>y). That is, for y ≠ 0 the number x = 1>y is the input that is assigned to the 

output value y.

The formula y = 2x gives a real y-value only if x Ú 0. The range of y = 2x is 30, q) because every nonnegative number is some number’s square root (namely, it is the 

square root of its own square).

In y = 24 - x , the quantity 4 - x cannot be negative. That is, 4 - x Ú 0,  

or x … 4. The formula gives nonnegative real y-values for all x … 4. The range of 24 - x 

is 30, q), the set of all nonnegative numbers.

The formula y = 21 - x2 gives a real y-value for every x in the closed interval from 

-1 to 1. Outside this domain, 1 - x2 is negative and its square root is not a real number. 

The values of 1 - x2 vary from 0 to 1 on the given domain, and the square roots of these 

values do the same. The range of 21 - x2 is 30, 14 . 

Input
(domain)

Output
(range)

x f(x)f

FIGURE 1.1 A diagram showing a func-

tion as a kind of machine.

x

a f (a) f (x)

D = domain set Y = set containing
the range

FIGURE 1.2 A function from a set D  

to a set Y assigns a unique element of Y  

to each element in D.



 1.1  Functions and Their Graphs 3

Graphs of Functions

If ƒ is a function with domain D, its graph consists of the points in the Cartesian plane 

whose coordinates are the input-output pairs for ƒ. In set notation, the graph is5(x, ƒ(x)) �  x∊D6 .

The graph of the function ƒ(x) = x + 2 is the set of points with coordinates (x, y) for 

which y = x + 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function ƒ is a useful picture of its behavior. If (x, y) is a point on the 

graph, then y = ƒ(x) is the height of the graph above (or below) the point x. The height 

may be positive or negative, depending on the sign of ƒ(x) (Figure 1.4).

x

y

- 2 0

2

y  = x + 2

FIGURE 1.3 The graph of ƒ(x) = x + 2 

is the set of points (x, y) for which y has the 

value x + 2.

y

x
0 1 2

x

f (x)

(x, y)

f (1)

f (2)

FIGURE 1.4 If (x, y) lies on the graph 

of ƒ, then the value y = ƒ(x) is the height 

of the graph above the point x (or below x 

if ƒ(x) is negative).

 x y = x2

-2      4

-1      1

   0      0

   1      1

   
3
2

    
9
4

   2      4 EXAMPLE 2  Graph the function y = x2 over the interval 3-2, 24 .
Solution Make a table of xy-pairs that satisfy the equation y = x2. Plot the points (x, y) 

whose coordinates appear in the table, and draw a smooth curve (labeled with its equation) 

through the plotted points (see Figure 1.5). 

How do we know that the graph of y = x2 doesn’t look like one of these curves?

0 1 2- 1- 2

1

2

3

4
(- 2, 4)

(- 1, 1) (1, 1)

(2, 4)

3
2

9
4

,

x

y

y = x2

a   b

FIGURE 1.5 Graph of the function  

in Example 2.

y = x2?

x

y

y = x2?

x

y

To find out, we could plot more points. But how would we then connect them? The basic 

question still remains: How do we know for sure what the graph looks like between the 

points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile, 

we will have to settle for plotting points and connecting them as best we can.
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Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula and visually 

by a graph (Example 2). Another way to represent a function is numerically, through a 

table of values. Numerical representations are often used by engineers and experimental 

scientists. From an appropriate table of values, a graph of the function can be obtained 

using the method illustrated in Example 2, possibly with the aid of a computer. The graph 

consisting of only the points in the table is called a scatterplot.

EXAMPLE 3  Musical notes are pressure waves in the air. The data associated with 

Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note 

produced by a tuning fork. The table provides a representation of the pressure function (in 

micropascals) over time. If we first make a scatterplot and then connect the data points 

(t, p) from the table, we obtain the graph shown in the figure.

Time Pressure Time Pressure

0.00091 -0.080 0.00362 0.217

0.00108 0.200 0.00379 0.480

0.00125 0.480 0.00398 0.681

0.00144 0.693 0.00416 0.810

0.00162 0.816 0.00435 0.827

0.00180 0.844 0.00453 0.749

0.00198 0.771 0.00471 0.581

0.00216 0.603 0.00489 0.346

0.00234 0.368 0.00507 0.077

0.00253 0.099 0.00525 -0.164

0.00271 -0.141 0.00543 -0.320

0.00289 -0.309 0.00562 -0.354

0.00307 -0.348 0.00579 -0.248

0.00325 -0.248 0.00598 -0.035

0.00344 -0.041
 

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function ƒ can 

have only one value ƒ(x) for each x in its domain, so no vertical line can intersect the 

graph of a function more than once. If a is in the domain of the function ƒ, then the vertical 

line x = a will intersect the graph of ƒ at the single point (a, ƒ(a)).

A circle cannot be the graph of a function, since some vertical lines intersect the circle 

twice. The circle graphed in Figure 1.7a, however, contains the graphs of two functions of 

x, namely the upper semicircle defined by the function ƒ(x) = 21 - x2 and the lower 

semicircle defined by the function g (x) = -21 - x2 (Figures 1.7b and 1.7c).

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts 

of its domain. One example is the absolute value function

 0 x 0 = e x,

-x,
    

x Ú 0

x 6 0
 

−0.4
−0.2

0.2
0.4
0.6
0.8
1.0

−0.6

t (sec)

p (pressure mPa)

0.001 0.002 0.004 0.0060.003 0.005

Data

FIGURE 1.6 A smooth curve through the plotted points 

gives a graph of the pressure function represented by the  

accompanying tabled data (Example 3).

First formula

Second formula
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whose graph is given in Figure 1.8. The right-hand side of the equation means that the 

function equals x if x Ú 0, and equals -x if x 6 0. Piecewise-defined functions often 

arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4  The function

ƒ(x) = c -x, x 6 0

  x2, 0 … x … 1

  1, x 7 1

- 1 10
x

y

(a) x2 + y2 = 1

- 1 10
x

y

- 1 1

0
x

y

(b) y = "1 - x2 (c) y = - "1 - x2

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The up-

per semicircle is the graph of the function ƒ(x) = 21 - x2. (c) The lower semicircle is the graph 

of the function g (x) = -21 - x2.

x

y = 0 x 0
y = x

y = - x

y

- 3 - 2 - 1 0 1 2 3

1

2

3

FIGURE 1.8 The absolute value  

function has domain (-q, q) and  

range 30, q).

First formula

Second formula

Third formula

is defined on the entire real line but has values given by different formulas, depending on 

the position of x. The values of ƒ are given by y = -x when x 6 0, y = x2 when 

0 … x … 1, and y = 1 when x 7 1. The function, however, is just one function whose 

domain is the entire set of real numbers (Figure 1.9). 

EXAMPLE 5  The function whose value at any number x is the greatest integer less 

than or equal to x is called the greatest integer function or the integer floor function. It 

is denoted :x; . Figure 1.10 shows the graph. Observe that

 
:2.4; = 2, :1.9; = 1, :0; = 0, :-1.2; = -2,:2; = 2, :0.2; = 0, :-0.3; = -1, :-2; = -2.

 

EXAMPLE 6  The function whose value at any number x is the smallest integer 

greater than or equal to x is called the least integer function or the integer ceiling func-

tion. It is denoted <x= . Figure 1.11 shows the graph. For positive values of x, this function 

might represent, for example, the cost of parking x hours in a parking lot that charges $1 

for each hour or part of an hour. 

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the 

function is increasing. If the graph descends or falls as you move from left to right, the 

function is decreasing.

- 2 - 1 0 1 2

1

2

x

y

y = - x

y = x2

y = 1

y = f (x)

FIGURE 1.9 To graph the function 

y = ƒ(x) shown here, we apply different 

formulas to different parts of its domain 

(Example 4).

1

- 2

2

3

- 2 - 1 1 2 3

y = x

y = :x;
x

y

FIGURE 1.10 The graph of the greatest 

integer function y = :x;  lies on or below 

the line y = x, so it provides an integer 

floor for x (Example 5).

DEFINITIONS Let ƒ be a function defined on an interval I and let x1 and x2 be 

two distinct points in I.

1. If ƒ(x2) 7 ƒ(x1) whenever x1 6 x2, then ƒ is said to be increasing on I.

2. If ƒ(x2) 6 ƒ(x1) whenever x1 6 x2, then ƒ is said to be decreasing on I.
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It is important to realize that the definitions of increasing and decreasing functions 

must be satisfied for every pair of points x1 and x2 in I with x1 6 x2. Because we use the 

inequality 6 to compare the function values, instead of … , it is sometimes said that ƒ is 

strictly increasing or decreasing on I. The interval I may be finite (also called bounded) or 

infinite (unbounded).

EXAMPLE 7  The function graphed in Figure 1.9 is decreasing on (-q, 0) and 

increasing on (0, 1). The function is neither increasing nor decreasing on the interval 

(1, q) because the function is constant on that interval, and hence the strict inequalities in 

the definition of increasing or decreasing are not satisfied on (1, q). 

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have special symmetry properties.

x

y

1- 1- 2 2 3

- 2

- 1

1

2

3
y = x

y = <x=

FIGURE 1.11 The graph of the least 

integer function y = <x=  lies on or above 

the line y = x, so it provides an integer 

ceiling for x (Example 6).

DEFINITIONS A function y = ƒ(x) is an

even function of x if ƒ(-x) = ƒ(x),

odd function of x if ƒ(-x) = -ƒ(x),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in 

y = x2 or y = x4, it is an even function of x because (-x)2 = x2 and (-x)4 = x4. If y is an 

odd power of x, as in y = x or y = x3, it is an odd function of x because (-x)1 = -x and 

(-x)3 = -x3.

The graph of an even function is symmetric about the y-axis. Since ƒ(-x) = ƒ(x), a 

point (x, y) lies on the graph if and only if the point (-x, y) lies on the graph (Figure 1.12a). 

A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since ƒ(-x) = -ƒ(x), 

a point (x, y) lies on the graph if and only if the point (-x, -y) lies on the graph (Figure 1.12b). 

Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin 

leaves the graph unchanged. Notice that the definitions imply that both x and -x must be 

in the domain of ƒ.

EXAMPLE 8  Here are several functions illustrating the definitions.

ƒ(x) = x2  Even function: (-x)2 = x2 for all x; symmetry about y-axis. So 

ƒ(-3) = 9 = ƒ(3). Changing the sign of x does not change the 

value of an even function.

ƒ(x) = x2 + 1  Even function: (-x)2 + 1 = x2 + 1 for all x; symmetry about 

y-axis (Figure 1.13a).

ƒ(x) = x  Odd function: (-x) = -x for all x; symmetry about the origin. So 

ƒ(-3) = -3 while ƒ(3) = 3. Changing the sign of x changes the 

sign of an odd function.

ƒ(x) = x + 1  Not odd: ƒ(-x) = -x + 1, but -ƒ(x) = -x - 1. The two are not 

equal.

 Not even: (-x) + 1 ≠ x + 1 for all x ≠ 0 (Figure 1.13b). 

(a)

(b)

0
x

y

y = x2

(x, y)(- x, y)

0
x

y

y = x3

(x, y)

(- x, - y)

FIGURE 1.12 (a) The graph of y = x2 

(an even function) is symmetric about the 

y-axis. (b) The graph of y = x3 (an odd 

function) is symmetric about the origin.



 1.1  Functions and Their Graphs 7

Common Functions

A variety of important types of functions are frequently encountered in calculus.

Linear Functions A function of the form ƒ(x) = mx + b, where m and b are fixed con-

stants, is called a linear function. Figure 1.14a shows an array of lines ƒ(x) = mx. Each 

of these has b = 0, so these lines pass through the origin. The function ƒ(x) = x where 

m = 1 and b = 0 is called the identity function. Constant functions result when the 

slope is m = 0 (Figure 1.14b). 

(a) (b)

x

y

0

1

y = x2 + 1

y = x2

x

y

0- 1

1

y = x + 1

y = x

FIGURE 1.13 (a) When we add the constant term 1 to the function 

y = x2, the resulting function y = x2 + 1 is still even and its graph is 

still symmetric about the y-axis. (b) When we add the constant term 1 to 

the function y = x, the resulting function y = x + 1 is no longer odd, 

since the symmetry about the origin is lost. The function y = x + 1 is 

also not even (Example 8).

0
x

y
m = - 3 m = 2

m = 1m = - 1

y = - 3x

y = - x

y = 2x

y = x

y = x
1
2

m =
1
2

(a)            

x

y

0 1 2

1

2 y =
3
2

(b)

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant func-

tion with slope m = 0.

If the variable y is proportional to the reciprocal 1>x, then sometimes it is said that y is 

inversely proportional to x (because 1>x is the multiplicative inverse of x).

Power Functions A function ƒ(x) = xa, where a is a constant, is called a power function. 

There are several important cases to consider.

DEFINITION Two variables y and x are proportional (to one another) if one 

is always a constant multiple of the other—that is, if y = kx for some nonzero 

constant k.
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(a) ƒ(x) = x a with a = n,  a positive integer.

The graphs of ƒ(x) = xn, for n = 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-

tions are defined for all real values of x. Notice that as the power n gets larger, the curves 

tend to flatten toward the x-axis on the interval (-1, 1) and to rise more steeply for 0 x 0 7 1. Each curve passes through the point (1, 1) and through the origin. The graphs of 

functions with even powers are symmetric about the y-axis; those with odd powers are 

symmetric about the origin. The even-powered functions are decreasing on the interval 

(-q, 04  and increasing on 30, q); the odd-powered functions are increasing over the 

entire real line (-q, q).

- 1 0 1

- 1

1

x

y
y = x2

- 1 10

- 1

1

x

y
y = x

- 1 10

- 1

1

x

y
y = x3

- 1 0 1

- 1

1

x

y
y = x4

- 1 0 1

- 1

1

x

y
y = x5

FIGURE 1.15 Graphs of ƒ(x) = xn, n = 1, 2, 3, 4, 5, defined for -q 6 x 6 q.

(b) ƒ(x) = x a with a = -1  or  a = -2.

The graphs of the functions ƒ(x) = x-1 = 1>x and g(x) = x-2 = 1>x2 are shown in Fig-

ure 1.16. Both functions are defined for all x ≠ 0 (you can never divide by zero). The 

graph of y = 1>x is the hyperbola xy = 1, which approaches the coordinate axes far from 

the origin. The graph of y = 1>x2 also approaches the coordinate axes. The graph of the 

function ƒ is symmetric about the origin; ƒ is decreasing on the intervals (-q, 0) and 

(0, q). The graph of the function g is symmetric about the y-axis; g is increasing on 

(-q, 0) and decreasing on (0, q).

x

y

x

y

0

1

1

0

1

1

y = 1
x y = 1

x2

Domain: x Z 0

Range:   y Z 0
Domain: x Z 0

Range:   y 7 0

(a) (b)

FIGURE 1.16 Graphs of the power functions ƒ(x) = xa. (a) a = -1,  

(b) a = -2.

(c) a =
1
2

,  
1
3

,  
3
2

,  and 
2
3

.

The functions ƒ(x) = x1>2 = 2x and g(x) = x1>3 = 23 x are the square root and cube 

root functions, respectively. The domain of the square root function is 30, q), but the 

cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, along 

with the graphs of y = x3>2 and y = x2>3. (Recall that x3>2 = (x1>2)3 and x2>3 = (x1>3)2.)

Polynomials A function p is a polynomial if

p(x) = an xn + an - 1x
n - 1 + g+  a1 x + a0

where n is a nonnegative integer and the numbers a0, a1, a2, c, an are real constants 

(called the coefficients of the polynomial). All polynomials have domain (-q, q). If the 
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leading coefficient an ≠ 0, then n is called the degree of the polynomial. Linear functions 

with m ≠ 0 are polynomials of degree 1. Polynomials of degree 2, usually written as 

p(x) = ax2 + bx + c, are called quadratic functions. Likewise, cubic functions are 

polynomials p(x) = ax3 + bx2 + cx + d  of degree 3. Figure 1.18 shows the graphs of 

three polynomials. Techniques to graph polynomials are studied in Chapter 4.

y

x
0

1

1

y = x3>2

Domain:

Range:

0 … x 6 q

0 … y 6 q

y

x

Domain:

Range:
- q 6 x 6 q

0 … y 6 q 

0

1

1

y = x2>3

x

y

0 1

1

Domain:

Range:

0 … x 6 q 

0 … y 6 q

y =  !x

x

y

Domain:

Range:
- q 6 x 6 q

- q 6 y 6 q

1

1

0

3
y =  !x

FIGURE 1.17 Graphs of the power functions ƒ(x) = xa for a =
1
2

,  
1
3

,  
3
2

,  and 
2
3

.

x

y

0

y =  -      -  2x + 
x3

3
x2

2
1
3

(a)

y

x
- 1 1 2

2

- 2

- 4

- 6

- 8

- 10

- 12

y =  8x4 - 14x3 - 9x2 + 11x - 1

(b)

- 1 0 1 2

- 16

16

x

y

y =  (x - 2)4(x + 1)3(x - 1)

(c)

- 2- 4 2 4

- 4

- 2

2

4

FIGURE 1.18 Graphs of three polynomial functions.

Rational Functions A rational function is a quotient or ratio ƒ(x) = p(x)>q(x), where 

p and q are polynomials. The domain of a rational function is the set of all real x for which 

q(x) ≠ 0. The graphs of several rational functions are shown in Figure 1.19.

(a) (b) (c)

2 4- 4 - 2

- 2

2

4

- 4

x

y

y = 2x2 - 3
7x +  4

0

- 2

- 4

- 6

- 8

2- 2- 4 4 6

2

4

6

8

x

y

y =
11x +  2

2x3 -  1

- 5 0

1

2

- 1

5 10

- 2

x

y

Line y =
5
3

y =
5x2 +  8x -  3

3x2 +  2

NOT TO SCALE

FIGURE 1.19 Graphs of three rational functions. The straight red lines approached by the graphs are called 

asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.6.
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Algebraic Functions Any function constructed from polynomials using algebraic oper-

ations (addition, subtraction, multiplication, division, and taking roots) lies within the 

class of algebraic functions. All rational functions are algebraic, but also included are 

more complicated functions (such as those satisfying an equation like y3 - 9xy + x3 = 0, 

studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

(a)

4-1

-3

-2

-1

1

2

3

4

x

y y = x1>3(x - 4)

(b)

0

y

x

y = (x2 - 1)2>33
4

(c)

11-1 0

-1

1

x

y

5

7

y = x(1 - x)2>5

FIGURE 1.20 Graphs of three algebraic functions.

Trigonometric Functions The six basic trigonometric functions are reviewed in 

 Section 1.3. The graphs of the sine and cosine functions are shown in Figure 1.21.

Exponential Functions A function of the form ƒ(x) = ax, where a 7 0 and a ≠ 1, is 

called an exponential function (with base a). All exponential functions have domain 

(-q, q) and range (0, q), so an exponential function never assumes the value 0. We 

develop the theory of exponential functions in Section 7.3. The graphs of some exponen-

tial functions are shown in Figure 1.22.

y

x

1

- 1

p 2p

3p

(a)  f (x) = sin x

0

y

x

1

- 1

p

2

3

2 2

(b)  f (x) = cos x

0

p

2
- 

p

- p

5p

FIGURE 1.21 Graphs of the sine and cosine functions.

(a) (b)

y = 2-x

y = 3-x

y = 10-x

- 0.5- 1 0 0.5 1

2

4

6

8

10

12

y

x

y = 2x

y = 3x

y = 10x

- 0.5- 1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.22 Graphs of exponential functions.
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Logarithmic Functions These are the functions ƒ(x) = loga x, where the base a ≠ 1 

is a positive constant. They are the inverse functions of the exponential functions, and 

we define and develop the theory of these functions in Section 7.2. Figure 1.23 shows 

the graphs of four logarithmic functions with various bases. In each case the domain is 

(0, q) and the range is (-q, q).

1

- 1

1

0
x

y

y = log3x

y = log10 x

y = log2 x

y = log5x

FIGURE 1.23 Graphs of four loga-

rithmic functions.

- 1 10

1

x

y

FIGURE 1.24 Graph of a catenary or 

hanging cable. (The Latin word catena 

means “chain.”)

Transcendental Functions These are functions that are not algebraic. They include the 

trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many 

other functions as well. The catenary is one example of a transcendental function. Its graph 

has the shape of a cable, like a telephone line or electric cable, strung from one support to 

another and hanging freely under its own weight (Figure 1.24). The function defining the 

graph is discussed in Section 7.7.

Functions

In Exercises 1–6, find the domain and range of each function.

 1. ƒ(x) = 1 + x2 2. ƒ(x) = 1 - 2x

 3. F(x) = 25x + 10 4. g(x) = 2x2 - 3x

 5. ƒ(t) =
4

3 - t
 6. G(t) =

2

t2 - 16

In Exercises 7 and 8, which of the graphs are graphs of functions of x, 

and which are not? Give reasons for your answers.

 7. a. 

x

y

0

  b. 

x

y

0

 8. a. 

x

y

0

  b. 

x

y

0

Finding Formulas for Functions

 9. Express the area and perimeter of an equilateral triangle as a 

function of the triangle’s side length x.

 10. Express the side length of a square as a function of the length d of 

the square’s diagonal. Then express the area as a function of the 

diagonal length.

 11. Express the edge length of a cube as a function of the cube’s 

diagonal length d. Then express the surface area and volume of 

the cube as a function of the diagonal length.

EXERCISES 1.1
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 31. a. 

x

y

3

1
(- 1, 1) (1, 1)

 b. 

x

y

1

2

(- 2, - 1) (3, - 1)(1, - 1)

 32. a. 

x

y

0

1

TT
2

(T, 1)

 b. 

t

y

0

A

T

- A

T
2

3T
2

2T

The Greatest and Least Integer Functions

 33. For what values of x is

a. :x; = 0? b. <x= = 0?

 34. What real numbers x satisfy the equation :x; = <x=?
 35. Does <-x= = -:x;  for all real x? Give reasons for your answer.

 36. Graph the function

ƒ(x) = e :x;, x Ú 0<x= , x 6 0.

  Why is ƒ(x) called the integer part of x?

Increasing and Decreasing Functions

Graph the functions in Exercises 37–46. What symmetries, if any, do 

the graphs have? Specify the intervals over which the function is 

increasing and the intervals where it is decreasing.

 37. y = -x3 38. y = -  
1

x2

 39. y = -  
1
x  40. y =

10 x 0
 41. y = 3 0 x 0  42. y = 2-x

 43. y = x3>8 44. y = -42x

 45. y = -x3>2 46. y = (-x)2>3
Even and Odd Functions

In Exercises 47–58, say whether the function is even, odd, or neither. 

Give reasons for your answer.

 47. ƒ(x) = 3 48. ƒ(x) = x-5

 49. ƒ(x) = x2 + 1 50. ƒ(x) = x2 + x

 51. g(x) = x3 + x 52. g(x) = x4 + 3x2 - 1

 53. g(x) =
1

x2 - 1
 54. g(x) =

x

x2 - 1

 55. h(t) =
1

t - 1
 56. h(t) = � t3 �

 57. h(t) = 2t + 1 58. h(t) = 2 � t � + 1

 59. sin 2x 60. sin x2

 61. cos 3x 62. 1 + cos x

 12. A point P in the first quadrant lies on the graph of the function 

ƒ(x) = 2x. Express the coordinates of P as functions of the 

slope of the line joining P to the origin.

 13. Consider the point (x, y) lying on the graph of the line 

2x + 4y = 5. Let L be the distance from the point (x, y) to the 

origin (0, 0). Write L as a function of x.

 14. Consider the point (x, y) lying on the graph of y = 2x - 3. Let 

L be the distance between the points (x, y) and (4, 0). Write L as a 

function of y.

Functions and Graphs

Find the natural domain and graph the functions in Exercises 15–20.

 15.  ƒ(x) = 5 - 2x 16.  ƒ(x) = 1 - 2x - x2

 17.  g(x) = 3 0 x 0  18.  g(x) = 2-x

 19.  F(t) = t> 0 t 0  20.  G(t) = 1> 0 t 0
 21. Find the domain of y =

x + 3

4 - 2x2 - 9
 .

 22. Find the range of y = 2 + 29 + x2.

 23. Graph the following equations and explain why they are not 

graphs of functions of x.

a. 0 y 0 = x b. y2 = x2

 24. Graph the following equations and explain why they are not 

graphs of functions of x.

a. 0 x 0 + 0 y 0 = 1 b. 0 x + y 0 = 1

Piecewise-Defined Functions

Graph the functions in Exercises 25–28.

 25. ƒ(x) = e x, 0 … x … 1

2 - x, 1 6 x … 2

 26.  g(x) = e1 - x, 0 … x … 1

2 - x, 1 6 x … 2

 27. F(x) = e4 - x2, x … 1

x2 + 2x, x 7 1

 28. G(x) = e1>x, x 6 0

x, 0 … x

Find a formula for each function graphed in Exercises 29–32.

 29. a. 

x

y

0

1

2

(1, 1)

 b. 

t

y

0

2

41 2 3

 30. a. 

x

y

52

2
(2, 1)

 b. 

- 1
x

y

3

21

2

1

- 2

- 3

- 1
(2, - 1)
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 70. a. y = 5x    b. y = 5x    c. y = x5

x

y

f

h

g

0

 71. a.  Graph the functions ƒ(x) = x>2 and g(x) = 1 + (4>x) 

together to identify the values of x for which

x

2
7 1 +

4
x .

b. Conirm your indings in part (a) algebraically.

 72. a.  Graph the functions ƒ(x) = 3>(x - 1) and g(x) = 2>(x + 1) 

together to identify the values of x for which

3
x - 1

6
2

x + 1
.

b. Conirm your indings in part (a) algebraically.

 73. For a curve to be symmetric about the x-axis, the point (x, y) must 

lie on the curve if and only if the point (x, -y) lies on the curve. 

Explain why a curve that is symmetric about the x-axis is not the 

graph of a function, unless the function is y = 0.

 74. Three hundred books sell for $40 each, resulting in a revenue of 

(300)($40) = $12,000. For each $5 increase in the price, 25 

fewer books are sold. Write the revenue R as a function of the 

number x of $5 increases.

 75. A pen in the shape of an isosceles right triangle with legs of 

length x ft and hypotenuse of length h ft is to be built. If fencing 

costs $5/ft for the legs and $10>ft for the hypotenuse, write the 

total cost C of construction as a function of h.

 76. Industrial costs A power plant sits next to a river where the 

river is 800 ft wide. To lay a new cable from the plant to a loca-

tion in the city 2 mi downstream on the opposite side costs $180 

per foot across the river and $100 per foot along the land.

x QP

Power plant

City

800 ft

2 mi

NOT TO SCALE

a. Suppose that the cable goes from the plant to a point Q on the 

opposite side that is x ft from the point P directly opposite  

the plant. Write a function C(x) that gives the cost of laying 

the cable in terms of the distance x.

b. Generate a table of values to determine if the least expensive 

location for point Q is less than 2000 ft or greater than 2000 

ft from point P.

T

T

Theory and Examples

 63. The variable s is proportional to t, and s = 25 when t = 75. 

Determine t when s = 60.

 64. Kinetic energy The kinetic energy K of a mass is proportional 

to the square of its velocity y. If K = 12,960 joules when 

y = 18 m>sec, what is K when y = 10 m>sec?

 65. The variables r and s are inversely proportional, and r = 6 when 

s = 4. Determine s when r = 10.

 66. Boyle’s Law Boyle’s Law says that the volume V of a gas at 

constant temperature increases whenever the pressure P decreases, 

so that V and P are inversely proportional. If P = 14.7 lb>in2 

when V = 1000 in3, then what is V when P = 23.4 lb>in2?

 67. A box with an open top is to be constructed from a rectangular 

piece of cardboard with dimensions 14 in. by 22 in. by cutting out 

equal squares of side x at each corner and then folding up  

the sides as in the figure. Express the volume V of the box as a 

function of x.

x

x

x

x

x

x

x

x

22

14

 68. The accompanying figure shows a rectangle inscribed in an isos-

celes right triangle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (You might start 

by writing an equation for the line AB.)

b. Express the area of the rectangle in terms of x.

x

y

- 1 0 1x

A

B

P(x, ?)

In Exercises 69 and 70, match each equation with its graph. Do not 

use a graphing device, and give reasons for your answer.

 69. a. y = x4    b. y = x7    c. y = x10

x

y

f

g

h

0
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1.2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form 

new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where 

the denominator is zero) to produce new functions. If ƒ and g are functions, then for every 

x that belongs to the domains of both ƒ and g (that is, for x∊D(ƒ) ¨ D(g)), we define 

functions ƒ + g, ƒ - g, and ƒg by the formulas

 (ƒ + g)(x) = ƒ(x) + g(x)

 (ƒ - g)(x) = ƒ(x) - g(x)

 (ƒg)(x) = ƒ(x)g(x).

Notice that the +  sign on the left-hand side of the first equation represents the operation of 

addition of functions, whereas the +  on the right-hand side of the equation means addition 

of the real numbers ƒ(x) and g(x).

At any point of D(ƒ) ¨ D(g) at which g(x) ≠ 0, we can also define the function ƒ>g 

by the formula aƒgb (x) =
ƒ(x)

g(x)
  (where g(x) ≠ 0).

Functions can also be multiplied by constants: If c is a real number, then the function 

cƒ is defined for all x in the domain of ƒ by

(cƒ)(x) = cƒ(x).

EXAMPLE 1  The functions defined by the formulas

ƒ(x) = 2x  and  g(x) = 21 - x

have domains D(ƒ) = 30, q) and D(g) = (-q, 14 . The points common to these 

domains are the points in 30, q) ¨ (-q, 14 = 30, 14 .
The following table summarizes the formulas and domains for the various algebraic com-

binations of the two functions. We also write ƒ # g for the product function ƒg.

Function Formula Domain

ƒ + g (ƒ + g)(x) = 2x + 21 - x 30, 14 = D(ƒ) ¨ D(g)

ƒ - g (ƒ - g)(x) = 2x - 21 - x 30, 14
g - ƒ (g - ƒ)(x) = 21 - x - 2x 30, 14
ƒ # g (ƒ # g)(x) = ƒ(x)g(x) = 2x(1 - x) 30, 14
ƒ>g ƒ

g (x) =
ƒ(x)

g(x)
= A x

1 - x
30, 1)  (x = 1 excluded)

g>ƒ g

ƒ
 (x) =

g(x)

ƒ(x)
= A1 - x

x
(0, 14  (x = 0 excluded)

 

The graph of the function ƒ + g is obtained from the graphs of ƒ and g by adding the 

corresponding y-coordinates ƒ(x) and g(x) at each point x∊D(ƒ) ¨ D(g), as in Figure 1.25. 

The graphs of ƒ + g and ƒ # g from Example 1 are shown in Figure 1.26.
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Composite Functions

Composition is another method for combining functions. In this operation the output from 

one function becomes the input to a second function.

y = ( f + g)(x)

y = g(x)

y = f (x) f (a)
g(a)

f (a) + g(a)

a

2

0

4

6

8

y

x

FIGURE 1.25 Graphical addition of two 

functions.

5

1

5

2

5

3

5

4 10

1

x

y

2

1

g(x) = "1 - x f (x) = "x

y = f + g

y = f   g

FIGURE 1.26 The domain of the function 

ƒ + g is the intersection of the domains of ƒ and 

g, the interval 30, 14  on the x-axis where these 

domains overlap. This interval is also the domain 

of the function ƒ # g (Example 1).

DEFINITION If ƒ and g are functions, the composite function ƒ ∘ g (“ƒ com-

posed with g”) is defined by

(ƒ ∘ g)(x) = ƒ(g(x)).

The domain of ƒ ∘ g consists of the numbers x in the domain of g for which g(x) 

lies in the domain of ƒ.

The definition implies that ƒ ∘ g can be formed when the range of g lies in the domain 

of ƒ. To find (ƒ ∘ g)(x), first find g(x) and second find ƒ(g(x)). Figure 1.27 pictures ƒ ∘ g as 

a machine diagram, and Figure 1.28 shows the composition as an arrow diagram.

x g fg(x) f (g(x))

FIGURE 1.27 A composite function ƒ ∘ g uses  

the output g(x) of the first function g as the input  

for the second function ƒ.

x

f (g(x))

g(x)

g
f

f 
∘
 g

FIGURE 1.28 Arrow diagram for ƒ ∘ g. If x lies in the 

domain of g and g(x) lies in the domain of ƒ, then the 

functions ƒ and g can be composed to form (ƒ ∘ g)(x).

To evaluate the composite function g ∘ ƒ (when defined), we find ƒ(x) first and then 

find g(ƒ(x)). The domain of g ∘ ƒ is the set of numbers x in the domain of ƒ such that ƒ(x) 

lies in the domain of g.

The functions ƒ ∘ g and g ∘ ƒ are usually quite different.
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EXAMPLE 2  If ƒ(x) = 2x and g(x) = x + 1, find

(a) (ƒ ∘ g)(x)  (b) (g ∘ ƒ)(x)  (c) (ƒ ∘ ƒ)(x)  (d) (g ∘ g)(x).

Solution

Composition Domain

(a) (ƒ ∘ g)(x) = ƒ(g(x)) = 2g(x) = 2x + 1 3-1, q)

(b) (g ∘ ƒ)(x) = g(ƒ(x)) = ƒ(x) + 1 = 2x + 1 30, q)

(c) (ƒ ∘ ƒ)(x) = ƒ(ƒ(x)) = 2ƒ(x) = 21x = x1>4 30, q)

(d) (g ∘ g)(x) = g(g(x)) = g(x) + 1 = (x + 1) + 1 = x + 2 (-q, q)

To see why the domain of ƒ ∘ g is 3-1, q), notice that g(x) = x + 1 is defined for all real 

x but g(x) belongs to the domain of ƒ only if x + 1 Ú 0, that is to say, when x Ú -1. 

Notice that if ƒ(x) = x2 and g(x) = 2x, then (ƒ ∘ g)(x) = 12x22 = x. However, the 

domain of ƒ ∘ g is 30, q), not (-q, q), since 2x requires x Ú 0.

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to 

each output of the existing function, or to its input variable. The graph of the new function 

is the graph of the original function shifted vertically or horizontally, as follows.

Shift Formulas

Vertical Shifts

y = ƒ(x) + k Shifts the graph of ƒ up k units if k 7 0

Shifts it down 0 k 0  units if k 6 0

Horizontal Shifts

y = ƒ(x + h) Shifts the graph of ƒ left h units if h 7 0

Shifts it right 0 h 0  units if h 6 0

EXAMPLE 3

(a) Adding 1 to the right-hand side of the formula y = x2 to get y = x2 + 1 shifts the 

graph up 1 unit (Figure 1.29).

(b) Adding -2 to the right-hand side of the formula y = x2 to get y = x2 - 2 shifts the 

graph down 2 units (Figure 1.29).

(c) Adding 3 to x in y = x2 to get y = (x + 3)2 shifts the graph 3 units to the left, while 

adding -2 shifts the graph 2 units to the right (Figure 1.30).

(d) Adding -2 to x in y = 0 x 0 , and then adding -1 to the result, gives y = 0 x - 2 0 - 1 

and shifts the graph 2 units to the right and 1 unit down (Figure 1.31). 

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = ƒ(x) is to stretch or compress it, vertically or horizon-

tally. This is accomplished by multiplying the function ƒ, or the independent variable x, by 

an appropriate constant c. Reflections across the coordinate axes are special cases where 

c = -1.

x

y

2

1

2

2 units

1 unit

- 2

- 2

- 1

0

y = x2 
- 2

y = x2

y = x2 
+ 1

y = x2 
+ 2

FIGURE 1.29 To shift the graph of 

ƒ(x) = x2 up (or down), we add positive 

(or negative) constants to the formula for  

ƒ (Examples 3a and b).
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EXAMPLE 4  Here we scale and reflect the graph of y = 2x.

(a) Vertical: Multiplying the right-hand side of y = 2x by 3 to get y = 32x stretches 

the graph vertically by a factor of 3, whereas multiplying by 1>3 compresses the graph 

vertically by a factor of 3 (Figure 1.32).

(b) Horizontal: The graph of y = 23x is a horizontal compression of the graph of 

y = 2x by a factor of 3, and y = 2x>3 is a horizontal stretching by a factor of 3 

(Figure 1.33). Note that y = 23x = 232x so a horizontal compression may cor-

respond to a vertical stretching by a diferent scaling factor. Likewise, a horizontal 

stretching may correspond to a vertical compression by a diferent scaling factor.

(c) Relection: The graph of y = -2x is a relection of y = 2x across the x-axis, and 

y = 2-x is a relection across the y-axis (Figure 1.34). 

x

y

0- 3 2

1

1

y = (x - 2)2y = x2y = (x + 3)2

Add a positive

constant to x.

Add a negative

constant to x.

FIGURE 1.30 To shift the graph of y = x2 to 

the left, we add a positive constant to x (Example 

3c). To shift the graph to the right, we add a 

negative constant to x.

- 4 - 2 2 4 6
- 1

1

4

x

y

y = 0 x - 2 0  - 1 

FIGURE 1.31 The graph of y = 0 x 0  
shifted 2 units to the right and 1 unit 

down (Example 3d).

Vertical and Horizontal Scaling and Reflecting Formulas

For c + 1, the graph is scaled:

y = cƒ(x) Stretches the graph of ƒ vertically by a factor of c.

y =
1
c ƒ(x) Compresses the graph of ƒ vertically by a factor of c.

y = ƒ(cx) Compresses the graph of ƒ horizontally by a factor of c.

y = ƒ(x>c) Stretches the graph of ƒ horizontally by a factor of c.

For c = −1, the graph is relected:

y = -ƒ(x) Relects the graph of ƒ across the x-axis.

y = ƒ(-x) Relects the graph of ƒ across the y-axis.

- 1 10 2 3 4

1

2

3

4

5

x

y

y = "x

y =    "x

y = 3"x

3

1

stretch

compress

FIGURE 1.32 Vertically stretching 

and compressing the graph y = 1x by 

a factor of 3 (Example 4a).

- 1 0 1 2 3 4

1

2

3

4

x

y

y = "3 x

y = "x>3
y = "x

compress

stretch

FIGURE 1.33 Horizontally stretching and 

compressing the graph y = 1x by a factor of 

3 (Example 4b).

- 3 - 2 - 1 1 2 3

- 1

1

x

y

y = "x

y = - "x

y = "- x

FIGURE 1.34 Reflections of the 

graph y = 1x across the coordinate 

axes (Example 4c).
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EXAMPLE 5  Given the function ƒ(x) = x4 - 4x3 + 10 (Figure 1.35a), find formu-

las to

(a) compress the graph horizontally by a factor of 2 followed by a relection across the 

y-axis (Figure 1.35b).

(b) compress the graph vertically by a factor of 2 followed by a relection across the x-axis 

(Figure 1.35c).

- 1 0 1 2 3 4

- 20

- 10

10

20

x

y

f (x) = x4 - 4x3 
+ 10

(a)

- 2 - 1 0 1

- 20

- 10

10

20

x

y

(b)

y = 16x4 
+ 32x3 + 10

- 1 0 1 2 3 4

- 10

10

x

y

y =  -   x4 + 2x3 
- 5

1

2

(c)

FIGURE 1.35 (a) The original graph of ƒ. (b) The horizontal compression of y = ƒ(x) in part (a) by a factor of 2, followed 

by a reflection across the y-axis. (c) The vertical compression of y = ƒ(x) in part (a) by a factor of 2, followed by a reflection 

across the x-axis (Example 5).

Solution

(a) We multiply x by 2 to get the horizontal compression, and by -1 to give relection 

across the y-axis. The formula is obtained by substituting -2x for x in the right-hand 

side of the equation for ƒ:

 y = ƒ(-2x) = (-2x)4 - 4(-2x)3 + 10

 = 16x4 + 32x3 + 10.

(b) The formula is

 y = -  
1
2

 ƒ(x) = -  
1
2

 x4 + 2x3 - 5. 

Algebraic Combinations

In Exercises 1 and 2, find the domains and ranges of ƒ, g, ƒ + g, and 

ƒ # g.

 1. ƒ(x) = x, g(x) = 2x - 1

 2. ƒ(x) = 2x + 1, g(x) = 2x - 1

In Exercises 3 and 4, find the domains and ranges of ƒ, g, ƒ>g, and 

g>ƒ.

 3. ƒ(x) = 2, g(x) = x2 + 1

 4. ƒ(x) = 1, g(x) = 1 + 2x

Compositions of Functions

 5. If ƒ(x) = x + 5 and g(x) = x2 - 3, find the following.

a. ƒ(g(0)) b. g(ƒ(0))

c. ƒ(g(x)) d. g(ƒ(x))

e. ƒ(ƒ(-5)) f. g(g(2))

g. ƒ(ƒ(x)) h. g(g(x))

 6. If ƒ(x) = x - 1 and g(x) = 1>(x + 1), find the following.

a. ƒ(g(1>2)) b. g(ƒ(1>2))

c. ƒ(g(x)) d. g(ƒ(x))

e. ƒ(ƒ(2)) f. g(g(2))

g. ƒ(ƒ(x)) h. g(g(x))

EXERCISES 1.2
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In Exercises 17 and 18, (a) write formulas for ƒ ∘ g and g ∘ ƒ and find 

the (b) domain and (c) range of each.

 17. ƒ(x) = 2x + 1, g(x) =
1
x

 18. ƒ(x) = x2, g(x) = 1 - 2x

 19. Let ƒ(x) =
x

x - 2
. Find a function y = g(x) so that (ƒ ∘ g)(x) = x.

 20. Let ƒ(x) = 2x3 - 4. Find a function y = g(x) so that 

(ƒ ∘ g)(x) = x + 2.

 21. A balloon’s volume V is given by V = s2 + 2s + 3 cm3, where s 

is the ambient temperature in °C. The ambient temperature s at 

time t minutes is given by s = 2t - 3 °C. Write the balloon’s 

volume V as a function of time t.

 22. Use the graphs of ƒ and g to sketch the graph of y = ƒ(g(x)).

a.  b. 

Shifting Graphs

 23. The accompanying figure shows the graph of y = -x2 shifted to 

two new positions. Write equations for the new graphs.

x

y

- 7 0 4

Position (a) Position (b)y = - x2

 24. The accompanying figure shows the graph of y = x2 shifted to 

two new positions. Write equations for the new graphs.

x

y

Position (a)

Position (b)

y = x2

- 5

0

3

x

y

−2

−4

0 2 4−2−4

2

4

f g

x

y

−2

−4

0 2 4−2−4

2

4

f

g

24

2

2

2

In Exercises 7–10, write a formula for ƒ ∘ g ∘ h.

 7. ƒ(x) = x + 1, g(x) = 3x, h(x) = 4 - x

 8. ƒ(x) = 3x + 4, g(x) = 2x - 1, h(x) = x2

 9. ƒ(x) = 2x + 1, g(x) =
1

x + 4
 , h(x) =

1
x

 10. ƒ(x) =
x + 2
3 - x

 , g(x) =
x2

x2 + 1
 , h(x) = 22 - x

Let ƒ(x) = x - 3, g(x) = 2x, h(x) = x3, and j(x) = 2x. Express 

each of the functions in Exercises 11 and 12 as a composition involv-

ing one or more of ƒ, g, h, and j.

 11. a. y = 2x - 3 b. y = 22x

c. y = x1>4 d. y = 4x

e. y = 2(x - 3)3 f. y = (2x - 6)3

 12. a. y = 2x - 3 b. y = x3>2
c. y = x9 d. y = x - 6

e. y = 22x - 3 f. y = 2x3 - 3

 13. Copy and complete the following table.

 g(x)  ƒ(x) (ƒ ∘ g) (x)

a. x - 7  2x  ?

b. x + 2  3x  ?

c. ? 2x - 5 2x2 - 5

d. 
x

x - 1
 

x

x - 1
 ?

e. ?  1 +
1
x

 x

f. 
1
x

 ?  x

 14. Copy and complete the following table.

 g(x)  ƒ(x) (ƒ ∘ g) (x)

a. 
1

x - 1
 0 x 0  ?

b. ? x - 1
x

 
x

x + 1

c. ?  2x  0 x 0
d. 2x  ?  0 x 0

 15. Evaluate each expression using the given table of values:

x -2 -1    0    1 2

ƒ(x)    1    0 -2    1 2

g(x)    2    1    0 -1 0

a. ƒ(g(-1)) b. g(ƒ(0)) c. ƒ(ƒ(-1))

d. g(g(2)) e. g(ƒ(-2)) f. ƒ(g(1))

 16. Evaluate each expression using the functions

ƒ(x) = 2 - x, g(x) = b-x, -2 … x 6 0

x - 1, 0 … x … 2.

a. ƒ(g(0)) b. g(ƒ(3)) c. g(g(-1))

d. ƒ(ƒ(2)) e. g(ƒ(0)) f. ƒ(g(1>2))
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 39. y = � x - 2 �  40. y = �1 - x � - 1

 41. y = 1 + 2x - 1 42. y = 1 - 2x

 43. y = (x + 1)2>3 44. y = (x - 8)2>3
 45. y = 1 - x2>3 46. y + 4 = x2>3
 47. y = 23 x - 1 - 1 48. y = (x + 2)3>2 + 1

 49. y =
1

x - 2
 50. y =

1
x - 2

 51. y =
1
x + 2 52. y =

1
x + 2

 53. y =
1

(x - 1)2
 54. y =

1

x2
- 1

 55. y =
1

x2
+ 1 56. y =

1

(x + 1)2

 57. The accompanying figure shows the graph of a function ƒ(x) with 

domain 30, 24  and range 30, 14 . Find the domains and ranges of 

the following functions, and sketch their graphs.

x

y

0 2

1 y  = f (x)

a. ƒ(x) + 2 b. ƒ(x) - 1

c. 2ƒ(x) d. -ƒ(x)

e. ƒ(x + 2) f. ƒ(x - 1)

g. ƒ(-x) h. -ƒ(x + 1) + 1

 58. The accompanying figure shows the graph of a function g(t) with 

domain 3-4, 04  and range 3-3, 04 . Find the domains and 

ranges of the following functions, and sketch their graphs.

t

y

- 3

- 2 0- 4

y = g(t)

a. g(- t) b. -g(t)

c. g(t) + 3 d. 1 - g(t)

e. g(- t + 2) f. g(t - 2)

g. g(1 - t) h. -g(t - 4)

Vertical and Horizontal Scaling

Exercises 59–68 tell by what factor and direction the graphs of the 

given functions are to be stretched or compressed. Give an equation 

for the stretched or compressed graph.

 59. y = x2 - 1, stretched vertically by a factor of 3

 60. y = x2 - 1, compressed horizontally by a factor of 2

 61. y = 1 +
1

x2
, compressed vertically by a factor of 2

 25. Match the equations listed in parts (a) – (d) to the graphs in the 

accompanying figure.

a. y = (x - 1)2 - 4 b. y = (x - 2)2 + 2

c. y = (x + 2)2 + 2 d. y = (x + 3)2 - 2

x

y

Position 2 Position 1

Position 4

Position 3

- 4 - 3 - 2 - 1 0 1 2 3

(- 2, 2) (2, 2)

(- 3, - 2)

(1, - 4)

1

2

3

 26. The accompanying figure shows the graph of y = -x2 shifted to 

four new positions. Write an equation for each new graph.

x

y

(- 2, 3)

(- 4, - 1)

(1, 4)

(2, 0)

(b)

(c) (d)

(a)

Exercises 27–36 tell how many units and in what directions the graphs 

of the given equations are to be shifted. Give an equation for the 

shifted graph. Then sketch the original and shifted graphs together, 

labeling each graph with its equation.

 27. x2 + y2 = 49 Down 3, left 2

 28. x2 + y2 = 25 Up 3, left 4

 29. y = x3 Left 1, down 1

 30. y = x2>3 Right 1, down 1

 31. y = 2x Left 0.81

 32. y = -2x Right 3

 33. y = 2x - 7 Up 7

 34. y =
1
2

 (x + 1) + 5 Down 5, right 1

 35. y = 1>x Up 1, right 1

 36. y = 1>x2 Left 2, down 1

Graph the functions in Exercises 37–56.

 37. y = 2x + 4 38. y = 29 - x
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If the circle is a unit circle having radius r = 1, then from Figure 1.36 and Equation (1), 

we see that the central angle u measured in radians is just the length of the arc that the 

angle cuts from the unit circle. Since one complete revolution of the unit circle is 360° or 

2p radians, we have

 p radians = 180° (2)

and

1 radian =
180
p  (≈57.3) degrees  or  1 degree =  

p
180

 (≈0.017) radians.

Table 1.1 shows the equivalence between degree and radian measures for some basic 

angles.

 75. y = -23 x 76. y = (-2x)2>3
 77. Graph the function y = 0 x2 - 1 0 .
 78. Graph the function y = 3 0 x 0 .
Combining Functions

 79. Assume that ƒ is an even function, g is an odd function, and both 

ƒ and g are defined on the entire real line (-q, q). Which of the 

following (where defined) are even? odd?

a. ƒg b. ƒ>g c. g>ƒ
d. ƒ2 = ƒƒ e. g2 = gg f. ƒ ∘ g

g. g ∘ ƒ h. ƒ ∘ ƒ i. g ∘ g

 80. Can a function be both even and odd? Give reasons for your 

answer.

 81. (Continuation of Example 1.) Graph the functions ƒ(x) = 2x 

  and g(x) = 21 - x together with their (a) sum, (b) product,  

(c) two differences, (d) two quotients.

 82. Let ƒ(x) = x - 7 and g(x) = x2. Graph ƒ and g together with 

ƒ ∘ g and g ∘ ƒ.

T

T

 62. y = 1 +
1

x2
, stretched horizontally by a factor of 3

 63. y = 2x + 1, compressed horizontally by a factor of 4

 64. y = 2x + 1, stretched vertically by a factor of 3

 65. y = 24 - x2, stretched horizontally by a factor of 2

 66. y = 24 - x2, compressed vertically by a factor of 3

 67. y = 1 - x3, compressed horizontally by a factor of 3

 68. y = 1 - x3, stretched horizontally by a factor of 2

Graphing

In Exercises 69–76, graph each function, not by plotting points, but by 

starting with the graph of one of the standard functions presented in 

Figures 1.14–1.17 and applying an appropriate transformation.

 69. y = -22x + 1 70. y = A1 -
x

2

 71. y = (x - 1)3 + 2 72. y = (1 - x)3 + 2

 73. y =
1
2x

- 1 74. y =
2

x2
+ 1

1.3 Trigonometric Functions

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle 

A′CB′ within a circle of radius r is defined as the number of “radius units” contained  

in the arc s subtended by that central angle. If we denote this central angle by u when mea-

sured in radians, this means that u = s>r  (Figure 1.36), or

 s = ru  (u in radians). (1)

B¿

B

s

A¿

C A
r

1

Circle of radius r
 

U n it c irc le
 

u

FIGURE 1.36 The radian measure  

of the central angle A′CB′ is the  

number u = s>r. For a unit circle of  

radius r = 1,  u is the length of arc AB  

that central angle ACB cuts from the  

unit circle.

TABLE 1.1  Angles measured in degrees and radians

Degrees −180 −135 −90 −45 0 30 45 60 90 120 135 150 180 270 360

U (radians) −P −3P
4

−P
2

−P
4

0 P
6

P
4

P
3

P
2

2P
3

3P
4

5P
6

P 3P
2

2P
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An angle in the xy-plane is said to be in standard position if its vertex lies at the ori-

gin and its initial ray lies along the positive x-axis (Figure 1.37). Angles measured counter-

clockwise from the positive x-axis are assigned positive measures; angles measured clock-

wise are assigned negative measures.

x

y

x

y

Positive
measure

Initial ray

Terminal ray

Terminal
ray

Initial ray

Negative
measure

FIGURE 1.37 Angles in standard position in the xy-plane.

Angles describing counterclockwise rotations can go arbitrarily far beyond 2p radi-

ans or 360°. Similarly, angles describing clockwise rotations can have negative measures 

of all sizes (Figure 1.38).

x

y

4
9p

x

y

3p

x

y

4
-

3p
x

y

2
-

5p

FIGURE 1.38 Nonzero radian measures can be positive or negative and can go beyond 2p.

Angle Convention: Use Radians From now on, in this book it is assumed that all 

angles are measured in radians unless degrees or some other unit is stated explicitly. When 

we talk about the angle p>3, we mean p>3 radians (which is 60°), not p>3 degrees. 

Using radians simplifies many of the operations and computations in calculus.

The Six Basic Trigonometric Functions

The trigonometric functions of an acute angle are given in terms of the sides of a right 

 triangle (Figure 1.39). We extend this definition to obtuse and negative angles by first 

placing the angle in standard position in a circle of radius r. We then define the trigono-

metric functions in terms of the coordinates of the point P(x, y) where the angle’s terminal 

ray intersects the circle (Figure 1.40).

 sine: sin u =
y
r  cosecant: csc u =

r
y 

 cosine: cos u =
x
r  secant: sec u =

r
x 

 tangent: tan u =
y
x cotangent: cot u =

x
y 

These extended definitions agree with the right-triangle definitions when the angle is 

acute.

Notice also that whenever the quotients are defined,

 tan u =
sin u
cos u

   cot u =
1

tan u

 sec u =
1

cos u
   csc u =

1
sin u

hypotenuse

adjacent

opposite

u

sin =u
opp

hyp

=u
adj

hyp
cos

tan =u
opp

adj

csc =u
hyp

opp

=u
hyp

adj
sec

cot =u
adj

opp

FIGURE 1.39 Trigonometric  

ratios of an acute angle.

x

y

P(x, y)
r

rO

u

y

x

FIGURE 1.40 The trigonometric  

functions of a general angle u are  

defined in terms of x, y, and r.
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As you can see, tan u and sec u are not defined if x = cos u = 0. This means they are not 

defined if u is {p>2, {3p>2, c. Similarly, cot u and csc u are not defined for values 

of u for which y = 0, namely u = 0, {p, {2p, c.

The exact values of these trigonometric ratios for some angles can be read from the 

triangles in Figure 1.41. For instance,

 sin 
p
4

=
1

22
   sin 

p
6

=
1
2
   sin 

p
3

=
23
2

 cos 
p
4

=
1

22
   cos 

p
6

=
23
2
   cos 

p
3

=
1
2

 tan 
p
4

= 1   tan 
p
6

=
1

23
   tan 

p
3

= 23

The ASTC rule (Figure 1.42) is useful for remembering when the basic trigonometric func-

tions are positive or negative. For instance, from the triangle in Figure 1.43, we see that

sin 
2p
3

=
23
2

,  cos 
2p
3

= -  
1
2

,  tan 
2p
3

= -23.

1

1

p
2

p
4

p
4"2

  1

p
3

p
2

p
6

2 "3

FIGURE 1.41 Radian angles and side 

lengths of two common triangles.

y

x

S
sin pos

A
all pos

T
tan pos

C
cos pos

FIGURE 1.42 The ASTC rule, remem-

bered by the statement “All Students Take 

Calculus,” tells which trigonometric func-

tions are positive in each quadrant.

x

y

"3

2
2p
3

1
2

1

2p
3

2p
3

, ,acos b bsin =
1
2

a-
2

P

"3

FIGURE 1.43 The triangle for cal-

culating the sine and cosine of 2p>3 

radians. The side lengths come from 

the geometry of right triangles.

Using a similar method we obtain the values of sin u, cos u, and tan u shown in Table 1.2.

TABLE 1.2  Values of sin u , cos u , and tan u  for selected values of u

Degrees −180 −135 −90 −45 0  30  45  60 90  120  135  150 180 270 360

U (radians)  −P  
−3P

4
 
−P

2
 
−P

4
0  

P
6

 
P
4

 
P
3

P
2  

2P
3

 
3P
4

 
5P
6

P 3P
2

2P

sin U    0  
-22

2
 -1 -22

2
0  

1
2

22
2

23
2

1  
23
2

 
22
2

 
1
2

   0  -1  0

cos U  -1  
-22

2
   0  

22
2

1 23
2

22
2

 
1
2

0  -  
1
2

-22
2

-23
2

 -1    0  1

tan U    0  1  -1 0 23
3

 1 23 -23  -1 -23
3

   0  0
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Periodicity and Graphs of the Trigonometric Functions

When an angle of measure u and an angle of measure u + 2p are in standard position, 

their terminal rays coincide. The two angles therefore have the same trigonometric func-

tion values: sin (u + 2p) = sin u, tan (u + 2p) = tan u, and so on. Similarly, 

cos (u - 2p) = cos u, sin (u - 2p) = sin u, and so on. We describe this repeating 

behavior by saying that the six basic trigonometric functions are periodic.

DEFINITION A function ƒ(x) is periodic if there is a positive number p such 

that ƒ(x + p) = ƒ(x) for every value of x. The smallest such value of p is the 

period of ƒ.

When we graph trigonometric functions in the coordinate plane, we usually denote the 

independent variable by x instead of u. Figure 1.44 shows that the tangent and cotangent 

functions have period p = p, and the other four functions have period 2p. Also, the sym-

metries in these graphs reveal that the cosine and secant functions are even and the other 

four functions are odd (although this does not prove those results).

Periods of Trigonometric Functions

Period P: tan (x + p) = tan x

 cot (x + p) = cot x

Period 2P: sin (x + 2p) = sin x

 cos (x + 2p) = cos x

 sec (x + 2p) = sec x

 csc (x + 2p) = csc x

Even

cos (-x) = cos x

sec (-x) = sec x

Odd

 sin (-x) = -sin x

 tan (-x) = - tan x

 csc (-x) = -csc x

 cot (-x) = -cot x

(a) (b) (c)

(f)(e)(d)

xx

x

y

x

y y

x

y

x

y y

y = cos x

Domain: - q 6 x 6 q

Range:    - 1 … y … 1

Period:     2p

0- p p 2p
-   
p
2

p
2

3p
2

0- p p 2p
-   
p
2

p
2

3p
2

y = sin x

y = tan x

Domain: - q 6 x 6 q

Range:    - 1 … y … 1

Period:    2p

3p
2

-    
- p

-    
p
2

0 p
2

p 3p
2

p
2

3p
2

Domain: x Z ;    , ;       , . . . 

Range:   - q 6 y 6 q

Period:    p

y = sec x y = csc x y = cot x

3p
2

- 
- p

-
p
2

0

1

p
2

p 3p
2

0

1

- p p 2p
-
p
2

p
2

3p
2

0

1

- p p 2p
-
p
2

p
2

3p
2

Domain: x Z 0, ; p, ; 2p, . . .
Range:    y … - 1 or y Ú 1
Period:    2p

Domain: x Z 0, ; p, ; 2p, . . .
Range:    - q 6 y 6 q

Period:    p

Domain: x Z ;    , ;        , . . . 

Range:    y … - 1 or y Ú 1
Period:    2p

p
2

3p
2

FIGURE 1.44 Graphs of the six basic trigonometric functions using radian measure. The shading for each 

trigonometric function indicates its periodicity.

Trigonometric Identities

The coordinates of any point P(x, y) in the plane can be expressed in terms of the point’s 

distance r from the origin and the angle u that ray OP makes with the positive x-axis 

 (Figure 1.40). Since x>r = cos u and y>r = sin u, we have

x = r cos u,  y = r sin u.

When r = 1 we can apply the Pythagorean theorem to the reference right triangle in 

 Figure 1.45 and obtain the equation

y

x

u

1

P(cos u, sin u)
x2 

+ y2 
= 1

0 cos u 0
0 sin u 0

O

FIGURE 1.45 The reference triangle for 

a general angle u.

 cos2 u + sin2 u = 1. (3)
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This equation, true for all values of u, is the most frequently used identity in trigonometry. 

Dividing this identity in turn by cos2 u and sin2 u gives

1 + tan2 u = sec2 u

1 + cot2 u = csc2 u

The following formulas hold for all angles A and B (Exercise 58).

Addition Formulas

  cos (A + B) = cos A cos B - sin A sin B 

  sin (A + B) = sin A cos B + cos A sin B 
(4)

There are similar formulas for cos (A - B) and sin (A - B) (Exercises 35 and 36). 

All the trigonometric identities needed in this book derive from Equations (3) and (4). For 

example, substituting u for both A and B in the addition formulas gives

Double-Angle Formulas

  cos 2u = cos2 u - sin2 u 

  sin 2u = 2 sin u cos u  
(5)

Additional formulas come from combining the equations

cos2 u + sin2 u = 1,  cos2 u - sin2 u = cos 2u.

We add the two equations to get 2 cos2 u = 1 + cos 2u and subtract the second from the 

first to get 2 sin2 u = 1 - cos 2u. This results in the following identities, which are useful 

in integral calculus.

Half-Angle Formulas

  cos2 u =
1 + cos 2u

2
 (6)

  sin2 u =
1 - cos 2u

2
 (7)

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if u is the angle opposite c, then

 c2 = a2 + b2 - 2ab cos u. (8)

This equation is called the law of cosines.
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To see why the law holds, we position the triangle in the xy-plane with the origin at C 

and the positive x-axis along one side of the triangle, as in Figure 1.46. The coordinates of 

A are (b, 0); the coordinates of B are (a cos u, a sin u). The square of the distance between 

A and B is therefore

 c2 = (a cos u - b)2 + (a sin u)2

 = a2(cos2 u + sin2 u) + b 

2 - 2ab cos u
 (+++)+++*
 1

 = a2 + b 

2 - 2ab cos u.

The law of cosines generalizes the Pythagorean theorem. If u = p>2, then cos u = 0 

and c2 = a2 + b2.

Two Special Inequalities

For any angle u measured in radians, the sine and cosine functions satisfy

y

x
C

a
c

b

B(a cos u, a sin u)

A(b, 0)

u

FIGURE 1.46 The square of the distance 

between A and B gives the law of cosines.

- 0 u 0 … sin u … 0 u 0  and  - 0 u 0 … 1 - cos u … 0 u 0 .
To establish these inequalities, we picture u as a nonzero angle in standard position 

(Figure 1.47). The circle in the figure is a unit circle, so 0 u 0 equals the length of the circular 

arc AP. The length of line segment AP is therefore less than 0 u 0 .
Triangle APQ is a right triangle with sides of length

QP = 0 sin u 0 ,  AQ = 1 - cos u.

From the Pythagorean theorem and the fact that AP 6 0 u 0 , we get

 sin2 u + (1 - cos u)2 = (AP)2 … u2. (9)

The terms on the left-hand side of Equation (9) are both positive, so each is smaller than 

their sum and hence is less than or equal to u2:

sin2 u … u2  and  (1 - cos u)2 … u2.

By taking square roots, this is equivalent to saying that0 sin u 0 … 0 u 0  and  0 1 - cos u 0 … 0 u 0 ,
so

- 0 u 0 … sin u … 0 u 0  and  - 0 u 0 … 1 - cos u … 0 u 0 .
These inequalities will be useful in the next chapter.

Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function sum-

marized in the following diagram apply to the trigonometric functions we have discussed 

in this section.

u

1

P

A(1, 0)

cos u 1 - cos u

sin
 u

O Q

u

x

y

FIGURE 1.47 From the geometry of 

this figure, drawn for u 7 0, we get the 

inequality sin2 u + (1 - cos u)2 … u2.

Vertical stretch or compression; 
reflection about y = d  if negative 

y = aƒ(b(x + c)) + d

Horizontal stretch or compression; 
reflection about x = -c if negative

Vertical shift

Horizontal shift
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The transformation rules applied to the sine function give the general sine function 

or sinusoid formula

ƒ(x) = A sin a2p
B

 (x - C )b + D,

where 0A 0  is the amplitude, 0B 0  is the period, C is the horizontal shift, and D is the vertical 

shift. A graphical interpretation of the various terms is given below.

D

y

x

Vertical

shift (D)

Horizontal

shift (C)

D - A

D + A

Amplitude (A)

This distance is

the period (B).

This axis is the

line y =  D.

a                  by  = A sin  + D(x  - C)2p
B

0

Radians and Degrees

 1. On a circle of radius 10 m, how long is an arc that subtends a cen-

tral angle of (a) 4p>5 radians? (b) 110°?

 2. A central angle in a circle of radius 8 is subtended by an arc of 

length 10p. Find the angle’s radian and degree measures.

 3. You want to make an 80° angle by marking an arc on the perim-

eter of a 12-in.-diameter disk and drawing lines from the ends of 

the arc to the disk’s center. To the nearest tenth of an inch, how 

long should the arc be?

 4. If you roll a 1-m-diameter wheel forward 30 cm over level 

ground, through what angle will the wheel turn? Answer in radi-

ans (to the nearest tenth) and degrees (to the nearest degree).

Evaluating Trigonometric Functions

 5. Copy and complete the following table of function values. If the 

function is undefined at a given angle, enter “UND.” Do not use a 

calculator or tables.

U −P −2P ,3 0 P ,2 3P ,4

sin u

cos u

tan u

cot u

sec u

csc u

 6. Copy and complete the following table of function values. If the 

function is undefined at a given angle, enter “UND.” Do not use a 

calculator or tables.

U -3P ,2 −P ,3 −P ,6 P ,4 5P ,6

sin u

cos u

tan u

cot u

sec u

csc u

In Exercises 7–12, one of sin x, cos x, and tan x is given. Find the 

other two if x lies in the specified interval.

 7. sin x =
3

5
, x∊ cp

2
, p d  8. tan x = 2, x∊ c 0, 

p

2
d

 9. cos x =
1
3

, x∊ c-  
p

2
, 0 d  10. cos x = -  

5
13

, x∊ cp
2

, p d
 11. tan x =

1
2

, x∊ cp , 
3p
2
d  12. sin x = -  

1
2

, x∊ cp, 
3p
2
d

Graphing Trigonometric Functions

Graph the functions in Exercises 13–22. What is the period of each 

function?

 13. sin 2x 14. sin (x>2)

 15. cos px 16. cos 
px

2

 17. -sin 
px

3
 18. -cos 2px

 19. cos ax -
p

2
b  20. sin ax +

p

6
b

EXERCISES 1.3
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Solving Trigonometric Equations

For Exercises 51–54, solve for the angle u, where 0 … u … 2p.

 51. sin2 u =
3
4

 52. sin2 u = cos2 u

 53. sin 2u - cos u = 0 54. cos 2u + cos u = 0

Theory and Examples

 55. The tangent sum formula The standard formula for the 

 tangent of the sum of two angles is

tan(A + B) =
tan A + tan B

1 - tan A tan B
.

 Derive the formula.

 56. (Continuation of Exercise 55.) Derive a formula for tan (A - B).

 57. Apply the law of cosines to the triangle in the accompanying 

 figure to derive the formula for cos (A - B).

x

y

A
B

0 1

1

1

 58. a.  Apply the formula for cos (A - B) to the identity sin u =

    cos ap
2

- ub  to obtain the addition formula for sin (A + B).

b. Derive the formula for cos (A + B) by substituting -B for B 

in the formula for cos (A - B) from Exercise 35.

 59. A triangle has sides a = 2 and b = 3 and angle C = 60°. Find 

the length of side c.

 60. A triangle has sides a = 2 and b = 3 and angle C = 40°. Find 

the length of side c.

 61.  The law of sines The law of sines says that if a, b, and c are the 

sides opposite the angles A, B, and C in a triangle, then

sin A
a =

sin B
b

=
sin C

c .

 Use the accompanying igures and the identity sin(p - u) =  

sin u, if required, to derive the law.

A

B C
a

hc b

A

B C
a

hc
b

 62. A triangle has sides a = 2 and b = 3 and angle C = 60° (as in 

Exercise 59). Find the sine of angle B using the law of sines.

 21. sin ax -
p

4
b + 1 22. cos ax +

2p
3
b - 2

Graph the functions in Exercises 23–26 in the ts-plane (t-axis horizon-

tal, s-axis vertical). What is the period of each function? What sym-

metries do the graphs have?

 23. s = cot 2t 24. s = - tan pt

 25. s = sec apt

2
b  26. s = csc a t

2
b

 27. a.  Graph y = cos x and y = sec x together for -3p>2 … x 

…  3p>2. Comment on the behavior of sec x in relation to the 

signs and values of cos x.

b. Graph y = sin x and y = csc x together for -p … x … 2p. 

Comment on the behavior of csc x in relation to the signs and 

values of sin x.

 28. Graph y = tan x and y = cot x together for -7 … x … 7. Com-

ment on the behavior of cot x in relation to the signs and values of 

tan x.

 29. Graph y = sin x and y = :sin x;  together. What are the domain 

and range of :sin x;?
 30. Graph y = sin x and y = <sin x=  together. What are the domain 

and range of <sin x=?
Using the Addition Formulas

Use the addition formulas to derive the identities in Exercises 31–36.

 31. cos ax -
p

2
b = sin x 32. cos ax +

p

2
b = -sin x

 33. sin ax +
p

2
b = cos x 34. sin ax -

p

2
b = -cos x

 35. cos (A - B) = cos A cos B + sin A sin B (Exercise 57 provides a 

different derivation.)

 36. sin (A - B) = sin A cos B - cos A sin B

 37. What happens if you take B = A in the trigonometric identity 

cos (A - B) = cos A cos B + sin A sin B? Does the result agree 

with something you already know?

 38. What happens if you take B = 2p in the addition formulas? Do 

the results agree with something you already know?

In Exercises 39–42, express the given quantity in terms of sin x and 

cos x.

 39. cos (p + x) 40. sin (2p - x)

 41. sin a3p
2

- xb  42. cos a3p
2

+ xb
 43. Evaluate sin 

7p
12

 as sin ap
4

+
p

3
b .

 44. Evaluate cos 
11p
12

 as cos ap
4

+
2p
3
b .

 45. Evaluate cos 
p

12
. 46. Evaluate sin 

5p
12

.

Using the Half-Angle Formulas

Find the function values in Exercises 47–50.

 47. cos2 
p

8
 48. cos2 

5p
12

 49. sin2 
p

12
 50. sin2 

3p
8

T

T
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identify A, B, C, and D for the sine functions in Exercises 67–70 and 

sketch their graphs.

 67. y = 2 sin (x + p) - 1 68. y =
1
2

 sin (px - p) +
1
2

 69. y = -  
2
p sin ap

2
 tb +

1
p 70. y =

L

2p
 sin 

2pt

L
, L 7 0

COMPUTER EXPLORATIONS

In Exercises 71–74, you will explore graphically the general sine 

function

ƒ(x) = A sina2p
B

 (x - C)b + D

as you change the values of the constants A, B, C, and D. Use a CAS 

or computer grapher to perform the steps in the exercises.

 71. The period B Set the constants A = 3, C = D = 0.

a. Plot ƒ(x) for the values B = 1, 3, 2p, 5p over the interval 

-4p … x … 4p. Describe what happens to the graph of the 

general sine function as the period increases.

b. What happens to the graph for negative values of B? Try it 

with B = -3 and B = -2p.

 72. The horizontal shift C Set the constants A = 3, B = 6, D = 0.

a. Plot ƒ(x) for the values C = 0, 1, and 2 over the interval 

-4p … x … 4p. Describe what happens to the graph of the 

general sine function as C increases through positive values.

b. What happens to the graph for negative values of C?

c. What smallest positive value should be assigned to C so the 

graph exhibits no horizontal shift? Conirm your answer with 

a plot.

 73. The vertical shift D Set the constants A = 3, B = 6, C = 0.

a. Plot ƒ(x) for the values D = 0, 1, and 3 over the interval 

-4p … x … 4p. Describe what happens to the graph of the 

general sine function as D increases through positive values.

b. What happens to the graph for negative values of D?

 74. The amplitude A Set the constants B = 6, C = D = 0.

a. Describe what happens to the graph of the general sine func-

tion as A increases through positive values. Confirm your 

answer by plotting ƒ(x) for the values A = 1, 5, and 9.

b. What happens to the graph for negative values of A?

 63. A triangle has side c = 2 and angles A = p>4 and B = p>3. 

Find the length a of the side opposite A.

 64. Consider the length h of the perpendicular from point B to side b 

in the given triangle. Show that

h =
b tan a tan g

tan a + tan g

B

A C

h

b

a g

 65. Refer to the given figure. Write the radius r of the circle in terms 

of a and u.

r
a

u

 66. The approximation sin x ? x It is often useful to know that, 

when x is measured in radians, sin x ≈ x for numerically small 

values of x. In Section 3.11, we will see why the approximation 

holds. The approximation error is less than 1 in 5000 if 0 x 0 6 0.1.

a. With your grapher in radian mode, graph y = sin x and 

y = x together in a viewing window about the origin. What 

do you see happening as x nears the origin?

b. With your grapher in degree mode, graph y = sin x and 

y = x together about the origin again. How is the picture 

 diferent from the one obtained with radian mode?

General Sine Curves

For

ƒ(x) = A sin a2p
B

 (x - C)b + D,

T

1.4 Graphing with Software

Many computers, calculators, and smartphones have graphing applications that enable us 

to graph very complicated functions with high precision. Many of these functions could 

not otherwise be easily graphed. However, some care must be taken when using such 

graphing software, and in this section we address some of the issues that can arise. In 

Chapter 4 we will see how calculus helps us determine that we are accurately viewing the 

important features of a function’s graph.

Graphing Windows

When software is used for graphing, a portion of the graph is visible in a display or viewing 

window. Depending on the software, the default window may give an incomplete or mis-

leading picture of the graph. We use the term square window when the units or scales used 
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on both axes are the same. This term does not mean that the display window itself is 

square (usually it is rectangular), but instead it means that the x-unit is the same length as 

the y-unit.

When a graph is displayed in the default mode, the x-unit may differ from the y-unit 

of scaling in order to capture essential features of the graph. This difference in scaling can 

cause visual distortions that may lead to erroneous interpretations of the function’s behav-

ior. Some graphing software allows us to set the viewing window by specifying one or 

both of the intervals, a … x … b and c … y … d , and it may allow for equalizing the 

scales used for the axes as well. The software selects equally spaced x-values in 3a, b4  
and then plots the points (x, ƒ(x)). A point is plotted if and only if x lies in the domain of 

the function and ƒ(x) lies within the interval 3c, d4 . A short line segment is then drawn 

between each plotted point and its next neighboring point. We now give illustrative 

 examples of some common problems that may occur with this procedure.

EXAMPLE 1  Graph the function ƒ(x) = x3 - 7x2 + 28 in each of the following 

display or viewing windows:

(a) 3-10, 104  by 3-10, 104  (b) 3-4, 44  by 3-50, 104  (c) 3-4, 104  by 3-60, 604
Solution

(a) We select a = -10, b = 10, c = -10, and d = 10 to specify the interval of x-values 

and the range of y-values for the window. The resulting graph is shown in Figure 

1.48a. It appears that the window is cutting of the bottom part of the graph and that 

the interval of x-values is too large. Let’s try the next window.

10

- 10

10- 10

10

- 50

4- 4

(a) (b) (c)

60

- 60

10- 4

FIGURE 1.48 The graph of ƒ(x) = x3 - 7x2 + 28 in different viewing windows. Selecting a window that gives a clear 

picture of a graph is often a trial-and-error process (Example 1). The default window used by the software may automatically 

display the graph in (c).

(b) We see some new features of the graph (Figure 1.48b), but the top is missing and we 

need to view more to the right of x = 4 as well. The next window should help.

(c) Figure 1.48c shows the graph in this new viewing window. Observe that we get a more 

complete picture of the graph in this window, and it is a reasonable graph of a third-

degree polynomial. 

EXAMPLE 2  When a graph is displayed, the x-unit may differ from the y-unit, as in 

the graphs shown in Figures 1.48b and 1.48c. The result is distortion in the picture, which 

may be misleading. The display window can be made square by compressing or stretching 

the units on one axis to match the scale on the other, giving the true graph. Many software 

systems have built-in options to make the window “square.” If yours does not, you may 

have to bring to your viewing some foreknowledge of the true picture.

Figure 1.49a shows the graphs of the perpendicular lines y = x and y = -x + 322, 

together with the semicircle y = 29 - x2, in a nonsquare 3-4, 44  by 3-6, 84  display win-

dow. Notice the distortion. The lines do not appear to be perpendicular, and the semicircle 

appears to be elliptical in shape.
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Figure 1.49b shows the graphs of the same functions in a square window in which the 

x-units are scaled to be the same as the y-units. Notice that the scaling on the x-axis for Fig-

ure 1.49a has been compressed in Figure 1.49b to make the window square. Figure 1.49c 

gives an enlarged view of Figure 1.49b with a square 3-3, 34  by 30, 44  window. 

(a)

8

- 6

4- 4

(b)

4

- 4

6- 6

(c)

4

0

3- 3

FIGURE 1.49 Graphs of the perpendicular lines y = x and y = -x + 322 and of the semicircle 

y = 29 - x2 appear distorted (a) in a nonsquare window, but clear (b) and (c) in square windows  

(Example 2). Some software may not provide options for the views in (b) or (c).

If the denominator of a rational function is zero at some x-value within the viewing 

window, graphing software may produce a steep near-vertical line segment from the top to 

the bottom of the window. Example 3 illustrates steep line segments.

Sometimes the graph of a trigonometric function oscillates very rapidly. When graph-

ing software plots the points of the graph and connects them, many of the maximum and 

minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 3  Graph the function ƒ(x) = sin 100x.

Solution Figure 1.50a shows the graph of ƒ in the viewing window 3-12, 124  by 3-1, 14 . We see that the graph looks very strange because the sine curve should oscillate 

periodically between -1 and 1. This behavior is not exhibited in Figure 1.50a. We might 

experiment with a smaller viewing window, say 3-6, 64  by 3-1, 14 , but the graph is not 

better (Figure 1.50b). The difficulty is that the period of the trigonometric function 

y = sin 100x is very small (2p>100 ≈ 0.063). If we choose the much smaller viewing 

window 3-0.1, 0.14  by 3-1, 14  we get the graph shown in Figure 1.50c. This graph 

reveals the expected oscillations of a sine curve. 

(a)

1

- 1

12- 12

(b)

1

- 1

6- 6

(c)

1

- 1

0.1- 0.1

FIGURE 1.50 Graphs of the function y = sin 100x in three viewing windows. Because the period is 2p>100 ≈ 0.063, 

the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 3).

EXAMPLE 4  Graph the function y = cos x +
1

200
 sin 200x.

Solution In the viewing window 3-6, 64  by 3-1, 14  the graph appears much like the 

cosine function with some very small sharp wiggles on it (Figure 1.51a). We get a better 
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(a)

1

- 1

6- 6

(b)

1.01

0.97
0.2- 0.2

FIGURE 1.51 (a) The function y = cos x +
1

200
 sin 200x. (b) A close 

up view, blown up near the y-axis. The term cos x clearly dominates the

second term, 
1

200
 sin 200x, which produces the rapid oscillations along the

cosine curve. Both views are needed for a clear idea of the graph (Example 4).

Obtaining a Complete Graph

Some graphing software will not display the portion of a graph for ƒ(x) when x 6 0. Usu-

ally that happens because of the algorithm the software is using to calculate the function 

values. Sometimes we can obtain the complete graph by defining the formula for the func-

tion in a different way, as illustrated in the next example.

EXAMPLE 5  Graph the function y = x1>3.
Solution Some graphing software displays the graph shown in Figure 1.52a. When we 

compare it with the graph of y = x1>3 = 23 x in Figure 1.17, we see that the left branch for 

x 6 0 is missing. The reason the graphs differ is that the software algorithm calculates 

x1>3 as e(1>3)ln x. Since the logarithmic function is not defined for negative values of x, the 

software can produce only the right branch, where x 7 0. (Logarithmic and exponential 

functions are discussed in detail in Chapter 7.)

(a)

2

- 2

3- 3

(b)

2

- 2

3- 3

FIGURE 1.52 The graph of y = x1>3 is missing the left branch in (a). In (b) we 

graph the function ƒ(x) =
x0 x 0 # 0 x 0 1>3, obtaining both branches. (See Example 5.)

To obtain the full picture showing both branches, we can graph the function

ƒ(x) =
x0 x 0 # 0 x 0 1>3.

This function equals x1>3 except at x = 0 (where ƒ is undefined, although 01>3 = 0). A 

graph of ƒ is displayed in Figure 1.52b. 

look when we significantly reduce the window to 3-0.2, 0.24  by 30.97, 1.014 , obtaining 

the graph in Figure 1.51b. We now see the small but rapid oscillations of the second term, 

(1>200) sin 200x, added to the comparatively larger values of the cosine curve. 
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Choosing a Viewing Window

In Exercises 1–4, use graphing software to determine which of the 

given viewing windows displays the most appropriate graph of the 

specified function.

 1. ƒ(x) = x4 - 7x2 + 6x

a. 3-1, 14  by 3-1, 14  b. 3-2, 24  by 3-5, 54
c. 3-10, 104  by 3-10, 104  d. 3-5, 54  by 3-25, 154

 2. ƒ(x) = x3 - 4x2 - 4x + 16

a. 3-1, 14  by 3-5, 54  b. 3-3, 34  by 3-10, 104
c. 3-5, 54  by 3-10, 204  d. 3-20, 204  by 3-100, 1004

 3. ƒ(x) = 5 + 12x - x3

a. 3-1, 14  by 3-1, 14  b. 3-5, 54  by 3-10, 104
c. 3-4, 44  by 3-20, 204  d. 3-4, 54  by 3-15, 254

 4. ƒ(x) = 25 + 4x - x2

a. 3-2, 24  by 3-2, 24  b. 3-2, 64  by 3-1, 44
c. 3-3, 74  by 30, 104  d. 3-10, 104  by 3-10, 104

Finding a Viewing Window

In Exercises 5–30, find an appropriate graphing software viewing 

window for the given function and use it to display its graph. The win-

dow should give a picture of the overall behavior of the function. 

There is more than one choice, but incorrect choices can miss impor-

tant aspects of the function.

 5. ƒ(x) = x4 - 4x3 + 15 6. ƒ(x) =
x3

3
-

x2

2
- 2x + 1

 7. ƒ(x) = x5 - 5x4 + 10 8. ƒ(x) = 4x3 - x4

 9. ƒ(x) = x29 - x2 10. ƒ(x) = x2(6 - x3)

T

T

 11. y = 2x - 3x2>3 12. y = x1>3(x2 - 8)

 13. y = 5x2>5 - 2x 14. y = x2>3(5 - x)

 15. y = 0 x2 - 1 0  16. y = 0 x2 - x 0
 17. y =

x + 3
x + 2

 18. y = 1 -
1

x + 3

 19. ƒ(x) =
x2 + 2

x2 + 1
 20. ƒ(x) =

x2 - 1

x2 + 1

 21. ƒ(x) =
x - 1

x2 - x - 6
 22. ƒ(x) =

8

x2 - 9

 23. ƒ(x) =
6x2 - 15x + 6

4x2 - 10x
 24. ƒ(x) =

x2 - 3
x - 2

 25. y = sin 250x 26. y = 3 cos 60x

 27. y = cos a x

50
b  28. y =

1
10

 sin a x

10
b

 29. y = x +
1
10

 sin 30x 30. y = x2 +
1
50

 cos 100x

Use graphing software to graph the functions specified in Exercises 31–36. 

Select a viewing window that reveals the key features of the function.

 31. Graph the lower half of the circle defined by the equation 

x2 + 2x = 4 + 4y - y2.

 32. Graph the upper branch of the hyperbola y2 - 16x2 = 1.

 33. Graph four periods of the function ƒ(x) = -  tan 2x.

 34. Graph two periods of the function ƒ(x) = 3 cot 
x

2
+ 1.

 35. Graph the function ƒ(x) = sin 2x + cos 3x.

 36. Graph the function ƒ(x) = sin3 x.

EXERCISES 1.4

 1. What is a function? What is its domain? Its range? What is an ar-

row diagram for a function? Give examples.

 2. What is the graph of a real-valued function of a real variable? 

What is the vertical line test?

 3. What is a piecewise-deined function? Give examples.

 4. What are the important types of functions frequently encountered 

in calculus? Give an example of each type.

 5. What is meant by an increasing function? A decreasing function? 

Give an example of each.

 6. What is an even function? An odd function? What symmetry prop-

erties do the graphs of such functions have? What advantage can 

we take of this? Give an example of a function that is neither even 

nor odd.

 7. If ƒ and g are real-valued functions, how are the domains of 

ƒ + g, ƒ - g, ƒg, and ƒ>g related to the domains of ƒ and g? 

Give examples.

 8. When is it possible to compose one function with another? Give 

examples of compositions and their values at various points. Does 

the order in which functions are composed ever matter?

 9. How do you change the equation y = ƒ(x) to shift its graph verti-

cally up or down by � k �   units? Horizontally to the left or right? 

Give examples.

 10. How do you change the equation y = ƒ(x) to compress or stretch 

the graph by a factor c 7 1? Relect the graph across a coordinate 

axis? Give examples.

 11. What is radian measure? How do you convert from radians to de-

grees? Degrees to radians?

 12. Graph the six basic trigonometric functions. What symmetries do 

the graphs have?

 13. What is a periodic function? Give examples. What are the periods 

of the six basic trigonometric functions?

CHAPTER 1 Questions to Guide Your Review
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 14. Starting with the identity sin2 u + cos2 u = 1 and the formulas 

for cos (A + B) and sin (A + B), show how a variety of other 

trigonometric identities may be derived.

 15. How does the formula for the general sine function ƒ(x) =

A sin ((2p>B)(x - C)) + D relate to the shifting, stretching, 

compressing, and relection of its graph? Give examples. Graph 

the general sine curve and identify the constants A, B, C, and D.

 16. Name three issues that arise when functions are graphed using a 

calculator or computer with graphing software. Give examples.

Functions and Graphs

 1. Express the area and circumference of a circle as functions of the 

circle’s radius. Then express the area as a function of the circum-

ference.

 2. Express the radius of a sphere as a function of the sphere’s surface 

area. Then express the surface area as a function of the volume.

 3. A point P in the irst quadrant lies on the parabola y = x2. Express 

the coordinates of P as functions of the angle of inclination of the 

line joining P to the origin.

 4. A hot-air balloon rising straight up from a level ield is tracked by 

a range inder located 500 ft from the point of liftof. Express the 

balloon’s height as a function of the angle the line from the range 

inder to the balloon makes with the ground.

In Exercises 5–8, determine whether the graph of the function is sym-

metric about the y-axis, the origin, or neither.

 5. y = x1>5 6. y = x2>5
 7. y = x2 - 2x - 1 8. y = e-x2

In Exercises 9–16, determine whether the function is even, odd, or 

neither.

 9. y = x2 + 1 10. y = x5 - x3 - x

 11. y = 1 - cos x 12. y = sec x tan x

 13. y =
x4 + 1

x3 - 2x
 14. y = x - sin x

 15. y = x + cos x 16. y = x cos x

 17. Suppose that ƒ and g are both odd functions deined on the entire 

real line. Which of the following (where deined) are even? odd?

a. ƒg  b. ƒ3  c. ƒ(sin x)  d. g(sec x)  e. 0 g 0
 18. If ƒ(a - x) = ƒ(a + x), show that g(x) = ƒ(x + a) is an even 

function.

In Exercises 19–32, ind the (a) domain and (b) range.

 19. y = � x � - 2 20. y = -2 + 21 - x

 21. y = 216 - x2 22. y = 32 - x + 1

 23. y = 2e-x - 3 24. y = tan (2x - p)

 25. y = 2 sin (3x + p) - 1 26. y = x2>5
 27. y = cos (x - 3) + 1 28. y = -1 + 23 2 - x

 29. y = 5 - 2x2 - 2x - 3 30. y = 2 +
3x2

x2 + 4

 31. y = 4 sin a1xb  32. y = 3 cos x + 4 sin x

    (Hint: A trig identity is  

required.)

 33. State whether each function is increasing, decreasing, or neither.

a. Volume of a sphere as a function of its radius

b. Greatest integer function

c. Height above Earth’s sea level as a function of atmospheric 

pressure (assumed nonzero)

d. Kinetic energy as a function of a particle’s velocity

 34. Find the largest interval on which the given function is increasing.

a. ƒ(x) = 0 x - 2 0 + 1 b. ƒ(x) = (x + 1)4

c. g(x) = (3x - 1)1>3 d. R(x) = 22x - 1

CHAPTER 1 Practice Exercises

Piecewise-Defined Functions

In Exercises 35 and 36, ind the (a) domain and (b) range.

 35. y = e2-x, -4 … x … 0

2x, 0 6 x … 4

 36. y = c -x - 2, -2 … x … -1

  x, -1 6 x … 1

-x + 2, 1 6 x … 2

In Exercises 37 and 38, write a piecewise formula for the function.

 37. 

x

1

10 2

y  38. 

x

5
(2, 5)

0 4

y

Composition of Functions

In Exercises 39 and 40, ind

a. (ƒ ∘ g) (-1). b. (g ∘ ƒ) (2).

c. (ƒ ∘ ƒ) (x). d. (g ∘ g) (x).

 39. ƒ(x) =
1
x,  g(x) =

1

2x + 2

 40. ƒ(x) = 2 - x,  g(x) = 23 x + 1

In Exercises 41 and 42, (a) write formulas for ƒ ∘ g and g ∘ ƒ and ind 

the (b) domain and (c) range of each.

 41. ƒ(x) = 2 - x2,  g(x) = 2x + 2

 42. ƒ(x) = 2x,  g(x) = 21 - x
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 55. y = -A1 +
x

2
 56. y = 1 -

x

3

 57. y =
1

2x2
+ 1 58. y = (-5x)1>3

Trigonometry

In Exercises 59–62, sketch the graph of the given function. What is the 

period of the function?

 59. y = cos 2x 60. y = sin 
x

2

 61. y = sin px 62. y = cos 
px

2

 63. Sketch the graph y = 2 cos ax -
p

3
b .

 64. Sketch the graph y = 1 + sin ax +
p

4
b .

In Exercises 65–68, ABC is a right triangle with the right angle at C. 

The sides opposite angles A, B, and C are a, b, and c, respectively.

 65. a. Find a and b if c = 2, B = p>3.

b. Find a and c if b = 2, B = p>3.

 66. a. Express a in terms of A and c.

b. Express a in terms of A and b.

 67. a. Express a in terms of B and b.

b. Express c in terms of A and a.

 68. a. Express sin A in terms of a and c.

b. Express sin A in terms of b and c.

 69. Height of a pole Two wires stretch from the top T of a vertical 

pole to points B and C on the ground, where C is 10 m closer to 

the base of the pole than is B. If wire BT makes an angle of 35° 

with the horizontal and wire CT makes an angle of 50° with the 

horizontal, how high is the pole?

 70. Height of a weather balloon Observers at positions A and B 

2 km apart simultaneously measure the angle of elevation of a 

weather balloon to be 40° and 70°, respectively. If the balloon is 

directly above a point on the line segment between A and B, ind 

the height of the balloon.

 71. a.  Graph the function ƒ(x) = sin x + cos(x>2).

b. What appears to be the period of this function?

c. Conirm your inding in part (b) algebraically.

 72. a.  Graph ƒ(x) = sin (1>x).

b. What are the domain and range of ƒ?

c. Is ƒ periodic? Give reasons for your answer.

T

T

For Exercises 43 and 44, sketch the graphs of ƒ and ƒ ∘ ƒ.

 43. ƒ(x) = c -x - 2, -4 … x … -1

-1, -1 6 x … 1

x - 2, 1 6 x … 2

 44. ƒ(x) = b x + 1, -2 … x 6 0

x - 1, 0 … x … 2

Composition with absolute values In Exercises 45–52, graph ƒ1 

and ƒ2 together. Then describe how applying the absolute value func-

tion in ƒ2 afects the graph of ƒ1.

ƒ1(x) ƒ2(x)

 45. x  0 x 0
 46. x2  0 x 0 2
 47. x3  0 x3 0
 48. x2 + x  0 x2 + x 0
 49. 4 - x2  0 4 - x2 0
 50. 

1
x  

10 x 0
 51. 2x  3 0 x 0
 52. sin x  sin 0 x 0
Shifting and Scaling Graphs

 53. Suppose the graph of g is given. Write equations for the graphs 

that are obtained from the graph of g by shifting, scaling, or re-

lecting, as indicated.

a. Up 
1
2

 unit, right 3

b. Down 2 units, left 
2
3

c. Relect about the y-axis

d. Relect about the x-axis

e. Stretch vertically by a factor of 5

f. Compress horizontally by a factor of 5

 54. Describe how each graph is obtained from the graph of y = ƒ(x).

a. y = ƒ(x - 5) b. y = ƒ(4x)

c. y = ƒ(-3x) d. y = ƒ(2x + 1)

e. y = ƒax

3
b - 4 f. y = -3ƒ(x) +

1
4

In Exercises 55–58, graph each function, not by plotting points, but by 

starting with the graph of one of the standard functions presented in 

Figures 1.15–1.17, and applying an appropriate transformation.

Functions and Graphs

 1. Are there two functions ƒ and g such that ƒ ∘ g = g ∘ ƒ? Give rea-

sons for your answer.

 2. Are there two functions ƒ and g with the following property? The 

graphs of ƒ and g are not straight lines but the graph of ƒ ∘ g is a 

straight line. Give reasons for your answer.

 3. If ƒ(x) is odd, can anything be said of g(x) = ƒ(x) - 2? What if ƒ 

is even instead? Give reasons for your answer.

 4. If g(x) is an odd function deined for all values of x, can anything 

be said about g(0)? Give reasons for your answer.

 5. Graph the equation 0 x 0 + 0 y 0 = 1 + x.

 6. Graph the equation y + � y � = x + � x � .

CHAPTER 1 Additional and Advanced Exercises



36 Chapter 1 Functions

Geometry

 15. An object’s center of mass moves at a constant velocity y along a 

straight line past the origin. The accompanying igure shows the 

coordinate system and the line of motion. The dots show positions 

that are 1 sec apart. Why are the areas A1, A2, c, A5 in the igure 

all equal? As in Kepler’s equal area law (see Section 13.6), the line 

that joins the object’s center of mass to the origin sweeps out equal 

areas in equal times.
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 16. a.  Find the slope of the line from the origin to the midpoint P of 

side AB in the triangle in the accompanying igure (a, b 7 0).

x

y

P

B(0, b)

A(a, 0)O

b. When is OP perpendicular to AB?

 17. Consider the quarter-circle of radius 1 and right triangles ABE and 

ACD given in the accompanying igure. Use standard area formu-

las to conclude that

1
2

 sin u cos u 6
u

2
6

1
2

 
sin u
cos u

.

x

y

B

E

C(0, 1)

A (1, 0)

D

1

u

 18. Let ƒ(x) = ax + b and g(x) = cx + d. What condition must 

be satisied by the constants a, b, c, d in order that (ƒ ∘ g)(x) =

(g ∘ ƒ)(x) for every value of x?

Derivations and Proofs

 7. Prove the following identities.

a. 
1 - cos x

sin x
=

sin x
1 + cos x

 b. 
1 - cos x
1 + cos x

= tan2 
x

2

 8. Explain the following “proof without words” of the law of cosines. 

(Source: Kung, Sidney H., “Proof Without Words: The Law of Co-

sines,” Mathematics Magazine, Vol. 63, no. 5, Dec. 1990, p. 342.)

a a

a

c b

a - c

2a cos u - b

u

 9. Show that the area of triangle ABC is given by 

(1>2)ab sin C = (1>2)bc sin A = (1>2)ca sin B.

BA

C

ab

c

 10. Show that the area of triangle ABC is given by 

2s(s - a)(s - b)(s - c) where s = (a + b + c)>2 is the 

semiperimeter of the triangle.

 11. Show that if ƒ is both even and odd, then ƒ(x) = 0 for every x in 

the domain of ƒ.

 12. a.  Even-odd decompositions  Let ƒ be a function whose do-

main is symmetric about the origin, that is, -x belongs to the 

domain whenever x does. Show that ƒ is the sum of an even 

function and an odd function:

ƒ(x) = E(x) + O(x),

 where E is an even function and O is an odd function. (Hint: 

Let E(x) = (ƒ(x) + ƒ(-x))>2. Show that E(-x) = E(x), so 

that E is even. Then show that O(x) = ƒ(x) - E(x) is odd.)

b. Uniqueness Show that there is only one way to write ƒ as 

the sum of an even and an odd function. (Hint: One way is 

given in part (a). If also ƒ(x) = E1(x) + O1(x) where E1 is 

even and O1 is odd, show that E - E1 = O1 - O. Then use 

Exercise 11 to show that E = E1 and O = O1.)

Efects of Parameters on Graphs

 13. What happens to the graph of y = ax2 + bx + c as

a. a changes while b and c remain ixed?

b. b changes (a and c ixed, a ≠ 0)?

c. c changes (a and b ixed, a ≠ 0)?

 14. What happens to the graph of y = a(x + b)3 + c as

a. a changes while b and c remain ixed?

b. b changes (a and c ixed, a ≠ 0)?

c. c changes (a and b ixed, a ≠ 0)?

T

T
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Mathematica/Maple Projects

Projects can be found within MyMathLab.

• An Overview of Mathematica

An overview of Mathematica suicient to complete the Mathematica modules appearing on the Web site.

• Modeling Change: Springs, Driving Safety, Radioactivity, Trees, Fish, and Mammals

Construct and interpret mathematical models, analyze and improve them, and make predictions using them.

CHAPTER 1 Technology Application Projects

Chapter opening photo: Lebrecht Music and Arts Photo Library/Alamy Stock Photo.
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OVERVIEW In this chapter we develop the concept of a limit, first intuitively and then 

formally. We use limits to describe the way a function varies. Some functions vary contin-

uously; small changes in x produce only small changes in ƒ(x). Other functions can have 

values that jump, vary erratically, or tend to increase or decrease without bound. The 

notion of limit gives a precise way to distinguish among these behaviors.

2.1 Rates of Change and Tangent Lines to Curves

Average and Instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest 

(initially not moving) near the surface of the earth and allowed to fall freely will fall a 

distance proportional to the square of the time it has been falling. This type of motion is 

called free fall. It assumes negligible air resistance to slow the object down, and that 

gravity is the only force acting on the falling object. If y denotes the distance fallen in feet 

after t seconds, then Galileo’s law is

y = 16t2 ft,

where 16 is the (approximate) constant of proportionality. (If y is measured in meters 

instead, then the constant is close to 4.9.)

More generally, suppose that a moving object has traveled distance ƒ(t) at time t. The 

object’s average speed during an interval of time 3 t1, t24  is found by dividing the distance 

traveled ƒ(t2) - ƒ(t1) by the time elapsed t2 - t1. The unit of measure is length per unit 

time: kilometers per hour, feet (or meters) per second, or whatever is appropriate to the 

problem at hand.

Limits and Continuity

2

HISTORICAL BIOGRAPHY

Galileo Galilei

(1564–1642)

www.goo.gl/QFpvlO

Average Speed

When ƒ(t) measures the distance traveled at time t,

Average speed over 3 t1, t24 =
distance traveled

elapsed time
=

ƒ(t2) - ƒ(t1)

t2 - t1

EXAMPLE 1  A rock breaks loose from the top of a tall cliff. What is its average 

speed

(a) during the irst 2 sec of fall?

(b) during the 1-sec interval between second 1 and second 2?

http://www.goo.gl/QFpvlO


 2.1  Rates of Change and Tangent Lines to Curves 39

Solution The average speed of the rock during a given time interval is the change in 

distance, ∆y, divided by the length of the time interval, ∆t . (The capital Greek letter 

Delta, written ∆ , is traditionally used to indicate the increment, or change, in a vari-

able. Increments like ∆y and ∆t  are reviewed in Appendix 3, and pronounced “delta y” 

and “delta t.”) Measuring distance in feet and time in seconds, we have the following 

calculations:

(a) For the irst 2 sec: 
∆y

∆t
=

16(2)2 - 16(0)2

2 - 0
= 32 

ft
sec

(b) From sec 1 to sec 2:  
∆y

∆t
=

16(2)2 - 16(1)2

2 - 1
= 48 

ft
sec 

We want a way to determine the speed of a falling object at a single instant t0, instead 

of using its average speed over an interval of time. To do this, we examine what happens 

when we calculate the average speed over shorter and shorter time intervals starting at t0. 

The next example illustrates this process. Our discussion is informal here but will be made 

precise in Chapter 3.

EXAMPLE 2  Find the speed of the falling rock in Example 1 at t = 1 and t = 2 sec.

Solution We can calculate the average speed of the rock over a time interval 3 t0, t0 + h4 , 
having length ∆t = (t0 + h) - (t0) = h, as

 
∆y

∆t
=

16(t0 + h)2 - 16t0 

2

h
 

ft
sec . (1)

We cannot use this formula to calculate the “instantaneous” speed at the exact moment t0 

by simply substituting h = 0, because we cannot divide by zero. But we can use it to 

calculate average speeds over shorter and shorter time intervals starting at either t0 = 1 

or t0 = 2. When we do so, by taking smaller and smaller values of h, we see a pattern 

(Table 2.1).

The average speed on intervals starting at t0 = 1 seems to approach a limiting value of 

32 as the length of the interval decreases. This suggests that the rock is falling at a speed of 

32 ft>sec at t0 = 1 sec. Let’s conirm this algebraically.

TABLE 2.1 Average speeds over short time intervals  3t0, t0 + h 4

Average speed: 
∆y

∆t
=

16(t0 + h)2 - 16t0 

2

h

Length of  

time interval  

h

Average speed over  

interval of length h 

starting at t0 = 1

Average speed over  

interval of length h  

starting at t0 = 2

1 48 80

0.1 33.6 65.6

0.01 32.16 64.16

0.001 32.016 64.016

0.0001 32.0016 64.0016

∆  is the capital Greek letter Delta
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If we set t0 = 1 and then expand the numerator in Equation (1) and simplify, we ind that

 
∆y

∆t
=

16(1 + h)2 - 16(1)2

h
=

16(1 + 2h + h2) - 16

h

 =
32h + 16h2

h
= 32 + 16h.  Can cancel h when h ≠ 0

For values of h different from 0, the expressions on the right and left are equivalent and the 

average speed is 32 + 16h ft>sec. We can now see why the average speed has the limiting 

value 32 + 16(0) = 32 ft>sec as h approaches 0.

Similarly, setting t0 = 2 in Equation (1), for values of h different from 0 the procedure 

yields

∆y

∆t
= 64 + 16h.

As h gets closer and closer to 0, the average speed has the limiting value 64 ft > sec when 

t0 = 2 sec, as suggested by Table 2.1. 

The average speed of a falling object is an example of a more general idea, an average 

rate of change.

Average Rates of Change and Secant Lines

Given any function y = ƒ(x), we calculate the average rate of change of y with respect to 

x over the interval [x1, x2] by dividing the change in the value of y, ∆y = ƒ(x2) - ƒ(x1), 

by the length ∆x = x2 - x1 = h of the interval over which the change occurs. (We use 

the symbol h for ∆x to simplify the notation here and later on.)

DEFINITION The average rate of change of y = ƒ(x) with respect to x over 

the interval 3x1, x24  is
∆y

∆x
=

ƒ(x2) - ƒ(x1)
x2 - x1

=
ƒ(x1 + h) - ƒ(x1)

h
,  h ≠ 0.

Geometrically, the rate of change of ƒ over 3x1, x24  is the slope of the line through the 

points P(x1, ƒ(x1)) and Q(x2, ƒ(x2)) (Figure 2.1). In geometry, a line joining two points of a 

curve is called a secant line. Thus, the average rate of change of ƒ from x1 to x2 is identi-

cal with the slope of secant line PQ. As the point Q approaches the point P along the 

curve, the length h of the interval over which the change occurs approaches zero. We will 

see that this procedure leads to the definition of the slope of a curve at a point.

Defining the Slope of a Curve

We know what is meant by the slope of a straight line, which tells us the rate at which it 

rises or falls—its rate of change as a linear function. But what is meant by the slope of a 

curve at a point P on the curve? If there is a tangent line to the curve at P—a line that 

grazes the curve like the tangent line to a circle—it would be reasonable to identify the 

slope of the tangent line as the slope of the curve at P. We will see that, among all the lines 

that pass through the point P, the tangent line is the one that gives the best approximation 

to the curve at P. We need a precise way to specify the tangent line at a point on a curve.

Specifying a tangent line to a circle is straightforward. A line L is tangent to a circle at 

a point P if L passes through P and is perpendicular to the radius at P (Figure 2.2). But 

what does it mean to say that a line L is tangent to a more general curve at a point P?

y

x
0

Secant

P(x1, f (x1))

Q(x2, f (x2))

≤x = h

≤y

x2x1

y = f (x)

FIGURE 2.1 A secant to the graph 

y = ƒ(x). Its slope is ∆y>∆x, the  

average rate of change of ƒ over the  

interval 3x1, x24 .

P

L

O

FIGURE 2.2 L is tangent to the circle at 

P if it passes through P perpendicular to 

radius OP.
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To define tangency for general curves, we use an approach that analyzes the behavior 

of the secant lines that pass through P and nearby points Q as Q moves toward P along the 

curve (Figure 2.3). We start with what we can calculate, namely the slope of the secant 

line PQ. We then compute the limiting value of the secant line’s slope as Q approaches P 

along the curve. (We clarify the limit idea in the next section.) If the limit exists, we take it 

to be the slope of the curve at P and define the tangent line to the curve at P to be the line 

through P with this slope.

The next example illustrates the geometric idea for finding the tangent line to a curve.

P

Q
Secant Lines

P

Tangent Line

Tangent Line

Q

Secant Lines

FIGURE 2.3 The tangent line to the curve at P is the line through P whose slope is the limit 

of the secant line slopes as Q S P from either side.

EXAMPLE 3  Find the slope of the tangent line to the parabola y = x2 at the point 

(2, 4) by analyzing the slopes of secant lines through (2, 4). Write an equation for the  

tangent line to the parabola at this point.

Solution We begin with a secant line through P(2, 4) and a nearby point 

Q(2 + h, (2 + h)2). We then write an expression for the slope of the secant line PQ and 

investigate what happens to the slope as Q approaches P along the curve:

 Secant line slope =
∆y

∆x
=

(2 + h)2 - 22

h
=

h2 + 4h + 4 - 4
h

 =
h2 + 4h

h
= h + 4.

If h 7 0, then Q lies above and to the right of P, as in Figure 2.4. If h 6 0, then Q lies to 

the left of P (not shown). In either case, as Q approaches P along the curve, h approaches 

zero and the secant line slope h + 4 approaches 4. We take 4 to be the parabola’s slope at P.

x

y

0 2

NOT TO SCALE

Tangent line slope = 4

Δy = (2 + h)2 − 4

y = x2

Q(2 + h, (2 + h)2)

Δx = h

2 + h

P(2, 4)

Secant line slope is = h + 4.
(2 + h)2 − 4

h

FIGURE 2.4 Finding the slope of the parabola y = x2 at the point P(2, 4) as the 

limit of secant line slopes (Example 3).
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The tangent line to the parabola at P is the line through P with slope 4:

 y = 4 + 4(x - 2) Point-slope equation

 y = 4x - 4.

Rates of Change and Tangent Lines

The rates at which the rock in Example 2 was falling at the instants t = 1 and t = 2 are 

called instantaneous rates of change. Instantaneous rates of change and slopes of tangent 

lines are closely connected, as we see in the following examples.

EXAMPLE 4  Figure 2.5 shows how a population p of fruit flies (Drosophila) grew in 

a 50-day experiment. The number of flies was counted at regular intervals, the counted 

values plotted with respect to the number of elapsed days t, and the points joined by a smooth 

curve (colored blue in Figure 2.5). Find the average growth rate from day 23 to day 45.

Solution There were 150 flies on day 23 and 340 flies on day 45. Thus the number of 

flies increased by 340 - 150 = 190 in 45 - 23 = 22 days. The average rate of change 

of the population from day 23 to day 45 was

Average rate of change: 
∆p

∆t
=

340 - 150
45 - 23

=
190
22

≈ 8.6 flies>day.

t

p
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FIGURE 2.5 Growth of a fruit fly population in a controlled 

experiment. The average rate of change over 22 days is the slope 

∆p>∆t of the secant line (Example 4).

This average is the slope of the secant line through the points P and Q on the graph in 

Figure 2.5. 

The average rate of change from day 23 to day 45 calculated in Example 4 does not 

tell us how fast the population was changing on day 23 itself. For that we need to examine 

time intervals closer to the day in question.

EXAMPLE 5  How fast was the number of flies in the population of Example 4 grow-

ing on day 23?

Solution To answer this question, we examine the average rates of change over shorter 

and shorter time intervals starting at day 23. In geometric terms, we find these rates by 

calculating the slopes of secant lines from P to Q, for a sequence of points Q approaching 

P along the curve (Figure 2.6).
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A(14, 0)

P(23, 150)

B(35, 350)

Q(45, 340)

The values in the table show that the secant line slopes rise from 8.6 to 16.4 as the 

t-coordinate of Q decreases from 45 to 30, and we would expect the slopes to rise slightly 

higher as t continued decreasing toward 23. Geometrically, the secant lines rotate counter-

clockwise about P and seem to approach the red tangent line in the igure. Since the line 

appears to pass through the points (14, 0) and (35, 350), its slope is approximately

350 - 0
35 - 14

= 16.7 flies>day.

On day 23 the population was increasing at a rate of about 16.7 flies >day. 

The instantaneous rate of change is the value the average rate of change approaches as 

the length h of the interval over which the change occurs approaches zero. The average 

rate of change corresponds to the slope of a secant line; the instantaneous rate corresponds 

to the slope of the tangent line at a fixed value. So instantaneous rates and slopes of tan-

gent lines are closely connected. We give a precise definition for these terms in the next 

chapter, but to do so we first need to develop the concept of a limit.

 

Q

Slope of PQ = �p ,�t  

(flies , day)

(45, 340)  
340 - 150
45 - 23

≈ 8.6

(40, 330)  
330 - 150
40 - 23

≈ 10.6

(35, 310)  
310 - 150
35 - 23

≈ 13.3

(30, 265)  
265 - 150
30 - 23

≈ 16.4

FIGURE 2.6 The positions and slopes of four secant lines through the point P on the fruit fly graph (Example 5).

Average Rates of Change

In Exercises 1–6, find the average rate of change of the function over 

the given interval or intervals.

 1. ƒ(x) = x3 + 1

a. 32, 34  b. 3-1, 14
 2. g(x) = x2 - 2x

a. 31, 34  b. 3-2, 44
 3. h(t) = cot t

a. 3p>4, 3p>44  b. 3p>6, p>24
 4. g(t) = 2 + cos t

a. 30, p4  b. 3-p, p4
 5. R(u) = 24u + 1; 30, 24
 6. P(u) = u3 - 4u2 + 5u; 31, 24

Slope of a Curve at a Point

In Exercises 7–18, use the method in Example 3 to find (a) the slope 

of the curve at the given point P, and (b) an equation of the tangent 

line at P.

 7. y = x2 - 5, P(2, -1)

 8. y = 7 - x2, P(2, 3)

 9. y = x2 - 2x - 3, P(2, -3)

 10. y = x2 - 4x, P(1, -3)

 11. y = x3, P(2, 8)

 12. y = 2 - x3, P(1, 1)

 13. y = x3 - 12x, P(1, -11)

 14. y = x3 - 3x2 + 4, P(2, 0)

 15. y =
1
x , P(-2, -1>2)

EXERCISES 2.1
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 16. y =
x

2 - x
, P(4, -2)

 17. y = 1x, P(4, 2)

 18. y = 27 - x, P(-2, 3)

Instantaneous Rates of Change

 19. Speed of a car The accompanying figure shows the time-to- 

distance graph for a sports car accelerating from a standstill.
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a. Estimate the slopes of secant lines PQ1, PQ2, PQ3, and PQ4, 

arranging them in order in a table like the one in Figure 2.6. 

What are the appropriate units for these slopes?

b. Then estimate the car’s speed at time t = 20 sec.

 20. The accompanying figure shows the plot of distance fallen versus 

time for an object that fell from the lunar landing module a dis-

tance 80 m to the surface of the moon.

a. Estimate the slopes of the secant lines PQ1, PQ2, PQ3, and 

PQ4, arranging them in a table like the one in Figure 2.6.

b. About how fast was the object going when it hit the surface?
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 21. The profits of a small company for each of the first five years of 

its operation are given in the following table:

Year Profit in $1000s

2010   6

2011  27

2012  62

2013 111

2014 174

a. Plot points representing the proit as a function of year, and 

join them by as smooth a curve as you can.

T

b. What is the average rate of increase of the proits between 

2012 and 2014?

c. Use your graph to estimate the rate at which the proits were 

changing in 2012.

 22. Make a table of values for the function F(x) = (x + 2)>(x - 2) 

at the points x = 1.2, x = 11>10, x = 101>100, x = 1001>1000, 

 x = 10001>10000, and x = 1.

a. Find the average rate of change of F(x) over the intervals 31, x4  for each x ≠ 1 in your table.

b. Extending the table if necessary, try to determine the rate of 

change of F(x) at x = 1.

 23. Let g(x) = 2x for x Ú 0.

a. Find the average rate of change of g(x) with respect to x over 

the intervals 31, 24 , 31, 1.54  and 31, 1 + h4 .
b. Make a table of values of the average rate of change of g with 

respect to x over the interval 31, 1 + h4  for some values of h 

approaching zero, say h = 0.1, 0.01, 0.001, 0.0001, 0.00001, 

and 0.000001.

c. What does your table indicate is the rate of change of g(x) 

with respect to x at x = 1?

d. Calculate the limit as h approaches zero of the average rate of 

change of g(x) with respect to x over the interval 31, 1 + h4 .
 24. Let ƒ(t) = 1>t for t ≠ 0.

a. Find the average rate of change of ƒ with respect to t over 

the intervals (i) from t = 2 to t = 3, and (ii) from t = 2 to 

t = T.

b. Make a table of values of the average rate of change of ƒ with 

respect to t over the interval 32, T4 , for some values of T ap-

proaching 2, say T = 2.1, 2.01, 2.001, 2.0001, 2.00001, and 

2.000001.

c. What does your table indicate is the rate of change of ƒ with 

respect to t at t = 2?

d. Calculate the limit as T approaches 2 of the average rate of 

change of ƒ with respect to t over the interval from 2 to T. You 

will have to do some algebra before you can substitute T = 2.

 25. The accompanying graph shows the total distance s traveled by a 

bicyclist after t hours.
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a. Estimate the bicyclist’s average speed over the time intervals 30, 14 , 31, 2.54 , and 32.5, 3.54 .
b. Estimate the bicyclist’s instantaneous speed at the times 

t = 1
2 , t = 2, and t = 3.

c. Estimate the bicyclist’s maximum speed and the speciic time 

at which it occurs.

T

T
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2.2 Limit of a Function and Limit Laws

In Section 2.1 we saw how limits arise when finding the instantaneous rate of change of a 

function or the tangent line to a curve. We begin this section by presenting an informal 

definition of the limit of a function. We then describe laws that capture the behavior of 

limits. These laws enable us to quickly compute limits for a variety of functions, including 

polynomials and rational functions. We present the precise definition of a limit in the next 

section.

Limits of Function Values

Frequently when studying a function y = ƒ(x), we find ourselves interested in the func-

tion’s behavior near a particular point c, but not at c itself. An important example occurs 

when the process of trying to evaluate a function at c leads to division by zero, which is 

undefined. We encountered this when seeking the instantaneous rate of change in y by 

considering the quotient function ∆y>h for h closer and closer to zero. In the next example 

we explore numerically how a function behaves near a particular point at which we cannot 

directly evaluate the function.

EXAMPLE 1  How does the function

ƒ(x) =
x2 - 1
x - 1

behave near x = 1?

Solution The given formula defines ƒ for all real numbers x except x = 1 (since we 

cannot divide by zero). For any x ≠ 1, we can simplify the formula by factoring the 

numerator and canceling common factors:

ƒ(x) =
(x - 1)(x + 1)

x - 1
= x + 1  for  x ≠ 1.

The graph of ƒ is the line y = x + 1 with the point (1, 2) removed. This removed point 

is shown as a “hole” in Figure 2.7. Even though ƒ(1) is not defined, it is clear that we 

can make the value of ƒ(x) as close as we want to 2 by choosing x close enough to 1 

(Table 2.2). 

An Informal Description of the Limit of a Function

We now give an informal definition of the limit of a function ƒ at an interior point of the 

domain of ƒ. Suppose that ƒ(x) is defined on an open interval about c, except possibly at c 
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0 1
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1
y = f (x) =

x2
 - 1

x - 1

y = x + 1

-1

-1

FIGURE 2.7 The graph of ƒ is identical 

with the line y = x + 1 except at x = 1, 

where ƒ is not defined (Example 1).
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 26. The accompanying graph shows the total amount of gasoline A in 

the gas tank of an automobile after being driven for t days.
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a. Estimate the average rate of gasoline consumption over 

the time intervals 30, 34 , 30, 54 , and 37, 104 .
b. Estimate the instantaneous rate of gasoline consumption 

at the times t = 1, t = 4, and t = 8.

c. Estimate the maximum rate of gasoline consumption and 

the speciic time at which it occurs.
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itself. If ƒ(x) is arbitrarily close to the number L (as close to L as we like) for all x suffi-

ciently close to c, other than c itself, then we say that ƒ approaches the limit L as x 

approaches c, and write

lim
xSc

 ƒ(x) = L,

which is read “the limit of ƒ(x) as x approaches c is L.” In Example 1 we would say that 

ƒ(x) approaches the limit 2 as x approaches 1, and write

lim
xS1

 ƒ(x) = 2,  or  lim
xS1

 
x2 - 1
x - 1

= 2.

Essentially, the definition says that the values of ƒ(x) are close to the number L whenever x 

is close to c. The value of the function at c itself is not considered.

Our definition here is informal, because phrases like arbitrarily close and sufficiently 

close are imprecise; their meaning depends on the context. (To a machinist manufacturing 

a piston, close may mean within a few thousandths of an inch. To an astronomer studying 

distant galaxies, close may mean within a few thousand light-years.) Nevertheless, the 

definition is clear enough to enable us to recognize and evaluate limits of many specific 

functions. We will need the precise definition given in Section 2.3, when we set out to 

prove theorems about limits or study complicated functions. Here are several more exam-

ples exploring the idea of limits.

TABLE 2.2 As x gets closer to 1, 

ƒ(x)  gets closer to 2.

x ƒ(x) = x2−1
x−1

0.9 1.9

1.1 2.1

0.99 1.99

1.01 2.01

0.999 1.999

1.001 2.001

0.999999 1.999999

1.000001 2.000001

x2
 - 1

x - 1

x

y

0 1

2

1

x
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0 1

2

1

x

y

0 1-1-1-1

2

1

1,

,
(a)  f (x) = (b)  g(x) =

x2
 - 1

x - 1

   x Z 1

   x = 1

(c)  h(x) = x + 1

FIGURE 2.8 The limits of ƒ(x), g(x), and h(x) all equal 2 as x approaches 1. However, only h(x) 

has the same function value as its limit at x = 1 (Example 2).

(a) Identity function

(b) Constant function

0

k

x

y

x

y

y = x

c

c

c

y = k

FIGURE 2.9 The functions in Example 3 

have limits at all points c.

The process of finding a limit can be broken up into a series of steps involving limits 

of basic functions, which are combined using a sequence of simple operations that we will 

develop. We start with two basic functions.

EXAMPLE 2  The limit of a function does not depend on how the function is defined 

at the point being approached. Consider the three functions in Figure 2.8. The function ƒ 

has limit 2 as x S 1 even though ƒ is not defined at x = 1. The function g has limit 2 as 

x S 1 even though 2 ≠ g(1). The function h is the only one of the three functions in Fig-

ure 2.8 whose limit as x S 1 equals its value at x = 1. For h, we have limxS1 h(x) = h(1). 

This equality of limit and function value has an important meaning. As illustrated by the 

three examples in Figure 2.8, equality of limit and function value captures the notion of 

“continuity.” We study this in detail in Section 2.5. 

EXAMPLE 3  We find the limits of the identity function and of a constant function as 

x approaches x = c.

 (a) If ƒ is the identity function ƒ(x) = x, then for any value of c (Figure 2.9a),

lim
xSc

 ƒ(x) = lim
xSc

 x = c.
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(b) If ƒ is the constant function ƒ(x) = k (function with the constant value k), then for 

any value of c (Figure 2.9b),

lim
xSc

 ƒ(x) = lim
xSc

 k = k.

For instances of each of these rules we have

lim
xS3

 x = 3

x

y

0
x

y

0

1

x

y

0

1

-1

y =
0,   x < 0

1,   x ≥ 0

(a) Unit step function U(x) (b) g(x) (c) f (x)

y =

1
x ,  x Z 0

0, x = 0

y =
0,         x ≤ 0

1
xsin   ,  x > 0

FIGURE 2.10 None of these functions has a limit as x approaches 0 (Example 4).

EXAMPLE 4  Discuss the behavior of the following functions, explaining why they 

have no limit as x S 0.

 (a) U(x) = e0,    x 6 0

1,    x Ú 0

(b) g(x) = • 1
x ,    x ≠ 0

0,    x = 0

(c) ƒ(x) = c 0, x … 0

sin 
1
x , x 7 0

Solution

(a) The function jumps: The unit step function U(x) has no limit as x S 0 because its 

values jump at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0. For 

positive values of x arbitrarily close to zero, U(x) = 1. There is no single value L ap-

proached by U(x) as x S 0 (Figure 2.10a).

(b) The function grows too “large” to have a limit: g(x) has no limit as x S 0 because the 

values of g grow arbitrarily large in absolute value as x S 0 and therefore do not stay 

close to any ixed real number (Figure 2.10b). We say the function is not bounded.

Limit of identity function at x = 3

and

lim
xS-7

 (4) = lim
xS2

 (4) = 4. 
Limit of constant function 

ƒ(x) = 4 at x = -7 or at x = 2

We prove these rules in Example 3 in Section 2.3. 

A function may not have a limit at a particular point. Some ways that limits can fail to 

exist are illustrated in Figure 2.10 and described in the next example.
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(c) The function oscillates too much to have a limit: ƒ(x) has no limit as x S 0 because 

the function’s values oscillate between +1 and -1 in every open interval containing 

0. The values do not stay close to any single number as x S 0 (Figure 2.10c). 

The Limit Laws

A few basic rules allow us to break down complicated functions into simple ones when 

calculating limits. By using these laws, we can greatly simplify many limit computations.

THEOREM 1—Limit Laws 

If L, M, c, and k are real numbers and

lim
xSc

 ƒ(x) = L  and  lim
xSc

 g(x) = M, then

1. Sum Rule: lim
xSc

(ƒ(x) + g(x)) = L + M

2. Diference Rule: lim
xSc

(ƒ(x) - g(x)) = L - M

3. Constant Multiple Rule: lim
xSc

(k # ƒ(x)) = k # L

4. Product Rule: lim
xSc

(ƒ(x) # g(x)) = L # M

5. Quotient Rule: lim
xSc

  
ƒ(x)

g(x)
=

L
M

, M ≠ 0

6. Power Rule: lim
xSc
3ƒ(x)4 n = L 

n, n a positive integer

7. Root Rule: lim
xSc
2n ƒ(x) = 2n L = L 

1>n, n a positive integer

(If n is even, we assume that ƒ(x) Ú 0 for x in an interval containing c.)

The Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the next rules 

say that the limit of a difference is the difference of the limits; the limit of a constant times 

a function is the constant times the limit of the function; the limit of a product is the prod-

uct of the limits; the limit of a quotient is the quotient of the limits (provided that the limit 

of the denominator is not 0); the limit of a positive integer power (or root) of a function is 

the integer power (or root) of the limit (provided that the root of the limit is a real number).

There are simple intuitive arguments for why properties in Theorem 1 are true (although 

these do not constitute proofs). If x is sufficiently close to c, then ƒ(x) is close to L and g(x) 

is close to M, from our informal definition of a limit. It is then reasonable that ƒ(x) + g(x) is 

close to L + M; ƒ(x) - g(x) is close to L - M; kƒ(x) is close to kL; ƒ(x)g(x) is close to 

LM; and ƒ(x)>g(x) is close to L>M  if M is not zero. We prove the Sum Rule in Section 2.3, 

based on a rigorous definition of the limit. Rules 2–5 are proved in Appendix 4. Rule 6 is 

obtained by applying Rule 4 repeatedly. Rule 7 is proved in more advanced texts. The Sum, 

Difference, and Product Rules can be extended to any number of functions, not just two.

EXAMPLE 5  Use the observations limxSc k = k and limxSc x = c (Example 3) and 

the limit laws in Theorem 1 to find the following limits.

 (a) lim
xSc

(x3 + 4x2 - 3)

(b) lim
xSc

 
x4 + x2 - 1

x2 + 5

(c) lim
xS-2

24x2 - 3
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Solution

(a) lim
xSc

(x3 + 4x2 - 3) = lim
xSc

 x3 + lim
xSc

 4x2 - lim
xSc

 3  Sum and Difference Rules

   = c3 + 4c2 - 3 Power and Multiple Rules

(b) lim
xSc

 
x4 + x2 - 1

x2 + 5
 =

lim
xSc 

(x4 + x2 - 1)

lim
xSc

 (x2 + 5)
 Quotient Rule

   =
lim
xSc

 x4 + lim
xSc

 x2 - lim
xSc

 1

lim
xSc

 x2 + lim
xSc

 5
 Sum and Difference Rules

   =
c4 + c2 - 1

c2 + 5
 Power or Product Rule

(c)  lim
xS  -2

24x2 - 3 = 2 lim
xS  -2

(4x2 - 3) Root Rule with n = 2

   = 2 lim
xS-2

 4x2 - lim
xS-2

 3 Difference Rule

   = 24(-2)2 - 3 
 Product and Multiple Rules and limit 

of a constant function

   = 216 - 3

   = 213 

Evaluating Limits of Polynomials and Rational Functions

Theorem 1 simplifies the task of calculating limits of polynomials and rational functions. 

To evaluate the limit of a polynomial function as x approaches c, just substitute c for x in the 

formula for the function. To evaluate the limit of a rational function as x approaches a point 

c at which the denominator is not zero, substitute c for x in the formula for the function. 

(See Examples 5a and 5b.) We state these results formally as theorems.

THEOREM 2—Limits of Polynomials

If P(x) = an xn + an - 1 xn - 1 + g + a0, then

lim
xSc

 P(x) = P(c) = an cn + an - 1 cn - 1 + g + a0.

THEOREM 3—Limits of Rational Functions

If P(x) and Q(x) are polynomials and Q(c) ≠ 0, then

lim
xSc

  
P(x)

Q(x)
=

P(c)

Q(c)
.

EXAMPLE 6  The following calculation illustrates Theorems 2 and 3:

lim
xS  -1

 
x3 + 4x2 - 3

x2 + 5
=

(-1)3 + 4(-1)2 - 3

(-1)2 + 5
=

0
6

= 0

Since the denominator of this rational expression does not equal 0 when we substitute -1 

for x, we can just compute the value of the expression at x = -1 to evaluate the limit. 

Eliminating Common Factors from Zero Denominators

Theorem 3 applies only if the denominator of the rational function is not zero at the limit 

point c. If the denominator is zero, canceling common factors in the numerator and 
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denominator may reduce the fraction to one whose denominator is no longer zero at c. If 

this happens, we can find the limit by substitution in the simplified fraction.

EXAMPLE 7  Evaluate

lim
xS1

 
x2 + x - 2

x2 - x
.

Solution We cannot substitute x = 1 because it makes the denominator zero. We test 

the numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x - 1) in com-

mon with the denominator. Canceling this common factor gives a simpler fraction with the 

same values as the original for x ≠ 1:

x2 + x - 2

x2 - x
=

(x - 1)(x + 2)

x(x - 1)
=

x + 2
x ,  if x ≠ 1.

Using the simpler fraction, we ind the limit of these values as x S 1 by evaluating the 

function at x = 1, as in Theorem 3:

lim
xS1

 
x2 + x - 2

x2 - x
= lim

xS1
 
x + 2

x =
1 + 2

1
= 3.

See Figure 2.11. 

Using Calculators and Computers to Estimate Limits

We can try using a calculator or computer to guess a limit numerically. However, calcula-

tors and computers can sometimes give false values and misleading evidence about limits. 

Usually the problem is associated with rounding errors, as we now illustrate.

EXAMPLE 8  Estimate the value of lim
xS0

 
2x2 + 100 - 10

x2
.

Solution Table 2.3 lists values of the function obtained on a calculator for several points 

approaching x = 0. As x approaches 0 through the points {1, {0.5, {0.10, and {0.01,  

the function seems to approach the number 0.05.

As we take even smaller values of x, {0.0005, {0.0001, {0.00001, and {0.000001, 

the function appears to approach the number 0.

Is the answer 0.05 or 0, or some other value? We resolve this question in the next 

example. 

x

y

1-2 0

(1, 3)

(b)

3

x

y

10-2

(1, 3)

(a)

3

y =
x2 + x - 2

x2 - x

y =
x + 2

x

FIGURE 2.11 The graph of 

ƒ(x) = (x2 + x - 2)>(x2 - x) in 

part (a) is the same as the graph of 

g(x) = (x + 2)>x in part (b) except 

at x = 1, where ƒ is undefined. The 

functions have the same limit as x S 1 

(Example 7).

TABLE 2.3 Computed values of ƒ(x) =
2x 2 + 100 − 10

x 2
 near x = 0

x ƒ(x)

{1     0.049876

{0.5     0.049969

{0.1     0.049999

{0.01     0.050000

t  approaches 0.05?

{0.0005 0.050000

{0.0001 0.000000

{0.00001 0.000000

{0.000001 0.000000

t  approaches 0?

Identifying Common Factors

If Q(x) is a polynomial and Q(c) = 0, then 

(x - c) is a factor of Q(x). Thus, if the nu-

merator and denominator of a rational function 

of x are both zero at x = c, they have (x - c) 

as a common factor.
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Using a computer or calculator may give ambiguous results, as in Example 8. A com-

puter cannot always keep track of enough digits to avoid rounding errors in computing the 

values of ƒ(x) when x is very small. We cannot substitute x = 0 in the problem, and the 

numerator and denominator have no obvious common factors (as they did in Example 7). 

Sometimes, however, we can create a common factor algebraically.

EXAMPLE 9  Evaluate

lim
xS0

 
2x2 + 100 - 10

x2
.

Solution This is the limit we considered in Example 8. We can create a common factor 

by multiplying both numerator and denominator by the conjugate radical expression 

2x2 + 100 + 10 (obtained by changing the sign after the square root). The preliminary 

algebra rationalizes the numerator:

 
2x2 + 100 - 10

x2
=
2x2 + 100 - 10

x2
# 2x2 + 100 + 10

2x2 + 100 + 10
  

Multiply and divide by 

the conjugate.

 =
x2 + 100 - 100

x2(2x2 + 100 + 10)
 Simplify

 =
x2

x2(2x2 + 100 + 10)
 Common factor x2

 =
1

2x2 + 100 + 10
. Cancel x2 for x ≠ 0.

Therefore,

 lim
xS0

 
2x2 + 100 - 10

x2
= lim

xS0
 

1

2x2 + 100 + 10

 =
1

202 + 100 + 10

 =
1
20

= 0.05.

Limit Quotient Rule: Denominator 

not 0 at x = 0 so can substitute.

This calculation provides the correct answer, resolving the ambiguous computer results in 

Example 8. 

We cannot always manipulate the terms in an expression to find the limit of a quotient 

where the denominator becomes zero. In some cases the limit might then be found with 

geometric arguments (see the proof of Theorem 7 in Section 2.4), or through methods of 

calculus (developed in Section 4.5). The next theorem shows how to evaluate difficult lim-

its by comparing them with functions having known limits.

The Sandwich Theorem

The following theorem enables us to calculate a variety of limits. It is called the Sandwich 

Theorem because it refers to a function ƒ whose values are sandwiched between the val-

ues of two other functions g and h that have the same limit L at a point c. Being trapped 

between the values of two functions that approach L, the values of ƒ must also approach L 

(Figure 2.12). A proof is given in Appendix 4.

x

y

0

L

c

h

f

g

FIGURE 2.12 The graph of ƒ is sand-

wiched between the graphs of g and h.
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The Sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE 10  Given a function u that satisfies

1 -
x2

4
… u(x) … 1 +

x2

2
  for all x ≠ 0,

find limxS0 u(x), no matter how complicated u is.

Solution Since

lim
xS0 

(1 - (x2>4)) = 1  and  lim
xS0 

(1 + (x2>2)) = 1,

the Sandwich Theorem implies that limxS0 u(x) = 1 (Figure 2.13). 

EXAMPLE 11  The Sandwich Theorem helps us establish several important limit 

rules:

(a) lim
uS0

 sin u = 0

(b) lim
uS0

  cos u = 1

(c) For any function ƒ, lim
xSc

 0 ƒ(x) 0 = 0 implies lim
xSc

 ƒ(x) = 0.

Solution

(a) In Section 1.3 we established that - 0 u 0 … sin u … 0 u 0  for all u (see Figure 2.14a). 

Since limuS0 (- 0 u 0 ) = limuS0 0 u 0 = 0, we have

lim
uS0

 sin u = 0.

(b) From Section 1.3, 0 … 1 - cos u … 0 u 0  for all u (see Figure 2.14b), and we have 

limuS0 (1 - cos u) = 0 so

 lim
uS0

  1 - (1 - cos u) = 1 - lim
uS0

 (1 - cos u) = 1 - 0,

 lim
uS0

 cos u = 1.   Simplify

(c) Since - 0 ƒ(x) 0 … ƒ(x) … 0 ƒ(x) 0  and - 0 ƒ(x) 0  and 0 ƒ(x) 0  have limit 0 as x S c, it fol-

lows that limxSc ƒ(x) = 0. 

Example 11 shows that the sine and cosine functions are equal to their limits at 

u = 0. We have not yet established that for any c, lim
uSc

 sin u = sin c, and lim
uSc

 cos u = cos c. 

These limit formulas do hold, as will be shown in Section 2.5.

THEOREM 4—The Sandwich Theorem

Suppose that g(x) … ƒ(x) … h(x) for all x in some open interval containing c, 

except possibly at x = c itself. Suppose also that

lim
xSc

 g(x) = lim
xSc

 h(x) = L.

Then lim
xSc

 ƒ(x) = L.

y = 0 u 0

y = - 0 u 0

y = sin u  

u

1

-1

- p p

y

(a)

y = 0 u 0

y = 1 - cos u

u

y

(b)

2

2

1

1-1-2 0

FIGURE 2.14 The Sandwich Theorem 

confirms the limits in Example 11.

x

y

0 1-1

2

1

y = 1 +
x2

2

y = 1 -
x2

4

y = u(x)

FIGURE 2.13 Any function u(x) 

whose graph lies in the region between 

y = 1 + (x2>2) and y = 1 - (x2>4) has 

limit 1 as x S 0 (Example 10).
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Limits from Graphs

 1. For the function g(x) graphed here, find the following limits or 

explain why they do not exist.

a. lim
xS1

 g(x) b. lim
xS2

 g(x) c. lim
xS3

 g(x) d. lim
xS2.5

 g(x)

3
x

y

2

1

1

y = g(x)

 2. For the function ƒ(t) graphed here, find the following limits or 

explain why they do not exist.

a. lim
tS  -2

 ƒ(t) b. lim
tS  -1

 ƒ(t) c. lim
tS0

 ƒ(t) d. lim
tS  -0.5

 ƒ(t)

t

s

1

10

s = f (t)

-1

-1-2

 3. Which of the following statements about the function y = ƒ(x) 

graphed here are true, and which are false?

a. lim
xS0

 ƒ(x) exists.

b. lim
xS0

 ƒ(x) = 0

c. lim
xS0

 ƒ(x) = 1

d. lim
xS1

 ƒ(x) = 1

e. lim
xS1

 ƒ(x) = 0

f. lim
xSc

 ƒ(x) exists at every point c in (-1, 1).

g. lim
xS1

 ƒ(x) does not exist.

e. lim
xSc

 ƒ(x) exists at every point c in (1, 3).

EXERCISES 2.2

x

y

21-1

1

-1

y = f (x)

h. ƒ(0) = 0

i. ƒ(0) = 1

j. ƒ(1) = 0

k. ƒ(1) = -1

 4. Which of the following statements about the function y = ƒ(x) 

graphed here are true, and which are false?

a. lim
xS2

 ƒ(x) does not exist.

b. lim
xS2

 ƒ(x) = 2

c. lim
xS1

 ƒ(x) does not exist.

d. lim
xSc

 ƒ(x) exists at every point c in (-1, 1).

x

y

321-1

1

-1

-2

y = f (x)
f. ƒ(1) = 0

g. ƒ(1) = -2

h. ƒ(2) = 0

i. ƒ(2) = 1

Existence of Limits

In Exercises 5 and 6, explain why the limits do not exist.

 5. lim
xS0

  
x0 x 0  6. lim

xS1
  

1
x - 1

 7. Suppose that a function ƒ(x) is defined for all real values of x 

except x = c. Can anything be said about the existence of 

limxSc ƒ(x)? Give reasons for your answer.

 8. Suppose that a function ƒ(x) is defined for all x in 3-1, 1]. Can 

anything be said about the existence of limxS0 ƒ(x)? Give reasons 

for your answer.

 9. If limxS1 ƒ(x) = 5, must ƒ be defined at x = 1? If it is, must 

ƒ(1) = 5? Can we conclude anything about the values of ƒ at 

x = 1? Explain.

 10. If ƒ(1) = 5, must limxS1 ƒ(x) exist? If it does, then must 

limxS1 ƒ(x) = 5? Can we conclude anything about limxS1 ƒ(x)? 

Explain.

Calculating Limits

Find the limits in Exercises 11–22.

 11. lim
xS  -3

 (x2 - 13) 12. lim
xS2

(-x2 + 5x - 2)

 13. lim
tS6

 8(t - 5)(t - 7) 14. lim
xS  -2

(x3 - 2x2 + 4x + 8)

 15. lim
xS2

 
2x + 5

11 - x3
 16. lim

sS2>3 (8 - 3s)(2s - 1)

 17. lim
xS-1>2 4x(3x + 4)2 18. lim

yS2
  

y + 2

y2 + 5y + 6

 19. lim
yS  -3

 (5 - y)4>3 20. lim
zS4

 2z2 - 10

 21. lim
hS0

 
3

23h + 1 + 1
 22. lim

hS0
 
25h + 4 - 2

h

Limits of quotients Find the limits in Exercises 23–42.

 23. lim
xS5

 
x - 5

x2 - 25
 24. lim

xS  -3
 

x + 3

x2 + 4x + 3

 25. lim
xS  -5

 
x2 + 3x - 10

x + 5
 26. lim

xS2
  
x2 - 7x + 10

x - 2

 27. lim
tS1

 
t2 + t - 2

t2 - 1
 28. lim

tS  -1
  
t2 + 3t + 2

t2 - t - 2

 29. lim
xS  -2

  
-2x - 4

x3 + 2x2
 30. lim

yS0
  

5y3 + 8y2

3y4 - 16y2
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 31. lim
xS1

  
x-1 - 1
x - 1

 32. lim
xS0

  

1
x - 1 + 1

x + 1

x

 33. lim
uS1

  
u4 - 1

u3 - 1
 34. lim

yS2
  
y3 - 8

y4 - 16

 35. lim
xS9

 
2x - 3

x - 9
 36. lim

xS4
 
4x - x2

2 - 2x

 37. lim
xS1

 
x - 1

2x + 3 - 2
 38. lim

xS  -1
 
2x2 + 8 - 3

x + 1

 39. lim
xS2

 
2x2 + 12 - 4

x - 2
 40. lim

xS  -2
 

x + 2

2x2 + 5 - 3

 41. lim
xS  -3

 
2 - 2x2 - 5

x + 3
 42. lim

xS4
  

4 - x

5 - 2x2 + 9

Limits with trigonometric functions Find the limits in Exercises 

43–50.

 43. lim
xS0

 (2 sin x - 1) 44. lim
xS0

 sin2 x

 45. lim
xS0

 sec x 46. lim
xS0

 tan x

 47. lim
xS0

 
1 + x + sin x

3 cos x
 48. lim

xS0
 (x2 - 1)(2 - cos x)

 49. lim
xS  -p

 2x + 4 cos (x + p) 50. lim
xS0

 27 + sec2 x

Using Limit Rules

 51. Suppose limxS0 ƒ(x) = 1 and limxS0 g(x) = -5. Name the rules 

in Theorem 1 that are used to accomplish steps (a), (b), and (c) of 

the following calculation.

lim
xS0

  
2ƒ(x) - g(x)

(ƒ(x) + 7)2>3 =
lim
xS0

 (2ƒ(x) - g(x))

lim
xS0

 (ƒ(x) + 7)2>3  (a)

=
lim
xS0

 2ƒ(x) - lim
xS0

 g(x)

a lim
xS0

 (ƒ(x) + 7)b2>3  (b)

=
2 lim

xS0
 ƒ(x) - lim

xS0
 g(x)

a lim
xS0

 ƒ(x) + lim
xS0

 7b2>3 (c)

=
(2)(1) - (-5)

(1 + 7)2>3 =
7
4

 52. Let limxS1 h(x) = 5, limxS1 p(x) = 1, and limxS1 r(x) = 2. 

Name the rules in Theorem 1 that are used to accomplish steps 

(a), (b), and (c) of the following calculation.

lim
xS1

  
25h(x)

p(x)(4 - r(x))
=

lim
xS1
25h(x)

lim
xS1

 (p(x)(4 - r(x)))
 (a)

=
2 lim

xS1
 5h(x)

a lim
xS1

 p(x)b a lim
xS1

 (4 - r(x))b  (b)

=
25lim

xS1
 h(x)

a lim
xS1

 p(x)b a lim
xS1

 4 - lim
xS1

 r(x)b  (c)

=
2(5)(5)

(1)(4 - 2)
=

5
2

 53. Suppose limxSc ƒ(x) = 5 and limxSc g(x) = -2. Find

a. lim
xSc

 ƒ(x)g(x) b. lim
xSc

 2ƒ(x)g(x)

c. lim
xSc

 (ƒ(x) + 3g(x)) d. lim
xSc

  
ƒ(x)

ƒ(x) - g(x)

 54. Suppose limxS4 ƒ(x) = 0 and limxS4 g(x) = -3. Find

a. lim
xS4

 (g(x) + 3) b. lim
xS4

 xƒ(x)

c. lim
xS4

 (g(x))2 d. lim
xS4

  
g(x)

ƒ(x) - 1

 55. Suppose limxSb ƒ(x) = 7 and limxSb g(x) = -3. Find

a. lim
xSb

 (ƒ(x) + g(x)) b. lim
xSb

 ƒ(x) # g(x)

c. lim
xSb

 4g(x) d. lim
xSb

 ƒ(x)>g(x)

 56. Suppose that limxS  -2  p(x) = 4, limxS  -2  r(x) = 0, and limxS  -2 

s(x) = -3. Find

a. lim
xS  -2

 (p(x) + r(x) + s(x))

b. lim
xS  -2

  p(x) # r(x) # s(x)

c. lim
xS  -2

(-4p(x) + 5r(x))>s(x)

Limits of Average Rates of Change

Because of their connection with secant lines, tangents, and instanta-

neous rates, limits of the form

lim
hS0

 
ƒ(x + h) - ƒ(x)

h

occur frequently in calculus. In Exercises 57–62, evaluate this limit 

for the given value of x and function ƒ.

 57. ƒ(x) = x2, x = 1

 58. ƒ(x) = x2, x = -2

 59. ƒ(x) = 3x - 4, x = 2

 60. ƒ(x) = 1>x, x = -2

 61. ƒ(x) = 2x, x = 7

 62. ƒ(x) = 23x + 1, x = 0

Using the Sandwich Theorem

 63. If 25 - 2x2 … ƒ(x) … 25 - x2 for -1 … x … 1, find  

limxS0 ƒ(x).

 64. If 2 - x2 … g(x) … 2 cos x for all x, find limxS0 g(x).

 65. a. It can be shown that the inequalities

1 -
x2

6
6

x sin x
2 - 2 cos x

6 1

    hold for all values of x close to zero. What, if anything, does 

this tell you about

lim
xS0

  
x sin x

2 - 2 cos x
 ?

   Give reasons for your answer.

  b.  Graph y = 1 - (x2>6), y = (x sin x)>(2 - 2 cos x), and 

y = 1 together for -2 … x … 2. Comment on the behavior 

of the graphs as x S 0.

T
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 66. a. Suppose that the inequalities

1
2

-
x2

24
6

1 - cos x

x2
6

1
2

    hold for values of x close to zero. (They do, as you will see in 

Section 9.9.) What, if anything, does this tell you about

lim
xS0

 
1 - cos x

x2
 ?

   Give reasons for your answer.

  b.  Graph the equations y = (1>2) - (x2>24),

     y = (1 - cos x)>x2, and y = 1>2 together for -2 … x … 2. 

Comment on the behavior of the graphs as x S 0.

Estimating Limits

You will find a graphing calculator useful for Exercises 67–74.

 67. Let ƒ(x) = (x2 - 9)>(x + 3).

a. Make a table of the values of ƒ at the points x = -3.1, 

-3.01, -3.001, and so on as far as your calculator can go. 

Then estimate limxS  -3 ƒ(x). What estimate do you arrive at if 

you evaluate ƒ at x = -2.9, -2.99, -2.999,c instead?

b. Support your conclusions in part (a) by graphing ƒ near 

c = -3 and using Zoom and Trace to estimate y-values on 

the graph as x S  -3.

c. Find limxS  -3 ƒ(x) algebraically, as in Example 7.

 68. Let g(x) = (x2 - 2)>(x - 22).

a. Make a table of the values of g at the points x = 1.4, 1.41, 

1.414, and so on through successive decimal approximations 

of 22. Estimate limxS22  g(x).

b. Support your conclusion in part (a) by graphing g near 

c = 22 and using Zoom and Trace to estimate y-values on 

the graph as x S 22.

c. Find limxS22  g(x) algebraically.

 69. Let G(x) = (x + 6)>(x2 + 4x - 12).

a. Make a table of the values of G at x = -5.9, -5.99, -5.999, 

and so on. Then estimate limxS  -6 G(x). What estimate 

do you arrive at if you evaluate G at x = -6.1, -6.01, 

-6.001, cinstead?

b. Support your conclusions in part (a) by graphing G and 

using Zoom and Trace to estimate y-values on the graph as 

x S  -6.

c. Find limxS  -6 G(x) algebraically.

 70. Let h(x) = (x2 - 2x - 3)>(x2 - 4x + 3).

a. Make a table of the values of h at x = 2.9, 2.99, 2.999,  

and so on. Then estimate limxS3 h(x). What estimate do 

you arrive at if you evaluate h at x = 3.1, 3.01, 3.001,c  

instead?

b. Support your conclusions in part (a) by graphing h near 

c = 3 and using Zoom and Trace to estimate y-values on the 

graph as x S 3.

c. Find limxS3 h(x) algebraically.

 71. Let ƒ(x) = (x2 - 1)>( 0 x 0 - 1).

a. Make tables of the values of ƒ at values of x that approach 

c = -1 from above and below. Then estimate limxS  -1 ƒ(x).

T

T

b. Support your conclusion in part (a) by graphing ƒ near 

c = -1 and using Zoom and Trace to estimate y-values on 

the graph as x S  -1.

c. Find limxS  -1 ƒ(x) algebraically.

 72. Let F(x) = (x2 + 3x + 2)>(2 - 0 x 0 ).
a. Make tables of values of F at values of x that approach 

c = -2 from above and below. Then estimate limxS  -2 F(x).

b. Support your conclusion in part (a) by graphing F near 

c = -2 and using Zoom and Trace to estimate y-values on 

the graph as x S  -2.

c. Find limxS  -2 F(x) algebraically.

 73. Let g(u) = (sin u)>u.

a. Make a table of the values of g at values of u that approach 

u0 = 0 from above and below. Then estimate limuS0 g(u).

b. Support your conclusion in part (a) by graphing g near 

u0 = 0.

 74. Let G(t) = (1 - cos t)>t2.

a. Make tables of values of G at values of t that approach t0 = 0 

from above and below. Then estimate limtS0 G(t).

b. Support your conclusion in part (a) by graphing G near t0 = 0.

Theory and Examples

 75. If x4 … ƒ(x) … x2 for x in 3-1, 14  and x2 … ƒ(x) … x4 for 

x 6 -1 and x 7 1, at what points c do you automatically know 

limxSc ƒ(x)? What can you say about the value of the limit at 

these points?

 76. Suppose that g(x) … ƒ(x) … h(x) for all x ≠ 2 and suppose that

lim
xS2

 g(x) = lim
xS2

 h(x) = -5.

  Can we conclude anything about the values of ƒ, g, and h at 

x = 2? Could ƒ(2) = 0? Could limxS2 ƒ(x) = 0? Give reasons 

for your answers.

 77. If lim
xS4

 
ƒ(x) - 5

x - 2
= 1, find lim

xS4
 ƒ(x).

 78. If lim
xS  -2

 
ƒ(x)

x2
= 1, find

a. lim
xS  -2

 ƒ(x) b. lim
xS  -2

 
ƒ(x)

x

 79. a. If lim
xS2

 
ƒ(x) - 5

x - 2
= 3, ind lim

xS2
 ƒ(x).

b. If lim
xS2

 
ƒ(x) - 5

x - 2
= 4, ind lim

xS2
 ƒ(x).

 80. If lim
xS0

 
ƒ(x)

x2
= 1, find

a. lim
xS0

 ƒ(x) b. lim
xS0

 
ƒ(x)

x

 81. a.  Graph g(x) = x sin (1>x) to estimate limxS0 g(x), zooming in 

on the origin as necessary.

b. Conirm your estimate in part (a) with a proof.

 82. a.  Graph h(x) = x2 cos (1>x3) to estimate limxS0 h(x), zooming 

in on the origin as necessary.

b. Conirm your estimate in part (a) with a proof.

T

T
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COMPUTER EXPLORATIONS

Graphical Estimates of Limits

In Exercises 83–88, use a CAS to perform the following steps:

a. Plot the function near the point c being approached.

b. From your plot guess the value of the limit.

 83. lim
xS2

  
x4 - 16
x - 2

 84. lim
xS  -1

  
x3 - x2 - 5x - 3

(x + 1)2

 85. lim
xS0

  
23 1 + x - 1

x

 86. lim
xS3

  
x2 - 9

2x2 + 7 - 4

 87. lim
xS0

  
1 - cos x

x sin x

 88. lim
xS0

  
2x2

3 - 3 cos x

2.3 The Precise Definition of a Limit

We now turn our attention to the precise definition of a limit. The early history of calculus 

saw controversy about the validity of the basic concepts underlying the theory. Apparent 

contradictions were argued over by both mathematicians and philosophers. These contro-

versies were resolved by the precise definition, which allows us to replace vague phrases 

like “gets arbitrarily close to” in the informal definition with specific conditions that can 

be applied to any particular example. With a rigorous definition, we can avoid misunder-

standings, prove the limit properties given in the preceding section, and establish many 

important limits.

To show that the limit of ƒ(x) as x S c equals the number L, we need to show that the 

gap between ƒ(x) and L can be made “as small as we choose” if x is kept “close enough” to 

c. Let us see what this requires if we specify the size of the gap between ƒ(x) and L.

EXAMPLE 1  Consider the function y = 2x - 1 near x = 4. Intuitively it seems 

clear that y is close to 7 when x is close to 4, so limxS4 (2x - 1) = 7. However, how close 

to x = 4 does x have to be so that y = 2x - 1 differs from 7 by, say, less than 2 units?

Solution We are asked: For what values of x is 0 y - 7 0 6 2? To find the answer we 

first express 0 y - 7 0  in terms of x:0 y - 7 0 = 0 (2x - 1) - 7 0 = 0 2x - 8 0 .
The question then becomes: what values of x satisfy the inequality 0 2x - 8 0 6 2? To ind 

out, we solve the inequality:0 2x - 8 0 6 2

-2 6 2x - 8 6 2

6 6 2x 6 10

3 6 x 6 5

-1 6 x - 4 6 1.

Removing absolute value gives two inequalities.

Add 8 to each term.

Solve for x.

Solve for x - 4.

Keeping x within 1 unit of x = 4 will keep y within 2 units of y = 7 (Figure 2.15). 

In the previous example we determined how close x must be to a particular value c to 

ensure that the outputs ƒ(x) of some function lie within a prescribed interval about a limit 

value L. To show that the limit of ƒ(x) as x S c actually equals L, we must be able to show 

that the gap between ƒ(x) and L can be made less than any prescribed error, no matter how 

small, by holding x close enough to c. To describe arbitrary prescribed errors, we intro-

duce two constants, d (delta) and e (epsilon). These Greek letters are traditionally used to 

represent small changes in a variable or a function.

x

y

0

5

3 54

7

9

To satisfy

this

Restrict

to this

Lower bound:

y = 5

Upper bound:

y = 9

y = 2x - 1

FIGURE 2.15 Keeping x within 1 unit of 

x = 4 will keep y within 2 units of y = 7 

(Example 1).

d is the Greek letter delta

e is the Greek letter epsilon
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Definition of Limit

Suppose we are watching the values of a function ƒ(x) as x approaches c (without taking 

on the value c itself). Certainly we want to be able to say that ƒ(x) stays within one-tenth 

of a unit from L as soon as x stays within some distance d of c (Figure 2.16). But that in 

itself is not enough, because as x continues on its course toward c, what is to prevent ƒ(x) 

from jumping around within the interval from L - (1>10) to L + (1>10) without tending 

toward L? We can be told that the error can be no more than 1>100 or 1>1000 or 

1>100,000. Each time, we find a new d@interval about c so that keeping x within that inter-

val satisfies the new error tolerance. And each time the possibility exists that ƒ(x) might 

jump away from L at some later stage.

The figures on the next page illustrate the problem. You can think of this as a quarrel 

between a skeptic and a scholar. The skeptic presents e@challenges to show there is room 

for doubt that the limit exists. The scholar counters every challenge with a d@interval 

around c which ensures that the function takes values within e of L.

How do we stop this seemingly endless series of challenges and responses? We can do 

so by proving that for every error tolerance e that the challenger can produce, we can present 

a matching distance d that keeps x “close enough” to c to keep ƒ(x) within that e@tolerance 

of L (Figure 2.17). This leads us to the precise definition of a limit.

c

f (x) lies

in hereL

x

f (x)

L +
1
10

L −
1
10

dd

for all x ≠ c

in here

c − d c + d

x

y

0

FIGURE 2.16 How should we define 

d 7 0 so that keeping x within the interval 

(c - d, c + d) will keep ƒ(x) within the 

interval aL -
1
10

, L +
1
10
b?

DEFINITION Let ƒ(x) be defined on an open interval about c, except possibly at c 

itself. We say that the limit of ƒ(x)  as x approaches c is the number L, and write

lim
xSc

 ƒ(x) = L,

if, for every number e 7 0, there exists a corresponding number d 7 0 such that

� ƒ(x) - L � 6 e whenever 0 6 � x - c � 6 d.

To visualize the definition, imagine machining a cylindrical shaft to a close tolerance. 

The diameter of the shaft is determined by turning a dial to a setting measured by a vari-

able x. We try for diameter L, but since nothing is perfect we must be satisfied with a diam-

eter ƒ(x) somewhere between L - e and L + e. The number d is our control tolerance 

for the dial; it tells us how close our dial setting must be to the setting x = c in order to 

guarantee that the diameter ƒ(x) of the shaft will be accurate to within e of L. As the toler-

ance for error becomes stricter, we may have to adjust d. The value of d, how tight our 

control setting must be, depends on the value of e, the error tolerance.

The definition of limit extends to functions on more general domains. It is only 

required that each open interval around c contains points in the domain of the function 

other than c. See Additional and Advanced Exercises 37–40 for examples of limits for 

functions with complicated domains. In the next section we will see how the definition of 

limit applies at points lying on the boundary of an interval.

Examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it does 

enable us to verify that a conjectured limit value is correct. The following examples show 

how the definition can be used to verify limit statements for specific functions. However, 

the real purpose of the definition is not to do calculations like this, but rather to prove gen-

eral theorems so that the calculation of specific limits can be simplified, such as the theo-

rems stated in the previous section.

x

y

0

L

x

dd

f (x) lies

in here

for all x Z c

in here

L - e

L + e

f (x)

c - d c c + d

FIGURE 2.17 The relation of d and e in 

the definition of limit.
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y

x

L

L +
1
10

L -
1
10

0

y = f (x)

c

The challenge:

     Make 0  f (x) - L 0  6 e =
1

10

y

x

L

L +
1

10

L -
1

10

0

y = f (x)

c
c - d1/10 c + d1/10

Response:

      0  x - c 0  6 d1/10 (a number)

y

x

L

L +
1

100

L -
1

100

0

y = f (x)

c

New challenge:

     Make 0 f (x) - L 0  6 e =
1

100

y

x

L

L +
1

100

L -
1

100

0

y = f (x)

c
c - d1/100 c + d1/100

Response:

      0 x - c 0  6 d1/100

y

x

L

L +
1

1000

L -
1

1000

0

y = f (x)

c

New challenge:

   e =
1

1000

y

x

L

L +
1

1000

L + P

L - P

L -
1

1000

0

y = f (x)

c

Response:

      0  x - c 0  6 d1/1000

y

x

L

L +
1

100,000

L -
1

100,000

0

y = f (x)

c

New challenge:
1

100,000
e =

y

x
0

y = f (x)

c

Response:

      0  x - c 0  6 d1/100,000

L

L +
1

100,000

L -
1

100,000

y

L

0

y = f (x)

c

New challenge:

       e = ...

x

EXAMPLE 2  Show that

lim
xS1

 (5x - 3) = 2.

Solution Set c = 1, ƒ(x) = 5x - 3, and L = 2 in the definition of limit. For any given 

e 7 0, we have to find a suitable d 7 0 so that if x ≠ 1 and x is within distance d of 

c = 1, that is, whenever

0 6 0 x - 1 0 6 d,

it is true that ƒ(x) is within distance e of L = 2, so0 ƒ(x) - 2 0 6 e.
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We find d by working backward from the e@inequality:

 0 (5x - 3) - 2 0 = 0 5x - 5 0 6 e

 5 0 x - 1 0 6 e

 0 x - 1 0 6 e>5.

Thus, we can take d = e>5 (Figure 2.18). If 0 6 0 x - 1 0 6 d = e>5, then0 (5x - 3) - 2 0 = 0 5x - 5 0 = 5 0 x - 1 0 6 5(e>5) = e,

which proves that limxS1(5x - 3) = 2.

The value of d = e>5 is not the only value that will make 0 6 0 x - 1 0 6 d imply 0 5x - 5 0 6 e. Any smaller positive d will do as well. The deinition does not ask for the 

“best” positive d, just one that will work. 

EXAMPLE 3  Prove the following results presented graphically in Section 2.2.

(a) lim
xSc

 x = c

(b) lim
xSc

 k = k (k constant)

Solution

(a) Let e 7 0 be given. We must ind d 7 0 such that0 x - c 0 6 e  whenever  0 6 0 x - c 0 6 d.

  The implication will hold if d equals e or any smaller positive number (Figure 2.19). 

This proves that limxSc x = c.

(b) Let e 7 0 be given. We must ind d 7 0 such that0 k - k 0 6 e  whenever  0 6 0 x - c 0 6 d.

  Since k - k = 0, we can use any positive number for d and the implication will hold 

(Figure 2.20). This proves that limxSc k = k. 

Finding Deltas Algebraically for Given Epsilons

In Examples 2 and 3, the interval of values about c for which 0 ƒ(x) - L 0  was less than e 

was symmetric about c and we could take d to be half the length of that interval. When the 

interval around c on which we have � ƒ(x) - L � 6 e is not symmetric about c, we can 

take d to be the distance from c to the interval’s nearer endpoint.

EXAMPLE 4  For the limit limxS52x - 1 = 2, find a d 7 0 that works for e = 1. 

That is, find a d 7 0 such that02x - 1 - 2 0 6 1  whenever  0 6 0 x - 5 0 6 d.

Solution We organize the search into two steps.

 1. Solve the inequality 02x - 1 - 2 0 6 1 to ind an interval containing x = 5 on 

which the inequality holds for all x ≠ 5.02x - 1 - 2 0 6 1

-1 6 2x - 1 - 2 6 1

1 6 2x - 1 6 3

1 6 x - 1 6 9

2 6 x 6 10

x

y

0

2

1

2 - e

2 + e

y = 5x - 3

1 -
5
e

1 +
5
e

-3

NOT TO SCALE

FIGURE 2.18 If ƒ(x) = 5x - 3, then 

0 6 0 x - 1 0 6 e>5 guarantees that 0 ƒ(x) - 2 0 6 e (Example 2).

c - e

c - d

c + d

c + e

c

0 c - d c + dc
x

y

y = x

FIGURE 2.19 For the function 

ƒ(x) = x, we find that 0 6 0 x - c 0 6 d 

will guarantee 0 ƒ(x) - c 0 6 e whenever 

d … e (Example 3a).

k - e

k + e

k

0 c - d c + dc
x

y

y = k

FIGURE 2.20 For the function 

ƒ(x) = k, we find that 0 ƒ(x) - k 0 6 e for 

any positive d (Example 3b).
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  The inequality holds for all x in the open interval (2, 10), so it holds for all x ≠ 5 in 

this interval as well.

 2. Find a value of d 7 0 to place the centered interval 5 - d 6 x 6 5 + d (centered at  

x = 5) inside the interval (2, 10). The distance from 5 to the nearer endpoint of (2, 10)  

is 3 (Figure 2.21). If we take d = 3 or any smaller positive number, then the inequality  

0 6 0 x - 5 0 6 d will automatically place x between 2 and 10 and imply that 02x - 1 - 2 0 6 1 (Figure 2.22):02x - 1 - 2 0 6 1  whenever   0 6 0 x - 5 0 6 3.

x

102 8

3

5

3
( )

FIGURE 2.21 An open interval of radius 

3 about x = 5 will lie inside the open 

interval (2, 10).

x

y

0 1 2 5 8 10

1

2

3

3 3

y = "x - 1

NOT TO SCALE

FIGURE 2.22 The function and inter-

vals in Example 4.

How to Find Algebraically a D for a Given ƒ, L, c, and E + 0

The process of inding a d 7 0 such that0 ƒ(x) - L 0 6 e  whenever  0 6 0 x - c 0 6 d

can be accomplished in two steps.

1. Solve the inequality 0 ƒ(x) - L 0 6 e to ind an open interval (a, b) containing 

c on which the inequality holds for all x ≠ c. Note that we do not require the 

inequality to hold at x = c. It may hold there or it may not, but the value of ƒ at  

x = c does not inluence the existence of a limit.

2. Find a value of d 7 0 that places the open interval (c - d, c + d) centered 

at c inside the interval (a, b). The inequality 0 ƒ(x) - L 0 6 e will hold for all 

x ≠ c in this d@interval.

EXAMPLE 5  Prove that limxS2 ƒ(x) = 4 if

ƒ(x) = e x2, x ≠ 2

1, x = 2.

Solution Our task is to show that given e 7 0 there exists a d 7 0 such that0 ƒ(x) - 4 0 6 e  whenever  0 6 0 x - 2 0 6 d.

 1. Solve the inequality 0 ƒ(x) - 4 0 6 e to ind an open interval containing x = 2 on 

which the inequality holds for all x ≠ 2.

  For x ≠ c = 2, we have ƒ(x) = x2, and the inequality to solve is 0 x2 - 4 0 6 e:0 x2 - 4 0 6 e

-e 6 x2 - 4 6 e

4 - e 6 x2 6 4 + e

24 - e 6 0 x 0 6 24 + e

24 - e 6 x 6 24 + e.

Assumes e 6 4; see below.

  The inequality 0 ƒ(x) - 4 0 6 e holds for all x ≠ 2 in the open interval  124 - e, 24 + e 2 (Figure 2.23).

 2. Find a value of d 7 0 that places the centered interval (2 - d, 2 + d) inside the 

  interval 124 - e, 24 + e 2.
  Take d to be the distance from x = 2 to the nearer endpoint of 124 - e, 24 + e 2. 
  In other words, take d = min52 - 24 - e, 24 + e - 26 , the minimum (the 

An open interval about x = 2 

that solves the inequality.

0

4

4 - e

4 + e

(2, 1)

(2, 4)

2
x

y

"4 - e "4 + e

y = x2

FIGURE 2.23 An interval containing 

x = 2 so that the function in Example 5 

satisfies 0 ƒ(x) - 4 0 6 e.
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smaller) of the two numbers 2 - 24 - e and 24 + e - 2. If d has this or any 

smaller positive value, the inequality 0 6 0 x - 2 0 6 d will automatically place x 

  between 24 - e and 24 + e to make 0 ƒ(x) - 4 0 6 e. For all x,0 ƒ(x) - 4 0 6 e  whenever  0 6 0 x - 2 0 6 d.

  This completes the proof for e 6 4.

If e Ú 4, then we take d to be the distance from x = 2 to the nearer endpoint  

of the interval 10, 24 + e 2. In other words, take d = min52, 24 + e - 26 . (See 

Figure 2.23.) 

Using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such as 

those in the preceding examples. Rather, we appeal to general theorems about limits, in 

particular the theorems of Section 2.2. The definition is used to prove these theorems 

(Appendix 5). As an example, we prove part 1 of Theorem 1, the Sum Rule.

Triangle Inequality: 

� a + b � … � a � + � b �

Since limxSc ƒ(x) = L, there exists a number d1 7 0 such that 0 ƒ(x) - L 0 6 e>2  whenever  0 6 0 x - c 0 6 d1.
Can find d1 since 

lim
xSc

 ƒ(x) = L

Similarly, since limxSc g(x) = M, there exists a number d2 7 0 such that0 g(x) - M 0 6 e>2  whenever  0 6 0 x - c 0 6 d2.
Can find d2 since 

lim
xSc

 g(x) = M

Let d = min5d1, d26 , the smaller of d1 and d2. If 0 6 0 x - c 0 6 d then 0 x - c 0 6 d1, 

so 0 ƒ(x) - L 0 6 e>2, and 0 x - c 0 6 d2, so 0 g(x) - M 0 6 e>2. Therefore0 ƒ(x) + g(x) - (L + M) 0 6
e
2

+
e
2

= e.

This shows that limxSc (ƒ(x) + g(x)) = L + M. 

EXAMPLE 6  Given that limxSc ƒ(x) = L and limxSc g(x) = M, prove that

lim
xSc

 (ƒ(x) + g(x)) = L + M.

Solution Let e 7 0 be given. We want to find a positive number d such that0 ƒ(x) + g(x) - (L + M) 0 6 e  whenever  0 6 0 x - c 0 6 d.

Regrouping terms, we get0 ƒ(x) + g(x) - (L + M) 0  = 0 (ƒ(x) - L) + (g(x) - M) 0
 … 0 ƒ(x) - L 0 + 0 g(x) - M 0 .

Centering Intervals About a Point

In Exercises 1–6, sketch the interval (a, b) on the x-axis with the point 

c inside. Then find a value of d 7 0 such that 

 a 6 x 6 b whenever 0 6 0 x - c 0 6 d.

 1. a = 1, b = 7, c = 5

 2. a = 1, b = 7, c = 2

 3. a = -7>2, b = -1>2, c = -3

 4. a = -7>2, b = -1>2, c = -3>2
 5. a = 4>9, b = 4>7, c = 1>2
 6. a = 2.7591, b = 3.2391, c = 3

EXERCISES 2.3
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Finding Deltas Graphically

In Exercises 7–14, use the graphs to find a d 7 0 such that0 ƒ(x) - L 0 6 e whenever 0 6 0 x - c 0 6 d.

 7.    8. 

x

y

0

6.2
6

5.8

5
5.14.9

y = 2x - 4

f (x) = 2x - 4

NOT TO SCALE

c = 5
L = 6
e = 0.2

x

y

0

7.65

7.5

7.35

NOT TO SCALE

-3
-3.1 -2.9

f (x) =  -    x + 33
2

y =  -    x + 33
2

e = 0.15
L = 7.5
c = - 3

x

y

0

1

1

f (x) = "x

y = "x
1
4

e = 
5
4

3
4

9
16

25
16

L = 1
c = 1 f (x) = 2"x + 1

y = 2"x + 1

x

y

4.2
4

3.8

2

-1 0 2.61 3 3.41

NOT TO SCALE

e = 0.2
L = 4
c = 3

 9.    10. 

 11.    12. 

L = 4

x

y

0

5

4

3

2

NOT TO SCALE

y = x2

f (x) = x2

c = 2

e = 1

"3 "5

3.25

3

2.75

y

x

y = 4 - x2

-1

L = 3

f (x) = 4 - x2

c = -1

e = 0.25

"5

2
-

"3

2
-

0

NOT TO SCALE

 13.    14. 

2.5

2

1.5

y

x
-1

L = 2

f (x) =

c = -1

e = 0.5

16
9

-
16
25

-
0

"-x

2

y = "-x

2

0

y

x

c =

L = 2
e = 0.01

y =
1
x

f (x) =
1
x
1
22.01

2

1.99

1
2

1
2.01

1
1.99

NOT TO SCALE

Finding Deltas Algebraically

Each of Exercises 15–30 gives a function ƒ(x) and numbers L, c, and 

e 7 0. In each case, find an open interval about c on which the inequal-

ity 0 ƒ(x) - L 0 6 e holds. Then give a value for d 7 0 such that for all 

x satisfying 0 6 0 x - c 0 6 d the inequality 0 ƒ(x) - L 0 6 e holds.

 15. ƒ(x) = x + 1,  L = 5,  c = 4,  e = 0.01

 16. ƒ(x) = 2x - 2,  L = -6,  c = -2,  e = 0.02

 17. ƒ(x) = 2x + 1,  L = 1,  c = 0,  e = 0.1

 18. ƒ(x) = 2x,  L = 1>2,  c = 1>4,  e = 0.1

 19. ƒ(x) = 219 - x,  L = 3,  c = 10,  e = 1

 20. ƒ(x) = 2x - 7,  L = 4,  c = 23,  e = 1

 21. ƒ(x) = 1>x,  L = 1>4,  c = 4,  e = 0.05

 22. ƒ(x) = x2,  L = 3,  c = 23,  e = 0.1

 23. ƒ(x) = x2,  L = 4,  c = -2,  e = 0.5

 24. ƒ(x) = 1>x,  L = -1,  c = -1,  e = 0.1

 25. ƒ(x) = x2 - 5,  L = 11,  c = 4,  e = 1

 26. ƒ(x) = 120>x,  L = 5,  c = 24,  e = 1

 27. ƒ(x) = mx, m 7 0, L = 2m, c = 2, e = 0.03

 28. ƒ(x) = mx,  m 7 0,  L = 3m,  c = 3, e = c 7 0

 29. ƒ(x) = mx + b,  m 7 0,  L = (m>2) + b,

c = 1>2,  e = c 7 0

 30. ƒ(x) = mx + b, m 7 0, L = m + b, c = 1, e = 0.05

Using the Formal Definition

Each of Exercises 31–36 gives a function ƒ(x), a point c, and a positive num-

ber e. Find L = lim
xSc

 ƒ(x). Then find a number d 7 0 such that 0 ƒ(x) - L 0 6 e whenever 0 6 0 x - c 0 6 d.

 31. ƒ(x) = 3 - 2x,  c = 3,  e = 0.02

 32. ƒ(x) = -3x - 2,  c = -1,  e = 0.03

 33. ƒ(x) =
x2 - 4
x - 2

,  c = 2,  e = 0.05
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 34. ƒ(x) =
x2 + 6x + 5

x + 5
,  c = -5,  e = 0.05

 35. ƒ(x) = 21 - 5x,  c = -3,  e = 0.5

 36. ƒ(x) = 4>x,  c = 2,  e = 0.4

Prove the limit statements in Exercises 37–50.

 37. lim
xS4

 (9 - x) = 5 38. lim
xS3

 (3x - 7) = 2

 39. lim
xS9
2x - 5 = 2 40. lim

xS0
24 - x = 2

 41. lim
xS1

 ƒ(x) = 1 if ƒ(x) = e x2, x ≠ 1

2, x = 1

 42. lim
xS  -2

 ƒ(x) = 4 if ƒ(x) = e x2, x ≠ -2

1, x = -2

 43. lim
xS1

 
1
x = 1 44. lim

xS23
  
1

x2
=

1
3

 45. lim
xS  -3

 
x2 - 9

x + 3
= -6 46. lim

xS1
  
x2 - 1
x - 1

= 2

 47. lim
xS1

 ƒ(x) = 2 if ƒ(x) = e4 - 2x, x 6 1

6x - 4, x Ú 1

 48. lim
xS0

 ƒ(x) = 0 if ƒ(x) = e2x, x 6 0

x>2, x Ú 0

 49. lim
xS0

 x sin 
1
x = 0

x

y

y = x sin 1
x

1
p-

1
p

1
2p

-
1

2p

 50. lim
xS0

 x2 sin 
1
x = 0

x

y

1

-1

0 1-1

y = x2

y = -x2

y = x2 sin
1
x

2
p

2
p-

Theory and Examples

 51. Define what it means to say that lim
xS0

 g(x) = k.

 52. Prove that lim
xSc

 ƒ(x) = L if and only if lim
hS0

 ƒ(h + c) = L.

 53. A wrong statement about limits Show by example that the 

following statement is wrong.

The number L is the limit of ƒ(x) as x approaches c  

if ƒ(x) gets closer to L as x approaches c.

  Explain why the function in your example does not have the 

given value of L as a limit as x S c.

 54. Another wrong statement about limits Show by example that 

the following statement is wrong.

The number L is the limit of ƒ(x) as x approaches c if, given any 

e 7 0, there exists a value of x for which 0 ƒ(x) - L 0 6 e.

  Explain why the function in your example does not have the 

given value of L as a limit as x S c.

 55. Grinding engine cylinders Before contracting to grind engine 

cylinders to a cross-sectional area of 9 in2, you need to know how 

much deviation from the ideal cylinder diameter of c = 3.385 in. 

you can allow and still have the area come within 0.01 in2 of the 

required 9 in2. To find out, you let A = p(x>2)2 and look for the 

interval in which you must hold x to make 0A - 9 0 … 0.01. 

What interval do you find?

 56. Manufacturing electrical 

resistors Ohm’s law for elec-

trical circuits like the one shown 

in the accompanying figure 

states that V = RI. In this equa-

tion, V is a constant voltage, I is 

the current in amperes, and R is the resistance in ohms. Your firm has 

been asked to supply the resistors for a circuit in which V will be 120 

volts and I is to be 5 { 0.1 amp. In what interval does R have to lie 

for I to be within 0.1 amp of the value I0 = 5?

When Is a Number L Not the Limit of ƒ(x)  as xu c?

Showing L is not a limit We can prove that limxSc 

 ƒ(x) ≠ L by 

providing an e 7 0 such that no possible d 7 0 satisfies the condition0 ƒ(x) - L 0 6 e whenever 0 6 0 x - c 0 6 d.

We accomplish this for our candidate e by showing that for each 

d 7 0 there exists a value of x such that

0 6 0 x - c 0 6 d  and  0 ƒ(x) - L 0 Ú e.

y

x
0 c c + dc - d

L

L - e

L + e

y = f (x)

a value of x for which

0 6 0  x - c 0  6 d and 0  f (x) - L 0  ≥ e

 f (x)

T

V RI
+

-
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 57. Let ƒ(x) = e x, x 6 1

x + 1, x 7 1.

x

y

y = x + 1

y = x

y = f (x)

1

1

2

 a. Let e = 1>2. Show that no possible d 7 0 satisfies the fol-

lowing condition:0 ƒ(x) - 2 0 6 1>2 whenever 0 6 0 x - 1 0 6 d.

  That is, for each d 7 0 show that there is a value of x such 

that

0 6 0 x - 1 0 6 d  and  0 ƒ(x) - 2 0 Ú 1>2.

  This will show that limxS1 ƒ(x) ≠ 2.

 b. Show that limxS1 ƒ(x) ≠ 1.

 c. Show that limxS1 ƒ(x) ≠ 1.5.

 58. Let h(x) = c x2, x 6 2

3, x = 2

2, x 7 2.

x

y

0 2

1

2

3

4
y = h(x)

y = x2

y = 2

Show that

 a. lim
xS2

 h(x) ≠ 4

 b. lim
xS2

 h(x) ≠ 3

 c. lim
xS2

 h(x) ≠ 2

 59. For the function graphed here, explain why

 a. lim
xS3

 ƒ(x) ≠ 4

 b. lim
xS3

 ƒ(x) ≠ 4.8

 c. lim
xS3

 ƒ(x) ≠ 3

x

y

0 3

3

4

4.8

y = f (x)

 60. a. For the function graphed here, show that limxS  -1 g(x) ≠ 2.

b. Does limxS  -1 g(x) appear to exist? If so, what is the value of 

the limit? If not, why not?

y

x

y = g(x)

-1 0

1

2

COMPUTER EXPLORATIONS

In Exercises 61–66, you will further explore finding deltas graphi-

cally. Use a CAS to perform the following steps:

a. Plot the function y = ƒ(x) near the point c being approached.

b. Guess the value of the limit L and then evaluate the limit 

symbolically to see if you guessed correctly.

c. Using the value e = 0.2, graph the banding lines y1 = L - e 

and y2 = L + e together with the function ƒ near c.

d. From your graph in part (c), estimate a d 7 0 such that0 ƒ(x) - L 0 6 e whenever  0 6 0 x - c 0 6 d.

  Test your estimate by plotting ƒ, y1, and y2 over the interval 

0 6 0 x - c 0 6 d. For your viewing window use c - 2d …  

x … c + 2d and L - 2e … y … L + 2e. If any function 

values lie outside the interval 3L - e, L + e], your choice 

of d was too large. Try again with a smaller estimate.

e. Repeat parts (c) and (d) successively for e = 0.1, 0.05, and 

0.001.

 61. ƒ(x) =
x4 - 81
x - 3

, c = 3 62. ƒ(x) =
5x3 + 9x2

2x5 + 3x2
 , c = 0

 63. ƒ(x) =
sin 2x

3x
, c = 0 64. ƒ(x) =

x(1 - cos x)

x - sin x
, c = 0

 65. ƒ(x) =
23 x - 1

x - 1
, c = 1

 66. ƒ(x) =
3x2 - (7x + 1)2x + 5

x - 1
, c = 1
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2.4 One-Sided Limits

In this section we extend the limit concept to one-sided limits, which are limits as x 

approaches the number c from the left-hand side (where x 6 c) or the right-hand side 

(x 7 c) only. These allow us to describe functions that have different limits at a point, 

depending on whether we approach the point from the left or from the right. One-sided 

limits also allow us to say what it means for a function to have a limit at an endpoint of an 

interval.

Approaching a Limit from One Side

Suppose a function ƒ is defined on an interval that extends to both sides of a number c. In 

order for ƒ to have a limit L as x approaches c, the values of ƒ(x) must approach the value 

L as x approaches c from either side. Because of this, we sometimes say that the limit is 

two-sided.

If ƒ fails to have a two-sided limit at c, it may still have a one-sided limit, that is, a 

limit if the approach is only from one side. If the approach is from the right, the limit is a 

right-hand limit or limit from the right. From the left, it is a left-hand limit or limit 

from the left.

The function ƒ(x) = x> 0 x 0  (Figure 2.24) has limit 1 as x approaches 0 from the right, 

and limit -1 as x approaches 0 from the left. Since these one-sided limit values are not the 

same, there is no single number that ƒ(x) approaches as x approaches 0. So ƒ(x) does not 

have a (two-sided) limit at 0.

Intuitively, if we only consider the values of ƒ(x) on an interval (c, b), where c 6 b, 

and the values of ƒ(x) become arbitrarily close to L as x approaches c from within that 

interval, then ƒ has right-hand limit L at c. In this case we write

lim
xSc+

 ƒ(x) = L.

The notation “x S c+ ” means that we consider only values of ƒ(x) for x greater than c. We 

don’t consider values of ƒ(x) for x … c.

Similarly, if ƒ(x) is defined on an interval (a, c), where a 6 c and ƒ(x) approaches 

arbitrarily close to M as x approaches c from within that interval, then ƒ has left-hand 

limit M at c. We write

lim
xSc-

 ƒ(x) = M.

The symbol “x S c- ” means that we consider the values of ƒ only at x-values less than c.

These informal definitions of one-sided limits are illustrated in Figure 2.25. For the 

function ƒ(x) = x> 0 x 0  in Figure 2.24 we have

lim
xS0+

 ƒ(x) = 1  and  lim
xS0-

 ƒ(x) = -1.

x

y

1

0

-1

y =
x0 x 0

FIGURE 2.24 Different right-hand and 

left-hand limits at the origin.

x

y

0
x

y

c cx x

L
f (x)

0

M
f (x)

lim    f (x) = L
x:c+

lim    f (x) = M(b)(a)
x:c

_

FIGURE 2.25 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x  

approaches c.
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We now give the definition of the limit of a function at a boundary point of its domain. 

This definition is consistent with limits at boundary points of regions in the plane and in 

space, as we will see in Chapter 14. When the domain of ƒ is an interval lying to the left of 

c, such as (a, c] or (a, c), then we say that ƒ has a limit at c if it has a left-hand limit at c. 

Similarly, if the domain of ƒ is an interval lying to the right of c, such as [c, b) or (c, b), 

then we say that ƒ has a limit at c if it has a right-hand limit at c.

EXAMPLE 1  The domain of ƒ(x) = 24 - x2 is 3-2, 24 ; its graph is the semicircle 

in Figure 2.26. We have

lim
xS  -2+

24 - x2 = 0  and  lim
xS2-

24 - x2 = 0.

This function has a two-sided limit at each point in (-2, 2). It has a left-hand limit at 

x = 2 and a right-hand limit at x = -2. The function does not have a left-hand limit at 

x = -2 or a right-hand limit at x = 2. It does not have a two-sided limit at either -2 or 2 

because ƒ is not defined on both sides of these points. At the domain boundary points, 

where the domain is an interval on one side of the point, we have limxS-224 - x2 = 0    

and limxS224 - x2 = 0. The function ƒ does have a limit at x = -2 and at x = 2. 

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-hand 

limit of the sum of two functions is the sum of their right-hand limits, and so on. The theorems 

for limits of polynomials and rational functions hold with one-sided limits, as does the Sand-

wich Theorem. One-sided limits are related to limits at interior points in the following way.

x

y

0 2-2

y = "4 - x2

FIGURE 2.26 The function 

ƒ(x) = 24 - x2 has a right-hand limit 0 

at x = -2 and a left-hand limit 0 at x = 2 

(Example 1).

THEOREM 6 Suppose that a function f is deined on an open interval  

containing c, except perhaps at c itself. Then ƒ(x) has a limit as x approaches c  

if and only if it has left-hand and right-hand limits there and these one-sided 

limits are equal:

lim
xSc

 ƒ(x) = L  3  lim
xSc-

 ƒ(x) = L  and  lim
xSc+

 ƒ(x) = L.

EXAMPLE 2  For the function graphed in Figure 2.27,

At x = 0: limxS0- ƒ(x) does not exist, 

limxS0+ ƒ(x) = 1,   

limxS0 ƒ(x) = 1. 

ƒ is not defined to the left of x = 0. 

ƒ has a right-hand limit at x = 0.

ƒ has a limit at domain endpoint x = 0.

At x = 1: limxS1- ƒ(x) = 0, 

limxS1+ ƒ(x) = 1,

limxS1 ƒ(x) does not exist. 

Even though ƒ(1) = 1.

Right- and left-hand limits are not equal.

At x = 2: limxS2- ƒ(x) = 1,

limxS2+ ƒ(x) = 1,

limxS2 ƒ(x) = 1. Even though ƒ(2) = 2.

At x = 3: limxS3- ƒ(x) = limxS3+ ƒ(x) = limxS3 ƒ(x) = ƒ(3) = 2. 

At x = 4: limxS4- ƒ(x) = 1, 

limxS4+ ƒ(x) does not exist, 

limxS4 ƒ(x) = 1.

Even though ƒ(4) ≠ 1.

ƒ is not defined to the right of x = 4.

ƒ has a limit at domain endpoint x = 4.

x

y

321

2

1

40

y = f (x)

FIGURE 2.27 Graph of the function 

in Example 2.

At every other point c in 30, 44 , ƒ(x) has limit ƒ(c). 

Theorem 6 applies at interior points of a function’s domain. At a boundary point of its 

domain, a function has a limit when it has an appropriate one-sided limit.
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Precise Definitions of One-Sided Limits

The formal definition of the limit in Section 2.3 is readily modified for one-sided limits.

y

x
0

L

x

d

f (x) lies

in here

for all x Z c

in here

L - e

L + e
f (x)

c c + d

FIGURE 2.28 Intervals associated with 

the definition of right-hand limit.

DEFINITIONS (a) Assume the domain of ƒ contains an interval (c, d ) to the 

right of c. We say that ƒ(x) has right-hand limit L at c, and write

lim
xSc+

 ƒ(x) = L

if for every number e 7 0 there exists a corresponding number d 7 0 such that 

� ƒ(x) - L � 6 e whenever c 6 x 6 c + d.

(b) Assume the domain of ƒ contains an interval (b, c) to the left of c. We say that 

ƒ has left-hand limit L at c, and write

lim
xSc-

 ƒ(x) = L

if for every number e 7 0 there exists a corresponding number d 7 0 such that 0 ƒ(x) - L 0 6 e whenever c - d 6 x 6 c.

EXAMPLE 3  Prove that

lim
xS0+

2x = 0.

Solution Let e 7 0 be given. Here c = 0 and L = 0, so we want to find a d 7 0 such 

that 02x - 0 0 6 e  whenever  0 6 x 6 d,

or

2x 6 e  whenever  0 6 x 6 d.

Squaring both sides of this last inequality gives

x 6 e2  if  0 6 x 6 d.

If we choose d = e2 we have

2x 6 e  whenever  0 6 x 6 d = e2,

or 02x - 0 0 6 e  whenever  0 6 x 6 e2.

According to the definition, this shows that limxS0+2x = 0 (Figure 2.30). 

The functions examined so far have had some kind of limit at each point of interest. In 

general, that need not be the case.

1x Ú 0 so 0 1x 0 = 1x

y

x
0

L

x

d

f (x) lies

in here

for all x Z c

in here

L - e

L + e
f (x)

cc - d

FIGURE 2.29 Intervals associated with 

the definition of left-hand limit.

x

y

e

f (x)

xL = 0 d = e2

 f (x) = "x

FIGURE 2.30 lim
xS0+

1x = 0 in Example 3.

The definitions are illustrated in Figures 2.28 and 2.29.
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EXAMPLE 4  Show that y = sin (1>x) has no limit as x approaches zero from either 

side (Figure 2.31).

x

y

0

-1

1

y = sin
1
x

FIGURE 2.31 The function y = sin (1>x) has neither a right-

hand nor a left-hand limit as x approaches zero (Example 4). 

The graph here omits values very near the y-axis.

Solution As x approaches zero, its reciprocal, 1>x, grows without bound and the values 

of sin (1>x) cycle repeatedly from -1 to 1. There is no single number L that the function’s 

values stay increasingly close to as x approaches zero. This is true even if we restrict x to 

positive values or to negative values. The function has neither a right-hand limit nor a left-

hand limit at x = 0. 

Limits Involving (sin U) ,U

A central fact about (sin u)>u is that in radian measure its limit as u S 0 is 1. We can see 

this in Figure 2.32 and confirm it algebraically using the Sandwich Theorem. You will see the 

importance of this limit in Section 3.5, where instantaneous rates of change of the trigono-

metric functions are studied.

y

1

NOT TO SCALE

2pp-p-2p-3p 3p

y = (radians)
sin u
u

u

FIGURE 2.32 The graph of ƒ(u) = (sin u)>u suggests that the right- 

and left-hand limits as u approaches 0 are both 1.

THEOREM 7—Limit of the Ratio sin U ,U as Uu 0

lim
uS0

 
sin u
u

= 1  (u in radians) (1)

Proof  The plan is to show that the right-hand and left-hand limits are both 1. Then we 

will know that the two-sided limit is 1 as well.

To show that the right-hand limit is 1, we begin with positive values of u less than 

p>2 (Figure 2.33). Notice that

Area ∆OAP 6  area sector OAP 6  area ∆OAT.

x

y

O

1

1

Q

tan u

P

sin u 

cos u 

1

T

A(1, 0)

u

FIGURE 2.33 The ratio TA>OA = tan u, 

and OA = 1, so TA = tan u.
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We can express these areas in terms of u as follows:

Area ∆OAP =
1
2

 base * height =
1
2

 (1)(sin u) =
1
2

 sin u

Area sector OAP =
1
2

 r2u =  
1
2

 (1)2u    =
u
2

Area ∆OAT =
1
2

 base * height =
1
2

 (1)(tan u) =
1
2

 tan u. 

(2)

Thus,

1
2

 sin u 6
1
2

 u 6
1
2

 tan u.

This last inequality goes the same way if we divide all three terms by the number  

(1>2) sin u, which is positive, since 0 6 u 6 p>2:

1 6
u

sin u
6

1
cos u

.

Taking reciprocals reverses the inequalities:

1 7
sin u
u

7 cos u.

Since limuS0+ cos u = 1 (Example 11b, Section 2.2), the Sandwich Theorem gives

lim
uS0+

 
sin u
u

= 1.

To consider the left-hand limit, we recall that sin u and u are both odd functions 

(Section 1.1). Therefore, ƒ(u) = (sin u)>u is an even function, with a graph symmetric 

about the y-axis (see Figure 2.32). This symmetry implies that the left-hand limit at 0 exists 

and has the same value as the right-hand limit:

lim
uS0-

 
sin u
u

= 1 = lim
uS0+

 
sin u
u

,

so limuS0 (sin u)>u = 1 by Theorem 6. 

EXAMPLE 5  Show that (a) lim
yS0

 
cos y - 1

y = 0 and (b) lim
xS0

 
sin 2x

5x
=

2
5

.

Solution

(a) Using the half-angle formula cos y = 1 - 2 sin2 (y>2), we calculate

 lim
hS0

 
cos y - 1

y = lim
hS0

-
2 sin2 (y>2)

y

 = - lim
uS0

  
sin u
u

 sin u

 = -(1)(0) = 0.

The use of radians to measure angles is 

essential in Equation (2): The area of 

sector OAP is u>2 only if u is measured 

in radians.

Let u = y>2.

(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator, 

not a 5x. We produce it by multiplying numerator and denominator by 2>5:

 lim
xS0

 
sin 2x

5x
= lim

xS0
 
(2>5) #  sin 2x

(2>5) # 5x

 =
2
5

 lim
xS0

  
sin 2x

2x

 =
2
5

 (1) =
2
5

.

Eq. (1) and Example 11a 

in Section 2.2

Eq. (1) applies with 

u = 2x.
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EXAMPLE 6  Find lim
tS0

 
tan t sec 2t

3t
.

Solution From the definition of tan t and sec 2t, we have

lim
tS0

 
tan t sec 2t

3t
 = lim

tS0
  
1
3

# 1
t
# sin t
cos t

# 1
cos 2t

  =
1
3

  lim
tS0

  
sin t

t
# 1
cos t

# 1
cos 2t

 =
1
3

 (1)(1)(1) =
1
3

.
Eq. (1) and Example 11b 

in Section 2.2

EXAMPLE 7  Show that for nonzero constants A and B.

lim
uS0

  
sin Au
sin Bu

=
A
B

 .

Solution

               lim
uS0

  
sin Au
sin Bu

 = lim
uS0

 
sin Au

Au
 Au 

Bu
sin Bu

 
1

Bu

 = lim
uS0

 
sin Au

Au
 

Bu
sin Bu

 
A
B

 = lim
uS0

 (1)(1) 
A
B

 =
A
B

 .

Finding Limits Graphically

 1. Which of the following statements about the function y = ƒ(x) 

graphed here are true, and which are false?

x

y

21-1

1

0

y = f (x)

a. lim
xS  -1+

 ƒ(x) = 1 b. lim
xS0-

 ƒ(x) = 0

c. lim
xS0-

 ƒ(x) = 1 d. lim
xS0-

 ƒ(x) = lim
xS0+

 ƒ(x)

e. lim
xS0

 ƒ(x) exists. f. lim
xS0

 ƒ(x) = 0

g. lim
xS0

 ƒ(x) = 1 h. lim
xS1

 ƒ(x) = 1

i. lim
xS1

 ƒ(x) = 0 j. lim
xS2-

 ƒ(x) = 2

k. lim
xS  -1-

 ƒ(x) does not exist. l. lim
xS2+

 ƒ(x) = 0

 2. Which of the following statements about the function y = ƒ(x) 

graphed here are true, and which are false?

y = f (x)

x

y

0

1

2

1 2 3−1

a. lim
xS  -1+

 ƒ(x) = 1 b. lim
xS2

 ƒ(x) does not exist.

c. lim
xS2

 ƒ(x) = 2 d. lim
xS1-

 ƒ(x) = 2

e. lim
xS1+

 ƒ(x) = 1 f. lim
xS1

 ƒ(x) does not exist.

g. lim
xS0+

 ƒ(x) = lim
xS0-

 ƒ(x)

h. lim
xSc

 ƒ(x) exists at every c in the open interval (-1, 1).

i. lim
xSc

 ƒ(x) exists at every c in the open interval (1, 3).

j. lim
xS  -1-

 ƒ(x) = 0 k. lim
xS3+

 ƒ(x) does not exist.

EXERCISES 2.4

Multiply and divide by Au and Bu.

lim
uS0

 
sin u

u = 1,  with u = Au

lim
yS0

  
y

sin y
= 1,  with y = Bu
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 3. Let ƒ(x) = c 3 - x, x 6 2

x

2
+ 1, x 7 2.

x

y

3

20 4

y = 3 - x

y =     + 1x
2

a. Find limxS2+ ƒ(x) and limxS2- ƒ(x).

b. Does limxS2 ƒ(x) exist? If so, what is it? If not, why not?

c. Find limxS4- ƒ(x) and limxS4+ ƒ(x).

d. Does limxS4 ƒ(x) exist? If so, what is it? If not, why not?

 4. Let ƒ(x) = d 3 - x, x 6 2

2, x = 2

x

2
, x 7 2.

x

y

y = 3 - x

0

3

2- 2

y =
2
x

a. Find limxS2+ ƒ(x), limxS2- ƒ(x), and ƒ(2).

b. Does limxS2 ƒ(x) exist? If so, what is it? If not, why not?

c. Find limxS  -1- ƒ(x) and limxS  -1+ ƒ(x).

d. Does limxS  -1 ƒ(x) exist? If so, what is it? If not, why not?

 5. Let ƒ(x) = c 0, x … 0

sin 
1
x , x 7 0.

x

y

0

21

1

1
xsin    ,

y 5
0, x # 0

x . 0

a. Does limxS0+ ƒ(x) exist? If so, what is it? If not, why not?

b. Does limxS0- ƒ(x) exist? If so, what is it? If not, why not?

c. Does limxS0 ƒ(x) exist? If so, what is it? If not, why not?

 6. Let g(x) = 2x sin(1>x).

x
0

-1

1

y

y = "x

y = -"x

11
p

1
2p

2
p

y = "x sin
1
x

a. Does limxS0+ g(x) exist? If so, what is it? If not, why not?

b. Does limxS0- g(x) exist? If so, what is it? If not, why not?

c. Does limxS0 g(x) exist? If so, what is it? If not, why not?

 7. a. Graph ƒ(x) = e x3, x ≠ 1

0, x = 1.

b. Find limxS1- ƒ(x) and limxS1+ ƒ(x).

c. Does limxS1 ƒ(x) exist? If so, what is it? If not, why not?

 8. a. Graph ƒ(x) = e1 - x2, x ≠ 1

2, x = 1.

b. Find limxS1+ ƒ(x) and limxS1- ƒ(x).

c. Does limxS1 ƒ(x) exist? If so, what is it? If not, why not?

Graph the functions in Exercises 9 and 10. Then answer these questions.

a. What are the domain and range of ƒ?

b. At what points c, if any, does limxSc ƒ(x) exist?

c. At what points does the left-hand limit exist but not the right-

hand limit?

d. At what points does the right-hand limit exist but not the left-

hand limit?

 9. ƒ(x) = c 21 - x2,  0 … x 6 1

1,  1 … x 6 2

2,  x = 2

 10. ƒ(x) = c x,  -1 … x 6 0, or 0 6 x … 1

1,  x = 0

0,  x 6 -1 or x 7 1

Finding One-Sided Limits Algebraically

Find the limits in Exercises 11–20.

 11. lim
xS  -0.5-A

x + 2
x + 1

 12. lim
xS1+A

x - 1
x + 2

 13. lim
xS  -2+

a x

x + 1
b a2x + 5

x2 + x
b
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 14. lim
xS1-
a 1

x + 1
b ax + 6

x b a3 - x

7
b

 15. lim
hS0+

 
2h2 + 4h + 5 - 25

h

 16. lim
hS0-

 
26 - 25h2 + 11h + 6

h

 17. a. lim
xS  -2+

(x + 3) 
0 x + 2 0
x + 2

 b. lim
xS  -2-

(x + 3) 
0 x + 2 0
x + 2

 18. a. lim
xS1+

 
22x (x - 1)0 x - 1 0  b. lim

xS1-
 
22x (x - 1)0 x - 1 0

 19. a. lim
xS0 +

 
� sin x �

sin x
 b. lim

xS0-
 
� sin x �

sin x

 20. a. lim
xS0 +

 
1 - cos x

� cos x - 1 �
 b. lim

xS0 -
 

cos x - 1

� cos x - 1 �

Use the graph of the greatest integer function y = :x;, Figure 1.10 in 

Section 1.1, to help you find the limits in Exercises 21 and 22.

 21. a. lim
uS3+

 
:u;
u

 b. lim
uS3-

 
:u;
u

 22. a. lim
tS4+

(t - :t;) b. lim
tS4-

(t - :t;)
Using lim

Uu0
 
sin U

U
= 1

Find the limits in Exercises 23–46.

 23. lim
uS0

 
sin 22u

22u
 24. lim

tS0
 
sin kt

t
 (k constant)

 25. lim
yS0

 
sin 3y

4y
 26. lim

hS0-
 

h

sin 3h

 27. lim
xS0

 
tan 2x

x  28. lim
tS0

  
2t

tan t

 29. lim
xS0

 
x csc 2x

cos 5x
 30. lim

xS0
 6x2(cot x)(csc 2x)

 31. lim
xS0

 
x + x cos x
sin x cos x

 32. lim
xS0

 
x2 - x + sin x

2x

 33. lim
uS0

 
1 - cos u

sin 2u
 34. lim

xS0
 
x - x cos x

sin2 3x

 35. lim
tS0

 
sin (1 - cos t)

1 - cos t
 36. lim

hS0
 
sin (sin h)

sin h

 37. lim
uS0

  
sin u

sin 2u
 38. lim

xS0
  
sin 5x

sin 4x

 39. lim
uS0

 u cos u 40. lim
uS0

 sin u cot 2u

 41. lim
xS0

  
tan 3x

sin 8x
 42. lim

yS0
 
sin 3y cot 5y

y cot 4y

 43. lim
uS0

  
tan u

u2 cot 3u
 44. lim

uS0
  

u cot 4u

sin2 u cot2 2u

 45. lim
xS0

  
1 - cos 3x

2x
 46. lim

xS0
  
cos2x - cos x

x2

Theory and Examples

 47. Once you know limxSa+ ƒ(x) and limxSa- ƒ(x) at an interior point 

of the domain of ƒ, do you then know limxSa ƒ(x)? Give reasons 

for your answer.

 48. If you know that limxSc ƒ(x) exists, can you find its value by  

calculating limxSc+ ƒ(x)? Give reasons for your answer.

 49. Suppose that ƒ is an odd function of x. Does knowing that 

limxS0+ ƒ(x) = 3 tell you anything about limxS0- ƒ(x)? Give rea-

sons for your answer.

 50. Suppose that ƒ is an even function of x. Does knowing that 

limxS2- ƒ(x) = 7 tell you anything about either limxS  -2- ƒ(x) or 

limxS  -2+ ƒ(x)? Give reasons for your answer.

Formal Definitions of One-Sided Limits

 51. Given e 7 0, find an interval I = (5, 5 + d), d 7 0, such that if 

x lies in I, then 2x - 5 6 e. What limit is being verified and 

what is its value?

 52. Given e 7 0, find an interval I = (4 - d, 4), d 7 0, such that if 

x lies in I, then 24 - x 6 e. What limit is being verified and 

what is its value?

Use the definitions of right-hand and left-hand limits to prove the 

limit statements in Exercises 53 and 54.

 53. lim
xS0-

 
x0 x 0 = -1 54. lim

xS2+
 

x - 20 x - 2 0 = 1

 55. Greatest integer function Find (a) limxS400+ :x;  and (b) 

limxS400- :x;; then use limit definitions to verify your findings. 

(c) Based on your conclusions in parts (a) and (b), can you say 

anything about limxS400 :x;? Give reasons for your answer.

 56. One-sided limits Let ƒ(x) = e x2 sin (1>x), x 6 0

2x, x 7 0.

  Find (a) limxS0+ ƒ(x) and (b) limxS0- ƒ(x); then use limit defini-

tions to verify your findings. (c) Based on your conclusions in 

parts (a) and (b), can you say anything about limxS0 ƒ(x)? Give 

reasons for your answer.

2.5 Continuity

When we plot function values generated in a laboratory or collected in the field, we often 

connect the plotted points with an unbroken curve to show what the function’s values are 

likely to have been at the points we did not measure (Figure 2.34). In doing so, we are 

assuming that we are working with a continuous function, so its outputs vary regularly and 

consistently with the inputs, and do not jump abruptly from one value to another without 

taking on the values in between. Intuitively, any function y = ƒ(x) whose graph can be 

sketched over its domain in one unbroken motion is an example of a continuous function. 

Such functions play an important role in the study of calculus and its applications.

t

y

0

125

5

250

Q1

Q2

Q3

Q4

FIGURE 2.34 Connecting plotted points.
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Continuity at a Point

To understand continuity, it helps to consider a function like that in Figure 2.35, whose 

limits we investigated in Example 2 in the last section.

EXAMPLE 1  At which numbers does the function ƒ in Figure 2.35 appear to be not 

continuous? Explain why. What occurs at other numbers in the domain?

Solution First we observe that the domain of the function is the closed interval 30, 44 , so we 

will be considering the numbers x within that interval. From the figure, we notice right away that 

there are breaks in the graph at the numbers x = 1, x = 2, and x = 4. The break at x = 1 

appears as a jump, which we identify later as a “jump discontinuity.” The break at x = 2 is called 

a “removable discontinuity” since by changing the function definition at that one point, we can 

create a new function that is continuous at x = 2. Similarly x = 4 is a removable discontinuity.

Numbers at which the graph of ƒ has breaks:

At the interior point x = 1, the function fails to have a limit. It does have both a left-

hand limit, limxS1- ƒ(x) = 0, as well as a right-hand limit, limxS1+ ƒ(x) = 1, but the limit 

values are diferent, resulting in a jump in the graph. The function is not continuous at x = 1. 

However the function value ƒ(1) = 1 is equal to the limit from the right, so the function is 

continuous from the right at x = 1.

At x = 2, the function does have a limit, limxS2 ƒ(x) = 1, but the value of the func-

tion is ƒ(2) = 2. The limit and function values are not the same, so there is a break in the 

graph and ƒ is not continuous at x = 2.

At x = 4, the function does have a left-hand limit at this right endpoint, 

limxS4- ƒ(x) = 1, but again the value of the function ƒ(4) = 1
2  difers from the value of the 

limit. We see again a break in the graph of the function at this endpoint and the function is 

not continuous from the left.

Numbers at which the graph of ƒ has no breaks:

At x = 3, the function has a limit, limxS3 ƒ(x) = 2. Moreover, the limit is the same 

value as the function there, ƒ(3) = 2. The function is continuous at x = 3.

At x = 0, the function has a right-hand limit at this left endpoint, limxS0+ ƒ(x) = 1, 

and the value of the function is the same, ƒ(0) = 1. The function is continuous from the 

right at x = 0. Because x = 0 is a left endpoint of the function’s domain, we have that 

limxS0 ƒ(x) = 1 and so ƒ is continuous at x = 0.

At all other numbers x = c in the domain, the function has a limit equal to the value of 

the function, so limxSc ƒ(x) = ƒ(c). For example, limxS5>2 ƒ(x) = ƒ15
22 = 3

2. No breaks 

appear in the graph of the function at any of these numbers and the function is continuous 

at each of them. 

The following definitions capture the continuity ideas we observed in Example 1.

x

y

321

2

1

40

y = f (x)

FIGURE 2.35 The function is not 

continuous at x = 1, x = 2, and x = 4 

(Example 1).

DEFINITIONS Let c be a real number that is either an interior point or an  

endpoint of an interval in the domain of ƒ.

The function ƒ is continuous at c if

lim
xSc

 ƒ(x) = ƒ(c).

The function ƒ is right-continuous at c (or continuous from the right) if

lim
xSc+  ƒ(x) = ƒ(c).

The function ƒ is left-continuous at c (or continuous from the left) if

lim
xSc-  ƒ(x) = ƒ(c).
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The function ƒ in Example 1 is continuous at every x in 30, 44  except x = 1, 2, and 

4. It is right-continuous but not left-continuous at x = 1, neither right- nor left-continuous 

at x = 2, and not left-continuous at x = 4. 

From Theorem 6, it follows immediately that a function ƒ is continuous at an interior 

point c of an interval in its domain if and only if it is both right-continuous and left- 

continuous at c (Figure 2.36). We say that a function is continuous over a closed interval 3a, b4  if it is right-continuous at a, left-continuous at b, and continuous at all interior 

points of the interval. This definition applies to the infinite closed intervals 3a, q) and 

(-q, b4  as well, but only one endpoint is involved. If a function is not continuous at point 

c of its domain, we say that ƒ is discontinuous at c, and that f has a discontinuity at c. 

Note that a function ƒ can be continuous, right-continuous, or left-continuous only at a 

point c for which ƒ(c) is defined.

EXAMPLE 2  The function ƒ(x) = 24 - x2 is continuous over its domain 3-2, 24  
(Figure 2.37). It is right-continuous at x = -2, and left-continuous at x = 2. 

EXAMPLE 3  The unit step function U(x), graphed in Figure 2.38, is right- continuous 

at x = 0, but is neither left-continuous nor continuous there. It has a jump discontinuity at 

x = 0. 

 At an interior point or an endpoint of an interval in its domain, a function is continu-

ous at points where it passes the following test.

x
a c b

y = f (x)

Continuity

from the left

Two-sided

continuity
Continuity

from the right

FIGURE 2.36 Continuity at points a, b, 

and c.

x

y

0-2 2

2
y = "4 - x2

FIGURE 2.37 A function that 

is continuous over its domain 

(Example 2).

x

y

0

1
y = U(x)

FIGURE 2.38 A function 

that has a jump discontinuity 

at the origin (Example 3).

Continuity Test

A function ƒ(x) is continuous at a point x = c if and only if it meets the following 

three conditions.

1. ƒ(c) exists  (c lies in the domain of ƒ).

2. limxSc ƒ(x) exists  (ƒ has a limit as x S c).

3. limxSc ƒ(x) = ƒ(c)  (the limit equals the function value).

For one-sided continuity, the limits in parts 2 and 3 of the test should be replaced by 

the appropriate one-sided limits.

EXAMPLE 4  The function y = :x;  introduced in Section 1.1 is graphed in Figure 2.39. 

It is discontinuous at every integer n, because the left-hand and right-hand limits are not 

equal as x S n:

lim
xSn-

  :x; = n - 1 and lim
xSn+

  :x; = n.

Since :n; = n, the greatest integer function is right-continuous at every integer n (but not 

left-continuous).

The greatest integer function is continuous at every real number other than the integers. 

For example,

lim
xS1.5

  :x; = 1 = :1.5;.
In general, if n - 1 6 c 6 n, n an integer, then

lim
xSc

  :x; = n - 1 = :c;. 
Figure 2.40 displays several common ways in which a function can fail to be continu-

ous. The function in Figure 2.40a is continuous at x = 0. The function in Figure 2.40b 

does not contain x = 0 in its domain. It would be continuous if its domain were extended  

x

y

3

3

21-1

2

-2

1

4

4

y = :x ;

FIGURE 2.39 The greatest integer 

function is continuous at every noninte-

ger point. It is right-continuous, but not 

left-continuous, at every integer point 

(Example 4).
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so that  ƒ(0) = 1. The function in Figure 2.40c would be continuous if ƒ(0) were 1 instead 

of 2. The discontinuity in Figure 2.40c is removable. The function has a limit as x S 0, 

and we can remove the discontinuity by setting ƒ(0) equal to this limit.

The discontinuities in Figure 2.40d through f are more serious: limxS0 ƒ(x) does not 

exist, and there is no way to improve the situation by appropriately defining ƒ at 0. The 

step function in Figure 2.40d has a jump discontinuity: The one-sided limits exist but 

have different values. The function ƒ(x) = 1>x2 in Figure 2.40e has an infinite disconti-

nuity. The function in Figure 2.40f has an oscillating discontinuity: It oscillates so much 

that its values approach each number in 3-1, 14  as x S 0. Since it does not approach a 

single number, it does not have a limit as x approaches 0.

y

(a) (b) (c)

(e)

(d)

y

x
0

1

y y

0

0

-1

x xx

x

y

000

y

x

111

2

(f)

1

-1

y = f (x) y = f (x) y = f (x)

y = f (x)

y = f (x) = 1

x2

y = sin
1
x

FIGURE 2.40 The function in (a) is continuous at x = 0; the functions in (b) through (f) are not.

Continuous Functions

We now describe the continuity behavior of a function throughout its entire domain, not 

only at a single point. We define a continuous function to be one that is continuous at 

every point in its domain. This is a property of the function. A function always has a speci-

fied domain, so if we change the domain then we change the function, and this may 

change its continuity property as well. If a function is discontinuous at one or more points 

of its domain, we say it is a discontinuous function.

EXAMPLE 5

(a) The function ƒ(x) = 1>x (Figure 2.41) is a continuous function because it is continu-

ous at every point of its domain. The point x = 0 is not in the domain of the function 

ƒ, so ƒ is not continuous on any interval containing x = 0. Moreover, there is no way 

to extend ƒ to a new function that is deined and continuous at x = 0. The function ƒ 

does not have a removable discontinuity at x = 0.

(b) The identity function ƒ(x) = x and constant functions are continuous everywhere by 

Example 3, Section 2.3. 

Algebraic combinations of continuous functions are continuous wherever they are 

defined.

0
x

y

y =
1
x

FIGURE 2.41 The function 

ƒ(x) = 1>x is continuous over its 

natural domain. It is not defined at  

the origin, so it is not continuous 

on any interval containing x = 0 

(Example 5).
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THEOREM 9—Compositions of Continuous Functions

If ƒ is continuous at c and g is continuous at ƒ(c), then the composition g ∘ ƒ is 

continuous at c.

Most of the results in Theorem 8 follow from the limit rules in Theorem 1, Section 2.2. 

For instance, to prove the sum property we have

 lim
xSc

 (ƒ + g)(x) = lim
xSc

(ƒ(x) + g(x))

 = lim
xSc

 ƒ(x) + lim
xSc

 g(x) Sum Rule, Theorem 1

 = ƒ(c) + g(c)  Continuity of ƒ, g at c

 = (ƒ + g)(c).

This shows that ƒ + g is continuous.

EXAMPLE 6

(a) Every polynomial P(x) = an xn + an - 1x
n - 1 + g + a0 is continuous because 

lim
xSc

 P(x) = P(c) by Theorem 2, Section 2.2.

(b) If P(x) and Q(x) are polynomials, then the rational function P(x)>Q(x) is continuous 

wherever it is deined (Q(c) ≠ 0) by Theorem 3, Section 2.2. 

EXAMPLE 7  The function ƒ(x) = 0 x 0  is continuous. If x 7 0, we have ƒ(x) = x, a 

polynomial. If x 6 0, we have ƒ(x) = -x, another polynomial. Finally, at the origin, 

limxS0 0 x 0 = 0 = 0 0 0 . 
The functions y = sin x and y = cos x are continuous at x = 0 by Example 11 of 

Section 2.2. Both functions are continuous everywhere (see Exercise 64). It follows from 

Theorem 8 that all six trigonometric functions are continuous wherever they are defined. 

For example, y = tan x is continuous on g∪ (-p>2, p>2) ∪ (p>2, 3p>2) ∪ g.

Continuity of Compositions of Functions

Functions obtained by composing continuous functions are continuous. If ƒ(x) is continu-

ous at x = c and g(x) is continuous at x = ƒ(c), then g ∘ ƒ is also continuous at x = c 

(Figure 2.42). In this case, the limit of g ∘ ƒ as x S c is g(ƒ(c)).

THEOREM 8—Properties of Continuous Functions

If the functions ƒ and g are continuous at x = c, then the following algebraic 

combinations are continuous at x = c.

1. Sums: ƒ + g

2. Diferences: ƒ - g

3. Constant multiples: k # ƒ, for any number k

4. Products: ƒ # g

5. Quotients: ƒ>g, provided g(c) ≠ 0

6. Powers: ƒn, n a positive integer

7. Roots: 2n ƒ, provided it is deined on an interval 

containing c, where n is a positive integer
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c

f g

 g ˚  f

Continuous at c

Continuous

at f (c)

Continuous

at c

f (c)  g( f (c))

FIGURE 2.42 Compositions of continuous functions are continuous.

Intuitively, Theorem 9 is reasonable because if x is close to c, then ƒ(x) is close to ƒ(c), 

and since g is continuous at ƒ(c), it follows that g(ƒ(x)) is close to g(ƒ(c)).

The continuity of compositions holds for any finite number of compositions of func-

tions. The only requirement is that each function be continuous where it is applied. An 

outline of a proof of Theorem 9 is given in Exercise 6 in Appendix 4.

EXAMPLE 8  Show that the following functions are continuous on their natural 

domains.

(a) y = 2x2 - 2x - 5 (b) y =
x2>3

1 + x4

(c) y = ` x - 2

x2 - 2
`  (d) y = ` x sin x

x2 + 2
`

Solution

(a) The square root function is continuous on 30, q) because it is a root of the continu-

ous identity function ƒ(x) = x (Part 7, Theorem 8). The given function is then the 

composition of the polynomial ƒ(x) = x2 - 2x - 5 with the square root function 

g(t) = 2t , and is continuous on its natural domain.

(b) The numerator is the cube root of the identity function squared; the denominator is an 

everywhere-positive polynomial. Therefore, the quotient is continuous.

(c) The quotient (x - 2)>(x2 - 2) is continuous for all x ≠ {22, and the function 

is the composition of this quotient with the continuous absolute value function 

(Example 7).

(d) Because the sine function is everywhere-continuous (Exercise 64), the numera-

tor term x sin x is the product of continuous functions, and the denominator term 

x2 + 2 is an everywhere-positive polynomial. The given function is the composite 

of a quotient of continuous functions with the continuous absolute value function 

(Figure 2.43). 

THEOREM 10—Limits of Continuous Functions

If limxSc ƒ(x) = b and g is continuous at the point b, then

lim
xSc

 g(ƒ(x)) = g(b).

x

y

0

0.1

0.2

0.3

0.4

2p-p-2p p

FIGURE 2.43 The graph suggests that 

y = 0 (x sin x)>(x2 + 2) 0  is continuous 

(Example 8d).

Theorem 9 is actually a consequence of a more general result, which we now prove.  

It states that if the limit of ƒ(x) as x approaches c is equal to b, then the limit of the 

 composition function g ∘ f  as x approaches c is equal to g(b).
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THEOREM 11—The Intermediate Value Theorem for Continuous Functions

If ƒ is a continuous function on a closed interval 3a, b4 , and if y0 is any value 

between ƒ(a) and ƒ(b), then y0 = ƒ(c) for some c in 3a, b4 .

x

y

0 a c b

y = f (x)

f (b)

f (a)

y0

Proof  Let e 7 0 be given. Since g is continuous at b, there exists a number d1 7 0 

such that0 g(y) - g(b) 0 6 e whenever 0 6 0 y - b 0 6 d1.
limySb g(y) = g(b) since g  

is continuous at y = b.

Since limxSc ƒ(x) = b, there exists a d 7 0 such that0 ƒ(x) - b 0 6 d1 whenever 0 6 0 x - c 0 6 d. Definition of limxSc ƒ(x) = b

If we let y = ƒ(x), we then have that0 y - b 0 6 d1 whenever 0 6 0 x - c 0 6 d,

which implies from the irst statement that 0 g(y) - g(b) 0 = 0 g(ƒ(x)) - g(b) 0 6 e when-

ever 0 6 0 x - c 0 6 d. From the deinition of limit, it follows that limxSc g(ƒ(x)) = g(b). 

This gives the proof for the case where c is an interior point of the domain of f. The case 

where c is an endpoint of the domain is entirely similar, using an appropriate one-sided 

limit in place of a two-sided limit. 

EXAMPLE 9  Applying Theorem 10, we have

lim
xSp/2

 cos a2x + sin a3p
2

+ xb b  = cos a lim
xSp/2

 2x + lim
xSp/2

 sin a3p
2

+ xb b
  = cos (p + sin 2p) = cos p = -1.  

Intermediate Value Theorem for Continuous Functions

A function is said to have the Intermediate Value Property if whenever it takes on two 

values, it also takes on all the values in between.

Theorem 11 says that continuous functions over finite closed intervals have the Inter-

mediate Value Property. Geometrically, the Intermediate Value Theorem says that any 

horizontal line y = y0 crossing the y-axis between the numbers ƒ(a) and ƒ(b) will cross 

the curve y = ƒ(x) at least once over the interval 3a, b4 .
The proof of the Intermediate Value Theorem depends on the completeness property 

of the real number system. The completeness property implies that the real numbers have 

no holes or gaps. In contrast, the rational numbers do not satisfy the completeness  property, 
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and a function defined only on the rationals would not satisfy the Intermediate Value The-

orem. See Appendix 7 for a discussion and examples.

The continuity of ƒ on the interval is essential to Theorem 11. If ƒ fails to be continu-

ous at even one point of the interval, the theorem’s conclusion may fail, as it does for the 

function graphed in Figure 2.44 (choose y0 as any number between 2 and 3).

A Consequence for Graphing: Connectedness Theorem 11 implies that the graph 

of a function that is continuous on an interval cannot have any breaks over the interval. It 

will be connected—a single, unbroken curve. It will not have jumps such as the ones 

found in the graph of the greatest integer function (Figure 2.39), or separate branches as 

found in the graph of 1>x (Figure 2.41).

A Consequence for Root Finding We call a solution of the equation ƒ(x) = 0 a root 

of the equation or zero of the function ƒ. The Intermediate Value Theorem tells us that if ƒ 

is continuous, then any interval on which ƒ changes sign contains a zero of the function. 

Somewhere between a point where a continuous function is positive and a second point 

where it is negative, the function must be equal to zero.

In practical terms, when we see the graph of a continuous function cross the horizon-

tal axis on a computer screen, we know it is not stepping across. There really is a point 

where the function’s value is zero.

x

y

0

2

1

1 2 3 4

3

FIGURE 2.44 The function 

ƒ(x) = e2x - 2, 1 … x 6 2

3, 2 … x … 4
 

does not take on all values between 

ƒ(1) = 0 and ƒ(4) = 3; it misses all the 

values between 2 and 3.

(a)

5

-2

2-1

(b)

1

-1

1.61

(c)

0.02

- 0.02

1.3301.320

(d)

0.003

- 0.003

1.32481.3240

FIGURE 2.45 Zooming in on a zero of the function ƒ(x) = x3 - x - 1. The zero is near 

x = 1.3247 (Example 10).

EXAMPLE 11  Use the Intermediate Value Theorem to prove that the equation

22x + 5 = 4 - x2

has a solution (Figure 2.46).

1

0 2

4

3

2

x

y

y = 4 
- x2

y = "2x 
+ 5

c

FIGURE 2.46 The curves 

y = 22x + 5 and y = 4 - x2 

have the same value at x = c where 

22x + 5 + x2 - 4 = 0 (Example 11).

EXAMPLE 10  Show that there is a root of the equation x3 - x - 1 = 0 between 1 

and 2.

Solution Let ƒ(x) = x3 - x - 1. Since ƒ(1) = 1 - 1 - 1 = -1 6 0 and ƒ(2) =  

23 - 2 - 1 = 5 7 0, we see that y0 = 0 is a value between ƒ(1) and ƒ(2). Since ƒ is a 

polynomial, it is continuous, and the Intermediate Value Theorem says there is a zero of ƒ 

between 1 and 2. Figure 2.45 shows the result of zooming in to locate the root near 

x = 1.32. 
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The new function F(x) is continuous at x = 0 because

lim
xS0

 
sin x

x = F(0),

so it meets the requirements for continuity (Figure 2.47).

(0, 1)

(a)

p
2

p
2

-

-

0

f (x)

x

y

,p
2 p

2 ,p
2 p

2

(0, 1)

(b)

p
2

p
2

- 0

F(x)

x

y

a        b a      b ,p
2 p

2a      b- ,p
2 p

2a        b

FIGURE 2.47 (a) The graph of ƒ(x) = (sin x)>x for -p>2 … x … p>2 does not include 

the point (0, 1) because the function is not defined at x = 0. (b) We can extend the domain 

to include x = 0 by defining the new function F(x) with F(0) = 1 and F(x) = ƒ(x) every-

where else. Note that F(0) = limxS0 ƒ(x) and F(x) is a continuous function at x = 0.

Solution We rewrite the equation as

22x + 5 + x2 - 4 = 0,

and set ƒ(x) = 22x + 5 + x2 - 4. Now g(x) = 22x + 5 is continuous on the interval 3-5>2, q) since it is formed as the composition of two continuous functions, the square 

root function with the nonnegative linear function y = 2x + 5. Then ƒ is the sum of the 

function g and the quadratic function y = x2 - 4, and the quadratic function is continu-

ous for all values of x. It follows that ƒ(x) = 22x + 5 +  x2 - 4 is continuous on the 

interval 3-5>2, q). By trial and error, we find the function values 

ƒ(0) = 25 - 4 ≈ -1.76 and ƒ(2) = 29 = 3. Note that ƒ is continuous on the finite 

closed interval 30, 24 ⊂ 3-5>2, q). Since the value y0 = 0 is between the numbers 

ƒ(0) = -1.76 and ƒ(2) = 3, by the Intermediate Value Theorem there is a number 

c∊ 30, 24  such that ƒ(c) = 0. The number c solves the original equation. 

Continuous Extension to a Point

Sometimes the formula that describes a function ƒ does not make sense at a point x = c. 

It might nevertheless be possible to extend the domain of ƒ, to include x = c, creating a 

new function that is continuous at x = c. For example, the function y = ƒ(x) = (sin x)>x 

is continuous at every point except x = 0, since x = 0 is not in its domain. Since 

y = (sin x)>x has a finite limit as x S 0 (Theorem 7), we can extend the function’s 

domain to include the point x = 0 in such a way that the extended function is continuous 

at x = 0. We define the new function

F(x) = • sin x
x , x ≠ 0

1, x = 0.

Same as original function for x ≠ 0

Value at domain point x = 0

More generally, a function (such as a rational function) may have a limit at a point 

where it is not defined. If ƒ(c) is not defined, but limxSc ƒ(x) = L exists, we can define a 

new function F(x) by the rule

F(x) = eƒ(x), if x is in the domain of ƒ

L, if x = c.
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The function F is continuous at x = c. It is called the continuous extension of ƒ to 

x = c. For rational functions ƒ, continuous extensions are often found by canceling com-

mon factors in the numerator and denominator.

EXAMPLE 12  Show that

ƒ(x) =
x2 + x - 6

x2 - 4
, x ≠ 2

has a continuous extension to x = 2, and find that extension.

Solution Although ƒ(2) is not defined, if x ≠ 2 we have

ƒ(x) =
x2 + x - 6

x2 - 4
=

(x - 2)(x + 3)

(x - 2)(x + 2)
=

x + 3
x + 2

.

The new function

F(x) =
x + 3
x + 2

is equal to ƒ(x) for x ≠ 2, but is continuous at x = 2, having there the value of 5>4. Thus 

F is the continuous extension of ƒ to x = 2, and

lim
xS2

 
x2 + x - 6

x2 - 4
= lim

xS2
 ƒ(x) =

5
4

.

The graph of ƒ is shown in Figure 2.48. The continuous extension F has the same graph 

except with no hole at (2, 5>4). Effectively, F is the function ƒ extended across the missing 

domain point at x = 2 so as to give a continuous function over the larger domain. 

y

x

x

y

0

1

2

-1 1 2 3 4

0

1

2

-1 1 2 3 4

(a)

(b)

y =
x2 + x - 6

x2 - 4

5
4

y =
x + 3
x + 2

FIGURE 2.48 (a) The graph  

of ƒ(x) and (b) the graph of  

its continuous extension F(x)  

(Example 12).

Continuity from Graphs

In Exercises 1–4, say whether the function graphed is continuous on 3-1, 34 . If not, where does it fail to be continuous and why?

 1.    2. 

EXERCISES 2.5

x

y

0 1-1 3

1

2

2

y = f (x)

x

y

0 1-1 3

1

2

2

y = g(x)

 3.    4. 

x

y

0 1 3

2

-1 2

1

y = h(x)

x

y

0 1-1 3

1

2

2

y = k(x)

Exercises 5–10 refer to the function

ƒ(x) = e   x2 - 1,  -1 … x 6 0

  2x,   0 6 x 6 1

  1,   x = 1

-2x + 4,   1 6 x 6 2

  0,   2 6 x 6 3

graphed in the accompanying figure.

2

x

y

0 3

(1, 2)

21-1

(1, 1)

 

y = f (x)

y = -2x + 4

y = x2 - 1 -1

y = 2x
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 33. lim
yS1

 sec (y sec2 y - tan2 y - 1)

 34. lim
xS0

 tanap
4

 cos (sin x1>3)b
 35. lim

tS0
 cos a p

219 - 3 sec 2t
b  36. lim

xSp/6
 2csc2 x + 513 tan x

Continuous Extensions

 37. Define g(3) in a way that extends g(x) = (x2 - 9)>(x - 3) to be 

continuous at x = 3.

 38. Define h(2) in a way that extends h(t) = (t2 + 3t - 10)>(t - 2) 

to be continuous at t = 2.

 39. Define ƒ(1) in a way that extends ƒ(s) = (s3 - 1)>(s2 - 1) to be 

continuous at s = 1.

 40. Define g(4) in a way that extends

g(x) = (x2 - 16)>(x2 - 3x - 4)

  to be continuous at x = 4.

 41. For what value of a is

ƒ(x) = e x2 - 1, x 6 3

2ax, x Ú 3

  continuous at every x?

 42. For what value of b is

g(x) = e x, x 6 -2

bx2, x Ú -2

  continuous at every x?

 43. For what values of a is

ƒ(x) = ba2x - 2a, x Ú 2

12, x 6 2

  continuous at every x?

 44. For what value of b is

g(x) = c x - b

b + 1
, x 6 0

x2 + b, x 7 0

  continuous at every x?

 45. For what values of a and b is

ƒ(x) = c -2, x … -1

ax - b, -1 6 x 6 1

3, x Ú 1

  continuous at every x?

 46. For what values of a and b is

g(x) = c ax + 2b, x … 0

x2 + 3a - b, 0 6 x … 2

3x - 5, x 7 2

  continuous at every x?

The graph for Exercises 5–10.

 5. a. Does ƒ(-1) exist?

b. Does limxS  -1+ ƒ(x) exist?

c. Does limxS  -1+ ƒ(x) = ƒ(-1)?

d. Is ƒ continuous at x = -1?

 6. a. Does ƒ(1) exist?

b. Does limxS1 ƒ(x) exist?

c. Does limxS1 ƒ(x) = ƒ(1)?

d. Is ƒ continuous at x = 1?

 7. a. Is ƒ deined at x = 2? (Look at the deinition of ƒ.)

b. Is ƒ continuous at x = 2?

 8. At what values of x is ƒ continuous?

 9. What value should be assigned to ƒ(2) to make the extended 

function continuous at x = 2?

 10. To what new value should ƒ(1) be changed to remove the discon-

tinuity?

Applying the Continuity Test

At which points do the functions in Exercises 11 and 12 fail to be con-

tinuous? At which points, if any, are the discontinuities removable? 

Not removable? Give reasons for your answers.

 11. Exercise 1, Section 2.4

 12. Exercise 2, Section 2.4

At what points are the functions in Exercises 13–30 continuous?

 13. y =
1

x - 2
- 3x 14. y =

1

(x + 2)2
+ 4

 15. y =
x + 1

x2 - 4x + 3
 16. y =

x + 3

x2 - 3x - 10

 17. y = 0 x - 1 0 + sin x 18. y =
10 x 0 + 1

-
x2

2

 19. y =
cos x

x  20. y =
x + 2
cos x

 21. y = csc 2x 22. y = tan 
px

2

 23. y =
x tan x

x2 + 1
 24. y =

2x4 + 1

1 + sin2 x

 25. y = 22x + 3 26. y = 24 3x - 1

 27. y = (2x - 1)1>3 28. y = (2 - x)1>5
 29. g(x) = c x2 - x - 6

x - 3
, x ≠ 3

5, x = 3

 30. ƒ(x) = d x3 - 8

x2 - 4
, x ≠ 2, x ≠ -2

3, x = 2

4, x = -2

Limits Involving Trigonometric Functions

Find the limits in Exercises 31–36. Are the functions continuous at the 

point being approached?

 31. lim
xSp

 sin (x - sin x) 32. lim
tS0

  sinap
2

 cos (tan t)b
Theory and Examples

 47. A continuous function y = ƒ(x) is known to be negative at x = 0 

and positive at x = 1. Why does the equation ƒ(x) = 0 have at 

least one solution between x = 0 and x = 1? Illustrate with a 

sketch.
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 48. Explain why the equation cos x = x has at least one solution.

 49. Roots of a cubic Show that the equation x3 - 15x + 1 = 0 

has three solutions in the interval 3-4, 4].

 50. A function value Show that the function F(x) = (x - a)2. 

(x - b)2 + x takes on the value (a + b)>2 for some value of x.

 51. Solving an equation If ƒ(x) = x3 - 8x + 10, show that there 

are values c for which ƒ(c) equals (a) p; (b) -23; (c) 5,000,000.

 52. Explain why the following five statements ask for the same infor-

mation.

a. Find the roots of ƒ(x) = x3 - 3x - 1.

b. Find the x-coordinates of the points where the curve y = x3 

crosses the line y = 3x + 1.

c. Find all the values of x for which x3 - 3x = 1.

d. Find the x-coordinates of the points where the cubic curve 

y = x3 - 3x crosses the line y = 1.

e. Solve the equation x3 - 3x - 1 = 0.

 53. Removable discontinuity Give an example of a function ƒ(x) 

that is continuous for all values of x except x = 2, where it has a 

removable discontinuity. Explain how you know that ƒ is discon-

tinuous at x = 2, and how you know the discontinuity is remov-

able.

 54. Nonremovable discontinuity Give an example of a function 

g(x) that is continuous for all values of x except x = -1, where it 

has a nonremovable discontinuity. Explain how you know that g 

is discontinuous there and why the discontinuity is not removable.

 55. A function discontinuous at every point

a. Use the fact that every nonempty interval of real numbers 

contains both rational and irrational numbers to show that the 

function

ƒ(x) = e1, if x is rational

0, if x is irrational

    is discontinuous at every point.

b. Is ƒ right-continuous or left-continuous at any point?

 56. If functions ƒ(x) and g(x) are continuous for 0 … x … 1, could 

ƒ(x)>g(x) possibly be discontinuous at a point of 30, 14? Give 

reasons for your answer.

 57. If the product function h(x) = ƒ(x) # g(x) is continuous at x = 0, 

must ƒ(x) and g(x) be continuous at x = 0? Give reasons for 

your answer.

 58. Discontinuous composite of continuous functions Give an 

example of functions ƒ and g, both continuous at x = 0, for 

which the composite ƒ ∘ g is discontinuous at x = 0. Does this 

contradict Theorem 9? Give reasons for your answer.

 59. Never-zero continuous functions Is it true that a continuous 

function that is never zero on an interval never changes sign on 

that interval? Give reasons for your answer.

 60. Stretching a rubber band Is it true that if you stretch a rubber 

band by moving one end to the right and the other to the left, 

some point of the band will end up in its original position? Give 

reasons for your answer.

 61. A fixed point theorem Suppose that a function ƒ is continuous 

on the closed interval 30, 14  and that 0 … ƒ(x) … 1 for every x 

in 30, 14 . Show that there must exist a number c in 30, 14  such 

that ƒ(c) = c (c is called a fixed point of ƒ).

 62. The sign-preserving property of continuous functions Let ƒ 

be defined on an interval (a, b) and suppose that ƒ(c) ≠ 0 at 

some c where ƒ is continuous. Show that there is an interval 

(c - d, c + d) about c where ƒ has the same sign as ƒ(c).

 63. Prove that ƒ is continuous at c if and only if

lim
hS0

 ƒ(c + h) = ƒ(c).

 64. Use Exercise 63 together with the identities

sin (h + c) =sin h cos c + cos h sin c,

cos (h + c) = cos h cos c - sin h sin c

  to prove that both ƒ(x) = sin x and g(x) = cos x are continuous 

at every point x = c.

Solving Equations Graphically

Use the Intermediate Value Theorem in Exercises 65–70 to prove that 

each equation has a solution. Then use a graphing calculator or computer 

grapher to solve the equations.

 65. x3 - 3x - 1 = 0

 66. 2x3 - 2x2 - 2x + 1 = 0

 67. x (x - 1)2 = 1 (one root)

 68. x3 - 15x + 1 = 0 (three roots)

 69. cos x = x (one root). Make sure you are using radian mode.

 70. 2 sin x = x (three roots). Make sure you are using radian mode.

T

2.6 Limits Involving Infinity; Asymptotes of Graphs

In this section we investigate the behavior of a function when the magnitude of the indepen-

dent variable x becomes increasingly large, or x S {q. We further extend the concept of 

limit to infinite limits. Infinite limits provide useful symbols and language for describing the 

behavior of functions whose values become arbitrarily large in magnitude. We use these 

ideas to analyze the graphs of functions having horizontal or vertical asymptotes.

Finite Limits as xu tH
The symbol for infinity (q) does not represent a real number. We use q to describe the 

behavior of a function when the values in its domain or range outgrow all finite bounds. 
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FIGURE 2.50 The geometry behind the 

argument in Example 1.

Intuitively, limxSq ƒ(x) = L if, as x moves increasingly far from the origin in the positive 

direction, ƒ(x) gets arbitrarily close to L. Similarly, limxS  -q ƒ(x) = L if, as x moves 

increasingly far from the origin in the negative direction, ƒ(x) gets arbitrarily close to L.

The strategy for calculating limits of functions as x S +q or as x S -q is similar 

to the one for finite limits in Section 2.2. There we first found the limits of the constant and 

identity functions y = k and y = x. We then extended these results to other functions by 

applying Theorem 1 on limits of algebraic combinations. Here we do the same thing, 

except that the starting functions are y = k and y = 1>x instead of y = k and y = x.

The basic facts to be verified by applying the formal definition are

lim
xS{q

 k = k   and   lim
xS{q

  
1
x = 0. (1)

We prove the second result in Example 1, and leave the first to Exercises 91 and 92.

EXAMPLE 1  Show that

(a) lim
xSq

  
1
x = 0  (b) lim

xS  -q
  
1
x = 0.

Solution

(a) Let e 7 0 be given. We must ind a number M such that` 1x - 0 ` = ` 1x ` 6 e   whenever  x 7 M.

  The implication will hold if M = 1>e or any larger positive number (Figure 2.50). 

This proves limxSq (1>x) = 0.

(b) Let e 7 0 be given. We must ind a number N such that` 1x - 0 ` = ` 1x ` 6 e  whenever  x 6 N.

For example, the function ƒ(x) = 1>x is defined for all x ≠ 0 (Figure 2.49). When x is 

positive and becomes increasingly large, 1>x becomes increasingly small. When x is nega-

tive and its magnitude becomes increasingly large, 1>x again becomes small. We summa-

rize these observations by saying that ƒ(x) = 1>x has limit 0 as x S q or x S  -q, or 

that 0 is a limit of ƒ(x) = 1>x at infinity and at negative infinity. Here are precise defini-

tions for the limit of a function whose domain contains positive or negative numbers of 

unbounded magnitude.

y

0

1

-1

1-1 2 3 4

2

3

4

x

1
xy =

FIGURE 2.49 The graph of y = 1>x 

approaches 0 as x S q or x S  -q.

DEFINITIONS

1. We say that ƒ(x) has the limit L as x approaches infinity and write

lim
xS  q

 ƒ(x) = L

if, for every number e 7 0, there exists a corresponding number M such that 

for all x in the domain of ƒ 

� ƒ(x) - L � 6 e whenever x 7 M.

2. We say that ƒ(x) has the limit L as x approaches negative infinity and write

lim
xS  -  q

 ƒ(x) = L

if, for every number e 7 0, there exists a corresponding number N such that 

for all x in the domain of ƒ

� ƒ(x) - L � 6 e whenever x 6 N.
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  The implication will hold if N = -1>e or any number less than -1>e (Figure 2.50). 

This proves limxS  - q (1>x) = 0. 

Limits at infinity have properties similar to those of finite limits.

THEOREM 12 All the Limit Laws in Theorem 1 are true when we replace 

limxSc by limxS  q or limxS  - q. That is, the variable x may approach a inite 

number c or {q.

EXAMPLE 2  The properties in Theorem 12 are used to calculate limits in the same 

way as when x approaches a finite number c.

(a) lim
xS  q
a5 +

1
xb  = lim

xS  q
 5 + lim

xS  q
  
1
x   Sum Rule

 = 5 + 0 = 5    Known limits

(b) lim
xS  -  q

 
p23

x2
= lim

xS  -  q
 p23 # 1

x
# 1
x

= lim
xS  -  q

 p23 # lim
xS  -  q

  
1
x
# lim

xS  -  q
  
1
x  Product Rule

= p23 # 0 # 0 = 0 Known limits 

Limits at Infinity of Rational Functions

To determine the limit of a rational function as x S {q, we first divide the numerator 

and denominator by the highest power of x in the denominator. The result then depends on 

the degrees of the polynomials involved.

EXAMPLE 3  These examples illustrate what happens when the degree of the numer-

ator is less than or equal to the degree of the denominator.

(a) lim
xS  q

  
5x2 + 8x - 3

3x2 + 2
= lim

xS  q
 
5 + (8>x) - (3>x2)

3 + (2>x2)

Divide numerator and 

denominator by x3.

=
5 + 0 - 0

3 + 0
=

5
3

 See Fig. 2.51.

(b) lim
xS  -  q

  
11x + 2

2x3 - 1
= lim

xS  -  q
 
(11>x2) + (2>x3)

2 - (1>x3)
 

Divide numerator and 

denominator by x3.

  =
0 + 0
2 - 0

= 0 See Fig. 2.52. 

Cases for which the degree of the numerator is greater than the degree of the denomi-

nator are illustrated in Examples 9 and 13.

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a 

point on the graph moves increasingly far from the origin, we say that the graph approaches 

the line asymptotically and that the line is an asymptote of the graph.

Looking at ƒ(x) = 1>x (see Figure 2.49), we observe that the x-axis is an asymptote 

of the curve on the right because

lim
xS  q

  
1
x = 0

x

y

0

-1

-2

1

2

5-5 10

y =
5x2 + 8x - 3

3x2 + 2

NOT TO SCALE

Line y =
5
3

FIGURE 2.51 The graph of the function 

in Example 3a. The graph approaches the 

line y = 5>3 as 0 x 0  increases.
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FIGURE 2.52 The graph of the function 

in Example 3b. The graph approaches the 

x-axis as 0 x 0  increases.
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DEFINITION A line y = b is a horizontal asymptote of the graph of a function 

y = ƒ(x) if either

lim
xS  q

 ƒ(x) = b  or  lim
xS  -  q

 ƒ(x) = b.

The graph of a function can have zero, one, or two horizontal asymptotes, depending 

on whether the function has limits as x S q and as x S -q.

The graph of the function

ƒ(x) =
5x2 + 8x - 3

3x2 + 2

sketched in Figure 2.51 (Example 3a) has the line y = 5>3 as a horizontal asymptote on 

both the right and the left because

lim
xS  q

 ƒ(x) =
5
3
  and  lim

xS  -  q
 ƒ(x) =

5
3

.

EXAMPLE 4  Find the horizontal asymptotes of the graph of

ƒ(x) =
x3 - 2

� x �3 + 1
.

Solution We calculate the limits as x S {q.

For x Ú 0: lim
xS  q

 
x3 - 20 x 0 3 + 1

 = lim
xS  q

 
x3 - 2

x3 + 1
= lim

xS  q
 
1 - (2>x3)

1 + (1>x3)
= 1.

For x 6 0: lim
xS  -  q

 
x3 - 20 x 0 3 + 1

 = lim
xS  -  q

 
x3 - 2

(-x)3 + 1
= lim

xS  -  q
 

1 - (2>x3)

-1 + (1>x3)
= -1.

The horizontal asymptotes are y = -1 and y = 1. The graph is displayed in Figure 

2.53. Notice that the graph crosses the horizontal asymptote y = -1 for a positive 

value of x. 

Sometimes it is helpful to transform a limit in which x approaches q to a new limit by 

setting t = 1>x and seeing what happens as t approaches 0.

EXAMPLE 5  Find (a) lim
xS  q

 sin (1>x) and (b) lim
xS{q

 x sin (1>x).

Solution

(a) We introduce the new variable t = 1>x. From Example 1, we know that t S 0+ as 

x S q (see Figure 2.49). Therefore,

lim
xS  q

 sin 
1
x = lim

tS0+
 sin t = 0.

and on the left because

lim
xS  -  q

  
1
x = 0.

We say that the x-axis is a horizontal asymptote of the graph of ƒ(x) = 1>x.

0

-2

2

x

y

y = -1

f(x) =
x3 - 20 x 0 3 + 1

y = 1

FIGURE 2.53 The graph of the  

function in Example 4 has two  

horizontal asymptotes.
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(b) We calculate the limits as x S q and x S  -q:

lim
xS  q

 x sin 
1
x = lim

tS0+
 
sin t

t = 1  and  lim
xS  -  q

 x sin 
1
x = lim

tS0-
 
sin t

t = 1.

  The graph is shown in Figure 2.54, and we see that the line y = 1 is a horizontal 

asymptote. 

Similarly, we can investigate the behavior of y = ƒ(1>x) as x S 0 by investigating 

y = ƒ(t) as t S {q, where t = 1>x.

EXAMPLE 6  Find lim
xS0+

 xj 1x k .
Solution We let t = 1>x so that

lim
xS0+

 xj 1x k = lim
tSq

 
1
t  :t;

From the graph in Figure 2.55, we see that t - 1 … :t; … t, which gives

1 -
1
t …

1
t  :t; … 1  Multiply inequalities by 

1
t

7 0.

It follows from the Sandwich Theorem that

lim
tSq

 
1
t  :t; = 1,

so 1 is the value of the limit we seek. 

The Sandwich Theorem also holds for limits as x S {q. You must be sure, though, 

that the function whose limit you are trying to find stays between the bounding functions 

at very large values of x in magnitude consistent with whether x S q or x S  -q.

EXAMPLE 7  Using the Sandwich Theorem, find the horizontal asymptote of the curve

y = 2 +
sin x

x .

Solution We are interested in the behavior as x S {q. Since

0 … ` sin x
x ` … ` 1x `

and limxS{q 0 1>x 0 = 0, we have limxS{q (sin x)>x = 0 by the Sandwich Theorem. 

Hence,

lim
xS{q

a2 +
sin x

x b = 2 + 0 = 2,

and the line y = 2 is a horizontal asymptote of the curve on both left and right (Figure 2.56).

This example illustrates that a curve may cross one of its horizontal asymptotes many 

times. 

EXAMPLE 8  Find lim
xS  q

 1x - 2x2 + 162.
Solution Both of the terms x and 2x2 + 16 approach infinity as x S q, so what hap-

pens to the difference in the limit is unclear (we cannot subtract q from q because the 

symbol does not represent a real number). In this situation we can multiply the numerator 

1

-1 1
x

y

y = x sin
1
x

FIGURE 2.54 The line y = 1 is a 

horizontal asymptote of the function 

graphed here (Example 5b).

1

-2

2

3

-2 -1 1 2 3

y = t

y = t - 1

t

y

FIGURE 2.55 The graph of the greatest 

integer function y = :t;  is sandwiched 

between y = t - 1 and y = t.

x

y

1

0

2

2pp-p-2p-3p 3p

y = 2 +
sin x

x

FIGURE 2.56 A curve may cross one of 

its asymptotes infinitely often (Example 7).
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EXAMPLE 9  Find the oblique asymptote of the graph of

ƒ(x) =
x2 - 3
2x - 4

in Figure 2.57.

Solution We are interested in the behavior as x S {q. We divide (2x - 4) into 

(x2 - 3):

x

2
+ 1   

2x - 4)x2 + 0x - 3   

x2 - 2x  

2x - 3

2x - 4

1

This tells us that

ƒ(x) =
x2 - 3
2x - 4

= ¢ x

2
+ 1≤ + ¢ 1

2x - 4
≤  .

()*           (1)1*
linear g(x)          remainder

As x S {q, the remainder, whose magnitude gives the vertical distance between the 

graphs of ƒ and g, goes to zero, making the slanted line

g(x) =
x

2
+ 1

an asymptote of the graph of ƒ (Figure 2.57). The line y = g(x) is an asymptote both to 

the right and to the left. 

Notice in Example 9 that if the degree of the numerator in a rational function is 

greater than the degree of the denominator, then the limit as 0 x 0  becomes large is +q or 

-q, depending on the signs assumed by the numerator and denominator.

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the 

denominator, the graph has an oblique or slant line asymptote. We find an equation for 

the asymptote by dividing numerator by denominator to express ƒ as a linear function plus 

a remainder that goes to zero as x S {q.

x

y

0 1 2 3 4 x-1

1

-1

-2

-3

2

3

4

5

6

x = 2 Oblique

asymptote

The vertical distance

between curve and

line goes to zero as x : ∞

y =     + 1
x

2

y = = +  1 +
x2 - 3
2x - 4

1
2x - 4

x

2

FIGURE 2.57 The graph of the function 

in Example 9 has an oblique asymptote.

and the denominator by the conjugate radical expression to obtain an equivalent algebraic 

expression:

lim
xS  q

 1x - 2x2 + 162 = lim
xS  q

 1x - 2x2 + 162 
x + 2x2 + 16

x + 2x2 + 16

 = lim
xS  q

 
x2 - (x2 + 16)

x + 2x2 + 16
= lim

xS  q
 

-16

x + 2x2 + 16
.

Multiply and 

divide by the 

conjugate.

As x S q, the denominator in this last expression becomes arbitrarily large, while the 

numerator remains constant, so we see that the limit is 0. We can also obtain this result by 

a direct calculation using the Limit Laws:

lim
xS  q

 
-16

x + 2x2 + 16
= lim

xS  q
 

-  
16
x

1 + Ax2

x2
+

16

x2

=
0

1 + 21 + 0
= 0.
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Infinite Limits

Let us look again at the function ƒ(x) = 1>x. As x S 0+, the values of ƒ grow without 

bound, eventually reaching and surpassing every positive real number. That is, given any 

positive real number B, however large, the values of ƒ become larger still (Figure 2.58).

Thus, ƒ has no limit as x S 0+. It is nevertheless convenient to describe the behavior 

of ƒ by saying that ƒ(x) approaches q as x S 0+. We write

lim
xS0+

 ƒ(x) = lim
xS0+

 
1
x = q.

In writing this equation, we are not saying that the limit exists. Nor are we saying that 

there is a real number q, for there is no such number. Rather, this expression is just a con-

cise way of saying that limxS0+ (1>x) does not exist because 1>x becomes arbitrarily 

large and positive as x S 0+.

As x S 0 -, the values of ƒ(x) = 1>x become arbitrarily large and negative. Given 

any negative real number -B, the values of ƒ eventually lie below -B. (See Figure 2.58.) 

We write

lim
xS0-

 ƒ(x) = lim
xS0-

 
1
x = -q.

Again, we are not saying that the limit exists and equals the number -q. There is no real 

number -q. We are describing the behavior of a function whose limit as x S 0- does not 

exist because its values become arbitrarily large and negative.

You can get as high

as you want by

taking x close enough

to 0. No matter how

high B is, the graph

goes higher.

x

y

You can get as low as

you want by taking

x close enough to 0.

No matter how

low -B is, the

graph goes lower.

x

x

B

-B

y =
1
x

0

FIGURE 2.58 One-sided infinite limits: 

lim
xS0+

 
1
x = q  and  lim

xS0-
 
1
x = -q.

EXAMPLE 10  Find lim
xS1+

  
1

x - 1
 and lim

xS1-
  

1
x - 1

.

Geometric Solution The graph of y = 1>(x - 1) is the graph of y = 1>x shifted 1 

unit to the right (Figure 2.59). Therefore, y = 1>(x - 1) behaves near 1 exactly the way 

y = 1>x behaves near 0:

lim
xS1+

  
1

x - 1
= q   and   lim

xS1-
  

1
x - 1

= -q.

Analytic Solution Think about the number x - 1 and its reciprocal. As x S 1+, we 

have (x - 1) S 0+ and 1>(x - 1) S q. As x S 1-, we have (x - 1) S 0  

- and 

1>(x - 1) S -q. 

EXAMPLE 11  Discuss the behavior of

ƒ(x) =
1

x2
    as    x S 0.

Solution As x approaches zero from either side, the values of 1>x2 are positive and 

become arbitrarily large (Figure 2.60). This means that

lim
xS0

 ƒ(x) = lim
xS0

  
1

x2
= q.

The function y = 1>x shows no consistent behavior as x S 0. We have 1>x S q if 

x S 0+, but 1>x S -q if x S 0-. All we can say about limxS0 (1>x) is that it does not 

exist. The function y = 1>x2 is diferent. Its values approach ininity as x approaches zero 

from either side, so we can say that limxS0 (1>x2) = q. 

EXAMPLE 12  These examples illustrate that rational functions can behave in vari-

ous ways near zeros of the denominator.

(a) lim
xS2

  
(x - 2)2

x2 - 4
= lim

xS2
  

(x - 2)2

(x - 2)(x + 2)
= lim

xS2
  
x - 2
x + 2

= 0 

Can substitute 2 for x after 

algebraic manipulation  

eliminates division by 0.

x

y

1

0 1 2 3-1

y =
x - 1

1

FIGURE 2.59 Near x = 1, the func-

tion y = 1>(x - 1) behaves the way the 

function y = 1>x behaves near x = 0. Its 

graph is the graph of y = 1>x shifted 1 

unit to the right (Example 10).

x

y

No matter how
high B is, the graph
goes higher.

B

0x x

f (x) =
1

x2

FIGURE 2.60 The graph of ƒ(x) in Ex-

ample 11 approaches infinity as x S 0.
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In parts (a) and (b) the efect of the zero in the denominator at x = 2 is canceled be-

cause the numerator is zero there also. Thus a inite limit exists. This is not true in part (f), 

where cancellation still leaves a zero factor in the denominator. 

(e) lim
xS2

  
x - 3

x2 - 4
= lim

xS2
  

x - 3
(x - 2)(x + 2)

  does not exist. Limits from left and from 

right differ.

 (f) lim
xS2

  
2 - x

(x - 2)3
= lim

xS2
  
-(x - 2)

(x - 2)3
= lim

xS2
  

-1

(x - 2)2
= -q 

Denominator is positive, so  

values are negative near x = 2.

EXAMPLE 13  Find lim
xS  -  q

  
2x5 - 6x4 + 1

3x2 + x - 7
.

Solution We are asked to find the limit of a rational function as x S -q, so we divide 

the numerator and denominator by x2, the highest power of x in the denominator:

lim
xS  -  q

  
2x5 - 6x4 + 1

3x2 + x - 7
 = lim

xS  -  q
  
2x3 - 6x2 + x-2

3 + x-1 - 7x-2

 = lim
xS  -  q

  
2x2 (x - 3) + x-2

3 + x-1 - 7x-2

 = -q, x-n S 0, x - 3 S -q

because the numerator tends to -q while the denominator approaches 3 as x S -q. 

x

y

0

-B

y = f (x)

c - d c + d
c

FIGURE 2.62 For c - d 6 x 6 c + d, 

the graph of ƒ(x) lies below the line y = -B.

DEFINITIONS

1. We say that ƒ(x)  approaches infinity as x approaches c, and write

lim
xSc

 ƒ(x) = q,

if for every positive real number B there exists a corresponding d 7 0 such 

that

ƒ(x) 7 B whenever 0 6 � x - c � 6 d.

2. We say that ƒ(x)  approaches negative infinity as x approaches c, and write

lim
xSc

 ƒ(x) = -q,

if for every negative real number -B there exists a corresponding d 7 0 

such that

ƒ(x) 6 -B whenever 0 6 � x - c � 6 d.

(b) lim
xS2

  
x - 2

x2 - 4
= lim

xS2
  

x - 2
(x - 2)(x + 2)

= lim
xS2

  
1

x + 2
=

1
4

 
Again substitute 2 for x 

after algebraic manipulation 

eliminates division by 0.

(c) lim
xS2+

  
x - 3

x2 - 4
= lim

xS2+
  

x - 3
(x - 2)(x + 2)

= -q 

(d) lim
xS2-

  
x - 3

x2 - 4
= lim

xS2-
  

x - 3
(x - 2)(x + 2)

= q The values are positive 

for x 6 2, x near 2.

The values are negative 

for x 7 2, x near 2.

Precise Definitions of Infinite Limits

Instead of requiring ƒ(x) to lie arbitrarily close to a finite number L for all x sufficiently close 

to c, the definitions of infinite limits require ƒ(x) to lie arbitrarily far from zero. Except for 

this change, the language is very similar to what we have seen before. Figures 2.61 and 2.62 

accompany these definitions.

y

x
0

B

y = f (x)

c - d c + d
c

FIGURE 2.61 For c - d 6 x 6 c + d, 

the graph of ƒ(x) lies above the line y = B.
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The precise definitions of one-sided infinite limits at c are similar and are stated in the 

exercises.

EXAMPLE 14  Prove that lim
xS0

  
1

x2
= q.

Solution Given B 7 0, we want to find d 7 0 such that

0 6 � x - 0 � 6 d implies 
1

x2
7 B.

Now,

1

x2
7 B  if and only if  x2 6

1
B

or, equivalently, 0 x 0 6
1

2B
.

Thus, choosing d = 1>2B (or any smaller positive number), we see that0 x 0 6 d implies 
1

x2
7

1

d2
Ú B.

Therefore, by definition,

lim
xS0

  
1

x2
= q.

Vertical Asymptotes

Notice that the distance between a point on the graph of ƒ(x) = 1>x and the y-axis 

approaches zero as the point moves vertically along the graph and away from the origin 

(Figure 2.63). The function ƒ(x) = 1>x is unbounded as x approaches 0 because

lim
xS0+

 
1
x = q  and  lim

xS0-
 
1
x = -q.

We say that the line x = 0 (the y-axis) is a vertical asymptote of the graph of ƒ(x) = 1>x. 

Observe that the denominator is zero at x = 0 and the function is undefined there.

DEFINITION A line x = a is a vertical asymptote of the graph of a function 

y = ƒ(x) if either

lim
xSa+

 ƒ(x) = {q  or  lim
xSa-

 ƒ(x) = {q.

x
0

1

1

y

Horizontal

asymptote,

y = 0

Horizontal

asymptote

Vertical asymptote

Vertical asymptote,

x = 0

y = 1
x

FIGURE 2.63 The coordinate axes are 

asymptotes of both branches of the hyper-

bola y = 1>x.

EXAMPLE 15  Find the horizontal and vertical asymptotes of the curve

y =
x + 3
x + 2

.

Solution We are interested in the behavior as x S {q and the behavior as x S -2, 

where the denominator is zero.

The asymptotes are revealed if we recast the rational function as a polynomial with a 

remainder, by dividing (x + 2) into (x + 3):

1   

x + 2)x + 3

x + 2

1
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EXAMPLE 16  Find the horizontal and vertical asymptotes of the graph of

ƒ(x) = -  
8

x2 - 4
.

Solution We are interested in the behavior as x S {q and as x S {2, where the 

denominator is zero. Notice that ƒ is an even function of x, so its graph is symmetric with 

respect to the y-axis.

 (a) The behavior as x S {q. Since limxSq ƒ(x) = 0, the line y = 0 is a horizontal 

asymptote of the graph to the right. By symmetry it is an asymptote to the left as well 

(Figure 2.65). Notice that the curve approaches the x-axis from only the negative side 

(or from below). Also, ƒ(0) = 2.

 (b) The behavior as x S {2. Since

lim
xS2+

 ƒ(x) = -q  and  lim
xS2-

 ƒ(x) = q,

 the line x = 2 is a vertical asymptote both from the right and from the left. By sym-

metry, the line x = -2 is also a vertical asymptote.

There are no other asymptotes because ƒ has a inite limit at all other points. 

x

y

0
-1

-2

-3

-4

1-1-2-3-4-5

1

2 3

2

3

4

5

6

y =
x + 3
x + 2

= 1 +
1

x + 2

Vertical

asymptote,

x = -2

Horizontal

asymptote,

y = 1

FIGURE 2.64 The lines y = 1 and 

x = -2 are asymptotes of the curve in 

Example 15.
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0

1

x

y

0

1

-1

y = sec x y = tan x

p
2

p
2

p- p 3p
2

3p
2

--
p
2

p
2

p-p 3p
2

3p
2

--

FIGURE 2.66 The graphs of sec x and tan x have infinitely many vertical asymptotes  

(Example 17).

This result enables us to rewrite y as:

y = 1 +
1

x + 2
 .

As x S {q, the curve approaches the horizontal asymptote y = 1; as x S -2, the curve 

approaches the vertical asymptote x = -2. We see that the curve in question is the graph 

of ƒ(x) = 1>x shifted 1 unit up and 2 units left (Figure 2.64). The asymptotes, instead of 

being the coordinate axes, are now the lines y = 1 and x = -2. 

EXAMPLE 17  The curves

y = sec x =
1

cos x  and  y = tan x =
sin x
cos x

both have vertical asymptotes at odd-integer multiples of p>2, where cos x = 0 

(Figure 2.66).

x

y

0 1-1

1

Vertical

asymptote, x = 2

Horizontal

asymptote, y = 02

3

4

5

6

7

8

3 42-2-3-4

Vertical

asymptote,

x = -2

y = -
8

x2 - 4

FIGURE 2.65 Graph of the function 

in Example 16. Notice that the curve ap-

proaches the x-axis from only one side. 

Asymptotes do not have to be two-sided.
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Dominant Terms

In Example 9 we saw that by using long division, we can rewrite the function

ƒ(x) =
x2 - 3
2x - 4

as a linear function plus a remainder term:

ƒ(x) = ax

2
+ 1b + a 1

2x - 4
b .

This tells us immediately that

ƒ(x) ≈
x

2
+ 1

ƒ(x) ≈
1

2x - 4

For 0 x 0  large, 
1

2x - 4
 is near 0.

For x near 2, this term is very large in absolute value.

If we want to know how ƒ behaves, this is the way to find out. It behaves like 

y = (x>2) + 1 when 0 x 0  is large and the contribution of 1>(2x - 4) to the total value of 

ƒ is insignificant. It behaves like 1>(2x - 4) when x is so close to 2 that 1>(2x - 4) 

makes the dominant contribution.

We say that (x>2) + 1 dominates when x approaches q or -q, and we say that 

1>(2x - 4) dominates when x approaches 2. Dominant terms like these help us predict a 

function’s behavior.

EXAMPLE 18  Let ƒ(x) = 3x4 - 2x3 + 3x2 - 5x + 6 and g(x) = 3x4. Show that 

although ƒ and g are quite different for numerically small values of x, they behave simi-

larly for 0 x 0  very large, in the sense that their ratios approach 1 as x S q or x S  -q.

Solution The graphs of ƒ and g behave quite differently near the origin (Figure 2.67a), 

but appear as virtually identical on a larger scale (Figure 2.67b).

We can test that the term 3x4 in ƒ, represented graphically by g, dominates the poly-

nomial ƒ for numerically large values of x by examining the ratio of the two functions as 

x S {q. We ind that

lim
xS{q

  
ƒ(x)

g(x)
 = lim

xS{q
 
3x4 - 2x3 + 3x2 - 5x + 6

3x4

 = lim
xS{q

a1 -
2
3x

+
1

x2
-

5

3x3
+

2

x4
b

 = 1,

which means that ƒ and g appear nearly identical when 0 x 0  is large. 

Finding Limits

 1. For the function ƒ whose graph is given, determine the following 

limits.

a. lim
xS2

 ƒ(x) b. lim
xS  -3 +

 ƒ(x)

c. lim
xS  -3 -

 ƒ(x) d. lim
xS  -3

 ƒ(x)

e. lim
xS0 +

 ƒ(x) f. lim
xS0 -

 ƒ(x)

g. lim
xS0

 ƒ(x) h. lim
xSq

 ƒ(x)

i. lim
xS  -q

 ƒ(x)

y

x

-2

-1

1

2

3

-3

2 3 4 5 61-1-2-3-4-5-6

f

EXERCISES 2.6
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(b)

g(x) = 3x4

FIGURE 2.67 The graphs of ƒ and g are 

(a) distinct for 0 x 0  small, and (b) nearly 

identical for 0 x 0  large (Example 18).
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 2. For the function ƒ whose graph is given, determine the following 

limits.

a. lim
xS4

 ƒ(x) b. lim
xS2 +

 ƒ(x) c. lim
xS2 -

 ƒ(x)

d. lim
xS2

 ƒ(x) e. lim
xS  -3 +

 ƒ(x) f. lim
xS  -3 -

 ƒ(x)

g. lim
xS  -3

 ƒ(x) h. lim
xS0 +

 ƒ(x) i. lim
xS0 -

 ƒ(x)

j. lim
xS0

 ƒ(x) k. lim
xSq

 ƒ(x) l. lim
xS  -q

 ƒ(x)

y

x

-2

-3

2 3 4 5 61-1-2-3-4-5-6

f
3

2

1

-1

In Exercises 3–8, find the limit of each function (a) as x S q and  

(b) as x S  -q. (You may wish to visualize your answer with a 

graphing calculator or computer.)

 3. ƒ(x) =
2
x - 3 4. ƒ(x) = p -

2

x2

 5. g(x) =
1

2 + (1>x)
 6. g(x) =

1

8 - (5>x2)

 7. h(x) =
-5 + (7>x)

3 - (1>x2)
 8. h(x) =

3 - (2>x)

4 + (22>x2)

Find the limits in Exercises 9–12.

 9. lim
xSq

 
sin 2x

x  10. lim
uS  -q

 
cos u

3u

 11. lim
tS  -q

 
2 - t + sin t

t + cos t
 12. lim

rSq
  

r + sin r
2r + 7 - 5 sin r

Limits of Rational Functions

In Exercises 13–22, find the limit of each rational function (a) as 

x S q and (b) as x S  -q.

 13. ƒ(x) =
2x + 3

5x + 7
 14. ƒ(x) =

2x3 + 7

x3 - x2 + x + 7

 15. ƒ(x) =
x + 1

x2 + 3
 16. ƒ(x) =

3x + 7

x2 - 2

 17. h(x) =
7x3

x3 - 3x2 + 6x
 18. h(x) =

9x4 + x

2x4 + 5x2 - x + 6

 19. g(x) =
10x5 + x4 + 31

x6
 20. g(x) =

x3 + 7x2 - 2

x2 - x + 1

 21. f(x) =
3x7 + 5x2 - 1

6x3 - 7x + 3
 22. h(x) =

5x8 - 2x3 + 9

3 + x - 4x5

Limits as xu H or xu −H
The process by which we determine limits of rational functions applies 

equally well to ratios containing noninteger or negative powers of x: 

Divide numerator and denominator by the highest power of x in the 

denominator and proceed from there. Find the limits in Exercises 23–36.

 23. lim
xSq

 A
8x2 - 3

2x2 + x
 24. lim

xS  -q
 ¢x2 + x - 1

8x2 - 3
≤1>3

 25. lim
xS  -  q

 ¢ 1 - x3

x2 + 7x
≤5

 26. lim
xS   q

 A
x2 - 5x

x3 + x - 2

 27. lim
xS  q

  
22x + x-1

3x - 7
 28. lim

xS  q
  
2 + 2x

2 - 2x

 29. lim
xS  -  q

  
23 x - 25 x

23 x + 25 x
 30. lim

xS  q
  
x-1 + x-4

x-2 - x-3

 31. lim
xS  q

  
2x5>3 - x1>3 + 7

x8>5 + 3x + 2x
 32. lim

xS  -  q
  
23 x - 5x + 3

2x + x2>3 - 4

 33. lim
xS  q

 
2x2 + 1

x + 1
 34. lim

xS  -  q
 
2x2 + 1

x + 1

 35. lim
xS  q

 
x - 3

24x2 + 25
 36. lim

xS  -  q
 
4 - 3x3

2x6 + 9

Infinite Limits

Find the limits in Exercises 37–48.

 37. lim
xS0+

 
1
3x

 38. lim
xS0-

 
5
2x

 39. lim
xS2-

 
3

x - 2
 40. lim

xS3+
 

1
x - 3

 41. lim
xS  -8+

 
2x

x + 8
 42. lim

xS  -5-
 

3x

2x + 10

 43. lim
xS7

  
4

(x - 7)2
 44. lim

xS0
  

-1

x2(x + 1)

 45. a. lim
xS0+

 
2

3x1>3 b. lim
xS0-

 
2

3x1>3
 46. a. lim

xS0+
 

2

x1>5 b. lim
xS0-

 
2

x1>5
 47. lim

xS0
  

4

x2>5 48. lim
xS0

  
1

x2>3
Find the limits in Exercises 49–52.

 49. lim
xS (p>2)-

 tan x 50. lim
xS (-p>2)+

 sec x

 51. lim
uS0-   

(1 + csc u) 52. lim
uS0

 (2 - cot u)

Find the limits in Exercises 53–58.

 53. lim 
1

x2 - 4
 as

a. x S 2+ b. x S 2-

c. x S  -2+ d. x S  -2-

 54. lim 
x

x2 - 1
 as

a. x S 1+ b. x S 1-

c. x S  -1+ d. x S  -1-
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 55. lim ax2

2
-

1
xb  as

a. x S 0+ b. x S 0-

c. x S 23 2 d. x S  -1

 56. lim 
x2 - 1
2x + 4

 as

a. x S -2+ b. x S -2-

c. x S 1+ d. x S 0-

 57. lim 
x2 - 3x + 2

x3 - 2x2
 as

a. x S 0+ b. x S 2+

c. x S 2- d. x S 2

e. What, if anything, can be said about the limit as x S 0?

 58. lim 
x2 - 3x + 2

x3 - 4x
  as

a. x S 2+ b. x S -2+

c. x S 0- d. x S 1+

e. What, if anything, can be said about the limit as x S 0?

Find the limits in Exercises 59–62.

 59. lima2 -
3

t1>3b  as

a. t S 0+ b. t S 0-

 60. lima 1

t3>5 + 7b  as

a. t S 0+ b. t S 0-

 61. lima 1

x2>3 +
2

(x - 1)2>3b  as

a. x S 0+ b. x S 0-

c. x S 1+ d. x S 1-

 62. lima 1

x1>3 -
1

(x - 1)4>3b  as

a. x S 0+ b. x S 0-

c. x S 1+ d. x S 1-

Graphing Simple Rational Functions

Graph the rational functions in Exercises 63–68. Include the graphs 

and equations of the asymptotes and dominant terms.

 63. y =
1

x - 1
 64. y =

1
x + 1

 65. y =
1

2x + 4
 66. y =

-3
x - 3

 67. y =
x + 3
x + 2

 68. y =
2x

x + 1

Domains, Ranges, and Asymptotes

Determine the domain and range of each function. Use various limits 

to find the asymptotes and the ranges.

 69. y = 4 +
3x2

x2 + 1
 70. y =

2x

x2 - 1

 71. y =
2x2 + 4

x  72. y =
x3

x3 - 8

Inventing Graphs and Functions

In Exercises 73–76, sketch the graph of a function y = ƒ(x) that satis-

fies the given conditions. No formulas are required—just label the 

coordinate axes and sketch an appropriate graph. (The answers are not 

unique, so your graphs may not be exactly like those in the answer 

section.)

 73. ƒ(0) = 0, ƒ(1) = 2, ƒ(-1) = -2, lim
xS  -q

 ƒ(x) = -1, and 

lim
xSq

 ƒ(x) = 1

 74. ƒ(0) = 0, lim
xS{q

 ƒ(x) = 0, lim
xS0+

 ƒ(x) = 2,  and lim
xS0-

 ƒ(x) = -2

 75. ƒ(0) = 0, lim
xS{q

 ƒ(x) = 0, lim
xS1-

 ƒ(x) = lim
xS  -1+

 ƒ(x) = q, 

lim
xS1 +

 ƒ(x) = -q, and lim
xS  -1-

 ƒ(x) = -q

 76. ƒ(2) = 1, ƒ(-1) = 0, lim
xSq

 ƒ(x) = 0, lim
xS0+

 ƒ(x) = q, 

 lim
xS0-

 ƒ(x) = -q, and lim
xS  -q

 ƒ(x) = 1

In Exercises 77–80, find a function that satisfies the given conditions 

and sketch its graph. (The answers here are not unique. Any function 

that satisfies the conditions is acceptable. Feel free to use formulas 

defined in pieces if that will help.)

 77. lim
xS{q

 ƒ(x) = 0, lim
xS2-

 ƒ(x) = q, and lim
xS2+

 ƒ(x) = q

 78. lim
xS{q

 g(x) = 0, lim
xS3-

 g(x) = -q, and lim
xS3+

 g(x) = q

 79. lim
xS  -  q

 h(x) = -1, lim
xS  q

 h(x) = 1, lim
xS0-

 h(x) = -1, and 

 lim
xS0+

 h(x) = 1

 80. lim
xS{q

 k(x) = 1, lim
xS1-

 k(x) = q, and lim
xS1+

 k(x) = -q

 81. Suppose that ƒ(x) and g(x) are polynomials in x and that 

limxS  q (ƒ(x)>g(x)) = 2. Can you conclude anything about 

limxS  - q (ƒ(x)>g(x))? Give reasons for your answer.

 82. Suppose that ƒ(x) and g(x) are polynomials in x. Can the graph of 

ƒ(x)>g(x) have an asymptote if g(x) is never zero? Give reasons 

for your answer.

 83. How many horizontal asymptotes can the graph of a given rational 

function have? Give reasons for your answer.

Finding Limits of Differences When xu tH
Find the limits in Exercises 84–90. (Hint: Try multiplying and dividing 

by the conjugate.)

 84. lim
xS  q

 (2x + 9 - 2x + 4 )

 85. lim
xS  q

 (2x2 + 25 - 2x2 - 1 )

 86. lim
xS  -  q

 (2x2 + 3 + x )

 87. lim
xS  -  q

 (2x + 24x2 + 3x - 2 )

 88. lim
xS  q

 (29x2 - x - 3x)

 89. lim
xS  q

 (2x2 + 3x - 2x2 - 2x )

 90. lim
xS  q

 (2x2 + x - 2x2 - x )
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Suppose that an interval (c, d ) lies in the domain of ƒ. 

We say that ƒ(x) approaches infinity as x approaches c 

from the right, and write

lim
xSc+

 ƒ(x) = q,

if, for every positive real number B, there exists a  

corresponding number d 7 0 such that

ƒ(x) 7 B whenever c 6 x 6 c + d.

Using the Formal Definitions

Use the formal definitions of limits as x S {q to establish the limits 

in Exercises 91 and 92.

 91. If ƒ has the constant value ƒ(x) = k, then lim
xSq

 ƒ(x) = k.

 92. If ƒ has the constant value ƒ(x) = k, then lim
xS  -q

 ƒ(x) = k.

Use formal definitions to prove the limit statements in Exercises 93–96.

 93. lim
xS0

  
-1

x2
= -q 94. lim

xS0
  

10 x 0 = q

 95. lim
xS3  

-2

(x - 3)2
= -q 96. lim

xS  -5  

1

(x + 5)2
= q

 97. Here is the definition of an infinite right-hand limit.

 100. lim
xS2-

 
1

x - 2
= -q 101. lim

xS2+
 

1
x - 2

= q

 102. lim
xS1-

 
1

1 - x2
= q

Oblique Asymptotes

Graph the rational functions in Exercises 103–108. Include the graphs 

and equations of the asymptotes.

 103. y =
x2

x - 1
 104. y =

x2 + 1
x - 1

 105. y =
x2 - 4
x - 1

 106. y =
x2 - 1
2x + 4

 107. y =
x2 - 1

x  108. y =
x3 + 1

x2

Additional Graphing Exercises

Graph the curves in Exercises 109–112. Explain the relationship 

between the curve’s formula and what you see.

 109. y =
x

24 - x2
 110. y =

-1

24 - x2

 111. y = x2>3 +
1

x1>3 112. y = sin a p

x2 + 1
b

Graph the functions in Exercises 113 and 114. Then answer the fol-

lowing questions.

a. How does the graph behave as x S 0+?

b. How does the graph behave as x S {q?

c. How does the graph behave near x = 1 and x = -1?

Give reasons for your answers.

 113. y =
3
2

 ax -
1
xb2>3

 

114. y =
3
2

 a x

x - 1
b2>3

T

T

 1. What is the average rate of change of the function g(t) over the 

interval from t = a to t = b? How is it related to a secant line?

 2. What limit must be calculated to ind the rate of change of a func-

tion g(t) at t = t0?

 3. Give an informal or intuitive deinition of the limit

lim
xSc

 ƒ(x) = L.

  Why is the deinition “informal”? Give examples.

 4. Does the existence and value of the limit of a function ƒ(x) as x 

approaches c ever depend on what happens at x = c? Explain and 

give examples.

 5. What function behaviors might occur for which the limit may fail 

to exist? Give examples.

 6. What theorems are available for calculating limits? Give examples 

of how the theorems are used.

 7. How are one-sided limits related to limits? How can this relation-

ship sometimes be used to calculate a limit or prove it does not 

exist? Give examples.

 8. What is the value of limuS0 ((sin u)>u)? Does it matter whether u 

is measured in degrees or radians? Explain.

 9. What exactly does limxSc ƒ(x) = L mean? Give an example  

in which you ind a d 7 0 for a given ƒ, L, c, and e 7 0 in the 

precise deinition of limit.

 10. Give precise deinitions of the following statements.

a. limxS2- ƒ(x) = 5 b. limxS2+ ƒ(x) = 5

c. limxS2 ƒ(x) = q d. limxS2 ƒ(x) = -q

 11. What conditions must be satisied by a function if it is to be 

 continuous at an interior point of its domain? At an endpoint?

CHAPTER 2 Questions to Guide Your Review

Modify the definition to cover the following cases.

a. lim
xSc-

 ƒ(x) = q

b. lim
xSc+

 ƒ(x) = -q

c. lim
xSc-

 ƒ(x) = -q

Use the formal definitions from Exercise 97 to prove the limit state-

ments in Exercises 98–102.

 98. lim
xS0+

 
1
x = q 99. lim

xS0-
 
1
x = -q
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 12. How can looking at the graph of a function help you tell where the 

function is continuous?

 13. What does it mean for a function to be right-continuous at a point? 

Left-continuous? How are continuity and one-sided continuity re-

lated?

 14. What does it mean for a function to be continuous on an interval? 

Give examples to illustrate the fact that a function that is not con-

tinuous on its entire domain may still be continuous on selected 

intervals within the domain.

 15. What are the basic types of discontinuity? Give an example of 

each. What is a removable discontinuity? Give an example.

 16. What does it mean for a function to have the Intermediate Value 

Property? What conditions guarantee that a function has this prop-

erty over an interval? What are the consequences for graphing and 

solving the equation ƒ(x) = 0?

 17. Under what circumstances can you extend a function ƒ(x) to be 

continuous at a point x = c? Give an example.

 18. What exactly do limxSq ƒ(x) = L and limxS  -q ƒ(x) = L mean? 

Give examples.

 19. What are limxS{q k (k a constant) and limxS{q (1>x)? How do 

you extend these results to other functions? Give examples.

 20. How do you ind the limit of a rational function as x S {q? 

Give examples.

 21. What are horizontal and vertical asymptotes? Give examples.

Limits and Continuity

 1. Graph the function

ƒ(x) = e   1, x … -1

 -x, -1 6 x 6 0

  1, x = 0

 -x, 0 6 x 6 1

  1, x Ú 1.

  Then discuss, in detail, limits, one-sided limits, continuity, and 

one-sided continuity of ƒ at x = -1, 0, and 1. Are any of the dis-

continuities removable? Explain.

 2. Repeat the instructions of Exercise 1 for

ƒ(x) = d   0, x … -1

1>x, 0 6 0 x 0 6 1

  0, x = 1

  1, x 7 1.

 3. Suppose that ƒ(t) and ƒ(t) are deined for all t and that limtSt0
 

ƒ(t) = -7 and limtSt0
 g(t) = 0. Find the limit as t S t0 of the 

following functions.

a. 3ƒ(t) b. (ƒ(t))2

c. ƒ(t) # g(t) d. 
ƒ(t)

g(t) - 7

e. cos (g(t)) f. 0 ƒ(t) 0
g. ƒ(t) + g(t) h. 1>ƒ(t)

 4. Suppose the functions ƒ(x) and g(x) are deined for all x and that 

limxS0 ƒ(x) = 1>2 and limxS0 g(x) = 22. Find the limits as 

x S 0 of the following functions.

a. -g(x) b. g(x) # ƒ(x)

c. ƒ(x) + g(x) d. 1>ƒ(x)

e. x + ƒ(x) f. 
ƒ(x) #  cos x

x - 1

In Exercises 5 and 6, ind the value that limxS0 g(x) must have if the 

given limit statements hold.

 5. lim
xS0
a4 - g(x)

x b = 1 6. lim
xS  -4

ax lim
xS0

 g(x)b = 2

 7. On what intervals are the following functions continuous?

a. ƒ(x) = x1>3 b. g(x) = x3>4
c. h(x) = x-2>3 d. k(x) = x-1>6

 8. On what intervals are the following functions continuous?

a. ƒ(x) = tan x

b. g(x) = csc x

c. h(x) =
cos x

x - p

d. k(x) =
sin x

x

Finding Limits

In Exercises 9–28, ind the limit or explain why it does not exist.

 9. lim 
x2 - 4x + 4

x3 + 5x2 - 14x

a. as x S 0 b. as x S 2

 10. lim 
x2 + x

x5 + 2x4 + x3

a. as x S 0 b. as x S  -1

 11. lim
xS1

 
1 - 2x

1 - x
 12. lim

xSa
  
x2 - a2

x4 - a4

 13. lim
hS0

 
(x + h)2 - x2

h
 14. lim

xS0
 
(x + h)2 - x2

h

 15. lim
xS0

 

1
2 + x

-
1
2

x  16. lim
xS0

 
(2 + x)3 - 8

x

 17. lim
xS1

 
x1>3 - 1

2x - 1
 18. lim

xS64
 
x2>3 - 16

2x - 8

 19. lim
xS0

 
tan (2x)

tan (px)
 20. lim

xSp-
 csc x

 21. lim
xSp

 sin ax

2
+ sin xb  22. lim

xSp
 cos2 (x - tan x)

 23. lim
xS0

  
8x

3 sin x - x
 24. lim

xS0
 
cos 2x - 1

sin x

CHAPTER 2 Practice Exercises
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In Exercises 25–28, ind the limit of g(x) as x approaches the indicated 

value.

 25. lim
xS0+  (4g(x))1>3 = 2 26. lim

xS25
   

1
x + g(x)

= 2

 27. lim
xS1

  
3x2 + 1

g(x)
= q 28. lim

xS  -2
  
5 - x2

2g(x)
= 0

Roots

 29. Let ƒ(x) = x3 - x - 1.

a. Use the Intermediate Value Theorem to show that ƒ has a 

zero between -1 and 2.

b. Solve the equation ƒ(x) = 0 graphically with an error of 

magnitude at most 10-8.

c. It can be shown that the exact value of the solution in part (b) isa1
2

+
269

18
 b1>3

+ a1
2

-
269

18
 b1>3

.

 Evaluate this exact answer and compare it with the value you 

found in part (b).

 30. Let ƒ(u) = u3 - 2u + 2.

a. Use the Intermediate Value Theorem to show that ƒ has a 

zero between -2 and 0.

b. Solve the equation ƒ(u) = 0 graphically with an error of 

magnitude at most 10-4.

c. It can be shown that the exact value of the solution in part (b) 

is aA19

27
- 1b1>3

- aA19

27
+ 1b1>3

.

 Evaluate this exact answer and compare it with the value you 

found in part (b).

Continuous Extension

 31. Can ƒ(x) = x (x2 - 1)> 0 x2 - 1 0  be extended to be continuous  

at x = 1 or -1? Give reasons for your answers. (Graph the  

function—you will ind the graph interesting.)

 32. Explain why the function ƒ(x) = sin (1>x) has no continuous  

extension to x = 0.

In Exercises 33–36, graph the function to see whether it appears to 

have a continuous extension to the given point a. If it does, use Trace 

and Zoom to ind a good candidate for the extended function’s value at 

a. If the function does not appear to have a continuous extension, can it 

be extended to be continuous from the right or left? If so, what do you 

think the extended function’s value should be?

T

T

T

 33. ƒ(x) =
x - 1

x - 24 x
 , a = 1

 34. g(u) =
5 cos u

4u - 2p
 , a = p>2

 35. h(t) = (1 + 0 t 0 )1>t, a = 0

 36. k(x) =
x

1 - 2 0 x 0 , a = 0

Limits at Infinity

Find the limits in Exercises 37–46.

 37. lim
xS  q

  
2x + 3

5x + 7
 38. lim

xS  -  q
  
2x2 + 3

5x2 + 7

 39. lim
xS  -  q

 
x2 - 4x + 8

3x3
 40. lim

xS  q
  

1

x2 - 7x + 1

 41. lim
xS  -  q

 
x2 - 7x

x + 1
 42. lim

xS  q
  

x4 + x3

12x3 + 128

 43. lim
xS  q

  
sin x:x;    (If you have a grapher, try graphing the function 

for -5 … x … 5.)

 44. lim
uS  q

 
cos u - 1

u
  

  (If you have a grapher, try graphing 

ƒ(x) = x (cos (1>x) - 1) near the origin to 

“see” the limit at ininity.)

 45. lim
xS  q

 
x + sin x + 22x

x + sin x
 46. lim

xS  q
  

x2>3 + x-1

x2>3 + cos2 x

Horizontal and Vertical Asymptotes

 47. Use limits to determine the equations for all vertical asymptotes.

a. y =
x2 + 4
x - 3

 b. ƒ(x) =
x2 - x - 2

x2 - 2x + 1

c. y =
x2 + x - 6

x2 + 2x - 8

 48. Use limits to determine the equations for all horizontal asymptotes.

a. y =
1 - x2

x2 + 1
 b. ƒ(x) =

2x + 4

2x + 4

c. g(x) =
2x2 + 4

x  d. y = B x2 + 9

9x2 + 1

 49. Determine the domain and range of y =
216 - x2

x - 2
.

 50. Assume that constants a and b are positive. Find equations 

for all horizontal and vertical asymptotes for the graph of 

y =
2ax2 + 4

x - b
.

 1. Lorentz contraction In relativity theory, the length of an object, 

say a rocket, appears to an observer to depend on the speed at 

which the object is traveling with respect to the observer. If the 

observer measures the rocket’s length as L0 at rest, then at speed 

y the length will appear to be

L = L0 B1 -
y2

c2
.

  This equation is the Lorentz contraction formula. Here, c is the 

speed of light in a vacuum, about 3 * 108 m>sec. What happens 

to L as y increases? Find limySc- L. Why was the left-hand limit 

needed?

 2. Controlling the low from a draining tank Torricelli’s law says 

that if you drain a tank like the one in the igure shown, the rate y 

at which water runs out is a constant times the square root of the 

CHAPTER 2 Additional and Advanced Exercises
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water’s depth x. The constant depends on the size and shape of the 

exit valve.

x

Exit rate y ft3�min

Suppose that y = 2x>2 for a certain tank. You are trying 

to maintain a fairly constant exit rate by adding water to the tank 

with a hose from time to time. How deep must you keep the water 

if you want to maintain the exit rate

a. within 0.2 ft3>min of the rate y0 = 1 ft3>min?

b. within 0.1 ft3>min of the rate y0 = 1 ft3>min?

 3. Thermal expansion in precise equipment As you may know, 

most metals expand when heated and contract when cooled. The 

dimensions of a piece of laboratory equipment are sometimes so 

critical that the shop where the equipment is made must be held at 

the same temperature as the laboratory where the equipment is to 

be used. A typical aluminum bar that is 10 cm wide at 70°F will be

y = 10 + (t - 70) * 10-4

  centimeters wide at a nearby temperature t. Suppose that you are 

using a bar like this in a gravity wave detector, where its width 

must stay within 0.0005 cm of the ideal 10 cm. How close to 

t0 = 70°F must you maintain the temperature to ensure that this 

tolerance is not exceeded?

 4. Stripes on a measuring cup The interior of a typical 1-L mea-

suring cup is a right circular cylinder of radius 6 cm (see accompa-

nying igure). The volume of water we put in the cup is therefore a 

function of the level h to which the cup is illed, the formula being

V = p62h = 36ph.

  How closely must we measure h to measure out 1 L of water 

(1000 cm3) with an error of no more than 1% (10 cm3)?

Stripes

about

1 mm

wide

r = 6 cm

Liquid volume

V = 36ph

(a)

(b)

h

  A 1-L measuring cup (a), modeled as a right circular cylinder  

(b) of radius r = 6 cm

Precise Definition of Limit

In Exercises 5–8, use the formal deinition of limit to prove that the 

function is continuous at c.

 5. ƒ(x) = x2 - 7, c = 1 6. g(x) = 1>(2x), c = 1>4
 7. h(x) = 22x - 3, c = 2 8. F(x) = 29 - x, c = 5

 9. Uniqueness of limits Show that a function cannot have two dif-

ferent limits at the same point. That is, if limxSc ƒ(x) = L1 and 

limxSc ƒ(x) = L2, then L1 = L2.

 10. Prove the limit Constant Multiple Rule:

lim
xSc

 kƒ(x) = k lim
xSc

 ƒ(x)  for any constant k.

 11. One-sided limits If limxS0+ ƒ(x) = A and limxS0- ƒ(x) = B, 

ind

a. limxS0+ ƒ(x3 - x) b. limxS0- ƒ(x3 - x)

c. limxS0+ ƒ(x2 - x4) d. limxS0- ƒ(x2 - x4)

 12. Limits and continuity Which of the following statements are 

true, and which are false? If true, say why; if false, give a counter-

example (that is, an example conirming the falsehood).

a. If limxSc ƒ(x) exists but limxSc g(x) does not exist, then 

limxSc(ƒ(x) + g(x)) does not exist.

b. If neither limxSc ƒ(x) nor limxSc g(x) exists, then 

limxSc (ƒ(x) + g(x)) does not exist.

c. If ƒ is continuous at x, then so is 0 ƒ 0 .
d. If 0 ƒ 0  is continuous at c, then so is ƒ.

In Exercises 13 and 14, use the formal deinition of limit to prove that 

the function has a continuous extension to the given value of x.

 13. ƒ(x) =
x2 - 1
x + 1

, x = -1 14. g(x) =
x2 - 2x - 3

2x - 6
, x = 3

 15. A function continuous at only one point Let

ƒ(x) = e x, if x is rational

0, if x is irrational.

a. Show that ƒ is continuous at x = 0.

b. Use the fact that every nonempty open interval of real num-

bers contains both rational and irrational numbers to show 

that ƒ is not continuous at any nonzero value of x.

 16. The Dirichlet ruler function If x is a rational number, then 

x can be written in a unique way as a quotient of integers m>n 

where n 7 0 and m and n have no common factors greater than 1. 

(We say that such a fraction is in lowest terms. For example, 6>4 

written in lowest terms is 3>2.) Let ƒ(x) be deined for all x in the 

interval 30, 14  by

ƒ(x) = e1>n, if x = m>n is a rational number in lowest terms

0, if x is irrational.

  For instance, ƒ(0) = ƒ(1) = 1, ƒ(1>2) = 1>2, ƒ(1>3) =  

ƒ(2>3) =  1>3, ƒ(1>4) = ƒ(3>4) = 1>4, and so on.

a. Show that ƒ is discontinuous at every rational number in 30, 14 .
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b. Show that ƒ is continuous at every irrational number in 30, 14 . (Hint: If e is a given positive number, show that there 

are only initely many rational numbers r in 30, 14  such that 

ƒ(r) Ú e.)

c. Sketch the graph of ƒ. Why do you think ƒ is called the 

“ruler function”?

 17. Antipodal points Is there any reason to believe that there is al-

ways a pair of antipodal (diametrically opposite) points on Earth’s 

equator where the temperatures are the same? Explain.

 18. If limxSc (ƒ(x) + g(x)) = 3 and limxSc (ƒ(x) - g(x)) = -1, 

ind limxSc ƒ(x)g(x).

 19. Roots of a quadratic equation that is almost linear The equa-

tion ax2 + 2x - 1 = 0, where a is a constant, has two roots if 

a 7 -1 and a ≠ 0, one positive and one negative:

r+(a) =
-1 + 21 + a

a ,  r-(a) =
-1 - 21 + a

a ,

a. What happens to r+(a) as a S 0? As a S -1+?

b. What happens to r-(a) as a S 0? As a S -1+?

c. Support your conclusions by graphing r+(a) and r-(a) as 

functions of a. Describe what you see.

d. For added support, graph ƒ(x) = ax2 + 2x - 1 simultane-

ously for a = 1, 0.5, 0.2, 0.1, and 0.05.

 20. Root of an equation Show that the equation x + 2 cos x = 0 

has at least one solution.

 21. Bounded functions A real-valued function ƒ is bounded from 

above on a set D if there exists a number N such that ƒ(x) … N  

for all x in D. We call N, when it exists, an upper bound for ƒ on 

D and say that ƒ is bounded from above by N. In a similar man-

ner, we say that ƒ is bounded from below on D if there exists a 

number M such that ƒ(x) Ú M  for all x in D. We call M, when it 

exists, a lower bound for ƒ on D and say that ƒ is bounded from 

below by M. We say that ƒ is bounded on D if it is bounded from 

both above and below.

a. Show that ƒ is bounded on D if and only if there exists a 

number B such that 0 ƒ(x) 0 … B for all x in D.

b. Suppose that ƒ is bounded from above by N. Show that if 

limxSc ƒ(x) = L, then L … N.

c. Suppose that ƒ is bounded from below by M. Show that if 

limxSc ƒ(x) = L, then L Ú M.

 22. Max 5a, b6 and min 5a, b6
a. Show that the expression

max 5a, b6 =
a + b

2
+
0 a - b 0

2

 equals a if a Ú b and equals b if b Ú a. In other words, max 5a, b6  gives the larger of the two numbers a and b.

b. Find a similar expression for min 5a, b6 , the smaller of a 

and b.

Generalized Limits Involving 
sin U

U

The formula limuS0 (sin u)>u = 1 can be generalized. If limxSc 

ƒ(x) = 0 and ƒ(x) is never zero in an open interval containing the 

point x = c, except possibly at c itself, then

lim
xSc

 
sin ƒ(x)

ƒ(x)
= 1.

Here are several examples.

a. lim
xS0

 
sin x2

x2
= 1

b. lim
xS0

 
sin x2

x = lim
xS0

 
sin x2

x2
 lim
xS0

 
x2

x = 1 # 0 = 0

c. lim
xS  -1

 
sin (x2 - x - 2)

x + 1
= lim

xS  -1
 
sin (x2 - x - 2)

(x2 - x - 2)
.

 lim
xS  -1

 
(x2 - x - 2)

x + 1
= 1 # lim

xS  -1
 
(x + 1)(x - 2)

x + 1
= -3

d. lim
xS1

 
sin 11 - 2x2

x - 1
= lim

xS1
 
sin 11 - 2x2

1 - 2x
 
1 - 2x

x - 1

= lim
xS1

 
11 - 2x 211 + 2x 2

(x - 1)11 + 2x2
=  lim

xS1
 

1 - x

(x - 1)11 + 2x 2 = -  
1
2

Find the limits in Exercises 23–28.

 23. lim
xS0

 
sin (1 - cos x)

x  24. lim
xS0+

 
sin x

sin2x

 25. lim
xS0

 
sin (sin x)

x  26. lim
xS0

 
sin (x2 + x)

x

 27. lim
xS2

 
sin (x2 - 4)

x - 2
 28. lim

xS9
 
sin 12x - 32

x - 9

Oblique Asymptotes

Find all possible oblique asymptotes in Exercises 29–32.

 29. y =
2x3>2 + 2x - 3

2x + 1
 30. y = x + x sin 

1
x

 31. y = 2x2 + 1 32. y = 2x2 + 2x

Showing an Equation Is Solvable

 33. Assume that 1 6 a 6 b and 
a

x
+ x =

1
x - b

. Show that this 

equation is solvable.
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Mathematica/Maple Projects

Projects can be found within MyMathLab.

Take It to the Limit

Part I

Part II (Zero Raised to the Power Zero: What Does It Mean?)

Part III (One-Sided Limits)

Visualize and interpret the limit concept through graphical and numerical explorations.

Part IV (What a Diference a Power Makes)

See how sensitive limits can be with various powers of x.

Going to Infinity

Part I (Exploring Function Behavior as xu H or xu −H)

This module provides four examples to explore the behavior of a function as x S q or x S -q.

Part II (Rates of Growth)

Observe graphs that appear to be continuous, yet the function is not continuous. Several issues of continuity are explored to obtain results that you 

may ind surprising.

CHAPTER 2 Technology Application Projects

More Limits

 34. Find constants a and b so that each of the following limits is true.

a. lim
xS0

 
2a + bx - 1

x = 2 b. lim
xS1

 
tan (ax - a) + b - 2

x - 1
= 3

 35. Evaluate lim
xS1

 
x2>3 - 1

1 - 2x
.    36.  Evaluate lim

xS0
 
�3x + 4 � - � x � - 4

x .

Limits on Arbitrary Domains

The deinition of the limit of a function at x = c extends to functions 

whose domains near c are more complicated than intervals.

b. Show that at c = 0 the domain has the property described 

above.

c. Evaluate limxS0 ƒ(x).

 37. The function ƒ is deined as follows: ƒ(x) =  x if x = 1/n where 

n is a positive integer, and ƒ(0) = 1.

 38. The function ƒ is deined as follows: ƒ(x) =  1 - x if x =  1/n 

where n is a positive integer, and ƒ(0) = 1.

 39. ƒ(x) = 2x sin (1>x)

 40. Let g be a function with domain the rational numbers, deined by 

  g(x) =
2

x - 22
  for  rational x .

a. Sketch the graph of g as well as you can, keeping in mind 

that g is only deined at rational points.

b. Use the general deinition of a limit to prove that 

limxS0 g(x) = -22.

c. Prove that g is continuous at the point x = 0 by showing that 

the limit in part (b) equals g(0).

d. Is g continuous at other points of its domain?

General Definition of Limit 
Suppose every open interval containing c contains a point 

other than c in the domain of ƒ. We say that limxSc ƒ(x) = L 

if for every number e 7 0 there exists a correspond-

ing number d 7 0 such that for all x in the domain of ƒ, 0 ƒ(x) - L 0 6 e whenever 0 6 0 x - c 0 6 d.

For the functions in Exercises 37–39,

a. Find the domain.
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OVERVIEW In Chapter 2 we discussed how to determine the slope of a curve at a point 

and how to measure the rate at which a function changes. Now that we have studied limits, 

we can make these notions precise and see that both are interpretations of the derivative of 

a function at a point. We then extend this concept from a single point to the derivative 

function, and we develop rules for finding this derivative function easily, without having to 

calculate limits directly. These rules are used to find derivatives of most of the common 

functions reviewed in Chapter 1, as well as combinations of them.

The derivative is used to study a wide range of problems in mathematics, science, 

economics, and medicine. These problems include inding solutions to very general 

equations, calculating the velocity and acceleration of a moving object, describing the 

path followed by a light ray going from a point in air to a point in water, inding the num-

ber of items a manufacturing company should produce in order to maximize its proits, 

studying the spread of an infectious disease within a given population, and calculating 

the amount of blood the heart pumps per minute based on how well the lungs are func-

tioning.

3.1 Tangent Lines and the Derivative at a Point

In this section we define the slope and tangent to a curve at a point, and the derivative of a 

function at a point. The derivative gives a way to find both the slope of a graph and the 

instantaneous rate of change of a function.

Finding a Tangent Line to the Graph of a Function

To find a tangent line to an arbitrary curve y = ƒ(x) at a point P(x0, ƒ(x0)), we use the pro-

cedure introduced in Section 2.1. We calculate the slope of the secant line through P and a 

nearby point Q(x0 + h, ƒ(x0 + h)). We then investigate the limit of the slope as h S 0 

(Figure 3.1). If the limit exists, we call it the slope of the curve at P and define the tangent 

line at P to be the line through P having this slope.

Derivatives

3

0

h

y

x

y = f (x)

Q(x0 + h,  f (x0 + h))

f (x0 + h) − f (x0)

P(x0,  f(x0))

x0 + hx0

FIGURE 3.1 The slope of the tangent 

line at P is lim
hS0

 
ƒ(x0 + h) - ƒ(x0)

h
 .

DEFINITIONS The slope of the curve y = ƒ(x) at the point P(x0, ƒ(x0)) is the 

number

lim
hS0

 
ƒ(x0 + h) - ƒ(x0)

h
   (provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.



 3.1  Tangent Lines and the Derivative at a Point 103

In Section 2.1, Example 3, we applied these definitions to find the slope of the parab-

ola ƒ(x) = x2 at the point P(2, 4) and the tangent line to the parabola at P. Let’s look at 

another example.

EXAMPLE 1

(a) Find the slope of the curve y = 1>x at any point x = a ≠ 0. What is the slope at the 

point x = -1?

(b) Where does the slope equal -1>4?

(c) What happens to the tangent line to the curve at the point (a, 1>a) as a changes?

Solution

(a) Here ƒ(x) = 1>x. The slope at (a, 1>a) is

 lim
hS0

 
ƒ(a + h) - ƒ(a)

h
= lim

hS0
 

1
a + h

-
1
a

h
= lim

hS0
  
1
h

  
a - (a + h)

a(a + h)

 = lim
hS0

  
-h

ha(a + h)
= lim

hS0
  

-1
a(a + h)

= -  
1

a2
.

 Notice how we had to keep writing “limhS0” before each fraction until the stage at 

which we could evaluate the limit by substituting h = 0. The number a may be posi-

tive or negative, but not 0. When a = -1, the slope is -1>(-1)2 = -1 (Figure 3.2).

(b) The slope of y = 1>x at the point where x = a is -1>a2. It will be -1>4 provided 

that

-  
1

a2
= -  

1
4

.

This equation is equivalent to a2 = 4, so a = 2 or a = -2. The curve has slope -1>4 

at the two points (2, 1>2) and (-2, -1>2) (Figure 3.3).

(c) The slope -1>a2 is always negative if a ≠ 0. As a S 0+, the slope approaches -q 

and the tangent line becomes increasingly steep (Figure 3.2). We see this situation 

again as a S 0-. As a moves away from the origin in either direction, the slope 

 approaches 0 and the tangent line levels of, becoming more and more horizontal. 

Rates of Change: Derivative at a Point

The expression

ƒ(x0 + h) - ƒ(x0)

h
, h ≠ 0

is called the difference quotient of ƒ at x0 with increment h. If the difference quotient 

has a limit as h approaches zero, that limit is given a special name and notation.

x

y

y = 1
x

slope is −
1

a2

slope is −1

at x = −1 

a0

FIGURE 3.2 The tangent line slopes, 

steep near the origin, become more gradual 

as the point of tangency moves away 

(Example 1).

a          b
x

y

2,

y = 1
x

1
2

−2, −
1
2

slope is −
1
4

slope is −
1
4

a    b

FIGURE 3.3 The two tangent lines to 

y = 1>x having slope -1>4 (Example 1).

DEFINITION The derivative of a function ƒ at a point x0, denoted ƒ′(x0), is

ƒ′(x0) = lim
hS0

 
ƒ(x0 + h) - ƒ(x0)

h

provided this limit exists.

The notation ƒ′(x0) is read “ƒ prime 

of x0.”

The derivative has more than one meaning, depending on what problem we are con-

sidering. The formula for the derivative is the same as the formula for the slope of the 

curve y = ƒ(x) at a point. If we interpret the difference quotient as the slope of a secant 

line, then the derivative gives the slope of the curve y = ƒ(x) at the point P(x0, ƒ(x0)). If 
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we interpret the difference quotient as an average rate of change (Section 2.1), then the 

derivative gives the function’s instantaneous rate of change with respect to x at the point 

x = x0. We study this interpretation in Section 3.4.

EXAMPLE 2  In Examples 1 and 2 in Section 2.1, we studied the speed of a rock fall-

ing freely from rest near the surface of the earth. The rock fell y = 16t2 feet during the 

first t sec, and we used a sequence of average rates over increasingly short intervals to esti-

mate the rock’s speed at the instant t = 1. What was the rock’s exact speed at this time?

Solution We let ƒ(t) = 16t2. The average speed of the rock over the interval between 

t = 1 and t = 1 + h seconds, for h 7 0, was found to be

ƒ(1 + h) - ƒ(1)

h
=

16(1 + h)2 - 16(1)2

h
=

16(h2 + 2h)

h
= 16(h + 2).

The rock’s speed at the instant t = 1 is then

 ƒ′(1) = lim
hS0

 
ƒ(1 + h) - ƒ(1)

h
= lim

hS0
 16(h + 2) = 16(0 + 2) = 32 ft>sec. 

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a func-

tion, and the derivative of a function at a point. All of these ideas are based on the same limit.

The following are all interpretations for the limit of the difference quotient

lim
hS0

 
ƒ(x0 + h) - ƒ(x0)

h
.

1. The slope of the graph of y = ƒ(x) at x = x0

2. The slope of the tangent line to the curve y = ƒ(x) at x = x0

3. The rate of change of ƒ(x) with respect to x at the x = x0

4. The derivative ƒ′(x0) at x = x0

In the next sections, we allow the point x0 to vary across the domain of the function ƒ.

Slopes and Tangent Lines

In Exercises 1–4, use the grid and a straight edge to make a rough 

estimate of the slope of the curve (in y-units per x-unit) at the points 

P1 and P2.

 1.   2. 

 

x

y

1

2

10

P1

P2

         

x

y

0 1 2

2

1

−1

−2

P1

P2

−1−2

 3.   4. 

 

x

y

1 2

2

1

0

P1
P2

          y

0 1−1

1

2

3

x

4

−2 2

P1 P2

EXERCISES 3.1
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At what points do the graphs of the functions in Exercises 25 and 26 

have horizontal tangent lines?

 25. ƒ(x) = x2 + 4x - 1 26. g(x) = x3 - 3x

 27. Find equations of all lines having slope -1 that are tangent to the 

curve y = 1>(x - 1).

 28. Find an equation of the straight line having slope 1>4 that is tan-

gent to the curve y = 2x.

Rates of Change

 29. Object dropped from a tower An object is dropped from the 

top of a 100-m-high tower. Its height above ground after t sec is 

100 - 4.9t2 m. How fast is it falling 2 sec after it is dropped?

 30. Speed of a rocket At t sec after liftof, the height of a rocket is 

3t2 ft. How fast is the rocket climbing 10 sec after liftof?

 31. Circle’s changing area What is the rate of change of the area of a 

circle (A = pr2)  with respect to the radius when the radius is r = 3?

 32. Ball’s changing volume What is the rate of change of the 

 volume of a ball (V = (4>3)pr3)  with respect to the radius when 

the radius is r = 2?

 33. Show that the line y = mx + b is its own tangent line at any point 

(x0, mx0 + b).

 34. Find the slope of the tangent line to the curve y = 1>2x at the 

point where x = 4.

Testing for Tangent Lines

 35. Does the graph of

ƒ(x) = e x2 sin (1>x), x ≠ 0

0, x = 0

  have a tangent line at the origin? Give reasons for your answer.

 36. Does the graph of

g(x) = e x sin (1>x), x ≠ 0

0, x = 0

  have a tangent line at the origin? Give reasons for your answer.

Vertical Tangent Lines

We say that a continuous curve y = ƒ(x) has a vertical tangent line 

at the point where x = x0 if the limit of the difference quotient is q 

or -q. For example, y = x1>3 has a vertical tangent line at x = 0 

(see accompanying figure):

 lim
hS0

 
ƒ(0 + h) - ƒ(0)

h
= lim

hS0
 
h1>3 - 0

h

 = lim
hS0

 
1

h2>3 = ∞.

y = f (x) = x

x

y

0

VERTICAL TANGENT LINE AT ORIGIN

 1 3

In Exercises 5–10, find an equation for the tangent line to the curve at 

the given point. Then sketch the curve and tangent line together.

 5. y = 4 - x2, (-1, 3) 6. y = (x - 1)2 + 1, (1, 1)

 7. y = 22x, (1, 2) 8. y =
1

x2
 , (-1, 1)

 9. y = x3, (-2, -8) 10. y =
1

x3
 , a-2, -  

1
8
b

In Exercises 11–18, find the slope of the function’s graph at the given 

point. Then find an equation for the line tangent to the graph there.

 11. ƒ(x) = x2 + 1, (2, 5) 12. ƒ(x) = x - 2x2, (1, -1)

 13. g(x) =
x

x - 2
 , (3, 3) 14. g(x) =

8

x2
 , (2, 2)

 15. h(t) = t3, (2, 8) 16. h(t) = t3 + 3t, (1, 4)

 17. ƒ(x) = 2x, (4, 2) 18. ƒ(x) = 2x + 1, (8, 3)

In Exercises 19–22, find the slope of the curve at the point indicated.

 19. y = 5x - 3x2, x = 1 20. y = x3 - 2x + 7, x = -2

 21. y =
1

x - 1
 , x = 3 22. y =

x - 1
x + 1

 , x = 0

Interpreting Derivative Values

 23. Growth of yeast cells In a controlled laboratory experiment, 

yeast cells are grown in an automated cell culture system that 

counts the number P of cells present at hourly intervals. The num-

ber after t hours is shown in the accompanying igure.

t

p

0

100

1 2 3 4 5 6 7

200

50

150

250

a. Explain what is meant by the derivative P′(5). What are its 

units?

b. Which is larger, P′(2) or P′(3)? Give a reason for your  

answer.

c. The quadratic curve capturing the trend of the data points 

(see Section 1.4) is given by P(t) = 6.10t2 - 9.28t + 16.43. 

Find the instantaneous rate of growth when t = 5 hours.

 24. Efectiveness of a drug On a scale from 0 to 1, the efectiveness 

E of a pain-killing drug t hours after entering the bloodstream is 

displayed in the accompanying igure.

t

E

0

0.4

1 2 3 4 5

0.8

0.2

0.6

1.0

a. At what times does the efectiveness appear to be increasing? 

What is true about the derivative at those times?

b. At what time would you estimate that the drug reaches its 

maximum efectiveness? What is true about the derivative at 

that time? What is true about the derivative as time increases 

in the 1 hour before your estimated time?
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b. Conirm your indings in part (a) with limit calculations. But 

before you do, read the introduction to Exercises 37 and 38.

 39. y = x2>5 40. y = x4>5
 41. y = x1>5 42. y = x3>5
 43. y = 4x2>5 - 2x 44. y = x5>3 - 5x2>3
 45. y = x2>3 - (x - 1)1>3 46. y = x1>3 + (x - 1)1>3
 47. y = e-2 0 x 0 , x … 0

2x, x 7 0
 48. y = 2 0 4 - x 0

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for the functions in 

 Exercises 49–52:

a. Plot y = ƒ(x) over the interval (x0 - 1>2) … x … (x0 + 3).

b. Holding x0 ixed, the diference quotient

q(h) =
ƒ(x0 + h) - ƒ(x0)

h

at x0 becomes a function of the step size h. Enter this func-

tion into your CAS workspace.

c. Find the limit of q as h S 0.

d. Deine the secant lines y = ƒ(x0) + q # (x - x0) for h = 3, 2, 

and 1. Graph them together with ƒ and the tangent line over 

the interval in part (a).

 49. ƒ(x) = x3 + 2x, x0 = 0

 50. ƒ(x) = x +
5
x , x0 = 1

 51. ƒ(x) = x + sin (2x), x0 = p>2
 52. ƒ(x) = cos x + 4 sin (2x), x0 = p

However, y = x2>3 has no vertical tangent line at x = 0 (see next 

figure):

 lim
hS0

 
g(0 + h) - g(0)

h
= lim

hS0
 
h2>3 - 0

h

 = lim
hS0

 
1

h1>3
does not exist, because the limit is q from the right and -q from the 

left.

NO VERTICAL TANGENT LINE AT ORIGIN

y = g(x) = x2 3

x

y

0

 37. Does the graph of

ƒ(x) = c -1, x 6 0

0, x = 0

1, x 7 0

  have a vertical tangent line at the origin? Give reasons for your 

answer.

 38. Does the graph of

U(x) = e0, x 6 0

1, x Ú 0

  have a vertical tangent line at the point (0, 1)? Give reasons for 

your answer.

Graph the curves in Exercises 39–48.

a. Where do the graphs appear to have vertical tangent  

lines?

T

3.2 The Derivative as a Function

In the last section we defined the derivative of y = ƒ(x) at the point x = x0 to be the limit

ƒ′(x0) = lim
hS0

 
ƒ(x0 + h) - ƒ(x0)

h
.

We now investigate the derivative as a function derived from ƒ by considering the limit at 

each point x in the domain of ƒ.

HISTORICAL ESSAY

The Derivative

www.goo.gl/llNWop

DEFINITION The derivative of the function ƒ(x) with respect to the variable x 

is the function ƒ′ whose value at x is

ƒ′(x) = lim
hS0

 
ƒ(x + h) - ƒ(x)

h
,

provided the limit exists.

We use the notation ƒ(x) in the definition, rather than ƒ(x0) as before, to emphasize 

that ƒ′ is a function of the independent variable x with respect to which the derivative 

function ƒ′(x) is being defined. The domain of ƒ′ is the set of points in the domain of ƒ for 

http://www.goo.gl/llNWop
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which the limit exists, which means that the domain may be the same as or smaller than 

the domain of ƒ. If ƒ′ exists at a particular x, we say that ƒ is differentiable (has a deriva-

tive) at x. If ƒ′ exists at every point in the domain of ƒ, we call ƒ differentiable.

If we write z = x + h, then h = z - x and h approaches 0 if and only if z approaches 

x. Therefore, an equivalent definition of the derivative is as follows (see Figure 3.4). This 

formula is sometimes more convenient to use when finding a derivative function, and 

focuses on the point z that approaches x.

x z = x + h

h = z − x

P(x, f (x))

Q(z, f (z))

f (z) − f (x)

y = f (x)

Secant slope is

f (z) − f (x)
z − x

Derivative of f at x is

f '(x) = lim
h:0

= lim
z:x

f (x + h) − f (x)

h

f (z) − f (x)
z − x

FIGURE 3.4 Two forms for the differ-

ence quotient.

Alternative Formula for the Derivative

ƒ′(x) = lim
zSx

 
ƒ(z) - ƒ(x)

z - x

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea 

that differentiation is an operation performed on a function y = ƒ(x), we use the notation

d

dx
 ƒ(x)

as another way to denote the derivative ƒ′(x). Example 1 of Section 3.1 illustrated the dif-

ferentiation process for the function y = 1>x when x = a. For x representing any point in 

the domain, we get the formula

d

dx
  a1xb = -  

1

x2
.

Here are two more examples in which we allow x to be any point in the domain of ƒ.

EXAMPLE 1  Differentiate ƒ(x) =
x

x - 1
.

Solution We use the definition of derivative, which requires us to calculate ƒ(x + h) 

and then subtract ƒ(x) to obtain the numerator in the difference quotient. We have

ƒ(x) =
x

x - 1
 and ƒ(x + h) =

(x + h)

(x + h) - 1
, so

 ƒ′(x) = lim
hS0

 
ƒ(x + h) - ƒ(x)

h
 Definition

 = lim
hS0

 

x + h

x + h - 1
-

x

x - 1

h
 Substitute.

 = lim
hS0

  
1
h

# (x + h) (x - 1) - x(x + h - 1)

(x + h - 1) (x - 1)
 

a

b
-

c

d
=

ad - cb

bd
 

 = lim
hS0

  
1
h

# -h

(x + h - 1) (x - 1)
 Simplify.

 = lim
hS0

  
-1

(x + h - 1) (x - 1)
=

-1

(x - 1)2
. Cancel h ≠ 0 and evaluate. 

EXAMPLE 2

(a) Find the derivative of ƒ(x) = 2x for x 7 0.

(b) Find the tangent line to the curve y = 2x at x = 4.

Derivative of the Reciprocal Function

d

dx
  a1xb = -  

1

x2
, x ≠ 0
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Solution

(a) We use the alternative formula to calculate ƒ′:

 ƒ′(x) = lim
zSx

 
ƒ(z) - ƒ(x)

z - x

 = lim
zSx

 
1z - 1x

z - x

 = lim
zSx

 
1z - 1x11z - 1x211z + 1x2  

1

a2 - b2
=

1

(a - b)(a + b)

 = lim
zSx

 
1

1z + 1x
=

1

21x
.   Cancel and evaluate.

(b) The slope of the curve at x = 4 is

ƒ′(4) =
1

224
=

1
4

.

  The tangent is the line through the point (4, 2) with slope 1>4 (Figure 3.5):

 y = 2 +
1
4

 (x - 4)

  y =
1
4

 x + 1.  

Notation

There are many ways to denote the derivative of a function y = ƒ(x), where the indepen-

dent variable is x and the dependent variable is y. Some common alternative notations for 

the derivative include

ƒ′(x) = y′ =
dy

dx
=

dƒ

dx
=

d

dx
 ƒ(x) = D(ƒ)(x) = Dx ƒ(x).

The symbols d>dx and D indicate the operation of differentiation. We read dy>dx as “the 

derivative of y with respect to x,” and dƒ>dx and (d>dx) ƒ(x) as “the derivative of ƒ with 

respect to x.” The “prime” notations y′ and ƒ′ originate with Newton. The d>dx notations 

are similar to those used by Leibniz. The symbol dy>dx should not be regarded as a ratio; 

it is simply a notation that denotes a derivative.

To indicate the value of a derivative at a specified number x = a, we use the notation

ƒ′(a) =
dy

dx
`
x = a

=
dƒ

dx
`
x = a

=
d

dx
 ƒ(x) `

x = a

.

For instance, in Example 2

ƒ′(4) =
d

dx
 2x `

x = 4

=
1

21x
`
x = 4

=
1

224
=

1
4

.

Graphing the Derivative

We can often make an approximate plot of the derivative of y = ƒ(x) by estimating the 

slopes on the graph of ƒ. That is, we plot the points (x, ƒ′(x)) in the xy-plane and connect 

them with a smooth curve, which represents y = ƒ′(x).

EXAMPLE 3  Graph the derivative of the function y = ƒ(x) in Figure 3.6a.

Solution We sketch the tangent lines to the graph of ƒ at frequent intervals and use their 

slopes to estimate the values of ƒ′(x) at these points. We plot the corresponding (x, ƒ′(x)) 

pairs and connect them with a smooth curve as sketched in Figure 3.6b. 

Derivative of the Square Root  

Function

d

dx
 2x =

1

22x
 , x 7 0

x

y

0 4

(4, 2)

1

y = "x

y =    x + 11
4

FIGURE 3.5 The curve y = 2x and its 

tangent line at (4, 2). The tangent line’s 

slope is found by evaluating the derivative 

at x = 4 (Example 2).

0 10

(a)

5 15

5

10

Slope 0

A

B

C
D

E

Slope 0

105 15

1

2

3

4

−1

−2

(b)

Slope −1

4
3

Slope − 

y = f (x)

≈ 8

≈ 4 x-units

A'

y = f '(x)

B′
C′

D′

E′

Vertical coordinate −1

y

x

x

Slope

FIGURE 3.6 We made the graph of 

y = ƒ′(x) in (b) by plotting slopes from 

the graph of y = ƒ(x) in (a). The verti-

cal coordinate of B′ is the slope at B and 

so on. The slope at E is approximately 

8>4 = 2. In (b) we see that the rate of 

change of ƒ is negative for x between A′ 

and D′; the rate of change is positive for x 

to the right of D′.
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What can we learn from the graph of y = ƒ′(x)? At a glance we can see

1.  where the rate of change of ƒ is positive, negative, or zero;

2.  the rough size of the growth rate at any x and its size in relation to the size of ƒ(x);

3.  where the rate of change itself is increasing or decreasing.

Differentiable on an Interval; One-Sided Derivatives

A function y = ƒ(x) is differentiable on an open interval (finite or infinite) if it has a 

derivative at each point of the interval. It is differentiable on a closed interval 3a, b4  if it 
is differentiable on the interior (a, b) and if the limits

lim
hS0+

 
ƒ(a + h) - ƒ(a)

h
  Right-hand derivative at a

lim
hS0-

 
ƒ(b + h) - ƒ(b)

h
  Left-hand derivative at b

exist at the endpoints (Figure 3.7).

Right-hand and left-hand derivatives may or may not be defined at any point of a 

function’s domain. Because of Theorem 6, Section 2.4, a function has a derivative at an 

interior point if and only if it has left-hand and right-hand derivatives there, and these one-

sided derivatives are equal.

EXAMPLE 4  Show that the function y = � x �  is differentiable on (-∞, 0) and on 

(0, ∞) but has no derivative at x = 0.

Solution From Section 3.1, the derivative of y = mx + b is the slope m. Thus, to the 

right of the origin, when x 7 0,

d

dx
 ( 0 x 0 ) =

d

dx
 (x) =

d

dx
 (1 # x) = 1.  

d

dx
 (mx + b) = m, 0 x 0 = x since x 7 0

To the left, when x 6 0,

d

dx
 ( � x � ) =

d

dx
 (-x) =

d

dx
 (-1 # x) = -1  0 x 0 = -x since x 6 0

(Figure 3.8). The two branches of the graph come together at an angle at the origin, form-

ing a non-smooth corner. There is no derivative at the origin because the one-sided deriva-

tives differ there:

 Right@hand derivative of 0 x 0  at zero = lim
hS0+

 
0 0 + h 0 - 0 0 0

h
= lim

hS0+
 
0 h 0
h

 = lim
hS0+

 
h

h
  0 h 0 = h when h 7 0 

 = lim
hS0+

1 = 1

 Left@hand derivative of 0 x 0  at zero = lim
hS0-

 
0 0 + h 0 - 0 0 0

h
= lim

hS0-
 
0 h 0
h

 = lim
hS0-

 
-h

h
  0 h 0 = -h when h 6 0 

 = lim
hS0-

-1 = -1.  

a ba + h
h > 0

b + h
h < 0

lim
h:0

+

f (a + h) − f (a)

h

Slope =

y = f (x)

lim
h:0−

f (b + h) − f (b)

h

Slope =

x

FIGURE 3.7 Derivatives at endpoints of 

a closed interval are one-sided limits.

x

y

0

y′ not deined at x = 0:

right-hand derivative

≠ left-hand derivative

y′ = −1 y′ = 1

y = 0 x 0

FIGURE 3.8 The function y = 0 x 0  is not 

differentiable at the origin where the graph 

has a “corner” (Example 4).
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P

Q−

Q+

 4.  a discontinuity (two examples shown)

EXAMPLE 5  In Example 2 we found that for x 7 0,

d

dx
 1x =

1

21x
.

We apply the deinition to examine if the derivative exists at x = 0:

lim
hS0+

 
20 + h - 20

h
= lim

hS0+
 

1

1h
= ∞.

Since the (right-hand) limit is not finite, there is no derivative at x = 0. Since the slopes of 

the secant lines joining the origin to the points 1h, 2h2 on a graph of y = 2x approach 

∞, the graph has a vertical tangent line at the origin. (See Figure 3.9.) 

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point x0 if the slopes of the secant lines through P(x0, ƒ(x0)) 

and a nearby point Q on the graph approach a finite limit as Q approaches P. Thus differen-

tiability is a “smoothness” condition on the graph of ƒ. A function can fail to have a deriva-

tive at a point for many reasons, including the existence of points where the graph has

x

xy =

y

0 21

2

1

FIGURE 3.9 The square root function 

is not differentiable at x = 0, where the 

graph of the function has a vertical tangent 

line.

P

Q− Q+

1.  a corner, where the one-sided  

derivatives difer

P

Q−

Q+

2.  a cusp, where 

the slope of PQ 

 approaches ∞ from 

one side and -∞ 

from the other

P

Q−

Q+

3.  a vertical tangent line, 

where the slope of PQ 

 approaches ∞ from both 

sides or approaches -∞ 

from both sides  

(here, -∞)

P

Q−

Q+

x

y
,

y = 5
1
x

x sin x ≠ 0

0, x = 0

5. wild oscillation

The last example shows a function that is continuous at x = 0, but whose graph oscil-

lates wildly up and down as it approaches x = 0. The slopes of the secant lines through 0  

oscillate between -1 and 1 as x approaches 0, and do not have a limit at x = 0.
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Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

THEOREM 1—Differentiability Implies Continuity If ƒ has a derivative at 

x = c, then ƒ is continuous at x = c.

Proof  Given that ƒ′(c) exists, we must show that limxSc ƒ(x) = ƒ(c), or equivalently, 

that limhS0 ƒ(c + h) = ƒ(c). If h ≠ 0, then

 ƒ(c + h) = ƒ(c) + (ƒ(c + h) - ƒ(c))   Add and subtract ƒ(c).

 = ƒ(c) +
ƒ(c + h) - ƒ(c)

h
# h.  Divide and multiply by h.

Now take limits as h S 0. By Theorem 1 of Section 2.2,

 lim
hS0

 ƒ(c + h) = lim
hS0

 ƒ(c) + lim
hS0

 
ƒ(c + h) - ƒ(c)

h
# lim

hS0
h

 = ƒ(c) + ƒ′(c) # 0

 = ƒ(c) + 0

  = ƒ(c).  

Similar arguments with one-sided limits show that if ƒ has a derivative from one side 

(right or left) at x = c, then ƒ is continuous from that side at x = c.

Theorem 1 says that if a function has a discontinuity at a point (for instance, a jump 

discontinuity), then it cannot be differentiable there. The greatest integer function y = :x;  
fails to be differentiable at every integer x = n (Example 4, Section 2.5).

Caution The converse of Theorem 1 is false. A function need not have a derivative at a 

point where it is continuous, as we saw with the absolute value function in Example 4. 

Finding Derivative Functions and Values

Using the definition, calculate the derivatives of the functions in 

 Exercises 1–6. Then find the values of the derivatives as specified.

 1. ƒ(x) = 4 - x2; ƒ′(-3), ƒ′(0), ƒ′(1)

 2. F(x) = (x - 1)2 + 1; F′(-1), F′(0), F′(2)

 3. g(t) =
1

t2
 ; g′(-1), g′(2), g′1232

 4. k(z) =
1 - z

2z
 ; k′(-1), k′(1), k′1222

 5. p(u) = 23u ; p′(1), p′(3), p′(2>3)

 6. r (s) = 22s + 1 ; r′(0), r′(1), r′(1>2)

In Exercises 7–12, find the indicated derivatives.

 7. 
dy

dx
 if y = 2x3 8. 

dr

ds
 if r = s3 - 2s2 + 3

 9. 
ds

dt
 if s =

t

2t + 1
 10. 

dy

dt
 if y = t -

1
t

 11. 
dp

dq
 if p = q3>2 12. 

dz

dw
 if z =

1

2w2 - 1

Slopes and Tangent Lines

In Exercises 13–16, differentiate the functions and find the slope of 

the tangent line at the given value of the independent variable.

 13. ƒ(x) = x +
9
x , x = -3 14. k(x) =

1
2 + x

, x = 2

 15. s = t3 - t2, t = -1 16. y =
x + 3
1 - x

, x = -2

In Exercises 17–18, differentiate the functions. Then find an equation 

of the tangent line at the indicated point on the graph of the function.

 17. y = ƒ(x) =
8

2x - 2
, (x, y) = (6, 4)

 18. w = g(z) = 1 + 24 - z, (z, w) = (3, 2)

In Exercises 19–22, find the values of the derivatives.

 19. 
ds

dt
`
t = -1

 if s = 1 - 3t2 20. 
dy

dx
`
x =23

 if y = 1 -
1
x

 21. 
dr

du
`
u= 0

 if r =
2

24 - u
 22. 

dw

dz
0 z = 4 if w = z + 1z

EXERCISES 3.2
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 31. a.  The graph in the accompanying igure is made of line segments 

joined end to end. At which points of the interval 3-4, 64  is 

ƒ′ not deined? Give reasons for your answer.

x

y

0 1 6

(0, 2) (6, 2)

(−4, 0)

y = f (x)

(4, −2)(1, −2)

b. Graph the derivative of ƒ.

The graph should show a step function.

 32. Recovering a function from its derivative

a. Use the following information to graph the function ƒ over 

the closed interval 3-2, 54 .
 i) The graph of ƒ is made of closed line segments joined 

end to end.

 ii) The graph starts at the point (-2, 3).

 iii) The derivative of ƒ is the step function in the igure 

shown here.

x
0 1−2 3 5

1

y′

y′ = f ′(x)

−2

b. Repeat part (a), assuming that the graph starts at (-2, 0) 

instead of (-2, 3).

 33. Growth in the economy The graph in the accompanying igure 

shows the average annual percentage change y = ƒ(t) in the U.S. 

gross national product (GNP) for the years 2005–2011. Graph 

dy>dt (where deined).

2005 2006 2007 2008 2009 2010 2011

1
0

2

3

4

5

6

7%

 34. Fruit lies (Continuation of Example 4, Section 2.1.)  

Populations starting out in closed environments grow slowly at 

irst, when there are relatively few members, then more rapidly 

as the number of reproducing individuals increases and resources 

are still abundant, then slowly again as the population reaches the 

carrying  capacity of the environment.

Using the Alternative Formula for Derivatives

Use the formula

ƒ′(x) = lim
zSx

 
ƒ(z) - ƒ(x)

z - x

to ind the derivative of the functions in Exercises 23–26.

 23. ƒ(x) =
1

x + 2
 24. ƒ(x) = x2 - 3x + 4

 25. g(x) =
x

x - 1
 26. g(x) = 1 + 1x

Graphs

Match the functions graphed in Exercises 27–30 with the derivatives 

graphed in the accompanying figures (a)–(d).

y′

0
x

(d)

y′

0
x

(c)

y′

0
x

(a)

y′

0
x

(b)

 27.   28. 

  

x

y

0

y = f1(x)

  

x

y

0

y = f2(x)

 29.   30. 

  y

0
x

y = f3(x)

  y

0
x

y = f4(x)
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c. Estimate the rate of change of home prices at the beginning of

 i. 2007  ii. 2010  iii. 2014

d. During what year did home prices drop most rapidly and 

what is an estimate of this rate?

e. During what year did home prices rise most rapidly and what 

is an estimate of this rate?

f. Use the graphical technique of Example 3 to graph the 

 derivative of home price P versus time t.

a. Use the graphical technique of Example 3 to graph the 

derivative of the fruit ly population. The graph of the popula-

tion is reproduced here.

100
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150

200

250

300

350

20 30 40 50
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N
u
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b
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l
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s
p

t

b. During what days does the population seem to be increasing 

fastest? Slowest?

 35. Temperature The given graph shows the outside temperature T 

in °F, between 6 a.m. and 6 p.m.

30

40

50

60

70

80

6 9 12
9 A.M.6 A.M. 12 NOON 3 P.M. 6 P.M.

Time (hr)

T
em

p
er

at
u

re
 (
°F

)

T

t

a. Estimate the rate of temperature change at the times

 i) 7 a.m.  ii) 9 a.m.  iii) 2 p.m.  iv) 4 p.m.

b. At what time does the temperature increase most rapidly? 

Decrease most rapidly? What is the rate for each of those 

times?

c. Use the graphical technique of Example 3 to graph the de-

rivative of temperature T versus time t.

 36. Average single-family home prices P (in thousands of dollars) in 

Sacramento, California, are shown in the accompanying igure 

from 2006 through 2015.

2007 2009 2011 2013 2015
150

230

310

390

P

t

a. During what years did home prices decrease? increase?

b. Estimate home prices at the end of

 i. 2007  ii. 2012  iii. 2015

One-Sided Derivatives

Compute the right-hand and left-hand derivatives as limits to show that 

the functions in Exercises 37–40 are not differentiable at the point P.

 37.   38. 

x

y

y = f (x)y = x2

y = x

P(0, 0)

 

x

y

y = f (x)

y = 2x

y = 2

1

2

0 1 2

P(1, 2)

 39.   40. 

y

y = f (x)

y = 2x − 1

x

P(1, 1)

0

1

1

y = "x

 y

y =
1
x

y = f (x)

x

P(1, 1)

y = x
1

1

In Exercises 41–44, determine if the piecewise-defined function is dif-

ferentiable at the origin.

 41. ƒ(x) = e2x - 1, x Ú 0

x2 + 2x + 7, x 6 0

 42. g(x) = e x2>3, x Ú 0

x1>3, x 6 0

 43. ƒ(x) = e2x + tan x, x Ú 0

x2, x 6 0

 44. g(x) = • 2x - x3 - 1, x Ú 0

x -
1

x + 1
 , x 6 0

Differentiability and Continuity on an Interval

Each figure in Exercises 45–50 shows the graph of a function over a 

closed interval D. At what domain points does the function appear  

to be

a. diferentiable?

b. continuous but not diferentiable?

c. neither continuous nor diferentiable?

Give reasons for your answers.
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 59. Limit of a quotient Suppose that functions g(t) and h(t) 

are deined for all values of t and g(0) = h(0) = 0. Can 

limtS0 (g(t))>(h(t)) exist? If it does exist, must it equal zero? Give 

reasons for your answers.

 60. a.  Let ƒ(x) be a function satisfying 0 ƒ(x) 0 … x2 for -1 … x … 1. 

Show that ƒ is diferentiable at x = 0 and ind ƒ′(0).

b. Show that

ƒ(x) = c x2 sin 
1
x , x ≠ 0

0, x = 0

is diferentiable at x = 0 and ind ƒ′(0).

 61. Graph y = 1>122x2 in a window that has 0 … x … 2. Then, on 

the same screen, graph

y =
2x + h - 2x

h

  for h = 1, 0.5, 0.1. Then try h = -1, -0.5, -0.1. Explain what is 

going on.

 62. Graph y = 3x2 in a window that has -2 … x … 2, 0 … y … 3. 

Then, on the same screen, graph

y =
(x + h)3 - x3

h

  for h = 2, 1, 0.2. Then try h = -2, -1, -0.2. Explain what is 

 going on.

 63. Derivative of y = ∣x ∣  Graph the derivative of ƒ(x) = 0 x 0 . 
Then graph y = ( 0 x 0 - 0) >(x - 0) = 0 x 0 >x. What can you 

 conclude?

 64. Weierstrass’s nowhere diferentiable continuous func-

tion The sum of the irst eight terms of the Weierstrass function 

ƒ(x) = aq
n = 0

 (2>3)n cos (9npx) is

 g(x) = cos (px) + (2>3)1 cos (9px) + (2>3)2 cos (92px)

  + (2>3)3 cos (93px) + g + (2>3)7 cos (97px).

  Graph this sum. Zoom in several times. How wiggly and bumpy 

is this graph? Specify a viewing window in which the displayed 

portion of the graph is smooth.

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for the functions in 

 Exercises 65–70.

a. Plot y = ƒ(x) to see that function’s global behavior.

b. Deine the diference quotient q at a general point x, with 

general step size h.

c. Take the limit as h S 0. What formula does this give?

d. Substitute the value x = x0 and plot the function y = ƒ(x) 

together with its tangent line at that point.

e. Substitute various values for x larger and smaller than x0 into 

the formula obtained in part (c). Do the numbers make sense 

with your picture?

f. Graph the formula obtained in part (c). What does it mean 

when its values are negative? Zero? Positive? Does this make 

sense with your plot from part (a)? Give reasons for your 

answer.

T

T

T

 45.   46. 

y = f (x)

D:  −3 ≤ x ≤ 2

x

y

−3 −2 −1 1 20

1

−1

−2

2

 
y = f (x)

D:  −2 ≤ x ≤ 3

x

y

−1 0 1 2 3−2

1

−1

−2

2

 47.   48. 

x

y

y = f (x)

D:  −3 ≤ x ≤ 3

−1 0
−1

1

−2

1 2 3−2−3

 

x

y

y = f (x)

D:  −2 ≤ x ≤ 3

−2 −1 1 2 30

1

2

3

 49.   50. 

x

y

y = f (x)

D:  −1 ≤ x ≤ 2

−1 0 1 2

1

 y = f (x)

D:  −3 ≤ x ≤ 3

x

y

−3−2 −1 0

2

4

1 2 3

Theory and Examples

In Exercises 51–54,

a. Find the derivative ƒ′(x) of the given function y = ƒ(x).

b. Graph y = ƒ(x) and y = ƒ′(x) side by side using separate 

sets of coordinate axes, and answer the following questions.

c. For what values of x, if any, is ƒ′ positive? Zero? Negative?

d. Over what intervals of x-values, if any, does the function 

y = ƒ(x) increase as x increases? Decrease as x increases? 

How is this related to what you found in part (c)? (We will 

say more about this relationship in Section 4.3.)

 51. y = -x2 52. y = -1>x
 53. y = x3>3 54. y = x4>4
 55. Tangent to a parabola Does the parabola y = 2x2 - 13x + 5 

have a tangent line whose slope is -1? If so, ind an equation for 

the line and the point of tangency. If not, why not?

 56. Tangent to y = 2x Does any tangent line to the curve 

y = 2x cross the x-axis at x = -1? If so, ind an equation for 

the line and the point of tangency. If not, why not?

 57. Derivative of −ƒ  Does knowing that a function ƒ(x) is difer-

entiable at x = x0 tell you anything about the diferentiability of 

the function -ƒ at x = x0? Give reasons for your answer.

 58. Derivative of multiples Does knowing that a function g(t) is 

diferentiable at t = 7 tell you anything about the diferentiability 

of the function 3g at t = 7? Give reasons for your answer.
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 65. ƒ(x) = x3 + x2 - x, x0 = 1

 66. ƒ(x) = x1>3 + x2>3, x0 = 1

 67. ƒ(x) =
4x

x2 + 1
, x0 = 2

 68. ƒ(x) =
x - 1

3x2 + 1
, x0 = -1

 69. ƒ(x) = sin 2x, x0 = p>2
 70. ƒ(x) = x2 cos x, x0 = p>4

3.3 Differentiation Rules

This section introduces several rules that allow us to differentiate constant functions, 

power functions, polynomials, rational functions, and certain combinations of them, sim-

ply and directly, without having to take limits each time.

Powers, Multiples, Sums, and Differences

A basic rule of differentiation is that the derivative of every constant function is zero.

Derivative of a Constant Function 

If ƒ has the constant value ƒ(x) = c, then

dƒ

dx
=

d

dx
 (c) = 0.

Proof  We apply the deinition of the derivative to ƒ(x) = c, the function whose out-

puts have the constant value c (Figure 3.10). At every value of x, we ind that

 ƒ′(x) = lim
hS0

 
ƒ(x + h) - ƒ(x)

h
= lim

hS0
 
c - c

h
= lim

hS0
0 = 0. 

We now consider powers of x. From Section 3.1, we know that

d

dx
 a1xb = -  

1

x2
,  or 

d

dx
 (x - 1) = -x - 2.

From Example 2 of the last section we also know that

d

dx
 12x2 =

1

22x
,  or 

d

dx
 (x1>2) =

1
2

 x - 1>2.

These two examples illustrate a general rule for differentiating a power xn. We first prove 

the rule when n is a positive integer.

x

y

0 x

c

h

y = c
(x + h, c)(x, c)

x + h

FIGURE 3.10 The rule (d>dx)(c) = 0 

is another way to say that the values of 

constant functions never change and that 

the slope of a horizontal line is zero at 

every point.

Derivative of a Positive Integer Power 

If n is a positive integer, then

d

dx
 xn = nxn - 1.

Proof of the Positive Integer Power Rule  The formula

zn - xn = (z - x)(zn - 1 + zn - 2 x + g + zxn - 2 + xn - 1)

can be verified by multiplying out the right-hand side. Then from the alternative formula 

for the definition of the derivative,

 ƒ′(x) = lim
zSx

 
ƒ(z) - ƒ(x)

z - x = lim
zSx

 
zn - xn

z - x

 = lim
zSx  

(zn - 1 + zn - 2x + g + zxn - 2 + xn - 1)  n terms

 = nxn - 1.  
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The Power Rule is actually valid for all real numbers n, not just for positive integers. 

We have seen examples for a negative integer and fractional power, but n could be an irra-

tional number as well. Here we state the general version of the rule, but postpone its proof 

until Chapter 7.

Power Rule (General Version) 

If n is any real number, then

d

dx
 xn = nxn - 1,

for all x where the powers xn and xn - 1 are defined.

EXAMPLE 1  Differentiate the following powers of x.

(a) x3  (b) x2/3  (c) x22  (d) 
1

x4
  (e) x-4>3  (f ) 2x2 +p

Solution

(a) 
d

dx
 (x3) = 3x3 - 1 = 3x2

(b) 
d

dx
 (x2>3) =

2
3

 x(2>3) - 1 =
2
3

 x-1>3
(c) 

d

dx
 1x222 = 22x22 - 1

(d) 
d

dx
 a 1

x4
b =

d

dx
 (x-4) = -4x-4 - 1 = -4x-5 = -  

4

x5

(e) 
d

dx
 (x-4>3) = -  

4
3

 x-(4>3) - 1 = -  
4
3

 x-7>3
(f ) 

d

dx
 12x2 +p2 =

d

dx
 1x1 + (p>2)2 = a1 +

p
2
b  x1 + (p>2) - 1 =

1
2

  (2 + p)2xp 

The next rule says that when a differentiable function is multiplied by a constant, its 

derivative is multiplied by the same constant.

Applying the Power Rule

Subtract 1 from the exponent and multi-

ply the result by the original exponent.

Derivative Constant Multiple Rule 

If u is a differentiable function of x, and c is a constant, then

d

dx
 (cu) = c 

du

dx
.

Proof

 
d

dx
 cu = lim

hS0
 
cu(x + h) - cu(x)

h
  

Derivative definition 

with ƒ(x) = cu(x)
 

 = c lim
hS0

 
u(x + h) - u(x)

h
  Constant Multiple Limit Property

 = c 
du

dx
  u is differentiable. 
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EXAMPLE 2

(a) The derivative formula

d

dx
 (3x2) = 3 # 2x = 6x

 says that if we rescale the graph of y = x2 by multiplying each y-coordinate by 3, then 

we multiply the slope at each point by 3 (Figure 3.11).

(b) Negative of a function

  The derivative of the negative of a diferentiable function u is the negative of the func-

tion’s derivative. The Constant Multiple Rule with c = -1 gives

 
d

dx
 (-u) =

d

dx
 (-1 # u) = -1 # d

dx
 (u) = -  

du

dx
. 

The next rule says that the derivative of the sum of two differentiable functions is the 

sum of their derivatives.

Derivative Sum Rule 

If u and y are differentiable functions of x, then their sum u + y is differentiable 

at every point where u and y are both differentiable. At such points,

d

dx
 (u + y) =

du

dx
+

dy
dx

.

Proof  We apply the deinition of the derivative to ƒ(x) = u(x) + y(x):

 
d

dx
 3u(x) + y(x)4 = lim

hS0
 
3u(x + h) + y(x + h)4 - 3u(x) + y(x)4

h

 = lim
hS0

 c u(x + h) - u(x)

h
+

y(x + h) - y(x)

h
d

  = lim
hS0

 
u(x + h) - u(x)

h
+ lim

hS0
 
y(x + h) - y(x)

h
=

du

dx
+

dy
dx

. 

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule, 

which says that the derivative of a difference of differentiable functions is the difference of 

their derivatives:

d

dx
 (u - y) =

d

dx
 3u + (-1)y4 =

du

dx
+ (-1) 

dy
dx

=
du

dx
-

dy
dx

.

The Sum Rule also extends to finite sums of more than two functions. If u1, u2, c, un 

are differentiable at x, then so is u1 + u2 +  g +  un , and

d

dx
 (u1 + u2 +  g+  un) =

du1

dx
+

du2

dx
 +  g+  

dun

dx
.

For instance, to see that the rule holds for three functions we compute

d

dx
 (u1 + u2 + u3) =

d

dx
 ((u1 + u2) + u3) =

d

dx
 (u1 + u2) +  

du3

dx
=

du1

dx
+

du2

dx
+

du3

dx
.

A proof by mathematical induction for any finite number of terms is given in Appendix 2.

x

y

0 1

1
(1, 1)

2

2

3 (1, 3)
 

Slope

Slope

Slope = 2x

= 2(1) = 2

y = x2

y = 3x2

Slope = 3(2x)
= 6x

= 6(1) = 6

FIGURE 3.11 The graphs of y = x2 and 

y = 3x2. Tripling the y-coordinate triples 

the slope (Example 2).

Denoting Functions by u and Y

The functions we are working with when 

we need a differentiation formula are 

likely to be denoted by letters like ƒ and 

g. We do not want to use these same let-

ters when stating general differentiation 

rules, so instead we use letters like u and 

y that are not likely to be already in use.
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EXAMPLE 4  Does the curve y = x4 - 2x2 + 2 have any horizontal tangent lines? 

If so, where?

Solution The horizontal tangent lines, if any, occur where the slope dy>dx is zero. We have

dy

dx
=

d

dx
 (x4 - 2x2 + 2) = 4x3 - 4x.

Now solve the equation 
dy

dx
= 0 for x:

 4x3 - 4x = 0

 4x(x2 - 1) = 0

 x = 0, 1, -1.  

The curve y = x4 - 2x2 + 2 has horizontal tangents at x = 0, 1, and -1. The corre-

sponding points on the curve are (0, 2), (1, 1), and (-1, 1). See Figure 3.12. 

Derivative Product Rule 

If u and y are differentiable at x, then so is their product uy, and

d

dx
 (uy) = u 

dy
dx

+
du

dx
 y .

The derivative of the product uy is u times the derivative of y plus the derivative of u 

times y. In prime notation, (uy)′ = uy′ + u′y. In function notation,

 
d

dx
 3ƒ(x)g(x)4 = ƒ(x)g′(x) + ƒ′(x)g(x), or (ƒg)′ = ƒg′ + ƒ′g. (3)

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-

tive of the product of two functions is not the product of their derivatives. For instance,

d

dx
 (x # x) =

d

dx
 (x2) = 2x,  while  

d

dx
 (x) # d

dx
 (x) = 1 # 1 = 1.

The derivative of a product of two functions is the sum of two products, as we now explain.

EXAMPLE 3  Find the derivative of the polynomial y = x3 +
4
3

 x2 - 5x + 1.

Solution  
dy

dx
=

d

dx
 x3 +

d

dx
 a4

3
 x2b -

d

dx
 (5x) +

d

dx
 (1)   Sum and Difference Rules

      = 3x2 +
4
3

# 2x - 5 + 0 = 3x2 +
8
3

 x - 5 

We can differentiate any polynomial term by term, the way we differentiated the poly-

nomial in Example 3. All polynomials are differentiable at all values of x.

x

y

0 1−1

(1, 1)(−1, 1)
1

(0, 2)

y = x4 − 2x2 + 2

FIGURE 3.12 The curve in Example 4 

and its horizontal tangents.

EXAMPLE 5  Find the derivative of y = (x2 + 1)(x3 + 3).



 3.3  Differentiation Rules 119

Solution

(a) From the Product Rule with u = x2 + 1 and y = x3 + 3, we ind

 
d

dx
3 (x2 + 1)(x3 + 3)4 = (x2 + 1)(3x2) + (2x)(x3 + 3)  

d

dx
 (uy) = u 

dy

dx
+

du

dx
 y 

 = 3x4 + 3x2 + 2x4 + 6x

 = 5x4 + 3x2 + 6x.

(b) This particular product can be diferentiated as well (perhaps better) by multiplying 

out the original expression for y and diferentiating the resulting polynomial:

 y = (x2 + 1)(x3 + 3) = x5 + x3 + 3x2 + 3

 
dy

dx
= 5x4 + 3x2 + 6x.

This is in agreement with our first calculation. 

In function notation,

d

dx
 c ƒ(x)

g(x)
d =

g(x)ƒ′(x) - ƒ(x)g′(x)

g(x)2
.

Derivative Quotient Rule 

If u and y are differentiable at x and if y(x) ≠ 0, then the quotient u>y is differ-

entiable at x, and

d

dx
 au
yb =

y 
du

dx
- u 

dy
dx

y2
.

Proof of the Derivative Product Rule 

d

dx
 (uy) = lim

hS0
 
u(x + h)y(x + h) - u(x)y(x)

h
  

To change this fraction into an equivalent one that contains difference quotients for the 

derivatives of u and y, we subtract and add u(x + h)y(x) in the numerator:

 
d

dx
 (uy) = lim

hS0
 
u(x + h)y(x + h) - u(x + h)y(x) + u(x + h)y(x) - u(x)y(x)

h

 = lim
hS0

 c u(x + h) 
y(x + h) - y(x)

h
+ y(x) 

u(x + h) - u(x)

h
d

 = lim
hS0

 u(x + h) # lim
hS0

 
y(x + h) - y(x)

h
+ y(x) # lim

hS0
 
u(x + h) - u(x)

h
.

As h approaches zero, u(x + h) approaches u(x) because u, being differentiable at x, is 

continuous at x. The two fractions approach the values of dy>dx at x and du>dx at x. 

Therefore,

 
d

dx
 (uy) = u 

dy
dx

+ y 
du

dx
. 

The derivative of the quotient of two functions is given by the Quotient Rule.

Picturing the Product Rule

Suppose u(x) and y(x) are positive and 

increase when x increases, and h 7 0.

0

y(x + h)

y(x)

Δy

u(x)y(x)

u(x + h) Δy

Δu y(x)

u(x + h)u(x)
Δu

Then the change in the product uy is 

the difference in areas of the larger and 

smaller “squares,” which is the sum of 

the upper and right-hand reddish-shaded 

rectangles. That is,

 ∆(uy) = u(x + h)y(x + h) - u(x)y(x)

 = u(x + h)∆y + ∆u y(x).

Division by h gives

∆(uy)

h
= u(x + h) 

∆y

h
+

∆u

h
 y(x) .

The limit as h S 0 + gives the Product 

Rule.
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Proof of the Derivative Quotient Rule 

 
d

dx
 au
yb = lim

hS0
 

u(x + h)

y(x + h)
-

u(x)

y(x)

h

 = lim
hS0

 
y(x)u(x + h) - u(x)y(x + h)

hy(x + h)y(x)
  

To change the last fraction into an equivalent one that contains the difference quotients for 

the derivatives of u and y, we subtract and add y(x)u(x) in the numerator. We then get

 
d

dx
 au
yb = lim

hS0
 
y(x)u(x + h) - y(x)u(x) + y(x)u(x) - u(x)y(x + h)

hy(x + h)y(x)

 = lim
hS0

 

y(x) 
u(x + h) - u(x)

h
- u(x) 

y(x + h) - y(x)

h

y(x + h)y(x)
.

Taking the limits in the numerator and denominator now gives the Quotient Rule. Exercise 

62 outlines another proof. 

The choice of which rules to use in solving a differentiation problem can make a dif-

ference in how much work you have to do. Here is an example.

EXAMPLE 7  Find the derivative of

y =
(x - 1)(x2 - 2x)

x4
.

Solution Using the Quotient Rule here will result in a complicated expression with 

many terms. Instead, use some algebra to simplify the expression. First expand the numer-

ator and divide by x4:

y =
(x - 1)(x2 - 2x)

x4
=

x3 - 3x2 + 2x

x4
= x-1 - 3x-2 + 2x-3 .

Then use the Sum and Power Rules:

 
dy

dx
= -x-2 - 3(-2)x-3 + 2(-3)x-4

  = -  
1

x2
+

6

x3
-

6

x4
.  

EXAMPLE 6  Find the derivative of y =
t2 - 1

t3 + 1
.

Solution We apply the Quotient Rule with u = t2 - 1 and y = t3 + 1:

 
dy

dt
=

(t3 + 1) # 2t - (t2 - 1) # 3t2

(t3 + 1)2
  

d

dt
 au
yb =

y (du>dt) - u (dy>dt)

y2

 =
2t4 + 2t - 3t4 + 3t2

(t3 + 1)2

 =
- t4 + 3t2 + 2t

(t3 + 1)2
.  
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Second- and Higher-Order Derivatives

If y = ƒ(x) is a differentiable function, then its derivative ƒ′(x) is also a function. If ƒ′ is 

also differentiable, then we can differentiate ƒ′ to get a new function of x denoted by ƒ″. 

So ƒ″ = (ƒ′)′. The function ƒ″ is called the second derivative of ƒ because it is the 

derivative of the first derivative. It is written in several ways:

ƒ″(x) =
d2y

dx2
=

d

dx
 ady

dx
b =

dy′

dx
= y″ = D2(ƒ)(x) = Dx

 2 ƒ(x).

The symbol D2 means that the operation of differentiation is performed twice.

If y = x6, then y′ = 6x5 and we have

y″ =
dy′

dx
=

d

dx
 (6x5) = 30x4.

Thus D2(x6) = 30x4.

If y″ is differentiable, its derivative, y‴ = dy″>dx = d3y>dx3, is the third derivative 

of y with respect to x. The names continue as you imagine, with

y(n) =
d

dx
 y(n - 1) =

dny

dxn = Dny

denoting the nth derivative of y with respect to x for any positive integer n.

We can interpret the second derivative as the rate of change of the slope of the tangent 

line to the graph of y = ƒ(x) at each point. You will see in the next chapter that the second 

derivative reveals whether the graph bends upward or downward from the tangent line as 

we move off the point of tangency. In the next section, we interpret both the second and 

third derivatives in terms of motion along a straight line.

EXAMPLE 8  The first four derivatives of y = x3 - 3x2 + 2 are

First derivative:

Second derivative:

Third derivative:

Fourth derivative:

 y′ = 3x2 - 6x

 y″ = 6x - 6

 y‴ = 6

 y(4) = 0.

All polynomial functions have derivatives of all orders. In this example, the fifth and later 

derivatives are all zero. 

How to Read the Symbols for 

 Derivatives

y′ “y prime”

y″ “y double prime”

d2y

dx2

“d squared y dx squared”

y‴ “y triple prime”

y(n) “y super n”

dny

dxn
“d to the n of y by dx to the n”

Dn “d to the n”

Derivative Calculations

In Exercises 1–12, find the first and second derivatives.

 1. y = -x2 + 3 2. y = x2 + x + 8

 3. s = 5t3 - 3t5 4. w = 3z7 - 7z3 + 21z2

 5. y =
4x3

3
- x 6. y =

x3

3
+

x2

2
+

x

4

 7. w = 3z-2 -
1
z  8. s = -2t-1 +

4

t2

 9. y = 6x2 - 10x - 5x-2 10. y = 4 - 2x - x-3

 11. r =
1

3s2
-

5
2s

 12. r =
12
u

-
4

u3
+

1

u4

In Exercises 13–16, find y′ (a) by applying the Product Rule and (b) by 

multiplying the factors to produce a sum of simpler terms to differentiate.

 13. y = (3 - x2)  (x3 - x + 1)  14. y = (2x + 3) (5x2 - 4x)

 15. y = (x2 + 1) ax + 5 +
1
xb  16. y = (1 + x2) (x3>4 - x-3)

Find the derivatives of the functions in Exercises 17–40.

 17. y =
2x + 5
3x - 2

 18. z =
4 - 3x

3x2 + x

 19. g(x) =
x2 - 4

x + 0.5
 20. ƒ(t) =

t2 - 1

t2 + t - 2

 21. y = (1 - t) (1 + t2)-1 22. w = (2x - 7)-1(x + 5)

EXERCISES 3.3
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 43. Find the tangent lines to Newton’s serpentine (graphed here) at the 

origin and the point (1, 2).

x

y

0

1

1 2

2
(1, 2)

3 4

y =
4x

x2 + 1

 44. Find the tangent line to the Witch of Agnesi (graphed here) at the 

point (2, 1).

x

y

0

1

1 2

2
(2, 1)

3

y =
8

x2 + 4

 45. Quadratic tangent to identity function The curve y =

ax2 + bx + c passes through the point (1, 2) and is tangent to the 

line y = x at the origin. Find a, b, and c.

 46. Quadratics having a common tangent The curves y =

x2 + ax + b and y = cx - x2 have a common tangent line at the 

point (1, 0). Find a, b, and c.

 47. Find all points (x, y) on the graph of ƒ(x) = 3x2 - 4x with tan-

gent lines parallel to the line y = 8x + 5.

 48. Find all points (x, y) on the graph of g(x) = 1
3 x3 - 3

2 x2 + 1 with 

tangent lines parallel to the line 8x - 2y = 1.

 49. Find all points (x, y) on the graph of y = x>(x - 2) with tangent 

lines perpendicular to the line y = 2x + 3.

 50. Find all points (x, y) on the graph of ƒ(x) = x2 with tangent lines 

passing through the point (3, 8).

y

x

(3, 8)

−2

2

2 4

6

10
f (x) = x2

(x, y)

 51. Assume that functions ƒ and g are diferentiable with ƒ(1) = 2, 

ƒ′(1) = -3, g(1) = 4, and g′(1) = -2. Find the equation of the 

line tangent to the graph of F(x) = ƒ(x)g(x) at x = 1.

 52. Assume that functions ƒ and g are diferentiable with ƒ(2) = 3, 

ƒ′(2) = -1, g(2) = -4, and g′(2) = 1. Find an equation of the 

  line perpendicular to the graph of F(x) =
ƒ(x) + 3

x - g(x)
 at x = 2.

 23. ƒ(s) =
1s - 1

1s + 1
 24. u =

5x + 1

21x

 25. y =
1 + x - 42x

x  26. r = 2a 1

2u
+ 2ub

 27. y =
1

(x2 - 1)  (x2 + x + 1)
 28. y =

(x + 1) (x + 2)

(x - 1) (x - 2)
 

Find the derivatives of all orders of the functions in Exercises 29–  32.

 29. y =
x4

2
-

3
2

 x2 - x 30. y =
x5

120

 30. y = (x - 1) (x + 2)(x + 3) 32. y = (4x2 + 3)(2 - x) x

Find the first and second derivatives of the functions in Exercises 

33–38.

 33. y =
x3 + 7

x  34. s =
t2 + 5t - 1

t2

 35. r =
(u - 1)(u2 + u + 1)

u3
 36. u =

(x2 + x)(x2 - x + 1)

x4

 37. w = a1 + 3z

3z
b(3 - z) 38. p =

q2 + 3

(q - 1)3 + (q + 1)3

 39. Suppose u and y are functions of x that are diferentiable at x = 0 

and that

u(0) = 5, u′(0) = -3, y(0) = -1, y′(0) = 2.

  Find the values of the following derivatives at x = 0.

a. 
d

dx
 (uy)  b. 

d

dx
 au
yb   c. 

d

dx
 ayub   d. 

d

dx
 (7y - 2u)

 40. Suppose u and y are diferentiable functions of x and that

u(1) = 2, u′(1) = 0, y(1) = 5, y′(1) = -1.

  Find the values of the following derivatives at x = 1.

a. 
d

dx
 (uy)  b. 

d

dx
 au
yb   c. 

d

dx
 ayub   d. 

d

dx
 (7y - 2u)

Slopes and Tangent Lines

 41. a.  Normal line to a curve Find an equation for the line perpen-

dicular to the tangent line to the curve y = x3 - 4x + 1 at the 

point (2, 1).

b. Smallest slope What is the smallest slope on the curve? At 

what point on the curve does the curve have this slope?

c. Tangent lines having speciied slope Find equations for 

the tangent lines to the curve at the points where the slope of 

the curve is 8.

 42. a.  Horizontal tangent lines Find equations for the horizontal 

tangent lines to the curve y = x3 - 3x - 2. Also ind equa-

tions for the lines that are perpendicular to these tangent lines 

at the points of tangency.

b. Smallest slope What is the smallest slope on the curve? At 

what point on the curve does the curve have this slope? Find 

an equation for the line that is perpendicular to the curve’s 

tangent line at this point.
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 53. a.  Find an equation for the line that is tangent to the curve 

y = x3 - x at the point (-1, 0).

b. Graph the curve and tangent line together. The tangent 

intersects the curve at another point. Use Zoom and Trace to 

estimate the point’s coordinates.

c. Conirm your estimates of the coordinates of the second 

intersection point by solving the equations for the curve and 

tangent line simultaneously.

 54. a.  Find an equation for the line that is tangent to the curve 

y = x3 - 6x2 + 5x at the origin.

b. Graph the curve and tangent line together. The tangent 

intersects the curve at another point. Use Zoom and Trace to 

estimate the point’s coordinates.

c. Conirm your estimates of the coordinates of the second 

intersection point by solving the equations for the curve and 

tangent line simultaneously.

Theory and Examples

For Exercises 55 and 56 evaluate each limit by irst converting each to 

a derivative at a particular x-value.

 55. lim
xS1

 
x50 - 1
x - 1

 56. lim
xS-1

 
x2>9 - 1

x + 1

 57. Find the value of a that makes the following function diferen-

tiable for all x-values.

g(x) = eax, if x 6 0

x2 - 3x, if x Ú 0

 58. Find the values of a and b that make the following function dif-

ferentiable for all x-values.

ƒ(x) = eax + b, x 7 -1

bx2 - 3, x … -1

 59. The general polynomial of degree n has the form

P(x) = an  xn + an - 1  xn - 1 + g + a2  x2 + a1  x + a0

  where an ≠ 0. Find P′(x).

 60. The body’s reaction to medicine The reaction of the body to a 

dose of medicine can sometimes be represented by an equation of 

the form

R = M2 aC
2

-
M

3
b ,

  where C is a positive constant and M is the amount of medicine 

absorbed in the blood. If the reaction is a change in blood pres-

sure, R is measured in millimeters of mercury. If the reaction is a 

change in temperature, R is measured in degrees, and so on.

   Find dR>dM. This derivative, as a function of M, is called the sen-

sitivity of the body to the medicine. In Section 4.5, we will see how to 

ind the amount of medicine to which the body is most sensitive.

 61. Suppose that the function y in the Derivative Product Rule has a 

constant value c. What does the Derivative Product Rule then say? 

What does this say about the Derivative Constant Multiple Rule?

 62. The Reciprocal Rule

a. The Reciprocal Rule says that at any point where the function 

y(x) is diferentiable and diferent from zero,

d

dx
 a1
yb = -  

1

y2
 
dy

dx
.

T

T

T

T

Show that the Reciprocal Rule is a special case of the Deriva-

tive Quotient Rule.

b. Show that the Reciprocal Rule and the Derivative Product 

Rule together imply the Derivative Quotient Rule.

 63. Generalizing the Product Rule The Derivative Product Rule 

gives the formula

d

dx
 (uy) = u 

dy

dx
+

du

dx
 y

  for the derivative of the product uy of two diferentiable functions 

of x.

a. What is the analogous formula for the derivative of the prod-

uct uyw of three diferentiable functions of x?

b. What is the formula for the derivative of the product u1  u2  u3  u4 

of four diferentiable functions of x?

c. What is the formula for the derivative of a product u1 u2  u3gun 

of a inite number n of diferentiable functions of x?

 64. Power Rule for negative integers Use the Derivative Quotient 

Rule to prove the Power Rule for negative integers, that is,

d

dx
 (x-m) = -mx-m - 1

  where m is a positive integer.

 65. Cylinder pressure If gas in a cylinder is maintained at a con-

stant temperature T, the pressure P is related to the volume V by a 

formula of the form

P =
nRT

V - nb
-

an2

V2
,

  in which a, b, n, and R are constants. Find dP>dV . (See accompa-

nying igure.)

 66. The best quantity to order One of the formulas for inventory 

management says that the average weekly cost of ordering, paying 

for, and holding merchandise is

A(q) =
km
q + cm +

hq

2
,

  where q is the quantity you order when things run low (shoes, 

TVs, brooms, or whatever the item might be); k is the cost of 

placing an order (the same, no matter how often you order); c is 

the cost of one item (a constant); m is the number of items sold 

each week (a constant); and h is the weekly holding cost per item  

(a constant that takes into account things such as space, utilities, 

insurance, and security). Find dA>dq and d2A>dq2.
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3.4 The Derivative as a Rate of Change

In this section we study applications in which derivatives model the rates at which things 

change. It is natural to think of a quantity changing with respect to time, but other vari-

ables can be treated in the same way. For example, an economist may want to study how 

the cost of producing steel varies with the number of tons produced, or an engineer may 

want to know how the power output of a generator varies with its temperature.

Instantaneous Rates of Change

If we interpret the difference quotient (ƒ(x + h) - ƒ(x))>h as the average rate of change 

in ƒ over the interval from x to x + h, we can interpret its limit as h S 0 as the instanta-

neous rate at which ƒ is changing at the point x. This gives an important interpretation of 

the derivative.

DEFINITION The instantaneous rate of change of ƒ with respect to x at x0 is 

the derivative

ƒ′(x0) = lim
hS0

 
ƒ(x0 + h) - ƒ(x0)

h
,

provided the limit exists.

Thus, instantaneous rates are limits of average rates.

It is conventional to use the word instantaneous even when x does not represent time. 

The word is, however, frequently omitted. When we say rate of change, we mean instanta-

neous rate of change.

EXAMPLE 1  The area A of a circle is related to its diameter by the equation

A =
p
4

 D2.

How fast does the area change with respect to the diameter when the diameter is 10 m?

Solution The rate of change of the area with respect to the diameter is

dA

dD
=

p
4

# 2D =
pD

2
.

When D = 10 m, the area is changing with respect to the diameter at the rate of 

(p>2)10 = 5p m2>m ≈ 15.71 m2>m. 

Motion Along a Line: Displacement, Velocity, Speed, 
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 

line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 

a function of time t:

s = ƒ(t).

The displacement of the object over the time interval from t to t + ∆t (Figure 3.13) is

∆s = ƒ(t + ∆t) - ƒ(t),

s

Δs

Position at time t … and at time t + Δt

s = f (t) s + Δs = f (t + Δt)

FIGURE 3.13 The positions of a body 

moving along a coordinate line at time t 

and shortly later at time t + ∆t. Here the 

coordinate line is horizontal.
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and the average velocity of the object over that time interval is

yay =
displacement

travel time
=

∆s

∆t
=

ƒ(t + ∆t) - ƒ(t)

∆t
.

To find the body’s velocity at the exact instant t, we take the limit of the average 

velocity over the interval from t to t + ∆t as ∆t shrinks to zero. This limit is the deriva-

tive of ƒ with respect to t.

DEFINITION Velocity (instantaneous velocity) is the derivative of position 

with respect to time. If a body’s position at time t is s = ƒ(t), then the body’s 

velocity at time t is

y(t) =
ds

dt
= lim

∆tS0
 
ƒ(t + ∆t) - ƒ(t)

∆t
.

Besides telling how fast an object is moving along the horizontal line in Figure 3.13, 

its velocity tells the direction of motion. When the object is moving forward (s increasing), 

the velocity is positive; when the object is moving backward (s decreasing), the velocity is 

negative. If the coordinate line is vertical, the object moves upward for positive velocity 

and downward for negative velocity. The blue curves in Figure 3.14 represent position 

along the line over time; they do not portray the path of motion, which lies along the verti-

cal s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30 

on the way over but it will not show -30 on the way back, even though our distance from 

home is decreasing. The speedometer always shows speed, which is the absolute value of 

velocity. Speed measures the rate of progress regardless of direction.

DEFINITION Speed is the absolute value of velocity.

Speed = �y(t) � = ` ds

dt
`

EXAMPLE 2  Figure 3.15 shows the graph of the velocity y = ƒ′(t) of a particle 

moving along a horizontal line (as opposed to showing a position function s = ƒ(t) such 

as in Figure 3.14). In the graph of the velocity function, it’s not the slope of the curve that 

tells us if the particle is moving forward or backward along the line (which is not shown in 

the figure), but rather the sign of the velocity. Looking at Figure 3.15, we see that the 

 particle moves forward for the first 3 sec (when the velocity is positive), moves backward 

for the next 2 sec (the velocity is negative), stands motionless for a full second, and then 

moves forward again. The particle is speeding up when its positive velocity increases dur-

ing the first second, moves at a steady speed during the next second, and then slows down 

as the velocity decreases to zero during the third second. It stops for an instant at t = 3 sec 

(when the velocity is zero) and reverses direction as the velocity starts to become negative. 

The particle is now moving backward and gaining in speed until t = 4 sec, at which time 

it achieves its greatest speed during its backward motion. Continuing its backward motion 

at time t = 4, the particle starts to slow down again until it finally stops at time t = 5 

(when the velocity is once again zero). The particle now remains motionless for one full 

second, and then moves forward again at t = 6 sec, speeding up during the final second of 

the forward motion indicated in the velocity graph. 

t

s

0

s increasing:
positive slope so
moving upward

s = f (t)

ds

dt
> 0

t

s

0

s decreasing:
negative slope so
moving downward

s = f (t)

ds

dt
< 0

(a)

(b)

FIGURE 3.14 For motion s = ƒ(t) 

along a straight line (the vertical axis), 

y = ds>dt is (a) positive when s increases 

and (b) negative when s decreases.
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0 1 2 3 4 5 6

 

7

MOVES FORWARD

(y > 0)

MOVES BACKWARD

(y < 0)

FORWARD

AGAIN

(y > 0)

Speeds

up

Speeds

up

Speeds

up

Slows

down

Slows

down

Steady

(y = const)

Velocity y = f ′(t)

Stands

still

(y = 0)
t (sec)

Greatest

speed

y

FIGURE 3.15 The velocity graph of a particle moving along a horizontal line,  

discussed in Example 2.

The rate at which a body’s velocity changes is the body’s acceleration. The accelera-

tion measures how quickly the body picks up or loses speed. In Chapter 13 we will study 

motion in the plane and in space, where acceleration of an object may also lead to a 

change in direction.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky, 

it is not that the accelerations involved are necessarily large but that the changes in accel-

eration are abrupt.

HISTORICAL BIOGRAPHY

Bernard Bolzano  

(1781–1848)

www.goo.gl/fDTR2a

DEFINITIONS Acceleration is the derivative of velocity with respect to time. 

If a body’s position at time t is s = ƒ(t), then the body’s acceleration at time t is

a(t) =
dy
dt

=
d2s

dt2
.

Jerk is the derivative of acceleration with respect to time:

j(t) =
da

dt
=

d3s

dt3
.

Near the surface of Earth all bodies fall with the same constant acceleration. Galileo’s 

experiments with free fall (see Section 2.1) lead to the equation

s =
1
2

 gt2,

where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation 

holds in a vacuum, where there is no air resistance, and closely models the fall of dense, 

heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the 

effects of air resistance are significant.

The value of g in the equation s = (1>2)gt2 depends on the units used to measure t and 

s. With t in seconds (the usual unit), the value of g determined by measurement at sea level is 

http://www.goo.gl/fDTR2a
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s

H
ei

g
h
t 

(f
t)

(a)

smax

s = 0

256 t = ?

y = 0

t
0

400

5 10

(b)

160

−160

s, y

s = 160t − 16t2

y = = 160 − 32t
ds

dt

FIGURE 3.17 (a) The rock in Example 4.  

(b) The graphs of s and y as functions of 

time; s is largest when y = ds>dt = 0. 

The graph of s is not the path of the rock: 

It is a plot of height versus time. The slope 

of the plot is the rock’s velocity, graphed 

here as a straight line.

approximately 32 ft>sec2 (feet per second squared) in English units, and g = 9.8 m>sec2 

(meters per second squared) in metric units. (These gravitational constants depend on the dis-

tance from Earth’s center of mass, and are slightly lower on top of Mt. Everest, for example.)

The jerk associated with the constant acceleration of gravity (g = 32 ft>sec2) is zero:

j =
d

dt
 (g) = 0.

An object does not exhibit jerkiness during free fall.

EXAMPLE 3  Figure 3.16 shows the free fall of a heavy ball bearing released from 

rest at time t = 0 sec.

(a) How many meters does the ball fall in the irst 3 sec?

(b) What is its velocity, speed, and acceleration when t = 3?

Solution

(a) The metric free-fall equation is s = 4.9t2. During the irst 3 sec, the ball falls

s(3) = 4.9(3)2 = 44.1 m.

(b) At any time t, velocity is the derivative of position:

y(t) = s′(t) =
d

dt
 (4.9t2) = 9.8t.

At t = 3, the velocity is

y(3) = 29.4 m>sec

 in the downward (increasing s) direction. The speed at t = 3 is

speed = 0 y(3) 0 = 29.4 m>sec.

The acceleration at any time t is

a(t) = y′(t) = s″(t) = 9.8 m>sec2.

At t = 3, the acceleration is 9.8 m>sec2. 

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch velocity 

of 160 ft > sec (about 109 mph) (Figure 3.17a). It reaches a height of s = 160t - 16t2 ft 

after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the 

way up? On the way down?

(c) What is the acceleration of the rock at any time t during its light (after the blast)?

(d) When does the rock hit the ground again?

Solution

(a) In the coordinate system we have chosen, s measures height from the ground up, so the 

velocity is positive on the way up and negative on the way down. The instant the rock 

is at its highest point is the one instant during the light when the velocity is 0. To ind 

the maximum height, all we need to do is to ind when y = 0 and evaluate s at this 

time.

At any time t during the rock’s motion, its velocity is

y =
ds

dt
=

d

dt
 (160t - 16t2) = 160 - 32t ft>sec.

0

5

10

15

20

25
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35

40

45t = 3

s (meters)t (seconds)

t = 0

t = 1

t = 2

FIGURE 3.16 A ball bearing falling 

from rest (Example 3).
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The velocity is zero when

160 - 32t = 0  or  t = 5 sec.

The rock’s height at t = 5 sec is

smax = s(5) = 160(5) - 16(5)2 = 800 - 400 = 400 ft.

See Figure 3.17b.

(b) To ind the rock’s velocity at 256 ft on the way up and again on the way down, we irst 

ind the two values of t for which

s(t) = 160t - 16t2 = 256.

To solve this equation, we write

 16t2 - 160t + 256 = 0

 16(t2 - 10t + 16) = 0

 (t - 2)(t - 8) = 0

 t = 2 sec, t = 8 sec.

The rock is 256 ft above the ground 2 sec after the explosion and again 8 sec after the 

explosion. The rock’s velocities at these times are

 y(2) = 160 - 32(2) = 160 - 64 = 96 ft>sec.

 y(8) = 160 - 32(8) = 160 - 256 = -96 ft>sec.

At both instants, the rock’s speed is 96 ft > sec. Since y(2) 7 0, the rock is moving 

upward (s is increasing) at t = 2 sec; it is moving downward (s is decreasing) at t = 8 

because y(8) 6 0.

(c) At any time during its light following the explosion, the rock’s acceleration is a constant

a =
dy
dt

=
d

dt
 (160 - 32t) = -32 ft>sec2.

The acceleration is always downward and is the efect of gravity on the rock. As the 

rock rises, it slows down; as it falls, it speeds up.

(d) The rock hits the ground at the positive time t for which s = 0. The equation 

160t - 16t2 = 0 factors to give 16t(10 - t) = 0, so it has solutions t = 0 and 

t = 10. At t = 0, the blast occurred and the rock was thrown upward. It returns to the 

ground 10 sec later. 

Derivatives in Economics

Economists have a specialized vocabulary for rates of change and derivatives. They call 

them marginals.

In a manufacturing operation, the cost of production c(x) is a function of x, the num-

ber of units produced. The marginal cost of production is the rate of change of cost with 

respect to level of production, so it is dc>dx.

Suppose that c(x) represents the dollars needed to produce x tons of steel in one week. 

It costs more to produce x + h tons per week, and the cost difference, divided by h, is the 

average cost of producing each additional ton:

c(x + h) - c(x)

h
=

average cost of each of the additional

h tons of steel produced.

The limit of this ratio as h S 0 is the marginal cost of producing more steel per week 

when the current weekly production is x tons (Figure 3.18):

dc

dx
= lim

hS0
 
c(x + h) - c(x)

h
= marginal cost of production.

x
0

Production (tons/week)

x

Cost y (dollars)

y = c (x)
Slope =

marginal cost

x + h

FIGURE 3.18 Weekly steel production: 

c(x) is the cost of producing x tons per 

week. The cost of producing an additional 

h tons is c(x + h) - c(x).
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Sometimes the marginal cost of production is loosely defined to be the extra cost of 

producing one additional unit:

∆c

∆x
=

c(x + 1) - c(x)

1
,

which is approximated by the value of dc>dx at x. This approximation is acceptable if the 

slope of the graph of c does not change quickly near x. Then the difference quotient will  

be close to its limit dc>dx, which is the rise in the tangent line if ∆x = 1 (Figure 3.19). 

The approximation often works well for large values of x.

Economists often represent a total cost function by a cubic polynomial

c(x) = ax3 + bx2 + gx + d

where d represents fixed costs, such as rent, heat, equipment capitalization, and manage-

ment costs. The other terms represent variable costs, such as the costs of raw materials, 

taxes, and labor. Fixed costs are independent of the number of units produced, whereas 

variable costs depend on the quantity produced. A cubic polynomial is usually adequate to 

capture the cost behavior on a realistic quantity interval.

EXAMPLE 5  Suppose that it costs

c(x) = x3 - 6x2 + 15x

dollars to produce x radiators when 8 to 30 radiators are produced and that

r(x) = x3 - 3x2 + 12x

gives the dollar revenue from selling x radiators. Your shop currently produces 10 radiators 

a day. About how much extra will it cost to produce one more radiator a day, and what is 

your estimated increase in revenue and increase in profit for selling 11 radiators a day?

Solution The cost of producing one more radiator a day when 10 are produced is about 

c′(10):

 c′(x) =
d

dx
 1x3 - 6x2 + 15x2 = 3x2 - 12x + 15

 c′(10) = 3(100) - 12(10) + 15 = 195.

The additional cost will be about $195. The marginal revenue is

r′(x) =
d

dx
 (x3 - 3x2 + 12x) = 3x2 - 6x + 12.

The marginal revenue function estimates the increase in revenue that will result from sell-

ing one additional unit. If you currently sell 10 radiators a day, you can expect your reve-

nue to increase by about

r′(10) = 3(100) - 6(10) + 12 = +252

if you increase sales to 11 radiators a day. The estimated increase in profit is obtained by 

subtracting the increased cost of $195 from the increased revenue, leading to an estimated 

profit increase of $252 - $195 = $57. 

EXAMPLE 6  Marginal rates frequently arise in discussions of tax rates. If your mar-

ginal income tax rate is 28% and your income increases by $1000, you can expect to pay 

an extra $280 in taxes. This does not mean that you pay 28% of your entire income in 

taxes. It just means that at your current income level I, the rate of increase of taxes T with 

respect to income is dT>dI = 0.28. You will pay $0.28 in taxes out of every extra dollar 

you earn. As your income increases, you may land in a higher tax bracket and your mar-

ginal rate will increase. 

x

y

0 x

dc
dx

x + 1

Δx = 1

Δc

y = c(x)

FIGURE 3.19 The marginal cost dc>dx 

is approximately the extra cost ∆c of 

producing ∆x = 1 more unit.
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Sensitivity to Change

When a small change in x produces a large change in the value of a function ƒ(x), we say 

that the function is sensitive to changes in x. The derivative ƒ′(x) is a measure of this sen-

sitivity. The function is more sensitive when 0 ƒ′(x) 0  is larger (when the slope of the graph 

of ƒ is steeper).

EXAMPLE 7  Genetic Data and Sensitivity to Change  

The Austrian monk Gregor Johann Mendel (1822–1884), working with garden peas and 

other plants, provided the first scientific explanation of hybridization.

His careful records showed that if p (a number between 0 and 1) is the frequency of 

the gene for smooth skin in peas (dominant) and (1 - p) is the frequency of the gene for 

wrinkled skin in peas, then the proportion of smooth-skinned peas in the next generation 

will be

y = 2p(1 - p) + p2 = 2p - p2.

The graph of y versus p in Figure 3.20a suggests that the value of y is more sensitive 

to a change in p when p is small than when p is large. Indeed, this fact is borne out by the 

derivative graph in Figure 3.20b, which shows that dy>dp is close to 2 when p is near 0 and 

close to 0 when p is near 1.

The implication for genetics is that introducing a few more smooth skin genes into a 

population where the frequency of wrinkled skin peas is large will have a more dramatic 

efect on later generations than will a similar increase when the population has a large pro-

portion of smooth skin peas. 

p

y

0 1

1

(a)

dy�dp

p
0 1

2

(b)

 y = 2p − p2

= 2 − 2p
dy

dp

FIGURE 3.20 (a) The graph of 

y = 2p - p2, describing the proportion of 

smooth-skinned peas in the next genera-

tion. (b) The graph of dy>dp (Example 7).

Motion Along a Coordinate Line

Exercises 1–6 give the positions s = ƒ(t) of a body moving on a coor-

dinate line, with s in meters and t in seconds.

a. Find the body’s displacement and average velocity for the 

given time interval.

b. Find the body’s speed and acceleration at the endpoints of the 

interval.

c. When, if ever, during the interval does the body change 

 direction?

 1. s = t2 - 3t + 2, 0 … t … 2

 2. s = 6t - t2, 0 … t … 6

 3. s = - t3 + 3t2 - 3t, 0 … t … 3

 4. s = (t4>4) - t3 + t2, 0 … t … 3

 5. s =
25

t2
-

5
t
, 1 … t … 5

 6. s =
25

t + 5
, -4 … t … 0

 7. Particle motion At time t, the position of a body moving along 

the s-axis is s = t3 - 6t2 + 9t m.

a. Find the body’s acceleration each time the velocity is zero.

b. Find the body’s speed each time the acceleration is zero.

c. Find the total distance traveled by the body from t = 0 to 

t = 2.

 8. Particle motion At time t Ú 0, the velocity of a body moving 

along the horizontal s-axis is y = t2 - 4t + 3.

a. Find the body’s acceleration each time the velocity is zero.

b. When is the body moving forward? Backward?

c. When is the body’s velocity increasing? Decreasing?

Free-Fall Applications

 9. Free fall on Mars and Jupiter The equations for free fall at 

the surfaces of Mars and Jupiter (s in meters, t in seconds) are 

s = 1.86t2 on Mars and s = 11.44t2 on Jupiter. How long does 

it take a rock falling from rest to reach a velocity of 27.8 m > sec 

(about 100 km >h) on each planet?

 10. Lunar projectile motion A rock thrown vertically upward  

from the surface of the moon at a velocity of 24 m > sec (about  

86 km >h) reaches a height of s = 24t - 0.8t2 m in t sec.

a. Find the rock’s velocity and acceleration at time t. (The 

acceleration in this case is the acceleration of gravity on the 

moon.)

b. How long does it take the rock to reach its highest point?

c. How high does the rock go?

EXERCISES 3.4
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0
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y = f (t)

t (sec)

a. When does the body reverse direction?

b. When (approximately) is the body moving at a constant 

speed?

c. Graph the body’s speed for 0 … t … 10.

d. Graph the acceleration, where deined.

 16. A particle P moves on the number line shown in part (a) of the 

 accompanying igure. Part (b) shows the position of P as a function  

of time t.

0

−2

−4

1 2

2

3 4 5 6

(b)

0

(a)

P
s (cm)

s (cm)

s = f (t)

t (sec)

(6, −4)

a. When is P moving to the left? Moving to the right? Standing 

still?

b. Graph the particle’s velocity and speed (where deined).

 17. Launching a rocket When a model rocket is launched, the pro-

pellant burns for a few seconds, accelerating the rocket upward. 

After burnout, the rocket coasts upward for a while and then  begins 

to fall. A small explosive charge pops out a parachute shortly after 

the rocket starts down. The parachute slows the rocket to keep it 

from breaking when it lands.

   The igure here shows velocity data from the light of the model  

rocket. Use the data to answer the following.

a. How fast was the rocket climbing when the engine stopped?

b. For how many seconds did the engine burn?
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d. How long does it take the rock to reach half its maximum 

height?

e. How long is the rock aloft?

 11. Finding g on a small airless planet Explorers on a small airless 

planet used a spring gun to launch a ball bearing vertically  upward 

from the surface at a launch velocity of 15 m > sec. Because the 

acceleration of gravity at the planet’s surface was gs m>sec2, 

the explorers expected the ball bearing to reach a height of 

s = 15t - (1>2)gs t2 m t sec later. The ball bearing reached its 

maximum height 20 sec after being launched. What was the value 

of gs?

 12. Speeding bullet A 45-caliber bullet shot straight up from the 

surface of the moon would reach a height of s = 832t - 2.6t2 ft  

after t sec. On Earth, in the absence of air, its height would be 

s = 832t - 16t2 ft after t sec. How long will the bullet be aloft in 

each case? How high will the bullet go?

 13. Free fall from the Tower of Pisa Had Galileo dropped a can-

nonball from the Tower of Pisa, 179 ft above the ground, the 

ball’s height above the ground t sec into the fall would have been 

s = 179 - 16t2.

a. What would have been the ball’s velocity, speed, and accel-

eration at time t?

b. About how long would it have taken the ball to hit the 

ground?

c. What would have been the ball’s velocity at the moment of 

impact?

 14. Galileo’s free-fall formula Galileo developed a formula for a 

body’s velocity during free fall by rolling balls from rest down 

 increasingly steep inclined planks and looking for a limiting for-

mula that would predict a ball’s behavior when the plank was 

vertical and the ball fell freely; see part (a) of the accompanying 

igure. He found that, for any given angle of the plank, the ball’s 

velocity t sec into motion was a constant multiple of t. That is, the 

velocity was given by a formula of the form y = kt. The value of 

the constant k depended on the inclination of the plank.

   In modern notation—part (b) of the igure—with distance in 

meters and time in seconds, what Galileo determined by experi-

ment was that, for any given angle u, the ball’s velocity t sec into 

the roll was y = 9.8(sin u)t m>sec.

(a)

?

(b)

Free-fall

position

u

a. What is the equation for the ball’s velocity during free fall?

b. Building on your work in part (a), what constant accelera-

tion does a freely falling body experience near the surface of 

Earth?

Understanding Motion from Graphs

 15. The accompanying igure shows the velocity y = ds>dt = ƒ(t) 

(m > sec) of a body moving along a coordinate line.
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a. How long did it take the balls to fall the irst 160 cm? What 

was their average velocity for the period?

b. How fast were the balls falling when they reached the 160-cm 

mark? What was their acceleration then?

c. About how fast was the light lashing (lashes per second)?

 20. A traveling truck The accompanying graph shows the position 

s of a truck traveling on a highway. The truck starts at t = 0 and 

returns 15 h later at t = 15.

a. Use the technique described in Section 3.2, Example 3, to 

graph the truck’s velocity y = ds>dt for 0 … t … 15. Then 

repeat the process, with the velocity curve, to graph the 

truck’s acceleration dy>dt.

b. Suppose that s = 15t2 - t3. Graph ds>dt and d2s>dt2 and 

compare your graphs with those in part (a).
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 21. The graphs in the accompanying igure show the position s, 

 velocity y = ds>dt, and acceleration a = d2s>dt2 of a body mov-

ing along a coordinate line as functions of time t. Which graph is 

which? Give reasons for your answers.

t

y

0

A
B

C

c. When did the rocket reach its highest point? What was its 

velocity then?

d. When did the parachute pop out? How fast was the rocket 

falling then?

e. How long did the rocket fall before the parachute opened?

f. When was the rocket’s acceleration greatest?

g. When was the acceleration constant? What was its value then 

(to the nearest integer)?

 18. The accompanying igure shows the velocity y = ƒ(t) of a par-

ticle moving on a horizontal coordinate line.

t (sec)

y

0 1 2 3 4 5 6 7 8 9

y = f(t)

a. When does the particle move forward? Move backward? 

Speed up? Slow down?

b. When is the particle’s acceleration positive? Negative? Zero?

c. When does the particle move at its greatest speed?

d. When does the particle stand still for more than an instant?

 19. Two falling balls The multilash photograph in the accompany-

ing igure shows two balls falling from rest. The vertical rulers are 

marked in centimeters. Use the equation s = 490t2 (the free-fall 

equation for s in centimeters and t in seconds) to answer the fol-

lowing questions. (Source: PSSC Physics, 2nd ed., Reprinted by 

permission of Education Development Center, Inc.)
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 22. The graphs in the accompanying igure show the position s, the 

velocity y = ds>dt, and the acceleration a = d2s>dt2 of a body 

moving along a coordinate line as functions of time t. Which graph 

is which? Give reasons for your answers.

t

y

0

A

B

C

Economics

 23. Marginal cost Suppose that the dollar cost of producing x 

washing machines is c(x) = 2000 + 100x - 0.1x2.

a. Find the average cost per machine of producing the irst 100 

washing machines.

b. Find the marginal cost when 100 washing machines are 

 produced.

c. Show that the marginal cost when 100 washing machines 

are produced is approximately the cost of producing one 

more washing machine after the irst 100 have been made, by 

calculating the latter cost directly.

 24. Marginal revenue Suppose that the revenue from selling x 

washing machines is

r(x) = 20,000a1 -
1
xb

  dollars.

a. Find the marginal revenue when 100 machines are produced.

b. Use the function r′(x) to estimate the increase in revenue that 

will result from increasing production from 100 machines a 

week to 101 machines a week.

c. Find the limit of r′(x) as x S q. How would you interpret 

this number?

Additional Applications

 25. Bacterium population When a bactericide was added to a 

 nutrient broth in which bacteria were growing, the bacterium pop-

ulation continued to grow for a while, but then stopped growing 

and began to decline. The size of the population at time t (hours) 

was b = 106 + 104t - 103t2. Find the growth rates at

a. t = 0 hours.

b. t = 5 hours.

c. t = 10 hours.

 26. Body surface area A typical male’s body surface area S in 

square meters is often modeled by the formula S = 1
60 2wh , 

where h is the height in cm, and w the weight in kg, of the person. 

Find the rate of change of body surface area with respect to weight 

for males of constant height h = 180 cm (roughly 5′9″). Does S 

increase more rapidly with respect to weight at lower or higher 

body weights? Explain.

 27. Draining a tank It takes 12 hours to drain a storage tank by 

opening the valve at the bottom. The depth y of luid in the tank t 

hours after the valve is opened is given by the formula

y = 6a1 -
t

12
b2

 m.

a. Find the rate dy>dt (m >h) at which the tank is draining at 

time t.

b. When is the luid level in the tank falling fastest? Slowest? 

What are the values of dy>dt at these times?

c. Graph y and dy>dt together and discuss the behavior of y in 

relation to the signs and values of dy>dt.

 28. Draining a tank The number of gallons of water in a tank t min-

utes after the tank has started to drain is Q(t) =  200(30 - t)2. 

How fast is the water running out at the end of 10 min? What is the 

average rate at which the water lows out during the irst 10 min?

 29. Vehicular stopping distance Based on data from the U.S. 

 Bureau of Public Roads, a model for the total stopping distance of 

a moving car in terms of its speed is

s = 1.1y + 0.054y2,

  where s is measured in ft and y in mph. The linear term 1.1y 

models the distance the car travels during the time the driver per-

ceives a need to stop until the brakes are applied, and the quadratic 

term 0.054y2 models the additional braking distance once they are 

 applied. Find ds>dy at y = 35 and y = 70 mph, and interpret the 

meaning of the derivative.

 30. Inlating a balloon The volume V = (4>3)pr3 of a spherical 

balloon changes with the radius.

a. At what rate (ft3>ft) does the volume change with respect to 

the radius when r = 2 ft?

b. By approximately how much does the volume increase when 

the radius changes from 2 to 2.2 ft?

 31. Airplane takeof Suppose that the distance an aircraft travels 

along a runway before takeof is given by D = (10>9)t2, where D is 

measured in meters from the starting point and t is measured in sec-

onds from the time the brakes are released. The aircraft will become 

airborne when its speed reaches 200 km>h. How long will it take to 

become airborne, and what distance will it travel in that time?

 32. Volcanic lava fountains Although the November 1959 Kilauea 

Iki eruption on the island of Hawaii began with a line of foun-

tains along the wall of the crater, activity was later conined to 

a single vent in the crater’s loor, which at one point shot lava  

1900 ft straight into the air (a Hawaiian record). What was the 

lava’s exit velocity in feet per second? In miles per hour? (Hint: 

If y0 is the exit velocity of a particle of lava, its height t sec later 

will be s = y0  t - 16t2 ft. Begin by inding the time at which 

ds>dt = 0. Neglect air resistance.)

Analyzing Motion Using Graphs

Exercises 33–36 give the position function s = ƒ(t) of an object mov-

ing along the s-axis as a function of time t. Graph ƒ together with the 

velocity function y(t) = ds>dt = ƒ′(t) and the acceleration function 

a(t) = d2s>dt2 = ƒ″(t). Comment on the object’s behavior in relation 

T

T
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3.5 Derivatives of Trigonometric Functions

Many phenomena of nature are approximately periodic (electromagnetic fields, heart 

rhythms, tides, weather). The derivatives of sines and cosines play a key role in describing 

periodic changes. This section shows how to differentiate the six basic trigonometric func-

tions.

Derivative of the Sine Function

To calculate the derivative of ƒ(x) = sin x, for x measured in radians, we combine the lim-

its in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine 

function:

sin (x + h) = sin x cos h + cos x sin h.

If ƒ(x) = sin x, then

 ƒ′(x) = lim
hS0

 
ƒ(x + h) - ƒ(x)

h
= lim

hS0
 
sin (x + h) - sin x

h
  Derivative definition

 = lim
hS0

 
(sin x cos h + cos x sin h) - sin x

h
  Identity for sin (x + h)

 = lim
hS0

 
sin x  (cos h - 1) + cos x sin h

h

 = lim
hS0

 asin x # cos h - 1
h

b + lim
hS0

 acos x # sin h
h
b

 = sin x # lim
hS0

 
cos h - 1

h
+ cos x # lim

hS0
 
sin h

h
  

 (+++)+++* (11+)11+*
 limit 0 limit 1

 = sin x # 0 + cos x # 1 = cos x.   
Example 5a and  

Theorem 7, Section 2.4

The derivative of the sine function is the cosine function:

d

dx
 (sin x) = cos x.

to the signs and values of y and a. Include in your commentary such 

topics as the following:

a. When is the object momentarily at rest?

b. When does it move to the left (down) or to the right (up)?

c. When does it change direction?

d. When does it speed up and slow down?

e. When is it moving fastest (highest speed)? Slowest?

f. When is it farthest from the axis origin?

 33. s = 200t - 16t2, 0 … t … 12.5 (a heavy object ired straight 

up from Earth’s surface at 200 ft > sec)

 34. s = t2 - 3t + 2, 0 … t … 5

 35. s = t3 - 6t2 + 7t, 0 … t … 4

 36. s = 4 - 7t + 6t2 - t3, 0 … t … 4

EXAMPLE 1  We find derivatives of the sine function involving differences,  products, 

and quotients.

(a) y = x2 - sin x:  
dy

dx
= 2x -

d

dx
 (sin x) Diference Rule 

    = 2x - cos x
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(b) y = x2 sin x:  
dy

dx
= x2 

d

dx
 (sin x) + 2x sin x Product Rule

    = x2 cos x + 2x sin x.

(c) y =
sin x

x  :  
dy

dx
=

x 
d

dx
 (sin x) - sin x # 1

x2
 Quotient Rule

    =
x cos x - sin x

x2
 

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine function,

cos (x + h) = cos x cos h - sin x sin h,

we can compute the limit of the difference quotient:

 
d

dx
 (cos x) = lim

hS0
 
cos (x + h) - cos x

h
  Derivative definition

 = lim
hS0

 
(cos x cos h - sin x sin h) - cos x

h
  

Cosine angle 
sum identity  

 = lim
hS0

 
cos x (cos h - 1) - sin x sin h

h

 = lim
hS0

 acos x # cos h - 1
h

b - lim
hS0

 asin x # sin h
h
b

 = cos x # lim
hS0

 
cos h - 1

h
- sin x # lim

hS0
 
sin h

h

 = cos x # 0 - sin x # 1   
Example 5a 

and Theorem 7, 

Section 2.4

 

 = -sin x.

The derivative of the cosine function is the negative of the sine function:

d

dx
 (cos x) = -sin x.

Figure 3.21 shows a way to visualize this result by graphing the slopes of the tangent lines 

to the curve y = cos x.

EXAMPLE 2  We find derivatives of the cosine function in combinations with other 

functions.

(a) y = 5x + cos x:

 
dy

dx
=

d

dx
 (5x) +

d

dx
 (cos x)  Sum Rule

 = 5 - sin x

(b) y = sin x cos x:

 
dy

dx
= sin x  

d

dx
 (cos x) + cos x  

d

dx
 (sin x) Product Rule

 = sin x  (-sin x) + cos x  (cos x)

 = cos2 x - sin2 x

1

x

y

0

1

x

y′

0
−1

−1

y = cos x

y′ = −sin x

−p p

−p p

FIGURE 3.21 The curve y′ = -sin x as 

the graph of the slopes of the tangents to 

the curve y = cos x.
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Simple Harmonic Motion

Simple harmonic motion models the motion of an object or weight bobbing freely up and 

down on the end of a spring, with no resistance. The motion is periodic and repeats indefi-

nitely, so we represent it using trigonometric functions. The next example models motion 

with no opposing forces (such as friction).

EXAMPLE 3  A weight hanging from a spring (Figure 3.22) is stretched down 5 units 

beyond its rest position and released at time t = 0 to bob up and down. Its position at any 

later time t is

s = 5 cos t.

What are its velocity and acceleration at time t?

Solution We have

Position: s = 5 cos t

Velocity: y =
ds

dt
=

d

dt
 (5 cos t) = -5 sin t

Acceleration: a =
dy
dt

=
d

dt
 (-5 sin t) = -5 cos t.

Notice how much we can learn from these equations:

1.  As time passes, the weight moves down and up between s = -5 and s = 5 on the 

 s-axis. The amplitude of the motion is 5. The period of the motion is 2p, the period of 

the cosine function.

2.  The velocity y = -5 sin t attains its greatest magnitude, 5, when cos t = 0, as the 

graphs show in Figure 3.23. Hence, the speed of the weight, 0 y 0 = 5 0 sin t 0 , is great-

est when cos t = 0, that is, when s = 0 (the rest position). The speed of the weight 

is zero when sin t = 0. This occurs when s = 5 cos t = {5, at the endpoints of the 

interval of motion. At these points the weight reverses direction.

3.  The weight is acted on by the spring and by gravity. When the weight is below the rest 

position, the combined forces pull it up, and when it is above the rest position, they pull 

it down. The weight’s acceleration is always proportional to the negative of its displace-

ment. This property of springs is called Hooke’s Law, and is studied further in Section 6.5.

4.  The acceleration, a = -5 cos t, is zero only at the rest position, where cos t = 0 and 

the force of gravity and the force from the spring balance each other. When the weight 

is anywhere else, the two forces are unequal and acceleration is nonzero. The ac-

celeration is greatest in magnitude at the points farthest from the rest position, where 

cos t = {1. 

(c) y =
cos x

1 - sin x
 :

 
dy

dx
=

(1 - sin x) 
d

dx
 (cos x) - cos x 

d

dx
 (1 - sin x)

(1 - sin x)2
  Quotient Rule

 =
(1 - sin x)(-sin x) - cos x (0 - cos x)

(1 - sin x)2

 =
1 - sin x

(1 - sin x)2
  sin2 x + cos2 x = 1

 =
1

1 - sin x
 

s

0

−5

5

Rest

position

Position at

t = 0

FIGURE 3.22 A weight hanging from 

a vertical spring and then displaced oscil-

lates above and below its rest position 

(Example 3).

t
0

s, y

y = −5 sin t s = 5 cos t

p p
2

3p 2p
2

5p
2

5

−5

FIGURE 3.23 The graphs of the position 

and velocity of the weight in Example 3.
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The derivatives of the other trigonometric functions:

 
d

dx
 (tan x) = sec2 x    

d

dx
 (cot x) = -csc2 x

 
d

dx
 (sec x) = sec x tan x   

d

dx
 (csc x) = -csc x cot x

To show a typical calculation, we find the derivative of the tangent function. The other 

derivations are left to Exercise 62.

EXAMPLE 4  The jerk associated with the simple harmonic motion in Example 3 is

j =
da

dt
=

d

dt
 (-5 cos t) = 5 sin t.

It has its greatest magnitude when sin t = {1, not at the extremes of the displacement but 

at the rest position, where the acceleration changes direction and sign. 

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

tan x =
sin x
cos x ,  cot x =

cos x
sin x

,  sec x =
1

cos x ,  and  csc x =
1

sin x

are differentiable at every value of x at which they are defined. Their derivatives, calcu-

lated from the Quotient Rule, are given by the following formulas. Notice the negative 

signs in the derivative formulas for the cofunctions.

EXAMPLE 5  Find d(tan x)>dx.

Solution We use the Derivative Quotient Rule to calculate the derivative:

 
d

dx
 (tan x) =

d

dx
 a sin x

cos xb =

cos x  
d

dx
 (sin x) - sin x  

d

dx
 (cos x)

cos2 x
  Quotient Rule

 =
cos x cos x - sin x  (-sin x)

cos2 x

 =
cos2 x + sin2 x

cos2 x

 =
1

cos2 x
= sec2 x.  

EXAMPLE 6  Find y″ if y = sec x.

Solution Finding the second derivative involves a combination of trigonometric derivatives.

 y = sec x

 y′ = sec x tan x      Derivative rule for secant function

 y″ =
d

dx
 (sec x tan x)

 = sec x  
d

dx
 (tan x) + tan x  

d

dx
 (sec x)    Derivative Product Rule

 = sec x  (sec2 x) + tan x  (sec x tan x)  Derivative rules

 = sec3 x + sec x tan2 x  



138 Chapter 3 Derivatives

The diferentiability of the trigonometric functions throughout their domains implies 

their continuity at every point in their domains (Theorem 1, Section 3.2). So we can calcu-

late limits of algebraic combinations and compositions of trigonometric functions by direct 

substitution.

Derivatives

In Exercises 1–18, find dy>dx.

 1. y = -10x + 3 cos x 2. y =
3
x + 5 sin x

 3. y = x2 cos x 4. y = 2x sec x + 3

 5. y = csc x - 41x + 7 6. y = x2 cot x -
1

x2

 7. ƒ(x) = sin x tan x 8. g(x) =
cos x

sin2 x

 9. y = x sec x +
1
x  10. y = (sin x + cos x) sec x

 11. y =
cot x

1 + cot x
 12. y =

cos x
1 + sin x

 13. y =
4

cos x +
1

tan x
 14. y =

cos x
x +

x
cos x

 15. y = (sec x + tan x) (sec x - tan x)

16. y = x2 cos x - 2x sin x - 2 cos x

 17. ƒ(x) = x3 sin x cos x 18. g(x) = (2 - x) tan2 x

EXERCISES 3.5

In Exercises 19–22, find ds>dt.

 19. s = tan t - t 20. s = t2 - sec t + 1

 21. s =
1 + csc t
1 - csc t

 22. s =
sin t

1 - cos t

In Exercises 23–26, find dr>du.

 23. r = 4 - u2 sin u 24. r = u sin u + cos u

 25. r = sec u csc u 26. r = (1 + sec u) sin u

In Exercises 27–32, find dp>dq.

 27. p = 5 +
1

cot q
 28. p = (1 + csc q) cos q

 29. p =
sin q + cos q

cos q  30. p =
tan q

1 + tan q

 31. p =
q sin q

q2 - 1
 32. p =

3q + tan q
q sec q

Tangent Lines

In Exercises 35–38, graph the curves over the given intervals, together 

with their tangent lines at the given values of x. Label each curve and 

tangent line with its equation.

 35.  y = sin x, -3p>2 … x … 2p

   x = -p, 0, 3p>2
 36.  y = tan x, -p>2 6 x 6 p>2
   x = -p>3, 0, p>3
 37.  y = sec x, -p>2 6 x 6 p>2
   x = -p>3, p>4
 38.  y = 1 + cos x, -3p>2 … x … 2p

   x = -p>3, 3p>2
Do the graphs of the functions in Exercises 39–44 have any horizontal 

tangent lines in the interval 0 … x … 2p? If so, where? If not, why 

not? Visualize your findings by graphing the functions with a grapher.

 39. y = x + sin x 40. y = 2x + sin x

 41. y = x - cot x 42. y = x + 2 cos x

 43. y =
sec x

3 + sec x
 44. y =

cos x
3 - 4 sin x

 45. Find all points on the curve y = tan x, -p>2 6 x 6 p>2, where 

the tangent line is parallel to the line y = 2x. Sketch the curve and 

tangent(s) together, labeling each with its equation.

 46. Find all points on the curve y = cot x, 0 6 x 6 p, where the 

tangent line is parallel to the line y = -x. Sketch the curve and 

tangent(s) together, labeling each with its equation.

T

 33. Find y″ if

a. y = csc x. b. y = sec x.

 34. Find y(4) = d4 y>dx4 if

a. y = -2 sin x. b. y = 9 cos x.

EXAMPLE 7  We can use direct substitution in computing limits involving trigono-

metric functions. We must be careful to avoid division by zero, which is algebraically 

undefined.

 lim
xS0

 
22 + sec x

cos (p - tan x)
=
22 + sec 0

cos (p - tan 0)
=
22 + 1

cos (p - 0)
=
23
-1

= -23 
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 62. Derive the formula for the derivative with respect to x of

a. sec x.  b. csc x.  c. cot x.

 63. A weight is attached to a spring and reaches its equilibrium posi-

tion (x = 0). It is then set in motion resulting in a displacement of

x = 10 cos t,

  where x is measured in centimeters and t is measured in seconds. 

See the accompanying igure.

x

0

−10

10

Equilibrium

position

at x = 0

a. Find the spring’s displacement when t = 0, t = p>3, and 

t = 3p>4.

b. Find the spring’s velocity when t = 0, t = p>3, and 

t = 3p>4.

 64. Assume that a particle’s position on the x-axis is given by

x = 3 cos t + 4 sin t,

  where x is measured in feet and t is measured in seconds.

a. Find the particle’s position when t = 0, t = p>2, and t = p.

b. Find the particle’s velocity when t = 0, t = p>2, and t = p.

 65. Graph y = cos x for -p … x … 2p. On the same screen, graph

y =
sin (x + h) - sin x

h

  for h = 1, 0.5, 0.3, and 0.1. Then, in a new window, try 

h = -1, -0.5, and -0.3. What happens as h S 0+? As h S 0-? 

What phenomenon is being illustrated here?

 66. Graph y = -sin x for -p … x … 2p. On the same screen, graph

y =
cos (x + h) - cos x

h

  for h = 1, 0.5, 0.3, and 0.1. Then, in a new window, try 

h = -1, -0.5, and -0.3. What happens as h S 0+? As h S 0-? 

What phenomenon is being illustrated here?

 67. Centered diference quotients The centered diference quo-

tient

ƒ(x + h) - ƒ(x - h)

2h

  is used to approximate ƒ′(x) in numerical work because (1) its 

limit as h S 0 equals ƒ′(x) when ƒ′(x) exists, and (2) it usually 

gives a better approximation of ƒ′(x) for a given value of h than 

the diference quotient

ƒ(x + h) - ƒ(x)

h
.

T

T

T

Trigonometric Limits

Find the limits in Exercises 49–56.

 49. lim
xS2

 sin a1x -
1
2
b  50. lim

xS  -p>621 + cos (p csc x)

 51.  lim
uSp>6 sin u - 1

2

u - p
6

 52.  lim
uSp>4 tan u - 1

u - p
4

 53. lim
xS0

  sec c cos x + p tan a p

4 sec x
b - 1 d

 54. lim
xS0

  sin a p + tan x
tan x - 2 sec x

b
 55. lim

tS0
  tan a1 -

sin t
t
b  56. lim

uS0
  cos a pu

sin u
b

In Exercises 47 and 48, find an equation for (a) the tangent to the 

curve at P and (b) the horizontal tangent to the curve at Q.

 47.   48. 

x

y

0

1

1 2

2

Q

y = 4 + cot x − 2csc x

p
2

P     , 2

p
2

a     b
 

x

y

0 1 2

4

3

Q

p
4

P     , 4

p
4

y = 1 + "2 csc x + cot x

a     b

Theory and Examples

The equations in Exercises 57 and 58 give the position s = ƒ(t) of a 

body moving on a coordinate line (s in meters, t in seconds). Find the 

body’s velocity, speed, acceleration, and jerk at time t = p>4 sec.

 57. s = 2 - 2 sin t 58. s = sin t + cos t

 59. Is there a value of c that will make

ƒ(x) = • sin2 3x

x2
, x ≠ 0

c, x = 0

  continuous at x = 0? Give reasons for your answer.

 60. Is there a value of b that will make

g(x) = e x + b, x 6 0

cos x, x Ú 0

  continuous at x = 0? Diferentiable at x = 0? Give reasons for 

your answers.

 61. By computing the irst few derivatives and looking for a pattern, 

ind the following derivatives.

a. 
d 999

dx999
 (cos x) b. 

d 110

dx110
 (sin x - 3 cos x)

c. 
d 73

dx73
 (x sin x)
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 69. Slopes on the graph of the tangent function Graph y = tan x 

and its derivative together on (-p>2, p>2). Does the graph of the 

tangent function appear to have a smallest slope? A largest slope? 

Is the slope ever negative? Give reasons for your answers.

 70. Slopes on the graph of the cotangent function Graph 

y = cot x and its derivative together for 0 6 x 6 p. Does the 

graph of the cotangent function appear to have a smallest slope? 

A largest slope? Is the slope ever positive? Give reasons for your 

answers.

 71. Exploring (sin kx) ,x  Graph y = (sin x)>x,  y = (sin 2x)>x, 

  and y = (sin 4x)>x together over the interval -2 … x … 2. 

Where does each graph appear to cross the y-axis? Do the graphs 

really intersect the axis? What would you expect the graphs of 

y = (sin 5x)>x and y = (sin (-3x))>x to do as x S 0? Why? 

What about the graph of y = (sin kx)>x for other values of k? 

Give reasons for your answers.

 72. Radians versus degrees: degree mode derivatives What hap-

pens to the derivatives of sin x and cos x if x is measured in degrees 

instead of radians? To ind out, take the following steps.

a. With your graphing calculator or computer grapher in degree 

mode, graph

ƒ(h) =
sin h

h

and estimate limhS0 ƒ(h). Compare your estimate with 

p>180. Is there any reason to believe the limit should be 

p>180?

b. With your grapher still in degree mode, estimate

lim
hS0

 
cos h - 1

h
.

c. Now go back to the derivation of the formula for the deriva-

tive of sin x in the text and carry out the steps of the deriva-

tion using degree-mode limits. What formula do you obtain 

for the derivative?

d. Work through the derivation of the formula for the deriva-

tive of cos x using degree-mode limits. What formula do you 

obtain for the derivative?

e. The disadvantages of the degree-mode formulas become ap-

parent as you start taking derivatives of higher order. Try it. 

What are the second and third degree-mode derivatives of sin 

x and cos x?

T

T

T

T

  See the accompanying igure.

x

y

0 x

A

hh

C
B

x − h x + h

y = f (x)

Slope = f ′(x)

Slope =

Slope =

h

f (x + h) − f (x)

f (x + h) − f (x − h)

2h

a. To see how rapidly the centered diference quotient for 

ƒ(x) = sin x converges to ƒ′(x) = cos x, graph y = cos x 

together with

y =
sin (x + h) - sin (x - h)

2h

over the interval 3-p, 2p4  for h = 1, 0.5, and 0.3. Compare 

the results with those obtained in Exercise 65 for the same 

values of h.

b. To see how rapidly the centered diference quotient for 

ƒ(x) = cos x converges to ƒ′(x) = -sin x, graph y = -sin x 

together with

y =
cos (x + h) - cos (x - h)

2h

over the interval 3-p, 2p4  for h = 1, 0.5, and 0.3. Compare 

the results with those obtained in Exercise 66 for the same 

values of h.

 68. A caution about centered diference quotients (Continuation 

of Exercise 67.) The quotient

ƒ(x + h) - ƒ(x - h)

2h

  may have a limit as h S 0 when ƒ has no derivative at x. As a case 

in point, take ƒ(x) = 0 x 0  and calculate

lim
hS0

 
0 0 + h 0 - 0 0 - h 0

2h
.

  As you will see, the limit exists even though ƒ(x) = 0 x 0  has no 

derivative at x = 0. Moral: Before using a centered diference 

quotient, be sure the derivative exists.

3.6 The Chain Rule

How do we differentiate F(x) = sin (x2 - 4)? This function is the composition ƒ ∘ g of 

two functions y = ƒ(u) = sin u and u = g(x) = x2 - 4 that we know how to differenti-

ate. The answer, given by the Chain Rule, says that the derivative is the product of the 

derivatives of ƒ and g. We develop the rule in this section.
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x

g
f

Composition f ˚ g

Rate of change at

x is f ′(g(x)) · g′(x).

Rate of change

at x is g′(x).

Rate of change

at g(x) is f ′(g(x)).
u = g(x) y = f (u) = f (g(x))

FIGURE 3.25 Rates of change multiply: The derivative of ƒ ∘ g at x is the 

derivative of ƒ at g(x) times the derivative of g at x.

Derivative of a Composite Function

The function y =
3
2

 x =
1
2

 (3x) is the composition of the functions y =
1
2

 u and u = 3x.

We have

dy

dx
=

3
2

,  
dy

du
=

1
2

,  and  
du

dx
= 3.

Since 
3
2

=
1
2

# 3, we see in this case that

dy

dx
=

dy

du
# du

dx
.

If we think of the derivative as a rate of change, this relationship is intuitively reasonable. 

If y = ƒ(u) changes half as fast as u and u = g(x) changes three times as fast as x, then 

we expect y to change 3>2 times as fast as x. This effect is much like that of a multiple 

gear train (Figure 3.24). Let’s look at another example.

32

1

C: y turns B: u turns A: x turns

FIGURE 3.24 When gear A makes 

x turns, gear B makes u turns and gear 

C makes y turns. By comparing cir-

cumferences or counting teeth, we see 

that y = u>2 (C turns one-half turn 

for each B turn) and u = 3x (B turns 

three times for A’s one), so y = 3x>2. 

Thus, dy>dx = 3>2 =  (1>2)(3) =  

(dy>du)(du>dx).

EXAMPLE 1  The function

y = (3x2 + 1)2

is obtained by composing the functions y = ƒ(u) = u2 and u = g(x) = 3x2 + 1. Calcu-

lating derivatives, we see that

 
dy

du
# du

dx
= 2u # 6x

 = 2(3x2 + 1) # 6x  Substitute for u

 = 36x3 + 12x.

Calculating the derivative from the expanded formula (3x2 + 1)2 = 9x4 + 6x2 + 1 gives 

the same result:

  
dy

dx
=

d

dx
 (9x4 + 6x2 + 1) = 36x3 + 12x. 

The derivative of the composite function ƒ(g(x)) at x is the derivative of ƒ at g(x) 

times the derivative of g at x. This is known as the Chain Rule (Figure 3.25).
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A Proof of One Case of the Chain Rule:  

Let ∆u be the change in u when x changes by ∆x, so that

∆u = g(x + ∆x) - g(x).

Then the corresponding change in y is

∆y = ƒ(u + ∆u) - ƒ(u).

If ∆u ≠ 0, we can write the fraction ∆y>∆x as the product

 
∆y

∆x
=

∆y

∆u
# ∆u

∆x
 (1)

and take the limit as ∆x S 0:

 
dy

dx
= lim

∆xS0
 
∆y

∆x

 = lim
∆xS0

 
∆y

∆u
# ∆u

∆x

 = lim
∆xS0

 
∆y

∆u
# lim
∆xS0

 
∆u

∆x

 = lim
∆uS0

 
∆y

∆u
# lim
∆xS0

 
∆u

∆x
  

(Note that ∆u S 0 as ∆x S 0 

since g is continuous.)

 =
dy

du
# du

dx
.

The problem with this argument is that if the function g(x) oscillates rapidly near x, then 

∆u can be zero even when ∆x ≠ 0, so the cancelation of ∆u in Equation (1) would be 

invalid. A complete proof requires a different approach that avoids this problem, and we 

give one such proof in Section 3.9. 

EXAMPLE 2  An object moves along the x-axis so that its position at any time t Ú 0 

is given by x(t) = cos(t2 + 1). Find the velocity of the object as a function of t.

Solution We know that the velocity is dx>dt. In this instance, x is a composition of two 

functions: x = cos(u) and u = t2 + 1. We have

 
dx

du
= -sin(u)  x = cos(u)

 
du

dt
= 2t.   u = t2 + 1

THEOREM 2—The Chain Rule If ƒ(u) is differentiable at the point u = g(x) 

and g(x) is differentiable at x, then the composite function (ƒ ∘ g) (x) = ƒ(g(x)) is 

differentiable at x, and

(ƒ ∘ g)′(x) = ƒ′(g(x)) # g′(x).

In Leibniz’s notation, if y = ƒ(u) and u = g(x), then

dy

dx
=

dy

du
# du

dx
,

where dy>du is evaluated at u = g(x).
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By the Chain Rule,

 
dx

dt
=

dx

du
# du

dt

 = -sin (u) # 2t

 = -sin (t2 + 1) # 2t

  = -2t sin (t2 + 1).  

“Outside-Inside” Rule
A difficulty with the Leibniz notation is that it doesn’t state specifically where the deriva-

tives in the Chain Rule are supposed to be evaluated. So it sometimes helps to write the 

Chain Rule using functional notation. If y = ƒ(g(x)), then

dy

dx
= ƒ′(g(x)) # g′(x).

In words, differentiate the “outside” function ƒ and evaluate it at the “inside” function g(x) 

left alone; then multiply by the derivative of the “inside function.”

 inside inside derivative of  

  left alone the inside 

EXAMPLE 3  Differentiate sin (x2 + x)  with respect to x.

Solution We apply the Chain Rule directly and find

d

dx
 sin (x2 + x) = cos (x2 + x) # (2x + 1).

 (1+)1+* (1+)1+* (1+)1+*

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.

EXAMPLE 4  Find the derivative of g(t) = tan (5 - sin 2t).

Solution Notice here that the tangent is a function of 5 - sin 2t, whereas the sine is a 

function of 2t, which is itself a function of t. Therefore, by the Chain Rule,

 g′(t) =
d

dt
 tan (5 - sin 2t)

 = sec2 (5 - sin 2t) # d

dt
 (5 - sin 2t)   

Derivative of tan u with 

u = 5 - sin 2t
   

 = sec2 (5 - sin 2t) # a0 - cos 2t # d

dt
 (2t)b   

Derivative of 5 - sin u 

with u = 2t
 

 = sec2 (5 - sin 2t) # (-cos 2t) # 2

 = -2(cos 2t)  sec2 (5 - sin 2t).  

The Chain Rule with Powers of a Function

If n is any real number and ƒ is a power function, ƒ(u) = un, the Power Rule tells us that 

ƒ′(u) = nun - 1. If u is a differentiable function of x, then we can use the Chain Rule to 

extend this to the Power Chain Rule:

d

dx
 (un) = nun - 1 

du

dx
.      

d

du
 (un) = nun - 1

Ways to Write the Chain Rule

 (ƒ ∘ g)′(x) = ƒ′(g(x)) # g′(x)

 
dy

dx
=

dy

du
# du

dx

 
dy

dx
= ƒ′(g(x)) # g′(x)

 
d

dx
 ƒ(u) = ƒ′(u) 

du

dx
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EXAMPLE 5  The Power Chain Rule simplifies computing the derivative of a power 

of an expression.

(a)  
d

dx
 (5x3 - x4)7 = 7(5x3 - x4)6 

d

dx
 (5x3 - x4)  

Power Chain Rule with 

u = 5x3 - x4, n = 7
 

 = 7(5x3 - x4)6 (15x2 - 4x3)

(b)  
d

dx
 a 1

3x - 2
b =

d

dx
 (3x - 2)-1

   = -1(3x - 2)-2 
d

dx
 (3x - 2)    

Power Chain Rule with 

u = 3x - 2, n = -1

 = -1(3x - 2)-2 (3)

 = -  
3

(3x - 2)2

In part (b) we could also ind the derivative with the Quotient Rule.

(c)  
d

dx
 (sin5 x) = 5 sin4 x # d

dx
 sin x 

Power Chain Rule with u = sin x, n = 5,  

because sinn x means (sin x)n, n ≠ -1.

 = 5 sin4 x cos x  

EXAMPLE 6  In Example 4 of Section 3.2 we saw that the absolute value function 

y = 0 x 0  is not differentiable at x = 0. However, the function is differentiable at all other 

real numbers, as we now show. Since 0 x 0 = 2x2, we can derive the following formula, 

which gives an alternative to the more direct analysis seen before.

 
d

dx
 ( 0 x 0 ) =

d

dx
2x2

 =
1

22x2
# d

dx
 (x2)  

Power Chain Rule with 

u = x2, n = 1>2, x ≠ 0

 =
1

2 0 x 0 # 2x   2x2 = 0 x 0
 =

x0 x 0 , x ≠ 0.  

EXAMPLE 7  Show that the slope of every line tangent to the curve y = 1>(1 - 2x)3 

is positive.

Solution We find the derivative:

 
dy

dx
=

d

dx
 (1 - 2x)-3

 = -3(1 - 2x)-4 # d

dx
 (1 - 2x)  Power Chain Rule with u = (1 - 2x), n = -3

 = -3(1 - 2x)-4 # (-2)

 =
6

(1 - 2x)4
.

At any point (x, y) on the curve, the denominator is nonzero, and the slope of the tangent 

line is

dy

dx
=

6

(1 - 2x)4
,

which is the quotient of two positive numbers. 

Derivative of the  

Absolute Value Function

 
d

dx
 ( 0 x 0 ) =

x0 x 0 , x ≠ 0

 = e 1, x 7 0

-1, x 6 0
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Derivative Calculations

In Exercises 1–8, given y = ƒ(u) and u = g(x), find dy>dx =

dy>dx = ƒ′(g(x))g′(x).

 1. y = 6u - 9, u = (1>2)x4 2. y = 2u3, u = 8x - 1

 3. y = sin u, u = 3x + 1 4. y = cos u, u = -
x

3

 5. y = 2u , u = sin x 6. y = sin u, u = x - cos x

 7. y = tan u, u = px2 8. y = -sec u, u =
1
x + 7x

In Exercises 9–18, write the function in the form y = ƒ(u) and 

u = g(x). Then find dy>dx as a function of x.

 9. y = (2x + 1)5 10. y = (4 - 3x)9

 11. y = a1 -
x

7
b-7

 12. y = a2x

2
- 1b-10

 13. y = ax2

8
+ x -

1
xb4

 14. y = 23x2 - 4x + 6

 15. y = sec (tan x) 16. y = cot ap -
1
xb

 17. y = tan3 x 18. y = 5 cos-4 x

Find the derivatives of the functions in Exercises 19–40.

 19. p = 23 - t 20. q = 23 2r - r2

 21. s =
4

3p
 sin 3t +

4
5p

 cos 5t 22. s = sin a3pt

2
b + cos a3pt

2
b

 23. r = (csc u + cot u)-1 24. r = 6 (sec u - tan u)3>2

 25. y = x2 sin4 x + x cos-2 x 26. y =
1
x sin-5 x -

x

3
 cos3 x

 27. y =
1
18

 (3x - 2)6 + a4 -
1

2x2
b-1

 28. y = (5 - 2x)-3 +
1
8

 a2x + 1b4

 29. y = (4x + 3)4(x + 1)-3 30. y = (2x - 5)-1(x2 - 5x)6

 31. h(x) = x tan 121x2 + 7 32. k(x) = x2 sec a1xb
 33. ƒ(x) = 27 + x sec x 34. g(x) =

tan 3x

(x + 7)4

 35. ƒ(u) = a sin u
1 + cos u

b2

 36. g(t) = a1 + sin 3t

3 - 2t
b-1

 37. r = sin (u2) cos (2u) 38. r = sec2u tan a1
u
b

 39. q = sin a t

2t + 1
b  40. q = cotasin t

t
b

In Exercises 41–58, find dy>dt.

 41. y = sin2 (pt - 2) 42. y = sec2 pt

 43. y = (1 + cos 2t)-4 44. y = (1 + cot (t>2))-2

 45. y = (t tan t)10 46. y = (t-3>4 sin t)4>3
 47. y = a t2

t3 - 4t
b3

 48. y = a3t - 4

5t + 2
b-5

EXERCISES 3.6

EXAMPLE 8  The formulas for the derivatives of both sin x and cos x were obtained 

under the assumption that x is measured in radians, not degrees. The Chain Rule gives us 

new insight into the difference between the two. Since 180° = p radians, x° = px>180 

radians where x° is the size of the angle measured in degrees.

By the Chain Rule,

d

dx
 sin (x°) =

d

dx
 sin a px

180
b =

p
180

 cos a px

180
b =

p
180

 cos (x°).

See Figure 3.26. Similarly, the derivative of cos (x°) is -(p>180) sin (x°).

The factor p>180 would propagate with repeated diferentiation, showing an advan-

tage for the use of radian measure in computations. 

x

y

1

180
y = sin x

y = sin(x°) = sin
px

180

FIGURE 3.26 The function sin (x°) oscillates only p>180 times as often as sin x oscil-

lates. Its maximum slope is p>180 at x = 0 (Example 8).
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 76. Suppose that the functions ƒ and g and their derivatives with 

respect to x have the following values at x = 0 and x = 1.

x ƒ(x) g(x)  ƒ′(x)  g′(x)

0  1     1         5     1>3
1  3  -4  -1>3  -8>3

  Find the derivatives with respect to x of the following combina-

tions at the given value of x.

a. 5ƒ(x) - g(x), x = 1 b. ƒ(x)g3(x), x = 0

c. 
ƒ(x)

g(x) + 1
, x = 1 d. ƒ(g(x)), x = 0

e. g(ƒ(x)), x = 0 f. (x11 + ƒ(x))-2, x = 1

g. ƒ(x + g(x)), x = 0

 77. Find ds>dt when u = 3p>2 if s = cos u and du>dt = 5.

 78. Find dy>dt when x = 1 if y = x2 + 7x - 5 and dx>dt = 1>3.

Theory and Examples

What happens if you can write a function as a composition in different 

ways? Do you get the same derivative each time? The Chain Rule 

says you should. Try it with the functions in Exercises 79 and 80.

 79. Find dy>dx if y = x by using the Chain Rule with y as a compo-

sition of

a. y = (u>5) + 7 and u = 5x - 35

b. y = 1 + (1>u) and u = 1>(x - 1).

 80. Find dy>dx if y = x3>2 by using the Chain Rule with y as a com-

position of

a. y = u3 and u = 1x

b. y = 1u and u = x3.

 81. Find the tangent to y = ((x - 1)>(x + 1))2 at x = 0.

 82. Find the tangent to y = 2x2 - x + 7 at x = 2.

 83. a.  Find the tangent to the curve y = 2 tan (px>4) at x = 1.

b. Slopes on a tangent curve What is the smallest value 

the slope of the curve can ever have on the interval 

-2 6 x 6 2? Give reasons for your answer.

 84. Slopes on sine curves

a. Find equations for the tangents to the curves y = sin 2x and 

y = -sin (x>2) at the origin. Is there anything special about 

how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the 

curves y = sin mx and y = -sin (x>m) at the origin 

(m a constant ≠ 0)? Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the 

curves y = sin mx and y = -sin (x>m) can ever have? Give 

reasons for your answer.

d. The function y = sin x completes one period on the interval 30, 2p4 , the function y = sin 2x completes two periods, the 

function y = sin (x>2) completes half a period, and so on. Is 

there any relation between the number of periods y = sin mx 

completes on 30, 2p4  and the slope of the curve y = sin mx 

at the origin? Give reasons for your answer.

 49. y = sin (cos (2t - 5)) 50. y = cos a5 sin a t

3
b b

 51. y = a1 + tan4 a t

12
b b3

 52. y =
1
6

 11 + cos2 (7t)23
 53. y = 21 + cos (t2) 54. y = 4 sin 121 + 1t2
 55. y = tan2 (sin3 t)  56. y = cos4 (sec2 3t)

 57. y = 3t (2t2 - 5)4 58. y = 43t + 32 + 21 - t

Second Derivatives

Find y″ in Exercises 59–64.

 59. y = a1 +
1
xb3

 60. y = 11 - 1x2-1

 61. y =
1
9

 cot (3x - 1) 62. y = 9 tan ax

3
b

 63. y = x (2x + 1)4 64. y = x2 (x3 - 1)5

For each of the following functions, solve both ƒ′(x) = 0 and 

ƒ″(x) = 0 for x.

 65. ƒ(x) = x(x - 4)3

 66. ƒ(x) = sec2 x - 2 tan x for 0 … x … 2p

Finding Derivative Values

In Exercises 67–72, find the value of (ƒ ∘ g)′ at the given value of x.

 67. ƒ(u) = u5 + 1, u = g(x) = 1x, x = 1

 68. ƒ(u) = 1 -
1
u , u = g(x) =

1
1 - x

, x = -1

 69. ƒ(u) = cot 
pu

10
, u = g(x) = 51x, x = 1

 70. ƒ(u) = u +
1

cos2 u
, u = g(x) = px, x = 1>4

 71. ƒ(u) =
2u

u2 + 1
, u = g(x) = 10x2 + x + 1, x = 0

 72. ƒ(u) = au - 1
u + 1

b2

, u = g(x) =
1

x2
- 1, x = -1

 73. Assume that ƒ′(3) = -1, g′(2) = 5, g(2) = 3, and y = ƒ(g(x)). 

What is y′ at x = 2?

 74. If r = sin (ƒ(t)), ƒ(0) = p>3, and ƒ′(0) = 4, then what is dr>dt 

at t = 0?

 75. Suppose that functions ƒ and g and their derivatives with respect 

to x have the following values at x = 2 and x = 3.

x ƒ(x) g(x) ƒ′(x) g′(x)

2  8     2  1>3  -3

3  3  -4  2p     5

  Find the derivatives with respect to x of the following combina-

tions at the given value of x.

a. 2ƒ(x), x = 2 b. ƒ(x) + g(x), x = 3

c. ƒ(x) # g(x), x = 3 d. ƒ(x)>g(x), x = 2

e. ƒ(g(x)), x = 2 f. 2ƒ(x), x = 2

g. 1>g2(x), x = 3 h. 2ƒ2(x) + g2(x), x = 2
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 increasing or decreasing at a rate that is roughly proportional to 

L. In symbols, with u being temperature and k the proportionality 

constant,

dL

du
= kL.

Assuming this to be the case, show that the rate at which the pe-

riod changes with respect to temperature is kT>2.

 92. Chain Rule Suppose that ƒ(x) = x2 and g(x) = � x � . Then the 

compositions

(ƒ ∘ g)(x) = � x �2 = x2 and (g ∘ ƒ)(x) = � x2 � = x2

are both diferentiable at x = 0 even though g itself is not difer-

entiable at x = 0. Does this contradict the Chain Rule? Explain.

 93. The derivative of sin 2x Graph the function y = 2 cos 2x for 

-2 … x … 3.5. Then, on the same screen, graph

y =
sin 2(x + h) - sin 2x

h

for h = 1.0, 0.5, and 0.2. Experiment with other values of h, in-

cluding negative values. What do you see happening as h S 0? 

Explain this behavior.

 94. The derivative of cos (x2) Graph y = -2x sin (x2) for -2 …  

x … 3. Then, on the same screen, graph

y =
cos ((x + h)2) - cos (x2)

h

for h = 1.0, 0.7, and 0.3. Experiment with other values of h. 

What do you see happening as h S 0? Explain this behavior.

Using the Chain Rule, show that the Power Rule (d>dx)xn = nxn - 1 

holds for the functions xn in Exercises 95 and 96.

 95. x1>4 = 21x 96. x3>4 = 2x1x

 97. Consider the function

ƒ(x) = • x sin a1xb , x 7 0

      0, x … 0

a. Show that ƒ is continuous at x = 0.

b. Determine ƒ′ for x ≠ 0.

c. Show that ƒ is not diferentiable at x = 0.

 98. Consider the function

ƒ(x) = • x2 cos a2xb , x ≠ 0

        0, x = 0

a. Show that ƒ is continuous at x = 0.

b. Determine ƒ′ for x ≠ 0.

c. Show that ƒ is diferentiable at x = 0.

d. Show that ƒ′ is not continuous at x = 0.

 99. Verify each of the following statements.

a. If ƒ is even, then ƒ′ is odd.

b. If ƒ is odd, then ƒ′ is even.

T

 85. Running machinery too fast Suppose that a piston is moving 

straight up and down and that its position at time t sec is

s = A cos (2pbt),

with A and b positive. The value of A is the amplitude of the mo-

tion, and b is the frequency (number of times the piston moves up 

and down each second). What efect does doubling the frequency 

have on the piston’s velocity, acceleration, and jerk? (Once you 

ind out, you will know why some machinery breaks when you 

run it too fast.)

 86. Temperatures in Fairbanks, Alaska The graph in the accom-

panying figure shows the average Fahrenheit temperature in Fair-

banks, Alaska, during a typical 365-day year. The equation that 

approximates the temperature on day x is

y = 37 sin c 2p

365
 (x - 101) d + 25

and is graphed in the accompanying igure.

a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-

ing when it is increasing at its fastest?
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 87. Particle motion The position of a particle moving along a 

coordinate line is s = 21 + 4t, with s in meters and t in sec-

onds. Find the particle’s velocity and acceleration at t = 6 sec.

 88. Constant acceleration Suppose that the velocity of a falling 

body is y = k1s m>sec (k a constant) at the instant the body has 

fallen s m from its starting point. Show that the body’s accelera-

tion is constant.

 89. Falling meteorite The velocity of a heavy meteorite entering 

Earth’s atmosphere is inversely proportional to 2s when it is s 

km from Earth’s center. Show that the meteorite’s acceleration is 

inversely proportional to s2.

 90. Particle acceleration A particle moves along the x-axis with 

velocity dx>dt = ƒ(x). Show that the particle’s acceleration is 

ƒ(x)ƒ′(x).

 91. Temperature and the period of a pendulum For oscillations 

of small amplitude (short swings), we may safely model the rela-

tionship between the period T and the length L of a simple pendu-

lum with the equation

T = 2pAL
g ,

where g is the constant acceleration of gravity at the pendulum’s 

location. If we measure g in centimeters per second squared, 

we measure L in centimeters and T in seconds. If the pendulum 

is made of metal, its length will vary with temperature, either 
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COMPUTER EXPLORATIONS

Trigonometric Polynomials

 100. As the accompanying figure shows, the trigonometric “polyno-

mial”

 s = ƒ(t) = 0.78540 - 0.63662 cos 2t - 0.07074 cos 6t

 -  0.02546 cos 10t - 0.01299 cos 14t

gives a good approximation of the sawtooth function s = g(t) on 

the interval 3-p, p4 . How well does the derivative of ƒ approxi-

mate the derivative of g at the points where dg>dt is deined? To 

ind out, carry out the following steps.

a. Graph dg>dt (where deined) over 3-p, p4 .
b. Find dƒ>dt.

c. Graph dƒ>dt. Where does the approximation of dg>dt by 

dƒ>dt seem to be best? Least good? Approximations by 

trigonometric polynomials are important in the theories of 

heat and oscillation, but we must not expect too much of 

them, as we see in the next exercise.

t

s

0−p p

2
p

s = g(t)

s = f (t)

 101. (Continuation of Exercise 100.) In Exercise 100, the trigonomet-

ric polynomial ƒ(t) that approximated the sawtooth function g(t) 

on 3-p, p4  had a derivative that approximated the derivative of 

the sawtooth function. It is possible, however, for a trigonomet-

ric polynomial to approximate a function in a reasonable way 

without its derivative approximating the function’s derivative at 

all well. As a case in point, the trigonometric “polynomial”

 s = h(t) = 1.2732 sin 2t + 0.4244 sin 6t + 0.25465 sin 10t

 + 0.18189 sin 14t + 0.14147 sin 18t

graphed in the accompanying igure approximates the step func-

tion s = k(t) shown there. Yet the derivative of h is nothing like 

the derivative of k.

1

t

s

0 p
2

p−p p
2

−

−1

s = k(t)

s = h(t)

a. Graph dk>dt (where deined) over 3-p, p4 .
b. Find dh>dt.

c. Graph dh>dt to see how badly the graph its the graph of 

dk>dt. Comment on what you see.

3.7 Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the 

form y = ƒ(x) that expresses y explicitly in terms of the variable x. We have learned rules 

for differentiating functions defined in this way. A different situation occurs when we 

encounter equations like

x3 + y3 - 9xy = 0,  y2 - x = 0,  or   x2 + y2 - 25 = 0.

(See Figures 3.27, 3.28, and 3.29.) These equations define an implicit relation between the 

variables x and y, meaning that a value of x determines one or more values of y, even 

though we do not have a simple formula for the y-values. In some cases we may be able to 

solve such an equation for y as an explicit function (or even several functions) of x. When 

we cannot put an equation F(x, y) = 0 in the form y = ƒ(x) to differentiate it in the usual 

way, we may still be able to find dy>dx by implicit differentiation. This section describes 

the technique.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function 

of x and then calculate dy>dx in the usual way. Then we differentiate the equations implic-

itly, and find the derivative. We will see that the two methods give the same answer. Fol-

lowing the examples, we summarize the steps involved in the new method. In the examples 

and exercises, it is always assumed that the given equation determines y implicitly as a 

differentiable function of x so that dy>dx exists.

x

y

0 5

5

A

x3 + y3 − 9xy = 0

y = f1(x)

(x0, y1)

y = f2(x)

y = f3(x)

(x0, y2)

(x0, y3)

x0

FIGURE 3.27 The curve 

x3 + y3 - 9xy = 0 is not the graph of any 

one function of x. The curve can, however, 

be divided into separate arcs that are the 

graphs of functions of x. This particular 

curve, called a folium, dates to Descartes 

in 1638.
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EXAMPLE 1  Find dy>dx if y2 = x.

Solution The equation y2 = x defines two differentiable functions of x that we can actu-

ally find, namely y1 = 2x and y2 = -2x (Figure 3.28). We know how to calculate the 

derivative of each of these for x 7 0:

dy1

dx
=

1

21x
  and  

dy2

dx
= -  

1

21x
.

But suppose that we knew only that the equation y2 = x defined y as one or more differen-

tiable functions of x for x 7 0 without knowing exactly what these functions were. Can 

we still find dy>dx?

The answer is yes. To ind dy>dx, we simply diferentiate both sides of the equation 

y2 = x with respect to x, treating y = ƒ(x) as a diferentiable function of x:

 y2 = x   The Chain Rule gives  

 2y 
dy

dx
= 1   

d

dx
 (y2) =

d

dx
 3ƒ(x)42 = 2ƒ(x)ƒ′(x) = 2y 

dy

dx
.

 
dy

dx
=

1
2y

.

This one formula gives the derivatives we calculated for both explicit solutions y1 = 2x 

and y2 = -2x:

 
dy1

dx
=

1
2y1

=
1

21x
  and  

dy2

dx
=

1
2y2

=
1

21-1x2 = -  
1

21x
. 

EXAMPLE 2  Find the slope of the circle x2 + y2 = 25 at the point (3, -4).

Solution The circle is not the graph of a single function of x. Rather, it is the combined 

graphs of two differentiable functions, y1 = 225 - x2 and y2 = -225 - x2  

(Figure 3.29). The point (3, -4) lies on the graph of y2, so we can find the slope by calcu-

lating the derivative directly, using the Power Chain Rule:

dy2

dx
`
x = 3

= -  
-2x

2225 - x2
`
x = 3

= -  
-6

2225 - 9
=

3
4

.  

d

dx
 1- (25 - x2)1>22 =  

   -  
1

2
 (25 - x2)-1>2(-2x)

We can solve this problem more easily by diferentiating the given equation of the 

circle implicitly with respect to x:

 
d

dx
 (x2) +

d

dx
 (y2) =

d

dx
 (25)

 2x + 2y 
dy

dx
= 0   See Example 1.

 
dy

dx
= -  

x
y .

The slope at (3, -4) is -  
x
y `

(3, -4)

= -  
3

-4
=

3
4

.

Notice that unlike the slope formula for dy2>dx, which applies only to points below 

the x-axis, the formula dy>dx = -x>y applies everywhere the circle has a slope; that is, at 

all circle points (x, y) where y ≠ 0. Notice also that the derivative involves both variables  

x and y, not just the independent variable x. 

To calculate the derivatives of other implicitly defined functions, we proceed as in 

Examples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual 

rules to differentiate both sides of the defining equation.

x

y

0

y2 = x

Slope = =
2y1

1

2"x

1

Slope = = −
2y2

1

2"x

1

y1 = "x

y2 = −"x

P(x, "x )

Q(x, −"x )

FIGURE 3.28 The equation  

y2 - x = 0, or y2 = x as it is usually 

written, defines two differentiable func-

tions of x on the interval x 7 0. Example 1  

shows how to find the derivatives of these 

functions without solving the equation 

y2 = x for y.

0 5−5
x

y

Slope = − =y
x

4
3

(3, −4)

y1 = "25 − x2

y2 = −"25 − x2

FIGURE 3.29 The circle combines the 

graphs of two functions. The graph of y2 

is the lower semicircle and passes through 

(3, -4).
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Implicit Diferentiation

1. Differentiate both sides of the equation with respect to x, treating y as a dif-

ferentiable function of x.

2. Collect the terms with dy>dx on one side of the equation and solve for dy>dx.

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives.

ExamPLE 3  Find dy>dx if y2 = x2 + sin xy (Figure 3.30).

Solution We differentiate the equation implicitly.

 y2 = x2 + sin xy

 
d

dx
 1y22 =

d

dx
 1x22 +

d

dx
 1sin xy2   

Differentiate both sides with 

respect to xc

 2y 
dy

dx
= 2x + (cos xy) 

d

dx
 (xy)   

c treating y as a function of 

x and using the Chain Rule.

 2y 
dy

dx
= 2x + (cos xy)ay + x 

dy

dx
b   Treat xy as a product.

 2y 
dy

dx
- (cos xy)ax 

dy

dx
b = 2x + (cos xy)y   Collect terms with dy>dx.

 (2y - x cos xy) 
dy

dx
= 2x + y cos xy

 
dy

dx
=

2x + y cos xy

2y - x cos xy
  Solve for dy>dx.

Notice that the formula for dy>dx applies everywhere that the implicitly defined curve has 

a slope. Notice again that the derivative involves both variables x and y, not just the inde-

pendent variable x. 

y2 = x2 
+ sin xy

y

x

4

2

0 2 4−2−4

−2

−4

FIGURE 3.30 The graph of the equation 

in Example 3.

ExamPLE 4  Find d2y>dx2 if 2x3 - 3y2 = 8.

Solution To start, we differentiate both sides of the equation with respect to x in order to 

find y′ = dy>dx.

 
d

dx
 (2x3 - 3y2) =

d

dx
 (8)

 6x2 - 6yy′ = 0   Treat y as a function of x.

 y′ =
x2

y ,  when y ≠ 0  Solve for y′.

We now apply the Quotient Rule to find y″.

y″ =
d

dx
 ax2

y b =
2xy - x2y′

y2
=

2x
y -

x2

y2
# y′

Finally, we substitute y′ = x2>y to express y″ in terms of x and y.

 y″ =
2x
y -

x2

y2
 ax2

y b =
2x
y -

x4

y3
,  when y ≠ 0 

Lenses, Tangent Lines, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important 

angles are the angles the light makes with the line perpendicular to the surface of the lens 
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at the point of entry (angles A and B in Figure 3.31). This line is called the normal to  

the surface at the point of entry. In a profile view of a lens like the one in Figure 3.31, the  

normal is the line perpendicular (also said to be orthogonal) to the tangent of the profile 

curve at the point of entry.

EXAMPLE 5  Show that the point (2, 4) lies on the curve x3 + y3 - 9xy = 0. Then 

find the tangent and normal to the curve there (Figure 3.32).

Solution The point (2, 4) lies on the curve because its coordinates satisfy the equation 

given for the curve: 23 + 43 - 9(2) (4) = 8 + 64 - 72 = 0.

To ind the slope of the curve at (2, 4), we irst use implicit diferentiation to ind a 

formula for dy>dx:

 x3 + y3 - 9xy = 0

 
d

dx
 (x3) +

d

dx
 (y3) -

d

dx
 (9xy) =

d

dx
 (0)

 3x2 + 3y2 
dy

dx
- 9ax 

dy

dx
+ y 

dx

dx
b = 0   

Differentiate both sides 

with respect to x.

 (3y2 - 9x)  
dy

dx
+ 3x2 - 9y = 0   

Treat xy as a product 

and y as a function of x.

 3(y2 - 3x)  
dy

dx
= 9y - 3x2

 
dy

dx
=

3y - x2

y2 - 3x
.   Solve for dy>dx.

We then evaluate the derivative at (x, y) = (2, 4):

dy

dx
`
(2, 4)

=
3y - x2

y2 - 3x
`
(2, 4)

=
3(4) - 22

42 - 3(2)
=

8
10

=
4
5

.

The tangent at (2, 4) is the line through (2, 4) with slope 4>5:

 y = 4 +
4
5

 (x - 2)

 y =
4
5

 x +
12
5

.

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line 

through (2, 4) with slope -5>4:

 y = 4 -
5
4

 (x - 2)

  y = -  
5
4

 x +
13
2

.  

x

y

0 2

4

 Tan
gen

t

N
orm

al

x3 + y3 − 9xy = 0

FIGURE 3.32 Example 5 shows how to 

find equations for the tangent and normal 

to the folium of Descartes at (2,4).

Differentiating Implicitly

Use implicit differentiation to find dy>dx in Exercises 1–14.

 1. x2y + xy2 = 6 2. x3 + y3 = 18xy

 3. 2xy + y2 = x + y 4. x3 - xy + y3 = 1

 5. x2(x - y)2 = x2 - y2 6. (3xy + 7)2 = 6y

 7. y2 =
x - 1
x + 1

 8. x3 =
2x - y

x + 3y

 9. x = sec y 10. xy = cot (xy)

 11. x + tan (xy) = 0 12. x4 + sin y = x3y2

 13. y sin a1yb = 1 - xy 14. x cos (2x + 3y) = y sin x

Find dr>du in Exercises 15–18.

 15. u1>2 + r1>2 = 1 16. r - 22u =
3
2

 u2>3 +
4
3

 u3>4
 17. sin (r u) =

1
2

 18. cos r + cot u = r

EXERCISES 3.7

A

Normal line

Light ray
Tangent

Point of entry
P

B

Curve of lens

surface

FIGURE 3.31 The profile of a lens, 

showing the bending (refraction) of a 

ray of light as it passes through the lens 

surface.



152 Chapter 3 Derivatives

x

y

1

1

(1, 1)

0

y2(2 − x) = x3

 45. The devil’s curve (Gabriel Cramer, 1750) Find the slopes of 

the devil’s curve y4 - 4y2 = x4 - 9x2 at the four indicated points.

x

y

3−3

2

−2

(3, 2)

(3, −2)

(−3, 2)

(−3, −2)

y4 − 4y2 = x4 − 9x2

 46. The folium of Descartes (See Figure 3.27)

a. Find the slope of the folium of Descartes x3 + y3 - 9xy = 0 

at the points (4, 2) and (2, 4).

b. At what point other than the origin does the folium have a 

horizontal tangent?

c. Find the coordinates of the point A in Figure 3.27 where the 

folium has a vertical tangent.

Theory and Examples

 47. Intersecting normal The line that is normal to the curve x2 +  

2xy - 3y2 = 0 at (1, 1) intersects the curve at what other point?

 48. Power rule for rational exponents Let p and q be integers with 

q 7 0. If y = x p>q, diferentiate the equivalent equation yq = xp 

implicitly and show that, for y ≠ 0,

d

dx
 x p>q =

p

q x(p>q) - 1.

 49. Normals to a parabola Show that if it is possible to draw three 

normals from the point (a, 0) to the parabola x = y2 shown in the 

accompanying diagram, then a must be greater than 1>2. One of 

the normals is the x-axis. For what value of a are the other two 

normals perpendicular?

x

y

0 (a, 0)

x = y2

Second Derivatives

In Exercises 19–26, use implicit differentiation to find dy>dx and then 

d2y>dx2. Write the solutions in terms of x and y only.

 19. x2 + y2 = 1 20. x2>3 + y2>3 = 1

 21. y2 = x2 + 2x 22. y2 - 2x = 1 - 2y

 23. 21y = x - y 24. xy + y2 = 1

 25. 3 + sin y = y - x3 26. sin y = x cos y - 2

 27. If x3 + y3 = 16, ind the value of d2y>dx2 at the point (2, 2).

 28. If xy + y2 = 1, ind the value of d2y>dx2 at the point (0, -1).

In Exercises 29 and 30, find the slope of the curve at the given points.

 29. y2 + x2 = y4 - 2x at (-2, 1) and (-2, -1)

 30. (x2 + y2)2 = (x - y)2 at (1, 0) and (1, -1)

Slopes, Tangents, and Normals

In Exercises 31–40, verify that the given point is on the curve and find 

the lines that are (a) tangent and (b) normal to the curve at the given 

point.

 31. x2 + xy - y2 = 1, (2, 3)

 32. x2 + y2 = 25, (3, -4)

 33. x2y2 = 9, (-1, 3)

 34. y2 - 2x - 4y - 1 = 0, (-2, 1)

 35. 6x2 + 3xy + 2y2 + 17y - 6 = 0, (-1, 0)

 36. x2 - 23xy + 2y2 = 5, 123, 22
 37. 2xy + p sin y = 2p, (1, p>2)

 38. x sin 2y = y cos 2x, (p>4, p>2)

 39. y = 2 sin (px - y), (1, 0)

 40. x2 cos2 y - sin y = 0, (0, p)

 41. Parallel tangents Find the two points where the curve 

x2 + xy + y2 = 7 crosses the x-axis, and show that the tangents 

to the curve at these points are parallel. What is the common slope 

of these tangents?

 42. Normals parallel to a line Find the normals to the curve 

xy + 2x - y = 0 that are parallel to the line 2x + y = 0.

 43. The eight curve Find the slopes of the curve y4 = y2 - x2 at 

the two points shown here.

x

y

0

1

−1

y4 = y2 − x2

"3
4

"3
2

,

"3
4

1
2

,a           b

a               b

 44. The cissoid of Diocles (from about 200 b.c.) Find equations for 

the tangent and normal to the cissoid of Diocles y2(2 - x) = x3 at 

(1, 1).



 3.8  Related Rates 153

In Exercises 53 and 54, find both dy>dx (treating y as a differentiable 

function of x) and dx>dy (treating x as a differentiable function of y). 

How do dy>dx and dx>dy seem to be related? Explain the relationship 

geometrically in terms of the graphs.

 53. xy3 + x2y = 6

 54. x3 + y2 = sin2 y

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps in Exercises 55–62.

a. Plot the equation with the implicit plotter of a CAS. Check to 

see that the given point P satisies the equation.

b. Using implicit diferentiation, ind a formula for the deriva-

tive dy>dx and evaluate it at the given point P.

c. Use the slope found in part (b) to ind an equation for the 

tangent line to the curve at P. Then plot the implicit curve and 

tangent line together on a single graph.

 55. x3 - xy + y3 = 7, P (2, 1)

 56. x5 + y3x + yx2 + y4 = 4, P (1, 1)

 57. y2 + y =
2 + x

1 - x
, P (0, 1)

 58. y3 + cos xy = x2, P (1, 0)

 59. x + tan ayxb = 2, P a1, 
p

4
b

 60. xy3 + tan (x + y) = 1, P ap
4

, 0b
 61. 2y2 + (xy)1>3 = x2 + 2, P (1, 1)

 62. x21 + 2y + y = x2, P (1, 0)

T 50. Is there anything special about the tangents to the curves y2 = x3 

and 2x2 + 3y2 = 5 at the points (1, {1)? Give reasons for your 

answer.

x

y

0

(1, 1)

y2 = x3

2x2 + 3y2 = 5

(1, −1)

 51. Verify that the following pairs of curves meet orthogonally.

a. x2 + y2 = 4, x2 = 3y2

b. x = 1 - y2, x =
1
3

 y2

 52. The graph of y2 = x3 is called a semicubical parabola and is 

shown in the accompanying igure. Determine the constant b so 

that the line y = -1
3 x + b meets this graph orthogonally.

x

y

0

y2 = x3

y = −   x + b
1
3

3.8 Related Rates

In this section we look at questions that arise when two or more related quantities are 

changing. The problem of determining how the rate of change of one of them affects the 

rate of change of the others is called a related rates problem.

Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the 

balloon are increasing over time. If V is the volume and r is the radius of the balloon at an 

instant of time, then

V =
4
3

 pr3.

Using the Chain Rule, we differentiate both sides with respect to t to find an equation 

relating the rates of change of V and r,

dV

dt
=

dV

dr
 
dr

dt
= 4pr2 

dr

dt
.
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EXAMPLE 1  Water runs into a conical tank at the rate of 9 ft3>min. The tank stands 

point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water level 

rising when the water is 6 ft deep?

Solution Figure 3.33 shows a partially filled conical tank. The variables in the problem are

 V = volume (ft3) of the water in the tank at time t (min)

 x = radius (ft) of the surface of the water at time t

 y = depth (ft) of the water in the tank at time t.

We assume that V, x, and y are differentiable functions of t. The constants are the dimen-

sions of the tank. We are asked for dy>dt when

y = 6 ft  and  
dV

dt
= 9 ft3>min.

The water forms a cone with volume

V =
1
3

 px2y.

This equation involves x as well as V and y. Because no information is given about x and 

dx>dt at the time in question, we need to eliminate x. The similar triangles in Figure 3.45 

give us a way to express x in terms of y:

x
y =

5
10
  or  x =

y

2
.

Therefore, we find

V =
1
3

 p ay

2
b2

y =
p
12

 y3

to give the derivative

dV

dt
=

p
12

# 3y2 
dy

dt
=

p
4

 y2 
dy

dt
.

Finally, use y = 6 and dV>dt = 9 to solve for dy>dt.

 9 =
p
4

 (6)2  
dy

dt

 
dy

dt
=

1
p ≈ 0.32

At the moment in question, the water level is rising at about 0.32 ft>min. 

So if we know the radius r of the balloon and the rate dV>dt at which the volume is 

increasing at a given instant of time, then we can solve this last equation for dr>dt to find 

how fast the radius is increasing at that instant. Note that it is easier to directly measure the 

rate of increase of the volume (the rate at which air is being pumped into the balloon) than 

it is to measure the increase in the radius. The related rates equation allows us to calculate 

dr>dt from dV>dt.

Very often the key to relating the variables in a related rates problem is drawing a pic-

ture that shows the geometric relations between them, as illustrated in the following 

example.

dV

dt
= 9 ft3 min

10 ft

y

5 ft

x
dy

dt
= ?

when y = 6 ft

FIGURE 3.33 The geometry of the coni-

cal tank and the rate at which water fills 

the tank determine how fast the water level 

rises (Example 1).
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Related Rates Problem Strategy

1. Draw a picture and name the variables and constants. Use t for time. Assume 

that all variables are differentiable functions of t.

2. Write down the numerical information (in terms of the symbols you have cho-

sen).

3. Write down what you are asked to ind (usually a rate, expressed as a deriva-

tive).

4. Write an equation that relates the variables. You may have to combine two or 

more equations to get a single equation that relates the variable whose rate you 

want to the variables whose rates you know.

5. Diferentiate with respect to t. Then express the rate you want in terms of the 

rates and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

EXAMPLE 2  A hot air balloon rising straight up from a level field is tracked by a 

range finder 150 m from the liftoff point. At the moment the range finder’s elevation angle 

is p>4, the angle is increasing at the rate of 0.14 rad >min. How fast is the balloon rising at 

that moment?

Solution We answer the question in the six strategy steps.

 1. Draw a picture and name the variables and constants (Figure 3.34). The variables in 

the picture are

 u = the angle in radians the range finder makes with the ground.

 y = the height in meters of the balloon above the ground.

We let t represent time in minutes and assume that u and y are diferentiable functions of t.

The one constant in the picture is the distance from the range inder to the liftof point 

(150 m). There is no need to give it a special symbol.

 2. Write down the additional numerical information.

du
dt

= 0.14 rad>min  when  u =
p
4

 3. Write down what we are to ind. We want dy>dt when u = p>4.

 4. Write an equation that relates the variables y and u.

y

150
= tan u  or  y = 150 tan u

 5. Diferentiate with respect to t using the Chain Rule. The result tells how dy>dt (which 

we want) is related to du>dt (which we know).

dy

dt
= 150 (sec2 u) 

du
dt

 6. Evaluate with u = p>4 and du>dt = 0.14 to ind dy>dt.

dy

dt
= 150122 22 (0.14) = 42  sec 

p

4
= 22

At the moment in question, the balloon is rising at the rate of 42 m>min. 

= ?
y

Range

inder

Balloon

150 m

u

= 0.14  rad�min
dt

du

when u = p�4 
dt

dywhen u = p�4 

FIGURE 3.34 The rate of change of the 

balloon’s height is related to the rate of 

change of the angle the range finder makes 

with the ground (Example 2).
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EXAMPLE 3  A police cruiser, approaching a right-angled intersection from the 

north, is chasing a speeding car that has turned the corner and is now moving straight east. 

When the cruiser is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the 

police determine with radar that the distance between them and the car is increasing at  

20 mph. If the cruiser is moving at 60 mph at the instant of measurement, what is the 

speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis 

as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.35). 

We let t represent time and set

 x = position of car at time t

 y = position of cruiser at time t

 s = distance between car and cruiser at time t.

We assume that x, y, and s are differentiable functions of t.

We want to ind dx>dt when

x = 0.8 mi,  y = 0.6 mi,  
dy

dt
= -60 mph,  

ds

dt
= 20 mph.

Note that dy>dt is negative because y is decreasing.

We diferentiate the distance equation between the car and the cruiser,

s2 = x2 + y2

(we could also use s = 2x2 + y2), and obtain

 2s  
ds

dt
= 2x  

dx

dt
+ 2y  

dy

dt

 
ds

dt
=

1
s  ax  

dx

dt
+ y  

dy

dt
b

 =
1

2x2 + y2
 ax  

dx

dt
+ y  

dy

dt
b .

Finally, we use x = 0.8, y = 0.6, dy>dt = -60, ds>dt = 20, and solve for dx>dt.

 20 =
1

2(0.8)2 + (0.6)2
 a0.8 

dx

dt
+ (0.6)(-60)b

 
dx

dt
=

202(0.8)2 + (0.6)2 + (0.6)(60)

0.8
= 70

At the moment in question, the car’s speed is 70 mph. 

EXAMPLE 4  A particle P moves clockwise at a constant rate along a circle of radius 

10 m centered at the origin. The particle’s initial position is (0, 10) on the y-axis, and its 

final destination is the point (10, 0) on the x-axis. Once the particle is in motion, the tan-

gent line at P intersects the x-axis at a point Q (which moves over time). If it takes the 

particle 30 sec to travel from start to finish, how fast is the point Q moving along the x-axis 

when it is 20 m from the center of the circle?

Solution We picture the situation in the coordinate plane with the circle centered at the 

origin (see Figure 3.36). We let t represent time and let u denote the angle from the x-axis 

to the radial line joining the origin to P. Since the particle travels from start to finish in 30 

sec, it is traveling along the circle at a constant rate of p>2 radians in 1>2 min, or 

p rad>min. In other words, du>dt = -p, with t being measured in minutes. The negative 

sign appears because u is decreasing over time.

x

y

0 x

y

Situation when

x = 0.8, y = 0.6

= −60

= 20

= ?dx

dt

dy

dt

ds
dt

FIGURE 3.35 The speed of the car is 

related to the speed of the police cruiser 

and the rate of change of the distance s 

between them (Example 3).

x
0

10

u

y

P

Q

(x, 0)

FIGURE 3.36 The particle P travels 

clockwise along the circle (Example 4).
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Setting x(t) to be the distance at time t from the point Q to the origin, we want to ind 

dx>dt when

x = 20 m  and  
du
dt

= -p rad>min.

To relate the variables x and u, we see from Figure 3.36 that x cos u = 10, or 

x = 10 sec u. Diferentiation of this last equation gives

dx

dt
= 10 sec u tan u   

du
dt

= -10p sec u tan u.

Note that dx>dt is negative because x is decreasing (Q is moving toward the origin).

When x = 20, cos u = 1>2 and sec u = 2. Also, tan u = 2sec2 u - 1 = 23. It 

follows that

dx

dt
= (-10p)(2)1232 = -2023p.

At the moment in question, the point Q is moving toward the origin at the speed of 

2023p ≈ 109 m>min. 

EXAMPLE 5  A jet airliner is flying at a constant altitude of 12,000 ft above sea level 

as it approaches a Pacific island. The aircraft comes within the direct line of sight of a 

radar station located on the island, and the radar indicates the initial angle between sea 

level and its line of sight to the aircraft is 30°. How fast (in miles per hour) is the aircraft 

approaching the island when first detected by the radar instrument if it is turning upward 

(counterclockwise) at the rate of 2>3 deg>sec in order to keep the aircraft within its direct 

line of sight?

Solution The aircraft A and radar station R are pictured in the coordinate plane, using 

the positive x-axis as the horizontal distance at sea level from R to A, and the positive 

y-axis as the vertical altitude above sea level. We let t represent time and observe that 

y = 12,000 is a constant. The general situation and line-of-sight angle u are depicted in 

Figure 3.37. We want to find dx>dt when u = p>6 rad and du>dt = 2>3 deg>sec.

From Figure 3.37, we see that

12,000
x = tan u  or  x = 12,000 cot u.

Using miles instead of feet for our distance units, the last equation translates to

x =
12,000

5280
 cot u.

Differentiation with respect to t gives

dx

dt
= -  

1200
528

 csc2 u  
du
dt

.

When u = p>6, sin2 u = 1>4, so csc2 u = 4. Converting du>dt = 2>3 deg>sec to radi-

ans per hour, we find

du
dt

=
2
3

 a p
180
b (3600) rad>hr.  1 hr = 3600 sec, 1 deg = p>180 rad

Substitution into the equation for dx>dt then gives

dx

dt
= a-  

1200
528
b (4)a2

3
b a p

180
b (3600) ≈ -380.

The negative sign appears because the distance x is decreasing, so the aircraft is approach-

ing the island at a speed of approximately 380 mi>hr when first detected by the radar. 

R

12,000

A

u
x

FIGURE 3.37 Jet airliner A traveling 

at constant altitude toward radar station R 

(Example 5).
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EXAMPLE 6  Figure 3.38a shows a rope running through a pulley at P and bearing a 

weight W at one end. The other end is held 5 ft above the ground in the hand M of a 

worker. Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the worker is 

walking rapidly away from the vertical line PW at the rate of 4 ft>sec. How fast is the 

weight being raised when the worker’s hand is 21 ft away from PW?

Solution We let OM be the horizontal line of length x ft from a point O directly below 

the pulley to the worker’s hand M at any instant of time (Figure 3.38). Let h be the height 

of the weight W above O, and let z denote the length of rope from the pulley P to the 

worker’s hand. We want to know dh>dt when x = 21 given that dx>dt = 4. Note that the 

height of P above O is 20 ft because O is 5 ft above the ground. We assume the angle at O 

is a right angle.

At any instant of time t we have the following relationships (see Figure 3.38b):

 20 - h + z = 45  Total length of rope is 45 ft.

 202 + x2 = z2.  Angle at O is a right angle.

If we solve for z = 25 + h in the first equation, and substitute into the second equation, 

we have

 202 + x2 = (25 + h)2. (1)

Differentiating both sides with respect to t gives

2x  
dx

dt
= 2(25 + h)  

dh

dt
,

and solving this last equation for dh>dt we find

 
dh

dt
=

x

25 + h
  
dx

dt
.  (2)

Since we know dx>dt, it remains only to find 25 + h at the instant when x = 21. From 

Equation (1),

202 + 212 = (25 + h)2

so that

(25 + h)2 = 841,  or  25 + h = 29.

Equation (2) now gives

dh

dt
=

21
29

# 4 =
84
29

≈ 2.9 ft>sec

as the rate at which the weight is being raised when x = 21 ft. 

x

M

P

O

W

5 ft

(a)

= 4 ft�sec
dx
dt

x

z

h

M

P

O

W
20 ft

(b)

= ?
dh
dt

FIGURE 3.38 A worker at M walks to 

the right, pulling the weight W upward 

as the rope moves through the pulley P 

(Example 6).

 1. Area Suppose that the radius r and area A = pr2 of a circle are 

differentiable functions of t. Write an equation that relates dA>dt 

to dr>dt.

 2. Surface area Suppose that the radius r and surface area 

S = 4pr2 of a sphere are differentiable functions of t. Write an 

equation that relates dS>dt to dr>dt.

 3. Assume that y = 5x and dx>dt = 2. Find dy>dt.

 4. Assume that 2x + 3y = 12 and dy>dt = -2. Find dx>dt.

 5. If y = x2 and dx>dt = 3, then what is dy>dt when x = -1?

 6. If x = y3 - y and dy>dt = 5, then what is dx>dt when y = 2?

 7. If x2 + y2 = 25 and dx>dt = -2, then what is dy>dt when 

x = 3 and y = -4?

 8. If x2y3 = 4>27 and dy>dt = 1>2, then what is dx>dt when 

x = 2?

 9. If L = 2x2 + y2, dx>dt = -1, and dy>dt = 3, find dL>dt 

when x = 5 and y = 12.

 10. If r + s2 + y3 = 12, dr>dt = 4, and ds>dt = -3, find dy>dt 

when r = 3 and s = 1.

EXERCISES 3.8
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 11. If the original 24 m edge length x of a cube decreases at the rate 

of 5 m>min, when x = 3 m at what rate does the cube’s

a. surface area change?

b. volume change?

 12. A cube’s surface area increases at the rate of 72 in2>sec. At what 

rate is the cube’s volume changing when the edge length is x = 3 in?

 13. Volume The radius r and height h of a right circular cylinder 

are related to the cylinder’s volume V by the formula V = pr2h.

a. How is dV>dt related to dh>dt if r is constant?

b. How is dV>dt related to dr>dt if h is constant?

c. How is dV>dt related to dr>dt and dh>dt if neither r nor h is 

constant?

 14. Volume The radius r and height h of a right circular cone are 

related to the cone’s volume V by the equation V = (1>3)pr2h.

a. How is dV>dt related to dh>dt if r is constant?

b. How is dV>dt related to dr>dt if h is constant?

c. How is dV>dt related to dr>dt and dh>dt if neither r nor h is 

constant?

 15. Changing voltage The voltage V (volts), current I (amperes), 

and resistance R (ohms) of an electric circuit like the one shown 

here are related by the equation V = IR. Suppose that V is 

increasing at the rate of 1 volt>sec while I is decreasing at the 

rate of 1>3 amp>sec. Let t denote time in seconds.

V

R

I

+ −

a. What is the value of dV>dt?

b. What is the value of dI>dt?

c. What equation relates dR>dt to dV>dt and dI>dt?

d. Find the rate at which R is changing when V = 12 volts and 

I = 2 amps. Is R increasing, or decreasing?

 16. Electrical power The power P (watts) of an electric circuit is 

related to the circuit’s resistance R (ohms) and current I (amperes) 

by the equation P = RI2.

a. How are dP>dt, dR>dt, and dI>dt related if none of P, R, and 

I are constant?

b. How is dR>dt related to dI>dt if P is constant?

 17. Distance Let x and y be differentiable functions of t and let 

s = 2x2 + y2 be the distance between the points (x, 0) and 

(0, y) in the xy-plane.

a. How is ds>dt related to dx>dt if y is constant?

b. How is ds>dt related to dx>dt and dy>dt if neither x nor y is 

constant?

c. How is dx>dt related to dy>dt if s is constant?

 18. Diagonals If x, y, and z are lengths of the edges of a rectangular 

box, the common length of the box’s diagonals is s =  

2x2 + y2 + z2.

a. Assuming that x, y, and z are diferentiable functions of t, 

how is ds>dt related to dx>dt, dy>dt, and dz>dt?

b. How is ds>dt related to dy>dt and dz>dt if x is constant?

c. How are dx>dt, dy>dt, and dz>dt related if s is constant?

 19. Area The area A of a triangle with sides of lengths a and b 

enclosing an angle of measure u is

A =
1
2

 ab sin u.

a. How is dA>dt related to du>dt if a and b are constant?

b. How is dA>dt related to du>dt and da>dt if only b is constant?

c. How is dA>dt related to du>dt, da>dt, and db>dt if none of 

a, b, and u are constant?

 20. Heating a plate When a circular plate of metal is heated in an 

oven, its radius increases at the rate of 0.01 cm >min. At what rate 

is the plate’s area increasing when the radius is 50 cm?

 21. Changing dimensions in a rectangle The length l of a rectan-

gle is decreasing at the rate of 2 cm>sec while the width w is 

increasing at the rate of 2 cm>sec. When l = 12 cm and 

w = 5 cm, find the rates of change of (a) the area, (b) the perim-

eter, and (c) the lengths of the diagonals of the rectangle. Which 

of these quantities are decreasing, and which are increasing?

 22. Changing dimensions in a rectangular box Suppose that the 

edge lengths x, y, and z of a closed rectangular box are changing 

at the following rates:

dx

dt
= 1 m>sec, 

dy

dt
= -2 m>sec, 

dz

dt
= 1 m>sec.

  Find the rates at which the box’s (a) volume, (b) surface area, 

and (c) diagonal length s = 2x2 + y2 + z2 are changing at the 

instant when x = 4, y = 3, and z = 2.

 23. A sliding ladder A 13-ft ladder is leaning against a house when 

its base starts to slide away (see accompanying figure). By the 

time the base is 12 ft from the house, the base is moving at the 

rate of 5 ft>sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder, 

wall, and ground changing then?

c. At what rate is the angle u between the ladder and the ground 

changing then?

x
0

y

13-ft ladder

y(t)

x(t)

u

 24. Commercial air traffic Two commercial airplanes are flying 

at an altitude of 40,000 ft along straight-line courses that intersect 

at right angles. Plane A is approaching the intersection point at a 

speed of 442 knots (nautical miles per hour; a nautical mile is 

2000 yd). Plane B is approaching the intersection at 481 knots. At 

what rate is the distance between the planes changing when A is 5 

nautical miles from the intersection point and B is 12 nautical 

miles from the intersection point?
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b. At what rate is the angle u changing at this instant (see the igure)?

Ring at edge

of dock

6'

u

 33. A balloon and a bicycle A balloon is rising vertically above a 

level, straight road at a constant rate of 1 ft>sec. Just when the 

balloon is 65 ft above the ground, a bicycle moving at a constant 

rate of 17 ft>sec passes under it. How fast is the distance s(t) 

between the bicycle and balloon increasing 3 sec later?

y

x
0

y(t)

s(t)

x(t)

 34. Making coffee Coffee is draining from a conical filter into a 

cylindrical coffeepot at the rate of 10 in3>min.

a. How fast is the level in the pot rising when the cofee in the 

cone is 5 in. deep?

b. How fast is the level in the cone falling then?

6″

6″

6″

How fast

is this

level rising?

How fast

is this

level falling?

 25. Flying a kite A girl flies a kite at a height of 300 ft, the wind 

carrying the kite horizontally away from her at a rate of 25 ft>sec. 

How fast must she let out the string when the kite is 500 ft away 

from her?

 26. Boring a cylinder The mechanics at Lincoln Automotive are 

reboring a 6-in.-deep cylinder to fit a new piston. The machine 

they are using increases the cylinder’s radius one-thousandth of 

an inch every 3 min. How rapidly is the cylinder volume increas-

ing when the bore (diameter) is 3.800 in.?

 27. A growing sand pile Sand falls from a conveyor belt at the rate 

of 10 m3>min onto the top of a conical pile. The height of the pile 

is always three-eighths of the base diameter. How fast are the (a) 

height and (b) radius changing when the pile is 4 m high? Answer 

in centimeters per minute.

 28. A draining conical reservoir Water is flowing at the rate of 

50 m3>min from a shallow concrete conical reservoir (vertex 

down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling 

when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then? 

Answer in centimeters per minute.

 29. A draining hemispherical reservoir Water is flowing at the 

rate of 6 m3>min from a reservoir shaped like a hemispherical bowl 

of radius 13 m, shown here in profile. Answer the following ques-

tions, given that the volume of water in a hemispherical bowl of 

radius R is V = (p>3)y2(3R - y) when the water is y meters deep.

r

y

13

Center of sphere

Water level

a. At what rate is the water level changing when the water is 8 m 

deep?

b. What is the radius r of the water’s surface when the water is  

y m deep?

c. At what rate is the radius r changing when the water is 8 m 

deep?

 30. A growing raindrop Suppose that a drop of mist is a perfect 

sphere and that, through condensation, the drop picks up moisture 

at a rate proportional to its surface area. Show that under these 

circumstances the drop’s radius increases at a constant rate.

 31. The radius of an inflating balloon A spherical balloon is 

inflated with helium at the rate of 100p ft3>min. How fast is the 

balloon’s radius increasing at the instant the radius is 5 ft? How 

fast is the surface area increasing?

 32. Hauling in a dinghy A dinghy is pulled toward a dock by a 

rope from the bow through a ring on the dock 6 ft above the bow. 

The rope is hauled in at the rate of 2 ft>sec.

a. How fast is the boat approaching the dock when 10 ft of rope 

are out?
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 39. A moving shadow A light shines from the top of a pole 50 ft 

high. A ball is dropped from the same height from a point 30 ft 

away from the light. (See accompanying figure.) How fast is the 

shadow of the ball moving along the ground 1>2 sec later? 

(Assume the ball falls a distance s = 16t2 ft in t sec.)

x

Light

30

Shadow

0

50-ft

pole

Ball at time t = 0 

1/2 sec later

x(t)

 40. A building’s shadow On a morning of a day when the sun will 

pass directly overhead, the shadow of an 80-ft building on level 

ground is 60 ft long. At the moment in question, the angle u the 

sun makes with the ground is increasing at the rate of 0.27°>min. 

At what rate is the shadow decreasing? (Remember to use radi-

ans. Express your answer in inches per minute, to the nearest 

tenth.)

80′

u

 41. A melting ice layer A spherical iron ball 8 in. in diameter is 

coated with a layer of ice of uniform thickness. If the ice melts at 

the rate of 10 in3>min, how fast is the thickness of the ice 

decreasing when it is 2 in. thick? How fast is the outer surface 

area of ice decreasing?

 42. Highway patrol A highway patrol plane flies 3 mi above a 

level, straight road at a steady 120 mi>h. The pilot sees an 

oncoming car and with radar determines that at the instant the 

line-of-sight distance from plane to car is 5 mi, the line-of-sight 

distance is decreasing at the rate of 160 mi>h. Find the car’s 

speed along the highway.

 43. Baseball players A baseball diamond is a square 90 ft on a 

side. A player runs from first base to second at a rate of 16 ft>sec.

a. At what rate is the player’s distance from third base changing 

when the player is 30 ft from irst base?

b. At what rates are angles u1 and u2 (see the igure) changing at 

that time?

 35. Cardiac output In the late 1860s, Adolf Fick, a professor of 

physiology in the Faculty of Medicine in Würzberg, Germany, 

developed one of the methods we use today for measuring how 

much blood your heart pumps in a minute. Your cardiac output as 

you read this sentence is probably about 7 L>min. At rest it is 

likely to be a bit under 6 L>min. If you are a trained marathon 

runner running a marathon, your cardiac output can be as high as 

30 L>min.

  Your cardiac output can be calculated with the formula

y =
Q

D
,

where Q is the number of milliliters of CO2 you exhale in a minute 

and D is the diference between the CO2 concentration (ml>L) 

in the blood pumped to the lungs and the CO2 concentration in 

the blood returning from the lungs. With Q = 233 ml>min and 

D = 97 - 56 = 41 ml>L,

y =
233 ml>min

41 ml>L ≈ 5.68 L>min,

fairly close to the 6 L>min that most people have at basal (resting) 

conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan Col-

lege of Medicine, East Tennessee State University.)

   Suppose that when Q = 233 and D = 41, we also know that 

D is decreasing at the rate of 2 units a minute but that Q remains 

unchanged. What is happening to the cardiac output?

 36. Moving along a parabola A particle moves along the parabola 

y = x2 in the first quadrant in such a way that its x-coordinate 

(measured in meters) increases at a steady 10 m>sec. How fast is 

the angle of inclination u of the line joining the particle to the 

origin changing when x = 3 m?

 37. Motion in the plane The coordinates of a particle in the metric 

xy-plane are differentiable functions of time t with dx>dt =

-1 m>sec and dy>dt = -5 m>sec. How fast is the particle’s dis-

tance from the origin changing as it passes through the point 

(5, 12)?

 38. Videotaping a moving car You are videotaping a race from a 

stand 132 ft from the track, following a car that is moving at 

180 mi>h (264 ft>sec), as shown in the accompanying figure. 

How fast will your camera angle u be changing when the car is 

right in front of you? A half second later?

u

Car

Camera

132′
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c. The player slides into second base at the rate of 15 ft>sec. 

At what rates are angles u1 and u2 changing as the player 

touches base?

90′

Second base

Player

Home

30′ First

base

Third

base

u1

u2

 44. Ships Two ships are steaming straight away from a point O 

along routes that make a 120° angle. Ship A moves at 14 knots 

(nautical miles per hour; a nautical mile is 2000 yd). Ship B 

moves at 21 knots. How fast are the ships moving apart when 

OA = 5 and OB = 3 nautical miles?

 45. Clock’s moving hands At what rate is the angle between a 

clock’s minute and hour hands changing at 4 o’clock in the afternoon?

 46. Oil spill An explosion at an oil rig located in gulf waters causes 

an elliptical oil slick to spread on the surface from the rig. The 

slick is a constant 9 in. thick. After several days, when the major 

axis of the slick is 2 mi long and the minor axis is 3/4 mi wide, it is 

determined that its length is increasing at the rate of 30 ft/hr, and 

its width is increasing at the rate of 10 ft/hr. At what rate (in cubic 

feet per hour) is oil flowing from the site of the rig at that time?

 47. A lighthouse beam A lighthouse sits 1 km offshore, and its 

beam of light rotates counterclockwise at the constant rate of 3 

full circles per minute. At what rate is the image of the beam 

moving down the shoreline when the image is 1 km from the spot 

on the shoreline nearest the lighthouse?

1 km Lighthouse

x

S
h
o
re

li
n
e

u

3.9 Linearization and Differentials

It is often useful to approximate complicated functions with simpler ones that give the 

accuracy we want for specific applications and at the same time are easier to work with 

than the original functions. The approximating functions discussed in this section are 

called linearizations, and they are based on tangent lines. Other approximating functions, 

such as polynomials, are discussed in Chapter 10.

We introduce new variables dx and dy, called differentials, and define them in a way that 

makes Leibniz’s notation for the derivative dy>dx a true ratio. We use dy to estimate error in 

measurement, which then provides for a precise proof of the Chain Rule (Section 3.6).

Linearization

As you can see in Figure 3.39, the tangent to the curve y = x2 lies close to the curve near 

the point of tangency. For a brief interval to either side, the y-values along the tangent line

give good approximations to the y-values on the curve. We observe this phenomenon by 

zooming in on the two graphs at the point of tangency, or by looking at tables of values for 

the difference between ƒ(x) and its tangent line near the x-coordinate of the point of tan-

gency. The phenomenon is true not just for parabolas; every differentiable curve behaves 

locally like its tangent line.

In general, the tangent to y = ƒ(x) at a point x = a, where ƒ is differentiable 

(Figure 3.40), passes through the point (a, ƒ(a)), so its point-slope equation is

y = ƒ(a) + ƒ′(a)(x - a).

Thus, this tangent line is the graph of the linear function

L(x) = ƒ(a) + ƒ′(a)(x - a).

As long as this line remains close to the graph of ƒ as we move off the point of tangency, 

L (x) gives a good approximation to ƒ(x).
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EXAMPLE 1  Find the linearization of ƒ(x) = 21 + x at x = 0 (Figure 3.41).

4

0
3−1

2

0
20

y = x2 and its tangent y = 2x − 1 at (1, 1). Tangent and curve very close near (1, 1).

1.2

0.8
1.20.8

1.003

0.997
1.0030.997

Tangent and curve very close throughout

entire x-interval shown.

Tangent and curve closer still. Computer

screen cannot distinguish tangent from

curve on this x-interval.

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

FIGURE 3.39 The more we magnify the graph of a function near a point where the 

function is differentiable, the flatter the graph becomes and the more it resembles its 

tangent.

x

y

0 a

Slope = f ′(a)

y = f (x)

y = L(x)(a,  f (a))

FIGURE 3.40 The tangent to the 

curve y = ƒ(x) at x = a is the line 

L(x) = ƒ(a) + ƒ′(a)(x - a).

DEFINITIONS If ƒ is differentiable at x = a, then the approximating function

L(x) = ƒ(a) + ƒ′(a)(x - a)

is the linearization of ƒ at a. The approximation

ƒ(x) ≈ L(x)

of ƒ by L is the standard linear approximation of ƒ at a. The point x = a is the 

center of the approximation.

x

y

0−1

2

1

1 2 3 4

y =    +

y =    +

5
4

x

4
1 

x

2

y = "1 + x

FIGURE 3.41 The graph of y = 21 + x and its linear-

izations at x = 0 and x = 3. Figure 3.42 shows a magni-

fied view of the small window about 1 on the y-axis.

1.0

0−0.1 0.1 0.2

1.1

0.9

y = 1 +

y = "1 + x

2
x

FIGURE 3.42 Magnified view of the 

window in Figure 3.41.
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Solution Since

ƒ′(x) =
1
2

 (1 + x)-1>2,
we have ƒ(0) = 1 and ƒ′(0) = 1>2, giving the linearization

L(x) = ƒ(a) + ƒ′(a)(x - a) = 1 +
1
2

 (x - 0) = 1 +
x

2
.

See Figure 3.42. 

The following table shows how accurate the approximation 21 + x ≈ 1 + (x>2) 

from Example 1 is for some values of x near 0. As we move away from zero, we lose accu-

racy. For example, for x = 2, the linearization gives 2 as the approximation for 23, 

which is not even accurate to one decimal place.

 Approximation True value �True value − approximation �

21.005 ≈ 1 +
0.005

2
= 1.00250  1.002497  0.000003 6 10-5

 21.05 ≈ 1 +
0.05

2
 = 1.025  1.024695  0.000305 6 10-3

 21.2 ≈ 1 +
0.2
2

 = 1.10  1.095445  0.004555 6 10-2

Do not be misled by the preceding calculations into thinking that whatever we do 

with a linearization is better done with a calculator. In practice, we would never use a 

linearization to find a particular square root. The utility of a linearization is its ability to 

replace a complicated formula by a simpler one over an entire interval of values. If we 

have to work with 21 + x for x in an interval close to 0 and can tolerate the small 

amount of error involved over that interval, we can work with 1 + (x>2) instead. Of 

course, we then need to know how much error there is. We further examine the estimation 

of error in Chapter 10.

A linear approximation normally loses accuracy away from its center. As Figure 3.41 

suggests, the approximation 21 + x ≈ 1 + (x>2) is too crude to be useful near x = 3. 

There, we need the linearization at x = 3.

EXAMPLE 2  Find the linearization of ƒ(x) = 21 + x at x = 3. (See Figure 3.41.)

Solution We evaluate the equation defining L(x) at a = 3. With

ƒ(3) = 2,  ƒ′(3) =
1
2

 (1 + x)-1>2 `
x = 3

=
1
4

,

we have

L(x) = 2 +
1
4

 (x - 3) =
5
4

+
x

4
.

At x = 3.2, the linearization in Example 2 gives

21 + x = 21 + 3.2 ≈
5
4

+
3.2
4

= 1.250 + 0.800 = 2.050,

which differs from the true value 24.2 ≈ 2.04939 by less than one one-thousandth. The 

linearization in Example 1 gives

21 + x = 21 + 3.2 ≈ 1 +
3.2
2

= 1 + 1.6 = 2.6,

a result that is off by more than 25%. 
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EXAMPLE 3  Find the linearization of ƒ(x) = cos x at x = p>2 (Figure 3.43).

Solution Since ƒ(p>2) = cos (p>2) = 0, ƒ′(x) = -sin x, and ƒ′(p>2) = -sin (p>2) =

-1, we ind the linearization at a = p>2 to be

 L(x) = ƒ(a) + ƒ′(a)(x - a)

 = 0 + (-1)ax -
p
2
b

  = -x +
p
2

.  

An important linear approximation for roots and powers is

(1 + x)k ≈ 1 + kx  (x near 0; any number k)

(Exercise 13). This approximation, good for values of x sufficiently close to zero, has 

broad application. For example, when x is small,

 21 + x ≈ 1 +
1
2

 x   k = 1>2
 

1
1 - x

= (1 - x)-1 ≈ 1 + (-1)(-x) = 1 + x   k = -1;  replace x by -x.

 23 1 + 5x4 = (1 + 5x4)1>3 ≈ 1 +
1
3

 (5x4) = 1 +
5
3

 x4   k = 1>3;  replace x by 5x4.

 
1

21 - x2
= (1 - x2)-1>2 ≈ 1 + a-  

1
2
b (-x2) = 1 +

1
2

 x2  
k = -1>2;  

replace x by -x2.

x

y

0 p
2 y = cos x

y = −x +
p
2

FIGURE 3.43 The graph of ƒ(x) = cos x 

and its linearization at x = p>2. Near 

x = p>2, cos x ≈ -x + (p>2)  

(Example 3).

Approximations Near x = 0

 21 + x ≈ 1 +
x

2

 
1

1 - x
≈ 1 + x

 
1

21 - x2
≈ 1 +

x2

2

DEFINITION Let y = ƒ(x) be a differentiable function. The differential dx is 

an independent variable. The differential dy is

dy = ƒ′(x) dx.

EXAMPLE 4

(a) Find dy if y = x5 + 37x.

(b) Find the value of dy when x = 1 and dx = 0.2.

Solution

(a) dy = (5x4 + 37) dx

(b) Substituting x = 1 and dx = 0.2 in the expression for dy, we have

 dy = (5 # 14 + 37) 0.2 = 8.4. 

The geometric meaning of differentials is shown in Figure 3.44. Let x = a and set 

dx = ∆x. The corresponding change in y = ƒ(x) is

∆y = ƒ(a + dx) - ƒ(a).

Differentials

We sometimes use the Leibniz notation dy>dx to represent the derivative of y with respect 

to x. Contrary to its appearance, it is not a ratio. We now introduce two new variables dx 

and dy with the property that when their ratio exists, it is equal to the derivative.

Unlike the independent variable dx, the variable dy is always a dependent variable. It 

depends on both x and dx. If dx is given a specific value and x is a particular number in the 

domain of the function ƒ, then these values determine the numerical value of dy. Often the 

variable dx is chosen to be ∆x, the change in x.
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The corresponding change in the tangent line L is

 ∆L = L(a + dx) - L(a)

 = ƒ(a) + ƒ′(a)3 (a + dx) - a4 - ƒ(a)(++++1+)+++++1*    ()*
 L (a + dx) L (a)

 = ƒ′(a) dx.

x

y

0 a

y = f (x)

Δy = f (a + dx) − f (a)

ΔL = f ′(a)dx

dx = Δx

(a, f (a))

Tangent

line

a + dx

When dx is a small change in x,

the corresponding change in

the linearization is precisely dy.

(a + dx, f (a + dx))

FIGURE 3.44 Geometrically, the differential dy is the 

change ∆L in the linearization of ƒ when x = a changes by an 

amount dx = ∆x.

That is, the change in the linearization of ƒ is precisely the value of the differential dy 

when x = a and dx = ∆x. Therefore, dy represents the amount the tangent line rises or 

falls when x changes by an amount dx = ∆x.

If dx ≠ 0, then the quotient of the differential dy by the differential dx is equal to the 

derivative ƒ′(x) because

dy , dx =
ƒ′(x) dx

dx
= ƒ′(x) =

dy

dx
.

We sometimes write

dƒ = ƒ′(x) dx

in place of dy = ƒ′(x) dx, calling dƒ the differential of f. For instance, if ƒ(x) = 3x2 - 6, 

then

dƒ = d(3x2 - 6) = 6x dx.

Every differentiation formula like

d (u + y)

dx
=

du

dx
+

dy
dx
  or  

d (sin u)

dx
= cos u  

du

dx

has a corresponding differential form like

d(u + y) = du + dy  or  d(sin u) = cos u du.

EXAMPLE 5  We can use the Chain Rule and other differentiation rules to find dif-

ferentials of functions.

(a) d (tan 2x) = sec2 (2x) d (2x) = 2 sec2 2x dx

(b) d a x

x + 1
b =

(x + 1) dx - x d (x + 1)

(x + 1)2
=

xdx + dx - x dx

(x + 1)2
=

dx

(x + 1)2
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Estimating with Differentials

Suppose we know the value of a differentiable function ƒ(x) at a point a and want to esti-

mate how much this value will change if we move to a nearby point a + dx. If dx = ∆x is 

small, then we can see from Figure 3.44 that ∆y is approximately equal to the differential 

dy. Since

ƒ(a + dx) = ƒ(a) + ∆y,  ∆x = dx

the differential approximation gives

ƒ(a + dx) ≈ ƒ(a) + dy

when dx = ∆x. Thus the approximation ∆y ≈ dy can be used to estimate ƒ(a + dx) 

when ƒ(a) is known, dx is small, and dy = ƒ′(a) dx.

EXAMPLE 6  The radius r of a circle increases from a = 10 m to 10.1 m  

(Figure 3.45). Use dA to estimate the increase in the circle’s area A. Estimate the area of 

the enlarged circle and compare your estimate to the true area found by direct calculation.

Solution Since A = pr2, the estimated increase is

dA = A′(a) dr = 2pa dr = 2p(10)(0.1) = 2p m2.

Thus, since A(r + ∆r) ≈ A(r) + dA, we have

 A(10 + 0.1) ≈ A(10) + 2p

 = p(10)2 + 2p = 102p.

The area of a circle of radius 10.1 m is approximately 102p m2.

The true area is

 A(10.1) = p(10.1)2

 = 102.01p m2.

The error in our estimate is 0.01p m2, which is the difference ∆A - dA. 

When using differentials to estimate functions, our goal is to choose a nearby point x = a 

where both ƒ(a) and the derivative ƒ′(a) are easy to evaluate.

EXAMPLE 7  Use differentials to estimate

(a) 7.971>3 (b) sin (p>6 + 0.01).

Solution

(a) The diferential associated with the cube root function y = x1>3 is

dy =
1

3x2>3 dx.

We set a = 8, the closest number near 7.97 where we can easily compute ƒ(a) and 

ƒ′(a). To arrange that a + dx = 7.97, we choose dx = -0.03. Approximating with 

the diferential gives

ƒ(7.97) = ƒ(a + dx) ≈ ƒ(a) + dy

 = 81>3 +
1

3(8)2>3 (-0.03)

 = 2 +
1
12

 (-0.03) = 1.9975

This gives an approximation to the true value of 7.971>3, which is 1.997497 to  

6 decimals.

ΔA ≈ dA = 2pa dr

a = 10

dr = 0.1

FIGURE 3.45 When dr is small com-

pared with a, the differential dA gives 

the estimate A(a + dr) = pa2 + dA 

(Example 6).
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(b) The diferential associated with y = sin x is

dy = cos x dx.

  To estimate sin (p>6 + 0.01), we set a = p>6 and dx = 0.01. Then

ƒ(p>6 + 0.01) = ƒ(a + dx) ≈ ƒ(a) + dy

 = sin 
p
6

+ acos 
p
6
b  (0.01)

 =
1
2

+
23
2

 (0.01) ≈ 0.5087

For comparison, the true value of sin (p>6 + 0.01) to 6 decimals is 0.508635. 

The method in part (b) of Example 7 can be used in computer algorithms to give val-

ues of trigonometric functions. The algorithms store a large table of sine and cosine values 

between 0 and p>4. Values between these stored values are computed using differentials 

as in Example 7b. Values outside of 30, p>44  are computed from values in this interval 

using trigonometric identities.

sin (a + dx) ≈ sin a + (cos a) dx

We measure the approximation error by subtracting dƒ from ∆ƒ:

 Approximation error = ∆ƒ - dƒ

 = ∆ƒ - ƒ′(a)∆x

 = ƒ(a + ∆x) - ƒ(a) - ƒ′(a)∆x(+++)+++*
 ∆ƒ

 = aƒ(a + ∆x) - ƒ(a)

∆x
- ƒ′(a)b # ∆x

(++++1+)+++++1*
 Call this part e.

 = e # ∆x.

As ∆x S 0, the difference quotient

ƒ(a + ∆x) - ƒ(a)

∆x

approaches ƒ′(a) (remember the definition of ƒ′(a)), so the quantity in parentheses 

becomes a very small number (which is why we called it e). In fact, e S 0 as ∆x S 0. 

When ∆x is small, the approximation error e ∆x is smaller still.

∆ƒ = ƒ′(a)∆x + e ∆x
()*     (+)+*        ()*
true 

change

estimated 

change

error

Although we do not know the exact size of the error, it is the product e # ∆x of two small 

quantities that both approach zero as ∆x S 0. For many common functions, whenever ∆x 

is small, the error is still smaller.

Error in Differential Approximation

Let ƒ(x) be differentiable at x = a and suppose that dx = ∆x is an increment of x. We 

have two ways to describe the change in ƒ as x changes from a to a + ∆x:

The true change:   ∆ƒ = ƒ(a + ∆x) - ƒ(a)

 The differential estimate:  dƒ = ƒ′(a) ∆x.

How well does dƒ approximate ∆ƒ?
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Change in y = ƒ(x) near x = a 

If y = ƒ(x) is differentiable at x = a and x changes from a to a + ∆x, the 

change ∆y in ƒ is given by

 ∆y = ƒ′(a) ∆x + e ∆x (1)

in which e S 0 as ∆x S 0.

In Example 6 we found that

∆A = p(10.1)2 - p(10)2 = (102.01 - 100)p = (2p + 0.01p) m26        ()*
dA error

so the approximation error is ∆A - dA = e∆r = 0.01p and e = 0.01p>∆r =

0.01p>0.1 = 0.1p m.

Proof of the Chain Rule

Equation (1) enables us to give a complete proof of the Chain Rule. Our goal is to show 

that if ƒ(u) is a differentiable function of u and u = g(x) is a differentiable function of x, 

then the composition y = ƒ(g(x)) is a differentiable function of x. Since a function is dif-

ferentiable if and only if it has a derivative at each point in its domain, we must show that 

whenever g is differentiable at x0 and ƒ is differentiable at g(x0), then the composition is 

differentiable at x0 and the derivative of the composition satisfies the equation

dy

dx
2
x = x0

= ƒ′(g(x0)) # g′(x0).

Let ∆x be an increment in x and let ∆u and ∆y be the corresponding increments in u 

and y. Applying Equation (1) we have

∆u = g′(x0)∆x + e1 ∆x = (g′(x0) + e1)∆x,

where e1 S 0 as ∆x S 0. Similarly,

∆y = ƒ′(u0)∆u + e2 ∆u = (ƒ′(u0) + e2)∆u,

where e2 S 0 as ∆u S 0. Notice also that ∆u S 0 as ∆x S 0. Combining the equations 

for ∆u and ∆y gives

∆y = (ƒ′(u0) + e2)(g′(x0) + e1)∆x,

so

∆y

∆x
= ƒ′(u0)g′(x0) + e2 g′(x0) + ƒ′(u0)e1 + e2e1.

Since e1 and e2 go to zero as ∆x goes to zero, the last three terms on the right vanish in 

the limit, leaving

 
dy

dx
2
x = x0

= lim
∆xS0

 
∆y

∆x
= ƒ′(u0)g′(x0) = ƒ′(g(x0)) # g′(x0). 

Sensitivity to Change

The equation dƒ = ƒ′(x) dx tells how sensitive the output of ƒ is to a change in input at 

different values of x. The larger the value of ƒ′ at x, the greater the effect of a given change 
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dx. As we move from a to a nearby point a + dx, we can describe the change in ƒ in three 

ways: absolute, relative, and percentage.

 True  Estimated

Absolute change ∆ƒ = ƒ(a + dx) - ƒ(a) dƒ = ƒ′(a) dx

Relative change ∆ƒ

ƒ(a)

dƒ

ƒ(a)

Percentage change ∆ƒ

ƒ(a)
* 100

dƒ

ƒ(a)
* 100

EXAMPLE 8  You want to calculate the depth of a well from the equation s = 16t2 

by timing how long it takes a heavy stone you drop to splash into the water below. How 

sensitive will your calculations be to a 0.1-sec error in measuring the time?

Solution The size of ds in the equation

ds = 32t dt

depends on how big t is. If t = 2 sec, the change caused by dt = 0.1 is about

ds = 32(2)(0.1) = 6.4 ft.

Three seconds later at t = 5 sec, the change caused by the same dt is

ds = 32(5)(0.1) = 16 ft.

For a fixed error in the time measurement, the error in using ds to estimate the depth is 

larger when it takes a longer time before the stone splashes into the water. That is, the esti-

mate is more sensitive to the effect of the error for larger values of t. 

EXAMPLE 9  Newton’s second law,

F =
d

dt
 (my) = m 

dy
dt

= ma,

is stated with the assumption that mass is constant, but we know this is not strictly true 

because the mass of an object increases with velocity. In Einstein’s corrected formula, 

mass has the value

m =
m0

21 - y2>c2
,

where the “rest mass” m0 represents the mass of an object that is not moving and c is the 

speed of light, which is about 300,000 km>sec. Use the approximation

 
1

21 - x2
≈ 1 +

1
2

  x2 (2)

to estimate the increase ∆m in mass resulting from the added velocity y.

Solution When y is very small compared with c, y2>c2 is close to zero and it is safe to 

use the approximation

1

21 - y2>c2
≈ 1 +

1
2

 ay2

c2
b   Eq. (2) with x =

y
c
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to obtain

m =
m0

21 - y2>c2
≈ m0 c 1 +

1
2

 ay2

c2
b d = m0 +

1
2

 m0 y2 a 1

c2
b ,

or

 m ≈ m0 +
1
2

 m0 y2 a 1

c2
b . (3)

Equation (3) expresses the increase in mass that results from the added velocity y. 

Converting Mass to Energy

Equation (3) derived in Example 9 has an important interpretation. In Newtonian physics, 

(1>2) m0y
2 is the kinetic energy (KE) of the object, and if we rewrite Equation (3) in the 

form

(m - m0) c2 ≈
1
2

 m0 y2,

we see that

(m - m0) c
2 ≈

1
2

 m0 y2 =
1
2

 m0 y2 -
1
2

 m0 (0)2 = ∆(KE),

or

(∆m)c2 ≈ ∆(KE).

So the change in kinetic energy ∆(KE) in going from velocity 0 to velocity y is approxi-

mately equal to (∆m) c2, the change in mass times the square of the speed of light. Using 

c ≈ 3 * 108 m>sec, we see that a small change in mass can create a large change in 

energy.

Finding Linearizations

In Exercises 1–5, find the linearization L(x) of ƒ(x) at x = a.

 1. ƒ(x) = x3 - 2x + 3, a = 2

 2. ƒ(x) = 2x2 + 9, a = -4

 3. ƒ(x) = x +
1
x , a = 1

 4. ƒ(x) = 23 x, a = -8

 5. ƒ(x) = tan x, a = p

 6. Common linear approximations at x = 0 Find the lineariza-

tions of the following functions at x = 0.

a. sin x  b. cos x  c. tan x  

Linearization for Approximation

In Exercises 7–12, find a linearization at a suitably chosen integer 

near a at which the given function and its derivative are easy to evalu-

ate.

 7. ƒ(x) = x2 + 2x, a = 0.1

 8. ƒ(x) = x-1, a = 0.9

 9. ƒ(x) = 2x2 + 3x - 3, a = -0.9

 10. ƒ(x) = 1 + x, a = 8.1

EXERCISES 3.9

 11. ƒ(x) = 23 x, a = 8.5

 12. ƒ(x) =
x

x + 1
, a = 1.3

 13. Show that the linearization of ƒ(x) = (1 + x)k at x = 0 is 

L(x) = 1 + kx.

 14. Use the linear approximation (1 + x)k ≈ 1 + kx to ind an 

 approximation for the function ƒ(x) for values of x near zero.

a. ƒ(x) = (1 - x)6 b. ƒ(x) =
2

1 - x

c. ƒ(x) =
1

21 + x
 d. ƒ(x) = 22 + x2

e. ƒ(x) = (4 + 3x)1>3 f. ƒ(x) = B3 a1 -
x

2 + x
b2

 15. Faster than a calculator Use the approximation (1 + x)k ≈
1 + kx to estimate the following.

a. (1.0002)50 b. 23 1.009

 16. Find the linearization of ƒ(x) = 2x + 1 + sin x at x = 0. How 

is it related to the individual linearizations of 2x + 1 and sin x at 

x = 0?



172 Chapter 3 Derivatives

Applications

 41. The radius of a circle is increased from 2.00 to 2.02 m.

a. Estimate the resulting change in area.

b. Express the estimate as a percentage of the circle’s original 

area.

 42. The diameter of a tree was 10 in. During the following year, the 

circumference increased 2 in. About how much did the tree’s 

 diameter increase? The tree’s cross-sectional area?

 43. Estimating volume Estimate the volume of material in a cylin-

drical shell with length 30 in., radius 6 in., and shell thickness 0.5 in.

6 in.
0.5 in.

30 in.

 44. Estimating height of a building A surveyor, standing 30 ft 

from the base of a building, measures the angle of elevation to the 

top of the building to be 75°. How accurately must the angle be 

measured for the percentage error in estimating the height of the 

building to be less than 4%?

 45. The radius r of a circle is measured with an error of at most 2%. 

What is the maximum corresponding percentage error in comput-

ing the circle’s

a. circumference? b. area?

 46. The edge x of a cube is measured with an error of at most 0.5%. 

What is the maximum corresponding percentage error in comput-

ing the cube’s

a. surface area? b. volume?

 47. Tolerance The height and radius of a right circular cylinder are 

equal, so the cylinder’s volume is V = ph3. The volume is to be 

calculated with an error of no more than 1% of the true value. 

Find approximately the greatest error that can be tolerated in the 

measurement of h, expressed as a percentage of h.

 48. Tolerance

a. About how accurately must the interior diameter of a  

10-m-high cylindrical storage tank be measured to calculate 

the tank’s volume to within 1% of its true value?

b. About how accurately must the tank’s exterior diameter be 

measured to calculate the amount of paint it will take to paint 

the side of the tank to within 5% of the true amount?

 49. The diameter of a sphere is measured as 100 { 1 cm and the vol-

ume is calculated from this measurement. Estimate the percentage 

error in the volume calculation.

 50. Estimate the allowable percentage error in measuring the diameter 

D of a sphere if the volume is to be calculated correctly to within 

3%.

 51. The efect of light maneuvers on the heart The amount of 

work done by the heart’s main pumping chamber, the left ven-

tricle, is given by the equation

W = PV +
Vdy2

2g
,

  where W is the work per unit time, P is the average blood pressure, 

V is the volume of blood pumped out during the unit of time, d 

(“delta”) is the weight density of the blood, y is the average veloc-

ity of the exiting blood, and g is the acceleration of gravity.

Derivatives in Differential Form

In Exercises 17–28, find dy.

 17. y = x3 - 32x 18. y = x21 - x2

 19. y =
2x

1 + x2
 20. y =

21x

3(1 + 1x)

 21. 2y3>2 + xy - x = 0 22. xy2 - 4x3>2 - y = 0

 23. y = sin (51x) 24. y = cos (x2)

 25. y = 4 tan (x3>3) 26. y = sec (x2 - 1)

 27. y = 3 csc 11 - 22x2 28. y = 2 cot a 1

1x
b

Approximation Error

In Exercises 29–34, each function ƒ(x) changes value when x changes 

from x0 to x0 + dx. Find

a. the change ∆ƒ = ƒ(x0 + dx) - ƒ(x0);

b. the value of the estimate dƒ = ƒ′(x0) dx; and

c. the approximation error 0 ∆ƒ - dƒ 0 .

x

y

0

dx

x0 + dx

df = f ′(x0) dx

Δf = f (x0 + dx) − f (x0)

Tangent

(x0, f (x0))

y = f (x)

x0

 29. ƒ(x) = x2 + 2x, x0 = 1, dx = 0.1 

 30. ƒ(x) = 2x2 + 4x - 3, x0 = -1, dx = 0.1

 31. ƒ(x) = x3 - x, x0 = 1, dx = 0.1

 32. ƒ(x) = x4, x0 = 1, dx = 0.1

 33. ƒ(x) = x-1, x0 = 0.5, dx = 0.1

 34. ƒ(x) = x3 - 2x + 3, x0 = 2, dx = 0.1

Differential Estimates of Change

In Exercises 35–40, write a differential formula that estimates the 

given change in volume or surface area.

 35. The change in the volume V = (4>3)pr3 of a sphere when the 

radius changes from r0 to r0 + dr

 36. The change in the volume V = x3 of a cube when the edge lengths 

change from x0 to x0 + dx

 37. The change in the surface area S = 6x2 of a cube when the edge 

lengths change from x0 to x0 + dx

 38. The change in the lateral surface area S = pr2r2 + h2 of a right 

circular cone when the radius changes from r0 to r0 + dr and the 

height does not change

 39. The change in the volume V = pr2h of a right circular cylinder 

when the radius changes from r0 to r0 + dr and the height does 

not change

 40. The change in the lateral surface area S = 2prh of a right circu-

lar cylinder when the height changes from h0 to h0 + dh and the 

 radius does not change
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d. Find the quadratic approximation to g(x) = 1>x at x = 1. 

Graph g and its quadratic approximation together. Comment 

on what you see.

e. Find the quadratic approximation to h(x) = 21 + x at 

x = 0. Graph h and its quadratic approximation together. 

Comment on what you see.

f. What are the linearizations of ƒ, g, and h at the respective 

points in parts (b), (d), and (e)?

 56. The linearization is the best linear approximation Suppose 

that y = ƒ(x) is diferentiable at x = a and that g(x) = g(x) =

m(x - a) + c is a linear function in which m and c are constants. 

If the error E(x) = ƒ(x) - g(x) were small enough near x = a, 

we might think of using g as a linear approximation of ƒ instead 

of the linearization L(x) = ƒ(a) + ƒ′(a)(x - a). Show that if we 

impose on g the conditions

1. E(a) = 0 The approximation error is zero at x = a.

2. lim
xSa

  
E(x)

x - a = 0 
The error is negligible when 
compared with x - a.

  then g(x) = ƒ(a) + ƒ′(a)(x - a). Thus, the linearization L(x) 

gives the only linear approximation whose error is both zero at 

x = a and negligible in comparison with x - a.

x
a

y = f (x)

(a, f (a))

The linearization, L(x):

y = f (a) + f ′(a)(x − a)
Some other linear

approximation, g(x):

y = m(x − a) + c

COMPUTER EXPLORATIONS

In Exercises 57–60, use a CAS to estimate the magnitude of the error 

in using the linearization in place of the function over a specified 

interval I. Perform the following steps:

a. Plot the function ƒ over I.

b. Find the linearization L of the function at the point a.

c. Plot ƒ and L together on a single graph.

d. Plot the absolute error �ƒ(x) - L(x) �  over I  and ind its 

maximum value.

e. From your graph in part (d), estimate as large a d 7 0 as you 

can, satisfying0 x - a 0 6 d  1  0 ƒ(x) - L(x) 0 6 e

for e = 0.5, 0.1, and 0.01. Then check graphically to see if 

your d@estimate holds true.

 57. ƒ(x) = x3 + x2 - 2x, 3-1, 24 , a = 1

 58. ƒ(x) =
x - 1

4x2 + 1
, c-  

3
4

, 1 d , a =
1
2

 59. ƒ(x) = x2>3(x - 2), 3-2, 34 , a = 2

 60. ƒ(x) = 2x - sin x, 30, 2p4 , a = 2

T

T

   When P, V, d, and y remain constant, W becomes a function 

of g, and the equation takes the simpliied form

W = a +
b
g  (a, b constant).

  As a member of NASA’s medical team, you want to know how 

sensitive W is to apparent changes in g caused by light maneu-

vers, and this depends on the initial value of g. As part of your 

investigation, you decide to compare the efect on W of a given 

change dg on the moon, where g = 5.2 ft>sec2, with the efect the 

same change dg would have on Earth, where g = 32 ft>sec2. Use 

the simpliied equation above to ind the ratio of dWmoon to dWEarth.

 52. Drug concentration The concentration C in(mg>ml) milli-

grams per milliliter (mg>ml) of a certain drug in a person’s blood-

stream t hrs after a pill is swallowed is modeled by

C (t) =
4t

1 + t3
+ 0.06t.

  Estimate the change in concentration when t changes from 20 to 

30 min.

 53. Unclogging arteries The formula V =  kr4, discovered by the 

physiologist Jean Poiseuille (1797–1869), allows us to  predict how 

much the radius of a partially clogged artery has to be  expanded 

in order to restore normal blood low. The formula says that the 

volume V of blood lowing through the artery in a unit of time at 

a ixed pressure is a constant k times the radius of the artery to the 

fourth power. How will a 10% increase in r afect V?

 54. Measuring acceleration of gravity When the length L of a 

clock pendulum is held constant by controlling its temperature, 

the pendulum’s period T depends on the acceleration of gravity g. 

The period will therefore vary slightly as the clock is moved from 

place to place on the earth’s surface, depending on the change in 

g. By keeping track of ∆T, we can estimate the variation in g from 

the equation T = 2p(L>g)1>2 that relates T, g, and L.

a. With L held constant and g as the independent variable, cal-

culate dT and use it to answer parts (b) and (c).

b. If g increases, will T increase or decrease? Will a pendulum 

clock speed up or slow down? Explain.

c. A clock with a 100-cm pendulum is moved from a location 

where g = 980 cm>sec2 to a new location. This increases the 

period by dT = 0.001 sec. Find dg and estimate the value of 

g at the new location.

 55. Quadratic approximations

a. Let Q(x) = b0 + b1(x - a) + b2(x - a)2 be a quadratic 

 approximation to ƒ(x) at x = a with the properties:

 i) Q(a) = ƒ(a)

 ii) Q′(a) = ƒ′(a)

 iii) Q″(a) = ƒ″(a).

Determine the coeicients b0, b1, and b2.

b. Find the quadratic approximation to ƒ(x) = 1>(1 - x) at 

x = 0.

c. Graph ƒ(x) = 1>(1 - x) and its quadratic approximation at 

x = 0. Then zoom in on the two graphs at the point (0, 1). 

Comment on what you see.

T
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 1. What is the derivative of a function ƒ? How is its domain related 

to the domain of ƒ? Give examples.

 2. What role does the derivative play in deining slopes, tangent 

lines, and rates of change?

 3. How can you sometimes graph the derivative of a function when 

all you have is a table of the function’s values?

 4. What does it mean for a function to be diferentiable on an open 

interval? On a closed interval?

 5. How are derivatives and one-sided derivatives related?

 6. Describe geometrically when a function typically does not have a 

derivative at a point.

 7. How is a function’s diferentiability at a point related to its conti-

nuity there, if at all?

 8. What rules do you know for calculating derivatives? Give some 

examples.

 9. Explain how the three formulas

a. 
d

dx
 (xn) = nxn - 1 b. 

d

dx
 (cu) = c 

du

dx

c. 
d

dx
 (u1 + u2 +  g+  un) =

du1

dx
+

du2

dx
 +  g+  

dun

dx

 enable us to diferentiate any polynomial.

 10. What formula do we need, in addition to the three listed in 

 Question 9, to diferentiate rational functions?

 11. What is a second derivative? A third derivative? How many 

 derivatives do the functions you know have? Give examples.

 12. What is the relationship between a function’s average and instan-

taneous rates of change? Give an example.

 13. How do derivatives arise in the study of motion? What can you 

learn about an object’s motion along a line by examining the de-

rivatives of the object’s position function? Give examples.

 14. How can derivatives arise in economics?

 15. Give examples of still other applications of derivatives.

 16. What do the limits limhS0 ((sin h)>h) and limhS0 ((cos h - 1)>h) 

have to do with the derivatives of the sine and cosine functions? 

What are the derivatives of these functions?

 17. Once you know the derivatives of sin x and cos x, how can you 

ind the derivatives of tan x, cot x, sec x, and csc x? What are the 

derivatives of these functions?

 18. At what points are the six basic trigonometric functions continu-

ous? How do you know?

 19. What is the rule for calculating the derivative of a composition of 

two diferentiable functions? How is such a derivative evaluated? 

Give examples.

 20. If u is a diferentiable function of x, how do you ind (d>dx)(un) if 

n is an integer? If n is a real number? Give examples.

 21. What is implicit diferentiation? When do you need it? Give ex-

amples.

 22. How do related rates problems arise? Give examples.

 23. Outline a strategy for solving related rates problems. Illustrate 

with an example.

 24. What is the linearization L (x) of a function ƒ(x) at a point x = a? 

What is required of ƒ at a for the linearization to exist? How are 

linearizations used? Give examples.

 25. If x moves from a to a nearby value a + dx, how do you estimate 

the corresponding change in the value of a diferentiable function 

ƒ(x)? How do you estimate the relative change? The percentage 

change? Give an example.

CHAPTER 3 Questions to Guide Your Review

Derivatives of Functions

Find the derivatives of the functions in Exercises 1–40.

 1. y = x5 - 0.125x2 + 0.25x 2. y = 3 - 0.7x3 + 0.3x7

 3. y = x3 - 3(x2 + p2) 4. y = x7 + 27x -
1

p + 1

 5. y = (x + 1)2(x2 + 2x) 6. y = (2x - 5)(4 - x)-1

 7. y = (u2 + sec u + 1)3 8. y = a-1 -
csc u

2
-

u2

4
b2

 9. s =
1t

1 + 1t
 10. s =

1

1t - 1

 11. y = 2 tan2 x - sec2 x 12. y =
1

sin2 x
-

2
sin x

 13. s = cos4 (1 - 2t) 14. s = cot3 a2
t
b

 15. s = (sec t + tan t)5 16. s = csc5 (1 - t + 3t2)

 17. r = 22u sin u 18. r = 2u2cos u

 19. r = sin 22u 20. r = sin 1u + 2u + 12
 21. y =

1
2

 x2 csc 
2
x  22. y = 22x sin 2x

 23. y = x-1>2 sec (2x)2 24. y = 2x csc (x + 1)3

 25. y = 5 cot x2 26. y = x2 cot 5x

 27. y = x2 sin2 (2x2) 28. y = x-2 sin2 (x3)

 29. s = a 4t

t + 1
b-2

 30. s =
-1

15(15t - 1)3

 31. y = a 2x

1 + x
b2

 32. y = a 22x

22x + 1
b2

 33. y = Bx2 + x

x2
 34. y = 4x2x + 1x

CHAPTER 3 Practice Exercises
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e. 
ƒ(x)

2 + cos x
, x = 0 f. 10 sin apx

2
b  ƒ2(x), x = 1

 57. Find the value of dy>dt at t = 0 if y = 3 sin 2x and x = t2 + p.

 58. Find the value of ds>du at u = 2 if s = t2 + 5t and t =

(u2 + 2u)1>3.
 59. Find the value of dw>ds at s = 0 if w = sin 12r - 22 and 

r = 8 sin (s + p>6).

 60. Find the value of dr>dt at t = 0 if r = (u2 + 7)1>3 and 

u2t + u = 1.

 61. If y3 + y = 2 cos x, ind the value of d2y>dx2 at the point (0, 1).

 62. If x1>3 + y1>3 = 4, ind d2y>dx2 at the point (8, 8).

 35. r = a sin u
cos u - 1

b2

 36. r = a1 + sin u
1 - cos u

b2

 37. y = (2x + 1)22x + 1 38. y = 20 (3x - 4)1>4 (3x - 4)-1>5
 39. y =

3

(5x2 + sin 2x)3>2 40. y = (3 + cos3 3x)-1>3
Implicit Diferentiation

In Exercises 41–48, ind dy>dx by implicit diferentiation.

 41. xy + 2x + 3y = 1 42. x2 + xy + y2 - 5x = 2

 43. x3 + 4xy - 3y4>3 = 2x 44. 5x4>5 + 10y6>5 = 15

 45. 1xy = 1 46. x2y2 = 1

 47. y2 =
x

x + 1
 48. y2 = A

1 + x

1 - x

In Exercises 49 and 50, ind dp>dq.

 49. p3 + 4pq - 3q2 = 2 50. q = (5p2 + 2p)-3>2
In Exercises 51 and 52, ind dr>ds.

 51. r cos 2s + sin2 s = p 52. 2rs - r - s + s2 = -3

 53. Find d2y>dx2 by implicit diferentiation:

a. x3 + y3 = 1 b. y2 = 1 -
2
x

 54. a.  By diferentiating x2 - y2 = 1 implicitly, show that 

dy>dx = x>y.

b. Then show that d2y>dx2 = -1>y3.

Numerical Values of Derivatives

 55. Suppose that functions ƒ(x) and g(x) and their irst derivatives 

have the following values at x = 0 and x = 1.

x ƒ(x) g(x) ƒ′(x) g′(x)

0  1  1  -3  1>2
1  3  5  1>2  -4

  Find the irst derivatives of the following combinations at the 

 given value of x.

a. 6ƒ(x) - g(x), x = 1 b. ƒ(x)g2(x), x = 0

c. 
ƒ(x)

g(x) + 1
, x = 1 d. ƒ(g(x)), x = 0

e. g(ƒ(x)), x = 0 f. (x + ƒ(x))3>2, x = 1

g. ƒ(x + g(x)), x = 0

 56. Suppose that the function ƒ(x) and its irst derivative have the fol-

lowing values at x = 0 and x = 1.

x ƒ(x) ƒ′(x)

0  9  -2

1  -3  1>5
  Find the irst derivatives of the following combinations at the giv-

en value of x.

a. 1x ƒ(x), x = 1 b. 2ƒ(x), x = 0

c. ƒ12x2, x = 1 d. ƒ(1 - 5 tan x), x = 0

applying the Derivative Deinition

In Exercises 63 and 64, ind the derivative using the deinition.

 63. ƒ(t) =
1

2t + 1

 64. g(x) = 2x2 + 1

 65. a. Graph the function

ƒ(x) = e x2, -1 … x 6 0

-x2, 0 … x … 1.

b. Is ƒ continuous at x = 0?

c. Is ƒ diferentiable at x = 0?

  Give reasons for your answers.

 66. a. Graph the function

ƒ(x) = e x, -1 … x 6 0

tan x,   0 … x … p>4.

b. Is ƒ continuous at x = 0?

c. Is ƒ diferentiable at x = 0?

  Give reasons for your answers.

 67. a. Graph the function

ƒ(x) = e x, 0 … x … 1

2 - x, 1 6 x … 2.

b. Is ƒ continuous at x = 1?

c. Is ƒ diferentiable at x = 1?

  Give reasons for your answers.

 68. For what value or values of the constant m, if any, is

ƒ(x) = e sin 2x, x … 0

mx, x 7 0

a. continuous at x = 0?

b. diferentiable at x = 0?

  Give reasons for your answers.

Slopes, Tangents, and Normals

 69. Tangent lines with speciied slope Are there any points on the 

curve y = (x>2) + 1>(2x - 4) where the slope is -3>2? If so, 

ind them.

 70. Tangent lines with speciied slope Are there any points on the 

curve y = x - 1>2x where the slope is 2? If so, ind them.
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Analyzing Graphs

Each of the igures in Exercises 89 and 90 shows two graphs, the graph 

of a function y = ƒ(x) together with the graph of its derivative ƒ′(x). 

Which graph is which? How do you know?

 89.   90. 

x

y

0 1−1

1

−1

−2

2
A

B

 

x

y

0 1

1

A

B

2

2

3

4

 91. Use the following information to graph the function y = ƒ(x) for 

-1 … x … 6.

 i) The graph of ƒ is made of line segments joined end to end.

 ii) The graph starts at the point (-1, 2).

 iii) The derivative of ƒ, where deined, agrees with the step 

function shown here.

x

y

1−1 2

1

−1

3 4 5 6

−2

y = f ′(x)

 92. Repeat Exercise 91, supposing that the graph starts at (-1, 0) in-

stead of (-1, 2).

Exercises 93 and 94 are about the accompanying graphs. The graphs in 

part (a) show the numbers of rabbits and foxes in a small arctic popula-

tion. They are plotted as functions of time for 200 days. The number 

of rabbits increases at irst, as the rabbits reproduce. But the foxes prey 

on rabbits and, as the number of foxes increases, the rabbit population 

levels of and then drops. Part (b) shows the graph of the derivative of 

the rabbit population, made by plotting slopes.

 93. a.  What is the value of the derivative of the rabbit population 

when the number of rabbits is largest? Smallest?

b. What is the size of the rabbit population when its derivative is 

largest? Smallest (negative value)?

 71. Horizontal tangent lines Find the points on the curve y =

2x3 - 3x2 - 12x + 20 where the tangent line is parallel to the 

x-axis.

 72. Tangent intercepts Find the x- and y-intercepts of the line that 

is tangent to the curve y = x3 at the point (-2, -8).

 73. Tangent lines perpendicular or parallel to lines Find the 

points on the curve y = 2x3 - 3x2 - 12x + 20 where the tangent 

line is

a. perpendicular to the line y = 1 - (x>24).

b. parallel to the line y = 22 - 12x.

 74. Intersecting tangent lines Show that the tangent lines to the 

curve y = (p sin x)>x at x = p and x = -p intersect at right 

angles.

 75. Normal lines parallel to a line Find the points on the curve 

y = tan x, -p>2 6 x 6 p>2, where the normal line is parallel 

to the line y = -x>2. Sketch the curve and normal lines togeth-

er, labeling each with its equation.

 76. Tangent lines and normal lines Find equations for the tangent 

and normal lines to the curve y = 1 + cos x at the point (p>2, 1). 

Sketch the curve, tangent line, and normal line together, labeling 

each with its equation.

 77. Tangent parabola The parabola y = x2 + C is to be tangent to 

the line y = x. Find C.

 78. Slope of a tangent line Show that the tangent line to the curve 

y = x3 at any point (a, a3) meets the curve again at a point where 

the slope is four times the slope at (a, a3).

 79. Tangent curve For what value of c is the curve y = c>(x + 1) 

tangent to the line through the points (0, 3) and (5, -2)?

 80. Normal lines to a circle Show that the normal line at any point 

of the circle x2 + y2 = a2 passes through the origin.

In Exercises 81–86, ind equations for the lines that are tangent and 

normal to the curve at the given point.

 81. x2 + 2y2 = 9, (1, 2)

 82. (x + 1)3 + y2 = 2, (0, 1)

 83. xy + 2x - 5y = 2, (3, 2)

 84. (y - x)2 = 2x + 4, (6, 2)

 85. x + 1xy = 6, (4, 1)

 86. x3>2 + 2y3>2 = 17, (1, 4)

 87. Find the slope of the curve x3y3 + y2 = x + y at the points (1, 1) 

and (1, -1).

 88. The graph shown suggests that the curve y = sin (x - sin x) 

might have horizontal tangent lines at the x-axis. Does it? Give 

reasons for your answer.

x

y

0

−1

1
y = sin (x − sin x)

p 2p−2p −p
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Show how to extend the functions in Exercises 103 and 104 to be 

continuous at the origin.

 103. g(x) =
tan (tan x)

tan x

 104. ƒ(x) =
tan (tan x)

sin (sin x)

Related Rates

 105. Right circular cylinder The total surface area S of a right cir-

cular cylinder is related to the base radius r and height h by the 

equation S = 2pr2 + 2prh.

a. How is dS>dt related to dr>dt if h is constant?

b. How is dS>dt related to dh>dt if r is constant?

c. How is dS>dt related to dr>dt and dh>dt if neither r nor h is 

constant?

d. How is dr>dt related to dh>dt if S is constant?

 106. Right circular cone The lateral surface area S of a right circu-

lar cone is related to the base radius r and height h by the equa-

tion S = pr2r2 + h2.

a. How is dS>dt related to dr>dt if h is constant?

b. How is dS>dt related to dh>dt if r is constant?

c. How is dS>dt related to dr>dt and dh>dt if neither r nor h is 

constant?

 107. Circle’s changing area The radius of a circle is changing at 

the rate of -2>p m>sec. At what rate is the circle’s area chang-

ing when r = 10 m?

 108. Cube’s changing edges The volume of a cube is increasing at 

the rate of 1200 cm3>min at the instant its edges are 20 cm long. 

At what rate are the lengths of the edges changing at that 

instant?

 109. Resistors connected in parallel If two resistors of R1 and R2 

ohms are connected in parallel in an electric circuit to make an 

R-ohm resistor, the value of R can be found from the equation

1
R

=
1
R1

+
1
R2

.

+

R
−

R2R1

  If R1 is decreasing at the rate of 1 ohm > sec and R2 is increasing 

at the rate of 0.5 ohm > sec, at what rate is R changing when 

R1 = 75 ohms and R2 = 50 ohms?

 110. Impedance in a series circuit The impedance Z (ohms) in a 

series circuit is related to the resistance R (ohms) and reactance 

X (ohms) by the equation Z = 2R2 + X2. If R is increasing at 

3 ohms > sec and X is decreasing at 2 ohms > sec, at what rate is Z 

changing when R = 10 ohms and X = 20 ohms?

 94. In what units should the slopes of the rabbit and fox population 

curves be measured?

(20, 1700)

0 50 100 150 200

1000

2000

(a)

(20, 40)

0 50 100 150 200

50

−50

−100

Derivative of the rabbit population

0

(b)

Number

of rabbits

Initial no. rabbits = 1000

Initial no. foxes = 40

Time (days)

Number

of foxes

+100

Time (days)

Source: NCPMF “Diferentiation” by W.U. Walton et al., 

Project CALC. Reprinted by permission of Educational 

Development Center, Inc.

Trigonometric Limits

Find the limits in Exercises 95–102.

 95. lim
xS0

  
sin x

2x2 - x

 96. lim
xS0

 
3x - tan 7x

2x

 97. lim
rS0

  
sin r

tan 2r

 98. lim
uS0

 
sin (sin u)

u

 99. lim
uS (p>2)-

 
4 tan2 u + tan u + 1

tan2 u + 5

 100. lim
uS0+

 
1 - 2 cot2 u

5 cot2 u - 7 cot u - 8

 101. lim
xS0

  
x sin x

2 - 2 cos x

 102. lim
uS0

 
1 - cos u

u2
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b. How many revolutions per minute is 0.6 rad>sec?

1 km
A

x

u

 116. Points moving on coordinate axes Points A and B move 

along the x- and y-axes, respectively, in such a way that the dis-

tance r (meters) along the perpendicular from the origin to the 

line AB remains constant. How fast is OA changing, and is it 

increasing, or decreasing, when OB = 2r and B is moving 

toward O at the rate of 0.3r m > sec?

Linearization

 117. Find the linearizations of

a. tan x at x = -p>4 b. sec x at x = -p>4.

  Graph the curves and linearizations together.

 118. We can obtain a useful linear approximation of the function 

ƒ(x) = 1>(1 + tan x) at x = 0 by combining the approximations

1
1 + x

≈ 1 - x  and  tan x ≈ x

  to get

1
1 + tan x

≈ 1 - x.

  Show that this result is the standard linear approximation of 

1>(1 + tan x) at x = 0.

 119. Find the linearization of ƒ(x) = 21 + x + sin x - 0.5 at x = 0.

 120. Find the linearization of ƒ(x) = 2>(1 - x) + 21 + x - 3.1

at x = 0.

Diferential Estimates of Change

 121. Surface area of a cone Write a formula that estimates the 

change that occurs in the lateral surface area of a right circular 

cone when the height changes from h0 to h0 + dh and the radius 

does not change.

(Lateral surface area)

h

r

1
3

V =    pr2h

S = pr"r2 
+ h2

 111. Speed of moving particle The coordinates of a particle mov-

ing in the metric xy-plane are differentiable functions of time t 

with dx>dt = 10 m>sec and dy>dt = 5 m>sec. How fast is the 

particle moving away from the origin as it passes through the 

point (3, -4)?

 112. Motion of a particle A particle moves along the curve 

y = x3>2 in the first quadrant in such a way that its distance from 

the origin increases at the rate of 11 units per second. Find dx>dt 

when x = 3.

 113. Draining a tank Water drains from the conical tank shown in 

the accompanying figure at the rate of 5 ft3>min.

a. What is the relation between the variables h and r in the 

igure?

b. How fast is the water level dropping when h = 6 ft?

r

h

Exit rate: 5 ft3�min

10′

4′

 114. Rotating spool As television cable is pulled from a large spool 

to be strung from the telephone poles along a street, it unwinds 

from the spool in layers of constant radius (see accompanying 

figure). If the truck pulling the cable moves at a steady 6 ft > sec 

(a touch over 4 mph), use the equation s = r u to find how fast 

(radians per second) the spool is turning when the layer of radius 

1.2 ft is being unwound.

1.2′

 115. Moving searchlight beam The figure shows a boat 1 km off-

shore, sweeping the shore with a searchlight. The light turns at a 

constant rate, du>dt = -0.6 rad/sec.

a. How fast is the light moving along the shore when it reaches 

point A?
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 122. Controlling error

a. How accurately should you measure the edge of a cube to be 

reasonably sure of calculating the cube’s surface area with 

an error of no more than 2%?

b. Suppose that the edge is measured with the accuracy 

required in part (a). About how accurately can the cube’s 

volume be calculated from the edge measurement? To ind 

out, estimate the percentage error in the volume calculation 

that might result from using the edge measurement.

 123. Compounding error The circumference of the equator of a 

sphere is measured as 10 cm with a possible error of 0.4 cm. 

This measurement is used to calculate the radius. The radius is 

then used to calculate the surface area and volume of the sphere. 

Estimate the percentage errors in the calculated values of

a. the radius. b. the surface area.

c. the volume.

 1. An equation like sin2 u + cos2 u = 1 is called an identity because 

it holds for all values of u. An equation like sin u = 0.5 is not an 

identity because it holds only for selected values of u, not all. If 

you diferentiate both sides of a trigonometric identity in u with 

respect to u, the resulting new equation will also be an identity.

    Diferentiate the following to show that the resulting equa-

tions hold for all u.

a. sin 2u = 2 sin u cos u

b. cos 2u = cos2 u - sin2 u

 2. If the identity sin (x + a) = sin x cos a + cos x sin a is difer-

entiated with respect to x, is the resulting equation also an iden-

tity? Does this principle apply to the equation x2 - 2x - 8 = 0? 

 Explain.

 3. a. Find values for the constants a, b, and c that will make

ƒ(x) = cos x and g(x) = a + bx + cx2

 satisfy the conditions

ƒ(0) = g(0), ƒ′(0) = g′(0), and ƒ″(0) = g″(0).

b. Find values for b and c that will make

ƒ(x) = sin (x + a) and g(x) = b sin x + c cos x

 satisfy the conditions

ƒ(0) = g(0) and ƒ′(0) = g′(0).

c. For the determined values of a, b, and c, what happens for the 

third and fourth derivatives of ƒ and g in each of parts (a) and 

(b)?

 4. Solutions to diferential equations

a. Show that y = sin x, y = cos x, and y = a  cos x + b sin x 

(a and b constants) all satisfy the equation

y″ + y = 0.

b. How would you modify the functions in part (a) to satisfy the 

equation

y″ + 4y = 0?

Generalize this result.

 5. An osculating circle Find the values of h, k, and a that make 

the circle (x - h)2 + (y - k)2 = a2 tangent to the parabola 

y = x2 + 1 at the point (1, 2) and that also make the second 

 derivatives d2y>dx2 have the same value on both curves there. 

Circles like this one that are tangent to a curve and have the same 

second derivative as the curve at the point of tangency are called 

osculating circles (from the Latin osculari, meaning “to kiss”). 

We encounter them again in Chapter 13.

 6. Marginal revenue A bus will hold 60 people. The number  

x of people per trip who use the bus is related to the fare charged  

(p dollars) by the law p = 33 - (x>40)42. Write an expression 

for the total revenue r(x) per trip received by the bus company. 

What number of people per trip will make the marginal revenue 

dr>dx equal to zero? What is the corresponding fare? (This fare is 

the one that maximizes the revenue.)

 7. Industrial production

a. Economists often use the expression “rate of growth” in rela-

tive rather than absolute terms. For example, let u = ƒ(t) be 

the number of people in the labor force at time t in a given 

industry. (We treat this function as though it were diferen-

tiable even though it is an integer-valued step function.)

CHAPTER 3 Additional and Advanced Exercises

 124. Finding height To find the height of a lamppost (see accom-

panying figure), you stand a 6 ft pole 20 ft from the lamp and 

measure the length a of its shadow, finding it to be 15 ft, give or 

take an inch. Calculate the height of the lamppost using the 

value a = 15 and estimate the possible error in the result.

h

20 ft

6 ft

a
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b. On the moon, the same acceleration will send the paper clip 

to a height of s = 64t - 2.6t2 ft in t sec. About how long 

will it take the paper clip to reach its maximum height, and 

how high will it go?

 12. Velocities of two particles At time t sec, the positions of two 

particles on a coordinate line are s1 = 3t3 - 12t2 + 18t + 5 m 

and s2 = - t3 + 9t2 - 12t m. When do the particles have the 

same velocities?

 13. Velocity of a particle A particle of constant mass m  

moves along the x-axis. Its velocity y and position x satisfy the 

equation

1
2

 m (y2 - y0  

2) =
1
2

 k (x0  

2 - x2),

where k, y0, and x0 are constants. Show that whenever y ≠ 0,

m 
dy

dt
= -kx.

 14. Average and instantaneous velocity

a. Show that if the position x of a moving point is given  

by a quadratic function of t, x = At2 + Bt + C, then  

the average velocity over any time interval 3 t1, t24  is equal  

to the instantaneous velocity at the midpoint of the time 

interval.

b. What is the geometric signiicance of the result in part (a)?

 15. Find all values of the constants m and b for which the function

y = e sin x, x 6 p

mx + b, x Ú p

is

a. continuous at x = p.

b. diferentiable at x = p.

 16. Does the function

ƒ(x) = • 1 - cos x
x , x ≠ 0

0, x = 0

have a derivative at x = 0? Explain.

 17. a. For what values of a and b will

ƒ(x) = eax, x 6 2

ax2 - bx + 3, x Ú 2

 be diferentiable for all values of x?

b. Discuss the geometry of the resulting graph of ƒ.

 18. a. For what values of a and b will

g(x) = eax + b, x … -1

ax3 + x + 2b, x 7 -1

 be diferentiable for all values of x?

b. Discuss the geometry of the resulting graph of g.

 19. Odd diferentiable functions Is there anything special about 

the derivative of an odd diferentiable function of x? Give reasons 

for your answer.

Let y = g(t) be the average production per person in 

the labor force at time t. The total production is then y = uy. 

If the labor force is growing at the rate of 4% per year 

(du>dt = 0.04u) and the production per worker is growing 

at the rate of 5% per year (dy>dt = 0.05y), ind the rate of 

growth of the total production, y.

b. Suppose that the labor force in part (a) is decreasing at 

the rate of 2% per year while the production per person is 

increasing at the rate of 3% per year. Is the total production 

increasing, or is it decreasing, and at what rate?

 8. Designing a gondola The designer of a 30-ft-diameter spherical 

hot air balloon wants to suspend the gondola 8 ft below the bottom 

of the balloon with cables tangent to the surface of the balloon, as 

shown. Two of the cables are shown running from the top edges of 

the gondola to their points of tangency, (-12, -9) and (12, -9). 

How wide should the gondola be?

x

y

(12, −9)(−12, −9)
15 ft

8 ft

Width

NOT TO SCALE

Suspension

cables

Gondola

x2 + y2 = 225

0

 9. Pisa by parachute On August 5, 1988, Mike McCarthy of 

 London jumped from the top of the Tower of Pisa. He then opened 

his parachute in what he said was a world record low-level para-

chute jump of 179 ft. Make a rough sketch to show the shape of 

the graph of his speed during the jump. (Source: Boston Globe, 

Aug. 6, 1988.)

 10. Motion of a particle The position at time t Ú 0 of a particle 

moving along a coordinate line is

s = 10 cos (t + p>4).

a. What is the particle’s starting position (t = 0)?

b. What are the points farthest to the left and right of the origin 

reached by the particle?

c. Find the particle’s velocity and acceleration at the points in 

part (b).

d. When does the particle irst reach the origin? What are its 

velocity, speed, and acceleration then?

 11. Shooting a paper clip On Earth, you can easily shoot a paper 

clip 64 ft straight up into the air with a rubber band. In t sec after 

iring, the paper clip is s = 64t - 16t2 ft above your hand.

a. How long does it take the paper clip to reach its maximum 

height? With what velocity does it leave your hand?
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 28. Leibniz’s rule for higher-order derivatives of products  

Leibniz’s rule for higher-order derivatives of products of diferen-

tiable functions says that

a. 
d2(uy)

dx2
=

d2u

dx2
 y + 2 

du

dx
  
dy

dx
+ u 

d2y

dx2
.

b. 
d3(uy)

dx3
=

d3u

dx3
 y + 3 

d2u

dx2
  
dy

dx
+ 3 

du

dx
  
d2y

dx2
+ u 

d3y

dx3
.

c. 
dn(uy)

dxn =
dnu

dxn  y + n 
dn - 1u

dxn - 1
  
dy

dx
+ g

 +
n(n - 1)g(n - k + 1)

k!
  
dn - ku

dxn - k
  
dky

dxk

 + g + u 
dny

dxn .

 The equations in parts (a) and (b) are special cases of the 

equation in part (c). Derive the equation in part (c) by math-

ematical induction, usingam
k
b + a m

k + 1
b =

m!

k!(m - k)!
+

m!

(k + 1)!(m - k - 1)!
.

 29. The period of a clock pendulum The period T of a clock pen-

dulum (time for one full swing and back) is given by the formula 

T2 = 4p2L>g, where T is measured in seconds, g =  32.2 ft>sec2, 

and L, the length of the pendulum, is measured in feet. Find ap-

proximately

a. the length of a clock pendulum whose period is T = 1 sec.

b. the change dT in T if the pendulum in part (a) is lengthened 

0.01 ft.

c. the amount the clock gains or loses in a day as a result of the 

period’s changing by the amount dT found in part (b).

 30. The melting ice cube Assume that an ice cube retains its cubical 

shape as it melts. If we call its edge length s, its volume is V = s3 

and its surface area is 6s2. We assume that V and s are diferen-

tiable functions of time t. We assume also that the cube’s volume 

decreases at a rate that is proportional to its surface area. (This 

latter assumption seems reasonable enough when we think that the 

melting takes place at the surface: Changing the amount of surface 

changes the amount of ice exposed to melt.) In mathematical terms,

dV

dt
= -k(6s2),  k 7 0.

  The minus sign indicates that the volume is decreasing. We  assume 

that the proportionality factor k is constant. (It probably depends 

on many things, such as the relative humidity of the surrounding 

air, the air temperature, and the incidence or absence of sunlight, to 

name only a few.) Assume a particular set of conditions in which the 

cube lost 1 >4 of its volume during the irst hour, and that the vol-

ume is V0 when t = 0. How long will it take the ice cube to melt?

 20. Even diferentiable functions Is there anything special about 

the derivative of an even diferentiable function of x? Give reasons 

for your answer.

 21. Suppose that the functions ƒ and g are deined throughout an open 

interval containing the point x0, that ƒ is diferentiable at x0, that 

ƒ(x0) = 0, and that g is continuous at x0. Show that the product ƒg  

is diferentiable at x0. This process shows, for example, that 

 although 0 x 0  is not diferentiable at x = 0, the product x 0 x 0  is 

diferentiable at x = 0.

 22. (Continuation of Exercise 21.) Use the result of Exercise 21 to 

show that the following functions are diferentiable at x = 0.

a. 0 x 0  sin x   b. x2>3 sin x   c. 23 x (1 - cos x)

d. h(x) = e x2 sin (1>x), x ≠ 0

0, x = 0

 23. Is the derivative of

h(x) = e x2 sin (1>x), x ≠ 0

0, x = 0

continuous at x = 0? How about the derivative of k(x) = xh (x)? 

Give reasons for your answers.

 24. Let ƒ(x) = e x2 , x is rational

0, x is irrational.

Show that ƒ is diferentiable at x = 0.

 25. Point B moves from point A to point C at 2 cm > sec in the accom-

panying diagram. At what rate is u changing when x = 4 cm?

4 cm
5 cm

3 cmA

6 cmC

B

x

u

 26. Suppose that a function ƒ satisies the following conditions for all 

real values of x and y:

  i) ƒ(x + y) = ƒ(x) # ƒ(y).

 ii) ƒ(x) = 1 + xg(x), where limxS0 g(x) = 1.

iii) Show that the derivative ƒ′(x) exists at every value of x and 

that ƒ′(x) = ƒ(x).

 27. The generalized product rule Use mathematical induction to 

prove that if y = u1  u2gun is a inite product of diferentiable 

functions, then y is diferentiable on their common domain and

dy

dx
=

du1

dx
 u2 g un + u1 

du2

dx
gun +  g+  u1  u2gun - 1 

dun

dx
.
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Mathematica/Maple Projects

Projects can be found at pearsonhighered.com/Thomas or within MyMathLab.

•	 Convergence of Secant Slopes to the Derivative Function

You will visualize the secant line between successive points on a curve and observe what happens as the distance between them becomes small. 

The function, sample points, and secant lines are plotted on a single graph, while a second graph compares the slopes of the secant lines with 

the derivative function.

•	 Derivatives, Slopes, Tangent Lines, and Making Movies

Parts I–III. You will visualize the derivative at a point, the linearization of a function, and the derivative of a function. You will learn how to 

plot the function and selected tangent lines on the same graph.

Part IV (Plotting Many Tangent Lines)

Part V (Making Movies). Parts IV and V of the module can be used to animate tangent lines as one moves along the graph of a function.

•	 Convergence of Secant Slopes to the Derivative Function

You will visualize right-hand and left-hand derivatives.

•	 Motion Along a Straight Line: Position S Velocity S Acceleration

Observe dramatic animated visualizations of the derivative relations among the position, velocity, and acceleration functions. Figures in the text 

can be animated.

CHAPTER 3 Technology Application Projects

www.pearsonhighered.com/Thomas


183

OVERVIEW One of the most important applications of the derivative is its use as a tool 

for finding the optimal (best) solutions to problems. Optimization problems abound in 

mathematics, physical science and engineering, business and economics, and biology and 

medicine. For example, what are the height and diameter of the cylinder of largest volume 

that can be inscribed in a given sphere? What are the dimensions of the strongest rectangu-

lar wooden beam that can be cut from a cylindrical log of given diameter? Based on pro-

duction costs and sales revenue, how many items should a manufacturer produce to maxi-

mize profit? How much does the trachea (windpipe) contract to expel air at maximum 

speed during a cough? What is the branching angle at which blood vessels minimize the 

energy loss due to friction as blood flows through the branches?

In this chapter we apply derivatives to ind extreme values of functions, to determine 

and analyze the shapes of graphs, and to solve equations numerically. We also introduce 

the idea of recovering a function from its derivative. The key to many of these applications 

is the Mean Value Theorem, which connects the derivative and the average change of a 

function.

4.1 Extreme Values of Functions on Closed Intervals

This section shows how to locate and identify extreme (maximum or minimum) values of 

a function from its derivative. Once we can do this, we can solve a variety of optimization 

problems (see Section 4.5). The domains of the functions we consider are intervals or 

unions of separate intervals.

Applications of 
Derivatives

4

DEFINITIONS Let ƒ be a function with domain D. Then ƒ has an absolute 

maximum value on D at a point c if

ƒ(x) … ƒ(c)  for all x in D

and an absolute minimum value on D at c if

ƒ(x) Ú ƒ(c)  for all x in D.

Maximum and minimum values are called extreme values of the function ƒ. Absolute 

maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval 3-p>2, p>24  the function ƒ(x) = cos x takes on 

an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On 

the same interval, the function g(x) = sin x takes on a maximum value of 1 and a mini-

mum value of -1 (Figure 4.1).

x

y

0

1
y = sin x

y = cos x

−1

p
2

−
p
2

FIGURE 4.1 Absolute extrema 

for the sine and cosine functions on 3-p>2, p>24 . These values can depend 

on the domain of a function.
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Functions defined by the same equation or formula can have different extrema (maxi-

mum or minimum values), depending on the domain. A function might not have a maxi-

mum or minimum if the domain is unbounded or fails to contain an endpoint. We see this 

in the following example.

EXAMPLE 1  The absolute extrema of the following functions on their domains can 

be seen in Figure 4.2. Each function has the same defining equation, y = x2, but the 

domains vary. 

x
2

(b) abs max and min

 y = x2

D = [0, 2]

y

x
2

(c) abs max only

 y = x2

D = (0, 2]

y

x
2

(d) no max or min

 y = x2

D = (0, 2)

y

x
2

(a) abs min only

 y = x2

D = (−∞, ∞)

y

FIGURE 4.2 Graphs for Example 1.

Some of the functions in Example 1 do not have a maximum or a minimum value. 

The following theorem asserts that a function which is continuous over (or on) a finite 

closed interval 3a, b4  has an absolute maximum and an absolute minimum value on the 

interval. We look for these extreme values when we graph a function.

HISTORICAL BIOGRAPHY

Daniel Bernoulli

(1700–1789)
www.goo.gl/JYed9O

THEOREM 1—The Extreme Value Theorem 

If ƒ is continuous on a closed interval 3a, b4 , then ƒ attains both an absolute 

maximum value M and an absolute minimum value m in 3a, b4 . That is, there are 

numbers x1 and x2 in 3a, b4  with ƒ(x1) = m, ƒ(x2) = M, and m … ƒ(x) … M  

for every other x in 3a, b4 .
The proof of the Extreme Value Theorem requires a detailed knowledge of the real 

number system (see Appendix 7) and we will not give it here. Figure 4.3 illustrates possi-

ble locations for the absolute extrema of a continuous function on a closed interval 3a, b4 . 
As we observed for the function y = cos x, it is possible that an absolute minimum (or 

absolute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the 

function be continuous, are essential. Without them, the conclusion of the theorem need 

not hold. Example 1 shows that an absolute extreme value may not exist if the interval fails 

Function rule Domain D Absolute extrema on D

(a) y = x2 (-q, q) No absolute maximum

Absolute minimum of 0 at x = 0

(b) y = x2 30, 24 Absolute maximum of 4 at x = 2

Absolute minimum of 0 at x = 0

(c) y = x2 (0, 24 Absolute maximum of 4 at x = 2

No absolute minimum

(d) y = x2 (0, 2) No absolute extrema

http://www.goo.gl/JYed9O
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to be both closed and finite. The function y = x over (-q, q) shows that neither extreme 

value need exist on an infinite interval. Figure 4.4 shows that the continuity requirement 

cannot be omitted.

Local (Relative) Extreme Values

Figure 4.5 shows a graph with five points where a function has extreme values on its 

domain 3a, b4 . The function’s absolute minimum occurs at a even though at e the func-

tion’s value is smaller than at any other point nearby. The curve rises to the left and falls to 

the right around c, making ƒ(c) a maximum locally. The function attains its absolute 

maximum at d. We now define what we mean by local extrema.

x
a x2

x2

Maximum and minimum

at interior points

b

M

x
a b

M

m

Maximum and minimum

at endpoints

x
a

Maximum at interior point,

minimum at endpoint

M

b

m
x

a

Minimum at interior point,

maximum at endpoint

M

b

m

(x2, M)

(x1, m)

x1

y = f (x)

y = f (x)

y = f (x)

y = f (x)

x1

0m 0

FIGURE 4.3 Some possibilities for a continuous function’s maximum and 

minimum on a closed interval 3a, b4 .
x

y

1
Smallest value

0

No largest value

1

y = x
0 ≤ x < 1

FIGURE 4.4 Even a single point of dis-

continuity can keep a function from having 

either a maximum or a minimum value on 

a closed interval. The function

y = e x, 0 … x 6 1

0, x = 1

is continuous at every point of 30, 14  ex-

cept x = 1, yet its graph over 30, 14  does 

not have a highest point.

DEFINITIONS A function ƒ has a local maximum value at a point c within its 

domain D if ƒ(x) … ƒ(c) for all x∊D lying in some open interval containing c.

A function ƒ has a local minimum value at a point c within its domain D if 

ƒ(x) Ú ƒ(c) for all x∊D lying in some open interval containing c.

If the domain of ƒ is the closed interval 3a, b4 , then ƒ has a local maximum at the endpoint 

x = a if ƒ(x) … ƒ(a) for all x in some half-open interval 3a, a + d), d 7 0. Likewise, ƒ 

has a local maximum at an interior point x = c if ƒ(x) … ƒ(c) for all x in some open inter-

val (c - d, c + d), d 7 0, and a local maximum at the endpoint x = b if ƒ(x) … ƒ(b) for 

all x in some half-open interval (b - d, b4 , d 7 0. The inequalities are reversed for local 

minimum values. In Figure 4.5, the function ƒ has local maxima at c and d and local min-

ima at a, e, and b. Local extrema are also called relative extrema. Some functions can 

have infinitely many local extrema, even over a finite interval. One example is the function 

ƒ(x) = sin (1>x) on the interval (0, 14 . (We graphed this function in Figure 2.40.)

An absolute maximum is also a local maximum. Being the largest value overall, it is 

also the largest value in its immediate neighborhood. Hence, a list of all local maxima will 
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automatically include the absolute maximum if there is one. Similarly, a list of all local 

minima will include the absolute minimum if there is one.

Finding Extrema

The next theorem explains why we usually need to investigate only a few values to find a 

function’s extrema.

x
ba c e d

Local minimum

No smaller value of

f  nearby.

Local minimum

No smaller value

of f  nearby.

Local maximum

No greater value of

f  nearby.

Absolute minimum

No smaller value of

f  anywhere. Also a

 local minimum.

Absolute maximum

No greater value of f anywhere.
Also a local maximum.

y = f (x)

FIGURE 4.5 How to identify types of maxima and minima for a function with domain 

a … x … b.

THEOREM 2—The First Derivative Theorem for Local Extreme Values

If ƒ has a local maximum or minimum value at an interior point c of its domain, 

and if ƒ′ is deined at c, then

ƒ′(c) = 0.

Proof  To prove that ƒ′(c) is zero at a local extremum, we show irst that ƒ′(c) cannot 

be positive and second that ƒ′(c) cannot be negative. The only number that is neither posi-

tive nor negative is zero, so that is what ƒ′(c) must be.

To begin, suppose that ƒ has a local maximum value at x = c (Figure 4.6) so that 

ƒ(x) - ƒ(c) … 0 for all values of x near enough to c. Since c is an interior point of ƒ’s 

domain, ƒ′(c) is deined by the two-sided limit

lim
xSc

 
ƒ(x) - ƒ(c)

x - c .

This means that the right-hand and left-hand limits both exist at x = c and equal ƒ′(c). 

When we examine these limits separately, we ind that

 ƒ′(c) = lim
xSc+

 
ƒ(x) - ƒ(c)

x - c … 0.  Because (x - c) 7 0 and ƒ(x) … ƒ(c) (1)

Similarly,

 ƒ′(c) = lim
xSc-

 
ƒ(x) - ƒ(c)

x - c Ú 0.  Because (x - c) 6 0 and ƒ(x) … ƒ(c) (2)

Together, Equations (1) and (2) imply ƒ′(c) = 0.

This proves the theorem for local maximum values. To prove it for local minimum 

values, we simply use ƒ(x) Ú ƒ(c), which reverses the inequalities in Equations (1)  

and (2). 

x
c x

Local maximum value

x

Secant slopes ≥ 0

(never negative)

Secant slopes ≤ 0

(never positive)

y = f (x)

FIGURE 4.6 A curve with a local 

maximum value. The slope at c, simultane-

ously the limit of nonpositive numbers and 

nonnegative numbers, is zero.
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Theorem 2 says that a function’s first derivative is always zero at an interior point 

where the function has a local extreme value and the derivative is defined. If we recall that 

all the domains we consider are intervals or unions of separate intervals, the only places 

where a function ƒ can possibly have an extreme value (local or global) are

1. interior points where ƒ′ = 0, At x = c and x = e in Fig. 4.5

2. interior points where ƒ′ is undefined, At x = d  in Fig. 4.5

3. endpoints of the domain of ƒ. At x = a and x = b in Fig. 4.5

The following definition helps us to summarize these results.

DEFINITION An interior point of the domain of a function ƒ where ƒ′ is zero 

or undefined is a critical point of ƒ.

Thus the only domain points where a function can assume extreme values are critical 

points and endpoints. However, be careful not to misinterpret what is being said here. A 

function may have a critical point at x = c without having a local extreme value there. For 

instance, both of the functions y = x3 and y = x1>3 have critical points at the origin, but 

neither function has a local extreme value at the origin. Instead, each function has a point 

of inflection there (see Figure 4.7). We define and explore inflection points in Section 4.4.

Most problems that ask for extreme values call for finding the extrema of a continu-

ous function on a closed and finite interval. Theorem 1 assures us that such values exist; 

Theorem 2 tells us that they are taken on only at critical points and endpoints. Often we 

can simply list these points and calculate the corresponding function values to find what 

the largest and smallest values are, and where they are located. However, if the interval is 

not closed or not finite (such as a 6 x 6 b or a 6 x 6 q), we have seen that absolute 

extrema need not exist. When an absolute maximum or minimum value does exist, it must 

occur at a critical point or at a right- or left-hand endpoint of the interval.

−1

x

y

1−1

1

0

(a)

y = x3

−1

x

y

1−1

1

0

(b)

y = x1�3

FIGURE 4.7 Critical points without 

extreme values. (a) y′ = 3x2 is 0 at x = 0, 

but y = x3 has no extremum there.  

(b) y′ = (1>3)x-2>3 is undefined at x = 0, 

but y = x1>3 has no extremum there.

Finding the Absolute Extrema of a Continuous Function ƒ on a Finite  

Closed Interval

1. Find all critical points of ƒ on the interval.

2. Evaluate ƒ at all critical points and endpoints.

3. Take the largest and smallest of these values.

EXAMPLE 2  Find the absolute maximum and minimum values of ƒ(x) = x2 on 3-2, 14 .
Solution The function is differentiable over its entire domain, so the only critical point 

occurs where ƒ′(x) = 2x = 0, namely x = 0. We need to check the function’s values at 

x = 0 and at the endpoints x = -2 and x = 1:

Critical point value:  ƒ(0) = 0

Endpoint values:  ƒ(-2) = 4

  ƒ(1) = 1.

The function has an absolute maximum value of 4 at x = -2 and an absolute minimum 

value of 0 at x = 0. 

EXAMPLE 3  Find the absolute maximum and minimum values of g(t) = 8t - t4 on 3-2, 14 .
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Solution The function is differentiable on its entire domain, so the only critical points 

occur where g′(t) = 0. Solving this equation gives

8 - 4t3 = 0  or  t = 23 2 7 1,

a point not in the given domain. The function’s absolute extrema therefore occur at the 

endpoints, g(-2) = -32 (absolute minimum), and g(1) = 7 (absolute maximum). See 

Figure 4.8. 

EXAMPLE 4  Find the absolute maximum and minimum values of ƒ(x) = x2>3 on 

the interval 3-2, 34 .
Solution We evaluate the function at the critical points and endpoints and take the larg-

est and smallest of the resulting values.

The irst derivative

ƒ′(x) =
2
3

 x-1>3 =
2

323 x

has no zeros but is undefined at the interior point x = 0. The values of ƒ at this one critical 

point and at the endpoints are

Critical point value:  ƒ(0) = 0

Endpoint values:  ƒ(-2) = (-2)2>3 = 23 4

  ƒ(3) = (3)2>3 = 23 9.

We can see from this list that the function’s absolute maximum value is 23 9 ≈ 2.08, and 

it occurs at the right endpoint x = 3. The absolute minimum value is 0, and it occurs at 

the interior point x = 0 where the graph has a cusp (Figure 4.9). 

Theorem 1 gives a method to find the absolute maxima and absolute minima of a dif-

ferentiable function on a finite closed interval. On more general domains, such as (0, 1), 32, 5), 31, q) , and (-q, q), absolute maxima and minima may or may not exist. To deter-

mine if they exist, and to locate them when they do, we will develop methods to sketch the 

graph of a differentiable function. With knowledge of the asymptotes of the function, as 

well as the local maxima and minima, we can deduce the locations of the absolute maxima 

and minima, if any. For now we can find the absolute maxima and the absolute minima of 

a function on a finite closed interval by comparing the values of the function at its critical 

points and at the endpoints of the interval. For a differentiable function, these are the only 

points where the extrema have the potential to occur.

(–2, –32)

(1, 7)

y = 8t − t4

–32

7

1–1–2
t

y

FIGURE 4.8 The extreme values of 

g(t) = 8t - t4 on 3-2, 14  (Example 3).

x

y

10 2 3−1−2

1

2

Absolute maximum;

also a local maximumLocal

maximum

Absolute minimum;

also a local minimum

y = x2�3,  −2 ≤ x ≤ 3

FIGURE 4.9 The extreme values of 

ƒ(x) = x2>3 on 3-2, 34  occur at x = 0 

and x = 3 (Example 4).

Finding Extrema from Graphs

In Exercises 1–6, determine from the graph whether the function has 

any absolute extreme values on 3a, b4 . Then explain how your 

answer is consistent with Theorem 1.

 1. 

x

y

0 a c1 bc2

y = h(x)

 2. 

x

y

0 a c b

y = f (x)

EXERCISES 4.1

 3. 

x

y

0 a bc

y = f (x)

 4. 

x

y

0 a bc

y = h(x)
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In Exercises 15–20, sketch the graph of each function and determine 

whether the function has any absolute extreme values on its domain. 

Explain how your answer is consistent with Theorem 1.

 15. ƒ(x) = 0 x 0 , -1 6 x 6 2

 16. y =
6

x2 + 2
, -1 6 x 6 1

 17. g(x) = e-x,    0 … x 6 1

x - 1, 1 … x … 2

 18. h(x) = • 1
x ,   -1 … x 6 0

2x, 0 … x … 4

 19. y = 3 sin x, 0 6 x 6 2p

 20. ƒ(x) = • x + 1, -1 … x 6 0

cos x,   0 6 x …
p

2

 5. 

x

y

0 a c b

y = g(x)

 6. 

x

y

0 a c b

y = g(x)

In Exercises 7–10, find the absolute extreme values and where they 

occur.

 7. 

1−1

1

−1

y

x

 8. 

2

2

−2 0

y

x

 9. 

0 2

5

x

y  10. 

2
(1, 2)

−3 2

−1

x

y

In Exercises 11–14, match the table with a graph.

 11. x ƒ′(x)

a  0

b  0

c  5

 12. x ƒ′(x)

a   0

b   0

c  -5

 13. x  ƒ′(x)

a does not exist

b   0

c  -2

 14. x  ƒ′(x)

a does not exist

b does not exist

c  -1.7

a b c a b c

a b c a b c

(a) (b)

(c) (d)

Absolute Extrema on Finite Closed Intervals

In Exercises 21–36, find the absolute maximum and minimum values 

of each function on the given interval. Then graph the function. Iden-

tify the points on the graph where the absolute extrema occur, and 

include their coordinates.

 21. ƒ(x) =
2
3

 x - 5, -2 … x … 3

 22. ƒ(x) = -x - 4, -4 … x … 1

 23. ƒ(x) = x2 - 1, -1 … x … 2

 24. ƒ(x) = 4 - x3, -2 … x … 1

 25. F(x) = -  
1

x2
, 0.5 … x … 2

 26. F(x) = -  
1
x , -2 … x … -1

 27. h(x) = 23 x, -1 … x … 8

 28. h(x) = -3x2>3, -1 … x … 1

 29. g(x) = 24 - x2 , -2 … x … 1

 30. g(x) = -25 - x2 , -25 … x … 0

 31. ƒ(u) = sin u, -  
p

2
… u …

5p
6

 32. ƒ(u) = tan u, -  
p

3
… u …

p

4

 33. g(x) = csc x, 
p

3
… x …

2p
3

 34. g(x) = sec x, -  
p

3
… x …

p

6

 35. ƒ(t) = 2 - 0 t 0 , -1 … t … 3

 36. ƒ(t) = 0 t - 5 0 , 4 … t … 7

In Exercises 37–40, find the function’s absolute maximum and mini-

mum values and say where they occur.

 37. ƒ(x) = x4>3, -1 … x … 8

 38. ƒ(x) = x5>3, -1 … x … 8

 39. g(u) = u3>5, -32 … u … 1

 40. h(u) = 3u2>3, -27 … u … 8
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values at critical points and endpoints. But what if there are no 

critical points or endpoints? What happens then? Do such func-

tions really exist? Give reasons for your answers.

 67. The function

V(x) = x(10 - 2x)(16 - 2x),  0 6 x 6 5,

  models the volume of a box.

a. Find the extreme values of V.

b. Interpret any values found in part (a) in terms of the volume 

of the box.

 68. Cubic functions Consider the cubic function

ƒ(x) = ax3 + bx2 + cx + d.

a. Show that ƒ can have 0, 1, or 2 critical points. Give examples 

and graphs to support your argument.

b. How many local extreme values can ƒ have?

 69. Maximum height of a vertically moving body The height of a 

body moving vertically is given by

s = -  
1
2

 gt2 + y0  t + s0,  g 7 0,

  with s in meters and t in seconds. Find the body’s maximum 

height.

 70. Peak alternating current Suppose that at any given time t (in 

seconds) the current i (in amperes) in an alternating current circuit 

is i = 2 cos t + 2 sin t. What is the peak current for this circuit 

(largest magnitude)?

Graph the functions in Exercises 71–74. Then find the extreme values 

of the function on the interval and say where they occur.

 71. ƒ(x) = 0 x - 2 0 + 0 x + 3 0 , -5 … x … 5

 72. g(x) = 0 x - 1 0 - 0 x - 5 0 , -2 … x … 7

 73. h(x) = 0 x + 2 0 - 0 x - 3 0 , -q 6 x 6 q

 74. k(x) = 0 x + 1 0 + 0 x - 3 0 , -q 6 x 6 q

COMPUTER EXPLORATIONS

In Exercises 75–80, you will use a CAS to help find the absolute 

extrema of the given function over the specified closed interval. Per-

form the following steps.

a. Plot the function over the interval to see its general behavior there.

b. Find the interior points where ƒ′ = 0. (In some exercises, 

you may have to use the numerical equation solver to ap-

proximate a solution.) You may want to plot ƒ′ as well.

c. Find the interior points where ƒ′ does not exist.

d. Evaluate the function at all points found in parts (b) and (c) 

and at the endpoints of the interval.

e. Find the function’s absolute extreme values on the interval 

and identify where they occur.

 75. ƒ(x) = x4 - 8x2 + 4x + 2, 3-20>25, 64>254
 76. ƒ(x) = -x4 + 4x3 - 4x + 1, 3-3>4, 34
 77. ƒ(x) = x2>3(3 - x), 3-2, 24
 78. ƒ(x) = 2 + 2x - 3x2>3, 3-1, 10>34
 79. ƒ(x) = 2x + cos x, 30, 2p4
 80. ƒ(x) = x3>4 - sin x +

1
2

, 30, 2p4

T

Finding Critical Points

In Exercises 41–50, determine all critical points for each function.

 41. y = x2 - 6x + 7 42. ƒ(x) = 6x2 - x3

 43. ƒ(x) = x(4 - x)3 44. g(x) = (x - 1)2(x - 3)2

 45. y = x2 +
2
x  46. ƒ(x) =

x2

x - 2

 47. y = x2 - 322x 48. g(x) = 22x - x2

 49. y = x3 + 3x2 - 24x + 7 50. y = x - 3x2>3
Local Extrema and Critical Points

In Exercises 51–58, find the critical points and domain endpoints for 

each function. Then find the value of the function at each of these 

points and identify extreme values (absolute and local).

 51. y = x2>3(x + 2) 52. y = x2>3(x2 - 4)

 53. y = x24 - x2 54. y = x223 - x

 55. y = e4 - 2x,  x … 1

x + 1,   x 7 1

 56. y = e3 - x,        x 6 0

3 + 2x - x2,  x Ú 0

 57. y = e-x2 - 2x + 4,  x … 1

-x2 + 6x - 4,  x 7 1

 58. y = c -  
1
4

 x2 -
1
2

 x +
15
4

,  x … 1

x3 - 6x2 + 8x,      x 7 1

In Exercises 59 and 60, give reasons for your answers.

 59. Let ƒ(x) = (x - 2)2>3.
a. Does ƒ′(2) exist?

b. Show that the only local extreme value of ƒ occurs at x = 2.

c. Does the result in part (b) contradict the Extreme Value 

 Theorem?

d. Repeat parts (a) and (b) for ƒ(x) = (x - a)2>3, replacing 2 by a.

 60. Let ƒ(x) = 0 x3 - 9x 0 .
a. Does ƒ′(0) exist? b. Does ƒ′(3) exist?

c. Does ƒ′(-3) exist? d. Determine all extrema of ƒ.

In Exercises 61–62, show that the function has neither an absolute 

minimum nor an absolute maximum on its natural domain.

 61. y = x11 + x3 + x - 5 62. y = 3x +  tan x

Theory and Examples

 63. A minimum with no derivative The function ƒ(x) = 0 x 0  has an 

absolute minimum value at x = 0 even though ƒ is not diferen-

tiable at x = 0. Is this consistent with Theorem 2? Give reasons 

for your answer.

 64. Even functions If an even function ƒ(x) has a local maximum 

value at x = c, can anything be said about the value of ƒ at 

x = -c? Give reasons for your answer.

 65. Odd functions If an odd function g(x) has a local minimum val-

ue at x = c, can anything be said about the value of g at x = -c? 

Give reasons for your answer.

 66. No critical points or endpoints exist We know how to ind the 

extreme values of a continuous function ƒ(x) by investigating its 
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4.2 The Mean Value Theorem

We know that constant functions have zero derivatives, but could there be a more compli-

cated function whose derivative is always zero? If two functions have identical derivatives 

over an interval, how are the functions related? We answer these and other questions in 

this chapter by applying the Mean Value Theorem. First we introduce a special case, 

known as Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle’s Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-

ferent points, there is at least one point between them where the tangent to the graph is 

horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.

THEOREM 3—Rolle’s Theorem

Suppose that y = ƒ(x) is continuous over the closed interval 3a, b4  and diferen-

tiable at every point of its interior (a, b). If ƒ(a) = ƒ(b), then there is at least one 

number c in (a, b) at which ƒ′(c) = 0.

Proof  Being continuous, ƒ assumes absolute maximum and minimum values on 3a, b4  by Theorem 1. These can occur only

1. at interior points where ƒ′ is zero,

2. at interior points where ƒ′ does not exist,

3. at endpoints of the function’s domain, in this case a and b.

By hypothesis, ƒ has a derivative at every interior point. That rules out possibility (2), leav-

ing us with interior points where ƒ′ = 0 and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b, then 

ƒ′(c) = 0 by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints, then 

because ƒ(a) = ƒ(b) it must be the case that ƒ is a constant function with ƒ(x) = ƒ(a) = ƒ(b) 

for every x∊ 3a, b4 . Therefore ƒ′(x) = 0 and the point c can be taken anywhere in the 

interior (a, b). 

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph 

may not have a horizontal tangent (Figure 4.11).

f ′(c3) = 0

f ′(c2) = 0

f ′(c1) = 0

f ′(c) = 0

y = f (x)

y = f (x)

0 a c b

0 bc3c2c1a

(a)

(b)

x

x

y

y

FIGURE 4.10 Rolle’s Theorem says 

that a differentiable curve has at least one 

horizontal tangent between any two points 

where it crosses a horizontal line. It may 

have just one (a), or it may have more (b).

a bx0a bx0a

(a) Discontinuous at an 

 endpoint of [a, b]

(b) Discontinuous at an 

 interior point of [a, b]

(c) Continuous on [a, b] but not

 diferentiable at an interior

 point

b
x x x

y y y

y = f (x) y = f (x) y = f (x)

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do 

not hold.

HISTORICAL BIOGRAPHY

Michel Rolle

(1652–1719)

www.goo.gl/BfgcNr

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show 

when there is only one real solution of an equation ƒ(x) = 0, as we illustrate in the next 

example.

http://www.goo.gl/BfgcNr
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EXAMPLE 1  Show that the equation

x3 + 3x + 1 = 0

has exactly one real solution.

Solution We define the continuous function

ƒ(x) = x3 + 3x + 1.

Since ƒ(-1) = -3 and ƒ(0) = 1, the Intermediate Value Theorem tells us that the graph 

of ƒ crosses the x-axis somewhere in the open interval (-1, 0). (See Figure 4.12.) Now, if 

there were even two points x = a and x = b where ƒ(x) was zero, Rolle’s Theorem 

would guarantee the existence of a point x = c in between them where ƒ′ was zero. How-

ever, the derivative

ƒ′(x) = 3x2 + 3

is never zero (because it is always positive). Therefore, ƒ has no more than one zero. 

Our main use of Rolle’s Theorem is in proving the Mean Value Theorem.

x

y

0 1

(1, 5)

1

(−1, −3)

−1

y = x3 + 3x + 1

FIGURE 4.12 The only real zero of the 

polynomial y = x3 + 3x + 1 is the one 

shown here where the curve crosses the 

x-axis between -1 and 0 (Example 1).

x

y

0 a

Tangent parallel to secant

c b

Slope

B

A

y = f (x)

Slope f ′(c)

f (b) − f (a)

b − a

FIGURE 4.13 Geometrically, the Mean 

Value Theorem says that somewhere 

between a and b the curve has at least one 

tangent line parallel to the secant line that 

joins A and B. THEOREM 4—The Mean Value Theorem

Suppose y = ƒ(x) is continuous over a closed interval 3a, b4  and diferentiable 

on the interval’s interior (a, b). Then there is at least one point c in (a, b) at which

 
ƒ(b) - ƒ(a)

b - a
= ƒ′(c). (1)

Proof  We picture the graph of ƒ and draw a line through the points A(a, ƒ(a)) and 

B(b, ƒ(b)). (See Figure 4.14.) The secant line is the graph of the function

 g(x) = ƒ(a) +
ƒ(b) - ƒ(a)

b - a
  (x - a) (2)

(point-slope equation). The vertical diference between the graphs of ƒ and g at x is

 h(x) = ƒ(x) - g(x)

  = ƒ(x) - ƒ(a) -
ƒ(b) - ƒ(a)

b - a
  (x - a). (3)

Figure 4.15 shows the graphs of ƒ, g, and h together.

The function h satisies the hypotheses of Rolle’s Theorem on 3a, b4 . It is continuous 

on 3a, b4  and diferentiable on (a, b) because both ƒ and g are. Also, h(a) = h(b) = 0 

 because the graphs of ƒ and g both pass through A and B. Therefore h′(c) = 0 at some 

point c∊(a, b). This is the point we want for Equation (1) in the theorem.

HISTORICAL BIOGRAPHY

Joseph-Louis Lagrange

(1736–1813)

www.goo.gl/WLub9z

A(a, f (a))

B(b, f (b))
y = f (x)

x
ba

FIGURE 4.14 The graph of ƒ and the 

secant AB over the interval 3a, b4 .

The Mean Value Theorem

The Mean Value Theorem, which was first stated by Joseph-Louis Lagrange, is a slanted 

version of Rolle’s Theorem (Figure 4.13). The Mean Value Theorem guarantees that there 

is a point where the tangent line is parallel to the secant line that joins A and B.

http://www.goo.gl/WLub9z
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To verify Equation (1), we diferentiate both sides of Equation (3) with respect to x 

and then set x = c:

 h′(x) = ƒ′(x) -
ƒ(b) - ƒ(a)

b - a
  Derivative of Eq. (3) 

 h′(c) = ƒ′(c) -
ƒ(b) - ƒ(a)

b - a
  Evaluated at x = c

 0 = ƒ′(c) -
ƒ(b) - ƒ(a)

b - a
  h′(c) = 0

 ƒ′(c) =
ƒ(b) - ƒ(a)

b - a
,   Rearranged

which is what we set out to prove. 

The hypotheses of the Mean Value Theorem do not require ƒ to be differentiable at 

either a or b. One-sided continuity at a and b is enough (Figure 4.16).

x
ba x

B

A

h(x) = f (x) − g(x)

y = f (x)

y = g(x)

h(x)

FIGURE 4.15 The secant AB is the 

graph of the function g(x). The function 

h(x) = ƒ(x) - g(x) gives the vertical dis-

tance between the graphs of ƒ and g at x.

EXAMPLE 2  The function ƒ(x) = x2 (Figure 4.17) is continuous for 0 … x … 2 

and differentiable for 0 6 x 6 2. Since ƒ(0) = 0 and ƒ(2) = 4, the Mean Value Theo-

rem says that at some point c in the interval, the derivative ƒ′(x) = 2x must have the value 

(4 - 0)>(2 - 0) = 2. In this case we can identify c by solving the equation 2c = 2 to 

get c = 1. However, it is not always easy to find c algebraically, even though we know it 

always exists. 

x

y

0 1−1

1
y = "1 − x2, −1 ≤ x ≤ 1

FIGURE 4.16 The function ƒ(x) =  

21 - x2 satisfies the hypotheses (and 

conclusion) of the Mean Value Theorem 

on 3-1, 14  even though ƒ is not differen-

tiable at -1 and 1.

x

y

1

(1, 1)

2

B(2, 4)

y = x2

A(0, 0)

1

2

3

4

FIGURE 4.17 As we find in Example 2, 

c = 1 is where the tangent is parallel to 

the secant line. COROLLARY 1 If ƒ′(x) = 0 at each point x of an open interval (a, b), then 

ƒ(x) = C for all x∊(a, b), where C is a constant.

A Physical Interpretation

We can think of the number (ƒ(b) - ƒ(a))>(b - a) as the average change in ƒ over 3a, b4  and ƒ′(c) as an instantaneous change. Then the Mean Value Theorem says that the 

instantaneous change at some interior point is equal to the average change over the entire 

interval.

Mathematical Consequences

At the beginning of the section, we asked what kind of function has a zero derivative over 

an interval. The first corollary of the Mean Value Theorem provides the answer that only 

constant functions have zero derivatives.

Proof  We want to show that ƒ has a constant value on the interval (a, b). We do so 

by showing that if x1 and x2 are any two points in (a, b) with x1 6 x2, then ƒ(x1) = ƒ(x2). 

Now ƒ satisies the hypotheses of the Mean Value Theorem on 3x1, x24 : It is diferentiable 

at every point of 3x1, x24  and hence continuous at every point as well. Therefore,

ƒ(x2) - ƒ(x1)
x2 - x1

= ƒ′(c)

EXAMPLE 3  If a car accelerating from zero takes 8 sec to go 352 ft, its average 

velocity for the 8-sec interval is 352>8 = 44 ft>sec. The Mean Value Theorem says that at 

some point during the acceleration the speedometer must read exactly 30 mph (44 ft>sec) 

(Figure 4.18). 
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Proof  At each point x∊(a, b) the derivative of the diference function h = ƒ - g is

h′(x) = ƒ′(x) - g′(x) = 0.

Thus, h(x) = C on (a, b) by Corollary 1. That is, ƒ(x) - g(x) = C on (a, b), so ƒ(x) =  

g(x) + C. 

Corollaries 1 and 2 are also true if the open interval (a, b) fails to be finite. That is, 

they remain true if the interval is (a, q), (-q, b), or (-q, q).

Corollary 2 will play an important role when we discuss antiderivatives in Section 

4.7. It tells us, for instance, that since the derivative of ƒ(x) = x2 on (-q, q) is 2x, any 

other function with derivative 2x on (-q, q) must have the formula x2 + C for some 

value of C (Figure 4.19).

EXAMPLE 4  Find the function ƒ(x) whose derivative is sin x and whose graph 

passes through the point (0, 2).

Solution Since the derivative of g(x) = -cos x is g′(x) = sin x, we see that ƒ and g 

have the same derivative. Corollary 2 then says that ƒ(x) = -cos x + C for some constant 

C. Since the graph of ƒ passes through the point (0, 2), the value of C is determined from 

the condition that ƒ(0) = 2:

ƒ(0) = -cos (0) + C = 2,  so  C = 3.

The function is ƒ(x) = -cos x + 3. 

Finding Velocity and Position from Acceleration

We can use Corollary 2 to find the velocity and position functions of an object moving 

along a vertical line. Assume the object or body is falling freely from rest with acceleration 

9.8 m>sec2. We assume the position s(t) of the body is measured positive downward from 

the rest position (so the vertical coordinate line points downward, in the direction of the 

motion, with the rest position at 0).

We know that the velocity y(t) is some function whose derivative is 9.8. We also 

know that the derivative of g(t) = 9.8t is 9.8. By Corollary 2,

y(t) = 9.8t + C

for some constant C. Since the body falls from rest, y(0) = 0. Thus

9.8(0) + C = 0,  and  C = 0.

The velocity function must be y(t) = 9.8t. What about the position function s(t)?

COROLLARY 2 If ƒ′(x) = g′(x) at each point x in an open interval (a, b), then 

there exists a constant C such that ƒ(x) = g(x) + C for all x∊(a, b). That is, 

ƒ - g is a constant function on (a, b).

x

y

0

−1

−2

1

2

y = x2 
+ C C = 2

C = 1

C = 0

C = −1

C = −2

FIGURE 4.19 From a geometric point 

of view, Corollary 2 of the Mean Value 

Theorem says that the graphs of functions 

with identical derivatives on an interval 

can differ only by a vertical shift. The 

graphs of the functions with derivative 2x 

are the parabolas y = x2 + C, shown here 

for several values of C.

at some point c between x1 and x2. Since ƒ′ = 0 throughout (a, b), this equation implies 

successively that

 
ƒ(x2) - ƒ(x1)

x2 - x1
= 0,  ƒ(x2) - ƒ(x1) = 0,  and  ƒ(x1) = ƒ(x2). 

At the beginning of this section, we also asked about the relationship between two 

functions that have identical derivatives over an interval. The next corollary tells us that 

their values on the interval have a constant difference.

t
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0
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At this point,

the car’s speed

was 30 mph.
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(8, 352)

240
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D
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n
ce

 (
ft
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s = f (t)

FIGURE 4.18 Distance versus elapsed 

time for the car in Example 3.
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We know that s(t) is some function whose derivative is 9.8t. We also know that the 

derivative of ƒ(t) = 4.9t2 is 9.8t. By Corollary 2,

s(t) = 4.9t2 + C

for some constant C. Since s(0) = 0,

4.9(0)2 + C = 0,  and  C = 0.

The position function is s(t) = 4.9t2 until the body hits the ground.

The ability to find functions from their rates of change is one of the very powerful 

tools of calculus. As we will see, it lies at the heart of the mathematical developments in 

Chapter 5.

Checking the Mean Value Theorem

Find the value or values of c that satisfy the equation

ƒ(b) - ƒ(a)

b - a
= ƒ′(c)

in the conclusion of the Mean Value Theorem for the functions and 

intervals in Exercises 1–6.

 1. ƒ(x) = x2 + 2x - 1, 30, 14
 2. ƒ(x) = x2>3, 30, 14
 3. ƒ(x) = x +

1
x ,  c 1

2
, 2 d

 4. ƒ(x) = 2x - 1,  31, 34
 5. ƒ(x) = x3 - x2, 3-1, 24
 6. g(x) = e x3, -2 … x … 0

x2,     0 6 x … 2

Which of the functions in Exercises 7–12 satisfy the hypotheses of the 

Mean Value Theorem on the given interval, and which do not? Give 

reasons for your answers.

 7. ƒ(x) = x2>3, 3-1, 84
 8. ƒ(x) = x4>5, 30, 14
 9. ƒ(x) = 2x(1 - x), 30, 14
 10. ƒ(x) = • sin x

x  ,  -p … x 6 0

0, x = 0

 11. ƒ(x) = e x2 - x, -2 … x … -1

2x2 - 3x - 3, -1 6 x … 0

 12. ƒ(x) = e2x - 3,    0 … x … 2

6x - x2 - 7, 2 6 x … 3

 13. The function

ƒ(x) = e x, 0 … x 6 1

0, x = 1

  is zero at x = 0 and x = 1 and diferentiable on (0, 1), but its de-

rivative on (0, 1) is never zero. How can this be? Doesn’t Rolle’s 

Theorem say the derivative has to be zero somewhere in (0, 1)? 

Give reasons for your answer.

 14. For what values of a, m, and b does the function

ƒ(x) = c 3, x = 0

-x2 + 3x + a, 0 6 x 6 1

mx + b, 1 … x … 2

  satisfy the hypotheses of the Mean Value Theorem on the interval 30, 24 ?
Roots (Zeros)

 15. a.  Plot the zeros of each polynomial on a line together with the 

zeros of its irst derivative.

 i) y = x2 - 4

 ii) y = x2 + 8x + 15

 iii) y = x3 - 3x2 + 4 = (x + 1)(x - 2)2

 iv) y = x3 - 33x2 + 216x = x(x - 9)(x - 24)

b. Use Rolle’s Theorem to prove that between every two zeros 

of xn + an - 1x
n - 1 + g + a1  x + a0 there lies a zero of

nxn - 1 + (n - 1)an - 1x
n - 2 + g + a1.

 16. Suppose that ƒ″ is continuous on 3a, b4  and that ƒ has three zeros 

in the interval. Show that ƒ″ has at least one zero in (a, b). Gener-

alize this result.

 17. Show that if ƒ″ 7 0 throughout an interval 3a, b4 , then ƒ′ has 

at most one zero in 3a, b4 . What if ƒ″ 6 0 throughout 3a, b4  
instead?

 18. Show that a cubic polynomial can have at most three real zeros.

Show that the functions in Exercises 19–26 have exactly one zero in 

the given interval.

 19. ƒ(x) = x4 + 3x + 1, 3-2, -14
 20. ƒ(x) = x3 +

4

x2
+ 7, (-q, 0)

 21. g(t) = 2t + 21 + t - 4, (0, q)

 22. g(t) =
1

1 - t
+ 21 + t - 3.1, (-1, 1)

 23. r(u) = u + sin2 au
3
b - 8, (-q, q)

EXERCISES 4.2
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Applications

 49. Temperature change It took 14 sec for a mercury thermometer 

to rise from -19°C to 100°C when it was taken from a freezer and 

placed in boiling water. Show that somewhere along the way the 

mercury was rising at the rate of 8.5°C>sec.

 50. A trucker handed in a ticket at a toll booth showing that in 2 hours 

she had covered 159 mi on a toll road with speed limit 65 mph. 

The trucker was cited for speeding. Why?

 51. Classical accounts tell us that a 170-oar trireme (ancient Greek or 

Roman warship) once covered 184 sea miles in 24 hours. Explain 

why at some point during this feat the trireme’s speed exceeded 

7.5 knots (sea or nautical miles per hour).

 52. A marathoner ran the 26.2-mi New York City Marathon in  

2.2 hours. Show that at least twice the marathoner was running 

at exactly 11 mph, assuming the initial and inal speeds are zero.

 53. Show that at some instant during a 2-hour automobile trip the car’s 

speedometer reading will equal the average speed for the trip.

 54. Free fall on the moon On our moon, the acceleration of gravity 

is 1.6 m>sec2. If a rock is dropped into a crevasse, how fast will it 

be going just before it hits bottom 30 sec later?

Theory and Examples

 55. The geometric mean of a and b The geometric mean of two 

positive numbers a and b is the number 2ab. Show that the value 

of c in the conclusion of the Mean Value Theorem for ƒ(x) = 1>x 

on an interval of positive numbers 3a, b4  is c = 2ab.

 56. The arithmetic mean of a and b The arithmetic mean of two 

numbers a and b is the number (a + b)>2. Show that the value of 

c in the conclusion of the Mean Value Theorem for ƒ(x) = x2 on 

any interval 3a, b4  is c = (a + b)>2.

 57. Graph the function

ƒ(x) = sin x sin (x + 2) - sin2 (x + 1).

  What does the graph do? Why does the function behave this way? 

Give reasons for your answers.

 58. Rolle’s Theorem

a. Construct a polynomial ƒ(x) that has zeros at x = -2, -1, 0, 

1, and 2.

b. Graph ƒ and its derivative ƒ′ together. How is what you see 

related to Rolle’s Theorem?

c. Do g(x) = sin x and its derivative g′ illustrate the same 

phenomenon as ƒ and ƒ′?

 59. Unique solution Assume that ƒ is continuous on 3a, b4  and 

diferentiable on (a, b). Also assume that ƒ(a) and ƒ(b) have op-

posite signs and that ƒ′ ≠ 0 between a and b. Show that ƒ(x) = 0 

exactly once between a and b.

 60. Parallel tangents Assume that ƒ and g are diferentiable on 3a, b4  and that ƒ(a) = g(a) and ƒ(b) = g(b). Show that there is 

at least one point between a and b where the tangents to the graphs 

of ƒ and g are parallel or the same line. Illustrate with a sketch.

 61. Suppose that ƒ′(x) … 1 for 1 … x … 4. Show that ƒ(4) -  

ƒ(1) … 3.

 62. Suppose that 0 6 ƒ′(x) 6 1>2 for all x-values. Show that 

ƒ(-1) 6  ƒ(1) 6 2 + ƒ(-1).

 63. Show that 0 cos x - 1 0 … 0 x 0  for all x-values. (Hint: Consider 

ƒ(t) = cos t on 30, x4 .)

T

 24. r(u) = 2u - cos2 u + 22, (-q, q)

 25. r(u) = sec u -
1

u3
+ 5, (0, p>2)

 26. r(u) = tan u - cot u - u, (0, p>2)

Finding Functions from Derivatives

 27. Suppose that ƒ(-1) = 3 and that ƒ′(x) = 0 for all x. Must 

ƒ(x) = 3 for all x? Give reasons for your answer.

 28. Suppose that ƒ(0) = 5 and that ƒ′(x) = 2 for all x. Must ƒ(x) =  

2x + 5 for all x? Give reasons for your answer.

 29. Suppose that ƒ′(x) = 2x for all x. Find ƒ(2) if

a. ƒ(0) = 0 b. ƒ(1) = 0 c. ƒ(-2) = 3.

 30. What can be said about functions whose derivatives are constant? 

Give reasons for your answer.

In Exercises 31–36, find all possible functions with the given 

 derivative.

 31. a. y′ = x b. y′ = x2 c. y′ = x3

 32. a. y′ = 2x b. y′ = 2x - 1 c. y′ = 3x2 + 2x - 1

 33. a. y′ = -  
1

x2
 b. y′ = 1 -

1

x2
 c. y′ = 5 +

1

x2

 34. a. y′ =
1

22x
 b. y′ =

1

2x
 c. y′ = 4x -

1

2x

 35. a. y′ = sin 2t b. y′ = cos 
t

2
 c. y′ = sin 2t + cos 

t

2

 36. a. y′ = sec2 u b. y′ = 2u c. y′ = 2u - sec2 u

In Exercises 37–40, find the function with the given derivative whose 

graph passes through the point P.

 37. ƒ′(x) = 2x - 1, P(0, 0)

 38. g′(x) =
1

x2
+ 2x, P(-1, 1)

 39. r′(u) = 8 - csc2 u,  Pap
4

, 0b
 40. r′(t) = sec t tan t - 1, P(0, 0)

Finding Position from Velocity or Acceleration

Exercises 41–44 give the velocity y = ds>dt and initial position of an 

object moving along a coordinate line. Find the object’s position at 

time t.

 41. y = 9.8t + 5, s(0) = 10 42. y = 32t - 2, s(0.5) = 4

 43. y = sin pt, s(0) = 0 44. y =
2
p cos 

2t
p , s(p2) = 1

Exercises 45–48 give the acceleration a = d2s>dt2, initial velocity, 

and initial position of an object moving on a coordinate line. Find the 

object’s position at time t.

 45. a = 32, y(0) = 20, s(0) = 5

 46. a = 9.8, y(0) = -3, s(0) = 0

 47. a = -4 sin 2t, y(0) = 2, s(0) = -3

 48. a =
9

p2
 cos 

3t
p , y(0) = 0, s(0) = -1
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Proof  Let x1 and x2 be any two points in 3a, b4  with x1 6 x2. The Mean Value Theo-

rem applied to ƒ on 3x1, x24  says that

ƒ(x2) - ƒ(x1) = ƒ′(c)(x2 - x1)

for some c between x1 and x2. The sign of the right-hand side of this equation is the same 

as the sign of ƒ ′(c) because x2 - x1 is positive. Therefore, ƒ(x2) 7 ƒ(x1) if ƒ′ is positive 

on (a, b) and ƒ(x2) 6 ƒ(x1) if ƒ′ is negative on (a, b). 

Corollary 3 tells us that ƒ(x) = 2x is increasing on the interval 30, b4  for any 

b 7 0 because ƒ′(x) = 1>2x is positive on (0, b). The derivative does not exist at x = 0, 

but Corollary 3 still applies. The corollary is valid for infinite as well as finite intervals, so 

ƒ(x) = 2x is increasing on 30, q).

To find the intervals where a function ƒ is increasing or decreasing, we first find all of 

the critical points of ƒ. If a 6 b are two critical points for ƒ, and if the derivative ƒ′ is 

  where min ƒ′ and max ƒ′ refer to the minimum and maximum 

values of ƒ′ on 3a, b4 ? Give reasons for your answers.

 69. Use the inequalities in Exercise 68 to estimate ƒ(0.1) if ƒ′(x) =  

1>(1 + x4 cos x) for 0 … x … 0.1 and ƒ(0) = 1.

 70. Use the inequalities in Exercise 68 to estimate ƒ(0.1) if ƒ′(x) =  

1>(1 - x4) for 0 … x … 0.1 and ƒ(0) = 2.

 71. Let ƒ be diferentiable at every value of x and suppose that 

ƒ(1) = 1, that ƒ′ 6 0 on (-q, 1), and that ƒ′ 7 0 on (1, q).

a. Show that ƒ(x) Ú 1 for all x.

b. Must ƒ′(1) = 0? Explain.

 72. Let ƒ(x) = px2 + qx + r be a quadratic function deined on 

a closed interval 3a, b4 . Show that there is exactly one point c 

in (a, b) at which ƒ satisies the conclusion of the Mean Value 

 Theorem.

T

T

 64. Show that for any numbers a and b, the sine inequality  0 sin b -  sin a 0 … 0 b - a 0  is true.

 65. If the graphs of two diferentiable functions ƒ(x) and g(x) start at 

the same point in the plane and the functions have the same rate 

of change at every point, do the graphs have to be identical? Give 

reasons for your answer.

 66. If 0 ƒ(w) - ƒ(x) 0 … 0w - x 0  for all values w and x and ƒ is a dif-

ferentiable function, show that -1 … ƒ′(x) … 1 for all x-values.

 67. Assume that ƒ is diferentiable on a … x … b and that 

ƒ(b) 6 ƒ(a). Show that ƒ′ is negative at some point between a 

and b.

 68. Let ƒ be a function deined on an interval 3a, b4 . What conditions 

could you place on ƒ to guarantee that

min ƒ′ …
ƒ(b) - ƒ(a)

b - a
… max ƒ′,

4.3 Monotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function, it is useful to know where it increases 

(rises from left to right) and where it decreases (falls from left to right) over an interval. 

This section gives a test to determine where it increases and where it decreases. We also 

show how to test the critical points of a function to identify whether local extreme values 

are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive 

derivatives are increasing functions and functions with negative derivatives are decreasing 

functions. A function that is increasing or decreasing on an interval is said to be  monotonic 

on the interval.

COROLLARY 3 Suppose that ƒ is continuous on 3a, b4  and diferentiable on 

(a, b).

If ƒ′(x) 7 0 at each point x∊(a, b), then ƒ is increasing on 3a, b4 .
If ƒ′(x) 6 0 at each point x∊(a, b), then ƒ is decreasing on 3a, b4 .
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EXAMPLE 1  Find the critical points of ƒ(x) = x3 - 12x - 5 and identify the open 

intervals on which ƒ is increasing and on which ƒ is decreasing.

Solution The function ƒ is everywhere continuous and differentiable. The first derivative

 ƒ′(x) = 3x2 - 12 = 3(x2 - 4)

 = 3(x + 2)(x - 2)

is zero at x = -2 and x = 2. These critical points subdivide the domain of ƒ to create 

nonoverlapping open intervals (-q, -2), (-2, 2), and (2, q) on which ƒ′ is either posi-

tive or negative. We determine the sign of ƒ′ by evaluating ƒ′ at a convenient point in each 

subinterval. We evaluate ƒ′ at x = -3 in the first interval, x = 0 in the second interval 

and x = 3 in the third, since ƒ′ is relatively easy to compute at these points. The behavior 

of ƒ is determined by then applying Corollary 3 to each subinterval. The results are sum-

marized in the following table, and the graph of ƒ is given in Figure 4.20. 

Interval -q 6 x 6 -2 -2 6 x 6 2 2 6 x 6 q

ƒ′ evaluated  ƒ′(-3) = 15  ƒ′(0) = -12  ƒ′(3) = 15

Sign of ƒ′  +  -  +

Behavior of ƒ
x

−3 −2 −1 0 1 2 3

decreasing increasingincreasing

We used “strict” less-than inequalities to identify the intervals in the summary table 

for Example 1, since open intervals were specified. Corollary 3 says that we could use …
inequalities as well. That is, the function ƒ in the example is increasing on -q 6 x … -2, 

decreasing on -2 … x … 2, and increasing on 2 … x 6 q. We do not talk about whether 

a function is increasing or decreasing at a single point.

First Derivative Test for Local Extrema

In Figure 4.21, at the points where ƒ has a minimum value, ƒ′ 6 0 immediately to the left 

and ƒ′ 7 0 immediately to the right. (If the point is an endpoint, there is only one side to 

consider.) Thus, the function is decreasing on the left of the minimum value and it is 

increasing on its right. Similarly, at the points where ƒ has a maximum value, ƒ′ 7 0 

immediately to the left and ƒ′ 6 0 immediately to the right. Thus, the function is increas-

ing on the left of the maximum value and decreasing on its right. In summary, at a local 

extreme point, the sign of ƒ′(x) changes.

These observations lead to a test for the presence and nature of local extreme values 

of differentiable functions.

continuous but never zero on the interval (a, b), then by the Intermediate Value Theorem 

applied to ƒ′, the derivative must be everywhere positive on (a, b), or everywhere negative 

there. One way we can determine the sign of ƒ′ on (a, b) is simply by evaluating the 

derivative at a single point c in (a, b). If ƒ′(c) 7 0, then ƒ′(x) 7 0 for all x in (a, b) so ƒ 

is increasing on 3a, b4  by Corollary 3; if ƒ′(c) 6 0, then ƒ is decreasing on 3a, b4 . It 
doesn’t matter which point c we choose in (a, b), since the sign of ƒ′(c) is the same for all 

choices. Usually we pick c to be a point where it is easy to evaluate ƒ′(c). The next exam-

ple illustrates how we use this procedure.

x

(−2, 11)

(2, −21)

y

1 2 3 4−2−3−4 −1 0

−10

−20

10

20

y = x3 − 12x  −  5

FIGURE 4.20 The function ƒ(x) =  

x3 - 12x - 5 is monotonic on three sepa-

rate intervals (Example 1).
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x

y = f(x)

a bc1 c2 c5c4c3

Absolute min

Absolute max

 f ′  undeined

Local min

Local max

 f ′ = 0 No extremum

 f ′ = 0

No extremum

 f ′ = 0

Local min

 f ′ = 0

 f ′ < 0
 f ′ > 0

 f ′ > 0

 f ′ > 0

 f ′ < 0

 f ′ < 0

FIGURE 4.21 The critical points of a function locate where it is increasing and where it is decreasing. The 

first derivative changes sign at a critical point where a local extremum occurs.

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function ƒ, and that ƒ is difer-

entiable at every point in some interval containing c except possibly at c itself. 

Moving across this interval from left to right,

1. if ƒ′ changes from negative to positive at c, then ƒ has a local minimum at c;

2. if ƒ′ changes from positive to negative at c, then ƒ has a local maximum at c;

3. if ƒ′ does not change sign at c (that is, ƒ′ is positive on both sides of c or nega-

tive on both sides), then ƒ has no local extremum at c.

The test for local extrema at endpoints is similar, but there is only one side to consider in 

determining whether ƒ is increasing or decreasing, based on the sign of ƒ′.

Proof of the First Derivative Test  Part (1). Since the sign of ƒ′ changes from nega-

tive to positive at c, there are numbers a and b such that a 6 c 6 b, ƒ′ 6 0 on (a, c),  

and ƒ′ 7 0 on (c, b). If x∊(a, c), then ƒ(c) 6 ƒ(x) because ƒ′ 6 0 implies that ƒ is 

decreasing on 3a, c4 . If x∊(c, b), then ƒ(c) 6 ƒ(x) because ƒ′ 7 0 implies that ƒ is in-

creasing on 3c, b4 . Therefore, ƒ(x) Ú ƒ(c) for every x∊(a, b). By deinition, ƒ has a local 

minimum at c.

Parts (2) and (3) are proved similarly. 

EXAMPLE 2  Find the critical points of

ƒ(x) = x1>3(x - 4) = x4>3 - 4x1>3.
Identify the open intervals on which ƒ is increasing and decreasing. Find the function’s 

local and absolute extreme values.

Solution The function ƒ is continuous at all x since it is the product of two continuous 

functions, x1>3 and (x - 4). The first derivative

 ƒ′(x) =
d

dx
  (x4>3 - 4x1>3) =

4
3

 x1>3 -
4
3

 x-2>3
 =

4
3

 x-2>3(x - 1) =
4(x - 1)

3x2>3
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is zero at x = 1 and undefined at x = 0. There are no endpoints in the domain, so the 

critical points x = 0 and x = 1 are the only places where ƒ might have an extreme value.

The critical points partition the x-axis into open intervals on which ƒ′ is either posi-

tive or negative. The sign pattern of ƒ′ reveals the behavior of ƒ between and at the critical 

points, as summarized in the following table.

Interval  x 6 0 0 6 x 6 1 x 7 1

Sign of ƒ′  -  -  +

Behavior of ƒ

x

−1 0 1 2

decreasing increasingdecreasing

Corollary 3 to the Mean Value Theorem implies that ƒ decreases on (-q, 0), decreas-

es on (0, 1), and increases on (1, q). The First Derivative Test for Local Extrema tells us 

that ƒ does not have an extreme value at x = 0 (ƒ′ does not change sign) and that ƒ has a 

local minimum at x = 1 (ƒ′ changes from negative to positive).

The value of the local minimum is ƒ(1) = 11>3(1 - 4) = -3. This is also an absolute 

minimum since ƒ is decreasing on (-q, 1) and increasing on (1, q). Figure 4.22 shows 

this value in relation to the function’s graph.

Note that lim
 

xS0 ƒ′(x) = -q, so the graph of ƒ has a vertical tangent at the origin. 

EXAMPLE 3  Within the interval 0 … x … 2p, find the critical points of

ƒ(x) = sin2 x - sin x - 1.

Identify the open intervals on which ƒ is increasing and decreasing. Find the function’s 

local and absolute extreme values.

Solution The function ƒ is continuous over 30, 2p4  and differentiable over (0, 2p), so 

the critical points occur at the zeros of ƒ′ in (0, 2p). We find

ƒ′(x) = 2 sin x cos x - cosx = (2 sin x - 1)(cos x).

The first derivative is zero if and only if sin x = 1
2 or cos x = 0. So the critical points of ƒ 

in (0, 2p) are x = p>6, x = 5p>6, x = p>2, and x = 3p>2. They partition 30, 2p4  
into open intervals as follows.

Interval a0, 
p
6
b ap

6
, 
p
2
b ap

2
, 

5p
6
b a5p

6
, 

3p
2
b a3p

2
, 2pb

Sign of ƒ′  -  +  -  +  -

Behavior of ƒ
x

0

decreasingdec increasingdec inc

2
π

6
π 2π

6
5π

2
3π

The table displays the open intervals on which ƒ is increasing and decreasing. We can 

deduce from the table that there is a local minimum value of ƒ(p>6) = 1
4 - 1

2 - 1 = -5
4 , 

a local maximum value of ƒ(p>2) = 1 - 1 - 1 = -1, another local minimum value of 

ƒ(5p>6) = -5
4 , and another local maximum value of ƒ(3p>2) = 1 - (-1) - 1 = 1. 

The endpoint values are ƒ(0) = ƒ(2p) = -1. The absolute minimum in 30, 2p4  is -5
4  

occurring at x = p>6 and x = 5p>6; the absolute maximum is 1 occurring at x = 3p>2. 

Figure 4.23 shows the graph. 

x

y

0 1 2 3 4

1

−1

−2

2

4

−3

−1

y = x1�3(x − 4)

(1, −3)

FIGURE 4.22 The function ƒ(x) =  

x1>3(x - 4) decreases when x 6 1 and 

increases when x 7 1 (Example 2).
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6
π

2
π

6
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2π

y = sin2 x − sin x − 1

FIGURE 4.23 The graph of the function 

in Example 3.
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Analyzing Functions from Derivatives

Answer the following questions about the functions whose derivatives 

are given in Exercises 1–14:

a. What are the critical points of ƒ?

b. On what open intervals is ƒ increasing or decreasing?

c. At what points, if any, does ƒ assume local maximum and 

minimum values?

 1. ƒ′(x) = x(x - 1) 2. ƒ′(x) = (x - 1)(x + 2)

 3. ƒ′(x) = (x - 1)2(x + 2) 4. ƒ′(x) = (x - 1)2(x + 2)2

 5. ƒ′(x) = (x - 1)(x + 2)(x - 3)

 6. ƒ′(x) = (x - 7)(x + 1)(x + 5)

 7. ƒ′(x) =
x2(x - 1)

x + 2
, x ≠ -2

 8. ƒ′(x) =
(x - 2)(x + 4)

(x + 1)(x - 3)
 , x ≠ -1, 3

 9. ƒ′(x) = 1 -
4

x2
 , x ≠ 0 10. ƒ′(x) = 3 -

6

2x
 , x ≠ 0

 11. ƒ′(x) = x-1>3(x + 2) 12. ƒ′(x) = x-1>2(x - 3)

 13. ƒ′(x) = (sin x - 1)(2 cos x + 1), 0 … x … 2p

 14. ƒ′(x) = (sin x + cos x)(sin x - cos x), 0 … x … 2p

 29. H(t) =
3
2

 t4 - t6 30. K(t) = 15t3 - t5

 31. ƒ(x) = x - 62x - 1 32. g(x) = 42x - x2 + 3

 33. g(x) = x28 - x2 34. g(x) = x225 - x

 35. ƒ(x) =
x2 - 3
x - 2

, x ≠ 2 36. ƒ(x) =
x3

3x2 + 1

 37. ƒ(x) = x1>3(x + 8) 38. g(x) = x2>3(x + 5)

 39. h(x) = x1>3(x2 - 4) 40. k(x) = x2>3(x2 - 4)

EXERCISES 4.3

Identifying Extrema

In Exercises 15–40:

a. Find the open intervals on which the function is increasing 

and decreasing.

b. Identify the function’s local and absolute extreme values, if 

any, saying where they occur.

 15. 

y = f (x)

y

x

−2

−1

1

2

2 31−1−2−3

 16. 

y = f (x)

y

x

−2

−1

1

2

2 31−1−2−3

 17. 

y = f (x)

−2

−1

1

2

2 31−1−2−3
x

y  18. y

x

−2

−1

1

2

2 31−1−2−3

y = f (x)

 19. g(t) = - t2 - 3t + 3 20. g(t) = -3t2 + 9t + 5

 21. h(x) = -x3 + 2x2 22. h(x) = 2x3 - 18x

 23. ƒ(u) = 3u2 - 4u3 24. ƒ(u) = 6u - u3

 25. ƒ(r) = 3r3 + 16r 26. h(r) = (r + 7)3

 27. ƒ(x) = x4 - 8x2 + 16 28. g(x) = x4 - 4x3 + 4x2

In Exercises 41–52:

a. Identify the function’s local extreme values in the given 

domain, and say where they occur.

b. Which of the extreme values, if any, are absolute?

c. Support your indings with a graphing calculator or computer 

grapher.

 41. ƒ(x) = 2x - x2, -q 6 x … 2

 42. ƒ(x) = (x + 1)2, -q 6 x … 0

 43. g(x) = x2 - 4x + 4, 1 … x 6 q

 44. g(x) = -x2 - 6x - 9, -4 … x 6 q

 45. ƒ(t) = 12t - t3, -3 … t 6 q

 46. ƒ(t) = t3 - 3t2, -q 6 t … 3

 47. h(x) =
x3

3
- 2x2 + 4x, 0 … x 6 q

 48. k(x) = x3 + 3x2 + 3x + 1, -q 6 x … 0

 49. ƒ(x) = 225 - x2, -5 … x … 5

 50. ƒ(x) = 2x2 - 2x - 3, 3 … x 6 q

 51. g(x) =
x - 2

x2 - 1
, 0 … x 6 1

 52. g(x) =
x2

4 - x2
, -2 6 x … 1

T

In Exercises 53–60:

a. Find the local extrema of each function on the given interval, 

and say where they occur.

b. Graph the function and its derivative together. Comment on 

the behavior of ƒ in relation to the signs and values of ƒ′.

 53. ƒ(x) = sin 2x, 0 … x … p

 54. ƒ(x) = sin x - cos x, 0 … x … 2p

 55. ƒ(x) = 23 cos x + sin x, 0 … x … 2p

 56. ƒ(x) = -2x + tan x, 
-p

2
6 x 6

p

2

 57. ƒ(x) =
x

2
- 2 sin 

x

2
, 0 … x … 2p

 58. ƒ(x) = -2 cos x - cos2 x, -p … x … p

 59. ƒ(x) = csc2 x - 2 cot x, 0 6 x 6 p

 60. ƒ(x) = sec2 x - 2 tan x, 
-p

2
6 x 6

p

2

T
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 66. Sketch the graph of a diferentiable function y = ƒ(x) that has

a. a local minimum at (1, 1) and a local maximum at (3, 3);

b. a local maximum at (1, 1) and a local minimum at (3, 3);

c. local maxima at (1, 1) and (3, 3);

d. local minima at (1, 1) and (3, 3).

 67. Sketch the graph of a continuous function y = g(x) such that

a. g(2) = 2, 0 6 g′ 6 1 for x 6 2, g′(x) S 1- as x S 2-, 

-1 6 g′ 6 0 for x 7 2, and g′(x) S -1+ as x S 2+;

b. g(2) = 2, g′ 6 0 for x 6 2, g′(x) S -q as x S 2-, 

g′ 7 0 for x 7 2, and g′(x) S q as x S 2+.

 68. Sketch the graph of a continuous function y = h(x) such that

a. h(0) = 0, -2 … h(x) … 2 for all x, h′(x) S q as x S 0-, 

and h′(x) S q as x S 0+;

b. h(0) = 0, -2 … h(x) … 0 for all x, h′(x) S q as x S 0-, 

and h′(x) S -q as x S 0+.

 69. Discuss the extreme-value behavior of the function ƒ(x) =  

x sin (1>x), x ≠ 0. How many critical points does this function 

have? Where are they located on the x-axis? Does ƒ have an ab-

solute minimum? An absolute maximum? (See Exercise 49 in 

 Section 2.3.)

 70. Find the open intervals on which the function ƒ(x) = ax2 +  

bx + c, a ≠ 0, is increasing and decreasing. Describe the rea-

soning behind your answer.

 71. Determine the values of constants a and b so that ƒ(x) =  ax2 + bx 

has an absolute maximum at the point (1, 2).

 72. Determine the values of constants a, b, c, and d so that 

ƒ(x) = ax3 + bx2 + cx + d has a local maximum at the point 

(0, 0) and a local minimum at the point (1, -1).

In Exercises 61 and 62, the graph of ƒ′ is given. Assume that ƒ is con-

tinuous and determine the x-values corresponding to local minima and 

local maxima.

 61.   62.

x

y

−2

−4

0 2 4−2−4

2

4

f 9

 

x

y

−2

−4

0 2 4−2−4

2

4

f 9

Theory and Examples

Show that the functions in Exercises 63 and 64 have local extreme 

values at the given values of u, and say which kind of local extreme 

the function has.

 63. h(u) = 3 cos 
u

2
, 0 … u … 2p, at u = 0 and u = 2p

 64. h(u) = 5 sin 
u

2
, 0 … u … p, at u = 0 and u = p

 65. Sketch the graph of a diferentiable function y = ƒ(x) through the 

point (1, 1) if ƒ′(1) = 0 and

a. ƒ′(x) 7 0 for x 6 1 and ƒ′(x) 6 0 for x 7 1;

b. ƒ′(x) 6 0 for x 6 1 and ƒ′(x) 7 0 for x 7 1;

c. ƒ′(x) 7 0 for x ≠ 1;

d. ƒ′(x) 6 0 for x ≠ 1.

4.4 Concavity and Curve Sketching

We have seen how the first derivative tells us where a function is increasing, where it is 

decreasing, and whether a local maximum or local minimum occurs at a critical point. In this 

section we see that the second derivative gives us information about how the graph of a dif-

ferentiable function bends or turns. With this knowledge about the first and second deriva-

tives, coupled with our previous understanding of symmetry and asymptotic  behavior stud-

ied in Sections 1.1 and 2.6, we can now draw an accurate graph of a function. By organizing 

all of these ideas into a coherent procedure, we give a method for sketching graphs and 

revealing visually the key features of functions. Identifying and knowing the locations of 

these features is of major importance in mathematics and its applications to science and 

engineering, especially in the graphical analysis and interpretation of data. When the domain 

of a function is not a finite closed interval, sketching a graph helps to determine whether 

absolute maxima or absolute minima exist and, if they do exist, where they are located.

Concavity

As you can see in Figure 4.24, the curve y = x3 rises as x increases, but the portions 

defined on the intervals (-q, 0) and (0, q) turn in different ways. As we approach the 

origin from the left along the curve, the curve turns to our right and falls below its tan-

gents. The slopes of the tangents are decreasing on the interval (-q, 0). As we move 

away from the origin along the curve to the right, the curve turns to our left and rises above 

its tangents. The slopes of the tangents are increasing on the interval (0, q). This turning 

or bending behavior defines the concavity of the curve.
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y = x3

FIGURE 4.24 The graph of ƒ(x) = x3 is 

concave down on (-q, 0) and concave up 

on (0, q) (Example 1a).
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DEFINITION The graph of a differentiable function y = ƒ(x) is

(a) concave up on an open interval I if ƒ′ is increasing on I;

(b) concave down on an open interval I if ƒ′ is decreasing on I.

A function whose graph is concave up is also often called convex.

If y = ƒ(x) has a second derivative, we can apply Corollary 3 of the Mean Value 

Theorem to the first derivative function. We conclude that ƒ′ increases if ƒ″ 7 0 on I, and 

decreases if ƒ″ 6 0.

The Second Derivative Test for Concavity

Let y = ƒ(x) be twice-diferentiable on an interval I.

1. If ƒ″ 7 0 on I, the graph of ƒ over I is concave up.

2. If ƒ″ 6 0 on I, the graph of ƒ over I is concave down.

If y = ƒ(x) is twice-differentiable, we will use the notations ƒ″ and y″ interchange-

ably when denoting the second derivative.

Points of Inflection

The curve y = 3 + sin x in Example 2 changes concavity at the point (p, 3). Since the 

first derivative y′ = cos x exists for all x, we see that the curve has a tangent line of slope 

-1 at the point (p, 3). This point is called a point of inflection of the curve. Notice from 

Figure 4.26 that the graph crosses its tangent line at this point and that the second deriva-

tive y″ = -sin x has value 0 when x = p. In general, we have the following definition.

DEFINITION A point (c, ƒ(c)) where the graph of a function has a tangent line 

and where the concavity changes is a point of inflection.

We observed that the second derivative of ƒ(x) = 3 + sin x is equal to zero at the 

inflection point (p, 3). Generally, if the second derivative exists at a point of inflection 

(c, ƒ(c)), then ƒ″(c) = 0. This follows immediately from the Intermediate Value Theorem 

whenever ƒ″ is continuous over an interval containing x = c because the second deriva-

tive changes sign moving across this interval. Even if the continuity assumption is dropped, 

it is still true that ƒ″(c) = 0, provided the second derivative exists (although a more 

EXAMPLE 1

(a) The curve y = x3 (Figure 4.24) is concave down on (-q, 0), where y″ = 6x 6 0, 

and concave up on (0, q), where y″ = 6x 7 0.

(b) The curve y = x2 (Figure 4.25) is concave up on (-q, q) because its second deriva-

tive y″ = 2 is always positive. 

EXAMPLE 2  Determine the concavity of y = 3 + sin x on 30, 2p4 .
Solution The first derivative of y = 3 + sin x is y′ = cos x, and the second derivative 

is y″ = -sin x. The graph of y = 3 + sin x is concave down on (0, p), where y″ = -sin x 

is negative. It is concave up on (p, 2p), where y″ = -sin x is positive (Figure 4.26). 
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y ″ = −sinx

(p, 3)

FIGURE 4.26 Using the sign of y″ to 

determine the concavity of y (Example 2).

C
O

N
C

A
V

E
 U

P
 

C
O

N
C

A
V

E
 U

P
 

−2 −1 0 1 2
x

1

2

3

4

y

y = x2

y″ > 0 y″ > 0

FIGURE 4.25 The graph of ƒ(x) = x2  

is concave up on every interval  

(Example 1b).



204 Chapter 4 Applications of Derivatives

At a point of inflection (c, ƒ(c)), either ƒ″(c) = 0 or ƒ″(c) fails to exist.

EXAMPLE 3  Determine the concavity and find the inflection points of the function

ƒ(x) = x3 - 3x2 + 2.

Solution We start by computing the first and second derivatives.

ƒ′(x) = 3x2 - 6x,  ƒ″(x) = 6x - 6.

To determine concavity, we look at the sign of the second derivative ƒ″(x) = 6x - 6. 

The sign is negative when x 6 1, is 0 at x = 1, and is positive when x 7 1. It follows that 

the graph of ƒ is concave down on (-q, 1), is concave up on (1, q), and has an inlection 

point at the point (1, 0) where the concavity changes.

The graph of ƒ is shown in Figure 4.27. Notice that we did not need to know the shape 

of this graph ahead of time in order to determine its concavity. 

The next example illustrates that a function can have a point of inflection where the 

first derivative exists but the second derivative fails to exist.

y = x3 − 3x2 + 2

x

y

−1

−2

0 2 31−1

2

1

3

Point of
inlection

Concave up

Concave down

FIGURE 4.27 The concavity of the 

graph of ƒ changes from concave down to 

concave up at the inflection point.

advanced argument is required in this noncontinuous case). Since a tangent line must exist 

at the point of inflection, either the first derivative ƒ′(c) exists (is finite) or the graph has a 

vertical tangent at the point. At a vertical tangent neither the first nor second derivative 

exists. In summary, one of two things can happen at a point of inflection.

EXAMPLE 4  The graph of ƒ(x) = x5>3 has a horizontal tangent at the origin because 

ƒ′(x) = (5>3)x2>3 = 0 when x = 0. However, the second derivative

ƒ″(x) =
d

dx
  a5

3
 x2>3b =

10
9

 x-1>3
fails to exist at x = 0. Nevertheless, ƒ″(x) 6 0 for x 6 0 and ƒ″(x) 7 0 for x 7 0, so 

the second derivative changes sign at x = 0 and there is a point of inflection at the origin. 

The graph is shown in Figure 4.28. 

The following example shows that an inflection point need not occur even though 

both derivatives exist and ƒ″ = 0.

EXAMPLE 5  The curve y = x4 has no inflection point at x = 0 (Figure 4.29). Even 

though the second derivative y″ = 12x2 is zero there, it does not change sign. The curve is 

concave up everywhere. 

In the next example a point of inflection occurs at a vertical tangent to the curve 

where neither the first nor the second derivative exists.

EXAMPLE 6  The graph of y = x1>3 has a point of inflection at the origin because 

the second derivative is positive for x 6 0 and negative for x 7 0:

y″ =
d2

dx2
  1x1>32 =

d

dx
  a1

3
 x-2>3b = -  

2
9

 x-5>3.
However, both y′ = x-2>3>3 and y″ fail to exist at x = 0, and there is a vertical tangent 

there. See Figure 4.30. 
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FIGURE 4.28 The graph of ƒ(x) = x5>3 

has a horizontal tangent at the origin where 

the concavity changes, although ƒ″ does 

not exist at x = 0 (Example 4).

x

y

0

1

1

2

−1

y = x4

y ″ = 0

FIGURE 4.29 The graph of y = x4 

has no inflection point at the origin, even 

though y″ = 0 there (Example 5).
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FIGURE 4.30 A point of inflection 

where y′ and y″ fail to exist (Example 6).
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Caution Example 4 in Section 4.1 (Figure 4.9) shows that the function ƒ(x) = x2>3 does 

not have a second derivative at x = 0 and does not have a point of inflection there (there is 

no change in concavity at x = 0). Combined with the behavior of the function in Example 

6 above, we see that when the second derivative does not exist at x = c, an inflection point 

may or may not occur there. So we need to be careful about interpreting functional behav-

ior whenever first or second derivatives fail to exist at a point. At such points the graph can 

have vertical tangents, corners, cusps, or various discontinuities. 

To study the motion of an object moving along a line as a function of time, we often 

are interested in knowing when the object’s acceleration, given by the second derivative, is 

positive or negative. The points of inflection on the graph of the object’s position function 

reveal where the acceleration changes sign.

EXAMPLE 7  A particle is moving along a horizontal coordinate line (positive to the 

right) with position function

s(t) = 2t3 - 14t2 + 22t - 5,  t Ú 0.

Find the velocity and acceleration, and describe the motion of the particle.

Solution The velocity is

y(t) = s′(t) = 6t2 - 28t + 22 = 2(t - 1)(3t - 11),

and the acceleration is

a(t) = y′(t) = s″(t) = 12t - 28 = 4(3t - 7).

When the function s(t) is increasing, the particle is moving to the right; when s(t) is 

decreasing, the particle is moving to the left.

Notice that the irst derivative (y = s′) is zero at the critical points t = 1 and t = 11>3.

Interval 0 6 t 6 1 1 6 t 6 11>3  11>3 6 t

Sign of Y = s′  +  -  +

Behavior of s  increasing  decreasing increasing

Particle motion  right  left  right

The particle is moving to the right in the time intervals 30, 1) and (11>3, q), and moving 

to the left in (1, 11>3). It is momentarily stationary (at rest) at t = 1 and t = 11>3.

The acceleration a(t) = s″(t) = 4(3t - 7) is zero when t = 7>3.

Interval 0 6 t 6 7>3  7>3 6 t

Sign of a = s″  -  +

Graph of s concave down concave up

The particle starts out moving to the right while slowing down, and then reverses and 

begins moving to the left at t = 1 under the influence of the leftward acceleration over the 

time interval 30, 7>3). The acceleration then changes direction at t = 7>3 but the particle 

continues moving leftward, while slowing down under the rightward acceleration. At 

t = 11>3 the particle reverses direction again: moving to the right in the same direction as 

the acceleration, so it is speeding up. 

Second Derivative Test for Local Extrema

Instead of looking for sign changes in ƒ′ at critical points, we can sometimes use the fol-

lowing test to determine the presence and nature of local extrema.
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THEOREM 5—Second Derivative Test for Local Extrema

Suppose ƒ″ is continuous on an open interval that contains x = c.

1. If ƒ′(c) = 0 and ƒ″(c) 6 0, then ƒ has a local maximum at x = c.

2. If ƒ′(c) = 0 and ƒ″(c) 7 0, then ƒ has a local minimum at x = c.

3. If ƒ′(c) = 0 and ƒ″(c) = 0, then the test fails. The function ƒ may have a local 

maximum, a local minimum, or neither.

Proof  Part (1). If ƒ″(c) 6 0, then ƒ″(x) 6 0 on some open interval I containing the 

point c, since ƒ″ is continuous. Therefore, ƒ′ is decreasing on I. Since ƒ′(c) = 0, the sign 

of ƒ′ changes from positive to negative at c so ƒ has a local maximum at c by the First 

Derivative Test.

The proof of Part (2) is similar.

For Part (3), consider the three functions y = x4, y = -x4, and y = x3. For each 

function, the irst and second derivatives are zero at x = 0. Yet the function y = x4 has 

a local minimum there, y = -x4 has a local maximum, and y = x3 is increasing in any 

open interval containing x = 0 (having neither a maximum nor a minimum there). Thus 

the test fails. 

This test requires us to know ƒ″ only at c itself and not in an interval about c. This 

makes the test easy to apply. That’s the good news. The bad news is that the test is incon-

clusive if ƒ″ = 0 or if ƒ″ does not exist at x = c. When this happens, use the First Deriva-

tive Test for local extreme values.

Together ƒ′ and ƒ″ tell us the shape of the function’s graph—that is, where the critical 

points are located and what happens at a critical point, where the function is increasing and 

where it is decreasing, and how the curve is turning or bending as defined by its concavity. 

We use this information to sketch a graph of the function that captures its key features.

f ′ = 0, f ″ < 0

1 local max

f ′ = 0, f ″ > 0

1 local min

EXAMPLE 8  Sketch a graph of the function

ƒ(x) = x4 - 4x3 + 10

using the following steps.

(a) Identify where the extrema of ƒ occur.

(b) Find the intervals on which ƒ is increasing and the intervals on which ƒ is  

decreasing.

(c) Find where the graph of ƒ is concave up and where it is concave down.

(d) Sketch the general shape of the graph for ƒ.

(e) Plot some speciic points, such as local maximum and minimum points, points of in-

lection, and intercepts. Then sketch the curve.

Solution The function ƒ is continuous since ƒ′(x) = 4x3 - 12x2 exists. The domain of 

ƒ is (-q, q), and the domain of ƒ′ is also (-q, q). Thus, the critical points of ƒ occur 

only at the zeros of ƒ′. Since

ƒ′(x) = 4x3 - 12x2 = 4x2(x - 3),

the first derivative is zero at x = 0 and x = 3. We use these critical points to define inter-

vals where ƒ is increasing or decreasing.

Interval  x 6 0 0 6 x 6 3  3 6 x

Sign of ƒ′  -  -  +

Behavior of ƒ decreasing  decreasing increasing
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(a) Using the First Derivative Test for local extrema and the table above, we see that there 

is no extremum at x = 0 and a local minimum at x = 3.

(b) Using the table above, we see that ƒ is decreasing on (-q, 04  and 30, 34 , and in-

creasing on 33, q).

(c) ƒ″(x) = 12x2 - 24x = 12x(x - 2) is zero at x = 0 and x = 2. We use these points 

to deine intervals where ƒ is concave up or concave down.

Interval  x 6 0  0 6 x 6 2  2 6 x

Sign of ƒ″  +  -  +

Behavior of ƒ concave up concave down concave up

 We see that ƒ is concave up on the intervals (-q, 0) and (2, q), and concave down on 

(0, 2).

(d) Summarizing the information in the last two tables, we obtain the following.

x * 0  0 * x * 2 2 * x * 3  3 * x

decreasing  decreasing  decreasing  increasing

concave up concave down  concave up concave up

 The general shape of the curve is shown in the accompanying igure.

 

conc

down

conc

up

conc

up

conc

up

decr decr incrdecr

inl

point

inl

point

local

min

0 2 3

General shape

(e) Plot the curve’s intercepts (if possible) and the points where y′ and y″ are zero. Indicate 

any local extreme values and inlection points. Use the general shape as a guide to sketch 

the curve. (Plot additional points as needed.) Figure 4.31 shows the graph of ƒ. 

The steps in Example 8 give a procedure for graphing the key features of a function. 

Asymptotes were defined and discussed in Section 2.6. We can find them for rational func-

tions, and the methods in the next section give tools to help find them for more general 

functions.

x

y

0 1

5

−5

−1

−10

(0, 10)

2 3 4

−15

−20

10

15

20

Inlection

point

Local

minimum

Inlection

point

y = x4 − 4x3 + 10

(2, −6)

(3, −17)

FIGURE 4.31 The graph of ƒ(x) =

x4 - 4x3 + 10 (Example 8).

Procedure for Graphing y = ƒ(x)

1. Identify the domain of ƒ and any symmetries the curve may have.

2. Find the derivatives y′ and y″.

3. Find the critical points of ƒ, if any, and identify the function’s behavior at 

each one.

4. Find where the curve is increasing and where it is decreasing.

5. Find the points of inlection, if any occur, and determine the concavity of the 

curve.

6. Identify any asymptotes that may exist.

7. Plot key points, such as the intercepts and the points found in Steps 3–5, and 

sketch the curve together with any asymptotes that exist.
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EXAMPLE 9  Sketch the graph of ƒ(x) =
(x + 1)2

1 + x2
.

Solution

 1. The domain of ƒ is (-q, q) and there are no symmetries about either axis or the ori-

gin (Section 1.1).

 2. Find ƒ′ and ƒ″. 

 ƒ(x) =
(x + 1)2

1 + x2
  

x-intercept at x = -1, 

y-intercept at y = 1 
 

 ƒ′(x) =
(1 + x2) # 2(x + 1) - (x + 1)2 # 2x

(1 + x2)2

 =
2(1 - x2)

(1 + x2)2
 Critical points: x = -1, x = 1 

 ƒ″(x) =
(1 + x2)2 # 2( -2x) - 2(1 - x2)32(1 + x2) # 2x4

(1 + x2)4

 =
4x(x2 - 3)

(1 + x2)3
 After some algebra

 3. Behavior at critical points. The critical points occur only at x = {1 where 

ƒ′(x) = 0 (Step 2) since ƒ′ exists everywhere over the domain of ƒ. At x = -1, 

ƒ″(-1) = 1 7 0, yielding a relative minimum by the Second Derivative Test. At 

x = 1, ƒ″(1) = -1 6 0, yielding a relative maximum by the Second Derivative test.

 4. Increasing and decreasing. We see that on the interval (-q, -1) the derivative 

ƒ′(x) 6 0, and the curve is decreasing. On the interval (-1, 1), ƒ′(x) 7 0 and the 

curve is increasing; it is decreasing on (1, q) where ƒ′(x) 6 0 again.

 5. Inlection points. Notice that the denominator of the second derivative (Step 2) is al-

ways positive. The second derivative ƒ″ is zero when x = -23, 0, and 23. The sec-

ond derivative changes sign at each of these points: negative on 1-q, -232, positive 

on 1-23, 02, negative on 10, 232, and positive again on 123, q2. Thus each point is 

a point of inlection. The curve is concave down on the interval 1-q, -232, concave 

up on 1-23, 02, concave down on 10, 232, and concave up again on 123, q2.
 6. Asymptotes. Expanding the numerator of ƒ(x) and then dividing both numerator and 

denominator by x2 gives

 ƒ(x) =
(x + 1)2

1 + x2
=

x2 + 2x + 1

1 + x2
  Expanding numerator

 =
1 + (2>x) + (1>x2)

(1>x2) + 1
.   Dividing by x2

We see that ƒ(x) S 1+ as x S q and that ƒ(x) S 1- as x S -q. Thus, the line y = 1 

is a horizontal asymptote.

   Since ƒ decreases on (-q, -1) and then increases on (-1, 1), we know that 

ƒ(-1) = 0 is a local minimum. Although ƒ decreases on (1, q), it never crosses the 

horizontal asymptote y = 1 on that interval (it approaches the asymptote from above). 

So the graph never becomes negative, and ƒ(-1) = 0 is an absolute minimum as well. 

Likewise, ƒ(1) = 2 is an absolute maximum because the graph never crosses the as-

ymptote y = 1 on the interval (-q, -1), approaching it from below. Therefore, there 

are no vertical asymptotes (the range of ƒ is 0 … y … 2).

 7. The graph of ƒ is sketched in Figure 4.32. Notice how the graph is concave down as 

it approaches the horizontal asymptote y = 1 as x S -q, and concave up in its ap-

proach to y = 1 as x S q. 

−1 1

1

2

x

y

(1, 2)

Point of inlection

where x = "3

Point of inlection

where x = −"3

Horizontal

asymptote

y = 1

FIGURE 4.32 The graph of y =
(x + 1)2

1 + x2
 

(Example 9).
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EXAMPLE 10  Sketch the graph of ƒ(x) =
x2 + 4

2x
.

Solution

 1. The domain of ƒ is all nonzero real numbers. There are no intercepts because neither 

x nor ƒ(x) can be zero. Since ƒ(-x) = -ƒ(x), we note that ƒ is an odd function, so the 

graph of ƒ is symmetric about the origin.

 2. We calculate the derivatives of the function:

  ƒ(x) =
x2 + 4

2x
=

x

2
+

2

x
  Function simplified for differentiation

  ƒ′(x) =
1

2
-

2

x2
=

x2 - 4

2x2
 Combine fractions to solve easily ƒ′(x) = 0. 

  ƒ″(x) =
4

x3
 Exists throughout the entire domain of ƒ

 3. The critical points occur only at x = {2 where ƒ′(x) = 0. Since ƒ″(-2) 6 0 and 

ƒ″(2) 7 0, we see from the Second Derivative Test that a relative maximum occurs at 

x = -2 with ƒ(-2) = -2, and a relative minimum at x = 2 with ƒ(2) = 2.

 4. On the interval (-q, -2) the derivative ƒ′ is positive because x2 -  4 7 0 so the graph 

is increasing; on the interval (-2, 0) the derivative is negative and the graph is decreas-

ing. Similarly, the graph is decreasing on the interval (0, 2) and increasing on (2, q).

 5. There are no points of inlection because ƒ″(x) 6 0 whenever x 6 0, ƒ″(x) 7 0 

whenever x 7 0, and ƒ″ exists everywhere and is never zero throughout the domain 

of ƒ. The graph is concave down on the interval (-q, 0) and concave up on (0, q).

 6. From the rewritten formula for ƒ(x), we see that

lim
xS0+

 ax

2
+

2

x
b = +q and lim

xS0-
 ax

2
+

2

x
b = -q,

so the y-axis is a vertical asymptote. Also, as x S q or as x S -q, the graph of ƒ(x)

approaches the line y = x>2. Thus y = x>2 is an oblique asymptote.

 7. The graph of ƒ is sketched in Figure 4.33. 

EXAMPLE 11  Sketch the graph of ƒ(x) = cos x -
22
2

 x over 0 … x … 2p.

Solution The derivatives of ƒ are

ƒ′(x) = -sin x -
22
2
  and  ƒ″(x) = -cos x.

Both derivatives exist everywhere over the interval (0, 2p). Within that open interval, the 

first derivative is zero when sin x = -22>2, so the critical points are x = 5p>4 and 

x = 7p>4. Since ƒ″(5p>4) = -cos(5p>4) = 22>2 7 0, the function has a local mini-

mum value of ƒ(5p>4) ≈ -3.48 (evaluated with a calculator) by the Second Derivative 

Test. Also, ƒ″(7p>4) = -cos (7p>4) = -22>2 6 0, so the function has a local maxi-

mum value of ƒ(7p>4) ≈ -3.18.

Examining the second derivative, we ind that ƒ″ = 0 when x = p>2 or x = 3p>2. 

We conclude that (p>2, ƒ(p>2)) ≈ (p>2, -1.11) and (3p>2, ƒ(3p>2)) ≈ (3p>2, -3.33) 

are points of inlection.

Finally, we evaluate ƒ at the endpoints of the interval to ind ƒ(0) = 1 and 

ƒ(2p) ≈ -3.44. Therefore, the values ƒ(0) = 1 and ƒ(5p>4) ≈ -3.48 are the absolute 

maximum and absolute minimum values of ƒ over the closed interval 30, 2p4 . The graph 

of ƒ is sketched in Figure 4.34. 

−2

42−4 −2

4

2

0
x

y

−4

y =
2
xx

x2 + 4y =
2x

(2, 2)

(−2, −2)

FIGURE 4.33 The graph of y =
x2 + 4

2x
 

(Example 10).
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FIGURE 4.34 The graph of the function 

in Example 11.
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oror

or

y = f (x) y = f (x) y = f (x)

Diferentiable 1

smooth, connected; graph

may rise and fall

y′ > 0 1 rises from

left to right;

may be wavy

y′ < 0 1 falls from

left to right;

may be wavy

y″ > 0 1 concave up

throughout; no waves; graph

may rise or fall or both

y″ < 0 1 concave down

throughout; no waves; graph

may rise or fall or both

y″ changes sign at an

inflection point

y′ changes sign 1 graph

has local maximum or local

minimum

y′ = 0  and  y″ < 0

at a point; graph has

local maximum

y′ = 0  and  y″ > 0

at a point; graph has

local minimum

+ −

+−

+

−

FIGURE 4.35

Analyzing Functions from Graphs

Identify the inflection points and local maxima and minima of the 

functions graphed in Exercises 1–8. Identify the intervals on which 

the functions are concave up and concave down.

 1. 

0
x

y

y =      −      − 2x +x3

3
1
3

x2

2

 2. 

0
x

y

y =      − 2x2 + 4
x4

4

 3. 

0
x

y

y =     (x2 − 1)2�33
4

 4. 

0
x

y

y =      x1�3(x2 − 7)9
14

 5. 

0
x

y

−

y = x + sin 2x, −       ≤ x ≤
2p
3

2p
3

2p
3

2p
3

 6. 

x

y

y = tan x − 4x, −     < x <
p
2

p
2

0

 7. 

x

y

y = sin 0 x 0 , −2p ≤ x ≤ 2p

0

NOT TO  SCALE

 8. 

x

y

0−p 3p
2

y = 2 cos x − "2 x,  −p ≤ x ≤
3p
2

Graphing Functions

In Exercises 9–50, identify the coordinates of any local and absolute 

extreme points and inflection points. Graph the function.

 9. y = x2 - 4x + 3 10. y = 6 - 2x - x2

 11. y = x3 - 3x + 3 12. y = x(6 - 2x)2

 13. y = -2x3 + 6x2 - 3 14. y = 1 - 9x - 6x2 - x3

 15. y = (x - 2)3 + 1 16. y = 1 - (x + 1)3

EXERCISES 4.4

Graphical Behavior of Functions from Derivatives

The following figure indicates how the first two derivatives of a functions affect the shape 

of a graph.
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 69. y′ = x-2>3(x - 1) 70. y′ = x-4>5(x + 1)

 71. y′ = 2 0 x 0 = e-2x,  x … 0

2x,    x 7 0

 72. y′ = e-x2,  x … 0

x2,    x 7 0

Sketching y from Graphs of y′ and y″

Each of Exercises 73–76 shows the graphs of the first and second 

derivatives of a function y = ƒ(x). Copy the picture and add to it a 

sketch of the approximate graph of ƒ, given that the graph passes 

through the point P.

 17. y = x4 - 2x2 = x2(x2 - 2)

 18. y = -x4 + 6x2 - 4 = x2(6 - x2) - 4

 19. y = 4x3 - x4 = x3(4 - x) 20. y = x4 + 2x3 = x3(x + 2)

 21. y = x5 - 5x4 = x4(x - 5) 22. y = xax

2
- 5b4

 23. y = x + sin x, 0 … x … 2p

 24. y = x - sin x, 0 … x … 2p

 25. y = 23x - 2 cos x, 0 … x … 2p

 26. y =
4
3

 x - tan x, 
-p

2
6 x 6

p

2

 27. y = sin x cos x, 0 … x … p

 28. y = cos x + 23 sin x, 0 … x … 2p

 29. y = x1>5 30. y = x2>5
 31. y =

x

2x2 + 1
 32. y =

21 - x2

2x + 1

 33. y = 2x - 3x2>3 34. y = 5x2>5 - 2x

 35. y = x2>3a5
2

- xb  36. y = x2>3(x - 5)

 37. y = x28 - x2 38. y = (2 - x2)3>2
 39. y = 216 - x2 40. y = x2 +

2
x

 41. y =
x2 - 3
x - 2

 42. y = 23 x3 + 1

 43. y =
8x

x2 + 4
 44. y =

5

x4 + 5

 45. y = 0 x2 - 1 0  46. y = 0 x2 - 2 x 0
 47. y = 2 0 x 0 = e2-x,  x 6 0

2x,    x Ú 0

 48. y = 2 0 x - 4 0
 49. y =

x

9 - x2
 50. y =

x2

1 - x
 

Sketching the General Shape, Knowing y′

Each of Exercises 51–72 gives the first derivative of a continuous 

function y = ƒ(x). Find y″ and then use Steps 2–4 of the graphing 

procedure on page 207 to sketch the general shape of the graph of ƒ.

 51. y′ = 2 + x - x2 52. y′ = x2 - x - 6 

 53. y′ = x(x - 3)2 54. y′ = x2(2 - x)

 55. y′ = x(x2 - 12) 56. y′ = (x - 1)2(2x + 3)

 57. y′ = (8x - 5x2)(4 - x)2 58. y′ = (x2 - 2x)(x - 5)2

 59. y′ = sec2 x, -  
p

2
6 x 6

p

2

 60. y′ = tan x, -  
p

2
6 x 6

p

2

 61. y′ = cot  
u

2
, 0 6 u 6 2p 62. y′ = csc2  

u

2
, 0 6 u 6 2p

 63. y′ = tan2 u - 1, -  
p

2
6 u 6

p

2

 64. y′ = 1 - cot2 u, 0 6 u 6 p

 65. y′ = cos t, 0 … t … 2p

 66. y′ = sin t, 0 … t … 2p

 67. y′ = (x + 1)-2>3 68. y′ = (x - 2)-1>3

 73. 

y = f ′(x)

y = f ″(x)

P

x

y  74. 

P

x

y

y = f ′(x)

y = f ″(x)

 75. 

P

0
x

y

y = f ′(x)

y = f ″(x)

 76. 

P

0
x

y

y = f ′(x)

y = f ″(x)

Graphing Rational Functions

Graph the rational functions in Exercises 77–94 using all the steps in 

the graphing procedure on page 207.

 77. y =
2x2 + x - 1

x2 - 1
 78. y =

x2 - 49

x2 + 5x - 14

 79. y =
x4 + 1

x2
 80. y =

x2 - 4
2x

 81. y =
1

x2 - 1
 82. y =

x2

x2 - 1

 83. y = -  
x2 - 2

x2 - 1
 84. y =

x2 - 4

x2 - 2

 85. y =
x2

x + 1
 86. y = -  

x2 - 4
x + 1

 87. y =
x2 - x + 1

x - 1
 88. y = -  

x2 - x + 1
x - 1

 89. y =
x3 - 3x2 + 3x - 1

x2 + x - 2

 90. y =
x3 + x - 2

x - x2
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 99. Sketch the graph of a twice-differentiable y = ƒ(x) with the fol-

lowing properties. Label coordinates where possible.

 x  y  Derivatives

 x 6 -2  y′ 7 0, y″ 6 0

 -2 -1  y′ = 0, y″ = 0

-2 6 x 6 -1  y′ 7 0, y″ 7 0

 -1  0  y′ 7 0, y″ = 0

 -1 6 x 6 0  y′ 7 0, y″ 6 0

 0  3  y′ = 0, y″ 6 0

 0 6 x 6 1  y′ 6 0, y″ 6 0

 1  2 y′ 6 0, y″ = 0

 1 6 x 6 2  y′ 6 0, y″ 7 0

 2  0  y′ = 0, y″ 7 0

 x 7 2  y′ 7 0, y″ 7 0

 100. Sketch the graph of a twice-differentiable function y = ƒ(x) that 

passes through the points (-3, -2), (-2, 0), (0, 1), (1, 2), and  

(2, 3) and whose first two derivatives have the following sign 

patterns.

xy9:
0 2

2 1 1 2

−3

xy 0:
0 1

1 2 1 2

−2

In Exercises 101 and 102, the graph of ƒ′ is given. Determine  

x-values corresponding to inflection points for the graph of ƒ.

 101. 

x

y

−2

−4

0 2 4−2−4

2

4

f 9
2

 102. 

x

y

−2

−4

0 2 4−2−4

2

4
f 9

− 4

2

 91. y =
x

x2 - 1

 92. y =
x - 1

x2(x - 2)

 93. y =
8

x2 + 4
  (Agnesi>s witch)

 94. y =
4x

x2 + 4
  (Newton>s serpentine)

Theory and Examples

 95. The accompanying figure shows a portion of the graph of a twice-

differentiable function y = ƒ(x). At each of the five labeled 

points, classify y′ and y″ as positive, negative, or zero.

y = f (x)
S

TR

Q

P

x

y

0

 96. Sketch a smooth connected curve y = ƒ(x) with

ƒ(-2) = 8,  ƒ′(2) = ƒ′(-2) = 0, 

  ƒ(0) = 4,  ƒ′(x) 6 0 for 0 x 0 6 2, 

  ƒ(2) = 0,  ƒ″(x) 6 0 for x 6 0, 

 ƒ′(x) 7 0 for 0 x 0 7 2,  ƒ″(x) 7 0 for x 7 0.

 97. Sketch the graph of a twice-differentiable function y = ƒ(x) with 

the following properties. Label coordinates where possible.

 x y  Derivatives

 x 6 2 y′ 6 0, y″ 7 0

 2 1 y′ = 0, y″ 7 0

2 6 x 6 4 y′ 7 0, y″ 7 0

 4 4 y′ 7 0, y″ = 0

4 6 x 6 6 y′ 7 0, y″ 6 0

 6 7 y′ = 0, y″ 6 0

 x 7 6 y′ 6 0, y″ 6 0

 98. Sketch the graph of a twice-differentiable function y = ƒ(x) that 

passes through the points (-2, 2), (-1, 1), (0, 0), (1, 1), and 

(2, 2) and whose first two derivatives have the following sign 

patterns.

y′: 
+      -      +      -

-2       0         2

y″: 
-      +      -

-1       1 
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 107. Marginal cost The accompanying graph shows the hypotheti-

cal cost c = ƒ(x) of manufacturing x items. At approximately 

what production level does the marginal cost change from 

decreasing to increasing?

C
o

st

c = f (x)

Thousands of units produced

20 40 60 80 100120
x

c

 108. The accompanying graph shows the monthly revenue of the 

Widget Corporation for the past 12 years. During approximately 

what time intervals was the marginal revenue increasing? 

Decreasing?

t

y

y = r(t)

50 10

 109. Suppose the derivative of the function y = ƒ(x) is

y′ = (x - 1)2(x - 2).

  At what points, if any, does the graph of ƒ have a local mini-

mum, local maximum, or point of inflection? (Hint: Draw the 

sign pattern for y′.)

 110. Suppose the derivative of the function y = ƒ(x) is

y′ = (x - 1)2(x - 2)(x - 4).

  At what points, if any, does the graph of ƒ have a local mini-

mum, local maximum, or point of inflection?

 111. For x 7 0, sketch a curve y = ƒ(x) that has ƒ(1) = 0 and 

ƒ′(x) = 1>x. Can anything be said about the concavity of such a 

curve? Give reasons for your answer.

 112. Can anything be said about the graph of a function y = ƒ(x) that 

has a continuous second derivative that is never zero? Give rea-

sons for your answer.

 113. If b, c, and d are constants, for what value of b will the curve 

y = x3 + bx2 + cx + d have a point of inflection at x = 1? 

Give reasons for your answer.

 114. Parabolas

a. Find the coordinates of the vertex of the parabola 

y = ax2 + bx + c, a ≠ 0.

b. When is the parabola concave up? Concave down? Give 

reasons for your answers.

In Exercises 103 and 104, the graph of ƒ′ is given. Determine  

x- values corresponding to local minima, local maxima, and inflection 

points for the graph of ƒ.

 103. 

x

y

−2

−4

0 2 4−2−4

2

4

f 9

 104. 

x

y

−2

−4

0 2 4−2−4

2

4

f 9

2 4−4

Motion Along a Line The graphs in Exercises 105 and 106 show 

the position s = ƒ(t) of an object moving up and down on a coordi-

nate line. (a) When is the object moving away from the origin? 

Toward the origin? At approximately what times is the (b) velocity 

equal to zero? (c) Acceleration equal to zero? (d) When is the accel-

eration positive? Negative?

 105. 

D
is

p
la

ce
m

en
t

s = f (t)

Time (sec)

5 10 150
t

s

 106. 

D
is

p
la

ce
m

en
t

s = f (t)

Time (sec)

5 10 150
t

s
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EXAMPLE 1  An open-top box is to be made by cutting small congruent squares 

from the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large 

should the squares cut from the corners be to make the box hold as much as possible?

Solution We start with a picture (Figure 4.36). In the figure, the corner squares are x in. 

on a side. The volume of the box is a function of this variable:

V(x) = x(12 - 2x)2 = 144x - 48x2 + 4x3.  V = hlw

 115. Quadratic curves What can you say about the inflection 

points of a quadratic curve y = ax2 + bx + c, a ≠ 0? Give 

reasons for your answer.

 116. Cubic curves What can you say about the inflection points of 

a cubic curve y = ax3 + bx2 + cx + d, a ≠ 0? Give reasons 

for your answer.

 117. Suppose that the second derivative of the function y = ƒ(x) is

y″ = (x + 1)(x - 2).

  For what x-values does the graph of ƒ have an inflection point?

 118. Suppose that the second derivative of the function y = ƒ(x) is

y″ = x2(x - 2)3(x + 3).

  For what x-values does the graph of ƒ have an inflection point?

 119. Find the values of constants a, b, and c so that the graph of 

y = ax3 + bx2 + cx has a local maximum at x = 3, local mini-

mum at x = -1, and inflection point at (1, 11).

 120. Find the values of constants a, b, and c so that the graph of 

y = (x2 + a)>(bx + c) has a local minimum at x = 3 and a 

local maximum at (-1, -2).

COMPUTER EXPLORATIONS

In Exercises 121–126, find the inflection points (if any) on the graph of 

the function and the coordinates of the points on the graph where the 

function has a local maximum or local minimum value. Then graph the 

function in a region large enough to show all these points simultane-

ously. Add to your picture the graphs of the function’s first and second 

derivatives. How are the values at which these graphs intersect the 

x-axis related to the graph of the function? In what other ways are the 

graphs of the derivatives related to the graph of the function?

 121. y = x5 - 5x4 - 240 122. y = x3 - 12x2

 123. y =
4
5

 x5 + 16x2 - 25

 124. y =
x4

4
-

x3

3
- 4x2 + 12x + 20

 125. Graph ƒ(x) = 2x4 - 4x2 + 1 and its first two derivatives 

together. Comment on the behavior of ƒ in relation to the signs 

and values of ƒ′ and ƒ″.

 126. Graph ƒ(x) = x cos x and its second derivative together for 

0 … x … 2p. Comment on the behavior of the graph of ƒ in 

relation to the signs and values of ƒ″.

4.5 Applied Optimization

What are the dimensions of a rectangle with fixed perimeter having maximum area? 

What are the dimensions for the least expensive cylindrical can of a given volume? How 

many items should be produced for the most profitable production run? Each of these 

questions asks for the best, or optimal, value of a given function. In this section we use 

derivatives to solve a variety of optimization problems in mathematics, physics, econom-

ics, and business.

Solving Applied Optimization Problems

1. Read the problem. Read the problem until you understand it. What is given? 

What is the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as 

an equation or algebraic expression, and identify the unknown variable.

4. Write an equation for the unknown quantity. If you can, express the unknown 

as a function of a single variable or in two equations in two unknowns. This 

may require considerable manipulation.

5. Test the critical points and endpoints in the domain of the unknown. Use 

what you know about the shape of the function’s graph. Use the irst and 

second derivatives to identify and classify the function’s critical points.

12

12

12

x

x
x

x

x

xx

(a)

(b)

12 − 2x

12 − 2x

FIGURE 4.36 An open box made by 

cutting the corners from a square sheet of 

tin. What size corners maximize the box’s 

volume (Example 1)?
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Since the sides of the sheet of tin are only 12 in. long, x … 6 and the domain of V is the 

interval 0 … x … 6.

A graph of V (Figure 4.37) suggests a minimum value of 0 at x = 0 and x = 6 and a 

maximum near x = 2. To learn more, we examine the irst derivative of V with respect to x:

dV

dx
= 144 - 96x + 12x2 = 12(12 - 8x + x2) = 12(2 - x)(6 - x).

Of the two zeros, x = 2 and x = 6, only x = 2 lies in the interior of the function’s 

domain and makes the critical-point list. The values of V at this one critical point and two 

endpoints are

 Critical point value: V(2) = 128

Endpoint values:  V(0) = 0,  V(6) = 0.

The maximum volume is 128 in3. The cutout squares should be 2 in. on a side. 

x

y

0

min

2 6

min

V
o
lu

m
e

 

Maximum

y = x(12 − 2x)2,

0 ≤ x ≤ 6

NOT TO SCALE

FIGURE 4.37 The volume of the box in 

Figure 4.36 graphed as a function of x.

EXAMPLE 2  You have been asked to design a one-liter can shaped like a right circu-

lar cylinder (Figure 4.38). What dimensions will use the least material?

Solution Volume of can: If r and h are measured in centimeters, then the volume of the 

can in cubic centimeters is

pr2h = 1000.  1 liter = 1000 cm3

Surface area of can:  A = 2pr2 + 2prh()*         ()*
circular  

ends 

cylindrical  

wall

How can we interpret the phrase “least material”? For a first approximation we can ignore 

the thickness of the material and the waste in manufacturing. Then we ask for dimensions 

r and h that make the total surface area as small as possible while satisfying the constraint 

pr2h = 1000 cm3.

To express the surface area as a function of one variable, we solve for one of the vari-

ables in pr2h = 1000 and substitute that expression into the surface area formula. Solving 

for h is easier:

h =
1000

pr2
.

Thus,

 A = 2pr2 + 2prh

 = 2pr2 + 2pra1000

pr2
b

 = 2pr2 +
2000

r .

Our goal is to find a value of r 7 0 that minimizes the value of A. Figure 4.39 suggests 

that such a value exists.

Notice from the graph that for small r (a tall, thin cylindrical container), the term 

2000>r  dominates (see Section 2.6) and A is large. A very thin cylinder containing 1 liter 

is so tall that its surface area becomes very large. For large r (a short, wide cylindrical con-

tainer), the term 2pr2 dominates and A again is large.

h

2r

FIGURE 4.38 This one-liter can uses the 

least material when h = 2r (Example 2).

r

A

0

min

Tall and 

thin can

Short and

wide can

2000
——

r

3

A = 2pr2 +           ,  r > 0

500
p

Tall and thin Short and wide

FIGURE 4.39 The graph of 

A = 2pr2 + 2000>r is concave up.
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Since A is diferentiable on r 7 0, an interval with no endpoints, it can have a mini-

mum value only where its irst derivative is zero.

 
dA

dr
= 4pr -

2000

r2

 0 = 4pr -
2000

r2
  Set dA>dr = 0. 

 4pr3 = 2000   Multiply by r2. 

 r =  A3 500
p ≈ 5.42  Solve for r.

What happens at r = 23 500>p?

The second derivative

d2A

dr2
= 4p +

4000

r3

is positive throughout the domain of A. The graph is therefore everywhere concave up and 

the value of A at r = 23 500>p is an absolute minimum.

The corresponding value of h (after a little algebra) is

h =
1000

pr2
= 2 A3 500

p = 2r.

The one-liter can that uses the least material has height equal to twice the radius, here with 

r ≈ 5.42 cm and h ≈ 10.84 cm. 

Examples from Mathematics and Physics

EXAMPLE 3  A rectangle is to be inscribed in a semicircle of radius 2. What is the 

largest area the rectangle can have, and what are its dimensions?

Solution Let 1x, 24 - x22 be the coordinates of the corner of the rectangle obtained 

by placing the circle and rectangle in the coordinate plane (Figure 4.40). The length, 

height, and area of the rectangle can then be expressed in terms of the position x of the 

lower right-hand corner:

Length: 2x,   Height: 24 - x2,  Area: 2x24 - x2.

Notice that the values of x are to be found in the interval 0 … x … 2, where the selected 

corner of the rectangle lies.

Our goal is to ind the absolute maximum value of the function

A(x) = 2x24 - x2

on the domain 30, 24 .
The derivative

dA

dx
=

-2x2

24 - x2
+ 224 - x2

is not defined when x = 2 and is equal to zero when

 
-2x2

24 - x2
+ 224 - x2 = 0

 -2x2 + 2(4 - x2) = 0

 8 - 4x2 = 0

 x2 = 2

 x = {22.

x

y

0 2x−2 −x

2

x2 + y2 = 4

Qx, "4 − x2R

FIGURE 4.40 The rectangle inscribed in 

the semicircle in Example 3.
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Of the two zeros, x = 22 and x = -22, only x = 22 lies in the interior of A’s domain 

and makes the critical-point list. The values of A at the endpoints and at this one critical 

point are

 Critical point value: A1222 = 22224 - 2 = 4

Endpoint values:   A(0) = 0,  A(2) = 0.

The area has a maximum value of 4 when the rectangle is 24 - x2 = 22 units high and 

2x = 222 units long. 

EXAMPLE 4  The speed of light depends on the medium through which it travels, 

and is generally slower in denser media.

Fermat’s principle in optics states that light travels from one point to another along 

a path for which the time of travel is a minimum. Describe the path that a ray of light will 

follow in going from a point A in a medium where the speed of light is c1 to a point B in a 

second medium where its speed is c2.

Solution Since light traveling from A to B follows the quickest route, we look for a path 

that will minimize the travel time. We assume that A and B lie in the xy-plane and that the 

line separating the two media is the x-axis (Figure 4.41). We place A at coordinates (0, a) 

and B at coordinates (d, -b) in the xy-plane.

In a uniform medium, where the speed of light remains constant, “shortest time” 

means “shortest path,” and the ray of light will follow a straight line. Thus the path from A 

to B will consist of a line segment from A to a boundary point P, followed by another line 

segment from P to B. Distance traveled equals rate times time, so

Time =
distance

rate .

From Figure 4.41, the time required for light to travel from A to P is

t1 =
AP
c1

=
2a2 + x2

c1
.

From P to B, the time is

t2 =
PB
c2

=
2b2 + (d - x)2

c2
.

The time from A to B is the sum of these:

t = t1 + t2 =
2a2 + x2

c1
+
2b2 + (d - x)2

c2
.

This equation expresses t as a differentiable function of x whose domain is 30, d4 . We 

want to find the absolute minimum value of t on this closed interval. We find the derivative

dt

dx
=

x

c12a2 + x2
-

d - x

c22b2 + (d - x)2

and observe that it is continuous. In terms of the angles  u1 and u2 in Figure 4.41,

dt

dx
=

sin u1

c1
-

sin u2

c2
.

The function t has a negative derivative at x = 0 and a positive derivative at x = d. Since 

dt>dx is continuous over the interval 30, d4 , by the Intermediate Value Theorem for 

HISTORICAL BIOGRAPHY

Willebrord Snell van Royen

(1580–1626)

www.goo.gl/yEeoAi

Angle of

incidence
Medium 1
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refraction
Medium 2

x

y

0 x d

P

B

b
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A

u1

u1

u2

d − x

FIGURE 4.41 A light ray refracted (de-

flected from its path) as it passes from one 

medium to a denser medium (Example 4).
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 continuous functions (Section 2.5), there is a point x0∊ 30, d4  where dt>dx = 0 (Figure 

4.42). There is only one such point because dt>dx is an increasing function of x (Exercise 

60). At this unique point we then have

sin u1

c1
=

sin u2

c2
.

This equation is Snell’s Law or the Law of Refraction, and is an important principle in 

the theory of optics. It describes the path the ray of light follows. 

x

0 d

x

0 d
x0

dt�dx

positive

dt�dx

zero
dt�dx

negative

− − − − − +++++++++

FIGURE 4.42 The sign pattern of dt>dx 

in Example 4.

At a production level yielding maximum proit, marginal revenue equals marginal 

cost (Figure 4.43).

x

y

0

D
o

ll
ar

s

Items produced

Break-even point

B

Cost c(x)

Local maximum for loss (minimum proit), c′(x) = r ′(x)

Revenue r(x)

Maximum proit, c′(x) = r ′(x)

FIGURE 4.43 The graph of a typical cost function starts concave down and later turns concave 

up. It crosses the revenue curve at the break-even point B. To the left of B, the company operates 

at a loss. To the right, the company operates at a profit, with the maximum profit occurring where 

c′(x) = r′(x). Farther to the right, cost exceeds revenue (perhaps because of a combination of rising 

labor and material costs and market saturation) and production levels become unprofitable again.

Examples from Economics

Suppose that

 r(x) = the revenue from selling x items

 c(x) = the cost of producing the x items

 p(x) = r(x) - c(x) = the profit from producing and selling x items.

Although x is usually an integer in many applications, we can learn about the behavior of 

these functions by defining them for all nonzero real numbers and by assuming they are 

differentiable functions. Economists use the terms marginal revenue, marginal cost, and 

marginal profit to name the derivatives r′(x), c′(x), and p′(x) of the revenue, cost, and 

profit functions. Let’s consider the relationship of the profit p to these derivatives.

If r(x) and c(x) are differentiable for x in some interval of production possibilities, 

and if p(x) = r(x) - c(x) has a maximum value there, it occurs at a critical point of p(x) 

or at an endpoint of the interval. If it occurs at a critical point, then p′(x) = r′(x) -
c′(x) = 0 and we see that r′(x) = c′(x). In economic terms, this last equation means 

that
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EXAMPLE 5  Suppose that r(x) = 9x and c(x) = x3 - 6x2 + 15x, where x repre-

sents millions of MP3 players produced. Is there a production level that maximizes profit? 

If so, what is it?

Solution Notice that r′(x) = 9 and c′(x) = 3x2 - 12x + 15.

 3x2 - 12x + 15 = 9  Set c′(x) = r′(x). 

 3x2 - 12x + 6 = 0

The two solutions of the quadratic equation are

 x1 =
12 - 272

6
= 2 - 22 ≈ 0.586  and

x2 =
12 + 272

6
= 2 + 22 ≈ 3.414.

The possible production levels for maximum profit are x ≈ 0.586 million MP3 players or 

x ≈ 3.414 million. The second derivative of p(x) = r(x) - c(x) is p″(x) = -c″(x) since 

r″(x) is everywhere zero. Thus, p″(x) = 6(2 - x), which is negative at x = 2 + 22 and 

positive at x = 2 - 22. By the Second Derivative Test, a maximum profit occurs at 

about x = 3.414 (where revenue exceeds costs) and maximum loss occurs at about 

x = 0.586. The graphs of r(x) and c(x) are shown in Figure 4.44. 

x

y

0 2

Maximum

for proit

Local maximum for loss

c(x) = x3 − 6x2 + 15x

NOT TO SCALE

r(x) = 9x

2 − "2 2 + "2

FIGURE 4.44 The cost and revenue 

curves for Example 5.

EXAMPLE 6  A cabinetmaker uses cherry wood to produce 5 desks each day.  

Each delivery of one container of wood is $5000, whereas the storage of that material is 

$10 per day per unit stored, where a unit is the amount of material needed by her to pro-

duce 1 desk. How much material should be ordered each time, and how often should the 

material be delivered, to minimize her average daily cost in the production cycle between 

deliveries?

Solution If she asks for a delivery every x days, then she must order 5x units to have 

enough material for that delivery cycle. The average amount in storage is approximately 

one-half of the delivery amount, or 5x>2. Thus, the cost of delivery and storage for each 

cycle is approximately

 Cost per cycle = delivery costs + storage costs

 Cost per cycle = 5000  +  a5x

2
b  #  x  #  10()*

 ()* 
()* ()*

delivery 

cost average  

amount stored 

number of 

days stored 

storage cost 

per day

We compute the average daily cost c(x) by dividing the cost per cycle by the number of 

days x in the cycle (see Figure 4.45).

c(x) =
5000

x + 25x,  x 7 0.

As x S 0 and as x S q, the average daily cost becomes large. So we expect a minimum 

to exist, but where? Our goal is to determine the number of days x between deliveries that 

provides the absolute minimum cost.

We ind the critical points by determining where the derivative is equal to zero:

 c′(x) = -  
500

x2
+ 25 = 0

 x = {2200 ≈ {14.14.

x

y

min x value

c(x) =          + 25x

C
o

st

Cycle length

5000
x

y = 25x

y =
5000

x

FIGURE 4.45 The average daily cost 

c(x) is the sum of a hyperbola and a linear 

function (Example 6).
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Mathematical Applications

Whenever you are maximizing or minimizing a function of a single 

variable, we urge you to graph it over the domain that is appropriate to 

the problem you are solving. The graph will provide insight before 

you calculate and will furnish a visual context for understanding your 

answer.

 1. Minimizing perimeter What is the smallest perimeter possible 

for a rectangle whose area is 16 in2, and what are its dimensions?

 2. Show that among all rectangles with an 8-m perimeter, the one 

with largest area is a square.

 3. The igure shows a rectangle inscribed in an isosceles right tri-

angle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (Hint: Write an 

equation for the line AB.)

b. Express the area of the rectangle in terms of x.

c. What is the largest area the rectangle can have, and what are 

its dimensions?

x

y

0 1

B

A

x−1

P(x, ?)

 4. A rectangle has its base on the x-axis and its upper two vertices on 

the parabola y = 12 - x2. What is the largest area the rectangle 

can have, and what are its dimensions?

 5. You are planning to make an open rectangular box from an  

8-in.-by-15-in. piece of cardboard by cutting congruent squares 

from the corners and folding up the sides. What are the dimen-

sions of the box of largest volume you can make this way, and 

what is its volume?

 6. You are planning to close of a corner of the irst quadrant with a 

line segment 20 units long running from (a, 0) to (0, b). Show that 

the area of the triangle enclosed by the segment is largest when 

a = b.

 7. The best fencing plan A rectangular plot of farmland will be 

bounded on one side by a river and on the other three sides by a 

 single-strand electric fence. With 800 m of wire at your disposal, what 

is the largest area you can enclose, and what are its dimensions?

 8. The shortest fence A 216 m2 rectangular pea patch is to be 

enclosed by a fence and divided into two equal parts by another 

fence parallel to one of the sides. What dimensions for the outer 

rectangle will require the smallest total length of fence? How 

much fence will be needed?

 9. Designing a tank Your iron works has contracted to design and 

build a 500 ft3, square-based, open-top, rectangular steel holding 

tank for a paper company. The tank is to be made by welding thin 

stainless steel plates together along their edges. As the production 

engineer, your job is to ind dimensions for the base and height 

that will make the tank weigh as little as possible.

a. What dimensions do you tell the shop to use?

b. Briely describe how you took weight into account.

 10. Catching rainwater A 1125 ft3 open-top rectangular tank 

with a square base x ft on a side and y ft deep is to be built with 

its top lush with the ground to catch runof water. The costs as-

sociated with the tank involve not only the material from which 

the tank is made but also an excavation charge proportional to 

the product xy.

a. If the total cost is

c = 5(x2 + 4xy) + 10xy,

what values of x and y will minimize it?

b. Give a possible scenario for the cost function in part (a).

 11. Designing a poster You are designing a rectangular poster to 

contain 50 in2 of printing with a 4-in. margin at the top and bot-

tom and a 2-in. margin at each side. What overall dimensions will 

minimize the amount of paper used?

EXERCISES 4.5

Of the two critical points, only 2200 lies in the domain of c(x). The critical point value of 

the average daily cost is

c122002 =
5000

2200
+ 252200 = 50022 ≈ $707.11.

We note that c(x) is defined over the open interval (0, q) with c″(x) = 10000>x3 7 0. 

Thus, an absolute minimum exists at x = 2200 ≈ 14.14 days.

The cabinetmaker should schedule a delivery of 5(14) = 70 units of wood every  

14 days. 
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a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V 

over this domain.

c. Use a graphical method to ind the maximum volume and the 

value of x that gives it.

d. Conirm your result in part (c) analytically.

e. Find a value of x that yields a volume of 1120 in3.

f. Write a paragraph describing the issues that arise in part (b).

24″

36″

x

24″

x

x x

x x

x x

18″

24″

36″

Base

The sheet is then unfolded.

 18. A rectangle is to be inscribed under the arch of the curve 

y = 4 cos (0.5x) from x = -p to x = p. What are the dimen-

sions of the rectangle with largest area, and what is the largest 

area?

 19. Find the dimensions of a right circular cylinder of maximum vol-

ume that can be inscribed in a sphere of radius 10 cm. What is the 

maximum volume?

 20. a.  The U.S. Postal Service will accept a box for domestic ship-

ment only if the sum of its length and girth (distance around) 

does not exceed 108 in. What dimensions will give a box with 

a square end the largest possible volume?

Square end

Girth = distance

around here

Length

b. Graph the volume of a 108-in. box (length plus girth equals 

108 in.) as a function of its length and compare what you see 

with your answer in part (a).

T

 12. Find the volume of the largest right circular cone that can be in-

scribed in a sphere of radius 3.

y

x

3

3

 13. Two sides of a triangle have lengths a and b, and the angle be-

tween them is u. What value of u will maximize the triangle’s 

area? (Hint: A = (1>2)ab sin u.)

 14. Designing a can What are the dimensions of the lightest 

open-top right circular cylindrical can that will hold a volume of 

1000 cm3? Compare the result here with the result in Example 2.

 15. Designing a can You are designing a 1000 cm3 right circular 

cylindrical can whose manufacture will take waste into account. 

There is no waste in cutting the aluminum for the side, but the top 

and bottom of radius r will be cut from squares that measure 2r 

units on a side. The total amount of aluminum used up by the can 

will therefore be

A = 8r2 + 2prh

  rather than the A = 2pr2 + 2prh in Example 2. In Example 2, 

the ratio of h to r for the most economical can was 2 to 1. What is 

the ratio now?

  16. Designing a box with a lid A piece of cardboard measures  

10 in. by 15 in. Two equal squares are removed from the corners 

of a 10-in. side as shown in the igure. Two equal rectangles are 

removed from the other corners so that the tabs can be folded to 

form a rectangular box with lid.

10″

xx
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x x

x
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Base Lid

x x
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a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V 

over this domain.

c. Use a graphical method to ind the maximum volume and the 

value of x that gives it.

d. Conirm your result in part (c) analytically.

  17. Designing a suitcase A 24-in.-by-36-in. sheet of cardboard is 

folded in half to form a 24-in.-by-18-in. rectangle as shown in the ac-

companying igure. Then four congruent squares of side length x are 

cut from the corners of the folded rectangle. The sheet is unfolded, 

and the six tabs are folded up to form a box with sides and a lid.

T

T
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b. What value of x minimizes L2?

c. What is the minimum value of L?

Crease

D C

BPA

x

x

L

R

Q (originally at A)
"L2 − x2

 26. Constructing cylinders Compare the answers to the following 

two construction problems.

a. A rectangular sheet of perimeter 36 cm and dimensions x cm 

by y cm is to be rolled into a cylinder as shown in part (a) of 

the igure. What values of x and y give the largest volume?

b. The same sheet is to be revolved about one of the sides of 

length y to sweep out the cylinder as shown in part (b) of the 

igure. What values of x and y give the largest volume?

x

y

y

(a)

Circumference = x
y

x

(b)

 27. Constructing cones A right triangle whose hypotenuse is 

23 m long is revolved about one of its legs to generate a right 

circular cone. Find the radius, height, and volume of the cone of 

greatest volume that can be made this way.

h

r

"3

 28. Find the point on the line 
x
a +

y

b
= 1 that is closest to the origin.

 29. Find a positive number for which the sum of it and its reciprocal is 

the smallest (least) possible.

 30. Find a positive number for which the sum of its reciprocal and 

four times its square is the smallest possible.

 31. A wire b m long is cut into two pieces. One piece is bent into an 

equilateral triangle and the other is bent into a circle. If the sum of 

the areas enclosed by each part is a minimum, what is the length 

of each part?

 32. Answer Exercise 31 if one piece is bent into a square and the other 

into a circle.

 21. (Continuation of Exercise 20.)

a. Suppose that instead of having a box with square ends you 

have a box with square sides so that its dimensions are h by 

h by w and the girth is 2h + 2w. What dimensions will give 

the box its largest volume now?

w

Girth

h

h

b. Graph the volume as a function of h and compare what you 

see with your answer in part (a).

 22. A window is in the form of a rectangle surmounted by a semi-

circle. The rectangle is of clear glass, whereas the semicircle is of 

tinted glass that transmits only half as much light per unit area as 

clear glass does. The total perimeter is ixed. Find the proportions 

of the window that will admit the most light. Neglect the thickness 

of the frame.

 23. A silo (base not included) is to be constructed in the form of a 

cylinder surmounted by a hemisphere. The cost of construction 

per square unit of surface area is twice as great for the hemisphere 

as it is for the cylindrical sidewall. Determine the dimensions to 

be used if the volume is ixed and the cost of construction is to be 

kept to a minimum. Neglect the thickness of the silo and waste in 

construction.

 24. The trough in the igure is to be made to the dimensions shown. 

Only the angle u can be varied. What value of u will maximize the 

trough’s volume?

uu

20′

1′

1′

1′

 25. Paper folding A rectangular sheet of 8.5-in.-by-11-in. paper is 

placed on a lat surface. One of the corners is placed on the oppo-

site longer edge, as shown in the igure, and held there as the paper 

is smoothed lat. The problem is to make the length of the crease 

as small as possible. Call the length L. Try it with paper.

a. Show that L2 = 2x3>(2x - 8.5).

T
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 33. Determine the dimensions of the rectangle of largest area that  

can be inscribed in the right triangle shown in the accompanying 

igure.

4

3

5
w

h

 34. Determine the dimensions of the rect - 

angle of largest area that can be 

 inscribed in a semicircle of radius 3. 

(See accompanying igure.)

 35. What value of a makes 

ƒ(x) = x2 + (a>x) have

a. a local minimum at x = 2?

b. a point of inlection at x = 1?

 36. What values of a and b make ƒ(x) = x3 + ax2 + bx have

a. a local maximum at x = -1 and a local minimum at x = 3?

b. a local minimum at x = 4 and a point of inlection at x = 1?

 37. A right circular cone is circumscribed in a sphere of radius 1. De-

termine the height h and radius r of the cone of maximum volume.

 38. Find the point on the graph of y = 20x3 + 60x - 3x5 - 5x4 with 

the largest slope.

 39. Among all triangles in the irst quadrant formed by the x-axis, the 

y-axis, and tangent lines to the graph of y = 3x - x2, what is the 

smallest possible area?

y = 3x − x2

(a, 3a − a2)

x

y

0 3

 40. A cone is formed from a circular piece of material of radius 1 

meter by removing a section of angle u and then joining the two 

straight edges. Determine the largest possible volume for the cone.

1

11 u

Physical Applications

 41. Vertical motion The height above ground of an object moving 

vertically is given by

s = -16t2 + 96t + 112,

  with s in feet and t in seconds. Find

a. the object’s velocity when t = 0;

b. its maximum height and when it occurs;

c. its velocity when s = 0.

 42. Quickest route Jane is 2 mi ofshore in a boat and wishes to 

reach a coastal village 6 mi down a straight shoreline from the 

point nearest the boat. She can row 2 mph and can walk 5 mph. 

Where should she land her boat to reach the village in the least 

amount of time?

 43. Shortest beam The 8-ft wall shown here stands 27 ft from the 

building. Find the length of the shortest straight beam that will 

reach to the side of the building from the ground outside the wall.

Building

27′

Beam

8′ wall

 44. Motion on a line The positions of two particles on the s-axis are 

s1 = sin t and s2 = sin (t + p>3), with s1 and s2 in meters and t 

in seconds.

a. At what time(s) in the interval 0 … t … 2p do the particles 

meet?

b. What is the farthest apart that the particles ever get?

c. When in the interval 0 … t … 2p is the distance between the 

particles changing the fastest?

 45. The intensity of illumination at any point from a light source is 

proportional to the square of the reciprocal of the distance be-

tween the point and the light source. Two lights, one having an 

intensity eight times that of the other, are 6 m apart. How far from 

the stronger light is the total illumination least?

 46. Projectile motion The range R of a projectile ired from the 

origin over horizontal ground is the distance from the origin to 

the point of impact. If the projectile is ired with an initial veloc-

ity y0 at an angle a with the horizontal, then in Chapter 13 we 

ind that

R =
y0

  2

g  sin 2a,

  where g is the downward acceleration due to gravity. Find the 

angle a for which the range R is the largest possible.

r = 3

w

h
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s

0

m2

s1

s2

m1

 51. Distance between two ships At noon, ship A was 12 nautical 

miles due north of ship B. Ship A was sailing south at 12 knots 

(nautical miles per hour; a nautical mile is 2000 yd) and continued 

to do so all day. Ship B was sailing east at 8 knots and continued 

to do so all day.

a. Start counting time with t = 0 at noon and express the dis-

tance s between the ships as a function of t.

b. How rapidly was the distance between the ships changing at 

noon? One hour later?

c. The visibility that day was 5 nautical miles. Did the ships 

ever sight each other?

d. Graph s and ds>dt together as functions of t for -1 … t … 3, 

using diferent colors if possible. Compare the graphs and 

reconcile what you see with your answers in parts (b) and (c).

e. The graph of ds>dt looks as if it might have a horizontal as-

ymptote in the irst quadrant. This in turn suggests that ds>dt 

approaches a limiting value as t S q. What is this value? 

What is its relation to the ships’ individual speeds?

 52. Fermat’s principle in optics Light from a source A is relected 

by a plane mirror to a receiver at point B, as shown in the ac-

companying igure. Show that for the light to obey Fermat’s prin-

ciple, the angle of incidence must equal the angle of relection, 

both measured from the line normal to the relecting surface. (This 

result can also be derived without calculus. There is a purely geo-

metric argument, which you may prefer.)

B

Plane mirror

Light

source
Angle of

incidence

Light

receiver

Normal

Angle of

relection
A

u1
u2

 53. Tin pest When metallic tin is kept below 13.2°C, it slowly be-

comes brittle and crumbles to a gray powder. Tin objects event-

ually crumble to this gray powder spontaneously if kept in a cold 

climate for years. The Europeans who saw tin organ pipes in their 

churches crumble away years ago called the change tin pest be-

cause it seemed to be contagious, and indeed it was, for the gray 

powder is a catalyst for its own formation.

T

 47. Strength of a beam The strength S of a rectangular wooden 

beam is proportional to its width times the square of its depth. 

(See the accompanying igure.)

a. Find the dimensions of the strongest beam that can be cut 

from a 12-in.-diameter cylindrical log.

b. Graph S as a function of the beam’s width w, assuming the 

proportionality constant to be k = 1. Reconcile what you see 

with your answer in part (a).

d. On the same screen, graph S as a function of the beam’s depth 

d, again taking k = 1. Compare the graphs with one another 

and with your answer in part (a). What would be the efect of 

changing to some other value of k? Try it.

12″
d

w

 48. Stifness of a beam The stifness S of a rectangular beam is pro-

portional to its width times the cube of its depth.

a. Find the dimensions of the stifest beam that can be cut from 

a 12-in.-diameter cylindrical log.

b. Graph S as a function of the beam’s width w, assuming the 

proportionality constant to be k = 1. Reconcile what you see 

with your answer in part (a).

c. On the same screen, graph S as a function of the beam’s depth 

d, again taking k = 1. Compare the graphs with one another 

and with your answer in part (a). What would be the efect of 

changing to some other value of k? Try it.

 49. Frictionless cart A small frictionless cart, attached to the wall 

by a spring, is pulled 10 cm from its rest position and released at 

time t = 0 to roll back and forth for 4 sec. Its position at time t is 

s = 10 cos pt.

a. What is the cart’s maximum speed? When is the cart moving 

that fast? Where is it then? What is the magnitude of the ac-

celeration then?

b. Where is the cart when the magnitude of the acceleration is 

greatest? What is the cart’s speed then?

0 10
s

 50. Two masses hanging side by side from springs have positions 

s1 = 2 sin t and s2 = sin 2t, respectively.

a. At what times in the interval 0 6 t do the masses pass each 

other? (Hint: sin 2t = 2 sin t cos t.)

b. When in the interval 0 … t … 2p is the vertical distance be-

tween the masses the greatest? What is this distance? (Hint: 

cos 2t = 2 cos2 t - 1.)

T

T
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  It costs $6000 (a ixed cost) plus $32 per person to conduct the 

tour. How many people does it take to maximize your proit?

 57. Wilson lot size formula One of the formulas for inventory man-

agement says that the average weekly cost of ordering, paying for, 

and holding merchandise is

A(q) =
km
q + cm +

hq

2
,

  where q is the quantity you order when things run low (shoes, 

radios, brooms, or whatever the item might be), k is the cost of 

placing an order (the same, no matter how often you order), c is 

the cost of one item (a constant), m is the number of items sold 

each week (a constant), and h is the weekly holding cost per item 

(a constant that takes into account things such as space, utilities, 

insurance, and security).

a. Your job, as the inventory manager for your store, is to ind 

the quantity that will minimize A(q). What is it? (The formula 

you get for the answer is called the Wilson lot size formula.)

b. Shipping costs sometimes depend on order size. When they 

do, it is more realistic to replace k by k + bq, the sum of k 

and a constant multiple of q. What is the most economical 

quantity to order now?

 58. Production level Prove that the production level (if any) at 

which average cost is smallest is a level at which the average cost 

equals marginal cost.

 59. Show that if r(x) = 6x and c(x) = x3 - 6x2 + 15x are your rev-

enue and cost functions, then the best you can do is break even 

(have revenue equal cost).

 60. Production level Suppose that c(x) = x3 - 20x2 + 20,000x is 

the cost of manufacturing x items. Find a production level that will 

minimize the average cost of making x items.

 61. You are to construct an open rectangular box with a square base 

and a volume of 48 ft3. If material for the bottom costs $6>ft2 and 

material for the sides costs $4>ft2, what dimensions will result in 

the least expensive box? What is the minimum cost?

 62. The 800-room Mega Motel chain is illed to capacity when the 

room charge is $50 per night. For each $10 increase in room 

charge, 40 fewer rooms are illed each night. What charge per 

room will result in the maximum revenue per night?

Biology

 63. Sensitivity to medicine (Continuation of Exercise 60,  Section 

3.3.) Find the amount of medicine to which the body is most 

sensitive by inding the value of M that maximizes the derivative 

dR>dM , where

R = M2aC
2

-
M

3
b

  and C is a constant.

 64. How we cough

a. When we cough, the trachea (windpipe) contracts to increase 

the velocity of the air going out. This raises the questions of 

how much it should contract to maximize the velocity and 

whether it really contracts that much when we cough.

   A catalyst for a chemical reaction is a substance that controls 

the rate of reaction without undergoing any permanent change in 

itself. An autocatalytic reaction is one whose product is a cata-

lyst for its own formation. Such a reaction may proceed slowly 

at irst if the amount of catalyst present is small and slowly again 

at the end, when most of the original substance is used up. But 

in between, when both the substance and its catalyst product are 

abundant, the reaction proceeds at a faster pace.

   In some cases, it is reasonable to assume that the rate 

y = dx>dt of the reaction is proportional both to the amount of 

the original substance present and to the amount of product. That 

is, y may be considered to be a function of x alone, and

y = kx(a - x) = kax - kx2,

  where

   x = the amount of product

   a = the amount of substance at the beginning

   k = a positive constant.

  At what value of x does the rate y have a maximum? What is the 

maximum value of y?

 54. Airplane landing path An airplane is flying at altitude H when it 

begins its descent to an airport runway that is at  horizontal ground 

distance L from the airplane, as shown in the igure. Assume that 

the landing path of the airplane is the graph of a cubic polyno-

mial function y = ax3 + bx2 + cx + d,  where y(-L) = H  and 

y(0) = 0.

a. What is dy>dx at x = 0?

b. What is dy>dx at x = -L?

c. Use the values for dy>dx at x = 0 and x = -L together with 

y(0) = 0 and y(-L) = H  to show that

y(x) = H c 2ax

L
b3

+ 3ax

L
b2 d .

Landing path y

x

H = Cruising altitude
Airport

L

Business and Economics

 55. It costs you c dollars each to manufacture and distribute back-

packs. If the backpacks sell at x dollars each, the number sold is 

given by

n =
a

x - c + b(100 - x),

  where a and b are positive constants. What selling price will bring 

a maximum proit?

 56. You operate a tour service that ofers the following rates:

$200 per person if 50 people (the minimum number to book 

the tour) go on the tour.

For each additional person, up to a maximum of 80 people 

total, the rate per person is reduced by $2.
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x
a c b

y = f (x)

y = g(x)

 68. You have been asked to determine whether the function ƒ(x) =

3 + 4 cos x + cos 2x is ever negative.

a. Explain why you need to consider values of x only in the 

interval 30, 2p4 .
b. Is ƒ ever negative? Explain.

 69. a.  The function y = cot x - 22 csc x has an absolute maxi-

mum value on the interval 0 6 x 6 p. Find it.

b. Graph the function and compare what you see with your 

answer in part (a).

 70. a.  The function y = tan x + 3 cot x has an absolute minimum 

value on the interval 0 6 x 6 p>2. Find it.

b. Graph the function and compare what you see with your 

answer in part (a).

 71. a.  How close does the curve y = 2x come to the point 

(3>2, 0)? (Hint: If you minimize the square of the distance, 

you can avoid square roots.)

b. Graph the distance function D(x) and y = 2x together and 

reconcile what you see with your answer in part (a).

(x, "x)

0 3
2

, 0

y

x

y = "x

a     b
 72. a.  How close does the semicircle y = 216 - x2 come to the 

point 11, 232?
b. Graph the distance function and y = 216 - x2 together and 

reconcile what you see with your answer in part (a).

T

T

T

T

Under reasonable assumptions about the elasticity of the 

tracheal wall and about how the air near the wall is slowed by 

friction, the average low velocity y can be modeled by the 

equation

y = c(r0 - r)r2 cm>sec,  
r0

2
… r … r0 ,

where r0 is the rest radius of the trachea in centimeters and 

c is a positive constant whose value depends in part on the 

length of the trachea.

Show that y is greatest when r = (2>3)r0; that is, when 

the trachea is about 33% contracted. The remarkable fact is 

that X-ray photographs conirm that the trachea contracts 

about this much during a cough.

b. Take r0 to be 0.5 and c to be 1 and graph y over the interval 

0 … r … 0.5. Compare what you see with the claim that y is 

at a maximum when r = (2>3)r0.

Theory and Examples

 65. An inequality for positive integers Show that if a, b, c, and d 

are positive integers, then

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)

abcd
Ú 16.

 66. The derivative dt>dx in Example 4

a. Show that

ƒ(x) =
x

2a2 + x2

is an increasing function of x.

b. Show that

g(x) =
d - x

2b2 + (d - x)2

is a decreasing function of x.

c. Show that

dt

dx
=

x

c12a2 + x2
-

d - x

c22b2 + (d - x)2

is an increasing function of x.

 67. Let ƒ(x) and g(x) be the diferentiable functions graphed here. 

Point c is the point where the vertical distance between the curves 

is the greatest. Is there anything special about the tangents to the 

two curves at c? Give reasons for your answer.

T

4.6 Newton’s Method

For thousands of years, one of the main goals of mathematics has been to find solutions  

to equations. For linear equations (ax + b = 0), and for quadratic equations  

(ax2 + bx + c = 0), we can explicitly solve for a solution. However, for most equations 

there is no simple formula that gives the solutions.

In this section we study a numerical method called Newton’s method or the Newton–

Raphson method, which is a technique to approximate the solutions to an equation 

ƒ(x) = 0. Newton’s method estimates the solutions using tangent lines of the graph of 

y = ƒ(x) near the points where ƒ is zero. A value of x where ƒ is zero is called a root of the 
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function ƒ and a solution of the equation ƒ(x) = 0. Newton’s method is both powerful and 

efficient, and it has numerous applications in engineering and other fields where solutions 

to complicated equations are needed.

Procedure for Newton’s Method

The goal of Newton’s method for estimating a solution of an equation ƒ(x) = 0 is to pro-

duce a sequence of approximations that approach the solution. We pick the first number x0 of 

the sequence. Then, under favorable circumstances, the method moves step by step toward a 

point where the graph of ƒ crosses the x-axis (Figure 4.46). At each step the method approxi-

mates a zero of ƒ with a zero of one of its linearizations. Here is how it works.

The initial estimate, x0, may be found by graphing or just plain guessing. The method 

then uses the tangent to the curve y = ƒ(x) at (x0, ƒ(x0)) to approximate the curve, calling 

the point x1 where the tangent meets the x-axis (Figure 4.46). The number x1 is usually a 

better approximation to the solution than is x0. The point x2 where the tangent to the curve 

at (x1, ƒ(x1)) crosses the x-axis is the next approximation in the sequence. We continue, 

using each approximation to generate the next, until we are close enough to the root to stop.

We can derive a formula for generating the successive approximations in the follow-

ing way. Given the approximation xn, the point-slope equation for the tangent to the curve 

at (xn, ƒ(xn)) is

y = ƒ(xn) + ƒ′(xn)(x - xn).

We can find where it crosses the x-axis by setting y = 0 (Figure 4.47):

 0 = ƒ(xn) + ƒ′(xn)(x - xn)

 -  
ƒ(xn)

ƒ′(xn)
= x - xn

 x = xn -
ƒ(xn)

ƒ′(xn)
  If ƒ′(xn) ≠ 0

This value of x is the next approximation xn + 1. Here is a summary of Newton’s method.

Newton’s Method

1. Guess a irst approximation to a solution of the equation ƒ(x) = 0. A graph 

of y = ƒ(x) may help.

2. Use the irst approximation to get a second, the second to get a third, and so 

on, using the formula

 xn + 1 = xn -
ƒ(xn)

ƒ′(xn)
,  if ƒ′(xn) ≠ 0. (1)

Applying Newton’s Method

Applications of Newton’s method generally involve many numerical computations, mak-

ing them well suited for computers or calculators. Nevertheless, even when the calcula-

tions are done by hand (which may be very tedious), they give a powerful way to find 

solutions of equations.

In our first example, we find decimal approximations to 22 by estimating the posi-

tive root of the equation ƒ(x) = x2 - 2 = 0.

EXAMPLE 1  Approximate the positive root of the equation

ƒ(x) = x2 - 2 = 0.

x

y

0

Root
sought

x0x1x2x3

Fourth FirstSecondThird

APPROXIMATIONS

(x1, f (x1))

(x2, f (x2))

(x0, f (x0))

y = f (x)

FIGURE 4.46 Newton’s method starts 

with an initial guess x0 and (under favor-

able circumstances) improves the guess 

one step at a time.

x

y

0

Root sought

Tangent line

(graph of

linearization

of f at xn)

y = f (x)

(xn, f (xn))

xn

Point: (xn, f (xn))

Slope: f ′(xn)

Tangent line equation:

 y − f (xn) = f ′(xn)(x − xn)

xn+1 = xn −
f (xn)

f '(xn)

FIGURE 4.47 The geometry of the suc-

cessive steps of Newton’s method. From 

xn we go up to the curve and follow the 

tangent line down to find xn + 1.
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Solution With ƒ(x) = x2 - 2 and ƒ′(x) = 2x, Equation (1) becomes

 xn + 1 = xn -
xn 

2 - 2

2xn

 = xn -
xn

2
+

1
xn

 =
xn

2
+

1
xn

.

The equation

xn + 1 =
xn

2
+

1
xn

enables us to go from each approximation to the next with just a few keystrokes. With the 

starting value x0 = 1, we get the results in the first column of the following table. (To five 

decimal places, or, equivalently, to six digits, 22 = 1.41421.) 

 Error

Number of  

correct digits

x0 = 1 -0.41421  1

x1 = 1.5  0.08579  1

x2 = 1.41667  0.00246  3

x3 = 1.41422  0.00001  5

Newton’s method is the method used by most software applications to calculate roots 

because it converges so fast (more about this later). If the arithmetic in the table in Exam-

ple 1 had been carried to 13 decimal places instead of 5, then going one step further would 

have given 22 correctly to more than 10 decimal places.

EXAMPLE 2  Find the x-coordinate of the point where the curve y = x3 - x crosses 

the horizontal line y = 1.

Solution The curve crosses the line when x3 - x = 1 or x3 - x - 1 = 0. When does 

ƒ(x) = x3 - x - 1 equal zero? Since ƒ(1) = -1 and ƒ(2) = 5, we know by the Interme-

diate Value Theorem there is a root in the interval (1, 2) (Figure 4.48).

We apply Newton’s method to ƒ with the starting value x0 = 1. The results are dis-

played in Table 4.1 and Figure 4.49.

x

y

0

5

1

10

−1 2 3

15

20
y = x3 − x − 1

FIGURE 4.48 The graph of ƒ(x) =

x3 - x - 1 crosses the x-axis once; this is 

the root we want to find (Example 2).

x
1 1.5

1.3478

Root sought

(1.5, 0.875)

x1x2x0

y = x3 − x − 1

(1, −1)

FIGURE 4.49 The first three x-values in 

Table 4.1 (four decimal places).

TABLE 4.1  The result of applying Newton’s method to ƒ(x) = x 3 − x − 1 

with x0 = 1

n xn ƒ(xn) ƒ′(xn) xn+1 = xn −
ƒ(xn)

ƒ′(xn)

0 1 -1 2 1.5

1 1.5 0.875 5.75 1.3478 26087

2 1.3478 26087 0.1006 82173 4.4499 05482 1.3252 00399

3 1.3252 00399 0.0020 58362 4.2684 68292 1.3247 18174

4 1.3247 18174 0.0000 00924 4.2646 34722 1.3247 17957

5 1.3247 17957 -1.8672E@13 4.2646 32999 1.3247 17957
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At n = 5, we come to the result x6 = x5 = 1.3247 17957. When xn + 1 = xn,  

Equation (1) shows that ƒ(xn) = 0, up to the accuracy of our computation. We have found 

a solution of ƒ(x) = 0 to nine decimals. 

In Figure 4.50 we have indicated that the process in Example 2 might have started at 

the point B0(3, 23) on the curve, with x0 = 3. Point B0 is quite far from the x-axis, but the 

tangent at B0 crosses the x-axis at about (2.12, 0), so x1 is still an improvement over x0. If 

we use Equation (1) repeatedly as before, with ƒ(x) = x3 - x - 1 and ƒ′(x) = 3x2 - 1, 

we obtain the nine-place solution x7 = x6 = 1.3247 17957 in seven steps.

Convergence of the Approximations

In Chapter 10 we define precisely the idea of convergence for the approximations xn in 

 Newton’s method. Intuitively, we mean that as the number n of approximations increases 

without bound, the values xn get arbitrarily close to the desired root r. (This notion is similar 

to the idea of the limit of a function g(t) as t approaches infinity, as defined in Section 2.6.)

In practice, Newton’s method usually gives convergence with impressive speed, but 

this is not guaranteed. One way to test convergence is to begin by graphing the function to 

estimate a good starting value for x0. You can test that you are getting closer to a zero of 

the function by checking that 0 ƒ(xn) 0  is approaching zero, and you can check that the 

approximations are converging by evaluating 0 xn - xn + 1 0 .
Newton’s method does not always converge. For instance, if

ƒ(x) = e -2r - x, x 6 r

2x - r, x Ú r,

the graph will be like the one in Figure 4.51. If we begin with x0 = r - h, we get 

x1 = r + h, and successive approximations go back and forth between these two values. 

No amount of iteration brings us closer to the root than our first guess.

If Newton’s method does converge, it converges to a root. Be careful, however. There 

are situations in which the method appears to converge but no root is there. Fortunately, 

such situations are rare.

When Newton’s method converges to a root, it may not be the root you have in mind. 

Figure 4.52 shows two ways this can happen.
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B1(2.12, 6.35)
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−1�"3 1�"3

FIGURE 4.50 Any starting value x0 to 

the right of x = 1>23 will lead to the 

root in Example 2.

x

y

0

r

y = f (x)

x1x0

FIGURE 4.51 Newton’s method fails to 

converge. You go from x0 to x1 and back 

to x0, never getting any closer to r.

x2

Root found
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point
Root

sought

x
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Root sought
x0

Starting

point

Root

found

x
x1

y = f (x)

y = f (x)

FIGURE 4.52 If you start too far away, Newton’s method may miss the root you want.

Root Finding

 1. Use Newton’s method to estimate the solutions of the equation 

x2 + x - 1 = 0. Start with x0 = -1 for the left-hand solution 

and with x0 = 1 for the solution on the right. Then, in each case, 

ind x2.

 2. Use Newton’s method to estimate the one real solution of 

x3 + 3x + 1 = 0. Start with x0 = 0 and then ind x2.

 3. Use Newton’s method to estimate the two zeros of the function 

ƒ(x) = x4 + x - 3. Start with x0 = -1 for the left-hand zero and 

with x0 = 1 for the zero on the right. Then, in each case, ind x2.

 4. Use Newton’s method to estimate the two zeros of the function 

ƒ(x) = 2x - x2 + 1. Start with x0 = 0 for the left-hand zero 

and with x0 = 2 for the zero on the right. Then, in each case, 

ind x2.

EXERCISES 4.6
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improve this estimate. That is, start with x0 = 1.5 and ind x1. 

(The value of the root is 1.49870 to ive decimal places.) Remem-

ber to use radians.

 15. Intersecting curves The curve y = tan x crosses the line 

y = 2x between x = 0 and x = p>2. Use Newton’s method to 

ind where.

 16. Real solutions of a quartic Use Newton’s method to ind the 

two real solutions of the equation x4 - 2x3 - x2 - 2x + 2 = 0.

 17. a.  How many solutions does the equation sin 3x = 0.99 - x2 

have?

b. Use Newton’s method to ind them.

 18. Intersection of curves

a. Does cos 3x ever equal x? Give reasons for your answer.

b. Use Newton’s method to ind where.

 19. Find the four real zeros of the function ƒ(x) = 2x4 - 4x2 + 1.

 20. Estimating pi Estimate p to as many decimal places as your 

calculator will display by using Newton’s method to solve the 

equation tan x = 0 with x0 = 3.

 21. Intersection of curves At what value(s) of x does cos x = 2x?

 22. Intersection of curves At what value(s) of x does cos x = -x?

 23. The graphs of y = x2(x + 1) and y = 1>x (x 7 0) intersect at 

one point x = r. Use Newton’s method to estimate the value of r 

to four decimal places.

1

21−1 0

3

2

x

y

y = x
1

y = x2(x 
+ 1)

r
r, 1a    b

 24. The graphs of y = 2x and y = 3 - x2 intersect at one point 

x = r. Use Newton’s method to estimate the value of r to four 

decimal places.

 25. Use the Intermediate Value Theorem from Section 2.5 to show that 

ƒ(x) = x3 + 2x - 4 has a root between x = 1 and x = 2. Then 

ind the root to ive decimal places.

 26. Factoring a quartic Find the approximate values of r1 through 

r4 in the factorization

8x4 - 14x3 - 9x2 + 11x - 1 = 8(x - r1)(x - r2)(x - r3)(x - r4).

x

y

2

1−1 2

−4

−6

−2

−8

−10

−12

y = 8x4 − 14x3 − 9x2
 + 11x − 1

T

T

T

T

 5. Use Newton’s method to ind the positive fourth root of 2 by solv-

ing the equation x4 - 2 = 0. Start with x0 = 1 and ind x2.

 6. Use Newton’s method to ind the negative fourth root of 2 by solv-

ing the equation x4 - 2 = 0. Start with x0 = -1 and ind x2.

 7. Use Newton’s method to ind an approximate solution of 

3 - x = x3. Start with x0 = 1 and ind x2.

Dependence on Initial Point

 8. Using the function shown in the igure, and for each initial esti-

mate x0, determine graphically what happens to the sequence of 

Newton’s method approximations

a. x0 = 0 b. x0 = 1

c. x0 = 2 d. x0 = 4

e. x0 = 5.5

x

y

1 2 3 4 5 6 7 8−2−3−4 −1 0

−1

−2

1

2

3

y = f (x)

 9. Guessing a root Suppose that your irst guess is lucky, in the 

sense that x0 is a root of ƒ(x) = 0. Assuming that ƒ′(x0) is deined 

and not 0, what happens to x1 and later approximations?

 10. Estimating pi You plan to estimate p>2 to ive decimal plac-

es by using Newton’s method to solve the equation cos x = 0. 

Does it matter what your starting value is? Give reasons for your 

 answer.

Theory and Examples

 11. Oscillation Show that if h 7 0, applying Newton’s method to

ƒ(x) = e2x, x Ú 0

2-x, x 6 0

  leads to x1 = -h if x0 = h and to x1 = h if x0 = -h. Draw a pic-

ture that shows what is going on.

 12. Approximations that get worse and worse Apply Newton’s 

method to ƒ(x) = x1>3 with x0 = 1 and calculate x1, x2, x3, and x4. 

Find a formula for 0 xn 0 . What happens to 0 xn 0  as n S q? Draw a 

picture that shows what is going on.

 13. Explain why the following four statements ask for the same infor-

mation:

 i) Find the roots of ƒ(x) = x3 - 3x - 1.

 ii) Find the x-coordinates of the intersections of the curve 

y = x3 with the line y = 3x + 1.

 iii) Find the x-coordinates of the points where the curve 

y = x3 - 3x crosses the horizontal line y = 1.

 iv) Find the values of x where the derivative of g(x) =

(1>4)x4 - (3>2)x2 - x + 5 equals zero.

 14. Locating a planet To calculate a planet’s space coordinates, 

we have to solve equations like x = 1 + 0.5 sin x. Graphing the 

function ƒ(x) = x - 1 - 0.5 sin x suggests that the function has 

a root near x = 1.5. Use one application of Newton’s method to 
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 27. Converging to diferent zeros Use Newton’s method to ind the 

zeros of ƒ(x) = 4x4 - 4x2 using the given starting values.

a. x0 = -2 and x0 = -0.8, lying in 1-q, -22>22
b. x0 = -0.5 and x0 = 0.25, lying in 1-221>7, 221>72
c. x0 = 0.8 and x0 = 2, lying in 122>2, q2
d. x0 = -221>7 and x0 = 221>7

 28. The sonobuoy problem In submarine location problems, it is 

often necessary to ind a submarine’s closest point of approach 

(CPA) to a sonobuoy (sound detector) in the water. Suppose that 

the submarine travels on the parabolic path y = x2 and that the 

buoy is located at the point (2, -1>2).

a. Show that the value of x that minimizes the distance between 

the submarine and the buoy is a solution of the equation 

x = 1>(x2 + 1).

b. Solve the equation x = 1>(x2 + 1) with Newton’s method.

x

y

0

2, −

1

1 2

Sonobuoy

CPA

Submarine track

in two dimensions

1
2

y = x2

a        b

 29. Curves that are nearly lat at the root Some curves are so lat 

that, in practice, Newton’s method stops too far from the root to 

T

T

give a useful estimate. Try Newton’s method on ƒ(x) = (x - 1)40 

with a starting value of x0 = 2 to see how close your machine 

comes to the root x = 1. See the accompanying graph.

x

y

0

(2, 1)

1

1

2

Nearly lat

Slope = 40Slope = −40

y = (x − 1)40

 30. The accompanying igure shows a circle of radius r with a chord 

of length 2 and an arc s of length 3. Use Newton’s method to solve 

for r and u (radians) to four decimal places. Assume 0 6 u 6 p.

u 2

r

r

s = 3

4.7 Antiderivatives

Many problems require that we recover a function from its derivative, or from its rate of 

change. For instance, the laws of physics tell us the acceleration of an object falling from 

an initial height, and we can use this to compute its velocity and its height at any time. 

More generally, starting with a function ƒ, we want to find a function F whose derivative is 

ƒ. If such a function F exists, it is called an antiderivative of ƒ. Antiderivatives are the link 

connecting the two major elements of calculus: derivatives and definite integrals.

Finding Antiderivatives

DEFINITION A function F is an antiderivative of ƒ on an interval I if 

ƒ′(x) = ƒ(x) for all x in I.

The process of recovering a function F(x) from its derivative ƒ(x) is called antidiferentia-

tion. We use capital letters such as F to represent an antiderivative of a function ƒ, G to 

represent an antiderivative of g, and so forth.

EXAMPLE 1  Find an antiderivative for each of the following functions.

(a) ƒ(x) = 2x   (b) g(x) = cos x   (c) h(x) = sec2 x +
1

22x
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Solution We need to think backward here: What function do we know has a derivative 

equal to the given function?

(a) F(x) = x2   (b) G(x) = sin x   (c) H(x) = tan x + 2x

Each answer can be checked by diferentiating. The derivative of F(x) = x2 is 2x. 

The derivative of G(x) = sin x is cos x, and the derivative of H(x) = tan x + 2x is 

sec2 x + 11>22x2. 
The function F(x) = x2 is not the only function whose derivative is 2x. The function 

x2 + 1 has the same derivative. So does x2 + C for any constant C. Are there others?

Corollary 2 of the Mean Value Theorem in Section 4.2 gives the answer: Any two 

antiderivatives of a function differ by a constant. So the functions x2 + C, where C is an 

arbitrary constant, form all the antiderivatives of ƒ(x) = 2x. More generally, we have 

the following result.

THEOREM 8 If F is an antiderivative of ƒ on an interval I, then the most general 

antiderivative of ƒ on I is

F(x) + C

where C is an arbitrary constant.

Thus the most general antiderivative of ƒ on I is a family of functions F(x) + C 

whose graphs are vertical translations of one another. We can select a particular antideriva-

tive from this family by assigning a specific value to C. Here is an example showing how 

such an assignment might be made.

EXAMPLE 2  Find an antiderivative of ƒ(x) = 3x2 that satisfies F(1) = -1.

Solution Since the derivative of x3 is 3x2, the general antiderivative

F(x) = x3 + C

gives all the antiderivatives of ƒ(x). The condition F(1) = -1 determines a specific value 

for C. Substituting x = 1 into ƒ(x) = x3 + C gives

F(1) = (1)3 + C = 1 + C.

Since F(1) = -1, solving 1 + C = -1 for C gives C = -2. So

F(x) = x3 - 2

is the antiderivative satisfying F(1) = -1. Notice that this assignment for C selects the 

particular curve from the family of curves y = x3 + C that passes through the point 

(1, -1) in the plane (Figure 4.53). 

By working backward from assorted differentiation rules, we can derive formulas and 

rules for antiderivatives. In each case there is an arbitrary constant C in the general expres-

sion representing all antiderivatives of a given function. Table 4.2 gives antiderivative for-

mulas for a number of important functions.

The rules in Table 4.2 are easily verified by differentiating the general antiderivative 

formula to obtain the function to its left. For example, the derivative of (tan kx)>k + C is 

sec2 kx, whatever the value of the constants C or k ≠ 0, and this verifies that Formula 4 

gives the general antiderivative of sec2 kx.

2

1

0

−1

−2

x

y

y = x3
 + C C = 1

C = 2

C = 0

C = −1

C = −2

(1, −1)

FIGURE 4.53 The curves y = x3 + C 

fill the coordinate plane without overlap-

ping. In Example 2, we identify the curve 

y = x3 - 2 as the one that passes through 

the given point (1, -1).
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TABLE 4.2  Antiderivative formulas, k a nonzero constant

Function General antiderivative

 1. xn 1
n + 1

 xn + 1 + C, n ≠ -1

 2. sin kx -
1
k
 cos kx + C 

 3. cos kx
1
k
 sin kx + C

 4. sec2 kx
1
k
 tan kx + C

 5. csc2 kx -
1
k
 cot kx + C

 6. sec kx tan kx
1
k
 sec kx + C

 7. csc kx cot kx -
1
k
 csc kx + C

EXAMPLE 3  Find the general antiderivative of each of the following functions.

(a) ƒ(x) = x5 (b) g(x) =
1

2x
 (c) h(x) = sin 2x

(d) i(x) = cos  
x

2

Solution In each case, we can use one of the formulas listed in Table 4.2.

(a) F(x) =
x6

6
+ C Formula 1 with n = 5

(b) g(x) = x-1>2, so

G(x) =
x1>2
1>2 + C = 22x + C Formula 1 with n = -1>2

(c) H(x) =
-cos 2x

2
+ C Formula 2 with k = 2

(d) I(x) =
sin (x>2)

1>2 + C = 2 sin  
x

2
+ C Formula 3 with k = 1>2 

Other derivative rules also lead to corresponding antiderivative rules. We can add and 

subtract antiderivatives and multiply them by constants.

TABLE 4.3  Antiderivative linearity rules

Function General antiderivative

1. Constant Multiple Rule: kƒ(x) kF(x) + C, k a constant

2. Sum or Difference Rule: ƒ(x) { g(x) F(x) { G(x) + C

The formulas in Table 4.3 are easily proved by differentiating the antiderivatives and 

verifying that the result agrees with the original function. 
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EXAMPLE 4  Find the general antiderivative of

ƒ(x) =
3

2x
+ sin 2x.

Solution We have that ƒ(x) = 3g(x) + h(x) for the functions g and h in Example 3. 

Since G(x) = 22x is an antiderivative of g(x) from Example 3b, it follows from the Con-

stant Multiple Rule for antiderivatives that 3G(x) = 3 # 22x = 62x is an anti derivative 

of 3g(x) = 3>2x. Similarly, from Example 3c we know that H(x) = (-1>2) cos 2x is an 

antiderivative of h(x) = sin 2x. From the Sum Rule for antiderivatives, we then get that

 F(x) = 3G(x) + H(x) + C

 = 62x -
1
2

 cos 2x + C

is the general antiderivative formula for ƒ(x), where C is an arbitrary constant. 

Initial Value Problems and Differential Equations

Antiderivatives play several important roles in mathematics and its applications. Methods 

and techniques for finding them are a major part of calculus, and we take up that study in 

Chapter 8. Finding an antiderivative for a function ƒ(x) is the same problem as finding a 

function y(x) that satisfies the equation

dy

dx
= ƒ(x).

This is called a differential equation, since it is an equation involving an unknown func-

tion y that is being differentiated. To solve it, we need a function y(x) that satisfies the 

equation. This function is found by taking the antiderivative of ƒ(x). We can fix the arbi-

trary constant arising in the antidifferentiation process by specifying an initial condition

y(x0) = y0.

This condition means the function y(x) has the value y0 when x = x0. The combination of 

a differential equation and an initial condition is called an initial value problem. Such 

problems play important roles in all branches of science.

The most general antiderivative F(x) + C of the function ƒ(x) (such as x3 + C for 

the function 3x2 in Example 2) gives the general solution y = F(x) + C of the differen-

tial equation dy>dx = ƒ(x). The general solution gives all the solutions of the equation 

(there are infinitely many, one for each value of C). We solve the differential equation by 

finding its general solution. We then solve the initial value problem by finding the partic-

ular solution that satisfies the initial condition y(x0) = y0. In Example 2, the function 

y = x3 - 2 is the particular solution of the differential equation dy>dx = 3x2 satisfying 

the initial condition y(1) = -1.

Antiderivatives and Motion

We have seen that the derivative of the position function of an object gives its velocity, and 

the derivative of its velocity function gives its acceleration. If we know an object’s accel-

eration, then by finding an antiderivative we can recover the velocity, and from an antide-

rivative of the velocity we can recover its position function. This procedure was used as an 

application of Corollary 2 in Section 4.2. Now that we have a terminology and conceptual 

framework in terms of antiderivatives, we revisit the problem from the point of view of 

differential equations.

EXAMPLE 5  A hot-air balloon ascending at the rate of 12 ft>sec is at a height 80 ft 

above the ground when a package is dropped. How long does it take the package to reach 

the ground?
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Solution Let y(t) denote the velocity of the package at time t, and let s(t) denote its 

height above the ground. The acceleration of gravity near the surface of the earth is 

32 ft>sec2. Assuming no other forces act on the dropped package, we have

dy
dt

= -32.  
Negative because gravity acts in the 

direction of decreasing s
 

This leads to the following initial value problem (Figure 4.54):

 Differential equation:    
dy
dt

= -32

Initial condition:  y(0) = 12.   Balloon initially rising

This is our mathematical model for the package’s motion. We solve the initial value prob-

lem to obtain the velocity of the package.

 1. Solve the diferential equation: The general formula for an antiderivative of -32 is

y = -32t + C.

Having found the general solution of the diferential equation, we use the initial condi-

tion to ind the particular solution that solves our problem.

 2. Evaluate C:

 12 = -32(0) + C  Initial condition y(0) = 12 

 C = 12.

The solution of the initial value problem is

y = -32t + 12.

Since velocity is the derivative of height, and the height of the package is 80 ft at time 

t = 0 when it is dropped, we now have a second initial value problem:

Differential equation:  
ds

dt
= -32t + 12  Set y = ds>dt  in the previous equation.

Initial condition:    s(0) = 80.

We solve this initial value problem to find the height as a function of t.

 1. Solve the diferential equation: Finding the general antiderivative of -32t + 12 gives

s = -16t2 + 12t + C.

 2. Evaluate C:

 80 = -16(0)2 + 12(0) + C  Initial condition s(0) = 80 

 C = 80.

  The package’s height above ground at time t is

s = -16t2 + 12t + 80.

Use the solution: To ind how long it takes the package to reach the ground, we set s 

equal to 0 and solve for t:

 -16t2 + 12t + 80 = 0

 -4t2 + 3t + 20 = 0

 t =
-3 { 2329

-8
  Quadratic formula

 t ≈ -1.89,  t ≈ 2.64.

The package hits the ground about 2.64 sec after it is dropped from the balloon. (The neg-

ative root has no physical meaning.) 

s

0 ground

s(t)

y(0) = 12

dy

dt
 = −32

FIGURE 4.54 A package dropped from 

a rising hot-air balloon (Example 5).
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Indefinite Integrals

A special symbol is used to denote the collection of all antiderivatives of a function ƒ.

DEFINITION The collection of all antiderivatives of ƒ is called the indefinite 

integral of ƒ with respect to x, and is denoted by

Lƒ(x) dx.

The symbol 1  is an integral sign. The function ƒ is the integrand of the inte-

gral, and x is the variable of integration.

After the integral sign in the notation we just defined, the integrand function is always 

followed by a differential to indicate the variable of integration. We will have more to say 

about why this is important in Chapter 5. Using this notation, we restate the solutions of 

Example 1, as follows:

 L2x dx = x2 + C,

 Lcos x dx = sin x + C,

 L asec2 x +
1

22x
b  dx = tan x + 2x + C

This notation is related to the main application of antiderivatives, which will be explored 

in Chapter 5. Antiderivatives play a key role in computing limits of certain infinite sums, 

an unexpected and wonderfully useful role that is described in a central result of Chapter 5, 

the Fundamental Theorem of Calculus.

EXAMPLE 6  Evaluate

L (x2 - 2x + 5) dx.

Solution If we recognize that (x3>3) - x2 + 5x is an antiderivative of x2 - 2x + 5, 

we can evaluate the integral as

 antiderivative
 $++%++&

L (x2 - 2x + 5) dx =
x3

3
- x2 + 5x + C.

 "
 arbitrary constant

If we do not recognize the antiderivative right away, we can generate it term-by-term 

with the Sum, Diference, and Constant Multiple Rules:

 L (x2 - 2x + 5) dx = Lx2 dx - L2x dx + L5 dx

 = Lx2 dx - 2Lx dx + 5L1 dx

 = ax3

3
+ C1b - 2ax2

2
+ C2b + 5(x + C3)

 =
x3

3
+ C1 - x2 - 2C2 + 5x + 5C3.
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This formula is more complicated than it needs to be. If we combine C1, -2C2, and 5C3 

into a single arbitrary constant C = C1 - 2C2 + 5C3, the formula simplifies to

x3

3
- x2 + 5x + C

and still gives all the possible antiderivatives there are. For this reason, we recommend 

that you go right to the final form even if you elect to integrate term-by-term. Write

 L (x2 - 2x + 5) dx = Lx2 dx - L2x dx + L5 dx

 =
x3

3
- x2 + 5x + C.

Find the simplest antiderivative you can for each part and add the arbitrary constant of 

integration at the end. 

Finding Antiderivatives

In Exercises 1–16, find an antiderivative for each function. Do as 

many as you can mentally. Check your answers by differentiation.

 1. a. 2x b. x2 c. x2 - 2x + 1

 2. a. 6x b. x7 c. x7 - 6x + 8

 3. a. -3x-4 b. x-4 c. x-4 + 2x + 3

 4. a. 2x-3 b. 
x-3

2
+ x2 c. -x-3 + x - 1

 5. a. 
1

x2
 b. 

5

x2
 c. 2 -

5

x2

 6. a. -  
2

x3
 b. 

1

2x3
 c. x3 -

1

x3

 7. a. 
3
2

 2x b. 
1

22x
 c. 2x +

1

2x

 8. a. 
4
3
23 x b. 

1

323 x
 c. 23 x +

1

23 x

 9. a. 
2
3

 x-1>3 b. 
1
3

 x-2>3 c. -  
1
3

 x-4>3
 10. a. 

1
2

 x-1>2 b. -  
1
2

 x-3>2 c. -  
3
2

 x-5>2
 11. a. -p sin px b. 3 sin x c. sin px - 3 sin 3x

 12. a. p cos px b. 
p

2
 cos  

px

2
 c. cos 

px

2
+ p cos x

 13. a. sec2 x b. 
2
3

 sec2  
x

3
 c. -sec2  

3x

2

 14. a. csc2 x b. -  
3
2

 csc2  
3x

2
 c. 1 - 8 csc2 2x

 15. a. csc x cot x b. -csc 5x cot 5x c. -p csc 
px

2
 cot 

px

2

 16. a. sec x tan x b. 4 sec 3x tan 3x c. sec 
px

2
 tan 

px

2

Finding Indefinite Integrals

In Exercises 17–56, find the most general antiderivative or indefinite 

integral. You may need to try a solution and then adjust your guess. 

Check your answers by differentiation.

 17.  L (x + 1) dx 18.  L (5 - 6x) dx

 19.  L a3t2 +
t

2
b  dt  20.  L at2

2
+ 4t3b  dt

 21.  L (2x3 - 5x + 7) dx 22.  L (1 - x2 - 3x5) dx

 23.  L a 1

x2
- x2 -

1
3
b  dx 24.  L a15 -

2

x3
+ 2xb  dx

 25.  Lx-1>3 dx 26.  Lx-5>4 dx

 27.  L12x + 23 x2 dx 28.  L a2x

2
+

2

2x
b  dx

 29.  L a8y -
2

y1>4b  dy 30.  L a17 -
1

y5>4b  dy

 31.  L2x(1 - x-3) dx 32.  Lx-3(x + 1) dx

 33.  L  
t2t + 2t

t2
 dt  34.  L  

4 + 2t

t3
 dt

 35.  L (-2 cos t) dt  36.  L (-5 sin t) dt

 37.  L7 sin 
u

3
  du  38.  L3 cos 5u du

 39.  L (-3 csc2 x) dx 40.  L a-  
sec2 x

3
b  dx

 41.  L  
csc u cot u

2
 du  42.  L  

2
5

 sec u tan u du

 43.  L (4 sec x tan x - 2 sec2 x) dx

EXERCISES 4.7
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b.  L  tan u sec2 u du =
1
2

 tan2 u + C

c.  L  tan u sec2 u du =
1
2

 sec2 u + C

 65. Right, or wrong? Say which for each formula and give a brief 

reason for each answer.

a.  L (2x + 1)2 dx =
(2x + 1)3

3
+ C

b.  L3(2x + 1)2 dx = (2x + 1)3 + C

c.  L6(2x + 1)2 dx = (2x + 1)3 + C

 66. Right, or wrong? Say which for each formula and give a brief 

reason for each answer.

a.  L22x + 1 dx = 2x2 + x + C

b.  L22x + 1 dx = 2x2 + x + C

c.  L22x + 1 dx =
1
3

 122x + 123 + C

 67. Right, or wrong? Give a brief reason why.

 L  
-15(x + 3)2

(x - 2)4
 dx = ax + 3

x - 2
b3

+ C

 68. Right, or wrong? Give a brief reason why.

 L  
x cos (x2) - sin (x2)

x2
 dx =

sin (x2)
x + C

Initial Value Problems

 69. Which of the following graphs shows the solution of the initial 

value problem

dy

dx
= 2x, y = 4 when x = 1?

x

y

0 1−1

(a)

(1, 4)

x

y

0 1−1

(b)

(1, 4)

x

y

0 1−1

(c)

(1, 4)

1

2

3

4

1

2

3

4

1

2

3

4

  Give reasons for your answer.

 44.  L  
1
2

 (csc2 x - csc x cot x) dx

 45.  L (sin 2x - csc2 x) dx 46.  L (2 cos 2x - 3 sin 3x) dx

 47.  L  
1 + cos 4t

2
 dt  48.  L  

1 - cos 6t

2
 dt

 49.  L  3x23 dx 50.  Lx22 - 1 dx

 51.  L (1 + tan2 u) du

  (Hint: 1 + tan2 u = sec2 u)

 52.  L (2 + tan2 u) du

 53.  Lcot2 x dx

  (Hint: 1 + cot2 x = csc2 x)

 54.  L (1 - cot2 x) dx

 55.  L  cos u (tan u + sec u) du  56.  L  
csc u

csc u - sin u
 du

Checking Antiderivative Formulas

Verify the formulas in Exercises 57–62 by differentiation.

 57.  L (7x - 2)3 dx =
(7x - 2)4

28
+ C

 58.  L (3x + 5)-2 dx = -  
(3x + 5)-1

3
+ C

 59.  L sec2 (5x - 1) dx =
1
5

 tan (5x - 1) + C

 60.  Lcsc2 ax - 1
3
b  dx = -3 cot ax - 1

3
b + C

 61.  L  
1

(x + 1)2
 dx = -  

1
x + 1

+ C

 62.  L  
1

(x + 1)2
 dx =

x

x + 1
+ C

 63. Right, or wrong? Say which for each formula and give a brief 

 reason for each answer.

a.  Lx sin x dx =
x2

2
 sin x + C

b.  Lx sin x dx = -x cos x + C

c.  Lx sin x dx = -x cos x + sin x + C

 64. Right, or wrong? Say which for each formula and give a brief 

 reason for each answer.

a.  L  tan u sec2 u du =
sec3 u

3
+ C

T
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 88. 
d3 u

dt3
= 0; u″(0) = -2, u′(0) = -  

1
2

, u(0) = 22

 89. y(4) = -sin t + cos t ;

y‴(0) = 7, y″(0) = y′(0) = -1, y(0) = 0

 90. y(4) = -cos x + 8 sin 2x ;

y‴(0) = 0, y″(0) = y′(0) = 1, y(0) = 3

 91. Find the curve y = ƒ(x) in the xy-plane that passes through the 

point (9, 4) and whose slope at each point is 32x.

 92. a. Find a curve y = ƒ(x) with the following properties:

 i) 
d2y

dx2
= 6x

 ii) Its graph passes through the point (0, 1) and has a hori-

zontal tangent there.

b. How many curves like this are there? How do you know?

In Exercises 93–96, the graph of ƒ′ is given. Assume that ƒ(0) = 1 

and sketch a possible continuous graph of ƒ.

 93.   94. 

y = f 9(x)

x

y

−2

0 2 64 8

2

 

y = f 9(x)

x

y

−2

0 2 64 8

2

 95.   96. 

x

y

−2

0 2 64 8

2

y = f 9(x)

 

x

y

−3

0 2 64 8

3 y = f 9(x)

Solution (Integral) Curves

Exercises 97–100 show solution curves of differential equations. In 

each exercise, find an equation for the curve through the labeled point.

 97.   98. 

x
0

(1, 0.5)

1

1

2

−1

y = 1 −     x1�3dy

dx

4
3

 

x
1

1

y

2−1

2

−1

0

 

(−1, 1)

= x − 1
dy

dx

 70. Which of the following graphs shows the solution of the initial 

value problem

dy

dx
= -x, y = 1 when x = -1?

x

y

0

(−1, 1)

(−1, 1) (−1, 1)

(a)

x

y

0

(b)

x

y

0

(c)

  Give reasons for your answer.

Solve the initial value problems in Exercises 71–90.

 71. 
dy

dx
= 2x - 7, y(2) = 0

 72. 
dy

dx
= 10 - x, y(0) = -1

 73. 
dy

dx
=

1

x2
+ x, x 7 0; y(2) = 1

 74. 
dy

dx
= 9x2 - 4x + 5, y(-1) = 0

 75. 
dy

dx
= 3x-2>3, y(-1) = -5

 76. 
dy

dx
=

1

22x
, y(4) = 0

 77. 
ds

dt
= 1 + cos t, s(0) = 4

 78. 
ds

dt
= cos t + sin t, s(p) = 1

 79. 
dr

du
= -p sin pu, r(0) = 0

 80. 
dr

du
= cos pu, r(0) = 1

 81. 
dy

dt
=

1
2

 sec t tan t, y(0) = 1

 82. 
dy

dt
= 8t + csc2 t, yap

2
b = -7

 83. 
d2y

dx2
= 2 - 6x; y′(0) = 4, y(0) = 1

 84. 
d2y

dx2
= 0; y′(0) = 2, y(0) = 0

 85. 
d2r

dt2
=

2

t3
 ; 

dr

dt
2
t = 1

= 1, r(1) = 1

 86. 
d2s

dt2
=

3t

8
 ; 

ds

dt
2
t = 4

= 3, s(4) = 4

 87. 
d3y

dx3
= 6; y″(0) = -8, y′(0) = 0, y(0) = 5



240 Chapter 4 Applications of Derivatives

 104. Stopping a motorcycle The State of Illinois Cycle Rider 

Safety Program requires motorcycle riders to be able to brake 

from 30 mph (44 ft>sec) to 0 in 45 ft. What constant decelera-

tion does it take to do that?

 105. Motion along a coordinate line A particle moves on a coordi-

nate line with acceleration a = d2s>dt2 = 152t - 13>2t2, 
subject to the conditions that ds>dt = 4 and s = 0 when t = 1. 

Find

a. the velocity y = ds>dt in terms of t.

b. the position s in terms of t.

 106. The hammer and the feather When Apollo 15 astronaut 

David Scott dropped a hammer and a feather on the moon to 

demonstrate that in a vacuum all bodies fall with the same (con-

stant) acceleration, he dropped them from about 4 ft above the 

ground. The television footage of the event shows the hammer 

and the feather falling more slowly than on Earth, where, in a 

vacuum, they would have taken only half a second to fall the 4 

ft. How long did it take the hammer and feather to fall 4 ft on 

the moon? To find out, solve the following initial value prob-

lem for s as a function of t. Then find the value of t that makes s 

equal to 0.

Differential equation: 
d2s

dt2
= -5.2 ft>sec2

Initial conditions:   
ds

dt
= 0 and s = 4 when t = 0

 107. Motion with constant acceleration The standard equation for 

the position s of a body moving with a constant acceleration a 

along a coordinate line is

 s =
a

2
 t2 + y0  t + s0 , (1)

  where y0 and s0 are the body’s velocity and position at time 

t = 0. Derive this equation by solving the initial value problem

Differential equation:  
d2s

dt2
= a

Initial conditions:   
ds

dt
= y0 and s = s0 when t = 0.

 108. Free fall near the surface of a planet For free fall near the 

surface of a planet where the acceleration due to gravity has a 

constant magnitude of g length@units>sec2, Equation (1) in Exer-

cise 107 takes the form

 s = -  
1
2

 gt2 + y0  t + s0 , (2)

  where s is the body’s height above the surface. The equation has 

a minus sign because the acceleration acts downward, in the 

direction of decreasing s. The velocity y0 is positive if the object 

is rising at time t = 0 and negative if the object is falling.

   Instead of using the result of Exercise 107, you can derive 

Equation (2) directly by solving an appropriate initial value 

problem. What initial value problem? Solve it to be sure you 

have the right one, explaining the solution steps as you go along.

T

 99.   100. 

x
0 2

1

y

= sin x − cos x
dy

dx

(−p, −1)

 

x
0

(1, 2)

1

2

y

2

−2

4

6

=           + psin px
dy

dx

1

2"x

3

Applications

 101. Finding displacement from an antiderivative of velocity

a. Suppose that the velocity of a body moving along the s-axis is

ds

dt
= y = 9.8t - 3.

 i) Find the body’s displacement over the time interval from 

t = 1 to t = 3 given that s = 5 when t = 0.

 ii) Find the body’s displacement from t = 1 to t = 3 given 

that s = -2 when t = 0.

 iii) Now ind the body’s displacement from t = 1 to t = 3 

given that s = s0 when t = 0.

b. Suppose that the position s of a body moving along a coordi-

nate line is a diferentiable function of time t. Is it true that 

once you know an antiderivative of the velocity function 

ds>dt you can ind the body’s displacement from t = a to 

t = b even if you do not know the body’s exact position at 

either of those times? Give reasons for your answer.

 102. Liftoff from Earth A rocket lifts off the surface of Earth with 

a constant acceleration of 20 m>sec2. How fast will the rocket 

be going 1 min later?

 103. Stopping a car in time You are driving along a highway at a 

steady 60 mph (88 ft>sec) when you see an accident ahead and 

slam on the brakes. What constant deceleration is required to 

stop your car in 242 ft? To find out, carry out the following 

steps.

1. Solve the initial value problem

Differential equation: 
d2s

dt2
= -k  (k constant)

Initial conditions:   
ds

dt
= 88 and s = 0 when t = 0.

Measuring time and distance 
from when the brakes are applied

2. Find the value of t that makes ds>dt = 0. (The answer will 

involve k.)

3. Find the value of k that makes s = 242 for the value of t 

you found in Step 2.
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  on an interval I, must F(x) = G(x) for every x in I? Give reasons 

for your answer.

COMPUTER EXPLORATIONS

Use a CAS to solve the initial value problems in Exercises 111–114. 

Plot the solution curves.

 111. y′ = cos2 x + sin x, y(p) = 1

 112. y′ =
1
x + x, y(1) = -1

 113. y′ =
1

24 - x2
, y(0) = 2

 114. y″ =
2
x + 2x, y(1) = 0, y′(1) = 0

 109. Suppose that

ƒ(x) =
d

dx
 11 - 2x2 and g(x) =

d

dx
 (x + 2).

  Find:

a.  Lƒ(x) dx b.  Lg(x) dx

c.  L 3-ƒ(x)4  dx d.  L 3-g(x)4  dx

e.  L 3ƒ(x) + g(x)4  dx f.  Li

3ƒ(x) - g(x)4  dx

 110. Uniqueness of solutions If differentiable functions y = F(x) 

and y = g(x) both solve the initial value problem

dy

dx
= ƒ(x),  y(x0) = y0,

 1. What can be said about the extreme values of a function that is 

continuous on a closed interval?

 2. What does it mean for a function to have a local extreme value on 

its domain? An absolute extreme value? How are local and abso-

lute extreme values related, if at all? Give examples.

 3. How do you ind the absolute extrema of a continuous function on 

a closed interval? Give examples.

 4. What are the hypotheses and conclusion of Rolle’s Theorem? Are 

the hypotheses really necessary? Explain.

 5. What are the hypotheses and conclusion of the Mean Value Theo-

rem? What physical interpretations might the theorem have?

 6. State the Mean Value Theorem’s three corollaries.

 7. How can you sometimes identify a function ƒ(x) by knowing ƒ′ 

and knowing the value of ƒ at a point x = x0? Give an example.

 8. What is the First Derivative Test for Local Extreme Values? Give 

examples of how it is applied.

 9. How do you test a twice-diferentiable function to determine 

where its graph is concave up or concave down? Give examples.

 10. What is an inlection point? Give an example. What physical sig-

niicance do inlection points sometimes have?

 11. What is the Second Derivative Test for Local Extreme Values? 

Give examples of how it is applied.

 12. What do the derivatives of a function tell you about the shape of 

its graph?

 13. List the steps you would take to graph a polynomial function. Il-

lustrate with an example.

 14. What is a cusp? Give examples.

 15. List the steps you would take to graph a rational function. Illus-

trate with an example.

 16. Outline a general strategy for solving max-min problems. Give 

examples.

 17. Describe Newton’s method for solving equations. Give an exam-

ple. What is the theory behind the method? What are some of the 

things to watch out for when you use the method?

 18. Can a function have more than one antiderivative? If so, how are 

the antiderivatives related? Explain.

 19. What is an indeinite integral? How do you evaluate one? What 

general formulas do you know for inding indeinite integrals?

 20. How can you sometimes solve a diferential equation of the form 

dy>dx = ƒ(x)?

 21. What is an initial value problem? How do you solve one? Give an 

example.

 22. If you know the acceleration of a body moving along a coordinate 

line as a function of time, what more do you need to know to ind 

the body’s position function? Give an example.

CHAPTER 4 Questions to Guide Your Review

Finding Extreme Values

In Exercises 1–10, ind the extreme values (absolute and local) of the 

function over its natural domain, and where they occur.

 1. y = 2x2 - 8x + 9 2. y = x3 - 2x + 4

 3. y = x3 + x2 - 8x + 5 4. y = x3(x - 5)2

 5. y = 2x2 - 1 6. y = x - 42x

 7. y =
1

23 1 - x2
 8. y = 23 + 2x - x2

 9. y =
x

x2 + 1
 10. y =

x + 1

x2 + 2x + 2

CHAPTER 4 Practice Exercises
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 20. (Continuation of Exercise 19.)

a. Graph ƒ(x) = (x8>8) - (2>5)x5 - 5x - (5>x2) + 11 over 

the interval -2 … x … 2. Where does the graph appear to 

have local extreme values or points of inlection?

b. Show that ƒ has a local maximum value at 

x = 27 5 ≈ 1.2585 and a local minimum value at 

x = 23 2 ≈ 1.2599.

c. Zoom in to ind a viewing window that shows the presence of 

the extreme values at x = 27 5 and x = 23 2.

The Mean Value Theorem

 21. a.  Show that g(t) = sin2 t - 3t decreases on every interval in its 

domain.

b. How many solutions does the equation sin2 t - 3t = 5 have? 

Give reasons for your answer.

 22. a.  Show that y = tan u increases on every open interval in its 

domain.

b. If the conclusion in part (a) is really correct, how do you 

explain the fact that tan p = 0 is less than tan (p>4) = 1?

 23. a.  Show that the equation x4 + 2x2 - 2 = 0 has exactly one 

solution on 30, 14 .
b. Find the solution to as many decimal places as you can.

 24. a.  Show that ƒ(x) = x>(x + 1) increases on every open interval 

in its domain.

b. Show that ƒ(x) = x3 + 2x has no local maximum or mini-

mum values.

 25. Water in a reservoir As a result of a heavy rain, the volume of 

water in a reservoir increased by 1400 acre-ft in 24 hours. Show 

that at some instant during that period the reservoir’s volume was 

increasing at a rate in excess of 225,000 gal>min. (An acre-foot is 

43,560 ft3, the volume that would cover 1 acre to the depth of 1 ft. 

A cubic foot holds 7.48 gal.)

 26. The formula F(x) = 3x + C gives a diferent function for each 

value of C. All of these functions, however, have the same de-

rivative with respect to x, namely F′(x) = 3. Are these the only 

diferentiable functions whose derivative is 3? Could there be any 

others? Give reasons for your answers.

 27. Show that

d

dx
 a x

x + 1
b =

d

dx
 a-  

1
x + 1

b
  even though

x

x + 1
≠ -  

1
x + 1

.

  Doesn’t this contradict Corollary 2 of the Mean Value Theorem? 

Give reasons for your answer.

 28. Calculate the irst derivatives of ƒ(x) = x2>(x2 + 1) and g(x) =

-1>(x2 + 1). What can you conclude about the graphs of these 

functions?

T

T

Extreme Values

 11. Does ƒ(x) = x3 + 2x + tan x have any local maximum or mini-

mum values? Give reasons for your answer.

 12. Does g(x) = csc x + 2 cot x have any local maximum values? 

Give reasons for your answer.

 13. Does ƒ(x) = (7 + x)(11 - 3x)1>3 have an absolute minimum 

value? An absolute maximum? If so, ind them or give reasons 

why they fail to exist. List all critical points of ƒ.

 14. Find values of a and b such that the function

ƒ(x) =
ax + b

x2 - 1

  has a local extreme value of 1 at x = 3. Is this extreme value a lo-

cal maximum, or a local minimum? Give reasons for your answer.

 15. The greatest integer function ƒ(x) = :x;, deined for all values 

of x, assumes a local maximum value of 0 at each point of 30, 1). 

Could any of these local maximum values also be local minimum 

values of ƒ? Give reasons for your answer.

 16. a.  Give an example of a diferentiable function ƒ whose irst 

derivative is zero at some point c even though ƒ has neither a 

local maximum nor a local minimum at c.

b. How is this consistent with Theorem 2 in Section 4.1? Give 

reasons for your answer.

 17. The function y = 1>x does not take on either a maximum or a 

minimum on the interval 0 6 x 6 1 even though the function 

is continuous on this interval. Does this contradict the Extreme 

Value Theorem for continuous functions? Why?

 18. What are the maximum and minimum values of the function 

y = 0 x 0  on the interval -1 … x 6 1? Notice that the interval is 

not closed. Is this consistent with the Extreme Value Theorem for 

continuous functions? Why?

 19. A graph that is large enough to show a function’s global behavior 

may fail to reveal important local features. The graph of ƒ(x) =

(x8>8) - (x6>2) - x5 + 5x3 is a case in point.

a. Graph ƒ over the interval -2.5 … x … 2.5. Where does the 

graph appear to have local extreme values or points of inlec-

tion?

b. Now factor ƒ′(x) and show that ƒ has a local maximum at 

x =23 5 ≈ 1.70998 and local minima at x = {23 ≈  

{1.73205.

c. Zoom in on the graph to ind a viewing window that shows 

the presence of the extreme values at x = 23 5 and x = 23.

   The moral here is that without calculus the existence of two 

of the three extreme values would probably have gone unnoticed. 

On any normal graph of the function, the values would lie close 

enough together to fall within the dimensions of a single pixel on 

the screen.

   (Source: Uses of Technology in the Mathematics Curriculum, 

by Benny Evans and Jerry Johnson, Oklahoma State University, 

published in 1990 under a grant from the National Science Foun-

dation, USE-8950044.)

T
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 43. y′ = 16 - x2

 44. y′ = x2 - x - 6

 45. y′ = 6x(x + 1)(x - 2)

 46. y′ = x2(6 - 4x)

 47. y′ = x4 - 2x2

 48. y′ = 4x2 - x4

Analyzing Graphs

In Exercises 29 and 30, use the graph to answer the questions.

 29. Identify any global extreme values of ƒ and the values of x at 

which they occur.

y

x

(1, 1)

2,    1
2

0

y = f (x)

a    b

 30. Estimate the open intervals on which the function y = ƒ(x) is

a. increasing.

b. decreasing.

c. Use the given graph of ƒ′ to indicate where any local extreme 

values of the function occur, and whether each extreme is a 

relative maximum or minimum.

y

x

(−3, 1)

(2, 3)

−1

−2

y = f ′(x)

Each of the graphs in Exercises 31 and 32 is the graph of the posi-

tion function s = ƒ(t) of an object moving on a coordinate line (t rep-

resents time). At approximately what times (if any) is each object’s 

(a) velocity equal to zero? (b) Acceleration equal to zero? During 

approximately what time intervals does the object move (c) forward?  

(d) Backward?

 31. 

t

s

0 3 6 9 12 14

s = f (t)

 32. 

t

s

0 2 4 6 8

s = f (t)

Graphs and Graphing

Graph the curves in Exercises 33–42.

 33. y = x2 - (x3>6) 34. y = x3 - 3x2 + 3

 35. y = -x3 + 6x2 - 9x + 3

 36. y = (1>8)(x3 + 3x2 - 9x - 27)

 37. y = x3(8 - x) 38. y = x2(2x2 - 9)

 39. y = x - 3x2>3 40. y = x1>3(x - 4)

 41. y = x23 - x 42. y = x24 - x2

Each of Exercises 43–48 gives the irst derivative of a function 

y = ƒ(x). (a) At what points, if any, does the graph of ƒ have a local 

maximum, local minimum, or inlection point? (b) Sketch the general 

shape of the graph.

In Exercises 49–52, graph each function. Then use the function’s irst 

derivative to explain what you see.

 49. y = x2>3 + (x - 1)1>3 50. y = x2>3 + (x - 1)2>3
 51. y = x1>3 + (x - 1)1>3 52. y = x2>3 - (x - 1)1>3
Sketch the graphs of the rational functions in Exercises 53–60.

 53. y =
x + 1
x - 3

 54. y =
2x

x + 5

 55. y =
x2 + 1

x  56. y =
x2 - x + 1

x

 57. y =
x3 + 2

2x
 58. y =

x4 - 1

x2

 59. y =
x2 - 4

x2 - 3
 60. y =

x2

x2 - 4

Optimization

 61. The sum of two nonnegative numbers is 36. Find the numbers if

a. the diference of their square roots is to be as large as possible.

b. the sum of their square roots is to be as large as possible.

 62. The sum of two nonnegative numbers is 20. Find the numbers

a. if the product of one number and the square root of the other 

is to be as large as possible.

b. if one number plus the square root of the other is to be as 

large as possible.

 63. An isosceles triangle has its vertex at the origin and its base par-

allel to the x-axis with the vertices above the axis on the curve 

y = 27 - x2. Find the largest area the triangle can have.

 64. A customer has asked you to design an open-top rectangular stain-

less steel vat. It is to have a square base and a volume of 32 ft3, 

to be welded from quarter-inch plate, and to weigh no more than 

necessary. What dimensions do you recommend?

 65. Find the height and radius of the largest right circular cylinder that 

can be put in a sphere of radius 23.

 66. The igure here shows two right circular cones, one upside down 

inside the other. The two bases are parallel, and the vertex of the 

smaller cone lies at the center of the larger cone’s base. What values 

of r and h will give the smaller cone the largest possible volume?

r

6′

h

12′
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Finding Indefinite Integrals

Find the indeinite integrals (most general antiderivatives) in Exercises 

73–88. You may need to try a solution and then adjust your guess. 

Check your answers by diferentiation.

 73.  L (x3 + 5x - 7) dx 74.  L a8t3 -
t2

2
+ tb  dt

 75.  L a32t +
4

t2
b  dt  76.  L a 1

22t
-

3

t4
b  dt

 77.  L  
dr

(r + 5)2
 78.  L  

6 dr1r - 2223
 79.  L3u2u2 + 1 du  80.  L  

u

27 + u2
 du

 81.  Lx3(1 + x4)-1>4 dx 82.  L (2 - x)3>5 dx

 83.  L sec2 
s

10
 ds 84.  Lcsc2 ps ds

 85.  L  csc 22u cot 22u du  86.  L  sec 
u

3
 tan 

u

3
 du

 87.  L sin2  
x

4
  dx aHint: sin2 u =

1 - cos 2u

2
b

 88.  Lcos2  
x

2
  dx

Initial Value Problems

Solve the initial value problems in Exercises 89–92.

 89. 
dy

dx
=

x2 + 1

x2
, y(1) = -1

 90. 
dy

dx
= ax +

1
xb2

, y(1) = 1

 91. 
d2r

dt2
= 152t +

3

2t
 ; r′(1) = 8, r (1) = 0

 92. 
d3r

dt3
= -cos t; r″(0) = r′(0) = 0, r (0) = -1

 67. Manufacturing tires Your company can manufacture x hundred 

grade A tires and y hundred grade B tires a day, where 0 … x … 4 

and

y =
40 - 10x

5 - x
.

  Your proit on a grade A tire is twice your proit on a grade B tire. 

What is the most proitable number of each kind to make?

 68. Particle motion The positions of two particles on the s-axis are 

s1 = cos t and s2 = cos (t + p>4).

a. What is the farthest apart the particles ever get?

b. When do the particles collide?

 69. Open-top box An open-top rectangular box is constructed from 

a 10-in.-by-16-in. piece of cardboard by cutting squares of equal 

side length from the corners and folding up the sides. Find analyti-

cally the dimensions of the box of largest volume and the maxi-

mum volume. Support your answers graphically.

 70. The ladder problem What is the approximate length (in feet) of 

the longest ladder you can carry horizontally around the corner of 

the corridor shown here? Round your answer down to the nearest 

foot.

x

y

0

6

8

(8, 6)

Newton’s Method

 71. Let ƒ(x) = 3x - x3.  Show that the equation ƒ(x) = -4 has a 

solution in the interval 32, 34  and use Newton’s method to 

find it.

 72. Let ƒ(x) = x4 - x3.  Show that the equation ƒ(x) = 75 has a 

solution in the interval 33, 44  and use Newton’s method to 

find it.

T

Functions and Derivatives

 1. What can you say about a function whose maximum and minimum 

values on an interval are equal? Give reasons for your  answer.

 2. Is it true that a discontinuous function cannot have both an abso-

lute maximum and an absolute minimum value on a closed inter-

val? Give reasons for your answer.

 3. Can you conclude anything about the extreme values of a continu-

ous function on an open interval? On a half-open interval? Give 

reasons for your answer.

 4. Local extrema Use the sign pattern for the derivative

dƒ

dx
= 6(x - 1)(x - 2)2(x - 3)3(x - 4)4

  to identify the points where ƒ has local maximum and minimum 

values.

CHAPTER 4 Additional and Advanced Exercises
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Optimization

 13. Largest inscribed triangle Points A and B lie at the ends of a 

diameter of a unit circle and point C lies on the circumference. Is 

it true that the area of triangle ABC is largest when the triangle is 

isosceles? How do you know?

 14. Proving the second derivative test The Second Derivative Test 

for Local Maxima and Minima (Section 4.4) says:

a.  ƒ has a local maximum value at x = c if ƒ′(c) = 0 and 

ƒ″(c) 6 0

b. ƒ has a local minimum value at x = c if ƒ′(c) = 0 and 

ƒ″(c) 7 0.

  To prove statement (a), let e = (1>2) 0 ƒ″(c) 0 . Then use the fact 

that

ƒ″(c) = lim
hS0

 
ƒ′(c + h) - ƒ′(c)

h
= lim

hS0
 
ƒ′(c + h)

h

  to conclude that for some d 7 0,

0 6 0 h 0 6 d  1  
ƒ′(c + h)

h
6 ƒ″(c) + e 6 0.

  Thus, ƒ′(c + h) is positive for -d 6 h 6 0 and negative for 

0 6 h 6 d. Prove statement (b) in a similar way.

 15. Hole in a water tank You want to bore a hole in the side of the 

tank shown here at a height that will make the stream of water 

coming out hit the ground as far from the tank as possible. If you 

drill the hole near the top, where the pressure is low, the water will 

exit slowly but spend a relatively long time in the air. If you drill 

the hole near the bottom, the water will exit at a higher velocity 

but have only a short time to fall. Where is the best place, if any, 

for the hole? (Hint: How long will it take an exiting droplet of 

water to fall from height y to the ground?)

       

x

y

Range

Ground

h

y

0

Tank kept full,

top open

Exit velocity =  "64(h − y)

 16. Kicking a ield goal An American football player wants to 

kick a ield goal with the ball being on a right hash mark. As-

sume that the goal posts are b feet apart and that the hash mark 

line is a distance a 7 0 feet from the right goal post. (See the 

 5. Local extrema

a. Suppose that the irst derivative of y = ƒ(x) is

y′ = 6(x + 1)(x - 2)2.

 At what points, if any, does the graph of ƒ have a local maxi-

mum, local minimum, or point of inflection?

b. Suppose that the irst derivative of y = ƒ(x) is

y′ = 6x(x + 1)(x - 2).

At what points, if any, does the graph of ƒ have a local maxi-

mum, local minimum, or point of inflection?

 6. If ƒ′(x) … 2 for all x, what is the most the values of ƒ can increase 

on 30, 64 ? Give reasons for your answer.

 7. Bounding a function Suppose that ƒ is continuous on 3a, b4  
and that c is an interior point of the interval. Show that if ƒ′(x) … 0 

on 3a, c) and ƒ′(x) Ú 0 on (c, b4 , then ƒ(x) is never less than 

ƒ(c) on 3a, b4 .
 8. An inequality

a. Show that -1>2 … x>(1 + x2) … 1>2 for every value of x.

b. Suppose that ƒ is a function whose derivative is ƒ′(x) =  

x>(1 + x2). Use the result in part (a) to show that0 ƒ(b) - ƒ(a) 0 …
1

2
 0 b - a 0

for any a and b.

 9. The derivative of ƒ(x) = x2 is zero at x = 0, but ƒ is not a con-

stant function. Doesn’t this contradict the corollary of the Mean 

Value Theorem that says that functions with zero derivatives are 

constant? Give reasons for your answer.

 10. Extrema and inlection points Let h = ƒg be the product of 

two diferentiable functions of x.

a. If ƒ and g are positive, with local maxima at x = a, and if ƒ′ 

and g′ change sign at a, does h have a local maximum at a?

b. If the graphs of ƒ and g have inflection points at x = a, does 

the graph of h have an inflection point at a?

In either case, if the answer is yes, give a proof. If the answer is no, 

give a counterexample.

 11. Finding a function Use the following information to ind the val-

ues of a, b, and c in the formula ƒ(x) = (x + a)> (bx2 + cx + 2).

a. The values of a, b, and c are either 0 or 1.

b. The graph of ƒ passes through the point (-1, 0).

c. The line y = 1 is an asymptote of the graph of ƒ.

 12. Horizontal tangent For what value or values of the constant k 

will the curve y = x3 + kx2 + 3x - 4 have exactly one horizon-

tal tangent?
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 20. A rectangular box with a square base is inscribed in a right circular 

cone of height 4 and base radius 3. If the base of the box sits on the 

base of the cone, what is the largest possible volume of the box?

Theory and Examples

 21. Suppose that it costs a company y = a + bx dollars to pro-

duce x units per week. It can sell x units per week at a price of 

P = c - ex dollars per unit. Each of a, b, c, and e represents a 

positive constant. (a) What production level maximizes the proit? 

(b) What is the corresponding price? (c) What is the weekly proit 

at this level of production? (d) At what price should each item be 

sold to maximize proits if the government imposes a tax of t dol-

lars per item sold? Comment on the diference between this price 

and the price before the tax.

 22. Estimating reciprocals without division You can estimate the 

value of the reciprocal of a number a without ever dividing by a 

if you apply Newton’s method to the function ƒ(x) = (1>x) - a. 

For example, if a = 3, the function involved is ƒ(x) = (1>x) - 3.

a. Graph y = (1>x) - 3. Where does the graph cross the x-

axis?

b. Show that the recursion formula in this case is

xn + 1 = xn(2 - 3xn),

so there is no need for division.

 23. To ind x = 2q a, we apply Newton’s method to ƒ(x) = xq - a. 

Here we assume that a is a positive real number and q is a positive 

integer. Show that x1 is a “weighted average” of x0 and a>x0
 q - 1, 

and ind the coeicients m0, m1 such that

x1 = m0  x0 + m1a a

x0  

q - 1
b , 

 m0 7 0, m1 7 0,

m0 + m1 = 1.

  What conclusion would you reach if x0 and a>x0  

q - 1 were equal? 

What would be the value of x1 in that case?

 24. The family of straight lines y = ax + b (a, b arbitrary constants) 

can be characterized by the relation y″ = 0. Find a similar rela-

tion satisied by the family of all circles

(x - h)2 + (y - h)2 = r2,

  where h and r are arbitrary constants. (Hint: Eliminate h and r 

from the set of three equations including the given one and two 

obtained by successive diferentiation.)

 25. Assume that the brakes of an automobile produce a constant de-

celeration of k ft>sec2. (a) Determine what k must be to bring an 

automobile traveling 60 mi>hr (88 ft>sec) to rest in a distance of 

100 ft from the point where the brakes are applied. (b) With the 

same k, how far would a car traveling 30 mi>hr go before being 

brought to a stop?

 26. Let ƒ(x), g(x) be two continuously diferentiable functions sat-

isfying the relationships ƒ′(x) = g(x) and ƒ″(x) = -ƒ(x). Let 

h(x) = ƒ2(x) + g2(x). If h(0) = 5, ind h(10).

 27. Can there be a curve satisfying the following conditions? 

d2y>dx2 is everywhere equal to zero and, when x = 0, y = 0 and 

dy>dx = 1. Give a reason for your answer.

accompanying igure.) Find the distance h from the goal post line 

that gives the kicker his largest angle b. Assume that the football 

ield is lat.

Goal post line

Football

h

b a

Goal posts

b u

 17. A max-min problem with a variable answer Sometimes the 

solution of a max-min problem depends on the proportions of the 

shapes involved. As a case in point, suppose that a right circular 

cylinder of radius r and height h is inscribed in a right circular 

cone of radius R and height H, as shown here. Find the value of r 

(in terms of R and H) that maximizes the total surface area of the 

cylinder (including top and bottom). As you will see, the solution 

depends on whether H … 2R or H 7 2R.

H

R

r

h

 18. Minimizing a parameter Find the smallest value of the positive 

constant m that will make mx - 1 + (1>x) greater than or equal 

to zero for all positive values of x.

 19. Determine the dimensions of the rectangle of largest area that can 

be inscribed in the right triangle in the accompanying igure.

6

8

10



 Chapter 4  Technology Application Projects 247

b. Show that equality holds in Schwarz’s inequality only if there 

exists a real number x that makes ai  x equal -bi for every 

value of i from 1 to n.

 33. Consider the unit circle centered at the origin and with a vertical 

tangent line passing through point A in the accompanying igure. 

Assume that the lengths of segments AB and AC are equal, and 

let point D be the intersection of the x-axis with the line passing 

through points B and C. Find the limit of t as B approaches A.

B

D

C

A t0 1
1

x

y

 28. Find the equation for the curve in the xy-plane that passes through 

the point (1, -1) if its slope at x is always 3x2 + 2.

 29. A particle moves along the x-axis. Its acceleration is a = - t2. At 

t = 0, the particle is at the origin. In the course of its motion, it 

reaches the point x = b, where b 7 0, but no point beyond b. 

Determine its velocity at t = 0.

 30. A particle moves with acceleration a = 2t - 11>2t2. Assum-

ing that the velocity y = 4>3 and the position s = -4>15 when 

t = 0, ind

a. the velocity y in terms of t.

b. the position s in terms of t.

 31. Given ƒ(x) = ax2 + 2bx + c with a 7 0. By considering 

the minimum, prove that ƒ(x) Ú 0 for all real x if and only if 

b2 - ac … 0.

 32. Schwarz’s inequality

a. In Exercise 31, let

ƒ(x) = (a1  x + b1)
2 + (a2  x + b2)

2 + g+ (an  x + bn)
2,

 and deduce Schwarz’s inequality:

   (a1  b1 + a2  b2 + g+ an  bn)
2

… 1a1  

2 + a2  

2 + g+ an  

221b1  

2 + b2  

2 + g+ bn  

22.

Mathematica/Maple Projects

Projects can be found within MyMathLab.

•	 Motion Along a Straight Line: Positionu Velocityu Acceleration

You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among the position, velocity, and ac-

celeration. Figures in the text can be animated.

•	 Newton’s Method: Estimate P to How Many Places?

Plot a function, observe a root, pick a starting point near the root, and use Newton’s Iteration Procedure to approximate the root to a desired ac-

curacy. The numbers p, e, and 22 are approximated.

CHAPTER 4 Technology Application Projects
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5.1 Area and Estimating with Finite Sums

The basis for formulating definite integrals is the construction of approximations by finite 

sums. In this section we consider three examples of this process: finding the area under a 

graph, the distance traveled by a moving object, and the average value of a function. 

Although we have yet to define precisely what we mean by the area of a general region in 

the plane, or the average value of a function over a closed interval, we do have intuitive 

ideas of what these notions mean. We begin our approach to integration by approximating 

these quantities with simpler finite sums related to these intuitive ideas. We then consider 

what happens when we take more and more terms in the summation process. In subse-

quent sections we look at taking the limit of these sums as the number of terms goes to 

infinity, which leads to a precise definition of the definite integral.

Area

Suppose we want to find the area of the shaded region R that lies above the x-axis, below 

the graph of y = 1 - x2, and between the vertical lines x = 0 and x = 1 (see Figure 5.1). 

OVERVIEW A great achievement of classical geometry was obtaining formulas for the areas 

and volumes of triangles, spheres, and cones. In this chapter we develop a method, called 

 integration, to calculate the areas and volumes of more general shapes. The definite integral is 

the key tool in calculus for defining and calculating areas and volumes. We also use it to 

 compute quantities such as the lengths of curved paths, probabilities, averages, energy con-

sumption, the mass of an object, and the force against a dam’s floodgates, to name only a few.

Like the derivative, the deinite integral is deined as a limit. The deinite integral is a 

limit of increasingly ine approximations. The idea is to approximate a quantity (such as 

the area of a curvy region) by dividing it into many small pieces, each of which we can 

approximate by something simple (such as a rectangle). Summing the contributions of 

each of the simple pieces gives us an approximation to the original quantity. As we divide 

the region into more and more pieces, the approximation given by the sum of the pieces 

will generally improve, converging to the quantity we are measuring. We take a limit as 

the number of terms increases to ininity, and when the limit exists, the result is a deinite 

integral. We develop this idea in Section 5.3.

We also show that the process of computing these deinite integrals is closely connect-

ed to inding antiderivatives. This is one of the most important relationships in calculus; 

it gives us an eicient way to compute deinite integrals, providing a simple and powerful 

method that eliminates the diiculty of directly computing limits of approximations. This 

connection is captured in the Fundamental Theorem of Calculus.

Integrals

5

0.5 1

0.5

0

1

x

y

R

y = 1 − x2

FIGURE 5.1 The area of a region R  

cannot be found by a simple formula.
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Unfortunately, there is no simple geometric formula for calculating the areas of general 

shapes having curved boundaries like the region R. How, then, can we find the area of R?

While we do not yet have a method for determining the exact area of R, we can 

approximate it in a simple way. Figure 5.2a shows two rectangles that together contain the 

region R. Each rectangle has width 1>2 and they have heights 1 and 3>4 (left to right). 

The height of each rectangle is the maximum value of the function ƒ in each subinterval. 

Because the function ƒ is decreasing, the height is its value at the left endpoint of the sub-

interval of 30, 14  that forms the base of the rectangle. The total area of the two rectangles 

approximates the area A of the region R:

A ≈ 1 #  
1
2

+
3
4

 #  
1
2

=
7
8

= 0.875.

This estimate is larger than the true area A since the two rectangles contain R. We say that 

0.875 is an upper sum because it is obtained by taking the height of the rectangle corre-

sponding to the maximum (uppermost) value of ƒ(x) over points x lying in the base of 

each rectangle. In Figure 5.2b, we improve our estimate by using four thinner rectangles, 

each of width 1>4, which taken together contain the region R. These four rectangles give 

the approximation

A ≈ 1 #  
1
4

+
15
16

 #  
1
4

+
3
4

 #  
1
4

+
7
16

 #  
1
4

=
25
32

= 0.78125,

which is still greater than A since the four rectangles contain R.

Suppose instead we use four rectangles contained inside the region R to estimate the 

area, as in Figure 5.3a. Each rectangle has width 1>4 as before, but the rectangles are 

shorter and lie entirely beneath the graph of ƒ. The function ƒ(x) = 1 - x2 is decreasing 

on 30, 14 , so the height of each of these rectangles is given by the value of ƒ at the right 

endpoint of the subinterval forming its base. The fourth rectangle has zero height and 

therefore contributes no area. Summing these rectangles, whose heights are the minimum 

value of ƒ(x) over points x in the rectangle’s base, gives a lower sum approximation to the 

area:

A ≈
15
16

 #  
1
4

+
3
4

 #  
1
4

+
7
16

 #  
1
4

+ 0 #  
1
4

=
17
32

= 0.53125.

This estimate is smaller than the area A since the rectangles all lie inside of the region R. 

The true value of A lies somewhere between these lower and upper sums:

0.53125 6 A 6 0.78125.

0.5 0.750.25 1

0.5

0

1

x

y

R

y = 1 − x2
(0, 1)

1
2

3
4

,

1
4

15
16

,

3
4

7
16

,

(b)

0.5 1

0.5

0

1

x

y

R

y = 1 − x2

(0, 1)

1
2

3
4

,

(a)

Q  R
Q   R

Q   R
Q  R

FIGURE 5.2 (a) We get an upper estimate of the area of R by using two 

rectangles containing R. (b) Four rectangles give a better upper estimate. Both 

estimates overshoot the true value for the area by the amount shaded in light red.
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Considering both lower and upper sum approximations gives us estimates for the area 

and a bound on the size of the possible error in these estimates, since the true value of the 

area lies somewhere between them. Here the error cannot be greater than the difference 

0.78125 - 0.53125 = 0.25.

Yet another estimate can be obtained by using rectangles whose heights are the values 

of ƒ at the midpoints of the bases of the rectangles (Figure 5.3b). This method of estima-

tion is called the midpoint rule for approximating the area. The midpoint rule gives an 

estimate that is between a lower sum and an upper sum, but it is not quite so clear whether 

it overestimates or underestimates the true area. With four rectangles of width 1>4 as 

before, the midpoint rule estimates the area of R to be

A ≈
63
64

 #  
1
4

+
55
64

 #  
1
4

+
39
64

 #  
1
4

+
15
64

 #  
1
4

=
172
64

 #  
1
4

= 0.671875.

In each of the sums that we computed, the interval 3a, b4  over which the function ƒ is 

defined was subdivided into n subintervals of equal width (or length) ∆x = (b - a)>n, 

and ƒ was evaluated at a point in each subinterval: c1 in the first subinterval, c2 in the sec-

ond subinterval, and so on. For the upper sum we chose ck so that ƒ(ck) was the maximum 

value of ƒ in the kth subinterval, for the lower sum we chose it so that ƒ(ck) was the mini-

mum, and for the midpoint rule we chose ck to be the midpoint of the kth subinterval. In 

each case the finite sums have the form

ƒ(c1) ∆x + ƒ(c2) ∆x + ƒ(c3) ∆x + g+  ƒ(cn) ∆x.

By taking more and more rectangles, with each rectangle thinner than before, it appears 

that these finite sums give better and better approximations to the true area of the region R.

Figure 5.4a shows a lower sum approximation for the area of R using 16 rectangles of 

equal width. The sum of their areas is 0.634765625, which appears close to the true area, 

but is still smaller since the rectangles lie inside R.

Figure 5.4b shows an upper sum approximation using 16 rectangles of equal width. 

The sum of their areas is 0.697265625, which is somewhat larger than the true area 

because the rectangles taken together contain R. The midpoint rule for 16 rectangles gives 

a total area approximation of 0.6669921875, but it is not immediately clear whether this 

estimate is larger or smaller than the true area.
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1
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,Q  R

FIGURE 5.3 (a) Rectangles contained in R give an estimate for the area that under-

shoots the true value by the amount shaded in light blue. (b) The midpoint rule uses 

rectangles whose height is the value of y = ƒ(x) at the midpoints of their bases. The 

estimate appears closer to the true value of the area because the light red overshoot areas 

roughly balance the light blue undershoot areas.
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y = 1 − x2

FIGURE 5.4 (a) A lower sum using  

16 rectangles of equal width ∆x = 1>16. 

(b) An upper sum using 16 rectangles.
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Distance Traveled

Suppose we know the velocity function y(t) of a car that moves straight down a 

 highway without changing direction, and we want to know how far it traveled between 

times t = a and t = b. The position function s(t) of the car has derivative y(t). If we 

can find an antiderivative F(t) of y(t) then we can find the car’s position function s(t) 

by setting s(t) = F(t) + C. The distance traveled can then be found by calculating the 

change in position, s(b) - s(a) = F(b) - F(a). However, if the velocity is known only 

by the readings at various times of a speedometer on the car, then we have no formula 

from which to obtain an antiderivative for the velocity. So what do we do in this 

 situation?

When we don’t know an antiderivative for the velocity y(t), we can approximate the 

distance traveled by using finite sums in a way similar to the area estimates that we dis-

cussed before. We subdivide the interval 3a, b4  into short time intervals and assume that 

the velocity on each subinterval is fairly constant. Then we approximate the distance trav-

eled on each time subinterval with the usual distance formula

distance = velocity * time

and add the results across 3a, b4 .
Suppose the subdivided interval looks like

t (sec)
 ba

Δt Δt Δt

t1 t2 t3

with the subintervals all of equal length ∆t. Pick a number t1 in the first interval. If ∆t is 

so small that the velocity barely changes over a short time interval of duration ∆t, then the 

distance traveled in the first time interval is about y(t1) ∆t. If t2 is a number in the second 

interval, the distance traveled in the second time interval is about y(t2) ∆t. The sum of the 

distances traveled over all the time intervals is

D ≈ y(t1) ∆t + y(t2) ∆t + g+ y(tn) ∆t,

where n is the total number of subintervals. This sum is only an approximation to the true 

distance D, but the approximation increases in accuracy as we take more and more subin-

tervals.

TABLE 5.1  Finite approximations for the area of R

Number of  

subintervals  Lower sum Midpoint sum  Upper sum

 2 0.375  0.6875 0.875

 4 0.53125  0.671875 0.78125

 16 0.634765625  0.6669921875 0.697265625

 50 0.6566  0.6667 0.6766

 100 0.66165  0.666675 0.67165

 1000 0.6661665  0.66666675 0.6671665

Table 5.1 shows the values of upper and lower sum approximations to the area of R, 

using up to 1000 rectangles. The values of these approximations appear to be approaching 

2>3. In Section 5.2 we will see how to get an exact value of the area of regions such as R 

by taking a limit as the base width of each rectangle goes to zero and the number of rect-

angles goes to infinity. With the techniques developed there, we will be able to show that 

the area of R is exactly 2>3.
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EXAMPLE 1  The velocity function of a projectile fired straight into the air is 

ƒ(t) = 160 - 9.8t m>sec. Use the summation technique just described to estimate how 

far the projectile rises during the first 3 sec. How close do the sums come to the exact 

value of 435.9 m? (You will learn how to compute the exact value of this and similar quan-

tities in Section 5.4.)

Solution We explore the results for different numbers of subintervals and different 

choices of evaluation points. Notice that ƒ(t) is decreasing, so choosing left endpoints 

gives an upper sum estimate; choosing right endpoints gives a lower sum estimate.

(a) Three subintervals of length 1, with ƒ evaluated at left endpoints giving an upper sum:

t 
0 1 2 3

Δt

t1 t2 t3

With ƒ evaluated at t = 0, 1, and 2, we have

 D ≈ ƒ(t1) ∆t + ƒ(t2) ∆t + ƒ(t3) ∆t

 = 3160 - 9.8(0)4 (1) + 3160 - 9.8(1)4 (1) + 3160 - 9.8(2)4 (1)

 = 450.6.

(b) Three subintervals of length 1, with ƒ evaluated at right endpoints giving a lower sum:

t 
0 1 2 3

Δt

t1 t2 t3

With ƒ evaluated at t = 1, 2, and 3, we have

 D ≈ ƒ(t1) ∆t + ƒ(t2) ∆t + ƒ(t3) ∆t

 = 3160 - 9.8(1)4 (1) + 3160 - 9.8(2)4 (1) + 3160 - 9.8(3)4 (1)

 = 421.2.

(c) With six subintervals of length 1>2, we get

t 
0 1 2 3

t 
0 1 2 3

Δt Δt

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

These estimates give an upper sum using left endpoints: D ≈ 443.25; and a lower 

sum using right endpoints: D ≈ 428.55. These six-interval estimates are somewhat 

closer than the three-interval estimates. The results improve as the subintervals get 

shorter.

As we can see in Table 5.2, the left-endpoint upper sums approach the true value 435.9 

from above, whereas the right-endpoint lower sums approach it from below. The true value 

lies between these upper and lower sums. The magnitude of the error in the closest entry is 

0.23, a small percentage of the true value.

 Error magnitude = 0 true value - calculated value 0
 = 0 435.9 - 435.67 0 = 0.23.

 Error percentage =
0.23
435.9

≈ 0.05,.

It would be reasonable to conclude from the table’s last entries that the projectile rose 

about 436 m during its first 3 sec of flight. 
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Displacement Versus Distance Traveled

If an object with position function s(t) moves along a coordinate line without changing 

direction, we can calculate the total distance it travels from t = a to t = b by summing 

the distance traveled over small intervals, as in Example 1. If the object reverses direction 

one or more times during the trip, then we need to use the object’s speed 0 y(t) 0 , which is 

the absolute value of its velocity function, y(t), to find the total distance traveled. Using 

the velocity itself, as in Example 1, gives instead an estimate to the object’s displacement, 

s(b) - s(a), the difference between its initial and final positions. To see the difference, 

think about what happens when you walk a mile from your home and then walk back. The 

total distance traveled is two miles, but your displacement is zero, because you end up 

back where you started.

To see why using the velocity function in the summation process gives an estimate to 

the displacement, partition the time interval 3a, b4  into small enough equal subintervals ∆t 

so that the object’s velocity does not change very much from time tk - 1 to tk. Then y(tk) gives 

a good approximation of the velocity throughout the interval. Accordingly, the change in the 

object’s position coordinate, which is its displacement during the time interval, is about

y(tk) ∆t.

The change is positive if y(tk) is positive and negative if y(tk) is negative.

In either case, the distance traveled by the object during the subinterval is about0 y(tk) 0  ∆t.

The total distance traveled over the time interval is approximately the sum0 y(t1) 0 ∆t + 0 y(t2) 0 ∆t + g + 0 y(tn) 0  ∆t.

We will revisit these ideas in Section 5.4.

EXAMPLE 2  In Example 4 in Section 3.4, we analyzed the motion of a heavy rock 

blown straight up by a dynamite blast. In that example, we found the velocity of the rock 

at time t was y(t) = 160 - 32t ft>sec. The rock was 256 ft above the ground 2 sec after 

the explosion, continued upward to reach a maximum height of 400 ft at 5 sec after the 

explosion, and then fell back down a distance of 144 ft to reach the height of 256 ft again 

at t = 8 sec after the explosion. (See Figure 5.5.) The total distance traveled in these  

8 seconds is 400 + 144 = 544 ft.

If we follow a procedure like the one presented in Example 1, using the velocity 

function v(t) in the summation process from t = 0 to t = 8, we obtain an estimate of 

the rock’s height above the ground at time t = 8. Starting at time t = 0, the rock trav-

eled upward a total of 256 + 144 = 400 ft, but then it peaked and traveled downward 

TABLE 5.2  Travel-distance estimates

Number of  

subintervals

Length of each  

subinterval Upper sum Lower sum

  3  1  450.6  421.2

  6  1>2  443.25  428.55

  12  1>4  439.58  432.23

  24  1>8  437.74  434.06

  48  1>16  436.82  434.98

  96  1>32  436.36  435.44

 192  1>64  436.13  435.67

s

256

H
ei

g
h

t 
(f

t)

400

s = 0
s(0)

s(2) s(8)

s(5)

144
(+) (−)

FIGURE 5.5 The rock in Example 2. 

The height s = 256 ft is reached at t = 2 

and t = 8 sec. The rock falls 144 ft from 

its maximum height when t = 8.



254 Chapter 5 Integrals

144 ft, ending at a height of 256 ft at time t = 8. The velocity v(t) is positive during the 

upward travel, but negative while the rock falls back down. When we compute the sum 

v(t1)∆t + v(t2)∆t + g+  v(tn)∆t, part of the upward positive distance change is canceled 

by the negative downward movement, giving in the end an approximation of the displace-

ment from the initial position, equal to a positive change of 256 ft.

On the other hand, if we use the speed 0 v(t) 0 , which is the absolute value of the veloc-

ity function, then distances traveled while moving up and distances traveled while mov-

ing down are both counted positively. Both the total upward motion of 400 ft and the 

downward motion of 144 ft are now counted as positive distances traveled, so the sum 0 v(t1) 0 ∆t + 0 v(t2) 0 ∆t + g+  0 v(tn) 0 ∆t gives us an approximation of 544 ft, the total dis-

tance that the rock traveled from time t = 0 to time t = 8.

As an illustration of our discussion, we subdivide the interval 30, 84  into sixteen subin-

tervals of length ∆t = 1>2 and take the right endpoint of each subinterval as the value of tk.  

Table 5.3 shows the values of the velocity function at these endpoints.

Using y(t) in the summation process, we estimate the displacement at t = 8:

(144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16

+ 0 - 16 - 32 - 48 - 64 - 80 - 96) # 1
2

= 192

Error magnitude = 256 - 192 = 64

Using 0 y(t) 0  in the summation process, we estimate the total distance traveled over the 

time interval 30, 84 :
(144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16

+ 0 + 16 + 32 + 48 + 64 + 80 + 96) # 1
2

= 528

Error magnitude = 544 - 528 = 16

If we take more and more subintervals of 30, 84  in our calculations, the estimates to 

the values 256 ft and 544 ft improve, as shown in Table 5.4. 

TABLE 5.3  Velocity function

 t Y(t)  t Y(t)

 0  160 4.5  16

0.5  144 5.0  0

1.0  128 5.5 -16

1.5  112 6.0 -32

2.0    96 6.5 -48

2.5    80 7.0 -64

3.0    64 7.5 -80

3.5    48 8.0 -96

4.0    32    

TABLE 5.4   Travel estimates for a rock blown straight up during  

the time interval [0, 8]

 Number of  

subintervals

Length of each  

 subinterval Displacement

 Total 

distance

  16  1>2  192.0  528.0

  32  1>4  224.0  536.0

  64  1>8  240.0  540.0

 128  1>16  248.0  542.0

 256  1>32  252.0  543.0

 512  1>64  254.0  543.5

Average Value of a Nonnegative Continuous Function

The average value of a collection of n numbers x1, x2,c, xn is obtained by adding them 

together and dividing by n. But what is the average value of a continuous function ƒ on an 

interval 3a, b4  ? Such a function can assume infinitely many values. For example, the 

temperature at a certain location in a town is a continuous function that goes up and down 

each day. What does it mean to say that the average temperature in the town over the 

course of a day is 73 degrees?
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When a function is constant, this question is easy to answer. A function with constant 

value c on an interval 3a, b4  has average value c. When c is positive, its graph over 3a, b4  
gives a rectangle of height c. The average value of the function can then be interpreted geo-

metrically as the area of this rectangle divided by its width b - a (see Figure 5.6a).

What if we want to find the average value of a nonconstant function, such as the func-

tion g in Figure 5.6b? We can think of this graph as a snapshot of the height of some water 

that is sloshing around in a tank between enclosing walls at x = a and x = b. As the 

water moves, its height over each point changes, but its average height remains the same. 

To get the average height of the water, we let it settle down until it is level and its height is 

constant. The resulting height c equals the area under the graph of g divided by b - a. We 

are led to define the average value of a nonnegative function on an interval 3a, b4  to  

be the area under its graph divided by b - a. For this definition to be valid, we need a 

precise understanding of what is meant by the area under a graph. This will be obtained in 

Section 5.3, but for now we look at an example.

EXAMPLE 3  Estimate the average value of the function ƒ(x) = sin x on the interval 30, p4 .
Solution Looking at the graph of sin x between 0 and p in Figure 5.7, we can see that 

its average height is somewhere between 0 and 1. To find the average, we need to calculate 

the area A under the graph and then divide this area by the length of the interval, 

p - 0 = p.

We do not have a simple way to determine the area, so we approximate it with inite 

sums. To get an upper sum approximation, we add the areas of eight rectangles of equal 

width p>8 that together contain the region that is beneath the graph of y = sin x and above 

the x-axis on 30, p4 . We choose the heights of the rectangles to be the largest value of sin 

x on each subinterval. Over a particular subinterval, this largest value may occur at the left 

endpoint, the right endpoint, or somewhere between them. We evaluate sin x at this point 

to get the height of the rectangle for an upper sum. The sum of the rectangular areas then 

gives an estimate of the total area (Figure 5.7):

 A ≈ asin 
p
8

+ sin 
p
4

+ sin 
3p
8

+ sin 
p
2

+ sin 
p
2

+ sin 
5p
8

+ sin 
3p
4

+ sin 
7p
8
b # p

8

 ≈ (.38 + .71 + .92 + 1 + 1 + .92 + .71 + .38) #  
p
8

= (6.02) #  
p
8

≈ 2.364.

To estimate the average value of sin x on 30, p4  we divide the estimated area by the 

length p of the interval and obtain the approximation 2.364>p ≈ 0.753.

Since we used an upper sum to approximate the area, this estimate is greater than the 

actual average value of sin x over 30, p4 . If we use more and more rectangles, with each 

rectangle getting thinner and thinner, we get closer and closer to the exact average value, as 

x

y

x

y

0 a b

c

0 a b

c
y = c

y = g(x)

(a) (b)

FIGURE 5.6 (a) The average value of ƒ(x) = c on 3a, b4  is the 

area of the rectangle divided by b - a. (b) The average value of g(x) 

on 3a, b4  is the area beneath its graph divided by b - a.

1

0 p
x

y

p
2

f (x) = sin x

FIGURE 5.7 Approximating the area 

under ƒ(x) = sin x between 0 and p to 

compute the average value of sin x over 30, p4 , using eight rectangles (Example 3).
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shown in Table 5.5. Using the techniques covered in Section 5.3, we will later show that the 

true average value is 2>p ≈ 0.63662.

As before, we could just as well have used rectangles lying under the graph of y = sin x 

and calculated a lower sum approximation, or we could have used the midpoint rule. In 

Section 5.3 we will see that in each case, the approximations are close to the true area if all 

the rectangles are suiciently thin. 

Summary

The area under the graph of a positive function, the distance traveled by a moving object 

that doesn’t change direction, and the average value of a nonnegative function ƒ over an 

interval can all be approximated by finite sums constructed in a certain way. First we sub-

divide the interval into subintervals, treating ƒ as if it were constant over each subinterval. 

Then we multiply the width of each subinterval by the value of ƒ at some point within it, 

and add these products together. If the interval 3a, b4  is subdivided into n subintervals of 

equal widths ∆x = (b - a)>n, and if ƒ(ck) is the value of ƒ at the chosen point ck in the 

kth subinterval, this process gives a finite sum of the form

ƒ(c1) ∆x + ƒ(c2) ∆x + ƒ(c3) ∆x + g+ ƒ(cn) ∆x.

The choices for the ck could maximize or minimize the value of ƒ in the kth subinterval, or 

give some value in between. The true value lies somewhere between the approximations 

given by upper sums and lower sums. In the examples that we looked at, the finite sum 

approximations improved as we took more subintervals of thinner width.

Area

In Exercises 1–4, use finite approximations to estimate the area under 

the graph of the function using

a. a lower sum with two rectangles of equal width.

b. a lower sum with four rectangles of equal width.

c. an upper sum with two rectangles of equal width.

d. an upper sum with four rectangles of equal width.

 1. ƒ(x) = x2 between x = 0 and x = 1.

 2. ƒ(x) = x3 between x = 0 and x = 1.

 3. ƒ(x) = 1>x between x = 1 and x = 5.

 4. ƒ(x) = 4 - x2 between x = -2 and x = 2.

Using rectangles each of whose height is given by the value of 

the function at the midpoint of the rectangle’s base (the midpoint rule), 

estimate the area under the graphs of the following functions, using 

irst two and then four rectangles.

 5. ƒ(x) = x2 between x = 0 and x = 1.

 6. ƒ(x) = x3 between x = 0 and x = 1.

 7. ƒ(x) = 1>x between x = 1 and x = 5.

 8. ƒ(x) = 4 - x2 between x = -2 and x = 2.

Distance

 9. Distance traveled The accompanying table shows the velocity 

of a model train engine moving along a track for 10 sec. Estimate 

the distance traveled by the engine using 10 subintervals of length 

1 with

a. left-endpoint values.

b. right-endpoint values.

Time  

(sec)

Velocity  

(cm , sec)

Time  

 (sec)

Velocity  

(cm , sec)

 0   0   6  28

 1  30   7  15

 2  56   8   5

 3  25   9  15

 4  38  10   0

 5  33

 10. Distance traveled upstream You are sitting on the bank of a 

tidal river watching the incoming tide carry a bottle upstream. 

You record the velocity of the low every 5 minutes for an hour, 

with the results shown in the accompanying table. About how far 

upstream did the bottle travel during that hour? Find an estimate 

using 12 subintervals of length 5 with

EXERCISES 5.1

TABLE 5.5  Average value of sin x 

on 0 " x " P

 Number of  

subintervals

Upper sum  

 estimate

    8  0.75342

   16  0.69707

   32  0.65212

   50  0.64657

  100  0.64161

 1000  0.63712
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hours
0

20

0.01

40

60

80

100

120

140

160

0.0080.0060.0040.002

mi�hr

a. Use rectangles to estimate how far the car traveled during the 

36 sec it took to reach 142 mi >h.

b. Roughly how many seconds did it take the car to reach the 

halfway point? About how fast was the car going then?

 13. Free fall with air resistance An object is dropped straight 

down from a helicopter. The object falls faster and faster but its 

acceleration (rate of change of its velocity) decreases over time 

because of air resistance. The acceleration is measured in ft>sec2 

and recorded every second after the drop for 5 sec, as shown:

t 0 1 2 3 4 5

a 32.00 19.41 11.77 7.14 4.33 2.63

a. Find an upper estimate for the speed when t = 5.

b. Find a lower estimate for the speed when t = 5.

c. Find an upper estimate for the distance fallen when t = 3.

 14. Distance traveled by a projectile An object is shot straight 

 upward from sea level with an initial velocity of 400 ft > sec.

a. Assuming that gravity is the only force acting on the object, 

give an upper estimate for its velocity after 5 sec have elapsed. 

Use g = 32 ft>sec2 for the gravitational acceleration.

b. Find a lower estimate for the height attained after 5 sec.

Average Value of a Function

In Exercises 15–18, use a finite sum to estimate the average value of ƒ 

on the given interval by partitioning the interval into four subintervals 

of equal length and evaluating ƒ at the subinterval midpoints.

 15. ƒ(x) = x3 on 30, 24
 16. ƒ(x) = 1>x on 31, 94
 17. ƒ(t) = (1>2) + sin2 pt on 30, 24

1 2

0.5

0

1

1.5

t

y

y = + sin2 pt
1
2

a. left-endpoint values.

b. right-endpoint values.

Time  

 (min)

Velocity  

(m/sec)

Time  

 (min)

Velocity  

(m/sec)

  0  1  35  1.2

  5  1.2  40  1.0

 10  1.7  45  1.8

 15  2.0  50  1.5

 20  1.8  55  1.2

 25  1.6  60  0

 30  1.4

 11. Length of a road You and a companion are about to drive a 

twisty stretch of dirt road in a car whose speedometer works but 

whose odometer (mileage counter) is broken. To ind out how 

long this particular stretch of road is, you record the car’s velocity 

at 10-sec intervals, with the results shown in the accompanying 

table. Estimate the length of the road using

a. left-endpoint values.

b. right-endpoint values.

Time  

 (sec)

 Velocity  

 (converted to ft , sec)  

(30 mi , h = 44 ft , sec)

Time  

 (sec)

 Velocity  

 (converted to ft , sec)  

(30 mi , h = 44 ft , sec)

  0   0   70  15

 10  44   80  22

 20  15   90  35

 30  35  100  44

 40  30  110  30

 50  44  120  35

 60  35

 12. Distance from velocity data The accompanying table gives 

data for the velocity of a vintage sports car accelerating from 0 to 

142 mi >h in 36 sec (10 thousandths of an hour).

Time  

 (h)

Velocity  

 (mi , h)

Time  

 (h)

Velocity  

 (mi , h)

0.0    0 0.006  116

0.001   40 0.007  125

0.002   62 0.008  132

0.003   82 0.009  137

0.004   96 0.010  142

0.005  108
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 18. ƒ(t) = 1 - acos 
pt

4
b4

 on 30, 44

t

y

0 2 4

1

1 3

cos
4

y = 1 − 
pt
4

a         b

Examples of Estimations

 19. Water pollution Oil is leaking out of a tanker damaged at sea. 

The damage to the tanker is worsening as evidenced by the in-

creased leakage each hour, recorded in the following table.

Time (h) 0 1 2 3 4

Leakage (gal/h) 50 70 97 136 190

Time (h) 5 6 7 8

Leakage (gal/h) 265 369 516 720

a. Give an upper and a lower estimate of the total quantity of oil 

that has escaped after 5 hours.

b. Repeat part (a) for the quantity of oil that has escaped after  

8 hours.

c. The tanker continues to leak 720 gal >h after the irst 8 hours. 

If the tanker originally contained 25,000 gal of oil, approxi-

mately how many more hours will elapse in the worst case 

before all the oil has spilled? In the best case?

 20. Air pollution A power plant generates electricity by burning oil. 

Pollutants produced as a result of the burning process are removed 

by scrubbers in the smokestacks. Over time, the scrubbers become 

less eicient and eventually they must be replaced when the amount 

of pollution released exceeds government standards. Measurements 

are taken at the end of each month determining the rate at which 

pollutants are released into the atmosphere, recorded as follows.

Month Jan Feb Mar Apr May Jun

Pollutant 

release rate 

(tons >day)

0.20 0.25 0.27 0.34 0.45 0.52

Month Jul Aug Sep Oct Nov Dec

Pollutant 

release rate 

(tons >day)

0.63 0.70 0.81 0.85 0.89 0.95

a. Assuming a 30-day month and that new scrubbers allow only 

0.05 ton >day to be released, give an upper estimate of the 

total tonnage of pollutants released by the end of June. What 

is a lower estimate?

b. In the best case, approximately when will a total of 125 tons 

of pollutants have been released into the atmosphere?

 21. Inscribe a regular n-sided polygon inside a circle of radius 1 and 

compute the area of the polygon for the following values of n:

a. 4 (square) b. 8 (octagon) c. 16

d. Compare the areas in parts (a), (b), and (c) with the area of 

the circle.

 22. (Continuation of Exercise 21.)

a. Inscribe a regular n-sided polygon inside a circle of radius 

1 and compute the area of one of the n congruent triangles 

formed by drawing radii to the vertices of the polygon.

b. Compute the limit of the area of the inscribed polygon as 

n S q.

c. Repeat the computations in parts (a) and (b) for a circle of 

radius r.

COMPUTER EXPLORATIONS

In Exercises 23–26, use a CAS to perform the following steps.

a. Plot the functions over the given interval.

b. Subdivide the interval into n = 100, 200, and 1000 subinter-

vals of equal length and evaluate the function at the midpoint 

of each subinterval.

c. Compute the average value of the function values generated 

in part (b).

d. Solve the equation ƒ(x) = (average value) for x using 

the  average value calculated in part (c) for the n = 1000 

 partitioning.

 23. ƒ(x) = sin x on 30, p4  24. ƒ(x) = sin2 x on 30, p4
 25. ƒ(x) = x sin 

1
x  on cp

4
, p d  26. ƒ(x) = x sin2 

1
x  on cp

4
, p d

5.2 Sigma Notation and Limits of Finite Sums

While estimating with finite sums in Section 5.1, we encountered sums that had many terms 

(up to 1000 in Table 5.1, for instance). In this section we introduce a more convenient nota-

tion for working with sums that have a large number of terms. After describing this notation 

and its properties, we consider what happens as the number of terms approaches infinity.

Finite Sums and Sigma Notation

Sigma notation enables us to write a sum with many terms in the compact form

a
n

k = 1

ak = a1 + a2 + a3 + g + an - 1 + an .
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The Greek letter Σ  (capital sigma, corresponding to our letter S), stands for “sum.” The 

index of summation k tells us where the sum begins (at the number below the Σ  symbol) 

and where it ends (at the number above Σ). Any letter can be used to denote the index, but 

the letters i, j, k, and n are customary.

k = 1

a
k

n

The index k ends at k = n.

The index k starts at k = 1.

ak is a formula for the kth term.

The summation symbol

(Greek letter sigma)

Thus we can write the squares of the numbers 1 through 11 as

12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 +  92 + 102 + 112 = a
11

k = 1

k2,

and the sum of ƒ(i) for integers i from 1 to 100 as

ƒ(1) + ƒ(2) + ƒ(3) + g+ ƒ(100) = a
100

i = 1

ƒ(i).

The starting index does not have to be 1; it can be any integer.

EXAMPLE 1

A sum in 

sigma notation

The sum written out, one  

term for each value of k

The value  

of the sum

a
5

k = 1

k 1 + 2 + 3 + 4 + 5 15

a
3

k = 1

(-1)k k (-1)1(1) + (-1)2(2) + (-1)3(3) -1 + 2 - 3 = -2

a
2

k = 1

 
k

k + 1

1
1 + 1

+
2

2 + 1
1
2

+
2
3

=
7
6

a
5

k = 4

 
k2

k - 1

42

4 - 1
+

52

5 - 1

16
3

+
25
4

=
139
12

 

EXAMPLE 2  Express the sum 1 + 3 + 5 + 7 + 9 in sigma notation.

Solution The formula generating the terms depends on what we choose the lower limit 

of summation to be, but the terms generated remain the same. It is often simplest to choose 

the starting index to be k = 0 or k = 1, but we can start with any integer.

Starting with k = 0:   1 + 3 + 5 + 7 + 9 = a
4

k = 0

(2k + 1)

Starting with k = 1:   1 + 3 + 5 + 7 + 9 = a
5

k = 1

(2k - 1)

Starting with k = 2:   1 + 3 + 5 + 7 + 9 = a
6

k = 2

(2k - 3)

 Starting with k = -3:   1 + 3 + 5 + 7 + 9 = a
1

k = -3

(2k + 7) 

Σ  is the capital Greek letter Sigma



260 Chapter 5 Integrals

When we have a sum such as

a
3

k = 1

(k + k2)

we can rearrange its terms to form two sums:

a
3

k = 1

(k + k2) = (1 + 12) + (2 + 22) + (3 + 32)

 = (1 + 2 + 3) + (12 + 22 + 32)    Regroup terms.

 = a
3

k = 1
 k + a

3

k = 1
 k

2.

This illustrates a general rule for finite sums:

a
n

k = 1

(ak + bk) = a
n

k = 1

ak + a
n

k = 1

bk .

This and three other rules are given below. Proofs of these rules can be obtained using 

mathematical induction (see Appendix 2).

Algebra Rules for Finite Sums

1. Sum Rule: a
n

k = 1

(ak + bk) = a
n

k = 1

ak + a
n

k = 1

bk

2. Diference Rule: a
n

k = 1

(ak - bk) = a
n

k = 1

ak - a
n

k = 1

bk

3. Constant Multiple Rule: a
n

k = 1

cak = c # a
n

k = 1

ak  (Any number c)

4. Constant Value Rule: a
n

k = 1

c = n # c     (Any number c)

EXAMPLE 3  We demonstrate the use of the algebra rules.

(a) a
n

k = 1

(3k - k2) = 3a
n

k = 1

k - a
n

k = 1

k2

(b) a
n

k = 1

(-ak) = a
n

k = 1

(-1) # ak = -1 # a
n

k = 1

ak = - a
n

k = 1

ak Constant Multiple Rule

(c) a
3

k = 1

(k + 4) = a
3

k = 1

k + a
3

k = 1

4 Sum Rule

 = (1 + 2 + 3) + (3 # 4) Constant Value Rule

 = 6 + 12 = 18

(d) a
n

k = 1

 
1
n = n # 1

n = 1  

Over the years people have discovered a variety of formulas for the values of finite sums. 

The most famous of these are the formula for the sum of the first n integers (Gauss is said 

to have discovered it at age 8) and the formulas for the sums of the squares and cubes of 

the first n integers.

Difference Rule and Constant 

Multiple Rule

Constant Value Rule  

(1/n is constant)

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss 

(1777–1855)

www.goo.gl/LZMPlA

http://www.goo.gl/LZMPlA
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EXAMPLE 4  Show that the sum of the first n integers is

a
n

k = 1

k =
n (n + 1)

2
.

Solution The formula tells us that the sum of the first 4 integers is

(4)(5)

2
= 10.

Addition verifies this prediction:

1 + 2 + 3 + 4 = 10.

To prove the formula in general, we write out the terms in the sum twice, once forward and 

once backward.

1 + 2 + 3 + g + n

n + (n - 1) + (n - 2) + g + 1

If we add the two terms in the first column we get 1 + n = n + 1. Similarly, if we add 

the two terms in the second column we get 2 + (n - 1) = n + 1. The two terms in any 

column sum to n + 1. When we add the n columns together we get n terms, each equal to 

n + 1, for a total of n(n + 1). Since this is twice the desired quantity, the sum of the first 

n integers is n (n + 1)>2. 

Formulas for the sums of the squares and cubes of the first n integers are proved using 

mathematical induction (see Appendix 2). We state them here.

The first n squares:  a
n

k = 1

k2 =
n (n + 1)(2n + 1)

6

The first n cubes:  a
n

k = 1

k3 = an (n + 1)

2
b2

Limits of Finite Sums

The finite sum approximations that we considered in Section 5.1 became more accurate as 

the number of terms increased and the subinterval widths (lengths) narrowed. The next 

example shows how to calculate a limiting value as the widths of the subintervals go to 

zero and the number of subintervals grows to infinity.

EXAMPLE 5  Find the limiting value of lower sum approximations to the area of the 

region R below the graph of y = 1 - x2 and above the interval 30, 14  on the x-axis using 

equal-width rectangles whose widths approach zero and whose number approaches 

 infinity. (See Figure 5.4a.)

Solution We compute a lower sum approximation using n rectangles of equal width 

∆x = (1 - 0)>n, and then we see what happens as n S q. We start by subdividing 30, 14  into n equal width subintervalsc 0, 
1
n d , c 1n , 

2
n d , . . . , c n - 1

n , 
n
n d .

Each subinterval has width 1>n. The function 1 - x2 is decreasing on 30, 14 , and its 

smallest value in a subinterval occurs at the subinterval’s right endpoint. So a lower sum is 

constructed with rectangles whose height over the subinterval 3 (k - 1)>n, k>n4  is 

ƒ(k>n) = 1 - (k>n)2, giving the sum

ƒa1nb # 1
n + ƒa2nb # 1

n + g + ƒak
nb # 1

n + g + ƒannb # 1
n.
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We write this in sigma notation and simplify,

  a
n

k = 1

ƒak
nb # 1

n = a
n

k = 1

a1 - ak
nb2b  

1
n

  = a
n

k = 1

 a1n -
k2

n3
b

  = a
n

k = 1

 
1
n - a

n

k = 1

 
k2

n3
 Difference Rule

  = n # 1
n -

1

n3a
n

k = 1

k2   

  = 1 - a 1

n3
b  

n (n + 1)(2n + 1)

6
 Sum of the First n Squares

  = 1 -
2n3 + 3n2 + n

6n3
.  Numerator expanded

We have obtained an expression for the lower sum that holds for any n. Taking the 

limit of this expression as n S q, we see that the lower sums converge as the number of 

subintervals increases and the subinterval widths approach zero:

lim
nS  q

a1 -
2n3 + 3n2 + n

6n3
b = 1 -

2
6

=
2
3

.

The lower sum approximations converge to 2>3. A similar calculation shows that 

the upper sum approximations also converge to 2>3. Any inite sum approximation gn
k = 1 f (ck)(1>n) also converges to the same value, 2>3. This is because it is possible to show 

that any inite sum approximation is trapped between the lower and upper sum approxima-

tions. For this reason we are led to deine the area of the region R as this limiting value. In 

Section 5.3 we study the limits of such inite approximations in a general setting.  

Riemann Sums

The theory of limits of finite approximations was made precise by the German mathemati-

cian Bernhard Riemann. We now introduce the notion of a Riemann sum, which underlies 

the theory of the definite integral that will be presented in the next section.

We begin with an arbitrary bounded function ƒ defined on a closed interval 3a, b4 . 
Like the function pictured in Figure 5.8, ƒ may have negative as well as positive values. 

We subdivide the interval 3a, b4  into subintervals, not necessarily of equal widths (or 

lengths), and form sums in the same way as for the finite approximations in Section 5.1. 

To do so, we choose n - 1 points 5x1, x2, x3, . . . , xn - 16  between a and b that are in 

increasing order, so that

a 6 x1 6 x2 6 g 6 xn - 1 6 b.

To make the notation consistent, we set x0 = a and xn = b, so that

a = x0 6 x1 6 x2 6 g 6 xn - 1 6 xn = b.

The set of all of these points,

P = 5x0, x1, x2, . . . , xn - 1, xn6 ,

is called a partition of 3a, b4 .
The partition P divides 3a, b4  into the n closed subintervals3x0, x14 , 3x1, x24 , . . . , 3xn - 1, xn4 .

Constant Value and  

Constant Multiple Rules

HISTORICAL BIOGRAPHY

Georg Friedrich Bernhard Riemann  

(1826–1866)

www.goo.gl/hPFV65

y

x
0 ba

y = f (x)

FIGURE 5.8 A typical continuous func-

tion y = f (x) over a closed interval 3a, b4 .

http://www.goo.gl/hPFV65
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The first of these subintervals is 3x0, x14 , the second is 3x1, x24 , and the kth subin-

terval is 3xk - 1, xk4  (where k is an integer between 1 and n).

x

. . .. . .

kth subinterval

x0 = a xn = bx1 x2 xk−1 xn−1xk

The width of the first subinterval 3x0, x14  is denoted ∆x1, the width of the second 3x1, x24  is denoted ∆x2, and the width of the kth subinterval is ∆xk = xk - xk - 1. 

x

x0 = a x1 x2 xk−1 xk xn−1 xn = b

ΔxnΔxkΔx1 Δx2

. . .. . .

If all n subintervals have equal width, then their common width, which we call ∆x, is 

equal to (b - a)>n.

In each subinterval we select some point. The point chosen in the kth subinterval 3xk - 1, xk4  is called ck. Then on each subinterval we stand a vertical rectangle that stretches 

from the x-axis to touch the curve at (ck, ƒ(ck)). These rectangles can be above or below the 

x-axis, depending on whether ƒ(ck) is positive or negative, or on the x-axis if ƒ(ck) = 0 

(see Figure 5.9).

HISTORICAL BIOGRAPHY

Richard Dedekind 

(1831–1916)

www.goo.gl/aPN8sH

x

y

0

(c2,  f (c2))

(c1,  f (c1))

x0 = a x1 x2 xk−1 xk xn−1 xn = b

ck cn
c2c1

kth rectangle

(ck,  f (ck))

y = f (x)
(cn,  f (cn))

FIGURE 5.9 The rectangles approximate the region between the graph of the func-

tion y = ƒ(x) and the x-axis. Figure 5.8 has been repeated and enlarged, the partition 

of [a, b] and the points ck have been added, and the corresponding rectangles with 

heights ƒ(ck) are shown.

On each subinterval we form the product ƒ(ck) # ∆xk. This product is positive, nega-

tive, or zero, depending on the sign of ƒ(ck). When ƒ(ck) 7 0, the product ƒ(ck) # ∆xk is the 

area of a rectangle with height ƒ(ck) and width ∆xk . When ƒ(ck) 6 0, the product 

ƒ(ck) # ∆xk is a negative number, the negative of the area of a rectangle of width ∆xk that 

drops from the x-axis to the negative number ƒ(ck).

Finally we sum all these products to get

SP = a
n

k = 1

ƒ(ck) ∆xk .

The sum SP is called a Riemann sum for ƒ  on the interval 3a, b 4 . There are many such 

sums, depending on the partition P we choose, and the choices of the points ck in the 

http://www.goo.gl/aPN8sH
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 subintervals. For instance, we could choose n subintervals all having equal width 

∆x = (b - a)>n to partition 3a, b4 , and then choose the point ck to be the right-hand 

endpoint of each subinterval when forming the Riemann sum (as we did in Example 5). 

This choice leads to the Riemann sum formula

Sn = a
n

k = 1

ƒaa + k 
(b - a)

n b # ab - a
n b .

Similar formulas can be obtained if instead we choose ck to be the left-hand endpoint, or 

the midpoint, of each subinterval.

In the cases in which the subintervals all have equal width ∆x = (b - a)>n, we can 

make them thinner by simply increasing their number n. When a partition has subintervals 

of varying widths, we can ensure they are all thin by controlling the width of a widest 

 (longest) subinterval. We define the norm of a partition P, written }P } , to be the largest 

of all the subinterval widths. If }P } is a small number, then all of the subintervals in the 

partition P have a small width.

EXAMPLE 6  The set P = 50, 0.2, 0.6, 1, 1.5, 26  is a partition of 30, 24 . There are 

five subintervals of P: 30, 0.24 , 30.2, 0.64 , 30.6, 14 , 31, 1.54 , and 31.5, 24 :
x

 

Δx1 Δx2 Δx3

0 0.2 0.6 1 1.5 2

Δx4 Δx5

The lengths of the subintervals are   ∆x1 = 0.2, ∆x2 = 0.4, ∆x3 = 0.4, ∆x4 = 0.5, 

and ∆x5 = 0.5. The longest subinterval length is 0.5, so the norm of the partition  

is }P } = 0.5. In this example, there are two subintervals of this length. 

Any Riemann sum associated with a partition of a closed interval 3a, b4 defines rect-

angles that approximate the region between the graph of a continuous function ƒ and the 

x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-

imate this region with increasing accuracy, as suggested by Figure 5.10. We will see in the 

next section that if the function ƒ is continuous over the closed interval 3a, b4 , then no 

matter how we choose the partition P and the points ck in its subintervals, the Riemann 

sums corresponding to these choices will approach a single limiting value as the subinter-

val widths (which are controlled by the norm of the partition) approach zero.

(a)

(b)

x
0 ba

y

y

x
0 ba

y = f (x)

y = f (x)

FIGURE 5.10 The curve of Figure 5.9 

with rectangles from finer partitions of 3a, b4 . Finer partitions create collections 

of rectangles with thinner bases that ap-

proximate the region between the graph of 

ƒ and the x-axis with increasing accuracy.

Sigma Notation

Write the sums in Exercises 1–6 without sigma notation. Then evalu-

ate them.

 1. a
2

k = 1

 
6k

k + 1
 2. a

3

k = 1

 
k - 1

k

 3. a
4

k = 1

 cos kp 4. a
5

k = 1

 sin kp

 5. a
3

k = 1

(-1)k + 1 sin 
p

k
 6. a

4

k = 1

(-1)k cos kp

 7. Which of the following express 1 + 2 + 4 + 8 + 16 + 32 in 

sigma notation?

a. a
6

k = 1

2k - 1 b. a
5

k = 0

2k c. a
4

k = -1

2k + 1

 8. Which of the following express 1 - 2 + 4 - 8 + 16 - 32 in 

sigma notation?

a. a
6

k = 1

(-2)k - 1 b. a
5

k = 0

(-1)k 2k c. a
3

k = -2

(-1)k + 1 2k + 2

 9. Which formula is not equivalent to the other two?

a. a
4

k = 2

 
(-1)k - 1

k - 1
 b. a

2

k = 0

 
(-1)k

k + 1
 c. a

1

k = -1

 
(-1)k

k + 2

 10. Which formula is not equivalent to the other two?

a. a
4

k = 1

(k - 1)2 b. a
3

k = -1

(k + 1)2 c. a
-1

k = -3

k2

Express the sums in Exercises 11–16 in sigma notation. The form of 

your answer will depend on your choice for the starting index.

 11. 1 + 2 + 3 + 4 + 5 + 6 12. 1 + 4 + 9 + 16

 13. 
1
2

+
1
4

+
1
8

+
1
16

 14. 2 + 4 + 6 + 8 + 10

EXERCISES 5.2
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 32. a. a
n

k = 1

a1n + 2nb  b. a
n

k = 1

c
n c. a

n

k = 1

 
k

n2

 33. a
50

k = 1

3(k + 1)2 - k24  34. a
20

k = 2

3sin (k - 1) - sin k4
 35. a

30

k = 7

12k - 4 - 2k - 32
 36. a

40

k = 1

 
1

k (k + 1)
  aHint: 

1
k (k + 1)

=
1
k

-
1

k + 1
b

Riemann Sums

In Exercises 37–42, graph each function ƒ(x) over the given interval. 

Partition the interval into four subintervals of equal length. Then add 

to your sketch the rectangles associated with the Riemann sum 

Σ4
k = 1ƒ(ck) ∆xk , given that ck is the (a) left-hand endpoint, (b) right-

hand endpoint, (c) midpoint of the kth subinterval. (Make a separate 

sketch for each set of rectangles.)

 37. ƒ(x) = x2 - 1, 30, 24  38. ƒ(x) = -x2, 30, 14
 39. ƒ(x) = sin x, 3-p, p4
 40. ƒ(x) = sin x + 1, 3-p, p4
 41. Find the norm of the partition P = 50, 1.2, 1.5, 2.3, 2.6, 36 .

 42. Find the norm of the partition P = 5-2, -1.6, -0.5, 0, 0.8, 16 .

Limits of Riemann Sums

For the functions in Exercises 43–50, find a formula for the Riemann 

sum obtained by dividing the interval 3a, b4  into n equal subintervals 

and using the right-hand endpoint for each ck . Then take a limit of 

these sums as n S q to calculate the area under the curve over 3a, b4 .
 43. ƒ(x) = 1 - x2 over the interval 30, 14 .
 44. ƒ(x) = 2x over the interval 30, 34 .
 45. ƒ(x) = x2 + 1 over the interval 30, 34 .
 46. ƒ(x) = 3x2 over the interval 30, 14 .
 47. ƒ(x) = x + x2 over the interval 30, 14 .
 48. ƒ(x) = 3x + 2x2 over the interval 30, 14 .
 49. ƒ(x) = 2x3 over the interval 30, 14 .
 50. ƒ(x) = x2 - x3 over the interval 3-1, 04 .

 15. 1 -
1
2

+
1
3

-
1
4

+
1
5

 16. -  
1
5

+
2
5

-
3

5
+

4
5

-
5

5

Values of Finite Sums

 17. Suppose that a
n

k = 1

ak = -5 and a
n

k = 1

bk = 6. Find the values of

a. a
n

k = 1

3ak b. a
n

k = 1

 
bk

6
 c. a

n

k = 1

(ak + bk)

d. a
n

k = 1

(ak - bk) e. a
n

k = 1

(bk - 2ak)

 18. Suppose that a
n

k = 1

ak = 0 and a
n

k = 1

bk = 1. Find the values of

a. a
n

k = 1

8ak b. a
n

k = 1

250bk

c. a
n

k = 1

(ak + 1) d. a
n

k = 1

(bk - 1)

Evaluate the sums in Exercises 19–32.

 19. a. a
10

k = 1

k b. a
10

k = 1

k2 c. a
10

k = 1

k3

 20. a. a
13

k = 1

k b. a
13

k = 1

k2 c. a
13

k = 1

k3

 21. a
7

k = 1

(-2k) 22. a
5

k = 1

 
pk

15

 23. a
6

k = 1

(3 - k2) 24. a
6

k = 1

(k2 - 5)

 25. a
5

k = 1

k(3k + 5) 26. a
7

k = 1

k(2k + 1)

 27. a
5

k = 1

 
k3

225
+ aa5

k = 1

kb3

 28. aa7

k = 1

kb2

- a
7

k = 1

 
k3

4

 29. a. a
7

k = 1

3 b. a
500

k = 1

7 c. a
264

k = 3

10

 30. a. a
36

k = 9

k b. a
17

k = 3

k2 c. a
71

k = 18

k(k - 1)

 31. a. a
n

k = 1

4 b. a
n

k = 1

c c. a
n

k = 1

(k - 1)

5.3 The Definite Integral

In this section we consider the limit of general Riemann sums as the norm of the partitions 

of a closed interval 3a, b4  approaches zero. This limiting process leads us to the definition 

of the definite integral of a function over a closed interval 3a, b4 .
Definition of the Definite Integral

The definition of the definite integral is based on the fact that for some functions, as the 

norm of the partitions of 3a, b4  approaches zero, the values of the corresponding  Riemann 
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sums approach a limiting value J. We introduce the symbol e as a small positive number 

that specifies how close to J the Riemann sum must be, and the symbol d as a second 

small positive number that specifies how small the norm of a partition must be in order for 

convergence to happen. We now define this limit precisely.

DEFINITION Let ƒ(x) be a function defined on a closed interval 3a, b4 . We 

say that a number J is the definite integral of ƒ over 3a, b 4  and that J is the limit 

of the Riemann sums gn
k = 1 ƒ(ck) ∆xk if the following condition is satisfied:

Given any number e 7 0 there is a corresponding number d 7 0 such 

that for every partition P = 5x0, x1, c , xn6  of 3a, b4  with }P } 6 d and any 

choice of ck in 3xk - 1, xk4 , we have2 an

k = 1

ƒ(ck) ∆xk - J 2 6 e.

The definition involves a limiting process in which the norm of the partition goes to zero.

We have many choices for a partition P with norm going to zero, and many choices of 

points ck for each partition. The definite integral exists when we always get the same limit 

J, no matter what choices are made. When the limit exists we write

J = lim0 0P 0 0S0
 a

n

k = 1

ƒ(ck) ∆xk ,

and we say that the definite integral exists. The limit of any Riemann sum is always taken 

as the norm of the partitions approaches zero and the number of subintervals goes to infin-

ity, and furthermore the same limit J must be obtained no matter what choices we make for 

the points ck.

Leibniz introduced a notation for the definite integral that captures its construction as 

a limit of Riemann sums. He envisioned the finite sums gn
k = 1 ƒ(ck) ∆xk becoming an infi-

nite sum of function values ƒ(x) multiplied by “infinitesimal” subinterval widths dx. The 

sum symbol g  is replaced in the limit by the integral symbol 1 , whose origin is in the 

letter “S” (for sum). The function values ƒ(ck) are replaced by a continuous selection of 

function values ƒ(x). The subinterval widths ∆xk become the differential dx. It is as if we 

are summing all products of the form ƒ(x) # dx as x goes from a to b. While this notation 

captures the process of constructing an integral, it is Riemann’s definition that gives a pre-

cise meaning to the definite integral.

If the definite integral exists, then instead of writing J we write

L
b

a

ƒ(x) dx.

We read this as “the integral from a to b of ƒ of x dee x” or sometimes as “the integral from 

a to b of ƒ of x with respect to x.” The component parts in the integral symbol also have 

names:

L

The function f (x) is the integrand.

x is the variable of integration. 

Upper limit of integration

Integral sign

Lower limit of integration

Integral of f from a to b

a

b

f (x) dx

When you ind the value
of the integral, you have
evaluated the integral.
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When the definite integral exists, we say that the Riemann sums of ƒ on 3a, b4  converge 

to the definite integral J = 1b

a
ƒ(x) dx and that ƒ is integrable over 3a, b4 .

In the cases where the subintervals all have equal width ∆x = (b - a)>n, the 

 Riemann sums have the form

 Sn = a
n

k = 1

 ƒ(ck) ∆xk = a
n

k = 1

 ƒ(ck)ab - a
n b , ∆xk = ∆x = (b - a)>n for all k

where ck is chosen in the kth subinterval. If the definite integral exists, then these Riemann 

sums converge to the definite integral of ƒ over 3a, b4 , so

 J = L
b

a

 ƒ(x) dx = lim
nSq

 a
n

k = 1

ƒ(ck)ab - a
n b  .

If we pick the point ck to be the right endpoint of the kth subinterval, so that 

ck = a + k ∆x = a + k(b - a)>n, then the formula for the definite integral becomes

For equal-width subintervals, 

}P } S 0 is the same as n S q.

A Formula for the Riemann Sum with Equal-Width Subintervals

   L
b

a

ƒ(x) dx = lim
nSq

 a
n

k = 1

 ƒaa + k 
b - a

n b ab - a
n b  (1)

Equation (1) gives one explicit formula that can be used to compute definite integrals. As 

long as the definite integral exists, the Riemann sums corresponding to other choices of 

partitions and locations of points ck will have the same limit as n S q, provided that the 

norm of the partition approaches zero.

The value of the definite integral of a function over any particular interval depends on 

the function, not on the letter we choose to represent its independent variable. If we decide 

to use t or u instead of x, we simply write the integral as

 L
b

a

ƒ(t) dt  or  L
b

a

ƒ(u) du  instead of  L
b

a

ƒ(x) dx.

No matter how we write the integral, it is still the same number, the limit of the Riemann 

sums as the norm of the partition approaches zero. Since it does not matter what letter we 

use, the variable of integration is called a dummy variable. In the three integrals given 

above, the dummy variables are t, u, and x.

Integrable and Nonintegrable Functions

Not every function defined over a closed interval 3a, b4  is integrable even if the function 

is bounded. That is, the Riemann sums for some functions might not converge to the same 

limiting value, or to any value at all. A full development of exactly which functions 

defined over 3a, b4  are integrable requires advanced mathematical analysis, but fortu-

nately most functions that commonly occur in applications are integrable. In particular, 

every continuous function over 3a, b4  is integrable over this interval, and so is every func-

tion that has no more than a finite number of jump discontinuities on 3a, b4 . (See Figures 

1.9 and 1.10. The latter functions are called piecewise-continuous functions, and they are 

defined in Additional Exercises 11–18 at the end of this chapter.) The following theorem, 

which is proved in more advanced courses, establishes these results.

THEOREM 1—Integrability of Continuous Functions

If a function ƒ is continuous over the interval 3a, b4 , or if ƒ has at most initely 

many jump discontinuities there, then the deinite integral 1b

a
 ƒ(x) dx exists and ƒ 

is integrable over 3a, b4 .
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The idea behind Theorem 1 for continuous functions is given in Exercises 86 and 87. 

Briefly, when ƒ is continuous we can choose each ck so that ƒ(ck) gives the maximum 

value of ƒ on the subinterval 3xk - 1, xk4 , resulting in an upper sum. Likewise, we can 

choose ck to give the minimum value of ƒ on 3xk - 1, xk4  to obtain a lower sum. The upper 

and lower sums can be shown to converge to the same limiting value as the norm of the 

partition P tends to zero. Moreover, every Riemann sum is trapped between the values of 

the upper and lower sums, so every Riemann sum converges to the same limit as well. 

Therefore, the number J in the definition of the definite integral exists, and the continuous 

function ƒ is integrable over 3a, b4 .
For integrability to fail, a function needs to be sufficiently discontinuous that the 

region between its graph and the x-axis cannot be approximated well by increasingly thin 

rectangles. Our first example shows a function that is not integrable over a closed interval.

EXAMPLE 1  The function

ƒ(x) = e1, if x is rational,

0, if x is irrational,

has no Riemann integral over 30, 14 . Underlying this is the fact that between any two 

numbers there is both a rational number and an irrational number. Thus the function jumps 

up and down too erratically over 30, 14  to allow the region beneath its graph and above 

the x-axis to be approximated by rectangles, no matter how thin they are. In fact, we will 

show that upper sum approximations and lower sum approximations converge to diferent 

limiting values.

If we choose a partition P of [0, 1], then the lengths of the intervals in the partition sum 

to 1; that is, gn
k = 1∆xk = 1. In each subinterval 3xk - 1, xk4  there is a rational point, say ck. 

Because ck is rational, ƒ(ck) = 1. Since 1 is the maximum value that ƒ can take anywhere, 

the upper sum approximation for this choice of ck’s is

U = a
n

k = 1

ƒ(ck) ∆xk = a
n

k = 1

(1) ∆xk = 1.

As the norm of the partition approaches 0, these upper sum approximations converge to 1 

(because each approximation is equal to 1).

On the other hand, we could pick the ck’s diferently and get a diferent result. Each 

subinterval 3xk - 1, xk4  also contains an irrational point ck, and for this choice ƒ(ck) = 0.  

Since 0 is the minimum value that ƒ can take anywhere, this choice of ck gives us the mini-

mum value of ƒ on the subinterval. The corresponding lower sum approximation is

L = a
n

k = 1

ƒ(ck) ∆xk = a
n

k = 1

(0) ∆xk = 0.

These lower sum approximations converge to 0 as the norm of the partition converges to 0 

(because they each equal 0).

Thus making diferent choices for the points ck results in diferent limits for the corre-

sponding Riemann sums. We conclude that the deinite integral of ƒ over the interval [0, 1] 

does not exist, and that ƒ is not integrable over [0, 1]. 

Theorem 1 says nothing about how to calculate definite integrals. A method of calcu-

lation will be developed in Section 5.4, through a connection to antiderivatives.

Properties of Definite Integrals

In defining 1b

a
ƒ(x) dx as a limit of sums gn

k = 1 ƒ(ck) ∆xk , we moved from left to right 

across the interval 3a, b4 . What would happen if we instead move right to left, starting 

with x0 = b and ending at xn = a? Each ∆xk in the Riemann sum would change its sign, 
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with xk - xk - 1 now negative instead of positive. With the same choices of ck in each sub-

interval, the sign of any Riemann sum would change, as would the sign of the limit, the 

integral 1a

b
ƒ(x) dx. Since we have not previously given a meaning to integrating back-

ward, we are led to define

 L
a

b

ƒ(x) dx = -L
b

a

ƒ(x) dx.  a and b interchanged

Although we have only defined the integral over intervals 3a, b4  with a 6 b, it is 

convenient to have a definition for the integral over 3a, b4  when a = b, that is, for the 

integral over an interval of zero width. Since a = b gives ∆x = 0, whenever ƒ(a) exists 

we define

 L
a

a

ƒ(x) dx = 0.  
a is both the lower and the 

upper limit of integration.

Theorem 2 states some basic properties of integrals, including the two just discussed. 

These properties, listed in Table 5.6, are very useful for computing integrals. We will refer 

to them repeatedly to simplify our calculations. Rules 2 through 7 have geometric interpre-

tations, which are shown in Figure 5.11. The graphs in these figures show only positive 

functions, but the rules apply to general integrable functions, which could take both posi-

tive and negative values.

THEOREM 2 When ƒ and g are integrable over the interval 3a, b4 , the deinite 

integral satisies the rules listed in Table 5.6.

While Rules 1 and 2 are definitions, Rules 3 to 7 of Table 5.6 must be proved. Below 

we give a proof of Rule 6. Similar proofs can be given to verify the other properties in 

Table 5.6.

TABLE 5.6  Rules satisfied by definite integrals

1. Order of Integration:  L
a

b

ƒ(x) dx = -L
b

a

ƒ(x) dx  A definition

2. Zero Width Interval:  L
a

a

ƒ(x) dx = 0 
A definition  

when ƒ(a) exists

3. Constant Multiple:  L
b

a

kƒ(x) dx = kL
b

a

ƒ(x) dx  Any constant k

4. Sum and Difference:  L
b

a

(ƒ(x) { g(x)) dx = L
b

a

ƒ(x) dx {L
b

a

g(x) dx

5. Additivity:  L
b

a

ƒ(x) dx + L
c

b

ƒ(x) dx = L
c

a

ƒ(x) dx

6. Max-Min Inequality:  If ƒ has maximum value max ƒ and minimum value  

min ƒ on 3a, b4 , then

(min ƒ ) # (b - a) … L
b

a

ƒ(x) dx … (max ƒ ) # (b - a).

7. Domination: If ƒ(x) Ú g(x) on 3a, b4  then L
b

a

ƒ(x) dx Ú L
b

a

g(x) dx.

  If ƒ(x) Ú 0 on 3a, b4  then L
b

a

ƒ(x) dx Ú 0. Special case
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Proof of Rule 6  Rule 6 says that the integral of ƒ over 3a, b4  is never smaller than 

the minimum value of ƒ times the length of the interval and never larger than the maximum 

value of ƒ times the length of the interval. The reason is  that for every partition of 3a, b4  
and for every choice of the points ck ,

  (min ƒ) # (b - a) = (min ƒ) # a
n

k = 1

 ∆xk a
n

k = 1

∆xk = b - a 

  = a
n

k = 1

 (min ƒ) # ∆xk  Constant Multiple Rule

  … a
n

k = 1

ƒ(ck) ∆xk  min ƒ … ƒ(ck) 

  … a
n

k = 1

 (max ƒ) # ∆xk ƒ(ck) …  max ƒ 

  = (max ƒ) # a
n

k = 1

 ∆xk Constant Multiple Rule

  = (max ƒ) # (b - a).

In short, all Riemann sums for ƒ on 3a, b4  satisfy the inequalities

(min ƒ) # (b - a) … a
n

k = 1

ƒ(ck) ∆xk …  (max ƒ) # (b - a).

Hence their limit, which is the integral, satisies the same inequalities. 

x

y

0 a

y = f (x)

x

y

0 a b

y = f (x)

y = 2 f (x)

x

y

0 a b

y = f (x)

y = f (x) + g(x)

y = g(x)

x

y

0 a cb

y = f (x)

b

a

f (x) dx
f (x) dx

c

bL L
x

y

0 a b

y = f (x)

max f

min f

x

y

0 a b

y = f (x)

y = g(x)

(a) Zero Width Interval:

  L
a

a

ƒ(x) dx = 0

(b) Constant Multiple: (k = 2)

  L
b

a

 kƒ(x) dx = kL
b

a

 ƒ(x) dx

(c) Sum: (areas add)

 L
b

a

(ƒ(x) + g(x)) dx = L
b

a

ƒ(x) dx + L
b

a

g(x) dx

(d) Additivity for Definite Integrals:

 L
b

a

ƒ(x) dx + L
c

b

ƒ(x) dx = L
c

a

ƒ(x) dx

(e) Max-Min Inequality:

(min ƒ) # (b - a) … L
b

a

 ƒ(x) dx 

 … (max ƒ) # (b - a)

(f ) Domination:

If ƒ(x) Ú g(x) on 3a, b4  then 

 L
b

a

 ƒ(x) dx ÚL
b

a

 g(x) dx

FIGURE 5.11 Geometric interpretations of Rules 2–7 in Table 5.6.
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EXAMPLE 2  To illustrate some of the rules, we suppose that

 L
1

-1

ƒ(x) dx = 5,  L
4

1

ƒ(x) dx = -2, and L
1

-1

h(x) dx = 7.    

Then

1.  L
1

4

ƒ(x) dx = -L
4

1

ƒ(x) dx = -(-2) = 2 Rule 1

2.   L
1

-1

32ƒ(x) + 3h(x)4  dx = 2L
1

-1

ƒ(x) dx + 3L
1

-1

h(x) dx  Rules 3 and 4

    = 2(5) + 3(7) = 31

3.  L
4

-1

ƒ(x) dx = L
1

-1

ƒ(x) dx + L
4

1

ƒ(x) dx = 5 + (-2) = 3 Rule 5 

EXAMPLE 3  Show that the value of 11

0
21 + cos x dx is less than or equal to 22.

Solution The Max-Min Inequality for definite integrals (Rule 6) says that 

(min ƒ) # (b - a) is a lower bound for the value of 1b

a
ƒ(x) dx and that (max ƒ) # (b - a) is 

an upper bound. The maximum value of 21 + cos x on 30, 14  is 21 + 1 = 22, so

  L
1

0

21 + cos x dx … 22 # (1 - 0) = 22. 

Area Under the Graph of a Nonnegative Function

We now return to the problem that started this chapter, which is defining what we mean by 

the area of a region having a curved boundary. In Section 5.1 we approximated the area 

under the graph of a nonnegative continuous function using several types of finite sums of 

areas of rectangles that approximate the region—upper sums, lower sums, and sums using 

the midpoints of each subinterval—all of which are Riemann sums constructed in special 

ways. Theorem 1 guarantees that all of these Riemann sums converge to a single definite 

integral as the norm of the partitions approaches zero and the number of subintervals goes 

to infinity. As a result, we can now define the area under the graph of a nonnegative inte-

grable function to be the value of that definite integral.

DEFINITION If y = ƒ(x) is nonnegative and integrable over a closed interval 3a, b4 , then the area under the curve y = ƒ(x)  over 3a, b 4  is the integral of 

ƒ from a to b,

A = L
b

a

ƒ(x) dx.

For the first time we have a rigorous definition for the area of a region whose bound-

ary is the graph of a continuous function. We now apply this to a simple example, the area 

under a straight line, and we verify that our new definition agrees with our previous notion 

of area.

EXAMPLE 4  Compute 1b

0
x dx and find the area A under y = x over the interval 30, b4 , b 7 0.
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Solution The region of interest is a triangle (Figure 5.12). We compute the area in two 

ways.

(a) To compute the deinite integral as the limit of Riemann sums, we calculate 

lim 0 0P 0 0S0 gn
k = 1 ƒ(ck) ∆xk for partitions whose norms go to zero. Theorem 1 tells us 

that it does not matter how we choose the partitions or the points ck as long as the 

norms approach zero. All choices give the exact same limit. So we consider the parti-

tion P that subdivides the interval 30, b4  into n subintervals of equal width ∆x  =  

(b - 0)>n = b>n, and we choose ck to be the right endpoint in each subinterval. The 

  partition is P = e0, 
b
n , 

2b
n , 

3b
n ,g, 

nb
n f  and ck =

kb
n . So

  a
n

k = 1

ƒ(ck) ∆x = a
n

k = 1

 
kb
n

# b
n  ƒ(ck) = ck

  = a
n

k = 1

 
kb2

n2
 

  =
b2

n2
 a

n

k = 1

k  Constant Multiple Rule

  =
b2

n2
 #  

n(n + 1)

2
 Sum of First n Integers

  =
b2

2
 a1 +

1
nb .

As n S q and }P } S 0, this last expression on the right has the limit b 

2>2. 

 Therefore,

 L
b

0

x dx =
b 

2

2
.

(b) Since the area equals the deinite integral for a nonnegative function, we can quickly 

derive the deinite integral by using the formula for the area of a triangle having base 

length b and height y = b. The area is A = (1>2) b # b = b2>2. Again we conclude 

that 1b

0
 x dx = b2>2. 

x

y

0

b

b

b

y = x

FIGURE 5.12 The region in 

Example 4 is a triangle.

  L
b

a

x dx =
b2

2
-

a2

2
,  a 6 b (2)

Example 4 can be generalized to integrate ƒ(x) = x over any closed interval 3a, b4 , 0 6 a 6 b.

   L
b

a

x dx = L
0

a

x dx + L
b

0

x dx  Rule 5

   = -L
a

0

x dx + L
b

0

x dx Rule 1

   = -  
a2

2
+

b2

2
. Example 4

In conclusion, we have the following rule for integrating ƒ(x) = x:
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This computation gives the area of the trapezoid in Figure 5.13a. Equation (2) remains 

valid when a and b are negative, but the interpretation of the definite integral changes. 

When a 6 b 6 0, the definite integral value (b2 - a2)>2 is a negative number, the nega-

tive of the area of a trapezoid dropping down to the line y = x below the x-axis (Figure 

5.13b). When a 6 0 and b 7 0, Equation (2) is still valid and the definite integral gives 

the difference between two areas, the area under the graph and above 30, b4  minus the 

area below 3a, 04  and over the graph (Figure 5.13c).

The following results can also be established by using a Riemann sum calculation 

similar to the one that we used in Example 4 (Exercises 63 and 65).
x

y

0

a

a

b

b

a

b

b − a

y = x

(a)

x

y

0

a b

y = x

(b)

x

y

0

a

b

y = x

(c)

FIGURE 5.13 (a) The area of this 

 trapezoidal region is A = (b2 - a2) >2. 

(b) The definite integral in Equation 

(2) gives the negative of the area of this 

trapezoidal region. (c) The definite integral 

in Equation (2) gives the area of the blue 

triangular region added to the negative of 

the area of the tan triangular region.

  L
b

a

c dx = c(b - a),  c  any constant (3)

  L
b

a

x2 dx =
b3

3
-

a3

3
,  a 6 b (4)

Average Value of a Continuous Function Revisited

In Section 5.1 we informally introduced the average value of a nonnegative continuous 

function ƒ over an interval 3a, b4 , leading us to define this average as the area under the 

graph of y = ƒ(x) divided by b - a. In integral notation we write this as

Average =
1

b - a
 L

b

a

ƒ(x) dx.

This formula gives us a precise definition of the average value of a continuous (or inte-

grable) function, whether it is positive, negative, or both.

Alternatively, we justify this formula through the following reasoning. We start with 

the idea from arithmetic that the average of n numbers is their sum divided by n. A con-

tinuous function ƒ on 3a, b4  may have infinitely many values, but we can still sample 

them in an orderly way. We divide 3a, b4  into n subintervals of equal width 

∆x = (b - a)>n and evaluate ƒ at a point ck in each (Figure 5.14). The average of the n 

sampled values is

  
ƒ(c1) + ƒ(c2) + g + ƒ(cn)

n =
1
n a

n

k = 1

 ƒ(ck)

  =
∆x

b - a
 a

n

k = 1

 ƒ(ck)  ∆x =
b - a

n , so 
1
n =

∆x

b - a

  =
1

b - a
 a

n

k = 1

ƒ(ck) ∆x. Constant Multiple Rule

The average of the samples is obtained by dividing a Riemann sum for ƒ on 3a, b4  by 

(b - a). As we increase the number of samples and let the norm of the partition approach 

zero, the average approaches (1>(b - a))1b

a
ƒ(x) dx. Both points of view lead us to the 

following definition.

x

y

0

(ck, f (ck))

y = f (x)

xn = b

ckx0 = a

x1

FIGURE 5.14 A sample of values of a 

function on an interval 3a, b4 .

DEFINITION If ƒ is integrable on 3a, b4 , then its average value on 3a, b 4 , 
which is also called its mean, is

av(ƒ) =
1

b - a
 L

b

a

ƒ(x) dx.
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EXAMPLE 5  Find the average value of ƒ(x) = 24 - x2 on 3-2, 24 .
Solution We recognize ƒ(x) = 24 - x2 as the function whose graph is the upper semi-

circle of radius 2 centered at the origin (Figure 5.15).

Since we know the area inside a circle, we do not need to take the limit of Riemann 

sums. The area between the semicircle and the x-axis from -2 to 2 can be computed using 

the geometry formula

Area =
1
2

 #  pr2 =
1
2

 #  p(2)2 = 2p.

Because ƒ is nonnegative, the area is also the value of the integral of ƒ from -2 to 2,

 L
2

-2

24 - x2 dx = 2p.

Therefore, the average value of ƒ is

av(ƒ) =
1

2 - (-2)
  L

2

-2

24 - x2 dx =
1
4

  (2p) =
p
2

.

Notice that the average value of ƒ over 3-2, 24  is the same as the height of a rectangle over 3-2, 24  whose area equals the area of the upper semicircle (see Figure 5.15). 

−2 −1 1 2

1

2

x

y

f (x) = "4 − x2

y =
p
2

FIGURE 5.15 The average value of 

ƒ(x) = 24 - x2 on 3-2, 2] is p>2 

(Example 5). The area of the rectangle 

shown here is 4 # (p>2) = 2p, which is 

also the area of the semicircle.

Interpreting Limits of Sums as Integrals

Express the limits in Exercises 1–8 as definite integrals.

 1. lim
}P}S0

 a
n

k = 1

ck 2 ∆xk , where P is a partition of 30, 24
 2. lim

}P}S0
 a

n

k = 1

2ck 3 ∆xk , where P is a partition of 3-1, 04
 3. lim0 0P 0 0S0

 a
n

k = 1

(ck 2 - 3ck) ∆xk , where P is a partition of 3-7, 54
 4. lim

}P}S0
 a

n

k = 1

a 1
ck
b  ∆xk , where P is a partition of 31, 44

 5. lim0 0P 0 0S0
 a

n

k = 1

 
1

1 - ck

 ∆xk , where P is a partition of 32, 34
 6. lim0 0P 0 0S0

 a
n

k = 1

24 - ck 2 ∆xk , where P is a partition of 30, 14
 7. lim

}P}S0
 a

n

k = 1

(sec ck) ∆xk , where P is a partition of 3-p>4, 04
 8. lim

}P}S0
 a

n

k = 1

(tan ck) ∆xk , where P is a partition of 30, p>44
Using the Definite Integral Rules

 9. Suppose that ƒ and g are integrable and that

  L
2

1

 ƒ(x) dx = -4,  L
5

1

 ƒ(x) dx = 6,  L
5

1

 g(x) dx = 8.    

  Use the rules in Table 5.6 to ind

a.  L
2

2

g(x) dx b.  L
1

5

g(x) dx

c.  L
2

1

3ƒ(x) dx d.  L
5

2

ƒ(x) dx

e.  L
5

1

3ƒ(x) - g(x)4  dx f.  L
5

1

34ƒ(x) - g(x)4  dx

 10. Suppose that ƒ and h are integrable and that

 L
9

1

ƒ(x) dx = -1, L
9

7

ƒ(x) dx = 5, L
9

7

h(x) dx = 4.

  Use the rules in Table 5.6 to ind

a.  L
9

1

 -2ƒ(x) dx b.  L
9

7

3ƒ(x) + h(x)4  dx

c.  L
9

7

32ƒ(x) - 3h(x)4  dx d.  L
1

9

ƒ(x) dx

e.  L
7

1

ƒ(x) dx f.  L
7

9

3h(x) - ƒ(x)4  dx

 11. Suppose that 12

1
ƒ(x) dx = 5. Find

a.  L
2

1

ƒ(u) du b.  L
2

1

23ƒ(z) dz

c.  L
1

2

ƒ(t) dt  d.  L
2

1

3-ƒ(x)4  dx

EXERCISES 5.3
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Use the rules in Table 5.6 and Equations (2)–(4) to evaluate the inte-

grals in Exercises 41–50.

 41.  L
1

3

 7 dx 42.  L
2

0

 5x dx

 43.  L
2

0

(2t - 3) dt  44.  L
22

0

1t - 222 dt

 45.  L
1

2

a1 +
z

2
b  dz 46.  L

0

3

(2z - 3) dz

 47.  L
2

1

3u2 du 48.  L
1

1>2 24u2 du

 49.  L
2

0

(3x2 + x - 5) dx 50.  L
0

1

(3x2 + x - 5) dx

Finding Area by Definite Integrals

In Exercises 51–54, use a definite integral to find the area of the 

region between the given curve and the x-axis on the interval 30, b4 .
 51. y = 3x2 52. y = px2

 53. y = 2x 54. y =
x

2
+ 1

Finding Average Value

In Exercises 55–62, graph the function and find its average value over 

the given interval.

 55. ƒ(x) = x2 - 1 on 30, 234
 56. ƒ(x) = -  

x2

2
 on 30, 34

 57. ƒ(x) = -3x2 - 1 on 30, 14
 58. ƒ(x) = 3x2 - 3 on 30, 14
 59. ƒ(t) = (t - 1)2 on 30, 34
 60. ƒ(t) = t2 - t on 3-2, 14
 61. g(x) = 0 x 0 - 1 on a. 3-1, 14 , b. 31, 34 , and c. 3-1, 34
 62. h(x) = - 0 x 0  on a. 3-1, 04 , b. 30, 14 , and c. 3-1, 14
Definite Integrals as Limits of Sums

Use the method of Example 4a or Equation (1) to evaluate the definite 

integrals in Exercises 63–70.

 63.  L
b

a

 c dx 64.  L
2

0

 (2x + 1) dx

 65.  L
b

a

 x2 dx, a 6 b 66.  L
0

-1

 (x - x2) dx

 67.  L
2

-1

 (3x2 - 2x + 1) dx 68.  L
1

-1

 x3 dx

 69.  L
b

a

 x3 dx, a 6 b 70.  L
1

0

 (3x - x3) dx

Theory and Examples

 71. What values of a and b maximize the value of

 L
b

a

(x - x2) dx?

  (Hint: Where is the integrand positive?)

 12. Suppose that 10

-3
 g(t) dt = 22. Find

a.  L
-3

0

g(t) dt  b.  L
0

-3

g(u) du

c.  L
0

-3

3-g(x)4  dx d.  L
0

-3

 
g(r)

22
 dr

 13. Suppose that ƒ is integrable and that 13

0
 ƒ(z) dz = 3 and

  14

0
 ƒ(z) dz = 7. Find

a.  L
4

3

ƒ(z) dz b.  L
3

4

ƒ(t) dt

 14. Suppose that h is integrable and that 11

-1
 h(r) dr = 0 and 

  13

-1
 h(r) dr = 6. Find

a.  L
3

1

h(r) dr  b. -L
1

3

h(u) du

Using Known Areas to Find Integrals

In Exercises 15–22, graph the integrands and use known area formu-

las to evaluate the integrals.

 15.  L
4

-2

ax

2
+ 3b  dx 16.  L

3>2
1>2 (-2x + 4) dx

 17.  L
3

-3

29 - x2 dx 18.  L
0

-4

216 - x2 dx

 19.  L
1

-2

0 x 0  dx 20.  L
1

-1

(1 - 0 x 0 ) dx

 21.  L
1

-1

(2 - 0 x 0 ) dx 22.  L
1

-1

11 + 21 - x22 dx

Use known area formulas to evaluate the integrals in Exercises 23–28.

 23.  L
b

0

 
x

2
 dx, b 7 0 24.  L

b

0

4x dx, b 7 0

 25.  L
b

a

2s ds, 0 6 a 6 b 26.  L
b

a

3t dt, 0 6 a 6 b

 27. ƒ(x) = 24 - x2 on a. 3-2, 24 , b. 30, 24
 28. ƒ(x) = 3x + 21 - x2 on a. 3-1, 04 , b. 3-1, 14
Evaluating Definite Integrals

Use the results of Equations (2) and (4) to evaluate the integrals in 

Exercises 29–40.

 29.  L
22

1

 x dx 30.  L
2.5

0.5

x dx 31.  L
2p

p

u du

 32.  L
522

22

r dr  33.  L
23 7

0

x2 dx 34.  L
0.3

0

s2 ds

 35.  L
1>2

0

t2 dt  36.  L
p>2

0

u2 du  37.  L
2a

a

x dx

 38.  L
23

a

 x dx 39.  L
23 b

0

 x2 dx 40.  L
3b

0

x2 dx
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∆x = (b - a)>n. Show by referring to the accompanying 

igure that the diference between the upper and lower sums 

for ƒ on this partition can be represented graphically as the 

area of a rectangle R whose dimensions are 3ƒ(b) - ƒ(a)4  
by ∆x. (Hint: The diference U - L is the sum of areas of 

rectangles whose diagonals Q0  Q1, Q1  Q2, . . . , Qn - 1Qn lie 

approximately along the curve. There is no overlapping when 

these rectangles are shifted horizontally onto R.)

b. Suppose that instead of being equal, the lengths ∆xk of the 

subintervals of the partition of 3a, b4  vary in size. Show that

U - L … 0 ƒ(b) - ƒ(a) 0  ∆xmax,

 where ∆xmax is the norm of P, and hence that lim}P}S0

(U - L) = 0.

x

y

0 x0 = a xn = bx1

Q1

Q2

Q3

x2

y = f (x)

f (b) − f (a)

R

Δx

 84. Upper and lower sums for decreasing functions  (Continuation 

of Exercise 83.)

a. Draw a igure like the one in Exercise 83 for a continuous 

function ƒ(x) whose values decrease steadily as x moves from 

left to right across the interval 3a, b4 . Let P be a partition of 3a, b4  into subintervals of equal length. Find an expression 

for U - L that is analogous to the one you found for U - L 

in Exercise 83a.

b. Suppose that instead of being equal, the lengths ∆xk of the 

subintervals of P vary in size. Show that the inequality

U - L … 0 ƒ(b) - ƒ(a) 0  ∆xmax

 of Exercise 83b still holds and hence that lim}P}S0

(U - L) = 0.

 85. Use the formula

  sin h + sin 2h + sin 3h + g + sin mh

=
cos (h>2) - cos ((m + (1>2))h)

2 sin (h>2)

  to ind the area under the curve y = sin x from x = 0 to x = p>2 

in two steps:

a. Partition the interval 30, p>24  into n subintervals of equal 

length and calculate the corresponding upper sum U; then

b. Find the limit of U as n S q and ∆x = (b - a)>n S 0.

 72. What values of a and b minimize the value of

 L
b

a

(x4 - 2x2) dx?

 73. Use the Max-Min Inequality to ind upper and lower bounds for 

the value of

 L
1

0

 
1

1 + x2
 dx.

 74. (Continuation of Exercise 73.) Use the Max-Min Inequality to ind 

upper and lower bounds for

 L
0.5

0

 
1

1 + x2
 dx and L

1

0.5

 
1

1 + x2
 dx.

  Add these to arrive at an improved estimate of

 L
1

0

 
1

1 + x2
 dx.

 75. Show that the value of 11

0
 sin (x2) dx cannot possibly be 2.

 76. Show that the value of 11

0
 2x + 8 dx lies between 222 ≈ 2.8 

and 3.

 77. Integrals of nonnegative functions Use the Max-Min Inequal-

ity to show that if ƒ is integrable then

ƒ(x) Ú 0 on 3a, b4 1 L
b

a

ƒ(x) dx Ú 0.

 78. Integrals of nonpositive functions Show that if ƒ is integrable 

then

ƒ(x) … 0 on 3a, b4 1 L
b

a

ƒ(x) dx … 0.

 79. Use the inequality sin x … x, which holds for x Ú 0, to ind an 

upper bound for the value of 11

0
 sin x dx.

 80. The inequality sec x Ú 1 + (x2>2) holds on (-p>2, p>2). Use it 

to ind a lower bound for the value of 11

0
 sec x dx.

 81. If av(ƒ) really is a typical value of the integrable function ƒ(x) 

on 3a, b4 , then the constant function av(ƒ) should have the same 

integral over 3a, b4  as ƒ. Does it? That is, does

 L
b

a

 av(ƒ) dx = L
b

a

ƒ(x) dx?

  Give reasons for your answer.

 82. It would be nice if average values of integrable functions obeyed 

the following rules on an interval 3a, b4 .
a. av(ƒ + g) = av(ƒ) + av(g)

b. av(kƒ) = k av(ƒ)  (any number k)

c. av(ƒ) … av(g) if ƒ(x) … g(x) on 3a, b4 .
  Do these rules ever hold? Give reasons for your answers.

 83. Upper and lower sums for increasing functions

a. Suppose the graph of a continuous function ƒ(x) rises steadily 

as x moves from left to right across an interval 3a, b4 . Let 

P be a partition of 3a, b4  into n subintervals of equal length 
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 87. We say ƒ is uniformly continuous on 3a, b4  if given any e 7 0, 

there is a d 7 0 such that if x1, x2 are in 3a, b4  and 0 x1 - x2 0 6 d, 

then 0 ƒ(x1) - ƒ(x2) 0 6 e. It can be shown that a continuous func-

tion on 3a, b4  is uniformly continuous. Use this and the igure for 

Exercise 86 to show that if ƒ is continuous and e 7 0 is given, it 

is possible to make U - L … e # (b - a) by making the largest of 

the ∆xk>s suiciently small.

 88. If you average 30 mi >h on a 150-mi trip and then return over the 

same 150 mi at the rate of 50 mi >h, what is your average speed for 

the trip? Give reasons for your answer.

COMPUTER EXPLORATIONS

If your CAS can draw rectangles associated with Riemann sums, use 

it to draw rectangles associated with Riemann sums that converge to 

the integrals in Exercises 89–94. Use n = 4, 10, 20, and 50 subinter-

vals of equal length in each case.

 89.  L
1

0

(1 - x) dx =
1
2

 90.  L
1

0

(x2 + 1) dx =
4
3

 91.  L
p

-p

 cos x dx = 0

 92.  L
p>4

0

 sec2 x dx = 1

 93.  L
1

-1

0 x 0  dx = 1

 94.  L
2

1

 
1
x dx  (The integral’s value is about 0.693.)

In Exercises 95–98, use a CAS to perform the following steps:

a. Plot the functions over the given interval.

b. Partition the interval into n = 100, 200, and 1000 sub-

intervals of equal length, and evaluate the function at the 

midpoint of each subinterval.

c. Compute the average value of the function values generated 

in part (b).

d. Solve the equation ƒ(x) = (average value) for x using the 

average value calculated in part (c) for the n = 1000 parti-

tioning.

 95. ƒ(x) = sin x   on 30, p4
 96. ƒ(x) = sin2 x   on 30, p4
 97. ƒ(x) = x sin 

1
x   on cp

4
, p d

 98. ƒ(x) = x sin2 
1
x   on cp

4
, p d

 86. Suppose that ƒ is continuous and nonnegative over 3a, b4 , as in 

the accompanying igure. By inserting points

x1, x2, . . . , xk - 1, xk, . . . , xn - 1

  as shown, divide 3a, b4  into n subintervals of lengths 

∆x1 = x1 - a, ∆x2 = x2 - x1, . . . , ∆xn = b - xn - 1, which 

need not be equal.

a. If mk = min 5ƒ(x) for x in the kth subinterval6 , explain the 

connection between the lower sum

L = m1 ∆x1 + m2 ∆x2 + g + mn ∆xn

   and the shaded regions in the irst part of the igure.

b. If Mk = max 5ƒ(x) for x in the kth subinterval6 , explain the 

connection between the upper sum

U = M1 ∆x1 + M2 ∆x2 + g + Mn ∆xn

   and the shaded regions in the second part of the igure.

c. Explain the connection between U - L and the shaded 

regions along the curve in the third part of the igure.

x

y

0 a bx1 x2 x3 xk−1 xn−1xk

y = f (x)

x

y

0 a bxk+1xk

x

y

0 a bxk+1xk

b − a

e
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5.4  The Fundamental Theorem of Calculus

In this section we present the Fundamental Theorem of Calculus, which is the central the-

orem of integral calculus. It connects integration and differentiation, enabling us to com-

pute integrals by using an antiderivative of the integrand function rather than by taking 

limits of Riemann sums as we did in Section 5.3. Leibniz and Newton exploited this rela-

tionship and started mathematical developments that fueled the scientific revolution for 

the next 200 years.

Along the way, we will present an integral version of the Mean Value Theorem, which 

is another important theorem of integral calculus and is used to prove the Fundamental 

Theorem. We also find that the net change of a function over an interval is the integral of 

its rate of change, as suggested by Example 2 in Section 5.1.

Mean Value Theorem for Definite Integrals

In the previous section we defined the average value of a continuous function over a 

closed interval 3a, b4  to be the definite integral 1b

a
ƒ(x) dx divided by the length or width 

b - a of the interval. The Mean Value Theorem for Definite Integrals asserts that this 

average value is always taken on at least once by the function ƒ in the interval.

The graph in Figure 5.16 shows a positive continuous function y = ƒ(x) defined over 

the interval 3a, b4 . Geometrically, the Mean Value Theorem says that there is a number c 

in 3a, b4  such that the rectangle with height equal to the average value ƒ(c) of the func-

tion and base width b - a has exactly the same area as the region beneath the graph of ƒ 

from a to b.

HISTORICAL BIOGRAPHY

Sir Isaac Newton

(1642–1727)

www.goo.gl/qoKepF

y

x
a b0 c

y = f (x)

f (c), 

b − a

average

height

FIGURE 5.16 The value ƒ(c) in the 

Mean Value Theorem is, in a sense, 

the average (or mean) height of ƒ on 3a, b4 . When ƒ Ú 0, the area of the 

rectangle is the area under the graph of 

ƒ from a to b,

ƒ(c)(b - a) = L
b

a

 ƒ(x) dx. THEOREM 3—The Mean Value Theorem for Definite Integrals

If ƒ is continuous on 3a, b4 , then at some point c in 3a, b4 ,
ƒ(c) =

1
b - a

 L
b

a

ƒ(x) dx.

Proof  If we divide both sides of the Max-Min Inequality (Table 5.6, Rule 6) by 

(b - a), we obtain

min ƒ …
1

b - a
 L

b

a

ƒ(x) dx … max ƒ.

Since ƒ is continuous, the Intermediate Value Theorem for Continuous Functions (Section 2.5) 

says that ƒ must assume every value between min ƒ and max ƒ. It must therefore assume 

the value (1>(b - a))1b

a
ƒ(x) dx at some point c in 3a, b4 . 

The continuity of ƒ is important here. It is possible for a discontinuous function to 

never equal its average value (Figure 5.17).

EXAMPLE 1  Show that if ƒ is continuous on 3a, b4 , a ≠ b, and if

 L
b

a

ƒ(x) dx = 0,

then ƒ(x) = 0 at least once in 3a, b4 .
Solution The average value of ƒ on 3a, b4  is

av(ƒ) =
1

b - a
 L

b

a

ƒ(x) dx =
1

b - a
 #  0 = 0.

x

y

0

1

1 2

Average value 1�2

not assumed

y = f (x)

1
2

FIGURE 5.17 A discontinuous function 

need not assume its average value.

http://www.goo.gl/qoKepF
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By the Mean Value Theorem, ƒ assumes this value at some point c ∊  3a, b4 . This is illus-

trated in Figure 5.18 for the function f(x) = 9x2 - 16x + 4 on the interval [0, 2]. 

Fundamental Theorem, Part 1

It can be very difficult to compute definite integrals by taking the limit of Riemann sums. 

We now develop a powerful new method for evaluating definite integrals, based on using 

antiderivatives. This method combines the two strands of calculus. One strand involves the 

idea of taking the limits of finite sums to obtain a definite integral, and the other strand 

contains derivatives and antiderivatives. They come together in the Fundamental Theorem 

of Calculus. We begin by considering how to differentiate a certain type of function that is 

described as an integral.

If ƒ(t) is an integrable function over a finite interval I, then the integral from any fixed 

number a ∊  I  to another number x ∊  I  defines a new function F whose value at x is

 F(x) = L
x

a

ƒ(t) dt. (1)

For example, if ƒ is nonnegative and x lies to the right of a, then F(x) is the area under the 

graph from a to x (Figure 5.19). The variable x is the upper limit of integration of an inte-

gral, but F is just like any other real-valued function of a real variable. For each value of 

the input x, there is a single numerical output, in this case the definite integral of ƒ from a 

to x.

Equation (1) gives a useful way to define new functions (as we will see in 

 Section 7.1), but its key importance is the connection that it makes between integrals 

and derivatives. If ƒ is a continuous function, then the Fundamental Theorem asserts 

that F is a differentiable function of x whose derivative is ƒ itself. That is, at each x in 

the interval [a, b] we have

 F′(x) = ƒ(x).

To gain some insight into why this holds, we look at the geometry behind it.

If ƒ Ú 0 on 3a, b4 , then to compute F′(x) from the definition of the derivative we 

must take the limit as h S 0 of the difference quotient

F(x + h) - F(x)

h
.

If h 7 0, then F(x + h) is the area under the graph of ƒ from a to x + h, while F(x) is the 

area under the graph of ƒ from a to x. Subtracting the two gives us the area under the graph 

of ƒ between x and x + h (see Figure 5.20). As shown in Figure 5.20, if h is small, the 

area under the graph of ƒ from x to x + h is approximated by the area of the rectangle 

whose height is ƒ(x) and whose base is the interval 3x, x + h4 . That is,

F(x + h) - F(x) ≈ hƒ(x).

Dividing both sides by h, we see that the value of the difference quotient is very close to 

the value of ƒ(x):

F(x + h) - F(x)

h
≈ ƒ(x).

This approximation improves as h approaches 0. It is reasonable to expect that F′(x), 

which is the limit of this difference quotient as h S 0, equals ƒ(x), so that 

F′(x) = lim
hS0

 
F(x + h) - F(x)

h
= ƒ(x).

This equation is true even if the function ƒ is not positive, and it forms the first part of the 

Fundamental Theorem of Calculus.

x

y

0 1 2cc

2

−2

−4

4

8

6

y = f (x) = 9x2 − 16x + 4

FIGURE 5.18 The function 

f (x) = 9x2 - 16x + 4 satisfies 

12

0
ƒ(x) dx = 0, and there are two values 

of c in the interval [0, 2] where ƒ(c) = 0.

t

y

0 a x b

area = F(x)

y = f (t)

FIGURE 5.19 The function F(x)  

defined by Equation (1) gives the area 

under the graph of ƒ from a to x when ƒ is 

nonnegative and x 7 a.

y = f (t)

t

y

0 a x x + h b

f (x)

FIGURE 5.20 In Equation (1), 

F(x) is the area to the left of x. Also, 

F(x + h) is the area to the left of 

x + h. The difference quotient 3F(x + h) - F(x)4 >h is then ap-

proximately equal to ƒ(x), the height 

of the rectangle shown here.
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Before proving Theorem 4, we look at several examples to gain an understanding of 

what it says. In each of these examples, notice that the independent variable x appears in 

either the upper or the lower limit of integration (either as part of a formula or by itself). 

The independent variable on which y depends in these examples is x, while t is merely a 

dummy variable in the integral.

EXAMPLE 2  Use the Fundamental Theorem to find dy>dx if

 (a) y = L
x

a

 (t3 + 1) dt (b) y = L
5

x

3t sin t dt

 (c) y = L
x2

1

 cos t dt (d) y = L
4

1 + 3x2

  
1

2 + t
 dt

Solution We calculate the derivatives with respect to the independent variable x.

 (a) 
dy

dx
=

d

dx
  L

x

a

 (t3 + 1) dt = x3 + 1 Eq. (2) with ƒ(t) = t3 + 1

 (b)  
dy

dx
=

d

dx
  L

5

x

3t sin t dt =
d

dx
 a-L x

5

3t sin t dtb  Table 5.6, Rule 1

    = -  
d

dx
 L

x

5

 3t sin t dt

    = -3x sin x  Eq. (2) with ƒ(t) = 3t sin t

 (c) The upper limit of integration is not x but x2. This makes y a composition of the two 

functions

y = L
u

1

 cos t dt  and  u = x2.

We must therefore apply the Chain Rule to ind dy>dx:

  
dy

dx
=

dy

du
 #  

du

dx

  = a d

du
 L

u

1

 cos t dtb #  
du

dx

  = cos u #  
du

dx
 Eq. (2) with ƒ(t) = cos t

 = cos(x2) # 2x

 = 2x cos x2

THEOREM 4—The Fundamental Theorem of Calculus, Part 1

If ƒ is continuous on 3a, b4 , then F(x) = 1 x

a
 ƒ(t) dt is continuous on 3a, b4  and 

diferentiable on (a, b) and its derivative is ƒ(x):

 F′(x) =
d

dx
 L

x

a

ƒ(t) dt = ƒ(x). (2)
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 (d)  
d

dx
  L

4

1 + 3x2

  
1

2 + t
 dt =

d

dx
 a-L1 + 3x2

4

1
2 + t

 dtb  Rule 1

    = -
d

dx
  L

1 + 3x2

4

1
2 + t

 dt

    = -  
1

2 + (1 + 3x2)
# d

dx
 (1 + 3x2) Eq. (2) and the Chain Rule

    = -  
2x

1 + x2
 

Proof of Theorem 4  We prove the Fundamental Theorem, Part 1, by applying the 

deinition of the derivative directly to the function F(x), when x and x + h are in (a, b). 

This means writing out the diference quotient

 
F(x + h) - F(x)

h
 (3)

and showing that its limit as h S 0 is the number ƒ(x). Doing so, we ind that

 F′(x) = lim
hS0

  
F(x + h) - F(x)

h

 = lim
hS0

  
1
h

 c  L
x + h

a

ƒ(t) dt - L
x

a

ƒ(t) dt d
 = lim

hS0
  
1
h

 L
x + h

x

ƒ(t) dt.   Table 5.6, Rule 5

According to the Mean Value Theorem for Deinite Integrals, there is some point c 

between x and x + h where ƒ(c) equals the average value of ƒ on the interval 3x, x + h4 . 
That is, there is some number c in 3x, x + h4  such that

 
1
h

  L
x + h

x

ƒ(t) dt = ƒ(c). (4)

As h S 0, x + h approaches x, which forces c to approach x also (because c is trapped 

between x and x + h). Since ƒ is continuous at x, ƒ(c) therefore approaches ƒ(x):

 lim
hS0

 ƒ(c) = ƒ(x). (5)

Hence we have shown that, for any x in (a, b),

 F′(x) = lim
hS0

 
1
h

  L
x + h

x

ƒ(t) dt

 = lim
hS0

  ƒ(c)  Eq. (4)

 = ƒ(x),  Eq. (5)

and therefore F is diferentiable at x. Since diferentiability implies continuity, this also 

shows that F is continuous on the open interval (a, b). To complete the proof, we just have 

to show that F is also continuous at x = a and x = b. To do this, we make a very similar 

argument, except that at x = a we need only consider the one-sided limit as h S 0+, and 

similarly at x = b we need only consider h S 0-. This shows that F has a one-sided de-

rivative at x = a and at x = b, and therefore Theorem 1 in Section 3.2 implies that F is 

continuous at those two points. 
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Fundamental Theorem, Part 2 (The Evaluation Theorem)

We now come to the second part of the Fundamental Theorem of Calculus. This part describes 

how to evaluate definite integrals without having to calculate limits of Riemann sums. Instead 

we find and evaluate an antiderivative at the upper and lower limits of integration.

THEOREM 4 (Continued)—The Fundamental Theorem of Calculus, Part 2

If ƒ is continuous over 3a, b4  and F is any antiderivative of ƒ on 3a, b4 , then

 L
b

a

ƒ(x) dx = F(b) - F(a).

Proof  Part 1 of the Fundamental Theorem tells us that an antiderivative of ƒ exists, namely

G(x) = L
x

a

ƒ(t) dt.

Thus, if F is any antiderivative of ƒ, then F(x) = G(x) + C for some constant C for 

a 6 x 6 b (by Corollary 2 of the Mean Value Theorem for Derivatives, Section 4.2). 

Since both F and G are continuous on 3a, b4 , we see that the equality F(x) = G(x) + C 

also holds when x = a and x = b by taking one-sided limits (as x S a+ and x S b-).

Evaluating F(b) - F(a), we have

 F(b) - F(a) = 3G(b) + C4 - 3G(a) + C4
 = G(b) - G(a)

 = L
b

a

ƒ(t) dt - L
a

a

ƒ(t) dt

 = L
b

a

ƒ(t) dt - 0

  = L
b

a

ƒ(t) dt.  

The Evaluation Theorem is important because it says that to calculate the definite 

integral of ƒ over an interval 3a, b4  we need do only two things:

1. Find an antiderivative F of ƒ, and

2. Calculate the number F(b) - F(a), which is equal to 1b

a  ƒ(x) dx.

This process is much easier than using a Riemann sum computation. The power of the 

theorem follows from the realization that the definite integral, which is defined by a com-

plicated process involving all of the values of the function ƒ over 3a, b4 , can be found by 

knowing the values of any antiderivative F at only the two endpoints a and b. The usual 

notation for the difference F(b) - F(a) is

F(x) R
a

b

  or  JF(x) R
a

b

,     

depending on whether F has one or more terms.

EXAMPLE 3  We calculate several definite integrals using the Evaluation Theorem, 

rather than by taking limits of Riemann sums.

(a)   L
p

0

 cos x dx = sin x d
0

p

 
d

dx
 sin x = cos x

    = sin p - sin 0 = 0 - 0 = 0
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(b)   L
0

-p>4 sec x tan x dx = sec x d
-p>4
0

 
d

dx
 sec x = sec x tan x

    = sec 0 - sec a-  
p
4
b = 1 - 22

(c)   L
4

1

a3
2

 1x -
4

x2
b  dx = c x3>2 +

4
x d

1

4

 
d

dx
 ax3>2 +

4
xb =

3

2
 x1>2 -

4

x2

    = c (4)3>2 +
4
4
d - c (1)3>2 +

4
1
d

    = 38 + 14 - 354 = 4 

Exercise 72 offers another proof of the Evaluation Theorem, bringing together the 

ideas of Riemann sums, the Mean Value Theorem, and the definition of the definite 

integral.

THEOREM 5—The Net Change Theorem

The net change in a diferentiable function F(x) over an interval a … x … b is the 

integral of its rate of change:

 F(b) - F(a) = L
b

a

F′(x) dx. (6)

EXAMPLE 4  Here are several interpretations of the Net Change Theorem.

(a) If c(x) is the cost of producing x units of a certain commodity, then c′(x) is the mar-

ginal cost (Section 3.4). From Theorem 5,

 L
x2

x1

c′(x) dx = c(x2) - c(x1),

which is the cost of increasing production from x1 units to x2 units.

(b) If an object with position function s(t) moves along a coordinate line, its velocity is 

y(t) = s′(t). Theorem 5 says that

 L
t2

t1

y(t) dt = s(t2) - s(t1),

so the integral of velocity is the displacement over the time interval t1 … t … t2. On 

the other hand, the integral of the speed 0 y(t) 0  is the total distance traveled over the 

time interval. This is consistent with our discussion in Section 5.1. 

The Integral of a Rate

We can interpret Part 2 of the Fundamental Theorem in another way. If F is any antideriva-

tive of ƒ, then F′ = ƒ. The equation in the theorem can then be rewritten as

 L
b

a

F′(x) dx = F(b) - F(a).

Now F′(x) represents the rate of change of the function F(x) with respect to x, so the last 

equation asserts that the integral of F′ is just the net change in F as x changes from a to b. 

Formally, we have the following result.
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If we rearrange Equation (6) as

F(b) = F(a) + L
b

a

F′(x) dx,

we see that the Net Change Theorem also says that the final value of a function F(x) over 

an interval 3a, b4  equals its initial value F(a) plus its net change over the interval. So if 

y(t) represents the velocity function of an object moving along a coordinate line, this 

means that the object’s final position s(t2) over a time interval t1 … t … t2 is its initial 

position s(t1) plus its net change in position along the line (see Example 4b).

EXAMPLE 5  Consider again our analysis of a heavy rock blown straight up from the 

ground by a dynamite blast (Example 2, Section 5.1). The velocity of the rock at any time 

t during its motion was given as y(t) = 160 - 32t ft>sec.

(a) Find the displacement of the rock during the time period 0 … t … 8.

(b) Find the total distance traveled during this time period.

Solution

(a) From Example 4b, the displacement is the integral

  L
8

0

y(t) dt = L
8

0

(160 - 32t) dt = 3160t - 16t248
0

  = (160)(8) - (16)(64) = 256.

This means that the height of the rock is 256 ft above the ground 8 sec after the explo-

sion, which agrees with our conclusion in Example 2, Section 5.1.

(b) As we noted in Table 5.3, the velocity function y(t) is positive over the time interval 30, 54  and negative over the interval 35, 84 . Therefore, from Example 4b, the total 

distance traveled is the integral

  L
8

0

0 y(t) 0 dt = L
5

0

0 y(t) 0 dt + L
8

5

0 y(t) 0 dt

 = L
5

0

(160 - 32t) dt - L
8

5

(160 - 32t) dt

 = 3160t - 16t245
0 - 3160t - 16t248

5

 = 3 (160)(5) - (16)(25)4 - 3 (160)(8) - (16)(64) - ((160)(5) - (16)(25))4
 = 400 - (-144) = 544.

Again, this calculation agrees with our conclusion in Example 2, Section 5.1. That is, 

the total distance of 544 ft traveled by the rock during the time period 0 … t … 8 is 

(i) the maximum height of 400 ft it reached over the time interval 30, 54  plus (ii) the 

additional distance of 144 ft the rock fell over the time interval 35, 84 . 
The Relationship Between Integration and Differentiation

The conclusions of the Fundamental Theorem tell us several things. Equation (2) can be 

rewritten as

d

dx
 L

x

a

ƒ(t) dt = ƒ(x),

� v(t) � = - (160 - 32t) over [5, 8]
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Total Area

Area is always a nonnegative quantity. The Riemann sum approximations contain terms 

such as ƒ(ck) ∆xk that give the area of a rectangle when ƒ(ck) is positive. When ƒ(ck) is 

negative, then the product ƒ(ck) ∆xk is the negative of the rectangle’s area. When we add 

up such terms for a negative function, we get the negative of the area between the curve 

and the x-axis. If we then take the absolute value, we obtain the correct positive area.

EXAMPLE 6  Figure 5.21 shows the graph of ƒ(x) = x2 - 4 and its mirror image 

g(x) = 4 - x2 reflected across the x-axis. For each function, compute

(a) the deinite integral over the interval 3-2, 24 , and

(b) the area between the graph and the x-axis over 3-2, 24 .
Solution

(a)  L
2

-2
 ƒ(x) dx = c x3

3
- 4x d 2

-2

= a8
3

- 8b - a-8
3

+ 8b = -  
32
3

,

and

 L
2

-2

 g(x) dx = c 4x -
x3

3
d 2

-2

=
32
3

.

(b) In both cases, the area between the curve and the x-axis over 3-2, 24  is 32>3 square 

units. Although the deinite integral of ƒ(x) is negative, the area is still positive. 

To compute the area of the region bounded by the graph of a function y = ƒ(x) and 

the x-axis when the function takes on both positive and negative values, we must be care-

ful to break up the interval 3a, b4  into subintervals on which the function doesn’t change 

sign. Otherwise we might get cancelation between positive and negative signed areas, 

leading to an incorrect total. The correct total area is obtained by adding the absolute value 

of the definite integral over each subinterval where ƒ(x) does not change sign. The term 

“area” will be taken to mean this total area.

EXAMPLE 7  Figure 5.22 shows the graph of the function ƒ(x) = sin x between 

x = 0 and x = 2p. Compute

(a) the deinite integral of ƒ(x) over 30, 2p4 ,
(b) the area between the graph of ƒ(x) and the x-axis over 30, 2p4 .

which says that if you first integrate the function ƒ and then differentiate the result, you get 

the function ƒ back again. Likewise, replacing b by x and x by t in Equation (6) gives

 L
x

a

 F′(t) dt = F(x) - F(a),

so that if you first differentiate the function F and then integrate the result, you get the 

function F back (adjusted by an integration constant). In a sense, the processes of integra-

tion and differentiation are “inverses” of each other. The Fundamental Theorem also says 

that every continuous function ƒ has an antiderivative F. It shows the importance of find-

ing antiderivatives in order to evaluate definite integrals easily. Furthermore, it says that 

the differential equation dy>dx = ƒ(x) has a solution (namely, any of the functions 

y = F(x) + C) when ƒ is a continuous function.

x

y

0 1 2−1

−1

−2

−3

−4

−2

f (x) = x2 − 4

x

y

0 1 2−1

4

3

2

1

−2

g(x) = 4 − x2

FIGURE 5.21 These graphs enclose the 

same amount of area with the x-axis, but the 

definite integrals of the two functions over 3-2, 24  differ in sign (Example 6).

−1

0

1

x

y

p 2p

y = sin x

Area = 2

Area =0−2 0 = 2

FIGURE 5.22 The total area between 

y = sin x and the x-axis for 0 … x … 2p 

is the sum of the absolute values of two 

integrals (Example 7).
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Solution

(a) The deinite integral for ƒ(x) = sin x is given by

  L
2p

0

 sin x dx = -cos x d
0

2p

= - 3cos 2p - cos 04 = - 31 - 14 = 0.

The deinite integral is zero because the portions of the graph above and below the  

x-axis make canceling contributions.

(b) The area between the graph of ƒ(x) and the x-axis over 30, 2p4  is calculated by 

breaking up the domain of sin x into two pieces: the interval 30, p4  over which it is 

nonnegative and the interval 3p, 2p4  over which it is nonpositive.

 L
p

0

 sin x dx = -cos x d
0

p

= - 3cos p - cos 04 = - 3-1 - 14 = 2

 L
2p

p

 sin x dx = -cos x d
p

2p

= - 3cos 2p - cos p4 = - 31 - (-1)4 = -2

The second integral gives a negative value. The area between the graph and the axis is 

obtained by adding the absolute values,

 Area = 0 2 0 + 0-2 0 = 4. 

Summary: 

To find the area between the graph of y = ƒ(x) and the x-axis over the interval 3a, b4 :
1. Subdivide 3a, b4  at the zeros of ƒ.

2. Integrate ƒ over each subinterval.

3. Add the absolute values of the integrals.

EXAMPLE 8  Find the area of the region between the x-axis and the graph of 

ƒ(x) = x3 - x2 - 2x, -1 … x … 2.

Solution First find the zeros of ƒ. Since

ƒ(x) = x3 - x2 - 2x = x(x2 - x - 2) = x(x + 1)(x - 2),

the zeros are x = 0, -1, and 2 (Figure 5.23). The zeros subdivide 3-1, 24  into two subin-

tervals: 3-1, 04 , on which ƒ Ú 0, and 30, 24 , on which ƒ … 0. We integrate ƒ over each 

subinterval and add the absolute values of the calculated integrals.

 L
0

-1

(x3 - x2 - 2x) dx = c x4

4
-

x3

3
- x2 d

-1

0

= 0 - c 1
4

+
1
3

- 1 d =
5
12

 L
2

0

(x3 - x2 - 2x) dx = c x4

4
-

x3

3
- x2 d

0

2

= c 4 -
8
3

- 4 d - 0 = -  
8
3

The total enclosed area is obtained by adding the absolute values of the calculated integrals.

 Total enclosed area =
5
12

+ 2 -  
8
3
2 =

37
12

 

x

y

0 2−1

y = x3 − x2 − 2x

Area = P   P
=

8
3

–

8
3

Area = 5
12

FIGURE 5.23 The region between  

the curve y = x3 - x2 - 2x and the 

x-axis (Example 8).
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Evaluating Integrals

Evaluate the integrals in Exercises 1–28.

 1.  L
2

0

 x(x - 3) dx 2.  L
1

-1

 (x2 - 2x + 3) dx

 3.  L
2

-2

 
3

(x + 3)4
 dx 4.  L

1

-1

 x299 dx

 5.  L
4

1

a3x2 -
x3

4
b  dx 6.  L

3

-2

(x3 - 2x + 3) dx

 7.  L
1

0

1x2 + 1x2 dx 8.  L
32

1

x-6>5 dx

 9.  L
p>3

0

2 sec2 x dx 10.  L
p

0

(1 + cos x) dx

 11.  L
3p>4

p>4  csc u cot u du  12.  L
p>3

0

 4 
sin u

cos2 u
 du

 13.  L
0

p>2 
1 + cos 2t

2
 dt  14.  L

p>3
-p>3 sin2 t dt

 15.  L
p>4

0

 tan2 x dx 16.  L
p>6

0

 (sec x + tan x)2 dx

 17.  L
p>8

0

sin 2x dx 18.  L
-p>4

-p>3 a4 sec2 t +
p

t2
b  dt

 19.  L
-1

1

(r + 1)2 dr  20.  L
23

-23

 (t + 1)(t2 + 4) dt

 21.  L
1

22

 au7

2
-

1

u5
b  du 22.  L

-1

-3

 
y5 - 2y

y3
 dy

 23.  L
22

1

  
s2 + 2s

s2
 ds 24.  L

8

1

 
(x1>3 + 1) (2 - x2>3)

x1>3  dx

 25.  L
p

p>2 sin 2x

2 sin x
 dx 26.  L

p>3
0

 (cos x + sec x)2 dx

 27.  L
4

-4

0 x 0  dx 28.  L
p

0

 
1
2

 (cos x + 0 cos x 0 ) dx

In Exercises 29–32, guess an antiderivative for the integrand function. 

Validate your guess by differentiation and then evaluate the given 

definite integral. (Hint: Keep the Chain Rule in mind when trying to 

guess an antiderivative. You will learn how to find such antideriva-

tives in the next section.)

 29.  L
2p>2

0

x cos x2 dx 30.  L
p2

1

 
sin 2x

2x
 dx

 31.  L
5

2

x dx

21 + x2
 32.  L

p>3
0

sin2 x cos x dx

Derivatives of Integrals

Find the derivatives in Exercises 33–38.

a. by evaluating the integral and diferentiating the result.

b. by diferentiating the integral directly.

 33. 
d

dx
 L
1x

0

 cos t dt 34. 
d

dx
 L

 sin x

1

3t2 dt

 35. 
d

dt
  L

t4

0

1u du 36. 
d

du
 L

 tan u

0

 sec2 y dy

 37. 
d

dx
  L

x3

0

 t-2>3 dt 38. 
d

dt
  L

2t

0

 ax4 +
3

21 - x2
b  dx

Find dy>dx in Exercises 39–46.

 39. y = L
x

0

21 + t2 dt 40. y = L
x

1

 
1
t

 dt, x 7 0

 41. y = L
0

1x

 sin (t2) dt 42. y = x L
x2

2

 sin (t3) dt

 43. y = L
x

-1

 
t2

t2 + 4
 dt - L

x

3

 
t2

t2 + 4
 dt

 44. y = a   L
x

0

 (t3 + 1)10 dtb3

 45. y = L
 sin x

0

 
dt

21 - t2
, 0 x 0 6

p

2

 46. y = L
0

 tan x

  
dt

1 + t2

Area

In Exercises 47–50, find the total area between the region and the 

x-axis.

 47. y = -x2 - 2x, -3 … x … 2

 48. y = 3x2 - 3, -2 … x … 2

 49. y = x3 - 3x2 + 2x, 0 … x … 2

 50. y = x1>3 - x, -1 … x … 8

Find the areas of the shaded regions in Exercises 51–54.

 51. 

x

y

0

2

p

y = 2

x = p

y = 1 + cos x

EXERCISES 5.4
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 64. Revenue from marginal revenue Suppose that a company’s 

marginal revenue from the manufacture and sale of eggbeaters is

dr

dx
= 2 - 2>(x + 1)2,

  where r is measured in thousands of dollars and x in thousands of 

units. How much money should the company expect from a pro-

duction run of x = 3 thousand eggbeaters? To ind out, integrate 

the marginal revenue from x = 0 to x = 3.

 65. The temperature T (°F) of a room at time t minutes is given by

T = 85 - 3225 - t for 0 … t … 25.

a. Find the room’s temperature when t = 0, t = 16, and 

t = 25.

b. Find the room’s average temperature for 0 … t … 25.

 66. The height H (ft) of a palm tree after growing for t years is  

given by

H = 2t + 1 + 5t1>3 for 0 … t … 8.

a. Find the tree’s height when t = 0, t = 4, and t = 8.

b. Find the tree’s average height for 0 … t … 8.

 67. Suppose that 1 x

1
 ƒ(t) dt = x2 - 2x + 1. Find ƒ(x).

 68. Find ƒ(4) if 1 x

0
 ƒ(t) dt = x cos px.

 69. Find the linearization of

ƒ(x) = 2 - L
x + 1

2

 
9

1 + t
 dt

  at x = 1.

 70. Find the linearization of

g(x) = 3 + L
x2

1

 sec (t - 1) dt

  at x = -1.

 71. Suppose that ƒ has a positive derivative for all values of x and that 

ƒ(1) = 0. Which of the following statements must be true of the 

function

g(x) = L
x

0

 ƒ(t) dt?

Give reasons for your answers.

a. g is a diferentiable function of x.

b. g is a continuous function of x.

c. The graph of g has a horizontal tangent at x = 1.

d. g has a local maximum at x = 1.

e. g has a local minimum at x = 1.

f. The graph of g has an inlection point at x = 1.

g. The graph of dg>dx crosses the x-axis at x = 1.

 72. Another proof of the Evaluation Theorem

a. Let a = x0 6 x1 6 x2 g6  xn = b be any partition of 3a, b4 , and let F be any antiderivative of ƒ. Show that

F(b) - F(a) = a
n

i = 1

 3F(xi) - F(xi-1)4 .

 52. y

x

1

p
6

5p
6

y = sin x

 53. 

u

y

−"2

"2

p
4

p
4

− 0

y = sec u tan u

 54. 

t

y

p
4

− 0 1

1

2

y = sec2 t

y = 1 − t2

Initial Value Problems

Each of the following functions solves one of the initial value prob-

lems in Exercises 55–58. Which function solves which problem? Give 

brief reasons for your answers.

a. y = L
x

1

 
1
t

 dt - 3 b. y = L
x

0

 sec t dt + 4

c. y = L
x

-1

 sec t dt + 4 d. y = L
x

p

 
1
t

  dt - 3

 55. 
dy

dx
=

1
x , y(p) = -3 56. y′ = sec x, y(-1) = 4

 57. y′ = sec x, y(0) = 4 58. y′ =
1
x , y(1) = -3

Express the solutions of the initial value problems in Exercises 59 and 

60 in terms of integrals.

 59. 
dy

dx
= sec x, y(2) = 3 60. 

dy

dx
= 21 + x2, y(1) = -2

Theory and Examples

 61. Archimedes’ area formula for parabolic arches Archimedes 

(287–212 b.c.), inventor, military engineer, physicist, and the 

greatest mathematician of classical times in the Western world, dis-

covered that the area under a parabolic arch is two-thirds the base 

times the height. Sketch the parabolic arch y = h - (4h>b2)x2, 

-b>2 … x … b>2, assuming that h and b are positive. Then use 

calculus to ind the area of the region enclosed between the arch 

and the x-axis.

 62. Show that if k is a positive constant, then the area between the  

x-axis and one arch of the curve y = sin kx is 2>k.

 63. Cost from marginal cost The marginal cost of printing a poster 

when x posters have been printed is

dc

dx
=

1

21x

  dollars. Find c(100) - c(1), the cost of printing posters 2–100.
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a. Plot the functions ƒ and F together over 3a, b4 .
b. Solve the equation F′(x) = 0. What can you see to be true 

about the graphs of ƒ and F at points where F′(x) = 0? Is 

your observation borne out by Part 1 of the Fundamental 

Theorem coupled with information provided by the irst 

derivative? Explain your answer.

c. Over what intervals (approximately) is the function F increas-

ing and decreasing? What is true about ƒ over those intervals?

d. Calculate the derivative ƒ′ and plot it together with F. What 

can you see to be true about the graph of F at points where 

ƒ′(x) = 0? Is your observation borne out by Part 1 of the 

Fundamental Theorem? Explain your answer.

 75. ƒ(x) = x3 - 4x2 + 3x, 30, 44
 76. ƒ(x) = 2x4 - 17x3 + 46x2 - 43x + 12,  c 0, 

9

2
d

 77. ƒ(x) = sin 2x cos 
x

3
, 30, 2p4

 78. ƒ(x) = x cos px, 30, 2p4
In Exercises 79–82, let F(x) = 1u(x)

a
 ƒ(t) dt for the specified a, u, and 

ƒ. Use a CAS to perform the following steps and answer the questions 

posed.

a. Find the domain of F.

b. Calculate F′(x) and determine its zeros. For what points in its 

domain is F increasing? Decreasing?

c. Calculate F″(x) and determine its zero. Identify the local 

extrema and the points of inlection of F.

d. Using the information from parts (a)–(c), draw a rough hand-

sketch of y = F(x) over its domain. Then graph F(x) on your 

CAS to support your sketch.

 79. a = 1, u(x) = x2, ƒ(x) = 21 - x2

 80. a = 0, u(x) = x2, ƒ(x) = 21 - x2

 81. a = 0, u(x) = 1 - x, ƒ(x) = x2 - 2x - 3

 82. a = 0, u(x) = 1 - x2, ƒ(x) = x2 - 2x - 3

In Exercises 83 and 84, assume that ƒ is continuous and u(x) is twice-

differentiable.

 83. Calculate 
d

dx
 L

u(x)

a

ƒ(t) dt and check your answer using a CAS.

 84. Calculate 
d2

dx2
 L

u(x)

a

ƒ(t) dt and check your answer using a CAS.

b. Apply the Mean Value Theorem to each term to show that 

F(xi) - F(xi-1) = ƒ(ci)(xi - xi-1) for some ci in the interval 

(xi-1, xi). Then show that F(b) - F(a) is a Riemann sum for 

ƒ on 3a, b4 .
c. From part (b) and the deinition of the deinite integral, show that

F(b) - F(a) = L
b

a

 ƒ(x) dx.

 73. Suppose that ƒ is the diferentiable function shown in the accom-

panying graph and that the position at time t (sec) of a particle 

moving along a coordinate axis is

s = L
t

0

ƒ(x) dx

  meters. Use the graph to answer the following questions. Give rea-

sons for your answers.

y

x
0 1 2 3 4 5 6 7 8 9

1

2

3

4

−1

−2

(1, 1)

(2, 2) (5, 2)

(3, 3)

y = f (x)

a. What is the particle’s velocity at time t = 5?

b. Is the acceleration of the particle at time t = 5 positive, or 

negative?

c. What is the particle’s position at time t = 3?

d. At what time during the irst 9 sec does s have its largest value?

e. Approximately when is the acceleration zero?

f. When is the particle moving toward the origin? Away from 

the origin?

g. On which side of the origin does the particle lie at time  

t = 9?

 74. Find lim
xSq

  
1

2x
 L

x

1

 
dt

2t
.

COMPUTER EXPLORATIONS

In Exercises 75–78, let F(x) = 1 x

a
 ƒ(t) dt for the specified function ƒ 

and interval 3a, b4 . Use a CAS to perform the following steps and 

answer the questions posed.

5.5 Indefinite Integrals and the Substitution Method

The Fundamental Theorem of Calculus says that a definite integral of a continuous func-

tion can be computed directly if we can find an antiderivative of the function. In Section 

4.8 we defined the indefinite integral of the function ƒ with respect to x as the set of all 

antiderivatives of ƒ, symbolized by 1ƒ(x) dx. Since any two antiderivatives of ƒ differ by 

a constant, the indefinite integral 1 notation means that for any antiderivative F of ƒ,

Lƒ(x) dx = F(x) + C,
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where C is any arbitrary constant. The connection between antiderivatives and the definite 

integral stated in the Fundamental Theorem now explains this notation:

  L
b

a

ƒ(x) dx = F(b) - F(a) = 3F(b) + C4 - 3F(a) + C4
 = 3F(x) + C4 b

a = c  Lƒ(x) dx d b
a

.

When finding the indefinite integral of a function ƒ, remember that it always includes an 

arbitrary constant C.

We must distinguish carefully between definite and indefinite integrals. A definite 

integral 1b

a
ƒ(x) dx is a number. An indefinite integral 1ƒ(x) dx is a function plus an arbi-

trary constant C.

So far, we have only been able to find antiderivatives of functions that are clearly rec-

ognizable as derivatives. In this section we begin to develop more general techniques for 

finding antiderivatives of functions we can’t easily recognize as derivatives.

Substitution: Running the Chain Rule Backwards

If u is a differentiable function of x and n is any number different from -1, the Chain Rule 

tells us that

d

dx
 a un + 1

n + 1
b = un  

du

dx
.

From another point of view, this same equation says that un + 1>(n + 1) is one of the anti-

derivatives of the function un (du>dx). Therefore,

  Lun 
du

dx
 dx =

un + 1

n + 1
+ C. (1)

The integral in Equation (1) is equal to the simpler integral

 Lun du =
un + 1

n + 1
+ C,

which suggests that the simpler expression du can be substituted for (du>dx) dx when 

computing an integral. Leibniz, one of the founders of calculus, had the insight that indeed 

this substitution could be done, leading to the substitution method for computing integrals. 

As with differentials, when computing integrals we have

du =
du

dx
 dx.

EXAMPLE 1  Find the integral L (x3 + x)5(3x2 + 1) dx.

Solution We set u = x3 + x. Then

du =
du

dx
 dx = (3x2 + 1) dx,

so that by substitution we have

  L  (x3 + x)5(3x2 + 1) dx = L  u5 du  Let u = x3 + x, du = (3x2 + 1) dx.

  =
u6

6
+ C  Integrate with respect to u.

  =
(x3 + x)6

6
+ C Substitute x3 + x for u. 
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EXAMPLE 2  Find  L  22x + 1 dx.

Solution The integral does not fit the formula

 Lun du,

with u = 2x + 1 and n = 1>2, because

du =
du

dx
 dx = 2 dx,

which is not precisely dx. The constant factor 2 is missing from the integral. However,  

we can introduce this factor after the integral sign if we compensate for it by introducing a 

 factor of 1>2 in front of the integral sign. So we write

 L22x + 1 dx =
1
2

 L22x + 1 # 2 dx
 (+)+* ()*
 u du

 =
1
2

 Lu1>2 du Let u = 2x + 1, du = 2 dx.

 =
1
2

 
u3>2
3>2 + C  Integrate with respect to u.

 =
1
3

 (2x + 1)3>2 + C  Substitute 2x + 1 for u. 

The substitutions in Examples 1 and 2 are instances of the following general rule.

THEOREM 6—The Substitution Rule

If u = g(x) is a diferentiable function whose range is an interval I, and ƒ is con-

tinuous on I, then

Lƒ(g(x)) # g′(x) dx = Lƒ(u) du.    

Proof  By the Chain Rule, F(g(x)) is an antiderivative of ƒ(g(x)) # g′(x) whenever F is 

an antiderivative of ƒ, because

  
d

dx
 F(g(x)) = F′(g(x)) # g′(x) Chain Rule

  = ƒ(g(x)) # g′(x).  F ′ = ƒ

If we make the substitution u = g(x), then

  Lƒ(g(x)) g′(x) dx = L  
d

dx
 F(g(x)) dx

   = F(g(x)) + C  Theorem 8 in Chapter 4

   = F(u) + C  u = g(x)

   = LF′(u) du  Theorem 8 in Chapter 4

   = Lƒ(u) du.  F ′ = ƒ 
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The use of the variable u in the Substitution Rule is traditional (sometimes it is referred 

to as u-substitution), but any letter can be used, such as y, t, u and so forth. The rule pro-

vides a method for evaluating an integral of the form 1ƒ(g(x))g′(x) dx given that the con-

ditions of Theorem 6 are satisfied. The primary challenge is deciding what expression 

involving x to substitute for in the integrand. The following examples give helpful ideas.

The Substitution Method to evaluate 1ƒ( g (x)) g′(x) dx

1. Substitute u = g(x) and du = (du>dx) dx = g′(x) dx to obtain 1ƒ(u) du.

2. Integrate with respect to u.

3. Replace u by g(x).

EXAMPLE 3  Find L  sec2 (5x + 1) # 5 dx

Solution We substitute u = 5x + 1 and du = 5 dx. Then,

  L  sec2 (5x + 1) # 5 dx = L  sec2 u du  Let u = 5x + 1, du = 5 dx.

  = tan u + C  
d

du
 tan u = sec2 u

  = tan (5x + 1) + C. Substitute 5x + 1 for u. 

EXAMPLE 4  Find Lcos (7u + 3) du.

Solution We let u = 7u + 3 so that du = 7 du. The constant factor 7 is missing from 

the du term in the integral. We can compensate for it by multiplying and dividing by 7, 

using the same procedure as in Example 2. Then,

  L  cos (7u + 3) du =
1
7

 L  cos (7u + 3) # 7 du Place factor 1>7 in front of integral.

  =
1
7

 L  cos u du  Let u = 7u + 3, du = 7 du.

  =
1
7

 sin u + C  Integrate.

  =
1
7

 sin (7u + 3) + C.  Substitute 7u + 3 for u.

There is another approach to this problem. With u = 7u + 3 and du = 7 du as be-

fore, we solve for du to obtain du = (1>7) du. Then the integral becomes

   L  cos (7u + 3) du = L  cos u # 1
7

 du   Let u = 7u + 3, du = 7 du, and du = (1>7) du. 

  =
1
7

 sin u + C  Integrate.

  =
1
7

 sin (7u + 3) + C. Substitute 7u + 3 for u.

We can verify this solution by differentiating and checking that we obtain the original 

function cos (7u + 3). 

EXAMPLE 5  Sometimes we observe that a power of x appears in the integrand that 

is one less than the power of x appearing in the argument of a function we want to  integrate. 
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This observation immediately suggests we try a substitution for the higher power of x. 

This situation occurs in the following integration.

   Lx2 cos x3 dx = L  cos x3 # x2 dx

  = L  cos u #  
1
3

 du  
Let u = x3, du = 3x2 dx, 

(1>3) du = x2 dx.

  =
1
3

  Lcos u du

  =
1
3

 sin u + C  Integrate with respect to u.

  =
1
3

 sin x3 + C  Replace u by x3. 

It may happen that an extra factor of x appears in the integrand when we try a substi-

tution u = g(x). In that case, it may be possible to solve the equation u = g(x) for x in 

terms of u. Replacing the extra factor of x with that expression may then result in an inte-

gral that we can evaluate. Here is an example of this situation.

HISTORICAL BIOGRAPHY

George David Birkhoff 

(1884–1944)

www.goo.gl/0YjM2t

EXAMPLE 6  Evaluate  L  x22x + 1 dx.

Solution Our previous experience with the integral in Example 2 suggests the substitu-

tion u = 2x + 1 with du = 2 dx. Then

22x + 1 dx =
1
2

 2u du.

However, in this example the integrand contains an extra factor of x that multiplies the term 

12x + 1. To adjust for this, we solve the substitution equation u = 2x + 1 for x to obtain 

x = (u - 1)>2, and ind that

x22x + 1 dx =
1
2

 (u - 1) # 1
2

 2u du.

The integration now becomes

   L  x22x + 1 dx =
1
4

  L  (u - 1)2u du =
1
4

  L  (u - 1)u1>2 du  Substitute.

   =
1
4

  L  (u3>2 - u1>2) du  Multiply terms.

   =
1
4

 a2
5

 u5>2 -
2
3

 u3>2b + C Integrate.

  =
1
10

  (2x + 1)5>2 -
1
6

  (2x + 1)3>2 + C.  Replace u by 2x + 1. 

EXAMPLE 7  Sometimes we can use trigonometric identities to transform integrals 

we do not know how to evaluate into ones we can evaluate using the Substitution Rule.

(a)   Lsin2 x dx = L  
1 - cos 2x

2
 dx  sin2 x =

1 - cos 2x

2

   =
1
2L (1 - cos 2x) dx

   =
1
2

 x -
1
2

 
sin 2x

2
+ C =

x

2
-

sin 2x

4
+ C 

http://www.goo.gl/0YjM2t
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(b)  Lcos2 x dx = L  
1 + cos 2x

2
 dx =

x

2
+

sin 2x

4
+ C  cos2 x =

1 + cos 2x

2

(c)   L  (1 - 2 sin2 x) sin 2x dx = L  (cos2 x - sin2 x) sin 2x dx

    = Lcos 2x sin 2x dx   cos 2x = cos2 x - sin2 x

    = L  
1
2

 sin 4x dx = L  
1
8

 sin u du  u = 4x, du = 4x dx

    = -cos 4x + C.   

Trying Different Substitutions

The success of the substitution method depends on finding a substitution that changes an 

integral we cannot evaluate directly into one that we can. Finding the right substitution 

gets easier with practice and experience. If your first substitution fails, try another substi-

tution, possibly coupled with other algebraic or trigonometric simplifications to the inte-

grand. Several more complicated types of substitutions will be studied in Chapter 8.

EXAMPLE 8  Evaluate  L  
2z dz

23 z2 + 1
.

Solution We will use the substitution method of integration as an exploratory tool: We 

substitute for the most troublesome part of the integrand and see how things work out. For 

the integral here, we might try u = z2 + 1 or we might even press our luck and take u to 

be the entire cube root. In this example both substitutions turn out to be successful, but 

that is not always the case. If one substitution does not help, a different substitution may 

work instead.

Method 1: Substitute u = z2 + 1.

   L  
2z dz

23 z2 + 1
= L  

du

u1>3  

   = Lu-1>3 du  In the form 1un du

  =
u2>3
2>3 + C  Integrate.

  =
3
2

 u2>3 + C

  =
3
2

 (z2 + 1)2>3 + C Replace u by z2 + 1.

Method 2: Substitute u = 23 z2 + 1 instead.

   L  
2z dz

23 z2 + 1
= L  

3u2 du
u   

  = 3 Lu du

  = 3 # u2

2
+ C  Integrate.

  =
3
2

 (z2 + 1)2>3 + C Replace u by (z2 + 1)1>3. 

Let u = z2 + 1, 

du = 2z dz.

Let u = 23 z2 + 1, 

u3 = z2 + 1, 3u2 du = 2z dz.
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Evaluating Indefinite Integrals

Evaluate the indefinite integrals in Exercises 1–16 by using the given 

substitutions to reduce the integrals to standard form.

 1.  L  2(2x + 4)5 dx, u = 2x + 4

 2.  L  727x - 1 dx, u = 7x - 1

 3.  L  2x(x2 + 5)-4 dx, u = x2 + 5

 4.  L  
4x3

(x4 + 1)2
 dx, u = x4 + 1

 5.  L  (3x + 2)(3x2 + 4x)4 dx, u = 3x2 + 4x

 6.  L  
11 + 2x21>3

2x
 dx, u = 1 + 2x

 7.  L  sin 3x dx, u = 3x  8.  Lx sin (2x2) dx, u = 2x2

 9.  L  sec 2t tan 2t dt, u = 2t

 10.  L a1 - cos 
t

2
b2

 sin 
t

2
 dt, u = 1 - cos 

t

2

 11.  L  
9r2 dr

21 - r3
, u = 1 - r3

 12.  L12(y4 + 4y2 + 1)2(y3 + 2y) dy, u = y4 + 4y2 + 1

 13.  L1x sin2 (x3>2 - 1) dx, u = x3>2 - 1

 14.  L  
1

x2
 cos2 a1xb  dx, u = -  

1
x

 15.  Lcsc2 2u cot 2u du

a. Using u = cot 2u b. Using u = csc 2u

 16.  L  
dx

25x + 8

a. Using u = 5x + 8 b. Using u = 25x + 8

Evaluate the integrals in Exercises 17–50.

 17.  L23 - 2s ds  18.  L  
1

25s + 4
 ds

 19.  Lu24 1 - u2 du  20.  L3y27 - 3y2 dy

 21.  L  
1

2x 11 + 2x22 dx  22.  L2sin x cos3 x dx

 23.  Lsec2 (3x + 2) dx  24.  L tan2 x sec2 x dx

 25.  Lsin5 
x

3
 cos 

x

3
 dx  26.  L tan7 

x

2
 sec2 

x

2
 dx

 27.  Lr2 a r3

18
- 1b5

 dr  28.  Lr4 a7 -
r5

10
b3

 dr

 29.  Lx1>2 sin (x3>2 + 1) dx

 30.  Lcsc ay - p

2
b  cot ay - p

2
b  dy

 31.  L  
sin (2t + 1)

cos2 (2t + 1)
 dt  32.  L  

sec z tan z

2sec z
 dz

 33.  L  
1

t2
 cos a1

t
- 1b  dt  34.  L  

1

2t
 cos 12t + 32 dt

 35.  L  
1

u2
 sin 

1
u
 cos 

1
u

 du  36.  L  
cos 2u

2u sin2 2u
 du

 37.  L  
x

21 + x
 dx  38.  LA

x - 1

x5
 dx

 39.  L  
1

x2
 A2 -

1
x dx  40.  L  

1

x3
 A

x2 - 1

x2
 dx

 41.  L  A
x3 - 3

x11
 dx  42.  L  A

x4

x3 - 1
 dx

 43.  L  x(x - 1)10 dx  44.  L  x24 - x dx

 45.  L  (x + 1)2(1 - x)5 dx  46.  L  (x + 5)(x - 5)1>3 dx

 47.  Lx32x2 + 1 dx  48.  L3x52x3 + 1 dx

 49.  L  
x

(x2 - 4)3
 dx  50.  L

x

(2x - 1)2>3 dx

If you do not know what substitution to make, try reducing the inte-

gral step by step, using a trial substitution to simplify the integral a bit 

and then another to simplify it some more. You will see what we 

mean if you try the sequences of substitutions in Exercises 51 and 52.

 51.  L  
18 tan2 x sec2 x

(2 + tan3 x)2
 dx

a. u = tan x, followed by y = u3, then by w = 2 + y

b. u = tan3 x, followed by y = 2 + u

c. u = 2 + tan3 x

 52.  L21 + sin2 (x - 1) sin (x - 1) cos (x - 1) dx

a. u = x - 1, followed by y = sin u, then by w = 1 + y2

b. u = sin (x - 1), followed by y = 1 + u2

c. u = 1 + sin2 (x - 1)

EXERCISES 5.5
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 58. 
dr

du
= 3 cos2 ap

4
- ub , r(0) =

p

8

 59. 
d2s

dt2
= -4 sin a2t -

p

2
b , s′(0) = 100, s(0) = 0

 60. 
d2y

dx2
= 4 sec2 2x tan 2x, y′(0) = 4, y(0) = -1

 61. The velocity of a particle moving back and forth on a line is 

y = ds>dt = 6 sin 2t m>sec for all t. If s = 0 when t = 0, ind 

the value of s when t = p>2 sec.

 62. The acceleration of a particle moving back and forth on a line 

is a = d2s>dt2 = p2 cos pt m>sec2 for all t. If s = 0 and y =  

8 m/sec when t = 0, ind s when t = 1 sec.

Evaluate the integrals in Exercises 53 and 54.

 53.  L  
(2r - 1) cos 23(2r - 1)2 + 6

23(2r - 1)2 + 6
 dr

 54.  L  
sin 2u

2u cos3 1u  du

Initial Value Problems

Solve the initial value problems in Exercises 55–60.

 55. 
ds

dt
= 12t (3t2 - 1)3, s(1) = 3

 56. 
dy

dx
= 4x (x2 + 8)-1>3, y(0) = 0

 57. 
ds

dt
= 8 sin2 at +

p

12
b , s(0) = 8

5.6 Definite Integral Substitutions and the Area Between Curves

There are two methods for evaluating a definite integral by substitution. One method is to 

find an antiderivative using substitution and then to evaluate the definite integral by apply-

ing the Evaluation Theorem. The other method extends the process of substitution directly 

to definite integrals by changing the limits of integration. We will use the new formula that 

we introduce here to compute the area between two curves.

The Substitution Formula

The following formula shows how the limits of integration change when we apply a sub-

stitution to an integral.

THEOREM 7—Substitution in Definite Integrals

If g′ is continuous on the interval 3a, b4  and ƒ is continuous on the range of 

g(x) = u, then

 L
b

a

ƒ(g(x)) # g′(x) dx = L
g(b)

g(a)

ƒ(u) du.

Proof  Let F denote any antiderivative of ƒ. Then,

  L
b

a

ƒ(g(x)) # g′(x) dx = F(g(x)) d
x = a

x = b

  

d

dx
 F(g(x))

= F′(g(x))g′(x)

= ƒ(g(x))g′(x)

 = F(g(b)) - F(g(a))

 = F(u) d
u = g(a)

u = g(b)

 = L
g(b)

g(a)

ƒ(u) du.   
Fundamental  

Theorem, Part 2  

To use Theorem 7, make the same u-substitution u = g(x) and du = g′(x) dx that 

you would use to evaluate the corresponding indefinite integral. Then integrate the trans-

formed integral with respect to u from the value g(a) (the value of u at x = a) to the value 

g(b) (the value of u at x = b).
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EXAMPLE 1  Evaluate  L
1

-1

 3x22x3 + 1 dx.

Solution We will show how to evaluate the integral using Theorem 7, and how to evalu-

ate it using the original limits of integration.

Method 1: Transform the integral and evaluate the transformed integral with the trans-

formed limits given in Theorem 7.

 L
1

-1

 3x22x3 + 1 dx   
Let u = x3 + 1, du = 3x2 dx.  

When x = -1, u = (-1)3 + 1 = 0.

When x = 1, u = (1)3 + 1 = 2.

= L
2

0

2u du

=
2
3

 u3>2 d
0

2

 Evaluate the new definite integral.

=
2
3

 323>2 - 03>24 =
2
3

 32224 =
422

3

Method 2: Transform the integral as an indeinite integral, integrate, change back to x, 

and use the original x-limits.

 L3x22x3 + 1 dx = L2u du  Let u = x3 + 1, du = 3x2 dx.

 =
2
3

 u3>2 + C Integrate with respect to u.

 =
2
3

 (x3 + 1)3>2 + C Replace u by x3 + 1.

  L
1

-1

3x22x3 + 1 dx =
2
3

 (x3 + 1)3>2 d
-1

1

   
Use the integral just found, with 

limits of integration for x.

 =
2
3

 3 ((1)3 + 1)3>2 - ((-1)3 + 1)3>24
 =

2
3

 323>2 - 03>24 =
2
3

 32224 =
422

3
 

Which method is better—evaluating the transformed definite integral with trans-

formed limits using Theorem 7, or transforming the integral, integrating, and transforming 

back to use the original limits of integration? In Example 1, the first method seems easier, 

but that is not always the case. Generally, it is best to know both methods and to use 

whichever one seems better at the time.

EXAMPLE 2  We use the method of transforming the limits of integration.

(a)  L
p>2

p>4  cot u csc2 u du = L
0

1

u # (-du)   

 = -L
0

1

u du

 = - c u2

2
d

1

0

 = - c (0)2

2
-

(1)2

2
d =

1
2

Let  u = cot u, du = -csc2 u du,  

      -du = csc2 u du.

When u = p>4, u = cot (p>4) = 1.

When u = p>2, u = cot (p>2) = 0.
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THEOREM 8 Let ƒ be continuous on the symmetric interval 3-a, a4 .
(a) If ƒ is even, then  L

a

-a

 ƒ(x) dx = 2L
a

0

ƒ(x) dx.

(b) If ƒ is odd, then  L
a

-a

 ƒ(x) dx = 0.

x

y

0 a−a

(a)  

x

y

0
a−a

(b)

FIGURE 5.24 (a) For ƒ an even function, the integral from -a to a is twice the 

integral from 0 to a. (b) For ƒ an odd function, the integral from -a to a equals 0.

(b)   L
p>2

0

 
2 sin x cos x

(1 + sin2 x)3
 dx = L

2

1

 
1

u3
 du

 = -
1

2u2
d 2

1

  

 = -
1
8

 - a-1
2
b =

3
8

 

Let u = 1 + sin2 x, du = 2 sin x cos x dx. 

When x = 0, u = 1.

When x = p>2, u = 2.  

Proof of Part (a)  

  L
a

-a

 ƒ(x) dx = L
0

-a

 ƒ(x) dx + L
a

0

ƒ(x) dx   
Additivity Rule for  

Definite Integrals

 = -L
-a

0

ƒ(x) dx + L
a

0

ƒ(x) dx   Order of Integration Rule

 = -L
a

0

ƒ(-u)(-du) + L
a

0

ƒ(x) dx  
Let u = -x, du = -dx.

When x = 0, u = 0.

When x = -a, u = a.

 = L
a

0

ƒ(-u) du + L
a

0

ƒ(x) dx

 = L
a

0

ƒ(u) du + L
a

0

ƒ(x) dx   ƒ is even, so ƒ(-u) = ƒ(u).

 = 2 L
a

0

ƒ(x) dx

The proof of part (b) is entirely similar and you are asked to give it in Exercise 86. 

Definite Integrals of Symmetric Functions

The Substitution Formula in Theorem 7 simplifies the calculation of definite integrals of 

even and odd functions (Section 1.1) over a symmetric interval 3-a, a4  (Figure 5.24).
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DEFINITION If ƒ and g are continuous with ƒ(x) Ú g(x) throughout 3a, b4 , 
then the area of the region between the curves y = f (x)  and y = g(x)  from 

a to b is the integral of (ƒ - g) from a to b:

A = L
b

a

3ƒ(x) - g(x)4  dx.

When applying this definition it is usually helpful to graph the curves. The graph reveals 

which curve is the upper curve ƒ and which is the lower curve g. It also helps you find the 

limits of integration if they are not given. You may need to find where the curves intersect 

to determine the limits of integration, and this may involve solving the equation 

Areas Between Curves

Suppose we want to find the area of a region that is bounded above by the curve y = ƒ(x), 

below by the curve y = g(x), and on the left and right by the lines x = a and x = b 

 (Figure 5.25). The region might accidentally have a shape whose area we could find with 

geometry, but if ƒ and g are arbitrary continuous functions, we usually have to find the 

area by computing an integral.

To see what the integral should be, we first approximate the region with n vertical 

rectangles based on a partition P = 5x0, x1, . . . , xn6  of 3a, b4  (Figure 5.26). The area of 

the kth rectangle (Figure 5.27) is

∆Ak = height * width = 3ƒ(ck) - g(ck)4  ∆xk.

We then approximate the area of the region by adding the areas of the n rectangles:

A ≈ a
n

k = 1

∆Ak = a
n

k = 1

3ƒ(ck) - g(ck)4  ∆xk.  Riemann sum

As }P } S 0, the sums on the right approach the limit 1b

a
 3ƒ(x) - g(x)4  dx because ƒ and 

g are continuous. The area of the region is defined to be the value of this integral. That is,

A = lim
}P}S0

 a
n

k = 1

3ƒ(ck) - g(ck)4  ∆xk = L
b

a

3ƒ(x) - g(x)4  dx.

EXAMPLE 3  Evaluate  L
2

-2

(x4 - 4x2 + 6) dx.

Solution Since ƒ(x) = x4 - 4x2 + 6 satisfies ƒ(-x) = ƒ(x), it is even on the symmet-

ric interval 3-2, 24 , so

  L
2

-2

(x4 - 4x2 + 6) dx = 2L
2

0

(x4 - 4x2 + 6) dx

 = 2 c x5

5
-

4
3

 x3 + 6x d
0

2

  = 2 a32
5

-
32
3

+ 12b =
232
15

. 

x

y

a

b

Lower curve

y = g(x)

Upper curve

y = f (x)

FIGURE 5.25 The region between the 

curves y = ƒ(x) and y = g(x) and the 

lines x = a and x = b.

x

y

y = f (x)

y = g(x)

b = xn

xn−1
a = x0

x1

x2

FIGURE 5.26 We approximate the 

region with rectangles perpendicular to the 

x-axis.

x

y

a

b

(ck, f (ck))

f (ck) − g(ck)

ΔAk
ck

(ck, g(ck))

Δxk

FIGURE 5.27 The area ∆Ak of the 

kth rectangle is the product of its height, 

ƒ(ck) - g(ck), and its width, ∆xk.
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EXAMPLE 4  Find the area of the region enclosed by the parabola y = 2 - x2 and 

the line y = -x.

Solution First we sketch the two curves (Figure 5.28). The limits of integration are 

found by solving y = 2 - x2 and y = -x simultaneously for x.

 2 - x2 = -x  Equate ƒ(x) and g(x).

 x2 - x - 2 = 0   Rewrite.

 (x + 1)(x - 2) = 0   Factor.

 x = -1,  x = 2.   Solve.

The region runs from x = -1 to x = 2. The limits of integration are a = -1, b = 2.

The area between the curves is

 A = L
b

a

3ƒ(x) - g(x)4  dx = L
2

-1

3 (2 - x2) - (-x)4  dx

 = L
2

-1

(2 + x - x2) dx = c 2x +
x2

2
-

x3

3
d

-1

2

  = a4 +
4
2

-
8
3
b - a-2 +

1
2

+
1
3
b =

9
2

.  

ƒ(x) = g(x) for values of x. Then you can integrate the function ƒ - g for the area 

between the intersections.

x

y

0−1 1 2

(−1, 1)

(x, f (x))

y = 2 − x2

(x, g(x))

Δx

y = −x (2, −2)

FIGURE 5.28 The region in Example 

4 with a typical approximating rectangle 

from a Riemann sum.

EXAMPLE 5 Find the area of the region in the first quadrant that is bounded above by 

y = 2x and below by the x-axis and the line y = x - 2.

Solution The sketch (Figure 5.29) shows that the region’s upper boundary is the graph 

of ƒ(x) = 2x. The lower boundary changes from g(x) = 0 for 0 … x … 2 to 

g(x) = x - 2 for 2 … x … 4 (both formulas agree at x = 2). We subdivide the region at 

x = 2 into subregions A and B, shown in Figure 5.29.

The limits of integration for region A are a = 0 and b = 2. The left-hand limit for 

region B is a = 2. To ind the right-hand limit, we solve the equations y = 2x and 

y = x - 2 simultaneously for x:

 2x = x - 2   Equate ƒ(x) and g(x).

 x = (x - 2)2 = x2 - 4x + 4  Square both sides.

 x2 - 5x + 4 = 0   Rewrite.

 (x - 1)(x - 4) = 0   Factor.

 x = 1,  x = 4.   Solve.

Only the value x = 4 satisfies the equation 2x = x - 2. The value x = 1 is an extrane-

ous root introduced by squaring. The right-hand limit is b = 4.

For 0 … x … 2:   ƒ(x) - g(x) = 2x - 0 = 2x

For 2 … x … 4:   ƒ(x) - g(x) = 2x - (x - 2) = 2x - x + 2

x

y

0

1

2

42

y = "x

y = 0

y = x − 2

(x, f (x))

(x, f (x))

(x, g(x))

(x, g(x))

A

B

(4, 2)
Area =

2

0
"x dx

Area =

4

2
("x − x + 2) dxL

L

FIGURE 5.29 When the formula for a 

bounding curve changes, the area integral 

changes to become the sum of integrals to 

match, one integral for each of the shaded 

regions shown here for Example 5.

If the formula for a bounding curve changes at one or more points, we subdivide the 

region into subregions that correspond to the formula changes and apply the formula for 

the area between curves to each subregion.
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(++)++* (+++++)+++++* 

 area of A area of B 

 = c 2
3

 x3>2 d
0

2

+ c 2
3

 x3>2 -
x2

2
+ 2x d

2

4

 =
2
3

 (2)3>2 - 0 + a2
3

 (4)3>2 - 8 + 8b - a2
3

 (2)3>2 - 2 + 4b
  =

2
3

 (8) - 2 =
10
3

.  

Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectan-

gles are horizontal instead of vertical and the basic formula has y in place of x.

For regions like these:

x = f (y)

Δ (y)

y y

x

x

x

y

x = g(y)

0

c

d

x = g(y)

x = f (y)

0

c

d

0

c

d

x = f (y)

x = g(y)

Δ (y)

Δ (y)

use the formula

A = L
d

c

3ƒ(y) - g(y)4dy.

In this equation ƒ always denotes the right-hand curve and g the left-hand curve, so 

ƒ(y) - g(y) is nonnegative.

EXAMPLE 6  Find the area of the region in Example 5 by integrating with respect to y.

Solution We first sketch the region and a typical horizontal rectangle based on a parti-

tion of an interval of y-values (Figure 5.30). The region’s right-hand boundary is the line 

x = y + 2, so ƒ(y) = y + 2. The left-hand boundary is the curve x = y2, so g(y) = y2. 

The lower limit of integration is y = 0. We find the upper limit by solving x = y + 2 and 

x = y2 simultaneously for y:

 y + 2 = y2  Equate ƒ( y) = y + 2 and g(y) = y2.

 y2 - y - 2 = 0   Rewrite.

 ( y + 1)( y - 2) = 0   Factor.

 y = -1,  y = 2   Solve.

The upper limit of integration is b = 2. (The value y = -1 gives a point of intersection 

below the x-axis.)

We add the areas of subregions A and B to find the total area:

 Total area = L
2

0

2x dx + L
4

2

12x - x + 22 dx

x

y

y = 0 2 40

1

2
(g(y), y)

( f (y), y)

f (y) − g(y)

(4, 2)

x = y + 2

x = y2

Δy

FIGURE 5.30 It takes two integrations 

to find the area of this region if we inte-

grate with respect to x. It takes only one if 

we integrate with respect to y (Example 6).
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The area of the region is

 A = L
d

c

3ƒ( y) - g( y)4  dy = L
2

0

3y + 2 - y24  dy

 = L
2

0

32 + y - y24  dy

 = c 2y +
y2

2
-

y3

3
d

0

2

 = 4 +
4
2

-
8
3

=
10
3

.

This is the result of Example 5, found with less work. 

Although it was easier to find the area in Example 5 by integrating with respect to y 

rather than x (just as we did in Example 6), there is an easier way yet. Looking at Figure 

5.31, we see that the area we want is the area between the curve y = 2x and the x-axis 

for 0 … x … 4, minus the area of an isosceles triangle of base and height equal to 2. So by 

combining calculus with some geometry, we find

 Area = L
4

0

2x dx -
1
2

 (2)(2)

 =
2
3

 x3>2 d 4
0

- 2

 =
2
3

  (8) - 0 - 2 =
10
3

.

x

y

y = 0 2

2

40

1

2

2

(4, 2)

y = x − 2

Area = 2

y = "x

FIGURE 5.31 The area of the blue 

region is the area under the parabola 

y = 2x minus the area of the triangle.

EXAMPLE 7  Find the area of the region bounded below by the line y = 2 - x and 

above by the curve y = 22x - x2.

Solution A sketch of the region is displayed in Figure 5.32, and we see that the line and 

curve intersect at the points (1, 1) and (2, 0). Using vertical rectangles, the area of the 

region is given by

A = L
2

1

122x - x2 + x - 22 dx.

However, we don’t know how to find an antiderivative for the term involving the radical, 

and no simple substitution is apparent.

To use horizontal rectangles, we irst need to express each bounding curve as a func-

tion of the variable y. The line on the left is easily found to be x = 2 - y. For the curve 

y = 22x - x2 on the right-hand side in Figure 5.32, we have

 y2 = 2x - x2

 = -(x2 - 2x + 1) + 1  Complete the square.

 = -(x - 1)2 + 1.

Solving for x,

 (x - 1)2 = 1 - y2,

 x = 1 + 21 - y2.  x Ú 1, 0 … y … 1

The area of the region is then given by

A = L
1

0

311 + 21 - y2 2 - (2 - y)4  dy = L
1

0

(21 - y2 + y - 12 dy.

x

y

1 20

1

y = 2 − x

y = "2x − x2

FIGURE 5.32 The region described by 

the curves in Example 7.
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Evaluating Definite Integrals

Use the Substitution Formula in Theorem 7 to evaluate the integrals in 

Exercises 1–24.

 1. a.  L
3

0

2y + 1 dy b.  L
0

-1

2y + 1 dy

 2. a.  L
1

0

r21 - r2 dr  b.  L
1

-1

r21 - r2 dr

 3. a.  L
p>4

0

 tan x sec2 x dx b.  L
0

-p>4tan x sec2 x dx

 4. a.  L
p

0

3 cos2 x sin x dx b.  L
3p

2p

3 cos2 x sin x dx

 5. a.  L
1

0

t3(1 + t4)3 dt  b.  L
1

-1

t3(1 + t4)3 dt

 6. a.  L
27

0

t(t2 + 1)1>3 dt  b.  L
0

-27

 t(t2 + 1)1>3 dt

 7. a.  L
1

-1

 
5r

(4 + r2)2
 dr  b.  L

1

0

 
5r

(4 + r2)2
 dr

 8. a.  L
1

0

 
102y

(1 + y3>2)2
 dy  b.  L

4

1

 
102y

(1 + y3>2)2
 dy

 9. a.  L
23

0

 
4x

2x2 + 1
 dx b.  L

23

-23

 
4x

2x2 + 1
 dx

 10. a.  L
1

0

 
x3

2x4 + 9
 dx b.  L

0

-1

 
x3

2x4 + 9
 dx

 11. a.  L
1

0

t 24 + 5t dt  b.  L
9

1

t 24 + 5t dt

 12. a.  L
p>6

0

(1 - cos 3t) sin 3t dt

  b.  L
p>3

p>6 (1 - cos 3t) sin 3t dt

 13. a.  L
2p

0

 
cos z

24 + 3 sin z
 dz b.  L

p

-p

 
cos z

24 + 3 sin z
 dz

 14. a.  L
0

-p>2a2 + tan 
t

2
b  sec2 

t

2
 dt

  b.  L
p>2

-p>2a2 + tan 
t

2
b  sec2 

t

2
 dt

 15.  L
1

0

2t5 + 2t (5t4 + 2) dt  16.  L
4

1

 
dy

22y 11 + 2y22
 17.  L

p>6
0

cos-3 2u sin 2u du  18.  L
3p>2

p

cot5 au
6
b  sec2 au

6
b  du  

 19.  L
p

0

5(5 - 4 cos t)1>4 sin t dt

 20.  L
p>4

0

(1 - sin 2t)3>2 cos 2t dt

 21.  L
1

0

(4y - y2 + 4y3 + 1)-2>3 (12y2 - 2y + 4) dy

 22.  L
1

0

(y3 + 6y2 - 12y + 9)-1>2 (y2 + 4y - 4) dy

 23.  L
2 3p2

0

2u cos2 (u3>2)  du  24.  L
-1>2

-1

t-2 sin2 a1 +
1
t
b  dt

Area

Find the total areas of the shaded regions in Exercises 25–40.

 25. 

0 2−2
x

y

y = x"4 − x2

 26. 

x

y

0 p

y = (1 − cos x) sin x

EXERCISES 5.6

Again, we don’t know yet how to integrate the radical term (although we will see how to 

do that in Section 8.4). We conclude that neither vertical nor horizontal rectangles lead to 

an integral we currently can evaluate.

Nevertheless, as we found with Example 6, sometimes a little observation proves 

to be helpful. If we look again at the algebra for expressing the right-hand side curve 

y = 22x - x2 as a function of y, we see that (x - 1)2 + y2 = 1, which is the equation of 

the unit circle with center shifted to the point (1, 0). From Figure 5.32, we can then see that the  

area of the region we want is the area of the upper right quarter of the unit circle minus the 

area of the triangle with vertices (1, 1), (1, 0), and (2, 0). That is, the area is given by

 A =
p
4

-
1
2

=
p - 2

4
≈ 0.285. 
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 36. 

0 1 2

1

x

y

y = x2
x + y = 2

 37. 

x

y

5

−4

(−3, 5)

(1, −3)(−3, −3)

10−3

y = x2 − 4

y = −x2 − 2x

 38. 

x

y

−10

2

1−1−2 2

(−2, −10)

y = 2x3 − x2 − 5x

y = −x2 + 3x

(2, 2)

 39.   40. 

x

y

−1 1 2 3−2

2

−5

4

(3, −5)

(−2, 4) y = 4 − x2

y = −x + 2

  

a       b
x

y

30

6

−2

y =
3
x

y = − x
3
x3

(3, 6)

(3, 1)

−2, −
3
2

 27. 

x

y

0−1

−1

−2

−3

−2−p

y = 3(sin x)"1 + cos x

 28. 

x

y

0−1−p

−1

1

p
2

−

y = (cos x)(sin(p + psin x))
p
2

 29. 

x

y

pp
2

y = cos2 x

0

1 y = 1

 30. 

t

y

y = sec2 t
1
2

p
3

p
3

− 0

1

2

−4

y = −4sin2 t

 31. 

x

y

−2 −1 1 2−1

8
(−2, 8) (2, 8)

y = 2x2

y = x 4 
− 2x2

NOT TO SCALE

 32. 

0 1

1

x

y

(1, 1)

x = y2

x = y3

 33. 

x

y

0

1

1

x = 12y2 − 12y3

x = 2y2 − 2y

 34. 

x

y

−1 0

−2

1

1

y = x2

y = −2x4

 35. 

x

y

0 1 2

1

y = x

y = 1

y =
x2

4

Find the areas of the regions enclosed by the lines and curves in 

 Exercises 41–50.

 41. y = x2 - 2 and y = 2

 42. y = 2x - x2 and y = -3

 43. y = x4 and y = 8x

 44. y = x2 - 2x and y = x

 45. y = x2 and y = -x2 + 4x

 46. y = 7 - 2x2 and y = x2 + 4

 47. y = x4 - 4x2 + 4 and y = x2

 48. y = x2a2 - x2, a 7 0, and y = 0

 49. y = 2 0 x 0 and 5y = x + 6 (How many intersection points 

are there?)

 50. y = 0 x2 - 4 0 and y = (x2>2) + 4

Find the areas of the regions enclosed by the lines and curves in 

 Exercises 51–58.

 51. x = 2y2, x = 0, and y = 3

 52. x = y2 and x = y + 2

 53. y2 - 4x = 4 and 4x - y = 16

 54. x - y2 = 0 and x + 2y2 = 3

 55. x + y2 = 0 and x + 3y2 = 2

 56. x - y2>3 = 0 and x + y4 = 2
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 78. Find the area of the region in the irst quadrant bounded on the 

left by the y-axis, below by the curve x = 22y, above left by the 

curve x = (y - 1)2, and above right by the line x = 3 - y.

x

y

0

1

2

1 2

x = 2"y

x = 3 − y

x = (y − 1)2 

 79. The igure here shows triangle AOC inscribed in the region cut 

from the parabola y = x2 by the line y = a2. Find the limit of the 

ratio of the area of the triangle to the area of the parabolic region 

as a approaches zero.

x

y

CA

O−a a

y = x2

y = a2

(a, a2)(−a, a2)

 80. Suppose the area of the region between the graph of a positive 

continuous function ƒ and the x-axis from x = a to x = b is 

4 square units. Find the area between the curves y = ƒ(x) and 

y = 2ƒ(x) from x = a to x = b.

 81. Which of the following integrals, if either, calculates the area of 

the shaded region shown here? Give reasons for your answer.

a.  L
1

-1

(x - (-x)) dx = L
1

-1

2x dx

b.  L
1

-1

(-x - (x)) dx = L
1

-1

 -2x dx

x

y

−1

−1

1

1

y = −x y = x

 82. True, sometimes true, or never true? The area of the region be-

tween the graphs of the continuous functions y = ƒ(x) and 

y = g(x) and the vertical lines x = a and x = b (a 6 b) is

 L
b

a

3ƒ(x) - g(x)4  dx.

  Give reasons for your answer.

 57. x = y2 - 1 and x = 0 y 021 - y2

 58. x = y3 - y2 and x = 2y

Find the areas of the regions enclosed by the curves in Exercises 

59–62.

 59. 4x2 + y = 4 and x4 - y = 1

 60. x3 - y = 0 and 3x2 - y = 4

 61. x + 4y2 = 4 and x + y4 = 1, for x Ú 0

 62. x + y2 = 3 and 4x + y2 = 0

Find the areas of the regions enclosed by the lines and curves in 

 Exercises 63–70.

 63. y = 2 sin x and y = sin 2x, 0 … x … p

 64. y = 8 cos x and y = sec2 x, -p>3 … x … p>3
 65. y = cos (px>2) and y = 1 - x2

 66. y = sin (px>2) and y = x

 67. y = sec2 x, y = tan2 x, x = -p>4, and x = p>4
 68. x = tan2 y and x = - tan2 y, -p>4 … y … p>4
 69. x = 3 sin y 2cos y and x = 0, 0 … y … p>2
 70. y = sec2 (px>3) and y = x1>3, -1 … x … 1

Area Between Curves

 71. Find the area of the propeller-shaped region enclosed by the curve 

x - y3 = 0 and the line x - y = 0.

 72. Find the area of the propeller-shaped region enclosed by the 

curves x - y1>3 = 0 and x - y1>5 = 0.

 73. Find the area of the region in the first quadrant bounded by the 

line y = x,  the line x = 2, the curve y = 1>x2,  and the x-axis.

 74. Find the area of the “triangular” region in the irst quadrant bound-

ed on the left by the y-axis and on the right by the curves y = sin x 

and y = cos x.

 75. The region bounded below by the parabola y = x2 and above by 

the line y = 4 is to be partitioned into two subsections of equal 

area by cutting across it with the horizontal line y = c.

a. Sketch the region and draw a line y = c across it that looks 

about right. In terms of c, what are the coordinates of the 

points where the line and parabola intersect? Add them to 

your igure.

b. Find c by integrating with respect to y. (This puts c in the 

limits of integration.)

c. Find c by integrating with respect to x. (This puts c into the 

integrand as well.)

 76. Find the area of the region between the curve y = 3 - x2 and the 

line y = -1 by integrating with respect to a. x, b. y.

 77. Find the area of the region in the first quadrant bounded on the 

left by the y-axis, below by the line y = x>4, above left by the 

curve y = 1 + 2x,  and above right by the curve y = 2>2x.
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  The equation holds whenever ƒ is integrable and deined for the 

necessary values of x. For example in the accompanying igure, 

show that

 L
-1

-2

(x + 2)3 dx = L
1

0

x3 dx

  because the areas of the shaded regions are congruent.

x

y

0 1−1−2

y = (x + 2)3 y = x3 

 89. Use a substitution to verify Equation (1).

 90. For each of the following functions, graph ƒ(x) over 3a, b4  and 

ƒ(x + c) over 3a - c, b - c4  to convince yourself that Equation 

(1) is reasonable.

a. ƒ(x) = x2, a = 0, b = 1, c = 1

b. ƒ(x) = sin x, a = 0, b = p, c = p>2
c. ƒ(x) = 2x - 4, a = 4, b = 8, c = 5

COMPUTER EXPLORATIONS

In Exercises 91–94, you will find the area between curves in the plane 

when you cannot find their points of intersection using simple algebra. 

Use a CAS to perform the following steps:

a. Plot the curves together to see what they look like and how 

many points of intersection they have.

b. Use the numerical equation solver in your CAS to ind all the 

points of intersection.

c. Integrate 0 ƒ(x) - g(x) 0  over consecutive pairs of  intersection 

values.

d. Sum together the integrals found in part (c).

 91. ƒ(x) =
x3

3
-

x2

2
- 2x +

1
3

, g(x) = x - 1

 92. ƒ(x) =
x4

2
- 3x3 + 10, g(x) = 8 - 12x

 93. ƒ(x) = x + sin (2x), g(x) = x3

 94. ƒ(x) = x2 cos x, g(x) = x3 - x

Theory and Examples

 83. Suppose that F(x) is an antiderivative of ƒ(x) = (sin x)>x, x 7 0. 

Express

 L
3

1

 
sin 2x

x  dx

  in terms of F.

 84. Show that if ƒ is continuous, then

 L
1

0

ƒ(x) dx = L
1

0

ƒ(1 - x) dx.

 85. Suppose that

 L
1

0

ƒ(x) dx = 3.

  Find

 L
0

-1

ƒ(x) dx

  if a. ƒ is odd, b. ƒ is even.

 86. a. Show that if ƒ is odd on 3-a, a4 , then

 L
a

-a

 ƒ(x) dx = 0.

b. Test the result in part (a) with ƒ(x) = sin x and a = p>2.

 87. If ƒ is a continuous function, ind the value of the integral

I = L
a

0

 
ƒ(x) dx

ƒ(x) + ƒ(a - x)

  by making the substitution u = a - x and adding the resulting 

integral to I.

 88. By using a substitution, prove that for all positive numbers x and y,

 L
xy

x

 
1
t

 dt = L
y

1

 
1
t

 dt.

  The Shift Property for Deinite integrals A basic property of 

deinite integrals is their invariance under translation, as expressed 

by the equation

  L
b

a

ƒ(x) dx = L
b - c

a - c

ƒ(x + c) dx. (1)

 1. How can you sometimes estimate quantities like distance traveled, 

area, and average value with inite sums? Why might you want to 

do so?

 2. What is sigma notation? What advantage does it ofer? Give 

 examples.

 3. What is a Riemann sum? Why might you want to consider such a 

sum?

 4. What is the norm of a partition of a closed interval?

 5. What is the deinite integral of a function ƒ over a closed interval 3a, b4 ? When can you be sure it exists?

CHAPTER 5 Questions to Guide Your Review
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 12. How does the Fundamental Theorem provide a solution to the initial 

value problem dy>dx = ƒ(x), y(x0) = y0 , when ƒ is continuous?

 13. How is integration by substitution related to the Chain Rule?

 14. How can you sometimes evaluate indeinite integrals by substitu-

tion? Give examples.

 15. How does the method of substitution work for deinite integrals? 

Give examples.

 16. How do you deine and calculate the area of the region between 

the graphs of two continuous functions? Give an example.

 6. What is the relation between deinite integrals and area? Describe 

some other interpretations of deinite integrals.

 7. What is the average value of an integrable function over a closed 

interval? Must the function assume its average value? Explain.

 8. Describe the rules for working with deinite integrals (Table 5.6). 

Give examples.

 9. What is the Fundamental Theorem of Calculus? Why is it so 

 important? Illustrate each part of the theorem with an example.

 10. What is the Net Change Theorem? What does it say about the 

integral of velocity? The integral of marginal cost?

 11. Discuss how the processes of integration and diferentiation can be 

considered as “inverses” of each other.

Finite Sums and Estimates

 1. The accompanying igure shows the graph of the velocity (ft > sec) 

of a model rocket for the irst 8 sec after launch. The rocket ac-

celerated straight up for the irst 2 sec and then coasted to reach its 

maximum height at t = 8 sec.

2 4 6 80

50

100

150

200

Time after launch (sec)

V
el

o
ci

ty
 (

ft
/s

ec
)

a. Assuming that the rocket was launched from ground level, 

about how high did it go? (This is the rocket in Section 3.4, 

Exercise 17, but you do not need to do Exercise 17 to do the 

exercise here.)

b. Sketch a graph of the rocket’s height above ground as a func-

tion of time for 0 … t … 8.

 2. a.  The accompanying igure shows the velocity (m > sec) of a 

body moving along the s-axis during the time interval from 

t = 0 to t = 10 sec. About how far did the body travel during 

those 10 sec?

b. Sketch a graph of s as a function of t for 0 … t … 10, assum-

ing s(0) = 0.

0

1

2 4 6 8 10

2

3

4

5

Time (sec)

V
el

o
ci

ty
 (

m
/s

ec
)

 3. Suppose that a
10

k = 1

ak = -2 and a
10

k = 1

bk = 25. Find the value of

a. a
10

k = 1

 
ak

4
 b. a

10

k = 1

(bk - 3ak)

c. a
10

k = 1

(ak + bk - 1)  d. a
10

k = 1

a5
2

- bkb
 4. Suppose that a

20

k = 1

ak = 0 and a
20

k = 1

bk = 7. Find the values of

a. a
20

k = 1

3ak b. a
20

k = 1

(ak + bk)

c. a
20

k = 1

a1
2

-
2bk

7
b  d. a

20

k = 1

(ak - 2)

Definite Integrals

In Exercises 5–8, express each limit as a deinite integral. Then evalu-

ate the integral to ind the value of the limit. In each case, P is a par-

tition of the given interval and the numbers ck are chosen from the 

subintervals of P.

 5. lim
}P}S0

 a
n

k = 1

(2ck - 1)-1>2 ∆xk , where P is a partition of 31, 54
 6. lim

}P}S0
 a

n

k = 1

ck(ck 

2 - 1)1>3 ∆xk , where P is a partition of 31, 34
 7. lim

}P}S0
 a

n

k = 1

acosack

2
b b  ∆xk , where P is a partition of 3-p, 04

 8. lim
}P}S0

 a
n

k = 1

(sin ck)(cos ck) ∆xk , where P is a partition of 30, p>24
 9. If 12

-2
 3ƒ(x) dx = 12, 15

-2
 ƒ(x) dx = 6, and 15

-2
 g(x) dx = 2, ind 

the values of the following.

a.  L
2

-2

 ƒ(x) dx b.  L
5

2

ƒ(x) dx

c.  L
-2

5

g(x) dx d.  L
5

-2

(-pg(x)) dx

e.  L
5

-2

aƒ(x) + g(x)

5
b  dx

CHAPTER 5 Practice Exercises
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 29. Find the extreme values of ƒ(x) = x3 - 3x2 and ind the area of 

the region enclosed by the graph of ƒ and the x-axis.

 30. Find the area of the region cut from the irst quadrant by the curve 

x1>2 + y1>2 = a1>2.
 31. Find the total area of the region enclosed by the curve x = y2>3 

and the lines x = y and y = -1.

 32. Find the total area of the region between the curves y = sin x and 

y = cos x for 0 … x … 3p>2.

 10. If 12

0
ƒ(x) dx = p, 12

0
 7g(x) dx = 7, and 11

0
 g(x) dx = 2, ind 

the values of the following.

a.  L
2

0

g(x) dx b.  L
2

1

g(x) dx

c.  L
0

2

ƒ(x) dx d.  L
2

0

22 ƒ(x) dx

e.  L
2

0

(g(x) - 3ƒ(x)) dx

Area

In Exercises 11–14, ind the total area of the region between the graph 

of ƒ and the x-axis.

 11. ƒ(x) = x2 - 4x + 3, 0 … x … 3

 12. ƒ(x) = 1 - (x2>4), -2 … x … 3

 13. ƒ(x) = 5 - 5x2>3, -1 … x … 8

 14. ƒ(x) = 1 - 2x, 0 … x … 4

Find the areas of the regions enclosed by the curves and lines in 

 Exercises 15–26.

 15. y = x, y = 1>x2, x = 2

 16. y = x, y = 1>2x, x = 2

 17. 2x + 2y = 1, x = 0, y = 0

x

y

1

0 1

"x + "y = 1

 18. x3 + 2y = 1, x = 0, y = 0, for 0 … x … 1

x

y

0 1

1
x3 + "y = 1,  0 ≤ x ≤ 1

 19. x = 2y2, x = 0, y = 3 20. x = 4 - y2, x = 0

 21. y2 = 4x, y = 4x - 2

 22. y2 = 4x + 4, y = 4x - 16

 23. y = sin x, y = x, 0 … x … p>4
 24. y = 0 sin x 0 , y = 1, -p>2 … x … p>2
 25. y = 2 sin x, y = sin 2x, 0 … x … p

 26. y = 8 cos x, y = sec2 x, -p>3 … x … p>3
 27. Find the area of the “triangular” region bounded on the left by 

x + y = 2, on the right by y = x2, and above by y = 2.

 28. Find the area of the “triangular” region bounded on the left by 

y = 2x, on the right by y = 6 - x, and below by y = 1.

Initial Value Problems

 33. Show that y = x2 + L
x

1

 
1
t

 dt solves the initial value problem

d2 y

dx2
= 2 -

1

x2
 ; y′(1) = 3, y(1) = 1.

 34. Show that y = 1 x

0
11 + 22sec t2 dt solves the initial value

  problem

d2y

dx2
= 2sec x tan x; y′(0) = 3, y(0) = 0.

  Express the solutions of the initial value problems in Exercises 35 

and 36 in terms of integrals.

 35. 
dy

dx
=

sin x

x
, y(5) = -3

 36. 
dy

dx
= 22 - sin2 x ,  y(-1) = 2

Evaluating Indefinite Integrals

Evaluate the integrals in Exercises 37–46.

 37.  L2(cos x)-1>2 sin x dx  38.  L(tan x)-3>2 sec2 x dx

 39.  L(2u + 1 + 2 cos (2u + 1)) du

 40.  L a 1

22u - p
+ 2 sec2 (2u - p)b  du

 41.  L at -
2
t
b at +

2
t
b  dt  42.  L  

(t + 1)2 - 1

t4
 dt

 43.  L  2t sin (2t3>2) dt  44.  L  (sec u tan u) 21 + sec u du

 45.  L
sin 2u - cos 2u

(sin 2u + cos 2u)3
 du  46.  Lcos u # sin (sin u) du

Evaluating Definite Integrals

Evaluate the integrals in Exercises 47–68.

 47.  L
1

-1

(3x2 - 4x + 7) dx 48.  L
1

0

(8s3 - 12s2 + 5) ds

 49.  L
2

1

 
4

y2
 dy 50.  L

27

1

x-4>3 dx

 51.  L
4

1

 
dt

t2t
 52.  L

4

1

 
11 + 2u21>2

2u
 du

 53.  L
1

0

 
36 dx

(2x + 1)3
 54.  L

1

0

 
dr

23
(7 - 5r)2
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  Find the average value of Cy for 20° … T … 675°C and the tem-

perature at which it is attained.

Diferentiating Integrals

In Exercises 75–78, ind dy>dx.

 75. y = L
x

2

22 + cos3 t dt 76. y = L
7x2

2

 22 + cos3 t dt

 77. y = L
1

x

 
6

3 + t4
 dt 78. y = L

2

sec x

  
1

t2 + 1
 dt

Theory and Examples

 79. Is it true that every function y = ƒ(x) that is diferentiable on 3a, b4  is itself the derivative of some function on 3a, b4 ? Give 

reasons for your answer.

 80. Suppose that ƒ(x) is an antiderivative of ƒ(x) = 21 + x4. 

 Express 11

0
 21 + x4 dx in terms of F and give a reason for your 

answer.

 81. Find dy>dx if y = 11

x
 21 + t2 dt. Explain the main steps in your 

calculation.

 82. Find dy>dx if y = 10

cos x
 (1> (1 - t2) ) dt. Explain the main steps 

in your calculation.

 83. A new parking lot To meet the demand for parking, your town 

has allocated the area shown here. As the town engineer, you have 

been asked by the town council to ind out if the lot can be built for 

$10,000. The cost to clear the land will be $0.10 a square foot, and 

the lot will cost $2.00 a square foot to pave. Can the job be done 

for $10,000? Use a lower sum estimate to see. (Answers may vary 

slightly, depending on the estimate used.)

0 ft

36 ft

54 ft

51 ft

49.5 ft

54 ft

64.4 ft

67.5 ft

42 ft

Ignored

Vertical spacing = 15 ft

 84. Skydivers A and B are in a helicopter hovering at 6400 ft.  Skydiver A  

jumps and descends for 4 sec before opening her parachute. The 

helicopter then climbs to 7000 ft and hovers there. Forty-ive 

seconds after A leaves the aircraft, B jumps and descends for  

13 sec before opening his parachute. Both skydivers descend at  

16 ft > sec with parachutes open. Assume that the skydivers fall 

freely (no efective air resistance) before their parachutes open.

a. At what altitude does A’s parachute open?

b. At what altitude does B’s parachute open?

c. Which skydiver lands irst?

 55.  L
1

1>8 x-1>3(1 - x2>3)3>2 dx 56.  L
1>2

0

x3(1 + 9x4)-3>2 dx

 57.  L
p

0

 sin2 5r dr  58.  L
p>4

0

 cos2 a4t -
p

4
b  dt

 59.  L
p>3

0

 sec2 u du  60.  L
3p>4

p>4  csc2 x dx

 61.  L
3p

p

 cot2 
x

6
  dx 62.  L

p

0

 tan2 
u

3
  du

 63.  L
0

-p>3 sec x tan x dx 64.  L
3p>4

p>4  csc z cot z dz

 65.  L
p>2

0

5(sin x)3>2 cos x dx 66.  L
p>2

-p>2 15 sin4 3x cos 3x dx

 67.  L
p>2

0

 
3 sin x cos x

21 + 3 sin2 x
 dx 68.  L

p>4
0

 
sec2 x

(1 + 7 tan x)2>3 dx

average Values

 69. Find the average value of ƒ(x) = mx + b

a. over 3-1, 14
b. over 3-k, k4

 70. Find the average value of

a. y = 23x over 30, 34
b. y = 2ax over 30, a4

 71. Let ƒ be a function that is diferentiable on 3a, b4 . In Chapter 2 

we deined the average rate of change of ƒ over 3a, b4  to be

ƒ(b) - ƒ(a)

b - a

  and the instantaneous rate of change of ƒ at x to be ƒ′(x). In this 

chapter we deined the average value of a function. For the new dei-

nition of average to be consistent with the old one, we should have

ƒ(b) - ƒ(a)

b - a
= average value of ƒ′ on 3a, b4 .

  Is this the case? Give reasons for your answer.

 72. Is it true that the average value of an integrable function over an 

interval of length 2 is half the function’s integral over the interval? 

Give reasons for your answer.

 73. Compute the average value of the temperature function

ƒ(x) = 37 sin a 2p

365
 (x - 101)b + 25

  for a 365-day year. (See Exercise 86, Section 3.6.) This is one way 

to estimate the annual mean air temperature in Fairbanks, Alaska.  

The National Weather Service’s oicial igure, a numerical 

 average of the daily normal mean air temperatures for the year, is  

25.7°F, which is slightly higher than the average value of ƒ(x).

 74. Speciic heat of a gas Speciic heat Cy is the amount of heat 

required to raise the temperature of one mole (gram molecule) of 

a gas with constant volume by 1°C. The speciic heat of oxygen 

depends on its temperature T and satisies the formula

Cy = 8.27 + 10-5 (26T - 1.87T2).

T

T
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Theory and Examples

 1. a. If  L
1

0

7ƒ(x) dx = 7,  does L
1

0

ƒ(x) dx = 1?

b. If  L
1

0

ƒ(x) dx = 4 and ƒ(x) Ú 0, does

 L
1

0

2ƒ(x) dx = 24 = 2?

Give reasons for your answers.

 2. Suppose  L
2

-2

ƒ(x) dx = 4, L
5

2

ƒ(x) dx = 3, L
5

-2

g(x) dx = 2. 

  Which, if any, of the following statements are true?

a.  L
2

5

ƒ(x) dx = -3

b.  L
5

-2

(ƒ(x) + g(x)) = 9

c. ƒ(x) … g(x) on the interval -2 … x … 5

 3. Initial value problem Show that

y =
1
a L

x

0

ƒ(t) sin a(x - t) dt

  solves the initial value problem

d2y

dx2
+ a2y = ƒ(x),  

dy

dx
= 0 and y = 0 when x = 0.

  (Hint: sin (ax - at) = sin ax cos at - cos ax sin at.)

 4. Proportionality Suppose that x and y are related by the equation

x = L
y

0

 
1

21 + 4t2
 dt.

  Show that d2y/dx2 is proportional to y and ind the constant of 

proportionality.

 5. Find ƒ(4) if

a.  L
x2

0

ƒ(t) dt = x cos px b.  L
ƒ(x)

0

t2 dt = x cos px.

 6. Find ƒ(p/2) from the following information.

i) ƒ is positive and continuous.

ii) The area under the curve y = ƒ(x) from x = 0 to x = a is

a2

2
+

a

2
 sin a +

p

2
 cos a.

 7. The area of the region in the xy-plane enclosed by the x-axis, the 

curve y = ƒ(x), ƒ(x) Ú 0, and the lines x = 1 and x = b is equal 

to 2b2 + 1 - 22 for all b 7 1. Find ƒ(x).

 8. Prove that

 L
x

0

a   L
u

0ƒ(t) dtb  du = L
x

0

ƒ(u)(x - u) du.

  (Hint: Express the integral on the right-hand side as the diference 

of two integrals. Then show that both sides of the equation have 

the same derivative with respect to x.)

 9. Finding a curve Find the equation for the curve in the xy-plane 

that passes through the point (1, -1) if its slope at x is always 

3x2 + 2.

 10. Shoveling dirt You sling a shovelful of dirt up from the bottom 

of a hole with an initial velocity of 32 ft > sec. The dirt must rise 

17 ft above the release point to clear the edge of the hole. Is that 

enough speed to get the dirt out, or had you better duck?

Piecewise Continuous Functions

Although we are mainly interested in continuous functions, many 

functions in applications are piecewise continuous. A function ƒ(x) 

is piecewise continuous on a closed interval I if ƒ has only initely 

many discontinuities in I, the limits

lim
xSc-  ƒ(x)    and    lim

xSc +
ƒ(x)

exist and are inite at every interior point of I, and the appropriate one-

sided limits exist and are inite at the endpoints of I. All piecewise con-

tinuous functions are integrable. The points of discontinuity subdivide I 

into open and half-open subintervals on which ƒ is continuous, and the 

limit criteria above guarantee that ƒ has a continuous extension to the 

closure of each subinterval. To integrate a piecewise continuous function, 

we integrate the individual extensions and add the results. The integral of

ƒ(x) = c 1 - x, -1 … x 6 0

x2, 0 … x 6 2

-1, 2 … x … 3

(Figure 5.33) over 3-1, 34  is
  L

3

-1

ƒ(x) dx = L
0

-1

(1 - x) dx + L
2

0

x2 dx + L
3

2

(-1) dx

 = c x -
x2

2
d

-1

0

+ c x3

3
d

0

2

+ c-x d
2

3

 =
3
2

+
8
3

- 1 =
19

6
.
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x

y

2

20 31−1

1

3

4

−1

y = x2

y = 1 − x

y = −1

FIGURE 5.33 Piecewise continuous 

functions like this are integrated piece by 

piece.
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x

y

0

y = "x

1 1
n

2
n

n − 1
n

Therefore, when n is large, Sn will be close to 2>3 and we will have

Root sum = 21 + 22 + g + 2n = Sn
# n3>2 ≈

2
3

 n3>2.
The following table shows how good the approximation can be.

n Root sum (2 ,3)n3,2 Relative error

 10  22.468  21.082 1.386>22.468 ≈ 6,

 50  239.04  235.70 1.4%

 100  671.46  666.67 0.7%

1000  21,097  21,082 0.07%

 19. Evaluate

lim
nSq

 
15 + 25 + 35 + g + n5

n6

  by showing that the limit is

 L
1

0

x5 dx

  and evaluating the integral.

 20. See Exercise 19. Evaluate

lim
nSq

  
1

n4
 (13 + 23 + 33 + g + n3).

 21. Let ƒ(x) be a continuous function. Express

lim
nSq

  
1
n c ƒ a1nb + ƒ a2nb + g + ƒ annb d

  as a deinite integral.

 22. Use the result of Exercise 21 to evaluate

a. lim
nSq

   
1

n2
  (2 + 4 + 6 + g + 2n),

b. lim
nSq

   
1

n16
  (115 + 215 + 315 + g + n15),

c. lim
nSq

  
1
n  asin 

p
n + sin 

2p
n + sin 

3p
n + g + sin 

np
n b .

The Fundamental Theorem applies to piecewise continuous func-

tions with the restriction that (d>dx)1 x

a
 ƒ(t) dt is expected to equal ƒ(x) 

only at values of x at which ƒ is continuous. There is a similar restric-

tion on Leibniz’s Rule (see Exercises 27–30).

Graph the functions in Exercises 11–16 and integrate them over 

their domains.

 11. ƒ(x) = e x2>3, -8 … x 6 0

-4, 0 … x … 3

 12. ƒ(x) = e2-x, -4 … x 6 0

x2 - 4, 0 … x … 3

 13. g(t) = e t, 0 … t 6 1

 sin pt, 1 … t … 2

 14. h(z) = e21 - z, 0 … z 6 1

(7z - 6)-1>3, 1 … z … 2

 15. ƒ(x) = c 1, -2 … x 6 -1

1 - x2, -1 … x 6 1

2, 1 … x … 2

 16. h(r) = c r, -1 … r 6 0

1 - r2, 0 … r 6 1

1, 1 … r … 2

 17. Find the average value of the function graphed in the accompany-

ing igure.

x

y

0 1 2

1

 18. Find the average value of the function graphed in the accompany-

ing igure.

x

y

1

1 2 30

Approximating Finite Sums with Integrals

In many applications of calculus, integrals are used to approximate 

inite sums—the reverse of the usual procedure of using inite sums to 

approximate integrals.

For example, let’s estimate the sum of the square roots of the irst 

n positive integers, 21 + 22 + g + 2n. The integral

  L
1

0

2x dx =
2
3

 x3>2 d
0

1

=
2
3

is the limit of the upper sums

 Sn = A1
n #  

1
n + A2

n #  
1
n + g + A

n
n #  

1
n

 =
21 + 22 + g + 2n

n3>2 .
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To prove the rule, let F be an antiderivative of ƒ on 3a, b4 . Then

 L
y(x)

u(x)

ƒ(t) dt = F(y(x)) - F(u(x)).

Diferentiating both sides of this equation with respect to x gives the 

equation we want:

 
d

dx
 L

y(x)

u(x)

ƒ(t) dt =
d

dx
 3F(y(x)) - F(u(x))4

 = F′(y(x)) 
dy

dx
- F′(u(x)) 

du

dx
  Chain Rule 

= ƒ(y(x)) 
dy

dx
- ƒ(u(x)) 

du

dx
.

Use Leibniz’s Rule to ind the derivatives of the functions in 

 Exercises 27–29.

 27. ƒ(x) = L
x

1>x 
1
t

 dt 28. ƒ(x) = L
 sin x

 cos x

 
1

1 - t2
 dt

 29. g(y) = L
22y

2y

 sin t2 dt

 30. Use Leibniz’s Rule to ind the value of x that maximizes the value 

of the integral

 L
x + 3

x

 t(5 - t) dt.

What can be said about the following limits?

d. lim
nSq

  
1

n17
 (115 + 215 + 315 + g + n15)

e. lim
nSq

  
1

n15
 (115 + 215 + 315 + g + n15)

 23. a.  Show that the area An of an n-sided regular polygon in a circle 

of radius r is

An =
nr2

2
 sin 

2p
n .

b. Find the limit of An as n S q. Is this answer consistent with 

what you know about the area of a circle?

 24. Let

Sn =
12

n3
+

22

n3
+ g +

(n - 1)2

n3
.

  To calculate limnSq Sn , show that

Sn =
1
n c a1nb2

+ a2nb2

+ g + an - 1
n b2 d

  and interpret Sn as an approximating sum of the integral

 L
1

0

 x2 dx.

  (Hint: Partition 30, 14  into n intervals of equal length and write 

out the approximating sum for inscribed rectangles.)

Defining Functions Using the Fundamental Theorem

 25. A function deined by an integral The graph of a function 

ƒ consists of a semicircle and two line segments as shown. Let 

g(x) = 1 x

1
 ƒ(t) dt.

y

1 3−3

y = f(x)

−1
−1

1

3

x

a. Find g(1).  b. Find g(3).  c. Find g(-1).

d. Find all values of x on the open interval (-3, 4) at which g 

has a relative maximum.

e. Write an equation for the line tangent to the graph of g at 

x = -1.

f. Find the x-coordinate of each point of inlection of the graph 

of g on the open interval (-3, 4).

g. Find the range of g.

Leibniz’s Rule 

If ƒ is continuous on 3a, b4  and if u(x) and y(x) are dif-

ferentiable functions of x whose values lie in 3a, b4 , then

d

dx
  L

y(x)

u(x)

ƒ(t) dt = ƒ(y(x)) 
dy

dx
- ƒ(u(x)) 

du

dx
.

 26. A diferential equation Show that both of the following condi-

tions are satisied by y = sin x + 1p

x
 cos 2t dt +  1:

i) y″ = -sin x + 2 sin 2x

ii) y = 1 and y′ = -2 when x = p.

Leibniz’s rule In applications, we sometimes encounter functions 

deined by integrals that have variable upper limits of integration and 

variable lower limits of integration at the same time. We can ind the 

derivative of such an integral by a formula called Leibniz’s rule.
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Mathematica/Maple Projects

Projects can be found within MyMathLab.

•	 Using	Riemann	Sums	to	Estimate	Areas,	Volumes,	and	Lengths	of	Curves

Visualize and approximate areas and volumes in Part I.

•	 Riemann	Sums,	Deinite	Integrals,	and	the	Fundamental	Theorem	of	Calculus

Parts I, II, and III develop Riemann sums and deinite integrals. Part IV continues the development of the Riemann sum and deinite integral 

using the Fundamental Theorem to solve problems previously investigated.

•	 Rain	Catchers,	Elevators,	and	Rockets

Part I illustrates that the area under a curve is the same as the area of an appropriate rectangle for examples taken from the chapter. You will 

compute the amount of water accumulating in basins of diferent shapes as the basin is illed and drained.

•	 Motion	Along	a	Straight	Line,	Part	II

You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among position, velocity, and accel-

eration. Figures in the text can be animated using this software.

•	 Bending	of	Beams

Study bent shapes of beams, determine their maximum delections, concavity, and inlection points, and interpret the results in terms of a 

beams’s compression and tension.

CHAPTER 5 Technology Application Projects
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6.1 Volumes Using Cross-Sections

In this section we define volumes of solids by using the areas of their cross-sections. A 

cross-section of a solid S is the planar region formed by intersecting S with a plane  

(Figure 6.1). We present three different methods for obtaining the cross-sections appropri-

ate to finding the volume of a particular solid: the method of slicing, the disk method, and 

the washer method.

Suppose that we want to find the volume of a solid S like the one pictured in Figure 6.1. 

At each point x in the interval 3a, b4  we form a cross-section S(x) by intersecting S with a 

plane perpendicular to the x-axis through the point x, which gives a planar region whose 

area is A(x). We will show that if A is a continuous function of x, then the volume of the solid 

S is the definite integral of A(x). This method of computing volumes is known as the 

method of slicing.

Before showing how this method works, we need to extend the definition of a cylinder 

from the usual cylinders of classical geometry (which have circular, square, or other regu-

lar bases) to cylindrical solids that have more general bases. As shown in Figure 6.2, if the 

OVERVIEW In Chapter 5 we saw that a continuous function over a closed interval has a 

definite integral, which is the limit of Riemann sum approximations for the function. We 

found a way to evaluate definite integrals using the Fundamental Theorem of Calculus. We 

saw that the area under a curve and the area between two curves could be defined and 

computed as definite integrals. In this chapter we will see some of the many additional 

applications of definite integrals. We will use the definite integral to define and find vol-

umes, lengths of plane curves, and areas of surfaces of revolution. We will see how inte-

grals are used to solve physical problems involving the work done by a force, and how 

they give the location of an object’s center of mass. The integral arises in these and other 

applications in which we can approximate a desired quantity by Riemann sums. The limit 

of those Riemann sums, which is the quantity we seek, is given by a definite integral.

Applications of Definite 
Integrals

6

A = base area

Plane region whose

area we know

Cylindrical solid based on region

Volume = base area ×  height = Ah

h = height

FIGURE 6.2 The volume of a cylindrical solid is always defined 

to be its base area times its height.

Cross-section S(x)

with area A(x)

a

b

x

S

0

Px

x

y

FIGURE 6.1 A cross-section S(x) of 

the solid S formed by intersecting S with 

a plane Px perpendicular to the x-axis 

through the point x in the interval 3a, b4 .
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cylindrical solid has a base whose area is A and its height is h, then the volume of the 

cylindrical solid is

Volume = area * height = A # h.

In the method of slicing, the base will be the cross-section of S that has area A(x), and the 

height will correspond to the width ∆xk of subintervals formed by partitioning the interval 3a, b4  into finitely many subintervals 3xk - 1, xk4 .
Slicing by Parallel Planes

We partition 3a, b4  into subintervals of width (length) ∆xk and slice the solid, as we 

would a loaf of bread, by planes perpendicular to the x-axis at the partition points 

a = x0 6 x1 6 g 6 xn = b. These planes slice S into thin “slabs” (like thin slices of a 

loaf of bread). A typical slab is shown in Figure 6.3. We approximate the slab between the 

plane at xk - 1 and the plane at xk by a cylindrical solid with base area A(xk) and height 

∆xk = xk - xk - 1 (Figure 6.4). The volume Vk of this cylindrical solid is A(xk) # ∆xk , 

which is approximately the same volume as that of the slab:

Volume of the k th slab ≈ Vk = A(xk) ∆xk .

The volume V of the entire solid S is therefore approximated by the sum of these cylindri-

cal volumes,

V ≈ a
n

k = 1

Vk = a
n

k = 1

A(xk) ∆xk.

This is a Riemann sum for the function A(x) on 3a, b4 . The approximation given by this 

Riemann sum converges to the definite integral of A(x) as n S q:

lim
nSq

 a
n

k = 1

A(xk) ∆xk = L
b

a

A(x) dx.

Therefore, we define this definite integral to be the volume of the solid S.

a

xk−1
xk

b

0

y

x

S

FIGURE 6.3 A typical thin slab in the 

solid S.

0

The approximating

cylinder based

on S(xk) has height

Δxk = xk − xk−1

Plane at xk−1

Plane at xk

xk

xk−1

The cylinder’s base

is the region S(xk)

with area A(xk)

NOT TO SCALE

y

x

FIGURE 6.4 The solid thin slab in 

Figure 6.3 is shown enlarged here. It is 

approximated by the cylindrical solid with 

base S(xk) having area A(xk) and height 

∆xk = xk - xk - 1.

DEFINITION The volume of a solid of integrable cross-sectional area A(x) 

from x = a to x = b is the integral of A from a to b,

V = L
b

a

A(x) dx.

This definition applies whenever A(x) is integrable, and in particular when A(x) is 

continuous. To apply this definition to calculate the volume of a solid using cross-sections 

perpendicular to the x-axis, take the following steps:

Calculating the Volume of a Solid

1. Sketch the solid and a typical cross-section.

2. Find a formula for A(x), the area of a typical cross-section.

3. Find the limits of integration.

4. Integrate A(x) to ind the volume.

EXAMPLE 1  A pyramid 3 m high has a square base that is 3 m on a side. The cross-

section of the pyramid perpendicular to the altitude x m down from the vertex is a square  

x m on a side. Find the volume of the pyramid.
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Solution

1.  A sketch. We draw the pyramid with its altitude along the x-axis and its vertex at the 

origin and include a typical cross-section (Figure 6.5). Note that by positioning the 

pyramid in this way, we have vertical cross-sections that are squares, whose areas  

are easy to calculate.

2.  A formula for A(x). The cross-section at x is a square x meters on a side, so its area is

A(x) = x2.

3.  The limits of integration. The squares lie on the planes from x = 0 to x = 3.

4.  Integrate to ind the volume: 

 V = L
3

0

A(x) dx = L
3

0

x2 dx =
x3

3
d

0

3

= 9 m3. 

EXAMPLE 2  A curved wedge is cut from a circular cylinder of radius 3 by two 

planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the 

first plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

Solution We draw the wedge and sketch a typical cross-section perpendicular to the 

x-axis (Figure 6.6). The base of the wedge in the figure is the semicircle with x Ú 0 that is 

cut from the circle x2 + y2 = 9 by the 45° plane when it intersects the y-axis. For any x in 

the interval 30, 34 , the y-values in this semicircular base vary from 

y = -29 - x2 to y = 29 - x2. When we slice through the wedge by a plane perpen-

dicular to the x-axis, we obtain a cross-section at x which is a rectangle of height x whose 

width extends across the semicircular base. The area of this cross-section is

 A(x) = (height)(width) = (x)1229 - x22
 = 2x29 - x2 .

The rectangles run from x = 0 to x = 3, so we have

 V = L
b

a

A(x) dx = L
3

0

2x29 - x2 dx

 = -  
2
3

 (9 - x2)3>2 d
0

3

  
Let u = 9 - x2, 

du = -2x dx, integrate, 

and substitute back.

 = 0 +
2
3

 (9)3>2
 = 18.  

EXAMPLE 3  Cavalieri’s principle says that solids with equal altitudes and identical 

cross-sectional areas at each height have the same volume (Figure 6.7). This follows 

immediately from the definition of volume, because the cross-sectional area function A(x) 

and the interval 3a, b4  are the same for both solids. 

Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a planar region about an axis in its plane is 

called a solid of revolution. To find the volume of a solid like the one shown in Figure 6.8, 

we first observe that the cross-sectional area A(x) is the area of a disk of radius R(x), where 

R(x) is the distance from the axis of revolution to the planar region’s boundary. The area is 

then

A(x) = p(radius)2 = p3R(x)4 2.

Therefore, the definition of volume gives us the following formula.

0

y

x (m)

Typical cross-section

3

3

3
x

x

x

FIGURE 6.5 The cross-sections of the 

pyramid in Example 1 are squares.

x

y

0

−3

3

x

x

45°

2"9 − x2

 x,  −"9 − x2a           b
FIGURE 6.6 The wedge of Example 2,  

sliced perpendicular to the x-axis. The 

cross-sections are rectangles.

HistoricAL BiogrApHy

Bonaventura cavalieri

(1598–1647)

www.goo.gl/kPgDdQ

a

b Same volume

Same cross-section
area at every level

FIGURE 6.7 Cavalieri’s principle: 

These solids have the same volume  

(imagine each solid as a stack of coins).

http://www.goo.gl/kPgDdQ
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This method for calculating the volume of a solid of revolution is often called the disk 

method because a cross-section is a circular disk of radius R(x).

Volume by Disks for Rotation About the x-Axis

V = L
b

a

A(x) dx = L
b

a

p3R(x)4 2  dx.

x

y

−a

(x, y)

a

Δx

x

A(x) = p(a2 − x2)

x

x2 + y2 = a2

x2 + y2 = a2

FIGURE 6.9 The sphere generated by rotating the 

circle x2 + y2 = a2 about the x-axis. The radius is 

R(x) = y = 2a2 - x2 (Example 5).

EXAMPLE 4  The region between the curve y = 2x, 0 … x … 4, and the x-axis is 

revolved about the x-axis to generate a solid. Find its volume.

Solution We draw figures showing the region, a typical radius, and the generated solid 

(Figure 6.8). The volume is

 V = L
b

a

 p3R(x)4 2 dx

 = L
4

0

 p32x42
 dx   Radius R(x) = 2x for 

rotation around x-axis.

 = pL
4

0

 x dx = p 
x2

2
d

0

4

= p 
(4)2

2
= 8p. 

EXAMPLE 5  The circle

x2 + y2 = a2

is rotated about the x-axis to generate a sphere. Find its volume.

0

x

y

R(x) = "x

x

y

y = "x

y = "x

0 4x

(a)

(b)

4

R(x) = "x

x

Disk

xxx

FIGURE 6.8 The region (a) and solid of 

revolution (b) in Example 4.

Solution We imagine the sphere cut into thin slices by planes perpendicular to the x-axis 

(Figure 6.9). The cross-sectional area at a typical point x between -a and a is

A(x) = py2 = p(a2 - x2).  R(x) = 2a2 - x2 for  

rotation around x-axis.
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Therefore, the volume is

 V = L
a

-a

A(x) dx = L
a

-a

p(a2 - x2) dx = p c a2x -
x3

3
d

-a

a

=
4
3

 pa3. 

The axis of revolution in the next example is not the x-axis, but the rule for calculating 

the volume is the same: Integrate p(radius)2 between appropriate limits.

EXAMPLE 6  Find the volume of the solid generated by revolving the region bounded 

by y = 2x and the lines y = 1, x = 4 about the line y = 1.

Solution We draw figures showing the region, a typical radius, and the generated solid 

(Figure 6.10). The volume is

 V = L
4

1

 p3R(x)4 2 dx

 = L
4

1

 p 32x - 142
 dx 

Radius R(x) = 2x - 1 for 

rotation around y = 1.

 = p L
4

1

 3x - 22x + 14  dx Expand integrand.

 = p c x2

2
- 2 # 2

3
 x3>2 + x d

1

4

=
7p
6

.  Integrate.

(a)

y

y = "x

y = 1

x1 40

1

R(x) = "x − 1

x

 (b)

(x, 1)

x

y

y = "x

y = 1

(x, "x)

x

1
0

1

4

R(x) = "x − 1

FIGURE 6.10 The region (a) and solid of revolution (b) in Example 6. 

To find the volume of a solid generated by revolving a region between the y-axis and a 

curve x = R(y), c … y … d, about the y-axis, we use the same method with x replaced by 

y. In this case, the area of the circular cross-section is

A(y) = p3 radius4 2 = p3R(y)4 2,

and the definition of volume gives us the following formula.

Volume by Disks for Rotation About the y-Axis

 V = L
d

c

 A( y) dy = L
d

c

 p3R(y)4 2 dy.

EXAMPLE 7  Find the volume of the solid generated by revolving the region between 

the y-axis and the curve x = 2>y, 1 … y … 4, about the y-axis.
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Solution We draw figures showing the region, a typical radius, and the generated solid 

(Figure 6.11). The volume is

 V = L
4

1

 p 3R(y)4 2 dy

 = L
4

1

 p  a2yb2

 dy   
Radius R(y) =

2
y  for 

rotation around y-axis

 = p L
4

1

 
4

y2
 dy = 4p c-  

1
y d

1

4

= 4p c 3
4
d = 3p. 

EXAMPLE 8  Find the volume of the solid generated by revolving the region between 

the parabola x = y2 + 1 and the line x = 3 about the line x = 3.

Solution We draw figures showing the region, a typical radius, and the generated solid 

(Figure 6.12). Note that the cross-sections are perpendicular to the line x = 3 and have 

y-coordinates from y = -22 to y = 22. The volume is

 V = L
22

-22
 p   3R(y)4 2 dy    y = {22 when x = 3 

 = L
22

-22
 p   32 - y24 2 dy    

Radius R(  y) = 3 - (y2 + 1) 

for rotation around axis x = 3.
 

 = p L
22

-22

 34 - 4y2 + y44  dy  Expand integrand.

 = p c 4y -
4
3

 y3 +
y5

5
d

-22

22

   Integrate.

 =
64p22

15
.

4

1

0

2

y

y

x

x

2
y

, y

2
yx =

2
yx =

2
yR(y) =

2
yR(y) =

0

1

4

y

2

(a)

(b)

y

a   b

FIGURE 6.11 The region (a) and part of 

the solid of revolution (b) in Example 7.

x

y

y

0 1 3 5

x = y2 + 1

x = 3

R(y) = 3 − (y2 + 1)

= 2 − y2
R(y) = 2 − y2

(b)(a)

x

y

y

0 1 5

x = y2 + 1

3

(3, "2)

(3, −"2)

"2

−"2

"2

−"2

FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8. 

Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolu-

tion, then the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the 

axis of revolution are washers (the purplish circular surface in Figure 6.13) instead of 

disks. The dimensions of a typical washer are

 Outer radius: R(x)

 Inner radius: r(x)
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The washer’s area is the area of a circle of radius R(x) minus the area of a circle of radius 

r(x):

A(x) = p3R(x)4 2 - p3r(x)4 2 = p 1 3R(x)4 2 - 3r(x)4 22.
Consequently, the definition of volume in this case gives us the following formula.

y

x

0
a

x

b

y = R(x)

y = r(x)

0

x

y y

0

x

(x, R(x))

(x, r(x))

Washer

xx

FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral 

1b

a
 A(x) dx leads to a slightly different formula.

Volume by Washers for Rotation About the x-Axis

 V = L
b

a

 A(x) dx = L
b

a

 p 1 3R(x)4 2 - 3r(x)4 22 dx.

This method for calculating the volume of a solid of revolution is called the washer 

method because a thin slab of the solid resembles a circular washer with outer radius R(x) 

and inner radius r(x).

EXAMPLE 9  The region bounded by the curve y = x2 + 1 and the line y = -x + 3 

is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution We use the same four steps for calculating the volume of a solid that were dis-

cussed earlier in this section.

1.  Draw the region and sketch a line segment across it perpendicular to the axis of revolu-

tion (the red segment in Figure 6.14a).

2.  Find the outer and inner radii of the washer that would be swept out by the line seg-

ment if it were revolved about the x-axis along with the region.

  These radii are the distances of the ends of the line segment from the axis of revolution 

(see Figure 6.14).

 Outer radius: R(x) = -x + 3

 Inner radius: r(x) = x2 + 1

3.  Find the limits of integration by inding the x-coordinates of the intersection points of 

the curve and line in Figure 6.14a.

 x2 + 1 = -x + 3

 x2 + x - 2 = 0

 (x + 2)(x - 1) = 0

 x = -2, x = 1  Limits of integration

x

y

y = −x + 3

y = x2 + 1

(−2, 5)

(1, 2)

−2 x 0 1Interval of

integration

Washer cross-section

Outer radius: R(x) = −x + 3 

Inner radius: r(x) = x2 + 1

R(x) = −x + 3

(1, 2)

(−2, 5)

(a)

(b)

x

y

r(x) = x2 + 1

x

R(x) = −x + 3

r(x) = x2 + 1

FIGURE 6.14 (a) The region in  

Example 9 spanned by a line segment 

perpendicular to the axis of revolution.  

(b) When the region is revolved about 

the x-axis, the line segment generates a 

washer.
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4.  Evaluate the volume integral.

 V = L
b

a

 p   1 3R(x)4 2 - 3r(x)4 22 dx Rotation around x-axis

 = L
1

- 2

p   1(-x + 3)2 - (x2 + 1)22 dx  Values from Steps 2 and 3

 = p L
1

-2

(8 - 6x - x2 - x4) dx Simplify algebraically.

 = p c 8x - 3x2 -
x3

3
-

x5

5
d

-2

1

=
117p

5
 Integrate. 

To find the volume of a solid formed by revolving a region about the y-axis, we use 

the same procedure as in Example 9, but integrate with respect to y instead of x. In this 

situation the line segment sweeping out a typical washer is perpendicular to the y-axis (the 

axis of revolution), and the outer and inner radii of the washer are functions of y.

EXAMPLE 10  The region bounded by the parabola y = x2 and the line y = 2x in 

the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the 

solid.

Solution First we sketch the region and draw a line segment across it perpendicular to 

the axis of revolution (the y-axis). See Figure 6.15a.

The radii of the washer swept out by the line segment are R(y) = 2y, r(y) = y>2 

(Figure 6.15).

The line and parabola intersect at y = 0 and y = 4, so the limits of integration are 

c = 0 and d = 4. We integrate to ind the volume:

 V = L
d

c

 p  1 3R(y)4 2 - 3r(y)4 22 dy Rotation around y-axis

 = L
4

0

 p  a 32y4 2 - c y
2
d 2b  dy 

Substitute for radii and 

limits of integration.

 = p L
4

0

 ay -
y2

4
b  dy = p c y2

2
-

y3

12
d

0

4

=
8
3

 p. 
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4

y

y

2
r(y) =

R(y) = "y 

y

2
r(y) =

y

2
x =

R(y) = "y 

x = "y 

y

2

y = 2x or

x =

y = x2 or

x = "y 

FIGURE 6.15 (a) The region being 

rotated about the y-axis, the washer radii, 

and limits of integration in Example 10. 

(b) The washer swept out by the line seg-

ment in part (a).

Volumes by Slicing

Find the volumes of the solids in Exercises 1–10.

 1. The solid lies between planes perpendicular to the x-axis at x = 0 

and x = 4. The cross-sections perpendicular to the axis on the 

interval 0 … x … 4 are squares whose diagonals run from the pa-

rabola y = -2x to the parabola y = 2x.

 2. The solid lies between planes perpendicular to the x-axis at 

x = -1 and x = 1. The cross-sections perpendicular to the x-axis 

are circular disks whose diameters run from the parabola y = x2 

to the parabola y = 2 - x2.

y = x2

y = 2 − x2

2

0

x

y

EXERCISES 6.1
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 11. Find the volume of the given right tetrahedron. (Hint: Consider 

slices perpendicular to one of the labeled edges.)

3

4

5

y

x

 12. Find the volume of the given pyramid, which has a square base of 

area 9 and height 5.

3

5

3

y

x

 13. A twisted solid A square of side length s lies in a plane per-

pendicular to a line L. One vertex of the square lies on L. As this 

square moves a distance h along L, the square turns one revolution 

about L to generate a corkscrew-like column with square cross-

sections.

a. Find the volume of the column.

b. What will the volume be if the square turns twice instead of 

once? Give reasons for your answer.

 14. cavalieri’s principle A solid lies between planes perpen-

dicular to the x-axis at x = 0 and x = 12. The cross-sections 

by planes perpendicular to the x-axis are circular disks whose 

diameters run from the line y = x>2 to the line y = x  as 

shown in the accom panying figure. Explain why the solid has 

the same volume as a right circular cone with base radius 3 and 

height 12.

x12

y

0

y = x

y =
2
x

 3. The solid lies between planes perpendicular to the x-axis at 

x = -1 and x = 1. The cross-sections perpendicular to the  

x-axis between these planes are squares whose bases run from the 

  semicircle y = -21 - x2 to the semicircle y = 21 - x2.

 4. The solid lies between planes perpendicular to the x-axis at 

x = -1 and x = 1. The cross-sections perpendicular to the x-axis 

between these planes are squares whose diagonals run from the 

semicircle y = -21 - x2 to the semicircle y = 21 - x2.

 5. The base of a solid is the region between the curve y = 22sin x 

and the interval 30, p4  on the x-axis. The cross-sections perpen-

dicular to the x-axis are

a. equilateral triangles with bases running from the x-axis to the 

curve as shown in the accompanying igure.

0

p

y = 2"sin x

x

y

b. squares with bases running from the x-axis to the curve.

 6. The solid lies between planes perpendicular to the x-axis at 

x = -p>3 and x = p>3. The cross-sections perpendicular to the 

x-axis are

a. circular disks with diameters running from the curve 

y = tan x to the curve y = sec x.

b. squares whose bases run from the curve y = tan x to the 

curve y = sec x.

 7. The base of a solid is the region bounded by the graphs of y = 3x, 

y = 6, and x = 0. The cross-sections perpendicular to the x-axis 

are

a. rectangles of height 10.

b. rectangles of perimeter 20.

 8. The base of a solid is the region bounded by the graphs of y = 2x 

and y = x>2. The cross-sections perpendicular to the x-axis are

a. isosceles triangles of height 6.

b. semicircles with diameters running across the base of the 

solid.

 9. The solid lies between planes perpendicular to the y-axis at y = 0 

and y = 2. The cross-sections perpendicular to the y-axis are cir-

cular disks with diameters running from the y-axis to the parabola 

x = 25y2.

 10. The base of the solid is the disk x2 + y2 … 1. The cross-sections 

by planes perpendicular to the y-axis between y = -1 and y = 1 

are isosceles right triangles with one leg in the disk.

1
x2 + y2 = 1

0

y

x
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Find the volumes of the solids generated by revolving the regions 

bounded by the lines and curves in Exercises 21–26 about the 

x-axis.

 21. y = x2, y = 0, x = 2 22. y = x3, y = 0, x = 2

 23. y = 29 - x2, y = 0 24. y = x - x2, y = 0

 25. y = 2cos x, 0 … x … p>2, y = 0, x = 0

 26. y = sec x, y = 0, x = -p>4, x = p>4
In Exercises 27 and 28, find the volume of the solid generated by 

revolving the region about the given line.

 27. The region in the irst quadrant bounded above by the line 

y = 22, below by the curve y = sec x tan x, and on the left by 

the y-axis, about the line y = 22

 28. The region in the irst quadrant bounded above by the line y = 2, 

below by the curve y = 2 sin x, 0 … x … p>2, and on the left by 

the y-axis, about the line y = 2

Find the volumes of the solids generated by revolving the regions 

bounded by the lines and curves in Exercises 29–34 about the 

y-axis.

 29. The region enclosed by x = 25y2, x = 0, y = -1, y = 1

 30. The region enclosed by x = y3>2, x = 0, y = 2

 31. The region enclosed by x = 22 sin 2y, 0 … y … p>2, x = 0

 32. The region enclosed by x = 2cos (py>4), -2 … y … 0, 

x = 0

 33. x = 2>2y + 1, x = 0, y = 0, y = 3

 34. x = 22y>( y2 + 1), x = 0, y = 1

Volumes by the Washer Method

Find the volumes of the solids generated by revolving the shaded 

regions in Exercises 35 and 36 about the indicated axes.

 35. The x-axis 36. The y-axis

x

y

0
−

y = 1
y = "cos x

2
p

2
p

 

x

y

0 1

x = tan y
4
p

Find the volumes of the solids generated by revolving the regions 

bounded by the lines and curves in Exercises 37–42 about the 

x-axis.

 37. y = x, y = 1, x = 0

 38. y = 22x, y = 2, x = 0

 39. y = x2 + 1, y = x + 3

 40. y = 4 - x2, y = 2 - x

 41. y = sec x, y = 22, -p>4 … x … p>4
 42. y = sec x, y = tan x, x = 0, x = 1

 15. intersection of two half-cylinders Two half-cylinders of diam-

eter 2 meet at a right angle in the accompanying igure. Find the 

volume of the solid region common to both half-cylinders. (Hint: 

Consider slices parallel to the base of the solid.)

2

2

 16. gasoline in a tank A gasoline tank is in the shape of a right 

circular cylinder (lying on its side) of length 10 ft and radius 4 ft. 

Set up an integral that represents the volume of the gas in the tank 

if it is illed to a depth of 6 ft. You will learn how to compute this 

integral in Chapter 8 (or you may use geometry to ind its value).

10 ft

6 ft

4 ft

Volumes by the Disk Method

In Exercises 17–20, find the volume of the solid generated by revolv-

ing the shaded region about the given axis.

 17. About the x-axis 18. About the y-axis

x

y

0 2

1

x + 2y = 2

 

x

y

0

2

3

x =
3y

2

 19. About the y-axis 20. About the x-axis

Q  R

x

y

0

1

4
x = tan      yp

 

x

y

0

y = sin x cos x

2

2
1

p
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 56. Explain how you could estimate the volume of a solid of revolu-

tion by measuring the shadow cast on a table parallel to its axis of 

revolution by a light shining directly above it.

 57. Volume of a hemisphere Derive the formula V = (2>3)pR3 for 

the volume of a hemisphere of radius R by comparing its cross-

sections with the cross-sections of a solid right circular cylinder 

of radius R and height R from which a solid right circular cone of 

base radius R and height R has been removed, as suggested by the 

accompanying igure.

In Exercises 43–46, find the volume of the solid generated by revolv-

ing each region about the y-axis.

 43. The region enclosed by the triangle with vertices (1, 0), (2, 1),  

and (1, 1)

 44. The region enclosed by the triangle with vertices (0, 1), (1, 0),  

and (1, 1)

 45. The region in the irst quadrant bounded above by the parabola 

y = x2, below by the x-axis, and on the right by the line x = 2

 46. The region in the irst quadrant bounded on the left by the circle 

x2 + y2 = 3, on the right by the line x = 23, and above by the 

line y = 23

In Exercises 47 and 48, find the volume of the solid generated by 

revolving each region about the given axis.

 47. The region in the irst quadrant bounded above by the curve 

y = x2, below by the x-axis, and on the right by the line x = 1, 

about the line x = -1

 48. The region in the second quadrant bounded above by the curve 

y = -x3, below by the x-axis, and on the left by the line x = -1, 

about the line x = -2

Volumes of Solids of Revolution

 49. Find the volume of the solid generated by revolving the region 

bounded by y = 2x and the lines y = 2 and x = 0 about

a. the x-axis. b. the y-axis.

c. the line y = 2. d. the line x = 4.

 50. Find the volume of the solid generated by revolving the triangular 

region bounded by the lines y = 2x, y = 0, and x = 1 about

a. the line x = 1. b. the line x = 2.

 51. Find the volume of the solid generated by revolving the region 

bounded by the parabola y = x2 and the line y = 1 about

a. the line y = 1. b. the line y = 2.

c. the line y = -1.

 52. By integration, ind the volume of the solid generated by revolving 

the triangular region with vertices (0, 0), (b, 0), (0, h) about

a. the x-axis. b. the y-axis.

Theory and Applications

 53. the volume of a torus The disk x2 + y2 … a2 is revolved about 

the line x = b (b 7 a) to generate a solid shaped like a doughnut 

  and called a torus. Find its volume. (Hint: 1a

-a
2a2 - y2 dy =

pa2>2, since it is the area of a semicircle of radius a.)

 54. Volume of a bowl A bowl has a shape that can be generated by 

revolving the graph of y = x2>2 between y = 0 and y = 5 about 

the y-axis.

a. Find the volume of the bowl.

b. related rates If we ill the bowl with water at a constant 

rate of 3 cubic units per second, how fast will the water level 

in the bowl be rising when the water is 4 units deep?

 55. Volume of a bowl

a. A hemispherical bowl of radius a contains water to a depth h. 

Find the volume of water in the bowl.

b. related rates Water runs into a sunken concrete hemi- 

spherical bowl of radius 5 m at the rate of 0.2 m3>sec. How fast 

is the water level in the bowl rising when the water is 4 m deep?

h

R
R

h h

"R2 
− h2

 58. Designing a plumb bob Having been asked to design a brass 

plumb bob that will weigh in the neighborhood of 190 g, you de-

cide to shape it like the solid of revolution shown here. Find the 

plumb bob’s volume. If you specify a brass that weighs 8.5 g>cm3, 

how much will the plumb bob weigh (to the nearest gram)?

0

6

x (cm)

y (cm)
y = "36 − x2x

12

 59. Designing a wok You are designing a wok frying pan that will 

be shaped like a spherical bowl with handles. A bit of experimen-

tation at home persuades you that you can get one that holds about 

3 L if you make it 9 cm deep and give the sphere a radius of 16 cm. 

To be sure, you picture the wok as a solid of revolution, as shown 

here, and calculate its volume with an integral. To the nearest cu-

bic centimeter, what volume do you really get? (1 L = 1000 cm3)

9 cm deep

0

−7

x2 + y2 = 162 = 256

x (cm)

−16

y (cm)

 60. Max-min The arch y = sin x, 0 … x … p, is revolved about 

the line y = c, 0 … c … 1, to generate the solid in the accompa-

nying igure.

a. Find the value of c that minimizes the volume of the solid. 

What is the minimum volume?
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b. What value of c in 30, 14  maximizes the volume of the 

solid?

c. Graph the solid’s volume as a function of c, irst for 

0 … c … 1 and then on a larger domain. What happens to the 

volume of the solid as c moves away from 30, 14 ? Does this 

make sense physically? Give reasons for your answers.

y

0

x

y = c

p

y = sin x

T

 61. Consider the region R bounded by the graphs of y = ƒ(x) 7 0, 

x = a 7 0, x = b 7 a, and y = 0 (see accompanying igure). If 

the volume of the solid formed by revolving R about the x-axis is 

4p, and the volume of the solid formed by revolving R about the 

line y = -1 is 8p, ind the area of R.

x

y

0 b

R

a

y = f (x)

 62. Consider the region R given in Exercise 61. If the volume of the 

solid formed by revolving R around the x-axis is 6p, and the vol-

ume of the solid formed by revolving R around the line y = -2 is 

10p, ind the area of R.

6.2 Volumes Using Cylindrical Shells

In Section 6.1 we defined the volume of a solid to be the definite integral V = 1b

a
 A(x) dx, 

where A(x) is an integrable cross-sectional area of the solid from x = a to x = b. The 

area A(x) was obtained by slicing through the solid with a plane perpendicular to the 

x-axis. However, this method of slicing is sometimes awkward to apply, as we will illus-

trate in our first example. To overcome this difficulty, we use the same integral definition 

for volume, but obtain the area by slicing through the solid in a different way.

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, like cookie 

cutters. We slice straight down through the solid so that the axis of each cylinder is parallel 

to the y-axis. The vertical axis of each cylinder is always the same line, but the radii of the 

cylinders increase with each slice. In this way the solid is sliced up into thin cylindrical 

shells of constant thickness that grow outward from their common axis, like circular tree 

rings. Unrolling a cylindrical shell shows that its volume is approximately that of a rectan-

gular slab with area A(x) and thickness ∆x. This slab interpretation allows us to apply the 

same integral definition for volume as before. The following example provides some 

insight.

EXAMPLE 1  The region enclosed by the x-axis and the parabola y = ƒ(x) = 3x - x2 

is revolved about the vertical line x = -1 to generate a solid (see Figure 6.16). Find the 

volume of the solid.

Solution Using the washer method from Section 6.1 would be awkward here because 

we would need to express the x-values of the left and right sides of the parabola in Figure 

6.16a in terms of y. (These x-values are the inner and outer radii for a typical washer, 

requiring us to solve y = 3x - x2 for x, which leads to a complicated formula for x.) 

Instead of rotating a horizontal strip of thickness ∆y, we rotate a vertical strip of thickness 

∆x. This rotation produces a cylindrical shell of height yk above a point xk within the base 

of the vertical strip and of thickness ∆x. An example of a cylindrical shell is shown as  

the orange-shaded region in Figure 6.17. We can think of the cylindrical shell shown in the 

figure as approximating a slice of the solid obtained by cutting straight down through it, 

parallel to the axis of revolution, all the way around close to the inside hole. We then cut 
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another cylindrical slice around the enlarged hole, then another, and so on, obtaining n 

cylinders. The radii of the cylinders gradually increase, and the heights of the cylinders 

follow the contour of the parabola: shorter to taller, then back to shorter (Figure 6.16a). 

The sum of the volumes of the shells is a Riemann sum that approximates the volume of 

the entire solid.

Each shell sits over a subinterval 3xk - 1, xk4  in the x-axis. The thickness of the shell is 

∆xk = xk - xk - 1. Because the parabola is rotated around the line x = -1, the outer radius 

of the shell is 1 + xk. The height of the shell is the height of the parabola at some point in 

the interval 3xk - 1, xk4 , or approximately yk = ƒ(xk) = 3xk - x2
k. If we unroll this cylinder 

and latten it out, it becomes (approximately) a rectangular slab with thickness ∆xk (see 

Figure 6.18). The height of the rectangular slab is approximately yk = 3xk - x2
k, and its 

length is the circumference of the shell, which is approximately 2p # radius = 2p(1 + xk). 

Hence the volume of the shell is approximately the volume of the rectangular slab, which is

 ∆Vk = circumference * height * thickness

 = 2p(1 + xk) # 13xk - xk 

22 # ∆xk .

y

x
3

Axis of

revolution

 x = −1

(b)

x

y = 3x − x2

y

1 2 3−2 −1 0

−1

−2

1

2

Axis of

revolution

x = −1

(a)

0

FIGURE 6.16 (a) The graph of the region in Example 1, before revolution.  

(b) The solid formed when the region in part (a) is revolved about the axis of revolution 

x = -1.

3−3

y

x
0 xk

yk

x = −1

FIGURE 6.17 A cylindrical shell of 

height yk obtained by rotating a verti-

cal strip of thickness ∆xk about the line 

x = -1. The outer radius of the cylinder 

occurs at xk , where the height of the pa-

rabola is yk = 3xk - xk
  2 (Example 1).

Radius = 1 + xk

Outer circumference = 2p • radius = 2p(1 + xk)
Δxk

 Δxk = thickness

l = 2p(1 + xk)

h = (3xk − xk
2)

(3xk − xk
2)

FIGURE 6.18 Cutting and unrolling a cylindrical shell gives a 

nearly rectangular solid (Example 1).
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Summing together the volumes ∆Vk of the individual cylindrical shells over the interval 30, 34  gives the Riemann sum

a
n

k = 1

∆Vk = a
n

k = 1

2p(xk + 1)13xk - xk 

22∆xk .

Taking the limit as the thickness ∆xk S 0 and n S q gives the volume integral

 V = lim
nSq

 a
n

k = 1

 2p(xk + 1)13xk - xk
  22 ∆xk

 = L
3

0

 2p(x + 1)(3x - x2) dx

 = L
3

0

 2p(3x2 + 3x - x3 - x2) dx

 = 2pL
3

0

 (2x2 + 3x - x3) dx

  = 2p c 2
3

 x3 +
3
2

 x2 -
1
4

 x4 d
0

3

 =
45p

2
.  

We now generalize this procedure to more general solids.

The Shell Method

Suppose that the region bounded by the graph of a nonnegative continuous function 

y = ƒ(x) and the x-axis over the finite closed interval 3a, b4  lies to the right of the verti-

cal line x = L (see Figure 6.19a). We assume a Ú L, so the vertical line may touch the 

region but cannot pass through it. We generate a solid S by rotating this region about the 

vertical line L.

Let P be a partition of the interval 3a, b4  by the points a = x0 6 x1 6 g 6  xn = b. 

As usual, we choose a point ck in each subinterval 3xk - 1, xk4 . In Example 1 we chose ck  

to be the endpoint xk, but now it will be more convenient to let ck be the midpoint of the 

subinterval 3xk-1, xk4 . We approximate the region in Figure 6.19a with rectangles based 

on this partition of 3a, b4 . A typical approximating rectangle has height ƒ(ck) and width 

x

b

Rectangle

height = f(ck)

ck

xk

y = f(x)

xk−1

Δxk

a

(b)

Vertical axis

of revolution

y = f (x)

x = L

a ck
xkxk−1

b

(a)

Vertical axis
of revolution

x

Δxk

FIGURE 6.19 When the region shown in (a) is revolved about the vertical line 

x = L, a solid is produced which can be sliced into cylindrical shells. A typical shell 

is shown in (b).
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∆xk = xk - xk - 1. If this rectangle is rotated about the vertical line x = L, then a shell is 

swept out, as in Figure 6.19b. A formula from geometry tells us that the volume of the 

shell swept out by the rectangle is

 ∆Vk = 2p * average shell radius * shell height * thickness

 = 2p # (ck - L) # ƒ(ck) # ∆xk .  R = xk - L and r = xk - 1 - L

We approximate the volume of the solid S by summing the volumes of the shells swept out 

by the n rectangles:

V ≈ a
n

k = 1

∆Vk .

The limit of this Riemann sum as each ∆xk S 0 and n S q gives the volume of the solid 

as a definite integral:

 V = lim
nSq

 a
n

k - 1

∆Vk = L
b

a

2p(shell radius)(shell height) dx

 = L
b

a

 2p(x - L)ƒ(x) dx.

We refer to the variable of integration, here x, as the thickness variable. To emphasize the 

process of the shell method, we state the general formula in terms of the shell radius and 

shell height. This will allow for rotations about a horizontal line L as well.

The volume of a cylindrical shell of 

height h with inner radius r and outer 

radius R is

pR2h - pr2h = 2paR + r

2
b(h)(R - r).

Shell Formula for Revolution About a Vertical Line

The volume of the solid generated by revolving the region between the x-axis 

and the graph of a continuous function y = ƒ(x) Ú 0, L … a … x … b, about a 

vertical line x = L is

V = L
b

a

 2pa shell

radius
b a shell

height
b  dx.

EXAMPLE 2  The region bounded by the curve y = 2x, the x-axis, and the line 

x = 4 is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution Sketch the region and draw a line segment across it parallel to the axis of revo-

lution (Figure 6.20a). Label the segment’s height (shell height) and distance from the axis 

of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need not do that.)

Interval of

integration

y

x

(4, 2)

4

x

Shell radius

0

x

(b)

2

–4

x

y

0 4

2

Shell radius

Interval of integration

x

Shell

height

y = "x

(a)

f(x) = "x

x

y = "x

"x = Shell height

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell 

swept out by the vertical segment in part (a) with a width ∆x.
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The shell thickness variable is x, so the limits of integration for the shell formula are 

a = 0 and b = 4 (Figure 6.20). The volume is

 V = L
b

a

 2pa shell

radius
b a shell

height
b  dx

 = L
4

0

 2p(x)12x2 dx

  = 2pL
4

0

 x3>2 dx = 2p c 2
5

 x5>2 d
0

4

=
128p

5
. 

So far, we have used vertical axes of revolution. For horizontal axes, we replace the 

x’s with y’s.

EXAMPLE 3  The region bounded by the curve y = 2x, the x-axis, and the line 

x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid by the 

shell method.

Solution This is the solid whose volume was found by the disk method in Example 4 of 

Section 6.1. Now we find its volume by the shell method. First, sketch the region and draw 

a line segment across it parallel to the axis of revolution (Figure 6.21a). Label the seg-

ment’s length (shell height) and distance from the axis of revolution (shell radius). (We 

drew the shell in Figure 6.21b, but you need not do that.)

In this case, the shell thickness variable is y, so the limits of integration for the shell 

formula method are a = 0 and b = 2 (along the y-axis in Figure 6.21). The volume of the 

solid is

 V = L
b

a

 2pa shell

radius
b a shell

height
b  dy

 = L
2

0

 2p( y)(4 - y2) dy

 = 2pL
2

0

(4y - y3) dy

 = 2p c 2y2 -
y4

4
d

0

2

= 8p.

(b)

x

y

0 4

2

y

(4, 2)

Shell radiusIn
te
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te
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ra
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o

n

4 − y2

Shell height

x = y2

(a)

y

Shell height

y

y  (4, 2)

2

0

4

Shell

radius

y = "x

x

4 − y2

y

FIGURE 6.21 (a) The region, shell dimensions, and interval of integration in Example 3.  

(b) The shell swept out by the horizontal segment in part (a) with a width ∆y. 
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The shell method gives the same answer as the washer method when both are used to 

calculate the volume of a region. We do not prove that result here, but it is illustrated in 

Exercises 37 and 38. Both volume formulas are actually special cases of a general volume 

formula we will look at when studying double and triple integrals in Chapter 15. That 

 general formula also allows for computing volumes of solids other than those swept out by 

regions of revolution.

Summary of the Shell Method

Regardless of the position of the axis of revolution (horizontal or vertical), the 

steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of 

revolution. Label the segment’s height or length (shell height) and distance 

from the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product 2p (shell radius) (shell height) with respect to the 

thickness variable (x or y) to ind the volume.

Revolution About the Axes

In Exercises 1–6, use the shell method to find the volumes of the sol-

ids generated by revolving the shaded region about the indicated axis.

 1.   2. 

x

y

0 2

1

y = 1 +
x2

4

 

x

y

0 2

2
y = 2 −

x2

4

 3.   4. 

x

y

0 2

x = y2

y = "2"2

 

x

y

0 3

x = 3 − y2

y = "3"3

 5. The y-axis 6. The y-axis

x

y

0

1

2

x = "3

"3

y = "x2 + 1

 

x

y

0

 

3

5 "x3 + 9

9x
y = 

Revolution About the y-Axis

Use the shell method to find the volumes of the solids generated by 

revolving the regions bounded by the curves and lines in Exercises 

7–12 about the y-axis.

 7. y = x, y = -x>2, x = 2

 8. y = 2x, y = x>2, x = 1

 9. y = x2, y = 2 - x, x = 0,  for x Ú 0

 10. y = 2 - x2, y = x2, x = 0

 11. y = 2x - 1, y = 2x, x = 0

 12. y = 3>122x2, y = 0, x = 1, x = 4

EXERCISES 6.2
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 25. y = x + 2,  y = x2

a. The line x = 2 b. The line x = -1

c. The x@axis d. The line y = 4

 26. y = x4,  y = 4 - 3x2

a. The line x = 1 b. The x@axis

In Exercises 27 and 28, use the shell method to find the volumes of 

the solids generated by revolving the shaded regions about the indi-

cated axes.

 27. a. The x-axis b. The line y = 1

c. The line y = 8>5 d. The line y = -2>5

x

y

0

1

1

x = 12(y2 − y3)

 28. a. The x-axis b. The line y = 2

c. The line y = 5 d. The line y = -5>8

x

y

 

2

(2, 2)

10

2

x =
y2

2

x =       −
y4

4

y2

2

Choosing the Washer Method or Shell Method

For some regions, both the washer and shell methods work well for 

the solid generated by revolving the region about the coordinate axes, 

but this is not always the case. When a region is revolved about the 

y-axis, for example, and washers are used, we must integrate with 

respect to y. It may not be possible, however, to express the integrand 

in terms of y. In such a case, the shell method allows us to integrate 

with respect to x instead. Exercises 29 and 30 provide some insight.

 29. Compute the volume of the solid generated by revolving the re-

gion bounded by y = x and y = x2 about each coordinate axis 

using

a. the shell method. b. the washer method.

 13. Let ƒ(x) = e (sin x)>x, 0 6 x … p

1, x = 0

a. Show that x ƒ(x) = sin x, 0 … x … p.

b. Find the volume of the solid generated by revolving the 

shaded region about the y-axis in the accompanying igure.

x

y

0

1

y =
1, x = 0

,  0 < x  ≤ psin x
x

p

 14. Let g(x) = e (tan x)2>x, 0 6 x … p>4
0, x = 0

a. Show that x g(x) = (tan x)2, 0 … x … p>4.

b. Find the volume of the solid generated by revolving the 

shaded region about the y-axis in the accompanying igure.

x

y

0

y =
0, x = 0

,  0 < x  ≤ 
tan2 x

x 4

4

4
p

p

p

Revolution About the x-Axis

Use the shell method to find the volumes of the solids generated by 

revolving the regions bounded by the curves and lines in Exercises 

15–22 about the x-axis.

 15. x = 2y, x = -y, y = 2

 16. x = y2, x = -y, y = 2, y Ú 0

 17. x = 2y - y2, x = 0 18. x = 2y - y2, x = y

 19. y = 0 x 0 , y = 1 20. y = x, y = 2x, y = 2

 21. y = 2x, y = 0, y = x - 2

 22. y = 2x, y = 0, y = 2 - x

Revolution About Horizontal and Vertical Lines

In Exercises 23–26, use the shell method to find the volumes of the 

solids generated by revolving the regions bounded by the given curves 

about the given lines.

 23. y = 3x,  y = 0,  x = 2

a. The y-axis b. The line x = 4

c. The line x = -1 d. The x@axis

e. The line y = 7 f. The line y = -2

 24. y = x3,  y = 8,  x = 0

a. The y-axis b. The line x = 3

c. The line x = -2 d. The x@axis

e. The line y = 8 f. The line y = -1
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 40. The region shown here is to be revolved about the y-axis to gener-

ate a solid. Which of the methods (disk, washer, shell) could you 

use to ind the volume of the solid? How many integrals would be 

required in each case? Give reasons for your answers.

x

y

1

1

−1

0

y = x2

y = −x4

 41. A bead is formed from a sphere of radius 5 by drilling through a 

diameter of the sphere with a drill bit of radius 3.

a. Find the volume of the bead.

b. Find the volume of the removed portion of the sphere.

 42. A Bundt cake, well known for having a ringed shape, is formed 

by revolving around the y-axis the region bounded by the graph 

of y = sin (x2 - 1) and the x-axis over the interval 1 … x …
21 + p. Find the volume of the cake.

 43. Derive the formula for the volume of a right circular cone of 

height h and radius r using an appropriate solid of revolution.

 44. Derive the equation for the volume of a sphere of radius r using 

the shell method.

 45. Consider the region R bounded by the graphs of  

y = ƒ(x) 7 0, x = a 7 0, and x = b 7 a. If the volume of the  

solid formed by revolving R about the y-axis is 2p, and the 

 volume formed by revolving R about the line x = -2 is 10p, ind 

the area of R.

y = f (x)

x

y

0 ba

R

 46. Consider the region R given in Exercise 45. If the area of region R  

is 1, and the volume of the solid formed by revolving R about 

the line x = -3 is 10p, ind the volume of the solid formed by 

revolving R about the y-axis.

 30. Compute the volume of the solid generated by revolving the trian-

gular region bounded by the lines 2y = x + 4, y = x, and x = 0 

about

a. the x-axis using the washer method.

b. the y-axis using the shell method.

c. the line x = 4 using the shell method.

d. the line y = 8 using the washer method.

In Exercises 31–36, find the volumes of the solids generated by 

revolving the regions about the given axes. If you think it would be 

better to use washers in any given instance, feel free to do so.

 31. The triangle with vertices (1, 1), (1, 2), and (2, 2) about

a. the x-axis b. the y-axis

c. the line x = 10>3 d. the line y = 1

 32. The region bounded by y = 2x, y = 2, x = 0 about

a. the x-axis b. the y-axis

c. the line x = 4 d. the line y = 2

 33. The region in the irst quadrant bounded by the curve x = y - y3 

and the y-axis about

a. the x-axis b. the line y = 1

 34. The region in the irst quadrant bounded by x = y - y3, x = 1, 

and y = 1 about

a. the x-axis b. the y-axis

c. the line x = 1 d. the line y = 1

 35. The region bounded by y = 2x and y = x2>8 about

a. the x-axis b. the y-axis

 36. The region bounded by y = 2x - x2 and y = x about

a. the y-axis b. the line x = 1

 37. The region in the irst quadrant that is bounded above by the curve 

y = 1>x1>4, on the left by the line x = 1>16, and below by the 

line y = 1 is revolved about the x-axis to generate a solid. Find 

the volume of the solid by

a. the washer method. b. the shell method.

 38. The region in the irst quadrant that is bounded above by the curve 

y = 1>2x, on the left by the line x = 1>4, and below by the 

line y = 1 is revolved about the y-axis to generate a solid. Find  

the volume of the solid by

a. the washer method. b. the shell method.

Theory and Examples

 39. The region shown here is to be revolved about the x-axis to gener-

ate a solid. Which of the methods (disk, washer, shell) could you 

use to ind the volume of the solid? How many integrals would be 

required in each case? Explain.

x

y

0 1

1
(1, 1)

−2

x = y2
x = 3y2 − 2



 6.3  Arc Length 333

6.3 Arc Length

We know what is meant by the length of a straight-line segment, but without calculus, we 

have no precise definition of the length of a general winding curve. If the curve is  

the graph of a continuous function defined over an interval, then we can find the length of 

the curve using a procedure similar to that we used for defining the area between the curve 

and the x-axis. We divide the curve into many pieces, and we approximate each piece by a 

straight-line segment. The sum of the lengths of these segments is an approximation to the 

total curve length that we seek. The total length of the curve is the limiting value of these 

approximations as the number of segments goes to infinity.

Length of a Curve y = ƒ(x)

Suppose the curve whose length we want to find is the graph of the function y = ƒ(x) 

from x = a to x = b. In order to derive an integral formula for the length of the curve, we 

assume that ƒ has a continuous derivative at every point of 3a, b4 . Such a function is 

called smooth, and its graph is a smooth curve because it does not have any breaks, cor-

ners, or cusps.

We partition the interval 3a, b4  into n subintervals with a = x0 6 x1 6 x2 6 g6
xn = b. If yk = ƒ(xk), then the corresponding point Pk 

(xk , yk) lies on the curve. Next we 

connect successive points Pk - 1 and Pk with straight-line segments that, taken together, 

form a polygonal path whose length approximates the length of the curve (Figure 6.22). If 

we set ∆xk = xk - xk - 1 and ∆yk = yk - yk - 1, then a representative line segment in the 

path has length (see Figure 6.23)

Lk = 2(∆xk)
2 + (∆yk)

2,

so the length of the curve is approximated by the sum

 a
n

k = 1

 Lk = a
n

k = 1

 2(∆xk)
2 + (∆yk)

2. (1)

We expect the approximation to improve as the partition of 3a, b4  becomes finer. In order 

to evaluate this limit, we use the Mean Value Theorem, which tells us that there is a point 

ck , with xk - 1 6 ck 6 xk , such that

∆yk = ƒ′(ck) ∆xk .

x

y

y = f (x)

x0 = a b = xn

B = Pn

x1 x2 xk−1 xk

P0 = A

P1

P2

Pk−1

Pk

FIGURE 6.22 The length of the polygonal path P0P1P2gPn approximates the 

length of the curve y = ƒ(x) from point A to point B.
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Substituting this for ∆yk , the sums in Equation (1) take the form

 a
n

k = 1

 Lk = a
n

k = 1

 2(∆xk)
2 + ( ƒ′(ck)∆xk)

2 = a
n

k = 1

21 + 3ƒ′(ck)4 2 ∆xk . (2)

This is a Riemann sum whose limit we can evaluate. Because 21 + 3ƒ′(x)4 2 is 

 continuous on 3a, b4 , the limit of the Riemann sum on the right-hand side of Equation (2) 

exists and has the value

lim
nSq

 a
n

k = 1

 Lk = lim
nSq

 a
n

k = 1

 21 + 3ƒ′(ck)4 2 ∆xk = L
b

a

 21 + 3ƒ′(x)4 2 dx.

We define the length of the curve to be this integral.

x

y

0 xk−1

Pk−1

xk

Lk

Δxk

Δyk
Pk

y = f (x)

FIGURE 6.23 The arc Pk - 1Pk of the 

curve y = ƒ(x) is approximated by the 

straight-line segment shown here, which 

has length Lk = 2(∆xk)
2 + (∆yk)

2.

DEFINITION If ƒ′ is continuous on 3a, b4 , then the length (arc length) of 

the curve y = ƒ(x) from the point A = (a, ƒ(a)) to the point B = (b, ƒ(b)) is 

the value of the integral

 L = L
b

a

 21 + 3ƒ′(x)4 2 dx = L
b

a

 B1 + ady

dx
b2

 dx. (3)

EXAMPLE 1  Find the length of the curve shown in Figure 6.24, which is the graph 

of the function

y =
422

3
 x3>2 - 1,  0 … x … 1.

Solution We use Equation (3) with a = 0, b = 1, and

 y =
422

3
 x3>2 - 1   If x = 1, then y ≈ 0.89  

 
dy

dx
=

422
3

 #  
3
2

 x1>2 = 222 x1>2
 ady

dx
b2

= 1222 x1>222 = 8x.

x

y

0

A

B

1

(1, 0.89)

−1

y = x3/2 − 1
4"2

3

FIGURE 6.24 The length of the curve 

is slightly larger than the length of the line 

segment joining points A and B  

(Example 1).

x

y

0

A

B

41

y = +
x3

12
1
x

FIGURE 6.25 The curve in  

 Example 2, where A = (1, 13>12)  

and B = (4, 67>12).

The length of the curve over x = 0 to x = 1 is

 L = L
1

0

 B1 + ady

dx
b2

 dx = L
1

0

 21 + 8x dx  Eq. (3) with a = 0, b = 1.  

 =
2
3

 #  
1
8

 (1 + 8x)3>2 d
0

1

=
13
6

≈ 2.17.   
Let u = 1 + 8x, integrate, 

and replace u by 1 + 8x.

Notice that the length of the curve is slightly larger than the length of the straight-line segment 

joining the points A = (0, -1) and B = 11, 422>3 - 12 on the curve (see Figure 6.24):

 2.17 7 212 + (1.89)2 ≈ 2.14.  Decimal approximations 

EXAMPLE 2  Find the length of the graph of

ƒ(x) =
x3

12
+

1

x
,  1 … x … 4.

Solution A graph of the function is shown in Figure 6.25. To use Equation (3), we find

ƒ′(x) =
x2

4
 -

1

x2
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so

 1 + 3ƒ′(x)4 2 = 1 + ax2

4
-

1

x2
b2

= 1 + a x4

16
-

1

2
+

1

x4
b

 =
x4

16
+

1

2
+

1

x4
= ax2

4
+

1

x2
b2

.

The length of the graph over 31, 44  is
 L = L

4

1

 21 + 3ƒ′(x)4 2 dx = L
4

1

 ax2

4
+

1

x2
b  dx

  = c x3

12
-

1

x
d 4

1

= a64
12

-
1
4
b - a 1

12
- 1b =

72
12

= 6. 

Dealing with Discontinuities in dy ,dx

Even if the derivative dy>dx does not exist at some point on a curve, it is possible that 

dx>dy could exist. This can happen, for example, when a curve has a vertical tangent. In 

this case, we may be able to find the curve’s length by expressing x as a function of y and 

applying the following analogue of Equation (3):

Formula for the Length of x = g( y), c " y " d

If g′ is continuous on 3c, d4 , the length of the curve x = g(y) from A = (g(c), c) 

to B = (g(d ), d ) is

 L = L
d

c

 B1 + adx

dy
b2

 dy = L
d

c

 21 + 3g′(y)]2 dy. (4)

EXAMPLE 3  Find the length of the curve y = (x>2)2>3 from x = 0 to x = 2.

Solution The derivative

dy

dx
=

2
3

 ax

2
b-1>3

 a1
2
b =

1
3

 a2xb1>3
is not defined at x = 0, so we cannot find the curve’s length with Equation (3).

We therefore rewrite the equation to express x in terms of y:

 y = ax

2
b2>3

 y3>2 =
x

2
  Raise both sides to the power 3>2. 

 x = 2y3>2.   Solve for x.

From this we see that the curve whose length we want is also the graph of x = 2y3>2 from 

y = 0 to y = 1 (see Figure 6.26).

The derivative

dx

dy
= 2a3

2
by1>2 = 3y1>2

x

y

0

1

2

(2, 1)

1

y =
2�3x

2Q R

FIGURE 6.26 The graph of 

y = (x>2)2>3 from x = 0 to x = 2 

is also the graph of x = 2y3>2 from 

y = 0 to y = 1 (Example 3).
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The Differential Formula for Arc Length

If y = ƒ(x) and if ƒ′ is continuous on 3a, b4 , then by the Fundamental Theorem of 

 Calculus we can define a new function

 s(x) = L
x

a

 21 + 3  ƒ′(t)4 2 dt. (5)

From Equation (3) and Figure 6.22, we see that this function s(x) is continuous and mea-

sures the length along the curve y = ƒ(x) from the initial point P0(a, ƒ(a)) to the point 

Q(x, ƒ(x)) for each x∊ 3a, b4 . The function s is called the arc length function for 

y = ƒ(x). From the Fundamental Theorem, the function s is differentiable on (a, b) and

ds

dx
= 21 + 3  ƒ′(x)4 2 = B1 + ady

dx
b2

.

Then the differential of arc length is

 ds = B1 + ady

dx
b2

 dx. (6)

A useful way to remember Equation (6) is to write

 ds = 2dx2 + dy2, (7)

which can be integrated between appropriate limits to give the total length of a curve. 

From this point of view, all the arc length formulas are simply different expressions for the 

equation L = 1 
ds. Figure 6.27a gives the exact interpretation of ds corresponding to 

Equation (7). Figure 6.27b is not strictly accurate, but it can be thought of as a simplified 

approximation of Figure 6.27a. That is, ds ≈ ∆s.

y

x
0

dx

ds
dy

f

(a)

y

x
0

dx

ds
dy

f

(b)

FIGURE 6.27 Diagrams for  

remembering the equation 

ds = 2dx2 + dy2.

is continuous on 30, 14 . We may therefore use Equation (4) to find the curve’s length:

 L = L
d

c

 B1 + adx

dy
b2

 dy = L
1

0

 21 + 9y dy  Eq. (4) with c = 0, d = 1.

Let u = 1 + 9y, du>9 = dy,  

integrate, and substitute back.

 

 =
1
9

# 2
3

 (1 + 9y)3>2 d
0

1

 =
2
27

 110210 - 12 ≈ 2.27.  

EXAMPLE 4  Find the arc length function for the curve in Example 2, taking 

A = (1, 13>12) as the starting point (see Figure 6.25).

Solution In the solution to Example 2, we found that

1 + 3ƒ′(x)4 2 = ax2

4
+

1

x2
b2

.

Therefore the arc length function is given by

 s(x) = L
x

1

21 + 3ƒ′(t)4 2 dt = L
x

1

 at2

4
+

1

t2
b  dt

 = c t3

12
-

1
t d x

1

=
x3

12
-

1
x +

11
12

.
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Finding Lengths of Curves

Find the lengths of the curves in Exercises 1–12. If you have graphing 

software, you may want to graph these curves to see what they look 

like.

 1. y = (1>3)(x2 + 2)3>2 from x = 0 to x = 3

 2. y = x3>2 from x = 0 to x = 4

 3. x = (y3>3) + 1>(4y) from y = 1 to y = 3

 4. x = (y3>2>3) - y1>2 from y = 1 to y = 9

 5. x = (y4>4) + 1>(8y2) from y = 1 to y = 2

 6. x = (y3>6) + 1>(2y) from y = 2 to y = 3

 7. y = (3>4)x4>3 - (3>8)x2>3 + 5, 1 … x … 8

 8. y = (x3>3) + x2 + x + 1>(4x + 4), 0 … x … 2

 9. y =
x3

3
+

1
4x

, 1 … x … 3

 10. y =
x5

5
+

1

12x3
, 

1
2

… x … 1

 11. x = L
y

0

 2sec4 t - 1 dt, -p>4 … y … p>4
 12. y = L

x

-2

23t4 - 1 dt, -2 … x … -1

Finding Integrals for Lengths of Curves

In Exercises 13–20, do the following.

a. Set up an integral for the length of the curve.

b. Graph the curve to see what it looks like.

c. Use your grapher’s or computer’s integral evaluator to ind 

the curve’s length numerically.

 13. y = x2, -1 … x … 2

 14. y = tan x, -p>3 … x … 0

 15. x = sin y, 0 … y … p

 16. x = 21 - y2, -1>2 … y … 1>2
 17. y2 + 2y = 2x + 1 from (-1, -1) to (7, 3)

 18. y = sin x - x cos x, 0 … x … p

 19. y = L
x

0

 tan t dt, 0 … x … p>6
 20. x = L

y

0

 2sec2 t - 1 dt, -p>3 … y … p>4

T

Theory and Examples

 21. a.  Find a curve with a positive derivative through the point (1, 1) 

whose length integral (Equation 3) is

L = L
4

1

 A1 +
1
4x

 dx.

b. How many such curves are there? Give reasons for your 

answer.

 22. a.  Find a curve with a positive derivative through the point (0, 1) 

whose length integral (Equation 4) is

L = L
2

1

 A1 +
1

y4
 dy.

b. How many such curves are there? Give reasons for your 

answer.

 23. Find the length of the curve

y = L
x

0

 2cos 2t dt

  from x = 0 to x = p>4.

 24. the length of an astroid The graph of the equation x2>3 +
y2>3 = 1 is one of a family of curves called astroids (not 

 “asteroids”) because of their starlike appearance (see the accom-

panying igure). Find the length of this particular astroid by inding 

the length of half the irst-quadrant portion, y = (1 - x2>3)3>2, 
22>4 … x … 1, and multiplying by 8.

x

y

0

1

1−1

−1

x2�3 + y2�3 
= 1

 25. Length of a line segment Use the arc length formula (Equation 3) 

to ind the length of the line segment y = 3 - 2x, 0 … x … 2. 

Check your answer by inding the length of the segment as the 

hypotenuse of a right triangle.

 26. circumference of a circle Set up an integral to ind the circum-

ference of a circle of radius r centered at the origin. You will learn 

how to evaluate the integral in Section 8.3.

EXERCISES 6.3

To compute the arc length along the curve from A = (1, 13>12) to B = (4, 67>12), for 

instance, we simply calculate

s(4) =
43

12
-

1
4

+
11
12

= 6.

This is the same result we obtained in Example 2. 
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 32. Distance between two points Assume that the two points (x1, y1) 

and (x2, y2) lie on the graph of the straight line y = mx + b. Use 

the arc length formula (Equation 3) to ind the distance between 

the two points.

 33. Find the arc length function for the graph of ƒ(x) = 2x3>2 using  

(0, 0) as the starting point. What is the length of the curve from 

(0, 0) to (1, 2)?

 34. Find the arc length function for the curve in Exercise 8, using 

(0, 1>4) as the starting point. What is the length of the curve from 

(0, 1>4) to (1, 59>24)?

COMPUTER EXPLORATIONS

In Exercises 35–40, use a CAS to perform the following steps for the 

given graph of the function over the closed interval.

a. Plot the curve together with the polygonal path approxima-

tions for n = 2, 4, 8 partition points over the interval. (See 

Figure 6.22.)

b. Find the corresponding approximation to the length of the 

curve by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. 

 Compare your approximations for n = 2, 4, 8 with the 

 actual length given by the integral. How does the actual 

length compare with the approximations as n increases? 

Explain your answer.

 35. ƒ(x) = 21 - x2, -1 … x … 1

 36. ƒ(x) = x1>3 + x2>3, 0 … x … 2

 37. ƒ(x) = sin (px2), 0 … x … 22

 38. ƒ(x) = x2 cos x, 0 … x … p

 39. ƒ(x) =
x - 1

4x2 + 1
, -  

1

2
… x … 1

 40. ƒ(x) = x3 - x2, -1 … x … 1

 27. If 9x2 = y(  y - 3)2, show that

ds2 =
( y + 1)2

4y
 dy2.

 28. If 4x2 - y2 = 64, show that

ds2 =
4

y2
 (5x2 - 16) dx2.

 29. Is there a smooth (continuously diferentiable) curve y = ƒ(x) 

whose length over the interval 0 … x … a is always 22a? Give 

reasons for your answer.

 30. Using tangent ins to derive the length formula for curves As-

sume that ƒ is smooth on 3a, b4  and partition the interval 3a, b4  
in the usual way. In each subinterval 3xk - 1, xk4 , construct the tan-

gent in at the point (xk - 1, ƒ(xk - 1)), as shown in the accompanying 

igure.

a. Show that the length of the kth tangent in over the interval 

[xk - 1, xk] equals 2(∆xk)
2 + (ƒ′(xk - 1) ∆xk)

2.

b. Show that

lim
nSq

 a
n

k = 1

(length of kth tangent fin) = L
b

a

 21 + (ƒ′(x))2 dx,

which is the length L of the curve y = ƒ(x) from a to b.

x

Δxk

Tangent in

with slope 

f ′(xk−1)

xk−1 xk

(xk−1, f (xk−1))

y = f (x)

 31. Approximate the arc length of one-quarter of the unit circle (which 

is p>2) by computing the length of the polygonal approximation 

with n = 4  segments (see accompanying igure).

x

y

0 10.750.50.25

6.4 Areas of Surfaces of Revolution

When you jump rope, the rope sweeps out a surface in the space around you similar to 

what is called a surface of revolution. The surface surrounds a volume of revolution, and 

many applications require that we know the area of the surface rather than the volume it 

encloses. In this section we define areas of surfaces of revolution. More general surfaces 

are treated in Chapter 16.
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y

0

A B

y

x

2py

NOT TO SCALE

(a) (b)

x

Δx

Δx

FIGURE 6.28 (a) A cylindrical surface 

generated by rotating the horizontal line 

segment AB of length ∆x about the x-axis 

has area 2py∆x . (b) The cut and rolled-

out cylindrical surface as a rectangle.

y

y2y1

A

B

(a)

L

2py*

NOT TO SCALE

(b)

x

y*

0

L

FIGURE 6.29 (a) The frustum of a cone generated by rotating 

the slanted line segment AB of length L about the x-axis has area 

2py* L. (b) The area of the rectangle for y* =
y1 + y2

2
, the average 

height of AB above the x-axis.

y y = f(x)
P Q

0

xk−1 xk

a

xb

FIGURE 6.30 The surface generated by 

revolving the graph of a nonnegative func-

tion y = ƒ(x), a … x … b, about the x-axis. 

The surface is a union of bands like the one 

swept out by the arc PQ.

As the arc PQ revolves about the x-axis, the line segment joining P and Q sweeps out 

a frustum of a cone whose axis lies along the x-axis (Figure 6.31). The surface area of this 

frustum approximates the surface area of the band swept out by the arc PQ. The surface 

area of the frustum of the cone shown in Figure 6.31 is 2py*L, where y* is the average 

height of the line segment joining P and Q, and L is its length (just as before). Since ƒ Ú 0, 

from Figure 6.32 we see that the average height of the line segment is 

y* = (ƒ(xk - 1) + ƒ(xk))>2, and the slant length is L = 2(∆xk)
2 + (∆yk)

2. Therefore,

 Frustum surface area = 2p #  
ƒ(xk - 1) + ƒ(xk)

2
 # 2(∆xk)

2 + (∆yk)
2

 = p(ƒ(xk - 1) + ƒ(xk))2(∆xk)
2 + (∆yk)

2.

Defining Surface Area

If you revolve a region in the plane that is bounded by the graph of a function over an 

interval, it sweeps out a solid of revolution, as we saw earlier in the chapter. However, if 

you revolve only the bounding curve itself, it does not sweep out any interior volume but 

rather a surface that surrounds the solid and forms part of its boundary. Just as we were 

interested in defining and finding the length of a curve in the last section, we are now 

interested in defining and finding the area of a surface generated by revolving a curve 

about an axis.

Before considering general curves, we begin by rotating horizontal and slanted line 

segments about the x-axis. If we rotate the horizontal line segment AB having length ∆x 

about the x-axis (Figure 6.28a), we generate a cylinder with surface area 2py∆x. This area 

is the same as that of a rectangle with side lengths ∆x and 2py (Figure 6.28b). The length 

2py is the circumference of the circle of radius y generated by rotating the point (x, y) on 

the line AB about the x-axis.

Suppose the line segment AB has length L and is slanted rather than horizontal. Now 

when AB is rotated about the x-axis, it generates a frustum of a cone (Figure 6.29a). From 

classical geometry, the surface area of this frustum is 2py*L, where y* = (y1 + y2)>2 is 

the average height of the slanted segment AB above the x-axis. This surface area is the 

same as that of a rectangle with side lengths L and 2py* (Figure 6.29b).

Let’s build on these geometric principles to define the area of a surface swept out by 

revolving more general curves about the x-axis. Suppose we want to find the area of the 

surface swept out by revolving the graph of a nonnegative continuous function 

y = ƒ(x), a … x … b, about the x-axis. We partition the closed interval 3a, b4  in the 

usual way and use the points in the partition to subdivide the graph into short arcs. Figure 6.30 

shows a typical arc PQ and the band it sweeps out as part of the graph of ƒ.

xk

xk−1

P

Q

x

FIGURE 6.31 The line segment joining 

P and Q sweeps out a frustum of a cone.
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The area of the original surface, being the sum of the areas of the bands swept out by 

arcs like arc PQ, is approximated by the frustum area sum

 a
n

k = 1

p(ƒ(xk - 1) + ƒ(xk))2(∆xk)
2 + (∆yk)

2. (1)

We expect the approximation to improve as the partition of 3a, b4  becomes finer. To find 

the limit, we first need to find an appropriate substitution for ∆yk. If the function ƒ is dif-

ferentiable, then by the Mean Value Theorem, there is a point (ck , ƒ(ck)) on the curve 

between P and Q where the tangent is parallel to the segment PQ (Figure 6.33). At this 

point,

 ƒ′(ck) =
∆yk

∆xk

,

 ∆yk = ƒ′(ck) ∆xk .

With this substitution for ∆yk , the sums in Equation (1) take the form

 a
n

k = 1

p(ƒ(xk - 1) + ƒ(xk))2(∆xk)
2 + (ƒ′(ck) ∆xk)

2

  = a
n

k = 1

p(ƒ(xk - 1) + ƒ(xk))21 + (ƒ′(ck))
2 ∆xk. (2)

These sums are not the Riemann sums of any function because the points xk - 1, xk , and ck 

are not the same. However, the points xk - 1, xk, and ck are very close to each other, and so 

we expect (and it can be proved) that as the norm of the partition of 3a, b4  goes to zero, 

the sums in Equation (2) converge to the integral

 L
b

a

 2pƒ(x)21 + (ƒ′(x))2 dx.

We therefore define this integral to be the area of the surface swept out by the graph of ƒ 

from a to b.

y = f (x)

Segment length:

L = "(Δx
k
)2 + (Δy

k
)2 

Q

P

r
2 

= f (x
k
)

r1 
= f (xk − 1)

Δyk

Δxk

xk – 1 xk

FIGURE 6.32 Dimensions associated 

with the arc and line segment PQ.

y = f (x)

Q

P
Δyk

Δxk

xk−1 xkck

Tangent parallel

to chord

(ck, f (ck))

FIGURE 6.33 If ƒ is smooth, the Mean 

Value Theorem guarantees the existence of 

a point ck where the tangent is parallel to 

segment PQ.

DEFINITION If the function ƒ(x) Ú 0 is continuously differentiable on 3a, b4 , 
the area of the surface generated by revolving the graph of y = ƒ(x) about the 

x-axis is

 S = L
b

a

 2py B1 + ady

dx
b2

 dx = L
b

a

 2pƒ(x)21 + (ƒ′(x))2 dx. (3)

0
1

2
x

y

(1, 2)

y = 2"x

(2, 2"2)

FIGURE 6.34 In Example 1 we  

calculate the area of this surface.

Note that the square root in Equation (3) is similar to the one that appears in the formula 

for the arc length differential of the generating curve in Equation (6) of Section 6.3.

EXAMPLE 1  Find the area of the surface generated by revolving the curve y = 22x, 

1 … x … 2, about the x-axis (Figure 6.34).

Solution We evaluate the formula

S = L
b

a

 2py B1 + ady

dx
b2

 dx  Eq. (3)

with

a = 1,  b = 2,  y = 22x,  
dy

dx
=

1

2x
.
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First, we perform some algebraic manipulation on the radical in the integrand to transform 

it into an expression that is easier to integrate.

 B1 + ady

dx
b2

= B1 + a 1

2x
b2

 = A1 +
1
x = Ax + 1

x =
2x + 1

2x

With these substitutions, we have

 S = L
2

1

 2p # 22x 
2x + 1

2x
 dx = 4pL

2

1

 2x + 1 dx

  = 4p #  
2
3

 (x + 1)3>2 d
1

2

=
8p
3

 1323 - 2222.  

Revolution About the y-Axis

For revolution about the y-axis, we interchange x and y in Equation (3).

Surface Area for Revolution About the y-Axis

If x = g(y) Ú 0 is continuously diferentiable on 3c, d4 , the area of the surface 

generated by revolving the graph of x = g(y) about the y-axis is

 S = L
d

c

 2px B1 + adx

dy
b2

 dy = L
d

c

 2pg(y)21 + (g′(y))2 dy. (4)

EXAMPLE 2  The line segment x = 1 - y, 0 … y … 1, is revolved about the y-axis 

to generate the cone in Figure 6.35. Find its lateral surface area (which excludes the base 

area).

Solution Here we have a calculation we can check with a formula from geometry:

Lateral surface area =
base circumference

2
* slant height = p22.

To see how Equation (4) gives the same result, we take

c = 0,  d = 1,  x = 1 - y,  
dx

dy
= -1,

B1 + adx

dy
b2

= 21 + (-1)2 = 22

and calculate

 S = L
d

c

 2px B1 + adx

dy
b2

 dy = L
1

0

 2p(1 - y)22 dy

 = 2p22 c  y -
y2

2
d

0

1

= 2p22 a1 -
1
2
b

 = p22.

The results agree, as they should. 

A(0, 1)

B(1, 0)

x + y = 1

0

x

y

FIGURE 6.35 Revolving line segment 

AB about the y-axis generates a cone 

whose lateral surface area we can now cal-

culate in two different ways (Example 2).
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Finding Integrals for Surface Area

In Exercises 1–8:

a. Set up an integral for the area of the surface generated by 

revolving the given curve about the indicated axis.

b. Graph the curve to see what it looks like. If you can, graph 

the surface too.

c. Use your utility’s integral evaluator to ind the surface’s area 

numerically.

 1. y = tan x, 0 … x … p>4; x@axis

 2. y = x2, 0 … x … 2; x@axis

 3. xy = 1, 1 … y … 2; y@axis

 4. x = sin y, 0 … y … p; y@axis

 5. x1>2 + y1>2 = 3 from (4, 1) to (1, 4); x-axis

 6. y + 22y = x, 1 … y … 2; y@axis

 7. x = L
y

0

 tan t dt, 0 … y … p>3; y@axis

 8. y = L
x

1

 2t2 - 1 dt, 1 … x … 25; x@axis

Finding Surface Area

 9. Find the lateral (side) surface area of the cone generated by re-

volving the line segment y = x>2, 0 … x … 4, about the x-axis. 

Check your answer with the geometry formula

Lateral surface area =
1
2

* base circumference * slant height.

 10. Find the lateral surface area of the cone generated by revolving the 

line segment y = x>2, 0 … x … 4, about the y-axis. Check your 

answer with the geometry formula

Lateral surface area =
1
2

* base circumference * slant height.

 11. Find the surface area of the cone frustum generated by revolv-

ing the line segment y = (x>2) + (1>2), 1 … x … 3, about the 

x-axis. Check your result with the geometry formula

Frustum surface area = p(r1 + r2) * slant height.

 12. Find the surface area of the cone frustum generated by revolv-

ing the line segment y = (x>2) + (1>2), 1 … x … 3, about the 

y-axis. Check your result with the geometry formula

Frustum surface area = p(r1 + r2) * slant height.

Find the areas of the surfaces generated by revolving the curves in 

Exercises 13–23 about the indicated axes. If you have a grapher, you 

may want to graph these curves to see what they look like.

 13. y = x3>9, 0 … x … 2; x@axis

 14. y = 2x, 3>4 … x … 15>4; x@axis

 15. y = 22x - x2, 0.5 … x … 1.5; x@axis

 16. y = 2x + 1, 1 … x … 5; x@axis

 17. x = y3>3, 0 … y … 1; y@axis

T

T

 18. x = (1>3)y3>2 - y1>2, 1 … y … 3; y@axis

 19. x = 224 - y, 0 … y … 15>4; y@axis

4

0

x

y

x = 2"4 − y

15
4

1,
15
4

a      b

 20. x = 22y - 1, 5>8 … y … 1; y@axis

x

y

1
2

5
8

,5
8 0

1
2 1

1 (1, 1)

x = "2y − 1a     b

 21. y = (1>2)(x2 + 1), 0 … x … 1; y-axis

 22. y = (1>3)(x2 + 2)3>2, 0 … x … 22; y@axis (Hint: Express 

ds = 2dx2 + dy2 in terms of dx, and evaluate the integral 

S = 1  2px ds with appropriate limits.)

 23. x = (y4>4) + 1>(8y2), 1 … y … 2; x@axis (Hint: Express 

ds = 2dx2 + dy2 in terms of dy, and evaluate the integral 

S = 1  2py ds with appropriate limits.)

 24. Write an integral for the area of the surface generated by revolv-

ing the curve y = cos x, -p>2 … x … p>2, about the x-axis. In 

Section 8.4 we will see how to evaluate such integrals.

 25. testing the new deinition Show that the surface area of a sphere 

of radius a is still 4pa2 by using Equation (3) to ind the area of 

the surface generated by revolving the curve y = 2a2 - x2,  

-a … x … a, about the x-axis.

 26. testing the new deinition The lateral (side) surface area of a 

cone of height h and base radius r should be pr2r2 + h2, the 

semiperimeter of the base times the slant height. Show that this 

is still the case by inding the area of the surface generated by 

revolving the line segment y = (r>h) x, 0 … x … h, about the  

x-axis.

 27. Enameling woks Your company decided to put out a deluxe 

version of a wok you designed. The plan is to coat it inside with 

white enamel and outside with blue enamel. Each enamel will 

be sprayed on 0.5 mm thick before baking. (See accompany-

ing igure.) Your manufacturing department wants to know how 

much enamel to have on hand for a production run of 5000 woks. 

What do you tell them? (Neglect waste and unused material and 

give your answer in liters. Remember that 1 cm3 = 1 mL, so 

1 L = 1000 cm3.)

T

EXERCISES 6.4
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 31. An alternative derivation of the surface area formula Assume 

ƒ is smooth on 3a, b4  and partition 3a, b4  in the usual way. In 

the kth subinterval 3xk - 1, xk4 , construct the tangent line to the 

curve at the midpoint mk = (xk - 1 + xk)>2, as in the accompany-

ing igure.

a. Show that

r1 = ƒ(mk) - ƒ′(mk) 
∆xk

2
 and r2 = ƒ(mk) + ƒ′(mk) 

∆xk

2
.

b. Show that the length Lk of the tangent line segment in the kth 

subinterval is Lk = 2(∆xk)
2 + (ƒ′(mk) ∆xk)

2.

xk−1

r1

r2

mk xk

y = f (x)

Δxk

x

c. Show that the lateral surface area of the frustum of the cone 

swept out by the tangent line segment as it revolves about the 

  x-axis is 2pƒ(mk)21 + (ƒ′(mk))
2 ∆xk .

d. Show that the area of the surface generated by revolving 

y = ƒ(x) about the x-axis over 3a, b4  is
lim

nSq
 a

n

k = 1

 alateral surface area

of kth frustum
b = L

b

a

 2pƒ(x)21 + (ƒ′(x))2 dx.

 32. the surface of an astroid Find the area of the surface gen-

erated by revolving about the x-axis the portion of the astroid 

x2>3 + y2>3 = 1 shown in the accompanying igure.

  (Hint: Revolve the irst-quadrant portion y = (1 - x2>3)3>2, 
0 … x … 1, about the x-axis and double your result.)

x2�3 + y2�3 = 1

x

y

−1 0

1

1

9 cm deep

0

−7

x2 + y2 = 162 = 256

x (cm)

−16

y (cm)

 28. slicing bread Did you know that if you cut a spherical loaf 

of bread into slices of equal width, each slice will have the 

same amount of crust? To see why, suppose the semicircle 

y = 2r2 - x2 shown here is revolved about the x-axis to gener-

ate a sphere. Let AB be an arc of the semicircle that lies above an 

interval of length h on the x-axis. Show that the area swept out by 

AB does not depend on the location of the interval. (It does depend 

on the length of the interval.)

h

x

y

r

A
B

a0 a + h−r

y = "r2 − x2

 29. The shaded band shown here is cut from a sphere of radius R by parallel 

planes h units apart. Show that the surface area of the band is 2pRh.

h

R

 30. Here is a schematic drawing of the 90-ft dome used by the U.S. 

National Weather Service to house radar in Bozeman, Montana.

a. How much outside surface is there to paint (not counting the 

bottom)?

b. Express the answer to the nearest square foot.

A
x

is

45 ft

22.5 ft

Center
Radius
45 ft

T
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6.5 Work and Fluid Forces

In everyday life, work means an activity that requires muscular or mental effort. In sci-

ence, the term refers specifically to a force acting on an object and the object’s subsequent 

displacement. This section shows how to calculate work. The applications run from com-

pressing railroad car springs and emptying subterranean tanks to forcing subatomic parti-

cles to collide and lifting satellites into orbit.

Work Done by a Constant Force

When an object moves a distance d along a straight line as a result of being acted on by a 

force of constant magnitude F in the direction of motion, we define the work W done by 

the force on the object with the formula

 W = Fd  (Constant@force formula for work). (1)

From Equation (1) we see that the unit of work in any system is the unit of force mul-

tiplied by the unit of distance. In SI units (SI stands for Système International, or 

 International System), the unit of force is a newton, the unit of distance is a meter, and the 

unit of work is a newton-meter (N # m). This combination appears so often it has a special 

name, the joule. Taking gravitational acceleration at sea level to be 9.8 m>sec2, to lift one 

kilogram one meter requires work of 9.8 joules. This is seen by multiplying the force of 

9.8 newtons exerted on one kilogram by the one-meter distance moved. In the British sys-

tem, the unit of work is the foot-pound, a unit sometimes used in applications. It requires 

one foot-pound of work to lift a one pound weight a distance of one foot.

EXAMPLE 1  Suppose you jack up the side of a 2000-lb car 1.25 ft to change a tire. 

The jack applies a constant vertical force of about 1000 lb in lifting the side of the car (but 

because of the mechanical advantage of the jack, the force you apply to the jack itself is only 

about 30 lb). The total work performed by the jack on the car is 1000 * 1.25 = 1250 ft-lb. 

In SI units, the jack has applied a force of 4448 N through a distance of 0.381 m to do 

4448 * 0.381 ≈ 1695 J of work. 

Work Done by a Variable Force Along a Line

If the force you apply varies along the way, as it will if you are stretching or compressing a 

spring, the formula W = Fd  has to be replaced by an integral formula that takes the varia-

tion in F into account.

Suppose that the force performing the work acts on an object moving along a straight 

line, which we take to be the x-axis. We assume that the magnitude of the force is a con-

tinuous function F of the object’s position x. We want to find the work done over the inter-

val from x = a to x = b. We partition 3a, b4  in the usual way and choose an arbitrary 

point ck in each subinterval 3xk - 1, xk4 . If the subinterval is short enough, the continuous 

function F will not vary much from xk - 1 to xk . The amount of work done across the inter-

val will be about F(ck) times the distance ∆xk , the same as it would be if F were constant 

and we could apply Equation (1). The total work done from a to b is therefore approxi-

mated by the Riemann sum

Work ≈ a
n

k = 1

 F(ck) ∆xk .

We expect the approximation to improve as the norm of the partition goes to zero, so we 

define the work done by the force from a to b to be the integral of F from a to b:

lim
nSq

 a
n

k = 1

F(ck) ∆xk = L
b

a

F(x)  dx.

Joules

The joule, abbreviated J, is named after 

the English physicist James Prescott 

Joule (1818–1889). The defining equa-

tion is

1 joule = (1 newton)(1 meter).

In symbols, 1 J = 1 N # m.
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The units of the integral are joules if F is in newtons and x is in meters, and foot-pounds if 

F is in pounds and x is in feet. So the work done by a force of F(x) = 1>x2 newtons in 

moving an object along the x-axis from x = 1 m to x = 10 m is

W = L
10

1

 
1

x2
 dx = -  

1
x d

1

10

= -  
1
10

+ 1 = 0.9 J.

Hooke’s Law for Springs: F = kx

One calculation for work arises in finding the work required to stretch or compress a 

spring. Hooke’s Law says that the force required to hold a stretched or compressed spring 

x units from its natural (unstressed) length is proportional to x. In symbols,

 F = kx. (3)

The constant k, measured in force units per unit length, is a characteristic of the 

spring, called the force constant (or spring constant) of the spring. Hooke’s Law, Equa-

tion (3), gives good results as long as the force doesn’t distort the metal in the spring. We 

assume that the forces in this section are too small to do that.

EXAMPLE 2  Find the work required to compress a spring from its natural length of 

1 ft to a length of 0.75 ft if the force constant is k = 16 lb>ft.
Solution We picture the uncompressed spring laid out along the x-axis with its movable 

end at the origin and its fixed end at x = 1 ft (Figure 6.36). This enables us to describe the 

force required to compress the spring from 0 to x with the formula F = 16x. To compress 

the spring from 0 to 0.25 ft, the force must increase from

F(0) = 16 # 0 = 0 lb  to  F(0.25) = 16 # 0.25 = 4 lb.

The work done by F over this interval is

W = L
0.25

0

16x dx = 8x2 d
0

0.25

= 0.5 ft@lb.  
Eq. (2) with 

a = 0, b = 0.25, 

F(x) = 16x
 

EXAMPLE 3  A spring has a natural length of 1 m. A force of 24 N holds the spring 

stretched to a total length of 1.8 m.

(a) Find the force constant k.

(b) How much work will it take to stretch the spring 2 m beyond its natural length?

(c) How far will a 45-N force stretch the spring?

Solution

(a) The force constant. We ind the force constant from Equation (3). A force of 24 N 

maintains the spring at a position where it is stretched 0.8 m from its natural length, so

 24 = k(0.8)   Eq. (3) with F = 24, x = 0.8 

 k = 24>0.8 = 30 N>m.

DEFINITION The work done by a variable force F(x) in moving an object 

along the x-axis from x = a to x = b is

 W = L
b

a

 F(x) dx. (2)

x

F

0 Uncompressed

x (ft)

F

0 0.25

4

F
o
rc

e 
(l

b
)

1

Compressed

x

(a)

Amount compressed

(b)

Work done by F

from x = 0  to x = 0.25

F = 16x

FIGURE 6.36 The force F needed to 

hold a spring under compression increases 

linearly as the spring is compressed  

(Example 2).
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(b) The work to stretch the spring 2 m. We imagine the unstressed spring hanging along 

the x-axis with its free end at x = 0 (Figure 6.37). The force required to stretch the 

spring x m beyond its natural length is the force required to hold the free end of the 

spring x units from the origin. Hooke’s Law with k = 30 says that this force is

F(x) = 30x.

 The work done by F on the spring from x = 0 m to x = 2 m is

W = L
2

0

 30x dx = 15x2 d
0

2

= 60 J.

(c) How far will a 45-N force stretch the spring? We substitute F = 45 in the equation 

F = 30x to ind

45 = 30x,  or  x = 1.5 m.

A 45-N force will keep the spring stretched 1.5 m beyond its natural length. 

Lifting Objects and Pumping Liquids from Containers

The work integral is useful for calculating the work done in lifting objects whose weights 

vary with their elevation.

EXAMPLE 4  A 5-kg bucket is lifted from the ground into the air by pulling in 20 m 

of rope at a constant speed (Figure 6.38). The rope weighs 0.08 kg>m. How much work 

was spent lifting the bucket and rope?

Solution The weight of the bucket is obtained by multiplying the mass (5 kg) and the accel-

eration due to gravity, approximately 9.8 m>s2. So the bucket’s weight is (5)(9.8) = 49 N, 

and the work done lifting it alone is weight * distance = (49)(20) = 980 J.

The weight of the rope varies with the bucket’s elevation, because less of it is freely 

hanging as the bucket is raised. When the bucket is x m of the ground, the remaining por-

tion of the rope still being lifted weighs (0.08)(20 - x)(9.8) N. So the work in lifting the 

rope is

 Work on rope = L
20

0

(0.08)(20 - x)(9.8) dx = L
20

0

(15.68 - 0.784x) dx

 = c 15.68x - 0.392x2 d 20

0

= 313.6 - 156.8 = 156.8 J.

The total work for the bucket and rope combined is

 980 + 156.8 = 1136.8 J. 

How much work does it take to pump all or part of the liquid from a container? Engi-

neers often need to know the answer in order to design or choose the right pump, or to 

compute the cost to transport water or some other liquid from one place to another. To find 

out how much work is required to pump the liquid, we imagine lifting the liquid out one 

thin horizontal slab at a time and applying the equation W = Fd  to each slab. We then 

evaluate the integral that this leads to as the slabs become thinner and more numerous.

EXAMPLE 5  The conical tank in Figure 6.39 is filled to within 2 ft of the top with 

olive oil weighing 57 lb>ft3. How much work does it take to pump the oil to the rim of the 

tank?

Solution We imagine the oil divided into thin slabs by planes perpendicular to the y-axis 

at the points of a partition of the interval 30, 84 .

24 N

x (m)

x = 0

0.8

1

FIGURE 6.37 A 24-N weight stretches 

this spring 0.8 m beyond its unstressed 

length (Example 3).

20

x

0

FIGURE 6.38 Lifting the bucket in 

Example 4.

x

y

10

8

10 − y

0

5

y = 2x or x =    y
1
2

1
2

y

(5, 10)

Δy

y

FIGURE 6.39 The olive oil and tank in 

Example 5.
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The typical slab between the planes at y and y + ∆y has a volume of about

∆V = p(radius)2(thickness) = pa1
2

 yb2

 ∆y =
p
4

 y2 ∆y ft3.

The force F(y) required to lift this slab is equal to its weight,

F(y) = 57 ∆V =
57p

4
 y2 ∆y lb.  Weight = (weight per unit volume) * volume

The distance through which F(y) must act to lift this slab to the level of the rim of the 

cone is about (10 - y) ft, so the work done lifting the slab is about

∆W =
57p

4
 (10 - y) y2 ∆y ft@lb.

Assuming there are n slabs associated with the partition of 30, 84 , and that y = yk 

denotes the plane associated with the kth slab of thickness ∆yk , we can approximate the 

work done lifting all of the slabs with the Riemann sum

W ≈ a
n

k = 1

 
57p

4
 (10 - yk) yk 

2 ∆yk ft@lb.

The work of pumping the oil to the rim is the limit of these sums as the norm of the parti-

tion goes to zero and the number of slabs tends to infinity:

 W = lim
nSq

 a
n

k = 1

 
57p

4
 (10 - yk) yk

2 ∆yk = L
8

0

 
57p

4
 (10 - y) y2 dy

 =
57p

4
 L

8

0

 (10y2 - y3) dy

  =
57p

4
 c 10y3

3
-

y4

4
d

0

8

≈ 30,561 ft@lb. 

Fluid Pressure and Forces

Dams are built thicker at the bottom than at the top (Figure 6.40) because the pressure 

against them increases with depth. The pressure at any point on a dam depends only on 

how far below the surface the point is and not on how much the surface of the dam hap-

pens to be tilted at that point. The pressure, in pounds per square foot at a point h feet 

below the surface, is always 62.4h. The number 62.4 is the weight-density of freshwater in 

pounds per cubic foot. The pressure h feet below the surface of any fluid is the fluid’s 

weight-density times h.

FIGURE 6.40 To withstand the increas-

ing pressure, dams are built thicker as they 

go down.

The Pressure-Depth Equation

In a luid that is standing still, the pressure p at depth h is the luid’s weight-

density w times h:

 p = wh. (4)

In a container of fluid with a flat horizontal base, the total force exerted by the fluid 

against the base can be calculated by multiplying the area of the base by the pressure at the 

base. We can do this because total force equals force per unit area (pressure) times area. 

(See Figure 6.41.) If F, p, and A are the total force, pressure, and area, then

 F = total force = force per unit area * area

 = pressure * area = pA

 = whA.   p = wh from Eq. (4)

Weight-density

A fluid’s weight-density w is its weight 

per unit volume. Typical values (lb>ft3) 

are listed below.

Gasoline 42
Mercury 849
Milk 64.5
Molasses 100
Olive oil 57
Seawater 64
Freshwater 62.4



348 Chapter 6 Applications of Definite Integrals

For example, the weight-density of freshwater is 62.4 lb>ft3, so the fluid force at the bot-

tom of a 10 ft * 20 ft rectangular swimming pool 3 ft deep is

F = whA = (62.4 lb>ft3)(3 ft)(10 # 20 ft2)

 = 37,440 lb.

For a flat plate submerged horizontally, like the bottom of the swimming pool just 

discussed, the downward force acting on its upper face due to liquid pressure is given by 

Equation (5). If the plate is submerged vertically, however, then the pressure against it will 

be different at different depths and Equation (5) no longer is usable in that form (because h 

varies).

Suppose we want to know the force exerted by a fluid against one side of a vertical 

plate submerged in a fluid of weight-density w. To find it, we model the plate as a region 

extending from y = a to y = b in the xy-plane (Figure 6.42). We partition 3a, b4  in the 

usual way and imagine the region to be cut into thin horizontal strips by planes perpen-

dicular to the y-axis at the partition points. The typical strip from y to y + ∆y is ∆y units 

wide by L(y) units long. We assume L(y) to be a continuous function of y.

The pressure varies across the strip from top to bottom. If the strip is narrow enough, 

however, the pressure will remain close to its bottom-edge value of w * (strip depth). The 

force exerted by the fluid against one side of the strip will be about

 ∆F = (pressure along bottom edge) * (area)

 = w # (strip depth) # L(y) ∆y.

Assume there are n strips associated with the partition of a … y … b and that yk is the bot-

tom edge of the kth strip having length L(yk) and width ∆yk . The force against the entire 

plate is approximated by summing the forces against each strip, giving the Riemann sum

 F ≈ a
n

k = 1

w # (strip depth)k
# L(yk) ∆yk. (6)

The sum in Equation (6) is a Riemann sum for a continuous function on 3a, b4, and we 

expect the approximations to improve as the norm of the partition goes to zero. The force 

against the plate is the limit of these sums:

lim
nSq

 a
n

k = 1

w # (strip depth)k
# L(yk) ∆yk = L

b

a

 w # (strip depth) # L(y) dy.

h

FIGURE 6.41 These containers are 

filled with water to the same depth and 

have the same base area. The total force is 

therefore the same on the bottom of each 

container. The containers’ shapes do not 

matter here.

Fluid Force on a Constant-Depth Surface

 F = pA = whA (5)

y

Surface of luid

Strip length at level y 

Submerged vertical

plate
b

y

a

Δy

Strip

depth

L(y)

FIGURE 6.42 The force  exerted 

by a fluid against one side of a 

thin, flat horizontal strip is about 

∆F = pressure * area =  

w * (strip depth) * L(y) ∆y.

The Integral for Fluid Force Against a Vertical Flat Plate

Suppose that a plate submerged vertically in luid of weight-density w runs from 

y = a to y = b on the y-axis. Let L(y) be the length of the horizontal strip mea-

sured from left to right along the surface of the plate at level y. Then the force 

exerted by the luid against one side of the plate is

 F = L
b

a

 w # (strip depth) # L(y) dy. (7)

EXAMPLE 6  A flat isosceles right-triangular plate with base 6 ft and height 3 ft is 

submerged vertically, base up, 2 ft below the surface of a swimming pool. Find the force 

exerted by the water against one side of the plate.
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Solution We establish a coordinate system to work in by placing the origin at the plate’s 

bottom vertex and running the y-axis upward along the plate’s axis of symmetry (Figure 

6.43). The surface of the pool lies along the line y = 5 and the plate’s top edge along the 

line y = 3. The plate’s right-hand edge lies along the line y = x, with the upper-right ver-

tex at (3, 3). The length of a thin strip at level y is

L(y) = 2x = 2y.

The depth of the strip beneath the surface is (5 - y). The force exerted by the water 

against one side of the plate is therefore

 F = L
b

a

 w # a strip

depth
b # L(y) dy   Eq. (7)

 = L
3

0

 62.4 (5 - y) 2y dy

 = 124.8 L
3

0

 (5y - y2) dy

 = 124.8 c 5
2

 y2 -
y3

3
d

0

3

= 1684.8 lb. 

x (ft) 
0

Pool surface at

Depth:

5 − y y (3, 3)

Δy

y = 5

y = 3

y = x or x = y

y (ft)

(x, x) = (y, y)

x = y

FIGURE 6.43 To find the force on one 

side of the submerged plate in Example 6,  

we can use a coordinate system like the 

one here.

Springs

The graphs of force functions (in newtons) are given in Exercises 1 

and 2. How much work is done by each force in moving an object  

10 m?

 1. 

x (m)
0

8

16

24

2 4 6 8 10

F (N)

 2. 

0

8

16

24

2 4 6 8 10

F (N)

Quarter-circle

x (m)

 3. spring constant It took 1800 J of work to stretch a spring from 

its natural length of 2 m to a length of 5 m. Find the spring’s force 

constant.

 4. stretching a spring A spring has a natural length of 10 in. An 

800-lb force stretches the spring to 14 in.

a. Find the force constant.

b. How much work is done in stretching the spring from 10 in. 

to 12 in.?

c. How far beyond its natural length will a 1600-lb force stretch 

the spring?

 5. stretching a rubber band A force of 2 N will stretch a rubber 

band 2 cm (0.02 m). Assuming that Hooke’s Law applies, how far 

will a 4-N force stretch the rubber band? How much work does it 

take to stretch the rubber band this far?

 6. stretching a spring If a force of 90 N stretches a spring 1 m 

beyond its natural length, how much work does it take to stretch 

the spring 5 m beyond its natural length?

 7. subway car springs It takes a force of 21,714 lb to compress 

a coil spring assembly on a New York City Transit Authority sub-

way car from its free height of 8 in. to its fully compressed height 

of 5 in.

a. What is the assembly’s force constant?

b. How much work does it take to compress the assembly the 

irst half inch? the second half inch? Answer to the nearest 

in.-lb.

 8. Bathroom scale A bathroom scale is compressed 1>16 in. when 

a 150-lb person stands on it. Assuming that the scale behaves like 

a spring that obeys Hooke’s Law, how much does someone who 

compresses the scale 1 >8 in. weigh? How much work is done 

compressing the scale 1 >8 in.?

Work Done by a Variable Force

 9. Lifting a rope A mountain climber is about to haul up a 50-m 

length of hanging rope. How much work will it take if the rope 

weighs 0.624 N>m?

 10. Leaky sandbag A bag of sand originally weighing 144 lb was 

lifted at a constant rate. As it rose, sand also leaked out at a con-

stant rate. The sand was half gone by the time the bag had been 

lifted to 18 ft. How much work was done lifting the sand this far? 

(Neglect the weight of the bag and lifting equipment.)

EXERCISES 6.5
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c. How long will it take the pump in part (b) to empty the tank 

halfway? (It will be less than half the time required to empty 

the tank completely.)

d. the weight of water What are the answers to parts (a) 

through (c) in a location where water weighs 62.26 lb>ft3? 

62.59 lb>ft3?

Ground level

10 ft

20 ft 12 ft

0

10

20

y

 17. pumping oil How much work would it take to pump oil from 

the tank in Example 5 to the level of the top of the tank if the tank 

were completely full?

 18. pumping a half-full tank Suppose that, instead of being full, 

the tank in Example 5 is only half full. How much work does it 

take to pump the remaining oil to a level 4 ft above the top of the 

tank?

 19. Emptying a tank A vertical right-circular cylindrical tank mea-

sures 30 ft high and 20 ft in diameter. It is full of kerosene weigh-

ing 51.2 lb>ft3. How much work does it take to pump the kerosene 

to the level of the top of the tank?

 20. a.  pumping milk Suppose that the conical container in 

 Example 5 contains milk (weighing 64.5 lb>ft3) instead of 

 olive oil. How much work will it take to pump the contents to 

the rim?

b. pumping oil How much work will it take to pump the oil in 

Example 5 to a level 3 ft above the cone’s rim?

 21. The graph of y = x2 on 0 … x … 2 is revolved about the y-axis 

to form a tank that is then illed with salt water from the Dead Sea 

(weighing approximately 73 lb > ft3). How much work does it take 

to pump all of the water to the top of the tank?

 22. A right-circular cylindrical tank of height 10 ft and radius 5 ft 

is lying horizontally and is full of diesel fuel weighing 53 lb/ft3. 

How much work is required to pump all of the fuel to a point 15 ft 

above the top of the tank?

 23. Emptying a water reservoir We model pumping from spheri-

cal containers the way we do from other containers, with the axis 

of integration along the vertical axis of the sphere. Use the igure 

here to ind how much work it takes to empty a full hemispherical 

water reservoir of radius 5 m by pumping the water to a height of 

4 m above the top of the reservoir. Water weighs 9800 N>m3.

x

y

0 5

y

Δy

4 m

0 y 0  = −y

"25 − y2

 11. Lifting an elevator cable An electric elevator with a motor at 

the top has a multistrand cable weighing 4.5 lb>ft. When the car 

is at the irst loor, 180 ft of cable are paid out, and efectively 0 ft 

are out when the car is at the top floor. How much work does the 

motor do just lifting the cable when it takes the car from the irst 

loor to the top?

 12. Force of attraction When a particle of mass m is at (x, 0), it is 

attracted toward the origin with a force whose magnitude is k>x2. 

If the particle starts from rest at x = b and is acted on by no oth-

er forces, ind the work done on it by the time it reaches x = a, 

0 6 a 6 b.

 13. Leaky bucket Assume the bucket in Example 4 is leaking. It 

starts with 5 liters of water (5 kg) and leaks at a constant rate. It 

inishes draining just as it reaches the top. How much work was 

spent lifting the water alone? (Hint: Do not include the rope and 

bucket, and ind the proportion of water left at elevation x m.)

 14. (Continuation of Exercise 13.) The workers in Example 4 and 

 Exercise 13 changed to a larger bucket that held 10 liters (10 kg) 

of water, but the new bucket had an even larger leak so that it, too, 

was empty by the time it reached the top. Assuming that the water 

leaked out at a steady rate, how much work was done lifting the 

water alone? (Do not include the rope and bucket.)

Pumping Liquids from Containers

 15. pumping water The rectangular tank shown here, with its top at 

ground level, is used to catch runof water. Assume that the water 

weighs 62.4 lb>ft3.

a. How much work does it take to empty the tank by pumping 

the water back to ground level once the tank is full?

b. If the water is pumped to ground level with a (5>11)- 

 horsepower (hp) motor (work output 250 ft-lb > sec),  

how long will it take to empty the full tank (to the nearest 

minute)?

c. Show that the pump in part (b) will lower the water level 10 ft 

(halfway) during the irst 25 min of pumping.

d. the weight of water What are the answers to parts (a) 

and (b) in a location where water weighs 62.26 lb>ft3? 

62.59 lb>ft3?

y

0

10 ft
12 ft

Δy

20

y

Ground

level

 16. Emptying a cistern The rectangular cistern (storage tank for 

rainwater) shown has its top 10 ft below ground level. The cistern, 

currently full, is to be emptied for inspection by pumping its con-

tents to ground level.

a. How much work will it take to empty the cistern?

b. How long will it take a 1>2-hp pump, rated at 275 ft-lb > sec, 

to pump the tank dry?
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does it take to suck up the milkshake through the straw (neglecting 

friction)? Answer in inch-ounces.

x

y

1.25

0

7

y

8

8 − y

y + 17.5

14

Δy

(1.75, 7)

y = 14x − 17.5

Dimensions in inches

 32. Water tower Your town has decided to drill a well to increase 

its water supply. As the town engineer, you have determined that 

a water tower will be necessary to provide the pressure needed for 

distribution, and you have designed the system shown here. The 

water is to be pumped from a 300-ft well through a vertical 4-in. 

pipe into the base of a cylindrical tank 20 ft in diameter and 25 ft 

high. The base of the tank will be 60 ft above ground. The pump 

is a 3-hp pump, rated at 1650 ft # lb>sec. To the nearest hour, how 

long will it take to ill the tank the irst time? (Include the time it 

takes to ill the pipe.) Assume that water weighs 62.4 lb>ft3.

Submersible pump

Water surface

Ground

NOT  TO SCALE

4 in.

300 ft

60 ft

25 ft

10 ft

 33. putting a satellite in orbit The strength of Earth’s gravitational 

ield varies with the distance r from Earth’s center, and the magni-

tude of the gravitational force experienced by a satellite of mass m 

during and after launch is

F(r) =
mMG

r2
.

  Here, M = 5.975 * 1024 kg is Earth’s mass, G = 6.6720 *  

10-11 N # m2 kg-2 is the universal gravitational constant, and r is 

measured in meters. The work it takes to lift a 1000-kg satellite 

from Earth’s surface to a circular orbit 35,780 km above Earth’s 

center is therefore given by the integral

Work = L
35,780,000

6,370,000

 
1000MG

r2
 dr joules.

  Evaluate the integral. The lower limit of integration is Earth’s radi-

us in meters at the launch site. (This calculation does not take into 

account energy spent lifting the launch vehicle or energy spent 

bringing the satellite to orbit velocity.)

 24. You are in charge of the evacuation and repair of the storage tank 

shown here. The tank is a hemisphere of radius 10 ft and is full 

of benzene weighing 56 lb>ft3. A irm you contacted says it can 

empty the tank for 1>2¢ per foot-pound of work. Find the work 

required to empty the tank by pumping the benzene to an outlet 

2 ft above the top of the tank. If you have $5000 budgeted for the 

job, can you aford to hire the irm?

x

z

10

y

10 2 ft

Outlet pipe
x2 + y2 

+ z2 = 100

0

Work and Kinetic Energy

 25. Kinetic energy If a variable force of magnitude F(x) moves an 

object of mass m along the x-axis from x1 to x2, the object’s ve-

locity y can be written as dx >dt (where t represents time). Use 

 Newton’s second law of motion F = m(dy>dt) and the Chain Rule

dy

dt
=

dy

dx
 
dx

dt
= y 

dy

dx

  to show that the net work done by the force in moving the object 

from x1 to x2 is

W = L
x2

x1

 F(x) dx =
1

2
 my2  

2 -
1

2
 my1  

2,

  where y1 and y2 are the object’s velocities at x1 and x2. In physics, 

the expression (1>2)my2 is called the kinetic energy of an object 

of mass m moving with velocity y. Therefore, the work done by 

the force equals the change in the object’s kinetic energy, and we 

can ind the work by calculating this change.

In Exercises 26–30, use the result of Exercise 25.

 26. tennis A 2-oz tennis ball was served at 160 ft>sec (about 109 

mph). How much work was done on the ball to make it go this 

fast? (To ind the ball’s mass from its weight, express the weight 

in pounds and divide by 32 ft>sec2, the acceleration of gravity.)

 27. Baseball How many foot-pounds of work does it take to throw a 

baseball 90 mph? A baseball weighs 5 oz, or 0.3125 lb.

 28. golf A 1.6-oz golf ball is driven of the tee at a speed of 

280 ft>sec (about 191 mph). How many foot-pounds of work are 

done on the ball getting it into the air?

 29. tennis At the 2012 Busan Open Challenger Tennis Tournament 

is Busan, South Korea, the Australian Samuel Groth hit a serve 

measured at 263 kph (163.4 mph). How much work was required 

by Groth to serve a 0.056699-kg (2-oz) tennis ball at that speed?

 30. softball How much work has to be performed on a 6.5-oz soft-

ball to pitch it 132 ft > sec (90 mph)?

 31. Drinking a milkshake The truncated conical container shown 

here is full of strawberry milkshake that weighs 4>9 oz>in3. As 

you can see, the container is 7 in. deep, 2.5 in. across at the base, 

and 3.5 in. across at the top (a standard size at Brigham’s in Boston). 

The straw sticks up an inch above the top. About how much work 
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b. What would be the luid force on one side of the plate if the 

water were seawater instead of freshwater?

A

Surface level

B
4 ft

4 ft

1 ft

 40. rotated triangular plate The plate in Exercise 39 is revolved 

180° about line AB so that part of the plate sticks out of the lake, 

as shown here. What force does the water exert on one face of the 

plate now?

A

Surface

level

B
4 ft

3 ft

1 ft

 41. New England Aquarium The viewing portion of the rectangular 

glass window in a typical ish tank at the New England Aquarium in 

Boston is 63 in. wide and runs from 0.5 in. below the water’s surface 

to 33.5 in. below the surface. Find the luid force against this portion 

of the window. The weight-density of seawater is 64 lb>ft3. (In case 

you were wondering, the glass is 3>4 in. thick and the tank walls 

extend 4 in. above the water to keep the ish from jumping out.)

 42. semicircular plate A semicircular plate 2 ft in diameter sticks 

straight down into freshwater with the diameter along the surface. 

Find the force exerted by the water on one side of the plate.

 43. tilted plate Calculate the luid force on one side of a 5 ft by 5 ft 

square plate if the plate is at the bottom of a pool illed with water 

to a depth of 8 ft and

a. lying lat on its 5 ft by 5 ft face.

b. resting vertically on a 5-ft edge.

c. resting on a 5-ft edge and tilted at 45° to the bottom of the pool.

 44. tilted plate Calculate the luid force on one side of a right- 

triangular plate with edges 3 ft, 4 ft, and 5 ft if the plate sits at the 

bottom of a pool illed with water to a depth of 6 ft on its 3-ft edge 

and tilted at 60° to the bottom of the pool.

 45. The cubical metal tank shown here has a parabolic gate held in 

place by bolts and designed to withstand a luid force of 160 lb 

without rupturing. The liquid you plan to store has a weight- 

density of 50 lb>ft3.

a. What is the luid force on the gate when the liquid is 2 ft deep?

b. What is the maximum height to which the container can be 

illed without exceeding the gate’s design limitation?

x (ft)
10

Enlarged view of

parabolic gate

−1

Parabolic gate

(−1, 1) (1, 1)

y (ft)

y = x2

4 ft

4 ft

4 ft

 34. Forcing electrons together Two electrons r meters apart repel 

each other with a force of

F =
23 * 10-29

r2
 newtons.

a. Suppose one electron is held ixed at the point (1, 0) on the 

x-axis (units in meters). How much work does it take to move 

a second electron along the x-axis from the point (-1, 0) to 

the origin?

b. Suppose an electron is held ixed at each of the points (-1, 0) 

and (1, 0). How much work does it take to move a third elec-

tron along the x-axis from (5, 0) to (3, 0)?

Finding Fluid Forces

 35. triangular plate Calculate the luid force on one side of the 

plate in Example 6 using the coordinate system shown here.

x (ft) 
0 5

−5

Surface of pool

y x

y (ft)

(x, y)

y = −2Depth 0 y 0

 36. triangular plate Calculate the luid force on one side of the 

plate in Example 6 using the coordinate system shown here.

x (ft)
0 3

1

−3

−3

y (ft)

Pool surface  at y = 2

 37. rectangular plate In a pool illed with water to a depth of 10 ft, 

calculate the luid force on one side of a 3 ft by 4 ft rectangular 

plate if the plate rests vertically at the bottom of the pool

a. on its 4-ft edge. b. on its 3-ft edge.

 38. semicircular plate Calculate the luid force on one side of a 

semicircular plate of radius 5 ft that rests vertically on its diameter 

at the bottom of a pool illed with water to a depth of 6 ft.

x

y

5

6Surface of water

 39. triangular plate The isosceles triangular plate shown here is 

submerged vertically 1 ft below the surface of a freshwater lake.

a. Find the luid force against one face of the plate.
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 46. The end plates of the trough shown here were designed to with-

stand a luid force of 6667 lb. How many cubic feet of water can 

the tank hold without exceeding this limitation? Round down to 

the nearest cubic foot. What is the value of h?

End view of trough

x (ft)

y (ft) 

0

(4, 10)(−4, 10)

Dimensional

view of trough

10 ft

30 ft

(0, h)
y =   x5

2

8 ft

 47. A vertical rectangular plate a units long by b units wide is sub-

merged in a luid of weight-density w with its long edges parallel 

to the luid’s surface. Find the average value of the pressure along 

the vertical dimension of the plate. Explain your answer.

 48. (Continuation of Exercise 47.) Show that the force exerted by the 

luid on one side of the plate is the average value of the pressure 

(found in Exercise 47) times the area of the plate.

 49. Water pours into the tank shown here at the rate of 4 ft3>min. The 

tank’s cross-sections are 4-ft-diameter semicircles. One end of the 

tank is movable, but moving it to increase the volume compresses 

a spring. The spring constant is k = 100 lb>ft. If the end of the 

tank moves 5 ft against the spring, the water will drain out of a 

safety hole in the bottom at the rate of 5 ft3>min. Will the movable 

end reach the hole before the tank overlows?

2 ft

Movable end Water in

5 ft

Side view

Movable

end

Water

in

Drain

hole

Drain

hole

y

x

4 ft

x2 + y2 = 4

 50. Watering trough The vertical ends of a watering trough are 

squares 3 ft on a side.

a. Find the luid force against the ends when the trough is full.

b. How many inches do you have to lower the water level in the 

trough to reduce the luid force by 25%?

6.6 Moments and Centers of Mass

Many structures and mechanical systems behave as if their masses were concentrated at a 

single point, called the center of mass (Figure 6.44). It is important to know how to locate 

this point, and doing so is basically a mathematical enterprise. Here we consider masses 

distributed along a line or region in the plane. Masses distributed across a region or curve 

in three-dimensional space are treated in Chapters 15 and 16.

Masses Along a Line

We develop our mathematical model in stages. The first stage is to imagine masses m1, m2, 

and m3 on a rigid x-axis supported by a fulcrum at the origin.

x
m1

Fulcrum

at origin

m2 m3

x1 x2 x30

The resulting system might balance, or it might not, depending on how large the masses 

are and how they are arranged along the x-axis.

Each mass mk exerts a downward force mk g (the weight of mk) equal to the magnitude 

of the mass times the acceleration due to gravity. Note that gravitational acceleration is 

downward, hence negative. Each of these forces has a tendency to turn the x-axis about the 

origin, the way a child turns a seesaw. This turning effect, called a torque, is measured by 

multiplying the force mk g by the signed distance xk from the point of application to the 

origin. By convention, a positive torque induces a counterclockwise turn. Masses to the 

left of the origin exert positive (counterclockwise) torque. Masses to the right of the origin 

exert negative (clockwise) torque.

The sum of the torques measures the tendency of a system to rotate about the origin. 

This sum is called the system torque.

 System torque = m1 gx1 + m2 gx2 + m3 gx3 (1)
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The system will balance if and only if its torque is zero.

If we factor out the g in Equation (1), we see that the system torque is

g  #  (m1 x1 + m2 x2 + m3 x3).
 6  (++++++)++++++*
 a feature of the  

 environment

a feature of  

the system

Thus, the torque is the product of the gravitational acceleration g, which is a feature of the 

environment in which the system happens to reside, and the number (m1 x1 +  

m2 x2 + m3 x3), which is a feature of the system itself.

The number (m1 x1 + m2 x2 + m3 x3) is called the moment of the system about the 

origin. It is the sum of the moments m1 x1, m2 x2, m3 x3 of the individual masses.

M0 = Moment of system about origin = a  mk xk

(We shift to sigma notation here to allow for sums with more terms.)

We usually want to know where to place the fulcrum to make the system balance; that 

is, we want to know at what point x to place the fulcrum to make the torques add to zero.

x
m1

Special location

for balance

m2 m3

x1 x2 x30 x

The torque of each mass about the fulcrum in this special location is

 Torque of mk about x = asigned distance

of mk from x
b adownward

force
b

 = (xk - x)mk g.

When we write the equation that says that the sum of these torques is zero, we get an equa-

tion we can solve for x:

 a  (xk - x)mk g = 0   Sum of the torques equals zero.

 x =
a  mk xk

a  mk

.  Solved for x

This last equation tells us to find x by dividing the system’s moment about the origin by 

the system’s total mass:

 x =
a  mk xk

a  mk

=
system moment about origin

system mass . (2)

The point x is called the system’s center of mass.

Thin Wires

Instead of a discrete set of masses arranged in a line, suppose that we have a straight wire 

or rod located on interval 3a, b4  on the x-axis. Suppose further that this wire is not homo-

geneous, but rather the density varies continuously from point to point. If a short segment 

of a rod containing the point x with length ∆x has mass ∆m, then the density at x is given by

d(x) = lim
∆xS0

∆m>∆x. 

We often write this formula in one of the alternative forms d = dm>dx and dm = d dx.

Partition the interval 3a, b4  into finitely many subintervals 3xk - 1, xk4 . If we take n 

subintervals and replace the portion of a wire along a subinterval of length ∆xk containing 

xk by a point mass located at xk with mass ∆mk = d(xk) ∆xk, then we obtain a collection of 

point masses that have approximately the same total mass and same moment as the wire.

FIGURE 6.44 A wrench gliding on ice 

turning about its center of mass as the cen-

ter glides in a vertical line. (Source: PSSC 

Physics, 2nd ed., Reprinted by permission 

of Education Development Center, Inc.)
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The mass M of the wire and the moment M0 are approximated by the Riemann sums

M ≈ a
n

k = 1

∆mk = a
n

k = 1

d(xk) ∆xk,  M0 ≈ a
n

k = 1

xk ∆mk = a
n

k = 1

xk d(xk) ∆xk.

By taking a limit of these Riemann sums as the length of the intervals in the partition 

approaches zero, we get integral formulas for the mass and the moment of the wire about 

the origin. The mass M, moment about the origin M0, and center of mass x are

M = L
b

a

d(x) dx,  M0 = L
b

a

x d(x) dx,  x =
M0

M
=
L

b

a

x d(x) dx

L
b

a

d(x) dx

.

EXAMPLE 1  Find the mass M and the center of mass x of a rod lying on the x-axis 

over the interval 31, 24  whose density is given by d(x) = 2 + 3x2.

Solution The mass of the rod is obtained by integrating the density,

M = L
2

1

(2 + 3x2) dx = c 2x + x3 d 2
1

= (4 + 8) - (2 + 1) = 9,

and the center of mass is

 x =
M0

M
=
L

2

1

x (2 + 3x2) dx

9
=

c x2 +
3x4

4
d 2

1

9
=

19
12

. 

Masses Distributed over a Plane Region

Suppose that we have a finite collection of masses located in the plane, with mass mk at 

the point (xk, yk) (see Figure 6.46). The mass of the system is

System mass:   M = a  mk .

Each mass mk has a moment about each axis. Its moment about the x-axis is mk yk, and its 

moment about the y-axis is mk xk . The moments of the entire system about the two axes are

 Moment about x@axis:   Mx = a  mk yk ,

 Moment about y@axis:   My = a  mk xk .

The x-coordinate of the system’s center of mass is defined to be

 x =
My

M
=

a  mk xk

a  mk

. (3)

With this choice of x, as in the one-dimensional case, the system balances about the line 

x = x (Figure 6.47).

The y-coordinate of the system’s center of mass is defined to be

 y =
Mx

M
=

a  mk yk

a  mk

. (4)

With this choice of y, the system balances about the line y = y as well. The torques 

exerted by the masses about the line y = y cancel out. Thus, as far as balance is con-

cerned, the system behaves as if all its mass were at the single point (x, y). We call this 

point the system’s center of mass.

Δxk

Mass Δmk

xk

x

a b
xk−1

FIGURE 6.45 A rod of varying density 

can be modeled by a finite number of point 

masses of mass ∆mk = d(xk) ∆xk located 

at points xk along the rod.

x

y

0

xk

xk

yk

yk

mk

(xk, yk)

FIGURE 6.46 Each mass mk has a 

 moment about each axis.

x

y

0

Bal
an

ce
 li

ne

Balanceline

y = y

x 
=

 x

c.m.

y

x

FIGURE 6.47 A two-dimensional array 

of masses balances on its center of mass.
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Thin, Flat Plates

In many applications, we need to find the center of mass of a thin, flat plate: a disk of alu-

minum, say, or a triangular sheet of steel. In such cases, we assume the distribution of 

mass to be continuous, and the formulas we use to calculate x and y contain integrals 

instead of finite sums. The integrals arise in the following way.

Imagine that the plate occupying a region in the xy-plane is cut into thin strips parallel 

to one of the axes (in Figure 6.48, the y-axis). The center of mass of a typical strip is 

(x∼, y∼). We treat the strip’s mass ∆m as if it were concentrated at (x∼, y∼). The moment of 

the strip about the y-axis is then x∼ ∆m. The moment of the strip about the x-axis is y∼ ∆m. 

Equations (3) and (4) then become

x =
My

M
=

a  x∼ ∆m

a  ∆m
,  y =

Mx

M
=

a  y∼ ∆m

a  ∆m
.

These sums are Riemann sums for integrals, and they approach these integrals in the limit 

as the strips become narrower and narrower. We write these integrals symbolically as

x =
1  x∼ dm

1  dm
  and  y =

1  y∼ dm

1  dm
.

x

y

~x0

Strip

c.m.
~y

~x

~y

Strip of mass Δm

~ ~(x, y)

FIGURE 6.48 A plate cut into thin 

strips parallel to the y-axis. The moment 

exerted by a typical strip about each axis 

is the moment its mass ∆m would exert if 

concentrated at the strip’s center of mass 

(x∼, y∼).

Moments, Mass, and Center of Mass of a Thin Plate Covering a Region in 

the xy-Plane

 Moment about the x@axis:   Mx = L  y∼ dm

  Moment about the y@axis:   My = L  x∼ dm

 (5)

 Mass:   M = L   dm

 Center of mass:   x =
My

M
, y =

Mx

M

The differential dm in these integrals is the mass of the strip. For this section, we assume 

the density d of the plate is a constant or a continuous function of x. Then dm = d dA, 

which is the mass per unit area d times the area dA of the strip.

To evaluate the integrals in Equations (5), we picture the plate in the coordinate plane 

and sketch a strip of mass parallel to one of the coordinate axes. We then express the 

strip’s mass dm and the coordinates (x∼, y∼) of the strip’s center of mass in terms of x or y. 

Finally, we integrate y∼ dm, x∼ dm, and dm between limits of integration determined by the 

plate’s location in the plane.

EXAMPLE 2  The triangular plate shown in Figure 6.49 has a constant density of 

d = 3 g>cm2. Find

(a) the plate’s moment My about the y-axis.

(b) the plate’s mass M.

(c) the x-coordinate of the plate’s center of mass (c.m.).

Density of a plate

A material’s density is its mass per unit 

area. For wires, rods, and narrow strips, 

the density is given by mass per unit 

length.

x (cm)

y (cm) 

0

2

1

(1, 2)

y = 2x

x = 1

y = 0

FIGURE 6.49 The plate in Example 2.
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Solution Method 1: Vertical Strips (Figure 6.50)

(a) The moment My: The typical vertical strip has the following relevant data.

 center of mass (c.m.): (x∼, y∼) = (x, x)

 length: 2x

 width: dx

 area: dA = 2x dx

 mass: dm = d dA = 3 # 2x dx = 6x dx

 distance of c.m. from y-axis: x∼ = x

The moment of the strip about the y-axis is

x∼ dm = x # 6x dx = 6x2 dx.

The moment of the plate about the y-axis is therefore

My = L  x∼ dm = L
1

0

 6x2 dx = 2x3 d
0

1

= 2 g # cm.

(b) The plate’s mass:

M = L   dm = L
1

0

 6x dx = 3x2 d
0

1

= 3 g.

(c) The x-coordinate of the plate’s center of mass:

x =
My

M
=

2 g # cm

3 g
=

2
3

 cm.

By a similar computation, we could find Mx and y = Mx>M.

Method 2: Horizontal Strips (Figure 6.51)

(a) The moment My: The y-coordinate of the center of mass of a typical horizontal strip is 

y (see the igure), so

y∼ = y.

 The x-coordinate is the x-coordinate of the point halfway across the triangle. This 

makes it the average of y >2 (the strip’s left-hand x-value) and 1 (the strip’s right-hand 

x-value):

x∼ =
( y>2) + 1

2
=

y

4
+

1
2

=
y + 2

4
.

We also have

 length: 1 -
y

2
=

2 - y

2

 width: dy

 area: dA =
2 - y

2
 dy

 mass: dm = d dA = 3 # 2 - y

2
 dy

 distance of c.m. to y-axis: x∼ =
y + 2

4
.

The moment of the strip about the y-axis is

x∼ dm =
y + 2

4
 #  3 #  

2 - y

2
 dy =

3
8

  (4 - y2) dy.

x

y

0

2

1

(1, 2)

Units in centimeters

Strip c.m.

is halfway.

x 2x

dx

y = 2x

(x, 2x)

~ ~(x, y) = (x, x)

FIGURE 6.50 Modeling the plate in 

Example 2 with vertical strips.

a      b

x (cm)

y (cm)

0

2

1

(1, 2)

Strip c.m.

is halfway.

y dy

~ ~(x, y) = 
4

y + 2
, y

2

y
, y

2
2

y
1 +

2

y
x = 

(1, y)

2

y
1 −

a   b

FIGURE 6.51 Modeling the plate in 

Example 2 with horizontal strips.
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The moment of the plate about the y-axis is

My = L  x∼ dm = L
2

0

 
3
8

  (4 - y2) dy =
3
8

  c 4y -
y3

3
d

0

2

=
3
8

  a16
3
b = 2 g # cm.

(b) The plate’s mass:

M = L   dm = L
2

0

 
3
2

  (2 - y) dy =
3
2

  c 2y -
y2

2
d

0

2

=
3
2

  (4 - 2) = 3 g.

(c) The x-coordinate of the plate’s center of mass:

x =
My

M
=

2 g # cm

3 g
=

2
3

  cm.

 By a similar computation, we could ind Mx and y. 

If the distribution of mass in a thin, flat plate has an axis of symmetry, the center of 

mass will lie on this axis. If there are two axes of symmetry, the center of mass will lie at 

their intersection. These facts often help to simplify our work.

EXAMPLE 3  Find the center of mass of a thin plate covering the region bounded 

above by the parabola y = 4 - x2 and below by the x-axis (Figure 6.52). Assume the den-

sity of the plate at the point (x, y) is d = 2x2, which is twice the square of the distance 

from the point to the y-axis.

Solution The mass distribution is symmetric about the y-axis, so x = 0. We model the 

distribution of mass with vertical strips, since the density is given as a function of the vari-

able x. The typical vertical strip (see Figure 6.52) has the following relevant data.

 center of mass (c.m.): (x∼, y∼) = ax, 
4 - x2

2
b

 length: 4 - x2

 width: dx

 area: dA = (4 - x2) dx

 mass: dm = d dA = d(4 - x2) dx

 distance from c.m. to x-axis: y∼ =
4 - x2

2

The moment of the strip about the x-axis is

y∼ dm =
4 - x2

2
 #  d(4 - x2) dx =

d
2

  (4 - x2)2 dx.

The moment of the plate about the x-axis is

 Mx = L  y∼ dm = L
2

-2

  
d
2

 (4 - x2)2 dx = L
2

-2

 x2(4 - x2)2 dx

 = L
2

-2

(16x2 - 8x4 + x6) dx =
2048
105

.

The mass of the plate is

 M = L   dm = L
2

-2

 d(4 - x2) dx = L
2

-2

 2x2(4 - x2) dx

 = L
2

-2

 (8x2 - 2x4) dx =
256
15

.

x

y

0

4

−2 2
dx

x

Center of mass

y = 4 − x2

~ ~(x, y) = 
2

4 − x2

x, 

2

y

4 − x2

a       b

FIGURE 6.52 Modeling the plate in 

Example 3 with vertical strips.
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Therefore,

y =
Mx

M
=

2048
105

 #  
15
256

=
8
7

.

The plate’s center of mass is

 (x, y) = a0, 
8
7
b . 

  x =
1
M

 L
b

a

 dx 3ƒ(x) - g(x)4  dx (6)

  y =
1
M

 L
b

a

 
d
2

 3ƒ2(x) - g2(x)4  dx (7)

EXAMPLE 4  Find the center of mass for the thin plate bounded by the curves 

g(x) = x>2 and ƒ(x) = 2x, 0 … x … 1 (Figure 6.54), using Equations (6) and (7) with 

the density function d(x) = x2.

Solution We first compute the mass of the plate, using dm = d3ƒ(x) - g(x)4  dx:

M = L
1

0

 x2a2x -
x

2
b  dx = L

1

0

 ax5>2 -
x3

2
b  dx = c 2

7
 x7>2 -

1
8

 x4 d 1
0

=
9
56

.

Plates Bounded by Two Curves

Suppose a plate covers a region that lies between two curves y = g(x) and y = ƒ(x), 

where ƒ(x) Ú g(x) and a … x … b. The typical vertical strip (see Figure 6.53) has

 center of mass (c.m.): (x∼, y∼ ) = 1x, 12 3ƒ(x) + g(x)42
 length: ƒ(x) - g(x)

 width: dx

 area: dA = 3ƒ(x) - g(x)4  dx

 mass: dm = d dA = d 3ƒ(x) - g(x)4  dx.

The moment of the plate about the y-axis is

My = Lx  dm = L
b

a

 x d3ƒ(x) - g(x)4  dx,

and the moment about the x-axis is

 Mx = Ly dm = L
b

a

 
1
2

 3ƒ(x) + g(x)4 # d 3ƒ(x) - g(x)4  dx

 = L
b

a

 
d
2

 3ƒ2(x) - g2(x)4  dx.

These moments give us the following formulas.

x

y

0 1

1

f (x) = "x

g(x) =
2
x

c.m.

FIGURE 6.54 The region in Example 4.

x

y

0 b
dx

a

y = f (x)

y = g(x)

~ ~(x, y)

FIGURE 6.53 Modeling the plate bounded 

by two curves with vertical strips. The strip 

c.m. is halfway, so y∼ =
1
2

 3ƒ(x) + g(x)4 .
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Then from Equations (6) and (7) we get

 x =
56
9

 L
1

0

 x2 # x a2x -
x

2
b  dx

 =
56
9

 L
1

0

 ax7>2 -
x4

2
b  dx

 =
56
9

 c 2
9

 x9>2 -
1
10

 x5 d 1
0

=
308
405

,

and

 y =
56
9

 L
1

0

 
x2

2
 ax -

x2

4
b  dx

 =
28
9

 L
1

0

 ax3 -
x4

4
b  dx

  =
28
9

 c 1
4

 x4 -
1
20

 x5 d 1
0

=
252
405

. 

The center of mass is shown in Figure 6.54.

Centroids

The center of mass in Example 4 is not located at the geometric center of the region. This 

is due to the region’s nonuniform density. When the density function is constant, it can-

cels out of the numerator and denominator of the formulas for x and y. Thus, when the 

density is constant, the location of the center of mass is a feature of the geometry of the 

object and not of the material from which it is made. In such cases, engineers may call 

the center of mass the centroid of the shape, as in “Find the centroid of a triangle or a 

solid cone.” To do so, just set d equal to 1 and proceed to find x and y as before, by divid-

ing moments by masses.

EXAMPLE 5  Find the center of mass (centroid) of a thin wire of constant density d 

shaped like a semicircle of radius a.

Solution We model the wire with the semicircle y = 2a2 - x2 (Figure 6.55). The dis-

tribution of mass is symmetric about the y-axis, so x = 0. To find y, we imagine the wire 

divided into short subarc segments. If ( x∼, y∼  ) is the center of mass of a subarc and u is the 

angle between the x-axis and the radial line joining the origin to ( x∼, y∼  ), then y∼ = a sin u 

is a function of the angle u measured in radians (see Figure 6.55a). The length ds of the 

subarc containing ( x∼, y∼  ) subtends an angle of du radians, so ds = a du. Thus a typical 

subarc segment has these relevant data for calculating y:

 length: ds = a du

 mass: dm = d ds = da du   
Mass per unit length  

times length
 distance of c.m. to x-axis: y∼ = a sin u.

Hence,

y =
1  y∼ dm

1dm
=

1p

0
a sin u # da du

1p

0
 da du

=
da23-cos u4

0

p

dap
=

2
p a.

The center of mass lies on the axis of symmetry at the point (0, 2a>p), about two-thirds of 

the way up from the origin (Figure 6.55b). Notice how d cancels in the equation for y, so 

we could have set d = 1 everywhere and obtained the same value for y. 

a    b

x

y

0−a a

(a)

x

y

0−a a

a

c.m.

A typical small 

segment of wire has 

dm = d ds = da du.

(a cosu, a sinu)
du

u

y = "a2 − x2

(b)

0,     a
2

~ ~(x, y) = 

p

FIGURE 6.55 The semicircular wire  

in Example 5. (a) The dimensions and 

variables used in finding the center of 

mass. (b) The center of mass does not  

lie on the wire.
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In Example 5 we found the center of mass of a thin wire lying along the graph of a 

differentiable function in the xy-plane. In Chapter 16 we will learn how to find the center 

of mass of a wire lying along a more general smooth curve in the plane or in space.

Fluid Forces and Centroids

If we know the location of the centroid of a submerged flat vertical plate (Figure 6.56), we 

can take a shortcut to find the force against one side of the plate. From Equation (7) in 

Section 6.5, and the definition of the moment about the x-axis, we have

 F = L
b

a

 w * (strip depth) * L(y) dy

 = wL
b

a

 (strip depth) * L(y) dy

 = w * (moment about surface level line of region occupied by plate)

 = w * (depth of plate>s centroid) * (area of plate).

Surface level of luid

h = centroid depth

Plate centroid

FIGURE 6.56 The force against one side 

of the plate is w # h # plate area.

Fluid Forces and Centroids

The force of a luid of weight-density w against one side of a submerged lat verti-

cal plate is the product of w, the distance h from the plate’s centroid to the luid 

surface, and the plate’s area:

 F = whA. (8)

EXAMPLE 6  A flat isosceles triangular plate with base 6 ft and height 3 ft is sub-

merged vertically, base up with its vertex at the origin, so that the base is 2 ft below the 

surface of a swimming pool. (This is Example 6, Section 6.5.) Use Equation (8) to find the 

force exerted by the water against one side of the plate.

Solution The centroid of the triangle (Figure 6.43) lies on the y-axis, one-third of the 

way from the base to the vertex, so h = 3 (where y = 2), since the pool’s surface is 

y = 5. The triangle’s area is

 A =
1
2

  (base)(height) =
1
2

  (6)(3) = 9.

Hence,

  F = whA = (62.4)(3)(9) = 1684.8 lb. 

The Theorems of Pappus

In the fourth century, an Alexandrian Greek named Pappus discovered two formulas that 

relate centroids to surfaces and solids of revolution. The formulas provide shortcuts to a 

number of otherwise lengthy calculations.

THEOREM 1—Pappus’s Theorem for Volumes

If a plane region is revolved once about a line in the plane that does not cut 

through the region’s interior, then the volume of the solid it generates is equal to 

the region’s area times the distance traveled by the region’s centroid during the 

revolution. If r is the distance from the axis of revolution to the centroid, then

 V = 2prA. (9)
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Proof  We draw the axis of revolution as the x-axis with the region R in the irst quad-

rant (Figure 6.57). We let L(y) denote the length of the cross-section of R perpendicular to 

the y-axis at y. We assume L(y) to be continuous.

By the method of cylindrical shells, the volume of the solid generated by revolving the 

region about the x-axis is

 V = L
d

c

 2p(shell radius)(shell height) dy = 2pL
d

c

 y L(y) dy. (10)

The y-coordinate of R’s centroid is

y =
L

d

c

 y∼ dA

A
=
L

d

c

 y L(y) dy

A
,  y∼ = y, dA = L(y) dy

so that

 L
d

c

 y L(y) dy = Ay.

Substituting Ay for the last integral in Equation (10) gives V = 2pyA. With r equal to y, 

we have V = 2prA. 

x

y

d

c

0

L(y)

R

Centroid

r = y

FIGURE 6.57 The region R is to be 

revolved (once) about the x-axis to gener-

ate a solid. A 1700-year-old theorem says 

that the solid’s volume can be calculated 

by multiplying the region’s area by the 

distance traveled by its centroid during the 

revolution.

EXAMPLE 7  Find the volume of the torus (doughnut) generated by revolving a cir-

cular disk of radius a about an axis in its plane at a distance b Ú a from its center  

(Figure 6.58).

Solution We apply Pappus’s Theorem for volumes. The centroid of a disk is located at 

its center, the area is A = pa2, and r = b is the distance from the centroid to the axis of 

revolution (see Figure 6.58). Substituting these values into Equation (9), we find the vol-

ume of the torus to be

 V = 2p(b)(pa2) = 2p2ba2. 

The next example shows how we can use Equation (9) in Pappus’s Theorem to find one 

of the coordinates of the centroid of a plane region of known area A when we also know the 

volume V of the solid generated by revolving the region about the other coordinate axis. 

That is, if y is the coordinate we want to find, we revolve the region around the x-axis so 

that y = r is the distance from the centroid to the axis of revolution. The idea is that the 

rotation generates a solid of revolution whose volume V is an already known quantity. Then 

we can solve Equation (9) for r, which is the value of the centroid’s coordinate y.

EXAMPLE 8  Locate the centroid of a semicircular region of radius a.

Solution We consider the region between the semicircle y = 2a2 - x2 (Figure 6.59) 

and the x-axis and imagine revolving the region about the x-axis to generate a solid sphere. 

By symmetry, the x-coordinate of the centroid is x = 0. With y = r in Equation (9), we 

have

 y =
V

2pA
=

(4>3)pa3

2p(1>2)pa2
=

4
3p

 a. 

Centroid

a

−a a0

a

x

y

3p
4

FIGURE 6.59 With Pappus’s first 

theorem, we can locate the centroid of 

a semicircular region without having to 

integrate (Example 8).

Area: pa2

Circumference: 2pa

Distance from axis of

revolution to centroid

a
b

y

z

x

FIGURE 6.58 With Pappus’s first 

theorem, we can find the volume of a torus 

without having to integrate (Example 7).
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The proof we give assumes that we can model the axis of revolution as the x-axis and the 

arc as the graph of a continuously differentiable function of x.

Proof  We draw the axis of revolution as the x-axis with the arc extending from x = a 

to x = b in the irst quadrant (Figure 6.60). The area of the surface generated by the arc is

 S = L
x = b

x = a

2py ds = 2pL
x = b

x = a

y ds. (12)

The y-coordinate of the arc’s centroid is

y =
L

x = b

x = a

y∼ ds

L
x = b

x = a

 ds

=
L

x = b

x = a

y ds

L
.  

L = 1  ds is the arc’s 

length and y∼ = y.
 

Hence

 L
x = b

x = a

y ds = yL.

Substituting yL for the last integral in Equation (12) gives S = 2pyL. With r equal to y, 

we have S = 2prL. 

EXAMPLE 9  Use Pappus’s area theorem to find the surface area of the torus in 

Example 7.

Solution From Figure 6.58, the surface of the torus is generated by revolving a circle of 

radius a about the z-axis, and b Ú a is the distance from the centroid to the axis of revolu-

tion. The arc length of the smooth curve generating this surface of revolution is the cir-

cumference of the circle, so L = 2pa. Substituting these values into Equation (11), we 

find the surface area of the torus to be

 S = 2p(b)(2pa) = 4p2ba. 

THEOREM 2—Pappus’s Theorem for Surface Areas

If an arc of a smooth plane curve is revolved once about a line in the plane that 

does not cut through the arc’s interior, then the area of the surface generated by 

the arc equals the length L of the arc times the distance traveled by the arc’s cen-

troid during the revolution. If r is the distance from the axis of revolution to the 

centroid, then

 S = 2prL. (11)

0

x

y

ds

y

a

b

~

Arc

FIGURE 6.60 Figure for proving  

Pappus’s Theorem for surface area. The 

arc length differential ds is given by 

Equation (6) in Section 6.3.

Mass of a wire

In Exercises 1–6, find the mass M and center of mass x of the linear 

wire covering the given interval and having the given density d(x).

 1. 1 … x … 4, d(x) = 2x

 2. -3 … x … 3, d(x) = 1 + 3x2

 3. 0 … x … 3, d(x) =
1

x + 1

 4. 1 … x … 2, d(x) =
8

x3

 5. d(x) = e4, 0 … x … 2

5, 2 6 x … 3

 6. d(x) = e2 - x, 0 … x 6 1

x, 1 … x … 2

EXERCISES 6.6
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 24. The region between the curve y = 2>x and the x-axis from x = 1 

to x = 4 is revolved about the x-axis to generate a solid.

a. Find the volume of the solid.

b. Find the center of mass of a thin plate covering the region if 

the plate’s density at the point (x, y) is d(x) = 2x.

c. Sketch the plate and show the center of mass in your sketch.

Centroids of Triangles

 25. the centroid of a triangle lies at the intersection of the 

 triangle’s medians You may recall that the point inside a 

 triangle that lies one-third of the way from each side toward the 

opposite vertex is the point where the triangle’s three  medians 

intersect. Show that the centroid lies at the intersection of 

the medians by showing that it too lies one-third of the way 

from each side toward the opposite vertex. To do so, take the 

 following steps.

 i) Stand one side of the triangle on the x-axis as in part (b) of 

the accompanying igure. Express dm in terms of L and dy.

 ii) Use similar triangles to show that L = (b>h)(h - y). Substi-

tute this expression for L in your formula for dm.

 iii) Show that y = h>3.

 iv) Extend the argument to the other sides.

0

h

b

dy

L
y

(a) (b)

Centroid

h − y

x

y

Use the result in Exercise 25 to find the centroids of the triangles 

whose vertices appear in Exercises 26–30. Assume a, b 7 0.

 26. (-1, 0), (1, 0), (0, 3) 27. (0, 0), (1, 0), (0, 1)

 28. (0, 0), (a, 0), (0, a) 29. (0, 0), (a, 0), (0, b)

 30. (0, 0), (a, 0), (a >2, b)

Thin Wires

 31. constant density Find the moment about the x-axis of a wire of 

constant density that lies along the curve y = 2x from x = 0 to 

x = 2.

 32. constant density Find the moment about the x-axis of a wire of 

constant density that lies along the curve y = x3 from x = 0 to 

x = 1.

 33. Variable density Suppose that the density of the wire in 

 Example 5 is d = k sin u (k constant). Find the center of mass.

 34. Variable density Suppose that the density of the wire in 

 Example 5 is d = 1 + k 0 cos u 0  (k constant). Find the center of 

mass.

Thin Plates with Constant Density

In Exercises 18, find the center of mass of a thin plate of constant den-

sity d covering the given region.

 7. The region bounded by the parabola y = x2 and the line y = 4

 8. The region bounded by the parabola y = 25 - x2 and the x-axis

 9. The region bounded by the parabola y = x - x2 and the line 

y = -x

 10. The region enclosed by the parabolas y = x2 - 3 and y = -2x2

 11. The region bounded by the y-axis and the curve x = y - y3, 

 0 … y … 1

 12. The region bounded by the parabola x = y2 - y and the line 

y = x

 13. The region bounded by the x-axis and the curve y = cos x, 

-p>2 … x … p>2
 14. The region between the curve y = sec2 x, -p>4 … x … p>4 and 

the x-axis

 15. a. The region cut from the irst quadrant by the circle x2 + y2 = 9

b. The region bounded by the x-axis and the semicircle 

y = 29 - x2

  Compare your answer in part (b) with the answer in part (a).

 16. The region bounded by the parabolas y = 2x2 - 4x and 

y = 2x - x2

 17. The region between the curve y = 1>2x and the x-axis from 

x = 1 to x = 16

 18. The region bounded above by the curve y = 1>x3, below by the 

curve y = -1>x3, and on the left and right by the lines x = 1 and 

x = a 7 1. Also, ind lima S  q  x.

 19. Consider a region bounded by the graphs of y = x4 and y = x5. 

Show that the center of mass lies outside the region.

 20. Consider a thin plate of constant density d lies in the region 

bounded by the graphs of y = 2x and x = 2y. Find the plate’s

a. moment about the x-axis.

b. moment about the y-axis.

c. moment about the line x = 5.

d. moment about the line x = -1.

e. moment about the line y = 2.

f. moment about the line y = -3.

g. mass.

h. center of mass.

Thin Plates with Varying Density

 21. Find the center of mass of a thin plate covering the region between 

the x-axis and the curve y = 2>x2, 1 … x … 2, if the plate’s den-

sity at the point (x, y) is d(x) = x2.

 22. Find the center of mass of a thin plate covering the region bounded 

below by the parabola y = x2 and above by the line y = x if the 

plate’s density at the point (x, y) is d(x) = 12x.

 23. The region bounded by the curves y = {4>2x and the lines 

x = 1 and x = 4 is revolved about the y-axis to generate a solid.

a. Find the volume of the solid.

b. Find the center of mass of a thin plate covering the region if 

the plate’s density at the point (x, y) is d(x) = 1>x.

c. Sketch the plate and show the center of mass in your sketch.
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 42. Use a theorem of Pappus to ind the volume generated by revolv-

ing about the line x = 5 the triangular region bounded by the co-

ordinate axes and the line 2x + y = 6 (see Exercise 25).

 43. Find the volume of the torus generated by revolving the circle 

(x - 2)2 + y2 = 1 about the y-axis.

 44. Use the theorems of Pappus to ind the lateral surface area and the 

volume of a right-circular cone.

 45. Use Pappus’s Theorem for surface area and the fact that the sur-

face area of a sphere of radius a is 4pa2 to ind the centroid of the 

semicircle y = 2a2 - x2.

 46. As found in Exercise 45, the centroid of the semicircle 

y = 2a2 - x2 lies at the point (0, 2a>p). Find the area of the 

surface swept out by revolving the semicircle about the line 

y = a.

 47. The area of the region R enclosed by the semiellipse 

y = (b>a)2a2 - x2 and the x-axis is (1>2)pab, and the vol-

ume of the ellipsoid generated by revolving R about the x-axis 

is (4>3)pab2. Find the centroid of R. Notice that the location is 

independent of a.

 48. As found in Example 8, the centroid of the region enclosed by 

the x-axis and the semicircle y = 2a2 - x2 lies at the point 

(0, 4a>3p). Find the volume of the solid generated by revolving 

this region about the line y = -a.

 49. The region of Exercise 48 is revolved about the line y = x - a to 

generate a solid. Find the volume of the solid.

 50. As found in Exercise 45, the centroid of the semicircle 

y = 2a2 - x2 lies at the point (0, 2a>p). Find the area of  

the surface generated by revolving the semicircle about the line 

y = x - a.

In Exercises 51 and 52, use a theorem of Pappus to find the centroid 

of the given triangle. Use the fact that the volume of a cone of radius r 

and height h is V = 1
3 pr2h.

 51. 

x

y

(0, 0)

(0, b)

(a, 0)

 52. 

x

y

(0, 0)

(a, b)

(a, c)

Plates Bounded by Two Curves

In Exercises 35–38, find the centroid of the thin plate bounded by the 

graphs of the given functions. Use Equations (6) and (7) with d = 1 

and M = area of the region covered by the plate.

 35. g(x) = x2  and  ƒ(x) = x + 6

 36. g(x) = x2 (x + 1), ƒ(x) = 2,  and  x = 0

 37. g(x) = x2(x - 1)  and  ƒ(x) = x2

 38. g(x) = 0, ƒ(x) = 2 + sin x, x = 0,  and  x = 2p

  (Hint:  L  x sin x dx = sin x - x cos x + C.)

Theory and Examples

Verify the statements and formulas in Exercises 39 and 40.

 39. The coordinates of the centroid of a diferentiable plane curve are

x =
1  x ds

length
,   y =

1  y ds

length
.

x

y

0

ds
x

y

 40. Whatever the value of p 7 0 in the equation y = x2>(4p), the  

y-coordinate of the centroid of the parabolic segment shown here 

is y = (3>5)a.

x

y

0

a

y =    a
3
5

y =    
x2

4p

The Theorems of Pappus

 41. The square region with vertices (0, 2), (2, 0), (4, 2), and (2, 4) is 

revolved about the x-axis to generate a solid. Find the volume and 

surface area of the solid.

 1. How do you deine and calculate the volumes of solids by the 

method of slicing? Give an example.

 2. How are the disk and washer methods for calculating volumes de-

rived from the method of slicing? Give examples of volume calcu-

lations by these methods.

 3. Describe the method of cylindrical shells. Give an example.

 4. How do you ind the length of the graph of a smooth function over 

a closed interval? Give an example. What about functions that do 

not have continuous irst derivatives?

 5. How do you deine and calculate the area of the surface swept 

out by revolving the graph of a smooth function y = ƒ(x), 

a … x … b, about the x-axis? Give an example.

CHAPTER 6 Questions to Guide Your Review
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 9. How do you locate the center of mass of a thin lat plate of mate-

rial? Give an example.

 10. How do you locate the center of mass of a thin plate bounded by 

two curves y = ƒ(x) and y = g(x) over a … x … b?

 6. How do you deine and calculate the work done by a variable force 

directed along a portion of the x-axis? How do you calculate the 

work it takes to pump a liquid from a tank? Give examples.

 7. How do you calculate the force exerted by a liquid against a por-

tion of a lat vertical wall? Give an example.

 8. What is a center of mass? a centroid?

Volumes

Find the volumes of the solids in Exercises 1–18.

 1. The solid lies between planes perpendicular to the x-axis at x = 0 

and x = 1. The cross-sections perpendicular to the x-axis  between 

these planes are circular disks whose diameters run from the 

 parabola y = x2 to the parabola y = 2x.

 2. The base of the solid is the region in the irst quadrant between 

the line y = x and the parabola y = 22x. The cross-sections of  

the solid perpendicular to the x-axis are equilateral triangles whose 

bases stretch from the line to the curve.

 3. The solid lies between planes perpendicular to the x-axis at 

x = p>4 and x = 5p>4. The cross-sections between these planes 

are circular disks whose diameters run from the curve y = 2 cos x 

to the curve y = 2 sin x.

 4. The solid lies between planes perpendicular to the x-axis at 

x = 0 and x = 6. The cross-sections between these planes  

are squares whose bases run from the x-axis up to the curve 

x1>2 + y1>2 = 26.

x

y

6

6

x1�2 + y1�2 = "6

 5. The solid lies between planes perpendicular to the x-axis at x = 0 

and x = 4. The cross-sections of the solid perpendicular to the  

x-axis between these planes are circular disks whose diameters run 

from the curve x2 = 4y to the curve y2 = 4x.

 6. The base of the solid is the region bounded by the parabola 

y2 = 4x and the line x = 1 in the xy-plane. Each cross-section 

perpendicular to the x-axis is an equilateral triangle with one edge 

in the plane. (The triangles all lie on the same side of the plane.)

 7. Find the volume of the solid generated by revolving the region 

bounded by the x-axis, the curve y = 3x4, and the lines x = 1 

and x = -1 about (a) the x-axis; (b) the y-axis; (c) the line x = 1;  

(d) the line y = 3.

 8. Find the volume of the solid generated by revolving the “triangu-

lar” region bounded by the curve y = 4>x3 and the lines x = 1 

and y = 1>2 about (a) the x-axis; (b) the y-axis; (c) the line 

x = 2; (d) the line y = 4.

 9. Find the volume of the solid generated by revolving the region 

bounded on the left by the parabola x = y2 + 1 and on the right 

by the line x = 5 about (a) the x-axis; (b) the y-axis; (c) the line 

x = 5.

 10. Find the volume of the solid generated by revolving the region 

bounded by the parabola y2 = 4x and the line y = x about (a) the 

x-axis; (b) the y-axis; (c) the line x = 4; (d) the line y = 4.

 11. Find the volume of the solid generated by revolving the “triangu-

lar” region bounded by the x-axis, the line x = p>3, and the curve 

y = tan x in the irst quadrant about the x-axis.

 12. Find the volume of the solid generated by revolving the region 

bounded by the curve y = sin x and the lines x = 0, x = p, and 

y = 2 about the line y = 2.

 13. Find the volume of the solid generated by revolving the region be-

tween the x-axis and the curve y = x2 - 2x about (a) the  x-axis; 

(b) the line y = -1; (c) the line x = 2; (d) the line y = 2.

 14. Find the volume of the solid generated by revolving about the  

x-axis the region bounded by y = 2 tan x, y = 0, x = -p>4, and 

x = p>4. (The region lies in the irst and third quadrants and re-

sembles a skewed bowtie.)

 15. Volume of a solid sphere hole A round hole of radius 23 ft is 

bored through the center of a solid sphere of a radius 2 ft. Find the 

volume of material removed from the sphere.

 16. Volume of a football The proile of a football resembles the el-

lipse shown here. Find the football’s volume to the nearest cubic 

inch.

x

y

0
−

 +        = 1
4x2

121

y2

12

2
11

2
11

 17. Find the volume of the given circular frustum of height h and radii 

a and b.

a

b

h
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 32. pumping a reservoir (Continuation of Exercise 31.) The reser-

voir is illed to a depth of 5 ft, and the water is to be pumped to the 

same level as the top. How much work does it take?

 33. pumping a conical tank A right-circular conical tank, point down, 

with top radius 5 ft and height 10 ft is illed with a liquid whose weight-

density is 60 lb>ft3. How much work does it take to pump the liquid 

to a point 2 ft above the tank? If the pump is driven by a motor rated at 

275 ft-lb>sec (1>2 hp), how long will it take to empty the tank?

 34. pumping a cylindrical tank A storage tank is a right-circular 

cylinder 20 ft long and 8 ft in diameter with its axis horizontal. If 

the tank is half full of olive oil weighing 57 lb>ft3, ind the work 

done in emptying it through a pipe that runs from the bottom of the 

tank to an outlet that is 6 ft above the top of the tank.

 35. Assume that a spring does not follow Hooke’s Law. Instead, the 

force required to stretch the spring x ft from its natural length is 

F(x) = 10x3>2 lb. How much work does it take to

a. stretch the spring 4 ft from its natural length?

b. stretch the spring from an initial 1 ft past its natural length to 

5 ft past its natural length?

 36. Assume that a spring does not follow Hooke’s Law. Instead, the 

force required to stretch the spring x m from its natural length is 

F(x) = k25 + x2 N.

a. If a 3-N force stretches the spring 2 m, ind the value of k.

b. How much work is required to stretch the spring 1 m from its 

natural length?

Centers of Mass and Centroids

 37. Find the centroid of a thin, lat plate covering the region enclosed 

by the parabolas y = 2x2 and y = 3 - x2.

 38. Find the centroid of a thin, lat plate covering the region enclosed by 

the x-axis, the lines x = 2 and x = -2, and the parabola y = x2.

 39. Find the centroid of a thin, lat plate covering the “triangular” 

region in the irst quadrant bounded by the y-axis, the parabola 

y = x2>4, and the line y = 4.

 40. Find the centroid of a thin, lat plate covering the region enclosed 

by the parabola y2 = x and the line x = 2y.

 41. Find the center of mass of a thin, lat plate covering the region 

enclosed by the parabola y2 = x and the line x = 2y if the density 

function is d(y) = 1 + y. (Use horizontal strips.)

 42. a.  Find the center of mass of a thin plate of constant density cov-

ering the region between the curve y = 3>x3>2 and the x-axis 

from x = 1 to x = 9.

b. Find the plate’s center of mass if, instead of being constant, 

the density is d(x) = x. (Use vertical strips.)

Fluid Force

 43. trough of water The vertical triangular plate shown here is the 

end plate of a trough full of water (w = 62.4). What is the luid 

force against the plate?

x

y

40

2

−4

UNITS IN FEET

y =
x
2

 18. The graph of x2>3 + y2>3 = 1 is called an astroid and is given be-

low. Find the volume of the solid formed by revolving the region 

enclosed by the astroid about the x-axis.

x

x2/3 + y2/3 = 1

y

1−1 0

−1

1

Lengths of Curves

Find the lengths of the curves in Exercises 19–22.

 19. y = x1>2 - (1>3)x3>2, 1 … x … 4

 20. x = y2>3, 1 … y … 8

 21. y = (5>12)x6>5 - (5>8)x4>5, 1 … x … 32

 22. x = (y3>12) + (1>y), 1 … y … 2

Areas of Surfaces of Revolution

In Exercises 23–26, ind the areas of the surfaces generated by revolv-

ing the curves about the given axes.

 23. y = 22x + 1, 0 … x … 3; x@axis

 24. y = x3>3, 0 … x … 1; x@axis

 25. x = 24y - y2, 1 … y … 2; y@axis

 26. x = 2y, 2 … y … 6; y@axis

Work

 27. Lifting equipment A rock climber is about to haul up 100 N 

(about 22.5 lb) of equipment that has been hanging beneath her on 

40 m of rope that weighs 0.8 newton per meter. How much work will 

it take? (Hint: Solve for the rope and equipment separately, then add.)

 28. Leaky tank truck You drove an 800-gal tank truck of water 

from the base of Mt. Washington to the summit and discovered on 

arrival that the tank was only half full. You started with a full tank, 

climbed at a steady rate, and accomplished the 4750-ft elevation 

change in 50 min. Assuming that the water leaked out at a steady 

rate, how much work was spent in carrying water to the top? Do 

not count the work done in getting yourself and the truck there. 

Water weighs 8 lb >U.S. gal.

 29. Earth’s attraction The force of attraction on an object below 

Earth’s surface is directly proportional to its distance from Earth’s 

center. Find the work done in moving a weight of w lb located a 

mi below Earth’s surface up to the surface itself. Assume Earth’s 

radius is a constant r mi.

 30. garage door spring A force of 200 N will stretch a garage door 

spring 0.8 m beyond its unstressed length. How far will a 300-N 

force stretch the spring? How much work does it take to stretch the 

spring this far from its unstressed length?

 31. pumping a reservoir A reservoir shaped like a right-circular 

cone, point down, 20 ft across the top and 8 ft deep, is full of wa-

ter. How much work does it take to pump the water to a level 6 ft 

above the top?
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 45. Force on a parabolic gate A lat vertical gate in the face of a 

dam is shaped like the parabolic region between the curve y = 4x2 

and the line y = 4, with measurements in feet. The top of the gate 

lies 5 ft below the surface of the water. Find the force exerted by 

the water against the gate (w = 62.4).

 46. You plan to store mercury (w = 849 lb>ft3) in a vertical rectangu-

lar tank with a 1 ft square base side whose interior side wall can 

withstand a total luid force of 40,000 lb. About how many cubic 

feet of mercury can you store in the tank at any one time?

T

 44. trough of maple syrup The vertical trapezoidal plate shown 

here is the end plate of a trough full of maple syrup weighing 

75 lb>ft3. What is the force exerted by the syrup against the end 

plate of the trough when the syrup is 10 in. deep?

x

y

20

1

−2

UNITS IN FEET

y = x − 2

Volume and Length

 1. A solid is generated by revolving about the x-axis the region bound-

ed by the graph of the positive continuous function y = ƒ(x), the 

x-axis, the ixed line x = a, and the variable line x = b, b 7 a. 

Its volume, for all b, is b2 - ab. Find ƒ(x).

 2. A solid is generated by revolving about the x-axis the region  

 bounded by the graph of the positive continuous function 

y = ƒ(x), the x-axis, and the lines x = 0 and x = a. Its volume, 

for all a 7 0, is a2 + a. Find ƒ(x).

 3. Suppose that the increasing function ƒ(x) is smooth for x Ú 0 and 

that ƒ(0) = a. Let s(x) denote the length of the graph of ƒ from  

(0, a) to (x, ƒ(x)), x 7 0. Find ƒ(x) if s(x) = Cx for some constant 

C. What are the allowable values for C?

 4. a. Show that for 0 6 a … p>2,

L
a

0

21 + cos2 u du 7 2a2 + sin2 a.

b. Generalize the result in part (a).

 5. Find the volume of the solid formed by revolving the region 

bounded by the graphs of y = x and y = x2 about the line y = x.

 6. Consider a right-circular cylinder of diameter 1. Form a wedge by 

making one slice parallel to the base of the cylinder completely 

through the cylinder, and another slice at an angle of 45° to the irst 

slice and intersecting the irst slice at the opposite edge of the cyl-

inder (see accompanying diagram). Find the volume of the wedge.

45° wedge

r = 1

2

Surface Area

 7. At points on the curve y = 22x, line segments of length h = y 

are drawn perpendicular to the xy-plane. (See accompanying ig-

ure.) Find the area of the surface formed by these perpendiculars 

from (0, 0) to 13, 2232.

x

0

3
x

y = 2"x

2"x

2"3

(3, 2"3)

y

 8. At points on a circle of radius a, line segments are drawn perpendicu-

lar to the plane of the circle, the perpendicular at each point P being 

of length ks, where s is the length of the arc of the circle measured 

counterclockwise from (a, 0) to P and k is a positive constant, as 

shown here. Find the area of the surface formed by the perpendiculars 

along the arc beginning at (a, 0) and extending once around the circle.

0

a

a

x

y
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 14. Find the center of mass of a thin plate covering the region bounded 

by the curve y2 = 4ax and the line x = a, a = positive constant, 

if the density at (x, y) is directly proportional to (a) x, (b) 0 y 0 .
 15. a.  Find the centroid of the region in the irst quadrant bounded by 

two concentric circles and the coordinate axes, if the circles have 

radii a and b, 0 6 a 6 b, and their centers are at the origin.

b. Find the limits of the coordinates of the centroid as a ap-

proaches b and discuss the meaning of the result.

 16. A triangular corner is cut from a square 1 ft on a side. The area 

of the triangle removed is 36 in2. If the centroid of the remaining 

region is 7 in. from one side of the original square, how far is it 

from the remaining sides?

Fluid Force

 17. A triangular plate ABC is submerged in water with its plane verti-

cal. The side AB, 4 ft long, is 6 ft below the surface of the water, 

while the vertex C is 2 ft below the surface. Find the force exerted 

by the water on one side of the plate.

 18. A vertical rectangular plate is submerged in a luid with its top 

edge parallel to the luid’s surface. Show that the force exerted by 

the luid on one side of the plate equals the average value of the 

pressure up and down the plate times the area of the plate.

Work

 9. A particle of mass m starts from rest at time t = 0 and is moved 

along the x-axis with constant acceleration a from x = 0 to x = h 

against a variable force of magnitude F(t) = t2. Find the work done.

 10. Work and kinetic energy Suppose a 1.6-oz golf ball is placed 

on a vertical spring with force constant k = 2 lb>in. The spring 

is compressed 6 in. and released. About how high does the ball go 

(measured from the spring’s rest position)?

Centers of Mass

 11. Find the centroid of the region bounded below by the x-axis and 

above by the curve y = 1 - xn, n an even positive integer. What 

is the limiting position of the centroid as n S q?

 12. If you haul a telephone pole on a two-wheeled carriage behind 

a truck, you want the wheels to be 3 ft or so behind the pole’s 

center of mass to provide an adequate “tongue” weight. The 40-ft 

wooden telephone poles used by Verizon have a 27-in. circumfer-

ence at the top and a 43.5-in. circumference at the base. About 

how far from the top is the center of mass?

 13. Suppose that a thin metal plate of area A and constant density d 

occupies a region R in the xy-plane, and let My be the plate’s mo-

ment about the y-axis. Show that the plate’s moment about the line 

x = b is

a. My - bdA if the plate lies to the right of the line, and

b. bdA - My if the plate lies to the left of the line.

Mathematica/Maple Projects

Projects can be found within MyMathLab.

•	 Using	Riemann	Sums	to	Estimate	Areas,	Volumes,	and	Lengths	of	Curves

Visualize and approximate areas and volumes in part i and part ii: Volumes of Revolution; and part iii: Lengths of Curves.

•	 Modeling	a	Bungee	Cord	Jump

Collect data (or use data previously collected) to build and reine a model for the force exerted by a jumper’s bungee cord. Use the work-energy 

theorem to compute the distance fallen for a given jumper and a given length of bungee cord.

CHAPTER 6 Technology Application Projects
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7.1 Inverse Functions and Their Derivatives

A function that undoes, or inverts, the effect of a function ƒ is called the inverse of ƒ. 

Many common functions, though not all, are paired with an inverse. Important inverse 

functions often show up in applications. Inverse functions also play a key role in the devel-

opment and properties of the exponential functions. To have an inverse, a function must 

possess a special property over its domain.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some 

functions assign the same range value to more than one element in the domain. The func-

tion ƒ(x) = x2 assigns the same value, 1, to both of the numbers -1 and +1. Similarly the 

sines of p>3 and 2p>3 are both 23>2. Other functions assume each value in their range 

no more than once. The square roots and cubes of different numbers are always different. 

A function that has distinct values at distinct elements in its domain is called one-to-one.

OVERVIEW Exponential functions model a wide variety of phenomena of interest in 

 science, engineering, mathematics, and economics. These functions are useful in studying 

the growth of a biological population, the spread of a disease or of information throughout 

a human community, drug dosages, radioactive elements and their role in dating fossils, 

the earth’s atmospheric pressure, temperature changes, waves, electrical circuits, the 

 vibrations in bridges, interest rates, and probabilities.

In this chapter, we use the methods of calculus to obtain rigorous and precise deini-

tions and properties of the exponential functions. We irst deine the natural logarithm 

function y = ln x as a certain integral, and then the natural exponential function y = ex as 

its inverse function. These two foundational functions form the basis for the full array of 

logarithmic and exponential functions. We also introduce inverse trigonometric functions, 

as well as hyperbolic functions and their inverses, and investigate their applications. Along 

with the trigonometric functions, all of these functions belong to the category of transcen-

dental functions.

Transcendental  
Functions

7

DEFINITION A function ƒ(x) is one-to-one on a domain D if ƒ(x1) ≠ ƒ(x2) 

whenever x1 ≠ x2 in D.



 7.1  Inverse Functions and Their Derivatives 371

EXAMPLE 1  Some functions are one-to-one on their entire natural domain. Other 

functions are not one-to-one on their entire domain, but by restricting the function to a 

smaller domain we can create a function that is one-to-one. The original and restricted 

functions are not the same functions, because they have different domains. However, the 

two functions have the same values on the smaller domain.

(a) ƒ(x) = 2x is one-to-one on any domain of nonnegative numbers because 2x1≠  

  2x2 whenever x1 ≠ x2 .

(b) g(x) = sin x is not one-to-one on the interval 30, p4  because sin (p>6) = sin (5p>6). 

In fact, for each element x1 in the subinterval 30, p>2) there is a corresponding ele-

ment x2 in the subinterval (p>2, p4  satisfying sin x1 = sin x2. The sine function is 

one-to-one on 30, p>24 , however, because it is an increasing function on 30, p>24  
and therefore gives distinct outputs for distinct inputs in that interval. 

The graph of a one-to-one function y = ƒ(x) can intersect a given horizontal line at 

most once. If the function intersects the line more than once, then it assumes the same 

y-value for at least two different x-values and is therefore not one-to-one (Figure 7.1).

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the 

function can be inverted to send each output back to the input from which it came.

The Horizontal Line Test for One-to-One Functions 

A function y = ƒ(x) is one-to-one if and only if its graph intersects each hori-

zontal line at most once.

The symbol ƒ -1 for the inverse of ƒ is read “ƒ inverse.” The “-1” in ƒ -1 is not an 

exponent; ƒ -1(x) does not mean 1>ƒ(x). Notice that the domains and ranges of ƒ and ƒ -1 

are interchanged.

EXAMPLE 2  Suppose a one-to-one function y = ƒ(x) is given by a table of values

x 1 2 3 4 5 6 7 8

ƒ(x) 3 4.5 7 10.5 15 20.5 27 34.5

A table for the values of x = ƒ -1(y) can then be obtained by simply interchanging the 

 values in each column of the table for ƒ:

y 3 4.5 7 10.5 15 20.5 27 34.5

ƒ −1(  y) 1 2 3 4 5 6 7 8

 

0 0

(a) One-to-one: Graph meets each

      horizontal line at most once.

x

y y

y = x3 y = "x

x

0−1 1

0.5

(b) Not one-to-one: Graph meets one or

      more horizontal lines more than once.

1

y

y

x x

y = x2

Same y-value

Same y-value

y = sin x

p
6

5p
6

FIGURE 7.1 (a) y = x3 and y = 1x  

are one-to-one on their domains (-q, q) 

and 30, q). (b) y = x2 and y = sin x are 

not one-to-one on their domains (-q, q).

DEFINITION Suppose that ƒ is a one-to-one function on a domain D with range R.  

The inverse function ƒ -1 is defined by

ƒ -1(b) = a if ƒ(a) = b.

The domain of ƒ -1 is R and the range of ƒ -1 is D.

caution

Do not confuse the inverse function ƒ -1 

with the reciprocal function 1>ƒ.
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If we apply ƒ to send an input x to the output ƒ(x) and follow by applying ƒ -1 to ƒ(x), we 

get right back to x, just where we started. Similarly, if we take some number y in the range of ƒ, 

apply ƒ -1 to it, and then apply ƒ to the resulting value ƒ -1( y), we get back the value y from 

which we began. Composing a function and its inverse has the same effect as doing nothing.

 (ƒ -1 ∘ ƒ) (x) = x,  for all x in the domain of ƒ

 (ƒ ∘ ƒ -1) (y) = y,  for all y in the domain of ƒ -1 (or range of ƒ)

Only a one-to-one function can have an inverse. The reason is that if ƒ(x1) = y and 

ƒ(x2) = y for two distinct inputs x1 and x2 , then there is no way to assign a value to ƒ -1(y) 

that satisfies both ƒ -1(ƒ(x1)) = x1 and ƒ -1(ƒ(x2)) = x2.

A function that is increasing on an interval satisfies the inequality ƒ(x2) 7 ƒ(x1) when 

x2 7 x1, so it is one-to-one and has an inverse. A function that is decreasing on an interval 

also has an inverse. Functions that are neither increasing nor decreasing may still be one-

to-one and have an inverse. An example is the function ƒ(x) = 1>x for x ≠ 0 and 

ƒ(0) = 0, defined on (-q, q) and passing the horizontal line test.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a function from 

its graph, we start at a point x on the x-axis, go vertically to the graph, and then move horizon-

tally to the y-axis to read the value of y. The inverse function can be read from the graph by 

reversing this process. Start with a point y on the y-axis, go horizontally to the graph of 

y = ƒ(x), and then move vertically to the x-axis to read the value of x = ƒ -1(y) (Figure 7.2).

x

y

0 x

y

R
A

N
G

E
 O

F
 ƒ

DOMAIN OF ƒ

(a) To ind the value of ƒ at x, we start at x,

go up to the curve, and then over to the y-axis.

y = ƒ(x)

x

y

0 x

y

D
O

M
A

IN
 O

F
 ƒ

–
1

RANGE OF ƒ –1

x = ƒ–1(y)

(b) The graph of ƒ –1 is the graph of ƒ, but

with x and y interchanged. To ind the x that

gave y, we start at y and go over to the curve

and down to the x-axis. The domain of ƒ–1 is the

range of ƒ. The range of ƒ –1 is the domain of ƒ.

y

x

0

(b, a)

(a, b)

y = x

x = ƒ –1(y)

R
A

N
G

E
 O

F
 ƒ

–
1

DOMAIN OF ƒ –1

(c) To draw the graph of ƒ–1 in the

more usual way, we relect the

system across the line y = x. 

x

y

0

DOMAIN OF ƒ –1

R
A

N
G

E
 O

F
 ƒ

–
1

y = ƒ –1(x)

(d) Then we interchange the letters x and y.

We now have a normal-looking graph of ƒ–1

as a function of x.

FIGURE 7.2 The graph of y = ƒ -1(x) is obtained by reflecting the graph of y = ƒ(x) about the 

line y = x.
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EXAMPLE 3  Find the inverse of y =
1
2

 x + 1, expressed as a function of x.

Solution

 1. Solve for x in terms of y:  y =
1
2

 x + 1  
The graph is a straight line satisfying the  

horizontal line test (Figure 7.3).

  2y = x + 2

  x = 2y - 2.

 2. Interchange x and y: y = 2x - 2.  
Expresses the function in the usual form  

where y is the dependent variable.

The inverse of the function ƒ(x) = (1>2)x + 1 is the function ƒ -1(x) = 2x - 2. (See 

Figure 7.3.) To check, we verify that both compositions give the identity function:

 ƒ -1(ƒ(x)) = 2a1
2

 x + 1b - 2 = x + 2 - 2 = x

  ƒ(ƒ -1(x)) =
1
2

 (2x - 2) + 1 = x - 1 + 1 = x.  

EXAMPLE 4  Find the inverse of the function y = x2, x Ú 0, expressed as a function 

of x.

Solution For x Ú 0, the graph satisfies the horizontal line test, so the function is one-to-

one and has an inverse. To find the inverse, we first solve for x in terms of y:

  y = x2

  2y = 2x2 = 0 x 0 = x 0 x 0 = x because x Ú 0

We then interchange x and y, obtaining

y = 2x .

The inverse of the function y = x2, x Ú 0, is the function y = 1x (Figure 7.4). 

Notice that the function y = x2, x Ú 0, with domain restricted to the nonnegative 

real numbers, is one-to-one (Figure 7.4) and has an inverse. On the other hand, the func-

tion y = x2, with no domain restrictions, is not one-to-one (Figure 7.1b) and therefore has 

no inverse.

We want to set up the graph of ƒ -1 so that its input values lie along the x-axis, as is 

usually done for functions, rather than on the y-axis. To achieve this we interchange the 

x- and y-axes by reflecting across the 45° line y = x. After this reflection we have a new 

graph that represents ƒ -1. The value of ƒ -1(x) can now be read from the graph in the usual 

way, by starting with a point x on the x-axis, going vertically to the graph, and then hori-

zontally to the y-axis to get the value of ƒ -1(x). Figure 7.2 indicates the relationship 

between the graphs of ƒ and ƒ -1. The graphs are interchanged by reflection through the 

line y = x.

The process of passing from ƒ to ƒ -1 can be summarized as a two-step procedure.

1. Solve the equation y = ƒ(x) for x. This gives a formula x = ƒ -1(y) where x is 

 expressed as a function of y.

2. Interchange x and y, obtaining a formula y = ƒ -1(x) where ƒ -1 is expressed in the 

conventional format with x as the independent variable and y as the dependent 

 variable.

x

y

−2

1

−2

1

y = 2x − 2
y = x

y = x + 11
2

FIGURE 7.3 Graphing the functions 

ƒ(x) = (1>2)x + 1 and ƒ -1(x) = 2x - 2 

together shows the graphs’ symmetry with 

respect to the line y = x (Example 3).

x

y

0

y = x2, x ≥ 0

y = x

y = "x

FIGURE 7.4 The functions y = 1x and 

y = x2, x Ú 0, are inverses of one another 

(Example 4).
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Derivatives of Inverses of Differentiable Functions

We calculated the inverse of the function ƒ(x) = (1>2)x + 1 to be ƒ -1(x) = 2x - 2 in 

Example 3. If we calculate their derivatives, we see that

 
d

dx
 ƒ(x) =

d

dx
 a1

2
 x + 1b =

1
2

 
d

dx
 ƒ -1(x) =

d

dx
 (2x - 2) = 2.

The derivatives are reciprocals of one another, so the slope of one line is the reciprocal of 

the slope of its inverse line. (See Figure 7.3.)

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the 

line y = x always inverts the line’s slope. If the original line has slope m ≠ 0, the 

reflected line has slope 1 >m.

x

y

0 a
x

y

0

b = ƒ(a) (a,  b)

y = ƒ(x)

(b, a)

y = ƒ –1(x)

b

a = ƒ –1(b)

The slopes are reciprocal: ( ƒ –1)′(b) =           or ( ƒ –1)′(b) =1

ƒ′(a)

1

ƒ′( ƒ –1(b))

FIGURE 7.5 The graphs of inverse functions have reciprocal 

slopes at corresponding points.

The reciprocal relationship between the slopes of ƒ and ƒ -1 holds for other functions 

as well, but we must be careful to compare slopes at corresponding points. If the slope of 

y = ƒ(x) at the point (a, ƒ(a)) is ƒ′(a) and ƒ′(a) ≠ 0, then the slope of y = ƒ -1(x) at the 

point (ƒ(a), a) is the reciprocal 1>ƒ′(a) (Figure 7.5). If we set b = ƒ(a), then

(ƒ -1)′(b) =
1

ƒ′(a)
=

1

ƒ′(ƒ -1(b))
.

If y = ƒ(x) has a horizontal tangent line at (a, ƒ(a)), then the inverse function ƒ -1 has a 

vertical tangent line at (ƒ(a), a), and this infinite slope implies that ƒ -1 is not differentia-

ble at ƒ(a). Theorem 1 gives the conditions under which ƒ -1 is differentiable in its domain 

(which is the same as the range of ƒ).

THEOREM 1—The Derivative Rule for Inverses

If ƒ has an interval I as  domain and ƒ′(x) exists and is never zero on I, then ƒ -1 is dif-

ferentiable at every point in its domain (the range of ƒ ). The value of (ƒ -1)′ at a point 

b in the domain of ƒ -1 is the reciprocal of the value of ƒ′ at the point a = ƒ -1(b):

 (ƒ -1)′(b) =
1

ƒ′(ƒ -1(b) )
 (1)

or

dƒ -1

dx
 2

x = b

=
1

dƒ

dx
2 .  

 

x = ƒ -1(b)



 7.1  Inverse Functions and Their Derivatives 375

Theorem 1 makes two assertions. The first of these has to do with the conditions 

under which ƒ -1 is differentiable; the second assertion is a formula for the derivative of 

ƒ -1 when it exists. While we omit the proof of the first assertion, the second one is proved 

in the following way:

  ƒ(ƒ -1(x) ) = x  Inverse function relationship

  
d

dx
 ƒ(ƒ -1(x) ) = 1  Differentiating both sides

  ƒ ′(ƒ -1(x) ) # d

dx
 ƒ -1(x) = 1  Chain Rule

  
d

dx
 ƒ -1(x) =

1

ƒ′(ƒ -1(x) )
. Solving for the derivative

x

y

Slope

1

10

1–
4

Slope 4

2 3 4

2

3

4 (2, 4)

(4, 2)

y = x2, x > 0

y = "x

FIGURE 7.6 The derivative of 

ƒ -1(x) = 1x at the point (4, 2) is the 

reciprocal of the derivative of ƒ(x) = x2 at 

(2, 4) (Example 5).

x

y

0

−2

−2 6

6 (2, 6)

Reciprocal slope:

(6, 2)

y = x3 − 2

Slope 3x2 = 3(2)2 = 12

1
12

FIGURE 7.7 The derivative of 

ƒ(x) = x3 - 2 at x = 2 tells us the 

 derivative of ƒ -1 at x = 6 (Example 6).

EXAMPLE 6  Let ƒ(x) = x3 - 2, x 7 0. Find the value of dƒ -1>dx at x = 6 = ƒ(2) 

without finding a formula for ƒ -1(x). See Figure 7.7.

Solution We apply Theorem 1 to obtain the value of the derivative of ƒ -1 at x = 6:

  
dƒ

dx
 2

x = 2

= 3x2 `
x = 2

= 12

  
dƒ -1

dx
 2

x = ƒ(2)

=
1

dƒ

dx
 2

x = 2

=
1
12

. Eq. (1) 

EXAMPLE 5  The function ƒ(x) = x2, x 7 0 and its inverse ƒ -1(x) = 2x have 

derivatives ƒ′(x) = 2x and (ƒ -1)′(x) = 1>122x2.
Let’s verify that Theorem 1 gives the same formula for the derivative of ƒ -1(x):

  (ƒ -1)′(x) =
1

ƒ′(ƒ -1(x) )

  =
1

2(ƒ -1(x) )
 ƒ′(x) = 2x with x replaced by ƒ -1(x) 

  =
1

2(1x)
. ƒ -1(x) = 2x 

Theorem 1 gives a derivative that agrees with the known derivative of the square root 

 function.

Let’s examine Theorem 1 at a speciic point. We pick x = 2 (the number a) and 

ƒ(2) = 4 (the value b). Theorem 1 says that the derivative of ƒ at 2, which is ƒ′(2) = 4, 

and the derivative of ƒ -1 at ƒ(2), which is (ƒ -1)′(4), are reciprocals. Thus

(ƒ -1)′(4) =
1

ƒ′(ƒ -1(4) )
=

1
ƒ′(2)

=
1

2x
`
x = 2

=
1

4
.

See Figure 7.6. 

We will use the procedure illustrated in Example 5 to calculate formulas for the 

derivatives of many inverse functions throughout this chapter. Equation (1) sometimes 

enables us to find specific values of dƒ -1>dx without knowing a formula for ƒ -1.
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Identifying One-to-One Functions Graphically

Which of the functions graphed in Exercises 1–6 are one-to-one, and 

which are not?

 1. 

x

y

0

y = −3x3

 2. 

x

y

0–1 1

y = x4 − x2

 3. y

x

y = 2∣x∣

 4. 

x

y

y = int x

 5. 

x

y

0

y =
1
x

 6. 

x

y

y = x1/3

In Exercises 7–10, determine from its graph if the function is one-to-

one.

 7. ƒ(x) = e3 - x, x 6 0

3, x Ú 0

 8. ƒ(x) = e2x + 6, x … -3

x + 4, x 7 -3

 9. ƒ(x) = c 1 -
x

2
, x … 0

x

x + 2
, x 7 0

 10. ƒ(x) = e2 - x2, x … 1

x2, x 7 1

Graphing Inverse Functions

Each of Exercises 11–16 shows the graph of a function y = ƒ(x). 

Copy the graph and draw in the line y = x. Then use symmetry with 

respect to the line y = x to add the graph of ƒ -1 to your sketch. (It is 

not necessary to find a formula for ƒ -1.) Identify the domain and 

range of ƒ -1.

 11. 

x

y

10

1

y = ƒ(x) = , x $ 0
1

x2 + 1

EXERCISES 7.1

 17. a.  Graph the function ƒ(x) = 21 - x2, 0 … x … 1. What sym-

metry does the graph have?

b. Show that ƒ is its own inverse. (Remember that 2x2 = x if 

x Ú 0.)

 18. a.  Graph the function ƒ(x) = 1>x. What symmetry does the 

graph have?

b. Show that ƒ is its own inverse.

Formulas for Inverse Functions

Each of Exercises 19–24 gives a formula for a function y = ƒ(x) and 

shows the graphs of ƒ and ƒ -1. Find a formula for ƒ -1 in each case.

 19. ƒ(x) = x2 + 1, x Ú 0

x

y

1

10

y = ƒ(x)

y = ƒ–1(x)

 20. ƒ(x) = x2, x … 0

x

y

1

10

y = ƒ –1(x)

y = ƒ(x)

 13. 

x

y

0 p
2

p
2

–

1

–1

p
2

p
2

–

y = ƒ(x) = sin x,

# x #

 15. 

x

y

0

6

3

ƒ(x) = 6 − 2x,

0 # x # 3

 16. 

x

y

0

1

–1 3

–2

x + 1,    −1 # x # 0

−2 +    x,    0 , x , 3
ƒ(x) = 2

3

 12. 

x

y

10

1
y = ƒ(x) = 1 − , x > 01

x

 14. 

p
2

p
2

–

y = ƒ(x) = tan x,

< x <

x

y

0 p
2

p
2

–
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Derivatives of Inverse Functions

Each of Exercises 25–34 gives a formula for a function y = ƒ(x). In 

each case, find ƒ -1(x) and identify the domain and range of ƒ -1. As a 

check, show that ƒ(ƒ -1(x)) = ƒ -1(ƒ(x)) = x.

 25. ƒ(x) = x5 26. ƒ(x) = x4, x Ú 0

 27. ƒ(x) = x3 + 1 28. ƒ(x) = (1>2)x - 7>2
 29. ƒ(x) = 1>x2, x 7 0 30. ƒ(x) = 1>x3, x ≠ 0

 31. ƒ(x) =
x + 3
x - 2

 32. ƒ(x) =
2x

2x - 3

 33. ƒ(x) = x2 - 2x, x … 1 (Hint: Complete the square.)

 34. ƒ(x) = (2x3 + 1)1>5
In Exercises 35–38:

a. Find ƒ -1(x).

b. Graph ƒ and ƒ -1 together.

c. Evaluate dƒ >dx at x = a and dƒ -1>dx at x = ƒ(a) to show 

that at these points dƒ -1>dx = 1>(dƒ>dx).

 35. ƒ(x) = 2x + 3, a = -1 36. ƒ(x) =
x + 2
1 - x

, a = 1>2
 37. ƒ(x) = 5 - 4x, a = 1>2 38. ƒ(x) = 2x2, x Ú 0, a = 5

 39. a.  Show that ƒ(x) = x3 and g(x) = 23 x are inverses of one 

 another.

b. Graph ƒ and g over an x-interval large enough to show the 

graphs intersecting at (1, 1) and (-1, -1). Be sure the picture 

shows the required symmetry about the line y = x.

c. Find the slopes of the tangent lines to the graphs of ƒ and g at 

(1, 1) and (-1, -1) (four tangent lines in all).

d. What lines are tangent to the curves at the origin?

 40. a.  Show that h(x) = x3>4 and k(x) = (4x)1>3 are inverses of one 

another.

b. Graph h and k over an x-interval large enough to show the 

graphs intersecting at (2, 2) and (-2, -2). Be sure the picture 

shows the required symmetry about the line y = x.

c. Find the slopes of the tangent lines to the graphs of h and k at 

(2, 2) and (-2, -2).

d. What lines are tangent to the curves at the origin?

 41. Let ƒ(x) = x3 - 3x2 - 1, x Ú 2. Find the value of dƒ -1>dx at 

the point x = -1 = ƒ(3).

 42. Let ƒ(x) = x2 - 4x - 5, x 7 2. Find the value of dƒ -1>dx at the 

point x = 0 = ƒ(5).

 43. Suppose that the diferentiable function y = ƒ(x) has an inverse 

and that the graph of ƒ passes through the point (2, 4) and has a 

slope of 1 >3 there. Find the value of dƒ -1>dx at x = 4.

 44. Suppose that the diferentiable function y = g(x) has an inverse 

and that the graph of g passes through the origin with slope 2. Find 

the slope of the graph of g-1 at the origin.

Inverses of Lines

 45. a.  Find the inverse of the function ƒ(x) = mx, where m is a con-

stant diferent from zero.

b. What can you conclude about the inverse of a function 

y = ƒ(x) whose graph is a line through the origin with a 

nonzero slope m?

 46. Show that the graph of the inverse of ƒ(x) = mx + b, where 

m and b are constants and m ≠ 0, is a line with slope 1 >m and 

y-intercept -b>m.

 47. a.  Find the inverse of ƒ(x) = x + 1. Graph ƒ and its inverse 

together. Add the line y = x to your sketch, drawing it with 

dashes or dots for contrast.

b. Find the inverse of ƒ(x) = x + b (b constant). How is the 

graph of ƒ -1 related to the graph of ƒ?

c. What can you conclude about the inverses of functions whose 

graphs are lines parallel to the line y = x?

 48. a.  Find the inverse of ƒ(x) = -x + 1. Graph the line 

y = -x + 1 together with the line y = x. At what angle do 

the lines  intersect?

b. Find the inverse of ƒ(x) = -x + b (b constant). What angle 

does the line y = -x + b make with the line y = x?

c. What can you conclude about the inverses of functions whose 

graphs are lines perpendicular to the line y = x?

Increasing and Decreasing Functions

 49. Show that increasing functions and decreasing functions are one-

to-one. That is, show that for any x1 and x2 in I, x2 ≠ x1 implies 

ƒ(x2) ≠ ƒ(x1).

Use the results of Exercise 49 to show that the functions in Exercises 

50–54 have inverses over their domains. Find a formula for dƒ -1>dx 

using Theorem 1.

 50. ƒ(x) = (1>3)x + (5>6) 51. ƒ(x) = 27x3

 52. ƒ(x) = 1 - 8x3 53. ƒ(x) = (1 - x)3

 54. ƒ(x) = x5>3

 21. ƒ(x) = x3 - 1

x

y

1

1–1

–1

y = ƒ(x)

y = ƒ –1(x)

 22. ƒ(x) = x2 - 2x + 1, x Ú 1

x

y

1

10

y = ƒ(x)

y = ƒ–1(x)

 23. ƒ(x) = (x + 1)2, x Ú -1

x

y

0

1

–1

1–1

y = ƒ(x)

y = ƒ –1(x)

 24. ƒ(x) = x2>3, x Ú 0

x

y

0

1

1

y = ƒ –1(x)

y = ƒ(x)
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Theory and Applications

 55. If ƒ(x) is one-to-one, can anything be said about g(x) = -ƒ(x)? 

Is it also one-to-one? Give reasons for your answer.

 56. If ƒ(x) is one-to-one and ƒ(x) is never zero, can anything be said 

about h(x) = 1>ƒ(x)? Is it also one-to-one? Give reasons for your 

answer.

 57. Suppose that the range of g lies in the domain of ƒ so that the 

 composition ƒ ∘ g is deined. If ƒ and g are one-to-one, can any-

thing be said about ƒ ∘ g? Give reasons for your answer.

 58. If a composition ƒ ∘ g is one-to-one, must g be one-to-one? Give 

reasons for your answer.

 59. Assume that ƒ and g are diferentiable functions that are inverses 

of one another so that (g ∘ ƒ)(x) = x. Diferentiate both sides of 

this equation with respect to x using the Chain Rule to express 

(g ∘ ƒ)′(x) as a product of derivatives of g and ƒ. What do you 

ind? (This is not a proof of Theorem 1 because we assume here 

the theorem’s conclusion that g = ƒ -1 is diferentiable.)

 60. Equivalence of the washer and shell methods for inding 

volume Let ƒ be diferentiable and increasing on the interval 

a … x … b, with a 7 0, and suppose that ƒ has a diferentiable 

inverse, ƒ -1. Revolve about the y-axis the region bounded by the 

graph of ƒ and the lines x = a and y = ƒ(b) to generate a solid. 

Then the values of the integrals given by the washer and shell 

methods for the volume have identical values:

 L
ƒ(b)

ƒ(a)

p((ƒ -1(y))2 - a2) dy = L
b

a

 2px(ƒ(b) - ƒ(x)) dx.

To prove this equality, deine

 W(t) = L
ƒ(t)

ƒ(a)

p((ƒ -1(y))2 - a2) dy

 S(t) = L
t

a

 2px(ƒ(t) - ƒ(x)) dx.

Then show that the functions W and S agree at a point of 3a, b4  and have identical derivatives on 3a, b4 . As you saw in 

Section 4.2, Corollary 2 of the Mean Value Theorem guarantees 

that W(t) = S(t) for all t in 3a, b4 . In particular, W(b) = S(b). 

(Source: “Disks and Shells Revisited,” by Walter Carlip, American 

Mathematical Monthly, Vol. 98, No. 2, Feb. 1991, pp. 154–156.)

COMPUTER EXPLORATIONS

In Exercises 61–66, you will explore some functions and their inverses 

together with their derivatives and linear approximating functions at 

specified points. Perform the following steps using your CAS:

a. Plot the function y = ƒ(x) together with its derivative over the given 

interval. Explain why you know that ƒ is one-to-one over the interval.

b. Solve the equation y = ƒ(x) for x as a function of y, and name 

the resulting inverse function g.

c. Find the equation for the tangent line to ƒ at the speciied point 

(x0 , ƒ(x0)).

d. Find the equation for the tangent line to g at the point (ƒ(x0), x0) 

located symmetrically across the 45° line y = x (which is the 

graph of the identity function). Use Theorem 1 to ind the slope 

of this tangent line.

e. Plot the functions ƒ and g, the identity, the two tangent lines, and 

the line segment joining the points (x0 , ƒ(x0)) and (ƒ(x0), x0). 

Discuss the symmetries you see across the main diagonal.

 61. y = 23x - 2, 
2
3

… x … 4, x0 = 3

 62. y =
3x + 2
2x - 11

, -2 … x … 2, x0 = 1>2
 63. y =

4x

x2 + 1
, -1 … x … 1, x0 = 1>2

 64. y =
x3

x2 + 1
, -1 … x … 1, x0 = 1>2

 65. y = x3 - 3x2 - 1, 2 … x … 5, x0 =
27
10

 66. y = 2 - x - x3, -2 … x … 2, x0 =
3
2

In Exercises 67 and 68, repeat the steps above to solve for the func-

tions y = ƒ(x) and x = ƒ -1(y) defined implicitly by the given equa-

tions over the interval.

 67. y1>3 - 1 = (x + 2)3, -5 … x … 5, x0 = -3>2
 68. cos y = x1>5, 0 … x … 1, x0 = 1>2

7.2  Natural Logarithms

Historically, logarithms played important roles in arithmetic computations, making possi-

ble the great seventeenth-century advances in offshore navigation and celestial mechanics. 

In this section we define the natural logarithm as an integral using the Fundamental Theo-

rem of Calculus. While this indirect approach may at first seem strange, it provides an 

elegant and rigorous way to obtain the key characteristics of logarithmic and exponential 

functions.

Definition of the Natural Logarithm Function

The natural logarithm of a positive number x, written as ln x, is defined as an integral.
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From the Fundamental Theorem of Calculus, ln x is a continuous function. Geometri-

cally, if x 7 1, then ln x is the area under the curve y = 1>t from t = 1 to t = x 

(Figure 7.8). For 0 6 x 6 1, ln x gives the negative of the area under the curve from x to 1, 

and the function is not defined for x … 0. From the Zero Width Interval Rule for definite 

integrals, we also have

ln 1 = L
1

1

 
1
t   dt = 0.

DEFINITION The natural logarithm is the function given by

ln x = L
x

1

 
1
t   dt,  x 7 0.

x

y

0 x x1

1

1

1

y = ln x

y =
1
x

If x = 1, then ln x = dt = 0.
1
t

gives the negative of this area.

x

1

1

x

If 0 < x < 1, then ln x = dt = −
1
t

dt
1
t

gives this area.

x

1

dtIf x > 1, then ln x =
1
t

y = ln x

FIGURE 7.8 The graph of y = ln x and its relation to the function 

y = 1>x, x 7 0. The graph of the logarithm rises above the x-axis as x moves 

from 1 to the right, and it falls below the axis as x moves from 1 to the left.

Notice that we show the graph of y = 1>x in Figure 7.8 but use y = 1>t in the 

 integral. Using x for everything would have us writing

ln x = L
x

1

 
1
x  dx,

with x meaning two different things. So we change the variable of integration to t.

By using rectangles to obtain finite approximations of the area under the graph of 

y = 1>t and over the interval between t = 1 and t = x, as in Section 5.1, we can approx-

imate the values of the function ln x. Several values are given in Table 7.1. There is an 

important number between x = 2 and x = 3 whose natural logarithm equals 1. This 

 number, which we now define, exists because ln x is a continuous function and therefore 

satisfies the Intermediate Value Theorem on 32, 34 .

TABLE 7.1  Typical 2-place 

values of ln x

x ln x

0 undeined

0.05 -3.00

0.5 -0.69

1 0

2 0.69

3 1.10

4 1.39

10 2.30

DEFINITION The number e is the number in the domain of the natural loga-

rithm that satisfies

ln (e) = L
e

1

 
1
t   dt = 1.
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Interpreted geometrically, the number e corresponds to the point on the x-axis for 

which the area under the graph of y = 1>t and above the interval 31, e4  equals the area 

of the unit square. That is, the area of the region shaded blue in Figure 7.1 is 1 square unit 

when x = e. In the next section, we will see that the number e can be calculated as a limit 

and has the numerical value e ≈ 2.718281828459045 to 15 decimal places.

The Derivative of y = ln x

By the first part of the Fundamental Theorem of Calculus (Section 5.4),

d

dx
 ln x =

d

dx
  L

x

1

 
1

t
  dt =

1

x
.

For every positive value of x, we have

 
d

dx
 ln x =

1

x
. (1)

Therefore, the function y = ln x is a solution to the initial value problem dy>dx = 1>x, 

x 7 0, with y (1) = 0. Notice that the derivative is always positive.

If u is a differentiable function of x whose values are positive, so that ln u is defined, 

then applying the Chain Rule we obtain

 
d

dx
 ln u =

1
u

  
du

d x
,  u 7 0. (2)

EXAMPLE 1  We use Equation (2) to find derivatives.

(a) 
d

dx
  ln 2x =

1
2x

  
d

dx
 (2x) =

1
2x

 (2) =
1

x
, x 7 0

(b) Equation (2) with u = x2 + 3 gives

d

dx
  ln (x2 + 3) =

1

x2 + 3
# d

dx
 (x2 + 3) =

1

x2 + 3
# 2x =

2x

x2 + 3
.

(c) Equation (2) with u = 0 x 0  gives an important derivative:

  
d

dx
  ln 0 x 0 =

d

du
  ln u # du

dx
 u = 0 x 0 , x ≠ 0

  =
1
u

# x0 x 0  d

dx
 ( 0 x 0 ) =

x0 x 0
  =

10 x 0 # x0 x 0  Substitute for u.

  =
x

x2

  =
1
x .

So 1>x is the derivative of ln x on the domain x 7 0, and the derivative of ln (-x) on 

the domain x 6 0. 

Notice from Example 1a that the function y = ln 2x has the same derivative as the 

function y = ln x. This is true of y = ln bx for any constant b, provided that bx 7 0:

d

dx
  ln bx =

1
bx

# d

dx
 (bx) =

1
bx

 (b) =
1

x
.

Derivative of ln ∣x ∣

d

dx
 ln 0 x 0 =

1

x
,  x ≠ 0

d

dx
 ln bx =

1

x
, bx 7 0
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Properties of Logarithms

Logarithms, invented by John Napier, were the single most important improvement in 

arithmetic calculation before the modern electronic computer. The properties of loga-

rithms reduce multiplication of positive numbers to addition of their logarithms, division 

of positive numbers to subtraction of their logarithms, and exponentiation of a number to 

multiplication of its logarithm by the exponent.

THEOREM 2—Algebraic Properties of the Natural Logarithm

For any numbers b 7 0 and x 7 0, the natural logarithm satisies the following 

rules:

1. Product Rule: ln bx = ln b + ln x

2. Quotient Rule: ln 
b
x = ln b - ln x

3. Reciprocal Rule: ln 
1
x = - ln x Rule 2 with b = 1

4. Power Rule: ln xr = r ln x For r rational

HistoricAL BiogrApHy

John Napier 

(1550–1617)

www.goo.gl/BvG0ua

For now we consider only rational exponents in Rule 4. In Section 7.3 we will see that the 

rule holds for all real exponents as well.

EXAMPLE 2  We apply the rules in Theorem 2.

(a) ln 4 + ln sin x = ln (4 sin x) Product Rule

(b) ln 
x + 1
2x - 3

= ln (x + 1) - ln (2x - 3) Quotient Rule

(c)  ln 
1
8

= - ln 8 Reciprocal Rule

 = - ln 23 = -3 ln 2 Power Rule 

We now give the proof of Theorem 2. The properties are proved by applying Corollary 

2 of the Mean Value Theorem to each rule.

Proof that ln bx = ln b + ln x  The argument starts by observing that ln bx and ln x 

have the same derivative:

d

dx
 ln (bx) =

b

bx
=

1

x
=

d

dx
 ln x.

According to Corollary 2 of the Mean Value Theorem, the functions must differ by a con-

stant, which means that

ln bx = ln x + C

for some constant C.

Since this last equation holds for all positive values of x, it must hold for x = 1. 

Hence,

  ln (b # 1) = ln 1 + C

  ln b = 0 + C ln 1 = 0

  C = ln b.

By substituting we conclude that

 ln bx = ln b + ln x. 

http://www.goo.gl/BvG0ua
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Proof that ln xr = r ln x (assuming r rational)  We use the same-derivative 

 argument again. For all positive values of x,

  
d

dx
 ln xr =

1
xr  

d

dx
 (xr) Eq. (2) with u = xr

  =
1
xr  rxr - 1 

  = r # 1

x
=

d

dx
 (r ln x).

Since ln xr and r ln x have the same derivative,

ln xr = r ln x + C

for some constant C. Taking x to be 1 identifies C as zero, and we’re done. (Exercise 48 in 

Section 3.7 indicates a proof of the General Power Rule for derivatives when r is rational.)

You are asked to prove Rule 2 in Exercise 90. Rule 3 is a special case of Rule 2, obtained 

by setting b = 1 and noting that ln 1 = 0. This covers all cases of Theorem 2. 

We have not yet proved Rule 4 for r irrational; however, the rule does hold for all r, 

rational or irrational. We will show this in the next section after we define exponential 

functions and irrational exponents.

The Graph and Range of ln x

The derivative d(ln x)>dx = 1>x is positive for x 7 0, so ln x is an increasing function 

of  x. The second derivative, -1>x2, is negative, so the graph of ln x is concave down. 

(See Figure 7.9a.)

We can estimate the value of ln 2 by considering the area under the graph of y = 1>x 

and above the interval 31, 24 . In Figure 7.9(b) a rectangle of height 1 >2 over the interval 31, 24  fits under the graph. Therefore the area under the graph, which is ln 2, is greater 

than the area, 1 >2, of the rectangle. So ln 2 7 1>2. Knowing this we have

ln 2n = n ln 2 7 na1
2
b =

n
2

.

This result shows that ln (2n) S q as n S q. Since ln x is an increasing function, we get 

that

 lim
xSq

ln x = q . ln x increasing, not bounded above

We also have

lim
xS0 +

 ln x = lim
tSq

 ln t-1 =  lim
tSq

 (- ln t) = -q .  x = 1>t = t-1

We defined ln x for x 7 0, so the domain of ln x is the set of positive real numbers. The 

above discussion and the Intermediate Value Theorem show that its range is the entire real 

line, giving the graph of y = ln x shown in Figure 7.9(a).

The Integral 1 (1/u) du

Example 2c leads to the following integral formula.

 General Power Rule for  

derivatives, r rational

(1, 0)
x

y

0

y = ln x

(a)

1 2

1

x

y

1

2

0

y = 1
x

(b)

FIGURE 7.9 (a) The graph of the 

natural logarithm. (b) The rectangle of 

height y = 1>2 fits beneath the graph of 

y = 1>x for the interval 1 … x … 2.

If u is a differentiable function that is never zero, then

  L  
1
u  du = ln � u � + C. (3)



 7.2  Natural Logarithms 383

Equation (3) applies anywhere on the domain of 1>u, which is the set of points where 

u ≠ 0. It says that integrals that have the form  Ldu>u lead to logarithms. Whenever 

u = ƒ(x) is a differentiable function that is never zero, we have that du = ƒ′(x) dx and

 L  
ƒ′(x)

ƒ(x)
 dx = ln � ƒ(x) � + C .

EXAMPLE 3  We rewrite an integral in the form  L
du
u .

  L
p>2

-p>2 
4 cos u

3 + 2 sin u
  du = L

5

1

 
2
u  du

 = 2 ln � u � d
1

5

 = 2 ln � 5 � - 2 ln � 1 � = 2 ln 5

Note that u = 3 + 2 sin u is always positive on 3-p>2, p>24 , so Equation (3) applies. 

u = 3 + 2 sin u , du = 2 cos u du ,

u(-p/2) = 1,   u(p/2) = 5

The Integrals of tan x, cot x, sec x, and csc x

Equation (3) tells us how to integrate these trigonometric functions.

  L tan x dx = L  
sin x
cos x  dx = L  

-du
u  

u = cos x 7 0 on (-p>2, p>2),

   du = -sin x dx

   = - ln � u � + C = - ln � cos x � + C

   = ln 
1

� cos x �
+ C = ln � sec x � + C. Reciprocal Rule

For the cotangent,

  L cot x dx = L  
cos x dx

sin x
= L  

du
u  

u = sin x,

   
du = cos x dx

   = ln � u � + C = ln � sin x � + C = - ln � csc x � + C.

To integrate sec x, we multiply and divide by (sec x + tan x) as an algebraic form of 1.

 L sec x dx = L  sec x  
(sec x + tan x)

(sec x + tan x)
  dx = L  

sec2 x + sec x tan x
sec x + tan x

 dx

 = L
du
u = ln � u � + C = ln � sec x + tan x � + C 

u = sec x + tan x,

  
du = (sec x tan x + sec2 x)dx

For csc x, we multiply and divide by (csc x + cot x).

 L  csc x dx = Lcsc x  
(csc x + cot x)

(csc x + cot x)
  dx = L  

csc2 x + csc x cot x
csc x + cot x

 dx

= L
-du

u = - ln 0 u 0 + C = - ln 0 csc x + cot x 0 + C 
u = csc x + cot x,

  du = (-csc x cot x - csc2 x) dx



384 Chapter 7 Transcendental Functions 

In summary, we have the following results.

Integrals of the tangent, cotangent, secant, and cosecant functions

 L tan u du = ln 0 sec u 0 + C   L sec u du = ln 0 sec u + tan u 0 + C

 L cot u du = ln 0 sin u 0 + C   L csc u du = - ln 0 csc u + cot u 0 + C

EXAMPLE 4

  L
p>6

0

 tan 2x dx = L
p>3

0

 tan u  
du

2
=

1
2

  L
p>3

0

 tan u du

 =
1
2

 ln 0 sec u 0 d
0

p>3
=

1
2

 (ln 2 - ln 1) =
1
2

 ln 2 

Substitute u = 2x,

dx = du>2,

u(0) = 0,

u(p>6) = p>3

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients, 

and powers can often be found more quickly if we take the natural logarithm of both sides 

before differentiating. This enables us to use the laws of logarithms to simplify the formu-

las before differentiating. The process, called logarithmic differentiation, is illustrated in 

the next example.

EXAMPLE 5  Find dy>dx if

y =
(x2 + 1)(x + 3)1>2

x - 1
,  x 7 1.

Solution We take the natural logarithm of both sides and simplify the result with the 

properties of logarithms:

 ln y = ln 
(x2 + 1)(x + 3)1>2

x - 1

 = ln ((x2 + 1)(x + 3)1>2) - ln (x - 1)   Quotient Rule

 = ln (x2 + 1) + ln (x + 3)1>2 - ln (x - 1)  Product Rule

 = ln (x2 + 1) +
1
2

 ln (x + 3) - ln (x - 1).  Power Rule

We then take derivatives of both sides with respect to x, using Equation (2) on the left:

1
y 

dy

dx
=

1

x2 + 1
# 2x +

1
2

# 1
x + 3

-
1

x - 1
.

Next we solve for dy >dx:

dy

dx
= ya 2x

x2 + 1
+

1
2x + 6

-
1

x - 1
b .

Finally, we substitute for y from the original equation:

 
dy

dx
=

(x2 + 1)(x + 3)1>2
x - 1

 a 2x

x2 + 1
+

1
2x + 6

-
1

x - 1
b . 

The computation in Example 5 would be much longer if we used the product, quotient, 

and power rules.
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Using the Algebraic Properties—Theorem 2

 1. Express the following logarithms in terms of ln 2 and ln 3.

a. ln 0.75 b. ln (4>9) c. ln (1>2)

d. ln23 9 e. ln 322 f. ln 213.5

 2. Express the following logarithms in terms of ln 5 and ln 7.

a. ln (1>125) b. ln 9.8 c. ln 727

d. ln 1225 e. ln 0.056

f. (ln 35 + ln (1>7))>(ln 25)

Use the properties of logarithms to simplify the expressions in 

 Exercises 3 and 4.

 3. a. ln sin u - ln asin u

5
b  b. ln (3x2 - 9x) + ln a 1

3x
b

c. 
1
2

 ln (4t4) - ln 2

 4. a. ln sec u + ln cos u b. ln (8x + 4) - 2 ln 2

c. 3 ln23 t2 - 1 - ln (t + 1)

In Exercises 5 and 6, solve for t.

 5. lna t

t - 1
b = 2 6. ln(t - 2) = ln 8 - ln t

Finding Derivatives

In Exercises 7–38, find the derivative of y with respect to x, t, or u, as 

appropriate.

 7. y = ln 3x 8. y = ln kx, k constant

 9. y = ln (t2) 10. y = ln (t3>2)
 11. y = ln 

3
x  12. y = ln 

10
x

 13. y = ln (u + 1) 14. y = ln (2u + 2)

 15. y = ln x3 16. y = (ln x)3

 17. y = t(ln t)2 18. y = t2ln t

 19. y =
x4

4
 ln x -

x4

16
 20. y = (x2 ln x)4

 21. y =
ln t

t
 22. y =

1 + ln t
t

 23. y =
ln x

1 + ln x
 24. y =

x ln x
1 + ln x

 25. y = ln (ln x) 26. y = ln (ln (ln x))

 27. y = u (sin (ln u) + cos (ln u))

 28. y = ln (sec u + tan u)

 29. y = ln 
1

x2x + 1
 30. y =

1
2

 ln 
1 + x

1 - x

 31. y =
1 + ln t
1 - ln t

 32. y = 2ln 1t

 33. y = ln (sec (ln u)) 34. y = ln a2sin u cos u

1 + 2 ln u
b

 35. y = ln a(x2 + 1)5

21 - x
b  36. y = ln C

(x + 1)5

(x + 2)20

 37. y = L
x2

x2>2 ln 2t dt 38. y = L
23x

2x

 ln t dt

Evaluating Integrals

Evaluate the integrals in Exercises 39–56.

 39.  L
-2

-3

 
dx
x  40.  L

0

-1

  
3 dx

3x - 2

 41.  L  
2y dy

y2 - 25
 42.  L

8r dr

4r2 - 5

 43.  L
p

0

 
sin t

2 - cos t
  dt  44.  L

p>3
0

 
4 sin u

1 - 4 cos u
  du

 45.  L
2

1

 
2 ln x

x   dx 46.  L
4

2

 
dx

x ln x

 47.  L
4

2

 
dx

x (ln x)2
 48.  L

16

2

 
dx

2x2ln x

 49.  L  
3 sec2 t

6 + 3 tan t
  dt  50.  L

sec y  tan y

2 + sec y
  dy

 51.  L
p>2

0

 tan 
x

2
  dx 52.  L

p>2
p>4  cot t dt

 53.  L
p

p>2 2 cot 
u

3
  du  54.  L

p>12

0

 6 tan 3x dx

 55.  L
dx

21x + 2x
 56.  L

sec x dx

2ln (sec x + tan x)

Logarithmic Differentiation

In Exercises 57–70, use logarithmic differentiation to find the deriva-

tive of y with respect to the given independent variable.

 57. y = 2x(x + 1) 58. y = 2(x2 + 1)(x - 1)2

 59. y = A
t

t + 1
 60. y = A 1

t(t + 1)

 61. y = 2u + 3 sin u 62. y = (tan u)22u + 1

 63. y = t(t + 1)(t + 2) 64. y =
1

t(t + 1)(t + 2)

 65. y =
u + 5
u cos u

 66. y =
u sin u

2sec u

 67. y =
x2x2 + 1

(x + 1)2>3  68. y = B
(x + 1)10

(2x + 1)5

 69. y = A3
x(x - 2)

x2 + 1
 70. y = A3

x(x + 1)(x - 2)

(x2 + 1)(2x + 3)

Theory and Applications

 71. Locate and identify the absolute extreme values of

a. ln (cos x) on 3-p>4, p>34 ,
b. cos (ln x) on 31>2, 24 .

 72. a.  Prove that ƒ(x) = x - ln x is increasing for x 7 1.

b. Using part (a), show that ln x 6 x if x 7 1.

 73. Find the area between the curves y = ln x and y = ln 2x from 

x = 1 to x = 5.

EXERCISES 7.2
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 84. a.  Find the center of mass of a thin plate of constant density cov-

ering the region between the curve y = 1>1x and the x-axis 

from x = 1 to x = 16.

b. Find the center of mass if, instead of being constant, the 

density function is d(x) = 4>1x.

 85. Use a derivative to show that ƒ(x) = ln (x3 - 1) is one-to-one.

 86. Use a derivative to show that g(x) = 2x2 + ln x is one-to-one.

Solve the initial value problems in Exercises 87 and 88.

 87. 
dy

dx
= 1 +

1
x , y(1) = 3

 88. 
d2y

dx2
= sec2 x, y(0) = 0 and y′(0) = 1

 89. the linearization of ln (1 + x)  at x = 0 Instead of approxi-

mating ln x near x = 1, we approximate ln (1 + x) near x = 0. 

We get a simpler formula this way.

a. Derive the linearization ln (1 + x) ≈ x at x = 0.

b. Estimate to ive decimal places the error involved in replacing 

ln (1 + x) by x on the interval 30, 0.14 .
c. Graph ln (1 + x) and x together for 0 … x … 0.5. Use difer-

ent colors, if available. At what points does the approximation 

of ln (1 + x) seem best? Least good? By reading coordinates 

from the graphs, ind as good an upper bound for the error as 

your grapher will allow.

 90. Use the same-derivative argument, as was done to prove Rules 1 

and 4 of Theorem 2, to prove the Quotient Rule property of 

 logarithms.

 91. a.  Graph y = sin x and the curves y = ln (a + sin x) for a = 2, 

4, 8, 20, and 50 together for 0 … x … 23.

b. Why do the curves latten as a increases? (Hint: Find an 

a-dependent upper bound for 0 y′ 0 .)
 92. Does the graph of y = 1x - ln x, x 7 0, have an inlection 

point? Try to answer this question (a) by graphing, (b) by using 

calculus.

T

T

T

 74. Find the area between the curve y = tan x and the x-axis from 

x = -p>4 to x = p>3.

Identifying Extrema

In Exercises 75 and 76:

a. Find the open intervals on which the function is increasing 

and decreasing.

b. Identify the function’s local and absolute extreme values, if 

any, saying where they occur.

 75. g(x) = x (ln x)2 76. g(x) = x2 - 2x - 4 ln x

 77. The region in the irst quadrant bounded by the coordinate axes, 

the line y = 3, and the curve x = 2>2y + 1 is revolved about 

the y-axis to generate a solid. Find the volume of the solid.

 78. The region between the curve y = 2cot x and the x-axis from 

x = p>6 to x = p>2 is revolved about the x-axis to generate a 

solid. Find the volume of the solid.

 79. The region between the curve y = 1>x2 and the x-axis from 

x = 1>2 to x = 2 is revolved about the y-axis to generate a solid. 

Find the volume of the solid.

 80. In Section 6.2, Exercise 6, we revolved about the y-axis the region 

between the curve y = 9x>2x3 + 9 and the x-axis from x = 0 

to x = 3 to generate a solid of volume 36p. What volume do 

you get if you revolve the region about the x-axis instead? (See 

 Section 6.2, Exercise 6, for a graph.)

 81. Find the lengths of the following curves.

a. y = (x2>8) - ln x, 4 … x … 8

b. x = (y>4)2 - 2 ln (y>4), 4 … y … 12

 82. Find a curve through the point (1, 0) whose length from x = 1 to 

x = 2 is

L = L
2

1 A1 +
1

x2
 dx.

 83. a.  Find the centroid of the region between the curve y = 1>x and 

the x-axis from x = 1 to x = 2. Give the coordinates to two 

decimal places.

b. Sketch the region and show the centroid in your sketch.

T

7.3 Exponential Functions

Having developed the theory of the function ln x, we introduce its inverse, the exponential 

function exp x = ex. We study its properties and compute its derivative and integral. We 

prove the power rule for derivatives involving general real exponents. Finally, we intro-

duce general exponential functions, ax, and general logarithmic functions, loga x.

The Inverse of ln x and the Number e

The function ln x, being an increasing function of x with domain (0, q) and range 

(-q, q), has an inverse ln-1 x with domain (-q, q) and range (0, q). The graph of 

ln-1 x is the graph of ln x reflected across the line y = x. As you can see in Figure 7.10,

lim
xSq

 ln-1 x = q  and  lim
xS  -q

 ln-1 x = 0.

The function ln-1 x is usually denoted as exp x. We now show that exp x is an exponential 

function with base e.
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The number e was defined to satisfy the equation ln (e) = 1, so e = exp (1). We can 

raise the number e to a rational power r in the usual algebraic way:

e2 = e # e,  e-2 =
1

e2
,  e1>2 = 2e,

and so on. Since e is positive, er is positive too, so we can take the logarithm of er. When 

we do, we find that for r rational

ln er = r ln e = r # 1 = r.  Theorem 2, Rule 4

Then applying the function ln-1 to both sides of the equation ln er = r, we find that

 er = exp r  for r rational.  exp is ln-1. (1)

We have not yet found a way to give an obvious meaning to ex for x irrational. But ln-1 x 

has meaning for any x, rational or irrational. So Equation (1) provides a way to extend the 

definition of ex to irrational values of x. The function exp x is defined for all x, so we use it 

to assign a value to ex at every point.

x

y

1

10 2 e 4

2

e

4

–1–2

5

6

7

8

(1, e)

y = ln x

y = ln–1x
or

x = ln y

FIGURE 7.10 The graphs of y = ln x 

and y = ln-1 x = exp x. The number e is 

ln-1 1 = exp (1).

typical values of ex

x ex (rounded)

-1 0.37

0 1

1 2.72

2 7.39

10 22026

100 2.6881 * 1043

DEFINITION For every real number x, we define the natural exponential 

function to be ex = exp x.

For the first time we have a precise meaning for an irrational exponent—we are raising a 

specific number e to any real power x, rational or irrational. Since the functions ln x and ex 

are inverses of one another, we have the following relationships.

The notations ln- 1 x, exp x, and ex all 

refer to the natural exponential function.

Inverse Equations for ex and ln x

 eln x = x  (all x 7 0)

 ln (ex) = x  (all x)

EXAMPLE 1  Solve the equation e2x - 6 = 4 for x.

Solution We take the natural logarithm of both sides of the equation and use the second 

inverse equation:

  ln (e2x - 6) = ln 4

  2x - 6 = ln 4  Inverse relationship

  2x = 6 + ln 4

  x = 3 +
1
2

 ln 4 = 3 + ln 41>2
  x = 3 + ln 2  

EXAMPLE 2  A line with slope m passes through the origin and is tangent to the 

graph of y = ln x. What is the value of m?

Solution Suppose the point of tangency occurs at the unknown point x = a 7 0. Then 

we know that the point (a, ln a) lies on the graph and that the tangent line at that point has 

slope m = 1>a (Figure 7.11). Since the tangent line passes through the origin, its slope is

m =
ln a - 0

a - 0
=

ln a
a .

1 2 3 4 5

1

0

2

x

y

(a, ln a)

y = ln x

Slope = a
1

FIGURE 7.11 The tangent line intersects 

the curve at some point (a, ln a), where the 

slope of the curve is 1>a (Example 2).
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Setting these two formulas for m equal to each other, we have

ln a
a =

1
a

ln a = 1

eln a = e1

 a = e

  m =
1
e . 

The Derivative and Integral of ex

According to Theorem 1, the natural exponential function is differentiable because it is the 

inverse of a differentiable function whose derivative is never zero. We calculate its deriva-

tive using the inverse relationship and the Chain Rule:

  ln (ex) = x  Inverse relationship

  
d

dx
 ln (ex) = 1  Differentiate both sides.

  
1
ex

# d

dx
 (ex) = 1  Eq. (2), Section 7.2, with u = ex

  
d

dx
 ex = ex. Solve for the derivative.

That is, for y = ex, we find that dy>dx = ex so the natural exponential function ex is its 

own derivative. Moreover, if ƒ(x) = ex, then ƒ′(0) = e0 = 1. This means that the natural 

exponential function ex has slope 1 as it crosses the y-axis at x = 0.

The Chain Rule extends the derivative result for the natural exponential function to a 

more general form involving a function u(x):

If u is any differentiable function of x, then

 
d

dx
 eu = eu 

du

dx
. (2)

EXAMPLE 3  We find derivatives of the exponential using Equation (2).

(a) 
d

dx
 (5ex) = 5 

d

dx
 ex = 5ex

(b) 
d

dx
 e-x = e-x 

d

dx
 (-x) = e-x(-1) = -e-x Eq. (2) with u = -x

(c) 
d

dx
 esin x = esin x 

d

dx
 (sin x) = esin x # cos x Eq. (2) with u = sin x

(d)  
d

dx
 1e23x + 12 = e23x + 1 # d

dx
 123x + 12 Eq. (2) with u = 23x + 1

  = e23x + 1 # 1
2

 (3x + 1)-1>2 # 3 =
3

223x + 1
 e23x + 1 

Since ex is its own derivative, it is also its own antiderivative. So the integral equiva-

lent of Equation (2) is the following.

The general antiderivative of the exponential function

 L eu du = eu + C
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EXAMPLE 4

(a)  L
ln 2

0

 e3x dx = L
ln 8

0

 eu # 1
3

 du 
u = 3x, 

1

3
 du = dx, u(0) = 0,

  =
1
3

  L
ln 8

0

 eu du 

u(ln 2) = 3 ln 2 = ln 23 = ln 8

  =
1
3

 eu d
0

ln 8

  =
1
3

 (8 - 1) =
7
3

(b)  L
p>2

0

 esin x cos x dx = esin x d
0

p>2
 Antiderivative from Example 2c

  = e1 - e0 = e - 1 

The derivative of ex exists and is everywhere positive, confirming that it is a continu-

ous and increasing function as shown in Figure 7.10. Since the second derivative of ex is 

also ex and everywhere positive, the graph is concave up. Moreover, Figure 7.10 shows 

that the exponential function has the limits

lim
xS-q

ex = 0  and  lim
xSq

ex = q.

From the first of these limits we see that the x-axis is a horizontal asymptote of the graph 

y = ex.

Laws of Exponents

Even though ex is defined in a seemingly roundabout way as ln-1 x, it obeys the familiar 

laws of exponents from algebra. The following Theorem 3 shows us that these laws are 

consequences of the definitions of ln x and ex.

THEOREM 3 For all numbers x, x1, and x2, the natural exponential ex obeys 

the following laws:

1. ex1 ex2 = ex1 + x2 2. e-x =
1
ex

3. 
ex1

ex2
= ex1 - x2 4. (ex1)r = e rx1, if r is rational

transcendental Numbers and  

transcendental Functions

Numbers that are solutions of polynomial 

equations with rational coefficients are 

called algebraic: -2 is algebraic because 

it satisfies the equation x + 2 = 0, and 

23 is algebraic because it satisfies the 

equation x2 - 3 = 0. Numbers such as 

e and p that are not algebraic are called 

transcendental.

We call a function y = ƒ(x) algebraic 

if it satisfies an equation of the form

Pn  yn + g + P1 y + P0 = 0

in which the P’s are polynomials 

in x with rational coefficients. The 

function y = 1>2x + 1 is alge-

braic because it satisfies the equation 

(x + 1)y2 - 1 = 0. Here the poly-

nomials are P2 = x + 1, P1 = 0, and 

P0 = -1. Functions that are not alge-

braic are called transcendental.

Proof of Law 1  Let y1 = ex1 and y2 = ex2. Then

  x1 = ln y1 and x2 = ln y2 Inverse equations

  x1 + x2 = ln y1 + ln y2

  = ln y1 y2  Product Rule for logarithms

  ex1 + x2 = eln y1 y2  Exponentiate.

  = y1 y2  eln u = u

  = ex1 ex2.  

Proof of Law 4  Let y = (ex1)r. Then

   ln y = ln (ex1)r

  = r ln (ex1) Power Rule for logarithms, rational r

  = rx1  ln eu = u with u = x1
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Thus, exponentiating each side,

  y = erx1. eln y = y 

Laws 2 and 3 follow from Law 1. Like the Power Rule for logarithms, Law 4 holds for all 

real numbers r.

The General Exponential Function ax

Since a = eln a for any positive number a, we can express ax as (eln a)x = ex ln a. We there-

fore use the function ex to define the other exponential functions, which allow us to raise 

any positive number to an irrational exponent.

DEFINITION For any numbers a 7 0 and x, the exponential function with 

base a is

ax = ex ln a.

When a = e, the definition gives ax = ex ln a = ex ln e = ex #1 = ex.

Theorem 3 is also valid for ax, the exponential function with base a. For example,

  ax1 # ax2 = ex1 ln a # ex2 ln a Definition of ax

  = ex1 ln a + x2 ln a  Law 1

  = e(x1 + x2)ln a  Factor ln a

  = ax1 + x2.  Definition of ax

In particular, an # a-1 = an - 1 for any real number n.

Proof of the Power Rule (General Version)

The definition of the general exponential function enables us to make sense of raising any 

positive number to a real power n, rational or irrational. That is, we can define the power 

function y = xn for any exponent n.

DEFINITION For any x 7 0 and for any real number n,

xn = en ln x.

General Power Rule for Derivatives 

For x 7 0 and any real number n,

d

dx
 xn = nxn - 1.

If x … 0, then the formula holds whenever the derivative, xn, and xn - 1 all exist.

Because the logarithm and exponential functions are inverses of each other, the defini-

tion gives

ln xn = n ln x, for all real numbers n.

That is, the rule for taking the natural logarithm of a power of x holds for all real expo-

nents n, not just for rational exponents as previously stated in Theorem 2.

The definition of the power function also enables us to establish the derivative Power 

Rule for any real power n, as stated in Section 3.3.
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Proof  Differentiating xn with respect to x gives

  
d

dx
 xn =

d

dx
 en ln x  Definition of xn, x 7 0

  = en ln x # d

dx
 (n ln x) Chain Rule for eu, Eq. (2)

  = xn # n
x  Definition and derivative of ln x

  = nxn - 1.  xn # x-1 = xn - 1

In short, whenever x 7 0,

d

dx
 xn = nxn - 1.

For x 6 0, if y = xn, y′, and xn - 1 all exist, then

ln � y � = ln � x � n = n ln � x � .

Using implicit differentiation (which assumes the existence of the derivative y′) and Equa-

tion (3) in Section 7.2, we have

y′
y =

n
x .

Solving for the derivative,

y′ = n 
y
x = n 

xn

x = nxn - 1.

It can be shown directly from the definition of the derivative that the derivative equals 

0 when x = 0 and n Ú 1. This completes the proof of the general version of the Power 

Rule for all values of x. 

EXAMPLE 5  Differentiate ƒ(x) = xx, x 7 0.

Solution We cannot apply the power rule here because the exponent is the variable x 

rather than being a constant value n (rational or irrational). However, from the definition of 

the general exponential function we note that ƒ(x) = xx = ex ln x, and differentiation gives

  ƒ′(x) =
d

dx
 (ex ln x)

  = ex ln x 
d

dx
 (x ln x)  Eq. (2) with u = x ln x

  = ex ln x aln x + x # 1
xb  Product Rule

  = xx (ln x + 1).  x 7 0 

The Number e Expressed as a Limit

We have defined the number e as the number for which ln e = 1, or equivalently, the value 

exp (1). We see that e is an important constant for the logarithmic and exponential functions, 

but what is its numerical value? The next theorem shows one way to calculate e as a limit.

THEOREM 4—The Number e as a Limit

The number e can be calculated as the limit

e = lim
xS0

 (1 + x)1>x.
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Proof  If ƒ(x) = ln x, then ƒ′(x) = 1>x, so ƒ′(1) = 1. But, by the definition of derivative,

 ƒ′(1) = lim
hS0

 
ƒ(1 + h) - ƒ(1)

h
= lim

xS0
 
ƒ(1 + x) - ƒ(1)

x

  = lim
xS0

 
ln (1 + x) - ln 1

x = lim
xS0

  
1
x  ln (1 + x) ln 1 = 0

  = lim
xS0

 ln (1 + x)1>x = ln c lim
xS0

 (1 + x)1>x d . 
Because ƒ′(1) = 1, we have

ln c lim
xS0

 (1 + x)1>x d = 1

Therefore, exponentiating both sides we get (see Figure 7.12)

 lim
xS0

 (1 + x)1>x = e. 

Approximating the limit in Theorem 4 by taking x very small gives approximations to 

e. Its value is e ≈ 2.718281828459045 to 15 decimal places as noted before.

The Derivative of au

To find this derivative, we start with the defining equation ax = ex ln a. Then we have

  
d

dx
 ax =

d

dx
 ex ln a = ex ln a # d

dx
 (x ln a) 

d

dx
 eu = eu 

du

dx

  = ax ln a.

We now see why ex is the exponential function preferred in calculus. If a = e, then 

ln a = 1 and the derivative of ax simplifies to

d

dx
 ex = ex ln e = ex.  ln e =  1

With the Chain Rule, we get the following form for the derivative of the general expo-

nential function.

ln is continuous; 

use Theorem 10 

in Chapter 2.

1

0

2

3

x

y

y = (1 + x)1�x

e

FIGURE 7.12 The number e is the limit 

of the function graphed here as x S 0.

If a 7 0 and u is a differentiable function of x, then au is a differentiable func-

tion of x and

 
d

dx
 au = au ln a  

du

dx
. (3)

The integral equivalent of this last result gives the general antiderivative

  L au du =
au

ln a
+ C. (4)

From Equation (3) with u = x, we see that the derivative of ax is positive if ln a 7 0, 

or a 7 1, and negative if ln a 6 0, or 0 6 a 6 1. Thus, ax is an increasing function of x 

if a 7 1 and a decreasing function of x if 0 6 a 6 1. In each case, ax is one-to-one. The 

second derivative

d2

dx2
 (ax) =

d

dx
 (ax ln a) = (ln a)2 ax

is positive for all x, so the graph of ax is concave up on every interval of the real line. 

 Figure 7.13 displays the graphs of several exponential functions.

x

y

0–1 1

1

x

y = 1x

y =
1
2

x

y =
1
3

x

y =
1

10 y = 10x

y = 3x

y = 2x

FIGURE 7.13 Exponential functions 

decrease if 0 6 a 6 1 and increase if 

a 7 1. As x S q, we have ax S 0 if 

0 6 a 6 1 and ax S q if a 7 1. As 

x S -q, we have ax S q if 0 6 a 6 1 

and ax S 0 if a 7 1.
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EXAMPLE 6  We find derivatives and integrals using Equations (3) and (4).

(a) 
d

dx
 3x = 3x ln 3 Eq. (3) with a = 3, u = x

(b) 
d

dx
 3-x = 3-x (ln 3)  

d

dx
 (-x) = -3-x ln 3 Eq. (3) with a = 3, u = -x

(c) 
d

dx
 3sin x = 3sin x (ln 3)  

d

dx
 (sin x) = 3sin x (ln 3)  cos x Eq. (3) with a = 3, u = sin x

(d)  L 2x dx =
2x

ln 2
+ C  Eq. (4) with a = 2, u = x

(e)  L 2sin x cos x dx = L  2u du =
2u

ln 2
+ C u = sin x, du = cos x dx, and Eq. (4)

 =
2sin x

ln 2
+ C u replaced by sin x 

Logarithms with Base a

If a is any positive number other than 1, the function ax is one-to-one and has a nonzero 

derivative at every point. It therefore has a differentiable inverse. We call the inverse the 

logarithm of x with base a and denote it by loga x.

DEFINITION For any positive number a ≠ 1,

loga x is the inverse function of ax.

The graph of y = loga x can be obtained by reflecting the graph of y = ax across the 

45° line y = x (Figure 7.14). When a = e, we have loge x = inverse of ex = ln x. (The 

function log10 x is sometimes written simply as log x and is called the common loga-

rithm of x.) Since loga x and ax are inverses of one another, composing them in either 

order gives the identity function.

x

y

1
2

0 1 2

y = log2x

y = 2x

y = x

FIGURE 7.14 The graph of 2x and its 

inverse, log2 x.

Inverse Equations for ax and loga x

 aloga x = x   (x 7 0)

 loga (a
x) = x   (all x)

The function loga x is actually just a numerical multiple of ln x. To see this, we let 

y = loga x and then take the natural logarithm of both sides of the equivalent equation 

ay = x to obtain y ln a = ln x. Solving for y gives

 loga x =
ln x
ln a

. (5)

The algebraic rules satisfied by loga x are the same as the ones for ln x. These rules, 

given in Table 7.2, can be proved using Equation (5) by dividing the corresponding rules 

for the natural logarithm function by ln a. For example,

  ln xy = ln x + ln y  Rule 1 for natural logarithms c

  
ln xy

ln a
=

ln x
ln a

+
ln y

ln a
 c divided by ln a c

  loga xy = loga x + loga y. c gives Rule 1 for base a logarithms.

TABLE 7.2  Rules for base a  

logarithms

For any numbers x 7 0 and 

y 7 0,

1. Product Rule:

loga xy = loga x + loga y

2. Quotient Rule:

loga 
x
y = loga x - loga y

3. Reciprocal Rule:

loga 
1
y = - loga y

4. Power Rule:

loga x
y = y loga x
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Derivatives and Integrals Involving loga x

To find derivatives or integrals involving base a logarithms, we convert them to natural 

logarithms. If u is a positive differentiable function of x, then

d

dx
 (loga u) =

d

dx
 aln u

ln a
b =

1
ln a

 
d

dx
 (ln u) =

1
ln a

# 1

u
 
du

dx
.

d

dx
 (loga u) =

1
ln a

# 1

u
 
du

dx

EXAMPLE 7

(a) 
d

dx
 log10 (3x + 1) =

1
ln 10

# 1
3x + 1

 
d

dx
 (3x + 1) =

3
(ln 10)(3x + 1)

(b)  L  
log2 x

x  dx =
1

ln 2
  L  

ln x
x  dx log2 x =

ln x

ln 2

 =
1

ln 2
  L u du u = ln x, du =

1
x dx

 =
1

ln 2
 
u2

2
+ C =

1
ln 2

 
(ln x)2

2
+ C =

(ln x)2

2 ln 2
+ C 

Solving Exponential Equations

In Exercises 1–4, solve for t.

 1. a. e-0.3t = 27 b. ekt =
1
2

 c. e(ln 0.2)t = 0.4

 2. a. e-0.01t = 1000 b. ekt =
1
10

 c. e(ln 2)t =
1
2

 3. e2t = x2 4. e(x2)e(2x + 1) = et

 5. e2t - 3et = 0 6. e- 2t + 6 = 5e- t

Finding Derivatives

In Exercises 7–26, find the derivative of y with respect to x, t, or u, as 

appropriate.

 7. y = e-5x 8. y = e2x>3
 9. y = e5 - 7x 10. y = e(41x + x2)

 11. y = xex - ex 12. y = (1 + 2x)e-2x

 13. y = (x2 - 2x + 2)ex 14. y = (9x2 - 6x + 2)e3x

 15. y = eu(sin u + cos u) 16. y = ln (3ue-u)

 17. y = cos (e-u2

) 18. y = u3e-2u cos 5u

 19. y = ln (3te-t) 20. y = ln (2e-t sin t)

 21. y = ln a eu

1 + eu
b  22. y = ln a 2u

1 + 2u
b

 23. y = e(cos t + ln t) 24. y = esin t(ln t2 + 1)

 25. y = L
ln x

0

 sin et dt 26. y = L
e2x

e41x

 ln t dt

In Exercises 27–32, find dy >dx.

 27. ln y = ey sin x 28. ln xy = ex + y

 29. e2x = sin (x + 3y) 30. tan y = ex + ln x

 31. 3 +  sin y = y - x3 32. ln y = xey - 2

Finding Integrals

Evaluate the integrals in Exercises 33–54.

 33.  L (e3x + 5e-x) dx 34.  L (2ex - 3e-2x) dx

 35.  L
ln 3

ln 2

 ex dx 36.  L
0

-ln 2

 e-x dx

 37.  L  8e(x + 1) dx 38.  L  2e(2x - 1) dx

 39.  L
ln 9

ln 4

 ex>2 dx 40.  L
ln 16

0

 ex>4 dx

 41.  L  
e2r

2r
 dr  42.  L  

e-2r

2r
 dr

 43.  L  2t e-t2

 dt  44.  L t3e(t4) dt

 45.  L  
e1>x
x2

 dx 46.  L  
e-1>x2

x3
 dx

 47. L
p>4

0

(1 + etan u) sec2 u du  48. L
p>2

p>4 (1 + ecot u) csc2 u du

EXERCISES 7.3
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 49.  L esec pt sec pt  tan pt dt

 50.  L ecsc (p+ t) csc (p + t) cot (p + t) dt

 51.  L
ln (p>2)

ln (p>6)

 2ey cos ey dy  52.  L
2ln p

0

 2x ex2

 cos (ex2

) dx

 53.  L  
er

1 + er dr  54.  L  
dx

1 + ex

Initial Value Problems

Solve the initial value problems in Exercises 55–58.

 55. 
dy

dt
= et sin (et - 2), y(ln 2) = 0

 56. 
dy

dt
= e-t sec2 (pe-t), y(ln 4) = 2>p

 57. 
d2y

dx2
= 2e-x, y(0) = 1 and y′(0) = 0

 58. 
d2y

dt2
= 1 - e2t, y(1) = -1 and y′(1) = 0

Differentiation

In Exercises 59–86, find the derivative of y with respect to the given 

independent variable.

 59. y = 2x 60. y = 3-x

 61. y = 52s 62. y = 2(s2)

 63. y = xp 64. y = t1 - e

 65. y = (cos u)22 66. y = (ln u)p

 67. y = 7sec u ln 7 68. y = 3tan u ln 3

 69. y = 2sin 3t 70. y = 5-cos 2t

 71. y = log2 5u 72. y = log3(1 + u ln 3)

 73. y = log4 x + log4 x
2 74. y = log25 e

x - log51x

 75. y = x3 log10 x 76. y = log3 r # log9 r

 77. y = log3 a ax + 1
x - 1

b ln 3b  78. y = log5 B a 7x

3x + 2
b ln 5

 79. y = u sin (log7 u) 80. y = log7 asin u cos u

eu 2u
b

 81. y = log10 e
x 82. y =

u5u

2 - log5 u

 83. y = 3log2 t 84. y = 3 log8 (log2 t)

 85. y = log2 (8tln 2) 86. y = t log3 1e(sin t)(ln 3)2
Integration

Evaluate the integrals in Exercises 87–96.

 87.  L 5x dx 88.  L  
3x

3 - 3x dx

 89.  L
1

0

 2-u du  90.  L
0

-2

 5-u du

 91.  L
22

1

 x2(x2) dx 92.  L
4

1

 
21x

1x
  dx

 93.  L
p>2

0

 7cos t sin t dt  94.  L
p>4

0

 a1
3
b tan t

 sec2 t dt

 95.  L
4

2

 x2x(1 + ln x) dx 96.  L  
x2x2

1 + 2x2 dx

Evaluate the integrals in Exercises 97–110.

 97.  L  3x23 dx 98.  L x22 - 1 dx

 99.  L
3

0

(12 + 1)x12 dx 100.  L
e

1

 x(ln 2) - 1 dx

 101.  L   
log10 x

x  dx 102.  L
4

1

  
log2 x

x  dx

 103.  L
4

1

  
ln 2 log2 x

x  dx 104.  L
e

1

  
2 ln 10 log10 x

x  dx

 105.  L
2

0

  
log2 (x + 2)

x + 2
 dx 106.  L

10

1>10

 
log10 (10x)

x  dx

 107.  L
9

0

  
2 log10 (x + 1)

x + 1
 dx 108.  L

3

2

  
2 log2 (x - 1)

x - 1
 dx

 109.  L  
dx

x log10 x
 110.  L  

dx

x(log8 x)2

Evaluate the integrals in Exercises 111–114.

 111.  L
ln x

1

 
1
t

 dt, x 7 1 112.  L
ex

1

 
1
t

 dt

 113.  L
1>x

1

 
1
t

 dt, x 7 0 114. 
1

ln a
 L

x

1

 
1
t

 dt, x 7 0

Logarithmic Differentiation

In Exercises 115–122, use logarithmic differentiation to find the 

derivative of y with respect to the given independent variable.

 115. y = (x + 1)x 116. y = x2 + x2x

 117. y = 11t2t 118. y = t2t

 119. y = (sin x)x 120. y = xsin x

 121. y = sin xx 122. y = (ln x)ln x

 123. yx = x3y 124. xsin y = ln y

 125. x = yxy 126. ey = yln x

For Exercises 127 and 128 find a function ƒ satisfying each equation.

 127.  L
x

2

 2ƒ(t) dt = x ln x 128. ƒ(x) = e2 + L
x

1

 ƒ(t) dt

Theory and Applications

 129. Find the absolute maximum and minimum values of ƒ(x) =  

ex - 2x on 30, 14 .
 130. Where does the periodic function ƒ(x) = 2esin(x>2) take on its 

 extreme values and what are these values?

  
x

y

0

y = 2esin (x/2)
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c. Graph ex and 1 + x together for -2 … x … 2. Use diferent 

colors, if available. On what intervals does the approximation 

appear to overestimate ex? Underestimate ex?

 146. the geometric, logarithmic, and arithmetic mean inequality 

a. Show that the graph of ex is concave up over every interval 

of x-values.

b. Show, by reference to the accompanying igure, that if 

0 6 a 6 b, then

e(ln a + ln b)>2 # (ln b - ln a) 6 L
ln b

ln a

 ex dx 6
eln a + eln b

2
# (ln b - ln a).

  

x

2

F

C

B

E

DA

M

NOT TO SCALE

y = ex

ln a + ln b ln bln a

c. Use the inequality in part (b) to conclude that

  2ab 6
b - a

ln b - ln a
6

a + b

2
.

  This inequality says that the geometric mean of two positive 

numbers is less than their logarithmic mean, which in turn is 

less than their arithmetic mean.

 147. Find the area of the region between the curve y = 2x>(1 + x2) 

and the interval -2 … x … 2 of the x-axis.

 148. Find the area of the region between the curve y = 21 - x and the 

interval -1 … x … 1 of the x-axis.

 149. Consider the accompanying graphs of y = 2x + 3 and y =  ln x. 

Determine the

a. minimum vertical distance

b. minimum horizontal distance between these graphs.

3
−

2

y = ln x

y = 2x + 3

x

y

1

3

T 131. Let ƒ(x) = xe-x.

a. Find all absolute extreme values for ƒ.

b. Find all inlection points for ƒ.

 132. Let ƒ(x) =
ex

1 + e2x
.

a. Find all absolute extreme values for ƒ.

b. Find all inlection points for ƒ.

 133. Find the absolute maximum value of ƒ(x) = x2 ln (1>x) and say 

where it is assumed.

 134. Graph ƒ(x) = (x - 3)2ex and its irst derivative together. Com-

ment on the behavior of ƒ in relation to the signs and values of ƒ′. 
Identify signiicant points on the graphs with calculus, as neces-

sary.

 135. Find the area of the “triangular” region in the irst quadrant that is 

bounded above by the curve y = e2x, below by the curve y = ex, 

and on the right by the line x = ln 3.

 136. Find the area of the “triangular” region in the irst quadrant that 

is bounded above by the curve y = ex>2, below by the curve 

y = e-x>2, and on the right by the line x = 2 ln 2.

 137. Find a curve through the origin in the xy-plane whose length 

from x = 0 to x = 1 is

  L = L
1

0 A1 +
1
4

 ex dx.

 138. Find the area of the surface generated by revolving the curve 

x = (ey + e-y)>2, 0 … y … ln 2, about the y-axis.

  

0

ln 2

1

x =
ey + e–y

2

x

y

In Exercises 139–142, find the length of each curve.

 139. y =
1
2

 (ex + e-x) from x = 0 to x = 1

 140. y = ln (ex - 1) - ln (ex + 1) from x = ln 2 to x = ln 3

 141. y = ln (cos x) from x = 0 to x = p>4
 142. y = ln (csc x) from x = p>6 to x = p>4
 143. a.  Show that 1  ln x dx = x ln x - x + C.

b. Find the average value of ln x over 31, e4 .
 144. Find the average value of ƒ(x) = 1>x on 31, 24 .
 145. the linearization of ex at x = 0

a. Derive the linear approximation ex ≈ 1 + x at x = 0.

b. Estimate to ive decimal places the magnitude of the error 

involved in replacing ex by 1 + x on the interval 30, 0.24 .

T

T
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 155. Which is bigger, Pe or eP? Calculators have taken some of 

the mystery out of this once-challenging question. (Go ahead and 

check; you will see that it is a very close call.) You can answer the 

question without a calculator, though.

a. Find an equation for the line through the origin tangent to 

the graph of y = ln x.

   [–3, 6] by [–3, 3]

b. Give an argument based on the graphs of y = ln x and 

the tangent line to explain why ln x 6 x>e for all positive 

x ≠ e.

c. Show that ln (xe) 6 x for all positive x ≠ e.

d. Conclude that xe 6 ex for all positive x ≠ e.

e. So which is bigger, pe or ep?

 156. A decimal representation of e Find e to as many decimal 

places as your calculator allows by solving the equation ln x = 1 

using Newton’s method in Section 4.6.

T

T

 150. Determine the dimensions of the inscribed rectangle of maxi-

mum area.

  
x

y

1
y = e−x

 151. The equation x2 = 2x has three solutions: x = 2, x = 4, and 

one other. Estimate the third solution as accurately as you can by 

graphing.

 152. Could xln 2 possibly be the same as 2ln x for x 7 0? Graph the 

two functions and explain what you see.

 153. the linearization of 2x

a. Find the linearization of ƒ(x) = 2x at x = 0. Then round its 

coeicients to two decimal places.

b. Graph the linearization and function together for 

-3 … x … 3 and -1 … x … 1.

 154. the linearization of log3 x

a. Find the linearization of ƒ(x) = log3 x at x = 3. Then round 

its coeicients to two decimal places.

b. Graph the linearization and function together in the windows 

0 … x … 8 and 2 … x … 4.

T

T

T

T

7.4 Exponential Change and Separable Differential Equations

Exponential functions increase or decrease very rapidly with changes in the independent 

variable. They describe growth or decay in many natural and human-made situations. The 

variety of models based on these functions partly accounts for their importance.

Exponential Change

In modeling many real-world situations, a quantity y increases or decreases at a rate pro-

portional to its size at a given time t. Examples of such quantities include the size of a 

population, the amount of a decaying radioactive material, and the temperature difference 

between a hot object and its surrounding medium. Such quantities are said to undergo 

exponential change.

If the amount present at time t = 0 is called y0 , then we can find y as a function of t 

by solving the following initial value problem:

 Diferential equation:   
dy

dt
= ky (1a)

    Initial condition:   y = y0 when t = 0.  (1b)

If y is positive and increasing, then k is positive, and we use Equation (1a) to say that the 

rate of growth is proportional to what has already been accumulated. If y is positive and 

decreasing, then k is negative, and we use Equation (1a) to say that the rate of decay is 

proportional to the amount still left.
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We see right away that the constant function y = 0 is a solution of Equation (1a) if 

y0 = 0. To find the nonzero solutions, we divide Equation (1a) by y:

  
1
y #  

dy

dt
= k   y ≠  0 

  L  
1
y 

dy

dt
 dt = Lk dt     Integrate with respect to t;

  ln � y � = kt + C  
1 (1>u) du = ln � u � + C.

 

  � y � = ekt + C   Exponentiate.

  � y � = eC # ekt   ea + b = ea # eb 

  y = {eCekt  If � y � = r, then y = {r. 

  y = Aekt.   A is a shorter name for {eC .

By allowing A to take on the value 0 in addition to all possible values {eC, we can 

include the solution y = 0 in the formula.

We find the value of A for the initial value problem by solving for A when y = y0 and 

t = 0:

y0 = Aek #  0 = A.

Quantities changing in this way are said to undergo exponential growth if k 7 0 and 

exponential decay if k 6 0. The number k is called the rate constant of the change. (See 

Figure 7.15.)

The derivation of Equation (2) shows also that the only functions that are their own 

derivatives (k = 1) are constant multiples of the exponential function.

Before presenting several examples of exponential change, let us consider the process 

we used to derive it.

The solution of the initial value problem

dy

dt
= ky ,  y(0) = y0

is

 y = y0 e
kt . (2)

y0
t

y

k = 1.3

k = 1

k = 0.6

y = y0 ekt

(a)

y0

t

y

k = −1.3

k = −1

k = −0.5

(b)

y = y0 ekt

FIGURE 7.15 Graphs of (a) exponential 

growth and (b) exponential decay. As � k �  

increases, the growth (k 7 0) or decay 

(k 6 0) intensifies.

Separable Differential Equations

Exponential change is modeled by a differential equation of the form dy>dx = ky, where 

k is a nonzero constant. More generally, suppose we have a differential equation of the 

form

 
dy

dx
= ƒ(x, y), (3)

where ƒ is a function of both the independent and dependent variables. A solution of the 

equation is a differentiable function y = y(x) defined on an interval of x-values (perhaps 

infinite) such that

 
d

dx
 y(x) = ƒ(x, y(x)) 
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on that interval. That is, when y(x) and its derivative y′(x) are substituted into the differen-

tial equation, the resulting equation is true for all x in the solution interval. The general 

solution is a solution y(x) that contains all possible solutions and it always contains an 

arbitrary constant.

Equation (3) is separable if ƒ can be expressed as a product of a function of x and a 

function of y. The differential equation then has the form

dy

dx
= g(x) h( y).   

g is a function of x; 

h is a function of y.

Then collect all y terms with dy and all x terms with dx:

1
h(y)

 dy = g(x) dx.

Now we simply integrate both sides of this equation:

  L
1

h(y)
 dy = L g(x) dx . (4)

After completing the integrations, we obtain the solution y defined implicitly as a function 

of x.

The justification that we can integrate both sides in Equation (4) in this way is based 

on the Substitution Rule (Section 5.5):

  L
1

h(y)
 dy = L

1
h(y(x))

 
dy

dx
 dx

 = L  
1

h(y(x))
 h(y(x)) g(x) dx  

dy

dx
= h(y(x)) g(x) 

 = L  g(x) dx.

EXAMPLE 1  Solve the differential equation

dy

dx
= (1 + y) ex , y 7 -1.

Solution Since 1 + y is never zero for y 7 -1, we can solve the equation by separat-

ing the variables.

 
dy

dx
= (1 + y) ex

 dy = (1 + y) ex dx  

 
dy

1 + y
= ex dx   Divide by (1 + y) .

 L  
dy

1 + y
= L  ex dx   Integrate both sides.

 ln (1 + y) = ex + C   

The last equation gives y as an implicit function of x. 

 Treat dy>dx as a quotient of  

differentials and multiply  

both sides by dx.

 C represents the combined  

constants of integration.
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EXAMPLE 3  The biomass of a yeast culture in an experiment is initially 29 grams. 

After 30 minutes the mass is 37 grams. Assuming that the equation for unlimited popula-

tion growth gives a good model for the growth of the yeast when the mass is below 

100 grams, how long will its take for the mass to double from its initial value?

Solution Let y(t) be the yeast biomass after t minutes. We use the exponential growth 

model dy>dt = ky for unlimited population growth, with solution y = y0 e
kt.

Unlimited Population Growth

Strictly speaking, the number of individuals in a population (of people, plants, animals, or 

bacteria, for example) is a discontinuous function of time because it takes on discrete val-

ues. However, when the number of individuals becomes large enough, the population can 

be approximated by a continuous function. Differentiability of the approximating function 

is another reasonable hypothesis in many settings, allowing for the use of calculus to 

model and predict population sizes.

If we assume that the proportion of reproducing individuals remains constant and 

assume a constant fertility, then at any instant t the birth rate is proportional to the 

number y(t) of individuals present. Let’s assume, too, that the death rate of the popula-

tion is stable and proportional to y(t). If, further, we neglect departures and arrivals, the 

growth rate dy>dt  is the birth rate minus the death rate, which is the difference of the 

two proportionalities under our assumptions. In other words, dy>dt = ky so that 

y = y0 ekt, where y0 is the size of the population at time t = 0. As with all kinds of 

growth, there may be limitations imposed by the surrounding environment, but we will 

not go into these here. (We treat one model imposing such limitations in Section 9.4.) 

When k is positive, the proportionality dy>dt = ky models unlimited population 

growth. (See Figure 7.16.)

EXAMPLE 2  Solve the equation y(x + 1)  
dy

dx
= x(y2 + 1).

Solution We change to differential form, separate the variables, and integrate:

 y(x + 1) dy = x(y2 + 1) dx

 
y dy

y2 + 1
=

x dx

x + 1
  x ≠ -1

  L  
y dy

1 + y2
= L  a1 -

1
x + 1

b  dx   Divide x by x + 1.

 
1
2

 ln (1 + y2) = x - ln 0 x + 1 0 + C .

The last equation gives the solution y as an implicit function of x. 

The initial value problem

dy

dt
= ky,  y(0) = y0

involves a separable differential equation, and the solution y = y0 ekt expresses exponen-

tial change. We now present several examples of such change.

t
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FIGURE 7.16 Graph of the growth of 

a yeast population over a 10-hour period, 

based on the data in Example 3.

time  

(hr)

yeast biomass  

(mg)

 0  9.6

 1  18.3

 2  29.0

 3  47.2

 4  71.1

 5 119.1

 6 174.6

 7 257.3

 8 350.7

 9 441.0

10 513.3
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EXAMPLE 4  One model for the way diseases die out when properly treated assumes 

that the rate dy>dt at which the number of infected people changes is proportional to the 

number y. The number of people cured is proportional to the number y that are infected 

with the disease. Suppose that in the course of any given year the number of cases of a 

disease is reduced by 20%. If there are 10,000 cases today, how many years will it take to 

reduce the number to 1000?

Solution We use the equation y = y0 ekt . There are three things to find: the value of y0, 

the value of k, and the time t when y = 1000.

The value of y0. We are free to count time beginning anywhere we want. If we count 

from today, then y = 10,000 when t = 0, so y0 = 10,000. Our equation is now

 y = 10,000ekt. (5)

The value of k. When t = 1 year, the number of cases will be 80% of its present value, 

or 8000. Hence,

 8000 = 10,000ek(1)   

 ek = 0.8

 ln (ek) = ln 0.8   Logs of both sides

 k = ln 0.8 6 0.  ln 0.8 ≈ -0.223

At any given time t,

 y = 10,000e(ln 0.8)t. (6)

 Eq. (5) with t = 1 and  

y = 8000

We have y0 = y(0) = 29. We are also told that

y(30) = 29e 

k(30) = 37.

Solving this equation for k, we find

 e 

k(30) =
37
29

 30k = ln a37
29
b

 k =
1
30

 ln a37
29
b ≈ 0.008118.

Then the mass of the yeast in grams after t minutes is given by the equation

y = 29e(0.008118)t.

To solve the problem we find the time t for which y(t) = 58, which is twice the initial 

amount.

 29e(0.008118)t = 58

 (0.008118) t = ln a58
29
b

 t =
ln 2

0.008118
≈ 85.38

It takes about 85 minutes for the yeast population to double. 

In the next example we model the number of people within a given population who 

are infected by a disease which is being eradicated from the population. Here the constant 

of proportionality k is negative, and the model describes an exponentially decaying num-

ber of infected individuals.
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Radioactivity

Some atoms are unstable and can spontaneously emit mass or radiation. This process is 

called radioactive decay, and an element whose atoms go spontaneously through this 

process is called radioactive. Sometimes when an atom emits some of its mass through 

this process of radioactivity, the remainder of the atom re-forms to make an atom of some 

new element. For example, radioactive carbon-14 decays into nitrogen; radium, through a 

number of intermediate radioactive steps, decays into lead.

Experiments have shown that at any given time the rate at which a radioactive element 

decays (as measured by the number of nuclei that change per unit time) is approximately 

proportional to the number of radioactive nuclei present. Thus, the decay of a radioactive 

element is described by the equation dy>dt = -ky , k 7 0. It is conventional to use 

-k , with k 7 0, to emphasize that y is decreasing. If y0 is the number of radioactive 

nuclei present at time zero, the number still present at any later time t will be

y = y0 e-kt ,  k 7 0.

The half-life of a radioactive element is the time expected to pass until half of the 

radioactive nuclei present in a sample decay. It is an interesting fact that the half-life is a 

constant that does not depend on the number of radioactive nuclei initially present in the 

sample, but only on the radioactive substance.

To compute the half-life, let y0 be the number of radioactive nuclei initially present in 

the sample. Then the number y present at any later time t will be y = y0 e-kt. We seek the 

value of t at which the number of radioactive nuclei present equals half the original 

 number:

 y0 e-kt =
1
2

 y0

 e-kt =
1
2

 -kt = ln 
1
2

= - ln 2  Reciprocal Rule for logarithms

 t =
ln 2

k
.

This value of t is the half-life of the element. It depends only on the value of k; the number 

y0 does not have any effect.

The value of t that makes y = 1000. We set y equal to 1000 in Equation (6) and solve 

for t:

 1000 = 10,000e(ln 0.8)t

 e(ln 0.8)t = 0.1

 (ln 0.8)t = ln 0.1   Logs of both sides

 t =
ln 0.1
ln 0.8

≈ 10.32 years .

It will take a little more than 10 years to reduce the number of cases to 1000. (See 

Figure 7.17.) 

t

y

1050

1,000

5,000

10,000

y = 10,000e(ln 0.8)t

FIGURE 7.17 A graph of the number 

of people infected by a disease exhibits 

exponential decay (Example 4).

For radon-222 gas, t is measured in days 

and k = 0.18. For radium-226, which 

used to be painted on watch dials to 

make them glow at night (a dangerous 

practice), t is measured in years and 

k = 4.3 * 10-4.

 Half@life =
ln 2

k
 (7)
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EXAMPLE 5  The decay of radioactive elements can sometimes be used to date 

events from Earth’s past. In a living organism, the ratio of radioactive carbon, carbon-14, 

to ordinary carbon stays fairly constant during the lifetime of the organism, being approxi-

mately equal to the ratio in the organism’s atmosphere at the time. After the organism’s 

death, however, no new carbon is ingested, and the proportion of carbon-14 in the organ-

ism’s remains decreases as the carbon-14 decays.

Scientists who do carbon-14 dating often use a igure of 5730 years for its half-life. 

Find the age of a sample in which 10% of the radioactive nuclei originally present have 

decayed.

Solution We use the decay equation y = y0 e-kt. There are two things to find: the value 

of k and the value of t when y is 0.9y0 (90% of the radioactive nuclei are still present). That 

is, find t when y0 e-kt = 0.9y0 , or e-kt = 0.9.

The value of k. We use the half-life Equation (7):

k =
ln 2

half@life
=

ln 2
5730

  (about 1.2 * 10-4).

The value of t that makes e-kt = 0.9.

 e-kt = 0.9

 e-(ln 2>5730)t = 0.9

 -  
ln 2
5730

 t = ln 0.9   Logs of both sides

 t = -  
5730 ln 0.9

ln 2
≈ 871 years

The sample is about 871 years old. 

The effective radioactive lifetime of polonium-210 is so short that we measure it in 

days rather than years. The number of radioactive atoms remaining after t days in a sample 

that starts with y0 radioactive atoms is

y = y0 e-5 * 10-3 t.

The element’s half-life is

Half@life =
ln 2

k
  Eq. (7)

 =
ln 2

5 * 10-3
  The k from polonium’s decay equation

 ≈ 139 days.

This means that after 139 days, 1>2 of y0 radioactive atoms remain; after another 

139  days (278 days altogether) half of those remain, or 1>4 of y0 radioactive atoms 

remain, and so on (see Figure 7.18).

Carbon-14 dating uses the half-life of 

5730 years.

y = y0e–5×10
–3

t

y0

y0

y0

t (days)

Amount
present

Half-life

0 139 278

2
1

4
1

FIGURE 7.18 Amount of polonium-210 

present at time t, where y0 represents the 

number of radioactive atoms initially 

present.

Heat Transfer: Newton’s Law of Cooling

Hot soup left in a tin cup cools to the temperature of the surrounding air. A hot silver bar 

immersed in a large tub of water cools to the temperature of the surrounding water. In situ-

ations like these, the rate at which an object’s temperature is changing at any given time is 

roughly proportional to the difference between its temperature and the temperature of the 

surrounding medium. This observation is called Newton’s Law of Cooling, although it 

applies to warming as well.



404 Chapter 7 Transcendental Functions 

EXAMPLE 6  A hard-boiled egg at 98°C is put in a sink of 18°C water. After 5 min, 

the egg’s temperature is 38°C. Assuming that the water has not warmed appreciably, how 

much longer will it take the egg to reach 20°C?

Solution We find how long it would take the egg to cool from 98°C to 20°C and sub-

tract the 5 min that have already elapsed. Using Equation (9) with HS = 18 and H0 = 98, 

the egg’s temperature t min after it is put in the sink is

H = 18 + (98 - 18)e-kt = 18 + 80e-kt.

To find k, we use the information that H = 38 when t = 5:

 38 = 18 + 80e-5k

 e-5k =
1
4

 -5k = ln 
1
4

= - ln 4

 k =
1
5

 ln 4 = 0.2 ln 4  (about 0.28).

The egg’s temperature at time t is H = 18 + 80e-(0.2 ln 4)t. Now find the time t when 

H = 20:

 20 = 18 + 80e-(0.2 ln 4)t

 80e-(0.2 ln 4)t = 2

 e-(0.2 ln 4)t =
1
40

 -(0.2 ln 4)t = ln 
1
40

= - ln 40

 t =
ln 40

0.2 ln 4
≈ 13 min.

The egg’s temperature will reach 20°C about 13 min after it is put in the water to cool. 

Since it took 5 min to reach 38°C, it will take about 8 min more to reach 20°C. 

If H is the temperature of the object at time t and HS is the constant surrounding tem-

perature, then the differential equation is

 
dH

dt
= -k(H - HS). (8)

If we substitute y for (H - HS), then

 
dy

dt
=

d

dt
 (H - HS) =

dH

dt
-

d

dt
 (HS)

 =
dH

dt
- 0   HS is a constant.

 =
dH

dt

 = -k(H - HS)   Eq. (8)

 = -ky.   H - HS = y

We know that the solution of the equation dy>dt = -ky is y = y0 e-kt, where y(0) = y0. 

Substituting (H - HS) for y, this says that

 H - HS = (H0 - HS)e
-kt, (9)

where H0 is the temperature at t = 0. This equation is the solution to Newton’s Law of 

Cooling.
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Separable Differential Equations

Solve the differential equations in Exercises 9–22.

 9. 22xy  
dy

dx
= 1, x, y 7 0 10. 

dy

dx
= x22y, y 7 0

 11. 
dy

dx
= ex - y 12. 

dy

dx
= 3x2 e-y

 13. 
dy

dx
= 2y cos2 2y 14. 22xy  

dy

dx
= 1

 15. 2x  
dy

dx
= ey +2x , x 7 0 16. (sec x) 

dy

dx
= ey + sin x

 17. 
dy

dx
= 2x21 - y2 , -1 6 y 6 1

 18. 
dy

dx
=

e2x - y

ex + y
 19. y2 

dy

dx
= 3x2y3 - 6x2

 20. 
dy

dx
= xy + 3x - 2y - 6

Verifying Solutions

In Exercises 1–4, show that each function y = ƒ(x) is a solution of the 

accompanying differential equation.

 1. 2y′ + 3y = e-x

a. y = e-x b. y = e-x + e-(3>2)x

c. y = e-x + Ce-(3>2)x

 2. y′ = y2

a. y = -  
1
x  b. y = -  

1
x + 3

c. y = -  
1

x + C

 3. y =
1
x   L

x

1

 
et

t
 dt, x2y′ + xy = ex

 4. y =
1

21 + x4
    L

x

1

21 + t4 dt , y′ +
2x3

1 + x4
 y = 1

 21. 
1

x
 
dy

dx
= yex2

+ 22y ex2

 22. 
dy

dx
= ex - y + ex + e-y + 1

Applications and Examples

The answers to most of the following exercises are in terms of loga-

rithms and exponentials. A calculator can be helpful, enabling you to 

express the answers in decimal form.

 23. Human evolution continues The analysis of tooth shrinkage by 

C. Loring Brace and colleagues at the University of Michigan’s 

Museum of Anthropology indicates that human tooth size is con-

tinuing to decrease and that the evolutionary process has not yet 

come to a halt some 30,000 years ago. In northern Europeans, for 

example, tooth size reduction now has a rate of 1% per 1000 years.

a. If t represents time in years and y represents tooth size, use 

the condition that y = 0.99y0 when t = 1000 to ind the 

value of k in the equation y = y0  ekt. Then use this value of k 

to answer the following questions.

b. In about how many years will human teeth be 90% of their 

present size?

c. What will be our descendants’ tooth size 20,000 years from 

now (as a percentage of our present tooth size)?

 24. Atmospheric pressure The earth’s atmospheric pressure p is 

often modeled by assuming that the rate dp>dh at which p chang-

es with the altitude h above sea level is proportional to p. Suppose 

that the pressure at sea level is 1013 millibars (about 14.7 pounds 

per square inch) and that the pressure at an altitude of 20 km is 

90 millibars.

a. Solve the initial value problem

Differential equation: dp>dh = kp (k a constant)

Initial condition: p = p0  when  h = 0

to express p in terms of h. Determine the values of p0 and k 

from the given altitude-pressure data.

b. What is the atmospheric pressure at h = 50 km?

c. At what altitude does the pressure equal 900 millibars?

 25. First-order chemical reactions In some chemical reactions, 

the rate at which the amount of a substance changes with time is 

proportional to the amount present. For the change of d@glucono 

lactone into gluconic acid, for example,

dy

dt
= -0.6y

  when t is measured in hours. If there are 100 grams of d@glucono 

lactone present when t = 0, how many grams will be left after the 

irst hour?

 26. the inversion of sugar The processing of raw sugar has a step 

called “inversion” that changes the sugar’s molecular structure. 

Once the process has begun, the rate of change of the amount of 

raw sugar is proportional to the amount of raw sugar remaining. 

If 1000 kg of raw sugar reduces to 800 kg of raw sugar during 

the irst 10 hours, how much raw sugar will remain after another 

14 hours?

EXERCISES 7.4

Initial Value Problems

In Exercises 5–8, show that each function is a solution of the given 

initial value problem.

Diferential initial solution  

equation equation candidate

 5. y′ + y =
2

1 + 4e2x
 y(- ln 2) =

p

2
 y = e-x tan-1 (2ex)

 6. y′ = e-x2

- 2xy y(2) = 0 y = (x - 2)e-x2

 7. xy′ + y = -sin x , yap
2
b = 0 y =

cos x
x

  x 7 0

 8. x2y′ = xy - y2 , y(e) = e y =
x

ln x
  x 7 1
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 34. the U.s. population The U.S. Census Bureau keeps a running 

clock totaling the U.S. population. On September 20, 2012, the 

total was increasing at the rate of 1 person every 12 sec. The popu-

lation igure for 8:11 p.m. EST on that day was 314,419,198.

a. Assuming exponential growth at a constant rate, ind the rate 

constant for the population’s growth (people per 365-day year).

b. At this rate, what will the U.S. population be at 8:11 p.m. EST 

on September 20, 2019?

 35. oil depletion Suppose the amount of oil pumped from one of 

the canyon wells in Whittier, California, decreases at the continu-

ous rate of 10% per year. When will the well’s output fall to one-

ifth of its present value?

 36. continuous price discounting To encourage buyers to place 

100-unit orders, your irm’s sales department applies a continuous 

discount that makes the unit price a function p(x) of the number 

of units x ordered. The discount decreases the price at the rate of 

$0.01 per unit ordered. The price per unit for a 100-unit order is 

p(100) = +20.09.

a. Find p(x) by solving the following initial value problem:

Differential equation:     

dp

dx
 = -  

1
100

  p

Initial condition: p(100) = 20.09.

b. Find the unit price p(10) for a 10-unit order and the unit price 

p(90) for a 90-unit order.

c. The sales department has asked you to ind out if it is dis-

counting so much that the irm’s revenue, r(x) = x # p(x), will 

actually be less for a 100-unit order than, say, for a 90-unit 

order. Reassure them by showing that r has its maximum 

value at x = 100.

d. Graph the revenue function r(x) = xp(x) for 0 … x … 200.

 37. plutonium-239 The half-life of the plutonium isotope is 

24,360 years. If 10 g of plutonium is released into the atmosphere 

by a nuclear accident, how many years will it take for 80% of the 

isotope to decay?

 38. polonium-210 The half-life of polonium is 139 days, but your 

sample will not be useful to you after 95% of the radioactive nu-

clei present on the day the sample arrives has disintegrated. For 

about how many days after the sample arrives will you be able to 

use the polonium?

 39. the mean life of a radioactive nucleus Physicists using the ra-

dioactivity equation y = y0  e-kt call the number 1>k the mean life 

of a radioactive nucleus. The mean life of a radon nucleus is about 

1>0.18 = 5.6 days. The mean life of a carbon-14 nucleus is more 

than 8000 years. Show that 95% of the radioactive nuclei originally 

present in a sample will disintegrate within three mean lifetimes, 

i.e., by time t = 3>k. Thus, the mean life of a nucleus gives a quick 

way to estimate how long the radioactivity of a sample will last.

 40. californium-252 What costs $60 million per gram and can 

be used to treat brain cancer, analyze coal for its sulfur content, 

and detect explosives in luggage? The answer is californium-252, 

a radioactive isotope so rare that only 8 g of it have been made in 

the  Western world since its discovery by Glenn Seaborg in 1950. 

The half-life of the isotope is 2.645 years—long enough for a 

useful service life and short enough to have a high radioactivity 

per unit mass. One microgram of the isotope releases 170 million 

 neutrons per minute.

 27. Working underwater The intensity L(x) of light x feet beneath 

the surface of the ocean satisies the diferential equation

dL

dx
= -kL.

  As a diver, you know from experience that diving to 18 ft in the 

Caribbean Sea cuts the intensity in half. You cannot work with-

out artiicial light when the intensity falls below one-tenth of the 

surface value. About how deep can you expect to work without 

artiicial light?

 28. Voltage in a discharging capacitor Suppose that electricity is 

draining from a capacitor at a rate that is proportional to the volt-

age V across its terminals and that, if t is measured in seconds,

dV

dt
= -  

1
40

 V.

  Solve this equation for V, using V0 to denote the value of V when 

t = 0. How long will it take the voltage to drop to 10% of its 

original value?

 29. cholera bacteria Suppose that the bacteria in a colony can 

grow unchecked, by the law of exponential change. The colony 

starts with 1 bacterium and doubles every half-hour. How many 

bacteria will the colony contain at the end of 24 hours? (Under 

favorable laboratory conditions, the number of cholera bacteria 

can double every 30 min. In an infected person, many bacteria are 

destroyed, but this example helps explain why a person who feels 

well in the morning may be dangerously ill by evening.)

 30. growth of bacteria A colony of bacteria is grown under ideal 

conditions in a laboratory so that the population increases expo-

nentially with time. At the end of 3 hours there are 10,000 bac-

teria. At the end of 5 hours there are 40,000. How many bacteria 

were present initially?

 31. the incidence of a disease (Continuation of Example 4.) Sup-

pose that in any given year the number of cases can be reduced by 

25% instead of 20%.

a. How long will it take to reduce the number of cases to 1000?

b. How long will it take to eradicate the disease, that is, reduce 

the number of cases to less than 1?

 32. Drug concentration An antibiotic is administered intrave-

nously into the bloodstream at a constant rate r. As the drug lows 

through the patient’s system and acts on the infection that is pres-

ent, it is removed from the bloodstream at a rate proportional to 

the amount in the bloodstream at that time. Since the amount of 

blood in the patient is constant, this means that the concentration 

y = y(t) of the antibiotic in the bloodstream can be modeled by 

the diferential equation

dy

dt
= r - ky, k 7 0 and constant.

a. If y(0) = y0, ind the concentration y(t) at any time t.

b. Assume that y0 6 (r>k) and ind limySq y(t). Sketch the 

 solution curve for the concentration.

 33. Endangered species Biologists consider a species of animal 

or plant to be endangered if it is expected to become extinct within 

20 years. If a certain species of wildlife is counted to have 1147 mem-

bers at the present time, and the population has been steadily declining 

exponentially at an annual rate averaging 39% over the past 7 years, 

do you think the species is endangered? Explain your answer.
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 46. the sensitivity of carbon-14 dating to measurement To see 

the efect of a relatively small error in the estimate of the amount 

of carbon-14 in a sample being dated, consider this hypothetical 

situation:

a. A bone fragment found in central Illinois in the year 2000 

contains 17% of its original carbon-14 content. Estimate the 

year the animal died.

b. Repeat part (a), assuming 18% instead of 17%.

c. Repeat part (a), assuming 16% instead of 17%.

 47. carbon-14 The oldest known frozen human mummy, discov-

ered in the Schnalstal glacier of the Italian Alps in 1991 and called 

Otzi, was found wearing straw shoes and a leather coat with goat 

fur, and holding a copper ax and stone dagger. It was estimated 

that Otzi died 5000 years before he was discovered in the melting 

glacier. How much of the original carbon-14 remained in Otzi at 

the time of his discovery?

 48. Art forgery A painting attributed to Vermeer (1632–1675), 

which should contain no more than 96.2% of its original 

 carbon-14, contains 99.5% instead. About how old is the forgery?

 49. Lascaux cave paintings Prehistoric cave paintings of animals 

were found in the Lascaux Cave in France in 1940. Scientiic anal-

ysis revealed that only 15% of the original carbon-14 in the paint-

ings remained. What is an estimate of the age of the paintings?

 50. incan mummy The frozen remains of a young Incan woman 

were discovered by archeologist Johan Reinhard on Mt. Ampato 

in Peru during an expedition in 1995.

a. How much of the original carbon-14 was present if the esti-

mated age of the “Ice Maiden” was 500 years?

b. If a 1% error can occur in the carbon-14 measurement, what 

is the oldest possible age for the Ice Maiden?

a. What is the value of k in the decay equation for this isotope?

b. What is the isotope’s mean life? (See Exercise 39.)

c. How long will it take 95% of a sample’s radioactive nuclei to 

disintegrate?

 41. cooling soup Suppose that a cup of soup cooled from 90°C to 

60°C after 10 min in a room whose temperature was 20°C. Use 

Newton’s Law of Cooling to answer the following questions.

a. How much longer would it take the soup to cool to 35°C?

b. Instead of being left to stand in the room, the cup of 90°C 

soup is put in a freezer whose temperature is -15°C. How 

long will it take the soup to cool from 90°C to 35°C?

 42. A beam of unknown temperature An aluminum beam was 

brought from the outside cold into a machine shop where the tem-

perature was held at 65°F. After 10 min, the beam warmed to 35°F 

and after another 10 min it was 50°F. Use Newton’s Law of Cool-

ing to estimate the beam’s initial temperature.

 43. surrounding medium of unknown temperature A pan of 

warm water (46°C) was put in a refrigerator. Ten minutes later, the 

water’s temperature was 39°C; 10 min after that, it was 33°C. Use 

Newton’s Law of Cooling to estimate how cold the refrigerator was.

 44. silver cooling in air The temperature of an ingot of silver is 

60°C above room temperature right now. Twenty minutes ago, it 

was 70°C above room temperature. How far above room tempera-

ture will the silver be

a. 15 min from now?

b. 2 hours from now?

c. When will the silver be 10°C above room temperature?

 45. the age of crater Lake The charcoal from a tree killed in the 

volcanic eruption that formed Crater Lake in Oregon contained 

44.5% of the carbon-14 found in living matter. About how old is 

Crater Lake?

7.5 Indeterminate Forms and L’Hôpital’s Rule

Expressions such as “0>0” and “q>q” look something like ordinary numbers. We say 

that they have the form of a number. But values cannot be assigned to them in a way that is 

consistent with the usual rules to add and multiply numbers. We call these expressions 

“indeterminate forms.” Although they are not numbers, these indeterminate forms play a 

useful role in summarizing the limiting behavior of a function.

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-

tions whose numerators and denominators both approach zero or q. The rule is known 

today as l’Hôpital’s rule, after Guillaume de l’Hôpital, a French nobleman who wrote 

the earliest introductory differential calculus text, where the rule first appeared in print.

Indeterminate Form 0 ,0

If we want to know how the function

F(x) =
3x - sin x

x

behaves near x = 0 (where it is undefined), we can examine the limit of F(x) as x S 0. 

We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit 

of the denominator is 0. Moreover, in this case, both the numerator and denominator 
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approach 0, and 0>0 is undefined. Such limits may or may not exist in general, but the 

limit does exist for the function F(x) under discussion by applying l’Hôpital’s Rule, as we 

will see in Example 1d.

If the continuous functions ƒ(x) and g (x) are both zero at x = a, then

lim
xSa

 
ƒ(x)

g(x)

cannot be found by substituting x = a. The substitution produces 0>0, a meaningless 

expression, which we cannot evaluate. We use 0>0 as a notation for an expression that 

does not have a numerical value, known as an indeterminate form. Other meaningless 

expressions often occur, such as q>q, q # 0, q - q, 00, and 1q, which cannot be eval-

uated in a consistent way; these are called indeterminate forms as well. Sometimes, but 

not always, limits that lead to indeterminate forms may be found by cancelation, 

 rearrangement of terms, or other algebraic manipulations. This was our experience in 

Chapter 2. It took considerable analysis in Section 2.4 to find limxS0 (sin x)>x. But we 

have had success with the limit

ƒ′(a) = lim
xSa

 
ƒ(x) - ƒ(a)

x - a ,

from which we calculate derivatives and which produces the indeterminant form 0>0 if we 

attempt to substitute x = a. L’Hôpital’s Rule enables us to draw on our success with 

derivatives to evaluate limits for which substitution leads to indeterminate forms.

EXAMPLE 1  The following limits involve 0>0 indeterminate forms, so we apply 

l’Hôpital’s Rule. In some cases, it must be applied repeatedly.

(a) lim
xS0

 
3x - sin x

x = lim
xS0

 
3 - cos x

1
=

3 - cos x
1

`
x = 0

= 2

(b) lim
xS0

 
21 + x - 1

x = lim
xS0

 

1

221 + x

1
=

1
2

(c) lim
xS0

 
21 + x - 1 - x>2

x2
 

0

0
 ; apply l’Hôpital’s Rule.

      = lim
xS0

 
(1>2)(1 + x)-1>2 - 1>2

2x
 Still 

0

0
 ; apply l’Hôpital’s Rule again.

      = lim
xS0

 
-(1>4)(1 + x)-3>2

2
= -  

1
8

 Not 
0

0
 ; limit is found.

THEOREM 5—L’Hôpital’s Rule

Suppose that ƒ(a) = g(a) = 0, that ƒ and g are diferentiable on an open interval 

I containing a, and that g′(x) ≠ 0 on I if x ≠ a. Then

lim
xSa

   
ƒ(x)

g(x)
= lim

xSa
   
ƒ′(x)

g′(x)
,

assuming that the limit on the right side of this equation exists.

We give a proof of Theorem 5 at the end of this section.

caution 

To apply l’Hôpital’s Rule to ƒ>g, divide 

the derivative of ƒ by the derivative of 

g. Do not fall into the trap of taking the 

derivative of ƒ>g. The quotient to use is 

ƒ′>g′, not (ƒ>g)′.
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(d) lim
xS0

 
x - sin x

x3
 

0

0
 ; apply l’Hôpital’s Rule.

   = lim
xS0

 
1 - cos x

3x2
 Still 

0

0
 ; apply l’Hôpital’s Rule again.

    = lim
xS0

 
sin x
6x

 Still 
0

0
 ; apply l’Hôpital’s Rule again.

    = lim
xS0

 
cos x

6
=

1
6

 Not 
0

0
 ; limit is found. 

Here is a summary of the procedure we followed in Example 1.

Using L’Hôpital’s Rule

To find

lim
xSa

  
ƒ(x)

g(x)

by l’Hôpital’s Rule, we continue to differentiate ƒ and g, so long as we still get 

the form 0>0 at x = a. But as soon as one or the other of these derivatives is 

 different from zero at x = a we stop differentiating. L’Hôpital’s Rule does not 

apply when either the numerator or denominator has a finite nonzero limit.

EXAMPLE 2  Be careful to apply l’Hôpital’s Rule correctly:

 lim
xS0

  
1 - cos x

x + x2
    

0

0

= lim
xS0

  
sin x

1 + 2x
  Not 

0

0

It is tempting to try to apply l’Hôpital’s Rule again, which would result in

lim
xS0

  
cos x

2
=

1
2

,

but this is not the correct limit. L’Hôpital’s Rule can be applied only to limits that give 

indeterminate forms, and limxS0 (sin x)>(1 + 2x) does not give an indeterminate form. 

Instead, this limit is 0>1 = 0, and the correct answer for the original limit is 0. 

L’Hôpital’s Rule applies to one-sided limits as well.

EXAMPLE 3  In this example the one-sided limits are different.

(a) lim
xS0+

 
sin x

x2
 

0

0

   = lim
xS0+

 
cos x

2x
= q Positive for x 7 0

(b) lim
xS0-

 
sin x

x2
 

0

0

   = lim
xS0-

 
cos x

2x
= -q Negative for x 6 0 

Recall that q and +q mean the same 

thing.

Indeterminate Forms H ,H, H # 0, H − H

Sometimes when we try to evaluate a limit as x S a by substituting x = a we get an inde-

terminant form like q>q, q # 0, or q - q, instead of 0>0. We first consider the form 

q>q.
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EXAMPLE 6  Find the limit of this q - q form:

lim
xS0
a 1

sin x
-

1

x
b .

EXAMPLE 5  Find the limits of these q # 0 forms:

(a) lim
xSq
ax sin 

1
xb     (b) lim

xS0+
 2x ln x

Solution

(a) lim
xSq
ax sin 

1
xb = lim

hS0+
a1

h
 sin hb =  lim

hS0+
 
sin h

h
= 1  q # 0; let h = 1>x.

(b)  lim
xS0+

 2x ln x = lim
xS0+

 
ln x

1>2x
 q # 0 converted to q>q

 = lim
xS0+

 
1>x

-1>2x3>2  l’Hôpital’s Rule applied

 = lim
xS0+
1-22x2 = 0 

EXAMPLE 4  Find the limits of these q>q forms:

(a) lim
xSp>2  

sec x
1 + tan x

    (b) lim
xSq

  
ln x

22x
    (c) lim

xSq
  
ex

x2
.

Solution

(a) The numerator and denominator are discontinuous at x = p>2, so we investigate the 

one-sided limits there. To apply l’Hôpital’s Rule, we can choose I to be any open in-

terval with x = p>2 as an endpoint.

lim
xS (p>2)-

 
sec x

1 + tan x
  

q
q from the left so we apply l’Hôpital’s Rule.

     = lim
xS (p>2)-

 
sec x tan x

sec2 x
= lim

xS (p>2)-
 sin x = 1

The right-hand limit is 1 also, with (-q)>(-q) as the indeterminate form. Therefore, 

the two-sided limit is equal to 1.

(b) lim
xSq

  
ln x

22x
= lim

xSq
  

1>x
1>2x

= lim
xSq

  
1

2x
= 0  

1>x
1>2x

=
2x
x =

1

2x

(c) lim
xSq

  
ex

x2
= lim

xSq
  
ex

2x
= lim

xSq
  
ex

2
= q 

Next we turn our attention to the indeterminate forms q # 0 and q - q. Sometimes 

these forms can be handled by using algebra to convert them to a 0>0 or q>q form. Here 

again we do not mean to suggest that q # 0 or q - q is a number. They are only nota-

tions for functional behaviors when considering limits. Here are examples of how we 

might work with these indeterminate forms.

More advanced treatments of calculus prove that l’Hôpital’s Rule applies to the inde-

terminate form q>q, as well as to 0>0. If ƒ(x) S {q and g(x) S {q as x S a, then

lim
xSa

  
ƒ(x)

g(x)
= lim

xSa
  
ƒ′(x)

g′(x)

provided the limit on the right exists. In the notation x S a, a may be either finite or infi-

nite. Moreover, x S a may be replaced by the one-sided limits x S a+ or x S a-.
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If limxSa ln ƒ(x) = L, then

lim
xSa

 ƒ(x) = lim
xSa

 eln ƒ(x) = eL.

Here a may be either finite or infinite.

Solution If x S 0+, then sin x S 0+ and

1
sin x

-
1
x

S q - q.

Similarly, if x S 0-, then sin x S 0- and

1
sin x

-
1
x

S - q - (-q) = -q + q.

Neither form reveals what happens in the limit. To find out, we first combine the fractions:

1
sin x

-
1
x

=
x - sin x

x sin x
.  Common denominator is x sin x.

Then we apply l’Hôpital’s Rule to the result:

 lim
xS0
a 1

sin x
-

1
x
b = lim

xS0
  
x - sin x

x sin x
 

0

0

 = lim
xS0

  
1 - cos x

sin x + x cos x
  Still 

0

0

 = lim
xS0

  
sin x

2 cos x - x sin x
=

0
2

= 0. 

Indeterminate Powers

Limits that lead to the indeterminate forms 1q, 00, and q0 can sometimes be handled by 

first taking the logarithm of the function. We use l’Hôpital’s Rule to find the limit of the 

logarithm expression and then exponentiate the result to find the original function limit. 

This procedure is justified by the continuity of the exponential function and Theorem 10 in 

Section 2.5, and it is formulated as follows. (The formula is also valid for one-sided limits.)

EXAMPLE 7  Apply l’Hôpital’s Rule to show that limxS0+ (1 + x)1>x = e.

Solution The limit leads to the indeterminate form 1q. We let ƒ(x) = (1 + x)1>x and 

find limxS0+ ln ƒ(x). Since

ln ƒ(x) = ln (1 + x)1>x =
1
x ln (1 + x),

l’Hôpital’s Rule now applies to give

 lim
xS0+

 ln ƒ(x) = lim
xS0+

 
ln (1 + x)

x   
0

0

 = lim
xS0+

 

1
1 + x

1
  l’Hôpital’s Rule applied

 =
1
1

= 1.

Therefore, lim
xS0+

 (1 + x)1>x = lim
xS0+

 ƒ(x) = lim
xS0+

 eln ƒ(x) = e1 = e. 
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EXAMPLE 8  Find limxSq x1>x.
Solution The limit leads to the indeterminate form q0. We let ƒ(x) = x1>x and find 

limxSq ln ƒ(x). Since

 ln ƒ(x) = ln x1>x =
ln x

x ,

l’Hôpital’s Rule gives

 lim
xSq

 ln ƒ(x) = lim
xSq

 
ln x

x   
q
q

 = lim
xSq

 
1>x
1

  l’Hôpital’s Rule applied

 =
0
1

= 0.

Therefore lim
xSq

 x1>x = lim
xSq

 ƒ(x) = lim
xSq

 eln ƒ(x) = e0 = 1. 

Proof of L’Hôpital’s Rule

Before we prove l’Hôpital’s Rule, we consider a special case to provide some geometric 

insight for its reasonableness. Consider the two functions ƒ(x) and g(x) having continuous 

derivatives and satisfying ƒ(a) = g(a) = 0, g′(a) ≠ 0. The graphs of ƒ(x) and g(x), 

together with their linearizations y = ƒ′(a)(x - a) and y = g′(a)(x - a), are shown in 

Figure 7.19. We know that near x = a, the linearizations provide good approximations to 

the functions. In fact,

ƒ(x) = ƒ′(a)(x - a) + e1(x - a) and g(x) = g′(a)(x - a) + e2(x - a)

where e1 S 0 and e2 S 0 as x S a. So, as Figure 7.19 suggests,

 lim
xSa

  
ƒ(x)

g(x)
= lim

xSa
  
ƒ′(a)(x - a) + e1(x - a)

g′(a)(x - a) + e2(x - a)

 = lim
xSa

  
ƒ′(a) + e1

g′(a) + e2
=

ƒ′(a)

g′(a)
  g′(a) ≠ 0

 = lim
xSa

  
ƒ′(x)

g′(x)
,   Continuous derivatives

as asserted by l’Hôpital’s Rule. We now proceed to a proof of the rule based on the more 

general assumptions stated in Theorem 5, which do not require that g′(a) ≠ 0 and that the 

two functions have continuous derivatives.

The proof of l’Hôpital’s Rule is based on Cauchy’s Mean Value Theorem, an exten-

sion of the Mean Value Theorem that involves two functions instead of one. We prove 

Cauchy’s Theorem first and then show how it leads to l’Hôpital’s Rule.

0 a

y

y = ƒ′(a)(x − a)

y = g′(a)(x − a)

ƒ(x)

g(x)

x

FIGURE 7.19 The two functions in 

l’Hôpital’s Rule, graphed with their linear 

approximations at x = a.

HistoricAL BiogrApHy

Augustin-Louis cauchy

(1789–1857)

www.goo.gl/0RQbxf

When g(x) = x, Theorem 6 is the Mean 

Value Theorem in Chapter 4.

THEOREM 6—Cauchy’s Mean Value Theorem

Suppose functions ƒ and g are continuous on 3a, b4  and diferentiable throughout 

(a, b) and also suppose g′(x) ≠ 0 throughout (a, b). Then there exists a number 

c in (a, b) at which

ƒ′(c)

g′(c)
=

ƒ(b) - ƒ(a)

g(b) - g(a)
.

http://www.goo.gl/0RQbxf
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Proof  We apply the Mean Value Theorem of Section 4.2 twice. First we use it to show 

that g(a) ≠ g(b). For if g(b) did equal g(a), then the Mean Value Theorem would give

g′(c) =
g(b) - g(a)

b - a
= 0

for some c between a and b, which cannot happen because g′(x) ≠ 0 in (a, b).

We next apply the Mean Value Theorem to the function

F(x) = ƒ(x) - ƒ(a) -
ƒ(b) - ƒ(a)

g(b) - g(a)
 3g(x) - g(a)4 .

This function is continuous and differentiable where ƒ and g are, and F(b) = F(a) = 0. 

Therefore, there is a number c between a and b for which F′(c) = 0. When expressed in 

terms of ƒ and g, this equation becomes

F′(c) = ƒ′(c) -
ƒ(b) - ƒ(a)

g(b) - g(a)
 3g′(c)4 = 0

so that

 
ƒ′(c)

g′(c)
=

ƒ(b) - ƒ(a)

g(b) - g(a)
. 

Cauchy’s Mean Value Theorem has a geometric interpretation for a general winding 

curve C in the plane joining the two points A = (g(a), ƒ(a)) and B = (g(b), ƒ(b)). In 

Chapter 11 you will learn how the curve C can be formulated to show that there is at least 

one point P on the curve for which the tangent line to the curve at P is parallel to the secant 

line joining the points A and B. The slope of that tangent line turns out to be the quotient 

ƒ′>g′ evaluated at the number c in the interval (a, b), which is the left-hand side of the 

equation in Theorem 6. Because the slope of the secant line joining A and B is

ƒ(b) - ƒ(a)

g(b) - g(a)
,

the equation in Cauchy’s Mean Value Theorem says that the slope of the tangent line 

equals the slope of the secant line. This geometric interpretation is shown in Figure 7.20. 

Notice from the figure that it is possible for more than one point on the curve C to have a 

tangent line that is parallel to the secant line joining A and B.

Proof of l’Hôpital’s Rule  We first establish the limit equation for the case x S a+. 

The method needs almost no change to apply to x S a-, and the combination of these two 

cases establishes the result.

Suppose that x lies to the right of a. Then g′(x) ≠ 0, and we can apply Cauchy’s Mean 

Value Theorem to the closed interval from a to x. This step produces a number c between 

a and x such that

ƒ′(c)

g′(c)
=

ƒ(x) - ƒ(a)

g(x) - g(a)
.

But ƒ(a) = g(a) = 0, so

ƒ′(c)

g′(c)
=

ƒ(x)

g(x)
.

As x approaches a, c approaches a because it always lies between a and x. Therefore,

lim
xSa+

  
ƒ(x)

g(x)
= lim

cSa+
  
ƒ′(c)

g′(c)
= lim

xSa+
  
ƒ′(x)

g′(x)
,

which establishes l’Hôpital’s Rule for the case where x approaches a from above. The case 

where x approaches a from below is proved by applying Cauchy’s Mean Value Theorem to 

the closed interval 3x, a4 , x 6 a. 

0

y

(g(a), ƒ(a))

(g(b), ƒ(b))
P

B

A

slope =
ƒ(b) − ƒ(a)

g(b) − g(a)

x

slope =
ƒ′(c)

g′(c)

FIGURE 7.20 There is at least one point 

P on the curve C for which the slope of the 

tangent line to the curve at P is the same 

as the slope of the secant line joining the 

points A(g(a), ƒ(a)) and B(g(b), ƒ(b)).
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Finding Limits in Two Ways

In Exercises 1–6, use l’Hôpital’s Rule to evaluate the limit. Then 

evaluate the limit using a method studied in Chapter 2.

 1. lim
xS-2

 
x + 2

x2 - 4
 2. lim

xS0
 
sin 5x

x  3. lim
xSq

 
5x2 - 3x

7x2 + 1

 4. lim
xS1

 
x3 - 1

4x3 - x - 3
 5. lim

xS0
 
1 - cos x

x2
 6. lim

xSq
 

2x2 + 3x

x3 + x + 1

Applying l’Hôpital’s Rule

Use l’Hôpital’s rule to find the limits in Exercises 7–50.

 7. lim
xS2

 
x - 2

x2 - 4
 8. lim

xS - 5
 
x2 - 25

x + 5

 9. lim
tS-3 

t3 - 4t + 15

t2 - t - 12
 10. lim

tS-1
 

3t3 + 3

4t3 - t + 3

 11. lim
xSq

 
5x3 - 2x

7x3 + 3
 12. lim

xSq
 

x - 8x2

12x2 + 5x

 13. lim
tS0

 
sin t2

t
 14. lim

tS0
 
sin 5t

2t

 15. lim
xS0

 
8x2

cos x - 1
 16. lim

xS0
 
sin x - x

x3

 17. lim
uSp>2 

2u - p

cos (2p - u)
 18. lim

uS-p>3 
3u + p

sin (u + (p>3))

 19. lim
uSp>2 

1 - sin u

1 + cos 2u
 20. lim

xS1
 

x - 1
ln x - sin px

 21. lim
xS0

  
x2

ln (sec x)
 22. lim

xSp>2 
ln (csc x)

(x - (p>2))2

 23. lim
tS0

 
t(1 - cos t)

t - sin t
 24. lim

tS0
 

t sin t
1 - cos t

 25. lim
xS (p>2)-

ax -
p

2
b  sec x 26. lim

xS (p>2)-
 ap

2
- xb  tan x

 27. lim
uS0

 
3sin u - 1

u
 28. lim

uS0
 
(1>2)u - 1

u

 29. lim
xS0

 
x2x

2x - 1
 30. lim

xS0
 
3x - 1
2x - 1

 31. lim
xSq

 
ln (x + 1)

log2 x
 32. lim

xSq
 

log2 x

log3 (x + 3)

 33. lim
xS0+

 
ln (x2 + 2x)

ln x
 34. lim

xS0+
 
ln (ex - 1)

ln x

 35. lim
yS0

 
25y + 25 - 5

y  36. lim
yS0

 
2ay + a2 - a

y , a 7 0

 37. lim
xSq

 (ln 2x - ln (x + 1)) 38. lim
xS0+

 (ln x - ln sin x)

 39. lim
xS0+

 
(ln x)2

ln (sin x)
 40. lim

xS0+
 a3x + 1

x -
1

sin x
b

 41. lim
xS1+

 a 1
x - 1

-
1

ln x
b  42. lim

xS0+
 (csc x - cot x + cos x)

 43. lim
uS0

 
cos u - 1

eu - u - 1
 44. lim

hS0
 
eh - (1 + h)

h2

 45. lim
tSq

 
et + t2

et - t
 46. lim

xSq
 x2e-x

 47.  lim
xS0

 
x - sin x

x tan x
 48. lim

xS0
 
(ex - 1)2

x sin x

 49. lim
uS0

 
u - sin u cos u

tan u - u
 50. lim

xS0
 
sin 3x - 3x + x2

sin x sin 2x

EXERCISES 7.5

Indeterminate Powers and Products

Find the limits in Exercises 51–66.

 51. lim
xS1+

 x1>(1 - x) 52. lim
xS1+

 x1>(x - 1) 53. lim
xSq

 (ln x)1>x
 54. lim

xSe+
 (ln x)1>(x - e) 55. lim

xS0+
 x-1>ln x 56. lim

xS  q
 x1>ln x

 57. lim
xSq

 (1 + 2x)1>(2 ln x) 58. lim
xS0

 (ex + x)1>x 59. lim
xS0+   

xx

 60. lim
xS0+

 a1 +
1
xb x

 61. lim
xSq

 ax + 2
x - 1

b x

 62. lim
xSq

 ax2 + 1
x + 2

b1>x
 63. lim

xS0+
 x2 ln x 64. lim

xS0+
 x (ln x)2

 65. lim
xS0+

 x tan ap
2

- xb  66. lim
xS0+

 sin x # ln x

Theory and Applications

L’Hôpital’s Rule does not help with the limits in Exercises 67–74. Try 

it—you just keep on cycling. Find the limits some other way.

 67. lim
xSq

 
29x + 1

2x + 1
 68. lim

xS0+
 
2x

2sin x
 69. lim

xS (p>2)-
  
sec x
tan x

 70. lim
xS0+

  
cot x
csc x 71. lim

xSq
 
2x - 3x

3x + 4x 72. lim
xS-q

 
2x + 4x

5x - 2x

 73. lim
xSq 

 
ex2

xex 74. lim
xS0+

 
x

e-1>x
 75. Which one is correct, and which one is wrong? Give reasons for 

your answers.

a. lim
xS3

  
x - 3

x2 - 3
= lim

xS3
  
1
2x

=
1
6

  b. lim
xS3

  
x - 3

x2 - 3
=

0
6

= 0

 76. Which one is correct, and which one is wrong? Give reasons for 

your answers.

a.  lim
xS0 

 
x2 - 2x

x2 - sin x
= lim

xS0
 

2x - 2
2x - cos x

 = lim
xS0

 
2

2 + sin x
=

2
2 + 0

= 1

b.  lim
xS0 

 
x2 - 2x

x2 - sin x
= lim

xS0
 

2x - 2
2x - cos x

=
-2

0 - 1
= 2
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a. Use l’Hôpital’s Rule to show that

lim
xSq

 a1 +
1
xb x

= e.

b. Graph

ƒ(x) = a1 +
1

x2
b x

 and g(x) = a1 +
1
xb x

together for x Ú 0. How does the behavior of ƒ compare 

with that of g? Estimate the value of limxSq ƒ(x).

c. Conirm your estimate of limxSq ƒ(x) by calculating it with 

l’Hôpital’s Rule.

 85. Show that

lim
kSq

 a1 +
r

k
b k

= er.

 86. Given that x 7 0, ind the maximum value, if any, of

a. x1>x  b. x1>x2

  c. x1>xn

 (n a positive integer)

d. Show that limxSq x1>xn

= 1 for every positive integer n.

 87. Use limits to ind horizontal asymptotes for each function.

a. y = x tan a1xb  b. y =
3x + e2x

2x + e3x

 88. Find ƒ′(0) for ƒ(x) = e e-1/x2

, x ≠ 0

0, x = 0.

 89. the continuous extension of (sin x)x to 30, P 4

a. Graph ƒ(x) = (sin x)x on the interval 0 … x … p. What 

value would you assign to ƒ to make it continuous at x = 0?

b. Verify your conclusion in part (a) by inding limxS0+ ƒ(x) 

with l’Hôpital’s Rule.

c. Returning to the graph, estimate the maximum value of ƒ on 30, p4 . About where is max ƒ taken on?

d. Sharpen your estimate in part (c) by graphing ƒ′ in the same 

window to see where its graph crosses the x-axis. To simplify 

your work, you might want to delete the exponential factor 

from the expression for ƒ′ and graph just the factor that has a 

zero.

 90. the function (sin x)tan x (Continuation of Exercise 89.)

a. Graph ƒ(x) = (sin x)tan x on the interval -7 … x … 7. How 

do you account for the gaps in the graph? How wide are the 

gaps?

b. Now graph ƒ on the interval 0 … x … p. The function is not 

deined at x = p>2, but the graph has no break at this point. 

What is going on? What value does the graph appear to give 

for ƒ at x = p>2? (Hint: Use l’Hôpital’s Rule to ind lim ƒ 

as x S (p>2)- and x S (p>2)+.)

c. Continuing with the graphs in part (b), ind max ƒ and min ƒ 

as accurately as you can and estimate the values of x at which 

they are taken on.

T

T

T

 77. Only one of these calculations is correct. Which one? Why are the 

others wrong? Give reasons for your answers.

a. lim
xS0+

 x ln x = 0 # (-q) = 0

b. lim
xS0+

 x ln x = 0 # (-q) = -q

c. lim
xS0+

 x ln x = lim
xS0+

 
ln x

(1>x)
=

-q
q = -1

d.  lim
xS0+

 x ln x = lim
xS0+

 
ln x

(1>x)

 = lim
xS0+

 
(1>x)

(-1>x2)
= lim

xS0+
 (-x) = 0

 78. Find all values of c that satisfy the conclusion of Cauchy’s Mean 

Value Theorem for the given functions and interval.

a. ƒ(x) = x,  g(x) = x2,  (a, b) = (-2, 0)

b. ƒ(x) = x,  g(x) = x2,  (a, b) arbitrary

c. ƒ(x) = x3>3 - 4x,  g(x) = x2,  (a, b) = (0, 3)

 79. continuous extension Find a value of c that makes the function

ƒ(x) = c 9x - 3 sin 3x

5x3
, x ≠ 0

c, x = 0

  continuous at x = 0. Explain why your value of c works.

 80. For what values of a and b is

lim
xS0

 atan 2x

x3
+

a

x2
+

sin bx
x b = 0?

 81. H −  H Form

a. Estimate the value of

lim
xSq

 1x - 2x2 + x2
by graphing ƒ(x) = x - 2x2 + x over a suitably large 

interval of x-values.

b. Now conirm your estimate by inding the limit with 

l’Hôpital’s Rule. As the irst step, multiply ƒ(x) by the frac-

tion 1x + 2x2 + x2>1x + 2x2 + x2 and simplify the new 

numerator.

 82. Find lim
xSq

 12x2 + 1 - 2x2.
 83. 0 ,0 Form Estimate the value of

lim
xS1

 
2x2 - (3x + 1)2x + 2

x - 1

  by graphing. Then conirm your estimate with l’Hôpital’s Rule.

 84. This exercise explores the diference between the limit

lim
xSq

 a1 +
1

x2
b x

  and the limit

lim
xSq

 a1 +
1
xb x

= e.

T

T
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Since these restricted functions are now one-to-one, they have inverses, which we 

denote by

 y = sin-1 x or y = arcsin x,    y = cos-1 x or y = arccos x

 y = tan-1 x or y = arctan x,    y = cot-1 x or y = arccot x

 y = sec-1 x or  y = arcsec x,  y = csc-1 x or y = arccsc x

These equations are read “y equals the arcsine of x” or “y equals arcsin x” and so on.

caution The -1 in the expressions for the inverse means “inverse.” It does not mean 

reciprocal. For example, the reciprocal of sin x is (sin x)-1 = 1>sin x = csc x. 

7.6 Inverse Trigonometric Functions

Inverse trigonometric functions arise when we want to calculate angles from side mea-

surements in triangles. They also provide useful antiderivatives and appear frequently in 

the solutions of differential equations. This section shows how these functions are defined, 

graphed, and evaluated, how their derivatives are computed, and why they appear as 

important antiderivatives.

Defining the Inverse Trigonometric Functions

The six basic trigonometric functions are not one-to-one (since their values repeat periodi-

cally). However, we can restrict their domains to intervals on which they are one-to-one. 

The sine function increases from -1 at x = -p>2 to +1 at x = p>2. By restricting its 

domain to the interval 3-p>2, p>2] we make it one-to-one, so that it has an inverse 

which is called arcsin x (Figure 7.21). Similar domain restrictions can be applied to all six 

trigonometric functions.

Domain:
Range:

x

y

1−1

x = sin y

p
2

p
2

−

y = arcsin x
−1 ≤ x ≤ 1

−p�2 ≤ y ≤ p�2

FIGURE 7.21 The graph of y = arcsin x.

Domain restrictions that make the trigonometric functions one-to-one

x

y

0 p
2

p
2

-

sin x

- 1

1

y = sin x

Domain: 3-p>2, p>24
Range: 3-1, 14

0
- 1

1

p p
2

cos x

x

y

y = cos x

Domain: 30, p4
Range: 3-1, 14

tan x

x

y

0 p
2

p
2

-

y = tan x

Domain: (-p>2, p>2)

Range: (-q, q)

0 p p
2

cot x

x

y

y = cot x

Domain: (0, p)

Range: (-q, q)

0

1

pp
2

sec x

x

y

- 1

y = sec x

Domain: 30, p>2) ∪ (p>2, p4
Range: (-q, -14 ∪ 31, q)

0

1

- 1

p
2

-    
p
2

csc x

x

y

y = csc x

Domain: 3-p>2, 0) ∪ (0, p>24
Range: (-q, -14 ∪ 31, q)
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EXAMPLE 1  Evaluate (a) arcsin a23
2
b  and (b) arccos a-1

2
b .

Solution

(a) We see that

arcsin a23
2
b =

p
3

 because sin (p>3) = 23>2 and p>3 belongs to the range 3-p>2, p>24  of the arc-

sine function. See Figure 7.25a.

The graphs of the six inverse trigonometric functions are obtained by reflecting the 

graphs of the restricted trigonometric functions through the line y = x. Figure 7.22b 

shows the graph of y = arcsin x and Figure 7.23 shows the graphs of all six functions. We 

now take a closer look at these functions.

x

y

x

y

1

−1

0

0 1−1

(a)

(b)

p
2

p
2

p
2

−

p
2

−

y = sin x, p
2

p
2

− ≤ x ≤

Domain:

Range:

[−p�2, p�2]

[−1, 1] 

x = sin y

y = arcsin x 

Domain:

Range:

[−1, 1] 

[−p�2, p�2]

FIGURE 7.22 The graphs of (a) 

y = sin x, -p>2 … x … p>2, and (b) its 

inverse, y = arcsin x. The graph of arcsin 

x, obtained by reflection across the line 

y = x, is a portion of the curve x = sin y.

x

y

p
2

p
2

−

1−1

(a)

Domain:

Range:

−1 ≤ x ≤ 1

≤ y ≤p
2

−
p
2

y = arcsin x 

x

y

p

p

2

1−1

Domain:

Range:

−1 ≤ x ≤ 1

0 ≤ y ≤ p

(b)

y = arccos x 

x

y

(c)

Domain: −∞ < x < ∞

Range: < y <
p
2

−
p
2

1−1−2 2

p
2

p
2

−

y = arctan x 

x

y

(d)

Domain:

Range:

x ≤ −1 or x ≥ 1

0 ≤ y ≤ p, y ≠

1−1−2 2

y = arcsec x 

p

p
2

p
2

x

y

Domain:

Range:

x ≤ −1 or x ≥ 1

≤ y ≤ , y ≠ 0p
2

−
p
2

(e)

1−1−2 2

p
2

p
2

−

y = arccsc x 

x

y

Domain:

Range: 0 < y < p

(f )

p

p
2

1−1−2 2

y = arccot x 

−∞ < x < ∞

FIGURE 7.23 Graphs of the six basic inverse trigonometric functions.

DEFINITION

 y = arcsin x is the number in 3-p>2, p>24   for which sin y = x.

 y = arccos x is the number in 30, p4  for which cos y = x.

The Arcsine and Arccosine Functions

We define the arcsine and arccosine as functions whose values are angles (measured in 

radians) that belong to restricted domains of the sine and cosine functions.

The graph of y = arcsin x (Figure 7.22b) is symmetric about the origin (it lies along the 

graph of x = sin y). The arcsine is therefore an odd function:

 arcsin (-x) = -arcsin x. (1)

The graph of y = arccos x (Figure 7.24b) has no such symmetry.

the “Arc” in Arcsine and Arccosine

For a unit circle and radian angles, the 

arc length equation s = ru becomes 

s = u, so central angles and the arcs 

they subtend have the same measure. If 

x = sin y, then, in addition to being the 

angle whose sine is x, y is also the length 

of the arc on the unit circle that subtends 

an angle whose sine is x. So we call y 

“the arc whose sine is x.”

Arc whose sine is x

Arc whose

cosine is x

x2 +  y2 =  1

Angle whose

sine is x

Angle whose

cosine is x

x

y

0 x 1
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(b) We have

arccos a-1
2
b =

2p
3

 because cos (2p>3) = -1>2 and 2p>3 belongs to the range 30, p4  of the arccosine 

function. See Figure 7.25b. 

Using the same procedure illustrated in Example 1, we can create the following table of 

common values for the arcsine and arccosine functions.

x arcsin x arccos x

 23>2  p>3  p>6
 22>2  p>4  p>4
 1>2  p>6  p>3
 -1>2  -p>6  2p>3
 -22>2  -p>4  3p>4
 -23>2  -p>3  5p>6

x

y

x

y

0 p p
2

y = cos x, 0 ≤ x ≤ p
Domain:

Range:

[0, p]

[−1, 1] 

y = arccos x 

Domain:

Range:

[−1, 1] 

[0, p]

1

−1

(a)

(b)

p

p

2

0−1 1

x = cos y

FIGURE 7.24 The graphs of  

(a) y = cos x, 0 … x … p, and  

(b) its inverse, y = arccos x. The graph 

of arccos x, obtained by reflection across 

the line y = x, is a portion of the curve 

x = cos y.

arccos

x

y

p
3

0 1

2 "3

p
3

sin = "3
2

p
3

arcsin ="3
2

(a)

a  b

0−1
x

y

"3

2
p

3
2

3
2p

−
1
2

=

3
2p

cos = –
1
2

(b)

a  b

FIGURE 7.25 Values of the arcsine and arccosine functions 

(Example 1).

EXAMPLE 2  During a 240 mi airplane flight from Chicago to St. Louis, after flying 

180 mi the navigator determines that the plane is 12 mi off course, as shown in Figure 7.26. 

Find the angle a for a course parallel to the original correct course, the angle b, and the 

drift correction angle c = a + b.

Solution From the Pythagorean theorem and given information, we compute an approxi-

mate hypothetical flight distance of 179 mi, had the plane been flying along the original 

correct course (see Figure 7.26). Knowing the flight distance from Chicago to St. Louis, we 

next calculate the remaining leg of the original course to be 61 mi. Applying the Pythagorean 

theorem again then gives an approximate distance of 62 mi from the position of the plane to 

St. Louis. Finally, from Figure 7.26, we see that 180 sin a = 12 and 62 sin b = 12, so

 a = arcsin 
12
180

≈ 0.067 radian ≈ 3.8°

 b = arcsin 
12
62

≈ 0.195 radian ≈ 11.2°

  c = a + b ≈ 15°.  

Chicago

Plane position
St. Louis

62
61 12

180

179

a

b

c

FIGURE 7.26 Diagram for drift correc-

tion (Example 2), with distances sur-

rounded to the nearest mile (drawing not 

to scale).

arccos x

x

y

0−x x−1 1

arccos(−x)

FIGURE 7.27 arccos x and arccos (-x) 

are supplementary angles (so their sum is p).

Identities Involving Arcsine and Arccosine

As we can see from Figure 7.27, the arccosine of x satisfies the identity

 arccos x + arccos (-x) = p, (2)
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DEFINITIONS

y = arctan x is the number in (-p>2, p>2) for which tan y = x.

y = arccot x is the number in (0, p) for which cot y = x.

y = arcsec x is the number in 30, p>2) ∪ (p>2, p4  for which sec y = x.

y = arccsc x is the number in 3-p>2, 0) ∪ (0, p>24  for which csc y = x.

We use open or half-open intervals to avoid values for which the tangent, cotangent, 

secant, and cosecant functions are undefined. (See Figure 7.23.)

Just as the inverse sine and the inverse cosine functions are often written as arcsin x 

and arccos x instead of sin-1 x and cos-1 x, we denote the other inverse trigonometric 

functions both by tan-1 x, cot-1 x, sec-1 x and csc-1 x, and by arctan x, arccot x, arcsec x, 

and arccsc x.

The graph of y = arctan x is symmetric about the origin because it is a branch of the 

graph x = tan y that is symmetric about the origin (Figure 7.23c). Algebraically this 

means that

arctan (-x) = -arctan x;

the arctangent is an odd function. The graph of y = arccot x has no such symmetry 

(Figure 7.23d). Notice from Figure 7.23a that the graph of the arctangent function has two 

horizontal asymptotes: one at y = p>2 and the other at y = -p>2.

The inverses of the restricted forms of sec x and csc x are chosen to be the functions 

graphed in Figures 7.23e and 7.24f.

caution There is no general agreement about how to deine arcsec x for negative values 

of x. We chose angles in the second quadrant between p>2 and p. This choice makes 

arcsec x = arccos (1>x). It also makes arcsec x an increasing function on each interval of 

its domain. Some tables choose arcsec x to lie in 3-p, -p>2) for x 6 0 and some texts 

choose it to lie in 3p, 3p>2) (Figure 7.29). These choices simplify the formula for the 

derivative (our formula needs absolute value signs) but fail to satisfy the computational 

equation arcsec x = arccos (1>x). From this, we can derive the identity

 arcsec x = arccos a1xb =
p
2

 -  arcsin a1xb  (5)

by applying Equation (4). 

or

 arccos (-x) = p - arccos x. (3)

Also, we can see from the triangle in Figure 7.28 that for x 7 0,

 arcsin x + arccos x = p>2. (4)

Equation (4) holds for the other values of x in 3-1, 1] as well, but we cannot conclude this 

from the triangle in Figure 7.28. It is, however, a consequence of Equations (1) and (3) 

(Exercise 119).

Inverses of tan x, cot x, sec x, and csc x

The graphs of these four basic inverse trigonometric functions were shown in Figure 7.23. 

We obtain these graphs by reflecting the graphs of the restricted trigonometric functions 

through the line y = x. The arctangent of x is a radian angle whose tangent is x. The arc-

cotangent of x is an angle whose cotangent is x, and so forth. The angles belong to the 

restricted domains of the tangent, cotangent, secant, and cosecant functions.

arcsin x

arccos x1
x

FIGURE 7.28 arcsin x and arccos x are 

complementary angles (so their sum is 

p>2).

3p
2

y = arcsec x

−1 10

p
2

3p
2

p
2

−

−

x

y

p

−p

Domain: 0 x 0  ≥ 1

Range: 0 ≤ y ≤ p, y ≠
p
2

B

A

C

FIGURE 7.29 There are several 

logical choices for the left-hand branch 

of y = arcsec x. With choice A, 

arcsec x = arccos (1>x), a useful identity 

employed by many calculators.
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EXAMPLE 3  The accompanying figures show two values of arctan x.

a       b

x

y

0
x

y

0

1

2

3
"3arctan 1"3

p
6

arctan 
−"3   p

3

2
1

"3

p
6

tan     =p
6

1"3
tan           = −"3p

3
−

p
3

−

= arctan = = −

−"3

a     b

x arctan x

 23  p>3
 1  p>4
 23>3  p>6
 -23>3  -p>6
 -1  -p>4
 -23  -p>3

The angles come from the first and fourth quadrants because the range of arctan x is 

(-p>2, p>2). 

The Derivative of y = arcsin u

We know that the function x = sin y is differentiable in the interval -p>2 6 y 6 p>2 

and that its derivative, the cosine, is positive there. Theorem 1 in Section 7.1 therefore 

assures us that the inverse function y = arcsin x is differentiable throughout the interval 

-1 6 x 6 1. We cannot expect it to be differentiable at x = 1 or x = -1 because the 

tangents to the graph are vertical at these points (see Figure 7.30).

We find the derivative of y = arcsin x by applying Theorem 1 with ƒ(x) = sin x and 

ƒ -1(x) = arcsin x:

 (ƒ -1)′(x) =
1

ƒ′(ƒ -1(x))
  Theorem 1

 =
1

cos (arcsin x)
  ƒ′(u) = cos u 

 =
1

21 - sin2 (arcsin x)
  cos u = 21 - sin2 u 

 =
1

21 - x2
.   sin (arcsin x) = x 

If u is a differentiable function of x with 0 u 0 6 1, we apply the Chain Rule to get the 

general formula

d

dx
 (arcsin u) =

1

21 - u2
 
du

dx
,  0 u 0 6 1.

y

1−1
x

y = arcsin x

Domain: 

Range: 

−
p
2

p
2 −1 ≤ x ≤ 1

−p�2 ≤ y ≤ p�2

FIGURE 7.30 The graph of  

y = arcsin x has vertical tangents at 

x = -1 and x = 1.
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d

dx
  (arctan u) =

1

1 + u2
  
du

dx
.

EXAMPLE 4  Using the Chain Rule, we calculate the derivative

 
d

dx
 (arcsin x2) =

1

21 - (x2)2
 #  

d

dx
 (x2) =

2x

21 - x4
. 

The Derivative of y = arctan u

We find the derivative of y = arctan x by applying Theorem 1 with ƒ(x) = tan x and 

ƒ -1(x) = arctan x. Theorem 1 can be applied because the derivative of tan x is positive for 

-p>2 6 x 6 p>2:

 (ƒ -1)′(x) =
1

ƒ′(ƒ -1(x) )
  Theorem 1

 =
1

sec2 (arctan x)
  ƒ′(u) = sec2 u

 =
1

1 + tan2 (arctan x)
  sec2 u = 1 + tan2 u

 =
1

1 + x2
. tan (arctan x) = x

The derivative is defined for all real numbers. If u is a differentiable function of x, we get 

the Chain Rule form:

The Derivative of y = arcsec u

Since the derivative of sec x is positive for 0 6 x 6 p>2 and p>2 6 x 6 p, Theorem 1 

says that the inverse function y = arcsec x is differentiable. Instead of applying the for-

mula in Theorem 1 directly, we find the derivative of y = arcsec x, 0 x 0 7 1, using implicit 

differentiation and the Chain Rule as follows:

 y = arcsec x

 sec y = x   Inverse function relationship

 
d

dx
 (sec y) =

d

dx
 x   Differentiate both sides.

 sec y tan y 
dy

dx
= 1   Chain Rule

 
dy

dx
=

1
sec y tan y .  

To express the result in terms of x, we use the relationships

sec y = x  and  tan y = {2sec2 y - 1 = {2x2 - 1

to get

dy

dx
= {  

1

x2x2 - 1
.

Since 0 x 0 7 1, y lies in 

(0, p>2) ∪ (p>2, p) and 

sec y tan y ≠ 0.
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We saw the first of these identities in Equation (4). The others are derived in a similar 

way. It follows easily that the derivatives of the inverse cofunctions are the negatives of the 

derivatives of the corresponding inverse functions. For example, the derivative of cos-1 x is 

calculated as follows:

 
d

dx
 (arccos x) =

d

dx
 ap

2
- arcsin xb   Identity

 = -  
d

dx
 (arcsin x)

 = -  
1

21 - x2
.   Derivative of arcsine

The derivatives of the inverse trigonometric functions are summarized in Table 7.3.

Can we do anything about the {  sign? A glance at Figure 7.31 shows that the slope of the 

graph y = arcsec x is always positive. Thus,

d

dx
 arcsec x = d +  

1

x2x2 - 1
if x 7 1

-   
1

x2x2 - 1
if x 6 -1.

With the absolute value symbol, we can write a single expression that eliminates the “{” 

ambiguity:

d

dx
 arcsec x =

10 x 02x2 - 1
.

If u is a differentiable function of x with 0 u 0 7 1, we have the formula

d

dx
 (arcsec u) =

10 u 02u2 - 1
  
du

dx
,  0 u 0 7 1.

EXAMPLE 5  Using the Chain Rule and derivative of the arcsecant function, we find

 
d

dx
 arcsec (5x4) =

10 5x4 02(5x4)2 - 1
  
d

dx
 (5x4)

 =
1

5x4225x8 - 1
 (20x3)   5x4 7 1 7 0 

 =
4

x225x8 - 1
.  

Derivatives of the Other Three Inverse Trigonometric 
Functions

We could use the same techniques to find the derivatives of the other three inverse trigono-

metric functions—arccosine, arccotangent, and arccosecant—but there is an easier way, 

thanks to the following identities.

Inverse Function–Inverse Cofunction Identities

 arccos x = p>2 - arcsin x

 arccot x = p>2 - arctan x

 arccsc x = p>2 - arcsec x

x

y

0

p

1−1

y = arcsec x

p
2

FIGURE 7.31 The slope of the curve 

y = arcsec x is positive for both x 6 -1 

and x 7 1.
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TABLE 7.3  Derivatives of the inverse trigonometric functions

1. 
d(arcsin u)

dx
=

1

21 - u2
 
du

dx
,  0 u 0 6 1

2. 
d(arccos u)

dx
= -  

1

21 - u2
 
du

dx
,  0 u 0 6 1

3. 
d(arctan u)

dx
=

1

1 + u2
 
du

dx

4. 
d(arccot u)

dx
= -  

1

1 + u2
 
du

dx

5. 
d(arcsec u)

dx
=

10 u 02u2 - 1
 
du

dx
, 0 u 0 7 1

6. 
d(arccsc u)

dx
= -  

10 u 02u2 - 1
 
du

dx
, 0 u 0 7 1

TABLE 7.4  Integrals evaluated with inverse trigonometric functions

The following formulas hold for any constant a 7 0.

1.  L  
du

2a2 - u2
= sin-1 auab + C (Valid for u2 6 a2)

2.  L  
du

a2 + u2
=

1
a tan-1 auab + C (Valid for all u)

3.  L  
du

u2u2 - a2
=

1
a sec-1 @  ua @ + C (Valid for � u � 7 a 7 0)

Integration Formulas

The derivative formulas in Table 7.3 yield three useful integration formulas in Table 7.4. 

The formulas are readily verified by differentiating the functions on the right-hand sides. 

Since two notations are regularly used to represent the inverse sine function, we state these 

formulas using both notations, sin-1 x as well as arcsin x, and similarly for the other 

inverse trigonometric functions.

EXAMPLE 6  These examples illustrate how we use Table 7.4.

(a)   L
23>2
22>2  

dx

21 - x2
= sin-1 x d

22>2
23>2

  a = 1, u = x in Table 7.4, Formula 1

 = sin-1 a23
2
b - sin-1 a22

2
b =

p
3

-
p
4

=
p
12

(b)   L  
dx

23 - 4x2
=

1
2

  L  
du

2a2 - u2
  a = 23, u = 2x, and du>2 = dx 

 =
1
2

 sin-1 auab + C   Table 7.4, Formula 1

 =
1
2

 sin-1 a 2x

23
b + C

(c)   L  
dx

2e2x - 6
= L  

du>u
2u2 - a2

  

 = L
du

u2u2 - a2

 =
1
a sec-1 @  ua @ + C   Table 7.4, Formula 3

 =
1

26
 sec-1 a ex

26
b + C 

u = ex, du = ex, 

dx = du>ex = du>u, 

a = 26 

The derivative formulas in Table 7.3 have a = 1, but in most integrations a ≠ 1, and 

the formulas in Table 7.4 are more useful.



424 Chapter 7 Transcendental Functions 

EXAMPLE 7  Evaluate

(a)  L
dx

24x - x2
    (b)  L

dx

4x2 + 4x + 2

Solution

(a) The expression 24x - x2 does not match any of the formulas in Table 7.4, so we irst 

rewrite 4x - x2 by completing the square:

4x - x2 = -(x2 - 4x) = -(x2 - 4x + 4) + 4 = 4 - (x - 2)2.

Then we substitute a = 2, u = x - 2, and du = dx to get

  L
dx

24x - x2
= L  

dx

24 - (x - 2)2

 = L
du

2a2 - u2
  a = 2, u = x - 2, and du = dx 

 = sin-1 auab + C   Table 7.4, Formula 1

 = sin-1 ax - 2
2
b + C

(b) We complete the square on the binomial 4x2 + 4x:

 4x2 + 4x + 2 = 4(x2 + x) + 2 = 4ax2 + x +
1
4
b + 2 -

4
4

 = 4ax +
1
2
b2

+ 1 = (2x + 1)2 + 1.

  Then,

  L
dx

4x2 + 4x + 2
= L  

dx

(2x + 1)2 + 1
=

1
2

  L  
du

u2 + a2
  

 =
1
2

 #  
1
a

 tan-1 auab + C   Table 7.4, Formula 2

 =
1
2

 tan-1 (2x + 1) + C   a = 1, u = 2x + 1 

a = 1, u = 2x + 1, 

and du>2 = dx  

Common Values

Use reference triangles like those in Examples 1 and 3 to find the 

angles in Exercises 1–8.

 1. a. tan-1 1 b. arctan 1-232 c. tan-1 a 1

23
b

 2. a. arctan(-1) b. tan-123 c. tan-1 a -1

23
b

 3. a. sin-1 a-1
2
b  b. sin-1 a 1

22
b  c. arcsin a-23

2
 b

 4. a. sin-1 a1
2
b  b. arcsin a -1

22
b  c. sin-1 a23

2
 b

 5. a. cos-1 a1
2
b  b. cos-1 a -1

22
b  c. arccos a23

2
 b

 6. a. csc-1 22 b. arccsc a -2

23
b  c. csc-1 2

 7. a. arcsec 1-222 b. sec-1 a 2

23
b  c. sec-1(-2)

 8. a. cot-1 (-1) b. arccot 1232 c. cot-1 a -1

23
b

EXERCISES 7.6
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Evaluations

Find the values in Exercises 9–12.

 9. sin acos-1 a22

2
 b b  10. sec aarccos 

1
2
b

 11. tan aarcsin a-  
1
2
b b  12. cot asin-1 a-  

23

2
 b b

Evaluating Integrals

Evaluate the integrals in Exercises 47–70.

 47.  L
dx

29 - x2
 48.  L

dx

21 - 4x2

 49.  L
dx

17 + x2
 50.  L

dx

9 + 3x2

 51.  L
dx

x225x2 - 2
 52.  L

dx

x25x2 - 4

 53.  L
1

0

 
4 ds

24 - s2
 54.  L

322>4
0

 
ds

29 - 4s2

 55.  L
2

0

 
dt

8 + 2t2
 56.  L

2

-2

  
dt

4 + 3t2

 57.  L
-22>2

-1

 
dy

y24y2 - 1
 58.  L

-22>3
-2>3 dy

y29y2 - 1

 59.  L
3 dr

21 - 4(r - 1)2
 60.  L

6 dr

24 - (r + 1)2

 61.  L
dx

2 + (x - 1)2
 62.  L

dx

1 + (3x + 1)2

 63.  L
dx

(2x - 1)2(2x - 1)2 - 4

 64.  L
dx

(x + 3)2(x + 3)2 - 25

 65.  L
p>2

-p>2  
2 cos u du

1 + (sin u)2
 66.  L

p>4
p>6  

csc2 x dx

1 + (cot x)2

 67.  L
ln 23

0

 
ex dx

1 + e2x
 68.  L

ep>4
1

 
4 dt

t(1 + ln2 t)

 69.  L  
y dy

21 - y4
 70.  L  

sec2 y dy

21 - tan2 y

Limits

Find the limits in Exercises 13–20. (If in doubt, look at the function’s 

graph.)

 13. lim
xS1-

 sin-1 x 14. lim
xS-1+

 cos-1 x

 15. lim
xSq

 tan-1 x 16. lim
xS-q

 tan-1 x

 17. lim
xSq

 sec-1 x 18. lim
xS-q

 sec-1 x

 19. lim
xSq

 csc-1 x 20. lim
xS-q

 csc-1 x

Finding Derivatives

In Exercises 21–42, find the derivative of y with respect to the appro-

priate variable.

 21. y = cos-1 (x2) 22. y = cos-1 (1>x)

 23. y = arcsin22 t 24. y = sin-1 (1 - t)

 25. y = sec-1 (2s + 1) 26. y = sec-1 5s

 27. y = csc-1 (x2 + 1), x 7 0 28. y = csc-1 
x

2

 29. y = sec-1 
1
t
, 0 6 t 6 1 30. y = arcsin 

3

t2

 31. y = arccot 2t 32. y = cot-1 2t - 1

 33. y = ln (tan-1 x) 34. y = tan-1 (ln x)

 35. y = csc-1 (et) 36. y = arccos (e-t)

 37. y = s21 - s2 + cos-1 s 38. y = 2s2 - 1 - sec-1 s

 39. y = tan-12x2 - 1 + csc-1 x, x 7 1

 40. y = cot-1 
1
x - tan-1 x

 41. y = x arcsin x + 21 - x2

42. y = ln (x2 + 4) - x tan-1 ax

2
b

For problems 43–46 use implicit differentiation to find 
dy

dx
 at the 

given point P.

 43. 3 tan-1x + sin-1 y =
p

4
 ; P(1, -1)

 44. sin-1 (x + y) + cos-1 (x - y) =
5p
6

 ; Pa0, 
1
2
b

 45. y cos-1 (xy) =
-322

4
 p; Pa1

2
, -22b

 46. 16(tan-1 3y)2 + 9(tan-1 2x)2 = 2p2; Pa23

2
, 

1
3
b

Evaluate the integrals in Exercises 71–84.

 71.  L
dx

2-x2 + 4x - 3
 72.  L

dx

22x - x2

 73.  L
0

-1
   

6 dt

23 - 2t - t2
 74.  L

1

1>2   
6 dt

23 + 4t - 4t2

 75.  L  
dy

y2 - 2y + 5
 76.  L  

dy

y2 + 6y + 10

 77.  L
2

1

 
8 dx

x2 - 2x + 2
 78.  L

4

2

 
2 dx

x2 - 6x + 10

 79.  L
x + 4

x2 + 4
 dx 80.  L

t - 2

t2 - 6t + 10
 dt
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 111. 
dy

dx
=

1

x2x2 - 1
, x 7 1; y(2) = p

 112. 
dy

dx
=

1

1 + x2
-

2

21 - x2
, y(0) = 2

Applications and Theory

 113. You are sitting in a classroom next to the wall looking at the 

blackboard at the front of the room. The blackboard is 12 ft long 

and starts 3 ft from the wall you are sitting next to.

a. Show that your viewing angle is

a = cot-1 
x

15
- cot-1 

x

3

 if you are x ft from the front wall.

b. Find x so that a is as large as possible.

B
la

ck
b
o
ar

d

12'

3'
Wall

You
a

x

 114. The region between the curve y = sec-1 x and the x-axis from 

x = 1 to x = 2 (shown here) is revolved about the y-axis to gen-

erate a solid. Find the volume of the solid.

y = sec–1 x

x

y

210

p
3

 115. The slant height of the cone shown here is 3 m. How large should 

the indicated angle be to maximize the cone’s volume?

What angle here
gives the largest
volume?

3
h

r

 116. Find the angle a.

658

21

50
a

b

 81.  L  
x2 + 2x - 1

x2 + 9
 dx 82.  L

t3 - 2t2 + 3t - 4

t2 + 1
 dt

 83.  L
dx

(x + 1)2x2 + 2x
 84.  L

dx

(x - 2)2x2 - 4x + 3

Evaluate the integrals in Exercises 85–94.

 85.  L  
esin-1 x dx

21 - x2
 86.  L  

ecos-1 x dx

21 - x2

 87.  L  
(sin-1 x)2 dx

21 - x2
 88.  L  

2tan-1 x dx

1 + x2

 89.  L  
dy

(tan-1 y)(1 + y2)
 90.  L  

dy

(sin-1 y)21 - y2

 91.  L
2

22

  
sec2 (sec-1 x) dx

x2x2 - 1
 92.  L

2

2>23

   
cos (sec-1 x) dx

x2x2 - 1

 93.  L
1

2x (x + 1)11tan-1 2x22 + 92 dx

 94.  L  
ex sin-1 ex

21 - e2x
 dx

 95.  L
1

0

 
tan- 1 x

1 + x2
 dx 96.  L

1>23

-23

 
cos (tan-1 3x)

1 + 9x2
 dx

L’Hôpital’s Rule

Find the limits in Exercises 97–104.

 97. lim
xS0

 
sin-1 5x

x  98. lim
xS1+

 
2x2 - 1

sec-1 x

 99. lim
xSq

 x tan-1 
2
x  100. lim

xS0
 
2 tan-1 3x2

7x2

 101. lim
xS0

 
tan-1 x2

x sin-1 x
 102. lim

xSq
 
ex tan-1 ex

e2x + x

 103. lim
xS0+

 
1tan-1 2x22
x2x + 1

 104. lim
xS0+

 
sin-1 x2

(sin-1 x)2

Integration Formulas

Verify the integration formulas in Exercises 105–108.

 105.  L  
tan-1 x

x2
 dx = ln x -

1
2

 ln (1 + x2) -
tan-1 x

x + C

 106.  Lx3 cos-1  5x dx =
x4

4
 cos-1  5x +

5
4

 L  
x4 dx

21 - 25x2

 107.  L (sin-1 x)2 dx = x(sin-1 x)2 - 2x + 221 - x2 sin-1 x + C

 108.  L ln (a2 + x2) dx = x ln (a2 + x2) - 2x + 2a tan-1 
x
a + C

Initial Value Problems

Solve the initial value problems in Exercises 109–114.

 109. 
dy

dx
=

1

21 - x2
, y(0) = 0

 110. 
dy

dx
=

1

x2 + 1
- 1, y(0) = 1
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  to derive the formula for the derivative of cot-1 u in Table 7.3 

from the formula for the derivative of tan-1 u.

 125. What is special about the functions

ƒ(x) = sin-1   
x - 1
x + 1

, x Ú 0, and g(x) = 2 tan-1 1x?

  Explain.

 126. What is special about the functions

ƒ(x) = sin-1  
1

2x2 + 1
 and g(x) = tan-1  

1
x?

  Explain.

 127. Find the volume of the solid of revolution shown here.

x

y

!3

–!3
3 y =

1"1 + x2

 128. Arc length Find the circumference of a circle of radius r using 

Eq. (3) in Section 6.3.

Find the volumes of the solids in Exercises 129 and 130.

 129. The solid lies between planes perpendicular to the x-axis at 

x = -1 and x = 1. The cross-sections perpendicular to the  

x-axis are

a. circles whose diameters stretch from the curve  

y =  -1>21 + x2 to the curve y = 1>21 + x2.

b. vertical squares whose base edges run from the curve  

y = -1>21 + x2 to the curve y = 1>21 + x2.

 130. The solid lies between planes perpendicular to the x-axis at 

x = -22>2 and x = 22>2. The cross-sections perpendicular 

to the x-axis are

a. circles whose diameters stretch from the x-axis to the curve 

y = 2>24 1 - x2.

b. squares whose diagonals stretch from the x-axis to the curve 

y = 2>24 1 - x2.

 131. Find the values of the following.

a. sec-1 1.5 b. csc-1 (-1.5) c. cot-1 2

 132. Find the values of the following.

a. sec-1 (-3) b. csc-1 1.7 c. cot-1 (-2)

In Exercises 133–135, find the domain and range of each composite 

function. Then graph the compositions on separate screens. Do the 

graphs make sense in each case? Give reasons for your answers. Com-

ment on any differences you see.

 133. a. y = tan-1 (tan x) b. y = tan (tan-1 x)

 134. a. y = sin-1 (sin x) b. y = sin (sin-1 x)

 135. a. y = cos-1 (cos x) b. y = cos (cos-1 x)

T

T

T

 117. Here is an informal proof that tan-1 1 + tan-1 2 + tan-1 3 = p. 

Explain what is going on.

 118. two derivations of the identity sec−1 (−x) = P − sec−1 x

a. (Geometric) Here is a pictorial proof that sec-1 (-x) =  

p - sec-1 x. See if you can tell what is going on.

x

y

0

p

1 x–1–x

y = sec–1x

p
2

b. (Algebraic) Derive the identity sec-1 (-x) = p - sec-1 x by 

combining the following two equations from the text:

 cos-1 (-x) = p - cos-1 x  Eq. (3)

 sec-1 x = cos-1 (1>x)   Eq. (5)

 119. the identity sin−1 x + cos−1 x = P ,2 Figure 7.28 estab-

lishes the identity for 0 6 x 6 1. To establish it for the rest of 3-1, 14 , verify by direct calculation that it holds for x = 1, 0, 

and -1. Then, for values of x in (-1, 0), let x = -a, a 7 0, and 

apply Eqs. (1) and (3) to the sum sin-1 (-a) + cos-1 (-a).

 120. Show that the sum tan-1 x + tan-1 (1>x) is constant.

 121. Use the identity

csc-1 u =
p

2
- sec-1 u

  to derive the formula for the derivative of csc-1 u in Table 7.3 

from the formula for the derivative of sec-1 u.

 122. Derive the formula

dy

dx
=

1

1 + x2

  for the derivative of y = tan-1 x by diferentiating both sides of 

the equivalent equation tan y = x.

 123. Use the Derivative Rule, Theorem 1, to derive

d

dx
 sec-1 x =

1

� x �2x2 - 1
, � x � 7 1.

 124. Use the identity

cot-1 u =
p

2
- tan-1 u



428 Chapter 7 Transcendental Functions 

 139. Graph ƒ(x) = sin-1 x together with its irst two derivatives. 

 Comment on the behavior of ƒ and the shape of its graph in 

 relation to the signs and values of ƒ′ and ƒ″.

 140. Graph ƒ(x) = tan-1 x together with its irst two derivatives. Com-

ment on the behavior of ƒ and the shape of its graph in relation to 

the signs and values of ƒ′ and ƒ″.

Use your graphing utility for Exercises 136–140.

 136. Graph y = sec (sec-1 x) = sec (cos-1(1>x)). Explain what you 

see.

 137. Newton’s serpentine Graph y = 4x>(x2 + 1), known as 

Newton’s serpentine. Then graph y = 2 sin (2 tan-1 x) in the 

same graphing window. What do you see? Explain.

 138. Graph the rational function y = (2 - x2)>x2. Then graph y =

cos (2 sec-1 x) in the same graphing window. What do you see? 

Explain.

T

7.7 Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential func-

tions ex and e-x. The hyperbolic functions simplify many mathematical expressions and 

occur frequently in mathematical and engineering applications.

Definitions and Identities

The hyperbolic sine and hyperbolic cosine functions are defined by the equations

sinh x =
ex - e-x

2
    and    cosh x =

ex + e-x

2
.

We pronounce sinh x as “cinch x,” rhyming with “pinch x,” and cosh x as “kosh x,” 

rhyming with “gosh x.” From this basic pair, we define the hyperbolic tangent, cotangent, 

secant, and cosecant functions. The defining equations and graphs of these functions are 

shown in Table 7.5. We will see that the hyperbolic functions bear many similarities to the 

trigonometric functions after which they are named.

TABLE 7.5  The six basic hyperbolic functions

x

y

1

–1
1

2

3

–2

–3

2 3–2 –1–3

(a)

y = sinh x
y =

ex

2

y = –
e–x

2

Hyperbolic sine:

sinh x =
ex - e-x

2

x

y

1–1 2 3–2–3

(b)

y = cosh x

y =
e–x

2
1

2

3
ex

2
y =

Hyperbolic cosine:

cosh x =
ex + e-x

2

x

y

2

1–1 2–2

–2

(c)

y = coth x

y = tanh x

y = coth x

y = 1

y = –1

Hyperbolic tangent:

tanh x =
sinh x
cosh x

=
ex - e-x

ex + e-x

Hyperbolic cotangent:

coth x =
cosh x
sinh x

=
ex + e- x

ex - e-x

x

y

1–1 0 2–2

2

(d)

y = sech x

y = 1

Hyperbolic secant:

sech x =
1

cosh x
=

2
ex + e-x

x

y

1–1 2–2

2

1

–1

(e)

y = csch x

Hyperbolic cosecant:

csch x =
1

sinh x
=

2
ex - e-x
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Hyperbolic functions satisfy the identities in Table 7.6. Except for differences in sign, 

these resemble identities we know for the trigonometric functions. The identities are 

proved directly from the definitions, as we show here for the second one:

 2 sinh x cosh x = 2aex - e-x

2
b aex + e-x

2
b

 =
e2x - e-2x

2
  Simplify.

 = sinh 2x.   Definition of sinh

The other identities are obtained similarly, by substituting in the definitions of the 

hyperbolic functions and using algebra.

For any real number u, we know the point with coordinates (cos u, sin u) lies on the 

unit circle x2 + y2 = 1. So the trigonometric functions are sometimes called the circular 

functions. Because of the first identity

cosh2 u - sinh2 u = 1,

with u substituted for x in Table 7.6, the point having coordinates (cosh u, sinh u) lies on 

the right-hand branch of the hyperbola x2 - y2 = 1. This is where the hyperbolic func-

tions get their names (see Exercise 86).

Hyperbolic functions are useful in finding integrals, which we will see in Chapter 8. They 

play an important role in science and engineering as well. The hyperbolic cosine describes the 

shape of a hanging cable or wire that is strung between two points at the same height and 

hanging freely (see Exercise 83). The shape of the St. Louis Arch is an inverted hyperbolic 

cosine. The hyperbolic tangent occurs in the formula for the velocity of an ocean wave mov-

ing over water having a constant depth, and the inverse hyperbolic tangent describes how rela-

tive velocities sum according to Einstein’s Law in the Special Theory of Relativity.

Derivatives and Integrals of Hyperbolic Functions

The six hyperbolic functions, being rational combinations of the differentiable functions 

ex and e-x, have derivatives at every point at which they are defined (Table 7.7). Again, 

there are similarities with trigonometric functions.

The derivative formulas are derived from the derivative of eu:

 
d

dx
 (sinh u) =

d

dx
 aeu - e-u

2
b   Definition of sinh u 

 =
eu du>dx + e-u du>dx

2
  Derivative of eu 

 = cosh u 
du

dx
.   Definition of cosh u

This gives the first derivative formula. From the definition, we can calculate the derivative 

of the hyperbolic cosecant function, as follows:

 
d

dx
 (csch u) =

d

dx
 a 1

sinh u
b   Definition of csch u 

 = -  
cosh u

sinh2 u
 
du

dx
  Quotient Rule for derivatives

 = -  
1

sinh u
 
cosh u
sinh u

 
du

dx
  Rearrange terms.

 = -csch u coth u 
du

dx
  Definitions of csch u and coth u

The other formulas in Table 7.7 are obtained similarly.

The derivative formulas lead to the integral formulas in Table 7.8.

TABLE 7.6  Identities for hyperbolic 

functions

cosh2 x - sinh2 x = 1

sinh 2x = 2 sinh x cosh x

cosh 2x = cosh2 x + sinh2 x

cosh2 x =
cosh 2x + 1

2

sinh2 x =
cosh 2x - 1

2

tanh2 x = 1 - sech2 x

coth2 x = 1 + csch2 x

TABLE 7.7  Derivatives of  

hyperbolic functions

d

dx
  (sinh u) = cosh u 

du

dx

d

dx
  (cosh u) = sinh u 

du

dx

d

dx
  (tanh u) = sech2 u 

du

dx

d

dx
  (coth u) = -csch2 u 

du

dx

d

dx
  (sech u) = -sech u tanh u 

du

dx

d

dx
  (csch u) = -csch u coth u 

du

dx

TABLE 7.8  Integral formulas  

for hyperbolic functions

 L  sinh u du = cosh u + C

 L  cosh u du = sinh u + C

 L  sech2 u du = tanh u + C

 L  csch2 u du = -coth u + C

 L  sech u tanh u du = -sech u + C

 L  csch u coth u du = -csch u + C
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The function y = cosh x is not one-to-one because its graph in Table 7.5 does not 

pass the horizontal line test. The restricted function y = cosh x, x Ú 0, however, is one-

to-one and therefore has an inverse, denoted by

y = cosh-1 x.

EXAMPLE 1  We illustrate the derivative and integral formulas.

(a)  
d

dt
 1tanh 21 + t22 = sech2 21 + t2  

d

dt
 121 + t22

 =
t

21 + t2
  sech2 21 + t2

(b)   L  coth 5x dx = L  
cosh 5x

sinh 5x
  dx =

1
5

 L  
du
u     

 =
1
5

 ln � u � + C =
1
5

 ln � sinh 5x � + C

(c)   L
1

0

 sinh2 x dx = L
1

0

 
cosh 2x - 1

2
 dx   Table 7.6

 =
1
2

 L
1

0

 (cosh 2x - 1) dx =
1
2

 c sinh 2x

2
- x d

0

1

 =
sinh 2

4
-

1
2
≈ 0.40672   Evaluate with a calculator.

(d)   L
ln 2

0

 4ex sinh x dx = L
ln 2

0

 4ex  
ex - e-x

2
 dx = L

ln 2

0

 (2e2x - 2) dx

 = c e2x - 2x d
0

ln 2

= (e2 ln 2 - 2 ln 2) - (1 - 0)

 = 4 - 2 ln 2 - 1 ≈ 1.6137  

u = sinh 5x, 

du = 5 cosh 5x dx

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration (see 

 Chapter 8). Since d(sinh x)>dx = cosh x 7 0, the hyperbolic sine is an increasing 

 function of x. We denote its inverse by

y = sinh-1 x.

For every value of x in the interval -q 6 x 6 q, the value of y = sinh-1 x is the number 

whose hyperbolic sine is x. The graphs of y = sinh x and y = sinh-1 x are shown in 

 Figure 7.32a.

x

y

1
2

2 4 6−6 −4 −2

x

y

1

0

2

1 2 3 4 5 6 7 8

3
4
5
6
7
8

x

y

1 2 3

1

0

2

3

(a) (b) (c)

y = sinh x y = x

y = sinh−1 x

(x = sinh y)

y = cosh x,

x ≥ 0

y = sech x

x ≥ 0

y = x y = x

y = cosh−1 x

(x = cosh y, y ≥ 0)

y = sech−1 x

(x = sech y,

  y ≥ 0)

FIGURE 7.32 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries 

about the line y = x.
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For every value of x Ú 1, y = cosh-1 x is the number in the interval 0 … y 6 q whose 

hyperbolic cosine is x. The graphs of y = cosh x, x Ú 0, and y = cosh-1 x are shown in 

Figure 7.32b.

Like y = cosh x, the function y = sech x = 1>cosh x fails to be one-to-one, but its 

restriction to nonnegative values of x does have an inverse, denoted by

y = sech-1 x.

For every value of x in the interval (0, 14 , y = sech-1 x is the nonnegative number whose 

hyperbolic secant is x. The graphs of y = sech x, x Ú 0, and y = sech-1 x are shown in 

Figure 7.32c.

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and 

therefore have inverses, denoted by

y = tanh-1 x,  y = coth-1 x,  y = csch-1 x.

These functions are graphed in Figure 7.33.

x

y

0−1 1

(a)

x

y

0−1 1

(b)

x

y

0

(c)

x = tanh y

y = tanh−1 x

 x = coth y

y = coth−1 x

 x = csch y

y = csch−1 x

FIGURE 7.33 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.

Useful Identities

We use the identities in Table 7.9 to calculate the values of sech-1 x, csch-1 x, and coth-1 x 

on calculators that give only cosh-1 x, sinh-1 x, and tanh-1 x. These identities are direct 

consequences of the definitions. For example, if 0 6 x … 1, then

sech acosh-1 a1xb b =
1

cosh acosh-1 a1xb b =
1a1xb = x.

We also know that sech (sech-1 x) = x, so because the hyperbolic secant is one-to-one on 

(0, 14 , we have

cosh-1 a1xb = sech-1 x.

TABLE 7.9  Identities for inverse 

hyperbolic functions

sech-1 x = cosh-1  
1
x

csch-1 x = sinh-1  
1
x

coth-1 x = tanh-1  
1
x

Derivatives of Inverse Hyperbolic Functions

An important use of inverse hyperbolic functions lies in antiderivatives that reverse the 

derivative formulas in Table 7.10.

The restrictions � u � 6 1 and � u � 7 1 on the derivative formulas for tanh-1 u and 

coth-1 u come from the natural restrictions on the values of these functions. (See 

 Figure 7.33a and b.) The distinction between � u � 6 1 and � u � 7 1 becomes important 

when we convert the derivative formulas into integral formulas.

We illustrate how the derivatives of the inverse hyperbolic functions are found in 

Example 2, where we calculate d(cosh-1 u)>dx . The other derivatives are obtained by 

similar calculations.
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EXAMPLE 3  Evaluate

 L
1

0

 
2 dx

23 + 4x2
.

TABLE 7.10  Derivatives of inverse hyperbolic functions

d(sinh-1 u)

dx
=

1

21 + u2
 
du

dx

d(cosh-1 u)

dx
=

1

2u2 - 1
 
du

dx
 ,       u 7 1

d(tanh-1 u)

dx
=

1

1 - u2
 
du

dx
 ,      � u � 6 1

d(coth-1 u)

dx
=

1

1 - u2
 
du

dx
 ,      � u � 7 1

d(sech-1 u)

dx
= -  

1

u21 - u2
 
du

dx
 ,   0 6 u 6 1

d(csch-1 u)

dx
= -  

1

� u �21 + u2
 
du

dx
 , u ≠ 0

EXAMPLE 2  Show that if u is a differentiable function of x whose values are greater 

than 1, then

d

dx
  (cosh-1 u) =

1

2u2 - 1
 
du

dx
.

Solution First we find the derivative of y = cosh-1 x for x 7 1 by applying Theorem 1 

of Section 7.1 with ƒ(x) = cosh x and ƒ 

-1(x) = cosh-1 x. Theorem 1 can be applied 

because the derivative of cosh x is positive when x 7 0.

 (ƒ 

-1)′(x) =
1

ƒ′(ƒ 

-1 (x))
  Theorem 1

 =
1

sinh (cosh-1 x)
  ƒ′(u) = sinh u 

 =
1

2cosh2 (cosh-1 x) - 1
  

 =
1

2x2 - 1
   cosh (cosh-1 x) = x

The Chain Rule gives the final result:

 
d

dx
  (cosh-1 u) =

1

2u2 - 1
 
du

dx
. 

With appropriate substitutions, the derivative formulas in Table 7.10 lead to the inte-

gration formulas in Table 7.11. Each of the formulas in Table 7.11 can be verified by dif-

ferentiating the expression on the right-hand side.

cosh2 u - sinh2 u = 1,

sinh u = 2cosh2 u - 1

HistoricAL BiogrApHy

sonya Kovalevsky

(1850–1891)

www.goo.gl/6TLoDz

http://www.goo.gl/6TLoDz
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Solution The indefinite integral is

  L  
2 dx

23 + 4x2
= L  

du

2a2 + u2
  u = 2x, du = 2 dx, a = 23 

 = sinh-1 auab + C   Formula from Table 7.11

 = sinh-1 a 2x

23
b + C.

Therefore,

  L
1

0

 
2 dx

23 + 4x2
= sinh-1 a 2x

23
b d

0

1

= sinh-1 a 2

23
b - sinh-1 (0)

  = sinh-1 a 2

23
b - 0 ≈ 0.98665. 

TABLE 7.11  Integrals leading to inverse hyperbolic functions

1.  L  
du

2a2 + u2
= sinh-1 auab + C,       a 7 0

2.  L  
du

2u2 - a2
= cosh-1 auab + C,       u 7 a 7 0

3.  L  
du

a2 - u2
= d 1

a tanh-1 auab + C,    u2 6 a2

1
a coth-1 auab + C,   u2 7 a2

4.  L  
du

u2a2 - u2
= -  

1
a sech-1 auab + C,    0 6 u 6 a

5.  L  
du

u2a2 + u2
= -  

1
a csch-1 `  ua ` + C ,    u ≠ 0 and a 7 0

Values and Identities

Each of Exercises 1–4 gives a value of sinh x or cosh x. Use the defi-

nitions and the identity cosh2 x - sinh2 x = 1 to find the values of the 

remaining five hyperbolic functions.

 1. sinh x = -  
3
4

 2. sinh x =
4
3

 3. cosh x =
17
15

, x 7 0 4. cosh x =
13

5
, x 7 0

Rewrite the expressions in Exercises 5–10 in terms of exponentials 

and simplify the results as much as you can.

 5. 2 cosh (ln x) 6. sinh (2 ln x)

 7. cosh 5x + sinh 5x 8. cosh 3x - sinh 3x

 9. (sinh x + cosh x)4

 10. ln (cosh x + sinh x) + ln (cosh x - sinh x)

 11. Prove the identities

 sinh (x + y) = sinh x cosh y + cosh x sinh y,

 cosh (x + y) = cosh x cosh y + sinh x sinh y.

  Then use them to show that

a. sinh 2x = 2 sinh x cosh x.

b. cosh 2x = cosh2 x + sinh2 x.

 12. Use the deinitions of cosh x and sinh x to show that

cosh2 x - sinh2 x = 1.

EXERCISES 7.7
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 47.  L  sech2 ax -
1
2
b  dx 48.  L  csch2 (5 - x) dx

 49.  L  
sech 2t tanh 2t dt

2t
 50.  L  

csch (ln t) coth (ln t) dt

t

 51.  L
ln 4

ln 2

 coth x dx 52.  L
ln 2

0

 tanh 2x dx

 53.  L
-ln 2

-ln 4

 2eu cosh u du  54.  L
ln 2

0

 4e-u sinh u du

 55.  L
p>4

-p>4 cosh (tan u) sec2 u du  56.  L
p>2

0

 2 sinh (sin u) cos u du

 57.  L
2

1

  
cosh (ln t)

t
 dt  58.  L

4

1

  
8 cosh 1x

1x
 dx

 59.  L
0

-ln 2

  cosh2 ax

2
b  dx 60.  L

ln 10

0

 4 sinh2 ax

2
b  dx

Finding Derivatives

In Exercises 13–24, find the derivative of y with respect to the appro-

priate variable.

 13. y = 6 sinh 
x

3
 14. y =

1
2

 sinh (2x + 1)

 15. y = 22t tanh 2t 16. y = t2 tanh 
1
t

 17. y = ln (sinh z) 18. y = ln (cosh z)

 19. y = (sech u)(1 - ln sech u) 20. y = (csch u)(1 - ln csch u)

 21. y = ln cosh y -
1
2

 tanh2 y 22. y = ln sinh y -
1
2

 coth2 y

 23. y = (x2 + 1) sech (ln x)

  (Hint: Before diferentiating, express in terms of exponentials 

and simplify.)

 24. y = (4x2 - 1) csch (ln 2x)

 sinh-1 x = ln 1x + 2x2 + 12,  -q 6 x 6 q

 cosh-1 x = ln 1x + 2x2 - 12,  x Ú 1

 tanh-1 x =
1

2
 ln 

1 + x

1 - x
 ,           � x � 6 1

 sech-1 x = ln a1 + 21 - x2

x  b ,  0 6 x … 1

 csch-1 x = ln a1x +
21 + x2

� x �
 b ,  x ≠ 0

 coth-1 x =
1

2
 ln 

x + 1

x - 1
 ,           � x � 7 1

Use these formulas to express the numbers in Exercises 61–66 in 

terms of natural logarithms.

 61. sinh-1 (-5>12) 62. cosh-1 (5>3)

 63. tanh-1 (-1>2) 64. coth-1 (5>4)

 65. sech-1 (3>5) 66. csch-1 1-1>132

Inverse Hyperbolic Functions and Integrals

Since the hyperbolic functions can be written in terms of exponential 

functions, it is possible to express the inverse hyperbolic functions in 

terms of logarithms, as shown in the following table.

Evaluate the integrals in Exercises 67–74 in terms of

a. inverse hyperbolic functions.

b. natural logarithms.

 67.  L
223

0

 
dx

24 + x2
 68.  L

1>3
0

 
6 dx

21 + 9x2

 69.  L
2

5>4  
dx

1 - x2
 70.  L

1>2
0

 
dx

1 - x2

In Exercises 25–36, find the derivative of y with respect to the appro-

priate variable.

 25. y = sinh-1 1x 26. y = cosh-1 22x + 1

 27. y = (1 - u) tanh-1 u 28. y = (u2 + 2u) tanh-1 (u + 1)

 29. y = (1 - t) coth-1 2t 30. y = (1 - t2) coth-1 t

 31. y = cos-1 x - x sech-1 x 32. y = ln x + 21 - x2 sech-1 x

 33. y = csch-1 a1
2
b u 34. y = csch-1 2u

 35. y = sinh-1 (tan x)

 36. y = cosh-1 (sec x), 0 6 x 6 p>2
Integration Formulas

Verify the integration formulas in Exercises 37–40.

 37. a.  L  sech x dx = tan-1 (sinh x) + C

b.  L  sech x dx = sin-1 (tanh x) + C

 38.  L  x sech-1 x dx =
x2

2
  sech-1 x -

1

2
21 - x2 + C

 39.  L  x coth-1 x dx =
x2 - 1

2
  coth-1 x +

x

2
+ C

 40.  L  tanh-1 x dx = x tanh-1 x +
1

2
 ln (1 - x2) + C

Evaluating Integrals

Evaluate the integrals in Exercises 41–60.

 41.  L  sinh 2x dx 42.  L  sinh 
x

5
 dx

 43.  L  6 cosh ax

2
- ln 3b  dx 44.  L  4 cosh (3x - ln 2) dx

 45.  L  tanh 
x

7
 dx 46.  L  coth 

u

23
 du
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 81. Arc length Find the length of the graph of y = (1>2) cosh 2x 

from x = 0 to x = ln 25.

 82. Use the deinitions of the hyperbolic functions to ind each of the 

following limits.

a. lim
xSq

tanh x b. lim
xS-q

tanh x

c. lim
xSq

sinh x d. lim
xS-q

sinh x

e. lim
xSq

sech x f. lim
xSq

coth x

g. lim
xS0+

coth x h. lim
xS0-

coth x

i. lim
xS-q

csch x

 83. Hanging cables Imagine a cable, like a telephone line or TV 

cable, strung from one support to another and hanging freely. The 

cable’s weight per unit length is a constant w and the horizontal 

tension at its lowest point is a vector of length H. If we choose a 

coordinate system for the plane of the cable in which the x-axis is 

horizontal, the force of gravity is straight down, the positive y-axis 

points straight up, and the lowest point of the cable lies at the point 

y = H>w on the y-axis (see accompanying igure), then it can be 

shown that the cable lies along the graph of the hyperbolic cosine

y =
H
w cosh 

w

H
 x.

x

y

0

H

Hanging

cable

H
w

y =      cosh     xH
w

w
H

  Such a curve is sometimes called a chain curve or a catenary, the 

latter deriving from the Latin catena, meaning “chain.”

a. Let P(x, y) denote an arbitrary point on the cable. The next 

accompanying igure displays the tension at P as a vector of 

length (magnitude) T, as well as the tension H at the lowest 

point A. Show that the cable’s slope at P is

tan f =
dy

dx
= sinh 

w

H
 x.

x

y

0

H

T

T cos f

f
P(x, y)

y =      cosh     xH
w

w
H

H
wA  0, 

b. Using the result from part (a) and the fact that the horizontal 

tension at P must equal H (the cable is not moving), show 

that T = wy. Hence, the magnitude of the tension at P(x, y) is 

exactly equal to the weight of y units of cable.

 71.  L
3>13

1>5  
dx

x21 - 16x2
 72.  L

2

1

 
dx

x24 + x2

 73.  L
p

0

 
cos x dx

21 + sin2 x
 74.  L

e

1

 
dx

x21 + (ln x)2

Applications and Examples

 75. Show that if a function ƒ is deined on an interval symmetric about 

the origin (so that ƒ is deined at -x whenever it is deined at x), 

then

 ƒ(x) =
ƒ(x) + ƒ(-x)

2
+

ƒ(x) - ƒ(-x)

2
. (1)

  Then show that (ƒ(x) + ƒ(-x))>2 is even and that (ƒ(x) -
ƒ(-x))>2 is odd.

 76. Derive the formula sinh-1 x = ln 1x + 2x2 + 12 for all real 

x. Explain in your derivation why the plus sign is used with the 

square root instead of the minus sign.

 77. skydiving If a body of mass m falling from rest under the action 

of gravity encounters an air resistance proportional to the square 

of the velocity, then the body’s velocity t sec into the fall satisies 

the diferential equation

m 
dy

dt
= mg - ky2,

  where k is a constant that depends on the body’s aerodynamic 

properties and the density of the air. (We assume that the fall is 

short enough so that the variation in the air’s density will not afect 

the outcome signiicantly.)

a. Show that

y = A
mg

k
 tanhaAgk

m  tb
satisies the diferential equation and the initial condition that 

y = 0 when t = 0.

b. Find the body’s limiting velocity, limtSq y.

c. For a 160-lb skydiver (mg = 160), with time in seconds and 

distance in feet, a typical value for k is 0.005. What is the 

diver’s limiting velocity?

 78. Accelerations whose magnitudes are proportional to displace-

ment Suppose that the position of a body moving along a coor-

dinate line at time t is

a. s = a cos kt + b sin kt.

b. s = a cosh kt + b sinh kt.

  Show in both cases that the acceleration d2s>dt2 is proportional to 

s but that in the irst case it is directed toward the origin, whereas 

in the second case it is directed away from the origin.

 79. Volume A region in the irst quadrant is bounded above by the 

curve y = cosh x, below by the curve y = sinh x, and on the left 

and right by the y-axis and the line x = 2, respectively. Find the 

volume of the solid generated by revolving the region about the 

x-axis.

 80. Volume The region enclosed by the curve y = sech x, the 

x-axis, and the lines x = { ln 23 is revolved about the x-axis to 

generate a solid. Find the volume of the solid.
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twice the area of the sector AOP pictured in the accompanying 

igure. To see why this is so, carry out the following steps.

a. Show that the area A(u) of sector AOP is

A(u) =
1
2

 cosh u sinh u - L
cosh u

1

2x2 - 1 dx.

b. Diferentiate both sides of the equation in part (a) with 

 respect to u to show that

A′(u) =
1
2

.

c. Solve this last equation for A(u). What is the value of A(0)? 

What is the value of the constant of integration C in your 

 solution? With C determined, what does your solution say 

about the relationship of u to A(u)?

x

y

O

A
sym

ptote

A
sy

m
pt

ot
e

A
x

y

O A

x2 − y2 = 1
x2 + y2 = 1 P(cos u, sin u)

u is twice the area

of sector AOP.

u = 0
u = 0

u is twice the area

of sector AOP.

P(cosh u, sinh u)

   One of the analogies between hyperbolic and circular func-

tions is revealed by these two diagrams (Exercise 86).

 84. (Continuation of Exercise 83.) The length of arc AP in the 

 Exercise 83 igure is s = (1>a) sinh ax, where a = w>H. Show 

that the coordinates of P may be expressed in terms of s as

x =
1
a sinh-1 as,  y = As2 +

1

a2
.

 85. Area Show that the area of the region in the irst quadrant 

 enclosed by the curve y = (1>a) cosh ax, the coordinate axes, and 

the line x = b is the same as the area of a rectangle of height  

1 >a and length s, where s is the length of the curve from x = 0 to 

x = b. Draw a igure illustrating this result.

 86. the hyperbolic in hyperbolic functions Just as x = cos u and 

y = sin u are identiied with points (x, y) on the unit circle, the 

functions x = cosh u and y = sinh u are identiied with points 

(x, y) on the right-hand branch of the unit hyperbola, x2 - y2 = 1.

x

y

1

10

u
S

 −
`–1

uS
 ̀

P(cosh u, sinh u)
u = 0

x2 − y2 = 1

Since cosh2 u - sinh2 u = 1, the point 

(cosh u, sinh u) lies on the right-hand 

branch of the hyperbola x2 - y2 = 1  

for every value of u.

Another analogy between hyperbolic and circular functions 

is that the variable u in the coordinates (cosh u, sinh u) for the 

points of the right-hand branch of the hyperbola x2 - y2 = 1 is 

7.8 Relative Rates of Growth

It is often important in mathematics, computer science, and engineering to compare the 

rates at which functions of x grow as x becomes large. Exponential functions are important 

in these comparisons because of their very fast growth, and logarithmic functions because 

of their very slow growth. In this section we introduce the little-oh and big-oh notation 

used to describe the results of these comparisons. We restrict our attention to functions 

whose values eventually become and remain positive as x S q.

x

y
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160
y = e x

y = 2x

y = x2

FIGURE 7.34 The graphs of ex, 2x, and 

x2.

Growth Rates of Functions

You may have noticed that exponential functions like 2x and ex seem to grow more 

rapidly as x gets large than do polynomials and rational functions. These exponentials 

certainly grow more rapidly than x itself, and you can see 2x outgrowing x2 as x 

increases in Figure 7.34. In fact, as x S q, the functions 2x and ex grow faster than 

any power of x, even x1,000,000 (Exercise 19). In contrast, logarithmic functions like 

y = log2 x and y = ln x grow more slowly as x S q than any positive power of x 

(Exercise 21).

To get a feeling for how rapidly the values of y = ex grow with increasing x, think of 

graphing the function on a large blackboard, with the axes scaled in centimeters. At 

x = 1 cm, the graph is e1 ≈ 3 cm above the x-axis. At x = 6 cm, the graph is 
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FIGURE 7.35 Scale drawings of the 

graphs of ex and ln x.

DEFINITION Let ƒ(x) and g(x) be positive for x sufficiently large.

1. ƒ grows faster than g as x S q if

lim
xSq

  
ƒ(x)

g(x)
= q

or, equivalently, if

lim
xSq

  
g(x)

ƒ(x)
= 0.

We also say that g grows slower than ƒ as x S q.

2. ƒ and g grow at the same rate as x S q if

lim
xSq

  
ƒ(x)

g(x)
= L

where L is inite and positive.

e6 ≈ 403 cm ≈ 4 m high (it is about to go through the ceiling if it hasn’t done so 

already). At x = 10 cm, the graph is e10 ≈ 22,026 cm ≈ 220 m high, higher than most 

buildings. At x = 24 cm, the graph is more than halfway to the moon, and at x = 43 cm 

from the origin, the graph is high enough to reach past the sun’s closest stellar neighbor, 

the red dwarf star Proxima Centauri. By contrast, with axes scaled in centimeters, you 

have to go nearly 5 light-years out on the x-axis to find a point where the graph of y = ln x 

is even y = 43 cm high. See Figure 7.35.

These important comparisons of exponential, polynomial, and logarithmic functions 

can be made precise by defining what it means for a function ƒ(x) to grow faster than 

another function g(x) as x S q.

According to these definitions, y = 2x does not grow faster than y = x. The two 

functions grow at the same rate because

lim
xSq

 
2x
x = lim

xSq
 2 = 2,

which is a finite, positive limit. The reason for this choice of terminology is that we 

want “ƒ grows faster than g” to mean that for large x-values g is negligible when 

 compared with ƒ.

EXAMPLE 1  We compare the growth rates of several common functions.

(a) ex grows faster than x2 as x S q because

 

lim
xSq

  
ex

x2
= lim

xSq
 
ex

2x
= lim

xSq
 
ex

2
= q.

(1)1* (1)1*
 

Using l’Hôpital’s Rule twice

 q>q q>q
(b) 3x grows faster than 2x as x S q because

lim
xSq

  
3x

2x = lim
xSq

 a3
2
b x

= q.

(c) x2 grows faster than ln x as x S q because

 lim
xSq

  
x2

ln x
= lim

xSq
 
2x

1>x = lim
xSq

 2x2 = q. l’Hôpital’s Rule
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EXAMPLE 2  Show that 2x2 + 5 and (21x - 1)2 grow at the same rate as x S q.

Solution We show that the functions grow at the same rate by showing that they both 

grow at the same rate as the function g(x) = x:

 lim
xSq

 
2x2 + 5

x = lim
xSqA1 +

5

x2
= 1, 

  lim
xSq

 
121x - 122

x = lim
xSq

 a21x - 1

1x
b2

= lim
xSq

 a2 -
1

1x
b2

= 4. 

Order and Oh-Notation

The “little-oh” and “big-oh” notation was invented by number theorists a hundred years 

ago and is now commonplace in mathematical analysis and computer science. According 

to this definition, saying ƒ = o(g) as x S q is another way to say that ƒ grows slower 

than g as x S q.

DEFINITION A function ƒ is of smaller order than g as x S q if

lim
xSq 

 
ƒ(x)

g(x)
= 0. We indicate this by writing ƒ = o(g) (“ƒ is little-oh of g”).

(d) ln x grows slower than x1>n as x S q for any positive integer n because

  lim
xSq

  
ln x

x1>n = lim
xSq

 
1>x

(1>n) x(1>n) - 1
 l’Hôpital’s Rule

  = lim
xSq

 
n

x1>n = 0.  n is constant.

(e) As part (b) suggests, exponential functions with diferent bases never grow at the same 

rate as x S q. If a 7 b 7 0, then ax grows faster than bx. Since (a>b) 7 1,

lim
xSq

  
ax

bx = lim
xSq

 aa
b
b x

= q.

(f) In contrast to exponential functions, logarithmic functions with diferent bases a 7 1 

and b 7 1 always grow at the same rate as x S q:

lim
xSq

  
loga x

logb x
= lim

xSq
  
ln x>ln a

ln x>ln b
=

ln b
ln a

.

The limiting ratio is always inite and never zero. 

If ƒ grows at the same rate as g as x S q, and g grows at the same rate as h as 

x S q, then ƒ grows at the same rate as h as x S q. The reason is that

lim
xSq

  
ƒ
g = L1  and  lim

xSq
  
g

h
= L2

together imply

lim
xSq

  
ƒ

h
= lim

xSq
  
ƒ
g #  

g

h
= L1 L2.

If L1 and L2 are finite and nonzero, then so is L1 L2.
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EXAMPLE 3  Using little-oh notation.

(a) ln x = o(x) as x S q because lim
xSq

 
ln x

x = 0

(b) x2 = o(x3 + 1) as x S q because lim
xSq

  
x2

x3 + 1
= 0 

DEFINITION Let ƒ(x) and g(x) be positive for x sufficiently large. Then ƒ is of 

at most the order of g as x S q if there is a positive integer M for which

ƒ(x)

g(x)
… M,

for x sufficiently large. We indicate this by writing ƒ = O(g)  (“ƒ is big-oh of g”).

EXAMPLE 4  Using big-oh notation.

(a) x + sin x = O(x) as x S q because 
x + sin x

x … 2 for x sufficiently large.

(b) ex + x2 = O(ex) as x S q because 
ex + x2

ex S 1 as x S q.

(c) x = O(ex) as x S q because 
x
ex S 0 as x S q. 

If you look at the definitions again, you will see that ƒ = o(g) implies ƒ = O(g) for 

 functions that are positive for all sufficiently large x. Also, if ƒ and g grow at the same rate, 

then ƒ = O(g) and g = O(ƒ) (Exercise 11).

Sequential vs. Binary Search

Computer scientists often measure the efficiency of an algorithm by counting the number of 

steps a computer must take to execute the algorithm. There can be significant differences in 

how efficiently algorithms perform, even if they are designed to accomplish the same task. 

These differences are often described using big-oh notation. Here is an example.

Webster’s International Dictionary lists about 26,000 words that begin with the letter 

a. One way to look up a word, or to learn if it is not there, is to read through the list one 

word at a time until you either find the word or determine that it is not there. This method, 

called sequential search, makes no particular use of the words’ alphabetical arrangement 

in the list. You are sure to get an answer, but it might take 26,000 steps.

Another way to find the word or to learn it is not there is to go straight to the middle 

of the list (give or take a few words). If you do not find the word, then go to the middle of 

the half that contains it and forget about the half that does not. (You know which half con-

tains it because you know the list is ordered alphabetically.) This method, called a binary 

search, eliminates roughly 13,000 words in a single step. If you do not find the word on 

the second try, then jump to the middle of the half that contains it. Continue this way until 

you have either found the word or divided the list in half so many times there are no words 

left. How many times do you have to divide the list to find the word or learn that it is not 

there? At most 15, because

(26,000>215) 6 1.

That certainly beats a possible 26,000 steps.
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Comparisons with the Exponential ex

 1. Which of the following functions grow faster than ex as x S q? 

Which grow at the same rate as ex? Which grow slower?

a. x - 3 b. x3 + sin2 x

c. 2x d. 4x

e. (3>2)x f. ex>2
g. ex>2 h. log10 x

 2. Which of the following functions grow faster than ex as x S q? 

Which grow at the same rate as ex? Which grow slower?

a. 10x4 + 30x + 1 b. x ln x - x

c. 21 + x4 d. (5>2)x

e. e-x f. xex

g. ecos x h. ex - 1

Comparisons with the Power x2

 3. Which of the following functions grow faster than x2 as x S q? 

Which grow at the same rate as x2? Which grow slower?

a. x2 + 4x b. x5 - x2

c. 2x4 + x3 d. (x + 3)2

e. x ln x f. 2x

g. x3e-x h. 8x2

 4. Which of the following functions grow faster than x2 as x S q? 

Which grow at the same rate as x2? Which grow slower?

a. x2 + 2x b. 10x2

c. x2e-x d. log10 (x2)

e. x3 - x2 f. (1>10)x

g. (1.1)x h. x2 + 100x

Comparisons with the Logarithm ln x

 5. Which of the following functions grow faster than ln x as x S q? 

Which grow at the same rate as ln x? Which grow slower?

a. log3 x b. ln 2x

c. ln 2x d. 2x

e. x f. 5 ln x

g. 1>x h. ex

 6. Which of the following functions grow faster than ln x as x S q? 

Which grow at the same rate as ln x? Which grow slower?

a. log2 (x2) b. log10 10x

c. 1>2x d. 1>x2

e. x - 2 ln x f. e-x

g. ln (ln x) h. ln (2x + 5)

Ordering Functions by Growth Rates

 7. Order the following functions from slowest growing to fastest 

growing as x S q.

a. ex b. xx

c. (ln x)x d. ex>2
 8. Order the following functions from slowest growing to fastest 

growing as x S q.

a. 2x b. x2

c. (ln 2)x d. ex

Big-oh and Little-oh; Order

 9. True, or false? As x S q,

a. x = o(x) b. x = o(x + 5)

c. x = O(x + 5) d. x = O(2x)

e. ex = o(e2x) f. x + ln x = O(x)

g. ln x = o(ln 2x) h. 2x2 + 5 = O(x)

 10. True, or false? As x S q,

a. 
1

x + 3
= Oa1xb  b. 

1

x
+

1

x2
= Oa1xb

c. 
1

x
-

1

x2
= oa1xb  d. 2 + cos x = O(2)

e. ex + x = O(ex) f. x ln x = o(x2)

g. ln (ln x) = O(ln x) h. ln (x) = o(ln (x2 + 1))

 11. Show that if positive functions ƒ(x) and g(x) grow at the same rate 

as x S q, then ƒ = O(g) and g = O(ƒ).

 12. When is a polynomial ƒ(x) of smaller order than a polynomial 

g(x) as x S q? Give reasons for your answer.

 13. When is a polynomial ƒ(x) of at most the order of a polynomial 

g(x) as x S q? Give reasons for your answer.

 14. What do the conclusions we drew in Section 2.8 about the limits of 

rational functions tell us about the relative growth of polynomials 

as x S q?

Other Comparisons

 15. Investigate

  lim
xSq

 
ln (x + 1)

ln x
 and lim

xSq
 
ln (x + 999)

ln x
.

T

EXERCISES 7.8

For a list of length n, a sequential search algorithm takes on the order of n steps to find 

a word or determine that it is not in the list. A binary search, as the second algorithm is 

called, takes on the order of log2 n steps. The reason is that if 2m - 1 6 n … 2m, then 

m - 1 6 log2 n … m, and the number of bisections required to narrow the list to one 

word will be at most m = <log2 n= , the integer ceiling of the number log2 n.

Big-oh notation provides a compact way to say all this. The number of steps in a 

sequential search of an ordered list is O(n); the number of steps in a binary search is 

O(log2 n). In our example, there is a big difference between the two (26,000 vs. 15), and 

the difference can only increase with n because n grows faster than log2 n as n S q.
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which ln x = 10 ln (ln x).  Bracket the crossing point 

between  powers of 10 and then close in by successive 

halving.

d. (Continuation of part (c).) The value of x at which 

ln x = 10 ln (ln x) is too far out for some graphers and root 

inders to identify. Try it on the equipment available to you 

and see what happens.

 22. the function ln x grows slower than any polynomial  

Show that  ln x grows slower as x S q than any nonconstant 

 polynomial.

Algorithms and Searches

 23. a.  Suppose you have three diferent algorithms for solving the 

same problem and each algorithm takes a number of steps that 

is of the order of one of the functions listed here:

   n log2 n, n3>2, n(log2 n)2.

Which of the algorithms is the most eicient in the long run? 

Give reasons for your answer.

b. Graph the functions in part (a) together to get a sense of how 

rapidly each one grows.

 24. Repeat Exercise 23 for the functions

  n, 2n log2 n, (log2 n)2.

 25. Suppose you are looking for an item in an ordered list one million 

items long. How many steps might it take to ind that item with a 

sequential search? A binary search?

 26. You are looking for an item in an ordered list 450,000 items long 

(the length of Webster’s Third New International Dictionary). 

How many steps might it take to ind the item with a sequential 

search? A binary search?

T

T

T

T

Then use l’Hôpital’s Rule to explain what you ind.

 16. (Continuation of Exercise 15.) Show that the value of

  lim
xSq

 
ln (x + a)

ln x

is the same no matter what value you assign to the constant a. 

What does this say about the relative rates at which the functions 

ƒ(x) = ln (x + a) and g(x) = ln x grow?

 17. Show that 210x + 1 and 2x + 1 grow at the same rate as 

x S q by showing that they both grow at the same rate as 2x as 

x S q.

 18. Show that 2x4 + x and 2x4 - x3 grow at the same rate as 

x S q by showing that they both grow at the same rate as x2 as 

x S q.

 19. Show that ex grows faster as x S q than xn for any positive inte-

ger n, even x1,000,000. (Hint: What is the nth derivative of xn?)

 20. the function ex outgrows any polynomial Show that ex grows 

faster as x S q than any polynomial

  an  xn + an - 1 x
n - 1 + g+  a1  x + a0 .

 21. a.  Show that ln x grows slower as x S q than x1>n for any posi-

tive integer n, even x1>1,000,000.

b. Although the values of x1>1,000,000 eventually overtake the 

values of ln x, you have to go way out on the x-axis before 

this happens. Find a value of x greater than 1 for which 

x1>1,000,000 7 ln x. You might start by observing that when 

x 7 1 the equation ln x = x1>1,000,000 is equivalent to the 

equation ln (ln x) = (ln x)>1,000,000.

c. Even x1>10  takes a long time to overtake ln x. Experi-

ment with a calculator to find the value of x at which 

the graphs of x1>10  and ln x cross, or, equivalently, at 

T

T

 1. What functions have inverses? How do you know if two functions 

ƒ and g are inverses of one another? Give examples of functions 

that are (are not) inverses of one another.

 2. How are the domains, ranges, and graphs of functions and their 

inverses related? Give an example.

 3. How can you sometimes express the inverse of a function of x as a 

function of x?

 4. Under what circumstances can you be sure that the inverse of a 

function ƒ is diferentiable? How are the derivatives of ƒ and ƒ -1 

related?

 5. What is the natural logarithm function? What are its domain, 

range, and derivative? What arithmetic properties does it have? 

Comment on its graph.

 6. What is logarithmic diferentiation? Give an example.

 7. What integrals lead to logarithms? Give examples. What are the 

integrals of tan x, cot x, sec x, and csc x?

 8. How is the exponential function ex deined? What are its domain, 

range, and derivative? What laws of exponents does it obey? 

 Comment on its graph.

 9. How are the functions ax and loga x deined? Are there any 

 restrictions on a? How is the graph of loga x related to the graph of 

ln x? What truth is there in the statement that there is really only 

one exponential function and one logarithmic function?

 10. How do you solve separable irst-order diferential equations?

 11. What is the law of exponential change? How can it be derived 

from an initial value problem? What are some of the applications 

of the law?

 12. Describe l’Hôpital’s Rule. How do you know when to use the rule 

and when to stop? Give an example.

 13. How can you sometimes handle limits that lead to indeterminate 

forms q>q, q # 0, and q - q? Give examples.

 14. How can you sometimes handle limits that lead to indeterminate 

forms 1q, 00, and qq? Give examples.

 15. How are the inverse trigonometric functions deined? How can 

you sometimes use right triangles to ind values of these func-

tions? Give examples.

CHAPTER 7 Questions to Guide Your Review
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Finding Derivatives

In Exercises 1–24, ind the derivative of y with respect to the appropri-

ate variable.

 1. y = 10e-x>5 2. y = 22e22x

 3. y =
1
4

 xe4x -
1
16

 e4x 4. y = x2e-2>x
 5. y = ln (sin2 u) 6. y = ln (sec2 u)

 7. y = log2 (x2>2) 8. y = log5 (3x - 7)

 9. y = 8-t 10. y = 92t

 11. y = 5x3.6 12. y = 22x-22

 13. y = (x + 2)x + 2 14. y = 2(ln x)x>2
 15. y = sin-121 - u2, 0 6 u 6 1

 16. y = arcsin a 1

2y
b , y 7 1

 17. y = ln cos-1 x

 18. y = z cos-1 z - 21 - z2

 19. y = t arctan t -
1
2

 ln t

 20. y = (1 + t2) cot-1 2t

 21. y = z sec-1 z - 2z2 - 1, z 7 1

 22. y = 22x - 1  sec-11x

 23. y = csc-1 (sec u), 0 6 u 6 p>2
 24. y = (1 + x2)etan-1 x

Logarithmic Diferentiation

In Exercises 25–30, use logarithmic diferentiation to ind the deriva-

tive of y with respect to the appropriate variable.

 25. y =
2(x2 + 1)

2cos 2x
 26. y = 10A

3x + 4
2x - 4

 27. y = a(t + 1)(t - 1)

(t - 2)(t + 3)
b5

, t 7 2

 28. y =
2u2u

2u2 + 1

 29. y = (sin u)2u 30. y = (ln x)1>(ln x)

Evaluating Integrals

Evaluate the integrals in Exercises 31–78.

 31.  L ex sin (ex) dx 32.  L et cos (3et - 2) dt

 33.  L ex sec2 (ex - 7) dx

 34.  L ey csc (ey + 1)  cot (ey + 1) dy

 35.  L sec2 x etan x dx 36.  L csc2 x ecot x dx

 37.  L
1

-1

  
dx

3x - 4
 38.  L

e

1

 
2ln x

x   dx

 39.  L
p

0

 tan 
x

3
  dx 40.  L

1>4
1>6  2 cot px dx

 41.  L
4

0

 
2t

t2 - 25
  dt  42.  L

p>6
-p>2 

cos t
1 - sin t

  dt

 43.  L  
tan (ln y)

y   dy 44.  L
dy

y ln y

 45.  L  
(ln x)-3

x   dx 46.  L  
ln (x - 5)

x - 5
  dx

 47.  L
1
r  csc2 (1 + ln r) dr  48.  L  

cos (1 - ln y)
y   dy

 49.  L x3x2

 dx 50.  L 2tan x sec2 x dx

 51.  L
7

1

 
3
x  dx 52.  L

32

1

 
1
5x

  dx

 53.  L
4

1

 ax

8
+

1
2x
b  dx 54.  L

8

1

 a 2
3x

-
8

x2
b  dx

 55.  L
-1

-2

 e-(x + 1) dx 56.  L
0

-ln 2

 e2w dw

CHaPTER 7 Practice Exercises

 16. What are the derivatives of the inverse trigonometric functions? 

How do the domains of the derivatives compare with the domains 

of the functions?

 17. What integrals lead to inverse trigonometric functions? How do 

substitution and completing the square broaden the application of 

these integrals?

 18. What are the six basic hyperbolic functions? Comment on their 

domains, ranges, and graphs. What are some of the identities relat-

ing them?

 19. What are the derivatives of the six basic hyperbolic functions? 

What are the corresponding integral formulas? What similarities 

do you see here with the six basic trigonometric functions?

 20. How are the inverse hyperbolic functions deined? Comment 

on their domains, ranges, and graphs. How can you ind values 

of sech-1 x, csch-1 x, and coth-1 x using a calculator’s keys for 

cosh-1 x, sinh-1 x, and tanh-1 x?

 21. What integrals lead naturally to inverse hyperbolic functions?

 22. How do you compare the growth rates of positive functions as 

x S q?

 23. What roles do the functions ex and ln x play in growth compari-

sons?

 24. Describe big-oh and little-oh notation. Give examples.

 25. Which is more eicient—a sequential search or a binary search? 

Explain.
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 97. lim
xS0

 
10x - 1

x  98. lim
uS0

 
3u - 1

u

 99. lim
xS0

 
2sin x - 1

ex - 1
 100. lim

xS0
 
2-sin x - 1

ex - 1

 101. lim
xS0

 
5 - 5 cos x
ex - x - 1

 102. lim
xS0

 
x sin x2

tan3 x

 103. lim
tS0+

 
t - ln (1 + 2t)

t2
 104. lim

xS4
 

sin2 (px)

ex - 4 + 3 - x

 105. lim
tS0+

 aet

t
-

1
t
b  106. lim

yS0+
 e-1>y ln y

 107. lim
xSq

 aex + 1
ex - 1

b ln x

 108. lim
xS0+

 a1 +
3
xb x

Comparing Growth Rates of Functions

 109. Does ƒ grow faster, slower, or at the same rate as g as x S q? 

Give reasons for your answers.

a. ƒ(x) = log2 x, g(x) = log3 x

b. ƒ(x) = x, g(x) = x +
1
x

c. ƒ(x) = x>100, g(x) = xe-x

d. ƒ(x) = x, g(x) = tan-1 x

e. ƒ(x) = csc-1 x, g(x) = 1>x
f. ƒ(x) = sinh x, g(x) = ex

 110. Does ƒ grow faster, slower, or at the same rate as g as x S q? 

Give reasons for your answers.

a. ƒ(x) = 3-x, g(x) = 2-x

b. ƒ(x) = ln 2x, g(x) = ln x2

c. ƒ(x) = 10x3 + 2x2, g(x) = ex

d. ƒ(x) = tan-1(1>x), g(x) = 1>x
e. ƒ(x) = sin-1(1>x), g(x) = 1>x2

f. ƒ(x) = sech x, g(x) = e-x

 111. True, or false? Give reasons for your answers.

a. 
1

x2
+

1

x4
= Oa 1

x2
b  b. 

1

x2
+

1

x4
= Oa 1

x4
b

c. x = o(x + ln x) d. ln (ln x) = o(ln x)

e. tan-1 x = O(1) f. cosh x = O(ex)

 112. True, or false? Give reasons for your answers.

a. 
1

x4
= Oa 1

x2
+

1

x4
b  b. 

1

x4
= oa 1

x2
+

1

x4
b

c. ln x = o(x + 1) d. ln 2x = O(ln x)

e. sec-1 x = O(1) f. sinh x = O(ex)

Theory and Applications

 113. The function ƒ(x) = ex + x, being diferentiable and one-to-one, 

has a diferentiable inverse ƒ -1(x). Find the value of dƒ -1>dx at 

the point ƒ(ln 2).

 114. Find the inverse of the function ƒ(x) = 1 + (1>x), x ≠ 0. Then 

show that ƒ -1(ƒ(x)) = ƒ(ƒ -1(x)) = x and that

  
dƒ 

-1

dx
 `

ƒ(x)

=
1

ƒ′(x)
.

 57.  L
ln 5

0

 er(3er + 1)-3>2 dr  58.  L
ln 9

0

 eu(eu - 1)1>2 du
 59.  L

e

1

 
1
x (1 + 7 ln x)-1>3 dx 60.  L

e2

e

 
1

x2ln x
  dx

 61.  L
3

1

  
(ln (y + 1))2

y + 1
  dy  62.  L

4

2

(1 + ln t)t ln t dt

 63.  L
8

1

  
log4 u

u
  du  64.  L

e

1

  
8 ln 3 log3 u

u
  du

 65.  L
3>4

-3>4  
6 dx

29 - 4x2
 66.  L

1>5
-1>5  

6 dx

24 - 25x2

 67.  L
2

-2

  
3 dt

4 + 3t2
 68.  L

3

23

   
dt

3 + t2

 69.  L  
dy

y24y2 - 1
 70.  L  

24 dy

y2y2 - 16

 71.  L
2>3
22>3  

dy

� y �29y2 - 1
 72.  L

-26>25

-2>25

 
dy

� y �25y2 - 3

 73.  L
dx

2-2x - x2
 74.  L

dx

2-x2 + 4x - 1

 75.  L
-1

-2

 
2 dy

y2 + 4y + 5
 76.  L

1

-1

  
3 dy

4y2 + 4y + 4

 77.  L
dt

(t + 1)2t2 + 2t - 8
 78.  L

dt

(3t + 1)29t2 + 6t

Solving Equations

In Exercises 79–84, solve for y.

 79. 3y = 2y + 1 80. 4-y = 3y + 2

 81. 9e2y = x2 82. 3y = 3 ln x

 83. ln (y - 1) = x + ln y 84. ln (10 ln y) = ln 5x

Applying L’Hôpital’s Rule

Use l’Hôpital’s Rule to ind the limits in Exercises 85–108.

 85. lim
xS1

 
x2 + 3x - 4

x - 1
 86. lim

xS1
  
xa - 1

xb - 1

 87. lim
xSp

 
tan x

x  88. lim
xS0

  
tan x

x + sin x

 89. lim
xS0

  
sin2 x

tan (x2)
 90. lim

xS0
  
sin mx

sin nx

 91. lim
xSp>2-

 sec 7x cos 3x 92. lim
xS0+

2x sec x

 93. lim
xS0

 (csc x - cot x) 94. lim
xS0

 a 1

x4
-

1

x2
b

 95. lim
xSq
12x2 + x + 1 - 2x2 - x2

 96. lim
xSq
a x3

x2 - 1
-

x3

x2 + 1
b
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In Exercises 125–128 solve the diferential equation.

 125. 
dy

dx
= 2y cos2 2y 126. y′ =

3y(x + 1)2

y - 1

 127. yy′ = sec y2 sec2 x 128. y cos2 x dy + sin x dx = 0

In Exercises 129–132 solve the initial value problem.

 129. 
dy

dx
= e-x - y - 2, y(0) = -2

 130. 
dy

dx
=

y ln y

1 + x2
 , y(0) = e2

 131. x dy - 1y + 2y2 dx = 0, y(1) = 1

 132. y-2 
dx

dy
=

ex

e2x + 1
, y(0) = 1

 133. What is the age of a sample of charcoal in which 90% of the 

carbon-14 originally present has decayed?

 134. cooling a pie A deep-dish apple pie, whose internal tempera-

ture was 220°F when removed from the oven, was set out on a 

breezy 40°F porch to cool. Fifteen minutes later, the pie’s inter-

nal temperature was 180°F. How long did it take the pie to cool 

from there to 70°F?

 135. Locating a solar station You are under contract to build a so-

lar station at ground level on the east–west line between the two 

buildings shown here. How far from the taller building should 

you place the station to maximize the number of hours it will be 

in the sun on a day when the sun passes directly overhead? Begin 

by observing that

  u = p - cot-1 
x

60
- cot-1 

50 - x

30
.

Then ind the value of x that maximizes u.

x

50 m

u

0

60 m

30 m

x

 136. A round underwater transmission cable consists of a core of cop-

per wires surrounded by nonconducting insulation. If x denotes 

the ratio of the radius of the core to the thickness of the insula-

tion, it is known that the speed of the transmission signal is given 

by the equation y = x2 ln (1>x). If the radius of the core is 1 cm, 

what insulation thickness h will allow the greatest transmission 

speed?

Insulation

x = r
h

h
r

Core

In Exercises 115 and 116, ind the absolute maximum and minimum 

values of each function on the given interval.

 115. y = x ln 2x - x, c 1
2e

, 
e

2
d

 116. y = 10x(2 - ln x), (0, e24
 117. Area Find the area between the curve y = 2(ln x)>x and the 

x-axis from x = 1 to x = e.

a. Show that the area between the curve y = 1>x and the x-axis 

from x = 10 to x = 20 is the same as the area between the 

curve and the x-axis from x = 1 to x = 2.

b. Show that the area between the curve y = 1>x and the x-axis 

from ka to kb is the same as the area between the curve and 

the x-axis from x = a to x = b (0 6 a 6 b, k 7 0).

 119. A particle is traveling upward and to the right along the curve 

y = ln x. Its x-coordinate is increasing at the rate (dx>dt) =  

1x m>sec. At what rate is the y-coordinate changing at the 

point (e2, 2)?

 120. A girl is sliding down a slide shaped like the curve y = 9e-x>3. 
Her y-coordinate is changing at the rate dy>dt = (-1>4)29 - y 

ft>sec. At approximately what rate is her x-coordinate changing 

when she reaches the bottom of the slide at x = 9 ft? (Take e3 to 

be 20 and round your answer to the nearest ft > sec.)

 121. The rectangle shown here has one side on the positive y-axis, one 

side on the positive x-axis, and its upper right-hand vertex on the 

curve y = e-x2

. What dimensions give the rectangle its largest 

area, and what is that area?

x

y

0

1
y = e–x2

 122. The rectangle shown here has one side on the positive y-axis, 

one side on the positive x-axis, and its upper right-hand vertex on 

the curve y = (ln x)>x2. What dimensions give the rectangle its 

 largest area, and what is that area?

x

y

0

0.2
y = 

1

0.1

x2

ln x

 123. Graph the following functions and use what you see to locate 

and estimate the extreme values, identify the coordinates of the 

inlection points, and identify the intervals on which the graphs 

are concave up and concave down. Then conirm your estimates 

by working with the functions’ derivatives.

a. y = (ln x)>1x

b. y = e-x2

c. y = (1 + x)e-x

 124. Graph ƒ(x) = x ln x. Does the function appear to have an abso-

lute minimum value? Conirm your answer with calculus.

T

T
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Limits

Find the limits in Exercises 1–6.

 1. lim
bS1-

 L
b

0

 
dx

21 - x2
 2. lim

xSq
  
1
x L

x

0

 tan-1 t dt

 3. lim
xS0+

 (cos1x)1>x 4. lim
xSq

(x + ex)2>x
 5. lim

nSq
 a 1

n + 1
+

1
n + 2

+ g +
1
2n
b

 6. lim
nSq

  
1
n 1e1>n + e2>n + g + e(n - 1)>n + en>n2

 7. Let A(t) be the area of the region in the irst quadrant enclosed 

by the coordinate axes, the curve y = e-x, and the vertical line 

x = t, t 7 0. Let V(t) be the volume of the solid generated by 

revolving the region about the x-axis. Find the following limits.

a. lim
tSq

 A(t) b. lim
tSq

 V(t)>A(t) c. lim
tS0+

 V(t)>A(t)

 8. Varying a logarithm’s base

a. Find lim loga 2 as a S 0+, 1-, 1+, and q.

b. Graph y = loga 2 as a function of a over the interval 

0 6 a … 4.

In Exercises 9 and 10, use implicit diferentiation to ind 
dy

dx
.

 9. y e x = xy + 1 10. yln x = x x y

Theory and Examples

 11. Find the areas between the curves y = 2(log2 x)>x and y =

2(log4 x)>x and the x-axis from x = 1 to x = e. What is the ratio 

of the larger area to the smaller?

 12. Graph ƒ(x) = tan-1 x + tan-1(1>x) for -5 … x … 5. Then use 

calculus to explain what you see. How would you expect ƒ to be-

have beyond the interval 3-5, 54? Give reasons for your answer.

 13. For what x 7 0 does x(xx) = (xx)x? Give reasons for your answer.

 14. Graph ƒ(x) = (sin x)sin x over 30, 3p4 . Explain what you see.

 15. Find ƒ′(2) if ƒ(x) = eg(x) and g(x) = L
x

2

 
t

1 + t4
 dt.

 16. a. Find dƒ >dx if

  ƒ(x) = L
ex

1

 
2 ln t

t
 dt.

b. Find ƒ(0).

c. What can you conclude about the graph of ƒ? Give reasons 

for your answer.

 17. Even-odd decompositions

a. Suppose that g is an even function of x and h is an odd 

function of x. Show that if g(x) + h(x) = 0 for all x then 

g(x) = 0 for all x and h(x) = 0 for all x.

b. If ƒ(x) = ƒE  (x) + ƒO(x) is the sum of an even function ƒE (x) 

and an odd function ƒO(x), then show that

  ƒE (x) =
ƒ(x) + ƒ(-x)

2
 and ƒO(x) =

ƒ(x) - ƒ(-x)

2
.

c. What is the signiicance of the result in part (b)?

T

T

T

 18. Let g be a function that is diferentiable throughout an open inter-

val containing the origin. Suppose g has the following properties:

 i) g(x + y) =
g(x) + g(y)

1 - g(x)g(y)
 for all real numbers x, y, and 

x + y in the domain of g.

 ii) lim
hS0

 g(h) = 0

iii) lim
hS0

 
g(h)

h
= 1

a. Show that g(0) = 0.

b. Show that g′(x) = 1 + 3g(x)42.

c. Find g(x) by solving the diferential equation in part (b).

 19. center of mass Find the center of mass of a thin plate of con-

stant density covering the region in the irst and fourth quadrants 

enclosed by the curves y = 1>(1 + x2) and y = -1>(1 + x2) 

and by the lines x = 0 and x = 1.

 20. solid of revolution The region between the curve y = 1>(21x) 

and the x-axis from x = 1>4 to x = 4 is revolved about the x-axis 

to generate a solid.

a. Find the volume of the solid.

b. Find the centroid of the region.

 21. the best branching angles for blood vessels and pipes When 

a smaller pipe branches of from a larger one in a low system, we 

may want it to run of at an angle that is best from some energy-

saving point of view. We might require, for instance, that energy 

loss due to friction be minimized along the section AOB shown 

in the accompanying igure. In this diagram, B is a given point 

to be reached by the smaller pipe, A is a point in the larger pipe 

upstream from B, and O is the point where the branching occurs. 

A law due to Poiseuille states that the loss of energy due to friction 

in nonturbulent low is proportional to the length of the path and 

inversely proportional to the fourth power of the radius. Thus, the 

loss along AO is (kd1)>R 

4 and along OB is (kd2)>r4, where k is a 

constant, d1 is the length of AO, d2 is the length of OB, R is the ra-

dius of the larger pipe, and r is the radius of the smaller pipe. The 

angle u is to be chosen to minimize the sum of these two losses:

  L = k 
d1

R4
+ k 

d2

r4
.

  a

C

B

O

A

d1

d2

d2 cos u

b = d2 sin u

u

In our model, we assume that AC = a and BC = b are ixed. 

Thus we have the relations

  d1 + d2 cos u = a    d2 sin u = b

CHAPTER 7 Additional and Advanced Exercises
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  50 450 − x

200 ft tall

West

350 ft tall

East

x

u2 u1

 23. Consider point (a, b) on the graph of y =  ln x and triangle ABC 

formed by the tangent line at (a, b), the y-axis, and the line y = b. 

Show that

(area triangle ABC ) =
a

2
.

y = ln x

x

y

(a, b)B
C

A

so that

  d2 = b csc u,

  d1 = a - d2 cos u = a - b cot u.

We can express the total loss L as a function of u:

  L = kaa - b cot u

R 

4
+

b csc u

r4
b .

a. Show that the critical value of u for which dL>du equals zero 

is

  uc = cos-1 
r4

R 

4
.

b. If the ratio of the pipe radii is r>R = 5>6, estimate to the 

nearest degree the optimal branching angle given in part (a).

The mathematical analysis described here is also used to explain 

the angles at which arteries branch in an animal’s body.

 22. Urban gardening A vegetable garden 50 ft wide is to be grown 

between two buildings, which are 500 ft apart along an east-west 

line. If the buildings are 200 ft and 350 ft tall, where should the 

garden be placed in order to receive the maximum number of 

hours of sunlight exposure? (Hint: Determine the value of x in 

the accompanying igure that maximizes sunlight exposure for the 

garden.)

T
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8.1 Using Basic Integration Formulas

Table 8.1 summarizes the indefinite integrals of many of the functions we have studied so 

far, and the substitution method helps us use the table to evaluate more complicated func-

tions involving these basic ones. In this section we combine the Substitution Rules (stud-

ied in Chapter 5) with algebraic methods and trigonometric identities to help us use Table 

8.1. A more extensive Table of Integrals is given at the back of the chapter, and we discuss 

its use in Section 8.6.

Sometimes we have to rewrite an integral to match it to a standard form of the type 

displayed in Table 8.1. We start with an example of this procedure.

EXAMPLE 1  Evaluate the integral

 L
5

3

2x - 3

2x2 - 3x + 1
 dx.

Solution We rewrite the integral and apply the Substitution Rule for Definite Integrals 

presented in Section 5.6, to find

 L
5

3

2x - 3

2x2 - 3x + 1
 dx = L

11

1

du

2u
  

u = x2 - 3x + 1, du = (2x - 3) dx;

u = 1 when x = 3, u = 11 when x = 5
 

 = L
11

1

u- 1>2 du

 = 22u d 11

1

= 21211 - 12 ≈ 4.63.  Table 8.1, Formula 2 

OVERVIEW The Fundamental Theorem tells us how to evaluate a definite integral once 

we have an antiderivative for the integrand function. However, finding antiderivatives (or 

indefinite integrals) is not as straightforward as finding derivatives. In this chapter we 

study a number of important techniques that apply to finding integrals for specialized 

classes of functions such as trigonometric functions, products of certain functions, and 

rational functions. Since we cannot always find an antiderivative, we develop numerical 

methods for calculating definite integrals. We also study integrals whose domain or range 

are infinite, called  improper integrals.

Techniques of 
Integration

8
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EXAMPLE 2  Complete the square to evaluate

L
dx

28x - x2
.

Solution We complete the square to simplify the denominator:

 8x - x2 = -(x2 - 8x) = -(x2 - 8x + 16 - 16)

 = -(x2 - 8x + 16) + 16 = 16 - (x - 4)2.

Then

 L
dx

28x - x2
= L

dx

216 - (x - 4)2

 = L
du

2a2 - u2
  

a = 4, u = (x - 4),

du = dx

 = sin- 1 auab + C   Table 8.1, Formula 18

 = sin- 1 ax - 4
4
b + C.  

TABLE 8.1  Basic integration formulas

 1.  L k dx = kx + C   (any number k)

 2.  Lxn dx =
xn + 1

n + 1
+ C  (n ≠ -1)

 3.  L
dx
x = ln 0 x 0 + C

 4.  Lex dx = ex + C

 5.  Lax dx =
ax

ln a
+ C  (a 7 0, a ≠ 1)

 6.  Lsin x dx = -cos x + C

 7.  Lcos x dx = sin x + C

 8.  Lsec2 x dx = tan x + C

 8.  Lcsc2 x dx = -cot x + C

 10.  Lsec x tan x dx = sec x + C

 11.  Lcsc x cot x dx = -csc x + C

12.  L tan x dx = ln 0 sec x 0 + C

13.  Lcot x dx = ln 0 sin x 0 + C

14.  Lsec x dx = ln 0 sec x + tan x 0 + C

15.  Lcsc x dx = - ln 0 csc x + cot x 0 + C

16.  Lsinh x dx = cosh x + C

17.  Lcosh x dx = sinh x + C

18.  L
dx

2a2 - x2
=  sin- 1ax

ab + C

19.  L
dx

a2 + x2
=

1
a tan - 1ax

ab + C

20.  L
dx

x2x2 - a2
=

1
a sec - 1 ` xa ` + C

21.  L
dx

2a2 + x2
= sinh- 1ax

ab + C  (a 7 0)

22.  L
dx

2x2 - a2
= cosh- 1ax

ab + C  (x 7 a 7 0)
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EXAMPLE 3  Evaluate the integral

L (cos x sin 2x + sin x cos 2x) dx.

Solution We can replace the integrand with an equivalent trigonometric expression 

using the Sine Addition Formula to obtain a simple substitution:

 L (cos x sin 2x + sin x cos 2x) dx = L (sin (x + 2x)) dx

 = Lsin 3x dx

 = L
1
3

 sin u du   u = 3x, du = 3 dx 

 = -  
1
3

 cos 3x + C.   Table 8.1, Formula 6 

EXAMPLE 4  Find  L
p>4

0

dx

1 - sin x
.

Solution We multiply the numerator and denominator of the integrand by 1 + sin x. 

This procedure transforms the integral into one we can evaluate:

  L
p>4

0

dx

1 - sin x
= L

p>4
0

1
1 - sin x

# 1 + sin x
1 + sin x

 dx  
Multiply and divide 

by conjugate.
 

 = L
p>4

0

1 + sin x

1 - sin2 x
 dx Simplify.

 = L
p>4

0

 
1 + sin x

cos2 x
 dx 1 - sin2 x = cos2 x

 = L
p>4

0

(sec2 x + sec x tan x) dx 
Use Table 8.1,  

Formulas 8 and 10
 

 = c tan x + sec x d p>4
0

= 11 + 22 - (0 + 1)2 = 22. 

EXAMPLE 5  Evaluate

L  
3x2 - 7x

3x + 2
dx.

Solution The integrand is an improper fraction since the degree of the numerator is 

greater than the degree of the denominator. To integrate it, we perform long division to 

obtain a quotient plus a remainder that is a proper fraction:

3x2 - 7x

3x + 2
= x - 3 +

6
3x + 2

.

x - 3

3x + 2)3x2 - 7x

3x2 + 2x

-9x

   -9x - 6

+ 6

In Section 7.2 we found the indefinite integral of the secant function by multiplying it 

by a fractional form identically equal to one, and then integrating the equivalent result. We 

can use that same procedure in other instances as well, as we illustrate next.
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Therefore,

  L  
3x2 - 7x

3x + 2
 dx = Lax - 3 +

6
3x + 2

b  dx =
x2

2
- 3x + 2 ln 0 3x + 2 0 + C. 

Reducing an improper fraction by long division (Example 5) does not always lead to 

an expression we can integrate directly. We see what to do about that in Section 8.5.

EXAMPLE 6  Evaluate

L
3x + 2

21 - x2
 dx.

Solution We first separate the integrand to get

L
3x + 2

21 - x2
 dx = 3 L

x dx

21 - x2
+ 2 L

dx

21 - x2
.

In the first of these new integrals, we substitute

u = 1 - x2,  du = -2x dx,  so  x dx = -
1
2

  du.

Then we obtain

 3 L
x dx

21 - x2
= 3 L

(-1>2) du

2u
= -  

3
2

  Lu- 1>2 du

 = -  
3
2

# u1>2
1>2 + C1 = -321 - x2 + C1.

The second of the new integrals is a standard form,

2 L
dx

21 - x2
= 2 sin- 1 x + C2.  Table 8.1, Formula 18

Combining these results and renaming C1 + C2 as C gives

 L
3x + 2

21 - x2
 dx = -321 - x2 + 2 sin- 1 x + C.  

The question of what to substitute for in an integrand is not always quite so clear. 

Sometimes we simply proceed by trial-and-error, and if nothing works out, we then try 

another method altogether. The next several sections of the text present some of these new 

methods, but substitution works in the following example.

EXAMPLE 7  Evaluate

L
dx11 + 2x23 .

Solution We might try substituting for the term 2x, but the derivative factor 1>2x is 

missing from the integrand, so this substitution will not help. The other possibility is to 

substitute for 11 + 2x2, and it turns out this works:

  L
dx11 + 2x23 = L

2(u - 1) du

u3
  

u = 1 + 2x, du =
1

22x
  dx;

dx = 22x  du = 2(u - 1) du

 

 = L a 2

u2
-

2

u3
b  du
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 = -
2
u

+
1

u2
+ C

 =
1 - 2u

u2
+ C

 =
1 - 211 + 2x211 + 2x22 + C

 = C -
1 + 22x11 + 2x22 .  

When evaluating definite integrals, a property of the integrand may help us in calcu-

lating the result.

EXAMPLE 8  Evaluate  L
p>2

-p>2 x3 cos x dx.

Solution No substitution or algebraic manipulation is clearly helpful here. But we 

observe that the interval of integration is the symmetric interval 3-p>2, p>24 . Moreover, 

the factor x3 is an odd function, and cos x is an even function, so their product is odd. 

Therefore,

  L
p>2

-p>2 x
3 cos x dx = 0.  Theorem 8, Section 5.6 

Assorted Integrations

The integrals in Exercises 1–44 are in no particular order. Evaluate 

each integral using any algebraic method or trigonometric identity 

you think is appropriate. When necessary, use a substitution to reduce 

it to a standard form.

 1.  L
1

0

16x

8x2 + 2
 dx 2.  L

x2

x2 + 1
 dx

 3.  L(sec x - tan x)2 dx  4.  L
p>3

p>4 dx

cos2 x tan x

 5.  L
1 - x

21 - x2
 dx  6.  L

dx

x - 2x

 7.  L
e- cot z

sin2 z
 dz 8.  L

2ln z3

16z
 dz

 9.  L
dz

ez + e- z  10.  L
2

1

8 dx

x2 - 2x + 2

 11.  L
0

- 1

 
4 dx

1 + (2x + 1)2
 12.  L

3

- 1

 
4x2 - 7
2x + 3

 dx

 13.  L
dt

1 - sec t
 14.  L  csc t sin 3t dt

 15.  L
p>4

0

 
1 + sin u

cos2 u
 du  16.  L

du

22u - u2

 17.  L
ln y

y + 4y ln2 y
 dy 18.  L  

22y dy

22y

 19.  L
du

sec u + tan u
 20.  L

dt

t23 + t2

 21.  L
4t3 - t2 + 16t

t2 + 4
 dt  22.  L

x + 22x - 1

2x2x - 1
 dx

 23.  L
p>2

0

21 - cos u du  24.  L(sec t + cot t)2 dt

 25.  L
dy

2e2y - 1
 26.  L

6 dy

2y (1 + y)

 27.  L
2 dx

x21 - 4 ln2 x
 28.  L

dx

(x - 2)2x2 - 4x + 3

 29.  L(csc x - sec x)(sin x + cos x) dx

 30.  L3 sinh ax

2
+ ln 5b  dx

 31.  L
3

22

  
2x3

x2 - 1
 dx 32.  L

1

- 1

21 + x2  sin x dx

 33.  L
0

- 1A
1 + y

1 - y
 dy 34.  Lez + ez

 dz

EXERCISES 8.1
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 35.  L
7 dx

(x - 1)2x2 - 2x - 48
 36.  L

dx

(2x + 1)24x + 4x2

 37.  L
2u3 - 7u2 + 7u

2u - 5
 du  38.  L

du

cos u - 1

 39.  L
dx

1 + ex

  Hint: Use long division.

 51. The functions y = ex3

 and y = x3ex3

 do not have elementary anti-

derivatives, but y = (1 + 3x3)ex3

 does.

  Evaluate

L(1 + 3x3)ex3

dx.

 52. Use the substitution u =  tan x to evaluate the integral

L
dx

1 + sin2 x
.

 53. Use the substitution u = x4 + 1 to evaluate the integral

Lx72x4 + 1 dx.

 54. Using diferent substitutions Show that the integral

L((x2 - 1)(x + 1))- 2>3dx

  can be evaluated with any of the following substitutions.

a. u = 1>(x + 1)

b. u = ((x - 1)>(x + 1))k for k = 1, 1>2, 1>3, -1>3, -2>3,

and -1

c. u = tan- 1 x d. u = tan- 1 2x

e. u = tan- 1 ((x - 1)>2) f. u = cos- 1 x

g. u = cosh- 1 x

  What is the value of the integral?

 40.  L
2x

1 + x3
 dx

  Hint: Let u = x3>2.
 41.  L

e3x

ex + 1
 dx 42.  L

2x - 1
3x  dx

 43.  L
1

1x  (1 + x)
 dx 44.  L

tan u + 3

sin u
 du

Theory and Examples

 45. Area Find the area of the region bounded above by y = 2 cos x 

and below by y = sec x, -p>4 … x … p>4.

 46. Volume Find the volume of the solid generated by revolving the 

region in Exercise 45 about the x-axis.

 47. Arc length Find the length of the curve y = ln (cos x), 

0 … x … p>3.

 48. Arc length Find the length of the curve y = ln (sec x), 

0 … x … p>4.

 49. Centroid Find the centroid of the region bounded by the x-axis, 

the curve y = sec x, and the lines x = -p>4, x = p>4.

 50. Centroid Find the centroid of the region bounded by the x-axis, 

the curve y = csc x, and the lines x = p>6, x = 5p>6.

8.2 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

 Lu(x) y′(x) dx.

It is useful when u can be differentiated repeatedly and y′ can be integrated repeatedly 

without difficulty. The integrals

Lx cos x dx  and   Lx2ex dx

are such integrals because u(x) = x or u(x) = x2 can be differentiated repeatedly to 

become zero, and y′(x) = cos x or y′(x) = ex can be integrated repeatedly without diffi-

culty. Integration by parts also applies to integrals like

L  ln x dx  and  Lex cos x dx.

In the first case, the integrand ln x can be rewritten as (ln x)(1), and u(x) = ln x is easy to 

differentiate while y′(x) = 1 easily integrates to x. In the second case, each part of the 

integrand appears again after repeated differentiation or integration.

Product Rule in Integral Form

If u and y are differentiable functions of x, the Product Rule says that

d

dx
 3u(x) y(x)4 = u′(x) y(x) + u(x) y′(x).
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In terms of indefinite integrals, this equation becomes

 L
d

dx
3u(x) y(x)4dx = L 3u′(x) y(x) + u(x) y′(x)] dx

or

 L
d

dx
3u(x) y(x)4  dx = Lu′(x) y(x) dx + Lu(x) y′(x) dx.

Rearranging the terms of this last equation, we get

 Lu(x) y′(x) dx = L
d

dx
3u(x) y(x)4  dx - Ly(x) u′(x) dx,

leading to the integration by parts formula

Integration by Parts Formula

  Lu(x) y′(x) dx = u(x) y(x) - Ly(x) u′(x) dx  (1)

This formula allows us to exchange the problem of computing the integral 1u(x) y′(x) dx 

with the problem of computing a different integral, 1y(x) u′(x) dx. In many cases, we can 

choose the functions u and y so that the second integral is easier to compute than the first. 

There can be many choices for u and y, and it is not always clear which choice works best, 

so sometimes we need to try several.

The formula is often given in differential form. With y′(x) dx = dy and u′(x) dx = du, 

the integration by parts formula becomes

Integration by Parts Formula—Diferential Version

 L  u dy = uy - L  y du  (2)

The next examples illustrate the technique.

ExamPLE 1  Find

Lx cos x dx.

Solution There is no obvious antiderivative of x cos x, so we use the integration by parts 

formula

 Lu(x) y′(x) dx = u(x) y(x) - Ly(x) u′(x) dx

to change this expression to one that is easier to integrate. We first decide how to choose 

the functions u(x) and y(x). In this case we factor the expression x cos x into

u(x) = x and y′(x) = cos x.

Next we differentiate u(x) and find an antiderivative of y′(x),

u′(x) = 1 and y(x) = sin x.



454 Chapter 8 Techniques of Integration

When finding an antiderivative for y′(x) we have a choice of how to pick a constant of 

integration C. We choose the constant C = 0, since that makes this antiderivative as sim-

ple as possible. We now apply the integration by parts formula:

  Lx cos x dx = x sin x - Lsin x (1) dx  Integration by parts formula

 u(x)  y′(x) u(x) y(x) y(x) u′(x)

 = x sin x + cos x + C   Integrate and simplify. 

and we have found the integral of the original function.

There are four apparent choices available for u(x) and y′(x) in Example 1:

1. Let u(x) = 1 and y′(x) = x cos x. 2. Let u(x) = x and y′(x) = cos x.

3. Let u(x) = x cos x and y′(x) = 1. 4. Let u(x) = cos x and y′(x) = x.

Choice 2 was used in Example 1. The other three choices lead to integrals we don’t know 

how to integrate. For instance, Choice 3, with u′(x) = cos x - x sin x, leads to the  

integral

L (x cos x - x2 sin x) dx.

The goal of integration by parts is to go from an integral 1u(x) y′(x) dx that we don’t 

see how to evaluate to an integral 1y(x) u′(x) dx that we can evaluate. Generally, you 

choose y′(x) first to be as much of the integrand as we can readily integrate; u(x) is the 

leftover part. When finding y(x) from y′(x), any antiderivative will work, and we usually 

pick the simplest one; no arbitrary constant of integration is needed in y(x) because it 

would simply cancel out of the right-hand side of Equation (2).

EXAMPLE 2  Find  L ln x dx.

Solution We have not yet seen how to find an antiderivative for ln x. If we set 

u(x) = ln x, then u′(x) is the simpler function 1>x. It may not appear that a second func-

tion y′(x) is multiplying ln x, but we can choose y′(x) to be the constant function 

y′(x) = 1. We use the integration by parts formula Equation (1) with

u(x) = ln x and y′(x) = 1.

We differentiate u(x) and find an antiderivative of y′(x),

u′(x) =
1
x and y(x) = x.

Then

  L ln x # 1 dx = (ln x) x - Lx 
1
x dx  Integration by parts formula

 u(x) y′(x) u(x) y(x) y(x) u′(x)

 = x ln x - x + C   Simplify and integrate. 

In the following examples we use the differential form to indicate the process of inte-

gration by parts. The computations are the same, with du and dy providing shorter expres-

sions for u′(x) dx and y′(x) dx. Sometimes we have to use integration by parts more than 

once, as in the next example.
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EXAMPLE 3  Evaluate

L  x2ex dx.

Solution We use the integration by parts formula Equation (1) with

u(x) = x2 and y′(x) = ex.

We differentiate u(x) and find an antiderivative of y′(x),

u′(x) = 2x and y(x) = ex.

We summarize this choice by setting du = u′(x) dx and dy = y′(x) dx, so

du = 2x dx and dy = ex dx.

We then have

 Lx2ex dx = x2ex - Lex 2x dx .  Integration by parts formula
 ()* ()*

 u dy u y y du

The new integral is less complicated than the original because the exponent on x is reduced 

by one. To evaluate the integral on the right, we integrate by parts again with 

u = x, dy = ex dx. Then du = dx, y = ex, and

L  xex dx = xex - L  ex dx = xex - ex + C.   

Integration by parts Equation (2)

u = x, dy = ex dx

v = ex,  du = dx
  ()* 6

       u   dy u y y du

Using this last evaluation, we then obtain

 L  x2ex dx = x2ex - 2L  xex dx

 = x2ex - 2xex + 2ex + C,

where the constant of integration is renamed after substituting for the integral on the right. 

 

The technique of Example 3 works for any integral 1  xnex dx in which n is a positive 

integer, because differentiating xn will eventually lead to zero and integrating ex is easy.

Integrals like the one in the next example occur in electrical engineering. Their evalu-

ation requires two integrations by parts, followed by solving for the unknown integral.

EXAMPLE 4  Evaluate

Lex cos x dx.

Solution Let u = ex and dy = cos x dx. Then du = ex dx, y = sin x, and

Lex cos x dx = ex sin x - Lex sin x dx.   u(x) = ex, y(x) = sin x

The second integral is like the first except that it has sin x in place of cos x. To evaluate it, 

we use integration by parts with

u = ex,  dy = sin x dx,   y = -cos x,   du = ex dx.
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Then

 Lex cos x dx = ex sin x - a-ex cos x - L (-cos x)(ex dx)b  u(x) = ex, y(x) = -cos x

 = ex sin x + ex cos x - Lex cos x dx.  

The unknown integral now appears on both sides of the equation, but with opposite signs. 

Adding the integral to both sides and adding the constant of integration give

2Lex cos x dx = ex sin x + ex cos x + C1.

Dividing by 2 and renaming the constant of integration give

 Lex cos x dx =
ex sin x + ex cos x

2
+ C.  

EXAMPLE 5  Obtain a formula that expresses the integral

Lcosn x dx

in terms of an integral of a lower power of cos x.

Solution We may think of cosn x as cosn - 1 x #  cos x. Then we let

u = cosn - 1 x  and  dy = cos x dx,

so that

du = (n - 1) cosn - 2 x (-sin x dx)  and  y = sin x.

Integration by parts then gives

 Lcosn x dx = cosn - 1 x sin x + (n - 1)Lsin2 x cosn - 2 x dx

 = cosn - 1 x sin x + (n - 1)L (1 - cos2 x) cosn - 2 x dx

 = cosn - 1 x sin x + (n - 1)Lcosn - 2 x dx - (n - 1)Lcosn x dx.

If we add

(n - 1)Lcosn x dx

to both sides of this equation, we obtain

nLcosn x dx = cosn - 1 x sin x + (n - 1)Lcosn - 2 x dx.

We then divide through by n, and the final result is

 Lcosn x dx =
cosn - 1 x sin x

n +
n - 1

n Lcosn - 2 x dx.  

The formula found in Example 5 is called a reduction formula because it replaces an 

integral containing some power of a function with an integral of the same form having the 
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power reduced. When n is a positive integer, we may apply the formula repeatedly until the 

remaining integral is easy to evaluate. For example, the result in Example 5 tells us that

 Lcos3 x dx =
cos2 x sin x

3
+

2
3

 Lcos x dx

 =
1
3

 cos2 x sin x +
2
3

 sin x + C.

Evaluating Definite Integrals by Parts

The integration by parts formula in Equation (1) can be combined with Part 2 of the Fun-

damental Theorem in order to evaluate definite integrals by parts. Assuming that both u′ 

and y′ are continuous over the interval 3a, b4 , Part 2 of the Fundamental Theorem gives

Integration by Parts Formula for Definite Integrals

  L
b

a

u(x) y′(x) dx = u(x) y(x) d
a

b

- L
b

a

 y(x) u′(x) dx  (3)

EXAMPLE 6  Find the area of the region bounded by the curve y = xe-x and the 

x-axis from x = 0 to x = 4.

Solution The region is shaded in Figure 8.1. Its area is

L
4

0

 xe-x dx.

Let u = x, dy = e-x dx, y = -e-x, and du = dx. Then,

  L
4

0

 xe-x dx = -xe-x d
0

4

- L
4

0

(-e-x) dx

 = 3-4e-4 - (-0e- 0)4 + L
4

0

 e-x dx

 = -4e-4 - e-x d
0

4

  = -4e-4 - (e-4 - e-0) = 1 - 5e-4 ≈ 0.91. 

Integration by parts Formula (3)

x

y

1 2 3 4−1 0

−0.5

−1

0.5

1

y = xe−x

FIGURE 8.1 The region in Example 6.

Integration by Parts

Evaluate the integrals in Exercises 1–24 using integration by parts.

 1.  Lx sin 
x

2
 dx  2.  Lu cos pu du

 3.  L t2 cos t dt  4.  Lx2 sin x dx

 5.  L
2

1

x ln x dx  6.  L
e

1

x3 ln x dx

 7.  Lxex dx  8.  Lxe3x dx

 9.  Lx2e- x dx  10.  L(x2 - 2x + 1)e2x dx

 11.  L tan - 1 y dy  12.  Lsin- 1 y dy

 13.  Lx sec2 x dx  14.  L4x sec2 2x dx

 15.  Lx3ex dx  16.  Lp4e- p dp

 17.  L(x2 - 5x)ex dx  18.  L(r2 + r + 1)er dr

EXERCISES 8.2
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Theory and Examples

 57. Finding area Find the area of the region enclosed by the curve 

y = x sin x and the x-axis (see the accompanying igure) for

a. 0 … x … p.

b. p … x … 2p.

c. 2p … x … 3p.

d. What pattern do you see here? What is the area between the 

curve and the x-axis for np … x … (n + 1)p, n an arbitrary 

nonnegative integer? Give reasons for your answer.

x

y

0 2pp

5

y = x sin x10

−5

3p

 58. Finding area Find the area of the region enclosed by the curve 

y = x cos x and the x-axis (see the accompanying igure) for

a. p>2 … x … 3p>2.

b. 3p>2 … x … 5p>2.

c. 5p>2 … x … 7p>2.

d. What pattern do you see? What is the area between the curve 

and the x-axis fora2n - 1
2
bp … x … a2n + 1

2
bp,

n an arbitrary positive integer? Give reasons for your answer.

0

10

−10

y = x cos x

x

y

p
2

7p
2

5p
2

3p
2

 59. Finding volume Find the volume of the solid generated by re-

volving the region in the irst quadrant bounded by the coordi-

nate axes, the curve y = ex, and the line x = ln 2 about the line 

x = ln 2.

 60. Finding volume Find the volume of the solid generated by re-

volving the region in the irst quadrant bounded by the coordinate 

axes, the curve y = e-x, and the line x = 1

a. about the y-axis.

b. about the line x = 1.

 61. Finding volume Find the volume of the solid generated by re-

volving the region in the irst quadrant bounded by the coordinate 

axes and the curve y = cos x, 0 … x … p>2, about

a. the y-axis.

b. the line x = p>2.

 19.  Lx5ex dx  20.  L t2e4t dt

 21.  Leu sin u du  22.  Le- y cos y dy

 23.  Le2x cos 3x dx  24.  Le- 2x sin 2x dx

Using Substitution

Evaluate the integrals in Exercises 25–30 by using a substitution prior 

to integration by parts.

 25.  Le23s + 9 ds  26.  L
1

0

x21 - x  dx

 27.  L
p>3

0

 x tan2 x dx 28.  L ln (x + x2) dx

 29.  Lsin (ln x) dx  30.  Lz(ln z)2 dz

Evaluating Integrals

Evaluate the integrals in Exercises 31–56. Some integrals do not 

require integration by parts.

 31.  Lx sec x2 dx  32.  L
cos 2x

2x
 dx

 33.  Lx (ln x)2 dx  34.  L
1

x (ln x)2
 dx

 35.  L
ln x

x2
 dx  36.  L

(ln x)3

x  dx

 37.  Lx3 ex4

 dx  38.  Lx5 ex3

 dx

 39.  Lx32x2 + 1 dx  40.  Lx2 sin x3 dx

 41.  Lsin 3x cos 2x dx  42.  Lsin 2x cos 4x dx

 43.  L2x ln x dx  44.  L
e2x

2x
 dx

 45.  Lcos 2x dx  46.  L2x e2x dx

 47.  L
p>2

0

u2 sin 2u du  48.  L
p>2

0

x3 cos 2x dx

 49.  L
2

2>23

 t sec-1 t dt  50.  L
1>22

0

2x sin-1 (x2) dx

 51.  Lx tan- 1 x dx  52.  Lx2 tan- 1  
x

2
  dx

 53.  L(1 + 2x2)ex2

 dx 54.  L
xex

(x + 1)2
 dx

 55.  L2x 1sin- 1 2x2 dx 56.  L
(sin-1 x)2

21 - x2
 dx
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 68.  Lxn sin x dx = -xn cos x + n Lxn - 1 cos x dx

 69.  Lxneax dx =
xneax

a -
n
a  Lxn - 1eax dx, a ≠ 0

 70.  L(ln x)n dx = x(ln x)n - nL(ln x)n - 1 dx

 71.  Lxm(ln x)n dx =
xm + 1

m + 1
 (ln x)n

                          -
n

m + 1
  L  xm (ln x)n-1 dx, m ≠ -1

 72.  Lxn2x + 1 dx =
2xn

2n + 3
 (x + 1)3>2

                              -  
2n

2n + 3
 Lxn - 12x + 1 dx

 73.  L
xn

2x + 1
 dx =

2xn

2n + 1
2x + 1

                           -  
2n

2n + 1
 L

xn - 1

2x + 1
 dx

 74. Use Example 5 to show that

  L
p>2

0

sinn x dx = L
p>2

0

cosn x dx

 = µ ap2 b1 # 3 # 5g(n - 1)

2 # 4 # 6gn
, n even

2 # 4 # 6g(n - 1)

1 # 3 # 5gn
, n odd

 75. Show that

 L
b

a

a    L
b

x

ƒ(t) dtb  dx = L
b

a

(x - a)ƒ(x) dx.

 76. Use integration by parts to obtain the formula

L21 - x2 dx =
1
2

 x 21 - x2 +
1
2

 L
1

21 - x2
 dx.

Integrating Inverses of Functions

Integration by parts leads to a rule for integrating inverses that usually 

gives good results:

 Lƒ -1(x) dx = Lyƒ′(y) dy   
y = ƒ -1(x), x = ƒ( y)

dx = ƒ′( y) dy
 

 = yƒ(y) - Lƒ(y) dy   
Integration by parts with 

u = y, dy = ƒ′( y) dy  

 = xƒ-1(x) - Lƒ(y) dy   

 62. Finding volume Find the volume of the solid generated 

by revolving the region bounded by the x-axis and the curve 

y = x sin x, 0 … x … p, about

a. the y-axis.

b. the line x = p.

  (See Exercise 57 for a graph.)

 63. Consider the region bounded by the graphs of y = ln x, y = 0, 

and x = e.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region 

about the x-axis.

c. Find the volume of the solid formed by revolving this region 

about the line x = -2.

d. Find the centroid of the region.

 64. Consider the region bounded by the graphs of y = tan-1 x, y = 0, 

and x = 1.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region 

about the y-axis.

 65. Average value A retarding force, symbolized by the dashpot in 

the accompanying igure, slows the motion of the weighted spring 

so that the mass’s position at time t is

y = 2e-t cos t,  t Ú 0.

  Find the average value of y over the interval 0 … t … 2p.

0

Massy

Dashpot

y

 66. Average value In a mass-spring-dashpot system like the one in 

Exercise 65, the mass’s position at time t is

y = 4e-t(sin t - cos t),  t Ú 0.

  Find the average value of y over the interval 0 … t … 2p.

Reduction Formulas

In Exercises 67–71, use integration by parts to establish the reduction 

formula.

 67.  Lxn cos x dx = xn sin x - n Lxn - 1 sin x dx
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The idea is to take the most complicated part of the integral, in this case 

ƒ -1(x), and simplify it irst. For the integral of ln x, we get

  L ln x dx = Lyey dy   
y = ln x, x = e y

dx = e y dy
 

 = yey - ey + C

 = x ln x - x + C.

For the integral of cos-1 x we get

 Lcos -1 x dx = x cos-1 x - Lcos y dy  y = cos-1 x 

 = x cos-1 x - sin y + C

 = x cos-1 x - sin (cos-1 x) + C.

Use the formula

 Lƒ -1(x) dx = xƒ -1(x) - Lƒ(y) dy  y = ƒ -1(x) (4)

to evaluate the integrals in Exercises 77–80. Express your answers in 

terms of x.

 77.  Lsin-1 x dx

 78.  L tan-1 x dx

 79.  Lsec-1 x dx

 80.  L log2 x dx

Another way to integrate ƒ -1(x) (when ƒ -1 is integrable) is to  

use integration by parts with u = ƒ -1(x) and dy = dx to rewrite the 

integral of ƒ -1 as

 Lƒ -1(x) dx = xƒ -1(x) - Lx a d

dx
 ƒ -1(x)b  dx.  (5)

Exercises 81 and 82 compare the results of using Equations (4) and (5).

 81. Equations (4) and (5) give diferent formulas for the integral of 

cos-1 x:

a.  Lcos-1 x dx = x cos-1 x -  sin (cos-1 x) + C  Eq. (4)

b.  Lcos-1 x dx = x cos-1 x - 21 - x2 + C  Eq. (5)

Can both integrations be correct? Explain.

 82. Equations (4) and (5) lead to diferent formulas for the integral of 

tan-1 x:

a.  L tan-1 x dx = x tan-1 x - ln sec (tan-1 x) + C  Eq. (4)

b.  L tan-1 x dx = x tan-1 x - ln 21 + x2 + C  Eq. (5)

Can both integrations be correct? Explain.

Evaluate the integrals in Exercises 83 and 84 with (a) Eq. (4) and (b) 

Eq. (5). In each case, check your work by diferentiating your answer 

with respect to x.

 83.  L  sinh-1 x dx

 84.  L tanh-1 x dx

8.3 Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six basic trigonometric 

functions. In principle, we can always express such integrals in terms of sines and cosines, 

but it is often simpler to work with other functions, as in the integral

Lsec2 x dx = tan x + C.

The general idea is to use identities to transform the integrals we have to find into integrals 

that are easier to work with.

Products of Powers of Sines and Cosines

We begin with integrals of the form

Lsinm x cosn x dx,

where m and n are nonnegative integers (positive or zero). We can divide the appropriate 

substitution into three cases according to m and n being odd or even.
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Here are some examples illustrating each case.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sin2 x =  

1 - cos2 x to obtain

 sinm x = sin2k + 1 x = (sin2 x)k sin x = (1 - cos2 x)k sin x. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to 

-d(cos x).

Case 2 If n is odd in 1sinm x cosn x dx, we write n as 2k + 1 and use the 

 identity cos2 x = 1 - sin2 x to obtain

cosn x = cos2k + 1 x = (cos2 x)k cos x = (1 - sin2 x)k cos x.

We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 If both m and n are even in 1sinm x cosn x dx, we substitute

 sin2 x =
1 - cos 2x

2
,   cos2 x =

1 + cos 2x

2
 (2)

to reduce the integrand to one in lower powers of cos 2x.

EXAMPLE 1  Evaluate

Lsin3 x cos2 x dx.

Solution This is an example of Case 1.

 Lsin3 x cos2 x dx = Lsin2 x cos2 x sin x dx   m is odd.

 = L (1 - cos2 x) (cos2 x)(-d (cos x))   sin x dx = -d (cos x)

 = L (1 - u2) (u2)(-du)   u = cos x

 = L (u4 - u2)  du   Multiply terms.

 =
u5

5
-

u3

3
+ C =

cos5 x
5

-
cos3 x

3
+ C 

EXAMPLE 2  Evaluate

Lcos5 x dx.

Solution This is an example of Case 2, where m = 0 is even and n = 5 is odd.

  Lcos5 x dx = Lcos4 x cos x dx = L (1 - sin2 x)2 d(sin x)  cos x dx = d (sin x) 

  = L (1 - u2)2 du   u = sin x 

  = L (1 - 2u2 + u4)  du   Square 1 - u2. 

  = u -
2
3

 u3 +
1
5

 u5 + C = sin x -
2
3

 sin3 x +
1
5

 sin5 x + C 
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EXAMPLE 3  Evaluate

Lsin2 x cos4 x dx.

Solution This is an example of Case 3.

  Lsin2 x cos4 x dx = L a1 - cos 2x

2
b a1 + cos 2x

2
b2

 dx  m and n both even

 =
1
8

  L (1 - cos 2x)(1 + 2 cos 2x + cos2 2x)  dx

 =
1
8

  L (1 + cos 2x - cos2 2x - cos3 2x)  dx

 =
1
8

 c x +
1
2

 sin 2x - L (cos2 2x + cos3 2x)  dx d
For the term involving cos2 2x, we use

 Lcos2 2x dx =
1
2

  L (1 + cos 4x) dx

 =
1
2

 ax +
1
4

 sin 4xb .   

For the cos3 2x term, we have

  Lcos3 2x dx = L (1 - sin2 2x) cos 2x dx  u = sin 2x, du = 2 cos 2x dx  

 =
1
2

 L (1 - u2)  du =
1
2

 asin 2x -
1
3

 sin3 2xb . Again omit C.

Combining everything and simplifying, we get

  Lsin2 x cos4 x dx =
1
16

 ax -
1
4

 sin 4x +
1
3

 sin3 2xb + C. 

 Omit constant of  

integration until final result.

Eliminating Square Roots

In the next example, we use the identity cos2 u = (1 + cos 2u)>2 to eliminate a square root.

EXAMPLE 4  Evaluate

 L
p>4

0

21 + cos 4x dx.

Solution To eliminate the square root, we use the identity

cos2 u =
1 + cos 2u

2
  or  1 + cos 2u = 2 cos2 u.

With u = 2x, this becomes

1 + cos 4x = 2 cos2 2x.
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Therefore,

  L
p>4

0

 21 + cos 4x dx = L
p>4

0

 22 cos2 2x dx = L
p>4

0

 222cos2 2x dx

 = 22 L
p>4

0

0 cos 2x 0  dx = 22 L
p>4

0

cos 2x dx  
cos 2x Ú 0 on 30, p>44  

 = 22 c sin 2x

2
d

0

p>4
=
22
2

 31 - 04 =
22
2

.  

Integrals of Powers of tan x and sec x

We know how to integrate the tangent and secant functions and their squares. To integrate 

higher powers, we use the identities tan2 x = sec2 x - 1 and sec2 x = tan2 x + 1, and 

integrate by parts when necessary to reduce the higher powers to lower powers.

EXAMPLE 5  Evaluate

L tan4 x dx.

Solution

 L tan4 x dx = L tan2 x # tan2 x dx = L tan2 x # (sec2 x - 1) dx

 = L tan2 x sec2 x dx - L tan2 x dx

 = L tan2 x sec2 x dx - L (sec2 x - 1) dx

 = L tan2 x sec2 x dx - Lsec2 x dx + Ldx

In the first integral, we let

u = tan x,  du = sec2 x dx

and have

Lu2 du =
1
3

 u3 + C1.

The remaining integrals are standard forms, so

 L tan4 x dx =
1
3

 tan3 x - tan x + x + C.  

EXAMPLE 6  Evaluate

Lsec3 x dx.

Solution We integrate by parts using

u = sec x,  dy = sec2 x dx,  y = tan x,  du = sec x tan x dx.
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Then

 Lsec3 x dx = sec x tan x - L (tan x)(sec x tan x dx)

 = sec x tan x - L (sec2 x - 1) sec x dx   tan2 x = sec2 x - 1 

 = sec x tan x + Lsec x dx - Lsec3 x dx.

Combining the two secant-cubed integrals gives

2Lsec3 x dx = sec x tan x + Lsec x dx

and

 Lsec3 x dx =
1
2

 sec x tan x +
1
2

 ln 0 sec x + tan x 0 + C.  

EXAMPLE 7  Evaluate

L tan4 x sec4 x dx.

Solution

 L (tan4 x) (sec4 x) dx = L (tan4 x) (1 + tan2 x) (sec2 x) dx   sec2 x = 1 + tan2 x 

 = L (tan4 x + tan6 x) (sec2 x) dx

 = L (tan4 x) (sec2 x) dx + L (tan6 x) (sec2 x) dx

 = Lu4 du + Lu6 du =
u5

5
+

u7

7
+ C  

u = tan x, 

du = sec2 x dx  

 =
tan5 x

5
+

tan7 x
7

+ C  

Products of Sines and Cosines

The integrals

Lsin mx sin nx dx,  Lsin mx cos nx dx,  and  Lcos mx cos nx dx

arise in many applications involving periodic functions. We can evaluate these integrals 

through integration by parts, but two such integrations are required in each case. It is sim-

pler to use the identities

  sin mx sin nx =
1
2

 3cos (m - n)x - cos (m + n)x4 , (3)

  sin mx cos nx =
1
2

 3sin (m - n)x + sin (m + n)x4 , (4)

   cos mx cos nx =
1
2

 3cos (m - n)x + cos (m + n)x4 . (5)
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These identities come from the angle sum formulas for the sine and cosine functions 

 (Section 1.3). They give functions whose antiderivatives are easily found.

EXAMPLE 8  Evaluate

Lsin 3x cos 5x dx. 

Solution From Equation (4) with m = 3 and n = 5, we get

 Lsin 3x cos 5x dx =
1
2

 L 3sin (-2x) + sin 8x4  dx 

 =
1
2

 L (sin 8x - sin 2x) dx

  = -  
cos 8x

16
+

cos 2x

4
+ C.  

Powers of Sines and Cosines

Evaluate the integrals in Exercises 1–22.

 1.  Lcos 2x dx  2.  L
p

0

3 sin  
x

3
 dx

 3.  Lcos3 x sin x dx  4.  Lsin4 2x cos 2x dx

 5.  Lsin3 x dx  6.  Lcos3 4x dx

 7.  Lsin5 x dx  8.  L
p

0

sin5 
x

2
  dx

 9.  Lcos3 x dx  10.  L
p>6

0

 3 cos5 3x dx

 11.  Lsin3 x cos3 x dx  12.  Lcos3 2x sin5 2x dx

 13.  Lcos2 x dx  14.  L
p>2

0

sin2 x dx

 15.  L
p>2

0

sin7 y dy 16.  L7 cos7 t dt

 17.  L
p

0

 8 sin4 x dx 18.  L8 cos4 2px dx

 19.  L16 sin2 x cos2 x dx  20.  L
p

0

 8 sin4 y cos2 y dy

 21.  L8 cos3 2u sin 2u du  22.  L
p>2

0

sin2 2u cos3 2u du

Integrating Square Roots

Evaluate the integrals in Exercises 23–32.

 23.  L
2p

0 A
1 - cos x

2
 dx 24.  L

p

0

21 - cos 2x dx

 25.  L
p

0

21 - sin2 t dt  26.  L
p

0

21 - cos2 u du

 27.  L
p>2

p>3 sin2 x

21 - cos x
 dx 28.  L

p/6

0

21 + sin x dx

    aHint: Multiply by B
1 - sin x
1 - sin x

 .b
 29.  L

p

5p>6 cos4 x

21 - sin x
 dx 30.  L

3p>4
p>2 21 - sin 2x dx

 31.  L
p>2

0

u21 - cos 2u du  32.  L
p

-p

(1 - cos2 t)3>2 dt

Powers of Tangents and Secants

Evaluate the integrals in Exercises 33–50.

 33.  Lsec2 x tan x dx  34.  Lsec x tan2 x dx

 35.  Lsec3 x tan x dx  36.  Lsec3 x tan3 x dx

 37.  Lsec2 x tan2 x dx  38.  Lsec4 x tan2 x dx

 39.  L
0

-p>3 2 sec3 x dx  40.  Lex sec3 ex dx

EXERCISES 8.3
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 41.  Lsec4 u du  42.  L3 sec4 3x dx

 43.  L
p>2

p>4  csc4 u du  44.  Lsec6 x dx

 45.  L4 tan3 x dx  46.  L
p>4

-p>4 6 tan4 x dx

 47.  L tan5 x dx  48.  Lcot6 2x dx

 49.  L
p>3

p>6  cot3 x dx 50.  L8 cot4 t dt

Products of Sines and Cosines

Evaluate the integrals in Exercises 51–56.

 51.  Lsin 3x cos 2x dx  52.  Lsin 2x cos 3x dx

 53.  L
p

-p

sin 3x sin 3x dx 54.  L
p>2

0

sin x cos x dx

 55.  Lcos 3x cos 4x dx  56.  L
p>2

-p>2 cos x cos 7x dx

Exercises 57–62 require the use of various trigonometric identities 

before you evaluate the integrals.

 57.  Lsin2 u cos 3u du  58.  Lcos2 2u sin u du

 59.  Lcos3 u sin 2u du  60.  Lsin3 u cos 2u du

 61.  Lsin u cos u cos 3u du  62.  Lsin u sin 2u sin 3u du

Assorted Integrations

Use any method to evaluate the integrals in Exercises 63–68.

 63.  L
sec3 x
tan x

 dx 64.  L
sin3 x

cos4 x
 dx

 65.  L  
tan2 x
csc  x dx 66.  L

cot x

cos2 x
 dx

 67.  Lx sin2 x dx  68.  Lx cos3 x dx

Applications

 69. Arc length Find the length of the curve

y = ln (sin x), 
p

6
… x …

p

2

 70. center of gravity Find the center of gravity of the region 

bounded by the x-axis, the curve y = sec x, and the lines x =  

-p>4, x = p>4.

 71. Volume Find the volume generated by revolving one arch of the 

curve y = sin x about the x-axis.

 72. Area Find the area between the x-axis and the curve y =  

21 + cos 4x, 0 … x … p.

 73. centroid Find the centroid of the region bounded by the graphs 

of y = x + cos x and y = 0 for 0 … x … 2p.

 74. Volume Find the volume of the solid formed by revolving the re-

gion bounded by the graphs of y = sin x + sec x, y = 0, x = 0, 

and x = p>3 about the x@axis.

 75. Volume Find the volume of the solid formed by revolving the 

 region bounded by the graphs of y = tan-1x, x = 0, and y = p>4 

about the y@axis.

 76. Average Value Find the average value of the function 

ƒ(x) =
1

1 - sin u
 on 30, p>64 .

8.4 Trigonometric Substitutions

Trigonometric substitutions occur when we replace the variable of integration by a trigo-

nometric function. The most common substitutions are x = a tan u, x = a sin u, and 

x = a sec u. These substitutions are effective in transforming integrals involving 

2a2 + x2, 2a2 - x2, and 2x2 - a2 into integrals we can evaluate directly since they 

come from the reference right triangles in Figure 8.2.

u u u

a

a

a

x
xx

"a2 − x2

x = a tan u x = a sin u x = a sec u

"x2 − a2"a2 + x2

"a2 + x2 = a 0 sec u 0 "a2 − x2 = a 0 cos u 0 "x2 − a2 = a 0 tan u 0

FIGURE 8.2 Reference triangles for the three basic substitutions identi-

fying the sides labeled x and a for each substitution.
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With x = a tan u,

a2 + x2 = a2 + a2 tan2 u = a2(1 + tan2 u) = a2 sec2 u.

With x = a sin u,

a2 - x2 = a2 - a2 sin2 u = a2(1 - sin2 u) = a2 cos2 u.

With x = a sec u,

x2 - a2 = a2 sec2 u - a2 = a2(sec2 u - 1) = a2 tan2 u.

We want any substitution we use in an integration to be reversible so that we can 

change back to the original variable afterward. For example, if x = a tan u, we want to be 

able to set u = tan-1 (x>a) after the integration takes place. If x = a sin u, we want to be 

able to set u = sin-1 (x>a) when we’re done, and similarly for x = a sec u.

As we know from Section 7.6, the functions in these substitutions have inverses only 

for selected values of u (Figure 8.3). For reversibility,

 x = a tan u requires u = tan-1 ax
ab with -  

p
2

6 u 6
p
2

,

 x = a sin u requires u = sin-1 ax
ab with -  

p
2

… u …
p
2

,

 x = a sec u requires u = sec-1 ax
ab with d   0 … u 6

p
2
 if 

x
a Ú 1,

p
2

6 u … p if 
x
a … -1.

To simplify calculations with the substitution x = a sec u, we will restrict its use to 

integrals in which x>a Ú 1. This will place u in 30, p>2) and make tan u Ú 0. We will 

then have 2x2 - a2 = 2a2 tan2 u = 0 a tan u 0 = a tan u, free of absolute values, pro-

vided a 7 0.

u

u

u

x
a

x
a

x
a

x
a

p
2

p
2

p
2

p
2

−

p
2

−

p
u = sec−1

x
au = sin−1

x
au = tan−1

0

0 1−1

0 1−1

FIGURE 8.3 The arctangent, arcsine, 

and arcsecant of x>a, graphed as functions 

of x>a.

Procedure for a Trigonometric Substitution

1. Write down the substitution for x, calculate the differential dx, and specify the 

selected values of u for the substitution.

2. Substitute the trigonometric expression and the calculated diferential into the 

integrand, and then simplify the results algebraically.

3. Integrate the trigonometric integral, keeping in mind the restrictions on the 

angle u for reversibility.

4. Draw an appropriate reference triangle to reverse the substitution in the inte-

gration result and convert it back to the original variable x.

EXAMPLE 1  Evaluate

L
dx

24 + x2
.

Solution We set

x = 2 tan u,  dx = 2 sec2 u du,  -
p
2

6 u 6
p
2

,

4 + x2 = 4 + 4 tan2 u = 4(1 + tan2 u) = 4 sec2 u.
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Then

 L  
dx

24 + x2
= L  

2 sec2 u du

24 sec2 u
= L  

sec2 u du0 sec u 0   2sec2 u = 0 sec u 0  
 = Lsec u du   sec u 7 0 for  -  

p

2
6 u 6

p

2

 = ln 0 sec u + tan u 0 + C

 = ln ` 24 + x2

2
+

x

2
` + C.   From Fig. 8.4

Notice how we expressed ln 0 sec u + tan u 0  in terms of x: We  drew  a reference triangle for 

the original substitution x = 2 tan u (Figure 8.4) and read the ratios from the triangle. 

u

2

x
"4 + x2

FIGURE 8.4 Reference triangle for 

x = 2 tan u (Example 1):

 tan u =
x

2

and

 sec u =
24 + x2

2
.

EXAMPLE 3  Evaluate

L
x2 dx

29 - x2
.

Solution We set

x = 3 sin u,  dx = 3 cos u du,  -  
p
2

6 u 6
p
2

9 - x2 = 9 - 9 sin2 u = 9(1 - sin2 u) = 9 cos2 u.

sinh- 1  
x
a = ln a2a2 + x2

a +
x
ab

EXAMPLE 2  Here we find an expression for the inverse hyperbolic sine function in 

terms of the natural logarithm. Following the same procedure as in Example 1, we find 

that

  L
dx

2a2 + x2
= Lsec u du   x = a tan u,  dx = a sec2 u du 

 = ln 0  sec u + tan u 0 + C

 = ln ` 2a2 + x2

a +
x
a ` + C  Fig. 8.2

From Table 7.11, sinh-1 (x>a) is also an antiderivative of 1>2a2 + x2 , so the two anti-

derivatives differ by a constant, giving

sinh- 1 
x
a =  ln ` 2a2 + x2

a +
x
a ` + C.

Setting x = 0 in this last equation, we find 0 = ln 0 1 0 + C, so C = 0. Since 

2a2 + x2 7 0 x 0 , we conclude that

(See also Exercise 76 in Section 7.7.) 
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Then

  L
x2 dx

29 - x2
= L

9 sin2 u # 3 cos u du0 3 cos u 0
 = 9Lsin2 u du   cos u 7 0 for  -  

p

2
6 u 6

p

2
 

 = 9L
1 - cos 2u

2
 du

 =
9
2

 au -
sin 2u

2
b + C

 =
9
2

 (u - sin u cos u) + C   sin 2u = 2 sin u cos u 

 =
9
2

 asin-1 
x

3
-

x

3
# 29 - x2

3
 b + C  From Fig. 8.5

 =
9
2

 sin-1 
x

3
-

x

2
29 - x2 + C.  

EXAMPLE 4  Evaluate

L
dx

225x2 - 4
,  x 7

2
5

.

Solution We first rewrite the radical as

 225x2 - 4 = B25ax2 -
4
25
b

 = 5Cx2 - a2
5
b2

  2x2 - a2 with a =
2

5

to put the radicand in the form x2 - a2. We then substitute

x =
2
5

 sec u,  dx =
2
5

 sec u tan u du,  0 6 u 6
p
2

.

We then get

x2 - a2
5
b2

=
4
25

 sec2 u -
4
25

=
4
25

 (sec2 u - 1) =
4
25

 tan2 u

and

 Cx2 - a2
5
b2

=
2
5

 0 tan u 0 =
2
5

 tan u.  
tan u 7 0 for 

0 6 u 6 p>2  

With these substitutions, we have

  L
dx

225x2 - 4
= L

dx

52x2 - (4>25)
= L

(2>5) sec u tan u du

5 # (2>5) tan u

 =
1
5

 Lsec u du =
1
5

 ln 0 sec u + tan u 0 + C

 =
1
5

 ln ` 5x

2
+
225x2 - 4

2
` + C.  From Fig. 8.6 

u

3 x

"9 − x2

FIGURE 8.5 Reference triangle for 

x = 3 sin u (Example 3):

 sin u =
x

3

and

 cos u =
29 - x2

3
.

u

2

5x "25x2 − 4

FIGURE 8.6 If x = (2>5)sec u, 

0 6 u 6 p>2, then u = sec-1 (5x>2), and 

we can read the values of the other trigo-

nometric functions of u from this right 

triangle (Example 4).
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Using Trigonometric Substitutions

Evaluate the integrals in Exercises 1–14.

 1.  L
dx

29 + x2
 2.  L

3 dx

21 + 9x2

 3.  L
2

-2

 
dx

4 + x2
 4.  L

2

0

 
dx

8 + 2x2

 5.  L
3>2

0

 
dx

29 - x2
 6.  L

1>222

0

 
2 dx

21 - 4x2

 7.  L225 - t2 dt  8.  L21 - 9t2 dt

 9.  L
dx

24x2 - 49
,  x 7

7
2

 10.  L
5 dx

225x2 - 9
,  x 7

3

5

 11.  L
2y2 - 49

y  dy, y 7 7  12.  L
2y2 - 25

y3
 dy, y 7 5

 13.  L
dx

x22x2 - 1
,  x 7 1  14.  L

2 dx

x32x2 - 1
,  x 7 1

Assorted Integrations

Use any method to evaluate the integrals in Exercises 15–34. Most 

will require trigonometric substitutions, but some can be evaluated by 

other methods.

 15.  L
x

29 - x2
 dx  16.  L

x2

4 + x2
 dx

 17.  L
x3 dx

2x2 + 4
 18.  L

dx

x22x2 + 1

 19.  L
8 dw

w224 - w2
 20.  L

29 - w2

w2
 dw

 21.  LA
x + 1
1 - x

 dx 22.  Lx 2x2 - 4 dx

 23.  L
23>2

0

4x2 dx

(1 - x2)3>2  24.  L
1

0

 
dx

(4 - x2)3>2
 25.  L

dx

(x2 - 1)3>2 , x 7 1  26.  L
x2 dx

(x2 - 1)5>2 , x 7 1

 27.  L
(1 - x2)3>2

x6
 dx  28.  L

(1 - x2)1>2
x4

 dx

 29.  L
8 dx

(4x2 + 1)2
 30.  L

6 dt

(9t2 + 1)2

 31.  L
x3 dx

x2 - 1
 32.  L

x dx

25 + 4x2

 33.  L
y2 dy

(1 - y2)5>2  34.  L
(1 - r2)5>2

r8
 dr

In Exercises 35–48, use an appropriate substitution and then a trigono-

metric substitution to evaluate the integrals.

 35.  L
ln 4

0

 
et dt

2e2t + 9
 36.  L

ln (4>3)

ln (3>4)

 
et dt

(1 + e2t)3>2
 37.  L

1>4
1>12

 
2 dt

2t + 4t2t
 38.  L

e

1

 
dy

y21 + (ln y)2

 39.  L
dx

x2x2 - 1
 40.  L

dx

1 + x2

 41.  L
x dx

2x2 - 1
 42.  L

dx

21 - x2

 43.  L
x dx

21 + x4
 44.  L

21 - (ln x)2

x ln x
 dx

 45.  LB
4 - x

x  dx

  (Hint: Let x = u2.)

EXERCISES 8.4

 46.  LA
x

1 - x3
 dx

  (Hint: Let u = x3>2.)
 47.  L2x 21 - x dx  48.  L

2x - 2

2x - 1
 dx

Complete the Square Before Using Trigonometric Substitutions

For Exercises 49–52, complete the square before using an appropriate 

trigonometric substitution.

 49.  L28 - 2x - x2 dx 50.  L
1

2x2 - 2x + 5
 dx

 51.  L
2x2 + 4x + 3

x + 2
 dx 52.  L

2x2 + 2x + 2

x2 + 2x + 1
 dx

Initial Value Problems

Solve the initial value problems in Exercises 53–56 for y as a function 

of x.

 53. x 
dy

dx
= 2x2 - 4, x Ú 2, y(2) = 0

 54. 2x2 - 9 
dy

dx
= 1, x 7 3, y(5) = ln 3

 55. (x2 + 4) 
dy

dx
= 3, y(2) = 0

 56. (x2 + 1)2 
dy

dx
= 2x2 + 1, y(0) = 1

Applications and Examples

 57. Area Find the area of the region in the irst quadrant that is en-

closed by the coordinate axes and the curve y = 29 - x2>3.

 58. Area Find the area enclosed by the ellipse

x2

a2
+

y2

b2
= 1.
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a rope 30 ft long. As the boat travels along the positive y-axis, the 

skier is pulled behind the boat along an unknown path y = ƒ(x), 

as shown in the accompanying igure.

a. Show that ƒ′(x) =
-2900 - x2

x .

(Hint: Assume that the skier is always pointed directly at the boat 

and the rope is on a line tangent to the path y = ƒ(x).)

b. Solve the equation in part (a) for ƒ(x), using ƒ(30) = 0.

NOT  TO SCALE

x

y

0 (30, 0)x

f (x) (x, f (x)) skier

30 ft rope

y = f (x) path of skier

boat

 63. Find the average value of ƒ(x) =
2x + 1

2x
 on the interval 31, 34 .

 64. Find the length of the curve y = 1 - e-x, 0 … x … 1.

 59. Consider the region bounded by the graphs of y = sin-1 x, y = 0, 

and x = 1>2.

a. Find the area of the region.

b. Find the centroid of the region.

 60. Consider the region bounded by the graphs of y = 2x tan-1 x 

and y = 0 for 0 … x … 1. Find the volume of the solid formed by 

revolving this region about the x-axis (see accompanying igure).

x

y

0 1

y = "x tan−1 x

 61. Evaluate 1x3 21 - x2 dx using

a. integration by parts.

b. a u-substitution.

c. a trigonometric substitution.

 62. path of a water skier Suppose that a boat is positioned at the 

origin with a water skier tethered to the boat at the point (30, 0) on 

8.5 Integration of Rational Functions by Partial Fractions

This section shows how to express a rational function (a quotient of polynomials) as a sum 

of simpler fractions, called partial fractions, which are easily integrated. For instance, the 

rational function (5x - 3)>(x2 - 2x - 3) can be rewritten as

5x - 3

x2 - 2x - 3
=

2
x + 1

+
3

x - 3
.

You can verify this equation algebraically by placing the fractions on the right side over a 

common denominator (x + 1)(x - 3). The skill acquired in writing rational functions as 

such a sum is useful in other settings as well (for instance, when using certain transform 

methods to solve differential equations). To integrate the rational function 

(5x - 3)>(x2 - 2x - 3) on the left side of our previous expression, we simply sum the 

integrals of the fractions on the right side:

 L
5x - 3

(x + 1)(x - 3)
 dx = L

2
x + 1

 dx + L
3

x - 3
 dx

 = 2 ln 0 x + 1 0 + 3 ln 0 x - 3 0 + C.

The method for rewriting rational functions as a sum of simpler fractions is called the 

method of partial fractions. In the case of the preceding example, it consists of finding 

constants A and B such that

 
5x - 3

x2 - 2x - 3
=

A
x + 1

+
B

x - 3
. (1)

(Pretend for a moment that we do not know that A = 2 and B = 3 will work.) We call the 

fractions A>(x + 1) and B>(x - 3) partial fractions because their denominators are 

only part of the original denominator x2 - 2x - 3. We call A and B undetermined coef-

ficients until suitable values for them have been found.
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To find A and B, we first clear Equation (1) of fractions and regroup in powers of x, 

obtaining

5x - 3 = A(x - 3) + B(x + 1) = (A + B)x - 3A + B.

This will be an identity in x if and only if the coefficients of like powers of x on the two 

sides are equal:

A + B = 5,  -3A + B = -3.

Solving these equations simultaneously gives A = 2 and B = 3.

General Description of the Method

Success in writing a rational function ƒ(x)>g(x) as a sum of partial fractions depends on 

two things:

 ● The degree of ƒ(x) must be less than the degree of g(x). That is, the fraction must be 

proper. If it isn’t, divide ƒ(x) by g(x) and work with the remainder term. Example 3 of 

this section illustrates such a case.

 ● We must know the factors of g(x). In theory, any polynomial with real coeicients can 

be written as a product of real linear factors and real quadratic factors. In practice, the 

factors may be hard to ind.

Here is how we find the partial fractions of a proper fraction ƒ(x)>g(x) when the factors of 

g are known. A quadratic polynomial (or factor) is irreducible if it cannot be written as 

the product of two linear factors with real coefficients. That is, the polynomial has no real 

roots.

Method of Partial Fractions When ƒ(x) ,g(x) Is Proper

1. Let x - r  be a linear factor of g(x). Suppose that (x - r)m is the highest pow-

er of x - r  that divides g(x). Then, to this factor, assign the sum of the m 

partial fractions:

A1

(x - r)
+

A2

(x - r)2
+ g+  

Am

(x - r)m
.

Do this for each distinct linear factor of g(x).

2. Let x2 + px + q be an irreducible quadratic factor of g(x) so that x2 + px + q 

has no real roots. Suppose that (x2 + px + q)n is the highest power of this fac-

tor that divides g(x). Then, to this factor, assign the sum of the n partial frac-

tions:

B1 x + C1

(x2 + px + q)
+

B2 x + C2

(x2 + px + q)2
+ g+  

Bn x + Cn

(x2 + px + q)n
.

Do this for each distinct quadratic factor of g(x).

3. Set the original fraction ƒ(x)>g(x) equal to the sum of all these partial frac-

tions. Clear the resulting equation of fractions and arrange the terms in de-

creasing powers of x.

4. Equate the coefficients of corresponding powers of x and solve the resulting 

equations for the undetermined coefficients.

EXAMPLE 1  Use partial fractions to evaluate

 L
x2 + 4x + 1

(x - 1)(x + 1)(x + 3)
 dx.
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Solution Note that each of the factors (x - 1), (x + 1), and (x + 3) is raised only to 

the first power. Therefore, the partial fraction decomposition has the form

x2 + 4x + 1
(x - 1)(x + 1)(x + 3)

=
A

x - 1
+

B
x + 1

+
C

x + 3
.

To find the values of the undetermined coefficients A, B, and C, we clear fractions and get

 x2 + 4x + 1 = A(x + 1)(x + 3) + B(x - 1)(x + 3) + C(x - 1)(x + 1)

 = A(x2 + 4x + 3) + B(x2 + 2x - 3) + C(x2 - 1)

 = (A + B + C)x2 + (4A + 2B)x + (3A - 3B - C).

The polynomials on both sides of the above equation are identical, so we equate coeffi-

cients of like powers of x, obtaining

Coefficient of x2: A + B + C = 1

Coefficient of x1: 4A + 2B = 4

Coefficient of x0: 3A - 3B - C = 1

There are several ways of solving such a system of linear equations for the unknowns A, B, 

and C, including elimination of variables or the use of a calculator or computer. The solu-

tion is A = 3>4, B = 1>2, and C = -1>4. Hence we have

  L
x2 + 4x + 1

(x - 1)(x + 1)(x + 3)
 dx = L c 34 

1
x - 1

+
1
2

 
1

x + 1
-

1
4

 
1

x + 3
d  dx

 =
3
4

 ln 0 x - 1 0 +
1
2

 ln 0 x + 1 0 -
1
4

 ln 0 x + 3 0 + K,

where K is the arbitrary constant of integration (we call it K here to avoid confusion with 

the undetermined coefficient we labeled as C). 

EXAMPLE 2  Use partial fractions to evaluate

L
6x + 7

(x + 2)2
 dx.

Solution First we express the integrand as a sum of partial fractions with undetermined 

coefficients.

 
6x + 7

(x + 2)2
=

A
x + 2

+
B

(x + 2)2
  Two terms because (x + 2) is squared

 6x + 7 = A(x + 2) + B   Multiply both sides by (x + 2)2. 

 = Ax + (2A + B)   

Equating coefficients of corresponding powers of x gives

A = 6  and  2A + B = 12 + B = 7,  or  A = 6  and  B = -5.

Therefore,

  L
6x + 7

(x + 2)2
 dx = L a 6

x + 2
-

5

(x + 2)2
b  dx

 = 6 L
dx

x + 2
- 5 L (x + 2)-2 dx

  = 6 ln 0 x + 2 0 + 5(x + 2)-1 + C. 

The next example shows how to handle the case when ƒ(x)>g(x) is an improper frac-

tion. It is a case where the degree of ƒ is larger than the degree of g.
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EXAMPLE 3  Use partial fractions to evaluate

 L
2x3 - 4x2 - x - 3

x2 - 2x - 3
 dx.

Solution First we divide the denominator into the numerator to get a polynomial plus a 

proper fraction.

2x

x2 - 2x - 3)2x3 - 4x2 - x - 3

2x3 - 4x2 - 6x - 3

5x - 3

Then we write the improper fraction as a polynomial plus a proper fraction.

2x3 - 4x2 - x - 3

x2 - 2x - 3
= 2x +

5x - 3

x2 - 2x - 3

We found the partial fraction decomposition of the fraction on the right in the opening 

example, so

 L
2x3 - 4x2 - x - 3

x2 - 2x - 3
 dx = L2x dx + L

5x - 3

x2 - 2x - 3
 dx

 = L2x dx + L
2

x + 1
 dx + L

3
x - 3

 dx

  = x2 + 2 ln 0 x + 1 0 + 3 ln 0 x - 3 0 + C. 

EXAMPLE 4  Use partial fractions to evaluate

L
-2x + 4

(x2 + 1)(x - 1)2
 dx.

Solution The denominator has an irreducible quadratic factor x2 + 1 as well as a 

repeated linear factor (x - 1)2, so we write

 
-2x + 4

(x2 + 1)(x - 1)2
=

Ax + B

x2 + 1
+

C

x - 1
+

D

(x - 1)2
. (2)

Clearing the equation of fractions gives

 -2x + 4 = (Ax + B)(x - 1)2 + C(x - 1)(x2 + 1) + D(x2 + 1)

 = (A + C)x3 + (-2A + B - C + D)x2

 + (A - 2B + C)x + (B - C + D).

Equating coefficients of like terms gives

Coefficients of x3:    0 = A + C

Coefficients of x2:    0 = -2A + B - C + D

Coefficients of x1:   -2 = A - 2B + C

Coefficients of x0:    4 = B - C + D

We solve these equations simultaneously to find the values of A, B, C, and D:

 -4 = -2A,  A = 2   Subtract fourth equation from second.

 C = -A = -2   From the first equation

 B = (A + C + 2)>2 = 1  From the third equation and C = -A 

 D = 4 - B + C = 1.   From the fourth equation
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We substitute these values into Equation (2), obtaining

-2x + 4

(x2 + 1)(x - 1)2
=

2x + 1

x2 + 1
-

2
x - 1

+
1

(x - 1)2
.

Finally, using the expansion above we can integrate:

  L
-2x + 4

(x2 + 1)(x - 1)2
 dx = L a2x + 1

x2 + 1
-

2
x - 1

+
1

(x - 1)2
b  dx

 = L a 2x

x2 + 1
+

1

x2 + 1
-

2
x - 1

+
1

(x - 1)2
b  dx

  = ln (x2 + 1) + tan-1 x - 2 ln 0 x - 1 0 -
1

x - 1
+ C. 

EXAMPLE 5  Use partial fractions to evaluate

L
dx

x(x2 + 1)2
.

Solution The form of the partial fraction decomposition is

1

x(x2 + 1)2
=

A

x
+

Bx + C

x2 + 1
+

Dx + E

(x2 + 1)2
.

Multiplying by x(x2 + 1)2, we have

 1 = A(x2 + 1)2 + (Bx + C)x(x2 + 1) + (Dx + E)x

 = A(x4 + 2x2 + 1) + B(x4 + x2) + C(x3 + x) + Dx2 + Ex

 = (A + B)x4 + Cx3 + (2A + B + D)x2 + (C + E)x + A.

If we equate coefficients, we get the system

A + B = 0,  C = 0,  2A + B + D = 0,  C + E = 0,  A = 1.

Solving this system gives A = 1, B = -1, C = 0, D = -1, and E = 0. Thus,

  L
dx

x(x2 + 1)2
= L c 1x +

-x

x2 + 1
+

-x

(x2 + 1)2
d  dx

 = L
dx
x - L

x dx

x2 + 1
- L

x dx

(x2 + 1)2

 = L
dx
x -

1
2

 L
du
u -

1
2

 L
du

u2
  

u = x2 + 1, 

du = 2x dx
 

 = ln 0 x 0 -
1
2

 ln 0 u 0 +
1
2u

+ K

 = ln 0 x 0 -
1
2

 ln (x2 + 1) +
1

2(x2 + 1)
+ K

 = ln 
0 x 0

2x2 + 1
+

1

2(x2 + 1)
+ K.  

When the degree of the polynomial ƒ(x) is less than the degree of g(x) and

g(x) = (x - r1)(x - r2)g(x - rn)

is a product of n distinct linear factors, each raised to the first power, there is a quick way 

to expand ƒ(x)>g(x) by partial fractions.

HistoricAL BiogrApHy

oliver Heaviside

(1850–1925)

www.goo.gl/5rnavZ

http://www.goo.gl/5rnavZ
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EXAMPLE 6  Find A, B, and C in the partial fraction expansion

 
x2 + 1

(x - 1)(x - 2)(x - 3)
=

A
x - 1

+
B

x - 2
+

C

x - 3
. (3)

Solution If we multiply both sides of Equation (3) by (x - 1) to get

x2 + 1
(x - 2)(x - 3)

= A +
B(x - 1)

x - 2
+

C(x - 1)

x - 3

and set x = 1, the resulting equation gives the value of A:

 
(1)2 + 1

(1 - 2)(1 - 3)
= A + 0 + 0,

 A = 1.

In exactly the same way, we can multiply both sides by (x - 2) and then substitute in 

x = 2. This gives

(2)2 + 1

(2 - 1)(2 - 3)
= B.

So B = -5. Finally, we multiply both sides by (x - 3) and then substitute in x = 3, 

which yields

(3)2 + 1

(3 - 1)(3 - 2)
= C,

and C = 5. 

Other Ways to Determine the Coefficients

Another way to determine the constants that appear in partial fractions is to differentiate, 

as in the next example. Still another is to assign selected numerical values to x.

EXAMPLE 7  Find A, B, and C in the equation

x - 1

(x + 1)3
=

A
x + 1

+
B

(x + 1)2
+

C

(x + 1)3

by clearing fractions, differentiating the result, and substituting x = -1.

Solution We first clear fractions:

x - 1 = A(x + 1)2 + B(x + 1) + C.

Substituting x = -1 shows C = -2. We then differentiate both sides with respect to x, 

obtaining

1 = 2A(x + 1) + B.

Substituting x = -1 shows B = 1. We differentiate again to get 0 = 2A, which shows 

A = 0. Hence,

 
x - 1

(x + 1)3
=

1

(x + 1)2
-

2

(x + 1)3
. 

In some problems, assigning small values to x, such as x = 0, {1, {2, to get equa-

tions in A, B, and C provides a fast alternative to other methods.
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EXAMPLE 8  Find A, B, and C in the expression

x2 + 1
(x - 1)(x - 2)(x - 3)

=
A

x - 1
+

B
x - 2

+
C

x - 3

by assigning numerical values to x.

Solution Clear fractions to get

x2 + 1 = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2) .

Then let x = 1, 2, 3 successively to find A, B, and C:

 x = 1:  (1)2 + 1 = A(-1)(-2) + B(0) + C(0)

   2 = 2A

   A = 1

 x = 2:  (2)2 + 1 = A(0) + B(1)(-1) + C(0)

   5 = -B

   B = -5

 x = 3:  (3)2 + 1 = A(0) + B(0) + C(2)(1)

   10 = 2C

   C = 5.

Conclusion:

 
x2 + 1

(x - 1)(x - 2)(x - 3)
=

1
x - 1

-
5

x - 2
+

5
x - 3

. 

Expanding Quotients into Partial Fractions

Expand the quotients in Exercises 1–8 by partial fractions.

 1. 
5x - 13

(x - 3)(x - 2)
 2. 

5x - 7

x2 - 3x + 2

 3. 
x + 4

(x + 1)2
 4. 

2x + 2

x2 - 2x + 1

 5. 
z + 1

z2(z - 1)
 6. 

z

z3 - z2 - 6z

 7. 
t2 + 8

t2 - 5t + 6
 8. 

t4 + 9

t4 + 9t2

Nonrepeated Linear Factors

In Exercises 9–16, express the integrand as a sum of partial fractions 

and evaluate the integrals.

 9.  L
dx

1 - x2
 10.  L

dx

x2 + 2x

 11.  L
x + 4

x2 + 5x - 6
 dx  12.  L

2x + 1

x2 - 7x + 12
 dx

 13.  L
8

4

 
y dy

y2 - 2y - 3
 14.  L

1

1>2  
y + 4

y2 + y
 dy

 15.  L
dt

t3 + t2 - 2t
 16.  L

x + 3

2x3 - 8x
 dx

Repeated Linear Factors

In Exercises 17–20, express the integrand as a sum of partial fractions 

and evaluate the integrals.

 17.  L
1

0

 
x3 dx

x2 + 2x + 1
 18.  L

0

-1
  

x3 dx

x2 - 2x + 1

 19.  L
dx

(x2 - 1)2
 20.  L

x2 dx

(x - 1)(x2 + 2x + 1)

Irreducible Quadratic Factors

In Exercises 21–32, express the integrand as a sum of partial fractions 

and evaluate the integrals.

 21.  L
1

0

 
dx

(x + 1)(x2 + 1)
 22.  L

23

1

 
3t2 + t + 4

t3 + t
 dt

 23.  L
y2 + 2y + 1

(y2 + 1)2
 dy 24.  L

8x2 + 8x + 2

(4x2 + 1)2
 dx

 25.  L
2s + 2

(s2 + 1)(s - 1)3
 ds  26.  L

s4 + 81

s(s2 + 9)2
 ds

 27.  L
x2 - x + 2

x3 - 1
 dx  28.  L

1

x4 + x
 dx

 29.  L
x2

x4 - 1
 dx  30.  L

x2 + x

x4 - 3x2 - 4
 dx

 31.  L
2u3 + 5u2 + 8u + 4

(u2 + 2u + 2)2
 du

 32.  L
u4 - 4u3 + 2u2 - 3u + 1

(u2 + 1)3
 du

EXERCISES 8.5
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 62.  L
2

x (ln x - 2)3
 dx

 63.  L
1

2x2 - 1
 dx 64.  L

x

x + 2x2 + 2
 dx

 65.  Lx52x3 + 1 dx 66.  Lx221 - x2 dx

Initial Value Problems

Solve the initial value problems in Exercises 67–70 for x as a function 

of t.

 67. (t2 - 3t + 2) 
dx

dt
= 1 (t 7 2), x(3) = 0

 68. (3t4 + 4t2 + 1) 
dx

dt
= 223, x(1) = -p23>4

 69. (t2 + 2t) 
dx

dt
= 2x + 2 (t, x 7 0), x(1) = 1

 70. (t + 1) 
dx

dt
= x2 + 1 (t 7 -1), x(0) = 0

Applications and Examples

In Exercises 71 and 72, find the volume of the solid generated by 

revolving the shaded region about the indicated axis.

 71. The x-axis

x

y

2

0 0.5 2.5

(0.5, 2.68) (2.5, 2.68)

y =
3

"3x − x2

 72. The y-axis

1

1
x

y y =
2

(x + 1)(2 − x)

0

 73. Find the length of the curve y = ln (1 - x2), 0 … x …
1
2

.

 74. Integrate  Lsec u du  by

a. multiplying by 
sec u + tan u
sec u + tan u

 and then using a u-substitution.

b. writing the integral as  L
1

cos u
 du . Then multiply by 

cos u
cos u

, 

  use a trigonometric identity and a u-substitution, and inally 

integrate using partial fractions.

Improper Fractions

In Exercises 33–38, perform long division on the integrand, write the 

proper fraction as a sum of partial fractions, and then evaluate the 

integral.

 33.  L
2x3 - 2x2 + 1

x2 - x
 dx  34.  L

x4

x2 - 1
 dx

 35.  L
9x3 - 3x + 1

x3 - x2
 dx  36.  L

16x3

4x2 - 4x + 1
 dx

 37.  L
y4 + y2 - 1

y3 + y
 dy 38.  L

2y4

y3 - y2 + y - 1
 dy

Evaluating Integrals

Evaluate the integrals in Exercises 39–54.

 39.  L
et dt

e2t + 3et + 2
 40.  L

e4t + 2e2t - et

e2t + 1
 dt

 41.  L
cos y dy

sin2 y + sin y - 6
 42.  L

sin u du

cos2 u + cos u - 2

 43.  L
(x - 2)2 tan-1 (2x) - 12x3 - 3x

(4x2 + 1)(x - 2)2
 dx

 44.  L
(x + 1)2 tan-1 (3x) + 9x3 + x

(9x2 + 1)(x + 1)2
 dx

 45.  L
1

x3>2 - 2x
 dx  46.  L

1

(x1>3 - 1) 2x
 dx

     (Hint: Let x = u6.)

 47.  L
2x + 1

x  dx

(Hint: Let x + 1 = u2.)

 48.  L
1

x2x + 9
 dx

 49.  L
1

x(x4 + 1)
 dx

  aHint: Multiply by 
x3

x3
.b  50.  L

1

x6(x5 + 4)
 dx

 51.  L
1

cos 2u sin u
 du  52.  L

1
cos u + sin 2u

 du

 53.  L
21 + 1x

x  dx 54.  L
2x

22 - 1x + 1x
 dx

Use any method to evaluate the integrals in Exercises 55–66.

 55.  L
x3 - 2x2 - 3x

x + 2
 dx 56.  L

x + 2

x3 - 2x2 - 3x
 dx

 57.  L
2x - 2-x

2x + 2-x dx 58.  L
2x

22x + 2x - 2
 dx

 59.  L
1

x4 - 1
 dx 60.  L

x4 - 1

x5 - 5x + 1
 dx

 61.  L
ln x + 2

x (ln x + 1)(ln x + 3)
 dx
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   Suppose t is in days, k = 1>250, and two people start a rumor 

at time t = 0 in a population of N = 1000 people.

a. Find x as a function of t.

b. When will half the population have heard the rumor? (This is 

when the rumor will be spreading the fastest.)

 78. second-order chemical reactions Many chemical reactions 

are the result of the interaction of two molecules that undergo a 

change to produce a new product. The rate of the reaction typi-

cally depends on the concentrations of the two kinds of molecules. 

If a is the amount of substance A and b is the amount of substance 

B at time t = 0, and if x is the amount of product at time t, then 

the rate of formation of x may be given by the diferential equation

dx

dt
= k(a - x)(b - x) ,

  or

1
(a - x)(b - x)

 
dx

dt
= k ,

  where k is a constant for the reaction. Integrate both sides of this 

equation to obtain a relation between x and t (a) if a = b, and  

(b) if a ≠ b. Assume in each case that x = 0 when t = 0.

T

 75. Find, to two decimal places, the x-coordinate of the centroid of 

the region in the irst quadrant bounded by the x-axis, the curve 

y = tan-1 x, and the line x = 23.

 76. Find the x-coordinate of the centroid of this region to two decimal 

places.

x

y

(3, 1.83)

(5, 0.98)

30 5

y =
4x2 + 13x − 9

x3 + 2x2 − 3x

 77. Social difusion Sociologists sometimes use the phrase “social 

difusion” to describe the way information spreads through a popula-

tion. The information might be a rumor, a cultural fad, or news about 

a technical innovation. In a suiciently large population, the number 

of people x who have the information is treated as a diferentiable 

function of time t, and the rate of difusion, dx>dt, is assumed to 

be proportional to the number of people who have the information 

times the number of people who do not. This leads to the equation

dx

dt
= kx(N - x),

  where N is the number of people in the population.

T

T

T

8.6 Integral Tables and Computer Algebra Systems

In this section we discuss how to use tables and computer algebra systems (CAS) to evalu-

ate integrals.

Integral Tables

A Brief Table of Integrals is provided at the back of the text, after the index. (More exten-

sive tables appear in compilations such as CRC Mathematical Tables, which contain thou-

sands of integrals.) The integration formulas are stated in terms of constants a, b, c, m, n, 

and so on. These constants can usually assume any real value and need not be integers. 

Occasional limitations on their values are stated with the formulas. Formula 21 requires 

n ≠ -1, for example, and Formula 27 requires n ≠ -2.

The formulas also assume that the constants do not take on values that require divid-

ing by zero or taking even roots of negative numbers. For example, Formula 24 assumes 

that a ≠ 0, and Formulas 29a and 29b cannot be used unless b is positive.

EXAMPLE 1  Find

Lx(2x + 5)-1 dx.

Solution We use Formula 24 at the back of the book (not 22, which requires n ≠ -1):

Lx(ax + b)-1 dx =
x
a -

b

a2
 ln 0 ax + b 0 + C.

With a = 2 and b = 5, we have

 Lx(2x + 5)-1 dx =
x

2
-

5
4

 ln 0 2x + 5 0 + C.  



480 Chapter 8 Techniques of Integration

EXAMPLE 2  Find

L
dx

x22x - 4
.

Solution We use Formula 29b:

 L
dx

x2ax - b
=

2

2b
 tan-1 Aax - b

b
+ C.

With a = 2 and b = 4, we have

  L
dx

x22x - 4
=

2

24
 tan-1 A2x - 4

4
+ C = tan-1 Ax - 2

2
+ C. 

EXAMPLE 3  Find

Lx sin-1 x dx.

Solution We begin by using Formula 106:

Lxn sin-1 ax dx =
xn + 1

n + 1
 sin-1 ax -

a

n + 1
 L

xn + 1 dx

21 - a2x2
,  n ≠ -1.

With n = 1 and a = 1, we have

Lx sin-1 x dx =
x2

2
 sin-1 x -

1
2

  L
x2 dx

21 - x2
.

Next we use Formula 49 to find the integral on the right:

 L
x2

2a2 - x2
 dx =

a2

2
 sin-1 ax

ab -
1
2

 x2a2 - x2 + C.

With a = 1,

L
x2 dx

21 - x2
=

1
2

 sin-1 x -
1
2

 x21 - x2 + C.

The combined result is

  Lx sin-1 x dx =
x2

2
 sin-1 x -

1
2

 a1
2

 sin-1 x -
1
2

 x21 - x2 + Cb
  = ax2

2
-

1
4
bsin-1 x +

1
4

 x21 - x2 + C′.  

Reduction Formulas

The time required for repeated integrations by parts can sometimes be shortened by apply-

ing reduction formulas like

 L tann x dx =
1

n - 1
 tann - 1 x - L tann - 2 x dx  (1)

 L (ln x)n dx = x(ln x)n - n L (ln x)n - 1 dx  (2)

Lsinn x cosm x dx = -
sinn - 1 x cosm + 1 x

m + n
+

n - 1
m + n

   Lsinn - 2 x cosm x dx  (n ≠ -m).

 (3)
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By applying such a formula repeatedly, we can eventually express the original integral in 

terms of a power low enough to be evaluated directly. The next example illustrates this 

procedure.

EXAMPLE 4  Find

L tan5 x dx.

Solution We apply Equation (1) with n = 5 to get

L tan5 x dx =
1
4

 tan4 x - L tan3 x dx.

We then apply Equation (1) again, with n = 3, to evaluate the remaining integral:

L tan3 x dx =
1
2

 tan2 x - L tan x dx =
1
2

 tan2 x + ln 0 cos x 0 + C.

The combined result is

 L tan5 x dx =
1
4

 tan4 x -
1
2

 tan2 x - ln 0 cos x 0 + C′.  

As their form suggests, reduction formulas are derived using integration by parts. (See 

Example 5 in Section 8.2.)

Integration with a CAS

A powerful capability of computer algebra systems is their ability to integrate symboli-

cally. This is performed with the integrate command specified by the particular system 

(for example, int in Maple, integrate in Mathematica).

EXAMPLE 5  Suppose that you want to evaluate the indefinite integral of the  function

ƒ(x) = x22a2 + x2.

Using Maple, you first define or name the function:

7 ƒJ x¿2 * sqrt (a¿2 + x¿2);

Then you use the integrate command on ƒ, identifying the variable of integration:

7 int(ƒ, x);

Maple returns the answer

1
4

 x(a2 + x2)3>2 -
1
8

 a2x2a2 + x2 -
1
8

 a4 ln 1x + 2a2 + x22.
If you want to see whether the answer can be simplified, enter

7 simplify(,);

Maple returns

1
8

 a2x2a2 + x2 +
1
4

 x32a2 + x2 -
1
8

 a4 ln 1x + 2a2 + x22.
If you want the definite integral for 0 … x … p>2, you can use the format

7 int(ƒ, x = 0..Pi>2);
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Maple will return the expression

1
64

 p(4a2 + p2)(3>2) -
1
32

 a2p24a2 + p2 +
1
8

 a4 ln (2)

-
1
8

 a4 ln 1p + 24a2 + p22 +
1
16

 a4 ln (a2).

You can also find the definite integral for a particular value of the constant a:

7 aJ 1;

7 int( ƒ, x = 0..1);

Maple returns the numerical answer

 
3
8
22 +

1
8

 ln 122 - 12. 
EXAMPLE 6  Use a CAS to find

Lsin2 x cos3 x dx.

Solution With Maple, we have the entry

7 int ((sin¿2)(x) * (cos¿3)(x), x);

with the immediate return

 -
1
5

 sin (x) cos (x)4 +
1
15

 cos (x)2 sin (x) +
2
15

 sin (x). 

Computer algebra systems vary in how they process integrations. We used Maple in 

Examples 5 and 6. Mathematica would have returned somewhat different results:

1. In Example 5, given

In[1]J Integrate3x¿2 * Sqrt3a¿2 + x¿24 , x4
 Mathematica returns

Out[1] = 2a2 + x2 aa2
 x

8
+

x3

4
b -

1
8

 a4 Log3x + 2a2 + x24
without having to simplify an intermediate result. The answer is close to Formula 22 

in the integral tables.

2. The Mathematica answer to the integral

In[2]J Integrate3Sin3x4 ¿2 * Cos3x4 ¿3, x4
in Example 6 is

Out[2] =
Sin3x4

8
-

1
48

 Sin33x4 -
1
80

 Sin35x4
difering from the Maple answer. Both answers are correct.

Although a CAS is very powerful and can aid us in solving difficult problems, each 

CAS has its own limitations. There are even situations where a CAS may further compli-

cate a problem (in the sense of producing an answer that is extremely difficult to use or 

interpret). Note, too, that neither Maple nor Mathematica returns an arbitrary constant 

+C. On the other hand, a little mathematical thinking on your part may reduce the prob-

lem to one that is quite easy to handle. We provide an example in Exercise 67.
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Many hardware devices have an availability to integration applications, based on soft-

ware (like Maple or Mathematica), that provide for symbolic input of the integrand to 

return symbolic output of the indefinite integral. Many of these software applications cal-

culate definite integrals as well. These applications give another tool for finding integrals, 

aside from using integral tables. However, in some instances, the integration software may 

not provide an output answer at all.

Nonelementary Integrals

Many functions have antiderivatives that cannot be expressed using the standard functions 

that we have encountered, such as polynomials, trigonometric functions, and exponential 

functions. Integrals of functions that do not have elementary antiderivatives are called 

nonelementary integrals. These integrals can sometimes be expressed with infinite series 

(Chapter 10) or approximated using numerical methods (Section 8.7). Examples of non-

elementary integrals include the error function (which measures the probability of random 

errors)

erf (x) =
2

2p
 L

x

0

e-t2

 dt

and integrals such as

Lsin x2 dx  and  L21 + x4 dx

that arise in engineering and physics. These and a number of others, such as

L
ex

x  dx,  Le(ex) dx,  L
1

ln x
 dx,  L ln (ln x) dx,  L

sin x
x  dx,

L21 - k2 sin2 x dx,  0 6 k 6 1,

look so easy they tempt us to try them just to see how they turn out. It can be proved, how-

ever, that there is no way to express any of these integrals as finite combinations of ele-

mentary functions. The same applies to integrals that can be changed into these by substi-

tution. The functions in these integrals all have antiderivatives, as a consequence of the 

Fundamental Theorem of Calculus, Part 1, because they are continuous. However, none of 

the antiderivatives are elementary. The integrals you are asked to evaluate in this chapter 

have elementary antiderivatives.

Using Integral Tables

Use the table of integrals at the back of the book to evaluate the inte-

grals in Exercises 1–26.

 1.  L
dx

x2x - 3
 2.  L

dx

x2x + 4

 3.  L
x  dx

2x - 2
 4.  L

x dx

(2x + 3)3>2
 5.  Lx22x - 3 dx  6.  Lx(7x + 5)3>2 dx

 7.  L
29 - 4x

x2
 dx 8.  L

dx

x224x - 9

 9.  Lx24x - x2 dx  10.  L
2x - x2

x  dx

 11.  L
dx

x27 + x2
 12.  L

dx

x27 - x2

 13.  L
24 - x2

x  dx 14.  L
2x2 - 4

x  dx

 15.  Le2t cos 3t dt  16.  Le-3t sin 4t dt

 17.  Lx cos-1 x dx  18.  Lx tan-1 x dx

EXERCISES 8.6
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Evaluate the integrals in Exercises 51–56 by making a substitution 

(possibly trigonometric) and then applying a reduction formula.

 51.  Let sec3 (et - 1) dt  52.  L
csc3 2u

2u
 du

 53.  L
1

0

 22x2 + 1 dx 54.  L
23>2

0

 
dy

(1 - y2)5>2
 55.  L

2

1

 
(r2 - 1)3>2

r  dr  56.  L
1>23

0

 
dt

(t2 + 1)7>2
Applications

 57. surface area Find the area of the surface generated by revolv-

ing the curve y = 2x2 + 2,  0 … x … 22, about the x-axis.

 58. Arc length Find the length of the curve y = x2,  0 … x …  

23>2.

 59. centroid Find the centroid of the region cut from the irst quad-

rant by the curve y = 1>2x + 1 and the line x = 3.

 60. Moment about y-axis A thin plate of constant density d = 1 

occupies the region enclosed by the curve y = 36>(2x + 3) and 

the line x = 3 in the irst quadrant. Find the moment of the plate 

about the y-axis.

 61. Use the integral table and a calculator to ind to two decimal 

places the area of the surface generated by revolving the curve 

y = x2,  -1 … x … 1, about the x-axis.

 62. Volume The head of your irm’s accounting department has 

asked you to ind a formula she can use in a computer program 

to calculate the year-end inventory of gasoline in the company’s 

tanks. A typical tank is shaped like a right circular cylinder of ra-

dius r and length L, mounted horizontally, as shown in the accom-

panying igure. The data come to the accounting oice as depth 

measurements taken with a vertical measuring stick marked in 

centimeters.

a. Show, in the notation of the igure, that the volume of gaso-

line that ills the tank to a depth d is

V = 2L L
-r + d

-r

2r2 - y2 dy.

b. Evaluate the integral.

y

r

−r
L

d = Depth of

gasoline

Measuring stick

 63. What is the largest value

 L
b

a

 2x - x2 dx

  can have for any a and b? Give reasons for your answer.

T

 19.  Lx2 tan-1 x dx  20.  L
tan-1 x

x2
 dx

 21.  Lsin 3x cos 2x dx  22.  Lsin 2x cos 3x dx

 23.  L8 sin 4t sin 
t

2
  dt  24.  Lsin 

t

3
 sin 

t

6
  dt

 25.  Lcos 
u

3
 cos 

u

4
  du  26.  Lcos 

u

2
 cos 7u du

 38.  L
x2

2x2 - 4x + 5
 dx

 39.  L25 - 4x - x2 dx  40.  Lx2 22x - x2 dx

Using Reduction Formulas

Use reduction formulas to evaluate the integrals in Exercises 41–50.

 41.  Lsin5 2x dx  42.  L8 cos4 2pt dt

 43.  Lsin2 2u cos3 2u du  44.  L2 sin2 t sec4 t dt

 45.  L4 tan3 2x dx  46.  L8 cot4 t dt

 47.  L2 sec3 px dx  48.  L3 sec4 3x dx

 49.  Lcsc5 x dx  50.  L16x3(ln x)2 dx

Substitution and Integral Tables

In Exercises 27–40, use a substitution to change the integral into one 

you can find in the table. Then evaluate the integral.

 27.  L
x3 + x + 1

(x2 + 1)2
 dx  28.  L

x2 + 6x

(x2 + 3)2
 dx

 29.  Lsin-1 2x dx  30.  L
cos-1 2x

2x
 dx

 31.  L
2x

21 - x
 dx 32.  L

22 - x

2x
 dx

 33.  Lcot t21 - sin2 t  dt,  0 6 t 6 p>2
 34.  L

dt

tan t24 - sin2 t

 35.  L
dy

y23 + (ln y)2
 36.  L tan-1 2y dy

 37.  L
1

2x2 + 2x + 5
 dx

  (Hint: Complete the square.)
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 64. What is the largest value

 L
b

a

 x22x - x2 dx

  can have for any a and b? Give reasons for your answer.

COMPUTER EXPLORATIONS

In Exercises 65 and 66, use a CAS to perform the integrations.

 65. Evaluate the integrals

a.  Lx ln x dx   b.  Lx2 ln x dx   c.  Lx3 ln x dx.

d. What pattern do you see? Predict the formula for 1x4 ln x dx 

and then see if you are correct by evaluating it with a CAS.

e. What is the formula for 1xn ln x dx, n Ú 1? Check your 

answer using a CAS.

 66. Evaluate the integrals

a.  L
ln x

x2
 dx   b.  L

ln x

x3
 dx   c.  L

ln x

x4
 dx.

d. What pattern do you see? Predict the formula for

 L
ln x

x5
 dx

and then see if you are correct by evaluating it with a CAS.

e. What is the formula for

L
ln x
xn  dx, n Ú 2?

Check your answer using a CAS.

 67. a. Use a CAS to evaluate

 L
p>2

0

 
sinn x

sinn x + cosn x
 dx

where n is an arbitrary positive integer. Does your CAS ind 

the result?

b. In succession, ind the integral when n = 1, 2, 3, 5, and 7. 

Comment on the complexity of the results.

c. Now substitute x = (p>2) - u and add the new and old 

integrals. What is the value of

 L
p>2

0

 
sinn x

sinn x + cosn x
 dx?

This exercise illustrates how a little mathematical ingenuity 

solves a problem not immediately amenable to solution by a 

CAS.

8.7 Numerical Integration

The antiderivatives of some functions, like sin(x2), 1 > ln x, and 21 + x4, have no elemen-

tary formulas. When we cannot find a workable antiderivative for a function ƒ that we 

have to integrate, we can partition the interval of integration, replace ƒ by a closely fitting 

polynomial on each subinterval, integrate the polynomials, and add the results to approxi-

mate the definite integral of ƒ. This procedure is an example of numerical integration. In 

this section we study two such methods, the Trapezoidal Rule and Simpson’s Rule. A key 

goal in our analysis is to control the possible error that is introduced when computing an 

approximation to an integral.

Trapezoidal Approximations

The Trapezoidal Rule for the value of a definite integral is based on approximating the 

region between a curve and the x-axis with trapezoids instead of rectangles, as in Figure 8.7. 

It is not necessary for the subdivision points x0, x1, x2, . . . , xn in the figure to be evenly 

spaced, but the resulting formula is simpler if they are. We therefore assume that the length 

of each subinterval is

∆x =
b - a

n .

The length ∆x = (b - a)>n is called the step size or mesh size. The area of the trapezoid 

that lies above the ith subinterval is

∆x ayi - 1 + yi

2
b =

∆x

2
 (yi - 1 + yi),
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where yi - 1 = ƒ(xi - 1) and yi = ƒ(xi). (See Figure 8.7.) The area below the curve y = ƒ(x) 

and above the x-axis is then approximated by adding the areas of all the trapezoids:

 T =
1
2

 (y0 + y1)∆x +
1
2

 (y1 + y2)∆x + g

    +
1
2

 (yn - 2 + yn - 1)∆x +
1
2

 (yn - 1 + yn)∆x

 = ∆x a1
2

 y0 + y1 + y2 + g+  yn - 1 +
1
2

 ynb
 =

∆x

2
 (y0 + 2y1 + 2y2 + g+  2yn - 1 + yn),

where

y0 = ƒ(a),  y1 = ƒ(x1), . . . ,   yn - 1 = ƒ(xn - 1),  yn = ƒ(b).

The Trapezoidal Rule says: Use T to estimate the integral of ƒ from a to b.

x

y = f (x)

Trapezoid area

   (y1 + y2)Δx1

2

x0 = a x1

y1 y2 yn−1

xn−1 xn = b

yn

x2
Δx

FIGURE 8.7 The Trapezoidal Rule approximates short 

stretches of the curve y = ƒ(x) with line segments. To 

approximate the integral of ƒ from a to b, we add the 

areas of the trapezoids made by joining the ends of the 

segments to the x-axis.

The Trapezoidal Rule

To approximate 1b

a
 ƒ(x) dx, use

T =
∆x

2
 ay0 + 2y1 + 2y2 + g+  2yn - 1 + ynb .

The y’s are the values of ƒ at the partition points

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, . . . , xn - 1 = a + (n - 1)∆x, xn = b,

where ∆x = (b - a)>n.

EXAMPLE 1  Use the Trapezoidal Rule with n = 4 to estimate 12

1
x2 dx. Compare 

the estimate with the exact value.

Solution Partition 31, 24  into four subintervals of equal length (Figure 8.8). Then eval-

uate y = x2 at each partition point (Table 8.2).

x

y

20 1

1

4

5

4

6

4

7

4

y = x2

25

16

36

16

49

16

FIGURE 8.8 The trapezoidal approxima-

tion of the area under the graph of y = x2 

from x = 1 to x = 2 is a slight over-

estimate (Example 1).
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Using these y-values, n = 4, and ∆x = (2 - 1)>4 = 1>4 in the Trapezoidal Rule, 

we have

 T =
∆x

2
 ay0 + 2y1 + 2y2 + 2y3 + y4b

 =
1
8

 a1 + 2a25
16
b + 2 a36

16
b + 2a49

16
b + 4b

 =
75
32

= 2.34375.

Since the parabola is concave up, the approximating segments lie above the curve, giving 

each trapezoid slightly more area than the corresponding strip under the curve. The exact 

value of the integral is

 L
2

1

 x2 dx =
x3

3
d

1

2

=
8
3

-
1
3

=
7
3

.

The T approximation overestimates the integral by about half a percent of its true value of 

7 >3. The percentage error is (2.34375 - 7>3)>(7>3) ≈ 0.00446, or 0.446%. 

Simpson’s Rule: Approximations Using Parabolas

Another rule for approximating the definite integral of a continuous function results from 

using parabolas instead of the straight-line segments that produced trapezoids. As before, 

we partition the interval 3a, b4  into n subintervals of equal length h = ∆x =  (b - a)>n, 

but this time we require that n be an even number. On each consecutive pair of intervals we 

approximate the curve y = ƒ(x) Ú 0 by a parabola, as shown in Figure 8.9. A typical 

parabola passes through three consecutive points (xi - 1 , yi - 1), (xi , yi), and (xi + 1, yi + 1) on 

the curve.

Let’s calculate the shaded area beneath a parabola passing through three consecutive 

points. To simplify our calculations, we first take the case where x0 = -h, x1 = 0, and 

x2 = h (Figure 8.10), where h = ∆x = (b - a)>n. The area under the parabola will be 

the same if we shift the y-axis to the left or right. The parabola has an equation of the form

y = Ax2 + Bx + C,

so the area under it from x = -h to x = h is

 Ap = L
h

-h

 (Ax2 + Bx + C  ) dx

 = cAx3

3
+

Bx2

2
+ Cx d

-h

h

 =
2Ah3

3
+ 2Ch =

h
3

 (2Ah2 + 6C  ) .

Since the curve passes through the three points (-h, y0), (0, y1), and (h, y2), we also have

y0 = Ah2 - Bh + C,  y1 = C,  y2 = Ah2 + Bh + C,

from which we obtain

 C = y1,

 Ah2 - Bh = y0 - y1,

 Ah2 + Bh = y2 - y1,

 2Ah2 = y0 + y2 - 2y1.

TABLE 8.2

x y = x2

1  1

5
4

 
25
16

6
4

 
36
16

7
4

 
49
16

2  4

x

y

Parabola

h h

y0 yn−1 yn

xn−1 xn= b

y1 y2

y = f (x)

0 a = x0 x1 x2 h

FIGURE 8.9 Simpson’s Rule approxi-

mates short stretches of the curve with 

parabolas.

0 h−h

y = Ax2 + Bx + C

y0 y1 y2

(−h, y0)

(0, y1)
(h, y2)

x

y

FIGURE 8.10 By integrating from -h to 

h, we find the shaded area to be

h

3
 (y0 + 4y1 + y2) .
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Hence, expressing the area Ap in terms of the ordinates y0, y1, and y2, we have

Ap =
h
3

 (2Ah2 + 6C  ) =
h
3

 ((y0 + y2 - 2y1) + 6y1) =
h
3

 (y0 + 4y1 + y2).

Now shifting the parabola horizontally to its shaded position in Figure 8.9 does not change 

the area under it. Thus the area under the parabola through (x0, y0), (x1, y1), and (x2, y2) in 

Figure 8.9 is still

h
3

 (y0 + 4y1 + y2).

Similarly, the area under the parabola through the points (x2, y2), (x3, y3), and (x4, y4) is

h
3

 (y2 + 4y3 + y4).

Computing the areas under all the parabolas and adding the results gives the approximation

  L
b

a

 ƒ(x) dx ≈
h
3

 (y0 + 4y1 + y2) +
h
3

 (y2 + 4y3 + y4) + g

+
h
3

 (yn - 2 + 4yn - 1 + yn)

 =
h
3

 (y0 + 4y1 + 2y2 + 4y3 + 2y4 + g+  2yn - 2 + 4yn - 1 + yn).

The result is known as Simpson’s Rule. The function need not be positive, as in our deriva-

tion, but the number n of subintervals must be even to apply the rule because each para-

bolic arc uses two subintervals.

HistoricAL BiogrApHy

thomas simpson

(1720–1761)

www.goo.gl/idqvuc

Simpson’s Rule

To approximate 1b

a
 ƒ(x) dx, use

S =
∆x

3
 (y0 + 4y1 + 2y2 + 4y3 + g + 2yn - 2 + 4yn - 1 + yn) .

The y’s are the values of ƒ at the partition points

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, . . . , xn - 1 = a + (n - 1)∆x, xn = b.

The number n is even, and ∆x = (b - a)>n.

Note the pattern of the coefficients in the above rule: 1, 4, 2, 4, 2, 4, 2, . . . , 4, 1.

EXAMPLE 2  Use Simpson’s Rule with n = 4 to approximate 12

0
 5x4 dx.

Solution Partition 30, 24  into four subintervals and evaluate y = 5x4 at the partition 

points (Table 8.3). Then apply Simpson’s Rule with n = 4 and ∆x = 1>2:

 S =
∆x

3
 ay0 + 4y1 + 2y2 + 4y3 + y4b

 =
1
6

 a0 + 4a 5
16
b + 2(5) + 4a405

16
b + 80b

 = 32 
1
12

.

This estimate differs from the exact value (32) by only 1>12, a percentage error of less 

than three-tenths of one percent, and this was with just four subintervals. 

TABLE 8.3

x y = 5x4

0  0

1
2

 
5
16

1  5

3
2

 
405
16

2  80

http://www.goo.gl/idqvuc
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Error Analysis

Whenever we use an approximation technique, the issue arises as to how accurate the 

approximation might be. The following theorem gives formulas for estimating the errors 

when using the Trapezoidal Rule and Simpson’s Rule. The error is the difference between 

the approximation obtained by the rule and the actual value of the definite integral 

1b

a
 ƒ(x) dx.

THEOREM 1—Error Estimates in the Trapezoidal and Simpson’s Rules

If ƒ″ is continuous and M is any upper bound for the values of 0 ƒ″ 0  on 3a, b4 , 
then the error ET  in the trapezoidal approximation of the integral of ƒ from a to b 

for n steps satisies the inequality0ET 0 …
M(b - a)3

12n2
.  Trapezoidal Rule

If ƒ(4) is continuous and M is any upper bound for the values of 0 ƒ(4) 0  on 3a, b4 , 
then the error ES in the Simpson’s Rule approximation of the integral of ƒ from a 

to b for n steps satisies the inequality0ES 0 …
M(b - a)5

180n4
.  Simpson’s Rule

To see why Theorem 1 is true in the case of the Trapezoidal Rule, we begin with a 

result from advanced calculus, which says that if ƒ″ is continuous on the interval 3a, b4 , 
then

 L
b

a

ƒ(x) dx = T -
b - a

12
# ƒ″(c) (∆x)2

for some number c between a and b. Thus, as ∆x approaches zero, the error defined by

ET = -  
b - a

12
# ƒ″(c)(∆x)2

approaches zero as the square of ∆x.

The inequality 0ET 0 …
b - a

12
 max 0 ƒ″(x) 0 (∆x)2 ,

where max refers to the interval 3a, b4 , gives an upper bound for the magnitude of the 

error. In practice, we usually cannot find the exact value of max 0 ƒ″(x) 0  and have to esti-

mate an upper bound or “worst case” value for it instead. If M is any upper bound for the 

values of 0 ƒ″(x) 0  on 3a, b4 , so that 0 ƒ″(x) 0 … M  on 3a, b4 , then0ET 0 …
b - a

12
 M(∆x)2.

If we substitute (b - a)>n for ∆x, we get0ET 0 …
M(b - a)3

12n2
.

To estimate the error in Simpson’s Rule, we start with a result from advanced calculus 

that says that if the fourth derivative ƒ(4) is continuous, then

 L
b

a

 ƒ(x) dx = S -
b - a

180
# ƒ(4)(c)(∆x)4
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for some point c between a and b. Thus, as ∆x approaches zero, the error,

ES = -  
b - a

180
# ƒ(4)(c)(∆x)4,

approaches zero as the fourth power of ∆x. (This helps to explain why Simpson’s Rule is 

likely to give better results than the Trapezoidal Rule.)

The inequality 0ES 0 …
b - a

180
 max 0 ƒ(4)(x) 0  (∆x)4,

where max refers to the interval 3a, b4 , gives an upper bound for the magnitude of the 

error. As with max 0 ƒ″ 0  in the error formula for the Trapezoidal Rule, we usually cannot 

find the exact value of max 0 ƒ(4)(x) 0  and have to replace it with an upper bound. If M is any 

upper bound for the values of 0 ƒ(4) 0  on 3a, b4 , then0ES 0 …
b - a

180
 M(∆x)4.

Substituting (b - a)>n for ∆x in this last expression gives0ES 0 …
M(b - a)5

180n4
.

EXAMPLE 3  Find an upper bound for the error in estimating 12

0
 5x4 dx using 

 Simpson’s Rule with n = 4 (Example 2).

Solution To estimate the error, we first find an upper bound M for the magnitude of the 

fourth derivative of ƒ(x) = 5x4 on the interval 0 … x … 2. Since the fourth derivative has 

the constant value ƒ(4)(x) = 120, we take M = 120. With b - a = 2 and n = 4, the 

error estimate for Simpson’s Rule gives0ES 0 …
M(b - a)5

180n4
=

120 (2)5

180 # 44
=

1
12

.

This estimate is consistent with the result of Example 2. 

Theorem 1 can also be used to estimate the number of subintervals required when 

using the Trapezoidal or Simpson’s Rule if we specify a certain tolerance for the error.

EXAMPLE 4  Estimate the minimum number of subintervals needed to approximate 

the integral in Example 3 using Simpson’s Rule with an error of magnitude less than 10-4.

Solution Using the inequality in Theorem 1, if we choose the number of subintervals n 

to satisfy

M(b - a)5

180n4
6 10-4,

then the error ES in Simpson’s Rule satisfies 0ES 0 6 10-4 as required.

From the solution in Example 3, we have M = 120 and b - a = 2, so we want n to 

satisfy

120(2)5

180n4
6

1

104

or, equivalently,

n4 7
64 # 104

3
.



 8.7  Numerical Integration 491

It follows that

n 7 10a64
3
b1>4

≈ 21.5.

Since n must be even in Simpson’s Rule, we estimate the minimum number of subin-

tervals required for the error tolerance to be n = 22. 

EXAMPLE 5  As we saw in Chapter 7, the value of ln 2 can be calculated from the integral

ln 2 = L
2

1

 
1
x dx.

Table 8.4 shows T and S values for approximations of 12

1
 (1>x) dx using various val-

ues of n. Notice how Simpson’s Rule dramatically improves over the Trapezoidal Rule.

TABLE 8.4  Trapezoidal Rule approximations (Tn)  and Simpson’s Rule approxima-

tions (Sn)  of ln 2 = 12

1
 (1 ,x) dx

 n Tn

0Error 0  
less than c Sn

0Error 0  
less than c

 10 0.6937714032 0.0006242227 0.6931502307 0.0000030502

 20 0.6933033818 0.0001562013 0.6931473747 0.0000001942

 30 0.6932166154 0.0000694349 0.6931472190 0.0000000385

 40 0.6931862400 0.0000390595 0.6931471927 0.0000000122

 50 0.6931721793 0.0000249988 0.6931471856 0.0000000050

100 0.6931534305 0.0000062500 0.6931471809 0.0000000004

In particular, notice that when we double the value of n (thereby halving the value of h = ∆x), 

the T error is divided by 2 squared, whereas the S error is divided by 2 to the fourth.

This has a dramatic efect as ∆x = (2 - 1)>n gets very small. The Simpson approxi-

mation for n = 50 rounds accurately to seven places and for n = 100 agrees to nine deci-

mal places (billionths)! 

If ƒ(x) is a polynomial of degree less than four, then its fourth derivative is zero, and

ES = -  
b - a

180
 ƒ(4)(c)(∆x)4 = -  

b - a

180
 (0)(∆x)4 = 0.

Thus, there will be no error in the Simpson approximation of any integral of ƒ. In other 

words, if ƒ is a constant, a linear function, or a quadratic or cubic polynomial, Simpson’s 

Rule will give the value of any integral of ƒ exactly, whatever the number of subdivisions. 

Similarly, if ƒ is a constant or a linear function, then its second derivative is zero, and

ET = -  
b - a

12
 ƒ″(c)(∆x)2 = -  

b - a

12
 (0)(∆x)2 = 0.

The Trapezoidal Rule will therefore give the exact value of any integral of ƒ. This is no 

surprise, for the trapezoids fit the graph perfectly.

Although decreasing the step size ∆x reduces the error in the Simpson and Trapezoi-

dal approximations in theory, it may fail to do so in practice. When ∆x is very small, say 

∆x = 10-8, computer or calculator round-off errors in the arithmetic required to evaluate 

S and T may accumulate to such an extent that the error formulas no longer describe what 

is going on. Shrinking ∆x below a certain size can actually make things worse. You should 

consult a text on numerical analysis for more sophisticated methods if you are having 

problems with round-off error using the rules discussed in this section.
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EXAMPLE 6  A town wants to drain and fill a small polluted swamp (Figure 8.11). 

The swamp averages 5 ft deep. About how many cubic yards of dirt will it take to fill the 

area after the swamp is drained?

Solution To calculate the volume of the swamp, we estimate the surface area and multi-

ply by 5. To estimate the area, we use Simpson’s Rule with ∆x = 20 ft and the y’s equal 

to the distances measured across the swamp, as shown in Figure 8.11.

 S =
∆x

3
 (y0 + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 + y6)

 =
20
3

 (146 + 488 + 152 + 216 + 80 + 120 + 13) = 8100

The volume is about (8100)(5) = 40,500 ft3 or 1500 yd3. 

Vertical spacing = 20 ft 

13 ft

122 ft

Ignored

76 ft

54 ft

40 ft

30 ft

146 ft

FIGURE 8.11 The dimensions of the 

swamp in Example 6.

Estimating Definite Integrals

The instructions for the integrals in Exercises 1–10 have two parts, 

one for the Trapezoidal Rule and one for Simpson’s Rule.

 i. Using the trapezoidal rule

a. Estimate the integral with n = 4 steps and ind an upper 

bound for 0ET 0 .
b. Evaluate the integral directly and ind 0ET 0 .
c. Use the formula ( 0ET 0 >(true value)) * 100 to express 0ET 0  as 

a percentage of the integral’s true value.

 ii. Using simpson’s rule

a. Estimate the integral with n = 4 steps and ind an upper 

bound for 0ES 0 .
b. Evaluate the integral directly and ind 0ES 0 .
c. Use the formula ( 0ES 0 >(true value)) * 100 to express 0ES 0  as 

a percentage of the integral’s true value.

 1.  L
2

1

 x dx 2.  L
3

1

 (2x - 1) dx

 3.  L
1

-1

 (x2 + 1)  dx 4.  L
0

-2

 (x2 - 1)  dx

 5.  L
2

0

 (t3 + t)  dt  6.  L
1

-1

 (t3 + 1)  dt

 7.  L
2

1

 
1

s2
 ds 8.  L

4

2

 
1

(s - 1)2
 ds

 9.  L
p

0

sin t dt  10.  L
1

0

sin pt dt

Estimating the Number of Subintervals

In Exercises 11–22, estimate the minimum number of subintervals 

needed to approximate the integrals with an error of magnitude less 

than 10-4 by (a) the Trapezoidal Rule and (b) Simpson’s Rule. (The 

integrals in Exercises 11–18 are the integrals from Exercises 1–8.)

 11.  L
2

1

x dx 12.  L
3

1

 (2x - 1) dx

 13.  L
1

-1

 (x2 + 1)  dx 14.  L
0

-2

 (x2 - 1) dx

 15.  L
2

0

 (t3 + t)  dt  16.  L
1

-1

 (t3 + 1) dt

 17.  L
2

1

 
1

s2
 ds 18.  L

4

2

 
1

(s - 1)2
 ds

 19.  L
3

0

 2x + 1 dx 20.  L
3

0

 
1

2x + 1
 dx

 21.  L
2

0

sin (x + 1)  dx 22.  L
1

-1

 cos (x + p) dx

Estimates with Numerical Data

 23. Volume of water in a swimming pool A rectangular swimming 

pool is 30 ft wide and 50 ft long. The accompanying table shows 

the depth h(x) of the water at 5-ft intervals from one end of the 

pool to the other. Estimate the volume of water in the pool using 

the Trapezoidal Rule with n = 10 applied to the integral

V = L
50

0

 30 # h(x) dx.

position (ft)  

 x

Depth (ft)  

 h(x)

position (ft)  

 x

Depth (ft)  

 h(x)

 0  6.0  30  11.5

 5  8.2  35  11.9

 10  9.1  40  12.3

 15  9.9  45  12.7

 20  10.5  50  13.0

 25  11.0   

EXERCISES 8.7
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  is one of the many functions in engineering whose formulas can-

not be simpliied. There is no elementary formula for the antide-

rivative of (sin t) > t. The values of Si(x), however, are readily esti-

mated by numerical integration.

   Although the notation does not show it explicitly, the function 

being integrated is

ƒ(t) = c sin t
t

, t ≠ 0

  1,  t = 0,

  the continuous extension of (sin t) > t to the interval 30, x4 . The 

function has derivatives of all orders at every point of its do-

main. Its graph is smooth, and you can expect good results from 

 Simpson’s Rule.

t

y

0 x 2p

1
dtSi (x) =

x

0L
sin t

t
y =

sin t
t

−p p

a. Use the fact that 0 ƒ(4) 0 … 1 on 30, p>24  to give an upper 

bound for the error that will occur if

Siap
2
b = L

p>2
0

 
sin t

t
 dt

is estimated by Simpson’s Rule with n = 4.

b. Estimate Si(p>2) by Simpson’s Rule with n = 4.

c. Express the error bound you found in part (a) as a percentage 

of the value you found in part (b).

 28. the error function The error function,

erf (x) =
2

2p
 L

x

0

 e-t2

 dt,

  important in probability and in the theories of heat low and signal 

transmission, must be evaluated numerically because there is no 

elementary expression for the antiderivative of e-t2

.

a. Use Simpson’s Rule with n = 10 to estimate erf (1).

b. In 30, 14 ,
` d4

dt4
 (e-t2) ` … 12.

Give an upper bound for the magnitude of the error of the 

estimate in part (a).

 29. Prove that the sum T in the Trapezoidal Rule for 1b

a
 ƒ(x) dx is a 

Riemann sum for ƒ continuous on 3a, b4 . (Hint: Use the Interme-

diate Value Theorem to show the existence of ck in the subinterval 

[xk - 1, xk] satisfying ƒ(ck) =  (ƒ(xk - 1) + ƒ(xk))>2.)

 30. Prove that the sum S in Simpson’s Rule for 1b

a
 ƒ(x) dx is a 

 Riemann sum for ƒ continuous on 3a, b4 . (See Exercise 29.)

 31. Elliptic integrals The length of the ellipse

x2

a2
+

y2

b2
= 1

T

 24. Distance traveled The accompanying table shows time-to-

speed data for a sports car accelerating from rest to 130 mph. How 

far had the car traveled by the time it reached this speed? (Use 

trapezoids to estimate the area under the velocity curve, but be 

careful: The time intervals vary in length.)

 speed change time (sec)

Zero to 30 mph  2.2

 40 mph  3.2

 50 mph  4.5

 60 mph  5.9

 70 mph  7.8

 80 mph  10.2

 90 mph  12.7

 100 mph  16.0

 110 mph  20.6

 120 mph  26.2

 130 mph  37.1

 25. Wing design The design of a new airplane requires a gasoline 

tank of constant cross-sectional area in each wing. A scale draw-

ing of a cross-section is shown here. The tank must hold 5000 lb 

of gasoline, which has a density of 42 lb>ft3. Estimate the length 

of the tank by Simpson’s Rule.

y1y0
y2

y3 y4 y5 y6

y0 = 1.5 ft, y1 = 1.6 ft, y2 = 1.8 ft, y3 = 1.9 ft,

y4 = 2.0 ft, y5 = y6 = 2.1 ft Horizontal spacing = 1 ft

 26. oil consumption on pathinder Island A diesel generator runs 

continuously, consuming oil at a gradually increasing rate until it 

must be temporarily shut down to have the ilters replaced. Use the 

Trapezoidal Rule to estimate the amount of oil consumed by the 

generator during that week.

Day

Oil consumption rate  

 (liters , h)

Sun  0.019

Mon  0.020

Tue  0.021

Wed  0.023

Thu  0.025

Fri  0.028

Sat  0.031

Sun  0.035

Theory and Examples

 27. Usable values of the sine-integral function The sine-integral 

function,

Si(x) = L
x

0

 
sin t

t
 dt,  “Sine integral of x”
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  turns out to be

Length = 4a L
p>2

0

 21 - e2 cos2 t dt,

  where e = 2a2 - b2>a is the ellipse’s eccentricity. The integral 

in this formula, called an elliptic integral, is nonelementary except 

when e = 0 or 1.

a. Use the Trapezoidal Rule with n = 10 to estimate the length 

of the ellipse when a = 1 and e = 1>2.

b. Use the fact that the absolute value of the second derivative of 

ƒ(t) = 21 - e2 cos2 t is less than 1 to ind an upper bound 

for the error in the estimate you obtained in part (a).

Applications

 32. The length of one arch of the curve y = sin x is given by

L = L
p

0

 21 + cos2 x dx.

  Estimate L by Simpson’s Rule with n = 8.

 33. Your metal fabrication company is bidding for a contract to make 

sheets of corrugated iron rooing like the one shown here. The 

cross-sections of the corrugated sheets are to conform to the curve

y = sin 
3p
20

 x, 0 … x … 20 in.

  If the rooing is to be stamped from lat sheets by a process that 

does not stretch the material, how wide should the original mate-

rial be? To ind out, use numerical integration to approximate the 

length of the sine curve to two decimal places.

Corrugated sheet

20
y = sin      x

20 in.

x (in.)

y

3p
20

Original sheet

0

 34. Your engineering irm is bidding for the contract to construct the 

tunnel shown here. The tunnel is 300 ft long and 50 ft wide at 

the base. The cross-section is shaped like one arch of the curve 

y = 25 cos (px>50). Upon completion, the tunnel’s inside sur-

face (excluding the roadway) will be treated with a waterproof 

T

T

T

sealer that costs $2.35 per square foot to apply. How much will it 

cost to apply the sealer? (Hint: Use numerical integration to ind 

the length of the cosine curve.)

x (ft)

y

0

−25

25

y = 25 cos (px�50)

300 ft

NOT TO SCALE

Find, to two decimal places, the areas of the surfaces generated by 

revolving the curves in Exercises 35 and 36 about the x-axis.

 35. y = sin x, 0 … x … p 36. y = x2>4, 0 … x … 2

 37. Use numerical integration to estimate the value of

sin-1 0.6 = L
0.6

0

 
dx

21 - x2
.

  For reference, sin-1 0.6 = 0.64350 to ive decimal places.

 38. Use numerical integration to estimate the value of

p = 4 L
1

0

 
1

1 + x2
 dx.

 39. Drug assimilation An average adult under age 60 years assimi-

lates a 12-hr cold medicine into his or her system at a rate modeled 

by

dy

dt
= 6 - ln (2t2 - 3t + 3),

  where y is measured in milligrams and t is the time in hours since 

the medication was taken. What amount of medicine is absorbed 

into a person’s system over a 12-hr period?

 40. Efects of an antihistamine The concentration of an antihista-

mine in the bloodstream of a healthy adult is modeled by

C = 12.5 - 4 ln (t2 - 3t + 4),

  where C is measured in grams per liter and t is the time in hours 

since the medication was taken. What is the average level of con-

centration in the bloodstream over a 6-hr period?

8.8 Improper Integrals

Up to now, we have required definite integrals to satisfy two properties. First, the domain 

of integration 3a, b4  must be finite. Second, the range of the integrand must be finite on 

this domain. In practice, we may encounter problems that fail to meet one or both of these 

conditions. The integral for the area under the curve y = (ln x)>x2 from x = 1 to x = q 

is an example for which the domain is infinite (Figure 8.12a). The integral for the area 

under the curve of y = 1>2x between x = 0 and x = 1 is an example for which the 

range of the integrand is infinite (Figure 8.12b). In either case, the integrals are said to be 

improper and are calculated as limits. We will see in Section 8.9 that improper integrals 

play an important role in probability. They are also useful when investigating the conver-

gence of certain infinite series in Chapter 10.
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Infinite Limits of Integration

Consider the infinite region (unbounded on the right) that lies under the curve y = e-x>2 in 

the first quadrant (Figure 8.13a). You might think this region has infinite area, but we will 

see that the value is finite. We assign a value to the area in the following way. First find the 

area A(b) of the portion of the region that is bounded on the right by x = b (Figure 

8.13b).

A(b) = L
b

0

 e-x>2 dx = -2e-x>2 d
0

b

= -2e-b>2 + 2

Then find the limit of A(b) as b S q

lim
bSq

 A(b) = lim
bSq

 (-2e-b>2 + 2) = 2.

The value we assign to the area under the curve from 0 to q is

 L
q

0

 e-x>2 dx = lim
bSq

 L
b

0

 e-x>2 dx = 2.

(b)

x

y

0

0.1

1 2 3 4 5 6

0.2

(a)

x

y

0

1

1

y = ln x

x2 "x

1
y =

FIGURE 8.12 Are the areas under these infinite curves finite? We will 

see that the answer is yes for both curves.

x

x

y

(a)

y

(b)

b

Area = 2

Area = −2e−b�2 
+ 2

FIGURE 8.13 (a) The area in the first 

quadrant under the curve y = e-x>2.  
(b) The area is an improper integral of the 

first type.

DEFINITION Integrals with infinite limits of integration are improper inte-

grals of type i.

1. If ƒ(x) is continuous on [a, q), then

 L
q

a

 ƒ(x) dx = lim
bS  q

 L
b

a

 ƒ(x) dx.

2. If ƒ(x) is continuous on (-q, b4 , then

 L
b

-q

 ƒ(x) dx = lim
aS-  q

 L
b

a

 ƒ(x) dx.

3. If ƒ(x) is continuous on (-q, q), then

 L
q

-q

 ƒ(x) dx = L
c

-q

 ƒ(x) dx + L
q

c

 ƒ(x) dx,

where c is any real number.

In each case, if the limit exists and is finite, we say that the improper integral 

converges and that the limit is the value of the improper integral. If the limit fails 

to exist, the improper integral diverges.
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The choice of c in Part 3 of the definition is unimportant. We can evaluate or deter-

mine the convergence or divergence of 1q
-q ƒ(x) dx with any convenient choice.

Any of the integrals in the above definition can be interpreted as an area if ƒ Ú 0 on 

the interval of integration. For instance, we interpreted the improper integral in Figure 8.13 

as an area. In that case, the area has the finite value 2. If ƒ Ú 0 and the improper integral 

diverges, we say the area under the curve is infinite.

EXAMPLE 1  Is the area under the curve y = (ln x)>x2 from x = 1 to x = q finite? 

If so, what is its value?

Solution We find the area under the curve from x = 1 to x = b and examine the limit 

as b S q. If the limit is finite, we take it to be the area under the curve (Figure 8.14). The 

area from 1 to b is

  L
b

1

 
ln x

x2
 dx = c (ln x)a-  

1
xb d

1

b

- L
b

1

 a-  
1
xb a1xb  dx  

Integration by parts with 

u = ln x, dy = dx>x2, 

du = dx>x, y = -1>x  

 = -  
ln b

b
- c 1x d

1

b

 = -  
ln b

b
-

1
b

+ 1.

The limit of the area as b S q is

  L
q

1

 
ln x

x2
 dx = lim

bSq
 L

b

1

 
ln x

x2
 dx

 = lim
bSq

 c-  
ln b

b
-

1
b

+ 1 d
 = - c lim

bSq
 
ln b

b
d - 0 + 1

 = - c lim
bSq

 
1>b

1
d + 1 = 0 + 1 = 1.  l’Hôpital’s Rule

Thus, the improper integral converges and the area has finite value 1. 

EXAMPLE 2  Evaluate

 L
q

-q

 
dx

1 + x2
.

Solution According to the definition (Part 3), we can choose c = 0 and write

 L
q

-q

 
dx

1 + x2
= L

0

-q

 
dx

1 + x2
+ L

q

0

 
dx

1 + x2
.

Next we evaluate each improper integral on the right side of the equation above.

  L
0

-q

 
dx

1 + x2
= lim

aS - q
  L

0

a

 
dx

1 + x2

 = lim
aS - q

 tan-1 x d
a

0

 = lim
aS - q

 (tan-1 0 - tan-1 a) = 0 - a-p
2
b =

p
2

x

y

0

0.1

1 b

0.2 y = ln x

x2

FIGURE 8.14 The area under this curve 

is an improper integral (Example 1).

HistoricAL BiogrApHy

Lejeune Dirichlet

(1805–1859)

www.goo.gl/QGwXLL

http://www.goo.gl/QGwXLL
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  L
q

0

 
dx

1 + x2
= lim

bSq
 L

b

0

 
dx

1 + x2

 = lim
bSq

 tan-1 x d
0

b

 = lim
bSq

(tan-1 b - tan-1 0) =
p
2

- 0 =
p
2

Thus,

 L
q

-q

 
dx

1 + x2
=

p
2

+
p
2

= p.

Since 1>(1 + x2) 7 0, the improper integral can be interpreted as the (finite) area beneath 

the curve and above the x-axis (Figure 8.15). 

The Integral  L
H

1

 
dx

x  

p

The function y = 1>x is the boundary between the convergent and divergent improper 

integrals with integrands of the form y = 1>x p. As the next example shows, the improper 

integral converges if p 7 1 and diverges if p … 1.

EXAMPLE 3  For what values of p does the integral 1q
1

 dx>x p converge? When the 

integral does converge, what is its value?

Solution If p ≠ 1,

 L
b

1

 
dx
x p

=
x-p + 1

-p + 1
d

1

b

=
1

1 - p
 (b-p + 1 - 1) =

1
1 - p

 a 1

b p - 1
- 1b .

Thus,

  L
q

1

 
dx
x p

= lim
bSq

 L
b

1

 
dx
x p

 = lim
bSq

 c 1
1 - p

 a 1

b p - 1
- 1b d = c 1

p - 1
, p 7 1

q, p 6 1

because

lim
bSq

 
1

b p - 1
= e0, p 7 1

q, p 6 1.

Therefore, the integral converges to the value 1>( p - 1) if p 7 1 and it diverges if 

p 6 1.

If p = 1, the integral also diverges:

  L
q

1

 
dx
x p

= L
q

1

 
dx
x

 = lim
bSq

 L
b

1

 
dx
x

 = lim
bSq

 ln x d b
1

  = lim
bSq

(ln b - ln 1) = q. 

x

y

0

y = 1

1 + x2 Area = p

NOT TO SCALE

FIGURE 8.15 The area under this curve 

is finite (Example 2).
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Integrands with Vertical Asymptotes

Another type of improper integral arises when the integrand has a vertical asymptote—an 

infinite discontinuity—at a limit of integration or at some point between the limits of inte-

gration. If the integrand ƒ is positive over the interval of integration, we can again interpret 

the improper integral as the area under the graph of ƒ and above the x-axis between the 

limits of integration.

Consider the region in the first quadrant that lies under the curve y = 1>2x from 

x = 0 to x = 1 (Figure 8.12b). First we find the area of the portion from a to 1 (Figure 

8.16):

 L
1

a

 
dx

2x
= 22x d

a

1

= 2 - 22a.

Then we find the limit of this area as a S 0+ :

lim
aS0 +

 L
1

a

 
dx

2x
= lim

aS0
12 - 22a2 = 2.

Therefore the area under the curve from 0 to 1 is finite and is defined to be

 L
1

0

 
dx

2x
= lim

aS0 +
 L

1

a

 
dx

2x
= 2.

x

y

0

1

1a

"x

1
y =

Area = 2 − 2"a

FIGURE 8.16 The area under this curve 

is an example of an improper integral of 

the second kind.

DEFINITION Integrals of functions that become infinite at a point within the 

interval of integration are improper integrals of type ii.

1. If ƒ(x) is continuous on (a, b4  and discontinuous at a, then

 L
b

a

ƒ(x) dx = lim
cSa +L

b

c

ƒ(x) dx .

2. If ƒ(x) is continuous on 3a, b) and discontinuous at b, then

 L
b

a

ƒ(x) dx = lim
cSb-

 L
c

a

ƒ(x) dx.

3. If ƒ(x) is discontinuous at c, where a 6 c 6 b, and continuous on 3a, c) ∪ (c, b4 , then

 L
b

a

ƒ(x) dx = L
c

a

ƒ(x) dx + L
b

c

ƒ(x) dx .

In each case, if the limit exists and is finite, we say the improper integral 

 converges and that the limit is the value of the improper integral. If the limit 

does not exist, the integral diverges.

In Part 3 of the definition, the integral on the left side of the equation converges if both 

integrals on the right side converge; otherwise it diverges.

EXAMPLE 4  Investigate the convergence of

 L
1

0

 
1

1 - x
 dx.
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Solution The integrand ƒ(x) = 1>(1 - x) is continuous on 30, 1) but is discontinuous 

at x = 1 and becomes infinite as x S 1- (Figure 8.17). We evaluate the integral as

 lim
bS1-

 L
b

0

 
1

1 - x
 dx = lim

bS1-
 c- ln 0 1 - x 0 d

0

b

 = lim
bS1-

 3- ln (1 - b) + 04 = q.

The limit is infinite, so the integral diverges. 

EXAMPLE 5  Evaluate

 L
3

0

 
dx

(x - 1)2>3 .

Solution The integrand has a vertical asymptote at x = 1 and is continuous on 30, 1) 

and (1, 34  (Figure 8.18). Thus, by Part 3 of the definition above,

 L
3

0

 
dx

(x - 1)2>3 = L
1

0

 
dx

(x - 1)2>3 + L
3

1

 
dx

(x - 1)2>3 .

Next, we evaluate each improper integral on the right-hand side of this equation.

  L
1

0

 
dx

(x - 1)2>3 = lim
bS1-L

b

0

 
dx

(x - 1)2>3
 = lim

bS1-
 3(x - 1)1>3 d b

0

 = lim
bS1-

 33(b - 1)1>3 + 34 = 3

 L
3

1

 
dx

(x - 1)2>3 = lim
cS1 +L

3

c

 
dx

(x - 1)2>3
 = lim

cS1 +
 3(x - 1)1>3 d 3

c

 = lim
cS1 +

 33(3 - 1)1>3 - 3(c - 1)1>34 = 323 2

We conclude that

  L
3

0

 
dx

(x - 1)2>3 = 3 + 323 2. 

Improper Integrals with a CAS

Computer algebra systems can evaluate many convergent improper integrals. To evaluate 

the integral

 L
q

2

 
x + 3

(x - 1)(x2 + 1)
 dx

(which converges) using Maple, enter

7 ƒJ (x + 3)>((x - 1) * (x¿2 + 1));

Then use the integration command

7 int(ƒ, x = 2..infinity);

Maple returns the answer

-
1
2

 p + ln (5) + arctan (2).

x

y

0

1

1b

y = 1
1 − x

FIGURE 8.17 The area beneath the 

curve and above the x-axis for 30, 1) is not 

a real number (Example 4).

x

y

0 3b

1

 

1

c

y = 1

(x − 1)2�3

FIGURE 8.18 Example 5 shows that the 

area under the curve exists (so it is a real 

number).
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To obtain a numerical result, use the evaluation command evalf and specify the num-

ber of digits as follows:

7 evalf(,, 6);

The symbol % instructs the computer to evaluate the last expression on the screen, in this 

case (-1>2)p + ln (5) + arctan (2). Maple returns 1.14579.

Using Mathematica, entering

In[1]J Integrate3(x + 3)>((x - 1)(x¿2 + 1)), 5x, 2, Infinity64
returns

Out[1]=  -
p
2

+ ArcTan324 + Log354 .
To obtain a numerical result with six digits, use the command “N3%, 64 ”; it also yields 

1.14579.

Tests for Convergence and Divergence

When we cannot evaluate an improper integral directly, we try to determine whether it 

converges or diverges. If the integral diverges, that’s the end of the story. If it converges, 

we can use numerical methods to approximate its value. The principal tests for conver-

gence or divergence are the Direct Comparison Test and the Limit Comparison Test.

EXAMPLE 6  Does the integral 1q
1

 e-x2

 dx converge?

Solution By definition,

 L
q

1

 e-x2

 dx = lim
bSq

 L
b

1

 e-x2

 dx.

We cannot evaluate this integral directly because it is nonelementary. But we can show 

that its limit as b S q is finite. We know that 1b

1
 e-x2

 dx is an increasing function of b 

because the area under the curve increases as b increases. Therefore either it becomes infi-

nite as b S q or it has a finite limit as b S q. For our function it does not become infi-

nite: For every value of x Ú 1, we have e-x2

… e-x (Figure 8.19) so that

 L
b

1

 e-x2

 dx … L
b

1

 e-x dx = -e-b + e-1 6 e-1 ≈ 0.36788.

Hence,

 L
q

1

 e-x2

 dx = lim
bSq

 L
b

1

 e-x2

 dx

converges to some finite value. We do not know exactly what the value is except that it is 

something positive and less than 0.37. Here we are relying on the completeness property 

of the real numbers, discussed in Appendix 6. 

The comparison of e-x2

 and e-x in Example 6 is a special case of the following test.

x

y

0 b1

1

y = e−x

y = e−x2

(1, e−1)

FIGURE 8.19 The graph of e-x2

 lies  

below the graph of e-x for x 7 1 

 (Example 6).

THEOREM 2—Direct Comparison Test

Let ƒ and g be continuous on 3a, q) with 0 … ƒ(x) … g(x) for all x Ú a. Then

1. If  L
q

a

 g(x) dx converges, then  L
q

a

 ƒ(x) dx also converges.

2. If  L
q

a

 ƒ(x) dx diverges, then  L
q

a

 g(x) dx also diverges.
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Proof  The reasoning behind the argument establishing Theorem 2 is similar to that in 

Example 6. If 0 … ƒ(x) … g(x) for x Ú a, then from Rule 7 in Theorem 2 of Section 5.3 

we have

 L
b

a

 ƒ(x) dx … L
b

a

 g(x) dx,  b 7 a.

From this it can be argued, as in Example 6, that

 L
q

a

 ƒ(x) dx  converges if  L
q

a

 g(x) dx  converges.

Turning this around to its contrapositive form, this says that

  L
q

a

 g(x) dx  diverges if  L
q

a

 ƒ(x) dx  diverges. 

Although the theorem is stated for Type I improper integrals, a similar result is true 

for integrals of Type II as well.

EXAMPLE 7  These examples illustrate how we use Theorem 2.

(a)  L
q

1

 
sin2 x

x2
 dx    converges because

0 …
sin2 x

x2
…

1

x2
 on 31, q) and L

q

1

 
1

x2
 dx  converges.  Example 3

(b)  L
q

1

 
1

2x2 - 0.1
 dx  diverges because

1

2x2 - 0.1
Ú

1
x on 31, q) and L

q

1

 
1
x dx  diverges.   Example 3

(c)  L
p>2

0

cos  x

2x
 dx   converges because

0 …
cos  x

2x
…

1

2x
 on  c 0, 

p
2
d ,  0 … cos x … 1 on c0, 

p

2
d

 and

  L
p>2

0

dx

2x
= lim

aS0 +L
p>2

a

dx

2x

 = lim
aS0 +

24x d p>2
a

  22x = 24x 

 = lim
aS0 +

122p - 24a2 = 22p  converges. 

HistoricAL BiogrApHy

Karl Weierstrass

(1815–1897)

www.goo.gl/3RH2rO

THEOREM 3—Limit Comparison Test

If the positive functions ƒ and g are continuous on 3a, q), and if

lim
xSq 

 
ƒ(x)

g(x)
= L,  0 6 L 6 q,

then

 L
q

a

ƒ(x) dx  and  L
q

a

g(x) dx

either both converge or both diverge.

http://www.goo.gl/3RH2rO
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We omit the proof of Theorem 3, which is similar to that of Theorem 2.

Although the improper integrals of two functions from a to q may both converge, this 

does not mean that their integrals necessarily have the same value, as the next example shows.

EXAMPLE 8  Show that

 L
q

1

dx

1 + x2

converges by comparison with 1q
1

 (1>x2) dx. Find and compare the two integral values.

Solution The functions ƒ(x) = 1>x2 and g(x) = 1>(1 + x2) are positive and continu-

ous on 31, q). Also,

 lim
xSq

 
ƒ(x)

g(x)
= lim

xSq
 

1>x2

1>(1 + x2)
= lim

xSq
 
1 + x2

x2

 = lim
xSq

 a 1

x2
+ 1b = 0 + 1 = 1,

which is a positive finite limit (Figure 8.20). Therefore,  L
q

1

dx

1 + x2
 converges because  L

q

1

 
dx

x2
 

 converges.

The integrals converge to diferent values, however:

 L
q

1

dx

x2
=

1
2 - 1

= 1  Example 3

and

   L
q

1

dx

1 + x2
= lim

bSq
   L

b

1

 
dx

1 + x2
 = lim

bSq
 3 tan-1 b - tan-1 14 =

p
2

-
p
4

=
p
4

. 

EXAMPLE 9  Investigate the convergence of  L
q

1

1 - e-x

x  dx.

Solution The integrand suggests a comparison of ƒ(x) = (1 - e-x)>x with g(x) = 1>x. 

However, we cannot use the Direct Comparison Test because ƒ(x) … g(x) and the integral 

of g(x) diverges. On the other hand, using the Limit Comparison Test we find that

 lim
xSq

 
ƒ(x)

g(x)
=  lim

xSq
 a1 - e-x

x b ax

1
b =  lim

xSq
 (1 - e-x) = 1,

which is a positive finite limit. Therefore,  L
q

1

 
1 - e-x

x  dx  diverges because  L
q

1

 
dx
x  

diverges. Approximations to the improper integral are given in Table 8.5. Note that the 

values do not appear to approach any fixed limiting value as b S q. 

x

y

0

1

321

y = 1

1 + x2

y = 1

x2

FIGURE 8.20 The functions in  

Example 8.

TABLE 8.5

 b  L
b

1

 
1 − e−x

x  dx

 2  0.5226637569

 5  1.3912002736

 10  2.0832053156

 100  4.3857862516

 1000  6.6883713446

 10000  8.9909564376

100000 11.2935415306
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Evaluating Improper Integrals

The integrals in Exercises 1–34 converge. Evaluate the integrals with-

out using tables.

 1.  L
q

0

dx

x2 + 1
 2.  L

q

1

dx

x1.001

 3.  L
1

0

dx

2x
 4.  L

4

0

dx

24 - x

 5.  L
1

-1

 
dx

x2>3  6.  L
1

-8

 
dx

x1>3
 7.  L

1

0

dx

21 - x2
 8.  L

1

0

dr

r0.999

 9.  L
-2

-q

 
2 dx

x2 - 1
 10.  L

2

-q

 
2 dx

x2 + 4

 11.  L
q

2

2

y2 - y
 dy  12.  L

q

2

2 dt

t2 - 1

 13.  L
q

-q

 
2x dx

(x2 + 1)2
 14.  L

q

-q

 
x dx

(x2 + 4)3>2
 15.  L

1

0

u + 1

2u2 + 2u
 du  16.  L

2

0

s + 1

24 - s2
 ds

 17.  L
q

0

dx

(1 + x)2x
 18.  L

q

1

1

x2x2 - 1
 dx

 19.  L
q

0

dy

(1 + y2) (1 + tan-1 y)
 20.  L

q

0

 
16 tan-1 x

1 + x2
 dx

 21.  L
0

-q

 ueu du  22.  L
q

0

2e-u sin u du

 23.  L
0

-q

 e- 0x 0 dx 24.  L
q

-q

 
 2xe-x2

 dx

 25.  L
1

0

x ln x dx 26.  L
1

0

(- ln x)  dx

 27.  L
2

0

ds

24 - s2
 28.  L

1

0

4r dr

21 - r4

 29.  L
2

1

ds

s2s2 - 1
 30.  L

4

2

dt

t2t2 - 4

 31.  L
4

-1

dx

2 0 x 0  32.  L
2

0

dx

2 0 x - 1 0
 33.  L

q

-1

du

u2 + 5u + 6
 34.  L

q

0

dx

(x + 1) (x2 + 1)

Testing for Convergence

In Exercises 35–68, use integration, the Direct Comparison Test, or 

the Limit Comparison Test to test the integrals for convergence. If 

more than one method applies, use whatever method you prefer.

 35.  L
2

1>2  
dx

x ln x
 36.  L

1

-1

 
du

u2 - 2u

 37.  L
q

1>2   
dx

x (ln x)3
 38.  L

q

0

du

u2 - 1

 39.  L
p>2

0

tan u du  40.  L
p>2

0

cot u du

 41.  L
1

0

 
ln x

x2
 dx 42.  L

2

1

 
dx

x ln x

 43.  L
 ln 2

0

 x-2e-1>x dx 44.  L
1

0

e-2x

2x
 dx

 45.  L
p

0

dt

2t + sin t
 46.  L

1

0

dt

t - sin t
 (Hint: t Ú sin t for t Ú 0)

 47.  L
2

0

dx

1 - x2
 48.  L

2

0

dx

1 - x

 49.  L
1

-1

 ln 0 x 0  dx 50.  L
1

-1

-x ln  0 x 0  dx

 51.  L
q

1

dx

x3 + 1
 52.  L

q

4

dx

2x - 1

 53.  L
q

2

dy

2y - 1
 54.  L

q

0

du

1 + eu

 55.  L
q

0

dx

2x6 + 1
 56.  L

q

2

dx

2x2 - 1

 57.  L
q

1

2x + 1

x2
 dx 58.  L

q

2

x dx

2x4 - 1

 59.  L
q

p

 
2 + cos x

x  dx 60.  L
q

p

 
1 + sin x

x2
 dx

 61.  L
q

4

2 dt

t3>2 - 1
 62.  L

q

2

1
ln x

 dx

 63.  L
q

1

ex

x  dx 64.  L
q

ee

 ln (ln x)  dx

 65.  L
q

1

1

2ex - x
 dx 66.  L

q

1

1
ex - 2x  dx

 67.  L
q

-q

 
dx

2x4 + 1
 68.  L

q

-q

 
dx

ex + e-x

Theory and Examples

 69. Find the values of p for which each integral converges.

a.  L
2

1

dx

x(ln x) p  b.  L
q

2

dx

x(ln x) p

EXERCISES 8.8
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 82. The ininite paint can or Gabriel’s horn As Example 3 shows, 

the integral 1q
1

(dx>x) diverges. This means that the integral

 L
q

1

2p 
1
xA1 +

1

x4
  dx,

  which measures the surface area of the solid of revolution traced 

out by revolving the curve y = 1>x, 1 … x, about the x-axis, di-

verges also. By comparing the two integrals, we see that, for every 

inite value b 7 1,

 L
b

1

2p 
1
xA1 +

1

x4
  dx 7 2pL

b

1

 
1
x dx.

x

y

1

0

b

y =
1
x

  However, the integral

 L
q

1

 pa1xb2

 dx

  for the volume of the solid converges.

a. Calculate it.

b. This solid of revolution is sometimes described as a can that 

does not hold enough paint to cover its own interior. Think 

about that for a moment. It is common sense that a inite 

amount of paint cannot cover an ininite surface. But if we ill 

the horn with paint (a inite amount), then we will have cov-

ered an ininite surface. Explain the apparent contradiction.

 83. Sine-integral function The integral

Si (x) = L
x

0

sin t
t

 dt,

  called the sine-integral function, has important applications in 

 optics.

a. Plot the integrand (sin t)>t for t 7 0. Is the sine-integral 

function everywhere increasing or decreasing? Do you think 

Si (x) = 0 for x Ú 0? Check your answers by graphing the 

function Si (x) for 0 … x … 25.

b. Explore the convergence of

 L
q

0

sin t
t

 dt.

If it converges, what is its value?

 84. Error function The function

erf (x) = L
x

0

 
2e-t2

2p
 dt,

  called the error function, has important applications in probability 

and statistics.

a. Plot the error function for 0 … x … 25.

T

T

 70. 1H−H ƒ(x)  dx may not equal lim
bSH

 1b

-b
 ƒ(x)  dx Show that

 L
q

0

2x dx

x2 + 1

  diverges and hence that

 L
q

-q

 
2x dx

x2 + 1

  diverges. Then show that

lim
bSq

 L
b

-b

 
2x dx

x2 + 1
= 0.

Exercises 71–74 are about the infinite region in the first quadrant 

between the curve y = e-x and the x-axis.

 71. Find the area of the region.

 72. Find the centroid of the region.

 73. Find the volume of the solid generated by revolving the region 

about the y-axis.

 74. Find the volume of the solid generated by revolving the region 

about the x-axis.

 75. Find the area of the region that lies between the curves y = sec x 

and y = tan x from x = 0 to x = p>2.

 76. The region in Exercise 75 is revolved about the x-axis to generate 

a solid.

a. Find the volume of the solid.

b. Show that the inner and outer surfaces of the solid have ini-

nite area.

 77. Consider the ininite region in the irst quadrant bounded by the 

  graphs of y =
1

x2
, y = 0, and x = 1.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving the region 

(i) about the x-axis; (ii) about the y-axis.

 78. Consider the ininite region in the irst quadrant bounded by the 

  graphs of y =
1

2x
, y = 0, x = 0, and x = 1.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving the region 

(i) about the x-axis; (ii) about the y-axis.

 79. Evaluate the integrals.

a.  L
1

0

dt

2t (1 + t)
 b.  L

q

0

dt

2t (1 + t)

 80. Evaluate  L
q

3

dx

x2x2 - 9
.

 81. Estimating the value of a convergent improper integral whose 

domain is ininite

a. Show that

 L
q

3

 e-3x dx =
1
3

 e-9 6 0.000042,

and hence that 1q
3

e-x2

 dx 6 0.000042. Explain why this 

means that 1q
0

e-x2

 dx can be replaced by 13

0
e-x2

 dx without 

introducing an error of magnitude greater than 0.000042.

b. Evaluate 13

0  e
-x2

 dx numerically.T
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b. Explore the convergence of

 L
q

0

 
2e-t2

2p
 dt.

If it converges, what appears to be its value? You will see how 

to conirm your estimate in Section 15.4, Exercise 41.

 85. Normal probability distribution The function

ƒ(x) =
1

s22p
 e- 

1
2  1x -m

s 22
  is called the normal probability density function with mean m and 

standard deviation s. The number m tells where the distribution 

is centered, and s measures the “scatter” around the mean. (See 

Section 8.9.)

   From the theory of probability, it is known that

 L
q

-q

ƒ(x) dx = 1.

  In what follows, let m = 0 and s = 1.

a. Draw the graph of ƒ. Find the intervals on which ƒ is increas-

ing, the intervals on which ƒ is decreasing, and any local 

extreme values and where they occur.

b. Evaluate

 L
n

-n

 ƒ(x) dx

for n = 1, 2, and 3.

T

c. Give a convincing argument that

 L
q

-q

 ƒ(x) dx = 1.

 (Hint: Show that 0 6 ƒ(x) 6 e-x>2 for x 7 1, and for b 7 1,

 L
q

b

 e-x>2 dx S 0 as b S q.)

 86. Show that if ƒ(x) is integrable on every interval of real numbers 

and a and b are real numbers with a 6 b, then

a. 1a

-q ƒ(x) dx and 1q
a

 ƒ(x) dx both converge if and only if 

  1b

-q ƒ(x) dx and 1q
b

 ƒ(x) dx both converge.

b. 1a

-q ƒ(x) dx + 1q
a

 ƒ(x) dx = 1b

-q ƒ(x) dx + 1q
b

 ƒ(x) dx 

when the integrals involved converge.

COMPUTER EXPLORATIONS

In Exercises 87–90, use a CAS to explore the integrals for various 

values of p (include noninteger values). For what values of p does the 

integral converge? What is the value of the integral when it does con-

verge? Plot the integrand for various values of p.

 87.  L
e

0

x p ln x dx 88.  L
q

e

x p ln x dx

 89.  L
q

0

x p ln x dx 90.  L
q

- q

x p ln 0 x 0  dx

Use a CAS to evaluate the integrals.

 91.  L
2>p

0

sin 
1
x dx 92.  L

2>p
0

x sin 
1
x dx

8.9 Probability

The outcome of some events, such as a heavy rock falling from a great height, can be mod-

eled so that we can predict with high accuracy what will happen. On the other hand, many 

events have more than one possible outcome and which one of them will occur is uncertain. 

If we toss a coin, a head or a tail will result with each outcome being equally likely, but we 

do not know in advance which one it will be. If we randomly select and then weigh a person 

from a large population, there are many possible weights the person might have, and it is not 

certain whether the weight will be between 180 and 190 lb. We are told it is highly likely, but 

not known for sure, that an earthquake of magnitude 6.0 or greater on the Richter scale will 

occur near a major population area in California within the next one hundred years. Events 

having more than one possible outcome are probabilistic in nature, and when modeling them 

we assign a probability to the likelihood that a particular outcome may occur. In this section 

we show how calculus plays a central role in making predictions with probabilistic models.

Random Variables

We begin our discussion with some familiar examples of uncertain events for which the 

collection of all possible outcomes is finite.

EXAMPLE 1

(a) If we toss a coin once, there are two possible outcomes 5H, T6 , where H represents 

the coin landing head face up and T a tail landing face up. If we toss a coin three times, 

there are eight possible outcomes, taking into account the order in which a head or tail 

occurs. The set of outcomes is 5HHH, HHT, HTH, THH, HTT, THT, TTH, TTT6 .
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(b) If we roll a six-sided die once, the set of possible outcomes is 51, 2, 3, 4, 5, 66  repre-

senting the six faces of the die.

(c) If we select at random two cards from a 52-card deck, there are 52 possible out-

comes for the irst card drawn and then 51 possibilities for the second card. Since the 

 order of the cards does not matter, there are (52 # 51)>2 = 1,326 possible outcomes 

 altogether. 

It is customary to refer to the set of all possible outcomes as the sample space for an 

event. With an uncertain event we are usually interested in which outcomes, if any, are 

more likely to occur than others, and to how large an extent. In tossing a coin three times, 

is it more likely that two heads or that one head will result? To answer such questions, we 

need a way to quantify the outcomes.

DEFINITION A random variable is a function X that assigns a numerical 

value to each outcome in a sample space.

Random variables that have only finitely many values are called discrete random 

variables. A continuous random variable can take on values in an entire interval, and it is 

associated with a distribution function, which we explain later.

EXAMPLE 2

(a) Suppose we toss a coin three times giving the possible outcomes 5HHH, HHT, HTH, 

THH, HTT, THT, TTH, TTT6 . Deine the random variable X to be the number of 

heads that appear. So X(HHT) = 2, X(THT) = 1, and so forth. Since X can only as-

sume the values 0, 1, 2, or 3, it is a discrete random variable.

(b) We spin an arrow anchored by a pin located at the origin. The arrow can wind up point-

ing in any possible direction and we deine the random variable X as the radian angle 

the arrow makes with the positive x-axis, measured counterclockwise. In this case, X 

is a continuous random variable that can take on any value in the interval 30, 2p).

(c) The weight of a randomly selected person in a given population is a continuous ran-

dom variable W. The cholesterol level of a randomly chosen person, and the waiting 

time for service of a person in a queue at a bank, are also continuous random variables.

(d) The scores on the national ACT Examination for college admissions in a particular 

year are described by a discrete random variable S taking on integer values between 1 

and 36. If the number of outcomes is large, or for reasons involving statistical analysis, 

discrete random variables such as test scores are often modeled as continuous random 

variables (Example 13).

(e) We roll a pair of dice and deine the random variable X to be the sum of the numbers 

on the top faces. This sum can only assume the integer values from 2 through 12, so X 

is a discrete random variable.

(f ) A tire company produces tires for mid-sized sedans. The tires are guaranteed to 

last for 30,000 miles, but some will fail sooner and some will last many more miles 

beyond 30,000. The lifetime in miles of a tire is described by a continuous random 

variable L. 

Probability Distributions

A probability distribution describes the probabilistic behavior of a random variable. Our 

chief interest is in probability distributions associated with continuous random variables, 

but to gain some perspective we first consider a distribution for a discrete random variable.
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Suppose we toss a coin three times, with each side H or T equally likely to occur on a 

given toss. We define the discrete random variable X that assigns the number of heads 

appearing in each outcome, giving5HHH, HHT, HTH, HTT, THH, THT, TTH, TTT6
X T  T  T  T  T  T  T  T

 3 2 2 1 2 1 1 0

Next we count the frequency or number of times a specific value of X occurs. Because 

each of the eight outcomes is equally likely to occur, we can calculate the probability of 

the random variable X by dividing the frequency of each value by the total number of out-

comes. We summarize our results as follows:

Value of X  0  1  2  3

Frequency  1  3  3  1

P(X) 1>8 3>8 3>8 1>8
We display this information in a probability bar graph of the discrete random variable 

X, as shown in Figure 8.21. The values of X are portrayed by intervals of length 1 on the 

x-axis so the area of each bar in the graph is the probability of the corresponding outcome. 

For instance, the probability that exactly two heads occurs in the three tosses of the coin is 

the area of the bar associated with the value X = 2, which is 3 >8. Similarly, the  probability 

that two or more heads occurs is the sum of areas of the bars associated with the values 

X = 2 and X = 3, or 4>8. The probability that either zero or three heads occurs is 18 + 1
8 = 1

4, 

and so forth. Note that the total area of all the bars in the graph is 1, which is the sum of all 

the probabilities for X.

With a continuous random variable, even when the outcomes are equally likely, we 

cannot simply count the number of outcomes in the sample space or the frequencies of 

outcomes that lead to a specific value of X. In fact, the probability that X takes on any par-

ticular one of its values is zero. What is meaningful to ask is how probable it is that the 

random variable takes on a value within some specified interval of values.

We capture the information we need about the probabilities of X in a function whose 

graph behaves much like the bar graph in Figure 8.21. That is, we take a nonnegative function 

ƒ defined over the range of the random variable with the property that the total area beneath 

the graph of ƒ is 1. The probability that a value of the random variable X lies within some 

specified interval 3c, d 4  is then the area under the graph of ƒ over that interval. The following 

definition assumes the range of the continuous random variable X is any real value, but the 

definition is general enough to account for random variables having a range of finite length.

3210
X

P

1

8

1

4

3

8

FIGURE 8.21 Probability bar graph for 

the random variable X when tossing a fair 

coin three times.

DEFINITIONS A probability density function for a continuous random vari-

able is a function ƒ defined over (-q, q) and having the following properties:

1. ƒ is continuous, except possibly at a finite number of points.

2. ƒ is nonnegative, so ƒ Ú 0.

3.  L
q

-q

ƒ(x)  dx = 1.

If X is a continuous random variable with probability density function ƒ, the 

probability that X assumes a value in the interval between X = c and X = d  is 

given by the integral

P (c … X … d ) = L
d

c

ƒ(x ) dx.
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The probability that a continuous random variable X assumes a particular real value c is 

P(X = c) = 1 c

c
ƒ(x) dx = 0, consistent with our previous assertion. Since the area under 

the graph of ƒ over the interval 3c, d 4  is only a portion of the total area beneath the graph, 

the probability P(c … X … d) is always a number between zero and one. Figure 8.22 

 illustrates a probability density function.

A probability density function for a random variable X resembles the density function 

for a wire of varying density. To obtain the mass of a segment of the wire, we integrate the 

density of the wire over an interval. To obtain the probability that a random variable has val-

ues in a particular interval, we integrate the probability density function over that interval.

EXAMPLE 3  Let ƒ(x) = 2e-2x if 0 … x 6 q and ƒ(x) = 0 for all negative values of x.

(a) Verify that ƒ is a probability density function.

(b) The time T in hours until a car passes a spot on a remote road is described by the prob-

ability density function ƒ. Find the probability P(T … 1) that a hitchhiker at that spot 

will see a car within one hour.

(c) Find the probability P(T = 1) that a car passes by the spot after precisely one hour.

Solution

(a) The function ƒ is continuous except at x = 0, and is everywhere nonnegative. Moreover,

 L
q

-q

ƒ(x) dx = L
q

0

 2e-2x dx = lim
bSq

 L
b

0

 2e-2x dx = lim
bSq

 11 - e-2b2 = 1.

So all of the conditions are satisied and we have shown that ƒ is a probability density 

function.

(b) The probability that a car comes after a time lapse between zero and one hour is given 

by integrating the probability density function over the interval 30, 14 . So

P(T … 1) = L
1

0

2e-2t dt = -e-2t d 1
0

= 1 - e-2 ≈ 0.865.

This result can be interpreted to mean that if 100 people were to hitchhike at that spot, 

about 87 of them can expect to see a car within one hour.

(c) This probability is the integral 11

1
ƒ(t) dt, which equals zero. We interpret this to mean 

that a suiciently accurate measurement of the time until a car comes by the spot 

would have no possibility of being precisely equal to one hour. It might be very close, 

perhaps, but it would not be exactly one hour. 

We can extend the definition to finite intervals. If ƒ is a nonnegative function with at 

most finitely many discontinuities over the interval 3a, b4 , and its extension F to (-q, q),  

obtained by defining F to be 0 outside of 3a, b4 , satisfies the definition for a probability 

density function, then ƒ is a probability density function for 3a, b 4 . This means that 

1b

a
ƒ(x)  dx = 1. Similar definitions can be made for the intervals (a, b), (a, b4 , and 3a, b) .

EXAMPLE 4  Show that ƒ(x) =
4
27

 x2(3 - x) is a probability density function over 

the interval 30, 34 .
Solution The function ƒ is continuous and nonnegative over 30, 34 . Also,

 L
3

0

4
27

 x2(3 - x) dx =
4

27
 c x3 -

1
4

 x4 d 3
0

=
4
27

 a27 -
81
4
b = 1.

We conclude that ƒ is a probability density function over 30, 34 . 

x

y

x

y

y = f (x)

f (x) dx = 1L−∞

∞

c d

P(c ≤ X ≤ d ) =

d

c
f (x) dxL

FIGURE 8.22 A probability density 

function for the continuous random  

variable X.
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Exponentially Decreasing Distributions

The distribution in Example 3 is called an exponentially decreasing probability density 

function. These probability density functions always take on the form

ƒ(x) = e 0   if x 6 0

ce-cx if x Ú 0

(see Exercise 23). Exponential density functions can provide models for describing ran-

dom variables such as the lifetimes of light bulbs, radioactive particles, tooth crowns, and 

many kinds of electronic components. They also model the amount of time until some 

specific event occurs, such as the time until a pollinator arrives at a flower, the arrival 

times of a bus at a stop, the time between individuals joining a queue, the waiting time 

between phone calls at a help desk, and even the lengths of the phone calls themselves. A 

graph of an exponential density function is shown in Figure 8.23.

Random variables with exponential distributions are memoryless. If we think of X as 

describing the lifetime of some object, then the probability that the object survives for at 

least s + t hours, given that it has survived t hours, is the same as the initial probability 

that it survives for at least s hours. For instance, the current age t of a radioactive particle 

does not change the probability that it will survive for at least another time period of 

length s. Sometimes the exponential distribution is used as a model when the memoryless 

principle is violated, because it provides reasonable approximations that are good enough 

for their intended use. For instance, this might be the case when predicting the lifetime of 

an artificial hip replacement or heart valve for a particular patient. Here is an application 

illustrating the exponential distribution.

EXAMPLE 5  An electronics company models the lifetime T in years of a chip they 

manufacture with the exponential density function

ƒ(t) = e0     if t 6 0

0.1e-0.1t if t Ú 0.

Using this model,

(a) Find the probability P(T 7 2) that a chip will last for more than two years.

(b) Find the probability P(4 … T … 5) that a chip will fail in the ifth year.

(c) If 1000 chips are shipped to a customer, how many can be expected to fail within 

three years?

Solution

(a) The probability that a chip lasts at least two years is

 P(T 7 2) = L
q

2

0.1e-0.1t dt = lim
bSq

 L
b

2

0.1e-0.1t dt

 = lim
bSq
3e-0.2 - e-0.1b4 = e-0.2 ≈ 0.819.

That is, about 82% of the chips last more than two years.

(b) The probability is

P(4 … T … 5) = L
5

4

0.1e-0.1t dt = -e-0.1t d 5
4

= e-0.4 - e-0.5 ≈ 0.064

 which means that about 6% of the chips fail during the ifth year.

(c) We want the probability

P(0 … T … 3) = L
3

0

 0.1e-0.1t dt = -e-0.1t d 3
0

= 1 - e-0.3 ≈ 0.259.

We can expect that about 259 of the 1000 chips will fail within three years. 

x

y

0 4 8 12 16

0.02

0.04

0.06

0.08

0.10

Area = 1

0  

0.1e−0.1x  
f (x) =

if x < 0

if x ≥ 0

FIGURE 8.23 An exponentially decreas-

ing probability density function.
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Expected Values, Means, and Medians

Suppose the weight in lbs of a steer raised on a cattle ranch is described by a continuous 

random variable W  with probability density function ƒ(w) and that the rancher can sell a 

steer of weight w for g (w) dollars. How much can the rancher expect to earn for a ran-

domly chosen steer on the ranch?

To answer this question, we consider a small interval 3wi , wi + 14  of width ∆wi and 

note that the probability a steer has weight in this interval is

 L
wi + 1

wi

ƒ(w) dw ≈ ƒ(wi) ∆wi .

The earning on a steer in this interval is approximately g(wi). The Riemann sum

a g(wi) ƒ(wi) ∆wi

then approximates the amount the rancher would receive for a steer. We assume that steers 

have a maximum weight, so ƒ is zero outside some finite interval 30, b4 . Then taking the 

limit of the Riemann sum as the width of each interval approaches zero gives the integral

 L
q

-q

 
 g(w) ƒ(w) dw.

This integral estimates how much the rancher can expect to earn for a typical steer on the 

ranch and is the expected value of the function g.

The expected values of certain functions of a random variable X have particular 

importance in probability and statistics. One of the most important of these functions is the 

expected value of the function g(x) = x.

DEFINITION The expected value or mean of a continuous random variable X 

with probability density function ƒ is the number

m = E(X) = L
q

-q

  x ƒ(x ) dx.

The expected value E(X) can be thought of as a weighted average of the random vari-

able X, where each value of X is weighted by ƒ(X  ). The mean can also be interpreted as 

the long-run average value of the random variable X, and it is one measure of the centrality 

of the random variable X.

EXAMPLE 6  Find the mean of the random variable X with exponential probability 

density function

ƒ(x) = e 0   if x 6 0

ce-cx if x Ú 0.

Solution From the definition we have

 m = L
q

-q

 x ƒ(x) dx = L
q

0

 xce-cx dx

 = lim
bSq

 L
b

0

xce-cx dx = lim
bSq

 a-xe-cx d b
0

+ L
b

0

e-cx dxb
 = lim

bSq
a-be-cb -

1
ce-cb +

1
cb =

1
c . l’Hôpital’s Rule on first term

Therefore, the mean is m = 1>c. 
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From the result in Example 6, knowing the mean or expected value m of a random 

variable X having an exponential density function allows us to write its entire formula.

Exponential Density Function for a Random Variable X with Mean M

ƒ(x  ) = e 0    if x 6 0

m-1e-x>m  if x Ú 0

EXAMPLE 7  Suppose the time T before a chip fails in Example 5 is modeled instead 

by the exponential density function with a mean of eight years. Find the probability that a 

chip will fail within five years.

Solution The exponential density function with mean m = 8 is

ƒ(t ) = c 0   if t 6 0

1
8

 e-t>8 if t Ú 0

Then the probability a chip will fail within five years is the definite integral

P(0 … T … 5) = L
5

0

0.125e-0.125t dt = -e-0.125t d 5
0

= 1 - e-0.625 ≈ 0.465

so about 47% of the chips can be expected to fail within five years. 

EXAMPLE 8  Find the expected value for the random variable X with probability 

density function given by Example 4.

Solution The expected value is

 m = E(X) = L
3

0

 
4
27

 x3(3 - x) dx =
4

27
 c 3

4
 x4 -

1
5

 x5 d 3
0

 =
4
27

 a243
4

-
243
5
b = 1.8

From Figure 8.24, you can see that this expected value is reasonable because the re-

gion beneath the probability density function appears to be balanced about the vertical line 

x = 1.8. That is, the horizontal coordinate of the centroid of a plate described by the region 

is x = 1.8. 

There are other ways to measure the centrality of a random variable with a given 

probability density function.

x

y

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0

f (x) =      x2(3 − x) 
4

27

FIGURE 8.24 The expected value of a 

random variable with this probability den-

sity function is m = 1.8 (Example 8).

DEFINITION The median of a continuous random variable X with probability 

density function ƒ is the number m for which

 L
m

- q

 ƒ(x) dx =
1
2
  and  L

q

m

 ƒ(x) dx =
1
2

.

The definition of the median means that there is an equal likelihood that the random 

variable X will be smaller than m or larger than m.
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EXAMPLE 9  Find the median of a random variable X with exponential probability 

density function

ƒ(x  ) = e 0   if x 6 0

ce-cx if x Ú 0.

Solution The median m must satisfy

1
2

= L
m

0

 ce-cx dx = -e-cx d m
0

= 1 - e-cm.

It follows that

e-cm =
1
2

  or  m =
1
c ln 2.

Also,

1
2

= lim
bSq

 L
b

m

 ce-cx dx = lim
bSq

 c-e-cx d b
m

= lim
bSq

 1e-cm - e-cb2 = e-cm

giving the same value for m. Since 1>c is the mean m of X with an exponential distribu-

tion, we conclude that the median is m = m ln 2. The mean and median differ because the 

probability density function is skewed and spreads toward the right. 

Variance and Standard Deviation

Random variables with exactly the same mean m but different distributions can behave 

very differently (see Figure 8.25). The variance of a random variable X measures how 

spread out the values of X are in relation to the mean, and we measure this dispersion by 

the expected value of (X - m)2. Since the variance measures the expected square of the 

difference from the mean, we often work instead with its square root.

y = f (x)

m
x

FIGURE 8.25 Probability density 

functions with the same mean can have 

different spreads in relation to the mean. 

The blue and red regions under the curves 

have equal area.

DEFINITIONS The variance of a random variable X with probability density 

function ƒ is the expected value of (X - m)2:

Var(X ) = L
q

-q

(x - m)2ƒ(x ) dx

The standard deviation of X is

sX = 2Var(X ) = CL
q

-q

(x - m)2 ƒ(x ) dx .

EXAMPLE 10  Find the standard deviation of the random variable T in Example 5, 

and find the probability that T lies within one standard deviation of the mean.

Solution The probability density function is the exponential density function with mean 

m = 10 by Example 6. To find the standard deviation we first calculate the variance integral:

  L
q

- q

(t - m)2 ƒ(t ) dt = L
q

0

(t - 10)2 (0.1e-0.1t) dt

  = lim
bSq

 L
b

0

 (t - 10)2 (0.1e-0.1t) dt
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 = lim
bSq

 c 1-(t - 10)2 - 20(t - 10)2e-0.1t d b
0

 + lim
bSq

 L
b

0

 20e-0.1t dt Integrating by parts

 = 30 + (-10)2 + 20(-10)4 - 20 lim
bSq
110e-0.1t2 d b

0

 = -100 - 200 lim
bSq

 1e-0.1b - 12 = 100.

The standard deviation is the square root of the variance, so s = 10.0.

To ind the probability that T lies within one standard deviation of the mean, we ind 

the probability P(m - s … T … m + s). For this example, we have

P(10 - 10 … T … 10 + 10) = L
20

0

 0.1e-0.1t dt = -e-0.1t d 20

0

= 1 - e-2 ≈ 0.865

This means that about 87% of the chips will fail within twenty years. 

Uniform Distributions

The uniform distribution is very simple, but it occurs commonly in applications. The 

probability density function for this distribution on the interval 3a, b4  is
ƒ(x) =

1
b - a

, a … x … b.

If each outcome in the sample space is equally likely to occur, then the random variable X 

has a uniform distribution. Since ƒ is constant on 3a, b4 , a random variable with a uni-

form distribution is just as likely to be in one subinterval of a fixed length as in any other 

of the same length. The probability that X assumes a value in a subinterval of 3a, b4  is the 

length of that subinterval divided by (b - a).

EXAMPLE 11  An anchored arrow is spun around the origin, and the random vari-

able X is the radian angle the arrow makes with the positive x-axis, measured within the 

interval 30, 2p). Assuming there is equal probability for the arrow pointing in any direc-

tion, find the probability density function and the probability that the arrow ends up point-

ing between North and East.

Solution We model the probability density function with the uniform distribution 

ƒ(x) = 1>2p, 0 … x 6 2p, and ƒ(x) = 0 elsewhere.

The probability that the arrow ends up pointing between North and East is given by

 Pa0 … X …
p
2
b = L

p>2
0

1
2p

 dx =
1
4

. 

Normal Distributions

Numerous applications use the normal distribution, which is defined by the probability 

density function

ƒ(x) =
1

s22p
 e-(x -m)2> 2s2

.

It can be shown that the mean of a random variable X with this probability density func-

tion is m and its standard deviation is s. In applications the values of m and s are often 

 estimated using large sets of data. The function is graphed in Figure 8.26, and the graph is 

m m + sm − s

f (x) =               e−(x−m)2�2s2
 

1

s"2p

x

FIGURE 8.26 The normal probability 

density function with mean m and standard 

deviation s.
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sometimes called a bell curve because of its shape. Since the curve is symmetric about the 

mean, the median for X is the same as its mean. It is often observed in practice that many ran-

dom variables have approximately a normal distribution. Some examples illustrating this 

phenomenon are the height of a man, the annual rainfall in a certain region, an individual’s 

blood pressure, the serum cholesterol level in the blood, the brain weights in a certain popula-

tion of adults, and the amount of growth in a given period for a population of sunflower seeds.

The normal probability density function does not have an antiderivative expressible in 

terms of familiar functions. Once m and s are fixed, however, an integral involving the 

normal probability density function can be computed using numerical integration meth-

ods. Usually we use the numerical integration capability of a computer or calculator to 

estimate the values of these integrals. Such computations show that for any normal distri-

bution, we get the following values for the probability that the random variable X lies 

within k = 1, 2, 3, or 4 standard deviations of the mean:

P(m - s 6 X 6 m + s) ≈ 0.68269

P(m - 2s 6 X 6 m + 2s) ≈ 0.95450

P(m - 3s 6 X 6 m + 3s) ≈ 0.99730

P(m - 4s 6 X 6 m + 4s) ≈ 0.99994

This means, for instance, that the random variable X will take on a value within two stan-

dard deviations of the mean about 95% of the time. About 68% of the time, X will lie 

within one standard deviation of the mean (see Figure 8.27).

EXAMPLE 12  An individual’s blood pressure is an important indicator of overall 

health. A medical study of healthy individuals between 14 and 70 years of age modeled 

their systolic blood pressure using a normal distribution with mean 119.7 mm Hg and 

standard deviation 10.9 mm Hg.

(a) Using this model, what percentage of the population has a systolic blood pressure be-

tween 140 and 160 mm Hg, the levels set by the American Heart Association for Stage 

1 hypertension?

(b) What percentage has a blood pressure between 160 and 180 mm Hg, the levels set by 

the American Heart Association for Stage 2 hypertension?

(c) What percentage has a blood pressure in the normal range of 90–120, as set by the 

American Heart Association?

Solution

(a) Since we cannot ind an antiderivative, we use a computer to evaluate the probability 

integral of the normal probability density function with m = 119.7 and s = 10.9:

P(140 … X … 160) = L
160

140

1

10.922p
 e-(x -119.7)2>2(10.9)2

 dx ≈ 0.03117.

This means that about 3% of the population in the studied age range have Stage 1 

hypertension.

(b) Again we use a computer to calculate the probability that the blood pressure is be-

tween 160 and 180 mm Hg:

P(160 … X … 180) = L
180

160

1

10.922p
 e-(x - 119.7)2>2(10.9)2

 dx ≈ 0.00011.

We conclude that about 0.011% of the population has Stage 2 hypertension.

(c) The probability that the blood pressure falls in the normal range is

P(90 … X … 120) = L
120

90

1

10.922p
 e-(x - 119.7)2>2(10.9)2

 dx ≈ 0.50776.

That is, about 51% of the population has a normal systolic blood pressure. 

m m + s m + 2s m + 3sm − sm − 2sm − 3s

34%

68% within
1 standard
deviation

of the mean

95% within 2 standard
deviations of the mean

99.7% within 3 standard
deviations of the mean

13.6%
2.14%2.14%

13.6%

34%

FIGURE 8.27 Probabilities of the 

normal distribution within its standard 

deviation bands.



 8.9  Probability 515

Many national tests are standardized using the normal distribution. The following 

example illustrates modeling the discrete random variable for scores on a test using the 

normal distribution function for a continuous random variable.

EXAMPLE 13  The ACT is a standardized test taken by high school students seeking 

admission to many colleges and universities. The test measures knowledge skills and pro-

ficiency in the areas of English, math, and science, with scores ranging over the interval 31, 364. Nearly 1.5 million high school students took the test in 2009, and the composite 

mean score across the academic areas was m = 21.1 with standard deviation s = 5.1.

(a) What percentage of the population had an ACT score between 18 and 24?

(b) What is the ranking of a student who scored 27 on the test?

(c) What is the minimal integer score a student needed to get in order to be in the top 8% 

of the scoring population?

Solution

(a) We use a computer to evaluate the probability integral of the normal probability den-

sity function with m = 21.1 and s = 5.1:

P(18 … X … 24) = L
24

18

1

5.122p
 e-(x - 21.1)2>2(5.1)2

 dx ≈ 0.44355.

This means that about 44% of the students had an ACT score between 18 and 24.

(b) Again we use a computer to calculate the probability of a student getting a score lower 

than 27 on the test:

P(1 … X 6 27) = L
27

1

1

5.122p
 e-(x - 21.1)2>2(5.1)2

 dx ≈ 0.87630.

We conclude that about 88% of the students scored below a score of 27, so the student 

ranked in the top 12% of the population.

(c) We look at how many students had a mark higher than 28:

P(28 6 X … 36) = L
36

28

1

5.122p
 e- (x - 21.1)2>2(5.1)2

 dx ≈ 0.0863.

Since this number gives more than 8% of the students, we look at the next higher 

integer score:

P(29 6 X … 36) = L
36

29

1

5.122p
 e- (x - 21.1)2>2(5.1)2

 dx ≈ 0.0595.

Therefore, 29 is the lowest integer score a student could get in order to score in the top 

8% of the population (and actually scoring here in the top 6%). 

The simplest form for a normal distribution of X occurs when its mean is zero and its 

standard deviation is one. The standard normal probability density function ƒ giving mean 

m = 0 and standard deviation s = 1 is

ƒ(x  ) =
1

22p
 e-x2>2.

Note that the substitution z = (x - m)>s gives the equivalent integrals

 L
b

a

1

s22p
 e-((x -m)>s)2> 2 dx = L

b

a

1

22p
 e-z2> 2 dz,

where a = (a - m)>s and b = (b - m)>s. So we can convert random variable values 

to the “z-values” to standardize a normal distribution, and then use the integral on the 

right-hand side of the last equation to calculate probabilities for the original random 
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 variable normal distribution with mean m and standard deviation s. In a normal distribu-

tion, we know that 95.5% of the population lies within two standard deviations of the 

mean, so a random variable X converted to a z-value has more than a 95% chance of occur-

ring in the interval 3-2, 24.

Probability Density Functions

In Exercises 1–8, determine which are probability density functions 

and justify your answer.

 1. ƒ(x) =
1
18

 x over 34, 84
 2. ƒ(x) =

1
2

 (2 - x) over  30, 24
 3. ƒ(x) = 2x over  c 0, 

 ln (1 +  ln 2)

 ln 2
d

 4. ƒ(x) = x - 1 over  30, 1 + 23 4
 5. ƒ(x) = c 1

x2
 x Ú 1

0  x 6 1

 6. ƒ(x) = c 8

p(4 + x2)
 x Ú 0

0     x 6 0

 7. ƒ(x) = 2 cos 2x over  c 0, 
p

4
d

 8. ƒ(x) =
1
x over (0, e4

 9. Let ƒ be the probability density function for the random variable 

L in Example 2f. Explain the meaning of each integral.

a.  L
32,000

25,000

ƒ(l ) dl b.  L
q

30,000

ƒ(l ) dl

c.  L
20,000

0

ƒ(l ) dl d.  L
15,000

- q

ƒ(l ) dl

 10. Let ƒ(x) be the uniform distribution for the random variable X in 

Example 11. Express the following probabilities as integrals.

a. The probability that the arrow points either between South 

and West or between North and West.

b. The probability that the arrow makes an angle of at least  

2 radians.

Verify that the functions in Exercises 11–16 are probability density 

functions for a continuous random variable X over the given interval. 

Determine the specified probability.

 11. ƒ(x) = xe-x over 30, q), P(1 … X … 3)

 12. ƒ(x) =
 ln x

x2
 over 31, q), P(2 6 X 6 15)

 13. ƒ(x) =
3
2

 x (2 - x) over  30, 1], P(0.5 7 X )

T

 14.  ƒ(x) =
sin2 px

px2
 over  c 200

1059
, qb , P(X 6 p>6)

 15. ƒ(x) = c 2

x3
 x 7 1

0  x … 1

  over  (-q, q), P(4 … X 6 9)

 16. ƒ(x) = sin x over  30, p>24 , Pap
6

6 X …
p

4
b

T

EXERCISES 8.9

In Exercises 17–20, find the value of the constant c so that the given 

function is a probability density function for a random variable over 

the specified interval.

 17. ƒ(x) =
1
6

 x over  33, c4  18. ƒ(x) =
1
x over  3c, c + 14

 19. ƒ(x) = 4e-2x over  30, c4
 20. ƒ(x) = cx225 - x2 over  30, 54
 21. Let ƒ(x) =

c

1 + x2
. Find the value of c so that ƒ is a probability 

  density function. If ƒ is a probability density function for the 

random variable X, ind the probability P(1 … X 6 2).

 22. Find the value of c so that ƒ(x) = c2x 11 - x2 is a probability 

density function for the random variable X over 30, 14, and ind 

the probability P(0.25 … X … 0.5).

 23. Show that if the exponentially decreasing function

ƒ(x) = e 0   if x 6 0

Ae-cx if x Ú 0

  is a probability density function, then A = c.

 24. Suppose ƒ is a probability density function for the random vari-

able X with mean m. Show that its variance satisies

Var (X ) = L
q

-q

 x2ƒ(x) dx - m2.

Compute the mean and median for a random variable with the proba-

bility density functions in Exercises 25–28.

 25. ƒ(x) =
1
8

 x over  30, 44  26. ƒ(x) =
1
9

 x2 over  30, 34
 27. ƒ(x) = c 2

x3
 x Ú 1

0  x 6 1

 28. ƒ(x) = c 1
x 1 … x … e

0  Otherwise

Exponential Distributions

 29. Digestion time The digestion time in hours of a ixed amount of 

food is exponentially distributed with a mean of 1 hour. What is 

the probability that the food is digested in less than 30 minutes?
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c. What is the probability of waiting between 35 and 50 minutes 

for a traveler arriving during the 4–5 p.m. hour?

d. What is the probability of waiting less than 20 minutes for a 

traveler arriving during the 4–5 p.m. hour?

 37. printer lifetime The lifetime of a $200 printer is exponentially 

distributed with a mean of 2 years. The manufacturer agrees to pay 

a full refund to a buyer if the printer fails during the irst year fol-

lowing its purchase, and a one-half refund if it fails during the sec-

ond year. If the manufacturer sells 100 printers, how much should 

it expect to pay in refunds?

 38. Failure time The time between failures of a photocopier is ex-

ponentially distributed. Half of the copiers at a university require 

service during the irst 2 years of operations. If the university pur-

chased 150 copiers, how many do you expect to require service 

during the irst year of their operation?

Normal Distributions

 39. cholesterol levels The serum cholesterol levels of children aged 

12 to 14 years follows a normal distribution with mean m = 162 

mg/dl and standard deviation s = 28 mg/dl. In a population of 

1000 of these children, how many would you expect to have serum 

cholesterol levels between 165 and 193? between 148 and 167?

 40. Annual rainfall The annual rainfall in inches for San Francisco, 

California, is approximately a normal random variable with mean 

20.11 in. and standard deviation 4.7 in. What is the probability that 

next year’s rainfall will exceed 17 in.?

 41. Manufacturing time The assembly time in minutes for a com-

ponent at an electronic manufacturing plant is normally distrib-

uted with a mean of m = 55 and standard deviation s = 4. What 

is the probability that a component will be made in less than one 

hour?

 42. Lifetime of a tire Assume the random variable L in Example 2f  

is normally distributed with mean m = 22,000 miles and 

s = 4,000 miles.

a. In a batch of 4000 tires, how many can be expected to last for 

at least 18,000 miles?

b. What is the minimum number of miles you would expect to 

ind as the lifetime for 90% of the tires?

 43. Height The average height of American females aged 18–24 is 

normally distributed with mean m = 65.5 inches and s = 2.5 inches.

a. What percentage of females are taller than 68 inches?

b. What is the probability a female is between 5′1″ and 5′4″ tall?

 44. Life expectancy At birth, a French citizen has an average life 

expectancy of 82 years with a standard deviation of 7 years. If 

100 newly born French babies are selected at random, how many 

would you expect to live between 75 and 85 years? Assume life 

expectancy is normally distributed.

 45. Length of pregnancy A team of medical practitioners deter-

mines that in a population of 1000 females with ages ranging from 

20 to 35 years, the length of pregnancy from conception to birth 

is approximately normally distributed with a mean of 266 days 

and a standard deviation of 16 days. How many of these females 

would you expect to have a pregnancy lasting from 36 weeks to 40 

weeks?

T

 30. pollinating lowers A biologist models the time in minutes until 

a bee arrives at a lowering plant with an exponential distribution 

having a mean of 4 minutes. If 1000 lowers are in a ield, how 

many can be expected to be pollinated within 5 minutes?

 31. Lifetime of light bulbs A manufacturer of light bulbs inds that 

the mean lifetime of a bulb is 1200 hours. Assume the life of a bulb 

is exponentially distributed.

a. Find the probability that a bulb will last less than its guaran-

teed lifetime of 1000 hours.

b. In a batch of light bulbs, what is the expected time until half 

the light bulbs in the batch fail?

 32. Lifetime of an electronic component The life expectancy in 

years of a component in a microcomputer is exponentially dis-

tributed, and 1>3 of the components fail in the irst 3 years. The 

company that manufactures the component ofers a 1 year war-

ranty. What is the probability that a component will fail during the 

warranty period?

 33. Lifetime of an organism A hydra is a small fresh-water ani-

mal, and studies have shown that its probability of dying does not 

increase with the passage of time. The lack of inluence of age 

on mortality rates for this species indicates that an exponential 

distribution is an appropriate model for the mortality of hydra. A 

biologist studies a population of 500 hydra and observes that 200 

of them die within the irst 2 years. How many of the hydra would 

you expect to die within the irst six months?

 34. car accidents The number of days that elapse between the be-

ginning of a calendar year and the moment a high-risk driver is 

involved in an accident is exponentially distributed. Based on his-

torical data, an insurance company expects that 30% of high-risk 

drivers will be involved in an accident during the irst 50 days of 

the calendar year. In a group of 100 high-risk drivers, how many 

do you expect to be involved in an accident during the irst 80 days 

of the calendar year?

 35. customer service time The mean waiting time to get served 

after walking into a bakery is 30 seconds. Assume that an expo-

nential density function describes the waiting times.

a. What is the probability a customer waits 15 seconds or less?

b. What is the probability a customer waits longer than one minute?

c. What is the probability a customer waits exactly 5 minutes?

d. If 200 customers come to the bakery in a day, how many are 

likely to be served within three minutes?

 36. Airport waiting time According to the U.S. Customs and Bor-

der Protection Agency, the average airport wait time at Chicago’s 

O’Hare International airport is 16 minutes for a traveler arriving 

during the hours 7–8 a.m., and 32 minutes for arrival during the 

hours 4–5 p.m. The wait time is deined as the total processing 

time from arrival at the airport until the completion of a passen-

ger’s security screening. Assume the wait time is exponentially 

distributed.

a. What is the probability of waiting between 10 and 30 minutes 

for a traveler arriving during the 7–8 a.m. hour?

b. What is the probability of waiting more than 25 minutes for a 

traveler arriving during the 7–8 p.m. hour?
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 52. Suppose you toss a fair coin n times and record the number of 

heads that land. Assume that n is large and approximate the dis-

crete random variable X with a continuous random variable that is 

normally distributed with m = n>2 and s = 2n>2. If n = 400, 

ind the given probabilities.

a. P(190 … X 6 210) b. P(X 6 170)

c. P(X 7 220) d. P(X = 300)

Discrete Random Variables

 53. A fair coin is tossed four times and the random variable X assigns 

the number of tails that appear in each outcome.

a. Determine the set of possible outcomes.

b. Find the value of X for each outcome.

c. Create a probability bar graph for X, as in Figure 8.21. What 

is the probability that at least two heads appear in the four 

tosses of the coin?

 54. You roll a pair of six-sided dice, and the random variable X assigns 

to each outcome the sum of the number of dots showing on each 

face, as in Example 2e.

a. Find the set of possible outcomes.

b. Create a probability bar graph for X.

c. What is the probability that X = 8?

d. What is the probability that X … 5? X 7 9?

 55. Three people are asked their opinion in a poll about a particular 

brand of a common product found in grocery stores. They can an-

swer in one of three ways: “Like the product brand” (L), “Dislike 

the product brand” (D), or “Undecided” (U). For each outcome, 

the random variable X assigns the number of L’s that appear.

a. Find the set of possible outcomes and the range of X.

b. Create a probability bar graph for X.

c. What is the probability that at least two people like the 

 product brand?

d. What is the probability that no more than one person dislikes 

the product brand?

 56. spacecraft components A component of a spacecraft has both 

a main system and a backup system operating throughout a light. 

The probability that both systems fail sometime during the light is 

0.0148. Assuming that each system separately has the same failure 

rate, what is the probability that the main system fails during the 

light?

 46. Brain weights In a population of 500 adult Swedish males, 

medical researchers ind their brain weights to be approximately 

normally distributed with mean m = 1400 gm and standard de-

viation s = 100 gm.

a. What percentage of brain weights are between 1325 and  

1450 gm?

b. How many males in the population would you expect to have 

a brain weight exceeding 1480 gm?

 47. Blood pressure Diastolic blood pressure in adults is normally 

distributed with m = 80 mm Hg and s = 12 mm Hg. In a ran-

dom sample of 300 adults, how many would be expected to have a 

diastolic blood pressure below 70 mm Hg?

 48. Albumin levels Serum albumin in healthy 20-year-old males 

is normally distributed with m = 4.4 and s = 0.2. How likely 

is it for a healthy 20-year-old male to have a level in the range 

4.3 to 4.45?

 49. Quality control A manufacturer of generator shafts inds that 

it needs to add additional weight to its shafts in order to achieve 

proper static and dynamic balance. Based on experimental tests, 

the average weight it needs to add is m = 35 gm with s = 9 gm. 

Assuming a normal distribution, from 1000 randomly selected 

shafts, how many would be expected to need an added weight in 

excess of 40 gm?

 50. Miles driven A taxicab company in New York City analyzed 

the daily number of miles driven by each of its drivers. It found 

the average distance was 200 mi with a standard deviation of 30 mi.  

Assuming a normal distribution, what prediction can we make 

about the percentage of drivers who will log in either more than 

260 mi or less than 170 mi?

 51. germination of sunlower seeds The germination rate of a 

particular seed is the percentage of seeds in the batch which suc-

cessfully emerge as plants. Assume that the germination rate for a 

batch of sunlower seeds is 80%, and that among a large popula-

tion of n seeds the number of successful germinations is normally 

distributed with mean m = 0.8n and s = 0.42n.

a. In a batch of n = 2500 seeds, what is the probability that at 

least 1960 will successfully germinate?

b. In a batch of n = 2500 seeds, what is the probability that at 

most 1980 will successfully germinate?

c. In a batch of n = 2500 seeds, what is the probability that 

between 1940 and 2020 will successfully germinate?

 1. What is the formula for integration by parts? Where does it come 

from? Why might you want to use it?

 2. When applying the formula for integration by parts, how do you 

choose the u and dy? How can you apply integration by parts to 

an integral of the form 1ƒ(x) dx?

 3. If an integrand is a product of the form sinn x cosm x, where m and 

n are nonnegative integers, how do you evaluate the integral? Give 

a speciic example of each case.

 4. What substitutions are made to evaluate integrals of sin mx sin nx, 

sin mx cos nx, and cos mx cos nx? Give an example of each case.

 5. What substitutions are sometimes used to transform integrals in-

volving 2a2 - x2, 2a2 + x2, and 2x2 - a2 into integrals that 

can be evaluated directly? Give an example of each case.

 6. What restrictions can you place on the variables involved in the 

three basic trigonometric substitutions to make sure the substitu-

tions are reversible (have inverses)?

CHAPTER 8 Questions to Guide Your Review
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 14. What is a random variable? What is a continuous random vari-

able? Give some speciic examples.

 15. What is a probability density function? What is the probability that 

a continuous random variable has a value in the interval 3c, d4?
 16. What is an exponentially decreasing probability density function? 

What are some typical events that might be modeled by this dis-

tribution? What do we mean when we say such distributions are 

memoryless?

 17. What is the expected value of a continuous random variable? 

What is the expected value of an exponentially distributed random 

variable?

 18. What is the median of a continuous random variable? What is the 

median of an exponential distribution?

 19. What does the variance of a random variable measure? What is the 

standard deviation of a continuous random variable X?

 20. What probability density function describes the normal distribu-

tion? What are some examples typically modeled by a normal dis-

tribution? How do we usually calculate probabilities for a normal 

distribution?

 21. In a normal distribution, what percentage of the population lies with-

in 1 standard deviation of the mean? Within 2 standard deviations?

 7. What is the goal of the method of partial fractions?

 8. When the degree of a polynomial ƒ(x) is less than the degree of a 

polynomial g(x), how do you write ƒ(x)>g(x) as a sum of partial 

fractions if g(x)

a. is a product of distinct linear factors?

b. consists of a repeated linear factor?

a. contains an irreducible quadratic factor?

  What do you do if the degree of ƒ is not less than the degree of g?

 9. How are integral tables typically used? What do you do if a par-

ticular integral you want to evaluate is not listed in the table?

 10. What is a reduction formula? How are reduction formulas used? 

Give an example.

 11. How would you compare the relative merits of Simpson’s Rule 

and the Trapezoidal Rule?

 12. What is an improper integral of Type I? Type II? How are the 

values of various types of improper integrals deined? Give  

examples.

 13. What tests are available for determining the convergence and di-

vergence of improper integrals that cannot be evaluated directly? 

Give examples of their use.

Integration by Parts

Evaluate the integrals in Exercises 1–8 using integration by parts.

 1.  L ln  (x + 1) dx  2.  Lx2 ln x dx

 3.  L tan- 1 3x dx  4.  Lcos- 1 ax

2
b  dx

 5.  L(x + 1)2ex dx  6.  Lx2 sin (1 - x) dx

 7.  Lex cos 2x dx  8.  Lx sin x cos x dx

Partial Fractions

Evaluate the integrals in Exercises 9–28. It may be necessary to use a 

substitution irst.

 9.  L
x dx

x2 - 3x + 2
 10.  L

x dx

x2 + 4x + 3

 11.  L
dx

x(x + 1)2
 12.  L

x + 1

x2(x - 1)
 dx

 13.  L
sin u du

cos 2u + cos u - 2
 14.  L

cos u du

sin2 u + sin u - 6

 15.  L
3x2 + 4x + 4

x3 + x
 dx 16.  L

4x dx

x3 + 4x

 17.  L
y + 3

2y3 - 8y
 dy  18.  L

(3y - 7) dy

(y - 1)(y - 2)(y - 3)

 19.  L
dt

t4 + 4t2 + 3
 20.  L

t dt

t4 - t2 - 2

 21.  L
x3 + x2

x2 + x - 2
 dx 22.  L

x3 + 1

x3 - x
 dx

 23.  L
x3 + 4x2

x2 + 4x + 3
 dx 24.  L

2x3 + x2 - 21x + 24

x2 + 2x - 8
 dx

 25.  L
dx

x(32x + 1)
 26.  L

dx

x11 + 23 x2
 27.  L

ds

es - 1
 28.  L

ds

2es + 1

Trigonometric Substitutions

Evaluate the integrals in Exercises 29–32 (a) without using a trigono-

metric substitution, (b) using a trigonometric substitution.

 29.  L
y dy

216 - y2
 30.  L

x dx

24 + x2

 31.  L
x dx

4 - x2
 32.  L

t dt

24t2 - 1

Evaluate the integrals in Exercises 33–36.

 33.  L
x dx

9 - x2
 34.  L

dx

x(9 - x2)

 35.  L
dx

9 - x2
 36.  L

dx

29 - x2

CHAPTER 8 Practice Exercises
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per degree gram molecular weight). The heat capacity of oxygen 

depends on its temperature T and satisies the formula

Cy = 8.27 + 10-5 (26T - 1.87T2).

  Use Simpson’s Rule to ind the average value of Cy and the tem-

perature at which it is attained for 20° … T … 675°C.

 51. Fuel eiciency An automobile computer gives a digital readout 

of fuel consumption in gallons per hour. During a trip, a passen-

ger recorded the fuel consumption every 5 min for a full hour of 

travel.

time gal , h time gal , h

 0  2.5  35  2.5

 5  2.4  40  2.4

 10  2.3  45  2.3

 15  2.4  50  2.4

 20  2.4  55  2.4

 25  2.5  60  2.3

 30  2.6

a. Use the Trapezoidal Rule to approximate the total fuel con-

sumption during the hour.

b. If the automobile covered 60 mi in the hour, what was its fuel 

eiciency (in miles per gallon) for that portion of the trip?

 52. A new parking lot To meet the demand for parking, your town 

has allocated the area shown here. As the town engineer, you have 

been asked by the town council to ind out if the lot can be built for 

$11,000. The cost to clear the land will be $0.10 a square foot, and 

the lot will cost $2.00 a square foot to pave. Use Simpson’s Rule 

to ind out if the job can be done for $11,000.

67.5 ft

54 ft

Ignored

51 ft

54 ft

49.5 ft

64.4 ft

36 ft

42 ft

0 ft

Vertical spacing = 15 ft

Improper Integrals

Evaluate the improper integrals in Exercises 53–62.

 53.  L
3

0

dx

29 - x2
 54.  L

1

0

ln x dx

 55.  L
2

0

dy

(y - 1)2>3  56.  L
0

-2

 
du

(u + 1)3>5

Trigonometric Integrals

Evaluate the integrals in Exercises 37–44.

 37.  Lsin3 x cos4 x dx  38.  Lcos5 x sin5 x dx

 39.  L tan4 x sec2 x dx  40.  L tan3 x sec3 x dx

 41.  Lsin 5u cos 6u du  42.  Lsec2 u sin3 u du

 43.  L21 + cos (t>2) dt  44.  Let2tan2 et + 1 dt

Numerical Integration

 45. According to the error-bound formula for Simpson’s Rule, how 

many subintervals should you use to be sure of estimating the 

value of

ln 3 = L
3

1

 
1
x dx

  by Simpson’s Rule with an error of no more than 10-4 in absolute 

value? (Remember that for Simpson’s Rule, the number of subin-

tervals has to be even.)

 46. A brief calculation shows that if 0 … x … 1, then the second de-

rivative of ƒ(x) = 21 + x4 lies between 0 and 8. Based on this, 

about how many subdivisions would you need to estimate the inte-

gral of ƒ from 0 to 1 with an error no greater than 10-3 in absolute 

value using the Trapezoidal Rule?

 47. A direct calculation shows that

 L
p

0

 2 sin2 x dx = p.

  How close do you come to this value by using the Trapezoidal Rule 

with n = 6? Simpson’s Rule with n = 6? Try them and ind out.

 48. You are planning to use Simpson’s Rule to estimate the value of 

the integral

 L
2

1

ƒ(x) dx

  with an error magnitude less than 10-5. You have determined that 0 ƒ(4)(x) 0 … 3 throughout the interval of integration. How many 

subintervals should you use to ensure the required accuracy? (Re-

member that for Simpson’s Rule the number has to be even.)

 49. Mean temperature Use Simpson’s Rule to approximate the av-

erage value of the temperature function

ƒ(x) = 37 sin a 2p

365
 (x - 101)b + 25

  for a 365-day year. This is one way to estimate the annual mean air 

temperature in Fairbanks, Alaska. The National Weather Service’s 

oicial igure, a numerical average of the daily normal mean air 

temperatures for the year, is 25.7°F, which is slightly higher than 

the average value of ƒ(x).

 50. Heat capacity of a gas Heat capacity Cy is the amount of heat 

required to raise the temperature of a given mass of gas with con-

stant volume by 1°C, measured in units of cal >deg-mol (calories 

T
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 97.  Lu cos (2u + 1) du  98.  L
x3 dx

x2 - 2x + 1

 99.  L
sin 2u du

(1 + cos 2u)2
 100.  L

p>2
p>4  21 + cos 4x  dx

 101.  L
x dx

22 - x
 102.  L

21 - y2

y2
 dy

 103.  L
dy

y2 - 2y + 2
 104.  L

x dx

28 - 2x2 - x4

 105.  L
z + 1

z2(z2 + 4)
 dz  106.  Lx2(x - 1)1>3 dx

 107.  L
t dt

29 - 4t2
 108.  L  

tan-1 x

x2
 dx

 109.  L
et dt

e2t + 3et + 2
 110.  L tan3 t dt

 111.  L
q

1

 
ln y

y3
 dy  112.  Ly3>2(ln y)2 dy

 113.  Leln2x dx  114.  Leu23 + 4eu du

 115.  L
sin 5t dt

1 + (cos 5t)2
 116.  L

dy

2e2y - 1

 117.  L
dr

1 + 2r
 118.  L

4x3 - 20x

x4 - 10x2 + 9
 dx

 119.  L
x3

1 + x2
 dx  120.  L

x2

1 + x3
 dx

 121.  L
1 + x2

1 + x3
 dx  122.  L

1 + x2

(1 + x)3
 dx

 123.  L2x # 31 + 2x dx  124.  L31 + 21 + x dx

 125.  L
1

2x # 21 + x
 dx  126.  L

1>2
0

 31 + 21 - x2 dx

 127.  L
ln x

x + x ln x
 dx  128.  L

1
x # ln x # ln (ln x)

 dx

 129.  L
xln x ln x

x  dx  130.  L(ln x)ln x c 1x +
ln (ln x)

x d  dx

 131.  L
1

x21 - x4
 dx  132.  L

21 - x
x  dx

 133. a. Show that 1a

0
 ƒ(x) dx = 1a

0
 ƒ(a - x) dx.

b. Use part (a) to evaluate

 L
p>2

0

sin x
sin x + cos x

 dx.

 134.  L
sin x

sin x + cos x
 dx  135.  L

sin2 x

1 + sin2 x
 dx

 136.  L
1 - cos x
1 + cos x

 dx

 57.  L
q

3

2 du

u2 - 2u
 58.  L

q

1

3y - 1

4y3 - y2
 dy

 59.  L
q

0

x2e-x dx 60.  L
0

-q

xe3x dx

 61.  L
q

-q

 
dx

4x2 + 9
 62.  L

q

-q

 
4 dx

x2 + 16

Which of the improper integrals in Exercises 63–68 converge and 

which diverge?

 63.  L
q

6

du

2u2 + 1
 64.  L

q

0

 e-u cos u du

 65.  L
q

1

 
ln z

z  dz 66.  L
q

1

 
e-t

2t
 dt

 67.  L
q

-q

 
2 dx

ex + e-x  68.  L
q

-q

 
dx

x2(1 + ex)

Assorted Integrations

Evaluate the integrals in Exercises 69–136. The integrals are listed in 

random order so you need to decide which integration technique to use.

 69.  L  xe2x dx 70.  L
1

0

 x2 ex3

 dx

 71.  L  (tan2 x + sec2 x) dx 72.  L
p>4

0

 cos2 2x dx

 73.  L  x sec2 x dx 74.  L  x sec2 (x2) dx

 75.  L  sin x cos2 x dx 76.  L  sin 2x sin (cos 2x) dx

 77.  L
0

-1

 
ex

ex + e-x dx 78.  L  (e2x + e-x)2 dx

 79.  L  
x + 1

x4 - x3
 dx 80.  L  

ex + 1

ex(e2x - 4)
 dx

 81.  L  
ex +  e3x

e2x
 dx 82.  L  (ex - e-x)(ex + e-x)3 dx

 83.  L
p>3

0

 tan3 x sec2 x dx 84.  L  tan4 x sec4 x dx

 85.  L
3

0

 (x + 2)2x + 1 dx 86.  L  (x + 1)2x2 + 2x dx

 87.  L  cot x  csc3 x dx 88.  L  sin x (tan x - cot x)2 dx

 89.  L
x dx

1 + 2x
 90.  L  

x3 + 2

4 - x2
 dx

 91.  L22x - x2 dx  92.  L
dx

2-2x - x2

 93.  L  
2 - cos x + sin x

sin2 x
 dx  94.  Lsin2 u cos5 u du

 95.  L
9 dy

81 - y4
 96.  L

q

2

dx

(x - 1)2



522 Chapter 8 Techniques of Integration

Evaluating Integrals

Evaluate the integrals in Exercises 1–6.

 1.  L(sin-1 x)2 dx

 2.  L
dx

x(x + 1)(x + 2)g(x + m)

 3.  Lx sin-1 x dx  4.  Lsin-1 2y dy

 5.  L
dt

t - 21 - t2
 6.  L

dx

x4 + 4

Evaluate the limits in Exercise 7 and 8.

 7. lim
xSq

 L
x

-x

sin t dt 8. lim
xS0 +

 x L
1

x

 
cos t

t2
 dt

Evaluate the limits in Exercise 9 and 10 by identifying them with dei-

nite integrals and evaluating the integrals.

 9. lim
nSq

 a
n

k = 1

 ln A
n

1 +
k
n 10. lim

nSq
 a
n - 1

k = 0

1

2n2 - k2

Applications

 11. Finding arc length Find the length of the curve

y = L
x

0

 2cos 2t dt, 0 … x … p>4.

 12. Finding arc length Find the length of the graph of the function 

y = ln (1 - x2), 0 … x … 1>2.

 13. Finding volume The region in the irst quadrant that is enclosed 

by the x-axis and the curve y = 3x21 - x is revolved about the 

y-axis to generate a solid. Find the volume of the solid.

 14. Finding volume The region in the irst quadrant that is enclosed 

by the x-axis, the curve y = 5>1x25 - x2, and the lines x = 1 

and x = 4 is revolved about the x-axis to generate a solid. Find the 

volume of the solid.

 15. Finding volume The region in the irst quadrant enclosed by the 

coordinate axes, the curve y = ex, and the line x = 1 is revolved 

about the y-axis to generate a solid. Find the volume of the solid.

 16. Finding volume The region in the irst quadrant that is bounded 

above by the curve y = ex - 1, below by the x-axis, and on the 

right by the line x = ln 2 is revolved about the line x = ln 2 to 

generate a solid. Find the volume of the solid.

 17. Finding volume Let R be the “triangular” region in the irst 

quadrant that is bounded above by the line y = 1, below by the 

curve y = ln x, and on the left by the line x = 1. Find the volume 

of the solid generated by revolving R about

a. the x-axis. b. the line y = 1.

 18. Finding volume (Continuation of Exercise 17.) Find the vol-

ume of the solid generated by revolving the region R about

a. the y-axis. b. the line x = 1.

 19. Finding volume The region between the x-axis and the curve

y = ƒ(x) = e0, x = 0

x ln x, 0 6 x … 2

  is revolved about the x-axis to generate the solid shown here.

a. Show that ƒ is continuous at x = 0.

b. Find the volume of the solid.

y

0

y = x ln x

x
1 2

 20. Finding volume The ininite region bounded by the coordinate 

axes and the curve y = - ln x in the irst quadrant is revolved 

about the x-axis to generate a solid. Find the volume of the solid.

 21. centroid of a region Find the centroid of the region in the irst 

quadrant that is bounded below by the x-axis, above by the curve 

y = ln x, and on the right by the line x = e.

 22. centroid of a region Find the centroid of the region in the plane 

enclosed by the curves y = {(1 - x2)-1>2 and the lines x = 0 

and x = 1.

 23. Length of a curve Find the length of the curve y = ln x from 

x = 1 to x = e.

 24. Finding surface area Find the area of the surface generated by 

revolving the curve in Exercise 23 about the y-axis.

 25. the surface generated by an astroid The graph of the equation 

x2>3 + y2>3 = 1 is an astroid (see accompanying igure). Find the 

area of the surface generated by revolving the curve about the x-axis.

x2�3 + y2�3 = 1

x

y

0−1 1

−1

1

 26. Length of a curve Find the length of the curve

y = L
x

1

32t - 1 dt,     1 … x … 16.

 27. For what value or values of a does

 L
q

1

a ax

x2 + 1
-

1
2x
b  dx

  converge? Evaluate the corresponding integral(s).

CHAPTER 8 Additional and Advanced Exercises
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To see the effect of the substitution, we calculate

 cos x = 2 cos2 ax

2
b - 1 =

2

sec2 (x>2)
- 1

 =
2

1 + tan2 (x>2)
- 1 =

2

1 + z2
- 1

  cos x =
1 - z2

1 + z2
,  (2)

and

 sin x = 2 sin 
x

2
 cos 

x

2
= 2 

sin (x>2)

cos (x>2)
#  cos2 ax

2
b

 = 2 tan 
x

2
# 1

sec2 (x>2)
=

2 tan (x>2)

1 + tan2 (x>2)

  sin x =
2z

1 + z2
.  (3)

Finally, x = 2 tan-1 z, so

 dx =
2 dz

1 + z2
. (4)

Examples

a.   L
1

1 + cos x
 dx = L

1 + z2

2
 

2 dz

1 + z2

 = Ldz = z + C

 = tan ax

2
b + C

b.   L
1

2 + sin x
 dx = L

1 + z2

2 + 2z + 2z2
 

2 dz

1 + z2

 = L
dz

z2 + z + 1
= L

dz

(z + (1>2))2 + 3>4
 = L

du

u2 + a2

 =
1
a tan-1 auab + C

 =
2

23
 tan-1 

2z + 1

23
+ C

 =
2

23
 tan-1 

1 + 2 tan (x>2)

23
+ C

Use the substitutions in Equations (1)–(4) to evaluate the integrals in 

Exercises 33–40. Integrals like these arise in calculating the average 

angular velocity of the output shaft of a universal joint when the input 

and output shafts are not aligned.

 33.  L
dx

1 - sin x
 34.  L

dx

1 + sin x + cos x

 35.  L
p>2

0

dx

1 + sin x
 36.  L

p>2
p>3 dx

1 - cos x

 28. For each x 7 0, let G(x) = 1q
0

 e-xt dt. Prove that xG(x) = 1 for 

each x 7 0.

 29. Ininite area and inite volume What values of p have the 

following property: The area of the region between the curve 

y = x-p, 1 … x 6 q, and the x-axis is ininite but the volume of  

the solid generated by revolving the region about the x-axis is 

inite.

 30. Ininite area and inite volume What values of p have the fol-

lowing property: The area of the region in the irst quadrant en-

closed by the curve y = x-p, the y-axis, the line x = 1, and the 

interval 30, 14  on the x-axis is ininite but the volume of the solid 

generated by revolving the region about one of the coordinate axes 

is inite.

 31. Integrating the square of the derivative If ƒ is continuously 

diferentiable on 30, 14  and ƒ(1) = ƒ(0) = -1>6, prove that

 L
1

0

(ƒ′(x))2 dx Ú 2L
1

0

ƒ(x) dx +
1
4

.

  Hint: Consider the inequality 0 … L
1

0

aƒ′(x) + x -
1
2
b2

 dx.

  Source: Mathematics Magazine, vol. 84, no. 4, Oct. 2011.

 32. (Continuation of Exercise 31.) If ƒ is continuously diferentiable 

on 30, a4  for a 7 0, and ƒ(a) = ƒ(0) = b, prove that

 L
a

0

(ƒ′(x))2 dx Ú 2L
a

0

ƒ(x) dx - a2ab +
a3

12
b .

  Hint: Consider the inequality 0 … L
a

0

aƒ′(x) + x -
a

2
b2

 dx.

  Source: Mathematics Magazine, vol. 84, no. 4, Oct. 2011.

The Substitution z = tan ( x ,2)

The substitution

 z = tan 
x

2
 (1)

reduces the problem of integrating a rational expression in sin x and 

cos x to a problem of integrating a rational function of z. This in turn 

can be integrated by partial fractions.

From the accompanying figure

A

P(cos x, sin x)

sin x

x

cos x1 0

1

2
x

we can read the relation

tan 
x

2
=

sin x
1 + cos x

.
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 37.  L
p>2

0

du

2 + cos u
 38.  L

2p>3
p>2 cos u du

sin u cos u + sin u

 39.  L
dt

sin t - cos t
 40.  L

cos t dt

1 - cos t

Use the substitution z = tan (u>2) to evaluate the integrals in  

Exercises 41 and 42.

 41.  Lsec u du  42.  Lcsc u du

The Gamma Function and Stirling’s Formula

Euler’s gamma function Γ(x) (“gamma of x”; Γ is a Greek capital g) 

uses an integral to extend the factorial function from the nonnegative 

integers to other real values. The formula is

Γ(x) = L
q

0

 tx - 1e-t dt,  x 7 0.

For each positive x, the number Γ(x) is the integral of tx - 1e-t with 

respect to t from 0 to q. Figure 8.28 shows the graph of Γ near the 

origin. You will see how to calculate Γ(1>2) if you do Additional 

 Exercise 23 in Chapter 15.

b. Then apply integration by parts to the integral for Γ(x + 1) 

to show that Γ(x + 1) = xΓ(x). This gives

 Γ(2) = 1Γ(1) = 1

 Γ(3) = 2Γ(2) = 2

 Γ(4) = 3Γ(3) = 6

f

  Γ(n + 1) = n Γ(n) = n! (5)

c. Use mathematical induction to verify Equation (5) for every 

nonnegative integer n.

 44. stirling’s formula Scottish mathematician James Stirling 

(1692–1770) showed that

lim
xSq
aexb x

 A
x

2p
 Γ(x) = 1,

  so, for large x,

 Γ(x) = axeb x

A
2p
x  (1 + e(x)),   e(x) S 0 as x S q. (6)

  Dropping e(x) leads to the approximation

 Γ(x) ≈ axeb x

 A
2p
x    (stirling>s formula). (7)

a. stirling’s approximation for n! Use Equation (7) and the 

fact that n! = nΓ(n) to show that

 n! ≈ anebn

 22np   (stirling>s approximation). (8)

As you will see if you do Exercise 114 in Section 10.1, Equation 

(8) leads to the approximation

 2n n! ≈
n
e . (9)

b. Compare your calculator’s value for n! with the value given 

by Stirling’s approximation for n = 10, 20, 30,c, as far as 

your calculator can go.

c. A reinement of Equation (6) gives

Γ(x) = axeb x

 A
2p
x  e1>(12x)(1 + e(x))

or

Γ(x) ≈ axeb x

 A
2p
x  e1>(12x),

which tells us that

 n! ≈ anebn

 22np e1>(12n). (10)

Compare the values given for 10! by your calculator, 

 Stirling’s approximation, and Equation (10).

T

T

x

y

0 1−1 3−2 2−3

−1

−2

−3

1

2

3
y = Γ(x)

FIGURE 8.28 Euler’s gamma function 

Γ(x) is a continuous function of x whose 

value at each positive integer n + 1 is 

n!. The defining integral formula for Γ is 

valid only for x 7 0, but we can extend Γ 

to negative noninteger values of x with the 

formula Γ(x) = (Γ(x + 1))>x, which is 

the subject of Exercise 43.

 43. if n is a nonnegative integer, �(n + 1) = n!

a. Show that Γ(1) = 1.



 Chapter 8  Technology Application Projects 525

Mathematica/Maple Projects

Projects can be found within MyMathLab.

• Riemann, Trapezoidal, and Simpson Approximations

part i: Visualize the error involved in using Riemann sums to approximate the area under a curve.

part ii: Build a table of values and compute the relative magnitude of the error as a function of the step size ∆x.

part iii: Investigate the efect of the derivative function on the error.

parts iV and V: Trapezoidal Rule approximations.

part Vi: Simpson’s Rule approximations.

• Games of Chance: Exploring the Monte Carlo Probabilistic Technique for Numerical Integration

Graphically explore the Monte Carlo method for approximating deinite integrals.

• Computing Probabilities with Improper Integrals

More explorations of the Monte Carlo method for approximating deinite integrals.

CHAPTER 8 Technology Application Projects
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9

OVERVIEW Many real-world problems, when formulated mathematically, lead to differ-

ential equations. We encountered a number of these equations in previous chapters when 

studying phenomena such as the motion of an object along a straight line, the decay of a 

radioactive material, the growth of a population, and the cooling of a heated object placed 

within a medium of lower temperature.

In Section 4.7 we introduced diferential equations of the form dy>dx = ƒ(x), where 

ƒ is given and y is an unknown function of x. When ƒ is continuous over some interval, 

we learned that the general solution y(x) was found directly by integration, y = 1ƒ(x) dx. 

Next, in Section 7.4, we investigated diferential equations of the form dy>dx = ƒ(x, y), 

where ƒ is a function of both the independent variable x and the dependent variable y. There 

we learned how to ind the general solution for the special case when the diferential equa-

tion is separable. In this chapter we further extend our study to include other commonly 

occurring irst-order diferential equations. These diferential equations involve only irst 

derivatives of the unknown function y(x), and they model phenomena varying from simple 

electrical circuits to the concentration of a chemical in a container. Diferential equations 

involving second derivatives are studied in Chapter 17.

9.1 Solutions, Slope Fields, and Euler’s Method

We begin this section by defining general differential equations involving first derivatives. 

We then look at slope fields, which give a geometric picture of the solutions to such equa-

tions. Many differential equations cannot be solved by obtaining an explicit formula for 

the solution. However, we can often find numerical approximations to solutions. We pre-

sent one such method here, called Euler’s method, which is the basis for many other 

numerical methods as well.

General First-Order Differential Equations and Solutions

A first-order differential equation is an equation

 
dy

dx
= ƒ(x, y) (1)

in which ƒ(x, y) is a function of two variables defined on a region in the xy-plane. The 

equation is of first order because it involves only the first derivative dy >dx (and not 

higher-order derivatives). In a typical situation y represents an unknown function of x, and 

ƒ(x, y) is a known function. Some examples of first-order differential equations are: 

First-Order Differential 
Equations

Chapter 17 is available online. 
www.goo.gl/MgDXPY

chapter opening photo: Rich Carey/Shutterstock

http://www.goo.gl/MgDXPY
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y′ = x + y, y′ = y>x, and y′ = 3xy. In all cases we should think of y as an unknown 

function of x whose derivative is given by ƒ(x, y). The equations

y′ = ƒ(x, y)    and    
d

dx
 y = ƒ(x, y)

are equivalent to Equation (1) and all three forms will be used interchangeably in the text.

A solution of Equation (1) is a differentiable function y = y(x) defined on an interval 

I of x-values (perhaps infinite) such that

d

dx
 y(x) = ƒ(x, y(x))

on that interval. That is, when y(x) and its derivative y′(x) are substituted into Equation (1), 

the resulting equation is true for all x over the interval I. The general solution to a first-

order differential equation is a solution that contains all possible solutions. The general 

solution always contains an arbitrary constant, but having this property doesn’t mean a 

solution is the general solution. That is, a solution may contain an arbitrary constant with-

out being the general solution. Establishing that a solution is the general solution may 

require deeper results from the theory of differential equations and is left to a more 

advanced course.

EXAMPLE 1  Show that every member of the family of functions

y =
C
x + 2

is a solution of the first-order differential equation

dy

dx
=

1
x (2 - y)

on the interval (0, q), where C is any constant.

Solution Differentiating y = C>x + 2 gives

dy

dx
= C 

d

dx
 a1xb + 0 = -  

C

x2
.

We need to show that the differential equation is satisfied when we substitute into it the 

expressions (C>x) + 2 for y, and -C>x2 for dy>dx. That is, we need to verify that for all 

x∊(0, q),

-  
C

x2
=

1
x c 2 - aCx + 2b d .

This last equation follows immediately by expanding the expression on the right-hand 

side:

1
x c 2 - aCx + 2b d =

1
x a-  

C
x b = -  

C

x2
.

Therefore, for every value of C, the function y = C>x + 2 is a solution of the differential 

equation. 

As with antiderivatives, we often need a particular rather than the general solution to 

a first-order differential equation y′ = ƒ(x, y). The particular solution satisfying the ini-

tial condition y(x0) = y0 is the solution y = y(x) whose value is y0 when x = x0. Thus the 

graph of the particular solution passes through the point (x0, y0) in the xy-plane. A first-

order initial value problem is a differential equation y′ = ƒ(x, y) whose solution must 

satisfy an initial condition y(x0) = y0.
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EXAMPLE 2  Show that the function

y = (x + 1) -
1
3

 ex

is a solution to the first-order initial value problem

dy

dx
= y - x,  y(0) =

2
3

.

Solution The equation

dy

dx
= y - x

is a first-order differential equation with ƒ(x, y) = y - x.

On the left side of the equation:

dy

dx
=

d

dx
 ax + 1 -

1
3

 exb = 1 -
1
3

 ex .

On the right side of the equation:

y - x = (x + 1) -
1
3

 ex - x = 1 -
1
3

 ex .

The function satisfies the initial condition because

y(0) = c (x + 1) -
1
3

 ex d
x = 0

= 1 -
1
3

=
2
3

.

The graph of the function is shown in Figure 9.1. 

Slope Fields: Viewing Solution Curves

Each time we specify an initial condition y(x0) = y0 for the solution of a differential equa-

tion y′ = ƒ(x, y), the solution curve (graph of the solution) is required to pass through the 

point (x0, y0) and to have slope ƒ(x0, y0) there. We can picture these slopes graphically by 

drawing short line segments of slope ƒ(x, y) at selected points (x, y) in the region of the xy-

plane that constitutes the domain of ƒ. Each segment has the same slope as the solution 

curve through (x, y) and so is tangent to the curve there. The resulting picture is called a 

slope field (or direction field) and gives a visualization of the general shape of the solu-

tion curves. Figure 9.2a shows a slope field, with a particular solution sketched into it in 

Figure 9.2b. We see how these line segments indicate the direction the solution curve takes 

at each point it passes through.

−4 −2 2 4

−4

−3

−2

−1

1

2

x

y

0,
2
3

y = (x + 1) −   ex1
3a     b

FIGURE 9.1 Graph of the solution to the 

initial value problem in Example 2.

0 2−2−4 4

2

4

−2

−4

0 2−2−4 4

2

4

−2

−4

(a) (b)

x x

y y 0,
2
3

a     b

FIGURE 9.2 (a) Slope field for 
dy

dx
= y - x. (b) The particular solution 

curve through the point a0, 
2
3
b  (Example 2).
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EXAMPLE 3  For the differential equation

y′ = 2y - x

draw line segments representing the slope field at the points (1, 2); (1, 1); (2, 2), and (2, 1).

Solution At (1, 2) the slope is 2(2) - (1) = 3. Similarly the slope at (2, 2) is 2, at (2, 1) 

is 0, and the slope at (1, 1) is 1. We indicate this on the graph by drawing short line seg-

ments of the given slope through each point, as in Figure 9.3. 

Figure 9.4 shows three slope fields and we see how the solution curves behave by 

 following the tangent line segments in these fields. Slope fields are useful because they 

 display the overall behavior of the family of solution curves for a given differential 

 equation. For instance, the slope field in Figure 9.4b reveals that every solution y(x) to the 

 differential equation specified in the figure satisfies limxS{q y(x) = 0. We will see that 

knowing the overall behavior of the solution curves is often critical to understanding and 

predicting outcomes in a real-world system modeled by a differential equation.

Constructing a slope field with pencil and paper can be quite tedious. All our exam-

ples were generated by computer software.

(a)

y

x210

2

1

(b)

y

x21

2

1

0

FIGURE 9.3 (a) The slope field for 

y′ = 2y - x is shown at four points.  

(b) The slope field at several hundred  

additional points in the plane.

(a) y′ = y − x2 (b) y′ = −
1 + x2

2xy
(c) y′ = (1 − x)y +

x
2

FIGURE 9.4 Slope fields (top row) and selected solution curves (bottom row). In computer 

renditions, slope segments are sometimes portrayed with arrows, as they are here, but they 

should be considered as just tangent line segments.

Euler’s Method

If we do not require or cannot immediately find an exact solution giving an explicit for-

mula for an initial value problem y′ = ƒ(x, y), y(x0) = y0, we can often use a computer to 

generate a table of approximate numerical values of y for values of x in an appropriate 

interval. Such a table is called a numerical solution of the problem, and the method by 

which we generate the table is called a numerical method.

Given a differential equation dy>dx = ƒ(x, y) and an initial condition y(x0) = y0, we 

can approximate the solution y = y(x) by its linearization

L(x) = y(x0) + y′(x0)(x - x0)  or  L(x) = y0 + ƒ(x0, y0)(x - x0).

The function L(x) gives a good approximation to the solution y(x) in a short interval about 

x0 (Figure 9.5). The basis of Euler’s method is to patch together a string of linearizations 

to approximate the curve over a longer stretch. Here is how the method works.

We know the point (x0, y0) lies on the solution curve. Suppose that we specify a new 

value for the independent variable to be x1 = x0 + dx. (Recall that dx = ∆x in the defini-

tion of differentials.) If the increment dx is small, then

y1 = L(x1) = y0 + ƒ(x0, y0) dx

0

y
y = L(x) = y0 + f (x0, y0)(x − x0)

y = y (x)

(x0, y0)y0

x0
x

FIGURE 9.5 The linearization L(x) of 

y = y(x) at x = x0.
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is a good approximation to the exact solution value y = y(x1). So from the point (x0, y0), 

which lies exactly on the solution curve, we have obtained the point (x1, y1), which lies 

very close to the point (x1, y(x1)) on the solution curve (Figure 9.6).

Using the point (x1, y1) and the slope ƒ(x1, y1) of the solution curve through (x1, y1), 

we take a second step. Setting x2 = x1 + dx, we use the linearization of the solution curve 

through (x1, y1) to calculate

y2 = y1 + ƒ(x1, y1) dx.

This gives the next approximation (x2, y2) to values along the solution curve y = y(x) 

(Figure 9.7). Continuing in this fashion, we take a third step from the point (x2, y2) with 

slope ƒ(x2, y2) to obtain the third approximation

y3 = y2 + ƒ(x2, y2)  dx,

and so on. We are literally building an approximation to one of the solutions by following 

the direction of the slope field of the differential equation.

The steps in Figure 9.7 are drawn large to illustrate the construction process, so the 

approximation looks crude. In practice, dx would be small enough to make the red curve 

hug the blue one and give a good approximation throughout.

EXAMPLE 4  Find the first three approximations y1, y2, y3 using Euler’s method for 

the initial value problem

y′ = 1 + y,  y(0) = 1,

starting at x0 = 0 with dx = 0.1.

Solution We have the starting values x0 = 0 and y0 = 1. Next we determine the values 

of x at which the Euler approximations will take place: x1 = x0 + dx = 0.1, 

x2 = x0 + 2 dx = 0.2, and x3 = x0 + 3 dx = 0.3. Then we find

 First:  y1 = y0 + ƒ(x0, y0) dx

   = y0 + (1 + y0) dx

   = 1 + (1 + 1)(0.1) = 1.2

 Second:  y2 = y1 + ƒ(x1, y1) dx

   = y1 + (1 + y1) dx

   = 1.2 + (1 + 1.2)(0.1) = 1.42

 Third:  y3 = y2 + ƒ(x2, y2) dx

   = y2 + (1 + y2) dx

   = 1.42 + (1 + 1.42)(0.1) = 1.662 

The step-by-step process used in Example 4 can be continued easily. Using equally 

spaced values for the independent variable in the table for the numerical solution, and gen-

erating n of them, set

 x1 = x0 + dx

 x2 = x1 + dx

 f
 xn = xn - 1 + dx.

Then calculate the approximations to the solution,

 y1 = y0 + ƒ(x0, y0) dx

 y2 = y1 + ƒ(x1, y1) dx

 f
 yn = yn - 1 + ƒ(xn - 1, yn - 1) dx.

0

y

y = y(x)

(x1, y(x1))

(x1, y1)

x0 x1 = x0 + dx
dx

x

(x0, y0)

FIGURE 9.6 The first Euler step  

approximates y(x1) with y1 = L(x1).

x

y

0

Euler approximation

Error

(x0, y0)

(x1, y1)

(x2, y2)
(x3, y3)

x0 x1 x2 x3

dx dx dx

True solution curve

y = y(x)

FIGURE 9.7 Three steps in the Euler 

approximation to the solution of the initial 

value problem y′ = ƒ(x, y), y(x0) = y0. 

As we take more steps, the errors involved 

usually accumulate, but not in the exagger-

ated way shown here.
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The number of steps n can be as large as we like, but errors can accumulate if n is too 

large.

Euler’s method is easy to implement on a computer or calculator. The software pro-

gram generates a table of numerical solutions to an initial value problem, allowing us to 

input x0 and y0, the number of steps n, and the step size dx. It then calculates the approxi-

mate solution values y1, y2, c, yn in iterative fashion, as just described.

Solving the separable equation in Example 4, we find that the exact solution to the 

initial value problem is y = 2ex - 1. We use this information in Example 5.

EXAMPLE 5  Use Euler’s method to solve

y′ = 1 + y,  y(0) = 1,

on the interval 0 … x … 1, starting at x0 = 0 and taking (a) dx = 0.1 and (b) dx = 0.05. 

Compare the approximations with the values of the exact solution y = 2ex - 1.

Solution

(a) We used a computer to generate the approximate values in Table 9.1. The “error” col-

umn is obtained by subtracting the unrounded Euler values from the unrounded values 

found using the exact solution. All entries are then rounded to four decimal places.

HistoricAL BiogrApHy

Leonhard Euler

(1703–1783)

www.goo.gl/v2nvlA

TABLE 9.1  Euler solution of y′ = 1 + y, y (0) = 1, 

step size dx = 0.1

 x y (Euler) y (exact)  Error

0  1  1 0

0.1  1.2  1.2103 0.0103

0.2  1.42  1.4428 0.0228

0.3  1.662  1.6997 0.0377

0.4  1.9282  1.9836 0.0554

0.5  2.2210  2.2974 0.0764

0.6  2.5431  2.6442 0.1011

0.7  2.8974  3.0275 0.1301

0.8  3.2872  3.4511 0.1639

0.9  3.7159  3.9192 0.2033

1.0  4.1875  4.4366 0.2491

 By the time we reach x = 1 (after 10 steps), the error is about 5.6% of the exact 

solution. A plot of the exact solution curve with the scatterplot of Euler solution points 

from Table 9.1 is shown in Figure 9.8.

(b) One way to try to reduce the error is to decrease the step size. Table 9.2 shows the 

results and their comparisons with the exact solutions when we decrease the step size 

to 0.05, doubling the number of steps to 20. As in Table 9.1, all computations are 

performed before rounding. This time when we reach x = 1, the relative error is only 

about 2.9%. 

It might be tempting to reduce the step size even further in Example 5 to obtain 

greater accuracy. Each additional calculation, however, not only requires additional com-

puter time but more importantly adds to the buildup of round-off errors due to the approxi-

mate representations of numbers inside the computer.

10

1

2

3

4

x

y

y = 2ex − 1

FIGURE 9.8 The graph of y = 2ex - 1 

superimposed on a scatterplot of the 

Euler approximations shown in Table 9.1 

(Example 5).

http://www.goo.gl/v2nvlA
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The analysis of error and the investigation of methods to reduce it when making 

numerical calculations are important but are appropriate for a more advanced course. 

There are numerical methods more accurate than Euler’s method, usually presented in a 

further study of differential equations or in a numerical analysis course.

TABLE 9.2  Euler solution of y ′ = 1 + y, y (0) = 1, 

step size dx = 0.05

 x y (Euler) y (exact)  Error

0  1  1 0

0.05  1.1  1.1025 0.0025

0.10  1.205  1.2103 0.0053

0.15  1.3153  1.3237 0.0084

0.20  1.4310  1.4428 0.0118

0.25  1.5526  1.5681 0.0155

0.30  1.6802  1.6997 0.0195

0.35  1.8142  1.8381 0.0239

0.40  1.9549  1.9836 0.0287

0.45  2.1027  2.1366 0.0340

0.50  2.2578  2.2974 0.0397

0.55  2.4207  2.4665 0.0458

0.60  2.5917  2.6442 0.0525

0.65  2.7713  2.8311 0.0598

0.70  2.9599  3.0275 0.0676

0.75  3.1579  3.2340 0.0761

0.80  3.3657  3.4511 0.0853

0.85  3.5840  3.6793 0.0953

0.90  3.8132  3.9192 0.1060

0.95  4.0539  4.1714 0.1175

1.00  4.3066  4.4366 0.1300

Slope Fields

In Exercises 1–4, match the differential equations with their slope 

fields, graphed here.
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 1. y′ = x + y 2. y′ = y + 1

 3. y′ = -
x
y 4. y′ = y2 - x2

EXERCISES 9.1
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Using Euler’s Method

In Exercises 15–20, use Euler’s method to calculate the first three 

approximations to the given initial value problem for the specified 

increment size. Calculate the exact solution and investigate the accu-

racy of your approximations. Round your results to four decimal 

places.

 15. y′ =
2y

x , y(1) = -1, dx = 0.5

 16. y′ = x(1 - y), y(1) = 0, dx = 0.2

 17. y′ = 2xy + 2y, y(0) = 3, dx = 0.2

 18. y′ = y2(1 + 2x), y(-1) = 1, dx = 0.5

 19. y′ = 2xex2

, y(0) = 2, dx = 0.1

 20. y′ = yex, y(0) = 2, dx = 0.5

 21. Use the Euler method with dx = 0.2 to estimate y(1) if y′ = y 

and y(0) = 1. What is the exact value of y(1)?

 22. Use the Euler method with dx = 0.2 to estimate y(2) if y′ = y>x 

and y(1) = 2. What is the exact value of y(2)?

 23. Use the Euler method with dx = 0.5 to estimate y(5) if y′ =

y2>2x and y(1) = -1. What is the exact value of y(5)?

 24. Use the Euler method with dx = 1>3 to estimate y(2) if y′ =

x sin y and y(0) = 1. What is the exact value of y(2)?

 25. Show that the solution of the initial value problem

y′ = x + y,  y(x0) = y0

  is

y = -1 - x + (1 + x0 + y0) e 

x - x0.

 26. What integral equation is equivalent to the initial value problem 

y′ = ƒ(x), y(x0) = y0?

COMPUTER EXPLORATIONS

In Exercises 27–32, obtain a slope field and add to it graphs of the 

solution curves passing through the given points.

 27. y′ = y with

a. (0, 1) b. (0, 2) c. (0, -1)

 28. y′ = 2(  y - 4) with

a. (0, 1) b. (0, 4) c. (0, 5)

 29. y′ = y(x + y) with

a. (0, 1) b. (0, -2) c. (0, 1>4) d. (-1, -1)

 30. y′ = y2 with

a. (0, 1) b. (0, 2) c. (0, -1) d. (0, 0)

 31. y′ = (y - 1)(x + 2) with

a. (0, -1) b. (0, 1) c. (0, 3) d. (1, - 1)

 32. y′ =
xy

x2 + 4
 with

a. (0, 2) b. (0, -6) c. 1-223, -42
In Exercises 33 and 34, obtain a slope field and graph the particular 

solution over the specified interval. Use your CAS DE solver to find 

the general solution of the differential equation.

 33. A logistic equation y′ = y(2 - y), y(0) = 1>2; 0 … x … 4, 

0 … y … 3

 34. y′ = (sin x)(sin y), y(0) = 2; -6 … x … 6, -6 … y … 6

T

T

In Exercises 5 and 6, copy the slope fields and sketch in some of the 

solution curves.

 5. y′ = (  y + 2)(  y - 2)

2

−2

−2 2 4−4

−4

4

x

y

 6. y′ = y(  y + 1)(  y - 1)

2

−2

−2 2 4−4

−4

4

x

y

Integral Equations

In Exercises 7–12, write an equivalent first-order differential equation 

and initial condition for y.

 7. y = -1 + L
x

1

 (t - y(t)) dt 8. y = L
x

1

 
1
t
 dt

 9. y = 2 - L
x

0

 (1 + y(t)) sin t dt

 10. y = 1 + L
x

0

 y(t) dt 11. y = x + 4 + L
x

-2

tey(t) dt

 12. y = ln x + L
e

x

2t2 + (y(t))2 dt

In Exercises 13 and 14, consider the differential equation y′ = ƒ( y) 

and the given graph of ƒ. Make a rough sketch of a direction field for 

each differential equation.

 13.   14. 

y

f (y)

−1

−2

0 21 3−2 −1−3

1

2

 

y

f (y)

−1

−2

21 3−2 −1−3

1

2
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Exercises 35 and 36 have no explicit solution in terms of elementary 

functions. Use a CAS to explore graphically each of the differential 

equations.

 35. y′ = cos (2x - y), y(0) = 2; 0 … x … 5, 0 … y … 5

 36. A gompertz equation y′ = y(1>2 - ln y), y(0) = 1>3; 

0 … x … 4, 0 … y … 3

 37. Use a CAS to ind the solutions of y′ + y = ƒ(x) subject to the 

initial condition y(0) = 0, if ƒ(x) is

a. 2x  b. sin 2x  c. 3ex>2  d. 2e-x>2 cos 2x.

  Graph all four solutions over the interval -2 … x … 6 to com-

pare the results.

38. a. Use a CAS to plot the slope ield of the diferential equation

y′ =
3x2 + 4x + 2

2(y - 1)

over the region -3 … x … 3 and -3 … y … 3.

b. Separate the variables and use a CAS integrator to ind the 

general solution in implicit form.

c. Using a CAS implicit function grapher, plot solution curves 

for the arbitrary constant values C = -6, -4, -2, 0, 2, 4, 6.

d. Find and graph the solution that satisies the initial condition 

y(0) = -1.

In Exercises 39–42, use Euler’s method with the specified step size to 

estimate the value of the solution at the given point x*. Find the value 

of the exact solution at x*.

 39. y′ = 2xex2

, y(0) = 2, dx = 0.1, x* = 1

 40. y′ = 2y2(x - 1), y(2) = -1>2, dx = 0.1, x* = 3

 41. y′ = 2x>y, y 7 0, y(0) = 1, dx = 0.1, x* = 1

 42. y′ = 1 + y2, y(0) = 0, dx = 0.1, x* = 1

Use a CAS to explore graphically each of the differential equations in 

Exercises 43–46. Perform the following steps to help with your 

 explorations.

a. Plot a slope ield for the diferential equation in the given  

xy-window.

b. Find the general solution of the diferential equation using 

your CAS DE solver.

c. Graph the solutions for the values of the arbitrary constant 

C = -2, -1, 0, 1, 2 superimposed on your slope ield plot.

d. Find and graph the solution that satisies the speciied initial 

condition over the interval 30, b4 .
e. Find the Euler numerical approximation to the solution of 

the initial value problem with 4 subintervals of the x-interval 

and plot the Euler approximation superimposed on the graph 

produced in part (d).

f. Repeat part (e) for 8, 16, and 32 subintervals. Plot these 

three Euler approximations superimposed on the graph from 

part (e).

g. Find the error (y(exact) - y(Euler)) at the speciied point 

x = b for each of your four Euler approximations. Discuss 

the improvement in the percentage error.

 43. y′ = x + y, y(0) = -7>10; -4 … x … 4, -4 … y … 4; 

b = 1

 44. y′ = -x>y, y(0) = 2; -3 … x … 3, -3 … y … 3; 

b = 2

 45. y′ = y(2 - y), y(0) = 1>2; 0 … x … 4, 0 … y … 3; 

b = 3

 46. y′ = (sin x)(sin y), y(0) = 2; -6 … x … 6, -6 … y … 6;

b = 3p>2

9.2 First-Order Linear Equations

A first-order linear differential equation is one that can be written in the form

 
dy

dx
+ P(x)y = Q(x), (1)

where P and Q are continuous functions of x. Equation (1) is the linear equation’s stan-

dard form. Since the exponential growth>decay equation dy>dx = ky (Section 7.4) can 

be put in the standard form

dy

dx
- ky = 0,

we see it is a linear equation with P(x) = -k and Q(x) = 0. Equation (1) is linear (in y) 

because y and its derivative dy >dx occur only to the first power, they are not multiplied 

together, nor do they appear as the argument of a function 1  such as sin y, ey, or 2dy>dx2.
EXAMPLE 1  Put the following equation in standard form:

x 
dy

dx
= x2 + 3y,  x 7 0.
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Solution

 x 
dy

dx
= x2 + 3y

 
dy

dx
= x +

3
x y   Divide by x.

 
dy

dx
-

3
x  y = x   

Standard form with P(x) = -3>x 

and Q(x) = x

Notice that P(x) is -3>x, not +3>x. The standard form is y′ + P(x)y = Q(x), so the 

minus sign is part of the formula for P(x). 

Solving Linear Equations

We solve the equation

dy

dx
+ P(x) y = Q(x)

by multiplying both sides by a positive function y(x) that transforms the left-hand side into 

the derivative of the product y(x) # y. We will show how to find y in a moment, but first we 

want to show how, once found, it provides the solution we seek.

Here is why multiplying by y(x) works:

 
dy

dx
+ P(x) y = Q(x)   

Original equation is 

in standard form.  

 y(x) 
dy

dx
+ P(x)y(x) y = y(x)Q(x)   Multiply by positive y(x).

 
d

dx
 (y(x) # y) = y(x)Q(x)   

y(x) is chosen to make 

y 
dy

dx
+ Pyy =

d

dx
 (y # y).

 y(x) # y = L  y(x)Q(x) dx   
Integrate with respect 

to x.

 y =
1

y(x)
  L  y(x)Q(x) dx  Divide by y(x). (2)

Equation (2) expresses the solution of Equation (1) in terms of the functions y(x) and 

Q(x). We call y(x) an integrating factor for Equation (1) because its presence makes the 

equation integrable.

Why doesn’t the formula for P(x) appear in the solution as well? It does, but indi-

rectly, in the construction of the positive function y(x). We have

 
d

dx
 (yy) = y 

dy

dx
+ Pyy  Condition imposed on y

 y 
dy

dx
+ y 

dy
dx

= y 
dy

dx
+ Pyy  Derivative Product Rule

 y 
dy
dx

= Pyy   The terms y 
dy

dx
 cancel.

This last equation will hold if

  
dy
dx

= Py

  
dy
y = P dx Variables separated, y 7 0

  L  
dy
y = L  P dx  Integrate both sides.
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 ln y = L  P dx  
Since y 7 0, we do not need absolute 

value signs in ln y.

 eln y = e1 P dx   Exponentiate both sides to solve for y. (3) 

 y = e1 P dx

Thus a formula for the general solution to Equation (1) is given by Equation (2), where 

y(x) is given by Equation (3). However, rather than memorizing the formula, just remem-

ber how to find the integrating factor once you have the standard form so P(x) is correctly 

identified. Any antiderivative of P works for Equation (3).

To solve the linear equation y′ + P(x) y = Q(x), multiply both sides by the inte-

grating factor y(x) = e1 P(x) dx and integrate both sides.

When you integrate the product on the left-hand side in this procedure, you always obtain 

the product y(x)y of the integrating factor and solution function y because of the way y is 

defined.

EXAMPLE 2  Solve the equation

x 
dy

dx
= x2 + 3y,  x 7 0.

Solution First we put the equation in standard form (Example 1):

dy

dx
-

3
x

 y = x,

so P(x) = -3>x is identified.

The integrating factor is

 y(x) = e1 P(x) dx = e1(-3>x) dx

 = e-3 ln 0x 0   
Constant of integration is 0, 

so y is as simple as possible.

 = e-3 ln x   x 7 0 

 = eln x-3

=
1

x3
.

Next we multiply both sides of the standard form by y(x) and integrate:

 
1

x3
# ady

dx
-

3

x
 yb =

1

x3
# x

 
1

x3
 
dy

dx
-

3

x4
 y =

1

x2

 
d

dx
  a 1

x3
 yb =

1

x2
  Left-hand side is 

d

dx
 (y # y). 

 
1

x3
 y = L  

1

x2 
 dx   Integrate both sides.

 
1

x3
 y = -  

1

x
+ C.

Solving this last equation for y gives the general solution:

 y = x3 a-  
1
x + Cb = -x2 + Cx3,  x 7 0. 

HistoricAL BiogrApHy

Adrien Marie Legendre

(1752–1833)
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EXAMPLE 3  Find the particular solution of

3xy′ - y = ln x + 1,  x 7 0,

satisfying y(1) = -2.

Solution With x 7 0, we write the equation in standard form:

y′ -
1
3x

  y =
ln x + 1

3x
.

Then the integrating factor is given by

y = e1- dx>3x = e(-1>3) ln x = x-1>3.  x 7 0

Thus

x-1>3 y =
1
3

 L (ln x + 1) x-4>3 dx.  Left-hand side is yy.

Integration by parts of the right-hand side gives

x-1>3 y = -x-1>3 (ln x + 1) + L x-4>3 dx + C.

Therefore

x-1>3 y = -x-1>3 (ln x + 1) - 3x-1>3 + C

or, solving for y,

y = -(ln x + 4) + Cx1>3.
When x = 1 and y = -2 this last equation becomes

-2 = -(0 + 4) + C,

so

C = 2.

Substitution into the equation for y gives the particular solution

 y = 2x1>3 - ln x - 4. 

In solving the linear equation in Example 2, we integrated both sides of the equation after 

multiplying each side by the integrating factor. However, we can shorten the amount of work, 

as in Example 3, by remembering that the left-hand side always integrates into the product 

y(x) # y of the integrating factor times the solution function. From Equation (2) this means that

 y(x) y = L  y(x)Q(x) dx. (4)

We need only integrate the product of the integrating factor y(x) with Q(x) on the right-

hand side of Equation (1) and then equate the result with y(x)y to obtain the general solu-

tion. Nevertheless, to emphasize the role of y(x) in the solution process, we sometimes 

follow the complete procedure as illustrated in Example 2.

Observe that if the function Q(x) is identically zero in the standard form given by  

Equation (1), the linear equation is separable and can be solved by the method of Section 7.4:

 
dy

dx
+ P(x) y = Q(x)

 
dy

dx
+ P(x) y = 0   Q(x) = 0

 
dy
y = -P(x) dx  Separating the variables
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RL Circuits

The diagram in Figure 9.9 represents an electrical circuit whose total resistance is a con-

stant R ohms and whose self-inductance, shown as a coil, is L henries, also a constant. 

There is a switch whose terminals at a and b can be closed to connect a constant electrical 

source of V volts.

Ohm’s Law, V = RI, has to be augmented for such a circuit. The correct equation 

accounting for both resistance and inductance is

 L  
di

dt
+ Ri = V, (5)

where i is the current in amperes and t is the time in seconds. By solving this equation, we 

can predict how the current will flow after the switch is closed.

EXAMPLE 4  The switch in the RL circuit in Figure 9.9 is closed at time t = 0. How 

will the current flow as a function of time?

Solution Equation (5) is a first-order linear differential equation for i as a function of t. 

Its standard form is

 
di

dt
+

R
L

 i =
V
L

, (6)

and the corresponding solution, given that i = 0 when t = 0, is

 i =
V
R

-
V
R

 e-(R>L) t. (7)

(We leave the calculation of the solution for you to do in Exercise 28.) Since R and L are 

positive, -(R>L) is negative and e-(R>L) t S 0 as t S q. Thus,

lim
tSq

 i = lim
tSq

 aV
R

-
V
R

 e-(R>L) tb =
V
R

-
V
R

# 0 =
V
R

.

At any given time, the current is theoretically less than V >R, but as time passes, the cur-

rent approaches the steady-state value V >R. According to the equation

L 
di

dt
+ Ri = V,

I = V>R is the current that will flow in the circuit if either L = 0 (no inductance) or 

di>dt = 0 (steady current, i = constant) (Figure 9.10).

Equation (7) expresses the solution of Equation (6) as the sum of two terms: a steady-

state solution V >R and a transient solution -(V>R) e-(R>L) t that tends to zero as t S q.

 

Switch

R L

a b

i

V

+ −

FIGURE 9.9 The RL circuit in  

Example 4.

i

t
0

432

i = (1 − e−Rt�L)V
R

I =
V
R I

e

L
R

L
R

L
R

L
R

15

FIGURE 9.10 The growth of the current 

in the RL circuit in Example 4. I is the 

current’s steady-state value. The  number 

t = L>R is the time constant of the 

circuit. The current gets to within 5% of 

its  steady-state value in 3 time constants 

(Exercise 27).

First-Order Linear Equations

Solve the differential equations in Exercises 1–14.

 1. x 
dy

dx
+ y = ex, x 7 0 2. ex 

dy

dx
+ 2ex y = 1

 3. xy′ + 3y =
sin x

x2
, x 7 0

 4. y′ + (tan x) y = cos2 x, -p>2 6 x 6 p>2

 5. x 
dy

dx
+ 2y = 1 -

1
x , x 7 0

 6. (1 + x) y′ + y = 2x 7. 2y′ = ex>2 + y

 8. e2x y′ + 2e2x y = 2x 9. xy′ - y = 2x ln x

 10. x 
dy

dx
=

cos x
x - 2y, x 7 0

EXERCISES 9.2
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 26. current in an open rL circuit If the switch is thrown open af-

ter the current in an RL circuit has built up to its steady-state value 

I = V>R, the decaying current (see accompanying igure) obeys 

the equation

L  
di

dt
+ Ri = 0,

  which is Equation (5) with V = 0.

a. Solve the equation to express i as a function of t.

b. How long after the switch is thrown will it take the current to 

fall to half its original value?

c. Show that the value of the current when t = L>R is I>e. (The 

signiicance of this time is explained in the next exercise.)

i

t
0

32

V
R

I
e

L
R

L
R

L
R

 27. time constants Engineers call the number L>R the time con-

stant of the RL circuit in Figure 9.10. The signiicance of the time 

constant is that the current will reach 95% of its inal value within 

3 time constants of the time the switch is closed (Figure 9.10). 

Thus, the time constant gives a built-in measure of how rapidly an 

individual circuit will reach equilibrium.

a. Find the value of i in Equation (7) that corresponds to 

t = 3L>R and show that it is about 95% of the steady-state 

value I = V>R.

b. Approximately what percentage of the steady-state current 

will be lowing in the circuit 2 time constants after the switch 

is closed (i.e., when t = 2L>R)?

 28. Derivation of Equation (7) in Example 4

a. Show that the solution of the equation

di

dt
+

R

L
 i =

V

L

is

i =
V

R
+ Ce-(R>L) t.

b. Then use the initial condition i(0) = 0 to determine the value 

of C. This will complete the derivation of Equation (7).

c. Show that i = V>R is a solution of Equation (6) and that 

i = Ce-(R>L) t satisies the equation

di

dt
+

R

L
 i = 0.

 11. (t - 1)3 
ds

dt
+ 4(t - 1)2s = t + 1, t 7 1

 12. (t + 1) 
ds

dt
+ 2s = 3(t + 1) +

1

(t + 1)2
, t 7 -1

 13. sin u 
dr

du
+ (cos u)r = tan u , 0 6 u 6 p>2

 14. tan u 
dr

du
+ r = sin2 u , 0 6 u 6 p>2

Solving Initial Value Problems

Solve the initial value problems in Exercises 15–20.

 15. 
dy

dt
+ 2y = 3, y(0) = 1

 16. t 
dy

dt
+ 2y = t3 , t 7 0, y(2) = 1

 17. u 
dy

du
+ y = sin u , u 7 0, y(p>2) = 1

 18. u 
dy

du
- 2y = u3 sec u tan u , u 7 0, y(p>3) = 2

 19. (x + 1) 
dy

dx
- 2(x2 + x) y =

ex2

x + 1
, x 7 -1, y(0) = 5

 20. 
dy

dx
+ xy = x , y(0) = -6

 21. Solve the exponential growth >decay initial value problem for y 

as a function of t by thinking of the diferential equation as a irst-

order linear equation with P(x) = -k and Q(x) = 0:

dy

dt
= ky (k constant) , y(0) = y0

 22. Solve the following initial value problem for u as a function of t:

du

dt
+

k

m
 u = 0 (k and m positive constants) , u(0) = u0

a. as a irst-order linear equation.

b. as a separable equation.

Theory and Examples

 23. Is either of the following equations correct? Give reasons for your 

answers.

a. x L  
1
x dx = x ln � x � + C b. x L  

1
x dx = x ln � x � + Cx

 24. Is either of the following equations correct? Give reasons for your 

answers.

a. 
1

cos x L  cos x dx = tan x + C

b. 
1

cos x L  cos x dx = tan x +
C

cos x

 25. current in a closed RL circuit How many seconds after the 

switch in an RL circuit is closed will it take the current i to reach 

half of its steady-state value? Notice that the time depends on R 

and L and not on how much voltage is applied.
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A Bernoulli diferential equation is of the form

dy

dx
+ P(x) y = Q(x) yn.

Observe that, if n = 0 or 1, the Bernoulli equation is linear. 

For other values of n, the substitution u = y1 - n transforms 

the Bernoulli equation into the linear equation

du

dx
+ (1 - n)P(x)u = (1 - n)Q(x).

For example, in the equation

dy

dx
- y = e-x y2

we have n = 2, so that u = y1 - 2 = y-1 and du>dx =  

-y-2 dy>dx. Then dy>dx = -y2 du>dx = -u-2 du>dx. 

 Substitution into the original equation gives

-u-2 
du

dx
- u-1 = e-x u-2

or, equivalently,

du

dx
+ u = -e-x.

This last equation is linear in the (unknown) dependent  variable u.

Solve the Bernoulli equations in Exercises 29–32.

 29. y′ - y = -y2 30. y′ - y = xy2

 31. xy′ + y = y-2 32. x2y′ + 2xy = y3

HISTORICAL BIOGRAPHY

Jacob Bernoulli

(1654–1705)

www.goo.gl/Y2KSo4

9.3 Applications

We now look at four applications of first-order differential equations. The first application 

analyzes an object moving along a straight line while subject to a force opposing its 

motion. The second is a model of population growth. The third application considers a 

curve or curves intersecting each curve in a second family of curves orthogonally (that is, 

at right angles). The final application analyzes chemical concentrations entering and leav-

ing a container. The various models involve separable or linear first-order equations.

Motion with Resistance Proportional to Velocity

In some cases it is reasonable to assume that the resistance encountered by a moving object, 

such as a car coasting to a stop, is proportional to the object’s velocity. The faster the object 

moves, the more its forward progress is resisted by the air through which it passes. Picture 

the object as a mass m moving along a coordinate line with position function s and velocity 

y at time t. From Newton’s second law of motion, the resisting force opposing the motion is

Force = mass * acceleration = m 
dy
dt

.

If the resisting force is proportional to velocity, we have

m 
dy
dt

= -ky  or  
dy
dt

= -  
k
m y  (k 7 0).

This is a separable differential equation representing exponential change. The solution to 

the equation with initial condition y = y0 at t = 0 is (Section 7.4)

 y = y0 e-(k>m) t. (1)

What can we learn from Equation (1)? For one thing, we can see that if m is some-

thing large, like the mass of a 20,000-ton ore boat in Lake Erie, it will take a long time for 

the velocity to approach zero (because t must be large in the exponent of the equation in 

order to make kt >m large enough for y to be small). We can learn even more if we inte-

grate Equation (1) to find the position s as a function of time t.

Suppose that an object is coasting to a stop and the only force acting on it is a resis-

tance proportional to its speed. How far will it coast? To find out, we start with Equation 

(1) and solve the initial value problem

ds

dt
= y0 e-(k>m) t,  s(0) = 0.

http://www.goo.gl/Y2KSo4
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Integrating with respect to t gives

s = -  
y0 m

k
 e-(k>m) t + C.

Substituting s = 0 when t = 0 gives

0 = -  
y0 m

k
+ C  and  C =

y0 m

k
.

The body’s position at time t is therefore

 s(t) = -  
y0 m

k
 e-(k>m) t +

y0 m

k
=

y0 m

k
 (1 - e-(k/m) t). (2)

To find how far the body will coast, we find the limit of s(t) as t S q. Since -(k>m) 6 0, 

we know that e-(k>m)t S 0 as t S q, so that

 lim
tSq

 s(t) = lim
tSq

 
y0 m

k
 (1 - e-(k>m) t)  =

y0 m

k
 (1 - 0) =

y0 m

k
.

Thus,

 Distance coasted =
y0 m

k
. (3)

The number y0 m>k is only an upper bound (albeit a useful one). It is true to life in one 

respect, at least: If m is large, the body will coast a long way.

EXAMPLE 1  For a 192-lb ice skater, the k in Equation (1) is about 1 >3 slug > sec and 

m = 192>32 = 6 slugs. How long will it take the skater to coast from 11 ft > sec (7.5 

mph) to 1 ft > sec? How far will the skater coast before coming to a complete stop?

Solution We answer the first question by solving Equation (1) for t:

 11e-t>18 = 1   Eq. (1) with k = 1>3,

 e-t>18 = 1>11   m =  6, y0 = 11, y = 1

 - t>18 = ln (1>11) = - ln 11

 t = 18  ln 11 ≈ 43 sec.

We answer the second question with Equation (3):

 Distance coasted =
y0 m

k
=

11 # 6

1>3 = 198 ft. 

Inaccuracy of the Exponential Population Growth Model

In Section 7.4 we modeled population growth with the Law of Exponential Change:

dP

dt
= kP,  P(0) = P0

where P is the population at time t, k 7 0 is a constant growth rate, and P0 is the size of 

the population at time t = 0. In Section 7.4 we found the solution P = P0 ekt to this model.

To assess the model, notice that the exponential growth differential equation says that

 
dP>dt

P
= k (4)

is constant. This rate is called the relative growth rate. Now, Table 9.3 gives the world 

population at midyear for the years 1980 to 1989. Taking dt = 1 and dP ≈ ∆P, we see 

In the English system, in which weight is 

measured in pounds, mass is measured in 

slugs. Thus,

Pounds = slugs * 32,

assuming that gravitational acceleration 

is 32 ft>sec2.
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from the table that the relative growth rate in Equation (4) is approximately the constant 

0.017. Thus, based on the tabled data with t = 0 representing 1980, t = 1 representing 

1981, and so forth, the world population could be modeled by the initial value problem,

dP

dt
= 0.017P,    P(0) = 4454.

The solution to this initial value problem gives the population function P = 4454e0.017t. In 

year 2008 (so t = 28), the solution predicts the world population in midyear to be about 

7169 million, or 7.2 billion (Figure 9.11), which is more than the actual population of 

6707 million from the U.S. Bureau of the Census. A more realistic model would consider 

environmental and other factors affecting the growth rate, which has been steadily declin-

ing to about 0.012 since 1987. We consider one such model in Section 9.4.

Orthogonal Trajectories

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the 

family at right angles, or orthogonally (Figure 9.12). For instance, each straight line 

through the origin is an orthogonal trajectory of the family of circles x2 + y2 = a2, 

 centered at the origin (Figure 9.13). Such mutually orthogonal systems of curves are of 

particular importance in physical problems related to electrical potential, where the curves 

in one family correspond to strength of an electric field and those in the other family cor-

respond to constant electric potential. They also occur in hydrodynamics and heat-flow 

problems.

EXAMPLE 2  Find the orthogonal trajectories of the family of curves xy = a, where 

a ≠ 0 is an arbitrary constant.

Solution The curves xy = a form a family of hyperbolas having the coordinate axes as 

asymptotes. First we find the slopes of each curve in this family, or their dy >dx values. 

Differentiating xy = a implicitly gives

x 
dy

dx
+ y = 0  or  

dy

dx
= -  

y

x
.

TABLE 9.3 World population (midyear)

year

population  

 (millions) �P>P
1980  4454 76>4454 ≈ 0.0171

1981  4530 80>4530 ≈ 0.0177

1982  4610 80>4610 ≈ 0.0174

1983  4690 80>4690 ≈ 0.0171

1984  4770 81>4770 ≈ 0.0170

1985  4851 82>4851 ≈ 0.0169

1986  4933 85>4933 ≈ 0.0172

1987  5018 87>5018 ≈ 0.0173

1988  5105 85>5105 ≈ 0.0167

1989  5190

Source: U.S. Bureau of the Census (Sept., 2007): www.census 

.gov/ipc/www/idb.

t

P

0 10 30

7000
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4000

World population (1980–2008)

P = 4454e0.017t

FIGURE 9.11 Notice that the value of 

the solution P = 4454e0.017t is 7169 when 

t = 28, which is nearly 7% more than the 

actual population in 2008.

Orthogonal trajectory

FIGURE 9.12 An orthogonal trajectory 

intersects the family of curves at right 

angles, or orthogonally.

x

y

FIGURE 9.13 Every straight line 

through the origin is orthogonal to the 

family of circles centered at the origin.

www.census.gov/ipc/www/idb
www.census.gov/ipc/www/idb
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Thus the slope of the tangent line at any point (x, y) on one of the hyperbolas xy = a is 

y′ = -y>x. On an orthogonal trajectory the slope of the tangent line at this same point 

must be the negative reciprocal, or x >y. Therefore, the orthogonal trajectories must satisfy 

the differential equation

dy

dx
=

x
y .

This differential equation is separable and we solve it as in Section 7.4:

 y dy = x dx   Separate variables.

 L  y dy = L  x dx   Integrate both sides.

 
1
2

 y2 =
1
2

 x2 + C

 y2 - x2 = b,  (5)

where b = 2C is an arbitrary constant. The orthogonal trajectories are the family of 

hyperbolas given by Equation (5) and sketched in Figure 9.14. 

x

y

x2 − y2 = b

b ≠ 0

xy = a,

a ≠ 0

0

FIGURE 9.14 Each curve is orthogonal 

to every curve it meets in the other family 

(Example 2).

Mixture Problems

Suppose a chemical in a liquid solution (or dispersed in a gas) runs into a container hold-

ing the liquid (or the gas) with, possibly, a specified amount of the chemical dissolved as 

well. The mixture is kept uniform by stirring and flows out of the container at a known 

rate. In this process, it is often important to know the concentration of the chemical in the 

container at any given time. The differential equation describing the process is based on 

the formula

 

Rate of change

of amount

in container

= £ rate at which

chemical

arrives

≥ - £ rate at which

chemical

departs.

≥ . (6)

If y(t) is the amount of chemical in the container at time t and V(t) is the total volume of 

liquid in the container at time t, then the departure rate of the chemical at time t is

 Departure rate =
y(t)

V(t)
# (outflow rate)

  = a concentration in

container at time t
b # (outflow rate). (7)

Accordingly, Equation (6) becomes

 
dy

dt
= (chemical>s arrival rate) -

y(t)

V(t)
# (outflow rate). (8)

If, say, y is measured in pounds, V in gallons, and t in minutes, the units in Equation (8) are

pounds

minutes
=

pounds

minutes
-

pounds

gallons
# gallons

minutes
.

EXAMPLE 3  In an oil refinery, a storage tank contains 2000 gal of gasoline that 

 initially has 100 lb of an additive dissolved in it. In preparation for winter weather,  

gasoline containing 2 lb of additive per gallon is pumped into the tank at a rate of 40 gal >min. 
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The well-mixed solution is pumped out at a rate of 45 gal >min. How much of the additive 

is in the tank 20 min after the pumping process begins (Figure 9.15)?

40 gal�min containing 2 lb�gal

45 gal�min containing  
y
  lb�gal

V

FIGURE 9.15 The storage tank in Example 3 mixes input 

liquid with stored liquid to produce an output liquid.

Solution Let y be the amount (in pounds) of additive in the tank at time t. We know that 

y = 100 when t = 0. The number of gallons of gasoline and additive in solution in the 

tank at any time t is

V(t) = 2000 gal + a40 
gal

min
- 45 

gal

min
b  (t min) = (2000 - 5t) gal.

Therefore,

 Rate out =
y(t)

V(t)
# outflow rate  Eq. (7)

 = a y

2000 - 5t
b  45   

Outflow rate is 45 gal/min 

and V = 2000 - 5t .  

 =
45y

2000 - 5t
 

lb
min

.

Also,

Rate in = a2 
lb
gal
b a40 

gal

min
b = 80 

lb
min

.

The differential equation modeling the mixture process is

dy

dt
= 80 -

45y

2000 - 5t
  Eq. (8)

in pounds per minute.

To solve this diferential equation, we irst write it in standard linear form:

dy

dt
+

45
2000 - 5t

 y = 80.

Thus, P(t) = 45>(2000 - 5t) and Q(t) = 80. The integrating factor is

 y(t) = e1 P dt = e1 
45

2000 - 5t dt

 = e-9 ln (2000 - 5t)   2000 - 5t 7 0 

 = (2000 - 5t)-9 .
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Multiplying both sides of the standard equation by y(t) and integrating both sides gives

 (2000 - 5t)-9 # ady

dt
+

45
2000 - 5t

 yb = 80(2000 - 5t)-9

 (2000 - 5t)-9 
dy

dt
+ 45(2000 - 5t)-10 y = 80(2000 - 5t)-9

 
d

dt
 3 (2000 - 5t)-9y4 = 80(2000 - 5t)-9

 (2000 - 5t)-9y = L80(2000 - 5t)-9 dt

 (2000 - 5t)-9y = 80 # (2000 - 5t)-8

(-8)(-5)
+ C.

The general solution is

y = 2(2000 - 5t) + C(2000 - 5t)9.

Because y = 100 when t = 0, we can determine the value of C:

 100 = 2(2000 - 0) + C(2000 - 0)9

 C = -  
3900

(2000)9
.

The particular solution of the initial value problem is

y = 2(2000 - 5t) -
3900

(2000)9
 (2000 - 5t)9.

The amount of additive in the tank 20 min after the pumping begins is

 y(20) = 232000 - 5(20)4 -
3900

(2000)9
 32000 - 5(20)4 9 ≈ 1342 lb. 

Motion Along a Line

 1. coasting bicycle A 66-kg cyclist on a 7-kg bicycle starts coast-

ing on level ground at 9 m > sec. The k in Equation (1) is about 3.9 

kg > sec.

a. About how far will the cyclist coast before reaching a com-

plete stop?

b. How long will it take the cyclist’s speed to drop to 1 m > sec?

 2. coasting battleship Suppose that an Iowa class battleship has 

mass around 51,000 metric tons (51,000,000 kg) and a k value in 

Equation (1) of about 59,000 kg > sec. Assume that the ship loses 

power when it is moving at a speed of 9 m > sec.

a. About how far will the ship coast before it is dead in the wa-

ter?

b. About how long will it take the ship’s speed to drop to  

1 m > sec?

 3. The data in Table 9.4 were collected with a motion detector and 

a CBL™ by Valerie Sharritts, then a mathematics teacher at St. 

Francis DeSales High School in Columbus, Ohio. The table shows 

the distance s (meters) coasted on inline skates in t sec by her 

daughter Ashley when she was 10 years old. Find a model for 

Ashley’s position given by the data in Table 9.4 in the form of 

EXERCISES 9.3

TABLE 9.4  Ashley Sharritts skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

 0  0  2.24  3.05  4.48  4.77

 0.16  0.31  2.40  3.22  4.64  4.82

 0.32  0.57  2.56  3.38  4.80  4.84

 0.48  0.80  2.72  3.52  4.96  4.86

 0.64  1.05  2.88  3.67  5.12  4.88

 0.80  1.28  3.04  3.82  5.28  4.89

 0.96  1.50  3.20  3.96  5.44  4.90

 1.12  1.72  3.36  4.08  5.60  4.90

 1.28  1.93  3.52  4.18  5.76  4.91

 1.44  2.09  3.68  4.31  5.92  4.90

 1.60  2.30  3.84  4.41  6.08  4.91

 1.76  2.53  4.00  4.52  6.24  4.90

 1.92  2.73  4.16  4.63  6.40  4.91

 2.08  2.89  4.32  4.69  6.56  4.91
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Equation (2). Her initial velocity was y0 = 2.75 m>sec, her mass 

m = 39.92 kg (she weighed 88 lb), and her total coasting distance 

was 4.91 m.

 4. coasting to a stop Table 9.5 shows the distance s (meters)  coasted 

on inline skates in terms of time t (seconds) by Kelly Schmitzer. 

Find a model for her position in the form of Equation (2). Her 

initial velocity was y0 = 0.80 m>sec, her mass m = 49.90 kg  

(110 lb), and her total coasting distance was 1.32 m.

Mixture Problems

 13. salt mixture A tank initially contains 100 gal of brine in which 

50 lb of salt are dissolved. A brine containing 2 lb >gal of salt runs 

into the tank at the rate of 5 gal >min. The mixture is kept uniform 

by stirring and lows out of the tank at the rate of 4 gal >min.

a. At what rate (pounds per minute) does salt enter the tank at 

time t?

b. What is the volume of brine in the tank at time t?

c. At what rate (pounds per minute) does salt leave the tank at 

time t?

d. Write down and solve the initial value problem describing the 

mixing process.

e. Find the concentration of salt in the tank 25 min after the 

process starts.

 14. Mixture problem A 200-gal tank is half full of distilled water. 

At time t = 0, a solution containing 0.5 lb >gal of concentrate en-

ters the tank at the rate of 5 gal >min, and the well-stirred mixture 

is withdrawn at the rate of 3 gal >min.

a. At what time will the tank be full?

b. At the time the tank is full, how many pounds of concentrate 

will it contain?

 15. Fertilizer mixture A tank contains 100 gal of fresh water. A 

solution containing 1 lb > gal of soluble lawn fertilizer runs into 

the tank at the rate of 1 gal >min, and the mixture is pumped 

out of the tank at the rate of 3 gal >min. Find the maximum 

amount of fertilizer in the tank and the time required to reach 

the maximum.

 16. carbon monoxide pollution An executive conference room 

of a corporation contains 4500 ft3 of air initially free of car-

bon monoxide. Starting at time t = 0, cigarette smoke contain-

ing 4% carbon monoxide is blown into the room at the rate of 

0.3 ft3>min. A ceiling fan keeps the air in the room well circu-

lated and the air leaves the room at the same rate of 0.3 ft3>min. 

Find the time when the concentration of carbon monoxide in the 

room reaches 0.01%.

TABLE 9.5  Kelly Schmitzer skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

 0  0  1.5  0.89  3.1  1.30

 0.1  0.07  1.7  0.97  3.3  1.31

 0.3  0.22  1.9  1.05  3.5  1.32

 0.5  0.36  2.1  1.11  3.7  1.32

 0.7  0.49  2.3  1.17  3.9  1.32

 0.9  0.60  2.5  1.22  4.1  1.32

 1.1  0.71  2.7  1.25  4.3  1.32

 1.3  0.81  2.9  1.28  4.5  1.32

Orthogonal Trajectories

In Exercises 5–10, find the orthogonal trajectories of the family of 

curves. Sketch several members of each family.

 5. y = mx 6. y = cx2 7. kx2 + y2 = 1

 8. 2x2 + y2 = c2 9. y = ce-x 10. y = ekx

 11. Show that the curves 2x2 + 3y2 = 5 and y2 = x3 are orthogonal.

 12. Find the family of solutions of the given diferential equation and 

the family of orthogonal trajectories. Sketch both families.

a. x dx + y dy = 0

b. x dy - 2y dx = 0

9.4 Graphical Solutions of Autonomous Equations

In Chapter 4 we learned that the sign of the first derivative tells where the graph of a func-

tion is increasing and where it is decreasing. The sign of the second derivative tells the 

concavity of the graph. We can build on our knowledge of how derivatives determine the 

shape of a graph to solve differential equations graphically. We will see that the ability to 

discern physical behavior from graphs is a powerful tool in understanding real-world sys-

tems. The starting ideas for a graphical solution are the notions of phase line and equilib-

rium value. We arrive at these notions by investigating, from a point of view quite different 

from that studied in Chapter 4, what happens when the derivative of a differentiable func-

tion is zero.

Equilibrium Values and Phase Lines

When we differentiate implicitly the equation

1
5

  ln (5y - 15) = x + 1,
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we obtain

1
5

 a 5
5y - 15

b  
dy

dx
= 1.

Solving for y′ = dy>dx we find y′ = 5y - 15 = 5(y - 3). In this case the derivative y′ 

is a function of y only (the dependent variable) and is zero when y = 3.

A differential equation for which dy >dx is a function of y only is called an autonomous 

differential equation. Let’s investigate what happens when the derivative in an autonomous 

equation equals zero. We assume any derivatives are continuous.

DEFINITION If dy>dx = g(y) is an autonomous differential equation, then the 

values of y for which dy>dx = 0 are called equilibrium values or rest points.

Thus, equilibrium values are those at which no change occurs in the dependent vari-

able, so y is at rest. The emphasis is on the value of y where dy>dx = 0, not the value of x, 

as we studied in Chapter 4. For example, the equilibrium values for the autonomous dif-

ferential equation

dy

dx
= (y + 1)(y - 2)

are y = -1 and y = 2.

To construct a graphical solution to an autonomous differential equation, we first 

make a phase line for the equation, a plot on the y-axis that shows the equation’s equilib-

rium values along with the intervals where dy >dx and d2y>dx2 are positive and negative. 

Then we know where the solutions are increasing and decreasing, and the concavity of the 

solution curves. These are the essential features we found in Section 4.4, so we can deter-

mine the shapes of the solution curves without having to find formulas for them.

EXAMPLE 1  Draw a phase line for the equation

dy

dx
= ( y + 1)(y - 2)

and use it to sketch solutions to the equation.

Solution

1.  Draw a number line for y and mark the equilibrium values y = -1 and y = 2, where 

dy>dx = 0.

−1 2

y

2.  Identify and label the intervals where y′ 7 0 and y′ 6 0. This step resembles what 

we did in Section 4.3, only now we are marking the y-axis instead of the x-axis.

–1 2

y
y′ > 0 y′ < 0 y′ > 0

We can encapsulate the information about the sign of y′ on the phase line it-

self. Since y′ 7 0 on the interval to the left of y = -1, a solution of the diferential 
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 equation with a y-value less than -1 will increase from there toward y = -1. We 

display this information by drawing an arrow on the interval pointing to -1.

−1 2

y

Similarly, y′ 6 0 between y = -1 and y = 2, so any solution with a value in 

this interval will decrease toward y = -1.

For y 7 2, we have y′ 7 0, so a solution with a y-value greater than 2 will in-

crease from there without bound.

In short, solution curves below the horizontal line y = -1 in the xy-plane rise 

toward y = -1. Solution curves between the lines y = -1 and y = 2 fall away from 

y = 2 toward y = -1. Solution curves above y = 2 rise away from y = 2 and keep 

going up.

3.  Calculate y″ and mark the intervals where y″ 7 0 and y″ 6 0. To ind y″, we dif-

ferentiate y′ with respect to x, using implicit diferentiation.

 y′ = ( y + 1)(y - 2) = y2 - y - 2  Formula for y′c  

 y″ =
d

dx
 (y′) =

d

dx
 (y2 - y - 2)   Substitute for y′.

 = 2yy′ - y′   Differentiate implicitly 

with respect to x.

 

 = (2y - 1) y′

 = (2y - 1)(y + 1)(y - 2).

  From this formula, we see that y″ changes sign at y = -1, y = 1>2, and y = 2. We 

add the sign information to the phase line.

−1 2
y

y′ > 0 y′ < 0 y′ < 0 y′ > 0

y″ < 0 y″ > 0 y″ < 0 y″ > 0

1
2

4.  Sketch an assortment of solution curves in the xy-plane. The horizontal lines 

y = -1, y = 1>2, and y = 2 partition the plane into horizontal bands in which we 

know the signs of y′ and y″. In each band, this information tells us whether the solu-

tion curves rise or fall and how they bend as x increases (Figure 9.16).

The “equilibrium lines” y = -1 and y = 2 are also solution curves. (The con-

stant functions y = -1 and y = 2 satisfy the diferential equation.) Solution curves 

that cross the line y = 1>2 have an inlection point there. The concavity changes from 

concave down (above the line) to concave up (below the line).

As predicted in Step 2, solutions in the middle and lower bands approach the equi-

librium value y = -1 as x increases. Solutions in the upper band rise steadily away 

from the value y = 2. 

Stable and Unstable Equilibria

Look at Figure 9.16 once more, in particular at the behavior of the solution curves near 

the equilibrium values. Once a solution curve has a value near y = -1, it tends steadily 

toward that value; y = -1 is a stable equilibrium. The behavior near y = 2 is just the 

opposite: All solutions except the equilibrium solution y = 2 itself move away from it as 

x increases. We call y = 2 an unstable equilibrium. If the solution is at that value, it 

stays, but if it is off by any amount, no matter how small, it moves away. (Sometimes an 

equilibrium value is unstable because a solution moves away from it only on one side of 

the point.)

Now that we know what to look for, we can already see this behavior on the initial 

phase line (the second diagram in Step 2 of Example 1). The arrows lead away from y = 2 

and, once to the left of y = 2, toward y = -1.

y

x

−1

2

0

y′ > 0

y′ < 0

y′ < 0

y′ > 0

y″ < 0

y″ > 0

y″ < 0

y″ > 0

1
2

FIGURE 9.16 Graphical solutions from 

Example 1 include the horizontal lines 

y = -1 and y = 2 through the equilib-

rium values. No two solution curves can 

ever cross or touch each other.
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We now present several applied examples for which we can sketch a family of solu-

tion curves to the differential equation models using the method in Example 1.

Newton’s Law of Cooling

In Section 7.4 we solved analytically the differential equation

dH

dt
= -k(H - HS),  k 7 0

modeling Newton’s Law of Cooling. Here H is the temperature of an object at time t and 

HS is the constant temperature of the surrounding medium.

Suppose that the surrounding medium (say, a room in a house) has a constant Celsius 

temperature of 15°C. We can then express the difference in temperature as H(t) - 15. 

Assuming H is a differentiable function of time t, by Newton’s Law of Cooling, there is a 

constant of proportionality k 7 0 such that

 
dH

dt
= -k(H - 15) (1)

(minus k to give a negative derivative when H 7 15).

Since dH>dt = 0 at H = 15, the temperature 15°C is an equilibrium value. If 

H 7 15, Equation (1) tells us that (H - 15) 7 0 and dH>dt 6 0. If the object is hotter 

than the room, it will get cooler. Similarly, if H 6 15, then (H - 15) 6 0 and 

dH>dt 7 0. An object cooler than the room will warm up. Thus, the behavior described 

by Equation (1) agrees with our intuition of how temperature should behave. These obser-

vations are captured in the initial phase line diagram in Figure 9.17. The value H = 15 is 

a stable equilibrium.

We determine the concavity of the solution curves by differentiating both sides of 

Equation (1) with respect to t:

 
d

dt
 adH

dt
b =

d

dt
  (-k(H - 15))

 
d2H

dt2
= -k 

dH

dt
.

Since -k is negative, we see that d2H>dt2 is positive when dH>dt 6 0 and negative when 

dH>dt 7 0. Figure 9.18 adds this information to the phase line.

The completed phase line shows that if the temperature of the object is above the 

equilibrium value of 15°C, the graph of H(t) will be decreasing and concave upward. If the 

temperature is below 15°C (the temperature of the surrounding medium), the graph of H(t) 

will be increasing and concave downward. We use this information to sketch typical solu-

tion curves (Figure 9.19).

From the upper solution curve in Figure 9.19, we see that as the object cools down, 

the rate at which it cools slows down because dH>dt approaches zero. This observation is 

implicit in Newton’s Law of Cooling and contained in the differential equation, but the 

flattening of the graph as time advances gives an immediate visual representation of the 

phenomenon.

A Falling Body Encountering Resistance

Newton observed that the rate of change in momentum encountered by a moving object is 

equal to the net force applied to it. In mathematical terms,

 F =
d

dt
 (my), (2)

15
H

> 0 < 0
dH

dt

dH

dt

FIGURE 9.17 First step in construct-

ing the phase line for Newton’s Law of 

Cooling. The temperature tends toward the 

equilibrium (surrounding-medium) value 

in the long run.

15
H

< 0
dH

dt
> 0

dH

dt

< 0
d2H

dt2
> 0

d2H

dt2

FIGURE 9.18 The complete phase line 

for Newton’s Law of Cooling.

H

Initial

temperature

t

15

Temperature

of surrounding

medium

Initial

temperature

FIGURE 9.19 Temperature versus time. 

Regardless of initial temperature, the 

object’s temperature H(t) tends toward 

15°C, the temperature of the surrounding 

medium.
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where F is the net force acting on the object, and m and y are the object’s mass and veloc-

ity. If m varies with time, as it will if the object is a rocket burning fuel, the right-hand side 

of Equation (2) expands to

m 
dy
dt

+ y 
dm

dt

using the Derivative Product Rule. In many situations, however, m is constant, dm>dt = 0, 

and Equation (2) takes the simpler form

 F = m 
dy
dt
  or  F = ma, (3)

known as Newton’s second law of motion (see Section 9.3).

In free fall, the constant acceleration due to gravity is denoted by g and the one force 

propelling the body downward is

Fp = mg,

the force due to gravity. If, however, we think of a real body falling through the air—say, a 

penny from a great height or a parachutist from an even greater height—we know that at 

some point air resistance is a factor in the speed of the fall. A more realistic model of free fall 

would include air resistance, shown as a force Fr in the schematic diagram in Figure 9.20.

For low speeds well below the speed of sound, physical experiments have shown that 

Fr is approximately proportional to the body’s velocity. The net force on the falling body 

is therefore

F = Fp - Fr ,

giving

 m 
dy
dt

= mg - ky

  
dy
dt

= g -
k

m
 y . (4)

We can use a phase line to analyze the velocity functions that solve this differential 

equation.

The equilibrium point, obtained by setting the right-hand side of Equation (4) equal to 

zero, is

y =
mg

k
.

If the body is initially moving faster than this, dy>dt is negative and the body slows 

down. If the body is moving at a velocity below mg>k, then dy>dt 7 0 and the body 

speeds up. These observations are captured in the initial phase line diagram in Figure 9.21.

We determine the concavity of the solution curves by differentiating both sides of 

Equation (4) with respect to t:

d2y

dt2
=

d

dt
 ag -

k

m
 yb = -  

k

m
 
dy
dt

.

We see that d2y>dt2 6 0 when y 6 mg>k and d2y>dt2 7 0 when y 7 mg>k.  

 Figure 9.22 adds this information to the phase line. Notice the similarity to the phase line 

for Newton’s Law of Cooling (Figure 9.18). The solution curves are similar as well 

 (Figure 9.23).

m
y = 0

y positive

Fp = mg

Fr = ky

FIGURE 9.20 An object falling under 

the propulsion due to gravity, with a 

 resistive force assumed to be proportional 

to the velocity.

y

> 0 < 0
dy
dt

dy
dt

mg

k

FIGURE 9.21 Initial phase line for the 

falling body encountering resistance.

y

< 0
dy
dt

> 0
dy
dt

< 0
d2y

dt2
> 0

d2y

dt2

mg

k

FIGURE 9.22 The completed phase line 

for the falling body.

Initial
velocity

Initial
velocity

y

t

mg

k

mg

k
y =

FIGURE 9.23 Typical velocity curves 

for a falling body encountering resistance. 

The value y = mg>k is the terminal 

 velocity.
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Figure 9.23 shows two typical solution curves. Regardless of the initial velocity, we 

see the body’s velocity tending toward the limiting value y = mg>k. This value, a stable 

equilibrium point, is called the body’s terminal velocity. Skydivers can vary their termi-

nal velocity from 95 mph to 180 mph by changing the amount of body area opposing the 

fall, which affects the value of k.

Logistic Population Growth

In Section 9.3 we examined population growth using the model of exponential change. 

That is, if P represents the number of individuals and we neglect departures and arrivals, 

then

 
dP

dt
= kP, (5)

where k 7 0 is the birth rate minus the death rate per individual per unit time.

Because the natural environment has only a limited number of resources to sustain 

life, it is reasonable to assume that only a maximum population M can be accommodated. 

As the population approaches this limiting population or carrying capacity, resources 

become less abundant and the growth rate k decreases. A simple relationship exhibiting 

this behavior is

k = r (M - P),

where r 7 0 is a constant. Notice that k decreases as P increases toward M and that k is 

negative if P is greater than M. Substituting r(M - P) for k in Equation (5) gives the dif-

ferential equation

 
dP

dt
= r(M - P)P = rMP - rP2. (6)

The model given by Equation (6) is referred to as logistic growth.

We can forecast the behavior of the population over time by analyzing the phase line 

for Equation (6). The equilibrium values are P = M  and P = 0, and we can see that 

dP>dt 7 0 if 0 6 P 6 M  and dP>dt 6 0 if P 7 M. These observations are recorded on 

the phase line in Figure 9.24.

We determine the concavity of the population curves by differentiating both sides of 

Equation (6) with respect to t:

 
d2P

dt2
=

d

dt
 (rMP - rP2)

 = rM 
dP

dt
- 2rP 

dP

dt

  = r (M - 2P) 
dP

dt
.  (7)

If P = M>2, then d2P>dt2 = 0. If P 6 M>2, then (M - 2P) and dP>dt are positive and 

d2P>dt2 7 0. If M>2 6 P 6 M, then (M - 2P) 6 0, dP>dt 7 0, and d2P>dt2 6 0. If 

P 7 M, then (M - 2P) and dP >dt are both negative and d2P>dt2 7 0. We add this 

information to the phase line (Figure 9.25).

The lines P = M>2 and P = M  divide the first quadrant of the tP-plane into horizon-

tal bands in which we know the signs of both dP >dt and d2P>dt2. In each band, we know 

how the solution curves rise and fall, and how they bend as time passes. The equilibrium 

lines P = 0 and P = M  are both population curves. Population curves crossing the line 

0 M
P

> 0 < 0
dP

dt

dP

dt

FIGURE 9.24 The initial phase line for 

logistic growth (Equation 6).

0 M
P

< 0
dP

dt
> 0

dP

dt

> 0
d2P

dt2
> 0

d2P

dt2
< 0

d2P

dt2

M
2

FIGURE 9.25 The completed phase line 

for logistic growth (Equation 6).
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FIGURE 9.26 Population curves for logistic growth.

Phase Lines and Solution Curves

In Exercises 1–8,

a. Identify the equilibrium values. Which are stable and which 

are unstable?

b. Construct a phase line. Identify the signs of y′ and y″.

c. Sketch several solution curves.

 1. 
dy

dx
= (y + 2)(y - 3) 2. 

dy

dx
= y2 - 4

 3. 
dy

dx
= y3 - y 4. 

dy

dx
= y2 - 2y

 5. y′ = 2y, y 7 0 6. y′ = y - 2y, y 7 0

 7. y′ = (y - 1)(y - 2)(y - 3) 8. y′ = y3 - y2

Models of Population Growth

The autonomous differential equations in Exercises 9–12 represent 

models for population growth. For each exercise, use a phase line 

analysis to sketch solution curves for P(t), selecting different starting 

values P(0). Which equilibria are stable, and which are unstable?

 9. 
dP

dt
= 1 - 2P 10. 

dP

dt
= P(1 - 2P)

 11. 
dP

dt
= 2P(P - 3) 12. 

dP

dt
= 3P(1 - P)aP -

1
2
b

 13. catastrophic change in logistic growth Suppose that a healthy 

population of some species is growing in a limited environment 

and that the current population P0 is fairly close to the carrying 

capacity M0. You might imagine a population of ish living in a 

freshwater lake in a wilderness area. Suddenly a catastrophe such 

as the Mount St. Helens volcanic eruption contaminates the lake 

and destroys a signiicant part of the food and oxygen on which 

the ish depend. The result is a new environment with a carry-

ing capacity M1 considerably less than M0 and, in fact, less than 

the current population P0. Starting at some time before the catas-

trophe, sketch a “before-and-after” curve that shows how the ish 

population responds to the change in environment.

 14. controlling a population The ish and game department in a 

certain state is planning to issue hunting permits to control the 

deer population (one deer per permit). It is known that if the deer 

population falls below a certain level m, the deer will become 

extinct. It is also known that if the deer population rises above 

the carrying capacity M, the population will decrease back to M 

through disease and malnutrition.

a. Discuss the reasonableness of the following model for the 

growth rate of the deer population as a function of time:

dP

dt
= rP(M - P)(P - m),

where P is the population of the deer and r is a positive con-

stant of proportionality. Include a phase line.

b. Explain how this model difers from the logistic model 

dP>dt = rP(M - P) . Is it better or worse than the logistic 

model?

c. Show that if P 7 M  for all t, then lim
 

tSq P(t) = M.

d. What happens if P 6 m for all t?

e. Discuss the solutions to the diferential equation. What are 

the equilibrium points of the model? Explain the dependence 

of the steady-state value of P on the initial values of P. About 

how many permits should be issued?

Applications and Examples

 15. skydiving If a body of mass m falling from rest under the action 

of gravity encounters an air resistance proportional to the square 

of velocity, then the body’s velocity t seconds into the fall satisies 

the equation

m 
dy

dt
= mg - ky2,  k 7 0

  where k is a constant that depends on the body’s aerodynamic 

properties and the density of the air. (We assume that the fall is too 

short to be afected by changes in the air’s density.)

EXERCISES 9.4

P = M>2 have an inflection point there, giving them a sigmoid shape (curved in two 

directions like a letter S). Figure 9.26 displays typical population curves. Notice that each 

population curve approaches the limiting population M as t S q.
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a. Draw a phase line for the equation.

b. Sketch a typical velocity curve.

c. For a 110-lb skydiver (mg = 110) and with time in seconds 

and distance in feet, a typical value of k is 0.005. What is the 

diver’s terminal velocity? Repeat for a 200-lb skydiver.

 16. resistance proportional to !Y A body of mass m is projected 

vertically downward with initial velocity y0. Assume that the re-

sisting force is proportional to the square root of the velocity and 

ind the terminal velocity from a graphical analysis.

 17. sailing A sailboat is running along a straight course with the 

wind providing a constant forward force of 50 lb. The only other 

force acting on the boat is resistance as the boat moves through 

the water. The resisting force is numerically equal to ive times 

the boat’s speed, and the initial velocity is 1 ft > sec. What is 

the maximum velocity in feet per second of the boat under this 

wind?

 18. the spread of information Sociologists recognize a phenom-

enon called social difusion, which is the spreading of a piece of 

information, technological innovation, or cultural fad among a 

population. The members of the population can be divided into 

two classes: those who have the information and those who do 

not. In a ixed population whose size is known, it is reasonable 

to assume that the rate of difusion is proportional to the number 

who have the information times the number yet to receive it. If X 

denotes the number of individuals who have the information in a 

population of N people, then a mathematical model for social dif-

fusion is given by

dX

dt
= kX(N - X),

  where t represents time in days and k is a positive constant.

a. Discuss the reasonableness of the model.

b. Construct a phase line identifying the signs of X′ and X″.

c. Sketch representative solution curves.

d. Predict the value of X for which the information is spread-

ing most rapidly. How many people eventually receive the 

information?

 19. current in an RL circuit The accompanying diagram repre-

sents an electrical circuit whose total resistance is a constant R 

ohms and whose self-inductance, shown as a coil, is L henries, 

also a constant. There is a switch whose terminals at a and b can 

be closed to connect a constant electrical source of V volts. From 

Section 9.2, we have

L  
di

dt
+ Ri = V,

  where i is the current in amperes and t is the time in seconds.

Switch

R L

a b

i

V

+ −

   Use a phase line analysis to sketch the solution curve assuming 

that the switch in the RL circuit is closed at time t = 0. What hap-

pens to the current as t S q? This value is called the steady-state 

solution.

 20. A pearl in shampoo Suppose that a pearl is sinking in a thick 

luid, like shampoo, subject to a frictional force opposing its fall 

and proportional to its velocity. Suppose that there is also a resis-

tive buoyant force exerted by the shampoo. According to Archi-

medes’ principle, the buoyant force equals the weight of the luid 

displaced by the pearl. Using m for the mass of the pearl and P 

for the mass of the shampoo displaced by the pearl as it descends, 

complete the following steps.

a. Draw a schematic diagram showing the forces acting on the 

pearl as it sinks, as in Figure 9.20.

b. Using y(t) for the pearl’s velocity as a function of time t, 

write a diferential equation modeling the velocity of the pearl 

as a falling body.

c. Construct a phase line displaying the signs of y′ and y″.

d. Sketch typical solution curves.

e. What is the terminal velocity of the pearl?

9.5 Systems of Equations and Phase Planes

In some situations we are led to consider not one, but several, first-order differential equa-

tions. Such a collection is called a system of differential equations. In this section we pres-

ent an approach to understanding systems through a graphical procedure known as a 

phase-plane analysis. We present this analysis in the context of modeling the populations 

of trout and bass living in a common pond.

Phase Planes

A general system of two first-order differential equations may take the form

dx

dt
= F(x, y),

dy

dt
= G(x, y).



554 Chapter 9 First-Order Differential Equations

In this system we often think of t as representing time and take x(t) and y(t) to be two func-

tions of t. Such a system of equations is called autonomous because dx>dt and dy>dt do not 

depend on the independent variable time t, but only on the dependent variables x and y. A 

solution of such a system consists of a pair of functions x(t) and y(t) that satisfies both of the 

differential equations simultaneously for every t over some time interval (finite or infinite).

We cannot look at just one of these equations in isolation to find solutions x(t) or y(t) 

since each derivative depends on both x and y. To gain insight into the solutions, we look 

at both dependent variables together by plotting the points (x(t), y(t)) in the xy-plane starting 

at some specified point. Therefore the solution functions define a solution curve through the 

specified point, called a trajectory of the system. The xy-plane itself, in which these 

 trajectories reside, is referred to as the phase plane. Thus we consider both solutions 

together and study the behavior of all the solution trajectories in the phase plane. It can be 

proved that two trajectories can never cross or touch each other. (Solution trajectories are 

examples of parametric curves, which are studied in detail in Chapter 11.)

A Competitive-Hunter Model

Imagine two species of fish, say trout and bass, competing for the same limited resources 

(such as food and oxygen) in a certain pond. We let x(t) represent the number of trout and 

y(t) the number of bass living in the pond at time t. In reality x(t) and y(t) are always inte-

ger valued, but we will approximate them with real-valued differentiable functions. This 

allows us to apply the methods of differential equations.

Several factors affect the rates of change of these populations. As time passes, each 

species breeds, so we assume its population increases proportionally to its size. Taken by 

itself, this would lead to exponential growth in each of the two populations. However, there 

is a countervailing effect from the fact that the two species are in competition. A large num-

ber of bass tends to cause a decrease in the number of trout, and vice versa. Our model takes 

the size of this effect to be proportional to the frequency with which the two species inter-

act, which in turn is proportional to xy, the product of the two populations. These consider-

ations lead to the following model for the growth of the trout and bass in the pond:

 
dx

dt
= (a - by)x,  (1a)

 
dy

dt
= (m - nx)y. (1b)

Here x(t) represents the trout population, y(t) the bass population, and a, b, m, n are positive 

constants. A solution of this system then consists of a pair of functions x(t) and y(t) that 

gives the population of each fish species at time t. Each equation in (1) contains both of the 

unknown functions x and y, so we are unable to solve them individually. Instead, we will use 

a graphical analysis to study the solution trajectories of this competitive-hunter model.

We now examine the nature of the phase plane in the trout-bass population model. We 

will be interested in the 1st quadrant of the xy-plane, where x Ú 0 and y Ú 0, since popu-

lations cannot be negative. First, we determine where the bass and trout populations are 

both constant. Noting that the (x(t), y(t)) values remain unchanged when dx>dt = 0 and 

dy>dt = 0, Equations (1a and 1b) then become

(a - by)x = 0,

(m - nx)y = 0.

This pair of simultaneous equations has two solutions: (x, y) = (0, 0) and (x, y) =  

(m>n, a>b). At these (x, y) values, called equilibrium or rest points, the two populations 

remain at constant values over all time. The point (0, 0) represents a pond containing no 

members of either fish species; the point (m>n, a>b) corresponds to a pond with an 

unchanging number of each fish species.

Next, we note that if y = a>b, then Equation (1a) implies dx>dt = 0, so the trout 

population x(t) is constant. Similarly, if x = m>n, then Equation (1b) implies dy>dt = 0, 

and the bass population y(t) is constant. This information is recorded in Figure 9.27.
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FIGURE 9.27 Rest points in the  competitive-hunter model given by Equations (1a) and (1b).

In setting up our competitive-hunter model, precise values of the constants a, b, m, n will 

not generally be known. Nonetheless, we can analyze the system of Equations (1) to learn the 

nature of its solution trajectories. We begin by determining the signs of dx>dt and dy>dt 

throughout the phase plane. Although x(t) represents the number of trout and y(t) the number 

of bass at time t, we are thinking of the pair of values (x(t), y(t)) as a point tracing out a trajec-

tory curve in the phase plane. When dx>dt is positive, x(t) is increasing and the point is mov-

ing to the right in the phase plane. If dx>dt is negative, the point is moving to the left. Likewise, 

the point is moving upward where dy>dt is positive and downward where dy>dt is negative.

We saw that dy>dt = 0 along the vertical line x = m>n. To the left of this line, dy>dt 

is positive since dy>dt = (m - nx)y and x 6 m>n. So the trajectories on this side of the 

line are directed upward. To the right of this line, dy>dt is negative and the trajectories 

point downward. The directions of the associated trajectories are indicated in Figure 9.28. 

Similarly, above the horizontal line y = a>b, we have dx>dt 6 0 and the trajectories head 

leftward; below this line they head rightward, as shown in Figure 9.29. Combining this 

information gives four distinct regions in the plane A, B, C, D, with their respective trajec-

tory directions shown in Figure 9.30.

Next, we examine what happens near the two equilibrium points. The trajectories near 

(0, 0) point away from it, upward and to the right. The behavior near the equilibrium point 

(m>n, a>b) depends on the region in which a trajectory begins. If it starts in region B, for 

instance, then it will move downward and leftward toward the equilibrium point. Depend-

ing on where the trajectory begins, it may move downward into region D, leftward into 

region A, or perhaps straight into the equilibrium point. If it enters into regions A or D, 

then it will continue to move away from the rest point. We say that both rest points are 

unstable, meaning (in this setting) there are trajectories near each point that head away 

from them. These features are indicated in Figure 9.31.

It turns out that in each of the half-planes above and below the line y = a>b, there is 

exactly one trajectory approaching the equilibrium point (m>n, a>b) (see Exercise 7). 

Above these two trajectories the bass population increases and below them it decreases. 

The two trajectories approaching the equilibrium point are suggested in Figure 9.32.
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FIGURE 9.28 To the left of the line 

x = m>n the trajectories move upward, 

and to the right they move downward.
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FIGURE 9.29 Above the line y = a>b 

the trajectories move to the left, and below 

it they move to the right.
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FIGURE 9.30 Composite graphical 

analysis of the trajectory directions in the 

four regions determined by x = m>n and  

y = a>b.
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FIGURE 9.31 Motion along the  

trajectories near the rest points (0, 0)  

and (m>n, a>b).
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FIGURE 9.32 Qualitative results of  

analyzing the competitive-hunter model.  

There are exactly two trajectories ap-

proaching the point (m>n, a>b).
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Our graphical analysis leads us to conclude that, under the assumptions of the 

 competitive-hunter model, it is unlikely that both species will reach equilibrium levels. 

This is because it would be almost impossible for the fish populations to move exactly 

along one of the two approaching trajectories for all time. Furthermore, the initial popula-

tions point (x0, y0) determines which of the two species is likely to survive over time, and 

mutual coexistence of the species is highly improbable.

y

x

y

x

y

x

(a) (b) (c)

(x0, y0) (x0, y0) (x0, y0)

FIGURE 9.34 Three possible trajectory motions: (a) periodic motion, (b) motion 

toward an asymptotically stable rest point, and (c) motion near an unstable rest point.

Another Type of Behavior

The system

 
dx

dt
= y + x - x(x2 + y2),  (2a)

 
dy

dt
= -x + y - y(x2 + y2) (2b)

can be shown to have only one equilibrium point at (0, 0). Yet any trajectory starting on 

the unit circle traverses it clockwise because, when x2 + y2 = 1, we have dy>dx = -x>y 

(see  Exercise 2). If a trajectory starts inside the unit circle, it spirals outward, asymptoti-

cally approaching the circle as t S q. If a trajectory starts outside the unit circle, it spirals 

inward, again asymptotically approaching the circle as t S q. The circle x2 + y2 = 1 is 

called a limit cycle of the system (Figure 9.35). In this system, the values of x and y even-

tually become periodic.

y

x

(x0, y0)

x2 + y2 = 1

(x1, y1)

FIGURE 9.35 The solution x2 + y2 = 1 

is a limit cycle.

 1. List three important considerations that are ignored in the 

 competitive-hunter model as presented in the text.

 2. For the system (2a) and (2b), show that any trajectory starting on 

the unit circle x2 + y2 = 1 will traverse the unit circle in a pe-

riodic solution. First introduce polar coordinates and rewrite the 

system as dr>dt = r(1 - r2) and -du>dt = -1.

 3. Develop a model for the growth of trout and bass, assuming that 

in isolation trout demonstrate exponential decay [so that a 6 0 

in Equations (1a) and (1b)] and that the bass population grows 

logistically with a population limit M. Analyze graphically the 

motion in the vicinity of the rest points in your model. Is coexis-

tence possible?

EXERCISES 9.5

Limitations of the Phase-Plane Analysis Method

Unlike the situation for the competitive-hunter model, it is not always possible to deter-

mine the behavior of trajectories near a rest point. For example, suppose we know that the 

trajectories near a rest point, chosen here to be the origin (0, 0), behave as in Figure 9.33. 

The information provided by Figure 9.33 is not sufficient to distinguish between the three 

possible trajectories shown in Figure 9.34. Even if we could determine that a trajectory 

near an equilibrium point resembles that of Figure 9.34c, we would still not know how the 

other trajectories behave. It could happen that a trajectory closer to the origin behaves like 

the motions displayed in Figure 9.34a or 9.34b. The spiraling trajectory in Figure 9.34c 

can never actually reach the rest point in a finite time period.

FIGURE 9.33 Trajectory direction near 

the rest point (0, 0).
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b. Separate the variables, integrate, and exponentiate to obtain

yae-by = Kxme-nx,

where K is a constant of integration.

c. Let ƒ(y) = ya>eby and g(x) = xm>enx. Show that ƒ(y) has a 

unique maximum of My = (a>eb)a when y = a>b as shown 

in Figure 9.36. Similarly, show that g(x) has a unique  

maximum Mx = (m>en)m when x = m>n, also shown in 

Figure 9.36.

 4. How might the competitive-hunter model be validated? Include a 

discussion of how the various constants a, b, m, and n might be 

estimated. How could state conservation authorities use the model 

to ensure the survival of both species?

 5. Consider another competitive-hunter model deined by

dx

dt
= aa1 -

x

k1
b  x - bxy,

dy

dt
= ma1 -

y

k2
b  y - nxy,

where x and y represent trout and bass populations, respectively.

a. What assumptions are implicitly being made about the 

growth of trout and bass in the absence of competition?

b. Interpret the constants a, b, m, n, k1, and k2 in terms of the 

physical problem.

c. Perform a graphical analysis:

 i) Find the possible equilibrium levels.

 ii) Determine whether coexistence is possible.

 iii) Pick several typical starting points and sketch typical 

trajectories in the phase plane.

 iv) Interpret the outcomes predicted by your graphical 

analysis in terms of the constants a, b, m, n, k1, and k2.

Note: When you get to part (iii), you should realize that ive 

cases exist. You will need to analyze all ive cases.

 6. An economic model Consider the following economic model. 

Let P be the price of a single item on the market. Let Q be the 

quantity of the item available on the market. Both P and Q are 

functions of time. If one considers price and quantity as two inter-

acting species, the following model might be proposed:

 
dP

dt
= aPa b

Q
- Pb ,

dQ

dt
= cQ(ƒP - Q),

where a, b, c, and ƒ are positive constants. Justify and discuss the 

adequacy of the model.

a. If a = 1, b = 20,000, c = 1, and ƒ = 30, ind the equilib-

rium points of this system. If possible, classify each equilib-

rium point with respect to its stability. If a point cannot be 

readily classiied, give some explanation.

b. Perform a graphical stability analysis to determine what will 

happen to the levels of P and Q as time increases.

c. Give an economic interpretation of the curves that determine 

the equilibrium points.

 7. two trajectories approach equilibrium Show that the two tra-

jectories leading to (m>n, a>b) shown in Figure 9.32 are unique 

by carrying out the following steps.

a. From system (1a) and (1b) apply the Chain Rule to derive the 

following equation:

dy

dx
=

(m - nx)y

(a - by)x
.

f (y)

y

My

a

b

yae−by

g(x)

x

Mx

m
n

xme−nx

FIGURE 9.36 Graphs of the functions 

ƒ(y) = ya>eby and g(x) = xm>enx.

d. Consider what happens as (x, y) approaches (m>n, a>b). 

Take limits in part (b) as x S m>n and y S a>b to show that 

either

lim
xSm>n c a ya

eby
b aenx

xmb d = K

 ySa>b
or My>Mx = K. Thus any solution trajectory that approaches 

(m>n, a>b) must satisfy

ya

eby
= aMy

Mx
b axm

enxb .

e. Show that only one trajectory can approach (m>n, a>b) from 

below the line y = a>b. Pick y0 6 a>b. From Figure 9.36 

you can see that ƒ( y0) 6 My, which implies that

My

Mx
 axm

enxb = y0 a>eby0 6 My.

This in turn implies that

xm

enx 6 Mx.
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 9. What happens to the rabbit population if there are no foxes 

 present?

 10. What happens to the fox population if there are no rabbits  

present?

 11. Show that (0, 0) and (c>d, a>b) are equilibrium points. Explain 

the meaning of each of these points.

 12. Show, by diferentiating, that the function

C(t) = a ln y(t) - by(t) - dx(t) + c ln x(t)

  is constant when x(t) and y(t) are positive and satisfy the predator-

prey equations.

While x and y may change over time, C(t) does not. Thus, C is a con-

served quantity and its existence gives a conservation law. A trajec-

tory that begins at a point (x, y) at time t = 0 gives a value of C that 

remains unchanged at future times. Each value of the constant C gives 

a trajectory for the autonomous system, and these trajectories close up, 

rather than spiraling inward or outward. The rabbit and fox populations 

oscillate through repeated cycles along a ixed trajectory. Figure 9.38 

shows several trajectories for the predator-prey system.

Figure 9.36 tells you that for g(x) there is a unique value 

x0 6 m>n satisfying this last inequality. That is, for each 

y 6 a>b there is a unique value of x satisfying the equation 

in part (d). Thus there can exist only one trajectory solution 

approaching (m>n, a>b) from below, as shown in Figure 9.37.

f. Use a similar argument to show that the solution trajectory 

leading to (m>n, a>b) is unique if y0 7 a>b.

y

x

a

b

m
n

Unique x0

y0

Bass

Trout

FIGURE 9.37 For any 

y 6 a>b only one solution 

trajectory leads to the rest point 

(m>n, a>b).

 8. Show that the second-order diferential equation y″ = F(x, y, y′) 

can be reduced to a system of two irst-order diferential equations

 
dy

dx
= z,

dz

dx
= F(x, y, z).

Can something similar be done to the nth-order diferential equa-

tion y(n) = F1x, y, y′, y″,c ,  y(n - 1)2?
Lotka-Volterra Equations for a Predator-Prey Model

In 1925 Lotka and Volterra introduced the predator-prey equations, a 

system of equations that models the populations of two species, one of 

which preys on the other. Let x(t) represent the number of rabbits liv-

ing in a region at time t, and y(t) the number of foxes in the same 

region. As time passes, the number of rabbits increases at a rate pro-

portional to their population, and decreases at a rate proportional to 

the number of encounters between rabbits and foxes. The foxes, which 

compete for food, increase in number at a rate proportional to the 

number of encounters with rabbits but decrease at a rate proportional 

to the number of foxes. The number of encounters between rabbits 

and foxes is assumed to be proportional to the product of the two 

populations. These assumptions lead to the autonomous system

 
dx

dt
= (a - by) x

 
dy

dt
= (-c + dx) y

where a, b, c, d are positive constants. The values of these constants 

vary according to the speciic situation being modeled. We can study 

the nature of the population changes without setting these constants to 

speciic values.

y

Fox

population

Rabbit population
0

x

a
b

c
d

FIGURE 9.38 Some trajectories along which C is 

conserved.

 13. Using a procedure similar to that in the text for the competitive-

hunter model, show that each trajectory is traversed in a counter-

clockwise direction as time t increases.

Along each trajectory, both the rabbit and fox populations luctuate 

between their maximum and minimum levels. The maximum and 

minimum levels for the rabbit population occur where the trajectory 

intersects the horizontal line y = a>b. For the fox population, they 

occur where the trajectory intersects the vertical line x = c>d. When 

the rabbit population is at its maximum, the fox population is below 

its maximum value. As the rabbit population declines from this point 

in time, we move counterclockwise around the trajectory, and the fox 

population grows until it reaches its maximum value. At this point the 

rabbit population has declined to x = c>d and is no longer at its peak 

value. We see that the fox population reaches its maximum value at a 

later time than the rabbits. The predator population lags behind that of 

the prey in achieving its maximum values. This lag efect is shown in 

Figure 9.39, which graphs both x(t) and y(t).
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 14. At some time during a trajectory cycle, a wolf invades the rabbit-

fox territory, eats some rabbits, and then leaves. Does this mean 

that the fox population will from then on have a lower maximum 

value? Explain your answer.
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FIGURE 9.39 The fox and rabbit populations oscillate period-

ically, with the maximum fox population lagging the maximum 

rabbit population.

 1. What is a irst-order diferential equation? When is a function a 

solution of such an equation?

 2. What is a general solution? A particular solution?

 3. What is the slope ield of a diferential equation y′ = ƒ(x, y)? 

What can we learn from such ields?

 4. Describe Euler’s method for solving the initial value problem 

y′ = ƒ(x, y), y(x0) = y0 numerically. Give an example. Comment 

on the method’s accuracy. Why might you want to solve an initial 

value problem numerically?

 5. How do you solve linear irst-order diferential equations?

 6. What is an orthogonal trajectory of a family of curves? Describe 

how one is found for a given family of curves.

 7. What is an autonomous diferential equation? What are its equi-

librium values? How do they difer from critical points? What is a 

stable equilibrium value? Unstable?

 8. How do you construct the phase line for an autonomous diferen-

tial equation? How does the phase line help you produce a graph 

which qualitatively depicts a solution to the diferential equation?

 9. Why is the exponential model unrealistic for predicting long-term 

population growth? How does the logistic model correct for the 

deiciency in the exponential model for population growth? What 

is the logistic diferential equation? What is the form of its solu-

tion? Describe the graph of the logistic solution.

 10. What is an autonomous system of diferential equations? What is 

a solution to such a system? What is a trajectory of the system?

CHAPTER 9 Questions to Guide Your Review

In Exercises 1–22 solve the diferential equation.

 1. y′ = xey2x - 2 2. y′ = xyex2

 3. sec x dy + x cos2 y dx = 0 4. 2x2 dx - 32y csc x dy = 0

 5. y′ =
ey

xy 6. y′ = xex - y csc y

 7. x(x - 1) dy - y dx = 0 8. y′ = (y2 - 1)x-1

 9. 2y′ - y = xex>2 10. 
y′

2
+ y = e-x sin x

 11. xy′ + 2y = 1 - x-1 12. xy′ - y = 2x ln x

 13. (1 + ex) dy + (  yex + e-x) dx = 0

 14. e-x dy + (e-xy - 4x) dx = 0

 15. (x + 3y2) dy + y dx = 0 (Hint: d(xy) = y dx + x dy)

 16. x dy + (3y - x-2 cos x) dx = 0, x 7 0

 17. y′ = sin3 x cos2 y 18. x dy - (x4 - y) dx = 0

 19. dy + x(2y - ex - x2

) dx = 0 20. y′ + 3x2y = 7x2

 21. y′ = xy ln x ln y 22. xy′ + 2y ln x = ln x

Initial Value Problems

In Exercises 23–28 solve the initial value problem.

 23. (x + 1) 
dy

dx
+ 2y = x, x 7 -1, y(0) = 1

 24. x 
dy

dx
+ 2y = x2 + 1, x 7 0, y(1) = 1

 25. 
dy

dx
+ 3x2y = x2, y(0) = -1

CHAPTER 9 Practice Exercises
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Moon’s

center

Mass m

F = −
mgR2

s2

R

s

a. If the body is projected vertically upward from the moon’s 

surface with an initial velocity y0 at time t = 0, use 

 Newton’s second law, F = ma, to show that the body’s 

velocity at position s is given by the equation

y2 =
2gR2

s + y0 

2 - 2gR.

Thus, the velocity remains positive as long as y0 Ú 22gR. The 

velocity y0 = 22gR is the moon’s escape velocity. A body 

projected upward with this velocity or a greater one will escape 

from the moon’s gravitational pull.

b. Show that if y0 = 22gR, then

s = Ra1 +
3y0

2R
 tb2>3

.

 42. coasting to a stop Table 9.6 shows the distance s (meters) 

coasted on inline skates in t sec by Johnathon Krueger. Find a 

model for his position in the form of Equation (2) of Section 9.3. 

His initial velocity was y0 = 0.86 m>sec, his mass m = 30.84 kg 

(he weighed 68 lb), and his total coasting distance 0.97 m.

 26. x dy + ( y - cos x) dx = 0, yap
2
b = 0

 27. xy′ + (x - 2) y = 3x3e-x, y(1) = 0

 28. y dx + (3x - xy + 2) dy = 0, y(2) = -1, y 6 0

TABLE 9.6  Johnathon Krueger skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

 0  0  0.93  0.61  1.86  0.93

 0.13  0.08  1.06  0.68  2.00  0.94

 0.27  0.19  1.20  0.74  2.13  0.95

 0.40  0.28  1.33  0.79  2.26  0.96

 0.53  0.36  1.46  0.83  2.39  0.96

 0.67  0.45  1.60  0.87  2.53  0.97

 0.80  0.53  1.73  0.90  2.66  0.97

Mixture Problems

In Exercises 43 and 44, let S represent the pounds of salt in a tank at 

time t minutes. Set up a diferential equation representing the given in-

formation and the rate at which S changes. Then solve for S and  answer 

the particular questions.

 43. A mixture containing 
1
2

 lb of salt per gallon lows into a tank at 

  the rate of 6 gal >min and the well-stirred mixture lows out of the 

tank at the rate of 4 gal >min. The tank initially holds 160 gal of 

solution containing 10 lb of salt.

Euler’s Method

In Exercises 29 and 30, use Euler’s method to solve the initial value 

problem on the given interval starting at x0 with dx = 0.1.

 29. y′ = y + cos x, y(0) = 0; 0 … x … 2; x0 = 0

 30. y′ = (2 - y)(2x + 3),  y(-3) = 1; -3 … x … -1;  x0 = -3

T

T

In Exercises 31 and 32, use Euler’s method with dx = 0.05 to estimate 

y(c) where y is the solution to the given initial value problem.

 31. c = 3; 
dy

dx
=

x - 2y

x + 1
, y(0) = 1

 32. c = 4; 
dy

dx
=

x2 - 2y + 1
x , y(1) = 1

T

T

In Exercises 33 and 34, use Euler’s method to solve the initial value 

problem graphically, starting at x0 = 0 with

a. dx = 0.1. b. dx = -0.1.

 33. 
dy

dx
=

1

ex + y + 2
, y(0) = -2

 34. 
dy

dx
= -  

x2 + y

ey + x
, y(0) = 0

T

T

Slope Fields

In Exercises 35–38, sketch part of the equation’s slope ield. Then 

add to your sketch the solution curve that passes through the point 

P(1, -1). Use Euler’s method with x0 = 1 and dx = 0.2 to estimate 

y(2). Round your answers to four decimal places. Find the exact value 

of y(2) for comparison.

 35. y′ = x 36. y′ = 1>x
 37. y′ = xy 38. y′ = 1>y
Autonomous Diferential Equations and Phase Lines

In Exercises 39 and 40:

a. Identify the equilibrium values. Which are stable and which 

are unstable?

b. Construct a phase line. Identify the signs of y′ and y″.

c. Sketch a representative selection of solution curves.

 39. 
dy

dx
= y2 - 1 40. 

dy

dx
= y - y2

applications

 41. Escape velocity The gravitational attraction F exerted by an air-

less moon on a body of mass m at a distance s from the moon’s 

center is given by the equation F = -mg R2s-2, where g is the 

acceleration of gravity at the moon’s surface and R is the moon’s 

radius (see accompanying igure). The force F is negative because 

it acts in the direction of decreasing s.
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a. How many gallons of solution are in the tank after 1 minute? 

after 10 minutes? after 200 minutes?

b. How many pounds of salt are in the tank after 1 minute? after 

30 minutes?

c. When will the tank have exactly 5 pounds of salt and how 

many gallons of solution will be in the tank?

a. How many gallons of solution are in the tank after 1 minute? 

after 10 minutes? after 1 hour?

b. How many pounds of salt are in the tank after 1 minute? after 

10 minutes? after 1 hour?

 44. Pure water lows into a tank at the rate of 4 gal/min, and the well-

stirred mixture lows out of the tank at the rate of 5 gal/min. The 

tank initially holds 200 gal of solution containing 50 pounds of salt.

Theory and Applications

 1. transport through a cell membrane Under some conditions, 

the result of the movement of a dissolved substance across a cell’s 

membrane is described by the equation

dy

dt
= k  

A

V
 (c - y).

  In this equation, y is the concentration of the substance inside the 

cell and  dy>dt is the rate at which y changes over time. The let-

ters k, A, V, and c stand for constants, k being the permeability 

coeicient (a property of the membrane), A the surface area of 

the membrane, V the cell’s volume, and c the concentration of the 

substance outside the cell. The equation says that the rate at which 

the concentration changes within the cell is proportional to the 

diference between it and the outside concentration.

a. Solve the equation for y(t), using y0 to denote y(0).

b. Find the steady-state concentration, limtSq y(t).

 2. Height of a rocket If an external force F acts upon a system 

whose mass varies with time, Newton’s law of motion is

d(my)

dt
= F + (y + u) 

dm

dt
.

  In this equation, m is the mass of the system at time t, y is its 

velocity, and y + u is the velocity of the mass that is entering 

(or leaving) the system at the rate dm>dt. Suppose that a rocket 

of initial mass m0 starts from rest, but is driven upward by ir-

ing some of its mass directly backward at the constant rate of 

dm>dt = -b units per second and at constant speed relative to 

the rocket u = -c. The only external force acting on the rocket 

is F = -mg due to gravity. Under these assumptions, show that 

the height of the rocket above the ground at the end of t seconds  

(t small compared to m0>b) is

y = c c t +
m0 - bt

b
 ln 

m0 - bt

m0
d -

1
2

 gt2.

 3. a.  Assume that P(x) and Q(x) are continuous over the interval 

[a, b]. Use the Fundamental Theorem of Calculus, Part 1, to 

show that any function y satisfying the equation

y(x) y = L  y(x)Q(x) dx + C

 for y(x) = e1 P(x) dx is a solution to the irst-order linear equation

dy

dx
+ P(x) y = Q(x).

b. If C = y0y(x0) - 1 x

x0
 y(t)Q(t) dt, then show that any solution 

y in part (a) satisies the initial condition y(x0) = y0.

 4. (Continuation of Exercise 3.) Assume the hypotheses of Exercise 3, 

and assume that y1(x) and y2(x) are both solutions to the irst-order 

linear equation satisfying the initial condition y(x0) = y0.

a. Verify that y(x) = y1(x) - y2(x) satisies the initial value 

problem

y′ + P(x) y = 0, y(x0) = 0.

b. For the integrating factor y(x) = e1 P(x) dx, show that

d

dx
  (y(x)3y1(x) - y2(x)4) = 0.

Conclude that y(x)3y1(x) - y2(x)4 K constant.

c. From part (a), we have y1(x0) - y2(x0) = 0. Since 

y(x) 7 0 for a 6 x 6 b, use part (b) to establish that 

y1(x) - y2(x) K 0 on the interval (a, b). Thus y1(x) = y2(x) 

for all a 6 x 6 b.

Homogeneous Equations

A irst-order diferential equation of the form

dy

dx
= Fayxb

is called homogeneous. It can be transformed into an equation whose 

variables are separable by deining the new variable y = y>x. Then, 

y = yx and

dy

dx
= y + x 

dy

dx
.

Substitution into the original diferential equation and collecting terms 

with like variables then gives the separable equation

dx
x +

dy

y - F(y)
= 0 .

After solving this separable equation, the solution of the original equa-

tion is obtained when we replace y by y>x .

Solve the homogeneous equations in Exercises 5–10. First put the 

equation in the form of a homogeneous equation.

 5. (x2 + y2) dx + xy dy = 0

 6. x2 dy + ( y2 - xy) dx = 0

 7. (xey>x + y) dx - x dy = 0

 8. (x + y) dy + (x - y)  dx = 0

 9. y′ =
y

x + cos 
y - x

x

10. ax sin 
y

x - y cos 
y

xb  dx + x cos 
y

x  dy = 0

CHAPTER 9 Additional and Advanced Exercises
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Mathematica/Maple Projects

Projects can be found within MyMathLab.

• Drug Dosages: Are They Efective? Are They Safe?

Formulate and solve an initial value model for the absorption of a drug in the bloodstream.

• First-Order Diferential Equations and Slope Fields

Plot slope ields and solution curves for various initial conditions to selected irst-order diferential equations.

CHAPTER 9 Technology Application Projects
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10.1 Sequences

Sequences are fundamental to the study of infinite series and to many aspects of mathe-

matics. We saw one example of a sequence when we studied Newton’s Method in Section 

4.6. Newton’s Method produces a sequence of approximations xn that become closer and 

closer to the root of a differentiable function. Now we will explore general sequences of 

numbers and the conditions under which they converge to a finite number.

OVERVIEW In this chapter we introduce the topic of infinite series. Such series give us 

precise ways to express many numbers and functions, both familiar and new, as arithmetic 

sums with infinitely many terms. For example, we will learn that

p
4

= 1 -
1
3

+
1
5

-
1
7

+
1
9

- g 

and

cos x = 1 -
x2

2
+

x4

24
-

x6

720
-

x8

40,320
- g.

We need to develop a method to make sense of such expressions. Everyone knows 

how to add two numbers together, or even several. But how do you add together ininitely 

many numbers? Or, when adding together functions, how do you add ininitely many pow-

ers of x? In this chapter we answer these questions, which are part of the theory of ininite 

sequences and series. As with the diferential and integral calculus, limits play a major role 

in the development of ininite series.

One common and important application of series occurs when making computations 

with complicated functions. A hard-to-compute function is replaced by an expression that 

looks like an “ininite degree polynomial,” an ininite series in powers of x, as we see with 

the cosine function given above. Using the irst few terms of this ininite series can allow 

for highly accurate approximations of functions by polynomials, enabling us to work with 

more general functions than those we encountered before. These new functions are com-

monly obtained as solutions to diferential equations arising in important applications of 

mathematics to science and engineering.

The terms “sequence” and “series” are sometimes used interchangeably in spoken 

language. In mathematics, however, each has a distinct meaning. A sequence is a type of 

ininite list, whereas a series is an ininite sum. To understand the ininite sums described 

by series, we are led to irst study ininite sequences.

Infinite Sequences 
and Series

10

HistoricAL EssAy

sequences and series

www.goo.gl/WLjL57

http://www.goo.gl/WLjL57
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Representing Sequences

A sequence is a list of numbers

a1 , a2 , a3 , . . . , an , . . .

in a given order. Each of a1, a2, a3 and so on represents a number. These are the terms of 

the sequence. For example, the sequence

2, 4, 6, 8, 10, 12, c, 2n, c

has first term a1 = 2, second term a2 = 4, and nth term an = 2n. The integer n is called 

the index of an, and indicates where an occurs in the list. Order is important. The sequence 

2, 4, 6, 8 . . . is not the same as the sequence 4, 2, 6, 8 . . . .

We can think of the sequence

a1, a2, a3, c, an , c

as a function that sends 1 to a1, 2 to a2, 3 to a3, and in general sends the positive integer n 

to the nth term an. More precisely, an infinite sequence of numbers is a function whose 

domain is the set of positive integers. For example, the function associated with the 

sequence

2, 4, 6, 8, 10, 12, c, 2n, c

sends 1 to a1 = 2, 2 to a2 = 4, and so on. The general behavior of this sequence is 

described by the formula an = 2n.

We can change the index to start at any given number n. For example, the sequence

12, 14, 16, 18, 20, 22c

is described by the formula an = 10 + 2n, if we start with n = 1. It can also be described 

by the simpler formula bn = 2n, where the index n starts at 6 and increases. To allow such 

simpler formulas, we let the first index of the sequence be any appropriate integer. In the 

sequence above, 5an6  starts with a1 while 5bn6  starts with b6.

Sequences can be described by writing rules that specify their terms, such as

 an = 2n,   bn = (-1)n + 1 
1
n ,   cn =

n - 1
n ,   dn = (-1)n + 1,

or by listing terms:

 5an6 = 521, 22, 23, c, 2n, c6
 5bn6 = e1, -  

1
2

, 
1
3

, -  
1
4

, c, (-1)n + 1 
1
n , c f

 5cn6 = e0, 
1
2

, 
2
3

, 
3
4

, 
4
5

, c, 
n - 1

n , c f
 5dn6 = 51, -1, 1, -1, 1, -1, c, (-1)n + 1, c6 .

We also sometimes write a sequence using its rule, as with5an6 = 52n 6q
n = 1

and 5bn6 = e (-1)n + 1 
1
n fq

n = 1

.

Figure 10.1 shows two ways to represent sequences graphically. The first marks the 

first few points from a1, a2, a3, c, an, con the real axis. The second method shows the 

graph of the function defining the sequence. The function is defined only on integer 

inputs, and the graph consists of some points in the xy-plane located at (1, a1),

(2, a2), . . . , (n, an), . . . .



 10.1  Sequences 565

Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases. 

This happens in the sequence e1, 
1
2

, 
1
3

, 
1
4

, c, 
1
n , c f

whose terms approach 0 as n gets large, and in the sequencee0, 
1
2

, 
2
3

, 
3
4

, 
4
5

, c, 1 -
1
n , c f

whose terms approach 1. On the other hand, sequences like521, 22, 23, c, 2n, c6
have terms that get larger than any number as n increases, and sequences like51, -1, 1, -1, 1, -1, c, (-1)n + 1, c6
bounce back and forth between 1 and -1, never converging to a single value. The follow-

ing definition captures the meaning of having a sequence converge to a limiting value. It 

says that if we go far enough out in the sequence, by taking the index n to be larger than 

some value N, the difference between an and the limit of the sequence becomes less than 

any preselected number e 7 0.

0

an = "n

1 2

0 1 32 4 5

1

3

2

1

0 1 32 4 5

0

an =

1

0

1

0

a2 a4 a5 a3 a1

1

1
n

n

an

n

an

n

an

a1 a2 a3 a4 a5

a3 a2 a1

an = (−1)n+1 1
n

FIGURE 10.1 Sequences can be represented as points on the real line or 

as points in the plane where the horizontal axis n is the index number of the 

term and the vertical axis an is its value.

a
N

(N, aN)

0 1 32 N n

L

L − e

L − e L + eL

L + e

(n, an)

0 a
2

a
3

a
1

an

n

an

FIGURE 10.2 In the representation of a 

sequence as points in the plane, an S L if 

y = L is a horizontal asymptote of the se-

quence of points 5(n, an)6 . In this figure, 

all the an>s after aN  lie within e of L.

DEFINITIONS The sequence 5an6  converges to the number L if for every 

positive number e there corresponds an integer N such that

� an - L � 6 e  whenever  n 7 N.

If no such number L exists, we say that 5an6  diverges.

If 5an6  converges to L, we write limnSq  an = L, or simply an S L, and call 

L the limit of the sequence (Figure 10.2).

The definition is very similar to the definition of the limit of a function ƒ(x) as x tends 

to q (limxSq ƒ(x) in Section 2.6). We will exploit this connection to calculate limits of 

sequences.

HistoricAL BiogrApHy

Nicole oresme

(ca. 1320–1382)

www.goo.gl/r7lS4z

http://www.goo.gl/r7lS4z
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EXAMPLE 1  Show that

(a) lim
nSq

 
1
n = 0  (b) lim

nSq
 k = k  (any constant k)

Solution

(a) Let e 7 0 be given. We must show that there exists an integer N such that` 1n - 0 ` 6 e  whenever  n 7 N.

The inequality � 1>n - 0 � 6 e will hold if 1>n 6 e or n 7 1>e. If N is any in-

teger  greater than 1>e, the inequality will hold for all n 7 N. This proves that 

limnSq 1>n = 0.

(b) Let e 7 0 be given. We must show that there exists an integer N such that

� k - k � 6 e  whenever  n 7 N.

Since k - k = 0, we can use any positive integer for N and the inequality � k - k � 6 e
will hold. This proves that limnSq k = k for any constant k. 

DEFINITION The sequence 5an6  diverges to infinity if for every number M 

there is an integer N such that for all n larger than N, an 7 M. If this condition 

holds we write

lim
nSq

 an = q  or  an S q.

Similarly, if for every number m there is an integer N such that for all n 7 N  we 

have an 6 m, then we say 5an6  diverges to negative infinity and write

lim
nSq

 an = -q  or  an S -q.

EXAMPLE 2  Show that the sequence 51, -1, 1, -1, 1, -1, c, (-1)n + 1, c6  

diverges.

Solution Suppose the sequence converges to some number L. Then the numbers in the 

sequence eventually get arbitrarily close to the limit L. This can’t happen if they keep 

oscillating between 1 and -1. We can see this by choosing e = 1>2 in the definition of 

the limit. Then all terms an of the sequence with index n larger than some N must lie 

within e = 1>2 of L. Since the number 1 appears repeatedly as every other term of the 

sequence, we must have that the number 1 lies within the distance e = 1>2 of L. It fol-

lows that �L - 1 � 6 1>2, or equivalently, 1>2 6 L 6 3>2. Likewise, the number -1 

appears repeatedly in the sequence with arbitrarily high index. So we must also have that 

�L - (-1) � 6 1>2, or equivalently, -3>2 6 L 6 -1>2. But the number L cannot lie in 

both of the intervals (1 >2, 3 >2) and (-3>2, -1>2) because they have no overlap. There-

fore, no such limit L exists and so the sequence diverges.

Note that the same argument works for any positive number e smaller than 1, not 

just 1>2. 

The sequence 51n6  also diverges, but for a diferent reason. As n increases, its terms 

become larger than any ixed number. We describe the behavior of this sequence by writing

lim
nSq

2n = q.

In writing infinity as the limit of a sequence, we are not saying that the differences between the 

terms an and q become small as n increases. Nor are we asserting that there is some number 

infinity that the sequence approaches. We are merely using a notation that captures the idea that 

an eventually gets and stays larger than any fixed number as n gets large (see Figure 10.3a). 

The terms of a sequence might also decrease to negative infinity, as in Figure 10.3b.

0 1 32 N

M

n

an

0 N

m

n

an

1 32

(a)

(b)

FIGURE 10.3 (a) The sequence diverges 

to q because no matter what number M 

is chosen, the terms of the sequence after 

some index N all lie in the yellow band 

above M. (b) The sequence diverges to 

-q because all terms after some index N 

lie below any chosen number m.
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A sequence may diverge without diverging to infinity or negative infinity, as we saw 

in Example 2. The sequences 51, -2, 3, -4, 5, -6, 7, -8, c6  and 51, 0, 2, 0, 3, 0, c6
are also examples of such divergence.

The convergence or divergence of a sequence is not affected by the values of any 

number of its initial terms (whether we omit or change the first 10, 1000, or even the first 

million terms does not matter). From Figure 10.2, we can see that only the part of the 

sequence that remains after discarding some initial number of terms determines whether 

the sequence has a limit and the value of that limit when it does exist.

Calculating Limits of Sequences

Since sequences are functions with domain restricted to the positive integers, it is not sur-

prising that the theorems on limits of functions given in Chapter 2 have versions for 

sequences.

THEOREM 1 Let 5an6  and 5bn6  be sequences of real numbers, and let A and B 

be real numbers. The following rules hold if limnSq an = A and limnSq bn = B.

1. Sum Rule: limnSq (an + bn) = A + B

2. Diference Rule: limnSq (an - bn) = A - B

3. Constant Multiple Rule: limnSq (k # bn) = k # B (any number k)

4. Product Rule: limnSq (an
# bn) = A # B

5. Quotient Rule: limnSq 
an

bn

=
A
B
  if B ≠ 0

The proof is similar to that of Theorem 1 of Section 2.2 and is omitted.

EXAMPLE 3  By combining Theorem 1 with the limits of Example 1, we have:

(a) lim
nSq

 a-  
1
nb = -1 # lim

nSq
  
1
n = -1 # 0 = 0 Constant Multiple Rule and Example 1a

(b) lim
nSq

 an - 1
n b = lim

nSq
 a1 -

1
nb = lim

nSq
1 - lim

nSq
 
1
n = 1 - 0 = 1 

Diference Rule 

and Example 1a

(c) lim
nSq

  
5

n2
= 5 # lim

nSq
  
1
n

# lim
nSq

  
1
n = 5 # 0 # 0 = 0 Product Rule

(d) lim
nSq

4 - 7n6

n6 + 3
= lim

nSq
 
(4>n6) - 7

1 + (3>n6)
=

0 - 7
1 + 0

= -7. 
Divide numerator and denominator 

by n6 and use the Sum and Quotient 

Rules.

 

 

Be cautious in applying Theorem 1. It does not say, for example, that each of the 

sequences 5an6  and 5bn6  have limits if their sum 5an + bn6  has a limit. For instance, 5an6 = 51, 2, 3, c6  and 5bn6 = 5-1, -2, -3, c6  both diverge, but their sum 5an + bn6 = 50, 0, 0, c6  clearly converges to 0.

One consequence of Theorem 1 is that every nonzero multiple of a divergent sequence 5an6  diverges. Suppose, to the contrary, that 5can6  converges for some number c ≠ 0. 

Then, by taking k = 1>c in the Constant Multiple Rule in Theorem 1, we see that the 

sequence e 1
c
# can f = 5an6

converges. Thus, 5can6  cannot converge unless 5an6  also converges. If 5an6  does not 

converge, then 5can6  does not converge.
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The next theorem is the sequence version of the Sandwich Theorem in Section 2.2. 

You are asked to prove the theorem in Exercise 119. (See Figure 10.4.)

0

L

n
an

bn

cn

FIGURE 10.4 The terms of sequence 5bn6  are sandwiched between those of 5an6  and 5cn6 , forcing them to the same 

common limit L.

THEOREM 2—The Sandwich Theorem for Sequences

Let 5an6 , 5bn6 , and 5cn6  be sequences of real numbers. If an … bn … cn 

holds for all n beyond some index N, and if limnSq  an = limnSq  cn = L, then 

limnSq  bn = L also.

An immediate consequence of Theorem 2 is that, if � bn � … cn and cn S 0, then 

bn S 0 because -cn … bn … cn. We use this fact in the next example.

EXAMPLE 4  Since 1>n S 0, we know that

(a) 
cos n

n S 0 because -  
1
n …

cos n
n …

1
n ;

(b) 
1
2n S 0 because 0 …

1
2n …

1
n ;

(c) (-1)n 
1
n S 0 because -  

1
n … (-1)n 

1
n …

1
n .

(d) If 0 an 0 S 0, then an S 0 because - 0 an 0 … an … 0 an 0 . 
The application of Theorems 1 and 2 is broadened by a theorem stating that applying 

a continuous function to a convergent sequence produces a convergent sequence. We state 

the theorem, leaving the proof as an exercise (Exercise 120).

1
3

0

1

(1, 2)

y = 2x

1

2

, 21/3

, 21/2

1
3

1
2

1
2

x

y

a      b

a      b

FIGURE 10.5 As n S q, 1>n S 0 

and 21>n S 20 (Example 6). The terms of 51>n6  are shown on the x-axis; the terms 

of 521>n6  are shown as the y-values on the 

graph of ƒ(x) = 2x.

THEOREM 3—The Continuous Function Theorem for Sequences

Let 5an6  be a sequence of real numbers. If an S L and if ƒ is a function that is 

continuous at L and deined at all an, then ƒ(an) S ƒ(L).

EXAMPLE 5  Show that 2(n + 1)>n S 1.

Solution We know that (n + 1)>n S 1. Taking ƒ(x) = 1x and L = 1 in Theorem 3 

gives 2(n + 1)>n S 21 = 1. 

EXAMPLE 6  The sequence 51>n6  converges to 0. By taking an = 1>n, ƒ(x) = 2x, 

and L = 0 in Theorem 3, we see that 21>n = ƒ(1>n) S ƒ(L) = 20 = 1. The sequence 521>n6  converges to 1 (Figure 10.5). 

Using L’Hôpital’s Rule

The next theorem formalizes the connection between limnSq  an and limxSq  ƒ(x). It 

enables us to use l’Hôpital’s Rule to find the limits of some sequences.

THEOREM 4 Suppose that ƒ(x) is a function deined for all x Ú n0 and that 5an6  is a sequence of real numbers such that an = ƒ(n) for n Ú n0. Then

lim
nSq

 an = L  whenever  lim
xSq

 ƒ(x) = L.
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Proof  Suppose that limxSq ƒ(x) = L. Then for each positive number e there is a 

number M such that

� ƒ(x) - L � 6 e  whenever  x 7 M.

Let N be an integer greater than M and greater than or equal to n0. Since an = ƒ(n), it 

 follows that for all n 7 N  we have

 � an - L � = � ƒ(n) - L � 6 e. 

EXAMPLE 7  Show that

lim
nSq

 
ln n

n = 0.

Solution The function (ln x)>x is defined for all x Ú 1 and agrees with the given 

sequence at positive integers. Therefore, by Theorem 4, limnSq (ln n)>n will equal 

limxSq (ln x)>x if the latter exists. A single application of l’Hôpital’s Rule shows that

lim
xSq

 
ln x

x = lim
xSq

 
1>x
1

=
0
1

= 0.

We conclude that limnSq (ln n)>n = 0. 

When we use l’Hôpital’s Rule to find the limit of a sequence, we often treat n as a 

continuous real variable and differentiate directly with respect to n. This saves us from 

having to rewrite the formula for an as we did in Example 7.

EXAMPLE 8  Does the sequence whose nth term is

an = an + 1
n - 1

bn

converge? If so, find limnSq an.

Solution The limit leads to the indeterminate form 1q. We can apply l’Hôpital’s Rule if 

we first change the form to q # 0 by taking the natural logarithm of an:

ln an = ln an + 1
n - 1

bn

= n ln an + 1
n - 1

b .

Then,

 lim
nSq

 ln an = lim
nSq

 n ln an + 1
n - 1

b   q # 0 form

 = lim
nSq

 

ln an + 1
n - 1

b
1>n   

0

0
 form

 = lim
nSq

 
-2> (n2 - 1)

-1>n2
  

L’Hôpital’s Rule: differentiate 

numerator and denominator.
  

 = lim
nSq

  
2n2

n2 - 1
= 2.   Simplify and evaluate.

Since ln an S 2 and ƒ(x) = ex is continuous, Theorem 4 tells us that

an = eln an S  e2.

The sequence 5an6  converges to e2. 
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Commonly Occurring Limits

The next theorem gives some limits that arise frequently.

THEOREM 5 The following six sequences converge to the limits listed below:

1. lim
nSq

 
ln n

n = 0 2. lim
nSq

2n n = 1

3. lim
nSq

 x1>n = 1  (x 7 0) 4. lim
nSq

 xn = 0  ( � x � 6 1)

5. lim
nSq

 a1 +
x
nbn

= ex  (any x) 6. lim
nSq

  
xn

n!
= 0  (any x)

In Formulas (3) through (6), x remains ixed as n S q.

Proof  The irst limit was computed in Example 7. The next two can be proved by tak-

ing logarithms and applying Theorem 4 (Exercises 117 and 118). The remaining proofs are 

given in Appendix 5. 

Factorial Notation

The notation n! (“n factorial”)  

means the product 1 # 2 # 3gn  

of the integers from 1 to n.  

Notice that (n + 1)! = (n + 1) # n!. 

Thus, 4! = 1 # 2 # 3 # 4 = 24 and 

5! = 1 # 2 # 3 # 4 # 5 = 5 # 4! = 120. We 

define 0! to be 1. Factorials grow even 

faster than exponentials, as the table 

suggests. The values in the table are 

rounded.

 n en n!

 1  3  1

 5  148  120

10  22,026  3,628,800

20 4.9 * 108 2.4 * 1018

EXAMPLE 9  These are examples of the limits in Theorem 5.

(a) 
ln 1n22

n =
2 ln n

n S 2 # 0 = 0  Formula 1

(b) 2n n2 = n2>n = 1n1/n22 S (1)2 = 1 Formula 2

(c) 2n 3n = 31>n1n1/n2S 1 # 1 = 1 Formula 3 with x = 3 and Formula 2

(d) a-  
1
2
bn

S 0 Formula 4 with x = -  
1

2

(e) an - 2
n bn

= a1 +
-2
n bn

S e-2 Formula 5 with x = -2

(f) 
100n

n!
S 0 Formula 6 with x = 100 

Recursive Definitions

So far, we have calculated each an directly from the value of n. But sequences are often 

defined recursively by giving

1. The value(s) of the initial term or terms, and

2. A rule, called a recursion formula, for calculating any later term from terms that 

precede it.

EXAMPLE 10

(a) The statements a1 = 1 and an = an - 1 + 1 for n 7 1 deine the sequence 

1, 2, 3, c, n, c of positive integers. With a1 = 1, we have a2 = a1 + 1 = 2, 

a3 = a2 + 1 = 3, and so on.

(b) The statements a1 = 1 and an = n # an - 1 for n 7 1 deine the sequence 

1, 2, 6, 24, c, n!, c of factorials. With a1 = 1, we have a2 = 2 # a1 = 2,  

a3 = 3 # a2 = 6, a4 =  4 # a3 = 24, and so on.
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(c) The statements a1 = 1, a2 = 1, and an + 1 = an + an - 1 for n 7 2 deine the se-

quence 1, 1, 2, 3, 5, c of Fibonacci numbers. With a1 = 1 and a2 = 1, we have 

a3 = 1 + 1 = 2, a4 = 2 + 1 = 3, a5 = 3 + 2 = 5, and so on.

(d) As we can see by applying Newton’s method (see Exercise 145), the statements x0 = 1 

and xn + 1 = xn - 3 (sin xn - xn 

2)>(cos xn - 2xn)4  for n 7 0 deine a sequence that, 

when it converges, gives a solution to the equation sin x - x2 = 0. 

DEFINITION A sequence 5an6  is bounded from above if there exists a num-

ber M such that an … M  for all n. The number M is an upper bound for 5an6 . 

If M is an upper bound for 5an6  but no number less than M is an upper bound 

for 5an6 , then M is the least upper bound for 5an6 .

A sequence 5an6  is bounded from below if there exists a number m such 

that an Ú m for all n. The number m is a lower bound for 5an6 . If m is a lower 

bound for 5an6  but no number greater than m is a lower bound for 5an6 , then m 

is the greatest lower bound for 5an6 .

If 5an6  is bounded from above and below, then 5an6  is bounded. If 5an6  

is not bounded, then we say that 5an6  is an unbounded sequence.

EXAMPLE 11

(a) The sequence 1, 2, 3, c, n, c has no upper bound because it eventually surpasses 

every number M. However, it is bounded below by every real number less than or equal 

to 1. The number m = 1 is the greatest lower bound of the sequence.

(b) The sequence 
1
2

, 
2
3

, 
3
4

, c, 
n

n + 1
, c is bounded above by every real number  greater 

  than or equal to 1. The upper bound M = 1 is the least upper bound (Exercise 137). 

  The sequence is also bounded below by every number less than or equal to 
1
2

, which 

is its greatest lower bound. 

If a sequence 5an6  converges to the number L, then by definition there is a number N 

such that � an - L � 6 1 if n 7 N. That is,

L - 1 6 an 6 L + 1 for n 7 N.

If M is a number larger than L + 1 and all of the finitely many numbers a1, a2, c, aN, 

then for every index n we have an … M  so that 5an6  is bounded from above. Similarly, if 

m is a number smaller than L - 1 and all of the numbers a1, a2, c, aN, then m is a lower 

bound of the sequence. Therefore, all convergent sequences are bounded.

Although it is true that every convergent sequence is bounded, there are bounded 

sequences that fail to converge. One example is the bounded sequence 5(-1)n + 16  dis-

cussed in Example 2. The problem here is that some bounded sequences bounce around in 

the band determined by any lower bound m and any upper bound M (Figure 10.6). An 

important type of sequence that does not behave that way is one for which each term is at 

least as large, or at least as small, as its predecessor.

convergent sequences are bounded

0

M

m

n

an

1 32

FIGURE 10.6 Some bounded sequences 

bounce around between their bounds and 

fail to converge to any limiting value.

DEFINITIONS A sequence 5an6  is nondecreasing if an … an + 1 for all n. That 

is, a1 … a2 … a3 … . . . . The sequence is nonincreasing if an Ú an + 1 for all n. 

The sequence 5an6  is monotonic if it is either nondecreasing or nonincreasing.

Bounded Monotonic Sequences

Two concepts that play a key role in determining the convergence of a sequence are those 

of a bounded sequence and a monotonic sequence.
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EXAMPLE 12

(a) The sequence 1, 2, 3, c, n, c is nondecreasing.

(b) The sequence 
1
2

, 
2
3

, 
3
4

, c, 
n

n + 1
, c is nondecreasing.

(c) The sequence 1, 
1
2

, 
1
4

, 
1
8

, c, 
1
2n  , c is nonincreasing.

(d) The constant sequence 3, 3, 3, c, 3, c is both nondecreasing and nonincreasing.

(e) The sequence 1, -1, 1, -1, 1, -1, c is not monotonic. 

A nondecreasing sequence that is bounded from above always has a least upper 

bound. Likewise, a nonincreasing sequence bounded from below always has a greatest 

lower bound. These results are based on the completeness property of the real numbers, 

discussed in Appendix 6. We now prove that if L is the least upper bound of a nondecreas-

ing sequence then the sequence converges to L, and that if L is the greatest lower bound of 

a nonincreasing sequence then the sequence converges to L.

THEOREM 6—The Monotonic Sequence Theorem

If a sequence 5an6  is both bounded and monotonic, then the sequence converges.

Proof  Suppose 5an6  is nondecreasing, L is its least upper bound, and we plot the 

points (1, a1), (2, a2), . . . , (n, an), . . . in the xy-plane. If M is an upper bound of the se-

quence, all these points will lie on or below the line y = M  (Figure 10.7). The line y = L is 

the lowest such line. None of the points (n, an) lies above y = L, but some do lie above any 

lower line y = L - e, if e is a positive number (because L - e is not an upper bound). 

The sequence converges to L because

 a. an … L for all values of n, and

 b. given any e 7 0, there exists at least one integer N for which aN 7 L - e.

The fact that 5an6  is nondecreasing tells us further that

an Ú aN 7 L - e  for all n Ú N.

Thus, all the numbers an beyond the Nth number lie within e of L. This is precisely the 

condition for L to be the limit of the sequence 5an6 .

The proof for nonincreasing sequences bounded from below is similar. 

It is important to realize that Theorem 6 does not say that convergent sequences are 

monotonic. The sequence 5(-1)n + 1>n6  converges and is bounded, but it is not monotonic 

since it alternates between positive and negative values as it tends toward zero. What the 

theorem does say is that a nondecreasing sequence converges when it is bounded from 

above, but it diverges to infinity otherwise.

Finding Terms of a Sequence

Each of Exercises 1–6 gives a formula for the nth term an of a 

sequence 5an6 . Find the values of a1, a2, a3, and a4.

 1. an =
1 - n

n2
 2. an =

1

n!

 3. an =
(-1)n + 1

2n - 1
 4. an = 2 + (-1)n

 5. an =
2n

2n + 1
 6. an =

2n - 1
2n

Each of Exercises 7–12 gives the first term or two of a sequence along 

with a recursion formula for the remaining terms. Write out the first 

ten terms of the sequence.

 7. a1 = 1, an + 1 = an + (1>2n)

 8. a1 = 1, an + 1 = an>(n + 1)

EXERCISES 10.1

0

L

L − e

M

N

y = L

y = M

x

y

FIGURE 10.7 If the terms of a nonde-

creasing sequence have an upper bound M, 

they have a limit L … M.
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 41. an = an + 1
2n
b a1 -

1
nb  42. an = a2 -

1
2nb a3 +

1
2nb

 43. an =
(-1)n + 1

2n - 1
 44. an = a-  

1
2
bn

 45. an = A
2n

n + 1
 46. an =

1
(0.9)n

 47. an = sin ap
2

+
1
nb  48. an = np cos (np)

 49. an =
sin n

n  50. an =
sin2 n

2n

 51. an =
n

2n 52. an =
3n

n3

 53. an =
ln (n + 1)

2n
 54. an =

ln n
ln 2n

 55. an = 81>n 56. an = (0.03)1>n
 57. an = a1 +

7
nbn

 58. an = a1 -
1
nbn

 59. an = 2n 10n 60. an = 2n n2

 61. an = a3nb1>n
 62. an = (n + 4)1>(n + 4)

 63. an =
ln n

n1>n  64. an = ln n - ln (n + 1)

 65. an = 2n 4nn 66. an = 2n 32n + 1

 67. an =
n!

nn  (Hint: Compare with 1 >n.)

 68. an =
(-4)n

n!
 69. an =

n!

106n

 70. an =
n!

2n # 3n 71. an = a1nb1>(ln n)

 72. an =
(n + 1)!

(n + 3)!
 73. an =

(2n + 2)!

(2n - 1)!

 74. an =
3en + e-n

en + 3e-n 75. an =
e-2n - 2e-3n

e-2n - e-n

 76.  an = a1 -
1
2
b + a1

2
-

1
3
b + a1

3
-

1
4
b  + g

   + a 1
n - 2

-
1

n - 1
b + a 1

n - 1
-

1
nb

 77.  an = (ln 3 - ln 2) + (ln 4 - ln 3) + (ln 5 - ln 4) + g
   +  (ln (n - 1) - ln (n - 2)) + (ln n - ln (n - 1))

 78. an = lna1 +
1
nbn

 79. an = a3n + 1
3n - 1

bn

 80. an = a n

n + 1
bn

 81. an = a xn

2n + 1
b1>n

, x 7 0

 82. an = a1 -
1

n 

2
bn

 83. an =
3n # 6n

2-n # n!

 84. an =
(10>11)n

(9/10)n + (11/12)n 85. an = tanh n

 86. an = sinh (ln n) 87. an =
n2

2n - 1
  sin 

1
n

 9. a1 = 2, an + 1 = (-1)n + 1an>2
 10. a1 = -2, an + 1 = nan>(n + 1)

 11. a1 = a2 = 1, an + 2 = an + 1 + an

 12. a1 = 2, a2 = -1, an + 2 = an + 1>an

Finding a Sequence’s Formula

In Exercises 13–30, find a formula for the nth term of the sequence.

 13. 1, -1, 1, -1, 1,c  1’s with alternating signs

 14. -1, 1, -1, 1, -1,c  1’s with alternating signs

 15. 1, -4, 9, -16, 25,c  Squares of the positive 

integers, with alternating 

signs

 

 16. 1, -  
1
4

, 
1
9

, -  
1
16

, 
1
25

, c 
Reciprocals of squares of 

the positive integers, with 

alternating signs

 17. 
1
9

, 
2
12

, 
22

15
, 

23

18
, 

24

21
, c 

Powers of 2 divided by 

multiples of 3

 18. -  

3
2

, -  

1
6

, 
1
12

, 
3
20

, 
5
30

, c 
Integers difering by 2 

divided by products of 

consecutive integers

 19. 0, 3, 8, 15, 24,c  Squares of the positive 

integers diminished by 1

 20. -3, -2, -1, 0, 1,c  Integers, beginning with -3

 21. 1, 5, 9, 13, 17,c  Every other odd positive 

integer

 22. 2, 6, 10, 14, 18,c  Every other even positive 

integer

 23. 
5
1

, 
8
2

, 
11
6

, 
14
24

, 
17
120

, c 
Integers difering by 3 

divided by factorials

 24. 
1
25

, 
8

125
, 

27
625

, 
64

3125
, 

125

15,625
, c 

Cubes of positive integers 

divided by powers of 5

 25. 1, 0, 1, 0, 1,c  Alternating 1’s and 0’s

 26. 0, 1, 1, 2, 2, 3, 3, 4,c  Each positive integer 

repeated

 27. 
1
2

-
1
3

, 
1
3

-
1
4

, 
1
4

-
1
5

, 
1
5

-
1
6

, . . .

 28. 25 - 24, 26 - 25, 27 - 26, 28 - 27, . . .

 29. sina 22

1 + 4
b , sina 23

1 + 9
b , sina 24

1 + 16
b , sina 25

1 + 25
b , . . .

 30. A
5
8

, A
7
11

, A
9

14
, A11

17
, . . .

Convergence and Divergence

Which of the sequences 5an6  in Exercises 31–100 converge, and 

which diverge? Find the limit of each convergent sequence.

 31. an = 2 + (0.1)n 32. an =
n + (-1)n

n

 33. an =
1 - 2n

1 + 2n
 34. an =

2n + 1

1 - 32n

 35. an =
1 - 5n4

n4 + 8n3
 36. an =

n + 3

n2 + 5n + 6

 37. an =
n2 - 2n + 1

n - 1
 38. an =

1 - n3

70 - 4n2

 39. an = 1 + (-1)n 40. an = (-1)n a1 -
1
nb
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b. The fractions rn = xn>yn approach a limit as n increases. 

What is that limit? (Hint: Use part (a) to show that 

rn  

2 - 2 = {(1>yn)
2 and that yn is not less than n.)

 111. Newton’s method The following sequences come from the 

 recursion formula for Newton’s method,

xn + 1 = xn -
ƒ(xn)

ƒ′(xn)
.

  Do the sequences converge? If so, to what value? In each case, 

begin by identifying the function ƒ that generates the sequence.

a. x0 = 1, xn + 1 = xn -
xn

2 - 2

2xn

=
xn

2
+

1
xn

b. x0 = 1, xn + 1 = xn -
tan xn - 1

sec2 xn

c. x0 = 1, xn + 1 = xn - 1

 112. a.  Suppose that ƒ(x) is diferentiable for all x in 30, 14  and that 

ƒ(0) = 0. Deine sequence 5an6  by the rule an =  nƒ(1>n). 

Show that limnSq an = ƒ′(0). Use the result in part (a) to 

ind the limits of the following sequences 5an6 .

b. an = n tan-1 
1
n c. an = n(e1>n - 1)

d. an = n lna1 +
2
nb

 113. pythagorean triples A triple of positive integers a, b, and c 

is called a pythagorean triple if a2 + b2 = c2. Let a be an odd 

positive integer and let

b = j a2

2
k and c = l a2

2
m

  be, respectively, the integer loor and ceiling for a2>2.

a

a2

2

u

l  m a2

2
j k

a. Show that a2 + b2 = c2. (Hint: Let a = 2n + 1 and 

 express b and c in terms of n.)

b. By direct calculation, or by appealing to the accompanying 

igure, ind

lim
aSq

 

j a2

2
k

l a2

2
m .

 88. an = na1 - cos 
1
nb  89. an = 2n sin 

1

2n

 90. an = (3n + 5n)1>n 91. an = tan-1 n

 92. an =
1

2n
  tan-1 n 93. an = a1

3
bn

+
1

22n

 94. an = 2n n2 + n 95. an =
(ln n)200

n

 96. an =
(ln n)5

2n
 97. an = n - 2n2 - n

 98. an =
1

2n2 - 1 - 2n2 + n

 99. an =
1
n L

n

1

 
1
x dx 100. an = L

n

1

 
1
xp dx, p 7 1

Recursively Defined Sequences

In Exercises 101–108, assume that each sequence converges and find 

its limit.

 101. a1 = 2, an + 1 =
72

1 + an

 102. a1 = -1, an + 1 =
an + 6

an + 2

 103. a1 = -4, an + 1 = 28 + 2an

 104. a1 = 0, an + 1 = 28 + 2an

 105. a1 = 5, an + 1 = 25an

 106. a1 = 3, an + 1 = 12 - 2an

 107. 2, 2 +
1
2

, 2 +
1

2 +
1
2

, 2 +
1

2 +
1

2 +
1
2

,c

 108. 21, 31 + 21, 41 + 31 + 21,

  51 + 41 + 31 + 21,c

Theory and Examples

 109. The irst term of a sequence is x1 = 1. Each succeeding term is 

the sum of all those that come before it:

xn + 1 = x1 + x2 + g + xn.

  Write out enough early terms of the sequence to deduce a general 

formula for xn that holds for n Ú 2.

 110. A sequence of rational numbers is described as follows:

1
1

, 
3
2

, 
7
5

, 
17
12

, c, 
a

b
, 

a + 2b

a + b
, c.

  Here the numerators form one sequence, the denominators form 

a second sequence, and their ratios form a third sequence. Let xn 

and yn be, respectively, the numerator and the denominator of the 

nth fraction rn = xn>yn.

a. Verify that x1 2 - 2y1 2 = -1, x2 2 - 2y2 2 = +  1 and, more 

generally, that if a2 - 2b2 = -1 or + 1, then

(a + 2b)2 - 2(a + b)2 = +1 or -1,

respectively.
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 137. the sequence {n , (n + 1)} has a least upper bound of 1 

Show that if M is a number less than 1, then the terms of 5n>(n + 1)6  eventually exceed M. That is, if M 6 1 there is 

an integer N such that n>(n + 1) 7 M  whenever n 7 N. Since 

n>(n + 1) 6 1 for every n, this proves that 1 is a least upper 

bound for 5n>(n + 1)6 .

 138. Uniqueness of least upper bounds Show that if M1 and M2 

are least upper bounds for the sequence 5an6 , then M1 = M2. 

That is, a sequence cannot have two diferent least upper bounds.

 139. Is it true that a sequence 5an6  of positive numbers must con-

verge if it is bounded from above? Give reasons for your answer.

 140. Prove that if 5an6  is a convergent sequence, then to every posi-

tive number e there corresponds an integer N such that

�am - an � 6 e whenever m 7 N and n 7 N.

 141. Uniqueness of limits Prove that limits of sequences are unique. 

That is, show that if L1 and L2 are numbers such that an S L1 

and an S L2, then L1 = L2.

 142. Limits and subsequences If the terms of one sequence appear 

in another sequence in their given order, we call the irst sequence 

a subsequence of the second. Prove that if two sub-sequences of 

a sequence 5an6  have diferent limits L1 ≠ L2, then 5an6  di-

verges.

 143. For a sequence 5an6  the terms of even index are denoted by a2k 

and the terms of odd index by a2k + 1. Prove that if a2k S L and 

a2k + 1 S L, then an S L.

 144. Prove that a sequence 5an6  converges to 0 if and only if the 

sequence of absolute values 5 �an �6  converges to 0.

 145. sequences generated by Newton’s method Newton’s meth-

od, applied to a diferentiable function ƒ(x), begins with a start-

ing value x0 and constructs from it a sequence of numbers 5xn6  

that under favorable circumstances converges to a zero of ƒ. The 

recursion formula for the sequence is

xn + 1 = xn -
ƒ(xn)

ƒ′(xn)
.

a. Show that the recursion formula for ƒ(x) = x2 - a, a 7 0, 

can be written as xn + 1 = (xn + a>xn)>2.

b. Starting with x0 = 1 and a = 3, calculate successive terms 

of the sequence until the display begins to repeat. What 

number is being approximated? Explain.

 146. A recursive deinition of P ,2 If you start with x1 = 1 and

  deine the subsequent terms of 5xn6  by the rule 

xn = xn - 1 + cos xn - 1, you generate a sequence that converges 

rapidly to p>2. (a) Try it. (b) Use the accompanying igure to 

explain why the convergence is so rapid.

10

cos xn − 1
1

xn − 1

xn − 1
x

y

T

T

 114. the nth root of n!

a. Show that limnSq (2np)1>(2n) = 1 and hence, using Stirling’s 

approximation (Chapter 8, Additional Exercise 52a), that

2n n! ≈ n
e for large values of n.

b. Test the approximation in part (a) for n = 40, 50, 60, c, 

as far as your calculator will allow.

 115. a.  Assuming that limnSq (1>nc) = 0 if c is any positive con-

stant, show that

lim
nSq

 
ln n
nc = 0

  if c is any positive constant.

b. Prove that limnSq (1>nc) = 0 if c is any positive constant. 

(Hint: If e = 0.001 and c = 0.04, how large should N be to 

ensure that �1>nc - 0 � 6 e if n 7 N?)

 116. the zipper theorem Prove the “zipper theorem” for  sequences: 

If 5an6  and 5bn6  both converge to L, then the sequence

a1, b1, a2, b2,c , an, bn,c

  converges to L.

 117. Prove that limnSq2n n = 1.

 118. Prove that limnSq  x
1>n = 1, (x 7 0).

 119. Prove Theorem 2. 120. Prove Theorem 3.

In Exercises 121–124, determine if the sequence is monotonic and if it 

is bounded.

 121. an =
3n + 1
n + 1

 122. an =
(2n + 3)!

(n + 1)!

 123. an =
2n3n

n!
 124. an = 2 -

2
n -

1
2n

Which of the sequences in Exercises 125–134 converge, and which 

diverge? Give reasons for your answers.

 125. an = 1 -
1
n 126. an = n -

1
n

 127. an =
2n - 1

2n  128. an =
2n - 1

3n

 129. an = ((-1)n + 1)an + 1
n b

 130. The irst term of a sequence is x1 = cos (1). The next terms are 

x2 = x1 or cos (2), whichever is larger; and x3 = x2 or cos (3), 

whichever is larger (farther to the right). In general,

xn + 1 = max 5xn, cos (n + 1)6 .

 131. an =
1 + 22n

2n
 132. an =

n + 1
n

 133. an =
4n + 1 + 3n

4n  134. a1 = 1, an + 1 = 2an - 3

In Exercises 135–136, use the definition of convergence to prove the 

given limit.

 135. lim
nSq

 
sin n

n = 0 136. lim
nSq
a1 -

1

n2
b = 1

T
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COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for the sequences in 

 Exercises 147–158.

a. Calculate and then plot the irst 25 terms of the sequence. 

Does the sequence appear to be bounded from above or 

below? Does it appear to converge or diverge? If it does 

converge, what is the limit L?

b. If the sequence converges, ind an integer N such that 

�an - L � … 0.01 for n Ú N. How far in the sequence do 

you have to get for the terms to lie within 0.0001 of L?

 147. an = 2n n 148. an = a1 +
0.5
n bn

 149. a1 = 1, an + 1 = an +
1
5n

 150. a1 = 1, an + 1 = an + (-2)n

 151. an = sin n 152. an = n sin 
1
n

 153. an =
sin n

n  154. an =
ln n

n

 155. an = (0.9999)n 156. an = (123456)1>n
 157. an =

8n

n!
 158. an =

n41

19n

10.2 Infinite Series

An infinite series is the sum of an infinite sequence of numbers

a1 + a2 + a3 + g + an + g

The goal of this section is to understand the meaning of such an infinite sum and to 

develop methods to calculate it. Since there are infinitely many terms to add in an infinite 

series, we cannot just keep adding to see what comes out. Instead we look at the result of 

summing just the first n terms of the sequence. The sum of the first n terms

sn = a1 + a2 + a3 + g + an

is an ordinary finite sum and can be calculated by normal addition. It is called the nth 

 partial sum. As n gets larger, we expect the partial sums to get closer and closer to a limiting 

value in the same sense that the terms of a sequence approach a limit, as discussed in 

 Section 10.1.

For example, to assign meaning to an expression like

1 +
1
2

+
1
4

+
1
8

+
1
16

+ g

we add the terms one at a time from the beginning and look for a pattern in how these par-

tial sums grow.

partial sum Value

suggestive expression 

for partial sum

First:  s1 = 1 1 2 - 1

Second:  s2 = 1 +
1
2

3
2

2 -
1
2

Third:  s3 = 1 +
1
2

+
1
4

7
4

2 -
1
4

f f f f

nth:  sn = 1 +
1
2

+
1
4

+ g +
1

2n - 1

2n - 1

2n - 1
    2 -

1

2n - 1

Indeed there is a pattern. The partial sums form a sequence whose nth term is

sn = 2 -
1

2n - 1
.
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This sequence of partial sums converges to 2 because limnSq (1>2n - 1) = 0. We say

“the sum of the infinite series 1 +
1
2

+
1
4

+ g +
1

2n - 1
+ g is 2.”

Is the sum of any finite number of terms in this series equal to 2? No. Can we actually add 

an infinite number of terms one by one? No. But we can still define their sum by defining 

it to be the limit of the sequence of partial sums as n S q, in this case 2 (Figure 10.8). 

Our knowledge of sequences and limits enables us to break away from the confines of 

finite sums.

HistoricAL BiogrApHy

Blaise pascal

(1623–1662)

www.goo.gl/9NNLtv

DEFINITIONS Given a sequence of numbers 5an6 , an expression of the form

a1 + a2 + a3 + g + an + g

is an infinite series. The number an is the nth term of the series. The sequence 5sn6  defined by

  s1 = a1

  s2 = a1 + a2

 f

sn = a1 + a2 + g + an = a
n

k = 1

 ak

 f

is the sequence of partial sums of the series, the number sn being the nth 

 partial sum. If the sequence of partial sums converges to a limit L, we say that 

the series converges and that its sum is L. In this case, we also write

a1 + a2 + g + an + g = a
q

n = 1

 an = L.

If the sequence of partial sums of the series does not converge, we say that the 

series diverges.

We can represent each term in an infinite series by the area of a rectangle. If all the 

terms an in the series are positive, then the series converges if the total area is finite, and 

diverges otherwise. Figure 10.9a shows an example where the series converges and Figure 

10.9b shows an example where it diverges. The convergence of the total area is related to 

the convergence or divergence of improper integrals, as we found in Section 8.8. We make 

this connection explicit in the next section, where we develop an important test for conver-

gence of series, the Integral Test.

When we begin to study a given series a1 + a2 + g + an + g, we might not 

know whether it converges or diverges. In either case, it is convenient to use sigma nota-

tion to write the series as

a
q

n = 1

 an,  a
q

k = 1

 ak,  or  a  an  
A useful shorthand 

when summation 

from 1 to q is 

understood

  

0

1

21�2 1�8

1�4

FIGURE 10.8 As the lengths 1, 1>2, 1>4, 1>8, . . . are added one by one, the sum 

 approaches 2.

http://www.goo.gl/9NNLtv
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Geometric Series

geometric series are series of the form

a + ar + ar2 + g + arn - 1 + g = a
q

n = 1

 ar  

n - 1

in which a and r are fixed real numbers and a ≠ 0. The series can also be written as gq
n = 0 arn. The ratio r can be positive, as in

1 +
1
2

+
1
4

+ g + a1
2
bn - 1

+ g ,  r = 1>2 , a = 1

or negative, as in

1 -
1
3

+
1
9

- g + a-  
1
3
bn - 1

+ g .  r = -1>3 , a = 1

If r = 1, the nth partial sum of the geometric series is

sn = a + a(1) + a(1)2 + g + a(1)n - 1 = na,

and the series diverges because limnSq sn = {q, depending on the sign of a. If r = -1, 

the series diverges because the nth partial sums alternate between a and 0 and never 

approach a single limit. If � r � ≠ 1, we can determine the convergence or divergence of 

the series in the following way:

 sn = a + ar + ar2 + g + arn - 1   Write the nth partial sum.

 rsn = ar + ar2 + g + arn - 1 + arn  Multiply sn by r .

 sn - rsn = a - arn   Subtract rsn from sn. Most of 

the terms on the right cancel.

Factor.

  

 sn(1 - r) = a(1 - rn)   

 sn =
a(1 - rn)

1 - r
,  (r ≠ 1).   We can solve for sn if r ≠ 1.

If � r � 6 1, then rn S 0 as n S q (as in Section 10.1), so sn S a>(1 - r) in this case.  

On the other hand, if � r � 7 1, then � rn � S q and the series diverges.

If � r � 6 1, the geometric series a + ar + ar2 + g + arn - 1 + gconverges 

to a>(1 - r):

a
q

n = 1

 arn - 1 =
a

1 - r
,  � r � 6 1.

If � r � Ú 1, the series diverges.

a1

(a)

1

2

a2
a3 a4 a5 a6

an =

1 2 3 4 5 6
x

2
n2

y

 

a1

(b)

1

2

a2 a3 a4 a5 a6

an = 1 + 

1 2 3 4 5 6

1
n

y

x

FIGURE 10.9 The sum of a series with positive terms can be interpreted 

as a total area of an infinite collection of rectangles. The series converges 

when the total area of the rectangles is finite (a) and diverges when the total 

area is unbounded (b). Note that  the total area can be infinite even if the area 

of the rectangles is decreasing.
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The formula a>(1 - r) for the sum of a geometric series applies only when the sum-

mation index begins with n = 1 in the expression gq
n = 1 arn - 1 (or with the index n = 0 if 

we write the series as gq
n = 0 arn).

EXAMPLE 1  The geometric series with a = 1>9 and r = 1>3 is

 
1
9

+
1
27

+
1
81

+ g = a
q

n = 1

 
1
9

 a1
3
bn - 1

=
1>9

1 - (1>3)
=

1
6

. 

EXAMPLE 2  The series

a
q

n = 0

 
(-1)n 5

4n = 5 -
5
4

+
5
16

-
5
64

+ g

is a geometric series with a = 5 and r = -1>4. It converges to

 
a

1 - r
=

5

1 + (1>4)
= 4. 

EXAMPLE 3  You drop a ball from a meters above a flat surface. Each time the ball 

hits the surface after falling a distance h, it rebounds a distance rh, where r is positive but 

less than 1. Find the total distance the ball travels up and down (Figure 10.10).

Solution The total distance is

s = a + 2ar + 2ar2 + 2ar3 + g = a +
2ar

1 - r
= a 

1 + r
1 - r

.
(+++++)+++++*

 This sum is 2ar>(1 - r).

If a = 6 m and r = 2>3, for instance, the distance is

 s = 6 # 1 + (2>3)

1 - (2>3)
= 6 a5>3

1>3b = 30 m. 

EXAMPLE 4  Express the repeating decimal 5.232323c as the ratio of two integers.

Solution From the definition of a decimal number, we get a geometric series

 5.232323 c = 5 +
23
100

+
23

(100)2
+

23

(100)3
+ g

 = 5 +
23
100

 a1 +
1

100
+ a 1

100
b2

+ gb   
a = 1,

r = 1>100
 (++++++)++++++*
 1>(1 - 0.01)

 = 5 +
23
100

 a 1
0.99
b = 5 +

23
99

=
518
99

 

Unfortunately, formulas like the one for the sum of a convergent geometric series are 

rare and we usually have to settle for an estimate of a series’ sum (more about this later). 

The next example, however, is another case in which we can ind the sum exactly.

EXAMPLE 5  Find the sum of the “telescoping” series a
q

n = 1

 
1

n(n + 1)
.

ar

ar2

ar3

(a)

a

(b)

FIGURE 10.10 (a) Example 3 shows 

how to use a geometric series to calcu-

late the total vertical distance traveled 

by a bouncing ball if the height of each 

rebound is reduced by the factor r. (b) A 

 stroboscopic photo of a bouncing ball. 

(Source: PSSC Physics, 2nd ed., Reprinted 

by permission of Educational Develop-

ment Center, Inc.)
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Solution We look for a pattern in the sequence of partial sums that might lead to a for-

mula for sk. The key observation is the partial fraction decomposition

1
n(n + 1)

=
1
n

-
1

n + 1
,

so

a
k

n = 1

 
1

n(n + 1)
= a

k

n = 1

 a1
n

-
1

n + 1
b

and

sk = a1
1

-
1
2
b + a1

2
-

1
3
b + a1

3
-

1
4
b + g+  a1

k
-

1
k + 1

b .

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

sk = 1 -
1

k + 1
.

We now see that sk S 1 as k S q. The series converges, and its sum is 1:

 a
q

n = 1

 
1

n(n + 1)
= 1. 

THEOREM 7 If a
q

n = 1

 an converges, then an S 0.

The nth-Term Test for Divergence

a
q

n = 1

 an diverges if lim
nSq

 an fails to exist or is different from zero.

Theorem 7 leads to a test for detecting the kind of divergence that occurred in Example 6.

EXAMPLE 7  The following are all examples of divergent series.

(a) a
q

n = 1

 n2 diverges because n2 S q.

The nth-Term Test for a Divergent Series

One reason that a series may fail to converge is that its terms don’t become small.

EXAMPLE 6  The series

a
q

n = 1

 
n + 1

n =
2
1

+
3
2

+
4
3

+ g +  
n + 1

n + g

diverges because the partial sums eventually outgrow every preassigned number. Each 

term is greater than 1, so the sum of n terms is greater than n. 

We now show that limnSq an must equal zero if the series gq
n = 1 an converges. To see 

why, let S represent the series’ sum and sn = a1 + a2 + g+  an the nth partial sum. 

When n is large, both sn and sn - 1 are close to S, so their difference, an, is close to zero. 

More formally,

an = sn - sn - 1 S S - S = 0.  
 Difference Rule  

for sequences

This establishes the following theorem.

caution

Theorem 7 does not say that g∞

n = 1 an 

converges if an S 0. It is possible for  

a series to diverge when an S 0.  

(See Example 8.)
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(b) a
q

n = 1

 
n + 1

n  diverges because 
n + 1

n S 1.  limnSq an ≠ 0

(c) a
q

n = 1

 (-1)n + 1 diverges because limnSq (-1)n + 1 does not exist.

(d) a
q

n = 1

 
-n

2n + 5
 diverges because limnSq  

-n

2n + 5
= -  

1
2
≠ 0. 

THEOREM 8 If gan = A and gbn = B are convergent series, then

1. Sum Rule: g (an + bn) = gan + gbn = A + B

2. Diference Rule: g (an - bn) = gan - gbn = A - B

3. Constant Multiple Rule: gkan = kgan = kA  (any number k).

Proof  The three rules for series follow from the analogous rules for sequences in 

 Theorem 1, Section 10.1. To prove the Sum Rule for series, let

An = a1 + a2 + g +  an, Bn = b1 + b2 + g+  bn.

Then the partial sums of g (an + bn) are

 sn = (a1 + b1) + (a2 + b2) + g+  (an + bn)

 = (a1 + g+  an) + (b1 + g+  bn)

 = An + Bn.

Since An S A and Bn S B, we have sn S A + B by the Sum Rule for sequences. The 

proof of the Diference Rule is similar.

To prove the Constant Multiple Rule for series, observe that the partial sums of gkan 

form the sequence

sn = ka1 + ka2 + g+  kan = k(a1 + a2 + g+  an) = kAn,

which converges to kA by the Constant Multiple Rule for sequences. 

As corollaries of Theorem 8, we have the following results. We omit the proofs.

1. Every nonzero constant multiple of a divergent series diverges.

2. If gan converges and gbn diverges, then g (an + bn) and g (an - bn) both 

diverge.

EXAMPLE 8  The series

1 +
1
2

+
1
2

+
1
4

+
1
4

+
1
4

+
1
4

+ g +
1
2n +

1
2n + g +

1
2n + g

 (+)+* (+++)+++* (++++)++++*
 2 terms 4 terms 2n terms

diverges because the terms can be grouped into infinitely many clusters each of which 

adds to 1, so the partial sums increase without bound. However, the terms of the series 

form a sequence that converges to 0. Example 1 of Section 10.3 shows that the harmonic 

series g1>n also behaves in this manner. 

Combining Series

Whenever we have two convergent series, we can add them term by term, subtract them 

term by term, or multiply them by constants to make new convergent series.
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caution Remember that g (an + bn) can converge even if both gan and gbn diverge. 

For example, gan = 1 + 1 + 1 + g and gbn = (-1) + (-1) + (-1) + . . . di-

verge, whereas g (an + bn) = 0 + 0 + 0 + gconverges to 0. 

EXAMPLE 9  Find the sums of the following series.

(a)  a
q

n = 1

 
3n - 1 - 1

6n - 1
= a

q

n = 1

 a 1

2n - 1
-

1

6n - 1
b

   = a
q

n = 1

 
1

2n - 1
- a

q

n = 1

 
1

6n - 1
 Diference Rule

   =
1

1 - (1>2)
-

1

1 - (1>6)
 Geometric series with a = 1 and r = 1>2, 1>6

   = 2 -
6
5

=
4
5

(b) a
q

n = 0

 
4
2n = 4a

q

n = 0

 
1
2n  Constant Multiple Rule

   = 4a 1

1 - (1>2)
b  Geometric series with a = 1, r = 1>2 

   = 8  

Adding or Deleting Terms

We can add a finite number of terms to a series or delete a finite number of terms without 

altering the series’ convergence or divergence, although in the case of convergence this 

will usually change the sum. If gq
n = 1 an converges, then gq

n = k an converges for any k 7 1 

and

a
q

n = 1

 an = a1 + a2 +  g+  ak - 1 + a
q

n = k

 an.

Conversely, if gq
n = k an converges for any k 7 1, then gq

n = 1 an converges. Thus,

a
q

n = 1

 
1
5n =

1
5

+
1
25

+
1

125
+ a

q

n = 4

 
1
5n

and

a
q

n = 4

 
1
5n = aaq

n = 1

 
1
5nb -

1
5

-
1
25

-
1

125
.

The convergence or divergence of a series is not affected by its first few terms. Only the 

“tail” of the series, the part that remains when we sum beyond some finite number of ini-

tial terms, influences whether it converges or diverges.

Reindexing

As long as we preserve the order of its terms, we can reindex any series without altering its 

convergence. To raise the starting value of the index h units, replace the n in the formula 

for an by n - h:

a
q

n = 1

 an = a
q

n = 1 + h

 an - h = a1 + a2 + a3 + g.

To lower the starting value of the index h units, replace the n in the formula for an by n + h:

a
q

n = 1

 an = a
q

n = 1 - h

 an + h = a1 + a2 + a3 + g.

HistoricAL BiogrApHy

richard Dedekind

(1831–1916)

www.goo.gl/aPN8sH

http://www.goo.gl/aPN8sH
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We saw this reindexing in starting a geometric series with the index n = 0 instead of the 

index n = 1, but we can use any other starting index value as well. We usually give prefer-

ence to indexings that lead to simple expressions.

EXAMPLE 10  We can write the geometric series

a
q

n = 1

 
1

2n - 1
= 1 +

1
2

+
1
4

+ g

as

a
q

n = 0

  
1
2n ,  a

q

n = 5

  
1

2n - 5
,  or even  a

q

n = -4

  
1

2n + 4
.

The partial sums remain the same no matter what indexing we choose to use. 

Finding nth Partial Sums

In Exercises 1–6, find a formula for the nth partial sum of each series 

and use it to find the series’ sum if the series converges.

 1. 2 +
2
3

+
2
9

+
2
27

+ g+
2

3n - 1
+ g

 2. 
9

100
+

9

1002
+

9

1003
+ g +

9

100n + g

 3. 1 -
1
2

+
1
4

-
1
8

+ g + (-1)n - 1 
1

2n - 1
+ g

 4. 1 - 2 + 4 - 8 + g + (-1)n - 1 2n - 1 + g

 5. 
1

2 # 3
+

1
3 # 4

+
1

4 # 5
+ g +

1
(n + 1)(n + 2)

+ g

 6. 
5

1 # 2
+

5
2 # 3

+
5

3 # 4
+ g +

5
n(n + 1)

+ g

Series with Geometric Terms

In Exercises 7–14, write out the first eight terms of each series to 

show how the series starts. Then find the sum of the series or show 

that it diverges.

 7. a
q

n = 0

 
(-1)n

4n  8. a
q

n = 2

 
1
4n

 9. a
q

n = 1

 a1 -
7
4nb  10. a

q

n = 0

(-1)n 
5
4n

 11. a
q

n = 0

 a 5
2n +

1
3nb  12. a

q

n = 0

 a 5
2n -

1
3nb

 13. a
q

n = 0

 a 1
2n +

(-1)n

5n b  14. a
q

n = 0

 a2n + 1

5n b
In Exercises 15–22, determine if the geometric series converges or 

diverges. If a series converges, find its sum.

 15. 1 + a2
5
b + a2

5
b2

+ a2
5
b3

+ a2
5
b4

+ g 

 16. 1 + (-3) + (-3)2 + (-3)3 + (-3)4 + g

 17. a1
8
b + a1

8
b2

+ a1
8
b3

+ a1
8
b4

+ a1
8
b5

+ g

 18. a-2
3
b2

+ a-2
3
b3

+ a-2
3
b4

+ a-2
3
b5

+ a-2
3
b6

+ g

 19. 1 - a2eb + a2eb2

- a2eb3

+ a2eb4

 - g

 20. a1
3
b-2

- a1
3
b-1

+ 1 - a1
3
b + a1

3
b2

 - g

 21. 1 + a10
9
b2

+ a10
9
b4

+ a10
9
b6

+ a10
9
b8

 + g

 22. 
9

4
-

27
8

+
81
16

-
243
32

+
729

64
- g

Repeating Decimals

Express each of the numbers in Exercises 23–30 as the ratio of two 

integers.

 23. 0.23 = 0.23 23 23c
 24. 0.234 = 0.234 234 234c
 25. 0.7 = 0.7777c
 26. 0.d = 0.ddddc , where d is a digit

 27. 0.06 = 0.06666c
 28. 1.414 = 1.414 414 414c
 29. 1.24123 = 1.24 123 123 123c
 30. 3.142857 = 3.142857 142857c

Using the nth-Term Test

In Exercises 31–38, use the nth-Term Test for divergence to show that 

the series is divergent, or state that the test is inconclusive.

 31. a
q

n = 1

 
n

n + 10
 32. a

q

n = 1

 
n(n + 1)

(n + 2)(n + 3)

 33. a
q

n = 0

 
1

n + 4
 34. a

q

n = 1

 
n

n2 + 3

EXERCISES 10.2
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 69. a
q

n = 1

 ln a n

n + 1
b  70. a

q

n = 1

 lna n

2n + 1
b

 71. a
q

n = 0

 a e
pbn

 72. a
q

n = 0

 
enp

pne

 73. a
q

n = 1

 a n

n + 1
-

n + 2
n + 3

b
 74. a

q

n = 2

 asin apn b - sin a p

n - 1
b b

 75. a
q

n = 1

 acos apn b + sin apn b b
 76. a

q

n = 0
 (ln (4en - 1) - ln (2en + 1))

Geometric Series with a Variable x

In each of the geometric series in Exercises 77–80, write out the first 

few terms of the series to find a and r, and find the sum of the series. 

Then express the inequality � r � 6 1 in terms of x and find the values 

of x for which the inequality holds and the series converges.

 77. a
q

n = 0

(-1)nxn 78. a
q

n = 0

(-1)nx2n

 79. a
q

n = 0

3ax - 1
2
bn

 80. a
q

n = 0

 
(-1)n

2
 a 1

3 + sin x
bn

In Exercises 81–86, find the values of x for which the given geometric 

series converges. Also, find the sum of the series (as a function of x) 

for those values of x.

 81. a
q

n = 0

2nxn 82. a
q

n = 0

(-1)nx-2n

 83. a
q

n = 0

(-1)n(x + 1)n 84. a
q

n = 0

 a-  
1
2
bn

(x - 3)n

 85. a
q

n = 0

 sinn x 86. a
q

n = 0

 (ln x)n

Theory and Examples

 87. The series in Exercise 5 can also be written as

a
q

n = 1

 
1

(n + 1)(n + 2)
 and a

q

n = -1

 
1

(n + 3)(n + 4)
.

  Write it as a sum beginning with (a) n = -2, (b) n = 0,  

(c) n = 5.

 88. The series in Exercise 6 can also be written as

a
q

n = 1

 
5

n(n + 1)
 and a

q

n = 0

 
5

(n + 1)(n + 2)
.

  Write it as a sum beginning with (a) n = -1, (b) n = 3,  

(c) n = 20.

 89. Make up an ininite series of nonzero terms whose sum is

a. 1  b. -3  c. 0.

 90. (Continuation of Exercise 89.) Can you make an ininite series of 

nonzero terms that converges to any number you want? Explain.

 91. Show by example that g(an>bn) may diverge even though gan 

and gbn converge and no bn equals 0.

 35. a
q

n = 1

 cos 
1
n 36. a

q

n = 0

 
en

en + n

 37. a
q

n = 1

 ln  
1
n 38. a

q

n = 0

 cos np

Telescoping Series

In Exercises 39–44, find a formula for the nth partial sum of the series 

and use it to determine if the series converges or diverges. If a series 

converges, find its sum.

 39. a
q

n = 1

 a1n -
1

n + 1
b  40. a

q

n = 1

 a 3

n2
-

3

(n + 1)2
b

 41. a
q

n = 1

 1ln 2n + 1 - ln 2n2 42. a
q

n = 1

 (tan (n) - tan (n - 1))

 43. a
q

n = 1

 acos-1 a 1
n + 1

b - cos-1 a 1
n + 2

b b
 44. a

q

n = 1

 12n + 4 - 2n + 32
Find the sum of each series in Exercises 45–52.

 45. a
q

n = 1

 
4

(4n - 3)(4n + 1)
 46. a

q

n = 1

 
6

(2n - 1)(2n + 1)

 47. a
q

n = 1

 
40n

(2n - 1)2(2n + 1)2
 48. a

q

n = 1

  
2n + 1

n2(n + 1)2

 49. a
q

n = 1

 a 1

2n
-

1

2n + 1
b  50. a

q

n = 1

 a 1

21>n -
1

21>(n + 1)
b

 51. a
q

n = 1

 a 1
ln (n + 2)

-
1

ln (n + 1)
b

 52. a
q

n = 1

(tan-1 (n) - tan-1 (n + 1))

Convergence or Divergence

Which series in Exercises 53–76 converge, and which diverge? Give 

reasons for your answers. If a series converges, find its sum.

 53. a
q

n = 0

 a 1

22
bn

 54. a
q

n = 0

1222n
 55. a

q

n = 1

(-1)n + 1 
3
2n 56. a

q

n = 1

(-1)n + 1n

 57. a
q

n = 0

 cos anp
2
b  58. a

q

n = 0

 
cos np

5n

 59. a
q

n = 0

 e-2n 60. a
q

n = 1

 ln 
1
3n

 61. a
q

n = 1

 
2

10n 62. a
q

n = 0

  
1
xn , � x � 7 1

 63. a
q

n = 0

 
2n - 1

3n  64. a
q

n = 1

 a1 -
1
nbn

 65. a
q

n = 0

 
n!

1000n 66. a
q

n = 1

  
nn

n!

 67. a
q

n = 1

 
2n + 3n

4n  68. a
q

n = 1

 
2n + 4n

3n + 4n
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 103. the cantor set To construct this set, we begin with the closed 

interval 30, 14 . From that interval, remove the middle open 

interval (1>3, 2>3), leaving the two closed intervals 30, 1>34  
and 32>3, 14 . At the second step we remove the open middle 

third interval from each of those remaining. From 30, 1>34  
we remove the open interval (1>9, 2>9), and from 32>3, 14  
we remove (7>9, 8>9), leaving behind the four closed intervals 30, 1>94 , 3 2>9,1>3 4 , 3 2>3, 7>9 4 , and 3 8>9, 1 4 . At the 

next step, we remove the middle open third interval from each 

closed interval left behind, so (1>27, 2>27) is removed from  3 0, 1>9 4 , leaving the closed intervals 3 0, 1>27 4  and  3 2>27, 1>9 4 ; (7>27, 8>27 ) is removed from 3 2>9, 1>3 4 , 
leaving behind 3 2>9, 7>27 4  and 3 8>27, 1>3 4 , and so forth. 

We continue this process repeatedly without stopping, at each 

step removing the open third interval from every closed interval 

remaining behind from the preceding step. The numbers remain-

ing in the interval 30, 1 4 , after all open middle third intervals have 

been removed, are the points in the Cantor set (named after Georg 

Cantor, 1845–1918). The set has some interesting properties.

a. The Cantor set contains ininitely many numbers in 3 0, 1 4 . 
List 12 numbers that belong to the Cantor set.

b. Show, by summing an appropriate geometric series, that the 

total length of all the open middle third intervals that have 

been removed from 3 0, 1 4  is equal to 1.

 104. Helga von Koch’s snowlake curve Helga von Koch’s snow-

lake is a curve of ininite length that encloses a region of inite 

area. To see why this is so, suppose the curve is generated by 

starting with an equilateral triangle whose sides have length 1.

a. Find the length Ln of the nth curve Cn and show that 

limnSq  Ln = q.

b. Find the area An of the region enclosed by Cn and show that 

limnSq  An = (8>5) A1.

C1 C4C3C2

 105. The largest circle in the accompanying igure has radius 1. Con-

sider the sequence of circles of maximum area inscribed in semi-

circles of diminishing size. What is the sum of the areas of all of 

the circles?

 92. Find convergent geometric series A = gan and B = gbn that 

illustrate the fact that gan  bn may converge without being equal 

to AB.

 93. Show by example that g(an>bn) may converge to something 

other than A >B even when A = gan, B = gbn ≠ 0, and no bn 

equals 0.

 94. If gan converges and an 7 0 for all n, can anything be said 

about g(1>an)? Give reasons for your answer.

 95. What happens if you add a inite number of terms to a divergent 

series or delete a inite number of terms from a divergent series? 

Give reasons for your answer.

 96. If gan converges and gbn diverges, can anything be said about 

their term-by-term sum g(an + bn)? Give reasons for your 

 answer.

 97. Make up a geometric series garn - 1 that converges to the number 

5 if

a. a = 2 b. a = 13>2.

 98. Find the value of b for which

1 + eb + e2b + e3b + g = 9.

 99. For what values of r does the ininite series

1 + 2r + r2 + 2r3 + r4 + 2r5 + r6 + g

  converge? Find the sum of the series when it converges.

 100. The accompanying igure shows the irst ive of a sequence of 

squares. The outermost square has an area of 4 m2. Each of the 

other squares is obtained by joining the midpoints of the sides 

of the squares before it. Find the sum of the areas of all the 

squares.

 101. Drug dosage A patient takes a 300 mg tablet for the control of 

high blood pressure every morning at the same time. The concen-

tration of the drug in the patient’s system decays exponentially at 

a constant hourly rate of k = 0.12.

a. How many milligrams of the drug are in the patient’s system 

just before the second tablet is taken? Just before the third 

tablet is taken?

b. In the long run, after taking the medication for at least six 

months, what quantity of drug is in the patient’s body just 

before taking the next regularly scheduled morning tablet?

 102. Show that the error (L - sn) obtained by replacing a convergent 

geometric series with one of its partial sums sn is arn>(1 - r).
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10.3 The Integral Test

The most basic question we can ask about a series is whether it converges. In this section 

we begin to study this question, starting with series that have nonnegative terms. Such a 

series converges if its sequence of partial sums is bounded. If we establish that a given 

series does converge, we generally do not have a formula available for its sum. So to get an 

estimate for the sum of a convergent series, we investigate the error involved when using a 

partial sum to approximate the total sum.

Nondecreasing Partial Sums

Suppose that gq
n = 1 an is an infinite series with an Ú 0 for all n. Then each partial sum is 

greater than or equal to its predecessor because sn + 1 = sn + an, so

s1 … s2 … s3 … g … sn … sn + 1 … g.

Since the partial sums form a nondecreasing sequence, the Monotonic Sequence Theorem 

(Theorem 6, Section 10.1) gives the following result.

Corollary of Theorem 6

A series gq
n = 1 an of nonnegative terms converges if and only if its partial sums are 

bounded from above.

EXAMPLE 1  As an application of the above corollary, consider the harmonic series

a
q

n = 1

 
1
n = 1 +

1
2

+
1
3

+ g +
1
n + g.

Although the nth term 1 >n does go to zero, the series diverges because there is no upper 

bound for its partial sums. To see why, group the terms of the series in the following way:

1 +
1
2

+ a1
3

+
1
4
b + a1

5
+

1
6

+
1
7

+
1
8
b + a1

9
+

1
10

+ g +
1
16
b + g .

 (+)+* (+++)+++* (++++)++++*
 7  24 = 1

2  7  48 = 1
2  7  8

16 = 1
2

The sum of the first two terms is 1.5. The sum of the next two terms is 1>3 + 1>4, which 

is greater than 1>4 + 1>4 = 1>2. The sum of the next four terms is 1>5 + 1>6 +  

1>7 + 1>8, which is greater than 1>8 + 1>8 + 1>8 + 1>8 = 1>2. The sum of the next 

eight terms is 1>9 + 1>10 + 1>11 + 1>12 + 1>13 + 1>14 + 1>15 + 1>16, which is 

greater than 8>16 = 1>2. The sum of the next 16 terms is greater than 16>32 = 1>2, and 

so on. In general, the sum of 2n terms ending with 1>2n + 1 is greater than 2n>2n + 1 = 1>2. 

If n = 2k, the partial sum sn is greater than k >2, so the sequence of partial sums is not 

bounded from above. The harmonic series diverges. 

The Integral Test

We now introduce the Integral Test with a series that is related to the harmonic series, but 

whose nth term is 1>n2 instead of 1 >n.

EXAMPLE 2  Does the following series converge?

a
q

n = 1

 
1

n2
= 1 +

1
4

+
1
9

+
1
16

+ g +
1

n2
+ g
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Solution We determine the convergence of gq
n = 1(1>n2)  by comparing it with 

1q
1

(1>x2)  dx. To carry out the comparison, we think of the terms of the series as values of 

the function ƒ(x) = 1>x2 and interpret these values as the areas of rectangles under the 

curve y = 1>x2.

As Figure 10.11 shows,

 sn =
1

12
+

1

22
+

1

32
+ g +

1

n2

 = ƒ(1) + ƒ(2) + ƒ(3) + g + ƒ(n)

 6 ƒ(1) + L
n

1

 
1

x2
 dx   

Rectangle areas sum to less 

than area under graph.
 

 6 1 + L
q

1

 
1

x2
 dx   1n

1
(1>x2) dx 6 1q

1
(1>x2)  dx

 6 1 + 1 = 2.   
As in Section 8.8, Example 3, 

1q
1

(1>x2) dx = 1.

Thus the partial sums of gq
n = 1 (1>n2)  are bounded from above (by 2) and the series 

 converges. 

0 1

Graph of f (x) =

(1, f (1)) 

(2, f (2))

(3, f (3))
(n, f (n))

2 3 4 … n − 1 n …

1

x2

1

n2
1

22

1

12

1

32

1

42

x

y

FIGURE 10.11 The sum of the areas 

of the rectangles under the graph of 

ƒ(x) = 1>x2 is less than the area under the 

graph (Example 2).

caution

The series and integral need not have the 

same value in the convergent case. You 

will see in Example 6 that

g∞

n = 1 (1>n2) ≠ 1∞

1
(1>x2)  dx = 1.

THEOREM 9—The Integral Test

Let 5an6  be a sequence of positive terms. Suppose that an = ƒ(n), where ƒ is a 

continuous, positive, decreasing function of x for all x Ú N  (N a positive inte-

ger). Then the series gq
n = N  an and the integral 1q

N
 ƒ(x) dx both converge or both 

diverge.

Proof  We establish the test for the case N = 1. The proof for general N is similar.

We start with the assumption that ƒ is a decreasing function with ƒ(n) = an for ev-

ery n. This leads us to observe that the rectangles in Figure 10.12a, which have areas 

a1, a2, . . . , an, collectively enclose more area than that under the curve y = ƒ(x) from 

x = 1 to x = n + 1. That is,

 L
n + 1

1

 ƒ(x) dx … a1 + a2 + g + an.

In Figure 10.12b the rectangles have been faced to the left instead of to the right. If we 

momentarily disregard the irst rectangle of area a1, we see that

a2 + a3 + g + an … L
n

1

 ƒ(x) dx.

If we include a1, we have

a1 + a2 + g + an … a1 + L
n

1

 ƒ(x) dx.

Combining these results gives

 L
n + 1

1

 ƒ(x) dx … a1 + a2 + g + an … a1 + L
n

1

 ƒ(x) dx.

These inequalities hold for each n, and continue to hold as n S q.

If 1q
1

 ƒ(x) dx is inite, the right-hand inequality shows that gan is inite. If 1q
1

 ƒ(x) dx 

is ininite, the left-hand inequality shows that gan is ininite. Hence the series and the 

 integral are either both inite or both ininite. 

0 1 2 n3 n + 1

a1
a2

an

(a)

0 1 2 n3 n − 1

a1

a3

an

(b)

a2

x

y

x

y

y = f (x)

y = f (x)

FIGURE 10.12 Subject to the conditions 

of the Integral Test, the series gq
n = 1 an and 

the integral 1q
1  ƒ(x) dx both converge or 

both diverge.
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EXAMPLE 3  Show that the p-series

a
q

n = 1

 
1
n 

p =
1
1p +

1
2p +

1
3p + g +

1
n 

p + g

( p a real constant) converges if p 7 1, and diverges if p … 1.

Solution If p 7 1, then ƒ(x) = 1>xp is a positive decreasing function of x. Since

  L
q

1

 
1
xp  dx = L

q

1

 x-p dx = lim
bSq

 c x-p + 1

-p + 1
d

1

b

  Evaluate the improper integral

 =
1

1 - p
  lim

bSq
 a 1

b 

p - 1
- 1b   

 =
1

1 - p
 (0 - 1) =

1
p - 1

,   bp - 1 S q as b S q 

because p - 1 7 0.

the series converges by the Integral Test. We emphasize that the sum of the p-series is not 

1>(p - 1). The series converges, but we don’t know the value it converges to.

If p … 0, the series diverges by the nth-term test. If 0 6 p 6 1, then 1 - p 7 0 and

 L
q

1

 
1
xp  dx =

1
1 - p

  lim
bSq

(b1 - p - 1) = q.

Therefore, the series diverges by the Integral Test.

If p = 1, we have the (divergent) harmonic series

1 +
1
2

+
1
3

+ g +
1
n + g.

In summary, we have convergence for p 7 1 but divergence for all other values of p. 

the p-series a
H

n = 1

 
1

n p

converges if p 7 1, diverges if p … 1.

EXAMPLE 4  The series gq
n = 1 (1>(n2 + 1)) is not a p-series, but it converges by the 

Integral Test. The function ƒ(x) = 1>(x2 + 1) is positive, continuous, and decreasing for 

x Ú 1, and

  L
q

1

 
1

x2 + 1
 dx = lim

bSq
 3arctan x41

b

 = lim
bSq
3arctan b - arctan 14

 =
p
2

-
p
4

=
p
4

.

The Integral Test tells us that the series converges, but it does not say that p>4 or any 

other number is the sum of the series. 

EXAMPLE 5  Determine the convergence or divergence of the series.

(a) a
q

n = 1
 ne- n2

   (b) a
q

n = 1

 
1

2 ln n

The p-series with p = 1 is the harmonic series (Example 1). The p-Series Test 

shows that the harmonic series is just barely divergent; if we increase p to 1.000000001, 

for instance, the series converges!

The slowness with which the partial sums of the harmonic series approach infinity is 

impressive. For instance, it takes more than 178 million terms of the harmonic series to 

move the partial sums beyond 20. (See also Exercise 49b.)
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Error Estimation

For some convergent series, such as the geometric series or the telescoping series in 

Example 5 of Section 10.2, we can actually find the total sum of the series. That is, we 

can find the limiting value S  of the sequence of partial sums. For most convergent series, 

however, we cannot easily find the total sum. Nevertheless, we can estimate the sum by 

adding the first n terms to get sn, but we need to know how far off sn is from the total 

sum S. An approximation to a function or to a number is more useful when it is accom-

panied by a bound on the size of the worst possible error that could occur. With such an 

error bound we can try to make an estimate or approximation that is close enough for 

the problem at hand. Without a bound on the error size, we are just guessing and hoping 

that we are close to the actual answer. We now show a way to bound the error size using 

integrals.

Suppose that a series Σan with positive terms is shown to be convergent by the 

 Integral Test, and we want to estimate the size of the remainder Rn measuring the difference 

between the total sum S of the series and its nth partial sum sn. That is, we wish to estimate

Rn = S - sn = an + 1 +  an + 2 +  an + 3 + g.

To get a lower bound for the remainder, we compare the sum of the areas of the 

rectangles with the area under the curve y = ƒ(x) for x Ú n (see Figure 10.13a). We 

see that

Rn =  an + 1 +  an + 2 +  an + 3 + g Ú L
q

n + 1

ƒ(x) dx.

Similarly, from Figure 10.13b, we find an upper bound with

Rn = an + 1 +  an + 2 +  an + 3 + g … L
q

n

ƒ(x) dx.

These comparisons prove the following result, giving bounds on the size of the 

remainder.

Solutions

(a) We apply the Integral Test and ind that

  L
q

1

x

ex2   dx =
1
2

  L
q

1

du
eu   u = x2, du = 2x dx 

 = lim
bSq

 c-  
1
2

 e-u d b
1

 = lim
bSq
a-  

1

2eb
+

1
2e
b =

1
2e

 .

 Since the integral converges, the series also converges.

(b) Again applying the Integral Test,

  L
q

1

dx

2 ln x
= L

q

0

eu du

2u   u = ln x, x = eu, dx = eu du

 = L
q

0

ae

2
bu

du

 = lim
bSq

1

 ln 1e
22 a ae

2
bb

- 1b = q.  (e>2) 7 1

The improper integral diverges, so the series diverges also. 

an+2

0

(a)

x

y

n n+1 n+2 n+3 n+4

an+1

Remainder terms

an+3 an+4

···
···

···
···

(b)

0
x

y

n n+1 n+2 n+3 n+4

Remainder terms

an+2

an+1

an+3 an+4

FIGURE 10.13 The remainder when 

using n terms is (a) larger than the integral 

of ƒ over 3n + 1, q). (b) smaller than the 

integral of ƒ over 3n, q).
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If we add the partial sum sn to each side of the inequalities in (1), we get

 sn + L
q

n + 1

ƒ(x) dx … S … sn + L
q

n

ƒ(x) dx (2)

since sn + Rn = S. The inequalities in (2) are useful for estimating the error in approxi-

mating the sum of a series known to converge by the Integral Test. The error can be no 

larger than the length of the interval containing S, with endpoints given by (2).

EXAMPLE 6  Estimate the sum of the series Σ(1>n2) using the inequalities in (2) and 

n = 10.

Solution We have that

 L
q

n

 
1

x2
 dx = lim

bSq
 c-1

x d
n

b

= lim
bSq

 a-1
b

+
1
nb =

1
n .

Using this result with the inequalities in (2), we get

s10 +
1
11

… S … s10 +
1
10

.

Taking s10 = 1 + (1>4) + (1>9) + (1>16) + g + (1>100) ≈ 1.54977, these last 

inequalities give

1.64068 … S … 1.64977.

If we approximate the sum S by the midpoint of this interval, we find that

a
q

n = 1

 
1

n2
≈ 1.6452.

The error in this approximation is then less than half the length of the interval, so the error 

is less than 0.005. Using a trigonometric Fourier series (studied in advanced calculus), it 

can be shown that S is equal to p2>6 ≈ 1.64493. 

Bounds for the Remainder in the Integral Test

Suppose 5ak6  is a sequence of positive terms with ak = ƒ(k), where ƒ is a con-

tinuous positive decreasing function of x for all x Ú n, and that Σan converges 

to S. Then the remainder Rn = S - sn satisies the inequalities

  L
q

n + 1

ƒ(x) dx … Rn … L
q

n

ƒ(x) dx. (1)

the p-series for p = 2

a
q

n = 1

 
1

n2
=

p2

6
≈ 1.64493

Applying the Integral Test

Use the Integral Test to determine if the series in Exercises 1–12 con-

verge or diverge. Be sure to check that the conditions of the Integral 

Test are satisfied.

 1. a
q

n = 1

 
1

n2
 2. a

q

n = 1

 
1

n0.2
 3. a

q

n = 1

 
1

n2 + 4

 4. a
q

n = 1

 
1

n + 4
 5. a

q

n = 1

 e-2n 6. a
q

n = 2

 
1

n(ln n)2

 7. a
q

n = 1

 
n

n2 + 4
 8. a

q

n = 2

 
ln (n2)

n

 9. a
q

n = 1

 
n2

en>3 10. a
q

n = 2

 
n - 4

n2 - 2n + 1

 11. a
q

n = 1

 
7

2n + 4
 12. a

q

n = 2

 
1

5n + 102n

EXERCISES 10.3
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partial sums just grow too slowly. To see what we mean, 

suppose you had started with s1 = 1 the day the universe was 

formed, 13 billion years ago, and added a new term every 

second. About how large would the partial sum sn be today, 

assuming a 365-day year?

 50. Are there any values of x for which gq
n = 1 (1>nx) converges? Give 

reasons for your answer.

 51. Is it true that if gq
n = 1 an is a divergent series of positive numbers, 

then there is also a divergent series gq
n = 1 bn of positive numbers 

with bn 6 an for every n? Is there a “smallest” divergent series of 

positive numbers? Give reasons for your answers.

 52. (Continuation of Exercise 51.) Is there a “largest” convergent 

 series of positive numbers? Explain.

 53. gHn = 1 11 ,2n + 12 diverges

a. Use the accompanying graph to show that the partial sum 

s50 = g50
n = 1 11>2n + 12 satisfies

 L
51

1

 
1

2x + 1
 dx 6 s50 6 L

50

0

 
1

2x + 1
 dx.

Conclude that 11.5 6 s50 6 12.3.

0

1

1 2 3 4 5 ···

···

48 49 50 51
x

y

"x + 1

1
f (x) = 

b. What should n be in order that the partial sum

sn = gn
i = 1 11>2i + 12 satisfy sn 7 1000?

 54. gHn=1 (1>n4) converges

a. Use the accompanying graph to ind an upper bound for the 

 error if s30 = g30
n = 1 (1>n4) is used to estimate the value of gq

n = 1 (1>n4).

29

2×10−6

30 31 32 33
x

y

x4

1
f (x) = 

···

b. Find n so that the partial sum sn = gn
i= 1 (1>i4)  estimates the 

value of gq
n = 1 (1>n4)  with an error of at most 0.000001.

 55. Estimate the value of gq
n = 1 (1>n3)  to within 0.01 of its exact 

 value.

 56. Estimate the value of gq
n = 2 (1> (n2 + 4) )  to within 0.1 of its 

 exact value.

 57. How many terms of the convergent series gq
n = 1 (1>n1.1)  should 

be used to estimate its value with error at most 0.00001?

Determining Convergence or Divergence

Which of the series in Exercises 13–46 converge, and which diverge? 

Give reasons for your answers. (When you check an answer, remem-

ber that there may be more than one way to determine the series’ con-

vergence or divergence.)

 13. a
q

n = 1

 
1

10n 14. a
q

n = 1

 e-n 15. a
q

n = 1

 
n

n + 1

 16. a
q

n = 1

 
5

n + 1
 17. a

q

n = 1

 
3

2n
 18. a

q

n = 1

 
-2

n2n

 19. a
q

n = 1
 -  

1
8n 20. a

q

n = 1

 
-8
n  21. a

q

n = 2

 
ln n

n

 22. a
q

n = 2

 
ln n

2n
 23. a

q

n = 1

 
2n

3n 24. a
q

n = 1

 
5n

4n + 3

 25. a
q

n = 0

 
-2

n + 1
 26. a

q

n = 1

 
1

2n - 1
 27. a

q

n = 1

 
2n

n + 1

 28. a
q

n = 1

 a1 +
1
nbn

 29. a
q

n = 2

 
2n

ln n
 30. a

q

n = 1

 
1

2n12n + 12
 31. a

q

n = 1

 
1

(ln 2)n 32. a
q

n = 1

 
1

(ln 3)n

 33. a
q

n = 3

 
(1>n)

(ln n)2ln2 n - 1
 34. a

q

n = 1

 
1

n(1 + ln2 n)

 35. a
q

n = 1

 n sin 
1
n 36. a

q

n = 1

 n tan 
1
n

 37. a
q

n = 1

 
en

1 + e2n
 38. a

q

n = 1

 
2

1 + en

 39. a
q

n = 1

 
en

10 + en 40. a
q

n = 1

 
en

(10 + en)2

 41. a
q

n = 2

2n + 2 - 2n + 1

2n + 12n + 2
 42. a

q

n = 3

7

2n + 1 ln 2n + 1

 43. a
q

n = 1

 
8 tan-1 n

1 + n2
 44. a

q

n = 1

 
n

n2 + 1

 45. a
q

n = 1

 sech n 46. a
q

n = 1

 sech2 n

Theory and Examples

For what values of a, if any, do the series in Exercises 47 and 48 con-

verge?

 47. a
q

n = 1

 a a

n + 2
-

1
n + 4

b  48. a
q

n = 3

 a 1
n - 1

-
2a

n + 1
b

 49. a.  Draw illustrations like those in Figures 10.12a and 10.12b to 

show that the partial sums of the harmonic series satisfy the 

inequalities

 ln (n + 1) = L
n + 1

1

 
1
x dx … 1 +

1
2

+ g+
1
n

 … 1 + L
n

1

 
1
x dx = 1 + ln n.

b. There is absolutely no empirical evidence for the divergence 

of the harmonic series even though we know it diverges. The 

T
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a. By taking ƒ(x) = 1>x in the proof of Theorem 9, show that

ln (n + 1) … 1 +
1
2

+ g +
1
n … 1 + ln n

or

0 6 ln (n + 1) - ln n … 1 +
1
2

+ g+
1
n - ln n … 1.

Thus, the sequence

an = 1 +
1
2

+ g +
1
n - ln n

is bounded from below and from above.

b. Show that

1
n + 1

6 L
n + 1

n

 
1
x  dx = ln (n + 1) - ln n,

and use this result to show that the sequence 5an6  in part (a) 

is decreasing.

Since a decreasing sequence that is bounded from below 

converges, the numbers an deined in part (a) converge:

1 +
1
2

+ g +
1
n - ln n S g.

The number g, whose value is 0.5772 . . . , is called Euler’s 

constant.

 64. Use the Integral Test to show that the series

a
q

n = 0

e-n2

  converges.

 65. a.  For the series g (1>n3) , use the inequalities in Equation (2) 

with n = 10 to ind an interval containing the sum S.

b. As in Example 5, use the midpoint of the interval found in 

part (a) to approximate the sum of the series. What is the 

maximum error for your approximation?

 66. Repeat Exercise 65 using the series g (1>n4).

 67. Area Consider the sequence 51>n6q
n = 1. On each subinterval 

(1>(n + 1), 1>n) within the interval 30, 14 , erect the rectangle 

with area an having height 1 >n and width equal to the length of the 

subinterval. Find the total area aan of all the rectangles. (Hint: 

Use the result of Example 5 in Section 10.2.)

 68. Area Repeat Exercise 67, using trapezoids instead of rectangles. 

That is, on the subinterval (1>(n + 1), 1>n), let an denote the area 

of the trapezoid having heights y = 1>(n + 1) at x = 1>(n + 1) 

and y = 1>n at x = 1>n.

 58. How many terms of the convergent series gq
n = 4 1> (n (ln n)3)  

should be used to estimate its value with error at most 0.01?

 59. the cauchy condensation test The Cauchy condensation test 

says: Let 5an6  be a nonincreasing sequence (an Ú an + 1 for all n) 

of positive terms that converges to 0. Then gan converges if and 

only if g2na2n converges. For example, g(1>n) diverges because g2n # (1>2n) = g1 diverges. Show why the test works.

 60. Use the Cauchy condensation test from Exercise 59 to show that

a. a
q

n = 2

 
1

n ln n
 diverges;

b. a
q

n = 1

 
1
np converges if p 7 1 and diverges if p … 1.

 61. Logarithmic p-series

a. Show that the improper integral

 L
q

2

 
dx

x (ln x)p ( p a positive constant)

converges if and only if p 7 1.

b. What implications does the fact in part (a) have for the con-

vergence of the series

a
q

n = 2

 
1

n (ln n)p ?

Give reasons for your answer.

 62. (Continuation of Exercise 61.) Use the result in Exercise 61 to de-

termine which of the following series converge and which diverge. 

Support your answer in each case.

a. a
q

n = 2

 
1

n (ln n)
 b. a

q

n = 2

 
1

n (ln n)1.01

c. a
q

n = 2

 
1

n ln (n3)
 d. a

q

n = 2

 
1

n (ln n)3

 63. Euler’s constant Graphs like those in Figure 10.12 suggest that 

as n increases there is little change in the diference between the 

sum

1 +
1
2

+ g+
1
n

  and the integral

ln n = L
n

1

 
1
x  dx.

  To explore this idea, carry out the following steps.

10.4 Comparison Tests

We have seen how to determine the convergence of geometric series, p-series, and a few 

others. We can test the convergence of many more series by comparing their terms to those 

of a series whose convergence is already known.
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Proof  The series gan and gbn have nonnegative terms. The Corollary of Theorem 6 

stated in Section 10.3 tells us that the series gan and gbn converge if and only if their 

partial sums are bounded from above.

In Part (1) we assume that gbn converges to some number M. The partial sums gN
n = 1 an are all bounded from above by M = gbn, since

sN = a1 + a2 +  g+  aN … b1 + b2 + g+ bN … a
q

n = 1

bn = M.

Since the partial sums of gan are bounded from above, the Corollary of Theorem 6  implies 

that gan converges. We conclude that when gbn converges, then so does gan.  Figure 10.12 

illustrates this result, with each term of each series interpreted as the area of a  rectangle.

In Part (2), where we assume that gan diverges, the partial sums of gq
n = 1 bn are not 

bounded from above. If they were, the partial sums for gan would also be bounded from 

above, since

a1 + a2 + g+ aN … b1 + b2 + g+ bN,

and this would mean that gan converges. We conclude that if gan diverges, then so does gbn.  

EXAMPLE 1  We apply Theorem 10 to several series.

(a) The series

a
q

n = 1

 
5

5n - 1

 diverges because its nth term

5
5n - 1

=
1

n -
1
5

7
1
n

 is greater than the nth term of the divergent harmonic series.

(b) The series

a
q

n = 0

 
1
n!

= 1 +
1
1!

+
1
2!

+
1
3!

+ g

 converges because its terms are all positive and less than or equal to the corresponding 

terms of

1 + a
q

n = 0

 
1
2n = 1 + 1 +

1
2

+
1

22
+ g.

 The geometric series on the left converges and we have

1 + a
q

n = 0

 
1
2n = 1 +

1

1 - (1>2)
= 3.

 The fact that 3 is an upper bound for the partial sums of gq
n = 0  (1>n!) does not 

mean that the series converges to 3. As we will see in Section 10.9, the series con-

verges to e.

THEOREM 10—Direct Comparison Test

Let gan and gbn be two series with 0 … an … bn for all n. Then

1. If gbn converges, then gan also converges.

2. If gan diverges, then gbn also diverges.

n
1 2 3 4 5 n−1 n

b1

b2

b3

b4 b5

bn

a1 a2
a3

a4
a5 an

···

y

bn−1

FIGURE 10.14 If the total area gbn 

of the taller bn rectangles is finite, then 

so is the total area gan of the shorter an 

rectangles.

HistoricAL BiogrApHy

Albert of saxony

(ca. 1316–1390)

www.goo.gl/Q2dO0w

http://www.goo.gl/Q2dO0w
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(c) The series

5 +
2
3

+
1
7

+ 1 +
1

2 + 21
+

1

4 + 22
+

1

8 + 23
 +  g+  

1

2n + 2n
+ g

 converges. To see this, we ignore the irst three terms and compare the remaining terms 

with those of the convergent geometric series gq
n = 0 (1>2n). The term 1>12n + 2n2 

of the truncated sequence is less than the corresponding term 1>2n of the geometric 

series. We see that term by term we have the comparison

1 +
1

2 + 21
+

1

4 + 22
+

1

8 + 23
 +  g…  1 +

1
2

+
1
4

+
1
8

+ g.

 So the truncated series and the original series converge by an application of the Direct 

Comparison Test. 

The Limit Comparison Test

We now introduce a comparison test that is particularly useful for series in which an is a 

rational function of n.

THEOREM 11—Limit Comparison Test

Suppose that an 7 0 and bn 7 0 for all n Ú N  (N an integer).

1. If lim
nSq

  
an

bn

= c and c 7 0, then gan and gbn both converge or both diverge.

2. If lim
nSq

  
an

bn

= 0 and gbn converges, then gan converges.

3. If lim
nSq

  
an

bn

= q and gbn diverges, then gan diverges.

Proof  We will prove Part 1. Parts 2 and 3 are left as Exercises 57a and b.

Since c>2 7 0, there exists an integer N such that` an

bn

- c ` 6
c

2
  whenever  n 7 N .  

Limit deinition with 

e = c>2, L = c, and 

an replaced by an>bn

 

Thus, for n 7 N,

 -  
c

2
6

an

bn

- c 6
c

2
,

 
c

2
6

an

bn

6
3c

2
,

 ac

2
bbn 6 an 6 a3c

2
bbn .

If gbn converges, then g (3c>2)bn converges and gan converges by the Direct  

Comparison Test. If gbn diverges, then g (c>2)bn diverges and gan diverges by the Direct 

Comparison Test. 

EXAMPLE 2  Which of the following series converge, and which diverge?

(a) 
3
4

+
5
9

+
7
16

+
9
25

+ g = a
q

n = 1

 
2n + 1

(n + 1)2
= a

q

n = 1

 
2n + 1

n2 + 2n + 1
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(b) 
1
1

+
1
3

+
1
7

+
1
15

+ g = a
q

n = 1

 
1

2n - 1

(c) 
1 + 2 ln 2

9
+

1 + 3 ln 3
14

+
1 + 4 ln 4

21
+ g= a

q

n = 2

 
1 + n ln n

n2 + 5

Solution We apply the Limit Comparison Test to each series.

(a) Let an = (2n + 1)>(n2 + 2n + 1). For large n, we expect an to behave like 

2n>n2 = 2>n since the leading terms dominate for large n, so we let bn = 1>n. Since

a
q

n = 1

bn = a
q

n = 1

 
1
n  diverges

 and

lim
nSq

  
an

bn

= lim
nSq

  
2n2 + n

n2 + 2n + 1
= 2,

 gan diverges by Part 1 of the Limit Comparison Test. We could just as well have taken 

bn = 2>n, but 1 >n is simpler.

(b) Let an = 1>(2n - 1). For large n, we expect an to behave like 1>2n, so we let 

bn = 1>2n. Since

a
q

n = 1

bn = a
q

n = 1

 
1
2n  converges

 and

 lim
nSq

  
an

bn

= lim
nSq

  
2n

2n - 1
= lim

nSq
  

1

1 - (1>2n)
= 1,

  gan converges by Part 1 of the Limit Comparison Test.

(c) Let an = (1 + n ln n)>(n2 + 5). For large n, we expect an to behave like (n ln n)>n2 =  

(ln n)>n, which is greater than 1 >n for n Ú 3, so we let bn = 1>n. Since

a
q

n = 2

bn = a
q

n = 2

 
1
n  diverges

 and

 lim
nSq

  
an

bn

= lim
nSq

  
n + n2 ln n

n2 + 5
= q,

 gan diverges by Part 3 of the Limit Comparison Test. 

EXAMPLE 3  Does a
q

n = 1

 
ln n

n3>2  converge?

Solution Because ln n grows more slowly than nc for any positive constant c (Section 10.1, 

Exercise 115), we can compare the series to a convergent p-series. To get the p-series, we 

see that

ln n

n3>2 6
n1>4
n3>2 =

1

n5>4
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for n sufficiently large. Then taking an = (ln n)>n3>2 and bn = 1>n5>4, we have

 lim
nSq

  
an

bn

= lim
nSq

  
ln n

n1>4
 = lim

nSq
  

1>n
(1>4) n-3>4  l’Hôpital’s Rule

 = lim
nSq

  
4

n1>4 = 0.

Since gbn = g (1>n5>4)  is a p-series with p 7 1, it converges. Therefore gan con-

verges by Part 2 of the Limit Comparison Test. 

Direct Comparison Test

In Exercises 1–8, use the Direct Comparison Test to determine if each 

series converges or diverges.

 1. a
q

n = 1

 
1

n2 + 30
 2. a

q

n = 1

 
n - 1

n4 + 2
 3. a

q

n = 2

 
1

2n - 1

 4. a
q

n = 2

 
n + 2

n2 - n
 5. a

q

n = 1

 
cos2 n

n3>2  6. a
q

n = 1

 
1

n3n

 7. a
q

n = 1

 A
n + 4

n4 + 4
 8. a

q

n = 1

 
2n + 1

2n2 + 3

Limit Comparison Test

In Exercises 9–16, use the Limit Comparison Test to determine if each 

series converges or diverges.

 9. a
q

n = 1

 
n - 2

n3 - n2 + 3

  ( Hint: Limit Comparison with gq
n = 1 (1>n2) )

 10. a
q

n = 1

 A
n + 1

n2 + 2

  1Hint: Limit Comparison with gq
n = 1 11>2n 22

 11. a
q

n = 2

 
n(n + 1)

(n2 + 1)(n - 1)
 12. a

q

n = 1

 
2n

3 + 4n

 13. a
q

n = 1

 
5n

2n 4n
 14. a

q

n = 1

 a2n + 3

5n + 4
bn

 15. a
q

n = 2

 
1

ln n

  (Hint: Limit Comparison with gq
n = 2 (1>n))

 16. a
q

n = 1

 lna1 +
1

n2
b

  ( Hint: Limit Comparison with gq
n = 1 (1>n2) )

Determining Convergence or Divergence

Which of the series in Exercises 17–56 converge, and which diverge? 

Use any method, and give reasons for your answers.

 17. a
q

n = 1

 
1

22n + 23 n
 18. a

q

n = 1

 
3

n + 2n
 19. a

q

n = 1

 
sin2 n

2n

 20. a
q

n = 1

 
1 + cos n

n2
 21. a

q

n = 1

 
2n

3n - 1
 22. a

q

n = 1

 
n + 1

n22n

 23. a
q

n = 1

 
10n + 1

n(n + 1)(n + 2)
 24. a

q

n = 3

 
5n3 - 3n

n2(n - 2)(n2 + 5)

 25. a
q

n = 1

 a n

3n + 1
bn

 26. a
q

n = 1

 
1

2n3 + 2
 27. a

q

n = 3

 
1

ln (ln n)

 28. a
q

n = 1

 
(ln n)2

n3
 29. a

q

n = 2

 
1

2n ln n
 30. a

q

n = 1

 
(ln n)2

n3>2
 31. a

q

n = 1

 
1

1 + ln n
 32. a

q

n = 2

 
ln (n + 1)

n + 1
 33. a

q

n = 2

 
1

n2n2 - 1

 34. a
q

n = 1

 
2n

n2 + 1
 35. a

q

n = 1

 
1 - n

n2n  36. a
q

n = 1

 
n + 2n

n22n

 37. a
q

n = 1

 
1

3n - 1 + 1
 38. a

q

n = 1

 
3n - 1 + 1

3n  39. a
q

n = 1

 
n + 1

n2 + 3n
# 1
5n

 40. a
q

n = 1

 
2n + 3n

3n + 4n 41. a
q

n = 1

 
2n - n

n2n  42. a
q

n = 1

 
ln n

2n en

 43. a
q

n = 2

 
1
n!

  (Hint: First show that (1>n!) … (1>n(n - 1)) for n Ú 2.)

 44. a
q

n = 1

 
(n - 1)!

(n + 2)!
 45. a

q

n = 1

 sin 
1
n 46. a

q

n = 1

 tan 
1
n

 47. a
q

n = 1

 
tan-1 n

n1.1
 48. a

q

n = 1

 
sec-1 n

n1.3
 49. a

q

n = 1

 
coth n

n2

 50. a
q

n = 1

 
tanh n

n2
 51. a

q

n = 1

 
1

n2n n
 52. a

q

n = 1

 
2n n

n2

 53. a
q

n = 1

 
1

1 + 2 + 3 + g+ n
 54. a

q

n = 1

 
1

1 + 22 + 32 + g+ n2

 55. a
q

n = 2

 
n

(ln n)2
 56. a

q

n = 2

 
(ln n)2

n

EXERCISES 10.4
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COMPUTER EXPLORATIONS

 73. It is not yet known whether the series

a
q

n = 1

 
1

n3 sin2 n

  converges or diverges. Use a CAS to explore the behavior of the 

series by performing the following steps.

a. Deine the sequence of partial sums

sk = a
k

n = 1

 
1

n3 sin2 n
.

What happens when you try to ind the limit of sk as k S q? 

Does your CAS ind a closed form answer for this limit?

b. Plot the irst 100 points (k, sk) for the sequence of partial 

sums. Do they appear to converge? What would you estimate 

the limit to be?

c. Next plot the irst 200 points (k, sk). Discuss the behavior in 

your own words.

d. Plot the irst 400 points (k, sk). What happens when k = 355? 

Calculate the number 355>113. Explain from you calculation 

what happened at k = 355. For what values of k would you 

guess this behavior might occur again?

 74. a. Use Theorem 8 to show that

S = a
q

n = 1

 
1

n(n + 1)
+ a

q

n = 1

a 1

n2
-

1
n(n + 1)

b
where S = aq

n = 1
(1>n2) , the sum of a convergent p-series.

b. From Example 5, Section 10.2, show that

S = 1 + a
q

n = 1

 
1

n2(n + 1)
.

c. Explain why taking the irst M terms in the series in part (b) 

gives a better approximation to S than taking the irst M terms 

in the original series aq
n = 1

(1>n2).

d. We know the exact value of S is p2>6. Which of the sums

a
1000000

n = 1

1

n2
 or 1 + a

1000

n = 1

 
1

n2(n + 1)

gives a better approximation to S?

Theory and Examples

 57. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.

 58. If gq
n = 1an is a convergent series of nonnegative numbers, can 

 anything be said about gq
n = 1(an>n)? Explain.

 59. Suppose that an 7 0 and bn 7 0 for n Ú N  (N an integer). If 

limnSq (an>bn) = q and gan converges, can anything be said 

about gbn? Give reasons for your answer.

 60. Prove that if gan is a convergent series of nonnegative terms, then gan
2 converges.

 61. Suppose that an 7 0 and lim
nSq

 an = q. Prove that gan diverges.

 62. Suppose that an 7 0 and lim
nSq

 n2an = 0. Prove that gan 

 converges.

 63. Show that gq
n = 2 ((ln n)q>np)  converges for -q 6 q 6 q and 

p 7 1.

  (Hint: Limit Comparison with gq
n = 2 1>nr  for 1 6 r 6 p.)

 64. (Continuation of Exercise 63.) Show that gq
n = 2 ((ln n)q>n 

p) 

 diverges for -q 6 q 6 q and 0 6 p 6 1.

  (Hint: Limit Comparison with an appropriate p-series.)

 65. Decimal numbers Any real number in the interval 30, 14 can be 

represented by a decimal (not necessarily unique) as

0.d1d2d3d4 . . . =
d1

10
+

d2

102
+

d3

103
+

d4

104
+ g,

  where di is one of the integers 0, 1, 2, 3, . . . , 9. Prove that the 

series on the right-hand side always converges.

 66. If gan is a convergent series of positive terms, prove that  g sin (an) converges.

In Exercises 67–72, use the results of Exercises 63 and 64 to deter-

mine if each series converges or diverges.

 67. a
q

n = 2

 
(ln n)3

n4
 68. a

q

n = 2

 A
ln n

n

 69. a
q

n = 2

 
(ln n)1000

n1.001
 70. a

q

n = 2

 
(ln n)1>5

n0.99

 71. a
q

n = 2

 
1

n1.1(ln n)3
 72. a

q

n = 2

 
1

2n # ln n

10.5 Absolute Convergence; The Ratio and Root Tests

When some of the terms of a series are positive and others are negative, the series may or 

may not converge. For example, the geometric series

 5 -
5
4

+
5
16

-
5
64

 + g= a
q

n = 0

5a-1
4
bn

 (1)

converges (since 0 r 0 =
1
4

6 1), whereas the different geometric series

 1 -
5
4

+
25
16

-
125
64

+ g = a
q

n = 0

a-5
4
bn

 (2)
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diverges (since 0 r 0 = 5>4 7 1). In series (1), there is some cancelation in the partial 

sums, which may be assisting the convergence property of the series. However, if we make 

all of the terms positive in series (1) to form the new series

5 +
5
4

+
5
16

+
5
64

+ g = a
q

n = 0

`
 

5a-1
4
bn ` = a

q

n = 0
 5a14bn

,

we see that it still converges. For a general series with both positive and negative terms, we 

can apply the tests for convergence studied before to the series of absolute values of its 

terms. In doing so, we are led naturally to the following concept.

DEFINITION A series a an converges absolutely (is absolutely convergent)  

if the corresponding series of absolute values, a 0 an 0 , converges.

THEOREM 12—The Absolute Convergence Test

If a
q

n = 1

0 an 0  converges, then a
q

n = 1

an converges.

Proof  For each n,

- 0 an 0 … an … 0 an 0 ,  so  0 … an + 0 an 0 … 2 0 an 0.
If Σq

n = 1
0 an 0  converges, then Σq

n = 1 
2 0 an 0  converges and, by the Direct Comparison Test, 

the nonnegative series Σq
n = 1

 (an + 0 an 0 )  converges. The equality an = (an + 0 an 0 ) - 0 an 0  
now lets us express Σq

n = 1
 an as the diference of two convergent series:

a
q

n = 1

an = a
q

n = 1

(an + 0 an 0 - 0 an 0 ) = a
q

n = 1

(an + 0 an 0 ) - a
q

n = 1

0 an 0 .
Therefore, aq

n = 1
 an converges. 

EXAMPLE 1  This example gives two series that converge absolutely.

(a) For a
q

n = 1

(-1)n + 1 
1

n2
= 1 -

1
4

+
1
9

-
1
16

+ g, the corresponding series of absolute 

  values is the convergent series

a
q

n = 1

 
1

n2
= 1 +

1
4

+
1
9

+
1
16

+ g.

 The original series converges because it converges absolutely.

(b) For a
q

n = 1

 sin n

n2
=

 sin 1
1

+
 sin 2

4
+

 sin 3
9

+ g, which contains both positive and 

  negative terms, the corresponding series of absolute values is

a
q

n = 1

` sin n

n2
` =

� sin 1 �

1
+

� sin 2 �

4
+ g,

 which converges by comparison with aq
n = 1

(1>n2)  because � sin n � … 1 for every n. 

The original series converges absolutely; therefore it converges. 

So the geometric series (1) is absolutely convergent. We observed, too, that it is also con-

vergent. This situation is always true: An absolutely convergent series is convergent as 

well, which we now prove.

caution

Be careful when using Theorem 12.  

A convergent series need not converge 

absolutely, as you will see in the next 

section.
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The Ratio Test

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio 

an + 1>an . For a geometric series a arn, this rate is a constant ((arn + 1)/(arn) = r), and the 

series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a 

powerful rule extending that result.

Proof  

 (a) R * 1. Let r be a number between r and 1. Then the number e = r - r is positive. 

Since ` an + 1

an
` S r,0 an + 1>an 0  must lie within e of r when n is large enough, say, for all n Ú N. In 

 particular, ` an + 1

an
` 6 r + e = r,  when n Ú N.

Hence

 0 aN + 1 0 6 r 0 aN 0 ,
 0 aN + 2 0 6 r 0 a N + 1 0 6 r2 0 aN 0 ,
 0 aN + 3 0 6 r 0 aN + 2 0 6 r3 0 aN 0 ,

 f
 0 aN + m 0 6 r 0 aN + m - 1 0 6 rm 0 aN 0 .

Therefore,

a
q

m = N

0 am 0 = a
q

m = 0

0 aN + m 0 … a
q

m = 0

0 aN 0  rm = 0 aN 0 aq
m = 0

rm.

The geometric series on the right-hand side converges because 0 6 r 6 1, so the se-

ries of absolute values aq
m = N 0 am 0  converges by the Direct Comparison Test. Because 

adding or deleting initely many terms in a series does not afect its convergence or 

divergence property, the series aq
n = 1
0 an 0  also converges. That is, the series a an is 

absolutely convergent.

(b) 1 * R " H. From some index M on,` an + 1

an
` 7 1  and  0 aM 0 6 0 aM + 1 0 6 0 aM + 2 0 6 g.

The terms of the series do not approach zero as n becomes ininite, and the series 

 diverges by the nth-Term Test.

THEOREM 13—The Ratio Test

Let a an be any series and suppose that

lim
nSq

` an + 1

an
` = r.

Then (a) the series converges absolutely if r 6 1, (b) the series diverges if r 7 1 

or r is ininite, (c) the test is inconclusive if r = 1.

r is the Greek lowercase letter rho, 

which is pronounced “row.”
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(c) R = 1. The two series

a
q

n = 1

 
1
n  and  a

q

n = 1

 
1

n2

show that some other test for convergence must be used when r = 1.

For a
q

n = 1

 
1
n : ` an + 1

an
` =

1>(n + 1)

1>n =
n

n + 1
S 1.

For a
q

n = 1

1

n2
 : ` an + 1

an
` =

1>(n + 1)2

1>n2
= a n

n + 1
b2

S 12 = 1.

In both cases, r = 1, yet the irst series diverges, whereas the second converges. 

The Ratio Test is often effective when the terms of a series contain factorials of 

expressions involving n or expressions raised to a power involving n.

EXAMPLE 2  Investigate the convergence of the following series.

(a) a
q

n = 0

 
2n + 5

3n     (b) a
q

n = 1

 
(2n)!

n!n!
    (c) a

q

n = 1

 
4nn!n!
(2n)!

Solution We apply the Ratio Test to each series.

(a) For the series aq
n = 0

 (2n + 5)/3n,

` an + 1

an
` =

(2n + 1 + 5)>3n + 1

(2n + 5)>3n =
1
3

# 2n + 1 + 5
2n + 5

=
1
3

# a2 + 5 # 2- n

1 + 5 # 2- nb S
1
3

# 2
1

=
2
3

.

 The series converges absolutely (and thus converges) because r = 2>3 is less than 1. 

This does not mean that 2>3 is the sum of the series. In fact,

a
q

n = 0

 
2n + 5

3n = a
q

n = 0

a2
3
bn

+ a
q

n = 0

 
5
3n =

1
1 - (2/3)

+
5

1 - (1/3)
=

21
2

.

(b) If an =
(2n)!

n!n!
, then an + 1 =

(2n + 2)!

(n + 1)!(n + 1)!
 and

 ̀
an + 1

an
` =

n!n!(2n + 2)(2n + 1)(2n)!

(n + 1)!(n + 1)!(2n)!

 =
(2n + 2)(2n + 1)

(n + 1)(n + 1)
=

4n + 2
n + 1

S 4.

 The series diverges because r = 4 is greater than 1.

(c) If an = 4nn!n!/(2n)!, then

 ̀
an + 1

an
` =

4n + 1(n + 1)!(n + 1)!

(2n + 2)(2n + 1)(2n)!
 #  

(2n)!

4nn!n!

 =
4(n + 1)(n + 1)

(2n + 2)(2n + 1)
=

2(n + 1)

2n + 1
S 1.

Because the limit is r = 1, we cannot decide from the Ratio Test whether the series 

converges. However, when we notice that an + 1>an = (2n + 2)>(2n + 1), we con-

clude that an + 1 is always greater than an because (2n + 2)>(2n + 1) is always greater 

than 1. Therefore, all terms are greater than or equal to a1 = 2, and the nth term does 

not  approach zero as n S q. The series diverges. 
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The Root Test

The convergence tests we have so far for Σan work best when the formula for an is 

 relatively simple. However, consider the series with the terms

an = en>2n ,  n odd

1>2n ,  n even.

To investigate convergence we write out several terms of the series:

 a
q

n = 1

 an =
1

21
+

1

22
+

3

23
+

1

24
+

5

25
+

1

26
+

7

27
+ g

 =
1
2

+
1
4

+
3
8

+
1
16

+
5
32

+
1
64

+
7

128
+ g.

Clearly, this is not a geometric series. The nth term approaches zero as n S q, so the nth-

Term Test does not tell us if the series diverges. The Integral Test does not look promising. 

The Ratio Test produces

` an + 1

an
` = µ 1

2n
, n odd

n + 1
2

, n even

As n S q, the ratio is alternately small and large and therefore has no limit. However, we 

will see that the following test establishes that the series converges.

THEOREM 14—The Root Test

Let a an be any series and suppose that

lim
nSq

2n 0 an 0 = r.

Then (a) the series converges absolutely if r 6 1, (b) the series diverges if r 7 1 

or r is ininite, (c) the test is inconclusive if r = 1.

Proof  

(a) R * 1. Choose an e 7 0 so small that r + e 6 1. Since 2n 0 an 0 S r, the terms 

2n 0 an 0  eventually get to within e of r. So there exists an index M  such that

2n 0 an 0 6 r + e  when n Ú M.

Then it is also true that 0 an 0 6 (
 

r + e)n  for n Ú M.

Now, gq
n = M (r + e)n is a geometric series with ratio (r + e) 6 1 and therefore 

 converges. By the Direct Comparison Test, gq
n = M  0 an 0  converges. Adding initely 

many terms to a series does not afect its convergence or divergence, so the series

a
q

n = 1

0 an 0 = 0 a1 0 + g + 0 aM - 1 0 + a
q

n = M

0 an 0
also converges. Therefore, gan converges absolutely.

(b) 1 * R " H. For all indices beyond some integer M, we have 2n 0 an 0 7 1, so that 0 an 0 7 1 for n 7 M. The terms of the series do not converge to zero. The series di-

verges by the nth-Term Test.

(c) R = 1. The series gq
n = 1 (1>n) and gq

n = 1 (1>n2) show that the test is not conclusive 

when r = 1. The irst series diverges and the second converges, but in both cases 

 2n 0 an 0 S 1. 
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EXAMPLE 3  Consider again the series with terms an = en>2n, n odd

1>2n, n even.
Does gan converge?

Solution We apply the Root Test, finding that

2n 0 an 0 = e2n n>2, n odd 

1>2, n even.

Therefore,

1
2

… 2n 0 an 0 …
2n n

2
.

Since 2n n S 1 (Section 10.1, Theorem 5), we have limnSq2n 0 an 0 = 1>2 by the Sandwich 

Theorem. The limit is less than 1, so the series converges absolutely by the Root Test. 

EXAMPLE 4  Which of the following series converge, and which diverge?

(a) a
q

n = 1

 
n2

2n    (b) a
q

n = 1

 
2n

n3
    (c) a

q

n = 1

 a 1
1 + n

bn

Solution We apply the Root Test to each series, noting that each series has positive terms.

(a) a
q

n = 1

 
n2

2n converges because Bn n2

2n =
2n n2

2n 2n
=
12n n22

2
 S  

12

2
6 1.

(b) a
q

n = 1

 
2n

n3
 diverges because A

n 2n

n3
=

212n n23 S  
2

13
7 1.

(c) a
q

n = 1

 a 1
1 + n

bn

 converges because Bn a 1
1 + n

bn

=
1

1 + n
 S  0 6 1. 

Using the Ratio Test

In Exercises 1–8, use the Ratio Test to determine if each series 

 converges absolutely or diverges.

 1. a
q

n = 1

 
2n

n!
 2. a

q

n = 1

 (-1)n 
n + 2

3n

 3. a
q

n = 1

 
(n - 1)!

(n + 1)2
 4. a

q

n = 1

 
2n + 1

n3n - 1

 5. a
q

n = 1

 
n4

(-4)n 6. a
q

n = 2

 
3n + 2

ln n

 7. a
q

n = 1

 (-1)n 
n2(n + 2)!

n! 32n
 8. a

q

n = 1

 
n5n

(2n + 3) ln (n + 1)

Using the Root Test

In Exercises 9–16, use the Root Test to determine if each series 

 converges absolutely or diverges.

 9. a
q

n = 1

 
7

(2n + 5)n 10. a
q

n = 1

 
4n

(3n)n

 11. a
q

n = 1

 a4n + 3

3n - 5
bn

 12. a
q

n = 1

 a- lnae2 +
1
nb bn + 1

 13. a
q

n = 1

  
-8

(3 + (1>n))2n
 14. a

q

n = 1

 sinn a 1

2n
b

 15. a
q

n = 1

 (-1)n a1 -
1
nbn2

  (Hint: lim
nSq

 (1 + x>n)n = ex)

 16. a
q

n = 2

 
(-1)n

n1 + n

Determining Convergence or Divergence

In Exercises 17–46, use any method to determine if the series 

 converges or diverges. Give reasons for your answer.

 17. a
q

n = 1

 
n22

2n  18. a
q

n = 1

(-1)n n2e-n

 19. a
q

n = 1

n!(-e)-n 20. a
q

n = 1

 
n!

10n

 21. a
q

n = 1

 
n10

10n 22. a
q

n = 1

 an - 2
n bn

EXERCISES 10.5
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 23. a
q

n = 1

 
2 + (-1)n

1.25n  24. a
q

n = 1

 
(-2)n

3n

 25. a
q

n = 1

 (-1)n a1 -
3
nbn

 26. a
q

n = 1

 a1 -
1
3n
bn

 27. a
q

n = 1

 
ln n

n3
 28. a

q

n = 1

 
(- ln n)n

nn

 29. a
q

n = 1

 a1n -
1

n2
b  30. a

q

n = 1

 a1n -
1

n2
bn

 31. a
q

n = 1

 
en

ne 32. a
q

n = 1

 
n ln n
(-2)n

 33. a
q

n = 1

 
(n + 1)(n + 2)

n!
 34. a

q

n = 1

e-n(n3)

 35. a
q

n = 1

 
(n + 3)!

3!n!3n  36. a
q

n = 1

 
n2n(n + 1)!

3nn!

 37. a
q

n = 1

 
n!

(2n + 1)!
 38. a

q

n = 1

 
n!

(-n)n

 39. a
q

n = 2

 
-n

(ln n)n 40. a
q

n = 2

 
n

(ln n)(n>2)

 41. a
q

n = 1

 
n! ln n

n(n + 2)!
 42. a

q

n = 1

 
(-3)n

n32n

 43. a
q

n = 1

 
(n!)2

(2n)!
 44. a

q

n = 1

 
(2n + 3)(2n + 3)

3n + 2

 45. a
q

n = 3

 
2n

n2
 46. a

q

n = 3

 
2n2

n2n

recursively Defined terms Which of the series gq
n = 1 an defined 

by the formulas in Exercises 47–56 converge, and which diverge? 

Give reasons for your answers.

 47. a1 = 2, an + 1 =
1 + sin n

n  an

 48. a1 = 1, an + 1 =
1 + tan-1 n

n  an

 49. a1 =
1
3

, an + 1 =
3n - 1

2n + 5
 an

 50. a1 = 3, an + 1 =
n

n + 1
 an

 51. a1 = 2, an + 1 =
2
n an

 52. a1 = 5, an + 1 =
2n n

2
 an

 53. a1 = 1, an + 1 =
1 + ln n

n  an

 54. a1 =
1
2

, an + 1 =
n + ln n
n + 10

 an

 55. a1 =
1
3

, an + 1 = 2n an

 56. a1 =
1
2

, an + 1 = (an)
n + 1

Convergence or Divergence

Which of the series in Exercises 57–64 converge, and which diverge? 

Give reasons for your answers.

 57. a
q

n = 1

 
2nn!n!

(2n)!
 58. a

q

n = 1

 
(-1)n (3n)!

n!(n + 1)!(n + 2)!

 59. a
q

n = 1

 
(n!)n

(nn)2
 60. a

q

n = 1

 (-1)n 
(n!)n

n(n2)

 61. a
q

n = 1

 
nn

2(n2)
 62. a

q

n = 1

 
nn

(2n)2

 63. a
q

n = 1

 
1 # 3 # g # (2n - 1)

4n2nn!

 64. a
q

n = 1

 
1 # 3 # g # (2n - 1)32 # 4 # g # (2n)4(3n + 1)

 65. Assume that bn is a sequence of positive numbers converging to 

4>5. Determine if the following series converge or diverge.

a. a
q

n = 1

 (bn)
1>n b. a

q

n = 1

 a5
4
bn

(bn)

c. a
q

n = 1

 (bn)
n d. a

q

n = 1

 
1000n

n! + bn

 66. Assume that bn is a sequence of positive numbers converging to 

1>3. Determine if the following series converge or diverge.

a. a
q

n = 1

 
bn + 1bn

n 4n  b. a
q

n = 1

 
nn

n! b2
1 b2

2gb2
n

Theory and Examples

 67. Neither the Ratio Test nor the Root Test helps with p-series. Try 

them on

a
q

n = 1

 
1
np

  and show that both tests fail to provide information about conver-

gence.

 68. Show that neither the Ratio Test nor the Root Test provides infor-

mation about the convergence of

a
q

n = 2

 
1

(ln n) p
  ( p constant).

 69. Let an = en>2n, if n is a prime number

1>2n, otherwise.

  Does gan converge? Give reasons for your answer.

 70. Show that gq
n = 1 2

(n2)>n! diverges. Recall from the Laws of 

   Exponents that 2(n2) = (2n)n.
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10.6 Alternating Series and Conditional Convergence

A series in which the terms are alternately positive and negative is an alternating series. 

Here are three examples:

 1 -
1
2

+
1
3

-
1
4

+
1
5

- g +
(-1)n + 1

n + g (1)

  -2 + 1 -
1
2

+
1
4

-
1
8

+ g +
(-1)n4

2n + g (2)

 1 - 2 + 3 - 4 + 5 - 6 + g + (-1)n + 1n + g (3)

We see from these examples that the nth term of an alternating series is of the form

an = (-1)n + 1un  or  an = (-1)nun

where un = � an �  is a positive number.

Series (1), called the alternating harmonic series, converges, as we will see in a 

moment. Series (2), a geometric series with ratio r = -1>2, converges to 

-2> 31 + (1>2)4  =  -4>3. Series (3) diverges because the nth term does not approach zero.

We prove the convergence of the alternating harmonic series by applying the Alternat-

ing Series Test. This test is for convergence of an alternating series and cannot be used to 

conclude that such a series diverges. If we multiply (u1 - u2 + u3 - u4 + g) by -1, 

we see that the test is also valid for the alternating series -u1 + u2 -  u3 + u4 - g, as 

with the one in Series (2) given above.

THEOREM 15—The Alternating Series Test

The series

a
q

n = 1

(-1)n + 1un = u1 - u2 + u3 - u4 + g

converges if the following conditions are satisied:

1. The un>s are all positive.

2. The un>s are eventually nonincreasing: un Ú un + 1 for all n Ú N, for some 

integer N.

3. un S 0.

Proof  We look at the case where u1, u2, u3, u4, . . . is nonincreasing, so that N = 1. If 

n is an even integer, say n = 2m, then the sum of the irst n terms is

 s2m = (u1 - u2) + (u3 - u4) + g + (u2m - 1 - u2m)

 = u1 - (u2 - u3) - (u4 - u5) - g - (u2m - 2 - u2m - 1) - u2m.

The irst equality shows that s2m is the sum of m nonnegative terms, since each term in 

 parentheses is positive or zero. Hence s2m + 2 Ú s2m, and the sequence 5s2m6  is non- 

decreasing. The second equality shows that s2m … u1. Since 5s2m6  is nondecreasing and 

bounded from above, it has a limit, say

 lim
mSq

 s2m = L.  Theorem 6 (4)

If n is an odd integer, say n = 2m + 1, then the sum of the irst n terms is 

s2m + 1 = s2m + u2m + 1. Since un S 0,

lim
mSq

 u2m + 1 = 0

L0

+u1

−u2

+u3

−u4

s2 s4 s3 s1

x

FIGURE 10.15 The partial sums of an 

alternating series that satisfies the hypoth-

eses of Theorem 15 for N = 1 straddle the 

limit from the beginning.



 10.6  Alternating Series and Conditional Convergence 605

and, as m S q,

 s2m + 1 = s2m + u2m + 1 S L + 0 = L. (5)

Combining the results of Equations (4) and (5) gives limnSq sn = L (Section 10.1,  

Exercise 143). 

EXAMPLE 1  The alternating harmonic series

a
q

n = 1

(-1)n + 1 
1
n = 1 -

1
2

+
1
3

-
1
4

+ g

clearly satisfies the three requirements of Theorem 15 with N = 1; it therefore converges 

by the Alternating Series Test. Notice that the test gives no information about what the 

sum of the series might be. Figure 10.16 shows histograms of the partial sums of the diver-

gent harmonic series and those of the convergent alternating harmonic series. It turns out 

that the alternating harmonic series converges to ln 2. 

(a)

1.0

1.5

0.5

2.0

1 2 3 4 5 76
x

y

1 + − + − + − + − + −
1

2

1

3

1

4

1

5

1

6

1 + − + − + − + −
1

2

1

3

1

4

1

5

1 + − + − + −
1

2

1

3

1

4

1 + − + −
1

2

1

3

1 + −
1

2

1

sn increases, eventually becomes

larger than any constant M

M

 (b)

0.50

0.75

0.25

1.00

1 2

ln 2

3 4 5 76
x

y

1 − − + − − − + − − −
1

2

1

3

1

4

1

5

1

6

1 − − + − − − + −
1

2

1

3

1

4

1

5

1 − − + − − −
1

2

1

3

1

4

1 − − + −
1

2

1

3

1 − −
1

2

1

FIGURE 10.16 (a) The harmonic series diverges, with partial sums that eventually exceed 

any constant. (b) The alternating harmonic series converges to ln 2 ≈ .693.

Rather than directly verifying the definition un Ú un + 1, a second way to show that the 

sequence {un} is nonincreasing is to define a differentiable function ƒ(x) satisfying 

ƒ(n) = un. That is, the values of ƒ match the values of the sequence at every positive inte-

ger n. If ƒ′(x) … 0 for all x greater than or equal to some positive integer N, then ƒ(x) is 

nonincreasing for x Ú N. It follows that ƒ(n) Ú ƒ(n + 1), or un Ú un + 1, for n Ú N.

EXAMPLE 2  We show that the sequence un = 10n>(n2 + 16) is eventually nonin-

creasing. Define ƒ(x) =  10x>(x2 + 16). Then from the Derivative Quotient Rule,

ƒ′(x) =
10(16 - x2)

(x2 + 16)2
… 0  whenever x Ú 4.

It follows that un Ú un + 1 for n Ú 4. That is, the sequence 5un6  is nonincreasing for 

n Ú 4. 

A graphical interpretation of the partial sums (Figure 10.15) shows how an alternating 

series converges to its limit L when the three conditions of Theorem 15 are satisfied with 

N = 1. Starting from the origin of the x-axis, we lay off the positive distance s1 = u1. To 

find the point corresponding to s2 = u1 - u2, we back up a distance equal to u2. Since 

u2 … u1, we do not back up any farther than the origin. We continue in this seesaw fash-

ion, backing up or going forward as the signs in the series demand. But for n Ú N, each 

forward or backward step is shorter than (or at most the same size as) the preceding step 

because un + 1 … un. And since the nth term approaches zero as n increases, the size of step 
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we take forward or backward gets smaller and smaller. We oscillate back and forth across 

the limit L, and the amplitude of oscillation approaches zero. The limit L lies between any 

two successive sums sn and sn + 1 and hence differs from sn by an amount less than un + 1.

Because

�L - sn � 6 un + 1  for n Ú N,

we can make useful estimates of the sums of convergent alternating series.

THEOREM 16—The Alternating Series Estimation Theorem

If the alternating series aq
n = 1

 (-1)n + 1un satisies the three conditions of  

Theorem 15, then for  n Ú N ,

sn = u1 - u2 + g + (-1)n + 1un

approximates the sum L of the series with an error whose absolute value is less 

than un + 1, the absolute value of the irst unused term. Furthermore, the sum L lies 

between any two successive partial sums sn and sn + 1, and the remainder, L - sn, 

has the same sign as the irst unused term.

We leave the verification of the sign of the remainder for Exercise 87.

EXAMPLE 3  We try Theorem 16 on a series whose sum we know:

a
q

n = 0

(-1)n 
1
2n = 1 -

1
2

+
1
4

-
1
8

+
1
16

-
1
32

+
1
64

-
1

128
+

1
256

- g.

The theorem says that if we truncate the series after the eighth term, we throw away a total 

that is positive and less than  1>256. The sum of the first eight terms is s8 = 0.6640625 

and the sum of the first nine terms is s9 =  0.66796875. The sum of the geometric series is

1

1 - (-1>2)
=

1

3>2 =
2
3

,

and we note that 0.6640625 6 (2>3) 6 0.66796875. The difference,  (2>3) -
0.6640625 = 0.0026041666 . . . , is positive and is less than (1>256) = 0.00390625. 

Conditional Convergence

If we replace all the negative terms in the alternating series in Example 3, changing them 

to positive terms instead, we obtain the geometric series g1>2n . The original series and 

the new series of absolute values both converge (although to different sums). For an abso-

lutely convergent series, changing infinitely many of the negative terms in the series to 

positive values does not change its property of still being a convergent series. Other con-

vergent series may behave differently. The convergent alternating harmonic series has 

infinitely many negative terms, but if we change its negative terms to positive values, the 

resulting series is the divergent harmonic series. So the presence of infinitely many nega-

tive terms is essential to the convergence of the alternating harmonic series. The following 

terminology distinguishes these two types of convergent series.

DEFINITION A series that is convergent but not absolutely convergent is called 

conditionally convergent.

The alternating harmonic series is conditionally convergent, or converges conditionally. 

The next example extends that result to the alternating p-series.
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EXAMPLE 4  If p is a positive constant, the sequence 51>np6  is a decreasing 

sequence with limit zero. Therefore, the alternating p-series

a
q

n = 1

 
(-1)n - 1

np = 1 -
1
2p +

1
3p -

1
4p + g,  p 7 0

converges.

If p 7 1, the series converges absolutely as an ordinary p-series. If 0 6 p … 1, the 

series converges conditionally by the alternating series test. For instance,

  Absolute convergence 1p = 3>22: 1 -
1

23>2 +
1

33>2 -
1

43>2 + g

  Conditional convergence 1p = 1>22: 1 -
1

22
+

1

23
-

1

24
+ g 

We need to be careful when using a conditionally convergent series. We have seen with 

the alternating harmonic series that altering the signs of ininitely many terms of a condi-

tionally convergent series can change its convergence status. Even more, simply changing 

the order of occurrence of ininitely many of its terms can also have a signiicant efect, as 

we now discuss.

Rearranging Series

We can always rearrange the terms of a finite collection of numbers without changing their 

sum. The same result is true for an infinite series that is absolutely convergent (see 

 Exercise 96 for an outline of the proof ).

THEOREM 17—The Rearrangement Theorem for Absolutely Convergent 

Series

If gq
n = 1 an converges absolutely, and b1, b2, c , bn,c is any arrangement of 

the sequence 5an6 , then gbn converges absolutely and

a
q

n = 1

bn = a
q

n = 1

an.

On the other hand, if we rearrange the terms of a conditionally convergent series, we 

can get different results. In fact, for any real number r, a given conditionally convergent 

series can be rearranged so its sum is equal to r. (We omit the proof of this fact.) Here’s an 

example of summing the terms of a conditionally convergent series with different order-

ings, with each ordering giving a different value for the sum.

EXAMPLE 5  We know that the alternating harmonic series gq
n = 1 (-1)n + 1>n con-

verges to some number L. Moreover, by Theorem 16, L lies between the successive partial 

sums s2 = 1>2 and s3 = 5>6, so L ≠ 0. If we multiply the series by 2 we obtain

 2L = 2 a
q

n = 1

 
(-1)n + 1

n = 2a1 -
1
2

+
1
3

-
1
4

+
1
5

-
1
6

+
1
7

-
1
8

+
1
9

-
1
10

+
1
11

- gb
 = 2 - 1 +

2
3

-
1
2

+
2
5

-
1
3

+
2
7

-
1
4

+
2
9

-
1
5

+
2
11

- g.

Now we change the order of this last sum by grouping each pair of terms with the same 

odd denominator, but leaving the negative terms with the even denominators as they are 
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placed (so the denominators are the positive integers in their natural order). This rear-

rangement gives

 (2 - 1) -
1
2

+ a2
3

-
1
3
b -

1
4

+ a2
5

-
1
5
b -

1
6

+ a2
7

-
1
7
b -

1
8

+ g

 = a1 -
1
2

+
1
3

-
1
4

+
1
5

-
1
6

+
1
7

-
1
8

+
1
9

-
1
10

+
1
11

- gb
 = a

q

n = 1

(-1)n + 1

n = L.

So by rearranging the terms of the conditionally convergent series gq
n = 12(-1)n + 1>n, the 

series becomes gq
n = 1(-1)n + 1>n, which is the alternating harmonic series itself. If the two 

series are the same, it would imply that 2L = L, which is clearly false since L ≠ 0. 

Example 5 shows that we cannot rearrange the terms of a conditionally convergent 

series and expect the new series to be the same as the original one. When we use a condi-

tionally convergent series, the terms must be added together in the order they are given to 

obtain a correct result. In contrast, Theorem 17 guarantees that the terms of an absolutely 

convergent series can be summed in any order without afecting the result.

Summary of Tests to Determine Convergence or Divergence

We have developed a variety of tests to determine convergence or divergence for an infi-

nite series of constants. There are other tests we have not presented which are sometimes 

given in more advanced courses. Here is a summary of the tests we have considered.

1. the nth-term test for Divergence: Unless an S 0, the series diverges.

2. geometric series: g  arn converges if � r � 6 1; otherwise it diverges.

3. p-series: g1>np converges if p 7 1; otherwise it diverges.

4. series with nonnegative terms: Try the Integral Test or try comparing to a 

known series with the Direct Comparison Test or the Limit Comparison Test. 

Try the Ratio or Root Test.

5. series with some negative terms: Does g � an �  converge by the Ratio or Root 

Test, or by another of the tests listed above? Remember, absolute convergence 

implies convergence.

6. Alternating series: gan converges if the series satisfies the conditions of 

the Alternating Series Test.

Determining Convergence or Divergence

In Exercises 1–14, determine if the alternating series converges or 

diverges. Some of the series do not satisfy the conditions of the Alter-

nating Series Test.

 1. a
q

n = 1

(-1)n + 1 
1

2n
 2. a

q

n = 1

(-1)n + 1 
1

n3>2
 3. a

q

n = 1

(-1)n + 1 
1

n3n 4. a
q

n = 2

(-1)n 
4

(ln n)2

 5. a
q

n = 1

(-1)n 
n

n2 + 1
 6. a

q

n = 1

(-1)n + 1  
n2 + 5

n2 + 4

 7. a
q

n = 1

(-1)n + 1  
2n

n2
 8. a

q

n = 1

(-1)n 
10n

(n + 1)!

 9. a
q

n = 1

(-1)n + 1 a n

10
bn

 10. a
q

n = 2

(-1)n + 1 
1

ln n

EXERCISES 10.6
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Error Estimation

In Exercises 49–52, estimate the magnitude of the error involved in 

using the sum of the first four terms to approximate the sum of the 

entire series.

 49. a
q

n = 1

(-1)n + 1 
1
n 50. a

q

n = 1

(-1)n + 1 
1

10n

 51. a
q

n = 1

(-1)n + 1 
(0.01)n

n    
As you will see in Section 10.7,  

the sum is ln
 
(1.01).

 52. 
1

1 + t
= a

q

n = 0

(-1)n tn, 0 6 t 6 1

In Exercises 53–56, determine how many terms should be used to 

estimate the sum of the entire series with an error of less than 0.001.

 53. a
q

n = 1

(-1)n 
1

n2 + 3
 54. a

q

n = 1

(-1)n + 1 
n

n2 + 1

 55. a
q

n = 1

(-1)n + 1 
11n + 32n23 56. a

q

n = 1

(-1)n 
1

ln (ln (n + 2))

In Exercises 57–82, use any method to determine whether the series 

converges or diverges. Give reasons for your answer.

 57. a
q

n = 1

 
3n

nn  58. a
q

n = 1

 
3n

n3

 59. a
q

n = 1

 a 1
n + 2

-
1

n + 3
b  60. a

q

n = 1

 a 1
2n + 1

-
1

2n + 2
b

 61. a
q

n = 0

 (-1)n 
(n + 2)!

(2n)!
 62. a

q

n = 2

 
(3n)!

(n!)3

 63. a
q

n = 1

 n-2>25 64. a
q

n = 2

 
3

10 + n4>3
 65. a

q

n = 1

 a1 -
2
nbn2

 66. a
q

n = 0

 an + 1
n + 2

bn

 67. a
q

n = 1

 
n - 2

n2 + 3n
 a-2

3
bn

 68. a
q

n = 0

 
n + 1

(n + 2)!
 a3

2
bn

 69. 
1
2

-
1
2

+
1
2

-
1
2

+
1
2

-
1
2

+ g

 70. 1 -
1
8

+
1
64

-
1

512
+

1
4096

- g

 71. a
q

n = 3

 sin a 1

1n
b  72. a

q

n = 1

 tan (n1>n)
 73. a

q

n = 2

 
n

ln n
 74. a

q

n = 2

 
1

n2ln n

 75. a
q

n = 2

 ln an + 2
n + 1

b  76. a
q

n = 2

 aln n
n b3

 77. a
q

n = 2

 
1

1 + 2 + 22 + g+ 2n

 78. a
q

n = 2

 
1 + 3 + 32 + g + 3n-1

1 + 2 + 3 + g + n

 11. a
q

n = 1

(-1)n + 1  
ln n
n  12. a

q

n = 1

(-1)n ln a1 +
1
nb

 13. a
q

n = 1

(-1)n + 1  
2n + 1

n + 1
 14. a

q

n = 1

(-1)n + 1  
32n + 1

2n + 1

Absolute and Conditional Convergence

Which of the series in Exercises 15–48 converge absolutely, which 

converge, and which diverge? Give reasons for your answers.

 15. a
q

n = 1

(-1)n + 1(0.1)n 16. a
q

n = 1

(-1)n + 1 
(0.1)n

n

 17. a
q

n = 1

(-1)n 
1

2n
 18. a

q

n = 1

 
(-1)n

1 + 2n

 19. a
q

n = 1

(-1)n + 1 
n

n3 + 1
 20. a

q

n = 1

(-1)n + 1  
n!

2n

 21. a
q

n = 1

(-1)n 
1

n + 3
 22. a

q

n = 1

(-1)n  
sin n

n2

 23. a
q

n = 1

(-1)n + 1 
3 + n

5 + n
 24. a

q

n = 1

 
(-2)n + 1

n + 5n

 25. a
q

n = 1

(-1)n + 1 
1 + n

n2
 26. a

q

n = 1

(-1)n + 112n 102
 27. a

q

n = 1

(-1)nn2(2>3)n 28. a
q

n = 2

(-1)n + 1 
1

n ln n

 29. a
q

n = 1

(-1)n 
tan-1 n

n2 + 1
 30. a

q

n = 1

(-1)n 
ln n

n - ln n

 31. a
q

n = 1

(-1)n 
n

n + 1
 32. a

q

n = 1

(-5)-n

 33. a
q

n = 1

 
(-100)n

n!
 34. a

q

n = 1

 
(-1)n - 1

n2 + 2n + 1

 35. a
q

n = 1

 
cos np

n2n
 36. a

q

n = 1

 
cos np

n

 37. a
q

n = 1

 
(-1)n(n + 1)n

(2n)n  38. a
q

n = 1

 
(-1)n + 1(n!)2

(2n)!

 39. a
q

n = 1

(-1)n 
(2n)!

2nn!n
 40. a

q

n = 1

(-1)n 
(n!)2 3n

(2n + 1)!

 41. a
q

n = 1

(-1)n 12n + 1 - 2n2 42. a
q

n = 1

(-1)n 12n2 + n - n2
 43. a

q

n = 1

(-1)n 12n + 1n - 2n2
 44. a

q

n = 1

 
(-1)n

2n + 2n + 1

 45. a
q

n = 1

(-1)n sech n 46. a
q

n = 1

(-1)n csch n

 47. 
1
4

-
1
6

+
1
8

-
1
10

+
1
12

-
1
14

+ g

 48. 1 +
1
4

-
1
9

-
1
16

+
1
25

+
1
36

-
1
49

-
1
64

+ g
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 90. Show that if gq
n = 1  an converges absolutely, then` aq

n = 1

an ` … a
q

n = 1
 �an � .

 91. Show that if gq
n = 1 an and gq

n = 1 bn both converge absolutely, then 

so do the following.

a. a
q

n = 1

(an + bn) b. a
q

n = 1

(an - bn)

c. a
q

n = 1

 kan (k any number)

 92. Show by example that gq
n = 1 an  bn may diverge even if gq

n = 1  an 

and gq
n = 1 bn both converge.

 93. If gan converges absolutely, prove that g an  

2 converges.

 94. Does the series

a
q

n = 1

a1
n

-
1

n2
b

  converge or diverge? Justify your answer.

 95. In the alternating harmonic series, suppose the goal is to arrange 

the terms to get a new series that converges to -1>2. Start the new 

arrangement with the irst negative term, which is -1>2. When-

ever you have a sum that is less than or equal to -1>2, start intro-

ducing positive terms, taken in order, until the new total is greater 

than -1>2. Then add negative terms until the total is less than or 

equal to -1>2 again. Continue this process until your partial sums 

have been above the target at least three times and inish at or be-

low it. If sn is the sum of the irst n terms of your new series, plot 

the points (n, sn) to illustrate how the sums are behaving.

 96. outline of the proof of the rearrangement theorem  

(theorem 17)

a. Let e be a positive real number, let L = gq
n = 1  an, and let 

sk = g k
n = 1  an. Show that for some index N1 and for some 

index N2 Ú N1,

a
q

n = N1

 �an � 6
e
2
 and � sN2

- L � 6
e
2

.

Since all the terms a1, a2,c, aN2
 appear somewhere in 

the sequence 5bn6 , there is an index N3 Ú N2 such that if 

n Ú N3, then 1gn
k = 1 bk2 - sN2

 is at most a sum of terms am 

with m Ú N1. Therefore, if n Ú N3,

 ̀ a
n

k = 1

bk - L ` … ` an

k = 1

bk - sN2
` + � sN2

- L �

 … a
q

k = N1

�ak � + � sN2
- L � 6 e.

b. The argument in part (a) shows that if gq
n = 1   an converges 

absolutely then gq
n = 1  bn converges and gq

n = 1  bn = gq
n = 1  an. 

Now show that because gq
n = 1   an  converges, gq

n = 1  bn 

 converges to gq
n = 1  an.

T

 79. a
q

n = 0

 (-1)n 
en

en + en2 80. a
q

n = 0

 
(2n + 3)(2n + 3)

3n + 2

 81. a
q

n = 1

 
n23n

3 # 5 # 7g(2n + 1)
 82. a

q

n = 1

 
4 # 6 # 8g(2n)

5n + 1(n + 2)!

Approximate the sums in Exercises 83 and 84 with an error of magni-

tude less than 5 * 10-6.

 83. a
q

n = 0

(-1)n 
1

(2n)!
  

 As you will see in Section 10.9, the sum is  

cos 1, the cosine of 1 radian.

 84. a
q

n = 0

(-1)n 
1

n!
     

As you will see in Section 10.9  

the sum is e−1.

Theory and Examples

 85. a. The series

1

3
-

1

2
+

1

9
-

1

4
+

1

27
-

1

8
+ g +

1

3n -
1

2n + g

does not meet one of the conditions of Theorem 14. Which 

one?

b. Use Theorem 17 to find the sum of the series in part (a).

 86. The limit L of an alternating series that satisfies the conditions of 

Theorem 15 lies between the values of any two consecutive partial 

sums. This suggests using the average

sn + sn + 1

2
= sn +

1

2
(-1)n + 2an + 1

  to estimate L. Compute

s20 +
1

2
 #  

1

21

  as an approximation to the sum of the alternating harmonic series. 

The exact sum is ln 2 = 0.69314718 .c
 87. the sign of the remainder of an alternating series that 

 satisies the conditions of theorem 15 Prove the assertion in  

Theorem 16 that whenever an alternating series satisfying the 

conditions of Theorem 15 is approximated with one of its partial 

sums, then the remainder (sum of the unused terms) has the same 

sign as the first unused term. (Hint: Group the remainder’s terms 

in consecutive pairs.)

 88. Show that the sum of the first 2n terms of the series

1 -
1

2
+

1

2
-

1

3
+

1

3
-

1

4
+

1

4
-

1

5
+

1

5
-

1

6
+ g

  is the same as the sum of the first n terms of the series

1

1 # 2
+

1

2 # 3
+

1

3 # 4
+

1

4 # 5
+

1

5 # 6
+ g.

  Do these series converge? What is the sum of the first 2n + 1 

terms of the first series? If the series converge, what is their sum?

 89. Show that if gq
n = 1  an diverges, then gq

n = 1 �an �  diverges.

T

T
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10.7 Power Series

Now that we can test many infinite series of numbers for convergence, we can study sums 

that look like “infinite polynomials.” We call these sums power series because they are 

defined as infinite series of powers of some variable, in our case x. Like polynomials, 

power series can be added, subtracted, multiplied, differentiated, and integrated to give 

new power series. With power series we can extend the methods of calculus to a vast array 

of functions, making the techniques of calculus applicable in an even wider setting.

Power Series and Convergence

We begin with the formal definition, which specifies the notation and terminology used for 

power series.

DEFINITIONS A power series about x = 0 is a series of the form

 a
q

n = 0

cn xn = c0 + c1 x + c2 x2 + g+ cn xn + g. (1)

A power series about x = a is a series of the form

a
q

n = 0

cn(x - a)n = c0 + c1(x - a) + c2(x - a)2 + g + cn(x - a)n + g (2)

in which the center a and the coefficients c0, c1, c2, c, cn, c  are constants.

Equation (1) is the special case obtained by taking a = 0 in Equation (2). We will see 

that a power series defines a function ƒ(x) on a certain interval where it converges. More-

over, this function will be shown to be continuous and differentiable over the interior of 

that interval.

EXAMPLE 1  Taking all the coefficients to be 1 in Equation (1) gives the geometric 

power series

a
q

n = 0

xn = 1 + x + x2 + g + xn + g.

This is the geometric series with first term 1 and ratio x. It converges to 1>(1 - x) for 

� x � 6 1. We express this fact by writing

 
1

1 - x
= 1 + x + x2 + g + xn + g,  -1 6 x 6 1. (3)

 

Up to now, we have used Equation (3) as a formula for the sum of the series on the 

right. We now change the focus: We think of the partial sums of the series on the right as 

polynomials Pn(x) that approximate the function on the left. For values of x near zero, we 

need take only a few terms of the series to get a good approximation. As we move toward 

x = 1, or -1, we must take more terms. Figure 10.17 shows the graphs of 

ƒ(x) = 1>(1 - x) and the approximating polynomials yn = Pn(x) for n = 0, 1, 2, and 8. 

The function ƒ(x) = 1>(1 - x) is not continuous on intervals containing x = 1, where it 

has a vertical asymptote. The approximations do not apply when x Ú 1.

power series for 
1

1 − x

1
1 - x

= a
q

n = 0

 xn, � x � 6 1
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EXAMPLE 2  The power series

 1 -
1
2

  (x - 2) +
1
4

  (x - 2)2 + g + a-  
1
2
bn

(x - 2)n + g (4)

matches Equation (2) with a = 2, c0 = 1, c1 = -1>2, c2 = 1>4, c, cn = (-1>2)n. This

is a geometric series with first term 1 and ratio r = -  
x - 2

2
. The series converges for` x - 2

2
` 6 1, which simplifies to 0 6 x 6 4. The sum is

1
1 - r

=
1

1 +
x - 2

2

=
2

x
,

so

2
x = 1 -

(x - 2)

2
+

(x - 2)2

4
- g + a-  

1
2
bn

(x - 2)n + g,  0 6 x 6 4.

Series (4) generates useful polynomial approximations of ƒ(x) = 2>x for values of x near 2:

 P0(x) = 1

 P1(x) = 1 -
1
2

 (x - 2) = 2 -
x

2

 P2(x) = 1 -
1
2

 (x - 2) +
1
4

 (x - 2)2 = 3 -
3x

2
+

x2

4
,

and so on (Figure 10.18). 

The following example illustrates how we test a power series for convergence by 

using the Ratio Test to see where it converges and diverges.

EXAMPLE 3  For what values of x do the following power series converge?

(a) a
q

n = 1

(-1)n - 1 
xn

n = x -
x2

2
+

x3

3
- g

(b) a
q

n = 1

(-1)n - 1 
x2n - 1

2n - 1
= x -

x3

3
+

x5

5
- g

0

1

1−1

2

3

4

5

7

8

9

y2 = 1 + x + x2

y1 = 1 + x

y0 = 1

y = 1
1 − x

y8 = 1 + x + x2 + x3 + x4 + x5 + x6
 + x7 + x8

x

y

FIGURE 10.17 The graphs of ƒ(x) = 1>(1 - x) in  

Example 1 and four of its polynomial approximations.

0 2

1

1

y1 = 2 −

y2 = 3 −     +

y0 = 1

(2, 1)

y =

3

2 3x
2

x2

4

2
x

x
2

x

y

FIGURE 10.18 The graphs of 

ƒ(x) = 2>x and its first three polynomial 

approximations (Example 2).
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(c) a
q

n = 0

 
xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ g

(d) a
q

n = 0

n!xn = 1 + x + 2!x2 + 3!x3 + g

Solution Apply the Ratio Test to the series g � un � , where un is the nth term of the power 

series in question.

(a) ` un + 1

un
` = ` xn + 1

n + 1
# n
x ` =

n
n + 1

� x � S � x � .

By the Ratio Test, the series converges absolutely for � x � 6 1 and diverges for  

� x � 7 1. At x = 1, we get the alternating harmonic series 

1 - 1>2 + 1>3 - 1>4 + g, which converges. At x = -1, we get -1 - 1>2 -  

1>3 - 1>4 - g, the negative of the harmonic series, which diverges. Series (a) 

converges for -1 6 x … 1 and diverges elsewhere.

−1 0 1
x

We will see in Example 6 that this series converges to the function ln (1 + x) on the 

interval (-1, 14  (see Figure 10.19).

Diverges

Converges

y = ln(1 + x)

−2
x

y

y = x

y = x  − − + − − − + −
x2

2
x3

3
x4

4
x5

5

y = x  − − + − − −
x2

2
x3

3
x4

4

y = x  − − + −
x2

2
x3

3

y = x  − −
x2

2

1

−1

−2

2

21−1

FIGURE 10.19 The power series x -
x2

2
+

x3

3
-

x4

4
+ g  

converges on the interval (-1, 14 . 
(b) ` un + 1

un
` = ` x2n + 1

2n + 1
# 2n - 1

x2n - 1
` =

2n - 1
2n + 1

 x2 S x2.  2(n + 1) - 1 = 2n + 1

 By the Ratio Test, the series converges absolutely for x2 6 1 and diverges for x2 7 1.  

At x = 1 the series becomes 1 - 1>3 +  1>5 - 1>7 + g,  which converges by the 

Alternating Series Theorem. It also converges at x = -1 because it is again an alternat-

ing series that satisies the conditions for convergence. The value at x = -1 is the nega-

tive of the value at x = 1. Series (b) converges for -1 … x … 1 and diverges elsewhere.

−1 0 1
x

(c) ` un + 1

un
` = ` xn + 1

(n + 1)!
# n!
xn ` =

� x �

n + 1
S 0 for every x.  n!

(n + 1)! = 1 # 2 # 3 gn
1 # 2 # 3 gn # (n + 1)

The series converges absolutely for all x.

0
x
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Proof  The proof uses the Direct Comparison Test, with the given series compared to 

a converging geometric series.

Suppose the series gq
n = 0  an cn converges. Then limnSq  an cn = 0 by the nth-Term 

Test. Hence, there is an integer N such that � an cn � 6 1 for all n 7 N, so that

 � an � 6
1

� c �n
  for n 7 N. (5)

Now take any x such that � x � 6 � c � , so that � x �  >  � c � 6 1. Multiplying both sides of 

Equation (5) by � x �n gives

� an � � x �
n 6

� x �n

� c �n
  for n 7 N.

Since � x>c � 6 1, it follows that the geometric series gq
n = 0 � x>c �n converges. By the 

 Direct Comparison Test (Theorem 10), the series gq
n = 0 � an � � x 

n �  converges, so the origi-

nal power series gq
n = 0  an x 

n converges absolutely for - � c � 6 x 6 � c �  as claimed by the 

theorem. (See Figure 10.20.)

Now suppose that the series gq
n = 0  an x 

n diverges at x = d. If x is a number with 

� x � 7 � d �  and the series converges at x, then the irst half of the theorem shows that the 

series also converges at d, contrary to our assumption. So the series diverges for all x with 

� x � 7 � d � . 

To simplify the notation, Theorem 18 deals with the convergence of series of the form gan xn. For series of the form gan(x - a)n we can replace x - a by x′ and apply the 

results to the series gan(x′)
n.

The Radius of Convergence of a Power Series

The theorem we have just proved and the examples we have studied lead to the conclusion 

that a power series gcn(x - a)n behaves in one of three possible ways. It might converge 

only at x = a, or converge everywhere, or converge on some interval of radius R centered 

0 @d @−@d @ −R

series
diverges

series
diverges

series
converges

R−@ c @ @ c @ x

FIGURE 10.20 Convergence of gan x 

n 

at x = c implies absolute convergence on 

the interval - � c � 6 x 6 � c � ; diver-

gence at x = d implies divergence for 

� x � 7 �d � . The corollary to Theorem 18 

asserts the existence of a radius of con-

vergence R Ú 0. For � x � 6 R the series 

converges absolutely and for � x � 7 R it 

diverges.

THEOREM 18—The Convergence Theorem for Power Series

If the power series

 a
q

n = 0

an xn = a0 + a1 x + a2 x2 + g converges at x = c ≠ 0, then it converges

absolutely for all x with � x � 6 � c � . If the series diverges at x = d, then it 

 diverges for all x with � x � 7 � d � .

(d) ` un + 1

un
` = ` (n + 1)!xn + 1

n!xn ` = (n + 1) � x � S q unless x = 0.

The series diverges for all values of x except x = 0.

0
x
 

The previous example illustrated how a power series might converge. The next result 

shows that if a power series converges at more than one value, then it converges over an 

entire interval of values. The interval might be finite or infinite and contain one, both, or 

none of its endpoints. We will see that each endpoint of a finite interval must be tested 

independently for convergence or divergence.
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at x = a. We prove this as a Corollary to Theorem 18. When we also consider the conver-

gence at the endpoints of an interval, there are six different possibilities. These are shown 

in Figure 10.21.

x  − a x  + a

Converges on [x − a, x  + a ]

(a)

a

Diverges

 

a

x  − a x  + a

Diverges

Converges on [x − a, x  + a )

(b)

a

x  − a x  + a

Diverges

Converges on (x − a, x  + a ]

(c)  

a

x  − a x  + a

Diverges

Converges on (x − a, x  + a )

(d)

a

Converges everywhere

(e)  

Diverges

a

Converges only at x = a 

(f)

FIGURE 10.21 The six possibilities for an interval of convergence.

Corollary to Theorem 18

The convergence of the series gcn(x - a)n is described by one of the following 

three cases:

1. There is a positive number R such that the series diverges for x with 

� x - a � 7 R but converges absolutely for x with � x - a � 6 R. The series  

may or may not converge at either of the endpoints x = a - R and x = a + R.

2. The series converges absolutely for every x  (R = q).

3. The series converges at x = a and diverges elsewhere (R = 0).

Proof  We irst consider the case where a = 0, so that we have a power series gq
n = 0  cn x 

n centered at 0. If the series converges everywhere we are in Case 2. If it con-

verges only at x = 0 then we are in Case 3. Otherwise there is a nonzero number d such 

that gq
n = 0  cnd

n diverges. Let S be the set of values of x for which gq
n = 0  cn x 

n converges. 

The set S does not include any x with � x � 7 � d � , since Theorem 18 implies the series 

diverges at all such values. So the set S is bounded. By the Completeness Property of the 

Real Numbers (Appendix 6) S has a least upper bound R. (This is the smallest number with 

the property that all elements of S are less than or equal to R.) Since we are not in Case 3, 

the series converges at some number b ≠ 0 and, by Theorem 18, also on the open interval 
(- � b � , � b � ). Therefore, R 7 0.

If � x � 6 R then there is a number c in S with � x � 6 c 6 R, since otherwise R would 

not be the least upper bound for S. The series converges at c since c∊S, so by Theorem 18 

the series converges absolutely at x.
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Now suppose � x � 7 R. If the series converges at x, then Theorem 18 implies it con-

verges absolutely on the open interval (- � x � , � x � ), so that S contains this interval. Since R 

is an upper bound for S, it follows that � x � … R, which is a contradiction. So if � x � 7 R 

then the series diverges. This proves the theorem for power series centered at a = 0.

For a power series centered at an arbitrary point x = a, set x′ = x - a and repeat the 

argument above, replacing x with x′. Since x′ = 0 when x = a, convergence of the series gq
n = 0 � cn(x′)

n �  on a radius R open interval centered at x′ = 0 corresponds to convergence 

of the series gq
n = 0 � cn(x - a)n �  on a radius R open interval centered at x = a. 

R is called the radius of convergence of the power series, and the interval of radius 

R centered at x = a is called the interval of convergence. The interval of convergence 

may be open, closed, or half-open, depending on the particular series. At points x with 

� x - a � 6 R, the series converges absolutely. If the series converges for all values of x, 

we say its radius of convergence is ininite. If it converges only at x = a, we say its radius 

of convergence is zero.

How to Test a Power Series for Convergence

1. Use the Ratio Test (or Root Test) to ind the largest open interval where the 

series converges absolutely,

� x - a � 6 R  or  a - R 6 x 6 a + R.

2. If R is inite, test for convergence or divergence at each endpoint, as in  

 Examples 3a and b. Use a Comparison Test, the Integral Test, or the  Alternating 

Series Test.

3. If R is inite, the series diverges for � x - a � 7 R (it does not even converge 

conditionally) because the nth term does not approach zero for those values of x.

THEOREM 19—Series Multiplication for Power Series

If A(x) = gq
n = 0  an xn and B(x) = gq

n = 0  bn xn converge absolutely for � x � 6 R, 

and

cn = a0 bn + a1 bn - 1 + a2 bn - 2 + g+ an - 1b1 + an b0 = a
n

k = 0

ak bn - k ,

then gq
n = 0 cn xn converges absolutely to A(x)B(x) for � x � 6 R:aaq

n = 0

an xnb aaq
n = 0

bn xnb = a
q

n = 0

cn xn .

Operations on Power Series

On the intersection of their intervals of convergence, two power series can be added and 

subtracted term by term just like series of constants (Theorem 8). They can be multiplied 

just as we multiply polynomials, but we often limit the computation of the product to the 

first few terms, which are the most important. The following result gives a formula for the 

coefficients in the product, but we omit the proof. (Power series can also be divided in a 

way similar to division of polynomials, but we do not give a formula for the general coef-

ficient here.)

Finding the general coefficient cn in the product of two power series can be very 

tedious and the term may be unwieldy. The following computation provides an illustration 
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of a product where we find the first few terms by multiplying the terms of the second 

series by each term of the first series:aaq
n = 0

 xnb # aaq
n = 0

 (-1)n xn + 1

n + 1
b

= (1 + x + x2 + g) ax -
x2

2
+

x3

3
- gb  Multiply second series . . .

= ax -
x2

2
+

x3

3
- gb + ax2 -

x3

2
+

x4

3
- gb + ax3 -

x4

2
+

x5

3
- gb + g

 (1+1+)++11* (1+1+)++11* (1+1+)++11*
 by 1 by x by x2

= x +
x2

2
+

5x3

6
-

x4

6
 g. and gather the first four powers.

We can also substitute a function ƒ(x) for x in a convergent power series.

THEOREM 20 If gq
n = 0  an xn converges absolutely for � x � 6 R and ƒ is a con-

tinuous function, then gq
n = 0  an (ƒ(x))n converges absolutely on the set of points x 

where � ƒ(x) � 6 R.

Since 1>(1 - x) = gq
n = 0  x

n converges absolutely for � x � 6 1, it follows from 

 Theorem 20 that 1> (1 - 4x2) = gq
n = 0 (4x2)n converges absolutely when x satisfies 

� 4x2 � 6 1 or equivalently when � x � 6 1>2.

Theorem 21 says that a power series can be differentiated term by term at each inte-

rior point of its interval of convergence. A proof is outlined in Exercise 64.

THEOREM 21—Term-by-Term Diferentiation

If gcn(x - a)n has radius of convergence R 7 0, it deines a function

ƒ(x) = a
q

n = 0

cn(x - a)n  on the interval  a - R 6 x 6 a + R.

This function ƒ has derivatives of all orders inside the interval, and we obtain the 

derivatives by diferentiating the original series term by term:

 ƒ′(x) = a
q

n = 1

ncn(x - a)n - 1 ,

 ƒ″(x) = a
q

n = 2

n(n - 1)cn(x - a)n - 2 ,

and so on. Each of these derived series converges at every point of the interval 

a - R 6 x 6 a + R.

ExamPLE 4  Find series for ƒ′(x) and ƒ″(x) if

 ƒ(x) =
1

1 - x
= 1 + x + x2 + x3 + x4 + g+ xn + g

 = a
q

n = 0

xn,  -1 6 x 6 1.
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Solution We differentiate the power series on the right term by term:

 ƒ′(x) =
1

(1 - x)2
= 1 + 2x + 3x2 + 4x3 + g+ nxn - 1 + g

 = a
q

n = 1

nxn - 1,  -1 6 x 6 1;

 ƒ″(x) =
2

(1 - x)3
= 2 + 6x + 12x2 + g + n(n - 1)xn - 2 + g

  = a
q

n = 2

n(n - 1)xn - 2,  -1 6 x 6 1.  

THEOREM 22—Term-by-Term Integration

Suppose that

ƒ(x) = a
q

n = 0

cn(x - a)n

converges for a - R 6 x 6 a + R(R 7 0). Then

a
q

n = 0

cn 
(x - a)n + 1

n + 1

converges for a - R 6 x 6 a + R and

 Lƒ(x) dx = a
q

n = 0

cn 
(x - a)n + 1

n + 1
+ C

for a - R 6 x 6 a + R.

EXAMPLE 5  Identify the function

ƒ(x) = a
q

n = 0

(-1)n x2n + 1

2n + 1
= x -

x3

3
+

x5

5
- g ,  -1 … x … 1.

Solution We differentiate the original series term by term and get

 ƒ′(x) = 1 - x2 + x4 - x6 + g,  -1 6 x 6 1. Theorem 21

caution Term-by-term diferentiation might not work for other kinds of series. For 

 example, the trigonometric series

a
q

n = 1

 
sin(n!x)

n2

converges for all x. But if we diferentiate term by term we get the series

a
q

n = 1

 
n! cos(n!x)

n2
,

which diverges for all x. This is not a power series since it is not a sum of positive integer 

powers of x. 

It is also true that a power series can be integrated term by term throughout its interval 

of convergence. The proof is outlined in Exercise 65.
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This is a geometric series with first term 1 and ratio -x2, so

ƒ′(x) =
1

1 - (-x2)
=

1

1 + x2
.

We can now integrate ƒ′(x) = 1> (1 + x2)  to get

 L ƒ′(x) dx = L  
dx

1 + x2
= tan-1 x + C.

The series for ƒ(x) is zero when x = 0, so C = 0. Hence

 ƒ(x) = x -
x3

3
+

x5

5
-

x7

7
+ g = tan-1 x,  -1 6 x 6 1. (6)

It can be shown that the series also converges to tan-1 x at the endpoints x = {1, but we 

omit the proof. 

Notice that the original series in Example 5 converges at both endpoints of the origi-

nal interval of convergence, but Theorem 22 can only guarantee the convergence of the 

differentiated series inside the interval.

EXAMPLE 6  The series

1
1 + t

= 1 - t + t2 - t3 + g

converges on the open interval -1 6 t 6 1. Therefore,

 ln (1 + x) = L
x

0

 
1

1 + t
 dt = t -

t2

2
+

t3

3
-

t4

4
+ g d

0

x

  Theorem 22

 = x -
x2

2
+

x3

3
-

x4

4
+ g

or

ln (1 + x) = a
q

n = 1

(-1)n - 1 xn

n ,   -1 6 x 6 1.

It can also be shown that the series converges at x = 1 to the number ln 2, but that was not 

guaranteed by the theorem. A proof of this is outlined in Exercise 61. 

the Number P as a series

p
4

= tan-11 = a
q

n = 0

 
(-1)n

2n + 1

Alternating Harmonic series sum

ln 2 = a
q

n = 1

(-1)n - 1

n

Intervals of Convergence

In Exercises 1–36, (a) find the series’ radius and interval of conver-

gence. For what values of x does the series converge (b) absolutely, 

(c) conditionally?

 1. a
q

n = 0

xn 2. a
q

n = 0

(x + 5)n

 3. a
q

n = 0

(-1)n(4x + 1)n 4. a
q

n = 1

 
(3x - 2)n

n

 5. a
q

n = 0

 
(x - 2)n

10n  6. a
q

n = 0

(2x)n

 7. a
q

n = 0

 
nxn

n + 2
 8. a

q

n = 1

 
(-1)n(x + 2)n

n

 9. a
q

n = 1

 
xn

n2n 3n
 10. a

q

n = 1

 
(x - 1)n

2n

 11. a
q

n = 0

 
(-1)nxn

n!
 12. a

q

n = 0

 
3nxn

n!

 13. a
q

n = 1

 
4nx2n

n  14. a
q

n = 1

 
(x - 1)n

n33n

 15. a
q

n = 0

 
xn

2n2 + 3
 16. a

q

n = 0

 
(-1)nxn + 1

2n + 3

EXERCISES 10.7
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 45. a
q

n = 0

 a2x

2
- 1bn

 46. a
q

n = 0

(ln x)n

 47. a
q

n = 0

 ax2 + 1
3
bn

 48. a
q

n = 0

 ax2 - 1
2
bn

Using the Geometric Series

 49. In Example 2 we represented the function ƒ(x) = 2>x as a power 

series about x = 2. Use a geometric series to represent ƒ(x) as a 

power series about x = 1, and ind its interval of convergence.

 50. Use a geometric series to represent each of the given functions as a 

power series about x = 0, and ind their intervals of convergence.

a. ƒ(x) =
5

3 - x
 b. g(x) =

3
x - 2

 51. Represent the function g(x) in Exercise 50 as a power series about 

x = 5, and ind the interval of convergence.

 52. a. Find the interval of convergence of the power series

a
q

n = 0

 
8

4n + 2
 xn.     

b. Represent the power series in part (a) as a power series about 

x = 3 and identify the interval of convergence of the new 

series. (Later in the chapter you will understand why the new 

interval of convergence does not necessarily include all of the 

numbers in the original interval of convergence.)

Theory and Examples

 53. For what values of x does the series

1 -
1
2

 (x - 3) +
1
4

 (x - 3)2 + g + a-  
1
2
bn

(x - 3)n + g

  converge? What is its sum? What series do you get if you diferen-

tiate the given series term by term? For what values of x does the 

new series converge? What is its sum?

 54. If you integrate the series in Exercise 53 term by term, what new 

series do you get? For what values of x does the new series con-

verge, and what is another name for its sum?

 55. The series

sin x = x -
x3

3!
+

x5

5!
-

x7

7!
+

x9

9!
-

x11

11!
+ g

  converges to sin x for all x.

a. Find the irst six terms of a series for cos x. For what values 

of x should the series converge?

b. By replacing x by 2x in the series for sin x, ind a series that 

converges to sin 2x for all x.

c. Using the result in part (a) and series multiplication, calculate 

the irst six terms of a series for 2 sin x cos x. Compare your 

answer with the answer in part (b).

 56. The series

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ g

  converges to ex for all x.

a. Find a series for (d>dx)ex. Do you get the series for ex? 

 Explain your answer.

 17. a
q

n = 0

 
n(x + 3)n

5n  18. a
q

n = 0

 
nxn

4n(n2 + 1)

 19. a
q

n = 0

 
2nxn

3n  20. a
q

n = 1

2n n(2x + 5)n

 21. a
q

n = 1

 (2 + (-1)n) # (x + 1)n - 1

 22. a
q

n = 1

 
(-1)n 32n(x - 2)n

3n

 23. a
q

n = 1

 a1 +
1
nbn

 xn 24. a
q

n = 1

(ln n)xn

 25. a
q

n = 1

nnxn 26. a
q

n = 0

n!(x - 4)n

 27. a
q

n = 1

 
(-1)n + 1(x + 2)n

n2n  28. a
q

n = 0

(-2)n(n + 1)(x - 1)n

 29. a
q

n = 2

 
xn

n(ln n)2
 

 30. a
q

n = 2

 
xn

n ln n
Get the information you need about 

a 1>(n ln n) from Section 10.3, Exercise 60.

 31. a
q

n = 1

 
(4x - 5)2n + 1

n3>2  32. a
q

n = 1

 
(3x + 1)n + 1

2n + 2

 33. a
q

n = 1

 
1

2 # 4 # 6g(2n)
 xn

 34. a
q

n = 1

 
3 # 5 # 7g(2n + 1)

n2 # 2n
 xn + 1

 35. a
q

n = 1

 
1 + 2 + 3 + g + n

12 + 22 + 32 + g + n2
 xn

 36. a
q

n = 1

 12n + 1 - 2n2(x - 3)n

In Exercises 37–40, find the series’ radius of convergence.

 37. a
q

n = 1

 
n!

3 # 6 # 9g3n
 xn

 38. a
q

n = 1

 a 2 # 4 # 6g(2n)

2 # 5 # 8g(3n - 1)
b2

 xn

 39. a
q

n = 1

 
(n!)2

2n(2n)!
 xn

 40. a
q

n = 1

 a n

n + 1
bn2

 xn

  (Hint: Apply the Root Test.)

In Exercises 41–48, use Theorem 20 to find the series’ interval of con-

vergence and, within this interval, the sum of the series as a function 

of x.

 41. a
q

n = 0

 3nxn 42. a
q

n = 0

 (ex - 4)n

 43. a
q

n = 0

 
(x - 1)2n

4n  44. a
q

n = 0

 
(x + 1)2n

9n

Get the information you need about 

a 1>(n(ln n)2) from Section 10.3, Exercise 61.
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b. Find a series for 1ex dx. Do you get the series for ex? Ex-

plain your answer.

c. Replace x by -x in the series for ex to ind a series that con-

verges to e-x for all x. Then multiply the series for ex and e-x 

to ind the irst six terms of a series for e-x # ex.

 57. The series

tan x = x +
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+ g

  converges to tan x for -p>2 6 x 6 p>2.

a. Find the irst ive terms of the series for ln � sec x � . For what 

values of x should the series converge?

b. Find the irst ive terms of the series for sec2 x. For what 

values of x should this series converge?

c. Check your result in part (b) by squaring the series given for 

sec x in Exercise 58.

 58. The series

sec x = 1 +
x2

2
+

5
24

 x4 +
61
720

 x6 +
277
8064

 x8 + g

  converges to sec x for -p>2 6 x 6 p>2.

a. Find the irst ive terms of a power series for the function 

ln � sec x + tan x � . For what values of x should the series 

converge?

b. Find the irst four terms of a series for sec x tan x. For what 

values of x should the series converge?

c. Check your result in part (b) by multiplying the series for  

sec x by the series given for tan x in Exercise 57.

 59. Uniqueness of convergent power series

a. Show that if two power series gq
n = 0 an  xn and gq

n = 0  bn  xn 

are convergent and equal for all values of x in an open 

interval (-c, c), then an = bn for every n. (Hint: Let 

ƒ(x) = gq
n = 0 an  xn = gq

n = 0 bn xn. Diferentiate term by term to 

show that an and bn both equal ƒ(n)(0)>(n!).)
b. Show that if gq

n = 0  an  xn = 0 for all x in an open interval 

(-c, c), then an = 0 for every n.

 60. the sum of the series gHn = 0 (n2
,2

n)  To ind the sum of this se-

ries, express 1>(1 - x) as a geometric series, diferentiate both 

sides of the resulting equation with respect to x, multiply both 

sides of the result by x, diferentiate again, multiply by x again, 

and set x equal to 1 >2. What do you get?

 61. the sum of the alternating harmonic series This exercise will 

show that

a
q

n = 1

(-1)n+1

n = ln 2.

Let hn be the nth partial sum of the harmonic series, and let sn be 

the nth partial sum of the alternating harmonic series.

a. Use mathematical induction or algebra to show that 

s2n = h2n - hn.

b. Use the results in Exercise 63 in Section 10.3 to conclude that

lim
nSq

 (hn - ln n) = g

 and

lim
nSq

 (h2n - ln 2n) = g,

where g is Euler’s constant.

c. Use these facts to show that

a
q

n = 1

(-1)n+1

n = lim
nSq

s2n = ln 2.

 62. Assume that the series ganx
n converges for x = 4 and diverges 

for x = 7. Answer true (T), false (F), or not enough information 

given (N) for the following statements about the series.

a. Converges absolutely for x = -4

b. Diverges for x = 5

c. Converges absolutely for x = -8.5

d. Converges for x = -2

e. Diverges for x = 8

f. Diverges for x = -6

g. Converges absolutely for x = 0

h. Converges absolutely for x = -7.1

 63. Assume that the series gan(x - 2)n converges for x = -1 and 

diverges for x = 6. Answer true (T), false (F), or not enough in-

formation given (N) for the following statements about the series.

a. Converges absolutely for x = 1

b. Diverges for x = -6

c. Diverges for x = 2

d. Converges for x = 0

e. Converges absolutely for x = 5

f. Diverges for x = 4.9

g. Diverges for x = 5.1

h. Converges absolutely for x = 4

 64. proof of theorem 21 Assume that a = 0 in Theorem 21 

and that ƒ(x) = gq
n = 0 cnx

n converges for -R 6 x 6 R. Let 

  g(x) = gq
n = 1 ncnx

n-1. This exercise will prove that ƒ′(x) = g(x), 

  that is, lim
hS0

 
ƒ(x + h) - ƒ(x)

h
= g(x).

a. Use the Ratio Test to show that g(x) converges for 

-R 6 x 6 R.

b. Use the Mean Value Theorem to show that 

(x + h)n - xn

h
= ncn-1

n

 for some cn between x and x + h for n = 1, 2, 3, . . . .

c. Show that2 g(x) -
ƒ(x + h) - ƒ(x)

h
2 = 2 aq

n = 2

nan1xn-1 - cn-1
n 2 2

d. Use the Mean Value Theorem to show that

xn-1 - cn-1
n

x - cn
= (n - 1) dn-2

n-1

 for some dn-1 between x and cn for n = 2, 3, 4, . . . .
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10.8 Taylor and Maclaurin Series

We have seen how geometric series can be used to generate a power series for functions 

such as ƒ(x) = 1>(1 - x) or g(x) = 3>(x - 2). Now we expand our capability to repre-

sent a function with a power series. This section shows how functions that are infinitely 

differentiable generate power series called Taylor series. In many cases, these series pro-

vide useful polynomial approximations of the original functions. Because approximation 

by polynomials is extremely useful to both mathematicians and scientists, Taylor series are 

an important application of the theory of infinite series.

Series Representations

We know from Theorem 21 that within its interval of convergence I the sum of a power 

series is a continuous function with derivatives of all orders. But what about the other way 

around? If a function ƒ(x) has derivatives of all orders on an interval, can it be expressed as 

a power series on at least part of that interval? And if it can, what are its coefficients?

We can answer the last question readily if we assume that ƒ(x) is the sum of a power 

series about x = a,

 ƒ(x) = a
q

n = 0

an(x - a)n

 = a0 + a1(x - a) + a2(x - a)2 + g + an(x - a)n + g

with a positive radius of convergence. By repeated term-by-term differentiation within the 

interval of convergence I, we obtain

 ƒ′(x) = a1 + 2a2(x - a) + 3a3(x - a)2 + g + nan(x - a)n - 1 + g,

 ƒ″(x) = 1 # 2a2 + 2 # 3a3(x - a) + 3 # 4a4(x - a)2 + g,

 ƒ‴(x) = 1 # 2 # 3a3 + 2 # 3 # 4a4(x - a) + 3 # 4 # 5a5(x - a)2 + g,

with the nth derivative being

ƒ(n)(x) = n!an + a sum of terms with (x - a) as a factor.

Since these equations all hold at x = a, we have

ƒ′(a) = a1,  ƒ″(a) = 1 # 2a2,  ƒ‴(a) = 1 # 2 # 3a3,

and, in general,

ƒ(n)(a) = n!an .

e. Explain why 0 x - cn 0 6 h and why 0 dn-1 0 … a = max5 0 x 0 , 0 x + h 0 6 .

f. Show that` g(x) -
ƒ(x + h) - ƒ(x)

h
` … �h �a

q

n = 2

0 n(n - 1)ana
n-2 0

g. Show that gq
n = 2 n(n - 1)an-2 converges for -R 6 x 6 R.

h. Let h S 0 in part (f) to conclude that

lim
hS0

 
ƒ(x + h) - ƒ(x)

h
= g(x).

 65. proof of theorem 22 Assume that a = 0 in Theorem 22 and 

  that ƒ(x) = a
q

n = 0

cnx
n converges for -R 6 x 6 R. Let 

  g(x) = a
q

n = 0

 
cn

n + 1
 xn+1. This exercise will prove that g′(x) = ƒ(x).

a. Use the Ratio Test to show that g(x) converges for 

-R 6 x 6 R.

b. Use Theorem 21 to show that g′(x) = ƒ(x), that is,

 Lƒ(x) dx = g(x) + C.
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These formulas reveal a pattern in the coefficients of any power series gq
n = 0  an(x - a)n 

that converges to the values of ƒ on I (“represents ƒ on I ”). If there is such a series (still an 

open question), then there is only one such series, and its nth coefficient is

an =
ƒ(n)(a)

n!
.

If ƒ has a series representation, then the series must be

 ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2

                           + g +
ƒ(n)(a)

n!
 (x - a)n + g.  (1)

But if we start with an arbitrary function ƒ that is infinitely differentiable on an interval 

containing x = a and use it to generate the series in Equation (1), does the series converge 

to ƒ(x) at each x in the interval of convergence? The answer is maybe—for some functions 

it will but for other functions it will not (as we will see in Example 4).

Taylor and Maclaurin Series

The series on the right-hand side of Equation (1) is the most important and useful series 

we will study in this chapter.

HistoricAL BiogrApHiEs

Brook taylor

(1685–1731)

www.goo.gl/5A5Dxl

colin Maclaurin

(1698–1746)

www.goo.gl/vL7QNQ DEFINITIONS Let ƒ be a function with derivatives of all orders throughout 

some interval containing a as an interior point. Then the taylor series generated 

by ƒ at x = a is

 a
q

k = 0

 
ƒ(k)(a)

k!
 (x - a)k = ƒ(a) + ƒ′(a)(x - a) +

ƒ″(a)

2!
 (x - a)2

 + g +
ƒ(n)(a)

n!
 (x - a)n + g.

The Maclaurin series of ƒ is the Taylor series generated by ƒ at x = 0, or

a
q

k = 0

 
ƒ(k)(0)

k!
 xk = ƒ(0) + ƒ′(0)x +

ƒ″(0)

2!
 x2 + g+

ƒ(n)(0)

n!
 xn + g.

The Maclaurin series generated by ƒ is often just called the Taylor series of ƒ.

EXAMPLE 1  Find the Taylor series generated by ƒ(x) = 1>x at a = 2. Where, if 

anywhere, does the series converge to 1 >x?

Solution We need to find ƒ(2), ƒ′(2), ƒ″(2), . . . .. Taking derivatives we get

ƒ(x) = x-1, ƒ′(x) = -x-2, ƒ″(x) = 2!x-3, . . . , ƒ(n)(x) = (-1)nn!x-(n + 1),

so that

ƒ(2) = 2-1 =
1
2

, ƒ′(2) = -  
1

22
, 

ƒ″(2)

2!
= 2-3 =

1

23
, . . . , 

ƒ(n)(2)

n!
=

(-1)n

2n + 1
 .

The Taylor series is

 ƒ(2) + ƒ′(2)(x - 2) -
ƒ″(2)

2!
 (x - 2)2 + g +

ƒ(n)(2)

n!
 (x - 2)n + g

 =
1
2

-
(x - 2)

22
+

(x - 2)2

23
- g + (-1)n 

(x - 2)n

2n + 1
+ g.

http://www.goo.gl/5A5Dxl
http://www.goo.gl/vL7QNQ
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This is a geometric series with first term 1 >2 and ratio r = -(x - 2)>2. It converges 

absolutely for � x - 2 � 6 2 and its sum is

1>2
1 + (x - 2)>2 =

1
2 + (x - 2)

=
1
x .

In this example the Taylor series generated by ƒ(x) = 1>x at a = 2 converges to 1 >x for 

� x - 2 � 6 2 or 0 6 x 6 4. 

Taylor Polynomials

The linearization of a differentiable function ƒ at a point a is the polynomial of degree one 

given by

P1(x) = ƒ(a) + ƒ′(a)(x - a).

In Section 3.9 we used this linearization to approximate ƒ(x) at values of x near a. If ƒ has 

derivatives of higher order at a, then it has higher-order polynomial approximations as well, 

one for each available derivative. These polynomials are called the Taylor polynomials of ƒ.

DEFINITION Let ƒ be a function with derivatives of order k for k = 1, 2, . . . , N  

in some interval containing a as an interior point. Then for any integer n from 0 

through N, the taylor polynomial of order n generated by ƒ at x = a is the 

polynomial

 Pn(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g

 +
ƒ(k)(a)

k!
 (x - a)k + g+

ƒ(n)(a)

n!
 (x - a)n.

We speak of a Taylor polynomial of order n rather than degree n because ƒ(n)(a) may 

be zero. The first two Taylor polynomials of ƒ(x) = cos x at x = 0, for example, are 

P0(x) = 1 and P1(x) = 1. The first-order Taylor polynomial has degree zero, not one.

Just as the linearization of ƒ at x = a provides the best linear approximation of ƒ in 

the neighborhood of a, the higher-order Taylor polynomials provide the “best” polynomial 

approximations of their respective degrees. (See Exercise 44.)

EXAMPLE 2  Find the Taylor series and the Taylor polynomials generated by 

ƒ(x) = ex at x = 0.

Solution Since ƒ(n)(x) = ex and ƒ(n)(0) = 1 for every n = 0, 1, 2, c, the Taylor series 

generated by ƒ at x = 0 (see Figure 10.22) is

 ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
 x2 + g +

ƒ(n)(0)

n!
 xn + g

 = 1 + x +
x2

2
+ g +

xn

n!
+ g

 = a
q

k = 0

 
xk

k!
.

This is also the Maclaurin series for ex. In the next section we will see that the series 

 converges to ex at every x.

The Taylor polynomial of order n at x = 0 is

 Pn(x) = 1 + x +
x2

2
+ g +

xn

n!
. 

0.5

1.0

y = e x

0 0.5

1.5

2.0

2.5

3.0
y = P3(x)

y = P2(x)

y = P1(x)

1.0

x

y

−0.5

FIGURE 10.22 The graph of ƒ(x) = ex 

and its Taylor polynomials

 P1(x) = 1 + x

 P2(x) = 1 + x + (x2>2!)
 P3(x) = 1 + x + (x2>2!) + (x3>3!).

Notice the very close agreement near the 

center x = 0 (Example 2).
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EXAMPLE 4  It can be shown (though not easily) that

ƒ(x) = e0, x = 0

e-1>x2

, x ≠ 0

0 1

1

y = cos x

2

−1

−2

2 3 4 5 6 7 9

P0

P4 P8 P12 P16

P2 P6 P10 P14 P18

8
x

y

FIGURE 10.23 The polynomials

P2n(x) = a
n

k = 0

 
(-1)kx2k

(2k)!

converge to cos x as n S q. We can deduce the behavior of 

cos x arbitrarily far away solely from knowing the values of the 

cosine and its derivatives at x = 0 (Example 3).

EXAMPLE 3  Find the Taylor series and Taylor polynomials generated by ƒ(x) = cos x 

at x = 0.

Solution The cosine and its derivatives are

  ƒ(x) =   cos x,     ƒ′(x) =    -sin x,

  ƒ″(x) =    -cos x,    ƒ(3)(x) =     sin x,

    f  f
  ƒ(2n)(x) = (-1)n cos x,    ƒ(2n + 1)(x) = (-1)n + 1 sin x.

At x = 0, the cosines are 1 and the sines are 0, so

ƒ(2n)(0) = (-1)n,  ƒ(2n + 1)(0) = 0.

The Taylor series generated by ƒ at 0 is

 ƒ(0) + ƒ′(0) x +
ƒ″(0)

2!
 x2 +

ƒ‴(0)

3!
 x3 + g +

ƒ(n)(0)

n!
 xn + g

 = 1 + 0 # x -
x2

2!
+ 0 # x3 +

x4

4!
+ g + (-1)n 

x2n

(2n)!
+ g

 = a
q

k = 0

 
(-1)kx2k

(2k)!
.

This is also the Maclaurin series for cos x. Notice that only even powers of x occur in the 

Taylor series generated by the cosine function, which is consistent with the fact that it is an 

even function. In Section 10.9, we will see that the series converges to cos x at every x.

Because ƒ(2n + 1)(0) = 0, the Taylor polynomials of orders 2n and 2n + 1 are identical:

P2n(x) = P2n + 1(x) = 1 -
x2

2!
+

x4

4!
- g + (-1)n 

x2n

(2n)!
.

Figure 10.23 shows how well these polynomials approximate ƒ(x) = cos x near x = 0. 

Only the right-hand portions of the graphs are given because the graphs are symmetric 

about the y-axis. 
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(Figure 10.24) has derivatives of all orders at x = 0 and that ƒ(n)(0) = 0 for all n. This 

means that the Taylor series generated by ƒ at x = 0 is

 ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
 x2 + g +

ƒ(n)(0)

n!
 xn + g

 = 0 + 0 # x + 0 # x2 + g + 0 # xn + g
 = 0 + 0 + g + 0 + g.

The series converges for every x (its sum is 0) but converges to ƒ(x) only at x = 0. That is, 

the Taylor series generated by ƒ(x) in this example is not equal to the function ƒ(x) over 

the entire interval of convergence. 

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generat-

ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on a 

given interval?

The answers are provided by a theorem of Taylor in the next section.

Finding Taylor Polynomials

In Exercises 1–10, find the Taylor polynomials of orders 0, 1, 2, and 3 

generated by ƒ at a.

 1. ƒ(x) = e2x, a = 0 2. ƒ(x) = sin x, a = 0

 3. ƒ(x) = ln x, a = 1 4. ƒ(x) = ln (1 + x), a = 0

 5. ƒ(x) = 1>x, a = 2 6. ƒ(x) = 1>(x + 2), a = 0

 7. ƒ(x) = sin x, a = p>4 8. ƒ(x) = tan x, a = p>4
 9. ƒ(x) = 2x, a = 4 10. ƒ(x) = 21 - x, a = 0

Finding Taylor Series at x = 0 (Maclaurin Series)

Find the Maclaurin series for the functions in Exercises 11–24.

 11. e-x  12. xex

 13. 
1

1 + x
 14. 

2 + x

1 - x

 15. sin 3x 16. sin  
x

2

 17. 7 cos (-x) 18. 5 cos px

 19. cosh x =
ex + e-x

2
 20. sinh x =

ex - e-x

2

 21. x4 - 2x3 - 5x + 4 22. 
x2

x + 1

 23. x sin x 24. (x + 1) ln (x + 1)

Finding Taylor and Maclaurin Series

In Exercises 25–34, find the Taylor series generated by ƒ at x = a.

 25. ƒ(x) = x3 - 2x + 4, a = 2

 26. ƒ(x) = 2x3 + x2 + 3x - 8, a = 1

 27. ƒ(x) = x4 + x2 + 1, a = -2

 28. ƒ(x) = 3x5 - x4 + 2x3 + x2 - 2, a = -1

 29. ƒ(x) = 1>x2, a = 1

 30. ƒ(x) = 1>(1 - x)3, a = 0

 31. ƒ(x) = ex, a = 2

 32. ƒ(x) = 2x, a = 1

 33. ƒ(x) = cos (2x + (p>2)), a = p>4
 34. ƒ(x) = 2x + 1, a = 0

In Exercises 35–38, find the first three nonzero terms of the Maclaurin 

series for each function and the values of x for which the series con-

verges absolutely.

 35. ƒ(x) = cos x - (2>(1 - x)) 

 36. ƒ(x) = (1 - x + x2)ex

 37. ƒ(x) = (sin x) ln (1 + x)

 38. ƒ(x) = x sin2 x

 39. ƒ(x) = x4ex2

 40. ƒ(x) =
x3

1 + 2x

Theory and Examples

 41. Use the Taylor series generated by ex at x = a to show that

ex = ea c 1 + (x - a) +
(x - a)2

2!
+ g d .

 42. (Continuation of Exercise 41.) Find the Taylor series generated by 

ex at x = 1. Compare your answer with the formula in Exercise 41.

 43. Let ƒ(x) have derivatives through order n at x = a. Show that the 

Taylor polynomial of order n and its irst n derivatives have the 

same values that ƒ and its irst n derivatives have at x = a.

EXERCISES 10.8

0 1 2

1

−1−2

e−1�x2
,  x ≠ 0

 0 , x = 0  
y =

x

y

FIGURE 10.24 The graph of the con-

tinuous extension of y = e-1>x2

 is so flat 

at the origin that all of its derivatives there 

are zero (Example 4). Therefore its Taylor 

series, which is zero everywhere, is not the 

function itself.
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 44. Approximation properties of taylor polynomials Suppose 

that ƒ(x) is diferentiable on an interval centered at x = a and 

that g(x) =  b0 + b1(x - a) + g + bn(x - a)n is a polyno-

mial of degree n with constant coeicients b0, . . . , bn. Let E(x) =  

ƒ(x) - g(x). Show that if we impose on g the conditions

 i) E(a) = 0 The approximation error is zero at x = a.

 ii) lim
xSa

  
E(x)

(x - a)n = 0,  
 The error is negligible when compared to 

(x - a)n.

Thus, the Taylor polynomial Pn(x) is the only polynomial 

of degree less than or equal to n whose error is both zero at 

x = a and negligible when compared with (x - a)n.

Quadratic Approximations The Taylor polynomial of order 2 gen-

erated by a twice-differentiable function ƒ(x) at x = a is called the 

quadratic approximation of ƒ at x = a. In Exercises 45–50, find the 

(a) linearization (Taylor polynomial of order 1) and (b) quadratic 

approximation of ƒ at x = 0.

 45. ƒ(x) = ln (cos x) 46. ƒ(x) = esin x

 47. ƒ(x) = 1>21 - x2 48. ƒ(x) = cosh x

 49. ƒ(x) = sin x 50. ƒ(x) = tan x

10.9 Convergence of Taylor Series

In the last section we asked when a Taylor series for a function can be expected to converge 

to the function that generates it. The finite-order Taylor polynomials that approximate the 

Taylor series provide estimates for the generating function. In order for these estimates to 

be useful, we need a way to control the possible errors we may encounter when approxi-

mating a function with its finite-order Taylor polynomials. How do we bound such possible 

errors? We answer the question in this section with the following theorem.

THEOREM 23—Taylor’s Theorem

If ƒ and its irst n derivatives ƒ′, ƒ″,c , ƒ(n) are continuous on the closed interval 

between a and b, and ƒ(n) is diferentiable on the open interval between a and b, 

then there exists a number c between a and b such that

 ƒ(b) = ƒ(a) + ƒ′(a)(b - a) +
ƒ″(a)

2!
(b - a)2 + g

 +
ƒ(n)(a)

n!
(b - a)n +

ƒ(n + 1)(c)

(n + 1)!
 (b - a)n + 1.

Taylor’s Theorem is a generalization of the Mean Value Theorem (Exercise 49). There is a 

proof of Taylor’s Theorem at the end of this section.

When we apply Taylor’s Theorem, we usually want to hold a fixed and treat b as an 

independent variable. Taylor’s formula is easier to use in circumstances like these if we 

change b to x. Here is a version of the theorem with this change.

Taylor’s Formula

If ƒ has derivatives of all orders in an open interval I containing a, then for each 

positive integer n and for each x in I,

 ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2 + g

  +
ƒ(n)(a)

n!
(x - a)n + Rn(x),  (1)

where

 Rn(x) =
ƒ(n + 1)(c)

(n + 1)!
 (x - a)n + 1  for some c between a and x. (2)

then

 g(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g

                 +
ƒ(n)(a)

n!
(x - a)n.
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When we state Taylor’s theorem this way, it says that for each x∊I,

ƒ(x) = Pn(x) + Rn(x).

The function Rn(x) is determined by the value of the (n + 1)st derivative ƒ(n + 1) at a point 

c that depends on both a and x, and that lies somewhere between them. For any value of n 

we want, the equation gives both a polynomial approximation of ƒ of that order and a for-

mula for the error involved in using that approximation over the interval I.

Equation (1) is called taylor’s formula. The function Rn(x) is called the remainder 

of order n or the error term for the approximation of ƒ by Pn(x) over I.

If Rn(x) S 0 as n S q for all x∊I, we say that the Taylor series generated by ƒ 

at x = a converges to ƒ on I, and we write

ƒ(x) = a
q

k = 0

 
ƒ(k)(a)

k!
 (x - a)k.

Often we can estimate Rn without knowing the value of c, as the following example 

illustrates.

EXAMPLE 1  Show that the Taylor series generated by ƒ(x) = ex at x = 0 converges 

to ƒ(x) for every real value of x.

Solution The function has derivatives of all orders throughout the interval I =   

(-q, q). Equations (1) and (2) with ƒ(x) = ex and a = 0 give

ex = 1 + x +
x2

2!
+ g +

xn

n!
+ Rn(x)  

Polynomial from  

Section 10.8, Example 2
 

and

Rn(x) =
ec

(n + 1)!
 xn + 1    for some c between 0 and x.

Since ex is an increasing function of x, ec lies between e0 = 1 and ex. When x is negative, 

so is c, and ec 6 1. When x is zero, ex = 1 so that Rn(x) = 0. When x is positive, so is c, 

and ec 6 ex. Thus, for Rn(x) given as above,

�Rn(x) � …
� x �n + 1

(n + 1)!
  when x … 0,  ec 6 1 since c 6 0

and

�Rn(x) � 6 ex 
xn + 1

(n + 1)!
  when x 7 0.  ec 6 ex since c 6 x

Finally, because

lim
nSq

  
xn + 1

(n + 1)!
= 0  for every x,  Section 10.1, Theorem 5

lim
nSq

Rn(x) = 0, and the series converges to ex for every x. Thus,

 ex = a
q

k = 0

 
xk

k!
= 1 + x +

x2

2!
+ g +

xk

k!
+ g. (3)

 

We can use the result of Example 1 with x = 1 to write

e = 1 + 1 +
1
2!

+ g +
1
n!

+ Rn(1),

the Number e as a series

e = a
q

n = 0

 
1
n!
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where for some c between 0 and 1,

Rn(1) = ec 
1

(n + 1)!
6

3
(n + 1)!

.  ec 6 e1 6 3

Estimating the Remainder

It is often possible to estimate Rn(x) as we did in Example 1. This method of estimation is 

so convenient that we state it as a theorem for future reference.

THEOREM 24—The Remainder Estimation Theorem

If there is a positive constant M such that � ƒ(n + 1)(t) � … M  for all t between x 

and a, inclusive, then the remainder term Rn(x) in Taylor’s Theorem satisies the 

inequality

�Rn(x) � … M 
� x - a � n + 1

(n + 1)!
.

If this inequality holds for every n and the other conditions of Taylor’s Theorem 

are satisied by ƒ, then the series converges to ƒ(x).

The next two examples use Theorem 24 to show that the Taylor series generated by 

the sine and cosine functions do in fact converge to the functions themselves.

EXAMPLE 2  Show that the Taylor series for sin x at x = 0 converges for all x.

Solution The function and its derivatives are

 ƒ(x) =    sin x,    ƒ′(x) =    cos x,

 ƒ″(x) =   -sin x,    ƒ‴(x) =   -cos x,

  f            f
 ƒ(2k)(x) = (-1)k   sin x,   ƒ(2k + 1)(x) = (-1)k cos x,

so

f (2k)(0) = 0  and  f (2k + 1)(0) = (-1)k.

The series has only odd-powered terms and, for n = 2k + 1, Taylor’s Theorem gives

sin x = x -
x3

3!
+

x5

5!
- g+

(-1)kx2k + 1

(2k + 1)!
+ R2k + 1(x).

All the derivatives of sin x have absolute values less than or equal to 1, so we can apply the 

Remainder Estimation Theorem with M = 1 to obtain

�R2k + 1(x) � … 1 # � x �2k + 2

(2k + 2)!
.

From Theorem 5, Rule 6, we have ( � x �2k + 2>(2k + 2)!) S 0 as k S q, whatever the 

value of x, so R2k + 1(x) S 0 and the Maclaurin series for sin x converges to sin x for every 

x. Thus,

 sin x = a
q

k = 0

 
(-1)kx2k + 1

(2k + 1)!
= x -

x3

3!
+

x5

5!
-

x7

7!
+ g. (4)

 

sin x = x -
x3

3!
+

x5

5!
-

x7

7!
+ g
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EXAMPLE 3  Show that the Taylor series for cos x at x = 0 converges to cos x for 

every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 10.8, 

Example 3) to obtain Taylor’s formula for cos x with n = 2k:

cos x = 1 -
x2

2!
+

x4

4!
- g+ (-1)k 

x2k

(2k)!
+ R2k(x).

Because the derivatives of the cosine have absolute value less than or equal to 1, the 

Remainder Estimation Theorem with M = 1 gives

�R2k(x) � … 1 # � x �2k + 1

(2k + 1)!
.

For every value of x, R2k(x) S 0 as k S q. Therefore, the series converges to cos x for 

every value of x. Thus,

 cos x = a
q

k = 0

 
(-1)kx2k

(2k)!
= 1 -

x2

2!
+

x4

4!
-

x6

6!
+ g. (5)

 

Using Taylor Series

Since every Taylor series is a power series, the operations of adding, subtracting, and mul-

tiplying Taylor series are all valid on the intersection of their intervals of convergence.

EXAMPLE 4  Using known series, find the first few terms of the Taylor series for the 

given function by using power series operations.

(a) 
1
3

 (2x + x cos x)        (b) ex cos x

Solution

(a)  
1
3

 (2x + x cos x) =
2
3

 x +
1
3

 x a1 -
x2

2!
+

x4

4!
- g + (-1)k 

x2k

(2k)!
+ gb  

 =
2
3

 x +
1
3

 x -
x3

3!
+

x5

3 # 4!
- g = x -

x3

6
+

x5

72
- g

(b)  ex cos x = a1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ gb a1 -

x2

2!
+

x4

4!
- gb  

 = a1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ gb - ax2

2!
+

x3

2!
+

x4

2!2!
+

x5

2!3!
+ gb

                  + ax4

4!
+

x5

4!
+

x6

2!4!
+ gb + g

 = 1 + x -
x3

3
-

x4

6
+ g 

By Theorem 20, we can use the Taylor series of the function ƒ to find the Taylor series 

of ƒ(u(x)) where u(x) is any continuous function. The Taylor series resulting from this 

substitution will converge for all x such that u(x) lies within the interval of convergence of 

Taylor series 
for cos x

Multiply the first 

series by each term 

of the second series.

cos x = 1 -
x2

2!
+

x4

4!
-

x6

6!
+ g
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the Taylor series of ƒ. For instance, we can find the Taylor series for cos 2x by substituting 

2x for x in the Taylor series for cos x:

 cos 2x = a
q

k = 0

 
(-1)k(2x)2k

(2k)!
= 1 -

(2x)2

2!
+

(2x)4

4!
-

(2x)6

6!
+ g  Eq. (5) with 2x for x

 = 1 -
22x2

2!
+

24x4

4!
-

26x6

6!
+ g

 = a
q

k = 0

(-1)k 
22kx2k

(2k)!
.

1

y = sin x

2 3 4 8 9

P1 P5

P3 P7 P11 P15 P19

P9 P13 P17

5 6 70

1

2

−1

−2

x

y

FIGURE 10.25 The polynomials

P2n + 1(x) = a
n

k = 0

 
(-1)kx2k + 1

(2k + 1)!

converge to sin x as n S q. Notice how closely P3(x) approxi-

mates the sine curve for x … 1 (Example 5).

EXAMPLE 5  For what values of x can we replace sin x by x - (x3>3!)  and obtain 

an error whose magnitude is no greater than 3 * 10-4?

Solution Here we can take advantage of the fact that the Taylor series for sin x is an 

alternating series for every nonzero value of x. According to the Alternating Series Estima-

tion Theorem (Section 10.6), the error in truncating

sin x = x -
x3

3!
 +

x5

5!
-

x7

7!
+ g

after (x3>3!)  is no greater than ` x5

5!
` =

� x �5

120
.

Therefore the error will be less than or equal to 3 * 10-4 if

� x �5

120
6 3 * 10-4  or  � x � 6 25 360 * 10-4 ≈ 0.514.  

Rounded down, 

to be safe
 

The Alternating Series Estimation Theorem tells us something that the Remainder 

Estimation Theorem does not: namely, that the estimate x - (x3>3!)  for sin x is an under-

estimate when x is positive, because then x5>120 is positive.

Figure 10.25 shows the graph of sin x, along with the graphs of a number of its approx-

imating Taylor polynomials. The graph of P3(x) = x - (x3>3!)  is almost indistinguishable 

from the sine curve when 0 … x … 1. 
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A Proof of Taylor’s Theorem

We prove Taylor’s theorem assuming a 6 b. The proof for a 7 b is nearly the same.

The Taylor polynomial

Pn(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g +

f (n)(a)

n!
 (x - a)n

and its first n derivatives match the function ƒ and its first n derivatives at x = a. We do 

not disturb that matching if we add another term of the form K(x - a)n + 1, where K is any 

constant, because such a term and its first n derivatives are all equal to zero at x = a. The 

new function

fn(x) = Pn(x) + K(x - a)n + 1

and its first n derivatives still agree with ƒ and its first n derivatives at x = a.

We now choose the particular value of K that makes the curve y = fn(x) agree with 

the original curve y = ƒ(x) at x = b. In symbols,

 ƒ(b) = Pn(b) + K(b - a)n + 1,  or  K =
ƒ(b) - Pn(b)

(b - a)n + 1
. (6)

With K defined by Equation (6), the function

F(x) = ƒ(x) - fn(x)

measures the difference between the original function ƒ and the approximating function 

fn for each x in 3a, b4 .
We now use Rolle’s Theorem (Section 4.2). First, because F(a) = F(b) = 0 and both 

F and F′ are continuous on 3a, b4 , we know that

F′(c1) = 0  for some c1 in (a, b).

Next, because F′(a) = F′(c1) = 0 and both F′ and F″ are continuous on 3a, c14 , we 

know that

F″(c2) = 0  for some c2 in (a, c1).

Rolle’s Theorem, applied successively to F″, F‴, . . . , F (n - 1), implies the existence of

 c3 in (a, c2)   such that F‴(c3) = 0,

 c4 in (a, c3)   such that F (4)(c4) = 0,

 f
 cn in (a, cn - 1)   such that F (n)(cn) = 0.

Finally, because F (n) is continuous on 3a, cn4  and differentiable on (a, cn), and 

F (n)(a) = F (n)(cn) = 0, Rolle’s Theorem implies that there is a number cn + 1 in (a, cn) 

such that

 F (n + 1)(cn + 1) = 0. (7)

If we differentiate F(x) = ƒ(x) - Pn(x) - K(x - a)n + 1 a total of n + 1 times, we get

 F (n + 1)(x) = ƒ(n + 1)(x) - 0 - (n + 1)!K. (8)

Equations (7) and (8) together give

 K =
ƒ(n + 1)(c)

(n + 1)!
  for some number c = cn + 1 in (a, b). (9)

Equations (6) and (9) give

ƒ(b) = Pn(b) +
ƒ(n + 1)(c)

(n + 1)!
 (b - a)n + 1.

This concludes the proof. 
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Finding Taylor Series

Use substitution (as in Example 4) to find the Taylor series at x = 0 

of the functions in Exercises 1–12.

 1. e-5x 2. e-x>2 3. 5 sin (-x)

 4. sin apx

2
b  5. cos  5x2 6. cos 1x2>3>222

 7. ln (1 + x2)  8. tan-1 (3x4)  9. 
1

1 + 3
4 x3

 10. 
1

2 - x
 11. ln (3 + 6x) 12. e-x2 + ln 5

Use power series operations to find the Taylor series at x = 0 for the 

functions in Exercises 13–30.

 13. xex  14. x2 sin x 15. 
x2

2
- 1 + cos x

 16. sin x - x +
x3

3!
 17. x cos px 18. x2 cos (x2)

 19. cos2 x (Hint: cos2 x = (1 + cos 2x)>2.)

 20. sin2 x 21. 
x2

1 - 2x
 22. x ln (1 + 2x)

 23. 
1

(1 - x)2
 24. 

2

(1 - x)3
 25. x tan-1 x2

 26. sin x # cos x 27. ex +
1

1 + x
 28. cos x - sin x

 29. 
x

3
 ln (1 + x2) 30. ln (1 + x) - ln (1 - x)

Find the first four nonzero terms in the Maclaurin series for the func-

tions in Exercises 31–38.

 31. ex sin x 32. 
ln (1 + x)

1 - x
 33. (tan-1 x)2

 34. cos2 x #  sin x 35. esin x 36. sin (tan-1 x)

 37. cos (ex - 1) 38. cos1x + ln (cos x)

Error Estimates

 39. Estimate the error if P3(x) = x - (x3>6)  is used to estimate the 

value of sin x at x = 0.1.

 40. Estimate the error if P4(x) = 1 + x + (x2>2) + (x3>6) + (x4>24)  

is used to estimate the value of ex at x = 1>2.

 41. For approximately what values of x can you replace sin x by 

x - (x3>6)  with an error of magnitude no greater than 5 * 10-4 ? 

Give reasons for your answer.

 42. If cos x is replaced by 1 - (x2>2)  and � x � 6 0.5, what estimate 

can be made of the error? Does 1 - (x2>2)  tend to be too large, 

or too small? Give reasons for your answer.

 43. How close is the approximation sin x = x when � x � 6 10-3 ? For 

which of these values of x is x 6 sin x?

 44. The estimate 21 + x = 1 + (x>2) is used when x is small. Esti-

mate the error when � x � 6 0.01.

 45. The approximation ex = 1 + x + (x2>2)  is used when x is small. 

Use the Remainder Estimation Theorem to estimate the error 

when � x � 6 0.1.

 46. (Continuation of Exercise 45.) When x 6 0, the series for ex 

is an alternating series. Use the Alternating Series Estimation 

Theorem to estimate the error that results from replacing ex by 

1 + x + (x2>2) when -0.1 6 x 6 0. Compare your estimate 

with the one you obtained in Exercise 45.

Theory and Examples

 47. Use the identity sin2 x = (1 - cos 2x)>2 to obtain the  Maclaurin 

series for sin2 x. Then diferentiate this series to obtain the  Maclaurin  

series for 2 sin x cos x. Check that this is the series for sin 2x.

 48. (Continuation of Exercise 47.) Use the identity cos2 x =  

cos 2x + sin2 x to obtain a power series for cos2 x.

 49. taylor’s theorem and the Mean Value theorem Explain how 

the Mean Value Theorem (Section 4.2, Theorem 4) is a special 

case of Taylor’s Theorem.

 50. Linearizations at inlection points Show that if the graph of a 

twice-diferentiable function ƒ(x) has an inlection point at x = a, 

then the linearization of ƒ at x = a is also the quadratic approxi-

mation of ƒ at x = a. This explains why tangent lines it so well at 

inlection points.

 51. The (second) second derivative test Use the equation

ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(c2)

2
 (x - a)2

  to establish the following test.

   Let ƒ have continuous irst and second derivatives and suppose 

that ƒ′(a) = 0. Then

a. ƒ has a local maximum at a if ƒ″ … 0 throughout an interval 

whose interior contains a;

b. ƒ has a local minimum at a if ƒ″ Ú 0 throughout an interval 

whose interior contains a.

 52. A cubic approximation Use Taylor’s formula with a = 0 

and n = 3 to ind the standard cubic approximation of ƒ(x) =  

1>(1 - x) at x = 0. Give an upper bound for the magnitude of 

the error in the approximation when � x � … 0.1.

 53. a.  Use Taylor’s formula with n = 2 to ind the quadratic 

 approximation of ƒ(x) = (1 + x)k at x = 0 (k a constant).

b. If k = 3, for approximately what values of x in the interval 30, 14  will the error in the quadratic approximation be less 

than 1 >100?

 54. Improving approximations of P

a. Let P be an approximation of p accurate to n decimals. 

Show that P + sin P gives an approximation correct to 3n 

decimals. (Hint: Let P = p + x.)

b. Try it with a calculator.

 55. The Taylor series generated by ƒ(x) = gHn = 0  an xn is gHn = 0  an xn A function deined by a power series gq
n = 0 an  xn with 

a radius of convergence R 7 0 has a Taylor series that converges 

to the function at every point of (-R, R). Show this by showing 

that the Taylor series generated by ƒ(x) = gq
n = 0 an  xn is the series gq

n = 0 an  xn itself.

   An immediate consequence of this is that series like

x sin x = x2 -
x4

3!
+

x6

5!
-

x8

7!
+ g

T

EXERCISES 10.9
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Step 1: Plot the function over the speciied interval.

Step 2: Find the Taylor polynomials P1(x), P2(x), and P3(x) at 

x = 0.

Step 3: Calculate the (n + 1)st derivative ƒ(n + 1)(c) associat-

ed with the remainder term for each Taylor polynomial. Plot 

the derivative as a function of c over the speciied interval 

and estimate its maximum absolute value, M.

Step 4: Calculate the remainder Rn(x) for each polynomial. 

Using the estimate M from Step 3 in place of ƒ(n + 1)(c), plot 

Rn(x) over the speciied interval. Then estimate the values of 

x that answer question (a).

Step 5: Compare your estimated error with the actual error 

En(x) = �ƒ(x) - Pn(x) �  by plotting En(x) over the speciied 

interval. This will help answer question (b).

Step 6: Graph the function and its three Taylor approxima-

tions together. Discuss the graphs in relation to the informa-

tion discovered in Steps 4 and 5.

 57. ƒ(x) =
1

21 + x
, � x � …

3
4

 58. ƒ(x) = (1 + x)3>2, -  
1
2

… x … 2

 59. ƒ(x) =
x

x2 + 1
, � x � … 2

 60. ƒ(x) = (cos x)(sin 2x), � x � … 2

 61. ƒ(x) = e-x cos 2x, � x � … 1

 62. ƒ(x) = e 

x>3 sin 2x, � x � … 2

  and

x2ex = x2 + x3 +
x4

2!
+

x5

3!
+ g,

  obtained by multiplying Taylor series by powers of x, as well as 

series obtained by integration and diferentiation of convergent 

power series, are themselves the Taylor series generated by the 

functions they represent.

 56. taylor series for even functions and odd functions (Continu-

ation of Section 10.7, Exercise 59.) Suppose that ƒ(x) = gq
n = 0 an  xn 

converges for all x in an open interval (-R, R). Show that

a. If ƒ is even, then a1 = a3 = a5 = g = 0, i.e., the Taylor 

series for ƒ at x = 0 contains only even powers of x.

b. If ƒ is odd, then a0 = a2 = a4 = g = 0, i.e., the Taylor 

series for ƒ at x = 0 contains only odd powers of x.

COMPUTER EXPLORATIONS

Taylor’s formula with n = 1 and a = 0 gives the linearization of a 

function at x = 0. With n = 2 and n = 3 we obtain the standard 

quadratic and cubic approximations. In these exercises we explore the 

errors associated with these approximations. We seek answers to two 

questions:

a. For what values of x can the function be replaced by each 

approximation with an error less than 10-2?

b. What is the maximum error we could expect if we replace the 

function by each approximation over the speciied interval?

Using a CAS, perform the following steps to aid in answering 

questions (a) and (b) for the functions and intervals in Exercises  

57–62.

10.10 Applications of Taylor Series

We can use Taylor series to solve problems that would otherwise be intractable. For exam-

ple, many functions have antiderivatives that cannot be expressed using familiar functions. 

In this section we show how to evaluate integrals of such functions by giving them as 

 Taylor series. We also show how to use Taylor series to evaluate limits that lead to indeter-

minate forms and how Taylor series can be used to extend the exponential function from 

real to complex numbers. We begin with a discussion of the binomial series, which comes 

from the Taylor series of the function ƒ(x) = (1 + x)m, and conclude the section with 

Table 10.1, which lists some commonly used Taylor series.

The Binomial Series for Powers and Roots

The Taylor series generated by ƒ(x) = (1 + x)m, when m is constant, is

 1 + mx +
m(m - 1)

2!
 x2 +

m(m - 1)(m - 2)

3!
 x3 + g

  +
m(m - 1)(m - 2) g (m - k + 1)

k!
 xk + g. (1)



 10.10  Applications of Taylor Series 635

This series, called the binomial series, converges absolutely for � x � 6 1. To derive the 

series, we first list the function and its derivatives:

 ƒ(x) = (1 + x)m

 ƒ′(x) = m(1 + x)m - 1

 ƒ″(x) = m(m - 1)(1 + x)m - 2

 ƒ‴(x) = m(m - 1)(m - 2)(1 + x)m - 3

 f
 ƒ(k)(x) = m(m - 1)(m - 2)g(m - k + 1)(1 + x)m - k.

We then evaluate these at x = 0 and substitute into the Taylor series formula to obtain 

Series (1).

If m is an integer greater than or equal to zero, the series stops after (m + 1) terms 

because the coefficients from k = m + 1 on are zero.

If m is not a positive integer or zero, the series is infinite and converges for � x � 6 1. 

To see why, let uk be the term involving xk. Then apply the Ratio Test for absolute conver-

gence to see that ` uk + 1

uk
` = `m - k

k + 1
 x ` S � x �  as k S q .

Our derivation of the binomial series shows only that it is generated by (1 + x)m and 

converges for � x � 6 1. The derivation does not show that the series converges to 

(1 + x)m. It does, but we leave the proof to Exercise 58. The following formulation gives 

a succinct way to express the series.

The Binomial Series

For -1 6 x 6 1,

(1 + x)m = 1 + a
q

k = 1

 am
k
b  xk ,

where we deine am
1
b = m,  am

2
b =

m(m - 1)

2!
,

and am
k
b =

m(m - 1)(m - 2)g(m - k + 1)

k!
  for k Ú 3.

EXAMPLE 1  If m = -1,a-1

1
b = -1,  a-1

2
b =

-1(-2)

2!
= 1,

and a-1

k
b =

-1(-2)(-3)g(-1 - k + 1)

k!
= (-1)k ak!

k!
b = (-1)k.

With these coefficient values and with x replaced by -x, the binomial series formula gives 

the familiar geometric series

 (1 + x)-1 = 1 + a
q

k = 1

(-1)kxk = 1 - x + x2 - x3 + g + (-1)kxk + g. 
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EXAMPLE 2  We know from Section 3.9, Example 1, that 21 + x ≈ 1 + (x>2) 

for � x �  small. With m = 1>2, the binomial series gives quadratic and higher-order 

approximations as well, along with error estimates that come from the Alternating Series 

Estimation Theorem:

 (1 + x)1>2 = 1 +
x

2
+

a1
2
b a-  

1
2
b

2!
 x2 +

a1
2
b a-  

1
2
b a-  

3
2
b

3!
 x3

 +

a1
2
b a-  

1
2
b a-  

3
2
b a-  

5
2
b

4!
 x4 + g

 = 1 +
x

2
-

x2

8
+

x3

16
-

5x4

128
+ g.

Substitution for x gives still other approximations. For example,

21 - x2 ≈ 1 -
x2

2
-

x4

8
  for  � x2 �   small

 A1 -
1
x ≈ 1 -

1
2x

-
1

8x2
  for ` 1x `  small, that is,  � x �   large. 

Evaluating Nonelementary Integrals

Sometimes we can use a familiar Taylor series to find the sum of a given power series in 

terms of a known function. For example,

x2 -
x6

3!
+

x10

5!
-

x14

7!
+ g = (x2) -

(x2)3

3!
+

(x2)5

5!
-

(x2)7

7!
+ g = sin x2 .

Additional examples are provided in Exercises 59–62.

Taylor series can be used to express nonelementary integrals in terms of series. Inte-

grals like 1  sin x2 dx arise in the study of the diffraction of light.

EXAMPLE 3  Express 1  sin x2 dx as a power series.

Solution From the series for sin x we substitute x2 for x to obtain

sin x2 = x2 -
x6

3!
+

x10

5!
-

x14

7!
+

x18

9!
- g.

Therefore,

  L  sin x2 dx = C +
x3

3
-

x7

7 # 3!
+

x11

11 # 5!
-

x15

15 # 7!
+

x19

19 # 9!
- g. 

EXAMPLE 4  Estimate 11

0
 sin x2 dx with an error of less than 0.001.

Solution From the indefinite integral in Example 3, we easily find that

 L
1

0

 sin x2 dx =
1
3

-
1

7 # 3!
+

1
11 # 5!

-
1

15 # 7!
+

1
19 # 9!

- g.

The series on the right-hand side alternates, and we find by numerical evaluations that

1
11 # 5!

≈ 0.00076
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is the first term to be numerically less than 0.001. The sum of the preceding two terms 

gives

 L
1

0

 sin x2 dx ≈ 1
3

-
1
42

≈ 0.310.

With two more terms we could estimate

 L
1

0

 sin x2 dx ≈ 0.310268

with an error of less than 10-6. With only one term beyond that we have

 L
1

0

 sin x2 dx ≈ 1
3

-
1
42

+
1

1320
-

1
75600

+
1

6894720
≈ 0.310268303,

with an error of about 1.08 * 10-9. To guarantee this accuracy with the error formula for 

the Trapezoidal Rule would require using about 8000 subintervals. 

Arctangents

In Section 10.7, Example 5, we found a series for tan-1 x by differentiating to get

d

dx
 tan-1 x =

1

1 + x2
= 1 - x2 + x4 - x6 + g

and then integrating to get

tan-1 x = x -
x3

3
+

x5

5
-

x7

7
+ g.

However, we did not prove the term-by-term integration theorem on which this conclu-

sion depended. We now derive the series again by integrating both sides of the finite 

formula

 
1

1 + t2
= 1 - t2 + t4 - t6 + g+ (-1)nt2n +

(-1)n + 1t2n + 2

1 + t2
, (2)

in which the last term comes from adding the remaining terms as a geometric series with 

first term a = (-1)n + 1t2n + 2 and ratio r = - t2. Integrating both sides of Equation (2) from 

t = 0 to t = x gives

tan-1 x = x -
x3

3
+

x5

5
-

x7

7
+ g + (-1)n 

x2n + 1

2n + 1
+ Rn(x),

where

Rn(x) = L
x

0

 
(-1)n + 1t2n + 2

1 + t2
 dt.

The denominator of the integrand is greater than or equal to 1; hence

�Rn(x) � … L
�x�

0

t2n + 2 dt =
� x �2n + 3

2n + 3
.

If � x � … 1, the right side of this inequality approaches zero as n S q. Therefore 

limnSq Rn(x) = 0 if � x � … 1 and

tan-1 x = a
q

n = 0

 
(-1)nx2n + 1

2n + 1
,  � x � … 1.

 tan-1 x = x -
x3

3
+

x5

5
-

x7

7
+ g,  � x � … 1.

 (3)
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We take this route instead of finding the Taylor series directly because the formulas 

for the higher-order derivatives of tan-1 x are unmanageable. When we put x = 1 in Equa-

tion (3), we get Leibniz’s formula:

p
4

= 1 -
1
3

+
1
5

-
1
7

+
1
9

- g +
(-1)n

2n + 1
+ g.

Because this series converges very slowly, it is not used in approximating p to many deci-

mal places. The series for tan-1 x converges most rapidly when x is near zero. For that 

reason, people who use the series for tan-1 x to compute p use various trigonometric 

 identities.

For example, if

a = tan-1 
1
2
  and  b = tan-1 

1
3

,

then

tan (a + b) =
tan a + tan b

1 - tan a tan b
=

1
2 + 1

3

1 - 1
6

= 1 = tan 
p
4

and therefore

p
4

= a + b = tan-1 
1
2

+ tan-1 
1
3

.

Now Equation (3) may be used with x = 1>2 to evaluate tan-1 (1>2) and with x = 1>3 to 

give tan-1 (1>3). The sum of these results, multiplied by 4, gives p.

Evaluating Indeterminate Forms

We can sometimes evaluate indeterminate forms by expressing the functions involved as 

Taylor series.

EXAMPLE 5  Evaluate

lim
xS1

  
ln x

x - 1
.

Solution We represent ln x as a Taylor series in powers of x - 1. This can be accom-

plished by calculating the Taylor series generated by ln x at x = 1 directly or by replacing 

x by x - 1 in the series for ln (1 + x) in Section 10.7, Example 6. Either way, we obtain

ln x = (x - 1) -
1
2

 (x - 1)2 + g,

from which we find that

lim 
xS1

  
ln x

x - 1
= lim

xS1
 a1 -

1
2

 (x - 1) + gb = 1.

Of course, this particular limit can be evaluated using l’Hôpital’s Rule just as well. 

EXAMPLE 6  Evaluate

lim
xS0

 
sin x - tan x

x3
.
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Solution The Taylor series for sin x and tan x, to terms in x5, are

sin x = x -
x3

3!
+

x5

5!
- g,  tan x = x +

x3

3
+

2x5

15
+ g.

Subtracting the series term by term, it follows that

sin x - tan x = -  
x3

2
-

x5

8
- g = x3 a-  

1
2

-
x2

8
- gb .

Division of both sides by x3 and taking limits then gives

  lim
xS0

 
sin x - tan x

x3
= lim

xS0
 a-  

1
2

-
x2

8
- gb = -  

1
2

. 

If we apply series to calculate limxS0 ((1>sin x) - (1/x)), we not only ind the limit 

 successfully but also discover an approximation formula for csc x.

EXAMPLE 7  Find lim
xS0

 a 1
sin x

-
1
x
b .

Solution Using algebra and the Taylor series for sin x, we have

 
1

sin x
-

1
x

=
x - sin x

x sin x
=

x - ax -
x3

3!
+

x5

5!
- gb

x # ax -
x3

3!
+

x5

5!
- gb

 =

x3 a 1
3!

-
x2

5!
+ gb

x2 a1 -
x2

3!
+ gb = x #

1
3!

-
x2

5!
+ g

1 -
x2

3!
+ g

.

Therefore,

lim
xS0

 a 1
sin x

-
1
x
b = lim

xS0
 §x #

1
3!

-
x2

5!
+ g

1 -
x2

3!
+ g

¥ = 0.

From the quotient on the right, we can see that if � x �  is small, then

 
1

sin x
-

1
x
≈ x # 1

3!
=

x

6
  or  csc x ≈ 1

x +
x

6
. 

Euler’s Identity

A complex number is a number of the form a + bi, where a and b are real numbers and 

i = 2-1 (see Appendix 7). If we substitute x = iu (u real) in the Taylor series for ex and 

use the relations

i2 = -1,  i3 = i2i = - i,  i4 = i2i2 = 1,  i5 = i4i = i,
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and so on, to simplify the result, we obtain

 eiu = 1 +
iu

1!
+

i2u2

2!
+

i3u3

3!
+

i4u4

4!
+

i5u5

5!
+

i6u6

6!
+ g

 = a1 -
u2

2!
+

u4

4!
-

u6

6!
+ gb + iau -

u3

3!
+

u5

5!
- gb = cos u + i sin u.

This does not prove that eiu = cos u + i sin u because we have not yet defined 

what it means to raise e to an imaginary power. Rather, it tells us how to define eiu so 

that its properties are consistent with the properties of the exponential function for real 

numbers.

DEFINITION

 For any real number u, eiu = cos u + i sin u. (4)

Equation (4), called Euler’s identity, enables us to define ea + bi to be ea # ebi for any 

complex number a + bi. So

ea + ib = ea(cos b + i sin b).

One consequence of this identity is the equation

eip = -1.

When written in the form eip + 1 = 0, this equation combines five of the most important 

constants in mathematics.

TABLE 10.1  Frequently Used Taylor Series

1
1 - x

= 1 + x + x2 + g+ xn + g = a
q

n = 0

xn,  � x � 6 1

1
1 + x

= 1 - x + x2 - g + (-x)n + g = a
q

n = 0

(-1)nxn,  � x � 6 1

ex = 1 + x +
x2

2!
+ g +

xn

n!
+ g = a

q

n = 0

 
xn

n!
,  � x � 6 q

sin x = x -
x3

3!
+

x5

5!
- g+ (-1)n  

x2n + 1

(2n + 1)!
+ g = a

q

n = 0

 
(-1)nx2n + 1

(2n + 1)!
,  � x � 6 q

cos x = 1 -
x2

2!
+

x4

4!
- g + (-1)n  

x2n

(2n)!
+ g = a

q

n = 0

 
(-1)nx2n

(2n)!
,  � x � 6 q

ln (1 + x) = x -
x2

2
+

x3

3
- g + (-1)n - 1  

xn

n + g = a
q

n = 1

 
(-1)n - 1xn

n ,  -1 6 x … 1

tan-1 x = x -
x3

3
+

x5

5
- g + (-1)n 

x2n + 1

2n + 1
+ g = a

q

n = 0

 
(-1)nx2n + 1

2n + 1
,  � x � … 1
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Binomial Series

Find the first four terms of the binomial series for the functions in 

Exercises 1–10.

 1. (1 + x)1>2 2. (1 + x)1>3
 3. (1 - x)-3 4. (1 - 2x)1>2
 5. a1 +

x

2
b-2

 6. a1 -
x

3
b4

 7. (1 + x3)-1>2 8. (1 + x2)-1>3
 9. a1 +

1
xb1>2

 10. 
x

23 1 + x

Find the binomial series for the functions in Exercises 11–14.

 11. (1 + x)4 12. (1 + x2)3

 13. (1 - 2x)3 14. a1 -
x

2
b4

Approximations and Nonelementary Integrals

In Exercises 15–18, use series to estimate the integrals’ values with an 

error of magnitude less than 10-5. (The answer section gives the inte-

grals’ values rounded to seven decimal places.)

 15.  L
0.6

0

 sin x2 dx 16.  L
0.4

0

 
e-x - 1

x  dx

 17.  L
0.5

0

 
1

21 + x4
 dx 18.  L

0.35

0

23 1 + x2 dx

Use series to approximate the values of the integrals in Exercises 19–

22 with an error of magnitude less than 10-8.

 19.  L
0.1

0

 
sin x

x  dx 20.  L
0.1

0

e-x2

 dx

 21.  L
0.1

0

21 + x4 dx 22.  L
1

0

 
1 - cos x

x2
 dx

 23. Estimate the error if cos t2 is approximated by 1 -
t4

2
+

t8

4!
 in the 

  integral 11

0
 cos t2 dt.

 24. Estimate the error if cos 2t is approximated by 1 -
t

2
+

t2

4!
-

t3

6!
 

  in the integral 11

0
 cos 2t dt.

In Exercises 25–28, find a polynomial that will approximate F(x) 

throughout the given interval with an error of magnitude less than 

10-3.

 25. F(x) = L
x

0

 sin t2 dt, 30, 14
 26. F(x) = L

x

0

t2e-t2

 dt, 30, 14
 27. F(x) = L

x

0

 tan-1 t dt,  (a) 30, 0.54  (b) 30, 14
 28. F(x) = L

x

0

  
ln (1 + t)

t
 dt,  (a) 30, 0.54  (b) 30, 14

T

T

Indeterminate Forms

Use series to evaluate the limits in Exercises 29–40.

 29. lim
xS0

 
ex - (1 + x)

x2
 30. lim

xS0
 
ex - e-x

x

 31. lim
tS0

 
1 - cos t - (t2>2)

t4
 32. lim

uS0
 
sin u - u + (u3>6)

u5

 33. lim
yS0

 
y - tan-1 y

y3
 34. lim

yS0
 
tan-1 y - sin y

y3 cos y

 35. lim
xSq

 x
2 (e-1>x2

- 1)  36. lim
xSq

 (x + 1) sin 
1

x + 1

 37. lim
xS0

 
ln (1 + x2)
1 - cos x

 38. lim
xS2

  
x2 - 4

ln (x - 1)

 39. lim
xS0

  
sin 3x2

1 - cos 2x
 40. lim

xS0
  
ln (1 + x3)

x # sin x2

Using Table 10.1

In Exercises 41–52, use Table 10.1 to find the sum of each series.

 41. 1 + 1 +
1
2!

+
1
3!

+
1
4!

+ g

 42. a1
4
b3

+ a1
4
b4

+ a1
4
b5

+ a1
4
b6

+ g

 43. 1 -
32

42 # 2!
+

34

44 # 4!
-

36

46 # 6!
+ g

 44. 
1
2

-
1

2 # 22
+

1

3 # 23
-

1

4 # 24
+ g

 45. 
p

3
-

p3

33 # 3!
+

p5

35 # 5!
-

p7

37 # 7!
+ g

 46. 
2
3

-
23

33 # 3
+

25

35 # 5
-

27

37 # 7
+ g

 47. x3 + x4 + x5 + x6 + g

 48. 1 -
32x2

2!
+

34x4

4!
-

36x6

6!
+ g

 49. x3 - x5 + x7 - x9 + x11 - g

 50. x2 - 2x3 +
22x4

2!
-

23x5

3!
+

24x6

4!
- g

 51. -1 + 2x - 3x2 + 4x3 - 5x4 + g

 52. 1 +
x

2
+

x2

3
+

x3

4
+

x4

5
+ g

Theory and Examples

 53. Replace x by -x in the Taylor series for ln (1 + x) to obtain a 

series for ln (1 - x). Then subtract this from the Taylor series for 

ln (1 + x) to show that for � x � 6 1,

ln 
1 + x

1 - x
= 2ax +

x3

3
+

x5

5
+ gb .

 54. How many terms of the Taylor series for ln (1 + x) should you 

add to be sure of calculating ln (1.1) with an error of magnitude 

less than 10-8? Give reasons for your answer.

EXERCISES 10.10
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 64. the complete elliptic integral of the irst kind is the integral

K = L
p/2

0

 
du

21 - k2 sin2 u
 ,

  where 0 6 k 6 1 is constant.

a. Show that the irst four terms of the binomial series for 

1>21 - x are

(1 - x)- 1/2 = 1 +
1
2

 x +
1 # 3
2 # 4

 x2 +
1 # 3 # 5
2 # 4 # 6

 x3 + g.

b. From part (a) and the reduction integral Formula 67 at the 

back of the book, show that

K =
p

2
 c 1 + a1

2
b2

k2 + a1 # 3
2 # 4
b2

k4 + a1 # 3 # 5
2 # 4 # 6

b2

k6 + g d .
 65. series for sin-1 x Integrate the binomial series for (1 - x2)-1>2 

to show that for � x � 6 1,

sin-1 x = x + a
q

n = 1

 
1 # 3 # 5 # g # (2n - 1)

2 # 4 # 6 # g # (2n)
 

x2n + 1

2n + 1
.

 66. series for tan-1 x for ∣x ∣ + 1 Derive the series

 tan-1 x =
p

2
-

1

x
+

1

3x3
-

1

5x5
+ g, x 7 1

 tan-1 x = -  
p

2
-

1

x
+

1

3x3
-

1

5x5
+ g, x 6 -1,

  by integrating the series

1

1 + t2
=

1

t2
 #  

1

1 + (1>t2)
=

1

t2
-

1

t4
+

1

t6
-

1

t8
+ g

  in the irst case from x to q and in the second case from -q to x.

Euler’s Identity

 67. Use Equation (4) to write the following powers of e in the form 

a + bi.

a. e-ip    b. eip>4    c. e-ip>2
 68. Use Equation (4) to show that

cos u =
eiu + e-iu

2
 and sin u =

eiu - e-iu

2i
.

 69. Establish the equations in Exercise 68 by combining the formal 

Taylor series for eiu and e-iu.

 70. Show that

a. cosh iu = cos u, b. sinh iu = i sin u.

 71. By multiplying the Taylor series for ex and sin x, ind the terms 

through x5 of the Taylor series for ex sin x. This series is the imagi-

nary part of the series for

ex # eix = e(1 + i)x.

  Use this fact to check your answer. For what values of x should the 

series for ex sin x converge?

 72. When a and b are real, we deine e(a + ib)x with the equation

e(a + ib)x = eax # eibx = eax(cos bx + i sin bx).

 55. According to the Alternating Series Estimation Theorem, how 

many terms of the Taylor series for tan-1 1 would you have to add 

to be sure of inding p>4 with an error of magnitude less than 

10-3? Give reasons for your answer.

 56. Show that the Taylor series for ƒ(x) = tan-1 x diverges for 

� x � 7 1.

 57. Estimating pi About how many terms of the Taylor series for 

tan-1 x would you have to use to evaluate each term on the right-

hand side of the equation

p = 48 tan-1 
1
18

+ 32 tan-1 
1
57

- 20 tan-1 
1

239

  with an error of magnitude less than 10-6? In contrast, the conver-

gence of gq
n = 1(1>n2)  to p2>6 is so slow that even 50 terms will 

not yield two-place accuracy.

 58. Use the following steps to prove that the binomial series in Equa-

tion (1) converges to (1 + x)m.

a. Diferentiate the series

ƒ(x) = 1 + a
q

k = 1

am
k
bxk

to show that

ƒ′(x) =
mƒ(x)

1 + x
, -1 6 x 6 1.

b. Deine g(x) = (1 + x)- m ƒ(x) and show that g′(x) = 0.

c. From part (b), show that

ƒ(x) = (1 + x)m.

 59. a. Use the binomial series and the fact that

d

dx
 sin-1 x = (1 - x2)-1>2

to generate the irst four nonzero terms of the Taylor series 

for sin-1 x. What is the radius of convergence?

b. series for cos−1 x Use your result in part (a) to ind the irst 

ive nonzero terms of the Taylor series for cos-1 x.

 60. a.  series for sinh-1 x Find the irst four nonzero terms of the 

Taylor series for

sinh-1 x = L
x

0

 
dt

21 + t2
. 

b.  Use the irst three terms of the series in part (a) to estimate 

sinh-1 0.25. Give an upper bound for the magnitude of the 

estimation error.

 61. Obtain the Taylor series for 1>(1 + x)2 from the series for 

-1>(1 + x).

 62. Use the Taylor series for 1> (1 - x2)  to obtain a series for 

2x> (1 - x2)2.

 63. Estimating pi The English mathematician Wallis discovered 

the formula

p

4
=

2 # 4 # 4 # 6 # 6 # 8 # g
3 # 3 # 5 # 5 # 7 # 7 # g.

  Find p to two decimal places with this formula.

T

T

T
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 74. Two complex numbers a + ib and c + id are equal if and only if 

a = c and b = d. Use this fact to evaluate

 L eax cos bx dx and Leax sin bx dx

  from

 L e(a + ib)x dx =
a - ib

a2 + b2
 e(a + ib)x + C ,

  where C = C1 + iC2 is a complex constant of integration.

  Diferentiate the right-hand side of this equation to show that

d

dx
 e(a + ib)x = (a + ib)e(a + ib)x .

  Thus the familiar rule (d>dx)ekx = kekx holds for k complex as 

well as real.

 73. Use the deinition of eiu to show that for any real numbers u, u1, 

and u2,

a. eiu1eiu2 = ei(u1 +u2) ,

b. e-iu = 1>eiu .

 1. What is an ininite sequence? What does it mean for such a se-

quence to converge? To diverge? Give examples.

 2. What is a monotonic sequence? Under what circumstances does 

such a sequence have a limit? Give examples.

 3. What theorems are available for calculating limits of sequences? 

Give examples.

 4. What theorem sometimes enables us to use l’Hôpital’s Rule to 

calculate the limit of a sequence? Give an example.

 5. What are the six commonly occurring limits in Theorem 5 that 

arise frequently when you work with sequences and series?

 6. What is an ininite series? What does it mean for such a series to 

converge? To diverge? Give examples.

 7. What is a geometric series? When does such a series converge? 

Diverge? When it does converge, what is its sum? Give examples.

 8. Besides geometric series, what other convergent and divergent se-

ries do you know?

 9. What is the nth-Term Test for Divergence? What is the idea behind 

the test?

 10. What can be said about term-by-term sums and diferences of 

convergent series? About constant multiples of convergent and 

 divergent series?

 11. What happens if you add a inite number of terms to a convergent 

series? A divergent series? What happens if you delete a inite 

number of terms from a convergent series? A divergent series?

 12. How do you reindex a series? Why might you want to do this?

 13. Under what circumstances will an ininite series of nonnegative 

terms converge? Diverge? Why study series of nonnegative terms?

 14. What is the Integral Test? What is the reasoning behind it? Give an 

example of its use.

 15. When do p-series converge? Diverge? How do you know? Give 

examples of convergent and divergent p-series.

 16. What are the Direct Comparison Test and the Limit Comparison 

Test? What is the reasoning behind these tests? Give examples of 

their use.

 17. What are the Ratio and Root Tests? Do they always give you the 

information you need to determine convergence or divergence? 

Give examples.

 18. What is absolute convergence? Conditional convergence? How 

are the two related?

 19. What is an alternating series? What theorem is available for deter-

mining the convergence of such a series?

 20. How can you estimate the error involved in approximating the 

sum of an alternating series with one of the series’ partial sums? 

What is the reasoning behind the estimate?

 21. What do you know about rearranging the terms of an absolutely 

convergent series? Of a conditionally convergent series?

 22. What is a power series? How do you test a power series for con-

vergence? What are the possible outcomes?

 23. What are the basic facts about

a. sums, diferences, and products of power series?

b. substitution of a function for x in a power series?

c. term-by-term diferentiation of power series?

d. term-by-term integration of power series?

e. Give examples.

 24. What is the Taylor series generated by a function ƒ(x) at a point 

x = a? What information do you need about ƒ to construct the 

series? Give an example.

 25. What is a Maclaurin series?

 26. Does a Taylor series always converge to its generating function? 

Explain.

 27. What are Taylor polynomials? Of what use are they?

 28. What is Taylor’s formula? What does it say about the errors in-

volved in using Taylor polynomials to approximate functions? In 

particular, what does Taylor’s formula say about the error in a lin-

earization? A quadratic approximation?

 29. What is the binomial series? On what interval does it converge? 

How is it used?

 30. How can you sometimes use power series to estimate the values of 

nonelementary deinite integrals? To ind limits?

 31. What are the Taylor series for 1>(1 - x), 1>(1 + x), ex, sin x, 

cos x, ln (1 + x), and tan-1 x? How do you estimate the errors in-

volved in replacing these series with their partial sums?

CHAPTER 10 Questions to Guide Your Review
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Determining Convergence of Sequences

Which of the sequences whose nth terms appear in Exercises 1–18 

converge, and which diverge? Find the limit of each convergent  

sequence.

 1. an = 1 +
(-1)n

n  2. an =
1 - (-1)n

2n

 3. an =
1 - 2n

2n  4. an = 1 + (0.9)n

 5. an = sin 
np

2
 6. an = sin np

 7. an =
ln (n2)

n  8. an =
ln (2n + 1)

n

 9. an =
n + ln n

n  10. an =
ln (2n3 + 1)

n

 11. an = an - 5
n bn

 12. an = a1 +
1
nb-n

 13. an = An
3n

n  14. an = a3nb1>n
 15. an = n(21>n - 1) 16. an = 2n 2n + 1

 17. an =
(n + 1)!

n!
 18. an =

(-4)n

n!

Convergent Series

Find the sums of the series in Exercises 19–24.

 19. a
q

n = 3

 
1

(2n - 3)(2n - 1)
 20. a

q

n = 2

  
-2

n(n + 1)

 21. a
q

n = 1

 
9

(3n - 1)(3n + 2)
 22. a

q

n = 3

 
-8

(4n - 3)(4n + 1)

 23. a
q

n = 0
 e

-n 24. a
q

n = 1

(-1)n 
3
4n

Determining Convergence of Series

Which of the series in Exercises 25–44 converge absolutely, which 

converge conditionally, and which diverge? Give reasons for your 

 answers.

 25. a
q

n = 1

 
1

2n
 26. a

q

n = 1

 
-5
n

 27. a
q

n = 1

 
(-1)n

2n
 28. a

q

n = 1

 
1

2n3

 29. a
q

n = 1

  
(-1)n

ln (n + 1)
 30. a

q

n = 2

  
1

n (ln n)2

 31. a
q

n = 1

 
ln n

n3
 32. a

q

n = 3

  
ln n

ln (ln n)

 33. a
q

n = 1

  
(-1)n

n2n2 + 1
 34. a

q

n = 1

 
(-1)n 3n2

n3 + 1

 35. a
q

n = 1

 
n + 1

n!
 36. a

q

n = 1

 
(-1)n(n2 + 1)

2n2 + n - 1

 37. a
q

n = 1

 
(-3)n

n!
 38. a

q

n = 1

 
2n 3n

nn

 39. a
q

n = 1

 
1

2n(n + 1)(n + 2)
 40. a

q

n = 2

  
1

n2n2 - 1

 41. 1 - a 1

23
b2

+ a 1

23
b4

- a 1

23
b6

+ a 1

23
b8

- g

 42. a
q

n = 0

 
(-1)n

e-n + 1

 43. a
q

n = 0

 
1

1 + r + r2 + g+ rn
, for -1 6 r 6 1

 44. a
q

n = 1

(-1)n

2n + 100 - 2n

Power Series

In Exercises 45–54, (a) ind the series’ radius and interval of conver-

gence. Then identify the values of x for which the series converges  

(b) absolutely and (c) conditionally.

 45. a
q

n = 1

 
(x + 4)n

n3n  46. a
q

n = 1

 
(x - 1)2n - 2

(2n - 1)!

 47. a
q

n = 1

 
(-1)n - 1(3x - 1)n

n2
 48. a

q

n = 0

 
(n + 1)(2x + 1)n

(2n + 1)2n

 49. a
q

n = 1

  
xn

nn 50. a
q

n = 1

 
xn

2n

 51. a
q

n = 0

 
(n + 1)x2n - 1

3n  52. a
q

n = 0

 
(-1)n(x - 1)2n + 1

2n + 1

 53. a
q

n = 1

(csch n)xn 54. a
q

n = 1

(coth n)xn

Maclaurin Series

Each of the series in Exercises 55–60 is the value of the Taylor series at 

x = 0 of a function ƒ(x) at a particular point. What function and what 

point? What is the sum of the series?

 55. 1 -
1
4

+
1
16

- g + (-1)n 
1
4n + g

 56. 
2
3

-
4
18

+
8
81

- g + (-1)n - 1 
2n

n3n + g

 57. p -
p3

3!
+

p5

5!
- g + (-1)n 

p2n + 1

(2n + 1)!
+ g

 58. 1 -
p2

9 # 2!
+

p4

81 # 4!
- g + (-1)n 

p2n

32n(2n)!
+ g

 59. 1 + ln 2 +
(ln 2)2

2!
+ g +

(ln 2)n

n!
+ g

 60. 
1

23
-

1

923
+

1

4523
- g

   + (-1)n - 1 
1

(2n - 1)12322n - 1
+ g
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 85. Find the radius of convergence of the series

a
q

n = 1

 
2 # 5 # 8 # g # (3n - 1)

2 # 4 # 6 # g # (2n)
 xn.

 86. Find the radius of convergence of the series

a
q

n = 1

 
3 # 5 # 7 # g # (2n + 1)

4 # 9 # 14 # g # (5n - 1)
 (x - 1)n.

 87. Find a closed-form formula for the nth partial sum of the series gq
n = 2 ln (1 - (1>n2) )  and use it to determine the convergence 

or divergence of the series.

 88. Evaluate gq
k = 2 (1> (k2 - 1) )  by inding the limits as n S q of 

the series’ nth partial sum.

 89. a. Find the interval of convergence of the series

 y = 1 +
1
6

 x3 +
1

180
 x6 + g

 +
1 # 4 # 7 #g# (3n - 2)

(3n)!
 x3n + g.

b. Show that the function defined by the series satisfies a dif-

ferential equation of the form

d2y

dx2
= xa y + b

and ind the values of the constants a and b.

 90. a. Find the Maclaurin series for the function x2>(1 + x).

b. Does the series converge at x = 1? Explain.

 91. If gq
n = 1 an and gq

n = 1 bn are convergent series of nonnegative 

numbers, can anything be said about gq
n = 1 an  bn? Give reasons 

for your answer.

 92. If gq
n = 1 an and gq

n = 1 bn are divergent series of nonnegative num-

bers, can anything be said about gq
n = 1 an  bn? Give reasons for 

your answer.

 93. Prove that the sequence 5xn6  and the series gq
k = 1 (xk + 1 - xk) 

both converge or both diverge.

 94. Prove that gq
n = 1 (an>(1 + an)) converges if an 7 0 for all n and gq

n = 1 an converges.

 95. Suppose that a1, a2, a3,c , an are positive numbers satisfying 

the following conditions:

 i) a1 Ú a2 Ú a3 Ú g;

 ii) the series a2 + a4 + a8 + a16 + g diverges.

  Show that the series

a1

1
+

a2

2
+

a3

3
+ g

  diverges.

 96. Use the result in Exercise 95 to show that

1 + a
q

n = 2

  
1

n ln n

  diverges.

Find Taylor series at x = 0 for the functions in Exercises 61–68.

 61. 
1

1 - 2x
 62. 

1

1 + x3

 63. sin px 64. sin  
2x

3

 65. cos (x5>3)  66. cos 
x3

25

 67. e(px>2) 68. e-x2

Taylor Series

In Exercises 69–72, ind the irst four nonzero terms of the Taylor se-

ries generated by ƒ at x = a.

 69. ƒ(x) = 23 + x2 at x = -1

 70. ƒ(x) = 1>(1 - x) at x = 2

 71. ƒ(x) = 1>(x + 1) at x = 3

 72. ƒ(x) = 1>x at x = a 7 0

Nonelementary Integrals

Use series to approximate the values of the integrals in Exercises  

73–76 with an error of magnitude less than 10-8. (The answer section 

gives the integrals’ values rounded to 10 decimal places.)

 73.  L
1>2

0

e-x3

 dx 74.  L
1

0

x sin (x3) dx

 75.  L
1>2

0

 
tan-1 x

x  dx 76.  L
1>64

0

 
tan-1 x

2x
 dx

Using Series to Find Limits

In Exercises 77–82:

a. Use power series to evaluate the limit.

b. Then use a grapher to support your calculation.

 77. lim
xS0

  
7 sin x

e2x - 1
 78. lim

uS0
 
eu - e-u - 2u

u - sin u

 79. lim
tS0

 a 1
2 - 2 cos t

-
1

t2
b  80. lim

hS0
 
(sin h)>h - cos h

h2

 81. lim
zS0

   
1 - cos2 z

ln (1 - z) + sin z
 82. lim

yS0
  

y2

cos y - cosh y

Theory and Examples

 83. Use a series representation of sin 3x to ind values of r and s for 

which

lim
xS0

 asin 3x

x3
+

r

x2
+ sb = 0.

 84. Compare the accuracies of the approximations sin x ≈ x

  and sin x ≈ 6x>(6 + x2) by comparing the graphs of 

ƒ(x) = sin x - x and g(x) = sin x - (6x>(6 + x2)). Describe 

what you ind.

T

T
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 100. Consider the convergent series a
q

n = 1

(-1)n

en + ecn , where c is a constant. 

  What should c be so that the irst 10 terms of the series estimate 

the sum of the entire series with an error of less than 0.00001?

 101. Assume that the following sequence has a limit L. Find the value 

of L.

41>3, (4(41>3))1>3, (4(4(41>3))1>3)1>3, (4(4(4(41>3))1>3)1>3)1>3, . . .
 102. Consider the ininite sequence of shaded right triangles in the 

accompanying diagram. Compute the total area of the triangles.

1

1

−
1

2

−
1

2

−
1

4

−
1

4 −
1

8

−
1

8

 97. Show that if an 7 0 and a
q

n = 1

an converges, then a
q

n = 1

2an

n  converges.

 98. Determine whether a
q

n = 1

bn converges or diverges.

a. b1 = 1, bn+1 = (-1)n 
n + 1
3n + 2

 bn

b. b1 = 3, bn+1 =
n

ln n
 bn

 99. Assume that bn 7 0 and a
q

n = 1

bn converges. What, if anything, can 

  be said about the following series?

a. a
q

n = 1

tan (bn)

b. a
q

n = 1

ln (1 + bn)

c. a
q

n = 1

ln (2 + bn)

Determining Convergence of Series

Which of the series gq
n = 1 an deined by the formulas in Exercises 1–4 

converge, and which diverge? Give reasons for your answers.

 1. a
q

n = 1

 
1

(3n - 2)n + (1>2)
 2. a

q

n = 1

 
(tan-1 n)2

n2 + 1

 3. a
q

n = 1

(-1)n tanh n 4. a
q

n = 2

 
logn (n!)

n3

Which of the series gq
n = 1 an deined by the formulas in Exercises 5–8 

converge, and which diverge? Give reasons for your answers.

 5. a1 = 1, an + 1 =
n(n + 1)

(n + 2)(n + 3)
 an

  (Hint: Write out several terms, see which factors cancel, and then 

generalize.)

 6. a1 = a2 = 7, an + 1 =
n

(n - 1)(n + 1)
 an if n Ú 2

 7. a1 = a2 = 1, an + 1 =
1

1 + an

 if n Ú 2

 8. an = 1>3n if n is odd, an = n>3n if n is even

Choosing Centers for Taylor Series

Taylor’s formula

 ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g

 +
ƒ(n)(a)

n!
 (x - a)n +

ƒ(n + 1)(c)

(n + 1)!
 (x - a)n + 1

expresses the value of ƒ at x in terms of the values of ƒ and its deriva-

tives at x = a. In numerical computations, we therefore need a to be a 

point where we know the values of ƒ and its derivatives. We also need 

a to be close enough to the values of ƒ we are interested in to make 

(x - a)n + 1 so small we can neglect the remainder.

In Exercises 9–14, what Taylor series would you choose to represent 

the function near the given value of x? (There may be more than one 

good answer.) Write out the irst four nonzero terms of the series you 

choose.

 9. cos x near x = 1 10. sin x near x = 6.3

 11. ex near x = 0.4 12. ln x near x = 1.3

 13. cos x near x = 69 14. tan-1 x near x = 2

CHAPTER 10 Additional and Advanced Exercises

Theory and Examples

 15. Let a and b be constants with 0 6 a 6 b. Does the sequence 5(an + bn)1>n6  converge? If it does converge, what is the limit?

 16. Find the sum of the ininite series

1 +
2
10

+
3

102
+

7

103
+

2

104
+

3

105
+

7

106
+

2

107

 +
3

108
+

7

109
+ g.

 17. Evaluate

a
q

n = 0

  L
n + 1

n

 
1

1 + x2
  dx.

 18. Find all values of x for which

a
q

n = 1

 
nxn

(n + 1)(2x + 1)n

  converges absolutely.
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 28. (Continuation of Exercise 27.) If gq
n = 1 an converges, and if 

1 7 an 7 0 for all n, show that gq
n = 1 ln (1 - an) converges.

  (Hint: First show that � ln (1 - an) � … an>(1 - an).)

 29. Nicole oresme’s theorem Prove Nicole Oresme’s Theorem that

1 +
1
2

 #  2 +
1
4

 #  3 + g +
n

2n - 1
+ g = 4.

  (Hint: Diferentiate both sides of the equation 1>(1 - x) =  

1 + gq
n = 1  xn.)

 30. a. Show that

a
q

n = 1

 
n(n + 1)

xn =
2x2

(x - 1)3

for � x � 7 1 by diferentiating the identity

a
q

n = 1
 x

n + 1 =
x2

1 - x

twice, multiplying the result by x, and then replacing x by 1 >x.

b. Use part (a) to ind the real solution greater than 1 of the 

equation

x = a
q

n = 1

 
n(n + 1)

xn .

 31. Quality control

a. Diferentiate the series

1
1 - x

= 1 + x + x2 + g + x 

n + g

to obtain a series for 1>(1 - x)2.

b. In one throw of two dice, the probability of getting a roll of 7 

is p = 1>6. If you throw the dice repeatedly, the probability 

that a 7 will appear for the irst time at the nth throw is q 

n - 1p, 

where q = 1 - p = 5>6. The expected number of throws un-

til a 7 irst appears is gq
n = 1nq 

n - 1p. Find the sum of this series.

c. As an engineer applying statistical control to an industrial 

operation, you inspect items taken at random from the as-

sembly line. You classify each sampled item as either “good” 

or “bad.” If the probability of an item’s being good is p and 

of an item’s being bad is q = 1 - p, the probability that 

the irst bad item found is the nth one inspected is p 

n - 1q. 

The average number inspected up to and including the irst 

bad item found is gq
n = 1np 

n - 1q. Evaluate this sum, assuming 

0 6 p 6 1.

 32. Expected value Suppose that a random variable X may assume 

the values 1, 2, 3, . . . , with probabilities p1, p2, p3, . . . , where 

pk is the probability that X equals k (k = 1, 2, 3, c). Suppose 

also that pk Ú 0 and that gq
k = 1 pk = 1. The expected value of 

X, denoted by E(X), is the number gq
k = 1 k pk, provided the series 

converges. In each of the following cases, show that gq
k = 1 pk = 1 

and ind E(X) if it exists. (Hint: See Exercise 31.)

a. pk = 2- k b. pk =
5k - 1

6k

c. pk =
1

k(k + 1)
=

1
k

-
1

k + 1

 19. a. Does the value of

lim
nSq

 a1 -
cos (a>n)

n bn

, a constant,

appear to depend on the value of a? If so, how?

b. Does the value of

lim
nSq

 a1 -
cos (a>n)

bn
bn

, a and b constant, b ≠ 0,

appear to depend on the value of b? If so, how?

c. Use calculus to conirm your indings in parts (a) and (b).

 20. Show that if gq
n = 1 an converges, then

a
q

n = 1

 a1 + sin (an)

2
bn

  converges.

 21. Find a value for the constant b that will make the radius of conver-

gence of the power series

a
q

n = 2

 
bnxn

ln n

  equal to 5.

 22. How do you know that the functions sin x, ln x, and ex are not 

polynomials? Give reasons for your answer.

 23. Find the value of a for which the limit

lim
xS0

 
sin (ax) - sin x - x

x3

  is inite and evaluate the limit.

 24. Find values of a and b for which

lim
xS0

 
cos (ax) - b

2x2
= -1.

 25. raabe’s (or gauss’s) test The following test, which we state 

without proof, is an extension of the Ratio Test.

   Raabe’s Test: If gq
n = 1 un is a series of positive constants and 

there exist constants C, K, and N such that

un

un + 1
= 1 +

C
n +

ƒ(n)

n2
,

  where �ƒ(n) � 6 K  for n Ú N, then gq
n = 1  un converges if C 7 1 

and diverges if C … 1.

   Show that the results of Raabe’s Test agree with what you 

know about the series gq
n = 1 (1>n2)  and gq

n = 1 (1>n).

 26. (Continuation of Exercise 25.) Suppose that the terms of gq
n = 1 un 

are deined recursively by the formulas

u1 = 1, un + 1 =
(2n - 1)2

(2n)(2n + 1)
 un.

  Apply Raabe’s Test to determine whether the series converges.

 27. If gq
n = 1 an converges, and if an ≠ 1 and an 7 0 for all n,

a. Show that gq
n = 1 an

2 converges.

b. Does gq
n = 1 an>(1 - an) converge? Explain.

T
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(not above CH) but efective (not below CL). See the accompany-

ing igure. We therefore want to ind values for C0 and t0 for which

R = CL and C0 + R = CH .

t0

CL

0 Time

C
o

n
ce

n
tr

at
io

n
 i

n
 b

lo
o
d

C0

Highest safe level
CH

Lowest e�ective level

t

C

  Thus C0 = CH - CL . When these values are substituted in the 

equation for R obtained in part (a) of Exercise 33, the resulting 

equation simpliies to

t0 =
1
k
 ln 

CH

CL

.

  To reach an efective level rapidly, one might administer a “load-

ing” dose that would produce a concentration of CH mg>mL. This 

could be followed every t0 hours by a dose that raises the concen-

tration by C0 = CH - CL mg>mL.

a. Verify the preceding equation for t0.

b. If k = 0.05 h-1 and the highest safe concentration is e times 

the lowest efective concentration, ind the length of time 

between doses that will ensure safe and efective concentra-

tions.

c. Given CH = 2 mg>mL, CL = 0.5 mg>mL, and k = 0.02 h-1, 

determine a scheme for administering the drug.

d. Suppose that k = 0.2 h-1 and that the smallest efective 

concentration is 0.03 mg>mL. A single dose that produces 

a concentration of 0.1 mg>mL is administered. About how 

long will the drug remain efective?

 33. Safe and efective dosage The concentration in the blood result-

ing from a single dose of a drug normally decreases with time as 

the drug is eliminated from the body. Doses may therefore need to 

be repeated periodically to keep the concentration from dropping 

below some particular level. One model for the efect of repeated 

doses gives the residual concentration just before the (n + 1)st 

dose as

Rn = C0e
- k t0 + C0e

- 2k t0 + g + C0e
- nk t0 ,

  where Co = the change in concentration achievable by a single 

dose (mg>mL), k = the elimination constant (h–1), and t0 = time 

between doses (h). See the accompanying igure.

t0

C0

0

Time (h)

C
o
n
ce

n
tr

at
io

n
 (

m
g
�m

L
)

C1 = C0 + C0e−k t0

R1 = C0e−k t0

R2
R3

Rn

Cn−1
C2

t

C

a. Write Rn in closed from as a single fraction, and ind 

R = limnSq Rn.

b. Calculate R1 and R10 for C0 = 1 mg>mL, k = 0.1 h-1, and 

t0 = 10 h. How good an estimate of R is R10?

c. If k = 0.01 h-1 and t0 = 10 h, ind the smallest n such that 

Rn 7 (1>2)R. Use C0 = 1 mg>mL.

(Source: Prescribing Safe and Efective Dosage, B. Horelick and 

S. Koont, COMAP, Inc., Lexington, MA.)

 34. Time between drug doses (Continuation of Exercise 33.) If 

a drug is known to be inefective below a concentration CL and 

harmful above some higher concentration CH, one need to ind 

values of C0 and t0 that will produce a concentration that is safe 

T

Mathematica/Maple Projects

Projects can be found within MyMathLab.

• Bouncing Ball 

The model predicts the height of a bouncing ball, and the time until it stops bouncing.

• Taylor Polynomial Approximations of a Function 

A graphical animation shows the convergence of the Taylor polynomials to functions having derivatives of all orders over an interval in their 

domains.

CHAPTER 10 Technology Application Projects
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11.1 Parametrizations of Plane Curves

Parametric Equations

Figure 11.1 shows the path of a moving particle in the xy-plane. Notice that the path fails 

the vertical line test, so it cannot be described as the graph of a function of the variable x. 

However, we can sometimes describe the path by a pair of equations, x = ƒ(t) and 

y = g(t), where ƒ and g are continuous functions. When studying motion, t usually 

denotes time. Equations like these can describe more general curves than those described 

by a single function, and they provide not only the graph of the path traced out but also the 

location of the particle (x, y) = (ƒ(t), g(t)) at any time t.

OVERVIEW In this chapter we study new ways to define curves in the plane. Instead of 

thinking of a curve as the graph of a function or equation, we think of it as the path of a mov-

ing particle whose position is changing over time. Then each of the x- and y-coordinates of 

the particle’s position becomes a function of a third variable t. We can also change the way in 

which points in the plane themselves are described by using polar coordinates rather than 

the rectangular or Cartesian system. Both of these new tools are useful for describing 

motion, like that of planets and satellites, or projectiles moving in the plane or space.

Parametric Equations 
and Polar Coordinates

11

DEFINITION If x and y are given as functions

x = ƒ(t),  y = g(t)

over an interval I of t-values, then the set of points (x, y) = (ƒ(t), g(t)) defined by 

these equations is a parametric curve. The equations are parametric equations 

for the curve.

The variable t is a parameter for the curve, and its domain I is the parameter 

 interval. If I is a closed interval, a … t … b, the point (ƒ(a), g(a)) is the initial point of 

the curve and (ƒ(b), g(b)) is the terminal point. When we give parametric equations and a 

parameter interval for a curve, we say that we have parametrized the curve. The equa-

tions and interval together constitute a parametrization of the curve. A given curve can 

be represented by different sets of parametric equations. (See Exercises 29 and 30.)

EXAMPLE 1  Sketch the curve defined by the parametric equations

x = sin pt>2,  y = t,  0 … t … 6.

( f (t), g(t))

Position of particle

at time t

FIGURE 11.1 The curve or path traced 

by a particle moving in the xy-plane is not 

always the graph of a function or single 

equation.
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Solution We make a table of values (Table 11.1), plot the points (x, y), and draw a 

smooth curve through them (Figure 11.2). If we think of the curve as the path of a moving 

particle, the particle starts at time t = 0 at the initial point (0, 0) and then moves upward 

in a wavy path until at time t = 6 it reaches the terminal point (0, 6). The direction of 

motion is shown by the arrows in Figure 11.2.

TABLE 11.1  Values of x = sin Pt ,2 

and y = t  for selected values of t.

t  x y

0  0 0

1  1 1

2  0 2

3 -1 3

4  0 4

5  1 5

6  0 6

x

y

0 1−1

1

2

5

6

4

3

(0, 0)
t = 0

(0, 6)
t = 6

(1, 1)
t = 1

(−1, 3)
t = 3

(1, 5)
t = 5

(0, 2)
t = 2

(0, 4)
t = 4

FIGURE 11.2 The curve given by the 

parametric equations x = sin pt>2 and 

y = t (Example 1). 

EXAMPLE 2  Sketch the curve defined by the parametric equations

x = t2,  y = t + 1,  -q 6 t 6 q.

Solution We make a table of values (Table 11.2), plot the points (x, y), and draw a 

smooth curve through them (Figure 11.3). We think of the curve as the path that a particle 

moves along the curve in the direction of the arrows. Although the time intervals in the 

table are equal, the consecutive points plotted along the curve are not at equal arc length 

distances. The reason for this is that the particle slows down as it gets nearer to the y-axis 

along the lower branch of the curve as t increases, and then speeds up after reaching the 

y-axis at (0, 1) and moving along the upper branch. Since the interval of values for t is all 

real numbers, there is no initial point and no terminal point for the curve.

TABLE 11.2  Values of x = t2  and 

y = t + 1 for selected values of t.

 t x  y

-3 9 -2

-2 4 -1

-1 1  0

 0 0  1

 1 1  2

 2 4  3

 3 9  4

(1, 2)

(4, 3)

(4, −1)

(9, 4)

(9, −2)

(0, 1)
(1, 0)

x

y

t = 0

t = −1

t = 1

t = 2

t = 3

t = −2

t = −3

FIGURE 11.3 The curve given by 

the parametric equations x = t2 and 

y = t + 1 (Example 2).
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For this example we can use algebraic manipulation to eliminate the parameter t and 

obtain an algebraic equation for the curve in terms of x and y alone. We solve y = t + 1 

for t and substitute the resulting equation t = y - 1 into the equation for x, which yields

x = t2 = ( y - 1)2 = y2 - 2y + 1.

The equation x = y2 - 2y + 1 represents a parabola, as displayed in Figure 11.3. It is 

sometimes quite difficult, or even impossible, to eliminate the parameter from a pair of 

parametric equations, as we did here. 

EXAMPLE 3  Graph the parametric curves

(a) x = cos t,   y = sin t,   0 … t … 2p.

(b) x = a cos t,   y = a sin t,   0 … t … 2p.

Solution

(a) Since x2 + y2 = cos2 t + sin2 t = 1, the parametric curve lies along the unit circle 

x2 + y2 = 1. As t increases from 0 to 2p, the point (x, y) = (cos t, sin t) starts at 

(1, 0) and traces the entire circle once counterclockwise (Figure 11.4).

(b) For x = a cos t, y = a sin t, 0 … t … 2p, we have x2 + y2 = a2 cos2 t + a2 sin2 t = a2. 

The parametrization describes a motion that begins at the point (a, 0) and traverses 

the circle x2 + y2 = a2 once counterclockwise, returning to (a, 0) at t = 2p. The 

graph is a circle centered at the origin with radius r = 0 a 0  and coordinate points 

(a cos t, a sin t). 

EXAMPLE 4  The position P(x, y) of a particle moving in the xy-plane is given by the 

equations and parameter interval

x = 2t,  y = t,  t Ú 0.

Identify the path traced by the particle and describe the motion.

Solution We try to identify the path by eliminating t between the equations x = 2t and 

y = t, which might produce a re-cognizable algebraic relation between x and y. We find 

that

y = t = 12t22 = x2.

Thus, the particle’s position coordinates satisfy the equation y = x2, so the particle moves 

along the parabola y = x2.

It would be a mistake, however, to conclude that the particle’s path is the entire para-

bola y = x2; it is only half the parabola. The particle’s x-coordinate is never negative.  

The particle starts at (0, 0) when t = 0 and rises into the irst quadrant as t increases  

(Figure 11.5). The parameter interval is 30, q) and there is no terminal point. 

The graph of any function y = ƒ(x) can always be given a natural parametrization 

x = t and y = ƒ(t). The domain of the parameter in this case is the same as the domain of 

the function ƒ.

EXAMPLE 5  A parametrization of the graph of the function ƒ(x) = x2 is given by

x = t,  y = ƒ(t) = t2,  -q 6 t 6 q.

When t Ú 0, this parametrization gives the same path in the xy-plane as we had in  

Example 4. However, since the parameter t here can now also be negative, we obtain the 

left-hand part of the parabola as well; that is, we have the entire parabolic curve. For this 

parametrization, there is no starting point and no terminal point (Figure 11.6). 

x
0

t

(1, 0)

y

x2 + y2 = 1

P(cos t, sin t)

t = 0t = p

 t =
3p
2

 t =
p
2

FIGURE 11.4 The equations x = cos t 

and y = sin t describe motion on the circle 

x2 + y2 = 1. The arrow shows the direc-

tion of increasing t (Example 3).

x

y

0

(1, 1)

(2, 4)

  

Starts at

t = 0

t = 1

t = 4

y = x2, x ≥ 0

P("t, t)

FIGURE 11.5 The equations x = 2t 

and y = t and the interval t Ú 0 describe 

the path of a particle that traces the  

right-hand half of the parabola y = x2 

(Example 4).

x

y

0

y = x2

(−2, 4) (2, 4)

(1, 1)

t = −2 t = 2

t = 1

P(t, t 2)

FIGURE 11.6 The path defined by 

x = t, y = t2, -q 6 t 6 q is the entire 

parabola y = x2 (Example 5).



652 Chapter 11 Parametric Equations and Polar Coordinates

Notice that a parametrization also specifies when a particle moving along the curve is 

located at a specific point along the curve. In Example 4, the point (2, 4) is reached when 

t = 4; in Example 5, it is reached “earlier” when t = 2. You can see the implications of 

this aspect of parametrizations when considering the possibility of two objects coming 

into collision: they have to be at the exact same location point P(x, y) for some (possibly 

different) values of their respective parameters. We will say more about this aspect of 

parametrizations when we study motion in Chapter 13.

EXAMPLE 6  Find a parametrization for the line through the point (a, b) having 

slope m.

Solution A Cartesian equation of the line is y - b = m(x - a). If we define the para-

meter t by t = x - a, we find that x = a + t and y - b = mt. That is,

x = a + t,  y = b + mt,  -q 6 t 6 q

parametrizes the line. This parametrization differs from the one we would obtain by the 

natural parametrization in Example 5 when t = x. However, both parametrizations 

describe the same line. 

EXAMPLE 7  Sketch and identify the path traced by the point P(x, y) if

x = t +
1
t ,    y = t -

1
t ,    t 7 0.

Solution We make a brief table of values in Table 11.3, plot the points, and draw a 

smooth curve through them, as we did in Example 1. Next we eliminate the parameter t 

from the equations. The procedure is more complicated than in Example 2. Taking the dif-

ference between x and y as given by the parametric equations, we find that

x - y = at +
1
t b - at -

1
t b =

2
t .

If we add the two parametric equations, we get

x + y = at +
1
t b + at -

1
t b = 2t.

We can then eliminate the parameter t by multiplying these last equations together:

(x - y)(x + y) = a2t b (2t) = 4.

Expanding the expression on the left-hand side, we obtain a standard equation for a hyper-

bola (reviewed in Section 11.6):

 x2 - y2 = 4. (1)

Thus the coordinates of all the points P(x, y) described by the parametric equations sat-

isfy Equation (1). However, Equation (1) does not require that the x-coordinate be posi-

tive. So there are points (x, y) on the hyperbola that do not satisfy the parametric equation 

x = t + (1>t), t 7 0. In fact, the parametric equations do not yield any points on the left 

branch of the hyperbola given by Equation (1), points where the x-coordinate would be 

negative. For small positive values of t, the path lies in the fourth quadrant and rises into 

the first quadrant as t increases, crossing the x-axis when t = 1 (see Figure 11.7).  

The parameter domain is (0, q) and there is no starting point and no terminal point for 

the path. 

TABLE 11.3  Values of x = t + (1 ,t ) 

and y = t − (1 ,t)  for selected 

values of t.

 t  1 , t  x  y

 0.1 10.0 10.1 -9.9

 0.2  5.0  5.2 -4.8

 0.4  2.5  2.9 -2.1

 1.0  1.0  2.0 0.0

 2.0  0.5  2.5 1.5

 5.0  0.2  5.2 4.8

10.0  0.1 10.1 9.9

t = 1

t = 2

t = 5

t = 10

t = 0.4

t = 0.2

t = 0.1

5 10

−5

−10

5

0

10

(10.1, −9.9)

(5.2, −4.8)

(2.9, −2.1)
(2, 0)

(2.5, 1.5)

(10.1, 9.9)

(5.2, 4.8)

x

y

FIGURE 11.7 The curve for 

x = t + (1>t), y = t - (1>t), t 7 0 

in Example 7. (The part shown is for 

0.1 … t … 10.)
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Examples 4, 5, and 6 illustrate that a given curve, or portion of it, can be represented 

by different parametrizations. In the case of Example 7, we can also represent the right-

hand branch of the hyperbola by the parametrization

x = 24 + t2,  y = t,  -q 6 t 6 q,

which is obtained by solving Equation (1) for x Ú 0 and letting y be the parameter. Still 

another parametrization for the right-hand branch of the hyperbola given by Equation (1) is

x = 2 sec t,  y = 2 tan t,  -  

p
2

6 t 6
p
2

.

This parametrization follows from the trigonometric identity sec2 t - tan2 t = 1, because

x2 - y2 = 4 sec2 t - 4 tan2 t = 4 (sec2 t - tan2 t) = 4.

As t runs between -p>2 and p>2, x = sec t remains positive and y = tan t runs between 

-q and q, so P traverses the hyperbola’s right-hand branch. It comes in along the 

branch’s lower half as t S 0-, reaches (2, 0) at t = 0, and moves out into the first quad-

rant as t increases steadily toward p>2. This is the same branch of the hyperbola shown in 

Figure 11.7.

Cycloids

The problem with a pendulum clock whose bob swings in a circular arc is that the fre-

quency of the swing depends on the amplitude of the swing. The wider the swing, the lon-

ger it takes the bob to return to center (its lowest position).

This does not happen if the bob can be made to swing in a cycloid. In 1673, Christian 

Huygens designed a pendulum clock whose bob would swing in a cycloid, a curve we 

define in Example 8. He hung the bob from a fine wire constrained by guards that caused 

it to draw up as it swung away from center (Figure 11.8). We describe the path parametri-

cally in the next example.

EXAMPLE 8  A wheel of radius a rolls along a horizontal straight line. Find paramet-

ric equations for the path traced by a point P on the wheel’s circumference. The path is 

called a cycloid.

Solution We take the line to be the x-axis, mark a point P on the wheel, start the wheel 

with P at the origin, and roll the wheel to the right. As parameter, we use the angle t 

through which the wheel turns, measured in radians. Figure 11.9 shows the wheel a short 

while later when its base lies at units from the origin. The wheel’s center C lies at (at, a) 

and the coordinates of P are

x = at + a cos u,  y = a + a sin u.

To express u in terms of t, we observe that t + u = 3p>2 in the figure, so that

u =
3p
2

- t.

This makes

cos u = cos a3p
2

- tb = -sin t,  sin u = sin a3p
2

- tb = -cos t.

The equations we seek are

x = at - a sin t,  y = a - a cos t.

These are usually written with the a factored out:

 x = a(t - sin t),  y = a(1 - cos t). (2)

Figure 11.10 shows the first arch of the cycloid and part of the next. 

Cycloid

Guard
cycloid

Guard
cycloid

FIGURE 11.8 In Huygens’ pendulum 

clock, the bob swings in a cycloid, so the 

frequency is independent of the amplitude.

x

y

t
a

u
C(at, a)

M0 at

P(x, y) = (at + a cos u, a + a sin u)

FIGURE 11.9 The position of P(x, y) on 

the rolling wheel at angle t (Example 8).

HistoricAL BiogrApHy

christian Huygens

(1629–1695)

www.goo.gl/4QtZkD

http://www.goo.gl/4QtZkD
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Brachistochrones and Tautochrones

If we turn Figure 11.10 upside down, Equations (2) still apply and the resulting curve  

(Figure 11.11) has two interesting physical properties. The first relates to the origin O and 

the point B at the bottom of the first arch. Among all smooth curves joining these points, 

the cycloid is the curve along which a frictionless bead, subject only to the force of 

 gravity, will slide from O to B the fastest. This makes the cycloid a brachistochrone 

(“brah-kiss-toe-krone”), or shortest-time curve for these points. The second property is 

that even if you start the bead partway down the curve toward B, it will still take the bead 

the same amount of time to reach B. This makes the cycloid a tautochrone (“taw-toe-krone”), 

or same-time curve for O and B.

Are there any other brachistochrones joining O and B, or is the cycloid the only one? 

We can formulate this as a mathematical question in the following way. At the start, the 

kinetic energy of the bead is zero, since its velocity (speed) is zero. The work done by 

gravity in moving the bead from (0, 0) to any other point (x, y) in the plane is mgy, and 

this must equal the change in kinetic energy. (See Exercise 25 in Section 6.5.) That is,

mgy =
1
2

 my2 -
1
2

 m(0)2.

Thus, the speed of the bead when it reaches (x, y) has to be y = 22gy. That is,

ds

dT
= 22gy  

ds is the arc length differential along 

the bead’s path and T represents time.
 

or

 dT =
ds

22gy
=
21 + (dy>dx)2 dx

22gy
. (3)

The time Tƒ it takes the bead to slide along a particular path y = ƒ(x) from O to B(ap, 2a) 

is

 Tf = L
x = ap

x = 0 B
1 + (dy>dx)2

2gy
 dx. (4)

What curves y = ƒ(x), if any, minimize the value of this integral?

At first sight, we might guess that the straight line joining O and B would give the 

shortest time, but perhaps not. There might be some advantage in having the bead fall ver-

tically at first to build up its speed faster. With a higher speed, the bead could travel a lon-

ger path and still reach B first. Indeed, this is the right idea. The solution, from a branch of 

mathematics known as the calculus of variations, is that the original cycloid from O to B is 

the one and only brachistochrone for O and B (Figure 11.12).

In the next section we show how to find the arc length differential ds for a parame-

trized curve. Once we know how to find ds, we can calculate the time given by the right-

hand side of Equation (4) for the cycloid. This calculation gives the amount of time it takes 

a frictionless bead to slide down the cycloid to B after it is released from rest at O. The 

time turns out to be equal to p2a>g, where a is the radius of the wheel defining the par-

ticular cycloid. Moreover, if we start the bead at some lower point on the cycloid, corre-

sponding to a parameter value t0 7 0, we can integrate the parametric form of ds>22gy 

in Equation (3) over the interval 3 t0, p4  to find the time it takes the bead to reach the point 

B. That calculation results in the same time T = p2a>g. It takes the bead the same 

amount of time to reach B no matter where it starts, which makes the cycloid a tauto-

chrone. Beads starting simultaneously from O, A, and C in Figure 11.13, for instance, will 

all reach B at exactly the same time. This is the reason why Huygens’ pendulum clock in 

Figure 11.8 is independent of the amplitude of the swing.

O
x

y

(x, y)

2pa

t

a

FIGURE 11.10 The cycloid curve 

x = a(t - sin t), y = a(1 - cos t), for 

t Ú 0.

x

y

O a

a

2a

2a

2papa

P(at − a sin t, a − a cos t)

B(ap, 2a)

FIGURE 11.11 Turning Figure 11.10 

upside down, the y-axis points downward, 

indicating the direction of the gravitational 

force. Equations (2) still describe the curve 

parametrically.

cycloid

O

B

FIGURE 11.12 The cycloid is the unique 

curve which minimizes the time it takes 

for a frictionless bead to slide from point 

O to B.

O
x

y

A

B
C

FIGURE 11.13 Beads released simulta-

neously on the upside-down cycloid at O, 

A, and C will reach B at the same time.
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Finding Cartesian from Parametric Equations

Exercises 1–18 give parametric equations and parameter intervals for 

the motion of a particle in the xy-plane. Identify the particle’s path by 

finding a Cartesian equation for it. Graph the Cartesian equation. (The 

graphs will vary with the equation used.) Indicate the portion of the 

graph traced by the particle and the direction of motion.

 1. x = 3t, y = 9t2, -q 6 t 6 q

 2. x = -2t, y = t, t Ú 0

 3. x = 2t - 5, y = 4t - 7, -q 6 t 6 q

 4. x = 3 - 3t, y = 2t, 0 … t … 1

 5. x = cos 2t, y = sin 2t, 0 … t … p

 6. x = cos (p - t), y = sin (p - t), 0 … t … p

 7. x = 4 cos t, y = 2 sin t, 0 … t … 2p

 8. x = 4 sin t, y = 5 cos t, 0 … t … 2p

 9. x = sin t, y = cos 2t, -  
p

2
… t …

p

2

 10. x = 1 + sin t, y = cos t - 2, 0 … t … p

 11. x = t2, y = t6 - 2t4, -q 6 t 6 q

 12. x =
t

t - 1
, y =

t - 2
t + 1

, -1 6 t 6 1

 13. x = t, y = 21 - t2, -1 … t … 0

 14. x = 2t + 1, y = 2t, t Ú 0

 15. x = sec2 t - 1, y = tan t, -p>2 6 t 6 p>2
 16. x = -sec t, y = tan t, -p>2 6 t 6 p>2
 17. x = -cosh t, y = sinh t, -q 6 t 6 q

 18. x = 2 sinh t, y = 2 cosh t, -q 6 t 6 q

In Exercises 19–24, match the parametric equations with the paramet-

ric curves labeled A through F.

 19. x = 1 - sin t, y = 1 + cos t 

 20. x = cos t, y = 2 sin t

 21. x =
1
4

 t cos t, y =
1
4

 t sin t

 22. x = 2t, y = 2t cos t

 23. x = ln t, y = 3e-t>2
 24. x = cos t, y = sin 3t

A. 

x

y

21 3

−2

−3

−1

3

1

2

 B. 

x

y

1−1

−1

1

c. 

x
21−2 −1

y

1

2

3

 D. 

x

y

21

1

2

E. 

x

y

21 3−3 −2 −1

−2

−3

−1

3

1

2

 F. 

x

y

21−2 −1

−2

−1

1

2

In Exercises 25–28, use the given graphs of x = ƒ(t) and y = g(t) to 

sketch the corresponding parametric curve in the xy-plane.

 25. 

t
1−1

1

t

x

f g

1

1

−1

y

 26. 

t

x

1−1

−1

1

f

t

y

1−1

−1

1

g

EXERCISES 11.1
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 37. Find parametric equations and a parameter interval for the motion 

of a particle starting at the point (2, 0) and tracing the top half of 

the circle x2 + y2 = 4 four times.

 38. Find parametric equations and a parameter interval for the motion 

of a particle that moves along the graph of y = x2 in the following 

way: Beginning at (0, 0) it moves to (3, 9), and then travels back 

and forth from (3, 9) to (-3, 9) ininitely many times.

 39. Find parametric equations for the semicircle

x2 + y2 = a2, y 7 0,

  using as parameter the slope t = dy>dx of the tangent to the curve 

at (x, y).

 40. Find parametric equations for the circle

x2 + y2 = a2,

  using as parameter the arc length s measured counterclockwise 

from the point (a, 0) to the point (x, y).

 41. Find a parametrization for the line segment joining points (0, 2) 

and (4, 0) using the angle u in the accompanying igure as the 

parameter.

x

y

2

0 4

u

(x, y)

 42. Find a parametrization for the curve y = 2x with terminal 

point (0, 0) using the angle u in the accompanying igure as the 

parameter.

x

y

u

(x, y)

y = "x

0

 43. Find a parametrization for the circle (x - 2)2 + y2 = 1 starting 

at (1, 0) and moving clockwise once around the circle, using the 

central angle u in the accompanying igure as the parameter.

x

y

1

1

1 2 30

u

(x, y)

 27. 

t

y

f

2−1

1

t
21−2 −1

2

1

−1

g

x

−1

−2

1

 28. 

t

x

1 2−1−2

−4

−2

4

2

f

t

y

21−2 −1

−2

−1

2

1

g

Finding Parametric Equations

 29. Find parametric equations and a parameter interval for the motion 

of a particle that starts at (a, 0) and traces the circle x2 + y2 = a2

a. once clockwise.

b. once counterclockwise.

c. twice clockwise.

d. twice counterclockwise.

  (There are many ways to do these, so your answers may not be the 

same as the ones in the back of the book.)

 30. Find parametric equations and a parameter interval for the mo-

tion of a particle that starts at (a, 0) and traces the ellipse 

(x2>a2) + (y2>b2) = 1

a. once clockwise.

b. once counterclockwise.

c. twice clockwise.

d. twice counterclockwise.

  (As in Exercise 29, there are many correct answers.)

In Exercises 31–36, find a parametrization for the curve.

 31. the line segment with endpoints (-1, -3) and (4, 1)

 32. the line segment with endpoints (-1, 3) and (3, -2)

 33. the lower half of the parabola x - 1 = y2

 34. the left half of the parabola y = x2 + 2x

 35. the ray (half line) with initial point (2, 3) that passes through the 

point (-1, -1)

 36. the ray (half line) with initial point (-1, 2) that passes through the 

point (0, 0)
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 47. As the point N moves along the line y = a in the accompanying 

igure, P moves in such a way that OP = MN. Find parametric 

equations for the coordinates of P as functions of the angle t that 

the line ON makes with the positive y-axis.

x

y

N

M

A(0, a)

t

P

O

 48. trochoids A wheel of radius a rolls along a horizontal straight 

line without slipping. Find parametric equations for the curve 

traced out by a point P on a spoke of the wheel b units from its 

center. As parameter, use the angle u through which the wheel 

turns. The curve is called a trochoid, which is a cycloid when 

b = a.

 44. Find a parametrization for the circle x2 + y2 = 1 starting at (1, 0) 

and moving counterclockwise to the terminal point (0, 1), using 

the angle u in the accompanying igure as the parameter.

x

y

1

–2
u

(x, y)

(1, 0)

(0, 1)

 45. the witch of Maria Agnesi The bell-shaped witch of Maria 

Agnesi can be constructed in the following way. Start with a circle 

of radius 1, centered at the point (0, 1), as shown in the accompa-

nying igure. Choose a point A on the line y = 2 and connect it to 

the origin with a line segment. Call the point where the segment 

crosses the circle B. Let P be the point where the vertical line 

through A crosses the horizontal line through B. The witch is the 

curve traced by P as A moves along the line y = 2. Find paramet-

ric equations and a parameter interval for the witch by expressing 

the coordinates of P in terms of t, the radian measure of the angle 

that segment OA makes with the positive x-axis. The following 

equalities (which you may assume) will help.

a. x = AQ b. y = 2 - AB sin t

c. AB # OA = (AQ)2

x

y

O

Q A

B P(x, y)
(0, 1)

y = 2

t

 46. Hypocycloid When a circle rolls on the inside of a ixed circle, 

any point P on the circumference of the rolling circle describes a 

hypocycloid. Let the ixed circle be x2 + y2 = a2, let the radius 

of the rolling circle be b, and let the initial position of the tracing 

point P be A(a, 0). Find parametric equations for the hypocycloid, 

using as the parameter the angle u from the positive x-axis to the 

line joining the circles’ centers. In particular, if b = a>4, as in the 

accompanying igure, show that the hypocycloid is the astroid

x = a cos3 u, y = a sin3 u.

x

y

O P

C

A(a, 0)b
u

Distance Using Parametric Equations

 49. Find the point on the parabola x = t, y = t2, -q 6 t 6 q, 

closest to the point (2, 1>2). (Hint: Minimize the square of the 

 distance as a function of t.)

 50. Find the point on the ellipse x = 2 cos t, y = sin t, 0 … t … 2p 

closest to the point (3>4, 0). (Hint: Minimize the square of the 

distance as a function of t.)

GRAPHER EXPLORATIONS

If you have a parametric equation grapher, graph the equations over 

the given intervals in Exercises 51–58.

 51. Ellipse x = 4 cos t, y = 2 sin t, over

a. 0 … t … 2p

b. 0 … t … p

c. -p>2 … t … p>2.

 52. Hyperbola branch x = sec t (enter as 1 >cos(t)), y = tan t 

(enter as sin(t) >cos(t)), over

a. -1.5 … t … 1.5

b. -0.5 … t … 0.5

c. -0.1 … t … 0.1.

 53. parabola x = 2t + 3, y = t2 - 1, -2 … t … 2

 54. cycloid x = t - sin t, y = 1 - cos t, over

a. 0 … t … 2p

b. 0 … t … 4p

c. p … t … 3p.

 55. Deltoid

x = 2 cos t + cos 2t, y = 2 sin t - sin 2t; 0 … t … 2p

  What happens if you replace 2 with -2 in the equations for x and 

y? Graph the new equations and ind out.

T
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 56. A nice curve

x = 3 cos t + cos 3t, y = 3 sin t - sin 3t; 0 … t … 2p

  What happens if you replace 3 with -3 in the equations for x and 

y? Graph the new equations and ind out.

 57. a. Epicycloid 

x = 9 cos t - cos 9t, y = 9 sin t - sin 9t; 0 … t … 2p

b. Hypocycloid 

x = 8 cos t + 2 cos 4t, y = 8 sin t - 2 sin 4t; 0 … t … 2p

c. Hypotrochoid 

x = cos t + 5 cos 3t, y = 6 cos t - 5 sin 3t; 0 … t … 2p

 58. a.  x = 6 cos t + 5 cos 3t, y = 6 sin t - 5 sin 3t;  

0 … t … 2p

b. x = 6 cos 2t + 5 cos 6t, y = 6 sin 2t - 5 sin 6t; 

0 … t … p

c. x = 6 cos t + 5 cos 3t, y = 6 sin 2t - 5 sin 3t; 

0 … t … 2p

d. x = 6 cos 2t + 5 cos 6t, y = 6 sin 4t - 5 sin 6t; 

0 … t … p

11.2 Calculus with Parametric Curves

In this section we apply calculus to parametric curves. Specifically, we find slopes, 

lengths, and areas associated with parametrized curves.

Tangents and Areas

A parametrized curve x = ƒ(t) and y = g(t) is differentiable at t if ƒ and g are differen-

tiable at t. At a point on a differentiable parametrized curve where y is also a differentiable 

function of x, the derivatives dy>dt, dx>dt, and dy>dx are related by the Chain Rule:

dy

dt
=

dy

dx
# dx

dt
.

If dx>dt ≠ 0, we may divide both sides of this equation by dx>dt to solve for dy>dx.

Parametric Formula for dy ,dx

If all three derivatives exist and dx>dt ≠ 0, then

 
dy

dx
=

dy>dt

dx>dt
. (1)

Parametric Formula for d2y ,dx
2

If the equations x = ƒ(t), y = g(t) define y as a twice-differentiable function of 

x, then at any point where dx>dt ≠ 0 and y′ = dy>dx,

 
d2y

dx2
=

dy′>dt

dx>dt
. (2)

If parametric equations define y as a twice-differentiable function of x, we can apply 

Equation (1) to the function dy>dx = y′ to calculate d2y>dx2 as a function of t:

d2y

dx2
=

d

dx
 ( y′) =

dy′>dt

dx>dt
.  Eq. (1) with y′ in place of y

x

y

0 1 2

1

2

("2, 1)

  

t =
p
4

x = sec t, y = tan t,
p
2

p
2

– < t <

FIGURE 11.14 The curve in Example 1 

is the right-hand branch of the hyperbola 

x2 - y2 = 1.

EXAMPLE 1  Find the tangent to the curve

x = sec t,  y = tan t,  -  

p
2

6 t 6
p
2

,

at the point 122, 12, where t = p>4 (Figure 11.14).
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EXAMPLE 3  Find the area enclosed by the astroid (Figure 11.15)

x = cos3 t,  y = sin3 t,  0 … t … 2p.

Solution By symmetry, the enclosed area is 4 times the area beneath the curve in the 

first quadrant where 0 … t … p>2. We can apply the definite integral formula for area 

studied in Chapter 5, using substitution to express the curve and differential dx in terms of 

the parameter t. Thus,

 A = 4 L
1

0

 y dx  
4 times area under y 

from x = 0 to x = 1
 

 = 4 L
p>2

0

 (sin3
  t)(3 cos2 t sin t) dt  Substitution for y and dx

 = 12 L
p>2

0

 a1 - cos 2t

2
b2

 a1 + cos 2t

2
b  dt sin4 t = a1 - cos 2t

2
b 2

 

 =
3
2

 L
p>2

0

 (1 - 2 cos 2t + cos2 2t)(1 + cos 2t) dt Expand squared term.

 =
3
2

 L
p>2

0

 (1 - cos 2t - cos2 2t + cos3 2t) dt Multiply terms.

EXAMPLE 2  Find d2y>dx2 as a function of t if x = t - t2 and y = t - t3.

Solution

1.  Express y′ = dy>dx in terms of t.

y′ =
dy

dx
=

dy>dt

dx>dt
=

1 - 3t2

1 - 2t

2.  Diferentiate y′ with respect to t.

dy′

dt
=

d

dt
 a1 - 3t2

1 - 2t
b =

2 - 6t + 6t2

(1 - 2t)2
  Derivative Quotient Rule

3.  Divide dy′>dt by dx>dt.

 
d2y

dx2
=

dy′>dt

dx>dt
=

(2 - 6t + 6t2) >(1 - 2t)2

1 - 2t
=

2 - 6t + 6t2

(1 - 2t)3
  Eq. (2) 

Solution The slope of the curve at t is

dy

dx
=

dy>dt

dx>dt
=

sec2 t
sec t tan t =

sec t
tan t .  Eq. (1)

Setting t equal to p>4 gives

 
dy

dx
2
t =p>4 =

sec (p>4)

tan (p>4)
 =

22
1

= 22.

The tangent line is

 y - 1 = 22 1x - 222
 y = 22 x - 2 + 1

  y = 22 x - 1.  

Finding d2y ,dx2 in terms of t

1. Express y′ = dy>dx in terms of t.

2. Find dy′>dt.

3. Divide dy′>dt by dx>dt.

x

y

0

1

1−1

−1

x = cos3 t

y = sin3 t

0 ≤ t ≤ 2p

FIGURE 11.15 The astroid in  

Example 3.
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 =
3
2

 c  Lp>2
0

(1 - cos 2t) dt - L
p>2

0

 cos2 2t dt + L
p>2

0

 cos3 2t dt d
 =

3
2

 c at -
1
2

 sin 2tb -
1
2

 at +
1
4

 sin 2tb +
1
2

 asin 2t -
1
3

 sin3 2tb d p>2
0

 
Section 8.2, 

Example 3  

 =
3
2

 cap
2

- 0 - 0 - 0b -
1
2

 ap
2

+ 0 - 0 - 0b +
1
2

 (0 - 0 - 0 + 0)d   Evaluate.

 =
3p
8

.  

Length of a Parametrically Defined Curve

Let C be a curve given parametrically by the equations

x = ƒ(t)  and  y = g(t),  a … t … b.

We assume the functions ƒ and g are continuously differentiable (meaning they have 

continuous first derivatives) on the interval 3a, b4 . We also assume that the deriva-

tivesƒ′(t) and g′(t) are not simultaneously zero, which prevents the curve C from having 

any corners or cusps. Such a curve is called a smooth curve. We subdivide the path (or 

arc) AB into n pieces at points A = P0, P1, P2,c, Pn = B (Figure 11.16). These points 

correspond to a partition of the interval 3a, b4  by a = t0 6 t1 6 t2 6 g 6 tn = b, 

where Pk = (ƒ(tk), g(tk)). Join successive points of this subdivision by straight-line seg-

ments (Figure 11.16). A representative line segment has length

 Lk = 2(∆xk)
2 + (∆yk)

2

 = 23ƒ(tk) - ƒ(tk - 1)4 2 + 3g(tk) - g(tk - 1)4 2

(see Figure 11.17). If ∆tk is small, the length Lk is approximately the length of arc Pk - 1Pk. 

By the Mean Value Theorem there are numbers t*k  and t**k  in 3 tk - 1, tk4  such that

 ∆xk = ƒ(tk) - ƒ(tk - 1) = ƒ′(t*k) ∆tk ,

 ∆yk = g(tk) - g(tk - 1) = g′(t**k ) ∆tk .

Assuming the path from A to B is traversed exactly once as t increases from t = a to 

t = b, with no doubling back or retracing, an approximation to the (yet to be defined) 

“length” of the curve AB is the sum of all the lengths Lk:

 a
n

k = 1

Lk = a
n

k = 1

2(∆xk)
2 + (∆yk)

2

 = a
n

k = 1

23ƒ′(t*k ) 4 2 + 3g′(t**k ) 4 2 ∆tk .

Although this last sum on the right is not exactly a Riemann sum (because ƒ′ and g′ are 

evaluated at different points), it can be shown that its limit, as the norm of the partition 

tends to zero and the number of segments n S q, is the definite integral

lim
� �P� �S0

 a
n

k = 1

 23ƒ′(t*k ) 4 2 + 3g′(t**k ) 4 2 ∆tk = L
b

a

 23ƒ′(t)4 2 + 3g′(t)4 2 dt.

Therefore, it is reasonable to define the length of the curve from A to B to be this integral.

y

x
0

A = P0

B = Pn

P1

P2

C

Pk

Pk−1

FIGURE 11.16 The length of the smooth 

curve C from A to B is approximated by 

the sum of the lengths of the polygonal 

path (straight-line segments) starting at 

A = P0, then to P1, and so on, ending at 

B = Pn.

y

x
0

Lk

Δxk

Δyk

Pk –1 = ( f (tk–1), g(tk –1))

Pk = ( f (tk), g(tk))

FIGURE 11.17 The arc Pk - 1 Pk is  

approximated by the straight-line  

segment shown here, which has length 

Lk = 2(∆xk)
2 + (∆yk)

2.
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DEFINITION If a curve C is defined parametrically by x = ƒ(t) and y = g(t), 

a … t … b, where ƒ′ and g′ are continuous and not simultaneously zero on 3a, b4 , and C is traversed exactly once as t increases from t = a to t = b, then 

the length of C is the definite integral

L = L
b

a

 23ƒ′(t)4 2 + 3g′(t)4 2 dt.

If x = ƒ(t) and y = g(t), then using the Leibniz notation we can write the formula for 

arc length this way:

 L = L
b

a

 B adx

dt
b2

+ ady

dt
b2

 dt. (3)

A smooth curve C does not double back or reverse the direction of motion over the 

time interval 3a, b4  since (ƒ′)2 + (g′)2 7 0 throughout the interval. At a point where a 

curve does start to double back on itself, either the curve fails to be differentiable or both 

derivatives must simultaneously equal zero. We will examine this phenomenon in Chapter 13, 

where we study tangent vectors to curves.

If there are two different parametrizations for a curve C whose length we want to 

find, it does not matter which one we use. However, the parametrization we choose must 

meet the conditions stated in the definition of the length of C (see Exercise 41 for an 

example).

EXAMPLE 4  Using the definition, find the length of the circle of radius r defined 

parametrically by

x = r cos t    and    y = r sin t,    0 … t … 2p.

Solution As t varies from 0 to 2p, the circle is traversed exactly once, so the circumfer-

ence is

L = L
2p

0

 B adx

dt
b2

+ ady

dt
b2

 dt.

We find

dx

dt
= -r sin t,    

dy

dt
= r cos t

and

adx

dt
b2

+ ady

dt
b2

 =  r2 (sin2 t + cos2 t) = r2.

Therefore, the total arc length is

 L = L
2p

0

2r2 dt = r  c t d 2p
0

= 2pr. 

EXAMPLE 5  Find the length of the astroid (Figure 11.15)

x = cos3 t,  y = sin3 t,  0 … t … 2p.
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Solution Because of the curve’s symmetry with respect to the coordinate axes, its length 

is four times the length of the first-quadrant portion. We have

x = cos3 t,       y = sin3 t

 adx

dt
b2

= 33 cos2 t(-sin t)4 2 = 9 cos4 t sin2 t

 ady

dt
b2

= 33 sin2 t(cos t)4 2 = 9 sin4 t cos2 t

 B adx

dt
b2

+ ady

dt
b2

= 29 cos2 t sin2 t (cos2 t + sin2 t)   (++)++*
 1

 = 29 cos2 t sin2 t

 = 3 � cos t sin t �   cos t sin t Ú 0 for 0 … t … p>2
 = 3 cos t sin t.

Therefore,

 Length of first@quadrant portion = L
p>2

0

3 cos t sin t dt

 =
3
2

  L
p>2

0

 sin 2t dt   cos t sin t = (1>2) sin 2t  

 = -  
3
4

 cos 2t d
0

p>2
=

3
2

.

The length of the astroid is four times this: 4(3>2) = 6. 

EXAMPLE 6  Find the perimeter of the ellipse 
x2

a2
+

y2

b2
= 1.

Solution Parametrically, we represent the ellipse by the equations x = a sin t and 

y = b cos t, a 7 b and 0 … t … 2p. Then,

 adx

dt
b2

+ ady

dt
b2

= a2 cos2 t + b2 sin2 t

 = a2 - (a2 - b2)  sin2 t

 = a231 - e2 sin2 t4   e = A1 -
b2

a2
 (eccentricity, 

not the number 2.71828 . . .)

 

From Equation (3), the perimeter is given by

P = 4aL
p>2

0

21 - e2 sin2 t dt.

(We investigate the meaning of the eccentricity e in Section 11.7.) The integral for P is 

nonelementary and is known as the complete elliptic integral of the second kind. We can 

compute its value to within any degree of accuracy using infinite series in the following 

way. From the binomial expansion for 21 - x2 in Section 10.10, we have

21 - e2 sin2 t = 1 -
1
2

 e2 sin2 t -
1

2 # 4
 e4 sin4 t - g,  0 e sin t 0 … e 6 1
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Then to each term in this last expression we apply the integral Formula 157 (at the back of 

the book) for 1p>2
0

 sinn t dt when n is even, giving the perimeter

 P = 4a L
p>2

0

 21 - e2 sin2 t dt

 = 4a cp
2

- a1
2

 e2b a1
2

# p
2
b - a 1

2 # 4
 e4b a1 # 3

2 # 4
# p

2
b - a 1 # 3

2 # 4 # 6
 e6b a1 # 3 # 5

2 # 4 # 6
# p

2
b - gd

 = 2pa c 1 - a1
2
b2

 e2 - a1 # 3
2 # 4
b2

 
e4

3
- a1 # 3 # 5

2 # 4 # 6
b2

 
e6

5
- gd .

Since e 6 1, the series on the right-hand side converges by comparison with the geometric 

series gq
n = 1 (e2)n

. We do not have an explicit value for P, but we can estimate it as closely 

as we like by summing finitely many terms from the infinite series. 

Length of a Curve y = ƒ(x )

We will show that the length formula in Section 6.3 is a special case of Equation (3). 

Given a continuously differentiable function y = ƒ(x), a … x … b, we can assign x = t 

as a parameter. The graph of the function ƒ is then the curve C defined parametrically by

x = t  and  y = ƒ(t),  a … t … b,

which is a special case of what we have considered in this chapter. We have

dx

dt
= 1  and  

dy

dt
= ƒ′(t).

From Equation (1),

dy

dx
=

dy>dt

dx>dt
= ƒ′(t),

giving

 adx

dt
b2

 +  ady

dt
b2

= 1 + 3ƒ′(t)4 2

 = 1 + 3ƒ′(x)4 2.  t = x

Substitution into Equation (3) gives exactly the arc length formula for the graph of 

y = ƒ(x) that we found in Section 6.3.

The Arc Length Differential

As in Section 6.3, we define the arc length function for a parametrically defined curve 

x = ƒ(t) and y = g(t),  a … t … b, by

s(t) = L
t

a

 23ƒ′(z)4 2 + 3g′(z)4 2 dz.

Then, by the Fundamental Theorem of Calculus,

ds

dt
= 33ƒ′(t)4 2 + 3g′(t)4 2 = B adx

dt
b2

+ ady

dt
b2

.

The differential of arc length is

 ds = B adx

dt
b2

+ ady

dt
b2

 dt. (4)



664 Chapter 11 Parametric Equations and Polar Coordinates

Equation (4) is often abbreviated as

ds = 2dx2 + dy2.

Just as in Section 6.3, we can integrate the differential ds between appropriate limits to 

find the total length of a curve.

Here’s an example where we use the arc length differential to find the centroid of an arc.

EXAMPLE 7  Find the centroid of the first-quadrant arc of the astroid in Example 5.

Solution We take the curve’s density to be d = 1 and calculate the curve’s mass and 

moments about the coordinate axes as we did in Section 6.6.

The distribution of mass is symmetric about the line y = x, so x = y. A typical seg-

ment of the curve (Figure 11.18) has mass

dm = 1 # ds = B adx

dt
b2

+ ady

dt
b2

 dt = 3 cos t sin t dt.  From Example 5

The curve’s mass is

M = L
p>2

0

 dm = L
p>2

0

 3 cos t sin t dt =
3
2

.  Again from Example 5

The curve’s moment about the x-axis is

 Mx = L  y∼ dm = L
p>2

0

 sin3 t # 3 cos t sin t dt

 = 3 L
p>2

0

 sin4 t cos t dt = 3 # sin5 t
5
d p>2

0

=
3
5

.

It follows that

y =
Mx

M
=

3>5
3>2 =

2
5

.

The centroid is the point (2>5, 2>5). 

EXAMPLE 8  Find the time Tc it takes for a frictionless bead to slide along the cycloid 

x = a(t - sin t),  y = a(1 - cos t)  from t = 0  to  t = p (see Figure 11.13).

Solution From Equation (3) in Section 11.1, we want to find the time

Tc = L
t=p

t= 0

 
ds

22gy
.

We need to express ds parametrically in terms of the parameter t. For the cycloid, 

dx>dt = a(1 - cos t) and dy>dt = a sin t, so

 ds = B adx

dt
b2

+ ady

dt
b2

 dt

 = 2a2  (1 - 2 cos t + cos2 t + sin2 t)  dt

 = 2a2 (2 - 2 cos t)  dt.

Substituting for ds and y in the integrand, it follows that

Tc = L
p

0

 B
a2(2 - 2 cos t)

2ga (1 - cos t)
 dt  y = a(1 - cos t) 

= L
p

0

 Aa
g  dt = pAa

g .

This is the amount of time it takes the frictionless bead to slide down the cycloid to B after 

it is released from rest at O (see Figure 11.13). 

x

y

0

B(0, 1)

A(1, 0)

c.m.
ds

~ ~(x, y) = (cos3 t, sin3 t)

~x

~y

FIGURE 11.18 The centroid (c.m.)  

of the astroid arc in Example 7.
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Areas of Surfaces of Revolution

In Section 6.4 we found integral formulas for the area of a surface when a curve is 

revolved about a coordinate axis. Specifically, we found that the surface area is 

S = 12py ds for revolution about the x-axis, and S = 12px ds for revolution about 

the y-axis. If the curve is parametrized by the equations x = ƒ(t) and 

y = g(t), a … t … b, where ƒ and g are continuously differentiable and 

(ƒ′)2 + (g′)2 7 0 on 3a, b4 , then the arc length differential ds is given by Equation 

(4). This observation leads to the following formulas for area of surfaces of revolution 

for smooth parametrized curves.

Area of Surface of Revolution for Parametrized Curves

If a smooth curve x = ƒ(t), y = g(t), a … t … b, is traversed exactly once as t 

increases from a to b, then the areas of the surfaces generated by revolving the 

curve about the coordinate axes are as follows.

1. revolution about the x-axis (  y # 0):

 S = L
b

a

 2py  B adx

dt
b2

+ ady

dt
b2

 dt (5)

2. revolution about the y-axis (x # 0):

 S = L
b

a

 2px  B adx

dt
b2

+ ady

dt
b2

 dt (6)

As with length, we can calculate surface area from any convenient parametrization that 

meets the stated criteria.

EXAMPLE 9  The standard parametrization of the circle of radius 1 centered at the 

point (0, 1) in the xy-plane is

x = cos t,  y = 1 + sin t,  0 … t … 2p.

Use this parametrization to find the area of the surface swept out by revolving the circle 

about the x-axis (Figure 11.19).

Solution We evaluate the formula

 S = L
b

a

 2py B adx

dt
b2

+ ady

dt
b2

 dt   
Eq. (5) for revolution about the 

x-axis; y = 1 + sin t Ú 0  

 = L
2p

0

2p(1 + sin t) 2(-sin t)2 + (cos t)2 dt(++++)++++*
 1   

 = 2pL
2p

0

(1 + sin t) dt

 = 2p c t - cos t d
0

2p

= 4p2.  

Circle

x = cos t

y = 1 + sin t

0 ≤ t ≤ 2p

x

y

(0, 1)

FIGURE 11.19 In Example 9 we 

 calculate the area of the surface of 

 revolution swept out by this  

parametrized curve.
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Tangents to Parametrized Curves

In Exercises 1–14, find an equation for the line tangent to the curve at 

the point defined by the given value of t. Also, find the value of 

d2y>dx2 at this point.

 1. x = 2 cos t, y = 2 sin t, t = p>4
 2. x = sin 2pt, y = cos 2pt, t = -1>6
 3. x = 4 sin t, y = 2 cos t, t = p>4
 4. x = cos t, y = 23 cos t, t = 2p>3
 5. x = t, y = 2t, t = 1>4
 6. x = sec2 t - 1, y = tan t, t = -p>4
 7. x = sec t, y = tan t, t = p>6
 8. x = -2t + 1, y = 23t, t = 3

 9. x = 2t2 + 3, y = t4, t = -1

 10. x = 1>t, y = -2 + ln t, t = 1

 11. x = t - sin t, y = 1 - cos t, t = p>3
 12. x = cos t, y = 1 + sin t, t = p>2
 13. x =

1
t + 1

, y =
t

t - 1
, t = 2

 14. x = t + et, y = 1 - et, t = 0

Implicitly Defined Parametrizations

Assuming that the equations in Exercises 15–20 define x and y implic-

itly as differentiable functions x = ƒ(t), y = g(t), find the slope of 

the curve x = ƒ(t), y = g(t) at the given value of t.

 15. x3 + 2t2 = 9, 2y3 - 3t2 = 4, t = 2

 16. x = 25 - 1t, y(t - 1) = 2t, t = 4

 17. x + 2x3>2 = t2 + t, y2t + 1 + 2t2y = 4, t = 0

 18. x sin t + 2x = t, t sin t - 2t = y, t = p

 19. x = t3 + t, y + 2t3 = 2x + t2, t = 1

 20. t = ln (x - t), y = tet, t = 0

Area

 21. Find the area under one arch of the cycloid

x = a(t - sin t), y = a(1 - cos t).

 22. Find the area enclosed by the y-axis and the curve

x = t - t2, y = 1 + e-t .

 23. Find the area enclosed by the ellipse

x = a cos t, y = b sin t, 0 … t … 2p .

 24. Find the area under y = x3 over 30, 14  using the following 

 parametrizations.

a. x = t2, y = t6 b. x = t3, y = t9

Lengths of Curves

Find the lengths of the curves in Exercises 25–30.

 25. x = cos t, y = t + sin t, 0 … t … p

 26. x = t3, y = 3t2>2, 0 … t … 23

 27. x = t2>2, y = (2t + 1)3>2>3, 0 … t … 4

 28. x = (2t + 3)3>2>3, y = t + t2>2, 0 … t … 3

EXERCISES 11.2

 29. x = 8 cos t + 8t sin t 

y = 8 sin t - 8t cos t, 

0 … t … p>2  30. x = ln (sec t + tan t) - sin t 

y = cos t, 0 … t … p>3
Surface Area

Find the areas of the surfaces generated by revolving the curves in 

Exercises 31–34 about the indicated axes.

 31. x = cos t, y = 2 + sin t, 0 … t … 2p; x@axis

 32. x = (2>3)t3>2, y = 22t, 0 … t … 23; y@axis

 33. x = t + 22, y = (t2>2) + 22t,  -22 … t … 22; y@axis

 34. x = ln (sec t + tan t) - sin t, y = cos t, 0 … t … p>3; x-axis

 35. A cone frustum The line segment joining the points (0, 1) and 

(2, 2) is revolved about the x-axis to generate a frustum of a cone. 

Find the surface area of the frustum using the parametrization 

x = 2t, y = t + 1, 0 … t … 1. Check your result with the geom-

etry formula: Area = p(r1 + r2)(slant height).

 36. A cone The line segment joining the origin to the point (h, r) 

is revolved about the x-axis to generate a cone of height h and 

base radius r. Find the cone’s surface area with the parametric 

equations x = ht, y = rt, 0 … t … 1. Check your result with the 

geometry formula: Area = pr(slant height).

Centroids

 37. Find the coordinates of the centroid of the curve

x = cos t + t sin t, y = sin t - t cos t, 0 … t … p>2.

 38. Find the coordinates of the centroid of the curve

x = et cos t, y = et sin t, 0 … t … p.

 39. Find the coordinates of the centroid of the curve

x = cos t, y = t + sin t, 0 … t … p.

 40. Most centroid calculations for curves are done with a calculator 

or computer that has an integral evaluation program. As a case in 

point, ind, to the nearest hundredth, the coordinates of the cen-

troid of the curve

x = t3, y = 3t2>2, 0 … t … 23.

Theory and Examples

 41. Length is independent of parametrization To illustrate the 

fact that the numbers we get for length do not depend on the way 

we parametrize our curves (except for the mild restrictions pre-

venting doubling back mentioned earlier), calculate the length of 

the semicircle y = 21 - x2 with these two diferent parametri-

zations:

a. x = cos 2t, y = sin 2t, 0 … t … p>2.

b. x = sin pt, y = cos pt, -1>2 … t … 1>2.

 42. a. Show that the Cartesian formula

L = L
d

c

 B1 + adx

dy
b2

 dy

T
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 45.   46. 

x

y

1−1

x = sin t

y = sin 2t

 

x

y

1−1

1

−1

x = sin 2t

y = sin 3t

 47. cycloid

a. Find the length of one arch of the cycloid

x = a(t - sin t), y = a(1 - cos t).

b. Find the area of the surface generated by revolving one arch 

of the cycloid in part (a) about the x-axis for a = 1.

 48. Volume Find the volume swept out by revolving the region 

bounded by the x-axis and one arch of the cycloid

x = t - sin t, y = 1 - cos t

  about the x-axis.

 49. Find the volume swept out by revolving the region bounded by the 

x-axis and the graph of

x = 2t, y = t (2 - t)

  about the x-axis.

 50. Find the volume swept out by revolving the region bounded by the 

y-axis and the graph of

x = t (1 - t), y = 1 + t2

  about the y-axis.

COMPUTER EXPLORATIONS

In Exercises 51–54, use a CAS to perform the following steps for the 

given curve over the closed interval.

a. Plot the curve together with the polygonal path approxima-

tions for n = 2, 4, 8 partition points over the interval. (See 

Figure 11.16.)

b. Find the corresponding approximation to the length of the 

curve by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. Compare 

your approximations for n = 2, 4, 8 with the actual length 

given by the integral. How does the actual length compare 

with the approximations as n increases? Explain your answer.

 51. x =
1
3

 t3, y =
1
2

 t2, 0 … t … 1

 52. x = 2t3 - 16t2 + 25t + 5, y = t2 + t - 3, 0 … t … 6

 53. x = t - cos t, y = 1 + sin t, -p … t … p

 54. x = et cos t, y = et sin t, 0 … t … p

 for the length of the curve x = g(y), c … y … d (Section 6.3, 

Equation 4), is a special case of the parametric length formula

L = L
b

a

 B adx

dt
b2

+ ady

dt
b2

 dt.

Use this result to ind the length of each curve.

b. x = y3>2, 0 … y … 4>3
c. x =

3
2

 y2>3, 0 … y … 1

 43. The curve with parametric equations

x = (1 + 2 sin u) cos u, y = (1 + 2 sin u) sin u

  is called a limaçon and is shown in the accompanying igure. Find 

the points (x, y) and the slopes of the tangent lines at these points 

for

a. u = 0.  b. u = p>2 .  c. u = 4p>3 .

x

y

1−1

3

2

1

 44. The curve with parametric equations

x = t, y = 1 - cos t, 0 … t … 2p

  is called a sinusoid and is shown in the accompanying igure. Find 

the point (x, y) where the slope of the tangent line is

a. largest.  b. smallest.

x

y

2

0 2p

The curves in Exercises 45 and 46 are called Bowditch curves or 

 Lissajous figures. In each case, find the point in the interior of the first 

quadrant where the tangent to the curve is horizontal, and find the 

equations of the two tangents at the origin.

T

11.3 Polar Coordinates

In this section we study polar coordinates and their relation to Cartesian coordinates. 

You will see that polar coordinates are very useful for calculating many multiple inte-

grals studied in Chapter 15. They are also useful in describing the paths of planets and 

satellites.
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Definition of Polar Coordinates

To define polar coordinates, we first fix an origin O (called the pole) and an initial ray 

from O (Figure 11.20). Usually the positive x-axis is chosen as the initial ray. Then each 

point P can be located by assigning to it a polar coordinate pair (r, u) in which r gives 

the directed distance from O to P and u gives the directed angle from the initial ray to ray 

OP. So we label the point P as

P(r, u)

Directed angle from 

initial ray to OP

Directed distance 

from O to P

O

r

Initial ray

Origin (pole)

x

P(r, u)

u

FIGURE 11.20 To define polar coordi-

nates for the plane, we start with an origin, 

called the pole, and an initial ray.

As in trigonometry, u is positive when measured counterclockwise and negative when 

measured clockwise. The angle associated with a given point is not unique. While a point 

in the plane has just one pair of Cartesian coordinates, it has infinitely many pairs of polar 

coordinates. For instance, the point 2 units from the origin along the ray u = p>6 has 

polar coordinates r = 2,  u = p>6. It also has coordinates r = 2, u = -11p>6 (Figure 

11.21). In some situations we allow r to be negative. That is why we use directed distance 

in defining P(r, u). The point P(2, 7p>6) can be reached by turning 7p>6 radians coun-

terclockwise from the initial ray and going forward 2 units (Figure 11.22). It can also be 

reached by turning p>6 radians counterclockwise from the initial ray and going backward 

2 units. So the point also has polar coordinates r = -2, u = p>6.

EXAMPLE 1  Find all the polar coordinates of the point P(2, p>6).

Solution We sketch the initial ray of the coordinate system, draw the ray from the origin 

that makes an angle of p>6 radians with the initial ray, and mark the point (2, p>6) 

 (Figure 11.23). We then find the angles for the other coordinate pairs of P in which r = 2 

and r = -2.

For r = 2, the complete list of angles is

p
6

, 
p
6
{ 2p, 

p
6
{ 4p, 

p
6
{ 6p,c.

For r = -2, the angles are

-  
5p
6

, -  
5p
6
{ 2p, -  

5p
6
{ 4p, -  

5p
6
{ 6p,c.

The corresponding coordinate pairs of P area2, 
p
6

+ 2npb ,  n = 0, {1, {2, c

and a-2, -  
5p
6

+ 2npb ,  n = 0, {1, {2, c.

When n = 0, the formulas give (2, p>6) and (-2, -5p>6). When n = 1, they give 

(2, 13p>6) and (-2, 7p>6), and so on. 

Polar Equations and Graphs

If we hold r fixed at a constant value r = a ≠ 0, the point P(r, u) will lie � a �  units from 

the origin O. As u varies over any interval of length 2p, P then traces a circle of radius 

� a �  centered at O (Figure 11.24).

If we hold u fixed at a constant value u = u0 and let r vary between -q and q, the 

point P(r, u) traces the line through O that makes an angle of measure u0 with the initial 

ray. (See Figure 11.22 for an example.)

O x

Initial ray

u = 0

u = p�6

−
11p

6

P  2,      = P  2, −
11p

6
p
6

a     b a           b

FIGURE 11.21 Polar coordinates are not 

unique.

O
x

u = 0

u = p�6

p�6

7p�6

P  2,        = P  –2,
p
6

7p
6

a      b a      b
FIGURE 11.22 Polar coordinates can 

have negative r-values.

O

7p�6

–5p�6

Initial ray
x

6

  2,      =   –2, –
5p
6

p
6

=   –2, 
7p

etc.

p
6

a    b
a      b
a        b

FIGURE 11.23 The point P(2, p>6) 

has infinitely many polar coordinate pairs 

(Example 1).

x

0 a 0
r = a

O

FIGURE 11.24 The polar equation for a 

circle is r = a.
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EXAMPLE 2  A circle or line can have more than one polar equation.

(a) r = 1 and r = -1 are equations for the circle of radius 1 centered at O.

(b) u = p>6, u = 7p>6, and u = -5p>6 are equations for the line in Figure 11.23. 

Equations of the form r = a and u = u0 can be combined to define regions,  segments, 

and rays.

Equations Relating Polar and Cartesian Coordinates

x = r cos u,  y = r sin u,  r2 = x2 + y2,  tan u =
y
x

The first two of these equations uniquely determine the Cartesian coordinates x and y 

given the polar coordinates r and u. On the other hand, if x and y are given, the third equa-

tion gives two possible choices for r (a positive and a negative value). For each 

(x, y) ≠ (0, 0), there is a unique u∊ 30, 2p) satisfying the first two equations, each then 

giving a polar coordinate representation of the Cartesian point (x, y). The other polar coor-

dinate representations for the point can be determined from these two, as in Example 1.

EXAMPLE 4  Here are some plane curves expressed in terms of both polar coordi-

nate and Cartesian coordinate equations.

 polar equation  cartesian equivalent

 r cos u = 2  x = 2

 r2 cos u sin u = 4  xy = 4

 r2 cos2 u - r2 sin2 u = 1  x2 - y2 = 1

 r = 1 + 2r cos u  y2 - 3x2 - 4x - 1 = 0

 r = 1 - cos u  x4 + y4 + 2x2y2 + 2x3 + 2xy2 - y2 = 0

Some curves are more simply expressed with polar coordinates; others are not. 

EXAMPLE 3  Graph the sets of points whose polar coordinates satisfy the following 

conditions.

(a) 1 … r … 2  and  0 … u …
p
2

(b) -3 … r … 2  and  u =
p
4

(c) 
2p
3

… u …
5p
6
  (no restriction on r)

Solution The graphs are shown in Figure 11.25. 

Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins 

together and let the initial polar ray be the positive x-axis. The ray u = p>2, r 7 0, 

becomes the positive y-axis (Figure 11.26). The two coordinate systems are then related 

by the following equations.

x

y

0 1

(a)

2

x

y

0

3

(b)

2

(c)

x

y

0

1 ≤ r ≤ 2, 0 ≤ u ≤
p
2

u =    ,
p
4

−3 ≤ r ≤ 2p
4

2p
3

5p
6

2p
3

5p
6

≤ u ≤

FIGURE 11.25 The graphs of typical 

inequalities in r and u (Example 3).

x

y

Common

origin

0 Initial rayx

y
r

P(x, y) = P(r, u)

u = 0, r ≥ 0u

Ray u = p
2

FIGURE 11.26 The usual way to relate 

polar and Cartesian coordinates.
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EXAMPLE 5  Find a polar equation for the circle x2 + ( y - 3)2 = 9 (Figure 11.27).

Solution We apply the equations relating polar and Cartesian coordinates:

 x2 + ( y - 3)2 = 9

 x2 + y2 - 6y + 9 = 9   Expand ( y - 3)2. 

 x2 + y2 - 6y = 0   Cancelation

 r2 - 6r sin u = 0   x2 + y2 = r2, y = r sin u  

 r = 0 or r - 6 sin u = 0

 r = 6 sin u  Includes both possibilities 

EXAMPLE 6  Replace the following polar equations by equivalent Cartesian equa-

tions and identify their graphs.

(a) r cos u = -4

(b) r2 = 4r cos u

(c) r =
4

2 cos u - sin u

Solution We use the substitutions r cos u = x, r sin u = y, and r2 = x2 + y2.

(a) r cos u = -4

  The Cartesian equation:  r cos u = -4

 x = -4  

  The graph:  Vertical line through x = -4 on the x@axis

(b) r2 = 4r cos u

  The Cartesian equation: r2 = 4r cos u

   x2 + y2 = 4x Substitute.

   x2 - 4x + y2 = 0

   x2 - 4x + 4 + y2 = 4 Complete the square.

   (x - 2)2 + y2 = 4 Factor.

  The graph: Circle, radius 2, center (h, k) = (2, 0)

(c) r =
4

2 cos u - sin u

The Cartesian equation: r(2 cos u - sin u) = 4

2r cos u - r sin u = 4

2x - y = 4

y = 2x - 4

Substitute.

x

y

(0, 3)

0

x2 + ( y − 3)2 = 9

or

r = 6 sin u

FIGURE 11.27 The circle in Example 5.

Multiply by r.

Substitute.

Solve for y.

The graph:  Line, slope m = 2, y@intercept b = -4 

Polar Coordinates

 1. Which polar coordinate pairs label the same point?

  a. (3, 0) b. (-3, 0) c. (2, 2p>3)

  d. (2, 7p>3) e. (-3, p) f. (2, p>3)

  g. (-3, 2p) h. (-2, -p>3)

 2. Which polar coordinate pairs label the same point?

  a. (-2, p>3) b. (2, -p>3) c. (r, u)

  d. (r, u + p) e. (-r, u) f. (2, -2p>3)

  g. (-r, u + p) h. (-2, 2p>3)

EXERCISES 11.3
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 21. 0 … u … p, r = 1 22. 0 … u … p, r = -1

 23. p>4 … u … 3p>4, 0 … r … 1

 24. -p>4 … u … p>4, -1 … r … 1

 25. -p>2 … u … p>2, 1 … r … 2

 26. 0 … u … p>2, 1 … � r � … 2

Polar to Cartesian Equations

Replace the polar equations in Exercises 27–52 with equivalent 

 Cartesian equations. Then describe or identify the graph.

 27. r cos u = 2 28. r sin u = -1

 29. r sin u = 0 30. r cos u = 0

 31. r = 4 csc u 32. r = -3 sec u

 33. r cos u + r sin u = 1 34. r sin u = r cos u

 35. r2 = 1 36. r2 = 4r sin u

 37. r =
5

sin u - 2 cos u
 38. r2 sin 2u = 2

 39. r = cot u csc u 40. r = 4 tan u sec u

 41. r = csc u er cos u 42. r sin u = ln r + ln cos u

 43. r2 + 2r2 cos u sin u = 1 44. cos2 u = sin2 u

 45. r2 = -4r cos u 46. r2 = -6r sin u

 47. r = 8 sin u 48. r = 3 cos u

 49. r = 2 cos u + 2 sin u 50. r = 2 cos u - sin u

 51. r sin au +
p

6
b = 2

 52. r sin a2p
3

- ub = 5

Cartesian to Polar Equations

Replace the Cartesian equations in Exercises 53–66 with equivalent 

polar equations.

 53. x = 7 54. y = 1 55. x = y

 56. x - y = 3 57. x2 + y2 = 4 58. x2 - y2 = 1

 59. 
x2

9
+

y2

4
= 1 60. xy = 2

 61. y2 = 4x 62. x2 + xy + y2 = 1

 63. x2 + (y - 2)2 = 4 64. (x - 5)2 + y2 = 25

 65. (x - 3)2 + (y + 1)2 = 4 66. (x + 2)2 + (y - 5)2 = 16

 67. Find all polar coordinates of the origin.

 68. Vertical and horizontal lines

a. Show that every vertical line in the xy-plane has a polar 

 equation of the form r = a sec u.

b. Find the analogous polar equation for horizontal lines in the 

xy-plane.

 3. Plot the following points (given in polar coordinates). Then ind 

all the polar coordinates of each point.

a. (2, p>2) b. (2, 0)

c. (-2, p>2) d. (-2, 0)

 4. Plot the following points (given in polar coordinates). Then ind 

all the polar coordinates of each point.

a. (3, p>4) b. (-3, p>4)

c. (3, -p>4) d. (-3, -p>4)

Polar to Cartesian Coordinates

 5. Find the Cartesian coordinates of the points in Exercise 1.

 6. Find the Cartesian coordinates of the following points (given in 

polar coordinates).

a. 122, p>42 b. (1, 0)

c. (0, p>2) d. 1-22, p>42
e. (-3, 5p>6) f. (5, tan-1 (4>3))

g. (-1, 7p) h. 1223, 2p>32
Cartesian to Polar Coordinates

 7. Find the polar coordinates, 0 … u 6 2p and r Ú 0, of the 

 following points given in Cartesian coordinates.

a. (1, 1) b. (-3, 0)

c. 123, -12 d. (-3, 4)

 8. Find the polar coordinates, -p … u 6 p and r Ú 0, of the 

 following points given in Cartesian coordinates.

a. (-2, -2) b. (0, 3)

c. 1-23, 12 d. (5, -12)

 9. Find the polar coordinates, 0 … u 6 2p and r … 0, of the 

 following points given in Cartesian coordinates.

a. (3, 3) b. (-1, 0)

c. 1-1, 232 d. (4, -3)

 10. Find the polar coordinates, -p … u 6 2p and r … 0, of the 

 following points given in Cartesian coordinates.

a. (-2, 0) b. (1, 0)

c. (0, -3) d. a23

2
, 

1
2
b

Graphing Sets of Polar Coordinate Points

Graph the sets of points whose polar coordinates satisfy the equations 

and inequalities in Exercises 11–26.

 11. r = 2 12. 0 … r … 2

 13. r Ú 1 14. 1 … r … 2

 15. 0 … u … p>6, r Ú 0 16. u = 2p>3, r … -2

 17. u = p>3, -1 … r … 3 18. u = 11p>4, r Ú -1

 19. u = p>2, r Ú 0 20. u = p>2, r … 0

11.4 Graphing Polar Coordinate Equations

It is often helpful to graph an equation expressed in polar coordinates in the Cartesian  

xy-plane. This section describes some techniques for graphing these equations using sym-

metries and tangents to the graph.
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Symmetry

The following list shows how to test for three standard types of symmetries when using 

polar coordinates. These symmetries are illustrated in Figure 11.28.

Symmetry Tests for Polar Graphs in the Cartesian xy-Plane

1. Symmetry about the x-axis: If the point (r, u) lies on the graph, then the point 

(r, -u) or (-r, p - u) lies on the graph (Figure 11.28a).

2. Symmetry about the y-axis: If the point (r, u) lies on the graph, then the point 

(r, p - u) or (-r, -u) lies on the graph (Figure 11.28b).

3. Symmetry about the origin: If the point (r, u) lies on the graph, then the point 

(-r, u) or (r, u + p) lies on the graph (Figure 11.28c).

Slope

The slope of a polar curve r = ƒ(u) in the xy-plane is dy>dx, but this is not given by the 

formula r′ = dƒ>du. To see why, think of the graph of ƒ as the graph of the parametric 

equations

x = r cos u = ƒ(u) cos u,  y = r sin u = ƒ(u) sin u.

If ƒ is a differentiable function of u, then so are x and y and, when dx>du ≠ 0, we can 

calculate dy >dx from the parametric formula

 
dy

dx
=

dy>du
dx>du   Section 11.2, Eq. (1) with t = u  

 =

d

du
 (ƒ(u) sin u)

d

du
 (ƒ(u) cos u)

  Substitute

 =

df

du
 sin u + ƒ(u) cos u

df

du
 cos u - ƒ(u) sin u

  Product Rule for derivatives

Therefore we see that dy>dx is not the same as dƒ>du.

x

y

(r, u)

(r, −u)

or (−r, p − u)

0

(a)  About the x-axis

x

y

0

0

(b)  About the y-axis

(r, p − u)

or (−r, −u) (r, u)

x

y

(−r, u) or (r, u + p)

(c)  About the origin

(r, u)

FIGURE 11.28 Three tests for symmetry 

in polar coordinates.

Slope of the Curve r = ƒ(U) in the Cartesian xy-Plane

 
dy

dx
`
(r, u)

=
ƒ′(u) sin u + ƒ(u) cos u

ƒ′(u) cos u - ƒ(u) sin u
 (1)

provided dx>du ≠ 0 at (r, u).

If the curve r = ƒ(u) passes through the origin at u = u0, then ƒ(u0) = 0, and the 

slope equation gives

dy

dx
`
(0, u0)

=
ƒ′(u0) sin u0

ƒ′(u0) cos u0
= tan u0.

That is, the slope at (0, u0) is tan u0. The reason we say “slope at (0, u0)” and not just 

“slope at the origin” is that a polar curve may pass through the origin (or any point) more 

than once, with different slopes at different u@values. This is not the case in our first exam-

ple, however.
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EXAMPLE 1  Graph the curve r = 1 - cos u in the Cartesian xy-plane.

Solution The curve is symmetric about the x-axis because

 (r, u) on the graph 1  r = 1 - cos u

 1  r = 1 - cos (-u)   cos u = cos (-u) 

 1  (r, -u) on the graph.

As u increases from 0 to p, cos u decreases from 1 to -1, and r = 1 - cos u increases 

from a minimum value of 0 to a maximum value of 2. As u continues on from p to 

2p, cos u increases from -1 back to 1 and r decreases from 2 back to 0. The curve starts 

to repeat when u = 2p because the cosine has period 2p.

The curve leaves the origin with slope tan (0) = 0 and returns to the origin with slope 

tan (2p) = 0.

We make a table of values from u = 0 to u = p, plot the points, draw a smooth curve 

through them with a horizontal tangent at the origin, and reflect the curve across the x-axis to 

complete the graph (Figure 11.29). The curve is called a cardioid because of its heart shape. 

EXAMPLE 2  Graph the curve r2 = 4 cos u in the Cartesian xy-plane.

Solution The equation r2 = 4 cos u requires cos u Ú 0, so we get the entire graph by 

running u from -p>2 to p>2. The curve is symmetric about the x-axis because

 (r, u) on the graph 1  r2 = 4 cos u

 1  r2 = 4 cos (-u)   cos  u = cos (-u) 

 1  (r, -u) on the graph.

The curve is also symmetric about the origin because

 (r, u) on the graph 1  r2 = 4 cos u

 1  (-r)2 = 4 cos u

 1  (-r, u) on the graph.

Together, these two symmetries imply symmetry about the y-axis.

The curve passes through the origin when u = -p>2 and u = p>2. It has a vertical 

tangent both times because tan u is infinite.

For each value of u in the interval between -p>2 and p>2, the formula r2 = 4 cos u 

gives two values of r:

r = {22cos u.

We make a short table of values, plot the corresponding points, and use information about sym-

metry and tangents to guide us in connecting the points with a smooth curve (Figure 11.30).

(a)

(p, 2)

(p, 2)

3
2

(b)

x

y

02

1

(c)

y

x
02

1

r = 1 − cos u

2p
3

3
2

,

1,
p
2

p
3

1
2

,

2p
3

3
2

,

4p
3

3
2

,

1,
p
2

1,
3p
2

p
3

1
2

,

5p
3

1
2

,

a   b

a   b

a     b

a     b

a     b
a     b

a    b

a   b

a   b

 U r = 1 − cos U

 0  0

 
p

3
 

1
2

 
p

2
 1

 
2p
3

 
3
2

 p  2

FIGURE 11.29 The steps in graphing the 

cardioid r = 1 - cos u (Example 1). The 

arrow shows the direction of increasing u.

 U  cos U r = t22cos U

 0  1  {2

 {p

6
 
23

2
 ≈{1.9

 {p

4
 

1

22
 ≈{1.7

 {p

3
 

1
2

 ≈{1.4

 {p

2
 0  0

(b)

x

y

r2 = 4 cos u

2 2
0

Loop for r = −2"cos u,

 ≤ u ≤
p
2

p
2

−  ≤ u ≤
p
2

p
2

−

Loop for r = 2"cos u,

FIGURE 11.30 The graph of r2 = 4 cos u. The arrows show the direction of increasing u.  

The values of r in the table are rounded (Example 2). 

(a)
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Converting a Graph from the r U- to xy-Plane

One way to graph a polar equation r = ƒ(u) in the xy-plane is to make a table of 

(r, u)@values, plot the corresponding points there, and connect them in order of increasing 

u. This can work well if enough points have been plotted to reveal all the loops and dim-

ples in the graph. Another method of graphing is to

1. irst graph the function r = ƒ(u) in the Cartesian ru@plane,

2.  then use that Cartesian graph as a “table” and guide to sketch the polar coordinate 

graph in the xy-plane.

This method is sometimes better than simple point plotting because the first Cartesian 

graph shows at a glance where r is positive, negative, and nonexistent, as well as where r is 

increasing and decreasing. Here is an example.

EXAMPLE 3  Graph the lemniscate curve r2 = sin 2u in the Cartesian xy-plane.

Solution For this example it will be easier to first plot r2, instead of r, as a function of u 

in the Cartesian r2u@plane (see Figure 11.31a). We pass from there to the graph of 

r = {2sin 2u in the ru@plane (Figure 11.31b), and then draw the polar graph (Figure 

11.31c). The graph in Figure 11.31b “covers” the final polar graph in Figure 11.31c twice. 

We could have managed with either loop alone, with the two upper halves, or with the two 

lower halves. The double covering does no harm, however, and we actually learn a little 

more about the behavior of the function this way. 

USING TECHNOLOGY  Graphing Polar Curves Parametrically

For complicated polar curves we may need to use a graphing calculator or computer to 

graph the curve. If the device does not plot polar graphs directly, we can convert r = ƒ(u) 

into parametric form using the equations

x = r cos u = ƒ(u) cos u,  y = r sin u = ƒ(u) sin u.

Then we use the device to draw a parametrized curve in the Cartesian xy-plane.

−1

0

1

3p
2p2

p
4

p

p

2

r2 = sin 2u

(a)

(b)

(c)

−1

1

0

r = +"sin 2u

r = −"sin 2u

p p
2

3p
2

r2

u

u

r

No square roots of

negative numbers

± parts from

square roots

x

y

r2 = sin 2u

0

FIGURE 11.31 To plot r = ƒ(u) in 

the Cartesian ru@plane in (b), we first 

plot r2 = sin 2u in the r2u@plane in (a) 

and then ignore the values of u for which 

sin 2u is negative. The radii from the 

sketch in (b) cover the polar graph of the 

lemniscate in (c) twice (Example 3).

Symmetries and Polar Graphs

Identify the symmetries of the curves in Exercises 1–12. Then sketch 

the curves in the xy-plane.

 1. r = 1 + cos u 2. r = 2 - 2 cos u

 3. r = 1 - sin u 4. r = 1 + sin u

 5. r = 2 + sin u 6. r = 1 + 2 sin u

 7. r = sin (u>2) 8. r = cos (u>2)

 9. r2 = cos u 10. r2 = sin u

 11. r2 = -sin u 12. r2 = -cos u

Graph the lemniscates in Exercises 13–16. What symmetries do these 

curves have?

 13. r2 = 4 cos 2u 14. r2 = 4 sin 2u

 15. r2 = -sin 2u 16. r2 = -cos 2u

Slopes of Polar Curves in the xy-Plane

Find the slopes of the curves in Exercises 17–20 at the given points. 

Sketch the curves along with their tangents at these points.

 17. cardioid r = -1 + cos u; u = {p>2
 18. cardioid r = -1 + sin u; u = 0, p

 19. Four-leaved rose r = sin 2u; u = {p>4, {3p>4
 20. Four-leaved rose r = cos 2u; u = 0, {p>2, p

EXERCISES 11.4
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Concavity of Polar Curves in the xy-Plane

Equation (1) gives the formula for the derivative y′ of a polar curve 

r = ƒ(u). The second derivative is 
d2y

dx2
=

dy′>du
dx>du  (see Equation (2) in

Section 11.2). Find the slope and concavity of the curves in Exercises 

21–24 at the given points.

 21. r = sin u, u = p>6, p>3 22. r = eu, u = 0, p

 23. r = u, u = 0, p>2 24. r = 1>u, u = -p, 1

Graphing Limaçons

Graph the limaçons in Exercises 25–28. Limaçon (“lee-ma-sahn”) is 

Old French for “snail.” You will understand the name when you graph 

the limaçons in Exercise 25. Equations for limaçons have the form 

r = a { b cos u or r = a { b sin u. There are four basic shapes.

 25. Limaçons with an inner loop

a. r =
1
2

+ cos u b. r =
1
2

+ sin u

 26. cardioids

a. r = 1 - cos u b. r = -1 + sin u

 27. Dimpled limaçons

a. r =
3
2

+ cos u b. r =
3
2

- sin u

 28. oval limaçons

a. r = 2 + cos u b. r = -2 + sin u

Graphing Polar Regions and Curves in the xy-Plane

 29. Sketch the region deined by the inequalities -1 … r … 2 and 

-p>2 … u … p>2.

 30. Sketch the region deined by the inequalities 0 … r … 2 sec u and 

-p>4 … u … p>4.

In Exercises 31 and 32, sketch the region defined by the inequality.

 31. 0 … r … 2 - 2 cos u 32. 0 … r2 … cos u

 33. Which of the following has the same graph as r = 1 - cos u?

a. r = -1 - cos u b. r = 1 + cos u

Conirm your answer with algebra.

 34. Which of the following has the same graph as r = cos 2u?

a. r = -sin (2u + p>2) b. r = -cos (u>2)

Conirm your answer with algebra.

 35. A rose within a rose Graph the equation r = 1 - 2 sin 3u.

 36. the nephroid of Freeth Graph the nephroid of Freeth:

r = 1 + 2 sin 
u

2
.

 37. roses Graph the roses r = cos mu for m = 1>3, 2, 3, and 7.

 38. spirals Polar coordinates are just the thing for deining spirals. 

Graph the following spirals.

a. r = u

b. r = -u

c. A logarithmic spiral: r = eu>10

d. A hyperbolic spiral: r = 8>u
e. An equilateral hyperbola: r = {10>2u

(Use diferent colors for the two branches.)

 39. Graph the equation r = sin 18
7 u2 for 0 … u … 14p.

 40. Graph the equation

r = sin2 (2.3u) + cos4 (2.3u)

for 0 … u … 10p.

T

T

T

T

T

T

T

T

11.5 Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions and lengths of curves in polar 

coordinates.

Area in the Plane

The region OTS in Figure 11.32 is bounded by the rays u = a and u = b and the curve 

r = ƒ(u). We approximate the region with n nonoverlapping fan-shaped circular sectors 

based on a partition P of angle TOS. The typical sector has radius rk = ƒ(uk) and central 

angle of radian measure ∆uk. Its area is ∆uk>2p times the area of a circle of radius rk , or

Ak =
1
2

 rk 2 ∆uk =
1
2

 1ƒ(uk)22 ∆uk.

The area of region OTS is approximately

a
n

k = 1
 Ak = a

n

k = 1

 
1
2

 1ƒ(uk)22 ∆uk.

If ƒ is continuous, we expect the approximations to improve as the norm of the parti-

tion P goes to zero, where the norm of P is the largest value of ∆uk. We are therefore led to 

the following formula for the region’s area:

x

y

O

S rn

rk

u = b

u = ar1

r2

uk

r = f (u)

( f (uk), uk)

Δuk

T

FIGURE 11.32 To derive a formula for 

the area of region OTS, we approximate 

the region with fan-shaped circular sectors.
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A = lim
‘P‘ S0

 a
n

k = 1

 
1
2

 1ƒ(uk)22 ∆uk = L
b

a

 
1
2

 1ƒ(u)22 du.

O
x

y

P(r, u)

du

u

r

dA =    r 2du
1
2

FIGURE 11.33 The area differential dA 

for the curve r = ƒ(u).

Area of the Fan-Shaped Region Between the Origin and the Curve 

r = ƒ(U) when A " U " B, r # 0, and B − A " 2P.

A = L
b

a

 
1
2

 r2 du

This is the integral of the area differential (Figure 11.33)

dA =
1
2

 r2 du =
1
2

 1ƒ(u)22 du.

In the area formula above, we assumed that r Ú 0 and that the region does not sweep out 

an angle of more than 2p. This avoids issues with negatively signed areas or with regions 

that overlap themselves. More general regions can usually be handled by subdividing them 

into regions of this type if necessary.

Area of the Region 0 " r1(U) " r " r2(U), A " U " B, and B − A " 2P.

 A = L
b

a

 
1
2

 r2 

2 du - L
b

a

 
1
2

 r1 

2 du = L
b

a

 
1
2

 1r2 

2 - r1 

22 du (1)

EXAMPLE 2  Find the area of the region that lies inside the circle r = 1 and outside 

the cardioid r = 1 - cos u.

Solution We sketch the region to determine its boundaries and find the limits of integra-

tion (Figure 11.36). The outer curve is r2 = 1, the inner curve is r1 = 1 - cos u, and u 

runs from -p>2 to p>2. The area, from Equation (1), is

EXAMPLE 1  Find the area of the region in the xy-plane enclosed by the cardioid 

r = 2(1 + cos u).

Solution We graph the cardioid (Figure 11.34) and determine that the radius OP sweeps 

out the region exactly once as u runs from 0 to 2p. The area is therefore

  L
u= 2p

u= 0

 
1
2

 r2 du = L
2p

0

 
1
2

# 4(1 + cos u)2 du

 = L
2p

0

2(1 + 2 cos u + cos2 u) du

 = L
2p

0

a2 + 4 cos u + 2 # 1 + cos 2u
2

b  du

 = L
2p

0

(3 + 4 cos u + cos 2u) du

  = c 3u + 4 sin u +
sin 2u

2
d

0

2p

= 6p - 0 = 6p. 

To find the area of a region like the one in Figure 11.35, which lies between two polar 

curves r1 = r1(u) and r2 = r2(u) from u = a to u = b, we subtract the integral of 

(1>2)r1 

2 du from the integral of (1>2)r2 

2 du. This leads to the following formula.

y

x
0

u = b

u = a

r2

r1

FIGURE 11.35 The area of the shaded 

region is calculated by subtracting the area 

of the region between r1 and the origin 

from the area of the region between r2 and 

the origin.

x

y

0 4

r

r = 2(1 + cos u)

u = 0, 2p

P(r, u)2

−2

FIGURE 11.34 The cardioid in  

Example 1.
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 A = L
p>2

-p>2  
1
2

 1r2 

2 - r1 

22 du  Eq. (1)

 = 2 L
p>2

0

 
1
2

 1r2 

2 - r1 

22 du  Symmetry

 = L
p>2

0

(1 - (1 - 2 cos u + cos2 u)) du  r2 = 1 and r1 = 1 - cos u 

 = L
p>2

0

(2 cos u - cos2 u) du = L
p>2

0

a2 cos u -
1 + cos 2u

2
b  du

 = c 2 sin u -
u
2

-
sin 2u

4
d

0

p>2
= 2 -

p
4

.  

The fact that we can represent a point in different ways in polar coordinates requires 

extra care in deciding when a point lies on the graph of a polar equation and in determining 

the points in which polar graphs intersect. (We needed intersection points in Example 2.) 

In Cartesian coordinates, we can always find the points where two curves cross by solving 

their equations simultaneously. In polar coordinates, the story is different. Simultaneous 

solution may reveal some intersection points without revealing others, so it is sometimes 

difficult to find all points of intersection of two polar curves. One way to identify all the 

points of intersection is to graph the equations.

x

y

0

r2 = 1

r1 = 1 − cos u

Upper limit

u = p�2

Lower limit

u = −p�2

u

FIGURE 11.36 The region and limits of 

integration in Example 2.

EXAMPLE 3  Find all of the points where the curve r = 2 cos (u>3) intersects the 

circle of radius 22 centered at the origin.

Solution Note that the function r = 2 cos (u>3) takes both positive and negative values. 

Therefore, when we look for the points where this curve intersects the circle, it is impor-

tant to take into account that the circle is described both by the equation r = 22 and the 

equation r = -22.

Solving 2 cos (u>3) = 22 for u yields:

 2 cos (u>3) = 22,  cos (u>3) = 22>2,  u>3 = p>4,  u = 3p>4.

This gives us one point, 122, 3p>42, where the two curves intersect. However, as we can 

see by looking at the graphs in Figure 11.37, there is a second intersection point. To find 

the second point, we solve 2 cos (u>3) = -22 for u:

 2 cos (u>3) = -22,  cos (u>3) = -22>2,  u>3 = 3p>4,  u = 9p>4.

The second intersection point is located at 1-22, 9p>42. We can specify this point  

in polar coordinates using a positive value of r and an angle between 0 and 2p. In  

polar coordinates, adding multiples of 2p to u gives a second description of the same 

point in the plane. Similarly, changing the sign of r, while at the same time adding or sub-

tracting p to u, also gives a description of the same point. So in polar coordinates 1-22, 9p>42 describes the same point in the plane as 1-22, p>42 and also as 122, 5p>42. The second intersection point is located at 122, 5p>42. 
Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve r = ƒ(u), a … u … b, 

by parametrizing the curve as

 x = r cos u = ƒ(u) cos u,  y = r sin u = ƒ(u) sin u,  a … u … b. (2)

x

y

1 2−1

−1

2

1

r = 2 cos (u/3)

r ="2

(      , 3p/4)"2

(      , 5p/4)"2

FIGURE 11.37 The curves 

r = 2 cos (u>3) and r = 22  

intersect at two points (Example 3).
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Length of a Polar Curve

If r = ƒ(u) has a continuous first derivative for a … u … b and if the point 

P(r, u) traces the curve r = ƒ(u) exactly once as u runs from a to b, then the 

length of the curve is

 L = L
b

a Br2 + adr

du
b2

 du. (3)

EXAMPLE 4  Find the length of the cardioid r = 1 - cos u.

Solution We sketch the cardioid to determine the limits of integration (Figure 11.38). 

The point P(r, u) traces the curve once, counterclockwise as u runs from 0 to 2p, so these 

are the values we take for a and b.

With

r = 1 - cos u,  
dr

du
= sin u,

we have

 r2 + adr

du
b2

= (1 - cos u)2 + (sin u)2

 = 1 - 2 cos u + cos2 u + sin2 u = 2 - 2 cos u(++)++*
 1

and    

 L = L
b

a Br2 + adr

du
b2

 du = L
2p

0

22 - 2 cos u du

 = L
2p

0 A4 sin2  
u
2

  du  1 - cos u = 2 sin2 (u>2) 

 = L
2p

0

2 ` sin 
u
2
`  du

 = L
2p

0

2 sin 
u
2

 du  sin (u>2) Ú 0 for 0 … u … 2p 

 = c-4 cos 
u
2
d

0

2p

= 4 + 4 = 8.  

0

1

2

r

x

y

u

r = 1 − cos u

P(r, u)

FIGURE 11.38 Calculating the length  

of a cardioid (Example 4).

The parametric length formula, Equation (3) from Section 11.2, then gives the length as

L = L
b

a B adx

du
b2

+ ady

du
b2

 du.

This equation becomes

L = L
b

a Br2 + adr

du
b2

 du

when Equations (2) are substituted for x and y (Exercise 29).



 11.5  Areas and Lengths in Polar Coordinates 679

Finding Polar Areas

Find the areas of the regions in Exercises 1–8.

 1. Bounded by the spiral r = u for 0 … u … p

x

y

0

r = u
p
2

p
2

,

(p, p)

a      b

 2. Bounded by the circle r = 2 sin u for p>4 … u … p>2

x

y

0

r = 2 sin u

2
p
2

,

u =
p
4

a     b

 3. Inside the oval limaçon r = 4 + 2 cos u

 4. Inside the cardioid r = a(1 + cos u), a 7 0

 5. Inside one leaf of the four-leaved rose r = cos 2u

 6. Inside one leaf of the three-leaved rose r = cos 3u

x

y

1

r = cos 3u

 7. Inside one loop of the lemniscate r2 = 4 sin 2u

 8. Inside the six-leaved rose r2 = 2 sin 3u

Find the areas of the regions in Exercises 9–18.

 9. Shared by the circles r = 2 cos u and r = 2 sin u

 10. Shared by the circles r = 1 and r = 2 sin u

 11. Shared by the circle r = 2 and the cardioid r = 2(1 - cos u)

 12. Shared by the cardioids r = 2(1 + cos u) and r = 2(1 - cos u)

 13. Inside the lemniscate r2 = 6 cos 2u and outside the circle r =  23

 14. Inside the circle r = 3a cos u and outside the cardioid 

r = a(1 + cos u), a 7 0

 15. Inside the circle r = -2 cos u and outside the circle r = 1

 16. Inside the circle r = 6 above the line r = 3 csc u

 17. Inside the circle r = 4 cos u and to the right of the vertical line 

r = sec u

 18. Inside the circle r = 4 sin u and below the horizontal line 

r = 3 csc u

 19. a. Find the area of the shaded region in the accompanying igure.

x

y

0 1−1

(1, p�4)

r = tan u

< u <
p
2

p
2

–

r = ("2�2) csc u

b. It looks as if the graph of r = tan u, -p>2 6 u 6 p>2, 

could be asymptotic to the lines x = 1 and x = -1. Is it? 

Give reasons for your answer.

 20. The area of the region that lies inside the cardioid curve 

r = cos u + 1 and outside the circle r = cos u is not

1
2

 L
2p

0

3(cos u + 1)2 - cos2 u4  du = p.

  Why not? What is the area? Give reasons for your answers.

Finding Lengths of Polar Curves

Find the lengths of the curves in Exercises 21–28.

 21. The spiral r = u2, 0 … u … 25

 22. The spiral r = eu>22, 0 … u … p

 23. The cardioid r = 1 + cos u

 24. The curve r = a sin2  (u>2), 0 … u … p, a 7 0

 25. The parabolic segment r = 6>(1 + cos u), 0 … u … p>2
 26. The parabolic segment r = 2>(1 - cos u), p>2 … u … p

 27. The curve r = cos3 (u>3), 0 … u … p>4
 28. The curve r = 21 + sin 2u, 0 … u … p22

 29. the length of the curve r = ƒ(U) , A … U … B Assuming  

that the necessary derivatives are continuous, show how the 

 substitutions

x = ƒ(u) cos u, y = ƒ(u) sin u

  (Equations 2 in the text) transform

L = L
b

a B adx

du
b2

+ ady

du
b2

 du

into

L = L
b

a Br2 + adr

du
b2

 du.

EXERCISES 11.5
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 30. circumferences of circles As usual, when faced with a new 

formula, it is a good idea to try it on familiar objects to be sure it 

gives results consistent with past experience. Use the length for-

mula in Equation (3) to calculate the circumferences of the follow-

ing circles (a 7 0).

a. r = a  b. r = a cos u  c. r = a sin u

Theory and Examples

 31. Average value If ƒ is continuous, the average value of the polar 

coordinate r over the curve r = ƒ(u), a … u … b, with respect to 

u is given by the formula

rav =
1

b - a
 L

b

a

ƒ(u) du.

Use this formula to ind the average value of r with respect to u 

over the following curves (a 7 0).

a. The cardioid r = a(1 - cos u)

b. The circle r = a

c. The circle r = a cos u, -p>2 … u … p>2
 32. r = ƒ(U)  vs.  r = 2ƒ (U)  Can anything be said about the rela-

tive lengths of the curves r = ƒ(u), a … u … b, and r = 2ƒ(u), 

a … u … b? Give reasons for your answer.

11.6 Conic Sections

In this section we define and review parabolas, ellipses, and hyperbolas geometrically and 

derive their standard Cartesian equations. These curves are called conic sections or conics 

because they are formed by cutting a double cone with a plane (Figure 11.39). This 

HistoricAL BiogrApHy

gregory st. Vincent

(1584–1667)

www.goo.gl/WZD6Hz

Circle: plane perpendicular

to cone axis

Ellipse: plane oblique

to cone axis

Point: plane through

cone vertex only

Single line: plane

tangent to cone

Pair of intersecting lines

Parabola: plane parallel

to side of cone

Hyperbola: plane

parallel to cone axis

(a)

(b)

FIGURE 11.39 The standard conic sections (a) are the curves in which a plane cuts a double cone. Hyperbolas come in two parts, 

called branches. The point and lines obtained by passing the plane through the cone’s vertex (b) are degenerate conic sections.

http://www.goo.gl/WZD6Hz
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If the focus F lies on the directrix L, the parabola is the line through F perpendicular to 

L. We consider this to be a degenerate case and assume henceforth that F does not lie on L.

A parabola has its simplest equation when its focus and directrix straddle one of the 

coordinate axes. For example, suppose that the focus lies at the point F(0, p) on the posi-

tive y-axis and that the directrix is the line y = -p (Figure 11.40). In the notation of the 

figure, a point P(x, y) lies on the parabola if and only if PF = PQ. From the distance 

 formula,

PF = 2(x - 0)2 + ( y - p)2 = 2x2 + (y - p)2

PQ = 2(x - x)2 + ( y - (-p))2 = 2( y + p)2.

When we equate these expressions, square, and simplify, we get

 y =
x2

4p
  or  x2 = 4py.  Standard form  (1)

These equations reveal the parabola’s symmetry about the y-axis. We call the y-axis the 

axis of the parabola (short for “axis of symmetry”).

The point where a parabola crosses its axis is the vertex. The vertex of the parabola 

x2 = 4py lies at the origin (Figure 11.40). The positive number p is the parabola’s focal 

length.

If the parabola opens downward, with its focus at (0, -p) and its directrix the line 

y = p, then Equations (1) become

y = -  
x2

4p
  and  x2 = -4py.

By interchanging the variables x and y, we obtain similar equations for parabolas opening 

to the right or to the left (Figure 11.41).

Directrix: y = −p

The vertex lies

halfway between

directrix and focus.

Q(x, −p)

P(x, y)

F(0, p)
Focus

p

p

x2 = 4py

L

x

y

FIGURE 11.40 The standard form of the 

parabola x2 = 4py, p 7 0.

DEFINITIONS A set that consists of all the points in a plane equidistant from 

a given fixed point and a given fixed line in the plane is a parabola. The fixed 

point is the focus of the parabola. The fixed line is the directrix.

 geometric method was the only way that conic sections could be described by Greek 

mathematicians, since they did not have our tools of Cartesian or polar coordinates. In the 

next section we express the conics in polar coordinates.

Parabolas

Vertex

Directrix

x = −p

0

Focus

F(p, 0)

y2 = 4px

x

y

(a)

Directrix

x = p

0

Focus

F(−p, 0)

y2 = −4px

Vertex

x

y

(b)

FIGURE 11.41 (a) The parabola y2 = 4px. (b) The parabola 

y2 = -4px.



682 Chapter 11 Parametric Equations and Polar Coordinates

EXAMPLE 1  Find the focus and directrix of the parabola y2 = 10x.

Solution We find the value of p in the standard equation y2 = 4px:

4p = 10,  so  p =
10
4

=
5
2

.

Then we find the focus and directrix for this value of p:

 Focus:  ( p, 0) = a5
2

, 0b
  Directrix:  x = -p  or  x = -  

5
2

. 

Ellipses

DEFINITIONS An ellipse is the set of points in a plane whose distances from 

two fixed points in the plane have a constant sum. The two fixed points are the 

foci of the ellipse.

The line through the foci of an ellipse is the ellipse’s focal axis. The point on 

the axis halfway be-tween the foci is the center. The points where the focal axis 

and ellipse cross are the ellipse’s vertices (Figure 11.42).

If the foci are F1(-c, 0) and F2(c, 0) (Figure 11.43), and PF1 + PF2 is denoted by 2a, 

then the coordinates of a point P on the ellipse satisfy the equation

2(x + c)2 + y2 + 2(x - c)2 + y2 = 2a.

To simplify this equation, we move the second radical to the right-hand side, square, 

 isolate the remaining radical, and square again, obtaining

 
x2

a2
+

y2

a2 - c2
= 1. (2)

Since PF1 + PF2 is greater than the length F1 F2 (by the triangle inequality for triangle 

PF1 F2), the number 2a is greater than 2c. Accordingly, a 7 c and the number a2 - c2 in 

Equation (2) is positive.

The algebraic steps leading to Equation (2) can be reversed to show that every point P 

whose coordinates satisfy an equation of this form with 0 6 c 6 a also satisfies the 

equation PF1 + PF2 = 2a. A point therefore lies on the ellipse if and only if its coordi-

nates satisfy Equation (2).

If we let b denote the positive square root of a2 - c2,

 b = 2a2 - c2, (3)

then a2 - c2 = b2 and Equation (2) takes the form

 
x2

a2
+

y2

b2
= 1. (4)

Equation (4) reveals that this ellipse is symmetric with respect to the origin and both 

coordinate axes. It lies inside the rectangle bounded by the lines x = {a and y = {b. It 

crosses the axes at the points ({a, 0) and (0, {b). The tangents at these points are 

 perpendicular to the axes because

dy

dx
= -  

b2x

a2y
,  

Obtained from Eq. (4)  

by implicit differentiation

which is zero if x = 0 and infinite if y = 0.

Vertex VertexFocus FocusCenter

Focal axis

FIGURE 11.42 Points on the focal axis 

of an ellipse.

x

y

Focus Focus

Center0F1(−c, 0)
F2(c, 0)

P(x, y)

a

b

FIGURE 11.43 The ellipse defined by 

the equation PF1 + PF2 = 2a is the graph 

of the equation (x2>a2) + (y2>b2) = 1, 

where b2 = a2 - c2.
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The major axis of the ellipse in Equation (4) is the line segment of length 2a joining 

the points ({a, 0). The minor axis is the line segment of length 2b joining the points 

(0, {b). The number a itself is the semimajor axis, the number b the semiminor axis. 

The number c, found from Equation (3) as

c = 2a2 - b2,

is the center-to-focus distance of the ellipse. If a = b then the ellipse is a circle.

EXAMPLE 2  The ellipse

 
x2

16
+

y2

9
= 1 (5)

shown in Figure 11.44 has

 Semimajor axis: a = 216 = 4,  Semiminor axis: b = 29 = 3,

 Center@to@focus distance: c = 216 - 9 = 27,

 Foci: ({c, 0) = 1{27, 02 ,
 Vertices: ({a, 0) = ({4, 0) ,

  Center: (0, 0).  

If we interchange x and y in Equation (5), we have the equation

 
x2

9
+

y2

16
= 1. (6)

The major axis of this ellipse is now vertical instead of horizontal, with the foci and vertices on 

the y-axis. We can determine which way the major axis runs simply by finding the intercepts of 

the ellipse with the coordinate axes. The longer of the two axes of the ellipse is the major axis.

x

y

(0, 3)

(0, −3)

Vertex

(4, 0)

Vertex

(−4, 0)

Focus Focus

Center

0(−"7, 0) ("7, 0)

x2

16

y2

9
+      = 1

FIGURE 11.44 An ellipse with its major 

axis horizontal (Example 2).

Standard-Form Equations for Ellipses Centered at the Origin

Foci on the x-axis: 
x2

a2
+

y2

b2
= 1 (a 7 b)

 Center@to@focus distance: c = 2a2 - b2

 Foci: ({c, 0)

 Vertices: ({a, 0)

Foci on the y-axis: 
x2

b2
+

y2

a2
= 1 (a 7 b)

 Center@to@focus distance: c = 2a2 - b2

 Foci: (0, {c)

 Vertices: (0, {a)

In each case, a is the semimajor axis and b is the semiminor axis.

Hyperbolas

DEFINITIONS A hyperbola is the set of points in a plane whose distances 

from two fixed points in the plane have a constant difference. The two fixed 

points are the foci of the hyperbola.

The line through the foci of a hyperbola is the focal axis. The point on the 

axis halfway between the foci is the hyperbola’s center. The points where the 

 focal axis and hyperbola cross are the vertices (Figure 11.45).

Focus Focus

Center

Focal axis

Vertices

FIGURE 11.45 Points on the focal axis 

of a hyperbola.
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If the foci are F1(-c, 0) and F2(c, 0) (Figure 11.46) and the constant difference is 2a, 

then a point (x, y) lies on the hyperbola if and only if

 2(x + c)2 + y2 - 2(x - c)2 + y2 = {2a. (7)

To simplify this equation, we move the second radical to the right-hand side, square, 

 isolate the remaining radical, and square again, obtaining

 
x2

a2
+

y2

a2 - c2
= 1. (8)

So far, this looks just like the equation for an ellipse. But now a2 - c2 is negative because 

2a, being the difference of two sides of triangle PF1 F2, is less than 2c, the third side.

The algebraic steps leading to Equation (8) can be reversed to show that every point P 

whose coordinates satisfy an equation of this form with 0 6 a 6 c also satisfies Equation 

(7). A point therefore lies on the hyperbola if and only if its coordinates satisfy Equation (8).

If we let b denote the positive square root of c2 - a2,

 b = 2c2 - a2, (9)

then a2 - c2 = -b2 and Equation (8) takes the compact form

 
x2

a2
-

y2

b2
= 1. (10)

The differences between Equation (10) and the equation for an ellipse (Equation 4) are the 

minus sign and the new relation

c2 = a2 + b2.  From Eq. (9)

Like the ellipse, the hyperbola is symmetric with respect to the origin and coordinate axes. 

It crosses the x-axis at the points ({a, 0). The tangents at these points are vertical because

dy

dx
=

b2x

a2y
  

Obtained from Eq. (10) by 

implicit differentiation
 

and this is infinite when y = 0. The hyperbola has no y-intercepts; in fact, no part of the 

curve lies between the lines x = -a and x = a.

The lines

y = {b
a x

are the two asymptotes of the hyperbola defined by Equation (10). The fastest way to find 

the equations of the asymptotes is to replace the 1 in Equation (10) by 0 and solve the new 

equation for y:

x2

a2
-

y2

b2
= 1 S  

x2

a2
-

y2

b2
= 0 S  y = {b

a x.

 (++)++* (++)++* (++)++*
 hyperbola 0 for 1 asymptotes

EXAMPLE 3  The equation

 
x2

4
-

y2

5
= 1 (11)

is Equation (10) with a2 = 4 and b2 = 5 (Figure 11.47). We have

 Center@to@focus distance: c = 2a2 + b2 = 24 + 5 = 3,

 Foci: ({c, 0) = ({3, 0),  Vertices: ({a, 0) = ({2, 0),

 Center: (0, 0),

  Asymptotes: 
x2

4
-

y2

5
= 0 or y = {25

2
 x.  

x

y

0F1(−c, 0) F2(c, 0)

x = −a x = a

P(x, y)

FIGURE 11.46 Hyperbolas have two 

branches. For points on the right-hand 

branch of the hyperbola shown here, 

PF1 - PF2 = 2a. For points on the left-

hand branch, PF2 - PF1 = 2a. We then 

let b = 2c2 - a2.

x

y

F(3, 0)F(−3, 0)

2−2

y = −       x"5
2

y =        x"5
2

x2

4

y2

5
−      = 1

FIGURE 11.47 The hyperbola and its 

asymptotes in Example 3.
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If we interchange x and y in Equation (11), the foci and vertices of the resulting 

hyperbola will lie along the y-axis. We still find the asymptotes in the same way as before, 

but now their equations will be y = {2x>25.

Standard-Form Equations for Hyperbolas Centered at the Origin

Foci on the x-axis: 
x2

a2
-

y2

b2
= 1

  Center@to@focus distance: c = 2a2 + b2

  Foci: ({c, 0)

  Vertices: ({a, 0)

  Asymptotes: 
x2

a2
-

y2

b2
= 0 or y = {b

a x

Foci on the y-axis: 
y2

a2
-

x2

b2
= 1

  Center@to@focus distance: c = 2a2 + b2

  Foci: (0, {c)

  Vertices: (0, {a)

  Asymptotes: 
y2

a2
-

x2

b2
= 0 or y = {a

b
 x

Notice the difference in the asymptote equations (b >a in the first, a >b in the second).

We shift conics using the principles reviewed in Section 1.2, replacing x by x + h and 

y by y + k.

EXAMPLE 4  Show that the equation x2 - 4y2 + 2x + 8y - 7 = 0 represents a 

hyperbola. Find its center, asymptotes, and foci.

Solution We reduce the equation to standard form by completing the square in x and y 

as follows:

(x2 + 2x) - 4(  y2 - 2y) = 7

(x2 + 2x + 1) - 4(  y2 - 2y + 1) = 7 + 1 - 4

(x + 1)2

4
- ( y - 1)2 = 1.

This is the standard form Equation (10) of a hyperbola with x replaced by x + 1 and y 

replaced by y - 1. The hyperbola is shifted one unit to the left and one unit upward, and it 

has center x + 1 = 0 and y - 1 = 0, or x = -1 and y = 1. Moreover,

a2 = 4,  b2 = 1,  c2 = a2 + b2 = 5,

so the asymptotes are the two lines

x + 1
2

- ( y - 1) = 0  and  
x + 1

2
+ ( y - 1) = 0,

or

y - 1 = {1
2

 (x + 1).

The shifted foci have coordinates 1-1 {  25, 12. 
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Identifying Graphs

Match the parabolas in Exercises 1–4 with the following equations:

x2 = 2y, x2 = -6y, y2 = 8x, y2 = -4x.

Then find each parabola’s focus and directrix.

 1. 

x

y  2. 

x

y

 3. 

x

y  4. 

x

y

Match each conic section in Exercises 5–8 with one of these  

equations:

 
x2

4
+

y2

9
= 1,  

x2

2
+ y2 = 1, 

 
y2

4
- x2 = 1,  

x2

4
-

y2

9
= 1.

Then find the conic section’s foci and vertices. If the conic section is a 

hyperbola, find its asymptotes as well.

 5. 

x

y  6. 

x

y

 7. 

x

y  8. 

x

y

Parabolas

Exercises 9–16 give equations of parabolas. Find each parabola’s 

focus and directrix. Then sketch the parabola. Include the focus and 

directrix in your sketch.

 9. y2 = 12x 10. x2 = 6y 11. x2 = -8y

 12. y2 = -2x 13. y = 4x2 14. y = -8x2

 15. x = -3y2 16. x = 2y2

EXERCISES 11.6

Shifting Conic Sections

You may wish to review Section 1.2 before solving Exercises 39–56.

 39. The parabola y2 = 8x is shifted down 2 units and right 1 unit to 

generate the parabola ( y + 2)2 = 8(x - 1).

a. Find the new parabola’s vertex, focus, and directrix.

b. Plot the new vertex, focus, and directrix, and sketch in the 

parabola.

 40. The parabola x2 = -4y is shifted left 1 unit and up 3 units to 

generate the parabola (x + 1)2 = -4(y - 3).

a. Find the new parabola’s vertex, focus, and directrix.

b. Plot the new vertex, focus, and directrix, and sketch in the 

parabola.

Ellipses

Exercises 17–24 give equations for ellipses. Put each equation in stan-

dard form. Then sketch the ellipse. Include the foci in your sketch.

 17. 16x2 + 25y2 = 400 18. 7x2 + 16y2 = 112

 19. 2x2 + y2 = 2 20. 2x2 + y2 = 4

 21. 3x2 + 2y2 = 6 22. 9x2 + 10y2 = 90

 23. 6x2 + 9y2 = 54 24. 169x2 + 25y2 = 4225

Exercises 25 and 26 give information about the foci and vertices of 

ellipses centered at the origin of the xy-plane. In each case, find the 

ellipse’s standard-form equation from the given information.

 25. Foci: 1{22, 02 Vertices: ({2, 0)

 26. Foci: (0, {4) Vertices: (0, {5)

Hyperbolas

Exercises 27–34 give equations for hyperbolas. Put each equation in 

standard form and find the hyperbola’s asymptotes. Then sketch the 

hyperbola. Include the asymptotes and foci in your sketch.

 27. x2 - y2 = 1 28. 9x2 - 16y2 = 144

 29. y2 - x2 = 8 30. y2 - x2 = 4

 31. 8x2 - 2y2 = 16 32. y2 - 3x2 = 3

 33. 8y2 - 2x2 = 16 34. 64x2 - 36y2 = 2304

 37. Vertices: ({3, 0)

  Asymptotes: y = {4
3

 x

 38. Vertices: (0, {2)

  Asymptotes: y = {1
2

 x

 36. Foci: ({2, 0)

  Asymptotes: y = { 1

23
 x

Exercises 35–38 give information about the foci, vertices, and asymp-

totes of hyperbolas centered at the origin of the xy-plane. In each case, 

find the hyperbola’s standard-form equation from the information 

given.

 35. Foci: 10, {222
  Asymptotes: y = {x
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Exercises 53–56 give equations for hyperbolas and tell how many 

units up or down and to the right or left each hyperbola is to be 

shifted. Find an equation for the new hyperbola, and find the new 

 center, foci, vertices, and asymptotes.

 53. 
x2

4
-

y2

5
= 1, right 2, up 2

 54. 
x2

16
-

y2

9
= 1, left 2, down 1

 55. y2 - x2 = 1, left 1, down 1

 56. 
y2

3
- x2 = 1, right 1, up 3

Find the center, foci, vertices, asymptotes, and radius, as appropriate, 

of the conic sections in Exercises 57–68.

 57. x2 + 4x + y2 = 12

 58. 2x2 + 2y2 - 28x + 12y + 114 = 0

 59. x2 + 2x + 4y - 3 = 0 60. y2 - 4y - 8x - 12 = 0

 61. x2 + 5y2 + 4x = 1 62. 9x2 + 6y2 + 36y = 0

 63. x2 + 2y2 - 2x - 4y = -1

 64. 4x2 + y2 + 8x - 2y = -1

 65. x2 - y2 - 2x + 4y = 4 66. x2 - y2 + 4x - 6y = 6

 67. 2x2 - y2 + 6y = 3 68. y2 - 4x2 + 16x = 24

Theory and Examples

 69. If lines are drawn parallel to the coordinate axes through a point P 

on the parabola y2 = kx, k 7 0, the parabola partitions the rect-

angular region bounded by these lines and the coordinate axes into 

two smaller regions, A and B.

a. If the two smaller regions are revolved about the y-axis, show 

that they generate solids whose volumes have the ratio 4:1.

b. What is the ratio of the volumes generated by revolving the 

regions about the x-axis?

0
x

y

A

B

P

y2 = kx

 70. suspension bridge cables hang in parabolas The suspension 

bridge cable shown in the accompanying igure supports a uni-

form load of w pounds per horizontal foot. It can be shown that if 

H is the horizontal tension of the cable at the origin, then the curve 

of the cable satisies the equation

dy

dx
=

w

H
  x.

  Show that the cable hangs in a parabola by solving this diferential 

equation subject to the initial condition that y = 0 when x = 0.

x

y

Bridge cable

0

 41. The ellipse (x2>16) + (y2>9) = 1 is shifted 4 units to the right 

and 3 units up to generate the ellipse

(x - 4)2

16
+

(y - 3)2

9
= 1.

a. Find the foci, vertices, and center of the new ellipse.

b. Plot the new foci, vertices, and center, and sketch in the new 

ellipse.

 42. The ellipse (x2>9) + (y2>25) = 1 is shifted 3 units to the left 

and 2 units down to generate the ellipse

(x + 3)2

9
+

( y + 2)2

25
= 1.

a. Find the foci, vertices, and center of the new ellipse.

b. Plot the new foci, vertices, and center, and sketch in the new 

ellipse.

 43. The hyperbola (x2>16) - (y2>9) = 1 is shifted 2 units to the 

right to generate the hyperbola

(x - 2)2

16
-

y2

9
= 1.

a. Find the center, foci, vertices, and asymptotes of the new 

hyperbola.

b. Plot the new center, foci, vertices, and asymptotes, and sketch 

in the hyperbola.

 44. The hyperbola (y2>4) - (x2>5) = 1 is shifted 2 units down to 

generate the hyperbola

( y + 2)2

4
-

x2

5
= 1.

a. Find the center, foci, vertices, and asymptotes of the new 

hyperbola.

b. Plot the new center, foci, vertices, and asymptotes, and sketch 

in the hyperbola.

Exercises 45–48 give equations for parabolas and tell how many units 

up or down and to the right or left each parabola is to be shifted. Find 

an equation for the new parabola, and find the new vertex, focus, and 

directrix.

 45. y2 = 4x, left 2, down 3 46. y2 = -12x, right 4, up 3

 47. x2 = 8y, right 1, down 7 48. x2 = 6y, left 3, down 2

Exercises 49–52 give equations for ellipses and tell how many units up 

or down and to the right or left each ellipse is to be shifted. Find an 

equation for the new ellipse, and find the new foci, vertices, and center.

 49. 
x2

6
+

y2

9
= 1, left 2, down 1

 50. 
x2

2
+ y2 = 1, right 3, up 4

 51. 
x2

3
+

y2

2
= 1, right 2, up 3

 52. 
x2

16
+

y2

25
= 1, left 4, down 5
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 71. the width of a parabola at the focus Show that the number 

4p is the width of the parabola x2 = 4py (p 7 0) at the focus by 

showing that the line y = p cuts the parabola at points that are 4p 

units apart.

 72. the asymptotes of (x2
,a

2) − (  y2
,b

2) = 1 Show that the 

vertical distance between the line y = (b>a)x and the upper half 

  of the right-hand branch y = (b>a)2x2 - a2 of the hyperbola 

(x2>a2) - (y2>b2) = 1 approaches 0 by showing that

lim
xSq

 aba x -
b
a2x2 - a2b =

b
a lim

xSq
 1x - 2x2 - a22 = 0.

  Similar results hold for the remaining portions of the hyperbola 

and the lines y = {(b>a)x.

 73. Area Find the dimensions of the rectangle of largest area that 

can be inscribed in the ellipse x2 + 4y2 = 4 with its sides parallel 

to the coordinate axes. What is the area of the rectangle?

 74. Volume Find the volume of the solid generated by revolving  

the region enclosed by the ellipse 9x2 + 4y2 = 36 about the  

(a) x-axis, (b) y-axis.

 75. Volume The “triangular” region in the irst quadrant bounded by 

the x-axis, the line x = 4, and the hyperbola 9x2 - 4y2 = 36 is 

revolved about the x-axis to generate a solid. Find the volume of 

the solid.

 76. tangents Show that the tangents to the curve y2 = 4px from 

any point on the line x = -p are perpendicular.

 77. tangents Find equations for the tangents to the circle 

(x - 2)2 + ( y - 1)2 = 5 at the points where the circle crosses 

the coordinate axes.

 78. Volume The region bounded on the left by the y-axis, on the 

right by the hyperbola x2 - y2 = 1, and above and below by the 

lines y = {3 is revolved about the y-axis to generate a solid. Find 

the volume of the solid.

 79. centroid Find the centroid of the region that is bounded below 

by the x-axis and above by the ellipse (x2>9) + (y2>16) = 1.

 80. surface area The curve y = 2x2 + 1, 0 … x … 22, which 

is part of the upper branch of the hyperbola y2 - x2 = 1, is re-

volved about the x-axis to generate a surface. Find the area of the 

surface.

 81. the relective property of parabolas The accompanying ig-

ure shows a typical point P(x0, y0) on the parabola y2 = 4px. The 

line L is tangent to the parabola at P. The parabola’s focus lies at 

F( p, 0). The ray L′ extending from P to the right is parallel to the 

x-axis. We show that light from F to P will be relected out along 

L′ by showing that b equals a. Establish this equality by taking 

the following steps.

a. Show that tan b = 2p>y0 .

b. Show that tan f = y0>(x0 - p).

c. Use the identity

tan a =
tan f - tan b

1 + tan f tan b

to show that tan a = 2p>y0.

  Since a and b are both acute, tan b = tan a implies b = a.

   This relective property of parabolas is used in applications 

like car headlights, radio telescopes, and satellite TV dishes.

x

y

0 F( p, 0)

P(x0, y0)

f

a

b

b

L

L′

y0

y2 = 4px

11.7 Conics in Polar Coordinates

Polar coordinates are especially important in astronomy and astronautical engineering 

because satellites, moons, planets, and comets all move approximately along ellipses, 

parabolas, and hyperbolas that can be described with a single relatively simple polar coor-

dinate equation. We develop that equation here after first introducing the idea of a conic 

section’s eccentricity. The eccentricity reveals the conic section’s type (circle, ellipse, 

parabola, or hyperbola) and the degree to which it is “squashed” or flattened.

Eccentricity

Although the center-to-focus distance c does not appear in the standard Cartesian equation

x2

a2
+

y2

b2
= 1,  (a 7 b)

for an ellipse, we can still determine c from the equation c = 2a2 - b2. If we fix a and 

vary c over the interval 0 … c … a, the resulting ellipses will vary in shape. They are cir-

cles if c = 0 (so that a = b) and flatten, becoming more oblong, as c increases. If c = a, 

the foci and vertices overlap and the ellipse degenerates into a line segment. Thus we are 

led to consider the ratio e = c>a. We use this ratio for hyperbolas as well, except in this 
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case c equals 2a2 + b2 instead of 2a2 - b2. We refer to this ratio as the eccentricity of 

the ellipse or hyperbola.

DEFINITION

The eccentricity of the ellipse (x2>a2) + (y2>b2) = 1 (a 7 b) is

e =
c
a =

2a2 - b2

a .

The eccentricity of the hyperbola (x2>a2) - (y2>b2) = 1 is

e =
c
a =

2a2 + b2

a .

The eccentricity of a parabola is e = 1.

Whereas a parabola has one focus and one directrix, each ellipse has two foci and two 

directrices. These are the lines perpendicular to the major axis at distances {a>e from 

the center. From Figure 11.48 we see that a parabola has the property

 PF = 1 # PD (1)

for any point P on it, where F is the focus and D is the point nearest P on the directrix. For 

an ellipse, it can be shown that the equations that replace Equation (1) are

 PF1 = e # PD1,  PF2 = e # PD2 . (2)

Here, e is the eccentricity, P is any point on the ellipse, F1 and F2 are the foci, and D1 and 

D2 are the points on the directrices nearest P (Figure 11.49).

In both Equations (2) the directrix and focus must correspond; that is, if we use the 

distance from P to F1, we must also use the distance from P to the directrix at the same 

end of the ellipse. The directrix x = -a>e corresponds to F1(-c, 0), and the directrix 

x = a>e corresponds to F2(c, 0).

As with the ellipse, it can be shown that the lines x = {a>e act as directrices for the 

hyperbola and that

 PF1 = e # PD1  and  PF2 = e # PD2 . (3)

Here P is any point on the hyperbola, F1 and F2 are the foci, and D1 and D2 are the points 

nearest P on the directrices (Figure 11.50).

In both the ellipse and the hyperbola, the eccentricity is the ratio of the distance 

between the foci to the distance between the vertices (because c>a = 2c>2a).

Eccentricity =
distance between foci

distance between vertices

In an ellipse, the foci are closer together than the vertices and the ratio is less than 1. In a 

hyperbola, the foci are farther apart than the vertices and the ratio is greater than 1.

The “focus–directrix” equation PF = e # PD unites the parabola, ellipse, and hyper-

bola in the following way. Suppose that the distance PF of a point P from a fixed point F 

(the focus) is a constant multiple of its distance from a fixed line (the directrix). That is, 

suppose

 PF = e # PD, (4)

where e is the constant of proportionality. Then the path traced by P is

(a) a parabola if e = 1,

(b) an ellipse of eccentricity e if e 6 1, and

(c) a hyperbola of eccentricity e if e 7 1.

0 F(c, 0)

D
P(x, y)

x

y

Directrix
x = −c

FIGURE 11.48 The distance from the 

focus F to any point P on a parabola equals 

the distance from P to the nearest point D 

on the directrix, so PF = PD.

x

y

Directrix 1

x = −
a
e

Directrix 2

x =
a
eb

−b

0

a

c = ae

a
e

D1 D2
P(x, y)

F1(−c, 0) F2(c, 0)

FIGURE 11.49 The foci and directrices 

of the ellipse (x2>a2) + (y2>b2) = 1. 

Directrix 1 corresponds to focus F1 and 

directrix 2 to focus F2.

Directrix 1

x = −
a
e

Directrix 2

x =
a
e

a

c = ae

a
e

F1(−c, 0) F2(c, 0)

D2D1
P(x, y)

x

y

0

FIGURE 11.50 The foci and directrices 

of the hyperbola (x2>a2) - (  y2>b2) = 1. 

No matter where P lies on the hyperbola, 

PF1 = e # PD1 and PF2 = e # PD2.
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As e increases (e S 1-), ellipses become more oblong, and (e S q) hyperbolas flatten 

toward two lines parallel to the directrix. There are no coordinates in Equation (4), and 

when we try to translate it into Cartesian coordinate form, it translates in different ways 

depending on the size of e. However, as we are about to see, in polar coordinates the equa-

tion PF = e # PD translates into a single equation regardless of the value of e.

Given the focus and corresponding directrix of a hyperbola centered at the origin and 

with foci on the x-axis, we can use the dimensions shown in Figure 11.50 to find e. Know-

ing e, we can derive a Cartesian equation for the hyperbola from the equation PF = e # PD, 

as in the next example. We can find equations for ellipses centered at the origin and with 

foci on the x-axis in a similar way, using the dimensions shown in Figure 11.49.

Conic se
ction

P

F B

r

r cos u

Focus at
origin

D

x
k

x = k

Directrix

FIGURE 11.52 If a conic section is put 

in the position with its focus placed at the 

origin and a directrix perpendicular to the 

initial ray and right of the origin, we can 

find its polar equation from the conic’s 

focus–directrix equation.

Polar Equation for a Conic with Eccentricity e

 r =
ke

1 + e cos u
, (5)

where x = k 7 0 is the vertical directrix.

EXAMPLE 1  Find a Cartesian equation for the hyperbola centered at the origin that 

has a focus at (3, 0) and the line x = 1 as the corresponding directrix.

Solution We first use the dimensions shown in Figure 11.50 to find the hyperbola’s 

eccentricity. The focus is (see Figure 11.51)

(c, 0) = (3, 0),  so  c = 3.

Again from Figure 11.50, the directrix is the line

x =
a
e = 1,  so  a = e.

When combined with the equation e = c>a that defines eccentricity, these results give

e =
c
a =

3
e ,  so  e2 = 3 and e = 23.

Knowing e, we can now derive the equation we want from the equation PF = e # PD. 

In the coordinates of Figure 11.51, we have

 PF = e # PD   Eq. (4)

 2(x - 3)2 + ( y - 0)2 = 23 � x - 1 �   e = 23 

 x2 - 6x + 9 + y2 = 3(x2 - 2x + 1)  Square both sides.

 2x2 - y2 = 6   Simplify.

 
x2

3
-

y2

6
= 1.  

Polar Equations

To find a polar equation for an ellipse, parabola, or hyperbola, we place one focus at the 

origin and the corresponding directrix to the right of the origin along the vertical line 

x = k (Figure 11.52). In polar coordinates, this makes

PF = r

and

PD = k - FB = k - r cos u.

The conic’s focus–directrix equation PF = e # PD then becomes

r = e(k - r cos u),

which can be solved for r to obtain the following expression.

0 1 F(3, 0)

D(1, y)

P(x, y)

x

x = 1

y

x2

3

y2

6
−      = 1

FIGURE 11.51 The hyperbola and  

directrix in Example 1.
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EXAMPLE 2  Here are polar equations for three conics. The eccentricity values iden-

tifying the conic are the same for both polar and Cartesian coordinates.

 e =
1
2

 :  ellipse    r =
k

2 + cos u

 e = 1 :  parabola    r =
k

1 + cos u

  e = 2 :  hyperbola  r =
2k

1 + 2 cos u
 

You may see variations of Equation (5), depending on the location of the directrix. If 

the directrix is the line x = -k to the left of the origin (the origin is still a focus), we 

replace Equation (5) with

r =
ke

1 - e cos u
.

The denominator now has a (-) instead of a (+). If the directrix is either of the lines y = k 

or y = -k, the equations have sines in them instead of cosines, as shown in Figure 11.53.

EXAMPLE 3  Find an equation for the hyperbola with eccentricity 3 >2 and directrix 

x = 2.

Solution We use Equation (5) with k = 2 and e = 3>2:

 r =
2(3>2)

1 + (3>2) cos u
  or  r =

6
2 + 3 cos u

. 

EXAMPLE 4  Find the directrix of the parabola r =
25

10 + 10 cos u
.

Solution We divide the numerator and denominator by 10 to put the equation in  standard 

polar form:

r =
5>2

1 + cos u
.

This is the equation

r =
ke

1 + e cos u

with k = 5>2 and e = 1. The equation of the directrix is x = 5>2. 

From the ellipse diagram in Figure 11.54, we see that k is related to the eccentricity e 

and the semimajor axis a by the equation

k =
a
e - ea.

From this, we find that ke = a(1 - e2). Replacing ke in Equation (5) by a(1 - e2) gives 

the standard polar equation for an ellipse.

Center

Focus at

origin

ea

a

a
e

x

Directrix

x = k

FIGURE 11.54 In an ellipse with semi-

major axis a, the focus–directrix distance 

is k = (a>e) - ea, so ke = a(1 - e2).

Focus at origin

Directrix x = k

r =
ke

1 + e cos u

x

(a)

Focus at origin

Directrix x = −k

r =
ke

1 − e cos u

x

(b)

Directrix y = k

r =
ke

1 + e sin u
y

Focus at
origin

(c)

Directrix y = −k

r =
ke

1 − e sin u
y

Focus at origin

(d)

FIGURE 11.53 Equations for conic sec-

tions with eccentricity e 7 0 but different 

locations of the directrix. The graphs here 

show a parabola, so e = 1.
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The Standard Polar Equation for Lines

If the point P0(r0, u0) is the foot of the perpendicular from the origin to the line L, 

and r0 Ú 0, then an equation for L is

 r cos (u - u0) = r0. (7)

Notice that when e = 0, Equation (6) becomes r = a, which represents a circle.

Lines

Suppose the perpendicular from the origin to line L meets L at the point P0(r0, u0), with 

r0 Ú 0 (Figure 11.55). Then, if P(r, u) is any other point on L, the points P, P0, and O are 

the vertices of a right triangle, from which we can read the relation

r0 = r cos (u - u0).

For example, if u0 = p>3 and r0 = 2, we find that

 r cos au -
p
3
b = 2

 r acos u cos 
p
3

+ sin u sin 
p
3
b = 2

 
1
2

 r cos u +
23
2

 r sin u = 2,  or  x + 23 y = 4.

Circles

To find a polar equation for the circle of radius a centered at P0(r0, u0), we let P(r, u) be a 

point on the circle and apply the Law of Cosines to triangle OP0 P (Figure 11.56). This 

gives

a2 = r0 

2 + r2 - 2r0 r cos (u - u0).

If the circle passes through the origin, then r0 = a and this equation simplifies to

 a2 = a2 + r2 - 2ar cos (u - u0)

 r2 = 2ar cos (u - u0)

 r = 2a cos (u - u0).

If the circle’s center lies on the positive x-axis, u0 = 0 and we get the further simplification

 r = 2a cos u. (8)

If the center lies on the positive y-axis, u = p>2, cos (u - p>2) = sin u, and the 

equation r = 2a cos (u - u0) becomes

 r = 2a sin u. (9)

Equations for circles through the origin centered on the negative x- and y-axes can be 

obtained by replacing r with -r  in the above equations.

x

y

O

u0

r0

u

r

L

P(r, u)

P0(r0 , u0)

FIGURE 11.55 We can obtain a polar 

equation for line L by reading the relation 

r0 = r cos (u - u0) from the right triangle 

OP0  P.

O
x

y

u0

r0
u

r

a

P(r, u)

P0(r0 , u0)

FIGURE 11.56 We can get a polar  

equation for this circle by applying the 

Law of Cosines to triangle OP0  P.

Polar Equation for the Ellipse with Eccentricity e and Semimajor Axis a

 r =
a(1 - e2)

1 + e cos u
 (6)
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EXAMPLE 5  Here are several polar equations given by Equations (8) and (9) for 

circles through the origin and having centers that lie on the x- or y-axis. 

radius

 center  

(polar coordinates)

 polar  

 equation

 3  (3, 0)  r = 6 cos u

 2  (2, p>2)  r = 4 sin u

 1 >2  (-1>2, 0)  r = -cos u

 1  (-1, p>2)  r = -2 sin u

Ellipses and Eccentricity

In Exercises 1–8, find the eccentricity of the ellipse. Then find and 

graph the ellipse’s foci and directrices.

 1. 16x2 + 25y2 = 400 2. 7x2 + 16y2 = 112

 3. 2x2 + y2 = 2 4. 2x2 + y2 = 4

 5. 3x2 + 2y2 = 6 6. 9x2 + 10y2 = 90

 7. 6x2 + 9y2 = 54 8. 169x2 + 25y2 = 4225

EXERCISES 11.7

Exercises 25–28 give the eccentricities and the vertices or foci of 

hyperbolas centered at the origin of the xy-plane. In each case, find the 

hyperbola’s standard-form equation in Cartesian coordinates.

 25. Eccentricity: 3

  Vertices: (0, {1)

 26. Eccentricity: 2

  Vertices: ({2, 0)

 27. Eccentricity: 3

  Foci: ({3, 0)

 28. Eccentricity: 1.25

  Foci: (0, {5)

 10. Foci: ({8, 0)

  Eccentricity: 0.2

 12. Vertices: ({10, 0)

  Eccentricity: 0.24

 11. Vertices: (0, {70)

  Eccentricity: 0.1

Exercises 9–12 give the foci or vertices and the eccentricities of 

ellipses centered at the origin of the xy-plane. In each case, find the 

ellipse’s standard-form equation in Cartesian coordinates.

 9. Foci: (0, {3)

  Eccentricity: 0.5

 15. Focus: (-4, 0)

  Directrix: x = -16

Exercises 13–16 give foci and corresponding directrices of ellipses 

centered at the origin of the xy-plane. In each case, use the dimensions 

in Figure 11.49 to find the eccentricity of the ellipse. Then find the 

ellipse’s standard-form equation in Cartesian coordinates.

 14. Focus: (4, 0)

  Directrix: x =
16
3

 16. Focus: 1-22, 02
  Directrix: x = -222

 13. Focus: 125, 02
  Directrix: x =

9

25

Hyperbolas and Eccentricity

In Exercises 17–24, find the eccentricity of the hyperbola. Then find 

and graph the hyperbola’s foci and directrices.

 17. x2 - y2 = 1 18. 9x2 - 16y2 = 144

 19. y2 - x2 = 8 20. y2 - x2 = 4

 21. 8x2 - 2y2 = 16 22. y2 - 3x2 = 3

 23. 8y2 - 2x2 = 16 24. 64x2 - 36y2 = 2304

Eccentricities and Directrices

Exercises 29–36 give the eccentricities of conic sections with one 

focus at the origin along with the directrix corresponding to that focus. 

Find a polar equation for each conic section.

 29. e = 1, x = 2 30. e = 1, y = 2

 31. e = 5, y = -6 32. e = 2, x = 4

 33. e = 1>2, x = 1 34. e = 1>4, x = -2

 35. e = 1>5, y = -10 36. e = 1>3, y = 6

Parabolas and Ellipses

Sketch the parabolas and ellipses in Exercises 37–44. Include the 

directrix that corresponds to the focus at the origin. Label the vertices 

with appropriate polar coordinates. Label the centers of the ellipses as 

well.

 37. r =
1

1 + cos u
 38. r =

6
2 + cos u

 

 39. r =
25

10 - 5 cos u
 40. r =

4
2 - 2 cos u

 41. r =
400

16 + 8 sin u
 42. r =

12
3 + 3 sin u

 43. r =
8

2 - 2 sin u
 44. r =

4
2 - sin u
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Lines

Sketch the lines in Exercises 45–48 and find Cartesian equations for 

them.

 45. r cos au -
p

4
b = 22 46. r cos au +

3p
4
b = 1

 47. r cos au -
2p
3
b = 3 48. r cos au +

p

3
b = 2

Find a polar equation in the form r cos (u - u0) = r0 for each of the 

lines in Exercises 49–52.

 49. 22 x + 22 y = 6 50. 23 x - y = 1

 51. y = -5 52. x = -4

Circles

Sketch the circles in Exercises 53–56. Give polar coordinates for their 

centers and identify their radii.

 53. r = 4 cos u 54. r = 6 sin u 

 55. r = -2 cos u 56. r = -8 sin u

Find polar equations for the circles in Exercises 57–64. Sketch each 

circle in the coordinate plane and label it with both its Cartesian and 

polar equations.

 57. (x - 6)2 + y2 = 36 58. (x + 2)2 + y2 = 4

 59. x2 + ( y - 5)2 = 25 60. x2 + ( y + 7)2 = 49

 61. x2 + 2x + y2 = 0 62. x2 - 16x + y2 = 0

 63. x2 + y2 + y = 0 64. x2 + y2 -
4
3

 y = 0

Examples of Polar Equations

Graph the lines and conic sections in Exercises 65–74.

 65. r = 3 sec (u - p>3) 66. r = 4 sec (u + p>6)

 67. r = 4 sin u 68. r = -2 cos u

 69. r = 8>(4 + cos u) 70. r = 8>(4 + sin u)

T

 71. r = 1>(1 - sin u) 72. r = 1>(1 + cos u)

 73. r = 1>(1 + 2 sin u) 74. r = 1>(1 + 2 cos u)

 75. perihelion and aphelion A planet travels about its sun in an 

ellipse whose semimajor axis has length a. (See accompanying 

igure.)

a. Show that r = a(1 - e) when the planet is closest to the sun 

and that r = a(1 + e) when the planet is farthest from the sun.

b. Use the data in the table in Exercise 76 to ind how close each 

planet in our solar system comes to the sun and how far away 

each planet gets from the sun.

Aphelion

(farthest

from sun)

Perihelion

(closest

to sun)
Planet

Sun

u
a

 76. planetary orbits Use the data in the table below and Equation 

(6) to ind polar equations for the orbits of the planets.

 planet

 semimajor axis  

(astronomical units) Eccentricity

Mercury  0.3871 0.2056

Venus  0.7233 0.0068

Earth  1.000 0.0167

Mars  1.524 0.0934

Jupiter  5.203 0.0484

Saturn  9.539 0.0543

Uranus  19.18 0.0460

Neptune  30.06 0.0082

 1. What is a parametrization of a curve in the xy-plane? Does a func-

tion y = ƒ(x) always have a parametrization? Are parametriza-

tions of a curve unique? Give examples.

 2. Give some typical parametrizations for lines, circles, parabolas, 

ellipses, and hyperbolas. How might the parametrized curve difer 

from the graph of its Cartesian equation?

 3. What is a cycloid? What are typical parametric equations for 

 cycloids? What physical properties account for the importance of 

cycloids?

 4. What is the formula for the slope dy>dx of a parametrized curve 

x = ƒ(t), y = g(t)? When does the formula apply? When can you 

expect to be able to ind d2y>dx2 as well? Give examples.

 5. How can you sometimes ind the area bounded by a parametrized 

curve and one of the coordinate axes?

 6. How do you ind the length of a smooth parametrized curve 

x = ƒ(t), y = g(t), a … t … b? What does smoothness have to 

do with length? What else do you need to know about the param-

etrization in order to ind the curve’s length? Give examples.

 7. What is the arc length function for a smooth parametrized curve? 

What is its arc length diferential?

 8. Under what conditions can you ind the area of the surface gener-

ated by revolving a curve x = ƒ(t), y = g(t), a … t … b, about 

the x-axis? the y-axis? Give examples.

 9. What are polar coordinates? What equations relate polar coordi-

nates to Cartesian coordinates? Why might you want to change 

from one coordinate system to the other?

 10. What consequence does the lack of uniqueness of polar coordi-

nates have for graphing? Give an example.

CHAPTER 11 Questions to Guide Your Review
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How can you ind the foci, vertices, and directrices of such an el-

lipse from its equation?

 16. What is a hyperbola? What are the Cartesian equations for hy-

perbolas centered at the origin with foci on one of the coordinate 

axes? How can you ind the foci, vertices, and directrices of such 

an ellipse from its equation?

 17. What is the eccentricity of a conic section? How can you classify 

conic sections by eccentricity? How does eccentricity change the 

shape of ellipses and hyperbolas?

 18. Explain the equation PF = e # PD.

 19. What are the standard equations for lines and conic sections in 

polar coordinates? Give examples.

 11. How do you graph equations in polar coordinates? Include in your 

discussion symmetry, slope, behavior at the origin, and the use of 

Cartesian graphs. Give examples.

 12. How do you ind the area of a region 0 … r1(u) … r … r2(u), 

a … u … b, in the polar coordinate plane? Give examples.

 13. Under what conditions can you ind the length of a curve 

r = ƒ(u), a … u … b, in the polar coordinate plane? Give an ex-

ample of a typical calculation.

 14. What is a parabola? What are the Cartesian equations for parabo-

las whose vertices lie at the origin and whose foci lie on the co-

ordinate axes? How can you ind the focus and directrix of such a 

parabola from its equation?

 15. What is an ellipse? What are the Cartesian equations for ellipses 

centered at the origin with foci on one of the coordinate axes? 

Identifying Parametric Equations in the Plane

Exercises 1–6 give parametric equations and parameter intervals for 

the motion of a particle in the xy-plane. Identify the particle’s path by 

inding a Cartesian equation for it. Graph the Cartesian equation and 

indicate the direction of motion and the portion traced by the particle.

 1. x = t>2, y = t + 1; -q 6 t 6 q

 2. x = 2t, y = 1 - 2t; t Ú 0

 3. x = (1>2) tan t, y = (1>2) sec t; -p>2 6 t 6 p>2
 4. x = -2 cos t, y = 2 sin t; 0 … t … p

 5. x = -cos t, y = cos2 t; 0 … t … p

 6. x = 4 cos t, y = 9 sin t; 0 … t … 2p

Finding Parametric Equations and Tangent Lines

 7. Find parametric equations and a parameter interval for the 

motion of a particle in the xy-plane that traces the ellipse 

16x2 + 9y2 = 144 once counterclockwise. (There are many 

ways to do this.)

 8. Find parametric equations and a parameter interval for the motion 

of a particle that starts at the point (-2, 0) in the xy-plane and 

traces the circle x2 + y2 = 4 three times clockwise. (There are 

many ways to do this.)

In Exercises 9 and 10, ind an equation for the line in the xy-plane that 

is tangent to the curve at the point corresponding to the given value of 

t. Also, ind the value of d2y>dx2 at this point.

 9. x = (1>2) tan t, y = (1>2) sec t; t = p>3
 10. x = 1 + 1>t2, y = 1 - 3>t; t = 2

 11. Eliminate the parameter to express the curve in the form y = ƒ(x) .

a. x = 4t2, y = t3 - 1

b. x = cos t, y = tan t

 12. Find parametric equations for the given curve.

a. Line through (1, -2) with slope 3

b. (x - 1)2 + ( y + 2)2 = 9

c. y = 4x2 - x

d. 9x2 + 4y2 = 36

Lengths of Curves

Find the lengths of the curves in Exercises 13–19.

 13. y = x1>2 - (1>3)x3>2, 1 … x … 4

 14. x = y2>3, 1 … y … 8

 15. y = (5>12)x6>5 - (5>8)x4>5, 1 … x … 32

 16. x = (y3>12) + (1>y), 1 … y … 2

 17. x = 5 cos t - cos 5t, y = 5 sin t - sin 5t, 0 … t … p>2
 18. x = t3 - 6t2, y = t3 + 6t2, 0 … t … 1

 19. x = 3 cos u, y = 3 sin u, 0 … u …
3p
2

 20. Find the length of the enclosed loop x = t2, y = (t3>3) - t 

shown here. The loop starts at t = -23 and ends at t = 23.

y

0

1

1

−1

2 4
x

t = ±"3t = 0

t  > 0

t  < 0

Surface Areas

Find the areas of the surfaces generated by revolving the curves in 

Exercises 21 and 22 about the indicated axes.

 21. x = t2>2, y = 2t, 0 … t … 25;  x-axis

 22. x = t2 + 1>(2t), y = 42t, 1>22 … t … 1;  y-axis

CHAPTER 11 Practice Exercises
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 43. Circle 44. Cardioid

  

x

y   

x

y

 45. Parabola 46. Lemniscate

  

x

y   

x

y

Polar to Cartesian Equations

Sketch the lines in Exercises 23–28. Also, ind a Cartesian equation 

for each line.

 23. r cos au +
p

3
b = 223 24. r cos au -

3p
4
b =

22

2

 25. r = 2 sec u 26. r = -22 sec u

 27. r = - (3>2) csc u 28. r = 13232 csc u

Find Cartesian equations for the circles in Exercises 29–32. Sketch 

each circle in the coordinate plane and label it with both its Cartesian 

and polar equations.

 29. r = -4 sin u 30. r = 323 sin u

 31. r = 222 cos u 32. r = -6 cos u

Cartesian to Polar Equations

Find polar equations for the circles in Exercises 33–36. Sketch each 

circle in the coordinate plane and label it with both its Cartesian and 

polar equations.

 33. x2 + y2 + 5y = 0 34. x2 + y2 - 2y = 0

 35. x2 + y2 - 3x = 0 36. x2 + y2 + 4x = 0

Match each graph in Exercises 39–46 with the appropriate equation 

(a)–(l). There are more equations than graphs, so some equations will 

not be matched.

a. r = cos 2u b. r cos u = 1 c. r =
6

1 - 2 cos u

d. r = sin 2u e. r = u f. r2 = cos 2u

g. r = 1 + cos u h. r = 1 - sin u i. r =
2

1 - cos u

j. r2 = sin 2u k. r = -sin u l. r = 2 cos u + 1

 39. Four-leaved rose 40. Spiral

  

x

y   

x

y

 41. Limaçon 42. Lemniscate

  

x

y   

x

y

Area in Polar Coordinates

Find the areas of the regions in the polar coordinate plane described in 

Exercises 47–50.

 47. Enclosed by the limaçon r = 2 - cos u

 48. Enclosed by one leaf of the three-leaved rose r = sin 3u

 49. Inside the “igure eight” r = 1 + cos 2u and outside the circle 

r = 1

 50. Inside the cardioid r = 2(1 + sin u) and outside the circle 

r = 2 sin u

Graphs in Polar Coordinates

Sketch the regions deined by the polar coordinate inequalities in 

 Exercises 37 and 38.

 37. 0 … r … 6 cos u 38. -4 sin u … r … 0 Length in Polar Coordinates

Find the lengths of the curves given by the polar coordinate equations 

in Exercises 51–54.

 51. r = -1 + cos u

 52. r = 2 sin u + 2 cos u, 0 … u … p>2
 53. r = 8 sin3 (u>3), 0 … u … p>4
 54. r = 21 + cos 2u, -p>2 … u … p>2
Graphing Conic Sections

Sketch the parabolas in Exercises 55–58. Include the focus and direc-

trix in each sketch.

 55. x2 = -4y 56. x2 = 2y

 57. y2 = 3x 58. y2 = - (8>3)x

Find the eccentricities of the ellipses and hyperbolas in Exercises  

59–62. Sketch each conic section. Include the foci, vertices, and as-

ymptotes (as appropriate) in your sketch.

 59. 16x2 + 7y2 = 112 60. x2 + 2y2 = 4

 61. 3x2 - y2 = 3 62. 5y2 - 4x2 = 20

Exercises 63–68 give equations for conic sections and tell how many 

units up or down and to the right or left each curve is to be shifted. Find 

an equation for the new conic section, and ind the new foci, vertices, 

centers, and asymptotes, as appropriate. If the curve is a parabola, ind 

the new directrix as well.

 63. x2 = -12y, right 2, up 3 64. y2 = 10x, left 1>2, down 1

 65. 
x2

9
+

y2

25
= 1, left 3, down 5
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Exercises 81–84 give the eccentricities of conic sections with one fo-

cus at the origin of the polar coordinate plane, along with the directrix 

for that focus. Find a polar equation for each conic section.

 81. e = 2, r cos u = 2 82. e = 1, r cos u = -4

 83. e = 1>2, r sin u = 2 84. e = 1>3, r sin u = -6

Finding Conic Sections

 1. Find an equation for the parabola with focus (4, 0) and directrix 

x = 3. Sketch the parabola together with its vertex, focus, and 

directrix.

 2. Find the vertex, focus, and directrix of the parabola

x2 - 6x - 12y + 9 = 0.

 3. Find an equation for the curve traced by the point P(x, y) if the 

distance from P to the vertex of the parabola x2 = 4y is twice the 

distance from P to the focus. Identify the curve.

 4. A line segment of length a + b runs from the x-axis to the y-axis. 

The point P on the segment lies a units from one end and b units 

from the other end. Show that P traces an ellipse as the ends of the 

segment slide along the axes.

 5. The vertices of an ellipse of eccentricity 0.5 lie at the points 

(0, {2). Where do the foci lie?

 6. Find an equation for the ellipse of eccentricity 2 >3 that has the 

line x = 2 as a directrix and the point (4, 0) as the corresponding 

focus.

 7. One focus of a hyperbola lies at the point (0, -7) and the cor-

responding directrix is the line y = -1. Find an equation for the 

hyperbola if its eccentricity is (a) 2, (b) 5.

 8. Find an equation for the hyperbola with foci (0, -2) and (0, 2) 

that passes through the point (12, 7).

 9. Show that the line

b2xx1 + a2yy1 - a2b2 = 0

  is tangent to the ellipse b2x2 + a2y2 - a2b2 = 0 at the point 

(x1, y1) on the ellipse.

 10. Show that the line

b2xx1 - a2yy1 - a2b2 = 0

  is tangent to the hyperbola b2x2 - a2y2 - a2b2 = 0 at the point 

(x1, y1) on the hyperbola.

Equations and Inequalities

What points in the xy-plane satisfy the equations and inequalities in 

Exercises 11–16? Draw a igure for each exercise.

 11. (x2 - y2 - 1) (x2 + y2 - 25) (x2 + 4y2 - 4) = 0

 12. (x + y)(x2 + y2 - 1) = 0

 13. (x2>9) + (  y2>16) … 1

 14. (x2>9) - (  y2>16) … 1

 15. (9x2 + 4y2 - 36) (4x2 + 9y2 - 16) … 0

 16. (9x2 + 4y2 - 36) (4x2 + 9y2 - 16) 7 0

CHAPTER 11 Additional and Advanced Exercises

 66. 
x2

169
+

y2

144
= 1, right 5, up 12

 67. 
y2

8
-

x2

2
= 1, right 2, up 222

 68. 
x2

36
-

y2

64
= 1, left 10, down 3

Identifying Conic Sections

Complete the squares to identify the conic sections in Exercises 69–76. 

Find their foci, vertices, centers, and asymptotes (as appropriate). If 

the curve is a parabola, ind its directrix as well.

 69. x2 - 4x - 4y2 = 0 70. 4x2 - y2 + 4y = 8

 71. y2 - 2y + 16x = -49 72. x2 - 2x + 8y = -17

 73. 9x2 + 16y2 + 54x - 64y = -1

 74. 25x2 + 9y2 - 100x + 54y = 44

 75. x2 + y2 - 2x - 2y = 0 76. x2 + y2 + 4x + 2y = 1

Conics in Polar Coordinates

Sketch the conic sections whose polar coordinate equations are given 

in Exercises 77–80. Give polar coordinates for the vertices and, in the 

case of ellipses, for the centers as well.

 77. r =
2

1 + cos u
 78. r =

8
2 + cos u

 79. r =
6

1 - 2 cos u
 80. r =

12
3 + sin u

Theory and Examples

 85. Find the volume of the solid generated by revolving the region 

enclosed by the ellipse 9x2 + 4y2 = 36 about (a) the x-axis,  

(b) the y-axis.

 86. The “triangular” region in the irst quadrant bounded by the x- axis, 

the line x = 4, and the hyperbola 9x2 - 4y2 = 36 is revolved 

about the x-axis to generate a solid. Find the volume of the solid.

 87. Show that the equations x = r cos u, y = r sin u transform the 

polar equation

r =
k

1 + e cos u

  into the Cartesian equation

(1 - e2)x2 + y2 + 2kex - k2 = 0.

 88. Archimedes spirals The graph of an equation of the form 

r = au, where a is a nonzero constant, is called an Archimedes 

spiral. Is there anything special about the widths between the suc-

cessive turns of such a spiral?



698 Chapter 11 Parametric Equations and Polar Coordinates

Suppose the equation of the curve is given in the form r = ƒ(u), 

where ƒ(u) is a diferentiable function of u. Then

 x = r cos u and y = r sin u (2)

are diferentiable functions of u with

dx

du
= -r sin u + cos u 

dr

du
 , 

 
dy

du
= r cos u + sin u 

dr

du
.  (3)

Since c = f - u from (1),

tan c = tan (f - u) =
tan f - tan u

1 + tan f tan u
.

Furthermore,

tan f =
dy

dx
=

dy>du
dx>du

because tan f is the slope of the curve at P. Also,

tan u =
y

x .

Hence

 tan c =

dy>du
dx>du -

y

x

1 +
y

x 
dy>du
dx>du =

x 
dy

du
- y 

dx

du

x 
dx

du
+ y 

dy

du

. (4)

The numerator in the last expression in Equation (4) is found from 

Equations (2) and (3) to be

x 
dy

du
- y 

dx

du
= r2.

Similarly, the denominator is

x 
dx

du
+ y 

dy

du
= r 

dr

du
.

When we substitute these into Equation (4), we obtain

 tan c =
r

dr>du . (5)

This is the equation we use for inding c as a function of u.

 25. Show, by reference to a igure, that the angle b between the tan-

gents to two curves at a point of intersection may be found from 

the formula

 tan b =
tan c2 - tan c1

1 + tan c2 tan c1
. (6)

  When will the two curves intersect at right angles?

 26. Find the value of tan c for the curve r = sin4 (u>4).

Polar Coordinates

 17. a. Find an equation in polar coordinates for the curve

x = e2t cos t, y = e2t sin t; -q 6 t 6 q.

b. Find the length of the curve from t = 0 to t = 2p.

 18. Find the length of the curve r = 2 sin3 (u>3), 0 … u … 3p, in the 

polar coordinate plane.

Exercises 19–22 give the eccentricities of conic sections with one fo-

cus at the origin of the polar coordinate plane, along with the directrix 

for that focus. Find a polar equation for each conic section.

 19. e = 2, r cos u = 2 20. e = 1, r cos u = -4

 21. e = 1>2, r sin u = 2 22. e = 1>3, r sin u = -6

Theory and Examples

 23. Epicycloids When a circle rolls externally along the circumfer-

ence of a second, ixed circle, any point P on the circumference of 

the rolling circle describes an epicycloid, as shown here. Let the 

ixed circle have its center at the origin O and have radius a.

x

y

O

u

b
C

P

A(a, 0)

  Let the radius of the rolling circle be b and let the initial position 

of the tracing point P be A(a, 0). Find parametric equations for the 

epicycloid, using as the parameter the angle u from the positive 

x-axis to the line through the circles’ centers.

 24. Find the centroid of the region enclosed by the x-axis and the 

 cycloid arch

x = a(t - sin t), y = a(1 - cos t); 0 … t … 2p.

the Angle Between the radius Vector and the tangent Line to a 

polar coordinate curve In Cartesian coordinates, when we want to 

discuss the direction of a curve at a point, we use the angle f measured 

counterclockwise from the positive x-axis to the tangent line. In polar 

coordinates, it is more convenient to calculate the angle c from the 

radius vector to the tangent line (see the accompanying igure). The 

angle f can then be calculated from the relation

 f = u + c, (1)

which comes from applying the Exterior Angle Theorem to the triangle 

in the accompanying igure.

x

y

0

u f

c

r

r = f (u)

P(r, u)
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 29. The circles r = 23 cos u and r = sin u intersect at the point 123>2, p>32. Show that their tangents are perpendicular there.

 30. Find the angle at which the cardioid r = a(1 - cos u) crosses the 

ray u = p>2.

 27. Find the angle between the radius vector to the curve r =  2a sin 3u 

and its tangent when u = p>6.

 28. a.  Graph the hyperbolic spiral ru = 1. What appears to happen 

to c as the spiral winds in around the origin?

b. Conirm your inding in part (a) analytically.

T

Mathematica/Maple Projects

Projects can be found within MyMathLab.

• Radar Tracking of a Moving Object 

part i: Convert from polar to Cartesian coordinates.

• Parametric and Polar Equations with a Figure Skater 

part i: Visualize position, velocity, and acceleration to analyze motion deined by parametric equations.

part ii: Find and analyze the equations of motion for a igure skater tracing a polar plot.

CHAPTER 11 Technology Application Projects
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12

OVERVIEW In this chapter we begin the study of multivariable calculus. To apply calcu-

lus in many real-world situations, we introduce three-dimensional coordinate systems and 

vectors. We establish coordinates in space by adding a third axis that measures distance 

above and below the xy-plane. Then we define vectors, which provide simple ways to 

define equations for lines, planes, curves, and surfaces in space.

Vectors and the Geometry 
of Space

12.1 Three-Dimensional Coordinate Systems

To locate a point in space, we use three mutually perpendicular coordinate axes, arranged 

as in Figure 12.1. The axes shown there make a right-handed coordinate frame. When you 

hold your right hand so that the fingers curl from the positive x-axis toward the positive 

y-axis, your thumb points along the positive z-axis. So when you look down on the xy-

plane from the positive direction of the z-axis, positive angles in the plane are measured 

counterclockwise from the positive x-axis and around the positive z-axis. (In a left-handed 

coordinate frame, the z-axis would point downward in Figure 12.1 and angles in the plane 

would be positive when measured clockwise from the positive x-axis. Right-handed and 

left-handed coordinate frames are not equivalent.)

The Cartesian coordinates (x, y, z) of a point P in space are the values at which the 

planes through P perpendicular to the axes cut the axes. Cartesian coordinates for space 

are also called rectangular coordinates because the axes that define them meet at right 

angles. Points on the x-axis have y- and z-coordinates equal to zero. That is, they have 

coordinates of the form (x, 0, 0). Similarly, points on the y-axis have coordinates of the 

form (0, y, 0), and points on the z-axis have coordinates of the form (0, 0, z).

The planes determined by the coordinates axes are the xy-plane, whose standard 

equation is z = 0; the yz-plane, whose standard equation is x = 0; and the xz-plane, 

whose standard equation is y = 0. They meet at the origin (0, 0, 0) (Figure 12.2). The 

origin is also identified by simply 0 or sometimes the letter O.

The three coordinate planes x = 0, y = 0, and z = 0 divide space into eight cells 

called octants. The octant in which the point coordinates are all positive is called the first 

octant; there is no convention for numbering the other seven octants.

The points in a plane perpendicular to the x-axis all have the same x-coordinate, this being 

the number at which that plane cuts the x-axis. The y- and z-coordinates can be any numbers. 

Similarly, the points in a plane perpendicular to the y-axis have a common y-coordinate and 

the points in a plane perpendicular to the z-axis have a common z-coordinate. To write equa-

tions for these planes, we name the common coordinate’s value. The plane x = 2 is the plane 

perpendicular to the x-axis at x = 2. The plane y = 3 is the plane perpendicular to the y-axis 

at y = 3. The plane z = 5 is the plane perpendicular to the z-axis at z = 5. Figure 12.3 

shows the planes x = 2, y = 3, and z = 5, together with their intersection point (2, 3, 5).

z

x

(x, 0, 0)

(x, y, 0)

(x, 0, z)

(0, 0, z)

(0, y, z)

(0, y, 0)

x = constant

y = constant

z = constant

y

P(x, y, z)00

FIGURE 12.1 The Cartesian coordinate 

system is right-handed.
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The planes x = 2 and y = 3 in Figure 12.3 intersect in a line parallel to the z-axis. 

This line is described by the pair of equations x = 2, y = 3. A point (x, y, z) lies on the 

line if and only if x = 2 and y = 3. Similarly, the line of intersection of the planes y = 3 

and z = 5 is described by the equation pair y = 3, z = 5. This line runs parallel to the 

x-axis. The line of intersection of the planes x = 2 and z = 5, parallel to the y-axis, is 

described by the equation pair x = 2, z = 5.

In the following examples, we match coordinate equations and inequalities with the 

sets of points they define in space.

z

yz-plane: x = 0

xz-plane: y = 0

xy-plane: z = 0

y

x

(0, 0, 0)

Origin

FIGURE 12.2 The planes x = 0, y = 0, and z = 0 divide 

space into eight octants.

y

z

x

(0, 0, 5) (2, 3, 5)

(0, 3, 0)
(2, 0, 0)

0

Line y = 3, z = 5

Line x = 2, z = 5

Plane y = 3

Line x = 2, y = 3

Plane z = 5

Plane x = 2

FIGURE 12.3 The planes x = 2, y = 3, and  

z = 5 determine three lines through the point (2, 3, 5).

EXAMPLE 1  We interpret these equations and inequalities geometrically.

(a) z Ú 0 The half-space consisting of the points on and above 

the xy-plane.

(b) x = -3 The plane perpendicular to the x-axis at x = -3. This 

plane lies parallel to the yz-plane and 3 units behind it.

(c) z = 0, x … 0, y Ú 0 The second quadrant of the xy-plane.

(d) x Ú 0, y Ú 0, z Ú 0 The irst octant.

(e) -1 … y … 1 The slab between the planes y = -1 and y = 1 (planes 

included).

(f) y = -2, z = 2 The line in which the planes y = -2 and z = 2 inter-

sect. Alternatively, the line through the point (0, -2, 2) 

parallel to the x-axis. 

EXAMPLE 2  What points (x, y, z) satisfy the equations

x2 + y2 = 4  and  z = 3?

Solution The points lie in the horizontal plane z = 3 and, in this plane, make up the 

circle x2 + y2 = 4. We call this set of points “the circle x2 + y2 = 4 in the plane z = 3” 

or, more simply, “the circle x2 + y2 = 4, z = 3” (Figure 12.4). 

x

z

(0, 2, 0)

y(2, 0, 0)

(0, 2, 3)

The circle

x2 + y2 = 4,  z = 3

The plane

z = 3

x2 + y2 = 4, z = 0

(2, 0, 3)

FIGURE 12.4 The circle x2 + y2 = 4  

in the plane z = 3 (Example 2).
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Proof  We construct a rectangular box with faces parallel to the coordinate planes 

and the points P1 and P2 at opposite corners of the box (Figure 12.5). If A(x2, y1, z1) and 

B(x2, y2, z1) are the vertices of the box indicated in the igure, then the three box edges 

P1 A, AB, and BP2 have lengths0P1 A 0 = 0 x2 - x1 0 ,  0AB 0 = 0 y2 - y1 0 ,  0BP2 0 = 0 z2 - z1 0 .
Because triangles P1 BP2 and P1 AB are both right-angled, two applications of the Pythago-

rean theorem give0P1 P2 0 2 = 0P1 B 0 2 + 0BP2 0 2  and  0P1 B 0 2 = 0P1 A 0 2 + 0AB 0 2
(see Figure 12.5). So

 0P1 P2 0 2 = 0P1 B 0 2 + 0BP2 0 2
 = 0P1 A 0 2 + 0AB 0 2 + 0BP2 0 2   Substitute 0P1  B 0 2 = 0P1  A 0 2 + 0AB 0 2. 

 = 0 x2 - x1 0 2 + 0 y2 - y1 0 2 + 0 z2 - z1 0 2
 = (x2 - x1)

2 + (y2 - y1)
2 + (z2 - z1)

2 .

Therefore

 0P1 P2 0 = 2(x2 - x1)
2 + ( y2 - y1)

2 + (z2 - z1)
2. 

EXAMPLE 3  The distance between P1(2, 1, 5) and P2(-2, 3, 0) is

 0P1 P2 0 = 2(-2 - 2)2 + (3 - 1)2 + (0 - 5)2

 = 216 + 4 + 25

  = 245 ≈ 6.708.  

We can use the distance formula to write equations for spheres in space (Figure 12.6). 

A point P(x, y, z) lies on the sphere of radius a centered at P0(x0, y0, z0) precisely when 0P0 P 0 = a or

(x - x0)
2 + ( y - y0)

2 + (z - z0)
2 = a2.

The Distance Between P1(x1, y1, z1) and P2(x2, y2, z2)0P1 P2 0 = 2(x2 - x1)
2 + ( y2 - y1)

2 + (z2 - z1)
2

x

z

y

0

P1(x1, y1, z1)

A(x2, y1, z1)

P2(x2, y2, z2)

B(x2, y2, z1)

FIGURE 12.5 We find the distance be-

tween P1 and P2 by applying the Pythago-

rean theorem to the right triangles P1  AB 

and P1  BP2.

P0(x0, y0, z0)
P(x, y, z)

a

y

z

0

x

FIGURE 12.6 The sphere of radius a 

centered at the point (x0, y0, z0).

The Standard Equation for the Sphere of Radius a and Center (x0, y0, z0)

(x - x0)
2 + (y - y0)

2 + (z - z0)
2 = a2

EXAMPLE 4  Find the center and radius of the sphere

x2 + y2 + z2 + 3x - 4z + 1 = 0.

Solution We find the center and radius of a sphere the way we find the center and radius 

of a circle: Complete the squares on the x-, y-, and z-terms as necessary and write each 

Distance and Spheres in Space

The formula for the distance between two points in the xy-plane extends to points in space.
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quadratic as a squared linear expression. Then, from the equation in standard form, read 

off the center and radius. For the sphere here, we have

 x2 + y2 + z2 + 3x - 4z + 1 = 0

 (x2 + 3x) + y2 + (z2 - 4z) = -1

 ax2 + 3x + a3
2
b2b + y2 + az2 - 4z + a-4

2
b2b = -1 + a3

2
b2

+ a-4
2
b2

 ax +
3
2
b2

+ y2 + (z - 2)2 = -1 +
9
4

+ 4 =
21
4

.

From this standard form, we read that x0 = -3>2, y0 = 0, z0 = 2, and a = 221>2. The 

center is (-3>2, 0, 2). The radius is 221>2. 

EXAMPLE 5  Here are some geometric interpretations of inequalities and equations 

involving spheres.

(a) x2 + y2 + z2 6 4 The interior of the sphere x2 + y2 + z2 = 4.

(b) x2 + y2 + z2 … 4 The solid ball bounded by the sphere x2 + y2 +  

z2 = 4. Alternatively, the sphere x2 + y2 + z2 =

4 together with its interior.

(c) x2 + y2 + z2 7 4 The exterior of the sphere x2 + y2 + z2 = 4.

(d) x2 + y2 + z2 = 4, z … 0 The lower hemisphere cut from the sphere x2 +  

y2 + z2 = 4 by the xy-plane (the plane z = 0). 

Just as polar coordinates give another way to locate points in the xy-plane (Section 

11.3), alternative coordinate systems, different from the Cartesian coordinate system 

developed here, exist for three-dimensional space. We examine two of these coordinate 

systems in Section 15.7.

Geometric Interpretations of Equations

In Exercises 1–16, give a geometric description of the set of points in 

space whose coordinates satisfy the given pairs of equations.

 1. x = 2, y = 3 2. x = -1, z = 0

 3. y = 0, z = 0 4. x = 1, y = 0

 5. x2 + y2 = 4, z = 0 6. x2 + y2 = 4, z = -2

 7. x2 + z2 = 4, y = 0 8. y2 + z2 = 1, x = 0

 9. x2 + y2 + z2 = 1, x = 0

 10. x2 + y2 + z2 = 25, y = -4

 11. x2 + y2 + (z + 3)2 = 25, z = 0

 12. x2 + ( y - 1)2 + z2 = 4, y = 0

 13. x2 + y2 = 4, z = y

 14. x2 + y2 + z2 = 4, y = x

 15. y = x2, z = 0

 16. z = y2, x = 1

Geometric Interpretations of Inequalities and Equations

In Exercises 17–24, describe the sets of points in space whose coordi-

nates satisfy the given inequalities or combinations of equations and 

inequalities.

 17. a. x Ú 0, y Ú 0, z = 0 b. x Ú 0, y … 0, z = 0

 18. a. 0 … x … 1 b. 0 … x … 1, 0 … y … 1

c. 0 … x … 1, 0 … y … 1, 0 … z … 1

 19. a. x2 + y2 + z2 … 1 b. x2 + y2 + z2 7 1

 20. a. x2 + y2 … 1, z = 0 b. x2 + y2 … 1, z = 3

c. x2 + y2 … 1, no restriction on z

 21. a. 1 … x2 + y2 + z2 … 4 b. x2 + y2 + z2 … 1, z Ú 0

 22. a. x = y, z = 0 b. x = y, no restriction on z

 23. a. y Ú x2, z Ú 0 b. x … y2, 0 … z … 2

 24. a. z = 1 - y, no restriction on x

b. z = y3, x = 2

EXERCISES 12.1
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 46. The solid cube in the irst octant bounded by the coordinate planes 

and the planes x = 2, y = 2, and z = 2

 47. The half-space consisting of the points on and below the xy-plane

 48. The upper hemisphere of the sphere of radius 1 centered at the 

origin

 49. The (a) interior and (b) exterior of the sphere of radius 1 centered 

at the point (1, 1, 1)

 50. The closed region bounded by the spheres of radius 1 and radius 2  

centered at the origin. (Closed means the spheres are to be included.  

Had we wanted the spheres left out, we would have asked for 

the open region bounded by the spheres. This is analogous to the 

way we use closed and open to describe intervals: closed means 

 endpoints included, open means endpoints left out. Closed sets 

include boundaries; open sets leave them out.)

Spheres

Find the center C and the radius a for the spheres in Exercises 51–60.

 51. (x + 2)2 + y2 + (z - 2)2 = 8

 52. (x - 1)2 + ay +
1
2
b2

+ (z + 3)2 = 25

 53. 1x - 2222 + 1y - 2222 + 1z + 2222 = 2

 54. x2 + ay +
1
3
b2

+ az -
1
3
b2

=
16
9

 55. x2 + y2 + z2 + 4x - 4z = 0

 56. x2 + y2 + z2 - 6y + 8z = 0

 57. 2x2 + 2y2 + 2z2 + x + y + z = 9

 58. 3x2 + 3y2 + 3z2 + 2y - 2z = 9

 59. x2 + y2 + z2 - 4x + 6y - 10z = 11

 60. (x - 1)2 + (y - 2)2 + (z + 1)2 = 103 + 2x + 4y - 2z

Find equations for the spheres whose centers and radii are given in 

Exercises 61–64.

center radius

 61. (1, 2, 3) 214

 62. (0, -1, 5) 2

 63. a-1, 
1
2

, -  
2
3
b 4

9

 64. (0, -7, 0) 7

Theory and Examples

 65. Find a formula for the distance from the point P(x, y, z) to the

a. x-axis. b. y-axis. c. z-axis.

 66. Find a formula for the distance from the point P(x, y, z) to the

a. xy-plane. b. yz-plane. c. xz-plane.

 67. Find the perimeter of the triangle with vertices A(-1, 2, 1), 

B(1, -1, 3), and C(3, 4, 5).

 68. Show that the point P(3, 1, 2) is equidistant from the points 

A(2, -1, 3) and B(4, 3, 1).

 69. Find an equation for the set of all points equidistant from the 

planes y = 3 and y = -1.

 70. Find an equation for the set of all points equidistant from the point 

(0, 0, 2) and the xy-plane.

Distance

In Exercises 25–30, find the distance between points P1 and P2.

 25. P1(1, 1, 1),   P2(3, 3, 0)

 26. P1(-1, 1, 5),   P2(2, 5, 0)

 27. P1(1, 4, 5),   P2(4, -2, 7)

 28. P1(3, 4, 5),   P2(2, 3, 4)

 29. P1(0, 0, 0),   P2(2, -2, -2)

 30. P1(5, 3, -2),   P2(0, 0, 0)

 31. Find the distance from the point (3, -4, 2) to the

a. xy-plane b. yz-plane c. xz-plane

 32. Find the distance from the point (-2, 1, 4) to the

a. plane x = 3 b. plane y = -5 c. plane z = -1

 33. Find the distance from the point (4, 3, 0) to the

a. x-axis b. y-axis c. z-axis

 34. Find the distance from the

a. x-axis to the plane z = 3.

b. origin to the plane 2 = z - x.

c. point (0, 4, 0) to the plane y = x.

In Exercises 35–44, describe the given set with a single equation or 

with a pair of equations.

 35. The plane perpendicular to the

a. x-axis at (3, 0, 0) b. y-axis at (0, -1, 0)

c. z-axis at (0, 0, -2)

 36. The plane through the point (3, -1, 2) perpendicular to the

a. x-axis b. y-axis c. z-axis

 37. The plane through the point (3, -1, 1) parallel to the

a. xy-plane b. yz-plane c. xz-plane

 38. The circle of radius 2 centered at (0, 0, 0) and lying in the

a. xy-plane b. yz-plane c. xz-plane

 39. The circle of radius 2 centered at (0, 2, 0) and lying in the

a. xy-plane b. yz-plane c. plane y = 2

 40. The circle of radius 1 centered at (-3, 4, 1) and lying in a plane 

parallel to the

a. xy-plane b. yz-plane c. xz-plane

 41. The line through the point (1, 3, -1) parallel to the

a. x-axis b. y-axis c. z-axis

 42. The set of points in space equidistant from the origin and the point 

(0, 2, 0)

 43. The circle in which the plane through the point (1, 1, 3) perpen-

dicular to the z-axis meets the sphere of radius 5 centered at the 

origin

 44. The set of points in space that lie 2 units from the point (0, 0, 1) 

and, at the same time, 2 units from the point (0, 0, -1)

Inequalities to Describe Sets of Points

Write inequalities to describe the sets in Exercises 45–50.

 45. The slab bounded by the planes z = 0 and z = 1 (planes 

 included)
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 71. Find the point on the sphere x2 + (y - 3)2 + (z + 5)2 = 4 

 nearest

a. the xy-plane. b. the point (0, 7, -5).

 72. Find the point equidistant from the points (0, 0, 0), (0, 4, 0), (3, 0, 0), 

and (2, 2, -3).

 73. Find an equation for the set of points equidistant from the point  

(0, 0, 2) and the x-axis.

 74. Find an equation for the set of points equidistant from the y-axis 

and the plane z = 6.

 75. Find an equation for the set of points equidistant from the

a. xy-plane and yz-plane.

b. x-axis and y-axis.

 76. Find all points that simultaneously lie 3 units from each of the 

points (2, 0, 0), (0, 2, 0), and (0, 0, 2).

12.2 Vectors

Some of the things we measure are determined simply by their magnitudes. To record 

mass, length, or time, for example, we need only write down a number and name an appro-

priate unit of measure. We need more information to describe a force, displacement, or 

velocity. To describe a force, we need to record the direction in which it acts as well as 

how large it is. To describe a body’s displacement, we have to say in what direction it 

moved as well as how far. To describe a body’s velocity, we have to know its direction of 

motion, as well as how fast it is going. In this section we show how to represent things that 

have both magnitude and direction in the plane or in space.

Component Form

A quantity such as force, displacement, or velocity is called a vector and is represented by 

a directed line segment (Figure 12.7). The arrow points in the direction of the action and 

its length gives the magnitude of the action in terms of a suitably chosen unit. For exam-

ple, a force vector points in the direction in which the force acts and its length is a measure 

of the force’s strength; a velocity vector points in the direction of motion and its length is 

the speed of the moving object. Figure 12.8 displays the velocity vector v at a specific 

location for a particle moving along a path in the plane or in space. (This application of 

vectors is studied in Chapter 13.)

Initial

point

Terminal

point

A

B

AB

FIGURE 12.7 The directed line segment 
r
AB  is called a vector.

x

y

y

z

0

0

x

v v

(a)  two dimensions (b)  three dimensions

FIGURE 12.8 The velocity vector of a particle moving along a path (a) 

in the plane (b) in space. The arrowhead on the path indicates the direc-

tion of motion of the particle.

DEFINITIONS The vector represented by the directed line segment 
r
AB has 

 initial point A and terminal point B and its length is denoted by 0rAB 0 . Two 

 vectors are equal if they have the same length and direction.

The arrows we use when we draw vectors are understood to represent the same vector 

if they have the same length, are parallel, and point in the same direction (Figure 12.9) 

regardless of the initial point.

x

y

O

A

P

D

C

F

E

B

FIGURE 12.9 The four arrows in the 

plane (directed line segments) shown here 

have the same length and direction. They 

therefore represent the same vector, and 

we write 
r
AB = r

CD = r
OP = r

EF.
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In textbooks, vectors are usually written in lowercase, boldface letters, for example u, 

v, and w. Sometimes we use uppercase boldface letters, such as F, to denote a force vector. 

In handwritten form, it is customary to draw small arrows above the letters, for example us, 

ys, ws, and Fs.

We need a way to represent vectors algebraically so that we can be more precise about 

the direction of a vector. Let v = r
PQ. There is one directed line segment equal to 

r
PQ  

whose initial point is the origin (Figure 12.10). It is the representative of v in standard 

position and is the vector we normally use to represent v. We can specify v by writing the 

coordinates of its terminal point (y1, y2, y3) when v is in standard position. If v is a vector 

in the plane its terminal point (y1, y2) has two coordinates.

DEFINITION If v is a two-dimensional vector in the plane equal to the vector 

with initial point at the origin and terminal point (y1, y2), then the component 

form of v is

v = 8y1, y29 .
If v is a three-dimensional vector equal to the vector with initial point at the 

origin and terminal point (y1, y2, y3), then the component form of v is

v = 8y1, y2, y39 .

x

z

y

0

P(x1, y1, z1)

Q(x2, y2, z2)

(y1, y2, y3)
Position vector

of PQ

v = ⟨y1, y2, y3⟩  y3

y1

y2

FIGURE 12.10 A vector 
S
PQ  in standard 

position has its initial point at the origin. 

The directed line segments 
S
PQ  and v are 

parallel and have the same length.

So a two-dimensional vector is an ordered pair v = 8y1, y29  of real numbers, and a 

three-dimensional vector is an ordered triple v = 8y1, y2, y39  of real numbers. The num-

bers y1, y2, and y3 are the components of v.

If v = 8y1, y2, y39  is represented by the directed line segment 
r
PQ, where the initial 

point is P(x1, y1, z1) and the terminal point is Q(x2, y2, z2), then x1 + y1 = x2, 

y1 + y2 = y2, and z1 + y3 = z2 (see Figure 12.10). Thus, y1 = x2 - x1, y2 = y2 - y1, 

and y3 = z2 - z1 are the components of 
r
PQ.

In summary, given the points P(x1, y1, z1) and Q(x2, y2, z2), the standard position 

 vector v = 8y1, y2, y39  equal to 
r
PQ  is

v = 8x2 - x1, y2 - y1, z2 -  z19 .
If v is two-dimensional with P(x1, y1) and Q(x2, y2) as points in the plane, then 

v = 8x2 - x1, y2 - y19 . There is no third component for planar vectors. With this under-

standing, we will develop the algebra of three-dimensional vectors and simply drop the 

third component when the vector is two-dimensional (a planar vector).

Two vectors are equal if and only if their standard position vectors are identical. Thus 8u1, u2, u39  and 8y1, y2, y39  are equal if and only if u1 = y1, u2 = y2, and u3 = y3.

The magnitude or length of the vector 
r
PQ  is the length of any of its equivalent 

directed line segment representations. In particular, if v = 8x2 - x1, y2 - y1, z2 - z19  is 

the standard position vector for 
r
PQ, then the distance formula gives the magnitude or 

length of v, denoted by the symbol 0 v 0  or 7v 7 .

HistoricAL BiogrApHy

carl Friedrich gauss

(1777–1855)

www.goo.gl/LZMPlA

The magnitude or length of the vector v = r
PQ  is the nonnegative number0 v 0 = 2y1 

2 + y2 

2 + y3 

2 = 2(x2 - x1)
2 + (y2 - y1)

2 + (z2 - z1)
2

(see Figure 12.10).

The only vector with length 0 is the zero vector 0 = 80, 09  or 0 = 80, 0, 09 . This 

vector is also the only vector with no specific direction.

http://www.goo.gl/LZMPlA
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EXAMPLE 1  Find the (a) component form and (b) length of the vector with initial 

point P(-3, 4, 1) and terminal point Q(-5, 2, 2).

Solution

(a) The standard position vector v representing 
r
PQ  has components

y1 = x2 - x1 = -5 - (-3) = -2,   y2 = y2 - y1 = 2 - 4 =  -2,

and

y3 = z2 - z1 = 2 - 1 = 1.

The component form of 
r
PQ  is

v = 8-2, -2, 19 .
(b) The length or magnitude of v = r

PQ  is

 0 v 0 = 2(-2)2 + (-2)2 + (1)2 = 29 = 3. 

DEFINITIONS Let u = 8u1, u2, u39  and v = 8y1, y2, y39  be vectors with k a 

scalar.

Addition:  u + v = 8u1 + y1, u2 + y2, u3 + y39
scalar multiplication: ku = 8ku1, ku2, ku39

We add vectors by adding the corresponding components of the vectors. We multiply 

a vector by a scalar by multiplying each component by the scalar. The definitions also 

apply to planar vectors, except in that case there are only two components, 8u1, u29  and 8y1, y29 .
The definition of vector addition is illustrated geometrically for planar vectors in Fig-

ure 12.12a, where the initial point of one vector is placed at the terminal point of the other. 

Another interpretation is shown in Figure 12.12b (called the parallelogram law of addi-

tion), where the sum, called the resultant vector, is the diagonal of the parallelogram. In 

physics, forces add vectorially as do velocities, accelerations, and so on. So the force act-

ing on a particle subject to two gravitational forces, for example, is obtained by adding the 

two force vectors.

EXAMPLE 2  A small cart is being pulled along a smooth horizontal floor with a 

20-lb force F making a 45° angle to the floor (Figure 12.11). What is the effective force 

moving the cart forward?

Solution The effective force is the horizontal component of F = 8a, b9 , given by

a = 0F 0  cos 45° = (20)a22
2

 b ≈ 14.14 lb.

Notice that F is a two-dimensional vector. 

Vector Algebra Operations

Two principal operations involving vectors are vector addition and scalar multiplication. 

A scalar is simply a real number, and is called such when we want to draw attention to the 

differences between numbers and vectors. Scalars can be positive, negative, or zero and 

are used to “scale” a vector by multiplication.

x

y

45

F = ⟨a, b⟩

FIGURE 12.11 The force pulling the 

cart forward is represented by the vector F 

whose horizontal component is the effec-

tive force (Example 2).

⟨u1  +  y1, u2  +  y2⟩

y2

y1

u2

u1

u

vu + v

x

y

(a)

u

v

u + v

x

y

(b)

0

0

FIGURE 12.12 (a) Geometric inter-

pretation of the vector sum. (b) The 

parallelogram law of vector addition 

in which both vectors are in standard 

position.
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Figure 12.13 displays a geometric interpretation of the product ku of the scalar k and 

vector u. If k 7 0, then ku has the same direction as u; if k 6 0, then the direction of ku 

is opposite to that of u. Comparing the lengths of u and ku, we see that

 0 ku 0 = 2(ku1)
2 + (ku2)

2 + (ku3)
2 = 2k2(u1 

2 + u2 

2 + u3 

2)

 = 2k22u1 

2 + u2 

2 + u3 

2 = 0 k 0 0 u 0 .
The length of ku is the absolute value of the scalar k times the length of u. The vector 

(-1)u = -u has the same length as u but points in the opposite direction.

The difference u - v of two vectors is defined by

u - v = u + (-v).

If u = 8u1, u2, u39  and v = 8y1, y2, y39 , then

u - v = 8u1 - y1, u2 - y2, u3 - y39 .
Note that (u - v) + v = u, so adding the vector (u - v) to v gives u (Figure 12.14a). 

Figure 12.14b shows the difference u - v as the sum u + (-v).

EXAMPLE 3  Let u = 8-1, 3, 19  and v = 84, 7, 09. Find the components of

(a) 2u + 3v  (b) u - v  (c) ` 1
2

  u ` .
Solution

(a) 2u + 3v = 28-1, 3, 19 + 384, 7, 09 = 8-2, 6, 29 + 812, 21, 09 = 810, 27, 29
(b) u - v = 8-1, 3, 19 - 84, 7, 09 = 8-1 - 4, 3 - 7, 1 - 09 = 8-5, -4, 19
(c) ` 1

2
 u ` = ` h-  

1
2

, 
3
2

, 
1
2
i ` = Ca-  

1
2
b2

+ a3
2
b2

+ a1
2
b2

=
1
2

 211. 

u

1.5u

2u −2u

u

2u

−u

x

y

0

FIGURE 12.13 (a) Scalar multiples of 

u. (b) Scalar multiples of a vector u in 

standard position.

(a)

(b)

u

v

u − v

(a)

u

v

−v

u + (−v)

(b)

FIGURE 12.14 (a) The vector  

u - v, when added to v, gives u.  

(b) u - v = u + (-v).

Properties of Vector Operations

Let u, v, w be vectors and a, b be scalars.

1. u + v = v + u 2. (u + v) + w = u + (v + w)

3. u + 0 = u 4. u + (-u) = 0

5. 0 u = 0 6. 1u = u

7. a(bu) = (ab)u 8. a(u + v) = au + av

9. (a + b) u = au + bu

These properties are readily verified using the definitions of vector addition and 

 multiplication by a scalar. For instance, to establish Property 1, we have

 u + v = 8u1, u2, u39 + 8y1, y2, y39
 = 8u1 + y1, u2 + y2, u3 + y39
 = 8y1 + u1, y2 + u2, y3 + u39
 = 8y1, y2, y39 + 8u1, u2, u39
 = v + u.

When three or more space vectors lie in the same plane, we say they are coplanar 

vectors. For example, the vectors u, v, and u + v are always coplanar.

Vector operations have many of the properties of ordinary arithmetic.
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EXAMPLE 5  If v = 3i - 4j is a velocity vector, express v as a product of its speed 

times its direction of motion.

Solution Speed is the magnitude (length) of v:0 v 0 = 2(3)2 + (-4)2 = 29 + 16 = 5.

The unit vector v> 0 v 0  is the direction of v:

v0 v 0 =
3i - 4j

5
=

3
5

  i -
4
5

  j.

So

v = 3i - 4j = 5a3
5

  i -
4
5

  jb . 

  (+)+*
 Length  

 (speed) 

Direction of motion

Unit Vectors

A vector v of length 1 is called a unit vector. The standard unit vectors are

i = 81, 0, 09 ,  j = 80, 1, 09 , and k = 80, 0, 19 .
Any vector v = 8y1, y2, y39  can be written as a linear combination of the standard unit 

vectors as follows:

 v = 8y1, y2, y39 = 8y1, 0, 09 + 80, y2, 09 + 80, 0, y39
 = y181, 0, 09 + y280, 1, 09 + y380, 0, 19
 = y1 i + y2  j + y3  k.

We call the scalar (or number) y1 the i@component of the vector v, y2 the 

j@component, and y3 the k@component. As shown in Figure 12.15, the component form 

for the vector from P1(x1, y1, z1) to P2(x2, y2, z2) is

r
P1P2 = (x2 - x1)i + ( y2 - y1)j + (z2 - z1)k.

If v ≠ 0, then its length 0 v 0  is not zero and` 10 v 0   v 2 =
10 v 0  0 v 0 = 1.

That is, v> 0 v 0  is a unit vector in the direction of v, called the direction of the nonzero 

 vector v.

EXAMPLE 4  Find a unit vector u in the direction of the vector from P1(1, 0, 1) to 

P2(3, 2, 0).

Solution We divide 
r

P1P2 by its length:

 
r

P1P2 = (3 - 1)i + (2 - 0)j + (0 - 1)k = 2i + 2j - k

 0 rP1P2 0 = 2(2)2 + (2)2 + (-1)2 = 24 + 4 + 1 = 29 = 3

 u =
r

P1P20 rP1P2 0 =
2i + 2j - k

3
=

2
3

  i +
2
3

  j -
1
3

  k.

This unit vector u is the direction of 
S

P1P2. 

y

z

O

k

x

i
j

P2(x2, y2, z2)

OP2 = x2i + y2 j + z2k

P1P2

P1(x1, y1, z1)

OP1 = x1i + y1j + z1k

FIGURE 12.15 The vector from P1 to 

P2 is 
r

P1P2 = (x2 - x1)i +  (y2 - y1)j +
(z2 - z1)k.

HistoricAL BiogrApHy

Hermann grassmann

(1809–1877)

www.goo.gl/g8Hsw0

http://www.goo.gl/g8Hsw0
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In summary, we can express any nonzero vector v in terms of its two important features, 

length and direction, by writing v = 0 v 0 v0 v 0 .
If v ≠ 0, then

1. 
v0 v 0  is a unit vector called the direction of v;

2. the equation v = 0 v 0 v0 v 0  expresses v as its length times its direction.

EXAMPLE 6  A force of 6 newtons is applied in the direction of the vector 

v = 2i + 2j - k. Express the force F as a product of its magnitude and direction.

Solution The force vector has magnitude 6 and direction 
v0 v 0 , so

 F = 6  
v0 v 0 = 6  

2i + 2j - k

222 + 22 + (-1)2
= 6  

2i + 2j - k

3

  = 6a2
3

  i +
2
3

  j -
1
3

  kb .  

The midpoint M of the line segment joining points P1(x1, y1, z1) and P2(x2, y2, z2) 

is the point ax1 + x2

2
,  

y1 + y2

2
,  

z1 + z2

2
b .

Midpoint of a Line Segment

Vectors are often useful in geometry. For example, the coordinates of the midpoint of a 

line segment are found by averaging.

To see why, observe (Figure 12.16) that

 
r

OM = r
OP1 +

1
2

  (
r

P1P2) = r
OP1 +

1
2

  (
r
OP2 - r

OP1)

 =
1
2

  (
r
OP1 + r

OP2)

 =
x1 + x2

2
  i +

y1 + y2

2
  j +

z1 + z2

2
  k.

EXAMPLE 7  The midpoint of the segment joining P1(3, -2, 0) and P2(7, 4, 4) is

 a3 + 7
2

,  
-2 + 4

2
,  

0 + 4
2
b = (5, 1, 2). 

O

P1(x1, y1, z1)

P2(x2, y2, z2)

M
x1 + x2

2

z1 + z2

2

y1 + y2

2
, , ba

FIGURE 12.16 The coordinates of the 

midpoint are the averages of the coordi-

nates of P1 and P2.
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Applications

An important application of vectors occurs in navigation.

EXAMPLE 8  A jet airliner, flying due east at 500 mph in still air, encounters a 

70-mph tailwind blowing in the direction 60° north of east. The airplane holds its compass 

heading due east but, because of the wind, acquires a new ground speed and direction. 

What are they?

Solution If u is the velocity of the airplane alone and v is the velocity of the tailwind, 

then 0 u 0 = 500 and 0 v 0 = 70 (Figure 12.17). The velocity of the airplane with respect  

to the ground is given by the magnitude and direction of the resultant vector u + v. If we 

let the positive x-axis represent east and the positive y-axis represent north, then the com-

ponent forms of u and v are

u = 8500, 09  and  v = 870 cos 60°, 70 sin 60°9 = 835, 35239 .
Therefore,

 u + v = 8535, 35239 = 535i + 3523 j

 0 u + v 0 = 25352 + (3513)2 ≈ 538.4

and

u = tan-1  
3523

535
 ≈ 6.5°.  Figure 12.17

The new ground speed of the airplane is about 538.4 mph, and its new direction is about 

6.5° north of east. 

EXAMPLE 9  A 75-N weight is suspended by two wires, as shown in Figure 12.18a. 

Find the forces F1 and F2 acting in both wires.

Solution The force vectors F1 and F2 have magnitudes 0F1 0  and 0F2 0  and components 

that are measured in newtons. The resultant force is the sum F1 + F2 and must be equal in 

magnitude and acting in the opposite (or upward) direction to the weight vector w (see 

Figure 12.18b). It follows from the figure that

F1 = 8- 0F1 0  cos 55°, 0F1 0  sin 55°9   and  F2 = 8 0F2 0 cos 40°, 0F2 0  sin 40°9 .
Since F1 + F2 = 80, 759 , the resultant vector leads to the system of equations

 - 0F1 0  cos 55° + 0F2 0  cos 40° = 0

 0F1 0  sin 55° + 0F2 0  sin 40° = 75.

Solving for 0F2 0  in the first equation and substituting the result into the second equation, 

we get 0F2 0 =
0F1 0  cos 55°

cos 40°
  and  0F1 0  sin 55° +

0F1 0  cos 55°

cos 40°
 sin 40° = 75.

It follows that 0F1 0 =
75

sin 55° + cos 55° tan 40°
≈ 57.67 N,

F1

F2

40°

75

40°

55°

55°

(a)

(b)

0F1 0 0F2 0 F2

F1

40°55°

F = F1+ F2 = ⟨0, 75⟩

w = ⟨0, −75⟩

FIGURE 12.18 The suspended weight  

in Example 9.

E

N

u

v

u + v30̊
70

500

NOT TO SCALE

u

FIGURE 12.17 Vectors representing the 

velocities of the airplane u and tailwind v 

in Example 8.

Another important application occurs in physics and engineering when several forces 

are acting on a single object.
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and

 0F2 0 =
75 cos 55°

sin 55° cos 40° + cos 55° sin 40°

 =
75 cos 55°

sin (55° + 40°)
≈ 43.18 N.

The force vectors are then

F1 = 8- 0F1 0  cos 55°, 0F1 0  sin 55°9 ≈ 8-33.08, 47.249
and

 F2 = 8 0F2 0  cos 40°, 0F2 0  sin 40°9 ≈ 833.08, 27.769 . 

Vectors in the Plane

In Exercises 1–8, let u = 83, -29  and v = 8-2, 59 . Find the  

(a) component form and (b) magnitude (length) of the vector.

 1. 3u  2. -2v

 3. u + v 4. u - v

 5. 2u - 3v 6. -2u + 5v

 7. 
3

5
 u +

4
5

 v 8. -  
5
13

 u +
12
13

 v

EXERCISES 12.2

Length and Direction

In Exercises 25–30, express each vector as a product of its length and 

direction.

 25. 2i + j - 2k 26. 9i - 2j + 6k

 27. 5k  28. 
3

5
  i +

4
5

  k

 29. 
1

26
  i -

1

26
  j -

1

26
  k 30. 

i

23
+

j

23
+

k

23

 21. 5u - v if u = 81, 1, -19  and v = 82, 0, 39
 22. -2u + 3v if u = 8-1, 0, 29  and v = 81, 1, 19
Geometric Representations

In Exercises 23 and 24, copy vectors u, v, and w head to tail as 

needed to sketch the indicated vector.

 23. 

v

w

u

a. u + v

b. u + v + w

c. u - v

d. u - w

 24. 

u

w

v

a. u - v

b. u - v + w

c. 2u - v

d. u + v + w

In Exercises 9–16, find the component form of the vector.

 9. The vector 
r
PQ, where P = (1, 3) and Q = (2, -1)

 10. The vector 
r
OP  where O is the origin and P is the midpoint of 

 segment RS, where R = (2, -1) and S = (-4, 3)

 11. The vector from the point A = (2, 3) to the origin

 12. The sum of 
r
AB  and 

r
CD, where A = (1, -1), B = (2, 0),  

C = (-1, 3), and D = (-2, 2)

 13. The unit vector that makes an angle u = 2p>3 with the positive 

x-axis

 14. The unit vector that makes an angle u = -3p>4 with the positive 

x-axis

 15. The unit vector obtained by rotating the vector 80, 19  120° 
 counterclockwise about the origin

 16. The unit vector obtained by rotating the vector 81, 09  135° 
 counterclockwise about the origin

Vectors in Space

In Exercises 17–22, express each vector in the form v = y1  i +  

y2  j + y3  k.

 17. 
r

P1P2  if P1 is the point (5, 7, -1) and P2 is the point (2, 9, -2)

 18. 
r

P1P2  if P1 is the point (1, 2, 0) and P2 is the point (-3, 0, 5)

 19. 
r
AB  if A is the point (-7, -8, 1) and B is the point (-10, 8, 1)

 20. 
r
AB  if A is the point (1, 0, 3) and B is the point (-1, 4, 5)
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 46. (Continuation of Example 8.) What speed and direction should the 

jetliner in Example 8 have in order for the resultant vector to be 

500 mph due east?

 47. Consider a 100-N weight suspended by two wires as shown in the 

accompanying igure. Find the magnitudes and components of the 

force vectors F1 and F2.

F1 F2

45°

100

30°

 48. Consider a 50-N weight suspended by two wires as shown in the 

accompanying igure. If the magnitude of vector F1 is 35 N, ind 

angle a and the magnitude of vector F2.

F1

F2

60°a

50

 49. Consider a w-N weight suspended by two wires as shown in the 

accompanying igure. If the magnitude of vector F2 is 100 N, ind 

w and the magnitude of vector F1.

F1 F2

35°

w

40°

 50. Consider a 25-N weight suspended by two wires as shown in the 

accompanying igure. If the magnitudes of vectors F1 and F2 are 

both 75 N, then angles a and b are equal. Find a.

F1 F2

25

a b

 51. Location A bird lies from its nest 5 km in the direction 60° 

north of east, where it stops to rest on a tree. It then lies 10 km in 

the direction due southeast and lands atop a telephone pole. Place 

an xy-coordinate system so that the origin is the bird’s nest, the 

x-axis points east, and the y-axis points north.

a. At what point is the tree located?

b. At what point is the telephone pole?

 52. Use similar triangles to ind the coordinates of the point Q that 

divides the segment from P1(x1, y1, z1) to P2(x2, y2, z2) into two 

lengths whose ratio is p>q = r .

 31. Find the vectors whose lengths and directions are given. Try to do 

the calculations without writing.

Length Direction

a. 2 i

b. 23 -k

c. 
1
2

3

5
  j +

4
5

  k

d. 7
6
7

  i -
2
7

  j +
3
7

  k

 32. Find the vectors whose lengths and directions are given. Try to do 

the calculations without writing.

Length Direction

a. 7 - j

b. 22 -  
3

5
  i -

4
5

  k

c. 
13
12

3
13

  i -
4
13

  j -
12
13

  k

d. a 7 0
1

22
  i +

1

23
  j -

1

26
  k

 33. Find a vector of magnitude 7 in the direction of v = 12i - 5k.

 34. Find a vector of magnitude 3 in the direction opposite to the direc-

tion of v = (1>2)i - (1>2)j - (1>2)k.

Direction and Midpoints

In Exercises 35–38, find a. the direction of 
r

P1P2  and b. the midpoint 

of line segment P1 P2.

 35. P1(-1, 1, 5)  P2(2, 5, 0)

 36. P1(1, 4, 5)   P2(4, -2, 7)

 37. P1(3, 4, 5)   P2(2, 3, 4)

 38. P1(0, 0, 0)   P2(2, -2, -2)

 39. If 
r
AB = i + 4j - 2k and B is the point (5, 1, 3), ind A.

 40. If 
r
AB = -7i + 3j + 8k and A is the point (-2, -3, 6), ind B.

Theory and Applications

 41. Linear combination Let u = 2i + j, v = i + j, and w =

i - j. Find scalars a and b such that u = av + bw.

 42. Linear combination Let u = i - 2j, v = 2i + 3j, and w =  

i + j. Write u = u1 + u2, where u1 is parallel to v and u2 is 

 parallel to w. (See Exercise 41.)

 43. Linear combination Let u = 81, 2, 19 , v = 81, -1, -19 , 

w = 81, 1, -19 , and z = 82, -3, -49 . Find scalars a, b, and c 

such that z = au + bv + cw.

 44. Linear combination Let u = 81, 2, 29 , v = 81, -1, -19 , 
w = 81, 3, -19 , and z = 82, 11, 89 . Write z = u1 + u2 + u3,  

where u1 is parallel to u, u2 is parallel to v, and u3 is parallel to 

w. What are u1, u2, u3?

 45. Velocity An airplane is lying in the direction 25° west of north 

at 800 km >h. Find the component form of the velocity of the air-

plane, assuming that the positive x-axis represents due east and the 

positive y-axis represents due north.
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 54. Find the vector from the origin to the point of intersection of the 

medians of the triangle whose vertices are

A(1, -1, 2),  B(2, 1, 3),  and C(-1, 2, -1).

 55. Let ABCD be a general, not necessarily planar, quadrilateral in 

space. Show that the two segments joining the midpoints of op-

posite sides of ABCD bisect each other. (Hint: Show that the seg-

ments have the same midpoint.)

 56. Vectors are drawn from the center of a regular n-sided polygon in 

the plane to the vertices of the polygon. Show that the sum of the 

vectors is zero. (Hint: What happens to the sum if you rotate the 

polygon about its center?)

 57. Suppose that A, B, and C are vertices of a triangle and that a, b, 

and c are, respectively, the midpoints of the opposite sides. Show 

that 
r
Aa + r

Bb + r
Cc = 0.

 58. Unit vectors in the plane Show that a unit vector in the plane 

can be expressed as u = (cos u)i + (sin u)j, obtained by rotating 

i through an angle u in the counterclockwise direction. Explain 

why this form gives every unit vector in the plane.

 59. Consider a triangle whose vertices are A(2, -3, 4), B(1, 0, -1), 

and C(3, 1, 2).

a. Find 
r
AB + r

BC + r
CA . b. Find 

r
BA + r

AC + r
CB .

 53. Medians of a triangle Suppose that A, B, and C are the  

corner points of the thin triangular plate of constant density shown 

here.

a. Find the vector from C to the midpoint M of side AB.

b. Find the vector from C to the point that lies two-thirds of the 

way from C to M on the median CM.

c. Find the coordinates of the point in which the medians of 

∆ABC intersect. According to Exercise 27, Section 6.6, this 

point is the plate’s center of mass. (See the igure.)

z

y

x

c.m.

M

C(1, 1, 3)

B(1, 3, 0)

A(4, 2, 0)

12.3 The Dot Product

If a force F is applied to a particle moving along a path, we often need to know the magni-

tude of the force in the direction of motion. If v is parallel to the tangent line to the path at 

the point where F is applied, then we want the magnitude of F in the direction of v. Figure 

12.19 shows that the scalar quantity we seek is the length 0F 0  cos u, where u is the angle 

between the two vectors F and v.

In this section we show how to calculate easily the angle between two vectors directly 

from their components. A key part of the calculation is an expression called the dot prod-

uct. Dot products are also called inner or scalar products because the product results in a 

scalar, not a vector. After investigating the dot product, we apply it to finding the projec-

tion of one vector onto another (as displayed in Figure 12.19) and to finding the work done 

by a constant force acting through a displacement.

Angle Between Vectors

When two nonzero vectors u and v are placed so their initial points coincide, they form an 

angle u of measure 0 … u … p (Figure 12.20). If the vectors do not lie along the same 

line, the angle u is measured in the plane containing both of them. If they do lie along the 

same line, the angle between them is 0 if they point in the same direction and p if they 

point in opposite directions. The angle u is the angle between u and v. Theorem 1 gives a 

formula to determine this angle.

v

F

Length = 0 F 0  cos u

u

FIGURE 12.19 The magnitude of the 

force F in the direction of vector v is the 

length 0F 0  cos u of the projection of F  

onto v.

THEOREM 1—Angle Between Two Vectors

The angle u between two nonzero vectors u = 8u1, u2, u39  and v = 8y1, y2, y39  

is given by

u = cos-1 au1 y1 + u2 y2 + u3 y30 u 0 0 v 0 b .

v

u

u

FIGURE 12.20 The angle between u and 

v given by Theorem 1 lies in the interval 30, p4 .
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We use the law of cosines to prove Theorem 1, but before doing so, we focus attention 

on the expression u1 y1 + u2 y2 + u3 y3 in the calculation for u. This expression is the sum 

of the products of the corresponding components of the vectors u and v.

DEFINITION The dot product u # v (“u dot v”) of vectors u = 8u1, u2, u39  

and v = 8y1, y2, y39  is the scalar

u # v = u1y1 + u2y2 + u3y3 .

EXAMPLE 1  We illustrate the definition.

(a)  81, -2, -19 # 8-6, 2, -39 = (1)(-6) + (-2)(2) + (-1)(-3)

 = -6 - 4 + 3 =  -7

(b) a1
2

  i + 3j + kb # (4i - j + 2k) = a1
2
b (4) + (3)(-1) + (1)(2) = 1 

Proof of Theorem 1  Applying the law of cosines (Equation (8), Section 1.3) to the 

triangle in Figure 12.21, we ind that

 0w 0 2 = 0 u 0 2 + 0 v 0 2 - 2 0 u 0 0 v 0  cos u  Law of cosines

 2 0 u 0 0 v 0  cos u = 0 u 0 2 + 0 v 0 2 - 0w 0 2.
Because w = u - v, the component form of w is 8u1 - y1, u2 - y2, u3 - y39 . So

 0 u 0 2 = 12u1 

2 + u2 

2 + u3 

222 = u1 

2 + u2 

2 + u3 

2

 0 v 0 2 = 12y1 

2 + y2 

2 + y3 

222 = y1 

2 + y2 

2 + y3 

2

 0w 0 2 = 12(u1 - y1)
2 + (u2 - y2)

2 + (u3 - y3)
222

 = (u1 - y1)
2 + (u2 - y2)

2 + (u3 - y3)
2

 = u1 

2 - 2u1y1 + y1 

2 + u2 

2 - 2u2y2 + y2 

2 + u3 

2 - 2u3y3 + y3 

2

and 0 u 0 2 + 0 v 0 2 - 0w 0 2 = 2(u1 y1 + u2y2 + u3 y3).

Therefore,

 2 0 u 0 0 v 0  cos u = 0 u 0 2 + 0 v 0 2 - 0w 0 2 = 2(u1 y1 + u2 y2 + u3 y3)

 0 u 0 0 v 0  cos u = u1 y1 + u2 y2 + u3 y3

 cos u =
u1 y1 + u2 y2 + u3 y30 u 0 0 v 0 .

Since 0 … u 6 p, we have u = cos-1 au1 y1 + u2 y2 + u3 y30 u 0 0 v 0 b . 

u

v

u

w

FIGURE 12.21 The parallelogram law 

of addition of vectors gives w = u - v.

The dot product of a pair of two-dimensional vectors is defined in a similar fashion:8u1, u29 # 8y1, y29 = u1 y1 + u2 y2 .

We will see throughout the remainder of the book that the dot product is a key tool for 

many important geometric and physical calculations in space (and the plane).
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EXAMPLE 2  Find the angle between u = i - 2j - 2k and v = 6i + 3j + 2k.

Solution We use the formula above:

 u # v = (1)(6) + (-2)(3) + (-2)(2) = 6 - 6 - 4 = -4

 0 u 0 = 2(1)2 + (-2)2 + (-2)2 = 29 = 3

 0 v 0 = 2(6)2 + (3)2 + (2)2 = 249 = 7

  u = cos-1 a u # v0 u 0 0 v 0 b = cos-1 a -4
(3)(7)

b ≈ 1.76 radians or 100.98°. 

Dot Product and Angles

The angle between two nonzero vectors u and v is u = cos-1 a u # v0 u 0 0 v 0 b .

The dot product of two vectors u and v is given by u # v = 0 u 0 0 v 0 cos u.

DEFINITION Vectors u and v are orthogonal if u # v = 0.

EXAMPLE 3  Find the angle u in the triangle ABC determined by the vertices 

A = (0, 0), B = (3, 5), and C = (5, 2) (Figure 12.22).

Solution The angle u is the angle between the vectors 
r
CA and 

r
CB. The component 

forms of these two vectors are

r
CA = 8-5, -29  and  

r
CB = 8-2, 39 .

First we calculate the dot product and magnitudes of these two vectors.

 
r
CA # rCB = (-5)(-2) + (-2)(3) = 4

 0 rCA 0 = 2(-5)2 + (-2)2 = 229

 0 rCB 0 = 2(-2)2 + (3)2 = 213

Then applying the angle formula, we have

 u = cos-1 ¢ r
CA # rCB0 rCA 0 0 rCB 0 ≤  = cos-1 ¢ 41229212132≤

  ≈ 78.1° or 1.36 radians.  

Orthogonal Vectors

Two nonzero vectors u and v are perpendicular if the angle between them is p>2. For such 

vectors, we have u # v = 0 because cos (p>2) = 0. The converse is also true. If u and v 

are nonzero vectors with u # v = 0 u 0 0 v 0 cos u = 0, then cos u = 0 and u = cos-1 0 = p>2. 

The following definition also allows for one or both of the vectors to be the zero vector.

x

y

A

u

B(3, 5)

C(5, 2)

1

1

FIGURE 12.22 The triangle in  

Example 3.

The angle formula applies to two-dimensional vectors as well. Note that the angle u 

is acute if u # v 7 0 and obtuse if u # v 6 0.
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EXAMPLE 4  To determine if two vectors are orthogonal, calculate their dot product.

(a) u = 83, -29  and v = 84, 69  are orthogonal because u # v = (3)(4) + (-2)(6) = 0.

(b) u = 3i - 2j + k and v = 2j + 4k are orthogonal because 

u # v = (3)(0) + (-2)(2) + (1)(4) = 0.

(c) 0 is orthogonal to every vector u since

 0 # u = 80, 0, 09 # 8u1, u2, u39
  = (0)(u1) + (0)(u2) + (0)(u3) = 0. 

Properties of the Dot Product

If u, v, and w are any vectors and c is a scalar, then

1. u # v = v # u 2. (cu) # v = u # (cv) = c(u # v)

3. u # (v + w) = u # v + u # w 4. u # u = 0 u 0 2
5. 0 # u = 0.

Proofs of Properties 1 and 3  The properties are easy to prove using the deinition. 

For instance, here are the proofs of Properties 1 and 3.

1. u # v = u1 y1 + u2 y2 + u3 y3 = y1 u1 + y2 u2 + y3 u3 = v # u

3.  u # (v + w) = 8u1, u2, u39 # 8y1 + w1, y2 + w2, y3 + w39
  = u1(y1 + w1) + u2(y2 + w2) + u3(y3 + w3)

  = u1 y1 + u1 w1 + u2 y2 + u2 w2 + u3 y3 + u3 w3

  = (u1 y1 + u2 y2 + u3 y3) + (u1 w1 + u2 w2 + u3 w3)

  = u # v + u # w  

We now return to the problem of projecting one vector onto another, posed in the 

opening to this section. The vector projection of u = r
PQ  onto a nonzero vector v = r

PS  

(Figure 12.23) is the vector 
r
PR determined by dropping a perpendicular from Q to the line 

PS. The notation for this vector is

projv u  (“the vector projection of u onto v”).

If u represents a force, then projv u represents the effective force in the direction of v 

 (Figure 12.24).

If the angle u between u and v is acute, projv u has length 0 u 0  cos u and direction 

v> 0 v 0  (Figure 12.25). If u is obtuse, cos u 6 0 and projv u has length - 0 u 0  cos u and 

direction -v> 0 v 0 . In both cases,

 projv u = 1 0 u 0  cos u2 
v0 v 0

 = au # v0 v 0 b  
v0 v 0   0 u 0  cos u =

0 u 0 0 v 0  cos u0 v 0 =
u # v0 v 0  

 = au # v0 v 0 2b  v.

Q

P

u

S

v

R

Q

P

u

S

v

R

FIGURE 12.23 The vector projection  

of u onto v.

v

Force = u

projv u

FIGURE 12.24 If we pull on the box 

with force u, the effective force moving 

the box forward in the direction v is the 

projection of u onto v.

Dot Product Properties and Vector Projections

The dot product obeys many of the laws that hold for ordinary products of real numbers 

(scalars).
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The number 0 u 0  cos u is called the scalar component of u in the direction of v (or of u 

onto v). To summarize,

u

v

(b)

u

v 

(a)

u

u

projv u projv u

Length = 0u 0  cos u Length = −0u 0  cos u 

FIGURE 12.25 The length of projv u is (a) 0 u 0  cos u if cos u Ú 0 and  

(b) - 0 u 0  cos u if cos u 6 0.

The vector projection of u onto v is the vector

 projv  u = au # v0 v 0 2bv = au # v0 v 0 b v0 v 0 . (1)

The scalar component of u in the direction of v is the scalar

 0 u 0  cos u =
u # v0 v 0 = u # v0 v 0 . (2)

Note that both the vector projection of u onto v and the scalar component of u in the direc-

tion of v depend only on the direction of the vector v and not its length. This is because in 

both cases we take the dot product of u with the direction vector v> 0 v 0 , which is the direc-

tion of v, and for the projection we go on to multiply the result by the direction vector.

EXAMPLE 5  Find the vector projection of u = 6i + 3j + 2k onto 

v = i - 2j - 2k and the scalar component of u in the direction of v.

Solution We find projv u from Equation (1):

 projv u =
u # v0 v 0 2  v =

u # v
v # v  v =

6 - 6 - 4
1 + 4 + 4

  (i - 2j - 2k)

 = -  
4
9

 (i - 2j - 2k) = -  
4
9

  i +
8
9

  j +
8
9

  k .

We find the scalar component of u in the direction of v from Equation (2):

 0 u 0  cos u = u # v0 v 0 = (6i + 3j + 2k) # a1
3

  i -
2
3

  j -
2
3

  kb
  = 2 - 2 -

4
3

= -  
4
3

.  

Equations (1) and (2) also apply to two-dimensional vectors. We demonstrate this in 

the next example.

EXAMPLE 6  Find the vector projection of a force F = 5i + 2j onto v = i - 3j 

and the scalar component of F in the direction of v.
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Solution The vector projection is

 projv F = ¢F # v0 v 0 2 ≤v = aF # v
v # vbv

 =
5 - 6
1 + 9

 (i - 3j) = -  
1
10

 (i - 3j)

 = -  
1
10

  i +
3
10

  j .

The scalar component of F in the direction of v is

 0F 0  cos u =
F # v0 v 0 =

5 - 6

21 + 9
= -  

1

210
. 

EXAMPLE 7  Verify that the vector u - projv u is orthogonal to the projection  vector 

projv u.

Solution The vector projv u = au # v0 v 0 2bv is parallel to v. So it suffices to show that the 

vector u - projv u is orthogonal to v. We verify orthogonality by showing that the dot 

product of u - projv u with v is zero:

 (u - projv u) # v = u # v - au # v0 v 0 2  vb # v  Definition of projv u

 = u # v -
u # v0 v 0 2  v # v   Dot product property (2)

 = u # v -
u # v0 v 0 2  0 v 0 2   v # v = 0 v 0 2

 = u # v - u # v = 0. 

Work

In Chapter 6, we calculated the work done by a constant force of magnitude F in moving 

an object through a distance d as W = Fd . That formula holds only if the force is directed 

along the line of motion. If a force F moving an object through a displacement D = r
PQ  

has some other direction, the work is performed by the component of F in the direction of 

D. If u is the angle between F and D (Figure 12.27), then

 Work = ascalar component of F

in the direction of D
b (length of D)

 = ( 0F 0  cos u) 0D 0
 =  F # D.

v

u

projvu

u − projvu

FIGURE 12.26 The vector u is the  

sum of two perpendicular vectors: a 

vector projv u, parallel to v, and a vector 

u - projv u, perpendicular to v.

F

P QD

0F 0  cos u

u

FIGURE 12.27 The work done by a 

constant force F during a displacement D 

is ( 0F 0  cos u) 0D 0 , which is the dot product 

F # D .

Example 7 verifies that the vector u - projv  u is orthogonal to the projection vector 

projv  u (which has the same direction as v). So the equation

u = projv  u + (u - projv  u) = ¢u # v0 v 0 2 ≤v + ¢u - ¢u # v0 v 0 2 ≤v≤
  (+)+* (++++)++++*
  Parallel to v Orthogonal to v

expresses u as a sum of orthogonal vectors (see Figure 12.26).
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EXAMPLE 8  If 0F 0 = 40 N (newtons), 0D 0 = 3 m, and u = 60°, the work done by 

F in acting from P to Q is

 Work = F # D   Definition

 = 0F 0 0D 0  cos u

 = (40)(3) cos 60°   Given values

 = (120)(1>2) = 60 J ( joules). 

We encounter more challenging work problems in Chapter 16 when we learn to find 

the work done by a variable force along a more general path in space.

DEFINITION The work done by a constant force F acting through a displace-

ment D = r
PQ  is

W = F # D.

Dot Product and Projections

In Exercises 1–8, find

a. v # u, 0 v 0 , 0 u 0
b. the cosine of the angle between v and u

c. the scalar component of u in the direction of v

d. the vector projv u .

 1. v = 2i - 4j + 25k, u = -2i + 4j - 25k

 2. v = (3>5)i + (4>5)k, u = 5i + 12j

 3. v = 10i + 11j - 2k, u = 3j + 4k

 4. v = 2i + 10j - 11k, u = 2i + 2j + k

 5. v = 5j - 3k, u = i + j + k

 6. v = - i + j, u = 22i + 23j + 2k

 7. v = 5i + j, u = 2i + 217j

 8. v = h 1

22
, 

1

23
i, u = h 1

22
, -  

1

23
i

Angle Between Vectors

Find the angles between the vectors in Exercises 9–12 to the nearest 

hundredth of a radian.

 9. u = 2i + j, v = i + 2j - k

 10. u = 2i - 2j + k, v = 3i + 4k

 11. u = 23i - 7j, v = 23i + j - 2k

 12. u = i + 22j - 22k, v = - i + j + k

 13. triangle Find the measures of the angles of the triangle whose 

vertices are A = (-1, 0), B = (2, 1), and C = (1, -2) .

 14. rectangle Find the measures of the angles between the diago-

nals of the rectangle whose vertices are A = (1, 0), B = (0, 3), 

C = (3, 4), and D = (4, 1) .

T

 15. Direction angles and direction cosines The direction   

angles a, b, and g of a vector v = ai + bj + ck are deined 

as  follows:

  a is the angle between v and the positive x-axis (0 … a … p)

  b is the angle between v and the positive y-axis (0 … b … p)

  g is the angle between v and the positive z-axis (0 … g … p) .

y

z

x

v

0
b

a

g

a. Show that

cos a =
a0 v 0 ,   cos b =

b0 v 0 ,   cos g =
c0 v 0 ,

and cos2 a + cos2 b + cos2 g = 1. These cosines are called 

the direction cosines of v.

b. Unit vectors are built from direction cosines Show that 

if v = ai + bj + ck is a unit vector, then a, b, and c are the 

direction cosines of v.

EXERCISES 12.3
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 24. Diagonal of parallelogram Show that the indicated diagonal of 

the parallelogram determined by vectors u and v bisects the angle 

between u and v if 0 u 0 = 0 v 0 .
u

v

 25. projectile motion A gun with muzzle velocity of 1200 ft > sec 

is ired at an angle of 8° above the horizontal. Find the horizontal 

and vertical components of the velocity.

 26. inclined plane Suppose that a box is being towed up an inclined 

plane as shown in the igure. Find the force w needed to make the 

component of the force parallel to the inclined plane equal to 2.5 lb.

15°

33°

w

 27. a.  cauchy-schwartz inequality Since u # v = 0 u 0 0 v 0  cos u,  

show that the inequality 0 u # v 0 … 0 u 0 0 v 0  holds for any 

 vectors u and v.

b. Under what circumstances, if any, does 0 u # v 0  equal 0 u 0 0 v 0 ? 

Give reasons for your answer.

 28. Dot multiplication is positive deinite Show that dot multipli-

cation of vectors is positive deinite; that is, show that u # u Ú 0 

for every vector u and that u # u = 0 if and only if u = 0 .

 29. orthogonal unit vectors If u1 and u2 are orthogonal unit vec-

tors and v = au1 + bu2, ind v # u1 .

 30. cancelation in dot products In real-number multiplication, 

if uy1 = uy2 and u ≠ 0, we can cancel the u and conclude that 

y1 = y2 . Does the same rule hold for the dot product? That is, if 

u # v1 = u # v2 and u ≠ 0, can you conclude that v1 = v2? Give 

reasons for your answer.

 31. If u and v are orthogonal, show that projv u = 0.

 32. A force F = 2i + j - 3k is applied to a spacecraft with velocity 

vector v = 3i - j . Express F as a sum of a vector parallel to v 

and a vector orthogonal to v.

Equations for Lines in the Plane

 33. Line perpendicular to a vector Show that v = ai + bj is per-

pendicular to the line ax + by = c by establishing that the slope 

of the vector v is the negative reciprocal of the slope of the given 

line.

 34. Line parallel to a vector Show that the vector v = ai + bj is 

parallel to the line bx - ay = c by establishing that the slope of 

the line segment representing v is the same as the slope of the 

given line.

 16. Water main construction A water main is to be constructed 

with a 20% grade in the north direction and a 10% grade in the 

east direction. Determine the angle u required in the water main 

for the turn from north to east.

East

North

u

For Exercises 17 and 18, find the acute angle between the given lines 

by using vectors parallel to the lines.

 17. y = x, y = 2x + 3

 18. 2 - x + 2y = 0, 3x - 4y = -12

Theory and Examples

 19. sums and diferences In the accompanying igure, it looks as 

if v1 + v2 and v1 - v2 are orthogonal. Is this mere coincidence, 

or are there circumstances under which we may expect the sum of 

two vectors to be orthogonal to their diference? Give reasons for 

your answer.

v1 + v2

v1 − v2

v2

v1
−v2

 20. orthogonality on a circle Suppose that AB is the diameter of 

a circle with center O and that C is a point on one of the two arcs 

joining A and B. Show that 
r
CA  and 

r
CB  are orthogonal.

B
O

v

A

C

u−u

 21. Diagonals of a rhombus Show that the diagonals of a rhombus 

(parallelogram with sides of equal length) are perpendicular.

 22. perpendicular diagonals Show that squares are the only rect-

angles with perpendicular diagonals.

 23. When parallelograms are rectangles Prove that a parallelo-

gram is a rectangle if and only if its diagonals are equal in length. 

(This fact is often exploited by carpenters.)
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In Exercises 35–38, use the result of Exercise 33 to find an equation 

for the line through P perpendicular to v. Then sketch the line. Include 

v in your sketch as a vector starting at the origin.

 35. P(2, 1), v = i + 2j 36. P(-1, 2), v = -2i - j

 37. P(-2, -7), v = -2i + j 38. P(11, 10), v = 2i - 3j

F

60°

1000 lb

magnitude

force

Angles Between Lines in the Plane

The acute angle between intersecting lines that do not cross at right 

angles is the same as the angle determined by vectors normal to the 

lines or by the vectors parallel to the lines.

u

u

u

n1
n2

L2

L2

L1

L1

v1

v2

Use this fact and the results of Exercise 33 or 34 to find the acute 

angles between the lines in Exercises 47–52.

 47. 3x + y = 5, 2x - y = 4

 48. y = 23x - 1, y = -23x + 2

 49. 23x - y = -2, x - 23y = 1

 50. x + 23y = 1, 11 - 232x + 11 + 232y = 8

 51. 3x - 4y = 3, x - y = 7

 52. 12x + 5y = 1, 2x - 2y = 3

In Exercises 39–42, use the result of Exercise 34 to find an equation 

for the line through P parallel to v. Then sketch the line. Include v in 

your sketch as a vector starting at the origin.

 39. P(-2, 1), v = i - j 40. P(0, -2), v = 2i + 3j

 41. P(1, 2), v = - i - 2j 42. P(1, 3), v = 3i - 2j

Work

 43. Work along a line Find the work done by a force F = 5i (mag-

nitude 5 N) in moving an object along the line from the origin to 

the point (1, 1) (distance in meters).

 44. Locomotive The Union Paciic’s Big Boy locomotive could 

pull 6000-ton trains with a tractive efort (pull) of 602,148 N  

(135,375 lb). At this level of efort, about how much work did  

Big Boy do on the (approximately straight) 605-km journey from 

San Francisco to Los Angeles?

 45. inclined plane How much work does it take to slide a crate  

20 m along a loading dock by pulling on it with a 200-N force at 

an angle of 30° from the horizontal?

 46. sailboat The wind passing over a boat’s sail exerted a  

1000-lb magnitude force F as shown here. How much work did 

the wind perform in moving the boat forward 1 mi? Answer in 

foot-pounds.

12.4 The Cross Product

In studying lines in the plane, when we needed to describe how a line was tilting, we used 

the notions of slope and angle of inclination. In space, we want a way to describe how a 

plane is tilting. We accomplish this by multiplying two vectors in the plane together to get 

a third vector perpendicular to the plane. The direction of this third vector tells us the 

“inclination” of the plane. The product we use to multiply the vectors together is the vector 

or cross product, the second of the two vector multiplication methods. The cross product 

gives us a simple way to find a variety of geometric quantities, including volumes, areas, 

and perpendicular vectors. We study the cross product in this section.

The Cross Product of Two Vectors in Space

We start with two nonzero vectors u and v in space. Two vectors are parallel if one is a 

nonzero multiple of the other. If u and v are not parallel, they determine a plane. The vec-

tors in this plane are linear combinations of u and v, so they can be written as a sum 

au + bv. We select the unit vector n perpendicular to the plane by the right-hand rule. 

This means that we choose n to be the unit (normal) vector that points the way your right 

thumb points when your fingers curl through the angle u from u to v (Figure 12.28). Then 

we define a new vector as follows.

v

u

n

u

u × v

FIGURE 12.28 The construction of 

u * v .

DEFINITION The cross product u :  v (“u cross v”) is the vector

u * v = ( 0 u 0 0 v 0  sin u) n.
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Unlike the dot product, the cross product is a vector. For this reason it is also called the 

vector product of u and v, and can be applied only to vectors in space. The vector u * v 

is orthogonal to both u and v because it is a scalar multiple of n.

There is a straightforward way to calculate the cross product of two vectors from their 

components. The method does not require that we know the angle between them (as sug-

gested by the definition), but we postpone that calculation momentarily so we can focus 

first on the properties of the cross product.

Since the sines of 0 and p are both zero, it makes sense to define the cross product of 

two parallel nonzero vectors to be 0. If one or both of u and v are zero, we also define 

u * v to be zero. This way, the cross product of two vectors u and v is zero if and only if 

u and v are parallel or one or both of them are zero.

Parallel Vectors

Nonzero vectors u and v are parallel if and only if u * v = 0 .

Properties of the Cross Product

If u, v, and w are any vectors and r, s are scalars, then

1. (r u) * (sv) = (rs)(u * v) 2. u * (v + w) = u * v + u * w

3. v * u = -(u * v) 4. (v + w) * u = v * u + w * u

5. 0 * u = 0 6. u * (v * w) = (u # w) v - (u # v) w

The cross product obeys the following laws.

To visualize Property 3, for example, notice that when the fingers of your right hand 

curl through the angle u from v to u, your thumb points the opposite way; the unit vector 

we choose in forming v * u is the negative of the one we choose in forming u * v 

 (Figure 12.29).

Property 1 can be verified by applying the definition of cross product to both sides of 

the equation and comparing the results. Property 2 is proved in Appendix 8. Property 4 

follows by multiplying both sides of the equation in Property 2 by -1 and reversing the 

order of the products using Property 3. Property 5 is a definition. As a rule, cross product 

multiplication is not associative so (u * v) * w does not generally equal u * (v * w). 

(See Additional Exercise 17.)

When we apply the definition and Property 3 to calculate the pairwise cross products 

of i, j, and k, we find (Figure 12.30)

 i * j = -(j * i) = k

 j * k = -(k * j) = i

 k * i = -(i * k) = j

and

i * i = j * j = k * k = 0 .0 u : v 0  Is the Area of a Parallelogram

Because n is a unit vector, the magnitude of u * v is

v

u

u
−n

v × u

FIGURE 12.29 The construction of 

v * u .

y

x

z

k = i × j

j = k × i

i = j × k

FIGURE 12.30 The pairwise cross 

 products of i, j, and k.

0 u * v 0 = 0 u 0 0 v 0  0 sin u 0 0 n 0 = 0 u 0 0 v 0  sin u .
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This is the area of the parallelogram determined by u and v (Figure 12.31), 0 u 0  being the 

base of the parallelogram and 0 v 0 0 sin u 0  the height.

Determinant Formula for u : v

Our next objective is to calculate u * v from the components of u and v relative to a 

 Cartesian coordinate system.

Suppose that

u = u1  i + u2  j + u3  k    and    v = y1  i + y2   j + y3  k .

Then the distributive laws and the rules for multiplying i, j, and k tell us that

 u * v = (u1  i + u2 

 j + u3 k) * (y1 i + y2  j + y3 k)

 = u1 y1  i * i + u1 y2  i * j + u1 y3  i * k

    + u2 y1 j * i + u2 y2  j * j + u2 y3  j * k

   + u3 y1 k * i + u3 y2 k * j + u3 y3 k * k

 = (u2 y3 - u3 y2) i - (u1 y3 - u3 y1) j + (u1 y2 - u2 y1) k .

The component terms in the last line are hard to remember, but they are the same as 

the terms in the expansion of the symbolic determinant3 i j k

u1 u2 u3

y1 y2 y3

3 .
So we restate the calculation in this easy-to-remember form.

v

u

u

h = 0 v 0 0 sin u 0

Area = base · height  

= 0u 0  · 0 v 0 0 sin u 0
= 0u × v 0

FIGURE 12.31 The parallelogram 

 determined by u and v.

Determinants

2 * 2 and 3 * 3 determinants are 

evaluated as follows:

 2 a b

c d
2 = ad - bc

 3 a1 a2 a3

b1 b2 b3

c1 c2 c3

3 = a1
2 b2 b3

c2 c3

2
-  a2

2 b1 b3

c1 c3

2 + a3
2 b1 b2

c1 c2

2
Calculating the Cross Product as a Determinant

If u = u1 i + u2  j + u3  k and v = y1 i + y2  j + y3  k, then

u * v = 3 i j k

u1 u2 u3

y1 y2 y3

3 .
EXAMPLE 1  Find u * v and v * u if u = 2i + j + k and v = -4i + 3j + k .

Solution We expand the symbolic determinant:

 u * v = 3 i j k

2 1 1

-4 3 1

3 = ` 1 1

3 1
` i - ` 2 1

-4 1
` j + ` 2 1

-4 3
` k

 = -2i - 6j + 10k

 v * u = -(u * v) = 2i + 6j - 10k  Property 3 

EXAMPLE 2  Find a vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1), 

and R(-1, 1, 2) (Figure 12.32).

y

x

z

0

P(1, −1, 0)

Q(2, 1, –1)

R(−1, 1, 2)

FIGURE 12.32 The vector 
r
PQ * r

PR  is 

perpendicular to the plane of triangle PQR 

(Example 2). The area of triangle PQR is 

half of 0 rPQ * r
PR 0  (Example 3).
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Solution The vector 
r
PQ * r

PR is perpendicular to the plane because it is perpendicular 

to both vectors. In terms of components,

 
r
PQ = (2 - 1)i + (1 + 1)j + (-1 - 0)k = i + 2j - k

 
r
PR = (-1 - 1)i + (1 + 1)j + (2 - 0)k = -2i + 2j + 2k

 
r
PQ * r

PR = 3 i j k

1 2 -1

-2 2 2

3 = ` 2 -1

2 2
` i - ` 1 -1

-2 2
` j + ` 1 2

-2 2
` k

  = 6i + 6k.  

EXAMPLE 3  Find the area of the triangle with vertices P(1, -1, 0), Q(2, 1, -1), and 

R(-1, 1, 2) (Figure 12.32).

Solution The area of the parallelogram determined by P, Q, and R is

 0 rPQ * r
PR 0 = 0 6i + 6k 0   Values from Example 2

 = 2(6)2 + (6)2 = 22 # 36 = 622.

The triangle’s area is half of this, or 322. 

EXAMPLE 4  Find a unit vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1), 

and R(-1, 1, 2) .

Solution Since 
r
PQ * r

PR is perpendicular to the plane, its direction n is a unit vector 

perpendicular to the plane. Taking values from Examples 2 and 3, we have

 n =
r
PQ * r

PR0 rPQ * r
PR 0 =

6i + 6k

622
=

1

22
  i +

1

22
  k . 

For ease in calculating the cross product using determinants, we usually write vectors 

in the form v = y1 i + y2  j + y3 k rather than as ordered triples v = 8y1, y2, y39 .
Torque

When we turn a bolt by applying a force F to a wrench (Figure 12.33), we produce a 

torque that causes the bolt to rotate. The torque vector points in the direction of the axis 

of the bolt according to the right-hand rule (so the rotation is counterclockwise when 

viewed from the tip of the vector). The magnitude of the torque depends on how far out on 

the wrench the force is applied and on how much of the force is perpendicular to the 

wrench at the point of application. The number we use to measure the torque’s magnitude 

is the product of the length of the lever arm r and the scalar component of F perpendicular 

to r. In the notation of Figure 12.33,

Magnitude of torque vector = 0 r 0 0F 0  sin u,

or 0 r * F 0 . If we let n be a unit vector along the axis of the bolt in the direction of the 

torque, then a complete description of the torque vector is r * F, or

Torque vector = r * F = ( 0 r 0 0F 0  sin u) n .

Recall that we defined u * v to be 0 when u and v are parallel. This is consistent with the 

torque interpretation as well. If the force F in Figure 12.33 is parallel to the wrench, mean-

ing that we are trying to turn the bolt by pushing or pulling along the line of the wrench’s 

handle, the torque produced is zero.

n

r

F

Torque

Component of F

perpendicular to r.

Its length is 0F 0  sin u. u

FIGURE 12.33 The torque vector 

 describes the tendency of the force F to 

drive the bolt forward.
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EXAMPLE 5  The magnitude of the torque generated by force F at the pivot point P 

in Figure 12.34 is0 rPQ * F 0 = 0 rPQ 0 0F 0  sin 70° ≈ (3)(20)(0.94) ≈ 56.4 ft@lb .

In this example the torque vector is pointing out of the page toward you. 
F

P Q

3 ft bar

20 lb

magnitude

force

70°

FIGURE 12.34 The magnitude of the 

torque exerted by F at P is about 56.4 ft-lb 

(Example 5). The bar rotates counter-

clockwise around P.

v

w

u

uHeight = 0w 0  0 cos u 0

u × v

Area of base

= 0u × v 0

Volume = area of base · height

= 0u × v 0 0w 0 0 cos u 0
= 0 (u × v) · w 0

v

FIGURE 12.35 The number 0 (u * v) # w 0  is the volume of a parallelepiped.

By treating the planes of v and w and of w and u as the base planes of the parallelepi-

ped determined by u, v, and w, we see that

(u * v) # w = (v * w) # u = (w * u) # v .

Since the dot product is commutative, we also have

(u * v) # w = u # (v * w) .

The triple scalar product can be evaluated as a determinant:

 (u * v) # w = a  ` u2 u3

y2 y3

` i - 0 u1 u3

y1 y3

` j + ` u1 u2

y1 y2

` kb # w

 = w1 ` u2 u3

y2 y3

` - w2 ` u1 u3

y1 y3

` + w3 ` u1 u2

y1 y2

`
 = 3 u1 u2 u3

y1 y2 y3

w1 w2 w3

3 .

The dot and cross may be interchanged 

in a triple scalar product without altering 

its value.

Triple Scalar or Box Product

The product (u * v) # w is called the triple scalar product of u, v, and w (in that order). 

As you can see from the formula0 (u * v) # w 0 = 0 u * v 0 0w 0 0 cos u 0 ,
the absolute value of this product is the volume of the parallelepiped (parallelogram-sided 

box) determined by u, v, and w (Figure 12.35). The number 0 u * v 0  is the area of the base 

parallelogram. The number 0w 0 0 cos u 0  is the parallelepiped’s height. Because of this 

geometry, (u * v) # w is also called the box product of u, v, and w.
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EXAMPLE 6  Find the volume of the box (parallelepiped) determined by 

u = i + 2j - k,  v = -2i + 3k, and w = 7j - 4k .

Solution Using the rule for calculating a 3 * 3 determinant, we find

(u * v) # w = 3 1 2 -1

-2 0 3

0 7 -4

3 = (1) 2 0 3

7 -4
2 - (2) 2 -2 3

0 -4
2 + (-1) 2 -2 0

0 7
2 = -23.

The volume is 0 (u * v) # w 0 = 23 units cubed. 

Calculating the Triple Scalar Product as a Determinant

(u * v) # w = 3 u1 u2 u3

y1 y2 y3

w1 w2 w3

3† u1 u2 u3

y1 y2 y3

w1 w2 w3

† = { †w1 w2 w3

y1 y2 y3

u1 u2 u3

†
Any two rows of a matrix can be inter-

changed without changing the absolute 

value of the determinant. So we can take 

the vectors u, v, w in any order when 

calculating the absolute value of the 

triple product.

Cross Product Calculations

In Exercises 1–8, find the length and direction (when defined) of 

u * v and v * u .

 1. u = 2i - 2j - k, v = i - k

 2. u = 2i + 3j, v = - i + j

 3. u = 2i - 2j + 4k, v = - i + j - 2k

 4. u = i + j - k, v = 0

 5. u = 2i, v = -3j

 6. u = i * j, v = j * k

 7. u = -8i - 2j - 4k, v = 2i + 2j + k

 8. u =
3
2

  i -
1
2

  j + k, v = i + j + 2k

Triple Scalar Products

In Exercises 19–22, verify that (u * v) # w = (v * w) # u =  

(w * u) # v and find the volume of the parallelepiped (box) deter-

mined by u, v, and w.

u v w

 19. 2i 2j 2k

 20. i - j + k 2i + j - 2k - i + 2j - k

 21. 2i + j 2i - j + k i + 2k

 22. i + j - 2k - i - k 2i + 4j - 2k

EXERCISES 12.4

Theory and Examples

 23. parallel and perpendicular vectors Let u = 5i - j + k, v =  

j - 5k, w = -15i + 3j - 3k . Which vectors, if any, are (a) 

perpendicular? (b) Parallel? Give reasons for your answers.

 24. parallel and perpendicular vectors Let u = i + 2j - k, 

v = - i + j + k, w = i + k, r = - (p>2)i - pj + (p>2)k . 

Which vectors, if any, are (a) perpendicular? (b) Parallel? Give 

reasons for your answers.

In Exercises 25 and 26, find the magnitude of the torque exerted by F 

on the bolt at P if 0 rPQ 0 = 8 in. and 0F 0 = 30 lb. Answer in foot-

pounds.

 25. 
F

Q

P

60°

 26. 

F

Q

P

135°

In Exercises 9–14, sketch the coordinate axes and then include the 

vectors u, v, and u * v as vectors starting at the origin.

 9. u = i, v = j 10. u = i - k, v = j

 11. u = i - k, v = j + k 12. u = 2i - j, v = i + 2j

 13. u = i + j, v = i - j 14. u = j + 2k, v = i

Triangles in Space

In Exercises 15–18,

a. Find the area of the triangle determined by the points P, Q, 

and R.

b. Find a unit vector perpendicular to plane PQR.

 15. P(1, -1, 2), Q(2, 0, -1), R(0, 2, 1)

 16. P(1, 1, 1), Q(2, 1, 3), R(3, -1, 1)

 17. P(2, -2, 1), Q(3, -1, 2), R(3, -1, 1)

 18. P(-2, 2, 0), Q(0, 1, -1), R(-1, 2, -2)
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Area of a Parallelogram

Find the areas of the parallelograms whose vertices are given in  

Exercises 35–40.

 35. A(1, 0),  B(0, 1),  C(-1, 0),  D(0, -1)

 36. A(0, 0),  B(7, 3),  C(9, 8),  D(2, 5)

 37. A(-1, 2),  B(2, 0),  C(7, 1),  D(4, 3)

 38. A(-6, 0),  B(1, -4),  C(3, 1),  D(-4, 5)

 39. A(0, 0, 0),  B(3, 2, 4),  C(5, 1, 4),  D(2, -1, 0)

 40. A(1, 0, -1),  B(1, 7, 2),  C(2, 4, -1),  D(0, 3, 2)

 27. Which of the following are always true, and which are not always 

true? Give reasons for your answers.

a. 0 u 0 = 2u # u

b. u # u = 0 u 0
c. u * 0 = 0 * u = 0

d. u * (-u) = 0

e. u * v = v * u

f. u * (v + w) = u * v + u * w

g. (u * v) # v = 0

h. (u * v) # w = u # (v * w)

 28. Which of the following are always true, and which are not always 

true? Give reasons for your answers.

a. u # v = v # u

b. u * v = - (v * u)

c. (-u) * v = - (u * v)

d. (cu) # v = u # (cv) = c(u # v) (any number c)

e. c(u * v) = (cu) * v = u * (cv) (any number c)

f. u # u = 0 u 0 2
g. (u * u) # u = 0

h. (u * v) # u = v # (u * v)

 29. Given nonzero vectors u, v, and w, use dot product and cross 

 product notation, as appropriate, to describe the following.

a. The vector projection of u onto v

b. A vector orthogonal to u and v

c. A vector orthogonal to u * v and w

d. The volume of the parallelepiped determined by u, v, and w

e. A vector orthogonal to u * v and u * w

f. A vector of length 0 u 0  in the direction of v

 30. Compute (i * j) * j and i * (j * j) . What can you conclude 

about the associativity of the cross product?

 31. Let u, v, and w be vectors. Which of the following make sense, 

and which do not? Give reasons for your answers.

a. (u * v) # w b. u * (v # w)

c. u * (v * w) d. u # (v # w)

 32. cross products of three vectors Show that except in degen-

erate cases, (u * v) * w lies in the plane of u and v, whereas 

u * (v * w) lies in the plane of v and w. What are the degenerate 

cases?

 33. cancelation in cross products If u * v = u * w and u ≠ 0, 

then does v = w? Give reasons for your answer.

 34. Double cancelation If u ≠ 0 and if u * v = u * w and 

u # v = u # w, then does v = w? Give reasons for your answer.

12.5 Lines and Planes in Space

This section shows how to use scalar and vector products to write equations for lines, line 

segments, and planes in space. We will use these representations throughout the rest of the 

book in studying the calculus of curves and surfaces in space.

Area of a Triangle

Find the areas of the triangles whose vertices are given in Exercises 

41–47.

 41. A(0, 0),  B(-2, 3),  C(3, 1)

 42. A(-1, -1),  B(3, 3),  C(2, 1)

 43. A(-5, 3),  B(1, -2),  C(6, -2)

 44. A(-6, 0),  B(10, -5),  C(-2, 4)

 45. A(1, 0, 0),  B(0, 2, 0),  C(0, 0, -1)

 46. A(0, 0, 0),  B(-1, 1, -1),  C(3, 0, 3)

 47. A(1, -1, 1),  B(0, 1, 1),  C(1, 0, -1)

 48. Find the volume of a parallelepiped if four of its eight vertices are 

A(0, 0, 0), B(1, 2, 0), C(0, -3, 2), and D(3, -4, 5) .

 49. triangle area Find a 2 * 2 determinant formula for the area 

of the triangle in the xy-plane with vertices at (0, 0), (a1, a2), and 

(b1, b2) . Explain your work.

 50. triangle area Find a concise 3 * 3 determinant formula 

that gives the area of a triangle in the xy-plane having vertices 

(a1, a2), (b1, b2), and (c1, c2) .

Volume of a Tetrahedron

Using the methods of Section 6.1, where volume is computed by  

integrating cross-sectional area, it can be shown that the volume of a 

tetrahedron formed by three vectors is equal to 
1
6

 the volume of the

parallelipiped formed by the three vectors. Find the volumes of the 

tetrahedra whose vertices are given in Exercises 51–54.

 51. A(0, 0, 0), B(2, 0, 0), C(0, 3, 0), D(0, 0, 4)

 52. A(0, 0, 0), B(1, 0, 2), C(0, 2, 1), D(3, 4, 0)

 53. A(1, -1, 0), B(0, 2, -2), C(-3, 0, 3), D(0, 4, 4)

 54. A(-1, 2, 3), B(2, 0, 1), C(1, -3, 2), D(-2, 1, -1)

In Exercises 55–57, determine whether the given points are coplanar.

 55. A(1, 1, 1), B(-1, 0, 4), C(0, 2, 1), D(2, -2, 3)

 56. A(0, 0, 4), B(6, 2, 0), C(2, -1, 1), D(-3, -4, 3)

 57. A(0, 1, 2), B(-1, 1, 0), C(2, 0, -1), D(1, -1, 1)
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Lines and Line Segments in Space

In the plane, a line is determined by a point and a number giving the slope of the line. In 

space a line is determined by a point and a vector giving the direction of the line.

Suppose that L is a line in space passing through a point P0(x0, y0, z0) parallel to a vec-

tor v = y1  i + y2  j + y3  k . Then L is the set of all points P(x, y, z) for which 
r
P0 

P is paral-

lel to v (Figure 12.36). Thus, 
r
P0 

P = tv for some scalar parameter t. The value of t depends 

on the location of the point P along the line, and the domain of t is (-q, q) . The 

expanded form of the equation 
r
P0 

P = tv is

(x - x0)i + (y - y0)j + (z - z0)k = t(y1  i + y2  j + y3  k),

which can be rewritten as

 xi + yj + zk = x0 i + y0 j + z0  k + t(y1  i + y2  j + y3  k) . (1)

If r(t) is the position vector of a point P(x, y, z) on the line and r0 is the position vector 

of the point P0(x0, y0, z0), then Equation (1) gives the following vector form for the equa-

tion of a line in space.

Vector Equation for a Line

A vector equation for the line L through P0(x0, y0, z0) parallel to v is

 r(t) = r0 + tv,  -q 6 t 6 q, (2)

where r is the position vector of a point P(x, y, z) on L and r0 is the position vec-

tor of P0(x0, y0, z0) .

Parametric Equations for a Line

the standard parametrization of the line through P0(x0, y0, z0) parallel to 

v = y1  i + y2  j + y3  k is

 x = x0 + ty1,  y = y0 + ty2,  z = z0 + ty3,  -q 6 t 6 q (3)

y

z

0

x

v

L
P(x, y, z)

P0(x0, y0, z0)

FIGURE 12.36 A point P lies on L 

through P0 parallel to v if and only if 
r
P0 

P  

is a scalar multiple of v.

Equating the corresponding components of the two sides of Equation (1) gives three 

scalar equations involving the parameter t:

x = x0 + ty1,  y = y0 + ty2,  z = z0 + ty3 .

These equations give us the standard parametrization of the line for the parameter interval 

-q 6 t 6 q .

EXAMPLE 1  Find parametric equations for the line through (-2, 0, 4) parallel to 

v = 2i + 4j - 2k (Figure 12.37).

Solution With P0(x0, y0, z0) equal to (-2, 0, 4) and v1 i + v2 j + v3 k equal to 

2i + 4j - 2k, Equations (3) become

 x = -2 + 2t,   y = 4t,   z = 4 - 2t . 

EXAMPLE 2  Find parametric equations for the line through P(-3, 2, -3) and 

Q(1, -1, 4) .

Solution The vector

 
r
PQ = (1 - (-3))i + (-1 - 2)j + (4 - (-3))k = 4i - 3j + 7k

y

z

0

x

2 4

4

2

4

8

v = 2i + 4j − 2k

t = 2
P2(2, 8, 0)

P1(0, 4, 2)

t = 1

t = 0

P0(–2, 0, 4)

FIGURE 12.37 Selected points and 

parameter values on the line in Example 1. 

The arrows show the direction of  

increasing t.
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is parallel to the line, and Equations (3) with (x0, y0, z0) = (-3, 2, -3) give

x = -3 + 4t,   y = 2 - 3t,   z = -3 + 7t .

We could have chosen Q(1, -1, 4) as the “base point” and written

x = 1 + 4t,   y = -1 - 3t,   z = 4 + 7t .

These equations serve as well as the first; they simply place you at a different point on the 

line for a given value of t. 

Notice that parametrizations are not unique. Not only can the “base point” change, but 

so can the parameter. The equations x = -3 + 4t3, y = 2 - 3t3, and z = -3 + 7t3 also 

parametrize the line in Example 2.

To parametrize a line segment joining two points, we first parametrize the line through 

the points. We then find the t-values for the endpoints and restrict t to lie in the closed 

interval bounded by these values. The line equations together with this added restriction 

parametrize the segment.

EXAMPLE 4  A helicopter is to fly directly from a helipad at the origin in the direc-

tion of the point (1, 1, 1) at a speed of 60 ft > sec. What is the position of the helicopter 

after 10 sec?

Solution We place the origin at the starting position (helipad) of the helicopter. Then the 

unit vector

u =
1

23
  i +

1

23
  j +

1

23
  k

EXAMPLE 3  Parametrize the line segment joining the points P(-3, 2, -3) and 

Q(1, -1, 4) (Figure 12.38).

Solution We begin with equations for the line through P and Q, taking them, in this 

case, from Example 2:

x = -3 + 4t,   y = 2 - 3t,   z = -3 + 7t .

We observe that the point

(x, y, z) = (-3 + 4t, 2 - 3t, -3 + 7t)

on the line passes through P(-3, 2, -3) at t = 0 and Q(1, -1, 4) at t = 1. We add the 

restriction 0 … t … 1 to parametrize the segment:

 x = -3 + 4t,   y = 2 - 3t,   z = -3 + 7t,   0 … t … 1. 

The vector form (Equation (2)) for a line in space is more revealing if we think of a 

line as the path of a particle starting at position P0(x0, y0, z0) and moving in the direction of 

vector v. Rewriting Equation (2), we have

 r(t) = r0 + tv

 = r0 + t 0 v 0  v0 v 0 .

y

z

0

x

1 2

−1

−3

t = 1

t = 0

P(−3, 2, −3)

Q(1, −1, 4)

FIGURE 12.38 Example 3 derives a 

parametrization of line segment PQ. The 

arrow shows the direction of increasing t.

 

6

  

6

 Initial  

 position 
Time Speed Direction

 

(4)

In other words, the position of the particle at time t is its initial position plus its distance 

moved (speed * time) in the direction v> 0 v 0  of its straight-line motion.
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gives the flight direction of the helicopter. From Equation (4), the position of the helicop-

ter at any time t is

r(t) = r0 + t(speed)u

 = 0 + t(60)¢ 1

23
  i +

1

23
  j +

1

23
  k≤

 = 2023t(i + j + k) .

When t = 10 sec,

 r(10) = 20023 (i + j + k)

 = 820023, 20023, 200239 .

After 10 sec of flight from the origin toward (1, 1, 1), the helicopter is located at the point 120023, 20023, 200232 in space. It has traveled a distance of (60 ft>sec)(10 sec) =  

600 ft, which is the length of the vector r(10). 

S

P
v

u

0PS 0  sin u

FIGURE 12.39 The distance from 

S to the line through P parallel to v is 0rPS 0  sin u, where u is the angle between 
r
PS  and v.

Distance from a Point S to a Line Through P Parallel to v

 d =
0rPS * v 00 v 0  (5)

EXAMPLE 5  Find the distance from the point S(1, 1, 5) to the line

L:  x = 1 + t,  y = 3 - t,  z = 2t .

Solution We see from the equations for L that L passes through P(1, 3, 0) parallel to 

v = i - j + 2k . With

r
PS = (1 - 1)i + (1 - 3)j + (5 - 0)k = -2j + 5k

and

r
PS * v = 3 i j k

0 -2 5

1 -1 2

3 = i + 5j + 2k,

Equation (5) gives

 d =
0rPS * v 00 v 0 =

21 + 25 + 4

21 + 1 + 4
=
230

26
= 25. 

An Equation for a Plane in Space

A plane in space is determined by knowing a point on the plane and its “tilt” or orientation. 

This “tilt” is defined by specifying a vector that is perpendicular or normal to the plane.

The Distance from a Point to a Line in Space

To find the distance from a point S to a line that passes through a point P parallel to a vec-

tor v, we find the absolute value of the scalar component of 
r
PS  in the direction of a vector 

normal to the line (Figure 12.39). In the notation of the figure, the absolute value of the 

scalar component is 0rPS 0  sin u, which is 
0rPS 0 0 v 0 sin u0 v 0 =

0rPS * v 00 v 0 .
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Suppose that plane M passes through a point P0(x0, y0, z0) and is normal to the nonzero 

vector n = Ai + Bj + C k . A vector from P0 to any point P on the plane is orthogonal to 

n. Then M is the set of all points P(x, y, z) for which 
r
P0 

P is orthogonal to n (Figure 12.40). 

Thus, the dot product n # rP0 

P = 0. This equation is equivalent to

(Ai + Bj + C k) # 3 (x - x0)i + (y - y0)j + (z - z0)k4 = 0,

so the plane M  consists of the points (x, y, z) satisfying

A(x - x0) + B( y - y0) + C(z - z0) = 0.

Equation for a Plane

The plane through P0(x0, y0, z0) normal to n = Ai + Bj + C k has

Vector equation: n # rP0 

P = 0

component equation: A(x - x0) + B(y - y0) + C(z - z0) = 0

component equation simplified: Ax + By + Cz = D,  where

D = Ax0 + By0 + Cz0

EXAMPLE 6  Find an equation for the plane through P0(-3, 0, 7) perpendicular to 

n = 5i + 2j - k .

Solution The component equation is

5(x - (-3)) + 2(y - 0) + (-1)(z - 7) = 0.

Simplifying, we obtain

 5x + 15 + 2y - z + 7 = 0

  5x + 2y - z = -22. 

Notice in Example 6 how the components of n = 5i + 2j - k became the coeffi-

cients of x, y, and z in the equation 5x + 2y - z = -22. The vector n = Ai + Bj + C k 

is normal to the plane Ax + By + Cz = D .

EXAMPLE 7  Find an equation for the plane through A(0, 0, 1), B(2, 0, 0), and  

C(0, 3, 0).

Solution We find a vector normal to the plane and use it with one of the points (it does 

not matter which) to write an equation for the plane.

The cross product

r
AB * r

AC = 3 i j k

2 0  -1

0 3  -1

3 = 3i + 2j + 6k

is normal to the plane. We substitute the components of this vector and the coordinates of 

A(0, 0, 1) into the component form of the equation to obtain

 3(x - 0) + 2(y - 0) + 6(z - 1) = 0

  3x + 2y + 6z = 6. 

Lines of Intersection

Just as lines are parallel if and only if they have the same direction, two planes are parallel 

if and only if their normals are parallel, or n1 = kn2 for some scalar k. Two planes that are 

not parallel intersect in a line.

n

P0(x0, y0, z0)

Plane M

P(x, y, z)

FIGURE 12.40 The standard equation 

for a plane in space is defined in terms of a 

vector normal to the plane: A point P lies 

in the plane through P0 normal to n if and 

only if n # rP0 

P = 0.
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EXAMPLE 8  Find a vector parallel to the line of intersection of the planes 

3x - 6y - 2z = 15 and 2x + y - 2z = 5.

Solution The line of intersection of two planes is perpendicular to both planes’ normal 

vectors n1 and n2 (Figure 12.41) and therefore parallel to n1 * n2 . Turning this around, 

n1 * n2 is a vector parallel to the planes’ line of intersection. In our case,

n1 * n2 = 3 i j k

3  -6  -2

2 1 -2

3 = 14i + 2j + 15k .

Any nonzero scalar multiple of n1 * n2 will do as well. 

EXAMPLE 9  Find parametric equations for the line in which the planes 

3x - 6y - 2z = 15 and 2x + y - 2z = 5 intersect.

Solution We find a vector parallel to the line and a point on the line and use Equations (3).

Example 8 identiies v = 14i + 2j + 15k as a vector parallel to the line. To ind a 

point on the line, we can take any point common to the two planes. Substituting z = 0 in 

the plane equations and solving for x and y simultaneously identiies one of these points as 

(3, -1, 0) . The line is

x = 3 + 14t,   y = -1 + 2t,   z = 15t .

The choice z = 0 is arbitrary and we could have chosen z = 1 or z = -1 just as well. Or 

we could have let x = 0 and solved for y and z. The different choices would simply give 

different parametrizations of the same line. 

EXAMPLE 10  Find the point where the line

x =
8
3

+ 2t,   y = -2t,  z = 1 + t

intersects the plane 3x + 2y + 6z = 6.

Solution The point a8
3

+ 2t, -2t, 1 + tb
lies in the plane if its coordinates satisfy the equation of the plane, that is, if

 3a8
3

+ 2tb + 2(-2t) + 6(1 + t) = 6

 8 + 6t - 4t + 6 + 6t = 6

 8t = -8

 t = -1.

The point of intersection is

 (x, y, z) 0 t = -1 = a8
3

- 2, 2, 1 - 1b = a  
2
3

, 2, 0b . 

PLANE 2

P
L

A
N

E
 1

n1 × n2

n2

n1

FIGURE 12.41 How the line of intersec-

tion of two planes is related to the planes’ 

normal vectors (Example 8).

Sometimes we want to know where a line and a plane intersect. For example, if we are 

looking at a flat plate and a line segment passes through it, we may be interested in know-

ing what portion of the line segment is hidden from our view by the plate. This application 

is used in computer graphics (Exercise 78).
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The Distance from a Point to a Plane

If P is a point on a plane with normal n, then the distance from any point S to the plane is 

the length of the vector projection of 
r
PS  onto n, as given in the following formula.

Distance from a Point S to a Plane with Normal n at Point P

 d = `rPS # n0 n 0 `  (6)

EXAMPLE 11  Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6.

Solution We find a point P in the plane and calculate the length of the vector projection 

of 
r
PS  onto a vector n normal to the plane (Figure 12.42). The coefficients in the equation 

3x + 2y + 6z = 6 give

n = 3i + 2j + 6k .

(0, 0, 1)

(2, 0, 0)

0

y

x

z

n = 3i + 2j + 6k

Distance from

S to the plane

P(0, 3, 0)

3x + 2y + 6z = 6

S(1, 1, 3)

FIGURE 12.42 The distance from S to the plane is the 

length of the vector projection of 
r
PS  onto n (Example 11).

The points on the plane easiest to ind from the plane’s equation are the intercepts. If 

we take P to be the y-intercept (0, 3, 0), then

 
r
PS = (1 - 0)i + (1 - 3)j + (3 - 0)k = i - 2j + 3k,

 0 n 0 = 2(3)2 + (2)2 + (6)2 = 249 = 7.

Therefore, the distance from S to the plane is

 d = `rPS # n0 n 0 `   Length of projn 
r
PS  

 = ` (i - 2j + 3k) # a3
7

 i +
2
7

 j +
6
7

 kb `
 = ` 3

7
-

4
7

+
18
7
` =

17
7

.  

Angles Between Planes

The angle between two intersecting planes is defined to be the acute angle between their 

normal vectors (Figure 12.43).
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EXAMPLE 12  Find the angle between the planes 3x - 6y - 2z = 15 and 

2x + y - 2z = 5.

Solution The vectors

n1 = 3i - 6j - 2k,   n2 = 2i + j - 2k

are normals to the planes. The angle between them is

 u = cos-1 a n1
# n20 n1 0 0 n2 0 b

 = cos-1 a 4
21
b ≈ 1.38 radians.  About 79 degrees 

n2
n1

u

u

FIGURE 12.43 The angle between two 

planes is obtained from the angle between 

their normals.

Lines and Line Segments

Find parametric equations for the lines in Exercises 1–12.

 1. The line through the point P(3, -4, -1) parallel to the vector 

i + j + k

 2. The line through P(1, 2, -1) and Q(-1, 0, 1)

 3. The line through P(-2, 0, 3) and Q(3, 5, -2)

 4. The line through P(1, 2, 0) and Q(1, 1, -1)

 5. The line through the origin parallel to the vector 2j + k

 6. The line through the point (3, -2, 1) parallel to the line 

x = 1 + 2t, y = 2 - t, z = 3t

 7. The line through (1, 1, 1) parallel to the z-axis

 8. The line through (2, 4, 5) perpendicular to the plane 

3x + 7y - 5z = 21

 9. The line through (0, -7, 0) perpendicular to the plane 

x + 2y + 2z = 13

 10. The line through (2, 3, 0) perpendicular to the vectors u = i +  

2j + 3k and v = 3i + 4j + 5k

 11. The x-axis 12. The z-axis

 25. The plane through P0(2, 4, 5) perpendicular to the line

x = 5 + t,  y = 1 + 3t,  z = 4t

 26. The plane through A(1, -2, 1) perpendicular to the vector from 

the origin to A

 27. Find the point of intersection of the lines x = 2t + 1,  

 y = 3t + 2,  z = 4t + 3, and x = s + 2, y = 2s + 4, z =
-4s - 1, and then ind the plane determined by these lines.

 28. Find the point of intersection of the lines x = t, y = - t + 2, 

 z = t + 1, and x = 2s + 2, y = s + 3, z = 5s + 6, and then 

ind the plane determined by these lines.

EXERCISES 12.5

Find parametrizations for the line segments joining the points in 

 Exercises 13–20. Draw coordinate axes and sketch each segment, 

indicating the direction of increasing t for your parametrization.

 13. (0, 0, 0), (1, 1, 3 >2) 14. (0, 0, 0), (1, 0, 0)

 15. (1, 0, 0), (1, 1, 0) 16. (1, 1, 0), (1, 1, 1)

 17. (0, 1, 1), (0, -1, 1) 18. (0, 2, 0), (3, 0, 0)

 19. (2, 0, 2), (0, 2, 0) 20. (1, 0, -1), (0, 3, 0)

Planes

Find equations for the planes in Exercises 21–26.

 21. The plane through P0(0, 2, -1) normal to n = 3i - 2j - k

 22. The plane through (1, -1, 3) parallel to the plane

3x + y + z = 7

 23. The plane through (1, 1, -1), (2, 0, 2), and (0, -2, 1)

 24. The plane through (2, 4, 5), (1, 5, 7), and (-1, 6, 8)

In Exercises 29 and 30, find the plane containing the intersecting 

lines.

 29.  L1: x = -1 + t, y = 2 + t, z = 1 - t; -q 6 t 6 q

   L2: x = 1 - 4s,  y = 1 + 2s,  z = 2 - 2s; -q 6 s 6 q

 30.  L1: x = t,  y = 3 - 3t,  z = -2 - t;  -q 6 t 6 q

   L2: x = 1 + s,  y = 4 + s,  z = -1 + s;  -q 6 s 6 q

 31. Find a plane through P0(2, 1, -1) and perpendicular to the line of 

intersection of the planes 2x + y - z = 3, x + 2y + z = 2.

 32. Find a plane through the points P1(1, 2, 3), P2(3, 2, 1) and perpen-

dicular to the plane 4x - y + 2z = 7.

Distances

In Exercises 33–38, find the distance from the point to the line.

 33. (0, 0, 12); x = 4t, y = -2t, z = 2t

 34. (0, 0, 0); x = 5 + 3t, y = 5 + 4t, z = -3 - 5t

 35. (2, 1, 3); x = 2 + 2t, y = 1 + 6t, z = 3

 36. (2, 1, -1); x = 2t, y = 1 + 2t, z = 2t

 37. (3, -1, 4); x = 4 - t, y = 3 + 2t, z = -5 + 3t

 38. (-1, 4, 3); x = 10 + 4t, y = -3, z = 4t

In Exercises 39–44, find the distance from the point to the plane.

 39. (2, -3, 4), x + 2y + 2z = 13

 40. (0, 0, 0),  3x + 2y + 6z = 6

 41. (0, 1, 1),  4y + 3z = -12
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Theory and Examples

 67. Use Equations (3) to generate a parametrization of the line through 

P(2, -4, 7) parallel to v1 = 2i - j + 3k . Then generate another 

parametrization of the line using the point P2(-2, -2, 1) and the 

vector v2 = - i + (1>2)j - (3>2)k .

 68. Use the component form to generate an equation for the plane 

through P1(4, 1, 5) normal to n1 = i - 2j + k . Then generate 

another equation for the same plane using the point P2(3, -2, 0) 

and the normal vector n2 = -22i + 222j - 22k .

 69. Find the points in which the line x = 1 + 2t, y = -1 - t,  

z = 3t meets the coordinate planes. Describe the reasoning be-

hind your answer.

 70. Find equations for the line in the plane z = 3 that makes an angle 

of p>6 rad with i and an angle of p>3 rad with j. Describe the 

reasoning behind your answer.

 71. Is the line x = 1 - 2t, y = 2 + 5t, z = -3t parallel to the plane 

2x + y - z = 8? Give reasons for your answer.

 72. How can you tell when two planes A1  x + B1  y + C1  z = D1 and 

A2  x + B2  y + C2  z = D2 are parallel? Perpendicular? Give rea-

sons for your answer.

 73. Find two diferent planes whose intersection is the line 

x = 1 + t, y = 2 - t, z = 3 + 2t . Write equations for each 

plane in the form Ax + By + Cz = D .

 74. Find a plane through the origin that is perpendicular to the plane 

M: 2x + 3y + z = 12 in a right angle. How do you know that 

your plane is perpendicular to M?

 75. The graph of (x>a) +  (y>b) + (z>c) = 1 is a plane for any non-

zero numbers a, b, and c. Which planes have an equation of this form?

 76. Suppose L1 and L2 are disjoint (nonintersecting) nonparallel lines. 

Is it possible for a nonzero vector to be perpendicular to both L1 

and L2? Give reasons for your answer.

 77. perspective in computer graphics In computer graphics and 

perspective drawing, we need to represent objects seen by the eye 

in space as images on a two-dimensional plane. Suppose that the 

eye is at E(x0, 0, 0) as shown here and that we want to represent 

a point P1(x1, y1, z1) as a point on the yz-plane. We do this by pro-

jecting P1 onto the plane with a ray from E. The point P1 will be 

portrayed as the point P(0, y, z). The problem for us as graphics 

designers is to ind y and z given E and P1 .

a. Write a vector equation that holds between 
r
EP  and 

r
EP1 . Use 

the equation to express y and z in terms of x0, x1, y1, and z1 .

b. Test the formulas obtained for y and z in part (a) by investi-

gating their behavior at x1 = 0 and x1 = x0 and by seeing 

what happens as x0 S q . What do you ind?

0
y

z

x

P(0, y, z)

P1(x1, y1, z1)

E(x0, 0, 0)

(x1, y1, 0)

 42. (2, 2, 3),  2x + y + 2z = 4

 43. (0, -1, 0),  2x + y + 2z = 4

 44. (1, 0, -1),  -4x + y + z = 4

 45. Find the distance from the plane x + 2y + 6z = 1 to the plane 

x + 2y + 6z = 10.

 46. Find the distance from the line x = 2 + t, y = 1 + t,  

z = - (1>2) - (1>2)t to the plane x + 2y + 6z = 10.

Angles

Find the angles between the planes in Exercises 47 and 48.

 47. x + y = 1,  2x + y - 2z = 2

 48. 5x + y - z = 10,  x - 2y + 3z = -1

Find the acute angles between the intersecting lines in Exercises 49 

and 50.

 49. x = t, y = 2t, z = - t and x = 1 - t, y = 5 + t, z = 2t

 50. x = 2 + t, y = 4t + 2, z = 1 + t and 

x = 3t - 2, y = -2, z = 2 - 2t

Find the acute angles between the lines and planes in Exercises 51  

and 52.

 51. x = 1 - t, y = 3t, z = 1 + t; 2x - y + 3z = 6

 52. x = 2, y = 3 + 2t, z = 1 - 2t; x - y + z = 0

Use a calculator to find the acute angles between the planes in 

 Exercises 53–56 to the nearest hundredth of a radian.

 53. 2x + 2y + 2z = 3,  2x - 2y - z = 5

 54. x + y + z = 1,  z = 0 (the xy@plane)

 55. 2x + 2y - z = 3,  x + 2y + z = 2

 56. 4y + 3z = -12,  3x + 2y + 6z = 6

T

Intersecting Lines and Planes

In Exercises 57–60, find the point in which the line meets the plane.

 57. x = 1 - t,  y = 3t,  z = 1 + t;  2x - y + 3z = 6

 58. x = 2,  y = 3 + 2t,  z = -2 - 2t;  6x + 3y - 4z = -12

 59. x = 1 + 2t,  y = 1 + 5t,  z = 3t;  x + y + z = 2

 60. x = -1 + 3t,  y = -2,  z = 5t;  2x - 3z = 7

Find parametrizations for the lines in which the planes in Exercises 

61–64 intersect.

 61. x + y + z = 1,  x + y = 2

 62. 3x - 6y - 2z = 3,  2x + y - 2z = 2

 63. x - 2y + 4z = 2,  x + y - 2z = 5

 64. 5x - 2y = 11,  4y - 5z = -17

Given two lines in space, either they are parallel, they intersect, or 

they are skew (lie in parallel planes). In Exercises 65 and 66, deter-

mine whether the lines, taken two at a time, are parallel, intersect, or 

are skew. If they intersect, find the point of intersection. Otherwise, 

find the distance between the two lines.

 65.  L1: x = 3 + 2t,  y = -1 + 4t,  z = 2 - t;   -q 6 t 6 q

   L2: x = 1 + 4s, y = 1 + 2s, z = -3 + 4s;   -q 6 s 6 q

   L3: x = 3 + 2r, y = 2 + r, z = -2 + 2r;   -q 6 r 6 q

 66.  L1: x = 1 + 2t,  y = -1 - t,  z = 3t;  -q 6 t 6 q

   L2: x = 2 - s,  y = 3s,  z = 1 + s;  -q 6 s 6 q

   L3: x = 5 + 2r, y = 1 - r, z = 8 + 3r;   -q 6 r 6 q
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 78. Hidden lines in computer graphics Here is another typi-

cal problem in computer graphics. Your eye is at (4, 0, 0). You 

are looking at a triangular plate whose vertices are at (1, 0, 1),  

(1, 1, 0), and (-2, 2, 2) . The line segment from (1, 0, 0) to (0, 2, 2)  

passes through the plate. What portion of the line segment is hid-

den from your view by the plate? (This is an exercise in inding 

intersections of lines and planes.)

12.6 Cylinders and Quadric Surfaces

Up to now, we have studied two special types of surfaces: spheres and planes. In this sec-

tion, we extend our inventory to include a variety of cylinders and quadric surfaces. 

 Quadric surfaces are surfaces defined by second-degree equations in x, y, and z. Spheres 

are quadric surfaces, but there are others of equal interest which will be needed in  Chapters 

14–16.

Cylinders

A cylinder is a surface that is generated by moving a straight line along a given planar 

curve while holding the line parallel to a given fixed line. The curve is called a generating 

curve for the cylinder (Figure 12.44). In solid geometry, where cylinder means circular 

cylinder, the generating curves are circles, but now we allow generating curves of any 

kind. The cylinder in our first example is generated by a parabola.

EXAMPLE 1  Find an equation for the cylinder made by the lines parallel to the 

z-axis that pass through the parabola y = x2, z = 0 (Figure 12.45).

Solution The point P0(x0, x0 

2, 0) lies on the parabola y = x2 in the xy-plane. Then, for 

any value of z, the point Q(x0, x0 

2, z) lies on the cylinder because it lies on the line 

x = x0, y = x0 

2 through P0 parallel to the z-axis. Conversely, any point Q(x0, x0 

2, z)  

whose y-coordinate is the square of its x-coordinate lies on the cylinder because it lies on 

the line x = x0, y = x0 

2 through P0 parallel to the z-axis (Figure 12.45).

Regardless of the value of z, therefore, the points on the surface are the points whose 

coordinates satisfy the equation y = x2 . This makes y = x2 an equation for the cylinder. 

Because of this, we call the cylinder “the cylinder y = x2 .” 

As Example 1 suggests, any curve ƒ(x, y) = c in the xy-plane defines a cylinder par-

allel to the z-axis whose equation is also ƒ(x, y) = c . For instance, the equation 

x2 + y2 = 1 defines the circular cylinder made by the lines parallel to the z-axis that pass 

through the circle x2 + y2 = 1 in the xy-plane.

In a similar way, any curve g(x, z) = c in the xz-plane defines a cylinder parallel to 

the y-axis whose space equation is also g(x, z) = c. Any curve h(y, z) = c defines a cylin-

der parallel to the x-axis whose space equation is also h(y, z) = c. The axis of a cylinder 

need not be parallel to a coordinate axis, however.

Quadric Surfaces

A quadric surface is the graph in space of a second-degree equation in x, y, and z. We first 

focus on quadric surfaces given by the equation

Ax2 + By2 + Cz2 + Dz = E,

where A, B, C, D, and E are constants. The basic quadric surfaces are ellipsoids, 

 paraboloids, elliptical cones, and hyperboloids. Spheres are special cases of ellipsoids. 

We present a few examples illustrating how to sketch a quadric surface, and then give a 

summary table of graphs of the basic types.

y

z

x
Lines through

generating curve

parallel to x-axis

Generating curve

(in the yz-plane)

FIGURE 12.44 A cylinder and  

generating curve.

x

y

PA
R

A
B

O
LA

 

0

y = x2

P0(x0, x0
2, 0)

Q0(x0, x0
2, z)

z

FIGURE 12.45 Every point of the cyl-

inder in Example 1 has coordinates of the 

form (x0, x0  

2, z) . We call it “the cylinder 

y = x2 .”
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EXAMPLE 2  The ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1

(Figure 12.46) cuts the coordinate axes at ({a, 0, 0), (0, {b, 0), and (0, 0, {c) . It lies 

within the rectangular box defined by the inequalities 0 x 0 … a, 0 y 0 … b, and 0 z 0 … c . The 

surface is symmetric with respect to each of the coordinate planes because each variable in 

the defining equation is squared.

y

x

z

E
L

L
IP

S
E

 

c

z
0

a

b y

x

z

E
L

L
IP

S
E 

ELLIPSE 

Elliptical cross-section

      in the plane z = z0

The ellipse       +      = 1

in the xy-plane

x2

a2

y2

b2

The ellipse       +      = 1

in the yz-plane

y2

b2

z2

c2

The ellipse

in the xz-plane

x2

a2

z2

c2
+       = 1

FIGURE 12.46 The ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1

in Example 2 has elliptical cross-sections in each of the three coordinate planes.

The curves in which the three coordinate planes cut the surface are ellipses. For 

 example,

x2

a2
+

y2

b2
= 1  when  z = 0.

The curve cut from the surface by the plane z = z0, 0 z0 0 6 c, is the ellipse

x2

a2(1 - (z0>c)2)
+

y2

b2(1 - (z0>c)2)
= 1.

If any two of the semiaxes a, b, and c are equal, the surface is an ellipsoid of  revolution. 

If all three are equal, the surface is a sphere. 

EXAMPLE 3  The hyperbolic paraboloid

y2

b2
-

x2

a2
=

z
c ,  c 7 0

has symmetry with respect to the planes x = 0 and y = 0 (Figure 12.47). The cross- 

sections in these planes are

  x = 0: the parabola z =
c

b2
 y2 .  (1)

  y = 0: the parabola z = -  
c

a2
 x2 . (2)
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In the plane x = 0, the parabola opens upward from the origin. The parabola in the plane 

y = 0 opens downward.

y

z

x y

z

x

The parabola z =     y2 in the yz-plane
c

b2

The parabola z = −     x2 

in the xz-plane

c

a2

Part of the hyperbola       −      = 1

in the plane z = c

y2

b2
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FIGURE 12.47 The hyperbolic paraboloid (y2>b2) - (x2>a2) = z>c, c 7 0. The cross-sections in planes perpendicular to the 

z-axis above and below the xy-plane are hyperbolas. The cross-sections in planes perpendicular to the other axes are parabolas.

If we cut the surface by a plane z = z0 7 0, the cross-section is a hyperbola,

y2

b2
-

x2

a2
=

z0

c ,

with its focal axis parallel to the y-axis and its vertices on the parabola in Equation (1). If 

z0 is negative, the focal axis is parallel to the x-axis and the vertices lie on the parabola in 

Equation (2).

Near the origin, the surface is shaped like a saddle or mountain pass. To a person trav-

eling along the surface in the yz-plane the origin looks like a minimum. To a person travel-

ing the xz-plane the origin looks like a maximum. Such a point is called a saddle point of 

a surface. We will say more about saddle points in Section 14.7. 

Table 12.1 shows graphs of the six basic types of quadric surfaces. Each surface 

shown is symmetric with respect to the z-axis, but other coordinate axes can serve as well 

(with appropriate changes to the equation).

General Quadric Surfaces

The quadric surfaces we have considered have symmetries relative to the x-, y-, or z-axes. 

The general equation of second degree in three variables x, y, z is

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz + Gz + Hy + Iz + J = 0,

where A, B, C, D, E, F, G, H, I, and J are constants. This equation leads to surfaces similar 

to those in Table 12.1, but in general these surfaces might be translated and rotated relative 

to the x-, y-, and z-axes. Terms of the type Gx, Hy, or Iz in the above formula lead to trans-

lations, which can be seen by a process of completing the square.

EXAMPLE 4  Identify the surface given by the equation

x2 + y2 + 4z2 - 2x + 4y + 1 = 0.

Solution We complete the squares to simplify the expression:

 x2 + y2 + 4z2 - 2x + 4y + 1 = (x - 1)2 - 1 + ( y + 2)2 - 4 + 4z2 + 1

 = (x - 1)2 + ( y + 2)2 + 4z2 - 4.
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TABLE 12.1  Graphs of Quadric Surfaces
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We can rewrite the original equation as

(x - 1)2

4
+

( y + 2)2

4
+

z2

1
= 1.

This is the equation of an ellipsoid whose three semiaxes have lengths 2, 2, and 1 and 

which is centered at the point (1, -2, 0), as shown in Figure 12.48. 

y
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4
The ellipse                +              = 1

in the plane z = 0

0

3
−1

1

1
0

−1

−1

1

−1

FIGURE 12.48 An ellipsoid centered at the point (1, -2, 0).

Matching Equations with Surfaces

In Exercises 1–12, match the equation with the surface it defines. 

Also, identify each surface by type (paraboloid, ellipsoid, etc.). The 

surfaces are labeled (a)–(1).

 1. x2 + y2 + 4z2 = 10 2. z2 + 4y2 - 4x2 = 4

 3. 9y2 + z2 = 16 4. y2 + z2 = x2

 5. x = y2 - z2 6. x = -y2 - z2

 7. x2 + 2z2 = 8 8. z2 + x2 - y2 = 1

 9. x = z2 - y2 10. z = -4x2 - y2

 11. x2 + 4z2 = y2 12. 9x2 + 4y2 + 2z2 = 36

a. z

y
x

 b. z

y
x

c. z

yx

 d. z

yx

e. z

y
x

 f. z

yx

g. z

y
x

 h. z

yx

i. z

y
x

 j. z

y
x

k. z

x y

 l. z

y

x

EXERCISES 12.6
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z

y

h r

−h

R

x r

 47. Show that the volume of the segment cut from the paraboloid

x2

a2
+

y2

b2
=

z
c

  by the plane z = h equals half the segment’s base times its 

 altitude.

 48. a. Find the volume of the solid bounded by the hyperboloid

x2

a2
+

y2

b2
-

z2

c2
= 1

and the planes z = 0 and z = h, h 7 0.

b. Express your answer in part (a) in terms of h and the areas A0 

and Ah of the regions cut by the hyperboloid from the planes 

z = 0 and z = h .

c. Show that the volume in part (a) is also given by the formula

V =
h

6
 (A0 + 4Am + Ah),

where Am is the area of the region cut by the hyperboloid 

from the plane z = h>2.

ELLIPSOIDS

 17. 9x2 + y2 + z2 = 9 18. 4x2 + 4y2 + z2 = 16

 19. 4x2 + 9y2 + 4z2 = 36 20. 9x2 + 4y2 + 36z2 = 36

PARABOLOIDS AND CONES

 21. z = x2 + 4y2 22. z = 8 - x2 - y2

 23. x = 4 - 4y2 - z2 24. y = 1 - x2 - z2

 25. x2 + y2 = z2 26. 4x2 + 9z2 = 9y2

HYPERBOLOIDS

 27. x2 + y2 - z2 = 1 28. y2 + z2 - x2 = 1

 29. z2 - x2 - y2 = 1 30. (y2>4) - (x2>4) - z2 = 1

HYPERBOLIC PARABOLOIDS

 31. y2 - x2 = z 32. x2 - y2 = z

ASSORTED

 33. z = 1 + y2 - x2 34. 4x2 + 4y2 = z2

 35. y = - (x2 + z2)  36. 16x2 + 4y2 = 1

 37. x2 + y2 - z2 = 4 38. x2 + z2 = y

 39. x2 + z2 = 1 40. 16y2 + 9z2 = 4x2

 41. z = - (x2 + y2)  42. y2 - x2 - z2 = 1

 43. 4y2 + z2 - 4x2 = 4 44. x2 + y2 = z

Drawing

Sketch the surfaces in Exercises 13–44.

CYLINDERS

 13. x2 + y2 = 4 14. z = y2 - 1

 15. x2 + 4z2 = 16 16. 4x2 + y2 = 36

Theory and Examples

 45. a. Express the area A of the cross-section cut from the ellipsoid

x2 +
y2

4
+

z2

9
= 1

by the plane z = c as a function of c. (The area of an ellipse 

with semiaxes a and b is pab .)

b. Use slices perpendicular to the z-axis to ind the volume of 

the ellipsoid in part (a).

c. Now ind the volume of the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

Does your formula give the volume of a sphere of radius a if 

a = b = c?

 46. The barrel shown here is shaped like an ellipsoid with equal pieces 

cut from the ends by planes perpendicular to the z-axis. The cross-

sections perpendicular to the z-axis are circular. The barrel is 2h 

units high, its midsection radius is R, and its end radii are both r. 

Find a formula for the barrel’s volume. Then check two things. 

First, suppose the sides of the barrel are straightened to turn the 

barrel into a cylinder of radius R and height 2h. Does your formula 

give the cylinder’s volume? Second, suppose r = 0 and h = R so 

the barrel is a sphere. Does your formula give the sphere’s volume?

Viewing Surfaces

Plot the surfaces in Exercises 49–52 over the indicated domains. If 

you can, rotate the surface into different viewing positions.

 49. z = y2, -2 … x … 2, -0.5 … y … 2

 50. z = 1 - y2, -2 … x … 2, -2 … y … 2

 51. z = x2 + y2, -3 … x … 3, -3 … y … 3

 52. z = x2 + 2y2 over

a. -3 … x … 3, -3 … y … 3

b. -1 … x … 1, -2 … y … 3

c. -2 … x … 2, -2 … y … 2

d. -2 … x … 2, -1 … y … 1

T

COMPUTER EXPLORATIONS

Use a CAS to plot the surfaces in Exercises 53–58. Identify the type 

of quadric surface from your graph.

 53. 
x2

9
+

y2

36
= 1 -

z2

25
 54. 

x2

9
-

z2

9
= 1 -

y2

16

 55. 5x2 = z2 - 3y2 56. 
y2

16
= 1 -

x2

9
+ z

 57. 
x2

9
- 1 =

y2

16
+

z2

2
 58. y - 24 - z2 = 0
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 1. When do directed line segments in the plane represent the same 

vector?

 2. How are vectors added and subtracted geometrically? 

 Algebraically?

 3. How do you ind a vector’s magnitude and direction?

 4. If a vector is multiplied by a positive scalar, how is the result re-

lated to the original vector? What if the scalar is zero? Negative?

 5. Deine the dot product (scalar product) of two vectors. Which al-

gebraic laws are satisied by dot products? Give examples. When 

is the dot product of two vectors equal to zero?

 6. What geometric interpretation does the dot product have? Give 

examples.

 7. What is the vector projection of a vector u onto a vector v? Give 

an example of a useful application of a vector projection.

 8. Deine the cross product (vector product) of two vectors. Which 

algebraic laws are satisied by cross products, and which are not? 

Give examples. When is the cross product of two vectors equal to 

zero?

 9. What geometric or physical interpretations do cross products 

have? Give examples.

 10. What is the determinant formula for calculating the cross product 

of two vectors relative to the Cartesian i, j, k-coordinate system? 

Use it in an example.

 11. How do you ind equations for lines, line segments, and planes in 

space? Give examples. Can you express a line in space by a single 

equation? A plane?

 12. How do you ind the distance from a point to a line in space? From 

a point to a plane? Give examples.

 13. What are box products? What signiicance do they have? How are 

they evaluated? Give an example.

 14. How do you ind equations for spheres in space? Give examples.

 15. How do you ind the intersection of two lines in space? A line and 

a plane? Two planes? Give examples.

 16. What is a cylinder? Give examples of equations that deine cylin-

ders in Cartesian coordinates.

 17. What are quadric surfaces? Give examples of diferent kinds of 

ellipsoids, paraboloids, cones, and hyperboloids (equations and 

sketches).

CHAPTER 12 Questions to Guide Your Review

Vector Calculations in Two Dimensions

In Exercises 1–4, let u = 8-3, 49  and v = 82, -59 . Find (a) the 

component form of the vector and (b) its magnitude.

 1. 3u - 4v 2. u + v

 3. -2u 4. 5v

 13. 2i - 3j + 6k 14. i + 2j - k

 15. Find a vector 2 units long in the direction of v = 4i - j + 4k .

 16. Find a vector 5 units long in the direction opposite to the direction 

of v = (3>5)i + (4>5)k .

In Exercises 17 and 18, ind 0 v 0 , 0 u 0 , v # u, u # v, v * u, u * v,0 v * u 0 , the angle between v and u, the scalar component of u in the 

direction of v, and the vector projection of u onto v.

 17.  v = i + j

   v = 2i + j - 2k

 18.  v = i + j + 2k

   u = - i - k

In Exercises 19 and 20, ind projv u.

 19.  v = 2i + j - k

   u = i + j - 5k

 20.  u = i - 2j

   v = i + j + k

In Exercises 21 and 22, draw coordinate axes and then sketch u, v, and 

u * v as vectors at the origin.

 21. u = i, v = i + j 22. u = i - j, v = i + j

 23. If 0 v 0 = 2, 0w 0 = 3, and the angle between v and w is p>3, ind 0 v - 2w 0 .
 24. For what value or values of a will the vectors u = 2i + 4j - 5k 

and v = -4i - 8j + ak be parallel?

CHAPTER 12 Practice Exercises

In Exercises 5–8, ind the component form of the vector.

 5. The vector obtained by rotating 80, 19  through an angle of 2p>3 

radians

 6. The unit vector that makes an angle of p>6 radian with the posi-

tive x-axis

 7. The vector 2 units long in the direction 4i - j

 8. The vector 5 units long in the direction opposite to the direction of 

(3>5)i + (4>5)j

Express the vectors in Exercises 9–12 in terms of their lengths and 

directions.

 9. 22i + 22j 10. - i - j

 11. Velocity vector v = (-2 sin t)i + (2 cos t)j when t = p>2.

 12. Velocity vector v = (et cos t - et sin t)i + (et sin t + et cos t)j 

when t = ln 2.

Vector Calculations in Three Dimensions

Express the vectors in Exercises 13 and 14 in terms of their lengths 

and directions.
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 46. Find an equation for the plane that passes through the point  

(1, 2, 3) parallel to u = 2i + 3j + k and v = i - j + 2k .

 47. Is v = 2i - 4j + k related in any special way to the plane 

2x + y = 5? Give reasons for your answer.

 48. The equation n # rP0 P = 0 represents the plane through P0 normal 

to n. What set does the inequality n # rP0 P 7 0 represent?

 49. Find the distance from the point P(1, 4, 0) to the plane through 

A(0, 0, 0), B(2, 0, -1), and C(2, -1, 0) .

 50. Find the distance from the point (2, 2, 3) to the plane 

2x + 3y + 5z = 0.

 51. Find a vector parallel to the plane 2x - y - z = 4 and  orthogonal 

to i + j + k .

 52. Find a unit vector orthogonal to A in the plane of B and c if 

A = 2i - j + k, B = i + 2j + k, and c = i + j - 2k .

 53. Find a vector of magnitude 2 parallel to the line of intersection of 

the planes x + 2y + z - 1 = 0 and x - y + 2z + 7 = 0.

 54. Find the point in which the line through the origin perpendicular to 

the plane 2x - y - z = 4 meets the plane 3x - 5y +  2z = 6.

 55. Find the point in which the line through P(3, 2, 1) normal to the 

plane 2x - y + 2z = -2 meets the plane.

 56. What angle does the line of intersection of the planes 

2x + y - z = 0 and x + y + 2z = 0 make with the positive  

x-axis?

 57. The line

L: x = 3 + 2t, y = 2t, z = t

  intersects the plane x + 3y - z = -4 in a point P. Find the coor-

dinates of P and ind equations for the line in the plane through P 

perpendicular to L.

 58. Show that for every real number k the plane

x - 2y + z + 3 + k(2x - y - z + 1) = 0

  contains the line of intersection of the planes

x - 2y + z + 3 = 0 and 2x - y - z + 1 = 0.

 59. Find an equation for the plane through A(-2, 0, -3) and B(1, -2, 1) 

that lies parallel to the line through C(-2, -13>5, 26>5) and 

D(16>5, -13>5, 0) .

 60. Is the line x = 1 + 2t, y = -2 + 3t, z = -5t related in any way 

to the plane -4x - 6y + 10z = 9? Give reasons for your answer.

 61. Which of the following are equations for the plane through the 

points P(1, 1, -1), Q(3, 0, 2), and R(-2, 1, 0)?

a. (2i - 3j + 3k) # ((x + 2)i + (y - 1)j + zk) = 0

b. x = 3 - t, y = -11t, z = 2 - 3t

c. (x + 2) + 11(y - 1) = 3z

d. (2i - 3j + 3k) * ((x + 2)i + (  y - 1)j + zk) = 0

e. (2i - j + 3k) * (-3i + k) # ((x + 2)i + (  y - 1)j + zk) 

=  0

In Exercises 25 and 26, ind (a) the area of the parallelogram deter-

mined by vectors u and v and (b) the volume of the parallelepiped 

determined by the vectors u, v, and w.

 25. u = i + j - k, v = 2i + j + k, w = - i - 2j + 3k

 26. u = i + j, v = j, w = i + j + k

Lines, Planes, and Distances

 27. Suppose that n is normal to a plane and that v is parallel to the 

plane. Describe how you would ind a vector n that is both perpen-

dicular to v and parallel to the plane.

 28. Find a vector in the plane parallel to the line ax + by = c .

In Exercises 29 and 30, ind the distance from the point to the line.

 29. (2, 2, 0); x = - t, y = t, z = -1 + t

 30. (0, 4, 1); x = 2 + t, y = 2 + t, z = t

 31. Parametrize the line that passes through the point (1, 2, 3) parallel 

to the vector v = -3i + 7k.

 32. Parametrize the line segment joining the points P(1, 2, 0) and 

Q(1, 3, -1) .

In Exercises 33 and 34, ind the distance from the point to the plane.

 33. (6, 0, -6), x - y = 4

 34. (3, 0, 10), 2x + 3y + z = 2

 35. Find an equation for the plane that passes through the point 

(3, -2, 1) normal to the vector n = 2i + j + k .

 36. Find an equation for the plane that passes through the point 

(-1, 6, 0) perpendicular to the line x = -1 + t, y = 6 - 2t, 

z = 3t .

In Exercises 37 and 38, ind an equation for the plane through points 

P, Q, and R.

 37. P(1, -1, 2), Q(2, 1, 3), R(-1, 2, -1)

 38. P(1, 0, 0), Q(0, 1, 0), R(0, 0, 1)

 39. Find the points in which the line x = 1 + 2t, y = -1 - t, z = 3t 

meets the three coordinate planes.

 40. Find the point in which the line through the origin perpendicular to 

the plane 2x - y - z = 4 meets the plane 3x - 5y + 2z = 6.

 41. Find the acute angle between the planes x = 7 and x + y +  

22z = -3.

 42. Find the acute angle between the planes x + y = 1 and 

y + z = 1.

 43. Find parametric equations for the line in which the planes 

x + 2y + z = 1 and x - y + 2z = -8 intersect.

 44. Show that the line in which the planes

x + 2y - 2z = 5 and 5x - 2y - z = 0

  intersect is parallel to the line

x = -3 + 2t, y = 3t, z = 1 + 4t .

 45. The planes 3x + 6z = 1 and 2x + 2y - z = 3 intersect in a line.

a. Show that the planes are orthogonal.

b. Find equations for the line of intersection.
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 63. Distance between skew lines Find the distance between the line 

L1 through the points A(1, 0, -1) and B(-1, 1, 0) and the line L2 

through the points C(3, 1, -1) and D(4, 5, -2) . The distance is 

to be measured along the line perpendicular to the two lines. First 

ind a vector n perpendicular to both lines. Then project 
r
AC  onto 

n.

 64. (Continuation of Exercise 63.) Find the distance between the line 

through A(4, 0, 2) and B(2, 4, 1) and the line through C(1, 3, 2) and 

D(2, 2, 4).

Quadric Surfaces

Identify and sketch the surfaces in Exercises 65–76.

 65. x2 + y2 + z2 = 4

 66. x2 + (y - 1)2 + z2 = 1

 67. 4x2 + 4y2 + z2 = 4

 68. 36x2 + 9y2 + 4z2 = 36

 69. z = - (x2 + y2)

 70. y = - (x2 + z2)

 71. x2 + y2 = z2

 72. x2 + z2 = y2

 73. x2 + y2 - z2 = 4

 74. 4y2 + z2 - 4x2 = 4

 75. y2 - x2 - z2 = 1

 76. z2 - x2 - y2 = 1

 62. The parallelogram shown here has vertices at A(2, -1, 4), 

B(1, 0, -1), C(1, 2, 3), and D. Find

z

y

x

D

C(1, 2, 3)

A(2, −1, 4)

B(1, 0, −1)

a. the coordinates of D.

b. the cosine of the interior angle at B.

c. the vector projection of 
r
BA  onto 

r
BC.

d. the area of the parallelogram.

e. an equation for the plane of the parallelogram.

f. the areas of the orthogonal projections of the parallelogram 

on the three coordinate planes.

 1. submarine hunting Two surface ships on maneuvers are try-

ing to determine a submarine’s course and speed to prepare for 

an aircraft intercept. As shown here, ship A is located at (4, 0, 0), 

whereas ship B is located at (0, 5, 0). All coordinates are given 

in thousands of feet. Ship A locates the submarine in the direc-

tion of the vector 2i + 3j - (1>3)k, and ship B locates it in the 

direction of the vector 18i - 6j - k . Four minutes ago, the 

submarine was located at (2, -1, -1>3) . The aircraft is due in  

20 min. Assuming that the submarine moves in a straight line at 

a constant speed, to what position should the surface ships direct 

the aircraft?

z

y
x

(4, 0, 0)

Submarine

(0, 5, 0)
Ship A

Ship B

NOT TO SCALE

 2. A helicopter rescue Two helicopters, H1 and H2, are travel-

ing together. At time t = 0, they separate and follow diferent 

straight-line paths given by

 H1: x = 6 + 40t, y = -3 + 10t, z = -3 + 2t

 H2: x = 6 + 110t, y = -3 + 4t, z = -3 + t .

  Time t is measured in hours, and all coordinates are measured in 

miles. Due to system malfunctions, H2 stops its light at (446, 13, 1)  

and, in a negligible amount of time, lands at (446, 13, 0). Two 

hours later, H1 is advised of this fact and heads toward H2 at  

150 mph. How long will it take H1 to reach H2?

 3. torque The operator’s manual for the Toro® 21-in. lawnmower 

says “tighten the spark plug to 15 ft@lb (20.4 N # m).” If you are 

installing the plug with a 10.5-in. socket wrench that places the 

center of your hand 9 in. from the axis of the spark plug, about 

how hard should you pull? Answer in pounds.

9 in.

CHAPTER 12 Additional and Advanced Exercises
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b. For a ixed b determine the value of a which minimizes the 

magnitude 0t1 0 .
c. For a ixed a determine the value of b which minimizes the 

magnitude 0t2 0 .
 7. Determinants and planes 

a. Show that 3 x1 - x y1 - y z1 - z

x2 - x y2 - y z2 - z

x3 - x y3 - y z3 - z

3 = 0

 is an equation for the plane through the three noncollinear 

points P1(x1, y1, z1), P2(x2, y2, z2), and P3(x3, y3, z3) .

b. What set of points in space is described by the equation4 x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

4 = 0 ?

 8. Determinants and lines Show that the lines

x = a1  s + b1, y = a2  s + b2, z = a3  s + b3, -q 6 s 6 q

and

x = c1  t + d1, y = c2  t + d2, z = c3  t + d3, -q 6 t 6 q,

intersect or are parallel if and only if3 a1 c1 b1 - d1

a2 c2 b2 - d2

a3 c3 b3 - d3

3 = 0.

 9. Consider a regular tetrahedron of side length 2.

a. Use vectors to ind the angle u formed by the base of the 

tetrahedron and any one of its other edges.

C

P

B

2
1

1

2
2

A

D

u

b. Use vectors to ind the angle u formed by any two adjacent 

faces of the tetrahedron. This angle is commonly referred to 

as a dihedral angle.

 10. In the igure here, D is the midpoint of side AB of triangle ABC, 

and E is one-third of the way between C and B. Use vectors to 

prove that F is the midpoint of line segment CD.

C

A B

E

F

D

 4. rotating body The line through the origin and the point A(1, 1, 1)  

is the axis of rotation of a rigid body rotating with a constant  

angular speed of 3 >2 rad > sec. The rotation appears to be clock-

wise when we look toward the origin from A. Find the velocity v 

of the point of the body that is at the position B(1, 3, 2).

y

z

O

x

1

1

3
v

B(1, 3, 2)
A(1, 1, 1)

 5. Consider the weight suspended by two wires in each diagram. 

Find the magnitudes and components of vectors F1 and F2, and 

angles a and b .

a. 

F1
F2

100 lb

5 ft

a b

4 ft3 ft

b. 

F1 F2

200 lb

13 ft

a b

12 ft
5 ft

  (Hint: This triangle is a right triangle.)

 6. Consider a weight of w N suspended by two wires in the diagram, 

where t1 and t2 are force vectors directed along the wires.

T1 T2

a b

w

ba

a. Find the vectors t1 and t2 and show that their magnitudes are0t1 0 =
w cos b

sin (a + b)

 and 0t2 0 =
w cos a

sin (a + b)
.
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 17. triple vector products The triple vector products (u * v) * w 

and u * (v * w) are usually not equal, although the formulas for 

evaluating them from components are similar:

 (u * v) * w = (u # w)v - (v # w)u .

 u * (v * w) = (u # w)v - (u # v)w .

  Verify each formula for the following vectors by evaluating its two 

sides and comparing the results.

u v w

a. 2i 2j 2k

b. i - j + k 2i + j - 2k - i + 2j - k

c. 2i + j 2i - j + k i + 2k

d. i + j - 2k - i - k 2i + 4j - 2k

 18. cross and dot products Show that if u, v, w, and r are any vec-

tors, then

a. u * (v * w) + v * (w * u) + w * (u * v) = 0

b. u * v = (u # v * i)i + (u # v * j)j + (u # v * k)k

c. (u * v) # (w * r) = ` u # w v # w

u # r v # r
` .

 19. cross and dot products Prove or disprove the formula

u * (u * (u * v)) # w = - 0 u 0 2 u # v * w .

 20. By forming the cross product of two appropriate vectors, derive 

the trigonometric identity

sin (A - B) = sin A cos B - cos A sin B .

 21. Use vectors to prove that

(a2 + b2)(c2 + d2) Ú (ac + bd )2

for any four numbers a, b, c, and d. (Hint: Let u = ai + bj and 

v = ci + dj .)

 22. Dot multiplication is positive deinite Show that dot multipli-

cation of vectors is positive deinite; that is, show u ~ u Ú 0 for 

every vector u and that u # u = 0 if and only if u = 0.

 23. Show that 0 u + v 0 … 0 u 0 + 0 v 0  for any vectors u and v.

 24. Show that w = 0 v 0 u + 0 u 0 v bisects the angle between u and v.

 25. Show that 0 v 0 u + 0 u 0 v and 0 v 0 u - 0 u 0 v are orthogonal.

 11. Use vectors to show that the distance from P1(x1, y1) to the line 

ax + by = c is

d =
0 ax1 + by1 - c 0
2a2 + b2

.

 12. a.  Use vectors to show that the distance from P1(x1, y1, z1) to the 

plane Ax + By + Cz = D is

d =
0Ax1 + By1 + Cz1 - D 0
2A2 + B2 + C2

.

b. Find an equation for the sphere that is tangent to the 

planes x + y + z = 3 and x + y + z = 9 if the planes 

2x - y = 0 and 3x - z = 0 pass through the center of the 

sphere.

13. a.  Distance between parallel planes Show that the dis-

tance between the parallel planes Ax + By + Cz = D1 and 

Ax + By + Cz = D2 is

d =
0D1 - D2 00Ai + Bj + C  k 0 .

b. Find the distance between the planes 2x + 3y - z = 6 and 

2x + 3y - z = 12.

c. Find an equation for the plane parallel to the plane 

2x - y + 2z = -4 if the point (3, 2, -1) is equidistant from 

the two planes.

d. Write equations for the planes that lie parallel to and 5 units 

away from the plane x - 2y + z = 3.

 14. Prove that four points A, B, C, and D are coplanar (lie in a common 

plane) if and only if 
r
AD # (

r
AB * r

BC) = 0.

 15. the projection of a vector on a plane Let P be a plane in space 

and let v be a vector. The vector projection of v onto the plane P, 

projP  v, can be deined informally as follows. Suppose the sun is 

shining so that its rays are normal to the plane P. Then projP  v is 

the “shadow” of v onto P. If P is the plane x + 2y + 6z = 6 and 

v = i + j + k, ind projP  v .

 16. The accompanying igure shows nonzero vectors v, w, and z, with 

z orthogonal to the line L, and v and w making equal angles b with 

L. Assuming 0 v 0 = 0w 0 , ind w in terms of v and z.

v w

z

L
bb
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Mathematica/Maple Projects

Projects can be found within MyMathLab.

• Using Vectors to Represent Lines and Find Distances 

parts i and ii: Learn the advantages of interpreting lines as vectors.

part iii: Use vectors to ind the distance from a point to a line.

• Putting a Scene in Three Dimensions onto a Two-Dimensional Canvas 

Use the concept of planes in space to obtain a two-dimensional image.

• Getting Started in Plotting in 3D 

part i: Use the vector deinition of lines and planes to generate graphs and equations, and to compare diferent forms for the equations of a 

single line.

part ii: Plot functions that are deined implicitly.

CHAPTER 12 Technology Application Projects
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OVERVIEW In this chapter we introduce the calculus of vector-valued functions. The 

domains of these functions are sets of real numbers, as before, but their ranges consist of 

vectors instead of scalars. When a vector-valued function changes, the change can occur in 

both magnitude and direction, so the derivative is itself a vector. The integral of a vector-

valued function is also a vector. We use the calculus of these functions to describe the 

paths and motions of objects moving in a plane or in space, so their velocities and accel-

erations are given by vectors. We also introduce new concepts that quantify the way that 

the path of an object moving in space can twist and turn.

Vector-Valued Functions 
and Motion in Space

13

13.1 Curves in Space and Their Tangents

When a particle moves through space during a time interval I, we think of the particle’s 

coordinates as functions defined on I:

 x = ƒ(t),  y = g(t),  z = h(t),  t∊I. (1)

The points (x, y, z) = (ƒ(t), g(t), h(t)), t∊I, make up the curve in space that we call the 

particle’s path. The equations and interval in Equation (1) parametrize the curve.

A curve in space can also be represented in vector form. The vector

 r(t) = r
OP = ƒ(t)i + g(t)j + h(t)k (2)

from the origin to the particle’s position P(ƒ(t), g(t), h(t)) at time t is the particle’s position 

vector (Figure 13.1). The functions ƒ, g, and h are the component functions (or compo-

nents) of the position vector. We think of the particle’s path as the curve traced by r during 

the time interval I. Figure 13.2 displays several space curves generated by a computer 

graphing program.

Equation (2) defines r as a vector function of the real variable t on the interval I. 

More generally, a vector-valued function or vector function on a domain set D is a rule 

that assigns a vector in space to each element in D. For now, the domains will be intervals 

of real numbers, and the graph of the function represents a curve in space. Later, in 

 Chapter 16, the domains will be regions in the plane, and in that setting the graph will 

represent a surface in space. Vector functions on a domain in the plane or in space also 

give rise to “vector fields,” which are important to the study of fluid flows, gravitational 

fields, and electromagnetic phenomena. We investigate vector fields and their applica-

tions in Chapter 16.

Real-valued functions are called scalar functions to distinguish them from vector 

functions. The components of r in Equation (2) are scalar functions of t. The domain of a 

vector-valued function is the common domain of its components.

r

y

z

O

x

P( f (t), g(t), h(t))

FIGURE 13.1 The position vector 

r = r
OP  of a particle moving through 

space is a function of time.
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EXAMPLE 1  Graph the vector function

r(t) = (cos t)i + (sin t)j + t k.

Solution This vector function r(t) is defined for all real values of t. The curve traced by 

r winds around the circular cylinder x2 + y2 = 1 (Figure 13.3). The curve lies on the cyl-

inder because the i- and j-components of r, being the x- and y-coordinates of the tip of r, 

satisfy the cylinder’s equation:

x2 + y2 = (cos t)2 + (sin t)2 = 1.

The curve rises as the k-component z = t increases. Each time t increases by 2p, the 

curve completes one turn around the cylinder. The curve is called a helix (from an old 

Greek word for “spiral”). The equations

x = cos t,  y = sin t,  z = t

parametrize the helix. The domain is the largest set of points t for which all three equations 

are defined, or -q 6 t 6 q for this example. Figure 13.4 shows more helices. 

r(t) = (cos t)i + (sin t)j + (sin2t)k 
r(t) = (sin3t)(cos t)i +

     (sin3t)(sin t)j + tk 
r(t) = (4 + sin20t)(cos t)i +

     (4 + sin20t)(sint)j +

     (cos20t)k 

y

z

x y

(a) (b) (c)

z

x
y

x

z

FIGURE 13.2 Space curves are defined by the position vectors r(t).

y

z

0

x

(1, 0, 0)

r
P

t

x2 + y2 = 1t = 0

t =
p
2

t = 2p
t = p

2p

FIGURE 13.3 The upper half of the 

helix r(t) = (cos t)i + (sin t)j + tk 

(Example 1).

y

x

y

r(t) = (cos t)i + (sin t)j + tk

x

z

y

r(t) = (cos 5t)i + (sin 5t)j + tkr(t) = (cos t)i + (sin t)j + 0.3tk

x

z z

FIGURE 13.4 Helices spiral upward around a cylinder, like coiled springs.

Limits and Continuity

The way we define limits of vector-valued functions is similar to the way we define limits 

of real-valued functions.
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If L = L1 i + L2  j + L3 k, then it can be shown that limtSt0
r(t) = L precisely when

lim
tS t0

 ƒ(t) = L1,  lim
tS t0

 g(t) = L2,  and  lim
tS t0

 h(t) = L3.

We omit the proof. The equation

 lim
tS t0

 r(t) = a lim
tS t0

 ƒ(t)b i + a lim
tS t0

 g(t)b j + a lim
tS t0

 h(t)bk (3)

provides a practical way to calculate limits of vector functions.

DEFINITION Let r(t) = ƒ(t)i + g(t)j + h(t)k be a vector function with 

 domain D, and let L be a vector. We say that r has limit L as t approaches t0 and 

write

lim
tS t0

 r(t) = L

if, for every number e 7 0, there exists a corresponding number d 7 0 such 

that for all t∊D

� r(t) - L � 6 e whenever  0 6 � t - t0 � 6 d.

To calculate the limit of a vector func-

tion, we find the limit of each component 

scalar function.

DEFINITION A vector function r(t) is continuous at a point t = t0 in its 

 domain if limtSt0
 r(t) = r(t0). The function is continuous if it is continuous at 

every point in its domain.

From Equation (3), we see that r(t) is continuous at t = t0 if and only if each compo-

nent function is continuous there (Exercise 45).

EXAMPLE 2  If r(t) = (cos t)i + (sin t)j + tk, then

 lim
tSp>4 r(t) = a lim

tSp>4 cos tb i + a lim
tSp>4 sin tb j + a lim

tSp>4 tbk

  =
22
2

  i +
22
2

  j +
p
4

  k.  

We define continuity for vector functions the same way we define continuity for scalar 

functions defined over an interval.

EXAMPLE 3

(a) All the space curves shown in Figures 13.2 and 13.4 are continuous because their 

component functions are continuous at every value of t in (-q, q).

(b) The function

g(t) = (cos t)i + (sin t)j + :t;k
is discontinuous at every integer, because the greatest integer function :t;  is discon-

tinuous at every integer. 

Derivatives and Motion

Suppose that r(t) = ƒ(t)i + g(t)j + h(t)k is the position vector of a particle moving along 

a curve in space and that ƒ, g, and h are differentiable functions of t. Then the difference 

between the particle’s positions at time t and time t + ∆t is the vector

∆r = r(t + ∆t) - r(t)
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(Figure 13.5a). In terms of components,

 ∆r = r(t + ∆t) - r(t)

 = 3ƒ(t + ∆t)i + g(t + ∆t)j + h(t + ∆t)k4 - 3ƒ(t)i + g(t)j + h(t)k4
 = 3ƒ(t + ∆t) - ƒ(t)4 i + 3g(t + ∆t) - g(t)4 j + 3h(t + ∆t) - h(t)4k.

As ∆t approaches zero, three things seem to happen simultaneously. First, Q approaches P 

along the curve. Second, the secant line PQ seems to approach a limiting position tangent 

to the curve at P. Third, the quotient ∆r>∆t (Figure 13.5b) approaches the limit

 lim
∆tS0

 
∆r
∆t

= c lim
∆tS0

 
ƒ(t + ∆t) - ƒ(t)

∆t
d i + c lim

∆tS0
 
g(t + ∆t) - g(t)

∆t
d j

 + c lim
∆tS0

 
h(t + ∆t) - h(t)

∆t
dk

 = c dƒ

dt
d i + c dg

dt
d j + c dh

dt
dk.

These observations lead us to the following definition.

y

z

(a)
x

P

C

O

O

Q

r(t + Δt) − r(t) 

r(t)

r(t + Δt)

y

z

(b)
x

P

C

Q

r(t)

r′(t)

r(t + Δt)

r(t + Δt) − r(t) 

Δt

Δr
=

Δt

FIGURE 13.5 As ∆t S 0, the point Q 

approaches the point P along the curve C. 

In the limit, the vector 
r
PQ >∆t becomes 

the tangent vector r′(t).

DEFINITION The vector function r(t) = ƒ(t)i + g(t)j + h(t)k has a  derivative 

(is differentiable) at t if ƒ, g, and h have derivatives at t. The  derivative is the 

vector function

r′(t) =
dr
dt

= lim
∆tS0

 
r(t + ∆t) - r(t)

∆t
=

dƒ

dt
  i +

dg

dt
  j +

dh

dt
  k.

A vector function r is differentiable if it is differentiable at every point of its domain. 

The curve traced by r is smooth if dr >dt is continuous and never 0, that is, if ƒ, g, and h 

have continuous first derivatives that are not simultaneously 0.

The geometric significance of the definition of derivative is shown in Figure 13.5. The 

points P and Q have position vectors r(t) and r(t + ∆t), and the vector 
r
PQ  is represented 

by r(t + ∆t) - r(t). For ∆t 7 0, the scalar multiple (1>∆t) (r(t + ∆t) - r(t)) points in 

the same direction as the vector 
r
PQ. As ∆t S 0, this vector approaches a vector that is 

tangent to the curve at P (Figure 13.5b). The vector r′(t), when different from the zero 

vector 0, is defined to be the vector tangent to the curve at P. The tangent line to the 

curve at a point (ƒ(t0), g(t0), h(t0)) is defined to be the line through the point parallel to 

r′(t0). We require dr>dt ≠ 0 for a smooth curve to make sure the curve has a continuously 

turning tangent at each point. On a smooth curve, there are no sharp corners or cusps.

A curve that is made up of a finite number of smooth curves pieced together in a con-

tinuous fashion is called piecewise smooth (Figure 13.6).

Look once again at Figure 13.5. We drew the figure for ∆t positive, so ∆r points for-

ward, in the direction of the motion. The vector ∆r>∆t, having the same direction as ∆r, 

points forward too. Had ∆t been negative, ∆r would have pointed backward, against the 

direction of motion. The quotient ∆r>∆t, however, being a negative scalar multiple of ∆r, 

would once again have pointed forward. No matter how ∆r points, ∆r>∆t points forward 

and we expect the vector dr>dt = lim∆tS0 ∆r>∆t, when different from 0, to do the same. 

This means that the derivative dr >dt, which is the rate of change of position with respect 

to time, always points in the direction of motion. For a smooth curve, dr>dt is never zero; 

the particle does not stop or reverse direction.

C1

C2

C3 C4

C5

FIGURE 13.6 A piecewise smooth 

curve made up of five smooth curves con-

nected end to end in a continuous fashion. 

The curve here is not smooth at the points 

joining the five smooth curves.



 13.1  Curves in Space and Their Tangents 753

EXAMPLE 4  Find the velocity, speed, and acceleration of a particle whose motion in 

space is given by the position vector r(t) = 2 cos t i + 2 sin t j + 5 cos2 t k. Sketch the 

velocity vector v(7p>4).

Solution The velocity and acceleration vectors at time t are

 v(t) = r′(t) = -2 sin t i + 2 cos t j - 10 cos t sin t k

 = -2 sin t i + 2 cos t j - 5 sin 2t k,

 a(t) = r″(t) = -2 cos t i - 2 sin t j - 10 cos 2t k,

and the speed is

� v(t) � = 2(-2 sin t)2 + (2 cos t)2 + (-5 sin 2t)2 = 24 + 25 sin2 2t .

When t = 7p>4, we have

va7p
4
b = 22 i + 22 j + 5 k,  aa7p

4
b = -22 i + 22 j,  2 va7p

4
b 2 = 229.

A sketch of the curve of motion, and the velocity vector when t = 7p>4, can be seen in 

Figure 13.7. 

We can express the velocity of a moving particle as the product of its speed and 

 direction:

Velocity = � v � a  
v

� v �
b = (speed)(direction).

DEFINITIONS If r is the position vector of a particle moving along a smooth 

curve in space, then

v(t) =
dr
dt

is the particle’s velocity vector, tangent to the curve. At any time t, the direction 

of v is the direction of motion, the magnitude of v is the particle’s speed, and 

the derivative a = dv>dt, when it exists, is the particle’s acceleration vector. In 

summary,

1. Velocity is the derivative of position:  v =
dr
dt

.

2. Speed is the magnitude of velocity:  Speed = � v � .

3. Acceleration is the derivative of velocity:  a =
dv
dt

=
d2r

dt2
.

4. The unit vector v> � v �  is the direction of motion at time t.

z

x

y

7p
4

r′

7p
4

t =

a    b

FIGURE 13.7 The curve and the  

velocity vector when t = 7p>4 for the 

motion given in Example 4.

Differentiation Rules

Because the derivatives of vector functions may be computed component by component, 

the rules for differentiating vector functions have the same form as the rules for differenti-

ating scalar functions.
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We will prove the product rules and Chain Rule but leave the rules for constants, scalar 

multiples, sums, and differences as exercises.

Proof of the Dot Product Rule  Suppose that

u = u1(t)i + u2(t)j + u3(t)k

and

v = y1(t)i + y2(t)j + y3(t)k.

Then

 
d

dt
 (u # v) =

d

dt
 (u1 y1 + u2 y2 + u3 y3)

 = u1
=y1 + u2

=y2 + u3
=y3 + u1y1

= + u2y2
= + u3y3

= .
 (+++)++++* (++++)+++*
 u′ # v u # v′ 

Proof of the Cross Product Rule  We model the proof after the proof of the Product 

Rule for scalar functions. According to the deinition of derivative,

d

dt
 (u * v) = lim

hS0
 
u(t + h) * v(t + h) - u(t) * v(t)

h
.

To change this fraction into an equivalent one that contains the diference quotients for the 

derivatives of u and v, we subtract and add u(t) * v(t + h) in the numerator. Then

d

dt
 (u * v)

 = lim
hS0

  
u(t + h) * v(t + h) - u(t) * v(t + h) + u(t) * v(t + h) - u(t) * v(t)

h

 = lim
hS0

 cu(t + h) - u(t)

h
* v(t + h) + u(t) *

v(t + h) - v(t)

h
d

 = lim
hS0

  
u(t + h) - u(t)

h
* lim

hS0
  v(t + h) + lim

hS0
  u(t) * lim

hS0
 
v(t + h) - v(t)

h
.

Diferentiation Rules for Vector Functions

Let u and v be differentiable vector functions of t, c a constant vector, c any 

 scalar, and ƒ any differentiable scalar function.

1. Constant Function Rule:
d

dt
 c = 0

2. Scalar Multiple Rules:
d

dt
 3cu(t)4 = cu′(t) 

d

dt
 3ƒ(t) u(t)4 = ƒ′(t) u(t) + ƒ(t) u′(t)

3. Sum Rule:
d

dt
 3u(t) + v(t)4 = u′(t) + v′(t)

4. Diference Rule:
d

dt
 3u(t) - v(t)4 = u′(t) - v′(t)

5. Dot Product Rule:
d

dt
 3u(t) # v(t)4 = u′(t) # v(t) + u(t) # v′(t)

6. Cross Product Rule:
d

dt
 3u(t) * v(t)4 = u′(t) * v(t) + u(t) * v′(t)

7. Chain Rule:
d

dt
 3u(ƒ(t))4 = ƒ′(t) u′(ƒ(t))

When you use the Cross Product Rule, 

remember to preserve the order of the 

factors. If u comes first on the left side of 

the equation, it must also come first on 

the right or the signs will be wrong.
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Proof of the Chain Rule  Suppose that u(s) = a(s)i + b(s)j + c(s)k is a diferen-

tiable vector function of s and that s = ƒ(t) is a diferentiable scalar function of t. Then a, 

b, and c are diferentiable functions of t, and the Chain Rule for diferentiable real-valued 

functions gives

 
d

dt
 3u(s)4 =

da

dt
 i +

db

dt
  j +

dc

dt
 k

 =
da

ds
 
ds

dt
 i +

db

ds
 
ds

dt
  j +

dc

ds
 
ds

dt
 k

 =
ds

dt
 ada

ds
  i +

db

ds
  j +

dc

ds
  kb

 =
ds

dt
 
du
ds

 = ƒ′(t) u′(ƒ(t)).   s = ƒ(t) 

Vector Functions of Constant Length

When we track a particle moving on a sphere centered at the origin (Figure 13.8), the posi-

tion vector has a constant length equal to the radius of the sphere. The velocity vector  

dr >dt, tangent to the path of motion, is tangent to the sphere and hence perpendicular to r. 

This is always the case for a differentiable vector function of constant length: The vector 

and its first derivative are orthogonal. By direct calculation,

 r(t) # r(t) = 0 r(t) 0 2 = c2  � r(t) � = c is constant.  

 
d

dt
 3r(t) # r(t)4 = 0   Diferentiate both sides.

 r′(t) # r(t) + r(t) # r′(t) = 0   Rule 5 with r(t) = u(t) = v(t) 

 2r′(t) # r(t) = 0.

Thus the vectors r′(t) and r(t) are orthogonal because their dot product is 0. In summary, 

the following holds.

The last of these equalities holds because the limit of the cross product of two vector func-

tions is the cross product of their limits if the latter exist (Exercise 46). As h approaches 

zero, v(t + h) approaches v(t) because v, being diferentiable at t, is continuous at t (Exer-

cise 47). The two fractions approach the values of du >dt and dv >dt at t. In short,

 
d

dt
 (u * v) =

du
dt

* v + u *
dv
dt

. 

As an algebraic convenience, we some-

times write the product of a scalar c and a 

vector v as vc instead of cv. This permits 

us, for instance, to write the Chain Rule 

in a familiar form:

du

dt
=

du

ds
  
ds

dt
,

where s = ƒ(t).

y

z

x

P

r(t)

dr
dt

FIGURE 13.8 If a particle moves on 

a sphere in such a way that its position r 

is a differentiable function of time, then 

r # (dr>dt) = 0.

If r is a differentiable vector function of t and the length of r(t) is constant, then

 r # dr
dt

= 0. (4)

We will use this observation repeatedly in Section 13.4. The converse is also true (see 

Exercise 41).
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In Exercises 1–4, find the given limits.

 1. lim
tSp

 c asin 
t

2
b  i + acos 

2
3

 tb  j + atan 
5
4

 tb  k d
 2. lim

tS-1
 c t3 i + asin 

p

2
 tb  j + (ln (t + 2)) k d

 3. lim
tS1

 c at2 - 1
ln t

b  i - a2t - 1

1 - t
b  j + (tan-1 t) k d

 4. lim
tS0

 c asin t
t
b  i + a tan2 t

sin 2t
b  j - at3 - 8

t + 2
b  k d

 16. r(t) = (sec t)i + (tan t)j +
4
3

 t k, t = p>6
 17. r(t) = (2 ln (t + 1))i + t2j +

t2

2
 k, t = 1

 18. r(t) = e-t
 i + (2 cos 3t)j + (2 sin 3t)k, t = 0

EXERCISES 13.1

Motion in the Plane

In Exercises 5–8, r(t) is the position of a particle in the xy-plane at 

time t. Find an equation in x and y whose graph is the path of the par-

ticle. Then find the particle’s velocity and acceleration vectors at the 

given value of t.

 5. r(t) = (t + 1)i + (t2 - 1)j, t = 1

 6. r(t) =
t

t + 1
 i +

1
t
 j, t = -  

1
2

 7. r(t) = et i +
2
9

 e2t j, t = ln 3

 8. r(t) = (cos 2t)i + (3 sin 2t)j, t = 0

Exercises 9–12 give the position vectors of particles moving along 

various curves in the xy-plane. In each case, find the particle’s veloc-

ity and acceleration vectors at the stated times and sketch them as vec-

tors on the curve.

 9. Motion on the circle x2 + y2 = 1

r(t) = (sin t)i + (cos t)j; t = p>4 and p>2
 10. Motion on the circle x2 + y2 = 16

r(t) = a4 cos 
t

2
b i + a4 sin 

t

2
bj; t = p and 3p>2

 11. Motion on the cycloid x = t - sin t,  y = 1 − cos t

r(t) = (t - sin t)i + (1 - cos t)j; t = p and 3p>2
 12. Motion on the parabola y = x2 + 1

r(t) = ti + (t2 + 1)j; t = -1, 0,  and 1

Motion in Space

In Exercises 13–18, r(t) is the position of a particle in space at time t. 

Find the particle’s velocity and acceleration vectors. Then find the par-

ticle’s speed and direction of motion at the given value of t. Write the 

particle’s velocity at that time as the product of its speed and direction.

 13. r(t) = (t + 1)i + (t2 - 1)j + 2t k, t = 1

 14. r(t) = (1 + t)i +
t2

22
  j +

t3

3
 k, t = 1

 15. r(t) = (2 cos t)i + (3 sin t)j + 4t  k, t = p>2

Tangents to Curves

As mentioned in the text, the tangent line to a smooth curve 

r(t) = ƒ(t)i + g(t)j + h(t)k at t = t0 is the line that passes through 

the point (ƒ(t0), g(t0), h(t0)) parallel to v(t0), the curve’s velocity vec-

tor at t0. In Exercises 23–26, find parametric equations for the line that 

is tangent to the given curve at the given parameter value t = t0.

 23. r(t) = (sin t)i + (t2 - cos t)j + et
 k, t0 = 0

 24. r(t) = t2 i + (2t - 1)j + t3
 k, t0 = 2

 25. r(t) = ln t i +
t - 1
t + 2

 j + t ln t k, t0 = 1

 26. r(t) = (cos t)i + (sin t)j + (sin 2t)k, t0 =
p

2

In Exercises 27–30, find the value(s) of t so that the tangent line to the 

given curve contains the given point.

 27. r(t) = t2
 i + (1 + t)j + (2t - 3)k; (-8, 2, -1)

 28. r(t) = t i + 3j + a2
3

 t3>2bk; (0, 3, -8>3)

 29. r(t) = 2t i + t2j - t2k; (0, -4, 4)

 30. r(t) = - t i + t2j + (ln t)k; (2, -5, -3)

In Exercises 31–36, r(t) is the position of a particle in space at time t. 

Match each position function with one of the graphs A–F.

 31. r(t) = (t cos t)i + (t sin t)j + t  k

 32. r(t) = (cos t)i + (sin t)j + (sin 2t)k

 33. r(t) = t2i + (t2 + 1)j + t4
 k

 34. r(t) = t i + (ln t)j + (sin t)k

In Exercises 19–22, r(t) is the position of a particle in space at time t. 

Find the angle between the velocity and acceleration vectors at time 

t = 0.

 19. r(t) = (3t + 1)i + 23tj + t2k

 20. r(t) = a22

2
  tb i + a22

2
  t - 16t2bj

 21. r(t) = (ln (t2 + 1))i + (tan-1 t)j + 2t2 + 1 k

 22. r(t) =
4
9

 (1 + t)3>2i +
4
9

 (1 - t)3>2j +
1
3

 t k



 13.1  Curves in Space and Their Tangents 757

 iii) Does the particle move clockwise or counterclockwise around 

the circle?

 iv) Does the particle begin at the point (1, 0)?

a. r(t) = (cos t)i + (sin t)j, t Ú 0

b. r(t) = cos (2t)i + sin (2t)j, t Ú 0

c. r(t) = cos (t - p>2)i + sin (t - p>2)j, t Ú 0

d. r(t) = (cos t)i - (sin t)j, t Ú 0

e. r(t) = cos (t2)i + sin (t2)j, t Ú 0

 38. Motion along a circle Show that the vector-valued function

 r(t) = (2i + 2j + k)

 + cos t ¢ 1

22
  i -

1

22
  j≤ + sin t ¢ 1

23
  i +

1

23
  j +

1

23
  k≤

  describes the motion of a particle moving in the circle of 

 radius 1 centered at the point (2, 2, 1) and lying in the plane 

x + y - 2z = 2.

 39. Motion along a parabola A particle moves along the top of the 

parabola y2 = 2x from left to right at a constant speed of 5 units 

per second. Find the velocity of the particle as it moves through 

the point (2, 2) .

 40. Motion along a cycloid A particle moves in the xy-plane in 

such a way that its position at time t is

r(t) = (t - sin t)i + (1 - cos t)j.

a. Graph r(t). The resulting curve is a cycloid.

b. Find the maximum and minimum values of �v �  and �a � . 
(Hint: Find the extreme values of �v �2 and �a �2 irst and 

take square roots later.)

 41. Let r be a diferentiable vector function of t. Show that if 

r # (dr>dt) = 0 for all t, then � r �  is constant.

 42. Derivatives of triple scalar products

a. Show that if u, v, and w are diferentiable vector functions of 

t, then

d

dt
 (u # v * w) =

du

dt
# v * w + u # dv

dt
* w + u # v *

dw

dt
.

b. Show that

d

dt
 ar # dr

dt
*

d2r

dt2
b = r # adr

dt
*

d3r

dt3
b .

  (Hint: Diferentiate on the left and look for vectors whose  products 

are zero.)

 43. Prove the two Scalar Multiple Rules for vector functions.

 44. Prove the Sum and Diference Rules for vector functions.

 45. component test for continuity at a point Show that the vector 

function r deined by r(t) = ƒ(t)i + g(t)j + h(t)k is continuous 

at t = t0 if and only if ƒ, g, and h are continuous at t0.

T

 35. r(t) = ti + (cos t)j + (sin t)k

 36. r(t) = (t sin t)i + (t cos t)j + a t

t2 + 1
bk

x

y

z

A.

 

x

y

z

B.

x

y

z

C.

 

D.

x
y

z

E.

x

y

z  

F.

z

x

y

Theory and Examples

 37. Motion along a circle Each of the following equations in parts 

(a)–(e) describes the motion of a particle having the same path, 

namely the unit circle x2 + y2 = 1. Although the path of each 

particle in parts (a)–(e) is the same, the behavior, or “dynamics,” 

of each particle is diferent. For each particle, answer the follow-

ing questions.

 i) Does the particle have constant speed? If so, what is its con-

stant speed?

 ii) Is the particle’s acceleration vector always orthogonal to its 

velocity vector?
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 46. Limits of cross products of vector functions Suppose that 

r1(t) = ƒ1(t)i + ƒ2(t)j + ƒ3(t)k, r2(t) = g1(t)i + g2(t)j + g3(t)k, 

limtSt0 r1(t) = A, and limtSt0
 r2(t) = B. Use the determinant 

formula for cross products and the Limit Product Rule for scalar 

functions to show that

lim
tS t0

 (r1(t) * r2(t)) = A * B.

 47. Diferentiable vector functions are continuous Show that if 

r(t) = ƒ(t)i + g(t)j + h(t)k is diferentiable at t = t0, then it is 

continuous at t0 as well.

 48. Constant Function Rule Prove that if u is the vector function 

with the constant value C, then du>dt = 0.

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps in Exercises 49–52.

a. Plot the space curve traced out by the position vector r.

b. Find the components of the velocity vector dr>dt.

c. Evaluate dr>dt at the given point t0 and determine the equa-

tion of the tangent line to the curve at r(t0).

d. Plot the tangent line together with the curve over the given 

interval.

 49. r(t) = (sin t - t cos t)i + (cos t + t sin t)j + t2
 k, 

0 … t … 6p, t0 = 3p>2

 50. r(t) = 22t i + et j + e-t k, -2 … t … 3, t0 = 1

 51. r(t) = (sin 2t)i + (ln (1 + t))j + t k, 0 … t … 4p, 

t0 = p>4
 52. r(t) = (ln (t2 + 2))i + (tan-1 3t)j + 2t2 + 1 k, 

-3 … t … 5, t0 = 3

In Exercises 53 and 54, you will explore graphically the behavior of 

the helix

r(t) = (cos at)i + (sin at)j + bt  k

as you change the values of the constants a and b. Use a CAS to 

 perform the steps in each exercise.

 53. Set b = 1. Plot the helix r(t) together with the tangent line to 

the curve at t = 3p>2 for a =  1, 2, 4, and 6 over the interval 

0 … t … 4p. Describe in your own words what happens to the 

graph of the helix and the position of the tangent line as a  increases 

through these positive values.

 54. Set a = 1. Plot the helix r(t) together with the tangent line to the 

curve at t = 3p>2 for b = 1>4, 1>2, 2, and 4 over the interval 

0 … t … 4p. Describe in your own words what happens to the 

graph of the helix and the position of the tangent line as b in-

creases through these positive values.

13.2 Integrals of Vector Functions; Projectile Motion

In this section we investigate integrals of vector functions and their application to motion 

along a path in space or in the plane.

Integrals of Vector Functions

A differentiable vector function R(t) is an antiderivative of a vector function r(t) on an 

interval I if dR>dt = r at each point of I. If R is an antiderivative of r on I, it can be 

shown, working one component at a time, that every antiderivative of r on I has the form 

R + C for some constant vector C (Exercise 45). The set of all antiderivatives of r on I is 

the indefinite integral of r on I.

DEFINITION The indefinite integral of r with respect to t is the set of all anti-

derivatives of r, denoted by 1r(t) dt. If R is any antiderivative of r, then

L  r(t) dt = R(t) + C.

The usual arithmetic rules for indefinite integrals apply.

EXAMPLE 1  To integrate a vector function, we integrate each of its components.

  L  ((cos t)i + j - 2tk) dt = a   L  cos t dtb i + a   L  dtb j - a   L  2t dtbk (1)

 = (sin t + C1)i + (t + C2)j - (t2 + C3)k  (2)

 = (sin t)i + tj - t2k + C  C = C1i + C2 j - C3k
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As in the integration of scalar functions, we recommend that you skip the steps in Equa-

tions (1) and (2) and go directly to the final form. Find an antiderivative for each compo-

nent and add a constant vector at the end. 

Definite integrals of vector functions are best defined in terms of components. The 

definition is consistent with how we compute limits and derivatives of vector functions.

DEFINITION If the components of r(t) = ƒ(t)i + g(t)j + h(t)k are integrable 

over 3a, b4 , then so is r, and the definite integral of r from a to b is

 L
b

a

 r(t) dt = a   L
b

a

 ƒ(t) dtb i + a   L
b

a

g(t) dtb j + a   L
b

a

h(t) dtbk.

EXAMPLE 2  As in Example 1, we integrate each component.

  L
p

0

((cos t)i + j - 2tk) dt = a   L
p

0

 cos t dtb i + a   L
p

0

 dtb j - a   L
p

0

2t dtbk

 = c sin t d p
0

 i + c t d
0

p

 j - c t2 d
0

p

 k

 = 30 - 04 i + 3p - 04 j - 3p2 - 024k
  = pj - p2k  

The Fundamental Theorem of Calculus for continuous vector functions says that

 L
b

a

r(t) dt = r(t) d
a

b

= r(b) - r(a)

where r is any antiderivative of r, so that r′(t) = r(t) (Exercise 46). Notice that an anti-

derivative of a vector function is also a vector function, whereas a definite integral of a 

vector function is a single constant vector.

EXAMPLE 3  Suppose we do not know the path of a hang glider, but only its accel-

eration vector a(t) = -(3 cos t)i - (3 sin t)j + 2k. We also know that initially (at time 

t = 0) the glider departed from the point (4, 0, 0) with velocity v(0) = 3j. Find the glid-

er’s position as a function of t.

Solution Our goal is to find r(t) knowing

The differential equation: a =
d2r

dt2
= -(3 cos t)i - (3 sin t)j + 2k

The initial conditions: v(0) = 3j  and  r(0) = 4i + 0j + 0k.

Integrating both sides of the differential equation with respect to t gives

v(t) = -(3 sin t)i + (3 cos t)j + 2t k + c1.

We use v(0) = 3j to find c1:

 3j = -(3 sin 0)i + (3 cos 0)j + (0)k + c1

 3j = 3j + c1

 c1 = 0.

The glider’s velocity as a function of time is

dr
dt

= v(t) = -(3 sin t)i + (3 cos t)j + 2t k.
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Integrating both sides of this last differential equation gives

r(t) = (3 cos t)i + (3 sin t)j + t2k + c2.

We then use the initial condition r(0) = 4i to find c2:

 4i = (3 cos 0)i + (3 sin 0)j + (02)k + c2

 4i = 3i + (0)j + (0)k + c2

 c2 = i.

The glider’s position as a function of t is

r(t) = (1 + 3 cos t)i + (3 sin t)j + t2k.

This is the path of the glider shown in Figure 13.9. Although the path resembles that of a 

helix due to its spiraling nature around the z-axis, it is not a helix because of the way it is 

rising. (We say more about this in Section 13.5.) 

The Vector and Parametric Equations for Ideal Projectile Motion

A classic example of integrating vector functions is the derivation of the equations for the 

motion of a projectile. In physics, projectile motion describes how an object fired at some 

angle from an initial position, and acted upon by only the force of gravity, moves in a ver-

tical coordinate plane. In the classic example, we ignore the effects of any frictional drag 

on the object, which may vary with its speed and altitude, and also the fact that the force of 

gravity changes slightly with the projectile’s changing height. In addition, we ignore the 

long-distance effects of Earth turning beneath the projectile, such as in a rocket launch or 

the firing of a projectile from a cannon. Ignoring these effects gives us a reasonable 

approximation of the motion in most cases.

To derive equations for projectile motion, we assume that the projectile behaves like a 

particle moving in a vertical coordinate plane and that the only force acting on the projec-

tile during its flight is the constant force of gravity, which always points straight down. We 

assume that the projectile is launched from the origin at time t = 0 into the first quadrant 

with an initial velocity v0 (Figure 13.10). If v0 makes an angle a with the horizontal, then

v0 = ( � v0 �  cos a)i + ( � v0 �  sin a)j.

If we use the simpler notation y0 for the initial speed � v0 � , then

 v0 = (y0 cos a)i + (y0 sin a)j. (3)

The projectile’s initial position is

 r0 = 0i + 0j = 0. (4)

Newton’s second law of motion says that the force acting on the projectile is equal to 

the projectile’s mass m times its acceleration, or m(d2r>dt2) if r is the projectile’s position 

vector and t is time. If the force is solely the gravitational force -mgj, then

m 
d2r

dt2
= -mgj  and  

d2r

dt2
= -gj,

where g is the acceleration due to gravity. We find r as a function of t by solving the 

 following initial value problem.

Differential equation:   
d2r

dt2
= -gj

Initial conditions:  r = r0  and  
dr
dt

= v0  when t = 0

z

x y

(4, 0, 0)

FIGURE 13.9 The path of the hang 

glider in Example 3. Although the path 

spirals around the z-axis, it is not a helix.

x

y

(a)

(b)

x

y

0
R

Horizontal range

v

a = −gj

@ v0 @  cos a i

@ v0 @  sin a j
v0

r = 0 at

time t = 0

(x, y)

a = −gj

r = x i + yj

a

FIGURE 13.10 (a) Position, velocity, 

acceleration, and launch angle at t = 0. 

(b) Position, velocity, and acceleration  

at a later time t.
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The first integration gives

dr
dt

= -(gt)j + v0 .

A second integration gives

r = -  
1
2

 gt2j + v0 t + r0 .

Substituting the values of v0 and r0 from Equations (3) and (4) gives

r = -  
1
2

 gt2 j + (y0 cos a)t i + (y0 sin a)t j + 0.
 (++++++)++++++*
 v0  t

Collecting terms, we obtain the following.

Ideal Projectile Motion Equation

 r = (y0 cos a)t i + a(y0 sin a)t -
1
2

 gt2b j. (5)

Equation (5) is the vector equation of the path for ideal projectile motion. The angle a 

is the projectile’s launch angle (firing angle, angle of elevation), and y0, as we said 

before, is the projectile’s initial speed. The components of r give the parametric equations

 x = (y0 cos a)t  and  y = (y0 sin a)t -
1
2

 gt2, (6)

where x is the distance downrange and y is the height of the projectile at time t Ú 0.

EXAMPLE 4  A projectile is fired from the origin over horizontal ground at an initial 

speed of 500 m>sec and a launch angle of 60°. Where will the projectile be 10 sec later?

Solution We use Equation (5) with y0 = 500, a = 60°, g = 9.8, and t = 10 to find the 

projectile’s components 10 sec after firing.

 r = (y0 cos a)t i + a(y0 sin a)t -
1
2

 gt2b j

 = (500)a1
2
b (10)i + a(500)a23

2
 b10 - a1

2
b (9.8)(100)b j

 ≈ 2500i + 3840j

Ten seconds after firing, the projectile is about 3840 m above ground and 2500 m down-

range from the origin. 

Ideal projectiles move along parabolas, as we now deduce from Equations (6). If we 

substitute t = x>(y0 cos a) from the first equation into the second, we obtain the Cartesian 

coordinate equation

y = - a g

2y0 2 cos2 a
bx2 + (tan a)x.

This equation has the form y = ax2 + bx, so its graph is a parabola.
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A projectile reaches its highest point when its vertical velocity component is zero. 

When fired over horizontal ground, the projectile lands when its vertical component 

equals zero in Equation (5), and the range R is the distance from the origin to the point of 

impact. We summarize the results here, which you are asked to verify in Exercise 31.

Height, Flight Time, and Range for Ideal Projectile Motion

For ideal projectile motion when an object is launched from the origin over a 

horizontal surface with initial speed y0 and launch angle a:

Maximum height: ymax =
(y0 sin a)2

2g

Flight time: t =
2y0 sin a

g

Range: R =
y0 2

g  sin 2a.

If we fire our ideal projectile from the point (x0, y0) instead of the origin (Figure 13.11), 

the position vector for the path of motion is

 r = (x0 + (y0 cos a)t)i + ay0 + (y0 sin a)t -
1
2

 gt2b j, (7)

as you are asked to show in Exercise 33.

Projectile Motion with Wind Gusts

The next example shows how to account for another force acting on a projectile, due to a 

gust of wind. We assume that the path of the baseball in Example 5 lies in a vertical plane.

EXAMPLE 5  A baseball is hit when it is 3 ft above the ground. It leaves the bat with 

initial speed of 152 ft > sec, making an angle of 20° with the horizontal. At the instant the 

ball is hit, an instantaneous gust of wind blows in the horizontal direction directly opposite 

the direction the ball is taking toward the outfield, adding a component of -8.8i (ft>sec) to 

the ball’s initial velocity (8.8 ft>sec = 6 mph).

(a) Find a vector equation (position vector) for the path of the baseball.

(b) How high does the baseball go, and when does it reach maximum height?

(c) Assuming that the ball is not caught, ind its range and light time.

Solution

(a) Using Equation (3) and accounting for the gust of wind, the initial velocity of the 

 baseball is

 v0 = (y0 cos a)i + (y0 sin a)j - 8.8i

 = (152 cos 20°)i + (152 sin 20°)j - (8.8)i

 = (152 cos 20° - 8.8)i + (152 sin 20°)j.

 The initial position is r0 = 0i + 3j. Integration of d2r>dt2 = -gj gives

dr
dt

= -(gt)j + v0 .

0
x

y

a

v0

(x0, y0)

FIGURE 13.11 The path of a projectile 

fired from (x0, y0) with an initial  velocity 

v0 at an angle of a degrees with the 

 horizontal.
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 A second integration gives

r = -  
1
2

 gt2j + v0 t + r0 .

 Substituting the values of v0 and r0 into the last equation gives the position vector of 

the baseball.

 r = -  
1
2

 gt2j + v0 t + r0

 = -16t2 j + (152 cos 20° - 8.8)t i + (152 sin 20°)t j + 3j

 = (152 cos 20° - 8.8)t i + 13 + (152 sin 20°)t - 16t22j.
(b) The baseball reaches its highest point when the vertical component of velocity is zero, or

dy

dt
= 152 sin 20° - 32t = 0.

 Solving for t we ind

t =
152 sin 20°

32
≈ 1.62 sec.

 Substituting this time into the vertical component for r gives the maximum height

ymax = 3 + (152 sin 20°)(1.62) - 16(1.62)2 ≈ 45.2 ft.

 That is, the maximum height of the baseball is about 45.2 ft, reached about 1.6 sec 

after leaving the bat.

(c) To ind when the baseball lands, we set the vertical component for r equal to 0 and 

solve for t:

 3 + (152 sin 20°)t - 16t2 = 0

 3 + (51.99)t - 16t2 = 0.

The solution values are about t = 3.3 sec and t = -0.06 sec. Substituting the positive 

time into the horizontal component for r, we ind the range

R = (152 cos 20° - 8.8)(3.3) ≈ 442 ft.

Thus, the horizontal range is about 442 ft, and the light time is about 3.3 sec. 

In Exercises 41 and 42, we consider projectile motion when there is air resistance 

slowing down the flight.

Integrating Vector-Valued Functions

Evaluate the integrals in Exercises 1–10.

 1.  L
1

0

3 t3i + 7j + (t + 1)k4  dt

 2.  L
2

1

 c (6 - 6t)i + 32tj + a4

t2
bk d  dt

 3.  L
p>4

-p>43(sin t)i + (1 + cos t)j + (sec2 t)k4  dt

 4.  L
p>3

0

3(sec t tan t)i + (tan t)j + (2 sin t cos t)k4  dt

 5.  L
4

1

 c 1
t

  i +
1

5 - t
  j +

1
2t

  k d  dt

 6.  L
1

0
 c 2

21 - t2
  i +

23

1 + t2
  k d  dt

 7.  L
1

0

3 tet2

 i + e-t j + k4  dt

 8.  L
ln 3

1

3 tet i + et j + ln t k4  dt

EXERCISES 13.2
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Motion Along a Straight Line

 21. At time t = 0, a particle is located at the point (1, 2, 3). It travels 

in a straight line to the point (4, 1, 4), has speed 2 at (1, 2, 3) and 

constant acceleration 3i - j + k. Find an equation for the posi-

tion vector r(t) of the particle at time t.

 22. A particle traveling in a straight line is located at the point 

(1, -1, 2) and has speed 2 at time t = 0. The particle moves to-

ward the point (3, 0, 3) with constant acceleration 2i + j + k. 

Find its position vector r(t) at time t.

Projectile Motion

Projectile flights in the following exercises are to be treated as ideal 

unless stated otherwise. All launch angles are assumed to be measured 

from the horizontal. All projectiles are assumed to be launched from 

the origin over a horizontal surface unless stated otherwise.

 23. travel time A projectile is ired at a speed of 840 m > sec at an 

angle of 60°. How long will it take to get 21 km downrange?

 24. range and height versus speed

a. Show that doubling a projectile’s initial speed at a given 

launch angle multiplies its range by 4.

b. By about what percentage should you increase the initial 

speed to double the height and range?

 25. Flight time and height A projectile is ired with an initial speed 

of 500 m > sec at an angle of elevation of 45°.

a. When and how far away will the projectile strike?

b. How high overhead will the projectile be when it is 5 km 

downrange?

c. What is the greatest height reached by the projectile?

 26. throwing a baseball A baseball is thrown from the stands  

32 ft above the ield at an angle of 30° up from the horizontal. 

When and how far away will the ball strike the ground if its initial 

speed is 32 ft > sec?

 27. Firing golf balls A spring gun at ground level ires a golf ball at 

an angle of 45°. The ball lands 10 m away.

a. What was the ball’s initial speed?

b. For the same initial speed, ind the two iring angles that 

make the range 6 m.

 28. Beaming electrons An electron in a TV tube is beamed hori-

zontally at a speed of 5 * 106 m>sec toward the face of the tube 

40 cm away. About how far will the electron drop before it hits?

 29. Equal-range iring angles What two angles of elevation will 

enable a projectile to reach a target 16 km downrange on the same 

level as the gun if the projectile’s initial speed is 400 m > sec?

 30. Finding muzzle speed Find the muzzle speed of a gun whose 

maximum range is 24.5 km.

 31. Verify the results given in the text (following Example 4) for the 

maximum height, light time, and range for ideal projectile mo-

tion.

 9.  L
p>2

0

3cos t i - sin 2t j + sin2 t k4  dt

 10.  L
p/4

0

3sec t i + tan2 t j - t sin t k4  dt

Initial Value Problems

Solve the initial value problems in Exercises 11–20 for r as a vector 

function of t.

 

11.

 

Differential equation:
dr

dt
= - t i - t j - t k

Initial condition: r(0) = i + 2j + 3k

 

12.

 

Differential equation:
dr

dt
= (180t)i + (180t - 16t2)j

Initial condition: r(0) = 100j

 

13.

 

Differential equation:
dr

dt
=

3
2

 (t + 1)1>2
 i + e-t  j +

1
t + 1

 k

Initial condition: r(0) = k

 

14.

 

Differential equation:
dr

dt
= (t3 + 4t)i + t j + 2t2 k

Initial condition: r(0) = i + j

 15. Diferential equation:

  
dr

dt
= (tan t)i + acos a1

2
 tb b  

j - (sec 2t)k

  Initial condition:  r(0) = 3i - 2j + k

 16. Diferential equation:

  
dr

dt
= a t

t2 + 2
b i - at2 + 1

t - 2
b  

j + at2 + 4

t2 + 3
bk

  Initial condition: r(0) = i - j + k

 

17.

 

Differential equation:
d2r

dt2
= -32k

Initial conditions: r(0) = 100k  and

dr

dt
 2

t = 0

= 8i + 8j

 

18.

 

Differential equation:
d2r

dt2
= - (i + j + k)

Initial conditions: r(0) = 10i + 10j + 10k  and

dr

dt
 2

t = 0

= 0

 

19.

 

Differential equation:
d2r

dt2
= et

 i - e-t
 j + 4e2t

 k

Initial conditions: r(0) = 3i + j + 2k  and

dr

dt
 2

t = 0

= - i + 4j

 20. Diferential equation:

  
d2r

dt2
= (sin t)i - (cos t) j + (4 sin t cos t)k

  Initial conditions: r(0) = i - k and

    
dr

dt
 2

t = 0

= i
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a. Show that the greatest downhill range is achieved when the 

initial velocity vector bisects angle AOR.

b. If the projectile were ired uphill instead of down, what 

launch angle would maximize its range? Give reasons for 

your answer.

A

R

V
er

ti
ca

l

O

Hill

v0

a

 36. Elevated green A golf ball is hit with an initial speed of 116 ft >  
sec at an angle of elevation of 45° from the tee to a green that is 

elevated 45 ft above the tee as shown in the diagram. Assuming 

that the pin, 369 ft downrange, does not get in the way, where will 

the ball land in relation to the pin?

369 ft

Pin

Green

45 ft

NOT TO SCALE

Tee

45°

116 ft�sec

 37. Volleyball A volleyball is hit when it is 4 ft above the ground 

and 12 ft from a 6-ft-high net. It leaves the point of impact with 

an initial velocity of 35 ft > sec at an angle of 27° and slips by the 

opposing team untouched.

a. Find a vector equation for the path of the volleyball.

b. How high does the volleyball go, and when does it reach 

maximum height?

c. Find its range and light time.

d. When is the volleyball 7 ft above the ground? How far 

(ground distance) is the volleyball from where it will land?

e. Suppose that the net is raised to 8 ft. Does this change things? 

Explain.

 38. shot put In Moscow in 1987, Natalya Lisouskaya set a wom-

en’s world record by putting an 8 lb 13 oz shot 73 ft 10 in. Assum-

ing that she launched the shot at a 40° angle to the horizontal from 

6.5 ft above the ground, what was the shot’s initial speed?

 32. colliding marbles The accompanying igure shows an experi-

ment with two marbles. Marble A was launched toward marble 

B with launch angle a and initial speed y0. At the same instant, 

marble B was released to fall from rest at R tan a units directly 

above a spot R units downrange from A. The marbles were found 

to collide regardless of the value of y0. Was this mere coincidence, 

or must this happen? Give reasons for your answer.

B

A

R

1

2

a

v0

R tan a
gt2

 33. Firing from (x0, y0) Derive the equations

 x = x0 + (y0 cos a)t,

 y = y0 + (y0 sin a)t -
1
2

 gt2

  (see Equation (7) in the text) by solving the following initial value 

problem for a vector r in the plane.

  Differential equation:  
d2r

dt2
= -gj

  Initial conditions:   r(0) = x0 i + y0 j

   
dr

dt
 (0) = (y0 cos a)i + (y0 sin a)j

 34. Where trajectories crest For a projectile ired from the ground 

at launch angle a with initial speed y0, consider a as a variable 

and y0 as a ixed constant. For each a, 0 6 a 6 p>2, we obtain 

a parabolic trajectory as shown in the accompanying igure. Show 

that the points in the plane that give the maximum heights of these 

parabolic trajectories all lie on the ellipse

x2 + 4ay -
y0 2

4g
b2

=
y0 4

4g2
,

  where x Ú 0.

x

y

0

Ellipse

1
2

Parabolic

trajectory

R, ymaxa             b

 35. Launching downhill An ideal projectile is launched straight 

down an inclined plane as shown in the accompanying igure.
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 41. Linear drag Derive the equations

 x =
y0

k
 (1 - e-kt) cos a

 y =
y0

k
 (1 - e-kt)(sin a) +

g

k2
 (1 - kt - e-kt)

  by solving the following initial value problem for a vector r in the 

plane.

  Differential equation:  
d2r

dt2
= -gj - kv = -gj - k 

dr

dt

  Initial conditions:   r(0) = 0

   
dr

dt
2
t = 0

= v0 = (y0 cos a)i + (y0 sin a)j

   The drag coeicient k is a positive constant representing resis-

tance due to air density, y0 and a are the projectile’s initial speed 

and launch angle, and g is the acceleration of gravity.

 42. Hitting a baseball with linear drag Consider the baseball 

problem in Example 5 when there is linear drag (see Exercise 41). 

Assume a drag coeicient k = 0.12, but no gust of wind.

a. From Exercise 41, ind a vector form for the path of the baseball.

b. How high does the baseball go, and when does it reach maxi-

mum height?

c. Find the range and light time of the baseball.

d. When is the baseball 30 ft high? How far (ground distance) is 

the baseball from home plate at that height?

e. A 10-ft-high outield fence is 340 ft from home plate in the 

direction of the light of the baseball. The outielder can jump 

and catch any ball up to 11 ft of the ground to stop it from 

going over the fence. Has the batter hit a home run?

Theory and Examples

 43. Establish the following properties of integrable vector functions.

a. The Constant Scalar Multiple Rule:

 L
b

a

k r(t) dt = kL
b

a

r(t) dt (any scalar k)

The Rule for Negatives,

 L
b

a

(-r(t)) dt = -L
b

a

r(t) dt,

is obtained by taking k = -1.

b. The Sum and Diference Rules:

 L
b

a

(r1(t) { r2(t)) dt = L
b

a

r1(t) dt {L
b

a

r2(t) dt

c. The Constant Vector Multiple Rules:

 L
b

a

C # r(t) dt = C #L
b

a

r(t) dt (any constant vector C)

and

 L
b

a

C * r(t) dt = C * L
b

a

r(t) dt (any constant vector C)

 39. Model train The accompanying multilash photograph shows a 

model train engine moving at a constant speed on a straight hori-

zontal track. As the engine moved along, a marble was ired into the 

air by a spring in the engine’s smokestack. The marble, which con-

tinued to move with the same forward speed as the engine, rejoined 

the engine 1 sec after it was ired. Measure the angle the marble’s 

path made with the horizontal and use the information to ind how 

high the marble went and how fast the engine was moving.

Source: PSSC Physics, 2nd ed., Reprinted by permission of 

Educational Development Center, Inc.

 40. Hitting a baseball under a wind gust A baseball is hit when it 

is 2.5 ft above the ground. It leaves the bat with an initial velocity 

of 145 ft > sec at a launch angle of 23°. At the instant the ball is 

hit, an instantaneous gust of wind blows against the ball, adding a 

component of -14i (ft>sec) to the ball’s initial velocity. A 15-ft-

high fence lies 300 ft from home plate in the direction of the light.

a. Find a vector equation for the path of the baseball.

b. How high does the baseball go, and when does it reach maxi-

mum height?

c. Find the range and light time of the baseball, assuming that 

the ball is not caught.

d. When is the baseball 20 ft high? How far (ground distance) is 

the baseball from home plate at that height?

e. Has the batter hit a home run? Explain.

Projectile Motion with Linear Drag

The main force affecting the motion of a projectile, other than gravity, 

is air resistance. This slowing down force is drag force, and it acts in 

a direction opposite to the velocity of the projectile (see accompany-

ing figure). For projectiles moving through the air at relatively low 

speeds, however, the drag force is (very nearly) proportional to the 

speed (to the first power) and so is called linear.

y

x

Drag force

Velocity

Gravity
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  at every point t of (a, b). Then use the conclusion in part (b) of 

Exercise 45 to show that if r is any antiderivative of r on 3a, b4  
then

 L
b

a

r(t) dt = r(b) - r(a).

 47. Hitting a baseball with linear drag under a wind gust Con-

sider again the baseball problem in Example 5. This time assume 

a drag coeicient of 0.08 and an instantaneous gust of wind that 

adds a component of -17.6i (ft>sec) to the initial velocity at the 

instant the baseball is hit.

a. Find a vector equation for the path of the baseball.

b. How high does the baseball go, and when does it reach maxi-

mum height?

c. Find the range and light time of the baseball.

d. When is the baseball 35 ft high? How far (ground distance) is 

the baseball from home plate at that height?

e. A 20-ft-high outield fence is 380 ft from home plate in the 

direction of the light of the baseball. Has the batter hit a 

home run? If “yes,” what change in the horizontal component 

of the ball’s initial velocity would have kept the ball in the 

park? If “no,” what change would have allowed it to be a 

home run?

 48. Height versus time Show that a projectile attains three-quarters 

of its maximum height in half the time it takes to reach the maxi-

mum height.

 44. products of scalar and vector functions Suppose that the sca-

lar function u(t) and the vector function r(t) are both deined for 

a … t … b.

a. Show that ur is continuous on 3a, b4  if u and r are continu-

ous on 3a, b4  .
b. If u and r are both diferentiable on 3a, b4 , show that ur is 

diferentiable on 3a, b4  and that

d

dt
 (ur) = u 

dr

dt
+ r 

du

dt
.

 45. Antiderivatives of vector functions

a. Use Corollary 2 of the Mean Value Theorem for scalar func-

tions to show that if two vector functions r1(t) and r2(t) 

have identical derivatives on an interval I, then the functions 

difer by a constant vector value throughout I.

b. Use the result in part (a) to show that if r(t) is any antideriva-

tive of r(t) on I, then any other antiderivative of r on I equals 

r(t) + c for some constant vector c.

 46. the Fundamental theorem of calculus The Fundamental 

Theorem of Calculus for scalar functions of a real variable holds 

for vector functions of a real variable as well. Prove this by using 

the theorem for scalar functions to show irst that if a vector func-

tion r(t) is continuous for a … t … b, then

d

dt
 L

t

a

r(t) dt = r(t)

13.3 Arc Length in Space

In this and the next two sections, we study the mathematical features of a curve’s shape 

that describe the sharpness of its turning and its twisting.

Arc Length Along a Space Curve

One of the features of smooth space and plane curves is that they have a measurable 

length. This enables us to locate points along these curves by giving their directed distance 

s along the curve from some base point, the way we locate points on coordinate axes by 

giving their directed distance from the origin (Figure 13.12). This is what we did for plane 

curves in Section 13.2.

To measure distance along a smooth curve in space, we add a z-term to the formula 

we use for curves in the plane.

Base point

s

–
2

–1 20
1

3
4

FIGURE 13.12 Smooth curves can be 

scaled like number lines, the coordinate of 

each point being its directed distance along 

the curve from a preselected base point.

DEFINITION The length of a smooth curve r(t) = x(t)i + y(t)j + z(t)k, 

a … t … b, that is traced exactly once as t increases from t = a to t = b, is

 L = L
b

a

 Cadx

dt
b2

+ ady

dt
b2

+ adz

dt
b2

 dt. (1)

Just as for plane curves, we can calculate the length of a curve in space from any con-

venient parametrization that meets the stated conditions. We omit the proof.

The square root in Equation (1) is � v � , the length of a velocity vector dr >dt. This 

enables us to write the formula for length a shorter way.
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EXAMPLE 1  A glider is soaring upward along the helix r(t) = (cos t)i +  

(sin t)j + tk. How long is the glider’s path from t = 0 to t = 2p?

Solution The path segment during this time corresponds to one full turn of the helix 

(Figure 13.13). The length of this portion of the curve is

 L = L
b

a

� v �  dt = L
2p

0

2(-sin t)2 + (cos t)2 + (1)2 dt

 = L
2p

0

22 dt = 2p22 units of length.

This is 22 times the circumference of the circle in the xy-plane over which the helix 

stands. 

If we choose a base point P(t0) on a smooth curve C parametrized by t, each value of t 

determines a point P(t) = (x(t), y(t), z(t)) on C and a “directed distance”

s(t) = L
t

t0

� v(t) �  dt,

measured along C from the base point (Figure 13.14). This is the arc length function we 

defined in Section 11.2 for plane curves that have no z-component. If t 7 t0, s(t) is the 

distance along the curve from P(t0) to P(t). If t 6 t0, s(t) is the negative of the distance. 

Each value of s determines a point on C, and this parametrizes C with respect to s. We call 

s an arc length parameter for the curve. The parameter’s value increases in the direction 

of increasing t. We will see that the arc length parameter is particularly effective for inves-

tigating the turning and twisting nature of a space curve.

Arc Length Formula

 L = L
b

a

� v �  dt (2)

y

z

0

x

(1, 0, 0)

r
P

t = 0

t =
p
2

t = 2p
t = p

2p

FIGURE 13.13 The helix in Example 1, 

r(t) = (cos t)i + (sin t)j + tk.

Arc Length Parameter with Base Point P(t0)

 s(t) = L
t

t0

23x′(t)4 2 + 3y′(t)4 2 + 3z′(t)4 2 dt = L
t

t0

� v(t) �  dt (3)

We use the Greek letter t (“tau”) as the variable of integration in Equation (3) because 

the letter t is already in use as the upper limit.

If a curve r(t) is already given in terms of some parameter t and s(t) is the arc length 

function given by Equation (3), then we may be able to solve for t as a function of 

s: t = t(s). Then the curve can be reparametrized in terms of s by substituting for 

t: r = r(t(s)). The new parametrization identifies a point on the curve with its directed 

distance along the curve from the base point.

EXAMPLE 2  This is an example for which we can actually find the arc length 

parametrization of a curve. If t0 = 0, the arc length parameter along the helix

r(t) = (cos t)i + (sin t)j + t k

x

0

y

r

z

Base

point

P(t0)

s(t)

P(t)

FIGURE 13.14 The directed distance 

along the curve from P(t0) to any point 

P(t) is s(t) = L
t

t0

�v(t) �  dt.

t is the Greek letter tau (rhymes with 

“now”)
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Speed on a Smooth Curve

Since the derivatives beneath the radical in Equation (3) are continuous (the curve is 

smooth), the Fundamental Theorem of Calculus tells us that s is a differentiable function 

of t with derivative

 
ds

dt
= � v(t) � . (4)

Equation (4) says that the speed with which a particle moves along its path is the magni-

tude of v, consistent with what we know.

Although the base point P(t0) plays a role in defining s in Equation (3), it plays no role 

in Equation (4). The rate at which a moving particle covers distance along its path is inde-

pendent of how far away it is from the base point.

Notice that ds>dt 7 0 since, by definition, � v �  is never zero for a smooth curve. We 

see once again that s is an increasing function of t.

Unit Tangent Vector

We already know the velocity vector v = dr>dt is tangent to the curve r(t) and that the 

vector

t =
v

� v �

is therefore a unit vector tangent to the (smooth) curve, called the unit tangent vector 

(Figure 13.15). The unit tangent vector t is a differentiable function of t whenever v is a 

differentiable function of t. As we will see in Section 13.5, t is one of three unit vectors in 

a traveling reference frame that is used to describe the motion of objects traveling in three 

dimensions.

EXAMPLE 3  Find the unit tangent vector of the curve

r(t) = (1 + 3 cos t)i + (3 sin t)j + t2k

representing the path of the glider in Example 3, Section 13.2.

Solution In that example, we found

v =
dr
dt

= -(3 sin t)i + (3 cos t)j + 2tk

from t0 to t is

 s(t) = L
t

t0

� v(t) �  dt  Eq. (3)

 = L
t

0

22 dt   Value from Example 1

 = 22 t.

Solving this equation for t gives t = s>22. Substituting into the position vector r gives 

the following arc length parametrization for the helix:

 r(t(s)) = ¢cos 
s

22
≤i + ¢sin 

s

22
≤j +

s

22
  k. 

Unlike Example 2, the arc length parametrization is generally difficult to find analyti-

cally for a curve already given in terms of some other parameter t. Fortunately, however, 

we rarely need an exact formula for s(t) or its inverse t(s).

HistoricAL BiogrApHy

Josiah Willard gibbs

(1839–1903)

www.goo.gl/tS1NiM

y

z

0

x

r

s

v

P(t0)

T =
v@ v @

FIGURE 13.15 We find the unit tangent 

vector t by dividing v by its length �v � .

http://www.goo.gl/tS1NiM
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and

� v � = 29 + 4t2.

Thus,

 t =
v

� v �
= -  

3 sin t

29 + 4t2
  i +

3 cos t

29 + 4t2
  j +

2t

29 + 4t2
  k. 

For the counterclockwise motion

r(t) = (cos t)i + (sin t)j

around the unit circle, we see that

v = (-sin t)i + (cos t)j

is already a unit vector, so t = v and t is orthogonal to r (Figure 13.16).

The velocity vector is the change in the position vector r with respect to time t, but 

how does the position vector change with respect to arc length? More precisely, what is 

the derivative dr>ds? Since ds>dt 7 0 for the curves we are considering, s is one-to-one 

and has an inverse that gives t as a differentiable function of s (Section 7.1). The derivative 

of the inverse is

dt

ds
=

1

ds>dt
=

1

� v �
.

This makes r a differentiable function of s whose derivative can be calculated with the 

Chain Rule to be

 
dr
ds

=
dr
dt

  
dt

ds
= v 

1

� v �
=

v

� v �
= t. (5)

This equation says that dr >ds is the unit tangent vector in the direction of the velocity 

 vector v (Figure 13.15).

x

y

0

t

r

T = v

P(x, y)

(1, 0)

x2 + y2 = 1

FIGURE 13.16 Counterclockwise 

 motion around the unit circle.

Finding Tangent Vectors and Lengths

In Exercises 1–8, find the curve’s unit tangent vector. Also, find the 

length of the indicated portion of the curve.

 1. r(t) = (2 cos t)i + (2 sin t)j + 25t  k, 0 … t … p

 2. r(t) = (6 sin 2t)i + (6 cos 2t)j + 5t   k, 0 … t … p

 3. r(t) = ti + (2>3)t3>2
  k, 0 … t … 8

 4. r(t) = (2 + t)i - (t + 1)j + t   k, 0 … t … 3

 5. r(t) = (cos3 t )j + (sin3 t )k, 0 … t … p>2
 6. r(t) = 6t3 i - 2t3 j - 3t3 k, 1 … t … 2

 7. r(t) = (t cos t)i + (t sin t)j + 1222>32t3>2 k, 0 … t … p

 8. r(t) = (t sin t + cos t)i + (t cos t - sin t)j, 22 … t … 2

 9. Find the point on the curve

r(t) = (5 sin t)i + (5 cos t)j + 12t  k

  at a distance 26p units along the curve from the point (0, 5, 0) in 

the direction of increasing arc length.

 10. Find the point on the curve

r(t) = (12 sin t)i - (12 cos t)j + 5t k

  at a distance 13p units along the curve from the point (0, -12, 0) 

in the direction opposite to the direction of increasing arc length.

Arc Length Parameter

In Exercises 11–14, find the arc length parameter along the curve 

from the point where t = 0 by evaluating the integral

s = L
t

0

�v(t) �  dt

from Equation (3). Then find the length of the indicated portion of the 

curve.

 11. r(t) = (4 cos t)i + (4 sin t)j + 3t k, 0 … t … p>2
 12. r(t) = (cos t + t sin t)i + (sin t - t cos t)j, p>2 … t … p

 13. r(t) = (et cos t)i + (et sin t)j + et k, - ln 4 … t … 0

 14. r(t) = (1 + 2t)i + (1 + 3t)j + (6 - 6t)k, -1 … t … 0

EXERCISES 13.3
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Theory and Examples

 15. Arc length Find the length of the curve

r(t) = 122t2i + 122t2j + (1 - t2)k

  from (0, 0, 1) to 122, 22, 02.
 16. Length of helix The length 2p22 of the turn of the helix in 

Example 1 is also the length of the diagonal of a square 2p units 

on a side. Show how to obtain this square by cutting away and 

lattening a portion of the cylinder around which the helix winds.

 17. Ellipse

a. Show that the curve r(t) = (cos t)i + (sin t)j + (1 - cos t)k, 

 0 … t … 2p, is an ellipse by showing that it is the intersec-

tion of a right circular cylinder and a plane. Find equations 

for the cylinder and plane.

b. Sketch the ellipse on the cylinder. Add to your sketch the unit 

tangent vectors at t = 0, p>2, p, and 3p>2.

c. Show that the acceleration vector always lies parallel to the 

plane (orthogonal to a vector normal to the plane). Thus, if 

you draw the acceleration as a vector attached to the ellipse, 

it will lie in the plane of the ellipse. Add the acceleration vec-

tors for t = 0, p>2, p, and 3p>2 to your sketch.

d. Write an integral for the length of the ellipse. Do not try to 

evaluate the integral; it is nonelementary.

e. Numerical integrator Estimate the length of the ellipse to 

two decimal places.

 18. Length is independent of parametrization To illustrate that 

the length of a smooth space curve does not depend on the param-

etrization you use to compute it, calculate the length of one turn of 

the helix in Example 1 with the following parametrizations.

a. r(t) = (cos 4t)i + (sin 4t)j + 4t k, 0 … t … p>2
b. r(t) = 3cos (t>2)4 i + 3sin (t>2)4j + (t>2)k, 0 … t … 4p

c. r(t) = (cos t)i - (sin t)j - t k, -2p … t … 0

T

 19. the involute of a circle If a string wound around a ixed circle 

is unwound while held taut in the plane of the circle, its end P 

traces an involute of the circle. In the accompanying igure, the 

circle in question is the circle x2 + y2 = 1 and the tracing point 

starts at (1, 0). The unwound portion of the string is tangent to the 

circle at Q, and t is the radian measure of the angle from the posi-

tive x-axis to segment OQ. Derive the parametric equations

x = cos t + t sin t, y = sin t - t cos t, t 7 0

  of the point P(x, y) for the involute.

x

y

Q

t

O 1 (1, 0)

String

P(x, y)

 20. (Continuation of Exercise 19.) Find the unit tangent vector to the 

involute of the circle at the point P(x, y).

 21. Distance along a line Show that if u is a unit vector, then the 

arc length parameter along the line r(t) = P0 + t u from the point 

P0(x0 , y0 , z0) where t = 0, is t itself.

 22. Use Simpson’s Rule with n = 10 to approximate the length of arc 

of r(t) = t i + t2j + t3k from the origin to the point (2, 4, 8).

13.4 Curvature and Normal Vectors of a Curve

In this section we study how a curve turns or bends. To gain perspective, we look first at 

curves in the coordinate plane. Then we consider curves in space.

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, t = dr>ds turns as the curve 

bends. Since t is a unit vector, its length remains constant and only its direction changes 

as the particle moves along the curve. The rate at which t turns per unit of length along 

the curve is called the curvature (Figure 13.17). The traditional symbol for the curvature 

function is the Greek letter k (“kappa”).
x

y

0

s

P
T

T

T

P0

FIGURE 13.17 As P moves along the 

curve in the direction of increasing arc 

length, the unit tangent vector turns. The 

value of 0 d t>ds 0  at P is called the curva-

ture of the curve at P.

DEFINITION If t is the unit vector of a smooth curve, the curvature function 

of the curve is

k = ` d t
ds
` .
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If 0 d t>ds 0  is large, t turns sharply as the particle passes through P, and the curvature 

at P is large. If 0 d t>ds 0  is close to zero, t turns more slowly and the curvature at P is 

smaller.

If a smooth curve r(t) is already given in terms of some parameter t other than the arc 

length parameter s, we can calculate the curvature as

 k = ` d  t
ds
` = ` d  t

dt
 
dt

ds
`   Chain Rule

 =
10 ds>dt 0  ` d t

dt
`

 =
10 v 0  ` d t

dt
` .   

ds

dt
= 0 v 0

k is the Greek letter kappa

Formula for Calculating Curvature

If r(t) is a smooth curve, then the curvature is the scalar function

 k =
10 v 0  ` d t

dt
` , (1)

where t = v> 0 v 0  is the unit tangent vector.

Testing the definition, we see in Examples 1 and 2 below that the curvature is constant 

for straight lines and circles.

EXAMPLE 1  A straight line is parametrized by r(t) = c + tv for constant vectors 

c and v. Thus, r′(t) = v, and the unit tangent vector t = v> 0 v 0  is a constant vector that 

always points in the same direction and has derivative 0 (Figure 13.18). It follows that, for 

any value of the parameter t, the curvature of the straight line is zero:

 k =
10 v 0  ` d t

dt
` =

10 v 0  0 0 0 = 0.  

EXAMPLE 2  Here we find the curvature of a circle. We begin with the parametriza-

tion

r(t) = (a cos t)i + (a sin t)j

of a circle of radius a. Then,

 v =
dr
dt

= -(a sin t)i + (a cos t)j   

 0 v 0 = 2(-a sin t)2 + (a cos t)2 = 2a2 = 0 a 0 = a.  Since 0 a 0 7 0, 0 a 0 = a. 

From this we find

 t =
v0 v 0 = -(sin t)i + (cos t)j

 
d t
dt

= -(cos t)i - (sin t)j

 ̀
d t
dt
` = 2cos2 t + sin2 t = 1.

T

FIGURE 13.18 Along a straight line,  

t always points in the same direction. The 

curvature, 0 d t>ds 0 , is zero (Example 1).
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Hence, for any value of the parameter t, the curvature of the circle is

 k =
10 v 0  ` d t

dt
` =

1
a (1) =

1
a =

1
radius

. 

Although the formula for calculating k in Equation (1) is also valid for space curves, in 

the next section we find a computational formula that is usually more convenient to apply.

Among the vectors orthogonal to the unit tangent vector t, there is one of particular 

significance because it points in the direction in which the curve is turning. Since t has 

constant length (because its length is always 1), the derivative d t>ds is orthogonal to t 

(Equation 4, Section 13.1). Therefore, if we divide d t>ds by its length k, we obtain a unit 

vector N orthogonal to t (Figure 13.19).

DEFINITION At a point where k ≠ 0, the principal unit normal vector for a 

smooth curve in the plane is

N =
1

k
 
d t
ds

.

The vector d t>ds points in the direction in which t turns as the curve bends. There-

fore, if we face in the direction of increasing arc length, the vector d t>ds points toward 

the right if t turns clockwise and toward the left if t turns counterclockwise. In other 

words, the principal normal vector N will point toward the concave side of the curve 

 (Figure 13.19).

If a smooth curve r(t) is already given in terms of some parameter t other than the arc 

length parameter s, we can use the Chain Rule to calculate N directly:

 N =
d t>ds0 d t>ds 0

 =
(d t>dt)(dt>ds)0 d t>dt 0 0 dt>ds 0

 =
d t>dt0 d t>dt 0 .   

dt

ds
=

1

ds>dt
7 0 cancels.

This formula enables us to find N without having to find k and s first.

T

s

T

N =
1
k

dT
ds

N =
1
k

dT
ds

P0

P1
P2

FIGURE 13.19 The vector d t>ds, 

normal to the curve, always points in the 

direction in which t is turning. The unit 

normal vector N is the direction of d t>ds.

Formula for Calculating N

If r(t) is a smooth curve, then the principal unit normal is

 N =
d  t>dt0 d  t>dt 0 , (2)

where t = v> 0 v 0  is the unit tangent vector.

EXAMPLE 3  Find t and N for the circular motion

r(t) = (cos 2t)i + (sin 2t)j.

Solution We first find t:

 v = -(2 sin 2t)i + (2 cos 2t)j

 0 v 0 = 24 sin2 2t + 4 cos2 2t = 2

 t =
v0 v 0 = -(sin 2t)i + (cos 2t)j.
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From this we find

 
d t
dt

= -(2 cos 2t)i - (2 sin 2t)j

 ̀
d t
dt
` = 24 cos2 2t + 4 sin2 2t = 2

and

N =
d t>dt0 d t>dt 0 = -(cos 2t)i - (sin 2t)j.  Eq. (2)

Notice that t # N = 0, verifying that N is orthogonal to t. Notice too, that for the circular 

motion here, N points from r(t) toward the circle’s center at the origin. 

Circle of Curvature for Plane Curves

The circle of curvature or osculating circle at a point P on a plane curve where k ≠ 0 is 

the circle in the plane of the curve that

1. is tangent to the curve at P (has the same tangent line the curve has)

2. has the same curvature the curve has at P

3. has center that lies toward the concave or inner side of the curve (as in Figure 13.20).

The radius of curvature of the curve at P is the radius of the circle of curvature, 

which, according to Example 2, is

Radius of curvature = r =
1
k .

To find r, we find k and take the reciprocal. The center of curvature of the curve at P is 

the center of the circle of curvature.

EXAMPLE 4  Find and graph the osculating circle of the parabola y = x2 at the 

 origin.

Solution We parametrize the parabola using the parameter t = x (Section 11.1,  

Example 5):

r(t) = t i + t2j.

First we find the curvature of the parabola at the origin, using Equation (1):

 v =
dr
dt

= i + 2t j

 0 v 0 = 21 + 4t2

so that

t =
v0 v 0 = (1 + 4t2)-1>2  i + 2t(1 + 4t2)-1>2  j.

From this we find

d t
dt

= -4t(1 + 4t2)-3>2  i + 32(1 + 4t2)-1>2 - 8t2(1 + 4t2)-3>24  j.

Curve

N
T

P(x, y)

Center of

curvature

Radius of

curvature

Circle of

curvature

FIGURE 13.20 The center of the 

 osculating circle at P(x, y) lies toward the 

inner side of the curve.
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Curvature and Normal Vectors for Space Curves

If a smooth curve in space is specified by the position vector r(t) as a function of some 

parameter t, and if s is the arc length parameter of the curve, then the unit tangent vector 

t is dr>ds = v> 0 v 0 . The curvature in space is then defined to be

 k = ` d t
ds
` =

10 v 0  ` d t
dt
`  (3)

just as for plane curves. The vector d t>ds is orthogonal to t, and we define the principal 

unit normal to be

 N =
1

k
  
d t
ds

=
d t>dt0 d t>dt 0 . (4)

EXAMPLE 5  Find the curvature for the helix (Figure 13.22)

r(t) = (a cos t)i + (a sin t)j + btk,  a, b Ú 0,  a2 + b2 ≠ 0.

Solution We calculate t from the velocity vector v:

 v = -(a sin t)i + (a cos t)j + bk

 0 v 0 = 2a2 sin2 t + a2 cos2 t + b2 = 2a2 + b2

 t =
v0 v 0 =

1

2a2 + b2
 3-(a sin t)i + (a cos t)j + bk4 .

Then using Equation (3),

 k =
10 v 0  ` d t

dt
`

 =
1

2a2 + b2
 ` 1

2a2 + b2
 3-(a cos t)i - (a sin t)j4 `

 =
a

a2 + b2
 0-(cos t)i - (sin t)j 0

 =
a

a2 + b2
 2(cos t)2 + (sin t)2 =

a

a2 + b2
 .

From this equation, we see that increasing b for a fixed a decreases the curvature. Decreas-

ing a for a fixed b eventually decreases the curvature as well.

At the origin, t = 0, so the curvature is

 k(0) =
10 v(0) 0  ` d t

dt
 (0) `   Eq. (1)

 =
1

21
 0 0i + 2j 0

 = (1)202 + 22 = 2.

Therefore, the radius of curvature is 1>k = 1>2 . At the origin we have t = 0 and t = i, 

so N = j. Thus the center of the circle is (0, 1>2) . The equation of the osculating circle is

(x - 0)2 + ay -
1
2
b2

= a1
2
b2

.

You can see from Figure 13.21 that the osculating circle is a better approximation to the 

parabola at the origin than is the tangent line approximation y = 0. 

x

y

0 1

Osculating

circle

1

2

y = x2

FIGURE 13.21 The osculating circle  

for the parabola y = x2 at the origin 

(Example 4).

y

z

0

x

(a, 0, 0)

r
P

t = 0

t =
p
2

t = 2p
t = p

2pb

x2 + y2 = a2

FIGURE 13.22 The helix

r(t) = (a cos t)i + (a sin t)j + btk,

drawn with a and b positive and t Ú 0 

(Example 5).
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If b = 0, the helix reduces to a circle of radius a and its curvature reduces to 1 >a, as 

it should. If a = 0, the helix becomes the z-axis, and its curvature reduces to 0, again as it 

should. 

EXAMPLE 6  Find N for the helix in Example 5 and describe how the vector is 

 pointing.

Solution We have

 
d t
dt

= -  
1

2a2 + b2
 3 (a cos t)i + (a sin t)j4   Example 5

 ̀
d t
dt
` =

1

2a2 + b2
 2a2 cos2 t + a2 sin2 t =

a

2a2 + b2

 N =
d t>dt0 d t>dt 0   Eq. (4)

 = -  
2a2 + b2

a  #  
1

2a2 + b2
 3 (a cos t)i + (a sin t)j4

 = -(cos t)i - (sin t)j.

Thus, N is parallel to the xy-plane and always points toward the z-axis. 

Plane Curves

Find t, N, and k for the plane curves in Exercises 1–4.

 1. r(t) = t i + (ln cos t)j, -p>2 6 t 6 p>2
 2. r(t) = (ln sec t)i + t  j, -p>2 6 t 6 p>2
 3. r(t) = (2t + 3)i + (5 - t2)j

 4. r(t) = (cos t + t sin t)i + (sin t - t cos t)j, t 7 0

 5. A formula for the curvature of the graph of a function in the 

xy-plane

a. The graph y = ƒ(x) in the xy-plane automatically has the 

parametrization x = x, y = ƒ(x), and the vector formula 

r(x) = xi + ƒ(x)j. Use this formula to show that if ƒ is a 

twice-diferentiable function of x, then

k(x) =
0 ƒ″(x) 031 + (ƒ′(x))243>2 .

b. Use the formula for k in part (a) to ind the curvature of 

y = ln (cos x), -p>2 6 x 6 p>2. Compare your answer 

with the answer in Exercise 1.

c. Show that the curvature is zero at a point of inlection.

 6. A formula for the curvature of a parametrized plane curve

a. Show that the curvature of a smooth curve r(t) = ƒ(t)i +
g(t)j deined by twice-diferentiable functions x = ƒ(t) and 

y = g(t) is given by the formula

k =
0 x 
#
y
$

- y 
#
x
$ 0

(x
# 2 + y

# 2)3>2 .

The dots in the formula denote diferentiation with respect to 

t, one derivative for each dot. Apply the formula to ind the 

curvatures of the following curves.

b. r(t) = t i + (ln sin t)j, 0 6 t 6 p

c. r(t) = 3 tan-1 (sinh t)4 i + (ln cosh t)j

 7. Normals to plane curves

a. Show that n(t) = -g′(t)i + ƒ′(t)j and -n(t) = g′(t)i -
ƒ′(t)j are both normal to the curve r(t) = ƒ(t)i + g(t)j at the 

point (ƒ(t), g(t)).

  To obtain N for a particular plane curve, we can choose the one of 

n or -n from part (a) that points toward the concave side of the 

curve, and make it into a unit vector. (See Figure 13.19.) Apply 

this method to ind N for the following curves.

b. r(t) = t i + e2tj

c. r(t) = 24 - t2 i + t j, -2 … t … 2

 8. (Continuation of Exercise 7.)

a. Use the method of Exercise 7 to ind N for the curve r(t) =
t i + (1>3)t3 j when t 6 0; when t 7 0.

b. Calculate N for t ≠ 0 directly from t using Equation (4) for 

the curve in part (a). Does N exist at t = 0? Graph the curve 

and explain what is happening to N as t passes from negative 

to positive values.

EXERCISES 13.4

Space Curves

Find t, N, and k for the space curves in Exercises 9–16.

 9. r(t) = (3 sin t)i + (3 cos t)j + 4tk

 10. r(t) = (cos t + t sin t)i + (sin t - t cos t)j + 3k

 11. r(t) = (et cos t)i + (et sin t)j + 2k

 12. r(t) = (6 sin 2t)i + (6 cos 2t)j + 5tk

 13. r(t) = (t3>3)i + (t2>2)j, t 7 0

 14. r(t) = (cos3 t)i + (sin3 t)j, 0 6 t 6 p>2
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 29. osculating circle Show that the center of the osculating 

circle for the parabola y = x2 at the point (a, a2)  is located at

  a-4a3, 3a2 +
1
2
b .

 30. osculating circle Find a parametrization of the osculating 

 circle for the parabola y = x2 when x = 1.

COMPUTER EXPLORATIONS

In Exercises 31–38 you will use a CAS to explore the osculating circle 

at a point P on a plane curve where k ≠ 0. Use a CAS to perform the 

following steps:

a. Plot the plane curve given in parametric or function form over 

the speciied interval to see what it looks like.

b. Calculate the curvature k of the curve at the given value t0 

using the appropriate formula from Exercise 5 or 6. Use the 

parametrization x = t and y = ƒ(t) if the curve is given as a 

function y = ƒ(x).

c. Find the unit normal vector N at t0. Notice that the signs of 

the components of N depend on whether the unit tangent vec-

tor t is turning clockwise or counterclockwise at t = t0. (See 

Exercise 7.)

d. If c = ai + bj is the vector from the origin to the center (a, b)  

of the osculating circle, ind the center c from the vector 

equation

c = r(t0) +
1

k(t0)
 N(t0).

The point P(x0, y0) on the curve is given by the position 

 vector r(t0).

e. Plot implicitly the equation (x - a)2 + (y - b)2 = 1>k2 

of the osculating circle. Then plot the curve and osculating 

circle together. You may need to experiment with the size of 

the viewing window, but be sure the axes are equally scaled.

 31. r(t) = (3 cos t)i + (5 sin t)j, 0 … t … 2p, t0 = p>4
 32. r(t) = (cos3 t)i + (sin3 t)j, 0 … t … 2p, t0 = p>4
 33. r(t) = t2i + (t3 - 3t)j, -4 … t … 4, t0 = 3>5
 34. r(t) = (t3 - 2t2 - t)i +

3t

21 + t2
  j, -2 … t … 5, t0 = 1

 35. r(t) = (2t - sin t)i + (2 - 2 cos t)j, 0 … t … 3p, 

t0 = 3p>2
 36. r(t) = (e-t cos t)i + (e-t sin t)j, 0 … t … 6p, t0 = p>4
 37. y = x2 - x, -2 … x … 5, x0 = 1

 38. y = x(1 - x)2>5, -1 … x … 2, x0 = 1>2

 15. r(t) = t i + (a cosh (t>a))j, a 7 0

 16. r(t) = (cosh t)i - (sinh t)j + tk

More on Curvature

 17. Show that the parabola y = ax2, a ≠ 0, has its largest curvature 

at its vertex and has no minimum curvature. (Note: Since the cur-

vature of a curve remains the same if the curve is translated or 

rotated, this result is true for any parabola.)

 18. Show that the ellipse x = a cos t, y = b sin t, a 7 b 7 0, has its 

largest curvature on its major axis and its smallest curvature on its 

minor axis. (As in Exercise 17, the same is true for any ellipse.)

 19. Maximizing the curvature of a helix In Example 5, we found 

the curvature of the helix r(t) = (a cos t)i + (a sin t)j + bt  k 

(a, b Ú 0) to be k = a> (a2 + b2). What is the largest value k 

can have for a given value of b? Give reasons for your answer.

 20. total curvature We ind the total curvature of the portion of a 

smooth curve that runs from s = s0 to s = s1 7 s0 by integrating 

k from s0 to s1. If the curve has some other parameter, say t, then 

the total curvature is

K = L
s1

s0

k ds = L
t1

t0

k 
ds

dt
 dt = L

t1

t0

 k 0 v 0  dt,

  where t0 and t1 correspond to s0 and s1. Find the total curvatures of

a. The portion of the helix r(t) = (3 cos t)i + (3 sin t)j + t  k, 

0 … t … 4p.

b. The parabola y = x2, -q 6 x 6 q.

 21. Find an equation for the circle of curvature of the curve 

r(t) = t i + (sin t)j at the point (p>2, 1). (The curve parametrizes 

the graph of y = sin x in the xy-plane.)

 22. Find an equation for the circle of curvature of the curve r(t) =  

(2 ln t)i - 3 t + (1>t)4j, e-2 … t … e2, at the point (0, -2), 

where t = 1.

The formula

k(x) =
0 ƒ″(x) 031 + (ƒ′(x))243>2 ,

  derived in Exercise 5, expresses the curvature k(x) of a twice-

diferentiable plane curve y = ƒ(x) as a function of x. Find the 

curvature function of each of the curves in Exercises 23–26. Then 

graph ƒ(x) together with k(x) over the given interval. You will ind 

some surprises.

 23. y = x2, -2 … x … 2 24. y = x4>4, -2 … x … 2

 25. y = sin x, 0 … x … 2p 26. y = ex, -1 … x … 2

In Exercises 27 and 28, determine the maximum curvature for the 

graph of each function.

 27. ƒ(x) = ln x 28. ƒ(x) =
x

x + 1
 for x 7 -1

T

13.5 Tangential and Normal Components of Acceleration

If you are traveling along a curve in space, the Cartesian i, j, and k coordinate system for 

representing the vectors describing your motion may not be very relevant to you. Instead, 

the vectors that represent your forward direction (the unit tangent vector t), the direction 

in which your path is turning (the unit normal vector N), and the tendency of your motion 
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to “twist” out of the plane created by these vectors in the direction perpendicular to this 

plane (defined by the unit binormal vector B = t * N) are likely to be more important. 

Expressing the acceleration vector along the curve as a linear combination of this tNB 

frame of mutually orthogonal unit vectors traveling with the motion (Figure 13.23) can 

reveal much about the nature of your path and your motion along it.

DEFINITION If the acceleration vector is written as

 a = aTt + aNN, (1)

then

 aT =
d2s

dt2
=

d

dt
 0 v 0  and  aN = kads

dt
b2

= k 0 v 0 2 (2)

are the tangential and normal scalar components of acceleration.

Notice that the binormal vector B does not appear in Equation (1). No matter how the path 

of the moving object we are watching may appear to twist and turn in space, the accelera-

tion a always lies in the plane of  t and N orthogonal to B. The equation also tells us 

exactly how much of the acceleration takes place tangent to the motion (d2s>dt2)  and how 

much takes place normal to the motion 3k(ds>dt)24  (Figure 13.25).

What information can we discover from Equations (2)? By definition, acceleration a 

is the rate of change of velocity v, and in general, both the length and direction of v change 

as an object moves along its path. The tangential component of acceleration aT measures 

the rate of change of the length of v (that is, the change in the speed). The normal compo-

nent of acceleration aN measures the rate of change of the direction of v.

The TNB Frame

The binormal vector of a curve in space is B = t * N, which is a unit vector that is 

orthogonal to both t and N (Figure 13.24). Together t, N, and B define a moving right-

handed vector frame that plays a significant role in calculating the paths of particles mov-

ing through space. It is called the Frenet (“fre-nay”) frame (after Jean-Frédéric Frenet, 

1816–1900), or the tNB frame.

Tangential and Normal Components of Acceleration

When an object is accelerated by gravity, brakes, or rocket motors, we often need to know 

how much of the acceleration acts in the direction of motion, which is the direction of the 

tangent vector t. We can calculate this using the Chain Rule to rewrite v as

v =
dr
dt

=
dr
ds

  
ds

dt
= t  

ds

dt
.

Then we differentiate both ends of this string of equalities to get

 a =
dv
dt

=
d

dt
 at  

ds

dt
b =

d2s

dt2
  t +

ds

dt
 
d t
dt

 =
d2s

dt2
 t +

ds

dt
 ad t

ds
  
ds

dt
b =

d2s

dt2
  t +

ds

dt
 akN 

ds

dt
b   

dt

ds
= kN 

 =
d2s

dt2
 t + kads

dt
b2

N.

y

z

x

N = 1
k

dT
ds

P0

s

P

B = T × N 

T = dr
dsr

FIGURE 13.23 The tNB frame of 

mutually orthogonal unit vectors traveling 

along a curve in space.

T

P

B

N

FIGURE 13.24 The vectors t, N, and B 

(in that order) make a right-handed frame 

of mutually orthogonal unit vectors in 

space.

T

s

N

a

P0

aT =
d2s

dt2

2

aN = k
ds
dt
Q  R

FIGURE 13.25 The tangential and 

normal components of acceleration. The 

acceleration a always lies in the plane of  

t and N and is orthogonal to B.
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Torsion

How does d B>ds behave in relation to t, N, and B? From the rule for diferentiating a cross 

product in Section 13.1, we have

d B
ds

=
d(t * N)

ds
=

d t
ds

* N + t *
d N
ds

.

Notice that the normal scalar component of the acceleration is the curvature times the 

square of the speed. This explains why you have to hold on when your car makes a sharp 

(large k), high-speed (large 0 v 0 ) turn. If you double the speed of your car, you will experi-

ence four times the normal component of acceleration for the same curvature.

If an object moves in a circle at a constant speed, d2s>dt2 is zero and all the accelera-

tion points along N toward the circle’s center. If the object is speeding up or slowing 

down, a has a nonzero tangential component (Figure 13.26).

To calculate aN, we usually use the formula aN = 2 0 a 0 2 - aT 2 , which comes from 

solving the equation 0 a 0 2 = a # a = aT 2 + aN 2 for aN. With this formula, we can find aN 

without having to calculate k first.

Formula for Calculating the Normal Component of Acceleration

 aN = 2 0 a 0 2 - aT 2 (3)

EXAMPLE 1  Without finding t and N, write the acceleration of the motion

r(t) = (cos t + t sin t)i + (sin t - t cos t)j,  t 7 0

in the form a = aTt + aNN. (The path of the motion is the involute of the circle in  

Figure 13.27. See also Section 13.3, Exercise 19.)

Solution We use the first of Equations (2) to find aT:

 v =
dr
dt

= (-sin t + sin t + t cos t)i + (cos t - cos t + t sin t)j

 = (t cos t)i + (t sin t)j

 0 v 0 = 2t2 cos2 t + t2 sin2 t = 2t2 = 0 t 0 = t   t 7 0

 aT =
d

dt
 0 v 0 =

d

dt
 (t) = 1.   Eq. (2)

Knowing aT, we use Equation (3) to find aN:

 a = (cos t - t sin t)i + (sin t + t cos t)j

 0 a 0 2 = t2 + 1   After some algebra

 aN = 2 0 a 0 2 - aT 2

 = 2(t2 + 1) - (1) = 2t2 = t.

We then use Equation (1) to find a:

 a = aTt + aNN = (1)t + (t)N = t + tN. 

P

C

T

a

d2s

dt2

k 0 v 0 2N =        Nr
0 v 0 2

FIGURE 13.26 The tangential and  

normal components of the acceleration  

of an object that is speeding up as it  

moves counterclockwise around a circle  

of radius r.

Strin
g

O

y

t

(1, 0)
x

Q r

T

a

x2 + y2 = 1 

P(x, y)
tN

FIGURE 13.27 The tangential and 

normal components of the acceleration 

of the motion r(t) = (cos t + t sin t)i +
(sin t - t cos t)j, for t 7 0. If a string 

wound around a fixed circle is unwound 

while held taut in the plane of the circle, 

its end P traces an involute of the circle 

(Example 1).
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Since N is the direction of d t>ds, (d t>ds) * N = 0 and

d B
ds

= 0 + t *
d N
ds

= t *
d N
ds

.

From this we see that d B>ds is orthogonal to t, since a cross product is orthogonal to its 

factors.

Since d B>ds is also orthogonal to B (the latter has constant length), it follows that 

d B>ds is orthogonal to the plane of B and t. In other words, d B>ds is parallel to N, so 

d B>ds is a scalar multiple of N. In symbols,

d B
ds

= -tN.

The negative sign in this equation is traditional. The scalar t is called the torsion along the 

curve. Notice that

d B
ds

# N = -tN # N = -t(1) = -t.

We use this equation for our next definition.

DEFINITION Let B = t * N. The torsion function of a smooth curve is

 t = -  
d B
ds

# N. (4)

Unlike the curvature k, which is never negative, the torsion t may be positive, nega-

tive, or zero.

The three planes determined by t, N, and B are named and shown in Figure 13.28. 

The curvature k = 0 d t>ds 0  can be thought of as the rate at which the normal plane turns 

as the point P moves along its path. Similarly, the torsion t = -(d B>ds) # N is the rate at 

which the osculating plane turns about t as P moves along the curve. Torsion measures 

how the curve twists.

Look at Figure 13.29. If P is a train climbing up a curved track, the rate at which the 

headlight turns from side to side per unit distance is the curvature of the track. The rate at 

which the engine tends to twist out of the plane formed by t and N is the torsion. It can be 

shown that a space curve is a helix if and only if it has constant nonzero curvature and 

constant nonzero torsion.

P

Binormal

Osculating plane
Unit tangent

N

T

B

Normal plane

Principal

normal

Rectifying

plane

FIGURE 13.28 The names of the three 

planes determined by t, N, and B.

T
N

B

P

The torsion

at P is −(dB�ds) ∙ N.

ds

dB

The curvature at P

is @ (dT�ds) @ .
s increases

s = 0

FIGURE 13.29 Every moving body travels with a tNB frame 

that characterizes the geometry of its path of motion.
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Formulas for Computing Curvature and Torsion

We now give easy-to-use formulas for computing the curvature and torsion of a smooth 

curve. From Equations (1) and (2), we have

 v * a = ads

dt
 tb * c d2s

dt2
 t + kads

dt
b2

N d   
v = dr>dt =
(ds>dt)t

 

 = ads

dt
 
d2s

dt2
b (t * t) + kads

dt
b3

(t * N)

 = kads

dt
b3

B.   t * t = 0 and 

t * N = B
 

It follows that 0 v * a 0 = k ` ds

dt
` 3 0B 0 = k 0 v 0 3.  

ds

dt
= 0 v 0    and   0B 0 = 1

Solving for k gives the following formula.

Vector Formula for Curvature

 k =
0 v * a 00 v 0 3  (5)

Equation (5) calculates the curvature, a geometric property of the curve, from the 

velocity and acceleration of any vector representation of the curve in which 0 v 0  is different 

from zero. From any formula for motion along a curve, no matter how variable the motion 

may be (as long as v is never zero), we can calculate a geometric property of the curve that 

seems to have nothing to do with the way the curve is parametrically defined.

The most widely used formula for torsion, derived in more advanced texts, is given in 

a determinant form.

Formula for Torsion

 t =

3 x# y
#

z
#

x
$

y
$

z
$

x
%

y
%

z
%
3

0 v * a 0 2   (if v * a ≠ 0) (6)

This formula calculates the torsion directly from the derivatives of the component func-

tions x = ƒ(t), y = g(t), z = h(t) that make up r. The determinant’s first row comes from 

v, the second row comes from a, and the third row comes from a
#

= da>dt. This formula 

for torsion is traditionally written using Newton’s dot notation for derivatives.

EXAMPLE 2  Use Equations (5) and (6) to find the curvature k and torsion t for the 

helix

r(t) = (a cos t)i + (a sin t)j + bt k,  a, b Ú 0,  a2 + b2 ≠ 0.

Newton’s Dot Notation for Derivatives

The dots in Equation (6) denote differ-

entiation with respect to t, one derivative 

for each dot. Thus, x
#
 (“x dot”) means 

dx >dt, x
$
 (“x double dot”) means d2x>dt2, 

and x
%

 (“x triple dot”) means d3x>dt3. 

Similarly, y
#

= dy>dt, and so on.
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Solution We calculate the curvature with Equation (5):

 v = -(a sin t)i + (a cos t)j + bk

 a = -(a cos t)i - (a sin t)j

 v * a = 3 i j k

-a sin t a cos t b

-a cos t -a sin t 0

3
 = (ab sin t)i - (ab cos t)j + a2k

  k =
0 v * a 00 v 0 3 =

2a2b2 + a4

(a2 + b2)3>2 =
a2a2 + b2

(a2 + b2)3>2 =
a

a2 + b2
. (7)

Notice that Equation (7) agrees with the result in Example 5 in Section 13.4, where we 

calculated the curvature directly from its definition.

To evaluate Equation (6) for the torsion, we ind the entries in the determinant by dif-

ferentiating r with respect to t. We already have v and a, and

a
#

=
da
dt

= (a sin t)i - (a cos t)j.

Hence,

 t =

3 x# y
#

z
#

x
$

y
$

z
$

x
%

y
%

z
%
3

0 v * a 0 2 =

3 -a sin t a cos t b

-a cos t -a sin t 0

a sin t -a cos t 0

31a2a2 + b222   

 =
b(a2 cos2 t + a2 sin2 t)

a2(a2 + b2)

 =
b

a2 + b2
.

From this last equation we see that the torsion of a helix about a circular cylinder is 

constant. In fact, constant curvature and constant torsion characterize the helix among all 

curves in space. 

Value of 0 v * a 0  from Eq. (7)
 

Computation Formulas for Curves in Space

Unit tangent vector: t =
v0 v 0

Principal unit normal vector: N =
d t>dt0 d t>dt 0

Binormal vector: B = t * N

Curvature: k = ` d t
ds
` =
0 v * a 00 v 0 3

Torsion: t = -  
d B
ds

# N =

3 x# y
#

z
#

x
$

y
$

z
$

x
%

y
%

z
%
3  

0 v * a 0 2
Tangential and normal scalar 

 components of acceleration:

 a = aTt + aNN

 aT =
d

dt
0 v 0

 aN = k 0 v 0 2 = 2 0 a 0 2 - aT 

2
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Finding Tangential and Normal Components

In Exercises 1 and 2, write a in the form a = aTt + aNN without 

finding t and N.

 1. r(t) = (a cos t)i + (a sin t)j + bt k

 2. r(t) = (1 + 3t)i + (t - 2)j - 3t k

Theory and Examples

 21. Show that k and t are both zero for the line

r(t) = (x0 + At)i + ( y0 + Bt)j + (z0 + Ct)k.

 22. Show that a moving particle will move in a straight line if the 

normal component of its acceleration is zero.

 23. A sometime shortcut to curvature If you already know 0 aN 0  and 0 v 0 , then the formula aN = k 0 v 0 2 gives a convenient way to ind 

the curvature. Use it to ind the curvature and radius of curvature 

of the curve

r(t) = (cos t + t sin t)i + (sin t - t cos t)j, t 7 0.

  (Take aN and 0 v 0  from Example 1.)

 24. What can be said about the torsion of a smooth plane curve 

r(t) = ƒ(t)i + g(t)j? Give reasons for your answer.

 25. Diferentiable curves with zero torsion lie in planes That a suf-

iciently diferentiable curve with zero torsion lies in a plane is 

a special case of the fact that a particle whose velocity remains 

perpendicular to a ixed vector C moves in a plane perpendicular 

to C. This, in turn, can be viewed as the following result.

   Suppose r(t) = ƒ(t)i + g(t)j + h(t)k is twice diferentiable 

for all t in an interval 3a, b4 , that r = 0 when t = a, and that 

v # k = 0 for all t in 3a, b4  . Show that h(t) = 0 for all t in 3a, b4 .  
(Hint: Start with a = d2r>dt2 and apply the initial conditions in 

reverse order.)

 26. A formula that calculates T from B and v If we start with the 

deinition t = - (dB>ds) # N and apply the Chain Rule to rewrite 

dB >ds as

d B

ds
=

d B

dt
  
dt

ds
=

d B

dt
  

10 v 0 ,
  we arrive at the formula

t = -  
10 v 0  ad B

dt
# Nb .

  Use the formula to ind the torsion of the helix in Example 2.

COMPUTER EXPLORATIONS

Rounding the answers to four decimal places, use a CAS to find v, a, 

speed, T, N, B, k, t, and the tangential and normal components of 

acceleration for the curves in Exercises 27–30 at the given values of t.

 27. r(t) = (t cos t)i + (t sin t)j + t k, t = 23

 28. r(t) = (et cos t)i + (et sin t)j + et
 k, t = ln 2

 29. r(t) = (t - sin t)i + (1 - cos t)j + 2- t k, t = -3p

 30. r(t) = (3t - t2)i + (3t2)j + (3t + t3)k, t = 1

EXERCISES 13.5

In Exercises 3–6, write a in the form a = aTT + aNN at the given 

value of t without inding T and N.

 3. r(t) = (t + 1)i + 2tj + t2k, t = 1

 4. r(t) = (t cos t)i + (t sin t)j + t2k, t = 0

 5. r(t) = t2i + (t + (1>3)t3)j + (t - (1>3)t3)k, t = 0

 6. r(t) = (et cos t)i + (et sin t)j + 22et k, t = 0

Finding the TNB Frame

In Exercises 7 and 8, find r, T, N, and B at the given value of t. Then 

find equations for the osculating, normal, and rectifying planes at that 

value of t.

 7. r(t) = (cos t)i + (sin t)j - k, t = p>4
 8. r(t) = (cos t)i + (sin t)j + t k, t = 0

In Exercises 9–16 of Section 13.4, you found T, N, and k . Now, in 

the following Exercises 9–16, find B and t for these space curves.

 9. r(t) = (3 sin t)i + (3 cos t)j + 4t  k

 10. r(t) = (cos t + t sin t)i + (sin t - t cos t)j + 3k

 11. r(t) = (et cos t)i + (et sin t)j + 2k

 12. r(t) = (6 sin 2t)i + (6 cos 2t)j + 5t  k

 13. r(t) = (t3>3)i + (t2>2)j, t 7 0

 14. r(t) = (cos3 t)i + (sin3 t)j, 0 6 t 6 p>2
 15. r(t) = ti + (a cosh (t>a))j, a 7 0

 16. r(t) = (cosh t)i - (sinh t)j + t  k

Physical Applications

 17. The speedometer on your car reads a steady 35 mph. Could you be 

accelerating? Explain.

 18. Can anything be said about the acceleration of a particle that is 

moving at a constant speed? Give reasons for your answer.

 19. Can anything be said about the speed of a particle whose accelera-

tion is always orthogonal to its velocity? Give reasons for your 

answer.

 20. An object of mass m travels along the parabola y = x2 with a con-

stant speed of 10 units > sec. What is the force on the object due to 

its acceleration at (0, 0)? at (21>2, 2)? Write your answers in terms 

of i and j. (Remember Newton’s law, F = ma.)

13.6 Velocity and Acceleration in Polar Coordinates

In this section we derive equations for velocity and acceleration in polar coordinates. 

These equations are useful for calculating the paths of planets and satellites in space, and 

we use them to examine Kepler’s three laws of planetary motion.
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Motion in Polar and Cylindrical Coordinates

When a particle at P(r, u) moves along a curve in the polar coordinate plane, we express 

its position, velocity, and acceleration in terms of the moving unit vectors

 ur = (cos u)i + (sin u)j,  uu = -(sin u)i + (cos u)j, (1)

shown in Figure 13.30. The vector ur points along the position vector 
r
OP, so r = r  ur . 

The vector uu , orthogonal to ur , points in the direction of increasing u.

We find from Equations (1) that

 
dur

du
= -(sin u)i + (cos u)j = uu

 
duu

du
= -(cos u)i - (sin u)j = -ur .

When we differentiate ur and uu with respect to t to find how they change with time, 

the Chain Rule gives

 u
#
r =

dur

du
  u

#
= u

#
uu ,  u

#
u =

duu

du
  u

#
= -u

#
ur . (2)

Hence, we can express the velocity vector in terms of ur and uu as

v = r
#

=
d

dt
 (r ur) = r

#
 ur + r u

#
r = r

#
 ur + ru

#
uu .

See Figure 13.31. As in the previous section, we use Newton’s dot notation for time deriva-

tives to keep the formulas as simple as we can: u
#
r means dur>dt, u

#
 means du>dt, and so on.

The acceleration is

a = v
#

= (r
$

 ur + r
#

 u
#
r) + (r

#
u
#

 uu + ru
$
uu + ru

#
u
#
u).

When Equations (2) are used to evaluate u
#
r and u

#
u and the components are separated, the 

equation for acceleration in terms of ur and uu becomes

a = (r
$

- ru
#
2)ur + (ru

$
+ 2r

#
u
#
)uu .

To extend these equations of motion to space, we add zk to the right-hand side of the 

equation r = r ur . Then, in these cylindrical coordinates, we have

O

y

x

r

uu

ur

P(r, u)

u

FIGURE 13.30 The length of r is the 

positive polar coordinate r of the point 

P. Thus, ur , which is r> 0 r 0 , is also r > r. 

Equations (1) express ur  and uu in terms 

of i and j.

.

.

O

y

x

r

v

P(r, u)

rur

ruuu

u

FIGURE 13.31 In polar coordinates, the 

velocity vector is

v = r
#  ur + ru

#
 uu .

Position: r = rur + zk

Velocity: v = r
#
ur + ru

#
 uu + z

#
k (3)

Acceleration: a = (r
$

- ru
#
2)ur + (ru

$
+ 2r

#
u
#
)uu + z

$
k

The vectors ur , uu , and k make a right-handed frame (Figure 13.32) in which

ur * uu = k ,  uu * k = ur ,  k * ur = uu .

Planets Move in Planes

Newton’s law of gravitation says that if r is the radius vector from the center of a sun of 

mass M to the center of a planet of mass m, then the force F of the gravitational attraction 

between the planet and sun is

F = -  
GmM0 r 0 2   

r0 r 0
x

y

z

k

zk

r = rur + zk

r ur

ur

uu

u

FIGURE 13.32 Position vector and 

basic unit vectors in cylindrical coordi-

nates. Notice that 0 r 0 ≠ r if z ≠ 0 since 0 r 0 = 2r2 + z2 .
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(Figure 13.33). The number G is the universal gravitational constant. If we measure mass 

in kilograms, force in newtons, and distance in meters, G is about 6.6738 * 10-11 Nm2 kg-2.

Combining the gravitation law with Newton’s second law, F = mr
$
, for the force act-

ing on the planet gives

 mr
$

= -  
GmM0 r 0 2   

r0 r 0 ,
 r
$

= -  
GM0 r 0 2  

r0 r 0 .
The planet is therefore accelerated toward the sun’s center of mass at all times.

Since r
$
 is a scalar multiple of r, we have

r * r
$

= 0.

From this last equation,

d

dt
 (r * r

#
) = r

#
* r

#
+ r * r

$
= r * r

$
= 0. (+)+*

 0

It follows that

 r * r
#

= c (4)

for some constant vector c.

Equation (4) tells us that r and r
#
 always lie in a plane perpendicular to c. Hence, the 

planet moves in a fixed plane through the center of its sun (Figure 13.34). We next see how 

Kepler’s laws describe the motion in a precise way.

r
m

M

r0 r 0
F = −

GmM0 r 0 2 r0 r 0
FIGURE 13.33 The force of gravity is 

directed along the line joining the centers 

of mass.

.

.
r

r

Planet

Sun

C = r × r

FIGURE 13.34 A planet that obeys 

Newton’s laws of gravitation and motion 

travels in the plane through the sun’s cen-

ter of mass perpendicular to c = r * r
#
.

r

Planet

Sun

FIGURE 13.35 The line joining a planet 

to its sun sweeps over equal areas in equal 

times.

Kepler’s First Law (Ellipse Law)

Kepler’s first law says that a planet’s path is an ellipse with the sun at one focus. The 

eccentricity of the ellipse is

 e =
r0y0 2

GM
- 1 (5)

and the polar equation (see Section 11.7, Equation (5)) is

 r =
(1 + e)r0

1 + e cos u
. (6)

Here y0 is the speed when the planet is positioned at its minimum distance r0 from the sun. 

We omit the lengthy proof. The sun’s mass M is 1.99 * 1030 kg.

Kepler’s Second Law (Equal Area Law)

Kepler’s second law says that the radius vector from the sun to a planet (the vector r in our 

model) sweeps out equal areas in equal times, as displayed in Figure 13.35. In that figure, we 

assume the plane of the planet is the xy-plane, so the unit vector in the direction of c is k. We 

introduce polar coordinates in the plane, choosing as initial line u = 0, the direction r when 0 r 0 = r is a minimum value. Then at t = 0, we have r(0) = r0 being a minimum so

r
# 0 t = 0 =

dr

dt
2
t = 0

= 0 and y0 = 0 v 0 t = 0 = 3ru# 4 t = 0 .  Eq. (3), z
#

= 0
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To derive Kepler’s second law, we use Equation (3) to evaluate the cross product 

c = r * r
#
 from Equation (4):

 c = r * r
#

= r * v

 = r  ur * (r
#

 ur + r u
#
uu)   Eq. (3), z

#
= 0 

 = rr
#
(ur * ur) + r(ru

#
)(ur * uu) (+)+* (+)+*

 0 k

 = r (ru
#
) k.   (7)

Setting t equal to zero shows that

c = 3r(ru
#
)4 t = 0 k = r0y0k.

Substituting this value for c in Equation (7) gives

r0y0k = r2u
#
k, or r2u

#
= r0y0 .

This is where the area comes in. The area differential in polar coordinates is

dA =
1
2

 r2 du

(Section 11.5). Accordingly, dA>dt has the constant value

 
dA

dt
=

1
2

 r2u
#

=
1
2

 r0y0 . (8)

So dA>dt is constant, giving Kepler’s second law.

Kepler’s Third Law (Time–Distance Law)

The time T it takes a planet to go around its sun once is the planet’s orbital period. 

Kepler’s third law says that T and the orbit’s semimajor axis a are related by the equation

T2

a3
=

4p2

GM
.

Since the right-hand side of this equation is constant within a given solar system, the ratio 

of T2 to a3 is the same for every planet in the system.

Here is a partial derivation of Kepler’s third law. The area enclosed by the planet’s 

elliptical orbit is calculated as follows:

 Area = L
T

0

 dA

 = L
T

0

1
2

 r0 y0 dt  Eq. (8)

 =
1
2

 Tr0 y0 .

If b is the semiminor axis, the area of the ellipse is pab, so

 T =
2pab
r0 y0

=
2pa2

r0 y0
 21 - e2.  For any ellipse, b = a21 - e2. (9)

It remains only to express a and e in terms of r0, y0, G, and M. Equation (5) does this 

for e. For a, we observe that setting u equal to p in Equation (6) gives

rmax = r0 
1 + e

1 - e
.

HistoricAL BiogrApHy

Johannes Kepler

(1571–1630)

www.goo.gl/ks7JQa

http://www.goo.gl/ks7JQa
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Hence, from Figure 13.36,

 2a = r0 + rmax =
2r0

1 - e
=

2r0GM

2GM - r0y0 2
. (10)

Squaring both sides of Equation (9) and substituting the results of Equations (5) and (10) 

produces Kepler’s third law (Exercise 11).

r

Planet

Sun
rmax r0

FIGURE 13.36 The length of the major 

axis of the ellipse is 2a = r0 + rmax .

In Exercises 1–7, find the velocity and acceleration vectors in terms of 

ur  and uu .

 1. r = u and 
du

dt
= 2

 2. r =
1
u
 and 

du

dt
= t2

 3. r = a(1 - cos u) and 
du

dt
= 3

 4. r = a sin 2u and 
du

dt
= 2t

 5. r = eau and 
du

dt
= 2

 6. r = a(1 + sin t) and u = 1 - e-t

 7. r = 2 cos 4t and u = 2t

 8. type of orbit For what values of y0 in Equation (5) is the orbit 

in Equation (6) a circle? An ellipse? A parabola? A hyperbola?

 9. circular orbits Show that a planet in a circular orbit moves with 

a constant speed. (Hint: This is a consequence of one of  Kepler’s 

laws.)

 10. Suppose that r is the position vector of a particle moving along a 

plane curve and dA >dt is the rate at which the vector sweeps out 

area. Without introducing coordinates, and assuming the neces-

sary derivatives exist, give a geometric argument based on incre-

ments and limits for the validity of the equation

dA

dt
=

1
2

 0 r * r
# 0 .

 11. Kepler’s third law Complete the derivation of Kepler’s third 

law (the part following Equation (10)).

 12. Do the data in the accompanying table support Kepler’s third law? 

Give reasons for your answer.

planet

semimajor axis  

 a (1010 m) period T (years)

Mercury  5.79  0.241

Venus  10.81  0.615

Mars  22.78  1.881

Saturn  142.70  29.457

 13. Earth’s major axis Estimate the length of the major axis of 

Earth’s orbit if its orbital period is 365.256 days.

 14. Estimate the length of the major axis of the orbit of Uranus if its 

orbital period is 84 years.

 15. The eccentricity of Earth’s orbit is e = 0.0167, so the orbit is 

nearly circular, with radius approximately 150 * 106 km. Find 

the rate dA >dt in units of km2>sec satisfying Kepler’s second law.

 16. Jupiter’s orbital period Estimate the orbital period of Jupiter, 

assuming that a = 77.8 * 1010 m.

 17. Mass of Jupiter Io is one of the moons of Jupiter. It has a semi-

major axis of 0.042 * 1010 m and an orbital period of 1.769 days. 

Use these data to estimate the mass of Jupiter.

 18. Distance from Earth to the moon The period of the moon’s 

rotation around Earth is 2.36055 * 106 sec. Estimate the distance 

to the moon.

EXERCISES 13.6

 1. State the rules for diferentiating and integrating vector functions. 

Give examples.

 2. How do you deine and calculate the velocity, speed, direction of 

motion, and acceleration of a body moving along a suiciently 

diferentiable space curve? Give an example.

 3. What is special about the derivatives of vector functions of con-

stant length? Give an example.

 4. What are the vector and parametric equations for ideal projectile 

motion? How do you ind a projectile’s maximum height, light 

time, and range? Give examples.

 5. How do you deine and calculate the length of a segment of a 

smooth space curve? Give an example. What mathematical as-

sumptions are involved in the deinition?

CHAPTER 13 Questions to Guide Your Review
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 10. How do you deine N and k for curves in space? How are these 

quantities related? Give examples.

 11. What is a curve’s binormal vector? Give an example. How is this 

vector related to the curve’s torsion? Give an example.

 12. What formulas are available for writing a moving object’s accel-

eration as a sum of its tangential and normal components? Give an 

example. Why might one want to write the acceleration this way? 

What if the object moves at a constant speed? At a constant speed 

around a circle?

 13. State Kepler’s laws.

 6. How do you measure distance along a smooth curve in space from 

a preselected base point? Give an example.

 7. What is a diferentiable curve’s unit tangent vector? Give an ex-

ample.

 8. Deine curvature, circle of curvature (osculating circle), center of 

curvature, and radius of curvature for twice-diferentiable curves 

in the plane. Give examples. What curves have zero curvature? 

Constant curvature?

 9. What is a plane curve’s principal normal vector? When is it de-

ined? Which way does it point? Give an example.

Motion in the Plane

In Exercises 1 and 2, graph the curves and sketch their velocity and 

acceleration vectors at the given values of t. Then write a in the form 

a = aTt + aNN without inding t and N, and ind the value of k at 

the given values of t.

 1. r(t) = (4 cos t)i + 122 sin t2j, t = 0 and p>4
 2. r(t) = 123 sec t2i + 123 tan t2j, t = 0

 3. The position of a particle in the plane at time t is

r =
1

21 + t2
  i +

t

21 + t2
  j.

  Find the particle’s highest speed.

 4. Suppose r(t) = (et cos t)i + (et sin t)j. Show that the angle be-

tween r and a never changes. What is the angle?

 5. Finding curvature At point P, the velocity and acceleration of a 

particle moving in the plane are v = 3i + 4j and a = 5i + 15j. 

Find the curvature of the particle’s path at P.

 6. Find the point on the curve y = ex where the curvature is greatest.

 7. A particle moves around the unit circle in the xy-plane. Its position 

at time t is r = xi + yj, where x and y are diferentiable functions 

of t. Find dy >dt if v # i = y. Is the motion clockwise or counter-

clockwise?

 8. You send a message through a pneumatic tube that follows the 

curve 9y = x3 (distance in meters). At the point (3, 3), v # i = 4 

and a # i = -2. Find the values of v # j and a # j at (3, 3).

 9. characterizing circular motion A particle moves in the plane 

so that its velocity and position vectors are always orthogonal. 

Show that the particle moves in a circle centered at the origin.

 10. speed along a cycloid A circular wheel with radius 1 ft and 

center C rolls to the right along the x-axis at a half-turn per sec-

ond. (See the accompanying igure.) At time t seconds, the posi-

tion vector of the point P on the wheel’s circumference is

r = (pt - sin pt)i + (1 - cos pt)j.

a. Sketch the curve traced by P during the interval 0 … t … 3.

b. Find v and a at t = 0, 1, 2, and 3 and add these vectors to 

your sketch.

c. At any given time, what is the forward speed of the topmost 

point of the wheel? Of C?

x

y

1

C

P

pt
r

0

Projectile Motion

 11. shot put A shot leaves the thrower’s hand 6.5 ft above the 

ground at a 45° angle at 44 ft>sec. Where is it 3 sec later?

 12. Javelin A javelin leaves the thrower’s hand 7 ft above the ground 

at a 45° angle at 80 ft > sec. How high does it go?

 13. A golf ball is hit with an initial speed y0 at an angle a to the hori-

zontal from a point that lies at the foot of a straight-sided hill that 

is inclined at an angle f to the horizontal, where

0 6 f 6 a 6
p

2
.

  Show that the ball lands at a distance

2y0 2 cos a

g cos2 f
 sin (a - f),

  measured up the face of the hill. Hence, show that the great-

est range that can be achieved for a given y0 occurs when a =

(f>2) + (p>4), i.e., when the initial velocity vector bisects the 

angle between the vertical and the hill.

 14. Javelin In Potsdam in 1988, Petra Felke of (then) East Germany 

set a women’s world record by throwing a javelin 262 ft 5 in.

a. Assuming that Felke launched the javelin at a 40° angle to 

the horizontal 6.5 ft above the ground, what was the javelin’s 

initial speed?

b. How high did the javelin go?

T
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 31. An alternative deinition of curvature in the plane An alter-

native deinition gives the curvature of a suiciently diferentiable 

plane curve to be 0 df>ds 0 , where f is the angle between T and 

i (Figure 13.37a). Figure 13.37b shows the distance s measured 

counterclockwise around the circle x2 + y2 = a2 from the point 

(a, 0) to a point P, along with the angle f at P. Calculate the circle’s 

curvature using the alternative deinition. (Hint: f = u + p>2.)

x

y

y

x

0

f

f
u

T

i

(a)

(b)

O

a
s

s = 0 at (a, 0)

P

Tx2 + y2 = a2

FIGURE 13.37 Figures for Exercise 31.

 32. The view from Skylab 4 What percentage of Earth’s surface 

area could the astronauts see when Skylab 4 was at its apogee 

height, 437 km above the surface? To ind out, model the visible 

surface as the surface generated by revolving the circular arc GT, 

shown here, about the y-axis. Then carry out these steps:

1. Use similar triangles in the igure to show that y0>6380 =  

6380>(6380 + 437). Solve for y0 .

2. To four signiicant digits, calculate the visible area as

VA = L
6380

y0

2pxC1 + adx

dy
b2

 dy.

3. Express the result as a percentage of Earth’s surface area.

y

x

437 G

6380

0

T

S (Skylab)

y0

x = "(6380)2 − y2

Motion in Space

Find the lengths of the curves in Exercises 15 and 16.

 15. r(t) = (2 cos t)i + (2 sin t)j + t2k, 0 … t … p>4
 16. r(t) = (3 cos t)i + (3 sin t)j + 2t3>2k, 0 … t … 3

In Exercises 17–20, ind T, N, B, k, and t at the given value of t.

 17. r(t) =
4
9

  (1 + t)3>2 i +
4
9

  (1 - t)3>2 j +
1
3

 t k, t = 0

 18. r(t) = (et sin 2t)i + (et cos 2t)j + 2et
 k, t = 0

 19. r(t) = t i +
1
2

 e2t
 j, t = ln 2

 20. r(t) = (3 cosh 2t)i + (3 sinh 2t)j + 6t k, t = ln 2

In Exercises 21 and 22, write a in the form a = aTT + aNN at t = 0 

without inding T and N.

 21. r(t) = (2 + 3t + 3t2)i + (4t + 4t2)j - (6 cos t)k

 22. r(t) = (2 + t)i + (t + 2t2)j + (1 + t2)k

 23. Find T, N, B, k, and t as functions of t if

r(t) = (sin t)i + 122 cos t2j + (sin t)k.

 24. At what times in the interval 0 … t … p are the velocity and ac-

celeration vectors of the motion r(t) = i + (5 cos t)j + (3 sin t)k 

orthogonal?

 25. The position of a particle moving in space at time t Ú 0 is

r(t) = 2i + a4 sin 
t

2
bj + a3 -

t
pbk.

  Find the irst time r is orthogonal to the vector i - j.

 26. Find equations for the osculating, normal, and rectifying planes of 

the curve r(t) = t i + t2
 j + t3 k at the point (1, 1, 1).

 27. Find parametric equations for the line that is tangent to the curve 

r(t) = et i + (sin t)j + ln (1 - t)k at t = 0.

 28. Find parametric equations for the line tangent to the helix 

r(t) =122 cos t2i + 122 sin t2j + t k at the point where 

t = p>4.

Theory and Examples

 29. Synchronous curves By eliminating a from the ideal projectile 

equations

x = (y0 cos a)t, y = (y0 sin a)t -
1
2

 gt2,

  show that x2 + (y + gt2>2)2 = y0 2 t2. This shows that projec-

tiles launched simultaneously from the origin at the same initial 

speed will, at any given instant, all lie on the circle of radius y0  t 

centered at (0, -gt2>2), regardless of their launch angle. These 

circles are the synchronous curves of the launching.

 30. Radius of curvature Show that the radius of curvature of a 

twice-diferentiable plane curve r(t) = ƒ(t)i + g(t)j is given by 

the formula

r =
x
#

  2 + y
#

 2

2x
$

  2 + y
$

  2 - s
$

   2
, where s

$
=

d

dt
 2x

#
  2 + y

#
  2.
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Applications

 1. A frictionless particle P, starting from rest at time t = 0 at the 

point (a, 0, 0), slides down the helix

r(u) = (a cos u)i + (a sin u)j + buk (a, b 7 0)

  under the inluence of gravity, as in the accompanying igure. The 

u in this equation is the cylindrical coordinate u and the helix 

is the curve r = a, z = bu, u Ú 0, in cylindrical coordinates. We 

assume u to be a diferentiable function of t for the motion. The 

law of conservation of energy tells us that the particle’s speed after 

it has fallen straight down a distance z is 22gz, where g is the 

constant acceleration of gravity.

a. Find the angular velocity du>dt when u = 2p.

b. Express the particle’s u@ and z-coordinates as functions of t.

c. Express the tangential and normal components of the velocity 

dr >dt and acceleration d2r>dt2 as functions of t. Does the 

acceleration have any nonzero component in the direction of 

the binormal vector B?

x

The helix
r = a, z = bu

z

Positive z-axis

points down.

a

P

r

y

 2. Suppose the curve in Exercise 1 is replaced by the conical helix 

r = au, z = bu shown in the accompanying igure.

a. Express the angular velocity du>dt as a function of u.

b. Express the distance the particle travels along the helix as a 

function of u.

Conical helix

r = au, z = bu

Positive z-axis points down.

Cone z =    r  
b
a

z

x

y

P

Motion in Polar and Cylindrical Coordinates

 3. Deduce from the orbit equation

r =
(1 + e)r0

1 + e cos u

  that a planet is closest to its sun when u = 0 and show that r = r0 

at that time.

 4. A Kepler equation The problem of locating a planet in its orbit 

at a given time and date eventually leads to solving “Kepler” equa-

tions of the form

ƒ(x) = x - 1 -
1
2

 sin x = 0.

a. Show that this particular equation has a solution between 

x = 0 and x = 2.

b. With your computer or calculator in radian mode, use 

 Newton’s method to ind the solution to as many places as 

you can.

 5. In Section 13.6, we found the velocity of a particle moving in the 

plane to be

v = x
#  i + y 

#
j = r

#  ur + ru
#

 uu .

a. Express x
#
 and y

#
 in terms of r

#
 and ru

#
 by evaluating the dot 

products v # i and v # j.

b. Express r
#
 and ru

#
 in terms of x

#
 and y

#
 by evaluating the dot 

products v # ur  and v # uu .

 6. Express the curvature of a twice-diferentiable curve r = ƒ(u) in 

the polar coordinate plane in terms of ƒ and its derivatives.

 7. A slender rod through the origin of the polar coordinate plane ro-

tates (in the plane) about the origin at the rate of 3 rad >min. A 

beetle starting from the point (2, 0) crawls along the rod toward 

the origin at the rate of 1 in. >min.

a. Find the beetle’s acceleration and velocity in polar form when 

it is halfway to (1 in. from) the origin.

b. To the nearest tenth of an inch, what will be the length of the 

path the beetle has traveled by the time it reaches the origin?

 8. Arc length in cylindrical coordinates

a. Show that when you express ds2 = dx2 + dy2 + dz2 in 

terms of cylindrical coordinates, you get ds2 = dr2 +
r2 du2 + dz2.

b. Interpret this result geometrically in terms of the edges and a 

diagonal of a box. Sketch the box.

c. Use the result in part (a) to ind the length of the curve 

r = eu, z = eu, 0 … u … ln 8.

 9. Unit vectors for position and motion in cylindrical 

 coordinates When the position of a particle moving in space 

is given in cylindrical coordinates, the unit vectors we use to de-

scribe its position and motion are

ur = (cos u)i + (sin u)j,  uu = - (sin u)i + (cos u)j,

T

T
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b. Show that

dur

du
= uu and 

duu

du
= -ur .

c. Assuming that the necessary derivatives with respect to t ex-

ist, express v = r
#
 and a = r

$
 in terms of ur , uu , k , r

#
, and u

#
.

d. conservation of angular momentum Let r(t) denote the 

position in space of a moving object at time t. Suppose the 

force acting on the object at time t is

F(t) = -  
c0 r(t) 0 3 r(t),

where c is a constant. In physics the angular momentum 

of an object at time t is deined to be L(t) = r(t) * mv(t), 

where m is the mass of the object and v(t) is the velocity. 

Prove that angular momentum is a conserved quantity; i.e., 

prove that L(t) is a constant vector, independent of time. Re-

member Newton’s law F = ma. (This is a calculus problem, 

not a physics problem.)

  and k (see accompanying igure). The particle’s position vector is 

then r = rur + zk, where r is the positive polar distance coordi-

nate of the particle’s position.

y

z

x

k

r

uu

ur

z

r

(r, u, 0)

u

0

a. Show that ur , uu , and k, in this order, form a right-handed 

frame of unit vectors.

Mathematica/Maple Projects

Projects can be found within MyMathLab.

• Radar Tracking of a Moving Object 

Visualize position, velocity, and acceleration vectors to analyze motion.

• Parametric and Polar Equations with a Figure Skater 

Visualize position, velocity, and acceleration vectors to analyze motion.

• Moving in Three Dimensions 

Compute distance traveled, speed, curvature, and torsion for motion along a space curve. Visualize and compute the tangential, normal, and 

binormal vectors associated with motion along a space curve.

CHAPTER 13 Technology Application Projects
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OVERVIEW The volume of a right circular cylinder is a function V = pr2h of its radius 

and its height, so it is a function V(r, h) of two variables r and h. The speed of sound 

through seawater is primarily a function of salinity S and temperature T. The monthly pay-

ment on a home mortgage is a function of the principal borrowed P, the interest rate i, and 

the term t of the loan. These are examples of functions that depend on more than one inde-

pendent variable.

In this chapter we extend the ideas of single-variable diferential calculus to functions 

of several variables. Their derivatives are more varied and interesting because of the dif-

ferent ways the variables can interact. The applications of these derivatives are also more 

varied than for single-variable calculus, and in the next chapter we will see that the same is 

true for integrals involving several variables.

Partial Derivatives

14 

14.1 Functions of Several Variables

Real-valued functions of several independent real variables are defined analogously to 

functions of a single variable. Points in the domain are now ordered pairs (triples, quadru-

ples, n-tuples) of real numbers, and values in the range are real numbers.

DEFINITIONS Suppose D is a set of n-tuples of real numbers (x1, x2, . . . , xn). 

A real-valued function ƒ on D is a rule that assigns a unique (single) real number

w = ƒ(x1, x2, . . . , xn)

to each element in D. The set D is the function’s domain. The set of w-values 

taken on by ƒ is the function’s range. The symbol w is the dependent variable 

of ƒ, and ƒ is said to be a function of the n independent variables x1 to xn. We 

also call the xj’s the function’s input variables and call w the function’s output 

variable.

If ƒ is a function of two independent variables, we usually call the independent vari-

ables x and y and the dependent variable z, and we picture the domain of ƒ as a region in 

the xy-plane (Figure 14.1). If ƒ is a function of three independent variables, we call the 

independent variables x, y, and z and the dependent variable w, and we picture the domain 

as a region in space.

In applications, we tend to use letters that remind us of what the variables stand for. To 

say that the volume of a right circular cylinder is a function of its radius and height, we might 

write V = ƒ(r, h). To be more specific, we might replace the notation ƒ(r, h) by the formula 
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that calculates the value of V from the values of r and h, and write V = pr2h. In either case, 

r and h would be the independent variables and V the dependent variable of the function.

As usual, we evaluate functions defined by formulas by substituting the values of the 

independent variables in the formula and calculating the corresponding value of the depen-

dent variable. For example, the value of ƒ(x, y, z) = 2x2 + y2 + z2 at the point (3, 0, 4) is

ƒ(3, 0, 4) = 2(3)2 + (0)2 + (4)2 = 225 = 5.

y

x z
0 0D f (x, y)

f (a, b)

f

(a, b)

(x, y)

FIGURE 14.1 An arrow diagram for the function z = ƒ(x, y).

Domains and Ranges

In defining a function of more than one variable, we follow the usual practice of excluding 

inputs that lead to complex numbers or division by zero. If ƒ(x, y) = 2y - x2, then y 

cannot be less than x2. If ƒ(x, y) = 1>(xy), then xy cannot be zero. The domain of a func-

tion is assumed to be the largest set for which the defining rule generates real numbers, 

unless the domain is otherwise specified explicitly. The range consists of the set of output 

values for the dependent variable.

EXAMPLE 1

(a) These are functions of two variables. Note the restrictions that may apply to their 

 domains in order to obtain a real value for the dependent variable z.

Function Domain range

z = 2y - x2 y Ú x2 30, q)

z =
1
xy xy ≠ 0 (-q, 0) ∪ (0, q)

z = sin xy Entire plane 3-1, 14
(b) These are functions of three variables with restrictions on some of their domains. 

Function Domain range

w = 2x2 + y2 + z2 Entire space 30, q)

w =
1

x2 + y2 + z2
(x, y, z) ≠ (0, 0, 0) (0, q)

w = xy ln z Half-space z 7 0 (-q, q)

Functions of Two Variables

Regions in the plane can have interior points and boundary points just like intervals on the 

real line. Closed intervals 3a, b4  include their boundary points, open intervals (a, b) don’t 

include their boundary points, and intervals such as 3a, b) are neither open nor closed.
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As with a half-open interval of real numbers 3a, b), some regions in the plane are 

neither open nor closed. If you start with the open disk in Figure 14.3 and add to it some, 

but not all, of its boundary points, the resulting set is neither open nor closed. The bound-

ary points that are there keep the set from being open. The absence of the remaining 

boundary points keeps the set from being closed. Two interesting examples are the empty 

set and the entire plane. The empty set has no interior points and no boundary points. This 

implies that the empty set is open (because it does not contain points that are not interior 

points), and at the same time it is closed (because there are no boundary points that it fails 

to contain). The entire xy-plane is also both open and closed: open because every point in 

the plane is an interior point, and closed because it has no boundary points. The empty set 

and the entire plane are the only subsets of the plane that are both open and closed. Other 

sets may be open, or closed, or neither.

DEFINITIONS A point (x0, y0) in a region (set) R in the xy-plane is an interior 

point of R if it is the center of a disk of positive radius that lies entirely in R 

(Figure 14.2). A point (x0 , y0) is a boundary point of R if every disk centered at 

(x0 , y0) contains points that lie outside of R as well as points that lie in R. (The 

boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region. 

The region’s boundary points make up its boundary. A region is open if it con-

sists entirely of interior points. A region is closed if it contains all its boundary 

points (Figure 14.3).

R

(a) Interior point

R

(b) Boundary point

(x0, y0)

(x0, y0)

FIGURE 14.2 Interior points and bound-

ary points of a plane region R. An interior 

point is necessarily a point of R. A bound-

ary point of R need not belong to R.

y

x
0

y

x
0

y

x
0

{(x, y) 0  x2 + y2 < 1}

Open unit disk.

Every point an

interior point.

{(x, y) 0  x2 + y2 = 1}

Boundary of unit

disk. (The unit

circle.)

{(x, y) 0  x2 + y2 ≤ 1}

Closed unit disk.

Contains all

boundary points.

FIGURE 14.3 Interior points and boundary points of the unit disk in the plane.

DEFINITIONS A region in the plane is bounded if it lies inside a disk of finite 

radius. A region is unbounded if it is not bounded.

Examples of bounded sets in the plane include line segments, triangles, interiors of 

triangles, rectangles, circles, and disks. Examples of unbounded sets in the plane include 

lines, coordinate axes, the graphs of functions defined on infinite intervals, quadrants, 

half-planes, and the plane itself.

EXAMPLE 2  Describe the domain of the function ƒ(x, y) = 2y - x2.

Solution Since ƒ is defined only where y - x2 Ú 0, the domain is the closed, 

unbounded region shown in Figure 14.4. The parabola y = x2 is the boundary of the 

domain. The points above the parabola make up the domain’s interior. 

y

x
0 1−1

1

Interior points,

where y − x2 > 0

The parabola

y − x2 = 0

is the boundary.

Outside,

y − x2 < 0

FIGURE 14.4 The domain of ƒ(x, y) in 

Example 2 consists of the shaded region 

and its bounding parabola.



 14.1  Functions of Several Variables 795

Graphs, Level Curves, and Contours of Functions of Two Variables

There are two standard ways to picture the values of a function ƒ(x, y). One is to draw and 

label curves in the domain on which ƒ has a constant value. The other is to sketch the sur-

face z = ƒ(x, y) in space.

DEFINITIONS The set of points in the plane where a function ƒ(x, y) has a con-

stant value ƒ(x, y) = c is called a level curve of ƒ. The set of all points (x, y, ƒ(x, y))  

in space, for (x, y) in the domain of ƒ, is called the graph of ƒ. The graph of ƒ is 

also called the surface z = ƒ(x, y).

EXAMPLE 3  Graph ƒ(x, y) = 100 - x2 - y2 and plot the level curves ƒ(x, y) = 0, 

ƒ(x, y) = 51, and ƒ(x, y) = 75 in the domain of ƒ in the plane.

Solution The domain of ƒ is the entire xy-plane, and the range of ƒ is the set of real 

numbers less than or equal to 100. The graph is the paraboloid z = 100 - x2 - y2, the 

positive portion of which is shown in Figure 14.5.

The level curve ƒ(x, y) = 0 is the set of points in the xy-plane at which

ƒ(x, y) = 100 - x2 - y2 = 0,  or  x2 + y2 = 100,

which is the circle of radius 10 centered at the origin. Similarly, the level curves 

ƒ(x, y) = 51 and ƒ(x, y) = 75 (Figure 14.5) are the circles

 ƒ(x, y) = 100 - x2 - y2 = 51,  or  x2 + y2 = 49

 ƒ(x, y) = 100 - x2 - y2 = 75,  or  x2 + y2 = 25.

The level curve ƒ(x, y) = 100 consists of the origin alone. (It is still a level curve.)

If x2 + y2 7 100, then the values of ƒ(x, y) are negative. For example, the circle 

x2 + y2 = 144, which is the circle centered at the origin with radius 12, gives the constant 

value ƒ(x, y) = -44 and is a level curve of ƒ. 

The curve in space in which the plane z = c cuts a surface z = ƒ(x, y) is made up of 

the points that represent the function value ƒ(x, y) = c. It is called the contour curve 

ƒ(x, y) = c to distinguish it from the level curve ƒ(x, y) = c in the domain of ƒ.  

Figure 14.6 shows the contour curve ƒ(x, y) = 75 on the surface z = 100 - x2 - y2 

defined by the function ƒ(x, y) = 100 - x2 - y2. The contour curve lies directly above 

the circle x2 + y2 = 25, which is the level curve ƒ(x, y) = 75 in the function’s domain.

The distinction between level curves and contour curves is often overlooked, and it is 

common to call both types of curves by the same name, relying on context to make it clear 

which type of curve is meant. On most maps, for example, the curves that represent con-

stant elevation (height above sea level) are called contours, not level curves (Figure 14.7).

Functions of Three Variables

In the plane, the points where a function of two independent variables has a constant value 

ƒ(x, y) = c make a curve in the function’s domain. In space, the points where a function 

of three independent variables has a constant value ƒ(x, y, z) = c make a surface in the 

function’s domain.

y

z

x

10
10

100

f (x, y) = 75

f (x, y) = 0

f (x, y) = 51

(a typical

level curve in

the function’s

domain)

The surface

z = f (x, y)

  = 100 − x2 − y2

is the graph of f.

FIGURE 14.5 The graph and selected 

level curves of the function ƒ(x, y) in  

Example 3. The level curves lie in the  

xy-plane,which is the domain of the  

function ƒ(x, y).

z

x

0

y

75

The contour curve f(x, y) = 100 − x2 − y2 = 75

is the circle x2 + y2 = 25 in the plane z = 75. 

Plane z = 75

The level curve f (x, y) = 100 − x2 − y2 = 75

is the circle x2 + y2 = 25 in the xy-plane.

z = 100 − x2 − y2

100

FIGURE 14.6 A plane z = c paral-

lel to the xy-plane intersecting a surface 

z = ƒ(x, y) produces a contour curve.

DEFINITION The set of points (x, y, z) in space where a function of three inde-

pendent variables has a constant value ƒ(x, y, z) = c is called a level surface of ƒ.
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FIGURE 14.7 Contours on Mt. Washington in 

New Hampshire. (From Appalachian Mountain Club. 

Copyright by Appalachian Mountain Club.)

Since the graphs of functions of three variables consist of points (x, y, z, ƒ(x, y, z)) 

lying in a four-dimensional space, we cannot sketch them effectively in our three- 

dimensional frame of reference. We can see how the function behaves, however, by look-

ing at its three-dimensional level surfaces.

x

y

z

1
2

3

"x2 
+ y2 

+ z2 
= 3

"x2 
+ y2 

+ z2 
= 2

"x2 
+ y2 

+ z2 
= 1

FIGURE 14.8 The level surfaces of 

ƒ(x, y, z) = 2x2 + y2 + z2 are concentric 

spheres (Example 4).

DEFINITIONS A point (x0, y0, z0) in a region R in space is an interior point 

of R if it is the center of a solid ball that lies entirely in R (Figure 14.9a). A point 

(x0, y0, z0) is a boundary point of R if every solid ball centered at (x0, y0, z0) con-

tains points that lie outside of R as well as points that lie inside R (Figure 14.9b). 

The interior of R is the set of interior points of R. The boundary of R is the set 

of boundary points of R.

A region is open if it consists entirely of interior points. A region is closed if 

it contains its entire boundary.

Examples of open sets in space include the interior of a sphere, the open half-space 

z 7 0, the first octant (where x, y, and z are all positive), and space itself. Examples of 

closed sets in space include lines, planes, and the closed half-space z Ú 0. A solid sphere 

x

y

z

(a) Interior point

x

y

z

(b) Boundary point

(x0, y0, z0)

(x0, y0, z0)

FIGURE 14.9 Interior points and bound-

ary points of a region in space. As with 

regions in the plane, a boundary point need 

not belong to the space region R.

EXAMPLE 4  Describe the level surfaces of the function

ƒ(x, y, z) = 2x2 + y2 + z2 .

Solution The value of ƒ is the distance from the origin to the point (x, y, z). Each level 

surface 2x2 + y2 + z2 = c, c 7 0, is a sphere of radius c centered at the origin. Figure 

14.8 shows a cutaway view of three of these spheres. The level surface 2x2 + y2 + z2 = 0 

consists of the origin alone.

We are not graphing the function here; we are looking at level surfaces in the function’s 

domain. The level surfaces show how the function’s values change as we move through its 

domain. If we remain on a sphere of radius c centered at the origin, the function maintains 

a constant value, namely c. If we move from a point on one sphere to a point on another, 

the function’s value changes. It increases if we move away from the origin and decreases if 

we move toward the origin. The way the values change depends on the direction we take. 

The dependence of change on direction is important. We return to it in Section 14.5. 

The definitions of interior, boundary, open, closed, bounded, and unbounded for 

regions in space are similar to those for regions in the plane. To accommodate the extra 

dimension, we use solid balls of positive radius instead of disks.
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with part of its boundary removed or a solid cube with a missing face, edge, or corner 

point is neither open nor closed.

Functions of more than three independent variables are also important. For example, the 

temperature on a surface in space may depend not only on the location of the point P(x, y, z) 

on the surface but also on the time t when it is visited, so we would write T = ƒ(x, y, z, t).

Computer Graphing

Three-dimensional graphing software makes it possible to graph functions of two vari-

ables. We can often get information more quickly from a graph than from a formula, since 

the surfaces reveal increasing and decreasing behavior, and high points or low points.

EXAMPLE 5  The temperature w beneath the Earth’s surface is a function of the 

depth x beneath the surface and the time t of the year. If we measure x in feet and t as the 

number of days elapsed from the expected date of the yearly highest surface temperature, 

we can model the variation in temperature with the function

w = cos (1.7 * 10-2t - 0.2x)e-0.2x.

(The temperature at 0 ft is scaled to vary from +1 to -1, so that the variation at x feet can 

be interpreted as a fraction of the variation at the surface.)

Figure 14.10 shows a graph of the function. At a depth of 15 ft, the variation (change 

in vertical amplitude in the igure) is about 5% of the surface variation. At 25 ft, there is 

almost no variation during the year.

The graph also shows that the temperature 15 ft below the surface is about half a year 

out of phase with the surface temperature. When the temperature is lowest on the surface 

(late January, say), it is at its highest 15 ft below. Fifteen feet below the ground, the seasons 

are reversed. 

Figure 14.11 shows computer-generated graphs of a number of functions of two vari-

ables together with their level curves.

15
25

t
x

w

FIGURE 14.10 This graph shows the 

seasonal variation of the temperature 

below ground as a fraction of surface 

temperature (Example 5).

z

y

x

    

y

z

x
    

x

z

y

 

x

y

 

x

y

 

x

y

FIGURE 14.11 Computer-generated graphs and level curves of typical functions of two variables.

(a) z = sin x + 2 sin y (b) z = (4x2 + y2)e-x2 - y2

(c) z = xye-y2



798 Chapter 14  Partial Derivatives

Domain, Range, and Level Curves

In Exercises 1–4, find the specific function values.

 1. ƒ(x, y) = x2 + xy3

a. ƒ(0, 0) b. ƒ(-1, 1)

c. ƒ(2, 3) d. ƒ(-3, -2)

 2. ƒ(x, y) = sin (xy)

a. ƒa2, 
p

6
b  b. ƒa-3, 

p

12
b

c. ƒap, 
1
4
b  d. ƒa-p

2
, -7b

 3. ƒ(x, y, z) =
x - y

y2 + z2

a. ƒ(3, -1, 2) b. ƒa1, 
1
2

, -
1
4
b

c. ƒa0, -  
1
3

, 0b  d. ƒ(2, 2, 100)

 4. ƒ(x, y, z) = 249 - x2 - y2 - z2

a. ƒ(0, 0, 0) b. ƒ(2, -3, 6)

c. ƒ(-1, 2, 3) d. ƒa 4

22
 , 

5

22
 , 

6

22
b

In Exercises 5–12, find and sketch the domain for each function.

 5. ƒ(x, y) = 2y - x - 2

 6. ƒ(x, y) = ln (x2 + y2 - 4)

 7. ƒ(x, y) =
(x - 1)(  y + 2)

( y - x)(  y - x3)

 8. ƒ(x, y) =
sin (xy)

x2 + y2 - 25

 9. ƒ(x, y) = cos-1 ( y - x2)

 10. ƒ(x, y) = ln (xy + x - y - 1)

 11. ƒ(x, y) = 2(x2 - 4) (y2 - 9)

 12. ƒ(x, y) =
1

ln (4 - x2 - y2)

In Exercises 13–16, find and sketch the level curves ƒ(x, y) = c on 

the same set of coordinate axes for the given values of c. We refer to 

these level curves as a contour map.

 13. ƒ(x, y) = x + y - 1, c = -3, -2, -1, 0, 1, 2, 3

 14. ƒ(x, y) = x2 + y2, c = 0, 1, 4, 9, 16, 25

 15. ƒ(x, y) = xy, c = -9, -4, -1, 0, 1, 4, 9

 16. ƒ(x, y) = 225 - x2 - y2
 , c = 0, 1, 2, 3, 4

In Exercises 17–30, (a) find the function’s domain, (b) find the func-

tion’s range, (c) describe the function’s level curves, (d) find the 

boundary of the function’s domain, (e) determine if the domain is an 

open region, a closed region, or neither, and (f) decide if the domain is 

bounded or unbounded.

 17. ƒ(x, y) = y - x 18. ƒ(x, y) = 2y - x

 19. ƒ(x, y) = 4x2 + 9y2 20. ƒ(x, y) = x2 - y2

 21. ƒ(x, y) = xy 22. ƒ(x, y) = y>x2

 23. ƒ(x, y) =
1

216 - x2 - y2
 24. ƒ(x, y) = 29 - x2 - y2

 25. ƒ(x, y) = ln (x2 + y2)  26. ƒ(x, y) = e-(x2 + y2)

 27. ƒ(x, y) = sin-1 ( y - x) 28. ƒ(x, y) = tan-1 ayxb
 29. ƒ(x, y) = ln (x2 + y2 - 1)  30. ƒ(x, y) = ln (9 - x2 - y2)

Matching Surfaces with Level Curves

Exercises 31–36 show level curves for six functions. The graphs of 

these functions are given on the next page (items a–f  ), as are their 

equations (items g–l). Match each set of level curves with the appro-

priate graph and appropriate equation.

 31.   32. 

x

y

 

y

x

 33.   34. 

x

y

 

x

y

 35.   36. 

x

y

 

x

y

EXERCISES 14.1
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f. z

x y

g. z = -
xy2

x2 + y2
 h. z = y2 - y4 - x2

i. z = (cos x)(cos y) e-2x2 + y2>4
j. z = e- y cos x k. z =

1

4x2 + y2

l. z =
xy (x2 - y2)

x2 + y2

a. z

y
x

Functions of Two Variables

Display the values of the functions in Exercises 37–48 in two ways: 

(a) by sketching the surface z = ƒ(x, y) and (b) by drawing an assort-

ment of level curves in the function’s domain. Label each level curve 

with its function value.

 37. ƒ(x, y) = y2 38. ƒ(x, y) = 2x

 39. ƒ(x, y) = x2 + y2 40. ƒ(x, y) = 2x2 + y2

 41. ƒ(x, y) = x2 - y 42. ƒ(x, y) = 4 - x2 - y2

 43. ƒ(x, y) = 4x2 + y2 44. ƒ(x, y) = 6 - 2x - 3y

 45. ƒ(x, y) = 1 - 0 y 0  46. ƒ(x, y) = 1 - 0 x 0 - 0 y 0
 47. ƒ(x, y) = 2x2 + y2 + 4 48. ƒ(x, y) = 2x2 + y2 - 4

Finding Level Curves

In Exercises 49–52, find an equation for and sketch the graph of the 

level curve of the function ƒ(x, y) that passes through the given point.

 49. ƒ(x, y) = 16 - x2 - y2, 1222, 222
 50. ƒ(x, y) = 2x2 - 1, (1, 0)

 51. ƒ(x, y) = 2x + y2 - 3 , (3, -1)

 52. ƒ(x, y) =
2y - x

x + y + 1
 , (-1, 1)

Sketching Level Surfaces

In Exercises 53–60, sketch a typical level surface for the function.

 53. ƒ(x, y, z) = x2 + y2 + z2 54. ƒ(x, y, z) = ln (x2 + y2 + z2)

 55. ƒ(x, y, z) = x + z 56. ƒ(x, y, z) = z

 57. ƒ(x, y, z) = x2 + y2 58. ƒ(x, y, z) = y2 + z2

 59. ƒ(x, y, z) = z - x2 - y2

 60. ƒ(x, y, z) = (x2>25) + (y2>16) + (z2>9)

b. z

y
x

c. 

x y

z

d. 

x

y

z

e. z

x

y
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 70. ƒ(x, y) = (sin x)(cos y) e2x2 + y2>8, 0 … x … 5p, 

0 … y … 5p, P(4p, 4p)

 71. ƒ(x, y) = sin (x + 2 cos y), -2p … x … 2p, 

-2p … y … 2p, P(p, p)

 72. ƒ(x, y) = e(x0.1 - y) sin (x2 + y2), 0 … x … 2p, 

-2p … y … p, P(p, -p)

Use a CAS to plot the implicitly defined level surfaces in Exercises 

73–76.

 73. 4 ln (x2 + y2 + z2) = 1 74. x2 + z2 = 1

 75. x + y2 - 3z2 = 1

 76. sin ax

2
b - (cos y)2x2 + z2 = 2

parametrized surfaces Just as you describe curves in the plane 

parametrically with a pair of equations x = ƒ(t), y = g(t) defined on 

some parameter interval I, you can sometimes describe surfaces in 

space with a triple of equations x = ƒ(u, y), y = g(u, y), z = h(u, y) 

defined on some parameter rectangle a … u … b, c … y … d. Many 

computer algebra systems permit you to plot such surfaces in para-

metric mode. (Parametrized surfaces are discussed in detail in Section 

16.5.) Use a CAS to plot the surfaces in Exercises 77–80. Also plot 

several level curves in the xy-plane.

 77. x = u cos y, y = u sin y, z = u, 0 … u … 2, 

0 … y … 2p

 78. x = u cos y, y = u sin y, z = y, 0 … u … 2, 

0 … y … 2p

 79. x = (2 + cos u) cos y, y = (2 + cos u) sin y, z = sin u, 

0 … u … 2p, 0 … y … 2p

 80. x = 2 cos u cos y, y = 2 cos u sin y, z = 2 sin u, 

0 … u … 2p, 0 … y … p

Finding Level Surfaces

In Exercises 61–64, find an equation for the level surface of the func-

tion through the given point.

 61. ƒ(x, y, z) = 2x - y - ln z, (3, -1, 1)

 62. ƒ(x, y, z) = ln (x2 + y + z2), (-1, 2, 1)

 63. g(x, y, z) = 2x2 + y2 + z2
 , 11, -1, 222

 64. g(x, y, z) =
x - y + z

2x + y - z
 , (1, 0, -2)

In Exercises 65–68, find and sketch the domain of ƒ. Then find an 

equation for the level curve or surface of the function passing through 

the given point.

 65. ƒ(x, y) = a
q

n = 0

 axybn

, (1, 2)

 66. g(x, y, z) = a
q

n = 0

 
(x + y)n

n!zn , (ln 4, ln 9, 2)

 67. ƒ(x, y) = L
y

x

 
du

21 - u2
, (0, 1)

 68. g(x, y, z) = L
y

x

 
dt

1 + t2
+ L

z

0

 
du

24 - u2
, 10, 1, 232

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for each of the functions in 

Exercises 69–72.

a. Plot the surface over the given rectangle.

b. Plot several level curves in the rectangle.

c. Plot the level curve of ƒ through the given point.

 69. ƒ(x, y) = x sin 
y

2
+ y sin 2x, 0 … x … 5p, 0 … y … 5p, 

  P(3p, 3p)

14.2 Limits and Continuity in Higher Dimensions

In this section we develop limits and continuity for multivariable functions. The theory is 

similar to that developed for single-variable functions, but since we now have more than 

one independent variable, there is additional complexity that requires some new ideas.

Limits for Functions of Two Variables

If the values of ƒ(x, y) lie arbitrarily close to a fixed real number L for all points (x, y) suf-

ficiently close to a point (x0 , y0), we say that ƒ approaches the limit L as (x, y) approaches 

(x0 , y0). This is similar to the informal definition for the limit of a function of a single vari-

able. Notice, however, that when (x0 , y0) lies in the interior of ƒ’s domain, (x, y) can 

approach (x0 , y0) from any direction, not just from the left or the right. For the limit to 

exist, the same limiting value must be obtained whatever direction of approach is taken. 

We illustrate this issue in several examples following the definition.
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As for functions of a single variable, it can be shown that

 lim
(x, y)S (x0, y0)

 x = x0

 lim
(x, y)S (x0, y0)

 y = y0

 lim
(x, y)S (x0, y0)

 k = k  (any number k).

For example, in the first limit statement above, ƒ(x, y) = x and L = x0 . Using the defini-

tion of limit, suppose that e 7 0 is chosen. If we let d equal this e, we see that if

0 6 2(x - x0)
2 + ( y - y0)

2 6 d = e,

then

 2(x - x0)
2 6 e   (x - x0)

2 … (x - x0)
2 + (y - y0)

2

 0 x - x0 0 6 e   2a2 = 0 a 0
 0 ƒ(x, y) - x0 0 6 e.  x = ƒ(x, y)

That is, 0 ƒ(x, y) - x0 0 6 e  whenever  0 6 2(x - x0)
2 + (y - y0)

2 6 d.

So a d has been found satisfying the requirement of the definition, and therefore we have 

proved that

lim
(x, y)S (x0, y0)

 ƒ(x, y) = lim
(x, y)S (x0, y0)

 x = x0 .

DEFINITION We say that a function ƒ(x, y) approaches the limit L as (x, y) ap-

proaches (x0 , y0), and write

lim
(x, y)S (x0, y0)

 ƒ(x, y) = L

if, for every number e 7 0, there exists a corresponding number d 7 0 such 

that for all (x, y) in the domain of ƒ,0 ƒ(x, y) - L 0 6 e  whenever  0 6 2(x - x0)
2 + ( y - y0)

2 6 d.

z
0 L − ε L + εL

f

y

z

D
(x, y)

d

0

(x0, y0)

FIGURE 14.12 In the limit definition, d is the radius of a disk centered at 

(x0, y0). For all points (x, y) within this disk, the function values ƒ(x, y) lie inside 

the corresponding interval (L - e, L + e).

The definition of limit says that the distance between ƒ(x, y) and L becomes arbitrarily 

small whenever the distance from (x, y) to (x0, y0) is made sufficiently small (but not 0). 

The definition applies to interior points (x0, y0) as well as boundary points of the domain 

of ƒ, although a boundary point need not lie within the domain. The points (x, y) that 

approach (x0 , y0) are always taken to be in the domain of ƒ. See Figure 14.12.
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As with single-variable functions, the limit of the sum of two functions is the sum of 

their limits (when they both exist), with similar results for the limits of the differences, 

constant multiples, products, quotients, powers, and roots. These facts are summarized in 

Theorem 1.

THEOREM 1—Properties of Limits of Functions of Two Variables

The following rules hold if L, M, and k are real numbers and

lim
(x, y)S (x0, y0)

 ƒ(x, y) = L  and  lim
(x, y)S (x0, y0)

 g(x, y) = M.

1. Sum Rule: lim
(x, y)S (x0, y0)

(ƒ(x, y) + g(x, y)) = L + M

2. Diference Rule: lim
(x, y)S (x0, y0)

(ƒ(x, y) - g(x, y)) = L - M

3. Constant Multiple Rule: lim
(x, y)S (x0, y0)

 kƒ(x, y) = kL  (any number k)

4. Product Rule: lim
(x, y)S (x0, y0)

 (ƒ(x, y) # g(x, y)) = L # M

5. Quotient Rule: lim
(x, y)S (x0, y0) 

 
ƒ(x, y)

g(x, y)
=

L
M

 ,  M ≠ 0

6. Power Rule: lim
(x, y)S (x0, y0)

3ƒ(x, y)4 n = L n, n a positive integer

7. Root Rule: lim
(x, y)S (x0, y0)

2n ƒ(x, y) = 2n L =  L 1>n,
   n a positive integer, and if n is even,  

we assume that L 7 0.

Although we will not prove Theorem 1 here, we give an informal discussion of why it 

is true. If (x, y) is sufficiently close to (x0 , y0), then ƒ(x, y) is close to L and g(x, y) is close 

to M (from the informal interpretation of limits). It is then reasonable that ƒ(x, y) + g(x, y) 

is close to L + M; ƒ(x, y) - g(x, y) is close to L - M; kƒ(x, y) is close to kL; ƒ(x, y)g(x, y) 

is close to LM; and ƒ(x, y) >g(x, y) is close to L >M if M ≠ 0.

When we apply Theorem 1 to polynomials and rational functions, we obtain the use-

ful result that the limits of these functions as (x, y) S (x0 , y0) can be calculated by evaluat-

ing the functions at (x0 , y0). The only requirement is that the rational functions be defined 

at (x0 , y0).

EXAMPLE 1  In this example, we can combine the three simple results following  

the limit definition with the results in Theorem 1 to calculate the limits. We simply substi-

tute the x- and y-values of the point being approached into the functional expression to 

find the limiting value.

(a) lim
(x, y)S (0,1)

 
x - xy + 3

x2y + 5xy - y3
=

0 - (0)(1) + 3

(0)2(1) + 5(0)(1) - (1)3
= -3

(b) lim
(x, y)S (3, -4)

2x2 + y2 = 2(3)2 + (-4)2 = 225 = 5 

EXAMPLE 2  Find lim
(x, y)S (0, 0)

 
x2 - xy

2x - 2y
.
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Solution Since the denominator 2x - 2y approaches 0 as (x, y) S (0, 0), we cannot 

use the Quotient Rule from Theorem 1. If we multiply numerator and denominator by 

2x + 2y, however, we produce an equivalent fraction whose limit we can find:

 lim
(x, y)S (0,0)

 
x2 - xy

2x - 2y
= lim

(x, y)S (0,0)
 
1x2 - xy212x + 2y212x - 2y212x + 2y2  

Multiply by a form 

equal to 1.
 

 = lim
(x, y)S (0,0)

 
x 1x - y212x + 2y2

x - y   Algebra

 = lim
(x, y)S (0,0)

 x 12x + 2y2   
Cancel the nonzero 

factor (x - y).  

 = 0 120 + 202 = 0   Known limit values

We can cancel the factor (x - y) because the path y = x (where we would have 

x - y = 0) is not in the domain of the function

 ƒ(x, y) =
x2 - xy

2x - 2y
. 

EXAMPLE 3  Find lim
(x, y)S (0,0)

 
4xy2

x2 + y2
 if it exists.

Solution We first observe that along the line x = 0, the function always has value 0 

when y ≠ 0. Likewise, along the line y = 0, the function has value 0 provided x ≠ 0. So 

if the limit does exist as (x, y) approaches (0, 0), the value of the limit must be 0 (see  

Figure 14.13). To see if this is true, we apply the definition of limit.

Let e 7 0 be given, but arbitrary. We want to ind a d 7 0 such that

` 4xy2

x2 + y2
- 0 ` 6 e  whenever  0 6 2x2 + y2 6 d

or

4 0 x 0 y2

x2 + y2
6 e  whenever  0 6 2x2 + y2 6 d.

Since y2 … x2 + y2 we have that

4 0 x 0 y2

x2 + y2
… 4 0 x 0 = 42x2 … 42x2 + y2.  

y2

x2 + y2
… 1

So if we choose d = e>4 and let 0 6 2x2 + y2 6 d, we get

` 4xy2

x2 + y2
- 0 ` … 42x2 + y2 6 4d = 4ae

4
b = e.

It follows from the definition that

 lim
(x, y)S (0,0)

  
4xy2

x2 + y2
= 0. 

x

z

y
11

FIGURE 14.13 The surface graph shows 

the limit of the function in Example 3 must 

be 0, if it exists.
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EXAMPLE 4  If ƒ(x, y) =
y
x  , does  lim

(x, y)S (0, 0)
 ƒ(x, y) exist?

Solution The domain of ƒ does not include the y-axis, so we do not consider any points 

(x, y) where x = 0 in the approach toward the origin (0, 0). Along the x-axis, the value of 

the function is ƒ(x, 0) = 0 for all x ≠ 0. So if the limit does exist as (x, y) S (0, 0), the 

value of the limit must be L = 0. On the other hand, along the line y = x, the value of the 

function is ƒ(x, x) = x>x = 1 for all x ≠ 0. That is, the function ƒ approaches the value 1 

along the line y = x. This means that for every disk of radius d centered at (0, 0), the disk 

will contain points (x, 0) on the x-axis where the value of the function is 0, and also points 

(x, x) along the line y = x where the value of the function is 1. So no matter how small we 

choose d as the radius of the disk in Figure 14.12, there will be points within the disk for 

which the function values differ by 1. Therefore, the limit cannot exist because we can 

take e to be any number less than 1 in the limit definition and deny that L = 0 or 1, or any 

other real number. The limit does not exist because we have different limiting values along 

different paths approaching the point (0, 0). 

Continuity

As with functions of a single variable, continuity is defined in terms of limits.

DEFINITION A function ƒ(x, y) is continuous at the point (x0 , y0) if

1. ƒ is defined at (x0 , y0),

2. lim
(x, y)S (x0, y0)

 ƒ(x, y) exists,

3. lim
(x, y)S (x0, y0)

 ƒ(x, y) = ƒ(x0 , y0).

A function is continuous if it is continuous at every point of its domain.

As with the definition of limit, the definition of continuity applies at boundary points 

as well as interior points of the domain of ƒ. The only requirement is that each point (x, y) 

near (x0 , y0) be in the domain of ƒ.

A consequence of Theorem 1 is that algebraic combinations of continuous functions 

are continuous at every point at which all the functions involved are defined. This means 

that sums, differences, constant multiples, products, quotients, and powers of continuous 

functions are continuous where defined. In particular, polynomials and rational functions 

of two variables are continuous at every point at which they are defined.

EXAMPLE 5  Show that

ƒ(x, y) = • 2xy

x2 + y2
, (x, y) ≠ (0, 0)

0, (x, y) = (0, 0)

is continuous at every point except the origin (Figure 14.14).

Solution The function ƒ is continuous at every point (x, y) except (0, 0) because its val-

ues at points other than (0, 0) are given by a rational function of x and y, and therefore at 

those points the limiting value is simply obtained by substituting the values of x and y into 

that rational expression.

(a)

z

−y

x

x

y

0

0.8
1

0

00.8

0.8

1

−0.8
−1

−0.8

−0.8
−1

(b)

0.8

−0.8

FIGURE 14.14 (a) The graph of 

ƒ(x, y) = • 2xy

x2 + y2
, (x, y) ≠ (0, 0)

0, (x, y) = (0, 0).

The function is continuous at every point 

except the origin. (b) The values of ƒ 

are different constants along each line 

y = mx, x ≠ 0 (Example 5).
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At (0, 0), the value of ƒ is deined, but ƒ has no limit as (x, y) S (0, 0). The reason is 

that diferent paths of approach to the origin can lead to diferent results, as we now see.

For every value of m, the function ƒ has a constant value on the “punctured” line 

y = mx, x ≠ 0, because

ƒ(x, y) `
y = mx

=
2xy

x2 + y2
 `

y = mx

=
2x(mx)

x2 + (mx)2
=

2mx2

x2 + m2x2
=

2m

1 + m2
.

Therefore, ƒ has this number as its limit as (x, y) approaches (0, 0) along the line:

lim
(x, y)S (0,0)

 ƒ(x, y) = lim
(x, y)S (0,0)

 c ƒ(x, y) `
y = mx

d =
2m

1 + m2
.

along y = mx

This limit changes with each value of the slope m. There is therefore no single number we 

may call the limit of ƒ as (x, y) approaches the origin. The limit fails to exist, and the func-

tion is not continuous at the origin. 

Examples 4 and 5 illustrate an important point about limits of functions of two or more 

variables. For a limit to exist at a point, the limit must be the same along every approach 

path. This result is analogous to the single-variable case where both the left- and right-sided 

limits had to have the same value. For functions of two or more variables, if we ever find 

paths with different limits, we know the function has no limit at the point they approach.

Two-Path Test for Nonexistence of a Limit

If a function ƒ(x, y) has different limits along two different paths in the domain of 

ƒ as (x, y) approaches (x0 , y0), then lim(x, y)S(x0, y0)
 ƒ(x, y) does not exist.

EXAMPLE 6  Show that the function

ƒ(x, y) =
2x2y

x4 + y2

(Figure 14.15) has no limit as (x, y) approaches (0, 0).

Solution The limit cannot be found by direct substitution, which gives the indeterminate 

form 0 >0. We examine the values of ƒ along parabolic curves that end at (0, 0). Along the 

curve y = kx2, x ≠ 0, the function has the constant value

ƒ(x, y) `
y = kx2

=
2x2y

x4 + y2
 `

y = kx2

=
2x2(kx2)

x4 + (kx2)2
=

2kx4

x4 + k2x4
=

2k

1 + k2
.

Therefore,

lim
(x, y)S (0,0)

 ƒ(x, y) = lim
(x, y)S (0,0)

 c ƒ(x, y) `
y = kx2

d =
2k

1 + k2
.

along y = kx2

This limit varies with the path of approach. If (x, y) approaches (0, 0) along the parabola 

y = x2, for instance, k = 1 and the limit is 1. If (x, y) approaches (0, 0) along the x-axis, 

k = 0 and the limit is 0. By the two-path test, ƒ has no limit as (x, y) approaches (0, 0). 

It can be shown that the function in Example 6 has limit 0 along every straight line 

path y = mx (Exercise 57). This implies the following observation:

(a)

x

(b)

y

k = −1

k = 10
k = 3

k = 1

k = −0.1

−1

1

1
1 y

z

x

−1

FIGURE 14.15 (a) The graph of 

ƒ(x, y) = 2x2y> (x4 + y2). (b) Along each 

path y = kx2 the value of ƒ is constant, but 

varies with k (Example 6).

Having the same limit along all straight lines approaching (x0 , y0) does not imply 

that a limit exists at (x0 , y0).
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Whenever it is correctly defined, the composition of continuous functions is also con-

tinuous. The only requirement is that each function be continuous where it is applied. The 

proof, omitted here, is similar to that for functions of a single variable (Theorem 9 in 

 Section 2.5).

Continuity of Compositions

If ƒ is continuous at (x0 , y0) and g is a single-variable function continuous at 

ƒ(x0 , y0), then the composition h = g ∘ f  defined by h(x, y) = g(ƒ(x, y)) is con-

tinuous at (x0, y0).

For example, the composite functions

ex - y,   cos 
xy

x2 + 1
,  ln (1 + x2y2)

are continuous at every point (x, y).

Functions of More Than Two Variables

The definitions of limit and continuity for functions of two variables and the conclusions 

about limits and continuity for sums, products, quotients, powers, and compositions all 

extend to functions of three or more variables. Functions like

ln (x + y + z)  and  
y sin z

x - 1

are continuous throughout their domains, and limits like

lim
PS (1,0,-1)

 
ex + z

z2 + cos 2xy
=

e1 - 1

(-1)2 + cos 0
=

1
2

,

where P denotes the point (x, y, z), may be found by direct substitution.

Extreme Values of Continuous Functions on Closed, Bounded Sets

The Extreme Value Theorem (Theorem 1, Section 4.1) states that a function of a single 

variable that is continuous at every point of a closed, bounded interval 3a, b4  takes on an 

absolute maximum value and an absolute minimum value at least once in 3a, b4 . The 

same holds true of a function z = ƒ(x, y) that is continuous on a closed, bounded set R in 

the plane (like a line segment, a disk, or a filled-in triangle). The function takes on an abso-

lute maximum value at some point in R and an absolute minimum value at some point in 

R. The function may take on a maximum or minimum value more than once over R.

Similar results hold for functions of three or more variables. A continuous function 

w = ƒ(x, y, z) must take on absolute maximum and minimum values on any closed, 

bounded set (such as a solid ball or cube, spherical shell, or rectangular solid) on which it 

is defined. We will learn how to find these extreme values in Section 14.7.

Limits with Two Variables

Find the limits in Exercises 1–12.

 1. lim
(x, y)S (0,0)

 
3x2 - y2 + 5

x2 + y2 + 2
 2. lim

(x, y)S (0,4)
 

x

2y

 3. lim
(x, y)S (3,4)

2x2 + y2 - 1 4. lim
(x, y)S (2, -3)

 a1x +
1
yb2

 5. lim
(x, y)S (0,p>4)

 sec x tan y 6. lim
(x, y)S (0,0)

 cos 
x2 + y3

x + y + 1

EXERCISES 14.2
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Continuity for Three Variables

At what points (x, y, z) in space are the functions in Exercises 35–40 

continuous?

 35. a. ƒ(x, y, z) = x2 + y2 - 2z2

b. ƒ(x, y, z) = 2x2 + y2 - 1

 36. a. ƒ(x, y, z) = ln xyz b. ƒ(x, y, z) = ex + y cos z

37. a. h(x, y, z) = xy sin 
1
z  b. h(x, y, z) =

1

x2 + z2 - 1

 38. a. h(x, y, z) =
10 y 0 + 0 z 0  b. h(x, y, z) =

10 xy 0 + 0 z 0
 39. a. h(x, y, z) = ln (z - x2 - y2 - 1)

b. h(x, y, z) =
1

z - 2x2 + y2

 40. a. h(x, y, z) = 24 - x2 - y2 - z2

b. h(x, y, z) =
1

4 - 2x2 + y2 + z2 - 9

 7. lim
(x, y)S (0,ln 2)

 ex - y 8. lim
(x, y)S (1,1)

 ln 0 1 + x2 y2 0
 9. lim

(x, y)S (0,0)
 
ey sin x

x  10. lim
(x, y)S (1>27, p3)

 cos23  xy

 11. lim
(x, y)S (1, p>6)

 
x sin y

x2 + 1
 12. lim

(x, y)S (p>2,0)
 
cos y + 1

y - sin x

Limits of Quotients

Find the limits in Exercises 13–24 by rewriting the fractions first.

 13. lim
(x, y)S (1,1)

 
x2 - 2xy + y2

x - y  14. lim
(x, y)S (1,1)

 
x2 - y2

x - y
   x≠y   x≠y

 15. lim
(x, y)S (1,1)

 
xy - y - 2x + 2

x - 1
   x≠1

 16. lim
(x, y)S (2, -4)

  
y + 4

x2y - xy + 4x2 - 4x
   x≠-4, x≠x2

 17. lim
(x, y)S (0,0)

 
x - y + 22x - 22y

2x - 2y   x≠y

 18. lim
(x, y)S (2,2)

 
x + y - 4

2x + y - 2
 19. lim

(x, y)S (2,0)
 
22x - y - 2

2x - y - 4
   x + y≠4   2x - y≠4

 20. lim
(x, y)S (4,3)

 
2x - 2y + 1

x - y - 1
   x≠y + 1

 21. lim
(x, y)S (0,0)

 
sin (x2 + y2)

x2 + y2
 22. lim

(x, y)S (0,0)
 
1 - cos (xy)

xy

 23. lim
(x, y)S (1,-1)

 
x3 + y3

x + y
 24. lim

(x, y)S (2,2)
  

x - y

x4 - y4

Limits with Three Variables

Find the limits in Exercises 25–30.

 25. lim
PS (1,3,4)

 a1x +
1
y +

1
zb  26. lim

PS (1,-1,-1)
 
2xy + yz

x2 + z2

 27. lim
PS (p,p,0)

 (sin2 x + cos2 y + sec2 z)

 28. lim
PS (-1>4,p>2,2)

 tan-1 xyz 29. lim
PS (p,0,3)

 ze-2y cos 2x

 30. lim
PS (2, -3,6)

 ln2x2 + y2 + z2

Continuity for Two Variables

At what points (x, y) in the plane are the functions in Exercises 31–34 

continuous?

 31. a. ƒ(x, y) = sin (x + y) b. ƒ(x, y) = ln (x2 + y2)

 32. a. ƒ(x, y) =
x + y

x - y b. ƒ(x, y) =
y

x2 + 1

 33. a. g(x, y) = sin 
1
xy b. g(x, y) =

x + y

2 + cos x

No Limit Exists at the Origin

By considering different paths of approach, show that the functions in 

Exercises 41–48 have no limit as (x, y) S (0, 0).

 41. ƒ(x, y) = -  
x

2x2 + y2
 42. ƒ(x, y) =

x4

x4 + y2

z

y

x

 

z

y
x

 43. ƒ(x, y) =
x4 - y2

x4 + y2
 44. ƒ(x, y) =

xy0 xy 0
 45. g(x, y) =

x - y

x + y
 46. g(x, y) =

x2 - y

x - y

 47. h(x, y) =
x2 + y

y  48. h(x, y) =
x2y

x4 + y2

Theory and Examples

In Exercises 49–54, show that the limits do not exist.

 49.  lim
(x, y)S (1,1)

 
xy2 - 1

y - 1
 50.  lim

(x, y)S (1, -1)
  

xy + 1

x2 - y2

 51. lim
(x, y)S (0,1)

  
x ln y

x2 + (ln y)2
 52. lim

(x, y)S (1,0)
  

xey - 1
xey - 1 + y

 53. lim
(x, y)S (0,0)

  
y + sin x

x + sin y
 54. lim

(x, y)S (1,1)

 tan y - y tan x
y - x

 34. a. g(x, y) =
x2 + y2

x2 - 3x + 2
 b. g(x, y) =

1

x2 - y
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 61. Does knowing that 0 sin (1>x) 0 … 1 tell you anything about

lim
(x, y)S (0,0)

 y sin 
1
x ?

  Give reasons for your answer.

 62. Does knowing that 0 cos (1>y) 0 … 1 tell you anything about

lim
(x, y)S (0,0)

 x cos 
1
y ?

  Give reasons for your answer.

 63. (Continuation of Example 5.)

a. Reread Example 5. Then substitute m = tan u into the 

 formula

ƒ(x, y) `
y = mx

=
2m

1 + m2

and simplify the result to show how the value of ƒ varies with 

the line’s angle of inclination.

b. Use the formula you obtained in part (a) to show that the limit 

of ƒ as (x, y) S (0, 0) along the line y = mx varies from -1 

to 1 depending on the angle of approach.

 64. continuous extension Deine ƒ(0, 0) in a way that extends

ƒ(x, y) = xy 
x2 - y2

x2 + y2

  to be continuous at the origin.

Changing Variables to Polar Coordinates

If you cannot make any headway with lim(x, y)S(0,0) ƒ(x, y) in rectan-

gular coordinates, try changing to polar coordinates. Substitute 

x = r cos u, y = r sin u, and investigate the limit of the resulting 

expression as r S 0. In other words, try to decide whether there exists 

a number L satisfying the following criterion:

Given e 7 0, there exists a d 7 0 such that for all r and u,

 0 r 0 6 d 1 0 ƒ(r, u) - L 0 6 e. (1)

If such an L exists, then

lim
(x, y)S (0,0)

 ƒ(x, y) = lim
rS0

 ƒ(r cos u, r sin u) = L.

For instance,

lim
(x, y)S (0,0)

 
x3

x2 + y2
= lim

rS0
 
r3 cos3 u

r2
= lim

rS0
 r cos3 u = 0.

To verify the last of these equalities, we need to show that Equation 

(1) is satisied with ƒ(r, u) = r cos3 u and L = 0. That is, we need 

to show that given any e 7 0, there exists a d 7 0 such that for all 

r and u, 0 r 0 6 d 1 0 r cos3 u - 0 0 6 e.

Since 0 r cos3 u 0 = 0 r 0 0 cos3 u 0 … 0 r 0 # 1 = 0 r 0 ,
the implication holds for all r and u if we take d = e.

In contrast,

x2

x2 + y2
=

r2 cos2 u

r2
= cos2 u

 55. Let ƒ(x, y) = c 1, y Ú x4

1, y … 0

0, otherwise.

  Find each of the following limits, or explain that the limit does not 

exist.

a. lim
(x, y)S (0,1)

 ƒ(x, y)

b. lim
(x, y)S (2,3)

 ƒ(x, y)

c. lim
(x, y)S (0,0)

 ƒ(x, y)

 56. Let ƒ(x, y) = e x2, x Ú 0

x3, x 6 0
 .

  Find the following limits.

a. lim
(x, y)S (3, -2)

 ƒ(x, y)

b. lim
(x, y)S (-2, 1)

 ƒ(x, y)

c. lim
(x, y)S (0,0)

 ƒ(x, y)

 57. Show that the function in Example 6 has limit 0 along every 

straight line approaching (0, 0).

 58. If ƒ(x0 , y0) = 3, what can you say about

lim
(x, y)S (x0, y0)

 ƒ(x, y)

  if ƒ is continuous at (x0, y0)? If ƒ is not continuous at (x0, y0)?  

Give reasons for your answers.

the sandwich theorem for functions of two variables states that if 

g(x, y) … ƒ(x, y) … h(x, y) for all (x, y) ≠ (x0 , y0) in a disk centered 

at (x0, y0) and if g and h have the same finite limit L as (x, y) S (x0 , y0), 

then

lim
(x, y)S (x0, y0)

 ƒ(x, y) = L.

Use this result to support your answers to the questions in Exercises 

59–62.

 59. Does knowing that

1 -
x2y2

3
6

tan-1 xy

xy 6 1

  tell you anything about

lim
(x, y)S (0,0)

 
tan-1 xy

xy  ?

  Give reasons for your answer.

 60. Does knowing that

2 0 xy 0 -
x2y2

6
6 4 - 4 cos 2 0 xy 0 6 2 0 xy 0

  tell you anything about

lim
(x, y)S (0,0)

 
4 - 4 cos 2 0 xy 00 xy 0  ?

  Give reasons for your answer.
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Using the Limit Definition

Each of Exercises 73–78 gives a function ƒ(x, y) and a positive num-

ber e. In each exercise, show that there exists a d 7 0 such that for all 

(x, y),

2x2 + y2 6 d 1 0 ƒ(x, y) - ƒ(0, 0) 0 6 e.

 73. ƒ(x, y) = x2 + y2, e = 0.01

 74. ƒ(x, y) = y> (x2 + 1), e = 0.05

 75. ƒ(x, y) = (x + y)> (x2 + 1), e = 0.01

 76. ƒ(x, y) = (x + y)>(2 + cos x), e = 0.02

 77. ƒ(x, y) =
xy2

x2 + y2
  and ƒ(0, 0) = 0, e = 0.04

 78. ƒ(x, y) =
x3 + y4

x2 + y2
  and ƒ(0, 0) = 0, e = 0.02

Each of Exercises 79–82 gives a function ƒ(x, y, z) and a positive 

number e. In each exercise, show that there exists a d 7 0 such that 

for all (x, y, z),

2x2 + y2 + z2 6 d 1 0 ƒ(x, y, z) - ƒ(0, 0, 0) 0 6 e.

 79. ƒ(x, y, z) = x2 + y2 + z2, e = 0.015

 80. ƒ(x, y, z) = xyz, e = 0.008

 81. ƒ(x, y, z) =
x + y + z

x2 + y2 + z2 + 1
 , e = 0.015

 82. ƒ(x, y, z) = tan2 x + tan2 y + tan2 z, e = 0.03

 83. Show that ƒ(x, y, z) = x + y - z is continuous at every point 

(x0 , y0 , z0).

 84. Show that ƒ(x, y, z) = x2 + y2 + z2 is continuous at the origin.

takes on all values from 0 to 1 regardless of how small 0 r 0  is, so that 

lim(x, y)S(0,0) x
2> (x2 + y2)  does not exist.

In each of these instances, the existence or nonexistence of the 

limit as r S 0 is fairly clear. Shifting to polar coordinates does not 

always help, however, and may even tempt us to false conclusions. 

For example, the limit may exist along every straight line (or ray) 

u = constant and yet fail to exist in the broader sense. Example 5 

illustrates this point. In polar coordinates, ƒ(x, y) = (2x2y) > (x4 + y2)  

becomes

ƒ(r cos u, r sin u) =
r cos u sin 2u

r2 cos4 u + sin2 u

for r ≠ 0. If we hold u constant and let r S 0, the limit is 0. On the 

path y = x2, however, we have r sin u = r2 cos2 u and

 ƒ(r cos u, r sin u) =
r cos u sin 2u

r2 cos4 u + (r cos2 u)2

 =
2r cos2 u sin u

2r2 cos4 u
=

r sin u

r2 cos2 u
= 1.

In Exercises 65–70, find the limit of ƒ as (x, y) S (0, 0) or show that 

the limit does not exist.

 65. ƒ(x, y) =
x3 - xy2

x2 + y2
 66. ƒ(x, y) = cos ax3 - y3

x2 + y2
b

 67. ƒ(x, y) =
y2

x2 + y2
 68. ƒ(x, y) =

2x

x2 + x + y2

 69. ƒ(x, y) = tan-1 a 0 x 0 + 0 y 0
x2 + y2

b
 70. ƒ(x, y) =

x2 - y2

x2 + y2

In Exercises 71 and 72, define ƒ(0, 0) in a way that extends ƒ to be 

continuous at the origin.

 71. ƒ(x, y) = ln a3x2 - x2y2 + 3y2

x2 + y2
b

 72. ƒ(x, y) =
3x2y

x2 + y2

14.3 Partial Derivatives

The calculus of several variables is similar to single-variable calculus applied to several 

variables one at a time. When we hold all but one of the independent variables of a func-

tion constant and differentiate with respect to that one variable, we get a “partial” deriva-

tive. This section shows how partial derivatives are defined and interpreted geometrically, 

and how to calculate them by applying the rules for differentiating functions of a single 

variable. The idea of differentiability for functions of several variables requires more than 

the existence of the partial derivatives because a point can be approached from many dif-

ferent directions. However, we will see that differentiable functions of several variables 

behave similarly to differentiable single-variable functions. In particular, they are continu-

ous and can be well approximated by linear functions.

Partial Derivatives of a Function of Two Variables

If (x0, y0) is a point in the domain of a function ƒ(x, y), the vertical plane y = y0 will cut 

the surface z = ƒ(x, y) in the curve z = ƒ(x, y0) (Figure 14.16). This curve is the graph of 
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the function z = ƒ(x, y0) in the plane y = y0 . The horizontal coordinate in this plane is x; 

the vertical coordinate is z. The y-value is held constant at y0, so y is not a variable.

We define the partial derivative of ƒ with respect to x at the point (x0 , y0) as the ordi-

nary derivative of ƒ(x, y0) with respect to x at the point x = x0 . To distinguish partial 

derivatives from ordinary derivatives we use the symbol 0 rather than the d previously 

used. In the definition, h represents a real number, positive or negative.

x

y

z

0

 

Tangent line

The curve z = f (x, y0)

in the plane y = y0

P(x0, y0, f (x0, y0))

Vertical axis in

the plane y = y0

z = f (x, y)

y0

x0

Horizontal axis in the plane y = y0

(x0 + h,  y0)
(x0, y0)

FIGURE 14.16 The intersection of the plane y = y0 

with the surface z = ƒ(x, y), viewed from above the first 

quadrant of the xy-plane.

DEFINITION The partial derivative of ƒ(x, y)  with respect to x at the point 

(x0 , y0)  is

0ƒ

0x
2
(x0, y0)

= lim
hS0

 
ƒ(x0 + h, y0) - ƒ(x0 , y0)

h
,

provided the limit exists.

The partial derivative of ƒ(x, y) with respect to x at the point (x0, y0) is the same as the 

ordinary derivative of ƒ(x, y0) at the point x0:

0ƒ

0x
2
(x0, y0)

=
d

dx
 ƒ(x, y0) 2

x = x0

.

A variety of notations are used to denote the partial derivative at a point (x0, y0), 

including

0ƒ

0x
 (x0, y0),  ƒx(x0, y0),  and  

0z

0x
2
(x0, y0)

.

When we do not specify a specific point (x0, y0) at which the partial derivative is being 

evaluated, then the partial derivative becomes a function whose domain is the points where 

the partial derivative exists. Notations for this function include

0ƒ

0x
,  ƒx ,  and  

0z

0x
.
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The slope of the curve z = ƒ(x, y0) at the point P(x0 , y0 , ƒ(x0 , y0)) in the plane y = y0 

is the value of the partial derivative of ƒ with respect to x at (x0 , y0). (In Figure 14.16 this 

slope is negative.) The tangent line to the curve at P is the line in the plane y = y0 that 

passes through P with this slope. The partial derivative 0ƒ>0x at (x0 , y0) gives the rate of 

change of ƒ with respect to x when y is held fixed at the value y0.

The definition of the partial derivative of ƒ(x, y) with respect to y at a point (x0 , y0) is 

similar to the definition of the partial derivative of ƒ with respect to x. We hold x fixed at 

the value x0 and take the ordinary derivative of ƒ(x0 , y) with respect to y at y0.

DEFINITION The partial derivative of ƒ(x, y)  with respect to y at the point 

(x0 , y0)  is

0ƒ

0y
2
(x0, y0)

=
d

dy
 ƒ(x0 , y) 2

y = y0

= lim
hS0

 
ƒ(x0 , y0 + h) - ƒ(x0 , y0)

h
,

provided the limit exists.

The slope of the curve z = ƒ(x0 , y) at the point P(x0 , y0 , ƒ(x0 , y0)) in the vertical 

plane x = x0 (Figure 14.17) is the partial derivative of ƒ with respect to y at (x0 , y0). The 

tangent line to the curve at P is the line in the plane x = x0 that passes through P with this 

slope. The partial derivative gives the rate of change of ƒ with respect to y at (x0, y0) when 

x is held fixed at the value x0 .

The partial derivative with respect to y is denoted the same way as the partial deriva-

tive with respect to x:

0ƒ

0y
 (x0 , y0),  ƒy(x0 , y0),  

0ƒ

0y
,  ƒy .

Notice that we now have two tangent lines associated with the surface z = ƒ(x, y) at 

the point P(x0, y0, ƒ(x0, y0)) (Figure 14.18). Is the plane they determine tangent to the sur-

face at P? We will see that it is for the differentiable functions defined at the end of this 

section, and we will learn how to find the tangent plane in Section 14.6. First we have to 

better understand partial derivatives.

x

z

y

P(x0, y0, f (x0, y0))

y0x0

(x0, y0)

(x0, y0 + k)

The curve z = f (x0, y)

in the plane

x = x0

Horizontal axis

in the plane x = x0

 z = f (x, y)

Tangent line

Vertical axis

in the plane

x = x0

0

FIGURE 14.17 The intersection of the 

plane x = x0 with the surface z = ƒ(x, y), 

viewed from above the first quadrant of 

the xy-plane.

x

y

z

This tangent line

has slope fy(x0, y0). This tangent line

has slope fx(x0, y0).

The curve z = f (x, y0) in

the vertical plane y = y0

z =  f (x, y)

x = x0y = y0 (x0, y0)

The curve z = f (x0, y) in

the vertical plane x = x0

 P(x0, y0, f (x0, y0))

FIGURE 14.18 Figures 14.16 and 14.17 combined. The tangent 

lines at the point (x0 , y0 , ƒ(x0 , y0)) determine a plane that, in this  

picture at least, appears to be tangent to the surface.
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Calculations

The definitions of 0ƒ>0x and 0ƒ>0y give us two different ways of differentiating ƒ at a 

point: with respect to x in the usual way while treating y as a constant and with respect to y 

in the usual way while treating x as a constant. As the following examples show, the values 

of these partial derivatives are usually different at a given point (x0, y0).

EXAMPLE 1  Find the values of 0ƒ>0x and 0ƒ>0y at the point (4, -5) if

ƒ(x, y) = x2 + 3xy + y - 1.

Solution To find 0ƒ>0x, we treat y as a constant and differentiate with respect to x:

0ƒ

0x
=

0
0x

 (x2 + 3xy + y - 1) = 2x + 3 # 1 # y + 0 - 0 = 2x + 3y.

The value of 0ƒ>0x at (4, -5) is 2(4) + 3(-5) = -7.

To ind 0ƒ>0y, we treat x as a constant and diferentiate with respect to y:

0ƒ

0y
=

0
0y

 (x2 + 3xy + y - 1) = 0 + 3 # x # 1 + 1 - 0 = 3x + 1.

The value of 0ƒ>0y at (4, -5) is 3(4) + 1 = 13. 

EXAMPLE 2  Find 0ƒ>0y as a function if ƒ(x, y) = y sin xy.

Solution We treat x as a constant and ƒ as a product of y and sin xy:

 
0ƒ

0y
=

0
0y

 ( y sin xy) = y 
0
0y

 sin xy + (sin xy) 
0
0y

 ( y)

  = ( y cos xy) 
0
0y

 (xy) + sin xy = xy cos xy + sin xy. 

EXAMPLE 3  Find ƒx and ƒy as functions if

ƒ(x, y) =
2y

y + cos x
.

Solution We treat ƒ as a quotient. With y held constant, we use the quotient rule to get

 ƒx =
0
0x

 a 2y

y + cos x
b =

( y + cos x) 
0
0x

 (2y) - 2y 
0
0x

 ( y + cos x)

( y + cos x)2

 =
( y + cos x)(0) - 2y(-sin x)

( y + cos x)2
=

2y sin x

( y + cos x)2
.

With x held constant and again applying the quotient rule, we get

 ƒy =
0
0y

 a 2y

y + cos x
b =

( y + cos x) 
0
0y

 (2y) - 2y 
0

dy
 ( y + cos x)

( y + cos x)2

  =
( y + cos x)(2) - 2y(1)

( y + cos x)2
=

2 cos x

( y + cos x)2
.  

Implicit differentiation works for partial derivatives the way it works for ordinary 

derivatives, as the next example illustrates.
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EXAMPLE 4  Find 0z>0x assuming that the equation

yz - ln z = x + y

defines z as a function of the two independent variables x and y and the partial derivative 

exists.

Solution We differentiate both sides of the equation with respect to x, holding y constant 

and treating z as a differentiable function of x:

 
0
0x

 ( yz) -
0
0x

 ln z =
0x
0x

+
0y

0x

 y 
0z

0x
-

1
z 

0z

0x
= 1 + 0   With y constant, 

0
0x

 ( yz) = y 
0z

0x
.  

 ay -
1
zb  

0z

0x
= 1   

 
0z

0x
=

z

yz - 1
. 

(1, 2, 5)

z

x

y

x = 1

Surface

z = x2 + y2

Tangent

line

Plane

x = 1

21

FIGURE 14.19 The tangent to the curve 

of intersection of the plane x = 1 and 

surface z = x2 + y2 at the point (1, 2, 5) 

(Example 5).

EXAMPLE 5  The plane x = 1 intersects the paraboloid z = x2 + y2 in a parabola. 

Find the slope of the tangent to the parabola at (1, 2, 5) (Figure 14.19).

Solution The parabola lies in a plane parallel to the yz-plane, and the slope is the value 

of the partial  derivative 0z>0y at (1, 2):

0z

0y
2
(1,2)

=
0
0y

 (x2 + y2) 2
(1,2)

= 2y 2
(1,2)

= 2(2) = 4.

As a check, we can treat the parabola as the graph of the single-variable function 

z = (1)2 + y2 = 1 + y2 in the plane x = 1 and ask for the slope at y = 2. The slope, 

calculated now as an ordinary derivative, is

 
dz

dy
2
y = 2

=
d

dy
 (1 + y2) 2

y = 2

= 2y 2
y = 2

= 4. 

Functions of More Than Two Variables

The definitions of the partial derivatives of functions of more than two independent vari-

ables are similar to the definitions for functions of two variables. They are ordinary deriva-

tives with respect to one variable, taken while the other independent variables are held 

constant.

EXAMPLE 6  If x, y, and z are independent variables and

ƒ(x, y, z) = x sin ( y + 3z),

then

 
0ƒ

0z
=

0
0z

 3x sin ( y + 3z)4 = x 
0
0z

 sin ( y + 3z)  x held constant

 = x cos ( y + 3z) 
0
0z

 ( y + 3z)   Chain rule

 = 3x cos ( y + 3z).   y held constant 
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EXAMPLE 7  If resistors of R1, R2, and R3 ohms are connected in parallel to make an 

R-ohm resistor, the value of R can be found from the equation

1
R

=
1
R1

+
1
R2

+
1
R3

(Figure 14.20). Find the value of 0R>0R2 when R1 = 30, R2 = 45, and R3 = 90 ohms.

Solution To find 0R>0R2, we treat R1 and R3 as constants and, using implicit differentia-

tion, differentiate both sides of the equation with respect to R2:

 
0

0R2
 a1

R
b =

0
0R2

 a 1
R1

+
1
R2

+
1
R3
b

 -  
1

R2
 
0R
0R2

= 0 -
1

R2 2
+ 0

 
0R
0R2

=
R2

R2 2
= a R

R2
b2

.

When R1 = 30, R2 = 45, and R3 = 90,

1
R

=
1
30

+
1
45

+
1
90

=
3 + 2 + 1

90
=

6
90

=
1
15

,

so R = 15 and

0R
0R2

= a15
45
b2

= a1
3
b2

=
1
9

.

Thus at the given values, a small change in the resistance R2 leads to a change in R about 

1>9th as large. 

+ −

R3

R2

R1

FIGURE 14.20 Resistors arranged this 

way are said to be connected in parallel 

(Example 7). Each resistor lets a portion 

of the current through. Their equivalent 

resistance R is calculated with the formula

1
R

=
1
R1

+
1
R2

+
1
R3

.

Partial Derivatives and Continuity

A function ƒ(x, y) can have partial derivatives with respect to both x and y at a point 

 without the function being continuous there. This is different from functions of a single 

variable, where the existence of a derivative implies continuity. If the partial derivatives of 

ƒ(x, y) exist and are continuous throughout a disk centered at (x0, y0), however, then ƒ is 

continuous at (x0 , y0), as we see at the end of this section.

EXAMPLE 8  Let

ƒ(x, y) = e0, xy ≠ 0

1, xy = 0

(Figure 14.21).

(a) Find the limit of ƒ as (x, y) approaches (0, 0) along the line y = x.

(b) Prove that ƒ is not continuous at the origin.

(c) Show that both partial derivatives 0ƒ>0x and 0ƒ>0y exist at the origin.

Solution

(a) Since ƒ(x, y) is constantly zero along the line y = x (except at the origin), we have

lim
(x, y)S (0,0)

 ƒ(x, y) 2
y = x

= lim
(x, y)S (0,0)

0 = 0.

y

z

x

0

1

L1

L 2

z =
0,  xy ≠ 0

1,  xy = 0

FIGURE 14.21 The graph of

ƒ(x, y) = e0, xy ≠ 0

1, xy = 0

consists of the lines L1 and L2 (lying  

1 unit above the xy-plane) and the four 

open quadrants of the xy-plane. The  

function has partial derivatives at the origin 

but is not continuous there (Example 8).
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(b) Since ƒ(0, 0) = 1, the limit in part (a) is not equal to ƒ(0, 0), which proves that ƒ is not 

continuous at (0, 0).

(c) To ind 0ƒ>0x at (0, 0), we hold y ixed at y = 0. Then ƒ(x, y) = 1 for all x, and the 

graph of ƒ is the line L1 in Figure 14.21. The slope of this line at any x is 0ƒ>0x = 0. 

In particular, 0ƒ>0x = 0 at (0, 0). Similarly, 0ƒ>0y is the slope of line L2 at any y, so 

0ƒ>0y = 0 at (0, 0). 

What Example 8 suggests is that we need a stronger requirement for differentiability 

in higher dimensions than the mere existence of the partial derivatives. We define differ-

entiability for functions of two variables (which is slightly more complicated than for 

single-variable functions) at the end of this section and then revisit the connection to 

continuity.

 
0ƒ

0x
=

0
0x

 (x cos y + yex)

 = cos y + yex

 
0ƒ

0y
=

0
0y

 (x cos y + yex)

 = -x sin y + ex

Now we find both partial derivatives of each first partial:

 
02ƒ

0y 0x
=

0
0y

 a0ƒ

0x
b = -sin y + ex

 
02ƒ

0x2
=

0
0x

 a0ƒ

0x
b = yex.

 
02ƒ

0x 0y
=

0
0x

 a0ƒ

0y
b = -sin y + ex

 
02ƒ

0y2
=

0
0y

 a0ƒ

0y
b = -x cos y.  

EXAMPLE 9  If ƒ(x, y) = x cos y + yex, find the second-order derivatives

02ƒ

0x2
,  

02ƒ

0y 0x
,  

02ƒ

0y2
,  and  

02ƒ

0x 0y
.

Solution The first step is to calculate both first partial derivatives.

HistoricAL BiogrApHy

pierre-simon Laplace

(1749–1827)

www.goo.gl/2PxgfB

Second-Order Partial Derivatives

When we differentiate a function ƒ(x, y) twice, we produce its second-order derivatives. 

These derivatives are usually denoted by

02ƒ

0x2
 or ƒxx ,  

02ƒ

0y2
 or ƒyy ,

02ƒ

0x 0y
 or ƒyx ,  and  

02ƒ

0y 0x
 or ƒxy .

The defining equations are

02ƒ

0x2
=

0
0x

 a0ƒ

0x
b ,  

02ƒ

0x 0y
=

0
0x

 a0ƒ

0y
b ,

and so on. Notice the order in which the mixed partial derivatives are taken:

02ƒ

0x 0y
       Differentiate first with respect to y, then with respect to x.

ƒyx = (ƒy)x  Means the same thing.

http://www.goo.gl/2PxgfB
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The Mixed Derivative Theorem

You may have noticed that the “mixed” second-order partial derivatives

02ƒ

0y 0x
  and  

02ƒ

0x 0y

in Example 9 are equal. This is not a coincidence. They must be equal whenever 

ƒ, ƒx , ƒy , ƒxy , and ƒyx are continuous, as stated in the following theorem. However, the 

mixed derivatives can be different when the continuity conditions are not satisfied (see 

Exercise 82).

THEOREM 2—The Mixed Derivative Theorem

If ƒ(x, y) and its partial derivatives ƒx , ƒy , ƒxy , and ƒyx are deined throughout an 

open region containing a point (a, b) and are all continuous at (a, b), then

ƒxy(a, b) = ƒyx(a, b).

Theorem 2 is also known as Clairaut’s Theorem, named after the French mathemati-

cian Alexis Clairaut, who discovered it. A proof is given in Appendix 9. Theorem 2 says 

that to calculate a mixed second-order derivative, we may differentiate in either order, 

provided the continuity conditions are satisfied. This ability to proceed in different order 

sometimes simplifies our calculations.

HistoricAL BiogrApHy

Alexis clairaut

(1713–1765)

www.goo.gl/MYhzm3

EXAMPLE 10  Find 
02w
0x 0y

 if

w = xy +
ey

y2 + 1
.

Solution The symbol 02w>0x 0y tells us to differentiate first with respect to y and then 

with respect to x. However, if we interchange the order of differentiation and differentiate 

first with respect to x we get the answer more quickly. In two steps,

0w
0x

= y  and  
02w
0y 0x

= 1.

If we differentiate first with respect to y, we obtain 02w>0x 0y = 1 as well. We can differen-

tiate in either order because the conditions of Theorem 2 hold for w at all points (x0 , y0). 

 

Partial Derivatives of Still Higher Order

Although we will deal mostly with first- and second-order partial derivatives, because 

these appear the most frequently in applications, there is no theoretical limit to how many 

times we can differentiate a function as long as the derivatives involved exist. Thus, we get 

third- and fourth-order derivatives denoted by symbols like

 
03ƒ

0x 0y2
= ƒyyx ,

 
04ƒ

0x2 0y2
= ƒyyxx , 

and so on. As with second-order derivatives, the order of differentiation is immaterial as 

long as all the derivatives through the order in question are continuous.

http://www.goo.gl/MYhzm3
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EXAMPLE 11  Find ƒyxyz if ƒ(x, y, z) = 1 - 2xy2z + x2y.

Solution We first differentiate with respect to the variable y, then x, then y again, and 

finally with respect to z:

 ƒy = -4xyz + x2

 ƒyx = -4yz + 2x

 ƒyxy = -4z

  ƒyxyz = -4.  

DEFINITION A function z = ƒ(x, y) is differentiable at (x0 , y0) if ƒx(x0 , y0) 

and ƒy(x0 , y0) exist and ∆z = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0, y0) satisfies an equa-

tion of the form

∆z = ƒx(x0 , y0)∆x + ƒy(x0 , y0)∆y + e1∆x + e2∆y

in which each of e1, e2 S 0 as both ∆x, ∆y S 0. We call ƒ differentiable if it is 

differentiable at every point in its domain, and say that its graph is a smooth surface.

The following theorem (proved in Appendix 9) and its accompanying corollary tell us 

that functions with continuous first partial derivatives at (x0 , y0) are differentiable there, 

and they are closely approximated locally by a linear function. We study this approxima-

tion in Section 14.6.

Differentiability

The concept of differentiability for functions of several variables is more complicated than 

for single-variable functions because a point in the domain can be approached along more 

than one path. In defining the partial derivatives for a function of two variables, we inter-

sected the surface of the graph with vertical planes parallel to the xz- and yz-planes, creat-

ing a curve on each plane, called a trace. The partial derivatives were seen as the slopes of 

the two tangent lines to these trace curves at the point on the surface corresponding to the 

point (x0 , y0) being approached in the domain. (See Figure 14.18.) For a differentiable 

function, it would seem reasonable to assume that if we were to rotate slightly one of these 

vertical planes, keeping it vertical but no longer parallel to its coordinate plane, then a 

smooth trace curve would appear on that plane that would have a tangent line at the point 

on the surface having a slope differing just slightly from what it was before (when the 

plane was parallel to its coordinate plane). However, the mere existence of the original 

partial derivative does not guarantee that result. Just as having a limit in the x- and y- 

coordinate directions alone does not imply the function itself has a limit at (x0, y0), as we 

saw in Figure 14.21, so is it the case that the existence of both partial derivatives is not 

enough by itself to ensure derivatives exist for trace curves in other vertical planes. For the 

existence of differentiability, a property is needed to ensure that no abrupt change occurs 

in the function resulting from small changes in the independent variables along any path 

approaching (x0 , y0), paths along which both variables x and y are allowed to change, 

rather than just one of them at a time.

In our study of functions of a single variable, we found that if a function y = ƒ(x) is 

differentiable at x = x0, then the change ∆y resulting in the change of x from 

x0 to x0 + ∆x is close to the change ∆L along the tangent line (or linear approximation L 

of the function ƒ at x0). That is, from Equation (1) in Section 3.9,

∆y = ƒ′(x0)∆x + e∆x

in which e S 0 as ∆x S 0. The extension of this result is what we use to define differen-

tiability for functions of two variables.
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If z = ƒ(x, y) is differentiable, then the definition of differentiability ensures that 

∆z = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 , y0) approaches 0 as ∆x and ∆y approach 0. This tells 

us that a function of two variables is continuous at every point where it is differentiable.

THEOREM 3—The Increment Theorem for Functions of Two Variables

Suppose that the irst partial derivatives of ƒ(x, y) are deined throughout an open 

region R containing the point (x0 , y0) and that ƒx and ƒy are continuous at (x0 , y0). 

Then the change

∆z = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 , y0)

in the value of ƒ that results from moving from (x0 , y0) to another point 

(x0 + ∆x, y0 + ∆y) in R satisies an equation of the form

∆z = ƒx(x0 , y0)∆x + ƒy(x0 , y0)∆y + e1∆x + e2∆y

in which each of e1, e2 S 0 as both ∆x, ∆y S 0.

Corollary of Theorem 3

If the partial derivatives ƒx and ƒy of a function ƒ(x, y) are continuous throughout 

an open region R, then ƒ is diferentiable at every point of R.

THEOREM 4—Diferentiability Implies Continuity

If a function ƒ(x, y) is diferentiable at (x0 , y0), then ƒ is continuous at (x0 , y0).

As we can see from Corollary 3 and Theorem 4, a function ƒ(x, y) must be continuous 

at a point (x0 , y0) if ƒx and ƒy are continuous throughout an open region containing (x0, y0). 

Remember, however, that it is still possible for a function of two variables to be discon-

tinuous at a point where its first partial derivatives exist, as we saw in Example 8. Exis-

tence alone of the partial derivatives at that point is not enough, but continuity of the par-

tial derivatives guarantees differentiability.

Calculating First-Order Partial Derivatives

In Exercises 1–22, find 0ƒ>0x and 0ƒ>0y.

 1. ƒ(x, y) = 2x2 - 3y - 4 2. ƒ(x, y) = x2 - xy + y2

 3. ƒ(x, y) = (x2 - 1)(y + 2)

 4. ƒ(x, y) = 5xy - 7x2 - y2 + 3x - 6y + 2

 5. ƒ(x, y) = (xy - 1)2 6. ƒ(x, y) = (2x - 3y)3

 7. ƒ(x, y) = 2x2 + y2 8. ƒ(x, y) = (x3 + ( y>2))2>3
 9. ƒ(x, y) = 1>(x + y) 10. ƒ(x, y) = x> (x2 + y2)

 11. ƒ(x, y) = (x + y)>(xy - 1) 12. ƒ(x, y) = tan-1 (y>x)

 13. ƒ(x, y) = e(x + y + 1) 14. ƒ(x, y) = e-x sin (x + y)

 15. ƒ(x, y) = ln (x + y) 16. ƒ(x, y) = exy ln y

 17. ƒ(x, y) = sin2 (x - 3y) 18. ƒ(x, y) = cos2 (3x - y2)

 19. ƒ(x, y) = xy 20. ƒ(x, y) = logy x

 21. ƒ(x, y) = L
y

x

 g(t) dt (g continuous for all t)

 22. ƒ(x, y) = a
q

n = 0

(xy)n ( 0 xy 0 6 1)

In Exercises 23–34, find ƒx , ƒy , and ƒz .

 23. ƒ(x, y, z) = 1 + xy2 - 2z2

 24. ƒ(x, y, z) = xy + yz + xz

 25. ƒ(x, y, z) = x - 2y2 + z2

 26. ƒ(x, y, z) = (x2 + y2 + z2)-1>2
 27. ƒ(x, y, z) = sin-1 (xyz)

ExERCISES 14.3
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 62. The ifth-order partial derivative 05ƒ>0x20y3 is zero for each of the 

following functions. To show this as quickly as possible, which 

variable would you diferentiate with respect to irst: x or y? Try to 

answer without writing anything down.

a. ƒ(x, y) = y2x4ex + 2

b. ƒ(x, y) = y2 + y(sin x - x4)

c. ƒ(x, y) = x2 + 5xy + sin x + 7ex

d. ƒ(x, y) = xey2>2

 28. ƒ(x, y, z) = sec-1 (x + yz)

 29. ƒ(x, y, z) = ln (x + 2y + 3z)

 30. ƒ(x, y, z) = yz ln (xy)

 31. ƒ(x, y, z) = e-(x2 + y2 + z2)

 32. ƒ(x, y, z) = e-xyz

 33. ƒ(x, y, z) = tanh (x + 2y + 3z)

 34. ƒ(x, y, z) = sinh (xy - z2)

In Exercises 35–40, find the partial derivative of the function with 

respect to each variable.

 35. ƒ(t, a) = cos (2pt - a)

 36. g(u, y) = y2e(2u>y)

 37. h(r, f, u) = r sin f cos u

 38. g(r, u, z) = r(1 - cos u) - z

 39. Work done by the heart (Section 3.9, Exercise 51)

W(P, V, d, y, g) = PV +
Vdy2

2g

 40. Wilson lot size formula (Section 4.5, Exercise 57)

A(c, h, k, m, q) =
km
q + cm +

hq

2

Calculating Second-Order Partial Derivatives

Find all the second-order partial derivatives of the functions in Exer-

cises 41–50.

 41. ƒ(x, y) = x + y + xy 42. ƒ(x, y) = sin xy

 43. g(x, y) = x2y + cos y + y sin x

 44. h(x, y) = xey + y + 1 45. r(x, y) = ln (x + y)

 46. s(x, y) = tan-1 ( y>x) 47. w = x2 tan (xy)

 48. w = yex2 -  y 49. w = x sin (x2y)

 50. w =
x - y

x2 + y
 51. ƒ(x, y) = x2y3 - x4 + y5

 52. g(x, y) = cos x2 - sin 3y 53. z = x sin (2x - y2)

 54. z = xe 

x>y2

Mixed Partial Derivatives

In Exercises 55–60, verify that wxy = wyx .

 55. w = ln (2x + 3y) 56. w = ex + x ln y + y ln x

 57. w = xy2 + x2y3 + x3y4

 58. w = x sin y + y sin x + xy

 59. v =
x2

y3
 60. v =

3x - y

x + y

 61. Which order of diferentiation will calculate fxy faster: x irst or y 

irst? Try to answer without writing anything down.

a. ƒ(x, y) = x sin y + ey

b. ƒ(x, y) = 1>x
c. ƒ(x, y) = y + (x>y)

d. ƒ(x, y) = y + x2y + 4y3 - ln ( y2 + 1)

e. ƒ(x, y) = x2 + 5xy + sin x + 7ex

f. ƒ(x, y) = x ln xy

Using the Partial Derivative Definition

In Exercises 63–66, use the limit definition of partial derivative to 

compute the partial derivatives of the functions at the specified points.

 63. ƒ(x, y) = 1 - x + y - 3x2y, 
0ƒ

0x
   and   

0ƒ

0y
   at (1, 2)

 64. ƒ(x, y) = 4 + 2x - 3y - xy2, 
0ƒ

0x
   and   

0ƒ

0y
  at (-2, 1)

 65. ƒ(x, y) = 22x + 3y - 1, 
0ƒ

0x
 and 

0ƒ

0y
  at (-2, 3)

 
66.

 
ƒ(x, y) = c sin (x3 + y4)

x2 + y2
, (x, y) ≠ (0, 0)

0, (x, y) = (0, 0),

  
0ƒ

0x
 and 

0ƒ

0y
 at (0, 0)

 67. Let ƒ(x, y) = 2x + 3y - 4. Find the slope of the line tangent to 

this surface at the point (2, -1) and lying in the a. plane x = 2  

b. plane y = -1.

 68. Let ƒ(x, y) = x2 + y3. Find the slope of the line tangent to this 

surface at the point (-1, 1) and lying in the a. plane x = -1  

b. plane y = 1.

 69. three variables Let w = ƒ(x, y, z) be a function of three in-

dependent variables and write the formal deinition of the partial 

derivative 0ƒ>0z at (x0 , y0 , z0). Use this deinition to ind 0ƒ>0z at 

(1, 2, 3) for ƒ(x, y, z) = x2yz2.

 70. three variables Let w = ƒ(x, y, z) be a function of three in-

dependent variables and write the formal deinition of the partial 

derivative 0ƒ>0y at (x0 , y0 , z0). Use this deinition to ind 0ƒ>0y at 

(-1, 0, 3) for ƒ(x, y, z) = -2xy2 + yz2.

In Exercises 71–74, find a function z = ƒ(x, y) whose partial deriva-

tives are as given, or explain why this is impossible.

 71. 
0ƒ

0x
= 3x2y2 - 2x, 

0ƒ

0y
= 2x3y + 6y

 72. 
0ƒ

0x
= 2xe 

xy2

+ x2y2e 

xy2

+ 3, 
0ƒ

0y
= 2x3ye 

xy2

- ey

 73. 
0ƒ

0x
=

2y

(x + y)2
, 

0ƒ

0y
=

2x

(x + y)2

 74. 
0ƒ

0x
= xy cos (xy) + sin (xy), 

0ƒ

0y
= x cos (xy)

Differentiating Implicitly

 75. Find the value of 0z>0x at the point (1, 1, 1) if the equation

xy + z3x - 2yz = 0

  deines z as a function of the two independent variables x and y and 

the partial derivative exists.
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  obtained by dropping the 02ƒ>0z2 term from the previous  

equation, describes potentials and steady-state temperature  

distributions in a plane (see the accompanying igure). The plane (a)  

may be treated as a thin slice of the solid (b) perpendicular to the 

z-axis.

(a)

(b)

Boundary temperatures controlled

+        = 0
'

2f

'x2

'
2f

'y2

+         +         = 0
'

2f

'x2

'
2f

'y2

'
2f

'z2

Show that each function in Exercises 83–90 satisfies a Laplace 

equation.

 83. ƒ(x, y, z) = x2 + y2 - 2z2

 84. ƒ(x, y, z) = 2z3 - 3(x2 + y2)z

 85. ƒ(x, y) = e-2y cos 2x

 86. ƒ(x, y) = ln2x2 + y2

 87. ƒ(x, y) = 3x + 2y - 4

 88. ƒ(x, y) = tan-1 
x
y

 89. ƒ(x, y, z) = (x2 + y2 + z2)-1>2
 90. ƒ(x, y, z) = e3x + 4y cos 5z

the wave equation If we stand on an ocean shore and take a snap-

shot of the waves, the picture shows a regular pattern of peaks and 

valleys in an instant of time. We see periodic vertical motion in space, 

with respect to distance. If we stand in the water, we can feel the rise 

and fall of the water as the waves go by. We see periodic vertical 

motion in time. In physics, this beautiful symmetry is expressed by 

the one-dimensional wave equation

02w

0t2
= c2 

02w

0x2
,

 76. Find the value of 0x>0z at the point (1, -1, -3) if the equation

xz + y ln x - x2 + 4 = 0

  deines x as a function of the two independent variables y and z and 

the partial derivative exists.

Exercises 77 and 78 are about the triangle shown here.

c

B

C
A

a

b

 77. Express A implicitly as a function of a, b, and c and calculate 

0A>0a and 0A>0b.

 78. Express a implicitly as a function of A, b, and B and calculate 

0a>0A and 0a>0B.

 79. two dependent variables Express yx in terms of u and y if the 

equations x = y ln u and y = u ln y deine u and y as functions 

of the independent variables x and y, and if yx exists. (Hint: Dif-

ferentiate both equations with respect to x and solve for yx by 

 eliminating ux .)

 80. two dependent variables Find 0x>0u and 0y>0u if the equations 

u = x2 - y2 and y = x2 - y deine x and y as functions of the in-

dependent variables u and y, and the partial derivatives exist. (See 

the hint in Exercise 79.) Then let s = x2 + y2 and ind 0s>0u.

Theory and Examples

 81. Let ƒ(x, y) = e y3, y Ú 0

-y2, y 6 0.

  Find ƒx 

, ƒy , ƒxy , and ƒyx , and state the domain for each partial  

derivative.

 82. Let ƒ(x, y) = c xy 
x2 - y2

x2 + y2
, if (x, y) ≠ 0,

0, if (x, y) = 0.

  The graph of ƒ is shown on page 799.

a. Show that 
0ƒ

0y
 (x, 0) = x for all x, and 

0ƒ

0x
 (0, y) = -y for all y.

b. Show that 
02ƒ

0y 0x
 (0, 0) ≠

02ƒ

0x 0y
 (0, 0).

  The three-dimensional Laplace equation

02ƒ

0x2
+

02ƒ

0y2
+

02ƒ

0z2
= 0

  is satisied by steady-state temperature distributions T = ƒ(x, y, z) 

in space, by gravitational potentials, and by electrostatic poten-

tials. The two-dimensional Laplace equation

02ƒ

0x2
+

02ƒ

0y2
= 0,
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 100. the heat equation An important partial diferential equation 

that describes the distribution of heat in a region at time t can be 

represented by the one-dimensional heat equation

0ƒ

0t
=

02ƒ

0x2
.

  Show that u(x, t) = sin (ax) # e-bt satisies the heat equation for 

constants a and b. What is the relationship between a and b for 

this function to be a solution?

 
101. Let

 
ƒ(x, y) = c xy2

x2 + y4
, (x, y) ≠ (0, 0)

0, (x, y) = (0, 0).

  Show that ƒx(0, 0) and ƒy(0, 0) exist, but ƒ is not diferentiable at 

(0, 0). (Hint: Use Theorem 4 and show that ƒ is not continuous at 

(0, 0).)

 102. Let ƒ(x, y) = b0, x2 6 y 6 2x2

1, otherwise.

  Show that ƒx(0, 0) and ƒy(0, 0) exist, but ƒ is not diferentiable at 

(0, 0).

 103. the Korteweg-deVries equation

  This nonlinear diferential equation, which describes wave mo-

tion on shallow water surfaces, is given by

4ut + uxxx + 12u ux = 0.

  Show that u(x, t) = sech2 (x - t) satisies the Kortweg-deVries 

equation.

 104. Show that T =
1

2x2 + y2
 satisies the equation Txx + Tyy = T3.

where w is the wave height, x is the distance variable, t is the time 

variable, and c is the velocity with which the waves are propagated.

w

0

x

In our example, x is the distance across the ocean’s surface, but 

in other applications, x might be the distance along a vibrating string, 

distance through air (sound waves), or distance through space (light 

waves). The number c varies with the medium and type of wave.

Show that the functions in Exercises 91–97 are all solutions of 

the wave equation.

 91. w = sin (x + ct) 92. w = cos (2x + 2ct)

 93. w = sin (x + ct) + cos (2x + 2ct)

 94. w = ln (2x + 2ct) 95. w = tan (2x - 2ct)

 96. w = 5 cos (3x + 3ct) + ex + ct

 97. w = ƒ(u), where ƒ is a diferentiable function of u, and u =  

a(x + ct), where a is a constant

 98. Does a function ƒ(x, y) with continuous irst partial derivatives 

throughout an open region R have to be continuous on R? Give 

reasons for your answer.

 99. If a function ƒ(x, y) has continuous second partial derivatives 

throughout an open region R, must the irst-order partial deriva-

tives of ƒ be continuous on R? Give reasons for your answer.

14.4 The Chain Rule

The Chain Rule for functions of a single variable studied in Section 3.6 says that when 

w = ƒ(x) is a differentiable function of x and x = g(t) is a differentiable function of t, w is 

a differentiable function of t and dw >dt can be calculated by the formula

dw

dt
=

dw

dx
 
dx

dt
.

For this composite function w(t) = ƒ(g(t)), we can think of t as the independent variable 

and x = g(t) as the “intermediate variable,” because t determines the value of x which in 

turn gives the value of w from the function ƒ. We display the Chain Rule in a “dependency 

diagram” in the margin. Such diagrams capture which variables depend on which.

For functions of several variables the Chain Rule has more than one form, which 

depends on how many independent and intermediate variables are involved. However, 

once the variables are taken into account, the Chain Rule works in the same way we just 

discussed.

Functions of Two Variables

The Chain Rule formula for a differentiable function w = ƒ(x, y) when x = x(t) and 

y = y(t) are both differentiable functions of t is given in the following theorem.

To find dw>dt, we read down the route 

from w to t, multiplying derivatives 

along the way.

Chain Rule

t

x

w = f (x)

dx

dt

dw

dx

Intermediate

variable

Dependent

variable

Independent

variable
dw

dt

dw

dx

dx

dt
=
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Proof  The proof consists of showing that if x and y are diferentiable at t = t0 , then w 

is diferentiable at t0 and

dw

dt
 (t0) =

0w
0x

 (P0)  
dx

dt
 (t0) +

0w
0y

 (P0)  
dy

dt
 (t0),

where P0 = (x(t0), y(t0)).

Let ∆x, ∆y, and ∆w be the increments that result from changing t from t0 to t0 + ∆t. 

Since ƒ is diferentiable (see the deinition in Section 14.3),

∆w =
0w
0x

 (P0) ∆x +
0w
0y

 (P0) ∆y + e1∆x + e2∆y,

where e1, e2 S 0 as ∆x, ∆y S 0. To ind dw >dt, we divide this equation through by ∆t 

and let ∆t approach zero. The division gives

∆w

∆t
=

0w
0x

 (P0)  
∆x

∆t
+

0w
0y

 (P0)  
∆y

∆t
+ e1

∆x

∆t
+ e2

∆y

∆t
.

Letting ∆t approach zero gives

 
dw

dt
 (t0) = lim

∆tS0
 
∆w

∆t

  =
0w
0x

 (P0)  
dx

dt
 (t0) +

0w
0y

 (P0)  
dy

dt
 (t0) + 0 # dx

dt
 (t0) + 0 # dy

dt
 (t0). 

Often we write 0w>0x for the partial derivative 0ƒ>0x, so we can rewrite the Chain 

Rule in Theorem 5 in the form

THEOREM 5—Chain Rule For Functions of One Independent Variable 

and Two Intermediate Variables

If w = ƒ(x, y) is diferentiable and if x = x(t), y = y(t) are diferentiable func-

tions of t, then the composition w = ƒ(x(t), y(t)) is a diferentiable function of t 

and

dw

dt
= ƒx(x(t), y(t)) x′(t) + ƒy(x(t), y(t)) y′(t),

or

dw

dt
=

0ƒ

0x
 
dx

dt
+

0ƒ

0y
 
dy

dt
.

Each of 
0ƒ

0x
, 

0w

0x
, ƒx indicates the partial 

derivative of ƒ with respect to x.

dw

dt
=

0w
0x

 
dx

dt
+

0w
0y

 
dy

dt
.

However, the meaning of the dependent variable w is different on each side of the preced-

ing equation. On the left-hand side, it refers to the composite function w = ƒ(x(t), y(t)) as 

a function of the single variable t. On the right-hand side, it refers to the function 

w = ƒ(x, y) as a function of the two variables x and y. Moreover, the single derivatives 

dw>dt, dx>dt, and dy>dt are being evaluated at a point t0 , whereas the partial derivatives 

0w>0x and 0w>0y are being evaluated at the point (x0 , y0), with x0 = x(t0) and y0 = y(t0). 

With that understanding, we will use both of these forms interchangeably throughout the 

text whenever no confusion will arise.

To remember the Chain Rule, picture the 

diagram below. To find dw>dt, start at w 

and read down each route to t, multiply-

ing derivatives along the way. Then add 

the products.

Chain Rule

t

yx

w = f (x, y)

'w
'y

'w
'x

dy

dt

dx

dt

dw

dt

'w

'x

dx

dt

'w

'y

dy

dt
= +

Intermediate

variables

Dependent

variable

Independent

variable
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THEOREM 6—Chain Rule for Functions of One Independent Variable and 

Three Intermediate Variables

If w = ƒ(x, y, z) is diferentiable and x, y, and z are diferentiable functions of t, 

then w is a diferentiable function of t and

dw

dt
=

0w
0x

 
dx

dt
+

0w
0y

 
dy

dt
+

0w
0z

 
dz

dt
.

EXAMPLE 1  Use the Chain Rule to find the derivative of

w = xy

with respect to t along the path x = cos t, y = sin t. What is the derivative’s value at 

t = p>2?

Solution We apply the Chain Rule to find dw >dt as follows:

 
dw

dt
=

0w
0x

 
dx

dt
+

0w
0y

 
dy

dt

 =
0(xy)

0x
 
d

dt
 (cos t) +

0(xy)

0y
 
d

dt
 (sin t)

 = ( y)(-sin t) + (x)(cos t)

 = (sin t)(-sin t) + (cos t)(cos t)

 = -sin2 t + cos2 t

 = cos 2t.

In this example, we can check the result with a more direct calculation. As a function of t,

w = xy = cos t sin t =
1
2

 sin 2t,

so

dw

dt
=

d

dt
 a1

2
 sin 2tb =

1
2

 (2 cos 2t) = cos 2t.

In either case, at the given value of t,

 
dw

dt
2
t =p>2 =  cos a2 

p
2
b =  cos p = -1. 

Functions of Three Variables

You can probably predict the Chain Rule for functions of three intermediate variables, as it 

only involves adding the expected third term to the two-variable formula.

The dependency diagram on the preceding page provides a convenient way to remem-

ber the Chain Rule. The “true” independent variable in the composite function is t, whereas 

x and y are intermediate variables (controlled by t) and w is the dependent variable.

A more precise notation for the Chain Rule shows where the various derivatives in 

Theorem 5 are evaluated:

dw

dt
 (t0) =

0ƒ

0x
 (x0, y0)  

dx

dt
 (t0) +

0ƒ

0y
 (x0, y0)  

dy

dt
 (t0),

or, using another notation,

dw

dt
2
t0

=
0ƒ

0x
2
(x0, y0)

  
dx

dt
2
t0

+
0ƒ

0y
2
(x0, y0)

  
dy

dt
2
t0

.
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The proof is identical with the proof of Theorem 5 except that there are now three 

intermediate variables instead of two. The dependency diagram we use for remembering 

the new equation is similar as well, with three routes from w to t.

THEOREM 7—Chain Rule for Two Independent Variables and Three 

 Intermediate Variables

Suppose that w = ƒ(x, y, z), x = g(r, s), y = h(r, s), and z = k(r, s). If all four 

functions are diferentiable, then w has partial derivatives with respect to r and s, 

given by the formulas

 
0w
0r

=
0w
0x

 
0x
0r

+
0w
0y

 
0y

0r
+

0w
0z

 
0z

0r

 
0w
0s

=
0w
0x

 
0x
0s

+
0w
0y

 
0y

0s
+

0w
0z

 
0z

0s
.

The first of these equations can be derived from the Chain Rule in Theorem 6 by hold-

ing s fixed and treating r as t. The second can be derived in the same way, holding r fixed 

and treating s as t. The dependency diagrams for both equations are shown in Figure 14.22.

EXAMPLE 2  Find dw>dt if

w = xy + z,  x = cos t,  y = sin t,  z = t.

In this example the values of w(t) are changing along the path of a helix (Section 13.1) as t 

changes. What is the derivative’s value at t = 0?

Solution Using the Chain Rule for three intermediate variables, we have

 
dw

dt
=

0w
0x

 
dx

dt
+

0w
0y

 
dy

dt
+

0w
0z

 
dz

dt

 = (y)(-sin t) + (x)(cos t) + (1)(1)

 = (sin t)(-sin t) + (cos t)(cos t) + 1   
Substitute for intermediate 

variables.
 

 = -sin2 t + cos2 t + 1 = 1 + cos 2t,

so

 
dw

dt
2
t = 0

= 1 +  cos (0) = 2. 

For a physical interpretation of change along a curve, think of an object whose posi-

tion is changing with time t. If w = T(x, y, z) is the temperature at each point (x, y, z) 

along a curve C with parametric equations x = x(t), y = y(t), and z = z(t), then the com-

posite function w = T(x(t), y(t), z(t)) represents the temperature relative to t along the 

curve. The derivative dw >dt is then the instantaneous rate of change of temperature due to 

the motion along the curve, as calculated in Theorem 6.

Functions Defined on Surfaces

If we are interested in the temperature w = ƒ(x, y, z) at points (x, y, z) on the earth’s sur-

face, we might prefer to think of x, y, and z as functions of the variables r and s that give 

the points’ longitudes and latitudes. If x = g(r, s), y = h(r, s), and z = k(r, s), we could 

then express the temperature as a function of r and s with the composite function

w = ƒ(g(r, s), h(r, s), k(r, s)).

Under the conditions stated below, w has partial derivatives with respect to both r and s 

that can be calculated in the following way.

Here we have three routes from w to 

t instead of two, but finding dw>dt is 

still the same. Read down each route, 

multiplying derivatives along the way; 

then add.

Chain Rule

t

zyx

w = f (x, y, z)

'w
'z

'w
'x 'w

'y

dy

dt dz

dt

dx

dt

dw

dt

'w

'x

dx

dt

'w

'y

dy

dt
= +

'w

'z

dz

dt
+

Intermediate

variables

Dependent

variable

Independent

variable
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EXAMPLE 4  Express 0w>0r  and 0w>0s in terms of r and s if

w = x2 + y2,  x = r - s,  y = r + s.

EXAMPLE 3  Express 0w>0r  and 0w>0s in terms of r and s if

w = x + 2y + z2,  x =
r
s ,  y = r2 + ln s,  z = 2r.

Solution Using the formulas in Theorem 7, we find

 
0w
0r

=
0w
0x

 
0x
0r

+
0w
0y

 
0y

0r
+

0w
0z

 
0z

0r

 = (1)a1sb + (2)(2r) + (2z)(2)

 =
1
s + 4r + (4r)(2) =

1
s + 12r   Substitute for intermediate variable z.

 
0w
0s

=
0w
0x

 
0x
0s

+
0w
0y

 
0y

0s
+

0w
0z

 
0z

0s

 = (1)a- r

s2
b + (2)a1sb + (2z)(0) =

2
s -

r

s2
 . 

If ƒ is a function of two intermediate variables instead of three, each equation in 

 Theorem 7 becomes correspondingly one term shorter.

w

(a)

g h k

f

x y z

r, s

Dependent

variable

Independent

variables

Intermediate

variables

w = f( g(r, s), h(r, s), k(r, s))

(b)

r

zx y

w = f (x, y, z)

'w
'x 'w

'y

'y

'r
'x
'r

'w
'z

'z
'r

'w

'r

'w

'x

'x

'r

'w

dy

'y

'r
=

'w

'z

'z

'r
++

s

zx y

(c)

'w
'x

'w
'y

'y

's'x
's

'w
'z

'z
's

'w

's

'w

'x

'x

's

'w

'y

'y

's
=

'w

'z

'z

's
++

w = f (x, y, z)

FIGURE 14.22 Composite function and dependency diagrams for Theorem 7.

If w = ƒ(x, y), x = g(r, s), and y = h(r, s), then

0w
0r

=
0w
0x

 
0x
0r

+
0w
0y

 
0y

0r
  and  

0w
0s

=
0w
0x

 
0x
0s

+
0w
0y

 
0y

0s
.

Figure 14.23 shows the dependency diagram for the first of these equations. The dia-

gram for the second equation is similar; just replace r with s.

Chain Rule

r

yx

 w = f (x, y)

'w
'x

'x

'r

'w
'y

'y

'r

'w

'r

'w

'x

'x

'r

'w

'y

'y

'r
= +

FIGURE 14.23 Dependency diagram for 

the equation

0w

0r
=

0w

0x
 
0x

0r
+

0w

0y
 
0y

0r
.
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Solution The preceding discussion gives the following.

 
0w
0r

=
0w
0x

 
0x
0r

+
0w
0y

 
0y

0r

 = (2x)(1) + (2y)(1)

 = 2(r - s) + 2(r + s)

 = 4r

 
0w
0s

=
0w
0x

 
0x
0s

+
0w
0y

 
0y

0s

 = (2x)(-1) + (2y)(1)

 = -2(r - s) + 2(r + s)

 = 4s  

Substitute for  

the intermediate  

variables.

If ƒ is a function of a single intermediate variable x, our equations are even simpler.

If w = ƒ(x) and x = g(r, s), then

0w
0r

=
dw

dx
 
0x
0r
  and  

0w
0s

=
dw

dx
 
0x
0s

.

Implicit Differentiation Revisited

The two-variable Chain Rule in Theorem 5 leads to a formula that takes some of the alge-

bra out of implicit differentiation. Suppose that

1. The function F(x, y) is diferentiable and

2. The equation F(x, y) = 0 defines y implicitly as a differentiable function of x, say 

y = h(x).

Since w = F(x, y) = 0, the derivative dw >dx must be zero. Computing the derivative 

from the Chain Rule (dependency diagram in Figure 14.25), we find

 0 =
dw

dx
= Fx 

dx

dx
+ Fy 

dy

dx
  

Theorem 5 with 

t = x and ƒ = F
 

 = Fx
# 1 + Fy

# dy

dx
.

If Fy = 0w>0y ≠ 0, we can solve this equation for dy >dx to get

dy

dx
= -  

Fx

Fy
.

We state this result formally.

x

x

w = F(x, y)

= Fx
'w
'x

dx

dx
= 1

y = h(x)

Fy =
'w
'y

dy

dx
= h′(x)

= Fx • 1 + Fy •
dw

dx

dy

dx

FIGURE 14.25 Dependency diagram 

for differentiating w = F(x, y) with 

respect to x. Setting dw>dx = 0 leads to a 

simple computational formula for implicit 

 differentiation (Theorem 8).

THEOREM 8—A Formula for Implicit Diferentiation

Suppose that F(x, y) is diferentiable and that the equation F(x, y) = 0 deines y 

as a diferentiable function of x. Then at any point where Fy ≠ 0,

 
dy

dx
= -  

Fx

Fy
. (1)

Chain Rule

r

x

s

w = f (x)

dw
dx

'x

'r

'x

's

'w

'r

dw

dx

'x

'r
=

'w

's

dw

dx

'x

's
=

FIGURE 14.24 Dependency diagram for 

differentiating ƒ as a composite function of 

r and s with one intermediate variable.

In this case, we use the ordinary (single-variable) derivative, dw >dx. The dependency 

 diagram is shown in Figure 14.24.
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EXAMPLE 5  Use Theorem 8 to find dy >dx if y2 - x2 - sin xy = 0.

Solution Take F(x, y) = y2 - x2 - sin xy. Then

dy

dx
= -  

Fx

Fy
= -  

-2x - y cos xy

2y - x cos xy
=

2x + y cos xy

2y - x cos xy
.

This calculation is significantly shorter than a single-variable calculation using implicit 

differentiation. 

The result in Theorem 8 is easily extended to three variables. Suppose that the equa-

tion F(x, y, z) = 0 defines the variable z implicitly as a function z = ƒ(x, y). Then for all 

(x, y) in the domain of ƒ, we have F(x, y, ƒ(x, y)) = 0. Assuming that F and ƒ are differen-

tiable functions, we can use the Chain Rule to differentiate the equation F(x, y, z) = 0 

with respect to the independent variable x:

0 =
0F
0x

 
0x
0x

+
0F
0y

 
0y

0x
+

0F
0z

 
0z

0x
  

= Fx
# 1 + Fy

# 0 + Fz
# 0z

0x
,  

y is constant when 

differentiating with 

respect to x.
 

so

Fx + Fz 
0z

0x
= 0.

A similar calculation for differentiating with respect to the independent variable y gives

Fy + Fz 
0z

0y
= 0.

Whenever Fz ≠ 0, we can solve these last two equations for the partial derivatives of 

z = ƒ(x, y) to obtain

 
0z

0x
= -  

Fx

Fz
  and 

0z

0y
= -  

Fy

Fz
. (2)

An important result from advanced calculus, called the implicit Function theorem, 

states the conditions for which our results in Equations (2) are valid. If the partial deriva-

tives Fx, Fy, and Fz are continuous throughout an open region R in space containing the 

point (x0, y0, z0), and if for some constant c, F(x0, y0, z0) = c and Fz(x0, y0, z0) ≠ 0, then 

the equation F(x, y, z) = c defines z implicitly as a differentiable function of x and y near 

(x0, y0, z0), and the partial derivatives of z are given by Equations (2).

EXAMPLE 6  Find 
0z

0x
 and 

0z

0y
 at (0, 0, 0) if x3 + z2 + yexz + z cos y = 0.

Solution Let F(x, y, z) = x3 + z2 + yexz + z cos y. Then

Fx = 3x2 + zyexz,  Fy = exz - z sin y,  and  Fz = 2z + xyexz + cos y.
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Since F(0, 0, 0) = 0, Fz(0, 0, 0) = 1 ≠ 0, and all first partial derivatives are continuous, 

the Implicit Function Theorem says that F(x, y, z) = 0 defines z as a differentiable func-

tion of x and y near the point (0, 0, 0). From Equations (2),

0z

0x
= -  

Fx

Fz
= -  

3x2 + zyexz

2z + xyexz + cos y
  and  

0z

0y
= -  

Fy

Fz
= -  

exz - z sin y

2z + xyexz + cos y
.

At (0, 0, 0) we find

 
0z

0x
= -  

0
1

= 0  and  
0z

0y
= -  

1
1

= -1. 

Functions of Many Variables

We have seen several different forms of the Chain Rule in this section, but each one is just 

a special case of one general formula. When solving particular problems, it may help to 

draw the appropriate dependency diagram by placing the dependent variable on top, the 

intermediate variables in the middle, and the selected independent variable at the bottom. 

To find the derivative of the dependent variable with respect to the selected independent 

variable, start at the dependent variable and read down each route of the dependency dia-

gram to the independent variable, calculating and multiplying the derivatives along each 

route. Then add the products found for the different routes.

In general, suppose that w = ƒ(x, y, . . . , y) is a differentiable function of the inter-

mediate variables x, y, . . . , y (a finite set) and the x, y, . . . , y are differentiable functions 

of the independent variables p, q, . . . , t (another finite set). Then w is a differentiable 

function of the variables p through t, and the partial derivatives of w with respect to these 

variables are given by equations of the form

0w
0p

=
0w
0x

 
0x
0p

+
0w
0y

 
0y

0p
+ g +

0w
0y 

0y
0p

.

The other equations are obtained by replacing p by q, . . . , t, one at a time.

One way to remember this equation is to think of the right-hand side as the dot prod-

uct of two vectors with componentsa0w
0x

, 
0w
0y

, . . . , 
0w
0yb  and  a0x

0p
, 

0y

0p
, . . . , 

0y
0p
b .

 (++++)++++* (++++)++++*
Derivatives of w with 

respect to the  

intermediate variables

Derivatives of the intermediate 

variables with respect to the 

selected independent variable

Chain Rule: One Independent Variable

In Exercises 1–6, (a) express dw >dt as a function of t, both by using 

the Chain Rule and by expressing w in terms of t and differentiating 

directly with respect to t. Then (b) evaluate dw >dt at the given value 

of t.

 1. w = x2 + y2, x = cos t, y = sin t; t = p

 2. w = x2 + y2, x = cos t + sin t, y = cos t - sin t; t = 0

 3. w =
x
z +

y
z , x = cos2 t, y = sin2 t, z = 1>t ; t = 3

 4. w = ln (x2 + y2 + z2), x = cos t, y = sin t, z = 42t ; 

t = 3

 5. w = 2yex - ln z, x = ln (t2 + 1), y = tan-1 t, z = et ; 

t = 1

 6. w = z - sin xy, x = t, y = ln t, z = et - 1 ; t = 1

Chain Rule: Two and Three Independent Variables

In Exercises 7 and 8, (a) express 0z>0u and 0z>0y as functions of u 

and y both by using the Chain Rule and by expressing z directly in 

terms of u and y before differentiating. Then (b) evaluate 0z>0u and 

0z>0y at the given point (u, y).

 7. z = 4ex ln y, x = ln (u cos y), y = u sin y; 

(u, y) = (2, p>4)

EXERCISES 14.4
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 27. x2 + xy + y2 - 7 = 0, (1, 2)

 28. xey + sin xy + y - ln 2 = 0, (0, ln 2)

 29. (x3 - y4)6 + ln (x2 + y) = 1, (-1, 0)

 30. xex2y - yex = x - y + 2,  (1, 1)

Find the values of 0z>0x and 0z>0y at the points in Exercises 31–34.

 31. z3 - xy + yz + y3 - 2 = 0, (1, 1, 1)

 32. 
1
x +

1
y +

1
z - 1 = 0, (2, 3, 6)

 33. sin (x + y) + sin (  y + z) + sin (x + z) = 0, (p, p, p)

 34. xey + yez + 2 ln x - 2 - 3 ln 2 = 0, (1, ln 2, ln 3)

Finding Partial Derivatives at Specified Points

 35. Find 0w>0r when r = 1, s = -1 if w = (x + y + z)2, 

x = r - s, y = cos (r + s), z = sin (r + s).

 36. Find 0w>0y when u = -1, y = 2 if w = xy + ln z, 

x = y2>u, y = u + y, z = cos u.

 37. Find 0w>0y when u = 0, y = 0 if w = x2 + ( y>x), 

x = u - 2y + 1, y = 2u + y - 2.

 38. Find 0z>0u when u = 0, y = 1 if z = sin xy + x sin y, 

x = u2 + y2, y = uy.

 39. Find 0z>0u and 0z>0y when u = ln 2, y = 1 if z =  5 tan-1 x and 

x = eu + ln y.

 40. Find 0z>0u and 0z>0y when u = 1, y = -2 if z =  ln q and 

q = 1y + 3 tan-1 u.

Theory and Examples

 41. Assume that w = ƒ(s3 + t2)  and ƒ′(x) = ex. Find 
0w

0t
 and 

0w

0s
.

 42. Assume that w = ƒats2, 
s
t
b , 

0ƒ

0x
 (x, y) = xy, and 

0ƒ

0y
 (x, y) =

x2

2
. 

  Find 
0w

0t
 and 

0w

0s
.

 43. Assume that z = ƒ(x, y), x = g(t), y = h(t), ƒx(2, -1) = 3,  

and ƒy(2, -1) = -2. If g(0) = 2, h(0) = -1, g′(0) = 5, and 

  h′(0) = -4, ind 
dz

dt
2
t = 0

.

 44. Assume that z = ƒ(x, y)2, x = g(t), y = h(t), ƒx(1, 0) = -1, 

ƒy(1, 0) = 1, and ƒ(1, 0) = 2. If g(3) = 1, h(3) = 0, g′(3) = -3, 

  and h′(3) = 4, ind 
dz

dt
2
t = 3

.

 45. Assume that z = ƒ(w), w = g(x, y), x = 2r3 - s2, and y = res.  

If gx(2, 1) = -3, gy(2, 1) = 2, ƒ′(7) = -1, and g(2, 1) = 7, 

  ind 
0z

0r
2
r = 1, s = 0

 and 
0z

0s
2
r = 1, s = 0

.

 46. Assume that z = ln (ƒ(w)), w = g(x, y), x = 2r - s, and 

y = r2s. If gx(2, -9) = -1, gy(2, -9) = 3, ƒ′(-2) = 2, 

  ƒ(-2) = 5, and g(2, -9) = -2,  ind 
0z

0r
2
r = 3, s = - 1

 and 

  
0z

0s
2
r = 3, s = - 1

.

 8. z = tan-1 (x>y), x = u cos y, y = u sin y; 

(u, y) = (1.3, p>6)

In Exercises 9 and 10, (a) express 0w>0u and 0w>0y as functions of u 

and y both by using the Chain Rule and by expressing w directly in 

terms of u and y before differentiating. Then (b) evaluate 0w>0u and 

0w>0y at the given point (u, y).

 9. w = xy + yz + xz, x = u + y, y = u - y, z = uy; 

(u, y) = (1>2, 1)

 10. w = ln (x2 + y2 + z2), x = uey sin u, y = uey cos u, 

z = uey; (u, y) = (-2, 0)

In Exercises 11 and 12, (a) express 0u>0x, 0u>0y, and 0u>0z as func-

tions of x, y, and z both by using the Chain Rule and by expressing u 

directly in terms of x, y, and z before differentiating. Then (b) evaluate 

0u>0x, 0u>0y, and 0u>0z at the given point (x, y, z).

 11. u =
p - q

q - r , p = x + y + z, q = x - y + z, 

  r = x + y - z; (x, y, z) = 123, 2, 12
 12. u = eqr sin-1 p, p = sin x, q = z2 ln y, r = 1>z; 

  (x, y, z) = (p>4, 1>2, -1>2)

Using a Dependency Diagram

In Exercises 13–24, draw a dependency diagram and write a Chain 

Rule formula for each derivative.

 13. 
dz

dt
 for z = ƒ(x, y), x = g(t), y = h(t)

 14. 
dz

dt
 for z = ƒ(u, y, w), u = g(t), y = h(t), w = k(t)

 15. 
0w

0u
 and 

0w

0y for w = h(x, y, z), x = ƒ(u, y), y = g(u, y), 

  z = k(u, y)

 16. 
0w

0x
 and 

0w

0y
 for w = ƒ(r, s, t), r = g(x, y), s = h(x, y), 

  t = k(x, y)

 17. 
0w

0u
 and 

0w

0y for w = g(x, y), x = h(u, y), y = k(u, y)

 18. 
0w

0x
 and 

0w

0y
 for w = g(u, y), u = h(x, y), y = k(x, y)

 19. 
0z

0t
 and 

0z

0s
 for z = ƒ(x, y), x = g(t, s), y = h(t, s)

 20. 
0y

0r
 for y = ƒ(u), u = g(r, s)

 21. 
0w

0s
 and 

0w

0t
 for w = g(u), u = h(s, t)

 22. 
0w

0p
 for w = ƒ(x, y, z, y), x = g( p, q), y = h( p, q), 

  z = j(p, q), y = k(p, q)

 23. 
0w

0r
 and 

0w

0s
 for w = ƒ(x, y), x = g(r), y = h(s)

 24. 
0w

0s
 for w = g(x, y), x = h(r, s, t), y = k(r, s, t)

Implicit Differentiation

Assuming that the equations in Exercises 25–30 define y as a differen-

tiable function of x, use Theorem 8 to find the value of dy >dx at the 

given point.

 25. x3 - 2y2 + xy = 0, (1, 1)

 26. xy + y2 - 3x - 3 = 0, (-1, 1)



830 Chapter 14  Partial Derivatives

 47. changing voltage in a circuit The voltage V in a circuit that 

satisies the law V = IR is slowly dropping as the battery wears 

out. At the same time, the resistance R is increasing as the resistor 

heats up. Use the equation

dV

dt
=

0V

0I
 
dI

dt
+

0V

0R
 
dR

dt

  to ind how the current is changing at the instant when R =  

600 ohms, I = 0.04 amp, dR>dt = 0.5 ohm>sec, and dV>dt =  

-0.01 volt>sec.

R

+ −

V

I

Battery

 48. changing dimensions in a box The lengths a, b, and c of the 

edges of a rectangular box are changing with time. At the instant 

in question, a = 1 m, b = 2 m, c = 3 m, da>dt = db>dt =

1 m>sec, and dc>dt = -3 m>sec. At what rates are the box’s vol-

ume V and surface area S changing at that instant? Are the box’s 

interior diagonals increasing in length or decreasing?

 49. If ƒ(u, y, w) is diferentiable and u = x - y, y = y - z, and 

w = z - x, show that

0ƒ

0x
+

0ƒ

0y
+

0ƒ

0z
= 0.

 50. polar coordinates Suppose that we substitute polar coordi-

nates x = r cos u and y = r sin u in a diferentiable function 

w = ƒ(x, y).

a. Show that

0w

0r
= ƒx cos u + ƒy sin u

and

1
r 

0w

0u
= -ƒx sin u + ƒy cos u.

b. Solve the equations in part (a) to express ƒx and ƒy in terms 

of 0w>0r and 0w>0u.

c. Show that

(ƒx)
2 + (ƒy)

2 = a0w

0r
b2

+
1

r2
 a0w

0u
b2

.

 51. Laplace equations Show that if w = ƒ(u, y) satisies the La-

place equation ƒuu + ƒyy = 0 and if u = (x2 - y2) >2 and 

y = xy, then w satisies the Laplace equation wxx + wyy = 0.

 52. Laplace equations Let w = ƒ(u) + g(y), where u = x + iy,  

y = x - iy, and i = 2-1. Show that w satisies the Laplace 

equation wxx + wyy = 0 if all the necessary functions are difer-

entiable.

 53. Extreme values on a helix Suppose that the partial derivatives 

of a function ƒ(x, y, z) at points on the helix x = cos t, y = sin t, 

z = t are

ƒx = cos t,  ƒy = sin t,  ƒz = t2 + t - 2.

  At what points on the curve, if any, can ƒ take on extreme values?

 54. A space curve Let w = x2e2y cos 3z. Find the value of dw >dt 

at the point (1, ln 2, 0) on the curve x = cos t, y = ln (t + 2), 

z = t.

 55. temperature on a circle Let T = ƒ(x, y) be the temperature at 

the point (x, y) on the circle x = cos t, y = sin t, 0 … t … 2p and 

suppose that

0T
0x

= 8x - 4y,  
0T
0y

= 8y - 4x.

a. Find where the maximum and minimum temperatures on the 

circle occur by examining the derivatives dT >dt and d2T>dt2.

b. Suppose that T = 4x2 - 4xy + 4y2. Find the maximum and 

minimum values of T on the circle.

 56. temperature on an ellipse Let T = g(x, y) be the temperature 

at the point (x, y) on the ellipse

x = 222 cos t,  y = 22 sin t,  0 … t … 2p,

  and suppose that

0T
0x

= y,  
0T
0y

= x.

a. Locate the maximum and minimum temperatures on the 

 ellipse by examining dT >dt and d2T>dt2.

b. Suppose that T = xy - 2. Find the maximum and minimum 

values of T on the ellipse.

 57. The temperature T = T(x, y) in °C at point (x, y)  

satisies Tx(1, 2) = 3 and Ty(1, 2) = -1. If x = e2t - 2 cm and 

y = 2 +  ln  t cm, ind the rate at which the temperature T  

changes when t = 1 sec.

 58. A bug crawls on the surface z = x2 - y2 directly above 

a path in the xy-plane given by x = ƒ(t) and y = g(t). If 

ƒ(2) = 4, ƒ′(2) = -1, g(2) = -2, and g′(2) = -3, then at what 

rate is the bug’s elevation z changing when t = 2?

Differentiating integrals Under mild continuity restrictions, it is 

true that if

F(x) = L
b

a

 g(t, x) dt,

then F′(x) = L
b

a

 gx(t, x) dt. Using this fact and the Chain Rule, we can 

ind the derivative of

F(x) = L
ƒ(x)

a

 g(t, x) dt

by letting

G(u, x) = L
u

a

 g(t, x) dt,

where u = ƒ(x). Find the derivatives of the functions in Exercises 59 

and 60.

 59. F(x) = L
x2

0

2t4 + x3 dt

 60. F(x) = L
1

x2

2t3 + x2 dt
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14.5 Directional Derivatives and Gradient Vectors

If you look at the map (Figure 14.26) showing contours within Yosemite National Park in 

California, you will notice that the streams flow perpendicular to the contours. The 

streams are following paths of steepest descent so the waters reach lower elevations as 

quickly as possible. Therefore, the fastest instantaneous rate of change in a stream’s eleva-

tion above sea level has a particular direction. In this section, you will see why this direc-

tion, called the “downhill” direction, is perpendicular to the contours.

Directional Derivatives in the Plane

We know from Section 14.4 that if ƒ(x, y) is differentiable, then the rate at which ƒ changes 

with respect to t along a differentiable curve x = g(t), y = h(t) is

dƒ

dt
=

0ƒ

0x
 
dx

dt
+

0ƒ

0y
 
dy

dt
.

At any point P0(x0 , y0) = P0(g(t0), h(t0)), this equation gives the rate of change of ƒ with 

respect to increasing t and therefore depends, among other things, on the direction of 

motion along the curve. If the curve is a straight line and t is the arc length parameter 

along the line measured from P0 in the direction of a given unit vector u, then dƒ >dt is the 

rate of change of ƒ with respect to distance in its domain in the direction of u. By varying 

u, we find the rates at which ƒ changes with respect to distance as we move through P0 in 

different directions. We now define this idea more precisely.

Suppose that the function ƒ(x, y) is defined throughout a region R in the xy-plane, that 

P0(x0 , y0) is a point in R, and that u = u1 i + u2 

 

j is a unit vector. Then the equations

x = x0 + su1,  y = y0 + su2

parametrize the line through P0 parallel to u. If the parameter s measures arc length from 

P0 in the direction of u, we find the rate of change of ƒ at P0 in the direction of u by calcu-

lating dƒ >ds at P0 (Figure 14.27).

FIGURE 14.26 Contours within 

 Yosemite National Park in California show 

streams, which follow paths of  steepest 

descent, running perpendicular to the 

contours. (Source: Yosemite National Park 

Map from U.S. Geological Survey,  

http://www.usgs.gov)

x

y

0

R

Line x = x0 + su1, y = y0 + su2

u = u1i + u2 j

Direction of

increasing s

P0(x0, y0) 

FIGURE 14.27 The rate of change of ƒ 

in the direction of u at a point P0 is the rate 

at which ƒ changes along this line at P0.

DEFINITION The derivative of ƒ at P0(x0 , y0) in the direction of the unit 

vector u = u1i + u2 j is the number

 adƒ

ds
b

u, P0

= lim
sS0

 
ƒ(x0 + su1, y0 + su2) - ƒ(x0 , y0)

s , (1)

provided the limit exists.

The directional derivative defined by Equation (1) is also denoted by

Duƒ(P0)  or  Duƒ � P0
  

“The derivative of ƒ 

in the direction of u, 

evaluated at P0”

 

The partial derivatives ƒx(x0 , y0) and ƒy(x0 , y0) are the directional derivatives of ƒ at P0 in 

the i and j directions. This observation can be seen by comparing Equation (1) to the defi-

nitions of the two partial derivatives given in Section 14.3.

EXAMPLE 1  Using the definition, find the derivative of

ƒ(x, y) = x2 + xy

at P0(1, 2) in the direction of the unit vector u = 11>222i + 11>222j.

http://www.usgs.gov
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Solution Applying the definition in Equation (1), we obtain

 ¢dƒ

ds
≤

u, P0

= lim
sS0

 
ƒ(x0 + su1, y0 + su2) - ƒ(x0 , y0)

s  Eq. (1)

 = lim
sS0

 

ƒ¢1 + s # 1

22
, 2 + s # 1

22
≤ - ƒ(1, 2)

s  Substitute.

 = lim
sS0

 

¢1 +
s

22
≤2

+ ¢1 +
s

22
≤ ¢2 +

s

22
≤ - (12 + 1 # 2)

s

 = lim
sS0

 

¢1 +
2s

22
+

s2

2
≤ + ¢2 +

3s

22
+

s2

2
≤ - 3

s

 = lim
sS0

 

5s

22
+ s2

s = lim
sS0

 ¢ 5

22
+ s≤ =

5

22
.

The rate of change of ƒ(x, y) = x2 + xy at P0(1, 2) in the direction u is 5>22. 

y

z

Surface S:

z = f (x, y) f (x0 + su1, y0 + su2) − f (x0, y0)

P0(x0, y0) u = u1i + u2j

(x0 + su1, y0 + su2)

Tangent line

P(x0, y0, z0)

s

C

Q

x

FIGURE 14.28 The slope of the trace curve C at P0 is 

lim
QSP

 slope (PQ); this is the directional derivativeadƒ

ds
b

u, P0

= Duƒ � P0
.

Interpretation of the Directional Derivative

The equation z = ƒ(x, y) represents a surface S in space. If z0 = ƒ(x0 , y0), then the point 

P(x0 , y0 , z0) lies on S. The vertical plane that passes through P and P0(x0 , y0) parallel to u 

intersects S in a curve C (Figure 14.28). The rate of change of ƒ in the direction of u is the 

slope of the tangent to C at P in the right-handed system formed by the vectors u and k.
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When u = i, the directional derivative at P0 is 0ƒ>0x evaluated at (x0 , y0). When 

u = j, the directional derivative at P0 is 0ƒ>0y evaluated at (x0 , y0). The directional deriva-

tive generalizes the two partial derivatives. We can now ask for the rate of change of ƒ in 

any direction u, not just the directions i and j.

For a physical interpretation of the directional derivative, suppose that T = ƒ(x, y) is 

the temperature at each point (x, y) over a region in the plane. Then ƒ(x0 , y0) is the tem-

perature at the point P0(x0, y0) and Duƒ � P0
 is the instantaneous rate of change of the tem-

perature at P0 stepping off in the direction u.

Calculation and Gradients

We now develop an efficient formula to calculate the directional derivative for a differen-

tiable function ƒ. We begin with the line

 x = x0 + su1 ,  y = y0 + su2 , (2)

through P0(x0, y0), parametrized with the arc length parameter s increasing in the direction 

of the unit vector u = u1 i + u2 

  

j. Then by the Chain Rule we find

 adƒ

ds
b

u, P0

=
0ƒ

0x
2
P0

  
dx

ds
+

0ƒ

0y
2
P0

  
dy

ds
  Chain Rule for differentiable ƒ

 =
0ƒ

0x
2
P0

 u1 +
0ƒ

0y
2
P0

 u2 
From Eqs. (2), dx>ds = u1 

and dy>ds = u2

 

 = c 0ƒ

0x
2
P0

 i +
0ƒ

0y
2
P0

 j d # c u1i + u2 j d . (3)

 (1+++)+++1* (++)++*
 Gradient of ƒ at P0 Direction u

DEFINITION The gradient vector (or gradient) of ƒ(x, y) is the vector

∇ƒ =
0ƒ

0x
 i +

0ƒ

0y
 j.

The value of the gradient vector obtained by evaluating the partial derivatives 

at a point P0(x0, y0) is written

∇ƒ �P0
  or  ∇ƒ(x0, y0).

The notation ∇ƒ is read “grad ƒ” as well as “gradient of ƒ” and “del ƒ.” The symbol ∇  by 

itself is read “del.” Another notation for the gradient is grad ƒ. Using the gradient notation, 

we restate Equation (3) as a theorem.

THEOREM 9—The Directional Derivative Is a Dot Product

If ƒ(x, y) is diferentiable in an open region containing P0(x0 , y0), then

 adƒ

ds
b

u,P0

= ∇ƒ �P0

# u, (4)

the dot product of the gradient ∇ƒ at P0 with the vector u. In brief, Du ƒ = ∇ƒ # u.

Equation (3) says that the derivative of a differentiable function ƒ in the direction of u 

at P0 is the dot product of u with a special vector, which we now define.
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EXAMPLE 2  Find the derivative of ƒ(x, y) = xey + cos (xy) at the point (2, 0) in the 

direction of v = 3i - 4j.

Solution Recall that the direction of a vector v is the unit vector obtained by dividing v 

by its length:

u =
v0 v 0 =

v
5

=
3
5

 i -
4
5

 j.

The partial derivatives of ƒ are everywhere continuous and at (2, 0) are given by

 ƒx(2, 0) = (ey - y sin (xy)) 2
(2, 0)

= e0 - 0 = 1

 ƒy(2, 0) = (xey - x sin (xy)) 2
(2, 0)

= 2e0 - 2 # 0 = 2.

The gradient of ƒ at (2, 0) is

∇ƒ 0 (2,0) = ƒx(2, 0)i + ƒy(2, 0)j = i + 2j

(Figure 14.29). The derivative of ƒ at (2, 0) in the direction of v is therefore

 Duƒ � (2, 0) = ∇ƒ � (2, 0)
# u   Eq. (4) with the Duƒ 0 P0

 notation

 = (i + 2j) # a3
5

 i -
4
5

 jb =
3
5

-
8
5

= -1. 

Evaluating the dot product in the brief version of Equation (4) gives

Duƒ = ∇ƒ # u = 0 ∇ƒ 0 0 u 0  cos u = 0 ∇ƒ 0  cos u,

where u is the angle between the vectors u and ∇ƒ, and reveals the following properties.

x

y

0 1 3 4

−1

1

2
∇ f = i + 2j

u =     i −    j
3
5

4
5

P0(2, 0)

FIGURE 14.29 Picture ∇ƒ as a vector 

in the domain of ƒ. The figure shows a 

number of level curves of ƒ. The rate at 

which ƒ changes at (2, 0) in the direction 

u is ∇ƒ # u = -1, which is the component 

of ∇ƒ in the direction of unit vector u 

(Example 2).

Properties of the Directional Derivative Du  ƒ = ∇ƒ # u = 0 ∇ƒ 0  cos u

1. The function ƒ increases most rapidly when cos u = 1, which means that 

u = 0 and u is the direction of ∇ƒ. That is, at each point P in its domain, 

ƒ increases most rapidly in the direction of the gradient vector ∇ƒ at P. The 

derivative in this direction is

Duƒ = 0 ∇ƒ 0  cos (0) = 0 ∇ƒ 0 .
2. Similarly, ƒ decreases most rapidly in the direction of -∇ƒ. The derivative in 

this direction is Duƒ = 0 ∇ƒ 0  cos (p) = - 0 ∇ƒ 0 .
3. Any direction u orthogonal to a gradient ∇f ≠ 0 is a direction of zero change 

in ƒ because u then equals p>2 and

Duƒ = 0 ∇ƒ 0  cos (p>2) = 0 ∇ƒ 0 # 0 = 0.

As we discuss later, these properties hold in three dimensions as well as two.

EXAMPLE 3  Find the directions in which ƒ(x, y) = (x2>2) + (y2>2)

(a) increases most rapidly at the point (1, 1), and

(b) decreases most rapidly at (1, 1).

(c) What are the directions of zero change in ƒ at (1, 1)?

Solution

(a) The function increases most rapidly in the direction of ∇ƒ at (1, 1). The gradient there is

∇ƒ � (1, 1) = (xi + yj) 2
(1, 1)

= i + j .
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Its direction is

u =
i + j0 i + j 0 =

i + j

2(1)2 + (1)2
=

1

22
 i +

1

22
 j.

(b) The function decreases most rapidly in the direction of -∇ƒ at (1, 1), which is

-u = -  
1

22
 i -

1

22
 j.

(c) The directions of zero change at (1, 1) are the directions orthogonal to ∇ƒ:

n = -  
1

22
 i +

1

22
 j  and  -n =

1

22
 i -

1

22
 j.

See Figure 14.30. 

z

x

y
1

1

(1, 1)

(1, 1, 1)

Most rapid

increase in f

Most rapid

decrease in f

∇f = i + j

Zero change

in f

−∇f

z = f (x, y)

=      +
2

x2

2

y2

FIGURE 14.30 The direction in which 

ƒ(x, y) increases most rapidly at (1, 1) is 

the direction of ∇ƒ 0 (1,1) = i + j. It corre-

sponds to the direction of steepest ascent 

on the surface at (1, 1, 1) (Example 3).

At every point (x0 , y0) in the domain of a diferentiable function ƒ(x, y), the gradi-

ent of ƒ is normal to the level curve through (x0 , y0) (Figure 14.31).

Equation (5) validates our observation that streams flow perpendicular to the contours 

in topographical maps (see Figure 14.26). Since the downflowing stream will reach  

its destination in the fastest way, it must flow in the direction of the negative gradient 

 vectors from Property 2 for the directional derivative. Equation (5) tells us these directions 

are perpendicular to the level curves.

This observation also enables us to find equations for tangent lines to level curves. 

They are the lines normal to the gradients. The line through a point P0(x0 , y0) normal to a 

nonzero vector N = Ai + Bj has the equation

A(x - x0) + B( y - y0) = 0

(Exercise 39). If N is the gradient ∇ƒ � (x0, y0)
= ƒx(x0, y0)i + ƒy(x0, y0)j,  and this gradient is 

not the zero vector, then this equation gives the following formula.

Gradients and Tangents to Level Curves

If a differentiable function ƒ(x, y) has a constant value c along a smooth curve 

r = g(t)i + h(t)j (making the curve part of a level curve of ƒ), then ƒ(g(t), h(t)) = c. Dif-

ferentiating both sides of this equation with respect to t leads to the equations

 
d

dt
 ƒ(g(t), h(t)) =

d

dt
 (c)

 
0ƒ

0x
 
dg

dt
+

0ƒ

0y
 
dh

dt
= 0   Chain Rule (5)

 a0ƒ

0x
 i +

0ƒ

0y
 jb # adg

dt
 i +

dh

dt
 jb = 0.

 (++)++* (++)++*

 ∇ƒ 
dr

dt

Equation (5) says that ∇ƒ is normal to the tangent vector dr >dt, so it is normal to the 

curve. This is seen in Figure 14.31, where ∇f  is a nonzero vector (it is possible for ∇f  to 

be the zero vector).

The level curve f (x, y) = f (x0, y0)

(x0, y0)

∇ f (x0, y0)

FIGURE 14.31 The gradient of a dif-

ferentiable function of two variables at a 

point is always normal to the function’s 

level curve through that point.
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EXAMPLE 4  Find an equation for the tangent to the ellipse

x2

4
+ y2 = 2

(Figure 14.32) at the point (-2, 1).

Solution The ellipse is a level curve of the function

ƒ(x, y) =
x2

4
+ y2.

The gradient of ƒ at (-2, 1) is

∇ƒ � ( - 2, 1) = ax

2
 i + 2yjb 2

( - 2, 1)

= - i + 2j .

Because this gradient vector is nonzero, the tangent to the ellipse at (-2, 1) is the line

 (-1)(x + 2) + (2)(y - 1) = 0   Eq. (6)

 x - 2y = -4.  Simplify. 

If we know the gradients of two functions ƒ and g, we automatically know the gradi-

ents of their sum, difference, constant multiples, product, and quotient. You are asked to 

establish the following rules in Exercise 40. Notice that these rules have the same form as 

the corresponding rules for derivatives of single-variable functions.

Tangent Line to a Level Curve

 ƒx(x0, y0) (x - x0) + ƒy(x0, y0) ( y - y0) = 0 (6)

y

x
0−1−2

1

1 2

∇ f (−2, 1) = −i + 2j x − 2y = −4

(−2, 1)

"2

2"2

+ y2 = 2
x2

4

FIGURE 14.32 We can find the tangent 

to the ellipse (x2>4) + y2 = 2 by treating 

the ellipse as a level curve of the function 

ƒ(x, y) = (x2>4) + y2 (Example 4).

Algebra Rules for Gradients

1. Sum Rule: ∇(ƒ + g) = ∇ƒ + ∇g

2. Diference Rule: ∇(ƒ - g) = ∇ƒ - ∇g

3. Constant Multiple Rule: ∇(kƒ) = k∇ƒ  (any number k)

4. Product Rule: ∇(ƒg) = ƒ∇g + g∇ƒ

5. Quotient Rule: ∇ aƒgb =
g∇ƒ - ƒ∇g

g2

s
  

Scalar multipliers on 

left of gradients

EXAMPLE 5  We illustrate two of the rules with

ƒ(x, y) = x - y g(x, y) = 3y

∇ƒ = i - j ∇g = 3j.

We have

 1. ∇(ƒ - g) = ∇(x - 4y) = i - 4j = ∇ƒ - ∇g Rule 2

 2. ∇(ƒg) = ∇(3xy - 3y2) = 3yi + (3x - 6y)j

and

   ƒ∇g + g∇ƒ = (x - y)3j + 3y(i - j) Substitute.

   = 3yi + (3x - 6y)j.  Simplify.

  We have therefore veriied for this example that ∇(ƒg) = ƒ∇g + g∇ƒ. 
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Functions of Three Variables

For a differentiable function ƒ(x, y, z) and a unit vector u = u1 

 

i + u2  j + u3 

 

k in space,  

we have

∇ƒ =
0ƒ

0x
 i +

0ƒ

0y
 j +

0ƒ

0z
 k

and

Duƒ = ∇ƒ # u =
0ƒ

0x
 u1 +

0ƒ

0y
 u2 +

0ƒ

0z
 u3.

The directional derivative can once again be written in the form

Duƒ = ∇ƒ # u = 0 ∇ƒ 0 0 u 0  cos u = 0 ∇ƒ 0  cos u,

so the properties listed earlier for functions of two variables extend to three variables. At 

any given point, ƒ increases most rapidly in the direction of ∇ƒ and decreases most rap-

idly in the direction of -∇ƒ. In any direction orthogonal to ∇ƒ, the derivative is zero.

EXAMPLE 6

(a) Find the derivative of ƒ(x, y, z) = x3 - xy2 - z at P0(1, 1, 0) in the direction of 

v = 2i - 3j + 6k.

(b) In what directions does ƒ change most rapidly at P0 , and what are the rates of change 

in these directions?

Solution

(a) The direction of v is obtained by dividing v by its length:

 0 v 0 = 2(2)2 + (-3)2 + (6)2 = 249 = 7

 u =
v0 v 0 =

2
7

 i -
3
7

 j +
6
7

 k.

The partial derivatives of ƒ at P0 are

ƒx = (3x2 - y2) 2
(1, 1, 0)

= 2,  ƒy = -2xy 2
(1, 1, 0)

= -2,  ƒz = -1 2
(1, 1, 0)

= -1.

The gradient of ƒ at P0 is

∇ƒ 0 (1,1,0) = 2i - 2j - k.

The derivative of ƒ at P0 in the direction of v is therefore

 Duƒ � (1, 1, 0) = ∇ƒ 0 (1, 1, 0)
# u = (2i - 2j - k) # a2

7
 i -

3
7

 j +
6
7

 kb
 =

4
7

+
6
7

-
6
7

=
4
7

.

(b) The function increases most rapidly in the direction of ∇ƒ = 2i - 2j - k and de-

creases most rapidly in the direction of -∇ƒ. The rates of change in the directions are, 

respectively,

 0 ∇ƒ 0 = 2(2)2 + (-2)2 + (-1)2 = 29 = 3  and  - 0 ∇ƒ 0 = -3. 
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The Chain Rule for Paths

If r(t) = x(t) i + y(t) j + z(t) k is a smooth path C, and w = ƒ(r(t)) is a scalar function 

evaluated along C, then according to the Chain Rule, Theorem 6 in Section 14.4,

dw

dt
=

0w
0x

 
dx

dt
+

0w
0y

 
dy

dt
+

0w
0z

 
dz

dt
.

The partial derivatives on the right-hand side of the above equation are evaluated along the 

curve r(t),  and the derivatives of the intermediate variables are evaluated at t. If we 

express this equation using vector notation, we have

The Derivative Along a Path

 
d

dt
 ƒ(r(t)) = ∇ƒ(r(t)) # r′(t). (7)

What Equation (7) says is that the derivative of the composite function ƒ(r(t)) is the 

“derivative” (gradient) of the outside function ƒ “times” (dot product) the derivative of the 

inside function r. This is analogous to the “Outside-Inside” Rule for derivatives of com-

posite functions studied in Section 3.6. That is, the multivariable Chain Rule for paths has 

exactly the same form as the rule for single-variable differential calculus when appropriate 

interpretations are given to the meanings of the terms and operations involved.

Calculating Gradients

In Exercises 1–6, find the gradient of the function at the given point. 

Then sketch the gradient together with the level curve that passes 

through the point.

 1. ƒ(x, y) = y - x, (2, 1) 2. ƒ(x, y) = ln (x2 + y2), (1, 1)

 3. g(x, y) = xy2, (2, -1) 4. g(x, y) =
x2

2
-

y2

2
, 122, 12

 5. ƒ(x, y) = 22x + 3y, (-1, 2)

 6. ƒ(x, y) = tan-1 
2x
y  , (4, -2)

 15. ƒ(x, y, z) = xy + yz + zx, P0(1, -1, 2), u = 3i + 6j - 2k

 16. ƒ(x, y, z) = x2 + 2y2 - 3z2, P0(1, 1, 1), u = i + j + k

 17. g(x, y, z) = 3ex cos yz, P0(0, 0, 0), u = 2i + j - 2k

 18. h(x, y, z) = cos xy + eyz + ln zx, P0(1, 0, 1>2), 

u = i + 2j + 2k

EXERCISES 14.5

In Exercises 7–10, find ∇f  at the given point.

 7. ƒ(x, y, z) = x2 + y2 - 2z2 + z ln x, (1, 1, 1)

 8. ƒ(x, y, z) = 2z3 - 3(x2 + y2)z + tan-1 xz, (1, 1, 1)

 9. ƒ(x, y, z) = (x2 + y2 + z2)-1>2 + ln (xyz), (-1, 2, -2)

 10. ƒ(x, y, z) = ex + y cos z + (y + 1) sin-1 x, (0, 0, p>6)

Finding Directional Derivatives

In Exercises 11–18, find the derivative of the function at P0 in the 

direction of u.

 11. ƒ(x, y) = 2xy - 3y2, P0(5, 5), u = 4i + 3j

 12. ƒ(x, y) = 2x2 + y2, P0(-1, 1), u = 3i - 4j

 13. g(x, y) =
x - y

xy + 2
, P0(1, -1), u = 12i + 5j

 14. h(x, y) = tan-1 (y>x) + 23 sin-1 (xy>2), P0(1, 1), 

u = 3i - 2j

In Exercises 19–24, find the directions in which the functions increase 

and decrease most rapidly at P0 . Then find the derivatives of the func-

tions in these directions.

 19. ƒ(x, y) = x2 + xy + y2, P0(-1, 1)

 20. ƒ(x, y) = x2y + exy sin y, P0(1, 0)

 21. ƒ(x, y, z) = (x>y) - yz, P0(4, 1, 1)

 22. g(x, y, z) = xey + z2, P0(1, ln 2, 1>2)

 23. ƒ(x, y, z) = ln xy + ln yz + ln xz, P0(1, 1, 1)

 24. h(x, y, z) = ln (x2 + y2 - 1) + y + 6z, P0(1, 1, 0)

Tangent Lines to Level Curves

In Exercises 25–28, sketch the curve ƒ(x, y) = c together with ∇ƒ 

and the tangent line at the given point. Then write an equation for the 

tangent line.

 25. x2 + y2 = 4, 122, 222
 26. x2 - y = 1, 122, 12
 27. xy = -4, (2, -2)

 28. x2 - xy + y2 = 7, (-1, 2)



 14.6  Tangent Planes and Differentials 839

 36. The derivative of ƒ(x, y, z) at a point P is greatest in the direction 

of v = i + j - k. In this direction, the value of the derivative is 

223.

a. What is ∇ƒ at P? Give reasons for your answer.

b. What is the derivative of ƒ at P in the direction of i + j ?

 37. Directional derivatives and scalar components How is the 

derivative of a diferentiable function ƒ(x, y, z) at a point P0 in 

the direction of a unit vector u related to the scalar component of 

(∇ƒ)P0
 in the direction of u? Give reasons for your answer.

 38. Directional derivatives and partial derivatives Assuming that 

the necessary derivatives of ƒ(x, y, z) are deined, how are Di  ƒ, 

Dj ƒ, and Dk ƒ related to ƒx , ƒy , and ƒz? Give reasons for your 

answer.

 39. Lines in the xy-plane Show that A(x - x0) + B( y - y0) = 0 

is an equation for the line in the xy-plane through the point (x0 , y0) 

normal to the vector N = Ai + Bj.

 40. the algebra rules for gradients Given a constant k and the 

 gradients

 ∇ƒ =
0ƒ

0x
 i +

0ƒ

0y
 j +

0ƒ

0z
 k,

 ∇g =
0g

0x
 i +

0g

0y
 j +

0g

0z
 k,

  establish the algebra rules for gradients.

In Exercises 41–44, find a parametric equation for the line that is per-

pendicular to the graph of the given equation at the given point.

 41. x2 + y2 = 25, (-3, 4)

 42. x2 + xy + y2 = 3, (2, -1)

 43. x2 + y2 + z2 = 14, (3, -2, 1)

 44. z = x3 - xy2, (-1, 1, 0)

Theory and Examples

 29. Let ƒ(x, y) = x2 - xy + y2 - y. Find the directions u and the 

values of Du ƒ(1, -1) for which

a. Duƒ(1, -1) is largest b. Duƒ(1, -1) is smallest

c. Duƒ(1, -1) = 0 d. Duƒ(1, -1) = 4

e. Duƒ(1, -1) = -3

 30. Let ƒ(x, y) =
(x - y)

(x + y)
. Find the directions u and the values of 

  Duƒa-  
1
2

, 
3
2
b  for which

a. Duƒa-  
1
2

 , 
3
2
b  is largest b. Duƒa-  

1
2

 , 
3
2
b  is smallest

c. Duƒa-  
1
2

 , 
3
2
b = 0 d. Duƒa-  

1
2

 , 
3
2
b = -2

e. Duƒa-  
1
2

 , 
3
2
b = 1

 31. Zero directional derivative In what direction is the derivative 

of ƒ(x, y) = xy + y2 at P(3, 2) equal to zero?

 32. Zero directional derivative In what directions is the derivative 

of ƒ(x, y) = (x2 - y2) > (x2 + y2)  at P(1, 1) equal to zero?

 33. Is there a direction u in which the rate of change of ƒ(x, y) =  

x2 - 3xy + 4y2 at P(1, 2) equals 14? Give reasons for your 

 answer.

 34. changing temperature along a circle Is there a direction u in 

which the rate of change of the temperature function T(x, y, z) =  

2xy - yz (temperature in degrees Celsius, distance in feet) at 

P(1, -1, 1) is -3°C>ft? Give reasons for your answer.

 35. The derivative of ƒ(x, y) at P0(1, 2) in the direction of i + j is 

222 and in the direction of -2j is -3. What is the derivative of 

ƒ in the direction of - i - 2j? Give reasons for your answer.

14.6 Tangent Planes and Differentials

In single-variable differential calculus we saw how the derivative defined the tangent line 

to the graph of a differentiable function at a point on the graph. The tangent line then pro-

vided for a linearization of the function at the point. In this section, we will see analo-

gously how the gradient defines the tangent plane to the level surface of a function 

w = ƒ(x, y, z) at a point on the surface. The tangent plane then provides for a linearization 

of ƒ at the point and defines the total differential of the function.

Tangent Planes and Normal Lines

If r(t) = x(t) i + y(t) j + z(t) k is a smooth curve on the level surface ƒ(x, y, z) = c of a 

differentiable function ƒ, we found in Equation (7) of the last section that

d

dt
 ƒ(r(t)) = ∇ƒ(r(t)) # r′(t).

Since ƒ is constant along the curve r, the derivative on the left-hand side of the equation is 

0, so the gradient ∇ƒ is orthogonal to the curve’s velocity vector r′.

Now let us restrict our attention to the curves that pass through a point P0  

(Figure 14.33). All the velocity vectors at P0 are orthogonal to ∇ƒ at P0 , so the curves’ 

tangent lines all lie in the plane through P0 normal to ∇ƒ. We now define this plane.

∇ f

v2

v1
P0

f (x, y, z) = c

FIGURE 14.33 The gradient ∇ƒ is 

orthogonal to the velocity vector of every 

smooth curve in the surface through P0. 

The velocity vectors at P0 therefore lie in a 

common plane, which we call the tangent 

plane at P0 .
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The results of Section 12.5 imply that the tangent plane and normal line satisfy the 

following equations, as long as the gradient at the point P0 is not the zero vector.

DEFINITIONS The tangent plane to the level surface ƒ(x, y, z) = c of a dif-

ferentiable function ƒ at a point P0 where the gradient is not zero is the plane 

through P0 normal to ∇ƒ 0 P0
.

The normal line of the surface at P0 is the line through P0 parallel to ∇ƒ 0 P0
.

Tangent Plane to ƒ(x, y, z) = c at P0(x0 , y0 , z0)

 ƒx(P0)(x - x0) + ƒy(P0)( y - y0) + ƒz(P0)(z - z0) = 0 (1)

Normal Line to ƒ(x, y, z) = c at P0(x0 , y0 , z0)

 x = x0 + ƒx(P0)t,  y = y0 + ƒy(P0)t,  z = z0 + ƒz(P0)t (2)

EXAMPLE 1  Find the tangent plane and normal line of the level surface

ƒ(x, y, z) = x2 + y2 + z - 9 = 0  A circular paraboloid

at the point P0(1, 2, 4).

Solution The surface is shown in Figure 14.34.

The tangent plane is the plane through P0 perpendicular to the gradient of ƒ at P0 . The 

gradient is

∇ƒ �P0
= (2xi + 2yj + k) 2

(1, 2, 4)

= 2i + 4j + k .

The tangent plane is therefore the plane

2(x - 1) + 4( y - 2) + (z - 4) = 0,  or  2x + 4y + z = 14.

The line normal to the surface at P0 is

 x = 1 + 2t,  y = 2 + 4t,  z = 4 + t. 

To find an equation for the plane tangent to a smooth surface z = ƒ(x, y) at a point 

P0(x0 , y0 , z0) where z0 = ƒ(x0 , y0), we first observe that the equation z = ƒ(x, y) is equiva-

lent to ƒ(x, y) - z = 0. The surface z = ƒ(x, y) is therefore the zero level surface of the 

function F(x, y, z) = ƒ(x, y) - z. The partial derivatives of F are

 Fx =
0
0x

 (ƒ(x, y) - z) = fx - 0 = fx

 Fy =
0
0y

 (ƒ(x, y) - z) = fy - 0 = fy

 Fz =
0
0z

 (ƒ(x, y) - z) = 0 - 1 =  -1.

The formula

Fx(P0)(x - x0) + Fy(P0)( y - y0) + Fz(P0)(z - z0) = 0

for the plane tangent to the level surface at P0 therefore reduces to

ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0) - (z - z0) = 0,

as long as the gradient is not the zero vector at the point P0.

z

y

x

Normal line

Tangent plane

The surface

x2 + y2 + z − 9 = 0
P0(1, 2, 4)

1
2

FIGURE 14.34 The tangent plane and 

normal line to this level surface at P0 

(Example 1).
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EXAMPLE 2  Find the plane tangent to the surface z = x cos y - yex at (0, 0, 0).

Solution We calculate the partial derivatives of ƒ(x, y) = x cos y - yex and use 

 Equation (3):

 ƒx(0, 0) = (cos y - yex) 2
(0, 0)

= 1 - 0 # 1 = 1

 ƒy(0, 0) = (-x sin y - ex) 2
(0, 0)

= 0 - 1 = -1.

The tangent plane is therefore

1 # (x - 0) - 1 # (y - 0) - (z - 0) = 0,  Eq. (3)

or

 x - y - z = 0. 

Plane Tangent to a Surface z = ƒ(x, y) at (x0 , y0 , ƒ(x0 , y0))

The plane tangent to the surface z = ƒ(x, y) of a differentiable function ƒ at the 

point P0(x0 , y0 , z0) = (x0 , y0 , ƒ(x0 , y0)) is

 ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0) - (z - z0) = 0. (3)

EXAMPLE 3  The surfaces

ƒ(x, y, z) = x2 + y2 - 2 = 0  A cylinder

and

g(x, y, z) = x + z - 4 = 0  A plane

meet in an ellipse E (Figure 14.35). Find parametric equations for the line tangent to E at 

the point P0(1, 1, 3).

Solution The tangent line is orthogonal to both ∇ƒ and ∇g at P0 , and therefore parallel 

to v = ∇ƒ * ∇g. The components of v and the coordinates of P0 give us equations for 

the line. We have

 ∇ƒ � (1, 1, 3) = (2xi + 2yj) 2
(1, 1, 3)

= 2i + 2j

 ∇g � (1, 1, 3) = (i + k) 2
(1, 1, 3)

= i + k

 v = (2i + 2j) * (i + k) = 3 i j k

2 2 0

1 0 1

3 = 2i - 2j - 2k.

The tangent line to the ellipse of intersection is

 x = 1 + 2t,  y = 1 - 2t,  z = 3 - 2t. 

z

y

x

∇g

(1, 1, 3)

∇ f

The cylinder

x2
 + y2

 − 2 = 0

f(x, y, z)

∇ f × ∇g

The plane

x + z − 4 = 0

g(x, y, z)

The ellipse E

FIGURE 14.35 This cylinder and plane 

intersect in an ellipse E (Example 3).
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Estimating Change in a Specific Direction

The directional derivative plays a role similar to that of an ordinary derivative when  

we want to estimate how much the value of a function ƒ changes if we move a small 

 distance ds from a point P0 to another point nearby. If ƒ were a function of a single 

 variable, we would have

dƒ = ƒ′(P0) ds.  Ordinary derivative *  increment

For a function of two or more variables, we use the formula

dƒ = (∇ƒ 0 P0

# u) ds,  Directional derivative *  increment

where u is the direction of the motion away from P0 .

Estimating the Change in ƒ in a Direction u

To estimate the change in the value of a differentiable function ƒ when we move 

a small distance ds from a point P0 in a particular direction u, use the formula

dƒ = (∇ƒ 0 P0

# u)  ds
 (+)+* ()*

 Directional  Distance 

 derivative increment

EXAMPLE 4  Estimate how much the value of

ƒ(x, y, z) = y sin x + 2yz

will change if the point P(x, y, z) moves 0.1 unit from P0(0, 1, 0) straight toward 

P1(2, 2, -2).

Solution We first find the derivative of ƒ at P0 in the direction of the vector 
r

P0 P1 =  

2i + j - 2k. The direction of this vector is

u =
r

P0P1

� rP0P1 �
=
r

P0P1

3
=

2
3

 i +
1
3

 j -
2
3

 k.

The gradient of ƒ at P0 is

∇ƒ � (0, 1, 0) = (( y cos x)i + (sin x + 2z)j + 2yk) 2
(0, 1, 0)

= i + 2k .

Therefore,

∇ƒ �P0

# u = (i + 2k) # a2
3

 i +
1
3

 j -
2
3

 kb =
2
3

-
4
3

= -  
2
3

.

The change dƒ in ƒ that results from moving ds = 0.1 unit away from P0 in the direction 

of u is approximately

dƒ = (∇ƒ 0 P0

# u)(ds) = a-  
2
3
b (0.1) ≈ -0.067 unit.

See Figure 14.36. 

How to Linearize a Function of Two Variables

Functions of two variables can be quite complicated, and we sometimes need to 

 approximate them with simpler ones that give the accuracy required for specific applications 

without being so difficult to work with. We do this in a way that is similar to the way we 

find linear replacements for functions of a single variable (Section 3.9).

P0

2
1

0

1

2
∇f

z

12

P1(2, 2, −2)

x

y

–2

FIGURE 14.36 As P(x, y, z) moves off 

the level surface at P0 by 0.1 unit directly 

toward P1, the function ƒ changes value by 

approximately -0.067 unit (Example 4).
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Suppose the function we wish to approximate is z = ƒ(x, y) near a point (x0 , y0) at 

which we know the values of ƒ, ƒx , and ƒy and at which ƒ is differentiable. If we move 

from (x0 , y0) to any nearby point (x, y) by increments ∆x = x - x0 and ∆y = y - y0 (see 

Figure 14.37), then the definition of differentiability from Section 14.3 gives the change

ƒ(x, y) - ƒ(x0 , y0) = fx(x0 , y0)∆x + ƒy(x0 , y0)∆y + e1∆x + e2∆y,

where e1, e2 S 0 as ∆x, ∆y S 0. If the increments ∆x and ∆y are small, the products 

e1∆x and e2∆y will eventually be smaller still and we have the approximation

ƒ(x, y) ≈ ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)(y - y0).
 (+++++++++++++)+++++++++++++*
 L(x, y)

In other words, as long as ∆x and ∆y are small, ƒ will have approximately the same value 

as the linear function L.

A point

near (x0, y0)
(x, y)

Δy = y − y0

Δx = x − x0
(x0, y0)

A point where

f is dierentiable

FIGURE 14.37 If ƒ is differentiable 

at (x0 , y0), then the value of ƒ at any 

point (x, y) nearby is approximately 

ƒ(x0 , y0) + ƒx(x0 , y0)∆x + ƒy(x0 , y0)∆y.

DEFINITIONS The linearization of a function ƒ(x, y) at a point (x0 , y0) where 

ƒ is differentiable is the function

L(x, y) = ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0).

The approximation

ƒ(x, y) ≈ L(x, y)

is the standard linear approximation of ƒ at (x0 , y0).

From Equation (3), we find that the plane z = L(x, y) is tangent to the surface 

z = ƒ(x, y) at the point (x0 , y0). Thus, the linearization of a function of two variables is a 

tangent-plane approximation in the same way that the linearization of a function of a sin-

gle variable is a tangent-line approximation. (See Exercise 57.)

EXAMPLE 5  Find the linearization of

ƒ(x, y) = x2 - xy +
1
2

 y2 + 3

at the point (3, 2).

Solution We first evaluate ƒ, ƒx , and ƒy at the point (x0 , y0) = (3, 2):

 ƒ(3, 2) = ax2 - xy +
1
2

 y2 + 3b 2
(3, 2)

= 8

 ƒx(3, 2) =
0
0x
ax2 - xy +

1
2

 y2 + 3b 2
(3, 2)

= (2x - y) 2
(3, 2)

= 4

 ƒy(3, 2) =
0
0y
ax2 - xy +

1
2

 y2 + 3b 2
(3, 2)

= (-x + y) 2
(3, 2)

= -1,

giving

 L(x, y) = ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0)

 = 8 + (4)(x - 3) + (-1)(y - 2) = 4x - y - 2.

The linearization of ƒ at (3, 2) is L(x, y) = 4x - y - 2 (see Figure 14.38). 

x

z

4

4 3 2

3

1

y

(3, 2, 8)

z = f (x, y)

L(x, y)

FIGURE 14.38 The tangent plane 

L(x, y) represents the linearization of 

ƒ(x, y) in Example 5.
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When approximating a differentiable function ƒ(x, y) by its linearization L(x, y) at 

(x0 , y0), an important question is how accurate the approximation might be.

If we can find a common upper bound M for 0 ƒxx 0 , 0 ƒyy 0 , and 0 ƒxy 0  on a rectangle R 

centered at (x0, y0) (Figure 14.39), then we can bound the error E throughout R by using a 

simple formula (derived in Section 14.9). The error is defined by E(x, y) =  

ƒ(x, y) - L(x, y).

y

x
0

k

h

R

(x0, y0)

FIGURE 14.39 The rectangular region 

R: 0 x - x0 0 … h, 0 y - y0 0 … k in the 

xy-plane.

The Error in the Standard Linear Approximation

If ƒ has continuous first and second partial derivatives throughout an open set 

containing a rectangle R centered at (x0, y0) and if M is any upper bound for the 

values of 0 ƒxx 0 , 0 ƒyy 0 , and 0 ƒxy 0  on R, then the error E(x, y) incurred in replacing 

ƒ(x, y) on R by its linearization

L(x, y) = ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0)

satisfies the inequality0E(x, y) 0 …
1
2

 M1 0 x - x0 0 + 0 y - y0 0 22.
To make 0E(x, y) 0  small for a given M, we just make 0 x - x0 0  and 0 y - y0 0  small.

Differentials

Recall from Section 3.9 that for a function of a single variable, y = ƒ(x), we defined the 

change in ƒ as x changes from a to a + ∆x by

∆ƒ = ƒ(a + ∆x) - ƒ(a)

and the differential of ƒ as

dƒ = ƒ′(a)∆x.

We now consider the differential of a function of two variables.

Suppose a differentiable function ƒ(x, y) and its partial derivatives exist at a point 

(x0, y0). If we move to a nearby point (x0 + ∆x, y0 + ∆y), the change in ƒ is

∆ƒ = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 , y0).

A straightforward calculation based on the definition of L(x, y), using the notation 

x - x0 = ∆x and y - y0 = ∆y, shows that the corresponding change in L is

∆L = L(x0 + ∆x, y0 + ∆y) - L(x0, y0) = fx(x0, y0)∆x + fy(x0, y0)∆y.

The differentials dx and dy are independent variables, so they can be assigned any values. 

Often we take dx = ∆x = x - x0 , and dy = ∆y = y - y0 . We then have the following 

definition of the differential or total differential of ƒ.

DEFINITION If we move from (x0, y0) to a point (x0 + dx, y0 + dy) nearby, 

the resulting change

dƒ = ƒx(x0, y0) dx + ƒy(x0, y0) dy

in the linearization of ƒ is called the total differential of ƒ.
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EXAMPLE 6  Suppose that a cylindrical can is designed to have a radius of 1 in. and 

a height of 5 in., but that the radius and height are off by the amounts dr = +0.03 and 

dh = -0.1. Estimate the resulting absolute change in the volume of the can.

Solution To estimate the absolute change in V = pr2h, we use

∆V ≈ dV = Vr(r0 , h0) dr + Vh(r0 , h0) dh.

With Vr = 2prh and Vh = pr2, we get

 dV = 2pr0h0 dr + pr0 2 dh = 2p(1)(5)(0.03) + p(1)2(-0.1)

  = 0.3p - 0.1p = 0.2p ≈ 0.63 in3  

EXAMPLE 7  Your company manufactures stainless steel right circular cylindrical 

molasses storage tanks that are 25 ft high with a radius of 5 ft. How sensitive are the tanks’ 

volumes to small variations in height and radius?

Solution With V = pr2h, the total differential gives the approximation for the change 

in volume as

 dV = Vr(5, 25) dr + Vh(5, 25) dh

 = (2prh) 2
(5, 25)

dr + (pr2) 2
(5, 25)

dh

 = 250p dr + 25p dh.

Thus, a 1-unit change in r will change V by about 250p units. A 1-unit change in h will 

change V by about 25p units. The tank’s volume is 10 times more sensitive to a small change 

in r than it is to a small change of equal size in h. As a quality control engineer concerned 

with being sure the tanks have the correct volume, you would want to pay special attention 

to their radii.

In contrast, if the values of r and h are reversed to make r = 25 and h = 5, then the 

total diferential in V becomes

dV = (2prh) 2
(25, 5)

dr + (pr2) 2
(25, 5)

dh = 250p dr + 625p dh.

Now the volume is more sensitive to changes in h than to changes in r (Figure 14.40).

The general rule is that functions are most sensitive to small changes in the variables 

that generate the largest partial derivatives. 

Functions of More Than Two Variables

Analogous results hold for differentiable functions of more than two variables.

1. The linearization of ƒ(x, y, z) at a point P0(x0, y0, z0) is

L(x, y, z) = ƒ(P0) + ƒx(P0)(x - x0) + ƒy(P0)(y - y0) + ƒz(P0)(z - z0).

2. Suppose that R is a closed rectangular solid centered at P0 and lying in an open region 

on which the second partial derivatives of ƒ are continuous. Suppose also that 0 ƒxx 0 , 0 ƒyy 0 , 0 ƒzz 0 , 0 ƒxy 0 , 0 ƒxz 0 , and 0 ƒyz 0  are all less than or equal to M throughout R. 

Then the error E(x, y, z) = ƒ(x, y, z) - L(x, y, z) in the approximation of ƒ by L is 

bounded throughout R by the inequality

�E � …
1
2

 M1 � x - x0 � + � y - y0 � + � z - z0 � 22.

(a) (b)

r = 5

r = 25
h = 25

h = 5

FIGURE 14.40 The volume of cylinder 

(a) is more sensitive to a small change in r 

than it is to an equally small change in h. 

The volume of cylinder (b) is more sensi-

tive to small changes in h than it is to small 

changes in r (Example 7).
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3. If the second partial derivatives of ƒ are continuous and if x, y, and z change from 

x0 , y0 , and z0 by small amounts dx, dy, and dz, the total differential

dƒ = ƒx(P0) dx + ƒy(P0) dy + ƒz(P0) dz

gives a good approximation of the resulting change in ƒ.

EXAMPLE 8  Find the linearization L(x, y, z) of

ƒ(x, y, z) = x2 - xy + 3 sin z

at the point (x0 , y0 , z0) = (2, 1, 0). Find an upper bound for the error incurred in replacing 

ƒ by L on the rectangular region

R: 0 x - 2 0 … 0.01,  0 y - 1 0 … 0.02,  0 z 0 … 0.01.

Solution Routine calculations give

ƒ(2, 1, 0) = 2,  ƒx(2, 1, 0) = 3,  ƒy(2, 1, 0) = -2,  ƒz(2, 1, 0) = 3.

Thus,

L(x, y, z) = 2 + 3(x - 2) + (-2)( y - 1) + 3(z - 0) = 3x - 2y + 3z - 2.

Since

ƒxx = 2,  ƒyy = 0,  ƒzz = -3 sin z,  ƒxy = -1,  ƒxz = 0,  ƒyz = 0, 

and 0-3 sin z 0 … 3 sin 0.01 ≈ 0.03, we may take M = 2 as a bound on the second 

 partials. Hence, the error incurred by replacing ƒ by L on R satisfies

 0E 0 …
1
2

 (2)(0.01 + 0.02 + 0.01)2 = 0.0016. 

Tangent Planes and Normal Lines to Surfaces

In Exercises 1–10, find equations for the

 (a) tangent plane and

 (b) normal line at the point P0 on the given surface.

 1. x2 + y2 + z2 = 3, P0(1, 1, 1)

 2. x2 + y2 - z2 = 18, P0(3, 5, -4)

 3. 2z - x2 = 0, P0(2, 0, 2)

 4. x2 + 2xy - y2 + z2 = 7, P0(1, -1, 3)

 5. cos px - x2y + exz + yz = 4, P0(0, 1, 2)

 6. x2 - xy - y2 - z = 0, P0(1, 1, -1)

 7. x + y + z = 1, P0(0, 1, 0)

 8. x2 + y2 - 2xy - x + 3y - z = -4, P0(2, -3, 18)

 9. x ln y + y ln z = x,  P0(2, 1, e)

 10. yex - zey2

= z,  P0(0, 0, 1)

 13. z = 2y - x, (1, 2, 1)

 14. z = 4x2 + y2, (1, 1, 5)

Tangent Lines to Intersecting Surfaces

In Exercises 15–20, find parametric equations for the line tangent to 

the curve of intersection of the surfaces at the given point.

 15. Surfaces: x + y2 + 2z = 4, x = 1

  Point: (1, 1, 1)

 16. Surfaces: xyz = 1, x2 + 2y2 + 3z2 = 6

  Point: (1, 1, 1)

 17. Surfaces: x2 + 2y + 2z = 4, y = 1

  Point: (1, 1, 1 >2)

 18. Surfaces: x + y2 + z = 2, y = 1

  Point: (1 >2, 1, 1 >2)

 19. Surfaces: x3 + 3x2y2 + y3 + 4xy - z2 = 0, 

   x2 + y2 + z2 = 11

  Point:  (1, 1, 3)

 20. Surfaces: x2 + y2 = 4, x2 + y2 - z = 0

  Point: 122, 22, 42

EXERCISES 14.6

In Exercises 11–14, find an equation for the plane that is tangent to 

the given surface at the given point.

 11. z = ln (x2 + y2), (1, 0, 0)

 12. z = e-(x2 + y2), (0, 0, 1)
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wind speed. The precise formula, updated by the National Weather 

Service in 2001 and based on modern heat transfer theory, a hu-

man face model, and skin tissue resistance, is

 W = W(y, T ) = 35.74 + 0.6215 T - 35.75 y0.16

 + 0.4275 T # y0.16,

  where T is air temperature in °F and y is wind speed in mph. A 

partial wind chill chart is given.

T(°F)

30 25 20 15 10    5    0  −5 −10

 5 25 19 13 7 1 -5 -11 -16 -22

10 21 15 9 3 -4 -10 -16 -22 -28

Y 15 19 13 6 0 -7 -13 -19 -26 -32

(mph) 20 17 11 4 -2 -9 -15 -22 -29 -35

25 16 9 3 -4 -11 -17 -24 -31 -37

30 15 8 1 -5 -12 -19 -26 -33 -39

35 14 7 0 -7 -14 -21 -27 -34 -41

a. Use the table to ind W(20, 25), W(30, -10), and W(15, 15).

b. Use the formula to ind W(10, -40), W(50, -40), and 

W(60, 30).

c. Find the linearization L(y, T ) of the function W(y, T ) at the 

point (25, 5).

d. Use L(y, T) in part (c) to estimate the following wind chill 

values.

 i) W(24, 6) ii) W(27, 2)

 iii) W(5, -10) (Explain why this value is much diferent 

from the value found in the table.)

 34. Find the linearization L(y, T ) of the function W(y, T ) in Exercise 

33 at the point (50, -20). Use it to estimate the following wind 

chill values.

a. W(49, -22)

b. W(53, -19)

c. W(60, -30)

Bounding the Error in Linear Approximations

In Exercises 35–40, find the linearization L(x, y) of the function ƒ(x, y) 

at P0. Then find an upper bound for the magnitude 0E 0  of the error in 

the approximation ƒ(x, y) ≈ L(x, y) over the rectangle R.

 35. ƒ(x, y) = x2 - 3xy + 5  at  P0(2, 1),

  R: 0 x - 2 0 … 0.1, 0 y - 1 0 … 0.1

 36. ƒ(x, y) = (1>2)x2 + xy + (1>4)y2 + 3x - 3y + 4  at  P0(2, 2),

  R: 0 x - 2 0 … 0.1, 0 y - 2 0 … 0.1

 37. ƒ(x, y) = 1 + y + x cos y at P0(0, 0),

  R: 0 x 0 … 0.2, 0 y 0 … 0.2

  (Use 0 cos y 0 … 1 and 0 sin y 0 … 1 in estimating E.)

 38. ƒ(x, y) = xy2 + y cos (x - 1)  at  P0(1, 2),

  R: 0 x - 1 0 … 0.1, 0 y - 2 0 … 0.1

Estimating Change

 21. By about how much will

ƒ(x, y, z) = ln2x2 + y2 + z2

  change if the point P(x, y, z) moves from P0(3, 4, 12) a distance of 

ds = 0.1 unit in the direction of 3i + 6j - 2k?

 22. By about how much will

ƒ(x, y, z) = ex cos yz

  change as the point P(x, y, z) moves from the origin a distance of 

ds = 0.1 unit in the direction of 2i + 2j - 2k?

 23. By about how much will

g(x, y, z) = x + x cos z - y sin z + y

  change if the point P(x, y, z) moves from P0(2, -1, 0) a distance of 

ds = 0.2 unit toward the point P1(0, 1, 2)?

 24. By about how much will

h(x, y, z) = cos (pxy) + xz2

  change if the point P(x, y, z) moves from P0(-1, -1, -1) a dis-

tance of ds = 0.1 unit toward the origin?

 25. temperature change along a circle Suppose that the Celsius 

temperature at the point (x, y) in the xy-plane is T(x, y) = x sin 2y 

and that distance in the xy-plane is measured in meters. A particle 

is moving clockwise around the circle of radius 1 m centered at the 

origin at the constant rate of 2 m > sec.

a. How fast is the temperature experienced by the particle  

changing in degrees Celsius per meter at the point 

P11>2, 23>22?
b. How fast is the temperature experienced by the particle 

changing in degrees Celsius per second at P?

 26. changing temperature along a space curve The Celsius tem-

perature in a region in space is given by T(x, y, z) = 2x2 - xyz. A 

particle is moving in this region and its position at time t is given 

by x = 2t2, y = 3t, z = - t2, where time is measured in seconds 

and distance in meters.

a. How fast is the temperature experienced by the particle 

changing in degrees Celsius per meter when the particle is at 

the point P(8, 6, -4)?

b. How fast is the temperature experienced by the particle 

changing in degrees Celsius per second at P?

Finding Linearizations

In Exercises 27–32, find the linearization L(x, y) of the function at 

each point.

 27. ƒ(x, y) = x2 + y2 + 1 at a. (0, 0), b. (1, 1)

 28. ƒ(x, y) = (x + y + 2)2 at a. (0, 0), b. (1, 2)

 29. ƒ(x, y) = 3x - 4y + 5 at a. (0, 0), b. (1, 1)

 30. ƒ(x, y) = x3y4 at a. (1, 1), b. (0, 0)

 31. ƒ(x, y) = ex cos y at a. (0, 0), b. (0, p>2)

 32. ƒ(x, y) = e2y - x at a. (0, 0), b. (1, 2)

 33. Wind chill factor Wind chill, a measure of the apparent tem-

perature felt on exposed skin, is a function of air temperature and 
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a. Show that

dR = a R

R1
b2

 dR1 + a R

R2
b2

 dR2 .

b. You have designed a two-resistor circuit, like the one shown, 

to have resistances of R1 = 100 ohms and R2 = 400 ohms, 

but there is always some variation in manufacturing and the 

resistors received by your irm will probably not have these 

exact values. Will the value of R be more sensitive to varia-

tion in R1 or to variation in R2? Give reasons for your answer.

+

−

V R1 R2

c. In another circuit like the one shown, you plan to change R1 

from 20 to 20.1 ohms and R2 from 25 to 24.9 ohms. By about 

what percentage will this change R?

 53. You plan to calculate the area of a long, thin rectangle from mea-

surements of its length and width. Which dimension should you 

measure more carefully? Give reasons for your answer.

 54. a.  Around the point (1, 0), is ƒ(x, y) = x2( y + 1) more sensi-

tive to changes in x or to changes in y? Give reasons for your 

 answer.

b. What ratio of dx to dy will make dƒ equal zero at (1, 0)?

 55. Value of a 2 : 2 determinant If 0 a 0  is much greater than 0 b 0 , 0 c 0 , and 0 d 0 , to which of a, b, c, and d is the value of the 

determinant

ƒ(a, b, c, d) = ` a b

c d
`

  most sensitive? Give reasons for your answer.

 56. the Wilson lot size formula The Wilson lot size formula in 

economics says that the most economical quantity Q of goods  

(radios, shoes, brooms, whatever) for a store to order is given by the 

formula Q = 22KM>h, where K is the cost of placing the order, 

M is the number of items sold per week, and h is the weekly holding 

cost for each item (cost of space, utilities, security, and so on). To 

which of the variables K, M, and h is Q most sensitive near the point 

(K0 , M0 , h0) = (2, 20, 0.05)? Give reasons for your answer.

Theory and Examples

 57. the linearization of ƒ(x, y) is a tangent-plane approximation 

Show that the tangent plane at the point P0(x0, y0, ƒ(x0, y0)) on the 

surface z = ƒ(x, y) deined by a diferentiable function ƒ is the 

plane

ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0) - (z - ƒ(x0 , y0)) = 0

  or

z = ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0).

 39. ƒ(x, y) = ex cos y  at  P0(0, 0),

  R: 0 x 0 … 0.1, 0 y 0 … 0.1

  (Use ex … 1.11 and 0 cos y 0 … 1 in estimating E.)

 40. ƒ(x, y) = ln x + ln y  at  P0(1, 1),

  R: 0 x - 1 0 … 0.2, 0 y - 1 0 … 0.2

Linearizations for Three Variables

Find the linearizations L(x, y, z) of the functions in Exercises 41–46 at 

the given points.

 41. ƒ(x, y, z) = xy + yz + xz at

a. (1, 1, 1) b. (1, 0, 0) c. (0, 0, 0)

 42. ƒ(x, y, z) = x2 + y2 + z2 at

a. (1, 1, 1) b. (0, 1, 0) c. (1, 0, 0)

 43. ƒ(x, y, z) = 2x2 + y2 + z2 at

a. (1, 0, 0) b. (1, 1, 0) c. (1, 2, 2)

 44. ƒ(x, y, z) = (sin xy)>z at

a. (p>2, 1, 1) b. (2, 0, 1)

 45. ƒ(x, y, z) = ex + cos (y + z) at

a. (0, 0, 0) b. a0, 
p

2
, 0b  c. a0, 

p

4
, 
p

4
b

 46. ƒ(x, y, z) = tan-1 (xyz) at

a. (1, 0, 0) b. (1, 1, 0) c. (1, 1, 1)

In Exercises 47–50, find the linearization L(x, y, z) of the function  

ƒ(x, y, z) at P0 . Then find an upper bound for the magnitude of the 

error E in the approximation ƒ(x, y, z) ≈ L(x, y, z) over the region R.

 47. ƒ(x, y, z) = xz - 3yz + 2 at P0(1, 1, 2),

  R: 0 x - 1 0 … 0.01, 0 y - 1 0 … 0.01, 0 z - 2 0 … 0.02

 48. ƒ(x, y, z) = x2 + xy + yz + (1>4)z2 at P0(1, 1, 2),

  R: 0 x - 1 0 … 0.01, 0 y - 1 0 … 0.01, 0 z - 2 0 … 0.08

 49. ƒ(x, y, z) = xy + 2yz - 3xz at P0(1, 1, 0),

  R: 0 x - 1 0 … 0.01, 0 y - 1 0 … 0.01, 0 z 0 … 0.01

 50. ƒ(x, y, z) = 22 cos x sin ( y + z) at P0(0, 0, p>4),

  R: 0 x 0 … 0.01, 0 y 0 … 0.01, 0 z - p>4 0 … 0.01

Estimating Error; Sensitivity to Change

 51. Estimating maximum error Suppose that T is to be found from 

the formula T = x (ey + e-y), where x and y are found to be 2 and 

ln 2 with maximum possible errors of 0 dx 0 = 0.1 and 0 dy 0 =  

0.02. Estimate the maximum possible error in the computed value 

of T.

 52. Variation in electrical resistance The resistance R produced by 

wiring resistors of R1 and R2 ohms in parallel (see accompanying 

igure) can be calculated from the formula

1
R

=
1
R1

+
1
R2

.
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 60. Normal curves A smooth curve is normal to a surface 

ƒ(x, y, z) = c at a point of intersection if the curve’s velocity vec-

tor is a nonzero scalar multiple of ∇ƒ at the point.

   Show that the curve

r(t) = 2t  i + 2t  j -
1
4

 (t + 3)k

  is normal to the surface x2 + y2 - z = 3 when t = 1.

 61. Consider a closed rectangular box with a square base, as shown 

in the igure. Assume x is measured with an error of at most 0.5% 

and y is measured with an error of at most 0.75%, so we have 0 dx 0 >x 6 0.005 and 0 dy 0 >y 6 0.0075.

x

y

x

a. Use a diferential to estimate the relative error 0 dV 0 >V  in 

computing the box’s volume V.

b. Use a diferential to estimate the relative error 0 dS 0 >S in com-

puting the box’s surface area S.

 Hint for b: 
4x2 + 4xy

2x2 + 4xy
…

4x2 + 8xy

2x2 + 4xy
= 2 and 

       
4xy

2x2 + 4xy
…

2x2 + 4xy

2x2 + 4xy
= 1.

  Thus, the tangent plane at P0 is the graph of the linearization of ƒ 

at P0 (see accompanying igure).

z

y

x

(x0,  y0)

z = L(x, y)

z = f (x, y)

(x0,  y0, f (x0, y0))

 58. change along the involute of a circle Find the derivative of 

ƒ(x, y) = x2 + y2 in the direction of the unit tangent vector of the 

curve

r(t) = (cos t + t sin t)i + (sin t - t cos t)j,  t 7 0.

 59. tangent curves A smooth curve is tangent to the surface at 

a point of intersection if its velocity vector is orthogonal to ∇f  

there.

   Show that the curve

r(t) = 2t  i + 2t  j + (2t - 1)  k

  is tangent to the surface x2 + y2 - z = 1 when t = 1.

14.7 Extreme Values and Saddle Points

Continuous functions of two variables assume extreme values on closed, bounded domains 

(see Figures 14.41 and 14.42). We see in this section that we can narrow the search for 

these extreme values by examining the functions’ first partial derivatives. A function of 

two variables can assume extreme values only at boundary points of the domain or at inte-

rior domain points where both first partial derivatives are zero or where one or both of the 

first partial derivatives fail to exist. However, the vanishing of derivatives at an interior 

point (a, b) does not always signal the presence of an extreme value. The surface that is the 

graph of the function might be shaped like a saddle right above (a, b) and cross its tangent 

plane there.

Derivative Tests for Local Extreme Values

To find the local extreme values of a function of a single variable, we look for points 

where the graph has a horizontal tangent line. At such points, we then look for local max-

ima, local minima, and points of inflection. For a function ƒ(x, y) of two variables, we 

look for points where the surface z = ƒ(x, y) has a horizontal tangent plane. At such 

points, we then look for local maxima, local minima, and saddle points. We begin by 

defining maxima and minima.

HistoricAL BiogrApHy

siméon-Denis poisson

(1781–1840)

www.goo.gl/6uT86M

y

x

FIGURE 14.41 The function

z = (cos x)(cos y)e-2x2 + y2

has a maximum value of 1 and a minimum 

value of about -0.067 on the square region 0 x 0 … 3p>2, 0 y 0 … 3p>2.

http://www.goo.gl/6uT86M
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Local maxima correspond to mountain peaks on the surface z = ƒ(x, y) and local minima 

correspond to valley bottoms (Figure 14.43). At such points the tangent planes, when they 

exist, are horizontal. Local extrema are also called relative extrema.

As with functions of a single variable, the key to identifying the local extrema is the 

First Derivative Test, which we next state and prove.

z

y

x

FIGURE 14.42 The “roof surface”

z =
1
2

 1 @ 0 x 0 - 0 y 0 @ - 0 x 0 - 0 y 0 2
has a maximum value of 0 and a minimum 

value of -a on the square region 0 x 0 … a, 0 y 0 … a.

Local maxima

(no greater value of f nearby)

Local minimum

(no smaller value

of f nearby)

FIGURE 14.43 A local maximum occurs at a mountain peak and a  

local minimum occurs at a valley low point.

Proof  If ƒ has a local extremum at (a, b), then the function g(x) = ƒ(x, b) has a local 

extremum at x = a (Figure 14.44). Therefore, g′(a) = 0 (Chapter 4, Theorem 2). Now 

g′(a) = ƒx(a, b), so ƒx(a, b) = 0. A similar argument with the function h(y) = ƒ(a, y) 

shows that ƒy(a, b) = 0. 

If we substitute the values ƒx(a, b) = 0 and ƒy(a, b) = 0 into the equation

ƒx(a, b)(x - a) + ƒy(a, b)( y - b) - (z - ƒ(a, b)) = 0

for the tangent plane to the surface z = ƒ(x, y) at (a, b), the equation reduces to

0 # (x - a) + 0 # ( y - b) - z + ƒ(a, b) = 0

or

z = ƒ(a, b).

Thus, Theorem 10 says that the surface does indeed have a horizontal tangent plane at a 

local extremum, provided there is a tangent plane there.

THEOREM 10—First Derivative Test for Local Extreme Values

If ƒ(x, y) has a local maximum or minimum value at an interior point (a, b) of 

its domain and if the irst partial derivatives exist there, then ƒx(a, b) = 0 and 

ƒy(a, b) = 0.

y

x

0

z

a
b

(a, b, 0)

h(y) = f(a, y)

z = f(x, y)

= 0
0f

0y

= 0
0f

0x

g(x) = f(x, b)

FIGURE 14.44 If a local maximum of 

ƒ occurs at x = a, y = b, then the first 

partial derivatives ƒx(a, b) and ƒy(a, b) are 

both zero.

DEFINITION An interior point of the domain of a function ƒ(x, y) where both 

ƒx and ƒy are zero or where one or both of ƒx and ƒy do not exist is a critical 

point of ƒ.

DEFINITIONS Let ƒ(x, y) be defined on a region R containing the point (a, b). 

Then

1. ƒ(a, b) is a local maximum value of ƒ if ƒ(a, b) Ú ƒ(x, y) for all domain 

points (x, y) in an open disk centered at (a, b).

2. ƒ(a, b) is a local minimum value of ƒ if ƒ(a, b) … ƒ(x, y) for all domain 

points (x, y) in an open disk centered at (a, b).
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EXAMPLE 1  Find the local extreme values of ƒ(x, y) = x2 + y2 - 4y + 9.

Solution The domain of ƒ is the entire plane (so there are no boundary points) and the 

partial derivatives ƒx = 2x and ƒy = 2y - 4 exist everywhere. Therefore, local extreme 

values can occur only where

ƒx = 2x = 0  and  ƒy = 2y - 4 = 0.

The only possibility is the point (0, 2), where the value of ƒ is 5. Since ƒ(x, y) =

x2 + (y - 2)2 + 5 is never less than 5, we see that the critical point (0, 2) gives a local 

minimum (Figure 14.46). 

Theorem 10 says that the only points where a function ƒ(x, y) can assume extreme val-

ues are critical points and boundary points. As with differentiable functions of a single vari-

able, not every critical point gives rise to a local extremum. A differentiable function of a 

single variable might have a point of inflection. A differentiable function of two variables 

might have a saddle point, with the graph of ƒ crossing the tangent plane defined there.

DEFINITION A differentiable function ƒ(x, y) has a saddle point at a critical 

point (a, b) if in every open disk centered at (a, b) there are domain points (x, y) 

where ƒ(x, y) 7 ƒ(a, b) and domain points (x, y) where ƒ(x, y) 6 ƒ(a, b). The 

corresponding point (a, b, ƒ(a, b)) on the surface z = ƒ(x, y) is called a saddle 

point of the surface (Figure 14.45).

x

z

y

x

z

y

z =
xy (x2 − y2)

x2 + y2

z = y2 − y4 − x2

FIGURE 14.45 Saddle points at the 

origin.

1
2

1 2 3 4

5

z

y

x

10

15

FIGURE 14.46 The graph of the func-

tion ƒ(x, y) = x2 + y2 - 4y + 9 is a  

paraboloid which has a local minimum 

value of 5 at the point (0, 2) (Example 1).
THEOREM 11—Second Derivative Test for Local Extreme Values

Suppose that ƒ(x, y) and its irst and second partial derivatives are continuous 

throughout a disk centered at (a, b) and that ƒx(a, b) = ƒy(a, b) = 0. Then

 i) ƒ has a local maximum at (a, b) if ƒxx 6 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b).

 ii) ƒ has a local minimum at (a, b) if ƒxx 7 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b).

 iii) ƒ has a saddle point at (a, b) if ƒxx ƒyy - ƒxy 2 6 0 at (a, b).

 iv) the test is inconclusive at (a, b) if ƒxx ƒyy - ƒxy 2 = 0 at (a, b). In this case, 

we must ind some other way to determine the behavior of ƒ at (a, b).

The expression ƒxx ƒyy - ƒxy 

2 is called the discriminant or Hessian of ƒ. It is some-

times easier to remember it in determinant form,

ƒxx ƒyy - ƒxy 2 = ` ƒxx ƒxy

ƒxy ƒyy

` .

EXAMPLE 2  Find the local extreme values (if any) of ƒ(x, y) = y2 - x2.

Solution The domain of ƒ is the entire plane (so there are no boundary points) and the 

partial derivatives ƒx = -2x and ƒy = 2y exist everywhere. Therefore, local extrema can 

occur only at the origin (0, 0) where ƒx = 0 and ƒy = 0. Along the positive x-axis, how-

ever, ƒ has the value ƒ(x, 0) = -x2 6 0; along the positive y-axis, ƒ has the value 

ƒ(0, y) = y2 7 0. Therefore, every open disk in the xy-plane centered at (0, 0) contains 

points where the function is positive and points where it is negative. The function has a 

saddle point at the origin and no local extreme values (Figure 14.47a). Figure 14.47b dis-

plays the level curves (they are hyperbolas) of ƒ, and shows the function decreasing and 

increasing in an alternating fashion among the four groupings of hyperbolas. 

That ƒx = ƒy = 0 at an interior point (a, b) of R does not guarantee ƒ has a local 

extreme value there. If ƒ and its first and second partial derivatives are continuous on R, 

however, we may be able to learn more from the following theorem, proved in Section 14.9.
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Theorem 11 says that if the discriminant is positive at the point (a, b), then the surface 

curves the same way in all directions: downward if ƒxx 6 0, giving rise to a local maxi-

mum, and upward if ƒxx 7 0, giving a local minimum. On the other hand, if the discrimi-

nant is negative at (a, b), then the surface curves up in some directions and down in others, 

so we have a saddle point.

3

5

10

3

z

y

x

2

1

FIGURE 14.48 The surface 

z = 3y2 - 2y3 - 3x2 + 6xy has a saddle 

point at the origin and a local maximum at 

the point (2, 2) (Example 4).

EXAMPLE 3  Find the local extreme values of the function

ƒ(x, y) = xy - x2 - y2 - 2x - 2y + 4.

Solution The function is defined and differentiable for all x and y, and its domain has no 

boundary points. The function therefore has extreme values only at the points where ƒx 

and ƒy are simultaneously zero. This leads to

ƒx = y - 2x - 2 = 0,  ƒy = x - 2y - 2 = 0,

or

x = y = -2.

Therefore, the point (-2, -2) is the only point where ƒ may take on an extreme value. To 

see if it does so, we calculate

ƒxx = -2,  ƒyy = -2,  ƒxy = 1.

The discriminant of ƒ at (a, b) = (-2, -2) is

ƒxx ƒyy - ƒxy 

2 = (-2)(-2) - (1)2 = 4 - 1 = 3.

The combination

ƒxx 6 0  and  ƒxx ƒyy - ƒxy 2 7 0

tells us that ƒ has a local maximum at (-2, -2). The value of ƒ at this point is 

ƒ(-2, -2) = 8. 

EXAMPLE 4  Find the local extreme values of ƒ(x, y) = 3y2 - 2y3 - 3x2 + 6xy.

Solution Since ƒ is differentiable everywhere, it can assume extreme values only where

ƒx = 6y - 6x = 0  and  ƒy = 6y - 6y2 + 6x = 0.

From the first of these equations we find x = y, and substitution for y into the second 

equation then gives

6x - 6x2 + 6x = 0  or  6x (2 - x) = 0.

The two critical points are therefore (0, 0) and (2, 2).

To classify the critical points, we calculate the second derivatives:

ƒxx = -6,  ƒyy = 6 - 12y,  ƒxy = 6.

The discriminant is given by

ƒxxƒyy - ƒxy 

2 = (-36 + 72y) - 36 = 72(y - 1).

At the critical point (0, 0) we see that the value of the discriminant is the negative number 

-72, so the function has a saddle point at the origin. At the critical point (2, 2) we see that 

the discriminant has the positive value 72. Combining this result with the negative value of 

the second partial ƒxx = -6, Theorem 11 says that the critical point (2, 2) gives a local 

maximum value of ƒ(2, 2) = 12 - 16 - 12 + 24 = 8. A graph of the surface is shown 

in Figure 14.48. 

y

z

x

z = y2 − x2

3

y

x

Saddle
point

f inc

f dec

f inc

f dec
1

1

−1−3

−1
−3

3

FIGURE 14.47 (a) The origin is a saddle 

point of the function ƒ(x, y) = y2 - x2. 

There are no local extreme values  

(Example 2). (b) Level curves for the  

function ƒ in Example 2.

(a)

(b)
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EXAMPLE 5  Find the critical points of the function ƒ(x,  y) = 10xye- (x2 + y2) and use 

the Second Derivative Test to classify each point as one where a saddle, local minimum, or 

local maximum occurs.

Solution First we find the partial derivatives ƒx and ƒy and set them simultaneously to 

zero in seeking the critical points:

 ƒx = 10ye- (x2 + y2) - 20x2ye- (x2 + y2) = 10y(1 - 2x2)e- (x2 + y2) = 0 1 y = 0 or 1 - 2x2 = 0, 

 ƒy = 10xe- (x2 + y2) - 20xy2e- (x2 + y2) = 10x(1 - 2y2)e- (x2 + y2) = 0 1 x = 0 or 1 - 2y2 = 0.

Since both partial derivatives are continuous everywhere, the only critical points are

(0, 0),  a 1

22
, 

1

22
b ,  a- 1

22
, 

1

22
b ,  a 1

22
, -

1

22
b ,  and a- 1

22
, -

1

22
b .

Next we calculate the second partial derivatives in order to evaluate the discriminant 

at each critical point:

 ƒxx = -20xy(1 - 2x2)e- (x2 + y2) - 40xye- (x2 + y2) = -20xy(3 - 2x2)e- (x2 + y2), 

 ƒxy = fyx = 10(1 - 2x2)e- (x2 + y2) - 20y2(1 - 2x2)e- (x2 + y2) = 10(1 - 2x2) (1 - 2y2)e- (x2 + y2), 

 fyy = -20xy(1 - 2y2)e- (x2 + y2) - 40xye- (x2 + y2) = -20xy(3 - 2y2)e- (x2 + y2).

The following table summarizes the values needed by the Second Derivative Test.

critical point  ƒxx ƒxy  ƒyy Discriminant D

  (0, 0)  0  10  0  -100a 1

22
, 

1

22
b -  

20
e  0 -  

20
e  

400

e2

a-  
1

22
, 

1

22
b  

20
e  0  

20
e  

400

e2

a 1

22
, -  

1

22
b  

20
e  0  

20
e  

400

e2

a-  
1

22
, -  

1

22
b -  

20
e  0 -  

20
e  

400

e2

From the table we find that D 6 0 at the critical point (0, 0), giving a saddle; D 7 0 and 

fxx 6 0 at the critical points 11>22, 1>222 and 1-  1>22, -  1>222, giving local 

maximum values there; and D 7 0 and fxx 7 0 at the critical points 1-  1>22, 1>222 
and 11>22, -  1>222, each giving local minimum values. A graph of the surface is 

shown in Figure 14.49. 

x

z

y

z = 10xye−(x2 + y2)

FIGURE 14.49 A graph of the function 

in Example 5.

Absolute Maxima and Minima on Closed Bounded Regions

We organize the search for the absolute extrema of a continuous function ƒ(x, y) on a 

closed and bounded region R into three steps.

1. List the interior points of R where ƒ may have local maxima and minima and evaluate 

ƒ at these points. These are the critical points of ƒ.

2. List the boundary points of R where ƒ has local maxima and minima and evaluate ƒ at 

these points. We show how to do this in the next example.

3. Look through the lists for the maximum and minimum values of ƒ. These will be the 

absolute maximum and minimum values of ƒ on R.
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EXAMPLE 6  Find the absolute maximum and minimum values of

ƒ(x, y) = 2 + 2x + 4y - x2 - y2

on the triangular region in the first quadrant bounded by the lines x = 0, y = 0, and 

y = 9 - x.

Solution Since ƒ is differentiable, the only places where ƒ can assume these values are 

points inside the triangle where ƒx = ƒy = 0 and points on the boundary (Figure 14.50a).

(a) interior points. For these we have

fx = 2 - 2x = 0,  fy = 4 - 2y = 0,

yielding the single point (x, y) = (1, 2). The value of ƒ there is

ƒ(1, 2) = 7.

(b) Boundary points. We take the triangle one side at a time:

 i) On the segment OA, y = 0. The function

ƒ(x, y) = ƒ(x, 0) = 2 + 2x - x2

may now be regarded as a function of x deined on the closed interval 0 … x … 9. Its 

extreme values (as we know from Chapter 4) may occur at the endpoints

x = 0  where  ƒ(0, 0) = 2

x = 9  where  ƒ(9, 0) = 2 + 18 - 81 =  -61

or at the interior points where ƒ′(x, 0) = 2 - 2x = 0. The only interior point where 

ƒ′(x, 0) = 0 is x = 1, where

ƒ(x, 0) = ƒ(1, 0) = 3.

 ii) On the segment OB, x = 0 and

ƒ(x, y) = ƒ(0, y) = 2 + 4y - y2.

As in part i), we consider ƒ(0, y) as a function of y deined on the closed interval 30, 9]. 

Its extreme values can occur at the endpoints or at interior points where ƒ′(0, y) = 0. 

Since ƒ′(0, y) = 4 - 2y, the only interior point where ƒ′(0, y) = 0 occurs at (0, 2), 

with ƒ(0, 2) = 6. So the candidates for this segment are

ƒ(0, 0) = 2,  ƒ(0, 9) = -43,  ƒ(0, 2) = 6.

 iii) We have already accounted for the values of ƒ at the endpoints of AB, so we need 

only look at the interior points of the line segment AB. With y = 9 - x, we have

ƒ(x, y) = 2 + 2x + 4(9 - x) - x2 - (9 - x)2 = -43 + 16x - 2x2.

Setting ƒ′(x, 9 - x) = 16 - 4x = 0 gives

x = 4.

At this value of x,

y = 9 - 4 = 5  and  ƒ(x, y) = ƒ(4, 5) = -11.

summary We list all the function value candidates: 7, 2, -61, 3, -43, 6, -11. The max-

imum is 7, which ƒ assumes at (1, 2). The minimum is -61, which ƒ assumes at (9, 0). See 

Figure 14.50b. 

Solving extreme value problems with algebraic constraints on the variables usually 

requires the method of Lagrange multipliers introduced in the next section. But sometimes 

we can solve such problems directly, as in the next example.

y

x
O

(1, 2)

(4, 5)
x = 0

B(0, 9)

y = 9 − x

A(9, 0)y = 0

(a)

z

x

y

−40

−20

−60

3
6

9

6 93

(1, 2, 7)

(9, 0, −61)

(b)

FIGURE 14.50 (a) This triangular 

region is the domain of the function in 

Example 6. (b) The graph of the function 

in Example 6. The blue points are the 

candidates for maxima or minima.
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EXAMPLE 7  A delivery company accepts only rectangular boxes the sum of whose 

length and girth (perimeter of a cross-section) does not exceed 108 in. Find the dimensions 

of an acceptable box of largest volume.

Solution Let x, y, and z represent the length, width, and height of the rectangular box, 

respectively. Then the girth is 2y + 2z. We want to maximize the volume V = xyz of the 

box (Figure 14.51) satisfying x + 2y + 2z = 108 (the largest box accepted by the deliv-

ery company). Thus, we can write the volume of the box as a function of two variables:

 V( y, z) = (108 - 2y - 2z)yz   V = xyz and 

x = 108 - 2y - 2z
 = 108yz - 2y2z - 2yz2.

Setting the first partial derivatives equal to zero,

 Vy( y, z) = 108z - 4yz - 2z2 = (108 - 4y - 2z)z = 0

 Vz( y, z) = 108y - 2y2 - 4yz = (108 - 2y - 4z)y = 0,

gives the critical points (0, 0), (0, 54), (54, 0), and (18, 18). The volume is zero at (0, 0),  

(0, 54), and (54, 0), which are not maximum values. At the point (18, 18), we apply the 

Second Derivative Test (Theorem 11):

Vyy = -4z,  Vzz = -4y,  Vyz = 108 - 4y - 4z.

Then

Vyy Vzz - Vyz 2 = 16yz - 16(27 - y - z)2.

Thus,

Vyy(18, 18) = -4(18) 6 0

and 1VyyVzz - Vyz 

22 2
(18, 18)

= 16(18)(18) - 16(-9)2 7 0,

so (18, 18) gives a maximum volume. The dimensions of the package are 

x = 108 - 2(18) - 2(18) = 36 in., y = 18 in., and z = 18 in. The maximum volume is 

V = (36)(18)(18) = 11,664 in3, or 6.75 ft3. 

Despite the power of Theorem 11, we urge you to remember its limitations. It does 

not apply to boundary points of a function’s domain, where it is possible for a function to 

have extreme values along with nonzero derivatives. Also, it does not apply to points 

where either ƒx or ƒy fails to exist.

x y

z

Girth = distance

around here

FIGURE 14.51 The box in Example 7.

Summary of Max-Min Tests

The extreme values of ƒ(x, y) can occur only at

 i) boundary points of the domain of ƒ

 ii) critical points (interior points where ƒx = ƒy = 0 or points where ƒx or ƒy 

fails to exist)

If the first- and second-order partial derivatives of ƒ are continuous throughout a 

disk centered at a point (a, b) and ƒx(a, b) = ƒy(a, b) = 0, the nature of ƒ(a, b) 

can be tested with the second Derivative test:

 i) ƒxx 6 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b) 1  local maximum

 ii) ƒxx 7 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b) 1  local minimum

 iii) ƒxx ƒyy - ƒxy 2 6 0 at (a, b) 1  saddle point

 iv) ƒxx ƒyy - ƒxy 2 = 0 at (a, b) 1  test is inconclusive
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Finding Local Extrema

Find all the local maxima, local minima, and saddle points of the 

functions in Exercises 1–30.

 1. ƒ(x, y) = x2 + xy + y2 + 3x - 3y + 4

 2. ƒ(x, y) = 2xy - 5x2 - 2y2 + 4x + 4y - 4

 3. ƒ(x, y) = x2 + xy + 3x + 2y + 5

 4. ƒ(x, y) = 5xy - 7x2 + 3x - 6y + 2

 5. ƒ(x, y) = 2xy - x2 - 2y2 + 3x + 4

 6. ƒ(x, y) = x2 - 4xy + y2 + 6y + 2

 7. ƒ(x, y) = 2x2 + 3xy + 4y2 - 5x + 2y

 8. ƒ(x, y) = x2 - 2xy + 2y2 - 2x + 2y + 1

 9. ƒ(x, y) = x2 - y2 - 2x + 4y + 6

 10. ƒ(x, y) = x2 + 2xy

 11. ƒ(x, y) = 256x2 - 8y2 - 16x - 31 + 1 - 8x

 12. ƒ(x, y) = 1 - 23 x2 + y2

 13. ƒ(x, y) = x3 - y3 - 2xy + 6

 14. ƒ(x, y) = x3 + 3xy + y3

 15. ƒ(x, y) = 6x2 - 2x3 + 3y2 + 6xy

 16. ƒ(x, y) = x3 + y3 + 3x2 - 3y2 - 8

 17. ƒ(x, y) = x3 + 3xy2 - 15x + y3 - 15y

 18. ƒ(x, y) = 2x3 + 2y3 - 9x2 + 3y2 - 12y

 19. ƒ(x, y) = 4xy - x4 - y4

 20. ƒ(x, y) = x4 + y4 + 4xy

 21. ƒ(x, y) =
1

x2 + y2 - 1
 22. ƒ(x, y) =

1
x + xy +

1
y

 23. ƒ(x, y) = y sin x 24. ƒ(x, y) = e2x cos y

 25. ƒ(x, y) = ex2 + y2 - 4x 26. ƒ(x, y) = ey - yex

 27. ƒ(x, y) = e-y(x2 + y2)

 28. ƒ(x, y) = ex(x2 - y2)

 29. ƒ(x, y) = 2 ln x + ln y - 4x - y

 30. ƒ(x, y) = ln (x + y) + x2 - y

 35. T(x, y) = x2 + xy + y2 - 6x + 2 on the rectangular plate 

0 … x … 5, -3 … y … 0

 36. ƒ(x, y) = 48xy - 32x3 - 24y2 on the rectangular plate 0 … x …
1, 0 … y … 1

 37. ƒ(x, y) = (4x - x2) cos y on the rectangular plate 1 … x … 3, 

-p>4 … y … p>4 (see accompanying igure)

z

y

z = (4x − x2) cos y

 38. ƒ(x, y) = 4x - 8xy + 2y + 1 on the triangular plate bounded by 

the lines x = 0, y = 0, x + y = 1 in the irst quadrant

 39. Find two numbers a and b with a … b such that

 L
b

a

(6 - x - x2) dx

  has its largest value.

 40. Find two numbers a and b with a … b such that

 L
b

a

(24 - 2x - x2)1>3 dx

  has its largest value.

 41. temperatures A lat circular plate has the shape of the re-

gion x2 + y2 … 1. The plate, including the boundary where 

x2 + y2 = 1, is heated so that the temperature at the point (x, y) is

T(x, y) = x2 + 2y2 - x.

  Find the temperatures at the hottest and coldest points on the plate.

 42. Find the critical point of

ƒ(x, y) = xy + 2x - ln x2y

  in the open irst quadrant (x 7 0, y 7 0) and show that ƒ takes on 

a minimum there.

Theory and Examples

 43. Find the maxima, minima, and saddle points of ƒ(x, y), if any, 

given that

a. ƒx = 2x - 4y and ƒy = 2y - 4x

b. ƒx = 2x - 2 and ƒy = 2y - 4

c. ƒx = 9x2 - 9 and ƒy = 2y + 4

  Describe your reasoning in each case.

EXERCISES 14.7

Finding Absolute Extrema

In Exercises 31–38, find the absolute maxima and minima of the func-

tions on the given domains.

 31. ƒ(x, y) = 2x2 - 4x + y2 - 4y + 1 on the closed triangular plate 

bounded by the lines x = 0, y = 2, y = 2x in the irst quadrant

 32. D(x, y) = x2 - xy + y2 + 1 on the closed triangular plate in the 

irst quadrant bounded by the lines x = 0, y = 4, y = x

 33. ƒ(x, y) = x2 + y2 on the closed triangular plate bounded by the 

lines x = 0, y = 0, y + 2x = 2 in the irst quadrant

 34. T(x, y) = x2 + xy + y2 - 6x on the rectangular plate 

0 … x … 5, -3 … y … 3
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 62. A rectangular box is inscribed in the region in the irst octant 

bounded above by the plane with x-intercept 6, y-intercept 6, and 

z-intercept 6.

(x, y, z)

6

6
6

z

x

y

a. Find an equation for the plane.

b. Find the dimensions of the box of maximum volume.

Extreme Values on parametrized curves To find the extreme 

values of a function ƒ(x, y) on a curve x = x(t), y = y(t), we treat ƒ as 

a function of the single variable t and use the Chain Rule to find where 

dƒ >dt is zero. As in any other single-variable case, the extreme values 

of ƒ are then found among the values at the

a. critical points (points where dƒ >dt is zero or fails to exist), and

b. endpoints of the parameter domain.

Find the absolute maximum and minimum values of the following 

functions on the given curves.

 63. Functions:

a. ƒ(x, y) = x + y  b. g(x, y) = xy  c. h(x, y) = 2x2 + y2

  Curves:

 i) The semicircle x2 + y2 = 4, y Ú 0

 ii) The quarter circle x2 + y2 = 4, x Ú 0, y Ú 0

  Use the parametric equations x = 2 cos t, y = 2 sin t.

 64. Functions:

a. ƒ(x, y) = 2x + 3y

b. g(x, y) = xy

c. h(x, y) = x2 + 3y2

  Curves:

 i) The semiellipse (x2>9) + (y2>4) = 1, y Ú 0

 ii) The quarter ellipse (x2>9) + (y2>4) = 1, x Ú 0, y Ú 0

  Use the parametric equations x = 3 cos t, y = 2 sin t.

 65. Function: ƒ(x, y) = xy

  Curves:

 i) The line x = 2t, y = t + 1

 ii) The line segment x = 2t, y = t + 1, -1 … t … 0

 iii) The line segment x = 2t, y = t + 1, 0 … t … 1

 66. Functions:

a. ƒ(x, y) = x2 + y2 b. g(x, y) = 1> (x2 + y2)

  Curves:

 i) The line x = t, y = 2 - 2t

 ii) The line segment x = t, y = 2 - 2t, 0 … t … 1

 44. The discriminant ƒxx ƒyy - ƒxy 2 is zero at the origin for each of 

the following functions, so the Second Derivative Test fails there. 

Determine whether the function has a maximum, a minimum, or 

neither at the origin by imagining what the surface z = ƒ(x, y) 

looks like. Describe your reasoning in each case.

a. ƒ(x, y) = x2y2 b. ƒ(x, y) = 1 - x2y2

c. ƒ(x, y) = xy2 d. ƒ(x, y) = x3y2

e. ƒ(x, y) = x3y3 f. ƒ(x, y) = x4y4

 45. Show that (0, 0) is a critical point of ƒ(x, y) = x2 + kxy + y2 no 

matter what value the constant k has. (Hint: Consider two cases: 

k = 0 and k ≠ 0.)

 46. For what values of the constant k does the Second Derivative Test 

guarantee that ƒ(x, y) = x2 + kxy + y2 will have a saddle point at 

(0, 0)? A local minimum at (0, 0)? For what values of k is the Sec-

ond Derivative Test inconclusive? Give reasons for your answers.

 47. If ƒx(a, b) = ƒy(a, b) = 0, must ƒ have a local maximum or mini-

mum value at (a, b)? Give reasons for your answer.

 48. Can you conclude anything about ƒ(a, b) if ƒ and its irst and sec-

ond partial derivatives are continuous throughout a disk centered 

at the critical point (a, b) and ƒxx(a, b) and ƒyy(a, b) difer in sign? 

Give reasons for your answer.

 49. Among all the points on the graph of z = 10 - x2 - y2 that lie 

above the plane x + 2y + 3z = 0, ind the point farthest from the 

plane.

 50. Find the point on the graph of z = x2 + y2 + 10 nearest the 

plane x + 2y - z = 0.

 51. Find the point on the plane 3x + 2y + z = 6 that is nearest the 

origin.

 52. Find the minimum distance from the point (2, -1, 1) to the plane 

x + y - z = 2.

 53. Find three numbers whose sum is 9 and whose sum of squares is a 

minimum.

 54. Find three positive numbers whose sum is 3 and whose product is 

a maximum.

 55. Find the maximum value of s = xy + yz + xz where 

x + y + z = 6.

 56. Find the minimum distance from the cone z = 2x2 + y2 to the 

point (-6, 4, 0).

 57. Find the dimensions of the rectangular box of maximum volume 

that can be inscribed inside the sphere x2 + y2 + z2 = 4.

 58. Among all closed rectangular boxes of volume 27 cm3, what is the 

smallest surface area?

 59. You are to construct an open rectangular box from 12 ft2 of mate-

rial. What dimensions will result in a box of maximum volume?

 60. Consider the function ƒ(x, y) = x2 + y2 + 2xy - x - y + 1 

over the square 0 … x … 1 and 0 … y … 1.

a. Show that ƒ has an absolute minimum along the line segment 

2x + 2y = 1 in this square. What is the absolute minimum 

value?

b. Find the absolute maximum value of ƒ over the square.

 61. Find the point on the graph of y2 - xz2 = 4 nearest the origin.
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 67. Least squares and regression lines When we try to it a 

line y = mx + b to a set of numerical data points (x1, y1), 

(x2, y2), . . . , (xn, yn), we usually choose the line that minimizes 

the sum of the squares of the vertical distances from the points to 

the line. In theory, this means inding the values of m and b that 

minimize the value of the function

 w = (mx1 + b - y1)
2 + g + (mxn + b - yn)

2. (1)

  (See the accompanying igure.) Show that the values of m and b 

that do this are

 m =

aa xkb aa ykb - na xk yk

aa xkb2

- na xk 2
, (2)

 b =
1
n aa yk - ma xkb ,  (3)

  with all sums running from k = 1 to k = n. Many scientiic cal-

culators have these formulas built in, enabling you to ind m and b 

with only a few keystrokes after you have entered the data.

   The line y = mx + b determined by these values of m and b 

is called the least squares line, regression line, or trend line for 

the data under study. Finding a least squares line lets you

1. summarize data with a simple expression,

2. predict values of y for other, experimentally untried values of x,

3. handle data analytically.

y

x
0

P1(x1, y1)

P2(x2, y2)

Pn(xn, yn)

y = mx + b

In Exercises 68–70, use Equations (2) and (3) to find the least squares 

line for each set of data points. Then use the linear equation you 

obtain to predict the value of y that would correspond to x = 4.

 68. (-2, 0), (0, 2), (2, 3)

 69. (-1, 2), (0, 1), (3, -4)

 70. (0, 0), (1, 2), (2, 3)

COMPUTER EXPLORATIONS

In Exercises 71–76, you will explore functions to identify their local 

extrema. Use a CAS to perform the following steps:

a. Plot the function over the given rectangle.

b. Plot some level curves in the rectangle.

c. Calculate the function’s irst partial derivatives and use the 

CAS equation solver to ind the critical points. How do the 

critical points relate to the level curves plotted in part (b)? 

Which critical points, if any, appear to give a saddle point? 

Give reasons for your answer.

d. Calculate the function’s second partial derivatives and ind 

the discriminant ƒxx ƒyy - ƒxy 2 .

e. Using the max-min tests, classify the critical points found in 

part (c). Are your indings consistent with your discussion in 

part (c)?

 71. ƒ(x, y) = x2 + y3 - 3xy, -5 … x … 5, -5 … y … 5

 72. ƒ(x, y) = x3 - 3xy2 + y2, -2 … x … 2, -2 … y … 2

 73. ƒ(x, y) = x4 + y2 - 8x2 - 6y + 16, -3 … x … 3, 

-6 … y … 6

 74. ƒ(x, y) = 2x4 + y4 - 2x2 - 2y2 + 3, -3>2 … x … 3>2, 

-3>2 … y … 3>2
 75. ƒ(x, y) = 5x6 + 18x5 - 30x4 + 30xy2 - 120x3, 

-4 … x … 3, -2 … y … 2

 76. ƒ(x, y) = e x5 ln (x2 + y2), (x, y) ≠ (0, 0)

0, (x, y) = (0, 0) 
, 

  -2 … x … 2, -2 … y … 2

14.8 Lagrange Multipliers

Sometimes we need to find the extreme values of a function whose domain is constrained 

to lie within some particular subset of the plane—for example, a disk, a closed triangular 

region, or along a curve. We saw an instance of this situation in Example 6 of the previous 

section. Here we explore a powerful method for finding extreme values of constrained 

functions: the method of Lagrange multipliers.

Constrained Maxima and Minima

To gain some insight, we first consider a problem where a constrained minimum can be 

found by eliminating a variable.

EXAMPLE 1  Find the point p(x, y, z) on the plane 2x + y - z - 5 = 0 that is 

closest to the origin.

HistoricAL BiogrApHy

Joseph Louis Lagrange

(1736–1813)

www.goo.gl/WLub9z

http://www.goo.gl/WLub9z
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Solution The problem asks us to find the minimum value of the function0 rOP 0 = 2(x - 0)2 + ( y - 0)2 + (z - 0)2 = 2x2 + y2 + z2

subject to the constraint that

2x + y - z - 5 = 0.

Since 0 rOP 0  has a minimum value wherever the function

ƒ(x, y, z) = x2 + y2 + z2

has a minimum value, we may solve the problem by finding the minimum value of ƒ(x, y, z) 

subject to the constraint 2x + y - z - 5 = 0 (thus avoiding square roots). If we regard  

x and y as the independent variables in this equation and write z as

z = 2x + y - 5,

our problem reduces to one of finding the points (x, y) at which the function

h(x, y) = ƒ(x, y, 2x + y - 5) = x2 + y2 + (2x + y - 5)2

has its minimum value or values. Since the domain of h is the entire xy-plane, the First 

Derivative Test of Section 14.7 tells us that any minima that h might have must occur at 

points where

hx = 2x + 2(2x + y - 5)(2) = 0,  hy = 2y + 2(2x + y - 5) = 0.

This leads to

10x + 4y = 20,  4x + 4y = 10,

which has the solution

x =
5
3

,  y =
5
6

.

We may apply a geometric argument together with the Second Derivative Test to show that 

these values minimize h. The z-coordinate of the corresponding point on the plane 

z = 2x + y - 5 is

z = 2a5
3
b +

5
6

- 5 =  -  
5
6

.

Therefore, the point we seek is

Closest point:  Pa5
3

, 
5
6

, -  
5
6
b .

The distance from P to the origin is 5>26 ≈ 2.04. 

Attempts to solve a constrained maximum or minimum problem by substitution, as 

we might call the method of Example 1, do not always go smoothly.

EXAMPLE 2  Find the points on the hyperbolic cylinder x2 - z2 - 1 = 0 that are 

closest to the origin.

Solution 1 The cylinder is shown in Figure 14.52. We seek the points on the cylinder clos-

est to the origin. These are the points whose coordinates minimize the value of the function

ƒ(x, y, z) = x2 + y2 + z2  Square of the distance

subject to the constraint that x2 - z2 - 1 = 0. If we regard x and y as independent vari-

ables in the constraint equation, then

z2 = x2 - 1

(1, 0, 0)

z

y

x

x2 − z2 = 1

(−1, 0, 0)(((−−−−

FIGURE 14.52 The hyperbolic cylinder 

x2 - z2 - 1 = 0 in Example 2.
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and the values of ƒ(x, y, z) = x2 + y2 + z2 on the cylinder are given by the function

h(x, y) = x2 + y2 + (x2 - 1) = 2x2 + y2 - 1.

To find the points on the cylinder whose coordinates minimize ƒ, we look for the points in 

the xy-plane whose coordinates minimize h. The only extreme value of h occurs where

hx = 4x = 0  and  hy = 2y = 0,

that is, at the point (0, 0). But there are no points on the cylinder where both x and y are 

zero. What went wrong?

What happened was that the First Derivative Test found (as it should have) the point 

in the domain of h where h has a minimum value. We, on the other hand, want the points on 

the cylinder where h has a minimum value. Although the domain of h is the entire xy-plane, 

the domain from which we can select the irst two coordinates of the points (x, y, z) on the 

cylinder is restricted to the “shadow” of the cylinder on the xy-plane; it does not include the 

band between the lines x = -1 and x = 1 (Figure 14.53).

We can avoid this problem if we treat y and z as independent variables (instead of x  

and y) and express x in terms of y and z as

x2 = z2 + 1.

With this substitution, ƒ(x, y, z) = x2 + y2 + z2 becomes

k( y, z) = (z2 + 1) + y2 + z2 = 1 + y2 + 2z2

and we look for the points where k takes on its smallest value. The domain of k in the yz-

plane now matches the domain from which we select the y- and z-coordinates of the points 

(x, y, z) on the cylinder. Hence, the points that minimize k in the plane will have corre-

sponding points on the cylinder. The smallest values of k occur where

ky = 2y = 0  and  kz = 4z = 0,

or where y = z = 0. This leads to

x2 = z2 + 1 = 1,  x = {1.

The corresponding points on the cylinder are ({1, 0, 0). We can see from the inequality

k( y, z) = 1 + y2 + 2z2 Ú 1

that the points ({1, 0, 0) give a minimum value for k. We can also see that the minimum 

distance from the origin to a point on the cylinder is 1 unit.

Solution 2 Another way to find the points on the cylinder closest to the origin is to 

imagine a small sphere centered at the origin expanding like a soap bubble until it just 

touches the cylinder (Figure 14.54). At each point of contact, the cylinder and sphere have 

the same tangent plane and normal line. Therefore, if the sphere and cylinder are repre-

sented as the level surfaces obtained by setting

ƒ(x, y, z) = x2 + y2 + z2 - a2  and  g(x, y, z) = x2 - z2 - 1

equal to 0, then the gradients ∇ƒ and ∇g will be parallel where the surfaces touch. At any 

point of contact, we should therefore be able to find a scalar l (“lambda”) such that

∇ƒ = l∇g,

or

2xi + 2yj + 2zk = l(2xi - 2zk).

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the three sca-

lar equations

2x = 2lx,  2y = 0,  2z = -2lz.

On this part, On this part,

x = "z2 
+ 1

x

z

−11

y
x = −1x = 1

The hyperbolic cylinder x2 − z2 = 1

x = −"z2 
+ 1

FIGURE 14.53 The region in the  

xy-plane from which the first two  

coordinates of the points (x, y, z) on the  

hyperbolic cylinder x2 - z2 = 1 are  

selected excludes the band -1 6 x 6 1  

in the xy-plane (Example 2).

z

y

x

x2 + y2 + z2 − a2 = 0

x2 − z2 − 1 = 0

FIGURE 14.54 A sphere expanding 

like a soap bubble centered at the origin 

until it just touches the hyperbolic cylinder 

x2 - z2 - 1 = 0 (Example 2).

l is the Greek letter lambda
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For what values of l will a point (x, y, z) whose coordinates satisfy these scalar equa-

tions also lie on the surface x2 - z2 - 1 = 0? To answer this question, we use our knowl-

edge that no point on the surface has a zero x-coordinate to conclude that x ≠ 0. Hence, 

2x = 2lx only if

2 = 2l,  or  l = 1.

For l = 1, the equation 2z = -2lz becomes 2z = -2z. If this equation is to be satisfied 

as well, z must be zero. Since y = 0 also (from the equation 2y = 0), we conclude that 

the points we seek all have coordinates of the form

(x, 0, 0).

What points on the surface x2 - z2 = 1 have coordinates of this form? The answer is the 

points (x, 0, 0) for which

x2 - (0)2 = 1,  x2 = 1,  or  x = {1.

The points on the cylinder closest to the origin are the points ({1, 0, 0). 

The Method of Lagrange Multipliers

In Solution 2 of Example 2, we used the method of Lagrange multipliers. The method 

says that the local extreme values of a function ƒ(x, y, z) whose variables are subject to a 

constraint g(x, y, z) = 0 are to be found on the surface g = 0 among the points where

∇ƒ = l∇g

for some scalar l (called a Lagrange multiplier).

To explore the method further and see why it works, we first make the following 

observation, which we state as a theorem.

THEOREM 12—The Orthogonal Gradient Theorem

Suppose that ƒ(x, y, z) is diferentiable in a region whose interior contains a 

smooth curve

C: r(t) = x(t)i + y(t)j + z(t)k.

If P0 is a point on C where ƒ has a local maximum or minimum relative to its 

values on C, then ∇ƒ is orthogonal to C at P0 .

Proof  We show that ∇ƒ is orthogonal to the curve’s tangent vector r′ at P0 . The values 

of ƒ on C are given by the composition ƒ(x(t), y(t), z(t)), whose derivative with respect to t is

dƒ

dt
=

0ƒ

0x
 
dx

dt
+

0ƒ

0y
 
dy

dt
+

0ƒ

0z
 
dz

dt
= ∇ƒ # r′.

At any point P0 where ƒ has a local maximum or minimum relative to its values on the 

curve, dƒ>dt = 0, so

 ∇ƒ # r′ = 0. 

By dropping the z-terms in Theorem 12, we obtain a similar result for functions of 

two variables.

COROLLARY At the points on a smooth curve r(t) = x(t)i + y(t)j where a 

diferentiable function ƒ(x, y) takes on its local maxima and minima relative to 

its values on the curve, ∇ƒ # r′ = 0.
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Theorem 12 is the key to the method of Lagrange multipliers. Suppose that ƒ(x, y, z) 

and g(x, y, z) are differentiable and that P0 is a point on the surface g(x, y, z) = 0 where ƒ 

has a local maximum or minimum value relative to its other values on the surface. We 

assume also that ∇g ≠ 0 at points on the surface g(x, y, z) = 0. Then ƒ takes on a local 

maximum or minimum at P0 relative to its values on every differentiable curve through P0 

on the surface g(x, y, z) = 0. Therefore, ∇ƒ is orthogonal to the tangent vector of every 

such differentiable curve through P0 . So is ∇g, moreover (because ∇g is orthogonal to the 

level surface g = 0, as we saw in Section 14.5). Therefore, at P0 , ∇ƒ is some scalar mul-

tiple l of ∇g.

The Method of Lagrange Multipliers

Suppose that ƒ(x, y, z) and g(x, y, z) are differentiable and ∇g ≠ 0 when 

g(x, y, z) = 0. To find the local maximum and minimum values of ƒ subject to 

the constraint g(x, y, z) = 0 (if these exist), find the values of x, y, z, and l that 

simultaneously satisfy the equations

 ∇ƒ = l∇g  and  g(x, y, z) = 0. (1)

For functions of two independent variables, the condition is similar, but without 

the variable z.

Some care must be used in applying this method. An extreme value may not actually exist 

(Exercise 45).

EXAMPLE 3  Find the greatest and smallest values that the function

ƒ(x, y) = xy

takes on the ellipse (Figure 14.55)

x2

8
+

y2

2
= 1.

Solution We want to find the extreme values of ƒ(x, y) = xy subject to the constraint

g(x, y) =
x2

8
+

y2

2
- 1 = 0.

To do so, we first find the values of x, y, and l for which

∇ƒ = l∇g  and  g(x, y) = 0.

The gradient equation in Equations (1) gives

yi + xj =
l
4

 xi + lyj,

from which we find

y =
l
4

 x,  x = ly,  and  y =
l
4

 (ly) =
l2

4
 y,

so that y = 0 or l = {2. We now consider these two cases.

case 1: If y = 0, then x = y = 0. But (0, 0) is not on the ellipse. Hence, y ≠ 0.

case 2: If y ≠ 0, then l = {2 and x = {2y. Substituting this in the equation 

g(x, y) = 0 gives

({2y)2

8
+

y2

2
= 1,  4y2 + 4y2 = 8  and  y = {1.

y

x
0 2"2

"2 +      = 1
x2

8

y2

2

FIGURE 14.55 Example 3 shows how 

to find the largest and smallest values of 

the product xy on this ellipse.
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The function ƒ(x, y) = xy therefore takes on its extreme values on the ellipse at the four 

points ({2, 1), ({2, -1). The extreme values are xy = 2 and xy = -2.

The Geometry of the Solution The level curves of the function ƒ(x, y) = xy are 

the hyperbolas xy = c (Figure 14.56). The farther the hyperbolas lie from the origin, the 

larger the absolute value of ƒ. We want to ind the extreme values of ƒ(x, y), given that 

the point (x, y) also lies on the ellipse x2 + 4y2 = 8. Which hyperbolas intersecting the 

ellipse lie farthest from the origin? The hyperbolas that just graze the ellipse, the ones that 

are tangent to it, are farthest. At these points, any vector normal to the hyperbola is nor-

mal to the ellipse, so ∇ƒ = yi + xj is a multiple (l = {2) of ∇g = (x>4)i + yj. At the 

point (2, 1), for example,

∇ƒ = i + 2j,  ∇g =
1
2

 i + j,  and  ∇ƒ = 2∇g .

At the point (-2, 1),

 ∇ƒ = i - 2j,  ∇g = -  
1
2

 i + j,  and  ∇ƒ = -2∇g. 

EXAMPLE 4  Find the maximum and minimum values of the function ƒ(x, y) =  

3x + 4y on the circle x2 + y2 = 1.

Solution We model this as a Lagrange multiplier problem with

ƒ(x, y) = 3x + 4y,  g(x, y) = x2 + y2 - 1

and look for the values of x, y, and l that satisfy the equations

∇ƒ = l∇g: 3i + 4j = 2xli + 2ylj

g(x, y) = 0: x2 + y2 - 1 = 0.

The gradient equation in Equations (1) implies that l ≠ 0 and gives

x =
3

2l
,  y =

2
l

.

These equations tell us, among other things, that x and y have the same sign. With these 

values for x and y, the equation g(x, y) = 0 givesa 3
2l
b2

+ a2
l
b2

- 1 = 0,

so

9

4l2
+

4

l2
= 1,  9 + 16 = 4l2,  4l2 = 25,  and  l = {5

2
.

Thus,

x =
3

2l
= {3

5
,  y =

2
l

= {4
5

,

and ƒ(x, y) = 3x + 4y has extreme values at (x, y) = {(3>5, 4>5).

By calculating the value of 3x + 4y at the points {(3>5, 4>5), we see that its maxi-

mum and minimum values on the circle x2 + y2 = 1 are

3a3
5
b + 4a4

5
b =

25
5

= 5  and  3a-  
3
5
b + 4a-  

4
5
b = -  

25
5

= -5.

The Geometry of the Solution The level curves of ƒ(x, y) = 3x + 4y are the lines 

3x + 4y = c (Figure 14.57). The farther the lines lie from the origin, the larger the ab-

solute value of ƒ. We want to ind the extreme values of ƒ(x, y) given that the point (x, y) 

y

x

3x + 4y = 5

3x + 4y = −5

3
5

4
5

,

∇f = 3i + 4j =    ∇g
5
2

∇g =    i +    j
6
5

8
5

a    bx2 + y2 = 1

FIGURE 14.57 The function ƒ(x, y) =  

3x + 4y takes on its largest value on the 

unit circle g(x, y) = x2 + y2 - 1 = 0 at 

the point (3 >5, 4 >5) and its smallest value 

at the point (-3>5, -4>5) (Example 4). At 

each of these points, ∇ƒ is a scalar mul-

tiple of ∇g. The figure shows the gradients 

at the first point but not the second.

x

y
xy = −2

∇f = i + 2j
xy = 2

∇g =    i + j
1
2

xy = −2xy = 2

0 1

1

FIGURE 14.56 When subjected 

to the constraint g(x, y) = x2>8 +
y2>2 - 1 = 0, the function ƒ(x, y) = xy 

takes on extreme values at the four points 

({2, {1). These are the points on the 

ellipse where ∇ƒ (red) is a scalar multiple 

of ∇g (blue) (Example 3).
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also lies on the circle x2 + y2 = 1. Which lines intersecting the circle lie farthest from 

the origin? The lines tangent to the circle are farthest. At the points of tangency, any vec-

tor normal to the line is normal to the circle, so the gradient ∇ƒ = 3i + 4j is a multiple 

(l = {5>2) of the gradient ∇g = 2xi + 2yj. At the point (3 >5, 4 >5), for example,

 ∇ƒ = 3i + 4j,  ∇g =
6
5

 i +
8
5

 j,  and  ∇ƒ =
5
2

 ∇g. 

Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function ƒ(x, y, z) 

whose variables are subject to two constraints. If the constraints are

g1(x, y, z) = 0  and  g2(x, y, z) = 0

and g1 and g2 are differentiable, with ∇g1 not parallel to ∇g2, we find the constrained 

local maxima and minima of ƒ by introducing two Lagrange multipliers l and m (mu, 

pronounced “mew”). That is, we locate the points P(x, y, z) where ƒ takes on its con-

strained extreme values by finding the values of x, y, z, l, and m that simultaneously sat-

isfy the three equations

C

g2 = 0

g1 = 0

∇ f

∇g2

∇g1

FIGURE 14.58 The vectors ∇g1 and 

∇g2 lie in a plane perpendicular to the 

curve C because ∇g1 is normal to the 

surface g1 = 0 and ∇g2 is normal to the 

surface g2 = 0.

Equations (2) have a nice geometric interpretation. The surfaces g1 = 0 and g2 = 0  

(usually) intersect in a smooth curve, say C (Figure 14.58). Along this curve we seek the 

points where ƒ has local maximum and minimum values relative to its other values on the 

curve. These are the points where ∇ƒ is normal to C, as we saw in Theorem 12. But ∇g1 

and ∇g2 are also normal to C at these points because C lies in the surfaces g1 = 0 and 

g2 = 0. Therefore, ∇ƒ lies in the plane determined by ∇g1 and ∇g2, which means that 

∇ƒ = l∇g1 + m∇g2 for some l and m. Since the points we seek also lie in both surfaces, 

their coordinates must satisfy the equations g1(x, y, z) = 0 and g2(x, y, z) = 0, which are 

the remaining requirements in Equations (2).

 ∇ƒ = l∇g1 + m∇g2,  g1(x, y, z) = 0,  g2(x, y, z) = 0 (2)

EXAMPLE 5  The plane x + y + z = 1 cuts the cylinder x2 + y2 = 1 in an ellipse 

(Figure 14.59). Find the points on the ellipse that lie closest to and farthest from the origin.

Cylinder x2
 + y2

 = 1

z

y

Plane

x + y + z = 1
x

P1

(1, 0, 0)

(0, 1, 0)

P2

FIGURE 14.59 On the ellipse where the plane and 

cylinder meet, we find the points closest to and farthest 

from the origin (Example 5).

m is the Greek letter mu,

pronounced “mew”
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Solution We find the extreme values of

ƒ(x, y, z) = x2 + y2 + z2

(the square of the distance from (x, y, z) to the origin) subject to the constraints

  g1(x, y, z) = x2 + y2 - 1 = 0  (3)

  g2(x, y, z) = x + y + z - 1 = 0. (4)

The gradient equation in Equations (2) then gives

 ∇ƒ = l∇g1 + m∇g2

 2xi + 2yj + 2zk = l(2xi + 2yj) + m(i + j + k)

 2xi + 2yj + 2zk = (2lx + m)i + (2ly + m)j + mk

or

 2x = 2lx + m,  2y = 2ly + m,  2z = m. (5)

The scalar equations in Equations (5) yield

 2x = 2lx + 2z 1 (1 - l)x = z, 

  2y = 2ly + 2z 1 (1 - l)y = z.  (6)

Equations (6) are satisfied simultaneously if either l = 1 and z = 0 or l ≠ 1 and 

x = y = z>(1 - l).

If z = 0, then solving Equations (3) and (4) simultaneously to ind the corresponding 

points on the ellipse gives the two points (1, 0, 0) and (0, 1, 0). This makes sense when you 

look at Figure 14.59.

If x = y, then Equations (3) and (4) give

 x2 + x2 - 1 = 0

 2x2 = 1

x = {22
2

 x + x + z - 1 = 0

 z = 1 - 2x

 z = 1 | 22.

Two Independent Variables with One Constraint

 1. Extrema on an ellipse Find the points on the ellipse 

x2 + 2y2 = 1 where ƒ(x, y) = xy has its extreme values.

 2. Extrema on a circle Find the extreme values of ƒ(x, y) = xy 

subject to the constraint g(x, y) = x2 + y2 - 10 = 0.

 3. Maximum on a line Find the maximum value of ƒ(x, y) = 49 -  

x2 - y2 on the line x + 3y = 10.

 4. Extrema on a line Find the local extreme values of ƒ(x, y) = x2y 

on the line x + y = 3.

 5. constrained minimum Find the points on the curve xy2 = 54 

nearest the origin.

 6. constrained minimum Find the points on the curve x2y = 2 

nearest the origin.

EXERCISES 14.8

The corresponding points on the ellipse are

P1 = a22
2

, 
22
2

, 1 - 22b  and  P2 = a-  
22
2

, -  
22
2

, 1 + 22b .

Here we need to be careful, however. Although P1 and P2 both give local maxima of ƒ on 

the ellipse, P2 is farther from the origin than P1.

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point on 

the ellipse farthest from the origin is P2 . (See Figure 14.59.) 
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 24. Extrema on a sphere Find the points on the sphere 

x2 + y2 + z2 = 25 where ƒ(x, y, z) = x + 2y + 3z has its max-

imum and minimum values.

 25. Minimizing a sum of squares Find three real numbers whose 

sum is 9 and the sum of whose squares is as small as possible.

 26. Maximizing a product Find the largest product the positive 

numbers x, y, and z can have if x + y + z2 = 16.

 27. rectangular box of largest volume in a sphere Find the di-

mensions of the closed rectangular box with maximum volume 

that can be inscribed in the unit sphere.

 28. Box with vertex on a plane Find the volume of the largest closed 

rectangular box in the irst octant having three faces in the coor-

dinate planes and a vertex on the plane x>a + y>b + z>c = 1, 

where a 7 0, b 7 0, and c 7 0.

 29. Hottest point on a space probe A space probe in the shape of 

the ellipsoid

4x2 + y2 + 4z2 = 16

  enters Earth’s atmosphere and its surface begins to heat. After 1 

hour, the temperature at the point (x, y, z) on the probe’s surface is

T(x, y, z) = 8x2 + 4yz - 16z + 600.

  Find the hottest point on the probe’s surface.

 30. Extreme temperatures on a sphere Suppose that the Celsius 

temperature at the point (x, y, z) on the sphere x2 + y2 + z2 = 1 

is T = 400xyz2. Locate the highest and lowest temperatures on 

the sphere.

 31. cobb-Douglas production function During the 1920s, Charles 

Cobb and Paul Douglas modeled total production output P (of 

a irm, industry, or entire economy) as a function of labor hours 

involved x and capital invested y (which includes the monetary 

worth of all buildings and equipment). The Cobb-Douglas produc-

tion function is given by

P(x,  y) = kxa y1 -a, 

  where k and a are constants representative of a particular irm or 

economy.

a. Show that a doubling of both labor and capital results in a 

doubling of production P.

b. Suppose a particular irm has the production function for 

k = 120 and a = 3>4. Assume that each unit of labor costs 

$250 and each unit of capital costs $400, and that the total 

expenses for all costs cannot exceed $100,000. Find the 

maximum production level for the irm.

 32. (Continuation of Exercise 31.) If the cost of a unit of labor is c1 

and the cost of a unit of capital is c2, and if the irm can spend only 

B dollars as its total budget, then production P is constrained by 

c1x + c2 

y = B. Show that the maximum production level subject 

to the constraint occurs at the point

x =
aB
c1
 and y =

(1 - a)B
c2

.

 33. Maximizing a utility function: an example from economics  

In economics, the usefulness or utility of amounts x and y of two 

capital goods G1 and G2 is sometimes measured by a function 

U(x, y). For example, G1 and G2 might be two chemicals a phar-

maceutical company needs to have on hand and U(x, y) the gain 

 7. Use the method of Lagrange multipliers to ind

a. Minimum on a hyperbola The minimum value of x + y, 

subject to the constraints xy = 16, x 7 0, y 7 0

b. Maximum on a line The maximum value of xy, subject to 

the constraint x + y = 16.

  Comment on the geometry of each solution.

 8. Extrema on a curve Find the points on the curve x2 + xy +  

y2 = 1 in the xy-plane that are nearest to and farthest from the 

origin.

 9. Minimum surface area with ixed volume Find the dimen-

sions of the closed right circular cylindrical can of smallest surface 

area whose volume is 16p cm3.

 10. cylinder in a sphere Find the radius and height of the open 

right circular cylinder of largest surface area that can be inscribed 

in a sphere of radius a. What is the largest surface area?

 11. rectangle of greatest area in an ellipse Use the method of  

Lagrange multipliers to ind the dimensions of the rectangle of 

greatest area that can be inscribed in the ellipse x2>16 + y2>9 = 1 

with sides parallel to the coordinate axes.

 12. rectangle of longest perimeter in an ellipse Find the dimen-

sions of the rectangle of largest perimeter that can be inscribed in 

the ellipse x2>a2 + y2>b2 = 1 with sides parallel to the coordi-

nate axes. What is the largest perimeter?

 13. Extrema on a circle Find the maximum and minimum values of 

x2 + y2 subject to the constraint x2 - 2x + y2 - 4y = 0.

 14. Extrema on a circle Find the maximum and minimum values of 

3x - y + 6 subject to the constraint x2 + y2 = 4.

 15. Ant on a metal plate The temperature at a point (x, y) on a met-

al plate is T(x, y) = 4x2 - 4xy + y2. An ant on the plate walks 

around the circle of radius 5 centered at the origin. What are the 

highest and lowest temperatures encountered by the ant?

 16. cheapest storage tank Your irm has been asked to design a 

storage tank for liquid petroleum gas. The customer’s speciications 

call for a cylindrical tank with hemispherical ends, and the tank is 

to hold 8000 m3 of gas. The customer also wants to use the smallest 

amount of material possible in building the tank. What radius and 

height do you recommend for the cylindrical portion of the tank?

Three Independent Variables with One Constraint

 17. Minimum distance to a point Find the point on the plane 

x + 2y + 3z = 13 closest to the point (1, 1, 1).

 18. Maximum distance to a point Find the point on the sphere 

x2 + y2 + z2 = 4 farthest from the point (1, -1, 1).

 19. Minimum distance to the origin Find the minimum distance 

from the surface x2 - y2 - z2 = 1 to the origin.

 20. Minimum distance to the origin Find the point on the surface 

z = xy + 1 nearest the origin.

 21. Minimum distance to the origin Find the points on the surface 

z2 = xy + 4 closest to the origin.

 22. Minimum distance to the origin Find the point(s) on the 

 surface xyz = 1 closest to the origin.

 23. Extrema on a sphere Find the maximum and minimum  

values of

ƒ(x, y, z) = x - 2y + 5z

  on the sphere x2 + y2 + z2 = 30.
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 43. Extrema on a circle of intersection Find the extreme values of 

the function ƒ(x, y, z) = xy + z2 on the circle in which the plane 

y - x = 0 intersects the sphere x2 + y2 + z2 = 4.

 44. Minimum distance to the origin Find the point closest to the 

origin on the curve of intersection of the plane 2y + 4z = 5 and 

the cone z2 = 4x2 + 4y2.

from manufacturing a product whose synthesis requires diferent 

amounts of the chemicals depending on the process used. If G1 

costs a dollars per kilogram, G2 costs b dollars per kilogram, and 

the total amount allocated for the purchase of G1 and G2 together 

is c dollars, then the company’s managers want to maximize U(x, 

y) given that ax + by = c. Thus, they need to solve a typical  

Lagrange multiplier problem.

   Suppose that

U(x, y) = xy + 2x

  and that the equation ax + by = c simpliies to

2x + y = 30.

  Find the maximum value of U and the corresponding values of x 

and y subject to this latter constraint.

 34. Blood types Human blood types are classiied by three gene 

forms A, B, and O. Blood types AA, BB, and OO are homozygous, 

and blood types AB, AO, and BO are heterozygous. If p, q, and r 

represent the proportions of the three gene forms to the popula-

tion, respectively, then the Hardy-Weinberg Law asserts that the 

proportion Q of heterozygous persons in any speciic population 

is modeled by

Q(p,  q,  r) = 2(pq + pr + qr), 

  subject to p + q + r = 1. Find the maximum value of Q.

 35. Length of a beam In Section 4.6, Exercise 39, we posed a prob-

lem of inding the length L of the shortest beam that can reach over 

a wall of height h to a tall building located k units from the wall. 

Use Lagrange multipliers to show that

L = (h2>3 + k2>3)3>2.
 36. Locating a radio telescope You are in charge of erecting a ra-

dio telescope on a newly discovered planet. To minimize interfer-

ence, you want to place it where the magnetic ield of the planet 

is weakest. The planet is spherical, with a radius of 6 units. Based 

on a coordinate system whose origin is at the center of the planet, 

the strength of the magnetic ield is given by M(x, y, z) = 6x -  

y2 + xz + 60. Where should you locate the radio telescope?

Extreme Values Subject to Two Constraints

 37. Maximize the function ƒ(x, y, z) = x2 + 2y - z2 subject to the 

constraints 2x - y = 0 and y + z = 0.

 38. Minimize the function ƒ(x, y, z) = x2 + y2 + z2 subject to the 

constraints x + 2y + 3z = 6 and x + 3y + 9z = 9.

 39. Minimum distance to the origin Find the point closest to the 

origin on the line of intersection of the planes y + 2z = 12 and 

x + y = 6.

 40. Maximum value on line of intersection Find the maximum 

value that ƒ(x, y, z) = x2 + 2y - z2 can have on the line of inter-

section of the planes 2x - y = 0 and y + z = 0.

 41. Extrema on a curve of intersection Find the extreme values of 

ƒ(x, y, z) = x2yz + 1 on the intersection of the plane z = 1 with 

the sphere x2 + y2 + z2 = 10.

 42. a.  Maximum on line of intersection Find the maximum 

 value of w = xyz on the line of intersection of the two planes 

x + y + z = 40 and x + y - z = 0.

b. Give a geometric argument to support your claim that you 

have found a maximum, and not a minimum, value of w.

Theory and Examples

 45. the condition ∇ƒ = L∇g is not suicient Although 

∇ƒ = l∇g is a necessary condition for the occurrence of an ex-

treme value of ƒ(x, y) subject to the conditions g(x, y) = 0 and 

∇g ≠ 0, it does not in itself guarantee that one exists. As a case 

in point, try using the method of Lagrange multipliers to ind a 

maximum value of ƒ(x, y) = x + y subject to the constraint 

that xy = 16. The method will identify the two points (4, 4) and 

(-4, -4) as candidates for the location of extreme values. Yet the 

sum x + y has no maximum value on the hyperbola xy = 16. 

The farther you go from the origin on this hyperbola in the irst 

quadrant, the larger the sum ƒ(x, y) = x + y becomes.

 46. A least squares plane The plane z = Ax + By + C is to be 

“itted” to the following points (xk , yk , zk):

(0, 0, 0),  (0, 1, 1),  (1, 1, 1),  (1, 0, -1).

  Find the values of A, B, and C that minimize

a
4

k = 1

(Axk + Byk + C - zk)
2 ,

  the sum of the squares of the deviations.

 47. a.  Maximum on a sphere Show that the maximum value of 

a2b2c2 on a sphere of radius r centered at the origin of a Carte-

sian abc-coordinate system is (r2>3)3.

b. Geometric and arithmetic means Using part (a), show 

that for nonnegative numbers a, b, and c,

(abc)1>3 …
a + b + c

3
 ;

  that is, the geometric mean of three nonnegative numbers is less 

than or equal to their arithmetic mean.

 48. Sum of products Let a1, a2, . . . , an be n positive numbers. Find 

the maximum of Σi = 1
n  ai  xi subject to the constraint Σi = 1

n  xi 
2 = 1.

COMPUTER EXPLORATIONS

In Exercises 49–54, use a CAS to perform the following steps imple-

menting the method of Lagrange multipliers for finding constrained 

extrema:

a. Form the function h = ƒ - l1 g1 - l2 g2, where ƒ is the 

function to optimize subject to the constraints g1 = 0 and 

g2 = 0.

b. Determine all the irst partial derivatives of h, including the 

partials with respect to l1 and l2, and set them equal to 0.

c. Solve the system of equations found in part (b) for all the 

unknowns, including l1 and l2.

d. Evaluate ƒ at each of the solution points found in part (c) and 

select the extreme value subject to the constraints asked for in 

the exercise.

 49. Minimize ƒ(x, y, z) = xy + yz subject to the constraints 

x2 + y2 -  2 = 0 and x2 + z2 - 2 = 0.
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 50. Minimize ƒ(x, y, z) = xyz subject to the constraints x2 + y2  -  

1 = 0 and x - z = 0.

 51. Maximize ƒ(x, y, z) = x2 + y2 + z2 subject to the constraints 

2y + 4z - 5 = 0 and 4x2 + 4y2 - z2 = 0.

 52. Minimize ƒ(x, y, z) = x2 + y2 + z2 subject to the constraints 

x2 - xy + y2 - z2 - 1 = 0 and x2 + y2 - 1 = 0.

 53. Minimize ƒ(x, y, z, w) = x2 + y2 + z2 + w2 subject to the 

constraints 2x - y + z - w - 1 = 0 and x + y - z +  

w - 1 = 0.

 54. Determine the distance from the line y = x + 1 to the parabola 

y2 = x. (Hint: Let (x, y) be a point on the line and (w, z) a point on 

the parabola. You want to minimize (x - w)2 + (  y - z)2.)

14.9 Taylor’s Formula for Two Variables

In this section we use Taylor’s formula to derive the Second Derivative Test for local 

extreme values (Section 14.7) and the error formula for linearizations of functions of two 

independent variables (Section 14.6). The use of Taylor’s formula in these derivations 

leads to an extension of the formula that provides polynomial approximations of all orders 

for functions of two independent variables.

Derivation of the Second Derivative Test

Let ƒ(x, y) have continuous first and second partial derivatives in an open region R con-

taining a point P(a, b) where ƒx = ƒy = 0 (Figure 14.60). Let h and k be increments small 

enough to put the point S(a + h, b + k) and the line segment joining it to P inside R. We 

parametrize the segment PS as

x = a + th,  y = b + tk,  0 … t … 1.

If F(t) = ƒ(a + th, b + tk), the Chain Rule gives

F′(t) = ƒx 
dx

dt
+ ƒy 

dy

dt
= hƒx + kƒy .

Since ƒx and ƒy are differentiable (because they have continuous partial derivatives), 

F′ is a differentiable function of t and

 F″ =
0F′
0x

 
dx

dt
+

0F′
0y

 
dy

dt
=

0
0x

 (hƒx + kƒy) # h +
0
0y

 (hƒx + kƒy) # k

 = h2ƒxx + 2hkƒxy + k2ƒyy .  ƒxy = ƒyx

Since F and F′ are continuous on 30, 14  and F′ is differentiable on (0, 1), we can apply 

Taylor’s formula with n = 2 and a = 0 to obtain

F(1) = F(0) + F′(0)(1 - 0) + F″(c) 
(1 - 0)2

2

 = F(0) + F′(0) +
1
2

 F″(c)

 (1)

for some c between 0 and 1. Writing Equation (1) in terms of ƒ gives

 ƒ(a + h, b + k) = ƒ(a, b) + hƒx(a, b) + kƒy(a, b)

         +
1
2

 1h2ƒxx + 2hkƒxy + k2ƒyy2 2
(a + ch, b + ck)

. (2)

Since ƒx(a, b) = ƒy(a, b) = 0, this reduces to

 ƒ(a + h, b + k) - ƒ(a, b) =
1
2

 1h2ƒxx + 2hkƒxy + k2ƒyy2 2
(a + ch, b + ck)

. (3)

Part of open region R

(a + th, b + tk),

a typical point

on the segment

P(a, b)
t = 0

Parametrized

segment

in R

t = 1
S(a + h, b + k)

FIGURE 14.60 We begin the derivation 

of the Second Derivative Test at P(a, b) by 

parametrizing a typical line segment from 

P to a point S nearby.



 14.9  Taylor’s Formula for Two Variables 869

To determine whether ƒ has an extremum at (a, b), we examine the sign of the differ-

ence ƒ(a + h, b + k) - ƒ(a, b). By Equation (3), this is the same as the sign of

Q(c) = (h2ƒxx + 2hkƒxy + k2ƒyy) 2
(a + ch, b + ck)

.

Now, if Q(0) ≠ 0, the sign of Q(c) will be the same as the sign of Q(0) for sufficiently 

small values of h and k. We can predict the sign of

 Q(0) = h2ƒxx(a, b) + 2hkƒxy(a, b) + k2ƒyy(a, b) (4)

from the signs of ƒxx and ƒxx ƒyy - ƒxy 2 at (a, b). Multiply both sides of Equation (4) by ƒxx 

and rearrange the right-hand side to get

 ƒxx Q(0) = 1hƒxx + kƒxy22 + 1ƒxx ƒyy - ƒxy 

22 k2. (5)

From Equation (5) we see that

1. If ƒxx 6 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b), then Q(0) 6 0 for all suiciently small 

nonzero values of h and k, and ƒ has a local maximum value at (a, b).

2. If ƒxx 7 0 and ƒxx ƒyy - ƒxy 2 7 0 at (a, b), then Q(0) 7 0 for all sufficiently small 

nonzero values of h and k, and ƒ has a local minimum value at (a, b).

3. If ƒxx ƒyy - ƒxy 2 6 0 at (a, b), there are combinations of arbitrarily small nonzero val-

ues of h and k for which Q(0) 7 0, and other values for which Q(0) 6 0. Arbitrarily 

close to the point P0(a, b, ƒ(a, b)) on the surface z = ƒ(x, y) there are points above P0 

and points below P0 , so ƒ has a saddle point at (a, b).

4. If ƒxx ƒyy - ƒxy 2 = 0, another test is needed. The possibility that Q(0) equals zero pre-

vents us from drawing conclusions about the sign of Q(c).

The Error Formula for Linear Approximations

We want to show that the difference E(x, y) between the values of a function ƒ(x, y) and its 

linearization L(x, y) at (x0 , y0) satisfies the inequality0E(x, y) 0 …
1
2

 M1 0 x - x0 0 + 0 y - y0 0 22.
The function ƒ is assumed to have continuous second partial derivatives throughout an 

open set containing a closed rectangular region R centered at (x0 , y0). The number M is an 

upper bound for 0 ƒxx 0 , 0 ƒyy 0 , and 0 ƒxy 0  on R.

The inequality we want comes from Equation (2). We substitute x0 and y0 for a and b, 

and x - x0 and y - y0 for h and k, respectively, and rearrange the result as

ƒ(x, y) = ƒ(x0 , y0) + ƒx(x0 , y0)(x - x0) + ƒy(x0 , y0)( y - y0)
 (++++++++++++)+++++++++++++*
 linearization L(x, y)

+
1
2

 1(x - x0)
2ƒxx + 2(x - x0)( y - y0)ƒxy + ( y - y0)

2ƒyy2 2
(x0 + c(x - x0), y0 + c( y - y0))

.

 (++++++++++++++++++++)+++++++++++++++++++++*
 error E(x, y)

This equation reveals that0E 0 …
1
2

 1 0 x - x0 0 2 0 ƒxx 0 + 2 0 x - x0 0 0 y - y0 0 0 ƒxy 0 + 0 y - y0 0 2 0 ƒyy 0 2.
Hence, if M is an upper bound for the values of 0 ƒxx 0 , 0 ƒxy 0 , and 0 ƒyy 0  on R, then

 �E � …
1
2

 1 � x - x0 �
2 M + 2 � x - x0 � � y - y0 �M + � y - y0 �

2 M2
 =

1
2

 M1 � x - x0 � + � y - y0 � 22.
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Taylor’s Formula for Functions of Two Variables

The formulas derived earlier for F′ and F″ can be obtained by applying to ƒ(x, y) the dif-

ferentiation operators

ah 
0
0x

+ k 
0
0y
b  and  ah 

0
0x

+ k 
0
0y
b2

= h2 
02

0x2
+ 2hk 

02

0x 0y
+ k2 

02

0y2
.

These are the first two instances of a more general formula,

 F (n)(t) =
dn

dtn F(t) = ah 
0
0x

+ k 
0
0y
bn

ƒ(x, y), (6)

which says that applying dn>dtn to F(t) gives the same result as applying the operator

ah 
0
0x

+ k 
0
0y
bn

to ƒ(x, y) after expanding it by the Binomial Theorem.

If the partial derivatives of ƒ through order n + 1 are continuous throughout a rectan-

gular region centered at (a, b), we may extend the Taylor formula for F(t) to

F(t) = F(0) + F′(0)t +
F″(0)

2!
 t2 + g +

F (n)(0)

n!
 t(n) +  remainder, 

and take t = 1 to obtain

F(1) = F(0) + F′(0) +
F″(0)

2!
+ g +

F (n)(0)

n!
+  remainder.

When we replace the first n derivatives on the right of this last series by their equivalent 

expressions from Equation (6) evaluated at t = 0 and add the appropriate remainder term, 

we arrive at the following formula.

Taylor’s Formula for ƒ(x, y) at the Point (a, b)

Suppose ƒ(x, y) and its partial derivatives through order n + 1 are continuous throughout an open rectangular region R 

centered at a point (a, b). Then, throughout R,

 ƒ(a + h, b + k) = ƒ(a, b) + (hƒx + kƒy) 2
(a, b)

+
1
2!

 (h2ƒxx + 2hkƒxy + k2ƒyy) 2
(a, b)

          +
1
3!

 (h3ƒxxx + 3h2kƒxxy + 3hk2ƒxyy + k3ƒyyy) 2
(a, b)

+ g +
1
n!

 ah 
0
0x

+ k 
0
0y
bn

ƒ 2
(a, b)

                     +
1

(n + 1)!
 ah 

0
0x

+ k 
0
0y
bn + 1

ƒ 2
(a + ch, b + ck)

.  (7)

The first n derivative terms are evaluated at (a, b). The last term is evaluated at some point 

(a + ch, b + ck) on the line segment joining (a, b) and (a + h, b + k).

If (a, b) = (0, 0) and we treat h and k as independent variables (denoting them now 

by x and y), then Equation (7) assumes the following form.



 14.9  Taylor’s Formula for Two Variables 871

The first n derivative terms are evaluated at (0, 0). The last term is evaluated at a point on 

the line segment joining the origin and (x, y).

Taylor’s formula provides polynomial approximations of two-variable functions. The 

first n derivative terms give the polynomial; the last term gives the approximation error. 

The first three terms of Taylor’s formula give the function’s linearization. To improve on 

the linearization, we add higher-power terms.

Taylor’s Formula for ƒ(x, y) at the Origin

ƒ(x, y) = ƒ(0, 0) + xƒx + yƒy +
1
2!

 (x2ƒxx + 2xyƒxy + y2ƒyy)

              +
1
3!

 (x3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyy) + g +
1
n!

 axn 
0n ƒ

0xn  + nxn - 1y 
0n ƒ

0xn - 10y
+ g + yn 

0n ƒ

0yn b
              +

1
(n + 1)!

 axn + 1 
0n + 1 ƒ

0xn + 1
 + (n + 1)xny 

0n + 1 ƒ

0xn0y
+ g + yn + 1 

0n + 1 ƒ

0yn + 1
b 2

(cx, cy)

 (8)

EXAMPLE 1  Find a quadratic approximation to ƒ(x, y) = sin x sin y near the origin. 

How accurate is the approximation if  0 x 0 … 0.1 and  0 y 0 … 0.1?

Solution We take n = 2 in Equation (8):

 ƒ(x, y) = ƒ(0, 0) + (xƒx + yƒy) +
1
2

 (x2ƒxx + 2xyƒxy + y2ƒyy)

         +
1
6

 (x3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyy) 2
(cx, cy)

.

Calculating the values of the partial derivatives,

 ƒ(0, 0) = sin x sin y 2
(0, 0)

= 0,    ƒxx(0, 0) = -sin x sin y 2
(0, 0)

= 0, 

 ƒx(0, 0) = cos x sin y 2
(0, 0)

= 0,   ƒxy(0, 0) = cos x cos y 2
(0, 0)

= 1, 

 ƒy(0, 0) = sin x cos y 2
(0, 0)

= 0,   ƒyy(0, 0) = -sin x sin y 2
(0, 0)

= 0, 

we have the result

sin x sin y ≈ 0 + 0 + 0 +
1
2

 (x2(0) + 2xy(1) + y2(0)), or sin x sin y ≈ xy.

The error in the approximation is

E(x, y) =
1
6

 (x3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyy) 2
(cx, cy)

.

The third derivatives never exceed 1 in absolute value because they are products of sines 

and cosines. Also, 0 x 0 … 0.1 and 0 y 0 … 0.1. Hence0E(x, y) 0 …
1
6

 ((0.1)3 + 3(0.1)3 + 3(0.1)3 + (0.1)3) =
8
6

 (0.1)3 … 0.00134

(rounded up). The error will not exceed 0.00134 if 0 x 0 … 0.1 and 0 y 0 … 0.1. 
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Finding Quadratic and Cubic Approximations

In Exercises 1–10, use Taylor’s formula for ƒ(x, y) at the origin to find 

quadratic and cubic approximations of ƒ near the origin.

 1. ƒ(x, y) = xey 2. ƒ(x, y) = ex cos y

 3. ƒ(x, y) = y sin x 4. ƒ(x, y) = sin x cos y

 5. ƒ(x, y) = ex ln (1 + y) 6. ƒ(x, y) = ln (2x + y + 1)

 7. ƒ(x, y) = sin (x2 + y2)  8. ƒ(x, y) = cos (x2 + y2)

 9. ƒ(x, y) =
1

1 - x - y
 10. ƒ(x, y) =

1
1 - x - y + xy

 11. Use Taylor’s formula to ind a quadratic approximation of 

ƒ(x, y) = cos x cos y at the origin. Estimate the error in the ap-

proximation if 0 x 0 … 0.1 and 0 y 0 … 0.1.

 12. Use Taylor’s formula to ind a quadratic approximation of ex sin y 

at the origin. Estimate the error in the approximation if 0 x 0 … 0.1 

and 0 y 0 … 0.1.

EXERCISES 14.9

14.10 Partial Derivatives with Constrained Variables

In finding partial derivatives of functions like w = ƒ(x, y), we have assumed x and y to be 

independent. In many applications, however, this is not the case. For example, the internal 

energy U of a gas may be expressed as a function U = ƒ(P, V, T ) of pressure P, volume 

V, and temperature T. If the individual molecules of the gas do not interact, however, P, V, 

and T obey (and are constrained by) the ideal gas law

PV = nRT  (n and R constant),

and fail to be independent. In this section we learn how to find partial derivatives in situa-

tions like this, which occur in economics, engineering, and physics.

Decide Which Variables Are Dependent and Which Are Independent

If the variables in a function w = ƒ(x, y, z) are constrained by a relation like the one 

imposed on x, y, and z by the equation z = x2 + y2, the geometric meanings and the 

numerical values of the partial derivatives of ƒ will depend on which variables are chosen 

to be dependent and which are chosen to be independent. To see how this choice can affect 

the outcome, we consider the calculation of 0w>0x when w = x2 + y2 + z2 and 

z = x2 + y2.

EXAMPLE 1  Find 0w>0x if w = x2 + y2 + z2 and z = x2 + y2.

Solution We are given two equations in the four unknowns x, y, z, and w. Like many 

such systems, this one can be solved for two of the unknowns (the dependent variables) in 

terms of the others (the independent variables). In being asked for 0w>0x, we are told that 

w is to be a dependent variable and x an independent variable. The possible choices for the 

other variables come down to

 Dependent Independent

Choice 1: w, z x, y

Choice 2:  w, y x, z

In either case, we can express w explicitly in terms of the selected independent variables. 

We do this by using the second equation z = x2 + y2 to eliminate the remaining depen-

dent variable in the first equation.

In the irst case, the remaining dependent variable is z. We eliminate it from the irst 

equation by replacing it by x2 + y2. The resulting expression for w is

 w = x2 + y2 + z2 = x2 + y2 + (x2 + y2)2

 = x2 + y2 + x4 + 2x2y2 + y4
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and therefore

 
0w
0x

= 2x + 4x3 + 4xy2. (1)

This is the formula for 0w>0x when x and y are the independent variables.

In the second case, where the independent variables are x and z and the remaining 

dependent variable is y, we eliminate the dependent variable y in the expression for w by 

replacing y2 in the second equation by z - x2. This gives

w = x2 + y2 + z2 = x2 + (z - x2) + z2 = z + z2

and therefore

 
0w
0x

= 0. (2)

This is the formula for 0w>0x when x and z are the independent variables.

The formulas for 0w>0x in Equations (1) and (2) are genuinely diferent. We cannot 

change either formula into the other by using the relation z = x2 + y2. There is not just 

one 0w>0x, there are two, and we see that the original instruction to ind 0w>0x was incom-

plete. Which 0w>0x? we ask.

The geometric interpretations of Equations (1) and (2) help to explain why the equa-

tions difer. The function w = x2 + y2 + z2 measures the square of the distance from the 

point (x, y, z) to the origin. The condition z = x2 + y2 says that the point (x, y, z) lies on 

the paraboloid of revolution shown in Figure 14.61. What does it mean to calculate 0w>0x 

at a point P(x, y, z) that can move only on this surface? What is the value of 0w>0x when 

the coordinates of P are, say, (1, 0, 1)?

If we take x and y to be independent, then we ind 0w>0x by holding y ixed (at y = 0 

in this case) and letting x vary. Hence, P moves along the parabola z = x2 in the xz-plane. 

As P moves on this parabola, w, which is the square of the distance from P to the origin, 

changes. We calculate 0w>0x in this case (our irst solution above) to be

0w
0x

= 2x + 4x3 + 4xy2.

At the point P(1, 0, 1), the value of this derivative is

0w
0x

= 2 + 4 + 0 = 6.

If we take x and z to be independent, then we ind 0w>0x by holding z ixed while x 

varies. Since the z-coordinate of P is 1, varying x moves P along a circle in the plane z = 1. 

As P moves along this circle, its distance from the origin remains constant, and w, being the 

square of this distance, does not change. That is,

0w
0x

= 0,

as we found in our second solution. 

How to Find ew ,ex When the Variables in w = ƒ(x, y, z)  
Are Constrained by Another Equation

As we saw in Example 1, a typical routine for finding 0w>0x when the variables in the 

function w = ƒ(x, y, z) are related by another equation has three steps. These steps apply 

to finding 0w>0y and 0w>0z as well.

y

x

0

(1, 0, 1)

1

P
1

z = x2, y = 0

z = x2 + y2

Circle x2 + y2 
= 1

in the plane z = 1 

z

FIGURE 14.61 If P is constrained 

to lie on the paraboloid z = x2 + y2, 

the value of the partial derivative of 

w = x2 + y2 + z2 with respect to x at 

P depends on the direction of motion 

(Example 1). (1) As x changes, with 

y = 0, P moves up or down the surface 

on the parabola z = x2 in the xz-plane 

with 0w>0x = 2x + 4x3. (2) As x changes, 

with z = 1, P moves on the circle 

x2 + y2 = 1, z = 1, and 0w>0x = 0.
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If we cannot carry out Step 2 after deciding which variables are dependent, we differ-

entiate the equations as they are and try to solve for 0w>0x afterward. The next example 

shows how this is done.

1. Decide which variables are to be dependent and which are to be independent. 

(In practice, the decision is based on the physical or theoretical context of our 

work. In the exercises at the end of this section, we say which variables are 

which.)

2. Eliminate the other dependent variable(s) in the expression for w.

3. Diferentiate as usual.

EXAMPLE 2  Find 0w>0x at the point (x, y, z) = (2, -1, 1) if

w = x2 + y2 + z2,  z3 - xy + yz + y3 = 1,

and x and y are the independent variables.

Solution It is not convenient to eliminate z in the expression for w. We therefore differ-

entiate both equations implicitly with respect to x, treating x and y as independent vari-

ables and w and z as dependent variables. This gives

 
0w
0x

= 2x + 2z 
0z

0x
 (3)

and

 3z2 
0z

0x
- y + y 

0z

0x
+ 0 = 0. (4)

These equations may now be combined to express 0w>0x in terms of x, y, and z. We solve 

Equation (4) for 0z>0x to get

0z

0x
=

y

y + 3z2

and substitute into Equation (3) to get

0w
0x

= 2x +
2yz

y + 3z2
.

The value of this derivative at (x, y, z) = (2, -1, 1) is

 
0w
0x

2
(2, -1, 1)

= 2(2) +
2(-1)(1)

-1 + 3(1)2
= 4 +

-2
2

= 3. 

Notation

To show what variables are assumed to be independent in calculating a derivative, we can 

use the following notation:a0w
0x
b

y

  0w>0x with x and y independent

a0ƒ

0y
b

x, t

  0ƒ>0y with y, x, and t independent

HistoricAL BiogrApHy

sonya Kovalevsky

(1850–1891)

www.goo.gl/6TLoDz

http://www.goo.gl/6TLoDz
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EXAMPLE 3  Find (0w>0x)y, z if w = x2 + y - z + sin t and x + y = t.

Solution With x, y, z independent, we have

 t = x + y,  w = x2 + y - z + sin (x + y)

 a0w
0x
b

y, z

= 2x + 0 - 0 + cos (x + y) 
0
0x

 (x + y)

  = 2x + cos (x + y).  

Arrow Diagrams

In solving problems like the one in Example 3, it often helps to start with an arrow dia-

gram that shows how the variables and functions are related. If

w = x2 + y - z + sin t  and  x + y = t

and we are asked to find 0w>0x when x, y, and z are independent, the appropriate diagram 

is one like this:

 £x

y

z

≥ S §x

y

z

t

¥ S w (5)

 Independent Intermediate Dependent 

 variables variables variable

To avoid confusion between the independent and intermediate variables with the same 

symbolic names in the diagram, it is helpful to rename the intermediate variables (so they 

are seen as functions of the independent variables). Thus, let u = x, y = y, and s = z 

denote the renamed intermediate variables. With this notation, the arrow diagram becomes

 £x

y

z

≥ S §u

y

s

t

¥  S w (6)

 Independent  Intermediate Dependent 

 variables variables and variable 

  relations

u = x

y = y

s = z

t = x + y

The diagram shows the independent variables on the left, the intermediate variables and 

their relation to the independent variables in the middle, and the dependent variable on the 

right. The function w now becomes

w = u2 + y - s + sin t,

where

u = x,  y = y,  s = z,  and  t = x + y.

To find 0w>0x, we apply the four-variable form of the Chain Rule to w, guided by the 

arrow diagram in Equation (6):

 
0w
0x

=
0w
0u

 
0u
0x

+
0w
0y 

0y
0x

+
0w
0s

 
0s
0x

+
0w
0t

 
0t
0x

 = (2u)(1) + (1)(0) + (-1)(0) + (cos t)(1)

 = 2u + cos t

 = 2x + cos (x + y).   Substitute the original independent 

variables u = x and t = x + y
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Finding Partial Derivatives with Constrained Variables

In Exercises 1–3, begin by drawing a diagram that shows the relations 

among the variables.

 1. If w = x2 + y2 + z2 and z = x2 + y2, ind

a. a0w

0y
b

z

 b. a0w

0z
b

x

 c. a0w

0z
b

y

.

 2. If w = x2 + y - z + sin t and x + y = t, ind

a. a0w

0y
b

x, z

 b. a0w

0y
b

z, t

 c. a0w

0z
b

x, y

d. a0w

0z
b

y, t

 e. a0w

0t
b

x, z

 f. a0w

0t
b

y, z

.

 3. Let U = ƒ(P, V, T ) be the internal energy of a gas that obeys the 

ideal gas law PV = nRT  (n and R constant). Find

a. a0U

0P
b

V

 b. a0U

0T
b

V

.

 4. Find

a. a0w

0x
b

y

 b. a0w

0z
b

y

  at the point (x, y, z) = (0, 1, p) if

w = x2 + y2 + z2  and  y sin z + z sin x = 0.

 5. Find

a. a0w

0y
b

x

 b. a0w

0y
b

z

  at the point (w, x, y, z) = (4, 2, 1, -1) if

w = x2y2 + yz - z3  and  x2 + y2 + z2 = 6.

 6. Find (0u>0y)x at the point (u, y) = 122, 12 if x = u2 + y2 and 

y = uy.

 7. Suppose that x2 + y2 = r2 and x = r cos u, as in polar coordi-

nates. Find a0x

0r
b
u

  and  a0r
0x
b

y

.

 8. Suppose that

w = x2 - y2 + 4z + t  and  x + 2z + t = 25.

  Show that the equations

0w

0x
= 2x - 1  and  

0w

0x
= 2x - 2

  each give 0w>0x, depending on which variables are chosen to 

be dependent and which variables are chosen to be independent. 

Identify the independent variables in each case.

Theory and Examples

 9. Establish the fact, widely used in hydrodynamics, that if 

ƒ(x, y, z) = 0, thena0x

0y
b

z

 a0y

0z
b

x

 a0z

0x
b

y

= -1.

  (Hint: Express all the derivatives in terms of the formal partial 

derivatives 0ƒ>0x, 0ƒ>0y, and 0ƒ>0z.)

 10. If z = x + ƒ(u), where u = xy, show that

x 
0z

0x
- y 

0z

0y
= x.

 11. Suppose that the equation g(x, y, z) = 0 determines z as a difer-

entiable function of the independent variables x and y and that 

gz ≠ 0. Show that a0z

0y
b

x

= -  
0g>0y

0g>0z
.

 12. Suppose that ƒ(x, y, z, w) = 0 and g(x, y, z, w) = 0 determine z 

and w as diferentiable functions of the independent variables x 

and y, and suppose that

0ƒ

0z
 
0g

0w
-

0ƒ

0w
 
0g

0z
≠ 0.

  Show that

a0z

0x
b

y

= -  

0ƒ

0x
 
0g

0w
-

0ƒ

0w
 
0g

0x

0ƒ

0z
 
0g

0w
-

0ƒ

0w
 
0g

0z

  and

a0w

0y
b

x

= -  

0ƒ

0z
 
0g

0y
-

0ƒ

0y
 
0g

0z

0ƒ

0z
 
0g

0w
-

0ƒ

0w
 
0g

0z

.

EXERCISES 14.10

 1. What is a real-valued function of two independent variables? 

Three independent variables? Give examples.

 2. What does it mean for sets in the plane or in space to be open? 

Closed? Give examples. Give examples of sets that are neither 

open nor closed.

 3. How can you display the values of a function ƒ(x, y) of two in-

dependent variables graphically? How do you do the same for a 

function ƒ(x, y, z) of three independent variables?

 4. What does it mean for a function ƒ(x, y) to have limit L as 

(x, y) S (x0 , y0)? What are the basic properties of limits of func-

tions of two independent variables?

 5. When is a function of two (three) independent variables continu-

ous at a point in its domain? Give examples of functions that are 

continuous at some points but not others.

 6. What can be said about algebraic combinations and compositions 

of continuous functions?

CHAPTER 14 Questions to Guide Your Review
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and normal line at a point on a level surface of a diferentiable 

function ƒ(x, y, z)? Give examples.

 17. How can you use directional derivatives to estimate change?

 18. How do you linearize a function ƒ(x, y) of two independent vari-

ables at a point (x0, y0)? Why might you want to do this? How do 

you linearize a function of three independent variables?

 19. What can you say about the accuracy of linear approximations of 

functions of two (three) independent variables?

 20. If (x, y) moves from (x0, y0) to a point (x0 + dx, y0 + dy) nearby, 

how can you estimate the resulting change in the value of a dif-

ferentiable function ƒ(x, y)? Give an example.

 21. How do you deine local maxima, local minima, and saddle points 

for a diferentiable function ƒ(x, y)? Give examples.

 22. What derivative tests are available for determining the local ex-

treme values of a function ƒ(x, y)? How do they enable you to 

narrow your search for these values? Give examples.

 23. How do you ind the extrema of a continuous function ƒ(x, y) on a 

closed bounded region of the xy-plane? Give an example.

 24. Describe the method of Lagrange multipliers and give examples.

 25. How does Taylor’s formula for a function ƒ(x, y) generate polyno-

mial approximations and error estimates?

 26. If w = ƒ(x, y, z), where the variables x, y, and z are constrained 

by an equation g(x, y, z) = 0, what is the meaning of the notation 

(0w>0x)y? How can an arrow diagram help you calculate this par-

tial derivative with constrained variables? Give examples.

 7. Explain the two-path test for nonexistence of limits.

 8. How are the partial derivatives 0ƒ>0x and 0ƒ>0y of a function  

ƒ(x, y) deined? How are they interpreted and calculated?

 9. How does the relation between irst partial derivatives and con-

tinuity of functions of two independent variables difer from the 

relation between irst derivatives and continuity for real-valued 

functions of a single independent variable? Give an example.

 10. What is the Mixed Derivative Theorem for mixed second-order 

partial derivatives? How can it help in calculating partial deriva-

tives of second and higher orders? Give examples.

 11. What does it mean for a function ƒ(x, y) to be diferentiable? What 

does the Increment Theorem say about diferentiability?

 12. How can you sometimes decide from examining ƒx and ƒy that a 

function ƒ(x, y) is diferentiable? What is the relation between the 

diferentiability of ƒ and the continuity of ƒ at a point?

 13. What is the general Chain Rule? What form does it take for func-

tions of two independent variables? Three independent variables? 

Functions deined on surfaces? How do you diagram these difer-

ent forms? Give examples. What pattern enables one to remember 

all the diferent forms?

 14. What is the derivative of a function ƒ(x, y) at a point P0 in the 

direction of a unit vector u? What rate does it describe? What geo-

metric interpretation does it have? Give examples.

 15. What is the gradient vector of a diferentiable function ƒ(x, y)? 

How is it related to the function’s directional derivatives? State the 

analogous results for functions of three independent variables.

 16. How do you ind the tangent line at a point on a level curve of a 

diferentiable function ƒ(x, y)? How do you ind the tangent plane 

Domain, Range, and Level Curves

In Exercises 1–4, ind the domain and range of the given function and 

identify its level curves. Sketch a typical level curve.

 1. ƒ(x, y) = 9x2 + y2 2. ƒ(x, y) = ex + y

 3. g(x, y) = 1>xy 4. g(x, y) = 2x2 - y

By considering diferent paths of approach, show that the limits in 

 Exercises 15 and 16 do not exist.

 15. lim
(x,y)S (0,0)

 
y

x2 - y
 16. lim

(x,y)S (0,0)
 
x2 + y2

xy

   y≠x2

   xy≠0

 17. continuous extension Let ƒ(x, y) = (x2 - y2) > (x2 + y2)  for 

(x, y) ≠ (0, 0). Is it possible to deine ƒ(0, 0) in a way that makes 

ƒ continuous at the origin? Why?

 18. continuous extension Let

ƒ(x, y) = • sin (x - y)0 x 0 + 0 y 0 , 0 x 0 + 0 y 0 ≠ 0

0, (x, y) = (0, 0).

  Is ƒ continuous at the origin? Why?

CHAPTER 14 Practice Exercises

In Exercises 5–8, ind the domain and range of the given function and 

identify its level surfaces. Sketch a typical level surface.

 5. ƒ(x, y, z) = x2 + y2 - z 6. g(x, y, z) = x2 + 4y2 + 9z2

 7. h(x, y, z) =
1

x2 + y2 + z2
 8. k(x, y, z) =

1

x2 + y2 + z2 + 1

Evaluating Limits

Find the limits in Exercises 9–14.

 9. lim
(x, y)S (p, ln 2)

 ey cos x 10. lim
(x, y)S (0, 0)

 
2 + y

x + cos y

 11. lim
(x, y)S (1, 1)

 
x - y

x2 - y2
 12. lim

(x, y)S (1, 1)
 
x3y3 - 1

xy - 1

 13. lim
PS (1, -1, e)

 ln 0 x + y + z 0  14. lim
PS (1,-1,-1)

 tan-1 (x + y + z)

Partial Derivatives

In Exercises 19–24, ind the partial derivative of the function with re-

spect to each variable.

 19. g(r, u) = r cos u + r sin u

 20. ƒ(x, y) =
1
2

 ln (x2 + y2) + tan-1 
y

x
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 43. Directional derivatives with given values At the point (1, 2), 

the function ƒ(x, y) has a derivative of 2 in the direction toward  

(2, 2) and a derivative of -2 in the direction toward (1, 1).

a. Find ƒx(1, 2) and ƒy(1, 2).

b. Find the derivative of ƒ at (1, 2) in the direction toward the 

point (4, 6).

 44. Which of the following statements are true if ƒ(x, y) is diferen-

tiable at (x0 , y0)? Give reasons for your answers.

a. If u is a unit vector, the derivative of ƒ at (x0 , y0) in the direc-

tion of u is (ƒx(x0 , y0)i + ƒy(x0 , y0)j) # u.

b. The derivative of ƒ at (x0 , y0) in the direction of u is a vector.

c. The directional derivative of ƒ at (x0 , y0) has its greatest value 

in the direction of ∇ƒ.

d. At (x0 , y0), vector ∇ƒ is normal to the curve ƒ(x, y) = ƒ(x0 , y0).

Gradients, Tangent Planes, and Normal Lines

In Exercises 45 and 46, sketch the surface ƒ(x, y, z) = c together with 

∇ƒ at the given points.

 45. x2 + y + z2 = 0; (0, -1, {1), (0, 0, 0)

 46. y2 + z2 = 4; (2, {2, 0), (2, 0, {2)

In Exercises 47 and 48, ind an equation for the plane tangent to the 

level surface ƒ(x, y, z) = c at the point P0 . Also, ind parametric equa-

tions for the line that is normal to the surface at P0 .

 47. x2 - y - 5z = 0, P0(2, -1, 1)

 48. x2 + y2 + z = 4, P0(1, 1, 2)

In Exercises 49 and 50, ind an equation for the plane tangent to the 

surface z = ƒ(x, y) at the given point.

 49. z = ln (x2 + y2), (0, 1, 0)

 50. z = 1> (x2 + y2), (1, 1, 1>2)

In Exercises 51 and 52, ind equations for the lines that are tangent and 

normal to the level curve ƒ(x, y) = c at the point P0 . Then sketch the 

lines and level curve together with ∇ƒ at P0 .

 51. y - sin x = 1, P0(p, 1)

 52. 
y2

2
-

x2

2
=

3
2

, P0(1, 2)

Tangent Lines to Curves

In Exercises 53 and 54, ind parametric equations for the line that is 

tangent to the curve of intersection of the surfaces at the given point.

 53. Surfaces: x2 + 2y + 2z = 4, y = 1

  Point: (1, 1, 1 >2)

 54. Surfaces: x + y2 + z = 2, y = 1

  Point: (1 >2, 1, 1 >2)

Linearizations

In Exercises 55 and 56, ind the linearization L(x, y) of the function  

ƒ(x, y) at the point P0 . Then ind an upper bound for the magnitude of 

the error E in the approximation ƒ(x, y) ≈ L(x, y) over the rectangle R.

 55. ƒ(x, y) = sin x cos y, P0(p>4, p>4)

  R: ` x -
p

4
` … 0.1, ` y -

p

4
` … 0.1

 21. ƒ(R1, R2, R3) =
1
R1

+
1
R2

+
1
R3

 22. h(x, y, z) = sin (2px + y - 3z)

 23. P(n, R, T, V ) =
nRT

V
 (the ideal gas law)

 24. ƒ(r, l, T, w) =
1

2rl
 A T

pw

Second-Order Partials

Find the second-order partial derivatives of the functions in Exercises 

25–28.

 25. g(x, y) = y +
x
y 26. g(x, y) = ex + y sin x

 27. ƒ(x, y) = x + xy - 5x3 + ln (x2 + 1)

 28. ƒ(x, y) = y2 - 3xy + cos y + 7ey

Chain Rule Calculations

 29. Find dw >dt at t = 0 if w = sin (xy + p), x = et, and y =  

ln (t + 1).

 30. Find dw >dt at t = 1 if w = xey + y sin z - cos z, x = 22t, 

y = t - 1 + ln t, and z = pt.

 31. Find 0w>0r and 0w>0s when r = p and s = 0 if w =  

sin (2x - y), x = r + sin s, y = rs.

 32. Find 0w>0u and 0w>0y when u = y = 0 if w =  

  ln21 + x2 - tan-1 x and x = 2eu cos y.

 33. Find the value of the derivative of ƒ(x, y, z) = xy + yz + xz with 

respect to t on the curve x = cos t, y = sin t, z = cos 2t at t = 1.

 34. Show that if w = ƒ(s) is any diferentiable function of s and if 

s = y + 5x, then

0w

0x
- 5 

0w

0y
= 0.

Implicit Diferentiation

Assuming that the equations in Exercises 35 and 36 deine y as a dif-

ferentiable function of x, ind the value of dy >dx at point P.

 35. 1 - x - y2 - sin xy = 0, P(0, 1)

 36. 2xy + ex + y - 2 = 0, P(0, ln 2)

Directional Derivatives

In Exercises 37–40, ind the directions in which ƒ increases and de-

creases most rapidly at P0 and ind the derivative of ƒ in each direction. 

Also, ind the derivative of ƒ at P0 in the direction of the vector v.

 37. ƒ(x, y) = cos x cos y, P0(p>4, p>4), v = 3i + 4j

 38. ƒ(x, y) = x2e-2y, P0(1, 0), v = i + j

 39. ƒ(x, y, z) = ln (2x + 3y + 6z), P0(-1, -1, 1), 

v = 2i + 3j + 6k

 40. ƒ(x, y, z) = x2 + 3xy - z2 + 2y + z + 4, P0(0, 0, 0), 

v = i + j + k

 41. Derivative in velocity direction Find the derivative of 

ƒ(x, y, z) = xyz in the direction of the velocity vector of the helix

r(t) = (cos 3t)i + (sin 3t)j + 3t  k

  at t = p>3.

 42. Maximum directional derivative What is the largest value that 

the directional derivative of ƒ(x, y, z) = xyz can have at the point 

(1, 1, 1)?
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 67. ƒ(x, y) = 2x3 + 3xy + 2y3

 68. ƒ(x, y) = x3 + y3 - 3xy + 15

 69. ƒ(x, y) = x3 + y3 + 3x2 - 3y2

 70. ƒ(x, y) = x4 - 8x2 + 3y2 - 6y

Absolute Extrema

In Exercises 71–78, ind the absolute maximum and minimum values 

of ƒ on the region R.

 71. ƒ(x, y) = x2 + xy + y2 - 3x + 3y

  R: The triangular region cut from the irst quadrant by the line 

x + y = 4

 72. ƒ(x, y) = x2 - y2 - 2x + 4y + 1

  R: The rectangular region in the irst quadrant bounded by the co-

ordinate axes and the lines x = 4 and y = 2

 73. ƒ(x, y) = y2 - xy - 3y + 2x

  R: The square region enclosed by the lines x = {2 and y = {2

 74. ƒ(x, y) = 2x + 2y - x2 - y2

  R: The square region bounded by the coordinate axes and the lines 

x = 2, y = 2 in the irst quadrant

 75. ƒ(x, y) = x2 - y2 - 2x + 4y

  R: The triangular region bounded below by the x-axis, above by 

the line y = x + 2, and on the right by the line x = 2

 76. ƒ(x, y) = 4xy - x4 - y4 + 16

  R: The triangular region bounded below by the line y = -2, 

above by the line y = x, and on the right by the line x = 2

 77. ƒ(x, y) = x3 + y3 + 3x2 - 3y2

  R: The square region enclosed by the lines x = {1 and y = {1

 78. ƒ(x, y) = x3 + 3xy + y3 + 1

  R: The square region enclosed by the lines x = {1 and y = {1

Lagrange Multipliers

 79. Extrema on a circle Find the extreme values of ƒ(x, y) =  

x3 + y2 on the circle x2 + y2 = 1.

 80. Extrema on a circle Find the extreme values of ƒ(x, y) = xy on 

the circle x2 + y2 = 1.

 81. Extrema in a disk Find the extreme values of ƒ(x, y) =  

x2 + 3y2 + 2y on the unit disk x2 + y2 … 1.

 82. Extrema in a disk Find the extreme values of ƒ(x, y) =  

x2 + y2 - 3x - xy on the disk x2 + y2 … 9.

 83. Extrema on a sphere Find the extreme values of ƒ(x, y, z) =  

x - y + z on the unit sphere x2 + y2 + z2 = 1.

 84. Minimum distance to origin Find the points on the surface 

x2 - zy = 4 closest to the origin.

 85. Minimizing cost of a box A closed rectangular box is to 

have volume V cm3. The cost of the material used in the box is 

a cents>cm2 for top and bottom, b cents>cm2 for front and back, 

and c cents>cm2 for the remaining sides. What dimensions mini-

mize the total cost of materials?

 86. Least volume Find the plane x>a + y>b + z>c = 1 that pass-

es through the point (2, 1, 2) and cuts of the least volume from the 

irst octant.

 56. ƒ(x, y) = xy - 3y2 + 2, P0(1, 1)

  R: 0 x - 1 0 … 0.1, 0 y - 1 0 … 0.2

Find the linearizations of the functions in Exercises 57 and 58 at the 

given points.

 57. ƒ(x, y, z) = xy + 2yz - 3xz at (1, 0, 0) and (1, 1, 0)

 58. ƒ(x, y, z) = 22 cos x sin ( y + z) at (0, 0, p>4) and (p>4, 

p>4, 0)

Estimates and Sensitivity to Change

 59. Measuring the volume of a pipeline You plan to calculate the 

volume inside a stretch of pipeline that is about 36 in. in diameter 

and 1 mile long. With which measurement should you be more 

careful, the length or the diameter? Why?

 60. sensitivity to change Is ƒ(x, y) = x2 - xy + y2 - 3 more 

sensitive to changes in x or to changes in y when it is near the 

point (1, 2)? How do you know?

 61. change in an electrical circuit Suppose that the current I  

(amperes) in an electrical circuit is related to the voltage V (volts) 

and the resistance R (ohms) by the equation I = V>R. If the volt-

age drops from 24 to 23 volts and the resistance drops from 100 to 

80 ohms, will I increase or decrease? By about how much? Is the 

change in I more sensitive to change in the voltage or to change in 

the resistance? How do you know?

 62. Maximum error in estimating the area of an ellipse  

If a = 10 cm and b = 16 cm to the nearest millimeter, what 

should you expect the maximum percentage error to be in the cal-

culated area A = pab of the ellipse x2>a2 + y2>b2 = 1?

 63. Error in estimating a product Let y = uy and z = u + y, 

where u and y are positive independent variables.

a. If u is measured with an error of 2% and y with an error of 

3%, about what is the percentage error in the calculated value 

of y?

b. Show that the percentage error in the calculated value of z is 

less than the percentage error in the value of y.

 64. cardiac index To make diferent people comparable in studies 

of cardiac output, researchers divide the measured cardiac output 

by the body surface area to ind the cardiac index C:

C =
cardiac output

body surface area
.

  The body surface area B of a person with weight w and height h is 

approximated by the formula

B = 71.84w0.425h0.725,

  which gives B in square centimeters when w is measured in kilo-

grams and h in centimeters. You are about to calculate the cardiac 

index of a person 180 cm tall, weighing 70 kg, with cardiac output 

of 7 L>min. Which will have a greater efect on the calculation, a 

1-kg error in measuring the weight or a 1-cm error in measuring 

the height?

Local Extrema

Test the functions in Exercises 65–70 for local maxima and minima 

and saddle points. Find each function’s value at these points.

 65. ƒ(x, y) = x2 - xy + y2 + 2x + 2y - 4

 66. ƒ(x, y) = 5x2 + 4xy - 2y2 + 4x - 4y



880 Chapter 14  Partial Derivatives

 96. tangent plane parallel to xy-plane Find the points on the 

 surface

xy + yz + zx - x - z2 = 0

  where the tangent plane is parallel to the xy-plane.

 97. When gradient is parallel to position vector Suppose that 

∇ƒ(x, y, z) is always parallel to the position vector x i + y j + z  k. 

Show that ƒ(0, 0, a) = ƒ(0, 0, -a) for any a.

 98. one-sided directional derivative in all directions, but no  

gradient The one-sided directional derivative of ƒ at 

P(x0 , y0 , z0) in the direction u = u1i + u2 j + u3 

k is the  number

lim
sS0 +

 f (x0 + su1, y0 + su2 , z0 + su3) - f (x0 , y0 , z0)
s .

  Show that the one-sided directional derivative of

ƒ(x, y, z) = 2x2 + y2 + z2

  at the origin equals 1 in any direction but that ƒ has no gradient 

vector at the origin.

 99. Normal line through origin Show that the line normal to the 

surface xy + z = 2 at the point (1, 1, 1) passes through the origin.

 100. tangent plane and normal line

a. Sketch the surface x2 - y2 + z2 = 4.

b. Find a vector normal to the surface at (2, -3, 3). Add the 

vector to your sketch.

c. Find equations for the tangent plane and normal line at 

(2, -3, 3).

Partial Derivatives with Constrained Variables

In Exercises 101 and 102, begin by drawing a diagram that shows the 

relations among the variables.

 101. If w = x2eyz and z = x2 - y2 ind

a. a0w

0y
b

z

 b. a0w

0z
b

x

 c. a0w

0z
b

y

.

 102. Let U = ƒ(P,  V,  T ) be the internal energy of a gas that obeys 

the ideal gas law PV = nRT  (n and R constant). Find

a. a0U

0T
b

P

 b. a0U

0V
b

T

.

 87. Extrema on curve of intersecting surfaces Find the extreme 

values of ƒ(x, y, z) = x( y + z) on the curve of intersection of the 

right circular cylinder x2 + y2 = 1 and the hyperbolic cylinder 

xz = 1.

 88. Minimum distance to origin on curve of intersecting plane and 

cone Find the point closest to the origin on the curve of intersec-

tion of the plane x + y + z = 1 and the cone z2 = 2x2 + 2y2.

Theory and Examples

 89. Let w = ƒ(r, u), r = 2x2 + y2, and u = tan-1 ( y>x). Find 

0w>0x and 0w>0y and express your answers in terms of r and u.

 90. Let z = ƒ(u, y), u = ax + by, and y = ax - by. Express zx and 

zy in terms of fu , fy , and the constants a and b.

 91. If a and b are constants, w = u3 + tanh u + cos u, and u =
ax + by, show that

a 
0w

0y
= b 

0w

0x
.

 92. Using the chain rule If w = ln (x2 + y2 + 2z),   x = r + s, 

 y = r - s, and z = 2rs, ind wr  and ws by the Chain Rule. Then 

check your answer another way.

 93. Angle between vectors The equations eu cos y - x = 0 and 

eu sin y - y = 0 deine u and y as diferentiable functions of x 

and y. Show that the angle between the vectors

0u

0x
 i +

0u

0y
 j  and  

0y
0x

 i +
0y
0y

 j

  is constant.

 94. polar coordinates and second derivatives Introducing po-

lar coordinates x = r cos u and y = r sin u changes ƒ(x, y) to 

g(r, u). Find the value of 02g>0u2 at the point (r, u) = (2, p>2), 

given that

0ƒ

0x
=

0ƒ

0y
=

02ƒ

0x2
=

02ƒ

0y2
= 1

  at that point.

 95. Normal line parallel to a plane Find the points on the surface

( y + z)2 + (z - x)2 = 16

  where the normal line is parallel to the yz-plane.

Partial Derivatives

 1. Function with saddle at the origin If you did Exercise 60 in 

Section 14.2, you know that the function

ƒ(x, y) = • xy 
x2 - y2

x2 + y2
 , (x, y) ≠ (0, 0)

0, (x, y) = (0, 0)

  (see the accompanying igure) is continuous at (0, 0). Find 

ƒxy(0, 0) and ƒyx(0, 0).

z

y

x

CHAPTER 14 Additional and Advanced Exercises
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d. Show that r # dr = r dr.

e. Show that ∇(A # r) = A for any constant vector A.

 8. gradient orthogonal to tangent Suppose that a diferentiable 

function ƒ(x, y) has the constant value c along the diferentiable 

curve x = g(t), y = h(t); that is,

ƒ(g(t), h(t)) = c

  for all values of t. Diferentiate both sides of this equation with 

respect to t to show that ∇ƒ is orthogonal to the curve’s tangent 

vector at every point on the curve.

 9. curve tangent to a surface Show that the curve

r(t) = (ln t)i + (t ln t)j + t  k

  is tangent to the surface

xz2 - yz + cos xy = 1

  at (0, 0, 1).

 10. curve tangent to a surface Show that the curve

r(t) = at3

4
- 2b i + a4

t
- 3bj + cos (t - 2)k

  is tangent to the surface

x3 + y3 + z3 - xyz = 0

  at (0, -1, 1).

Extreme Values

 11. Extrema on a surface Show that the only possible maxima and 

minima of z on the surface z = x3 + y3 - 9xy + 27 occur at  

(0, 0) and (3, 3). Show that neither a maximum nor a minimum  

occurs at (0, 0). Determine whether z has a maximum or a mini-

mum at (3, 3).

 12. Maximum in closed irst quadrant Find the maximum value 

of ƒ(x, y) = 6xye-(2x + 3y) in the closed irst quadrant (includes the 

nonnegative axes).

 13. Minimum volume cut from irst octant Find the minimum 

volume for a region bounded by the planes x = 0, y = 0, z = 0 

and a plane tangent to the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1

  at a point in the irst octant.

 14. Minimum distance from a line to a parabola in xy-plane By 

minimizing the function ƒ(x, y, u, y) = (x - u)2 + (y - y)2 

subject to the constraints y = x + 1 and u = y2, ind the mini-

mum distance in the xy-plane from the line y = x + 1 to the pa-

rabola y2 = x.

Theory and Examples

 15. Boundedness of irst partials implies continuity Prove the 

 following theorem: If ƒ(x, y) is deined in an open region R of 

the xy-plane and if ƒx and ƒy are bounded on R, then ƒ(x, y) is  

continuous on R. (The assumption of boundedness is essential.)

 16. Suppose that r(t) = g(t)i + h(t)j + k(t)k is a smooth curve in 

the domain of a diferentiable function ƒ(x, y, z). Describe the 

relation between dƒ >dt, ∇ƒ, and v = dr>dt. What can be said 

about ∇ƒ and v at interior points of the curve where ƒ has  extreme 

values relative to its other values on the curve? Give reasons for 

your answer.

 2. Finding a function from second partials Find a function 

w = ƒ(x, y) whose irst partial derivatives are 0w>0x = 1 +  

ex cos y and 0w>0y = 2y - ex sin y and whose value at the point 

(ln 2, 0) is ln 2.

 3. A proof of Leibniz’s rule Leibniz’s Rule says that if ƒ is con-

tinuous on 3a, b4  and if u(x) and y(x) are diferentiable functions 

of x whose values lie in 3a, b4 , then

d

dx
  L

y(x)

u(x)

ƒ(t) dt = ƒ(y(x)) 
dy

dx
- ƒ(u(x)) 

du

dx
.

  Prove the rule by setting

g(u, y) = L
y

u

 ƒ(t) dt,  u = u(x),  y = y(x)

  and calculating dg >dx with the Chain Rule.

 4. Finding a function with constrained second partials  

Suppose that ƒ is a twice-diferentiable function of r, that 

  r = 2x2 + y2 + z2, and that

ƒxx + ƒyy + ƒzz = 0.

  Show that for some constants a and b,

ƒ(r) =
a
r + b.

 5. Homogeneous functions A function ƒ(x, y) is homogeneous of 

degree n (n a nonnegative integer) if ƒ(tx, ty) = tnƒ(x, y) for all t, 

x, and y. For such a function (suiciently diferentiable), prove that

a. x 
0ƒ

0x
+ y 

0ƒ

0y
= nƒ(x, y)

b. x2 a02ƒ

0x2
b + 2xya 02ƒ

0x0y
b + y2 a02ƒ

0y2
b = n(n - 1)ƒ.

 6. surface in polar coordinates Let

ƒ(r, u) = • sin 6r

6r
 , r ≠ 0

1, r = 0,

  where r and u are polar coordinates. Find

a. lim
rS0

 ƒ(r, u)

b. ƒr(0, 0)

c. ƒu(r, u), r ≠ 0.

z = f (r, u)

Gradients and Tangents

 7. properties of position vectors Let r = xi + yj + zk and let 

r = 0 r 0 .
a. Show that ∇r = r>r.

b. Show that ∇(rn) = nrn - 2r.

c. Find a function whose gradient equals r.
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a. Among all the possible directions tangential to the surface S 

at the point (0, 0, 10), which direction will make the rate of 

change of temperature at (0, 0, 10) a maximum?

b. Which direction tangential to S at the point (1, 1, 8) will 

make the rate of change of temperature a maximum?

 22. Drilling another borehole On a lat surface of land, geolo-

gists drilled a borehole straight down and hit a mineral deposit at  

1000 ft. They drilled a second borehole 100 ft to the north of the 

irst and hit the mineral deposit at 950 ft. A third borehole 100 ft  

east of the irst borehole struck the mineral deposit at 1025 ft. 

The geologists have reasons to believe that the mineral deposit is 

in the shape of a dome, and for the sake of economy, they would  

like to ind where the deposit is closest to the surface. Assuming 

the surface to be the xy-plane, in what direction from the irst bore-

hole would you suggest the geologists drill their fourth borehole?

the one-dimensional heat equation If w(x, t) represents the tem-

perature at position x at time t in a uniform wire with perfectly insu-

lated sides, then the partial derivatives wxx and wt satisfy a diferential 

equation of the form

wxx =
1

c2
 wt .

This equation is called the one-dimensional heat equation. The value 

of the positive constant c2 is determined by the material from which 

the wire is made.

 23. Find all solutions of the one-dimensional heat equation of the 

form w = ert sin px, where r is a constant.

 24. Find all solutions of the one-dimensional heat equation that have 

the form w = ert sin kx and satisfy the conditions that w(0, t) = 0 

and w(L, t) = 0. What happens to these solutions as t S q?

 17. Finding functions from partial derivatives Suppose that ƒ and 

g are functions of x and y such that

0ƒ

0y
=

0g

0x
  and  

0ƒ

0x
=

0g

0y
,

  and suppose that

0ƒ

0x
= 0,  ƒ(1, 2) = g(1, 2) = 5,  and  ƒ(0, 0) = 4.

  Find ƒ(x, y) and g(x, y).

 18. rate of change of the rate of change We know that if ƒ(x, y) 

is a function of two variables and if u = ai + bj is a unit  

vector, then Du ƒ(x, y) = ƒx(x, y)a + ƒy(x, y)b is the rate of change  

of ƒ(x, y) at (x, y) in the direction of u. Give a similar formula for 

the rate of change of the rate of change of ƒ(x, y) at (x, y) in the 

direction u.

 19. path of a heat-seeking particle A heat-seeking particle has the 

property that at any point (x, y) in the plane it moves in the direc-

tion of maximum temperature increase. If the temperature at (x, y) 

is T(x, y) = -e-2y cos x, ind an equation y = ƒ(x) for the path of 

a heat-seeking particle at the point (p>4, 0).

 20. Velocity after a ricochet A particle traveling in a straight line 

with constant velocity i + j - 5k passes through the point (0, 

0, 30) and hits the surface z = 2x2 + 3y2. The particle ricochets 

of the surface, the angle of relection being equal to the angle of 

incidence. Assuming no loss of speed, what is the velocity of the 

particle after the ricochet? Simplify your answer.

 21. Directional derivatives tangent to a surface Let S be the sur-

face that is the graph of ƒ(x, y) = 10 - x2 - y2. Suppose that the 

temperature in space at each point (x, y, z) is T(x, y, z) = x2y +  

y2z + 4x + 14y + z.

Mathematica/Maple Projects

Projects can be found within MyMathLab.

• Plotting Surfaces 

Eiciently generate plots of surfaces, contours, and level curves.

• Exploring the Mathematics Behind Skateboarding: Analysis of the Directional Derivative 

The path of a skateboarder is introduced, irst on a level plane, then on a ramp, and inally on a paraboloid. Compute, plot, and analyze the 

directional derivative in terms of the skateboarder.

• Looking for Patterns and Applying the Method of Least Squares to Real Data 

Fit a line to a set of numerical data points by choosing the line that minimizes the sum of the squares of the vertical distances from the points to 

the line.

• Lagrange Goes Skateboarding: How High Does He Go? 

Revisit and analyze the skateboarders’ adventures for maximum and minimum heights from both a graphical and analytic perspective using 

Lagrange multipliers.

CHAPTER 14 Technology Application Projects
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OVERVIEW In this chapter we define the double integral of a function of two variables 

ƒ(x, y) over a region in the plane as the limit of approximating Riemann sums. Just as a 

single integral can represent signed area, so can a double integral represent signed volume. 

Double integrals can be evaluated using the Fundamental Theorem of Calculus studied in 

Section 5.4, but now the evaluations are done twice by integrating with respect to each of 

the variables x and y in turn. Double integrals can be used to find areas of more general 

regions in the plane than those encountered in Chapter 5. Moreover, just as the Substitu-

tion Rule could simplify finding single integrals, we can sometimes use polar coordinates 

to simplify computing a double integral. We study more general substitutions for evaluat-

ing double integrals as well.

We also deine triple integrals for a function of three variables ƒ(x, y, z) over a region 

in space. Triple integrals can be used to ind volumes of still more general regions in space, 

and their evaluation is like that of double integrals with yet a third evaluation. Cylindri-

cal or spherical coordinates can sometimes be used to simplify the calculation of a triple 

integral, and we investigate those techniques. Double and triple integrals have a number of 

applications, such as calculating the average value of a multivariable function, and inding 

moments and centers of mass.

Multiple Integrals

15

15.1 Double and Iterated Integrals over Rectangles

In Chapter 5 we defined the definite integral of a continuous function ƒ(x) over an interval 3a, b4  as a limit of Riemann sums. In this section we extend this idea to define the double 

integral of a continuous function of two variables ƒ(x, y) over a bounded rectangle R in the 

plane. The Riemann sums for the integral of a single-variable function ƒ(x) are obtained by 

partitioning a finite interval into thin subintervals, multiplying the width of each subinter-

val by the value of ƒ at a point ck inside that subinterval, and then adding together all the 

products. A similar method of partitioning, multiplying, and summing is used to construct 

double integrals as limits of approximating Riemann sums.

Double Integrals

We begin our investigation of double integrals by considering the simplest type of planar 

region, a rectangle. We consider a function ƒ(x, y) defined on a rectangular region R,

R: a … x … b, c … y … d.

We subdivide R into small rectangles using a network of lines parallel to the x- and y-axes 

(Figure 15.1). The lines divide R into n rectangular pieces, where the number of such 

pieces n gets large as the width and height of each piece gets small. These rectangles form 

a partition of R. A small rectangular piece of width ∆x and height ∆y has area 

x

y

0 a

c

b

d

R

Δyk

Δxk

ΔAk

(xk, yk)

FIGURE 15.1 Rectangular grid parti-

tioning the region R into small rectangles 

of area ∆Ak = ∆xk ∆yk .
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∆A = ∆x∆y. If we number the small pieces partitioning R in some order, then their areas 

are given by numbers ∆A1, ∆A2, . . . , ∆An , where ∆Ak is the area of the kth small rectangle.

To form a Riemann sum over R, we choose a point (xk , yk) in the kth small rectangle, 

multiply the value of ƒ at that point by the area ∆Ak , and add together the products:

Sn = a
n

k = 1

 ƒ(xk , yk) ∆Ak .

Depending on how we pick (xk , yk) in the kth small rectangle, we may get different values 

for Sn .

We are interested in what happens to these Riemann sums as the widths and heights of 

all the small rectangles in the partition of R approach zero. The norm of a partition P, 

written 7P 7 , is the largest width or height of any rectangle in the partition. If 7P 7 = 0.1 

then all the rectangles in the partition of R have width at most 0.1 and height at most 0.1. 

Sometimes the Riemann sums converge as the norm of P goes to zero, written 7P 7 S 0. 

The resulting limit is then written as

lim
� �P� �S0

 a
n

k = 1

 ƒ(xk , yk) ∆Ak .

As 7P 7 S 0 and the rectangles get narrow and short, their number n increases, so we can 

also write this limit as

lim
nSq

 a
n

k = 1

 ƒ(xk , yk) ∆Ak ,

with the understanding that 7P 7 S 0, and hence ∆Ak S 0, as n S q.

Many choices are involved in a limit of this kind. The collection of small rectangles is 

determined by the grid of vertical and horizontal lines that determine a rectangular parti-

tion of R. In each of the resulting small rectangles there is a choice of an arbitrary point 

(xk, yk) at which ƒ is evaluated. These choices together determine a single Riemann sum. 

To form a limit, we repeat the whole process again and again, choosing partitions whose 

rectangle widths and heights both go to zero and whose number goes to infinity.

When a limit of the sums Sn exists, giving the same limiting value no matter what 

choices are made, then the function ƒ is said to be integrable and the limit is called the 

double integral of ƒ over R, written as

O
R

 ƒ(x, y) dA  or  O
R

 ƒ(x, y) dx dy.

It can be shown that if ƒ(x, y) is a continuous function throughout R, then ƒ is integrable, 

as in the single-variable case discussed in Chapter 5. Many discontinuous functions are 

also integrable, including functions that are discontinuous only on a finite number of 

points or smooth curves. We leave the proof of these facts to a more advanced text.

Double Integrals as Volumes

When ƒ(x, y) is a positive function over a rectangular region R in the xy-plane, we may 

interpret the double integral of ƒ over R as the volume of the 3-dimensional solid region 

over the xy-plane bounded below by R and above by the surface z = ƒ(x, y) (Figure 15.2). 

Each term ƒ(xk , yk) ∆Ak in the sum Sn = g  ƒ(xk , yk) ∆Ak is the volume of a vertical rectan-

gular box that approximates the volume of the portion of the solid that stands directly 

above the base ∆Ak . The sum Sn thus approximates what we want to call the total volume 

of the solid. We define this volume to be

Volume = lim
nSq

 Sn = O
R

 ƒ(x, y) dA,

where ∆Ak S 0 as n S q.

z

y
d

b

x

ΔAk

z = f (x, y)

f (xk, yk)

(xk, yk)
R

FIGURE 15.2 Approximating solids 

with rectangular boxes leads us to define 

the volumes of more general solids as 

double integrals. The volume of the solid 

shown here is the double integral of ƒ(x, y) 

over the base region R.
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Fubini’s Theorem for Calculating Double Integrals

Suppose that we wish to calculate the volume under the plane z = 4 - x - y over the 

rectangular region R: 0 … x … 2, 0 … y … 1 in the xy-plane. If we apply the method of 

slicing from Section 6.1, with slices perpendicular to the x-axis (Figure 15.4), then the 

volume is

  L
x = 2

x = 0

 A(x) dx, (1)

where A(x) is the cross-sectional area at x. For each value of x, we may calculate A(x) as 

the integral

 A(x) = L
y = 1

y = 0

(4 - x - y) dy, (2)

which is the area under the curve z = 4 - x - y in the plane of the cross-section at x. In 

calculating A(x), x is held fixed and the integration takes place with respect to y. Combin-

ing Equations (1) and (2), we see that the volume of the entire solid is

 Volume = L
x = 2

x = 0

 A(x) dx = L
x = 2

x = 0

 a   L
y = 1

y = 0

(4 - x - y) dyb  dx

 = L
x = 2

x = 0

 c 4y - xy -
y2

2
d

y = 0

y = 1

 dx = L
x = 2

x = 0

 a7
2

- xb  dx

 = c 7
2

 x -
x2

2
d

0

2

= 5.

If we just wanted to write a formula for the volume, without carrying out any of the 

integrations, we could write

 Volume = L
2

0

 L
1

0

(4 - x - y) dy dx. (3)

The expression on the right, called an iterated or repeated integral, says that the volume 

is obtained by integrating 4 - x - y with respect to y from y = 0 to y = 1 while holding 

x fixed, and then integrating the resulting expression in x from x = 0 to x = 2. The limits 

of integration 0 and 1 are associated with y, so they are placed on the integral closest to dy. 

The other limits of integration, 0 and 2, are associated with the variable x, so they are 

placed on the outside integral symbol that is paired with dx.

(a) n = 16 (b) n = 64 (c) n = 256

FIGURE 15.3 As n increases, the Riemann sum approximations approach the total 

volume of the solid shown in Figure 15.2.

y

z

x

x

1

2

4

z = 4 − x − y

A(x) =
 

          
(4 − x − y) dy

y = 1

y = 0L
FIGURE 15.4 To obtain the cross-

sectional area A(x), we hold x fixed and 

integrate with respect to y.

As you might expect, this more general method of calculating volume agrees with the 

methods in Chapter 6, but we do not prove this here. Figure 15.3 shows Riemann sum 

approximations to the volume becoming more accurate as the number n of boxes increases.
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What would have happened if we had calculated the volume by slicing with planes 

perpendicular to the y-axis (Figure 15.5)? As a function of y, the typical cross-sectional 

area is

 A( y) = L
x = 2

x = 0

(4 - x - y) dx = c 4x -
x2

2
- xy d

x = 0

x = 2

= 6 - 2y. (4)

The volume of the entire solid is therefore

Volume = L
y = 1

y = 0

 A( y) dy = L
y = 1

y = 0

(6 - 2y) dy = c 6y - y2 d
0

1

= 5,

in agreement with our earlier calculation.

Again, we may give a formula for the volume as an iterated integral by writing

Volume = L
1

0

 L
2

0

(4 - x - y) dx dy.

The expression on the right says we can find the volume by integrating 4 - x - y with 

respect to x from x = 0 to x = 2 as in Equation (4) and integrating the result with respect 

to y from y = 0 to y = 1. In this iterated integral, the order of integration is first x and 

then y, the reverse of the order in Equation (3).

What do these two volume calculations with iterated integrals have to do with the 

double integral

O
R

(4 - x - y) dA

over the rectangle R: 0 … x … 2, 0 … y … 1? The answer is that both iterated integrals 

give the value of the double integral. This is what we would reasonably expect, since the 

double integral measures the volume of the same region as the two iterated integrals. A 

theorem published in 1907 by Guido Fubini says that the double integral of any continu-

ous function over a rectangle can be calculated as an iterated integral in either order of 

integration. (Fubini proved his theorem in greater generality, but this is what it says in our 

setting.)

y

z

x

y
1

2

4

z = 4 − x − y

A(y) =
 

          
(4 − x − y) dx

x = 2

x = 0L
FIGURE 15.5 To obtain the cross-

sectional area A(y), we hold y fixed and 

integrate with respect to x.

HistoricAL BiogrApHy

guido Fubini

(1879–1943)

www.goo.gl/ayFJIW

THEOREM 1—Fubini’s Theorem (First Form)

If ƒ(x, y) is continuous throughout the rectangular region R: a … x … b, 

c … y … d, then

O
R

 ƒ(x, y) dA = L
d

c

 L
b

a

 ƒ(x, y) dx dy = L
b

a

 L
d

c

 ƒ(x, y) dy dx.

Fubini’s Theorem says that double integrals over rectangles can be calculated as iter-

ated integrals. Thus, we can evaluate a double integral by integrating with respect to one 

variable at a time using the Fundamental Theorem of Calculus.

Fubini’s Theorem also says that we may calculate the double integral by integrating in 

either order, a genuine convenience. When we calculate a volume by slicing, we may use 

either planes perpendicular to the x-axis or planes perpendicular to the y-axis.

EXAMPLE 1  Calculate 4R
 ƒ(x, y) dA for

ƒ(x, y) = 100 - 6x2y  and  R: 0 … x … 2, -1 … y … 1.

http://www.goo.gl/ayFJIW
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Solution Figure 15.6 displays the volume beneath the surface. By Fubini’s Theorem,

 O
R

 ƒ(x, y) dA = L
1

-1

  L
2

0

(100 - 6x2y) dx dy = L
1

-1

 c 100x - 2x3y d
x = 0

x = 2

  dy

 = L
1

-1

(200 - 16y) dy = c 200y - 8y2 d
-1

1

= 400.

Reversing the order of integration gives the same answer:

  L
2

0

 L
1

-1

(100 - 6x2y) dy dx = L
2

0

 c 100y - 3x2y2 d
y = -1

y = 1

 dx

 = L
2

0

3 (100 - 3x2) - (-100 - 3x2) 4  dx

  = L
2

0

200 dx = 400.  

EXAMPLE 2   Find the volume of the region bounded above by the elliptical parabo-

loid z = 10 + x2 + 3y2 and below by the rectangle R: 0 … x … 1, 0 … y … 2.

Solution The surface and volume are shown in Figure 15.7. The volume is given by the 

double integral

V = O
R

 (10 + x2 + 3y2)  dA = L
1

0

 L
2

0

(10 + x2 + 3y2) dy dx 

 = L
1

0

 c 10y + x2y + y3 d
y = 0

y = 2

 dx

  = L
1

0

 (20 + 2x2 + 8)  dx = c 20x +
2
3

 x3 + 8x d
0

1

=
86
3

.  

1R
2

1

50

z

x

−1

z = 100 − 6x2y

y

100

FIGURE 15.6 The double integral 

4R
 ƒ(x, y) dA gives the volume under 

this surface over the rectangular region R 

(Example 1).

y

x

z

R
2

10

1

z = 10 + x2 + 3y2

FIGURE 15.7 The double integral 

4R
 ƒ(x, y) dA gives the volume under 

this surface over the rectangular region R 

(Example 2).

Evaluating Iterated Integrals

In Exercises 1–14, evaluate the iterated integral.

 1.   L
2

1 L
4

0

 2xy dy dx 2.   L
2

0 L
1

-1

 (x - y) dy dx

 3.   L
0

-1

  L
1

-1

 (x + y + 1) dx dy 4.   L
1

0 L
1

0

 a1 -
x2 + y2

2
b  dx dy

 5.   L
3

0 L
2

0

 (4 - y2) dy dx 6.   L
3

0 L
0

-2

 (x2y - 2xy) dy dx

 7.   L
1

0 L
1

0

 
y

1 + xy
 dx dy 8.   L

4

1 L
4

0

 ax

2
+ 2yb  dx dy

 9.   L
ln 2

0

 L
ln 5

1

 e2x + y dy dx 10.  L
1

0 L
2

1

 xyex dy dx

 11.   L
2

-1

  L
p/2

0

 y sin x dx dy 12.  L
2p

p L
p

0

 (sin x + cos y) dx dy

 13.  L
4

1 L
e

1

  
ln x
xy  dx dy 14.   L

2

- 1

  L
2

1

x ln y dy dx

 15. Find all values of the constant c so that  L
1

0 L
c

0

(2x + y) dx dy = 3.

 16.  Find all values of the constant c so that 

   L
c

- 1

  L
2

0

(xy + 1) dy dx = 4 + 4c.

Evaluating Double Integrals over Rectangles

In Exercises 17–24, evaluate the double integral over the given region 

R.

 17. O
R

 (6y2 - 2x) dA,  R:  0 … x … 1, 0 … y … 2

 18. O
R

 a2x

y2
 b  dA,  R: 0 … x … 4, 1 … y … 2

EXERCISES 15.1
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 19.  O
R

 xy cos y dA,  R: -1 … x … 1, 0 … y … p

 20.  O
R

 y sin (x + y) dA,  R: -p … x … 0, 0 … y … p

 21.  O
R

 ex - y dA,  R:  0 … x … ln 2, 0 … y … ln 2

 22.  O
R

 xyexy2

 dA,  R: 0 … x … 2, 0 … y … 1

 23.  O
R

 
xy3

x2 + 1
 dA,  R: 0 … x … 1, 0 … y … 2

 24.  O
R

 
y

x2y2 + 1
 dA,  R: 0 … x … 1, 0 … y … 1

 31. Find the volume of the region bounded above by the plane 

z = 2 - x - y and below by the square R: 0 … x … 1, 

0 … y … 1.

 32. Find the volume of the region bounded above by the plane 

z = y>2 and below by the rectangle R: 0 … x … 4, 0 … y … 2.

 33. Find the volume of the region bounded above by the surface 

z = 2 sin x cos y and below by the rectangle R: 0 … x … p>2, 

0 … y … p>4.

 34. Find the volume of the region bounded above by the sur-

face z = 4 - y2 and below by the rectangle R: 0 … x … 1, 

0 … y … 2.

 35. Find a value of the constant k so that  L
2

1 L
3

0

kx2 y dx dy = 1.

 36. Evaluate L
1

- 1

  L
p/2

0

x sin 2y dy dx.

 37. Use Fubini’s Theorem to evaluate

 L
2

0 L
1

0

 
x

1 + xy
 dx dy.

 38. Use Fubini’s Theorem to evaluate

 L
1

0 L
3

0

xexy dx dy.

 39. Use a software application to compute the integrals

a.  L
1

0 L
2

0

y - x

(x + y)3
 dx dy b.  L

2

0 L
1

0

y - x

(x + y)3
 dy dx

 Explain why your results do not contradict Fubini’s Theorem.

 40. If ƒ(x, y) is continuous over R: a … x … b, c … y … d and

F(x, y) = L
x

a L
y

c

ƒ(u, y) dy du

  on the interior of R, ind the second partial derivatives Fxy and Fyx .

T

15.2 Double Integrals over General Regions

In this section we define and evaluate double integrals over bounded regions in the plane 

which are more general than rectangles. These double integrals are also evaluated as iter-

ated integrals, with the main practical problem being that of determining the limits of 

integration. Since the region of integration may have boundaries other than line segments 

parallel to the coordinate axes, the limits of integration often involve variables, not just 

constants.

Double Integrals over Bounded, Nonrectangular Regions

To define the double integral of a function ƒ(x, y) over a bounded, nonrectangular region 

R, such as the one in Figure 15.8, we again begin by covering R with a grid of small rect-

angular cells whose union contains all points of R. This time, however, we cannot exactly 

fill R with a finite number of rectangles lying inside R, since its boundary is curved, and 

some of the small rectangles in the grid lie partly outside R. A partition of R is formed by 

taking the rectangles that lie completely inside it, not using any that are either partly or 

completely outside. For commonly arising regions, more and more of R is included as the 

norm of a partition (the largest width or height of any rectangle used) approaches zero.

R

Δxk

Δyk

ΔAk

(xk, yk)

FIGURE 15.8 A rectangular grid parti-

tioning a bounded, nonrectangular region 

into rectangular cells.

In Exercises 25 and 26, integrate ƒ over the given region.

 25. square ƒ(x, y) = 1>(xy) over the square 1 … x … 2,

 1 … y … 2

 26. rectangle ƒ(x, y) = y cos xy over the rectangle 0 … x … p, 

0 … y … 1

In Exercises 27 and 28, sketch the solid whose volume is given by the 

specified integral.

 27.  L
1

0 L
2

0

(9 - x2 - y2) dy dx 28.  L
3

0 L
4

1

(7 - x - y) dx dy

 29. Find the volume of the region bounded above by the parabo-

loid z = x2 + y2 and below by the square R: -1 … x … 1, 

-1 … y … 1.

 30. Find the volume of the region bounded above by the  elliptical 

paraboloid z = 16 - x2 - y2 and below by the square 

R: 0 … x … 2, 0 … y … 2.
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Once we have a partition of R, we number the rectangles in some order from 1 to n 

and let ∆Ak be the area of the kth rectangle. We then choose a point (xk , yk) in the kth rect-

angle and form the Riemann sum

Sn = a
n

k = 1

 ƒ(xk , yk) ∆Ak .

As the norm of the partition forming Sn goes to zero, 7P 7 S 0, the width and height of 

each enclosed rectangle go to zero, their area ∆Ak goes to zero, and their number goes to 

infinity. If ƒ(x, y) is a continuous function, then these Riemann sums converge to a limiting 

value, not dependent on any of the choices we made. This limit is called the double 

 integral of ƒ(x, y) over R:

lim
� �P� �S0

 a
n

k = 1

 ƒ(xk , yk) ∆Ak = O
R

 ƒ(x, y) dA.

The nature of the boundary of R introduces issues not found in integrals over an inter-

val. When R has a curved boundary, the n rectangles of a partition lie inside R but do not 

cover all of R. In order for a partition to approximate R well, the parts of R covered by 

small rectangles lying partly outside R must become negligible as the norm of the partition 

approaches zero. This property of being nearly filled in by a partition of small norm is 

satisfied by all the regions that we will encounter. There is no problem with boundaries 

made from polygons, circles, ellipses, and from continuous graphs over an interval, joined 

end to end. A curve with a “fractal” type of shape would be problematic, but such curves 

arise rarely in most applications. A careful discussion of which type of regions R can be 

used for computing double integrals is left to a more advanced text.

Volumes

If ƒ(x, y) is positive and continuous over R, we define the volume of the solid region 

between R and the surface z = ƒ(x, y) to be 4R 
ƒ(x, y) dA, as before (Figure 15.9).

If R is a region like the one shown in the xy-plane in Figure 15.10, bounded “above” 

and “below” by the curves y = g2(x) and y = g1(x) and on the sides by the lines 

z

yx

0

R

x
a

b

R

y = g2(x)

y = g1(x)

z = f (x, y)

A(x)

FIGURE 15.10 The area of the vertical 

slice shown here is A(x). To calculate the 

volume of the solid, we integrate this area 

from x = a to x = b:

 L
b

a

 A(x) dx = L
b

a L
g2(x)

g1(x)

 ƒ(x, y) dy dx.

z

y

x

R

0

Volume = lim Σ f(xk, yk) ΔAk =∫∫
R  

 f (x, y) dA

ΔAk(xk, yk)

Height = f(xk, yk)

z = f(x, y)

FIGURE 15.9 We define the volumes of 

solids with curved bases as a limit of approxi-

mating rectangular boxes.
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x = a, x = b, we may again calculate the volume by the method of slicing. We first 

 calculate the cross-sectional area

A(x) = L
y = g2(x)

y = g1(x)

ƒ(x, y) dy

and then integrate A(x) from x = a to x = b to get the volume as an iterated integral:

 V = L
b

a

 A(x) dx = L
b

a

 L
g2(x)

g1(x)

 ƒ(x, y) dy dx. (1)

Similarly, if R is a region like the one shown in Figure 15.11, bounded by the curves 

x = h2( y) and x = h1( y) and the lines y = c and y = d, then the volume calculated by 

slicing is given by the iterated integral

 Volume = L
d

c

 L
h2(y)

h1(y)

 ƒ(x, y) dx dy. (2)

That the iterated integrals in Equations (1) and (2) both give the volume that we 

defined to be the double integral of ƒ over R is a consequence of the following stronger 

form of Fubini’s Theorem.

z

y

y

d

c

x

z = f (x, y)
A(y)

x = h1(y)

x = h2(y)

FIGURE 15.11 The volume of the solid 

shown here is

 L
d

c

 A( y) dy = L
d

c

 L
h2(y)

h1(y)

 ƒ(x, y) dx dy.

For a given solid, Theorem 2 says we can 

calculate the volume as in Figure 15.10, or 

in the way shown here. Both calculations 

have the same result.

THEOREM 2—Fubini’s Theorem (Stronger Form)

Let ƒ(x, y) be continuous on a region R.

1. If R is deined by a … x … b, g1(x) … y … g2(x), with g1 and g2 continuous 

on 3a, b4 , then

O
R

 ƒ(x, y) dA = L
b

a

 L
g2(x)

g1(x)

 ƒ(x, y) dy dx.

2. If R is deined by c … y … d, h1( y) … x … h2(  y), with h1 and h2 continuous 

on 3c, d4 , then

O
R

 ƒ(x, y) dA = L
d

c

 L
h2(y)

h1(y)

 ƒ(x, y) dx dy.

EXAMPLE 1  Find the volume of the prism whose base is the triangle in the xy-plane 

bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane

z = ƒ(x, y) = 3 - x - y.

Solution See Figure 15.12. For any x between 0 and 1, y may vary from y = 0 to y = x 

(Figure 15.12b). Hence,

 V = L
1

0 L
x

0

(3 - x - y) dy dx = L
1

0

 c 3y - xy -
y2

2
d

y = 0

y = x

 dx

 = L
1

0

 a3x -
3x2

2
b  dx = c 3x2

2
-

x3

2
d

x = 0

x = 1

= 1.
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When the order of integration is reversed (Figure 15.12c), the integral for the volume is

 V = L
1

0 L
1

y

(3 - x - y) dx dy = L
1

0

 c 3x -
x2

2
- xy d

x = y

x = 1

 dy

 = L
1

0

 a3 -
1
2

- y - 3y +
y2

2
+ y2b  dy

 = L
1

0

 a5
2

- 4y +
3
2

 y2b  dy = c 5
2

 y - 2y2 +
y3

2
d

y = 0

y = 1

= 1.

The two integrals are equal, as they should be. 

(a)

y

z

x
R

(3, 0, 0)

(1, 0, 2)

(1, 0, 0) (1, 1, 0)

(1, 1, 1)

y = x

x = 1

z = f(x, y) = 3 − x − y

(b)

y

x

R

0 1

y = x

y = x

x = 1

y = 0

x

(c)

y

0 1

R

x = 1

y = x

x = y

x = 1

FIGURE 15.12 (a) Prism with a triangular base in the xy-plane. The volume of this prism is 

defined as a double integral over R. To evaluate it as an iterated integral, we may integrate first with 

respect to y and then with respect to x, or the other way around (Example 1). (b) Integration limits of

 L
x = 1

x = 0

 L
y = x

y = 0

 ƒ(x, y) dy dx .

If we integrate irst with respect to y, we integrate along a vertical line through R and then integrate 

from left to right to include all the vertical lines in R. (c) Integration limits of

 L
y = 1

y = 0

 L
x = 1

x = y

 ƒ(x, y) dx dy.

If we integrate irst with respect to x, we integrate along a horizontal line through R and then inte-

grate from bottom to top to include all the horizontal lines in R.
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Although Fubini’s Theorem assures us that a double integral may be calculated as an 

iterated integral in either order of integration, the value of one integral may be easier to 

find than the value of the other. The next example shows how this can happen.

R

x

y

0 1

1

x = 1

y = x

FIGURE 15.13 The region of integration 

in Example 2.

Finding Limits of Integration

We now give a procedure for finding limits of integration that applies for many regions in 

the plane. Regions that are more complicated, and for which this procedure fails, can often 

be split up into pieces on which the procedure works.

Using Vertical Cross-Sections When faced with evaluating 4R ƒ(x, y) dA, integrat-

ing first with respect to y and then with respect to x, do the following three steps:

1. Sketch. Sketch the region of integration and label the bounding curves (Figure 15.14a).

2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the direc-

tion of increasing y. Mark the y-values where L enters and leaves. These are the y-limits 

of integration and are usually functions of x (instead of constants) (Figure 15.14b).

3. Find the x-limits of integration. Choose x-limits that include all the vertical lines 

through R. The integral shown here (see Figure 15.14c) is

O
R

 ƒ(x, y) dA = L
x = 1

x = 0

 L
y =21 - x2

y = 1 - x

 ƒ(x, y) dy dx.

Using Horizontal Cross-Sections To evaluate the same double integral as an iterated 

integral with the order of integration reversed, use horizontal lines instead of vertical lines 

in Steps 2 and 3 (see Figure 15.15). The integral is

O
R

 ƒ(x, y) dA = L
1

0 L
21 - y2

1 - y

 ƒ(x, y) dx dy.

x

y

0 1

R

1 x2 + y2 = 1

x + y = 1

x

y

0 1x

L

1
R

Leaves at

y = "1 − x2

Enters at

y = 1 − x

Leaves at

y = "1 − x2

Enters at

y = 1 − x

x

y

0 1x

L

1
R

Smallest x

is x = 0

Largest x

is x = 1

(a)

(b) 

(c)

FIGURE 15.14 Finding the limits of 

integration when integrating first with 

respect to y and then with respect to x.

EXAMPLE 2  Calculate

O
R

 
sin x

x  dA,

where R is the triangle in the xy-plane bounded by the x-axis, the line y = x, and the line 

x = 1.

Solution The region of integration is shown in Figure 15.13. If we integrate first with 

respect to y and next with respect to x, then because x is held fixed in the first integration, 

we find

  L
1

0

 a   L
x

0

 
sin x

x  dyb  dx = L
1

0

 c y 
sin x

x d
y = 0

y = x

 dx = L
1

0

sin x dx = -cos (1) + 1 ≈ 0.46.

If we reverse the order of integration and attempt to calculate

 L
1

0 L
1

y

 
sin x

x  dx dy,

we run into a problem because 1((sin x)>x) dx cannot be expressed in terms of elemen-

tary functions (there is no simple antiderivative).

There is no general rule for predicting which order of integration will be the good one 

in circumstances like these. If the order you irst choose doesn’t work, try the other. Some-

times neither order will work, and then we may need to use numerical approximations. 
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EXAMPLE 3  Sketch the region of integration for the integral

 L
2

0 L
2x

x2

(4x + 2) dy dx

and write an equivalent integral with the order of integration reversed.

Solution The region of integration is given by the inequalities x2 … y … 2x and 

0 … x … 2. It is therefore the region bounded by the curves y = x2 and y = 2x between 

x = 0 and x = 2 (Figure 15.16a).

To ind limits for integrating in the reverse order, we imagine a horizontal line passing 

from left to right through the region. It enters at x = y>2 and leaves at x = 2y. To include 

all such lines, we let y run from y = 0 to y = 4 (Figure 15.16b). The integral is

 L
4

0 L
2y

y>2 (4x + 2) dx dy.

The common value of these integrals is 8. 

x

y

Leaves at

x = "1 − y2

Enters at

x = 1 − y

0 1

y

1
R

Smallest y

is y = 0

Largest y

is y = 1

FIGURE 15.15 Finding the limits of 

integration when integrating first with 

respect to x and then with respect to y.

0 2

(a)

4 (2, 4)

0 2

(b)

4 (2, 4)

y

2

y

y

x

x

y = 2x

y = x2

x = "y
x =

FIGURE 15.16 Region of integration for 

Example 3.

If ƒ(x, y) and g(x, y) are continuous on the bounded region R, then the following 

properties hold.

1. Constant Multiple: O
R

 cƒ(x, y) dA = cO
R

 ƒ(x, y) dA (any number c)

2. Sum and Diference: 

O
R

1ƒ(x, y) { g(x, y)2 dA = O
R

 ƒ(x, y) dA { O
R

 g(x, y) dA

3. Domination: 

(a) O
R

 ƒ(x, y) dA Ú 0  if  ƒ(x, y) Ú 0 on R

(b) O
R

 ƒ(x, y) dA Ú O
R

 g(x, y) dA  if  ƒ(x, y) Ú g(x, y) on R

4. Additivity: If R is the union of two nonoverlapping regions R1 and R2, then 

O
R

 ƒ(x, y) dA = O
R1

 ƒ(x, y) dA + O
R2

 ƒ(x, y) dA

Properties of Double Integrals

Like single integrals, double integrals of continuous functions have algebraic properties 

that are useful in computations and applications.

Property 4 assumes that the region of integration R is decomposed into nonover-

lapping regions R1 and R2 with boundaries consisting of a finite number of line segments 

or smooth curves. Figure 15.17 illustrates an example of this property.
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The idea behind these properties is that integrals behave like sums. If the function  

ƒ(x, y) is replaced by its constant multiple cƒ(x, y), then a Riemann sum for ƒ,

Sn = a
n

k = 1

 ƒ(xk , yk) ∆Ak,

is replaced by a Riemann sum for cƒ:

a
n

k = 1

 cƒ(xk , yk) ∆Ak = ca
n

k = 1

 ƒ(xk , yk) ∆Ak = cSn .

Taking limits as n S q shows that c limnSq Sn = c4R ƒ dA and limnSq cSn = 4R 
cƒ dA 

are equal. It follows that the Constant Multiple Property carries over from sums to double 

integrals.

The other properties are also easy to verify for Riemann sums, and carry over to dou-

ble integrals for the same reason. While this discussion gives the idea, an actual proof that 

these properties hold requires a more careful analysis of how Riemann sums converge.

0
x

y

R1

R2

R

R = R1 ∪  R2

LL LL LL
R1

f (x, y) dA = f (x, y) dA +

R2

f (x, y) dA

FIGURE 15.17 The Additivity Property 

for rectangular regions holds for regions 

bounded by smooth curves.

EXAMPLE 4  Find the volume of the wedgelike solid that lies beneath the surface 

z =  16 - x2 - y2 and above the region R bounded by the curve y = 22x, the line 

y = 4x - 2, and the x-axis.

Solution Figure 15.18a shows the surface and the “wedgelike” solid whose volume we 

want to calculate. Figure 15.18b shows the region of integration in the xy-plane. If we 

integrate in the order dy dx (first with respect to y and then with respect to x), two integra-

tions will be required because y varies from y = 0 to y = 21x for 0 … x … 0.5, and 

then varies from y = 4x - 2 to y = 21x for 0.5 … x … 1. So we choose to integrate in 

the order dx dy, which requires only one double integral whose limits of integration are 

indicated in Figure 15.18b. The volume is then calculated as the iterated integral:

O
R

 (16 - x2 - y2) dA

= L
2

0

 L
( y + 2)>4

y2>4  (16 - x2 - y2) dx dy

= L
2

0

 c 16x -
x3

3
- xy2 d x = ( y + 2)>4

x = y2>4  dx

= L
2

0

 c 4( y + 2) -
( y + 2)3

3 # 64
-

( y + 2)y2

4
- 4y2 +

y6

3 # 64
+

y4

4
d  dy

= c 191y

24
+

63y2

32
-

145y3

96
-

49y4

768
+

y5

20
+

y7

1344
d 2

0

=
20803
1680

≈ 12.4. 

Our development of the double integral has focused on its representation of the 

volume of the solid region between R and the surface z = ƒ(x, y) of a positive continu-

ous function. Just as we saw with signed area in the case of single integrals, when 

ƒ(xk , yk) is negative, the product ƒ(xk , yk) ∆Ak is the negative of the volume of the rect-

angular box shown in Figure 15.9 that was used to form the approximating  Riemann 

sum. So for an arbitrary continuous function ƒ defined over R, the limit of any Riemann 

sum represents the signed volume (not the total volume) of the solid region between R 

and the surface. The double integral has other interpretations as well, and in the next 

section we will see how it is used to calculate the area of a general region in the plane.

16

1

2 y

x

z

y = 4x − 2

z = 16 − x2 − y2

y = 2" x

(a)

(b)

0 10.5

(1, 2)
2

x

y
y = 4x 

− 2

y = 2"x

R

x =
4

y2

x =
4

y 
+ 2

FIGURE 15.18 (a) The solid “wedge-

like” region whose volume is found in 

Example 4. (b) The region of integration R 

showing the order dx dy.
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Sketching Regions of Integration

In Exercises 1–8, sketch the described regions of integration.

 1. 0 … x … 3, 0 … y … 2x

 2. -1 … x … 2, x - 1 … y … x2

 3. -2 … y … 2, y2 … x … 4

 4. 0 … y … 1, y … x … 2y

 5. 0 … x … 1, ex … y … e

 6. 1 … x … e2, 0 … y … ln x

 7. 0 … y … 1, 0 … x … sin-1 y

 8. 0 … y … 8, 
1
4

 y … x … y1>3

 21.   L
ln 8

1 L
ln y

0

 ex + y dx dy 22.   L
2

1 L
y2

y

 dx dy

 23.   L
1

0 L
y2

0

3y3exy dx dy 24.   L
4

1 L
2x

0

 
3
2

 ey>2x dy dx

EXERCISES 15.2

Finding Limits of Integration

In Exercises 9–18, write an iterated integral for 4R
 dA over the 

described region R using (a) vertical cross-sections, (b) horizontal 

cross-sections.

 9.   10. 

x

y
y = x3

y = 8

 

x

y

y = 2x

x = 3

 11.   12. 

x

y

y = x2

y = 3x

 

x

y

y = 1

x = 2

y = ex

 13. Bounded by y = 1x, y = 0, and x = 9

 14. Bounded by y = tan x, x = 0, and y = 1

 15. Bounded by y = e-x, y = 1, and x = ln 3

 16. Bounded by y = 0, x = 0, y = 1, and y = ln x

 17. Bounded by y = 3 - 2x, y = x, and x = 0

 18. Bounded by y = x2 and y = x + 2

Finding Regions of Integration and Double Integrals

In Exercises 19–24, sketch the region of integration and evaluate the 

integral.

 19.   L
p

0 L
x

0

 x sin y dy dx 20.   L
p

0 L
sin x

0

 y dy dx

In Exercises 25–28, integrate ƒ over the given region.

 25.  Quadrilateral ƒ(x, y) = x>y over the region in the irst quad-

rant bounded by the lines y = x, y = 2x, x = 1, and x = 2

 26.  triangle ƒ(x, y) = x2 + y2 over the triangular region with ver-

tices (0, 0), (1, 0), and (0, 1)

 27.  triangle ƒ(u, y) = y - 2u over the triangular region cut from 

the irst quadrant of the uy-plane by the line u + y = 1

 28.  curved region ƒ(s, t) = es ln t over the region in the irst quad-

rant of the st-plane that lies above the curve s = ln t from t = 1 

to t = 2

Each of Exercises 29–32 gives an integral over a region in a Cartesian 

coordinate plane. Sketch the region and evaluate the integral.

 29.   L
0

-2

   L
-y

y

2 dp dy (the py@plane)

 30.   L
1

0

 L
21 - s2

0

8t dt ds (the st@plane)

 31.   L
p>3

-p>3   L
sec t

0

 3 cos t du dt (the tu@plane)

 32.   L
3>2

0 L
4 - 2u

1

  
4 - 2u

y2
 dy du (the uy@plane)

Reversing the Order of Integration

In Exercises 33–46, sketch the region of integration and write an 

equivalent double integral with the order of integration reversed.

 33.   L
1

0 L
4 - 2x

2

 dy dx 34.   L
2

0 L
0

y - 2

 dx dy

 35.   L
1

0 L
2y

y

 dx dy 36.   L
1

0 L
1 - x2

1 - x

 dy dx

 37.   L
1

0 L
ex

1

 dy dx 38.   L
ln 2

0

 L
2

ey

 dx dy

 39.   L
3>2

0 L
9 - 4x2

0

16x dy dx 40.   L
2

0 L
4 - y2

0

 y dx dy

 41.   L
1

0 L
21 - y2

-21 - y2
 3y dx dy 42.   L

2

0 L
24 - x2

-24 - x2
 6x dy dx

 43.   L
e

1 L
ln x

0

 xy dy dx 44.   L
p>6

0 L
1>2

sin x

 xy2 dy dx

 45.   L
3

0 L
ey

1

 (x + y) dx dy 46.   L
13

0 L
tan-1 y

0

 2xy dx dy
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In Exercises 67 and 68, sketch the region of integration and the solid 

whose volume is given by the double integral.

 67.   L
3

0 L
2 - 2x>3

0

 a1 -
1
3

 x -
1
2

 yb  dy dx

 68.   L
4

0 L
216 - y 2

-216 - y 2

 225 - x2 - y2 dx dy

Integrals over Unbounded Regions

Improper double integrals can often be computed similarly to 

improper integrals of one variable. The first iteration of the following 

improper integrals is conducted just as if they were proper integrals. 

One then evaluates an improper integral of a single variable by taking 

appropriate limits, as in Section 8.8. Evaluate the improper integrals 

in Exercises 69–72 as iterated integrals.

 69.   L
q

1 L
1

e-x

   
1

x3y
 dy dx 70.   L

1

-1

  L
1>21 - x2

-1>21 - x2

 (2y + 1) dy dx

 71.   L
q

-q

   L
q

-q

  
1

(x2 + 1) (y2 + 1)
 dx dy

 72.   L
q

0 L
q

0

 xe-(x + 2y) dx dy

Approximating Integrals with Finite Sums

In Exercises 73 and 74, approximate the double integral of ƒ(x, y) over 

the region R partitioned by the given vertical lines x = a and horizon-

tal lines y = c. In each subrectangle, use (xk , yk) as indicated for your 

approximation.

O
R

 ƒ(x, y) dA ≈ a
n

k = 1

 ƒ(xk , yk) ∆Ak

 73.  ƒ(x, y) = x + y over the region R bounded above by the semi-

circle y = 21 - x2 and below by the x-axis, using the partition 

x = -1, -1>2, 0, 1 >4, 1 >2, 1 and y = 0, 1 >2, 1 with (xk , yk) the 

lower left corner in the kth subrectangle (provided the subrect-

angle lies within R)

 74.  ƒ(x, y) = x + 2y over the region R inside the circle 

(x - 2)2 + (y - 3)2 = 1 using the partition x = 1, 3 >2, 2, 5 >2, 

3 and y = 2, 5 >2, 3, 7 >2, 4 with (xk , yk) the center (centroid) in 

the kth subrectangle (provided the subrectangle lies within R)

Theory and Examples

 75.  circular sector Integrate ƒ(x, y) = 24 - x2 over the smaller 

sector cut from the disk x2 + y2 … 4 by the rays u = p>6 and 

u = p>2.

 76.  Unbounded region Integrate ƒ(x, y) = 1> 3 (x2 - x)( y - 1)2>34  
over the ininite rectangle 2 … x 6 q, 0 … y … 2.

 77.  Noncircular cylinder A solid right (noncircular) cylinder has 

its base R in the xy-plane and is bounded above by the paraboloid 

z = x2 + y2. The cylinder’s volume is

V = L
1

0 L
y

0

(x2 + y2) dx dy + L
2

1 L
2 - y

0

(x2 + y2) dx dy.

  Sketch the base region R and express the cylinder’s volume as a 

single iterated integral with the order of integration reversed. Then 

evaluate the integral to ind the volume.

In Exercises 47–56, sketch the region of integration, reverse the order 

of integration, and evaluate the integral.

 47.   L
p

0 L
p

x

 
sin y

y  dy dx 48.   L
2

0 L
2

x

2y2 sin xy dy dx

 49.   L
1

0 L
1

y

 x2exy dx dy 50.   L
2

0 L
4 - x2

0

 
xe2y

4 - y
 dy dx

 51.   L
22ln 3

0 L
2ln 3

y>2  ex2

 dx dy

 52.   L
3

0 L
1

2x>3  e
y3

 dy dx

 53.   L
1>16

0 L
1>2

y1>4  cos (16px5) dx dy

 54.   L
8

0 L
2

23 x

 
dy dx

y4 + 1

 55.  square region 4R (  y - 2x2) dA where R is the region bounded

  by the square � x � + �y � = 1

 56.  triangular region 4R xy dA where R is the region bounded 

  by the lines y = x, y = 2x, and x + y = 2

Volume Beneath a Surface z = ƒ(x, y)

 57.  Find the volume of the region bounded above by the paraboloid 

z = x2 + y2 and below by the triangle enclosed by the lines 

y = x, x = 0, and x + y = 2 in the xy-plane.

 58.  Find the volume of the solid that is bounded above by the cyl-

inder z = x2 and below by the region enclosed by the parabola 

y = 2 - x2 and the line y = x in the xy-plane.

 59.  Find the volume of the solid whose base is the region in  

the xy-plane that is bounded by the parabola y = 4 - x2 and the 

line y = 3x, while the top of the solid is bounded by the plane 

z = x + 4.

 60.  Find the volume of the solid in the irst octant bounded by the 

coordinate planes, the cylinder x2 + y2 = 4, and the plane 

z + y = 3.

 61.  Find the volume of the solid in the irst octant bounded by the 

coordinate planes, the plane x = 3, and the parabolic cylinder 

z = 4 - y2.

 62.  Find the volume of the solid cut from the irst octant by the surface 

z = 4 - x2 - y.

 63.  Find the volume of the wedge cut from the irst octant by the cyl-

inder z = 12 - 3y2 and the plane x + y = 2.

 64.  Find the volume of the solid cut from the square column 

� x � + �y � … 1 by the planes z = 0 and 3x + z = 3.

 65.  Find the volume of the solid that is bounded on the front and back 

by the planes x = 2 and x = 1, on the sides by the cylinders 

y = {1>x, and above and below by the planes z = x + 1 and 

z = 0.

 66.  Find the volume of the solid bounded on the front and back by 

the planes x = {p>3, on the sides by the cylinders y = {sec x, 

above by the cylinder z = 1 + y2, and below by the xy-plane.
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 84.  improper double integral Evaluate the improper integral

 L
1

0 L
3

0

 
x2

( y - 1)2>3 dy dx.

 78.  converting to a double integral Evaluate the integral

 L
2

0
 (tan-1 px - tan-1 x) dx.

  (Hint: Write the integrand as an integral.)

 79.  Maximizing a double integral What region R in the xy-plane 

maximizes the value of

O
R

(4 - x2 - 2y2) dA?

  Give reasons for your answer.

 80.  Minimizing a double integral What region R in the xy-plane 

minimizes the value of

O
R

(x2 + y2 - 9) dA?

  Give reasons for your answer.

 81.  Is it possible to evaluate the integral of a continuous function 

ƒ(x, y) over a rectangular region in the xy-plane and get diferent 

answers depending on the order of integration? Give reasons for 

your answer.

 82.  How would you evaluate the double integral of a continuous func-

tion ƒ(x, y) over the region R in the xy-plane enclosed by the tri-

angle with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your 

answer.

 83.  Unbounded region Prove that

  L
q

-q

 L
q

-q

 e-x2 - y2

 dx dy = lim
bSq 

 L
b

-b

 L
b

-b

 e-x2 - y2

 dx dy

 = 4a   L
q

0

 e-x2

 dxb2

.

COMPUTER EXPLORATIONS

Use a CAS double-integral evaluator to estimate the values of the 

integrals in Exercises 85–88.

 85.   L
3

1 L
x

1

 
1
xy dy dx 86.  L

1

0 L
1

0

 e-(x2 + y2) dy dx

 87.   L
1

0 L
1

0

 tan-1 xy dy dx

 88.   L
1

-1

  L
21 - x2

0

 321 - x2 - y2 dy dx

Use a CAS double-integral evaluator to find the integrals in Exercises 

89–94. Then reverse the order of integration and evaluate, again with 

a CAS.

 89.   L
1

0 L
4

2y

 ex2

 dx dy

 90.   L
3

0 L
9

x2

 x cos (y2) dy dx

 91.   L
2

0

 L
422y

y3

 (x2y - xy2) dx dy

 92.   L
2

0 L
4 - y2

0

 exy dx dy

 93.   L
2

1 L
x2

0

 
1

x + y
 dy dx 94.  L

2

1 L
8

y3

 
1

2x2 + y2
 dx dy

15.3 Area by Double Integration

In this section we show how to use double integrals to calculate the areas of bounded 

regions in the plane, and to find the average value of a function of two variables.

Areas of Bounded Regions in the Plane

If we take ƒ(x, y) = 1 in the definition of the double integral over a region R in the preced-

ing section, the Riemann sums reduce to

 Sn = a
n

k = 1

 ƒ(xk , yk) ∆Ak = a
n

k = 1

∆Ak . (1)

This is simply the sum of the areas of the small rectangles in the partition of R, and 

approximates what we would like to call the area of R. As the norm of a partition of R 

approaches zero, the height and width of all rectangles in the partition approach zero, and 

the coverage of R becomes increasingly complete (Figure 15.8). We define the area of R to 

be the limit

 lim
� �P� �S0

  a
n

k = 1

∆Ak = O
R

 dA.  (2)
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As with the other definitions in this chapter, the definition here applies to a greater 

variety of regions than does the earlier single-variable definition of area, but it agrees with 

the earlier definition on regions to which they both apply. To evaluate the integral in the 

definition of area, we integrate the constant function ƒ(x, y) = 1 over R.

DEFINITION The area of a closed, bounded plane region R is

A = O
R

 dA.

EXAMPLE 1  Find the area of the region R bounded by y = x and y = x2 in the first 

quadrant.

Solution We sketch the region (Figure 15.19), noting where the two curves intersect at 

the origin and (1, 1), and calculate the area as

A = L
1

0 L
x

x2

 dy dx = L
1

0

c y d
x2

x

 dx = L
1

0

(x - x2) dx = c x2

2
-

x3

3
d

0

1

=
1
6

.

Notice that the single-variable integral 11

0
(x - x2) dx, obtained from evaluating the inside 

iterated integral, is the integral for the area between these two curves using the method of 

Section 5.6. 

EXAMPLE 2  Find the area of the region R enclosed by the parabola y = x2 and the 

line y = x + 2.

Solution If we divide R into the regions R1 and R2 shown in Figure 15.20a, we may 

calculate the area as

A = O
R1

 dA + O
R2

 dA = L
1

0 L
2y

-2y

 dx dy + L
4

1 L
2y

y - 2

 dx dy.

On the other hand, reversing the order of integration (Figure 15.20b) gives

A = L
2

-1

  L
x + 2

x2

 dy dx.

This second result, which requires only one integral, is simpler to evaluate, giving

 A = L
2

-1
 c y d

x2

x + 2

 dx = L
2

-1

(x + 2 - x2) dx = c x2

2
+ 2x -

x3

3
d

-1

2

=
9
2

. 

EXAMPLE 3  Find the area of the playing field described by 

R: -2 … x … 2, -1 - 24 - x2 … y … 1 + 24 - x2, using

(a) Fubini’s Theorem   (b) Simple geometry.

Solution The region R is shown in Figure 15.21a.

(1, 1)

0

y = x

y = x2

y = x 2

1

1

x

y

y = x 

FIGURE 15.19 The region in  

Example 1.

(2, 4)

y

x
0

(a)

  dx dy

(−1, 1)

R1

R2

y = x + 2

y = x 2

1

0

"y

–"y

  dx dy

4

1

"y

y – 2

(2, 4)

y

x
0

(b)

y = x + 2

y = x2

   dy dx

2

−1

x + 2

x
2(−1, 1)

L L

L L

L  L

FIGURE 15.20 Calculating this area 

takes (a) two double integrals if the first 

integration is with respect to x, but (b) only 

one if the first integration is with respect  

to y (Example 2).
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(a) From the symmetries observed in the igure, we see that the area of R is 4 times its 

area in the irst quadrant. As shown in Figure 15.21b, a vertical line at x enters this 

part of the region at y = 0 and exits at y = 1 + 24 - x2. Therefore, using Fubini’s 

Theorem, we have

 A = O
R

dA = 4 L
2

0 L
1 +24 - x2

0

dy dx

 = 4 L
2

0

(1 + 24 - x22 dx

 = 4 c x +
x

2
24 - x2 +

4
2

 sin- 1 
x

2
d 2

0

  Integral Table Formula 45

 = 4 a2 + 0 + 2 # p
2

- 0b = 8 + 4p.

(b) The region R consists of a rectangle mounted on two sides by half disks of radius 2. 

The area can be computed by summing the area of the 4 * 2 rectangle and the area of 

a circle of radius 2, so

 A = 8 + p22 = 8 + 4p. 

 Average value of ƒ over R =
1

area of R
 O

R

 ƒ dA.  (3)

If ƒ is the temperature of a thin plate covering R, then the double integral of ƒ over R 

divided by the area of R is the plate’s average temperature. If ƒ(x, y) is the distance from 

the point (x, y) to a fixed point P, then the average value of ƒ over R is the average distance 

of points in R from P.

EXAMPLE 4  Find the average value of ƒ(x, y) = x cos xy over the rectangle 

R: 0 … x … p, 0 … y … 1.

Solution The value of the integral of ƒ over R is

  L
p

0 L
1

0

 x cos xy dy dx = L
p

0

 c sin xy d
y = 0

y = 1

 dx    L  x cos xy dy = sin xy + C

 = L
p

0
 (sin x - 0) dx = -cos x d

0

p

= 1 + 1 = 2.

The area of R is p. The average value of ƒ over R is 2>p. 

Average Value

The average value of an integrable function of one variable on a closed interval is the inte-

gral of the function over the interval divided by the length of the interval. For an integrable 

function of two variables defined on a bounded region in the plane, the average value is the 

integral over the region divided by the area of the region. This can be visualized by thinking 

of the region as being the base of a tank with vertical walls around the boundary of the 

region, and imagining that the tank is filled with water that is sloshing around. The value 

ƒ(x, y) is then the height of the water that is directly above the point (x, y). The average 

height of the water in the tank can be found by letting the water settle down to a constant 

height. This height is equal to the volume of water in the tank divided by the area of R. We 

therefore define the average value of an integrable function ƒ over a region R as follows:

y

x
0 2

2

−2

3

1

−3

y

x
0 2

3

1

y = 1 + "4 − x2

Leaves at

Enters at

y = 0

FIGURE 15.21 (a) The playing field 

described by the region R in Example 3. 

(b) First quadrant of the playing field.

(a)

(b)
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Area by Double Integrals

In Exercises 1–12, sketch the region bounded by the given lines and 

curves. Then express the region’s area as an iterated double integral 

and evaluate the integral.

 1.  The coordinate axes and the line x + y = 2

 2.  The lines x = 0, y = 2x, and y = 4

 3.  The parabola x = -y2 and the line y = x + 2

 4.  The parabola x = y - y2 and the line y = -x

 5.  The curve y = ex and the lines y = 0, x = 0, and x = ln 2

 6.  The curves y = ln x and y = 2 ln x and the line x = e, in the irst 

quadrant

 7.  The parabolas x = y2 and x = 2y - y2

 8.  The parabolas x = y2 - 1 and x = 2y2 - 2

 9.  The lines y = x, y = x>3, and y = 2

 10.  The lines y = 1 - x and y = 2 and the curve y = ex

 11.  The lines y = 2x, y = x>2, and y = 3 - x

 12.  The lines y = x - 2 and y = -x and the curve y = 2x

Identifying the Region of Integration

The integrals and sums of integrals in Exercises 13–18 give the areas 

of regions in the xy-plane. Sketch each region, label each bounding 

curve with its equation, and give the coordinates of the points where 

the curves intersect. Then find the area of the region.

 13.   L
6

0 L
2y

y2>3 dx dy 14.   L
3

0 L
x(2 - x)

-x

 dy dx

 15.   L
p>4

0 L
cos x

sin x

 dy dx 16.   L
2

-1

  L
y + 2

y2

 dx dy

 17.   L
0

-1

  L
1 - x

-2x

 dy dx + L
2

0 L
1 - x

-x>2  dy dx

 18.   L
2

0 L
0

x2 - 4

 dy dx + L
4

0 L
2x

0

 dy dx

Finding Average Values

 19.  Find the average value of ƒ(x, y) = sin (x + y) over

a. the rectangle 0 … x … p, 0 … y … p.

b. the rectangle 0 … x … p, 0 … y … p>2.

 20.  Which do you think will be larger, the average value of ƒ(x, y) = xy 

over the square 0 … x … 1, 0 … y … 1, or the average value of ƒ 

over the quarter circle x2 + y2 … 1 in the irst quadrant? Calcu-

late them to ind out.

 21.  Find the average height of the paraboloid z = x2 + y2 over the 

square 0 … x … 2, 0 … y … 2.

 22.  Find the average value of ƒ(x, y) = 1>(xy) over the square 

ln 2 … x … 2 ln 2, ln 2 … y … 2 ln 2.

Theory and Examples

 23.  geometric area Find the area of the region

R: 0 … x … 2,  2 - x … y … 24 - x2,

  using (a) Fubini’s Theorem, (b) simple geometry.

 24.  geometric area Find the area of the circular washer with outer 

radius 2 and inner radius 1, using (a) Fubini’s Theorem, (b) sim-

ple geometry.

 25.  Bacterium population If ƒ(x, y) = (10,000 ey)>(1 + � x � >2) 

represents the “population density” of a certain bacterium on the 

xy-plane, where x and y are measured in centimeters, ind the to-

tal population of bacteria within the rectangle -5 … x … 5 and 

-2 … y … 0.

 26.  regional population If ƒ(x, y) = 100 ( y + 1) represents the 

population density of a planar region on Earth, where x and y are 

measured in miles, ind the number of people in the region bound-

ed by the curves x = y2 and x = 2y - y2.

 27.  Average temperature in texas According to the Texas 

 Almanac, Texas has 254 counties and a National Weather Service 

station in each county. Assume that at time t0 , each of the 254 

weather stations recorded the local temperature. Find a formula 

that would give a reasonable approximation of the average tem-

perature in Texas at time t0 . Your answer should involve informa-

tion that you would expect to be readily available in the Texas 

Almanac.

 28.  If y = ƒ(x) is a nonnegative continuous function over the closed 

interval a … x … b, show that the double integral deinition of 

area for the closed plane region bounded by the graph of ƒ, the 

vertical lines x = a and x = b, and the x-axis agrees with the 

deinition for area beneath the curve in Section 5.3.

 29.  Suppose ƒ(x, y) is continuous over a region R in the plane and that 

the area A(R) of the region is deined. If there are constants m and 

M such that m … ƒ(x, y) … M  for all (x, y)∊R, prove that

mA(R) … O
R

ƒ(x, y) dA … MA(R).

 30.  Suppose ƒ(x, y) is continuous and nonnegative over a region R in 

the plane with a deined area A(R). If 4R
 ƒ(x, y) dA = 0, prove 

that ƒ(x, y) = 0 at every point (x, y)∊R.

EXERCISES 15.3

15.4 Double Integrals in Polar Form

Double integrals are sometimes easier to evaluate if we change to polar coordinates. This 

section shows how to accomplish the change and how to evaluate double integrals over 

regions whose boundaries are given by polar equations.
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Integrals in Polar Coordinates

When we defined the double integral of a function over a region R in the xy-plane, we 

began by cutting R into rectangles whose sides were parallel to the coordinate axes. These 

were the natural shapes to use because their sides have either constant x-values or constant 

y-values. In polar coordinates, the natural shape is a “polar rectangle” whose sides have 

constant r- and u@values. To avoid ambiguities when describing the region of integration 

with polar coordinates, we use polar coordinate points (r, u) where r Ú 0.

Suppose that a function ƒ(r, u) is defined over a region R that is bounded by the rays 

u = a and u = b and by the continuous curves r = g1(u) and r = g2(u). Suppose also 

that 0 … g1(u) … g2(u) … a for every value of u between a and b. Then R lies in a fan-

shaped region Q defined by the inequalities 0 … r … a and a … u … b, where 

0 … b - a … 2p. See Figure 15.22.

0

R

Q

u = b

u = p
Δr

Δr

ΔAk

2Δr

3Δr

Δu

(rk, uk)

r = g1(u)

a + 2Δu

a + Δu

u = a

u = 0

r = g2(u) r = a

FIGURE 15.22 The region R: g1(u) … r … g2(u), a … u … b, is contained in the fan-

shaped region Q: 0 … r … a, a … u … b, where 0 … b - a … 2p. The partition of Q 

by circular arcs and rays induces a partition of R.

We cover Q by a grid of circular arcs and rays. The arcs are cut from circles centered 

at the origin, with radii ∆r, 2∆r, . . . , m∆r, where ∆r = a>m. The rays are given by

u = a,  u = a + ∆u,  u = a + 2∆u,  . . . ,  u = a + m′∆u = b,

where ∆u = ( b - a)>m′. The arcs and rays partition Q into small patches called “polar 

rectangles.”

We number the polar rectangles that lie inside R (the order does not matter), calling 

their areas ∆A1, ∆A2, . . . , ∆An . We let (rk , uk) be any point in the polar rectangle whose 

area is ∆Ak . We then form the sum

Sn = a
n

k = 1

 ƒ(rk , uk) ∆Ak .

If ƒ is continuous throughout R, this sum will approach a limit as we refine the grid to make 

∆r and ∆u go to zero. The limit is called the double integral of ƒ over R. In symbols,

lim
nSq

 Sn = O
R

 ƒ(r, u) dA.

To evaluate this limit, we first have to write the sum Sn in a way that expresses ∆Ak in 

terms of ∆r  and ∆u. For convenience we choose rk to be the average of the radii of the 

inner and outer arcs bounding the kth polar rectangle ∆Ak. The radius of the inner arc 

bounding ∆Ak is then rk - (∆r>2) (Figure 15.23). The radius of the outer arc is 

rk + (∆r>2).

The area of a wedge-shaped sector of a circle having radius r and angle u is

A =
1
2

 u # r2,

a         b
a         b

Small sector

Large sector

0

Δu

Δr
rkΔr

2
rk −

Δr

2
rk +

ΔAk

FIGURE 15.23 The observation that

∆Ak = a area of

large sector
b - a area of

small sector
b

leads to the formula ∆Ak = rk ∆r ∆u.
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as can be seen by multiplying pr2, the area of the circle, by u>2p, the fraction of the cir-

cle’s area contained in the wedge. So the areas of the circular sectors subtended by these 

arcs at the origin are

Inner radius:
1
2

 ark -
∆r
2
b2

 ∆u

Outer radius:
1
2

 ark +
∆r
2
b2

 ∆u.

Therefore,

 ∆Ak = area of large sector - area of small sector

 =
∆u
2

  c ark +
∆r
2
b2

- ark -
∆r
2
b2 d =

∆u
2

 (2rk ∆r) = rk ∆r ∆u.

Combining this result with the sum defining Sn gives

Sn = a
n

k = 1

 ƒ(rk , uk) rk ∆r ∆u.

As n S q and the values of ∆r  and ∆u approach zero, these sums converge to the double 

integral

lim
nSq

 Sn = O
R

 ƒ(r, u)  r dr du.

A version of Fubini’s Theorem says that the limit approached by these sums can be evalu-

ated by repeated single integrations with respect to r and u as

O
R

 ƒ(r, u) dA = L
u=b

u=a L
r = g2(u)

r = g1(u)

 ƒ(r, u)  r dr du.

Finding Limits of Integration

The procedure for finding limits of integration in rectangular coordinates also works for 

polar coordinates. We illustrate this using the region R shown in Figure 15.24. To evaluate 

4R
 ƒ(r, u) dA in polar coordinates, integrating first with respect to r and then with respect 

to u, take the following steps.

1. Sketch. Sketch the region and label the bounding curves (Figure 15.24a).

2. Find the r-limits of integration. Imagine a ray L from the origin cutting through R in the 

direction of increasing r. Mark the r-values where L enters and leaves R. These are the 

r-limits of integration. They usually depend on the angle u that L makes with the posi-

tive x-axis (Figure 15.24b).

3. Find the u@limits of integration. Find the smallest and largest u@values that bound R. 

These are the u@limits of integration (Figure 15.24c). The polar iterated integral is

O
R

 ƒ(r, u) dA = L
u=p>2

u=p>4 L
r = 2

r =22 csc u

 ƒ(r, u) r dr du.

EXAMPLE 1  Find the limits of integration for integrating ƒ(r, u) over the region R 

that lies inside the cardioid r = 1 + cos u and outside the circle r = 1.

Solution

 1. We irst sketch the region and label the bounding curves (Figure 15.25).

 2. Next we ind the r-limits of integration. A typical ray from the origin enters R where 

r = 1 and leaves where r = 1 + cos u.

y

x
0

2
R

x2 + y2 = 4

y = "2
"2 "2, "2Q       R

y

x
0

2
R

L

u

Enters at r = "2 csc u

Leaves at r = 2

r sin u = y = "2

or

r = "2 csc u

y

x
0

2
R

L

Largest u is .p
2

Smallest u is .p
4

y = x

"2

FIGURE 15.24 Finding the limits of 

integration in polar coordinates.

(a)

(b)

(c)



 15.4  Double Integrals in Polar Form 903

 3. Finally we ind the u@limits of integration. The rays from the origin that intersect R run 

from u = -p>2 to u = p>2. The integral is

  L
p>2

-p>2  L
1 + cos u

1

 ƒ(r, u) r dr du. 

If ƒ(r, u) is the constant function whose value is 1, then the integral of ƒ over R is the 

area of R.

1 2

L

u

Enters
at
r = 1

Leaves at
r = 1 + cos u

r = 1 + cos u

y

x

u =
p
2

u = −p
2

FIGURE 15.25 Finding the limits of 

integration in polar coordinates for the 

region in Example 1.

Area in Polar Coordinates

The area of a closed and bounded region R in the polar coordinate plane is

A = O
R

 r dr du.

This formula for area is consistent with all earlier formulas.

EXAMPLE 2  Find the area enclosed by the lemniscate r2 = 4 cos 2u.

Solution We graph the lemniscate to determine the limits of integration (Figure 15.26) and 

see from the symmetry of the region that the total area is 4 times the first-quadrant portion.

A = 4 L
p>4

0 L
24 cos 2u

0

 r dr du = 4 L
p>4

0

 c r2

2
d

r = 0

r =24 cos 2u

 du

 = 4 L
p>4

0

2 cos 2u du = 4 sin 2u d
0

p>4
= 4.  

Changing Cartesian Integrals into Polar Integrals

The procedure for changing a Cartesian integral 4R
 ƒ(x, y) dx dy into a polar integral has 

two steps. First substitute x = r cos u and y = r sin u, and replace dx dy by r dr du in the 

Cartesian integral. Then supply polar limits of integration for the boundary of R. The Car-

tesian integral then becomes

O
R

 ƒ(x, y) dx dy = O
G

 ƒ(r cos u, r sin u) r dr du,

where G denotes the same region of integration, but now described in polar coordinates. 

This is like the substitution method in Chapter 5 except that there are now two variables to 

substitute for instead of one. Notice that the area differential dx dy is not replaced by dr du 

but by r dr du. A more general discussion of changes of variables (substitutions) in multi-

ple integrals is given in Section 15.8.

EXAMPLE 3  Evaluate

O
R

 ex2 + y2

 dy dx,

where R is the semicircular region bounded by the x-axis and the curve y = 21 - x2 

(Figure 15.27).

Solution In Cartesian coordinates, the integral in question is a nonelementary integral 

and there is no direct way to integrate ex2 + y2

 with respect to either x or y. Yet this integral 

and others like it are important in mathematics—in statistics, for example—and we need 

y

x

Enters at

r = 0

r2 = 4 cos 2u
–p

4

p
4

Leaves at

r = "4 cos 2u

FIGURE 15.26 To integrate over 

the shaded region, we run r from 0 to 

24 cos 2u and u from 0 to p>4  

(Example 2).

Area Differential in polar coordinates

dA = r dr du

0 1

1

y

x
−1

r = 1

u = 0u = p

y = "1 − x2

FIGURE 15.27 The semicircular region 

in Example 3 is the region

0 … r … 1,  0 … u … p.
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to evaluate it. Polar coordinates make this possible. Substituting x = r cos u and  

y = r sin u and replacing dy dx by r dr du give

 O
R

 ex2 + y2

 dy dx = L
p

0 L
1

0

 er2

 r dr du = L
p

0

 c 1
2

 er2 d
0

1

 du

 = L
p

0

 
1
2

 (e - 1) du =
p
2

 (e - 1).

The r in the r dr du is what allowed us to integrate er2

. Without it, we would have been 

unable to find an antiderivative for the first (innermost) iterated integral. 

EXAMPLE 4  Evaluate the integral

 L
1

0

 L
21 - x2

0

 (x2 + y2) dy dx.

Solution Integration with respect to y gives

 L
1

0

 ax2 21 - x2 +  
(1 - x2)3>2

3
b  dx,

which is difficult to evaluate without tables. Things go better if we change the original 

integral to polar coordinates. The region of integration in Cartesian coordinates is given by 

the inequalities 0 … y … 21 - x2 and 0 … x … 1, which correspond to the interior of 

the unit quarter circle x2 + y2 = 1 in the first quadrant. (See Figure 15.27, first quadrant.) 

Substituting the polar coordinates x = r cos u, y = r sin u, 0 … u … p>2, and 

0 … r … 1, and replacing dy dx by r dr du in the double integral, we get

  L
1

0 L
21 - x2

0

 (x2 + y2) dy dx = L
p>2

0 L
1

0

 (r2) r dr du

 = L
p>2

0

 c r4

4
d r = 1

r = 0

 du = L
p>2

0

 
1
4

 du =
p
8

.

The polar coordinate transformation is effective here because x2 + y2 simplifies to r2 and 

the limits of integration become constants. 

EXAMPLE 5  Find the volume of the solid region bounded above by the paraboloid 

z = 9 - x2 - y2 and below by the unit circle in the xy-plane.

Solution The region of integration R is bounded by the unit circle x2 + y2 = 1, which 

is described in polar coordinates by r = 1, 0 … u … 2p. The solid region is shown in 

Figure 15.28. The volume is given by the double integral

 O
R

 (9 - x2 - y2) dA = L
2p

0 L
1

0

 (9 - r2) r dr du  r2 = x2 + y2, dA = r dr du.

 = L
2p

0 L
1

0

 (9r - r3) dr du

 = L
2p

0

 c 9
2

 r2 -
1
4

 r4 d r = 1

r = 0

 du

 =
17
4

 L
2p

0

 du =
17p

2
.  

2

2
x

y
x2 + y2 = 1

−2

z = 9 − x2 − y2

z

9

R

FIGURE 15.28 The solid region in 

Example 5.



 15.4  Double Integrals in Polar Form 905

EXAMPLE 6  Using polar integration, find the area of the region R in the xy-plane 

enclosed by the circle x2 + y2 = 4, above the line y = 1, and below the line y = 23x.

Solution A sketch of the region R is shown in Figure 15.29. First we note that the line 

y = 23x has slope 23 = tan u, so u = p>3. Next we observe that the line y = 1 inter-

sects the circle x2 + y2 = 4 when x2 + 1 = 4, or x = 23. Moreover, the radial line 

from the origin through the point (23, 1) has slope 1>23 = tan u, giving its angle of 

inclination as u = p>6. This information is shown in Figure 15.29.

Now, for the region R, as u varies from p>6 to p>3, the polar coordinate r varies from 

the horizontal line y = 1 to the circle x2 + y2 = 4. Substituting r sin u for y in the equation 

for the horizontal line, we have r sin u = 1, or r = csc u, which is the polar equation of the 

line. The polar equation for the circle is r = 2. So in polar coordinates, for p>6 … u … p>3, 

r varies from r = csc u to r = 2. It follows that the iterated integral for the area is

 O
R

 dA = L
p>3

p>6 L
2

csc u

 r dr du

 = L
p>3

p>6  c 1
2

 r2 d r = 2

r = csc u

 du

 = L
p>3

p>6  
1
2

 34 - csc2 u4  du
 =

1
2

 c 4u + cot u d p>3
p>6

  =
1
2

 a4p
3

+
1

23
b -

1
2

 a4p
6

+ 23b =
p - 23

3
. 

x

y

y = 1, or

r = csc u

2

2

1

0 1

y = "3x

x2 + y2 = 4

(1, "3)

("3, 1)

p
6

p
3

R

FIGURE 15.29 The region R in  

Example 6.

Regions in Polar Coordinates

In Exercises 1–8, describe the given region in polar coordinates.

 1.   2. 

x

y

90

9

 

x

y

40

1

4

 3.   4. 

x

y

1−1 0

1
 

x

y

10

"3

 5.   6. 

x

y

10

1

2

2"3

 

x

y

0 1 2

2

2

 7.  The region enclosed by the circle x2 + y2 = 2x

 8.  The region enclosed by the semicircle x2 + y2 = 2y, y Ú 0

Evaluating Polar Integrals

In Exercises 9–22, change the Cartesian integral into an equivalent 

polar integral. Then evaluate the polar integral.

 9.   L
1

-1

   L
21 - x2

0

dy dx 10.   L
1

0 L
21 - y2

0

(x2 + y2)  dx dy

 11.   L
2

0 L
24 - y2

0

(x2 + y2) dx dy

EXERCISES 15.4
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 31.  cardioid in the irst quadrant Find the area of the region cut 

from the irst quadrant by the cardioid r = 1 + sin u.

 32.  overlapping cardioids Find the area of the region common to 

the interiors of the cardioids r = 1 + cos u and r = 1 - cos u.

Average Values

In polar coordinates, the average value of a function over a region R 

(Section 15.3) is given by

1
Area(R)

 O
R

ƒ(r, u) r dr du.

 33.  Average height of a hemisphere Find the average height of 

the hemispherical surface z = 2a2 - x2 - y2 above the disk 

x2 + y2 … a2 in the xy-plane.

 34.  Average height of a cone Find the average height of the (single) 

cone z = 2x2 + y2 above the disk x2 + y2 … a2 in the xy-plane.

 35.  Average distance from interior of disk to center Find the av-

erage distance from a point P(x, y) in the disk x2 + y2 … a2 to the 

origin.

 36.  Average distance squared from a point in a disk to a point in 

its boundary Find the average value of the square of the dis-

tance from the point P(x, y) in the disk x2 + y2 … 1 to the bound-

ary point A(1, 0).

Theory and Examples

 37.  converting to a polar integral Integrate ƒ(x, y) =  3 ln (x2 + y2) 4 >2x2 + y2 over the region 1 … x2 + y2 … e.

 38.  converting to a polar integral Integrate ƒ(x, y) =  3 ln (x2 + y2)4 > (x2 + y2)  over the region 1 … x2 + y2 … e2.

 39.  Volume of noncircular right cylinder The region that lies in-

side the cardioid r = 1 + cos u and outside the circle r = 1 is 

the base of a solid right cylinder. The top of the cylinder lies in the 

plane z = x. Find the cylinder’s volume.

 40.  Volume of noncircular right cylinder The region enclosed by 

the lemniscate r2 = 2 cos 2u is the base of a solid right cylinder 

whose top is bounded by the sphere z = 22 - r2. Find the cyl-

inder’s volume.

 41.  converting to polar integrals

a. The usual way to evaluate the improper integral 

I = 1q
0

 e-x2

 dx is irst to calculate its square:

I2 = a   L
q

0

 e-x2

 dxb a   L
q

0

 e-y2

 dyb = L
q

0 L
q

0

 e-(x2 + y2) dx dy.

Evaluate the last integral using polar coordinates and solve 

the resulting equation for I.

b. Evaluate

lim
xSq

 erf(x) = lim
xSq

  L
x

0

  
2e-t2

2p
  dt.

 42.  converting to a polar integral Evaluate the integral

 L
q

0 L
q

0

 
1

(1 + x2 + y2)2
  dx dy.

 12.   L
a

-a

   L
2a2 - x2

-2a2 - x2

 dy dx 13.   L
6

0 L
y

0

 x dx dy

 14.   L
2

0 L
x

0

 y dy dx 15.   L
23

1 L
x

1

  dy dx

 16.   L
2

22
   L

y

24 - y 2

 dx dy 17.   L
0

-1

  L
0

-21 - x2

 
2

1 + 2x2 + y2
 dy dx

 18.   L
1

-1

   L
21 - x2

-21 - x2

 
2

(1 + x2 + y2)2
 dy dx

 19.   L
ln 2

0 L
2(ln 2)2 - y2

0

 e2x2 + y2

 dx dy

 20.   L
1

-1

   L
21 - y2

-21 - y2

 ln (x2 + y2 + 1)  dx dy

 21.   L
1

0

 L
22 - x2

x

  (x + 2y) dy dx

 22.   L
2

1

 L
22x - x2

0

  
1

(x2 + y2)2
 dy dx

In Exercises 23–26, sketch the region of integration and convert each 

polar integral or sum of integrals to a Cartesian integral or sum of 

integrals. Do not evaluate the integrals.

 23.   L
p>2

0 L
1

0

 r3 sin u cos u dr du

 24.   L
p>2

p>6 L
csc u

1

 r2 cos u dr du

 25.   L
p>4

0 L
2 sec u

0

 r5 sin2 u dr du

 26.   L
tan-1 4

3

0

 L
3 sec u

0

 r7 dr du + L
p>2

tan-1 4
3

   L
4 csc u

0

 r7 dr du

Area in Polar Coordinates

 27.  Find the area of the region cut from the irst quadrant by the curve 

r = 2(2 - sin 2u)1>2.
 28.  cardioid overlapping a circle Find the area of the region that 

lies inside the cardioid r = 1 + cos u and outside the circle 

r = 1.

 29.  one leaf of a rose Find the area enclosed by one leaf of the rose 

r = 12 cos 3u.

 30.  snail shell Find the area of the region enclosed by the positive 

x-axis and spiral r = 4u>3, 0 … u … 2p. The region looks like a 

snail shell.
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 43.  Existence Integrate the function ƒ(x, y) = 1>(1 - x2 - y2) 

over the disk x2 + y2 … 3>4. Does the integral of ƒ(x, y) over the 

disk x2 + y2 … 1 exist? Give reasons for your answer.

 44.  Area formula in polar coordinates Use the double integral in 

polar coordinates to derive the formula

A = L
b

a

 
1
2

  r2 du

  for the area of the fan-shaped region between the origin and polar 

curve r = ƒ(u), a … u … b.

 45.  Average distance to a given point inside a disk Let P0 be a 

point inside a circle of radius a and let h denote the distance from 

P0 to the center of the circle. Let d denote the distance from an ar-

bitrary point P to P0 . Find the average value of d2 over the region 

enclosed by the circle. (Hint: Simplify your work by placing the 

center of the circle at the origin and P0 on the x-axis.)

 46.  Area Suppose that the area of a region in the polar coordinate 

plane is

A = L
3p>4

p>4 L
2 sin u

csc u

 r dr du.

  Sketch the region and ind its area.

 47.  Evaluate the integral 4R
 2x2 + y2 dA, where R is the region  

inside the upper semicircle of radius 2 centered at the origin,  

but outside the circle x2 + ( y - 1)2 = 1.

 48.  Evaluate the integral 4R
(x2 + y2)-2 dA, where R is the region 

inside the circle x2 + y2 = 2 for x … -1.

COMPUTER EXPLORATIONS

In Exercises 49–52, use a CAS to change the Cartesian integrals into 

an equivalent polar integral and evaluate the polar integral. Perform 

the following steps in each exercise.

a. Plot the Cartesian region of integration in the xy-plane.

b. Change each boundary curve of the Cartesian region in part 

(a) to its polar representation by solving its Cartesian equa-

tion for r and u.

c. Using the results in part (b), plot the polar region of integra-

tion in the ru@plane.

d. Change the integrand from Cartesian to polar coordinates. De-

termine the limits of integration from your plot in part (c) and 

evaluate the polar integral using the CAS integration utility.

 49.   L
1

0 L
1

x

 
y

x2 + y2
  dy dx 50.  L

1

0 L
x>2

0

 
x

x2 + y2
  dy dx

 51.   L
1

0 L
y>3

-y>3 
y

2x2 + y2
  dx dy 52.  L

1

0 L
2 - y

y

2x + y dx dy

15.5 Triple Integrals in Rectangular Coordinates

Just as double integrals allow us to deal with more general situations than could be han-

dled by single integrals, triple integrals enable us to solve still more general problems. We 

use triple integrals to calculate the volumes of three-dimensional shapes and the average 

value of a function over a three-dimensional region. Triple integrals also arise in the study 

of vector fields and fluid flow in three dimensions, as we will see in Chapter 16.

Triple Integrals

If F(x, y, z) is a function defined on a closed bounded region D in space, such as the region 

occupied by a solid ball or a lump of clay, then the integral of F over D may be defined in 

the following way. We partition a rectangular boxlike region containing D into rectangular 

cells by planes parallel to the coordinate axes (Figure 15.30). We number the cells that lie 

completely inside D from 1 to n in some order, the kth cell having dimensions ∆xk by ∆yk 

by ∆zk and volume ∆Vk = ∆xk∆yk∆zk . We choose a point (xk , yk , zk) in each cell and 

form the sum

 Sn = a
n

k = 1

 F(xk , yk , zk) ∆Vk . (1)

We are interested in what happens as D is partitioned by smaller and smaller cells, so 

that ∆xk , ∆yk , ∆zk , and the norm of the partition 7P 7 , the largest value among ∆xk , 

∆yk , ∆zk , all approach zero. When a single limiting value is attained, no matter how the 

partitions and points (xk , yk , zk) are chosen, we say that F is integrable over D. As before, 

it can be shown that when F is continuous and the bounding surface of D is formed from 

z

y
x

D

(xk, yk, zk)

Δzk

Δxk

Δyk

FIGURE 15.30 Partitioning a solid with 

rectangular cells of volume ∆Vk .
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finitely many smooth surfaces joined together along finitely many smooth curves, then F 

is integrable. As 7P 7 S 0 and the number of cells n goes to q, the sums Sn approach a 

limit. We call this limit the triple integral of F over D and write

lim
nSq

 Sn = l
D

F(x, y, z) dV or lim
� �P� �S0

 Sn = l
D

 F(x, y, z) dx dy dz.

The regions D over which continuous functions are integrable are those having “reason-

ably smooth” boundaries.

DEFINITION The volume of a closed, bounded region D in space is

V = l
D

 dV.

This definition is in agreement with our previous definitions of volume, although we omit 

the verification of this fact. As we see in a moment, this integral enables us to calculate the 

volumes of solids enclosed by curved surfaces. These are more general solids than the 

ones encountered before (Chapter 6 and Section 15.2).

Volume of a Region in Space

If F is the constant function whose value is 1, then the sums in Equation (1) reduce to

Sn = a
n

k = 1

F(xk, yk, zk) ∆Vk = a
n

k = 1

1 # ∆Vk = a
n

k = 1

∆Vk.

As ∆xk , ∆yk , and ∆zk approach zero, the cells ∆Vk become smaller and more numerous 

and fill up more and more of D. We therefore define the volume of D to be the triple 

integral

lim
nSq

 a
n

k = 1

 ∆Vk = l
D

 dV.

Finding Limits of Integration in the Order dz dy dx

We evaluate a triple integral by applying a three-dimensional version of Fubini’s Theo-

rem (Section 15.2) to evaluate it by three repeated single integrations. As with double 

integrals, there is a geometric procedure for finding the limits of integration for these 

iterated integrals.

To evaluate

l
D

 F(x, y, z) dV

over a region D, integrate first with respect to z, then with respect to y, and finally with 

respect to x. (You might choose a different order of integration, but the procedure is simi-

lar, as we illustrate in Example 2.)

1. Sketch. Sketch the region D along with its “shadow” R (vertical projection) in the  

xy-plane. Label the upper and lower bounding surfaces of D and the upper and lower 

bounding curves of R.
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z

y

x

D

R
b

a

z = f2(x, y)

z = f1(x, y)

y = g2(x)

y = g1(x)

2. Find the z-limits of integration. Draw a line M passing through a typical point (x, y) in  

R parallel to the z-axis. As z increases, M enters D at z = ƒ1(x, y) and leaves at 

z = ƒ2(x, y). These are the z-limits of integration.

z

y

x

D

Rb

a

M

y = g2(x)
(x, y)

y = g1(x)

Leaves at

z = f2(x, y)

Enters at

z = f1(x, y)

3. Find the y-limits of integration. Draw a line L through (x, y) parallel to the y-axis. As  

y increases, L enters R at y = g1(x) and leaves at y = g2(x). These are the y-limits of 

integration.

y

x

D

R
b

a

M

L

x

z

(x, y)

Enters at

y = g1(x)

Leaves at

y = g2(x)
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4. Find the x-limits of integration. Choose x-limits that include all lines through R parallel 

to the y-axis (x = a and x = b in the preceding figure). These are the x-limits of inte-

gration. The integral is

 L
x = b

x = a

 L
y = g2(x)

y = g1(x)

 L
z = ƒ2(x, y)

z = ƒ1(x, y)

 F(x, y, z) dz dy dx.

Follow similar procedures if you change the order of integration. The “shadow” of re-

gion D lies in the plane of the last two variables with respect to which the iterated inte-

gration takes place.

The preceding procedure applies whenever a solid region D is bounded above and 

below by a surface, and when the “shadow” region R is bounded by a lower and upper curve. 

It does not apply to regions with complicated holes through them, although sometimes such 

regions can be subdivided into simpler regions for which the procedure does apply.

We illustrate this method of finding the limits of integration in our first example.

EXAMPLE 1  Let S be the sphere of radius 5 centered at the origin, and let D be the 

region under the sphere that lies above the plane z = 3. Set up the limits of integration for 

evaluating the triple integral of a function F(x, y, z) over the region D.

Solution The region under the sphere that lies above the plane z = 3 is enclosed by the 

surfaces x2 + y2 + z2 = 25 and z = 3.

To ind the limits of integration, we irst sketch the region, as shown in Figure 15.31. 

The “shadow region” R in the xy-plane is a circle of some radius centered at the origin. By 

considering a side view of the region D, we can determine that the radius of this circle is 

4; see Figure 15.32a.

If we ix a point (x, y) in R and draw a vertical line M above (x, y), then we see 

that this line enters the region D at the height z = 3 and leaves the region at the height 

z = 225 - x2 - y2; see Figure 15.31. This gives us the z-limits of integration.

(x, y)

y

x

Surface x2 + y2 + z2 = 25 

z = 3

R

D

Leaves at

z = "25 − x2 − y2

Enters at

z = 3

5
4

4
5

M

z

FIGURE 15.31 Finding the limits of integration for evaluating 

the triple integral of a function defined over the portion of the 

sphere of radius 5 that lies above the plane z = 3 (Example 1).
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To ind the y-limits of integration, we consider a line L that lies in the region R, passes 

through the point (x, y), and is parallel to the y-axis. For clarity we have separately pictured 

the region R and the line L in Figure 15.32b. The line L enters R when y = -216 - x2 

and exits when y = 216 - x2. This gives us the y-limits of integration.

Finally, as L sweeps across R from left to right, the value of x varies from x = -4 to 

x = 4. This gives us the x-limits of integration. Therefore, the triple integral of F over the 

region D is given by

 l
D

F(x, y, z) dz dy dx = L
4

- 4

   L
216 - x2

-216 - x2

   L
225 - x2 - y2

3

F(x, y, z) dz dy dx. 

The region D in Example 1 has a great deal of symmetry, which makes visualization 

easier. Even without symmetry, the steps in finding the limits of integration are the same, 

as shown in the next example.

EXAMPLE 2  Set up the limits of integration for evaluating the triple integral of a 

function F(x, y, z) over the tetrahedron D whose vertices are (0, 0, 0), (1, 1, 0), (0, 1, 0), 

and (0, 1, 1). Use the order of integration dz dy dx.

Solution The region D and its “shadow” R in the xy-plane are shown in Figure 15.33a. 

The “side” face of D is parallel to the xz-plane, the “back” face lies in the yz-plane, and the 

“top” face is contained in the plane z = y - x.

To ind the z-limits of integration, ix a point (x, y) in the shadow region R, and con-

sider the vertical line M that passes through (x, y) and is parallel to the z-axis. This line 

enters D at the height z = 0, and it exits at height z = y - x.

To ind the y-limits of integration we again ix a point (x, y) in R, but now we consider 

a line L that lies in R, passes through (x, y), and is parallel to the y-axis. This line is shown 

in Figure 15.33a and also in the face-on view of R that is pictured in Figure 15.33b. The line 

L enters R when y = x and exits when y = 1.

z

y
0 4 5−4−5

5

3

R

D

 

y

x
0 4−4

4

−4

R
(x, y)

Enters at

y = −"16 − x2

Leaves at

y = "16 − x2

L

FIGURE 15.32 (a) Side view of the region from Example 1, looking down the x-axis. The 

dashed right triangle has a hypotenuse of length 5 and sides of lengths 3 and 4. In this side 

view, the shadow region R lies between -4 and 4 on the y-axis. (b) The “shadow region”  

R shown face-on in the xy-plane.

 (a) (b)

z

y

x

x

R

D

M

L

(0, 1, 0)

(0, 1, 1)

(1, 1, 0)
1

(x, y)
y = 1

0

y = x

z = y − x

1

(x, y)

Enters at

y = x

y

x

R

L

0

y = x

Leaves at

y = 1

1

FIGURE 15.33 (a) The tetrahedron in 

Example 2 showing how the limits of  

integration are found for the order  

dz dy dx. (b) The “shadow region” R 

shown face-on in the xy-plane.

(a)

(b)
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Finally, as L sweeps across R, the value of x varies from x = 0 to x = 1. Therefore, 

the triple integral of F over the region D is given by

 l
D

F(x, y, z) dz dy dx = L
1

0 L
1

x L
y - x

0

F(x, y, z) dz dy dx. 

EXAMPLE 3  Find the volume of the tetrahedron D from Example 2 by integrating 

F(x, y, z) = 1 over the region using the order dz dy dx. Then do the same calculation using 

the order dy dz dx.

Solution Using the limits of integration that we found in Example 2, we calculate the 

volume of the tetrahedron as follows:

V = L
1

0 L
1

x L
y - x

0

 dz dy dx   
Integrand is 1 when 

computing volume.
 

= L
1

0 L
1

x

( y - x) dy dx   
Integrate over z 

and evaluate.
 

= L
1

0

 c 1
2

 y2 - xy d
y = x

y = 1

 dx   Integrate over y.

= L
1

0

 a1
2

- x +
1
2

 x2b  dx  Evaluate.

= c 1
2

 x -
1
2

 x2 +
1
6

 x3 d
0

1

  Integrate over x.

=
1
6

.   Evaluate.

Now we will compute the volume using the order of integration dy dz dx. The pro-

cedure for inding the limits of integration is similar, except that we ind the limits for y 

irst, then for z, and then for x. The region D is the same tetrahedron as before, but now the 

“shadow region” R lies in the xz-plane, as shown in Figure 15.34.

To ind the y-limits of integration, we ix a point (x, z) in the shadow R and consider 

the line M that passes through (x, z) and is parallel to the y-axis. As shown in Figure 15.34, 

this line enters D when y = x + z, and it leaves when y = 1.

Next we ind the z-limits of integration. The line L that passes through a point (x, z) in R 

and is parallel to the z-axis enters R when z = 0 and exits when z = 1 - x (see Figure 15.34).

Finally, as L sweeps across R, the value of x varies from x = 0 to x = 1. Therefore, 

the volume of the tetrahedron is

V = L
1

0

 L
1 - x

0

 L
1

x + z

 dy dz dx

= L
1

0

 L
1 - x

0

 (1 - x - z) dz dx

= L
1

0

 c (1 - x) z -
1
2

 z2 d z = 1 - x

z = 0

 dx

z

y

x

x

R

D

L

M

(0, 1, 0)

(1, 1, 0)
1

1

(x, z)

Line

x + z = 1

(0, 1, 1)

y = 1

y = x + z

Leaves at

y = 1
Enters at

y = x + z

FIGURE 15.34 Finding the limits of 

integration for evaluating the triple integral 

of a function defined over the tetrahedron 

D (Example 3).

In the next example we project the region D onto the xz-plane instead of the xy-plane, 

to show how to use a different order of integration.
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EXAMPLE 4  Find the volume of the region D enclosed by the surfaces z = x2 + 3y2 

and z =  8 - x2 - y2.

Solution The volume is

V = l
D

 dz dy dx,

the integral of F(x, y, z) = 1 over D. To find the limits of integration for evaluating the 

integral, we first sketch the region. The surfaces (Figure 15.35) intersect on the elliptical 

cylinder x2 + 3y2 = 8 - x2 - y2 or x2 + 2y2 = 4, z 7 0. The boundary of the region 

R, the projection of D onto the xy-plane, is an ellipse with the same equation: x2 + 2y2 = 4. 

The “upper” boundary of R is the curve y = 2(4 - x2) >2. The lower boundary is the 

curve y = -2(4 - x2) >2.

Now we ind the z-limits of integration. The line M passing through a typical point 

(x, y) in R parallel to the z-axis enters D at z = x2 + 3y2 and leaves at z = 8 - x2 - y2.

Leaves at

z = 8 − x2 − y2 

(2, 0, 4)

(2, 0, 0)

x

z

yL

(−2, 0, 0)

R

x

D

(−2, 0, 4)

The curve of intersection

z = 8 − x2 − y2

x2 + 2y2 = 4

Leaves at

y = "(4 − x2)�2

z = x2 + 3y2

M

(x, y)

Enters at

z = x2 + 3y2

Enters at

y = −"(4 − x2)/2

FIGURE 15.35 The volume of the region enclosed by two paraboloids, 

calculated in Example 4.

= L
1

0

 c (1 - x)2 -
1
2

 (1 - x)2 d  dx

=
1
2

  L
1

0

 (1 - x)2 dx

 = -  
1
6

 (1 - x)3 d 1
0

=
1
6

.  

Next we set up and evaluate a triple integral over a more complicated region.
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Next we ind the y-limits of integration. The line L through (x, y) that lies parallel to the 

y-axis enters the region R when y = -2(4 - x2)>2 and leaves when y = 2(4 - x2)>2.

Finally we ind the x-limits of integration. As L sweeps across R, the value of x varies 

from x = -2 at (-2, 0, 0) to x = 2 at (2, 0, 0). The volume of D is

V = l
D

 dz dy dx  Integrand is 1 when computing volume.

= L
2

-2 

 L
2(4 - x2)>2

-2(4 - x2)>2   L
8 - x2 - y2

x2 + 3y2

 dz dy dx Substitute limits of integration.

= L
2

-2 

 L
2(4 - x2)>2

-2(4 - x2)>2 (8 - 2x2 - 4y2) dy dx Integrate over z and evaluate.

= L
2

-2

  c (8 - 2x2)y -
4
3

 y3 d y =2(4 - x2)>2
y = -2(4 - x2)>2 dx Integrate over y.

= L
2

-2

 a2(8 - 2x2)A4 - x2

2
-

8
3

 a4 - x2

2
b3>2b  dx  Evaluate.

= L
2

-2

   c 8a4 - x2

2
b3>2

-
8
3

 a4 - x2

2
b3>2 d  dx =

422
3

  L
2

-2

(4 - x2)3>2 dx

= 8p22.  After integration with the substitution x = 2 sin u 

Average Value of a Function in Space

The average value of a function F over a region D in space is defined by the formula

 Average value of F over D =
1

volume of D
 l

D

 F dV.  (2)

For example, if F(x, y, z) = 2x2 + y2 + z2, then the average value of F over D is the 

average distance of points in D from the origin. If F(x, y, z) is the temperature at (x, y, z) on 

a solid that occupies a region D in space, then the average value of F over D is the average 

temperature of the solid.

EXAMPLE 5  Find the average value of F(x, y, z) = xyz throughout the cubical 

region D bounded by the coordinate planes and the planes x = 2, y = 2, and z = 2 in the 

first octant.

Solution We sketch the cube with enough detail to show the limits of integration  

(Figure 15.36). We then use Equation (2) to calculate the average value of F over the cube.

The volume of the region D is (2)(2)(2) = 8. The value of the integral of F over the 

cube is

  L
2

0 L
2

0 L
2

0

 xyz dx dy dz = L
2

0 L
2

0

 c x2

2
 yz d

x = 0

x = 2

 dy dz = L
2

0 L
2

0

2yz dy dz

 = L
2

0

 c y2z d
y = 0

y = 2

 dz = L
2

0

4z dz = c 2z2 d
0

2

= 8.

With these values, Equation (2) gives

Average value of

xyz over the cube
=

1
volume

 l
cube

 xyz dV = a1
8
b (8) = 1.

In evaluating the integral, we chose the order dx dy dz, but any of the other five possible 

orders would have done as well. 

z

y

D

2

x

2

2

FIGURE 15.36 The region of integration 

in Example 5.
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Properties of Triple Integrals

Triple integrals have the same algebraic properties as double and single integrals. Simply 

replace the double integrals in the four properties given in Section 15.2, page 893, with 

triple integrals.

Triple Integrals in Different Iteration Orders

 1.  Evaluate the integral in Example 3 taking F(x, y, z) = 1 to ind 

the volume of the tetrahedron in the order dz dx dy.

 2.  Volume of rectangular solid Write six diferent iterated triple 

integrals for the volume of the rectangular solid in the irst octant 

bounded by the coordinate planes and the planes x = 1, y = 2, 

and z = 3. Evaluate one of the integrals.

 3.  Volume of tetrahedron Write six diferent iterated triple inte-

grals for the volume of the tetrahedron cut from the irst octant by 

the plane 6x + 3y + 2z = 6. Evaluate one of the integrals.

 4.  Volume of solid Write six diferent iterated triple integrals 

for the volume of the region in the irst octant enclosed by the 

cylinder x2 + z2 = 4 and the plane y = 3. Evaluate one of the 

integrals.

 5.  Volume enclosed by paraboloids Let D be the region bounded 

by the paraboloids z = 8 - x2 - y2 and z = x2 + y2. Write six 

diferent triple iterated integrals for the volume of D. Evaluate one 

of the integrals.

 6.  Volume inside paraboloid beneath a plane Let D be the region 

bounded by the paraboloid z = x2 + y2 and the plane z = 2y. 

Write triple iterated integrals in the order dz dx dy and dz dy dx 

that give the volume of D. Do not evaluate either integral.

Evaluating Triple Iterated Integrals

Evaluate the integrals in Exercises 7–20.

 7.   L
1

0

 L
1

0

 L
1

0

(x2 + y2 + z2) dz dy dx

 8.   L
22

0 L
3y

0 L
8 - x2 - y2

x2 + 3y2

 dz dx dy 9.   L
e

1

 L
e2

1 L
e3

1

 
1

xyz dx dy dz

 10.   L
1

0

 L
3 - 3x

0 L
3 - 3x - y

0

 dz dy dx 11.   L
p>6

0 L
1

0

 L
3

-2

 y sin z dx dy dz

 12.   L
1

-1

  L
1

0

 L
2

0

(x + y + z) dy dx dz

 13.   L
3

0

 L
29 - x2

0 L
29 - x2

0

 dz dy dx 14.   L
2

0

 L
24 - y2

-24 - y2

   L
2x + y

0

 dz dx dy

 15.   L
1

0

 L
2 - x

0 L
2 - x - y

0

 dz dy dx 16.   L
1

0

 L
1 - x2

0 L
4 - x2 - y

3

 x dz dy dx

 17.   L
p

0 L
p

0 L
p

0

 cos (u + y + w) du dy dw (uyw@space)

 18.  L
1

0

 L
2e

1

 L
e

1

 ses ln r 
(ln t)2

t
 dt dr ds (rst@space)

 19.   L
p>4

0 L
ln sec y

0 L
2t

-q

 ex dx dt dy (tyx@space)

 20.   L
7

0

 L
2

0

 L
24 - q2

0

 
q

r + 1
  dp dq dr ( pqr@space)

Finding Equivalent Iterated Integrals

 21.  Here is the region of integration of the integral

 L
1

-1

   L
1

x2

 L
1 - y

0

 dz dy dx.

11

1

(1, 1, 0)

y

x

z

Top:  y + z = 1

(−1, 1, 0)

Side:

y = x2
−11

  Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx b. dy dx dz

c. dx dy dz d. dx dz dy

e. dz dx dy.

 22.  Here is the region of integration of the integral

 L
1

0 L
0

-1

  L
y2

0

dz dx dy

0

z

y

x

1

1

(1, −1, 0)

(1, −1, 1)

(0, −1, 1)

z = y2

  Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx b. dy dx dz

c. dx dy dz d. dx dz dy

e. dz dx dy.

EXERCISES 15.5
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 28.  The region in the irst octant bounded by the coordinate planes, the 

plane y = 1 - x, and the surface z = cos (px>2), 0 … x … 1

z

y

x

 29.  The region common to the interiors of the cylinders x2 + y2 = 1 

and x2 + z2 = 1, one-eighth of which is shown in the accompa-

nying igure

z

y
x

x2 + z2 = 1

x2 + y2 = 1

 30.  The region in the irst octant bounded by the coordinate planes and 

the surface z = 4 - x2 - y

z

y

x

 31.  The region in the irst octant bounded by the coordinate planes, the 

plane x + y = 4, and the cylinder y2 + 4z2 = 16

z

y

x

Finding Volumes Using Triple Integrals

Find the volumes of the regions in Exercises 23–36.

 23.  The region between the cylinder z = y2 and the xy-plane that is 

bounded by the planes x = 0, x = 1, y = -1, y = 1

z

x

y

 24.  The region in the irst octant bounded by the coordinate planes and 

the planes x + z = 1, y + 2z = 2

z

y

x

 25.  The region in the irst octant bounded by the coordinate planes, the 

plane y + z = 2, and the cylinder x = 4 - y2

z

y

x

 26.  The wedge cut from the cylinder x2 + y2 = 1 by the planes 

z = -y and z = 0

z

y

x

 27.  The tetrahedron in the irst octant bounded by the coordinate planes 

and the plane passing through (1, 0, 0), (0, 2, 0), and (0, 0, 3)

z

y

x

(1, 0, 0)

(0, 2, 0)

(0, 0, 3)
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 42.   L
1

0 L
1

0 L
1

x2

12xzezy2

 dy dx dz

 43.   L
1

0 L
1

23 z

   L
ln 3

0

 
pe2x sin py2

y2
  dx dy dz

 44.   L
2

0 L
4 - x2

0 L
x

0

 
sin 2z

4 - z
  dy dz dx

Theory and Examples

 45.  Finding an upper limit of an iterated integral Solve for a:

 L
1

0

 L
4 - a - x2

0

 L
4 - x2 - y

a

 dz dy dx =
4
15

.

 46.  Ellipsoid For what value of c is the volume of the ellipsoid 

x2 + ( y>2)2 + (z>c)2 = 1 equal to 8p?

 47.  Minimizing a triple integral What domain D in space mini-

mizes the value of the integral

l
D

(4x2 + 4y2 + z2 - 4) dV ?

  Give reasons for your answer.

 48.  Maximizing a triple integral What domain D in space maxi-

mizes the value of the integral

l
D

(1 - x2 - y2 - z2) dV ?

  Give reasons for your answer.

COMPUTER EXPLORATIONS

In Exercises 49–52, use a CAS integration utility to evaluate the triple 

integral of the given function over the specified solid region.

 49.  F(x, y, z) = x2y2z over the solid cylinder bounded by 

x2 + y2 = 1 and the planes z = 0 and z = 1

 50.  F(x, y, z) = � xyz �  over the solid bounded below by the parabo-

loid z = x2 + y2 and above by the plane z = 1

 51.  F(x, y, z) =
z

(x2 + y2 + z2)3>2 over the solid bounded below by 

  the cone z = 2x2 + y2 and above by the plane z = 1

 52.  F(x, y, z) = x4 + y2 + z2 over the solid sphere x2 + y2 +  

z2 … 1

 32.  The region cut from the cylinder x2 + y2 = 4 by the plane z = 0 

and the plane x + z = 3

z

y

x

 33.  The region between the planes x + y + 2z = 2 and  

2x + 2y +  z = 4 in the irst octant

 34.  The inite region bounded by the planes z = x, x + z = 8, z = y, 

y = 8, and z = 0

 35.  The region cut from the solid elliptical cylinder x2 + 4y2 … 4 by 

the xy-plane and the plane z = x + 2

 36.  The region bounded in back by the plane x = 0, on the front and 

sides by the parabolic cylinder x = 1 - y2, on the top by the pa-

raboloid z = x2 + y2, and on the bottom by the xy-plane

Average Values

In Exercises 37–40, find the average value of F(x, y, z) over the given 

region.

 37.  F(x, y, z) = x2 + 9 over the cube in the irst octant bounded by 

the coordinate planes and the planes x = 2, y = 2, and z = 2

 38.  F(x, y, z) = x + y - z over the rectangular solid in the irst octant 

bounded by the coordinate planes and the planes x = 1, y = 1, 

and z = 2

 39.  F(x, y, z) = x2 + y2 + z2 over the cube in the irst octant bound-

ed by the coordinate planes and the planes x = 1, y = 1, and 

z = 1

 40.  F(x, y, z) = xyz over the cube in the irst octant bounded by the 

coordinate planes and the planes x = 2, y = 2, and z = 2

Changing the Order of Integration

Evaluate the integrals in Exercises 41–44 by changing the order of 

integration in an appropriate way.

 41.   L
4

0 L
1

0 L
2

2y

 
4 cos (x2)

22z
 dx dy dz

15.6 Applications

This section shows how to calculate the masses and moments of two- and three- 

dimensional objects in Cartesian coordinates. The definitions and ideas are similar to the 

single-variable case we studied in Section 6.6, but now we can consider more realistic 

 situations. We also look at how multiple integrals are used to compute probabilities.
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Masses and First Moments

If d(x, y, z) is the density (mass per unit volume) of an object occupying a region D in 

space, the integral of d over D gives the mass of the object. To see why, imagine partition-

ing the object into n mass elements like the one in Figure 15.37. The object’s mass is the 

limit

M = lim
nSq

 a
n

k = 1

 ∆mk = lim
nSq

 a
n

k = 1

d(xk , yk , zk) ∆Vk = l
D

d(x, y, z) dV.

The first moment of a solid region D about a coordinate plane is defined as the triple 

integral over D of the distance from a point (x, y, z) in D to the plane multiplied by the 

density of the solid at that point. For instance, the first moment about the yz-plane is the 

integral

Myz = l
D

 x d(x, y, z) dV.

The center of mass is found from the first moments. For instance, the x-coordinate of 

the center of mass is x = Myz>M .

For a two-dimensional object, such as a thin, flat plate, we calculate first moments 

about the coordinate axes by simply dropping the z-coordinate. So the first moment about 

the y-axis is the double integral over the region R forming the plate of the distance from 

the axis multiplied by the density, or

My = O
R

 x d(x, y) dA.

Table 15.1 summarizes the formulas.

x

z

y

D
(xk, yk, zk)

Δmk = d(xk, yk, zk) ΔVk

FIGURE 15.37 To define an object’s 

mass, we first imagine it to be partitioned 

into a finite number of mass elements 

∆mk .

TABLE 15.1  Mass and first moment formulas

tHrEE-DiMENsioNAL soLiD

Mass:  M = l
D

d dV   d = d(x, y, z) is the density at (x, y, z).

First moments about the coordinate planes:

Myz = l
D

 x d dV,  Mxz = l
D

 y d dV,  Mxy = l
D

 z d dV

center of mass:  x =
Myz

M
,  y =

Mxz

M
,  z =

Mxy

M

tWo-DiMENsioNAL pLAtE

Mass:  M = O
R

d dA   d = d(x, y) is the density at (x, y).

First moments:  My = O
R

 x d dA,  Mx = O
R

 y d dA

center of mass:  x =
My

M
,  y =

Mx

M
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EXAMPLE 1  Find the center of mass of a solid of constant density d bounded below 

by the disk R: x2 + y2 … 4 in the plane z = 0 and above by the paraboloid 

z = 4 - x2 - y2 (Figure 15.38).

Solution By symmetry x = y = 0. To find z, we first calculate

 Mxy = O
R

L
z = 4 - x2 - y2

z = 0

 z d dz dy dx = O
R

 c z2

2
d

z = 0

z = 4 - x2 - y2

d dy dx

 =
d
2

 O
R

(4 - x2 - y2)2 dy dx

 =
d
2

   L
2p

0

 L
2

0

(4 - r2)2 r dr du  Polar coordinates simplify the integration.

 =
d
2

  L
2p

0

 c-  
1
6

 (4 - r2)3 d
r = 0

r = 2

 du =
16d
3

  L
2p

0

 du =
32pd

3
.

A similar calculation gives the mass

M = O
R

L
4 - x2 - y2

0

d dz dy dx = 8pd.

Therefore z = (Mxy>M) = 4>3 and the center of mass is (x, y, z) = (0, 0, 4>3). 

When the density of a solid object or plate is constant (as in Example 1), the center of 

mass is called the centroid of the object. To find a centroid, we set d equal to 1 and pro-

ceed to find x, y, and z as before, by dividing first moments by masses. These calculations 

are also valid for two-dimensional objects.

z

y

x

0
R

c.m.

x2 + y2 = 4

z = 4 − x2 − y2

FIGURE 15.38 Finding the center of 

mass of a solid (Example 1).

EXAMPLE 2  Find the centroid of the region in the first quadrant that is bounded 

above by the line y = x and below by the parabola y = x2.

Solution We sketch the region and include enough detail to determine the limits of inte-

gration (Figure 15.39). We then set d equal to 1 and evaluate the appropriate formulas 

from Table 15.1:

 M = L
1

0 L
x

x2

1 dy dx = L
1

0

 c y d
y = x2

y = x

 dx = L
1

0

(x - x2) dx = c x2

2
-

x3

3
d

0

1

=
1
6

 Mx = L
1

0 L
x

x2

 y dy dx = L
1

0

 c y2

2
d

y = x2

y = x

 dx

 = L
1

0

 ax2

2
-

x4

2
b  dx = c x3

6
-

x5

10
d

0

1

=
1
15

 My = L
1

0 L
x

x2

 x dy dx = L
1

0

 c xy d
y = x2

y = x

 dx = L
1

0

(x2 - x3) dx = c x3

3
-

x4

4
d

0

1

=
1
12

.

From these values of M, Mx , and My , we find

x =
My

M
=

1>12

1>6 =
1
2
  and  y =

Mx

M
=

1>15

1>6 =
2
5

.

The centroid is the point (1 >2, 2 >5). 

(1, 1)

0 1

1

x

y

y = x2

y = x

FIGURE 15.39 The centroid of this 

region is found in Example 2.
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Moments of Inertia

An object’s first moments (Table 15.1) tell us about balance and about the torque the 

object experiences about different axes in a gravitational field. If the object is a rotating 

shaft, however, we are more likely to be interested in how much energy is stored in the 

shaft or about how much energy is generated by a shaft rotating at a particular angular 

velocity. This is where the second moment or moment of inertia comes in.

Think of partitioning the shaft into small blocks of mass ∆mk and let rk denote the 

distance from the kth block’s center of mass to the axis of rotation (Figure 15.40). If the 

shaft rotates at a constant angular velocity of v = du>dt radians per second, the block’s 

center of mass will trace its orbit at a linear speed of

yk =
d

dt
 (rku) = rk 

du
dt

= rkv.

The block’s kinetic energy will be approximately

1
2

 ∆mkyk 

2 =
1
2

 ∆mk (rkv)2 =
1
2

 v2rk 

2 ∆mk .

The kinetic energy of the shaft will be approximately

a  
1
2

 v2rk 

2 ∆mk .

The integral approached by these sums as the shaft is partitioned into smaller and smaller 

blocks gives the shaft’s kinetic energy:

 KEshaft = L  
1
2

 v2r2 dm =
1
2

 v2 L  r2 dm.  (1)

The factor

I = L  r2 dm

is the moment of inertia of the shaft about its axis of rotation, and we see from Equation (1) 

that the shaft’s kinetic energy is

KEshaft =
1
2

 Iv2.

The moment of inertia of a shaft resembles in some ways the inertial mass of a loco-

motive. To start a locomotive with mass m moving at a linear velocity y, we need to pro-

vide a kinetic energy of KE = (1>2)my2. To stop the locomotive we have to remove this 

amount of energy. To start a shaft with moment of inertia I rotating at an angular velocity 

v, we need to provide a kinetic energy of KE = (1>2)Iv2. To stop the shaft we have to 

take this amount of energy back out. The shaft’s moment of inertia is analogous to the 

locomotive’s mass. What makes the locomotive hard to start or stop is its mass. What 

makes the shaft hard to start or stop is its moment of inertia. The moment of inertia 

depends not only on the mass of the shaft but also on its distribution. Mass that is farther 

away from the axis of rotation contributes more to the moment of inertia.

We now derive a formula for the moment of inertia for a solid in space. If r(x, y, z) is 

the distance from the point (x, y, z) in D to a line L, then the moment of inertia of the mass 

∆mk =  d(xk , yk , zk)∆Vk about the line L (as in Figure 15.40) is approximately ∆Ik =  

r2(xk , yk , zk) ∆mk . the moment of inertia about L of the entire object is

IL = lim
nSq

 a
n

k = 1

 ∆Ik = lim
nSq

  a
n

k = 1

 r2(xk , yk , zk)  d(xk , yk , zk) ∆Vk = l
D

 r2d dV.

u

L

yk

Δmk
rku

rk

Axis of rotation

FIGURE 15.40 To find an integral for 

the amount of energy stored in a rotating 

shaft, we first imagine the shaft to be parti-

tioned into small blocks. Each block has its 

own kinetic energy. We add the contribu-

tions of the individual blocks to find the 

kinetic energy of the shaft.
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If L is the x-axis, then r2 = y2 + z2 (Figure 15.41) and

Ix = l
D

(y2 + z2) d(x, y, z) dV.

Similarly, if L is the y-axis or z-axis we have

Iy = l
D

(x2 + z2) d(x, y, z) dV  and  Iz = l
D

(x2 + y2) d(x, y, z) dV.

Table 15.2 summarizes the formulas for these moments of inertia (second moments 

because they invoke the squares of the distances). It shows the definition of the polar 

moment about the origin as well.

z

y

x

x

y

x

y

z

x

dV

0

"y2 + z2

"x2 + z2

"x2 + y2

FIGURE 15.41 Distances from dV to the 

coordinate planes and axes. TABLE 15.2  Moments of inertia (second moments) formulas

tHrEE-DiMENsioNAL soLiD

About the x-axis: Ix = l(y2 + z2) d dV d = d(x, y, z)

About the y-axis: Iy = l(x2 + z2) d dV

About the z-axis: Iz = l(x2 + y2) d dV

About a line L: IL = lr2(x, y, z) d dV 
r (x, y, z) = distance from the  

point (x, y, z) to line L

tWo-DiMENsioNAL pLAtE

About the x-axis: Ix = O  y2 d dA d = d(x, y)

About the y-axis: Iy = O  x2 d dA

About a line L: IL = O  r2(x, y) d dA r (x, y) = distance from (x, y) to L

About the origin  

(polar moment):

I0 = O (x2 + y2) d dA = Ix + Iy

EXAMPLE 3  Find Ix , Iy , Iz for the rectangular solid of constant density d shown in 

Figure 15.42.

Solution The formula for Ix gives

Ix = L
c>2

-c>2  L
b>2

-b>2  L
a>2

-a>2(y2 + z2) d dx dy dz.

We can avoid some of the work of integration by observing that (y2 + z2)d is an even 

function of x, y, and z since d is constant. The rectangular solid consists of eight  symmetric 

b

a

c

Center of 

block

x

y

z

FIGURE 15.42 Finding Ix , Iy , and Iz for 

the block shown here. The origin lies at the 

center of the block (Example 3).
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pieces, one in each octant. We can evaluate the integral on one of these pieces and then 

multiply by 8 to get the total value.

 Ix = 8 L
c>2

0

 L
b>2

0

 L
a>2

0

(y2 + z2) d dx dy dz = 4ad L
c>2

0

 L
b>2

0

(y2 + z2) dy dz

 = 4ad L
c>2

0

 c y3

3
+ z2y d

y = 0

y = b>2
 dz

 = 4ad L
c>2

0

 a b3

24
+

z2b

2
b  dz

 = 4ad ab3c

48
+

c3b

48
b =

abcd
12

 (b2 + c2) =
M
12

 (b2 + c2).  M = abcd

Similarly,

 Iy =
M
12

 (a2 + c2)  and  Iz =
M
12

 (a2 + b2). 

EXAMPLE 4  A thin plate covers the triangular region bounded by the x-axis and the 

lines x = 1 and y = 2x in the first quadrant. The plate’s density at the point (x, y) is 

d(x, y) = 6x + 6y + 6. Find the plate’s moments of inertia about the coordinate axes and 

the origin.

Solution We sketch the plate and put in enough detail to determine the limits of integra-

tion for the integrals we have to evaluate (Figure 15.43). The moment of inertia about the 

x-axis is

 Ix = L
1

0 L
2x

0

y2 d(x, y) dy dx = L
1

0 L
2x

0

(6xy2 + 6y3 + 6y2) dy dx

 = L
1

0

  c 2xy3 +
3
2

 y4 + 2y3 d
y = 0

y = 2x

 dx = L
1

0

(40x4 + 16x3) dx

 = c 8x5 + 4x4 d
0

1

= 12.

Similarly, the moment of inertia about the y-axis is

Iy = L
1

0 L
2x

0

 x2 d(x, y) dy dx =
39
5

.

Notice that we integrate y2 times density in calculating Ix and x2 times density to find Iy.

Since we know Ix and Iy , we do not need to evaluate an integral to ind I0; we can use 

the equation I0 = Ix + Iy from Table 15.2 instead:

 I0 = 12 +
39
5

=
60 + 39

5
=

99
5

. 

The moment of inertia also plays a role in determining how much a horizontal metal 

beam will bend under a load. The stiffness of the beam is a constant times I, the moment of 

inertia of a typical cross-section of the beam about the beam’s longitudinal axis. The 

greater the value of I, the stiffer the beam and the less it will bend under a given load. That 

is why we use I-beams instead of beams whose cross-sections are square. The flanges at 

the top and bottom of the beam hold most of the beam’s mass away from the longitudinal 

axis to increase the value of I (Figure 15.44).

(1, 2)

0 1

2

x

y

y = 2x

x = 1

FIGURE 15.43 The triangular region 

covered by the plate in Example 4.

Beam B

Beam A

Axis

Axis

FIGURE 15.44 The greater the polar 

moment of inertia of the cross-section of a 

beam about the beam’s longitudinal axis, 

the stiffer the beam. Beams A and B have 

the same cross-sectional area, but A is 

stiffer.
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Probability

In Chapter 8 we saw that the probability that a continuous random variable X takes values 

between a and b is found by integrating a probability density function ƒ,

P(a … X … b) = L
b

a

ƒ(x) dx.

A similar process applies to probabilities involving two continuous random variables. The 

probability that a pair of random variables (X, Y) takes values lying within a particular 

region is determined by a joint probability density function ƒ. Integrating the joint proba-

bility density function over a region R in the plane gives the probability that the pair of 

random variables take values in that region:

P((X, Y )∊R) = O
R

ƒ(x, y) dx dy.

If the region is a rectangle, then this expression has the simple form

P(a … X … b and c … Y … d ) = L
b

a L
d

c

ƒ(x, y) dx dy.

A joint probability density function ƒ is defined by three basic properties. The first 

property ensures that there are no negative probabilities, and the second implies that the 

total probability of all possible outcomes is one. The final property describes the connec-

tion of ƒ to probabilities.

DEFINITION A joint probability density function ƒ is a function that satisies 

three conditions:

1. ƒ(x, y) Ú 0

2.  L
q

-q

  L
q

-q

ƒ(x, y) dx dy = 1

3. P((X, Y)∊R) = O
R

ƒ(x, y) dx dy.

A pair of random variables has a uniform distribution on a region R with finite area A 

if ƒ(x, y) = 1>A for any (x, y)∊R,  and ƒ(x, y) = 0 otherwise.

EXAMPLE 5  A random number generator is used to generate two random real num-

bers X and Y in succession. The first number X is chosen between 0 and 10, and the second 

number Y is chosen between 0 and 5. The random number generation is done by a process 

that gives a uniform distribution. Find the joint probability density function ƒ for the pair 

of numbers (X, Y ) and use it to compute the probability that X is larger than Y.

Solution The joint probability density function ƒ is constant on the rectangle 

0 … x … 10, 0 … y … 5, because (X, Y ) are uniformly distributed. The area of the rect-

angle is 50, so ƒ takes the value 1>50 inside this rectangle:

ƒ(x, y) = e1>50, if 0 … x … 10 and 0 … y … 5,

0, otherwise.
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To compute the probability that X 7 Y, we integrate the joint probability density func-

tion ƒ over the region in the rectangle where X 7 Y . This region is bounded on the left 

by the line x = y and on the right by the line x = 10. An integral over this region has 

limits of integration given by y … x … 10, 0 … y … 5 (see Figure 15.45). The probability 

is given by

P(X 7 Y ) = L
5

0 L
10

y

1
50

 dx dy =
3
4

.

There is a 75% probability that the first number is larger than the second. 

EXAMPLE 6  Using the joint probability density function

ƒ(x, y) = e e-(x + y), if 0 6 x and 0 6 y

0, otherwise

find the probability that 1 6 X 6 2 and 2 6 Y 6 3.

Solution

P(1 6 X 6 2, 2 6 Y 6 3) = L
3

2 L
2

1

e-(x + y) dx dy = e-5 + e-3 - 2e-4 ≈ 0.01989.

There is slightly less than a 2% probability that X and Y fall within these bounds. 

Means and Expected Values

The mean, or expected value, of a random variable was seen in Section 8.9 to be

m = L
q

-q

x ƒ(x) dx.

When X and Y have joint probability density function ƒ, the expected value of X and the 

expected value of Y are

mX = L
q

-q

  L
q

-q

x ƒ(x, y) dx dy  and  mY = L
q

-q

  L
q

-q

y ƒ(x, y) dx dy.

These indicate the average value expected for each of X and Y. The expected values mX 

and mY  are sometimes called the first moments of the distribution, because their defining 

formulas have the same form as those seen in Table 15.1 for the moments of a two- 

dimensional plate. The joint probability density function plays the role in computing mX 

that the mass density function plays in computing the x-coordinate x of the center of mass, 

and the same applies to mY  and y. One can roughly think of the joint probability density 

function as measuring the probability concentration per unit area on the plane, just as den-

sity measures the mass per unit area for a plate.

EXAMPLE 7  Find the expected values mX and mY  for the joint probability density 

function in Example 5.

Solution For the joint probability density function in Example 5, we compute

mX = L
5

0 L
10

0

x (1>50) dx dy = 5

and

mY = L
5

0 L
10

0

y (1>50) dx dy = 2.5.

The expected value of X is 5 and that of Y is 2.5. 

105

y

x
0

5

FIGURE 15.45 The pair of random 

variables X and Y take values anywhere in 

this rectangle with equal probability. In the 

shaded region we have X 7 Y .
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Plates of Constant Density

 1.  Finding a center of mass Find the center of mass of a thin plate 

of density d = 3 bounded by the lines x = 0, y = x, and the pa-

rabola y = 2 - x2 in the irst quadrant.

 2.  Finding moments of inertia Find the moments of inertia about 

the coordinate axes of a thin rectangular plate of constant den-

sity d gm>cm2 bounded by the lines x = 3 and y = 3 in the irst 

quadrant.

 3.  Finding a centroid Find the centroid of the region in the irst 

quadrant bounded by the x-axis, the parabola y2 = 2x, and the 

line x + y = 4.

 4.  Finding a centroid Find the centroid of the triangular region cut 

from the irst quadrant by the line x + y = 3.

 5.  Finding a centroid Find the centroid of the region cut from the 

irst quadrant by the circle x2 + y2 = a2.

 6.  Finding a centroid Find the centroid of the region between the 

x-axis and the arch y = sin x, 0 … x … p.

 7.  Finding moments of inertia Find the moment of inertia about the 

x-axis of a thin plate of density d = 1 gm/cm2 bounded by the circle 

x2 + y2 = 4. Then use your result to ind Iy and I0 for the plate.

 8.  Finding a moment of inertia Find the moment of  inertia 

with respect to the y-axis of a thin sheet of constant density  

d = 1 gm/cm2 bounded by the curve y = (sin2 x) >x2 and the in-

terval p … x … 2p of the x-axis.

 9.  the centroid of an ininite region Find the centroid of the in-

inite region in the second quadrant enclosed by the coordinate 

axes and the curve y = ex. (Use improper integrals in the mass-

moment formulas.)

 10.  the irst moment of an ininite plate Find the irst moment 

about the y-axis of a thin plate of density d(x, y) = 1 covering the 

ininite region under the curve y = e-x2>2 in the irst quadrant.

Plates with Varying Density

 11.  Finding a moment of inertia Find the moment of inertia about 

the x-axis of a thin plate bounded by the parabola x = y - y2 and 

the line x + y = 0 if d(x, y) = x + y.

 12.  Finding mass Find the mass of a thin plate occupying the 

smaller region cut from the ellipse x2 + 4y2 = 12 by the parabola 

x = 4y2 if d(x, y) = 5x kg/m2.

 13.  Finding a center of mass Find the center of mass of a thin 

triangular plate bounded by the y-axis and the lines y = x and 

y = 2 - x if d(x, y) = 6x + 3y + 3.

 14.  Finding a center of mass and moment of inertia Find the cen-

ter of mass and moment of inertia about the x-axis of a thin plate 

bounded by the curves x = y2 and x = 2y - y2 if the density at 

the point (x, y) is d(x, y) = y + 1.

 15.  center of mass, moment of inertia Find the center of mass 

and the moment of inertia about the y-axis of a thin rectangular 

plate cut from the irst quadrant by the lines x = 6 and y = 1 if 

d(x, y) = x + y + 1.

 16.  center of mass, moment of inertia Find the center of mass 

and the moment of inertia about the y-axis of a thin plate bound-

ed by the line y = 1 and the parabola y = x2 if the density is 

d(x, y) = y + 1.

 17.  center of mass, moment of inertia Find the center of mass 

and the moment of inertia about the y-axis of a thin plate bound-

ed by the x-axis, the lines x = {1, and the parabola y = x2 if 

d(x, y) = 7y + 1.

 18.  center of mass, moment of inertia Find the center of mass 

and the moment of inertia about the x-axis of a thin rectangular 

plate bounded by the lines x = 0, x = 20, y = -1, and y = 1 if 

d(x, y) = 1 + (x>20).

 19.  center of mass, moments of inertia Find the center of mass, 

the moment of inertia about the coordinate axes, and the polar 

moment of inertia of a thin triangular plate bounded by the lines 

y = x, y = -x, and y = 1 if d(x, y) = y + 1 kg/m2.

 20.  center of mass, moments of inertia Repeat Exercise 19 for 

d(x, y) = 3x2 + 1 kg/m2.

Solids with Constant Density

 21.  Moments of inertia Find the moments of inertia of the rect-

angular solid shown here with respect to its edges by calculating 

Ix , Iy , and Iz .

z

y

x

c

b

a

 22.  Moments of inertia The coordinate axes in the igure run 

through the centroid of a solid wedge parallel to the labeled edges. 

Find Ix, Iy, and Iz if a = b = 6 and c = 4.

z

y

x b

a

Centroid
at (0, 0, 0)

c b
3

a
2

c
3

 23.  center of mass and moments of inertia A solid “trough” of 

constant density is bounded below by the surface z = 4y2, above 

by the plane z = 4, and on the ends by the planes x = 1 and 

x = -1. Find the center of mass and the moments of inertia with 

respect to the three axes.

EXERCISES 15.6
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 24.  center of mass A solid of constant density is bounded be-

low by the plane z = 0, on the sides by the elliptical cylinder 

x2 + 4y2 = 4, and above by the plane z = 2 - x (see the ac-

companying igure).

a. Find x and y.

b. Evaluate the integral

Mxy = L
2

-2

   L
(1>2)24 - x2

-(1>2)24 - x2
  L

2 - x

0

 z dz dy dx

using integral tables to carry out the inal integration with 

respect to x. Then divide Mxy by M to verify that z = 5>4.

z

y

x

1

2

2

z = 2 − x

x = −2

x 2 + 4y2
 = 4

 25. a.  center of mass Find the center of mass of a solid of con-

stant density bounded below by the paraboloid z = x2 + y2 

and above by the plane z = 4.

b. Find the plane z = c that divides the solid into two parts of 

equal volume. This plane does not pass through the center of 

mass.

 26.  Moments A solid cube, 2 units on a side, is bounded by the 

planes x = {1, z = {1, y = 3, and y = 5. Find the center of 

mass and the moments of inertia about the coordinate axes.

 27.  Moment of inertia about a line A wedge like the one in  

Exercise 22 has a = 4, b = 6, and c = 3. Make a quick sketch 

to check for yourself that the square of the distance from a typi-

cal point (x, y, z) of the wedge to the line L: z = 0, y = 6 is 

r2 = ( y - 6)2 + z2. Then calculate the moment of inertia of the 

wedge about L.

 28.  Moment of inertia about a line A wedge like the one in Exercise 

22 has a = 4, b = 6, and c = 3. Make a quick sketch to check for 

yourself that the square of the distance from a typical point (x, y, z)  

of the wedge to the line L: x = 4, y = 0 is r2 = (x - 4)2 + y2. 

Then calculate the moment of inertia of the wedge about L.

Solids with Varying Density

In Exercises 29 and 30, find

a. the mass of the solid. b. the center of mass.

 29.  A solid region in the irst octant is bounded by the coordinate 

planes and the plane x + y + z = 2. The density of the solid is 

d(x, y, z) = 2x gm/cm3.

 30.  A solid in the irst octant is bounded by the planes y = 0 and z = 0 

and by the surfaces z = 4 - x2 and x = y2 (see the accompany-

ing igure). Its density function is d(x, y, z) = kxy, k a constant.

z

y

x

2

4

x = y2

(2, "2, 0)

z = 4 − x2

In Exercises 31 and 32, find

a. the mass of the solid.

b. the center of mass.

c. the moments of inertia about the coordinate axes.

 31.  A solid cube in the irst octant is bounded by the coordinate planes 

and by the planes x = 1, y = 1, and z = 1. The density of the 

cube is d(x, y, z) = x + y + z + 1.

 32.  A wedge like the one in Exercise 22 has dimensions a = 2, 

b = 6, and c = 3. The density is d(x, y, z) = x + 1. Notice that 

if the density is constant, the center of mass will be (0, 0, 0).

 33.  Mass Find the mass of the solid bounded by the planes 

x + z = 1, x - z = -1, y = 0, and the surface y = 2z. The 

density of the solid is d(x, y, z) = 2y + 5 kg/m3.

 34.  Mass Find the mass of the solid region bounded by the parabolic 

surfaces z = 16 - 2x2 - 2y2 and z = 2x2 + 2y2 if the density 

of the solid is d(x, y, z) = 2x2 + y2.

Theory and Examples

the parallel Axis theorem Let Lc.m. be a line through the center of 

mass of a body of mass m and let L be a parallel line h units away 

from Lc.m.. The Parallel Axis Theorem says that the moments of iner-

tia Ic.m. and IL of the body about Lc.m. and L satisfy the equation

 IL = Ic.m. + mh2. (2)

As in the two-dimensional case, the theorem gives a quick way to cal-

culate one moment when the other moment and the mass are known.

 35.  proof of the parallel Axis theorem

a. Show that the irst moment of a body in space about any 

plane through the body’s center of mass is zero. (Hint: Place 
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the body’s center of mass at the origin and let the plane be the 

yz-plane. What does the formula x = Myz >M  then tell you?)

z

x

y
c.m.

L

D

v = xi + yj

(x, y, z)

Lc.m.

hi

v − hi

(h, 0, 0)

b. To prove the Parallel Axis Theorem, place the body with 

its center of mass at the origin, with the line Lc.m. along the 

z-axis and the line L perpendicular to the xy-plane at the point 

(h, 0, 0). Let D be the region of space occupied by the body. 

Then, in the notation of the igure,

IL = l
D

�v - h i �2 dm.

Expand the integrand in this integral and complete the proof.

 36.  The moment of inertia about a diameter of a solid sphere of constant 

density and radius a is (2>5)ma2, where m is the mass of the sphere. 

Find the moment of inertia about a line tangent to the sphere.

 37.  The moment of inertia of the solid in Exercise 21 about the z-axis 

is Iz = abc(a2 + b2)>3.

a. Use Equation (2) to ind the moment of inertia of the solid 

about the line parallel to the z-axis through the solid’s center 

of mass.

b. Use Equation (2) and the result in part (a) to ind the moment 

of inertia of the solid about the line x = 0, y = 2b.

 38.  If a = b = 6 and c = 4, the moment of inertia of the solid wedge 

in Exercise 22 about the x-axis is Ix = 208. Find the moment of 

inertia of the wedge about the line y = 4, z = -4>3 (the edge of 

the wedge’s narrow end).

Joint Probability Density Functions

For Exercises 39–42, verify that ƒ gives a joint probability density 

function. Then find the expected values mX  and mY .

 39.  ƒ(x, y) = e x + y, if 0 … x … 1 and 0 … y … 1,

0, otherwise.

 40.  ƒ(x, y) = e4xy, if 0 … x … 1 and 0 … y … 1,

0, otherwise.

 41.  ƒ(x, y) = e6x2y, if 0 … x … 1 and 0 … y … 1,

0, otherwise.

 42.  ƒ(x, y) = e 3
2 (x

2 + y2), if 0 … x … 1 and 0 … y … 1,

0, otherwise.

 43.  Suppose that ƒ is a uniform joint probability density function on 

0 … x 6 2, 0 … y 6 3. What is the formula for ƒ? What is the 

probability that X 6 Y?

 44.  The following formula deines a joint probability density func-

tion. What is the value of C? What are the expected values mX  

and mY ?

ƒ(x, y) = eCxy, if 0 … x … 2 and 0 … y … 3,

0, otherwise.

15.7 Triple Integrals in Cylindrical and Spherical Coordinates

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or 

sphere, we can often simplify our work by using cylindrical or spherical coordinates, 

which are introduced in this section. The procedure for transforming to these coordinates 

and evaluating the resulting triple integrals is similar to the transformation to polar coordi-

nates in the plane studied in Section 15.4.

Integration in Cylindrical Coordinates

We obtain cylindrical coordinates for space by combining polar coordinates in the xy-

plane with the usual z-axis. This assigns to every point in space one or more coordinate 

triples of the form (r, u, z), as shown in Figure 15.46. Here we require r Ú 0.

0

r
x

z

y

y

z

x

P(r, u, z)

u

FIGURE 15.46 The cylindrical coordi-

nates of a point in space are r, u, and z.

DEFINITION cylindrical coordinates represent a point P in space by ordered 

triples (r, u, z) in which r Ú 0,

1. r and u are polar coordinates for the vertical projection of P on the xy-plane

2. z is the rectangular vertical coordinate.

The values of x, y, r, and u in rectangular and cylindrical coordinates are related by 

the usual equations.
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In cylindrical coordinates, the equation r = a describes not just a circle in the xy-

plane but an entire cylinder about the z-axis (Figure 15.47). The z-axis is given by r = 0. 

The equation u = u0 describes the plane that contains the z-axis and makes an angle u0 

with the positive x-axis. And, just as in rectangular coordinates, the equation z = z0 

describes a plane perpendicular to the z-axis.

Cylindrical coordinates are good for describing cylinders whose axes run along the 

z-axis and planes that either contain the z-axis or lie perpendicular to the z-axis. Surfaces 

like these have equations of constant coordinate value:

 r = 4   Cylinder, radius 4, axis the z-axis

 u =
p
3

  Plane containing the z-axis

 z = 2.  Plane perpendicular to the z-axis

When computing triple integrals over a region D in cylindrical coordinates, we parti-

tion the region into n small cylindrical wedges, rather than into rectangular boxes. In the 

kth cylindrical wedge, r, u and z change by ∆rk , ∆uk , and ∆zk , and the largest of these 

numbers among all the cylindrical wedges is called the norm of the partition. We define 

the triple integral as a limit of Riemann sums using these wedges. The volume of such a 

cylindrical wedge ∆Vk is obtained by taking the area ∆Ak of its base in the ru@plane and 

multiplying by the height ∆z (Figure 15.48).

For a point (rk , uk , zk) in the center of the kth wedge, we calculated in polar coordi-

nates that ∆Ak = rk ∆rk ∆uk . So ∆Vk = ∆zk rk ∆rk ∆uk and a Riemann sum for ƒ over D 

has the form

Sn = a
n

k = 1

 ƒ(rk , uk , zk) ∆zk rk ∆rk ∆uk .

The triple integral of a function ƒ over D is obtained by taking a limit of such Riemann 

sums with partitions whose norms approach zero:

Δz

r Δu

r Δr Δu

r

z

Δr

Δu

FIGURE 15.48 In cylindrical coordi-

nates the volume of the wedge is approxi-

mated by the product ∆V = ∆z r ∆r ∆u.

Volume Differential in cylindrical 

coordinates

dV = dz r dr du

lim
nSq

 Sn = l
D

 ƒ dV = l
D

 ƒ dz r dr du.

Triple integrals in cylindrical coordinates are then evaluated as iterated integrals, as in the fol-

lowing example. Although the definition of cylindrical coordinates makes sense without any 

restrictions on u, in most situations when integrating, we will need to restrict u to an interval 

of length 2p. So we impose the requirement that a … u … b, where 0 … b - a … 2p.

EXAMPLE 1  Find the limits of integration in cylindrical coordinates for integrating 

a function ƒ(r, u, z) over the region D bounded below by the plane z = 0, laterally by the 

circular cylinder x2 + ( y - 1)2 = 1, and above by the paraboloid z = x2 + y2.

Solution The base of D is also the region’s projection R on the xy-plane. The boundary 

of R is the circle x2 + (y - 1)2 = 1. Its polar coordinate equation is

 x2 + (y - 1)2 = 1

 x2 + y2 - 2y + 1 = 1

 r2 - 2r sin u = 0

 r = 2 sin u.

Equations Relating Rectangular (x, y, z) and Cylindrical (r, U, z) Coordinates

x = r cos u,  y = r sin u,  z = z,

r2 = x2 + y2,  tan u = y>x
z

y

x

0

a

r = a,

u and z vary

z = z0,

r and u vary

u = u0,

r and z vary

z0

u0

FIGURE 15.47 Constant-coordinate 

equations in cylindrical coordinates yield 

cylinders and planes.
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The region is sketched in Figure 15.49.

We ind the limits of integration, starting with the z-limits. A line M through a typical 

point (r, u) in R parallel to the z-axis enters D at z = 0 and leaves at z = x2 + y2 = r2.

Next we ind the r-limits of integration. A ray L through (r, u) from the origin enters R 

at r = 0 and leaves at r = 2 sin u.

Finally we ind the u@limits of integration. As L sweeps across R, the angle u it makes 

with the positive x-axis runs from u = 0 to u = p. The integral is

 l
D

 ƒ(r, u, z) dV = L
p

0

 L
2 sin u

0

 L
r2

0

 ƒ(r, u, z) dz r dr du. 

Example 1 illustrates a good procedure for finding limits of integration in cylindrical 

coordinates. The procedure is summarized as follows.

How to Integrate in Cylindrical Coordinates

To evaluate

l
D

 ƒ(r, u, z) dV

over a region D in space in cylindrical coordinates, integrating first with respect to z, then 

with respect to r, and finally with respect to u, take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-

faces and curves that bound D and R.

y

x
R

r = h2(u)

D

r = h1(u)
z = g1(r, u)

z = g2(r, u)

z

2. Find the z-limits of integration. Draw a line M through a typical point (r, u) of R par-

allel to the z-axis. As z increases, M enters D at z = g1(r, u) and leaves at z = g2(r, u). 

These are the z-limits of integration.

y

z = g1(r, u)

x R

r = h2(u)

(r, u)

z = g2(r, u)

D

r = h1(u)

z

M

x

y

z

D

2

R L

Cartesian: x2 + (y − 1)2 = 1

Polar:       r = 2 sin u

(r, u)
u

Top

Cartesian:    z = x2 + y2

Cylindrical: z = r2

M

FIGURE 15.49 Finding the limits of 

integration for evaluating an integral in 

cylindrical coordinates (Example 1).
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3. Find the r-limits of integration. Draw a ray L through (r, u) from the origin. The ray 

enters R at r = h1(u) and leaves at r = h2(u). These are the r-limits of integration.

L

u = a u = b

r = h2(u)

y

z = g1(r, u)

z = g2(r, u)

x

r = h1(u)

D

z

M

(r, u)

u

a b

R

4. Find the u@limits of integration. As L sweeps across R, the angle u it makes with the 

positive x-axis runs from u = a to u = b. These are the u@limits of integration. The 

integral is

l
D

 ƒ(r, u, z) dV = L
u=b

u=a L
r = h2(u)

r = h1(u) L
z = g2(r, u)

z = g1(r, u)

 ƒ(r, u, z) dz r dr du.

EXAMPLE 2  Find the centroid (d = 1) of the solid enclosed by the cylinder 

x2 + y2 = 4, bounded above by the paraboloid z = x2 + y2, and bounded below by the 

xy-plane.

Solution We sketch the solid, bounded above by the paraboloid z = r2 and below by the 

plane z = 0 (Figure 15.50). Its base R is the disk 0 … r … 2 in the xy-plane.

The solid’s centroid (x, y, z) lies on its axis of symmetry, here the z-axis. This makes 

x = y = 0. To ind z, we divide the irst moment Mxy by the mass M.

To ind the limits of integration for the mass and moment integrals, we continue with 

the four basic steps. We completed our initial sketch. The remaining steps give the limits 

of integration.

The z-limits. A line M through a typical point (r, u) in the base parallel to the z-axis 

enters the solid at z = 0 and leaves at z = r2.

The r-limits. A ray L through (r, u) from the origin enters R at r = 0 and leaves at 

r = 2.

The u@limits. As L sweeps over the base like a clock hand, the angle u it makes with 

the positive x-axis runs from u = 0 to u = 2p. The value of Mxy is

 Mxy = L
2p

0 L
2

0

 L
r2

0

 z dz r dr du = L
2p

0 L
2

0

 c z2

2
d

0

r2

 r dr du

 = L
2p

0 L
2

0

 
r5

2
 dr du = L

2p

0

 c r6

12
d

0

2

 du = L
2p

0

 
16
3

 du =
32p

3
.

The value of M is

 M = L
2p

0 L
2

0

 L
r2

0

 dz r dr du = L
2p

0 L
2

0
 c z d

0

r2

 r dr du

 = L
2p

0 L
2

0

 r3 dr du = L
2p

0

 c r4

4
d

0

2

 du = L
2p

0

4 du = 8p.

z

M4

L

x y

x2 + y2 = 4

r = 2

z = x2 + y2

  = r2

u

(r, u)

FIGURE 15.50 Example 2 shows how to 

find the centroid of this solid.
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Therefore,

z =
Mxy

M
=

32p
3

 
1

8p
=

4
3

,

and the centroid is (0, 0, 4 >3). Notice that the centroid lies on the z-axis, outside the solid.

 

Spherical Coordinates and Integration

Spherical coordinates locate points in space with two angles and one distance, as shown in 

Figure 15.51. The first coordinate, r = � rOP � , is the point’s distance from the origin and 

is never negative. The second coordinate, f, is the angle 
r
OP makes with the positive 

z-axis. It is required to lie in the interval 30, p4 . The third coordinate is the angle u as 

measured in cylindrical coordinates.

DEFINITION spherical coordinates represent a point P in space by ordered 

triples (r, f, u) in which

1. r is the distance from P to the origin (r Ú 0).

2. f is the angle 
r
OP makes with the positive z-axis (0 … f … p).

3. u is the angle from cylindrical coordinates.

On maps of the earth, u is related to the meridian of a point on the earth and f to its 

latitude, while r is related to elevation above the earth’s surface.

The equation r = a describes the sphere of radius a centered at the origin  

(Figure 15.52). The equation f = f0 describes a single cone whose vertex lies at the 

 origin and whose axis lies along the z-axis. (We broaden our interpretation to include the 

xy-plane as the cone f = p>2.) If f0 is greater than p>2, the cone f = f0 opens down-

ward. The equation u = u0 describes the half-plane that contains the z-axis and makes an 

angle u0 with the positive x-axis.

Equations Relating Spherical Coordinates to Cartesian  

and Cylindrical Coordinates

 r = r sin f,    x = r cos u = r sin f cos u,

  z = r cos f,   y = r sin u = r sin f sin u,  (1)

 r = 2x2 + y2 + z2 = 2r2 + z2.

EXAMPLE 3  Find a spherical coordinate equation for the sphere x2 + y2 +  

(z - 1)2 = 1.

Solution We use Equations (1) to substitute for x, y, and z:

 x2 + y2 + (z - 1)2 = 1

 r2 sin2 f cos2 u + r2 sin2 f sin2 u + (r cos f - 1)2 = 1 Eqs. (1)

 r2 sin2 f  (cos2 u + sin2 u) + r2 cos2 f - 2r cos f + 1 = 1
 (+++)+++*
 1

 r2(sin2 f + cos2 f) = 2r cos f
 (+++)+++*
 1

 r2 = 2r cos f

 r = 2 cos f.   r 7 0

r = a, 

f and u vary
u = u0, 

r and f vary

x

y

P(a, f0, u0)

f0

z

f = f0, 

r and u vary

u0

FIGURE 15.52 Constant-coordinate 

equations in spherical coordinates yield 

spheres, single cones, and half-planes.

f is the Greek letter phi, pronounced 

“fee.”

y

z

0

r

x

x

y

P(r, f, u)

z = r cos f

f

u

r

FIGURE 15.51 The spherical coordi-

nates r, f, and u and their relation to x, y, 

z, and r.
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The angle f varies from 0 at the north pole of the sphere to p>2 at the south pole; the 

angle u does not appear in the expression for r, reflecting the symmetry about the z-axis 

(see Figure 15.53). 

EXAMPLE 4  Find a spherical coordinate equation for the cone z = 2x2 + y2.

Solution 1 Use geometry. The cone is symmetric with respect to the z-axis and cuts the 

first quadrant of the yz-plane along the line z = y. The angle between the cone and the 

positive z-axis is therefore p>4 radians. The cone consists of the points whose spherical 

coordinates have f equal to p>4, so its equation is f = p>4. (See Figure 15.54.)

Solution 2 Use algebra. If we use Equations (1) to substitute for x, y, and z we obtain 

the same result:

 z = 2x2 + y2

 r cos f = 2r2 sin2 f  Example 3

 r cos f = r sin f   r 7 0, sin f Ú 0

 cos f = sin f

 f =
p
4

.   0 … f … p 

Spherical coordinates are useful for describing spheres centered at the origin, half-

planes hinged along the z-axis, and cones whose vertices lie at the origin and whose axes 

lie along the z-axis. Surfaces like these have equations of constant coordinate value:

 r = 4   Sphere, radius 4, center at origin

 f =
p
3

  Cone opening up from the origin, making an 

angle of p>3 radians with the positive z-axis

 u =
p
3

.  Half-plane, hinged along the z-axis, making an 

angle of p>3 radians with the positive x-axis

When computing triple integrals over a region D in spherical coordinates, we partition 

the region into n spherical wedges. The size of the kth spherical wedge, which contains a 

point (rk , fk , uk), is given by the changes ∆rk , ∆fk , and ∆uk in r, f, and u. Such a 

spherical wedge has one edge a circular arc of length rk ∆fk , another edge a circular arc 

of length rk sin fk ∆uk, and thickness ∆rk . The spherical wedge closely approximates a 

cube of these dimensions when ∆rk , ∆fk , and ∆uk are all small (Figure 15.55). It can be 

shown that the volume of this spherical wedge ∆Vk is ∆Vk = rk 2 sin fk ∆rk ∆fk ∆uk for 

(rk , fk , uk), a point chosen inside the wedge.

The corresponding Riemann sum for a function ƒ(r, f, u) is

Sn = a
n

k = 1

 ƒ(rk , fk , uk) rk
2 sin fk ∆rk ∆fk ∆uk .

As the norm of a partition approaches zero, and the spherical wedges get smaller, the 

 Riemann sums have a limit when ƒ is continuous:

y

x

z

2

1

r

f

x2 + y2 + (z − 1)2 = 1

r = 2 cos f

FIGURE 15.53 The sphere in  

Example 3.

y

z

x

p
4

f =

p
4

f =

z = "x2 + y2 

FIGURE 15.54 The cone in Example 4.

O

r

f

r sin f

r sin f Δu

Δr

u

u + Δu

rΔf

y

z

x

FIGURE 15.55 In spherical coordinates 

we use the volume of a spherical wedge, 

which closely approximates that of a cube. lim
nSq

 Sn = l
D

 ƒ(r, f, u) dV = l
D

 ƒ(r, f, u) r2 sin f dr df du.

To evaluate integrals in spherical coordinates, we usually integrate first with respect 

to r. The procedure for finding the limits of integration is as follows. We restrict our 

Volume Differential in spherical 

coordinates

dV = r2 sin f dr df du
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 attention to integrating over domains that are solids of revolution about the z-axis (or por-

tions thereof) and for which the limits for u and f are constant. As with cylindrical coordi-

nates, we restrict u in the form a … u … b and 0 … b - a … 2p.

How to Integrate in Spherical Coordinates

To evaluate

l
D

 ƒ(r, f, u) dV

over a region D in space in spherical coordinates, integrating first with respect to r, then 

with respect to f, and finally with respect to u, take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the 

 surfaces that bound D.

x

yR

r = g1(f, u)

D

z

r = g2(f, u)

    
x

y

z

R

D

L

M

r = g2(f, u)

r = g1(f, u)

u = a
u = b

fmax

fmin
f

u

2. Find the r@limits of integration. Draw a ray M from the origin through D, making an 

angle f with the positive z-axis. Also draw the projection of M on the xy-plane (call the 

projection L). The ray L makes an angle u with the positive x-axis. As r increases, M 

enters D at r = g1(f, u) and leaves at r = g2(f, u). These are the r@limits of integra-

tion shown in the above figure.

3. Find the f@limits of integration. For any given u, the angle f that M makes with the 

z-axis runs from f = fmin to f = fmax. These are the f @limits of integration.

4. Find the u@limits of integration. The ray L sweeps over R as u runs from a to b. These 

are the u@limits of integration. The integral is

l
D

 ƒ(r, f, u) dV = L
u=b

u=a L
f=fmax

f=fmin L
r= g2(f, u)

r= g1(f, u)

 ƒ(r, f, u) r2 sin f dr df du.

EXAMPLE 5  Find the volume of the “ice cream cone” D cut from the solid sphere 

r … 1 by the cone f = p>3.

Solution The volume is V = 7D r
2 sin f dr df du, the integral of ƒ(r, f, u) = 1 

over D.

To ind the limits of integration for evaluating the integral, we begin by sketching D 

and its projection R on the xy-plane (Figure 15.56).

x y

z

R

L

M

D

u

f
Sphere r = 1

Cone f =
p
3

FIGURE 15.56 The ice cream cone in 

Example 5.
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The r@limits of integration. We draw a ray M from the origin through D, making an angle 

f with the positive z-axis. We also draw L, the projection of M on the xy-plane, along with the 

angle u that L makes with the positive x-axis. Ray M enters D at r = 0 and leaves at r = 1.

The f@limits of integration. The cone f = p>3 makes an angle of p>3 with the posi-

tive z-axis. For any given u, the angle f can run from f = 0 to f = p>3.

The u@limits of integration. The ray L sweeps over R as u runs from 0 to 2p. The 

volume is

 V = l
D

r2 sin f dr df du = L
2p

0 L
p>3

0 L
1

0

r2 sin f dr df du

 = L
2p

0 L
p>3

0

 cr3

3
d

0

1

 sin f df du = L
2p

0 L
p>3

0

 
1
3

 sin f df du

  = L
2p

0

 c-  
1
3

 cos f d
0

p>3
 du = L

2p

0

 a-  
1
6

+
1
3
b  du =

1
6

 (2p) =
p
3

. 

EXAMPLE 6  A solid of constant density d = 1 occupies the region D in Example 5. 

Find the solid’s moment of inertia about the z-axis.

Solution In rectangular coordinates, the moment is

Iz = l
D

 (x2 + y2) dV.

In spherical coordinates, x2 + y2 = (r sin f cos u)2 + (r sin f sin u)2 = r2 sin2 f. 

Hence,

Iz = l
D

 (r2 sin2 f) r2 sin f dr df du = l
D

 r4 sin3 f dr df du.

For the region D in Example 5, this becomes

 Iz = L
2p

0 L
p>3

0 L
1

0

r4 sin3 f dr df du = L
2p

0 L
p>3

0

 cr5

5
d

0

1

  sin3 f df du

 =
1
5

   L
2p

0 L
p>3

0

(1 - cos2 f) sin f df du =
1
5

   L
2p

0

 c-cos f +
cos3 f

3
d

0

p>3
 du

  =
1
5

   L
2p

0

 a-  
1
2

+ 1 +
1
24

-
1
3
b  du =

1
5

   L
2p

0

 
5
24

  du =
1
24

 (2p) =
p
12

.  

Coordinate Conversion Formulas

Cylindrical to  

Rectangular

Spherical to  

Rectangular

Spherical to  

Cylindrical

x = r cos u x = r sin f cos u r = r sin f

y = r sin u y = r sin f sin u z = r cos f

z = z z = r cos f u = u

Corresponding formulas for dV in triple integrals:

dV = dx dy dz

= dz r dr du

= r2 sin f dr df du
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Evaluating Integrals in Cylindrical Coordinates

Evaluate the cylindrical coordinate integrals in Exercises 23–28.

 23.   L
2p

0 L
1

0 L
22 - r2

r

 dz r dr du  24.   L
2p

0 L
3

0 L
218 - r2

r2>3  dz r dr du

 25.   L
2p

0 L
u>2p

0 L
3 + 24r2

0

 dz r dr du  26.   L
p

0 L
u>p

0 L
324 - r2

-24 - r2

 z dz r dr du

 27.   L
2p

0 L
1

0 L
1>22 - r2

r

3 dz r dr du

 28.   L
2p

0

 L
1

0

 L
1>2

-1>2(r2 sin2 u + z2) dz r dr du

In the next section we offer a more general procedure for determining dV in cylindri-

cal and spherical coordinates. The results, of course, will be the same.

In Exercises 1–12, sketch the graph described by the following cylin-

drical coordinates in three-dimensional space.

 1.  r = 2 2.  u =
p

4

 3.  z = -1 4.  z = r

 5.  r = u 6.  z = r sin u

 7.  r2 + z2 = 4 8.  1 … r … 2, 0 … u …
p

3

 9.  r … z … 29 - r2

 10.  0 … r … 2 sin u, 1 … z … 3

 11.  0 … r … 4 cos u, 0 … u …
p

2
, 0 … z … 5

 12.  0 … r … 3, 
-p

2
… u …

p

2
, 0 … z … r cos u

 29.   L
2p

0 L
3

0 L
z>3

0

 r3 dr dz du  30.   L
1

-1

  L
2p

0 L
1 + cos u

0

4r dr du dz

 31.   L
1

0 L
2z

0 L
2p

0

(r2 cos2 u + z2)  r du dr dz

 32.   L
2

0 L
24 - r2

r - 2 L
2p

0

(r sin u + 1) r du dz dr

 33.  Let D be the region bounded below by the plane z = 0, above 

by the sphere x2 + y2 + z2 = 4, and on the sides by the  

cylinder x2 + y2 = 1. Set up the triple integrals in cylindrical  

coordinates that give the volume of D using the following orders 

of  integration.

a. dz dr du b. dr dz du c. du dz dr

 34.  Let D be the region bounded below by the cone z = 2x2 + y2 

and above by the paraboloid z = 2 - x2 - y2. Set up the triple 

integrals in cylindrical coordinates that give the volume of D using 

the following orders of integration.

a. dz dr du b. dr dz du c. du dz dr

Finding Iterated Integrals in Cylindrical Coordinates

 35.  Give the limits of integration for evaluating the integral

l ƒ(r, u, z) dz r dr du

  as an iterated integral over the region that is bounded below by the 

plane z = 0, on the side by the cylinder r = cos u, and on top by 

the paraboloid z = 3r2.

 36.  Convert the integral

 L
1

-1

   L
21 - y2

0

 L
x

0

(x2 + y2) dz dx dy

  to an equivalent integral in cylindrical coordinates and evaluate 

the result.

In Exercises 37–42, set up the iterated integral for evaluating 

7D
  ƒ(r, u, z) dz r dr du over the given region D.

 37.  D is the right circular cylinder whose base is the circle r = 2 sin u 

in the xy-plane and whose top lies in the plane z = 4 - y.

z

y

x r = 2 sin u

z = 4 − y

EXERCISES 15.7

In Exercises 13–22, sketch the graph described by the following 

spherical coordinates in three-dimensional space.

 13.  r = 3 14. f =
p

6

 15.  u =
2
3

 p 16. r =  csc f

 17.  r cos f = 4

18.  1 … r … 2 sec f, 0 … f …
p

4

 19.  0 … r … 3 csc f

 20.  0 … r … 1, 
p

2
… f … p, 0 … u … p

 21.  0 … r cos u sin f … 2, 0 … r sin u sin f … 3, 

0 … r cos f … 4

 22. 4 sec f … r … 5

Changing the Order of Integration in Cylindrical Coordinates

The integrals we have seen so far suggest that there are preferred 

orders of integration for cylindrical coordinates, but other orders usu-

ally work well and are occasionally easier to evaluate. Evaluate the 

integrals in Exercises 29–32.
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 42.  D is the prism whose base is the triangle in the xy-plane bounded 

by the y-axis and the lines y = x and y = 1 and whose top lies in 

the plane z = 2 - x.

y

z

x

2

1

y = x

z = 2 − x

Evaluating Integrals in Spherical Coordinates

Evaluate the spherical coordinate integrals in Exercises 43–48.

 43.   L
p

0 L
p

0 L
2 sin f

0

r2 sin f dr df du

 44.   L
2p

0 L
p>4

0 L
2

0

(r cos f) r2 sin f dr df du

 45.   L
2p

0 L
p

0 L
(1 - cos f)>2

0

r2 sin f dr df du

 46.   L
3p>2

0 L
p

0 L
1

0

5r3 sin3 f dr df du

 47.   L
2p

0 L
p>3

0 L
2

sec f

3r2 sin f dr df du

 48.   L
2p

0 L
p>4

0 L
sec f

0

(r cos f) r2 sin f dr df du

Changing the Order of Integration in Spherical Coordinates

The previous integrals suggest there are preferred orders of integra-

tion for spherical coordinates, but other orders give the same value 

and are occasionally easier to evaluate. Evaluate the integrals in 

 Exercises 49–52.

 49.   L
2

0 L
0

-p

   L
p>2

p>4 r3 sin 2f df du dr

 50.   L
p>3

p>6 L
2 csc f

csc f L
2p

0

r2 sin f du dr df

 51.   L
1

0 L
p

0 L
p>4

0

12r sin3 f df du dr

 52.   L
p>2

p>6 L
p/2

-p/2 

  L
2

csc f

5r4 sin3 f dr du df

 53.  Let D be the region in Exercise 33. Set up the triple integrals in 

spherical coordinates that give the volume of D using the follow-

ing orders of integration.

a. dr df du b. df dr du

 38.  D is the right circular cylinder whose base is the circle r = 3 cos u 

and whose top lies in the plane z = 5 - x.

x

r = 3 cos u

y

z = 5 − x

z

 39.  D is the solid right cylinder whose base is the region in the  

xy-plane that lies inside the cardioid r = 1 + cos u and outside 

the circle r = 1 and whose top lies in the plane z = 4.

z

y

x

4

r = 1 + cos u

r = 1

 40.  D is the solid right cylinder whose base is the region between the 

circles r = cos u and r = 2 cos u and whose top lies in the plane 

z = 3 - y.

z

y

x

r = 2 cos u

r = cos u

z = 3 − y

 41.  D is the prism whose base is the triangle in the xy-plane bounded 

by the x-axis and the lines y = x and x = 1 and whose top lies in 

the plane z = 2 - y.

y

z

x

2

1

y = x

z = 2 − y
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Finding Triple Integrals

 61.  Set up triple integrals for the volume of the sphere r = 2 in  

(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

 62.  Let D be the region in the irst octant that is bounded below by 

the cone f = p>4 and above by the sphere r = 3. Express the 

volume of D as an iterated triple integral in (a) cylindrical and  

(b) spherical coordinates. Then (c) ind V.

 63.  Let D be the smaller cap cut from a solid ball of radius 2 units by 

a plane 1 unit from the center of the sphere. Express the volume of 

D as an iterated triple integral in (a) spherical, (b) cylindrical, and 

(c) rectangular coordinates. Then (d) ind the volume by evaluat-

ing one of the three triple integrals.

 64.  Express the moment of inertia Iz of the solid hemisphere 

x2 + y2 + z2 … 1, z Ú 0, as an iterated integral in (a) cylindri-

cal and (b) spherical coordinates. Then (c) ind Iz .

Volumes

Find the volumes of the solids in Exercises 65–70.

 65.   66. 

z

yx

z = 4 − 4 (x2 + y2)

z = (x2 + y2)2 −1

 z

yx
1

–1

1

z = 1 − r

z = −"1 − r2

–1

 67.   68. 

z

y

x

r = 3 cos u

z = −y
 z

y
x

z = "x2
 + y2

r = −3 cos u

 69.   70. 

z

y

x

z = "1 − x2
 − y2

r = sin u

 

r = cos u

z = 3"1 − x2 − y2

yx

z

 71.  Sphere and cones Find the volume of the portion of the sol-

id sphere r … a that lies between the cones f = p>3 and 

f = 2p>3.

 72.  Sphere and half-planes Find the volume of the region cut from 

the solid sphere r … a by the half-planes u = 0 and u = p>6 in 

the irst octant.

 54.  Let D be the region bounded below by the cone z = 2x2 + y2 

and above by the plane z = 1. Set up the triple integrals in spheri-

cal coordinates that give the volume of D using the following or-

ders of integration.

a. dr df du b. df dr du

Finding Iterated Integrals in Spherical Coordinates

In Exercises 55–60, (a) find the spherical coordinate limits for the 

integral that calculates the volume of the given solid and then  

(b) evaluate the integral.

 55.  The solid between the sphere r = cos f and the hemisphere 

r = 2, z Ú 0

yx 2 2

2 r = 2r = cos f

z

 56.  The solid bounded below by the hemisphere r = 1, z Ú 0, and 

above by the cardioid of revolution r = 1 + cos f

yx

r = 1
r = 1 + cos f

z

 57.  The solid enclosed by the cardioid of revolution r = 1 - cos f

 58.  The upper portion cut from the solid in Exercise 57 by the  

xy-plane

 59.  The solid bounded below by the sphere r = 2 cos f and above by 

the cone z = 2x2 + y2

yx

r = 2 cos f

z = "x2 + y2z

 60.  The solid bounded below by the xy-plane, on the sides by the 

sphere r = 2, and above by the cone f = p>3

yx

f =
p
3

r = 2

z
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 92.  Centroid Find the centroid of the solid bounded above by the 

sphere r = a and below by the cone f = p>4.

 93.  Centroid Find the centroid of the region that is bounded above 

by the surface z = 2r, on the sides by the cylinder r = 4, and 

below by the xy-plane.

 94.  Centroid Find the centroid of the region cut from the solid 

ball r2 + z2 … 1 by the half-planes u = -p>3, r Ú 0, and 

u = p>3, r Ú 0.

 95.  Moment of inertia of solid cone Find the moment of inertia of 

a right circular cone of base radius 1 and height 1 about an axis 

through the vertex parallel to the base. (Take d = 1.)

 96.  Moment of inertia of solid sphere Find the moment of inertia 

of a solid sphere of radius a about a diameter. (Take d = 1.)

 97.  Moment of inertia of solid cone Find the moment of inertia of 

a right circular cone of base radius a and height h about its axis. 

(Hint: Place the cone with its vertex at the origin and its axis 

along the z-axis.)

 98.  Variable density A solid is bounded on the top by the parabo-

loid z = r2, on the bottom by the plane z = 0, and on the sides 

by the cylinder r = 1. Find the center of mass and the moment 

of inertia about the z-axis if the density is

a. d(r, u, z) = z

b. d(r, u, z) = r.

 99.  Variable density A solid is bounded below by the cone 

z = 2x2 + y2 and above by the plane z = 1. Find the center of 

mass and the moment of inertia about the z-axis if the density is

a. d(r, u, z) = z

b. d(r, u, z) = z2.

 100. Variable density A solid ball is bounded by the sphere r = a. 

Find the moment of inertia about the z-axis if the density is

a. d(r, f, u) = r2

b. d(r, f, u) = r = r sin f.

 101. Centroid of solid semiellipsoid Show that the centroid of the 

solid semiellipsoid of revolution (r2>a2) + (z2>h2) … 1, z Ú 0, 

lies on the z-axis three-eighths of the way from the base to the 

top. The special case h = a gives a solid hemisphere. Thus, the 

centroid of a solid hemisphere lies on the axis of symmetry three-

eighths of the way from the base to the top.

 102. Centroid of solid cone Show that the centroid of a solid right 

circular cone is one-fourth of the way from the base to the vertex. 

(In general, the centroid of a solid cone or pyramid is one-fourth 

of the way from the centroid of the base to the vertex.)

 103. Density of center of a planet A planet is in the shape of a 

sphere of radius R and total mass M with spherically symmetric 

density distribution that increases linearly as one approaches its 

center. What is the density at the center of this planet if the den-

sity at its edge (surface) is taken to be zero?

 104. Mass of planet’s atmosphere A spherical planet of radius R 

has an atmosphere whose density is m = m0   e
-ch, where h is the 

altitude above the surface of the planet, m0 is the density at sea 

level, and c is a positive constant. Find the mass of the planet’s 

atmosphere.

 73.  Sphere and plane Find the volume of the smaller region cut 

from the solid sphere r … 2 by the plane z = 1.

 74.  Cone and planes Find the volume of the solid enclosed by the 

cone z = 2x2 + y2 between the planes z = 1 and z = 2.

 75.  Cylinder and paraboloid Find the volume of the region 

bounded below by the plane z = 0, laterally by the cylinder 

x2 + y2 = 1, and above by the paraboloid z = x2 + y2.

 76.  Cylinder and paraboloids Find the volume of the region bound-

ed below by the paraboloid z = x2 + y2, laterally by the cylinder 

x2 + y2 = 1, and above by the paraboloid z =  x2 + y2 + 1.

 77.  Cylinder and cones Find the volume of the solid cut from 

the thick-walled cylinder 1 … x2 + y2 … 2 by the cones z =  

{2x2 + y2.

 78.  Sphere and cylinder Find the volume of the region that lies 

inside the sphere x2 + y2 + z2 = 2 and outside the cylinder 

x2 + y2 = 1.

 79.  Cylinder and planes Find the volume of the region enclosed by 

the cylinder x2 + y2 = 4 and the planes z = 0 and y + z = 4.

 80.  Cylinder and planes Find the volume of the region en-

closed by the cylinder x2 + y2 = 4 and the planes z = 0 and 

x + y + z = 4.

 81.  Region trapped by paraboloids Find the volume of the region 

bounded above by the paraboloid z = 5 - x2 - y2 and below by 

the paraboloid z = 4x2 + 4y2.

 82.  Paraboloid and cylinder Find the volume of the region bound-

ed above by the paraboloid z = 9 - x2 - y2, below by the xy-

plane, and lying outside the cylinder x2 + y2 = 1.

 83.  Cylinder and sphere Find the volume of the region cut from 

the solid cylinder x2 + y2 … 1 by the sphere x2 + y2 + z2 = 4.

 84.  Sphere and paraboloid Find the volume of the region bounded 

above by the sphere x2 + y2 + z2 = 2 and below by the parabo-

loid z = x2 + y2.

Average Values

 85.  Find the average value of the function ƒ(r, u, z) = r over the re-

gion bounded by the cylinder r = 1 between the planes z = -1 

and z = 1.

 86.  Find the average value of the function ƒ(r, u, z) = r over the sol-

id ball bounded by the sphere r2 + z2 = 1. (This is the sphere 

x2 + y2 + z2 = 1.)

 87.  Find the average value of the function ƒ(r, f, u) = r over the 

solid ball r … 1.

 88.  Find the average value of the function ƒ(r, f, u) = r cos f over 

the solid upper ball r … 1, 0 … f … p>2.

Masses, Moments, and Centroids

 89.  Center of mass A solid of constant density is bounded below by 

the plane z = 0, above by the cone z = r, r Ú 0, and on the sides 

by the cylinder r = 1. Find the center of mass.

 90.  Centroid Find the centroid of the region in the irst octant that 

  is bounded above by the cone z = 2x2 + y2, below by the plane 

z = 0, and on the sides by the cylinder x2 + y2 = 4 and the 

planes x = 0 and y = 0.

 91.  Centroid Find the centroid of the solid in Exercise 60.
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Theory and Examples

 105. Vertical planes in cylindrical coordinates

a. Show that planes perpendicular to the x-axis have equations 

of the form r = a sec u in cylindrical coordinates.

b. Show that planes perpendicular to the y-axis have equations 

of the form r = b csc u.

 106. (Continuation of Exercise 105.) Find an equation of the form 

r = ƒ(u) in cylindrical coordinates for the plane ax + by = c, 

c ≠ 0.

 107. Symmetry What symmetry will you ind in a surface that has 

an equation of the form r = ƒ(z) in cylindrical coordinates? Give 

reasons for your answer.

 108. Symmetry What symmetry will you ind in a surface that has 

an equation of the form r = ƒ(f) in spherical coordinates? Give 

reasons for your answer.

15.8 Substitutions in Multiple Integrals

This section introduces the ideas involved in coordinate transformations to evaluate 

multiple integrals by substitution. The method replaces complicated integrals by ones 

that are easier to evaluate. Substitutions accomplish this by simplifying the integrand, the 

limits of integration, or both. A thorough discussion of multivariable transformations 

and substitutions is best left to a more advanced course, but our introduction here 

shows how the substitutions just studied reflect the general idea derived for single inte-

gral calculus.

Substitutions in Double Integrals

The polar coordinate substitution of Section 15.4 is a special case of a more general substi-

tution method for double integrals, a method that pictures changes in variables as transfor-

mations of regions.

Suppose that a region G in the uy-plane is transformed into the region R in the xy-

plane by equations of the form

x = g(u, y),  y = h(u, y),

as suggested in Figure 15.57. We assume the transformation is one-to-one on the interior 

of G. We call R the image of G under the transformation, and G the preimage of R. Any 

function ƒ(x, y) defined on R can be thought of as a function ƒ(g(u, y), h(u, y)) defined on 

G as well. How is the integral of ƒ(x, y) over R related to the integral of ƒ(g(u, y), h(u, y)) 

over G?

To gain some insight into the question, we look again at the single variable case. To be 

consistent with how we are using them now, we interchange the variables x and u used in 

the substitution method for single integrals in Chapter 5, so the equation is

 L
g(b)

g(a)

ƒ(x) dx = L
b

a

 ƒ(g(u)) g′(u) du.  x = g(u), dx = g′(u) du

To propose an analogue for substitution in a double integral 4R ƒ(x, y) dx dy, we need a 

derivative factor like g′(u) as a multiplier that transforms the area element du dy in the 

region G to its corresponding area element dx dy in the region R. We denote this factor 

by J. In continuing with our analogy, it is reasonable to assume that J is a function of 

both variables u and y, just as g′ is a function of the single variable u. Moreover, J 

should register instantaneous change, so partial derivatives are going to be involved in 

its expression. Since four partial derivatives are associated with the transforming equa-

tions x = g(u, y) and y = h(u, y), it is also reasonable to assume that the factor J(u, y) 

we seek includes them all. These features are captured in the following definition con-

structed from the partial derivatives, and named after the German mathematician Carl 

Jacobi.

y

u
0

0

y

x

G

R

(u, y)

(x, y)

Cartesian uy-plane

x = g(u, y)

y = h(u, y)

Cartesian xy-plane

FIGURE 15.57 The equations 

x = g(u, y) and y = h(u, y) allow us to 

change an integral over a region R in the 

xy-plane into an integral over a region G in 

the uy-plane.

HISTORICAL BIOGRAPHY

Carl Gustav Jacob Jacobi

(1804–1851)

www.goo.gl/nNwiuG

http://www.goo.gl/nNwiuG
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The Jacobian can also be denoted by

J(u, y) =
0(x, y)

0(u, y)

to help us remember how the determinant in Equation (1) is constructed from the partial 

derivatives of x and y. The array of partial derivatives in Equation (1) behaves just like the 

derivative g′ in the single variable situation. The Jacobian measures how much the trans-

formation is expanding or contracting the area around the point (u, y). Effectively, the 

factor � J �  converts the area of the differential rectangle du dy in G to match with its cor-

responding differential area dx dy in R. We note that, in general, the value of the scaling 

factor � J �  depends on the point (u, y) in G; that is, the scaling changes as the point (u, y) 

varies through the region G. Our examples to follow will show how it scales the differen-

tial area du dy for specific transformations.

Now we can answer our original question concerning the relationship of the integral 

of ƒ(x, y) over the region R to the integral of ƒ(g(u, y), h(u, y)) over G.

DEFINITION The Jacobian determinant or Jacobian of the coordinate trans-

formation x = g(u, y), y = h(u, y) is

 J(u, y) = 4 0x
0u

0x
0y

0y

0u

0y

0y

4 =
0x
0u

 
0y

0y -
0y

0u
 
0x
0y . (1)

Differential Area Change Substituting 

x = g(u, Y), y = h(u, Y)

dx dy = ` 0(x, y)

0(u, y)
`  du dy

THEOREM 3—Substitution for Double Integrals

Suppose that ƒ(x, y) is continuous over the region R. Let G be the preimage of R 

under the transformation x = g(u, y), y = h(u, y), which is assumed to be one-

to-one on the interior of G. If the functions g and h have continuous irst partial 

derivatives within the interior of G, then

 O
 R  

ƒ(x, y) dx dy = O
 G  

ƒ(g(u, y), h(u, y)) ` 0(x, y)

0(u, y)
`  du dy. (2)

The derivation of Equation (2) is intricate and properly belongs to a course in advanced 

calculus, so we do not derive it here. We now present examples illustrating the substitution 

method defined by the equation.

EXAMPLE 1  Find the Jacobian for the polar coordinate transformation x = r cos u, 

y = r sin u, and use Equation (2) to write the Cartesian integral 4R ƒ(x, y) dx dy as a 

polar integral.

Solution Figure 15.58 shows how the equations x = r cos u, y = r sin u transform the 

rectangle G: 0 … r … 1, 0 … u … p>2, into the quarter circle R bounded by x2 + y2 = 1 

in the first quadrant of the xy-plane.

r
0

0

1

y

x
1

1

R

G

R

Cartesian ru-plane

p
2

p
2

x = r cos u

y = r sin u

u =

u = 0

Cartesian xy-plane

u

FIGURE 15.58 The equations x =  

r cos u, y = r sin u transform G into 

R. The Jacobian factor r, calculated in 

Example 1, scales the differential rectangle 

dr du in G to match with the differential 

area element dx dy in R.
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For polar coordinates, we have r and u in place of u and y. With x = r cos u and 

y = r sin u, the Jacobian is

J(r, u) = 4 0x
0r

0x
0u

0y

0r

0y

0u

4 = ` cos u -r sin u

sin u r cos u
` = r(cos2 u + sin2 u) = r.

Since we assume r Ú 0 when integrating in polar coordinates, � J(r, u) � = � r � = r, so 

that Equation (2) gives

 O
R

 ƒ(x, y) dx dy = O
G

 ƒ(r cos u, r sin u) r dr du.  (3)

This is the same formula we derived independently using a geometric argument for polar 

area in Section 15.4. 

Here is an example of a substitution in which the image of a rectangle under the coor-

dinate transformation is a trapezoid. Transformations like this one are called linear trans-

formations and their Jacobians are constant throughout G.

EXAMPLE 2  Evaluate

 L
4

0

 L
x = (y>2)+ 1

x = y>2   
2x - y

2
 dx dy

by applying the transformation

 u =
2x - y

2
,  y =

y

2
 (4)

and integrating over an appropriate region in the uy-plane.

Solution We sketch the region R of integration in the xy-plane and identify its boundar-

ies (Figure 15.59).

y

u
0

y

x
01

2

G

1

4

R

y = 0

y = 2

u = 1u = 0

x = u + y

y = 2y

y = 0

y = 2x − 2

y = 4

y = 2x

FIGURE 15.59 The equations x = u + y and y = 2y transform G 

into R. Reversing the transformation by the equations u = (2x - y)>2 

and y = y>2 transforms R into G (Example 2).

To apply Equation (2), we need to ind the corresponding uy-region G and the  Jacobian 

of the transformation. To ind them, we irst solve Equations (4) for x and y in terms of u 

and y. From those equations it is easy to ind algebraically that

 x = u + y,  y = 2y. (5)
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We then find the boundaries of G by substituting these expressions into the equations for 

the boundaries of R (Figure 15.59)

 xy-equations for  

the boundary of R

Corresponding uY-equations  

 for the boundary of G

 Simpliied  

uY-equations

x = y>2  u + y = 2y>2 = y  u = 0

x = ( y>2) + 1 u + y = (2y>2) + 1 = y + 1  u = 1

y = 0  2y = 0  y = 0

y = 4  2y = 4  y = 2

From Equations (5) the Jacobian of the transformation is

J(u, y) = 4 0x
0u

0x
0y

0y

0u

0y

0y

4 = 4 0
0u

 (u + y)
0

0y (u + y)

0
0u

 (2y)
0

0y (2y)

4 = ` 1 1

0 2
` = 2.

We now have everything we need to apply Equation (2):

  L
4

0

 L
x = (y>2)+ 1

x = y>2   
2x - y

2
 dx dy = L

y= 2

y= 0

 L
u = 1

u = 0

 u 0 J(u, y) 0  du dy

  = L
2

0

 L
1

0

(u)(2) du dy = L
2

0

 c u2 d
0

1

 dy = L
2

0

 dy = 2. 

y

u
0

y

x
0 1

1

R

1

1G

y = −2u

y = u

u = 1

−2

x + y = 1
x = 0

y = 0

u

3
y
3

x = −

2u

3
y
3

y = +

FIGURE 15.60 The equations x =  

(u>3) - (y>3) and y = (2u>3) + (y>3) 

transform G into R. Reversing the  

transformation by the equations u = x + y 

and y = y - 2x transforms R into G 

(Example 3).

EXAMPLE 3  Evaluate

 L
1

0

 L
1 - x

0

2x + y ( y - 2x)2 dy dx.

Solution We sketch the region R of integration in the xy-plane and identify its boundar-

ies (Figure 15.60). The integrand suggests the transformation u = x + y and y = y - 2x. 

Routine algebra produces x and y as functions of u and y:

 x =
u

3
-

y
3

,  y =
2u

3
+

y
3

. (6)

From Equations (6), we can find the boundaries of the uy-region G (Figure 15.60).

 xy-equations for  

the boundary of R

Corresponding uY-equations  

 for the boundary of G

Simpliied  

uY-equations

 x + y = 1  au
3

-
y
3
b + a2u

3
+

y
3
b = 1  u = 1

 x = 0  
u

3
-

y
3

= 0  y = u

 y = 0  
2u

3
+

y
3

= 0  y = -2u
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The Jacobian of the transformation in Equations (6) is

J(u, y) = 4 0x
0u

0x
0y

0y

0u

0y

0y

4 = 4 13 -  
1
3

2
3

1
3

4 =
1
3

.

Applying Equation (2), we evaluate the integral:

  L
1

0

 L
1 - x

0

2x + y (y - 2x)2 dy dx = L
u = 1

u = 0 L
y= u

y= -2u

 u1>2 y2 0 J(u, y) 0  dy du

 = L
1

0 L
u

-2u

 u1>2 y2 a1
3
b  dy du =

1
3

  L
1

0

 u1>2 c 1
3

 y3 d
y= -2u

y= u

 du

  =
1
9

  L
1

0

 u1>2(u3 + 8u3) du = L
1

0

 u7>2 du =
2
9

 u9>2 d
0

1

=
2
9

.  

In the next example we illustrate a nonlinear transformation of coordinates resulting 

from simplifying the form of the integrand. Like the polar coordinates’ transformation, 

nonlinear transformations can map a straight-line boundary of a region into a curved 

boundary (or vice versa with the inverse transformation). In general, nonlinear transforma-

tions are more complex to analyze than linear ones, and a complete treatment is left to a 

more advanced course.

EXAMPLE 4  Evaluate the integral

 L
2

1 L
y

1>y Ay
x e2xy dx dy.

Solution The square root terms in the integrand suggest that we might simplify the inte-

gration by substituting u = 2xy and y = 2y>x. Squaring these equations gives u2 = xy 

and y2 = y>x, which imply that u2y2 = y2 and u2>y2 = x2. So we obtain the transforma-

tion (in the same ordering of the variables as discussed before)

x =
u
y  and  y = uy,

with u 7 0 and y 7 0. Let’s first see what happens to the integrand itself under this 

transformation. The Jacobian of the transformation is not constant:

J(u, y) = 4 0x
0u

0x
0y

0y

0u

0y

0y

4 = † 1y -u

y2

y u

† =
2u
y .

If G is the region of integration in the uy-plane, then by Equation (2) the transformed 

double integral under the substitution is

O
 R  

  A
y
x e2xy dx dy = O

 G  

  yeu 
2u
y  du dy = O

 G  

  2ueu du dy.

The transformed integrand function is easier to integrate than the original one, so we pro-

ceed to determine the limits of integration for the transformed integral.

The region of integration R of the original integral in the xy-plane is shown in Figure 

15.61. From the substitution equations u = 2xy and y = 2y>x, we see that the image 

of the left-hand boundary xy = 1 for R is the vertical line segment u = 1, 2 Ú y Ú 1, in 

G (see Figure 15.62). Likewise, the right-hand boundary y = x of R maps to the horizon-

tal line segment y = 1, 1 … u … 2, in G. Finally, the horizontal top boundary y = 2 of R 

1 20

1

2

x

y

R

xy = 1

y = x

y = 2

FIGURE 15.61 The region of integration 

R in Example 4.

1 20

1

2

G

y

u

uy = 2 3 y = 2

y = 1 3 y = x

u = 1 3 xy = 1

FIGURE 15.62 The boundaries of the 

region G correspond to those of region R 

in Figure 15.61. Notice as we move coun-

terclockwise around the region R, we also 

move counterclockwise around the region 

G. The inverse transformation equations 

u = 2xy, y = 2y>x produce the region 

G from the region R.
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maps to uy = 2, 1 … y … 2, in G. As we move counterclockwise around the boundary of 

the region R, we also move counterclockwise around the boundary of G, as shown in 

 Figure 15.62. Knowing the region of integration G in the uy-plane, we can now write 

equivalent iterated integrals:

 L
2

1 L
y

1>y Ay
x e2xy dx dy = L

2

1 L
2>u

1

 2ueu dy du.  Note the order of integration.

We now evaluate the transformed integral on the right-hand side,

  L
2

1 L
2>u

1

 2ueu dy du = 2 L
2

1

 cyueu d y= 2>u
y= 1

 du

 = 2 L
2

1

 (2eu - ueu) du

 = 2 L
2

1

 (2 - u)eu du

 = 2 c (2 - u)eu + eu d u = 2

u = 1

  Integrate by parts.

 = 2 (e2 - (e + e)) = 2e(e - 2). 

Substitutions in Triple Integrals

The cylindrical and spherical coordinate substitutions in Section 15.7 are special cases of a 

substitution method that pictures changes of variables in triple integrals as transformations 

of three-dimensional regions. The method is like the method for double integrals given by 

Equation (2) except that now we work in three dimensions instead of two.

Suppose that a region G in uyw-space is transformed one-to-one into the region D in 

xyz-space by differentiable equations of the form

x = g(u, y, w),  y = h(u, y, w),  z = k(u, y, w),

as suggested in Figure 15.63. Then any function F(x, y, z) defined on D can be thought of 

as a function

F(g(u, y, w), h(u, y, w), k(u, y, w)) = H(u, y, w)

defined on G. If g, h, and k have continuous first partial derivatives, then the integral of 

F(x, y, z) over D is related to the integral of H(u, y, w) over G by the equation

 l
D

 F(x, y, z) dx dy dz = l
G

 H(u, y, w) 0 J(u, y, w) 0  du dy dw.  (7)

w

G

u

z

D

x

y

x = g(u, y, w)

y = h(u, y, w)

z = k(u, y, w)

y

Cartesian uyw-space Cartesian xyz-space

FIGURE 15.63 The equations x = g(u, y, w), y = h(u, y, w), and 

z = k(u, y, w) allow us to change an integral over a region D in Cartesian 

xyz-space into an integral over a region G in Cartesian uyw-space using 

Equation (7).
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The factor J(u, y, w), whose absolute value appears in this equation, is the Jacobian 

determinant

J(u, y, w) = 6 0x
0u

0x
0y

0x
0w

0y

0u

0y

0y
0y

0w

0z

0u

0z

0y
0z

0w

6 =
0(x, y, z)

0(u, y, w)
.

This determinant measures how much the volume near a point in G is being expanded or 

contracted by the transformation from (u, y, w) to (x, y, z) coordinates. As in the two- 

dimensional case, the derivation of the change-of-variable formula in Equation (7) is omitted.

For cylindrical coordinates, r, u, and z take the place of u, y, and w. The transforma-

tion from Cartesian ruz@space to Cartesian xyz-space is given by the equations

x = r cos u,  y = r sin u,  z = z

(Figure 15.64). The Jacobian of the transformation is

 J(r, u, z) = 6 0x
0r

0x
0u

0x
0z

0y

0r

0y

0u
0y

0z

0z

0r

0z

0u
0z

0z

6 = 3 cos u -r sin u 0

sin u   r cos u 0

0   0 1

3
 = r cos2 u + r sin2 u = r.

The corresponding version of Equation (7) is

l
D

 F(x, y, z) dx dy dz = l
G

 H(r, u, z) 0 r 0  dr du dz.

We can drop the absolute value signs because r Ú 0.

For spherical coordinates, r, f, and u take the place of u, y, and w. The transforma-

tion from Cartesian rfu@space to Cartesian xyz-space is given by

x = r sin f cos u,  y = r sin f sin u,  z = r cos f

(Figure 15.65). The Jacobian of the transformation (see Exercise 23) is

J(r, f, u) = 6 0x
0r

0x

0f
0x
0u

0y

0r
0y

0f
0y

0u

0z

0r
0z

0f
0z

0u

6 = r2 sin f.

The corresponding version of Equation (7) is

l
D

 F(x, y, z) dx dy dz = l
G

 H(r, f, u) 0 r2 sin f 0  dr df du.

z

D

x

y

Cartesian ruz-space

x = r cos u

y = r sin u

z = z

z = constant

r = constant

u = constant

Cartesian xyz-space

G

r

u

z

Cube with sides

parallel to the

coordinate axes

FIGURE 15.64 The equations 

x = r cos u, y = r sin u, and z = z  

transform the cube G into a cylindrical 

wedge D.
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EXAMPLE 5  Evaluate

 L
3

0 L
4

0 L
x = (y>2)+ 1

x = y>2  a2x - y

2
+

z

3
b  dx dy dz

by applying the transformation

 u = (2x - y)>2,  y = y>2,  w = z>3 (8)

and integrating over an appropriate region in uyw-space.

Solution We sketch the region D of integration in xyz-space and identify its boundaries 

(Figure 15.66). In this case, the bounding surfaces are planes.

To apply Equation (7), we need to ind the corresponding uyw-region G and the Jaco-

bian of the transformation. To ind them, we irst solve Equations (8) for x, y, and z in terms 

of u, y, and w. Routine algebra gives

 x = u + y,  y = 2y,  z = 3w. (9)

We then find the boundaries of G by substituting these expressions into the equations for 

the boundaries of D:

 xyz-equations for  

the boundary of D

Corresponding uYw-equations  

 for the boundary of G

 Simpliied  

uYw-equations

 x = y>2  u + y = 2y>2 = y  u = 0

 x = ( y>2) + 1 u + y = (2y>2) + 1 = y + 1  u = 1

 y = 0  2y = 0  y = 0

 y = 4  2y = 4  y = 2

 z = 0  3w = 0  w = 0

 z = 3  3w = 3  w = 1

We can drop the absolute value signs because sin f is never negative for 0 … f … p. 

Note that this is the same result we obtained in Section 15.7.

Here is an example of another substitution. Although we could evaluate the integral in 

this example directly, we have chosen it to illustrate the substitution method in a simple 

(and fairly intuitive) setting.

x

y

Cartesian rfu-space

f

r Cartesian xyz-space

u

G

Cube with sides

parallel to the

coordinate axesu

x = r sin f cos u

y = r sin f sin u

z = r cos f

z

f

u = constant

(x, y, z)
D

f = constant

r = constant

r

FIGURE 15.65 The equations x = r sin f cos u, y = r sin f sin u, and 

z = r cos f transform the cube G into the spherical wedge D.

Rear plane:

x =    , or y = 2x
y

2

Front plane:

x =     + 1, or y = 2x − 2
y

2

1

D

3

y

y

4

x

z

x = u + y

y = 2y

z = 3w

2

u

1

G

w

1

FIGURE 15.66 The equations 

x = u + y, y = 2y, and z = 3w 

transform G into D. Reversing the 

transformation by the equations 

u = (2x - y)>2, y = y>2, and w = z>3 

transforms D into G (Example 5).
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The Jacobian of the transformation, again from Equations (9), is

J(u, y, w) = 6 0x
0u

0x
0y

0x
0w

0y

0u

0y

0y
0y

0w

0z

0u

0z

0y
0z

0w

6 = 3 1 1 0

0 2 0

0 0 3

3 = 6.

We now have everything we need to apply Equation (7):

 L
3

0 L
4

0 L
x = (y>2)+ 1

x = y>2  a2x - y

2
+

z

3
b  dx dy dz

= L
1

0 L
2

0 L
1

0

(u + w) 0 J(u, y, w) 0  du dy dw

= L
1

0 L
2

0 L
1

0

(u + w)(6) du dy dw = 6 L
1

0 L
2

0

 c u2

2
+ uw d

0

1

 dy dw

= 6 L
1

0 L
2

0

 a1
2

+ wb  dy dw = 6 L
1

0

 cy
2

+ yw d
0

2

 dw = 6 L
1

0

(1 + 2w) dw

= 6 cw + w2 d
0

1

= 6(2) = 12.  

Jacobians and Transformed Regions in the Plane

 1. a. Solve the system

u = x - y,  y = 2x + y

for x and y in terms of u and y. Then ind the value of the 

Jacobian 0(x, y)>0(u, y).

b. Find the image under the transformation u = x - y, 

y = 2x + y of the triangular region with vertices (0, 0),  

(1, 1), and (1, -2) in the xy-plane. Sketch the transformed 

region in the uy-plane.

 2. a. Solve the system

u = x + 2y,  y = x - y

for x and y in terms of u and y. Then ind the value of the 

Jacobian 0(x, y)>0(u, y).

b. Find the image under the transformation u = x + 2y, 

y = x - y of the triangular region in the xy-plane bounded 

by the lines y = 0, y = x, and x + 2y = 2. Sketch the trans-

formed region in the uy-plane.

 3. a. Solve the system

u = 3x + 2y,  y = x + 4y

for x and y in terms of u and y. Then ind the value of the 

Jacobian 0(x, y)>0(u, y).

b. Find the image under the transformation u = 3x + 2y, 

y = x + 4y of the triangular region in the xy-plane bounded 

by the x-axis, the y-axis, and the line x + y = 1. Sketch the 

transformed region in the uy-plane.

 4. a. Solve the system

u = 2x - 3y,  y = -x + y

for x and y in terms of u and y. Then ind the value of the 

Jacobian 0(x, y)>0(u, y).

b. Find the image under the transformation u = 2x - 3y, 

y = -x + y of the parallelogram R in the xy-plane with 

boundaries x = -3, x = 0, y = x, and y = x + 1. Sketch 

the transformed region in the uy-plane.

Substitutions in Double Integrals

 5.  Evaluate the integral

 L
4

0 L
x = (y>2) + 1

x = y>2  
2x - y

2
 dx dy

  from Example 1 directly by integration with respect to x and y to 

conirm that its value is 2.

 6.  Use the transformation in Exercise 1 to evaluate the integral

O
R

(2x2 - xy - y2) dx dy

  for the region R in the irst quadrant bounded by the lines 

y = -2x + 4, y = -2x + 7, y = x - 2, and y = x + 1.

EXERCISES 15.8
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 15.  Use the transformation x = u>y, y = uy to evaluate the integral 

sum

 L
2

1 L
y

1>y (x2 + y2) dx dy + L
4

2 L
4>y

y>4  (x2 + y2) dx dy.

 16.  Use the transformation x = u2 - y2, y = 2uy to evaluate the 

 integral

 L
1

0 L
221 - x

0

 2x2 + y2 dy dx.

  (Hint: Show that the image of the triangular region G with vertices 

(0, 0), (1, 0), (1, 1) in the uy-plane is the region of integration R in 

the xy-plane deined by the limits of integration.)

Substitutions in Triple Integrals

 17.  Evaluate the integral in Example 5 by integrating with respect to 

x, y, and z.

 18.  Volume of an ellipsoid Find the volume of the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

  (Hint: Let x = au, y = by, and z = cw. Then ind the volume of 

an appropriate region in uyw-space.)

 19.  Evaluate

l 0 xyz 0  dx dy dz

  over the solid ellipsoid

x2

a2
+

y2

b2
+

z2

c2
… 1.

  (Hint: Let x = au, y = by, and z = cw. Then integrate over an 

appropriate region in uyw-space.)

 20.  Let D be the region in xyz-space deined by the inequalities

1 … x … 2, 0 … xy … 2, 0 … z … 1.

  Evaluate

l
D

(x2y + 3xyz) dx dy dz

  by applying the transformation

u = x, y = xy, w = 3z

  and integrating over an appropriate region G in uyw-space.

Theory and Examples

 21.  Find the Jacobian 0(x, y)>0(u, y) of the transformation

a. x = u cos y, y = u sin y

b. x = u sin y, y = u cos y.

 22.  Find the Jacobian 0(x, y, z)>0(u, y, w) of the transformation

a. x = u cos y, y = u sin y, z = w

b. x = 2u - 1, y = 3y - 4, z = (1>2)(w - 4).

 7.  Use the transformation in Exercise 3 to evaluate the integral

O
R

(3x2 + 14xy + 8y2) dx dy

  for the region R in the irst quadrant bounded by the lines 

y = - (3>2)x + 1, y = - (3>2)x + 3, y = - (1>4)x, and y =  

- (1>4)x + 1.

 8.  Use the transformation and parallelogram R in Exercise 4 to evalu-

ate the integral

O
R

2(x - y) dx dy.

 9.  Let R be the region in the irst quadrant of the xy-plane bounded 

by the hyperbolas xy = 1, xy = 9 and the lines y = x, y = 4x. 

Use the transformation x = u>y, y = uy with u 7 0 and y 7 0 

to rewrite

O
R

 aAy

x + 2xyb  dx dy

  as an integral over an appropriate region G in the uy-plane. Then 

evaluate the uy-integral over G.

 10. a.  Find the Jacobian of the transformation x = u, y = uy and 

sketch the region G: 1 … u … 2, 1 … uy … 2, in the  

uy-plane.

b. Then use Equation (2) to transform the integral

 L
2

1 L
2

1

 
y

x dy dx

  into an integral over G, and evaluate both integrals.

 11.  Polar moment of inertia of an elliptical plate A thin plate 

of constant density covers the region bounded by the ellipse 

x2>a2 + y2>b2 = 1, a 7 0, b 7 0, in the xy-plane. Find the irst 

moment of the plate about the origin. (Hint: Use the transforma-

tion x = ar cos u, y = br sin u.)

 12.  The area of an ellipse The area pab of the ellipse 

x2>a2 + y2>b2 = 1 can be found by integrating the function 

ƒ(x, y) = 1 over the region bounded by the ellipse in the xy-plane. 

Evaluating the integral directly requires a trigonometric substitu-

tion. An easier way to evaluate the integral is to use the transforma-

tion x = au, y = by and evaluate the transformed integral over the 

disk G: u2 + y2 … 1 in the uy-plane. Find the area this way.

 13.  Use the transformation in Exercise 2 to evaluate the integral

 L
2>3

0 L
2 - 2y

y

(x + 2y)e(y - x) dx dy

  by irst writing it as an integral over a region G in the uy-plane.

 14.  Use the transformation x = u + (1>2)y, y = y to evaluate the 

integral

 L
2

0 L
(y + 4)>2

y>2  y3(2x - y)e(2x - y)2

 dx dy

  by irst writing it as an integral over a region G in the uy-plane.
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 27.  Inverse transform The equations x = g(u, y), y = h(u, y) in 

Figure 15.57 transform the region G in the uy-plane into the region 

R in the xy-plane. Since the substitution transformation is one-

to-one with continuous irst partial derivatives, it has an inverse 

transformation and there are equations u = a(x, y), y = b(x, y) 

with continuous irst partial derivatives transforming R back into 

G. Moreover, the Jacobian determinants of the transformations are 

related reciprocally by

 
0(x, y)

0(u, y)
= a0(u, y)

0(x, y)
b - 1

. (10)

  Equation (10) is proved in advanced calculus. Use it to ind the 

area of the region R in the irst quadrant of the xy-plane bounded 

by the lines y = 2x, 2y = x, and the curves xy = 2, 2xy = 1 for 

u = xy and y = y/x.

 28.  (Continuation of Exercise 27.) For the region R described in 

 Exercise 27, evaluate the integral 4R y2 dA.

 23.  Evaluate the appropriate determinant to show that the Jacobian 

of the transformation from Cartesian rfu@space to Cartesian xyz-

space is r2 sin f.

 24.  Substitutions in single integrals How can substitutions in 

single deinite integrals be viewed as transformations of regions? 

What is the Jacobian in such a case? Illustrate with an example.

 25.  Centroid of a solid semiellipsoid Assuming the result that the 

centroid of a solid hemisphere lies on the axis of symmetry three-

eighths of the way from the base toward the top, show, by trans-

forming the appropriate integrals, that the center of mass of a solid 

semiellipsoid (x2>a2) + (y2>b2) + (z2>c2) … 1, z Ú 0, lies on 

the z-axis three-eighths of the way from the base toward the top. 

(You can do this without evaluating any of the integrals.)

 26.  Cylindrical shells In Section 6.2, we learned how to ind the 

volume of a solid of revolution using the shell method; namely, 

if the region between the curve y = ƒ(x) and the x-axis from a 

to b (0 6 a 6 b) is revolved about the y-axis, the volume of the 

resulting solid is 1b

a
 2pxƒ(x) dx. Prove that inding volumes by 

using triple integrals gives the same result. (Hint: Use cylindrical 

coordinates with the roles of y and z changed.)

 1. Deine the double integral of a function of two variables over a 

bounded region in the coordinate plane.

 2. How are double integrals evaluated as iterated integrals? Does the 

order of integration matter? How are the limits of integration de-

termined? Give examples.

 3. How are double integrals used to calculate areas and average 

 values. Give examples.

 4. How can you change a double integral in rectangular coordi-

nates into a double integral in polar coordinates? Why might it be 

worthwhile to do so? Give an example.

 5. Deine the triple integral of a function ƒ(x, y, z) over a bounded 

region in space.

 6. How are triple integrals in rectangular coordinates evaluated? 

How are the limits of integration determined? Give an example.

 7. How are double and triple integrals in rectangular coordinates 

used to calculate volumes, average values, masses, moments, and 

centers of mass? Give examples.

 8. How are triple integrals deined in cylindrical and spherical coor-

dinates? Why might one prefer working in one of these coordinate 

systems to working in rectangular coordinates?

 9. How are triple integrals in cylindrical and spherical coordinates 

evaluated? How are the limits of integration found? Give examples.

 10. How are substitutions in double integrals pictured as transforma-

tions of two-dimensional regions? Give a sample calculation.

 11. How are substitutions in triple integrals pictured as transforma-

tions of three-dimensional regions? Give a sample calculation.

CHAPTER 15 Questions to Guide Your Review

Evaluating Double Iterated Integrals

In Exercises 1–4, sketch the region of integration and evaluate the 

double integral.

 1.   L
10

1 L
1>y

0

 yexy dx dy 2.   L
1

0 L
x3

0

 ey>x dy dx

 3.   L
3>2

0 L
29 - 4t2

-29 - 4t2
  t ds dt  4.   L

1

0 L
2 -2y

2y

 xy dx dy

In Exercises 5–8, sketch the region of integration and write an equiva-

lent integral with the order of integration reversed. Then evaluate both 

integrals.

 5.   L
4

0 L
(y - 4)>2

-24 - y

 dx dy 6.   L
1

0 L
x

x2

2x dy dx

 7.   L
3>2

0 L
29 - 4y2

-29 - 4y2

  y dx dy 8.   L
2

0 L
4 - x2

0

2x dy dx

CHAPTER 15 Practice Exercises
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Volumes and Average Values Using Triple Integrals

 27.  Volume Find the volume of the wedge-shaped region enclosed 

on the side by the cylinder x = -cos y, -p>2 … y … p>2, on 

the top by the plane z = -2x, and below by the xy-plane.

z

y

x

p
2

−
2

x = −cos y

z = −2x

p

 28.  Volume Find the volume of the solid that is bounded above 

by the cylinder z = 4 - x2, on the sides by the cylinder x2 +  

y2 = 4, and below by the xy-plane.

x

x2 + y2 = 4

y

z

z = 4 − x2

 29.  Average value Find the average value of ƒ(x, y, z) =  

30xz 2x2 + y over the rectangular solid in the irst octant bound-

ed by the coordinate planes and the planes x = 1, y = 3, z = 1.

 30.  Average value Find the average value of r over the solid sphere 

r … a (spherical coordinates).

Cylindrical and Spherical Coordinates

 31.  Cylindrical to rectangular coordinates Convert

 L
2p

0 L
22

0 L
24 - r2

r

3 dz r dr du,  r Ú 0

  to (a) rectangular coordinates with the order of integration dz dx 

dy and (b) spherical coordinates. Then (c) evaluate one of the inte-

grals.

 32.  Rectangular to cylindrical coordinates (a) Convert to cylin-

drical coordinates. Then (b) evaluate the new integral.

 L
1

0 L
21 - x2

-21 - x2

   L
(x2 + y2)

-(x2 + y2)
21xy2 dz dy dx

 33.  Rectangular to spherical coordinates (a) Convert to spherical 

coordinates. Then (b) evaluate the new integral.

 L
1

-1

   L
21 - x2

-21 - x2

   L
1

2x2 + y2

 dz dy dx

 34.  Rectangular, cylindrical, and spherical coordinates Write an 

iterated triple integral for the integral of ƒ(x, y, z) = 6 + 4y over 

the region in the irst octant bounded by the cone z = 2x2 + y2, 

Evaluate the integrals in Exercises 9–12.

 9.   L
1

0 L
2

2y

4 cos (x2) dx dy 10.   L
2

0 L
1

y>2 ex2

 dx dy

 11.   L
8

0 L
2

23 x

   
dy dx

y4 + 1
 12.   L

1

0 L
1

23 y

 
2p sin px2

x2
 dx dy

Areas and Volumes Using Double Integrals

 13.  Area between line and parabola Find the area of the region 

enclosed by the line y = 2x + 4 and the parabola y = 4 - x2 in 

the xy-plane.

 14.  Area bounded by lines and parabola Find the area of the  

“triangular” region in the xy-plane that is bounded on the right by 

the parabola y = x2, on the left by the line x + y = 2, and above 

by the line y = 4.

 15.  Volume of the region under a paraboloid Find the volume un-

der the paraboloid z = x2 + y2 above the triangle enclosed by the 

lines y = x, x = 0, and x + y = 2 in the xy-plane.

 16.  Volume of the region under a parabolic cylinder Find the vol-

ume under the parabolic cylinder z = x2 above the region enclosed 

by the parabola y = 6 - x2 and the line y = x in the xy-plane.

Average Values

Find the average value of ƒ(x, y) = xy over the regions in Exercises 

17 and 18.

 17.  The square bounded by the lines x = 1, y = 1 in the irst  quadrant

 18.  The quarter circle x2 + y2 … 1 in the irst quadrant

Polar Coordinates

Evaluate the integrals in Exercises 19 and 20 by changing to polar 

coordinates.

 19.   L
1

-1

  L
21 - x2

-21 - x2

 
2 dy dx

(1 + x2 + y2)2

 20.   L
1

-1

   L
21 - y2

-21 - y2

  ln (x2 + y2 + 1) dx dy

 21.  Integrating over a lemniscate Integrate the function ƒ(x, y) =  

1> (1 + x2 + y2)2 over the region enclosed by one loop of the 

lemniscate (x2 + y2)2 - (x2 - y2) = 0.

 22.  Integrate ƒ(x, y) = 1> (1 + x2 + y2)2 over

a. Triangular region The triangle with vertices (0, 0), (1, 0), 

and 11, 232.
b. First quadrant The irst quadrant of the xy-plane.

Evaluating Triple Iterated Integrals

Evaluate the integrals in Exercises 23–26.

 23.   L
p

0 L
p

0 L
p

0

 cos (x + y + z) dx dy dz

 24.   L
ln 7

ln 6 L
ln 2

0 L
ln 5

ln 4

 e(x + y + z) dz dy dx

 25.   L
1

0 L
x2

0 L
x + y

0

(2x - y - z) dz dy dx

 26.   L
e

1 L
x

1 L
z

0

  
2y

z3
  dy dz dx
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the cylinder x2 + y2 = 1, and the coordinate planes in (a) rect-

angular coordinates, (b) cylindrical coordinates, and (c) spherical 

coordinates. Then (d) ind the integral of ƒ by evaluating one of 

the triple integrals.

 35.  Cylindrical to rectangular coordinates Set up an integral in 

rectangular coordinates equivalent to the integral

 L
p>2

0 L
23

1 L
24 - r2

1

 r3(sin u cos u)z2 dz dr du.

  Arrange the order of integration to be z irst, then y, then x.

 36.  Rectangular to cylindrical coordinates The volume of a solid is

 L
2

0 L
22x - x2

0 L
24 - x2 - y2

-24 - x2 - y2

 dz dy dx.

a. Describe the solid by giving equations for the surfaces that 

form its boundary.

b. Convert the integral to cylindrical coordinates but do not 

evaluate the integral.

 37.  Spherical versus cylindrical coordinates Triple integrals 

 involving spherical shapes do not always require spherical coor-

dinates for convenient evaluation. Some calculations may be ac-

complished more easily with cylindrical coordinates. As a case in 

point, ind the volume of the region bounded above by the sphere 

x2 + y2 + z2 = 8 and below by the plane z = 2 by using (a) cy-

lindrical coordinates and (b) spherical coordinates.

Masses and Moments

 38.  Finding Iz in spherical coordinates Find the moment of inertia 

about the z-axis of a solid of constant density d = 1 that is bound-

ed above by the sphere r = 2 and below by the cone f = p>3 

(spherical coordinates).

 39.  Moment of inertia of a “thick” sphere Find the moment of 

inertia of a solid of constant density d bounded by two concentric 

spheres of radii a and b (a 6 b) about a diameter.

 40.  Moment of inertia of an apple Find the moment of inertia 

about the z-axis of a solid of density d = 1 enclosed by the spheri-

cal coordinate surface r = 1 - cos f. The solid is the red curve 

rotated about the z-axis in the accompanying igure.

z

y

x

r = 1 − cos f

 41.  Centroid Find the centroid of the “triangular” region bound-

ed by the lines x = 2, y = 2 and the hyperbola xy = 2 in the  

xy-plane.

 42.  Centroid Find the centroid of the region between the parabola 

x + y2 - 2y = 0 and the line x + 2y = 0 in the xy-plane.

 43.  Polar moment Find the polar moment of inertia about the origin 

of a thin triangular plate of constant density d = 3 bounded by the 

y-axis and the lines y = 2x and y = 4 in the xy-plane.

 44.  Polar moment Find the polar moment of inertia about the cen-

ter of a thin rectangular sheet of constant density d = 1 bounded 

by the lines

a. x = {2, y = {1 in the xy-plane

b. x = {a, y = {b in the xy-plane.

  (Hint: Find Ix . Then use the formula for Ix to ind Iy , and add the 

two to ind I0 .)

 45.  Inertial moment Find the moment of inertia about the x-axis of 

a thin plate of constant density d covering the triangle with verti-

ces (0, 0), (3, 0), and (3, 2) in the xy-plane.

 46.  Plate with variable density Find the center of mass and the mo-

ments of inertia about the coordinate axes of a thin plate bounded 

by the line y = x and the parabola y = x2 in the xy-plane if the 

density is d(x, y) = x + 1.

 47.  Plate with variable density Find the mass and irst moments 

about the coordinate axes of a thin square plate bounded by the 

lines x = {1, y = {1 in the xy-plane if the density is d(x, y) =  

x2 + y2 + 1>3.

 48.  Triangles with same inertial moment Find the moment of in-

ertia about the x-axis of a thin triangular plate of constant den-

sity d whose base lies along the interval 30, b4  on the x-axis and 

whose vertex lies on the line y = h above the x-axis. As you will 

see, it does not matter where on the line this vertex lies. All such 

triangles have the same moment of inertia about the x-axis.

 49.  Centroid Find the centroid of the region in the polar coordinate 

plane deined by the inequalities 0 … r … 3, -p>3 … u … p>3.

 50.  Centroid Find the centroid of the region in the irst quadrant 

bounded by the rays u = 0 and u = p>2 and the circles r = 1 

and r = 3.

 51. a.  Centroid Find the centroid of the region in the polar coor-

dinate plane that lies inside the cardioid r = 1 + cos u and 

outside the circle r = 1.

b. Sketch the region and show the centroid in your sketch.

 52. a.  Centroid Find the centroid of the plane region deined by 

the polar coordinate inequalities 0 … r … a, -a … u … a  

(0 6 a … p). How does the centroid move as a S p-?

b. Sketch the region for a = 5p>6 and show the centroid in 

your sketch.

Substitutions

 53.  Show that if u = x - y and y = y, then for any continuous ƒ

 L
q

0 L
x

0

 e-sx ƒ(x - y, y) dy dx = L
q

0 L
q

0

 e-s(u +y) ƒ(u, y) du dy.

 54.  What relationship must hold between the constants a, b, and c to 

make

 L
q

-q

   L
q

-q

 e-(ax2 + 2bxy + cy2) dx dy = 1?

  (Hint: Let s = ax + by and t = gx + dy, where (ad - bg)2 =  

ac - b2. Then ax2 + 2bxy + cy2 = s2 + t2.)



952 Chapter 15 Multiple Integrals

Volumes

 1. Sand pile: double and triple integrals The base of a sand pile 

covers the region in the xy-plane that is bounded by the parabola 

x2 + y = 6 and the line y = x. The height of the sand above the 

point (x, y) is x2. Express the volume of sand as (a) a double inte-

gral, (b) a triple integral. Then (c) ind the volume.

 2. Water in a hemispherical bowl A hemispherical bowl of ra-

dius 5 cm is illed with water to within 3 cm of the top. Find the 

volume of water in the bowl.

 3. Solid cylindrical region between two planes Find the volume 

of the portion of the solid cylinder x2 + y2 … 1 that lies between 

the planes z = 0 and x + y + z = 2.

 4. Sphere and paraboloid Find the volume of the region bounded 

above by the sphere x2 + y2 + z2 = 2 and below by the parabo-

loid z = x2 + y2.

 5. Two paraboloids Find the volume of the region bounded above 

by the paraboloid z = 3 - x2 - y2 and below by the paraboloid 

z = 2x2 + 2y2.

 6. Spherical coordinates Find the volume of the region enclosed 

by the spherical coordinate surface r = 2 sin f (see accompany-

ing igure).

z

x

y

r = 2 sin f

 7. Hole in sphere A circular cylindrical hole is bored through a 

solid sphere, the axis of the hole being a diameter of the sphere. 

The volume of the remaining solid is

V = 2 L
2p

0 L
23

0 L
24 - z2

1

 r dr dz du.

a. Find the radius of the hole and the radius of the sphere.

b. Evaluate the integral.

 8. Sphere and cylinder Find the volume of material cut from the 

solid sphere r2 + z2 … 9 by the cylinder r = 3 sin u.

 9. Two paraboloids Find the volume of the region enclosed by the 

surfaces z = x2 + y2 and z = (x2 + y2 + 1)>2.

 10. Cylinder and surface z = xy Find the volume of the region 

in the irst octant that lies between the cylinders r = 1 and r = 2 

and that is bounded below by the xy-plane and above by the sur-

face z = xy.

Changing the Order of Integration

 11. Evaluate the integral

 L
q

0

 
e-ax - e-bx

x  dx.

  (Hint: Use the relation

e-ax - e-bx

x = L
b

a

 e-xy dy

  to form a double integral and evaluate the integral by changing the 

order of integration.)

 12. a.  Polar coordinates Show, by changing to polar coordinates, 

that

 L
a sin b

0

 L
2a2 - y2

y cot b

 ln (x2 + y2) dx dy = a2b aln a -
1
2
b ,

 where a 7 0 and 0 6 b 6 p>2.

b. Rewrite the Cartesian integral with the order of integration 

reversed.

 13. Reducing a double to a single integral By changing the order 

of integration, show that the following double integral can be re-

duced to a single integral:

 L
x

0

 L
u

0

 em(x - t) ƒ(t) dt du = L
x

0

(x - t)em(x - t) ƒ(t) dt.

  Similarly, it can be shown that

 L
x

0

 L
y

0

 L
u

0

 em(x - t) ƒ(t) dt du dy = L
x

0

 
(x - t)2

2
 em(x - t) ƒ(t) dt.

 14. Transforming a double integral to obtain constant limit  

Sometimes a multiple integral with variable limits can be changed 

into one with constant limits. By changing the order of integra-

tion, show that

 L
1

0

 ƒ(x) a    L
x

0

 g(x - y)ƒ( y) dyb  dx

= L
1

0

 ƒ( y) a   L
1

y

 g(x - y)ƒ(x) dxb  dy

=
1
2

  L
1

0 L
1

0

 g1 0 x - y 0 2ƒ(x)ƒ(y) dx dy.

Masses and Moments

 15. Minimizing polar inertia A thin plate of constant density is to 

occupy the triangular region in the irst quadrant of the xy-plane 

having vertices (0, 0), (a, 0), and (a, 1 >a). What value of a will 

minimize the plate’s polar moment of inertia about the origin?

 16. Polar inertia of triangular plate Find the polar moment 

of  inertia about the origin of a thin triangular plate of constant 

CHAPTER 15 Additional and Advanced Exercises
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 density d = 3 bounded by the y-axis and the lines y = 2x and 

y = 4 in the xy-plane.

 17. Mass and polar inertia of a counterweight The counterweight 

of a lywheel of constant density 1 has the form of the smaller seg-

ment cut from a circle of radius a by a chord at a distance b from 

the center (b 6 a). Find the mass of the counterweight and its 

polar moment of inertia about the center of the wheel.

 18. Centroid of a boomerang Find the centroid of the boomer-

ang-shaped region between the parabolas y2 = -4(x - 1) and 

y2 = -2(x - 2) in the xy-plane.

Theory and Examples

 19. Evaluate

 L
a

0 L
b

0

 emax (b2x2, a2y2) dy dx,

  where a and b are positive numbers and

max (b2x2, a2y2) = e b2x2 if b2x2 Ú a2y2

a2y2 if b2x2 6 a2y2.
 

 20. Show that

O  
02F(x, y)

0x 0y
 dx dy

  over the rectangle x0 … x … x1, y0 … y … y1, is

F(x1 , y1) - F(x0 , y1) - F(x1 , y0) + F(x0 , y0).

 21. Suppose that ƒ(x, y) can be written as a product ƒ(x, y) = F(x)G(y) 

of a function of x and a function of y. Then the integral of ƒ over 

the rectangle R: a … x … b, c … y … d can be evaluated as a 

product as well, by the formula

O
R

 ƒ(x, y) dA = a   L
b

a

 F(x) dxb a   L
d

c

 G(y) dyb . (1)

The argument is that

O
R

 ƒ(x, y) dA = L
d

c

 a    L
b

a

 F(x) G(  y) dxb  dy (i)

= L
d

c

 aG(  y) L
b

a

 F(x) dxb  dy (ii)

= L
d

c

 a   L
b

a

 F(x) dxb  G(  y) dy (iii)

= a   L
b

a

 F(x) dxb  L
d

c

 G(  y) dy. (iv)

a. Give reasons for steps (i) through (iv).

When it applies, Equation (1) can be a time-saver. Use it to 

evaluate the following integrals.

b.  L
ln 2

0 L
p>2

0

 ex cos y dy dx  c.  L
2

1 L
1

-1

  
x

y2
  dx dy

 22. Let Du ƒ denote the derivative of ƒ(x, y) = (x2 + y2) >2 in the di-

rection of the unit vector u = u1  i + u2  j.

a. Finding average value Find the average value of Du ƒ over 

the triangular region cut from the irst quadrant by the line 

x + y = 1.

b. Average value and centroid Show in general that the aver-

age value of Du ƒ over a region in the xy-plane is the value of 

Du ƒ at the centroid of the region.

 23. The value of �(1 ,2)  The gamma function,

Γ(x) = L
q

0

 tx - 1 e-t dt,

  extends the factorial function from the nonnegative integers to 

other real values. Of particular interest in the theory of diferential 

equations is the number

Γa1
2
b = L

q

0

 t(1>2) - 1 e-t dt = L
q

0

 
e-t

2t
 dt. (2)

a. If you have not yet done Exercise 41 in Section 15.4, do it 

now to show that

I = L
q

0

 e-y2

 dy =
2p

2
.

b. Substitute y = 2t in Equation (2) to show that 

Γ(1>2) = 2I = 2p.

 24. Total electrical charge over circular plate The electri-

cal charge distribution on a circular plate of radius R meters is 

s(r, u) = kr(1 - sin u) coulomb>m2 (k a constant). Integrate s 

over the plate to ind the total charge Q.

 25. A parabolic rain gauge A bowl is in the shape of the graph of 

z = x2 + y2 from z = 0 to z = 10 in. You plan to calibrate the 

bowl to make it into a rain gauge. What height in the bowl would 

correspond to 1 in. of rain? 3 in. of rain?

 26. Water in a satellite dish A parabolic satellite dish is 2 m wide 

and 1 >2 m deep. Its axis of symmetry is tilted 30 degrees from the 

vertical.

a. Set up, but do not evaluate, a triple integral in rectangular co-

ordinates that gives the amount of water the satellite dish will 

hold. (Hint: Put your coordinate system so that the satellite 

dish is in “standard position” and the plane of the water level 

is slanted.) (Caution: The limits of integration are not “nice.”)

b. What would be the smallest tilt of the satellite dish so that it 

holds no water?

 27. An ininite half-cylinder Let D be the interior of the ininite 

right circular half-cylinder of radius 1 with its single-end face sus-

pended 1 unit above the origin and its axis the ray from (0, 0, 1) to 

q. Use cylindrical coordinates to evaluate

l
D

 z(r2 + z2)-5>2 dV.

 28. Hypervolume We have learned that 1b

a
 1 dx is the length of 

the interval 3a, b4  on the number line (one-dimensional space), 

4R
 1 dA is the area of region R in the xy-plane (two- dimensional 

space), and 7D
 1 dV  is the volume of the region D in three- 

dimensional space (xyz-space). We could continue: If Q is a region 

in 4-space (xyzw-space), then |Q
 1 dV  is the  “hyper-volume” 

of Q. Use your generalizing abilities and a Cartesian  coordinate 

system of 4-space to ind the hypervolume inside the unit 

4- dimensional sphere x2 + y2 + z2 + w2 = 1.
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Mathematica/Maple Projects

Projects can be found within MyMathLab.

• Take Your Chances: Try the Monte Carlo Technique for Numerical Integration in Three Dimensions 

Use the Monte Carlo technique to integrate numerically in three dimensions.

• Means and Moments and Exploring New Plotting Techniques, Part II 

Use the method of moments in a form that makes use of geometric symmetry as well as multiple integration.

CHAPTER 15 Technology Application Projects
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OVERVIEW In this chapter we extend the theory of integration to general curves and sur-

faces in space. The resulting line and surface integrals give powerful mathematical tools 

for science and engineering. Line integrals are used to find the work done by a force in 

moving an object along a path, and to find the mass of a curved wire with variable density. 

Surface integrals are used to find the rate of flow of a fluid across a surface and to describe 

the interactions of electric and magnetic forces. We present the fundamental theorems of 

vector integral calculus, and discuss their mathematical consequences and physical appli-

cations. The theorems of vector calculus are then shown to be generalized versions of the 

Fundamental Theorem of Calculus.

Integrals and Vector 
Fields

16

16.1 Line Integrals of Scalar Functions

To calculate the total mass of a wire lying along a curve in space, or to find the work done 

by a variable force acting along such a curve, we need a more general notion of integral 

than was defined in Chapter 5. We need to integrate over a curve C rather than over an 

interval 3a, b4 . These more general integrals are called line integrals (although path inte-

grals might be more descriptive). We make our definitions for space curves, with curves in 

the xy-plane being the special case with z-coordinate identically zero.

Suppose that ƒ(x, y, z) is a real-valued function we wish to integrate over the curve C 

lying within the domain of ƒ and parametrized by r(t) = g(t)i + h(t)j + k(t)k, a … t … b. 

The values of ƒ along the curve are given by the composite function ƒ(g(t), h(t), k(t)). We are 

going to integrate this composition with respect to arc length from t = a to t = b. To begin, 

we first partition the curve C into a finite number n of subarcs (Figure 16.1). The typical 

subarc has length ∆sk . In each subarc we choose a point (xk , yk , zk) and form the sum

z

y

x

r(t)

t = b

t = a
(xk, yk, zk)

Δsk

FIGURE 16.1 The curve r(t) partitioned 

into small arcs from t = a to t = b. The 

length of a typical subarc is ∆sk .
Sn = a

n

k = 1
 ƒ(xk , yk , zk) ∆sk ,

 value of ƒ at a point  length of a small 
 on the subarc subarc of the curve

()*(++)++*

which is similar to a Riemann sum. Depending on how we partition the curve C and pick 

(xk , yk , zk) in the kth subarc, we may get different values for Sn. If ƒ is continuous and the 

functions g, h, and k have continuous first derivatives, then these sums approach a limit as 

n increases and the lengths ∆sk approach zero. This leads to the following definition, 

which is similar to that for a single integral. In the definition, we assume that the norm of 

the partition approaches zero as n S q, so that the length of the longest subarc approaches 

zero.
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If the curve C is smooth for a … t … b (so v = dr>dt is continuous and never 0) and 

the function ƒ is continuous on C, then the limit in Equation (1) can be shown to exist. We 

can then apply the Fundamental Theorem of Calculus to differentiate the arc length equation,

s(t) = L
t

a

 � v(t) �  dt, 

to express ds in Equation (1) as ds = � v(t) �  dt and evaluate the integral of ƒ over C as

  LC

 ƒ(x, y, z) ds = L
b

a

 ƒ(g(t), h(t), k(t)) � v(t) �  dt. (2)

The integral on the right side of Equation (2) is just an ordinary definite integral, as 

defined in Chapter 5, where we are integrating with respect to the parameter t. The for-

mula evaluates the line integral on the left side correctly no matter what smooth parametri-

zation is used. Note that the parameter t defines a direction along the path. The starting 

point on C is the position r(a), and movement along the path is in the direction of increas-

ing t (see Figure 16.1).

Eq. (3) of Section 13.3  

with t0 = a

DEFINITION If ƒ is defined on a curve C given parametrically by r(t) =

g(t)i + h(t)j + k(t)k, a … t … b, then the line integral of ƒ over C is

  LC

 ƒ(x, y, z) ds = lim
nSq

  a
n

k = 1
 ƒ(xk , yk , zk) ∆sk ,  (1)

provided this limit exists.

ds

dt
= 0 v 0 = B adx

dt
b2

+ ady

dt
b2

+ adz

dt
b2

ƒ(r(t)) = ƒ(g(t), h(t), k(t))

How to Evaluate a Line Integral

To integrate a continuous function ƒ(x, y, z) over a curve C:

1. Find a smooth parametrization of C,

r(t) = g(t)i + h(t)j + k(t)k,  a … t … b.

2. Evaluate the integral as

 LC

 ƒ(x, y, z) ds = L
b

a

 ƒ(g(t), h(t), k(t) ) 0 v(t) 0  dt.

If ƒ has the constant value 1, then the integral of ƒ over C gives the length of C from 

t = a to t = b. We also write ƒ(r(t)) for the evaluation ƒ(g(t), h(t), k(t)) along the curve r.

EXAMPLE 1  Integrate ƒ(x, y, z) = x - 3y2 + z over the line segment C joining the 

origin to the point (1, 1, 1) (Figure 16.2).

Solution Since any choice of parametrization will give the same answer, we choose the 

simplest parametrization we can think of:

r(t) = t i + t j + t k,   0 … t … 1.

z

x

C

(1, 1, 0)

(1, 1, 1)

y

FIGURE 16.2 The integration path in 

Example 1.
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The components have continuous first derivatives and 0 v(t) 0 = 0 i + j + k 0  =  

212 + 12 + 12 = 23 is never 0, so the parametrization is smooth. The integral of ƒ  

over C is

  LC

 ƒ(x, y, z) ds = L
1

0

 ƒ(t, t, t)23 dt

 = L
1

0

 (t - 3t2 + t)23 dt

 = 23 L
1

0

 (2t - 3t2) dt = 23  c t2 - t3 d
0

1

= 0. 

Eq. (2), ds = 0 v(t) 0  dt = 23  dt

Additivity

Line integrals have the useful property that if a piecewise smooth curve C is made by join-

ing a finite number of smooth curves C1, C2, . . . , Cn end to end (Section 13.1), then the 

integral of a function over C is the sum of the integrals over the curves that make it up:

 LC

 ƒ ds = LC1

 ƒ ds + LC2

  ƒ ds +  g+  LCn

 ƒ ds.  (3)

EXAMPLE 2  Figure 16.3 shows another path from the origin to (1, 1, 1), formed 

from two line segments C1 and C2. Integrate ƒ(x, y, z) = x - 3y2 + z over C1 ∪ C2.

Solution We choose the simplest parametrizations for C1 and C2 we can find, calculat-

ing the lengths of the velocity vectors as we go along:

 C1: r(t) = t i + t j, 0 … t … 1; 0 v 0 = 212 + 12 = 22

 C2: r(t) = i + j + t k, 0 … t … 1; 0 v 0 = 202 + 02 + 12 = 1.

With these parametrizations we find that

  LC1∪C2

 ƒ(x, y, z) ds = LC1

 ƒ(x, y, z) ds + LC2

 ƒ(x, y, z) ds

 = L
1

0

 ƒ(t, t, 0)22 dt + L
1

0

 ƒ(1, 1, t) (1) dt

 = L
1

0

 (t - 3t2 + 0)22 dt + L
1

0

 (1 - 3 + t) (1) dt

 = 22  c t2

2
- t3 d

0

1

+ c t2

2
- 2t d

0

1

= -  
22
2

-
3
2

.  

Notice three things about the integrations in Examples 1 and 2. First, as soon as the 

components of the appropriate curve were substituted into the formula for ƒ, the integra-

tion became a standard integration with respect to t. Second, the integral of ƒ over C1 ∪ C2 

was obtained by integrating ƒ over each section of the path and adding the results. Third, 

the integrals of ƒ over C and C1 ∪ C2 had different values. We investigate this third obser-

vation in Section 16.3.

Eq. (3)

Eq. (2)

z

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

C1

C2
y

FIGURE 16.3 The path of integration in 

Example 2.
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EXAMPLE 3  Find the line integral of ƒ(x, y, z) = 2xy + 2z over the helix 

r(t) = cos t i + sin t j + t k, 0 … t … p.

Solution For the helix (Figure 16.4) we find v(t) = r′(t) = -sin t i + cos t j + k  and 0 v(t) 0  =
2(-sin t)2 + ( cos t)2 + 1 = 22. Evaluating the function ƒ at the point r(t), we 

obtain

ƒ(r(t)) = ƒ(cos t, sin t, t) = 2 cos t sin t + 2t =  sin 2t + 2t.

The line integral is given by

  LC
 ƒ(x, y, z) ds = L

p

0

1sin 2t + 2t222 dt

 = 22  c-  
1
2

 cos 2t +
2
3

 t3>2 d p
0

  =
222

3
  p3>2 ≈ 5.25.  

−1−1 −−11−−111−−−−−

z

y
x

1

11

11

FIGURE 16.4 A line integral is taken 

over a curve such as this helix from  

Example 3.

The value of the line integral along a path joining two points can change if you 

change the path between them.

Mass and Moment Calculations

We treat coil springs and wires as masses distributed along smooth curves in space. The 

distribution is described by a continuous density function d(x, y, z) representing mass per 

unit length. When a curve C is parametrized by r(t) = x(t)i + y(t)j + z(t)k, a … t … b, 

then x, y, and z are functions of the parameter t, the density is the function d(x(t), y(t), z(t)), 

and the arc length differential is given by

ds = B adx

dt
b2

+ ady

dt
b2

+ adz

dt
b2

 dt.

(See Section 13.3.) The spring’s or wire’s mass, center of mass, and moments are then 

calculated using the formulas in Table 16.1, with the integrations in terms of the parameter 

t over the interval 3a, b4 . For example, the formula for mass becomes

M = L
b

a

 d(x(t), y(t), z(t)) B adx

dt
b2

+ ady

dt
b2

+ adz

dt
b2

 dt.

These formulas also apply to thin rods, and their derivations are similar to those in Section 6.6. 

Notice how alike the formulas are to those in Tables 15.1 and 15.2 for double and triple inte-

grals. The double integrals for planar regions, and the triple integrals for solids, become line 

integrals for coil springs, wires, and thin rods.

Notice that the element of mass dm is equal to d ds in the table rather than d dV  as in 

Table 15.1, and that the integrals are taken over the curve C.

EXAMPLE 4  A slender metal arch, denser at the bottom than top, lies along the 

semicircle y2 + z2 = 1, z Ú 0, in the yz-plane (Figure 16.5). Find the center of the arch’s 

mass if the density at the point (x, y, z) on the arch is d(x, y, z) = 2 - z.

Solution We know that x = 0 and y = 0 because the arch lies in the yz-plane with its 

mass distributed symmetrically about the z-axis. To find z, we parametrize the circle as

r(t) = (cos t)j + (sin t)k,  0 … t … p.

z

y

x

1

1

center 

of mass

y2 + z2 �  1, z ≥ 0

(x, y, z )¯ ¯ ¯

� 1

FIGURE 16.5 Example 4 shows how to 

find the center of mass of a circular arch of 

variable density.
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For this parametrization,0 v(t) 0 = B adx

dt
b2

+ ady

dt
b2

+ adz

dt
b2

= 2(0)2 + (-sin t)2 + (cos t)2 = 1,

so ds = 0 v 0  dt = dt.

The formulas in Table 16.1 then give

 M = LC

 d ds = LC

 (2 - z) ds = L
p

0

(2 - sin t) dt = 2p - 2

 Mxy = LC

 z d ds = LC

 z (2 - z) ds = L
p

0

(sin t)(2 - sin t) dt

 = L
p

0

(2 sin t - sin2 t) dt =
8 - p

2
  Routine integration

 z =
Mxy

M
=

8 - p
2

# 1
2p - 2

=
8 - p
4p - 4

≈ 0.57.

With z to the nearest hundredth, the center of mass is (0, 0, 0.57). 

TABLE 16.1 Mass and moment formulas for coil springs, wires, and thin rods lying 

along a smooth curve C in space

Mass:  M = LC

 d ds   d = d(x, y, z) is the density at (x, y, z)

First moments about the coordinate planes:

Myz = LC

 x d ds,  Mxz = LC

 y d ds,  Mxy = LC

 z d ds

Coordinates of the center of mass:

x = Myz >M,  y = Mxz >M,  z = Mxy >M
Moments of inertia about axes and other lines:

 Ix = LC

 (y2 + z2)  d ds,  Iy = LC

 (x2 + z2)  d ds,    Iz = LC

 (x2 + y2)  d ds,

 IL = LC

 r2 d ds   r(x, y, z) = distance from the point (x, y, z) to line L

Line Integrals in the Plane

Line integrals for curves in the plane have a natural geometric interpretation. If C is a 

smooth curve in the xy-plane parametrized by r(t) = x(t)i + y(t)j, a … t … b, we gener-

ate a cylindrical surface by moving a straight line along C orthogonal to the plane, holding 

the line parallel to the z-axis, as in Figure 16.6. If z = ƒ(x, y) is a nonnegative continuous 

function over a region in the plane containing the curve C, then the graph of ƒ is a surface 

that lies above the plane. The cylinder cuts through this surface, forming a curve on it that 

lies above the curve C and follows its winding nature. The part of the cylindrical surface 

that lies beneath the surface curve and above the xy-plane forms a “curved wall” or “fence” 

z

y

x

t = a

t = b

(x, y)

height f (x, y)

Plane curve C
Δsk

FIGURE 16.6 The line integral 

1C
  ƒ ds gives the area of the portion of 

the cylindrical surface or “wall” beneath 

z = ƒ(x, y) Ú 0.
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standing on the curve C and orthogonal to the plane. At any point (x, y) along the curve, 

the height of the wall is ƒ(x, y). From the definition

 LC

 ƒ ds =  lim
nS  q

 a
n

k = 1

 ƒ(xk , yk) ∆sk ,

where ∆sk S 0 as n S q, we see that the line integral 1C
  ƒ ds is the area of the wall 

shown in the figure.

Graphs of Vector Equations

Match the vector equations in Exercises 1–8 with the graphs (a)–(h) 

given here.

 a.   b. 

y

z

x

1

−1

 

y

z

x

2

1

 c.   d. 

y

z

x

1 1

 

y

z

x

2

2

(2, 2, 2)

 e.   f. 

y

z

x

1

1

(1, 1, 1)

(1, 1, −1)

 

y

z

x

2

−2

−1

 g.   h. 

y

z

x

2

2

 

y

z

x

2

2

−2

 1. r(t) = t i + (1 - t)j,  0 … t … 1

 2. r(t) = i + j + t k,  -1 … t … 1

 3. r(t) = (2 cos t)i + (2 sin t)j,  0 … t … 2p

 4. r(t) = t i,  -1 … t … 1

 5. r(t) = t i + t j + t k,  0 … t … 2

 6. r(t) = t j + (2 - 2t)k,  0 … t … 1

 7. r(t) = (t2 - 1)j + 2t k,  -1 … t … 1

 8. r(t) = (2 cos t)i + (2 sin t)k,  0 … t … p

Evaluating Line Integrals over Space Curves

 9. Evaluate 1C
  (x + y) ds where C is the straight-line segment 

  x = t, y = (1 - t), z = 0, from (0, 1, 0) to (1, 0, 0).

 10. Evaluate 1C
 

 

(x - y + z - 2) ds where C is the straight-line 

 segment x = t, y = (1 - t), z = 1, from (0, 1, 1) to (1, 0, 1).

 11. Evaluate 1C
 

 

(xy + y + z) ds along the curve r(t) = 2ti +  

  tj + (2 - 2t)k, 0 … t … 1.

 12. Evaluate 1C
 2x2 + y2 ds along the curve r(t) = (4 cos t)i +  

(4 sin t)j + 3t k, -2p … t … 2p.

 13. Find the line integral of ƒ(x, y, z) = x + y + z over the straight-

line segment from (1, 2, 3) to (0, -1, 1).

 14. Find the line integral of ƒ(x, y, z) = 23> (x2 + y2 + z2)  over the 

curve r(t) = t i + t j + t k, 1 … t … q.

 15. Integrate ƒ(x, y, z) = x + 2y - z2 over the path from (0, 0, 0)  

to (1, 1, 1) (see accompanying igure) given by

 C1: r(t) = t i + t2 j,  0 … t … 1

 C2: r(t) = i + j + t k,  0 … t … 1

z

y

x

(a)
(1, 1, 0)

(1, 1, 1)
(0, 0, 0)

z

y

x

(b)

(0, 0, 0)

(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

C1

C1

C2

C2

C3

  The paths of integration for Exercises 15 and 16.

EXERCISES 16.1
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In Exercises 27–30, integrate ƒ over the given curve.

 27. ƒ(x, y) = x3>y, C: y = x2>2, 0 … x … 2

 28. ƒ(x, y) = (x + y2) >21 + x2, C: y = x2>2 from (1, 1 >2) to 

(0, 0)

 29. ƒ(x, y) = x + y, C: x2 + y2 = 4 in the irst quadrant from  

(2, 0) to (0, 2)

 30. ƒ(x, y) = x2 - y, C: x2 + y2 = 4 in the irst quadrant from 

(0, 2) to 122, 222
 31. Find the area of one side of the “winding wall” standing orthogo-

nally on the curve y = x2, 0 … x … 2, and beneath the curve on 

the surface ƒ(x, y) = x + 2y .

 32. Find the area of one side of the “wall” standing orthogonally on 

the curve 2x + 3y = 6, 0 … x … 6, and beneath the curve on the 

surface ƒ(x, y) = 4 + 3x + 2y.

Masses and Moments

 33. Mass of a wire Find the mass of a wire that lies along the curve 

r(t) = (t2 - 1)j + 2t k, 0 … t … 1, if the density is d = (3>2)t.

 34. Center of mass of a curved wire A wire of density 

d(x, y, z) = 152y + 2 lies along the curve r(t) = (t2 - 1)j +  

2t k, -1 … t … 1. Find its center of mass. Then sketch the curve 

and center of mass together.

 35. Mass of wire with variable density Find the mass of a thin 

wire lying along the curve r(t) = 22t i + 22t j + (4 - t2)k, 

0 … t … 1, if the density is (a) d = 3t and (b) d = 1.

 36. Center of mass of wire with variable density Find the center 

of mass of a thin wire lying along the curve r(t) = t i + 2t j +  

(2>3)t3>2
 k, 0 … t … 2, if the density is d = 325 + t.

 37. Moment of inertia of wire hoop A circular wire hoop of con-

stant density d lies along the circle x2 + y2 = a2 in the xy-plane. 

Find the hoop’s moment of inertia about the z-axis.

 38. Inertia of a slender rod A slender rod of constant density lies 

along the line segment r(t) = tj + (2 - 2t)k, 0 … t … 1, in the 

yz-plane. Find the moments of inertia of the rod about the three 

coordinate axes.

 39. Two springs of constant density A spring of constant density d 

lies along the helix

r(t) = (cos t)i + (sin t)j + t  k,  0 … t … 2p.

a. Find Iz.

b. Suppose that you have another spring of constant density d 

that is twice as long as the spring in part (a) and lies along the 

helix for 0 … t … 4p. Do you expect Iz for the longer spring 

to be the same as that for the shorter one, or should it be dif-

ferent? Check your prediction by calculating Iz for the longer 

spring.

 40. Wire of constant density A wire of constant density d = 1 lies 

along the curve

 r(t) = (t cos t)i + (t sin t)j + 1222>32t3>2 k,  0 … t … 1.

  Find z and Iz .

 41. The arch in Example 4 Find Ix for the arch in Example 4.

 16. Integrate ƒ(x, y, z) = x + 2y - z2 over the path from (0, 0, 0) to 

(1, 1, 1) (see accompanying igure) given by

 C1: r(t) = t k,  0 … t … 1

 C2: r(t) = t j + k,  0 … t … 1

 C3: r(t) = t i + j + k,  0 … t … 1

 17. Integrate ƒ(x, y, z) = (x + y + z)> (x2 + y2 + z2)  over the path 

r(t) = t i + t j + t k, 0 6 a … t … b.

 18. Integrate ƒ(x, y, z) = -2x2 + z2 over the circle

r(t) = (a cos t)j + (a sin t)k,   0 … t … 2p.

Line Integrals over Plane Curves

 19. Evaluate 1C
  x ds, where C is

a. the straight-line segment x = t, y = t>2, from (0, 0) to (4, 2).

b. the parabolic curve x = t, y = t2, from (0, 0) to (2, 4).

 20. Evaluate 1C
 2x + 2y ds, where C is

a. the straight-line segment x = t, y = 4t, from (0, 0) to (1, 4).

b. C1 ∪ C2; C1 is the line segment from (0, 0) to (1, 0) and C2 is 

the line segment from (1, 0) to (1, 2).

 21. Find the line integral of ƒ(x, y) = yex2

 along the curve 

r(t) = 4t i - 3t j, -1 … t … 2.

 22. Find the line integral of ƒ(x, y) = x - y + 3 along the curve 

r(t) = (cos t)i + (sin t)j, 0 … t … 2p.

 23. Evaluate  LC

  
x2

y4>3 ds, where C is the curve x = t2, y = t3, for 

  1 … t … 2.

 24. Find the line integral of ƒ(x, y) = 2y>x along the curve 

r(t) = t3i + t4j, 1>2 … t … 1.

 25. Evaluate 1C
 1x + 2y2 ds where C is given in the accompanying 

igure.

x

y

y = x2

y = x

(0, 0)

(1, 1)
C

 26. Evaluate  LC

 
1

x2 + y2 + 1
 ds where C is given in the accompany-

ing igure.

x

y

(0, 0)

(0, 1)

(1, 0)

(1, 1)
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 42. Center of mass and moments of inertia for wire with  variable 

density Find the center of mass and the moments of inertia 

about the coordinate axes of a thin wire lying along the curve

r(t) = t i +
222

3
 t3>2 j +

t2

2
  k,  0 … t … 2,

  if the density is d = 1>(t + 1).

COMPUTER EXPLORATIONS

In Exercises 43–46, use a CAS to perform the following steps to 

evaluate the line integrals.

a. Find ds = 0 v(t) 0  dt for the path r(t) = g(t)i + h(t)j + k(t)k.

b. Express the integrand ƒ(g(t), h(t), k(t)) 0 v(t) 0  as a function of 

the parameter t.

c. Evaluate 1C
  ƒ ds using Equation (2) in the text.

 43. ƒ(x, y, z) = 21 + 30x2 + 10y ; r(t) = t i + t2 j + 3t2 k, 

0 … t … 2

 44. ƒ(x, y, z) = 21 + x3 + 5y3 ; r(t) = t i +
1
3

 t2
 j + 2t k,  

  0 … t … 2

 45. ƒ(x, y, z) = x2y - 3z2 ; r(t) = (cos 2t)i + (sin 2t)j + 5tk,

0 … t … 2p

 46. ƒ(x, y, z) = a1 +
9

4
 z1>3b1>4

; r(t) = (cos 2t)i + (sin 2t)j +  

  t5>2 k, 0 … t … 2p

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux

Gravitational and electric forces have both a direction and a magnitude. They are repre-

sented by a vector at each point in their domain, producing a vector field. In this section 

we show how to compute the work done in moving an object through such a field by using 

a line integral involving the vector field. We also discuss velocity fields, such as the vector 

field representing the velocity of a flowing fluid in its domain. A line integral can be used 

to find the rate at which the fluid flows along or across a curve within the domain.

Vector Fields

Suppose a region in the plane or in space is occupied by a moving fluid, such as air or 

water. The fluid is made up of a large number of particles, and at any instant of time, a 

particle has a velocity v. At different points of the region at a given (same) time, these 

velocities can vary. We can think of a velocity vector being attached to each point of the 

fluid representing the velocity of a particle at that point. Such a fluid flow is an example 

of a vector field. Figure 16.7 shows a velocity vector field obtained from air flowing 

around an airfoil in a wind tunnel. Figure 16.8 shows a vector field of velocity vectors 

along the streamlines of water moving through a contracting channel. Vector fields are also 

associated with forces such as gravitational attraction (Figure 16.9), and with magnetic 

fields, electric fields, and there are also purely mathematical fields.

Generally, a vector field is a function that assigns a vector to each point in its domain. 

A vector field on a three-dimensional domain in space might have a formula like

F(x, y, z) = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k.

The vector field is continuous if the component functions M, N, and P are continuous; it 

is differentiable if each of the component functions is differentiable. The formula for a 

field of two-dimensional vectors could look like

F(x, y) = M(x, y)i + N(x, y)j.

We encountered another type of vector field in Chapter 13. The tangent vectors T and 

normal vectors N for a curve in space both form vector fields along the curve. Along a 

curve r(t) they might have a component formula similar to the velocity field expression

v(t) = ƒ(t)i + g(t)j + h(t)k.

If we attach the gradient vector ∇ƒ of a scalar function ƒ(x, y, z) to each point of a 

level surface of the function, we obtain a three-dimensional field on the surface. If we attach 

the velocity vector to each point of a flowing fluid, we have a three-dimensional field 

FIGURE 16.7 Velocity vectors of a flow 

around an airfoil in a wind tunnel.

FIGURE 16.8 Streamlines in a contract-

ing channel. The water speeds up as the 

channel narrows and the velocity vectors 

increase in length.
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defined on a region in space. These and other fields are illustrated in Figures 16.7–16.16.  

To sketch the fields, we picked a representative selection of domain points and drew the 

vectors attached to them. The arrows are drawn with their tails, not their heads, attached to 

the points where the vector functions are evaluated.

Gradient Fields

The gradient vector of a differentiable scalar-valued function at a point gives the direction 

of greatest increase of the function. An important type of vector field is formed by all the 

gradient vectors of the function (see Section 14.5). We define the gradient field of a dif-

ferentiable function ƒ(x, y, z) to be the field of gradient vectors

∇ƒ =
0ƒ

0x
  i +

0ƒ

0y
  j +

0ƒ

0z
  k.

At each point (x, y, z), the gradient field gives a vector pointing in the direction of greatest 

increase of ƒ, with magnitude being the value of the directional derivative in that direction. 

The gradient field might represent a force field, or a velocity field that gives the motion of 

y

z

x

FIGURE 16.9 Vectors in a gravitational 

field point toward the center of mass that 

gives the source of the field.

z

x

y

FIGURE 16.10 A surface might represent a filter, or a net, or a 

parachute, in a vector field representing water or wind flow veloc-

ity vectors. The arrows show the direction of fluid flow, and their 

lengths indicate speed.

f (x, y, z) �  c

FIGURE 16.11 The field of 

 gradient vectors ∇ƒ on a level surface 

ƒ(x, y, z) = c. The function ƒ is constant 

on the surface, and each vector points in 

the direction where ƒ is increasing fastest.

y

x

FIGURE 16.12 The radial field 

F = x i + y j formed by the position vectors 

of points in the plane. Notice the convention 

that an arrow is drawn with its tail, not its 

head, at the point where F is evaluated.

x

y

FIGURE 16.13 A “spin” field of rotat-

ing unit vectors

F = (-y i + x j)> (x2 + y2)1>2
in the plane. The field is not defined at the 

origin.

z

y

x

x2 + y2
 ≤ a2

z = a2
 − r2

0

FIGURE 16.14 The flow of fluid 

in a long cylindrical pipe. The vectors 

v = (a2 - r2)k inside the cylinder that 

have their bases in the xy-plane have their 

tips on the paraboloid z = a2 - r2.



964 Chapter 16 Integrals and Vector Fields

a fluid, or the flow of heat through a medium, depending on the application being consid-

ered. In many physical applications, ƒ represents a potential energy, and the gradient vec-

tor field indicates the corresponding force. In such situations, ƒ is often taken to be nega-

tive, so that the force gives the direction of decreasing potential energy.

EXAMPLE 1  Suppose that a material is heated, that the resulting temperature T at 

each point (x, y, z) in a region of space is given by

T = 100 - x2 - y2 - z2,

and that F(x, y, z) is defined to be the gradient of T. Find the vector field F.

Solution The gradient field F is the field F = ∇T = -2x i - 2y j - 2z k. At each point 

in the region, the vector field F gives the direction for which the increase in temperature 

is greatest. The vectors point toward the origin, where the temperature is greatest. See 

Figure 16.17. 

Line Integrals of Vector Fields

In Section 16.1 we defined the line integral of a scalar function ƒ(x, y, z) over a path C. We 

turn our attention now to the idea of a line integral of a vector field F along the curve C. 

Such line integrals have important applications in studying fluid flows, work and energy, 

and electrical or gravitational fields.

Assume that the vector field F = M(x, y, z) i + N(x, y, z) j + P(x, y, z) k has continu-

ous components, and that the curve C has a smooth parametrization r(t) = g(t) i +
h(t) j + k(t) k, a … t … b. As discussed in Section 16.1, the parametrization r(t) defines a 

direction (or orientation) along C which we call the forward direction. At each point 

along the path C, the tangent vector T = dr>ds = v>  0 v 0  is a unit vector tangent to the 

path and pointing in this forward direction. (The vector v = dr>dt is the velocity vector 

tangent to C at the point, as discussed in Sections 13.1 and 13.3.) The line integral of the 

vector field is the line integral of the scalar tangential component of F along C. This tan-

gential component is given by the dot product

F # T = F # dr
ds

,

so we are led to the following definition.

FIGURE 16.16 Data from NASA’s QuikSCAT satellite were used to create this representation of 

windspeed and wind direction in Hurricane Irene approximately six hours before it made landfall in 

North Carolina on August 27, 2011. The arrows show wind direction, while speed is indicated by 

color (rather than length). The maximum wind speeds (over 130 km>hour) occurred over a region 

too small to be resolved in this illustration.

y

x
0

FIGURE 16.15 The velocity vectors v(t) 

of a projectile’s motion make a vector field 

along the trajectory.

z

y

x

FIGURE 16.17 The vectors in a temper-

ature gradient field point in the direction 

of greatest increase in temperature. In this 

case they are pointing toward the origin.
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DEFINITION Let F be a vector field with continuous components defined 

along a smooth curve C parametrized by r(t), a … t … b. Then the line integral 

of F along C is

  LC

 F # T ds = LC

 aF # dr
ds
b  ds = LC

 F # dr. (1)

We evaluate line integrals of vector fields in a way similar to how we evaluate line 

integrals of scalar functions (Section 16.1).

Evaluating the Line Integral of F = M i + N j + P k Along 

C: r(t) = g (t)i + h(t)j + k(t)k

1. Express the vector field F along the parametrized curve C as F(r(t)) by substi-

tuting the components x = g(t), y = h(t), z = k(t) of r into the scalar compo-

nents M(x, y, z), N(x, y, z), P(x, y, z) of F.

2. Find the derivative (velocity) vector dr>dt .

3. Evaluate the line integral with respect to the parameter t, a … t … b, to 

obtain

  LC

 F # dr = L
b

a

 F(r(t)) # dr
dt

 dt . (2)

EXAMPLE 2  Evaluate 1C
  F # dr, where F(x, y, z) = z i + xy j - y2 k along the 

curve C given by r(t) = t2 i + t j + 2t  k, 0 … t … 1 and shown in Figure 16.18.

Solution We have

F(r(t)) = 2t  i + t3 j - t2 k  

and

dr
dt

= 2t i + j +
1

22t
 k.

Thus,

  LC

 F # dr = L
1

0

 F(r(t)) # dr
dt

 dt   Eq. (2)

 = L
1

0

 a2t3>2 + t3 -
1
2

 t3>2b  dt

 = c a3
2
b a2

5
 t5>2b +

1
4

 t4 d 1
0

=
17
20

. 

z = 2t, xy = t3, -y2 = - t2

y

x

z

FIGURE 16.18 The curve (in red) winds 

through the vector field in Example 2. The 

line integral is determined by the vectors 

that lie along the curve.

Line Integrals with Respect to dx, dy, or dz

When analyzing forces or flows, it is often useful to consider each component direction 

separately. For example, when analyzing the effect of a gravitational force, we might want 

to consider motion and forces in the vertical direction, while ignoring horizontal motions. 

Or we might be interested only in the force exerted horizontally by water pushing against 



966 Chapter 16 Integrals and Vector Fields

the face of a dam or in wind affecting the course of a plane. In such situations we want to 

evaluate a line integral of a scalar function with respect to only one of the coordinates, 

such as 1C
  M dx. This type of integral is not the same as the arc length line integral 

1C
  M ds we defined in Section 16.1, since it picks out displacement in the direction of 

only one coordinate. To define the integral 1C
  M dx for the scalar function M(x, y, z), we 

specify a vector field F = M(x, y, z)i having a component only in the x-direction, and 

none in the y- or z-direction. Then, over the curve C parametrized by 

r(t) = g(t)i + h(t)j + k(t)k for a … t … b, we have x = g(t), dx = g′(t) dt, and

 F # dr = F # dr
dt

 dt = M(x, y, z)i # (g′(t)i + h′(t)j + k′(t)k)  dt

 = M(x, y, z) g′(t) dt = M(x, y, z) dx.

As in the definition of the line integral of F along C, we define

 LC

 M(x, y, z) dx = LC

 F # dr, where F = M(x, y, z) i.

In the same way, by defining F = N(x, y, z) j with a component only in the y-direction, or 

F = P(x, y, z)k with a component only in the z-direction, we obtain the line integrals 

1C
  N dy and 1C

  P dz. Expressing everything in terms of the parameter t along the curve 

C, we have the following formulas for these three integrals:

   LC

 M(x, y, z) dx = L
b

a

 M(g(t), h(t), k(t)) g′(t) dt (3)

   LC

 N(x, y, z) dy = L
b

a

 N(g(t), h(t), k(t)) h′(t) dt  (4)

   LC

 P(x, y, z) dz = L
b

a

 P(g(t), h(t), k(t)) k′(t) dt  (5)

It often happens that these line integrals occur in combination, and we abbreviate the nota-

tion by writing

 LC

 M(x, y, z) dx + LC

 N(x, y, z) dy + LC

 P(x, y, z) dz = LC

 M dx + N dy + P dz.

Line Integral Notation

The commonly occurring expression

 LC

M dx + N dy + P dz

is a short way of expressing the sum of 

three line integrals, one for each coordi-

nate direction:

  LC

M(x, y, z) dx + LC

N(x, y, z) dy

 + LC

P(x, y, z) dz.

To evaluate these integrals, we param-

etrize C as g(t)i + h(t)j + k(t)k and use 

Equations (3), (4), and (5).

EXAMPLE 3  Evaluate the line integral 1C 
-y dx + z dy + 2x dz, where C is the 

helix r(t) = (cos t)i + (sin t)j + t k, 0 … t … 2p.

Solution We express everything in terms of the parameter t, so x = cos t, y = sin t, 

z = t, and dx = -sin t dt, dy = cos t dt, dz = dt. Then,

  LC

 -y dx + z dy + 2x dz = L
2p

0

 3 (-sin t)(-sin t) + t cos t + 2 cos t4  dt

 = L
2p

0

 32 cos t + t cos t + sin2 t4  dt

 = c 2 sin t + (t sin t + cos t) + a t

2
-

sin 2t

4
b d 2p

0

 = 30 + (0 + 1) + (p - 0)4 - 30 + (0 + 1) + (0 - 0)4
= p.  
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Work Done by a Force over a Curve in Space

Suppose that the vector field F = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k represents a force 

throughout a region in space (it might be the force of gravity or an electromagnetic force) 

and that

r(t) = g(t)i + h(t)j + k(t)k,   a … t … b,

is a smooth curve in the region. The formula for the work done by the force in moving an 

object along the curve is motivated by the same kind of reasoning we used in Chapter 6 to 

derive the ordinary single integral for the work done by a continuous force of magnitude 

F(x) directed along an interval of the x-axis. For a curve C in space, we define the work 

done by a continuous force field F to move an object along C from a point A to another 

point B as follows.

We divide C into n subarcs Pk - 1Pk with lengths ∆sk , starting at A and ending at B. We 

choose any point (xk , yk , zk) in the subarc Pk - 1Pk and let T(xk , yk , zk) be the unit tangent 

vector at the chosen point. The work Wk done to move the object along the subarc Pk - 1Pk is 

approximated by the tangential component of the force F(xk , yk , zk) times the arclength 

∆sk approximating the distance the object moves along the subarc (see Figure 16.19). The 

total work done in moving the object from point A to point B is then approximated by 

summing the work done along each of the subarcs, so

W ≈ a
n

k = 1

 Wk ≈ a
n

k = 1

 F(xk , yk , zk) # T(xk , yk , zk) ∆sk .

For any subdivision of C into n subarcs, and for any choice of the points (xk , yk , zk) within 

each subarc, as n S q and ∆sk S 0, these sums approach the line integral

 LC

 F # T ds.

This is the line integral of F along C, which now defines the total work done.

Pk−1

Tk

Fk . Tk

Fk
Pk

(xk, yk, zk)

FIGURE 16.19 The work done along 

the subarc shown here is approximately 

Fk
# Tk ∆sk , where Fk = F(xk , yk , zk) and 

Tk = T(xk , yk , zk).

DEFINITION Let C be a smooth curve parametrized by r(t), a … t … b, and 

let F be a continuous force field over a region containing C. Then the work done 

in moving an object from the point A = r(a) to the point B = r(b) along C is

 W = LC

 F # T ds = L
b

a

 F(r(t)) # dr
dt

 dt. (6)

The sign of the number we calculate with this integral depends on the direction in 

which the curve is traversed. If we reverse the direction of motion, then we reverse the 

direction of T in Figure 16.20 and change the sign of F # T and its integral.

Using the notations we have presented, we can express the work integral in a variety 

of ways, depending upon what seems most suitable or convenient for a particular discus-

sion. Table 16.2 shows five ways we can write the work integral in Equation (6). In the 

table, the field components M, N, and P are functions of the intermediate variables x, y, 

and z, which in turn are functions of the independent variable t along the curve C in the 

vector field. So along the curve, x = g (t), y = h (t), and z = k (t) with dx = g′(t) dt, 

dy = h′(t) dt, and dz = k′(t) dt.

T        

F

A

B t = b

t = a

FIGURE 16.20 The work done by a 

force F is the line integral of the scalar 

component F # T over the smooth curve 

from A to B.
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TABLE 16.2  Different ways to write the work integral for F = M i + N j + P k  

over the curve C : r(t) = g  (t)  i + h(t)  j + k (t)  k, a " t " b

 W = LC

 F # T ds The deinition

     = LC

 F # dr  Vector diferential form

     = L
b

a

 F # dr
dt

 dt Parametric vector evaluation

     = L
b

a

 1M g′(t) + N h′(t) + P k′(t)2 dt Parametric scalar evaluation

     = LC

 M dx + N dy + P dz Scalar diferential form

EXAMPLE 4  Find the work done by the force field F = (y - x2)i + (z - y2)j +  
(x - z2)k in moving an object along the curve r(t) = t i + t2j + t3k, 0 … t … 1, from 

(0, 0, 0) to (1, 1, 1) (Figure 16.21).

Solution First we evaluate F on the curve r(t):

F = (y - x2)i + (z - y2)j + (x - z2)k

= (t2 - t2)i + (t3 - t4)j + (t - t6)k.
 (+)+*
 0

Then we find dr >dt,

dr
dt

=
d

dt
 (t i + t2

 j + t3 k) = i + 2t j + 3t2 k.

Finally, we find F # dr>dt and integrate from t = 0 to t = 1:

 F # dr
dt

= 3 (t3 - t4)j + (t - t6)k4 # (i + 2t j + 3t2 k)

 = (t3 - t4)(2t) + (t - t6) (3t2) = 2t4 - 2t5 + 3t3 - 3t8.  Evaluate dot product.

So,

 Work = L
b

a

 F # dr
dt

 dt = L
1

0

 (2t4 - 2t5 + 3t3 - 3t8) dt

  = c 2
5

 t5 -
2
6

 t6 +
3
4

 t4 -
3
9

 t9 d
0

1

=
29
60

.  

Substitute x = t, y = t2, z = t3.

y

z

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

r(t) = ti + t2j + t3k

FIGURE 16.21 The curve in Example 4.

EXAMPLE 5  Find the work done by the force field F = x i + y j + z k in moving an 

object along the curve C parametrized by r(t) = cos(pt)i + t2j + sin(pt)k, 0 … t … 1.

Solution We begin by writing F along C as a function of t,

F(r(t)) = cos(pt)i + t2j + sin(pt)k.

Next we compute dr >dt,

dr
dt

= -p sin(pt)i + 2t j + p cos(pt)k.
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DEFINITION If r(t) parametrizes a smooth curve C in the domain of a continu-

ous velocity field F, the flow along the curve from A = r(a) to B = r(b) is

 Flow = LC

 F # T ds.  (7)

The integral is called a flow integral. If the curve starts and ends at the same 

point, so that A = B, the flow is called the circulation around the curve.

The direction we travel along C matters. If we reverse the direction, then T is replaced 

by -T and the sign of the integral changes. We evaluate flow integrals the same way we 

evaluate work integrals.

We then calculate the dot product,

F(r(t)) # dr
dt

= -p sin(pt) cos(pt) + 2t3 + p sin(pt) cos(pt) = 2t3.

The work done is the line integral

  L
b

a

 F(r(t)) # dr
dt

 dt = L
1

0

 2t3 dt =
t4

2
d 1

0

=
1
2

. 

Flow Integrals and Circulation for Velocity Fields

Suppose that F represents the velocity field of a fluid flowing through a region in space (a 

tidal basin or the turbine chamber of a hydroelectric generator, for example). Under these 

circumstances, the integral of F # T along a curve in the region gives the fluid’s flow 

along, or circulation around, the curve. For instance, the vector field in Figure 16.12 

gives zero circulation around the unit circle in the plane. By contrast, the vector field in 

Figure 16.13 gives a nonzero circulation around the unit circle.

EXAMPLE 6  A fluid’s velocity field is F = x i + z  j + y k. Find the flow along the 

helix r(t) = (cos t)i + (sin t)j + t k, 0 … t … p>2.

Solution We evaluate F on the curve r(t),

F = x i + z  j + y k = (cos t)i + t j + (sin t)k  Substitute x = cos t, z = t, y = sin t.

and then find dr >dt:

dr
dt

= (-sin t)i + (cos t)j + k.

The dot product of F with dr>dt is

 F #  
dr
dt

= (cos t)(-sin t) + (t)(cos t) + (sin t)(1)

 = -sin t cos t + t cos t + sin t.

Finally, we integrate F # (dr>dt) from t = 0 to t =
p
2

 :

 Flow = L
t = b

t = a

 F #  
dr
dt

 dt = L
p>2

0

 (-sin t cos t + t cos t + sin t) dt

  = c cos2 t
2

+ t sin t d
0

p>2
= a0 +

p
2
b - a1

2
+ 0b =

p
2

-
1
2

. 



970 Chapter 16 Integrals and Vector Fields

EXAMPLE 7  Find the circulation of the field F = (x - y)i + x j around the circle 

r(t) = (cos t)i + (sin t)j, 0 … t … 2p (Figure 16.22).

Solution On the circle, F = (x - y)i + xj = (cos t - sin t)i + (cos t)j, and

dr
dt

= (-sin t)i + (cos t)j.

Then

F #  
dr
dt

= -sin t cos t + sin2 t + cos2 t

 (++)++*
 1

gives

 Circulation = L
2p

0

 F #  
dr
dt

 dt = L
2p

0

 (1 - sin t cos t) dt

 = c t -
sin2 t

2
d

0

2p

= 2p.

As Figure 16.22 suggests, a fluid with this velocity field is circulating counterclockwise 

around the circle, so the circulation is positive. 

x

y

FIGURE 16.22 The vector field F and 

curve r(t) in Example 7.

DEFINITION If C is a smooth simple closed curve in the domain of a continu-

ous vector field F = M(x, y)i + N(x, y)j in the plane, and if n is the outward-

pointing unit normal vector on C, the flux of F across C is

 Flux of F across C = LC

 F # n ds.  (8)

Flux Across a Simple Closed Plane Curve

A curve in the xy-plane is simple if it does not cross itself (Figure 16.23). When a curve 

starts and ends at the same point, it is a closed curve or loop. To find the rate at which a 

fluid is entering or leaving a region enclosed by a smooth simple closed curve C in the xy-

plane, we calculate the line integral over C of F # n, the scalar component of the fluid’s 

velocity field in the direction of the curve’s outward-pointing normal vector. We use only 

the normal component of F, while ignoring the tangential component, because the normal 

component leads to the flow across C. The value of this integral is the flux of F across C. 

Flux is Latin for flow, but many flux calculations involve no motion at all. When F is an 

electric or magnetic field, for instance, the integral of F # n is still called the flux of the 

field across C.

Notice the difference between flux and circulation. The flux of F across C is the line 

integral with respect to arc length of F # n, the scalar component of F in the direction of 

the outward normal. The circulation of F around C is the line integral with respect to arc 

length of F # T, the scalar component of F in the direction of the unit tangent vector. Flux 

is the integral of the normal component of F; circulation is the integral of the tangential 

component of F. In Section 16.6 we define flux across a surface.

To evaluate the integral for flux in Equation (8), we begin with a smooth parametrization

x = g(t),   y = h(t),   a … t … b, 

Simple,

closed

Not simple,

closed

Simple,

not closed

Not simple,

not closed

FIGURE 16.23 Distinguishing curves 

that are simple or closed. Closed curves 

are also called loops.
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that traces the curve C exactly once as t increases from a to b. We can find the outward unit 

normal vector n by crossing the curve’s unit tangent vector T with the vector k. But which 

order do we choose, T * k or k * T? Which one points outward? It depends on which way 

C is traversed as t increases. If the motion is clockwise, k * T points outward; if the motion 

is counterclockwise, T * k points outward (Figure 16.24). The usual choice is n = T * k, 

the choice that assumes counterclockwise motion. Thus, although the value of the integral in 

Equation (8) does not depend on which way C is traversed, the formulas we are about to 

derive for computing n and evaluating the integral assume counterclockwise motion.

In terms of components,

n = T * k = adx

ds
  i +

dy

ds
  jb * k =

dy

ds
  i -

dx

ds
  j.  4 i j k

dx

ds

dy

ds
0

0 0 1

4
If F = M(x, y)i + N(x, y)j, then

F # n = M(x, y) 
dy

ds
- N(x, y) 

dx

ds
.

Hence,

 LC

 F # n ds = LC

 aM  
dy

ds
- N  

dx

ds
b  ds = F

C

 M dy - N dx.

We put a directed circle  on the last integral as a reminder that the integration around the 

closed curve C is to be in the counterclockwise direction. To evaluate this integral, we 

express M, dy, N, and dx in terms of the parameter t and integrate from t = a to t = b. We 

do not need to know n or ds explicitly to find the flux.

T

z

y

x
k

C

T

z

y

x
k

C

For clockwise motion,

k × T points outward.

For counterclockwise

motion, T × k points

outward.

k × T

T × k

FIGURE 16.24 To find an outward 

unit normal vector for a smooth simple 

curve C in the xy-plane that is traversed 

counterclockwise as t increases, we take 

n = T * k. For clockwise motion, we 

take n = k * T.

Calculating Flux Across a Smooth Closed Plane Curve

 Flux of F = M i + N j across C = F
C

 M dy - N dx  (9)

The integral can be evaluated from any smooth parametrization x = g(t),

y = h(t),  a … t … b, that traces C counterclockwise exactly once.

EXAMPLE 8  Find the flux of F = (x - y)i + xj across the circle x2 + y2 = 1 in 

the xy-plane. (The vector field and curve were shown previously in Figure 16.22.)

Solution The parametrization r(t) = (cos t)i + (sin t)j, 0 … t … 2p, traces the circle 

counterclockwise exactly once. We can therefore use this parametrization in Equation (9). 

With

 M = x - y = cos t - sin t,    dy = d(sin t) = cos t dt,

 N = x = cos t,    dx = d(cos t) = -sin t dt,

we find

 Flux = F
C

 M dy - N dx = L
2p

0

 (cos2 t - sin t cos t + cos t sin t) dt  Eq. (9)

 = L
2p

0

 cos2 t dt = L
2p

0

 
1 + cos 2t

2
 dt = c t

2
+

sin 2t

4
d

0

2p

= p.

The flux of F across the circle is p. Since the answer is positive, the net flow across the 

curve is outward. A net inward flow would have given a negative flux. 
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Vector Fields

Find the gradient fields of the functions in Exercises 1–4.

 1. ƒ(x, y, z) = (x2 + y2 + z2)-1>2
 2. ƒ(x, y, z) = ln2x2 + y2 + z2

 3. g(x, y, z) = e 

z - ln (x2 + y2)

 4. g(x, y, z) = xy + yz + xz

 5. Give a formula F = M(x, y)i + N(x, y)j for the vector ield in the 

plane that has the property that F points toward the origin with 

magnitude inversely proportional to the square of the distance 

from (x, y) to the origin. (The ield is not deined at (0, 0).)

 6. Give a formula F = M(x, y)i + N(x, y)j for the vector ield in the 

plane that has the properties that F = 0 at (0, 0) and that at any 

other point (a, b), F is tangent to the circle x2 + y2 = a2 + b2 

and points in the clockwise direction with magnitude 0F 0  =
  2a2 + b2.

Line Integrals of Vector Fields

In Exercises 7–12, find the line integrals of F from (0, 0, 0) to (1, 1, 1) 

over each of the following paths in the accompanying figure.

a. The straight-line path C1: r(t) = t i + t j + t k,  0 … t … 1

b. The curved path C2: r(t) = t i + t2 j + t4 k,  0 … t … 1

c. The path C3 ∪ C4 consisting of the line segment from (0, 0, 0) 

to (1, 1, 0) followed by the segment from (1, 1, 0) to (1, 1, 1)

 7. F = 3y i + 2x j + 4z  k 8. F = 31> (x2 + 1) 4j
 9. F = 2z  i - 2x j + 2y k 10. F = xy i + yz  j + xz  k

 11. F = (3x2 - 3x)i + 3z  j + k

 12. F = ( y + z)i + (z + x)j + (x + y)k

z

y

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)C1

C2

C3

C4

Line Integrals with Respect to x, y, and z

In Exercises 13–16, find the line integrals along the given path C.

 13.  LC

 (x - y) dx, where C: x = t, y = 2t + 1, for 0 … t … 3

 14.  LC

  
x
y dy, where C: x = t, y = t2, for 1 … t … 2

 15.  LC

 (x2 + y2) dy, where C is given in the accompanying igure

x

y

C

(0, 0) (3, 0)

(3, 3)

 16.  LC

 2x + y dx, where C is given in the accompanying igure

x

y

(0, 0)

(0, 3) (1, 3)
C

y = 3x

 17. Along the curve r(t) = t i - j + t2 k, 0 … t … 1, evaluate each 

of the following integrals.

a.  LC

 (x + y - z) dx  b.  LC

 (x + y - z) dy

c.  LC

 (x + y - z) dz

 18. Along the curve r(t) = (cos t)i + (sin t)j - (cos t)k, 0 … t … p, 

evaluate each of the following integrals.

a.  LC

 xz dx  b.  LC

 xz dy  c.  LC

 xyz dz

Work

In Exercises 19–22, find the work done by F over the curve in the 

direction of increasing t.

 19. F = xy i + y j - yz  k

  r(t) = t i + t2
 j + t k,  0 … t … 1

 20. F = 2y i + 3x j + (x + y)k 

  r(t) = (cos t)i + (sin t)j + (t>6)k,  0 … t … 2p

 21. F = z  i + x j + y k 

  r(t) = (sin t)i + (cos t)j + t  k,  0 … t … 2p

 22. F = 6z  i + y2
 j + 12x k 

  r(t) = (sin t)i + (cos t)j + (t>6)k,  0 … t … 2p

EXERCISES 16.2
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 38. The low of a gas with a density of d = 0.3 kg>m2 over the 

closed curve r(t) = (cos t)i + (sin t)j, 0 … t … 2p, is given by 

the  vector ield F = dv, where v = x2i - yj is a velocity ield 

 measured in meters per second. Find the lux of F across the curve 

r(t).

 39. Find the low of the velocity ield F = y2i + 2xyj along each of 

the following paths from (0, 0) to (2, 4).

a. 

x

y

(0, 0)

(2, 4)

2

y = 2x

 b. 

x

y

(0, 0)

(2, 4)

2

y = x2

c. Use any path from (0, 0) to (2, 4) diferent from parts (a)  

and (b).

 40. Find the circulation of the ield F = y i + (x + 2y)j around each 

of the following closed paths.

a. 

x

y

(1, 1)

(1, −1)

(−1, 1)

(−1, −1)

b. 

x

y x2 + y2 = 4

c. Use any closed path diferent from parts (a) and (b).

 41. Find the work done by the force F = y2i + x3j, where force 

is measured in newtons, in moving an object over the curve 

r(t) = 2ti + t2j, 0 … t … 2, where distance is measured in 

 meters.

 42. Find the work done by the force F = eyi + (ln x)j + 3z k,  

where force is measured in newtons, in moving an object over 

the curve r(t) = eti + (ln  t)j + t2k, 1 … t … e, where distance 

is measured in meters.

 43. Find the low of the velocity ield F =
x

y + 1
 i +

y

x + 1
 j, 

  where velocity is measured in meters per second, over the curve 

r(t) = t2i + tj, 0 … t … 1.

Line Integrals in the Plane

 23. Evaluate 1C
  xy dx + (x + y) dy along the curve y = x2 from 

  (-1, 1) to (2, 4).

 24. Evaluate 1C
 (x - y) dx + (x + y) dy counterclockwise around 

the triangle with vertices (0, 0), (1, 0), and (0, 1).

 25. Evaluate 1C
 F # T ds for the vector ield F = x2 i - y j along the 

  curve x = y2 from (4, 2) to (1, -1).

 26. Evaluate 1C
 F # d r for the vector ield F = y i - x j counter-

clockwise along the unit circle x2 + y2 = 1 from (1, 0) to (0, 1).

Work, Circulation, and Flux in the Plane

 27. Work Find the work done by the force F = xy i + ( y - x)j 

over the straight line from (1, 1) to (2, 3).

 28. Work Find the work done by the gradient of ƒ(x, y) = (x + y)2 

counterclockwise around the circle x2 + y2 = 4 from (2, 0) to 

itself.

 29. Circulation and lux Find the circulation and lux of the ields

F1 = x i + y j  and  F2 = -y i + x j

  around and across each of the following curves.

a. The circle r(t) = (cos t)i + (sin t)j,  0 … t … 2p

b. The ellipse r(t) = (cos t)i + (4 sin t)j,  0 … t … 2p

 30. Flux across a circle Find the lux of the ields

F1 = 2x i - 3y j  and  F2 = 2x i + (x - y)j

  across the circle

r(t) = (a cos t)i + (a sin t)j,   0 … t … 2p.

In Exercises 31–34, find the circulation and flux of the field F around 

and across the closed semicircular path that consists of the semicircu-

lar arch r1(t) = (a cos t)i + (a sin t)j, 0 … t … p, followed by the 

line segment r2(t) = t i, -a … t … a.

 31. F = x i + y j 32. F = x2 i + y2 j

 33. F = -y i + x j 34. F = -y2 i + x2 j

 35. Flow integrals Find the low of the velocity ield F =  

(x + y)i - (x2 + y2)j along each of the following paths from  

(1, 0) to (-1, 0) in the xy-plane.

a. The upper half of the circle x2 + y2 = 1

b. The line segment from (1, 0) to (-1, 0)

c. The line segment from (1, 0) to (0, -1) followed by the line 

segment from (0, -1) to (-1, 0)

 36. Flux across a triangle Find the lux of the ield F in Exercise 35 

outward across the triangle with vertices (1, 0), (0, 1), (-1, 0).

 37. The low of a gas with a density of d = 0.001 kg>m2 over the 

closed curve r(t) = (-sin t)i + (cos t)j, 0 … t … 2p, is given  

by the vector ield F = dv, where v = xi + y2j is a velocity ield 

measured in meters per second. Find the lux of F across the curve 

r(t).
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 53. Work and area Suppose that ƒ(t) is diferentiable and positive 

for a … t … b. Let C be the path r(t) = t i + ƒ(t)j, a … t … b, 

and F = y i. Is there any relation between the value of the work 

integral

 LC

 F # dr

  and the area of the region bounded by the t-axis, the graph of ƒ, 

and the lines t = a and t = b? Give reasons for your answer.

 54. Work done by a radial force with constant magnitude A par-

ticle moves along the smooth curve y = ƒ(x) from (a, ƒ(a)) to (b, 

ƒ(b)). The force moving the particle has constant magnitude k and 

always points away from the origin. Show that the work done by 

the force is

 LC

 F # T ds = k3 (b 

2 + (ƒ(b))2)1>2 - (a2 + (ƒ(a))2)1>24 .
Flow Integrals in Space

In Exercises 55–58, F is the velocity field of a fluid flowing through a 

region in space. Find the flow along the given curve in the direction of 

increasing t.

 55. F = -4xy i + 8y j + 2 k

  r(t) = t i + t2 j + k,  0 … t … 2

 56. F = x2 i + yz  j + y2 k 

  r(t) = 3t j + 4t k,  0 … t … 1

 57. F = (x - z)i + x k

  r(t) = (cos t)i + (sin t)k,  0 … t … p

 58. F = -y i + x j + 2 k

  r(t) = (-2 cos t)i + (2 sin t)j + 2t k,   0 … t … 2p

 59. Circulation Find the circulation of F = 2x i + 2z  j + 2y k 

around the closed path consisting of the following three curves 

traversed in the direction of increasing t.

 C1: r(t) = (cos t)i + (sin t)j + t  k, 0 … t … p>2
 C2: r(t) = j + (p>2)(1 - t)k,  0 … t … 1

 C3: r(t) = t i + (1 - t)j,  0 … t … 1

y

z

x

(1, 0, 0) (0, 1, 0)

0, 1,

C1
C2

C3

p
2

a          b

 60. Zero circulation Let C be the ellipse in which the plane 

2x + 3y - z = 0 meets the cylinder x2 + y2 = 12. Show, with-

out evaluating either line integral directly, that the circulation of 

the ield F = x i + y j + z  k around C in either direction is zero.

 44. Find the low of the velocity ield F = (y + z)i + xj - yk,  

where velocity is measured in meters per second, over the curve 

r(t) = eti - e2tj + e- tk, 0 … t … ln 2.

 45. Salt water with a density of d = 0.25 g>cm2 lows over the 

curve r(t) = 2ti + tj, 0 … t … 4, according to the vector ield 

F = dv, where v = xyi + (y - x)j is a velocity ield measured 

in centimeters per second. Find the low of F over the curve r(t).

 46. Propyl alcohol with a density of d = 0.2 g>cm2 lows over the 

closed curve r(t) = (sin t)i - (cos t)j, 0 … t … 2p, according to 

the vector ield F = dv, where v = (x - y)i + x2j is a velocity 

ield measured in centimeters per second. Find the circulation of 

F around the curve r(t).

Vector Fields in the Plane

 47. Spin ield Draw the spin ield

F = -  
y

2x2 + y2
  i +

x

2x2 + y2
  j

  (see Figure 16.13) along with its horizontal and vertical com-

ponents at a representative assortment of points on the circle 

x2 + y2 = 4.

 48. Radial ield Draw the radial ield

F = x i + y j

  (see Figure 16.12) along with its horizontal and vertical com-

ponents at a representative assortment of points on the circle 

x2 + y2 = 1.

 49. A ield of tangent vectors

a. Find a ield G = P(x, y)i + Q(x, y)j in the xy-plane with 

the property that at any point (a, b) ≠ (0, 0), G is a vector 

of magnitude 2a2 + b2 tangent to the circle x2 + y2 =  

a2 + b2 and pointing in the counterclockwise direction. (The 

ield is undeined at (0, 0).)

b. How is G related to the spin ield F in Figure 16.13?

 50. A ield of tangent vectors

a. Find a ield G = P(x, y)i + Q(x, y)j in the xy-plane with the 

property that at any point (a, b) ≠ (0, 0), G is a unit vector 

tangent to the circle x2 + y2 = a2 + b2 and pointing in the 

clockwise direction.

b. How is G related to the spin ield F in Figure 16.13?

 51. Unit vectors pointing toward the origin Find a ield F =  

M(x, y)i + N(x, y)j in the xy-plane with the property that at each 

point (x, y) ≠ (0, 0), F is a unit vector pointing toward the origin. 

(The ield is undeined at (0, 0).)

 52. Two “central” ields Find a ield F = M(x, y)i + N(x, y)j in 

the xy-plane with the property that at each point (x, y) ≠ (0, 0), F 

points toward the origin and 0F 0  is (a) the distance from (x, y) to 

the origin, (b) inversely proportional to the distance from (x, y) to 

the origin. (The ield is undeined at (0, 0).)
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 61. Flow along a curve The ield F = xy i + y j - yz  k is the 

velocity ield of a low in space. Find the low from (0, 0, 0) to  

(1, 1, 1) along the curve of intersection of the cylinder y = x2 and 

the plane z = x. (Hint: Use t = x as the parameter.)

y

z

x

(1, 1, 1)

y = x2

z = x

 62. Flow of a gradient ield Find the low of the ield F = ∇ (xy2z3):

a. Once around the curve C in Exercise 58, clockwise as viewed 

from above

b. Along the line segment from (1, 1, 1) to (2, 1, -1).

COMPUTER EXPLORATIONS

In Exercises 63–68, use a CAS to perform the following steps for 

finding the work done by force F over the given path:

a. Find dr for the path r(t) = g(t)i + h(t)j + k(t)k.

b. Evaluate the force F along the path.

c. Evaluate  LC

 F # dr.

 63. F = xy6  i + 3x(xy5 + 2)j; r(t) = (2 cos t)i + (sin t)j, 

0 … t … 2p

 64. F =
3

1 + x2
  i +

2

1 + y2
  j; r(t) = (cos t)i + (sin t)j, 

  0 … t … p

 65. F = ( y + yz cos xyz)i + (x2 + xz cos xyz)j +
(z + xy cos xyz)k; r(t) = (2 cos t)i + (3 sin t)j + k, 

0 … t … 2p

 66. F = 2xy i - y2 j + zex k; r(t) = - t i + 2t j + 3t k, 

1 … t … 4

 67. F = (2y + sin x)i + (z2 + (1>3)cos y)j + x4 k; 

r(t) = (sin t)i + (cos t)j + (sin 2t)k, -p>2 … t … p>2
 68. F = (x2y)i +

1
3

 x3j + xyk; r(t) = (cos t)i + (sin t)j +

  (2 sin2 t - 1)k, 0 … t … 2p

16.3 Path Independence, Conservative Fields, and Potential Functions

A gravitational field G is a vector field that represents the effect of gravity at a point in 

space due to the presence of a massive object. The gravitational force on a body of mass m 

placed in the field is given by F = mG. Similarly, an electric field E is a vector field in 

space that represents the effect of electric forces on a charged particle placed within it. The 

force on a body of charge q placed in the field is given by F = qE. In gravitational and 

electric fields, the amount of work it takes to move a mass or charge from one point to 

another depends on the initial and final positions of the object—not on which path is taken 

between these positions. In this section we study vector fields with this independence-of-

path property and the calculation of work integrals associated with them.

Path Independence

If A and B are two points in an open region D in space, the line integral of F along C 

from A to B for a field F defined on D usually depends on the path C taken, as we saw in 

Section 16.1. For some special fields, however, the integral’s value is the same for all 

paths from A to B.

DEFINITIONS Let F be a vector field defined on an open region D in space, 

and suppose that for any two points A and B in D the line integral 1C
  F # d r along 

a path C from A to B in D is the same over all paths from A to B. Then the integral 

1C
  F # dr is path independent in D and the field F is conservative on D.

The word conservative comes from physics, where it refers to fields in which the prin-

ciple of conservation of energy holds. When a line integral is independent of the path C from 

point A to point B, we sometimes represent the integral by the symbol 1B

A
 rather than the 

usual line integral symbol 1C
. This substitution helps us remember the path-independence 
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property by indicating that the integral depends only on the initial and final points, and not 

on the path connecting them.

Under reasonable differentiability conditions that we will specify, we will show that a 

field F is conservative if and only if it is the gradient field of a scalar function ƒ—that is, if 

and only if F = ∇ƒ for some ƒ. The function ƒ then has a special name.

DEFINITION If F is a vector field defined on D and F = ∇ƒ for some scalar 

function ƒ on D, then ƒ is called a potential function for F.

A gravitational potential is a scalar function whose gradient field is a gravitational 

field, an electric potential is a scalar function whose gradient field is an electric field, and 

so on. As we will see, once we have found a potential function ƒ for a field F, we can 

evaluate all the line integrals in the domain of F over any path between A and B by

  L
B

A

 F # dr = L
B

A

 ∇ƒ # dr = ƒ(B) - ƒ(A). (1)

If you think of ∇ƒ for functions of several variables as analogous to the derivative ƒ′ 
for functions of a single variable, then you see that Equation (1) is the vector calculus 

 rendition of the Fundamental Theorem of Calculus formula

 L
b

a

 ƒ′(x) dx = ƒ(b) - ƒ(a).

Conservative fields have other important properties. For example, saying that F is 

conservative on D is equivalent to saying that the integral of F around every closed path in 

D is zero. Certain conditions on the curves, fields, and domains must be satisfied for Equa-

tion (1) to be valid. We discuss these conditions next.

Assumptions on Curves, Vector Fields, and Domains

In order for the computations and results we derive below to be valid, we must assume 

certain properties for the curves, surfaces, domains, and vector fields we consider. We give 

these assumptions in the statements of theorems, and they also apply to the examples and 

exercises unless otherwise stated.

The curves we consider are piecewise smooth. Such curves are made up of finitely 

many smooth pieces connected end to end, as discussed in Section 13.1. For such curves 

we can compute lengths and, except at finitely many points where the smooth pieces con-

nect, tangent vectors. We consider vector fields F whose components have continuous first 

partial derivatives.

The domains D we consider are connected. For an open region, this means that any 

two points in D can be joined by a smooth curve that lies in the region. Some results require 

D to be simply connected, which means that every loop in D can be contracted to a point in 

D without ever leaving D. The plane with a disk removed is a two-dimensional region that 

is not simply connected; a loop in the plane that goes around the disk cannot be contracted 

to a point without going into the “hole” left by the removed disk (see Figure 16.25e). Simi-

larly, if we remove a line from space, the remaining region D is not simply connected. A 

curve encircling the line cannot be shrunk to a point while remaining inside D.

Connectivity and simple connectivity are not the same, and neither property implies 

the other. Think of connected regions as being in “one piece” and simply connected 

regions as not having any “loop-catching holes.” All of space itself is both connected and 

simply connected. Figure 16.25 illustrates some of these properties.

Caution Some of the results in this chapter can fail to hold if applied to situations where 

the conditions we’ve imposed do not hold. In particular, the component test for conserva-

tive ields, given later in this section, is not valid on domains that are not simply connected 

(see Example 5). The condition will be stated when needed. 

y

x

(a)

Simply connected

(b)

Simply connected

z

y

x

y

x

C1

(c)

Not simply connected

z

y

x

C2

(d)

Not simply connected

FIGURE 16.25 Four connected regions. 

In (a) and (b), the regions are simply 

connected. In (c) and (d), the regions are 

not simply connected because the curves 

C1 and C2 cannot be contracted to a point 

inside the regions containing them.
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Line Integrals in Conservative Fields

Gradient fields F are obtained by differentiating a scalar function ƒ. A theorem analogous 

to the Fundamental Theorem of Calculus gives a way to evaluate the line integrals of gra-

dient fields.

Like the Fundamental Theorem of Calculus, Theorem 1 gives a direct way to evaluate 

line integrals, without having to take limits of Riemann sums, and without needing to 

compute a line integral by the procedure used in Section 16.2. Before proving Theorem 1, 

we give an example.

THEOREM 1—Fundamental Theorem of Line Integrals

Let C be a smooth curve joining the point A to the point B in the plane or in space 

and parametrized by r(t). Let ƒ be a diferentiable function with a continuous 

gradient vector F = ∇ƒ on a domain D containing C. Then

 LC

 F # dr = ƒ(B) - ƒ(A).

EXAMPLE 1  Suppose the force field F = ∇ƒ is the gradient of the function

ƒ(x, y, z) = -  
1

x2 + y2 + z2
.

Find the work done by F in moving an object along a smooth curve C joining (1, 0, 0) to 

(0, 0, 2) that does not pass through the origin.

Solution An application of Theorem 1 shows that the work done by F along any smooth 

curve C joining the two points and not passing through the origin is

  LC

 F # dr = ƒ(0, 0, 2) - ƒ(1, 0, 0) = -  
1
4

- (-1) =  
3
4

.  

The gravitational force due to a planet, and the electric force associated with a 

charged particle, can both be modeled by the field F given in Example 1 up to a constant 

that depends on the units of measurement. When used to model gravity, the function ƒ in 

Example 1 represents gravitational potential energy. The sign of ƒ is negative, and ƒ 

approaches -q near the origin. This choice ensures that the gravitational force F, the 

 gradient of ƒ, points toward the origin, so that objects fall down rather than up.

Proof of Theorem 1  Suppose that A and B are two points in the region D and that 

C: r(t) = g(t)i + h(t)j + k(t)k, a … t … b, is a smooth curve in D joining A to B. In Sec-

tion 14.5 we found that the derivative of a scalar function ƒ along a path C is the dot product 

∇ƒ(r(t)) # r′(t), so we have

  LC

F # dr = L
B

A

∇ƒ # dr   F = ∇ƒ 

 = L
t= b

t= a

∇ƒ(r(t)) # r′(t) dt  Eq. (2) of Section 16.2 for computing dr

 = L
b

a

d

dt
 ƒ(r(t)) dt   Eq. (7) of Section 14.5 giving derivative along a path

 = ƒ(r(b)) - ƒ(r(a))   Fundamental Theorem of Calculus

 = ƒ(B) - ƒ(A).   r(a) = A, r(b) = B 
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We see from Theorem 1 that the line integral of a gradient field F = ∇ƒ is straight-

forward to compute once we know the function ƒ. Many important vector fields arising in 

applications are indeed gradient fields. The next result, which follows from Theorem 1, 

shows that any conservative field is of this type.

THEOREM 2—Conservative Fields are Gradient Fields

Let F = M i + N j + P k be a vector ield whose components are continuous 

throughout an open connected region D in space. Then F is conservative if and 

only if F is a gradient ield ∇ƒ for a diferentiable function ƒ.

Theorem 2 says that F = ∇ƒ if and only if for any two points A and B in the region D, 

the value of the line integral 1C  F # d r is independent of the path C joining A to B in D.

Proof of Theorem 2  If F is a gradient ield, then F = ∇ƒ for a diferentiable func-

tion ƒ, and Theorem 1 shows that 1C F # d r = ƒ(B) - ƒ(A). The value of the line integral 

does not depend on C, but only on its endpoints A and B. So the line integral is path inde-

pendent and F satisies the deinition of a conservative ield.

On the other hand, suppose that F is a conservative vector ield. We want to ind a func-

tion ƒ on D satisfying ∇ƒ = F. First, pick a point A in D and set ƒ(A) = 0. For any other 

point B in D deine ƒ(B) to equal 1C
 F # d r, where C is any smooth path in D from A to B. 

The value of ƒ(B) does not depend on the choice of C, since F is conservative. To show that 

∇ƒ = F we need to demonstrate that 0ƒ>0x = M, 0ƒ>0y = N , and 0ƒ>0z = P.

Suppose that B has coordinates (x, y, z). By the deinition of ƒ, the value of the func-

tion ƒ at a nearby point B0 located at (x0 , y , z) is 1C0
 F # d r, where C0 is any path from A 

to B0 . We take a path C = C0 h
 
L from A to B formed by irst traveling along C0 to arrive 

at B0 and then traveling along the line segment L from B0 to B (Figure 16.26). When B0 

is close to B, the segment L lies in D and, since the value ƒ(B) is independent of the path 

from A to B,

ƒ(x, y, z) = LC0

 F # dr + LL

 F # dr.

Diferentiating, we have

0
0x

 ƒ(x, y, z) =
0
0x

 a    LC0

 F # dr + LL

 F # drb .

Only the last term on the right depends on x, so

0
0x

 ƒ(x, y, z) =
0
0x

 LL

 F # dr.

Now parametrize L as r(t) = t i + y j + z k, x0 … t … x. Then dr>dt = i, and since 

F = Mi + Nj + Pk, it follows that F # d r>dt = M  and 1L
 F # d r = 1 x

x0
 M(t, y, z) dt. 

 Diferentiating then gives

0
0x

 ƒ(x, y, z) =
0
0x

 L
x

x0

 M(t, y, z) dt = M(x, y, z)

by the Fundamental Theorem of Calculus. The partial derivatives 0ƒ>0y = N  and 

0ƒ>0z = P follow similarly, showing that F = ∇ƒ. 

z

y

x

B
L

A

D

B0

x0

x

C0
(x0, y, z)

(x, y, z)

FIGURE 16.26 The function ƒ(x, y, z) 

in the proof of Theorem 2 is computed by 

a line integral 1C0
 F # d r = ƒ(B0) from A 

to B0, plus a line integral 1L
 F # d r along 

a line segment L parallel to the x-axis and 

joining B0 to B located at (x, y, z). The 

value of ƒ at A is ƒ(A) = 0.
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EXAMPLE 2  Find the work done by the conservative field

F = yz i + xz j + xy k = ∇ƒ, where ƒ(x, y, z) = xyz,

in moving an object along any smooth curve C joining the point A(-1, 3, 9) to B(1, 6, -4).

Solution With ƒ(x, y, z) = xyz, we have

  LC

 F # d r = L
B

A

 ∇ƒ # dr   F = ∇ƒ and path independence 

 = ƒ(B) - ƒ(A)   Theorem 1

 = xyz 0 (1,6, -4) - xyz 0 (-1,3,9)

 = (1)(6)(-4) - (-1)(3)(9)

 = -24 + 27 = 3.  

THEOREM 3—Loop Property of Conservative Fields

The following statements are equivalent.

1. DC
   F # dr = 0 around every loop (that is, closed curve C ) in D.

2. The ield F is conservative on D.

Proof that Part 1 k Part 2  We want to show that for any two points A and B in D, 

the integral of F # dr has the same value over any two paths C1 and C2 from A to B. We 

reverse the direction on C2 to make a path -C2 from B to A (Figure 16.27). Together, C1 

and -C2 make a closed loop C, and by assumption,

 LC1

 F # dr - LC2

 F # dr = LC1

 F # dr + L-C2

 F # dr = LC

 F # dr = 0.

Thus, the integrals over C1 and C2 give the same value. Note that the deinition of F # d r 

shows that changing the direction along a curve reverses the sign of the line integral.

Proof that Part 2 k Part 1  We want to show that the integral of F # d r is zero over 

any closed loop C. We pick two points A and B on C and use them to break C into two 

pieces: C1 from A to B followed by C2 from B back to A (Figure 16.28). Then

 F
C

 F # d r = LC1

 F # d r + LC2

 F # d r = L
B

A

 F # d r - L
B

A

 F # d r = 0. 

The following diagram summarizes the results of Theorems 2 and 3.

 Theorem 2 Theorem 3

F = ∇ƒ on D 3 F conservative 3 F
C

F # dr = 0
on D

over any loop in D

A

B

A

B

C1
C1

C2

−C2

FIGURE 16.27 If we have two paths 

from A to B, one of them can be reversed 

to make a loop.

A

B

A

B

C2

C1

−C2

C1

FIGURE 16.28 If A and B lie on a loop, 

we can reverse part of the loop to make 

two paths from A to B.

A very useful property of line integrals in conservative fields comes into play when 

the path of integration is a closed curve, or loop. We often use the notation DC
 for integra-

tion around a closed path (discussed with more detail in the next section).
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Two questions arise:

1. How do we know whether a given vector ield F is conservative?

2. If F is in fact conservative, how do we find a potential function ƒ (so that F = ∇ƒ)?

Finding Potentials for Conservative Fields

The test for a vector field being conservative involves the equivalence of certain first par-

tial derivatives of the field components.

Component Test for Conservative Fields

Let F = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k be a ield on an open simply 

 connected domain whose component functions have continuous irst partial 

 derivatives. Then, F is conservative if and only if

 
0P
0y

=
0N
0z

,  
0M
0z

=
0P
0x

,  and  
0N
0x

=
0M
0y

. (2)

Proof that Equations (2) hold if F is conservative  If F is conservative, then there 

is a potential function ƒ such that

F = Mi + Nj + Pk = ∇f =
0f

0x
 i +

0f

0y
 j +

0f

0z
 k.

Hence,

 
0P
0y

=
0
0y

 a0ƒ

0z
b =

02ƒ

0y 0z

 =
02ƒ

0z 0y

 =
0
0z

 a0ƒ

0y
b =

0N
0z

.

The others in Equations (2) are proved similarly. 

The second half of the proof, that Equations (2) imply that F is conservative, is a con-

sequence of Stokes’ Theorem, taken up in Section 16.7, and requires our assumption that 

the domain of F be simply connected.

Once we know that F is conservative, we often want to find a potential function for F. 

This requires solving the equation ∇ƒ = F or

0ƒ

0x
  i +

0ƒ

0y
  j +

0ƒ

0z
  k = M i + N j + P k

Mixed Derivative Theorem, 

Section 14.3

We can view the component test as saying that on a simply connected region, the  vector

a0P
0y

-
0N
0z
b i + a0M

0z
-

0P
0x
b j + a0N

0x
-

0M
0y
bk

is zero if and only if F is conservative. This interesting vector is called the curl of F, and 

we study it in Section 16.7.
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for ƒ. We accomplish this by integrating the three equations

0ƒ

0x
= M,   

0ƒ

0y
= N,   

0ƒ

0z
= P,

as illustrated in the next example.

EXAMPLE 3  Show that F = (ex cos y + yz)i + (xz - ex sin y)j + (xy + z)k is 

conservative over its natural domain and find a potential function for it.

Solution The natural domain of F is all of space, which is open and simply connected. 

We apply the test in Equations (2) to

M = ex cos y + yz,   N = xz - ex sin y,   P = xy + z

and calculate

0P
0y

= x =
0N
0z

,   
0M
0z

= y =
0P
0x

,   
0N
0x

= -ex sin y + z =
0M
0y

.

The partial derivatives are continuous, so these equalities tell us that F is conservative, so 

there is a function ƒ with ∇ƒ = F (Theorem 2).

We ind ƒ by integrating the equations

 
0ƒ

0x
= ex cos y + yz,   

0ƒ

0y
= xz - ex sin y,   

0ƒ

0z
= xy + z. (3)

We integrate the first equation with respect to x, holding y and z fixed, to get

ƒ(x, y, z) = ex cos y + xyz + g( y, z).

We write the constant of integration as a function of y and z because its value may depend 

on y and z, though not on x. We then calculate 0ƒ>0y from this equation and match it with 

the expression for 0ƒ>0y in Equations (3). This gives

-ex sin y + xz +
0g

0y
= xz - ex sin y,

so 0g>0y = 0. Therefore, g is a function of z alone, and

ƒ(x, y, z) = ex cos y + xyz + h(z).

We now calculate 0ƒ>0z from this equation and match it to the formula for 0ƒ>0z in Equa-

tions (3). This gives

xy +
dh

dz
= xy + z,  or  

dh

dz
= z,

so

h(z) =
z2

2
+ C.

Hence,

ƒ(x, y, z) = ex cos y + xyz +
z2

2
+ C.

We found infinitely many potential functions of F, one for each value of C. 
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EXAMPLE 4  Show that F = (2x - 3)i - z j + (cos z)k is not conservative.

Solution We apply the Component Test in Equations (2) and find immediately that

0P
0y

=
0
0y

 (cos z) = 0,   
0N
0z

=
0
0z

 (-z) = -1.

The two are unequal, so F is not conservative. No further testing is required. 

EXAMPLE 5  Show that the vector field

F =
-y

x2 + y2
 i +

x

x2 + y2
 j + 0k

satisfies the equations in the Component Test, but is not conservative over its natural 

domain. Explain why this is possible.

Solution We have M = -y> (x2 + y2), N = x> (x2 + y2), and P = 0. If we apply the 

Component Test, we find

0P
0y

= 0 =
0N
0z

,    
0P
0x

= 0 =
0M
0z

,    and    
0M
0y

=
y2 - x2

(x2 + y2)2
=

0N
0x

.

So it may appear that the field F passes the Component Test. However, the test assumes 

that the domain of F is simply connected, which is not the case here. Since x2 + y2 cannot 

equal zero, the natural domain is the complement of the z-axis and contains loops that can-

not be contracted to a point. One such loop is the unit circle C in the xy-plane. The circle is 

parametrized by r(t) = (cos t)i + (sin t)j, 0 … t … 2p. This loop wraps around the 

z-axis and cannot be contracted to a point while staying within the complement of the 

z-axis.

To show that F is not conservative, we compute the line integral D
C

F # dr around the 

loop C. First we write the ield in terms of the parameter t:

F =
-y

x2 + y2
 i +

x

x2 + y2
 j =

-sin t

sin2 t + cos2 t
 i +

cos t

sin2 t + cos2 t
 j = (-sin t)i + (cos t)j.

Next we find dr>dt = (-sin t)i + (cos t)j, and then calculate the line integral as

F
C

 F # dr = F
C

 F # dr
dt

 dt = L
2p

0

 1sin2 t + cos2 t2 dt = 2p.

Since the line integral of F around the loop C is not zero, the field F is not conservative, by 

Theorem 3. The field F is displayed in Figure 16.31d in the next section. 

Example 5 shows that the Component Test does not apply when the domain of the 

field is not simply connected. However, if we change the domain in the example so that it is 

restricted to the ball of radius 1 centered at the point (2, 2, 2), or to any similar ball-shaped 

region which does not contain a piece of the z-axis, then this new domain D is simply con-

nected. Now the partial derivative Equations (2), as well as all the assumptions of the 

 Component Test, are satisfied. In this new situation, the field F in Example 5 is  conservative 

on D. Just as we must be careful with a function when determining if it satisfies a property 

throughout its domain (like continuity or the Intermediate Value Property), so must we also 

be careful with a vector field in determining the properties it may or may not have over its 

assigned domain.
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Exact Differential Forms

It is often convenient to express work and circulation integrals in the differential form

 LC

 M dx + N dy + P dz

discussed in Section 16.2. Such line integrals are relatively easy to evaluate if 

M dx + N dy + P dz is the total differential of a function ƒ and C is any path joining the 

two points from A to B. For then

  LC

 M dx + N dy + P dz = LC

  
0ƒ

0x
 dx +

0ƒ

0y
 dy +

0ƒ

0z
 dz

= L
B

A

 ∇ƒ # dr     ∇ƒ is conservative.

= ƒ(B) - ƒ(A). Theorem 1

Thus,

 L
B

A

 df = ƒ(B) - ƒ(A),

just as with differentiable functions of a single variable.

DEFINITIONS Any expression M(x, y, z) dx + N(x, y, z) dy + P(x, y, z) dz is 

a differential form. A differential form is exact on a domain D in space if

M dx + N dy + P dz =
0ƒ

0x
 dx +

0ƒ

0y
 dy +

0ƒ

0z
 dz = dƒ

for some scalar function ƒ throughout D.

Notice that if M dx + N dy + P dz = dƒ on D, then F = M i + N j + P k is the gra-

dient field of ƒ on D. Conversely, if F = ∇ƒ, then the form M dx + N dy + P dz is exact. 

The test for the form being exact is therefore the same as the test for F being conservative.

Component Test for Exactness of M dx + N dy + P dz

The diferential form M dx + N dy + P dz is exact on an open simply connected 

domain if and only if

0P
0y

=
0N
0z

,   
0M
0z

=
0P
0x

,   and  
0N
0x

=
0M
0y

.

This is equivalent to saying that the ield F = Mi + Nj + Pk is conservative.

EXAMPLE 6  Show that y dx + x dy + 4 dz is exact and evaluate the integral

 L
(2,3, -1)

(1,1,1)

y dx + x dy + 4 dz

over any path from (1, 1, 1) to (2, 3, -1).



984 Chapter 16 Integrals and Vector Fields

Solution We let M = y, N = x, P = 4 and apply the Test for Exactness:

0P
0y

= 0 =
0N
0z

,   
0M
0z

= 0 =
0P
0x

,   
0N
0x

= 1 =
0M
0y

.

These equalities tell us that y dx + x dy + 4 dz is exact, so

y dx + x dy + 4 dz = dƒ

for some function ƒ, and the integral’s value is ƒ(2, 3, -1) - ƒ(1, 1, 1).

We ind ƒ up to a constant by integrating the equations

0ƒ

0x
= y,   

0ƒ

0y
= x,   

0ƒ

0z
= 4. (4)

From the first equation we get

ƒ(x, y, z) = xy + g( y, z).

The second equation tells us that

0ƒ

0y
= x +

0g

0y
= x,    or    

0g

0y
= 0.

Hence, g is a function of z alone, and

ƒ(x, y, z) = xy + h(z).

The third of Equations (4) tells us that

0ƒ

0z
= 0 +

dh

dz
= 4,   or  h(z) = 4z + C.

Therefore,

ƒ(x, y, z) = xy + 4z + C.

The value of the line integral is independent of the path taken from (1, 1, 1) to (2, 3, -1), 

and equals

ƒ(2, 3, -1) - ƒ(1, 1, 1) = 2 + C - (5 + C ) = -3. 

Testing for Conservative Fields

Which fields in Exercises 1–6 are conservative, and which are not?

 1. F = yz  i + xz  j + xy k

 2. F = ( y sin z)i + (x sin z)j + (xy cos z)k

 3. F = y i + (x + z)j - y k

 4. F = -y i + x j

 5. F = (z + y)i + z  j + (y + x)k

 6. F = (ex cos y)i - (ex sin y)j + zk

Finding Potential Functions

In Exercises 7–12, find a potential function ƒ for the field F.

 7. F = 2x i + 3y j + 4z  k

 8. F = ( y + z)i + (x + z)j + (x + y)k

 9. F = ey + 2z(i + x j + 2x k)

 10. F = ( y sin z)i + (x sin z)j + (xy cos z)k

 11. F = (ln x + sec2(x + y))i +  asec2(x + y) +
y

y2 + z2
bj +

z

y2 + z2
 k

 12. F =
y

1 + x2 y2
  i + a x

1 + x2 y2
+

z

21 - y2 z2
bj +  

a y

21 - y2 z2
+

1
zbk

Exact Differential Forms

In Exercises 13–17, show that the differential forms in the integrals 

are exact. Then evaluate the integrals.

 13.  L
(2,3, -6)

(0,0,0)

 2x dx + 2y dy + 2z dz

 14.  L
(3,5,0)

(1,1,2)

 yz dx + xz dy + xy dz

EXERCISES 16.3
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 15.  L
(1,2,3)

(0,0,0)

 2xy dx + (x2 - z2) dy - 2yz dz

 16.  L
(3,3,1)

(0,0,0)

 2x dx - y2 dy -
4

1 + z2
 dz

 17.  L
(0,1,1)

(1,0,0)

 sin y  cos x dx + cos y sin x dy + dz

b. The helix r(t) = (cos t)i + (sin t)j + (t>2p)k, 0 … t … 2p

c. The x-axis from (1, 0, 0) to (0, 0, 0) followed by the parabola 

z = x2, y = 0 from (0, 0, 0) to (1, 0, 1)

z

y

x

(1, 0, 1)

(0, 0, 0)

1

(1, 0, 0)

z = x2

 30. Work along diferent paths Find the work done by F =  

eyz i + (xzeyz + z cos y)j + (xyeyz + sin y)k over the following 

paths from (1, 0, 1) to (1, p>2, 0).

a. The line segment x = 1, y = pt>2, z = 1 - t, 0 … t … 1

z

y

x

(1, 0, 1)

1

p
2

p
2

1,    , 01 Q     R

b. The line segment from (1, 0, 1) to the origin followed by the 

line segment from the origin to (1, p>2, 0)

z

y

x

(1, 0, 1)

(0, 0, 0)

1

1

p
2

p
2

1,    , 0Q     R

c. The line segment from (1, 0, 1) to (1, 0, 0), followed by the 

x-axis from (1, 0, 0) to the origin, followed by the parabola 

y = px2>2, z = 0 from there to (1, p>2, 0)

z

y

x

(1, 0, 1)

(1, 0, 0)

(0, 0, 0)

1

p
2

1,    , 0

y =    x2p
2

Q     R

Finding Potential Functions to Evaluate Line Integrals

Although they are not defined on all of space R3, the fields associated 

with Exercises 18–22 are conservative. Find a potential function for 

each field and evaluate the integrals as in Example 6.

 18.  L
(1,p>2,2)

(0,2,1)

 2 cos y dx + a1y - 2x sin yb  dy +
1
z  dz

 19.  L
(1,2,3)

(1,1,1)

 3x2 dx +
z2

y  dy + 2z ln y dz

 20.  L
(2,1,1)

(1,2,1)

 (2x ln y - yz) dx + ax2

y - xzb  dy - xy dz

 21.  L
(2,2,2)

(1,1,1)

 
1
y  dx + a1

z
-

x

y2
b  dy -

y

z2
  dz

 22.  L
(2,2,2)

(-1, -1, -1)

 
2x dx + 2y dy + 2z dz

x2 + y2 + z2

Applications and Examples

 23. Revisiting Example 6 Evaluate the integral

 L
(2,3, -1)

(1,1,1)

 y dx + x dy + 4 dz

  from Example 6 by inding parametric equations for the line seg-

ment from (1, 1, 1) to (2, 3, -1) and evaluating the line integral 

of F = yi + xj + 4k along the segment. Since F is conservative, 

the integral is independent of the path.

 24. Evaluate

 LC

 x2 dx + yz dy + (y2>2) dz

  along the line segment C joining (0, 0, 0) to (0, 3, 4).

Independence of path Show that the values of the integrals in 

Exercises 25 and 26 do not depend on the path taken from A to B.

 25.  L
B

A

 z2 dx + 2y dy + 2xz dz  26.  L
B

A

 
x dx + y dy + z dz

2x2 + y2 + z2

In Exercises 27 and 28, find a potential function for F.

 27. F =
2x
y  i + a1 - x2

y2
bj,  5(x, y): y 7 06

 28. F = (ex ln y)i + aex

y + sin zbj + (  y cos z)k

 29. Work along diferent paths Find the work done by F =  

(x2 + y)i + (  y2 + x)j + zez k over the following paths from  

(1, 0, 0) to (1, 0, 1).

a. The line segment x = 1, y = 0, 0 … z … 1
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 31. Evaluating a work integral two ways Let F = ∇ (x3y2)  and 

let C be the path in the xy-plane from (-1, 1) to (1, 1) that consists 

of the line segment from (-1, 1) to (0, 0) followed by the line seg-

ment from (0, 0) to (1, 1). Evaluate 1C
 F # dr in two ways.

a. Find parametrizations for the segments that make up C and 

evaluate the integral.

b. Use ƒ(x, y) = x3y2 as a potential function for F.

 32. Integral along diferent paths Evaluate the line integral 

1C
 2x cos y dx - x2 sin y dy along the following paths C in the 

xy-plane.

a. The parabola y = (x - 1)2 from (1, 0) to (0, 1)

b. The line segment from (-1, p) to (1, 0)

c. The x-axis from (-1, 0) to (1, 0)

d. The astroid r(t) = (cos3 t)i + (sin3 t)j, 0 … t … 2p, coun-

terclockwise from (1, 0) back to (1, 0)

x

y

(0, 1)

(0, −1)

(1, 0)(−1, 0)

 33. a.  Exact diferential form How are the constants a, b, and c 

related if the following diferential form is exact?

(ay2 + 2czx) dx + y(bx + cz) dy + (ay2 + cx2) dz

b. Gradient ield For what values of b and c will

F = (y2 + 2czx)i + y(bx + cz)j + (  y2 + cx2)k

 be a gradient ield?

 34. Gradient of a line integral Suppose that F = ∇ƒ is a conser-

vative vector ield and

g(x, y, z) = L
(x,y,z)

(0,0,0)

 F # dr.

  Show that ∇g = F.

 35. Path of least work You have been asked to ind the path along 

which a force ield F will perform the least work in moving a 

particle between two locations. A quick calculation on your part 

shows F to be conservative. How should you respond? Give rea-

sons for your answer.

 36. A revealing experiment By experiment, you ind that a force 

ield F performs only half as much work in moving an object 

along path C1 from A to B as it does in moving the object along 

path C2 from A to B. What can you conclude about F? Give rea-

sons for your answer.

 37. Work by a constant force Show that the work done by a con-

stant force ield F = a i + b j + c k in moving a particle along 

any path from A to B is W = F # S
AB.

 38. Gravitational ield

a. Find a potential function for the gravitational ield

F = -GmM 
x i + y j + z  k

(x2 + y2 + z2)3>2
 (G, m, and M are constants).

b. Let P1 and P2 be points at distance s1 and s2 from the origin. 

Show that the work done by the gravitational ield in part (a) 

in moving a particle from P1 to P2 is

GmMa 1
s2

-
1
s1
b .

16.4 Green’s Theorem in the Plane

If F is a conservative field, then we know F = ∇ƒ for a differentiable function ƒ, and we 

can calculate the line integral of F over any path C joining point A to point B as 

1C 

  F # dr = ƒ(B) - ƒ(A). In this section we derive a method for computing a work or 

flux integral over a closed curve C in the plane when the field F is not conservative. This 

method comes from Green’s Theorem, which allows us to convert the line integral into a 

double integral over the region enclosed by C.

The discussion is given in terms of velocity fields of fluid flows (a fluid is a liquid or 

a gas) because they are easy to visualize. However, Green’s Theorem applies to any vector 

field, independent of any particular interpretation of the field, provided the assumptions of 

the theorem are satisfied. We introduce two new ideas for Green’s Theorem: circulation 

density around an axis perpendicular to the plane and divergence (or flux density).

Spin Around an Axis: The k-Component of Curl

Suppose that F(x, y) = M(x, y)i + N(x, y)j is the velocity field of a fluid flowing in the 

plane and that the first partial derivatives of M and N are continuous at each point of a 

region R. Let (x, y) be a point in R and let A be a small rectangle with one corner at (x, y) 
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that, along with its interior, lies entirely in R. The sides of the rectangle, parallel to the 

coordinate axes, have lengths of ∆x and ∆y. Assume that the components M and N do not 

change sign throughout a small region containing the rectangle A. The first idea we use to 

convey Green’s Theorem quantifies the rate at which a floating paddle wheel, with axis 

perpendicular to the plane, spins at a point in a fluid flowing in a plane region. This idea 

gives some sense of how the fluid is circulating around axes located at different points and 

perpendicular to the plane. Physicists sometimes refer to this as the circulation density of a 

vector field F at a point. To obtain it, we consider the velocity field

F(x, y) = M(x, y)i + N(x, y)j

and the rectangle A in Figure 16.29 (where we assume both components of F are  

positive).

(x, y + Δy) (x + Δx, y + Δy)

(x + Δx, y)(x, y)

F(x, y)

F · i > 0

F · (−i) < 0

F · j > 0

F · (−j) < 0 A

Δx

Δy

FIGURE 16.29 The rate at which a fluid flows along the bottom edge of a 

rectangular region A in the direction i is approximately F(x, y) # i ∆x, which 

is positive for the vector field F shown here. To approximate the rate of 

circulation at the point (x, y), we calculate the (approximate) flow rates along 

each edge in the directions of the red arrows, sum these rates, and then divide 

the sum by the area of A. Taking the limit as ∆x S 0 and ∆y S 0 gives the 

rate of the circulation per unit area.

The circulation rate of F around the boundary of A is the sum of flow rates along the 

sides in the tangential direction. For the bottom edge, the flow rate is approximately

F(x, y) ~ i ∆x = M(x, y)∆x.

This is the scalar component of the velocity F(x, y) in the tangent direction i times the 

length of the segment. The flow rates may be positive or negative depending on the 

 components of F. We approximate the net circulation rate around the rectangular boundary 

of A by summing the flow rates along the four edges as defined by the following dot 

 products.

Top: F(x, y + ∆y) # (- i)∆x = -M(x, y + ∆y) ∆x

Bottom: F(x, y) # i ∆x = M(x, y)∆x

Right: F(x + ∆x, y) # j ∆Y = N(x + ∆x, y)∆y

Left: F(x, y) # (-j)∆y = -N(x, y)∆y

We sum opposite pairs to get

Top and bottom:   - (M(x, y + ∆y) - M(x, y))  ∆x ≈ - a0M
0y

∆yb∆x

Right and left:   (N(x + ∆x, y) - N(x, y))  ∆y ≈ a0N
0x
∆xb∆y.
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Adding these last two equations gives the net circulation rate relative to the counterclock-

wise orientation,

Circulation rate around rectangle ≈ a0N
0x

-
0M
0y
b∆x ∆y.

We now divide by ∆x ∆y to estimate the circulation rate per unit area or circulation  

density for the rectangle:

Circulation around rectangle

rectangle area
≈ 0N

0x
-

0M
0y

.

We let ∆x and ∆y approach zero to define the circulation density of F at the point (x, y).

If we see a counterclockwise rotation looking downward onto the xy-plane from the 

tip of the unit k vector, then the circulation density is positive (Figure 16.30). The value of 

the circulation density is the k-component of a more general circulation vector field we 

define in Section 16.7, called the curl of the vector field F. For Green’s Theorem, we need 

only this k-component, obtained by taking the dot product of curl F with k.

k

k

Vertical axis

Vertical axis

(x0, y0)

(x0, y0)

Curl F (x0, y0) . k > 0

Counterclockwise circulation

Curl F (x0, y0) . k < 0

Clockwise circulation

FIGURE 16.30 In the flow of an  

incompressible fluid over a plane region, 

the k-component of the curl measures the  

rate of the fluid’s rotation at a point. The 

k-component of the curl is positive at 

points where the rotation is counterclock-

wise and negative where the rotation is 

clockwise.

DEFINITION The circulation density of a vector field F = M i + N j at the 

point (x, y) is the scalar expression

 
0N
0x

-
0M
0y

. (1)

This expression is also called the k-component of the curl, denoted by 

(curl F) ~ k.

If water is moving about a region in the xy-plane in a thin layer, then the k-compo-

nent of the curl at a point (x0 , y0) gives a way to measure how fast and in what direction a 

small paddle wheel spins if it is put into the water at (x0 , y0) with its axis perpendicular to 

the plane, parallel to k (Figure 16.30). Looking downward onto the xy-plane, it spins 

counterclockwise when (curl F) ~ k is positive and clockwise when the k-component is 

negative.

EXAMPLE 1  The following vector fields represent the velocity of a gas flowing in 

the xy-plane. Find the circulation density of each vector field and interpret its physical 

meaning. Figure 16.31 displays the vector fields.

(a) Uniform expansion or compression: F(x, y) = cx i + cy j  c a constant

(b) Uniform rotation: F(x, y) = -cyi + cxj

(c) Shearing low: F(x, y) = yi

(d) Whirlpool efect: F(x, y) =
-y

x2 + y2
 i +

x

x2 + y2
 j

Solution

(a) Uniform expansion: (curl F) ~ k =
0
0x

 (cy) -
0
0y

  (cx) = 0. The gas is not circulating 

at very small scales.

(b)  Rotation: (curl F) ~ k =
0
0x

  (cx) -
0
0y

  (-cy) = 2c. The constant circulation density 

  indicates rotation around every point. If c 7 0, the rotation is counterclockwise; if 

c 6 0, the rotation is clockwise.
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(c)  Shear: (curl F) ~ k = -
0
0y

  ( y) = -1. The circulation density is constant and negative, 

  so a paddle wheel loating in water undergoing such a shearing low spins clockwise. 

The rate of rotation is the same at each point. The average rotational efect of  

the luid low is to push luid clockwise around each of the small circles shown in 

Figure 16.32.

(d)  Whirlpool:

(curl F) ~ k =
0
0x

 a x

x2 + y2
b -

0
0y

 a -y

x2 + y2
b =

y2 - x2

(x2 + y2)2
-

y2 - x2

(x2 + y2)2
= 0.

  The circulation density is 0 at every point away from the origin (where the vector ield 

is undeined and the whirlpool efect is taking place), and the gas is not circulating at 

any point for which the vector ield is deined. 

One form of Green’s Theorem tells us how circulation density can be used to calculate 

the line integral for flow in the xy-plane. (The flow integral was defined in Section 16.2.) 

A second form of the theorem tells us how we can calculate the flux integral, which gives 

the flow across the boundary, from flux density. We define this idea next and then present 

both versions of the theorem.

Divergence

Consider again the velocity field F(x, y) = M(x, y)i + N(x, y)j in a domain containing the 

rectangle A, as shown in Figure 16.33. As before, we assume the field components do not 

change sign throughout a small region containing the rectangle A. Our interest now is to 

determine the rate at which the fluid leaves A by flowing across its boundary.

y

x

(a)  (b)

y

x

y

x

(c)  

y

x

(d)

FIGURE 16.31 Velocity fields of a gas flowing in the plane (Example 1).

y

x

FIGURE 16.32 A shearing flow pushes 

the fluid clockwise around each point 

(Example 1c).
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The rate at which fluid leaves the rectangle across the bottom edge is approximately 

(Figure 16.33)

F(x, y) ~ (-j) ∆x = -N(x, y)∆x.

This is the scalar component of the velocity at (x, y) in the direction of the outward normal 

times the length of the segment. If the velocity is in meters per second, for example, the 

flow rate will be in meters per second times meters or square meters per second. The rates 

at which the fluid crosses the other three sides in the directions of their outward normals 

can be estimated in a similar way. The flow rates may be positive or negative depending 

on the signs of the components of F. We approximate the net flow rate across the rectan-

gular boundary of A by summing the flow rates across the four edges as defined by the 

following dot products.

Fluid Flow Rates: Top: F(x, y + ∆y) # j ∆x = N(x, y + ∆y) ∆x

 Bottom: F(x, y) # (-j)∆x = -N(x, y) ∆x

 Right: F(x + ∆x, y) # i ∆y = M(x + ∆x, y) ∆y

 Left: F(x, y) # (- i)∆y = -M(x, y) ∆y

Summing opposite pairs gives

Top and bottom:   (N(x, y + ∆y) - N(x, y))  ∆x ≈ a0N
0y
∆yb∆x

Right and left:   (M(x + ∆x, y) - M(x, y))  ∆y ≈ a0M
0x

∆xb∆y.

Adding these last two equations gives the net effect of the flow rates, or the

Flux across rectangle boundary ≈ a0M
0x

+
0N
0y
b∆x ∆y.

We now divide by ∆x∆y to estimate the total flux per unit area or flux density for the  

rectangle:

Flux across rectangle boundary

rectangle area
≈ a0M

0x
+

0N
0y
b .

(x, y + Δy) (x + Δx, y + Δy)

(x + Δx, y)(x, y)

F(x, y)

F · (−j) < 0

F · j > 0

F · (−i) < 0

F · i > 0

A

Δx

Δy

FIGURE 16.33 The rate at which the fluid leaves the rectangular region A across the 

bottom edge in the direction of the outward normal - j is approximately F(x, y) # (- j) ∆x, 

which is negative for the vector field F shown here. To approximate the flow rate at the 

point (x, y), we calculate the (approximate) flow rates across each edge in the directions of 

the red arrows, sum these rates, and then divide the sum by the area of A. Taking the limit 

as ∆x S 0 and ∆y S 0 gives the flow rate per unit area.
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DEFINITION The divergence (flux density) of a vector field F = M i + N j at 

the point (x, y) is

div F =
0M
0x

+
0N
0y

. (2)

A gas is compressible, unlike a liquid, and the divergence of its velocity field mea-

sures to what extent it is expanding or compressing at each point. Intuitively, if a gas is 

expanding at the point (x0 , y0), the lines of flow would diverge there (hence the name) and, 

since the gas would be flowing out of a small rectangle about (x0 , y0), the divergence of F 

at (x0 , y0) would be positive. If the gas were compressing instead of expanding, the diver-

gence would be negative (Figure 16.34).

EXAMPLE 2  Find the divergence, and interpret what it means, for each vector field 

in Example 1 representing the velocity of a gas flowing in the xy-plane.

Solution

(a) div F =
0
0x

 (cx) +
0
0y

 (cy) = 2c: If c 7 0, the gas is undergoing uniform expansion; 

  if c 6 0, it is undergoing uniform compression.

(b) div F =
0
0x

 (-cy) +
0
0y

 (cx) = 0: The gas is neither expanding nor compressing.

(c) div F =
0
0x

 (y) = 0: The gas is neither expanding nor compressing.

(d) div F =
0
0x

 a -y

x2 + y2
b +

0
0y

 a x

x2 + y2
b =

2xy

(x2 + y2)2
-

2xy

(x2 + y2)2
= 0: Again, the 

  divergence is zero at all points in the domain of the velocity ield. 

Cases (b), (c), and (d) of Figure 16.31 are plausible models for the two-dimensional 

flow of a liquid. In fluid dynamics, when the velocity field of a flowing liquid always has 

divergence equal to zero, as in those cases, the liquid is said to be incompressible.

Two Forms for Green’s Theorem

A simple closed curve C can be traversed in two possible directions. (Recall that a curve is 

simple if it does not cross itself.) The curve is traversed counterclockwise, and said to be 

positively oriented, if the region it encloses is always to the left when moving along the 

curve. If the curve is traversed clockwise then the enclosed region is on the right when 

moving along the curve and the curve is said to be negatively oriented. The line integral of 

a vector field F along C reverses sign if we change the orientation. We use the notation

F
C

F(x, y) # dr

for the line integral when the simple closed curve C is traversed counterclockwise, with its 

positive orientation.

In one form, Green’s Theorem says that the counterclockwise circulation of a vector 

field around a simple closed curve is the double integral of the k-component of the curl of 

the field over the region enclosed by the curve. Recall the defining Equation (5) for circu-

lation in Section 16.2.

Finally, we let ∆x and ∆y approach zero to define the flux density of F at the point (x, y). 

The mathematical term for the flux density is the divergence of F. The symbol for it is  

div F, pronounced “divergence of F” or “div F.”

Source: div F (x0, y0) > 0

Sink: div F (x0, y0) < 0

A gas expanding

at the point (x0, y0)

A gas compressing

at the point (x0, y0)

FIGURE 16.34 If a gas is expanding at a 

point (x0 , y0), the lines of flow have posi-

tive divergence; if the gas is compressing, 

the divergence is negative.

div F is the symbol for divergence.
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THEOREM 4—Green’s Theorem (Circulation-Curl or Tangential Form)

Let C be a piecewise smooth, simple closed curve enclosing a region R in the 

plane. Let F = M i + N j be a vector ield with M and N having continuous irst 

partial derivatives in an open region containing R. Then the counterclockwise 

circulation of F around C equals the double integral of (curl F) # k over R.

F
C

F # T ds = F
C

M dx + N dy = O
R

a0N
0x

-
0M
0y
b  dx dy (3)

Counterclockwise circulation Curl integral

Circulation and Curl

Circulation around C = F
C

F # T ds

(curl F) # k =
0N

0x
-

0M
0y

A second form of Green’s Theorem says that the outward flux of a vector field across 

a simple closed curve in the plane equals the double integral of the divergence of the field 

over the region enclosed by the curve. Recall the formulas for flux in Equations (8) and 

(9) in Section 16.2.

Flux and Divergence

Flux of F across C = F
C

F # n ds

div F =
0M
0x

+
0N

0y

THEOREM 5—Green’s Theorem (Flux-Divergence or Normal Form)

Let C be a piecewise smooth, simple closed curve enclosing a region R in the 

plane. Let F = M i + N j be a vector ield with M and N having continuous irst 

partial derivatives in an open region containing R. Then the outward lux of F 

across C equals the double integral of div F over the region R enclosed by C.

F
C

F # n ds = F
C

M dy - N dx = O
R

a0M
0x

+
0N
0y
b  dx dy   (4)

Outward lux Divergence integral

The two forms of Green’s Theorem are equivalent. Applying Equation (3) to the field 

G1 = -N i + M j gives Equation (4), and applying Equation (4) to G2 = N i - M j gives 

Equation (3).

Both forms of Green’s Theorem can be viewed as two-dimensional generalizations of 

the Fundamental Theorem of Calculus from Section 5.4. The counterclockwise circulation 

of F around C, defined by the line integral on the left-hand side of Equation (3), is the 

integral of its rate of change (circulation density) over the region R enclosed by C, which 

is the double integral on the right-hand side of Equation (3). Likewise, the outward flux of 

F across C, defined by the line integral on the left-hand side of Equation (4), is the integral 

of its rate of change (flux density) over the region R enclosed by C, which is the double 

integral on the right-hand side of Equation (4).

EXAMPLE 3  Verify both forms of Green’s Theorem for the vector field

F(x, y) = (x - y)i + xj

and the region R bounded by the unit circle

C: r(t) = (cos t)i + (sin t)j, 0 … t … 2p.

Solution First we evaluate the counterclockwise circulation of F = Mi + Nj around C. 

On the curve C we have x = cos t and y =  sin t. Evaluating F(r(t)) and computing the 

partial derivatives of the components of F, we have

M = x - y = cos t - sin t,  dx = d(cos t) = -sin t dt,

N = x = cos t,         dy = d(sin t) = cos t dt.
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Therefore,

 F
C

F # T ds = F
C

M dx + N dy

 = L
t= 2p

t= 0

(cos t - sin t)(-sin t) dt + (cos t)(cos t) dt

   = L
2p

0

(-sin t cos t + 1) dt = 2p.

This gives the left side of Equation (3). Next we ind the curl integral, the right side of 

Equation (3). Since M = x - y and N = x, we have

0M
0x

= 1,  
0M
0y

= -1,  
0N
0x

= 1,  
0N
0y

= 0.

Therefore,

O
R

a0N
0x

-
0M

dy
b  dx dy = O

R

(1 - (-1)) dx dy

= 2O
R

dx dy = 2(area inside the unit circle) = 2p.

Thus, the right and left sides of Equation (3) both equal 2p, as asserted by the circulation-

flux version of Green’s Theorem.

Figure 16.35 displays the vector ield and circulation around C.

Now we compute the two sides of Equation (4) in the lux-divergence form of Green’s 

Theorem, starting with the outward lux:

F
C

M dy - N dx = L
t = 2p

t = 0

(cos t -  sin t)(cos t dt) - (cos t)(-sin t dt)

= L
2p

0

 cos2 t dt = p.

Next we compute the divergence integral:

O
R

a0M
0x

+
0N
0y
b  dx dy = O

R

(1 + 0) dx dy = O
R

dx dy = p.

Hence the right and left sides of Equation (4) both equal p, as asserted by the lux- 

divergence version of Green’s Theorem. 

Using Green’s Theorem to Evaluate Line Integrals

If we construct a closed curve C by piecing together a number of different curves end to 

end, the process of evaluating a line integral over C can be lengthy because there are so 

many different integrals to evaluate. If C bounds a region R to which Green’s Theorem 

applies, however, we can use Green’s Theorem to change the line integral around C into 

one double integral over R.

EXAMPLE 4  Evaluate the line integral

F
C

xy dy - y2 dx,

where C is the square cut from the first quadrant by the lines x = 1 and y = 1.

y

x

T

T

FIGURE 16.35 The vector field in  

Example 3 has a counterclockwise  

circulation of 2p around the unit circle.
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Solution We can use either form of Green’s Theorem to change the line integral into a 

double integral over the square, where C is the square’s boundary and R is its interior.

1.  With the Tangential Form Equation (3): Taking M = -y2 and N = xy gives the result:

 F
C

 -y2 dx + xy dy = O
R

 a0N
0x

-
0M
0y
b  dx dy = O

R

( y - (-2y)) dx dy

 = L
1

0 L
1

0

3y dx dy = L
1

0
 c 3xy d x = 1

x = 0 

dy = L
1

0

3y dy =
3
2

 y2 d 1
0

=
3
2

.

2.  With the Normal Form Equation (4): Taking M = xy, N = y2, gives the same result:

F
C

xy dy - y2 dx = O
R

a0M
0x

+
0N
0y
b  dx dy = O

R

( y + 2y) dx dy =
3
2

.  

EXAMPLE 5  Calculate the outward flux of the vector field F(x, y) = 2exy i + y3 j 

across the square bounded by the lines x = {1 and y = {1.

Solution Calculating the flux with a line integral would take four integrations, one for 

each side of the square. With Green’s Theorem, we can change the line integral to one dou-

ble integral. With M = 2exy, N = y3, C the square, and R the square’s interior, we have

 Flux = F
C 

 F # n ds = F
C 

 M dy - N dx

 = O
R

 a0M
0x

+
0N
0y
b  dx dy Green’s Theorem, Eq. (4)

 = L
1

-1 

  L
1

-1

 (2yexy + 3y2) dx dy = L
1

-1

  c 2exy + 3xy2 d
x = -1

x = 1

 dy

 = L
1

-1

 (2ey + 6y2 - 2e-y) dy = c 2ey + 2y3 + 2e-y d
-1

1

= 4. 

Proof of Green’s Theorem for Special Regions

Let C be a smooth simple closed curve in the xy-plane with the property that lines parallel 

to the axes cut it at no more than two points. Let R be the region enclosed by C and suppose 

that M, N, and their first partial derivatives are continuous at every point of some open 

region containing C and R. We want to prove the circulation-curl form of Green’s Theorem,

F
C 

 M dx + N dy = O
R

 a0N
0x

-
0M
0y
b  dx dy. (5)

Figure 16.36 shows C made up of two directed parts:

C1: y = ƒ1(x), a … x … b,  C2: y = ƒ2(x), b Ú x Ú a.

For any x between a and b, we can integrate 0M>0y with respect to y from y = ƒ1(x) to 

y = ƒ2(x) and obtain

 L
ƒ2(x)

ƒ1(x)

 
0M
0y

 dy = M(x, y) d
y = ƒ1(x)

y = ƒ2(x)

= M(x, ƒ2(x)) - M(x, ƒ1(x)).

x

y

a0 x b

R

P2(x, f2(x))
C2:  y = f2(x)

C1:  y = f1(x)
P1(x, f1(x))

FIGURE 16.36 The boundary curve C 

is made up of C1, the graph of y = ƒ1(x), 

and C2 , the graph of y = ƒ2(x).
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We can then integrate this with respect to x from a to b:

  L
b

a L
ƒ2(x)

ƒ1(x)

 
0M
0y

 dy dx = L
b

a

 3M(x, ƒ2(x)) - M(x, ƒ1(x))4  dx

 = -L
a

b

 M(x, ƒ2(x)) dx - L
b

a

 M(x, ƒ1(x)) dx

 = -LC2

 M dx - LC1

 M dx

 = - F
C 

 M dx.

Therefore, reversing the order of the equations, we have

F
C 

 M dx = O
R

 a-  
0M
0y
b  dx dy. (6)

Equation (6) is half the result we need for Equation (5). We derive the other half by 

integrating 0N>0x first with respect to x and then with respect to y, as suggested by 

 Figure 16.37. This shows the curve C of Figure 16.36 decomposed into the two directed 

parts C =
1: x = g1(y),d Ú y Ú c and C =

2: x = g2(y), c … y … d. The result of this double 

integration is

F
C 

 N dy = O
R

 
0N
0x

 dx dy.  (7)

Summing Equations (6) and (7) gives Equation (5). This concludes the proof. 

Green’s Theorem also holds for more general regions, such as those shown in Figure 

16.38. Notice that the region in Figure 16.38c is not simply connected. The curves C1 and 

Ch on its boundary are oriented so that the region R is always on the left-hand side as the 

curves are traversed in the directions shown, and cancelation occurs over common bound-

ary arcs traversed in opposite directions. With this convention, Green’s Theorem is valid 

for regions that are not simply connected. The proof proceeds by summing the contribu-

tions to the Integral of a collection of special regions, which overlap along their boundar-

ies. Cancelation occurs along arcs that are traversed twice, one in each direction, as in 

Figure 16.38c. We do not give the full proof here.

R

x

y

c

0

y

d

C′2:  x = g2(y)

C′1:  x = g1(y)

Q2(g2( y), y)

Q1(g1( y), y)

FIGURE 16.37 The boundary curve C 

is made up of C1
= , the graph of x = g1(y), 

and C2
= , the graph of x = g2(y).

y

x
0

R

(a)

C

 

y

x
0

R

(b)

C

a b

a

b

 

x

y

h 1

R Ch

C1

0

FIGURE 16.38 Other regions to which Green’s Theorem applies. In (c) the axes convert the region into four 

simply connected regions, and we sum the line integrals along the oriented boundaries.
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Computing the k-Component of Curl(F)

In Exercises 1–6, find the k-component of curl(F) for the following 

vector fields on the plane.

 1. F = (x + y)i + (2xy)j

 2. F = (x2 - y)i + (y2)j

 3. F = (xey)i + (yex)j

 4. F = (x2y)i + (xy2)j

 5. F = (y sin x)i + (x sin y)j

 6. F = (x>y)i - ( y>x)j

Verifying Green’s Theorem

In Exercises 7–10, verify the conclusion of Green’s Theorem by evaluat-

ing both sides of Equations (3) and (4) for the field F = M i + N  j. Take 

the domains of integration in each case to be the disk R: x2 + y2 …  a2 

and its bounding circle C: r = (a cos t)i + (a sin t)j, 0 … t … 2p.

 7. F = -y i + x j    8. F = y i

 9. F = 2x i - 3y j  10. F = -x2y i + xy2 j

Circulation and Flux

In Exercises 11–20, use Green’s Theorem to find the counterclock-

wise circulation and outward flux for the field F and curve C.

 11. F = (x - y)i + (  y - x)j

  C: The square bounded by x = 0, x = 1, y = 0, y = 1

 12. F = (x2 + 4y)i + (x + y2)j

  C: The square bounded by x = 0, x = 1, y = 0, y = 1

 13. F = (y2 - x2)i + (x2 + y2)j

  C: The triangle bounded by y = 0, x = 3, and y = x

 14. F = (x + y)i - (x2 + y2)j

  C: The triangle bounded by y = 0, x = 1, and y = x

 19. F = (x + ex sin y)i + (x + ex cos y)j

  C: The right-hand loop of the lemniscate r2 = cos 2u

 20. F = atan-1  
y

xb i + ln (x2 + y2)j

  C: The boundary of the region deined by the polar coordinate 

inequalities 1 … r … 2, 0 … u … p

 21. Find the counterclockwise circulation and outward lux of the 

ield F = xyi + y2j around and over the boundary of the region 

enclosed by the curves y = x2 and y = x in the irst quadrant.

 22. Find the counterclockwise circulation and the outward lux of the 

ield F = (-sin y)i + (x cos y)j around and over the square cut 

from the irst quadrant by the lines x = p>2 and y = p>2.

 23. Find the outward lux of the ield

F = a3xy -
x

1 + y2
b i + (ex + tan-1 y)j

  across the cardioid r = a(1 + cos u), a 7 0.

 24. Find the counterclockwise circulation of F = (y + ex ln y)i +  

(ex>y)j around the boundary of the region that is bounded above 

by the curve y = 3 - x2 and below by the curve y = x4 + 1.

Work

In Exercises 25 and 26, find the work done by F in moving a particle 

once counterclockwise around the given curve.

 25. F = 2xy3i + 4x2y2j

  C: The boundary of the “triangular” region in the irst quadrant 

enclosed by the x-axis, the line x = 1, and the curve y = x3

 26. F = (4x - 2y)i + (2x - 4y)j

  C: The circle (x - 2)2 + (  y - 2)2 = 4

Using Green’s Theorem

Apply Green’s Theorem to evaluate the integrals in Exercises 27–30.

 27. F
C 

 (y2 dx + x2 dy)

  C: The triangle bounded by x = 0, x + y = 1, y = 0

 28. F
C 

 (3y dx + 2x dy)

  C: The boundary of 0 … x … p, 0 … y … sin x

 29. F
C 

 (6y + x) dx + (y + 2x) dy

  C: The circle (x - 2)2 + (y - 3)2 = 4

 30. F
C 

 (2x + y2) dx + (2xy + 3y) dy

  C: Any simple closed curve in the plane for which Green’s Theo-

rem holds

Calculating Area with Green’s Theorem If a simple closed curve 

C in the plane and the region R it encloses satisfy the hypotheses of 

Green’s Theorem, the area of R is given by

EXERCISES 16.4

 15. F = (xy + y2)i + (x - y)j

x

y

y = x2

x = y2

(0, 0)

(1, 1)

C

 16. F = (x + 3y)i + (2x - y)j

x

y

x2 + 2y2 = 2C

2−2

−1

1

 17. F = x3y2 i +
1
2

 x4y j

x

y

y = x2 − x 

y = x

(0, 0)

(2, 2)C

 18. F =
x

1 + y2
 i + 1tan-1 y2j

C

1−1

−1

x

1

y

x2 + y2 = 1
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The reason is that by Equation (4), run backward,

 Area of R = O
R

 dy dx = O
R

 a1
2

+
1
2
b  dy dx

 = F
C 

 
1
2

 x dy -
1
2

 y dx.

Use the Green’s Theorem area formula given above to find the areas 

of the regions enclosed by the curves in Exercises 31–34.

 31. The circle r(t) = (a cos t)i + (a sin t)j,  0 … t … 2p

 32. The ellipse r(t) = (a cos t)i + (b sin t)j,  0 … t … 2p

 33. The astroid r(t) = (cos3 t)i + (sin3 t)j,  0 … t … 2p

 34. One arch of the cycloid x = t - sin t,  y = 1 - cos t

 35. Let C be the boundary of a region on which Green’s Theorem 

holds. Use Green’s Theorem to calculate

a. F
C 

 ƒ(x) dx + g(y) dy

b. F
C 

 ky dx + hx dy (k and h constants).

 36. Integral dependent only on area Show that the value of

F
C 

 xy2 dx + (x2y + 2x) dy

  around any square depends only on the area of the square and not 

on its location in the plane.

 37. Evaluate the integral

F
C 

 4x3y dx + x4 dy

  for any closed path C.

 38. Evaluate the integral

F
C 

-y3 dy + x3 dx

  for any closed path C.

 39. Area as a line integral Show that if R is a region in the plane 

bounded by a piecewise smooth, simple closed curve C, then

Area of R = F
C 

 x dy = - F
C 

 y dx.

 40. Deinite integral as a line integral Suppose that a nonnegative 

function y = ƒ(x) has a continuous irst derivative on 3a, b4 . Let 

C be the boundary of the region in the xy-plane that is bounded 

Green’s Theorem Area Formula

Area of R =
1
2F

C 

 x dy - y dx

below by the x-axis, above by the graph of ƒ, and on the sides by 

the lines x = a and x = b. Show that

 L
b

a

 ƒ(x) dx = - F
C 

 y dx.

 41. Area and the centroid Let A be the area and x the x-coordi-

nate of the centroid of a region R that is bounded by a piecewise 

smooth, simple closed curve C in the xy-plane. Show that

1
2

 F
C 

 x2 dy = - F
C 

 xy dx =
1
3

 F
C 

 x2 dy - xy dx = Ax.

 42. Moment of inertia Let Iy be the moment of inertia about the 

y-axis of the region in Exercise 41. Show that

1
3

 F
C 

 x3 dy = - F
C 

 x2y dx =
1
4

 F
C 

 x3 dy - x2y dx = Iy .

 43. Green’s Theorem and Laplace’s equation Assuming that all 

the necessary derivatives exist and are continuous, show that if 

ƒ(x, y) satisies the Laplace equation

02ƒ

0x2
+

02ƒ

0y2
= 0,

  then

F
C 

 
0ƒ

0y
 dx -

0ƒ

0x
 dy = 0

  for all closed curves C to which Green’s Theorem applies. (The 

converse is also true: If the line integral is always zero, then ƒ 

satisies the Laplace equation.)

 44. Maximizing work Among all smooth, simple closed curves in 

the plane, oriented counterclockwise, ind the one along which the 

work done by

F = a1
4

 x2y +
1
3

 y3b i + xj

  is greatest. (Hint: Where is (curl F) # k positive?)

 45. Regions with many holes Green’s Theorem holds for a region 

R with any inite number of holes as long as the bounding curves 

are smooth, simple, and closed and we integrate over each compo-

nent of the boundary in the direction that keeps R on our immedi-

ate left as we go along (see accompanying igure).

a. Let ƒ(x, y) = ln (x2 + y2)  and let C be the circle 

x2 + y2 = a2. Evaluate the lux integral

F
C 

 ∇ƒ # n ds.
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b. Let K be an arbitrary smooth, simple closed curve in the 

plane that does not pass through (0, 0). Use Green’s Theorem 

to show that

F
K 

∇ƒ # n ds

has two possible values, depending on whether (0, 0) lies 

inside K or outside K.

 46. Bendixson’s criterion The streamlines of a planar luid low 

are the smooth curves traced by the luid’s individual particles. 

The vectors F = M(x, y)i + N(x, y)j of the low’s velocity ield 

are the tangent vectors of the streamlines. Show that if the low 

takes place over a simply connected region R (no holes or missing 

points) and that if Mx + Ny ≠ 0 throughout R, then none of the 

streamlines in R is closed. In other words, no particle of luid ever 

has a closed trajectory in R. The criterion Mx + Ny ≠ 0 is called 

Bendixson’s criterion for the nonexistence of closed trajectories.

 47. Establish Equation (7) to inish the proof of the special case of 

Green’s Theorem.

 48. Curl component of conservative ields Can anything be said 

about the curl component of a conservative two-dimensional  

vector ield? Give reasons for your answer.

COMPUTER EXPLORATIONS

In Exercises 49–52, use a CAS and Green’s Theorem to find the coun-

terclockwise circulation of the field F around the simple closed curve 

C. Perform the following CAS steps.

a. Plot C in the xy-plane.

b. Determine the integrand (0N>0x) - (0M>0y) for the tangen-

tial form of Green’s Theorem.

c. Determine the (double integral) limits of integration from 

your plot in part (a) and evaluate the curl integral for the 

circulation.

 49. F = (2x - y)i + (x + 3y)j, C: The ellipse x2 + 4y2 = 4

 50. F = (2x3 - y3)i + (x3 + y3)j, C: The ellipse 
x2

4
+

y2

9
= 1

 51. F = x-1ey i + (ey ln x + 2x)j, 

  C: The boundary of the region deined by y = 1 + x4 (below) and 

y = 2 (above)

 52. F = xey i + (4x2 ln y)j, 

  C: The triangle with vertices (0, 0), (2, 0), and (0, 4)

16.5 Surfaces and Area

We have defined curves in the plane in three different ways:

Explicit form: y = ƒ(x)

Implicit form: F(x, y) = 0

Parametric vector form: r(t) = ƒ(t)i + g(t)j,  a … t … b.

We have analogous definitions of surfaces in space:

Explicit form: z = ƒ(x, y)

Implicit form: F(x, y, z) = 0.

There is also a parametric form for surfaces that gives the position of a point on the surface 

as a vector function of two variables. We discuss this new form in this section and apply 

the form to obtain the area of a surface as a double integral. Double integral formulas for 

areas of surfaces given in implicit and explicit forms are then obtained as special cases of 

the more general parametric formula.

Parametrizations of Surfaces

Suppose

r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k (1)

is a continuous vector function that is defined on a region R in the uy-plane and one-to-one 

on the interior of R (Figure 16.39). We call the range of r the surface S defined or traced by 

r. Equation (1) together with the domain R constitutes a parametrization of the surface. The 

variables u and y are the parameters, and R is the parameter domain. To simplify our dis-

cussion, we take R to be a rectangle defined by inequalities of the form a … u … b, 

c … y … d. The requirement that r be one-to-one on the interior of R ensures that S does not 

cross itself. Notice that Equation (1) is the vector equivalent of three parametric equations:

x = ƒ(u, y),   y = g(u, y),   z = h(u, y).

z

x

y

S P

Curve y = constant

Curve u = constant

r(u, y) = f (u, y)i + g(u, y)j + h(u, y)k,

position vector to surface point

y

0
u

R

Parametrization

u = constant

y = constant

(u, y)

FIGURE 16.39 A parametrized surface 

S expressed as a vector function of two 

variables defined on a region R.



 16.5  Surfaces and Area 999

EXAMPLE 1  Find a parametrization of the cone

z = 2x2 + y2,   0 … z … 1.

Solution Here, cylindrical coordinates provide a parametrization. A typical point

(x, y, z) on the cone (Figure 16.40) has x = r  cos u, y = r sin u, and z = 2x2 + y2 = r, 

with 0 … r … 1 and 0 … u … 2p. Taking u = r  and y = u in Equation (1) gives the 

parametrization

r(r, u) = (r cos u)i + (r sin u)j + r  k,   0 … r … 1,  0 … u … 2p.

The parametrization is one-to-one on the interior of the domain R, though not on the 

boundary tip of its cone where r = 0. 

EXAMPLE 2  Find a parametrization of the sphere x2 + y2 + z2 = a2.

Solution Spherical coordinates provide what we need. A typical point (x, y, z) on the 

sphere (Figure 16.41) has x = a sin f cos u, y = a sin f sin u, and z = a cos f, 

0 … f … p, 0 … u … 2p. Taking u = f and y = u in Equation (1) gives the parame-

trization

r(f, u) = (a sin f cos u)i + (a sin f sin u)j + (a cos f)k,

0 … f … p, 0 … p … 2p,

Again, the parametrization is one-to-one on the interior of the domain R, though not on its 

boundary “poles” where f = 0 or f = p. 

EXAMPLE 3  Find a parametrization of the cylinder

x2 + ( y - 3)2 = 9,  0 … z … 5.

Solution In cylindrical coordinates, a point (x, y, z) has x = r cos u, y = r sin u, and 

z = z. For points on the cylinder x2 + ( y - 3)2 = 9 (Figure 16.42), the equation is the 

same as the polar equation for the cylinder’s base in the xy-plane:

 x2 + (y2 - 6y + 9) = 9

 r2 - 6r sin u = 0

or

r = 6 sin u,   0 … u … p.

A typical point on the cylinder therefore has

 x = r cos u = 6 sin u cos u = 3 sin 2u

 y = r sin u = 6 sin2 u

 z = z.

Taking u = u and y = z in Equation (1) gives the one-to-one parametrization

r(u, z) = (3 sin 2u)i + (6 sin2 u)j + z k,  0 … u … p,  0 … z … 5. 

Surface Area

Our goal is to find a double integral for calculating the area of a curved surface S based on 

the parametrization

r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k,  a … u … b,  c … y … d.

x2 + y2 = r2, y = r sin u

z

x
y

r

1

(x, y, z) =

(r cos u, r sin u, r)

u

r(r, u) = (r cos u)i

+ (r sin u)j + rk

Cone:

z = "x2 + y2

  = r

FIGURE 16.40 The cone in Example 1 

can be parametrized using cylindrical 

coordinates.

z

x
y

a a

a

r(f, u)

f

u

(x, y, z) = (a sin f cos u, a sin f sin u, a cos f)

FIGURE 16.41 The sphere in Example 2 

can be parametrized using spherical coor-

dinates.

z

x

y

z

r = 6 sin u

r(u, z)

Cylinder: x2 + (y − 3)2 = 9

or

r = 6 sin u

(x, y, z)

=(3 sin 2u, 6 sin2u

FIGURE 16.42 The cylinder in  

Example 3 can be parametrized using 

cylindrical coordinates.
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We need S to be smooth for the construction we are about to carry out. The definition of 

smoothness involves the partial derivatives of r with respect to u and y:

 ru =
0r
0u

=
0ƒ

0u
  i +

0g

0u
  j +

0h
0u

  k

 ry =
0r
0y =

0ƒ

0y  i +
0g

0y  j +
0h
0y  k.

DEFINITION A parametrized surface r(u, y) = ƒ(u, y)i + g(u, y)j +  h(u, y)k 

is smooth if ru and ry are continuous and ru * ry is never zero on the interior of 

the parameter domain.

The condition that ru * ry is never the zero vector in the definition of smoothness 

means that the two vectors ru and ry are nonzero and never lie along the same line, so they 

always determine a plane tangent to the surface. We relax this condition on the boundary 

of the domain, but this does not affect the area computations.

Now consider a small rectangle ∆Auy in R with sides on the lines u = u0 , 

u = u0 + ∆u, y = y0 , and y = y0 + ∆y (Figure 16.43). Each side of ∆Auy maps to a 

curve on the surface S, and together these four curves bound a “curved patch element” 

∆suy . In the notation of the figure, the side y = y0 maps to curve C1, the side u = u0 

maps to C2 , and their common vertex (u0 , y0) maps to P0 .

 

0
u

z

x

y

Parametrization

d

c

a b

R

S

u0
u0 + Δu

ΔAuy

y0 + Δy

y0

u �  u0 + Δu

y �  y0 + ΔyΔsuy

P0C1: y �  y0 C2: u �  u0

y

FIGURE 16.43 A rectangular area element ∆Auy in the uy-plane maps onto a curved  

patch element ∆suy on S.

Figure 16.44 shows an enlarged view of ∆suy . The partial derivative vector ru(u0 , y0) 

is tangent to C1 at P0. Likewise, ry(u0, y0) is tangent to C2 at P0 . The cross product ru * ry 

is normal to the surface at P0. (Here is where we begin to use the assumption that S is 

smooth. We want to be sure that ru * ry ≠ 0.)

We next approximate the surface patch element ∆suy by the parallelogram on the 

tangent plane whose sides are determined by the vectors ∆u ru and ∆y ry (Figure 16.45). 

The area of this parallelogram is

 0 ∆u ru * ∆y ry 0 = 0 ru * ry 0  ∆u ∆y. (2)

A partition of the region R in the uy-plane by rectangular regions ∆Auy induces a partition 

of the surface S into surface patch elements ∆suy . We approximate the area of each surface 

yx

z

ru × ry

ru

ryP0

C1: y = y0

Δsuy

C2: u = u0

FIGURE 16.44 A magnified view of a 

surface patch element ∆suy .

yx

z

Δuru

ΔyryP0

C1
Δsuy

C2

FIGURE 16.45 The area of the paral-

lelogram determined by the vectors ∆u ru 

and ∆y ry approximates the area of the 

surface patch element ∆suy .



 16.5  Surfaces and Area 1001

patch element ∆suy by the parallelogram area in Equation (2) and sum these areas together 

to obtain an approximation of the surface area of S:

a
n

0 ru * ry 0  ∆u ∆y. (3)

As ∆u and ∆y approach zero independently, the number of area elements n tends to q 

and the continuity of ru and ry guarantees that the sum in Equation (3) approaches the 

double integral 1d

c 1b

a
 0 ru * ry 0  du dy. This double integral over the region R defines the 

area of the surface S.

DEFINITION The area of the smooth surface

r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k,   a … u … b,  c … y … d

is

A = O
R

0 ru * ry 0  dA = L
d

c

 L
b

a

 0 ru * ry 0  du dy. (4)

We can abbreviate the integral in Equation (4) by writing ds for 0 ru * ry 0  du dy. The 

surface area differential ds is analogous to the arc length differential ds in Section 13.3.

Surface Area Diferential for a Parametrized Surface

ds = 0 ru * ry 0  du dy      O
S

 ds (5)

Surface area differential, also 

called surface area element

Diferential formula 

for surface area

ExamPLE 4  Find the surface area of the cone in Example 1 (Figure 16.40).

Solution In Example 1, we found the parametrization

r(r, u) = (r cos u)i + (r sin u)j + r  k,   0 … r … 1,  0 … u … 2p.

To apply Equation (4), we first find rr * ru :

 rr * ru = 3 i j k

cos u sin u 1

-r sin u r cos u 0

3
 = -(r cos u)i - (r sin u)j + (r cos2 u + r sin2 u)k.

(++++)++++*

Thus, 0 rr * ru 0 = 2r2 cos2 u + r2 sin2 u + r2 = 22r2 = 22r. The area of the cone is

 A = L
2p

0 L
1

0

 0 rr * ru 0  dr du Eq. (4) with u = r, y = u

 = L
2p

0 L
1

0

 22 r dr du = L
2p

0

 
22
2

 du =
22
2

 (2p) = p22 square units. 

r
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EXAMPLE 5  Find the surface area of a sphere of radius a.

Solution We use the parametrization from Example 2:

r(f, u) = (a sin f cos u)i + (a sin f sin u)j + (a cos f)k,

0 … f … p,  0 … u … 2p.

For rf * ru , we get

 rf * ru = 3 i j k

a cos f cos u a cos f sin u -a sin f

-a sin f sin u a sin f cos u 0

3
 = (a2 sin2 f cos u)i + (a2 sin2 f sin u)j + (a2 sin f cos f)k.

Thus,

 0 rf * ru 0 = 2a4 sin4 f cos2 u + a4 sin4 f sin2 u + a4 sin2 f cos2 f

 = 2a4 sin4 f + a4 sin2 f cos2 f = 2a4 sin2 f (sin2 f + cos2 f)

 = a22sin2 f = a2 sin f,

since sin f Ú 0 for 0 … f … p. Therefore, the area of the sphere is

 A = L
2p

0

 L
p

0

 a2 sin f df du

 = L
2p

0

 c-a2 cos f d
0

p

 du = L
2p

0

 2a2 du = 4pa2   square units.

This gives the well-known formula for the surface area of a sphere. 

EXAMPLE 6  Let S be the “football” surface formed by rotating the curve x = cos z, 

y = 0, -p>2 … z … p>2 around the z-axis (see Figure 16.46). Find a parametrization 

for S and compute its surface area.

Solution Example 2 suggests finding a parametrization of S based on its rotation around 

the z-axis. If we rotate a point (x, 0, z) on the curve x = cos z, y = 0 about the z-axis, we 

obtain a circle at height z above the xy-plane that is centered on the z-axis and has radius 

r = cos z (see Figure 16.46). The point sweeps out the circle through an angle of rotation 

u, 0 … u … 2p. We let (x, y, z) be an arbitrary point on this circle, and define the parame-

ters u = z and y = u. Then we have x = r cos u = cos u cos y,  y = r sin u = cos u sin y, 

and z = u giving a parametrization for S as

r(u, y) = cos u cos y  i + cos u sin y  j + u k,  -  
p
2

… u …
p
2

,  0 … y … 2p.

Next we use Equation (5) to ind the surface area of S. Diferentiation of the param-

etrization gives

ru = -sin u cos y i - sin u sin y j + k

and

ry = -cos u sin y i + cos u cos y j.

Computing the cross product we have

ru * ry = 3 i j k

-sin u cos y -sin u sin y 1

-cos u sin y cos u cos y 0

3
= -cos u cos y i - cos u sin y j - (sin u cos u cos2 y + cos u sin u sin2 y)k.

(x, y, z)

p
2

p
2

−

y

z

x

11

r = cos z is the

radius of a circle

at height z

x = cos z , y = 0

FIGURE 16.46 The “football” surface  

in Example 6 obtained by rotating the 

curve x = cos z about the z-axis.



 16.5  Surfaces and Area 1003

Taking the magnitude of the cross product gives0 ru * ry 0 = 2cos2 u (cos2 y + sin2 y) + sin2 u cos2 u

= 2cos2 u (1 + sin2 u)

= cos u 21 + sin2 u.

From Equation (4) the surface area is given by the integral

A = L
2p

0 L
p>2

-p>2 cos u 21 + sin2 u du dy.

To evaluate the integral, we substitute w = sin u and dw = cos u du, -1 … w … 1. 

Since the surface S is symmetric across the xy-plane, we need only integrate with respect 

to w from 0 to 1, and multiply the result by 2. In summary, we have

A = 2 L
2p

0

 L
1

0

 21 + w2 dw dy

= 2 L
2p

0

 cw
2

 21 + w2 +
1
2

 ln 1w + 21 + w22 d 1
0

 dy

= L
2p

0

 2 c 1
2

 22 +
1
2

 ln 11 + 222 d  dy
= 2p322 + ln 11 + 2224 .  

Implicit Surfaces

Surfaces are often presented as level sets of a function, described by an equation such as

F(x, y, z) = c,

for some constant c. Such a level surface does not come with an explicit parametrization, 

and is called an implicitly defined surface. Implicit surfaces arise, for example, as equipo-

tential surfaces in electric or gravitational fields. Figure 16.47 shows a piece of such a 

surface. It may be difficult to find explicit formulas for the functions ƒ, g, and h that 

describe the surface in the form r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k. We now show 

how to compute the surface area differential ds for implicit surfaces.

Figure 16.47 shows a piece of an implicit surface S that lies above its “shadow” region 

R in the plane beneath it. The surface is defined by the equation F(x, y, z) = c and we 

choose p to be a unit vector normal to the plane region R. We assume that the surface is 

smooth (F is differentiable and ∇F  is nonzero and continuous on S) and that ∇F # p ≠ 0, 

so the surface never folds back over itself.

Assume that the normal vector p is the unit vector k, so the region R in Figure 16.47 

lies in the xy-plane. By assumption, we then have ∇F # p = ∇F # k = Fz ≠ 0 on S. The 

Implicit Function Theorem (see Section 14.4) implies that S is then the graph of a differen-

tiable function z = h(x, y), although the function h(x, y) is not explicitly known. Define 

the parameters u and y by u = x and y = y. Then z = h(u, y) and

 r(u, y) = ui + yj + h(u, y)k (6)

gives a parametrization of the surface S. We use Equation (4) to find the area of S.

Calculating the partial derivatives of r, we find

ru = i +
0h
0u

  k  and  ry = j +
0h
0y  k.

 cos u Ú 0 for -
p

2
… u …

p

2

  Integral Table Formula 35

R

S

The vertical projection

or “shadow” of S on a

coordinate plane

Surface F(x, y,  z) = c

p

FIGURE 16.47 As we soon see, the area 

of a surface S in space can be calculated by 

evaluating a related double integral over 

the vertical projection or “shadow” of S 

on a coordinate plane. The unit vector p is 

normal to the plane.
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Applying the Chain Rule for implicit differentiation (see Equation (2) in Section 14.4) to 

F(x, y, z) = c, where x = u, y = y, and z = h(u, y), we obtain the partial derivatives

0h
0u

= -  
Fx

Fz
  and  

0h
0y = -  

Fy

Fz
.

Substitution of these derivatives into the derivatives of r gives

ru = i -
Fx

Fz
 k  and  ry = j -

Fy

Fz
 k.

From a routine calculation of the cross product we find

 ru * ry =
Fx

Fz
 i +

Fy

Fz
 j + k

 =
1
Fz

 (Fx 

 i +  Fy 

 j +  Fz 

 k)

 =
∇F
Fz

=
∇F

∇F # k

 =
∇F

∇F # p
.

Therefore, the surface area differential is given by

ds = 0 ru * ry 0  du dy =
0 ∇F 00 ∇F # p 0  dx dy.

We obtain similar calculations if instead the vector p = j is normal to the xz-plane when 

Fy ≠ 0 on S, or if p = i is normal to the yz-plane when Fx ≠ 0 on S. Combining these 

results with Equation (4) then gives the following general formula.

Fz ≠ 0

cross  product of

ru

ry

3 i j k

1 0 -Fx>Fz

0 1 -Fy>Fz

3        

p = k

  u = x and y = y

Formula for the Surface Area of an Implicit Surface

The area of the surface F(x, y, z) = c over a closed and bounded plane region R is

Surface area = O
R

 
0 ∇F �0 ∇F # p 0   dA, (7)

where p = i, j, or k is normal to R and ∇F # p ≠ 0.

Thus, the area is the double integral over R of the magnitude of ∇F  divided by the 

magnitude of the scalar component of ∇F  normal to R.

We reached Equation (7) under the assumption that ∇F # p ≠ 0 throughout R and that 

∇F  is continuous. Whenever the integral exists, however, we define its value to be the area 

of the portion of the surface F(x, y, z) = c that lies over R. (Recall that the projection is 

assumed to be one-to-one.)

EXAMPLE 7  Find the area of the surface cut from the bottom of the paraboloid 

x2 + y2 - z = 0 by the plane z = 4.

Solution We sketch the surface S and the region R below it in the xy-plane (Figure 16.48). 

The surface S is part of the level surface F(x, y, z) = x2 + y2 - z = 0, and R is the disk 

x2 + y2 … 4 in the xy-plane. To get a unit vector normal to the plane of R, we can take p = k.

y

x

4

S

R
0

z = x2 + y2

x2 + y2 = 4

z

FIGURE 16.48 The area of this parabolic 

surface is calculated in Example 7.
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At any point (x, y, z) on the surface, we have

 F(x, y, z) = x2 + y2 - z

 ∇F = 2xi + 2yj - k

 0 ∇F 0 = 2(2x)2 + (2y)2 + (-1)2

 = 24x2 + 4y2 + 1

 0 ∇F # p 0 = 0 ∇F # k 0 = 0-1 0 = 1.

In the region R, dA = dx dy. Therefore,

 Surface area = O
R

 
0 ∇F 00 ∇F # p 0  dA  Eq. (7)

 =  O
x2 + y2 … 4 

24x2 + 4y2 + 1 dx dy

 = L
2p

0 L
2

0

 24r2 + 1 r dr du  Polar coordinates

 = L
2p

0

 c 1
12

 (4r2 + 1)3>2 d
0

2

 du

 = L
2p

0

 
1
12

 (173>2 - 1) du =
p
6

 117217 - 12. 
Example 7 illustrates how to find the surface area for a function z = ƒ(x, y) over a 

region R in the xy-plane. Actually, the surface area differential can be obtained in two 

ways, and we show this in the next example.

EXAMPLE 8  Derive the surface area differential ds of the surface z = ƒ(x, y) over a 

region R in the xy-plane (a) parametrically using Equation (5), and (b) implicitly, as in 

Equation (7).

Solution

 (a) We parametrize the surface by taking x = u, y = y, and z = ƒ(x, y) over R. This 

gives the parametrization

r(u, y) = u i + y j + ƒ(u, y)k.

Computing the partial derivatives gives ru = i + ƒu k, ry = j + fy k and

ru * ry = -ƒu i - ƒy  j + k. 3 i j k

1 0 ƒu

0 1 ƒy

3
Then 0 ru * ry 0  du dy = 2ƒu 

2 + ƒy 

2 + 1 du dy. Substituting for u and y then gives 

the surface area diferential

ds = 2ƒx 

2 + ƒy 

2 + 1 dx dy.

(b) We deine the implicit function F(x, y, z) = ƒ(x, y) - z. Since (x, y) belongs to the 

region R, the unit normal to the plane of R is p = k. Then ∇F = ƒx i + ƒy j - k so 
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that 0 ∇F # p 0 = 0-1 0 = 1, 0 ∇F 0 = 2ƒx 

2 + ƒy 

2 + 1, and 0 ∇F 0  >  0 ∇F # p 0 = 0 ∇F 0 . 
The surface area diferential is again given by

ds = 2ƒx 

2 + ƒy 

2 + 1 dx dy.

The surface area differential derived in Example 8 gives the following formula for calcu-

lating the surface area of the graph of a function defined explicitly as z = ƒ(x, y).

Formula for the Surface Area of a Graph z = ƒ(x, y)

For a graph z = ƒ(x, y) over a region R in the xy-plane, the surface area formula is

A = O
R

 2ƒx 

2 + ƒy 

2 + 1 dx dy. (8)

Finding Parametrizations

In Exercises 1–16, find a parametrization of the surface. (There are 

many correct ways to do these, so your answers may not be the same 

as those in the back of the book.)

 1. The paraboloid z = x2 + y2, z … 4

 2. The paraboloid z = 9 - x2 - y2, z Ú 0

 3. Cone frustum The irst-octant portion of the cone z =  

2x2 + y2>2 between the planes z = 0 and z = 3

 4. Cone frustum The portion of the cone z = 22x2 + y2 be-

tween the planes z = 2 and z = 4

 5. Spherical cap The cap cut from the sphere x2 + y2 + z2 = 9 

by the cone z = 2x2 + y2

 6. Spherical cap The portion of the sphere x2 + y2 + z2 = 4 in 

the irst octant between the xy-plane and the cone z = 2x2 + y2

 7. Spherical band The portion of the sphere x2 + y2 + z2 = 3 

between the planes z = 23>2 and z = -23>2
 8. Spherical cap The upper portion cut from the sphere 

x2 + y2 + z2 = 8 by the plane z = -2

 9. Parabolic cylinder between planes The surface cut from the 

parabolic cylinder z = 4 - y2 by the planes x = 0, x = 2, and 

z = 0

 10. Parabolic cylinder between planes The surface cut from the 

parabolic cylinder y = x2 by the planes z = 0, z = 3, and y = 2

 11. Circular cylinder band The portion of the cylinder y2 + z2 = 9 

between the planes x = 0 and x = 3

 12. Circular cylinder band The portion of the cylinder x2 + z2 = 4 

above the xy-plane between the planes y = -2 and y = 2

 13. Tilted plane inside cylinder The portion of the plane x + y +  

z = 1

a. Inside the cylinder x2 + y2 = 9

b. Inside the cylinder y2 + z2 = 9

 14. Tilted plane inside cylinder The portion of the plane 

x - y + 2z = 2

a. Inside the cylinder x2 + z2 = 3

b. Inside the cylinder y2 + z2 = 2

 15. Circular cylinder band The portion of the cylinder (x - 2)2 +  

z2 = 4 between the planes y = 0 and y = 3

 16. Circular cylinder band The portion of the cylinder y2 +  

(z - 5)2 = 25 between the planes x = 0 and x = 10

Surface Area of Parametrized Surfaces

In Exercises 17–26, use a parametrization to express the area of the 

surface as a double integral. Then evaluate the integral. (There are 

many correct ways to set up the integrals, so your integrals may not be 

the same as those in the back of the book. They should have the same 

values, however.)

 17. Tilted plane inside cylinder The portion of the plane 

y + 2z = 2 inside the cylinder x2 + y2 = 1

 18. Plane inside cylinder The portion of the plane z = -x inside 

the cylinder x2 + y2 = 4

 19. Cone frustum The portion of the cone z = 22x2 + y2 be-

tween the planes z = 2 and z = 6

 20. Cone frustum The portion of the cone z = 2x2 + y2>3 be-

tween the planes z = 1 and z = 4>3
 21. Circular cylinder band The portion of the cylinder x2 + y2 = 1 

between the planes z = 1 and z = 4

 22. Circular cylinder band The portion of the cylinder x2 + z2 =  

10 between the planes y = -1 and y = 1

 23. Parabolic cap The cap cut from the paraboloid z = 2 - x2 - y2

  by the cone z = 2x2 + y2

 24. Parabolic band The portion of the paraboloid z = x2 + y2 be-

tween the planes z = 1 and z = 4

 25. Sawed-of sphere The lower portion cut from the sphere 

x2 + y2 + z2 = 2 by the cone z = 2x2 + y2

 26. Spherical band The portion of the sphere x2 + y2 + z2 = 4

  between the planes z = -1 and z = 23

EXERCISES 16.5
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Planes Tangent to Parametrized Surfaces

The tangent plane at a point P0(ƒ(u0 , y0) , g(u0 , y0) , h(u0 , y0)) on a 

parametrized surface r(u , y) = ƒ(u , y)i + g(u , y)j + h(u , y)k is the 

plane through P0 normal to the vector ru(u0 , y0) * ry(u0 , y0), the 

cross product of the tangent vectors ru(u0 , y0) and ry(u0 , y0) at P0 . In 

Exercises 27–30, find an equation for the plane tangent to the surface 

at P0 . Then find a Cartesian equation for the surface and sketch the 

surface and tangent plane together.

 27. Cone The cone r(r, u) = (r cos u)i + (r sin u)j + r  k, r Ú 0, 

0 … u … 2p at the point P0122, 22, 22 corresponding to 

(r, u) = (2, p>4)

 28. Hemisphere The hemisphere surface r(f, u) = (4 sin f cos u)i

+  (4 sin f sin u)j + (4 cos f)k, 0 … f … p>2, 0 … u … 2p, 

at the point P0122, 22, 2232 corresponding to (f, u) =  

(p>6, p>4)

 29. Circular cylinder The circular cylinder r(u, z) = (3 sin 2u)i +
(6 sin2 u)j + z  k, 0 … u … p, at the point P01323>2, 9>2, 02 
corresponding to (u, z) = (p>3, 0) (See Example 3.)

 30. Parabolic cylinder The parabolic cylinder surface r(x, y) =  

x i + y j - x2 k, -q 6 x 6 q, -q 6 y 6 q, at the point 

P0(1, 2, -1) corresponding to (x, y) = (1, 2)

More Parametrizations of Surfaces

 31. a.  A torus of revolution (doughnut) is obtained by rotating a circle 

C in the xz-plane about the z-axis in space. (See the accompa-

nying igure.) If C has radius r 7 0 and center (R, 0, 0), show 

that a parametrization of the torus is

 r(u, y) = ((R + r cos u)cos y)i

+ ((R + r cos u)sin y)j + (r sin u)k,

where 0 … u … 2p and 0 … y … 2p are the angles in the 

igure.

b. Show that the surface area of the torus is A = 4p2Rr.

x
0

C

u
r

R

u
y

x

z

z

y

 32. Parametrization of a surface of revolution Suppose that the 

parametrized curve C: (  f(u), g(u)) is revolved about the x-axis, 

where g(u) 7 0 for a … u … b.

a. Show that

r(u, y) = ƒ(u)i + (g(u)cos y)j + (g(u)sin y)k

is a parametrization of the resulting surface of revolution, 

where 0 … y … 2p is the angle from the xy-plane to the 

point r(u, y) on the surface. (See the accompanying igure.) 

Notice that ƒ(u) measures distance along the axis of revolu-

tion and g(u) measures distance from the axis of revolution.

y

x

z

C

( f (u), g(u), 0)

g(u)

r(u, y)

f (u)

y

b. Find a parametrization for the surface obtained by revolving 

the curve x = y2, y Ú 0, about the x-axis.

 33. a.  Parametrization of an ellipsoid The parametrization  

x = a cos u, y = b sin u, 0 … u … 2p gives the ellipse 

(x2>a2) + (y2>b2) = 1. Using the angles u and f in spheri-

cal coordinates, show that

r(u, f) = (a cos u cos f)i + (b sin u cos f)j + (c sin f)k

    is a parametrization of the ellipsoid (x2>a2) + (y2>b2) +
(z2>c2) = 1.

b. Write an integral for the surface area of the ellipsoid, but do 

not evaluate the integral.

 34. Hyperboloid of one sheet

a. Find a parametrization for the hyperboloid of one sheet 

x2 + y2 - z2 = 1 in terms of the angle u associated with  

the circle x2 + y2 = r2 and the hyperbolic parameter u  

associated with the hyperbolic function r2 - z2 = 1.  

(Hint: cosh2 u - sinh2 u = 1.)

b. Generalize the result in part (a) to the hyperboloid 

(x2>a2) + (y2>b2) - (z2>c2) = 1.

 35. (Continuation of Exercise 34.) Find a Cartesian equation for the 

plane tangent to the hyperboloid x2 + y2 - z2 = 25 at the point 

(x0, y0, 0), where x0  

2 + y0  

2 = 25.

 36. Hyperboloid of two sheets Find a parametrization of the hyper-

boloid of two sheets (z2>c2) - (x2>a2) - (y2>b2) = 1.

Surface Area for Implicit and Explicit Forms

 37. Find the area of the surface cut from the paraboloid x2 + y2 - z =  

0 by the plane z = 2.

 38. Find the area of the band cut from the paraboloid x2 + y2 - z =  

0 by the planes z = 2 and z = 6.

 39. Find the area of the region cut from the plane x + 2y + 2z = 5 

by the cylinder whose walls are x = y2 and x = 2 - y2.
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 40. Find the area of the portion of the surface x2 - 2z = 0 that lies 

above the triangle bounded by the lines x = 23, y = 0, and 

y = x in the xy-plane.

 41. Find the area of the surface x2 - 2y - 2z = 0 that lies above the 

triangle bounded by the lines x = 2, y = 0, and y = 3x in the 

xy-plane.

 42. Find the area of the cap cut from the sphere x2 + y2 + z2 = 2 by 

the cone z = 2x2 + y2.

 43. Find the area of the ellipse cut from the plane z = cx (c a con-

stant) by the cylinder x2 + y2 = 1.

 44. Find the area of the upper portion of the cylinder x2 + z2 = 1 that 

lies between the planes x = {1>2 and y = {1>2.

 45. Find the area of the portion of the paraboloid x = 4 - y2 - z2 

that lies above the ring 1 … y2 + z2 … 4 in the yz-plane.

 46. Find the area of the surface cut from the paraboloid x2 + y + z2 =  

2 by the plane y = 0.

 47. Find the area of the surface x2 - 2 ln x + 215y - z = 0 above 

the square R: 1 … x … 2, 0 … y … 1, in the xy-plane.

 48. Find the area of the surface 2x3>2 + 2y3>2 - 3z = 0 above the 

square R: 0 … x … 1, 0 … y … 1, in the xy-plane.

Find the area of the surfaces in Exercises 49–54.

 49. The surface cut from the bottom of the paraboloid z = x2 + y2 by 

the plane z = 3

 50. The surface cut from the “nose” of the paraboloid x = 1 -  

y2 - z2 by the yz-plane

 51. The portion of the cone z = 2x2 + y2 that lies over the region 

between the circle x2 + y2 = 1 and the ellipse 9x2 + 4y2 = 36 

in the xy-plane. (Hint: Use formulas from geometry to ind the 

area of the region.)

 52. The triangle cut from the plane 2x + 6y + 3z = 6 by the bound-

ing planes of the irst octant. Calculate the area three ways, using 

diferent explicit forms.

 53. The surface in the irst octant cut from the cylinder y = (2>3)z3>2 

by the planes x = 1 and y = 16>3
 54. The portion of the plane y + z = 4 that lies above the region cut 

from the irst quadrant of the xz-plane by the parabola x = 4 - z2

 55. Use the parametrization

r(x, z) = x i + ƒ(x, z)j + z k

  and Equation (5) to derive a formula for ds associated with the 

explicit form y = ƒ(x, z).

 56. Let S be the surface obtained by rotating the smooth curve 

y = ƒ(x), a … x … b, about the x-axis, where ƒ(x) Ú 0.

a. Show that the vector function

r(x, u) = x i + ƒ(x) cos u  j + ƒ(x) sin u  k

is a parametrization of S, where u is the angle of rotation 

around the x-axis (see the accompanying igure).

y

x

z

0

(x, y, z)

z u

f (x)

b. Use Equation (4) to show that the surface area of this surface 

of revolution is given by

A = L
b

a

 2pƒ(x)21 + 3ƒ′(x)42 dx.

16.6 Surface Integrals

To compute the mass of a surface, the flow of a liquid across a curved membrane, or the 

total electrical charge on a surface, we need to integrate a function over a curved surface in 

space. Such a surface integral is the two-dimensional extension of the line integral concept 

used to integrate over a one-dimensional curve. Like line integrals, surface integrals arise 

in two forms. The first occurs when we integrate a scalar function over a surface, such as 

integrating a mass density function defined on a surface to find its total mass. This form 

corresponds to line integrals of scalar functions defined in Section 16.1, and can be used to 

find the mass of a thin wire. The second form involves surface integrals of vector fields, 

analogous to the line integrals for vector fields defined in Section 16.2. An example occurs 

when we want to measure the net flow of a fluid across a surface submerged in the fluid 

(just as we previously defined the flux of F across a curve). In this section we investigate 

these ideas and their applications.

Surface Integrals

Suppose that the function G(x, y, z) gives the mass density (mass per unit area) at each point 

on a surface S. Then we can calculate the total mass of S as an integral in the following way.
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Assume, as in Section 16.5, that the surface S is defined parametrically on a region R 

in the uy-plane,

r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k,  (u, y)∊R.

In Figure 16.49, we see how a subdivision of R (considered as a rectangle for simplicity) 

divides the surface S into corresponding curved surface elements, or patches, of area

∆suy ≈ 0 ru * ry 0  du dy.

As we did for the subdivisions when defining double integrals in Section 15.2, we num-

ber the surface element patches in some order with their areas given by ∆s1, ∆s2 , . . . , ∆sn. 

To form a Riemann sum over S, we choose a point (xk , yk , zk) in the kth patch, multiply the 

value of the function G at that point by the area ∆sk , and add together the products:

a
n

k = 1

 G(xk , yk , zk) ∆sk .

Depending on how we pick (xk , yk , zk) in the kth patch, we may get different values for this 

Riemann sum. Then we take the limit as the number of surface patches increases, their 

areas shrink to zero, and both ∆u S 0 and ∆y S 0. This limit, whenever it exists inde-

pendent of all choices made, defines the surface integral of G over the surface S as

yx

z

Δuru

ΔyryPk

Δsk = Δsuy

(xk, yk, zk)

FIGURE 16.49 The area of the patch 

∆sk is approximated by the area of the 

tangent parallelogram determined by 

the vectors ∆u ru and ∆y ry . The point 

(xk , yk , zk) lies on the surface patch, 

beneath the parallelogram shown here.

Formulas for a Surface Integral of a Scalar Function

1. For a smooth surface S defined parametrically as r(u, y) = ƒ(u, y)i +  

g(u, y)j + h(u, y)k, (u, y)∊R, and a continuous function G(x, y, z) defined 

on S, the surface integral of G over S is given by the double integral over R,

O
S

 G(x, y, z) ds = O
R

 G(ƒ(u, y), g(u, y), h(u, y)) 0 ru * ry 0  du dy. (2)

2. For a surface S given implicitly by F(x, y, z) = c, where F is a continuously 

diferentiable function, with S lying above its closed and bounded shadow re-

gion R in the coordinate plane beneath it, the surface integral of the continuous 

function G over S is given by the double integral over R,

O
S

 G(x, y, z) ds = O
R

 G(x, y, z) 
0 ∇F 00 ∇F # p 0  dA, (3)

where p is a unit vector normal to R and ∇F # p ≠ 0.

3. For a surface S given explicitly as the graph of z = ƒ(x, y), where ƒ is a con-

tinuously differentiable function over a region R in the xy-plane, the surface inte-

gral of the continuous function G over S is given by the double integral over R,

O
S

 G(x, y, z) ds = O
R

 G(x, y, ƒ(x, y)) 2ƒx 2 + ƒy 2 + 1 dx dy. (4)

 O
S

 G(x , y , z) ds = lim
nSq

 a
n

k = 1

G(xk , yk , zk) ∆sk . (1)

Notice the analogy with the definition of the double integral (Section 15.2) and with the 

line integral (Section 16.1). If S is a piecewise smooth surface, and G is continuous over S, 

then the surface integral defined by Equation (1) can be shown to exist.

The formula for evaluating the surface integral depends on the manner in which S is 

described, parametrically, implicitly or explicitly, as discussed in Section 16.5.
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The surface integral in Equation (1) takes on different meanings in different applica-

tions. If G has the constant value 1, the integral gives the area of S. If G gives the mass 

density of a thin shell of material modeled by S, the integral gives the mass of the shell. If 

G gives the charge density of a thin shell, then the integral gives the total charge.

EXAMPLE 1  Integrate G(x, y, z) = x2 over the cone z = 2x2 + y2, 0 … z … 1.

Solution Using Equation (2) and the calculations from Example 4 in Section 16.5, we 

have 0 rr * ru 0 = 22r  and

 O
S

 x2 ds = L
2p

0

 L
1

0

 1r2 cos2 u2122r2 dr du

 = 22 L
2p

0

 L
1

0

 r3 cos2 u dr du

 =
22
4

 L
2p

0

 cos2 u du =
22
4

 c u
2

+
1
4

 sin 2u d
0

2p

=
p22

4
. 

Surface integrals behave like other double integrals, the integral of the sum of two func-

tions being the sum of their integrals and so on. The domain Additivity Property takes the form

O
S

 G ds = O
S1

 G ds + O
S2

 G ds + g + O
Sn

 G ds.

When S is partitioned by smooth curves into a finite number of smooth patches with non-

overlapping interiors (i.e., if S is piecewise smooth), then the integral over S is the sum of 

the integrals over the patches. Thus, the integral of a function over the surface of a cube is 

the sum of the integrals over the faces of the cube. We integrate over a turtle shell of 

welded plates by integrating over one plate at a time and adding the results.

EXAMPLE 2  Integrate G(x, y, z) = xyz over the surface of the cube cut from the 

first octant by the planes x = 1, y = 1, and z = 1 (Figure 16.50).

Solution We integrate xyz over each of the six sides and add the results. Since xyz = 0 on 

the sides that lie in the coordinate planes, the integral over the surface of the cube reduces to

O
Cube

 surface 

 xyz ds = O
Side A 

 xyz ds + O
Side B 

 xyz ds + O
Side C 

 xyz ds.

Side A is the surface ƒ(x, y, z) = z = 1 over the square region Rxy: 0 … x … 1, 

0 … y … 1, in the xy-plane. For this surface and region,

 p = k,  ∇ƒ = k,  0 ∇ƒ 0 = 1,   0 ∇ƒ # p 0 = 0 k # k 0 = 1

 ds =
0 ∇ƒ 00 ∇ƒ # p 0  dA =

1
1

 dx dy = dx dy

 xyz = xy(1) = xy

and

O
Side A 

 xyz ds = O
Rxy 

 xy dx dy = L
1

0

 L
1

0

 xy dx dy = L
1

0

 
y

2
 dy =

1
4

.

Symmetry tells us that the integrals of xyz over sides B and C are also 1 >4. Hence,

 O
Cube

surface

 xyz ds =
1
4

+
1
4

+
1
4

=
3
4

. 

   x = r cos u

   Eq. (3)

1

1

1

0

z

y

x
Side B

Side C

Side A

FIGURE 16.50 The cube in Example 2.
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EXAMPLE 3  Integrate G(x, y, z) = 21 - x2 - y2 over the “football” surface S 

formed by rotating the curve x = cos z, y = 0, -p>2 … z … p>2, around the z-axis.

Solution The surface is displayed in Figure 16.46, and in Example 6 of Section 16.5 we 

found the parametrization

x = cos u cos y,  y = cos u sin y,  z = u,  -  
p
2

… u …
p
2
  and  0 … y … 2p,

where y represents the angle of rotation from the xz-plane about the z-axis. Substituting 

this parametrization into the expression for G gives

21 - x2 - y2 = 21 - (cos2 u)(cos2 y + sin2 y) = 21 - cos2 u = 0 sin u 0 .
The surface area differential for the parametrization was found to be (Example 6,  

Section 16.5)

ds = cos u 21 + sin2 u du dy.

These calculations give the surface integral

O
S

21 - x2 - y2 ds = L
2p

0 L
p>2

-p>2 0  sin u 0  cos u 21 +  sin2 u du dy

= 2 L
2p

0 L
p>2

0

 sin u cos u 21 +  sin 2u du dy

= L
2p

0 L
2

1

2w dw dy

= 2p ~ 
2
3

 w3>2 d 2
1

=
4p
3

 1222 - 12.  

EXAMPLE 4  Evaluate 4S2x(1 + 2z) ds on the portion of the cylinder z = y2>2 

over the triangular region R: x Ú 0, y Ú 0, x + y … 1 in the xy-plane (Figure 16.51).

Solution The function G on the surface S is given by

G(x, y, z) = 2x(1 + 2z) = 2x21 + y2.

With z = ƒ(x, y) = y2>2, we use Equation (4) to evaluate the surface integral:

ds = 2fx 2 + fy 2 + 1 dx dy = 20 + y2 + 1 dx dy

and

 O
S

G(x, y, z) ds = O
R

12x21 + y2221 + y2 dx dy

 = L
1

0 L
1 - x

0

2x (1 + y2) dy dx

 = L
1

0

2x c (1 - x) +
1
3

 (1 - x)3 d  dx

 = L
1

0

a4
3

 x1>2 - 2x3>2 + x5>2 -
1
3

 x7>2b  dx

 = c 8
9

 x3>2 -
4
5

 x5>2 +
2
7

 x7>2 -
2
27

 x9>2 d 1
0

 =
8
9

-
4
5

+
2
7

-
2
27

=
284
945

≈ 0.30.  

 
w = 1 +  sin2 u,

dw = 2 sin u cos u du

When u = 0, w = 1.

When u = p>2, w = 2.

 Integrate and evaluate.

 Routine algebra

0, 1,
1

2

z =   y21

2

1

1
y

x

z

x + y = 1

a     b

FIGURE 16.51 The surface S in  

Example 4.
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Orientation of a Surface

A curve C with a parametrization r(t) has a natural orientation, or direction, that comes 

from the direction of increasing t. The unit tangent vector T along C points in this forward 

direction at each point on the curve. There are two possible orientations for a curve, cor-

responding to whether we follow the direction of the tangent vector T at each point, or the 

direction of - T.

To specify an orientation on a surface in space S, we do something similar, but this 

time we specify a normal vector at each point on the surface. A parametrization of a sur-

face r(u, y) gives a vector ru * ry that is normal to the surface, and so gives an orientation 

wherever the parametrization applies. A second choice of orientation is found by taking 

-(ru * ry), giving a vector that points to the opposite side of the surface at each point. In 

essence, an orientation is a way of consistently choosing one of the two sides of a surface. 

Not all surfaces have orientations, but a surface that does have one also has a second, 

opposite orientation.

Each point on the sphere in Figure 16.52 has one normal vector pointing inward, 

toward the center of the sphere, and another opposite normal vector pointing outward. We 

specify one of two possible orientations for the sphere by choosing either the inward vec-

tor at each point, or alternatively the outward vector at each point.

When we can choose a continuous field of unit normal vectors n on a smooth surface 

S then we say that S is orientable (or two-sided). Spheres and other smooth surfaces that 

are the boundaries of regions in space are orientable, since we can choose an outward- 

pointing unit vector n at each point to specify an orientation.

A surface together with its normal field n, or, equivalently, a surface with a consistent 

choice of sides, is called an oriented surface. The vector n at any point gives the positive 

direction or positively oriented side at that point (Figure 16.52). Not all surfaces can be 

oriented. The Mobius band in Figure 16.53 is an example of a surface that is not orient-

able. No matter how you try to construct a continuous unit normal vector field (shown as 

the shafts of thumbtacks in the figure), starting at one point and moving the vector contin-

uously around the surface in the manner shown will return it to the starting point, but 

pointing in the opposite direction. No choice of a vectors can give a continuous normal 

vector field on the Mobius band, so the Mobius band is not orientable.

Surface Integrals of Vector Fields

In Section 16.2 we defined the line integral of a vector field along a path C as 1C  F # T ds, 

where T is the unit tangent vector to the path pointing in the forward oriented direction. 

We have a similar definition for surface integrals.

(a) (b)

FIGURE 16.52 An outward-pointing 

vector field (a) and an inward-pointing 

vector field (b) give the two possible ori-

entations of a sphere.

d c

a b

Start

Finish
d b

ca

FIGURE 16.53 To make a Möbius band, 

take a rectangular strip of paper abcd, 

give the end bc a single twist, and paste 

the ends of the strip together to match a 

with c and b with d. The Möbius band is a 

nonorientable or one-sided surface.

DEFINITION Let F be a vector field in three-dimensional space with continu-

ous components defined over a smooth surface S having a chosen field of normal 

unit vectors n orienting S. Then the surface integral of F over S is

O
S

F # n ds. (5)

This integral is also called the flux of the vector field F across S.

If F is the velocity field of a three-dimensional fluid flow, then the flux of F across S 

is the net rate at which fluid is crossing S per unit time in the chosen positive  

direction n defined by the orientation of S. Fluid flows are discussed in more detail in 

 Section 16.7.
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Computing a Surface Integral for a Parametrized Surface

EXAMPLE 5  Find the flux of F = yz i + x j - z2 k through the parabolic cylinder 

y = x2, 0 … x … 1, 0 … z … 4, in the direction n indicated in Figure 16.54.

Solution On the surface we have x = x, y = x2, and z = z, so we automatically have 

the parametrization r(x, z) = x i + x2 j + z k, 0 … x … 1, 0 … z … 4. The cross product 

of tangent vectors is

rx * rz = 3 i j k

1 2x 0

0 0 1

3 = 2xi - j.

The unit normal vectors pointing outward from the surface as indicated in Figure 16.54 are

n =
rx * rz

� rx * rz �
=

2xi - j

24x2 + 1
.

On the surface, y = x2, so the vector field there is

F = yz i + x j - z2 k = x2z  i + x j - z2 k.

Thus,

  F # n =
1

24x2 + 1
 ((x2z)(2x) + (x)(-1) + (-z2)(0)) =

2x3z - x

24x2 + 1
.

The flux of F outward through the surface is

 O
S

 F # n ds = L
4

0 L
1

0

 
2x3z - x

24x2 + 1
 0 rx * rz 0  dx dz

 = L
4

0

 L
1

0

 
2x3z - x

24x2 + 1
24x2 + 1 dx dz

 = L
4

0

 L
1

0

 (2x3z - x) dx dz = L
4

0

 c 1
2

 x4z -
1
2

 x2 d
x = 0

x = 1

 dz

 = L
4

0

 
1
2

 (z - 1) dz =
1
4

 (z - 1)2 d
0

4

 =
1
4

 (9) -
1
4

 (1) = 2.  

There is a simple formula for the lux of F across a parametrized surface r(u, y). Since

ds = 0 ru * ry 0  du dy,

with the orientation

n =
ru * ry0 ru * ry 0

it follows that

O
S

F # n ds = O
R

F # ru * ry

� ru * ry �
 � ru * ry �  du dy = O

R

F # (ru * ry) du dy.

This integral for flux simplifies the computation in Example 5 by eliminating the need to 

compute the canceled term � ru * ry � . Since

F # (rx * rz) = (x2z)(2x) + (x)(-1) = 2x3z - x,

  ds = � rx * rz �  dx  dz

z

x

y

n

1

1

4

(1, 0, 4)
y = x2

FIGURE 16.54 Finding the flux  

through the surface of a parabolic  

cylinder (Example 5).

Flux Across a Parametrized Surface

Flux = O
R

F # (ru * ry)  du dy
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we obtain directly

Flux = O
S

F # n ds = L
4

0 L
1

0

(2x3z - x)  dx dz = 2

in Example 5.

Computing a Surface Integral for a Level Surface

If S is part of a level surface g(x, y, z) = c, then n may be taken to be one of the two ields

n = {
∇g0 ∇g 0 , (6)

depending on which one gives the preferred direction. The corresponding flux is

 Flux = O
S

 F # n ds

 = O
R

 aF # {∇g

� ∇g �
b  
0 ∇g 00 ∇g # p 0  dA

 = O
R

 F # {∇g0 ∇g # p 0  dA.  (7)

EXAMPLE 6  Find the flux of F = yz j + z2
 k outward through the surface S cut 

from the cylinder y2 + z2 = 1, z Ú 0, by the planes x = 0 and x = 1.

Solution The outward normal field on S (Figure 16.55) may be calculated from the gra-

dient of g(x, y, z) = y2 + z2 to be

n = +
∇g

� ∇g �
=

2yj + 2zk

24y2 + 4z2
=

2yj + 2zk

221
= yj + zk.

With p = k, we also have

ds =
0 ∇g 0

� ∇g # k �
 dA =

2

� 2z �
 dA =

1
z  dA.  Eq. (3)

We can drop the absolute value bars because z Ú 0 on S.

The value of F # n on the surface is

 F # n = (yz j + z2 k) # (y j + z k)

 = y2
 z + z3 = z(  y2 + z2)

 = z .  y2 + z2 = 1 on S

The surface projects onto the shadow region Rxy, which is the rectangle in the xy-plane 

shown in Figure 16.55. Therefore, the flux of F outward through S is

 O
S

 F # n ds = O
Rxy

 (z)a1z  dAb = O
Rxy

 dA = area(Rxy) = 2. 

Moments and Masses of Thin Shells

Thin shells of material like bowls, metal drums, and domes are modeled with surfaces. Their 

moments and masses are calculated with the formulas in Table 16.3. The derivations are similar 

to those in Section 6.6. The formulas are like those for line integrals in Table 16.1, Section 16.1.

  Eqs. (6) and (3)

(1, 1, 0)
x

y

z

n

1

(1, −1, 0)

Rxy

y2 + z2 = 1

S

FIGURE 16.55 Calculating the flux of 

a vector field outward through the surface 

S. The area of the shadow region Rxy is 2 

(Example 6).
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TABLE 16.3 Mass and moment formulas for very thin shells

Mass: M = O
S

 d ds d = d(x, y, z) = density at (x, y, z) is  mass per unit area

First moments about the coordinate planes:

Myz = O
S

 x d ds,   Mxz = O
S

 y d ds,   Mxy = O
S

 z d ds

Coordinates of center of mass:

x = Myz >M,   y = Mxz >M,   z = Mxy>M
Moments of inertia about coordinate axes:

Ix = O
S

 (y2 + z2) d ds,  Iy = O
S

 (x2 + z2) d ds, Iz = O
S

 (x2 + y2) d ds,

IL = O
S

 r2d ds r (x, y, z) = distance from point (x, y, z) to line L

EXAMPLE 7  Find the center of mass of a thin hemispherical shell of radius a and 

constant density d.

Solution We model the shell with the hemisphere

ƒ(x, y, z) = x2 + y2 + z2 = a2,   z Ú 0

(Figure 16.56). The symmetry of the surface about the z-axis tells us that x = y = 0. It 

remains only to find z from the formula z = Mxy >M.

The mass of the shell is

M = O
S

 d ds = dO
S

 ds = (d)(area of S) = 2pa2d. d = constant

To evaluate the integral for Mxy , we take p = k and calculate

 0 ∇ƒ 0 = 0 2xi + 2yj + 2zk 0 = 22x2 + y2 + z2 = 2a

 0 ∇ƒ # p 0 = 0 ∇ƒ # k 0 = 0 2z 0 = 2z

 ds =
0 ∇ƒ 0

� ∇ƒ # p �
 dA =

a
z  dA.

Then

 Mxy = O
S

 zd ds = dO
R

 z 
a
z  dA = daO

R

 dA = da(pa2) = dpa3

 z =
Mxy

M
=

pa3d

2pa2d
=

a

2
.

The shell’s center of mass is the point (0, 0, a >2). 

  Eq. (3)

z
x2

 + y2
 + z2

 = a2

0, 0,
a

x2
 + y2

 = a2

a

x

R
a

2

S

a          b

y

FIGURE 16.56 The center of mass of a 

thin hemispherical shell of constant density 

lies on the axis of symmetry halfway from 

the base to the top (Example 7).
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EXAMPLE 8  Find the center of mass of a thin shell of density d = 1>z2 cut from the 

cone z = 2x2 + y2 by the planes z = 1 and z = 2 (Figure 16.57).

Solution The symmetry of the surface about the z-axis tells us that x = y = 0. We find 

z = Mxy >M. Working as in Example 4 of Section 16.5, we have

r(r, u) = (r cos u)i + (r sin u)j + rk,   1 … r … 2,  0 … u … 2p,

and 0 rr * ru 0 = 22r.

Therefore,

 M = O
S

 d ds = L
2p

0

 L
2

1

 
1

r2
22r dr du

 = 22 L
2p

0

 c ln r d
1

2

 du = 22 L
2p

0

 ln 2 du

 = 2p22 ln 2,

 Mxy = O
S

 dz ds = L
2p

0

 L
2

1

 
1

r2
 r22r dr du

 = 22 L
2p

0

 L
2

1

 dr du

 = 22 L
2p

0

 du = 2p22,

 z =
Mxy

M
=

2p22

2p22 ln 2
=

1
ln 2

.

The shell’s center of mass is the point (0, 0, 1 > ln 2). 

y

z

x

1

2

z = "x2 + y2

FIGURE 16.57 The cone frustum 

formed when the cone z = 2x2 + y2 

is cut by the planes z = 1 and z = 2 

(Example 8).

Surface Integrals of Scalar Functions

In Exercises 1–8, integrate the given function over the given surface.

 1. Parabolic cylinder G(x, y, z) = x, over the parabolic cylinder 

y = x2, 0 … x … 2, 0 … z … 3

 2. Circular cylinder G(x, y, z) = z, over the cylindrical surface 

y2 + z2 = 4, z Ú 0, 1 … x … 4

 3. Sphere G(x, y, z) = x2, over the unit sphere x2 + y2 + z2 = 1

 4. Hemisphere G(x, y, z) = z2, over the hemisphere x2 + y2 +  

z2 = a2, z Ú 0

 5. Portion of plane F(x, y, z) = z, over the portion of the 

plane x + y + z = 4 that lies above the square 0 … x … 1,  

0 … y … 1, in the xy-plane

 6. Cone F(x, y, z) = z - x, over the cone z = 2x2 + y2, 

0 … z … 1

 7. Parabolic dome H(x, y, z) = x225 - 4z, over the parabolic 

dome z = 1 - x2 - y2, z Ú 0

 8. Spherical cap H(x, y, z) = yz, over the part of the sphere 

x2 + y2 + z2 = 4 that lies above the cone z = 2x2 + y2

 9. Integrate G(x, y, z) = x + y + z over the surface of the cube cut 

from the irst octant by the planes x = a, y = a, z = a.

 10. Integrate G(x, y, z) = y + z over the surface of the wedge in the 

irst octant bounded by the coordinate planes and the planes x = 2 

and y + z = 1.

 11. Integrate G(x, y, z) = xyz over the surface of the rectangular solid 

cut from the irst octant by the planes x = a, y = b, and z = c.

 12. Integrate G(x, y, z) = xyz over the surface of the rectangular solid 

bounded by the planes x = {a, y = {b, and z = {c.

 13. Integrate G(x, y, z) = x + y + z over the portion of the plane 

2x + 2y + z = 2 that lies in the irst octant.

 14. Integrate G(x, y, z) = x2y2 + 4 over the surface cut from the 

parabolic cylinder y2 + 4z = 16 by the planes x = 0, x = 1, 

and z = 0.

EXERCISES 16.6
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 15. Integrate G(x, y, z) = z - x over the portion of the graph of 

z = x + y2 above the triangle in the xy-plane having vertices  

(0, 0, 0), (1, 1, 0), and (0, 1, 0). (See accompanying igure.)

z

x

y

z = x + y2

(1, 1, 0)

(0, 1, 0)

(0, 0, 0)

(0, 1, 1)

(1, 1, 2)

1

1

1

 16. Integrate G(x, y, z) = x over the surface given by

z = x2 + y  for  0 … x … 1,  -1 … y … 1.

 17. Integrate G(x, y, z) = xyz over the triangular surface with vertices 

(1, 0, 0), (0, 2, 0), and (0, 1, 1).

z

y

x (1, 0, 0)

(0, 1, 1)

(0, 2, 0)

1

 18. Integrate G(x, y, z) = x - y - z over the portion of the plane 

x + y = 1 in the irst octant between z = 0 and z = 1 (see the 

accompanying igure below).

z

y

x

(1, 0, 1)

(0, 1, 1)

1

1

1

Finding Flux or Surface Integrals of Vector Fields

In Exercises 19–28, use a parametrization to find the flux 4S
 F # n ds 

across the surface in the specified direction.

 19. Parabolic cylinder F = z2 i + x j - 3z  k outward (normal 

away from the x-axis) through the surface cut from the parabolic 

cylinder z = 4 - y2 by the planes x = 0, x = 1, and z = 0

 20. Parabolic cylinder F = x2 j - xz  k outward (normal away 

from the yz-plane) through the surface cut from the parabolic cyl-

inder y = x2, -1 … x … 1, by the planes z = 0 and z = 2

 21. Sphere F = z  k across the portion of the sphere x2 + y2 +  

z2 = a2 in the irst octant in the direction away from the origin

 22. Sphere F = x i + y j + z  k across the sphere x2 + y2 + z2 = a2 

in the direction away from the origin

 23. Plane F = 2xy i + 2yz  j + 2xz  k upward across the portion of 

the plane x + y + z = 2a that lies above the square 0 … x … a, 

0 … y … a, in the xy-plane

 24. Cylinder F = x i + y j + z  k outward through the portion of 

the cylinder x2 + y2 = 1 cut by the planes z = 0 and z = a

 25. Cone F = xy i - z  k outward (normal away from the z-axis) 

through the cone z = 2x2 + y2, 0 … z … 1

 26. Cone F = y2i + xzj - k outward (normal away from the 

z-axis) through the cone z = 22x2 + y2, 0 … z … 2

 27. Cone frustum F = -x i - y j + z2 k outward (normal away 

from the z-axis) through the portion of the cone z = 2x2 + y2 

between the planes z = 1 and z = 2

 28. Paraboloid F = 4x i + 4y j + 2 k outward (normal away from 

the z-axis) through the surface cut from the bottom of the parabo-

loid z = x2 + y2 by the plane z = 1

In Exercises 29 and 30, find the surface integral of the field F over the 

portion of the given surface in the specified direction.

 29. F(x, y, z) = - i + 2j + 3k

  S:  rectangular surface z = 0,  0 … x … 2,  0 … y … 3,  

direction k

 30. F(x, y, z) = yx2i - 2j + xzk

  S:  rectangular surface y = 0,  -1 … x … 2,  2 … z … 7,  

direction - j

In Exercises 31–36, use Equation (7) to find the surface integral of the 

field F over the portion of the sphere x2 + y2 + z2 = a2 in the first 

octant in the direction away from the origin.

 31. F(x, y, z) = zk

 32. F(x, y, z) = -y i + x j

 33. F(x, y, z) = y i - x j + k

 34. F(x, y, z) = zx i + zy j + z2 k

 35. F(x, y, z) = x i + y j + z  k

 36. F(x, y, z) =
x i + y j + z  k

2x2 + y2 + z2

 37. Find the lux of the ield F(x, y, z) = z2 i + x j - 3 z  k outward 

through the surface cut from the parabolic cylinder z = 4 - y2 

by the planes x = 0, x = 1, and z = 0.

 38. Find the lux of the ield F(x, y, z) = 4x i + 4y j + 2 k outward 

(away from the z-axis) through the surface cut from the bottom of 

the paraboloid z = x2 + y2 by the plane z = 1.
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 39. Let S be the portion of the cylinder y = ex in the irst octant that 

projects parallel to the x-axis onto the rectangle Ryz: 1 … y … 2, 

0 … z … 1 in the yz-plane (see the accompanying igure). Let n 

be the unit vector normal to S that points away from the yz-plane. 

Find the lux of the ield F(x, y, z) = -2i + 2yj + zk across S in 

the direction of n.

z

y
x

1

1

2
Sy = e x

Ry z

 40. Let S be the portion of the cylinder y = ln x in the irst octant 

whose projection parallel to the y-axis onto the xz-plane is the 

rectangle Rxz: 1 … x … e, 0 … z … 1. Let n be the unit vector 

normal to S that points away from the xz-plane. Find the lux of 

F = 2yj + zk through S in the direction of n.

 41. Find the outward lux of the ield F = 2xy i + 2yz  j + 2xz  k 

across the surface of the cube cut from the irst octant by the 

planes x = a, y = a, z = a.

 42. Find the outward lux of the ield F = xz  i + yz  j + k 

across the surface of the upper cap cut from the solid sphere 

x2 + y2 + z2 … 25 by the plane z = 3.

Moments and Masses

 43. Centroid Find the centroid of the portion of the sphere 

x2 + y2 + z2 = a2 that lies in the irst octant.

 44. Centroid Find the centroid of the surface cut from the cylinder 

y2 + z2 = 9, z Ú 0, by the planes x = 0 and x = 3 (resembles 

the surface in Example 6).

 45. Thin shell of constant density Find the center of mass and the mo-

ment of inertia about the z-axis of a thin shell of constant density d cut 

from the cone x2 + y2 - z2 = 0 by the planes z = 1 and z = 2.

 46. Conical surface of constant density Find the moment of iner-

tia about the z-axis of a thin shell of constant density d cut from 

the cone 4x2 + 4y2 - z2 = 0, z Ú 0, by the circular cylinder 

x2 + y2 = 2x (see the accompanying igure).

z

y

x
2

4x2 + 4y2 − z2 = 0

z ≥ 0

x2 + y2 = 2x

or

r = 2 cos u

 47. Spherical shells

a. Find the moment of inertia about a diameter of a thin spheri-

cal shell of radius a and constant density d. (Work with a 

hemispherical shell and double the result.)

b. Use the Parallel Axis Theorem (Exercises 15.6) and the result 

in part (a) to ind the moment of inertia about a line tangent to 

the shell.

 48. Conical Surface Find the centroid of the lateral surface of a 

solid cone of base radius a and height h (cone surface minus the 

base).

 49. A surface S lies on the plane 2x + 3y + 6z = 12 directly 

above the rectangle in the xy-plane with vertices (0, 0), (1, 0),  

(0, 2), and (1, 2). If the density at a point (x, y, z) on S is given by 

d(x, y, z) = 4xy + 6z mg>cm2, ind the total mass of S.

 50. A surface S lies on the paraboloid z =
1
2

x2 +
1
2

y2 directly above 

  the triangle in the xy-plane with vertices (0, 0), (2, 0), and (2, 4). If the 

density at a point (x, y, z) on S is given by d(x, y, z) = 9xy g>cm2, 

ind the total mass of S.

16.7 Stokes’ Theorem

To calculate the counterclockwise circulation of a two-dimensional vector field 

F = M i + N j around a simple closed curve in the plane, Green’s Theorem says we can 

compute the double integral over the region enclosed by the curve of the scalar quantity 

(0N>0x - 0M>0y). This expression is the k-component of a curl vector field, which we 

define in this section, and it measures the rate of rotation of F at each point in the region 

around an axis parallel to k. For a vector field on three-dimensional space, the rotation at 

each point is around an axis that is parallel to the curl vector at that point. When a closed 

curve C in space is the boundary of an oriented surface, we will see that the circulation of 

F around C is equal to the surface integral of the curl vector field. This result extends 

Green’s Theorem from regions in the plane to general surfaces in space having a smooth 

boundary curve.
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The Curl Vector Field

Suppose that F is the velocity field of a fluid flowing in space. Particles near the point (x, y, z) 

in the fluid tend to rotate around an axis through (x, y, z) that is parallel to a certain vector we 

are about to define. This vector points in the direction for which the rotation is counterclock-

wise when viewed looking down onto the plane of the circulation from the tip of the arrow 

representing the vector. This is the direction your right-hand thumb points when your fingers 

curl around the axis of rotation in the way consistent with the rotating motion of the particles 

in the fluid (see Figure 16.58). The length of the vector measures the rate of rotation. The vec-

tor is called the curl vector, and for the vector field F = M i + N j + P k it is defined to be

curl F = a0P
0y

-
0N
0z
b i + a0M

0z
-

0P
0x
b j + a0N

0x
-

0M
0y
bk. (1)

This information is a consequence of Stokes’ Theorem, the generalization to space of the 

circulation-curl form of Green’s Theorem and is the subject of this section.

Notice that (curl F) # k = (0N>0x - 0M>0y), which is consistent with our definition 

in Section 16.4 when F = M(x, y)i + N(x, y)j. The formula for curl F in Equation (1) is 

often expressed using the symbol

∇ = i 
0
0x

+ j 
0
0y

+ k 
0
0z

. (2)

The symbol ∇  is pronounced “del,” and we can use this symbol to compute the curl of F 

with the formula

 ∇ * F = 4 i j k

0
0x

0
0y

0
0z

M N P

4
 = a0P

0y
-

0N
0z
b i + a0M

0z
-

0P
0x
b j + a0N

0x
-

0M
0y
bk.

We often use this cross product notation to write the curl symbolically as “del cross F.”

Curl F

(x, y, z)

FIGURE 16.58 The circulation vector  

at a point (x, y, z) in a plane in a three-  

dimensional fluid flow. Notice its right-

hand relation to the rotating particles in 

the fluid.

 curl F = ∇ * F (3)

EXAMPLE 1  Find the curl of F = (x2 - z)i + xezj + xyk.

Solution We use Equation (3) and the determinant form for the cross product, which 

gives,

 curl F = ∇ * F

 = 4 i j k

0
0x

0
0y

0
0z

x2 - z xez xy

4
 = a 0

0y
  (xy) -

0
0z

  (xez)b i - a 0
0x

  (xy) -
0
0z

  (x2 - z)b j

          + a 0
0x

 (xez) -
0
0y

 (x2 - z)bk

 = (x - xez)i - (y + 1)j + (ez - 0)k

  = x(1 - ez)i - ( y + 1)j + ezk.  

Notice that curl F is a 

vector, not a scalar.

∇  is the symbol “del.”
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As we will see, the operator ∇  has a number of other applications. For instance, when 

applied to a scalar function ƒ(x, y, z), it gives the gradient of ƒ:

∇ƒ =
0ƒ

0x
  i +

0ƒ

0y
  j +

0ƒ

0z
  k.

In this setting it is sometimes read as “del ƒ” and sometimes as “grad ƒ.”

Stokes’ Theorem

Stokes’ Theorem generalizes Green’s Theorem to three dimensions. The circulation-curl 

form of Green’s Theorem relates the counterclockwise circulation of a vector field around 

a simple closed curve C in the xy-plane to a double integral over the plane region R 

enclosed by C. Stokes’ Theorem relates the circulation of a vector field around the bound-

ary C of an oriented surface S in space (Figure 16.59) to a surface integral over the surface 

S. We require that the surface be piecewise smooth, which means that it is a finite union of 

smooth surfaces joining along smooth curves.

nS

C

FIGURE 16.59 The orientation of the 

bounding curve C gives it a right-handed 

relation to the normal field n. If the thumb 

of a right hand points along n, the fingers 

curl in the direction of C.

THEOREM 6—Stokes’ Theorem

Let S be a piecewise smooth oriented surface having a piecewise smooth boundary 

curve C. Let F = M i + N j + P k be a vector field whose components have con-

tinuous first partial derivatives on an open region containing S. Then the circulation 

of F around C in the direction counterclockwise with respect to the surface’s unit 

normal vector n equals the integral of the curl vector field ∇ * F over S:

I
C

F ~ d r = O
S

(∇ * F) ~ n ds  (4)

Counterclockwise  

circulation

Curl integral

Notice from Equation (4) that if two different oriented surfaces S1 and S2 have the 

same boundary C, their curl integrals are equal:

O
S1

 (∇ * F) # n1 ds = O
S2

 (∇ * F) # n2 ds.

Both curl integrals equal the counterclockwise circulation integral on the left side of Equa-

tion (4) as long as the unit normal vectors n1 and n2 correctly orient the surfaces. So  

the curl integral is independent of the surface and depends only on circulation along the 

boundary curve. This independence of surface resembles the path independence for the 

flow integral of a conservative velocity field along a curve, where the value of the flow 

integral depends only on the endpoints (that is, the boundary points) of the path. The curl 

field ∇ * F is analogous to the gradient field ∇f  of a scalar function ƒ.

If C is a curve in the xy-plane, oriented counterclockwise, and R is the region in the 

xy-plane bounded by C, then ds = dx dy and

(∇ * F) # n = (∇ * F) # k = a0N
0x

-
0M
0y
b .

Under these conditions, Stokes’ equation becomes

F
C 

 F # dr = O
R

 a0N
0x

-
0M
0y
b  dx dy,
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which is the circulation-curl form of the equation in Green’s Theorem. Conversely, by 

reversing these steps we can rewrite the circulation-curl form of Green’s Theorem for two-

dimensional fields in del notation as

F
C 

 F # dr = O
R

 (∇ * F) # k dA.  (5)

See Figure 16.60.

EXAMPLE 2  Evaluate Equation (4) for the hemisphere S: x2 + y2 + z2 = 9, z Ú 0, 

its bounding circle C: x2 + y2 = 9, z = 0, and the field F = yi - xj.

Solution The hemisphere looks much like the surface in Figure 16.59 with the bounding 

circle C in the xy-plane (see Figure 16.61). We calculate the counterclockwise circulation 

around C (as viewed from above) using the parametrization r(u) = (3 cos u)i +  

(3 sin u)j, 0 … u … 2p:

 dr = (-3 sin u du)i + (3 cos u du)j

 F = yi - xj = (3 sin u)i - (3 cos u)j

 F # dr = -9 sin2 u du - 9 cos2 u du = -9 du

 F
C 

 F # dr = L
2p

0

-9 du = -18p.

For the curl integral of F, we have

 ∇ * F = a0P
0y

-
0N
0z
b i + a0M

0z
-

0P
0x
b j + a0N

0x
-

0M
0y
bk

 = (0 - 0)i + (0 - 0)j + (-1 - 1)k = -2k

 n =
xi + yj + zk

2x2 + y2 + z2
=

xi + yj + zk

3

 ds =
3
z  dA

(∇ * F) # n ds = (-2k) * axi + yj + zk

3
b  ds = -

2z

3
 
3
z dA = -2 dA

and

O
S

 (∇ * F) # n ds = O
x2 + y2 … 9

-2 dA = -18p.

The circulation around the circle equals the integral of the curl over the hemisphere, as it 

should from Stokes’ Theorem. 

The surface integral in Stokes’ Theorem can be computed using any surface having bound-

ary curve C, provided the surface is properly oriented and lies within the domain of the ield 

F. The next example illustrates this fact for the circulation around the curve C in Example 2.

EXAMPLE 3  Calculate the circulation around the bounding circle C in Example 2 

using the disk of radius 3 centered at the origin in the xy-plane as the surface S (instead of 

the hemisphere). See Figure 16.61.

Solution As in Example 2, ∇ * F = -2k. For the surface being the described disk in 

the xy-plane, we have the normal vector n = k so that

(∇ * F) # n ds = -2k # k dA = -2 dA

Circulation 

Curl

k

R

Green:

Circulation 

Curl

Stokes:

n

S

FIGURE 16.60 When applied to  

curves and surfaces in the plane, Stokes’  

Theorem gives the circulation-curl version 

of Green’s Theorem. But Stokes’ Theorem 

also applies more generally, to curves and 

surfaces not lying in the plane.

y

z

x

n
x2 + y2 + z2 = 9

C: x2 + y2 = 9

k

y

z

x

FIGURE 16.61 A hemisphere and a 

disk, each with boundary C (Examples 2 

and 3).

 Outer unit normal

Section 16.6, Example 7,  

with a = 3
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and

O
S

 (∇ * F) # n ds = O
x2 + y2 … 9

-2 dA = -18p,

a simpler calculation than before. 

y

z

x

n

S: r(r, u) = (r cos u)i + (r sin u)j + rk

C: x2 + y2 = 4,  z = 2

FIGURE 16.62 The curve C and cone S 

in Example 4.

EXAMPLE 4  Find the circulation of the field F = (x2 - y)i + 4z j + x2k around

the curve C in which the plane z = 2 meets the cone z = 2x2 + y2, counterclockwise as 

viewed from above (Figure 16.62).

Solution Stokes’ Theorem enables us to find the circulation by integrating over the sur-

face of the cone. Traversing C in the counterclockwise direction viewed from above cor-

responds to taking the inner normal n to the cone, the normal with a positive k-component.

We parametrize the cone as

r(r, u) = (r cos u)i + (r sin u)j + r  k,   0 … r … 2,  0 … u … 2p.

We then have

 n =
rr * ru

� rr * ru �
=

-(r cos u)i - (r sin u)j + rk

r22
 Section 16.5, Example 4

 =
1

22
 1-(cos u)i - (sin u)j + k2

 ds = r22 dr du

 ∇ * F = -4i - 2xj + k

 = -4i - 2r cos uj + k.

Accordingly,

 (∇ * F) # n =
1

22
 a4 cos u + 2r cos u sin u + 1b

 =
1

22
 a4 cos u + r sin 2u + 1b

and the circulation is

 F
C 

 F # dr = O
S

 (∇ * F) # n ds  Stokes’ Theorem, Eq. (4)

 = L
2p

0

 L
2

0

 
1

22
 14 cos u + r sin 2u + 121r22 dr du2 = 4p. 

Section 16.5, Example 4

Routine calculation

x = r cos u

EXAMPLE 5  The cone used in Example 4 is not the easiest surface to use for calcu-

lating the circulation around the bounding circle C lying in the plane z = 2. If instead we 

use the flat disk of radius 2 centered on the z-axis and lying in the plane z = 2, then the 

normal vector to the surface S is n = k. Just as in the computation for Example 4, we still 

have ∇ * F = -4i - 2xj + k. However, now we get (∇ * F) # n = 1, so that

O
S

 (∇ * F) # n ds = O
x2 + y2 … 4

1 dA = 4p.  The shadow is the disk of radius 2 in the xy-plane.

This result agrees with the circulation value found in Example 4. 
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EXAMPLE 6  Find a parametrization for the surface S formed by the part of the 

hyperbolic paraboloid z = y2 - x2 lying inside the cylinder of radius one around the 

z-axis and for the boundary curve C of S. (See Figure 16.63.) Then verify Stokes’ Theo-

rem for S using the normal having positive k-component and the vector field 

F = yi - xj + x2k.

Solution As the unit circle is traversed counterclockwise in the xy-plane, the z-coordinate 

of the surface with the curve C as boundary is given by y2 - x2. A parametrization of C is 

given by

r(t) = (cos t)i + (sin t)j + (sin2 t - cos2 t)k, 0 … t … 2p

with

dr
dt

= (-sin t)i + (cos t)j + (4 sin t cos t)k, 0 … t … 2p.

Along the curve r(t) the formula for the vector field F is

F = (sin t)i - (cos t)j + (cos2 t)k.

The counterclockwise circulation along C is the value of the line integral

 L
2p

0

F # dr
dt

 dt = L
2p

0

a-sin2 t - cos2 t + 4 sin t cos3 tb  dt

 = L
2p

0

a4 sin t cos3 t - 1b  dt

 = c-cos4 t - t d 2p
0

= -2p.

We now compute the same quantity by integrating (∇ * F) # n over the surface S. We 

use polar coordinates and parametrize S by noting that above the point (r, u) in the plane, 

the z–coordinate of S is y2 - x2 = r2 sin2 u - r2 cos2 u. A parametrization of S is

r(r, u) = (r cos u)i + (r sin u)j + r2(sin2 u - cos2 u)k, 0 … r … 1, 0 … u … 2p.

We next compute (∇ * F) # n ds. We have

∇ * F = 4 i j k

0
0x

0
0y

0
0z

y -x x2

4 = -2x j - 2k = -(2r cos u)j - 2k

and

 rr = ( cos u)i + ( sin u)j + 2r( sin2 u -  cos2 u)k

 ru = (-r sin u)i + (r cos u)j + 4r2( sin u cos u)k

 rr * ru = † i j k

cos u sin u 2r(sin2 u - cos2 u)

-r sin u r cos u 4r2(sin u cos u)

†
 = 2r2(2 sin2 u cos u -  sin2 u cos u +  cos3 u)i

         -2r2(2 sin u cos2 u +  sin3 u +  sin u cos2 u)j + r  k.

y

x

S

z

C

n

1

1

−1

1

y

x

S

z

C

1

n

FIGURE 16.63 The surface and vector 

field for Example 6.
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We now obtain

 O
S

(∇ * F) # n ds = L
2p

0 L
1

0

(∇ * F) #  
rr * ru0 rr * ru 0 0 rr * ru 0  dr du

 = L
2p

0 L
1

0

(∇ * F) # (rr * ru) dr du

 = L
2p

0 L
1

0

34r312 sin u cos3 u + sin3 u cos u + sin u cos3 u2 - 2r4  dr du

 = L
2p

0
 c r4(3 sin u cos3 u +  sin3 u cos u) - r2 d r = 1

r = 0  

du .

 = L
2p

0

(3 sin u cos3 u +  sin3 u cos u - 1) du

 = c-  
3
4

 cos4 u +
1
4

 sin4 u - u d 2p
0

 = a-  
3
4

+ 0 - 2p +
3
4

- 0 + 0b = -2p.

  Integrate

Evaluate.

So the surface integral of (∇ * F) # n over S equals the counterclockwise circulation of F 

along C, as asserted by Stokes’ Theorem. 

EXAMPLE 7  Calculate the circulation of the vector field

F = (x2 + z)i + (y2 + 2x)j + (z2 - y)k

along the curve of intersection of the sphere x2 + y2 + z2 = 1 with the cone 

z = 2x2 + y2 traversed in the counterclockwise direction around the z-axis when viewed 

from above.

Solution The sphere and cone intersect when 1 = (x2 + y2) + z2 = z2 + z2 = 2z2, or 

z = 1>22 (see Figure 16.64). We apply Stokes’ Theorem to the curve of intersection 

x2 + y2 = 1>2 considered as the boundary of the enclosed disk in the plane z = 1>22. 

The normal vector to the surface is then n = k. We calculate the curl vector as

∇ * F = ∞ i j k

0
0x

0
0y

0
0z

x2 + z y2 + 2x z2 - y

∞ = - i + j + 2k,  Routine calculation

so that (∇ * F) # k = 2. The circulation around the disk is

F
C

F # dr = O
S

(∇ * F) # k ds

  = O
S

2 ds = 2 # area of disk = 2 # pa 1

22
b2

= p. 

Paddle Wheel Interpretation of ∇ : F

Suppose that F is the velocity field of a fluid moving in a region R in space containing the 

closed curve C. Then

F
C

F # dr

y

x

z

1

1

Sphere

x2 + y2 + z2 = 1

Circle C in the

plane z = 

Cone

z = "x2 + y2 

"2

1

1

FIGURE 16.64 Circulation curve C in 

Example 7.
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is the circulation of the fluid around C. By Stokes’ Theorem, the circulation is equal to the 

flux of ∇ * F through any suitably oriented surface S with boundary C:

F
C

F # dr = O
S

 (∇ * F) # n ds.

Suppose we fix a point Q in the region R and a direction u at Q. Take C to be a circle of 

radius r, with center at Q, whose plane is normal to u. If ∇ * F is continuous at Q, the 

average value of the u-component of ∇ * F over the circular disk S bounded by C 

approaches the u-component of ∇ * F at Q as the radius r S 0:

((∇ * F) # u)(Q) = lim
rS0

 
1

pr2O
S

 (∇ * F) # u ds.

If we apply Stokes’ Theorem and replace the surface integral by a line integral over C, we get

 ((∇ * F) #  u)(Q) = lim
rS0

  
1

pr2F
C

F # dr.  (6)

The left-hand side of Equation (6) has its maximum value when u is the direction of 

∇ * F. When r is small, the limit on the right-hand side of Equation (6) is approximately

1

pr2F
C

F # dr,

which is the circulation around C divided by the area of the disk (circulation density). Sup-

pose that a small paddle wheel of radius r is introduced into the fluid at Q, with its axle 

directed along u (Figure 16.65). The circulation of the fluid around C affects the rate of 

spin of the paddle wheel. The wheel spins fastest when the circulation integral is maxi-

mized; therefore it spins fastest when the axle of the paddle wheel points in the direction 

of ∇ * F.

Q

Curl F

FIGURE 16.65 A small paddle wheel 

in a fluid spins fastest at point Q when its 

axle points in the direction of curl F.

EXAMPLE 8  A fluid of constant density rotates around the z-axis with velocity 

F = v(-yi + xj), where v is a positive constant called the angular velocity of the rota-

tion (Figure 16.66). Find ∇ * F and relate it to the circulation density.

Solution With F = -vyi + vxj, we find the curl

 ∇ * F = a0P
0y

-
0N
0z
b i + a0M

0z
-

0P
0x
b j + a0N

0x
-

0M
0y
bk

 = (0 - 0)i + (0 - 0)j + (v - (-v))k = 2vk,

and therefore (∇ * F) # k = 2v. By Stokes’ Theorem, the circulation of F around a circle 

C of radius r bounding a disk S in a plane normal to ∇ * F, say the xy-plane, is

 F
C 

 F # dr = O
S

 (∇ * F) # n ds = O
S

 2vk # k dx dy = (2v)(pr2).

Solving this last equation for 2v, we see that

(∇ * F) # k = 2v =
1

pr2F
C 

 F # dr,

which is consistent with Equation (6) when u = k. 

EXAMPLE 9  Use Stokes’ Theorem to evaluate 1C  
F # dr, if F = xzi + xyj + 3xzk 

and C is the boundary of the portion of the plane 2x + y + z = 2 in the first octant, 

traversed counterclockwise as viewed from above (Figure 16.67).

x

y

r

0

z

 P(x, y, z)

v

P(x, y, 0)

F = v(−yi + xj)

FIGURE 16.66 A steady rotational flow 

parallel to the xy-plane, with constant 

angular velocity v in the positive (counter-

clockwise) direction (Example 8).

y

z

x

(1, 0, 0)

(0, 2, 0)

(0, 0, 2)

C

y = 2 − 2x

n

2x + y + z = 2

R

FIGURE 16.67 The planar surface in 

Example 9.
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Solution The plane is the level surface ƒ(x, y, z) = 2 of the function ƒ(x, y, z) = 2x +  

y + z. The unit normal vector

n =
∇ƒ

� ∇ƒ �
=

(2i + j + k)

� 2i + j + k �
=

1

26
 a2i + j + kb

is consistent with the counterclockwise motion around C. To apply Stokes’ Theorem, we find

curl F = ∇ * F = 4 i j k

0
0x

0
0y

0
0z

xz xy 3xz

4 = (x - 3z)j + yk.

On the plane, z equals 2 - 2x - y, so

∇ * F = (x - 3(2 - 2x - y))j + yk = (7x + 3y - 6)j + yk

and

(∇ * F) # n =
1

26
 a7x + 3y - 6 + yb =

1

26
 a7x + 4y - 6b .

The surface area differential is

ds =
0 ∇ƒ 0

� ∇ƒ # k �
 dA =

26
1

 dx dy.

The circulation is

 F
C 

 F # dr = O
S

 (∇ * F) # n ds

 = L
1

0

 L
2 - 2x

0

 
1

26
 a7x + 4y - 6b26 dy dx

 = L
1

0

 L
2 - 2x

0

 (7x + 4y - 6) dy dx = -1.  

EXAMPLE 10  Let the surface S be the ellipitical paraboloid z = x2 + 4y2 lying 

beneath the plane z = 1 (Figure 16.68). We define the orientation of S by taking the inner 

normal vector n to the surface, which is the normal having a positive k-component. Find 

the flux of ∇ * F across S in the direction n for the vector field F = yi - xzj + xz2k.

Solution We use Stokes’ Theorem to calculate the curl integral by finding the equivalent 

counterclockwise circulation of F around the curve of intersection C of the paraboloid 

z = x2 + 4y2 and the plane z = 1, as shown in Figure 16.68. Note that the orientation of 

S is consistent with traversing C in a counterclockwise direction around the z-axis. The 

curve C is the ellipse x2 + 4y2 = 1 in the plane z = 1. We can parametrize the ellipse by 

x = cos t, y = 1
2 sin t, z = 1 for 0 … t … 2p, so C is given by

r(t) = (cos t)i +
1
2

 (sin t)j + k,    0 … t … 2p.

To compute the circulation integral DC
 F # dr, we evaluate F along C and find the velocity 

vector dr>dt:

F(r(t)) =
1
2

 (sin t)i - (cos t)j + (cos t)k

Formula (7) in Section 16.5

Stokes’ Theorem, Eq. (4)

z

y
x

C: x2
 + 4y2

 = 1

z = x2
 + 4y2

n

FIGURE 16.68 The portion of the  

ellipitical paraboloid in Example 10, show-

ing its curve of intersection C with the plane 

z = 1 and its inner normal orientation by n.
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and

dr
dt

= -(sin t)i +
1
2

 (cos t)j.

Then,

 F
C

 F # dr = L
2p

0

 F(r(t)) # dr
dt

 dt

 = L
2p

0

 a-  
1
2

 sin2 t -
1
2

 cos2 tb  dt

 = -
1
2

  L
2p

0

 dt = -p.

Therefore, by Stokes’ Theorem the flux of the curl across S in the direction n for the field 

F is

O
S

 (∇ * F) # n ds = -p. 

Proof Outline of Stokes’ Theorem for Polyhedral Surfaces

Let S be a polyhedral surface consisting of a finite number of plane regions or faces. (See 

Figure 16.69 for examples.) We apply Green’s Theorem to each separate face of S. There 

are two types of faces:

1. Those that are surrounded on all sides by other faces.

2. Those that have one or more edges that are not adjacent to other faces.

The boundary of S consists of those edges of the type 2 faces that are not adjacent to other 

faces. In Figure 16.69a, the triangles EAB, BCE, and CDE represent a part of S, with ABCD 

part of the boundary of the surface, boundary(S). Although Green’s Theorem was stated for 

curves in the xy-plane, a generalized form applies to curves that lie in a plane in space. In 

the generalized form, the theorem asserts that the line integral of F around the curve enclos-

ing the plane region R normal to n equals the double integral of (curl F) # n over R. Apply-

ing this generalized form to the three triangles of Figure 16.69a in turn, and adding the 

results, gives

°   F
EAB

+ F
BCE

+ F
CDE

¢ F # dr = °  O
EAB

+ O
BCE

+ O
CDE

¢ (∇ * F) # n ds. (7)

The three line integrals on the left-hand side of Equation (7) combine into a single line 

integral taken around the periphery ABCDE because the integrals along interior segments 

cancel in pairs. For example, the integral along segment BE in triangle ABE is opposite in 

sign to the integral along the same segment in triangle EBC. The same holds for segment 

CE. Hence, Equation (7) reduces to

 F
ABCDE

F # dr = O
ABCDE

 (∇ * F) # n ds.

When we apply Green’s Theorem to all the faces and add the results, we get

F
boundary(S)

F # dr = O
S

 (∇ * F) # n ds.

A

B C

D

E

(a)

(b)

FIGURE 16.69 (a) Part of a polyhedral 

surface. (b) Other polyhedral surfaces.
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This is Stokes’ Theorem for the polyhedral surface S in Figure 16.69a. More general poly-

hedral surfaces are shown in Figure 16.69b and the proof can be extended to them. Gen-

eral smooth surfaces can be obtained as limits of polyhedral surfaces.

Stokes’ Theorem for Surfaces with Holes

Stokes’ Theorem holds for an oriented surface S that has one or more holes (Figure 16.70). 

The surface integral over S of the normal component of ∇ * F equals the sum of the line 

integrals around all the boundary curves of the tangential component of F, where the 

curves are to be traced in the direction induced by the orientation of S. For such surfaces 

the theorem is unchanged, but C is considered as a union of simple closed curves.

An Important Identity

The following identity arises frequently in mathematics and the physical sciences.S

n

FIGURE 16.70 Stokes’ Theorem also 

holds for oriented surfaces with holes. 

Consistent with the orientation of S, the 

outer curve is traversed counterclockwise 

around n and the inner curves surrounding 

the holes are traversed clockwise.

curl grad ƒ = 0  or  ∇ * ∇ƒ = 0 (8)

Forces arising in the study of electromagnetism and gravity are often associated with 

a potential function ƒ. The identity (8) says that these forces have curl equal to zero. The 

identity (8) holds for any function ƒ(x, y, z) whose second partial derivatives are 

continuous. The proof goes like this:

∇ * ∇ƒ = 5 i j k

0
0x

0
0y

0
0z

0ƒ

0x

0ƒ

0y

0ƒ

0z

5 = (ƒzy - ƒyz)i - (ƒzx - ƒxz)j + (ƒyx - ƒxy)k.

If the second partial derivatives are continuous, the mixed second derivatives in parenthe-

ses are equal (Theorem 2, Section 14.3) and the vector is zero.

Conservative Fields and Stokes’ Theorem

In Section 16.3, we found that a field F being conservative in an open region D in space is 

equivalent to the integral of F around every closed loop in D being zero. This, in turn, is 

equivalent in simply connected open regions to saying that ∇ * F = 0 (which gives a test 

for determining if F is conservative for such regions).

THEOREM 7—Curl F = 0 Related to the Closed-Loop Property 

If ∇ * F = 0 at every point of a simply connected open region D in space, then 

on any piecewise-smooth closed path C in D,

F
C 

 F # dr = 0.

Sketch of a Proof  Theorem 7 can be proved in two steps. The irst step is for simple 

closed curves (loops that do not cross themselves), like the one in Figure 16.71a. A theorem 

from topology, a branch of advanced mathematics, states that every smooth simple closed 

(a)

S

C

(b)

FIGURE 16.71 (a) In a simply 

 connected open region in space, a simple 

closed curve C is the boundary of a smooth 

surface S. (b) Smooth curves that cross 

themselves can be divided into loops to 

which Stokes’ Theorem applies.
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curve C in a simply connected open region D is the boundary of a smooth two-sided surface 

S that also lies in D. Hence, by Stokes’ Theorem,

F
C 

 F # dr = O
S

 (∇ * F) # n ds = 0.

The second step is for curves that cross themselves, like the one in Figure 16.71b. 

The idea is to break these into simple loops spanned by orientable surfaces, apply Stokes’ 

Theorem one loop at a time, and add the results.

The following diagram summarizes the results for conservative fields defined on con-

nected, simply connected open regions. For such regions, the four statements are equiva-

lent to each other.

Theorem 2,

Section 16.3

Theorem 7

Domain’s simple

connectivity and

Stokes’ Theorem

over any closed

path in D

F = ∇ f on DF conservative on D

∇  × F = 0 throughout DFC 
F ∙ dr = 0

Vector identity (Eq. 8)

(continuous second

partial derivatives)

Theorem 3,

Section 16.3

In Exercises 1–6, ind the curl of each vector ield F.

 1. F = (x + y - z)i + (2x - y + 3z)j + (3x + 2y + z)k

 2. F = (x2 - y)i + (y2 - z)j + (z2 - x)k

 3. F = (xy + z)i + (yz + x)j + (xz + y)k

 4. F = yezi + zexj - xeyk

 5. F = x2yzi + xy2z j + xyz2k

 6. F =
x
yzi -

y

xz j +
z
xyk

Using Stokes’ Theorem to Find Line Integrals

In Exercises 7–12, use the surface integral in Stokes’ Theorem to 

 calculate the circulation of the ield F around the curve C in the indi-

cated direction.

 7. F = x2i + 2xj + z2k

  C: The ellipse 4x2 + y2 = 4 in the xy-plane, counterclockwise 

when viewed from above

 8. F = 2yi + 3xj - z2k

  C: The circle x2 + y2 = 9 in the xy-plane, counterclockwise 

when viewed from above

 9. F = yi + xzj + x2k

  C: The boundary of the triangle cut from the plane x + y + z = 1 

by the irst octant, counterclockwise when viewed from above

 10. F = (y2 + z2)i + (x2 + z2)j + (x2 + y2)k

  C: The boundary of the triangle cut from the plane x + y + z = 1 

by the irst octant, counterclockwise when viewed from above

 11. F = (y2 + z2)i + (x2 + y2)j + (x2 + y2)k

  C: The square bounded by the lines x = {1 and y = {1 in the 

xy-plane, counterclockwise when viewed from above

 12. F = x2y3i + j + zk

  C: The intersection of the cylinder x2 + y2 = 4 and the hemisphere 

x2 + y2 + z2 = 16, z Ú 0, counterclockwise when viewed from 

above

Integral of the Curl Vector Field

 13. Let n be the outer unit normal of the elliptical shell

S: 4x2 + 9y2 + 36z2 = 36,   z Ú 0,

  and let

F = yi + x2j + (x2 + y4)3>2 sin e2xyz k.

  Find the value of

O
S

 (∇ * F) # n ds.

  (Hint: One parametrization of the ellipse at the base of the shell is 

x = 3 cos t, y = 2 sin t, 0 … t … 2p.)

 14. Let n be the outer unit normal (normal away from the origin) of 

the parabolic shell

S: 4x2 + y + z2 = 4,   y Ú 0,

EXERCISES 16.7
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  and let

F = a-z +
1

2 + x
b i + (tan-1 y)j + ax +

1
4 + z

bk.

  Find the value of

O
S

 (∇ * F) # n ds.

 15. Let S be the cylinder x2 + y2 = a2, 0 … z … h, together with its 

top, x2 + y2 … a2, z = h. Let F = -yi + xj + x2k. Use Stokes’ 

Theorem to ind the lux of ∇ * F outward through S.

 16. Evaluate

O
S

 (∇ * (
 

yi)) # n ds,

  where S is the hemisphere x2 + y2 + z2 = 1, z Ú 0.

 17. Suppose F = ∇ * A, where

A = 1y + 2z2i + exyz j + cos(xz) k.

  Determine the lux of F outward through the hemisphere 

x2 + y2 + z2 = 1, z Ú 0.

 18. Repeat Exercise 17 for the lux of F across the entire unit sphere.

Stokes’ Theorem for Parametrized Surfaces

In Exercises 19–24, use the surface integral in Stokes’ Theorem to 

calculate the flux of the curl of the field F across the surface S in the 

direction of the outward unit normal n.

 19. F = 2zi + 3xj + 5yk

  S: r(r, u) = (r cos u)i + (r sin u)j + (4 - r2)k,  

  0 … r … 2, 0 … u … 2p

 20. F = (y - z)i + (z - x)j + (x + z)k

  S: r(r, u) = (r cos u)i + (r sin u)j + (9 - r2)k,  

  0 … r … 3, 0 … u … 2p

 21. F = x2yi + 2y3zj + 3zk

  S: r(r, u) = (r cos u)i + (r sin u)j + rk,  

  0 … r … 1, 0 … u … 2p

 22. F = (x - y)i + (  y - z)j + (z - x)k

  S: r(r, u) = (r cos u)i + (r sin u)j + (5 - r)k,  

  0 … r … 5, 0 … u … 2p

 23. F = 3yi + (5 - 2x)j + (z2 - 2)k

  S: r(f, u) = 123 sin f cos u2i + 123 sin f sin u2j +

  123 cos f2k,  0 … f … p>2,  0 … u … 2p

 24. F = y2i + z2j + xk

  S: r(f, u) = (2 sin f cos u)i + (2 sin f sin u)j + (2 cos f)k,

  0 … f … p>2,  0 … u … 2p

Theory and Examples

 25. Let C be the smooth curve r(t) = (2 cos t)i + (2 sin t)j +
(3 - 2 cos3 t)k, oriented to be traversed counterclockwise 

around the z-axis when viewed from above. Let S be the piece-

wise smooth cylindrical surface x2 + y2 = 4, below the curve for 

z Ú 0,  together with the base disk in the xy-plane. Note that C lies 

on the cylinder S and above the xy-plane (see the accompanying 

 igure). Verify Equation (4) in Stokes’ Theorem for the vector ield 

F = yi - xj + x2k.

C

2
2

y

z

x

 26. Verify Stokes’ Theorem for the vector ield F = 2xyi + xj +
( y + z)k and surface z = 4 - x2 - y2, z Ú 0, oriented with 

unit normal n pointing upward.

 27. Zero circulation Use Equation (8) and Stokes’ Theorem to show 

that the circulations of the following ields around the boundary of 

any smooth orientable surface in space are zero.

a. F = 2x i + 2yj + 2zk b. F = ∇(xy2z3)

c. F = ∇ * (xi + yj + zk) d. F = ∇ƒ

 28. Zero circulation Let ƒ(x, y, z) = (x2 + y2 + z2)-1>2. Show 

that the clockwise circulation of the ield F = ∇ƒ around the 

circle x2 + y2 = a2 in the xy-plane is zero

a. by taking r = (a cos t)i + (a sin t)j, 0 … t … 2p, and inte-

grating F # dr over the circle.

b. by applying Stokes’ Theorem.

 29. Let C be a simple closed smooth curve in the plane 

2x + 2y + z = 2, oriented as shown here. Show that

F
C 

 2y dx + 3z dy - x dz

y

z

O a

x

C

1

1

2
2x + 2y + z = 2

  depends only on the area of the region enclosed by C and not on 

the position or shape of C.

 30. Show that if F = xi + yj + zk, then ∇ * F = 0.

 31. Find a vector ield with twice-diferentiable components whose 

curl is x i + yj + z  k or prove that no such ield exists.

 32. Does Stokes’ Theorem say anything special about circulation in a 

ield whose curl is zero? Give reasons for your answer.

 33. Let R be a region in the xy-plane that is bounded by a piecewise 

smooth simple closed curve C and suppose that the moments of 

inertia of R about the x- and y-axes are known to be Ix and Iy . 
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Evaluate the integral

F
C 

 ∇(r4) # n ds,

  where r = 2x2 + y2, in terms of Ix and Iy .

 34. Zero curl, yet the ield is not conservative Show that the curl of

F =
-y

x2 + y2
  i +

x

x2 + y2
  j + zk

  is zero but that

F
C 

 F # dr

  is not zero if C is the circle x2 + y2 = 1 in the xy-plane. (Theo-

rem 7 does not apply here because the domain of F is not simply 

connected. The ield F is not deined along the z-axis so there is no 

way to contract C to a point without leaving the domain of F.)

16.8 The Divergence Theorem and a Unified Theory

The divergence form of Green’s Theorem in the plane states that the net outward flux of a 

vector field across a simple closed curve can be calculated by integrating the divergence of 

the field over the region enclosed by the curve. The corresponding theorem in three 

dimensions, called the Divergence Theorem, states that the net outward flux of a vector 

field across a closed surface in space can be calculated by integrating the divergence of the 

field over the region enclosed by the surface. In this section we prove the Divergence 

Theorem and show how it simplifies the calculation of flux, which is the integral of the 

field over the closed oriented surface. We also derive Gauss’s law for flux in an electric 

field and the continuity equation of hydrodynamics. Finally, we summarize the chapter’s 

vector integral theorems in a single unifying principle generalizing the Fundamental Theo-

rem of Calculus.

Divergence in Three Dimensions

The divergence of a vector field F = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k is the scalar 

function

div F = ∇ # F =
0M
0x

+
0N
0y

+
0P
0z

. (1)

The symbol “div F” is read as “divergence of F” or “div F.” The notation ∇ # F is read “del 

dot F.”

Div F has the same physical interpretation in three dimensions that it does in two. If F 

is the velocity field of a flowing gas, the value of div F at a point (x, y, z) is the rate at 

which the gas is compressing or expanding at (x, y, z). The divergence is the flux per unit 

volume or flux density at the point.

EXAMPLE 1  The following vector fields represent the velocity of a gas flowing in 

space. Find the divergence of each vector field and interpret its physical meaning. 

Figure 16.72 displays the vector fields.

 (a) Expansion: F(x, y, z) = xi + yj + zk

 (b) Compression: F(x, y, z) = -xi - yj - zk

 (c) Rotation about the z-axis: F(x, y, z) = -yi + xj

 (d) Shearing along parallel horizontal planes: F(x, y, z) = zj

Solution

 (a) div F =
0
0x

  (x) +
0
0y

  ( y) +
0
0z

  (z) = 3: The gas is undergoing constant uniform 

 expansion at all points.
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 (b) div F =
0
0x

  (-x) +
0
0y

  (-y) +
0
0z

  (-z) = -3: The gas is undergoing constant uniform 

compression at all points.

 (c) div F =
0
0x

  (-y) +
0
0y

  (x) = 0: The gas is neither expanding nor compressing at any 

point.

 (d) div F =
0
0y

  (z) = 0: Again, the divergence is zero at all points in the domain of the 

velocity ield, so the gas is neither expanding nor compressing at any point. 

Divergence Theorem

The Divergence Theorem says that under suitable conditions, the outward flux of a vector 

field across a closed surface equals the triple integral of the divergence of the field over the 

three-dimensional region enclosed by the surface.

 

z

y

(a)

x

 

z

y

(b)

x

z

y

(c)

x

 

z

y

(d)

x

FIGURE 16.72 Velocity fields of a gas flowing in space (Example 1).

THEOREM 8—Divergence Theorem  

Let F be a vector field whose components have continuous first partial deriva-

tives, and let S be a piecewise smooth oriented closed surface. The flux of F 

across S in the direction of the surface’s outward unit normal field n equals the 

triple integral of the divergence ∇ # F over the region D enclosed by the surface:

O
S

 F # n ds = l
D

∇ # F dV. (2)

Outward  

lux

Divergence  

integral
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EXAMPLE 2  Evaluate both sides of Equation (2) for the expanding vector field 

F = xi + yj + zk over the sphere x2 + y2 + z2 = a2 (Figure 16.73).

Solution The outer unit normal to S, calculated from the gradient of ƒ(x, y, z) = x2 +
y2 + z2 - a2, is

n =
2(xi + yj + zk)

24(x2 + y2 + z2)
=

xi + yj + zk
a .  x2 + y2 + z2 = a2 on S

It follows that

F # n ds =
x2 + y2 + z2

a  ds =
a2

a  ds = a ds.

Therefore, the outward flux is

O
S

 F # n ds = O
S

 a ds = aO
S

 ds = a(4pa2) = 4pa3.  Area of S is 4pa2.

For the right-hand side of Equation (2), the divergence of F is

∇ # F =
0
0x

 (x) +
0
0y

 ( y) +
0
0z

 (z) = 3,

so we obtain the divergence integral,

 l
 D

 ∇ # F dV = l
 D

 3 dV = 3a4
3

 pa3b = 4pa3. 

Many vector fields of interest in applied science have zero divergence at each point. A 

common example is the velocity field of a circulating incompressible liquid, since it is nei-

ther expanding nor contracting. Other examples include constant vector fields 

F = ai + bj + ck, and velocity fields for shearing action along a fixed plane (see Example 

1d). If F is a vector field whose divergence is zero at each point in the region D, then the 

integral on the right-hand side of Equation (2) equals 0. So if S is any closed surface for 

which the Divergence Theorem applies, then the outward flux of F across S is zero. We state 

this important application of the Divergence Theorem.

y

z

x

FIGURE 16.73 A uniformly expanding 

vector field and a sphere (Example 2).

COROLLARY The outward flux across a piecewise smooth oriented closed 

surface S is zero for any vector field F having zero divergence at every point of 

the region enclosed by the surface.

EXAMPLE 3  Find the flux of F = xy i + yz j + xz k outward through the surface of 

the cube cut from the first octant by the planes x = 1, y = 1, and z = 1.

Solution Instead of calculating the flux as a sum of six separate integrals, one for each 

face of the cube, we can calculate the flux by integrating the divergence

∇ # F =
0
0x

 (xy) +
0
0y

 ( yz) +
0
0z

 (xz) = y + z + x

over the cube’s interior:

 Flux = O
Cube

surface

 F # n ds = l
Cube

interior

 ∇ # F dV          The Divergence Theorem

 = L
1

0

 L
1

0

 L
1

0

 (x + y + z) dx dy dz =
3
2

.  Routine integration 
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EXAMPLE 4

 (a) Calculate the lux of the vector ield

F = x2 i + 4xyz j + zex k

out of the box-shaped region D: 0 … x … 3, 0 … y … 2, 0 … z … 1. (See 

Figure 16.74.)

(b) Integrate div F over this region and show that the result is the same value as in part (a), 

as asserted by the Divergence Theorem.

Solution

(a) The region D has six sides. We calculate the lux across each side in turn. Consider the 

top side in the plane z = 1, having outward normal n = k. The lux across this side is 

given by F # n = zex. Since z = 1 on this side, the lux at a point (x, y, z) on the top is 

ex. The total outward lux across this side is given by the surface integral

 L
2

0 L
3

0

ex dx dy = 2e3 - 2.  Routine integration

The outward lux across the other sides is computed similarly, and the results are 

 summarized in the following table.

 Side Unit normal n  F # n Flux across side

x = 0  - i   -x2 = 0

  x2 = 9

  -4xyz = 0

  4xyz = 8xz

  -zex = 0

  zex = ex

  0

x = 3  i  18

y = 0  -j   0

y = 2  j  18

z = 0  -k   0

z = 1  k  2e3 - 2

The total outward lux is obtained by adding the terms for each of the six sides, giving

18 + 18 + 2e3 - 2 = 34 + 2e3.

(b) We irst compute the divergence of F, obtaining

div F = ∇ # F = 2x + 4xz + ex.

  The integral of the divergence of F over D is

 l
 D

div F dV = L
1

0 L
2

0 L
3

0

(2x + 4xz + ex) dx dy dz

 = L
1

0 L
2

0

(8 + 18z + e3)  dy dz

 = L
1

0

(16 + 36z + 2e3)  dz

 = 34 + 2e3.

As asserted by the Divergence Theorem, the integral of the divergence over D equals 

the outward lux across the boundary surface of D. 

2

3

z

x

y

1

FIGURE 16.74 The integral of div F 

over this region equals the total flux across 

the six sides (Example 4).
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Divergence and the Curl

If F is a vector field on three-dimensional space, then the curl ∇ * F is also a vector field 

on three-dimensional space. So we can calculate the divergence of ∇ * F using 

Equation (1). The result of this calculation is always 0.

THEOREM 9 If F = M  i + N j + P  k is a vector field with continuous second 

partial derivatives, then

div (curl F) = ∇ # (∇ * F) = 0.

Proof  From the deinitions of the divergence and curl, we have

 div (curl F) = ∇ # (∇ * F)

 =
0
0x

 a0P
0y

-
0N
0z
b +

0
0y

 a0M
0z

-
0P
0x
b +

0
0z

 a0N
0x

-
0M
0y
b

 =
02P
0x 0y

-
02N
0x 0z

+
02M
0y 0z

-
02P
0y 0x

+
02N
0z 0x

-
02M
0z 0y

 = 0,

because the mixed second partial derivatives cancel by the Mixed Derivative Theorem in 

Section 14.3. 

Theorem 9 has some interesting applications. If a vector field G = curl F, then the 

field G must have divergence 0. Saying this another way, if div G ≠ 0, then G cannot be 

the curl of any vector field F having continuous second partial derivatives. Moreover, if 

G = curl F, then the outward flux of G across any closed surface S is zero by the corol-

lary to the Divergence Theorem, provided the conditions of the theorem are satisfied. So if 

there is a closed surface for which the surface integral of the vector field G is nonzero, we 

can conclude that G is not the curl of some vector field F.

Proof of the Divergence Theorem for Special Regions

To prove the Divergence Theorem, we take the components of F to have continuous first 

partial derivatives. We first assume that D is a convex region with no holes or bubbles, 

such as a solid ball, cube, or ellipsoid, and that S is a piecewise smooth surface. In addi-

tion, we assume that any line perpendicular to the xy-plane at an interior point of the 

region Rxy that is the projection of D on the xy-plane intersects the surface S in exactly two 

points, producing surfaces

 S1: z = ƒ1(x, y),  (x, y) in Rxy

 S2: z = ƒ2(x, y),  (x, y) in Rxy ,

with ƒ1 … ƒ2. We make similar assumptions about the projection of D onto the other coor-

dinate planes. See Figure 16.75, which illustrates these assumptions.

The components of the unit normal vector n = n1 

i + n2 

j + n3 

k are the cosines of 

the angles a, b, and g that n makes with i, j, and k (Figure 16.76). This is true because all 

the vectors involved are unit vectors, giving the direction cosines

 n1 = n # i = 0 n 0 0 i 0  cos a = cos a

 n2 = n # j = 0 n 0 0 j 0  cos b = cos b

 n3 = n # k = 0 n 0 0 k 0  cos g = cos g.

y

z

x

D

Rxy

S2

S1

Ryz
Rxz

FIGURE 16.75 We prove the Diver-

gence Theorem for the kind of three-

dimensional region shown here.

y

z

x

n

k

j

i

n3

n2n1

a

b

g

(n1, n2, n3)

FIGURE 16.76 The components of n are 

the cosines of the angles a, b, and g that it 

makes with i, j, and k.
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Thus, the unit normal vector is given by

n = (cos a)i + (cos b)j + (cos g)k

and

F # n = M cos a + N cos b + P cos g.

In component form, the Divergence Theorem states that

O
S

 (M cos a + N cos b + P cos g) ds = l
 D

a0M
0x

+
0N
0y

+
0P
0z
b  dx dy dz.

We prove the theorem by establishing the following three equations:

O
S

 M cos a ds = l
 

D

 
0M
0x

 dx dy dz (3)

O
S

 N cos b ds = l
 

D

 
0N
0y

 dx dy dz (4)

O
S

 P cos g ds = l
 

D

 
0P
0z

 dx dy dz (5)

Proof of Equation (5)  We prove Equation (5) by converting the surface integral on 

the left to a double integral over the projection Rxy of D on the xy-plane (Figure 16.77). The 

surface S consists of an upper part S2 whose equation is z = ƒ2(x, y) and a lower part S1 

whose equation is z = ƒ1(x, y). On S2, the outer normal n has a positive k-component and

cos g ds = dx dy  because  ds =
dA

� cos g �
=

dx dy
cos g .

See Figure 16.78. On S1 , the outer normal n has a negative k-component and

cos g ds = -dx dy.

Therefore,

 O
S

 P cos g ds = O
S2

P cos g ds + O
S1

 P cos g ds

 = O
Rxy

 P(x, y, ƒ2(x, y)) dx dy - O
Rxy

 P(x, y, ƒ1(x, y)) dx dy

 = O
Rxy

 3P(x, y, ƒ2(x, y)) - P(x, y, ƒ1(x, y))4  dx dy

 = O
Rxy

 c  L
ƒ2(x, y)

ƒ1(x, y)

  
0P
0z

 dz d  dx dy = l
D

  
0P
0z

 dz dx dy.

This proves Equation (5). The proofs for Equations (3) and (4) follow the same pattern; or 

just permute x, y, z; M, N, P; a, b, g, in order, and get those results from Equation (5). This 

proves the Divergence Theorem for these special regions. 

(++++++)++++++*       (++)++*
F # n div F

y

z

x

O
n

ds

ds

n
D z = f2(x, y)

S2

S1

z = f1(x, y)

dA = dx dy

Rxy

FIGURE 16.77 The region D enclosed 

by the surfaces S1 and S2 projects verti-

cally onto Rxy in the xy-plane.

n
k

n

k

Here g is acute, so

ds =           .

g

g

dx
dy

dx dy
cos g

Here g is obtuse, so

ds = −          .
dx dy
cos g

FIGURE 16.78 An enlarged view of the 

area patches in Figure 16.77. The relations 

ds = {dx dy>cos g come from Eq. (7) in 

Section 16.5 with F = F # n.
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Divergence Theorem for Other Regions

The Divergence Theorem can be extended to regions that can be partitioned into a finite 

number of simple regions of the type just discussed and to regions that can be defined as 

limits of simpler regions in certain ways. For an example of one step in such a splitting 

process, suppose that D is the region between two concentric spheres and that F has con-

tinuously differentiable components throughout D and on the bounding surfaces. Split D 

by an equatorial plane and apply the Divergence Theorem to each half separately. The 

 bottom half, D1, is shown in Figure 16.79. The surface S1 that bounds D1 consists of an 

outer hemisphere, a plane washer-shaped base, and an inner hemisphere. The Divergence 

Theorem says that

O
S1

 F # n1 ds1 = l
D1

 ∇ # F dV1.  (6)

The unit normal n1 that points outward from D1 points away from the origin along the 

outer surface, equals k along the flat base, and points toward the origin along the inner 

surface. Next apply the Divergence Theorem to D2 , and its surface S2 (Figure 16.80):

O
S2

 F # n2 ds2 = l
D2

 ∇ # F dV2.  (7)

As we follow n2 over S2 , pointing outward from D2 , we see that n2 equals -k along the 

washer-shaped base in the xy-plane, points away from the origin on the outer sphere, and 

points toward the origin on the inner sphere. When we add Equations (6) and (7), the inte-

grals over the flat base cancel because of the opposite signs of n1 and n2 . We thus arrive at 

the result

O
S

 F # n ds = l
D

 ∇ # F dV,

with D the region between the spheres, S the boundary of D consisting of two spheres, and 

n the unit normal to S directed outward from D.

EXAMPLE 5  Find the net outward flux of the field

F =
xi + yj + zk

r3
,   r = 2x2 + y2 + z2 (8)

across the boundary of the region D: 0 6 b2 … x2 + y2 + z2 … a2 (Figure 16.81).

Solution The flux can be calculated by integrating ∇ # F over D. Note that r ≠ 0 in D. 

We have

 
0r
0x

=
1
2

 (x2 + y2 + z2)-1>2 (2x) =
x
r

and

 
0M
0x

=
0
0x

 (xr-3) = r-3 - 3xr-4  
0r
0x

=
1

r3
-

3x2

r5
.

Similarly,

 
0N
0y

=
1

r3
-

3y2

r5
  and  

0P
0z

=
1

r3
-

3z2

r5
.

z

x

y

k

O

n1D1

FIGURE 16.79 The lower half of the 

solid region between two concentric 

spheres.

z

x

y

D2

n2

−k

FIGURE 16.80 The upper half of the 

solid region between two concentric 

spheres.

y

z

x

Sa

Sb

FIGURE 16.81 Two concentric spheres 

in an expanding vector field. The outer 

sphere Sa surrounds the inner sphere Sb.
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Hence,

div F =
0M
0x

+
0N
0y

+
0P
0z

=
3

r3
-

3

r5
 (x2 + y2 + z2) =

3

r3
-

3r2

r5
= 0.

So the net outward flux of F across the boundary of D is zero by the corollary to the 

Divergence Theorem. There is more to learn about this vector field F, though. The flux 

leaving D across the inner sphere Sb is the negative of the flux leaving D across the outer 

sphere Sa (because the sum of these fluxes is zero). Hence, the flux of F across Sb in the 

direction away from the origin equals the flux of F across Sa in the direction away from 

the origin. Thus, the flux of F across a sphere centered at the origin is independent of the 

radius of the sphere. What is this flux?

To ind it, we evaluate the lux integral directly for an arbitrary sphere Sa . The outward 

unit normal on the sphere of radius a is

n =
xi + yj + zk

2x2 + y2 + z2
=

xi + yj + zk
a .

Hence, on the sphere,

F # n =
x i + y j + z k

a3
# x i + y j + z k

a =
x2 + y2 + z2

a4
=

a2

a4
=

1

a2

and

O
Sa

 F # n ds =
1

a2O
Sa

 ds =
1

a2
 (4pa2) = 4p.

The outward flux of F in Equation (8) across any sphere centered at the origin is 4p. 

This result does not contradict the Divergence Theorem because F is not continuous at 

the origin. 

Gauss’s Law: One of the Four Great Laws  
of Electromagnetic Theory

In electromagnetic theory, the electric field created by a point charge q located at the 

origin is

E(x, y, z) =
1

4pe0
 

q0 r 0 2 a r0 r 0 b =
q

4pe0
 

r0 r 0 3 =
q

4pe0
 
x i + y j + z k

r3
,

where e0 is a physical constant, r is the position vector of the point (x, y, z), and 

r = 0 r 0 = 2x2 + y2 + z2. From Equation (8),

E =
q

4pe0
 F.

The calculations in Example 5 show that the outward flux of E across any sphere cen-

tered at the origin is q>e0, but this result is not confined to spheres. The outward flux of E 

across any closed surface S that encloses the origin (and to which the Divergence Theorem 

applies) is also q>e0. To see why, we have only to imagine a large sphere Sa centered at 

the origin and enclosing the surface S (see Figure 16.82). Since

∇ # E = ∇ # q

4pe0
 F =

q

4pe0
∇ # F = 0

z

x

y

Sphere Sa

S

FIGURE 16.82 A sphere Sa surrounding 

another surface S. The tops of the surfaces 

are removed for visualization.
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when r 7 0, the triple integral of ∇ # E over the region D between S and Sa is zero. 

Hence, by the Divergence Theorem,

O
Boundary

of D

 E # n ds = 0.

So the flux of E across S in the direction away from the origin must be the same as the flux 

of E across Sa in the direction away from the origin, which is q>e0. This statement, called 

Gauss’s law, also applies to charge distributions that are more general than the one assumed 

here, as shown in most physics texts. For any closed surface that encloses the origin, we have

Gauss>s law: O
S

 E # n ds =
q

e0
.

Continuity Equation of Hydrodynamics

Let D be a region in space bounded by a closed oriented surface S. If v(x, y, z) is the veloc-

ity field of a fluid flowing smoothly through D, d = d(t, x, y, z) is the fluid’s density at 

(x, y, z) at time t, and F = dv, then the continuity equation of hydrodynamics states that

∇ # F +
0d
0t

= 0.

If the functions involved have continuous first partial derivatives, the equation evolves 

naturally from the Divergence Theorem, as we now demonstrate.

First, the integral

O
S

 F # n ds

is the rate at which mass leaves D across S (leaves because n is the outer normal). To see 

why, consider a patch of area ∆s on the surface (Figure 16.83). In a short time interval 

∆t, the volume ∆V  of fluid that flows across the patch is approximately equal to the 

 volume of a cylinder with base area ∆s and height (v∆t) # n, where v is a velocity vector 

rooted at a point of the patch:

∆V ≈ v # n ∆s ∆t.

The mass of this volume of fluid is about

∆m ≈ dv # n ∆s ∆t,

so the rate at which mass is flowing out of D across the patch is about

∆m

∆t
≈ dv # n ∆s.

This leads to the approximation

a ∆m

∆t
≈ a dv # n ∆s

as an estimate of the average rate at which mass flows across S. Finally, letting ∆s S 0 

and ∆t S 0 gives the instantaneous rate at which mass leaves D across S as

dm

dt
= O

S

 dv # n ds,

n

S

h = (v Δt) . n
v Δt

Δs

FIGURE 16.83 The fluid that flows 

upward through the patch ∆s in a short 

time ∆t fills a “cylinder” whose volume 

is approximately base * height =
v # n ∆s ∆t.
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which for our particular flow is

dm

dt
= O

S

 F # n ds.

Now let B be a solid sphere centered at a point Q in the flow. The average value of 

∇ # F over B is

1
volume of B

 l
B

 ∇ # F dV.

It is a consequence of the continuity of the divergence that ∇ # F actually takes on this 

value at some point P in B. Thus, by the Divergence Theorem Equation (2),

 (∇ # F)(P) =
1

volume of B
 l

B

 ∇ # F dV =
O
S

 F # n ds

volume of B

 =
rate at which mass leaves B across its surface S

volume of B
. (9)

The last term of the equation describes decrease in mass per unit volume.

Now let the radius of B approach zero while the center Q stays fixed. The left side of 

Equation (9) converges to (∇ # F)Q , and the right side converges to (-0d>0t)Q , since 

d = m>V. The equality of these two limits is the continuity equation

∇ # F = -  
0d
0t

.

The continuity equation “explains” ∇ # F: The divergence of F at a point is the rate at 

which the density of the fluid is decreasing there. The Divergence Theorem

O
S

 F # n ds = l
D

 ∇ # F dV

now says that the net decrease in density of the fluid in region D (divergence integral) is 

accounted for by the mass transported across the surface S (outward flux integral). So, the 

theorem is a statement about conservation of mass (Exercise 35).

Unifying the Integral Theorems

If we think of a two-dimensional field F = M(x, y)i + N(x, y)j as a three-dimensional 

field whose k-component is zero, then ∇ # F = (0M>0x) + (0N>0y) and the normal form 

of Green’s Theorem can be written as

F
C 

 F # n ds = O
R

 a0M
0x

+
0N
0y
b  dx dy = O

R

 ∇ # F dA.

Similarly, ∇ * F # k = (0N>0x) - (0M>0y), so the tangential form of Green’s Theorem 

can be written as

F
C 

 F # T ds = O
R

 a0N
0x

-
0M
0y
b  dx dy = O

R

 (∇ * F) # k dA.

With the equations of Green’s Theorem now in del notation, we can see their relation-

ships to the equations in Stokes’ Theorem and the Divergence Theorem, all summarized 

here.
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Notice how Stokes’ Theorem generalizes the tangential (curl) form of Green’s Theo-

rem from a flat surface in the plane to a surface in three-dimensional space. In each case, 

the surface integral of curl F over the interior of the oriented surface equals the circulation 

of F around the boundary.

Likewise, the Divergence Theorem generalizes the normal (flux) form of Green’s 

Theorem from a two-dimensional region in the plane to a three-dimensional region in 

space. In each case, the integral of ∇ # F over the interior of the region equals the total flux 

of the field across the boundary enclosing the region.

All these results can be thought of as forms of a single fundamental theorem. The 

Fundamental Theorem of Calculus in Section 5.4 says that if ƒ(x) is differentiable on (a, b) 

and continuous on 3a, b4 , then

 L
b

a

 
dƒ

dx
 dx = ƒ(b) - ƒ(a).

If we let F = f (x)i throughout 3a, b4 , then df>dx = ∇ # F. If we define the unit vector 

field n normal to the boundary of 3a, b4  to be i at b and - i at a (Figure 16.84), then

f (b) - f (a) = f (b)i # (i) + f (a)i # (- i)

 = F(b) # n + F(a) # n

 = total outward  f lux of  F across the boundary of 3a, b4 .
The Fundamental Theorem now says that

F(b) # n + F(a) # n = L3a, b4∇ # F dx.

The Fundamental Theorem of Calculus, the normal form of Green’s Theorem, and the 

Divergence Theorem all say that the integral of the differential operator ∇ #  operating on a 

field F over a region equals the sum of the normal field components over the boundary 

enclosing the region. (Here we are interpreting the line integral in Green’s Theorem and the 

surface integral in the Divergence Theorem as “sums” over the boundary.)

Stokes’ Theorem and the tangential form of Green’s Theorem say that, when things 

are properly oriented, the surface integral of the differential operator ∇ * operating on a 

field equals the sum of the tangential field components over the boundary of the surface.

The beauty of these interpretations is the observance of a single unifying principle, 

which we can state as follows.

Green’s Theorem and Its Generalization to Three Dimensions

Tangential form of Green’s Theorem:  F
C 

 F # T ds = O
R

 (∇ * F) # k dA

Stokes’ Theorem:  F
C 

 F # T ds = O
S

 (∇ * F) # n ds

Normal form of Green’s Theorem:  F
C 

 F # n ds = O
R

 ∇ # F dA

Divergence Theorem:  O
S

 F # n ds = l
D

 ∇ # F dV

x
a b

n = −i n = i

FIGURE 16.84 The outward unit nor-

mals at the boundary of 3a, b4  in  

one-dimensional space.

A Unifying Fundamental Theorem of Vector Integral Calculus

The integral of a differential operator acting on a field over a region equals the sum 

of the field components appropriate to the operator over the boundary of the region.
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Calculating Divergence

In Exercises 1–8, find the divergence of the field.

 1. F = (x - y + z)i + (2x + y - z)j + (3x + 2y - 2z)k

 2. F = (x  ln  y)i + (y  ln  z)j + (z  ln  x)k

 3. F = yexyzi + zexyzj + xexyzk

 4. F =  sin (xy) i +  cos (yz)j +  tan (xz) k

 5. The spin ield in Figure 16.13

 6. The radial ield in Figure 16.12

 7. The gravitational ield in Figure 16.9 and Exercise 38a in Section 16.3

 8. The velocity ield in Figure 16.14

Calculating Flux Using the Divergence Theorem

In Exercises 9–20, use the Divergence Theorem to find the outward 

flux of F across the boundary of the region D.

 9. Cube F = (y - x)i + (z - y)j + (y - x)k

  D:  The cube bounded by the planes x = {1, y = {1, and 

z = {1

 10. F = x2 i + y2 j + z2 k

a. Cube D:                    The cube cut from the irst octant by 

the planes x = 1, y = 1, and z = 1

b. Cube D:                    The cube bounded by the planes 

x = {1, y = {1, and z = {1

c. Cylindrical can D:  The region cut from the solid cylinder 

x2 + y2 … 4 by the planes z = 0 and 

z = 1

 11. Cylinder and paraboloid F = y i + xy j - z  k

  D:  The region inside the solid cylinder x2 + y2 … 4 between the 

plane z = 0 and the paraboloid z = x2 + y2

 12. Sphere F = x2 i + xz  j + 3z  k

  D: The solid sphere x2 + y2 + z2 … 4

 13. Portion of sphere F = x2i - 2xyj + 3xzk

  D:  The region cut from the irst octant by the sphere x2 + y2 +  

z2 = 4

 14. Cylindrical can F = (6x2 + 2xy)i + (2y + x2z)j + 4x2y3k

  D:  The region cut from the irst octant by the cylinder x2 + y2 = 4 

and the plane z = 3

 15. Wedge F = 2xz  i - xy j - z2 k

  D:  The wedge cut from the irst octant by the plane y + z = 4 and 

the elliptical cylinder 4x2 + y2 = 16

 16. Sphere F = x3 i + y3 j + z3 k

  D: The solid sphere x2 + y2 + z2 … a2

 17. Thick sphere F = 2x2 + y2 + z2 (x i + y j + z  k)

  D: The region 1 … x2 + y2 + z2 … 2

 18. Thick sphere F = (x i + y j + z  k)>2x2 + y2 + z2

  D: The region 1 … x2 + y2 + z2 … 4

 19. Thick sphere F = (5x3 + 12xy2)i + (  y3 + ey sin z)j +
(5z3 + ey cos z)k

  D:  The solid region between the spheres x2 + y2 + z2 = 1 and 

x2 + y2 + z2 = 2

 20. Thick cylinder F = ln (x2 + y2)i - a2z
x  tan-1 

y

xbj +

  z2x2 + y2 k

  D: The thick-walled cylinder 1 … x2 + y2 … 2, -1 … z … 2

Theory and Examples

 21. a.  Show that the outward lux of the position vector ield F =  

x i + y j + z  k through a smooth closed surface S is three 

times the volume of the region enclosed by the surface.

b. Let n be the outward unit normal vector ield on S. Show that it 

is not possible for F to be orthogonal to n at every point of S.

 22. The base of the closed cubelike surface shown here is the unit 

square in the xy-plane. The four sides lie in the planes x = 0, 

x = 1, y = 0, and y = 1. The top is an arbitrary smooth surface 

whose identity is unknown. Let F = x i - 2y j + (z + 3)k and 

suppose the outward lux of F through Side A is 1 and through 

Side B is -3. Can you conclude anything about the outward lux 

through the top? Give reasons for your answer.

z

(1, 1, 0)

Top

Side B

Side A
x

1
y

1

 23. Let F = ( y cos 2x)i + ( y2 sin 2x)j + (x2y + z)k. Is there a vec-

tor ield A such that F = ∇ * A? Explain your answer.

 24. Outward lux of a gradient ield Let S be the surface of the 

portion of the solid sphere x2 + y2 + z2 … a2 that lies in the irst 

octant and let ƒ(x, y, z) = ln2x2 + y2 + z2. Calculate

O
S

 ∇ƒ # n ds.

  (∇ƒ # n is the derivative of ƒ in the direction of outward normal n.)

 25. Let F be a ield whose components have continuous irst partial 

derivatives throughout a portion of space containing a region D 

bounded by a smooth closed surface S. If 0F 0 … 1, can any bound 

be placed on the size of

l
D

 ∇ # F dV ?

  Give reasons for your answer.

 26. Maximum lux Among all rectangular solids deined by the in-

equalities 0 … x … a, 0 … y … b, 0 … z … 1, ind the one for 

which the total lux of F = (-x2 - 4xy)i - 6yz  j + 12z  k out-

ward through the six sides is greatest. What is the greatest lux?

EXERCISES 16.8



 27. Calculate the net outward lux of the vector ield

F = xy i + (sin xz + y2)j + (exy2

+ x)k

  over the surface S surrounding the region D bounded by the planes 

y = 0, z = 0, z = 2 - y and the parabolic cylinder z = 1 - x2.

 28. Compute the net outward lux of the vector ield 

F = (x i + y j + z  k)> (x2 + y2 + z2)3>2 across the ellipsoid 

9x2 + 4y2 + 6z2 = 36.

 29. Let F be a diferentiable vector ield and let g(x, y, z) be a diferen-

tiable scalar function. Verify the following identities.

a. ∇ # (gF) = g∇ # F + ∇g # F

b. ∇ * (gF) = g∇ * F + ∇g * F

 30. Let F1 and F2 be diferentiable vector ields and let a and b be 

arbitrary real constants. Verify the following identities.

a. ∇ # (aF1 + bF2) = a∇ # F1 + b∇ # F2

b. ∇ * (aF1 + bF2) = a∇ * F1 + b∇ * F2

c. ∇ # (F1 * F2) = F2
# ∇ * F1 - F1

# ∇ * F2

 31. If F = M i + N  j + P k is a diferentiable vector ield, we deine 

the notation F # ∇  to mean

M 
0
0x

+ N 
0
0y

+ P 
0
0z

.

  For diferentiable vector ields F1 and F2 , verify the following 

identities.

a. ∇ * (F1 * F2) = (F2
# ∇)F1 - (F1

# ∇)F2 + (∇ # F2)F1 -
(∇ # F1)F2

b. ∇ (F1
# F2) = (F1

# ∇ )F2 + (F2
# ∇ )F1 + F1 * (∇ * F2) +

F2 * (∇ * F1)

 32. Harmonic functions A function ƒ(x, y, z) is said to be harmonic  

in a region D in space if it satisies the Laplace equation

∇2ƒ = ∇ # ∇ƒ =
02ƒ

0x2
+

02ƒ

0y2
+

02ƒ

0z2
= 0

  throughout D.

a. Suppose that ƒ is harmonic throughout a bounded region D 

enclosed by a smooth surface S and that n is the chosen unit 

normal vector on S. Show that the integral over S of ∇ƒ # n, 

the derivative of ƒ in the direction of n, is zero.

b. Show that if ƒ is harmonic on D, then

O
S

 ƒ ∇ƒ # n ds = l
D

 0 ∇ƒ 0 2 dV.

 33. Green’s irst formula Suppose that ƒ and g are scalar func-

tions with continuous irst- and second-order partial derivatives 

throughout a region D that is bounded by a closed piecewise 

smooth surface S. Show that

O
S

 ƒ ∇g # n ds = l
D

 (ƒ ∇2g + ∇ƒ # ∇g) dV. (10)

  Equation (10) is Green’s irst formula. (Hint: Apply the Diver-

gence Theorem to the ield F = ƒ ∇g.)

 34. Green’s second formula (Continuation of Exercise 33.)  

Interchange ƒ and g in Equation (10) to obtain a similar formula. 

Then subtract this formula from Equation (10) to show that

O
S

 (ƒ ∇g - g∇ƒ) # n ds = l
D

 (ƒ ∇2g - g∇2ƒ) dV. (11)

  This equation is Green’s second formula.

 35. Conservation of mass Let v(t, x, y, z) be a continuously dif-

ferentiable vector ield over the region D in space and let p(t, x, 

y, z) be a continuously diferentiable scalar function. The variable 

t represents the time domain. The Law of Conservation of Mass 

asserts that

d

dt
 l

D

 p(t, x, y, z) dV = - O
S

 pv # n ds,

  where S is the surface enclosing D.

a. Give a physical interpretation of the conservation of mass law 

if v is a velocity low ield and p represents the density of the 

luid at point (x, y, z) at time t.

b. Use the Divergence Theorem and Leibniz’s Rule,

d

dt
 l

D

 p(t, x, y, z) dV = l
D

 
0p

0t
 dV,

to show that the Law of Conservation of Mass is equivalent to 

the continuity equation,

∇ # pv +
0p

0t
= 0.

(In the irst term ∇ # pv, the variable t is held ixed, and in the 

second term 0p>0t, it is assumed that the point (x, y, z) in D is 

held ixed.)

 36. The heat difusion equation Let T(t, x, y, z) be a function with 

continuous second derivatives giving the temperature at time t at 

the point (x, y, z) of a solid occupying a region D in space. If the 

solid’s heat capacity and mass density are denoted by the con-

stants c and r, respectively, the quantity crT  is called the solid’s 

heat energy per unit volume.

a. Explain why -∇T  points in the direction of heat low.

b. Let -k∇T  denote the energy lux vector. (Here the constant 

k is called the conductivity.) Assuming the Law of Conserva-

tion of Mass with -k∇T = v and crT = p in Exercise 35, 

derive the difusion (heat) equation

0T
0t

= K∇2T,

where K = k>(cr) 7 0 is the difusivity constant. (Notice 

that if T(t, x) represents the temperature at time t at position 

x in a uniform conducting rod with perfectly insulated sides, 

then ∇2T = 02T>0x2 and the difusion equation reduces to 

the one-dimensional heat equation in Chapter 14’s Additional 

Exercises.)
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 1. What are line integrals of scalar functions? How are they evalu-

ated? Give examples.

 2. How can you use line integrals to ind the centers of mass of 

springs or wires? Explain.

 3. What is a vector ield? What is the line integral of a vector ield? 

What is a gradient ield? Give examples.

 4. What is the low of a vector ield along a curve? What is the work 

done by vector ield moving an object along a curve? How do you 

calculate the work done? Give examples.

 5. What is the Fundamental Theorem of line integrals? Explain how 

it relates to the Fundamental Theorem of Calculus.

 6. Specify three properties that are special about conservative ields. 

How can you tell when a ield is conservative?

 7. What is special about path independent ields?

 8. What is a potential function? Show by example how to ind a po-

tential function for a conservative ield.

 9. What is a diferential form? What does it mean for such a form to 

be exact? How do you test for exactness? Give examples.

 10. What is Green’s Theorem? Discuss how the two forms of Green’s 

Theorem extend the Net Change Theorem in Chapter 5.

 11. How do you calculate the area of a parametrized surface in space? 

Of an implicitly deined surface F(x, y, z) = 0? Of the surface 

which is the graph of z = ƒ(x, y)? Give examples.

 12. How do you integrate a scalar function over a parametrized sur-

face? Of surfaces that are deined implicitly or in explicit form? 

Give examples.

 13. What is an oriented surface? What is the surface integral of a vec-

tor ield in three-dimensional space over an oriented surface? How 

is it related to the net outward lux of the ield? Give examples.

 14. What is the curl of a vector ield? How can you interpret it?

 15. What is Stokes’ Theorem? Explain how it generalizes Green’s 

Theorem to three dimensions.

 16. What is the divergence of a vector ield? How can you interpret it?

 17. What is the Divergence Theorem? Explain how it generalizes 

Green’s Theorem to three dimensions.

 18. How do Green’s Theorem, Stokes’ Theorem, and the Divergence 

Theorem relate to the Fundamental Theorem of Calculus for ordi-

nary single integrals?

CHAPTER 16 Questions to Guide Your Review

Evaluating Line Integrals

 1. The accompanying igure shows two polygonal paths in space 

joining the origin to the point (1, 1, 1). Integrate ƒ(x, y, z) =

2x - 3y2 - 2z + 3 over each path.

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 1

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 2

 2. The accompanying igure shows three polygonal paths joining the 

origin to the point (1, 1, 1). Integrate ƒ(x, y, z) = x2 + y - z over 

each path.

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

(1, 0, 0)

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

z

y

x

(0, 0, 0)
(1, 1, 1)

(0, 1, 1)
(0, 0, 1) C6

C5 C7

C2

C1 C3
C3

C4

 3. Integrate ƒ(x, y, z) = 2x2 + z2 over the circle

r(t) = (a cos t)j + (a sin t)k,   0 … t … 2p.

 4. Integrate ƒ(x, y, z) = 2x2 + y2 over the involute curve

r(t) = (cos t + t sin t)i + (sin t - t cos t)j,   0 … t … 23.

Evaluate the integrals in Exercises 5 and 6.

 5.  L
(4,-3,0)

(-1,1,1)

  
dx + dy + dz

2x + y + z
 6.  L

(10,3,3)

(1,1,1)

 dx - A
z
y dy - A

y
z dz

 7. Integrate F = - (y sin z)i + (x sin z)j + (xy cos z)k around the  

circle cut from the sphere x2 + y2 + z2 = 5 by the plane z = -1, 

clockwise as viewed from above.

 8. Integrate F = 3x2yi + (x3 + 1)j + 9z2k around the circle cut 

from the sphere x2 + y2 + z2 = 9 by the plane x = 2.

Evaluate the integrals in Exercises 9 and 10.

 9.  LC

 8x sin y dx - 8y cos x dy

  C is the square cut from the irst quadrant by the lines x = p>2 

and y = p>2.

 10.  LC

 y2 dx + x2 dy

  C is the circle x2 + y2 = 4.

Finding and Evaluating Surface Integrals

 11. Area of an elliptical region Find the area of the elliptical region 

cut from the plane x + y + z = 1 by the cylinder x2 + y2 = 1.

 12. Area of a parabolic cap Find the area of the cap cut from the 

paraboloid y2 + z2 = 3x by the plane x = 1.

CHAPTER 16 Practice Exercises
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 13. Area of a spherical cap Find the area of the cap cut from the 

top of the sphere x2 + y2 + z2 = 1 by the plane z = 22>2.

 14. a.  Hemisphere cut by cylinder  Find the area of the surface 

cut from the hemisphere x2 + y2 + z2 = 4, z Ú 0, by the 

cylinder x2 + y2 = 2x.

  b.  Find the area of the portion of the cylinder that lies inside the 

hemisphere. (Hint: Project onto the xz-plane. Or evaluate the 

integral 1h ds, where h is the altitude of the cylinder and ds 

is the element of arc length on the circle x2 + y2 = 2x in the 

xy-plane.)

z

x

yCylinder r = 2 cos u

Hemisphere

z = "4 − r2

 15. Area of a triangle Find the area of the triangle in which the plane 

(x>a) + (  y>b) + (z>c) = 1 (a, b, c 7 0) intersects the irst oc-

tant. Check your answer with an appropriate vector calculation.

 16. Parabolic cylinder cut by planes Integrate

a. g(x, y, z) =
yz

24y2 + 1
 b. g(x, y, z) =

z

24y2 + 1

  over the surface cut from the parabolic cylinder y2 - z = 1 by 

the planes x = 0, x = 3, and z = 0.

 17. Circular cylinder cut by planes Integrate g(x, y, z) =  

x4y(y2 + z2)  over the portion of the cylinder y2 + z2 = 25 that 

lies in the irst octant between the planes x = 0 and x = 1 and 

above the plane z = 3.

 18. Area of Wyoming The state of Wyoming is bounded by the me-

ridians 111°3′ and 104°3′ west longitude and by the circles 41° 

and 45° north latitude. Assuming that Earth is a sphere of radius 

R = 3959 mi, ind the area of Wyoming.

Parametrized Surfaces

Find parametrizations for the surfaces in Exercises 19–24. (There are 

many ways to do these, so your answers may not be the same as those 

in the back of the book.)

 19. Spherical band The portion of the sphere x2 + y2 + z2 = 36 

between the planes z = -3 and z = 323

 20. Parabolic cap The portion of the paraboloid z = - (x2 + y2) >2 

above the plane z = -2

 21. Cone The cone z = 1 + 2x2 + y2, z … 3

 22. Plane above square The portion of the plane 4x + 2y + 4z =  

12 that lies above the square 0 … x … 2, 0 … y … 2 in the irst 

quadrant

 23. Portion of paraboloid The portion of the paraboloid y =  

2(x2 + z2),  y … 2, that lies above the xy-plane

 24. Portion of hemisphere The portion of the hemisphere 

x2 + y2 + z2 = 10, y Ú 0, in the irst octant

 25. Surface area Find the area of the surface

 r(u, y) = (u + y)i + (u - y)j + yk, 

0 … u … 1,  0 … y … 1.

 26. Surface integral Integrate ƒ(x, y, z) = xy - z2 over the surface 

in Exercise 25.

 27. Area of a helicoid Find the surface area of the helicoid 

r(r, u) = (r cos u)i + (r sin u)j + uk,  0 … u … 2p,  0 … r … 1, 

in the accompanying igure.

y

z

x

(1, 0, 0)

(1, 0, 2p)

2p

 28. Surface integral Evaluate the integral 4S
 2x2 + y2 + 1 ds, 

where S is the helicoid in Exercise 27.

Conservative Fields

Which of the ields in Exercises 29–32 are conservative, and which 

are not?

 29. F = x i + y j + z  k

 30. F = (x i + y j + zk )>(x2 + y2 + z2)3>2
 31. F = xeyi + yezj + zexk

 32. F = (i + zj + yk)>(x + yz)

Find potential functions for the ields in Exercises 33 and 34.

 33. F = 2i + (2y + z)j + (y + 1)k

 34. F = (z cos xz)i + eyj + (x cos xz)k

Work and Circulation

In Exercises 35 and 36, ind the work done by each ield along the 

paths from (0, 0, 0) to (1, 1, 1) in Exercise 1.

 35. F = 2xy i + j + x2 k 36. F = 2xy i + x2 j + k

 37. Finding work in two ways Find the work done by

F =
xi + yj

(x2 + y2)3>2
  over the plane curve r(t) = (et cos t)i + (et sin t)j from the point 

(1, 0) to the point (e2p, 0) in two ways:

a. By using the parametrization of the curve to evaluate the 

work integral.

b. By evaluating a potential function for F.

 38. Flow along diferent paths Find the low of the ield F =  

∇(x2zey)

a. once around the ellipse C in which the plane x + y + z = 1 

intersects the cylinder x2 + z2 = 25, clockwise as viewed 

from the positive y-axis.
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b. along the curved boundary of the helicoid in Exercise 27 

from (1, 0, 0) to (1, 0, 2p).

In Exercises 39 and 40, use the curl integral in Stokes’ Theorem to 

ind the circulation of the ield F around the curve C in the indicated 

direction.

 39. Circulation around an ellipse F = y2 i - y j + 3z2 k

  C:  The ellipse in which the plane 2x + 6y - 3z = 6 meets the 

cylinder x2 + y2 = 1, counterclockwise as viewed from above

 40. Circulation around a circle F = (x2 + y)i + (x + y)j +
(4y2 - z)k

  C:  The circle in which the plane z = -y meets the sphere 

x2 + y2 + z2 = 4, counterclockwise as viewed from above

Masses and Moments

 41. Wire with diferent densities Find the mass of a thin wire lying 

along the curve r(t) = 22t i + 22t j + (4 - t2)k, 0 … t … 1, 

if the density at t is (a) d = 3t and (b) d = 1.

 42. Wire with variable density Find the center of mass of a 

thin wire lying along the curve r(t) = t i + 2t j + (2>3)t3>2 k,

0 … t … 2, if the density at t is d = 325 + t.

 43. Wire with variable density Find the center of mass and the mo-

ments of inertia about the coordinate axes of a thin wire lying 

along the curve

r(t) = t i +
222

3
  t3>2 j +

t2

2
  k,   0 … t … 2,

  if the density at t is d = 1>(t + 1).

 44. Center of mass of an arch A slender metal arch lies along the 

semicircle y = 2a2 - x2 in the xy-plane. The density at the point 

(x, y) on the arch is d(x, y) = 2a - y. Find the center of mass.

 45. Wire with constant density A wire of constant density d = 1 

lies along the curve r(t) = (et cos t)i + (et sin t)j + et k, 0 …  

t … ln 2. Find z and Iz .

 46. Helical wire with constant density Find the mass and center 

of mass of a wire of constant density d that lies along the helix 

r(t) = (2 sin t)i + (2 cos t)j + 3t  k, 0 … t … 2p.

 47. Inertia and center of mass of a shell Find Iz and the center of 

mass of a thin shell of density d(x, y, z) = z cut from the upper 

portion of the sphere x2 + y2 + z2 = 25 by the plane z = 3.

 48. Moment of inertia of a cube Find the moment of inertia about 

the z-axis of the surface of the cube cut from the irst octant by the 

planes x = 1, y = 1, and z = 1 if the density is d = 1.

Flux Across a Plane Curve or Surface

Use Green’s Theorem to ind the counterclockwise circulation and out-

ward lux for the ields and curves in Exercises 49 and 50.

 49. Square F = (2xy + x)i + (xy - y)j

  C: The square bounded by x = 0, x = 1, y = 0, y = 1

 50. Triangle F = (y - 6x2)i + (x + y2)j

  C: The triangle made by the lines y = 0, y = x, and x = 1

 51. Zero line integral Show that

F
C 

 ln x sin y dy -
cos y

x  dx = 0

  for any closed curve C to which Green’s Theorem applies.

 52. a.  Outward lux and area  Show that the outward lux of the 

position vector ield F = xi + yj across any closed curve to 

which Green’s Theorem applies is twice the area of the region 

enclosed by the curve.

b. Let n be the outward unit normal vector to a closed curve to 

which Green’s Theorem applies. Show that it is not possible 

for F = x i + y j to be orthogonal to n at every point of C.

In Exercises 53–56, ind the outward lux of F across the boundary of 

D.

 53. Cube F = 2xyi + 2yzj + 2xzk

  D:  The cube cut from the irst octant by the planes x = 1, y = 1, 

z = 1

 54. Spherical cap F = xz  i + yz  j + k

  D:  The entire surface of the upper cap cut from the solid sphere 

x2 + y2 + z2 … 25 by the plane z = 3

 55. Spherical cap F = -2x i - 3y j + z  k

  D:  The upper region cut from the solid sphere x2 + y2 + z2 … 2 

by the paraboloid z = x2 + y2

 56. Cone and cylinder F = (6x + y)i - (x + z)j + 4yz  k

  D:  The region in the irst octant bounded by the cone z =

2x2 + y2, the cylinder x2 + y2 = 1, and the coordinate 

planes

 57. Hemisphere, cylinder, and plane Let S be the surface that is 

bounded on the left by the hemisphere x2 + y2 + z2 = a2, y … 0, 

in the middle by the cylinder x2 + z2 = a2, 0 … y … a, and on 

the right by the plane y = a. Find the lux of F = y i + z  j + x k 

outward across S.

 58. Cylinder and planes Find the outward lux of the ield 

F = 3xz2
 i + y j - z3

 k across the surface of the solid in the irst 

octant that is bounded by the cylinder x2 + 4y2 = 16 and the 

planes y = 2z, x = 0, and z = 0.

 59. Cylindrical can Use the Divergence Theorem to ind the lux of 

F = xy2i + x2yj + yk outward through the surface of the region 

enclosed by the cylinder x2 + y2 = 1 and the planes z = 1 and 

z = -1.

 60. Hemisphere Find the lux of F = (3z + 1)k upward across the 

hemisphere x2 + y2 + z2 = a2, z Ú 0 (a) with the Divergence 

Theorem and (b) by evaluating the lux integral directly.
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Finding Areas with Green’s Theorem

Use the Green’s Theorem area formula in Exercises 16.4 to ind the 

areas of the regions enclosed by the curves in Exercises 1–4.

 1. The limaçon x = 2  cos t -  cos  2t, y = 2  sin  t, 0 … t … 2p

y

x
0 1

 2. The deltoid x = 2  cos  t +  cos  2t, y = 2 sin  t -  sin  2t, 

0 … t … 2p

y

x
0 3

 3. The eight curve x = (1>2)  sin  2t, y =  sin  t, 0 … t … p (one 

loop)

y

x

1

−1

 4. The teardrop x = 2a  cos  t - a  sin  2t, y = b  sin  t, 0 … t … 2p

y

x
0

b

2a

Theory and Applications

 5. a.  Give an example of a vector ield F (x, y, z) that has value 0 at 

only one point and such that curl F is nonzero everywhere. Be 

sure to identify the point and compute the curl.

b. Give an example of a vector ield F (x, y, z) that has value 0 

on precisely one line and such that curl F is nonzero every-

where. Be sure to identify the line and compute the curl.

c. Give an example of a vector ield F (x, y, z) that has value 0 

on a surface and such that curl F is nonzero everywhere. Be 

sure to identify the surface and compute the curl.

 6. Find all points (a, b, c) on the sphere x2 + y2 + z2 = R2 where 

the vector ield F = yz2i + xz2j + 2xyzk is normal to the surface 

and F(a, b, c) ≠ 0.

 7. Find the mass of a spherical shell of radius R such that at each 

point (x, y, z) on the surface the mass density d(x, y, z) is its dis-

tance to some ixed point (a, b, c) of the surface.

 8. Find the mass of a helicoid

r(r, u) = (r cos u)i + (r sin u)j + u  k,

  0 … r … 1, 0 … u … 2p, if the density function is d(x, y, z) =  

22x2 + y2. See Practice Exercise 27 for a igure.

 9. Among all rectangular regions 0 … x … a, 0 … y … b, ind the 

one for which the total outward lux of F = (x2 + 4xy)i - 6yj 

across the four sides is least. What is the least lux?

 10. Find an equation for the plane through the origin such that the 

circulation of the low ield F = zi + xj + yk around the circle 

of intersection of the plane with the sphere x2 + y2 + z2 = 4 is a 

maximum.

 11. A string lies along the circle x2 + y2 = 4 from (2, 0) to (0, 2) in 

the irst quadrant. The density of the string is r (x, y) = xy.

a. Partition the string into a inite number of subarcs to show 

that the work done by gravity to move the string straight 

down to the x-axis is given by

Work = lim
nSq

 a
n

k = 1

 g xk yk 2∆sk = LC

 g xy2 ds,

   where g is the gravitational constant.

b. Find the total work done by evaluating the line integral in part (a).

c. Show that the total work done equals the work required to move 

the string’s center of mass (x, y) straight down to the x-axis.

 12. A thin sheet lies along the portion of the plane x + y + z = 1 in 

the irst octant. The density of the sheet is d (x, y, z) = xy.

a. Partition the sheet into a inite number of subpieces to show 

that the work done by gravity to move the sheet straight down 

to the xy-plane is given by

Work = lim
nSq

 a
n

k = 1

 g xk yk zk ∆sk = O
S

 g xyz ds,

   where g is the gravitational constant.

b. Find the total work done by evaluating the surface integral in 

part (a).

CHAPTER 16 Additional and Advanced Exercises
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c. Show that the total work done equals the work required to 

move the sheet’s center of mass (x, y, z) straight down to the 

xy-plane.

 13. Archimedes’ principle If an object such as a ball is placed in 

a liquid, it will either sink to the bottom, loat, or sink a certain 

distance and remain suspended in the liquid. Suppose a luid has 

constant weight density w and that the luid’s surface coincides 

with the plane z = 4. A spherical ball remains suspended in the 

luid and occupies the region x2 + y2 + (z - 2)2 … 1.

a. Show that the surface integral giving the magnitude of the 

total force on the ball due to the luid’s pressure is

Force = lim
nSq a

n

k = 1

w(4 - zk) ∆sk = O
S

 w(4 - z) ds.

b. Since the ball is not moving, it is being held up by the buoy-

ant force of the liquid. Show that the magnitude of the buoy-

ant force on the sphere is

Buoyant force = O
S

 w(z - 4)k # n ds,

    where n is the outer unit normal at (x, y, z). This illustrates 

Archimedes’ principle that the magnitude of the buoyant force 

on a submerged solid equals the weight of the displaced luid.

c. Use the Divergence Theorem to ind the magnitude of the 

buoyant force in part (b).

 14. Fluid force on a curved surface A cone in the shape of the sur-

face z = 2x2 + y2, 0 … z … 2 is illed with a liquid of constant 

weight density w. Assuming the xy-plane is “ground level,” show 

that the total force on the portion of the cone from z = 1 to z = 2 

due to liquid pressure is the surface integral

F = O
S

 w(2 - z) ds.

  Evaluate the integral.

 15. Faraday’s law If E(t, x, y, z) and B(t, x, y, z) represent the electric 

and magnetic ields at point (x, y, z) at time t, a basic principle of 

electromagnetic theory says that ∇ * E = -0B>0 t. In this expres-

sion ∇ * E is computed with t held ixed and 0B>0t is calculated 

with (x, y, z) ixed. Use Stokes’ Theorem to derive Faraday’s law,

F
C 

E # dr = -  
0
0t

 O
S

 B # n ds,

  where C represents a wire loop through which current lows coun-

terclockwise with respect to the surface’s unit normal n, giving 

rise to the voltage

F
C 

E # dr

  around C. The surface integral on the right side of the equation 

is called the magnetic lux, and S is any oriented surface with 

boundary C.

 16. Let

F = -  
GmM0 r 0 3  r

  be the gravitational force ield deined for r ≠ 0. Use Gauss’s law 

in Section 16.8 to show that there is no continuously diferentiable 

vector ield H satisfying F = ∇ * H.

 17. If f (x, y, z) and g(x, y, z) are continuously diferentiable scalar 

functions deined over the oriented surface S with boundary curve 

C, prove that

O
S

 (∇ƒ * ∇g) # n ds = F
C 

 ƒ ∇g # dr.

 18. Suppose that ∇ # F1 = ∇ # F2 and ∇ * F1 = ∇ * F2 over a re-

gion D enclosed by the oriented surface S with outward unit normal 

n and that F1
# n = F2

# n on S. Prove that F1 = F2 throughout D.

 19. Prove or disprove that if ∇ # F = 0 and ∇ * F = 0, then F = 0.

 20. Let S be an oriented surface parametrized by r(u, y). Deine the 

notation dS = ru du * ry dy so that dS is a vector normal to 

the surface. Also, the magnitude ds = 0 dS 0  is the element of sur-

face area (by Equation 5 in Section 16.5). Derive the identity

ds = (EG - F2)1>2 du dy

  where

E = 0 ru 0 2,  F = ru
# ry ,  and G = 0 ry 0 2.

 21. Show that the volume V of a region D in space enclosed by the 

oriented surface S with outward normal n satisies the identity

V =
1
3

 O
S

 r # n ds,

  where r is the position vector of the point (x, y, z) in D.

Mathematica/Maple Projects

Projects can be found within MyMathLab.

• Work in Conservative and Nonconservative Force Fields 

Explore integration over vector ields and experiment with conservative and nonconservative force functions along diferent paths in the ield.

• How Can You Visualize Green’s Theorem? 

Explore integration over vector ields and use parametrizations to compute line integrals. Both forms of Green’s Theorem are explored.

• Visualizing and Interpreting the Divergence Theorem 

Verify the Divergence Theorem by formulating and evaluating certain divergence and surface integrals.

CHAPTER 16 Technology Application Projects
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Appendices

A.1 Real Numbers and the Real Line

This section reviews real numbers, inequalities, intervals, and absolute values.

Real Numbers

Much of calculus is based on properties of the real number system. Real numbers are 

numbers that can be expressed as decimals, such as

 -  
3
4

= -0.75000 . . .

 
1
3

= 0.33333 . . .

 22 = 1.4142 . . .

The dots . . . in each case indicate that the sequence of decimal digits goes on forever. 

Every conceivable decimal expansion represents a real number, although some numbers 

have two representations. For instance, the infinite decimals .999 . . . and 1.000 . . . repre-

sent the same real number 1. A similar statement holds for any number with an infinite tail 

of 9’s.

The real numbers can be represented geometrically as points on a number line called 

the real line.

−2 −1 0 1 2 3p 43
4

1
3

−
"2

The symbol ℝ denotes either the real number system or, equivalently, the real line.

The properties of the real number system fall into three categories: algebraic proper-

ties, order properties, and completeness. The algebraic properties say that the real num-

bers can be added, subtracted, multiplied, and divided (except by 0) to produce more real 

numbers under the usual rules of arithmetic. You can never divide by 0.

The order properties of real numbers are given in Appendix 6. The useful rules at the 

left can be derived from them, where the symbol 1  means “implies.”

Notice the rules for multiplying an inequality by a number. Multiplying by a positive 

number preserves the inequality; multiplying by a negative number reverses the inequality. 

Also, reciprocation reverses the inequality for numbers of the same sign. For example, 

2 6 5 but -2 7 -5 and 1>2 7 1>5.

The completeness property of the real number system is deeper and harder to define 

precisely. However, the property is essential to the idea of a limit (Chapter 2). Roughly 

speaking, it says that there are enough real numbers to “complete” the real number line, in 

RULES FOR INEQUALITIES

If a, b, and c are real numbers, then:

1. a 6 b 1  a + c 6 b + c

2. a 6 b 1  a - c 6 b - c

3. a 6 b and c 7 0 1  ac 6 bc

4. a 6 b and c 6 0 1  bc 6 ac  

Special case: a 6 b 1  -b 6 -a

5. a 7 0 1  
1
a 7 0

6. If a and b are both positive or both 

 negative, then a 6 b 1  
1
b

6
1
a .
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the sense that there are no “holes” or “gaps” in it. Many theorems of calculus would fail if 

the real number system were not complete. Appendix 6 introduces the ideas involved and 

discusses how the real numbers are constructed.

We distinguish three special subsets of real numbers.

1. The natural numbers, namely 1, 2, 3, 4, . . .

2. The integers, namely 0, {1, {2, {3, . . .

3. The rational numbers, namely the numbers that can be expressed in the form of a 

fraction m>n, where m and n are integers and n ≠ 0. Examples are

1
3

, -  
4
9

=
-4
9

=
4

-9
, 

200
13

,  and  57 =
57
1

.

The rational numbers are precisely the real numbers with decimal expansions that are 

either

a. terminating (ending in an ininite string of zeros), for example,

3
4

= 0.75000 . . . = 0.75  or

b. eventually repeating (ending with a block of digits that repeats over and over), for 

example,

23
11

= 2.090909 . . . = 2.09  
The bar indicates the block 

of repeating digits.
 

A terminating decimal expansion is a special type of repeating decimal, since the ending 

zeros repeat.

The set of rational numbers has all the algebraic and order properties of the real num-

bers but lacks the completeness property. For example, there is no rational number whose 

square is 2; there is a “hole” in the rational line where 22 should be.

Real numbers that are not rational are called irrational numbers. They are character-

ized by having nonterminating and nonrepeating decimal expansions. Examples are 

p, 22, 23 5, and log10 3. Since every decimal expansion represents a real number, there 

are infinitely many irrational numbers. Both rational and irrational numbers are found 

arbitrarily close to any given point on the real line.

Set notation is very useful for specifying sets of real numbers. A set is a collection of 

objects, and these objects are the elements of the set. If S is a set, the notation a∊S means 

that a is an element of S, and a∉ S means that a is not an element of S. If S and T are sets, 

then S ∪ T  is their union and consists of all elements belonging to either S or T (or to both 

S and T). The intersection S ¨ T  consists of all elements belonging to both S and T. The 

empty set ∅ is the set that contains no elements. For example, the intersection of the 

rational numbers and the irrational numbers is the empty set.

Some sets can be described by listing their elements in braces. For instance, the set A 

consisting of the natural numbers (or positive integers) less than 6 can be expressed as

A = 51, 2, 3, 4, 56 .

The entire set of integers is written as50, {1, {2, {3, . . .6 .

Another way to describe a set is to enclose in braces a rule that generates all the ele-

ments of the set. For instance, the set

A = 5x � x is an integer and 0 6 x 6 66
is the set of positive integers less than 6.
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Intervals

A subset of the real line is called an interval if it contains at least two numbers and contains 

all the real numbers lying between any two of its elements. For example, the set of all real 

numbers x such that x 7 6 is an interval, as is the set of all x such that -2 … x … 5. The 

set of all nonzero real numbers is not an interval; since 0 is absent, the set fails to contain 

every real number between -1 and 1 (for example).

Geometrically, intervals correspond to rays and line segments on the real line, along 

with the real line itself. Intervals of numbers corresponding to line segments are finite 

intervals; intervals corresponding to rays and the real line are infinite intervals.

A finite interval is said to be closed if it contains both of its endpoints, half-open if it 

contains one endpoint but not the other, and open if it contains neither endpoint. The end-

points are also called boundary points; they make up the interval’s boundary. The 

remaining points of the interval are interior points and together compose the interval’s 

interior. Infinite intervals are closed if they contain a finite endpoint, and open otherwise. 

The entire real line ℝ is an infinite interval that is both open and closed. Table A.1 sum-

marizes the various types of intervals.

Solving Inequalities

The process of inding the interval or intervals of numbers that satisfy an inequality in x is 

called solving the inequality.

EXAMPLE 1  Solve the following inequalities and show their solution sets on the  

real line.

(a) 2x - 1 6 x + 3    (b) 
6

x - 1
Ú 5

TABLE A.1  Types of intervals

Notation Set description Type Picture

(a, b) 5x � a 6 x 6 b6 Open

3a, b4 5x � a … x … b6 Closed

3a, b) 5x � a … x 6 b6 Half-open

(a, b4 5x � a 6 x … b6 Half-open

(a, q) 5x � x 7 a6 Open

3a, q) 5x � x Ú a6 Closed

(-q, b) 5x � x 6 b6 Open

(-q, b4 5x � x … b6 Closed

(-q, q) ℝ (set of all real  

numbers)

Both open  

and closed

a b

a b

a b

a

a

b

b

b

a
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Solution

(a)   2x - 1 6 x + 3

    2x 6 x + 4  Add 1 to both sides.

    x 6 4   Subtract x from both sides.

The solution set is the open interval (-q, 4) (Figure A.1a).

(b) The inequality 6>(x - 1) Ú 5 can hold only if x 7 1, because otherwise 6>(x - 1) 

is undefined or negative. Therefore, (x - 1) is positive and the inequality will be pre-

served if we multiply both sides by (x - 1):

 
6

x - 1
Ú 5

 6 Ú 5x - 5  Multiply both sides by (x - 1). 

 11 Ú 5x   Add 5 to both sides.

 
11
5

Ú x.   Or x …
11

5
.

  The solution set is the half-open interval (1, 11>54  (Figure A.1b). 

Absolute Value

The absolute value of a number x, denoted by 0 x 0 , is deined by the formula0 x 0 = e x, x Ú 0 

-x, x 6 0.

EXAMPLE 2  0 3 0 = 3, 0 0 0 = 0, 0-5 0 = -(-5) = 5, 0- 0 a 0 0 = 0 a 0  
Geometrically, the absolute value of x is the distance from x to 0 on the real number 

line. Since distances are always positive or 0, we see that 0 x 0 Ú 0 for every real number x, 

and 0 x 0 = 0 if and only if x = 0. Also,0 x - y 0 = the distance between x and y

on the real line (Figure A.2).

Since the symbol 2a always denotes the nonnegative square root of a, an alternate 

definition of 0 x 0  is 0 x 0 = 2x2.

It is important to remember that 2a2 = 0 a 0 . Do not write 2a2 = a unless you already 

know that a Ú 0.

The absolute value function has the following properties. (You are asked to prove 

these properties in the exercises.)

0

0 1

1 4

(a)

11
5

(b)

x

x

FIGURE A.1 Solution sets for the 

inequalities in Example 1. Hollow circles 

indicate endpoints that are not included 

in the interval, and solid dots indicate 

included endpoints.

0−5 0  = 5 03 0

04 − 1 0 = 01 − 4 0 = 3

−5 0 3

1 4

FIGURE A.2 Absolute values give dis-

tances between points on the number line.

Absolute Value Properties

1. 0-a 0 = 0 a 0   A number and its negative have the same  

absolute value.

2. 0 ab 0 = 0 a 0  0 b 0   The absolute value of a product is the product  

of the absolute values.

3. ` a
b
` =
0 a 00 b 0   

The absolute value of a quotient is the quotient 

of the absolute values.

4. 0 a + b 0 … 0 a 0 + 0 b 0   The triangle inequality. The absolute value of 

the sum of two numbers is less than or equal to 

the sum of their absolute values.
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Note that 0-a 0 ≠ - 0 a 0 . For example, 0-3 0 = 3, whereas - 0 3 0 = -3. If a and b dif-

fer in sign, then 0 a + b 0  is less than 0 a 0 + 0 b 0 . In all other cases, 0 a + b 0  equals 0 a 0 + 0 b 0 . Absolute value bars in expressions like 0-3 + 5 0  work like parentheses: We do 

the arithmetic inside before taking the absolute value.

−a 0 ax

aa

0 x 0
FIGURE A.3 0 x 0 6 a means x lies 

between -a and a.

EXAMPLE 3

 0-3 + 5 0 = 0 2 0 = 2 6 0-3 0 + 0 5 0 = 8

 0 3 + 5 0 = 0 8 0 = 0 3 0 + 0 5 0
   0-3 - 5 0 = 0-8 0 = 8 = 0-3 0 + 0-5 0  

The inequality 0 x 0 6 a says that the distance from x to 0 is less than the positive num-

ber a. This means that x must lie between -a and a, as we can see from Figure A.3.

Statements 5-9 in the table at left are all consequences of the definition of absolute 

value and are often helpful when solving equations or inequalities involving absolute 

 values. The symbol 3  that appears in the table is often used by mathematicians to 

denote the “if and only if” logical relationship. It also means “implies and is implied by.”

EXAMPLE 4  Solve the equation 0 2x - 3 0 = 7.

Solution By Property 5, 2x - 3 = {7, so there are two possibilities:

 2x - 3 = 7  2x - 3 = -7  Equivalent equations without absolute values

 2x = 10  2x = -4  Solve as usual.

 x = 5  x = -2

The solutions of 0 2x - 3 0 = 7 are x = 5 and x = -2. 

EXAMPLE 5  Solve the inequality ` 5 -
2
x ` 6 1.

Solution We have

 ̀ 5 -
2
x ` 6 1  3   -1 6 5 -

2
x 6 1  Property 6

   3   -6 6 -  
2
x 6 -4   Subtract 5.

   3   3 7
1
x 7 2   Multiply by -  

1

2
. 

   3   
1
3

6 x 6
1
2

.   Take reciprocals.

Notice how the various rules for inequalities were used here. Multiplying by a negative 

number reverses the inequality. So does taking reciprocals in an inequality in which both 

sides are positive. The original inequality holds if and only if (1>3) 6 x 6 (1>2). The 

solution set is the open interval (1>3, 1>2). 

ABSOLUTE VALUES AND INTERVALS

If a is any positive number, then

5. 0 x 0 = a 3 x = {a

6. 0 x 0 6 a 3 -a 6 x 6 a

7. 0 x 0 7 a 3 x 7 a or x 6 -a

8. 0 x 0 … a 3 -a … x … a

9. 0 x 0 Ú a 3 x Ú a or x … -a
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 1. Express 1>9 as a repeating decimal, using a bar to indicate the 

repeating digits. What are the decimal representations of 2>9?  

3>9? 8>9? 9>9?

 2. If 2 6 x 6 6, which of the following statements about x are nec-

essarily true, and which are not necessarily true?

a. 0 6 x 6 4 b. 0 6 x - 2 6 4

c. 1 6
x

2
6 3 d. 

1
6

6
1
x 6

1
2

e. 1 6
6
x 6 3 f. 0 x - 4 0 6 2

g. -6 6 -x 6 2 h. -6 6 -x 6 -2

In Exercises 3–6, solve the inequalities and show the solution sets on 

the real line.

 3. -2x 7 4 4. 5x - 3 … 7 - 3x

 5. 2x -
1
2

Ú 7x +
7
6

 6. 
4
5

 (x - 2) 6
1
3

 (x - 6)

Solve the equations in Exercises 7–9.

 7. 0 y 0 = 3 8. 0 2t + 5 0 = 4 9. 0 8 - 3s 0 =
9

2

Solve the inequalities in Exercises 10–17, expressing the solution sets 

as intervals or unions of intervals. Also, show each solution set on the 

real line.

 10. 0 x 0 6 2 11. 0 t - 1 0 … 3 12. 0 3y - 7 0 6 4

 13. ` z
5

- 1 ` … 1 14. ` 3 -
1
x ` 6

1
2

 15. 0 2s 0 Ú 4

 16. 0 1 - x 0 7 1 17. ` r + 1
2
` Ú 1

Solve the inequalities in Exercises 18–21. Express the solution sets as 

intervals or unions of intervals and show them on the real line. Use the 

result 2a2 = 0 a 0  as appropriate.

 18. x2 6 2 19. 4 6 x2 6 9

 20. (x - 1)2 6 4 21. x2 - x 6 0

 22. Do not fall into the trap of thinking 0-a 0 = a. For what real 

numbers a is this equation true? For what real numbers is it false?

 23. Solve the equation 0 x - 1 0 = 1 - x.

 24. A proof of the triangle inequality Give the reason justifying 

each of the numbered steps in the following proof of the triangle 

inequality.

  0 a + b 0 2 = (a + b)2  (1)

  = a2 + 2ab + b2  

  … a2 + 2 0 a 0 0 b 0 + b2  (2)

  = 0 a 0 2 + 2 0 a 0 0 b 0 + 0 b 0 2 (3)

  = ( 0 a 0 + 0 b 0 )2  

  0 a + b 0 … 0 a 0 + 0 b 0  (4)

 25. Prove that 0 ab 0 = 0 a 0 0 b 0  for any numbers a and b.

 26. If 0 x 0 … 3 and x 7 -1>2, what can you say about x?

 27. Graph the inequality 0 x 0 + 0 y 0 … 1.

 28. For any number a, prove that 0-a 0 = 0 a 0 .
 29. Let a be any positive number. Prove that 0 x 0 7 a if and only if 

x 7 a or x 6 -a.

 29. a.  If b is any nonzero real number, prove that 0 1>b 0 = 1> 0 b 0 .
b. Prove that ` a

b
` =
0 a 00 b 0 for any numbers a and b ≠ 0.

EXERCISES A.1

A.2 Mathematical Induction

Many formulas, like

1 + 2 + g + n =
n(n + 1)

2
,

can be shown to hold for every positive integer n by applying an axiom called the mathe-

matical induction principle. A proof that uses this axiom is called a proof by mathematical 

induction or a proof by induction.

The steps in proving a formula by induction are the following:

1. Check that the formula holds for n = 1.

2. Prove that if the formula holds for any positive integer n = k, then it also holds for the 

next integer, n = k + 1.

The induction axiom says that once these steps are completed, the formula holds for all 

positive integers n. By Step 1 it holds for n = 1. By Step 2 it holds for n = 2, and there-

fore by Step 2 also for n = 3, and by Step 2 again for n = 4, and so on. If the first domino 
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falls, and if the kth domino always knocks over the (k + 1)st when it falls, then all the 

dominoes fall.

From another point of view, suppose we have a sequence of statements  

S1, S2, . . . , Sn, . . . , one for each positive integer. Suppose we can show that assuming any 

one of the statements to be true implies that the next statement in line is true. Suppose that we 

can also show that S1 is true. Then we may conclude that the statements are true from S1 on.

EXAMPLE 1  Use mathematical induction to prove that for every positive integer n,

1 + 2 + g + n =
n(n + 1)

2
.

Solution We accomplish the proof by carrying out the two steps above.

1. The formula holds for n = 1 because

1 =
1(1 + 1)

2
.

2. If the formula holds for n = k, does it also hold for n = k + 1? The answer is yes, as 

we now show. If it is the case that

1 + 2 + g + k =
k(k + 1)

2
,

 then it follows that

 1 + 2 + g + k + (k + 1) =
k(k + 1)

2
+ (k + 1) =

k2 + k + 2k + 2
2

 =
(k + 1)(k + 2)

2
=

(k + 1)((k + 1) + 1)

2
.

The last expression in this string of equalities is the expression n(n + 1)>2 for 

n = (k + 1).

The mathematical induction principle now guarantees the original formula for all 

positive integers n. 

In Example 4 of Section 5.2 we gave another proof for the formula giving the sum of 

the first n integers. However, proofs by mathematical induction can also be used to find the 

sums of the squares and cubes of the first n integers (Exercises 9 and 10). Here is another 

example of a proof by induction.

EXAMPLE 2  Show by mathematical induction that for all positive integers n,

1

21
+

1

22
+ g+

1
2n = 1 -

1
2n .

Solution We accomplish the proof by carrying out the two steps of mathematical 

 induction.

1. The formula holds for n = 1 because

1

21
= 1 -

1

21
.

2. If it is the case that

1

21
+

1

22
+ g +

1

2k
= 1 -

1

2k
,
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then it follows that

 
1

21
+

1

22
+ g +

1

2k
+

1

2k + 1
= 1 -

1

2k
+

1

2k + 1
= 1 -

1 # 2

2k # 2
+

1

2k + 1

 = 1 -
2

2k + 1
+

1

2k + 1
= 1 -

1

2k + 1
.

Thus, the original formula holds for n = (k + 1) whenever it holds for n = k.

With these steps veriied, the mathematical induction principle now guarantees the 

formula for every positive integer n. 

Other Starting Integers

Instead of starting at n = 1 some induction arguments start at another integer. The steps for 

such an argument are as follows.

1. Check that the formula holds for n = n1 (the first appropriate integer).

2. Prove that if the formula holds for any integer n = k Ú n1, then it also holds for 

n = (k + 1).

Once these steps are completed, the mathematical induction principle guarantees the 

 formula for all n Ú n1.

EXAMPLE 3  Show that n! 7 3n if n is large enough.

Solution How large is large enough? We experiment:

n 1 2  3  4  5  6   7

n! 1 2  6 24 120 720 5040

3n 3 9 27 81 243 729 2187

It looks as if n! 7 3n for n Ú 7. To be sure, we apply mathematical induction. We take 

n1 = 7 in Step 1 and complete Step 2.

Suppose k! 7 3k for some k Ú 7. Then

(k + 1)! = (k + 1)(k!) 7 (k + 1)3k 7 7 # 3k 7 3k + 1.

Thus, for k Ú 7,

k! 7 3k implies (k + 1)! 7 3k + 1.

The mathematical induction principle now guarantees n! Ú 3n for all n Ú 7. 

Proof of the Derivative Sum Rule for Sums of Finitely Many 
Functions

We prove the statement

d

dx
 (u1 + u2 + g + un) =

du1

dx
+

du2

dx
+ g +

dun

dx

by mathematical induction. The statement is true for n = 2, as was proved in Section 3.3. 

This is Step 1 of the induction proof.

Step 2 is to show that if the statement is true for any positive integer n = k, where 

k Ú n0 = 2, then it is also true for n = k + 1. So suppose that

 
d

dx
 (u1 + u2 + g + uk) =

du1

dx
+

du2

dx
+ g +

duk

dx
. (1)
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Then

d

dx
 (u1 + u2 + g + uk + uk + 1) (+++++)+++++*  ()*

 Call the function  Call this 

 defined by this sum u function y.

 =
d

dx
 (u1 + u2 + g + uk) +

duk + 1

dx
  Sum Rule for 

d

dx
 (u + y) 

 =
du1

dx
+

du2

dx
+ g +

duk

dx
+

duk + 1

dx
.  Eq. (1)

With these steps verified, the mathematical induction principle now guarantees the 

Sum Rule for every integer n Ú 2.

 1. Assuming that the triangle inequality 0 a + b 0 … 0 a 0 + 0 b 0  holds 

for any two numbers a and b, show that0 x1 + x2 + g+ xn 0 … 0 x1 0 + 0 x2 0 + g+ 0 xn 0
for any n numbers.

 2. Show that if r ≠ 1, then

1 + r + r2 + g+ rn =
1 - rn + 1

1 - r

for every positive integer n.

 3. Use the Product Rule, 
d

dx
 (uy) = u 

dy

dx
+ y 

du

dx
, and the fact that 

  
d

dx
 (x) = 1 to show that 

d

dx
 (xn) = nxn - 1 for every positive 

  integer n.

 4. Suppose that a function ƒ(x) has the property that ƒ(x1  x2) =

ƒ(x1) + ƒ(x2) for any two positive numbers x1 and x2 . Show that

ƒ(x1  x2 g xn) = ƒ(x1) + ƒ(x2) + g+ ƒ(xn)

for the product of any n positive numbers x1, x2, . . . , xn .

 5. Show that

2

31
+

2

32
+ g +

2
3n = 1 -

1
3n

for all positive integers n.

 6. Show that n! 7 n3 if n is large enough.

 7. Show that 2n 7 n2 if n is large enough.

 8. Show that 2n Ú 1>8 for n Ú -3.

 9. Sums of squares Show that the sum of the squares of the first n 

positive integers is

nan +
1
2
b(n + 1)

3
.

 10. Sums of cubes Show that the sum of the cubes of the first n 

positive integers is (n(n + 1)>2)2.

 11. Rules for finite sums Show that the following finite sum rules 

hold for every positive integer n. (See Section 5.2.)

a. a
n

k = 1

(ak + bk) = a
n

k = 1

 ak + a
n

k = 1

 bk

b. a
n

k = 1

(ak - bk) = a
n

k = 1

 ak - a
n

k = 1

 bk

c. a
n

k = 1

 cak = c # a
n

k = 1

 ak (any number c)

d. a
n

k = 1

 ak = n # c (if ak has the constant value c)

 12. Show that 0 xn 0 = 0 x 0 n for every positive integer n and every real 

number x.

EXERCISES A.2

A.3 Lines, Circles, and Parabolas

This section reviews coordinates, lines, distance, circles, and parabolas in the plane. The 

notion of increment is also discussed.

Cartesian Coordinates in the Plane

In Appendix 1 we identiied the points on the line with real numbers by assigning them 

coordinates. Points in the plane can be identiied with ordered pairs of real numbers. To 

begin, we draw two perpendicular coordinate lines that intersect at the 0-point of each line. 



AP-10 Appendices

These lines are called coordinate axes. On the horizontal x-axis, numbers are denoted by 

x and increase to the right. On the vertical y-axis, numbers are denoted by y and increase 

upward (Figure A.4). Thus “upward” and “to the right” are positive directions, whereas 

“downward” and “to the left” are considered negative. The origin O, also labeled 0, of the 

coordinate system is the point in the plane where x and y are both zero.

If P is any point in the plane, it can be located by exactly one ordered pair of real 

numbers in the following way. Draw lines through P perpendicular to the two coordinate 

axes. These lines intersect the axes at points with coordinates a and b (Figure A.4). The 

ordered pair (a, b) is assigned to the point P and is called its coordinate pair. The first 

number a is the x-coordinate (or abscissa) of P; the second number b is the y-coordinate 

(or ordinate) of P. The x-coordinate of every point on the y-axis is 0. The y-coordinate of 

every point on the x-axis is 0. The origin is the point (0, 0).

Starting with an ordered pair (a, b), we can reverse the process and arrive at a corre-

sponding point P in the plane. Often we identify P with the ordered pair and write P(a, b). 

We sometimes also refer to “the point (a, b)” and it will be clear from the context when  

(a, b) refers to a point in the plane and not to an open interval on the real line. Several 

points labeled by their coordinates are shown in Figure A.5.

This coordinate system is called the rectangular coordinate system or Cartesian 

coordinate system (after the sixteenth-century French mathematician René Descartes). 

The coordinate axes of this coordinate or Cartesian plane divide the plane into four regions 

called quadrants, numbered counterclockwise as shown in Figure A.5.

The graph of an equation or inequality in the variables x and y is the set of all points 

P(x, y) in the plane whose coordinates satisfy the equation or inequality. When we plot 

data in the coordinate plane or graph formulas whose variables have different units of 

measure, we do not need to use the same scale on the two axes. If we plot time vs. thrust 

for a rocket motor, for example, there is no reason to place the mark that shows 1 sec on 

the time axis the same distance from the origin as the mark that shows 1 lb on the thrust 

axis.

Usually when we graph functions whose variables do not represent physical measure-

ments and when we draw figures in the coordinate plane to study their geometry and trigo-

nometry, we make the scales on the axes identical. A vertical unit of distance then looks 

the same as a horizontal unit. As on a surveyor’s map or a scale drawing, line segments 

that are supposed to have the same length will look as if they do and angles that are sup-

posed to be congruent will look congruent.

Computer displays and calculator displays are another matter. The vertical and hori-

zontal scales on machine-generated graphs usually differ, and there are corresponding 

distortions in distances, slopes, and angles. Circles may look like ellipses, rectangles may 

look like squares, right angles may appear to be acute or obtuse, and so on. We discuss 

these displays and distortions in greater detail in Section 1.4.

Increments and Straight Lines

When a particle moves from one point in the plane to another, the net changes in its co-

ordinates are called increments. They are calculated by subtracting the coordinates of the 

starting point from the coordinates of the ending point. If x changes from x1 to x2 , the 

increment in x is

∆x = x2 - x1 .

EXAMPLE 1  As shown in Figure A.6, in going from the point A(4, -3) to the point 

B(2, 5) the increments in the x- and y-coordinates are

∆x = 2 - 4 = -2,  ∆y = 5 - (-3) = 8.

From C(5, 6) to D(5, 1) the coordinate increments are

 ∆x = 5 - 5 = 0,  ∆y = 1 - 6 = -5. 

Positive x-axis
Negative y-axis

Negative x-axis Origin

Positive y-axis

P(a, b)

0 1−1−2−3 2 3a

y

1

−1

−2

−3

2

3

b

x

FIGURE A.4 Cartesian coordinates in 

the plane are based on two perpendicular 

axes intersecting at the origin.

HISTORICAL BIOGRAPHY

René Descartes

(1596–1650)

www.goo.gl/XSzlEA 

x

y

Second
quadrant
  (−, +)

First
quadrant
  (+, +)

Third
quadrant
  (−, −)

Fourth
quadrant
  (+, −)

10−1−2 2

(0, 0)
(1, 0)

(2, 1)

(1, 3)

(1, −2)

(−2, −1)

(−2, 1)
1

−1

−2

2

3

FIGURE A.5 Points labeled in the  

xy-coordinate or Cartesian plane. The 

points on the axes all have coordinate pairs 

but are usually labeled with single real 

numbers, (so (1, 0) on the x-axis is labeled 

as 1). Notice the coordinate sign patterns 

of the quadrants.

http://www.goo.gl/XSzlEA


 A.3  Lines, Circles, and Parabolas AP-11

Given two points P1(x1, y1) and P2(x2 , y2) in the plane, we call the increments 

∆x = x2 - x1 and ∆y = y2 - y1 the run and the rise, respectively, between P1 and P2 . 

Two such points always determine a unique straight line (usually called simply a line) 

passing through them both. We call the line P1 P2 .

Any nonvertical line in the plane has the property that the ratio

m =
rise
run =

∆y

∆x
=

y2 - y1

x2 - x1

has the same value for every choice of the two points P1(x1, y1) and P2(x2 , y2) on the line 

(Figure A.7). This is because the ratios of corresponding sides for similar triangles are equal.
Δy = 8

Δx = −2

A(4, −3)
(2, −3)

Δy = −5,
Δx = 0

D(5, 1)

C(5, 6)

B (2, 5)

1 2 3 4 50

1

2

3

4

5

6

−1

−2

−3

y

x

FIGURE A.6 Coordinate increments 

may be positive, negative, or zero  

(Example 1).

DEFINITION The constant ratio

m =
rise
run =

∆y

∆x
=

y2 - y1

x2 - x1

is the slope of the nonvertical line P1 P2 .

The slope tells us the direction (uphill, downhill) and steepness of a line. A line with 

positive slope rises uphill to the right; one with negative slope falls downhill to the right 

(Figure A.8). The greater the absolute value of the slope, the more rapid the rise or fall. 

The slope of a vertical line is undefined. Since the run ∆x is zero for a vertical line, we 

cannot form the slope ratio m.

The direction and steepness of a line can also be measured with an angle. The angle of 

inclination of a line that crosses the x-axis is the smallest counterclockwise angle from the 

x-axis to the line (Figure A.9). The inclination of a horizontal line is 0°. The inclination of a 

vertical line is 90°. If f (the Greek letter phi) is the inclination of a line, then 0 … f 6 180°.

x

y

P2(4, 2)

P1(0, 5)
P4(3, 6)

P3(0, −2)

10
−1

1

2

3

4

6

2 3 4 5 6

L2

L1

FIGURE A.8 The slope of L1 is

m =
∆y

∆x
=

6 - (-2)

3 - 0
=

8
3

.

That is, y increases 8 units every time 

x increases 3 units. The slope of L2 is

m =
∆y

∆x
=

2 - 5
4 - 0

=
-3
4

.

That is, y decreases 3 units every 

time x increases 4 units.

P
1
′

P
2
(x

2
, y

2
)

Δx′

Δx

(run)

P
1
(x

1
, y

1
)

Q(x
2
, y

1
)

Δy

(rise) Δy′

P
2
′

0

Q′

L

x

y

FIGURE A.7 Triangles P1  QP2 and 

P1′Q′P2′ are similar, so the ratio of their 

sides has the same value for any two points 

on the line. This common value is the 

line’s slope.

this

not this

this

not this

x x

FIGURE A.9 Angles of inclination 

are measured counterclockwise from the 

x-axis.
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The relationship between the slope m of a nonvertical line and the line’s angle of incli-

nation f is shown in Figure A.10:

m = tan f.

Straight lines have relatively simple equations. All points on the vertical line through 

the point a on the x-axis have x-coordinates equal to a. Thus, x = a is an equation for the 

vertical line. Similarly, y = b is an equation for the horizontal line meeting the y-axis at b. 

(See Figure A.11.)

x

y

P1

P2 L

Δy

Δx

Δy

Δx
m = = tan f

f

FIGURE A.10 The slope of a  

nonvertical line is the tangent of its  

angle of inclination.

x

y

0

1

2

3

4

5

6

1 2 3 4

Along this line,

x = 2

Along this line,

y = 3(2, 3)

FIGURE A.11 The standard equa-

tions for the vertical and horizontal lines 

through (2, 3) are x = 2 and y = 3.

We can write an equation for a nonvertical straight line L if we know its slope m and 

the coordinates of one point P1(x1 , y1) on it. If P(x, y) is any other point on L, then we can 

use the two points P1 and P to compute the slope,

m =
y - y1

x - x1

so that

y - y1 = m(x - x1),  or  y = y1 + m(x - x1).

The equation

y = y1 + m(x - x1)

is the point-slope equation of the line that passes through the point (x1, y1) and 

has slope m.

EXAMPLE 2  Write an equation for the line through the point (2, 3) with slope -3>2.

Solution We substitute x1 = 2, y1 = 3, and m = -3>2 into the point-slope equation 

and obtain

 y = 3 -
3
2

 (x - 2),  or  y = -  
3
2

 x + 6. 
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EXAMPLE 3  Write an equation for the line through (-2, -1) and (3, 4).

Solution The line’s slope is

m =
-1 - 4
-2 - 3

=
-5
-5

= 1.

We can use this slope with either of the two given points in the point-slope equation:

With (x1, y1) = (−2, −1)

y = -1 + 1 # (x - (-2))

y = -1 + x + 2

y = x + 1

With (x1, y1) = (3, 4)

y = 4 + 1 # (x - 3)

y = 4 + x - 3

y = x + 1

Same result

Either way, we see that y = x + 1 is an equation for the line (Figure A.12). 

The y-coordinate of the point where a nonvertical line intersects the y-axis is called 

the y-intercept of the line. Similarly, the x-intercept of a nonhorizontal line is the  

x- coordinate of the point where it crosses the x-axis (Figure A.13). A line with slope m and 

y-intercept b passes through the point (0, b), so it has equation

y = b + m(x - 0),  or, more simply,  y = mx + b.

x

y

4

0−2 1 2 3
−1

(−2, −1)

(3, 4)

y = x + 1

FIGURE A.12 The line in Example 3.

The equation

y = mx + b

is called the slope-intercept equation of the line with slope m and y-intercept b.

Lines with equations of the form y = mx have y-intercept 0 and so pass through the ori-

gin. Equations of lines are called linear equations.

The equation

Ax + By = C  (A and B not both 0)

is called the general linear equation in x and y because its graph always represents a line 

and every line has an equation in this form (including lines with undefined slope).

Parallel and Perpendicular Lines

Lines that are parallel have equal angles of inclination, so they have the same slope (if they 

are not vertical). Conversely, lines with equal slopes have equal angles of inclination and 

so are parallel.

If two nonvertical lines L1 and L2 are perpendicular, their slopes m1 and m2 satisfy 

m1 m2 = -1, so each slope is the negative reciprocal of the other:

m1 = -  
1

m2
,  m2 = -  

1
m1

.

To see this, notice by inspecting similar triangles in Figure A.14 that m1 = a>h, and 

m2 = -h>a. Hence, m1 m2 = (a>h)(-h>a) = -1.

Distance and Circles in the Plane

The distance between points in the plane is calculated with a formula that comes from the 

Pythagorean theorem (Figure A.15).

x

y

b

0 a

L

FIGURE A.13 Line L has x-intercept a 

and y-intercept b.

x

y

0 A D Ba

Slope m1 Slope m2

C

L2
L1

h

f1

f2
f1

FIGURE A.14 ∆ADC is similar to 

∆CDB. Hence f1 is also the upper angle 

in ∆CDB. From the sides of ∆CDB, we 

read tan f1 = a>h.



AP-14 Appendices

Equation (1) is the standard equation of a circle with center (h, k) and radius a. The 

 circle of radius a = 1 and centered at the origin is the unit circle with equation

x2 + y2 = 1.

EXAMPLE 4

(a) The standard equation for the circle of radius 2 centered at (3, 4) is

(x - 3)2 + ( y - 4)2 = 22 = 4.

(b) The circle

(x - 1)2 + ( y + 5)2 = 3

has h = 1, k = -5, and a = 23. The center is the point (h, k) = (1, -5) and the 

radius is a = 23. 

If an equation for a circle is not in standard form, we can find the circle’s center and 

radius by first converting the equation to standard form. The algebraic technique for doing 

so is completing the square.

EXAMPLE 5  Find the center and radius of the circle

x2 + y2 + 4x - 6y - 3 = 0.

By definition, a circle of radius a is the set of all points P(x, y) whose distance from 

some center C(h, k) equals a (Figure A.16). From the distance formula, P lies on the circle 

if and only if

2(x - h)2 + (y - k)2 = a,

so

@ x
2
 − x

1
@

P(x
1
, y

1)

@ y
2
 − y

1
@

C(x
2
, y

1)

Q(x
2
, y

2)
d = "(x

2
 − x

1)
2 + (y

2
 − y

1)
2

This distance is

x

y

0 x1

y1

y2

x2

FIGURE A.15 To calculate the distance  

between P(x1, y1) and Q(x2, y2), apply the  

Pythagorean theorem to triangle PCQ.

(x − h)2 + (y − k)2 
=

 a2

C(h, k)

a

P(x, y)

0
x

y

FIGURE A.16 A circle of radius a in the 

xy-plane, with center at (h, k).

Distance Formula for Points in the Plane

The distance between P(x1, y1) and Q(x2, y2) is

d = 2(∆x)2 + (∆y)2 = 2(x2 - x1)
2 + ( y2 - y1)

2.

 (x - h)2 + ( y - k)2 = a2. (1)
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Solution We convert the equation to standard form by completing the squares in x and y:

x2 + y2 + 4x - 6y - 3 = 0

(x2 + 4x) + (y2 - 6y) = 3 

Start with the given equation. 

Gather terms. Move the con-

stant to the right-hand side.  ax2 + 4x + a4
2
b2b + ay2 - 6y + a-6

2
b2b =

3 + a4
2
b2

+ a-6
2
b2

 

Add the square of half the coefficient 

of x to each side of the equation. Do 

the same for y. The parenthetical 

expressions on the left-hand side are 

now perfect squares.
 

(x2 + 4x + 4) + (y2 - 6y + 9) = 3 + 4 + 9

(x + 2)2 + (y - 3)2 = 16 
Write each quadratic as a squared 

linear expression.  

The center is (-2, 3) and the radius is a = 4. 

The points (x, y) satisfying the inequality

(x - h)2 + (y - k)2 6 a2

make up the interior region of the circle with center (h, k) and radius a (Figure A.17). The 

circle’s exterior consists of the points (x, y) satisfying

(x - h)2 + (y - k)2 7 a2.

Exterior: (x − h)2 + (y − k)2 > a2

Interior: (x − h)2 + (y − k)2 < a2

(h, k)

a

0 h
x

y

k

On: (x − h)2 + (y − k)2 = a2

FIGURE A.17 The interior and exterior 

of the circle (x - h)2 + (y - k)2 = a2.

The Graph of y = ax2 + bx + c, a 3 0

The graph of the equation y = ax2 + bx + c, a ≠ 0, is a parabola. The parab-

ola opens upward if a 7 0 and downward if a 6 0. The axis is the line

 x = -  
b

2a
. (2)

The vertex of the parabola is the point where the axis and parabola intersect. Its 

x-coordinate is x = -b>2a; its y-coordinate is found by substituting x = -b>2a 

in the parabola’s equation.

Parabolas

The geometric deinition and properties of general parabolas are reviewed in Chapter 11. 

Here we look at parabolas arising as the graphs of equations of the form y = ax2 + bx + c.

EXAMPLE 6  Consider the equation y = x2. Some points whose coordinates satisfy 

this equation are (0, 0), (1, 1), a3
2

, 
9
4
b , (-1, 1), (2, 4), and (-2, 4). These points (and all 

others satisfying the equation) make up a smooth curve called a parabola (Figure A.18). 

The graph of an equation of the form

y = ax2

is a parabola whose axis (axis of symmetry) is the y-axis. The parabola’s vertex (point 

where the parabola and axis cross) lies at the origin. The parabola opens upward if a 7 0 

and downward if a 6 0. The larger the value of 0 a 0 , the narrower the parabola  

(Figure A.19).

Generally, the graph of y = ax2 + bx + c is a shifted and scaled version of the 

parabola y = x2. We discuss shifting and scaling of graphs in more detail in Section 1.2.

0 1 2−1−2

1

4
(−2, 4)

(−1, 1) (1, 1)

(2, 4)

3
2

9
4

,

x

y

y = x2

a      b

FIGURE A.18 The parabola y = x2 

(Example 6).
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Notice that if a = 0, then we have y = bx + c, which is an equation for a line. The 

axis, given by Equation (2), can be found by completing the square.

EXAMPLE 7  Graph the equation y = -  
1
2

 x2 - x + 4.

Solution Comparing the equation with y = ax2 + bx + c we see that

a = -  
1
2

,  b = -1,  c = 4.

Since a 6 0, the parabola opens downward. From Equation (2) the axis is the vertical line

x = -  
b

2a
= -  

(-1)

2(-1>2)
= -1.

When x = -1, we have

y = -  
1
2

 (-1)2 - (-1) + 4 =
9
2

.

The vertex is (-1, 9>2).

The x-intercepts are where y = 0:

 -  
1
2

 x2 - x + 4 = 0

 x2 + 2x - 8 = 0

 (x - 2)(x + 4) = 0

 x = 2,  x = -4

We plot some points, sketch the axis, and use the direction of opening to complete the 

graph in Figure A.20. 

Ellipses

The geometric deinition and properties of general ellipses are reviewed in Chapter 11. 

Here we relate them to circles. Although they are not the graphs of functions, circles can 

be stretched horizontally or vertically in the same way as the graphs of functions. The stan-

dard equation for a circle of radius r centered at the origin is

x2 + y2 = r2.

Substituting cx for x in the standard equation for a circle (Figure A.21) gives

 c2x2 + y2 = r2. (3)

A
x
is

 o
f

sy
m

m
et

ry

Vertex at
origin

−1

 1

−4 −3 −2 2 3 4

y = −x2

y = −
x2

6

y =
x2

10

y =
x2

2

y = 2x2

x

y

FIGURE A.19 Besides determining the 

direction in which the parabola y = ax2 

opens, the number a is a scaling factor. 

The parabola widens as a approaches zero 

and narrows as 0 a 0  becomes large.

a        b

Intercepts at

x = −4 and x = 2

Point symmetric

with y-intercept

Vertex is 9
2

−1,

Intercept at y = 4

(0, 4)(−2, 4)

0

1

2

3

1−2−3

A
x
is

: 
x 
=

 −
1

x

y

y = − x2 − x + 4
1
2

FIGURE A.20 The parabola in  

Example 7.
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(a) circle

−r

−r

r

r0

x2 + y2 = r2

x

y

(b) ellipse, 0 < c < 1

–r

0

c2x2 + y2 = r2

r
c−

r
c

x

y

(c) ellipse,  c > 1

−r

r

0

c2x2 + y2 = r2

r
c−

r
c

r

FIGURE A.21 Horizontal stretching or compression of a circle produces graphs of ellipses.
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If 0 6 c 6 1, the graph of Equation (3) horizontally stretches the circle; if c 7 1 the 

circle is compressed horizontally. In either case, the graph of Equation (3) is an ellipse 

(Figure A.21). Notice in Figure A.21 that the y-intercepts of all three graphs are always -r  

and r. In Figure A.21b, the line segment joining the points ({r>c, 0) is called the major 

axis of the ellipse; the minor axis is the line segment joining (0, {r). The axes of the 

ellipse are reversed in Figure A.21c: The major axis is the line segment joining the points 

(0, {r), and the minor axis is the line segment joining the points ({r>c, 0). In both 

cases, the major axis is the longer line segment.

If we divide both sides of Equation (3) by r  

2, we obtain

 
x2

a2
+

y2

b2
= 1 (4)

where a = r>c and b = r . If a 7 b, the major axis is horizontal; if a 6 b, the major axis 

is vertical. The center of the ellipse given by Equation (4) is the origin (Figure A.22).

Substituting x - h for x, and y - k for y, in Equation (4) results in

 
(x - h)2

a2
+

(y - k)2

b2
= 1. (5)

Equation (5) is the standard equation of an ellipse with center at (h, k).

x

y

−a

−b

b

a

Major axis

Center

FIGURE A.22 Graph of the ellipse 

x2

a2
+

y2

b2
= 1, a 7 b, where the major 

axis is horizontal.

Distance, Slopes, and Lines

In Exercises 1 and 2, a particle moves from A to B in the coordinate 

plane. Find the increments ∆x and ∆y in the particle’s coordinates. 

Also find the distance from A to B.

 1. A(-3, 2), B(-1, -2) 2. A(-3.2, -2),  B(-8.1, -2)

Describe the graphs of the equations in Exercises 3 and 4.

 3. x2 + y2 = 1 4. x2 + y2 … 3

Plot the points in Exercises 5 and 6 and find the slope (if any) of the 

line they determine. Also find the common slope (if any) of the lines 

perpendicular to line AB.

 5. A(-1, 2), B(-2, -1) 6. A(2, 3), B(-1, 3)

In Exercises 7 and 8, find an equation for (a) the vertical line and (b) 

the horizontal line through the given point.

 7. (-1, 4>3) 8. 10, -222
In Exercises 9–15, write an equation for each line described.

 9. Passes through (-1, 1) with slope -1

 10. Passes through (3, 4) and (-2, 5)

 11. Has slope -5>4 and y-intercept 6

 12. Passes through (-12, -9) and has slope 0

 13. Has y-intercept 4 and x-intercept -1

 14. Passes through (5, -1) and is parallel to the line 2x + 5y = 15

 15. Passes through (4, 10) and is perpendicular to the line 

6x - 3y = 5

In Exercises 16 and 17, find the line’s x- and y-intercepts and use this 

information to graph the line.

 16. 3x + 4y = 12 17. 22x - 23y = 26

 18. Is there anything special about the relationship between the lines 

Ax + By = C1 and Bx - Ay = C2 (A ≠ 0, B ≠ 0)? Give rea-

sons for your answer.

 19. A particle starts at A(-2, 3) and its coordinates change by incre-

ments ∆x = 5, ∆y = -6. Find its new position.

 20. The coordinates of a particle change by ∆x = 5 and ∆y = 6 as it 

moves from A(x, y) to B(3, -3). Find x and y.

Circles

In Exercises 21–23, find an equation for the circle with the given cen-

ter C(h, k) and radius a. Then sketch the circle in the xy-plane. Include 

the circle’s center in your sketch. Also, label the circle’s x- and 

y-intercepts, if any, with their coordinate pairs.

 21. C(0, 2), a = 2 22. C(-1, 5), a = 210

 23. C1-23, -22, a = 2

Graph the circles whose equations are given in Exercises 24–26. 

Label each circle’s center and intercepts (if any) with their coordinate 

pairs.

 24. x2 + y2 + 4x - 4y + 4 = 0

 25. x2 + y2 - 3y - 4 = 0 26. x2 + y2 - 4x + 4y = 0

Parabolas

Graph the parabolas in Exercises 27–30. Label the vertex, axis, and 

intercepts in each case.

 27. y = x2 - 2x - 3 28. y = -x2 + 4x

 29. y = -x2 - 6x - 5 30. y =
1
2

 x2 + x + 4

EXERCISES A.3
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Inequalities

Describe the regions defined by the inequalities and pairs of inequali-

ties in Exercises 31–34.

 31. x2 + y2 7 7 32. (x - 1)2 + y2 … 4

 33. x2 + y2 7 1, x2 + y2 6 4

 34. x2 + y2 + 6y 6 0, y 7 -3

 35. Write an inequality that describes the points that lie inside the 

  circle with center (-2, 1) and radius 26.

 36. Write a pair of inequalities that describe the points that lie inside 

or on the circle with center (0, 0) and radius 22, and on or to the 

right of the vertical line through (1, 0).

Theory and Examples

In Exercises 37–40, graph the two equations and find the points at 

which the graphs intersect.

 37. y = 2x, x2 + y2 = 1 38. y - x = 1, y = x2

 39. y = -x2, y = 2x2 - 1

 40. x2 + y2 = 1, (x - 1)2 + y2 = 1

 41. Insulation By measuring slopes in the igure, estimate the tem-

perature change in degrees per inch for (a) the gypsum wallboard; 

(b) the iberglass insulation; (c) the wood sheathing.

T
em

p
er

at
u
re

 (
°F

)

0°

10°

20°

30°

40°

50°

60°

70°

80°

Distance through wall (inches)

0 1 2 3 4 5 6 7

Gypsum wallboard

Sheathing

Siding

Air outside
at 0°F

Fiberglass
between studs

Air
inside
room
at 72° F

  The temperature changes in the wall in Exercises 41 and 42.

 42. Insulation According to the igure in Exercise 41, which of the 

materials is the best insulator? The poorest? Explain.

 43. Pressure under water The pressure p experienced by a diver 

under water is related to the diver’s depth d by an equation of the 

form p = kd + 1 (k a constant). At the surface, the pressure is 

1 atmosphere. The pressure at 100 meters is about 10.94 atmo-

spheres. Find the pressure at 50 meters.

 44. Relected light A ray of light comes in along the line x + y = 1 

from the second quadrant and reflects of the x-axis (see the ac-

companying igure). The angle of incidence is equal to the angle 

of relection. Write an equation for the line along which the de-

parting light travels.

Angle of
incidence

Angle of
relection

x + y = 1

1

0 1
x

y

  The path of the light ray in Exercise 44. Angles of incidence and 

relection are measured from the perpendicular.

 45. Fahrenheit vs. Celsius In the FC-plane, sketch the graph of the 

equation

C =
5
9

  (F - 32)

  linking Fahrenheit and Celsius temperatures. On the same graph 

sketch the line C = F. Is there a temperature at which a Celsius 

thermometer gives the same numerical reading as a Fahrenheit 

thermometer? If so, ind it.

 46. The Mt. Washington Cog Railway Civil engineers calculate 

the slope of roadbed as the ratio of the distance it rises or falls 

to the distance it runs horizontally. They call this ratio the grade 

of the roadbed, usually written as a percentage. Along the coast, 

commercial railroad grades are usually less than 2%. In the moun-

tains, they may go as high as 4%. Highway grades are usually less 

than 5%.

   The steepest part of the Mt. Washington Cog Railway in  

New Hampshire has an exceptional 37.1% grade. Along this part 

of the track, the seats in the front of the car are 14 ft above those in 

the rear. About how far apart are the front and rear rows of seats?

 47. By calculating the lengths of its sides, show that the triangle with 

vertices at the points A(1, 2), B(5, 5), and C(4, -2) is isosceles but 

not equilateral.

 48. Show that the triangle with vertices A(0, 0), B11, 232, and  

C(2, 0) is equilateral.

 49. Show that the points A(2, -1), B(1, 3), and C(-3, 2) are vertices 

of a square, and ind the fourth vertex.

 50. Three diferent parallelograms have vertices at (-1, 1), (2, 0), and 

(2, 3). Sketch them and ind the coordinates of the fourth vertex of 

each.

 51. For what value of k is the line 2x + ky = 3 perpendicular to the 

line 4x + y = 1? For what value of k are the lines parallel?

 52. Midpoint of a line segment Show that the point with coordi-

nates ax1 + x2

2
, 

y1 + y2

2
b

  is the midpoint of the line segment joining P(x1 , y1) to Q(x2 , y2).
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A.4 Proofs of Limit Theorems

This appendix proves Theorem 1, Parts 2–5, and Theorem 4 from Section 2.2.

THEOREM 1—Limit Laws

If L, M, c, and k are real numbers and

lim
xSc

 ƒ(x) = L  and  lim
xSc

 g(x) = M, then

1. Sum Rule: lim
xSc

  (ƒ(x) + g(x)) = L + M

2. Diference Rule: lim
xSc

  (ƒ(x) - g(x)) = L - M

3. Constant Multiple Rule: lim
xSc

  (k ƒ(x)) = kL

4. Product Rule: lim
xSc

  (ƒ(x) g(x)) = LM

5. Quotient Rule: lim
xSc

  
ƒ(x)

g(x)
=

L
M

,    M ≠ 0

6. Power Rule: lim
xSc

 3ƒ(x)4 n = Ln, n a positive integer

7. Root Rule: lim
xSc

 2n ƒ(x) = 2n L = L1/n, n a positive integer

 (If n is even, we assume that ƒ(x) Ú 0 for x in an interval containing c.)

We proved the Sum Rule in Section 2.3, and the Power and Root Rules are proved in 

more advanced texts. We obtain the Difference Rule by replacing g(x) by -g(x) and 

M by -M  in the Sum Rule. The Constant Multiple Rule is the special case g(x) = k of the 

Product Rule. This leaves only the Product and Quotient Rules.

Proof of the Limit Product Rule  We show that for any e 7 0 there exists a d 7 0 

such that for all x in the intersection D of the domains of ƒ and g,

� ƒ(x) g(x) - LM � 6 e   whenever   0 6 � x - c � 6 d.

Suppose then that e is a positive number, and write ƒ(x) and g(x) as

ƒ(x) = L + (ƒ(x) - L),    g(x) = M + (g(x) - M ).

Multiply these expressions together and subtract LM:

 ƒ(x) g(x) - LM = (L + (ƒ(x) - L))(M + (g(x) - M)) - LM

 = LM + L(g(x) - M) + M(ƒ(x) - L)

 +  (ƒ(x) - L)(g(x) - M) - LM

  = L(g(x) - M ) + M(ƒ(x) - L) + (ƒ(x) - L)(g(x) - M ). (1)

Since ƒ and g have limits L and M as x S c, there exist positive numbers d1, d2, d3, and d4 

such that

� ƒ(x) - L � 6 2e>3  whenever  0 6 � x - c � 6 d1

� g(x) - M � 6 2e>3  whenever  0 6 � x - c � 6 d2

� ƒ(x) - L � 6 e>(3(1 + �M � ))  whenever  0 6 � x - c � 6 d3

 � g(x) - M � 6 e>(3(1 + �L � ))   whenever  0 6 � x - c � 6 d4. 

(2)
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If we take d to be the smallest of the numbers d1 through d4, the inequalities on the right-

hand side of the Implications (2) will hold simultaneously for 0 6 0 x - c 0 6 d. There-

fore, for all x in D, if 0 6 0 x - c 0 6 d then0 ƒ(x) g(x) - LM 0  Triangle inequality applied to Eq. (1)

 … 0 L 0 0 g(x) - M 0 + 0M 0 0 ƒ(x) - L 0 + 0 ƒ(x) - L 0 0 g(x) - M 0
 … (1 + 0 L 0 ) 0 g(x) - M 0 + (1 + 0M 0 ) 0 ƒ(x) - L 0 + 0 ƒ(x) - L 0 0 g(x) - M 0
 6

e
3

+
e
3

+ Ae
3Ae

3
= e. Values from (2)

This completes the proof of the Limit Product Rule. 

Proof of the Limit Quotient Rule  We show that lim
 

xSc (1>g(x)) = 1>M. We can 

then conclude that

lim
xSc

  
ƒ(x)

g(x)
= lim

xSc
 aƒ(x) # 1

g(x)
b = lim

xSc
 ƒ(x) # lim

xSc
 

1
g(x)

= L # 1
M

=
L
M

by the Limit Product Rule.

Let e 7 0 be given. To show that lim
 

xSc (1>g(x)) = 1>M, we need to show that there 

exists a d 7 0 such that2 1
g(x)

-
1
M

2 6 e  whenever  0 6 � x - c � 6 d.

Since g has the limit M as x S c and since 0M 0 7 0, there exists a positive number d1 

such that

 � g(x) - M � 6
M
2
  whenever  0 6 � x - c � 6 d1. (3)

For any numbers A and B, the triangle inequality implies that 0A 0 - 0B 0 … 0A - B 0  and 0B 0 - 0A 0 … 0A - B 0 , from which it follows that 0 0A 0 - 0B 0 0 … 0A - B 0 . With 

A = g(x) and B = M, this becomes@ 0 g(x) 0 - 0M 0 @ … 0 g(x) - M 0 ,
which can be combined with the inequality on the right in Implication (3) to get, in turn,@ 0 g(x) 0 - 0M 0 @ 6

0M 0
2

 -  
0M 0
2

6 0 g(x) 0 - 0M 0 6
0M 0
2

 
0M 0
2

6 0 g(x) 0 6
3 0M 0

2

 0M 0 6 2 0 g(x) 0 6 3 0M 0
  

10 g(x) 0 6
20M 0 6

30 g(x) 0 .  (4)

Therefore, 0 6 0 x - c 0 6 d1 implies that

 ̀
1

g(x)
-

1
M
` = `M - g(x)

Mg(x)
` …

10M 0 # 10 g(x) 0 # 0M - g(x) 0
 6

10M 0 # 20M 0 # 0M - g(x) 0 .  Inequality (4) (5)
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Since (1>2) 0M 0 2e 7 0, there exists a number d2 7 0 such that

 �M - g(x) � 6
e
2
�M �2  whenever  0 6 � x - c � 6 d2. (6)

If we take d to be the smaller of d1 and d2 , the conclusions in (5) and (6) both hold when-

ever 0 6 0 x - c 0 6 d. Combining these conclusions gives2 1
g(x)

-
1
M

2 6 e  whenever  0 6 � x - c � 6 d.

This concludes the proof of the Limit Quotient Rule. 

THEOREM 4—The Sandwich Theorem

Suppose that g(x) … ƒ(x) … h(x) for all x in some open interval I containing c, 

except possibly at x = c itself. Suppose also that lim
 

xSc g(x) = lim
 

xSc h(x) =  

L. Then lim
 

xSc ƒ(x) = L.

Proof for Right-Hand Limits  Suppose lim
 

xSc+ g(x) = lim
 

xSc+ h(x) = L. Then for 

any e 7 0 there exists a d 7 0 such that the interval (c, c + d) is contained in I and

L - e 6 g(x) 6 L + e  and  L - e 6 h(x) 6 L + e

whenever c 6 x 6 c + d. Since we always have g(x) … ƒ(x) … h(x) it follows that if 

c 6 x 6 c + d, then

 L - e 6 g(x) … ƒ(x) … h(x) 6 L + e, 

 L - e 6 ƒ(x) 6 L + e, 

 - e 6 ƒ(x) - L 6 e.

Therefore 0 ƒ(x) - L 0 6 e whenever c 6 x 6 c + d.

Proof for Left-Hand Limits  Suppose lim
 

xSc- g(x) = lim
 

xSc- h(x) = L. Then for 

any e 7 0 there exists a d 7 0 such that the interval (c - d, c) is contained in I and

L - e 6 g(x) 6 L + e  and  L - e 6 h(x) 6 L + e

whenever c - d 6 x 6 c. We conclude as before that  0 ƒ(x) - L 0 6 e whenever 

c - d 6 x 6 c.

Proof for Two-Sided Limits  If lim
 

xSc g(x) = lim
 

xSc h(x) = L, then g(x) and h(x) 

both approach L as x S c+ and as x S c-; so lim
 

xSc+ ƒ(x) = L and lim
 

xSc- ƒ(x) = L. 

Hence lim
 

xSc ƒ(x) exists and equals L. 

 1. Suppose that functions ƒ1(x), ƒ2(x), and ƒ3(x) have limits L1, L2, 

and L3 , respectively, as x S c. Show that their sum has limit 

L1 + L2 + L3 . Use mathematical induction (Appendix 2) to gen-

eralize this result to the sum of any inite number of functions.

 2. Use mathematical induction and the Limit Product Rule in 

 Theorem 1 to show that if functions ƒ1(x), ƒ2(x), c, ƒn(x) have 

limits L1 , L2 , c, Ln as x S c, then

lim
xSc

 ƒ1(x) # ƒ2(x) # g # ƒn(x) = L1
# L2

# g # Ln .

 3. Use the fact that lim
 

xSc  x = c and the result of Exercise 2 to 

show that lim
 

xSc  x
n = cn for any integer n 7 1.

 4. Limits of polynomials Use the fact that lim
 

xSc (k) = k for any 

number k together with the results of Exercises 1 and 3 to show 

that lim
 

xSc ƒ(x) = ƒ(c) for any polynomial function

ƒ(x) = an  xn + an - 1  xn - 1 + g + a1  x + a0 .

EXERCISES A.4
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 5. Limits of rational functions Use Theorem 1 and the result of 

Exercise 4 to show that if ƒ(x) and g(x) are polynomial functions 

and g(c) ≠ 0, then

lim
xSc

  
ƒ(x)

g(x)
=

ƒ(c)

g(c)
.

 6. Composites of continuous functions Figure A.23 gives the 

diagram for a proof that the composite of two continuous func-

tions is continuous. Reconstruct the proof from the diagram. The 

statement to be proved is this: If ƒ is continuous at x = c and g is 

continuous at ƒ(c), then g ∘ ƒ is continuous at c.

   Assume that c is an interior point of the domain of ƒ and that 

ƒ(c) is an interior point of the domain of g. This will make the 

limits involved two-sided. (The arguments for the cases that 

involve one-sided limits are similar.)

c f(c) g( f(c))

df df dg dg « «

f g

g ∘ f

FIGURE A.23 The diagram for a proof that the composite of two continuous func-

tions is continuous.

A.5 Commonly Occurring Limits

This appendix veriies limits (4)–(6) in Theorem 5 of Section 10.1.

Limit 4: If ∣ x ∣ * 1, lim
nSH

 x n = 0 We need to show that to each e 7 0 there 

 corresponds an integer N so large that 0 xn 0 6 e for all n greater than N. Since e1>n S 1, 

while 0 x 0 6 1, there exists an integer N for which e1>N 7 0 x 0 . In other words,

 0 xN 0 = 0 x 0 N 6 e. (1)

This is the integer we seek because, if 0 x 0 6 1, then

 0 xn 0 6 0 xN 0   for all n 7 N. (2)

Combining (1) and (2) produces 0 xn 0 6 e for all n 7 N, concluding the proof. 

Limit 5: For any number x, lim
nSH

 a1 +
x
nbn

= e x Let

an = a1 +
x
nbn

.

Then

ln an = ln a1 +
x
nbn

= n ln a1 +
x
nb  S  x,

as we can see by the following application of L’Hôpital’s Rule, in which we diferentiate 

with respect to n:

 lim
nSq

 n ln a1 +
x
nb = lim

nSq
 
ln(1 + x>n)

1/n

 = lim
nSq

 

a 1

1 + x>nb # a-  
x

n2
b

-1>n2
= lim

nSq
 

x

1 + x>n = x.

Apply Theorem 3, Section 10.1, with ƒ(x) = ex to conclude that

 a1 +
x
nbn

= an = eln an S  ex. 



 A.6  Theory of the Real Numbers AP-23

Limit 6: For any number x, lim
nSH

  
x n

n!
= 0 Since

-  
0 x 0 n
n!

…
xn

n!
…
0 x 0 n
n!

,

all we need to show is that 0 x 0 n>n!S 0. We can then apply the Sandwich Theorem for 

Sequences (Section 10.1, Theorem 2) to conclude that xn>n!S 0.

The irst step in showing that 0 x 0 n>n!S 0 is to choose an integer M 7 0 x 0 , so that 

( 0 x 0 >M) 6 1. By Limit 4, just proved, we then have ( 0 x 0 >M)n S 0. We then restrict our 

attention to values of n 7 M. For these values of n, we can write

 
0 x 0 n
n!

=
0 x 0 n

1 # 2 # g # M # (M + 1) # (M + 2) # g # n (++++++)++++++*
 (n - M) factors

 …
0 x 0 n

M!Mn - M
=
0 x 0 nMM

M!Mn =
MM

M!
 a 0 x 0

M
bn

.

Thus,

0 …
0 x 0 n
n!

…
MM

M!
 a 0 x 0

M
bn

.

Now, the constant MM>M! does not change as n increases. Thus the Sandwich Theorem 

tells us that 0 x 0 n>n! S 0 because ( 0 x 0 >M)n S 0. 

A.6 Theory of the Real Numbers

A rigorous development of calculus is based on properties of the real numbers. Many 

results about functions, derivatives, and integrals would be false if stated for functions 

deined only on the rational numbers. In this appendix we briely examine some basic 

concepts of the theory of the reals that hint at what might be learned in a deeper, more 

theoretical study of calculus.

Three types of properties make the real numbers what they are. These are the alge-

braic, order, and completeness properties. The algebraic properties involve addition and 

multiplication, subtraction and division. They apply to rational or complex numbers (dis-

cussed in Appendix A.7) as well as to the reals.

The structure of numbers is built around a set with addition and multiplication opera-

tions. The following properties are required of addition and multiplication.

A1 a + (b + c) = (a + b) + c for all a, b, c.

A2 a + b = b + a for all a, b.

A3 There is a number called “0” such that a + 0 = a for all a.

A4 For each number a, there is a number b such that a + b = 0.

M1 a(bc) = (ab)c for all a, b, c.

M2 ab = ba for all a, b.

M3 There is a number called “1” such that a # 1 = a for all a.

M4 For each nonzero number a, there is a number b such that ab = 1.

D a(b + c) = ab + ac for all a, b, c.



AP-24 Appendices

A1 and M1 are associative laws, A2 and M2 are commutativity laws, A3 and M3 are 

identity laws, and D is the distributive law. Sets that have these algebraic properties are 

examples of fields, and are studied in depth in the area of theoretical mathematics called 

abstract algebra.

The order properties allow us to compare the size of any two numbers. The order 

properties are

O1 For any a and b, either a … b or b … a or both.

O2 If a … b and b … a then a = b.

O3 If a … b and b … c then a … c.

O4 If a … b then a + c … b + c.

O5 If a … b and 0 … c then ac … bc.

O3 is the transitivity law, and O4 and O5 relate ordering to addition and multiplication.

We can order the reals, the integers, and the rational numbers, but we cannot order the 

complex numbers (there is no reasonable way to decide whether a number like i = 2-1 

is bigger or smaller than zero). A field in which the size of any two elements can be com-

pared as above is called an ordered field. Both the rational numbers and the real numbers 

are ordered fields, and there are many others.

We can think of real numbers geometrically, lining them up as points on a line. The 

completeness property says that the real numbers correspond to all points on the line, 

with no “holes” or “gaps.” The rationals, in contrast, omit points such as 22 and p, and 

the integers even leave out fractions like 1 >2. The reals, having the completeness property, 

omit no points.

What exactly do we mean by this vague idea of missing holes? To answer this we 

must give a more precise description of completeness. A number M is an upper bound for 

a set of numbers if all numbers in the set are smaller than or equal to M. M is a least upper 

bound if it is the smallest upper bound. For example, M = 2 is an upper bound for the 

negative numbers. So is M = 1, showing that 2 is not a least upper bound. The least upper 

bound for the set of negative numbers is M = 0. We define a complete ordered field to be 

one in which every nonempty set bounded above has a least upper bound.

If we work with just the rational numbers, the set of numbers less than 22 is 

bounded, but it does not have a rational least upper bound, since any rational upper bound 

M can be replaced by a slightly smaller rational number that is still larger than 22. So the 

rationals are not complete. In the real numbers, a set that is bounded above always has a 

least upper bound. The reals are a complete ordered field.

The completeness property is at the heart of many results in calculus. One example 

occurs when searching for a maximum value for a function on a closed interval 3a, b4 , as 

in Section 4.1. The function y = x - x3 has a maximum value on 30, 14  at the point x 

satisfying 1 - 3x2 = 0, or x = 21>3. If we limited our consideration to functions 

defined only on rational numbers, we would have to conclude that the function has no 

maximum, since 21>3 is irrational (Figure A.24). The Extreme Value Theorem  

(Section 4.1), which implies that continuous functions on closed intervals 3a, b4  have a 

maximum value, is not true for functions defined only on the rationals.

The Intermediate Value Theorem implies that a continuous function ƒ on an interval 3a, b4  with ƒ(a) 6 0 and ƒ(b) 7 0 must be zero somewhere in 3a, b4 . The function 

values cannot jump from negative to positive without there being some point x in 3a, b4  
where ƒ(x) = 0. The Intermediate Value Theorem also relies on the completeness of the 

real numbers and is false for continuous functions defined only on the rationals. The func-

tion ƒ(x) = 3x2 - 1 has ƒ(0) = -1 and ƒ(1) = 2, but if we consider ƒ only on the ratio-

nal numbers, it never equals zero. The only value of x for which ƒ(x) = 0 is x = 21>3, 

an irrational number.

We have captured the desired properties of the reals by saying that the real numbers 

are a complete ordered field. But we’re not quite finished. Greek mathematicians in the 

0.1 0.3 0.5 0.7 0.9 1

0.1

0.3

0.5

"1�3

y = x − x3

y

x

FIGURE A.24 The maximum value  

of y = x - x3 on 30, 14  occurs at the 

irrational number x = 21>3.
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school of Pythagoras tried to impose another property on the numbers of the real line, the 

condition that all numbers are ratios of integers. They learned that their effort was doomed 

when they discovered irrational numbers such as 22. How do we know that our efforts to 

specify the real numbers are not also flawed, for some unseen reason? The artist Escher 

drew optical illusions of spiral staircases that went up and up until they rejoined them-

selves at the bottom. An engineer trying to build such a staircase would find that no struc-

ture realized the plans the architect had drawn. Could it be that our design for the reals 

contains some subtle contradiction, and that no construction of such a number system can 

be made?

We resolve this issue by giving a specific description of the real numbers and verify-

ing that the algebraic, order, and completeness properties are satisfied in this model. This 

is called a construction of the reals, and just as stairs can be built with wood, stone, or 

steel, there are several approaches to constructing the reals. One construction treats the 

reals as all the infinite decimals,

a.d1d2d3d4 c
In this approach a real number is an integer a followed by a sequence of decimal digits 

d1, d2, d3 , c, each between 0 and 9. This sequence may stop, or repeat in a periodic pat-

tern, or keep going forever with no pattern. In this form, 2.00, 0.3333333 c and 

3.1415926535898 c represent three familiar real numbers. The real meaning of the dots 

“. . .” following these digits requires development of the theory of sequences and series, as 

in Chapter 10. Each real number is constructed as the limit of a sequence of rational numbers 

given by its finite decimal approximations. An infinite decimal is then the same as a series

a +
d1

10
+

d2

100
+ g.

This decimal construction of the real numbers is not entirely straightforward. It’s easy 

enough to check that it gives numbers that satisfy the completeness and order properties, 

but verifying the algebraic properties is rather involved. Even adding or multiplying two 

numbers requires an infinite number of operations. Making sense of division requires a 

careful argument involving limits of rational approximations to infinite decimals.

A different approach was taken by Richard Dedekind (1831–1916), a German mathe-

matician, who gave the first rigorous construction of the real numbers in 1872. Given any 

real number x, we can divide the rational numbers into two sets: those less than or equal to 

x and those greater. Dedekind cleverly reversed this reasoning and defined a real number 

to be a division of the rational numbers into two such sets. This seems like a strange 

approach, but such indirect methods of constructing new structures from old are powerful 

tools in theoretical mathematics.

These and other approaches can be used to construct a system of numbers having the 

desired algebraic, order, and completeness properties. A final issue that arises is whether 

all the constructions give the same thing. Is it possible that different constructions result in 

different number systems satisfying all the required properties? If yes, which of these is 

the real numbers? Fortunately, the answer turns out to be no. The reals are the only number 

system satisfying the algebraic, order, and completeness properties.

Confusion about the nature of the numbers and about limits caused considerable con-

troversy in the early development of calculus. Calculus pioneers such as Newton, Leibniz, 

and their successors, when looking at what happens to the difference quotient

∆y

∆x
=

ƒ(x + ∆x) - ƒ(x)

∆x

as each of ∆y and ∆x approach zero, talked about the resulting derivative being a quotient 

of two infinitely small quantities. These “infinitesimals,” written dx and dy, were thought 

to be some new kind of number, smaller than any fixed number but not zero. Similarly, a 

definite integral was thought of as a sum of an infinite number of infinitesimals

ƒ(x) # dx
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as x varied over a closed interval. While the approximating difference quotients ∆y>∆x 

were understood much as today, it was the quotient of infinitesimal quantities, rather than 

a limit, that was thought to encapsulate the meaning of the derivative. This way of think-

ing led to logical difficulties, as attempted definitions and manipulations of infinitesimals 

ran into contradictions and inconsistencies. The more concrete and computable differ-

ence quotients did not cause such trouble, but they were thought of merely as useful cal-

culation tools. Difference quotients were used to work out the numerical value of the 

derivative and to derive general formulas for calculation, but were not considered to be at 

the heart of the question of what the derivative actually was. Today we realize that the 

logical problems associated with infinitesimals can be avoided by defining the derivative 

to be the limit of its approximating difference quotients. The ambiguities of the old 

approach are no longer present, and in the standard theory of calculus, infinitesimals are 

neither needed nor used.

A.7 Complex Numbers

Complex numbers are expressed in the form a + ib, or a + bi, where a and b are real 

numbers and i is a symbol for 2-1. Unfortunately, the words “real” and “imaginary” 

have connotations that somehow place 2-1 in a less favorable position in our minds than 

22. As a matter of fact, a good deal of imagination, in the sense of inventiveness, has 

been required to construct the real number system, which forms the basis of calculus (see 

 Appendix 6). In this appendix we review the various stages of these inventions. 

The Hierarchy of Numbers

The irst stage of number development was the recognition of the counting numbers  

1, 2, 3, . . . , which we now call the natural numbers or the positive integers. Certain 

arithmetical operations on the positive integers, such as addition and multiplication, keep 

us entirely within this system. That is, if m and n are any positive integers, then their sum 

m + n and product mn are also positive integers.

Some equations can be solved entirely within the system of positive integers. For 

example, we can solve 3 + x = 7 using only positive integers. But other simple equa-

tions, such as 7 + x = 3, cannot be solved if positive integers are the only numbers at our 

disposal. The number zero and the negative numbers were invented to solve equations 

such as 7 + x = 3. Using the integers

c , -3, -2, -1, 0, 1, 2, 3, c ,

we can always find the missing integer x that solves the equation m + x = p when we are 

given the other two integers m and p in the equation.

Addition and multiplication of integers always keep us within the system of integers. 

However, division does not, and so fractions m>n, where m and n are integers with n non-

zero, were invented. This system, which is called the rational numbers, is rich enough to 

perform all of the rational operations of arithmetic, including addition, subtraction, mul-

tiplication, and division (although division by zero is excluded since it is meaningless).

Yet there are still simple polynomial equations that cannot be solved within the sys-

tem of rational numbers. The ancient Greeks realized that there is no rational number that 

solves the equation x2 = 2, even though the Pythagorean Theorem implies that the length 

x of the diagonal of the unit square satisfies this equation! (See Figure A.25.) To see why 

x2 = 2 has no rational solution, consider the following argument.

1

1"2

FIGURE A.25 The diagonal of the unit 

square has irrational length.
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Suppose that there did exist some integers p and q with no common factor other than 1 

such that the fraction x = p>q satisfied x2 = 2. Writing this out, we see that p2>q2 = 2,  

and therefore

p2 = 2q2.

Thus p2 is an even integer. Since the square of an odd number is odd, we conclude that p 

itself must be an even number (for if p were odd, then p2 would also be odd). Hence p is 

divisible by 2, and therefore p = 2k for some integer k. Hence p2 = 4k2. Since we 

already saw that p2 = 2q2, it follows that 2q2 = p2 = 4k2, and therefore

q2 = 2k2.

Hence q2 is an even number. This requires that q itself be even. Therefore, both p and q are 

divisible by 2, which is contrary to our assumption that they contain no common factors 

other than 1. Since we have arrived at a contradiction, there cannot exist any such integers 

p and q, and therefore there is no rational number that solves the equation x2 = 2.

The invention of real numbers addressed this issue (and others). Using real numbers, we 

can represent every possible physical length. As we saw in Appendix A.6, each real number 

can be represented as an infinite decimal a.d1d2d3d4 . . . , where a is an integer followed by a 

sequence of decimal digits each between 0 and 9. If the sequence stops or repeats in a periodic 

pattern, then the decimal represents a rational number. An irrational number is represented by 

a nonterminating and nonrepeating decimal. The rational and irrational numbers together 

make up the real number system. Unlike the rational numbers, the real numbers have the com-

pleteness property, meaning that there are no “holes” or “gaps” in the real line. Yet for all of 

its utility, there are still simple equations that cannot be solved within the real number system 

alone. For example, the polynomial equation x2 + 1 = 0 has no real solutions.

The Complex Numbers

We have discussed three invented systems of numbers that form a hierarchy in which each 

system contains the previous system. Each system is richer than its predecessor in that it 

permits additional operations to be performed without going outside the system.

1. Using the integer system we can solve all equations of the form

 x + a = 0, (1)

where a is an integer.

2. Using the rational numbers we can solve all equations of the form

 ax + b = 0, (2)

provided that a and b are rational numbers and a ≠ 0.

3. Using the real numbers, we can solve all of Equations (1) and (2) and, in addition, all 

quadratic equations

 ax2 + bx + c = 0 provided that a ≠ 0 and b2 - 4ac Ú 0. (3)

The quadratic formula

 x =
-b { 2b2 - 4ac

2a
 (4)

gives the solutions to Equation (3). When b2 - 4ac is negative there are no real number 

solutions to the equation ax2 + bx + c = 0. In particular, the simple quadratic equation 

x2 + 1 = 0 cannot be solved using any of the three invented systems of numbers that we 

have discussed.

Thus we come to the fourth invented system, which is the set of complex numbers 

a + ib. The symbol i represents a new number whose square equals -1. We call a the real 

part and b the imaginary part of the complex number a + ib. Sometimes it is convenient 

to write a + bi instead of a + ib; both notations describe the same complex number.
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We define equality and addition for complex numbers in the following way.

Equality a + ib = c + id 

 if and only if

 a = c and b = d   

Two complex numbers a + ib 

and  c + id  are equal if and only 

if their real parts are equal and 

their imaginary parts are equal.

Addition (a + ib) + (c + id )

 = (a + c) + i(b + d ) 

We sum the real parts and  
separately sum the imaginary 
parts.

To multiply two complex numbers, we multiply using the distributive rule and then 

simplify using i2 = -1:

Multiplication  (a + ib)( c + id )

  = ac + iad + ibc + i2bd

  = (ac - bd) + i(ad + bc)  i2 = -1.

The set of all complex numbers a + i0, where the second number b is zero, has all of 

the properties of the set of real numbers. For example, addition and multiplication as com-

plex numbers give

(a + i0) + (c + i0) = (a + c) + i0,  (a + i0)(c + i0) = ac + i0,

which are numbers of the same type with imaginary part zero. We usually just write a 

instead of a + i0, and in this sense the real number system is “embedded” into the com-

plex number system.

If we multiply a “real number” a = a + i0 by a complex number c + id , we get 

a(c + id ) = (a + i0)(c + id ) = ac + iad . In particular, the number 0 = 0 + i0 plays 

the role of zero in the complex number system, and the complex number 1 = 1 + i0 

plays the role of unity, or one, in the complex number system.

The complex number i = 0 + i1, which has real part zero and imaginary part one, 

has the property that its square is

i2 = (0 + i1)2 = (0 + i1)(0 + i1) = (-1) + i0 = -1.

Thus x = i is a solution to the quadratic equation x2 + 1 = 0. Using the complex num-

ber system, there are exactly two solutions to this equation, the other solution being 

x = - i = 0 + i(-1).

We can divide any two complex numbers as long as we do not divide by the number 

0 = 0 + i0. As long as a + ib ≠ 0 (meaning that either a ≠ 0 or b ≠ 0 or both a ≠ 0 

and b ≠ 0), we carry out division as follows:

c + id

a + ib
=

(c + id )(a - ib)

(a + ib)(a - ib)
=

(ac + bd ) + i(ad - bc)

a2 + b2
=

ac + bd

a2 + b2
+ i 

ad - bc

a2 + b2
.

Note that a2 + b2 ≠ 0 since we stipulated that a and b cannot both be zero.

The number a - ib that is used as the multiplier to clear the i from the denominator is 

called the complex conjugate of a + ib. If we denote the original complex number by 

z = a + ib, then it is customary to write z (read “z bar”) to denote its complex conjugate:

z = a + ib,  z = a - ib.

Multiplying the numerator and denominator of a fraction (c + id )>(a + ib) by the com-

plex conjugate of the denominator will always replace the denominator by a real number.

EXAMPLE 1  We give some illustrations of the arithmetic operations with complex 

numbers.

(a) (2 + 3i) + (6 - 2i) = (2 + 6) + (3 - 2)i = 8 + i

(b) (2 + 3i) - (6 - 2i) = (2 - 6) + (3 - (-2))i = -4 + 5i

(c)  (2 + 3i)(6 - 2i) = (2)(6) + (2)(-2i) + (3i)(6) + (3i)(-2i)

 = 12 - 4i + 18i - 6i2 = 12 + 14i + 6 = 18 + 14i
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(d) 
2 + 3i

6 - 2i
=

2 + 3i

6 - 2i
 
6 + 2i

6 + 2i
=

12 + 4i + 18i + 6i2

36 + 12i - 12i - 4i2
=

6 + 22i

40
=

3
20

+
11
20

 i 

Argand Diagrams

There are two geometric representations of the complex number z = x + iy:

1. as the point P(x, y) in the xy-plane

2. as the vector 
r
OP from the origin to P.

In each representation, the x-axis is called the real axis and the y-axis is the imaginary 

axis. Both representations are Argand diagrams for x + iy (Figure A.26).

In terms of the polar coordinates of x and y, we have

x = r cos u,  y = r sin u,

and

 z = x + iy = r(cos u + i sin u). (5)

We define the absolute value of a complex number x + iy to be the length r of a vector 
r
OP from the origin to P(x, y). We denote the absolute value by vertical bars; thus,0 x + iy 0 = 2x2 + y2.

If we always choose the polar coordinates r and u so that r is nonnegative, then

r = 0 x + iy 0 .
The polar angle u is called the argument of z and is written u = arg z. Of course, any 

integer multiple of 2p may be added to u to produce another appropriate angle.

The following equation gives a useful formula connecting a complex number z, its 

conjugate z, and its absolute value 0 z 0 :
z # z = 0 z 0 2.

Euler’s Formula

The identity

 eiu = cos u + i sin u, (6)

is called Euler’s formula. We show an Argand diagram for eiu in Figure A.27. Using 

Equation (6), we can write Equation (5) as

z = reiu.

This formula, in turn, leads to the following rules for calculating products, quotients, pow-

ers, and roots of complex numbers.

x

y

O

r
y

x

P(x, y)

u

FIGURE A.26 This Argand diagram 

represents z = x + iy both as a point  

P(x, y) and as a vector 
r
OP.

x x

y y

uu = arg z
r = 1

O O

eiu = cos u + i sin u eiu = cos u + i sin u

(cos u, sin u)

(a) (b)

FIGURE A.27 Argand diagrams for eiu = cos u + i sin u (a) as a 

vector and (b) as a point.

The notation exp (A) is also used for eA.
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EXAMPLE 2  Let z1 = 1 + i, z2 = 23 - i. We plot these complex numbers in an 

Argand diagram (Figure A.29) from which we read off the polar representations

z1 = 22eip>4,  z2 = 2e-ip>6.
Then

 z1 z2 = 222 expaip
4

-
ip
6
b = 222 expaip

12
b

  = 222 acos 
p
12

+ i sin 
p
12
b ≈ 2.73 + 0.73i. 

Quotients

Suppose r2 ≠ 0 in Equation (7). Then

z1

z2
=

r1 eiu1

r2 eiu2
=

r1

r2
 ei(u1 -  u2).

Hence 2 z1

z2
2 =

r1

r2
=
0 z1 00 z2 0 and argaz1

z2
b = u1 - u2 = arg z1 - arg z2 .

That is, we divide lengths and subtract angles for the quotient of complex numbers.

Products

To multiply two complex numbers, we multiply their absolute values and add their angles. 

To see why, let

 z1 = r1 eiu1,  z2 = r2 eiu2, (7)

so that 0 z1 0 = r1,  arg z1 = u1;  0 z2 0 = r2 ,  arg z2 = u2 .

Then

z1 z2 = r1 eiu1 # r2 eiu2 = r1 r2 ei(u1 +u2)

and hence 0 z1 z2 0 = r1 r2 = 0 z1 0 # 0 z2 0
 arg (z1 z2) = u1 + u2 = arg z1 + arg z2. (8)

Thus, the product of two complex numbers is represented by a vector whose length is the 

product of the lengths of the two factors and whose argument is the sum of their arguments 

(Figure A.28). In particular, from Equation (8) a vector may be rotated counterclockwise 

through an angle u by multiplying it by eiu. Multiplication by i rotates 90°, by -1 rotates 

180°, by - i rotates 270°, and so on.

x

y

O

u1

u2

u1

z1z2

r1r2

r2
r1

z1

z2

FIGURE A.28 When z1 and z2 are  

multiplied, 0 z1  z2 0 = r1
# r2 and  

arg (z1  z2) = u1 + u2.

0

1

−1

x

y

"2

"3 − 1

1 + "3  

2"2

2
1

z1z2

z1 = 1 + i

z2 = "3 − i

p
4 p

12

p
6

−

FIGURE A.29 To multiply two complex 

numbers, multiply their absolute values 

and add their arguments.

EXAMPLE 3  Let z1 = 1 + i and z2 = 23 - i, as in Example 2. Then

 
1 + i

23 - i
=
22eip>4
2e-ip>6 =

22
2

 e5pi>12 ≈ 0.707 acos 
5p
12

+ i sin 
5p
12
b

  ≈ 0.183 + 0.683i.  
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Powers

If n is a positive integer, we may apply the product formulas in Equation (8) to ind

zn = z # z # g # z .  n factors

With z = reiu, we obtain

 zn = (reiu)n = rnei(u+u+g+u)  n summands

 = rneinu.  (9)

The length r = 0 z 0  is raised to the nth power and the angle u = arg z is multiplied by n.

If we take r = 1 in Equation (9), we obtain De Moivre’s Theorem.

De Moivre’s Theorem

 (cos u + i sin u)n = cos nu + i sin nu. (10)

If we expand the left side of De Moivre’s equation above by the Binomial Theorem 

and reduce it to the form a + ib, we obtain formulas for cos nu and sin nu as polynomials 

of degree n in cos u and sin u.

EXAMPLE 4  If n = 3 in Equation (10), we have

(cos u + i sin u)3 = cos 3u + i sin 3u.

The left side of this equation expands to

cos3 u + 3i cos2 u sin u - 3 cos u sin2 u - i sin3 u.

The real part of this must equal cos 3u and the imaginary part must equal sin 3u. There-

fore,

 cos 3u = cos3 u - 3 cos u sin2 u, 

  sin 3u = 3 cos2 u sin u - sin3 u.  

Roots

If z = reiu is a complex number diferent from zero and n is a positive integer, then there 

are precisely n diferent complex numbers w0, w1, c, wn - 1, that are nth roots of z. To see 

why, let w = reia be an nth root of z = reiu. Then

wn = z

or

rneina = reiu.

Since both r and rn are positive, this implies that rn = r, and so

r = 2n r

is the real, positive nth root of r. For the argument, although we cannot say that na and u 

must be equal, we can say that they may differ only by an integer multiple of 2p. That is,

na = u + 2kp,    k = 0, {1, {2, c.

Therefore,

a =
u
n + k 

2p
n .
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Hence, all the nth roots of z = reiu are given by

 2n reiu = 2n r exp iaun + k 
2p
n b ,    k = 0, {1, {2, c. (11)

There might appear to be infinitely many different answers corresponding to the infi-

nitely many possible values of k, but k = n + m gives the same answer as k = m in 

Equation (11). Thus, we need only take n consecutive values for k to obtain all the differ-

ent nth roots of z. For convenience, we take

k = 0, 1, 2, c, n - 1.

All the nth roots of reiu lie on a circle centered at the origin and having radius equal to 

the real, positive nth root of r. One of them has argument a = u>n. The others are uni-

formly spaced around the circle, each being separated from its neighbors by an angle 

equal to 2p>n. Figure A.30 illustrates the placement of the three cube roots, w0 , w1 , w2 , 

of the complex number z = reiu.

x

y

O

r

w2

w1

w0

2p
3

2p
3

2p
3

r1�3

z = reiu

u

u
3

FIGURE A.30 The three cube roots of 

z = reiu.

2

x

y

−16

w0

w3
w2

w1

p
4

p
2

p
2

p
2

p
2

FIGURE A.31 The four fourth roots of 

-16.

EXAMPLE 5  Find the four fourth roots of -16.

Solution As our first step, we plot the number -16 in an Argand diagram (Figure A.31) 

and determine its polar representation reiu. Here, z = -16, r = +16, and u = p. One of 

the fourth roots of 16eip is 2eip>4. We obtain others by successive additions of 2p>4 = p>2 

to the argument of this first one. Hence,

24 16 exp ip = 2 exp iap
4

, 
3p
4

, 
5p
4

, 
7p
4
b ,

and the four roots are

 w0 = 2 c cos 
p
4

+ i sin 
p
4
d = 22 (1 + i)

 w1 = 2 c cos 
3p
4

+ i sin 
3p
4
d = 22 (-1 + i)

 w2 = 2 c cos 
5p
4

+ i sin 
5p
4
d = 22 (-1 - i)

  w3 = 2 c cos 
7p
4

+ i sin 
7p
4
d = 22 (1 - i).  

The Fundamental Theorem of Algebra

One might say that the invention of 2-1 is all well and good and leads to a number sys-

tem that is richer than the real number system alone; but where will this process end? Are 

we also going to invent still more systems so as to obtain 24 -1, 26 -1, and so on? But it 

turns out this is not necessary. These numbers are already expressible in terms of the com-

plex number system a + ib. In fact, the Fundamental Theorem of Algebra says that with 

the introduction of the complex numbers we now have enough numbers to factor every 

polynomial into a product of linear factors and so enough numbers to solve every possible 

polynomial equation.
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A proof of this theorem can be found in most texts on the theory of functions of a complex 

variable.

The Fundamental Theorem of Algebra

Every polynomial equation of the form

an zn + an - 1 zn - 1 + g + a1 z + a0 = 0,

in which the coefficients a0, a1, c, an are any complex numbers, whose degree 

n is greater than or equal to one, and whose leading coefficient an is not zero, has 

exactly n roots in the complex number system, provided each multiple root of 

multiplicity m is counted as m roots.

Operations with Complex Numbers

 1. Find the following products of complex numbers  

a. (2 + 3i)(4 - 2i) b. (2 - i)(-2 - 3i)

c. (-1 - 2i)(2 + i)

 2. Solve the following equations for the real numbers, x and y.

a. (3 + 4i)2 - 2(x - iy) = x + iy

b. a1 + i

1 - i
b2

+
1

x + iy
= 1 + i

c. (3 - 2i)(x + iy) = 2(x - 2iy) + 2i - 1

Graphing and Geometry

 3. How may the following complex numbers be obtained from 

z = x + iy geometrically? Sketch.

a. z b. (-z)

c. -z d. 1 > z
 4. Show that the distance between the two points z1 and z2 in an 

Argand diagram is 0 z1 - z2 0 .
In Exercises 5–10, graph the points z = x + iy that satisfy the given 

conditions.

 5. a. 0 z 0 = 2 b. 0 z 0 6 2 c. 0 z 0 7 2

 6. 0 z - 1 0 = 2 7. 0 z + 1 0 = 1

 8. 0 z + 1 0 = 0 z - 1 0  9. 0 z + i 0 = 0 z - 1 0
 10. 0 z + 1 0 Ú 0 z 0
Express the complex numbers in Exercises 11–14 in the form reiu, 

with r Ú 0 and -p 6 u … p. Draw an Argand diagram for each 

calculation.

 11. 11 + 2-3 22 12. 
1 + i

1 - i

 13. 
1 + i23

1 - i23
 14. (2 + 3i)(1 - 2i)

Powers and Roots

Use De Moivre’s Theorem to express the trigonometric functions in 

Exercises 15 and 16 in terms of cos u and sin u.

 15. cos 4u 16. sin 4u

 17. Find the three cube roots of 1.

 18. Find the two square roots of i.

 19. Find the three cube roots of -8i.

 20. Find the six sixth roots of 64.

 21. Find the four solutions of the equation z4 - 2z2 + 4 = 0.

 22. Find the six solutions of the equation z6 + 2z3 + 2 = 0.

 23. Find all solutions of the equation x4 + 4x2 + 16 = 0.

 24. Solve the equation x4 + 1 = 0.

Theory and Examples

 25. Complex numbers and vectors in the plane Show with an 

Argand diagram that the law for adding complex numbers is the 

same as the parallelogram law for adding vectors.

 26. Complex arithmetic with conjugates Show that the conjugate 

of the sum (product, or quotient) of two complex numbers, z1 and 

z2 , is the same as the sum (product, or quotient) of their conju-

gates.

 27. Complex roots of polynomials with real coeicients come in 

complex-conjugate pairs

a. Extend the results of Exercise 26 to show that ƒ(z) = ƒ(z) 

when

ƒ(z) = an  zn + an - 1  zn - 1 + g + a1  z + a0

is a polynomial with real coeicients a0, c, an .

b. If z is a root of the equation ƒ(z) = 0, where ƒ(z) is a 

polynomial with real coeicients as in part (a), show that 

the conjugate z is also a root of the equation. (Hint: Let 

ƒ(z) = u + iy = 0; then both u and y are zero. Use the fact 

that ƒ(z) = ƒ(z) = u - iy.)

EXERCISES A.7
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 28. Absolute value of a conjugate Show that 0 z 0 = 0 z 0 .
 29. When z = z If z and z are equal, what can you say about the 

location of the point z in the complex plane?

 30. Real and imaginary parts Let Re(z) denote the real part of z 

and Im(z) the imaginary part. Show that the following relations 

hold for any complex numbers z, z1, and z2.

a. z + z = 2Re(z)

b. z - z = 2iIm(z)

c. 0Re(z) 0 … 0 z 0
d. 0 z1 + z2 0 2 = 0 z1 0 2 + 0 z2 0 2 + 2Re(z1z2)

e. 0 z1 + z2 0 … 0 z1 0 + 0 z2 0
A.8 The Distributive Law for Vector Cross Products

In this appendix we prove the Distributive Law

u * (v + w) = u * v + u * w,

which is Property 2 in Section 12.4.

Proof  To derive the Distributive Law, we construct u * v a new way. We draw u 
and v from the common point O and construct a plane M perpendicular to u at O (Figure 
A.32). We then project v orthogonally onto M, yielding a vector v′ with length 0 v 0 sin u. 
We rotate v′ 90° about u in the positive sense to produce a vector v″. Finally, we multiply 
v″ by the length of u. The resulting vector 0 u 0 v″ is equal to u * v since v″ has the same 
direction as u * v by its construction (Figure A.32) and0 u 0 0 v″ 0 = 0 u 0 0 v′ 0 = 0 u 0 0 v 0 sin u = 0 u * v 0 .

M

M′

u

v″

90°

v

v′

O u × v

u

u

FIGURE A.32 As explained in the text, u * v = 0 u 0 v″. 
(The primes used here are purely notational and do not denote 

derivatives.)

Now each of these three operations, namely,

1. projection onto M

2. rotation about u through 90°

3. multiplication by the scalar 0 u 0
when applied to a triangle whose plane is not parallel to u, will produce another triangle. If 

we start with the triangle whose sides are v, w, and v + w (Figure A.33) and apply these 

three steps, we successively obtain the following:

1. A triangle whose sides are v′, w′, and (v + w)′ satisfying the vector equation

v′ + w′ = (v + w)′

2. A triangle whose sides are v″, w″, and (v + w)″ satisfying the vector equation

v″ + w″ = (v + w)″

(The double prime on each vector has the same meaning as in Figure A.32.)
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3. A triangle whose sides are 0 u 0 v″, 0 u 0w″, and 0 u 0 (v + w)″ satisfying the vector 

 equation 0 u 0 v″ + 0 u 0w″ = 0 u 0 (v + w)″.

Substituting 0 u 0 v″ = u * v, 0 u 0w″ = u * w, and 0 u 0 (v + w)″ = u * (v + w) 

from our discussion above into this last equation gives

u * v + u * w = u * (v + w),

which is the law we wanted to establish. 

M

u
w

v

v′w′

(v + w)′

v + w

FIGURE A.33 The vectors, v, w, v + w, and their projec-

tions onto a plane perpendicular to u.

A.9 The Mixed Derivative Theorem and the Increment Theorem

This appendix derives the Mixed Derivative Theorem (Theorem 2, Section 14.3) and the 

Increment Theorem for Functions of Two Variables (Theorem 3, Section 14.3). Euler irst 

published the Mixed Derivative Theorem in 1734, in a series of papers he wrote on hydro-

dynamics.

THEOREM 2—The Mixed Derivative Theorem

If ƒ(x, y) and its partial derivatives ƒx , ƒy , ƒxy , and ƒyx are deined throughout an 

open region containing a point (a, b) and are all continuous at (a, b), then

ƒxy(a, b) = ƒyx(a, b).

Proof  The equality of ƒxy(a, b) and ƒyx(a, b) can be established by four applications 
of the Mean Value Theorem (Theorem 4, Section 4.2). By hypothesis, the point (a, b) 
lies in the interior of a rectangle R in the xy-plane on which ƒ, ƒx , ƒy , ƒxy , and ƒyx are all 
deined. We let h and k be the numbers such that the point (a + h, b + k) also lies in R, 
and we consider the diference

 ∆ = F(a + h) - F(a), (1)

where

 F(x) = ƒ(x, b + k) - ƒ(x, b). (2)

We apply the Mean Value Theorem to F, which is continuous because it is diferentiable. 

Then Equation (1) becomes

 ∆ = hF′(c1), (3)
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where c1 lies between a and a + h. From Equation (2),

F′(x) = ƒx(x, b + k) - ƒx(x, b),

so Equation (3) becomes

 ∆ = h[ƒx(c1, b + k) - ƒx(c1, b)]. (4)

Now we apply the Mean Value Theorem to the function g(y) = fx(c1, y) and have

g(b + k) - g(b) = kg′(d1),

or

ƒx(c1, b + k) - ƒx(c1, b) = kƒxy(c1, d1)

for some d1 between b and b + k. By substituting this into Equation (4), we get

 ∆ = hkƒxy(c1, d1) (5)

for some point (c1, d1) in the rectangle R′ whose vertices are the four points (a, b), 

(a + h, b), (a + h, b + k), and (a, b + k). (See Figure A.34.)

By substituting from Equation (2) into Equation (1), we may also write

 ∆ = ƒ(a + h, b + k) - ƒ(a + h, b) - ƒ(a, b + k) + ƒ(a, b)

 = 3ƒ(a + h, b + k) - ƒ(a, b + k)4 - 3ƒ(a + h, b) - ƒ(a, b)4
  = f(b + k) - f(b),  (6)

where

 f( y) = ƒ(a + h, y) - ƒ(a, y). (7)

The Mean Value Theorem applied to Equation (6) now gives

 ∆ = kf′(d2) (8)

for some d2 between b and b + k. By Equation (7),

 f′(y) = ƒy(a + h, y) - ƒy(a, y). (9)

Substituting from Equation (9) into Equation (8) gives

∆ = k 3ƒy(a + h, d2) - ƒy(a, d2)4 .
Finally, we apply the Mean Value Theorem to the expression in brackets and get

 ∆ = khƒyx(c2, d2) (10)

for some c2 between a and a + h.

Together, Equations (5) and (10) show that

 ƒxy(c1, d1) = ƒyx(c2 , d2), (11)

where (c1, d1) and (c2, d2) both lie in the rectangle R′ (Figure A.34). Equation (11) is 

not quite the result we want, since it says only that ƒxy has the same value at (c1, d1) 

that ƒyx has at (c2, d2). The numbers h and k in our discussion, however, may be made as 

small as we wish. The hypothesis that ƒxy and ƒyx are both continuous at (a, b) means that 

ƒxy(c1, d1) = ƒxy(a, b) + e1 and ƒyx(c2 , d2) = ƒyx(a, b) + e2 , where each of e1 , e2 S 0 as 

both h, k S 0. Hence, if we let h and k S 0, we have ƒxy(a, b) = ƒyx(a, b). 

The equality of ƒxy(a, b) and ƒyx(a, b) can be proved with hypotheses weaker than the 

ones we assumed. For example, it is enough for ƒ, ƒx , and ƒy to exist in R and for ƒxy to be 

continuous at (a, b). Then ƒyx will exist at (a, b) and equal ƒxy at that point.

x

y

R

0

h

k R′

(a, b)

FIGURE A.34 The key to proving 

fxy(a, b) = fyx(a, b) is that no matter how 

small R′ is, fxy and fyx take on equal 

values somewhere inside R′ (although not 

necessarily at the same point).
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Proof  We work within a rectangle T centered at A(x0, y0) and lying within R, and 
we assume that ∆x and ∆y are already so small that the line segment joining A to 
B(x0 + ∆x, y0) and the line segment joining B to C(x0 + ∆x, y0 + ∆y) lie in the interior 
of T (Figure A.35).

We may think of ∆z as the sum ∆z = ∆z1 + ∆z2 of two increments, where

∆z1 = ƒ(x0 + ∆x, y0) - ƒ(x0 , y0)

is the change in the value of ƒ from A to B and

∆z2 = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 + ∆x, y0)

is the change in the value of ƒ from B to C (Figure A.36).

On the closed interval of x-values joining x0 to x0 + ∆x, the function F(x) = ƒ(x, y0) 

is a diferentiable (and hence continuous) function of x, with derivative

F′(x) = fx(x, y0).

By the Mean Value Theorem (Theorem 4, Section 4.2), there is an x-value c between x0 

and x0 + ∆x at which

F(x0 + ∆x) - F(x0) = F′(c) ∆x

or

ƒ(x0 + ∆x, y0) - ƒ(x0 , y0) = fx(c, y0) ∆x

or

 ∆z1 = ƒx(c, y0) ∆x. (12)

Similarly, G(y) = ƒ(x0 + ∆x, y) is a diferentiable (and hence continuous) function of 

y on the closed y-interval joining y0 and y0 + ∆y, with derivative

G′( y) = ƒy(x0 + ∆x, y).

Hence, there is a y-value d between y0 and y0 + ∆y at which

G( y0 + ∆y) - G( y0) = G′(d ) ∆y

or

ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 + ∆x, y) = ƒy(x0 + ∆x, d ) ∆y

or

 ∆z2 = ƒy(x0 + ∆x, d ) ∆y. (13)

THEOREM 3—The Increment Theorem for Functions of Two Variables

Suppose that the irst partial derivatives of ƒ(x, y) are deined throughout an open 

region R containing the point (x0 , y0) and that ƒx and ƒy are continuous at (x0 , y0). 

Then the change

∆z = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0, y0)

in the value of ƒ that results from moving from (x0 , y0) to another point 

(x0 + ∆x, y0 + ∆y) in R satisies an equation of the form

∆z = ƒx(x0 , y0) ∆x + ƒy(x0 , y0) ∆y + e1∆x + e2∆y

in which each of e1, e2 S 0 as both ∆x, ∆y S 0.

T

C(x0 + Δx, y0 + Δy)

B(x0 + Δx, y0)

A(x0, y0)

FIGURE A.35 The rectangular region 

T in the proof of the Increment Theorem. 

The figure is drawn for ∆x and ∆y posi-

tive, but either increment might be zero or 

negative.
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Now, as both ∆x and ∆y S 0, we know that c S x0 and d S y0 . Therefore, since ƒx 

and fy are continuous at (x0 , y0), the quantities

 e1 = ƒx(c, y0) - ƒx(x0 , y0), 

  e2 = ƒy(x0 + ∆x, d) - ƒy(x0 , y0) (14)

both approach zero as both ∆x and ∆y S 0.

Finally,

 ∆z = ∆z1 + ∆z2

 = ƒx(c, y0)∆x + ƒy(x0 + ∆x, d )∆y   From Eqs. (12) and (13) 

From Eq. (14)

 

 = 3ƒx(x0 , y0) + e14∆x + 3ƒy(x0 , y0) + e24∆y

 = ƒx(x0 , y0)∆x + ƒy(x0 , y0)∆y + e1∆x + e2∆y, 

where both e1 and e2 S 0 as both ∆x and ∆y S 0, which is what we set out to prove. 

Analogous results hold for functions of any finite number of independent variables. 

Suppose that the first partial derivatives of w = ƒ(x, y, z) are defined throughout an open 

region containing the point (x0 , y0 , z0) and that ƒx , ƒy , and ƒz are continuous at (x0 , y0 , z0). 

Then

 ∆w = ƒ(x0 + ∆x, y0 + ∆y, z0 + ∆z) - ƒ(x0 , y0 , z0)

  = ƒx∆x + ƒy∆y + ƒz∆z + e1∆x + e2∆y + e3∆z,  (15)

where e1, e2, e3 S 0 as ∆x, ∆y, and ∆z S 0.

y

z

x

Q

P″

P′

Q′

S

B

0

y0

P0

y0 + Δy

(x0 + Δx, y0) C(x0 + Δx, y0 + Δy)

A(x0, y0)

z = f (x, y)

Δz 1

Δz 2

Δz

FIGURE A.36 Part of the surface z = ƒ(x, y) near P0(x0 , y0 , ƒ(x0 , y0)).  

The points P0, P′, and P″ have the same height z0 = ƒ(x0 , y0) above the xy-plane. 

The change in z is ∆z = P′S. The change

∆z1 = ƒ(x0 + ∆x, y0) - ƒ(x0 , y0),

shown as P″Q = P′Q′, is caused by changing x from x0 to x0 + ∆x while  

holding y equal to y0 . Then, with x held equal to x0 + ∆x,

∆z2 = ƒ(x0 + ∆x, y0 + ∆y) - ƒ(x0 + ∆x, y0)

is the change in z caused by changing y0 from y0 + ∆y, which is represented by 

Q′S. The total change in z is the sum of ∆z1 and ∆z2 .



 A.9  The Mixed Derivative Theorem and the Increment Theorem AP-39

The partial derivatives ƒx , ƒy , ƒz in Equation (15) are to be evaluated at the point 

(x0 , y0 , z0).

Equation (15) can be proved by treating ∆w as the sum of three increments,

  ∆w1 = ƒ(x0 + ∆x, y0 , z0) - ƒ(x0 , y0 , z0)  (16)

  ∆w2 = ƒ(x0 + ∆x, y0 + ∆y, z0) - ƒ(x0 + ∆x, y0 , z0)  (17)

  ∆w3 = ƒ(x0 + ∆x, y0 + ∆y, z0 + ∆z) - ƒ(x0 + ∆x, y0 + ∆y, z0), (18)

and applying the Mean Value Theorem to each of these separately. Two coordinates 

remain constant and only one varies in each of these partial increments ∆w1 , ∆w2 , ∆w3 . 

In Equation (17), for example, only y varies, since x is held equal to x0 + ∆x and z is held 

equal to z0. Since ƒ(x0 + ∆x, y, z0) is a continuous function of y with a derivative ƒy, it is 

subject to the Mean Value Theorem, and we have

∆w2 = ƒy(x0 + ∆x, y1, z0) ∆y

for some y1 between y0 and y0 + ∆y.

Appendices opening photo: Lebrecht Music and Arts Photo Library/Alamy Stock Photo.
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A-1

 29. (a) ƒ(x) = e x, 0 … x … 1

-x + 2, 1 6 x … 2

  (b) ƒ(x) = d 2, 0 … x 6 1

0, 1 … x 6 2

2, 2 … x 6 3

0, 3 … x … 4

 31. (a) ƒ(x) = c -x, -1 … x 6 0

1, 0 6 x … 1

-1
2 x + 3

2, 1 6 x 6 3

  (b) ƒ(x) = c 1
2 x, -2 … x … 0

-2x + 2, 0 6 x … 1

-1, 1 6 x … 3

 33. (a) 0 … x 6 1 (b) -1 6 x … 0  35. Yes

 37. Symmetric about the origin

- 2 2

- 2

2 y = - x
3

x

y

Dec. -q 6 x 6 q

Chapter 1

SECTION 1.1, pp. 11–13

 1. D: (-q, q), R: 31, q)  3. D: 3-2, q), R: 30, q)

 5. D: (-q, 3) ∪ (3, q), R: (-q, 0) ∪ (0, q)

 7. (a)  Not a function of x because some values of x have two  

values of y

  (b) A function of x because for every x there is only one possible y

 9. A =
23

4
 x2, p = 3x  

11. x =
d

23
, A = 2d2, V =

d3

323

 13. L =
220x2 - 20x + 25

4

 15. (-q, q) 17. (-q, q) 

  

- 4 - 2 2 4

- 4

- 2

2

4

6

x

y

f (x) = 5 - 2x

  

- 5 - 4- 3- 2 - 1 1 2 3 4 5

- 2

- 1

1

2

3

4

x

y

g(x) = Í 0 x 0

 19. (-q, 0) ∪ (0, q) 

- 4 - 3 - 2 - 1 1 2 3 4

- 2

1

2

t

y

F(t) =
t0 t 0

 21. (-q, -5) ∪ (-5, -34 ∪ 33, 5) ∪ (5, q)

 23. (a)  For each positive value of  

x, there are two values of y.

ANSWERS TO ODD-NUMBERED EXERCISES

(b) For each value of x ≠ 0,  

there are two values of y.

   

0 y 0 = x

x

y

0 2 4 6

2

- 2

- 4

4

 

y2 
= x2

x

y

- 1 1

1

- 1

25.   27.

1

1 20

2 - x,  1 6 x … 2

0 … x … 1x,
f (x) =

x

y  

y = x
2 

+ 2x

x

y

y = 4 - x
2

- 2 1

4

 39. Symmetric about the origin

1

- 1

1 2

- 1- 2

2

- 2

y = -
1
x

x

y

Inc. -q 6 x 6 0 and 

0 6 x 6 q

 41. Symmetric about the y-axis

2

2

40

4

y = Í 0 x 0

x

y

- 4 - 2

Dec. -q 6 x … 0;

Inc. 0 … x 6 q

 43. Symmetric about the origin

1

1 2

x3
––
8

y =

x

y

- 2 - 1

- 1

- 1>81>8

Inc. -q 6 x 6 q

 45. No symmetry

0

- 1

1

- 2

- 3

- 4

- 5

2 3

y = - x
3>2

x

y

Dec. 0 … x 6 q
 47. Even  49. Even  51. Odd  53. Even

 55. Neither  57. Neither  59. Odd  61. Even

 63. t = 180  65. s = 2.4  67. V = x(14 - 2x)(22 - 2x)

 69. (a) h (b) ƒ (c) g  71. (a) (-2, 0) ∪ (4, q)

 75. C = 5 (2 + 22 ) h



A-2 Chapter 1: Answers to Odd-Numbered Exercises

 39. 

2

0

4

y = 0 x  - 2 0

x

y

- 2 2 4 6

 41. 

0 1

1

2 5

2

3

y = 1 + Íx - 1

(1, 1)

x

y

43. 

0 1

1

- 1- 2- 3
x

y

y = (x + 1)
2>3

 45.

0

- 1

1
1

2- 2 - 1
x

y

y = 1 - x
2>3

47. 

0 1- 1 2 3

- 2

- 1

1

(1, - 1)

y =  Íx - 1 - 1
3

x

y  49. 

0

1

- 1

1 2 3

- 2

4

2

x

y

y =
1

x - 2

51. 

0

2

1

3

1

2 3- 3 - 2 - 1

y =    + 2 x
1

x

y  53. 

- 1 1

1

2

3

4

2 30

1
–––––––

(x - 1)
2

y =

x

y

55. 

- 1 1 2- 2

1

2

3

4

5

0
x

y

y =       + 1
1

x2

57. (a)  D : 30, 24 , R : 32, 34  (b) D : 30, 24 , R : 3-1, 04
  

1

10

2

3

2 3 4

y = f (x) + 2

x

y  

1

10 2

- 1

x

y

y = f (x) - 1

  (c) D : 30, 24 , R : 30, 24  (d) D : 30, 24 , R : 3-1, 04
  

1

10

2

2 3

y = 2 f (x)

x

y  

1

10 2

- 1

x

y

y = - f (x)

SECTION 1.2, pp. 18–21

 1. Dƒ : -q 6 x 6 q, Dg : x Ú 1, Rƒ : -q 6 y 6 q, 

Rg : y Ú 0, Dƒ + g = Dƒ #g = Dg, Rƒ + g : y Ú 1, Rƒ #g : y Ú 0

 3. Dƒ : -q 6 x 6 q, Dg : -q 6 x 6 q, Rƒ : y = 2, Rg : y Ú 1, 

Dƒ>g : -q 6 x 6 q, Rƒ>g : 0 6 y … 2, Dg>ƒ : -q 6 x 6 q, 

Rg>ƒ : y Ú 1>2
 5. (a) 2 (b) 22 (c) x2 + 2 (d) x2 + 10x + 22 (e) 5

  (f) -2 (g) x + 10 (h) x4 - 6x2 + 6

 7. 13 - 3x  9. A
5x + 1
4x + 1

 11. (a) ƒ(g(x)) (b) j(g(x)) (c) g(g(x)) (d) j(j(x))

  (e) g(h( ƒ(x))) (f) h(j(ƒ(x)))

 13.  g (x)  ƒ(x)  ( ƒ ∘ g)(x)

(a) x - 7  2x  2x - 7

(b) x + 2  3x  3x + 6

(c) x2 2x - 5 2x2 - 5

(d) 
x

x - 1
 

x

x - 1
 x

(e) 
1

x - 1
 1 +

1
x

 x

(f) 
1
x  

1
x

 x

 15. (a) 1 (b) 2 (c) -2 (d) 0 (e) -1 (f) 0

 17. (a) ƒ(g(x)) = A1
x + 1, g(ƒ(x)) =

1

2x + 1
 (b) Dƒ∘g = (-q, -14 ∪ (0, q), Dg∘ƒ = (-1, q)

  (c) Rƒ∘g = 30, 1) ∪ (1, q), Rg∘ƒ = (0, q)

 19. g (x) =
2x

x - 1
  21. V(t) = 4t2 - 8t + 6

 23. (a) y = - (x + 7)2 (b) y = - (x - 4)2

 25. (a) Position 4 (b) Position 1 (c) Position 2 (d) Position 3

 27. (x + 2)2 + (y + 3)2 = 49 29. y + 1 = (x + 1)3

  

0

x
2 

+ y
2 

= 49

(x + 2)
2 

+ (y + 3)
2 

= 49

(-2, -3)
x

y     

0

1

x

y
y + 1 = (x + 1)

3

y = x
3

- 2 - 1

- 1

- 2

1

 31. y = 2x + 0.81 33. y = 2x

  

1

2

0.9

y =  Íx +  0.81

y = Íx

x

y

- 0.81 1 4

   

7

- 7

y = 2x - 7

y = 2x

x

y

7>2

 35. y - 1 =
1

x - 1
 37.

  

0

1

- 1

- 1 2

2

1

y - 1 = 
1

x - 1

y - 1 = 
1

x - 1

y  = 
1
x

y =
1
x

x

y    

0

2

x

y

y = Íx + 4

- 4



 Chapter 1: Answers to Odd-Numbered Exercises A-3

SECTION 1.3, pp. 27–29

 1. (a) 8p m (b) 
55p

9
 m  3. 8.4 in.

 5. 

  (e) D : 3-2, 04 , R : 30, 14  (f) D : 31, 34 , R : 30, 14
  

1

0

2

y = f (x + 2)

- 1- 2
x

y  

1

10

2

2 3

y = f (x - 1)

x

y

  (g) D : 3-2, 04 , R : 30, 14  (h) D : 3-1, 14 , R : 30, 14
  

1

0

2

- 1- 2
x

y

y =  f (- x)

 

1

10- 1

2

y = - f (x + 1) + 1

x

y

 59. y = 3x2 - 3  61. y =
1
2

+
1

2x2
  63. y = 24x + 1

 65. y = B4 -
x2

4
  67. y = 1 - 27x3

 69. 

- 2 - 1 1 2 3 4

- 4

- 3

- 2

- 1

1

2

x

y

y = - Í2x + 1

 71. 

- 3 - 2 - 1 1 2 3 4 5

1

2

3

4

5

x

y

y = (x - 1)3 
+ 2

73. 

- 4 - 3 - 2 - 1 2 3 4
x

y

- 4

1

2

3

4

- 1

y =       - 1 
2x

1

 75. 

- 4 - 3 - 2 - 1 1 2 3 4

- 4

- 3

- 2

- 1

1

2

3

4

x

y

y = - Íx
3

77. 

- 2 - 1 1 2

- 1

2

3

x

y

y =  0 x 2 -  1 0

79. (a) Odd (b) Odd (c) Odd (d) Even (e) Even

  (f) Even (g) Even (h) Even (i) Odd

u -p -2p>3  0  p>2  3p>4
sin u  0  -  

23

2
 0  1  

1

22

cos u  -1  -  
1
2

 1  0 -  
1

22

tan u  0  23  0 UND  -1

cot u UND  
1

23
UND  0  -1

sec u  -1  -2  1 UND  -22

csc u UND  -  
2

23
UND  1  22

 7. cos x = -4>5, tan x = -3>4
 9. sin x = -  

28

3
, tan x = -28

 11. sin x = -  
1

25
, cos x = -  

2

25

 13. Period p 15. Period 2

  

1

- 1

y =  sin 2x

x

y

p

2
p

 

1

1

- 1

20

y = cos px

x

y

 17. Period 6 19. Period 2p

  

1

- 1

3 60

y = - sin
3
px

x

y  

1

- 1

0
x

y

y =  cos  x - 

p

2

p

2

p 2p

a      b

 21. Period 2p 23.  Period p>2, symmetric 

about the origin

  

1

0

2

x

y

y =  sin  x - + 1
p

4a     b

p

4
-  

p

4
3p
4

7p
4

 

1

- 1

0

2

- 2

s = cot 2t

t

s

p

2
-  

p

2

- p p
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 13. 3-2, 84  by 3-5, 104  15. 3-3, 34  by 30, 104

- 2 2 4 6 8

- 4

- 2

2

8

10

x

y

y  = 5x2>5 - 2x

 

- 3 - 2 - 1 1 2 3

2

3

4

5

6

7

8

9

10

x

y

y = 0 x 2 
- 1 0

 17. 3-10, 104  by 3-10, 104  19. 3-4, 44  by 30, 34
y = 

x + 3
x + 2

- 10 - 8- 6 - 4 2 4 6 8 10

- 8

- 6

- 4

- 2

4

6

8

x

y  

- 4 - 3 - 2 - 1 1 2 3 4

0.5

1.0

2.0

2.5

3.0

x

y

f (x)  = 
x2 +  2

x2 +  1

 21. 3-10, 104  by 3-6, 64  23. 3-6, 104  by 3-6, 64
- 10- 8- 6 - 4 2 4 6 8 10

- 6

- 4

- 2

2

4

6

x

y

f (x) = 
x - 1

x2 - x - 6

 

- 5 5 10

- 6

- 4

- 2

4

6

x

y

f (x)  = 
6x2 - 15x + 6

4x2 -  10x

 25. c-  
p

125
, 
p

125
d  by 27. 3-100p, 100p4  by 

  3-1.25, 1.254     3-1.25, 1.254

- 0.02 0.02

0.5

1.0

x

y

y  =  sin 250x

 

- 300 300

- 1.0

- 0.5

1.0

x

y

y = cos a bx

50

 29. c-  
p

15
, 
p

15
d  by 3-0.25, 0.254  31.

- 0.2 - 0.1 0.1 0.2

- 0.2

0.1

0.2

x

y y = x  +      sin 30x
1

10

           

- 4 - 2 - 1 2

1

2

x

y

(x + 1)
2
 + (y - 2)

2
 = 9

 25. Period 4, symmetric about 

the y-axis
 29. D : (-q, q), 

R : y = -1, 0, 1

  

1

- 1

2- 2- 3 - 1 31

s = sec

t

s

p t

2

 

1

- 1

y =  :sin x; y = sin x

x

y

- p p- 2p 2p

 39. -cos x  41. -cos x  43. 
26 + 22

4
  45. 

22 + 26

4

 47. 
2 + 22

4
  49. 

2 - 23

4
  51. 

p

3
, 

2p
3

, 
4p
3

, 
5p
3

 53. 
p

6
, 
p

2
, 

5p
6

, 
3p
2

  59. 27 ≈ 2.65  63. a = 1.464

 65. r =
a  sin u

1 -  sin u
  

 67. A = 2, B = 2p,

 C = -p, D = -1

  

1

- 1

- 3

y = 2sin (x + p) - 1

x

y

-   
p

2
p

2
3p
2

5p
2

 69. A = -  
2
p, B = 4,

   C = 0, D =
1
p

  

- 1 31 5

3
p

2
p

1
p

1
p

1
p

t

y

-   

y  =  -     sin         +
2
pta   b

SECTION 1.4, p. 33

 1. d  3. d

 5. 3-3, 54  by 3-15, 404  7. 3-3, 64  by 3-250, 504

- 2 - 1 1 3 4

- 10

10

20

30

40

x

y
f (x) = x4 - 4x3 + 15

 

- 2 1 2 3 4 5 6

- 250

- 200

- 150

- 100

- 50

50

x

y
f (x) = x5 - 5x4 + 10

 9. 3-5, 54  by 3-6, 64  11. 3-2, 64  by 3-5, 44

- 5 - 4 - 2 - 1 1 2 3 4 5

- 5

- 4

1

2

3

4

5

x

y

f (x) = x Í9 - x2

 

- 2 - 1 1 2 4 5 6
- 1

1

2

3

4

x

y

y = 2x - 3x2>3



 Chapter 1: Answers to Odd-Numbered Exercises A-5

 47. Relects the portion for y 6 0 across the x-axis

 49. Relects the portion for y 6 0 across the x-axis

 51. Adds the mirror image of the portion for x 7 0 to make the new 

graph symmetric with respect to the y-axis

 53. (a) y = g (x - 3) +
1
2

 (b) y = g ax +
2
3
b - 2 

 (c) y = g (-x) (d) y = -g (x) (e) y = 5g (x) 

 (f) y = g (5x)

 55. 

- 2

- 1

1

- 1 21- 2
x

y

y = - Í
2
x

1 +

  57. 

- 1

1

2

- 1 2 3 41- 2- 3- 4
x

y

1

2x
2

y  = + 1

 59. Period p 61. Period 2

  

0

- 1

1
y = cos 2x

x

y

p

2
3p
2

p 2p

 

1

1

- 1

2

y = sin px

x

y

63. 

- 1

1

2

- 2

x

y

y = 2cos  x - 

-   
p

3

p

3

p

6
5p
6

11p
6

4p
3

a        b

 65. (a) a = 1  b = 23 (b) a = 223>3  c = 423>3
 67. (a) a =

b

tan B
 (b) c =

a

sin A

 69. ≈16.98 m  71. (b) 4p

ADDITIONAL AND ADVANCED EXERCISES, pp. 35–36

 1. Yes. For instance: ƒ(x) = 1>x and g(x) = 1>x, or ƒ(x) = 2x and 

g(x) = x>2, or ƒ(x) = ex and g(x) = ln x.

 3. If ƒ(x) is odd, then g(x) = ƒ(x) - 2 is not odd. Nor is g(x) even, 

unless ƒ(x) = 0 for all x. If ƒ is even, then g(x) = ƒ(x) - 2 is 

also even.

 5. 

- 1

1

1–
2

0 x 0  +  0 y 0  = 1 + x

x

y

-   

33.      35.

- 2 - 1 1 2 3

- 4

- 3

- 2

- 1

1

2

3

4

x

y
f (x) = - tan 2x  

- 6 - 2 2 4 6

- 2.0

0.5

1.0

1.5

2.0

x

y

f (x) = sin 2x + cos 3x

PRACTICE EXERCISES, pp. 34–35

 1. A = pr2, C = 2pr, A =
C2

4p
  3. x = tan u, y = tan2 u

 5. Origin  7. Neither  9. Even  11. Even

 13. Odd  15. Neither

 17. (a) Even (b) Odd (c) Odd (d) Even (e) Even

 19. (a) Domain: all reals (b) Range: 3-2, q)

 21. (a) Domain: 3-4, 44  (b) Range: 30, 44
 23. (a) Domain: all reals (b) Range: (-3, q)

 25. (a) Domain: all reals (b) Range: 3-3, 14
 27. (a) Domain: all reals (b) Range: 30, 24
 29. (a) Domain: (-q, -14  and 33, q) (b) Range: (-q, 54
 31. (a) Domain: (-q, 0) and (0, q) (b) Range: 3-4, 44
 33. (a) Increasing (b) Neither (c) Decreasing (d) Increasing

 35. (a) Domain: 3-4, 44  (b) Range: 30, 24
 37. ƒ(x) = e1 - x, 0 … x 6 1

2 - x, 1 … x … 2

 39. (a) 1 (b) 
1

22.5
= A2

5
 (c) x, x ≠ 0

  (d) 
1

21>1x + 2 + 2

 41. (a) (ƒ ∘ g)(x) = -x, x Ú -2, (g ∘ ƒ)(x) = 24 - x2

 (b) Domain (ƒ ∘ g): 3-2, q), domain (g ∘ ƒ): 3-2, 24
  (c) Range (ƒ ∘ g): (-q, 24 , range (g ∘ ƒ): 30, 24
 43. 

2

- 1

1- 2 - 1 2- 4
x

y  

- 1

- 3 2- 4
x

y

 45. Replace the portion for x 6 0 with the mirror image of the por-

tion for x 7 0 to make the new graph symmetric with respect to 

the y-axis.

  

y

x

 y = x 

 y = x 

 y = 0 x 0
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 55. (a) 4 (b) -21 (c) -12 (d) -7>3
 57. 2  59. 3  61. 1>12272  63. 25

 65. (a) The limit is 1.

 67. (a) ƒ(x) = (x2 - 9)>(x + 3)

x -3.1 -3.01 -3.001 -3.0001 -3.00001 -3.000001

ƒ(x) -6.1 -6.01 -6.001 -6.0001 -6.00001 -6.000001

x -2.9 -2.99 -2.999 -2.9999 -2.99999 -2.999999

ƒ(x) -5.9 -5.99 -5.999 -5.9999 -5.99999 -5.999999

  (c) lim
 xS-3

 ƒ(x) = -6

 69. (a) G(x) = (x + 6)>(x2 + 4x - 12)

x -5.9 -5.99 -5.999 -5.9999

G(x) - .126582 - .1251564 - .1250156 - .1250015

-5.99999 -5.999999

- .1250001 - .1250000

x -6.1 -6.01 -6.001 -6.0001

G(x) - .123456 - .124843 - .124984 - .124998

-6.00001 -6.000001

- .124999 - .124999

  (c) lim
 xS-6

 G(x) = -1>8 = -0.125

 71. (a) ƒ(x) = (x2 - 1)>( 0 x 0  -  1)

x -1.1 -1.01 -1.001 -1.0001 -1.00001 -1.000001

ƒ(x)    2.1    2.01    2.001    2.0001    2.00001   2.000001

x - .9 - .99 - .999 - .9999 - .99999 - .999999

ƒ(x)  1.9  1.99  1.999  1.9999  1.99999  1.999999

  (c) lim
 xS-1

 ƒ(x) = 2

 73. (a) g(u) = (sin u)>u
u .1 .01 .001 .0001 .00001 .000001

g(u) .998334 .999983 .999999 .999999 .999999 .999999

u - .1 - .01 - .001 - .0001 - .00001 - .000001

g(u) .998334 .999983 .999999 .999999 .999999   .999999

   lim
 uS0

 g(u) = 1

 75. c = 0, 1, -1; the limit is 0 at c = 0, and 1 at c = 1, -1.

 77. 7  79. (a) 5 (b) 5  81. (a) 0 (b) 0

SECTION 2.3, pp. 61–64

 1. d = 2 
1 7
( (

5

x

 3. d = 1>2 x

-7�2 -1�2-3

 5. d = 1>18 x

1�24�9 4�7

 7. d = 0.1  9. d = 7>16  11. d = 25 - 2

 13. d = 0.36  15. (3.99, 4.01), d = 0.01

 17. (-0.19, 0.21), d = 0.19  19. (3, 15), d = 5

 21. (10>3, 5), d = 2>3  

 23. 1-24.5, -23.52, d = 24.5 - 2 ≈ 0.12

 25. 1215, 2172, d = 217 - 4 ≈ 0.12

Chapter 2

SECTION 2.1, pp. 43–45

 1. (a) 19 (b) 1

 3. (a) -  
4
p (b) -  

323
p   5. 1

 7. (a) 4 (b) y = 4x - 9

 9. (a) 2 (b) y = 2x - 7

 11. (a) 12 (b) y = 12x - 16

 13. (a) -9 (b) y = -9x - 2

 15. (a) -1>4 (b) y = -x>4 - 1

 17. (a) 1>4 (b) y = x>4 + 1

 19. Your estimates may not completely agree with these.

  (a) PQ1 PQ2 PQ3 PQ4

43 46 49 50
The appropriate units are m>sec.

  (b) ≈50 m>sec or 180 km>h
 21. (a) 

P
ro

fi
t 

(1
0
0
0
s)

11

100

0
12 13 142010

200

Year

x

y

 (b) ≈+56,000/year

  (c) ≈+42,000/year

 23. (a) 0.414213, 0.449489, 121 + h - 12>h (b) g(x) = 1x

1 + h 1.1 1.01 1.001 1.0001

21 + h 1.04880 1.004987 1.0004998 1.0000499121 + h - 12>h 0.4880 0.4987 0.4998 0.499

1.00001 1.000001

1.000005 1.0000005

0.5 0.5

 (c) 0.5 (d) 0.5

 25. (a) 15 mph, 3.3 mph, 10 mph (b) 10 mph, 0 mph, 4 mph

  (c) 20 mph when t = 3.5 hr

SECTION 2.2, pp. 53–56

 1. (a)  Does not exist. As x approaches 1 from the right, g(x) 

 approaches 0. As x approaches 1 from the left, g(x) 

 approaches 1. There is no single number L that all the  

values g(x) get arbitrarily close to as x S 1.

 (b) 1 (c) 0 (d) 1>2
 3. (a) True (b) True (c) False (d) False (e) False 

 (f) True (g) True (h) False (i) True (j) True (k) False

 5. As x approaches 0 from the left, x> 0 x 0  approaches -1. As x ap-

proaches 0 from the right, x> 0 x 0  approaches 1. There is no single 

number L that the function values all get arbitrarily close to as 

x S 0.

 7. Nothing can be said.  9. No; no; no  11. -4  13. -8

 15. 3  17. -25>2  19. 16  21. 3>2  23. 1>10

 25. -7  27. 3>2  29. -1>2 31. -1  33. 4>3
 35. 1>6  37. 4  39. 1>2  41. 3>2  43. -1  

 45. 1  47. 1>3  49. 24 - p  

 51. (a) Quotient Rule (b) Diference and Power Rules

  (c) Sum and Constant Multiple Rules

 53. (a) -10 (b) -20 (c) -1 (d) 5>7
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SECTION 2.6, pp. 93–96

 1. (a) 0 (b) -2 (c) 2 (d) Does not exist (e) -1 

 (f) q (g) Does not exist (h) 1 (i) 0 

 3. (a) -3 (b) -3  5. (a) 1>2 (b) 1>2  7. (a) -5>3
  (b) -5>3  9. 0  11. -1  13. (a) 2>5 (b) 2>5
 15. (a) 0 (b) 0  17. (a) 7 (b) 7  19. (a) 0 (b) 0

 21. (a) q (b) q  23. 2  25. q  27. 0  29. 1

 31. q  33. 1  35. 1>2  37. q  39. -q  

 41. -q  43. q  45. (a) q (b) -q  47. q
 49. q  51. -q  53. (a) q (b) -q (c) -q (d) q
 55. (a) -q (b) q (c) 0 (d) 3>2
 57. (a) -q (b) 1>4 (c) 1>4 (d) 1>4 (e) It will be -q.

 59. (a) -q (b) q  61. (a) q (b) q (c) q (d) q
 63. 

5

-5

1-1 2 3 4-2

10

-10

x = 1

y =
1

x - 1

x

y  65. 

5

1 2

10

0

x = -2

y =
1

2x + 4

x

y

- 4 -3 -2 -1

-5

-10

 67. 

0-3

1.5

-2

y =
x + 3
x + 2

y =
1

x + 2

x

y

x = -2

y =  1

 69. Domain: (-q,  q), Range: 34, 7)

 71. Domain: (-q, 0) and (0, q), Range: (-q, -1) and (1, q)

 73. Here is one possibility. 75. Here is one possibility.

  

1 2 3 4

(1, 2)

(0, 0)

-4 -3 -2 -1

(-1, -2)

3

2

1

-2

-3

x

y   

1-1
0

y = f (x)

x

y

 77. Here is one possibility. 79. Here is one possibility.

 

1

3

2

1

0 2 3

4

5

4 5
x

y

f (x) = 
1

(x - 2)2

 

0

1

-1

h(x) =       ,  x Z 0
x0 x 0

x

y

 27. a2 -
0.03

m , 2 +
0.03

m b , d =
0.03

m

 29. a1
2

-
c
m, 

c
m +

1
2
b ,  d =

c
m

 31. L = -3,  d = 0.01  33. L = 4,  d = 0.05

 35. L = 4,  d = 0.75

 55. 33.384, 3.3874 . To be safe, the left endpoint was rounded up and 

the right endpoint rounded down.

 59. The limit does not exist as x approaches 3.

SECTION 2.4, pp. 70–72

 1. (a) True (b) True (c) False (d) True 

  (e) True (f) True (g) False (h) False 

  (i) False (j) False (k) True (l) False

 3. (a) 2, 1 (b) No, lim
 xS2 +

 ƒ(x) ≠ lim
 xS2-

 ƒ(x)

 (c) 3, 3 (d) Yes, 3

 5. (a) No (b) Yes, 0 (c) No

 7. (a) 

1

-1

1-1

0,

x

y

y =
x3,   x Z 1

x = 1

 (b) 1, 1 (c) Yes, 1

 9. (a) D : 0 … x … 2, R : 0 6 y … 1 and y = 2

 (b) 30, 1) ∪ (1, 24  (c) x = 2 (d) x = 0 

  

1

1

2

2

1,

2,

0

x

y

y  =

Í1 - x2  , 0 … x 6 1

1 … x 6 2

x = 2

 11. 23  13. 1  15. 2>25  17. (a) 1 (b) -1

 19. (a) 1 (b) -1  21. (a) 1 (b) 2>3  23. 1  25. 3>4
 27. 2  29. 1>2  31. 2  33. 0  35. 1  37. 1>2
 39. 0  41. 3>8  43. 3  45. 0  

 51. d = e2, lim
 xS5 +

2x - 5 = 0  

 55. (a) 400 (b) 399 (c) The limit does not exist.

SECTION 2.5, pp. 81–83

 1. No; not deined at x = 2

 3. Continuous  5. (a) Yes (b) Yes (c) Yes (d) Yes

 7. (a) No (b) No  9. 0  

 11. 1, nonremovable; 0, removable  13. All x except x = 2

 15. All x except x = 3, x = 1  17. All x

 19. All x except x = 0  21. All x except np>2, n any integer

 23. All x except np>2, n an odd integer  25. All x Ú -3>2
 27. All x  29. All x  31. 0; continuous at x = p  

 33. 1; continuous at y = 1  35. 22>2; continuous at t = 0  

 37. g(3) = 6  39. ƒ(1) = 3>2  41. a = 4>3  

43. a = -2, 3  45. a = 5>2, b = -1>2
 65. x ≈ 1.8794, -1.5321, -0.3473  67. x ≈ 1.7549

 69. x ≈ 0.7391



A-8 Chapter 3: Answers to Odd-Numbered Exercises

  y

x

1

-1

10

y = f(x)

-1

 3. (a) -21 (b) 49 (c) 0 (d) 1 (e) 1 (f) 7 

 (g) -7 (h) -  
1
7

  5. 4

 7. (a) (-q, +q) (b) 30, q) (c) (-q, 0) and (0, q)

  (d) (0, q)

 9. (a) Does not exist (b) 0  11. 
1
2

  13. 2x  15. -  
1
4

 17. 2>3  19. 2>p  21. 1  23. 4  25. 2  27. 0 

 31. No in both cases, because lim
 xS1

 ƒ(x) does not exist, and lim
 xS  -1

 ƒ(x) 

does not exist.

 33. Yes, ƒ does have a continuous extension, to a = 1 with 

ƒ(1) = 4>3.

 35. No  37. 2>5  39. 0  41. -q  43. 0  45. 1

 47. (a) x = 3 (b) x = 1 (c) x = -4

 49. Domain: 3-4, 2) and (2, 44 , Range: (-q, q)

ADDITIONAL AND ADVANCED EXERCISES, pp. 98–101

 1. 0; the left-hand limit was taken because the function is undeined 

for y 7 c.

 3. 65 6 t 6 75; within 5°F  11. (a) B (b) A (c) A (d) A

 19. (a) lim
 aS0

 r+(a) = 0.5, lim
 aS-1 +

r+(a) = 1

  (b) lim
 aS0

 r-(a) does not exist, lim
 aS-1 +

 r-(a) = 1

 23. 0  25. 1  27. 4  29. y = 2x  31. y = x, y = -x

 35. -4>3
 37. (a) Domain: 51, 1>2, 1>3, 1>4 . . .6
  (b) The domain intersects (a, b) if a 6 0 and  b 7 0. 

  (c) 0 

 39. (a)  Domain: (-q, -1>p4 ∪ 3-1>(2p), -1>(3p)4 ∪  3-1>(4p), -1>(5p)4 ∪ g∪ 31>(5p), 1>(4p)4 ∪  31>(3p), 1>(2p)4 ∪ 31>p, q)

  (b)  The domain intersects any open interval (a, b) containing 0 

because 1>(np) 6 b for large enough n. 

  (c) 0 

Chapter 3

SECTION 3.1, pp. 104–106

 1. P1: m1 = 1, P2: m2 = 5  3. P1: m1 = 5>2, P2: m2 = -1>2
 5. y = 2x + 5 7. y = x + 1

1

1−1 2−2−3

2

3

4

5

0

y = 2x + 5

x

y

y = 4 − x2(−1, 3)

   

1

1 2 3 4

2

3

4

0

y = 2Íx

(1, 2)

y = x + 1

x

y

 83. At most one  85. 0  87. -3>4  89. 5>2
 97. (a)  For every positive real number B there exists a corresponding 

number d 7 0 such that for all x

c - d 6 x 6 c  1   ƒ(x) 7 B.

 (b)  For every negative real number -B there exists a corre-

sponding number d 7 0 such that for all x

c 6 x 6 c + d  1   ƒ(x) 6 -B.

  (c)  For every negative real number -B there exists a corre-

sponding number d 7 0 such that for all x

 c - d 6 x 6 c  1   ƒ(x) 6 -B.

 103.   105. 

-3 10 2 3 4 5

-2

2

3

4

5

6

x

y

(2, 4)

y = =  x + 1  +
x2

x - 1
1

x - 1
y = x + 1

 

-3 1 3 4 5

-2

1

0

2

4

5

6

x

y

y = x + 1

y = = x + 1 -
x2 - 4 3
x - 1 x - 1

 107.   109.

1

-1

1-1

y = x

y =
x2 - 1

x

y = -
1
x

x

y  

1

-1

1-1

2

-2

2-2

x = -2

x = 2

x

y

Í4 - x2
y = 

x

111. 

1

-1
1- 1

2

3

- 2

-3

2 3- 2- 3

x

y

y = x2/3 + 
1

x1/3

 113.  At q: q, at -q: 0

PRACTICE EXERCISES, pp. 97–98

 1. At x = -1: lim
 xS-1-

 ƒ(x) = lim
 xS-1 +

 ƒ(x) = 1, so

    lim
 xS-1

 ƒ(x) = 1 = ƒ(-1); continuous at x = -1

  At x = 0: lim
 xS0-

 ƒ(x) = lim
 xS0 +

 ƒ(x) = 0, so lim
 xS0

 ƒ(x) = 0.

     However, ƒ(0) ≠ 0, so f is discontinuous at 

x = 0. The discontinuity can be removed by 

redeining ƒ(0) to be 0.

  At x = 1: lim
 xS1-

 ƒ(x) = -1 and lim
 xS1 +

 ƒ(x) = 1, so 

    lim
 xS1

 ƒ(x) does not exist. The function is 

     discontinuous at x = 1, and the discontinuity is 

not removable.
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 37. Since lim
hS0 +

 
ƒ (0 + h) - ƒ (0)

h
= 1

 while lim
hS0-

 
ƒ(0 + h) - ƒ(0)

h
= 0,

 ƒ′(0) = lim
hS0

 
ƒ(0 + h) - ƒ(0)

h
 does not exist and ƒ(x) is not 

 diferentiable at x = 0.

 39. Since lim
hS0 +

 
ƒ (1 + h) - ƒ (1)

h
= 2 while 

  lim
hS0-

 
ƒ(1 + h) - ƒ(1)

h
=

1
2

, ƒ′(1) = lim
hS0

 

ƒ(1 + h) - ƒ(1)

h
 

  does not exist and ƒ(x) is not diferentiable at x = 1.

 41. Since ƒ(x) is not continuous at x = 0, ƒ(x) is not diferentiable at 

x = 0.

 43. Since lim
hS0 +

 
ƒ (0 + h) - ƒ (0)

h
= 3 while 

  lim
hS0-

 
ƒ (0 + h) - ƒ (0)

h
= 0, ƒ is not diferentiable at x = 0.

 45. (a) -3 … x … 2 (b) None (c) None

 47. (a) -3 … x 6 0, 0 6 x … 3 (b) None (c) x = 0

 49. (a) -1 … x 6 0, 0 6 x … 2 (b) x = 0 (c) None

SECTION 3.3, pp. 121–123

 1. 
dy

dx
= -2x, 

d2y

dx2
= -2

 3. 
ds

dt
= 15t2 - 15t4, 

d2s

dt2
= 30t - 60t3

 5. 
dy

dx
= 4x2 - 1, 

d2y

dx2
= 8x

 7. 
dw

dz
= -  

6

z3
+

1

z2
, 

d2w

dz2
=

18

z4
-

2

z3

 9. 
dy

dx
= 12x - 10 + 10x-3, 

d2y

dx2
= 12 - 30x-4

 11. 
dr

ds
=

-2

3s3
+

5

2s2
, 

d2r

ds2
=

2

s4
-

5

s3

 13. y′ = -5x4 + 12x2 - 2x - 3

 15. y′ = 3x2 + 10x + 2 -
1

x2
  17. y′ =

-19

(3x - 2)2

 19. g′(x) =
x2 + x + 4

(x + 0.5)2
  21. 

dy

dt
=

t2 - 2t - 1

(1 + t2)2

23. ƒ′(s) =
1

2s(2s + 1)2
  25. y′ = -  

1

x2
+ 2x-3>2

 27. y′ =
-4x3 - 3x2 + 1

(x2 - 1)2(x2 + x + 1)2
  

 29. y′ = 2x3 - 3x - 1, y″ = 6x2 - 3, y‴ = 12x, y(4) = 12, 

y(n) = 0 for n Ú 5

 31. y′ = 3x2 + 8x + 1, y″ = 6x + 8, y‴ = 6, y(n) = 0 for n Ú 4

 33. y′ = 2x - 7x-2, y″ = 2 + 14x-3

 35. 
dr

du
= 3u-4, 

d2r

du2
= -12u-5  37. 

dw

dz
= -z-2 - 1, 

d2w

dz2
= 2z-3

 39. (a) 13 (b) -7 (c) 7>25 (d) 20

 41. (a) y = -  
x

8
+

5
4

 (b) m = -4 at (0, 1)

  (c) y = 8x - 15, y = 8x + 17

 43. y = 4x, y = 2  45. a = 1, b = 1, c = 0  

 47. (2, 4)  49. (0, 0), (4, 2)  51. y = -16x + 24

 9. y = 12x + 16

−8

−2

y = x3
y = 12x + 16

(−2, −8)

x

y

 11. m = 4, y - 5 = 4(x - 2)  

 13. m = -2, y - 3 = -2(x - 3)  

 15. m = 12, y - 8 = 12(t - 2)

 17. m =
1
4

, y - 2 =
1
4

 (x - 4)

 19. m = -1  21. m = -1>4
 23. (a)  It is the rate of change of the number of cells when t = 5. 

The units are the number of cells per hour.

 (b) P′(3) because the slope of the curve is greater there.

  (c) 51.72 ≈ 52 cells>h
 25. (-2,-5)  27. y = - (x + 1), y = - (x - 3)

 29. 19.6 m> sec  31. 6p  35. Yes  37. Yes

 39. (a) Nowhere  41. (a) At x = 0  43. (a) Nowhere

 45. (a) At x = 1  47. (a) At x = 0

SECTION 3.2, pp. 111–115

 1. -2x, 6, 0, -2  3. -  
2

t3
, 2, -  

1
4

, -  
2

323

 5. 
3

223u
, 

3

223
, 

1
2

, 
3

222
  7. 6x2  9. 

1

(2t + 1)2

 11. 
3
2

 q1>2  13. 1 -
9

x2
, 0  15. 3t2 - 2t, 5

 17. 
-4

(x - 2)2x - 2
, y - 4 = -  

1
2

 (x - 6)  19. 6

 21. 1>8  23. 
-1

(x + 2)2
  25. 

-1

(x - 1)2
  27. (b)  29. (d)

 31. (a) x = 0, 1, 4 33. 

  (b) 

2

62

3

84

4

1

0
x

y′

f ′ on (−4, 6)

–2–4–6–8

        

−3

−1

−2

−4

−5

2

1

0
x

y′

6 7 8 9 10 11

 35. (a)   i) 1.5 °F>hr ii) 2.9 °F>hr

   iii) 0 °F>hr iv) -3.7 °F>hr

 (b) 7.3 °F>hr at 12 p.m., -11 °F>hr at 6 p.m.

  (c) 

420

−9

6 12108

y =
dT
––
 dt

−3

−6

−12

9

6

3

t (hrs)

Slope

(ºF/hr)
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  (c) 

12
−1

1

2

3

4

5

6

t

y

y = 6 21 − t
12

t

12

dy

dt
= − 1

a        b

 29. 4.88 ft, 8.66 ft, additional ft to stop car for 1 mph speed increase

 31. t = 25 sec,  D =
6250

9
 m

 33. 

12

−200

200

400

600

t

s

ds
dt

= 200 − 32t

d2s

dt2
= −32

s = 200t − 16t2

  (a) y = 0 when t = 6.25 sec

 (b)  y 7 0 when 0 … t 6 6.25 1  the object moves up; y 6 0 

when 6.25 6 t … 12.5 1  the object moves down.

 (c) The object changes direction at t = 6.25 sec.

 (d)  The object speeds up on (6.25, 12.54  and slows down on 30, 6.25).

 (e)  The object is moving fastest at the endpoints t = 0 and 

t = 12.5 when it is traveling 200 ft > sec. It’s moving slowest 

at t = 6.25 when the speed is 0.

  (f)  When t = 6.25 the object is s = 625 m from the origin and 

farthest away.

 35. 

4

−10

−5

5

10

t

s

ds
dt

= 3t2 − 12t + 7
d2s

dt2
= 6t − 12

s = t3 − 6t2 + 7t

  (a) y = 0 when t =
6 { 215

3
 sec

 (b) y 6 0 when 
6 - 215

3
6 t 6

6 + 215

3
1  

  the object moves left; y 7 0 when 0 … t 6
6 - 215

3
 or 

  
6 + 215

3
6 t … 4 1  the object moves right.

 (c) The object changes direction at t =
6 { 215

3
  sec.

 53. (a) y = 2x + 2 (c) (2, 6)  55. 50  57. a = -3

 59. P′(x) = nan  xn - 1 + (n - 1)an - 1x
n - 2 + g +  2a2  x + a1

 61. The Product Rule is then the Constant Multiple Rule, so the latter 

is a special case of the Product Rule.

 63. (a) 
d

dx
 (uyw) = uyw′ + uy′w + u′yw

 (b) 
d

dx
 (u1  u2  u3  u4) = u1  u2  u3  u4′ + u1  u2  u3′u4 + u1  u2′u3  u4 +  

  u1′u2  u3  u4

  (c) 
d

dx
 (u1gun) = u1  u2gun - 1un′ + u1  u2gun - 2un - 1′un +  

   g +  u1′u2gun

 65.  
dP

dV
= -  

nRT

(V - nb)2
+

2an2

V3

SECTION 3.4, pp. 130–134

 1. (a) -2 m, -1 m > sec

 (b) 3 m> sec, 1 m > sec; 2 m>sec2, 2 m>sec2

  (c) Changes direction at t = 3>2 sec

 3. (a) -9 m, -3 m>sec

 (b) 3 m> sec, 12 m > sec; 6 m>sec2, -12 m>sec2

  (c) No change in direction

 5. (a) -20 m, -5 m>sec

 (b) 45 m> sec, (1>5) m > sec; 140 m>sec2, (4>25) m>sec2

  (c) No change in direction

 7. (a) a(1) = -6 m>sec2, a(3) = 6 m>sec2

 (b) y(2) = 3 m>sec (c) 6 m

 9. Mars: ≈  7.5 sec, Jupiter: ≈  1.2 sec

 11. gs = 0.75 m>sec2

 13. (a) y = -32t, 0 y 0 = 32t ft>sec, a = -32 ft>sec2

 (b) t ≈ 3.3 sec

  (c) y ≈ -107.0 ft>sec

 15. (a) t = 2, t = 7 (b) 3 … t … 6

  (c)  (d) 

  

3

t (sec)
20 4 6 8 10

0 y 0  (m�sec)

Speed

 

31 420 6 75 9 108

a =
dy
––
 dt

−1
−2

−3
−4

4
3

2

1
t

a

 17. (a) 190 ft > sec (b) 2 sec (c) 8 sec, 0 ft > sec

 (d) 10.8 sec, 90 ft > sec (e) 2.8 sec

 (f) Greatest acceleration happens 2 sec after launch

  (g) Constant acceleration between 2 and 10.8 sec, -32 ft>sec2

 19. (a) 
4
7

 sec, 280 cm > sec (b) 560 cm> sec, 980 cm>sec2

  (c) 29.75 lashes > sec

 21. C = position, A = velocity, B = acceleration

 23. (a) $110 >machine (b) $80 (c) $79.90

 25. (a) b′(0) = 104 bacteria>h (b) b′(5) = 0 bacteria>h
  (c) b′(10) = -104 bacteria>h
 27. (a) 

dy

dt
=

t

12
- 1

 (b) The largest value of 
dy

dt
 is 0 m>h when t = 12 and the smallest

  value of 
dy

dt
 is -1 m>h when t = 0.
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 47. (a) y = -x + p>2 + 2 (b) y = 4 - 23

 49. 0  51. 13>2  53. -1  55. 0

 57. -22 m>sec, 22 m>sec, 22 m>sec2, 22 m>sec3

 59. c = 9  61. (a) sin x (b) 3 cos x - sin x  

(c) 73 sin x + x cos x

 63. (a) i) 10 cm ii) 5 cm iii) -522 ≈ -7.1 cm

  (b) i) 0 cm > sec ii) -523 ≈ -8.7 cm>sec  

iii) -522 ≈ -7.1 cm>sec

SECTION 3.6, pp. 145–148

 1. 12x3  3. 3 cos (3x + 1)  5. 
cos x

2 2sin x

 7. 2px sec2 (px2)  

 9. With u = (2x + 1), y = u5 : 
dy

dx
=

dy

du
  
du

dx
= 5u4 # 2 =

  10(2x + 1)4

 11. With u = (1 - (x>7)), y = u-7 : 
dy

dx
=

dy

du
  
du

dx
 =  

  -7u-8 # a-  
1
7
b = a1 -

x

7
b-8

 13. With u = ((x2>8) + x - (1>x)), y = u4 : 
dy

dx
=

dy

du
  
du

dx
=  

  4u3 # ax

4
+ 1 +

1

x2
b = 4ax2

8
+ x -

1
xb3ax

4
+ 1 +

1

x2
b

 15. With u = tan x, y = sec u : 
dy

dx
=

dy

du
  
du

dx
 =

  (sec u tan u)(sec2 x) = sec (tan x) tan (tan x) sec2 x

 17. With u = tan x, y = u3 : 
dy

dx
=

dy

du
  
du

dx
= 3u2 sec2 x =  

  3 tan2 x (sec2 x)

 19. -  
1

223 - t
  21. 

4
p (cos 3t - sin 5t)  23. 

csc u
cot u + csc u

 25. 2x sin4 x + 4x2 sin3 x cos x + cos-2 x + 2x cos-3 x sin x

 27. (3x - 2)5 -
1

x3a4 -
1

2x2
b2

  29. 
(4x + 3)3(4x + 7)

(x + 1)4

 31. 2x sec2 122x2 + tan 122x2  33. 
x sec x tan x + sec x

227 + x sec x

 35. 
2 sin u

(1 + cos u)2
  37. -2 sin (u2) sin 2u + 2u cos (2u) cos (u2)

 39. a t + 2

2(t + 1)3>2b  cosa t

2t + 1
b   

 41. 2p sin (pt - 2) cos (pt - 2)  43. 
8 sin (2t)

(1 + cos 2t)5

 45. 10t10 tan9 t sec2 t + 10t9 tan10 t

 47. 
-3t6 (t2 + 4)

(t3 - 4t)4
  49. -2 cos (cos (2t - 5)) (sin (2t - 5))

 51. a1 + tan4a t

12
b b2atan3a t

12
bsec2a t

12
b b

 53. -  
t sin (t2)

21 + cos (t2)
  55. 6 tan (sin3 t) sec2 (sin3 t) sin2 t cos t

 57. 3 (2t2 - 5)3 (18t2 - 5)  59. 
6

x3
 a1 +

1
xb a1 +

2
xb

 61. 2 csc2 (3x - 1) cot (3x - 1)  63. 16 (2x + 1)2 (5x + 1)

 65. ƒ′(x) = 0 for x = 1, 4; ƒ″(x) = 0 for x = 2, 4

 67. 5>2  69. -p>4  71. 0  73. -5

 (d) The object speeds up on a6 - 215

3
, 2b ∪ a6 + 215

3
, 4 d  

  and slows down on c 0, 
6 - 215

3
 b ∪ a2, 

6 + 215

3
 b .

  (e) The object is moving fastest at t = 0 and t = 4 when it is 

  moving 7 units > sec and slowest at t =
6 { 215

3
  sec.

  (f) When t =
6 + 215

3
 the object is at position s ≈ -6.303 

   units and farthest from the origin.

SECTION 3.5, pp. 138–140

 1. -10 - 3 sin x  3. 2x cos x - x2 sin x

 5. -csc x cot x -
2

2x
  7. sin x sec2 x + sin x

 9. sec x + x sec x tan x -
1

x2
  11. 

-csc2 x

(1 + cot x)2

 13. 4 tan x sec x - csc2 x  15. 0

 17. 3x2 sin x cos x + x3 cos2 x - x3 sin2 x

 19. sec2 t - 1  21. 
-2 csc t cot t

(1 - csc t)2
  23. -u (u cos u + 2 sin u)

 25. sec u csc u (tan u - cot u) = sec2 u - csc2 u  27. sec2 q

 29. sec2 q  31. 
q3 cos q - q2 sin q - q cos q - sin q

(q2 - 1)2

 33. (a) 2 csc3 x - csc x (b) 2 sec3 x - sec x

 35. 

1

−1

x

y

y = x

y = sin x

p/2 p 2p−p/2−p 3p/2−3p/2

y = −x − p

(3p�2, −1)y = −1

 37. 

1

2

0
x

y
y = sec x

(−p�3, 2)

p�2p�4−p�3−p�2

2Í3p
3

y = −2Í3x − +2
Í2p

4
y = Í2x − + Í2

Í2 p�4, Í2a           b

 39. Yes, at x = p  41. No  43. Yes, at x = 0, p, and 2p

 45. a-  
p

4
, -1b ; ap

4
, 1b

 

1

−1

x

y

y = tan x

(p�4, 1)

(−p�4, −1)

p�2p�4−p�4−p�2

2
py = 2x + − 1

2
py = 2x − + 1
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  (c) 
dV

dt
= pr2 

dh

dt
+ 2phr 

dr

dt

 15. (a) 1 volt > sec  (b) -  
1
3

 amp > sec

 (c) 
dR

dt
=

1
I

 adV

dt
-

V

I
  
dI

dt
b

  (d) 3>2 ohms > sec, R is increasing.

 17. (a) 
ds

dt
=

x

2x2 + y2
 
dx

dt

 (b) 
ds

dt
=

x

2x2 + y2
 
dx

dt
+

y

2x2 + y2
  
dy

dt

  (c) 
dx

dt
= -  

y

x 
dy

dt

 19. (a) 
dA

dt
=

1
2

 ab cos u 
du

dt

 (b) 
dA

dt
=

1
2

 ab cos u 
du

dt
+

1
2

 b sin u 
da

dt

  (c) 
dA

dt
=

1
2

 ab cos u 
du

dt
+

1
2

 b sin u 
da

dt
+

1
2

 a sin u 
db

dt

 21. (a) 14 cm2>sec, increasing  (b) 0 cm > sec, constant

  (c) -14>13 cm>sec, decreasing

 23. (a) -12 ft>sec (b) -59.5 ft2>sec (c) -1 rad>sec

 25. 20 ft > sec  

 27. (a) 
dh

dt
= 11.19 cm>min (b) 

dr

dt
= 14.92 cm>min

 29. (a) 
 -1
24p

  m>min (b) r = 226y - y2 m

  (c) 
dr

dt
= -  

5
288p

  m>min

 31. 1 ft >min, 40p ft2>min  33. 11 ft > sec

 35. Increasing at 466>1681 L>min2

 37. -5 m>sec  39. -1500 ft>sec

 41. 
5

72p
  in.>min, 

10
3

  in2>min

 43. (a) -32>213 ≈ -8.875 ft>sec

 (b) du1>dt = 8>65 rad>sec, du2>dt = -8>65 rad>sec

  (c) du1>dt = 1>6 rad>sec, du2>dt = -1>6 rad>sec

 45. -5.5 deg>min  47. 12p km>min

SECTION 3.9, pp. 171–173

 1. L(x) = 10x - 13  3. L(x) = 2  5. L(x) = x - p

 7. 2x  9. -x - 5  11. 
1
12

 x +
4
3

  

 13. ƒ(0) = 1. Also, ƒ′(x) = k (1 + x)k - 1, so ƒ′(0) = k. This means 

the linearization at x = 0 is L(x) = 1 + kx.

 15. (a) 1.01 (b) 1.003

 17. a3x2 -
3

22x
b  dx  19. 

2 - 2x2

(1 + x2)2
  dx

 21. 
1 - y

32y + x
  dx  23. 

5

22x
  cos 152x2 dx

 25. (4x2) sec2ax3

3
b  dx

 27. 
3

2x
 1csc 11 - 22x2 cot 11 - 22x22 dx

 29. (a) 0.41 (b) 0.4 (c) 0.01

 31. (a) 0.231 (b) 0.2 (c) 0.031

 75. (a) 2>3 (b) 2p + 5 (c) 15 - 8p (d) 37>6  (e) -1

  (f) 22>24  (g) 5>32  (h) -5>132172
 77. 5  79. (a) 1 (b) 1  81. y = 1 - 4x

 83. (a) y = px + 2 - p (b) p>2
 85. It multiplies the velocity, acceleration, and jerk by 2, 4, and 8, 

respectively.

 87. y(6) =
2
5

 m>sec, a(6) = -  
4

125
 m>sec2

SECTION 3.7, pp. 151–153

 1. 
-2xy - y2

x2 + 2xy
  3. 

1 - 2y

2x + 2y - 1

 5. 
-2x3 + 3x2y - xy2 + x

x2y - x3 + y
  7. 

1

y (x + 1)2
  9. cos y cot y

 11. 
-cos2 (xy) - y

x   13. 
-y2

y sina1yb - cosa1yb + xy

 15. -  
2r

2u
  17. 

-r

u
  19. y′ = -  

x
y , y″ =

-y2 - x2

y3

 21. 
dy

dx
=

x + 1
y , 

d2y

dx2
=

x2 + 2x

y3

 23. y′ =
2y

2y + 1
, y″ =

1

212y + 123
 25. y′ =

3x2

1 - cos y
, y″ =

6x(1 - cos y)2 - 9x4 sin y

(1 - cos y)3

 27. -2  29. (-2, 1) : m = -1, (-2, -1) : m = 1

 31. (a) y =
7
4

 x -
1
2

  (b) y = -  
4
7

 x +
29
7

 33. (a) y = 3x + 6  (b) y = -  
1
3

 x +
8
3

 35. (a) y =
6
7

 x +
6
7

  (b) y = -  
7
6

 x -
7
6

 37. (a) y = -  
p

2
 x + p  (b) y =

2
p x -

2
p +

p

2

 39. (a) y = 2px - 2p  (b) y = -  
x

2p
+

1
2p

 41. Points: 1-27, 02 and 127, 02, Slope: -2

 43. m = -1 at a23

4
, 
23

2
 b ,  m = 23 at a23

4
, 

1
2
b

 45. (-3, 2) : m = -  
27
8

 ; (-3, -2) : m =
27
8

 ; (3, 2) : m =
27
8

 ; 

  (3, -2) : m = -  
27
8

 47. (3, -1)

 53. 
dy

dx
= -  

y3 + 2xy

x2 + 3xy2
,  

dx

dy
= -  

x2 + 3xy2

y3 + 2xy
,  

dx

dy
=

1

dy>dx

SECTION 3.8, pp. 158–162

 1. 
dA

dt
= 2pr 

dr

dt
  3. 10  5. -6  7. -3>2

 9. 31>13  11. (a) -180 m2>min  (b) -135 m3>min

 13. (a) 
dV

dt
= pr2 

dh

dt
  (b) 

dV

dt
= 2phr 

dr

dt
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 65. (a) y

x
1−1

−1

1

0

   x2, −1 ≤ x < 0

−x2,    0 ≤ x < 1
f (x) =

  (b) Yes (c) Yes

 67. (a) y

1

x
10 2

x,       0 ≤ x ≤ 1

2 − x, 1 < x ≤ 2
y =

  (b) Yes (c) No

 69. a5
2

, 
9

4
b  and a3

2
, -  

1
4
b

 71. (-1, 27) and (2, 0)

 73. (a) (-2, 16), (3, 11) (b) (0, 20), (1, 7)

 75. y

1

x

−1
y = − – − 1x − 

y = −
8
p
+ 1

1 –
2

1
2

x +

y = tan x

−p�2 −p�4 p�4 p�2

(p�4, 1)

(−p�4, −1)
8
p

 77. 
1
4

  79. 4

 81. Tangent: y = -  
1
4

 x +
9

4
, normal: y = 4x - 2

 83. Tangent: y = 2x - 4, normal: y = -  
1
2

 x +
7
2

 85. Tangent: y = -  
5
4

 x + 6, normal: y =
4
5

 x -
11
5

 87. (1, 1): m = -  
1
2

 ; (1, -1): m not deined

 89. B = graph of ƒ, A = graph of ƒ′
 91. y

2

x
41−1 6

(6, 1)

(4, 3)3 y = f (x)

(−1, 2)

 93. (a) 0, 0 (b) 1700 rabbits, ≈1400 rabbits

 95. -1  97. 1>2  99. 4  101. 1

 103. To make g continuous at the origin, deine g(0) = 1.

 105. (a) 
dS

dt
= (4pr + 2ph) 

dr

dt

  (b) 
dS

dt
= 2pr 

dh

dt

  (c) 
dS

dt
= (4pr + 2ph) 

dr

dt
+ 2pr 

dh

dt

  (d) 
dr

dt
= -  

r

2r + h
 
dh

dt

 33. (a) -1>3 (b) -2>5 (c) 1>15

 35. dV = 4pr0
  2 dr  37. dS = 12x0 dx  39. dV = 2pr0  h dr

 41. (a) 0.08p m2 (b) 2%  43. dV ≈ 565.5 in3

 45. (a) 2% (b) 4%  47. 
1
3
,  49. 3%

 51. The ratio equals 37.87, so a change in the acceleration of gravity 

on the moon has about 38 times the efect that a change of the 

same magnitude has on Earth.

 53. Increase V ≈ 40%

 55. (a) i) b0 = ƒ(a) ii) b1 = ƒ′(a) iii) b2 =
ƒ″(a)

2

 (b) Q(x) = 1 + x + x2 (d) Q(x) = 1 - (x - 1) + (x - 1)2

 (e) Q(x) = 1 +
x

2
-

x2

8
  (f)  The linearization of any diferentiable function u(x) at x = a 

is L(x) = u(a) + u′(a)(x - a) = b0 + b1(x - a), where b0 

and b1 are the coeicients of the constant and linear terms 

of the quadratic approximation. Thus, the linearization for 

ƒ(x) at x = 0 is 1 + x; the linearization for g(x) at x = 1 is 

1 - (x - 1) or 2 - x; and the linearization for h(x) at

   x = 0 is 1 +
x

2
.

PRACTICE EXERCISES, pp. 174–179

 1. 5x4 - 0.25x + 0.25  3. 3x(x - 2)

 5. 2(x + 1)(2x2 + 4x + 1)

 7. 3(u2 + sec u + 1)2 (2u + sec u tan u)

 9. 
1

22t11 + 2t22  11. 2 sec2 x tan x

 13. 8 cos3 (1 - 2t) sin (1 - 2t)  15. 5(sec t) (sec t + tan t)5

 17. 
u cos u + sin u

22u sin u
  19. 

cos 22u

22u

 21. x csc a2xb + csc a2xb  cot a2xb
 23. 

1
2

 x1>2 sec (2x)2316 tan (2x)2 - x-24
 25. -10x csc2 (x2)   27. 8x3 sin(2x2)  cos(2x2) + 2x sin2(2x2)

 29. 
- (t + 1)

8t3
  31. 

1 - x

(x + 1)3
  33. 

 -1

2x2a1 +
1
xb1>2

 35. 
-2 sin u

(cos u - 1)2
  37. 322x + 1  39. -9 c 5x + cos 2x

(5x2 + sin 2x)5>2 d
41. -  

y + 2

x + 3
  43. 

-3x2 - 4y + 2

4x - 4y1>3   45. -  
y

x  

 47. 
1

2y (x + 1)2
  49. 

dp

dq
=

6q - 4p

3p2 + 4q
  

51. 
dr

ds
= (2r - 1)(tan 2s)

 53. (a) 
d2y

dx2
=

-2xy3 - 2x4

y5
 (b) 

d2y

dx2
=

-2xy2 - 1

x4y3

 55. (a) 7 (b) -2 (c) 5>12 (d) 1>4 (e) 12 (f) 9>2
  (g) 3>4
 57. 0  59. 23  61. -  

1
2

  63. 
-2

(2t + 1)2
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 23. h′ is deined but not continuous at x = 0; k′ is deined and 

 continuous at x = 0.

 25. 
43

75
 rad>sec

 29. (a) 0.8156 ft (b) 0.00613 sec

  (c) It will lose about 8.83 min >day.

Chapter 4

SECTION 4.1, pp. 188–190

 1. Absolute minimum at x = c2; absolute maximum at x = b

 3. Absolute maximum at x = c; no absolute minimum

 5. Absolute minimum at x = a; absolute maximum at x = c

 7. No absolute minimum; no absolute maximum

 9. Absolute maximum at (0, 5)  11. (c)  13. (d)

 107. -40 m2>sec  109. 0.02 ohm > sec  111. 2 m > sec

 113. (a) r =
2
5

 h (b) -  
125

144p
 ft>min

 115. (a) 
3

5
 km>sec or 600 m > sec (b) 

18
p  rpm

 117. (a) L(x) = 2x +
p - 2

2

   y

1

x

−1

p�4−p�4

y = tan x

(−p�4, −1)

y = 2x + (p − 2)�2

  (b) L(x) = -22x +
22(4 - p)

4

   y

x
0

y = sec x

Í2

−p�4 p�2−p�2

−p�4, Í2

y = −Í2x + Í2  4 − p �4Q    R

 119. L(x) = 1.5x + 0.5  121. dS =
prh0

2r2 + h  2
0

 dh

 123. (a) 4% (b) 8% (c) 12%

ADDITIONAL AND ADVANCED EXERCISES, pp. 179–181

 1. (a)  sin 2u = 2 sin u cos u; 2 cos 2u = 2 sin u (-sin u) +
cos u (2 cos u); 2 cos 2u = -2 sin2 u + 2 cos2 u; cos 2u =
cos2 u - sin2 u

  (b)  cos 2u = cos2 u - sin2 u; -2 sin 2u =
2 cos u (-sin u) - 2 sin u (cos u); sin 2u =
cos u sin u + sin u cos u; sin 2u = 2 sin u cos u

 3. (a) a = 1, b = 0, c = -  
1
2

 (b) b = cos a, c = sin a

 5. h = -4, k =
9

2
, a =

525

2

 7. (a) 0.09y (b) Increasing at 1% per year

 9. Answers will vary. Here is one possibility.

 y

0
t

 11. (a) 2 sec, 64 ft > sec (b) 12.31 sec, 393.85 ft

 15. (a) m = -  
b
p (b) m = -1, b = p

 17. (a) a =
3
4

, b =
9

4
  19. ƒ odd 1 ƒ′ is even

 15. Absolute minimum at  

x = 0; no absolute  

maximum
y

2

1

x
−1 1 2

f (x) = 0 x 0

 17. Absolute maximum at  

x = 2; no absolute  

minimum

y

1

−1

x
1 2

y = g(x)

 19. Absolute maximum at x = p>2; absolute minimum at 

x = 3p>2
3

−3

x

y

pp/2 2p3p/2

 21. Absolute maximum: -3; 

absolute minimum: -19>3
−1

1−1

−2

−3

−4

−5

−6

−7

2 3−2 0
x

y

(−2, −19/3)

Abs

min

Abs

max

(3, −3)

y = x − 52
3

−2 ≤ x ≤ 3

 23. Absolute maximum: 3;  

absolute minimum: -1

1

1−1

2

3

2
x

y

Abs
max

y = x
2 
− 1

−1 ≤ x ≤ 2

(2, 3)

(0, −1) Abs
min

 25. Absolute maximum: -0.25; 

absolute minimum: -4

−1

10

−2

−3

−4

x

y

(0.5, −4)

Abs min

y = − , 0.5 ≤ x ≤ 21

x2

(2, −0.25)

Abs max

 27. Absolute maximum: 2;  

absolute minimum: -1

1

−1
1−1 2 3 4 5 6 7 8

2

x

y

(8, 2) 

Abs

max

(−1, −1)

Abs min

y = Îx

−1 ≤ x ≤ 8

3
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 37. Increasing on (0, 8), decreasing on (-1, 0); absolute maximum: 

16 at x = 8; absolute minimum: 0 at x = 0

 39. Increasing on (-32, 1); absolute maximum: 1 at u = 1; absolute 

minimum: -8 at u = -32

 41. x = 3

 43. x = 1, x = 4

 45. x = 1

 47. x = 0 and x = 4

 49. x = 2 and x = -4

51.

 33. Absolute maximum: 2>23; 

absolute minimum: 1

1.0

0

1.2

0.8

0.6

0.4

0.2
x

y

p�3 p�2 2p�3

y = csc x

p�3 ≤ x ≤ 2p�3
(p�2, 1)

Abs

min

Abs max

 p�3, 2�Î3

Abs max

 2p�3, 2�Î3Q        R Q         R

 35. Absolute maximum: 2;  

absolute minimum: -1

1

−1

1−1 2 30
t

y

(3, −1)

Abs
min

Abs
max

(0, 2)

y = 2 − 0 t 0
−1 ≤ t ≤ 3

 31. Absolute maximum: 1;  

absolute minimum: -1

1

−1

u

y

(p�2, 1) Abs max

p/2−p/2 5p/6

y = sin u, −p�2 ≤ u ≤ 5p�6

(−p�2, −1)

Abs min

 29. Absolute maximum: 2;  

absolute minimum: 0

1

−1

1−1 0
x

y

(−2, 0)

Abs

min

y = Î4 − x2

−2 ≤ x ≤ 1

(0, 2) Abs max

Critical point 

or endpoint Derivative Extremum  Value

 x = -
4
5

 0  Local max 12
25

 101>3 ≈ 1.034

 x = 0  Undefined  Local min  0

53.
Critical point 

or endpoint Derivative Extremum Value

 x = -2 Undefined Local max    0

 x = -22 0 Minimum -2

 x = 22 0 Maximum    2

 x = 2 Undefined Local min    0

55.
Critical point 

or endpoint Derivative Extremum Value

 x = 1 Undefined Minimum 2

57.
Critical point 

or endpoint Derivative Extremum Value

 x = -1 0 Maximum 5

 x = 1 Undefined Local min 1

 x = 3 0 Maximum 5

 59. (a) No

 (b)  The derivative is deined and nonzero for x ≠ 2. Also, 

ƒ(2) = 0 and ƒ(x) 7 0 for all x ≠ 2.

 (c) No, because (-q, q) is not a closed interval.

  (d)  The answers are the same as parts (a) and (b), with 2 

 replaced by a.

 61. y is increasing on (-q, q) and so has no extrema.

 63. Yes

 65. g assumes a local maximum at -c.

 67. (a) Maximum value is 144 at x = 2.

  (b) The largest volume of the box is 144 cubic units, and it oc-

curs when x = 2.

 69. 
y0  

2

2g
+ s0

 71. Maximum value is 11 at x = 5; minimum value is 5 on the inter-

val [-3, 2]; local maximum at (-5, 9).

 73. Maximum value is 5 on the interval [3, q); minimum value is 

-5 on the interval (-q, -2].

SECTION 4.2, pp. 195–197

 1. 1>2  3. 1  

 5. 
1
3

 11 + 272 ≈ 1.22, 
1
3

 11 - 272 ≈ -0.549

 7. Does not; f is not diferentiable at the interior domain point  

x = 0.

 9. Does  11. Does not; f is not diferentiable at x = -1.

 15. (a)

    i) x
−2 20

   ii) x
−5 −4 −3

  iii) x
−1 0 2

  iv) 
0 4 9 18 24

x

 27. Yes  29. (a) 4 (b) 3 (c) 3

 31. (a) 
x2

2
+ C (b) 

x3

3
+ C (c) 

x4

4
+ C

 33. (a) 
1
x + C (b) x +

1
x + C (c) 5x -

1
x + C

 35. (a) -  
1
2

 cos 2t + C (b) 2 sin 
t

2
+ C 

  (c) -  
1
2

 cos 2t + 2 sin 
t

2
+ C

 37. ƒ(x) = x2 - x  39. r(u) = 8u + cot u - 2p - 1

 41. s = 4.9t2 + 5t + 10  43. s =
1 - cos (pt)

p

 45. s = 16t2 + 20t + 5  47. s = sin (2t) - 3

 49. If T(t) is the temperature of the thermometer at time t, then 

T(0) = -19 °C and T(14) = 100 °C. From the Mean Value 

Theorem, there exists a 0 6 t0 6 14 such that 

  
T(14) - T(0)

14 - 0
= 8.5 °C>sec = T′(t0), the rate at which the 

  temperature was changing at t = t0 as measured by the rising 

mercury on the thermometer.

 51. Because its average speed was approximately 7.667 knots, and 

by the Mean Value Theorem, it must have been going that speed 

at least once during the trip.



A-16 Chapter 4: Answers to Odd-Numbered Exercises

 23. (a)  Decreasing on (-q, 0); increasing on (0, 1>2); decreasing 

on (1>2, q)

  (b)  Local minimum at u = 0 (0, 0); local maximum at 

u = 1>2 (1>2, 1>4); no absolute extrema

25. (a) Increasing on (-q, q); never decreasing

  (b) No local extrema; no absolute extrema

 27. (a)  Increasing on (-2, 0) and (2, q); decreasing on (-q, -2) 

and (0, 2)

  (b)  Local maximum: 16 at x = 0; local minimum: 0 at x = {2; 

no absolute maximum; absolute minimum: 0 at x = {2

 29. (a)  Increasing on (-q, -1); decreasing on (-1, 0); increasing 

on (0, 1); decreasing on (1, q)

  (b)  Local maximum: 0.5 at x = {1; local minimum: 0 at 

x = 0; absolute maximum: 1>2 at x = {1; no absolute 

minimum

 31. (a) Increasing on (10, q); decreasing on (1, 10)

  (b)  Local maximum: 1 at x = 1; local minimum: -8 at x = 10; 

absolute minimum: -8 at x = 10

 33. (a)  Decreasing on 1-222, -22; increasing on (-2, 2); 

 decreasing on 12, 2222
  (b)  Local minima: g(-2) = -4, g12222 = 0; local maxima: 

g1-2222 = 0, g(2) = 4; absolute maximum: 4 at x = 2; 

absolute minimum: -4 at x = -2

 35. (a)  Increasing on (-q, 1); decreasing when 1 6 x 6 2, 

 decreasing when 2 6 x 6 3; discontinuous at x = 2; 

increasing on (3, q)

  (b)  Local minimum at x = 3 (3, 6); local maximum at 

x = 1 (1, 2); no absolute extrema

 37. (a) Increasing on (-2, 0) and (0, q); decreasing on (-q, -2)

  (b)  Local minimum: -623 2 at x = -2; no absolute maximum; 

absolute minimum: -623 2 at x = -2

 39. (a)  Increasing on 1-q, -2>272 and 12>27, q2; decreasing 

on 1-2>27, 02 and 10, 2>272
  (b)  Local maximum: 2423 2>77>6 ≈ 3.12 at x = -2>27; local 

    minimum: -2423 2>77>6 ≈ -3.12 at x = 2>27; no abso-

lute extrema

 41. (a) Local maximum: 1 at x = 1; local minimum: 0 at x = 2

  (b) Absolute maximum: 1 at x = 1; no absolute minimum

 43. (a) Local maximum: 1 at x = 1; local minimum: 0 at x = 2

  (b) No absolute maximum; absolute minimum: 0 at x = 2

 45. (a)  Local maxima: -9 at t = -3 and 16 at t = 2; local mini-

mum: -16 at t = -2

  (b) Absolute maximum: 16 at t = 2; no absolute minimum

 47. (a) Local minimum: 0 at x = 0

  (b) No absolute maximum; absolute minimum: 0 at x = 0

 49. (a)  Local maximum: 5 at x = 0; local minimum: 0 at x = -5 

and x = 5

  (b)  Absolute maximum: 5 at x = 0; absolute minimum: 0 at 

x = -5 and x = 5

 51. (a) Local maximum: 2 at x = 0; 

   local minimum: 
23

423 - 6
 at x = 2 - 23

  (b)  No absolute maximum; an absolute minimum at 

x = 2 - 23

 53. (a) Local maximum: 1 at x = p>4;

   local maximum: 0 at x = p;

   local minimum: 0 at x = 0;

   local minimum: -1 at x = 3p>4

 55. The conclusion of the Mean Value Theorem yields

1
b

-
1
a

b - a
= -  

1

c2
1 c2aa - b

ab
b = a - b 1 c = 1ab.

 59. ƒ(x) must be zero at least once between a and b by the Intermedi-

ate Value Theorem. Now suppose that ƒ(x) is zero twice between 

a and b. Then, by the Mean Value Theorem, ƒ′(x) would have 

to be zero at least once between the two zeros of ƒ(x), but this 

can’t be true since we are given that ƒ′(x) ≠ 0 on this interval. 

Therefore, ƒ(x) is zero once and only once between a and b.

 69. 1.09999 … ƒ(0.1) … 1.1

SECTION 4.3, pp. 201–202

 1. (a) 0, 1

 (b)  Increasing on (-q, 0) and (1, q); decreasing on (0, 1)

  (c) Local maximum at x = 0; local minimum at x = 1

 3. (a) -2, 1

 (b) Increasing on (-2, 1) and (1, q); decreasing on (-q, -2)

  (c) No local maximum; local minimum at x = -2

 5. (a) -2, 1, 3

 (b)  Increasing on (-2, 1) and (3, q); decreasing on (-q, -2) 

and (1, 3)

  (c) Local maximum at x = 1; local minimum at x = -2, 3

 7. (a) 0, 1

 (b)  Increasing on (-q, -2) and (1, q); decreasing on (-2, 0) 

and (0, 1)

  (c) Local minimum at x = 1

 9. (a) -2, 2

 (b)  Increasing on (-q, -2) and (2, q); decreasing on (-2, 0) 

and (0, 2)

  (c) Local maximum at x = -2; local minimum at x = 2

 11. (a) -2, 0

 (b) Increasing on (-q, -2) and (0, q); decreasing on (-2, 0)

  (c) Local maximum at x = -2; local minimum at x = 0

 13. (a) 
p

2
, 

2p
3

, 
4p
3

 (b) Increasing on a2p
3

, 
4p
3
b ; decreasing on a0, 

p

2
b , ap

2
, 

2p
3
b , 

  and a4p
3

, 2pb
  (c) Local maximum at x = 0 and x =

4p
3

; local minimum at 

   x =
2p
3

 and x = 2p

 15. (a)  Increasing on (-2, 0) and (2, 4); decreasing on (-4, -2) and 

(0, 2)

  (b)  Absolute maximum at (-4, 2); local maximum at (0, 1) and 

(4, -1); absolute minimum at (2, -3); local minimum at 

(-2, 0)

 17. (a)  Increasing on (-4, -1), (1>2, 2), and (2, 4); decreasing on 

(-1, 1>2)

  (b)  Absolute maximum at (4, 3); local maximum at (-1, 2) and 

(2, 1); no absolute minimum; local minimum at (-4, -1) 

and (1>2, -1)

 19. (a) Increasing on (-q, -1.5); decreasing on (-1.5, q)

  (b)  Local maximum: 5.25 at t = -1.5; absolute maximum: 5.25 

at t = -1.5

 21. (a)  Decreasing on (-q, 0); increasing on (0, 4>3); decreasing 

on (4>3, q)

  (b)  Local minimum at x = 0 (0, 0); local maximum at 

x = 4>3 (4>3, 32>27); no absolute extrema
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 9.   11.

1

−1

1−1 2 3 4−2−3−4

−2

2

3

4

0

y = x2 − 4x + 3

(2, −1)

Abs min

x

y

 

1

1−1

4

5

2

Loc

max

(−1, 5)

(1, 1)

Loc min

Inl

y = x3 − 3x + 3

x

y

13.   15.

1

1−1 2−3

2

x

y

(0, −3)

Loc min y = −2x3 + 6x2 − 3

(2, 5) Loc max

Inl

(1, 1)

 

1

−1

1−1 2 3 4−2

2

3

−2

0

Inl

(2, 1)

y = (x − 2)3 + 1

x

y

17.   19.

1 2−1−2

1

Abs min

(1, −1)

Loc max

(0, 0)

Abs min

(−1, −1)

−1�Î3, −5�9

Inl

1�Î3, −5�9

Inl

x

y

y = x4 − 2x2

Q          R Q        R

 

3

4

9

15

21

27

321

(2, 16)

Abs max

(3, 27)

y = 4x3 − x4

Infl

Inl

(0, 0)
x

y

21.   23.

−100

−200

−300

543210−2
x

y

y = x5 − 5x4Loc max

(0, 0)

(3, −162)

Inl

(4, −256)

Loc min

  

0

Abs min

Inl

y = x + sin x

Abs max

(p, p)

(2p, 2p)

x

y

2p

p

2pp

25.

10

8

2

4

6

x

y

pp�2 2p3p�20

Q3p�2, 3Î3p�2R

Q2p, 2Î3p − 2R

Qp�2, Î3p�2RInl

Abs max

(0, −2)
Abs min y = Î3x − 2 cos x

Q4p�3, 4Î3p�3 + 1RLoc max

Q5p�3, 5Î3p�3 − 1R
Loc min

Inl

 

 55.  Local maximum: 2 at x = p>6;

   local maximum: 23 at x = 2p;

   local minimum: -2 at x = 7p>6;

   local minimum: 23 at x = 0

 57. (a) Local minimum: (p>3) - 23 at x = 2p>3;

   local maximum: 0 at x = 0;

   local maximum: p at x = 2p

 59. (a) Local minimum: 0 at x = p>4
 61. Local minimum at x = 1; no local maximum

 63. Local maximum: 3 at u = 0;

  local minimum: -3 at u = 2p

 65.

1

10
x

y

(a)

y = f (x)

1

10
x

y

(b)

y= f (x)
1

10
x

y

(c)

y = f (x)
1

10
x

y

(d)

y = f (x)

 67. (a)  (b)

2

0 2

y = g(x)

x

y  

2

0 2

y = g(x)

x

y

 71. a = -2, b = 4

SECTION 4.4, pp. 210–214

 1. Local maximum: 3>2 at x = -1; local minimum: -3 at x = 2; 

point of inlection at (1>2, -3>4); rising on (-q, -1) and 

(2, q); falling on (-1, 2); concave up on (1>2, q); concave 

down on (-q, 1>2)

 3. Local maximum: 3 >4 at x = 0; local minimum: 0 at x = {1; 

  points of inlection at a-23, 
323 4

4
b  and a23, 

323 4

4
b ; 

  rising on (-1, 0) and (1, q); falling on (-q, -1) and (0, 1);  

concave up on 1-q, -232 and 123, q2; concave down on 1-23, 232
 5. Local maxima: 

-2p
3

+
23

2
 at x = -2p>3, 

p

3
+
23

2
 at 

  x = p>3; local minima: -  
p

3
-
23

2
 at x = -p>3, 

2p
3

-
23

2
 

  at x = 2p>3; points of inlection at (-p>2, -p>2), (0, 0), and 

(p>2, p>2); rising on (-p>3, p>3); falling on (-2p>3, -p>3) 

and (p>3, 2p>3); concave up on (-p>2, 0) and (p>2, 2p>3); 

concave down on (-2p>3, -p>2) and (0, p>2)

 7. Local maxima: 1 at x = -p>2 and x = p>2, 0 at x = -2p 

and x = 2p; local minima: -1 at x = -3p>2 and x = 3p>2, 

0 at x = 0; points of inlection at (-p, 0) and (p, 0); ris-

ing on (-3p>2, -p>2), (0, p>2), and (3p>2, 2p); falling on 

(-2p, -3p>2), (-p>2, 0), and (p>2, 3p>2); concave up on 

(-2p, -p) and (p, 2p); concave down on (-p, 0) and (0, p)
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45.   47.

2−2

2

3

Loc max

(0, 1)

y = x2 − 1

(1, 0)

Abs min

(−1, 0)

Abs min

x

y

 

1

1−1 2 3 4−2−3−4

2
y = Î 0 x 0

(0, 0)

Cusp
Abs min

x

y

49.   

2 4

(0, 0)

Inl
−2

−3

−1

−2−4

1

2

3

x

y

x 

9 − x2
y =

 51. y″ = 1 - 2x

 Loc max

x = 2
Inl

Loc min

x = −1

x =
1
2

 53. y″ = 3(x - 3)(x - 1) 55. y″ = 3(x - 2)(x + 2)

Loc min

Inl

Inl

x = 3

x = 1

x = 0

 Loc max

x = 0

Inl
x = −2

x = −2Î3 x = 2Î3

Inl x = 2

Abs minAbs min

 57. y″ = 4(4 - x)(5x2 - 16x + 8)

Loc min

x = 0

Loc max

x = 8�5

Inl

x = 4

Inl

x =
8 + 2Î6

5

x =
8 − 2Î6

5

Inl

 59. y″ = 2 sec2 x tan x 61. y″ = -
1
2

 csc2 
u

2
, 

     0 6 u 6 2p

Inl

x = 0

  
Abs max

u = p

 27.

1

−1

x

y

p�2p�4 p3p�4(0, 0)
Loc min

Abs max
(p�4, 1�2) Inl

(p�2, 0)
Loc max

(p, 0)

(3p�4, −1�2)
Abs min

y = sin x cos x

29.   31.

−1

1 2 3−1−2−3

1

2

−2

x

y

y = x1�5

(0, 0)

Inl

Vert tan

at x = 0

 

−2

−1

1

1−1 2 3 4−2−3−4

2

(0, 0) 

Inl

x

y

y = x

Îx2 + 1

33.   35.

−1
1−1 4 5

−5

x

y

Cusp, Loc max 

(0, 0)

y = 2x − 3x2�3

(1, −1)

Loc min

 

1−1

2

3

4

2 3−2
x

y

Inl

 Q−1�2, 3/
3Î4R  (1, 3�2) Loc max

y = x
2�3  5–

2
 − x

(0, 0)

Cusp

Loc min

Q    R

37.   39.

1

1−1 2−2

2

3

4

−3

−4

x

y

(0, 0) Inl

Abs max

(2, 4)

Loc max

Q−2Î2, 0R
Q2Î2, 0R
Loc min

y = xÎ8 − x2

(−2, −4)

Abs min

 

x

y

y = Î16 − x2

(0, 4)  Abs max

(4, 0)
Abs min

(−4, 0)
Abs min

41.   43.

2

2

−2

4 6 8−4−6−8

−4

−6

−8

4

6

8

(3, 6) Loc min

(1, 2) Loc max

x
2 
− 3

x
 
− 2

y =

x

y

 

−1
1 2

1

2

−2

x

y

y =

Q−2Î3, −Î3R
Inl

Q2Î3, Î3R
Inl

(−2, −2)
Abs min

(2, 2)
Abs max8x

x2 + 4

(0, 0)
Inl
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81.   83.

1

−1

x

y

x =  
− 1 x =  1

1

x2 
− 1

y =

−1 1

 

−1 1

−2

−1

y

x = 
−1

y = 
−1

x = 1

−Î2 Î2

x2 
− 2

x2 
− 1

y = −
1

x2 
− 1

y =

x

85.    87.

1 2 3−2−3−4

−4

x

y

x2

x + 1
y =

y = x − 1

x = −1  

x

y

1
x 
− 1

y =

x = 1

y = x

x2 
− x + 1
x − 1

y =

3

−1

21

89.    91.

−2−6 −4 41

−16

−12

−8

−4

y

x

9

x + 2
y =

(x − 1)3

x2 + x − 2
y =

y = x − 4

x  = −2

9
2

0

 

−1 1

1

0

−1

x

y

x

x2 
− 1x = 

−1

x = 1

y =

93. 

0 1

2

x

y

y = 8�(x2 + 4)

 63. y″ = 2 tan u sec2 u, -
p

2
6 u 6

p

2

u = 0

Inf1

4
pu =

Loc min

4
pu = − Loc max

 65. y″ = -sin t, 0 … t … 2p

t = 0

Loc min

Abs max

2
p

t =

2
t =

t = p

Inl
3p

Abs min

 Loc max

     t = 2p

 67. y″ = -
2
3

 (x + 1)-5>3 69. y″ =
1
3

 x-2>3 +
2
3

 x-5>3
x = −1

Inl

Vert tan

 

x = 1

Abs min

Inl

vert tan

x = 0

x = −2

Inl

 71. y″ = e-2, x 6 0

2, x 7 0
 73.

x = 0

Inl

 

y

Loc min

y ″ y′

Inl

Loc max

P

x

y

75. 

x

y

y ″

y′

InflInfl

Loc

min

P y

77.   79.

210 3

−2

−1

−1

1

2

4

3

5

x

y

2x2 + x − 1

x2 − 1
y =

1
x − 1

y =

y = 2

x = 1

 

−1 1

1

2

x

y

x4 + 1

x2
y =

 1

x2
y =

y = x2

95. Point y′ y″

P - +

Q + 0

R + -

S 0 -

T - -

97.

7

4

1

2 4 60
x

y

(2, 1)

(4, 4)

(6, 7)
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103.

30−3
xf 0:

2 202 0 2 22 01 21

2 4−1
xf 9:

111 0 0 2 21 102 2

 99.   101.

1 3

(1, 2)

(−2, −1)

(−1, 0)

(0, 3)

(2, 0)

−2

−1
−2−3

1

2

x

y

 
2−1−3

xf 0:
102 0 1 12 102 12

      There are points of inlec-

tion at x = -3, x = -1, 

and x = 2.

  There are local maxima at 

x = -1 and x = 4. There is 

a local minimum at x = 2. 

There are points of inlection 

at x = 0 and x = 3.

 105. (a)  Towards origin: 0 … t 6 2 and 6 … t … 10; away from 

origin: 2 … t … 6 and 10 … t … 15

  (b) t = 2, t = 6, t = 10

  (c) t = 5, t = 7, t = 13

  (d)  Positive: 5 … t … 7, 13 … t … 15; negative: 

0 … t … 5, 7 … t … 13

 107. ≈60 thousand units

 109. Local minimum at x = 2; inlection points at x = 1 and 

x = 5>3
 111. -1, 2  113. b = -3  119. a = 1, b = 3, c = 9

 121. The zeros of y′ = 0 and y″ = 0 are extrema and points of 

inlection, respectively. Inlection at x = 3, local maximum at 

x = 0, local minimum at x = 4.

  

0 3

−200

4 5

200

−400

x

y

y′ = 5x3(x − 4)

y = x5 − 5x4 − 240

y″ = 20x2(x − 3)

 123. The zeros of y′ = 0 and y″ = 0 are extrema and points of 

inlection, respectively. Inlection at x = -23 2; local maximum 

at x = -2; local minimum at x = 0.

  

50

2−3

100

3

−50

−100

y′ = 4x(x3 + 8)

y″ = 16(x3 + 2)

x

y

y = x5 + 16x2 
− 254

5

SECTION 4.5, pp. 220–226

 1. 16 in., 4 in. by 4 in.

 3. (a) (x, 1 - x) (b) A(x) = 2x(1 - x)

  (c) 
1
2

 square units, 1 by 
1
2

 5. 
14
3

*
35
3

*
5
3

 in., 
2450
27

 in3

 7. 80,000 m2; 400 m by 200 m

 9. (a)  The optimum dimensions of the tank are 10 ft on the base 

edges and 5 ft deep.

  (b)  Minimizing the surface area of the tank minimizes its weight 

for a given wall thickness. The thickness of the steel walls 

would likely be determined by other considerations such as 

structural requirements.

 11. 9 * 18 in.  13. 
p

2
  15. h : r = 8 : p

 17. (a) V(x) = 2x(24 - 2x)(18 - 2x) (b) Domain: (0, 9)

  

V

x

1600

1200

800

400

2 4 6 8

Maximum

x = 3.3944487 V = 1309.9547

 (c) Maximum volume ≈ 1309.95 in3 when x ≈ 3.39 in.

 (d)  V′(x) = 24x2 - 336x + 864, so the critical point is at 

x = 7 - 213, which conirms the result in part (c).

  (e) x = 2 in. or x = 5 in.

 19. ≈2418.40 cm3

 21. (a) h = 24, w = 18

  (b) V

V = 54h2 −

h
5

2000

4000

6000

8000

10000

0
10 20 3015 25 35

(24, 10368)

Abs max

h33
2

 23. If r is the radius of the hemisphere, h the height of the cylinder, 

  and V the volume, then r = a3V

8p
b1>3

 and h = a3V
p b1>3

.

 25. (b) x =
51
8

 (c) L ≈ 11 in.

 27. Radius = 22 m, height = 1 m, volume =
2p
3

 m3

 29. 1  31. 
9b

9 + 23p
 m, triangle; 

b23p

9 + 23p
 m, circle

 33. 
3
2

* 2  35. (a) 16 (b) -1  

 37. r =
222

3
  h =

4
3

  39. Area 8 when a = 2

 41. (a) y(0) = 96 ft>sec (b) 256 ft at t = 3 sec

  (c) Velocity when s = 0 is y(7) = -128 ft>sec.

 43. ≈46.87 ft  45. (a) 6 * 623 in.

 47. (a) 423 * 426 in.

 49. (a)  10p ≈ 31.42 cm>sec; when t = 0.5 sec, 1.5 sec, 2.5 sec, 

3.5 sec; s = 0, acceleration is 0.

  (b) 10 cm from rest position; speed is 0.

 51. (a) s = ((12 - 12t)2 + 64t2)1>2
  (b) -12 knots, 8 knots 

  (c) No

  (d)  4213. This limit is the square root of the sums of the 

squares of the individual speeds.

 53. x =
a

2
, y =

ka2

4
  55. 

c

2
+ 50

 57. (a) A
2km

h
 (b) A

2km

h
  61. 4 * 4 * 3 ft, $288

 63. M =
C

2
  69. (a) y = -1
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71. (a) The minimum distance is 
25

2
.

  (b)  The minimum distance is from the point (3>2, 0) to the point 

(1, 1) on the graph of y = 1x, and this occurs at the value 

x = 1, where D(x), the distance squared, has its minimum 

value.

   

y, D(x)
D(x) = x2 − 2x +

x
0.5 1.5 2.51 2

 Î5
2

Dmin=

9
–
4

y = Îx

0.5

1

1.5

2

2.5

SECTION 4.6, pp. 229–231

 1. x2 = -  
5
3

, 
13
21

  3. x2 = -  
51
31

, 
5763

4945
  5. x2 =

2387
2000

 7. x2 =
17
14

  9. x1, and all later approximations will equal x0.

 11. y

x
h

y =

−h

  Îx , x ≥ 0

Î−x, x < 0

 13. The points of intersection of y = x3 and y = 3x + 1 or 

y = x3 - 3x and y = 1 have the same x-values as the roots of 

part (i) or the solutions of part (iv).  15. 1.165561185

 17. (a) Two (b) 0.35003501505249 and -1.0261731615301

 19. {1.3065629648764, {0.5411961001462  21. x ≈ 0.45

 23. 0.8192  25. The root is 1.17951.

 27. (a) For x0 = -2 or x0 = -0.8, xi S -1 as i gets large.

 (b) For x0 = -0.5 or x0 = 0.25, xi S 0 as i gets large.

 (c) For x0 = 0.8 or x0 = 2, xi S 1 as i gets large.

  (d) For x0 = -221>7 or x0 = 221>7, Newton’s method does 

not converge. The values of xi alternate between -221>7 and 

221>7 as i increases.

 29. Answers will vary with machine speed.

SECTION 4.7, pp. 237–241

 1. (a) x2 (b) 
x3

3
 (c) 

x3

3
- x2 + x

 3. (a) x-3 (b) -  
1
3

 x-3 (c) -  
1
3

 x-3 + x2 + 3x

 5. (a) -  
1
x  (b) -  

5
x  (c) 2x +

5
x

 7. (a) 2x3 (b) 1x (c) 
22x3

3
+ 21x

 9. (a) x2>3 (b) x1>3 (c) x-1>3
 11. (a) cos (px) (b) -3 cos x (c) -  

1
p cos (px) + cos (3x)

 13. (a) 
1
2

 tan x (b) 2 tan ax

3
b  (c) -  

2
3

 tan a3x

2
b

 15. (a) -csc x (b) 
1
5

 csc (5x) (c) 2 csc apx

2
b

 17. 
x2

2
+ x + C  19. t3 +

t2

4
+ C  21. 

x4

2
-

5x2

2
+ 7x + C

 23. -  
1
x -

x3

3
-

x

3
+ C  25. 

3
2

 x2>3 + C

 27. 
2
3

 x3>2 +
3
4

 x4>3 + C  29. 4y2 -
8
3

 y3>4 + C

 31. x2 +
2
x + C  33. 22t -

2

2t
+ C  35. -2 sin t + C

 37. -21 cos 
u

3
+ C  39. 3 cot x + C  41. -  

1
2

 csc u + C

 43. 4 sec x - 2 tan x + C  45. -  
1
2

 cos 2x + cot x + C

 47. 
t

2
+

sin 4t

8
+ C  49. 

3x(23 + 1)

23 + 1
+ C  

 51. tan u + C  53. -cot x - x + C  55. -cos u + u + C

 63. (a) Wrong: 
d

dx
  ax2

2
 sin x + Cb =

2x

2
 sin x +

x2

2
 cos x =

   x sin x +
x2

2
 cos x

  (b) Wrong: 
d

dx
 (-x cos x + C) = -cos x + x sin x

  (c) Right: 
d

dx
 (-x cos x + sin x + C) = -cos x + x sin x +

   cos x = x sin x

 65. (a) Wrong: 
d

dx
 a(2x + 1)3

3
+ Cb =

3(2x + 1)2(2)

3
=

   2(2x + 1)2

  (b) Wrong: 
d

dx
  ((2x + 1)3 + C) = 3(2x + 1)2(2) =

   6(2x + 1)2

  (c) Right: 
d

dx
  ((2x + 1)3 + C) = 6(2x + 1)2

 67. Right  69. (b)  71. y = x2 - 7x + 10

 73. y = -  
1
x +

x2

2
-

1
2

  75. y = 9x1>3 + 4

 77. s = t + sin t + 4  79. r = cos (p u) - 1

 81. y =
1
2

 sec t +
1
2

  83. y = x2 - x3 + 4x + 1  

 85. r =
1
t

+ 2t - 2  87. y = x3 - 4x2 + 5  

 89. y = -sin t + cos t + t3 - 1  91. y = 2x3>2 - 50

 93. 

1

1

64
x

y

8

y = f (x)

  

 95. 

2 4 6 8

−2

−3

−4

−1

1

2

x

y
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 45. (a)  Local maximum at x = 0, local minima at x = -1 and 

x = 2, inlection points at x = 11 { 272>3
   x = −1 x = 2

Loc minLoc min

Inl

Loc max

1 − Î7
3

x =
1 + Î7

3
x =

Inl

x = 0

 47. (a)  Local maximum at x = -22, local minimum at x = 22, 

inlection points at x = {1 and 0

  (b) 

Inl

x = 0

Inl

x = 1

Loc min

Loc max

Inl

x = −1
x = −Î2

x = Î2

 53.   55. 

1

−1

−3

2

5

2 3 4 6
x

y

x + 1
x − 3

4
x − 3

y = = 1 +

 

1

–1
1−1 2 3 4−2−3−4

−2

−3

−4

2

3

4

5

−5

x

y

(1, 2)

y = x

(−1, −2)

x2 + 1
x

y =

1
x= x +

57.    59.

1

−1

1 2 3

−3

2

3

4

0

x3 + 2
2x

x2

2

x2

2

1
x

1
x

y =

y =

y =

= +

x

y

 

−1

1−1 2 3 4−3−4

−2

−3

2

3

4

0

y = 1

x = Î3x = −Î3

x

y

x2 − 4

x2 − 3
y =

 61. (a) 0, 36 (b) 18, 18  63. 54 square units

 65. height = 2, radius = 22

 67. x = 5 - 25 hundred ≈ 276 tires,

  y = 215 - 252 hundred ≈ 553 tires

 69. Dimensions: base is 6 in. by 12 in., height = 2 in.;  

maximum volume = 144 in3

 71. x5 = 2.1958 23345  73. 
x4

4
+

5
2

 x2 - 7x + C

 75. 2t3>2 -
4
t

+ C  77. -  
1

r + 5
+ C  

 79. (u2 + 1)3>2 + C  81. 
1
3

 (1 + x4)3>4 + C  

 83. 10 tan 
s

10
+ C  85. -  

1

22
 csc 22 u + C

 87. 
1
2

 x - sin 
x

2
+ C  89. y = x -

1
x - 1

 91. r = 4t5>2 + 4t3>2 - 8t

 97. y = x - x4>3 +
1
2

  99. y = -sin x - cos x - 2

 101. (a) (i) 33.2 units, (ii) 33.2 units, (iii) 33.2 units

  (b) True

 103. t = 88>k, k = 16

 105. (a) y = 10t3>2 - 6t1>2 (b) s = 4t5>2 - 4t3>2
 109. (a) -1x + C (b) x + C (c) 1x + C

  (d) -x + C (e) x - 1x + C (f) -x - 1x + C

PRACTICE EXERCISES, pp. 241–244

 1. Minimum value is 1 at x = 2.

 3. Local maximum at (-2, 17); local minimum at a4
3

, -  
41
27
b

 5. Minimum value is 0 at x = -1 and x = 1.

 7. There is a local minimum at (0, 1).

 9. Maximum value is 
1
2

 at x = 1; minimum value is -  
1
2

 at x = -1.

 11. No  13. No minimum; absolute maximum: ƒ(1) = 16;  

critical points: x = 1 and 11>3
 15. Yes, except at x = 0  17. No  21. (b) one

 23. (b) 0.8555 99677 2

 29. Global minimum value of 
1
2

 at x = 2

 31. (a) t = 0, 6, 12 (b) t = 3, 9 (c) 6 6 t 6 12 

  (d) 0 6 t 6 6, 12 6 t 6 14

33.   35. 

1−1 2 4−2 6

−2

0

1

x

y

15
3

x3

6

8
3

y = x2 −

  

1 2

−1

1

3

3

4

y = −x3 + 6x2 − 9x + 3

x

y

37.   39. 

100

−2 4 6 8−1

200

300

400

500

−100

0 2

(4, 256)

(6, 432)

y = x3(8 − x)

x

y

 

9 18 27

−4

−3

y = x − 3x2�3

x

y

(8, −4)

41. 

1

−1

1−1 2 3

2

−2

y = xÎ3 − x

x

y

 43. (a)  Local maximum at x = 4, local minimum at x = -4, 

 inlection point at x = 0

  (b) 

x = −4

Loc min

x = 0

Inl

Loc max

x = 4
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 37. (a) 

x

y

(2, 3)

f (x) = x2 − 1,
0 ≤ x ≤ 2
Left-hand

c1 = 0 c3 = 1 c4c2 2

3

2

1

−1

 (b) 

x

y

(2, 3)

f (x) = x2 − 1,
0 ≤ x ≤ 2
Right-hand

0 c3c1 c4 = 2

3

2

1

−1

c2 = 1

  (c) 

x

y

(2, 3)

f (x) = x2 − 1,
0 ≤ x ≤ 2
Midpoint

0 c3c1 c4

3

2

1

−1

c2

 39. (a)  (b)

f (x) = sin x,
−p ≤ x ≤ p
Left-hand 1

–1

x

y

c4c2 pc3 = 0c1 = −p

 

f (x) = sin x,
−p ≤ x ≤ p
Right-hand 1

−1

x

y

c3c1−p c4 = pc2 = 0

  (c)

f (x) = sin x,
−p ≤ x ≤ p
Midpoint 1

−1

x

y

c2c1

c3 c4
−p pp�2

−p�2

ADDITIONAL AND ADVANCED EXERCISES, pp. 244–247

 1. The function is constant on the interval.

 3. The extreme points will not be at the end of an open interval.

 5. (a)  A local minimum at x = -1, points of inlection at x = 0 

and x = 2

  (b) A local maximum at x = 0 and local minima at x = -1 and 

   x = 2, points of inlection at x =
1 { 27

3

 9. No  11. a = 1, b = 0, c = 1  13. Yes

 15. Drill the hole at y = h>2.  

 17. r =
RH

2(H - R)
 for H 7 2R, r = R if H … 2R  

 19. 
12
5

 and 5

 21. (a) 
c - b

2e
 (b) 

c + b

2
 (c) 

b2 - 2bc + c2 + 4ae

4e
 

  (d) 
c + b + t

2

 23. m0 = 1 -
1
q , m1 =

1
q

 25. (a) k = -38.72 (b) 25 ft

 27. Yes, y = x + C  29. y0 =
222

3
 b3>4  33. 3

Chapter 5

SECTION 5.1, pp. 256–258

 1. (a) 0.125 (b) 0.21875 (c) 0.625 (d) 0.46875

 3. (a) 1.066667 (b) 1.283333 (c) 2.666667 (d) 2.083333

 5. 0.3125, 0.328125  7. 1.5, 1.574603

 9. (a) 245 cm (b) 245 cm  11. (a) 3490 ft (b) 3840 ft

 13. (a) 74.65 ft > sec (b) 45.28 ft > sec (c) 146.59 ft

 15. 
31
16

  17. 1

 19. (a) Upper = 758 gal, lower = 543 gal

 (b) Upper = 2363 gal, lower = 1693 gal

  (c) ≈31.4 h, ≈32.4 h

 21. (a) 2 (b) 222 ≈ 2.828 (c) 8 sinap
8
b ≈ 3.061

  (d)  Each area is less than the area of the circle, p. As n  

increases, the polygon area approaches p.

SECTION 5.2, pp. 264–265

 1. 
6(1)

1 + 1
+

6(2)

2 + 1
= 7

 3. cos(1)p + cos(2)p + cos(3)p + cos(4)p = 0

 5. sin p - sin 
p

2
+ sin 

p

3
=
23 - 2

2

 7. All of them  9. b

 11. a
6

k = 1

 k  13. a
4

k = 1

 
1

2k
  15. a

5

k = 1

 (-1)k + 1 
1
k

 17. (a) -15 (b) 1 (c) 1 (d) -11 (e) 16

 19. (a) 55 (b) 385 (c) 3025  21. -56  23. -73 

 25. 240  27. 3376 29. (a) 21 (b) 3500 (c) 2620

 31. (a) 4n (b) cn (c) (n2 - n)>2  33. 2600  35. -223

 41. 1.2

 43. 
2
3

-
1
2n

-
1

6n2
, 

2
3

 45. 12 +
27n + 9

2n2
, 12

 47. 
5
6

+
6n + 1

6n2
, 

5
6

 49. 
1
2

+
1
n +

1

2n2
, 

1
2

SECTION 5.3, pp. 274–277

 1.  L
2

0

x2 dx  3.  L
5

-7

(x2 - 3x) dx  5.  L
3

2

 
1

1 - x
 dx

 7.  L
0

-p>4 sec x dx

 9. (a) 0 (b) -8 (c) -12 (d) 10 (e) -2 (f) 16

11. (a) 5 (b) 523 (c) -5 (d) -5  

 13. (a) 4 (b) -4  15. Area = 21 square units
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 17. Area = 9p>2 square units  19. Area = 2.5 square units

 21. Area = 3 square units  23. b2>4  25. b2 - a2

 27. (a) 2p (b) p  29. 1>2  31. 3p2>2 33. 7>3
 35. 1>24  37. 3a2>2  39. b>3  41. -14

 43. -2  45. -7>4  47. 7  49. 0

 51. Using n subintervals of length ∆x = b>n and right-endpoint 

values:

Area = L
b

0

3x2 dx = b3

 53. Using n subintervals of length ∆x = b>n and right-endpoint 

values:

Area = L
b

0

2x dx = b2

 55. av(ƒ) = 0  57. av(ƒ) = -2  59. av(ƒ) = 1

 61. (a) av(g) = -1>2 (b) av(g) = 1 (c) av(g) = 1>4
 63. c (b - a)  65. b3>3 - a3>3  67. 9

 69. b4>4 - a4>4  71. a = 0 and b = 1 maximize the integral.

 73. Upper bound = 1, lower bound = 1>2
 75. For example,  L

1

0

 sin (x2) dx …  L
1

0

 dx = 1

 77.  L
b

a

ƒ(x) dx Ú  L
b

a

0 dx = 0  79. Upper bound = 1>2
SECTION 5.4, pp. 287–289

 1. -10>3  3. 124>125  5. 753>16  7. 1  9. 223

 11. 0  13. -p>4  15. 1 -
p

4
  17. 

2 - 12

4
  19. -8>3

 21. -3>4  23. 22 - 24 8 + 1  25. -1  27. 16

 29. 1>2  31. 226 - 25  33. 1cos2x2 a 1

21x
b   

 35. 4t5  37. 3  39. 21 + x2  41. -  
1
2

 x-1>2 sin x  

43. 0  45. 1  47. 28>3  

 49. 1>2  51. p  53. 
22p

2
  

 55. d, since y′ =
1
x  and y(p) = L

p

p

 
1
t

 dt - 3 = -3

 57. b, since y′ = sec x and y(0) = L
0

0

sec t dt + 4 = 4

 59. y = L
x

2

sec t dt + 3  61. 
2
3

 bh  63. $9.00

 65. (a) T(0) = 70°F, T(16) = 76°F, T(25) = 85°F
  (b) av(T ) = 75°F
 67. 2x - 2  69. -3x + 5

 71. (a)  True. Since ƒ is continuous, g is diferentiable by Part 1 of 

the Fundamental Theorem of Calculus.

 (b) True: g is continuous because it is diferentiable.

 (c) True, since g′(1) = ƒ(1) = 0.

 (d) False, since g″(1) = ƒ′(1) 7 0.

 (e) True, since g′(1) = 0 and g″(1) = ƒ′(1) 7 0.

 (f) False: g″(x) = ƒ′(x) 7 0, so g″ never changes sign.

  (g)  True, since g′(1) = ƒ(1) = 0 and g′(x) = ƒ(x) is an  

increasing function of x (because ƒ′(x) 7 0).

 73. (a) y =
ds

dt
=

d

dtL
t

0

ƒ(x) dx = ƒ(t) 1 y(5) = ƒ(5) = 2 m>sec

 (b)  a = df>dt is negative, since the slope of the tangent line at 

t = 5 is negative.

 (c) s = L
3

0

ƒ(x) dx =
1
2

 (3)(3) =
9

2
 m, since the integral is the 

   area of the triangle formed by y = ƒ(x), the x-axis, and 

x = 3.

 (d)  t = 6, since after t = 6 to t = 9, the region lies below the 

x-axis.

 (e)  At t = 4 and t = 7, since there are horizontal tangents 

there.

 (f)  Toward the origin between t = 6 and t = 9, since the veloc-

ity is negative on this interval. Away from the origin between 

t = 0 and t = 6, since the velocity is positive there.

  (g)  Right or positive side, because the integral of ƒ from 0 to 9 is 

positive, there being more area above the x-axis than below.

SECTION 5.5, pp. 295–296

 1. 
1
6

 (2x + 4)6 + C  3. -  

1
3

 (x2 + 5)-3 + C

 5. 
1
10

 (3x2 + 4x)5 + C  7. -  
1
3

 cos 3x + C

 9. 
1
2

 sec 2t + C  11. -6(1 - r3)1>2 + C

 13. 
1
3

 (x3>2 - 1) -
1
6

 sin (2x3>2 - 2) + C

 15. (a) -  
1
4

 (cot2 2u) + C (b) -  
1
4

 (csc2 2u) + C

 17. -  
1
3

 (3 - 2s)3>2 + C  19. -  
2
5

 (1 - u2)5>4 + C

 21. 1-2>11 + 2x22 + C  23. 
1
3

 tan (3x + 2) + C

 25. 
1
2

 sin6 ax

3
b + C  27. a r3

18
- 1b6

+ C

 29. -  
2
3

 cos (x3>2 + 1) + C  31. 
1

2 cos (2t + 1)
+ C

 33. -sin a1
t

- 1b + C  35. -  
sin2 (1>u)

2
+ C

 37. 
2
3

 (1 + x)3>2 - 2(1 + x)1>2 + C  39. 
2
3

 a2 -
1
xb3>2

+ C

 41. 
2
27

 a1 -
3

x3
b3>2

+ C  43. 
1
12

 (x - 1)12 +
1
11

 (x - 1)11 + C

 45. -  
1
8

 (1 - x)8 +
4
7

 (1 - x)7 -
2
3

 (1 - x)6 + C

 47. 
1
5

 (x2 + 1)5>2 -
1
3

 (x2 + 1)3>2 + C  49. 
-1

4 (x2 - 4)2
+ C

 51. (a) -  
6

2 + tan3 x
+ C (b) -  

6

2 + tan3 x
+ C 

  (c) -  
6

2 + tan3 x
+ C

 53. 
1
6

 sin 23(2r - 1)2 + 6 + C  55. s =
1
2

 (3t2 - 1)4 - 5

 57. s = 4t - 2 sin a2t +
p

6
b + 9

 59. s = sin a2t -
p

2
b + 100t + 1  61. 6 m
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SECTION 5.6, pp. 303–306

 1. (a) 14>3 (b) 2>3  3. (a) 1>2 (b) -1>2
 5. (a) 15>16 (b) 0  7. (a) 0 (b) 1>8  9. (a) 4 (b) 0

 11. (a) 506>375 (b) 86,744>375  13. (a) 0 (b) 0

 15. 223  17. 3>4  19. 35>2 - 1  21. 3  23. p>3
 25. 16>3  27. 25>2  29. p>2  31. 128>15  33. 4>3  

 35. 5>6  37. 38>3  39. 49>6  41. 32>3  43. 48>5  

 45. 8>3  47. 8  49. 5>3 (There are three intersection points.)  

 51. 18  53. 243>8  55. 8>3  57. 2  59. 104>15  

 61. 56>15  63. 4  65. 
4
3

-
4
p  67. p>2  69. 2  

 71. 1>2  73. 1  

 75. (a) 1{2c, c2 (b) c = 42>3 (c) c = 42>3
 77. 11>3  79. 3>4  81. Neither  83. F(6) - F(2)

 85. (a) -3 (b) 3  87. I = a>2
PRACTICE EXERCISES, pp. 307–309

 1. (a) About 680 ft (b) h (feet)

   

100

0 2 4 6 8

200
300
400
500
600
700

t (sec)

h (feet)

 3. (a) -1>2 (b) 31 (c) 13 (d) 0

 5.  L
5

1

(2x - 1)-1>2 dx = 2  7.  L
0

-p

cos 
x

2
 dx = 2

 9. (a) 4 (b) 2 (c) -2 (d) -2p (e) 8>5
 11. 8>3  13. 62  15. 1  17. 1>6  19. 18  

 21. 9>8  23. 
p2

32
+
22

2
- 1  25. 4  27. 

822 - 7

6

 29. Min: -4, max: 0, area: 27>4  31. 6>5  

 35. y = L
x

5

asin t
t
b  dt - 3  37. -4(cos x)1>2 + C  

 39. u2 + u + sin (2u + 1) + C  41. 
t3

3
+

4
t

+ C  

 43. -  
1
3

 cos (2t3>2) + C  45. 
1

4(sin 2u + cos 2u)2
+ C  

 47. 16  49. 2  51. 1  53. 8  55. 2723>160  

 57. p>2  59. 23  61. 623 - 2p  63. -1  65. 2

 67. 1  69. (a) b (b) b  73. 25°F  

 75. 22 + cos3 x  77. 
-6

3 + x4

 79. Yes  81. -21 + x2  

 83.  Cost ≈ $10,899 using a lower sum estimate

ADDITIONAL AND ADVANCED EXERCISES, pp. 310–312

 1. (a) Yes (b) No  5. (a) 1>4 (b) 23 12

 7. ƒ(x) =
x

2x2 + 1
  9. y = x3 + 2x - 4  

11. 36>5 13. 
1
2

-
2

p

y = −4

y = x2�3

−8 −4 3

4

2

−4

0
x

y  

t

y

y = sin pt

y = t

1

1 20

−1

 15. 13>3
  

y = 2

y = 1 y = 1 − x2

x

y

−2 −1 1 2

2

 17. 1>2  19. 1>6  

 21.  L
1

0

ƒ(x) dx  23. (b) pr2

 25. (a) 0 (b) -1

 (c) -p (d) x = 1

 (e) y = 2x + 2 - p

 (f) x = -1, x = 2

  (g) 3-2p, 04
 27. 2>x  29. 

sin 4y

1y
-

sin y

21y
  

Chapter 6

SECTION 6.1, pp. 321–325

 1. 16  3. 16>3  5. (a) 223 (b) 8  7. (a) 60 (b) 36

 9. 8p  11. 10  13. (a) s2h (b) s2h  15. 8>3
 17. 

2p
3

  19. 4 - p  21. 
32p

5
  23. 36p  25. p

 27. pap
2

+ 222 -
11
3
b   29. 2p  31. 2p

33. 4p ln 4  35. p2 - 2p  37. 
2p
3

  39. 
117p

5

41. p(p - 2)  43. 
4p
3

  45. 8p  47. 
7p
6

 49. (a) 8p  (b) 
32p

5
  (c) 

8p
3

  (d) 
224p

15

 51. (a) 
16p

15
 (b) 

56p

15
 (c) 

64p

15
  53. V = 2a2bp2

 55. (a) V =
ph2(3a - h)

3
 (b) 

1
120p

  m>sec

 59. V = 3308 cm3  61. 
4 - b + a

2

SECTION 6.2, pp. 330–332

 1. 6p  3. 2p  5. 14p>3  7. 8p  9. 5p>6
 11. 

7p

15
  13. (b) 4p  15. 

16p

15
 1322 + 52

 17. 
8p
3

  19. 
4p
3

  21. 
16p

3

 23. (a) 16p (b) 32p (c) 28p

 (d) 24p (e) 60p  (f) 48p

 25. (a) 
27p

2
 (b) 

27p
2

 (c) 
72p

5
 (d) 

108p

5
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 27. (a) 
6p

5
 (b) 

4p

5
 (c) 2p (d) 2p

 29. (a) About the x-axis: V =
2p

15
 ; about the y-axis: V =

p

6

  (b) About the x-axis: V =
2p

15
 ; about the y-axis: V =

p

6

 31. (a) 
5p
3

 (b) 
4p
3

 (c) 2p (d) 
2p
3

 33. (a) 
4p

15
 (b) 

7p
30

  35. (a) 
24p

5
 (b) 

48p

5

 37. (a) 
9p

16
 (b) 

9p

16

 39. Disk: 2 integrals; washer: 2 integrals; shell: 1 integral

 41. (a) 
256p

3
 (b) 

244p
3

  45. 2

SECTION 6.3, pp. 337–338

 1. 12  3. 
53
6

  5. 
123
32

  7. 
99

8
  9. 

53
6

  11. 2

 13. (a)  L
2

-1

21 + 4x2 dx (c) ≈6.13

 15. (a)  L
p

0

21 + cos2 y dy (c) ≈3.82

 17. (a)  L
3

-1

21 + (y + 1)2 dy (c) ≈9.29

 19. (a)  L
p>6

0

 sec x dx (c) ≈0.55

 21. (a) y = 1x from (1, 1) to (4, 2) 

  (b)  Only one. We know the derivative of the function and the 

value of the function at one value of x.

 23. 1  27. Yes, ƒ(x) = {x + C where C is any real number.

 33.  L
x

0

21 + 9t dt, 
2
27

 (103>2 - 1)

SECTION 6.4, pp. 342–343

 1. (a) 2pL
p>4

0

 (tan x) 21 + sec4 x dx (c) S ≈ 3.84

 (b) 

0.2 0.4 0.6 0.8

0.2

0

0.4

0.6

0.8

1

x

y

y = tan x

 3. (a) 2pL
2

1

 
1
y 21 + y-4 dy (c) S ≈ 5.02

 (b) 

0.5 0.6 0.7 0.8 0.9 1

1.2

1

1.4

1.6

1.8

2

xy = 1

x

y

 5. (a) 2pL
4

1

(3 - x1>2)221 + (1 - 3x-1>2)2 dx (c) S ≈ 63.37

 (b) 

1 2 3 4
1

2

3

4

y

x1�2 
+ y1�2 = 3

x

 7. (a) 2pL
p>3

0

a   L
y

0

 tan t dtb  sec y dy (c)  s ≈ 2.08

 (b) 

0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

y

x

x = tan t dt
y

L0

 9. 4p25  11. 3p25  13. 98p>81  15. 2p

 17. p 128 - 12>9  19. 35p25>3  21. (2p>3)1222 - 12
 23. 253p>20  27. Order 226.2 liters of each color.

SECTION 6.5, pp. 349–353

 1. 116 J  3. 400 N>m  5. 4 cm, 0.08 J

 7. (a) 7238 lb > in. (b) 905 in.-lb, 2714 in.-lb

 9. 780 J  11. 72,900 ft-lb  13. 490 J

 15. (a) 1,497,600 ft-lb (b) 1 hr, 40 min

  (d)  At 62.26 lb>ft3: a) 1,494,240 ft-lb b) 1 hr, 40 min  

At 62.59 lb>ft3: a) 1,502,160 ft-lb b) 1 hr, 40.1 min

 17. 37,306 ft-lb  19. 7,238,299.47 ft-lb  21. 2446.25 ft-lb

 23. 15,073,099.75 J  27. 85.1 ft-lb  29. 151.3 J

 31. 91.32 in.-oz  33. 5.144 * 1010 J  35. 1684.8 lb

 37. (a) 6364.8 lb (b) 5990.4 lb  39. 1164.8 lb  41. 1309 lb

 43. (a) 12,480 lb (b) 8580 lb (c) 9722.3 lb

 45. (a) 93.33 lb (b) 3 ft  47. 
wb

2

 49. No. The tank will overlow because the movable end will have 

moved only 3 

1
3  ft by the time the tank is full.



 Chapter 7: Answers to Odd-Numbered Exercises A-27

SECTION 6.6, pp. 363–365

 1. M = 14>3,  x = 93>35  3. M = ln 4,  x = (3 - ln 4)>(ln 4)

 5. M = 13,  x = 41>26  7. x = 0, y = 12>5
 9. x = 1, y = -3>5  11. x = 16>105, y = 8>15

 13. x = 0, y = p>8  15. (a) (4>p, 4>p) (b) (0, 4>p)

 17. x = 7, y =
ln 16

12

 19. x = 5>7, y = 10>33. (x)4 6 y, so the center of mass is outside 

the region.

 21. x = 3>2, y = 1>2
 23. (a) 

224p
3

 (b) x = 2, y = 0

 (c) 

(2, 0)
x

y

y = Îx

4

y = − Îx

4

4

−4

0 1 4

 27. x = y = 1>3  29. x = a>3, y = b>3  31. 13d>6
 33. x = 0, y =

ap

4
  35. x = 1>2, y = 4

 37. x = 6>5, y = 8>7  39. V = 32p, S = 3222p  43. 4p2

 45. x = 0, y =
2a
p   47. x = 0, y =

4b

3p

 49. 22pa3(4 + 3p)>6  51. x =
a

3
, y =

b

3

PRACTICE EXERCISES, pp. 366–368

 1. 
9p

280
  3. p2  5. 

72p

35

 7. (a) 2p (b) p (c) 12p>5 (d) 26p>5
 9. (a) 8p (b) 1088p>15 (c) 512p>15 

 11. p1323 - p2>3  

13. (a) 16p>15 (b) 8p>5 (c) 8p>3 (d) 32p>5  

 15. 
28p

3
 ft3  17. (p>3)(a2 + ab + b2)h  19. 

10
3

  21. 
285

5

 23. 28p22>3  25. 4p  27. 4640 J

 29. 
w

2
 (2ar - a2)   31. 418,208.81 ft-lb  

 33. 22,500p ft@lb, 257 sec  35. (a) 128 ft-lb (b) 219.6 ft-lb

37. x = 0, y = 8>5  39. x = 3>2, y = 12>5  

 41. x = 9>5, y = 11>10  43. 332.8 lb  45. 2196.48 lb

ADDITIONAL AND ADVANCED EXERCISES, pp. 368–369

 1. ƒ(x) = A
2x - a

p   3. ƒ(x) = 2C2 - 1 x + a, where C Ú 1

 5. 
p

30 12
  7. 28 >3  9. 

4h23mh

3

 11. x = 0, y =
n

2n + 1
, (0, 1>2)

 15. (a) x = y = 4(a2 + ab + b2)>(3p(a + b))

  (b) (2a>p, 2a>p)

 17. ≈2329.6 lb

Chapter 7

SECTION 7.1, pp. 376–378

 1. One-to-one  3. Not one-to-one  5. One-to-one

 7. Not one-to-one  9. One-to-one

 11. D: (0, 14  R: 30, q)

y = f (x)

y = x
y = f

–1
(x)

1

1
x

y

 13. D: 3-1, 14  R: 3-p>2, p>24
y = f (x)

y = x
y = f

–1
(x)

p

2
p

2
–

p

2
–

p

2

–1

1

1

1
x

y

 15.  D: 30, 64  R: 30, 34

3 6

3

6

x

y

y = f (x)

y = f
–1

(x)

y = x

 17. (a)  Symmetric about the 

line y = x

x

y

1

0 1

y = Ë1 – x2

0 # x # 1

 19. ƒ -1(x) = 2x - 1  21. ƒ -1(x) = 23 x + 1

 23. ƒ -1(x) = 2x - 1

 25. ƒ -1(x) = 25 x ; domain: -q 6 x 6 q; range: -q 6 y 6 q
 27. ƒ -1(x) = 52x - 1; domain: -q 6 x 6 q;  

range: -q 6 y 6 q

 29. ƒ -1(x) =
1

2x
 ; domain: x 7 0; range: y 7 0

 31. ƒ  

-1(x) =
2x + 3
x - 1

 ; domain: -q 6 x 6 q, x ≠ 1;

  range: -q 6 y 6 q, y ≠ 2

 33. ƒ  

-1(x) = 1 - 2x + 1; domain: -1 … x 6 q;

 range: -q 6 y … 1

 35. (a) ƒ -1(x) =
x

2
-

3
2

  (b)

x

y

–3/2 0

3

3
–3/2

y = f
–1

(x) =

y = f (x) = 2x + 3

x

2 2

3
–

  (c) 2, 1>2

 37. (a) ƒ -1(x) = -  
x

4
+

5
4

  (b)

x

y

0

5

5

4

5 5

4

y = f
–1

(x) = –     +

y = f (x) = – 4x + 5

x

4 4

5

 (c) -4, -1>4
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 39. (b) 

x

y

1–1–2 2

1

–1

–2

2
y = x3

y = x1/3

  (c)  Slope of ƒ at (1, 1) : 3; slope of g at (1, 1): 1 >3; slope of ƒ at 

(-1, -1): 3; slope of g at (-1, -1): 1 >3
  (d)  y = 0 is tangent to y = x3 at x = 0; x = 0 is tangent to 

y = 23 x at x = 0.

 41. 1 >9  43. 3

 45. (a) ƒ -1(x) =
1
m x

  (b)  The graph of ƒ -1 is the line through the origin with slope  

1 >m.

 47. (a) ƒ -1(x) = x - 1

x

y

1–1–2 2

–2

–1

1

2

y = x + 1

y = x – 1

y = x

  (b)  ƒ -1(x) = x - b. The graph of ƒ -1 is a line parallel to the 

graph of ƒ. The graphs of ƒ and ƒ -1 lie on opposite sides of 

the line y = x and are equidistant from that line.

  (c)  Their graphs will be parallel to one another and lie on 

 opposite sides of the line y = x equidistant from that line.

 51. Increasing, therefore one-to-one; dƒ -1>dx =
1
9

 x-2>3
 53. Decreasing, therefore one-to-one; dƒ -1>dx = -  

1
3

 x-2>3
SECTION 7.2, pp. 385–386

 1. (a) ln 3 - 2 ln 2 (b) 2(ln 2 - ln 3) (c) - ln 2

  (d) 
2
3

 ln 3 (e) ln 3 +
1
2

 ln 2 (f) 
1
2

 (3 ln 3 - ln 2)

 3. (a) ln 5 (b) ln (x - 3) (c) ln (t2)

 5. t = e2>(e2 - 1)  7. 1 >x  9. 2 > t  11. -1>x
 13. 

1
u + 1

  15. 3 >x  17. 2(ln t) + (ln t)2  19. x3 ln x

 21. 
1 - ln t

t2
  23. 

1

x(1 + ln x)2
  25. 

1
x ln x

  27. 2 cos (ln u)

 29. -  
3x + 2

2x(x + 1)
  31. 

2

t(1 - ln t)2
  33. 

tan (ln u)

u

 35. 
10x

x2 + 1
+

1
2(1 - x)

  37. 2x ln � x � - x ln 
� x �

22

 39. lna2
3
b   41. ln � y2 - 25 � + C  43. ln 3

 45. (ln 2)2  47. 
1

ln 4
  49. ln �6 + 3 tan t � + C

 51. ln 2  53. ln 27  55. ln (1 + 2x) + C

 57. a1
2
b2x(x + 1)a1

x
+

1
x + 1

b =
2x + 1

22x(x + 1)

 59. a1
2
bA t

t + 1
 a1

t
-

1
t + 1

b =
1

22t (t + 1)3>2
 61. 2u + 3(sin u)a 1

2(u + 3)
+ cot ub

 63. t(t + 1)(t + 2) c 1
t

+
1

t + 1
+

1
t + 2

d = 3t2 + 6t + 2

 65. 
u + 5
u cos u

  c 1
u + 5

-
1
u

+ tan u d
 67. 

x2x2 + 1

(x + 1)2>3   c 1
x

+
x

x2 + 1
-

2
3(x + 1)

d
 69. 

1
3B3

x(x - 2)

x2 + 1
 a1

x
+

1
x - 2

-
2x

x2 + 1
b

 71. (a) Max = 0 at x = 0, min = - ln 2 at x = p>3
  (b) Max = 1 at x = 1, min = cos (ln 2) at x = 1>2 and x = 2

 73. ln 16  75. (a) Increasing on (0, e-2) and (1, q); decreasing  

on (e-2, 1)  (b) local maximum is 4>e2 at x = e-2; absolute 

minimum is 0 at x = 1; no absolute maximum   77. 4p ln 4   

79. p ln 16  81. (a) 6 + ln 2  (b) 8 + ln 9

 83. (a) x ≈ 1.44, y ≈ 0.36

  (b) 

x

y

0 1 2

1
y =

1
x

(1.44, 0.36)

8 7. y = x + ln � x � + 2  89. (b) 0.00469

SECTION 7.3, pp. 394–397

 1. (a) t = -10 ln 3  (b) t = -  
ln 2
k

  (c) t =
ln .4
ln .2

 3. 4(ln x)2  5. ln 3  7. -5e-5x  9. -7e(5 - 7x)  11. xex

 13. x2ex  15. 2eu cos u  17. 2ue-u2

 sin (e-u2

)  19. 
1 - t

t

 21. 1>(1 + eu)  23. ecos t(1 - t sin t)  25. (sin x)>x
 27. 

yey cos x

1 - yey sin x
  29. 

2e2x - cos (x + 3y)

3 cos (x + 3y)

 31. y′ =
3x2

1 -  cos y
, y″ =

6x(1 -  cos  y)2 - 9x4 sin  y

(1 -  cos  y)3

 33. 
1
3

 e3x - 5e-x + C  35. 1  37. 8e(x + 1) + C

 39. 2  41. 2e2r + C  43. -e-t2

+ C  45. -e1>x + C

 47. e  49. 
1
p esec pt + C  51. 1  53. ln (1 + er) + C

 55. y = 1 - cos (et - 2)  57. y = 2(e-x + x) - 1

 59. 2x  ln 2  61. a ln 5

22s
b52s  63. px(p- 1)

 65. -22 cos u(22 - 1) sin u  67. 7sec u(ln 7)2(sec u tan u)

 69. (3 cos 3t)(2sin 3t)ln 2  71. 
1

u ln 2
  73. 

3
x ln 4
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  75. 
x2

ln 10
+ 3x2 log10 x  77. 

-2
(x + 1)(x - 1)

  79. sin (log7 u) +
1

ln 7
  cos (log7 u)  81. 

1
ln 10

  83. 
1
t

 (log2 3)3log2 t  85. 
1
t
  87. 

5x

ln 5
+ C  89. 

1
2 ln 2

  91. 
1

ln 2
  93. 

6
ln 7

  95. 32760  97. 
3x(23 + 1)

23 + 1
+ C

  99.  322 + 1  101. 
1

ln 10
 a(ln x)2

2
b + C  103. 2(ln 2)2

 105. 
3 ln 2

2
  107. ln 10  109. (ln 10) ln � ln x � + C

 111. ln (ln x), x 7 1  113. - ln x

 115. (x + 1)x a x

x + 1
+ ln (x + 1)b   117. (2t)t aln t

2
+

1
2
b

 119.  (sin x)x(ln sin x + x cot x)  121.  cos xx # xx (1 + ln x)

 123.  
3y - xy ln y

x2 - x
  125. 

1 - xy ln y

x2(1 + ln y)
  127. (1 + ln t)2

 129.  Maximum: 1 at x = 0, minimum: 2 - 2 ln 2 at x = ln 2

 131.  (a) Abs max: 
1
e at x = 1  (b) a2, 

2

e2
b

 133.  Abs max of 1 > (2e) assumed at x = 1>2e  135. 2

 137.  y = ex>2 - 1  139. 
e2 - 1

2e
  141. ln (22 + 1)

 143. (a) 
d

dx
 (x ln x - x + C) = x # 1

x + ln x - 1 + 0 = ln x

(b) 
1

e - 1

 145. (b) � error � ≈ 0.02140

(c) L(x) = x + 1 never overestimates ex.

210

2

4

6

–2 –1
x

y y = e
x

y = x + 1

 147.  2 ln 5  149. (a) 4 + ln 2 (b) a1
2
b(4 + ln 2)

 151.  x ≈ -0.76666

153. (a) L(x) = 1 + (ln 2)x ≈ 0.69x + 1

SECTION 7.4, pp. 405–407

 9. 
2
3

 y3>2 - x1>2 = C  11. ey - ex = C

 13. -x + 2 tan 2y = C  15. e-y + 2e2x = C

 17. y = sin (x2 + C)  19. 
1
3

 ln � y3 - 2 � = x3 + C

 21. 4 ln 11y + 22 = ex2

+ C

 23. (a) -0.00001  (b) 10,536 years  (c) 82%

 25. 54.88 g  27. 59.8 ft  29. 2.8147498 * 1014

 31. (a) 8 years  (b) 32.02 years  33. Yes, y(20) 6 1

 35. 15.28 years  37. 56,562 years

 41. (a) 17.5 min (b) 13.26 min

 43. -3°C  45. About 6693 years   47. 54.62%

 49. ≈15,683 years

SECTION 7.5, pp. 414–415

 1. -1>4  3. 5>7  5. 1>2  7. 1>4  9. -23>7
 11. 5>7  13. 0  15. -16  17. -2  19. 1>4
 21. 2  23. 3  25. -1  27. ln 3  29. 

1
ln 2

  31. ln 2

 33. 1  35. 1>2  37. ln 2  39. -q  41. -1>2
 43. -1  45. 1  47. 0  49. 2  51. 1>e  53. 1

 55. 1>e  57. e1>2  59. 1  61. e3  63. 0  65. +1

 67. 3  69. 1  71. 0  73. q  75. (b) is correct.

 77. (d) is correct.  79. c =
27
10

  81. (b) 
-1
2

  83. -1

 87. (a) y = 1 (b) y = 0, y =
3
2

 89. (a)  We should assign the value 1 to ƒ(x) = (sin x)x to make it 

continuous at x = 0.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

x

y

y = (sin x)
x

  (c)  The maximum value of ƒ(x) is close to 1 near the point 

x ≈ 1.55 (see the graph in part (a)).

SECTION 7.6, pp. 424–428

 1. (a) p>4 (b) -p>3 (c) p>6
 3. (a) -p>6 (b) p>4 (c) -p>3
 5. (a) p>3 (b) 3p>4 (c) p>6
 7. (a) 3p>4 (b) p>6 (c) 2p>3
 9. 1>22  11. -1>23  13. p>2  15. p>2  17. p>2
 19. 0  21. 

-2x

21 - x4
  23. 

22

21 - 2t2

 25. 
1

�2s + 1 �2s2 + s
  27. 

-2x

(x2 + 1)2x4 + 2x2

 29. 
-1

21 - t2
  31. 

-1

22t (1 + t)
  33. 

1

(tan-1 x)(1 + x2)

 35. 
-et

� et �2(et)2 - 1
=

-1

2e2t - 1
  37. 

-2sn

21 - s2
  39. 0

 41. sin-1 x  43. 0  45. 
822

4 + 3p
  47. sin-1   

x

3
+ C

 49. 
1

217
  tan-1  

x

217
+ C  51. 

1

22
  sec-1 ` 5x

22
` + C

 53. 2p>3  55. p>16  57. -p>12

 59. 
3
2

 sin-1  2(r - 1) + C  61. 
22

2
 tan-1 ax - 1

22
b + C

 63. 
1
4

 sec-1 ` 2x - 1
2
` + C  65. p  67. p>12
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  69. 
1
2

 sin-1 y2 + C  71. sin-1 (x - 2) + C  73. p

  75. 
1
2

 tan-1 ay - 1

2
b + C  77. 2p

  79. 
1
2

 ln (x2 + 4) + 2 tan-1 
x

2
+ C

  81. x + ln (x2 + 9) -
10
3

 tan-1 
x

3
+ C

 83. sec-1 � x + 1 � + C  85. esin-1 x + C

  87. 
1
3

 (sin-1 x)3 + C  89. ln � tan-1 y � + C  91. 23 - 1

  93. 
2
3

 tan-1 atan-1 1x

3
 b + C  95. p2>32  97. 5

  99. 2  101. 1  103. 1  109. y = sin-1 x

 111. y = sec-1 x +
2p
3

, x 7 1  113. (b) x = 325

 115. u = cos-1 a 1

23
b ≈ 54.7°

127. p2>2  129. (a) p2>2 (b) 2p

 131. (a) 0.84107 (b) -0.72973 (c) 0.46365

 133. (a)  Domain: all real numbers except those having the form 

  
p

2
+ kp, where k is an integer

   Range: -  
p

2
6 y 6

p

2

x

y

2
3p–

2
3p

2
p–

2
p–

2
p

2
p

y = tan
–1

(tan x)

  (b) Domain: -q 6 x 6 q; Range: -q 6 y 6 q

x

y

–3p –p p 3p

3p

–3p

–p

p

y = tan(tan
–1

 x)

 135. (a) Domain: -q 6 x 6 q;

   Range: 0 … y … p

–2p –p p 2p

y = cos
–1

(cos x)

x

y

  (b) Domain: -1 … x … 1;

   Range: -1 … y … 1

y = cos(cos
–1 

x)

–2

–2

–1

1

2

–1 1 2
x

y

 137. The graphs are identical.

y = 2sin(2tan
–1 

x)

–10

–2

–1

1

2

–5 5 10
x

y

4x

x2 + 1
y =

139.

y = sin
–1 

x

x

y

x
y =

1 – x2  
3

1
y =

1 – x2

SECTION 7.7, pp. 433–436

 1. cosh x = 5>4, tanh x = -3>5, coth x = -5>3, 

sech x = 4>5, csch x = -4>3
 3. sinh x = 8>15, tanh x = 8>17, coth x = 17>8, sech x = 15>17, 

csch x = 15>8
 5. x +

1
x   7. e5x  9. e4x  13. 2 cosh 

x

3

 15. sech22t +
tanh2t

2t
  17. coth z

 19. (ln sech u)(sech u tanh u)  21. tanh3 y   23. 2

 25. 
1

22x(1 + x)
  27. 

1
1 + u

- tanh-1 u

 29. 
1

22t
- coth-12t 31. -sech-1 x  33. 

ln 2

B1 + a1
2
b2u

 35. � sec x �   41. 
cosh 2x

2
+ C  43. 12 sinh ax

2
- ln 3b + C

 45. 7 ln � ex>7 + e-x>7 � + C  47. tanh ax -
1
2
b + C

 49. -2 sech2t + C  51. ln 
5
2

  53. 
3
32

+ ln 2

 55. e - e-1  57. 3 >4  59. 
3
8

+ ln22

 61. ln (2 >3)  63. 
- ln 3

2
  65. ln 3

67. (a) sinh-1(23) (b) ln (23 + 2)

 69. (a) coth-1(2) - coth-1(5>4) (b) a1
2
b  lna1

3
b

 71. (a) -sech-1 a12
13
b + sech-1 a4

5
b

  (b) - lna1 + 21 - (12>13)2

(12>13)
 b + lna1 + 21 - (4>5)2

(4>5)
 b

 = - lna3
2
b + ln (2) = ln (4>3)

 73. (a) 0 (b) 0

 77. (b) A
mg

k
 (c) 8025 ≈ 178.89 ft>sec  79. 2p  81. 

6

5
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 79. y =
ln 2

ln (3>2)
  81. y = ln x - ln 3  83. y =

1
1 - ex

 85. 5  87. 0  89. 1  91. 3>7  93. 0  95. 1

 97. ln 10  99. ln 2  101.  5  103. -q  105. 1

 107. 1  109. (a) Same rate (b) Same rate (c) Faster 

(d) Faster (e) Same rate (f ) Same rate

 111. (a) True (b) False (c) False (d) True (e) True

  (f) True

 113. 1 >3
 115. Absolute maximum = 0 at x = e>2, 

absolute minimum = -0.5 at x = 0.5

 117. 1

 119. 1 >e m > sec

 121. 1>22 units long by 1>2e units high, 

A = 1>22e ≈ 0.43 units2

 123. (a)  Absolute maximum of 2 >e at x = e2; inlection point 

(e8>3, (8>3)e-4>3); concave up on (e8>3, q); concave down 

on (0, e8>3)

5 10 15 20 25

–1.5

–1

–0.5

0.5

x

y

x

ln x
y = Ë

  (b)  Absolute maximum of 1 at x = 0; inlection  

points ({1>22, 1>2e); concave up on

(-q, -1>22) ∪ (1>22, q); concave down on

(-1>22, 1>22)

–3 –2 –1 1 2 3

0.2

0.4

0.6

0.8

1

y = e
–x2

x

y

  (c)  Absolute maximum of 1 at x = 0; inlection point (1, 2 >e); 

concave up on (1, q); concave down on (-q, 1)

–3 –2 –1 1 2 3

–6

–4

–2

y = (1
 
+ x)e

–x

x

y

 125. y = atan-1ax + C

2
b b2

  127. y2 = sin-1 (2 tan x + C)

 129. y = -2 + ln (2 - e-x)  131. y = 4x - 42x + 1

 133. 18,935 years  135. 20(5 - 217) m

ADDITIONAL AND ADVANCED EXERCISES, pp. 445–446

 1. p>2  3. 1>2e  5. ln 2

 7. (a) 1 (b) p>2 (c) p

 9. y′ =
xy - 1y2 - yex(xy + 1)ln y

ex(xy + 1) - xyy ln x
  11. 

1
ln 2

 , 
1

2 ln 2
 , 2 : 1

 13. x = 2  15. 2 >17  19. x =
ln 4
p ,  y = 0  21. (b) 61°

SECTION 7.8, pp. 440–441

 1. (a) Slower (b) Slower (c) Slower (d) Faster

  (e) Slower (f ) Slower (g) Same (h) Slower

 3. (a) Same (b) Faster (c) Same (d) Same

  (e) Slower (f ) Faster (g) Slower (h) Same

 5. (a) Same (b) Same (c) Same (d) Faster

  (e) Faster (f ) Same (g) Slower (h) Faster

 7. d, a, c, b

 9. (a) False (b) False (c) True (d) True

  (e) True (f ) True (g) False (h) True

 13. When the degree of ƒ is less than or equal to the degree of g.

 15. 1, 1

 21. (b) ln (e17000000) = 17,000,000 6 (e17 * 106

)1>106

   = e17 ≈ 24,154,952.75

  (c) x ≈ 3.4306311 * 1015

  (d) They cross at x ≈ 3.4306311 * 1015.

 23. (a) The algorithm that takes O (n log2 n) steps

  (b) 

20 40 60 80 100

500

1000

1500

2000

2500

n

y

y = n
3/2

y = n(log2 n)
2

y = nlog2 n

 25. It could take one million for a sequential search; at most 20 steps 

for a binary search.

PRACTICE EXERCISES, pp. 442–444

 1. -2e-x>5  3. xe4x  5. 
2 sin u cos u

sin2 u
= 2 cot u  7. 

2
(ln 2)x

 9. -8-t(ln 8)  11. 18x2.6

 13. (x + 2)x + 2(ln (x + 2) + 1)  15. -  
1

21 - u2

 17. 
-1

21 - x2 cos-1 x
  19. tan-1(t) +

t

1 + t2
-

1
2t

 21. 
1 - z

2z2 - 1
+ sec-1 z  23. -1

 25. 
2(x2 + 1)

2cos 2x
 c 2x

x2 + 1
+ tan 2x d

 27. 5 c (t + 1)(t - 1)

(t - 2)(t + 3)
d 5 c 1

t + 1
+

1
t - 1

-
1

t - 2
-

1
t + 3

d
 29. 

1

2u
 (sin u)2u  aln2sin u

2
+ u cot ub   31. -cos ex + C

 33. tan (ex - 7) + C  35. etan x + C  37. 
- ln 7

3

 39. ln 8  41. ln (9 >25)  43. - 3 ln � cos (ln y) � 4 + C

 45. -  
1
2

 (ln x)-2 + C  47. -cot (1 + ln r) + C

 49. 
1

2 ln 3
 13x22 + C  51. 3 ln 7  53. 15>16 + ln 2

 55. e - 1  57. 1 >6  59. 9 >14

 61. 
1
3

 3(ln 4)3 - (ln 2)34  or  
7
3

 (ln 2)3  63. 
9 ln 2

4
  65. p

 67. p>23  69. sec-1 0 2y 0 + C  71. p>12

 73. sin-1 (x + 1) + C  75. p>2  77. 
1
3

 sec-1 at + 1
3
b + C
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 51. 
1
2

 (x2 + 1) tan-1 x -
x

2
+ C  53. xe 

x 

2

+ C

 55. (2>3)x3>2 arcsin 12x2 + (2>9) x21 - x + (4>9)21 - x + C

 57. (a) p (b) 3p (c) 5p (d) (2n + 1)p

 59. 2p(1 - ln 2)  61. (a) p(p - 2) (b) 2p

 63. (a) 1 (b) (e - 2)p (c) 
p

2
 (e2 + 9)

  (d) x =
1
4

 (e2 + 1), y =
1
2

 (e - 2)

 65. 
1

2p
 (1 - e-2p)   67. u = xn, dy = cos x dx

 69. u = xn, dy = eax dx  73. u = xn, dv = (x + 1)-(1>2) dx

 77. x sin-1 x + cos (sin-1 x) + C

 79. x sec-1 x - ln 0 x + 2x2 - 1 0 + C  81. Yes

 83. (a) x sinh-1 x - cosh (sinh-1 x) + C

  (b) x sinh-1 x - (1 + x2)1>2 + C

SECTION 8.3, pp. 465–466

 1. 
1
2

 sin 2x + C  3. -  
1
4

 cos4 x + C

 5. 
1
3

 cos3 x - cos x + C  7. -cos x +
2
3

 cos3 x -
1
5

 cos5 x + C

 9. sin x -
1
3

 sin3 x + C  11. 
1
4

 sin4 x -
1
6

 sin6 x + C

 13. 
1
2

 x +
1
4

 sin 2x + C  15. 16>35  17. 3p

 19. -4 sin x cos3 x + 2 cos x sin x + 2x + C

 21. -cos4 2u + C  23. 4  25. 2

 27. B
3
2

-
2
3

  29. 
4
5

 a3
2
b5>2

-
18

35
-

2
7

 a3
2
b7>2

  31. 22

 33. 
1
2

 tan2 x + C  35. 
1
3

 sec3 x + C  37. 
1
3

 tan3 x + C

 39. 223 + ln 12 + 23 2  41. 
2
3

 tan u +
1
3

 sec2 u tan u + C

 43. 4>3  45. 2 tan2 x - 2 ln (1 + tan2 x) + C

 47. 
1
4

 tan4 x -
1
2

 tan2 x + ln 0 sec x 0 + C  49. 
4
3

- ln23

 51. -  
1
10

 cos 5x -
1
2

 cos x + C  53. p

 55. 
1
2

 sin x +
1
14

 sin 7x + C

 57. 
1
6

 sin 3u -
1
4

 sin u -
1
20

 sin 5u + C

 59. -  

2
5

 cos5 u + C  61. 
1
4

 cos u -
1
20

 cos 5u + C

 63. sec x - ln 0 csc x + cot x 0 + C  65. cos x + sec x + C

 67. 
1
4

 x2 -
1
4

 x sin 2x -
1
8

 cos 2x + C  69. ln 12 + 232
 71. p2>2  73. x =

4p
3

, y =
8p2 + 3

12p
  75. (p>4)(4 - p)

SECTION 8.4, pp. 470–471

 1. ln 029 + x2 + x 0 + C  3. p>4  5. p>6
 7. 

25
2

 sin-1a t

5
b +

t225 - t2

2
+ C

 9. 
1
2

 ln 2 2x

7
+
24x2 - 49

7
2 + C

Chapter 8

SECTION 8.1, pp. 451–452

 1. ln 5  3. 2 tan x - 2 sec x - x + C

 5. sin-1 x + 21 - x2 + C  7. e-cot z + C

 9. tan-1 (ez) + C  11. p  13. t + cot t + csc t + C

 15. 22  17. 
1
8

 ln (1 + 4 ln2 y) + C

 19. ln 0 1 + sin u 0 + C  21. 2t2 - t + 2 tan-1 a t

2
b + C

 23. 2122 - 12 ≈ 0.82843  25. sec-1 (ey) + C

 27. sin-1 (2 ln x) + C  29. ln 0 sin x 0 + ln 0 cos x 0 + C

 31. 7 + ln 8  33. 1sin-1 y - 21 - y240

-1 =
p

2
- 1

 35. sec-1 ` x - 1
7
` + C  37. 

u3

3
-

u2

2
+ u +

5
2

 ln 0 2u - 5 0 + C

 39. x - ln(1 + ex) + C  41. (1>2)e2x - ex + ln (1 + ex) + C

 43. 2 arctan 12x2 + C  45. 222 - ln 13 + 2222
 47. ln 12 + 232  49. x = 0, y =

1

ln 13 + 2222
 51. xex3

+ C  53. 
1
30

 (x4 + 1)3>2 (3x4 - 2) + C

SECTION 8.2, pp. 457–460

 1. -2x cos (x>2) + 4 sin (x>2) + C

 3. t2 sin t + 2t cos t - 2 sin t + C

 5. ln 4 -
3
4

  7. xex - ex + C

 9. - (x2 + 2x + 2)  e-x + C

 11. y tan-1 (y) - ln21 + y2 + C

 13. x tan x + ln 0 cos x 0 + C

 15. (x3 - 3x2 + 6x - 6)ex + C  17. (x2 - 7x + 7)ex + C

 19. (x5 - 5x4 + 20x3 - 60x2 + 120x - 120)ex + C

 21. 
1
2

  (-eu cos u + eu sin u) + C

 23. 
e2x

13
  (3 sin 3x + 2 cos 3x) + C

 25.  
2
3

  123s + 9 e23s + 9 - e23s + 92 + C

 27.  
p23

3
- ln (2) -

p2

18

 29.  
1
2

  3-x cos (ln x) + x sin (ln x)4 + C

 31. 
1
2

 ln 0 sec x2 + tan x2 0 + C

 33.  
1
2

 x2 (ln x)2 -
1
2

 x2 ln x +
1
4

 x2 + C

 35.  -
1
x ln x -

1
x + C  37. 

1
4

 ex4

+ C

 39.  
1
3

 x2 (x2 + 1)3>2 -
2
15

 (x2 + 1)5>2 + C

 41.  -  
2
5

 sin 3x sin 2x -
3

5
 cos 3x cos 2x + C

 43.  
2
9

 x3>2 (3 ln x - 2) + C

 45.  22x sin2x + 2 cos 2x + C

 47.  
p2 - 4

8
  49. 

5p - 323

9
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 11. 7J2y2 - 49

7
- sec-1ay

7
b R + C  13. 

2x2 - 1
x + C

 15. -29 - x2 + C  17. 
1
3

 (x2 + 4)3>2 - 42x2 + 4 + C

 19. 
-224 - w2

w + C  21. sin-1 x - 21 - x2 + C

 23. 423 -
4p
3

  25. -  
x

2x2 - 1
+ C

 27. -  
1
5

  a21 - x2

x  b5

+ C  29. 2 tan-1 2x +
4x

(4x2 + 1)
+ C

 31. 
1
2

 x2 +
1
2

 ln 0 x2 - 1 0 + C  33. 
1
3

  a y

21 - y2
b3

+ C

 35. ln 9 - ln 11 + 2102  37. p>6  39. sec-1 0 x 0 + C

 41. 2x2 - 1 + C  43. 
1
2

 ln 021 + x4 + x2 0 + C

 45. 4 sin-1 
2x

2
+ 2x 24 - x + C

 47. 
1
4

 sin-1 2x -
1
4

 2x 21 - x (1 - 2x) + C

 49. (9>2) arcsin ax + 1
3
b + (1>2)(x + 1)28 - 2x - x2 + C

 51. 2x2 + 4x + 3 - arcsec (x + 2) + C

 53. y = 2 J2x2 - 4

2
- sec-1ax

2
b R

 55. y =
3
2

 tan-1ax

2
b -

3p
8

  57. 3p>4
 59. (a) 

1
12

 (p + 623 - 12)

  (b) x =
323 - p

41p + 623 - 122 , y =
p2 + 1223p - 72

121p + 623 - 122
 61. (a) -

1
3

 x2 (1 - x2)3>2 -
2
15

 (1 - x2)5>2 + C

 (b) -  

1
3

 (1 - x2)3>2 +
1
5

 (1 - x2)5>2 + C

  (c) 
1
5

 (1 - x2)5>2 -
1
3

 (1 - x2)3>2 + C

 63. 23 -
22

2
+

1
2

 ln a2 + 23

22 + 1
 b

SECTION 8.5, pp. 477–479

 1. 
2

x - 3
+

3
x - 2

  3. 
1

x + 1
+

3

(x + 1)2

 5. 
-2
z +

-1

z2
+

2
z - 1

  7. 1 +
17

t - 3
+

-12
t - 2

 9. 
1
2

 3 ln 0 1 + x 0 - ln 0 1 - x 0 4 + C

 11. 
1
7

 ln 0 (x + 6)2(x - 1)5 0 + C  13. (ln 15)>2
 15. -  

1
2

  ln 0 t 0 +
1
6

  ln 0 t + 2 0 +
1
3

  ln 0 t - 1 0 + C  17. 3 ln 2 - 2

 19. 
1
4

  ln 2 x + 1
x - 1

2 -
x

2(x2 - 1)
+ C  21. (p + 2 ln 2)>8

 23. tan-1 y -
1

y2 + 1
+ C

 25. - (s - 1)-2 + (s - 1)-1 + tan-1 s + C

 27. 
2
3

 ln � x - 1 � +
1
6

 ln � x2 + x + 1 � - 23 tan-1 a2x + 1

23
b + C

 29. 
1
4

 ln ` x - 1
x + 1

` +
1
2

 tan-1 x + C

 31. 
-1

u2 + 2u + 2
+ ln (u2 + 2u + 2) - tan-1 (u + 1) + C

 33. x2 + ln 2 x - 1
x

2 + C

 35. 9x + 2 ln 0 x 0 +
1
x + 7 ln 0 x - 1 0 + C

 37. 
y2

2
- ln 0 y 0 +

1
2

 ln (1 + y2) + C  39. ln aet + 1

et + 2
b + C

 41. 
1
5

 ln 2 sin y - 2

sin y + 3
2 + C

 43. 
(tan-1 2x)2

4
- 3 ln � x - 2 � +

6
x - 2

+ C

 45. ln ` 2x - 1

2x + 1
` + C

 47. 221 + x + ln ` 2x + 1 - 1

2x + 1 + 1
` + C

 49. 
1
4

 ln ` x4

x4 + 1
` + C

 51. 
1

22
 ln ` 22 cos u + 1

22 cos u - 1
` +

1
2

 ln ` 1 - cos u
1 + cos u

` + C

 53. 421 + 1x + 2 ln ` 21 + 1x - 1

21 + 1x + 1
` + C

 55. 
1
3

 x3 - 2x2 + 5x - 10 ln 0 x + 2 0 + C

 57. 
1

ln 2
 ln (2x + 2-x) + C  59. 

1
4

 ln ` x - 1
x + 1

` -
1
2

 arctan x + C

 61. 
1
2

 ln 0 (ln x + 1)(ln x + 3) 0 + C

 63. ln 0 x + 2x2 - 1 0 + C

 65. 
2
9

 x3(x3 + 1)3>2 -
4
45

 (x3 + 1)5>2 + C

 67. x = ln 0 t - 2 0 - ln 0 t - 1 0 + ln 2

 69. x =
6t

t + 2
- 1  71. 3p ln 25

 73. ln (3) -
1
2

  75. 1.10

 77. (a) x =
1000e4t

499 + e4t
 (b) 1.55 days

SECTION 8.6, pp. 483–485

 1. 
2

23
  atan-1A

x - 3
3

 b + C

 3. 2x - 2  a2(x - 2)

3
+ 4b + C  5. 

(2x - 3)3>2(x + 1)

5
+ C

 7. 
-29 - 4x

x -
2
3

  ln 2 29 - 4x - 3

29 - 4x + 3
2 + C

 9. 
(x + 2)(2x - 6)24x - x2

6
+ 4 sin-1 ax - 2

2
b + C

 11. -  
1

27
  ln 2 27 + 27 + x2

x
2 + C
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 27. (a) ≈0.00021 (b) ≈1.37079 (c) ≈0.015,

 31. (a) ≈5.870 (b) 0ET 0 … 0.0032

 33. 21.07 in.  35. 14.4  39. ≈28.7 mg

SECTION 8.8, pp. 503–505

 1. p>2  3. 2  5. 6  7. p>2  9. ln 3  11. ln 4

 13. 0  15. 23  17. p  19. lna1 +
p

2
b

 21. -1  23. 1 25. -1>4 27. p>2  29. p>3
 31. 6  33. ln 2  35. Diverges  37. Diverges

 39. Diverges  41. Diverges  43. Converges

 45. Converges  47. Diverges  49. Converges

 51. Converges  53. Diverges  55. Converges

 57. Converges  59. Diverges  61. Converges

 63. Diverges  65. Converges  67. Converges

 69. (a) Converges when p 6 1 (b) Converges when p 7 1

 71. 1  73. 2p  75. ln 2

 77. (a) 1 (b) p>3 (c) Diverges

 79. (a) p>2 (b) p  81. (b) ≈0.88621

 83. (a)

5 10 15 20 250
x

y

Si(x) =
sin t

t
dt

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

L0

  
5 10 15 20 25

−0.2

0.2

0

0.4

0.6

0.8

1

t

y

y =
sin t

t

  (b) p>2
 85. (a) 

−3 −2 −1 1 2 3

0.1

0

0.2

0.3

0.4

x

y

  (b) ≈0.683, ≈0.954, ≈0.997

 91. ≈0.16462

SECTION 8.9, pp. 516–518

 1. No  3. Yes  5. Yes  7. Yes  11. ≈0.537

 13. ≈0.688  15. ≈0.0502  17. 221  19. 
1
2

 ln 2

 21. 
1
p , 

1
p atan- 1 2 -

p

4
b ≈ 0.10242

 25. mean =
8
3
≈ 2.67, median = 28 ≈ 2.83

 27. mean = 2, median = 22 ≈ 1.41

 29. P1X 6 1
22 ≈ 0.3935

 31. (a) ≈0.57, so about 57 in every 100 bulbs will fail.

  (b) ≈832 hr

 33. ≈60 hydra  35. (a) ≈0.393 (b) ≈0.135 (c) 0

  (d)  The probability that any customer waits longer than 3 minutes 

is 1 - (0.997521)200 ≈ 0.391 6 1>2. So the most likely 

outcome is that all 200 would be served within 3 minutes.

 37. $10, 256  39. ≈323, ≈262  41. ≈0.89435

 43. (a) ≈16% (b) ≈0.23832  45. ≈618 females

 13. 24 - x2 - 2 ln 2 2 + 24 - x2

x
2 + C

 15. 
e2t

13
  (2 cos 3t + 3 sin 3t) + C

 17. 
x2

2
 cos-1 x +

1
4

 sin-1 x -
1
4

 x21 - x2 + C

 19. 
x3

3
 tan-1 x -

x2

6
+

1
6

 ln (1 + x2) + C

 21. -  
cos 5x

10
-

cos x
2

+ C

 23. 8 c sin (7t>2)

7
-

sin (9t>2)

9
d + C

 25. 6 sin (u>12) +
6
7

 sin (7u>12) + C

 27. 
1
2

  ln (x2 + 1) +
x

2 (1 + x2)
+

1
2

  tan-1 x + C

 29. ax -
1
2
b  sin-12x +

1
2
2x - x2 + C

 31. sin-12x - 2x - x2 + C

 33. 21 - sin2 t - ln 2 1 + 21 - sin2 t

sin t
2 + C

 35. ln 0 ln y + 23 + (ln y)2 0 + C

 37. ln 0 x + 1 + 2x2 + 2x + 5 0 + C

 39. 
x + 2

2
 25 - 4x - x2 +

9

2
 sin-1 ax + 2

3
b + C

 41. -
sin4 2x cos 2x

10
-

2 sin2 2x cos 2x

15
-

4 cos 2x

15
+ C

 43. 
sin3 2u cos2 2u

10
+

sin3 2u

15
+ C

 45. tan2 2x - 2 ln 0 sec 2x 0 + C

 47. 
(sec px)(tan px)

p +
1
p ln 0 sec px + tan px 0 + C

 49. 
-csc3 x cot x

4
-

3 csc x cot x
8

-
3
8

 ln 0 csc x + cot x 0 + C

 51. 
1
2

 3sec (et - 1) tan (et - 1) +

    ln 0 sec (et - 1) + tan (et - 1) 0 4  +  C

 53. 22 + ln 122 + 12  55. p>3
 57. 2p23 + p22 ln 122 + 232  59. x = 4>3, y = ln22

 61. 7.62  63. p>8  67. p>4
SECTION 8.7, pp. 492–494

 1. I: (a) 1.5, 0 (b) 1.5, 0 (c) 0%

  II: (a) 1.5, 0 (b) 1.5, 0 (c) 0%

 3. I: (a) 2.75, 0.08 (b) 2.67, 0.08 (c) 0.0312 ≈ 3,

  II: (a) 2.67, 0 (b) 2.67, 0 (c) 0%

 5. I: 6.25, 0.5 (b) 6, 0.25 (c) 0.0417 ≈ 4,

  II: (a) 6, 0 (b) 6, 0 (c) 0%

 7. I: (a) 0.509, 0.03125 (b) 0.5, 0.009 (c) 0.018 ≈ 2,

  II: (a) 0.5, 0.002604 (b) 0.5, 0.4794 (c) 0%

 9. I: (a) 1.8961, 0.161 (b) 2, 0.1039 (c) 0.052 ≈ 5,

  II: (a) 2.0045, 0.0066 (b) 2, 0.00454 (c) 0.2%

 11. (a) 1 (b) 2  13. (a) 116 (b) 2

 15. (a) 283 (b) 2  17. (a) 71 (b) 10

 19. (a) 76 (b) 12  21. (a) 82 (b) 8

 23. 15,990 ft3  25. ≈10.63 ft
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 93. -2 cot x - ln 0 csc x + cot x 0 + csc x + C

 95. 
1
12

 ln 2 3 + y

3 - y
2 +

1
6

 tan-1 
y

3
+ C

 97. 
u sin (2u + 1)

2
+

cos (2u + 1)

4
+ C

 99. 
1
4

 sec2 u + C  101. 2 £122 - x23
3

- 222 - x≥ + C

 103. tan-1 (y - 1) + C

 105. 
1
4

 ln � z � -
1
4z

-
1
4

 c 1
2

 ln (z2 + 4) +
1
2

 tan-1 az

2
bd + C

 107. -
1
4
29 - 4t2 + C  109. lnaet + 1

et + 2
b + C

 111. 1>4  113. 
2
3

x3>2 + C  115. -
1
5

 tan-1 (cos 5t) + C

 117. 22r - 2 ln 11 + 2r2 + C

 119. 
1
2

 x2 -
1
2

 ln (x2 + 1) + C

 121. 
2
3

 ln � x + 1 � +
1
6

 ln � x2 - x + 1 � +
1

23
  tan-1 a2x - 1

23
b + C

 123. 
4
7

 11 + 2x27>2 -
8

5
 11 + 2x25>2 +

4
3

 11 + 2x23>2 + C

 125. 2 ln 02x + 21 + x 0 + C

 127. ln x - ln 0 1 +  ln x 0 + C

 129. 
1
2

 xln x + C  131. 
1
2

 ln ` 1 - 21 - x4

x2
` + C

 133. (b) 
p

4
  135. x -

1

22
 tan-1 122 tan x2 + C

ADDITIONAL AND ADVANCED EXERCISES, pp. 522–524

 1. x (sin- 1 x)2 + 2 (sin- 1 x)21 - x2 - 2x + C

 3. 
x2 sin- 1 x

2
+

x21 - x2 -  sin- 1 x

4
+ C

 5. 
1
2

 aln 1t - 21 - t22 - sin- 1 tb + C  7. 0

 9. ln (4) - 1  11. 1  13. 32p>35  15. 2p

 17. (a) p (b) p(2e - 5)

 19. (b) pa8 (ln 2)2

3
-

16 (ln 2)

9
+

16
27
b

 21. ae2 + 1
4

, 
e - 2

2
b

 23. 21 + e2 -  ln a21 + e2

e +
1
eb - 22 +  ln 11 + 222

 25. 
12p

5
  27. a =

1
2

, -
 ln 2

4
  29. 

1
2

6 p … 1

 33. 
2

1 -  tan (x>2)
+ C  35. 1  37. 

23p

9

 39. 
1

22
 ln `  tan (t>2) + 1 - 22

 tan (t>2) + 1 + 22
` + C

 41.  ln ` 1 +  tan  (u>2)

1 -  tan  (u>2)
` + C

 47. ≈61 adults  49. ≈289 shafts

 51. (a) ≈0.977 (b) ≈0.159 (c) ≈0.838

 55. (a) 5LLL, LLD, LDL, DLL, LLU, LUL, ULL, LDD, LDU, 

   LUD, LUU, DLD, DLU, ULD, ULU, DDL, DUL, UDL, 

   UUL, DDD, DDU, DUD, UDD, DUU, UDU, UUD, UUU6
 (c) 7>27 ≈ 0.26 (d) 20>27 ≈ 0.74

PRACTICE EXERCISES, pp. 519–521

 1. (x + 1)(ln (x + 1)) - (x + 1) + C

 3. x tan-1 (3x) -
1
6

  ln (1 + 9x2) + C

 5. (x + 1)2ex - 2(x + 1)ex + 2ex + C

 7. 
2ex sin 2x

5
+

ex cos 2x

5
+ C

 9. 2 ln 0 x - 2 0 - ln 0 x - 1 0 + C

 11. ln 0 x 0 - ln 0 x + 1 0 +
1

x + 1
+ C

 13. -  
1
3

 ln 2 cos u - 1

cos u + 2
2 + C

 15. 4 ln 0 x 0 -
1
2

 ln (x2 + 1) + 4 tan-1 x + C

 17. 
1
16

 ln 2 (y - 2)5(y + 2)

y6
2 + C

 19. 
1
2

 tan-1 t -
23

6
 tan-1 

t

23
+ C

 21. 
x2

2
+

4
3

 ln 0 x + 2 0 +
2
3

 ln 0 x - 1 0 + C

 23. 
x2

2
-

9

2
 ln 0 x + 3 0 +

3
2

 ln 0 x + 1 0 + C

 25. 
1
3

 ln 2 2x + 1 - 1

2x + 1 + 1
2 + C  27. ln 0 1 - e-s 0 + C

 29. -216 - y2 + C  31. -  
1
2

 ln 0 4 - x2 0 + C

 33. ln 
1

29 - x2
+ C  35. 

1
6

 ln 2 x + 3
x - 3

2 + C

 37. -  
cos5 x

5
+

cos7 x
7

+ C  39. 
tan5 x

5
+ C

 41. 
cos u

2
-

cos 11u

22
+ C  43. 421 - cos (t>2) + C

 45. At least 16  47. T = p, S = p  49. 25°F

 51. (a) ≈2.42 gal (b) ≈24.83 mi>gal

 53. p>2  55. 6  57. ln 3  59. 2  61. p>6
 63. Diverges  65. Diverges  67. Converges

 69. 
1
2

 xe2x -
1
4

 e2x + C  71. 2 tan x - x + C

 73. x tan x - ln 0 sec x 0 + C  75. -  
1
3

 (cos x)3 + C

 77. 1 +
1
2

 ln a 2

1 + e2
b   79. 2 ln ` 1 -

1
x ` +

4x + 1

2x2
+ C

 81. 
e2x - 1

e 

x + C  83. 9>4  85. 256>15

 87. -  
1
3

 csc3 x + C

 89. 
2x3>2

3
- x + 22x - 2 ln 12x + 12 + C

 91. 
1
2

 sin-1 (x - 1) +
1
2

 (x - 1)22x - x2 + C
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Chapter 9

SECTION 9.1, pp. 532–534

 1. (d)  3. (a)

 5. 

x

y

 7. y′ = x - y; y(1) = -1

 9. y′ = - (1 + y) sin x; y(0) = 2

y ƒ(  y) =
dy

dx

-3 2

-2 1.5

-1 0

0 -1

1 -0.75

2 0

3 1

21 3

−2

−3

−2−3 −1

2

3

1

x

y

−1

 

 15. y(exact) = -x2, y1 = -2, y2 = -3.3333, y3 = -5

 17. y(exact) = 3ex(x + 2), y1 = 4.2, y2 = 6.216, y3 = 9.697

 19. y(exact) = ex2

+ 1, y1 = 2.0, y2 = 2.0202, y3 = 2.0618

 21. y ≈ 2.48832, exact value is e.

 23. y ≈ -0.2272, exact value is 1>11 - 2252 ≈ -0.2880.

 27. 

 29. 

 

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

 31.

 

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

 11. y′ = 1 + x ey; y(-2) = 2

 13. 

 39. Euler’s method gives y ≈ 3.45835; the exact solution is 

y = 1 + e ≈ 3.71828.

 41. y ≈ 1.5000; exact value is 1.5275.

SECTION 9.2, pp. 538–540

 1. y =
ex + C

x , x 7 0 3. y =
C - cos x

x3
, x 7 0

 5. y =
1
2

-
1
x +

C

x2
, x 7 0 7. y =

1
2

 xex>2 + Cex>2
 9. y = x(ln x)2 + Cx

 11. s =
t3

3(t - 1)4
-

t

(t - 1)4
+

C

(t - 1)4

 13. r = (csc u)(ln � sec u � + C), 0 6 u 6 p>2
 15. y =

3
2

-
1
2

 e-2t 17. y = -  
1
u

 cos u +
p

2u

 19. y = 6e 

x 

2

-
e 

x 

2

x + 1
 21. y = y0  ek t

 23. (b) is correct, but (a) is not. 25. t =
L

R
  ln 2 sec

 27. (a) i =
V

R
-

V

R
 e-3 =

V

R
 (1 - e-3) ≈ 0.95 

V

R
 amp (b) 86%

 29. y =
1

1 + Ce-x 31. y3 = 1 + Cx-3

SECTION 9.3, pp. 545–546

 1. (a) 168.5 m (b) 41.13 sec

 3. s(t) = 4.9111 - e-(22.36>39.92)t2
 5. x2 + y2 = C

x

y

 7. ln � y � -
1
2

y2 =
1
2

x2 + C

x

y

kx2 + y 2 = 1

 9. y = {22x + C

x

y

13. (a) 10 lb >min (b) (100 + t) gal (c) 4a y

100 + t
b  lb>min

  (d) 
dy

dt
= 10 -

4y

100 + t
, y(0) = 50,

   y = 2(100 + t) -
150a1 +

t

100
b4

  (e) Concentration =
y (25)

amt. brine in tank
=

188.6

125
≈ 1.5 lb>gal

 15. y(27.8) ≈ 14.8 lb, t ≈ 27.8 min
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 7. y′ = (y - 1)(y - 2)(y - 3)

  (a)  y = 1 and y = 3 are unstable equilibria and y = 2 is a 

stable equilibrium.

  (b) y″ = (3y2 - 12y + 11)(y - 1)(y - 2)(y - 3) =

  3(y - 1)ay -
6 - 23

3
 b(y - 2)ay -

6 + 23

3
 b(y - 3)

  

6 − Ë3

3
< 1.42

y
0 4

y′ < 0 y′ < 0y′ > 0 y′ > 0

y″ > 0y″ < 0 y″ < 0 y″ < 0y″ > 0 y″ > 0
1 2 3

6 + Ë3

3
< 2.58

  (c) y

x
1 2 3−1

0.5

1

1.5

2.5

3.5

2

3

4

y′ > 0, y″ > 0

y′ < 0, y″ < 0

y′ < 0, y″ > 0

y′ > 0, y″ < 0

y′ > 0, y″ > 0

y′ < 0, y″ < 0

 9. 
dP

dt
= 1 - 2P has a stable equilibrium at P =

1
2

 ;

  
d 2P

dt2
= -2 

dP

dt
= -2(1 - 2P) .

  P

t

−0.5

0.5

1.5

1

0.5 10.25 0.75 1.25 1.751.5

P′ > 0, P″ < 0 

P′ < 0, P″ > 0 

 11. 
dP

dt
= 2P(P - 3) has a stable equilibrium at P = 0 and an

  unstable equilibrium at P = 3; 
d2P

dt2
= 2(2P - 3) 

dP

dt
=  

  4P(2P - 3)(P - 3).

  

P
−1 43210 3.52.50.5−0.5

P′ < 0 P′ > 0 P′ > 0 

P″ < 0P″ < 0 P″ > 0P″ > 0

1.5

  p

t

4

3

2

1

−1

−2

0.1 0.2 0.3 0.4 0.5 0.6 0.7

P′ > 0, P″ > 0 

P′ < 0, P″ < 0 

P′ < 0, P″ > 0 

P′ > 0, P″ < 0 

SECTION 9.4, pp. 552–553

 1. y′ = (y + 2)(y - 3)

  (a)  y = -2 is a stable equilibrium value and y = 3 is an 

 unstable equilibrium.

  (b) y″ = 2(y + 2)ay -
1
2
b(y - 3)

   

y
−4 −2 420

y′ < 0 y′ > 0 y′ > 0 

y″ < 0y ″ < 0 y″ > 0y″ > 0

0.5

  (c) y

2

4

x

−2

−0.5 0.5 1 1.5

y′ > 0, y″ > 0 

y′ < 0, y″ < 0 

y′ < 0, y″  > 0 

y′ > 0, y″ < 0 

y = 1�2

 3.  y′ = y3 - y = (y + 1)y(y - 1)

  (a)  y = -1 and y = 1 are unstable equilibria and y = 0 is a 

stable equilibrium.

  (b)  y″ = (3y2 - 1)y′
    = 3( y + 1)1  y + 1>232y1  y - 1>232(y - 1)

  

y
−1.5 1.50.5−0.5

y′ < 0 y′ < 0 y′ > 0y′ > 0

y″ < 0y″ < 0 y″<0 y″ > 0y″ > 0 y″>0

−
1Ë3

1Ë3

−1 0

  (c) 

x

y

−1.5

−0.5

−0.5 0.5 1 1.5 2 2.5

0.5

1.5

y′ > 0, y″ > 0

y′ < 0, y″ < 0

y′ < 0, y″ > 0

y′ > 0, y″ < 0

y′ > 0, y″ > 0

y′ < 0, y″ < 0

 5. y′ = 2y, y 7 0

  (a) There are no equilibrium values.

  (b) y″ =
1
2

  

0 1 2 3 4

y′ > 0

y″ > 0

y

  (c) y

2.5

5

7.5

12.5

17.5

10

15

x
2 4 6−2 8

y′ > 0
y″ > 0
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 13. Before the catastrophe, the population exhibits logistic growth 

and P(t) increases toward M0 , the stable equilibrium. After 

the catastrophe, the population declines logistically and P(t) 

 decreases toward M1 , the new stable equilibrium.

P

t

P

t

M
1

P
c

M
0

tcatastrophe tcatastrophe

Before Catastrophe After Catastrophe

 15. 
dy

dt
= g -

k
m y2, g, k, m 7 0 and y(t) Ú 0

  Equilibrium: 
dy

dt
= g -

k
m y2 = 0 1 y = A

mg

k

  Concavity: 
d2y

dt2
= -2a k

m yb  
dy

dt
= -2a k

m yb ag -
k
m y2b

  (a) 

dy

dt
> 0

dy

dt

mg

k

< 0

d2y

dt2
< 0

d2y

dt2
> 0

y

yeq = Ä

0

(b) 

y

t

mg

kÄ

  (c) yterminal = A
160

0.005
= 178.9 ft>sec = 122 mph

 17. F = Fp - Fr; ma = 50 - 5 0 y 0 ; dy
dt

=
1
m  (50 - 5 0 y 0 ) . The 

maximum velocity occurs when 
dy

dt
= 0 or y = 10 ft>sec .

 19. Phase line:

  di

dt
> 0

di

dt

V

R

< 0

d2i

dt2
< 0

d2i

dt2
> 0

i

ieq =

0

   If the switch is closed at t = 0, then i(0) = 0, and the graph of 

the solution looks like this:

  

i

t

V

R

  As t S q, i(t) S isteady state =
V

R
.

SECTION 9.5, pp. 556–559

 1. Seasonal variations, nonconformity of the environments, efects 

of other interactions, unexpected disasters, etc.

 3. This model assumes that the number of interactions is propor-

tional to the product of x and y:

  
dx

dt
= (a - by)x,  a 6 0,

  
dy

dt
= ma1 -

y

M
by - nxy = yam -

m

M
 y - nxb .

  Rest points are (0, 0), unstable, and (0, M), stable.

 27. y = e-x (3x3 - 3x2)

x y

0 0

0.1 0.1000

0.2 0.2095

0.3 0.3285

0.4 0.4568

0.5 0.5946

0.6 0.7418

0.7 0.8986

0.8 1.0649

0.9 1.2411

1.0 1.4273

x y

1.1 1.6241

1.2 1.8319

1.3 2.0513

1.4 2.2832

1.5 2.5285

1.6 2.7884

1.7 3.0643

1.8 3.3579

1.9 3.6709

2.0 4.0057

 29. 

 5. (a)  Logistic growth occurs in the absence of the competitor, and 

involves a simple interaction between the species: Growth 

dominates the competition when either population is small, 

so it is diicult to drive either species to extinction.

  (b) a: per capita growth rate for trout

   m: per capita growth rate for bass

   b: intensity of competition to the trout

   n: intensity of competition to the bass

   k1: environmental carrying capacity for the trout

   k2: environmental carrying capacity for the bass

   
a

b
: growth versus competition or net growth of trout

   
m
n : relative survival of bass

  (c) 
dx

dt
= 0 when x = 0 or y =

a

b
-

a

bk1
x, 

   
dy

dt
= 0 when y = 0 or y = k2 -

k2n
m x.

    By picking a>b 7 k2 and m>n 7 k1, we ensure that an 

equilibrium point exists inside the irst quadrant.

PRACTICE EXERCISES, pp. 559–561

 1. y = - lnaC -
2
5

 (x - 2)5>2 -
4
3

 (x - 2)3>2b
 3. tan y = -x sin x - cos x + C

 5. (y + 1)e-y = - ln � x � + C

 7. y = C 
x - 1

x   9. y =
x2

4
 ex>2 + Cex>2

 11. y =
x2 - 2x + C

2x2
  13. y =

e-x + C

1 + ex   15. xy + y3 = C

 17. tan y = -cos x + (1>3) cos3 x + C

 19. ex2

y = (x - 1)ex + C

 21. ln � ln y � = (1>2)x2 ln x - (1>4) x2 + C

 23. y =
2x3 + 3x2 + 6

6(x + 1)2
  25. y =

1
3

  (1 - 4e-x3)

 31. y(3) ≈ 0.9131

 33. (a) 

[−0.2, 4.5] by [−2.5, 0.5]
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  (b)  Note that we choose a small interval of x-values because 

the y-values decrease very rapidly and our calculator cannot 

handle the calculations for x … -1. (This occurs because 

the analytic solution is y = -2 + ln  (2 - e-x) , which has 

an asymptote at x = - ln  2 ≈ -0.69 . Obviously, the Euler 

approximations are misleading for x … -0.7 .)

   

[−1, 0.2] by [−10, 2]

 35. y(exact) =
1
2

 x2 -
3
2

 ; y(2) ≈ 0.4 ; exact value is 
1
2

.

 37. y(exact) = -e(x2 - 1)>2; y(2) ≈ -3.4192; exact value is 

-e3>2 ≈ -4.4817.

41. (a)  y = -1 is stable and y = 1 is unstable.

 (b) 
d2y

dx2
= 2y 

dy

dx
= 2y(y2 - 1)

dy

dx
> 0

dy

dx
< 0

dydy

dx
< 0

dx
> 0

dx2
> 0

d2y

dx2
> 0

d2y d2y

dx2
< 0

d2y

dx2
< 0

y

y = 1

y = 0

y = −1

 (c) y

2  

1

x
1

0
0.5 1.5 2.52

−1

−2

 43. (a) 1 min: 102 gal; 10 min: 120 gal; 60 min: 220 gal

  (b)  S(1) ≈ 12.55 lb, S(10) ≈ 32.22 lb, S(60) ≈ 101.74 lb

ADDITIONAL AND ADVANCED EXERCISES, p. 561

 1. (a)  y = c + ( y0 - c)e-k (A>V )t

  (b) Steady-state solution: yq = c

 5. x2
 (x2 + 2y2) = C

 7. ln 0 x 0 + e-y>x = C

 9. ln 0 x 0 - ln 0 sec ( y>x - 1) + tan ( y>x - 1) 0 = C

Chapter 10

SECTION 10.1, pp. 572–576

 1. a1 = 0, a2 = -1>4, a3 = -2>9, a4 = -3>16

 3. a1 = 1, a2 = -1>3, a3 = 1>5, a4 = -1>7
 5. a1 = 1>2, a2 = 1>2, a3 = 1>2, a4 = 1>2
 7. 1, 

3
2

, 
7
4

, 
15
8

, 
31
16

, 
63
32

, 
127
64

, 
255
128

, 
511

256
, 

1023

512

 9. 2, 1, -  
1
2

, -  
1
4

, 
1
8

, 
1
16

, -  
1
32

, -  
1
64

, 
1

128
, 

1
256

 11. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

 13. an = (-1)n + 1, n Ú 1

 15. an = (-1)n + 1(n)2, n Ú 1 17. an =
2n - 1

3(n + 2)
, n Ú 1

 19. an = n2 - 1, n Ú 1 21. an = 4n - 3, n Ú 1

 23. an =
3n + 2

n!
, n Ú 1 25. an =

1 + (-1)n + 1

2
, n Ú 1

 27. an =
1

(n + 1)(n + 2)
 29. an = sina 2n + 1

1 + (n + 1)2
b

 31. Converges, 2 33. Converges, -1  35. Converges, -5

 37. Diverges 39. Diverges  41. Converges, 1 >2
 43. Converges, 0 45. Converges, 22  47. Converges, 1

 49. Converges, 0 51. Converges, 0  53. Converges, 0

 55. Converges, 1 57. Converges, e7  59. Converges, 1

 61. Converges, 1 63. Diverges  65. Converges, 4

 67. Converges, 0 69. Diverges  71. Converges, e-1

 73. Diverges 75. Converges, 0  77. Diverges

 79. Converges, e2>3 81. Converges, x (x 7 0)

 83. Converges, 0 85. Converges, 1  87. Converges, 1 >2
 89. Converges, 1 91. Converges, p>2  93. Converges, 0

 95. Converges, 0 97. Converges, 1 >2  99. Converges, 0

 101. 8  103. 4 105. 5  107. 1 + 22  109. xn = 2n - 2

111. (a) ƒ(x) = x2 - 2, 1.414213562 ≈ 22

  (b) ƒ(x) = tan (x) - 1, 0.7853981635 ≈ p>4
  (c) ƒ(x) = ex, diverges

 113. 1

 121. Nondecreasing, bounded

 123. Not nondecreasing, bounded

 125. Converges, nondecreasing sequence theorem

 127. Converges, nondecreasing sequence theorem

 129. Diverges, deinition of divergence

 131. Converges

 133. Converges

145. (b) 23

SECTION 10.2, pp. 583–585

 1. sn =
2(1 - (1>3)n)

1 - (1>3)
, 3 3. sn =

1 - (-1>2)n

1 - (-1>2)
, 2>3

 5. sn =
1
2

-
1

n + 2
, 

1
2

 7. 1 -
1
4

+
1
16

-
1
64

+ g, 
4
5

 9. -
3
4

+
9

16
+

57
64

+
249

256
+ g, diverges.

 11. (5 + 1) + a5
2

+
1
3
b + a5

4
+

1
9
b + a5

8
+

1
27
b + g, 

23
2

 13. (1 + 1) + a1
2

-
1
5
b + a1

4
+

1
25
b + a1

8
-

1
125
b + g, 

17
6

 15. Converges, 5>3  17. Converges, 1>7
 19. Converges, 

e

e + 2
  21. Diverges   23. 23>99

 25. 7>9   27. 1>15  29. 41333>33300  31. Diverges

 33. Inconclusive  35. Diverges  37. Diverges

 39. sn = 1 -
1

n + 1
 ; converges, 1

 41. sn = ln 2n + 1; diverges

 43. sn =
p

3
- cos-1 a 1

n + 2
b ; converges, -  

p

6
  45. 1  47. 5

 49. 1  51. -  
1

ln 2
  53. Converges, 2 + 22
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 55. Converges, 1  57. Diverges

 59. Converges, 
e2

e2 - 1
 61. Converges, 2 >9  63. Converges, 3 >2  65. Diverges

 67. Converges, 4  69. Diverges   71. Converges, 
p

p - e
 73. Converges, -5>6  75. Diverges

 77. a = 1, r = -x; converges to 1>(1 + x) for � x � 6 1

 79. a = 3, r = (x - 1)>2; converges to 6>(3 - x) for x in (-1, 3)

 81. � x � 6
1
2

, 
1

1 - 2x
 83. -2 6 x 6 0, 

1
2 + x

 85. x ≠ (2k + 1) 
p

2
, k an integer; 

1
1 - sin x

 87. (a) a
q

n = -2

 
1

(n + 4)(n + 5)
 (b) a

q

n = 0

 
1

(n + 2)(n + 3)

  (c) a
q

n = 5

 
1

(n - 3)(n - 2)

 97. (a) r = 3>5 (b) r = -3>10  99. � r � 6 1, 
1 + 2r

1 - r2

 101. (a) 16.84 mg, 17.79 mg (b) 17.84 mg

 103. (a) 0, 
1
27

, 
2
27

, 
1
9

, 
2
9

, 
7
27

, 
8
27

, 
1
3

, 
2
3

, 
7
9

, 
8
9

, 1

  (b) a
q

n = 1

 
1
2

 a2
3
bn - 1

= 1  105. (4>3)p

SECTION 10.3, pp. 590–592

 1. Converges  3. Converges  5. Converges  7. Diverges

 9. Converges  11. Diverges

 13. Converges; geometric series, r =
1
10

6 1

 15. Diverges; lim
nSq

 
n

n + 1
= 1 ≠ 0

 17. Diverges; p-series, p 6 1

 19. Converges; geometric series, r =
1
8

6 1

 21. Diverges; Integral Test

 23. Converges; geometric series, r = 2>3 6 1

 25. Diverges; Integral Test

 27. Diverges; lim
nSq

 
2n

n + 1
≠ 0

 29. Diverges; limnSq 12n>ln n2 ≠ 0

 31. Diverges; geometric series, r =
1

ln 2
7 1

 33. Converges; Integral Test

 35. Diverges; nth-Term Test

 37. Converges; Integral Test

 39. Diverges; nth-Term Test

 41. Converges; by taking limit of partial sums

 43. Converges; Integral Test

 45. Converges; Integral Test  47. a = 1

 49. (a) 

1

1

1�2 1�n

0 2 3 n n + 1

n + 1

1

1

dx < 1 +      + … +

x

y

1
x

y =

1
x

1
n

1
2L

L
1

1

1�2 1�n

0 2 3 nn − 1

n

1

1

< 1 + dx1 +      + … +

x

y

1
x

y =

1
x

1
n

1
2

  (b) ≈41.55

 51. True  53. n Ú 251,415

 55. s8 = a
8

n = 1

 
1

n3
≈ 1.195  57. 1060

 65. (a) 1.20166 … S … 1.20253

  (b) S ≈ 1.2021, error 6 0.0005

 67. ap2

6
- 1b ≈ 0.64493

SECTION 10.4, pp. 596–597

 1. Converges; compare with g (1>n2)
 3. Diverges; compare with g11>2n2
 5. Converges; compare with g (1>n3>2)

 7. Converges; compare with aA
n + 4n

n4 + 0
= 25 g 1

n3>2
 9. Converges

 11. Diverges; limit comparison with g(1>n)

 13. Diverges; limit comparison with g11>2n2
 15. Diverges

 17. Diverges; limit comparison with g11>2n2
 19. Converges; compare with g(1>2n)

 21. Diverges; nth-Term Test

 23. Converges; compare with g (1>n2)

 25. Converges; a n

3n + 1
bn

6 a n

3n
bn

= a1
3
bn

 27. Diverges; direct comparison with g(1>n)

 29. Diverges; limit comparison with g(1>n)

 31. Diverges; limit comparison with g(1>n)

 33. Converges; compare with g (1>n3>2)

 35. Converges; 
1

n2n …
1
2n  37. Converges; 

1

3n - 1 + 1
6

1

3n - 1

 39. Converges; comparison with g (1>5n2)
 41. Diverges; comparison with g(1>n)

 43. Converges; comparison with g 1
n(n - 1)

 or limit comparison 

  with g (1>n2)
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 35. Converges absolutely, since ` cos np

n2n
` = ` (-1)n + 1

n3>2 ` =
1

n3>2 

(convergent p-series)

 37. Converges absolutely by Root Test

 39. Diverges; an S q
 41. Converges conditionally; 2n + 1 - 2n =  

1> (2n + 2n + 12S 0, but series of absolute values  

diverges 1compare with g11>2n2 2.
 43. Diverges, an S 1>2 ≠ 0

 45. Converges absolutely; sech n =
2

en + e-n =
2en

e2n + 1
6  

2en

e2n
=

2
en , a term from a convergent geometric series.

 47. Converges conditionally; g(-1)n + 1 
1

2(n + 1)
 converges by 

 Alternating Series Test; g 1
2(n + 1)

 diverges by limit comparison 

  with g(1>n).

 49. 0Error 0 6 0.2  51. 0Error 0 6 2 * 10-11

 53. n Ú 31  55. n Ú 4  57. Converges; Root Test

 59. Converges; Limit of Partial Sums

 61. Converges; Ratio Test  63. Diverges; p-series Test

 65. Converges; Root Test  67. Converges; Limit Comparison Test

 69. Diverges; Limit of Partial Sums

 71. Diverges; Limit Comparison Test

 73. Diverges; nth-Term Test  75. Diverges; Limit of Partial Sums

 77. Converges; Limit Comparison Test

 79. Converges; Limit Comparison Test

 81. Converges; Ratio Test

 83. 0.54030  85. (a) an Ú an + 1 (b) -1>2
SECTION 10.7, pp. 619–622

 1. (a) 1, -1 6 x 6 1 (b) -1 6 x 6 1 (c) none

 3. (a) 1>4, -1>2 6 x 6 0 (b) -1>2 6 x 6 0 (c) none

 5. (a) 10, -8 6 x 6 12 (b) -8 6 x 6 12 (c) none

 7. (a) 1, -1 6 x 6 1 (b) -1 6 x 6 1 (c) none

 9. (a) 3, -3 … x … 3 (b) -3 … x … 3 (c) none

 11. (a) q, for all x (b) for all x (c) none

 13. (a) 1>2, -1>2 6 x 6 1>2 (b) -1>2 6 x 6 1>2 (c) none

 15. (a) 1, -1 … x 6 1 (b) -1 6 x 6 1 (c) x = -1

 17. (a) 5, -8 6 x 6 2 (b) -8 6 x 6 2 (c) none

 19. (a) 3, -3 6 x 6 3 (b) -3 6 x 6 3 (c) none

 21. (a) 1, -2 6 x 6 0 (b) -2 6 x 6 0 (c) none

 23. (a) 1, -1 6 x 6 1 (b) -1 6 x 6 1 (c) none

 25. (a) 0, x = 0 (b) x = 0 (c) none

 27. (a) 2, -4 6 x … 0 (b) -4 6 x 6 0 (c) x = 0

 29. (a) 1, -1 … x … 1 (b) -1 … x … 1 (c) none

 31. (a) 1>4, 1 … x … 3>2 (b) 1 … x … 3>2 (c) none

 33. (a) q, for all x (b) for all x (c) none

 35. (a) 1, -1 … x 6 1 (b) -1 6 x 6 1 (c) -1

 37. 3  39. 8  41. -1>3 6 x 6 1>3, 1>(1 - 3x)

 43. -1 6 x 6 3,  4> (3 + 2x - x2)
 45. 0 6 x 6 16,  2>14 - 2x2
 47. -22 6 x 6 22,  3> (2 - x2)

 49. 
2
x = a

q

n = 0

2(-1)n(x - 1)n,  0 6 x 6 2

 51. a
q

n = 0

(-1
3 )

n
(x - 5)n,  2 6 x 6 8

 45. Diverges; limit comparison with g(1>n)

 47. Converges; 
tan-1 n

n1.1
6

p>2
n1.1

 49. Converges; compare with g (1>n2)
 51. Diverges; limit comparison with g  (1>n)

 53. Converges; limit comparison with g (1>n2)
 55. Diverges nth-Term Test

 67. Converges  69. Converges  71. Converges

SECTION 10.5, pp. 602–603

 1. Converges  3. Diverges  5. Converges

 7. Converges  9. Converges  11. Diverges

 13. Converges  15. Converges

 17. Converges; Ratio Test  19. Diverges; Ratio Test

 21. Converges; Ratio Test

 23. Converges; compare with g(3>(1.25)n)

 25. Diverges; lim
nSq
a1 -

3
nbn

= e-3 ≠ 0

 27. Converges; compare with g (1>n2)
 29. Diverges; compare with g(1>(2n))  31. Diverges; an S>  0

 33. Converges; Ratio Test  35. Converges; Ratio Test

 37. Converges; Ratio Test  39. Converges; Root Test

 41. Converges; compare with g (1>n2)
 43. Converges; Ratio Test  45. Diverges; Ratio Test

 47. Converges; Ratio Test  49. Diverges; Ratio Test

 51. Converges; Ratio Test  53. Converges; Ratio Test

 55. Diverges; an = a1
3
b (1>n!)

S 1  57. Converges; Ratio Test

 59. Diverges; Root Test  61. Converges; Root Test

 63. Converges; Ratio Test

 65. (a) Diverges; nth-Term Test

  (b) Diverges; Root Test

  (c) Converges; Root Test

  (d) Converges; Ratio Test

 69. Yes

SECTION 10.6, pp. 608–610

 1. Converges by Alternating Series Test

 3. Converges; Alternating Series Test

 5. Converges; Alternating Series Test

 7. Diverges; an S>   0

 9. Diverges; an S>   0

 11. Converges; Alternating Series Test

 13. Converges by Alternating Series Test

 15. Converges absolutely. Series of absolute s is a convergent 

 geometric series.

 17. Converges conditionally; 1>2n S 0 but gq
n = 1 

1

2n
 diverges.

 19. Converges absolutely; compare with gq
n = 1(1>n2).

 21. Converges conditionally; 1>(n + 3) S 0 but gq
n = 1 

1
n + 3

 

diverges (compare with gq
n = 1(1>n)).

 23. Diverges; 
3 + n

5 + n
S 1

 25. Converges conditionally; a 1

n2
+

1

n
b S 0 but 

  (1 + n)>n2 7 1>n
 27. Converges absolutely; Ratio Test

 29. Converges absolutely by Integral Test

 31. Diverges; an S>   0

 33. Converges absolutely by Ratio Test



A-42 Chapter 10: Answers to Odd-Numbered Exercises

 53. 1 6 x 6 5,  2>(x - 1), a
q

n = 1

(-1
2 )

n
 n(x - 3)n - 1, 

  1 6 x 6 5,  -2>(x - 1)2

 55. (a)  cos x = 1 -
x2

2!
+

x4

4!
-

x6

6!
+

x8

8!
-

x10

10!
+ g; converges 

for all x

  (b) Same answer as part (c)

  (c) 2x -
23x3

3!
+

25x5

5!
-

27x7

7!
+

29x9

9!
-

211x11

11!
+ g

 57. (a)  
x2

2
+

x4

12
+

x6

45
+

17x8

2520
+

31x10

14175
,  -  

p

2
6 x 6

p

2

  (b)  1 + x2 +
2x4

3
+

17x6

45
+

62x8

315
+ g,  -  

p

2
6 x 6

p

2

 63. (a) T (b) T (c) F (d) T (e) N (f ) F (g) N (h) T

SECTION 10.8, pp. 626–627

 1. P0(x) = 1, P1(x) = 1 + 2x, P2(x) = 1 + 2x + 2x2, 

P3(x) = 1 + 2x + 2x2 +
4
3

 x3

 3. P0(x) = 0, P1(x) = x - 1, P2(x) = (x - 1) -
1
2

  (x - 1)2, 

P3(x) = (x - 1) -
1
2

 (x - 1)2 +
1
3

 (x - 1)3

 5. P0(x) =
1
2

, P1(x) =
1
2

-
1
4

 (x - 2), 

P2(x) =
1
2

-
1
4

 (x - 2) +
1
8

 (x - 2)2, 

P3(x) =
1
2

-
1
4

 (x - 2) +
1
8

 (x - 2)2 -
1
16

 (x - 2)3

 7. P0(x) =
22

2
, P1 (x) =

22

2
+
22

2
 ax -

p

4
b , 

P2(x) =
22

2
+
22

2
 ax -

p

4
b -

22

4
 ax -

p

4
b2

, 

P3(x) =
22

2
+
22

2
 ax -

p

4
b -

22

4
 ax -

p

4
b2

 

-
22

12
 ax -

p

4
b3

 9. P0(x) = 2, P1(x) = 2 +
1
4

 (x - 4), 

P2(x) = 2 +
1
4

 (x - 4) -
1
64

 (x - 4)2, 

P3(x) = 2 +
1
4

 (x - 4) -
1
64

 (x - 4)2 +
1

512
 (x - 4)3

 11. a
q

n = 0

 
(-x)n

n!
= 1 - x +

x2

2!
-

x3

3!
+

x4

4!
- g

 13. a
q

n = 0

(-1)nxn = 1 - x + x2 - x3 + g

 15. a
q

n = 0

 
(-1)n32n + 1x2n + 1

(2n + 1)!
 17. 7a

q

n = 0

 
(-1)nx2n

(2n)!
 19. a

q

n = 0

 
x2n

(2n)!

 21. x4 - 2x3 - 5x + 4 23. a
q

n = 1

(-1)n + 1 
x2n

(2n - 1)!

 25. 8 + 10(x - 2) + 6(x - 2)2 + (x - 2)3

 27.  21 - 36(x + 2) + 25(x + 2)2 - 8(x + 2)3 + (x + 2)4

 29. a
q

n = 0

(-1)n(n + 1)(x - 1)n 31. a
q

n = 0

 
e2

n!
 (x - 2)n

 33. a
q

n = 0

(-1)n + 1 
22n

(2n)!
 ax -

p

4
b2n

 35. -1 - 2x -
5
2

 x2 - g, -1 6 x 6 1

 37. x2 -
1
2

 x3 +
1
6

 x4 + g, -1 6 x 6 1

 39. x4 + x6 +
x8

2
+ g, (-q, q)

 45. L(x) = 0, Q(x) = -x2>2 47. L(x) = 1, Q(x) = 1 + x2>2
 49. L(x) = x, Q(x) = x

SECTION 10.9, pp. 633–634

 1. a
q

n = 0

 
(-5x)n

n!
= 1 - 5x +

52x2

2!
-

53x3

3!
+ g

 3. a
q

n = 0

 
5(-1)n(-x)2n + 1

(2n + 1)!
= a

q

n = 0

 
5( -1)n + 1x2n + 1

(2n + 1)!

  =  -5x +
5x3

3!
-

5x5

5!
+

5x7

7!
+ g

 5. a
q

n = 0

 
(-1)n(5x2)2n

(2n)!
= 1 -

25x4

2!
+

625x8

4!
- g

 7. a
q

n = 1

  (-1)n + 1 
x2n

n = x2 -  
x4

2
+

x6

3
-

x8

4
+ g

 9. a
q

n = 0

  (-1)n a3
4
bn

 x3n = 1 -
3
4

 x3 +
32

42
 x6 -

33

43
 x9 + g

 11. ln 3 + a
q

n = 1

 (-1)n + 1 
2nxn

n = ln 3 + 2x - 2x2 +
8
3

 x3 - g

 13. a
q

n = 0

 
xn + 1

n!
= x + x2 +

x3

2!
+

x4

3!
+

x5

4!
+ g

 15. a
q

n = 2

 
(-1)nx2n

(2n)!
=

x4

4!
-

x6

6!
+

x8

8!
-

x10

10!
+ g

 17. x -
p2x3

2!
+

p4x5

4!
-

p6x7

6!
+ g = a

q

n = 0

 
(-1)np2nx2n + 1

(2n)!

 19. 1 + a
q

n = 1

 
(-1)n(2x)2n

2 # (2n)!
=  

  1 -
(2x)2

2 # 2!
+

(2x)4

2 # 4!
-

(2x)6

2 # 6!
+

(2x)8

2 # 8!
- g

 21. x2a
q

n = 0

(2x)n = x2 + 2x3 + 4x4 + g

 23. a
q

n = 1

nxn - 1 = 1 + 2x + 3x2 + 4x3 + g

 25. a
q

n = 1

 (-1)n + 1 
x4n - 1

2n - 1
= x3 -

 x7

3
+

 x11

5
-

x15

7
+ g

 27. a
q

n = 0

 a 1

n!
+ (-1)nb  

xn = 2 +
3
2

 x2 -
5
6

 x3 +
25
24

 x4 - g

 29. a
q

n = 1

 
(-1)n - 1x2n + 1

3n
=

 x3

3
-

 x5

6
+

 x7

9
- g

 31. x + x2 +
 x3

3
 -

 x5

30
+ g

 33. x2 -
2
3

 x4 +
23

45
 x6 -

44
105

 x8 + g

 35. 1 + x +
1
2

 x2 -
1
8

 x4 + g 37. 1 -
x2

2
-

x3

2
-

x4

4
- g

 39. �Error � …
1

104 # 4!
6 4.2 * 10-6

 41. � x � 6 (0.06)1>5 6 0.56968

 43. �Error � 6 (10-3)3>6 6 1.67 * 10-10, -10-3 6 x 6 0

 45. �Error � 6 (30.1)(0.1)3>6 6 1.87 * 10-4

 53. (a) Q(x) = 1 + kx +
k(k - 1)

2
 x2 (b) 0 … x 6 100-1>3
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 99. (a) Converges; Limit Comparison Test

  (b) Converges; Direct Comparison Test

  (c) Diverges; nth-Term Test  

 101. 2

ADDITIONAL AND ADVANCED EXERCISES, pp. 646–648

 1. Converges; Comparison Test

 3. Diverges; nth-Term Test

 5. Converges; Comparison Test

 7. Diverges; nth-Term Test

 9. With a = p>3, cos x =
1
2

-
23

2
 (x - p>3) -

1
4

 (x - p>3)2 

  +  
23

12
 (x - p>3)3 + g

 11. With a = 0,  ex = 1 + x +
x2

2!
+

x3

3!
+ g

 13. With a = 22p,  cos x = 1 -
1
2

 (x - 22p)2 +
1

4!
 (x - 22p)4 

-  
1

6!
 (x - 22p)6 + g

 15. Converges, limit = b  17. p>2  21. b = {1
5

 23. a = 2, L = -7>6  27. (b) Yes

31. (a) a
q

n = 1

nxn - 1 (b) 6 (c) 
1
q

33. (a)  Rn = C0e
-kt0(1 - e-nkt0) > (1 - e-kt0), 

R = C0(e-kt0) > (1 - e-kt0) = C0> (ekt0 - 1)
 (b)  R1 = 1>e ≈ 0.368, 

R10 = R(1 - e-10) ≈ R(0.9999546) ≈ 0.58195; 

R ≈ 0.58198; 0 6 (R - R10) >R 6 0.0001

  (c) 7

SECTION 10.10, pp. 641–643

 1. 1 +
x

2
-

x2

8
+

x3

16
 3. 1 + 3x + 6x2 + 10x3

 5. 1 - x +
3x2

4
-

x3

2
 7. 1 -

x3

2
+

3x6

8
-

5x9

16

 9. 1 +
1
2x

-
1

8x2
+

1

16x3

 11. (1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4

 13. (1 - 2x)3 = 1 - 6x + 12x2 - 8x3

 15. 0.0713362  17. 0.4969536  19. 0.0999445  21. 0.10000

 23. 
1

13 # 6!
≈ 0.00011 25. 

x3

3
-

x7

7 # 3!
+

x11

11 # 5!

 27. (a) 
x2

2
-

x4

12

  (b) 
x2

2
-

x4

3 # 4
+

x6

5 # 6
-

x8

7 # 8
+ g + (-1)15 

x32

31 # 32

 29. 1>2   31. -1>24  33. 1>3  35. -1  37. 2

 39. 3>2   41. e  43. cos 
3
4

  45. 
23

2
  47. 

x3

1 - x

 49. 
x3

1 + x2
  51. 

-1

(1 + x)2
  55. 500 terms  57. 4 terms

 59. (a) x +
x3

6
+

3x5

40
+

5x7

112
, radius of convergence = 1

  (b) 
p

2
- x -

x3

6
-

3x5

40
-

5x7

112

 61. 1 - 2x + 3x2 - 4x3 + g
 67. (a) -1 (b) 11>222(1 + i) (c) - i

 71. x + x2 +
1
3

 x3 -
1
30

 x5 + g, for all x

PRACTICE EXERCISES, pp. 644–646

 1. Converges to 1  3. Converges to -1  5. Diverges

 7. Converges to 0  9. Converges to 1  11. Converges o e-5

 13. Converges to 3  15. Converges to ln 2  17. Diverges

 19. 1 >6   21. 3 >2  23. e>(e - 1)   25. Diverges

 27. Converges conditionally 29. Converges conditionally

 31. Converges absolutely 33. Converges absolutely

 35. Converges absolutely 37. Converges absolutely

 39. Converges absolutely 41. Converges absolutely

 43. Diverges

 45. (a) 3, -7 … x 6 -1 (b) -7 6 x 6 -1 (c) x = -7

47. (a) 1>3, 0 … x … 2>3 (b) 0 … x … 2>3 (c) None

 49. (a) q, for all x (b) For all x (c) None

 51. (a) 23, -23 6 x 6 23 (b) -23 6 x 6 23 (c) None

 53. (a) e, -e 6 x 6 e (b) -e 6 x 6 e (c) Empty set

 55. 
1

1 + x
, 

1
4

, 
4
5

  57. sin x, p, 0  59. ex, ln 2, 2  61. a
q

n = 0

2nxn

 63. a
q

n = 0

 
(-1)np2n + 1x2n + 1

(2n + 1)!
  65. a

q

n = 0

 
(-1)nx10n>3

(2n)!
  67. a

q

n = 0

 
((px)>2)n

n!

 69. 2 -
(x + 1)

2 # 1!
+

3(x + 1)2

23 # 2!
+

9(x + 1)3

25 # 3!
+ g

 71. 
1
4

-
1

42
 (x - 3) +

1

43
 (x - 3)2 -

1

44
 (x - 3)3

 73. 0.4849171431  75. 0.4872223583  77. 7>2  79. 1>12

 81. -2  83. r = -3, s = 9>2  85. 2 >3
 87. ln an + 1

2n
b ; the series converges to ln a1

2
b .

 89. (a) q  (b) a = 1, b = 0  91. It converges.

Chapter 11

SECTION 11.1, pp. 655–658

 1.    3.

x

y

t > 0t < 0

0 1

1

y = x
2

 

−1

−1

−2

−3

−4

1 2 3 4

1

4

x

y

t =

y = 2x  + 3

2
5

t =
4
7

 5.    7.

x

y

−2 −1 10 2

−1

1

2

−2

t = 0t =

t = p

x
2 
+ y

2 
= 1

2
p

 

x

y

0 4

2

t = 0, 2p

y2

4
x2

16
= 1+
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 9.   11.

x

y

−1

−1

1

1

p
2

t =
p
2

t = −

y = 1 − 2x
2

 

x

y

2

(0, 0)

changes
direction
at t = 0

t < 0

y = x
2 

(x  − 2)

 13.   15.

x

y

0−1 1

t = 0

t = −1

y = Î1 − x2

 

x

y

−2 −1 1 2 3 4

−1

1

2

3

−2

−3

t = 0

0 ≤ t ≤

≤ t < 0

x = y
2

p
2

−

p
2

 17. 

x

y

−1 0

t = 0

x
2 
− y

2 
= 1

 19. D  21. E  23. C

 25.   27. 

1 20.5 1.5

1

0.5

x

y

−0.5

 

x
2 41 3

y

−1

−2

−3

−4

 29. (a) x = a cos t, y = -a sin t, 0 … t … 2p

 (b) x = a cos t, y = a sin t, 0 … t … 2p

 (c) x = a cos t, y = -a sin t, 0 … t … 4p

  (d) x = a cos t, y = a sin t, 0 … t … 4p

 31. Possible answer: x = -1 + 5t, y = -3 + 4t, 0 … t … 1

 33. Possible answer: x = t2 + 1, y = t, t … 0

 35. Possible answer: x = 2 - 3t, y = 3 - 4t, t Ú 0

 37. Possible answer: x = 2 cos t, y = 2 � sin t � , 0 … t … 4p

 39. Possible answer: x =
-at

21 + t2
, y =

a

21 + t2
, -q 6 t 6 q

 41. Possible answer: x =
4

1 + 2 tan u
, y =

4 tan u

1 + 2 tan u
, 

  0 … u 6 p>2 and x = 0, y = 2 if u = p>2

 43. Possible answer: x = 2 - cos t, y = sin t, 0 … t … 2p

 45. x = 2 cot t, y = 2 sin2 t, 0 6 t 6 p

 47. x = a sin2 t tan t, y = a sin2 t, 0 … t 6 p>2  49. (1, 1)

SECTION 11.2, pp. 666–667

 1. y = -x + 222, 
d2 y

dx2
= -22

 3. y = -  
1
2

 x + 222, 
d2y

dx2
= -  

22

4

 5. y = x +
1
4

, 
d2y

dx2
= -2  7. y = 2x - 23, 

d2y

dx2
= -323

 9. y = x - 4, 
d2y

dx2
=

1
2

 11. y = 23x -
p23

3
+ 2, 

d2y

dx2
= -4

 13. y = 9x - 1, 
d2y

dx2
= 108  15. -  

3
16

  17. -6

 19. 1  21. 3a2p  23. 0 ab 0p  25. 4  27. 12

 29. p2  31. 8p2  33. 
52p

3
  35. 3p25

 37. (x, y) = a12
p -

24

p2
, 

24

p2
- 2b

 39. (x, y) = a1
3

, p -
4
3
b   41. (a) p (b) p

 43. (a) x = 1, y = 0, 
dy

dx
=

1
2

 (b) x = 0, y = 3, 
dy

dx
= 0

  (c) x =
23 - 1

2
, y =

3 - 23

2
, 

dy

dx
=

223 - 1

23 - 2

 45. a22

2
, 1b , y = 2x at t = 0, y = -2x at t = p

 47. (a) 8a (b) 
64p

3
  49. 32p>15

SECTION 11.3, pp. 670–671

 1. a, e; b, g; c, h; d, f  3. 

x

y

2, 
p
2

−2, 
p
2

(2, 0)(−2, 0)

Q    R

Q     R

 (a) a2, 
p

2
+ 2npb  and a-2, 

p

2
+ (2n + 1)pb , n an integer

 (b) (2, 2np) and (-2, (2n + 1)p), n an integer

 (c) a2, 
3p
2

+ 2npb  and a-2, 
3p
2

+ (2n + 1)pb , n an integer

  (d) (2, (2n + 1)p) and (-2, 2np), n an integer

 5. (a) (3, 0) (b) (-3, 0) (c) 1-1, 232 (d) 11, 232
 (e) (3, 0) (f) 11, 232 (g) (-3, 0) (h) 1-1, 232
 7. (a) a22, 

p

4
b  (b) (3, p) (c) a2, 

11p
6
b

  (d) a5, p - tan-1 
4
3
b
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 9. (a) a-322, 
5p
4
b  (b) (-1, 0) (c) a-2, 

5p
3
b

  (d) a-5, p - tan-1 
3
4
b

 11. 

x

y

0

2

2

r = 2

 13. 

x

y

0 1

r ≥ 1

 15. 

x

y

0

0 ≤ u ≤ 

r ≥ 0

p
6

 17.

    

x

y

0−1

−1

3

2

u = 

−1 ≤ r ≤ 3

p
3

p
3

 19. 

x

y

O

u =
2

p

r ≥ 0

 21. 

x

y

0 1

r = 1

0 ≤ u ≤ p

 23. 

x

y

0

1

p

4

3p

4
≤ u ≤

0 ≤ r ≤ 1

 25. 

x

y

0 1 2

1

2

−1

−2

p

2

p

2
≤ u ≤

1 ≤ r ≤ 2

−

 27. x = 2, vertical line through (2, 0)  29. y = 0, the x-axis

 31. y = 4, horizontal line through (0, 4)

 33. x + y = 1, line, m = -1, b = 1

 35. x2 + y2 = 1, circle, C(0, 0), radius 1

 37. y - 2x = 5, line, m = 2, b = 5

 39. y2 = x, parabola, vertex (0, 0), opens right

 41. y = ex, graph of natural exponential function

 43. x + y = {1, two straight lines of slope -1, y-intercepts 

b = {1

 45. (x + 2)2 + y2 = 4, circle, C(-2, 0), radius 2

 47. x2 + (y - 4)2 = 16, circle, C(0, 4), radius 4

 49. (x - 1)2 + (y - 1)2 = 2, circle, C(1, 1), radius 22

 51. 23y + x = 4  53. r cos u = 7  55. u = p>4
 57. r = 2 or r = -2  59. 4r2 cos2 u + 9r2 sin2 u = 36

 61. r sin2 u = 4 cos u  63. r = 4 sin u

 65. r2 = 6r cos u - 2r sin u - 6

 67. (0, u), where u is any angle

SECTION 11.4, pp. 674–675

 1. x-axis  3. y-axis

  

x

y

1

2

−1

r = 1 + cos u

  

x

y

0

−2

1−1

r = 1 − sin u

 5. y-axis  7. x-axis, y-axis, origin

x

y

0

1

2

3

−1

−1 1 2−2

r = 2 + sin u

 

x

y

−1 1

Î2

2

Î2

2
−

r = sin (u�2)

 9. x-axis, y-axis, origin 11. y-axis, x-axis, origin

x

y

−1 1

r2 = cos u

 

x

y

1

−1

r2 = −sin u

 13. x-axis, y-axis, origin  15. Origin

 17. The slope at (-1, p>2) is -1, at (-1, -p>2) is 1.

  

x

y

r = −1 + cos u

−1, − 
p

2

−1,
p

2

2

Q      R

Q     R

 19. The slope at (1, p>4) is -1, at (-1, -p>4) is 1, at (-1, 3p>4) 

is 1, at (1, -3p>4) is -1.

  

x

y

r = sin 2u

−1, −
p

4

1, −
3p

4

1, 
p

4

−1,
3p

4

Q       R Q   R

Q      R Q     R



A-46 Chapter 11: Answers to Odd-Numbered Exercises

 9.   11.

x

y

0

3

−3 F(3, 0)

x = −3

y2 = 12x

 

x

y

0

2

2

y = 2

x2 = −8y

F(0, −2)

 13.   15.

x

y

0 1�4

1

4

y = 4x2

1

16
F  0,

directrix y = −
1

16

a      b

 

a     b
x

y

x = −3y2

0 1

12

1

12
x =

1

6

1

6
−

1

12
F −    , 0

 17.   19.

x

y

0

4

−4

3 5−3−5

x2

25

y2

16
+       = 1

F1 F2

 

x

y

0 1

1

−1

F1

F2

Î2 y2

2
x2 +       = 1

 21.   23.

x

y

0

−1

1 F1

F2

Î2

Î3 x2

2

y2

3
+       = 1

 

x

y

0 3

F2F1

Î3−Î3

Î6
x2

9

y2

6
+       = 1

 25. 
x2

4
+

y2

2
= 1

 27. Asymptotes: y = {x 29. Asymptotes: y = {x

x

y

F2F1

Î2−Î2

x2 − y2 = 1

 

x

y

F2

F1

2Î2

x2

8

y2

8
−       = 1

4

−4

 21. At p>6: slope 23, concavity 16 (concave up); at p>3: slope 

-23, concavity -16 (concave down).

 23. At 0: slope 0, concavity 2 (concave up); at p>2: slope -2>p, 

concavity -2(8 + p2)>p3 (concave down).

 25. (a) 

x

y

1

2

1

2
−

1

2

1

2

3

2

r =    + cos u

 (b) 

x

y

1

2

1

2
−

1

2
r =    + sin u

3

2

 27. (a) 

x

y

0 5

2

1

2
−

3

2
r =    + cos u

3

2

3

2
−

 (b) 

x

y

1

2

5

2

r =    − sin u

3

2

3

2
−

3

2

−

 29. 

x

y

r = −1

r = 2

 31. 

x

y

−4 0

−2

2

0 ≤ r ≤ 2 − 2 cos u

 33. Equation (a)

SECTION 11.5, pp. 679–680

 1. 
1
6

 p3  3. 18p  5. 
p

8
  7. 2  9. 

p

2
- 1

 11. 5p - 8  13. 323 - p  15. 
p

3
+
23

2

 17. 
8p
3

+ 23  19. (a) 
3
2

-
p

4
  21. 19 >3  23. 8

 25. 3122 + ln11 + 2222  27. 
p

8
+

3
8

 31. (a) a (b) a (c) 2a>p
SECTION 11.6, pp. 686–688

 1. y2 = 8x, F(2, 0), directrix: x = -2

 3. x2 = -6y, F(0, -3>2), directrix: y = 3>2
 5. 

x2

4
-

y2

9
= 1, F1{213, 02, V({2, 0),

  asymptotes: y = {3
2

 x

 7. 
x2

2
+ y2 = 1, F({1, 0), V1{22, 02
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 51. 
(x - 2)2

3
+

( y - 3)2

2
= 1, F(3, 3) and F(1, 3), 

  V1{23 + 2, 32, C(2, 3)

 53. 
(x - 2)2

4
-

(y - 2)2

5
= 1, C(2, 2), F(5, 2) and F(-1, 2), 

  V(4, 2) and V(0, 2); asymptotes: (y - 2) = {25

2
 (x - 2)

 55. (y + 1)2 - (x + 1)2 = 1, C(-1, -1), F1-1, 22 - 12 
and F1-1, -22 - 12, V(-1, 0) and V(-1, -2); asymptotes 

( y + 1) = {(x + 1)

 57. C(-2, 0), a = 4  59. V(-1, 1), F(-1, 0)

 61. Ellipse: 
(x + 2)2

5
+ y2 = 1, C(-2, 0), F(0, 0) and 

  F(-4, 0), V125 - 2, 02 and V1-25 - 2, 02
 63. Ellipse: 

(x - 1)2

2
+ (y - 1)2 = 1, C(1, 1), F(2, 1) and 

  F(0, 1), V122 + 1, 12 and V1-22 + 1, 12
 65. Hyperbola: (x - 1)2 - (y - 2)2 = 1, C(1, 2), 

F11 + 22, 22 and F11 - 22, 22, V(2, 2) and 

V(0, 2); asymptotes: (  y - 2) = {(x - 1)

 67. Hyperbola: 
( y - 3)2

6
-

x2

3
= 1, C(0, 3), F(0, 6) 

  and F(0, 0), V10, 26 + 32 and V10, -26 + 32;  

  asymptotes: y = 22x + 3 or y = -22x + 3

 69. (b) 1:1  73. Length = 222, width = 22, area = 4

 75. 24p

 77. x = 0, y = 0: y = -2x; x = 0, y = 2: y = 2x + 2;

x = 4, y = 0: y = 2x - 8

 79. x = 0, y =
16
3p

SECTION 11.7, pp. 693–694

 1. e =
3

5
, F({3, 0);

  directrices are x = {25
3

.

x

y

F
1

F
2

y2

16
x2

25
= 1+

3 5

−4

−3−5

4

 31. Asymptotes: y = {2x 33. Asymptotes: y = {x>2

x

y

F2F1

Î10

Î2

−Î10

x2

2

y2

8
−       = 1

 

x

y

F2

F1Î10

Î2

−Î10

x2

2

y2

8
−       = 1

 35. y2 - x2 = 1 37. 
x2

9
-

y2

16
= 1

 39. (a) Vertex: (1, -2); focus: (3, -2); directrix: x = -1

  (b) 

x

y

0 1 2 3

2

−2

−4

F(3, −2)

V(1, −2)

(y + 2)2 = 8(x − 1)

 41. (a) Foci: 14 { 27, 32; vertices: (8, 3) and (0, 3); center: (4, 3)

  (b) 

x

y

0

(0, 3) (8, 3)

6

4 8

F1(4 − Î7, 3)

F2(4 + Î7, 3)

C(4, 3)

(x − 4)2

16

(y − 3)2

9
+               = 1

 43. (a) Center: (2, 0); foci: (7, 0) and (-3, 0); vertices: (6, 0) and 

   (-2, 0); asymptotes: y = {3
4

 (x - 2)

  (b) 

x

y

(7, 0)(–3, 0)

(–2, 0) (6, 0)
20

(x − 2)
2

16

y
2

9
−     = 1

y =    (x − 2)
3

4

y = −   (x − 2)
3

4

 45. (y + 3)2 = 4(x + 2), V(-2, -3), F(-1, -3),  

directrix: x = -3

 47. (x - 1)2 = 8(y + 7), V(1, -7), F(1, -5), directrix: y = -9

 49. 
(x + 2)2

6
+

(y + 1)2

9
= 1, F1-2, {23 - 12, 

  V(-2, {3 - 1), C(-2, -1)

 3. e =
1

22
 ; F(0, {1);

  directrices are y = {2.

x

y

F
1

F
2

y2

2
x2 

+ = 1

−1

−1 1

1

−Î2

Î2

 5. e =
1

23
 ; F(0, {1);

  directrices are y = {3.

x

y

F
1

F
2

y2

3
x2

2
= 1+

−1

1

Î3

−Î3

−Î2 Î2

 7. e =
23

3
 ; F1{23, 02;

  directrices are 

x = {323.

x

y

F
1

F
2

y2

6
x2

9
= 1+

3−3

Î6

−Î6

−Î3 Î3
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 9. 
x2

27
+

y2

36
= 1  11. 

x2

4851
+

y2

4900
= 1

 13. 
x2

9
+

y2

4
= 1  15. 

x2

64
+

y2

48
= 1

 17. e = 22; F1{22, 02;
  directrices are x = {  

1

22
 .

x

y

F
1

F
2

−1

1

2

3

–2

−2

−3

–1 1 2 3–3

−Î2 Î2

x
2 
− y

2
 = 1

 19. e = 22; F(0, {4);

  directrices are y = {2.

x

y

F
1

F
2

x2

8

y2

8
= 1−

−2

−4

−4 2 4

4

6

−6

−Î8

Î8

−2

2

 21. e = 25; F1{210, 02; 
  directrices are x = { 2

210
.

x

y

F
1

F
2

−2 2 4−4
−Î10 Î10

−10

−5

5

10

y2

8
x2

2
= 1−

−Î2 Î2

 23. e = 25; F10, {2102; 
   directrices are y = { 2

210
.

x

y

F
1

F
2

x2

8

y2

2
= 1−

−4 −2 2 4

−2

−1

1

2

−Î10

−Î2

Î10

Î2

 25. y2 -
x2

8
= 1  27. x2 -

y2

8
= 1  29. r =

2
1 + cos u

 31. r =
30

1 - 5 sin u
  33. r =

1
2 + cos u

  35. r =
10

5 - sin u

 37.   39. 

x

y

1
1 + cos u

r =

−1 1

−1

1

2

−2

−2

x = 1

0

, 0
2
1a     b

 

x

y

25
10 − 5 cos u

r =

−5

x = −5

0

, 0
3
5

, p
3
5

(5, 0)

a      b
a      b

 41.   43. 

x

y

400
16 + 8 sin u

r =

y = 50

0

,
3
50

2
p

,
3
50

50,
2

3p
2

3pa          b
a          b

a          b

 

x

y

8
2 − 2 sin u

r =

−2 2

y = −4

0

2,
2

3pa       b

 45. y = 2 - x

2

2
x  + y = 2

x

y  47. y =
23

3
 x + 223

x

y

y = x + 2Î3

−6
2

4
3
Î3

 49. r cosau -
p

4
b = 3  51. r cosau +

p

2
b = 5

 53.   55. 

x

y

(2, 0)

r = 4 cos u

Radius = 2

 

x

y

(1, p)
r = −2 cos u

Radius = 1
−2

 57. r = 12 cos u

x

y

(6, 0)

(x − 6)
2 + y

2 
= 36

r
 
= 12 cos u

 59. r = 10 sin u

x

y

(0, 5)

r = 10 sin u

x
2 + (y − 5)

2
 = 25

 61. r = -2 cos u

x

y

(−1, 0)

(x + 1)
2
 + y

2
 = 1

r = −2 cos u

 63. r = -sin u

x

y

0, −    

r = −sin u

2
1

x
2 
+  y +      

2
 =

2
1

4
1a    b

a     b

 65.

x

y

6

2Î3

r = 3 sec  u −
p

3
a         b

 67.

x

y

r = 4 sin u4
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 75. (b)

Planet  Perihelion  Aphelion

Mercury  0.3075 AU  0.4667 AU

Venus  0.7184 AU  0.7282 AU

Earth  0.9833 AU  1.0167 AU

Mars  1.3817 AU  1.6663 AU

Jupiter  4.9512 AU  5.4548 AU

Saturn  9.0210 AU 10.0570 AU

Uranus 18.2977 AU 20.0623 AU

Neptune 29.8135 AU 30.3065 AU

PRACTICE EXERCISES, pp. 695–697

 1. 

1

0
x

y

t = 0

−
2
1

y = 2x + 1

 69.

x

y

−1−2 1

−1

1

8
4 + cos u

r =

 73.

x

y

−1 1

1
1 + 2 sin u

r =

11
2

 71.

x

y

−1 1

1
1 − sin u

r =

3.

x

y

1

1

0

t = 0
2
1

4y
2
 − 4x

2
 = 1

 39. d  41. l  43. k  45. i  47. 
9

2
 p  49. 2 +

p

4

 51. 8  53. p - 3

 5. 

x

y

−1 0 1

1

y = x
2

t = 0 t = p

 7. x = 3 cos t, y = 4 sin t, 0 … t … 2p

 9. y =
23

2
 x +

1
4

, 
1
4

 23. y =
23

3
 x - 4

x

y

−4

x − Î3y = 4Î3

4Î3

 27. y = -
3
2

x

y

2
3

−
2
3

y = −

 31. 1x - 2222 + y2 = 2

x

y

r =  2Î2 cos u

+ y
2
 = 2

2
x − Î2

QÎ2 , 0R

a        b

 25. x = 2

x

y

2

x = 2

 29. x2 + ( y + 2)2 = 4

x

y

(0, −2)

r = −4 sin u x
2
 + (y + 2)

2
 = 4

 33. r = -5 sin u

x

y

0, −    

r = −5 sin u

2
5

x
2 
+  y +     

2
 =

2
5

4
25

a         b

a        b

 35. r = 3 cos u

x

y

r = 3 cos u

x −      
2
 + y

2
 =

2
3

4
9

, 0    
2
3a      b

a         b

 37.

x

y

0 ≤ r ≤ 6 cos u

0 6

 11. (a) y =
{ � x � 3>2

8
- 1 (b) y =

{21 - x2

x

 13. 
10
3

  15. 
285
8

  17. 10  19. 
9p

2
  21. 

76p
3
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 55. Focus is (0, -1),  

directrix is y = 1.
y

x

1

−2 20

y = 1

x
2

 = −4y

 59. e =
3
4

x

y

−4

−3

4

3

0 Î7

y2

16
x2

7
= 1+

 57. Focus is a3
4

, 0b , 

  directrix is x = -  
3
4

.

y

x

−2

23
4

x =  –

y
2
 = 3x

0

4
3

, 0a     b

 61. e = 2; the asymptotes are  

y = {23 x.

1 2−1−2

y

x

y = Î3x

x
2 
−       = 1

3

y
2

y = −Î3x

 63. (x - 2)2 = -12( y - 3), V(2, 3), F(2, 0), directrix is y = 6.

 65. 
(x + 3)2

9
+

( y + 5)2

25
= 1, C(-3, -5), F(-3, -1) and 

  F(-3, -9), V(-3, -10) and V(-3, 0).

 67. 
1y - 22222

8
-

(x - 2)2

2
= 1, C12, 2222, 

  F12, 222 { 2102, V12, 4222 and V(2, 0), the asymptotes 

  are y = 2x - 4 + 222 and y = -2x + 4 + 222.

 69. Hyperbola: C(2, 0), V(0, 0) and V(4, 0), the foci are 

  F12 { 25, 02, and the asymptotes are y = {  
x - 2

2
.

 71. Parabola: V(-3, 1), F(-7, 1), and the directrix is x = 1.

 73. Ellipse: C(-3, 2), F1-3 { 27, 22, V(1, 2) and V(-7, 2)

 75. Circle: C(1, 1) and radius = 22

 77. V(1, 0)

x

y

2
1 + cos u

r =

−2

2

0 (1, 0)

 79. V(2, p) and V(6, p)

0

y

x

6
1 − 2 cos u

r =

−3

3

(6, p)

(2, p)

 81. r =
4

1 + 2 cos u
  83. r =

2
2 + sin u

 85. (a) 24p (b) 16p

ADDITIONAL AND ADVANCED EXERCISES, pp. 697–699

 1. x -
7
2

=
y2

2
 

y

x
1 30 F(4, 0) 

y2

2
7
2

x − =

 3. 3x2 + 3y2 - 8y + 4 = 0  5. F(0, {1)

 7. (a) 
(y - 1)2

16
-

x2

48
= 1 (b) 

ay +
3
4
b2

a25
16
b -

x2a75
2
b = 1

 11.
y

x

x2 + 4y2 
− 4 = 0 x2 − y2 

− 1 = 0 

x2 + y2 
− 25 = 0 

210

5

1

 13.
y

x
0 3

4y2

16
x2

9
≤ 1+

 15. y

x
0 2

3
4x2 + 9y2 = 16 

9x2 + 4y2 
− 36 = 0

 17. (a) r = e2u (b) 
25

2
 (e4p - 1)

 19. r =
4

1 + 2 cos u
  21. r =

2
2 + sin u

 23. x = (a + b) cos u - b cos aa + b

b
 ub , 

  y = (a + b) sin u - b sin aa + b

b
 ub

 27. 
p

2
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  (a) v

u u + v

 (b) 

v

w

u

u + v + w

  (c) 

u

u − v

−v  (d) 
u

u − w

−w

 25. 3a2
3

  i +
1
3

  j -
2
3

  kb   27. 5(k)

 29. A1
2

 a 1

23
  i -

1

23
  j -

1

23
  kb

 31. (a) 2i (b) -23k (c) 
3
10

  j +
2
5

  k (d) 6i - 2j + 3k

 33. 
7
13

  (12i - 5k)

 35. (a) 
3

5 22
  i +

4

5 22
  j -

1

22
  k (b) (1>2, 3, 5>2)

 37. (a) -  
1

23
  i -

1

23
  j -

1

23
  k (b) a5

2
, 

7
2

, 
9

2
b

 39. A(4, -3, 5)  41. a =
3
2

, b =
1
2

 43. a = -1, b = 2, c = 1  45. ≈ 8-338.095, 725.0469
 47. 0F1 0 =

100 cos 45°
sin 75°

≈ 73.205 N,

  0F2 0 =
100 cos 30°

sin 75°
≈ 89.658 N,

  F1 = 8- 0F1 0  cos 30°, 0F1 0  sin 30°9 ≈ 8-63.397, 36.6039 ,
  F2 = 8 0F2 0  cos 45°, 0F2 0  sin 45°9 ≈ 863.397, 63.3979
 49. w =

100 sin 75°
cos 40°

≈ 126.093 N,

  0F1 0 =
w cos 35°

sin 75°
≈ 106.933 N

 51. (a) (5 cos 60°, 5 sin 60°) = a5
2

, 
523

2
 b

  (b) (5 cos 60° + 10 cos 315°, 5 sin 60° + 10 sin 315°) =

   a5 + 1022

2
, 

523 - 1022

2
 b

 53. (a) 
3
2

 i +
3
2

 j - 3k (b) i + j - 2k (c) (2, 2, 1)

 59. (a) 80, 0, 09  (b) 80, 0, 09
SECTION 12.3, pp. 720–722

 1. (a) -25, 5, 5 (b) -1 (c) -5 (d) -2i + 4j - 25k

 3. (a) 25, 15, 5 (b) 
1
3

 (c) 
5
3

 (d) 
1
9

 (10i + 11j - 2k)

 5. (a) 2, 234, 23 (b) 
2

23234
 (c) 

2

234

  (d) 
1
17

  (5j - 3k)

 7. (a) 10 + 217, 226, 221 (b) 
10 + 217

2546
 (c) 

10 + 217

226

  (d) 
10 + 217

26
  (5i + j)

Chapter 12

SECTION 12.1, pp. 703–705

 1. The line through the point (2, 3, 0) parallel to the z-axis

 3. The x-axis

 5. The circle x2 + y2 = 4 in the xy-plane

 7. The circle x2 + z2 = 4 in the xz-plane

 9. The circle y2 + z2 = 1 in the yz-plane

 11. The circle x2 + y2 = 16 in the xy-plane

 13. The ellipse formed by the intersection of the cylinder 

x2 + y2 = 4 and the plane z = y

 15. The parabola y = x2 in the xy-plane

 17. (a) The irst quadrant of the xy-plane

  (b) The fourth quadrant of the xy-plane

 19. (a) The ball of radius 1 centered at the origin

  (b) All points more than 1 unit from the origin

 21. (a)  The ball of radius 2 centered at the origin with the interior of 

the ball of radius 1 centered at the origin removed

  (b) The solid upper hemisphere of radius 1 centered at the origin

 23. (a)  The region on or inside the parabola y = x2 in the xy-plane 

and all points above this region

  (b)  The region on or to the left of the parabola x = y2 in the 

xy-plane and all points above it that are 2 units or less away 

from the xy-plane

 25. 3  27. 7  29. 223  31. (a) 2 (b) 3 (c) 4

 33. (a) 3 (b) 4 (c) 5  

 35. (a) x = 3 (b) y = -1 (c) z = -2

 37. (a) z = 1 (b) x = 3 (c) y = -1

 39. (a) x2 + (y - 2)2 = 4, z = 0

 (b) ( y - 2)2 + z2 = 4, x = 0 (c) x2 + z2 = 4, y = 2

 41. (a) y = 3, z = -1 (b) x = 1, z = -1 (c) x = 1, y = 3

 43. x2 + y2 + z2 = 25, z = 3  45. 0 … z … 1  47. z … 0

 49. (a) (x - 1)2 + ( y - 1)2 + (z - 1)2 6 1

  (b) (x - 1)2 + ( y - 1)2 + (z - 1)2 7 1

 51. C(-2, 0, 2), a = 222  53. C122, 22, -222, a = 22

 55. C(-2, 0, 2), a = 28  57. Ca-  
1
4

, -  
1
4

, -  
1
4
b , a =

523

4

 59. C(2, -3, 5), a = 7

 61. (x - 1)2 + ( y - 2)2 + (z - 3)2 = 14

 63. (x + 1)2 + ay -
1
2
b2

+ az +
2
3
b2

=
16
81

 65. (a) 2y2 + z2 (b) 2x2 + z2 (c) 2x2 + y2

 67.  217 + 233 + 6  69.  y = 1

 71. (a) (0, 3, -3) (b) (0, 5, -5)

 73. z = x2>4 + 1  75. (a) z2 = x2 (b) y2 = x2

SECTION 12.2, pp. 712–714

 1. (a) 89, -69  (b) 3213  3. (a) 81, 39  (b) 210

 5. (a) 812, -199  (b) 2505

 7. (a) h 1
5

, 
14
5
i  (b) 

2197

5
  9. 81, -49

 11. 8-2, -39   13. h-  
1
2

, 
23

2
i   15. h-  

23

2
, -  

1
2
i

 17. -3i + 2j - k  19. -3i + 16j

 21. 3i + 5j - 8k

 23. The vector v is horizontal and 1 in. long. The vectors u and w 

  are 
11
16

 in. long. w is vertical and u makes a 45° angle with the 

  horizontal. All vectors must be drawn to scale.
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 9. 0.75 rad  11. 1.77 rad

 13. Angle at A = cos-1 a 1

25
b ≈ 63.435 degrees, angle at 

  B = cos-1 a3
5
b ≈ 53.130 degrees, angle at 

  C = cos-1 a 1

25
b ≈ 63.435 degrees.

 17. cos-1 a 3

210
b ≈ 0.322 radian or 18.43 degrees

 25. Horizontal component: ≈1188 ft>sec, vertical component: 

≈167 ft>sec

 27. (a)  Since 0 cos u 0 … 1, we have 0 u # v 0 = 0 u 0  0 v 0  0 cos u 0 …  0 u 0  0 v 0  (1) = 0 u 0  0 v 0 .
  (b)  We have equality precisely when 0 cos u 0 = 1 or when one 

or both of u and v are 0. In the case of nonzero vectors, we 

have equality when u = 0 or p, that is, when the vectors are 

parallel.

 29. a

 35. x + 2y = 4 37. -2x + y = -3

2

1

i + 2j

0 4
x

y

x + 2y = 4

 

−3

−2

−2i + j

−2x + y = −3

0

1

3
2

x

y

 39. x + y = -1 41. 2x - y = 0

1

−2 1

−1 i − j

P(−2, 1)

x + y = −1

x

y  

−i  −  2j

P(1, 2)

2x − y = 0

x

y

 43. 5 J  45. 3464 J  47. 
p

4
  49. 

p

6
  51. 0.14

SECTION 12.4, pp. 727–728

 1. 0 u * v 0 = 3, direction is 
2
3

  i +
1
3

  j +
2
3

  k; �v * u � = 3, 

  direction is -  
2
3

  i -
1
3

  j -
2
3

  k

 3. 0 u * v 0 = 0, no direction; 0 v * u 0 = 0, no direction

 5. 0 u * v 0 = 6, direction is -k; 0 v * u 0 = 6, direction is k

 7. 0 u * v 0 = 625, direction is 
1

25
  i -

2

25
  k; �v * u � = 625, 

direction is -  
1

25
  i +

2

25
  k

 9.   11.

y

z

x

i

i × j = k

j

 

y

z

x

i − j + k

i − k

j + k

 13.
z

x

y

–2k

i – j
i + j

 15. (a) 226 (b) { 1

26
  (2i + j + k)

 17. (a) 
22

2
 (b) {  

1

22
 (i - j)

 19. 8  21. 7  23. (a) None (b) u and w

 25. 1023 ft@lb

 27. (a) True (b) Not always true (c) True (d) True

 (e) Not always true (f) True (g) True (h) True

 29. (a) projv u =
u # v
v # v v (b) {  u * v (c) {  (u * v) * w

 (d) � (u * v) # w �  (e) (u * v) * (u * w) (f) �u �  
v

�v �

 31. (a) Yes (b) No (c) Yes (d) No

 33. No, v need not equal w. For example, i + j ≠ - i + j, 

but i * (i + j) = i * i + i * j = 0 + k = k and 

i * (- i + j) = - i * i + i * j = 0 + k = k.

 35. 2  37. 13  39. 2129  41. 
11
2

  43. 
25
2

 45. 
3
2

  47. 
221

2

 49. If A = a1  i + a2  

 

j and B = b1  i + b2  

 

j, then

A * B = 3 i j k

a1 a2 0

b1 b2 0

3 = 3 a1 a2

b1 b2

3 k
  and the triangle’s area is

1
2
2 A * B 2 = {1

2
 2 a1 a2

b1 b2

2 .
  The applicable sign is (+ ) if the acute angle from A to B runs 

counterclockwise in the xy-plane, and (- ) if it runs clockwise.

 51. 4  53. 44>3  55. Coplanar  57. Not coplanar
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SECTION 12.5, pp. 735–737

 1. x = 3 + t, y = -4 + t, z = -1 + t

 3. x = -2 + 5t, y = 5t, z = 3 - 5t

 5. x = 0, y = 2t, z = t

 7. x = 1, y = 1, z = 1 + t

 9. x = t, y = -7 + 2t, z = 2t

 11. x = t, y = 0, z = 0

 13. z

x

y

−2

2

x2 + y2 = 4

 15. 

4

2
x2 + 4z2 = 16 

z

x y

 17. 
9x2 + y2 + z2 = 9

3

3

−3

−3
−1

1

z

x

y

 19. 4x2 + 9y2 + 4z2 = 36

−3

−3

3

3

−2

2

z

x

y

 21. z

x

y

z = x2 + 4y2

4

1

2

 23. z

x

y

4

2

1

x = 4 − 4y2 − z2

 25. z

x

y

x2 + y2 = z2

 27. 
z

x

y

x2 + y2 − z2 = 1

−1
−1

1
1

 29. 

z2 − x2 − y2 = 1

z

x y

2

1

Î3Î3

 31. z

x

y2 − x2 = z

y

 13. x = t, y = t, z =
3
2

 t,

  0 … t … 1

y

z

x

(0, 0, 0)

1, 1,
3
2

a        b

 15. x = 1, y = 1 + t,

  z = 0, -1 … t … 0

y

z

x

(1, 0, 0)
(1, 1, 0)

 17. x = 0, y = 1 - 2t,

  z = 1, 0 … t … 1

y

z

x

(0, −1, 1) (0, 1, 1)

 19. x = 2 - 2t, y = 2t,

  z = 2 - 2t, 0 … t … 1

y

z

x

(0, 2, 0)

(2, 0, 2)

 21. 3x - 2y - z = -3  23. 7x - 5y - 4z = 6

 25. x + 3y + 4z = 34  27. (1, 2, 3), -20x + 12y + z = 7

 29. y + z = 3  31. x - y + z = 0  33. 2230  35. 0

 37. 
9242

7
  39. 3  41. 19>5  43. 5>3  45. 9>241

 47. p>4  49. arccos (-1>6) ≈ 1.738 radians

 51. arcsin 12>21542 ≈ 0.161 radians  53. 1.38 rad

 55. 0.82 rad  57. a3
2

, -  
3
2

, 
1
2
b   59. (1, 1, 0)

 61. x = 1 - t, y = 1 + t, z = -1

 63. x = 4, y = 3 + 6t, z = 1 + 3t

 65. L1 intersects L2; L2 is parallel to L3, 25>3; L1 and L3 are skew, 

1022>3
 67. x = 2 + 2t, y = -4 - t, z = 7 + 3t; x = -2 - t, 

y = -2 + (1>2)t, z = 1 - (3>2)t

 69. a0, -  
1
2

, -  
3
2
b , (-1, 0, -3), (1, -1, 0)

 73. Many possible answers. One possibility: x + y = 3 and 

2y + z = 7.

 75. (x>a) + (y>b) + (z>c) = 1 describes all planes except those 

through the origin or parallel to a coordinate axis.

SECTION 12.6, pp. 741–742

 1. (d), ellipsoid  3. (a), cylinder  5. (l), hyperbolic paraboloid

 7. (b), cylinder  9. (k), hyperbolic paraboloid  11. (h), cone
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 21. u * v = k

z

x

y

i + j

i × (i + j) = k

i

 23. 227  25. (a) 214 (b) 1  29. 278>3
 31. x = 1 - 3t, y = 2, z = 3 + 7t  33. 22

 35. 2x + y + z = 5  37. -9x + y + 7z = 4

 39. a0, -  
1
2

, -  
3
2
b , (-1, 0, -3), (1, -1, 0)  41. p>3

 43. x = -5 + 5t, y = 3 - t, z = -3t

 45. (b) x = -12t, y = 19>12 + 15t, z = 1>6 + 6t

 47. Yes; v is parallel to the plane.

 49. 3  51. -3j + 3k

 53. 
2

235
  (5i - j - 3k)  55. a11

9
, 

26
9

, -  
7
9
b

 57. (1, -2, -1); x = 1 - 5t, y = -2 + 3t, z = -1 + 4t

 59. 2x + 7y + 2z + 10 = 0

 61. (a) No (b) No (c) No (d) No (e) Yes

 63. 11>2107

 65. 
z

x

x2 + y2 + z2 = 4

y2

2

−2

−2

2

 67. 
z

x

4x2 + 4y2 + z2 = 4

y

−1

11

−2

2

 69. 
z

x

y

z = −(x2 + y2)  71. z

x

x2 + y2 = z2

y

 73. 
z

x

x2 + y2 − z2 = 4

y

Î5

−2

−2

2

2

3
3

 75. 

Î10

z

x

y2 − x2 − z2 = 1

y

3

−3

−1
3

3

 33. 
z

z2 = 1 + y2 − x2

x

y

 35. z

x

y

y = −(x2 + z2)

 37. 
z

x

y

x2 + y2 − z2 = 4  39. z

x2 + z2 = 1

x
y

1

1

 41. z

x

y

z = −(x2 + y2)

 43. z

x

y

4y2 + z2 − 4x2 = 4

 45. (a) 
2p(9 - c2)

9
 (b) 8p (c) 

4pabc

3

PRACTICE EXERCISES, pp. 743–745

 1. (a) 8-17, 329  (b) 21313

 3. (a) 86, -89  (b) 10

 5. h-  
23

2
, -  

1
2
i  [assuming counterclockwise]

 7. h 8

217
, -  

2

217
i

 9. Length = 2, direction is 
1

22
  i +

1

22
  j.

 11. v (p>2) = 2(- i)

 13. Length = 7, direction is 
2
7

  i -
3
7

  j +
6
7

  k.

 15. 
8

233
  i -

2

233
  j +

8

233
  k

 17. 0 v 0 = 22, 0 u 0 = 3, v # u = u # v = 3, v * u = -2i + 2j - k,

  u * v = 2i - 2j + k, �v * u � = 3, u = cos-1 a 1

22
b =

p

4
,

  �u �  cos u =
3

22
, projv u =

3
2

  (i + j)

 19. 
4
3

  (2i + j - k)
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ADDITIONAL AND ADVANCED EXERCISES, pp. 745–747

 1. (26, 23, -1>3)  3. 0F 0 = 20 lb

 5. (a) 0F1 0 = 80 lb, 0F2 0 = 60 lb, F1 = 8-48, 649 ,
   F2 = 848, 369 , a = tan-1 

4
3

, b = tan-1 
3
4

  (b) 0F1 0 =
2400
13

≈ 184.615 lb, 0F2 0 =
1000
13

≈ 76.923 lb,

   F1 = h-12,000

169
, 

28,800

169
i ≈ 8-71.006, 170.4149 ,

   F2 = h 12,000

169
, 

5000
169
i ≈ 871.006, 29.5869 ,

   a = tan-1 
12
5

, b = tan-1 
5
12

 9. (a) u = tan-1 22 ≈ 54.74° (b) u = tan-1 222 ≈ 70.53°

 13. (a) 
6

214
 (b) 2x - y + 2z = 8

  (c) x - 2y + z = 3 + 526 and x - 2y + z = 3 - 526

 15. 
32
41

  i +
23
41

  j -
13
41

  k

 17. (a) 0, 0 (b) -10i - 2j + 6k, -9i - 2j + 7k

 (c) -4i - 6j + 2k, i - 2j - 4k

  (d) -10i - 10k, -12i - 4j - 8k

 19. The formula is always true.

Chapter 13

SECTION 13.1, pp. 756–758

 1. i -
1
2

  j + k  3. 2i +
1
2

  j +
p

4
  k

 5. y = x2 - 2x, v = i + 2j, a = 2j

 7. y =
2
9

 x2, v = 3i + 4j, a = 3i + 8j

 9. t =
p

4
: v =

22

2
  i -

22

2
  j, a =

-22

2
  i -

22

2
  j;

  t = p>2: v = - j, a = - i

  

x

y

0 p
2

a
p
2

v

p
4

v
p
4

a

1

Q R Q R

Q R Q R

 11. t = p: v = 2i, a = - j; t =
3p
2

 : v = i - j, a = − i

  
x

y

2

1

0 p 2p

3p
2

a

3p
2

3p
2

v

t =

t = p
v(p)

a(p)

r = (t – sin t)i + (1 – cos t)j Q  R Q  R

 13. v = i + 2tj + 2k; a = 2j; speed: 3; direction: 
1
3

  i +
2
3

  j +
2
3

  k;

  v(1) = 3a1
3

  i +
2
3

  j +
2
3

  kb
 15. v = (-2 sin t)i + (3 cos t)j + 4k;

  a = (-2 cos t)i - (3 sin t)j; speed: 225;

  direction: 1-1>252i + 12>252k;

  v(p>2) = 22531-1>252i + 12>252k4
 17. v = a 2

t + 1
b i + 2t j + t k; a = a -2

(t + 1)2
b i + 2 j + k;

  speed: 26; direction: 
1

26
  i +

2

26
  j +

1

26
  k;

  v(1) = 26¢ 1

26
  i +

2

26
 j +

1

26
  k≤

 19. p>2  21. p>2  23. x = t, y = -1, z = 1 + t

 25. x = t, y =
1
3

 t, z = t  27. 4, -2  29. 2, -2

 31. E  33. D  35. C

 37. (a) (i): It has constant speed 1. (ii): Yes

   (iii): Counterclockwise (iv): Yes

 (b) (i): It has constant speed 2. (ii): Yes

  (iii): Counterclockwise (iv): Yes

 (c) (i): It has constant speed 1. (ii): Yes

  (iii): Counterclockwise

  (iv): It starts at (0, -1) instead of (1, 0).

 (d) (i): It has constant speed 1. (ii): Yes

  (iii): Clockwise (iv): Yes

   (i): It has variable speed. (ii): No

   (iii): Counterclockwise (iv): Yes

 39. v = 225i + 25j

SECTION 13.2, pp. 763–767

 1. (1>4)i + 7j + (3>2)k  3. ¢p + 222

2
≤j + 2k

 5. (ln 4)i + (ln 4)j + (ln 2)k

 7. 
e - 1

2
  i +

e - 1
e  j + k  9. i - j +

p

4
 k

 11. r(t) = a- t2

2
+ 1b i + a- t2

2
+ 2bj + a- t2

2
+ 3bk

 13. r(t) = ((t + 1)3>2 - 1)i + (-e-t + 1)j + (ln(t + 1) + 1)k

 15. r(t) = (3 + ln 0 sec t 0 )i + (-2 + 2 sin (t>2))j

      + (1 - (1>2) ln 0 sec 2t + tan 2t 0 )k
 17. r(t) = 8t i + 8t j + (-16t2 + 100)k

 19. r(t) = (et - 2t + 2)i + (-e-t + 3t + 2)j + (e2t - 2t + 1)k

 21. r(t) = ¢3
2

  t2 +
6

211
  t + 1≤i - ¢1

2
  t2 +

2

211
  t - 2≤j 

  + ¢1
2

  t2 +
2

211
  t + 3≤k = ¢1

2
  t2 +

2t

211
≤(3i - j + k) 

  + (i + 2j + 3k)

 23. 50 sec

 25. (a) 72.2 sec; 25,510 m (b) 4020 m (c) 6378 m

 27. (a) y0 ≈ 9.9 m>sec (b) a ≈ 18.4° or 71.6°
 29. 39.3° or 50.7°  35. (b) v0 would bisect ∠AOR.
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SECTION 13.4, pp. 776–777

 1. T = (cos t)i - (sin t)j, N = (-sin t)i - (cos t)j, k = cos t

 3. (a) T =
1

21 + t2
  i -

t

21 + t2
  j, N =

- t

21 + t2
  i -  

     
1

21 + t2
  j, k =

1

2121 + t223
 5. (b) cos x

 7. (b) N =
-2e2t

21 + 4e4t
  i +

1

21 + 4e4t
  j

  (c) N = -  
1
2

 124 - t2 i + t j2
 9. T =

3 cos t

5
  i -

3 sin t

5
  j +

4
5

  k,

  N = (-sin t)i - (cos t)j, k =
3

25

 11. T = acos t - sin t

22
≤i + ¢cos t + sin t

22
≤j,

  N = ¢-cos t - sin t

22
≤i + ¢-sin t + cos t

22
≤j, k =

1

et22

 13. T =
t

2t2 + 1
  i +

1

2t2 + 1
  j, 

  N =
i

2t2 + 1
-

t j

2t2 + 1
, k =

1

t(t2 + 1)3>2
 15. T = asech  

t
ab i + atanh  

t
abj,

  N = a- tanh  
t
ab i + asech  

t
abj,

  k =
1
a  sech2  

t
a

 19. 1 >  (2b)

 21. ax -
p

2
b2

+ y2 = 1

 23. k(x) = 2> (1 + 4x2)3>2
 25. k(x) = 0 sin x 0 > (1 + cos2 x)3>2
 27. maximum curvature 2>13232 at x = 1>22

SECTION 13.5, p. 783

 1. a = 0 a 0N  3. a(1) =
4
3

  T +
225

3
  N  5. a(0) = 2N

 7. rap
4
b =

22

2
  i +

22

2
  j - k, Tap

4
b = -  

22

2
  i +

22

2
  j, 

  Nap
4
b = -  

22

2
  i -

22

2
  j, Bap

4
b = k; osculating plane: 

  z = -1; normal plane: -x + y = 0; rectifying plane: 

x + y = 22

 9. B = a4
5

 cos tb i - a4
5

 sin tbj -
3

5
  k, t = -  

4
25

 11. B = k, t = 0  13. B = -k, t = 0  15. B = k, t = 0

 17. Yes. If the car is moving on a curved path (k ≠ 0), then 

aN = k 0 v 0 2 ≠ 0 and a ≠ 0.

 23. k =
1
t
, r = t

 37. (a)  (Assuming that “x” is zero at the point of impact) 

r(t) = (x(t))i + (y(t))j, where x(t) = (35 cos 27°)t and 

y(t) = 4 + (35 sin 27°)t - 16t2.

 (b)  At t ≈ 0.497 sec, it reaches its maximum height of about 

7.945 ft.

 (c) Range ≈ 37.45 ft; light time ≈ 1.201 sec

 (d)  At t ≈ 0.254 and t ≈ 0.740 sec, when it is ≈29.532 and 

≈14.376 ft from where it will land

  (e) Yes. It changes things because the ball won’t clear the net.

 39. 4.00 ft, 7.80 ft > sec

 47. (a) r(t) = (x(t)) i + (y(t)) j; where

   x(t) = a 1
0.08
b (1 - e-0.08t)(152 cos 20° - 17.6) and

   y(t) = 3 + a 152
0.08
b (1 - e-0.08t)(sin 20°)

       + a 32

0.082
b (1 - 0.08t - e-0.08t)

 (b)  At t ≈ 1.527 sec it reaches a maximum height of about 

41.893 feet.

 (c) Range ≈ 351.734 ft; light time ≈ 3.181 sec

 (d)  At t ≈ 0.877 and 2.190 sec, when it is about 106.028 and 

251.530 ft from home plate

  (e) No

SECTION 13.3, pp. 770–771

 1. T = a-  
2
3

 sin tb i + a2
3

 cos tbj +
25

3
  k, 3p

 3. T =
1

21 + t
  i +

2t

21 + t
  k, 

52
3

 5. T = -cos t j + sin t k, 
3
2

 7. T = acos t - t sin t
t + 1

b i + asin t + t cos t
t + 1

b j 

  + a22t1>2
t + 1

bk, 
p2

2
+ p

 9. (0, 5, 24p)

 11. s(t) = 5t, L =
5p
2

 13. s(t) = 23et - 23, L =
323

4

 15. 22 + ln11 + 222
 17. (a) Cylinder is x2 + y2 = 1; plane is x + z = 1.

  (b) and (c)

  

z

x y

(0, –1, 1)
(–1, 0, 2)

(0, 1, 1)(1, 0, 0)

 (d) L = L
2p

0

21 + sin2 t dt (e) L ≈ 7.64
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   N = ¢-  
1

22
 sin t≤i - (cos t)j - ¢ 1

22
 sin t≤k;

   B =
1

22
  i -

1

22
  k; k =

1

22
 ; t = 0

 25. 
p

3
  27. x = 1 + t, y = t, z = - t  31. k =

1
a

ADDITIONAL AND ADVANCED EXERCISES, pp. 790–791

 1. (a) 
du

dt
`
u= 2p

= 2A
pgb

a2 + b2

 (b) u =
gbt2

2(a2 + b2)
, z =

gb2t2

2(a2 + b2)

 (c) v(t) =
gbt

2a2 + b2
  T;

   
d2r

dt2
=

bg

2a2 + b2
  T + a a bgt

a2 + b2
b2

N

  There is no component in the direction of B.

 5. (a) 
dx

dt
= r

#
 cos u - r  u

#
 sin u, 

dy

dt
= r

#
 sin u + r  u

#
 cos u

  (b) 
dr

dt
= x

#
 cos u + y

#
 sin u, r 

du

dt
= -x

#
 sin u + y

#
 cos u

 7. (a) a(1) = -9ur - 6uu, v(1) = -ur + 3uu

  (b) 6.5 in.

 9. (c) v = r
#

 ur + r  u
#
uu + z

#
 k, a = ( r

$
- r  u

#
2)ur +  

   (r  u
$

+ 2r
#
u
#
) uu + z

$ k

 27. Components of v: -1.8701, 0.7089, 1.0000

  Components of a: -1.6960, -2.0307, 0

  Speed: 2.2361; Components of T: -0.8364, 0.3170, 0.4472

  Components of N: -0.4143, -0.8998, -0.1369

  Components of B: 0.3590, -0.2998, 0.8839; Curvature: 0.5060

  Torsion: 0.2813; Tangential component of acceleration: 0.7746

  Normal component of acceleration: 2.5298

 29. Components of v: 2.0000, 0, - 0.1629

  Components of a: 0, -1.0000, - 0.0086; Speed: 2.0066

  Components of T: 0.9967, 0, - 0.0812

  Components of N: -0.0007, -1.0000, - 0.0086

  Components of B: - 0.0812, 0.0086, 0.9967;

  Curvature: 0.2484

  Torsion: 0.0411; Tangential component of acceleration: 0.0007

 Normal component of acceleration: 1.0000

SECTION 13.6, p. 787

 1. v = 2ur + 2uuu

  a = -4uur + 8uu

 3. v = (3a sin u)ur + 3a(1 - cos u)uu 

a = 9a(2 cos u - 1)ur + (18a sin u)uu

 5. v = 2aeauur + 2eauuu

  a = 4eau(a2 - 1)ur + 8aeauuu

 7. v = (-8 sin 4t)ur + (4 cos 4t)uu 

a = (-40 cos 4t)ur - (32 sin 4t)uu

 13. ≈29.93 * 1010 m  15. ≈2.25 * 109 km2>sec

 17. ≈1.876 * 1027 kg

PRACTICE EXERCISES, pp. 788–789

 1. 
x2

16
+

y2

2
= 1

  

x

y

0

–1

1

2

4–4

Î2 (2Î2, 1)

p
4

v

p
4

a

a(0)

v(0)Q R
Q R

  At t = 0: aT = 0, aN = 4, k = 2;

  At t =
p

4
: aT =

7
3

, aN =
422

3
, k =

422

27

 3. 0 v 0 max = 1  5. k = 1>5  7. dy>dt = -x; clockwise

 11. Shot put is on the ground, about 66 ft 3 in. from the stopboard.

 15. Length =
p

4B1 +
p2

16
+ ln ¢p

4
+ B1 +

p2

16
≤

 17. T(0) =
2
3

  i -
2
3

  j +
1
3

  k; N(0) =
1

22
  i +

1

22
  j;

  B(0) = -  
1

322
  i +

1

322
  j +

4

322
  k; k =

22

3
; t =

1
6

 19. T(ln 2) =
1

217
  i +

4

217
  j; N(ln 2) = -  

4

217
  i +

1

217
  j;

  B(ln 2) = k; k =
8

17217
 ; t = 0

 21. a(0) = 10T + 6N

 23.  T = ¢ 1

22
 cos t≤i - (sin t)j + ¢ 1

22
 cos t≤k;

Chapter 14

SECTION 14.1, pp. 798–800

 1. (a) 0 (b) 0 (c) 58 (d) 33 

 3. (a) 4>5 (b) 8>5 (c) 3 (d) 0

x

y

y = x + 2
(1, 1)

(–1, –1)

y

x

y = x

y = x3

 5. Domain: all points (x, y) on 

or above line y = x + 2

 7. Domain: all points (x, y) 

not lying on the graph of 

y = x or y = x3

 9. Domain: all points (x, y) satisfying x2 - 1 … y … x2 + 1

–1

1

x

y y = x2 + 1

y = x2 – 1
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 37. (a) 

z = y2

z

x

y

 (b) 

z = 4

z = 1

z = 1

z = 4

z = 0
x

y

 39. (a) 
z = x2 + y2

z

x

y

 (b) 

z = 4

z = 1

1 2

z = 0

–1–2
x

y

 41. (a)  (b) 

z

z = x2 – y

y

x

 

1

0

–1

3

2

–2

–3

y

x

z = –3

z = –2

z = –1

z = 0

z = 1

z = 2

z = 3

 43. (a) 
z = 4x2 + y2

2
4

16

2
4

1

0

z

x

y

 (b) 

4

1

2

2

z = 0

z = 16

z = 4

x

y

 45. (a)  (b) 

z = 1 – 0 y 0
(0, 0, 1)

1

z

x

y

  

z = 1
1

0

z = 0

z = –1

2

z = 0

z = –1
–1

–2

x

y

 11. Domain: all points (x, y) for which 

(x - 2)(x + 2)( y - 3)( y + 3) Ú 0

3

–3

y

–2 2
x

y = –3

x = –2 x = 2

y = 3

13.

2

–2

4

42–2

y

x

x + y – 1 = c

c:

–3

–2

–1
0
1
2

3

15.
y

x

xy = c

c = 9

c = 4

c = –1 c = 1
c = –4

c = –9

0 = c

1 = c

4 = c
9 = c

–1 = c

–4 = c

–9 = c

 17. (a) All points in the xy-plane (b) All reals

  (c) The lines y - x = c (d) No boundary points

  (e) Both open and closed (f) Unbounded

19. (a) All points in the xy-plane (b) z Ú 0

  (c)  For ƒ(x, y) = 0, the origin; for ƒ(x, y) ≠ 0, ellipses with 

the center (0, 0), and major and minor axes along the x- and 

y-axes, respectively

  (d) No boundary points (e) Both open and closed

  (f) Unbounded

 21. (a) All points in the xy-plane (b) All reals

  (c)  For ƒ(x, y) = 0, the x- and y-axes; for ƒ(x, y) ≠ 0,  

hyperbolas with the x- and y-axes as asymptotes

  (d) No boundary points (e) Both open and closed

  (f) Unbounded

23. (a) All (x, y) satisfying x2 + y2 6 16 (b) z Ú 1>4
  (c) Circles centered at the origin with radii r 6 4

  (d) Boundary is the circle x2 + y2 = 16

  (e) Open (f) Bounded

25. (a) (x, y) ≠ (0, 0) (b) All reals

  (c) The circles with center (0, 0) and radii r 7 0

  (d) Boundary is the single point (0, 0)

  (e) Open (f) Unbounded

 27. (a) All (x, y) satisfying -1 … y - x … 1

  (b) -p>2 … z … p>2
  (c) Straight lines of the form y - x = c where -1 … c … 1

  (d) Boundary is two straight lines y = 1 + x and y = -1 + x

  (e) Closed (f) Unbounded

 29. (a)  Domain: all points (x, y) outside the circle x2 + y2 = 1

  (b) Range: all reals

  (c) Circles centered at the origin with radii r 7 1

  (d) Boundary: x2 + y2 = 1

  (e) Open (f) Unbounded

 31. (f), (h)  33. (a), (i)  35. (d), (j)
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 47. (a)  (b) 

z

2

y

x

z = x2 + y2 + 4Î  y

x

1

3

4

2

–3 –2 –1

–1

–2

–3

–4

1 42 3–4

z = 2

z  = Î20

z =Î13

z =Î8

z =Î5

 49. x2 + y2 = 10 51. x + y2 = 4

y

x
Î10

Î10

–Î10

–Î10

 

2

–2

y

4
x

 53. 

f(x, y, z) = x2 + y2
 + z2

 = 1

1
1

1

z

x

y

 55. 

f (x, y, z) = x + z = 1

1

1

z

x

y

 57. 

1
1

f (x, y, z) = x2 + y2
 = 1

z

x

y

 59. 

f(x, y, z) = z – x2 – y2 = 1

or z = x2 + y2 + 1 

2

1
1

1

5

2

z

x
y

 61. 2x - y - ln z = 2  63. x2 + y2 + z2 = 4

 65. Domain: all points (x, y)  

satisfying 0 x � 6 � y 0
y = x

y = –x

y

x

  level curve: y = 2x

 67. Domain: all points (x, y) 

satisfying -1 … x … 1 and 

-1 … y … 1
y

x

1

–1

1–1

  level curve:

 sin-1 y - sin-1 x =
p

2

SECTION 14.2, pp. 806–809

 1. 5>2  3. 226  5. 1  7. 1>2  9. 1

 11. 1>4  13. 0  15. -1  17. 2  19. 1 >4
 21. 1  23. 3  25. 19>12  27. 2  29. 3

 31. (a) All (x, y) (b) All (x, y) except (0, 0)

 33. (a) All (x, y) except where x = 0 or y = 0 (b) All (x, y)

 35. (a) All (x, y, z) 

  (b) All (x, y, z) except the interior of the cylinder x2 + y2 = 1

 37. (a) All (x, y, z) with z ≠ 0 (b) All (x, y, z) with x2 + z2 ≠ 1

 39. (a) All points (x, y, z) satisfying z 7 x2 + y2 + 1

  (b) All points (x, y, z) satisfying z ≠ 2x2 + y2

 41. Consider paths along y = x, x 7 0, and along y = x, x 6 0.

 43. Consider the paths y = kx2, k a constant.

 45. Consider the paths y = mx, m a constant, m ≠ -1.

 47. Consider the paths y = kx2, k a constant, k ≠ 0.

 49. Consider the paths x = 1 and y = x.

 51. Along y = 1 the limit is 0; along y = e 

x the limit is 1>2.

 53. Along y = 0 the limit is 1; along y = -sin x the limit is 0.

 55. (a) 1 (b) 0 (c) Does not exist

 59. The limit is 1.  61. The limit is 0.

 63. (a) ƒ(x, y) � y = mx = sin 2u where tan u = m  65. 0

 67. Does not exist  69. p>2  71. ƒ(0, 0) = ln 3

 73. d = 0.1  75. d = 0.005  77. d = 0.04

 79. d = 20.015  81. d = 0.005

SECTION 14.3, pp. 818–821

 1. 
0ƒ

0x
= 4x, 

0ƒ

0y
= -3  3. 

0ƒ

0x
= 2x(y + 2), 

0ƒ

0y
= x2 - 1

 5. 
0ƒ

0x
= 2y(xy - 1), 

0ƒ

0y
= 2x(xy - 1)
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 47. 
0w

0x
= x2y sec2 (xy) + 2x tan (xy), 

0w

0y
= x3 sec2 (xy),

  
02w

0y 0x
=

02w

0x 0y
= 2x3y sec2 (xy) tan (xy) + 3x2 sec2(xy)

  
02w

0x2
= 4xy sec2 (xy) + 2x2y2 sec2 (xy) tan (xy) + 2 tan (xy)

  
02w

0y2
= 2x4 sec2 (xy) tan (xy)

 49. 
0w

0x
= sin (x2y) + 2x2y cos (x2y), 

0w

0y
= x3 cos (x2y),

  
02w

0y 0x
=

02w

0x 0y
= 3x2 cos (x2y) - 2x4y sin (x2y)

  
02w

0x2
= 6xy cos (x2y) - 4x3y2 sin (x2y)

  
02w

0y2
= -x5 sin (x2y)

 51. 
0ƒ

0x
= 2xy3 - 4x3, 

0ƒ

0y
= 3x2y2 + 5y4,

  
02ƒ

0x2
= 2y3 - 12x2, 

02ƒ

0y2
= 6x2y + 20y3,

  
02ƒ

0y 0x
=

02ƒ

0x 0y
= 6xy2

 53. 
0z

0x
= 2x cos (2x - y2) + sin (2x - y2),

  
0z

0y
= -2xy cos (2x - y2),

  
02z

0x2
= 4 cos (2x - y2) - 4x sin (2x - y2),

  
02z

0y2
= -4xy2 sin (2x - y2) - 2x cos (2x - y2),

  
02z

0x 0y
=

02z

0y 0x
= 4xy sin (2x - y2) - 2y cos (2x - y2)

 55. 
0w

0x
=

2
2x + 3y

, 
0w

0y
=

3
2x + 3y

, 
02w

0y 0x
=

02w

0x 0y
=

-6

(2x + 3y)2

 57. 
0w

0x
= y2 + 2xy3 + 3x2y4, 

0w

0y
= 2xy + 3x2y2 + 4x3y3,

  
02w

0y 0x
=

02w

0x 0y
= 2y + 6xy2 + 12x2y3

 59. 
0v
0x

=
2x

y3
, 

0v
0y

=
-3x2

y4

  
02v
0y 0x

=
-6x

y4
, 

02v
0x 0y

=
-6x

y4

 61. (a) x irst (b) y irst (c) x irst 

  (d) x irst (e) y irst (f ) y irst

 63. ƒx(1, 2) = -13, ƒy(1, 2) = -2

 65. ƒx (-2, 3) = 1>2, ƒy (-2, 3) = 3>4
 67. (a) 3 (b) 2  69. 12

 7. 
0ƒ

0x
=

x

2x2 + y2
, 

0ƒ

0y
=

y

2x2 + y2

 9. 
0ƒ

0x
=

-1

(x + y)2
 , 

0ƒ

0y
=

-1

(x + y)2

 11. 
0ƒ

0x
=

-y2 - 1

(xy - 1)2
 , 

0ƒ

0y
=

-x2 - 1

(xy - 1)2

 13. 
0ƒ

0x
= ex + y + 1, 

0ƒ

0y
= ex + y + 1  15. 

0ƒ

0x
=

1
x + y

, 
0ƒ

0y
=

1
x + y

 17. 
0ƒ

0x
= 2 sin (x - 3y) cos (x - 3y), 

  
0ƒ

0y
= -6 sin (x - 3y) cos (x - 3y)

 19. 
0ƒ

0x
= yxy - 1, 

0ƒ

0y
= xy ln x  21. 

0ƒ

0x
= -g(x), 

0ƒ

0y
= g(y)

 23. ƒx = y2, ƒy = 2xy, ƒz = -4z

 25. ƒx = 1, ƒy = -y(y2 + z2)-1>2, ƒz = -z(y2 + z2)-1>2
 27. ƒx =

yz

21 - x2y2z2
, ƒy =

xz

21 - x2y2z2
, ƒz =

xy

21 - x2y2z2

 29. ƒx =
1

x + 2y + 3z
, ƒy =

2
x + 2y + 3z

, ƒz =
3

x + 2y + 3z

 31. ƒx = -2xe-(x2 + y2 + z2), ƒy = -2ye-(x2 + y2 + z2), ƒz = -2ze-(x2 + y2 + z2)

 33. ƒx = sech2(x + 2y + 3z), ƒy = 2 sech2(x + 2y + 3z),

  ƒz = 3 sech2(x + 2y + 3z)

 35. 
0ƒ

0t
= -2p sin (2pt - a),  

0ƒ

0a = sin (2pt - a)

 37. 
0h
0r = sin f cos u, 

0h

0f
= r cos f cos u, 

0h

0u
= -r sin f sin u

 39.  WP(P, V, d, y, g) = V, WV(P, V, d, y, g) = P +
dy2

2g
,

   Wd(P, V, d, y, g) =
Vy2

2g
, Wy(P, V, d, y, g) =

Vdy
g ,

   Wg(P, V, d, y, g) = -  
Vdy2

2g2

 41. 
0ƒ

0x
= 1 + y, 

0ƒ

0y
= 1 + x, 

02ƒ

0x2
= 0, 

02ƒ

0y2
= 0, 

02ƒ

0y 0x
=

02ƒ

0x 0y
= 1

 43.  
0g

0x
= 2xy + y cos x, 

0g

0y
= x2 - sin y + sin x,

  
02g

0x2
= 2y - y sin x,  

02g

0y2
= -cos y,

  
02g

0y 0x
=

02g

0x 0y
= 2x + cos x

 45.  
0r
0x

=
1

x + y
, 

0r
0y

=
1

x + y
, 

02r

0x2
=

-1

(x + y)2
, 

02r

0y2
=

-1

(x + y)2
,

   
02r

0y 0x
=

02r
0x 0y

=
-1

(x + y)2
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15. 
0w

0u
=

0w

0x
 
0x

0u
+

0w

0y
 
0y

0u
+

0w

0z
 
0z

0u
,

  
0w

0y =
0w

0x
 
0x

0y +
0w

0y
 
0y

0y +
0w

0z
 
0z

0y

  

zx

w

y

y

 

zx

w

u

 

y

'x
'w

'z
'w

'u
'x

'u

'z
'u

'y

'y

'w 'x
'w

'z
'w

'y
'x

'y

'z
'y

'y

'y

'w

 17. 
0w

0u
=

0w

0x
 
0x

0u
+

0w

0y
 
0y

0u
, 

0w

0y =
0w

0x
 
0x

0y +
0w

0y
 
0y

0y .

  

yx

w

u

yx

w

y

'x
'w

'y
'w

'u
'x

'u

'y

'x
'w

'y
'w

'y
'x

'y

'y

 19. 
0z

0t
=

0z

0x
 
0x

0t
+

0z

0y
 
0y

0t
, 

0z

0s
=

0z

0x
 
0x

0s
+

0z

0y
 
0y

0s

  

yx

z

t

yx

z

s

'x
'z

'y
'z

't
'x

't

'y

'x
'z

'y
'z

's
'x

's

'y

 21. 
0w

0s
=

dw

du
 
0u

0s
, 

0w

0t
=

dw

du
 
0u

0t

  

w

u

s

w

u

t

du
dw

du
dw

's
'u

't

'u

 23.  
0w

0r
=

0w

0x
 
0x

0r
+

0w

0y
 
0y

0r
=

0w

0x
 
0x

0r
 since 

0y

0r
= 0,

   
0w

0s
=

0w

0x
 
0x

0s
+

0w

0y
 
0y

0s
=

0w

0y
 
0y

0s
 since 

0x

0s
= 0

  

yx

w

r

yx

w

s

'r
'x

'r

'y

'x
'w

'x
'w

'y
'w

'y
'w

= 0
's
'x

's

'y
= 0

 71. 
0ƒ

0x
= 3x2y2 - 2x 1

  ƒ(x, y) = x3y2 - x2 + g(y) 1

  
0ƒ

0y
= 2x3y + g′(  y) = 2x3y + 64 1

  g′(y) = 6y 1 g( y) = 3y2 works 1

  ƒ(x, y) = x3y2 - x2 + 3y2 works

 73. 
02ƒ

0y 0x
=

2x - 2y

(x + y)3
≠

02ƒ

0x 0y
=

2y - 2x

(x + y)3
 so impossible  75. -2

 77. 
0A
0a

=
a

bc sin A
, 

0A

0b
=

c cos A - b

bc sin A

 79. yx =
ln y

(ln u)(ln y) - 1

 81. ƒx (x, y) = 0 for all points (x, y),

  ƒy (x, y) = e 3y2, y Ú 0

-2y, y 6 0
,

  ƒxy (x, y) = ƒyx (x, y) = 0 for all points (x, y)

 99. Yes

SECTION 14.4, pp. 828–830

 1. (a) 
dw

dt
= 0, (b) 

dw

dt
 (p) = 0

 3. (a) 
dw

dt
= 1, (b) 

dw

dt
 (3) = 1

 5. (a) 
dw

dt
= 4t tan-1 t + 1, (b) 

dw

dt
 (1) = p + 1

 7. (a) 
0z

0u
= 4 cos y ln (u sin y) + 4 cos y,

   
0z

0y = -4u sin y ln (u sin y) +
4u cos2 y

sin y

  (b) 
0z

0u
= 22 (ln 2 + 2), 

0z

0y = -222 (ln 2 - 2)

 9. (a) 
0w

0u
= 2u + 4uy, 

0w

0y = -2y + 2u2

  (b) 
0w

0u
= 3, 

0w

0y = -  
3
2

 11. (a) 
0u

0x
= 0, 

0u

0y
=

z

(z - y)2
, 

0u

0z
=

-y

(z - y)2

  (b) 
0u

0x
= 0, 

0u

0y
= 1, 

0u

0z
= -2

 13. 
dz

dt
=

0z

0x
 
dx

dt
+

0z

0y
 
dy

dt

  

yx

z

t

dt
dx

dt

dy

'x
'z

'y

'z
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29. (a) u =
3

5
 i -

4
5

 j, Du ƒ(1, -1) = 5

  (b) u = -  
3

5
 i +

4
5

 j, Du ƒ(1, -1) = -5

  (c) u =
4
5

 i +
3

5
 j, u = -  

4
5

 i -
3

5
 j

  (d) u = - j, u =
24
25

 i -
7
25

 j

  (e) u = - i, u =
7
25

 i +
24
25

 j

 31. u =
7

253
  i -

2

253
  j, -u = -  

7

253
  i +

2

253
  j

 33. No, the maximum rate of change is 2185 6 14.

 35. -7>25  41. r(t) = (-3 - 6t)i + (4 + 8t) j, -q 6 t 6 q
 43. r(t) = (3 + 6t)i + (-2 - 4t)j + (1 + 2t)k, -q 6 t 6 q

SECTION 14.6, pp. 846–849

 1. (a) x + y + z = 3

  (b) x = 1 + 2t, y = 1 + 2t, z = 1 + 2t

 3. (a) 2x - z - 2 = 0

  (b) x = 2 - 4t, y = 0, z = 2 + 2t

 5. (a) 2x + 2y + z - 4 = 0

  (b) x = 2t, y = 1 + 2t, z = 2 + t

 7. (a) x + y + z - 1 = 0

  (b) x = t, y = 1 + t, z = t

 9. (a) -x + 3y + z>e = 2

  (b) x = 2 - t, y = 1 + 3t, z = e + (1>e)t

 11. 2x - z - 2 = 0

 13. x - y + 2z - 1 = 0

 15. x = 1, y = 1 + 2t, z = 1 - 2t

 17. x = 1 - 2t, y = 1, z =
1
2

+ 2t

 19. x = 1 + 90t, y = 1 - 90t, z = 3

 21. dƒ =
9

11,830
≈ 0.0008  23. dg = 0

 25. (a) 
23

2
 sin23 -

1
2

 cos23 ≈ 0.935°C>ft
  (b) 23 sin 23 - cos 23 ≈ 1.87°C>sec

 27. (a) L(x, y) = 1  (b) L(x, y) = 2x + 2y - 1

 29. (a) L(x, y) = 3x - 4y + 5 (b) L(x, y) = 3x - 4y + 5

 31. (a) L(x, y) = 1 + x (b) L(x, y) = -y +
p

2
 33. (a) W(20, 25) = 11°F, W(30, -10) = -39°F, W(15, 15) = 0°F
  (b) W(10, -40) ≈ -65.5°F, W(50, -40) ≈ -88°F,

   W(60, 30) ≈ 10.2°F
  (c) L(y, T) ≈ -0.36 (y - 25) + 1.337(T - 5) - 17.4088

  (d)   i) L(24, 6) ≈ -15.7°F
    ii) L(27, 2) ≈ -22.1°F
   iii) L(5, -10) ≈ -30.2°F
 35. L(x, y) = 7 + x - 6y; 0.06  37. L(x, y) = x + y + 1; 0.08

 39. L(x, y) = 1 + x; 0.0222

 41. (a) L(x, y, z) = 2x + 2y + 2z - 3 (b) L(x, y, z) = y + z

  (c) L(x, y, z) = 0

 43. (a) L(x, y, z) = x

  (b) L(x, y, z) =
1

22
 x +

1

22
 y

  (c) L(x, y, z) =
1
3

 x +
2
3

 y +
2
3

 z

 25. 4 >3  27. -4>5  29. 20  31. 
0z

0x
=

1
4

, 
0z

0y
= -  

3
4

 33. 
0z

0x
= -1, 

0z

0y
= -1  35. 12  37. -7

 39. 
0z

0u
= 2, 

0z

0y = 1  41. 
0w

0t
= 2t es3 + t2

, 
0w

0s
= 3s2 es3 + t2

 43. 23  45. -16, 2  47. -0.00005 amp>sec

53. (cos 1, sin 1, 1) and (cos(-2), sin(-2), -2)

 55. (a) Maximum at ¢-  
22

2
, 
22

2
≤  and ¢22

2
, -  
22

2
≤; minimum

   at ¢22

2
, 
22

2
≤  and ¢-  

22

2
, -  
22

2
≤

  (b) Max = 6, min = 2  

57. 5°C>sec 59. 2x2x8 + x3 + L
x2

0

 
3x2

22t4 + x3
  dt

5.  

4 = 2x + 3y

(–1, 2)

x

y

1
2

∇f = i + 3
4

j

4
3

2

 7. ∇ƒ = 3i + 2j - 4k  9. ∇ƒ = -  
26
27

  i +
23

54
  j -

23

54
  k

 11. -4 13. 21 >13  15. 3  17. 2

 19.  u = -  
1

22
  i +

1

22
  j, (Du ƒ)P0

= 22; -u =
1

22
  i -

1

22
  j,

   (D−u ƒ)P0
= -22

 21. u =
1

323
  i -

5

323
  j -

1

323
  k, (Du ƒ)P0

= 323;

  -u = -  
1

323
  i +

5

323
  j +

1

323
  k, (D-u ƒ)P0

= -323

 23. u =
1

23
 (i + j + k), (Du ƒ)P0

= 223;

  -u = -  
1

23
 (i + j + k), (D-u ƒ)P0

= -223

 25. 

x2 + y2 = 4

2

2

∇f = 2Î2i + 2Î2j

(Î2, Î2)

y = –x + 2Î2

x

y   27. 

y = x – 4
xy = –4

2

–2
(2, –2)

x

y

∇f = –2i + 2j

SECTION 14.5, pp. 838–839

1.

  

(2, 1)

2

y – x = –1

1

1

2

0
–1

∇f = – i + j 

x

y

3.

  

y

(2, –1)
x

2

y2
x =

∇f = i – 4j
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 45. (a) L(x, y, z) = 2 + x

  (b) L(x, y, z) = x - y - z +
p

2
+ 1

  (c) L(x, y, z) = x - y - z +
p

2
+ 1

 47. L(x, y, z) = 2x - 6y - 2z + 6, 0.0024

 49. L(x, y, z) = x + y - z - 1, 0.00135

 51. Maximum error (estimate) …0.31 in magnitude

 53. Pay more attention to the smaller of the two dimensions. It will 

generate the larger partial derivative.

 55. ƒ is most sensitive to a change in d.

 61. (a) 1.75% (b) 1.75%

SECTION 14.7, pp. 856–858

 1. ƒ(-3, 3) = -5, local minimum  3. ƒ(-2, 1), saddle point

 5. ƒa3, 
3
2
b =

17
2

, local maximum

 7. ƒ(2, -1) = -6, local minimum  9. ƒ(1, 2), saddle point

 11. ƒa16
7

, 0b = -  
16
7

, local maximum

 13. ƒ(0, 0), saddle point; ƒa-  
2
3

, 
2
3
b =

170
27

, local maximum

 15. ƒ(0, 0) = 0, local minimum; ƒ(1, -1), saddle point

 17. ƒ(0, {25), saddle points; ƒ(-2, -1) = 30, local maximum; 

ƒ(2, 1) = -30, local minimum

 19. ƒ(0, 0), saddle point; ƒ(1, 1) = 2, ƒ(-1, -1) = 2, local maxima

 21. ƒ(0, 0) = -1, local maximum

 23. ƒ(np, 0), saddle points, for every integer n

 25. ƒ(2, 0) = e-4, local minimum

 27. ƒ(0, 0) = 0, local minimum; ƒ(0, 2), saddle point

 29. ƒa1
2

, 1b = lna1
4
b - 3, local maximum

 31. Absolute maximum: 1 at (0, 0); absolute minimum: -5 at (1, 2)

 33. Absolute maximum: 4 at (0, 2); absolute minimum: 0 at (0, 0)

 35. Absolute maximum: 11 at (0, -3); absolute minimum: -10 at 

(4, -2)

 37. Absolute maximum: 4 at (2, 0); absolute minimum: 
322

2
 at

  a3, -  
p

4
b , a3, 

p

4
b , a1, -  

p

4
b , and a1, 

p

4
b

 39. a = -3, b = 2

 41. Hottest is 2 
1
4
°
 at a-  

1
2

, 
23

2
b  and a-  

1
2

, -  
23

2
 b ; coldest is

  -  
1
4
°
 at a1

2
, 0b .

 43. (a) ƒ(0, 0), saddle point (b) ƒ(1, 2), local minimum

  (c) ƒ(1, -2), local minimum; ƒ(-1, -2), saddle point

 49. a1
6

, 
1
3

, 
355
36
b   51. a9

7
, 

6
7

, 
3
7
b   53. 3, 3, 3  55. 12

 57. 
4

23
*

4

23
*

4

23
  59. 2 ft * 2 ft * 1 ft

 61.  Points (0, 2, 0) and (0, -2, 0) have distance 2 from the origin.

 63. (a)  On the semicircle, max ƒ = 222 at t = p>4, min ƒ = -2 

at t = p. On the quarter circle, max ƒ = 222 at t = p>4, 

min ƒ = 2 at t = 0, p>2.

  (b)  On the semicircle, max g = 2 at t = p>4, min g = -2 at 

t = 3p>4. On the quarter circle, max g = 2 at t = p>4, 

min g = 0 at t = 0, p>2.

  (c)  On the semicircle, max h = 8 at t = 0, p; min h = 4 

at t = p>2. On the quarter circle, max h = 8 at t = 0, 

min h = 4 at t = p>2.

 65.   i) min ƒ = -1>2 at t = -1>2; no max

   ii) max ƒ = 0 at t = -1, 0; min ƒ = -1>2 at t = -1>2
  iii) max ƒ = 4 at t = 1; min ƒ = 0 at t = 0

 69. y = -  
20
13

 x +
9

13
, y � x = 4 = -  

71
13

SECTION 14.8, pp. 865–868

 1. ¢{ 1

22
, 

1
2
≤, ¢{ 1

22
, -  

1
2
≤   3. 39  5. 13, {3222

 7. (a) 8 (b) 64

 9. r = 2 cm, h = 4 cm

 11. Length = 422, width = 322

 13. ƒ(0, 0) = 0 is minimum; ƒ(2, 4) = 20 is maximum.

 15. Lowest = 0°, highest = 125°

 17. a3
2

, 2, 
5
2
b   19. 1  21.  (0, 0, 2), (0, 0, -2)

 23. ƒ(1, -2, 5) = 30 is maximum; ƒ(-1, 2, -5) = -30 is minimum.

 25. 3, 3, 3  27. 
2

23
  by 

2

23
  by 

2

23
 units

 29. ({4>3, -4>3, -4>3) 31. ≈24,322 units

 33. U(8, 14) = +128 37. ƒ(2>3, 4>3, -4>3) =
4
3

 39. (2, 4, 4)  41. Maximum is 1 + 623 at 1{26, 23, 12; 
  minimum is 1 - 623 at 1{26, -23, 12.
 43. Maximum is 4 at (0, 0, {2); minimum is 2 at 1{22, {22, 02.
SECTION 14.9, p. 872

 1. Quadratic: x + xy; cubic: x + xy +
1
2

 xy2

 3. Quadratic: xy; cubic: xy

 5. Quadratic: y +
1
2

 (2xy - y2);

  cubic: y +
1
2

 (2xy - y2) +
1
6

 (3x2y - 3xy2 + 2y3)

 7. Quadratic: 
1
2

 (2x2 + 2y2) = x2 + y2 ; cubic: x2 + y2

 9. Quadratic: 1 + (x + y) + (x + y)2;

  cubic: 1 + (x + y) + (x + y)2 + (x + y)3

 11. Quadratic: 1 -
1
2

 x2 -
1
2

 y2; E(x, y) … 0.00134

SECTION 14.10, p. 876

 1. (a) 0 (b) 1 + 2z (c) 1 + 2z

 3. (a) 
0U

0P
+

0U

0T
 a V

nR
b  (b) 

0U

0P
 anR

V
b +

0U

0T

 5. (a) 5 (b) 5  7.  a0x

0r
b
u

= cos u a0r
0x
b

y

=
x

2x2 + y2



A-64 Chapter 14: Answers to Odd-Numbered Exercises

 29. 
dw

dt
2
t = 0

= -1

 31. 
0w

0r
2
(r, s) = (p, 0)

= 2, 
0w

0s
2
(r, s) = (p, 0)

= 2 - p

 33. 
dƒ

dt
2
t = 1

= - (sin 1 + cos 2)(sin 1) + (cos 1 + cos 2)(cos 1)

                   -2(sin 1 + cos 1)(sin 2)

35. 
dy

dx
2
(x, y) = (0,1)

= -1

 37. Increases most rapidly in the direction u = -  
22

2
  i -

22

2
  j; 

decreases most rapidly in the direction -u =
22

2
  i +

22

2
  j;

  Du ƒ =
22

2
; D-u ƒ = -  

22

2
 ; Du1

 ƒ = -  
7
10

 where u1 =
v

�v �

 39. Increases most rapidly in the direction u =
2
7

  i +
3
7

  j +
6
7

  k; 

decreases most rapidly in the direction -u = -  
2
7

  i -
3
7

  j -
6
7

  k;

  Du ƒ = 7; D-u ƒ = -7; Du1
ƒ = 7 where u1 =

v

�v �

 41. p>22  43. (a) ƒx(1, 2) = ƒy(1, 2) = 2 (b) 14 >5
 45. 

x2 + y + z2 = 0

∇f 0 (0, –1, 1) = j + 2k

∇f 0 (0, –1, –1) = j – 2k

∇f 0 (0, 0, 0) = j

1

–1

z

x

y

 47. Tangent: 4x - y - 5z = 4; normal line: 

x = 2 + 4t, y = -1 - t, z = 1 - 5t

 49. 2y - z - 2 = 0

 51. Tangent: x + y = p + 1; normal line: y = x - p + 1

  

2

2

y = –x + p + 1

y = x – p + 1

y = 1 + sin x

0

1

1
x

y

p

 53. x = 1 - 2t, y = 1, z = 1>2 + 2t

 55. Answers will depend on the upper bound used for 

�ƒxx � , �ƒxy � , �ƒyy � . With M = 22>2, �E � … 0.0142. With 

M = 1, �E � … 0.02.

 57. L(x, y, z) = y - 3z, L(x, y, z) = x + y - z - 1

 59. Be more careful with the diameter.

 61. dI = 0.038, % change in I = 15.83,, more sensitive to voltage 

change

 63. (a) 5%  65. Local minimum of -8 at (-2, -2)

 67. Saddle point at (0, 0), ƒ(0, 0) = 0; local maximum of 1 >4 at 

(-1>2, -1>2)

 69. Saddle point at (0, 0), ƒ(0, 0) = 0; local minimum of -4 at 

(0, 2); local maximum of 4 at (-2, 0); saddle point at (-2, 2), 

ƒ(-2, 2) = 0

PRACTICE EXERCISES, pp. 877–880

 1. Domain: all points in the xy-plane; range: z Ú 0. Level curves 

are ellipses with major axis along the y-axis and minor axis along 

the x-axis.

  

1–1

–3

3

z = 9

x

y

 3. Domain: all (x, y) such that x ≠ 0 and y ≠ 0; range: z ≠ 0. 

Level curves are hyperbolas with the x- and y-axes as  

asymptotes.

  

z = 1

x

y

 5. Domain: all points in xyz-space; range: all real numbers. Level 

surfaces are paraboloids of revolution with the z-axis as axis.

  

1

f(x, y, z) = x2 + y2 – z = –1

or

z = x2 + y2 + 1

z

x

y

 7. Domain: all (x, y, z) such that (x, y, z) ≠ (0, 0, 0); range: positive 

real numbers. Level surfaces are spheres with center (0, 0, 0) and 

radius r 7 0.

  

1 1

h(x, y, z) =                     = 1

or

x2 + y2 + z2 = 1

1

1

x2 + y2 + z2z

x y

 9. -2  11. 1 >2  13. 1

 15. Let y = kx2, k ≠ 1

 17. No; lim(x,y)S(0,0) ƒ(x, y) does not exist.

 19. 
0g

0r
= cos u + sin u, 

0g

0u
= -r sin u + r cos u

 21. 
0ƒ

0R1
= -  

1

R1 2
, 

0ƒ

0R2
= -  

1

R2 2
, 

0ƒ

0R3
= -  

1

R3 2

 23. 
0P
0n

=
RT

V
, 

0P

0R
=

nT

V
, 

0P

0T
=

nR

V
, 

0P

0V
= -  

nRT

V2

25. 
02g

0x2
= 0, 

02g

0y2
=

2x

y3
, 

02g

0y 0x
=

02g

0x 0y
= -  

1

y2

 27. 
02ƒ

0x2
= -30x +

2 - 2x2

(x2 + 1)2
, 

02ƒ

0y2
= 0, 

02ƒ

0y 0x
=

02ƒ

0x 0y
= 1



 Chapter 15: Answers to Odd-Numbered Exercises A-65

 71. Absolute maximum: 28 at (0, 4); absolute minimum: -9>4 at 

(3 >2, 0)

 73. Absolute maximum: 18 at (2, -2); absolute minimum: -17>4 

at (-2, 1>2)

 75. Absolute maximum: 8 at (-2, 0); absolute minimum: -1 at (1, 0)

 77. Absolute maximum: 4 at (1, 0); absolute minimum: -4 at (0, -1)

 79. Absolute maximum: 1 at (0, {1) and (1, 0); absolute  

minimum: -1 at (-1, 0)

 81. Maximum: 5 at (0, 1); minimum: -1>3 at (0, -1>3)

 83. Maximum: 23 at ¢ 1

23
, -  

1

23
, 

1

23
≤; minimum: -23 at

  ¢-  
1

23
, 

1

23
, -  

1

23
≤

 85. Width = ¢c2V

ab
≤1>3

, depth = ¢b2V
ac ≤1>3

, height = ¢a2V

bc
≤1>3

 87. Maximum: 
3
2

 at ¢ 1

22
, 

1

22
, 22≤  and ¢-  

1

22
, -  

1

22
, -22≤;

  minimum: 
1
2

 at ¢-  
1

22
, 

1

22
, -22≤  and ¢ 1

22
, -  

1

22
, 22≤

 89. 
0w

0x
= cos u 

0w

0r
-

sin u
r   

0w

0u
, 

0w

0y
= sin u 

0w

0r
+

cos u
r   

0w

0u

 95. (t, - t { 4, t), t a real number

 101. (a) (2y + x2z)eyz (b) x2eyzay -
z

2y
b  (c) (1 + x2y)eyz

ADDITIONAL AND ADVANCED EXERCISES, pp. 880–882

 1. ƒxy(0, 0) = -1, ƒyx(0, 0) = 1

 7. (c) 
r2

2
=

1
2

 (x2 + y2 + z2)   13. V =
23abc

2

 17. ƒ(x, y) =
y

2
+ 4, g(x, y) =

x

2
+

9

2

 19. y = 2 ln � sin x � + ln 2

 21. (a) 
1

253
 (2i + 7j) (b) 

-1

229,097
 (98i - 127j + 58k)

23. w = e-c2p2t sin px

Chapter 15

SECTION 15.1, pp. 887–888

 1. 24  3.1  5. 16  7. 2 ln 2 - 1   9. (3>2)(5 - e)

 11. 3>2  13. ln 2  15. 3>2, -2  17. 14  19. 0

 21. 1>2  23. 2 ln 2  25. (ln 2)2  

 27. 

z = 9 − x2 − y2

(paraboloid)

x

y

z

9

1

(1, 2)

2

5
4

8

 29. 8>3  31. 1  33. 22   35. 2>27

 37. 
3
2

 ln 3 - 1  39. (a) 1>3 (b) 2>3
SECTION 15.2, pp. 895–897

 1. 

y = 2x

3

6

y

x

 3. 

2

−2

y

4
x

x = y2

 5. 

1

y

y = ex

y = e

e

x

 7. 

1

y

x = sin−1y

p
2

x

 9. (a) 0 … x … 2, x3 … y … 8

  (b) 0 … y … 8, 0 … x … y1>3
 11. (a) 0 … x … 3, x2 … y … 3x

  (b) 0 … y … 9, 
y

3
… x … 2y

 13. (a) 0 … x … 9, 0 … y … 2x

  (b) 0 … y … 3, y2 … x … 9

 15. (a) 0 … x … ln 3, e-x … y … 1

  (b) 
1
3

… y … 1, - ln y … x … ln 3

 17. (a) 0 … x … 1, x … y … 3 - 2x

  (b) 0 … y … 1, 0 … x … y ∪  1 … y … 3, 0 … x …
3 - y

2

 19. 
p2

2
+ 2

0
x

y

p

p

(p, p)

 21. 8 ln 8 - 16 + e

1

ln ln 8

(ln ln 8, ln 8)

x = ln y

0

ln 8

x

y

 23. e - 2

1

1

(1, 1)

x = y2

0
x

y

 25. 
3
2

 ln 2  27. -1>10
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 29. 8

(2, −2)

y = p

2−2

−2(−2, −2)

y = −p

p

y

 31. 2p

2

1

(p�3, 2)(−p�3, 2)

u = sec t

t

u

p
3

p
3

−

 33.  L
4

2 L
(4 - y)>2

0

 dx dy

2

4

1

y = 4 − 2x

0

(1, 2)

x

y

 35.  L
1

0 L
x

x2

 dy dx

1

1

(1, 1)

y = x

y = x2

0
x

y

 37.  L
e

1 L
1

ln y

 dx dy

1

1

(1, 1)

y = ex

0

e (1, e)

x

y

 39.  L
9

0 L
129 - y2>2

0

16x dx dy

y = 9 − 4x2

9

0
x

y

3
2

 41.  L
1

-1

  L
21 - x2

0

3y dy dx

x2 + y2 = 1

1−1

1

0
x

y

 43.  L
1

0 L
e

ey

 xy dx dy

1

y

y = ln x

e
x

 45.  L
e3

1 L
3

ln x

 (x + y) dy dx

y

x = eyx = 1

3

e31
x

 47. 2

y = x

0

(p, p)p

p
x

y

 49. 
e - 2

2

0

(1, 1)1

1

x = y

x

y

 51. 2

y = 2x

0 Îln 3

2Îln 3 (Îln 3, 2Îln 3)

x

y

 53. 1>(80p)

Q ,   R

0

y = x4

x

y

1
16

1
2

1
16

1
2

 55. -2>3
x + y = 1−x + y = 1

−x − y = 1 x − y = 1

1

1

−1

−1
x

y

 57. 4 >3  59. 625 >12  61. 16  63. 20  65. 2(1 + ln 2)

 67. 

3

2

y

x

 

1

z

2

3

y

x

z = 1 − x −1
3

y1
2

 69. 1  71. p2  73. -  
3
32

   75. 
2023

9

 77.  L
1

0 L
2 - x

x

(x2 + y2) dy dx =
4
3

  
y 
=

 x

y =
 2 −

 x 
1

2

1
x

y

 79. R is the set of points (x, y) such that x2 + 2y2 6 4.

 81. No, by Fubini’s Theorem, the two orders of integration must give 

the same result.

 85. 0.603  87. 0.233
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 13. 12

  
12

6

0

(12, 6)y2 = 3x

y = 

NOT TO SCALE

x
2

x

y
SECTION 15.3, p. 900

 1.  L
2

0 L
2 - x

0

 dy dx = 2  or

   L
2

0 L
2 - y

0

 dx dy = 2

  

y = 2 − x 

2

20
x

y

 5.  L
ln 2

0 L
ex

0

 dy dx = 1

1

ln 2

(ln 2, 2)
y = e x

0
x

y

 7.  L
1

0 L
2y - y2

y2

 dx dy =
1
3

1

1

(1, 1)

x = 2y − y2

x = y2

0
x

y

 9.  L
2

0 L
3y

y

 1 dx dy = 4  or

   L
2

0 L
x

x>3 1 dy dx + L
6

2 L
2

x>3  1 dy dx = 4

y = x

y = 2

2 6

2

y

x

y = x1
3

 3.  L
1

-2

   L
-y2

y - 2

 dx dy =
9

2

1

0

(−4, −2)

y = x + 2

−2−4

−2

(−1, 1)

x = −y2

x

y

 11.  L
1

0 L
2x

x>2  1 dy dx + L
2

1 L
3 - x

x>2  1 dy dx =
3
2

 or

   L
1

0 L
2y

y>2  1 dx dy + L
2

1 L
3 - y

y>2  1 dx dy =
3
2

  

y = 2x  or x = y1
2

or  x = 2yy = x1
2

y

x

y = 3 − x  or  x = 3 − y

1

2

3

1 2 3

 15. 22 - 1

  

y = sin x

y = cos x

(p�4, Î2/2)

0

2
Î2

p
4

x

y

 17. 
3
2

  

y = −2x
y = 1 − x

(−1, 2)

(2, −1)

y = −

2

2

(0, 0)

x
2

x

y

 19. (a) 0  (b) 4>p2  21. 8 >3  23. p - 2

 25. 40,000(1 - e-2) ln (7>2) ≈ 43,329

SECTION 15.4, pp. 905–907

 1. 
p

2
… u … 2p, 0 … r … 9  3. 

p

4
… u …

3p
4

, 0 … r … csc u

 5. 0 … u …
p

6
, 1 … r … 223 sec u;

  
p

6
… u …

p

2
, 1 … r … 2 csc u

 7. -
p

2
… u …

p

2
, 0 … r … 2 cos u  9. 

p

2

 11. 2p  13. 36  15. 2 - 23  17. (1 - ln 2) p

 19. (2 ln 2 - 1) (p>2)  21. 
2 11 + 222

3
 23. 

1

1

y

x

y = Î1 − x2 or  x = Î1 − y2

   L
1

0 L
21 - x2

0

 xy dy dx  or  L
1

0 L
21 - y2

0

 xy dx dy

 25. 

2

2

y

x

y = x

x = 2

   L
2

0 L
x

0

 y2 (x2 + y2) dy dx  or  L
2

0 L
2

y

 y2 (x2 + y2) dx dy
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SECTION 15.6, pp. 925–927

 1. x = 5>14, y = 38>35  3. x = 64>35, y = 5>7
 5. x = y = 4a>(3p)

 7. Ix = Iy = 4p gm>cm2, I0 = 8p gm>cm2

 9. x = -1, y = 1>4  11. Ix = 64>105

 13. x = 3>8, y = 17>16  15. x = 11>3, y = 14>27, Iy = 432

 17. x = 0, y = 13>31, Iy = 7>5
 19. x = 0, y = 7>10; Ix = 9>10 kg>m2, Iy = 3>10 kg>m2, 

I0 = 6>5 kg>m2

 21. Ix =
M

3
 (b2 + c2), Iy =

M

3
 (a2 + c2), Iz =

M

3
 (a2 + b2)

 23. x = y = 0, z = 12>5, Ix = 7904>105 ≈ 75.28, 

Iy = 4832>63 ≈ 76.70, Iz = 256>45 ≈ 5.69

 25. (a) x = y = 0, z = 8>3  (b) c = 222

 27. IL = 1386

 29. (a) 4>3 gm  (b) x = 4>5 cm, y = z = 2>5 cm

 31. (a) 5 >2 (b) x = y = z = 8>15 (c) Ix = Iy = Iz = 11>6
 33. 3 kg

 37. (a) Ic.m. =
abc(a2 + b2)

12
, Rc.m. = A

a2 + b2

12

  (b) IL =
abc(a2 + 7b2)

3
, RL = A

a2 + 7b2

3

 39. mx = my = 7>12

 41. mx = 3>4, my = 2>3
 43. ƒ(x, y) = 1>6, P(X 6 Y) = 2>3
SECTION 15.7, pp. 935–939

 1. 
r = 2:
cylinder of
radius 2
centered on
the z-axis

z

x

y

−2

2 2

 3. 

x

y

z

−1

z = −1:
plane parallel
to the xy-plane

 5. 

−p
x

y

p
2

3p
2

−

5p
2

r = u:
spiral in
xy-plane

r = u:
spiral
cylinder

2p

5p
2

x

y

2p

z

3p
2

−

p
2

 27. 2(p - 2)  29. 12p  31. (3p>8) + 1  33. 
2a

3

 35. 
2a

3
  37. 2p12 - 2e2  39. 

4
3

+
5p
8

 41. (a) 
2p

2
  (b) 1  43. p ln 4, no  45. 

1
2

 (a2 + 2h2)

 47. 
8
9

 (3p - 4)

SECTION 15.5, 915–917

 1. 1 >6
 3.  L

1

0 L
2 - 2x

0 L
3 - 3x - 3y>2

0

 dz dy dx, L
2

0 L
1 - y>2

0 L
3 - 3x - 3y>2

0

 dz dx dy,

   L
1

0 L
3 - 3x

0 L
2 - 2x - 2z>3

0

 dy dz dx, L
3

0 L
1 - z>3

0 L
2 - 2x - 2z>3

0

 dy dx dz,

   L
2

0 L
3 - 3y>2

0 L
1 - y>2 - z>3

0

 dx dz dy,  L
3

0 L
2 - 2z>3

0 L
1 - y>2 - z>3

0

 dx dy dz.

  The value of all six integrals is 1.

 5.  L
2

-2

  L
24 - x 2

-24 - x 2

  L
8 - x 2 - y 2

x 2 + y 2

1 dz dx dy,  L
2

-2

  L
24 - y 2

-24 - y 2

  L
8 - x 2 - y 2

x 2 + y 2

1 dz dx dy,

   L
2

-2

  L
8 - y 2

4 L
28 - z - y 2

-28 - z - y 2

1 dx dz dy + L
2

-2

  L
4

y 2L
2z - y 2

-2z - y 2

1 dx dz dy,

   L
8

4 L
28 - z

-28 - z

  L
28 - z - y 2

-28 - z - y 2

1 dx dy dz + L
4

0 L
2z

-2z

  L
2z - y 2

-2z - y 2

1 dx dy dz,

   L
2

-2

  L
8 - x 2

4 L
28 - z - x 2

-28 - z - x 2

1 dy dz dx + L
2

-2

  L
4

x 2L
2z - x 2

-2z - x 2

1 dy dz dx,

   L
8

4 L
28 - z

-28 - z

  L
28 - z - x 2

-28 - z - x 2

1 dy dx dz + L
4

0 L
2z

-2z

  L
2z - x 2

-2z - x 2

1 dy dx dz.

  The value of all six integrals is 16p.

 7. 1  9. 6  11. 
512 - 232

4
   13. 18

 15. 7 >6  17. 0  19. 
1
2

-
p

8

 21. (a)  L
1

-1

  L
1 - x2

0 L
1 - z

x2

 dy dz dx  (b)  L
1

0 L
21 - z

-21 - z

   L
1 - z

x2

 dy dx dz

 (c)  L
1

0 L
1 - z

0 L
2y

-2y

 dx dy dz  (d)  L
1

0 L
1 - y

0 L
2y

-2y

 dx dz dy

  (e)  L
1

0 L
2y

-2y

  L
1 - y

0

 dz dx dy

 23. 2 >3  25. 20 >3  27. 1  29. 16 >3  31. 8p -
32
3

 33. 2  35. 4p  37. 31 >3  39. 1   41. 2 sin 4

 43. 4  45. a = 3 or a = 13>3
 47. The domain is the set of all points (x, y, z) such that 

4x2 + 4y2 + z2 … 4.
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 19. 0 … r … 3 csc f 1 0 … r sin f … 3: cylinder of radius 3 

centered on the z-axis, and its interior
z

−3

3 3 y

x

 21. 0 … r cos u sin f … 2, 0 … r sin u sin f … 3,

0 … r cos f … 4: rectangular box 2 * 3 * 4, and its interior

x

y

z

4

2
3

 23. 
4p122 - 12

3
  25. 

17p

5
   27. p1622 - 82  29. 

3p
10

 31. p>3
 33. (a)  L

2p

0 L
1

0 L
24 - r2

0

 r dz dr du

 (b)  L
2p

0 L
23

0 L
1

0

 r dr dz du + L
2p

0 L
2

23

  L
24 - z2

0

 r dr dz du

  (c)  L
1

0 L
24 - r2

0 L
2p

0

 r du dz dr

 35.  L
p>2

-p>2   L
cos u

0 L
3r2

0

 ƒ(r, u, z) dz r dr du

 37.  L
p

0 L
2 sin u

0 L
4 - r sin u

0

 ƒ(r, u, z) dz r dr du

 39.  L
p>2

-p>2  L
1 + cos u

1 L
4

0

 ƒ(r, u, z) dz r dr du

 41.  L
p>4

0 L
sec u

0 L
2 - r sin u

0

 ƒ(r, u, z) dz r dr du   43. p2

 45. p>3  47. 5p  49. 2p  51. a8 - 522

2
bp

 53. (a)  L
2p

0 L
p>6

0 L
2

0

r2 sin f dr df du +

    L
2p

0 L
p>2

p>6 L
csc f

0

r2 sin f dr df du

 (b)  L
2p

0 L
2

1 L
sin-1(1>r)

p>6 r2 sin f df dr du +

    L
2p

0 L
2

0 L
p>6

0

r2 sin f df dr du +

    L
2p

0 L
1

0 L
p>2

p>6 r2 sin f df dr du

 7. 
r2 + z2 = 4

sphere of

radius 2

centered

at (0, 0, 0)

z

x

y2

2

−2

−2

2

 9. r … z … 29 - r2 : cone with vertex angle 
p

2
 below a sphere of 

radius 3 centered at (0, 0, 0), and its interior

x

y

z

p
2

z = "9 − r2 

9
2Ä 

9
2

−Ä 
z = r

3

 11. 0 … r … 4 cos u, 0 … u …
p

2
, 0 … z … 5: half-cylinder of  

height 5, radius 2, and tangent to the z -axis, and its interior

z

x

y

5

4

2

 13. r = 3: sphere of radius 3 centered at (0, 0, 0)
z

x

y3

3

−3

−3

3

 15. u =
2
3
p: closed half-plane along the z-axis

x

y

z

2
3
2
3

u =    p

 17. r cos f = 4: plane with z-intercept 4 and parallel to the xy-plane

x

y

z
r cos f = 4

4
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 55.  L
2p

0 L
p>2

0 L
2

cos f
 r

2 sin f dr df du =
31p

6

 57.  L
2p

0 L
p

0 L
1 - cos f

0

r2 sin f dr df du =
8p
3

 59.  L
2p

0 L
p>2

p>4 L
2 cos f

0

r2 sin f dr df du =
p

3

 61. (a) 8 L
p>2

0 L
p>2

0 L
2

0

r2 sin f dr df du

  (b) 8 L
p>2

0 L
2

0 L
24 - r 2

0

 r dz dr du

  (c) 8 L
2

0 L
24 - x 2

0 L
24 - x 2 - y 2

0

 dz dy dx

 63. (a)  L
2p

0 L
p>3

0 L
2

sec f
 r

2 sin f dr df du

  (b)  L
2p

0 L
23

0 L
24 - r 2

1

 r dz dr du

  (c)  L
23

-23

   L
23 - x 2

-23 - x 2

   L
24 - x 2 - y 2

1

 dz dy dx  (d) 5p>3
 65. 8p>3  67. 9 >4  69. 

3p - 4
18

  71. 
2pa3

3

 73. 5p>3  75. p>2  77. 
41222 - 12p

3
  79. 16p

 81. 5p>2  83. 
4p18 - 3232

3
  85. 2 >3  87. 3 >4

 89. x = y = 0, z = 3>8  91. (x, y, z) = (0, 0, 3>8)

 93. x = y = 0, z = 5>6  95. Ix = p>4  97. 
a4 hp

10

 99. (a) (x, y, z) = a0, 0, 
4
5
b , Iz =

p

12

  (b) (x, y, z) = a0, 0, 
5
6
b , Iz =

p

14

 101. 
3M

pR3

 103. The surface’s equation r = ƒ(z) tells us that the point 

(r, u, z) =  (ƒ(z), u, z) will lie on the surface for all u. In particu-

lar, (ƒ(z), u + p, z) lies on the surface whenever (ƒ(z), u, z) lies 

on the surface, so the surface is symmetric with respect to the 

z-axis.

( f (z), u, z)

f(z)
f(z)

z
( f(z), u + p, z)

z

x y

u + p

u

SECTION 15.8, pp. 947–949

 1. (a) x =
u + y

3
, y =

y - 2u

3
; 

1
3

  (b)  Triangular region with boundaries u = 0, y = 0, and 

u + y = 3

 3. (a) x =
1
5

 (2u - y), y =
1
10

 (3y - u); 
1
10

  (b)  Triangular region with boundaries 3y = u, y = 2u, and 

3u + y = 10

 7. 64 >5  9.  L
2

1 L
3

1

(u + y) 
2u
y  du dy = 8 +

52
3

 ln 2

 11. 
pab(a2 + b2)

4
  13. 

1
3

 a1 +
3

e2
b ≈ 0.4687

 15. 
225
16

  17. 12  19. 
a2b2c2

6

 21. (a) ` cos y -u sin y

sin y u cos y
` = u cos2 y + u sin2 y = u

  (b) ` sin y u cos y

cos y -u sin y
` = -u sin2 y - u cos2 y = -u

 27. 
3
2

 ln 2

PRACTICE EXERCISES, pp. 949–951

 1. 9e - 9

     

10

1

(1, 1)

NOT TO SCALE

(1�10, 10)

1

y =

0
x

y

1
x

 3. 9 >2

     s2 + 4t2 = 9

−3 3 
s

t

3
2

 9. sin 4  11. 
ln 17

4
  13. 4 >3   15. 4 >3  17. 1 >4

 19. p  21. 
p - 2

4
  23. 0  25. 8 >35  27. p>2

 29. 
2(31 - 35>2)

3

 31. (a)  L
22

-22

  L
22 - y 2

-22 - y 2

  L
24 - x 2 - y 2

2x 2 + y 2

3 dz dx dy

 (b)  L
2p

0 L
p>4

0 L
2

0

3 r2 sin f dr df du  (c) 2p18 - 4222

 5.  L
0

-2

  L
4 - x2

2x + 4

 dy dx =
4
3

−2

4 y = 2x + 4

x = −Î4 − y

x

y

 7.  L
3

-3

  L
(1>2)29 - x2

0

 y dy dx =
9

2

x2 + 4y2 = 9

−3 30
x

y

3
2
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 17. 23 ln abab   19. (a) 425 (b) 
1
12

 (173>2 - 1)

 21. 
15
32

 (e16 - e64)   23. 
1
27

 (403>2 - 133>2)
 25. 

1
6

 153>2 + 722 - 12  27. 
1025 - 2

3
  29. 8

 31. 
1
6

 (173>2 - 1)   33. 222 - 1

 35. (a) 422 - 2 (b) 22 + ln 11 + 222  37. Iz = 2pda3

 39. (a) Iz = 2p22d (b) Iz = 4p22d  41. Ix = 2p - 2

SECTION 16.2, pp. 972–975

 1. ∇ƒ = - (x i + y j + z  k)(x2 + y2 + z2)-3>2
 3. ∇g = - a 2x

x2 + y2
b i - a 2y

x2 + y2
bj + ez

 k

 5. F = -  
kx

(x2 + y2)3>2 i -
ky

(x2 + y2)3>2 j, any k 7 0

 7. (a) 9>2 (b) 13>3 (c) 9>2
 9. (a) 1>3 (b) -1>5 (c) 0

 11. (a) 2 (b) 3>2 (c) 1>2
 13. -15>2  15. 36  17. (a) -5>6 (b) 0 (c) -7>12

 19. 1>2  21. -p  23. 69>4  25. -39>2  27. 25>6
 29. (a) Circ1 = 0, circ2 = 2p, flux1 = 2p, flux2 = 0

  (b) Circ1 = 0, circ2 = 8p, flux1 = 8p, flux2 = 0

 31. Circ = 0, flux = a2p  33. Circ = a2p, flux = 0

 35. (a) -  
p

2
 (b) 0 (c) 1  37. (.0001)p kg>s

 39. (a) 32 (b) 32 (c) 32  41. 115.2 J

 43. 5>3 - (3>2) ln 2 m2>s  45. 5>3 g>s
 47. 

x2 + y2 = 4

2

2

0
x

y

 49. (a) G = -yi + xj (b) G = 2x2 + y2 F

 51. F = -  
xi + yj

2x2 + y2
  55. 48  57. p  59. 0  61. 

1
2

SECTION 16.3, pp. 984–986

 1. Conservative  3. Not conservative  5. Not conservative

 7. ƒ(x, y, z) = x2 +
3y2

2
+ 2z2 + C  9. ƒ(x, y, z) = xey + 2z + C

 11. ƒ(x, y, z) = x ln x - x + tan (x + y) +
1
2

 ln (y2 + z2) + C

 13. 49 15. -16  17. 1  19. 9 ln 2  21. 0  23. -3

 27. F = ∇ ax2 - 1
y b   29. (a) 1 (b) 1 (c) 1

 31. (a) 2 (b) 2  33. (a) c = b = 2a (b) c = b = 2

 35. It does not matter what path you use. The work will be the same 

on any path because the ield is conservative.

 33.  L
2p

0 L
p>4

0 L
sec f

0

r2 sin f dr df du =
p

3

 35.  L
1

0 L
23 - x 2

21 - x 2 L
24 - x 2 - y 2

1

 z2 xy dz dy dx

  + L
23

1

 L
23 - x 2

0 L
24 - x 2 - y 2

1

 z2 xy dz dy dx

 37. (a) 
8p1422 - 52

3
 (b) 

8p1422 - 52
3

 39. Iz =
8pd(b5 - a5)

15

 41. x = y =
1

2 - ln 4
  43. I0 = 104  45. Ix = 2d

 47. M = 4, Mx = 0, My = 0

 49. x =
323
p , y = 0

 51. (a) x =
15p + 32
6p + 48

, y = 0

  (b) 

1

r = 1 + cos u

2≈ 1.18

−1

c.m.

1

r = 1

x

y

ADDITIONAL AND ADVANCED EXERCISES, pp. 952–953

 1. (a)  L
2

-3

   L
6 - x2

x

 x2 dy dx (b)  L
2

-3

   L
6 - x2

x L
x2

0

 dz dy dx

  (c) 125 >4
 3. 2p  5. 3p>2
 7. (a) Hole radius = 1, sphere radius = 2  (b) 423p

 9. p>4  11. ln abab   15. 1>24 3

 17. Mass = a2 cos-1 abab - b2a2 - b2,

  I0 =
a4

2
 cos-1 abab -

b3

2
2a2 - b2 -

b3

6
 (a2 - b2)3>2

 19. 
1
ab

 (ea2b2

- 1)  21. (b) 1 (c) 0

 25. h = 220 in., h = 260 in.  27. 2p c 1
3

- a1
3
b  
22

2
d

Chapter 16

SECTION 16.1, pp. 960–962

 1. Graph (c)  3. Graph (g)  5. Graph (d)  7. Graph (f )

 9. 22  11. 
13
2

  13. 3214  15. 
1
6

 1525 + 92
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 37. The force F is conservative because all partial derivatives of 

M, N, and P are zero. ƒ(x, y, z) = ax + by + cz + C; A =
(xa, ya, za) and B = (xb, yb, zb). Therefore, 1F # dr =
ƒ(B) - ƒ(A) = a(xb - xa) + b(yb - ya) + c(zb - za) =
F # S

 AB.

SECTION 16.4, pp. 996–998

 1. 2y - 1   3. yex - xey  5. sin y - sin x

 7. Flux = 0, circ = 2pa2  9. Flux = -pa2, circ = 0

 11. Flux = 2, circ = 0   13. Flux = -9, circ = 9

 15. Flux = -11>60, circ = -7>60

 17. Flux = 64>9, circ = 0  19. Flux = 1>2, circ = 1>2
 21. Flux = 1>5, circ = -1>12  23. 0  25. 2 >33  27. 0

 29. -16p  31. pa2   33. 3p>8
 35. (a) 0 if C is traversed counterclockwise

  (b) (h - k)(area of the region)  45. (a) 0

SECTION 16.5, pp. 1006–1008

 1. r(r, u) = (r cos u)i + (r sin u)j + r2k, 0 … r … 2, 

0 … u … 2p

 3. r(r, u) = (r cos u)i + (r sin u)j + (r>2)k, 0 … r … 6, 

0 … u … p>2
 5. r(r, u) = (r cos u)i + (r sin u)j + 29 - r2 k, 

0 … r … 322>2, 0 … u … 2p; Also:  

r(f, u) = (3 sin f cos u)i + (3 sin f sin u)j +
(3 cos f)k, 0 … f … p>4, 0 … u … 2p

 7. r(f, u) = 123 sin f cos u2i + 123 sin f sin u2j +
  123 cos f2k,  p>3 … f … 2p>3, 0 … u … 2p

 9. r(x, y) = x i + y j + (4 - y2)k, 0 … x … 2, -2 … y … 2

 11. r(u, y) = u i + (3 cos y)j + (3 sin y)k, 0 … u … 3, 

0 … y … 2p

 13. (a)  r(r, u) = (r cos u)i + (r sin u)j + (1 - r cos u - r sin u)k, 

0 … r … 3, 0 … u … 2p

  (b)  r(u, y) = (1 - u cos y - u sin y)i + (u cos y)j +
(u sin y)k,  0 … u … 3, 0 … y … 2p

 15. r(u, y) = (4 cos2 y)i + uj + (4 cos y sin y)k, 0 … u … 3, 

- (p>2) … y … (p>2); Another way: r(u, y) = (2 + 2 cos y)i

+ uj + (2 sin y)k, 0 … u … 3, 0 … y … 2p

 17.  L
2p

0

 L
1

0

25

2
 r dr du =

p25

2

 19.   L
2p

0

 L
3

1

 r25 dr du = 8p25  21.  L
2p

0

 L
4

1

 1 du dy = 6p

 23.  L
2p

0

 L
1

0

 u24u2 + 1 du dy =
1525 - 12

6
 p

 25.  L
2p

0

 L
p

p>42 sin f df du = 14 + 2222p
 27. 

(Î2, Î2, 2) x + y − Î2z = 0

z = Îx2 + y2

z

x y

 29. 

 Á3x + y = 9

6

x2 + (y – 3)2 = 9

, 9/2, 0
2

z

x

y

3Á3

 33. (b) A = L
2p

0

 L
p

0

3a2b2 sin2 f cos2 f + b2c2 cos4 f cos2 u +

             a2c2 cos4 f sin2 u41>2 df du

 35. x0  x + y0  y = 25  37. 13p>3  39. 4

 41. 626 - 222  43. p2c2 + 1

 45. 
p

6
 117217 - 5252  47. 3 + 2 ln 2

 49. 
p

6
 113213 - 12  51. 5p22  53. 

2
3

 1525 - 12
SECTION 16.6, pp. 1016–1018

 1. O
S

 x ds = L
3

0

 L
2

0

 u24u2 + 1 du dy =
17217 - 1

4

 3. O
S

 x2 ds = L
2p

0

 L
p

0

 sin3 f cos2 u df du =
4p
3

 5. O
S

 z ds = L
1

0

 L
1

0

 (4 - u - y)23 dy du = 323 

  (for x = u, y = y)

 7. O
S

 x225 - 4z ds = L
1

0

 L
2p

0

 u2 cos2 y # 24u2 + 1 #

  u24u2 + 1 dy du = L
1

0

 L
2p

0

 u3(4u2 + 1) cos2 y dy du =
11p
12

 9. 9a3  11. 
abc

4
 (ab + ac + bc)  13. 2

 15. 
1
30

 122 + 6262  17. 26>30  19. -32  21. 
pa3

6

 23. 13a4>6  25. 2p>3  27. -73p>6  29. 18

 31. 
pa3

6
  33. 

pa2

4
  35. 

pa3

2
  37. -32  39. -4

 41. 3a4  43. aa
2

, 
a

2
, 

a

2
b

 45. (x, y, z) = a0, 0, 
14
9
b , Iz =

15p22

2
 d

 47. (a) 
8p
3

 a4d (b) 
20p

3
 a4d  49. 70>3 mg

SECTION 16.7, pp. 1029–1031

 1. - i - 4j + k  3. (1 - y)i + (1 - z)j + (1 - x)k

 5. x(z2 - y2)i + y(x2 - z2)j + z(y2 - x2)k  7. 4p

 9. -5>6  11. 0  13. -6p  15. 2pa2  17. -p

 19. 12p  21. -p>4  23. -15p  25. -8p

 33. 16Iy + 16Ix

SECTION 16.8, pp. 1042–1043

 1. 0  3. (y2z + xz2 + x2y) exyz  5. 0  7. 0  

 9. -16  11. -8p  13. 3p  15. -40>3  17. 12p

 19. 12p1422 - 12  23. No

 25. The integral’s value never exceeds the surface area of S.

 27. 184>35

PRACTICE EXERCISES, pp. 1044–1046

 1. Path 1: 223; path 2: 1 + 322  3. 4a2  5. 0

 7. 8p sin (1)  9. 0  11. p23

 13. 2pa1 -
1

22
b   15. 

abc

2
 A 1

a2
+

1

b2
+

1

c2
  17. 50
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 19. r(f, u) = (6 sin f cos u)i + (6 sin f sin u)j + (6 cos f)k,

  
p

6
… f …

2p
3

, 0 … u … 2p

 21. r(r, u) = (r cos u)i + (r sin u)j + (1 + r)k, 0 … r … 2, 

0 … u … 2p

 23. r(u, y) = (u cos y)i + 2u2j + (u sin y)k, 0 … u … 1, 

0 … y … p

 25. 26  27. p322 + ln 11 + 2224   29. Conservative

 31. Not conservative  33. ƒ(x, y, z) = y2 + yz + 2x + z

 35. Path 1: 2; path 2: 8 >3  37. (a) 1 - e- 2p (b) 1 - e- 2p

 39. 0  41. (a) 422 - 2 (b) 22 + ln 11 + 222
 43. (x, y, z) = a1, 

16

15
, 

2
3
b ; Ix =

232

45
, Iy =

64

15
, Iz =

56
9

 45. z =
3
2

, Iz =
723

3
  47. (x, y, z) = (0, 0, 49>12), Iz = 640p

 49. Flux: 3>2; circ: -1>2  53. 3

 55. 
2p
3

 17 - 8222  57. 0  59. p

ADDITIONAL AND ADVANCED EXERCISES, pp. 1047–1048

 1. 6p  3. 2>3
 5. (a) F(x, y, z) = z  i + x j + y k (b) F(x, y, z) = z  i + y k

  (c) F(x, y, z) = zi

 7. 
16pR3

3
  9. a = 2, b = 1. The minimum lux is -4.

 11. (b) 
16
3

 g (c) Work = a LC

 gxy dsb  y = gLC

 xy2 ds =
16
3

 g

 13. (c) 
4
3

 pw  19. False if F = y i + x j

Appendices

APPENDIX 1, p. AP-6

 1. 0.1, 0.2, 0.3, 0.8, 0.9 or 1

 3. x 6 -2  5. x … -  
1
3

  −2
x

   −2
x

 7. 3, -3  9. 7>6, 25>6
 11. -2 … t … 4 13. 0 … z … 10

  −2 4
t
   0 10

z

 15. (-q, -24 ∪ 32, q) 17. (-q, -34 ∪ 31, q)

  
s

−2 2    
r

−3 1

 19. (-3, -2) ∪ (2, 3)  21. (0, 1)  23. (-q, 14
 27. The graph of 0 x 0 + 0 y 0 … 1 is the interior and boundary of the 

“diamond-shaped” region.

  

−1 1

−1

1

x

y

0 x 0  + 0 y 0  ≤ 1

APPENDIX 3, pp. AP-17–AP-18

 1. 2, -4; 225  3. Unit circle

 5. m# = -  
1
3

  

y

x

Slope = 3

y = 3x + 5

A(−1, 2)

B(−2, −1) −1

−1 0−2

1

2

 7. (a) x = -1 (b) y = 4>3  9. y = -x

 11. y = -  
5
4

 x + 6  13. y = 4x + 4  15. y = -  
x

2
+ 12

 17. x@intercept = 23, y@intercept = -22

  

0 1 2

−1

−2

Î2 x − Î3y = Î6

x

y

 19. (3, -3)

 21. x2 + ( y - 2)2 = 4 23. 1x + 23 22 + ( y + 2)2 = 4

  

(0, 0)

C(0 , 2)

(0, 4)

−2 −1 1 2
x

y  

C −Î 3, –2

−Î3, 0

−4

−4

(0, −1)

(0, −3)

x

y

Q       R

Q     R

 25. x2 + ( y - 3>2)2 = 25>4 27.

  

0

1

1

2

3

4

2 3 4

C(0, 3�2)

(2, 0)

(0, 4)

(−2, 0)

−2 −1

−1
−2

x
2
 + (y – 3�2)

2
 = 25�4

(0, −1)

x

y  

10 2

A
x
is

: 
x 
=

 1

V(1, −4)

(0, −3)

(−1, 0)

y = x
2 

− 2x − 3

(3, 0)
x

y

29. 

0−3

4

−6

(−5, 0)

(−1, 0)

A
x
is

: 
x 
=

 −
3

y = −x
2 
− 6x − 5

V(−3, 4)

(−6, −5) (0, −5)

x

y

 31. Exterior points of a circle of radius 27, centered at the origin
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APPENDIX 7, pp. AP-33–AP-34

 1. (a) 14 + 8i (b) -7 - 4i (c) -5i

 3. (a) By relecting z across the real axis

 (b) By relecting z across the imaginary axis

 (c)  By relecting z across the real axis and then multiplying the 

length of the vector by 1> � z �2
 5. (a) Points on the circle x2 + y2 = 4

 (b) Points inside the circle x2 + y2 = 4

 (c) Points outside the circle x2 + y2 = 4

 7. Points on a circle of radius 1, center (-1, 0)

 9. Points on the line y = -x  11. 4e2pi>3  13. 1e2pi>3
 15. cos4 u - 6 cos2 u sin2 u + sin4 u

 17. 1,  -  
1
2
{ 23

2
 i  19. 2i, -23 - i, 23 - i

 21. 
26

2
{ 22

2
 i, -  

26

2
{ 22

2
 i  23. 1 { 23i, -1 { 23i

 33. The washer between the circles x2 + y2 = 1 and x2 + y2 = 4 

(points with distance from the origin between 1 and 2)

 35. (x + 2)2 + (y - 1)2 6 6

 37. a 1

25
, 

2

25
b , a-  

1

25
, -  

2

25
b

 39. a-  
1

23
, -  

1
3
b , a 1

23
, -  

1
3
b

 41. (a) ≈  -2.5 degrees > inch (b) ≈  -16.1 degrees > inch

 (c) ≈  -8.3 degrees > inch

 43. 5.97 atm

 45. Yes: C = F = -40°
  

C = F

C =     (F − 32)
5
9

(−40, −40)

F

C

−40 32

−40

 51. k = -8, k = 1>2
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Business and Economics

chip lifetime, 509, 511

Cobb-Douglas production function, 866

cost, 128

economic growth, 112

expected value of a steer, 510

inventory management, 123, 225

inventory replenishment, 225

marginal cost, 128–129, 213, 288

marginal proit, 218–220

marginal rates and taxes, 129

marginal revenue, 129, 218–220

maximizing utility, 866–867

maximum proit, 218

order size, 848

production growth, 179–180

quality control, 647

Engineering and Physical Sciences

acceleration, 126, 136, 173, 240

aircraft light distance, 157, 159

airplane ground speed and direction, 711

airplane takeof, 133

angle for pipes, 445–446

arch, center of, 958–959

architecture, 288

area, 898, 948

atmospheric pressure and altitude, 405

average temperature, 147

beam motion, 162, 178

beam under a load, 922

bouncing ball, 579

Boyle’s Law, 13

catalyst for chemical reaction, 225

center of mass, 918–919, 1014–1016

centroid, 919, 930–931

chemical mixture problem, 543

chemical reaction, 405, 479

circulation

around bounding circle, 1046

of paddle wheel, 987–988, 1024–1025

circulation density, 986–989

converting mass to energy, 171

cooling, 404

cylinder pressure, 123

damped motion, 17-17–17-18

displacement of an object, 124–125

displacement versus distance traveled, 253–254

distance traveled, 251–253, 256–257

draining a storage tank, 133, 178

draining a swamp, 492

electrical resistance, 848

electric circuit, 17-18–17-19, 538, 539, 

552–553, 567

electricity, 159

electromagnetic theory, 1038–1039, 1048

elevation angle of a hot air balloon, 155, 160

escape velocity, 560

estimating pi, 642

falling object, 131, 147, 234–235

resistance, 552–553

skydiving, 552

illing a conical tank with water, 154

light navigation, 418

luid force

on a curved surface, 969–970

out of hole in water tank, 245

streamlines, 962, 998

lux, 1014, 1031, 1033–1034, 1037–1038

free-falling object, 38–40, 126–127, 150, 196, 

240–241

glider position, 759–760, 768

gravitational ields, 977–978

hanging cables, 435

harmonic motion, 17-16–17-17

heat capacity of a gas, 520

heat difusion equation, 1043

heat equation, 821, 882

heating a plate, 159

heat transfer (cooling), 404

height

of a baseball, 764, 766

of a rocket, 561

hydrodynamics, 1039–1040

impedance in a series circuit, 177

inertia, moments of, 920–922

inlating balloon, 133, 160

kinetic and potential energy, 13

length

of an astroid, 337

of curves, 338

mass, 918–919

maximum volume

of a box, 214–215

of a can, 215–216, 845

measuring cup stripes, 99

mobius band, 1012

motion

of an object along a line, 213

of a helicopter, 730–731

of a particle, 147, 161, 178, 247

in the plane, 161

of a projectile, 130–131, 180, 257,  

284, 766

of a sliding bead, 654

of a vehicle, 161

moving shadow, 161

parametrization

of a cone, 1018

of a cylinder, 1018

of a sphere, 1018

particle motion, 147, 156–157, 161, 178

path

of a ball, 762–764, 766

of a baseball player, 161–162

of a football, 245–246

of a glider, 759–760, 768

of a javelin, 788

of a projectile, 760–761, 764, 765, 766

of a shot-put throw, 765

pearl in shampoo, 553

planet, locating in orbit, 790

planetary orbit, 785–787

planetary orbits, 694

position in space, 791

pressure of luid against vertical lat plate, 

348–349

pressure of luid at bottom of dam, 347

pressure waves produced by tuning fork, 4

projectile motion, 130–131, 180, 766

pumping liquids from containers, 346–347

radioactive decay, 403, 406

reservoir water, 242

resistors connected in parallel, 177, 814

resultant force, 711–712

satellite orbit, 351

seed germination, 518

skaters stopping distances, 541,  

545–546, 560

Skylab 4 view, 789

sliding ladder, 159

sonobuoy submarine location, 231

speciic heat of a gas, 309



AI-2 Applications Index

speed

of light, 217–218

of particle, 178

of vehicle, 132, 156, 161

velocity and, 124–125

springs of constant density, 961

stopping distance, 133, 240

stream low, 835–836

submarine intercept, 745

surface area

of an oil spill, 162

of a cone, 1001

cut from bottom of paraboloid, 1004–1005, 

1026–1027

of a ininite paint can or Gabriel’s horn, 504

of a sphere, 1002

of a torus (doughnut), 1007

suspension bridge, 687

temperature

air, 309, 964

below Earth’s surface, 797

greatest, 964

mean, 520

and period of a pendulum, 147

at a point, 830, 847

thermal expansion in laboratory  

equipment, 99

torque, 725–727, 745

velocity

ields, luid, 969–970, 1033

of a gas, 1031–1032

of a rocket, 131–132

of a skydiver, 435

of two particles, 180

velocity and acceleration, 126–128

of weight on spring, 136

vibrating spring, 17-15–17-16

volcanic lava fountains, 133

voltage changes, 159, 830

volume

of an ice cream cone, 933–935

of a balloon, 19

of luid in a storage tank, 845

of a solid region, 894

of a tetrahedron, 912–913

water low, 98–99

wave equations, 820–821

weight on a pulley, 158

witch of Maria Agnesi, 657

work

along diferent paths, 986

done by a force ield, 967–969

done by a jack, 344, 367

done by a locomotive, 722

done by the conservative ield, 980–982

done in lifting a bucket, 346

required to compress a spring, 345–346, 367

General

ACT test results, 515–516

airport waiting time, 517

box dimensions, 830, 855

coin toss, 505–507

computer graphics

hidden lines, 737

perspective, 736

endangered species, 406

estimating pi, 642

Leibniz’s Rule, 881

mixtures, 543–545

period of a clock pendulum, 181

random number generator, 923–924

spinning arrow direction, 513

sugar, inversion of, 405

swing of a clock pendulum, 653

U.S. Postal Service box size, 221–222

water skier, path of, 471

well depth, 170

wind chill, 847

working underwater, 406

Life Sciences

blood low, 172–173

blood pressure, 514, 518

blood tests, 518

blood types, 867

body surface area, 133

brain weights, 518

cardiac output, 161, 879

cholera bacteria, 406

cholesterol levels in children, 517

diseases, dying out of, 401–402

drug assimilation, 648

drug concentrations, 173, 406

endangered species, 406

low velocity of a cough, 225–226

human evolution, 405

life expectancy, 517

medicine dosages, body’s reaction to, 123

population growth

of bacteria, 133, 406

catastrophic change, 552

in competitive-hunter model, 554–556

controlling, 552

density of bacteria, 900

of fruit lies, 42–43, 112–113

predator-prey model, 558

of rabbits and foxes, 176–177

in U.S., 406

of yeast culture, 400–401

pregnancy length, 517

transport through cell membrane, 561

Social and Behavioral Sciences

information difusion, 479, 553

world population, 541–542



I-1

Subject Index

Abscissa, AP-10

Absolute change, 170

Absolute convergence, 597–598

Absolute Convergence Test, 598

Absolute extrema, inding, 184–185

Absolute (global) maximum, 183–184, 853–855

Absolute (global) minimum, 183–184, 853–855

Absolute value

deinition of, AP-4–AP-5, AP-29

function, derivative of, 144

as piecewise-deined function, 4–5

Absolute value function derivative of, 144

Acceleration

deinition of, 126

derivative of (jerk), 126–127

as derivative of velocity, 126–128

free fall and, 127

Addition, of functions, 14–15

Addition formulas, trigonometric, 25

Additivity

double integrals and, 893

line integrals and, 957–958

Additivity Rule, for deinite integrals, 269

Albert of Saxony, 593

Algebra, Fundamental Theorem of,  

AP-32–AP-33

Algebraic functions, 10

Algebraic properties, of real numbers,  

AP-1, AP-23

Algebra rules

for inite sums, 260

for gradients, 836

Algebra systems, computer. See Computer 

algebra systems (CAS)

Alternating series

deinition of, 604–606

harmonic, 604–606, 619

Alternating Series Estimation Theorem, 606

Alternating Series Test, 604

Amperes, 17-19

Angle convention, 22

Angle of inclination, AP-11–AP-12

Angles

in standard position, 22

in trigonometric functions, 21–22

Angular velocity of rotation, 1025

Antiderivatives

deinition of, 231

diference rule, 233

of the exponential function, 388

inding, 231–234

and indeinite integrals, 236–237

motion and, 234–235

Applied optimization

of area of rectangle, 214

examples from economics, 218–220

examples from mathematics and physics, 

216–218

solving problems, 214

using least material, 215–216

volume of can, 215

Approximations

diferential, error in, 168–169

by diferentials, 162

error analysis of, 489–492

linear, error formula for, 844, 869

Newton’s Method for roots, 226–229

for roots and powers, 164–165

by Simpson’s Rule, 487–488

standard linear, 163, 843

tangent line, 162, 843

trapezoidal, 489–492

by Trapezoidal Rule, 489–492

using parabolas, 487–488

Arbitrary constant, 232

Arccosine function

deining, 417–418

identities involving, 418–419

Archimedes’ area formula, 288

Arc length

diferential formula for, 336–337

discontinuities in dy>dx, 336

of a function, 336–337

length of a curve y = ƒ(x), 333–335

and line integrals, 955–957

Arcsine function

deining, 417–418

identities involving, 418–419

Arctangent, 637–638

Area

of bounded regions in plane, 897–899

cross-sectional, 314

under curve or graph, 271

between curves, 299–301

as deinite integral, 248

deinition of, 271

by double integration, 897–899

and estimating with inite sums,  

248–256

inite approximations for, 248

under graph of nonnegative function,  

255

by Green’s Theorem, 996–997

of parallelogram, 1000, 1001

in polar coordinates, 903

of smooth surface, 1001

surfaces and, 338–341, 998–1006

of surfaces of revolution, 338–341

total, 248, 285–286

Argand diagrams, AP-29

Argument, AP-29

Arithmetic mean, 396

Arrow diagram for a function, 2

Arrow diagrams, 875

Associative laws, AP-24

ASTC rule, 23

Asymptotes

of graphs, 83–93

in graphs of rational functions, 9

horizontal, 85–88, 91–92

oblique or slant, 88

vertical, 83, 91–92

vertical, integrands with, 498–499

Autonomous diferential equations, 554

Auxiliary equation, 17-3

Average rates of change, 40

Average speed

deinition of, 38

moving objects and, 38–40

over short time intervals, 39

Average value

of continuous functions, 273–274

of multivariable functions, 899, 914

of nonnegative continuous functions, 

254–256

Average velocity, 125

Axis(es)

coordinate, AP-10

of ellipse, AP-17

moments of inertia about, 959, 1015

of parabola, AP-15

slicing and rotation about, volumes by, 

316–319

spin around, 986–989

Note: Page numbers with the preix “AP” are in the Appendices. Page numbers with the preix “17” are in the 
online Chapter 17, Second-Order Diferential Equations.



I-2 Subject Index

Base a

of cylinder, 314

of exponential function, 390–391

logarithms with, 393

Bendixson’s criterion, 998

Bernoulli, Daniel, 184

Bernoulli, Jacob, 540

Bernoulli, Johann, 143, 407

Binary search, 439–440

Binomial series, 635

Birkhof, George David, 293

Bolzano, Bernard, 126

Boundary points, AP-3

inding absolute maximum and minimum 

values, 853–855

for regions in plane, 794

for regions in space, 796

Boundary value problems, 17-6

Bounded functions, 100

Bounded intervals, 6

Bounded regions

absolute maxima and minima on, 853–855

areas of, in plane, 897–899

deinition of, 794

Bounded sequences, 571–572

Cable, hanging, 11, 435

Calculators

to estimate limits, 49–50

graphing with, 29–32

Cantor set, the, 585

Capacitance, 17-19

Carbon-14 decay, 403

Cardiac index, 879

Carrying capacity, 551

Cartesian coordinates

conversion to/from polar coordinates, 

903–905

in plane, AP-9–AP-10

three-dimensional (See Three-dimensional 

coordinate systems)

triple integrals in, 907–915

Cartesian integrals, changing into polar  

integrals, 903–905

Catenary, 11, 435

Cauchy, Augustin-Louis, 412

Cauchy condensation test, 592

Cauchy’s Mean Value Theorem, 412–413

Cavalieri, Bonaventura, 316

Cavalieri’s principle, 316

Centered diference quotients, 139

Center of linear approximation, 163

Center of mass

centroid, 360–361

coordinates of, 356, 959, 1015

deinition of, 353, 354

moments and, 353–363, 918–924

of solid, 918

of thin lat plate, 356–359

of thin shell, 1015–1016

of wire or spring, 959

Centroids, 360–361, 919

Chain curve, 435

Chain Rule

derivation of Second Derivative Test and, 868

derivatives

of compositions, 140–143

of exponential functions, 388, 391

for functions of three variables, 823–824

for functions of two variables, 821–823

for implicit diferentiation, 826–827, 1004

for inverse hyperbolic functions, 432

“outside-inside” rule and, 143, 838

for partial derivatives, 821–828

for paths, 838

with powers of function, 143–145

proof of, 142–143, 169

related rates equations, 153, 154

repeated use of, 143

Substitution Rule and, 290–294

for two independent variables and three  

intermediate variables,  

824–826

Change

of base in a logarithm, 393

estimating, in special direction, 842

exponential, 397–398

rates of, 38–43, 103–104, 124–130

sensitivity to, 130, 169–171

Charge, electrical, 1038

Circles, AP-13–AP-15

Circulation

around bounding circle, 1021–1022

lux versus, 970

for velocity ields, 969–970

Circulation density, 986–989, 988

Cissoid of Diocles, 152

Clairaut, Alexis, 816

Clairaut’s Theorem, 816

Closed curve, 970

Closed inite interval, AP-3

Closed region, 794, 796

Cobb, Charles, 866

Cobb-Douglas production function, 866

Coeicients

determination for partial fractions,  

471–472

of polynomial, 8–9

undetermined, 471

Combining functions, 14–18

Combining series, 581–582

Common Factors, 49–50

Common functions, 7–11

Common logarithm function, 393

Commutativity laws, AP-24

Comparison tests, 592–596

for convergence of improper integrals, 

500–502

for convergence of series, 592–594

Completeness property of real numbers,  

AP-1–AP-2, AP-23, AP-24, AP-27

Complete ordered ield, AP-24

Complex conjugate, AP-28

Complex numbers

Argand diagrams, AP-29

deinition of, AP-26

development of, AP-26–AP-29

Euler’s formula and, AP-29–AP-30

Fundamental Theorem of Algebra and,  

AP-32–AP-33

imaginary part of, AP-27

multiplying, AP-30

powers of, AP-31

quotients, AP-30

roots of, AP-31–AP-32

Component functions, 962

Component test

for conservative ields, 980, 982

for exact diferential form, 983

Composition of functions, 15–16

continuity of, 76–77, 806

deinition of, 15

derivative of, 140–143

Compressing a graph, 16

Computer algebra systems (CAS)

in evaluation of improper integrals, 499–500

integral tables and, 481–483

Computer graphing

of functions, 29–32

of functions of two variables, 797

Computers, to estimate limits, 50–51

Concave down graph, 203

Concave up graph, 203

Concavity

curve sketching and, 202–210

second derivative test for, 203

Conditional convergence, 604, 606–607

Cones

parametrization of, 999

surface area of, 1001

Connectedness, 79

Connected region, 976

Conservation, of mass, 1043

Conservative ields

component test for, 980, 982

inding potentials for, 980–982

as gradient ields, 978

line integrals in, 982

loop property of, 979

and Stokes’ theorem, 1028–1029

Constant

rate, 398

spring, 345

Constant force, work done by, 344

Constant functions, 47, 49

deinition of, 7, 47

derivative of, 115

Constant Multiple Rules, 48

for antiderivatives, 48, 233

for combining series, 581

for derivatives, 116–117

for inite sums, 260

for gradients, 836

for integrals, 269, 893

for limits, 48, 49

of functions of two variables, 802

of sequences, 567

Constant Value Rule for inite sums, 260

Constrained maximum, 858–861

Constrained minimum, 858–861

Construction of reals, AP-25–AP-26

Continuity, 72–75. See also Discontinuity

of compositions, 806

diferentiability and, 111, 818

of function at a point, 73–75

at interior point, 73

at left endpoint, 73

limits and, 38–93

for multivariable functions, 804–806

partial derivatives and, 814–815

Continuity equation of hydrodynamics, 1039–1040

Continuity Test, 74

Continuous extension, 80–81

Continuous functions, 72, 75–76



 Subject Index I-3

deinition of, 248, 265–267, 285

evaluating, 285

evaluation of, by parts, 457

existence of, 266–267

Mean Value Theorem for, 278–279

nonnegative functions and, 271–273

notation for, 266

properties of, 268–271

shift property for, 306

substitution in, 296–298

of symmetric functions, 298–299

Deinite integration by substitution, 296

Degree, of polynomial, 9

“Del ƒ”, 833

De Moivre’s Theorem, AP-31

Density

circulation, 986–989

as continuous function, 356

lux, 991

probability function, 507, 508, 923

Dependent variable of function, 1, 792

Derivative product rule, 118, 199

Derivative quotient rule, 119–120, 137–138

Derivative rule for inverses, 374

Derivatives

of absolute value function, 144

alternate formula for, 107

applications of, 183–327

calculation from deinition, 107–108

of compositions, 140–143

of constant function, 115

constant multiple rule for, 116–117

of cosine function, 135–136

deinition of, 106

diference rule for, 117–118

directional (See Directional derivatives)

in economics, 128–129

of exponential functions, 388–389

as function, 102, 106–111

functions from, graphical behavior of, 

209–210

General Power Rule for, 116, 390–391

graphing of, 108–109

higher-order, 121, 150

of integral, 280

of inverse functions, 370–375

of inverse hyperbolic functions, 431–433

of inverse trigonometric functions, 420–423

involving loga x, 394

left-handed, 109–110

Leibniz’s Rule, 108, 312

notations for, 108

nth, 121

one-sided, 109–110

partial (See Partial derivatives at a point)

as rate of change, 124–130

of reciprocal function, 107

right-handed, 109–110

second-order, 121

of sine function, 134–135

of square root function, 108

symbols for, 121

third, 121

of trigonometric functions, 134–138

as velocity, 124–125

Derivative sum rule, 117–118, AP-8–AP-9

Derivative tests, for local extreme values, 

186–187, 849–855

Cross product

proof of distributive law for, AP-34–AP-35

Cross-sections

horizontal, limits of integration and, 892–893

vertical, limits of integration and, 892

volumes using, 314–321

Csc x

derivative of, 137

integral of, 383–384

inverse of, 419–420

Cube root function, 8

Cubic functions, 9

Curl, k-component of, 986–989

Curved patch element, 1000

Curves

area between, 299–301

area under, 271

assumptions for vector integral calculus, 

976

closed, 970

contour, 795

graphing of, 299–301

level, 835–836

negatively oriented, 991

plane

lux across, 970–971

plates bounded by two, 359–360

points of inlection of, 203–205

positively oriented, 991

secant to, 40–41

sketching, 202–210

slope of

deinition of, 40–42, 102

inding, 40, 102

smooth, 3, 333–335

tangent line to, 102

tangents to, 38–43, 835–836

vector equations for (See Vector functions)

work done by force over, 967–969

y = ƒ(x), length of, 333–335

Cusp, 110, 333

Cylinder(s)

base of, 314

parabolic, lux through, 1013

parametrization of, 999

slicing with, 325–327

volume of, 314

Cylindrical coordinates

deinition of, 927

integration with, 927–931

parametrization by, 999

to rectangular coordinates, 927, 928, 934

from spherical coordinates, 934

triple integrals in, 927–935

volume diferential in, 928

Cylindrical shells, volumes using, 325–330

Cylindrical solid, volume of, 314–315

Cylindrical surface, 339

Damped vibrations, 17-17–17-18

Decay, exponential, 398

Decay rate, radioactive, 402

Decreasing function, 5–6, 197–198

Dedekind, Richard, 263, 582, AP-25

Deinite integrals

applications of, 314–369

average value of continuous functions and, 

273–274

absolute extrema of, 187–188, 806

average value of, 273–274, 899, 914

compositions of, 76–77

deinition of, 75–76

diferentiability and, 111

extreme values of, on closed bounded sets, 

184, 806

integrability of, 267, 268

Intermediate Value Theorem for, 78–80

limits of, 73–76, 77

nonnegative, average value of, 254–256

at a point, 73–75, 804

properties of, 76

Continuous function theorem for sequences,  

568

Continuous vector ield, 962

Contour curve, 795

Convergence

absolute, 597–598

of approximations in Newton’s method, 229

deinition of, 267

geometric, 578

of improper integrals, 498, 500

interval of, 616

of Riemann sums, 267

of sequence, 571–572

tests for, 500–502

Convex graph, 203

Coordinate axes

deinition of, AP-10

moments of inertia about, 959, 1015

Coordinate conversion formulas, 934

Coordinate pair, AP-10

Coordinate planes, 959, 1015

Coordinates

of center of mass, 356, 959, 1015

polar, integrals in, 901–902

xyz, line integrals and, 966

Corner, 110

Cosecant, 22

Cosecant function

extended deinition of, 22–23

integral of, 384

inverse of, 419–420

Cosine function

derivative of, 135–136

graph of, 10

inverse of, 417–418

Cosine(s)

extended deinition of, 22–23

integrals of products of, 464–465

integrals of products of powers of, 460–462

values of, 23

Costs

ixed, 129

marginal, 128–129

variable, 129

Cotangent function, 22–23

extended deinition of, 22–23

integral of, 384

inverse of, 419–420

Cot x

derivative of, 137

integral of, 383–384

inverse of, 419–420

Coulombs, 17-19

Courant, Richard, 115

Critical point, 187, 208, 850, 855



I-4 Subject Index

Displacement

deinition of, 124, 253

versus distance traveled, 253–254, 283

Display window, 29–32

Distance, in plane, AP-13–AP-15

Distance traveled

calculating, 251–253

versus displacement, 253–254, 283

total, 253, 283

Distributive Law

proof of, AP-34–AP-35

for vector cross products, AP-34–AP-35

Divergence

of improper integrals, 498

to ininity, 566

limits and, 500

to negative ininity, 566

tests for, 500–502

of vector ield, 989–991, 1031–1032

Divergence Theorem

for other regions, 1037–1038

for special regions, 1035–1036

statement of, 1032

Domain

connected, 976

of function, 1–2, 792, 793

natural, 2

simply connected, 976

of vector ield, 962, 976

Dominant terms, 93

Domination, double integrals and, 893

Domination Rule for deinite integrals, 269

Dot product, 833

Double-angle formulas, trigonometric, 25

Double integrals

Fubini’s theorem for calculating, 885–887

over bounded nonrectangular regions, 

888–889

over rectangles, 883–885

in polar form, 900–905

properties of, 893–894

substitutions in, 939–944

as volumes, 884–885

Double integration, area by, 897–899

Douglas, Paul, 866

Dummy variable in integrals, 267

Economics

Cobb-Douglas production function, 866

derivatives in, 128–129

Electric circuits, 17-18–17-19

Electric ield, 975

Electromagnetic theory (Gauss’ Law), 

1038–1039

Elements of set, AP-2

Ellipses

center of, AP-17

major axis of, AP-17

minor axis of, AP-17

standard-form equations for, AP-16

Elliptic integral, 387–388

Empty set, AP-2

Endpoint extreme values, 187

Endpoint values of function, 73, 188

Equations

diferential (See Diferential equations)

inverse, 387

linear, AP-13

boundary value problems, 17-6

damped vibrations, 17-17–17-18

overdamping, 17-18

underdamping, 17-18

electric circuits, 17-18–17-19

Euler equation, 17-2–17-23

general solution, 17-2

homogeneous equations, 17-1, 17-2–17-5

initial conditions, 17-5–17-6

linear combination, 17-1

linearity, 17-20

linearly independent solutions, 17-2

nonhomogeneous equations, 17-1, 17-7–17-11

power-series solutions, 17-24–17-29

superposition principle, 17-1

trivial solution, 17-2

variation of parameters, 17-12–17-14

Diferential forms, 983–984

Diferential formula, short form of arc length, 

336–337

Diferentials

deinition of, 163

estimating with, 167–168

linearization and, 162–171

surface area, for parametrized surface,  

1001

tangent planes and, 844–845

total, 844

Diferentiation

Chain Rule and, 140–145

derivative

as a function, 106–111

as a rate of change, 124–128

of trigonometric functions, 134–138

implicit, 148–151, 826–828

and integration, as inverse processes, 285

linearization and, 162–171

related rates, 153–158

tangents and derivative at a point,  

102–104

Diferentiation rules, 115–121

Direct Comparison Test, 500, 593–594

Direction

along a path, 955–956

estimating change in, 842

Directional derivatives

calculation of, 833–835

deinition of, 831

as dot product, 833

estimating change with, 842

and gradients, 835–836

gradient vectors and, 831–838

interpretation of, 832–833

in plane, 831–832

properties of, 834

Direction ields, 528–529

Dirichlet, Lejeune, 496

Dirichlet ruler function, 99

Discontinuity, 74–75, 110

in dy>dx, 336

ininite, 75

jump, 75

oscillating, 75

point of, 75

removable, 75

Discrete random variable, 506

Discriminant (Hessian) of function, 851

Disk method, 316–319

Descartes, René, AP-10

Determinant(s), Jacobian, 940, 945, 947

Diference quotient

deinition of, 103

forms for, 107

limit of, 103–104

Diference Rules, 48–49

for antiderivatives, 233

for combining series, 581

for derivatives, 115–121

for derivatives of constant functions, 115

for exponential functions, 117–119

for inite sums, 260

for gradient, 836

for higher-order derivatives, 121

for integrals, 269

for limits, 48, 49

of functions with two variables, 802

of sequences, 567

for products and quotients, 118–120

Diferentiability, 109–111, 811, 815, 817–818

Diferentiable functions

constant multiple rule of, 116

continuity and, 111, 818

continuous, 111

deinition of, 107

derivatives of inverses of, 374–375

graph of, 166

on interval, 109–110

partial derivatives, 809–811

rules for, 115–121, 140–145

Diferential approximation, error in, 168–169

Diferential equations

initial value problems and, 234

particular solution, 234

separable, 398–400

Diferential equations, irst-order

autonomous diferential equations, 546, 554

Bernoulli diferential equation, 540

carrying capacity, 551

competitive-hunter model, 554–556

curve, sigmoid shape, 552

diferential equations, 526–528

equilibrium values, 546, 547, 548–549

Euler’s method, 526, 529–532

falling body, encountering resistance, 549–551

irst-order linear equations, 534–535

graphical solutions of autonomous, 546–548

initial value problems, 527

integrating factor, 535

limit cycle, 556

limiting population, 551

logistic population growth, 551–552

Newton’s law of cooling, 549

numerical method and solution, 529

orthogonal trajectories, 542–543

phase lines, 546–547

phase lines and phase planes, 553, 554

rest points, 554, 555

RL circuits, 538

solution curves, 528

solution of irst-order equations, 526–528

standard form of linear equations, 534

steady-state value, 538

systems of diferential equations, 553

terminal velocity, 551

Diferential equations, second-order

auxiliary equation, 17-3
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exponential (See Exponential functions)

extreme values of, 183–188, 849–853

gradient of, 833

graphing with software, 29–32

graphs of, 3–11, 14–18, 795

greatest integer, 5

growth rates of, 436–438

Hessian of function of two variables, 851

hyperbolic (See Hyperbolic functions)

identity, 7, 24–26, 46, 1028

implicitly deined, 148–151, 826

increasing, 5–6, 197–198

independent variable of, 1

input value of, 1

integer ceiling, 5

integer loor, 5

integrable, 267–268, 884, 907

inverse (See Inverse functions)

least integer, 5

left-continuous, 73

limit of, 45–52, 801

linear, 7

linearization of, 162–165, 842–844

logarithmic, 11 (See Logarithmic functions)

machine diagram of, 2

of many variables, 828

marginal cost, 128–129

maximum and minimum values of, 183, 

185–186, 198, 853–855

monotonic, 197–200

of more than two variables, 806, 813–814, 

845–846

multiplication of, 14

natural domain of, 2

natural exponential, deinition of, 387

natural logarithm, 378–380, 379

nondiferentiable, 109–110

nonintegrable, 267, 268

nonnegative area under graph of, 271–273

numerical representation of, 4, 6

odd, 6–7

output value of, 1

piecewise-continuous, 267

piecewise-deined, 4–5

piecewise-smooth, 976

polynomial, 8, 9

position, 5

positive, area under graph of, 256

potential, 976

power, 7–8, 115, 116

proportional relationship of, 7

quadratic, 9

range of, 1–2, 793

rational, 9 (See Rational functions)

real-valued, 2

reciprocal, derivative of, 107

right-continuous, 73

scaling of, 16–18

scatterplot of, 4

of several variables, 792–797

shift formulas for, 16

sine, 22–23, 134–135

smaller order, 438

in space, average value of, 914

square root, 8

symmetric, 6–7, 298–299

of three variables, 795–797, 823–824, 837

total area under graph of, 286

First Derivative Test, 198–200, 850, 860

First derivative theorem for local extreme  

values, 184–185, 198–200

First moments

about coordinate axes, 918

about coordinate planes, 918, 1015

masses and, 918–919

First-order diferential equations. See Diferen-

tial equations, irst-order

Flat plate, center of mass of, 356–359, 918

Flow integrals, 969–970

Fluid low rates, 990

Fluid force

and centroids, 361

against a vertical plate, 348

work and, 344, 983

Fluid pressure, 347–349

Flux

across plane curve, 970–971

across rectangle boundary, 990–991

calculation of, 992, 1013–1014

versus circulation, 970

deinition of, 970, 1012

surface integral for, 1013–1014

Flux density (divergence), of vector ield, 991, 

1031–1032

Forces, work done by

constant, 344, 345

ield of, 967

variable along line, 344–345

work done by

over curve in space, 967–969

Free fall, Galileo’s law for, 38, 126–128

Fubini, Guido, 886

Fubini’s theorem for double integrals, 885–887, 

889–892, 902, 908

Functions

absolute value, 4–5

addition of, 14–15

algebraic, 10

arcsine and arccosine, 417–418

arrow diagram of, 2, 793

combining of, 14–18

common, 7–11

composition (See Composition of functions)

constant, 7, 47, 115

continuity of, 73, 804

continuous, 75–76, 254–256

continuous at endpoint, 73

continuous at point, 73–75, 804

continuous extension of, 80–81

continuously diferentiable, 336, 340

continuous over a closed interval, 74

cosine, 22–23, 135–136

critical point of, 187, 850

cube root, 8

cubic, 9

decreasing, 5–6, 197–198

deined by formulas, 14

deined on surfaces, 824–826

deinition of, 1

dependent variable of, 1

derivative of, 102, 106–111

from derivatives, graphical behavior of, 

209–210

discontinuity of, 74–75

domain of, 1–2, 14, 793

even, 6–7

point-slope, AP-12

related rates, 153–158

relating rectangular and cylindrical  

coordinates, 928

Error analysis

for linear approximation, 844

for numerical integration, 489–492

in standard linear approximation, 168–169, 

844

Error estimation, for integral test, 589–590

Error formula, for linear approximations, 

168–169, 844, 845, 869

Error term, 628

Euler, Leonhard, 531, AP-35

Euler’s constant, 592

Euler equation, 17-2–17-23

Euler’s formula, AP-29–AP-30

Euler’s method, 526, 529–532

Evalf, evaluation command, 500

Evaluation Theorem (Fundamental Theorem, 

Part 2), 282–283

Even functions, 6–7

Exact diferential forms, 983–984

Expected value (mean), 510–511, 924

Exponential change, 397–398

Exponential functions, 10

with base a, 390, 393

derivatives of, 117–119, 392–393

description of, 10, 386–387

general, 390–391

growth and decay, 398

integral of, 388–389

natural, 387

Exponential growth, 398

Exponents, Laws of, 389–390

Extrema

inding of, 186–188

global (absolute), 183–185, 186

local (relative), 185–186, 198–199, 205–207, 

850

Extreme values

constrained, and Lagrange multipliers, 864

at endpoints, 184

of functions, 183–188, 849–853

local (relative)

derivative tests, 186, 198–200

for several variables, 849, 850

for single variable functions, 185–186

Extreme Value Theorem, 184–185, 806, AP-24

Factorial notation, 570

Fermat, Pierre de, 41

Fermat’s principle in optics, 217–218

Fibonacci numbers, 571

Fields

conservative, 975–976, 977–980, 1028–1029

gradient, 978

gravitational, 975

number, AP-24

ordered, AP-24

vector, 964–965

Finite (bounded) intervals, 6, AP-3

Finite limits, 83–84

Finite sums

algebra rules for, 260

estimating with, 248–256

limits of, 261–262

and sigma notation, 258–261
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Identity function, 7, 46, 1028

Image, 939

Implicit diferentiation

Chain Rule and, 826–828

formula for, 826

technique for, 148–151

Implicit Function formula, 1004

Implicit Function Theorem, 826

Implicitly deined functions, 148–151

Implicit surfaces, 1003–1006

Improper integrals, 494

calculating as limits, 495–497, 501–502

with a CAS, 499–500

convergence of, 500

of Type I, 495

of Type II, 498

Incompressible liquids, 991

Increasing function, 5–6, 197–198

Increments, AP-10–AP-13

Increment Theorem for Functions of Two  

variables, 818, AP-37–AP-38

Indeinite integrals

deinition of, 236–237, 389

evaluation with substitution rule, 290–294

Independent variable of function, 1, 792

Indeterminate form 0/0, 407–409

Indeterminate forms of limits, 407–411, 

638–639

Indeterminate powers, 411–412

Index of sequence, 564

Index of summation, 259

Inductance, 17-19

Induction, mathematical, AP-6–AP-9

Inequalities

rules for, AP-1

solving of, AP-3–AP-4

Inertia, moments of, 920–922

Ininite discontinuities, 75

Ininite (unbounded) intervals, 6, AP-3

Ininite limits, 89–90

deinition of, precise, 90–91

description and examples, 89–91

of integration, 495–497

Ininite right-hand limit, 96

Ininite sequence, 563–572. See also Sequences

Ininite series, 576–583

Ininitesimals, AP-26

Ininity

limits at, 83–84, 83–90, 89–91

and rational functions, 85

Inlection, point of, 187, 203–205

Initial conditions, 17-5–17-6

Initial value problems

deinition of, 234

and diferential equations, 234, 527

separable diferential equations and,  

398–399

Input value of function, 1

Input variable of function, 792

Instantaneous rates of change, 42–43

derivative as, 124

tangent lines and, 42–43

Instantaneous speed, 38–40

Instantaneous velocity, 125

Integer ceiling function (Least integer function), 

5

Integer loor function (Greatest integer  

function), 5

with three variables, 795–797

with two variables, 795

surface area of, 1006

symmetric

about origin, 6

about x-axis, 6

about y-axis, 6

trigonometric, transformations of, 26–27

of trigonometric functions, 24, 29–32

of y = ƒ(x), strategy for, 207–209

Gravitational ield

deinition of, 975

vectors in, 963

Greatest integer function, 5

deinition of, 5

as piecewise-deined function, 5

Greatest lower bound, 571

Green’s formulas, 1043

Green’s Theorem

area by, 996–997

circulation curl or tangential form, 992, 1020, 

1041

comparison with Divergence Theorem, 1028, 

1041

comparison with Stokes’ Theorem, 1020, 

1041

divergence or normal form of, 992, 1031, 

1041

to evaluate line integrals, 993–994

forms for, 991–993

generalization in three dimensions, 1041

in plane, 986–995

proof of, for special regions, 994–995

Growth exponential, 398

Growth rates, of functions, 398, 436–438

Half-angle formulas, trigonometric, 25

Half-life, 402

Half-open inite interval, AP-3

Halley, Edmund, 198

Harmonic functions, 1043

Harmonic motion, simple, 136–137

Harmonic series

alternating, 619

deinition of, 586

Heat difusion equation, 1043

Heat equation, 821

Heat transfer, 403–404

Heaviside, Oliver, 475

Hessian of function, 851

Higher-order derivatives, 121, 150,  

816–817

Homogeneous equations, 17-1, 17-2–17-5

Hooke’s law of springs, 136, 345–346

Horizontal asymptotes, 85–88, 92

Horizontal scaling and relecting, 16–17

Horizontal shift of function, 16

Horizontal strips, 357–358

Hydrodynamics, continuity equation of, 

1039–1040

Hyperbolic functions

deinitions of, 428–429

derivatives of, 429–430

graphs of, 428, 430–431

identities for, 428–429, 431

integrals of, 429–430

inverse, 430–431

six basic, 428

Functions (continued)

total cost, 129

transcendental, 11, 389

trigonometric (See Trigonometric functions)

of two variables, 793–794, 797, 818

Chain Rule(s) for, 821–823

Increment Theorem of, 818

limits for, 800–804

linearization of, 842–844

partial derivatives of, 792–797, 809–811

unit step, 47–48

value of, 2

values, limits of, 45–48

velocity, 252

vertical line test for, 4

Fundamental Theorem of Algebra,  

AP-32–AP-33

Fundamental Theorem of Calculus

for line integrals, 955, 956

Part 1 (derivative of integral), 279–281, 380

proof of, 280

Part 2 (Evaluation Theorem), 282–283

Net Change Theorem, 282

proof of, 282–283

path independence and, 976

Fundamental Theorem of Line Integrals, 977

Galileo Galilei, 38

free-fall formula, 38, 126–127

law of, 38

Gauss, Carl Friedrich, 260

Gauss’s Law, 1038–1039

General linear equation, AP-13

General Power Rule for derivatives, 116, 

390–391

General sine function, 27

General solution of diferential equation, 234, 

399, 527

Genetic data, and sensitivity to change, 130

Geometric mean, 194, 396, 863

Geometric series

convergence of, 578

deinition of, 578–580

Global (absolute) maximum, 183, 853–855

Global (absolute) minimum, 183, 853–855

Gompertz equation, 534

Gradient Theorem, Orthogonal, for constrained 

extrema, 861

Gradient vector ields

conservative ields as, 978

deinition of, 963–964

Gradient vectors

algebra rules for, 836

curl of, 1042

deinition of, 833

directional derivatives and, 831–838

to level curves, 835–836

Graphing, with software, 29–32

Graphing windows, 29–32

Graphs

asymptotes of, 83–93, 91–93

autonomous diferential equations, 546

of common functions, 7–11

connectedness and, 79

of derivatives, 108–109

of equation, AP-10

of functions, 3–5, 14–18, 19–20, 795

with several variables, 795
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Law of cooling, Newton’s, 403–404

Law of cosines, 25–26

Law of refraction, 218

Laws of exponents, 389–390

Laws of logarithms, 381–382

Least integer function, 5

Least upper bound, 571, AP-24

Left-continuous functions, 73

Left-hand derivatives, 109–110

Left-hand limits, 65

deinition of, 67

informal, 65–66

precise, 67–68

Legendre, Adrien Marie, 536

Leibniz, Gottfried, 290, AP-25

Leibniz’s formula, 638

Leibniz’s notation, 108, 142, 143, 162, 181, 266

Leibniz’s Rule, 266

for derivative of an integral, 312

Length of curves, 333–335

Lenses, light entering, 150–151

Level curves, of functions of two variables, 795

Level surface, of functions of three variables, 

795

L’Hopital, Guillaume de, 407

L’Hopital’s Rule

inding limits of sequences by, 568–569

indeterminate forms and, 407–413

proof of, 413

Limit Comparison Test, 501, 594–596

Limit cycle, 556

Limit Laws, 48–49, AP-19

for functions with two variables, 802

limit of a function and, 45–49

theorem, 48, 85

Limit Power Rule, 48, 49

Limit Product Rule, proof of, AP-19–AP-20

Limit Quotient Rule, proof of, AP-20–AP-21

Limit Root Rule, 48, 49

Limits, 38–93

calculators and computers to estimate, 50–51

commonly occurring, 570, AP-22–AP-23

continuity and, 38–93

of continuous functions, 72–81, 77

for cylindrical coordinates, 928–930

for deinite integrals, 296–298

deinition of informal, 45–48

deltas, inding algebraically, 59–61

of diference quotient, 103

e (the number) as, 391–392

estimation of, calculators and computers for, 

50–51

inding of, for multiple integrals, 892–893,  

902–903, 908–914, 928–931, 932, 933–934

inite, 83–84

of inite sums, 261–262

ƒ-limits of integration, inding of, 928, 929

for functions of two variables, 800–804

of function values, 43–49

general deinition of, 101

ininite, 83–85

at ininity, 83–84, 83–85, 83–90, 89–91

of integration for cylindrical coordinates, 

929–931

left-hand (See Left-hand limits)

nonexistence of, two-path test for functions 

of two variables, 805

one-sided, 65

Interior point, 66, AP-3

continuity at, 73

inding absolute maximum and minimum 

values, 854

for regions in plane, 794

for regions in space, 796

Intermediate Value Property, 78

Intermediate Value Theorem, 78

continuous functions and, 78–80, 278, 379, 

AP-24

monotonic functions and, 197

Intermediate variable, 824

Intersection of sets, AP-2

Interval of convergence, 616

Intervals

deinition of, AP-3

diferentiable on, 109–110

types of, AP-3

Inverse equations, 393

Inverse function-inverse cofunction, 422

identities, 422

Inverse functions

deinition of, 371

derivative rule for, 374

and derivatives, 374–375

of exponential functions, 11

inding, 372–373

hyperbolic, 430–431

trigonometric (See Inverse trigonometric 

functions)

Inversely proportional, 7

Inverses

inding of, 372–373

integration and diferentiation operations, 

285–286

of ln x and number e, 386–388

for one-to-one functions, 370–371

Inverse trigonometric functions

deinition of, 416–417

derivatives of, 420–423

study of, 416–424

Irrational numbers, AP-2

Irreducible quadratic polynomial, 472

Iterated integral, 885

Jacobi, Carl Gustav Jacob, 939

Jacobian determinant, 940, 945, 947, 959

Jerk, 126, 127

Joint probability density function, 923

Joule, James Prescott, 344

Joules, 344

Jump discontinuity, 75

k-component of curl, 986–989

Kinetic energy and work, 351

Kirchhof, Gustav R., 17-19

Korteweg-deVries equation, 821

Kovalevsky, Sonya, 432, 874

kth subinterval of partition, 250, 263

Lagrange, Joseph-Louis, 192, 858

Lagrange multipliers

method of, 861–864

partial derivatives and, 858–865

solving extreme value problems, 854

with two constraints, 864–865

Laplace, Pierre-Simon, 815

Laplace equation, 820

Integers, AP-2

description of, AP-26

positive, power rule for, 115–116

starting, AP-8

Integrable functions, 267–268, 884, 907

Integrals, deinite. See Deinite integrals

approximation of by lower sums, 249

double (See Double integrals)

exponential change and, 397–398

of hyperbolic functions, 429–430

improper, 494–502

indeinite, 289–294

involving logb x, 394

iterated, 885

line (See Line integrals)

logarithm deined as, 378–384

by midpoint rule, 250

multiple, 883–947

nonelementary, 483, 636–637

polar, changing Cartesian integrals into, 

903–905

in polar coordinates, 901–902

of powers of tan x and sec x, 463–464

of a rate, 283–284

repeated, 885

by Riemann sum, 262–264

by Simpson’s Rule, 487–488

substitution in, 290–294, 296, 939–947

surface, 1008–1016, 1021

table of, 479–480

by Trapezoidal Rule, 485–486

of trigonometric functions, 383–384, 

460–465

triple (See Triple integrals)

of Type I, 495

of Type II, 498

by upper sums, 249

of vector ields, 964–965, 1012

work, 344–345, 967–969

Integral sign, 236

Integral tables, 479–480

Integral test

for convergence of series, 586–589

error estimation, 589–590

remainder in, 590

Integral theorems, for vector ields, 1040–1041

Integrands

deinition of, 236

with vertical asymptotes, 498–499

Integration, limits of

basic formulas, 447–451

with CAS, 481–483

in cylindrical coordinates, 927–931

and diferentiation, relationship between, 

284–285

of inverse functions, 423–424

numerical, 485–492

by parts, 452–457

by parts formula, 453

of rational functions by partial fractions, 

471–477

with respect to y, area between curves, 

301–303

in spherical coordinates, 933–934

with substitution, 289–290, 296

by trigonometric substitution, 423–424

variable of, 267

in vector ields, 955–1041



I-8 Subject Index

laws of logarithms, proofs of, 192–193

mathematical consequences of, 193–194

proof of, 192–193

Mendel, Gregor Johann, 130

Mesh size, 485

Method of slicing, 314

Midpoint rule, 250, 251

Minimum

absolute (global), 183, 853–855

constrained, 858–861

local (relative), 185–186, 850, 855

Mixed Derivative Theorem, 816, AP-35–AP-36

Mobius band, 1012

Moments

and centers of mass, 353–363, 918–924, 959, 

1015

irst, 918–919, 1015

of inertia, 920–922, 1015

and mass calculations, line integrals and, 

958–959

of solids and plates, 918

of system about origin, 354

of thin shells, 1014–1016

of wires or thin rods, 958–959

Monotonic functions, 197–200

Monotonic sequences, 571–572

Monotonic Sequence Theorem, 572

Motion

along line, 124–128

antiderivatives and, 234–235

simple harmonic, 136–137

Multiplication

of complex numbers, AP-30

of functions, 14

Multiplier (Lagrange), 854, 858–865

Napier, John, 381

Natural domain of function, 2

Natural exponential function

deinition of, 387

derivative of, 388–389

graph of, 382

Natural logarithm function

algebraic properties of, 381

deinition of, 378–379

derivative of, 381

Natural logarithms, 378–379

Natural numbers, AP-2, AP-26

Net Change Theorem, 282

Newton, Sir Isaac, 278, AP-25

Newton-Raphson method, 226–227

Newton’s law of cooling, 403–404, 549

Newton’s method, 226–229

applying, 227–229

convergence of approximations, 229

procedure for, 227

Newton’s second law, 170

Nondecreasing partial sums, 586

Nondecreasing sequences, 571

Nondiferentiable function, 109–110

Nonelementary integrals, 483, 636–637

Nonhomogeneous equations, 17-1, 17-7–17-11

Nonincreasing sequence, 571

Nonintegrable functions, 267–268

Normal distribution, 513–516

standard form of, 515

Normal line, 150–151, 840

Norm of partition, 264, 884, 928

Local extreme values

deinition of, 185–186, 850

derivative tests for, 184–185, 849–855, 851

irst derivative theorem for, 186–187, 850

Local (relative) maximum, 185–186, 850, 855

Local (relative) minimum, 185–186, 850, 855

Logarithmic diferentiation, 384

Logarithmic functions, 11

with base a, 393

change of base formula and, 393

description of, 11

natural, 378–379

Logarithms

algebraic properties of, 381

with base a, 393, 394

deined as integral, 378–384

integral of, 394

inverse functions and, 386–388

inverse properties of, 393

laws of, proofs of, 381–382

natural, 378–379

properties of, 381–382

logau, derivative of, 394

loga x

derivatives and integrals involving, 394

inverse equations for, 393

Logistic population growth, 551–552

Loop, 970

Lorentz contraction, 98

Lower bound, 271

of sequences, 571

Lower sums, 249

Machine diagram of function, 2

Marginal cost, 128–129, 218

Marginal proit, 218

Marginal revenue, 218

Marginals, 128

Mass. See also Center of mass

along line, 353–354

distributed over plane region, 355

formulas for, 353, 354, 359–360, 918

by line integral, 959

and moment calculations line integrals and, 

958–959

moments of, 356

multiple integrals and, 918

of thin shells, 1014–1016

of wire or thin rod, 958–959

Mass to energy equation, 171

Mathematical induction, AP-6–AP-9

Maximum

absolute (global), 183, 853–855

constrained, 858–861

local (relative), 185–186, 850, 855

Max-Min Inequality Rule for deinite integrals, 

269, 271, 278–279

Max-Min Tests, 198–199, 206, 850, 853–855

Mean. See Expected value

Mean value. See Average value

Mean Value Theorems, 192–193, 197, 340, 381

Cauchy’s, 412–413

corollary 1, 193

corollary 2, 194, 381

corollary 3, 197

for deinite integrals, 278–279

for derivatives, 192

interpretation of, 193, 278

Limits (continued)

for polar coordinates, 902–903

of polynomials, 49

power rule for, 48

precise deinitions of, 56–61, 90–91

proving theorems with, 61

of rational functions, 49, 85

for rectangular coordinates, 908–914

of Riemann sums, 265

right-hand (See Right-hand limits)

r-limits of integration, inding of, 930

root rule for, 48

Sandwich Theorem, 51–52

of (sin u)>u, 68–70

for spherical coordinates, 932, 933–934

testing of, 57–61

two-sided, 65

Linear approximations, 163

error formula for, 844, 845, 869

standard, 163, 843–844

Linear combination, 17-1

Linear equations general, AP-13

Linear functions, 7

Linearity, 17-20

Linearization

deinition of, 163, 843

diferentials and, 162–171

of functions of two variables, 842–844, 845

Linearly independent solutions, 17-2

Linear transformations, 941

Line integrals

additivity and, 957–958

deinition for scalar functions, 956

evaluation of, 956, 965

fundamental theorem of, 977

by Green’s Theorem, 993–994

integration in vector ields, 955–960

interpretation of, 959–960

mass and moment calculations and, 958–959

in plane, 959–960

of vector ields, 962–971

xyz coordinates and, 966

Lines

masses along, 353–354

motion along, 124–128

normal, 150–151

normal, tangent planes and, 839–841

parallel, AP-13

perpendicular, AP-13

secant, 40

tangent, 42–43, 102

vertical, shell formula for revolution about, 

328

work done by variable force along, 344–345

Liquids, incompressible, 991

ln bx, 381

ln x

derivative of, 380

graph and range of, 382

integral of, 387

inverse equation for, 387

inverse of, 386–388

and number e, 386–388

and number e, 379, 386–387

Local extrema

irst derivative test for, 198–200

irst derivative theorem for, 186

second derivative test for, 205–210



 Subject Index I-9

Polar coordinates

area in, 903

integrals in, 901–902

Polyhedral surfaces, 1027–1028

Polynomial functions, deinition of, 8, 9

Polynomials, 8–9

coeicients of, 8–9

degree of, 9

derivative of, 118, 121

limits, evaluating, 49

limits of, 49

quadratic irreducible, 472

Position function, acceleration and, 194–195

Positive integers

deinition of, AP-26

derivative power rule for, 115–116

Potential function, 976

Potentials, for conservative ields, 980–982

Power Chain Rule, 143–145, 149

Power functions, 7–8

Power Rule, 48–49

for derivatives, general version of, 116, 

390–391

for limits, 48, 49

for limits of functions of two variables, 

802

natural logarithms, 381

for positive integers, 115–116

proof of, 115–116, 390–391

Powers, of complex numbers, AP-31

Power series

convergence of, 611–614

multiplication of, 616–617

operations on, 616–619

radius of, 614–616

term-by-term diferentiation of, 617

term-by-term integration of, 618–619

Power-series solutions, 17-24–17-29

Preimage, 939

Pressure depth equation, 347

Probability

of a continuous random variable, 506

mean, 510–511, 924

median, 510, 511–512

standard deviation, 512–513

variance, 512–513

density function, 507, 508, 923

distributions, 506–508

exponentially decreasing, 509

normal, 513–516

uniform, 513

joint probability density function, 923

random variables, 505–506, 923–924

Product Rule, 48–49

for derivatives, 118, 137, 199

for gradient, 836

for limits, 48, 49

of functions with two variables, 802

proof of, 119

for natural logarithms, 381

for sequences, 567

Products

of complex numbers, AP-30

and quotients, derivatives of, 118–120

of sines and cosines, 464–465

Proportional relationship of functions, 7

p-series, 588, 590

Pyramid, volume of, 315–316

continuity and, 814–815

continuous, identity for function with, 1028

deinitions of, 810, 811

equivalent notations for, 810

extreme values and saddle points, 849–851

of function of two variables, 809–811

gradient vectors and, 831–838

higher-order, 816–817

Lagrange multipliers, 861–865

second-order, 815

tangent planes and, 839–846

Partial fractions

deinition of, 471

integration of rational functions by,  

471–477

method of, 471, 472–476

nth of series, 580–581

Partial sums nondecreasing, 586

Particular solution, of diferential equation, 234, 

527

Partitions

deinition of, 883–884

kth subinterval of, 263

norm of, 264, 884

for Riemann sums, 262–264

Pascal, Blaise, 577

Path independence, 975–976

Percentage change, 170

Periodicity, of trigonometric functions, 24

Period of a pendulum, 147, 181

Perpendicular lines, AP-13

Phase lines, 546–547

Phase planes, 553–554

analysis method, limitations of, 556

Physics, examples of applied optimization from, 

216–218

Piecewise-continuous functions, 267,  

310–311

Piecewise-deined functions, 4–5

Piecewise-smooth curves, 976

Piecewise-smooth surface, 1009, 1020

Pinching Theorem. See Sandwich Theorem

Plane curves, lengths of, 333–337

Plane regions

boundary point, 894

bounded, 794

interior point, 794

masses distributed over, 355

Planes

Cartesian coordinates in, AP-9–AP-10

directional derivatives in, 831–832

distance and circles in, AP-13–AP-15

Green’s Theorem in, 986–995

horizontal tangent to surface, 849

line integrals in, 959–960

Plane tangent to surface, 840, 841

Plate(s)

bounded by two curves, 359–360

thin lat, center of mass of, 356–359

two-dimensional, 918, 921

Points

boundary, 796

of discontinuity, deinition of, 73–74

of inlection, 187, 203–205

interior, 796

Point-slope equation, 42

Poiseuille’s formula for blood low, 173

Poisson, Siméon-Denis, 849

Notations, for derivative, 108, 810–811

nth derivative, 121

nth partial sum, 576–578

nth-term test for divergence, 580–581

Numerical integration, 485–492

Numerical representation of functions, 4

Oblique (slant) asymptote, 88

Odd functions, 6–7

Ohm’s law, 17-19

One-dimensional wave equation, 820

One-sided derivatives, 109–110

One-sided limits, 65. See also Left-hand limits; 

Right-hand limits

deinition of

informal, 65–66

precise, 67–68

derivatives at endpoints, 109–110

involving (sin u)>u, 68–70

One-to-one functions, 370–371

horizontal line test for, 371

Open region, 794, 796

Optics

Fermat’s principle in, 217, 218

Snell’s Law of, 218

Optimization, applied. See Applied optimization

Order and Oh-notation, 438–439

Ordered ield, AP-24

Order of Integration Rule, 269

Order properties, of real numbers, AP-1, AP-23

Oresme, Nicole, 565

Orientable surface, 1012

Origin

of coordinate system, AP-10

moment of system about, 354

Orthogonal gradient theorem, 861

Orthogonal trajectories, 542–543

Oscillating discontinuities, 75

Output variable of function, 792

Outside-Inside interpretation of chain rule,  

143, 838

Overdamping, 17-18

Paddle wheel, 1024–1027

Pappus’ theorems, 361–363

Parabola(s)

Archimedes’ formula, 288

axis of, AP-15

semicubical, 153

vertex of, AP-15

Paraboloids, volume of region enclosed by, 908

Parallel axis theorem, 926–927

Parallel lines, AP-13

Parallel planes, slicing by, 315–316

Parameter domain, 998

Parameters, 998

Parametrization

of cone, 999

of cylinder, 999

of sphere, 999

and surface area, 999–1003

of surfaces, 998–999

Partial derivatives

at a point, 102–104

calculations of, 812–813

Chain Rule for, 821–828

with constrained variables, 872–875

and continuity, 804–806



I-10 Subject Index

Rise, AP-11

r-limits of integration, 902, 930

Rolle, Michel, 191

Rolle’s Theorem, 191–192

Root inding, 79

Root rule, 48

for limits, 48, 49

for limits of functions of two variables, 802

Roots

of complex numbers, AP-31–AP-32

inding by Newton’s Method, 226–227

and Intermediate Value Theorem, 79–80

Rotation

disk method, 316–319

uniform, 1005

Run, AP-11

Saddle points, 849, 851–852, 855

Sandwich Theorem, 51–52

limits at ininity, 87

limits involving (sin u)>u, 68

proof of, AP-21

for sequences, 568

statement of, 51–52

Scaling, of function graph, 16–18

Scatterplot, 4

Schwarz’s inequality, 247

Secant, trigonometric function, 22

Secant function

extended deinition of, 22–23

integral of, 384

inverse of, 419–420

Secant line, 40

Secant slope, 40

Second derivative, 121

Second derivative test

for concavity, 203

derivation of, two-variable function, 868–869

for local extrema, 205–210

summary of, 854, 855

Second moments, 921–922

Second-order diferential equations. See  

Diferential equations, second-order

Sec x

derivative of, 137

integral of, 383–384

inverse of, 419–420

Semicubical parabola, 153

Separable diferential equations, 397, 398–400

Sequences

bounded, 571–572

calculation of, 567–568

by Continuous Function Theorem, 568

convergence of, 565–567

divergence of, 565–567

index of, 564

ininite, 563–572

to ininity, 566

by l’Hopital’s Rule, 568–569

limits of, 567, 570

monotonic, 571, 572

to negative ininity, 566

nondecreasing, 571

of partial sums, 576–577

recursively deined, 570

by Sandwich Theorem, 568

zipper theorem for, 575

Sequential search, 439–440

Rectangular coordinates. See Cartesian  

coordinates

Recursion formula, 570

Recursive deinitions, 570

Reduction formula, 456, 480–481

Relection of graph, 16–18

Regions

bounded, 794

closed, 794, 796

connected, 976

general, double integrals over, 888–894

open, 794, 796, 1028–1029

plane

interior point, 794

masses distributed over, 355

simply connected, 976

solid, volume of, 889–892

in space

interior point, 796

volume of, 908

special

divergence theorem for, 1035–1036

Green’s Theorem for, 994–995

unbounded, 794

Regression analysis, least squares, 858

Reindexing ininite series, 582–583

Related rates, 153–158

Relative change, 170

Relative (local) extrema, 185–186, 849–850

Relative rates of growth, 436–440

Remainder

in integral test, 589–590

of order n, 628

Removable discontinuities, 75

Representation of function, power series,  

622–623

Resistance, 17-19

Rest points, 547, 554

unstable, 555

Revenue, marginal, 129

Revolution

about y-axis, 318

areas of surfaces of, 338–341

Shell formula for, 328

solids of

disk method, 316–319

washer method, 319–321

surface of, 338

torus of, 1007

Riemann, Georg Friedrich Bernhard, 262

Riemann sums

concept overview, 262–264

convergence of, 267

forming, 267

for integrals, 356

limits of, 266–267

line integrals and, 955

slicing with cylinders, 326

for surface integrals, 1009

for triple integrals, 928, 932

volumes using cross-sections, 314

volumes using cylindrical shells, 326

work and, 344

Right-continuous functions, 73

Right-handed derivatives, 109–110

Right-hand limits, 65

deinition of, 65–66, 67

proof of, AP-21

Pythagorean theorem, 24, 26, 418, AP-13, AP-26

Pythagorean triples, 574

Quadrants, of coordinate system, AP-10

Quadratic functions, 9

Quadratic polynomial, irreducible, 472

Quotient Rule

of complex numbers, AP-30

for derivatives, 119–120, 137–138

for gradient, 836

for limits, 48, 49, 51

of functions with two variables, 802

proof of, AP-20–AP-21

for natural logarithms, 381

for sequences, 567

Quotients

for complex numbers, AP-30–AP-31

products and, derivatives of, 118–120

Radian measure and derivatives, 145

Radians, 21–22, 23

Radioactive decay, 402–403

Radioactive elements, half-life of, 402

Radioactivity, 402–403

Radius

of circle, AP-14

of convergence, 616

of convergence of power series, 614–616

Radius units, 21

Random variable, 505–506

Range, 1

of function, 1–2, 793

Rate constant, exponential change, 398

Rate(s)

average, 40

of change, 38–41

circulation density, 988

lux density, 991, 1031

instantaneous, derivative as, 42–43, 124

integral of, 283–284

Ratio, in geometric series, 578

Rational functions, 49

deinition of, 9

domain of, 9

integration of, by partial fractions, 471–477

limits of

evaluating, 49

at ininity, 85

Rational numbers, AP-2, AP-26

Rational operations, AP-26

Ratio Test, 599–600

Real numbers

construction of reals and, AP-25–AP-26

properties of

algebraic, AP-1, AP-23

completeness, AP-1–AP-2, AP-24

order, AP-1, AP-23

and real line, AP-1

theory of, AP-23–AP-26

Real-valued functions, 2, 792

Rearrangement theorem, for absolutely  

convergent series, 607

Reciprocal function, derivative of, 107

Reciprocal Rule for natural logarithms, 123, 381

Rectangles

approximating area with, 249–251

deining Riemann sums, 263–264

double integrals over, 883–887



 Subject Index I-11

Substitution Rule

in deinite integrals, 296

deinition of, 291

for double integrals, 940

evaluation of indeinite integrals with,  

289–294

in triple integrals, 944

Summation, index of, 259

Sum Rule, 48

for antiderivatives, 233

for combining series, 581

for deinite integrals, 269

derivative, 117–118

for inite sums, 260

of functions of two variables, 802

for gradients, 836

for limits, 48–49, 61

of sequences, 567

Sums

and diference, of double integrals,  

893

inite, estimation with, 248–256

limits of, 258, 261–262

lower, 249

Riemann (See Riemann sums)

upper, 249

Superposition principle, 17-1

Surface area

deining of, 339–341, 999–1000, 1001

diferential for parametrized surface,  

1001

of explicit surface, 1009

of graph, 1006

of implicit surface, 1004–1006, 1009

Pappus’ theorem, 363

parametrization of, 999–1003

for revolution about y-axis, 341

for sphere, 1002

Surface integrals

computation of, 1013–1016

for lux, 1012, 1013–1014

formulas for, 1009

integration in vector ields, 1008–1016

of scalar functions, 1009

in Stoke’s Theorem, 1021

of vector ields, 1012

Surfaces

and area, 998–1006

functions deined on, 824–826

with holes, 1028

implicit, 1003–1006

level, 795

orientable, 1012

parametrization of, 998–999

piecewise smooth, 1009, 1020

plane tangent to, 839–841

of revolution, 338

smooth, 1000–1001, 1003

two-sided, 1012

of two-variable functions, 795

Symmetric functions, 6–7

deinite integrals of, 298–299

graphs of, 6–7

properties of, 6

Symmetry tests, for graphs in polar coordinates

u-limits of integration, inding of, 939

System torque, systems of masses,  

353–354

Software, graphing with, 29–32

Solids

Cavalieri’s principle of, 316

cross-section of, 314

of revolution

by disk method, 316–319

by washer method, 319–321

three-dimensional, masses and moments, 

918, 921

volume

calculation of, 315

by disk method, 316–319

by double integrals, 884–885, 889–892

by method of slicing, 314–321

by triple integrals, 907–908

by washer method, 319–321

Solution

of diferential equation, 398, 527

particular, 527

Solution curve, 528–529

Speed

average, 38–40

deinition of, 125

instantaneous, 38–40

over short time intervals, 39

related rates equations, 156–157

Spheres

concentric, in vector ield, 1051–1052

parametrization of, 999

surface area of, 1002

triple integrals in, 931–934

Spherical coordinates deinition of, 931

Spin around axis, 986–989

Spring constant, 345

Springs

Hooke’s law for, 345–346

mass of, 958–959

work to stretch, 345

Square root function, 8

deinition of, 8

derivative of, 108

Square roots, elimination of, in integrals, 462–463

Squeeze Theorem. See Sandwich Theorem

Stable equilibrium, 548

Standard deviation, 512–513

Standard linear approximation, 163, 843

Standard position of angles, 22

Steady-state value, 538

Step size, 485

Stokes’ Theorem

comparison with Green’s Theorem, 1020, 

1021, 1041

conservative ields and, 980, 1028–1029

integration in vector ields, 1018–1029

paddle wheel interpretation, 1024–1027

for polyhedral surfaces, 1027–1028

surface integral in, 1021

for surfaces with holes, 1028

Stretching a graph, 16–17

Substitution

and area between curves, 299–301, 396

in double integrals, 939–944

indeinite integrals and, 290–294

in multiple integrals, 939–947

rectangular to polar coordinates, 915

trigonometric, 466–469

in triple integrals, 944–947

Substitution formula for deinite integrals, 296–298

Series

adding or deleting terms, 582

combining, 581–582

conditionally convergent, 606–607

divergent, 577, 580–581

error estimation, 589–590

geometric, 578–580

harmonic, 586, 588, 619

ininite, 576–583

integral test, 586–589

p-, 588, 590

partial sum of, 576–577

power, 611–619

rearrangement of, 607–608

reindexing, 582–583

sum of, 582

tests

for absolute convergence, 598

alternating, 604–606

comparison, 593

integral, 586–589

limit comparison, 594

ratio, 599–600

root, 601–602

summary of, 608

Set, AP-2

Shearing low, 988

Shell formula for revolution, 328

Shell method, 327–330

Shells, thin, masses and moments of, 1014–1016

Shift formulas for functions, 16

Shifting, of function graph, 16

Short diferential formula, arc length, 336–337

Sigma notation, 258–264

Simple harmonic motion, 136–137

Simply connected region, 976

Simpson, Thomas, 488

Simpson’s Rule

approximations by, 487–488

error analysis and, 489–492

Sine function

derivative of, 134–135

graph of, 10

inverse of, 417–418

Sine(s)

extended deinition of, 22–23

integrals of products of, 464–465

integrals of products of powers of, 460–462

values of, 23

Sinusoid formula, 27

SI units, 344

Slant line (oblique) asymptote, 88

Slicing

with cylinders, 325–327

by parallel planes, 315–316

volume by, 314–316

Slope

of curve, 40–42

of nonvertical line, AP-11

tangent line and, 102–104

Slope ields, 528–529. See also Direction ields

Slope-intercept equation, AP-13

Smaller order functions, 438

Smooth curves, 3, 333–335

Smooth surface, 817, 1000–1001, 1003

Snell’s Law, 218

Snell van Royen, Willebrord, 217

Snowlake curve, 585



I-12 Subject Index

Transformations

Jacobian of, 945, 947

linear, 941

of trigonometric graphs, 26–27

Transitivity law for real numbers, AP-24

Trapezoid, area of, 273

Trapezoidal Rule

approximations by, 485–487, 489–492

error analysis and, 489–492

Triangle inequality, AP-4

Trigonometric functions, 10

angles, 21–22

derivatives of, 134–138

graphs of, 10, 24, 26–27, 30–32

integrals of, 383–384

inverse, 416–424

periodicity of, 24

six basic, 22–23

transformations of, 26–27

Trigonometric identities, 24–26, 293

Trigonometric substitutions, 466–469

Triple integrals

in cylindrical coordinates, 927–935

properties of, 907–908, 915

in rectangular coordinates, 907–915

in spherical coordinates, 931–934

substitutions in, 944–947

Trivial solution, 17-2

Tuning fork data, 4

Two-dimensional Laplace equation, 820

Two-path test for nonexistence of limit, 805

Two-sided limits, 65

Two-sided limits, proof of, AP-21

Unbounded functions, 6

Unbounded intervals, 6

Unbounded region, 794

Unbounded sequence, 571

Underdamping, 17-18

Undetermined coeicients, 471

Uniied theory of vector ield integrals, 

1040–1041

Uniform distribution, 513

Union of sets, AP-2

Unit circle, AP-14

Unit step functions, limits and, 47–48

Unstable equilibrium, 548

Unstable rest points, 555

Upper bound, 271, AP-24

of a sequence, 571

Upper sums, 249

Value(s)

absolute, AP-4–AP-5, AP-29

average, 273–274

extreme, 183–188, 849–853

of function, 2, 914

of improper integral, 495–496, 498

local maximum, 185–186, 850

local minimum, 185–186, 850

Variable force

along curve, 967–969

along line, 344–345

Variable of integration, 236, 267

Variables, 868–871

Chain Rule for, 821–823, 824–826

dependent, 1

dummy, 267

Evaluation, 282–283

Exactness of diferential forms, 983

Extreme Value, 184–185, AP-24

First derivative test for local extreme values, 

186–187, 850

Formula for Implicit Diferentiation, 826

Fubini’s, 890–892

for functions of three variables, 823–824

for functions of two variables, 822–823

Fundamental Theorem of Calculus,  

278–286

Green’s, 992

Implicit Function, 827

Increment, for Functions of Two Variables, 

818, AP-37–AP-38

integrability of continuous functions, 267

Intermediate value, 78–80

Laws of Exponents for ex, 389

l’Hopital’s Rule, 407–413, 568–569

Limit, proofs of, AP-20–AP-21

Limit Comparison Test, 501, 594–596

Limit Laws, 48, 85

of Line Integrals, 977

Loop property of conservative ields, 979

Mean Value, 192–193, 197, 278, 333–334, 

340, AP-35–AP-36

Mixed Derivatives, 816, AP-35

Monotonic Sequence, 572

Net Change, 282

Nondecreasing Sequence, 571, 572

number e as limit, 391–392

Orthogonal gradient, 861

Pappus’, 361–363

Parallel axis, 927

parallel axis, 926–927

Properties of continuous functions, 76

Properties of limits of functions of two 

variables, 802

Ratio Test, 599–600

Rearrangement, for Absolutely Convergent 

Series, 607

Rolle’s, 191–192

Root Test, 601–602

Sandwich, 51–52, 68, 87, 568, AP-21

Second derivative test for local extrema, 206, 

851

Stokes’, 1020

Substitution Rule, 291

Substitution Rule for double integrals, 940

for two independent variables and three 

intermediate variables, 824

Thickness variable, 328–329

Thin shells, moments and masses of, 1014–1016

Third derivative, 121

Three-dimensional coordinate systems

cylindrical, 928–931

spherical, 931–932, 933–934

Three-dimensional Laplace equation, 820

Three-dimensional solid, 918, 921

Torque, 353–354

Torus

of revolution, 1007

volume of, 362

Total diferential, 846

Trace curve, 817

Trajectory of system, 554

Transcendental functions, 11, 370–440, 389

Transcendental numbers, 389

Table of integrals, 479–480

Tangent function

extended deinition of, 22–23

integrals of, 384

inverse of, 419–420

Tangent line approximation, 162, 843

Tangent lines, 42–43

to curve, 102

instantaneous rates of change and, 42–43

Tangent plane approximation, 843

Tangent planes

horizontal, 850

and normal lines, 839–841

to a parametric surface, 1000

Tangent(s)

to curves, 38–43, 835–836

extended deinition of, 22–23

to graph of function, 102–103

to level curves, 835–836

and normals, 150–151

at point, 102–104

slope of, 40–42

values of, 23

vertical, 110

Tan x

derivative of, 137

integral of, 383–384, 463–464

inverse of, 419–420

Taylor, Brook, 623

Taylor polynomials, 624–626

Taylor series

applying of, 630–631

convergence of, 627–631

deinition of, 623–624

Taylor’s Formula

deinition of, 627, 628

for functions of two variables, 868–871

Taylor’s Theorem

deinition of, 627

proof of, 632

Term-by-term diferentiation, 617

Term-by-term integration, 618–619

Terminal velocity, 551

Theorem(s)

Absolute Convergence Test, 598

of Algebra, AP-32–AP-33

Algebraic Properties of Natural Logarithm, 

381

Alternating Series Estimation, 606

of Calculus, Part 1, 279–281

of Calculus, Part 2, 282–283

Cauchy’s Mean Value, 412–413

Chain Rule, 142

Comparison Test, 593, 594

conservative ields are gradient ields, 978

Continuous function for sequences, 568

corollary 1, 193

corollary 2, 194, 381

curl F = 0 related to loop property, 1028

for deinite integrals, 278–279

De Moivre’s, AP-31

Derivative Rule for Inverses, 374

Diferentiability implies continuity, 111, 818

Direct Comparison Test, 500, 593–594

Divergence, 1032–1034

Divergence of curl, 1035

error estimates in the trapezoidal and  

Simpson’s rules, 489



 Subject Index I-13

using cylindrical shells, 325–330

by washers for rotation about axis, 320

von Koch, Helga, 585

Washer method, 319–321, 320

Wave equation, 820

Weierstrass, Karl, 501

Weierstrass function, 114

Whirlpool efect, 988

Wild oscillation, 110

Windows, graphing, 29–32

Work

by constant force, 344

by force over curve in space, 967–969

and kinetic energy, 351

by variable force along curve, 967

by variable force along line, 344–345

x-coordinate, AP-10

x-intercept, AP-13

x-limits of integration, 910, 914

y, integration with respect to, 301–303

y-axis, revolution about, 341

y-coordinate, AP-10

y-intercept, AP-13

y-limits of integration, 909, 911, 914

y = ƒ(x)

graphing of, 207–209

length of, 333–335

Zero denominators, 49–50

Zero Width Interval Rule, 269, 379

Zipper theorem, 575

z-limits of integration, 909, 913,  

927, 929

deinition of, 125

free fall and, 127

instantaneous, 125

and position, from acceleration,  

194–195

Velocity ields

circulation for, 969–970

low integral, 969–970

Velocity function

acceleration and, 194–195

speed and, 253, 254

Vertex, of parabola, AP-15

Vertical asymptotes. See also Asymptotes

deinition of, 91

limits and, 83

Vertical line test, 4

Vertical scaling and relecting formulas, 17

Vertical shift of function, 16–17

Vertical strip, 325, 357

Vertical tangents, 105, 110

Viewing windows, 29–32

Volts, 17-19

Volume

of cylinder, 314

diferential in cylindrical coordinates, 928

by disks for rotation about axis, 317

double integrals as, 884–885

by iterated integrals, 890–892

Pappus’ theorem, 361–362

of pyramid, 315–316

of region in space, 908

by slicing, 314–316

of solid region, 889–892

of solid with known cross-section, 315

in spherical coordinates, 932, 933

triple integrals as, 908

using cross-sections, 314–321

functions of several, 792–797, 806, 813–814, 

828

independent, 1, 821, 822–823

independent, and three intermediate, 823–824

intermediate, 821

limits for, 800–804

linearization of, 842–844, 845

partial derivatives of, 809–811

proportional, 7

thickness, 328–329

three, functions of, 795–797, 837

two, functions of, 793–794, 797, 818

Variance, 512–513

Vector ields

conservative, 975–976, 977–980

continuous, 962

curl of, 1019–1020

deinition of, 962–963

diferentiable, 962

divergence of, 989–991

electric, 975

lux density of, 991

gradient, 963–964, 978–979

gravitational, 975

integration in, 955–1041

and line integrals, 962–971

line integrals of, deinition of, 965

potential function for, 976

surface integrals of, deinition of, 1012

Vectors

curl, 1019–1020

derivative in direction of, 831

gradient, 833

in gravitational ield, 963

Velocity

angular, of rotation, 1025

average, 125



T-1

Basic Forms

 1.  Lk dx = kx + C, k any number  2.  L  xn dx =
xn + 1

n + 1
+ C,  n ≠ -1

 3.  L  
dx
x = ln 0 x 0 + C  4.  Lex dx = ex + C

 5.  Lax dx =
ax

ln a
+ C  (a 7 0, a ≠ 1)  6.  L  sin x dx = -cos x + C

 7.  L  cos x dx = sin x + C  8.  L  sec2 x dx = tan x + C

 9.  L  csc2 x dx = -cot x + C  10.  L  sec x tan x dx = sec x + C

 11.  L  csc x cot x dx = -csc x + C  12.   L  tan x dx = ln 0 sec x 0 + C

 13.   L  cot x dx = ln 0 sin x 0 + C  14.  L  sinh x dx = cosh x + C

 15.  L  cosh x dx = sinh x + C  16.  L  
dx

2a2 - x2
= sin-1 

x

a
+ C

 17.  L  
dx

a2 + x2
=

1

a
 tan-1 

x

a
+ C  18.  L  

dx

x2x2 - a2
=

1

a
 sec-1 2  x

a
 2 + C

 19.  L  
dx

2a2 + x2
= sinh-1 

x

a
+ C  (a 7 0)  20.  L  

dx

2x2 - a2
= cosh-1 

x

a
+ C  (x 7 a 7 0)

Forms Involving ax + b

 21.  L (ax + b)n dx =
(ax + b)n + 1

a(n + 1)
+ C, n ≠ -1

 22.  Lx(ax + b)n dx =
(ax + b)n + 1

a2
 c ax + b

n + 2
-

b

n + 1
d + C, n ≠ -1, -2

 23.  L (ax + b)-1 dx =
1
a ln 0 ax + b 0 + C  24.  Lx(ax + b)-1 dx =

x
a -

b

a2
  ln � ax + b � + C

 25.  Lx(ax + b)-2 dx =
1

a2
 c  ln 0 ax + b 0 +

b

ax + b
d + C  26.  L

dx

x(ax + b)
=

1
b

 ln 2 x

ax + b
2 + C

 27.  L12ax + b2n dx =
2

a
 
12ax + b2n + 2

n + 2
+ C, n ≠ -2 28.  L

2ax + b
x   dx = 22ax + b + bL

dx

x2ax + b

A Brief Table of Integrals
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 29. (a)  L
dx

x2ax + b
=

1

2b
 ln ` 2ax + b - 2b

2ax + b + 2b
` + C  (b)  L

dx

x2ax - b
=

2

2b
 tan-1Aax - b

b
+ C

 30.  L
2ax + b

x2
 dx = -  

2ax + b

x
+

a

2
  L

dx

x2ax + b
+ C  31.  L

dx

x22ax + b
= -

2ax + b

bx
-

a

2b
  L

dx

x2ax + b
+ C

Forms Involving a 2 + x 2

 32.  L  
dx

a2 + x2
=

1

a
 tan-1 

x

a
+ C  33.  L  

dx

(a2 + x2)2
=

x

2a2(a2 + x2)
+

1

2a3
 tan-1 

x

a
+ C

 34.  L  
dx

2a2 + x2
= sinh-1 

x
a + C =  ln 1x + 2a2 + x22 + C

 35.  L2a2 + x2 dx =
x

2
2a2 + x2 +

a2

2
 ln 1x + 2a2 + x22 + C

 36.  Lx22a2 + x2 dx =
x

8
 (a2 + 2x2)2a2 + x2 -

a4

8
 ln 1x + 2a2 + x22 + C

 37.  L  
2a2 + x2

x  dx = 2a2 + x2 - a ln ` a + 2a2 + x2

x ` + C

 38.  L  
2a2 + x2

x2
 dx = ln 1x + 2a2 + x22  -

2a2 + x2

x + C

 39.  L  
x2

2a2 + x2
 dx = -  

a2

2
 ln 1x + 2a2 + x22 +

x2a2 + x2

2
+ C

 40.  L  
dx

x2a2 + x2
= -  

1

a
 ln ` a + 2a2 + x2

x ` + C  41.  L  
dx

x22a2 + x2
= -  

2a2 + x2

a2x
+ C

Forms Involving a 2 − x 2

 42.  L  
dx

a2 - x2
=

1
2a

 ln 2 x + a
x - a

2 + C  43.  L  
dx

(a2 - x2)2
=

x

2a2(a2 - x2)
+

1

4a3
 ln 2 x + a

x - a
2 + C

 44.  L  
dx

2a2 - x2
= sin-1 

x

a
+ C  45.  L2a2 - x2 dx =

x

2
2a2 - x2 +

a2

2
 sin-1 

x

a
+ C

 46.  Lx22a2 - x2 dx =
a4

8
 sin-1 

x

a
-

1
8

 x2a2 - x2 (a2 - 2x2) + C

 47.  L  
2a2 - x2

x  dx = 2a2 - x2 - a ln ` a + 2a2 - x2

x ` + C  48.  L  
2a2 - x2

x2
 dx = -sin-1 

x

a
-
2a2 - x2

x + C

 49.  L  
x2

2a2 - x2
 dx =

a2

2
 sin-1 

x

a
-

1
2

 x2a2 - x2 + C  50.  L  
dx

x2a2 - x2
= -  

1

a
 ln ` a + 2a2 - x2

x ` + C

 51.  L  
dx

x22a2 - x2
= -  

2a2 - x2

a2x
+ C

Forms Involving x 2 − a 2

 52.  L  
dx

2x2 - a2
= ln 0 x + 2x2 - a2 0 + C

 53.  L2x2 - a2 dx =
x

2
2x2 - a2 -

a2

2
 ln 0 x + 2x2 - a2 0 + C
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 54.  L12x2 - a22n dx =
x12x2 - a22n

n + 1
-

na2

n + 1
  L12x2 - a22n - 2 dx, n ≠ -1

 55.  L  
dx12x2 - a22n =

x12x2 - a222 - n

(2 - n)a2
-

n - 3

(n - 2)a2
  L  

dx12x2 - a22n - 2 , n ≠ 2

 56.  Lx12x2 - a22n dx =
12x2 - a22n + 2

n + 2
+ C, n ≠ -2

 57.  Lx22x2 - a2 dx =
x

8
 (2x2 - a2)2x2 - a2 -

a4

8
 ln 0 x + 2x2 - a2 0 + C

 58.  L  
2x2 - a2

x  dx = 2x2 - a2 - a sec-1 `  xa ` + C

 59.  L  
2x2 - a2

x2
 dx = ln 0 x + 2x2 - a2 0 -

2x2 - a2

x + C

 60.  L  
x2

2x2 - a2
 dx =

a2

2
 ln 0 x + 2x2 - a2 0 +

x

2
2x2 - a2 + C

 61.  L  
dx

x2x2 - a2
=

1

a
 sec-1 `  x

a
 ` + C =

1

a
 cos-1 `  a

x
 ` + C  62.  L  

dx

x22x2 - a2
=
2x2 - a2

a2x
+ C

Trigonometric Forms

 63.  Lsin ax dx = -  
1
a cos ax + C  64.  Lcos ax dx =

1
a sin ax + C

 65.  L  sin2 ax dx =
x

2
-

sin 2ax

4a
+ C  66.  L  cos2 ax dx =

x

2
+

sin 2ax

4a
+ C

 67.  L  sinn ax dx = -  
sinn - 1 ax cos ax

na +
n - 1

n  L  sinn - 2 ax dx

 68.  L  cosn ax dx =
cosn - 1 ax sin ax

na +
n - 1

n  L  cosn - 2 ax dx

 69. (a)  Lsin ax cos bx dx = -  
cos(a + b)x

2(a + b)
-

cos(a - b)x

2(a - b)
+ C, a2 ≠ b2

  (b)  Lsin ax sin bx dx =
sin(a - b)x

2(a - b)
-

sin(a + b)x

2(a + b)
+ C, a2 ≠ b2

  (c)  Lcos ax cos bx dx =
sin(a - b)x

2(a - b)
+

sin(a + b)x

2(a + b)
+ C, a2 ≠ b2

 70.  Lsin ax cos ax dx = -  
cos 2ax

4a
+ C  71.  L  sinn ax cos ax dx =

sinn + 1 ax

(n + 1)a
+ C, n ≠ -1

 72.  L  
cos ax

sin ax
 dx =

1
a ln � sin ax � + C  73.  L  cosn ax sin ax dx = -  

cosn + 1 ax

(n + 1)a
+ C, n ≠ -1

 74.  L  
sin ax
cos ax dx = -  

1
a ln � cos ax � + C

 75.  L  sinn ax cosm ax dx = -  
sinn - 1 ax cosm + 1 ax

a(m + n)
+

n - 1
m + n

  L  sinn - 2 ax cosm ax dx, n ≠ -m (reduces sinn ax)

 76.  L  sinn ax cosm ax dx =
sinn + 1 ax cosm - 1 ax

a(m + n)
+

m - 1
m + n

  L  sinn ax cosm - 2 ax dx, m ≠ -n (reduces cosm ax)
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 77.  L  
dx

b + c sin ax
=

-2

a2b2 - c2
 tan-1 cAb - c

b + c
 tanap

4
-

ax

2
b d + C, b2 7 c2

 78.  L  
dx

b + c sin ax
=

-1

a2c2 - b2
 ln ` c + b sin ax + 2c2 - b2 cos ax

b + c sin ax
` + C,  b2 6 c2

 79.  L  
dx

1 + sin ax
= -  

1

a
 tan ap

4
-

ax

2
b + C  80.  L  

dx

1 - sin ax
=

1
a tan ap

4
+

ax

2
b + C

 81.  L  
dx

b + c cos ax
=

2

a2b2 - c2
 tan-1 cAb - c

b + c
 tan 

ax

2
d + C, b2 7 c2

 82.  L  
dx

b + c cos ax
=

1

a2c2 - b2
 ln ` c + b cos ax + 2c2 - b2 sin ax

b + c cos ax
` + C, b2 6 c2

 83.  L  
dx

1 + cos ax
=

1

a
 tan 

ax

2
+ C  84.  L  

dx

1 - cos ax
= -  

1

a
 cot 

ax

2
+ C

 85.  Lx sin ax dx =
1

a2
 sin ax -

x

a
 cos ax + C  86.  Lx cos ax dx =

1

a2
 cos ax +

x

a
 sin ax + C

 87.  Lxn sin ax dx = -  
xn

a  cos ax +
n
a  Lxn - 1 cos ax dx  88.  Lxn cos ax dx =

xn

a  sin ax -
n
a  Lxn - 1 sin ax dx

 89.  L tan ax dx =
1
a ln 0 sec ax 0 + C  90.  Lcot ax dx =

1
a ln 0 sin ax 0 + C

 91.  L  tan2 ax dx =
1
a tan ax - x + C  92.  L  cot2 ax dx = -  

1
a cot ax - x + C

 93.  L  tann ax dx =
tann - 1 ax

a(n - 1)
- L  tann - 2 ax dx, n ≠ 1  94.  L  cotn ax dx = -  

cotn - 1 ax

a(n - 1)
- L  cotn - 2 ax dx, n ≠ 1

 95.  Lsec ax dx =
1
a ln 0 sec ax + tan ax 0 + C  96.  Lcsc ax dx = -  

1
a ln 0 csc ax + cot ax 0 + C

 97.  L  sec2 ax dx =
1
a tan ax + C  98.  L  csc2 ax dx = -  

1
a cot ax + C

 99.  L  secn ax dx =
secn - 2 ax tan ax

a(n - 1)
+

n - 2
n - 1

   L  secn - 2 ax dx, n ≠ 1

 100.  L  cscn ax dx = -  
cscn - 2 ax cot ax

a(n - 1)
+

n - 2
n - 1

   L  cscn - 2 ax dx, n ≠ 1

 101.  L  secn ax tan ax dx =
secn ax

na + C, n ≠ 0  102.  L  cscn ax cot ax dx = -  
cscn ax

na + C, n ≠ 0

Inverse Trigonometric Forms

 103.  L  sin-1 ax dx = x sin-1 ax +
1
a21 - a2x2 + C  104.  L  cos-1 ax dx = x cos-1 ax -

1
a21 - a2x2 + C

 105.  L  tan-1 ax dx = x tan-1 ax -
1
2a

 ln (1 + a2x2) + C

 106.  Lxn sin-1 ax dx =
xn + 1

n + 1
 sin-1 ax -

a

n + 1
  L  

xn + 1 dx

21 - a2x2
 , n ≠ -1
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 107.  Lxn cos-1 ax dx =
xn + 1

n + 1
 cos-1 ax +

a

n + 1
  L  

xn + 1 dx

21 - a2x2
 , n ≠ -1

 108.  Lxn tan-1 ax dx =
xn + 1

n + 1
 tan-1 ax -

a

n + 1
  L  

xn + 1 dx

1 + a2x2
 , n ≠ -1

Exponential and Logarithmic Forms

 109.  Leax dx =
1
a eax + C  110.  Lbax dx =

1
a

 
bax

ln b
+ C, b 7 0, b ≠ 1

 111.  Lxeax dx =
eax

a2
 (ax - 1) + C  112.  Lxneax dx =

1
a xneax -

n
a  Lxn - 1eax dx

 113.  Lxnbax dx =
xnbax

a ln b
-

n

a ln b
  Lxn - 1bax dx, b 7 0, b ≠ 1

 114.  Leax sin bx dx =
eax

a2 + b2
 (a sin bx - b cos bx) + C

 115.  Leax cos bx dx =
eax

a2 + b2
 (a cos bx + b sin bx) + C  116.  L ln ax dx = x ln ax - x + C

 117.  Lxn(ln ax)m dx =
xn + 1(ln ax)m

n + 1
-

m
n + 1

  Lxn(ln ax)m - 1 dx, n ≠ -1

 118.  Lx-1(ln ax)m dx =
(ln ax)m + 1

m + 1
+ C, m ≠ -1  119.  L  

dx

x ln ax
=  ln 0 ln ax 0 + C

Forms Involving 22ax − x2, a + 0

 120.  L  
dx

22ax - x2
= sin-1 ax - a

a b + C

 121.  L22ax - x2 dx =
x - a

2
22ax - x2 +

a2

2
 sin-1 ax - a

a b + C

 122.  L122ax - x22n dx =
(x - a)122ax - x22n

n + 1
+

na2

n + 1
  L122ax - x22n - 2

 dx

 123.  L  
dx122ax - x22n =

(x - a)122ax - x222 - n

(n - 2)a2
+

n - 3

(n - 2)a2
  L  

dx122ax - x22n - 2

 124.  Lx22ax - x2 dx =
(x + a)(2x - 3a)22ax - x2

6
+

a3

2
 sin-1 ax - a

a b + C

 125.  L  
22ax - x2

x  dx = 22ax - x2 + a sin-1 ax - a
a b + C

 126.  L  
22ax - x2

x2
 dx = -2 A2a - x

x - sin-1 ax - a
a b + C

 127.  L  
x dx

22ax - x2
= a sin-1 ax - a

a b - 22ax - x2 + C  128.  L  
dx

x22ax - x2
= -  

1

a
 A2a - x

x + C

Hyperbolic Forms

 129.  Lsinh ax dx =
1
a cosh ax + C  130.  Lcosh ax dx =

1
a sinh ax + C

 131.  L  sinh2 ax dx =
sinh 2ax

4a
-

x

2
+ C  132.  L  cosh2 ax dx =

sinh 2ax

4a
+

x

2
+ C
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 133.  L  sinhn ax dx =
sinhn - 1 ax cosh ax

na -
n - 1

n   L  sinhn - 2 ax dx, n ≠ 0

 134.  L  coshn ax dx =
coshn - 1 ax sinh ax

na +
n - 1

n   L  coshn - 2 ax dx, n ≠ 0

 135.  Lx sinh ax dx =
x
a cosh ax -

1

a2
 sinh ax + C  136.  Lx cosh ax dx =

x

a
 sinh ax -

1

a2
 cosh ax + C

 137.  Lxn sinh ax dx =
xn

a  cosh ax -
n
a   Lxn - 1 cosh ax dx  138.  Lxn cosh ax dx =

xn

a  sinh ax -
n
a   Lxn - 1 sinh ax dx

 139.  L tanh ax dx =
1
a ln (cosh ax) + C  140.  Lcoth ax dx =

1
a ln � sinh ax � + C

 141.  L  tanh2 ax dx = x -
1
a tanh ax + C  142.  L  coth2 ax dx = x -

1
a coth ax + C

 143.  L  tanhn ax dx = -  
tanhn - 1 ax

(n - 1)a
+ L  tanhn - 2 ax dx, n ≠ 1

 144.  L  cothn ax dx = -  
cothn - 1 ax

(n - 1)a
+ L  cothn - 2 ax dx, n ≠ 1

 145.  L  sech ax dx =
1
a sin-1 (tanh ax) + C  146.  L  csch ax dx =

1
a ln 2 tanh 

ax

2
2 + C

 147.  L  sech2 ax dx =
1
a tanh ax + C  148.  L  csch2 ax dx = -  

1
a coth ax + C

 149.  L  sechn ax dx =
sechn - 2 ax tanh ax

(n - 1)a
+

n - 2
n - 1

  L  sechn - 2 ax dx, n ≠ 1

 150.  L  cschn ax dx = -  
cschn - 2 ax coth ax

(n - 1)a
-

n - 2
n - 1

  L  cschn - 2 ax dx, n ≠ 1

 151.  L  sechn ax tanh ax dx = -  
sechn ax

na + C, n ≠ 0  152.  L  cschn ax coth ax dx = -  
cschn ax

na + C, n ≠ 0

 153.  Leax sinh bx dx =
eax

2
 c ebx

a + b
-

e-bx

a - b
d + C, a2 ≠ b2

 154.  Leax cosh bx dx =
eax

2
 c ebx

a + b
+

e-bx

a - b
d + C, a2 ≠ b2

Some Definite Integrals

 155.  L
q

0

xn - 1e-x dx = Γ(n) = (n - 1)!, n 7 0  156.  L
q

0

e-ax2

 dx =
1
2Ap

a , a 7 0

 157.  L
p>2

0

 sinn x dx = L
p>2

0

 cosn x dx = d 1 # 3 # 5 # g # (n - 1)

2 # 4 # 6 # g # n
# p

2
, if n is an even integer Ú2

2 # 4 # 6 # g # (n - 1)

3 # 5 # 7 # g # n
, if n is an odd integer Ú3



Basic Algebra Formulas

Arithmetic Operations

 a(b + c) = ab + ac,   
a

b
# c

d
=

ac

bd

 
a

b
+

c

d
=

ad + bc

bd
,     

a>b
c>d =

a

b
# d

c

Laws of Signs

-(-a) = a,  
-a

b
= -  

a

b
=

a

-b

Zero Division by zero is not deined.

If a ≠ 0: 
0
a = 0, a0 = 1, 0a = 0

For any number a: a # 0 = 0 # a = 0

Laws of Exponents

aman = am + n,    (ab)m = ambm,    (am)n = amn,  am>n = 2n am = 12n a2m
If a ≠ 0, then

am

an = am - n,   a0 = 1,   a-m =
1
am .

The Binomial Theorem For any positive integer n,

 (a + b)n = an + nan - 1b +
n(n - 1)

1 # 2
 an - 2b2

 +  
n(n - 1)(n - 2)

1 # 2 # 3
 an - 3b3 + g + nabn - 1 + bn.

For instance,

 (a + b)2 = a2 + 2ab + b2,           (a - b)2 = a2 - 2ab + b2

 (a + b)3 = a3 + 3a2b + 3ab2 + b3,    (a - b)3 = a3 - 3a2b + 3ab2 - b3.

Factoring the Diference of Like Integer Powers, n + 1

an - bn = (a - b)(an - 1 + an - 2b + an - 3b2 + g + ab 

n - 2 + b 

n - 1)

For instance,

 a2 - b2 = (a - b)(a + b), 

 a3 - b3 = (a - b)(a2 + ab + b2),

 a4 - b4 = (a - b)(a3 + a2b + ab2 + b3).

Completing the Square If a ≠ 0, then

ax2 + bx + c = au2 + C  au = x + (b>2a), C = c -
b2

4a
b

The Quadratic Formula

If a ≠ 0 and ax2 + bx + c = 0, then

x =
-b { 2b2 - 4ac

2a
.



Parallelogram Trapezoid Circle

h

b

A = bh

 

h

a

b

A =    (a + b)h
1
2

 

r A = pr2,

C = 2pr

Geometry Formulas

A = area, B = area of base, C =  circumference, S = surface area, V = volume

Triangle Similar Triangles Pythagorean Theorem

b

h

A =    bh
1
2

 

b

b′

c′ a′
ac

a′
a
=

b′
b
=

c′
c

 
c

b

a

a2 + b2 = c2

Any Cylinder or Prism with Parallel Bases Right Circular Cylinder

h

B

h

B

V = Bh

 

h

r

V = pr2h

S = 2prh = Area of side

Any Cone or Pyramid Right Circular Cone Sphere

V =   Bh
3

1

h

B

h

B

 

V =    pr2h1
3

S = prs = Area of side

 

V =    pr3, S = 4pr24
3



Trigonometry Formulas

Definitions and Fundamental Identities

Sine: sin u =
y
r =

1
csc u

Cosine: cos u =
x
r =

1
sec u

Tangent: tan u =
y
x =

1
cot u

Identities

sin (-u) = -sin u, cos (-u) = cos u

sin2 u + cos2 u = 1, sec2 u = 1 + tan2 u, csc2 u = 1 + cot2 u

sin 2u = 2 sin u cos u, cos 2u = cos2 u - sin2 u

cos2 u =
1 + cos 2u

2
, sin2 u =

1 - cos 2u
2

 sin (A + B) = sin A cos B + cos A sin B

 sin (A - B) = sin A cos B - cos A sin B

 cos (A + B) = cos A cos B - sin A sin B

 cos (A - B) = cos A cos B + sin A sin B

 tan (A + B) =
tan A + tan B

1 - tan A tan B

 tan (A - B) =
tan A - tan B

1 + tan A tan B

 sin aA -
p
2
b = -cos A,   cos aA -

p
2
b = sin A

 sin aA +
p
2
b = cos A,   cos aA +

p
2
b = -sin A

sin A sin B =
1
2

 cos (A - B) -
1
2

 cos (A + B)

cos A cos B =
1
2

 cos (A - B) +
1
2

 cos (A + B)

sin A cos B =
1
2

 sin (A - B) +
1
2

 sin (A + B)

sin A + sin B = 2 sin 
1
2

 (A + B) cos 
1
2

 (A - B)

sin A - sin B = 2 cos 
1
2

 (A + B) sin 
1
2

 (A - B)

cos A + cos B = 2 cos 
1
2

 (A + B) cos 
1
2

 (A - B)

cos A - cos B = -2 sin 
1
2

 (A + B) sin 
1
2

 (A - B)

Trigonometric Functions

Radian Measure

s

r

1

Circle of radius r
 

U
n it c irc le

 

u

s
r =

u

1
= u or u =

s
r  ,

180° = p radians.

r

0 x

y
u

P(x, y)

y

x

"2

45

45 90

1

1

1

1 1

1

p
2

p
4

p
3

p
2

p
6

p
4

2 2

30

9060

Degrees Radians

"2

"3"3

The angles of two common triangles, in 

degrees and radians.

x

y

y = cos x

Domain: (−∞, ∞)

Range:    [−1, 1]

0–p p 2p–p
2

p
2

3p
2

x

y

0–p p 2p–p
2

p
2

3p
2

y = sin x

Domain: (−∞, ∞)

Range:    [−1, 1]

y

x

y = tan x

3p
2

– –p –p
2

0 p
2

p 3p
2

Domain: All real numbers except odd

               integer multiples of p�2 

Domain: All real numbers except odd

               integer multiples of p�2 

Range:    (−∞, ∞)

x

y
y = csc x

0

1

–p p 2p–p
2

p
2

3p
2

Domain: x ≠ 0, ±p, ±2p, . . .
Range:    (−∞, −1] ´ [1, ∞)

y

x

y = cot x

0

1

–p p 2p–p
2

p
2

3p
2

Domain: x ≠ 0, ±p, ±2p, . . .
Range:    (−∞, ∞)

x

y
y = sec x

3p
2

– –p –p
2

0

1

p
2

p 3p
2

Range:    (−∞, −1] ´ [1, ∞)



Series

Tests for Convergence of Infinite Series

1. The nth-Term Test: Unless an S 0, the series diverges.

2. Geometric series: garn converges if � r � 6 1; otherwise 

it diverges.

3. p-series: g1>np converges if p 7 1; otherwise it diverges.

4. Series with nonnegative terms: Try the Integral Test, 

 Ratio Test, or Root Test. Try comparing to a known series 

with the Comparison Test or the Limit Comparison Test.

5. Series with some negative terms: Does g � an �  converge? 

If yes, so does gan because absolute convergence implies 

convergence.

6. Alternating series: gan converges if the series satisies the 

conditions of the Alternating Series Test.

Taylor Series

1
1 - x

= 1 + x + x2 + g + xn + g = a
q

n = 0
 x

n,  0 x 0 6 1

1
1 + x

= 1 - x + x2 - g + (-x)n + g = a
q

n = 0

(-1)nxn,  0 x 0 6 1

ex = 1 + x +
x2

2!
+ g +

xn

n!
+ g = a

q

n = 0

 
xn

n!
 ,  0 x 0 6 q

sin x = x -
x3

3!
+

x5

5!
- g + (-1)n 

x2n + 1

(2n + 1)!
+ g = a

q

n = 0

 
(-1)nx2n + 1

(2n + 1)!
,  0 x 0 6 q

cos x = 1 -
x2

2!
+

x4

4!
- g + (-1)n 

x2n

(2n)!
+ g = a

q

n = 0

 
(-1)nx2n

(2n)!
,  0 x 0 6 q

ln (1 + x) = x -
x2

2
+

x3

3
- g + (-1)n - 1 

xn

n + g = a
q

n = 1

 
(-1)n - 1xn

n , -1 6 x … 1

ln 
1 + x

1 - x
= 2 tanh-1 x = 2ax +

x3

3
+

x5

5
+ g +

x2n + 1

2n + 1
+ gb  = 2a

q

n = 0

 
x2n + 1

2n + 1
,  0 x 0 6 1

tan-1 x = x -
x3

3
+

x5

5
- g + (-1)n 

x2n + 1

2n + 1
+ g = a

q

n = 0

 
(-1)nx2n + 1

2n + 1
,   0 x 0 … 1

Binomial Series

 (1 + x)m = 1 + mx +
m(m - 1)x2

2!
+

m(m - 1)(m - 2)x3

3!
+ g +

m(m - 1)(m - 2)g(m - k + 1)xk

k!
+ g

 = 1 + a
q

k = 1

am
k
bxk,  0 x 0 6 1,

where am
1
b = m,  am

2
b =

m(m - 1)

2!
 ,  am

k
b =

m(m - 1)g(m - k + 1)

k!
   for k Ú 3.



Vector Operator Formulas (Cartesian Form)

Formulas for Grad, Div, Curl, and the Laplacian

Cartesian (x, y, z) i, j, and k 

are unit vectors in the direc-

tions of increasing x, y, and 

z. M, N, and P are the scalar 

components of F(x, y, z) in 

these directions.

Gradient ∇ƒ =
0ƒ

0x
  i +

0ƒ

0y
  j +

0ƒ

0z
  k

Divergence ∇ # F =
0M
0x

+
0N
0y

+
0P
0z

Curl ∇ * F = 4 i j k

0
0x

0
0y

0
0z

M N P

4
Laplacian ∇2ƒ =

02ƒ

0x2
+

02ƒ

0y2
+

02ƒ

0z2

Vector Triple Products

(u * v) # w = (v * w) # u = (w * u) # v

u * (v * w) = (u # w)v - (u # v)w

Vector Identities

In the identities here, ƒ and g are diferentiable scalar functions; F, F1, and F2 are diferentiable vector ields; and a and b are real 

constants.

∇ * (∇ƒ) = 0

∇(ƒg) = ƒ∇g + g∇ƒ

∇ # (gF) = g∇ # F + ∇g # F

∇ * (gF) = g∇ * F + ∇g * F

∇ # (aF1 + bF2) = a∇ # F1 + b∇ # F2

∇ * (aF1 + bF2) = a∇ * F1 + b∇ * F2

∇(F1
# F2) = (F1

# ∇ )F2 + (F2
# ∇ )F1 +

F1 * (∇ * F2) + F2 * (∇ * F1)

The Fundamental Theorem of Line Integrals

Part 1 Let F = M i + N j + P k be a vector ield whose components are 

continuous throughout an open connected region D in space. Then 

there exists a diferentiable function ƒ such that

F = ∇ƒ =
0ƒ

0x
  i +

0ƒ

0y
  j +

0ƒ

0z
  k

if and only if for all points A and B in D, the value of 1B

A
F # dr is 

independent of the path joining A to B in D.

Part 2 If the integral is independent of the path from A to B, its value is

L
B

A

F # dr = ƒ(B) - ƒ(A).

Green’s Theorem and Its Generalization to Three Dimensions

Tangential form of Green’s Theorem: C
C

F # T ds = O
R

(∇ * F) # k dA

Stokes’ Theorem: C
C

F # T ds = O
S

(∇ * F) # n ds

Normal form of Green’s Theorem: C
C

F # n ds = O
R

(∇ # F) dA

Divergence Theorem: O
S

F # n ds = l
D

∇ # F dV

∇ # (F1 * F2) = F2
# (∇ * F1) - F1

# (∇ * F2)

 ∇ * (F1 * F2) = (F2
# ∇ )F1 - (F1

# ∇ )F2 +

 (∇ # F2)F1 - (∇ # F1)F2

∇ * (∇ * F) = ∇(∇ # F) - (∇ # ∇ )F = ∇(∇ # F) - ∇2F

(∇ * F) * F = (F # ∇ )F -
1
2
∇(F # F)



Limits

General Laws

If L, M, c, and k are real numbers and

lim
xSc

 ƒ(x) = L    and    lim
xSc

 g(x) = M, then

Sum Rule: lim
xSc

 (ƒ(x) + g(x)) = L + M

Difference Rule: lim
xSc

 (ƒ(x) - g(x)) = L - M

Product Rule: lim
xSc

 (ƒ(x) # g(x)) = L # M

Constant Multiple Rule: lim
xSc

 (k # ƒ(x)) = k # L

Quotient Rule: lim
xSc

  
ƒ(x)

g(x)
=

L
M

, M ≠ 0

The Sandwich Theorem

If g(x) … ƒ(x) … h(x) in an open interval containing c, except 

possibly at x = c, and if

lim
xSc

 g(x) = lim
xSc

 h(x) = L,

then limxSc ƒ(x) = L.

Inequalities

If ƒ(x) … g(x) in an open interval containing c, except possibly 

at x = c, and both limits exist, then

lim
xSc

 ƒ(x) … lim
xSc

 g(x).

Continuity

If g is continuous at L and limxSc ƒ(x) = L, then

lim
xSc

 g(ƒ(x)) =  g(L).

Specific Formulas

If P(x) = an xn + an - 1 xn - 1 + g + a0, then

lim
xSc

 P(x) = P(c) = an cn + an - 1 cn - 1 + g + a0.

If P(x) and Q(x) are polynomials and Q(c) ≠ 0, then

lim
xSc

  
P(x)

Q(x)
=

P(c)

Q(c)
.

If ƒ(x) is continuous at x = c, then

lim
xSc

 ƒ(x) = ƒ(c).

lim
xS0

 
sin x

x = 1    and    lim
xS0

 
1 - cos x

x = 0

L’Hôpital’s Rule

If ƒ(a) = g(a) = 0, both ƒ′ and g′ exist in an open interval I 

containing a, and g′(x) ≠ 0 on I if x ≠ a, then

lim
xSa

  
ƒ(x)

g(x)
= lim

xSa
  
ƒ′(x)

g′(x)
,

assuming the limit on the right side exists.



Diferentiation Rules

General Formulas

Assume u and y are differentiable functions of x.

Constant:
d

dx
 (c) = 0

Sum:
d

dx
 (u + y) =

du

dx
+

dy
dx

Difference:
d

dx
 (u - y) =

du

dx
-

dy
dx

Constant Multiple:  
d

dx
 (cu) = c 

du

dx

Product:
d

dx
 (uy) = u 

dy
dx

+
du

dx
 y

Quotient:  
d

dx
 au
yb =

y 
du

dx
- u 

dy
dx

y2

Power:
d

dx
 xn = nxn - 1

Chain Rule:
d

dx
 (ƒ(g(x)) = ƒ′(g(x)) # g′(x)

Trigonometric Functions

 
d

dx
 (sin x) = cos x   

d

dx
 (cos x) = -sin x

 
d

dx
 (tan x) = sec2 x   

d

dx
 (sec x) = sec x tan x

 
d

dx
 (cot x) = -csc2 x   

d

dx
 (csc x) = -csc x cot x

Exponential and Logarithmic Functions

 
d

dx
 ex = ex   

d

dx
 ln x =

1

x

 
d

dx
 ax = ax ln a      

d

dx
 (loga x) =

1
x ln a

Inverse Trigonometric Functions

 
d

dx
 (sin-1 x) =

1

21 - x2
   

d

dx
 (cos-1 x) = -  

1

21 - x2

 
d

dx
 (tan-1 x) =

1

1 + x2
   

d

dx
 (sec-1 x) =

10 x 02x2 - 1

 
d

dx
 (cot-1 x) = -  

1

1 + x2
   

d

dx
 (csc-1 x) = -  

10 x 02x2 - 1

Hyperbolic Functions

 
d

dx
 (sinh x) = cosh x   

d

dx
 (cosh x) = sinh x

 
d

dx
 (tanh x) = sech2 x   

d

dx
 (sech x) = -sech x tanh x

 
d

dx
 (coth x) = -csch2 x   

d

dx
 (csch x) = -csch x coth x

Inverse Hyperbolic Functions

 
d

dx
 (sinh-1 x) =

1

21 + x2
   

d

dx
 (cosh-1 x) =

1

2x2 - 1

 
d

dx
 (tanh-1 x) =

1

1 - x2
 
d

dx
 (sech-1 x) = -  

1

x21 - x2

 
d

dx
 (coth-1 x) =

1

1 - x2
 
d

dx
 (csch-1 x) = -  

10 x 021 + x2

Parametric Equations

If x = ƒ(t) and y = g(t) are differentiable, then

y′ =
dy

dx
=

dy>dt

dx>dt
  and  

d2y

dx2
=

dy′>dt

dx>dt
.



Integration Rules

General Formulas

Zero:  L
a

a

ƒ(x) dx = 0

Order of Integration:  L
a

b

ƒ(x) dx = -L
b

a

ƒ(x) dx

Constant Multiples:   L
b

a

kƒ(x) dx = k L
b

a

ƒ(x) dx,  k any number

  L
b

a

-ƒ(x) dx = -L
b

a

ƒ(x) dx,  k = -1

Sums and Differences:  L
b

a

(ƒ(x) { g(x)) dx = L
b

a

ƒ(x) dx {L
b

a

g(x) dx

Additivity:  L
b

a

ƒ(x) dx + L
c

b

ƒ(x) dx = L
c

a

ƒ(x) dx

Max-Min Inequality: If max ƒ and min ƒ are the maximum and minimum values of ƒ on 3a, b4 , then

min ƒ # (b - a) … L
b

a

ƒ(x) dx …  max ƒ # (b - a).

Domination:  ƒ(x) Ú g(x) on 3a, b4 implies L
b

a

ƒ(x) dx Ú L
b

a

g(x) dx

 ƒ(x) Ú 0 on 3a, b4 implies L
b

a

ƒ(x) dx Ú 0

The Fundamental Theorem of Calculus

Part 1 If ƒ is continuous on 3a, b4 , then F(x) = 1 x

a ƒ(t)dt is continuous on 3a, b4  and diferentiable on (a, b) and its derivative is ƒ(x):

F′(x) =
d

dx
  L

x

a

ƒ(t) dt = ƒ(x).

Part 2 If ƒ is continuous at every point of 3a, b4  and F is any antiderivative of 

ƒ on 3a, b4 , then

 L
b

a

ƒ(x) dx = F(b) - F(a).

Substitution in Definite Integrals

 L
b

a

ƒ(g(x)) # g′(x) dx = L
g(b)

g(a)

ƒ(u) du

Integration by Parts

 L
b

a

u(x) y′(x) dx = u(x) y(x) d b
a

- L
b

a

y(x) u′(x) dx

A Brief Table of Integrals follows the Index at the back of the text.
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