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PRAISE FOR  

THE SHAPE OF DATA

“The title says it all. Data is bound by many

complex relationships not easily shown in our

two-dimensional, spreadsheet-filled world. The

Shape of Data walks you through this richer

view and illustrates how to put it into practice.”

—STEPHANIE THOMPSON, DATA SCIENTIST AND SPEAKER

“The Shape of Data is a novel perspective and

phenomenal achievement in the application of

geometry to the field of machine learning. It is

expansive in scope and contains loads of

concrete examples and coding tips for practical

implementations, as well as extremely lucid,

concise writing to unpack the concepts. Even as

a more veteran data scientist who has been in

the industry for years now, having read this

book I’ve come away with a deeper connection

to and new understanding of my field.”

—KURT SCHUEPFER, PHD, MCDONALD’S CORPORATION

“The Shape of Data is a great source for the

application of topology and geometry in data

science. Topology and geometry advance the

field of machine learning on unstructured data,

and The Shape of Data does a great job

introducing new readers to the subject.”

—UCHENNA “IKE” CHUKWU, SENIOR QUANTUM DEVELOPER
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FOREWORD

The title of Colleen M. Farrelly and Yaé Ulrich Gaba’s book,

The Shape of Data, is as fitting and beautiful as the journey

that the authors invite us to experience, as we discover the

geometric shapes that paint the deeper meaning of our

analytical data insights.

Enabling and combining common machine learning, data

science, and statistical solutions, including the combinations

of supervised/unsupervised or deep learning methods, by

leveraging topological and geometric data analysis provides

new insights into the underlying data problem. It reminds us

of our responsibilities as data scientists, that with any

algorithmic approach a certain data bias can greatly skew

our expected results. As an example, the data scientist

needs to understand the underlying data context well to

avoid performing a two-dimensional Euclidean-based

distance analysis when the underlying data needs to

account for three-dimensional nuances, such as what a

routing analysis would require when traveling the globe.

Throughout the book’s mathematical data analytics tour,

we encounter the origin of data analysis on structured data

and the many seemingly unstructured data scenarios that

can be turned into structured data, which enables standard

machine learning algorithms to perform predictive and

prescriptive analytical insights. As we ride through the

valleys and peaks of our data, we learn to collect features

along the way that become key inputs into other data

layers, forming geometrical interpretations of varying

unstructured data sources including network data, images,



and text-based data. In addition, Farrelly and Gaba are

masterful in detailing the foundational and advanced

concepts supported by the well-defined examples in both R

and Python, available for download from their book’s web

page.

Throughout my opportunities to collaborate with Farrelly

and Gaba on several exciting projects over the past years, I

always hoped for a book to emerge that would explain as

clearly and eloquently as The Shape of Data does the

evolution of the topological data analysis space all the way

to leveraging distributed and quantum computing solutions.

During my days as a CTO at Cypher Genomics, Farrelly

was leading our initiatives in genomic data analytics. She

immediately inspired me with her keen understanding of

how best to establish correlations between disease

ontologies versus symptom ontologies, while also using

simulations to understand the implications of missing links

in the map. Farrelly’s pragmatic approach helped us

successfully resolve critical issues by creating an algorithm

that mapped across gene, symptom, and disease ontologies

in order to predict disease from gene or symptom data. Her

focus on topology-based network mining for diagnostics

helped us define the underlying data network shape,

properties, and link distributions using graph summaries

and statistical testing. Our combined efforts around

ontology mapping, graph-based prediction, and network

mining and decomposition resulted in critical data network

discoveries related to metabolomics, proteomics, gene

regulatory networks, patient similarity networks, and

variable correlation networks.

From our joint genomics and related life sciences analytics

days to our most recent quantum computing initiatives,

Farrelly and Gaba have consistently demonstrated a strong

passion and unique understanding of all the related



complexities and how to apply their insights to several

everyday problems. Joining them on their shape of data

journey will be valuable time spent as you embark on a well-

scripted adventure of R and Python algorithms that solve

general or niche problems in machine learning and data

analysis using geometric patterns to help shape the desired

results.

This book will be relevant and captivating to beginners

and devoted experts alike. First-time travelers will find it

easy to dive into algorithm examples designed for analyzing

network data, including social and geographic networks, as

well as local and global metrics, to understand network

structure and the role of individuals in the network. The

discussion covers clustering methods developed for use on

network data, link prediction algorithms to suggest new

edges in a network, and tools for understanding how, for

example, processes or epidemics spread through networks.

Advanced readers will find it intriguing to dive into

recently developing topics such as replacing linear algebra

with nonlinear algebra in machine learning algorithms and

exterior calculus to quantity needs in disaster planning. The

Shape of Data has made me want to roll up my sleeves and

dive into many new challenges, because I feel as well

equipped as Lara Croft in Tomb Raider thanks to Farrelly’s

tremendous treasure map and deeply insightful exploration

work. Could there be a hidden bond or “hidden layer”

between them?

Michael Giske

Technology executive, global CIO of B-ON, and chairman of Inomo Technologies
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INTRODUCTION

The first time I, Colleen,

confronted my own

hesitancy with math was

when geometry provided a

solution to an art class

problem I faced: translating

a flat painting onto a curved vase. Straight

lines from my friend’s canvas didn’t

behave the same way on the curved vase.

Distances between points on the painting

grew or shrank with the curvature. We’d

stumbled upon the differences between

the geometry we’d learned in class (where

geometry behaved like the canvas

painting) and the geometry of real-world

objects like the vase. Real-world data

often behaves more like the vase than the

canvas painting. As an industry data

scientist, I’ve worked with many non-data-

science professionals who want to learn

new data science methods but either

haven’t encountered a lot of math or



coding in their career path or have a

lingering fear of math from prior

educational experiences. Math-heavy

papers without coding examples often

limit the toolsets other professionals can

use to solve important problems in their

own fields.

Math is simply another language with which to understand

the world around us; like any language, it’s possible to

learn. This book is focused on geometry, but it is not a math

textbook. We avoid proofs, rarely use equations, and try to

simplify the math behind the algorithms as much as

possible to make these tools accessible to a wider audience.

If you are more mathematically advanced and want the full

mathematical theory, we provide references at the end of

the book.

Geometry underlies every single machine learning

algorithm and problem setup, and thousands of geometry-

based algorithms exist today. This book focuses on a few

dozen algorithms in use now, with preference given to those

with packages to implement them in R. If you want to

understand how geometry relates to algorithms, how to

implement geometry-based algorithms with code, or how to

think about problems you encounter through the lens of

geometry, keep reading.



Who Is This Book For?

Though this book is for anyone anywhere who wants a

hands-on guide to network science, geometry-based

aspects of machine learning, and topology-based

algorithms, some background in statistics, machine

learning, and a programming language (R or Python, ideally)

will be helpful. This book was designed for the following:

Healthcare professionals working with small sets of patient

data

Math students looking for an applied side of what they’re

learning

Small-business owners who want to use their data to drive

sales

Physicists or chemists interested in using topological data

analysis for a research project

Curious sociologists who are wary of proof-based texts

Statisticians or data scientists looking to beef up their

toolsets

Educators looking for practical examples to show their

students

Engineers branching out into machine learning

We’ll be surveying many areas of science and business in

our examples and will cover dozens of algorithms shaping

data science today. Each chapter will focus on the intuition

behind the algorithms discussed and will provide examples

of how to use those algorithms to solve a problem using the

R programming language. While the book is written with

examples presented in R, our downloadable repository (http

s://nostarch.com/download/ShapeofData_PythonCode.zip)

https://nostarch.com/download/ShapeofData_PythonCode.zip


includes R and Python code for examples where Python has

an analogous function to support users of both languages.

Feel free to skip around to sections most relevant to your

interests.

About This Book

This book starts with an introduction to geometry in

machine learning. Topics relevant to geometry-based

algorithms are built through a series of network science

chapters that transition into metric geometry, geometry-

and topology-based algorithms, and some newer

implementations of these algorithms in natural language

processing, distributed computing, and quantum computing.

Here’s a quick overview of the chapters in this book:

Chapter 1: The Geometric Structure of Data Details

how machine learning algorithms can be examined from a

geometric perspective with examples from medical and

image data

Chapter 2: The Geometric Structure of Networks

Introduces network data metrics, structure, and types

through examples of social networks

Chapter 3: Network Analysis Introduces supervised

and unsupervised learning on network data, network-

based clustering algorithms, comparisons of different

networks, and disease spread across networks

Chapter 4: Network Filtration Moves from network

data to simplicial complex data, extends network metrics

to higher-dimensional interactions, and introduces hole-

counting in objects like networks

Chapter 5: Geometry in Data Science Provides an

overview on the curse of dimensionality, the role of

distance metrics in machine learning, dimensionality



reduction and data visualization, and applications to time

series and probability distributions

Chapter 6: Newer Applications of Geometry in

Machine Learning Details several geometry-based

algorithms, including supervised learning in educational

data, geometry-based disaster planning, and activity

preference ranking

Chapter 7: Tools for Topological Data Analysis

Focuses on topology-based unsupervised learning

algorithms and their application to student data

Chapter 8: Homotopy Algorithms Introduces an

algorithm related to path planning and small data analysis

Chapter 9: Final Project: Analyzing Text Data

Focuses on a text dataset, a deep learning algorithm used

in text embedding, and analytics of processed text data

through algorithms from previous chapters

Chapter 10: Multicore and Quantum Computing

Dives into distributed computing solutions and quantum

algorithms, including a quantum network science example

and a quantum image analytics algorithm

Downloading and Installing R

We’ll be using the R programming language in this book. R

is easy to install and compatible with macOS, Linux, and

Windows operating systems. You can choose the download

for your system at https://cloud.r-project.org. You might be

prompted to click a link for your geographic location (or a

general cloud connection option). If you haven’t installed R

before, you can choose the first-time installation of the

base, which is the first download option on the R for

Windows page.

https://cloud.r-project.org/


Once you click the first-time option, you should see a

screen that will give you an option to download R for

Windows.

After R downloads, you’ll follow the installation

instructions that your system provides as a prompt. This will

vary slightly depending on the operating system. However,

the installation guide will take you through the steps needed

to set up R.

You may want to publish your projects or connect R with

other open source projects, such as Python. RStudio

provides a comfortable interface with options to connect R

more easily with other platforms. You can find RStudio’s

download at https://www.rstudio.com. Once you download

RStudio, simply follow your operating system’s command

prompts to install with the configurations that work best for

your use case.

Installing R Packages

R has several options for installing new packages on your

system. The command line option is probably the easiest.

You’ll use the install.packages("package_name") option, where

package_name is the name of the package you want to install,

such as install.packages("mboost") to install the mboost

package. From there, you may be asked to choose your

geographic location for the download. The package will then

download (and download any package dependencies that

are not already on your machine).

You can also use your graphical user interface (GUI) to

install a package. This might be preferable if you want to

browse available packages rather than install just one

specific package to meet your needs. You can select Install

package(s) from the Packages menu option after you

launch R on your machine.

https://www.rstudio.com/


You’ll be prompted to select your location, and the

installation will happen as it would with the command line

option for package installation.

Getting Help with R

R has many useful features if you need help with a function

or a package in your code. The help() function allows you to

get information about a function or package that you have

installed in R. Adding the package name after the function

(such as help(glmboost, "mboost") for help with the

generalized linear modeling boosted regression function

through the mboost package) will pull up information about

a package not yet installed in your machine so that you can

understand what the function does before deciding to install

the new package. This is helpful if you’re looking for

something specific but not sure that what you’re finding

online is exactly what you need. In lieu of using the help()

function, you can add a question mark before the function

name (such as ?glmboost).

You can also browse for vignettes demonstrating how to

use functions in a package using the command

browseVignettes(), which will pull up vignettes for each

package you have installed in R. If you want a vignette for a

specific package, you can name that package like so:

browseVignettes(package="mboost"). Many packages come with

a good overview of how to apply the package’s functions to

an example dataset.

R has a broad user base, and internet searches or coding

forums can provide additional resources for specific issues

related to a package. There are also many good tutorials

that overview the basic programming concepts and

common functions in R. If you are less familiar with

programming, you may want to go through a free tutorial on



R programming or work with data in R before attempting the

code in this book.

Because R is an evolving language with new packages

added and removed regularly, we encourage you to keep up

with developments via package websites and web searches.

Packages that are discontinued can still be installed and

used as legacy packages but require some caution, as they

aren’t updated by the package author. We’ll see one of

these in this book with an example of how to install a legacy

package. Similarly, new packages are developed regularly,

and you should find and use new packages in the field of

geometry as they become available.

Support for Python Users

While this book presents examples in R code, our

downloadable repository (https://nostarch.com/download/Sh

apeofData_PythonCode.zip) includes translations to Python

packages and functions where possible. Most examples

have a Python translation for Python users. However, some

translations do not exist or include only the packages that

do not install correctly on some operating systems. We

encourage you to develop Python applications if they do not

currently exist, and it is likely that more support in Python

will become available for methods in this book (and

methods developed in the future).

Summary

Mathematics can be intimidating for some people, but it

forms the foundation of a lot of hot topics in machine

learning and technology these days. Understanding the

geometry behind the buzzwords will give you a deeper

understanding of how the algorithms function and how they

https://nostarch.com/download/ShapeofData_PythonCode.zip


can be used to solve problems. You might even have some

fun along the way.

We love helping people learn about geometry and

machine learning. Feel free to connect with us or contact us

on LinkedIn (https://www.linkedin.com/in/colleenmfarrelly).

This book will introduce you to geometry one step at a

time. You’ll probably have questions, wrestle with concepts,

or try an example of your own based on what you read.

Data science is a process. Getting help when you are stuck

is a natural part of learning data science. Eventually, you’ll

find your own preferred methods of working through a

problem you encounter.

Let’s get started!

https://www.linkedin.com/in/colleenmfarrelly


1 

THE GEOMETRIC STRUCTURE OF

DATA

You might wonder why you

need data science methods

rooted in topology and

geometry when traditional

data science methods are

already so popular and

powerful. The answer to this has two

parts. First, data today comes in a variety

of formats far more exotic than the usual

spreadsheet, such as a social network or a

text document. While such exotic data

used to be referred to as unstructured, we

now recognize that it often is structured,

but with a more sophisticated geometric

structure than a series of spreadsheets in

a relational database. Topological and

geometric data science allow us to work

directly in these exotic realms and

translate them into the more familiar



realm of spreadsheets. Second, a

relatively recent discovery suggests that

geometry even lurks behind spreadsheet-

structured data. With topological and

geometric data science, we can harness

the power of this hidden geometry.

We’ll start this chapter with a quick refresher of the main

concepts in traditional machine learning, discussing what it

means for data to be structured and how this is typically

used by machine learning algorithms. We’ll then review

supervised learning, overfitting, and the curse of

dimensionality from a geometric perspective. Next, we’ll

preview a few other common types of data—network data,

image data, and text data—and hint at how we can use their

geometry in machine learning. If you’re already familiar with

traditional machine learning and the challenges of applying

it to modern forms of data, you’re welcome to skip to Chapt

er 2, where the technical content officially begins, although

you may find the geometric perspectives of traditional

machine learning topics offered in this chapter interesting

regardless.

Machine Learning Categories

Many types of machine learning algorithms exist, and more

are invented every day. It can be hard to keep track of all

the latest developments, but it helps to think of machine

learning algorithms as falling into a few basic categories.

Supervised Learning

Supervised learning algorithms generally aim to predict

something, perhaps a treatment outcome under a new



hospital protocol or the probability of a client leaving in the

next six months. The variable we predict is called the

dependent variable or target, and the variables used to

predict it are called independent variables or predictors.

When we’re predicting a numerical variable (such as a

symptom severity scale), this is called regression; when

we’re predicting a categorical variable (such as survived or

died classes), this is called classification.

Some of the most popular supervised learning algorithms

are k-nearest neighbors (k-NN), naive Bayes classifiers,

support vector machines, random forests, gradient boosting,

and neural networks. You don’t need to know any of these

topics to read this book, but it will help to be familiar with at

least one regression method and one classification method,

such as linear regression and logistic regression. That said,

don’t fret if you’re not sure about them—this chapter will

cover the concepts you need.

Each supervised learning algorithm is a specific type of

function that has as many input variables as there are

independent variables in the data. We think of this function

as predicting the value of the dependent variable for any

choice of values of the independent variables (see Figure 1-

1). For linear regression with independent variables x1, x2, . .

. , xn, this is a linear function: f(x1, x2, . . . , xn) = a1x1 + a2

x2 + . . . + . For other methods, it is a complicated nonlinear

function. For many methods, this function is nonparametric,

meaning we can compute it algorithmically but can’t write it

down with a formula.



Figure 1-1: The flow of independent variables, supervised machine learning

algorithm (viewed as a function), and prediction of a dependent variable

Using a supervised learning algorithm usually involves

splitting your data into two sets. There’s training data,

where the algorithm tries to adjust the parameters in the

function so that the predicted values are as close as

possible to the actual values. In the previous linear

regression example, the parameters are the coefficients ai.

There’s also testing data, where we measure how good a job

the algorithm is doing. A hyperparameter is any parameter

that the user must specify (as opposed to the parameters

that are learned directly from the data during the training

process). The k specifying number of nearest neighbors in k-

NN is an example of a hyperparameter.

After a supervised learning algorithm has been trained, we

can use it to make new predictions and to estimate the

impact of each independent variable on the dependent

variable (called feature importance). Feature importance is

helpful for making intervention decisions. For instance,

knowing which factors most influence patient death from an

infectious disease can inform vaccination strategies when

vaccine supplies are limited.

Unsupervised Learning

Unsupervised learning algorithms tend to focus on data

exploration—for example, reducing the dimensionality of a

dataset to better visualize it, finding how the data points are

related to each other, or detecting anomalous data points.



In unsupervised learning, there is no dependent variable—

just independent variables. Accordingly, we don’t split the

data into training and testing sets; we just apply

unsupervised methods to all the data. Applications of

unsupervised learning include market segmentation and

ancestry group visualization based on millions of genetic

markers. Examples of unsupervised learning algorithms

include k-means clustering, hierarchical clustering, and

principal component analysis (PCA)—but again, you don’t

need to know any of these topics to read this book.

Unsupervised and supervised learning can be productively

combined. For example, you might use unsupervised

learning to find new questions about the data and use

supervised learning to answer them. You might use

unsupervised learning for dimension reduction as a

preprocessing step to improve the performance of a

supervised learning algorithm.

Matching Algorithms and Other Machine

Learning

Another common application of machine learning involves

matching algorithms, which compute the distance between

points to find similar individuals within a dataset. These

algorithms are commonly used to recommend a product to a

user; they’re also used in data integrity checks to make sure

that sufficient data exists on certain populations before

allowing a machine learning algorithm to create a model.

Data integrity is increasingly important with the rise of

machine learning and artificial intelligence. If important

subgroups within a population aren’t captured well in the

data, the algorithm will bias itself toward the majority

groups. For example, if language recognition systems don’t

have sufficient data from African or Asian language groups,

it’s difficult for the system to learn human speech sounds



unique to those language groups, such as Khoisan clicks or

Mandarin tones. Matching algorithms are also used to try to

tease out cause and effect from empirical evidence when a

randomized controlled trial is not possible because they

allow us to pair up similar participants as though they had

been assigned to a treatment group and a placebo group.

We could mention many other types of algorithms, and, in

practice, there tends to be overlap between algorithm

categories. For instance, YouTube’s recommendation

algorithm uses deep learning (which involves machine

learning based on neural networks with multiple “hidden

layers”) in both a supervised and an unsupervised way, as

well as matching algorithms and another pillar of machine

learning called reinforcement learning (where algorithms

develop strategies on their own by exploring a real or

simulated environment—beyond the reach of this book).

However, the basic road map to machine learning provided

earlier will guide us throughout this book.

Next, let’s take a closer look at the format of the data

these algorithms are expecting.

Structured Data

Machine learning algorithms, and data science and

statistical methods more generally, typically operate on

structured data (also called tabular data), which means a

spreadsheet-type object (a data frame or matrix) in which

the columns are the variables and the rows are the data

points (also called instances or observations). These are

usually stored in a relational database along with other

structured data. The tabular structure is what allows us to

talk about independent variables, dependent variables, and

data points. A big focus of this book is how to deal with data

that doesn’t come presented in this nice format. But even



with tabular data, a geometric perspective can be quite

useful.

To start, let’s dive into an example that will show how

geometry can help us better understand and work with

categorical variables in structured data.

The Geometry of Dummy Variables

Figure 1-2 shows part of a spreadsheet stored as a Microsoft

Excel workbook. The last column here is Outcome, so we

view that as the dependent variable; the other three

columns are the independent variables. If we used this data

for a supervised learning algorithm, it would be a regression

task (since the dependent variable is numerical). The first

independent variable is binary numerical (taking values 0

and 1), the second independent variable is discrete

numerical (taking whole-number values), and the third

independent variable is categorical (with three categories of

gender). Some algorithms accept categorical variables,

whereas others require all variables to be numerical. Unless

the categories are ordered (such as survey data with values

such as “very dissatisfied,” “dissatisfied,” “satisfied,” and

“very satisfied”), the way to convert a categorical variable

to numerical is to replace it with a collection of binary

dummy variables, which encode each category in a yes/no

format represented by the values 1 and 0. In Figure 1-3,

we’ve replaced the gender variable column with two dummy

variable columns.



Figure 1-2: An example of structured data in a Microsoft Excel workbook

Even for such a common and simple process as this,

geometric considerations help illuminate what is going on. If

the values of a categorical variable are ordered, then we

can convert them to a single numerical variable by placing

the values along a one-dimensional axis in a way that

reflects the order of these values. For example, the survey

values “satisfied,” “very satisfied,” and “extremely

satisfied” could be coded as 1, 2, and 3, or if you wanted

the difference between “satisfied” and “very satisfied” to be

smaller than the difference between “very satisfied” and

“extremely satisfied,” then you could code these as, say, 1,

2, and 4.



Figure 1-3: A transformed, structured dataset in which the categorical variable

has been replaced with two binary dummy variables

If the categories are not ordered—such as Male, Female,

and Non-Binary—we wouldn’t want to force them all into

one dimension because that would artificially impose an

order on them and would make some of them closer than

others (see Figure 1-4).

Figure 1-4: Placing the values of a categorical variable in a single dimension

makes some of them closer than others.



Geometrically, we are creating new axes for the different

categories when we create dummy variables. There are two

ways of doing this. Sometimes, you’ll see people use one

dummy variable for each value of the categorical variable,

whereas at other times you’ll see people use dummy

variables for all but one of the values (as we did in Figure 1-

3). To understand the difference, let’s take a look at our

three-category gender variable.

Using three dummy variables places the categories as the

vertices of an equilateral triangle: Male has coordinates

(1,0,0), Female has coordinates (0,1,0), and Non-Binary has

coordinates (0,0,1). This ensures the categories are all at

the same distance from each other. Using only two dummy

variables means Male has coordinates (1,0), Female has

coordinates (0,1), and Non-Binary has coordinates (0,0).

This projects our equilateral triangle in three-dimensional

space down to a right triangle in the two-dimensional plane,

and in doing so it distorts the distances. Male and Female

are now closer to Non-Binary than they are to each other,

because they are separated by the length √2 ≈ 1.4

hypotenuse in this isosceles right triangle with side lengths

1 (see Figure 1-5). Consequently, some machine learning

algorithms would mistakenly believe the categories Male

and Female are more similar to the category Non-Binary

than they are to each other.



Figure 1-5: Two approaches to creating gender dummy variables. On the left, we

have one axis for each category, which ensures the categories are equidistant.

On the right, we use only two axes, which causes some categories to be closer

than others.

So why are both dummy variable methods used? Using n

dummy variables for an n-value categorical variable rather

than n – 1 leads to multicollinearity, which in statistical

language is a correlation among the independent variables.

The correlation here is that each of the dummy variables is

completely and linearly determined by the others.

Algebraically, this is a linear dependence, which means one

column is a linear combination of the other columns. This

linear dependence can be seen geometrically: when placing

the n categories in n-dimensional space, they span an (n –

1)-dimensional plane only. In Figure 1-5, linear combinations

of the three vectors on the left span only the plane

containing the triangle, whereas on the right the linear

combinations span the full two-dimensional coordinate

system.

Multicollinearity causes computational problems for linear

and logistic regression, so for those algorithms, we should

use n – 1 dummy variables rather than all n. Even for

methods that don’t run into this specific computational

issue, using fewer independent variables when possible is

generally better because this helps reduce the curse of

dimensionality—a fundamental topic in data science that

we’ll visit from a geometric perspective shortly.



On the other hand, for algorithms like k-NN, where

distances between data points are crucial, we don’t want to

drop one of the dummy variables, as that would skew the

distances (as we saw in Figure 1-5) and lead to subpar

performance. There is a time and a place for both dummy

variable methods, and thinking geometrically can help us

decide which to use when.

After using dummy variables to convert all categorical

variables to numerical variables, we are ready to consider

the geometry of the spreadsheet.

The Geometry of Numerical Spreadsheets

We can think of a numerical spreadsheet as describing a

collection of points (one for each row) in a Euclidean vector

space, Rd, which is a geometric space that looks like a flat

piece of paper in two dimensions and a solid brick in three

dimensions but extends infinitely in all directions and can be

any dimension. Here, d is the number of columns, which is

also the dimension of the space. Each column in the

numerical dataset represents an axis in this space.

Concretely, the d-dimensional coordinates of each data

point are simply the values in that row.

When d = 1, this Euclidean vector space Rd is a line.

When d = 2, it is a plane. When d = 3, it is the usual three-

dimensional space we are used to thinking in. While humans

can’t really visualize more than three perpendicular axes,

higher-dimensional geometry can be analyzed with

mathematical and computational tools regardless. It is

important to recognize here that just as there are many two-

dimensional shapes beyond a flat plane (for instance, the

surface of a sphere or of a donut, or even stranger ones like

a Möbius strip), there are many three-dimensional

geometric spaces beyond the familiar Euclidean space (such

as the inside of a sphere in three dimensions or the surface



of a sphere in four dimensions). This holds for higher-

dimensional spaces as well. Working with structured data

has traditionally meant viewing the data from the

perspective of Rd rather than any of these other kinds of

geometric spaces.

The Euclidean vector space structure of Rd is powerful; it

allows us to compute all kinds of useful things. We can

compute the distance between any pair of data points,

which is necessary for a wide range of machine learning

algorithms. We can compute the line segment connecting

any two points, which is used by the Synthetic Minority

Oversampling Technique (SMOTE) to adjust training samples

with imbalanced classes. We can compute the mean of each

coordinate in the data, which is helpful for imputing missing

values (that is, filling in missing values with best guesses for

the true value based on known data).

However, this nice Euclidean vector space structure is also

specific and rigid. Thankfully, we can compute distances

between points, shortest paths connecting points, and

various forms of interpolation in much more general settings

where we don’t have global Euclidean coordinates, including

manifolds (geometric objects like spheres that when

zoomed in look like the usual Euclidean space but globally

can have much more interesting shape and structure—to

come in Chapter 5) and networks (relational structures

formally introduced in Chapter 2).

As a concrete example, suppose you are working with

large-scale geospatial data, such as ZIP code–based crime

statistics. How do you cluster data points or make any kind

of predictive model? The most straightforward approach is

to use latitude and longitude as variables to convey the

geospatial aspect of the data. But problems quickly arise

because this approach projects the round Earth down to a

flat plane in a way that distorts the distances quite



significantly. For instance, longitude ranges from –180° to

+180°, so two points on opposite sides of the prime

meridian could be very close to each other in terms of miles

but extremely far from each other in terms of longitudes

(see Figure 1-6). It’s helpful to have machine learning

algorithms that can work on spherical data without the need

to map data onto a flat surface.

Figure 1-6: Using latitude and longitude (left) as variables for geospatial data

distorts distances between data points. Shown here, very near points on

opposite sides of the prime meridian are represented by very far points in the

longitude-latitude plane (right).

Even when you are working with data that is already

structured as a tabular spreadsheet, there might be hidden

geometry that is relevant. For example, imagine you have

three numerical variables (so that your data lives in R3) but

all your data points live on or near the surface of a sphere in

this three-dimensional space. Would you want to consider

distances between points as the path lengths along the

sphere’s surface (which is what is done in spherical

geometry) or straight-line distances that cut through the

sphere (which is what is done with traditional Euclidean

machine learning)? The answer depends on the context and

is something that data scientists must decide based on

domain knowledge—it is not typically something that an

algorithm should decide on its own. For example, if your

data points represent locations in a room that an aerial

drone could visit, then Euclidean distance is better; if your

data points represent airports across the globe that an



international airline services, then spherical geometry is

better.

One of the main tasks of topological and geometric data

science is discovering the geometric objects on which your

data points naturally live (like the sphere in the airport

example, but perhaps very complex shapes in high

dimensions). The other main task is exploiting these

geometric objects, which usually involves one or more of the

following:

Applying versions of the usual machine learning algorithms

that have been adapted to more general geometric settings

Applying new geometrically powered algorithms that are

based on the shape of data

Providing meaningful global coordinates to transform your

data into a structured spreadsheet in a way that traditional

statistical and machine learning tools can be successfully

applied

The main goal of this book is to carefully go through all

these ideas and show you how to implement them easily

and effectively. But first, in the remainder of this

introductory chapter, we’ll explain some of the geometry

involved in a few traditional data science topics (like we did

earlier with dummy variables). We’ll also hint at the

geometry involved in a few different types of “unstructured”

data, as a preview of what’s to come later in the book.

The Geometry of Supervised Learning

In this section, we’ll provide a geometric view of a few

standard machine learning topics: classification, regression,

overfitting, and the curse of dimensionality.

Classification



Once a dataset has been converted to a numerical

spreadsheet (with d columns, let’s say), the job of a

supervised classifier is to label the predicted class of each

new input data point. This can be viewed in terms of

decision boundaries, which means we carve up the space Rd

into nonoverlapping regions and assign a class to each

region, indicating the label that the classifier will predict for

all points in the region. (Note that the same class can be

assigned to multiple regions.) The type of geometric shapes

that are allowed for the regions is determined by the choice

of supervised classifier method, while the particular details

of these shapes are learned from the data in the training

process. This provides an illuminating geometric window

into the classification process.

In Figure 1-7, we see decision boundaries for a few

standard classification algorithms in a simple binary

classification example when d = 2.

Figure 1-7: The decision boundaries in two dimensions for a few classification

algorithms



Logistic regression produces linear decision boundaries.

(Though, by adding higher-order terms to the model, you

can achieve nonlinear decision boundaries.) Decision trees

are built by splitting the independent variables with

individual inequalities, which results in decision boundaries

made up of horizontal and vertical line segments. In higher

dimensions, instead of horizontal and vertical lines, we have

planes that are aligned with the coordinate axes. Random

forests, which are ensembles of decision trees, still produce

decision boundaries of this form, but they tend to involve

many more pieces, producing curved-looking shapes that

are really made out of lots of small horizontal and vertical

segments. The k-NN classifiers produce polygonal decision

boundaries since they carve up the space based on which of

the finitely many training data points are closest. Neural

networks can produce complex, curving decision

boundaries; this high level of flexibility is both a blessing

and a curse because it can lead to overfitting if you’re not

careful (we’ll discuss overfitting shortly).

Studying the decision boundaries produced by different

classifier algorithms can help you better understand how

each algorithm works; it can also help you choose which

algorithm to use based on how your data looks (for higher-

dimensional data, where d > 2, you can get two-

dimensional snapshots of the data by plotting different pairs

of variables). Just remember that there are many choices

involved—which variables to use, whether to include higher-

order terms, what values to set for the hyperparameters,

and so on—and all of these choices influence the types of

decision boundaries that are possible. Whenever you

encounter a classification algorithm that you aren’t familiar

with yet, one of the best ways to develop an intuition for it

is to plot the decision boundaries it produces and see how

they vary as you adjust the hyperparameters.



Regression

Supervised regression can also be viewed geometrically,

though it is a little harder to visualize. Rather than carving

up space into finitely many regions based on the class

predictions, regression algorithms assign a numerical value

to each point in the space; when d = 2, this can be plotted

as a heatmap or a three-dimensional surface. Figure 1-8

shows an example of this, where we first create 10 random

points with random dependent variable values (shown in the

top plot with the circle size indicating the value), then we 3D

scatterplot the predicted values for a dense grid of points,

and finally we shade according to height when using k-NN

with k = 3 (bottom left) and a random forest (bottom right).



Figure 1-8: The training data with dependent variable values indicated by circle

size (top plot), and the three-dimensional prediction surfaces for two nonlinear

regression algorithms: 3-NN (bottom left) and random forest (bottom right)

The prediction surface for linear regression (not shown

here) is one large, slanted plane, whereas for the two

methods illustrated here the surface is a collection of finitely



many flat regions for which the prediction value remains

constant. Notice that these regions are polygons for k-NN

and rectangles for the random forest; this will always be the

case. Also, for the particular choice of hyperparameters

used in this example, the regions here are smaller for the

random forest than for k-NN. Put another way, the random

forest here slices up the data space with surgical precision

compared to the k-NN algorithm; the latter is more like

carving a pumpkin with a butcher’s knife. But this will not

always be the case—this comparison of coarseness depends

on the number of trees used in the random forest and the

number of neighbors used in k-NN. Importantly, a finer

partition for regression is like a more flexible decision

boundary for classification: it often looks good on the

training data but then generalizes poorly to new data. This

brings us to our next topic.

Overfitting

Let’s return to the decision boundary plots in Figure 1-7. At

first glance, it would seem that the more flexible the

boundaries are, the better the algorithm performs. This is

true when considering the training data, but what really

matters is how well algorithms perform on test data. A well-

known issue in predictive analytics is overfitting, which is

when a predictive algorithm is so flexible that it learns the

particular details of the training data and, in doing so, will

actually end up performing worse on new unseen data.

In Figure 1-7, the logistic regression algorithm

misclassifies the leftmost circle, whereas the decision tree

creates a long sliver-shaped region to correctly classify that

single point. If circles tend to fall on the left and pluses on

the right, then it’s quite likely that creating this sliver region

will hurt the classification performance overall when it is

used on new data—and if so, this is an example of the

decision tree overfitting the training data.



In general, as a predictive algorithm’s flexibility increases,

the training error tends to keep decreasing until it

eventually stabilizes, whereas the test error tends to

decrease at first and then reaches a minimum and then

increases (see Figure 1-9). We want the bottom of the test

error curve: that’s the best predictive performance we’re

able to achieve. It occurs when the algorithm is flexible

enough to fit the true shape of the data distribution but rigid

enough that it doesn’t learn spurious details specific to the

training data.

Figure 1-9: A plot of training error versus test error as a function of a predictive

algorithm’s flexibility, illustrating the concept of overfitting

The general behavior illustrated in Figure 1-9 often occurs

when varying hyperparameters: the classifier decision

boundaries become more flexible as the number of neurons

in a neural network increases, as the number of neighbors k

in k-NN decreases, as the number of branches in a decision

tree increases, and so on.

The Curse of Dimensionality

Sometimes, it helps to think of the x-axis in Figure 1-9 as

indicating complexity rather than flexibility. More flexible

algorithms tend to be more complex, and vice versa. One of



the simplest yet most important measures of the complexity

of an algorithm is the number of independent variables it

uses. This is also called the dimensionality of the data. If the

number of independent variables is d, then we can think of

the algorithm as inputting points in a d-dimensional

Euclidean vector space Rd. For a fixed number of data

points, using too few independent variables tends to cause

underfitting, whereas using too many tends to cause

overfitting. Thus, Figure 1-9 can also be interpreted as

showing what happens to a predictive algorithm’s error

scores as the dimensionality of the data increases without

increasing the size of the dataset.

This eventual increase in test error as dimensionality

increases is an instance of a general phenomenon known as

the curse of dimensionality. When dealing with structured

data where the number of columns is large relative to the

number of rows (a common situation in genomics, among

other areas), overfitting is likely for predictive algorithms,

and the numerical linear algebra driving many machine

learning methods breaks down. This is an enormous

problem, and many techniques have been developed to

help counteract it—some of which will come up later in this

book. For now, let’s see how geometry can shed some light

on the curse of dimensionality.

One way to understand the curse of dimensionality is to

think of Euclidean distances, meaning straight-line distance

as the bird flies in however many dimensions exist. Imagine

two pairs of points drawn on a square sheet of paper, where

the points in one pair are near each other and the points in

the other pair are far from each other, as in Figure 1-10.



Figure 1-10: A plot of two pairs of points in a two-dimensional space

Let’s perturb these points a bit by adding some Gaussian

noise; that is, we’ll draw four vectors from a bivariate

normal distribution and add these to the coordinates of the

four points. Doing this moves the points slightly in random

directions. Let’s do this many times, and each time we’ll

record the Euclidean distance between the left pair after

perturbation and also between the right pair. If the

perturbation is large enough, we might occasionally end up

with the points on the left farther from each other than the

points on the right, but, overall, the Euclidean distances for

the left perturbations will be smaller than those for the right

perturbations, as we see in the histogram in Figure 1-11.



Figure 1-11: A histogram of the Euclidean distances after random small

perturbations for the nearby points on the left side of Figure 1-10 (shown in light

gray) and the faraway points on the right side of that figure (shown in dark gray)

Next, let’s embed our square sheet of paper as a two-

dimensional plane inside a higher-dimensional Euclidean

space Rd and then repeat this experiment of perturbing the

points and computing Euclidean distances. In higher

dimensions, these perturbations take place in more

directions. Concretely, you can think of this as padding the x

and y coordinates for our points with d-2 zeros and then

adding a small amount of noise to each of the d coordinates.

Figure 1-12 shows the resulting histograms of Euclidean

distances when doing this process for d = 10 and d = 100.



Figure 1-12: Histograms of Euclidean distances as in Figure 1-11, except after

embedding in d = 10 dimensions (left) and d = 100 dimensions (right)

We see that as the dimension d increases, the two

distributions come together and overlap more and more.

Consequently, when there is noise involved (as there always

is in the real world), adding extra dimensions destroys our

ability to discern between the close pair of points and the

far pair. Put another way, the signal in your data will

become increasingly lost to the noise as the dimensionality

of your data increases, unless you are certain that these

additional dimensions contain additional signal. This is a

pretty remarkable insight that we see revealed here through

relatively simple Euclidean geometry!

We can also use perturbations to see why large

dimensionality can lead to overfitting. In Figure 1-13, on the

left, we see four points in the plane R2 labeled by two

classes in a configuration that is not linearly separable

(meaning a logistic regression classifier without higher-order

terms won’t be able to correctly class all these points).



Figure 1-13: Two classes of data points that are not linearly separable in two

dimensions (left) but are linearly separable after placing them in three

dimensions (right) and perturbing them there

Even if we perturb the points with a small amount of

noise, there will be no line separating the two classes. On

the right side of this figure, we have embedded these points

in R3 simply by adding a third coordinate to each point that

is equal to a constant. (Geometrically, this means we lay the

original R2 down flat above the xy-plane in this three-

dimensional space.) We then perturb the points a small

amount. After this particular perturbation in three

dimensions, we see that the two classes do become linearly

separable, meaning a logistic regression classifier will be

able to achieve 100 percent accuracy here. (In the figure,

we have sketched a slanted plane that separates the two

classes.)

At first glance, this additional flexibility seems like a good

thing (and sometimes it can be!) since it allowed us to

increase our training accuracy. But notice that our classifier

in three dimensions didn’t learn a meaningful way to

separate the classes in a way likely to generalize on new,

unseen data. It really just learned the vertical noise from

one particular perturbation. In other words, increasing the



dimensionality of data tends to increase the likelihood that

classifiers will fit noise in the training data, and this is a

recipe for overfitting.

There is also a geometric perspective of the

computational challenges caused by the curse of

dimensionality. Imagine a square with a length of 10 units

on both sides, giving an area of 100 units. If we add another

axis, we’ll get a volume of 1,000 units. Add another, and

we’ll have a four-dimensional cube with a four-dimensional

volume of 10,000 units. This means data becomes more

spread out—sparser—as the dimensionality increases. If we

take a relatively dense dataset with 100 points in a low-

dimensional space and place it in a space with 1,000

dimensions, then there will be a lot of the space that isn’t

near any of those 100 points. Someone wandering about in

that space looking for points may not find one without a lot

of effort. If there’s a finite time frame for the person to look,

they might not find a point within that time frame. Simply

put, computations are harder in higher dimensions because

there are more coordinates to keep track of and data points

are harder to find.

In the following chapters, we’ll look at a few different ways

to wrangle high-dimensional data through geometry,

including ways to reduce the data’s dimensionality, create

algorithms that model the data geometry explicitly to fit

models, and calculate distances in ways that work better

than Euclidean distance in high-dimensional spaces. The

branch of machine learning algorithms designed to handle

high-dimensional data is still growing thanks to subjects like

genomics and proteomics, where datasets typically have

millions or billions of independent variables. It is said that

necessity is the mother of invention, and indeed many

machine learning methods have been invented out of the

necessity of dealing with high-dimensional real-world

datasets.



Unstructured Data

Most of the data that exists today does not naturally live in

a spreadsheet format. Examples include text data, network

data, image data, and even video or sound clip data. Each

of these formats comes with its own geometry and analytic

challenges. Let’s start exploring some of these types of

unstructured data and see how geometry can help us

understand and model the data.

Network Data

In the next chapter, you’ll get the official definitions related

to networks, but you might already have a sense of

networks from dealing with social media. Facebook

friendships form an undirected network (nodes as Facebook

users and edges as friendships among them), and Twitter

accounts form a directed network (directional edges

because you have both followers and accounts you follow).

There is nothing inherently Euclidean or spreadsheet

structured about network data. In recent years, deep

learning has been extended from the usual Euclidean

spreadsheet setting to something much more general called

Riemannian manifolds (which we’ll get to in Chapter 5); the

main application of this generalization (called geometric

deep learning) has been network data, especially for social

media analytics.

For instance, Facebook uses geometric deep learning

algorithms to automatically detect fake “bot” accounts. In

addition to looking at traditional structured data associated

with each account such as demographics and number of

friends, these detection algorithms use the rich non-

Euclidean geometry of each account’s network of friends.

Intuitively speaking, it’s easy to create fake accounts that

have realistic-looking interests and numbers of friends, but

it’s hard to do this in a way such that these accounts’



friendship networks are structured similarly to the organic

friendship networks formed by real people. Network

geometry provides ways of measuring this notion of

“similarity.”

Geometric deep learning has also been used to detect

fake news on Twitter by transforming the detailed

propagation patterns of stories through the network into

independent variables for a supervised learning algorithm.

We won’t get to geometric deep learning in this book, but

there is still plenty to do and say when it comes to working

with network data. For example, we can use geometric

properties of a network to extract numerical variables that

bring network data back into the familiar territory of

structured data.

Image Data

Another form of “unstructured” data that actually has a rich

geometric structure is image data. You can think of each

pixel in an image as a numerical variable if the image is

grayscale or as three variables if it is color (red, green, and

blue values). We can then try to use these variables to

cluster images with an unsupervised algorithm or classify

them with a supervised algorithm. But the problem when

doing this is that there is no spatial awareness. A pair of

adjacent pixels is treated the same as a pair of pixels on

opposite sides of the image. A large branch of deep

learning, called convolutional neural networks (CNNs), has

been developed to bring spatial awareness into the picture.

CNNs create new variables from the pixel values by sliding

small windows around the image. Success in this realm is

largely what brought widespread public acclaim to deep

learning, as CNNs smashed all the previous records in image

recognition and classification tasks.



Let’s consider a simple case of two images that could be

included in a larger animal classification dataset used in

conservation efforts (see Figure 1-14).

Figure 1-14: An elephant (left) and a lioness (right) at Kruger National Park

The animals are shown in natural environments where

leaves, branches, and lighting vary. They have different

resolutions. The colors of each animal vary. The extant

shapes related to both the animals and the other stuff near

the animals differ. Manually deriving meaningful

independent variables to classify these images would be

difficult. Thankfully, CNNs are built to handle such image

data and to automatically create useful independent

variables.

The basic idea is to consider each image as a

mathematical surface (see Figure 1-15) and then walk

across this surface creating a map of its salient features—

peaks, valleys, and other relevant geometric occurrences.

The next layer in the CNN walks across this map and creates

a map of its salient features, which is then fed to the next

layer, and so on. In the end, the CNN converts each image



to a sequence of maps that hierarchically encode the

image’s content, with the final layer being the map that is

actually used for classification. For these animal images, the

first map might identify high-contrast regions in the image.

The next map might assemble these regions into outlines of

shapes. The following map might indicate which of these

shapes are animals. Another layer might locate specific

anatomical features within the animals—and these

anatomical features could then form the basis for the final

species classification.

The precise way the CNN builds these maps is learned

internally through the supervised training process: as the

algorithm is fed labeled data, connections between neurons

in each layer forge, break, and forge again until the final

layer is as helpful as possible for the classification task.

We’ll further explore CNNs and their quantum versions in Ch

apter 10.



Figure 1-15: The head of the lioness in Figure 1-14, viewed geometrically as a 3D

mathematical surface

Using methods from computational geometry to quantify

peaks and valleys has applications beyond image

recognition and classification. A scientist might want to

understand the dynamic process or structure of a scientific

phenomenon, such as the flow of water or light on an object.



The peaks, valleys, and contours of the object impact how

light will scatter when it hits the object, and they’ll also

determine how liquids would flow down the object. We’ll

cover how to mine data for relevant peaks, valleys, and

contours later in this book.

Text Data

Another form of “unstructured” data that has risen to

prominence in recent years is text data. Here, the structure

that comes with the data is not spatial like it is for images;

it’s linguistic. State-of-the-art text processing (for instance,

used by Google to process search phrases or by Facebook

and Twitter to detect posts that violate platform policies)

harnesses deep learning to create something called vector

embeddings, which translate text into Rd, where each word

or sentence is represented as a point in a Euclidean vector

space. The coordinates of each word or sentence are

learned from data by reading vast amounts of text, and the

deep learning algorithm chooses them in a way that in

essence translates linguistic meaning into geometric

meaning. We’ll explore deep learning text embeddings in Ch

apter 9.

For example, we might want to visualize different sets of

variables concerning text documents. Because the variables

form a high-dimensional space, we can’t plot them in a way

that humans can visualize. In later chapters, we’ll learn

about geometric ways to map high-dimensional data into

lower-dimensional spaces such that the data can be

visualized easily in a plot. We can decorate these plots with

colors or different shapes based on the document type or

other relevant document properties. If similar documents

cluster together in these plots, it’s likely that some of the

variables involved will help us distinguish between

documents. New documents with unknown properties but

measured values for these variables can then be grouped by



a classification algorithm. We’ll explore this further in Chapt

er 9.

Summary

This chapter provided a brief review of the main concepts of

traditional machine learning, but it put a geometric spin on

these concepts that will likely be new for most readers.

Woven into this review was a discussion of what it means for

data to be structured. The main takeaway is that essentially

all data has meaningful structure, but this structure is often

of a geometric nature, and geometric tools are needed to

put the data into a more traditional spreadsheet format.

This is a theme we’ll develop in much more depth

throughout the book. This chapter also hinted at some of

the important geometry hidden in spreadsheet data. One of

the main goals of the book is to show how to use this hidden

geometry to improve the performance of machine learning

algorithms.

We’ll start in Chapters 2 and 3 by diving into algorithms

designed for analyzing network data, including social and

geographic networks. This includes local and global metrics

to understand network structure and the role of individuals

in the network, clustering methods developed for use on

network data, link prediction algorithms to suggest new

edges in a network, and tools for understanding how

processes or epidemics spread through networks.



2 

THE GEOMETRIC STRUCTURE OF

NETWORKS

Networks, which we briefly

encountered in Chapter 1,

play an increasingly large

role in our lives;

accordingly, network data

plays an increasingly large

role in data science. How do we measure

the influence of a user on social media? Or

judge the robustness of a computer

network against hackers? Or identify

people who bridge different social groups?

These are all questions about the

geometric structure of networks, and they

are all examples of concepts we will

explore in this chapter.

We’ll begin this chapter with a brief motivational section

arguing why network data is an important topic in modern

data science that greatly benefits from geometric reasoning.

We’ll then introduce the basic concepts and definitions in

network theory, which is rooted in the mathematical



language of graph theory. The bulk of the chapter will be a

guided tour of various quantities associated to networks and

their vertices. We’ll conclude with a quick look at a few

different types of random networks that have been studied

extensively in the literature and are easy to generate in the

language R.

Introduction to Network Science

Network science, which studies entities through their

relationships with each other, is an important

interdisciplinary subject that has gained momentum in data

science since the rise of social networks. As we saw in Chapt

er 1, network data is “unstructured” in the usual sense of

the term, but it is highly structured in other ways.

Mathematically, networks are rooted in a subject called

graph theory, which distills entities and relationships down

to their abstract essence. Networks are geometrically rich,

but their geometry is different from the usual Euclidean

geometry of angles and straight lines. To extract insights

from networks, we must leave the Euclidean world of

spreadsheets and embrace a more exotic geometry where

spheres look nothing like the round objects we’re used to

seeing.

Let’s consider a social media example. Users on a

platform such as Facebook form a network, and distance can

be defined by the smallest number of friendships connecting

two individuals. This notion of distance underpins several

ways of measuring a user’s centrality in the network, which

we can use to quantify “influencers” in various ways. For

instance, we could count the number of friends directly

connected to a Facebook user’s account, or we could count

how many friends of friends exist. Someone may not have

many immediate connections but may have a large number

of friends who are well connected. In other words, a user



may have a large sphere of influence even if their

immediate circle of friends is small. The geometry of

networks also allows us to detect outliers by measuring how

improbable a user’s network is compared to others; this

helps social media platforms automatically detect

inauthentic accounts.

A fascinating application of network-based outlier

detection arose in a recent state supreme court case on

gerrymandering. A conspicuous map of congressional

districts in Pennsylvania prior to 2018 was widely believed

to be the result of a partisan gerrymander favoring

Republicans, but the court was not convinced until a team of

experts brought in network science. They showed that one

can view a districting map as a network, and by computing

a random walk in the space of map networks to statistically

probe the geometry of these networks, they found that the

Pennsylvania map was several standard deviations away

from the mean. The new map under consideration at the

time was right in the middle of the bell curve of maps. They

concluded that the old map was highly unlikely to have

arisen organically; it was so unusual that it must have been

deliberately engineered by the mapmakers (who were

beholden to current Republicans in office) to increase the

number of seats Republicans would hold. In contrast, the

new map was much more typical (and a fair representation).

The court was convinced by this network analysis and threw

out the old map in 2018 to adopt the new one.

Even in scenarios that do not outwardly appear to be

about networks, there is sometimes a way of viewing data

as network data—and doing so avails one of a rich set of

tools that draw from the remarkable geometry of networks.

This chapter focuses on the geometry of networks and

how it can be used to define a wide collection of metrics

that quantify various aspects of the shape and structure of a



network. In the next chapter, we’ll apply these metrics to

explore machine learning and other forms of data analysis

on network data. Let’s officially begin our journey.

The Basics of Network Theory

A network conveys pairwise relationships between entities,

which can be individuals, objects, items, and so on. The

entities are represented by vertices (also called nodes),

while a relationship between a pair of entities is represented

by an edge connecting the corresponding pair of vertices.

Here are a few examples of entities and relationships that

have been studied as networks: phone calls and text

messages between people, proteins that interact in a

biological pathway, towns connected by roads, websites

connected by page links, parts of the brain activated during

the same task, connections between words or parts of

speech in a language—and that’s just scratching the surface

of popular examples.

When plotting networks, the vertices are depicted as dots

that are sometimes decorated with symbols so we know

which vertex is which; the edges are usually straight-line

segments, although sometimes it is helpful (for instance, to

avoid artificial edge crossings) to draw some edges instead

as curved arcs. All that matters is the collection of vertices

and the edges between them—not how long the edges are

in the plot, the angles between them, or the locations of the

vertices. In fact, as shown in Figure 2-1, the same network

can be drawn in rather different ways.

These have the same vertices and the same edges

connecting the vertices, but the plotting of these

relationships varies. However we visualize the relationships,

their underlying structure does not change.



Figure 2-1: Two different plots of the same network. These have the same

vertices and the same edges connecting vertices, but the plotting of these

relationships varies. However we visualize the relationships, their underlying

structure does not change.

Directed Networks

A network is directed if the edges represent one-way

relationships (meaning they point from one vertex, called

the source, to the other vertex, called the target);

otherwise, the edges represent mutual relationships, and

the network is undirected. For instance, for phone

conversations, we could create an undirected network with

an edge between any two people who have talked to each

other, or we could create a directed network with edges

representing outgoing calls from the source person to the

target person.

Concretely, suppose we have three work colleagues:

Sadako, Pedro, and Georg. Sadako is the project lead and,



as such, makes calls to Pedro and Georg. Pedro calls Georg

regarding a question on the engineering side of the project,

but Georg does not call Pedro or Sadako. Pedro does not call

Sadako, as he has already received instructions when she

calls him. Figure 2-2(a) shows the undirected network for

these colleagues, while Figure 2-2(b) shows the directed

network.

Figure 2-2: A phone network among three colleagues that is (a) undirected and

(b) directed

Other examples of directed networks include travel

routes, machine and social processes, needle sharing to

trace epidemics, and biological process models.

Mathematically speaking, the biggest difference between

Facebook and Twitter is that Facebook is an undirected

network (friendships are mutual), while Twitter is a directed

network (users have both followers and accounts followed).

Networks in R

There are two main ways of representing a network in a

computer. An edge list simply lists, in an arbitrary order, all

the edges in the network by naming the two vertices of



each edge (if the network is directed, then the first vertex is

considered the source and the second vertex the target). A

useful package for working with network data in R is the

igraph library (which also exists in Python with similar

commands and syntax). To create the directed network in Fi

gure 2-2(b) from an edge list, you can use the code in Listin

g 2-1.

library(igraph) 

edges<-rbind(c("Sadako","Pedro"),c("Sadako","Georg"),c("Pedr

o","Georg")) 

g_colleagues<-graph.edge(edges,directed=T)

Listing 2-1: A script that generates the directed network in

Figure 2-2(b) from an edge list

The other representation of a network is a spreadsheet. If

a network has n vertices, its adjacency matrix is the n×n

matrix whose rows and columns are indexed by the vertices

where 0 in the (i, j) entry means there is no edge from

vertex i to vertex j, while 1 in this entry means there is such

an edge. If the network is undirected, then the adjacency

matrix is symmetric (equal to its own transpose, meaning it

is unchanged when swapping its rows with its columns)

because, in that case, having an edge from vertex i to

vertex j is the same as having an edge from vertex j to

vertex i. Listing 2-2 provides the R code to construct the

preceding directed network from an adjacency matrix rather

than an edge list.

library(igraph) 

adjmat<-matrix(c(0,0,0,1,0,0,1,1,0),nrow=3) 

rownames(adjmat)<-c("Sadako","Pedro","Georg") 

colnames(adjmat)<-c("Sadako","Pedro","Georg") 

g_colleagues<-graph_from_adjacency_matrix(adjmat,mode="direct

ed",weighted=T)



Listing 2-2: A script that generates the directed network in

Figure 2-2(b) from an adjacency matrix

A major advantage of the adjacency matrix approach is

that it puts networks into the framework of linear algebra,

where many powerful tools are available. For instance, we

can use the spectral theory (eigenvalues and eigenvectors)

of the adjacency matrix to measure centrality in a network.

Adjacency matrices also readily generalize to weighted

networks; by allowing arbitrary numbers as the entries (not

just the binary 0 and 1 entries discussed so far), we can

assign a real-number weight to each edge that conveys the

strength of the relationship represented by that edge. In

practice, this can be used to represent many different

important notions: volume of calls between colleagues in a

phone network, distances between locations in a

transportation network, and so on. You can think of an

unweighted network as a weighted network in which all the

edges have a weight equal to 1. In fact, this is why in Listing

2-2 we set the weighted parameter to T (true) even though

we wanted to create an unweighted network—otherwise,

igraph interprets the adjacency matrix differently.

Paths and Distance in a Network

Two vertices are said to be neighbors if they are connected

by an edge. Two edges in a network are adjacent if they

have a vertex in common. A path in a network is a sequence

of adjacent edges. If the network is directed, then all the

edges in a path must be compatibly oriented. For example,

in Figure 2-2(b), we have a two-edge path from Sadako to

Pedro to Georg and a one-edge path from Pedro to Georg,

but going from Pedro to Sadako to Georg is not a path since

the edges are not oriented this way.

The length of a path has two different meanings,

depending on whether the network is weighted or



unweighted. In an unweighted network, the length of a path

is the number of edges in the path; in a weighted network,

the length is the sum of the weights of the edges in the

path. The network distance between two vertices is the

length of the minimal-length path connecting them,

assuming there is a path from one to the other (if there is no

path, the network distance is undefined). People—us

included—usually just say “shortest” path instead of

“minimal-length” path, because it sounds more natural. This

is somewhat misleading for weighted networks, as the

minimal-length path is actually the path with the lowest

weight, which may not be the shortest path in terms of the

number of edges in the path. However, that’s a minor

imperfection in terminology we can all live with if we’re

careful.

As an example, let’s consider the weighted undirected

network in Figure 2-3, representing four towns and the

length (in miles) of the roads between them.



Figure 2-3: A plot of town connectivity and miles of road between connected

towns

The shortest path between V2 and V3 is the 8-mile path

passing through V4, rather than the 12-mile road directly

connecting these two towns. The network distance between

V2 and V3 is therefore 8 miles rather than 12. Note that the

physical lengths of the edges and paths in this plot do not in

any way represent the lengths as defined by the weights; in

other words, Euclidean distance in a network plot has

nothing to do with network distance! The placement of the

vertices in a network plotted by igraph is chosen for

aesthetic reasons (to minimize the number of edge

crossings, for instance) rather than to reflect edge weights.

This can be tricky to get used to at first but over time will

start to feel natural. Listing 2-3 provides the R code to

create and plot the network in this example.

#create symmetric matrix of town connections and miles betwee

n each town



towns<-matrix(c(0,0,0,4,0,0,12,2,0,12,0,6,4,2,6,0),nrow=4) 

 

#label the rows and columns so the towns have names 

rownames(towns)<-c("V1","V2","V3","V4") 

colnames(towns)<-c("V1","V2","V3","V4") 

 

#create a weighted undirected network from this adjacency mat

rix 

library(igraph) 

g_towns<-graph_from_adjacency_matrix(towns,mode="undirected",

weighted=T)

 

#plot town graph with edges labeled by weights 

plot(g_towns,edge.label=E(g_towns)$weight,main="Plot of Conne

cted Towns by Road Miles",vertex.color=2,vertex.size=20)

Listing 2-3: A script that generates the network of

connected towns from Figure 2-3 and plots it

Network distances can play a major role in real-world

problems. During the 2018 Ebola outbreak in the eastern

Democratic Republic of the Congo, limited physical routes

between towns impacted epidemic spread, supply-chain

logistics to move medical supplies and personnel, and

population mixing between impacted towns and towns that

didn’t have active cases at the time.

A word of caution about weighted networks: we tend to

think of the vertices that are near each other (defined by

network distance) as being the most closely related or the

most strongly connected. This means that the smaller the

weight of an edge, the stronger the relationship it

represents. For this reason, you’ll often want to use

reciprocals when setting the weights in a network. For

instance, in a weighted phone network, rather than setting

the weight between person A and person B to be the

number of calls cAB between them, you should set it to be

the reciprocal 1/cAB so that people who talk to each other

more frequently will be closer to (rather than farther from)



each other in the weighted network. In Chapter 3, we’ll

revisit the town network from Figure 2-3, and we’ll

reciprocate the weights so that they represent proximity

rather than distance.

To start exploring the geometry established by network

distance, we’ll turn now to some notions of centrality (which

can also be thought of as importance or influence) in a

network. Since we will rely on igraph throughout this

chapter, we will no longer include library(igraph) in the code

snippets; therefore, be sure to load this library before

running any of the following code samples.

Network Centrality Metrics

Measuring the centrality, or importance, of each vertex in a

network allows you to manually analyze the structure and

functional behavior of networks. It is also frequently used for

feature extraction, as centrality metrics provide numerical

features that can be fed into traditional supervised and

unsupervised machine learning algorithms, as we’ll see in C

hapter 3. In other words, centrality metrics provide a way to

equip network data with more conventional spreadsheet

structure. There are many methods for quantifying vertex

centrality, almost all of which involve notions from the

preceding section—paths, network distance, and the

adjacency matrix.

Centrality has many real-world applications. In

epidemiology, individuals who are more central in contact

tracing networks tend to spread disease to more people

than less central individuals. Indeed, central individuals are

typically connected to a wider range of people, and

additionally central individuals often connect groups of

people who otherwise would be unlikely to meet—thereby

providing bridges between these groups across which



disease can spread. In social media, central individuals are

the “influencers” whose opinions are heard by many and

spread widely. In marketing, central individuals can act as

lucrative vectors for advertising campaigns. In criminology,

identifying central individuals in drug distribution or

organized crime networks allows law enforcement agencies

to target their actions most effectively. In scientific research,

centrality in citation networks helps reveal high-impact

publications.

There are more centrality metrics than can be covered in

this chapter, so we’ll focus on a handful of the popular ones

that are implemented in the igraph library.

The Degree of a Vertex

The most basic measure of centrality of a vertex is its

degree, which by definition is the number of edges attached

to the vertex. In a directed network, this can be broken

down into two pieces: the in-degree counts the number of

edges with this vertex as the target vertex, and the out-

degree counts the number of edges with this vertex as the

source vertex. In a Facebook network, your degree is your

number of friends; in Twitter, your in-degree is your number

of followers, and your out-degree is the number of accounts

you follow. Going back to Figure 2-3, towns V2 and V3 each

have degree 2, while V1 has degree 1 and V4 has degree 3.

In a weighted network, you can also measure the strength

(also called the weighted degree) of a vertex, which is the

sum of the weights of the edges attached to the vertex. In Fi

gure 2-3, towns V1, V2, V3, and V4 have strengths 4, 14, 18,

and 12, respectively. Since an unweighted network can be

viewed as a weighted network in which all edges have

weight 1, the vertex degree really is just a special case of

strength.



Despite its simplicity, the degree of a vertex is a valuable

metric. It is the one numerical quantity most social media

platforms publicly list for each account, and it is typically

used to determine how much an influencer is paid in a

marketing campaign to promote a product. However, it has

impactful limitations. The degree of a vertex measures the

size of that vertex’s immediate network of connections, but

it does not capture the structure of this network nor does it

look beyond these immediate connections. To illustrate why

this matters, consider a Twitter user with 10,000 followers,

each of whom has only a small number of followers; now

compare this with a Twitter user who has only a few hundred

followers, but some of these followers are highly influential

users. While the first user has a higher degree, which user’s

tweets are more likely to receive more retweets in the end?

This example hints at how networks involve both breadth

and depth, and degree is more focused on the former.

For another example of what degree does and does not

capture, imagine two individuals in a contact tracing

network. Suppose one user has more contacts (and hence a

higher degree), but those contacts are mostly all connected

to each other anyway, whereas the other individual has

fewer contacts, but the contacts are spread across multiple

communities that otherwise have almost no interaction.

(We’ll see a concrete example of this situation later in this

chapter.) Which individual poses a greater epidemiological

risk during an outbreak?

These two limitations of degree—ignoring network depth

and ignoring community-bridging properties—are two of the

main reasons that we must push deeper into the geometry

of networks. So, let’s take a brief march through the zoo of

vertex centrality measures that go beyond degree.

The Closeness of a Vertex



How does one determine whether a vertex is located near

the center of a network or whether it’s near the periphery?

The closeness of a vertex, defined as the reciprocal of the

sum of network distances between this vertex and each

other vertex in the network, is designed to capture this

distinction. A vertex that is near the center of the network

will have a relatively modest distance to the other vertices

in the network, but a more peripheral vertex will have a

modest distance to some vertices but a large distance to

the vertices on the “opposite” side of the network. This

means the sum of distances for a central vertex is smaller

than the sum of distances for a peripheral vertex;

reciprocating this sum flips this around so that the closeness

score is greater for a central vertex than for a peripheral

vertex.

In Figure 2-3, you might intuitively guess that V4 is the

most central, V2 and V3 are moderately central, and V1 is

the most peripheral. Indeed, if we ignore the edge weights

and compute the closeness scores as an unweighted

network, we get 0.20, 0.25, 0.25, and 0.33 for V1, V2, V3,

and V4, respectively. For instance, the closeness of V2 is

1/(1 + 1 + 2). When using the edge weights, we get

closeness scores of 0.05, 0.06, 0.04, and 0.08, so V4 is still

the most central, but now V3 is the most peripheral; this is

because the edge weights make V3 have a relatively large

network distance from the other vertices.

The Betweenness of a Vertex

The betweenness of a vertex measures centrality by

computing how many paths in the network pass through the

vertex; more precisely, it is the sum over all pairs of other

vertices in the network of the fraction of shortest paths

between the pair of vertices that pass through the vertex in

question. When considering Figure 2-3 as an unweighted

network, the betweenness of V1 is 0 because no shortest



paths between the remaining vertices pass through V1. The

same is true of V2 and V3. The betweenness of V4,

however, is 2 = 1 + 1 + 0, as there is one shortest path

between V1 and V2 that passes through V4, there is one

shortest path between V1 and V3 that passes through V4,

and the shortest path between V2 and V3 does not pass

through V4.

In Figure 2-4, each vertex has a betweenness score of 0.5.

For instance, for V1 the one-edge path between V2 and V4

does not pass through V1, the one-edge path between V3

and V4 does not pass through V1, and between V2 and V3

there are two shortest paths, one of which passes through

V1, combining to give a betweenness score of 0 + 0 + 1/2.

Figure 2-4: A network with four vertices connecting as a square

If you think of a network as encoding the ways that

something (materials, information, disease, traffic, and so

on) can travel between entities, then shortest paths are the



most efficient travel routes. Betweenness centrality

measures how disruptive removing a vertex would be to

these routes. For example, in a shipping distribution

network, the betweenness of a vertex indicates the number

of shipping routes that would be impacted if a particular

distribution center is shut down (not counting routes

originating or terminating at that distribution center),

weighted by the extent of this impact. In Figure 2-3 (viewed

as an unweighted network), removing V1 does not affect the

shipping routes among the other cities (betweenness score

of 0), but removing V4 completely takes away two shipping

routes (betweenness score of 2). In Figure 2-4, removing V1

impacts transportation between V2 and V3, but it takes out

only half of the shipping routes between them (betweenness

score of 0.5). Betweenness centrality’s use in estimating

disruptive potential has found many practical applications;

for instance, it identifies important servers to protect in a

computer network (or which ones would be most effective to

target in an adversarial attack!).

While closeness and betweenness measure rather

different aspects of the centrality of a vertex, they are both

based on shortest paths in the network. Shortest paths

between points have a special name in geometry,

geodesics, and we’ll return to them in much more generality

in Chapters 4, 5, and 6.

All the remaining centrality measures that we’ll cover in

this section are based on the adjacency matrix, and they

can be thought of as variants of the famous PageRank

algorithm that Google initially used (and still uses in some

capacity) to rank search results by estimating importance in

the directed network whose vertices are websites and

whose edges are links. The math involved in these next

centrality measures is heavier, but we’ll try to highlight the

main ideas and big picture. Practically speaking, it is far

more important to develop an intuition for what these



centrality scores convey than to understand the details of

their computation.

Eigenvector Centrality

Adjacency matrix-based centrality measures aim to capture

the basic idea that the importance of a vertex is determined

by the importance of the vertices to which it is connected.

This is where the notion of network depth alluded to earlier

comes in. On social media, for instance, it isn’t just your

number of followers that matters, it is the number of

followers your followers have, the number of followers they

have, and so on.

Let’s make this idea precise. Suppose we want to assign

an importance score xi to each vertex i. A simple model is to

assume that the importance of each vertex is proportional

to a weighted sum of the importances of the neighboring

vertices:

xi = c∑aijxj

where the sum is over vertices j that are neighbors to vertex

i, aij is the weight of the edge between vertex i and vertex j,

and c is a constant of proportionality that we’ll assume is

independent of i. This formula can be expressed as the

matrix equation:

x ⃗= cAx⃗

where A is the adjacency matrix of the network. You might

recall from linear algebra that this equation stipulates that

the vector of vertex importances x ⃗is an eigenvector for the

adjacency matrix, and 1/c is the corresponding eigenvalue.

When viewing a matrix as a linear transformation, the

eigenvectors are the directions that get stretched but not



rotated, and the eigenvalues measure how much these

directions are stretched.

Matrices typically have many different eigenvectors and

eigenvalues, and the eigenvalues need not be real numbers,

so at first glance there could be many different solutions to

the preceding vertex assignment problem—some of which

may involve complex values. Fortunately, however, if we

disallow negative edge weights and importance scores, then

something called the Perron–Frobenius theorem guarantees

that we can find a unique real-valued solution to this vertex

assignment problem. In other words, with this non-

negativity condition there is always exactly one way of

assigning importance scores to all the vertices in the

network that satisfy all of our linear neighbor influence

conditions. Well, almost: to get uniqueness, we need to

normalize the importance scores (for instance, by scaling so

that the largest importance score of any vertex in the

network is 1). Doing this yields the eigenvector centrality

scores for vertices.

In Figure 2-3, the eigenvector centrality scores (rounded

to the nearest one-hundredth) for V1, V2, V3, and V4, when

viewed as an unweighted network, are 0.46, 0.85, 0.85, and

1, respectively. This matches our intuition that V4 is the

most central and V1 is the least central. When computed as

a weighted network, using the edge weights shown in that

figure, the scores are instead 0.16, 0.91, 1, and 0.59. So, in

the weighted network, V1 is still the least central, but the

most central is V3.

The main point of eigenvector centrality is that it is higher

for vertices that neighbor vertices with higher eigenvector

centrality scores. In social network terms, this means your

importance is determined by the importance of your friends.

We can interpret eigenvector centrality more precisely by

thinking in terms of random walks. Imagine you start at a



random vertex and repeatedly take steps by choosing one

of the edges attached to your current vertex at random. If

the network is unweighted, then you choose these edges

with equal probability, whereas if the network is weighted,

then the probabilities for selecting the edges are

proportional to the edge weights. The eigenvector centrality

scores are proportional to the fraction of time you spend at

each vertex when doing these random walks. For example,

if the network represents the World Wide Web (where

vertices are websites and edges are links), then eigenvector

centrality conveys the amount of traffic each site gets if

users just randomly click links.

One drawback with eigenvector centrality is that random

walkers can never travel between two different parts of a

network if there are no paths connecting the two parts. In

other words, each random walker is constrained to the

“island” (or, in more mathematical terms, connected

component) it starts on. This is especially problematic for

directed networks because edges can be traversed in only

one direction: if the random walker reaches a dead end, it

will remain stuck there forever. One way to help get our

random walkers past islands and dead ends is to allow them

to randomly jump to different locations in the network.

That’s the main idea behind the next measure we’ll look at.

PageRank Centrality

Google’s PageRank centrality is only a small modification of

eigenvector centrality; it replaces the adjacency matrix with

a scaled version before computing the eigenvector. The

PageRank scores for V1, V2, V3, and V4 in Figure 2-3,

computed as an unweighted network, are 0.13, 0.25, 0.25,

and 0.37, respectively.

The best way to understand PageRank is in terms of

random walk probabilities. We play the same game as we



did with eigenvector centrality, except now at each step

there are two possibilities: the random walker either walks

across one of the attached edges, as before, or jumps

directly to a random vertex in the network. In the World

Wide Web example, this means either people can click links

or they can directly type URLs in their web browsers. This

ability to jump helps the random walkers explore greater

extents of the network, which helps boost the information

captured by this centrality score compared to eigenvector

centrality.

Katz Centrality

Another useful centrality measure that is also computed

from the spectral theory of the network’s adjacency matrix

is Katz centrality (sometimes called Bonacich centrality or

alpha centrality), which is essentially a “higher-order”

extension of the notion of degree. In an unweighted

network, Katz centrality is a weighted sum of the number of

vertices that can be reached by a path of length 1 (this

coincides with the degree), the number of vertices that can

be reached by a path of length 2, the number that can be

reached by a path of length 3, and so on. The weights in this

weighted sum are determined by the length of the path and

by a user-specified “attenuation” parameter (called alpha)

that ranges from 0 to 1. More precisely, paths of length d

are given weight αd. This means that the farther away a

vertex is, the less it contributes to the weighted sum.

For example, in social networks or social media, the

biggest contributor to your Katz centrality is your number of

friends, the next biggest contributors are the numbers of

friends these friends have, and so on. In short, Katz

centrality is a more sophisticated version of degree that

looks deeper into your network’s overall connectivity. It

turns out that eigenvector centrality is a limit of Katz



centrality as the attenuation parameter approaches a

certain value. Be careful when choosing the parameter

alpha, though; you should always choose it to be less than

the reciprocal of something called the spectral radius of the

network (which we’ll cover in the “Global Network Metrics”

section); igraph won’t give you an error or even a warning

message if you don’t do this—you’ll just get values that

don’t make sense, such as negative scores for some

vertices.

Hub and Authority

Another way to generalize eigenvector centrality is to

provide each vertex with two separate importance scores

rather than just one. The most popular incarnation of this is

called authority and hubness. Conceptually, authority

centrality measures how much knowledge of the network is

stored within a vertex, while hub centrality measures how

well a vertex knows where to find this knowledge (quick

access to the information stored in nearby vertices). These

two measures are interrelated: strong hubs tend to connect

to strong authorities. Hubs usually have a high rate of

connections among the vertices involved that allow for rapid

information sharing.

Measuring Centrality in an Example

Social Network

To better understand all these vertex centrality measures, it

helps to consider a more interesting example of a network

than what we’ve considered so far. The script in Listing 2-4

loads and then plots a network from a file that represents a

social network of one of this book’s authors (Farrelly). You

can find the dataset, along with the other files for the book,

on the book’s web page: https://nostarch.com/shapeofdata.

https://nostarch.com/shapeofdata


#load data including no header 

mydata<-as.matrix(read.csv("SocialNetwork.csv",header=F)) 

 

#convert data to graph 

g_social<-graph_from_adjacency_matrix(mydata,mode="undirecte

d",weighted=T) 

 

#plot graph

plot(g_social,main="Farrelly's Social Network",vertex.size=1

5,vertex.label.cex=0.5,vertex.color=2)

Listing 2-4: A script that loads a social network dataset,

converts it to a graph object, and then plots it

Figure 2-5 shows the resulting network plot (which will

look a little different each time you run this script).



Figure 2-5: A plot of Farrelly’s social network dataset, including connections

within her medical school service groups (top cluster) and her veterans

organization groups (bottom cluster), with vertex 7 (Farrelly herself) serving as a

bridge

One of the best ways to develop an intuition for centrality

measures is to plot them as the vertex size parameter.

(More generally, using vertex size to illustrate any numerical

property associated to the vertices of a network is an

excellent visualization technique—it is a network version of

bubble charts.) Since the range of the different centrality

measures varies, in what follows we rescale each one so

that the maximum value is 20, as this seems to give fairly

readable plots. Listing 2-5 provides the R code we use to

plot each one.

#betweenness 

plot(g_social,vertex.size=20*betweenness(g_social)/max(betwee



nness(g_social)),vertex.label.cex=0.8,vertex.color=2) 

 

#closeness 

plot(g_social,vertex.size=20*closeness(g_social)/max(closenes

s(g_social)),vertex.label.cex=0.8,vertex.color=2) 

 

#eigenvector centrality 

plot(g_social,vertex.size=20*eigen_centrality(g_social)$vecto

r,vertex.label.cex=0.8,vertex.color=2) 

 

#PageRank centrality 

plot(g_social,vertex.size=20*page_rank(g_social)$vector/max(p

age_rank(g_social)$vector),vertex.label.cex=0.8,vertex.color=

2) 

 

#Katz centrality (with alpha parameter set to 0.2) 

plot(g_social,vertex.size=20*alpha_centrality(g_social,alpha=

0.2)/max(alpha_centrality(g_social,alpha=0.2)),vertex.label.c

ex=0.8,vertex.color=2)

Listing 2-5: A script that creates bubble chart network

plots for each centrality measure on Farrelly’s social

network dataset

Let’s start with closeness and betweenness, illustrated in F

igure 2-6.



Figure 2-6: Bubble charts of closeness centrality (left) and betweenness

centrality (right) on Farrelly’s social network data

The closeness scores here appear to capture what we

were hoping they would. Vertices that are located more

centrally in the network are larger, and vertices that are

more peripheral are smaller. Note that this notion of

centrality is based on the global geometry of the network.

For instance, V10 has the highest closeness centrality score

because it is central to the network overall even though it is

peripheral to each of the two main clusters (the medical

school friends and the veteran friends).

Betweenness centrality (which, as you recall, aims to

capture locations that when removed would be maximally

disruptive to flow across the network) provides V7 and V10

with much larger scores than all the other vertices—and

these are the two vertices that bridge the two main clusters

in this network. There is also a more modest but still



relatively large betweenness score for V14, indicating that

many (but not all) shortest paths between the two main

clusters pass through this vertex.

Next, let’s take a look at the eigenvector centrality and

PageRank centrality scores shown in Figure 2-7.

Figure 2-7: Bubble charts of eigenvector centrality (left) and PageRank centrality

(right) on Farrelly’s social network data

For both of these measures, V7 (representing Farrelly

herself) has the highest value, and the values range across

the medical school cluster in a way that—at least intuitively

—does appear to capture a notion of centrality or

importance. Perhaps the most striking thing about this

figure is the contrast between these two closely related

eigenvector-based measures. For eigenvector centrality, the

values in the medical school cluster completely dwarf those

of the veterans organization cluster, whereas PageRank



centrality seems better able to reflect centrality and

importance within each of the two clusters separately. The

reason for this discrepancy is that random walks in which

one simply chooses neighboring vertices to traverse with

equal probability tend to meander around the highly

interconnected medical school cluster and have a low

probability of taking the one edge (from V7 to V10) that

leads out of that cluster. With PageRank centrality, the

random walks include a fixed probability of jumping

anywhere in the network, which helps them get to the

veterans group cluster.

In Figure 2-8 we have Katz centrality, which as you recall

is a higher-order version of degree that takes into account

not just the number of neighbors but the number of

neighbors of neighbors, and so on. We compute this for two

different values of the attenuation parameter alpha by

specifying the decay rate for the influence coming from

higher-order connections.



Figure 2-8: Bubble charts of Katz centrality for attenuation parameter alpha =

0.2 (left) and alpha = 0.1 (right) on Farrelly’s social network data

It turns out the spectral radius for this network is about 4,

so we need to choose values of alpha that are less than 0.25

(here, 0.2 and 0.1). We see here that both choices identified

Farrelly’s V7 as the most central vertex, but for the higher of

these two alpha parameters (left plot), the scores remain

relatively high near V7 before dissipating rather quickly.

With the smaller alpha (right plot), the dissipation is less

sharp, and the Katz centrality scores are more evenly

spread out across the entirety of the network. The plot on

the left is more likely to capture what we typically think of

as centrality or importance, and it is usually recommended

to choose an alpha very close to the reciprocal of the

spectral radius (and definitely not the default value of 1 in

igraph).



Finally, let’s analyze authority and hubness. In an

undirected network, these two measures coincide, so let’s

first transform our network into a directed network. Since

we don’t have a natural direction to the friendships in this

social network, we’ll do this artificially as follows. For each

edge in this network, say between vertex i and vertex j, with

probability one out of three, we’ll convert it to a one-way

edge from i to j, with probability one out of three, we’ll

convert it to a one-way edge from j to i, and with probability

one out of three we’ll leave it as a two-way edge. Listing 2-6

shows the code to do this and then plot the resulting hub

and authority scores.

#randomly remove some entries in the adjacency matrix 

mydata_directed<-mydata 

for (i in 1:20){ 

  for (j in i:20){ 

      rand<-runif(1) 

      if(rand < 0.33){mydata_directed[i,j]<-0} 

      if(rand >= 0.33 & rand < 0.66){mydata_directed[j,i]<-0} 

  } 

} 

 

#use this modified adjacency matrix to create a directed netw

ork 

g_directed<-graph_from_adjacency_matrix(mydata_directed,mode

="directed",weighted=T) 

 

#plot the hub centrality and authority centrality for this di

rected network 

plot(g_directed,vertex.size=20*hub_score(g_directed)$vector,v

ertex.label.cex=0.8,vertex.color=2,edge.arrow.size=0.4) 

plot(g_directed,vertex.size=20*authority_score(g_directed)$ve

ctor,vertex.label.cex=0.8,vertex.color=2,edge.arrow.size=0.4)

Listing 2-6: A script that turns Farrelly’s social network

into a directed network and then plots the resulting hub

and authority scores

Figure 2-9 shows the resulting plots.



Figure 2-9: Bubble charts of hub centrality (left) and authority centrality (right)

on a directed version of Farrelly’s social network

There are higher hub scores among the medical school

individuals than the veterans group individuals due to the

high level of interconnectivity of the former, with Farrelly’s

vertex V7 serving as a prominent hub in this network. Many

of the medical school individuals point to V5 and V3, giving

these vertices large authority scores, while V7 has a

relatively modest authority score. This suggests that V3 and

V5 are the primary sources of information within this

community, and they pass this information along to V7, who

shares it with the rest of the medical school individuals; in

contrast, there is not much of a centralized structure or

efficient flow of information among the veterans group’s

individuals.

Now that we’ve explored all these centrality measures

visually, let’s use a few of them to rank and compare the



vertices in Farrelly’s social network (going back to the

original undirected version). The code in Listing 2-7 can be

added to that of Listing 2-4 to produce a dataset of some

centrality measures.

#create dataset of a few centrality measures on Farrelly's so

cial network 

data_social<-cbind(page_rank(g_social)$vector,degree(g_socia

l),hub_score(g_social)$vector,betweenness(g_social)) 

colnames(data_social)<-c("PageRank","Degree","Hub Score","Bet

weenness")

Listing 2-7: A script that creates a table of a few vertex

centrality scores on Farrelly’s social network

Table 2-1 displays these vertex scores, with the highest

two entries in each column in bold.



Table 2-1: Centrality Measures Scored on the Vertices of Farrelly’s Social

Network

Vertex PageRank Degree Hub score Betweenness

V1 0.032 2 0.414 0

V2 0.020 1 0.168 0

V3 0.075 5 0.682 19.500

V4 0.032 2 0.370 0

V5 0.057 4 0.685 2.000

V6 0.046 3 0.505 1.000

V7 0.111 8 1.000 100.500

V8 0.044 3 0.550 0

V9 0.044 3 0.550 0

V10 0.048 3 0.306 90.917

V11 0.050 3 0.118 26.667

V12 0.022 1 0.021 0

V13 0.069 4 0.087 18.917

V14 0.067 4 0.127 61.083

V15 0.068 4 0.088 36.000

V16 0.040 2 0.024 23.083

V17 0.040 2 0.034 21.917

V18 0.065 3 0.009 20.250

V19 0.043 2 0.011 10.167

V20 0.026 1 0.002 0

By a considerable margin, betweenness identifies V7 and

V10 as the most important vertices connecting the network.

However, the other centrality scores for V10 are much more

modest, suggesting it mainly functions as a bridge between

communities rather than a true center of the network. This

makes sense as V10 appears fairly undistinguished within

the veterans group. It just happens to connect to Farrelly’s

V7 and, hence, through her to the medical school

community. Farrelly’s V7, on the other hand, has many

neighbors (as indicated by degree) and is the top-ranked

vertex for both hub score and PageRank—this is compatible



with our conceptual understanding of this network as

conveying two separate communities in which Farrelly is

involved.

V3 is the second-highest ranked vertex in terms of degree

and PageRank; this person appears to be at the social

center of the medical school community. V5 has the second-

highest hub score, indicating that it is close to the important

members of the medical school community. Hub score

(which coincides with authority here since this network is

undirected) also distinguishes V12 from V20. Both of these

are degree-one vertices in the periphery of the veterans

group’s community and with low PageRank and zero

betweenness. However, V12 has a higher hub score because

it is near a highly interconnected little subcommunity.

Additional Quantities of a Network

Network geometry provides more than just centrality

measures for vertices. In this section, we’ll introduce a few

other quantities of interest associated to the vertices in a

network. Examples include transitivity scores that capture

how likely it is that your friends know each other, efficiency

scores that capture how much traffic is diverted when

vertices are removed, and curvature scores that capture

distortions in the fabric of the network.

The Diversity of a Vertex

While hub and authority centrality concern the potential

flow of information through a directed network, another

measure associated to the vertices in a weighted network

concerns information in the sense of mathematical

information theory. The diversity of a vertex is a scaled

version of the Shannon entropy (a fractional measure of

information content of a variable or set of variables) of the



weight distribution of the edges attached to that vertex. As

the name suggests, this captures the diversity of edge

weights attached to each vertex. Entropy is maximal for a

uniform distribution, so the diversity score is maximal (and

scaled to 1) when all the edges have equal weights, and the

diversity scores decrease from this value as the weights

become more varied. One way to think about this is that a

random walk on a weighted network (with probabilities

proportional to the edge weights) will be least predictable at

vertices with diversity scores closest to 1 and more

predictable for vertices with smaller diversity scores.

Triadic Closure

A useful notion in network theory is triadic closure, which is

the tendency for triangles to form among triples of vertices

that already have a pair of edges. In more down-to-earth

terms, this is akin to asking whether two of your friends are

likely to be friends with each other. Consider the network of

friends depicted in Figure 2-10.

Figure 2-10: A network of friendships with one friendship link unknown,

illustrating the concept of triadic closure

Here, Justin and Jason are friends, as are Justin and Mick.

The question is whether Jason and Mick are friends. This

situation is called a triangle centered at Justin. If Jason and

Mick are not friends, then it is called an open triangle,



whereas if they are friends, then it is called a closed

triangle. A network with mostly closed triangles suggests a

high degree of cohesion. In social networks, this means

individuals with a mutual friend are likely to know each

other. On the other hand, a network with many open

triangles may indicate a less cohesive situation but could

also indicate missing data and incomplete information:

people may not friend all of their real-world friends on social

media, intelligence data may not contain all communication

forms among a cell of terrorists, and so on. In any real-world

setting, relationships may exist that simply haven’t been

recorded yet.

One way to quantify triadic closure is through transitivity,

which assigns to each vertex the fraction of triangles

centered at it that are closed. In a social network, your

transitivity is the probability that two of your friends are

friends with each other. Let’s add the following to our

collection of plots from Listing 2-6:

#compute and plot transitivity for each vertex in Farrelly's

 social network 

plot(g_social,vertex.size=20*transitivity(g_social,type="loca

l",isolates="zero"),vertex.label.cex=0.8,vertex.color=2)

Setting the parameter called type to local tells igraph to

compute the transitivity around each vertex, and setting the

parameter called isolates to zero forces the score for

vertices of degree 1 to be 0 (which otherwise would be

scored NaN, as a degree-1 vertex has no triangles centered

at it). Figure 2-11 shows the resulting plot.



Figure 2-11: A bubble chart of transitivity on Farrelly’s social network

This shows from another perspective that the medical

school community is more cohesive and more tightly

interconnected than the veterans’ community. It’s likely that

medical students involved in the same sort of

extracurricular activities in the same classes know each

other and communicate. Note, however, that Farrelly’s V7

has a relatively low transitivity score among the medical

school individuals, meaning several of Farrelly’s medical

school friends are not friends with each other despite the

overall closeness of that group. (The transitivity of V7 is also

dragged down by the fact that none of Farrelly’s medical

school friends are friends with the veterans group’s friend

V10.)



The Efficiency and Eccentricity of a Vertex

Recall that two of the centrality measures we covered,

closeness and betweenness, are defined in terms of the

lengths of the shortest paths (or geodesics) in the network.

Another interesting measure based on shortest paths, called

efficiency, is defined for each vertex as follows: remove the

vertex in question and then compute the resulting network

distances between all pairs of neighbors of this vertex.

Then, average the inverses of these distances. Removing

the vertex is like creating a roadblock, and the neighbor-to-

neighbor distances measure the length of the detours that

must be taken because of the roadblock. Inverting these

distances means bigger detours count toward smaller

efficiencies, and vice versa. The efficiency measures how

easily traffic can be diverted around each vertex in the

network.

Efficiency is a useful way to probe the local geometry of

the network. The word local here means we are exploring

the network geometry nearby around each vertex; this is in

contrast to closeness and betweenness that are more global

in nature since they involve paths across the entire network.

Let’s add the computation of efficiency to Listing 2-6. We

need an additional library to do this:

#load the brainGraph library that adds on to igraph 

library(brainGraph) 

 

#compute efficiency for each vertex in Farrelly's social netw

ork 

efficiency(g_social,type="local")

We don’t show the bubble chart plot for this because it

looks extremely similar to the transitivity plot in Figure 2-11.

In fact, the correlation between the transitivity scores and

the efficiency scores for this network is 0.96. In other

networks, especially larger and more complex ones, this



need not be the case. It is important to note that transitivity

is an extremely local measure, as it considers only

neighboring vertices and the edges among them. In

contrast, efficiency is local in nature but can access larger

pieces of the network because the detours caused by the

roadblocks may extend beyond the set of immediate

neighbors.

Another path-based vertex measure that—like closeness

and betweenness—sees the global geometry of the network

is eccentricity, which assigns to each vertex the largest

network distance from that vertex to any other vertex in the

network. This measures how peripheral each vertex is, so

lower eccentricity scores generally indicate more central

vertices. We’ll come back to this measure shortly.

Forman–Ricci Curvature

Ricci curvature is a concept in geometry that measures the

distortion of straight lines on curved surfaces and the rate

at which this distortion grows or shrinks. You can think of it

as a force of sorts that warps straight lines into curved

paths (like a small hand weight on a wet paper towel). See F

igure 2-12 for a conceptual illustration of increasing Ricci

curvature from left to right on the diagram.



Figure 2-12: A straight line with midpoint deformed by sliding it (from left to

right) through spaces with increasing Ricci curvature

One of the adaptations of this concept from continuous

geometry to the realm of networks is called Forman–Ricci

curvature. The first step in calculating Forman–Ricci

curvature is to assign a number to each edge in the network

that measures how spread out the network is in the

immediate vicinity of the edge. The number that is used is 2

minus the sum of the degrees of the two vertices attached

to the edge; this is the negated number of edges adjacent

to the edge in question. For example, in Farrelly’s social

network (Figure 2-5), the edge between V7 and V10 has a

Forman–Ricci curvature of –8 (coming from the six non-V10

neighbors of V7 and the two non-V7 neighbors of V10).

Next, we use these edge scores to assign scores to the

vertices as follows: the Forman–Ricci curvature of a vertex is

the sum of the Forman–Ricci curvatures of the edges

attached to this vertex. Forman–Ricci curvature is almost

always negative, so when visualizing it, we usually use its

negation. In Listing 2-8 we compute the Forman–Ricci

curvature for Farrelly’s social network and then plot it using

its negation for the vertex size and edge thickness.

#compute the degrees of all vertices 

d<-degree(g_social) 



 

#count edges and initiate vector of edge curvature values 

l<-length(E(g_social)) 

frc<-rep(NA,l) 

 

#loop to calculate and store Forman-Ricci edge curvature 

for (I in 1:l){ 

  w<-as.vector(ends(g_social,E(g_social)[i],names=F)) 

  frc[i]<-2-d[w[1]]-d[w[2]] 

} 

 

#count vertices and initiate vector of vertex curvature value

s 

n<-length(d) 

frcv<-rep(NA,n) 

 

#loop to calculate and store Forman-Ricci vertex curvature 

for (i in 1:n){ 

  I<-as.vector(incident(g_social,i)) 

  frcv[i]<-sum(frc[I]) 

} 

 

#plot the network with vertex and edge size given by the nega

ted curvature 

plot(g_social,edge.width=-frc,vertex.size=-20*frcv/max(-frc

v),vertex.label.cex=0.8,vertex.color=2)

Listing 2-8: A script that computes and plots the Forman–

Ricci curvature for Farrelly’s social network

Figure 2-13 shows the resulting plot.



Figure 2-13: The negated Forman–Ricci curvature for Farrelly’s social network

As you can see, the areas of the network with more edges

have a higher negated Forman–Ricci curvature. This occurs

both in hublike regions where the network fans out (like in

the medical school community here surrounding Farrelly’s

V7) and in tightly interconnected regions (like the close-knit

four-vertex subcommunity within the veterans group’s

members).

In traditional geometry, curvature is used to study how

substances flow across objects. Similarly, Forman–Ricci

curvature can be used to study network flow patterns. We’ll

turn to the concept of network flow in Chapter 3.

Global Network Metrics

All the metrics discussed so far are vertex metrics, meaning

they assign a score to each vertex in a network, quantifying



some aspect of the vertex’s role or position within the

network. For example, you could extract your network of

Facebook friends and use these vertex metrics to measure

how central each person is in it. However, sometimes

instead of comparing vertices within a single network, we

need to compare different networks. For example, you might

want to compare your Facebook friend network to the

Facebook friend network of someone else—or you could

compare your friend network on Facebook to your friend

network on a different social media platform. In this

situation, we need metrics that assign a single number to an

entire network; these are sometimes called global network

metrics, or just global metrics if the network context is clear.

Let’s walk through a few important ones.

The Interconnectivity of a Network

The simplest global metrics are the number of vertices in a

network and the number of edges. Closely related to these

(but often more useful) is the density, which is the number

of edges in a network divided by the maximum number of

edges possible on that vertex set. An undirected network

with n vertices has at most

edges (not allowing loops or multiple edges), while the

maximum number for a directed network is twice this

amount. Density gives a coarse measure of how

interconnected a network is; it is computed in igraph with

the edge_density() function. Figure 2-14 shows some

networks with a range of densities.



Figure 2-14: The three networks in the top row all have a density of 25 percent,

while the networks in the bottom left and bottom right have densities of 50

percent and 75 percent, respectively.

The average degree in a network can also be a useful

global metric, but it contains precisely the same information

as the density and is perfectly correlated with it. Indeed, the

average degree is the sum of all vertex degrees divided by

the number of vertices, and the sum of all vertex degrees is

always twice the number of edges. Thus, average degree

and edge density differ by a constant that depends only on

the number of vertices in the network. Consequently, you



can use one or the other measure, but nothing is gained by

using both simultaneously.

The notion of transitivity discussed in the preceding

section (quantifying triadic closure) has a global

counterpart. When setting the type parameter to global in

igraph’s transitivity() function, a single number is

computed that gives the fraction of triangles in the network

that are closed. This gives another way, different from edge

density, to measure the overall interconnectedness of a

network.

Spreading Processes on a Network

Networks that are more spread out tend to behave

differently than ones that are more compact. For example,

consider three friends—Amara, Imani, and Taraji—sharing

news with each other at a lunch table. We’d expect the girls

to exchange information more easily together at a table

than they would if they were in separate classes texting

each other or talking as they passed each other in the

hallway. Let’s take a look at a few different ways to quantify

the spread of a network.

Setting the type parameter to global in igraph’s

efficiency() function gives a global version of that metric

that computes the average of the inverses of the network

distances between all pairs of vertices in the network. No

roadblocks are involved in this global variant of efficiency.

Networks that are highly interconnected tend to have high

global efficiency, as high interconnectivity means there are

lots of direct routes between vertices, but, overall, it is best

to think of global efficiency as a measure of the

compactness of a network. The more spread out a network,

the lower its global efficiency will be.

We can also compute the diameter of a network, which is

the maximum eccentricity of the vertices in the network



(and, hence, the “longest shortest path” between two

vertices). The radius of a network is the minimum

eccentricity, which measures how far the center of the

network is from the most distant part of the network. In

igraph, you can use the eccentricity() function first to score

all the vertices and then use standard R commands to

extract the maximum and minimum values from them. Both

diameter and radius quantify some aspect of the spread of

the data. One structure that can produce a large difference

between the diameter and radius is a structure where there

are several loose hubs connected to each other through a

single bridging individual.

Spectral Measures of a Network

We have seen that eigenvectors of the adjacency matrix

and other matrices closely related to it play an important

role in multiple vertex centrality metrics; the spectral theory

(eigenvalues and eigenvectors) of the adjacency matrix also

provides us with some useful global metrics. The spectral

radius of a network (which came up earlier in our discussion

of Katz centrality) is the largest eigenvalue of the adjacency

matrix. A variety of properties of the spectral radius have

been established mathematically. In essence, the spectral

radius measures propagation across the network. It is

inversely related to the robustness of the network when

considering the spread of a harmful entity across the

network, such as fake news or a virus. For instance, in an

epidemiological model that we’ll discuss in the next chapter,

a smaller spectral radius means disease spreading across

the network will die out more quickly.

To compute the spectral radius of a network in R, you can

use the spectrum() function in igraph that takes advantage of

the sparse structure that adjacency matrices usually exhibit,

or you can use any of the standard eigenvector or



eigenvalue implementations in R, such as the eigen()

function, on the network’s adjacency matrix.

Since igraph’s spectrum() function optionally returns all

eigenvalues and eigenvectors of the adjacency matrix, it is

easy to use it to compute other spectral measures—such as

the spectral gap, which is the difference between the largest

eigenvalue of the adjacency matrix (the spectral radius) and

the second largest eigenvalue. The spectral gap controls the

convergence time of certain algorithms and random

processes on the network, among other things. Other useful

spectral measures are based on a variant of the adjacency

matrix called the graph Laplacian, which is obtained by

negating the adjacency matrix and adding the degree of

each vertex to the corresponding diagonal matrix entry. The

multiplicity of the 0 eigenvalue of the graph Laplacian is the

number of connected components of the network. The

smallest nonzero eigenvalue of the graph Laplacian is called

the algebraic connectivity; this is a connectivity measure of

the network that conveys how difficult it is to fragment the

network into smaller pieces. Farrelly’s social network has a

relatively low algebraic connectivity because removing a

single vertex splits the network into the veterans group and

the medical school group.

Listing 2-9 shows how to compute the graph Laplacian

and extract from it the number of connected components

and the algebraic connectivity.

#compute the graph Laplacian of a network g 

lap<-laplacian_matrix(g) 

 

#compute the eigenvalues and round to avoid numerical issues 

evals<-round(eigen(lap)$values,digits=5) 

 

#compute number of connected components 

sum(evals == 0) 

 



#compute the algebraic connectivity 

unique(evals)[length(unique(evals))-1]

Listing 2-9: A script that computes the graph Laplacian of

a network g and then extracts from it the number of

connected components and the algebraic connectivity

For example, running this code on the two networks

shown in Figure 2-15 gives seven connected components

each and an algebraic connectivity of 0.062 for the network

on the left and 0.09 for the network on the right.

Figure 2-15: Two networks, plotted to illustrate the spectral measures associated

with the graph Laplacian matrix. They have the same number of connected

components, but the network on the right has a higher algebraic connectivity.

If you want to compare scores across networks of different

sizes, it is better to use the normalized Laplacian; to do this,



simply set normalized=T when computing the graph Laplacian

in the first line of Listing 2-9.

Network Models for Real-World

Behavior

There are a few different types of networks that serve as

important models for real-world behavior; these provide

helpful baselines against which to compare real-world

networks and data. Let’s start with the simplest kind to

construct.

Erdös–Renyi Graphs

Erdös–Renyi graphs are networks in which edges are

generated randomly according to a uniform distribution on

the set of vertex pairs. These are created in igraph with the

sample_gnp() function. Both the networks in Figure 2-15 were

produced by using sample_gnp(50,0.05), which creates a

network with 50 vertices and an edge probability of 5

percent. The density of the graphs created this way will be

close to the specified edge probability but not necessarily

equal to it—just as repeatedly flipping a fair coin won’t

always give exactly half heads and half tails. The networks

in Figure 2-14 were also created with sample_gnp().

Erdös–Renyi graphs provide a useful null hypothesis. If you

believe your network is highly structured, then its edges

should be very far from uniformly distributed, so the

network will not look or behave like an Erdös–Renyi network.

In the next two chapters, we’ll see how to practically

implement this idea. Erdös–Renyi graphs do not appear

often in nature, especially in socially driven settings. Real

networks are almost always more structured than a network

with purely random edges like this.



Scale-Free Graphs

A scale-free graph is a network whose degree distribution

asymptotically follows a power law, meaning there is a

constant, c, such that the fraction of vertices of degree 2d is

1/2c times the fraction of vertices of degree d (at least

approximately, with the approximation getting more

accurate as d increases). The constant c (called the power)

usually lies between 2 and 3. This power law property leads

to the existence of many vertices whose degree is much

higher than the average vertex degree in the network.

Consequently, scale-free networks usually have a spoke-

and-wheel shape of loosely connected hubs, like airport

terminals connecting at a central security gate. The hubs in

the network tend to rein in the distances between vertices,

giving these networks certain “small-world” properties.

These networks have a fascinating history and well-

developed theory that we don’t have space to get into. An

interesting debate in the field has been whether many

naturally occurring networks are scale-free—including

internet pages, social networks, biological networks, and

even airline travel networks—and if so, why this might be.

There are a variety of approaches for generating scale-

free networks; one of the more popular options is

conveniently implemented in igraph with the sample_pa()

function. It relies on what is known as the Barabási–Albert

model.

Watts–Strogatz Graphs

Watts–Strogatz graphs are networks generated by a random

graph model introduced in 1998 that tends to produce even

more small-world properties than scale-free networks, such

as tightly interconnected communities and small network

distances between many vertices. These networks



frequently include paths that are reinforced by redundancy

and alternate routes. They are common in biology and social

processes. For example, brain connectivity networks at the

neuron and functional area levels, voter networks,

influencer networks on social media platforms, and food

webs often form Watts–Strogatz networks.

Since we have already seen a few examples of Erdös–Renyi

graphs (see Figures 2-14 and 2-15), let’s create some

networks of these other types. In Figure 2-16, we use

sample_pa(100,power=2.5,directed=F) to generate a couple of

scale-free networks, and we use

sample_smallworld(1,100,2,0.05) to generate a couple of

Watts–Strogatz networks. We leave it to a motivated reader

to look in the igraph documentation to learn about the

parameter choices in this latter function.





Figure 2-16: Two scale-free networks (top) and two Watts–Strogatz networks

(bottom)

The scale-free networks in the top row each have one

prominent hub, and the network on the left additionally has

a less prominent secondary hub. Imagining these to be

power grid connections, a storm that takes out a main hub

would impact many more customers in the scale-free

network than in the Watts–Strogatz network. This is why

many planned real-world networks conform to a

redundancy-heavy structure. The Watts–Strogatz networks

do not exhibit strong hubs like scale-free networks, but they

have a lot of structure not seen in the purely random Erdös–

Renyi networks. For instance, the lengthy reinforced path

structures mentioned earlier are easy to recognize in these

bottom plots.

Summary

This chapter opened with a brief section explaining the need

for networks in data science and the need for geometry in

network science. Next, we introduced networks and the

objects involved in them—vertices, edges, paths, and more.

We then defined and explored a collection of metrics that

quantify various properties of networks and their vertices.

The chapter concluded with a few random graph models

that are useful for generating synthetic network data to

which real network data can be compared.



3 

NETWORK ANALYSIS

In Chapter 2, we considered

a few network geometry

metrics; in this chapter,

we’ll use them. First, we’ll

explain how vertex metrics

allow you to do supervised

learning within a network, that is,

predicting values associated to vertices

and predicting new edges in the network;

we’ll also look at how vertex metrics

enable you to cluster vertices in a

network. We’ll then discuss a few

clustering algorithms that operate directly

within the geometry of the network. Next,

we’ll explain how to use global network

metrics to do machine learning and

statistical analyses on datasets that

consist of collections of networks. We’ll

then explore a network variant of the

susceptible, infected, and recovered (SIR)



model from epidemiology. With this model,

we can see how entities (from diseases to

misinformation) spread through networks

and how network geometry influences this

spread. Finally, we’ll examine how we can

use vertex metrics to devise targeted

strategies for disrupting this spread.

Using Network Data for Supervised

Learning

Network data is often accompanied by a traditional

structured dataset where the rows are identified with the

vertices in the network. For instance, you might have a

social network dataset that consists of a list of individuals

(the vertices), the friendships between them (edges in the

network), and one or more numerical or categorical columns

providing additional non-network information about each

individual—such as age, gender, or salary. We might want to

consider this as a supervised learning problem, where we

train a machine learning algorithm to predict one of the

data columns. The way to do this is to use vertex metrics as

independent variables (along with any of the other data

columns), which lets the algorithm incorporate the network

role of each vertex when making predictions. Let’s try this.

Making Predictions with Social Media Network

Metrics

Let’s return to Farrelly’s social network, which we analyzed

in the previous chapter to illustrate the different measures

of vertex centrality. How might bridges between different



parts of the network or hubs tightly connecting a few

medical school friends influence how often Farrelly

mentioned those individuals in her diary during the first

term of medical school? Let’s take a look at how network

metrics relate to diary mentions in this social network.

We’ll choose a few vertex centrality metrics and attach

Farrelly’s diary data as a dependent variable in the set. Let’s

load the data and examine the distribution of our dependent

variable with Listing 3-1.

#import dataset 

g<-read.csv("SocialNetworkModel.csv") 

 

#create a histogram of the data 

hist(g$Diary.Entries,main="Diary Entry Histogram",xlab="Diary 

Entries")

Listing 3-1: A script that imports the relevant .csv file for

further analysis

Figure 3-1 shows a histogram of the dependent variable’s

distribution (Poisson).

Figure 3-1: A histogram of diary entry data for Farrelly’s social network



Generally, count variables, such as those conforming to

the Poisson distribution, include a lot of zero and near-zero

values, along with some large values. We can see from Figur

e 3-1 that this outcome is Poisson distributed. Poisson-

distributed variables can pose issues to machine learning

algorithms, as they involve a lot of zero values and some

outliers, such as the diary entries involving V10. This

suggests that a generalized linear model (Poisson

regression) is probably more appropriate of a supervised

learning model than other machine learning algorithms. It

looks like most individuals in the network receive few (if

any) mentions over the term. However, a few outliers exist,

including Farrelly and her closest friends within the network

(V3, V10, and V14). Let’s dive deeper to see how centrality

measures predict diary mentions. In Listing 3-2, we sample

Farrelly’s social network metrics of interest and use them as

independent variables in our Poisson regression model.

#create a training sample from Farrelly's social network metr

ics 

n<-dim(g)[1] 

set.seed(10) 

train.index=sample(1:n,15) 

train<-g[train.index,] 

 

#build a Poisson regression model 

gl<-glm(Diary.Entries~.,data=train,family="poisson") 

 

#examine performance with a model summary and Chi-squared tes

t 

summary(gl)

 

1-pchisq(summary(gl)$deviance,summary(gl)$df[2])

Listing 3-2: A script that computes a Poisson regression

and analyzes its results

Your results may vary depending on your R version’s

seeding, but in the samples we modeled with this dataset



and other seeds (9 of 10 random splits), the summary

functions show that betweenness centrality seems to have

large coefficient values in the model and be the most

consistent predictor of diary entry mentions across subsets

of Farrelly’s social network data modeled with our regression

function. The Chi-squared test values in our samples ranged

from p < 0.01 to p = 0.25. When we examine the plots

associated with the linear regression, we can see that most

of our sample fits the regression equation well. Figure 3-2

shows two of the plots generated by Listing 3-2 (including

V3, V7, and V13 as outliers).

The small sample size likely contributes to the variation

between samples, but overall, we have a good predictive

model. Indeed, this reflects Farrelly’s own intuition that the

bridges of her network tended to coordinate memorable

events and activities that brought together various pieces of

her network that term. We’ll return to the instability of

regression models on small sample sizes with outliers in Cha

pter 6 and Chapter 8, along with more stable models you

can use for these situations to get consistent model results.



Figure 3-2: Residual and quantile plots of the Poisson regression run in Listing 3-

2

Bigger networks with dependent variables more closely

tied to one’s social network (such as strength of political

views, workout habits, and so on) tend to work better in this

sort of analysis. Within biological networks, centrality

measures might be used to predict disease severity,

likelihood of response to a drug undergoing clinical trials, or

disease risk at six months after a social-network-based

behavioral health intervention. Analyzing the geometry of

the network often produces useful independent variables for

predicting some quality associated with the vertices of the

network.

Predicting Network Links in Social Media

Another important form of supervised learning in a network

is link prediction, in which potential new edges are inferred

from a network’s structure or metadata. One way to predict

links is to use prior growth patterns of a network to predict

which edges are most likely to appear next. This has many

real-world applications, some of the most notable being in



social media. Whenever Facebook or another platform

suggests a person for you to friend, an algorithm has run a

link prediction on its network of users behind the scenes

and given the missing edge between you and this potential

friend a high score. There are many sophisticated methods

for performing link prediction, but a common general

strategy is to translate the problem to a traditional

Euclidean supervised learning task. Let’s explore this

conceptually using Farrelly’s social network as an example.

Imagine this network evolving over time, with a binary

indicator denoting edges that formed since the last time

period. Wouldn’t it be neat if we could predict edge

formation over a time period based on what the network

looked like geometrically in the past time period? Or if we

could use vertex labels (such as class schedule or volunteer

days) to predict edge formation in the next time period?

For the independent variables, we can use any collection

of features associated with the two vertices. These can be

intrinsic network-based features or extrinsic features such

as user demographics in a social network. The network-

based predictors come in two flavors. We can use vertex

metrics by choosing a function to aggregate the two vertex

scores in each pair to a single number (common choices for

this include sum, max, mean, and absolute value of

difference). For instance, we could compute the PageRank

score for the two vertices in each vertex pair and then take

the average of these two scores to assign the vertex pair.

The other flavor of network-based features uses some

measure of the network relationship between the two

vertices; the most natural choice here is simply the network

distance between the two vertices, though you can try other

options such as the number of shortest paths between the

two vertices or the average time a random walk takes to get

from one to the other. All these network-based predictors



should be computed for the current version of the network

rather than the earlier snapshot, and these network-based

predictors can be combined with any collection of non-

network features. (In practice, most non-network features

are attached to individual vertices rather than pairs, so once

again you’ll have to aggregate them to get a single score for

each vertex pair.)

Once the independent predictors are computed for a time

period of interest and an indicator variable exists for that

time period, a supervised classifier can be used to predict

edge formation over the time periods of interest. The higher

the likelihood score for edge formation, the more likely that

relationship will exist by the next time period. In Farrelly’s

social network, betweenness centrality would likely be the

main network-based predictor, as well as social activity data

or diary entries from the first term of medical school.

Everyone in her original social network was connected to

her (and most to each other) by the end of that term.

Using Network Data for Unsupervised

Learning

Just as we can use the vertex metrics from Chapter 2 as

predictors in a supervised learning task, we can also use

them as features in unsupervised learning tasks. In the case

of clustering, this will partition the vertices into sets of those

with similar functions in the network (hubs, bridges, and so

on). Clustering vertices is known in the network sciences as

community mining, so when using vertex metrics for this

purpose, we obtain communities defined by the structural

role they play in the network.

Applying Clustering to the Social Media Dataset



In Listing 3-3, we apply k-means clustering to Farrelly’s

social network dataset that was our main running example

in Chapter 2.

#rescale the matrix of vertex metrics and apply k-means with

 k=3 

clust<-kmeans(scale(vertdata),3) 

 

#plot the network with clusters represented by vertex color a

nd label 

plot(g,vertex.size=6,vertex.color=clust$cluster,vertex.label=

clust$cluster)

Listing 3-3: A script that uses k-means on the vertex

metrics to cluster the vertices from the network in Figure

3-1 into k = 3 groups

Using k-means with k = 3 and PageRank, degree, hub

centrality, betweenness, and transitivity as our features

(which we first rescale), we get clusters with the means and

sizes in Table 3-1, where they were computed from the

original prescaled values.

Table 3-1: Cluster Means and Sizes for k-Means Clustering (with k = 3) Run on a

Handful of Vertex Metrics for Farrelly’s Social Network

Cluster PageRank Degree Hub

score

Betweenness Transitivity Cluster

size

1 0.05 3.14 0.54 3.21 0.80 7

2 0.11 8.00 1.00 100.50 0.25 1

3 0.05 2.50 0.08 25.75 0.097 12

Since k-means involves a random initiation, you might get

different clustering results each time you try this. For this

particular clustering, we see that one vertex has been

assigned its own cluster (Farrelly’s vertex, V7); all of this

vertex’s scores other than transitivity are exceptionally

high, so it is an outlier in many metrics. All the remaining

vertices are split between the other two clusters, which



seem mostly distinguished by the fact that one cluster has

higher hub and transitivity scores, while the other cluster

has higher betweenness. Let’s plot this network with the

vertices labeled by cluster (doing so is an easy adaptation of

the code in Listing 3-3); see Figure 3-3.

Figure 3-3: Farrelly’s social network colored and labeled by cluster for the k-

means clusters summarized in Table 3-1

We see that Farrelly is indeed her own cluster, and rather

remarkably, cluster 1 is almost precisely the remaining

medical school individuals, while cluster 2 is the veterans

group individuals. Interestingly, one medical school person

has been placed in cluster 3, because they are isolated

(have a transitivity score of zero) and are not part of the

main hub of medical school individuals.

Community Mining in a Network



So far, we’ve used the geometry of the network to extract

features and then run traditional Euclidean machine

learning clustering algorithms on them. Another approach to

clustering vertices in a network (called community mining)

is to rely directly on the geometry of the network. We’ll

briefly walk through several ways to do this.

Exploring Networks with Random Walks

The walktrap algorithm uses random walks to explore the

network and find communities in which the random walk

gets “trapped.” If a random walk frequently stays within a

certain set of vertices, then that set is a good candidate for

a cluster. For instance, in Farrelly’s social network, a random

walk starting among the medical school individuals has a

high likelihood of staying with them for many steps because

the only way out is across the bridge from Farrelly’s vertex.

Indeed, to get out, the random walk would have to be at

Farrelly’s vertex, and we would then choose that bridge as

the next step (which happens with only one out of eight

probability from that vertex because that vertex has eight

edges attached to it). Similarly, a random walk starting

among the veterans group individuals has a high likelihood

of staying among them. In this way, the walktrap algorithm

is good at finding communities that are separated by

bridges. One downside with this approach is that it is

computationally intensive to explore a large network this

way.

Evaluating a Cluster’s Quality Outcome

In traditional Euclidean clustering, a typical way to evaluate

the quality of a clustering outcome is to compare the

distances within each cluster to the distances between the

different clusters. There is a widely used network variant of

this idea that applies to vertex clustering: the modularity of



a vertex clustering is the probability that a randomly chosen

edge is attached to two vertices in the same cluster minus

the probability that this would occur if the edges in the

network were randomly distributed. Intuitively, this

compares the number of intracommunity edges to the

number of intercommunity edges. It is sort of like a “lift”

measure, because it compares how much better (in the

sense of edges staying within clusters) the clustering is than

a randomized benchmark. One of the important small-world

properties of the Watts–Strogatz networks introduced in the

preceding chapter is that they tend to be highly modular

(clusters with high modularity scores).

Modularity also enables you to view vertex clustering as

an optimization problem: we find the cluster division that

maximizes the modularity score. It’s not practical to try all

possible divisions into clusters, so various algorithms have

been introduced that attempt to search for high-modularity

clusterings without being guaranteed to find the global

optimum. Two of the popular approaches for this are greedy

algorithms, where greedy means that at each step they go

in the direction that most increases the modularity, rather

than taking suboptimal steps in the short run in the hopes

that they lead to greater values in the long run.

Louvain clustering is one such greedy algorithm. It starts

by treating each vertex as its own cluster and then

iteratively merges neighboring clusters whenever doing so

increases the modularity. Once this iterative local

optimization process terminates, the algorithm creates a

new, smaller network by merging all the vertices that have

been assigned to the same cluster. This yields a network in

which each vertex is its own cluster, so the same iterative

local optimization process can be run again on this smaller

graph. This algorithm is quite fast in practice and tends to

perform well, but it often struggles to find smaller

communities within large networks. There is a faster greedy



algorithm that is often used, conveniently called fast greedy

clustering, but it tends not to reach as high modularity

scores.

Understanding Spinglass Clustering

Another approach to clustering doesn’t involve random

walks or local optimization. Rather, it draws from statistical

mechanics, a branch of physics dealing with particle

interactions. Spinglass algorithms are based on magnetic

couplings within a system of particles (positive and negative

charges); they seek to optimize how the charges are aligned

across the system. This can be applied to vertex clustering,

called spinglass clustering. The basic idea is to define an

energy associated to clusterings and then try to minimize

this energy. This energy minimization process is usually

done by simulated annealing, which is an algorithmic

approach to optimization that also has roots in statistical

mechanics. In simulated annealing, rather than always

moving in the direction that decreases the energy the most

(as would be done in a greedy algorithm that runs the risk of

getting stuck in local optima), there is a temperature

parameter that determines the probability of moving

instead in a “wrong” direction. As the algorithm proceeds,

the temperature is steadily lowered. This helps the

algorithm explore large portions of the energy landscape

early on before settling down and honing in on a particular

solution. It mimics the cooling process in metallurgy in

which metal purifies.

Running the Clustering Algorithms on a Social

Network

Let’s try running these four vertex clustering algorithms on

Farrelly’s social network. Listing 3-4 does this and then plots

the results and computes the modularity scores (to run this,



make sure you’ve already loaded this network data as in List

ing 2-4).

#run walktrap, louvain, fast greedy, and spinglass clustering 

algorithms 

cw<-cluster_walktrap(g_social) 

modularity(cw) #0.505 

plot(cw,g_social,vertex.size=15,vertex.label.cex=0.6,main="Wa

lktrap") 

 

lo<-cluster_louvain(g_social) 

modularity(lo) #0.476 

plot(lo,g_social,vertex.size=15,vertex.label.cex=0.6,main="Lo

uvain") 

 

fg<-cluster_fast_greedy(g_social) 

modularity(fg) #0.467 

plot(fg,g_social,vertex.size=15,vertex.label.cex=0.6,main="Fa

st Greedy")

 

sg<-cluster_spinglass(g_social) 

modularity(sg) #0.505 

plot(sg,g_social,vertex.size=15,vertex.label.cex=0.6,main="Sp

inglass")

Listing 3-4: A script that runs the four vertex clustering

algorithms discussed earlier on Farrelly’s social network,

plots the results, and computes the modularity score for

each

Figure 3-4 shows the resulting plots.





Figure 3-4: Clustering on Farrelly’s social network provided by four different

algorithms

Note that for all these functions the number of clusters

was not specified by the user as it is for k-means. These

algorithms determine the number of clusters as part of their

search for optimality. In this example, walktrap and

spinglass found the same three clusters, which are the

medical school individuals (including Farrelly’s vertex V7)

and a division of the veterans group individuals into two

parts. This three-way clustering yields the highest

modularity score among the solutions found by these

algorithms.

Louvain found the next best score, and the result is similar

to the previous one except that it splits the veterans group

in a slightly different way (reassigning two vertices from one

cluster to the other). With a modularity score just slightly

below this, the fast greedy algorithm ended up with only

two clusters (the medical school community with Farrelly in

it and the veterans group community). Evidently, the

greediness in this algorithm prevented it from finding that a

higher modularity could be achieved by splitting the

veterans group community. That said, this two-cluster

solution found by the fast greedy algorithm describes the

original context of the data, in which Farrelly combined her

two separate communities.

If you are interested, you can explore a few other vertex

clustering algorithms implemented in igraph. For instance,

the function cluster_edge_betweenness() uses the betweenness

metric not as a feature but in a more direct way. Vertices

with a high betweenness score are considered to be bridges,

and the communities this function uncovers are the ones

that are separated by these bridges. Another interesting

approach is provided by the function cluster_infomap(), which

uses information theory to find communities in which



information flows readily; this can also be interpreted in

terms of the behavior of random walks on the network.

So far, we’ve discussed supervised and unsupervised

learning among the vertices within a single network. Let’s

now consider situations in which we are comparing the

networks themselves.

Comparing Networks

Sometimes a network isn’t your entire dataset. It’s just a

single instance in a dataset comprising many networks. For

instance, detecting bot accounts on social media platforms

usually involves supervised classification in which the friend

or follower networks of real users are compared to those of

fake users. In the Pennsylvania gerrymandering case

mentioned in Chapter 2, districting maps were converted to

networks, and the old map was shown to be a dubious

outlier in the distribution of networks. Neuroscience

provides another important example where one needs to

compare networks. Indeed, it’s common to translate

functional magnetic resonance imaging (fMRI) and positron

emission tomography (PET) data into a network structure in

which the vertices represent different regions of the brain

and in which edges are based on activity patterns

(sequential activation of an area, for instance, or

coactivation of multiple regions during one task). One often

needs to compare two different groups of patients—either

healthy patients against a group of patients with a particular

neurological or psychological disorder or two different

disease groups. Translated to network data science, this

means we’re looking at a two-class dataset of networks to

see if there are statistically significant differences between

the two classes (to understand structural differences). We

might also want to train a supervised classifier to predict the

class based on the network structure.



To generate some synthetic data, let’s create 100

networks of each of the types described at the end of Chapt

er 2: Erdös–Renyi, scale-free, and Watts–Strogatz. In Listing

3-5, we do this and plot a histogram of the network

diameter to see how it varies within and across the different

types of networks.

#initiate vectors/lists 

n<-100 

er<-list() 

sf<-list() 

ws<-list() 

er_d<-rep(NA,n) 

sf_d<-rep(NA,n) 

ws_d<-rep(NA,n) 

 

#loop to create and store random graphs and compute their dia

meters 

for (i in 1:n){ 

  er[[i]]<-sample_gnp(100,0.02) 

  sf[[i]]<-sample_pa(100,power=2.5,directed=F) 

  ws[[i]]<-sample_smallworld(1,100,1,0.1) 

  er_d[i]<-diameter(er[[i]]) 

  sf_d[i]<-diameter(sf[[i]]) 

  ws_d[i]<-diameter(ws[[i]]) 

} 

 

#plot combined histogram 

hist(er_d,col=rgb(0,0,1,0.2),xlim=c(0,max(max(ws_d),max(ws_

d),max(ws_d))),ylim=c(0,40),xlab="Diameter",main="") 

hist(sf_d, col=rgb(0,0,1,0.5), add=T) 

hist(ws_d, col=rgb(0,0,1,0.8), add=T) 

box()

Listing 3-5: A script that generates 300 networks, evenly

split among three different types; computes their network

diameter; and then plots the histograms for each: Erdös–

Renyi, scale-free, and Watts–Strogatz

The parameters are chosen here so that all random

networks have the same number of vertices (chosen



arbitrarily to be 100) and approximately the same edge

density (around 2 percent); this ensures that the network

structure does differentiate the three groups, rather than

something simpler like the number of vertices or edges. Figu

re 3-5 shows the resulting histogram plot.

Figure 3-5: Histograms of network diameter for three different types of random

networks: Erdös–Renyi (light gray), scale-free (medium gray), and Watts–

Strogatz (dark gray)

We see that the three histograms are disjoint. Erdös–Renyi

networks have moderate diameters. Scale-free networks

have small diameter values. Watts–Strogatz networks have

large diameters. If interested, you might try modifying Listin

g 3-5 to compute some of the other global network metrics

discussed in Chapter 2 (such as efficiency, transitivity, and

spectral radius) to see how they behave for the different

types of random graph structures.

There are many machine learning tasks that you can do

now on datasets of networks using the tools developed so



far. For classification (such as labeling social media accounts

as bot versus real based on their friend network) or

regression (such as predicting the journal ranking of

academic publications based on their citation networks),

you can compute a collection of global network metrics to

then use as features for a traditional supervised learning

algorithm. Similarly, to cluster a collection of networks into

different types (for example, grouping individuals according

to their fMRI brain network structure), you can compute

global network metrics and feed them into a traditional

clustering algorithm. You can also do statistics, such as

outlier detection and confidence interval estimation. Indeed,

by representing each network with its vector of global

network metric values, you “structure” your network data

and open the door to all the statistical and machine learning

methods that we traditionally rely upon in data science.

Analyzing Spread Through Networks

Another important topic in network analysis is the spread (or

propagation) of various entities through a network. There

are many real-world instances of this, including infectious

diseases in contact networks and viral content in social

media networks. Understanding the geometry of a network

can help predict the way that entities spread on the

network, and we can leverage this insight to change the

network geometry so that we impact spread.

Tracking Disease Spread Between Towns

Let’s return to the weighted network of four towns from the

previous chapter’s Figure 2-3. We’ll take the adjacency

matrix for it from Listing 2-3 and use it to create a weighted

network whose edge weights are the inverses of the original

distance; this turns distances into proximity scores, where



shorter roads have larger edge weights than longer roads. Li

sting 3-6 (which relies on first running the script in Listing 2-

3) does this and plots the result.

#invert the nonzero entries in the towns adjacency matrix fro

m last chapter 

townprox<-apply(towns,MARGIN=c(1,2),function(x) 1/x) 

townprox[which(townprox == Inf)]<-0 

 

#create weighted network from this new adjacency matrix 

g_townprox<-graph_from_adjacency_matrix(townprox,mode="undire

cted",weighted=T) 

 

#plot network with edges labeled by weights 

plot(g_townprox,edge.label=round(E(g_townprox)$weight,3),vert

ex.color=2,vertex.size=15,vertex.label.cex=0.8)

Listing 3-6: A script that creates and plots the four towns

network from Chapter 2 but with the edge weights given

by the inverses of the road lengths

Figure 3-6 shows the resulting plot.



Figure 3-6: Four towns and the proximity scores (inverse distance) of the roads

between them

Let’s consider a simple epidemiological model for the

spread of a transmissible disease across this network in

which the probability of the disease spreading from an

infected town to each of its neighboring towns is given by

the edge proximity scores. If the disease starts in town V1,

then it has a 25 percent chance of spreading to V4. If it does

this, it then has a 16.7 percent chance of further spreading

from V4 to V3. But multiplying these two probabilities (which

yields about 4.2 percent) does not give the probability that

the disease spreads from V1 to V3; it gives only the

probability that it does so along the transmission route

V1→V4→V3. Another potential transmission route is

V1→V4→V2→V3, which has a 1 percent chance of occurring.



For a larger network, computing all the conditional

probabilities based on potential transmission routes given

by paths in the network will clearly be too cumbersome to

do by hand, so we need these calculations to be automated.

Moreover, this epidemiological model is too simple to be of

much practical use; we discussed it here just to give a sense

of how the structure of a weighted network might influence

the spread of various entities (disease, information, and so

on) across its vertices, as well as to motivate the more

sophisticated epidemiological model that we’ll be turning to

next.

An SIR model, or susceptible-infected-resistant model

(alternatively, a susceptible-infected-recovered model), is a

model that projects the spread of a disease among a

population by assuming each individual can be in one of

three disease states: susceptible (can become infected),

infected (has the disease and can transmit it), or recovered

or resistant (immune to the disease). Many variations of this

model exist, including models that are susceptible-infected-

susceptible, models that are susceptible-infected-recovered-

susceptible, models including partial immunity from

vaccines, models where individuals are born or die during

the epidemic, and partitioned or geographic models where

populations mix at different rates. Underlying all these

models are systems of partial differential equations with

parameters related to population mixing (such as contact

rates or times) and disease characteristics (such as the

number of new infections expected for a single infectious

individual). Often these differential equations are too

difficult to solve explicitly, so instead we run computer

simulations to quantify the range and likelihood of different

possible outcomes.

To take into account the social interactions between

individuals within a population, SIR models have been

adapted to networks. This provides more detailed



predictions of how a disease might spread, and it also helps

people find ways of mitigating this spread: we can run the

model to see what impact deleting a vertex or edge, or

restructuring the network in other ways, will have on the

spread of the disease.

Many of the network geometry concepts from Chapter 2

play a role here. Hubs are high transmission zones that

might need to be shut down or reduced in size, bridges and

vertices with high betweenness scores suggest targeted

ways of cutting off the main transmission routes of the

disease, and vertices with high centrality scores might

indicate the individuals most important to vaccinate or

quarantine as quickly as possible. Moreover, SIR models on

networks and the computer simulation techniques used to

explore them have applications far beyond epidemiology

because they give a powerful empirical method for studying

the complex relationship between network structure and

network propagation more generally. For instance, the

spread of misinformation on social media is a problem that

has attracted a lot of attention recently and driven a need to

better understand how network structure influences social

media virality—and SIR-type models have proven to be

valuable tools in this realm.

Tracking Disease Spread Between Windsurfers

Let’s jump right in with an example. Listing 3-7 loads a

popular network dataset, the KONECT Windsurfer Network.

This is a weighted network representing 43 Southern

California windsurfers and their level of interactions during

the fall of 1986. Almost all the nondiagonal entries of the

adjacency matrix are nonzero—meaning almost every

possible edge exists in this network—so it’s really the

weights that matter. This makes it difficult to visualize the

network, so let’s create two less dense versions of the

network—one with all the edges whose weights are not in



the top quartile removed and one with those below the

median removed. (This is a simple form of filtering weighted

networks, a concept we’ll return to in more depth in Chapter

4.) Listing 3-7 does this and plots the results.

#load dataset, compute quartiles, and convert to weighted net

work 

wind<-as.matrix(read.csv("beachdata.csv",header=F)) 

q<-quantile(wind,prob=c(.25,.5,.75)) 

g_wind<-graph_from_adjacency_matrix(wind,mode="undirected",we

ighted=T) 

 

#new networks, keeping only edges with weight in top one and

 two quartiles 

wind_top<-wind 

wind_top[which(wind < q[3])]<-0 

g_wind_top<-graph_from_adjacency_matrix(wind_top,mode="undire

cted",weighted=T) 

wind_mid<-wind 

wind_mid[which(wind < q[2])]<-0 

g_wind_mid<-graph_from_adjacency_matrix(wind_mid,mode="undire

cted",weighted=T) 

 

#plot these two thinned-out networks with weights^2 as edge t

hickness 

#(squaring the weights is just to increase the visual distinc

tion) plot(g_wind_top,vertex.size=10,vertex.label.cex=0.4,ver

tex.color=2,edge.width=E(g_wind_top)$weight^2) 

plot(g_wind_mid,vertex.size=10,vertex.label.cex=0.4,vertex.co

lor=2,edge.width=E(g_wind_mid)$weight^2)

Listing 3-7: A script that loads the KONECT Windsurfer

Network dataset and creates two less dense versions of it,

by removing edges whose weights are not in the top one

or two quartiles, and then plots the result

Using the edge_density() function, we find that the original

network has a density of 99.3 percent, the top-quartile

network has a density of 25.8 percent, and the above-

median network has a density of 51.4 percent. The plots in F

igure 3-7 show these two thinned-out versions of the



windsurfer network. The edge thicknesses represent the

edge weights, but to increase the visual distinction among

them, we set the thickness to the square of the edge

weight.

Figure 3-7: Two thinned-out versions of the windsurfer network, in which all

edges whose weights are not in the top quartile (left) or top two quartiles (right)

have been removed

Running an SIR simulation in R is easy. Using igraph’s sir()

function, you can just specify the network, the infection rate

(called beta), and the recovery rate (called gamma), and

then (optionally) specify the number of simulation trials to

conduct (the default value is 100). The infection rate

determines the probability at each time step that a

susceptible vertex becomes infected by an infected

neighbor (higher rates for more contagious diseases);



having two infected neighbors doubles the odds of getting

infected. The recovery rate determines the probability

distribution for the duration of infections; higher recovery

rates mean higher probability at each time step that

infected vertices move on to the recovered state. Higher

recovery rates indicate shorter-duration infections.

When plotting the result of sir(), you’ll see the number of

actively infected individuals in the network together with

the median value across the trials and estimated confidence

intervals as a function of time. Applying the function median()

to the output of sir() provides three time series: the median

number of susceptible individuals, the median number of

infected individuals, and the median number of recovered

individuals. Let’s try this. In Listing 3-8 we simulate a

disease on the full dataset with an infection rate of 3 and a

recovery rate of 2.

#SIR simulations on the original windsurfer network 

sim<-sir(g_wind,beta=3,gamma=2) 

 

#plot the result 

plot(sim,main="Number of Infected Over Time, Including Confid

ence Intervals") 

 

#display the median number of infected individuals for each t

ime bucket 

median(sim)$NI

Listing 3-8: A script that runs 100 simulation trials of an

SIR model on the KONECT Windsurfer Network dataset

with an infection rate of beta=3 and a recovery rate of

gamma=2 and then plots the results and displays the median

number of infected individuals across time

Figure 3-8 shows the resulting plot.



Figure 3-8: Plot of SIR simulations (100 trials) on the original KONECT Windsurfer

Network dataset, showing the number of infected individuals over time (with

mean and confidence intervals) for a disease with infection rate 3 and recovery

rate 2

At its peak, the median is 28 actively infected individuals

—which is 65 percent of the entire network. This is a highly

infectious disease spreading through a densely connected

network. Running the same code as in Listing 3-4 but

lowering the infection rate to beta=1 and raising the recovery

rate to gamma=10 yields the plot in Figure 3-9.



Figure 3-9: SIR simulations on the original KONECT Windsurfer Network dataset

(with confidence levels), now with infection rate 1 and recovery rate 10

As expected, this new epidemic simulation shows fewer

infected individuals over a smaller period of time. Now the

median number of active infections peaks at 17, and the

time period of this epidemic is only one-quarter what it was

for the previous parameters. When using SIR models to

study real-world epidemics, epidemiologists look up the

infection and recovery rate parameters in the scientific

literature if they are already known, and if they’re not

already known, they can be estimated from data on how the

disease has spread so far. Usually, such estimates will

involve some degree of uncertainty, so we can run SIR

simulations on a range of parameters to see the range of

possible outcomes.

Disrupting Communication and Disease Spread

One of the interesting proposed uses of vertex Forman–Ricci

curvature is to rank vertices for removal to disrupt

communication and disease spread on a network. In a

communications network, disrupting communication may

involve targeting a specific cell tower or isolating an



individual import to the network. In 2020, we saw how

isolating COVID-infected or COVID-exposed individuals by

social distancing and quarantines helped stop the spread of

COVID in large cities. Recall that vertex 7 in the author’s

network had a large Forman–Ricci curvature. Let’s run an

SIR model on the author’s network with and without vertex

7 included to compare the results:

#run and plot SIR epidemic on full author's network 

sim1<-sir(g_social,beta=3,gamma=2) 

plot(sim1,main="Epidemic on Full Author's Network") 

 

#remove vertex 7 from the author's network and rerun SIR epid

emic 

 

g2<-delete_vertices(g_social,v=7) 

sim2<-sir(g2,beta=3,gamma=2) 

plot(sim2,main="Epidemic on Author's Network with Vertex 7 Re

moved")

This script runs epidemics on the original network and the

modified network, with vertex 7 removed, to compare the

severity of the simulated epidemic. This should yield an

initial plot similar to Figure 3-10, with the epidemic

propagating through the whole network.



Figure 3-10: An SIR epidemic on the author’s full network

Figure 3-10 shows an SIR epidemic resulting in five time

periods of infection spread, with a median number of

infected at 5. Some simulations suggest the possibility of up

to 12 infections at once within the first 2 time periods. This

is a pretty severe epidemic, forecast to impact more than 25

percent of the population at a time before the infection

takes out the whole susceptible population.

Let’s examine what happens when vertex 7 is removed,

shown in Figure 3-11.



Figure 3-11: An SIR epidemic on the author’s edited network (with vertex 7

removed)

Figure 3-11 shows a less severe epidemic over a shorter

time frame. There are only four periods in which infection

occurs, and the median number infected at the height of the

epidemic is only 2, with a maximum estimate of 8. While the

epidemic still impacts the population, it is confined to fewer

individuals and quickly over. By the end of the second time

period, most models suggest the epidemic has ended.

Many applications that let us target vertices to disrupt a

network exist. Not only can we mitigate potential epidemics

by removing pieces of a network, but we can also disrupt

enemy communication within a terrorist cell or hostile

government by taking out targets with highly negative

Forman–Ricci curvature or disrupt disease processes by

taking out proteins or genes within the backbone of the

biological network. Changes in Forman–Ricci curvature as a

network evolves also contribute to network-related analytics

capabilities.

Forman–Ricci flow is a geometric flow (differential

equation) related to changes in curvature over time on a

network, analogous to heat dissipating across a network



from a defined starting point. Tracking changes in curvature

can identify areas of change within a network. Forman–Ricci

flow provides a way to quantify regions of growth or

shrinkage of connections within networks, such as the rapid

expansion of terrorist cell membership, accumulation of

mutations in a cancer gene network, or increased disease

spread risk in an epidemic. For instance, the increased large

party or event activity in some regions during COVID

quarantines resulted in an increased spread of COVID within

those parts of an area’s social network. Forman–Ricci flow

on image datasets also provides a way to map medical

image data from a raw source file onto a standard surface,

such as a plane or a sphere or even a frying pan, such that

results can be pooled and compared within and across

patient groups.

Summary

In this chapter, we first saw how the vertex metrics covered

in Chapter 2 can serve as predictors for supervised learning

within a network (including link prediction) and as features

for vertex clustering (that is, community mining). This

approach to machine learning translates a network back to

structured datasets and applies Euclidean machine learning

algorithms. We then looked into a handful of community

mining algorithms that operate directly within the network.

Next, we moved from analyzing data within a network to

analyzing datasets where each data point is itself a network.

Similar to our use of vertex metrics in the previous setting,

here we used global network metrics as predictors or

features to do machine learning and statistical analyses on

this kind of network data. Finally, in the last section of this

chapter, we explored the SIR disease spread model from

epidemiology as it applies to networks. The emphasis here

is on the intersection of network geometry and network



spread; in particular, we discuss some targeted strategies

for disrupting epidemic spread that are rooted in network

geometry.



4 

NETWORK FILTRATION

We’ve explored many ways

to analyze network data by

measuring geometric

properties. In this chapter,

we’ll introduce network

filtration for weighted

networks, which tracks geometric

properties and network metrics over

threshold values imposed on the network.

Then we’ll examine how network data can

be transformed into a higher-dimensional

topological object called a simplicial

complex, and we’ll explore higher-

dimensional versions of the network

metrics we’ve previously considered. From

there, we’ll return to graph comparisons

using a tool from topology related to

filtrations.

Graph Filtration



In the previous chapters, we reviewed different network

metrics, including different measures of centrality, entropy,

spectral radius, diameter, and many others. There’s an

interesting way to understand topological properties of

weighted networks: graph filtration, a method of creating a

series of weighted networks by iteratively removing edges

below a certain threshold (for instance, all edges with

weights lower than 0.2, 0.4, or 0.6). By creating a series of

thresholded graphs, it’s possible to identify persistent

network metrics, or local and global network metrics that

persist across a wide range of filtration values. This gives us

features that can be plotted or tracked across filtrations.

This is one of the core ideas of topological data analysis

(TDA).

To explore this further, let’s say we’re examining

longitudinal educational or risk behavior outcomes of

adolescents based on adolescent friendship or informal

social ties within a community. Imagine we have weighted

social networks with high degree metrics for each vertex,

where edges are weighted by hours spent with friends over

a normal week. The first group of friends might spend a

couple of hours together playing soccer on the weekend.

The second group might study together once or twice a

week and see each other in classes. The third group might

play sports often, do homework together after dinner or in

the mornings before school, and stay over at each other’s

homes often. As we filter hours spent together, the degree

metrics will drop for the first two groups of friends in a

network. The last group will retain a high degree metric over

the filtration, as they spend more time together. This

persistence of degree will likely shed light on the strength of

whatever social ties we’re examining in our study.

Let’s examine how we can implement graph filtrations by

decomposing and exploring two small example social

networks, Graph 1 and Graph 2. First, we’ll load the two



networks into R and explore the structures of the full

networks with the script in Listing 4-1.

#load both networks in R 

mydata1<-as.matrix(read.csv("Graph1w.csv",header=F)) 

mydata2<-as.matrix(read.csv("Graph2w.csv",header=F)) 

 

#load igraph and convert to graph objects 

library(igraph) 

g1<-graph_from_adjacency_matrix(mydata1,mode="undirected",wei

ghted=T) 

g2<-graph_from_adjacency_matrix(mydata2,mode="undirected",wei

ghted=T) 

 

#plot the two graphs 

plot(g1,edge.label=E(g1)$weight,main="Graph 1") 

plot(g2,edge.label=E(g2)$weight,main="Graph 2")

Listing 4-1: A script that loads two different network

structures for filtration

The script in Listing 4-1 should load two different

networks, Graph 1 and Graph 2, which have different

connectivity patterns but the same number of vertices. It

should also plot both networks with edge weights given in

the plots. Let’s compare the networks, shown in Figure 4-1.



Figure 4-1: Plots of the two example networks

Figure 4-1 suggests that Graph 1 is a sparsely connected

network with mostly large edge weights (perhaps a sample

of students in the same class showing up for a service

activity over the course of a weekend), whereas Graph 2 is a

densely connected network with a mixture of different edge

weights (perhaps a friendship network within a sports

team). We’d expect higher hub scores and other centrality

measures in Graph 2, but a filtration might change those

metrics more quickly than we’d expect them to change in

Graph 1.

Let’s create filtrations of the networks; this will allow us to

explore a few centrality metrics on these networks. We can

do this by adding the following code to the script in Listing 4

-1:



#filter Graph 1 

mydata1[mydata1<0.2]<-0 

g12<-graph_from_adjacency_matrix(mydata1,mode="undirected",we

ighted=T) 

mydata1[mydata1<0.4]<-0 

g14<-graph_from_adjacency_matrix(mydata1,mode="undirected",we

ighted=T) 

mydata1[mydata1<0.6]<-0 

g16<-graph_from_adjacency_matrix(mydata1,mode="undirected",we

ighted=T) 

mydata1[mydata1<0.8]<-0 

g18<-graph_from_adjacency_matrix(mydata1,mode="undirected",we

ighted=T) 

 

#filter Graph 2 

mydata2[mydata2<0.2]<-0 

g22<-graph_from_adjacency_matrix(mydata2,mode="undirected",we

ighted=T) 

mydata2[mydata2<0.4]<-0 

g24<-graph_from_adjacency_matrix(mydata2,mode="undirected",we

ighted=T) 

mydata2[mydata2<0.6]<-0 

g26<-graph_from_adjacency_matrix(mydata2,mode="undirected",we

ighted=T) 

mydata2[mydata2<0.8]<-0 

g28<-graph_from_adjacency_matrix(mydata2,mode="undirected",we

ighted=T)

The previous code filters Graph 1 and Graph 2 by edge

weight, using increasing intervals of 0.2. This yields a series

of five networks in each graph filtration, which can be

further examined by applying network metrics to each

sequence of filtered graphs.

Let’s examine the degree centrality of each vertex across

the filtration of Graph 1 by adding the following to our

script:

#calculate degree centrality for Graph 1's filtration sequenc

e 

d1<-degree(g1) 

d12<-degree(g12) 



d14<-degree(g14) 

d16<-degree(g16) 

d18<-degree(g18) 

 

#create a dataset tracking degree centrality across the filtr

ation 

g1deg<-cbind(d1,d12,d14,d16,d18)

This code calculates degree centrality across filtrations of

Graph 1, which should yield a dataset containing the

information in Table 4-1.

Table 4-1: Degree Centrality Across Graph 1 Filtrations

Column1 d1 d12 d14 d16 d18

V1 3 2 2 1 0

V2 2 1 1 1 1

V3 3 3 3 2 1

V4 3 3 3 1 1

V5 2 2 2 2 1

V6 1 1 1 1 0

Table 4-1 shows that vertices 1, 3, and 4 have high degree

centralities; however, vertices 3 and 4 retain these high

degree centrality values across much more of the filtration

than vertex 1, suggesting they are more important to the

network, despite having the same centrality metric on the

unfiltered network (column 1).

Now, let’s add some code to calculate degree centrality

across Graph 2’s filtration:

#calculate degree centrality for Graph 2's filtration sequenc

e 

d2<-degree(g2) 

d22<-degree(g22) 

d24<-degree(g24) 

d26<-degree(g26) 

d28<-degree(g28) 

 



#create a dataset tracking degree centrality across the filtr

ation 

g2deg<-cbind(d2,d22,d24,d26,d28)

This code calculates degree centrality across the filtration

of Graph 2, yielding a table similar to that obtained by

Graph 1’s filtration and centrality calculation. Table 4-2

summarizes the findings from the Graph 2 filtration and

centrality calculation.

Table 4-2: Degree Centrality Across Graph 2 Filtrations

Column1 d2 d22 d24 d26 d28

V1 4 3 3 3 3

V2 4 4 3 2 1

V3 4 4 3 2 1

V4 5 4 3 0 0

V5 3 3 1 1 0

V6 4 4 3 2 1

As Table 4-2 shows, there are relatively high degree

centrality measures in the unfiltered Graph 2; however, the

pattern changes by vertex after the filtration begins. Some

vertices, like vertex 1, retain a high degree centrality

throughout the filtration. Others, such as vertex 4, retain a

high degree centrality and then drop to 0. Others still, like

vertex 6, show a slow degradation of degree centrality over

the full filtration. This may be informative in a study of

social ties within a subgroup of interest. A high degree of

informal social ties, represented by a high centrality degree,

has been linked to positive educational attainment, career

achievement, and resilience to life adversity in young

adults.

Degree centrality is only one example of metrics that we

can calculate across a filtration; we can also calculate other

local metrics such as betweenness centrality or triadic

closure. In addition, we can calculate global metrics, such as



the spectral radius or the Euler characteristic, across a

filtration. Let’s add the following to Listing 4-1 to calculate

the diameter of each filtration of Graph 1:

#calculate graph diameter of Graph 1's filtration 

di1<-diameter(g1) 

di12<-diameter(g12) 

di14<-diameter(g14) 

di16<-diameter(g16) 

di18<-diameter(g18)

The sequence of diameters calculated across the filtration

of Graph 1 by this code is 2.1, 2.9, 2.9, 1.6, and 0.9. Let’s

calculate the diameters for Graph 2’s filtration:

#calculate graph diameter of Graph 2's filtration 

di2<-diameter(g2) 

di22<-diameter(g22) 

di24<-diameter(g24) 

di26<-diameter(g26) 

di28<-diameter(g28)

The sequence of diameters calculated across the filtration

of Graph 2 by this code is 0.9, 1.2, 1.6, 2.4, and 1.7. This is

different than Graph 1’s diameter sequence, suggesting that

the diameter is generally smaller until later in the filtration

sequence. This metric’s filtration might be useful in

assessing a community’s overall level and depth of informal

social ties, a measure of community resources available to

residents in need. Figure 4-2 shows the diameter plots

across both filtrations to compare the two networks.



Figure 4-2: A plot of graph diameter metrics across filtrations of Graph 1 and

Graph 2

As we can see in Figure 4-2, Graph 1 has a larger graph

diameter than Graph 2 early in the filtration, but this

relationship switches after a filtration value of 0.4. This

suggests that there is greater eccentricity in Graph 1 early

in the filtrations but greater eccentricity in Graph 2 later in

the filtration. Remember that eccentricity is the maximum

distance from one point to another in the network.

Graph filtration tracking as we’ve plotted in Figure 4-2 can

be helpful in distinguishing similar graphs with different

connectivity patterns or weights. Dynamic networks, in

which weights can change over time, could be a use case of

graph filtrations. In addition, they are quite useful in

comparison among networks with the same vertices but

potentially different weights (such as patient groups in brain

imaging studies); in fact, brain imaging studies are one of

the applications for which graph filtration was developed.

Higher eccentricity values suggest longer pathways to relay

neural signals; stronger edge weights represent stronger

connections between two areas of the brain. Strong edges



with low eccentricity suggest a functional module activated

in a particular task given to the patient groups on which

imaging was performed.

Although graph filtration is a relatively new concept, it has

mainly been confined to biological network data, including

networks based on brain imaging studies. However, the

graph filtration method is widely applicable to weighted

network data, and its tool set lends itself to further

development in other fields. If you want to explore this topic

in more depth, look through the references at the end of this

book and play around with graph filtrations on their own

data. For now, let’s turn our attention to a topological view

of graphs, which allows us to extend the relationships

captured in graphs to other types of interactions between

people or things.

From Graphs to Simplicial Complexes

Graphs can be considered topological objects that have

defined global properties we can leverage in our analyses,

and it’s possible to turn a graph into a higher-dimensional

version of a graph, called a simplicial complex, by

considering three-way, four-way, and n-way interactions by

individuals and vertices in the graph. Let’s consider three

colleagues who often collaborate on academic papers but

have never published with all three names on a paper. We’ll

create a simple graph for the three colleagues, shown in Fig

ure 4-3.



Figure 4-3: A simplicial complex showing two-way interactions among three

colleagues

Now let’s imagine a paper where all three colleagues

participate and have their names on the paper. This is a

three-way interaction, rather than three two-way

interactions, and we’d end up with a filled-in triangle rather

than three sets of two-way arrows, as shown in Figure 4-4.

Figure 4-4: A simplicial complex showing three-way interactions among three

colleagues

Figure 4-4 uses a triangle to represent a three-way

connection among colleagues, similar to how the arrows

between two colleagues represented two-way connections.

This can be generalized to tetrahedra for four-way

interactions and more exotic shapes to represent higher n-

way interactions. There’s no limit as to how high of a



number n can be, but computational issues will come into

play at some point as we work our way up to n-way

interactions in a simplicial complex. Analyses involving

email chains, co-authors on papers, or conference calls are

common applications that extend social network analysis

and graphs into the analysis of simplicial complexes.

Depending on the size of the network and the size of the n-

way interactions, simplicial complex representations of

individuals and mutual interactions can become very

complicated across values of n. Analyzing these structures

can involve a lot of computing power and tools that extend

network metrics. However, because graphs are topological

objects, many theorems and tools of topology can be

successfully applied to them without transformations or

other hassles. This, in turn, allows for other areas of math,

including partial differential equations and probability

theory, to be applied and developed on graphs.

Just as we could filter a weighted graph, we also can filter

simplicial complexes. The filtration process for simplicial

complexes varies depending on how the simplicial complex

is built. In most topological data analysis algorithms, we

start with a point cloud of data within a space where a

distance metric can be defined. Points are included in a

simplicial complex if they share either mutual n-way

overlapping sets with each other (Čech complex) or pairwise

overlapping sets (Vietoris–Rips complex). By sequentially

increasing or decreasing the value of the distance metric,

we obtain a filtration of simplicial complexes. In practice,

the Vietoris–Rips complex is easier to compute and

underlies many common topological data analysis

packages. This leads us to a very new and emerging part of

network analytics: extensions of network tools to simplicial

complexes.

Many of the tools introduced in the previous chapters

have simplicial complex analogs, including eccentricity,



shortest path algorithms, centrality metrics (Katz centrality,

eigenvector centrality, closeness centrality, and so on),

triadic closure, and many more. Typically, simplicial

complexes of network data are built by computing maximal

cliques within the network (though it’s possible to define a

distance metric and apply the process defined in the prior

paragraph to build simplicial complexes from network data

as well). Maximal cliques of a network include the highest n-

way mutual edges among groups of vertices. These

maximal cliques correspond to an (n – 1)-simplicial complex.

The flag complex of the graph involves building the graph’s

simplicial complex by computing the graph’s maximal

cliques. From this complex, it’s possible to define quantities

at each simplicial complex level, which can be combined

into a total metric across levels. This means we can glean

more information about the overall structure of the network

and its components at various levels of a simplicial complex.

Let’s return to Farrelly’s social network introduced in prior

chapters and look at an extension of degree centrality,

dubbed topological dimension. We can define topological

dimension as a weighted degree centrality, weighting each

vertex by the dimension of the cliques in which it resides,

which involves summing across a vertex’s cliques of

different dimensions. For instance, a vertex in a maximal

two-clique and a maximal three-clique within the network

would have a topological dimension of 5. A vertex in a

maximal five-clique and no other cliques would also have a

topological dimension of 5. However, the former vertex

might have a degree of 3, connecting to one other vertex in

the two-clique and two other vertices in the three-clique;

the latter would have a degree of 4, connecting to the four

other vertices in the five-clique.

In Listing 4-2, we have a script that calculates the

maximal cliques and the topological dimension of vertices

within Farrelly’s social network.



#load the author's network 

g_social<-read.csv("SocialNetwork.csv") 

 

#create the graph 

library(igraph) 

g1<-graph_from_adjacency_matrix(g_social,mode="undirected",we

ighted=F) 

 

#compute the maximal cliques in the author's network data 

cl<-maximal.cliques(g1) 

 

#create array 

cl<-as.array(cl) 

 

#get clique size from maximal clique array 

d<-dim(cl) 

l<-rep(NA,d) 

for (i in 1:d){ 

  l[i]<-length(as.vector(cl[[i]])) 

} 

 

#create matrix of vertices in maximal cliques 

av<-matrix(rep(NA,d*20),20) 

for (i in 1:20){ 

  for (j in 1:d){ 

    av[i,j]<-i%in%cl[[j]] 

  } 

} 

 

#convert to binary indicators 

avind<-ifelse(av==TRUE,1,0) 

 

#multiply out to calculate each vertex's topological dimensio

n 

topmat<-t(avind)*l 

topdim<-colSums(topmat)

Listing 4-2: A script that calculates topological dimension

across vertices in Farrelly’s social network

This script results in a topological dimension calculation

based on the flag complex of the graph. It first calculates

the flag complex from the maximal cliques; it then stores



the information of each clique, such that we can cycle

through each clique to see which vertices belong to each

clique. Converting this information to a binary indicator

matrix allows us to multiply the dimension of the clique and

the indicator matrix, resulting in a vector containing the

topological dimension of each vertex. Table 4-3 shows the

topological dimension and degree of each vertex in the

author’s network dataset.

Table 4-3: Topological Dimension and Degree Summary for Vertices in Farrelly’s

Social Network

Vertex Degree Topological dimension

1 2 3

2 1 2

3 5 11

4 2 3

5 4 7

6 3 6

7 8 18

8 3 4

9 3 4

10 3 6

11 3 5

12 1 2

13 4 8

14 4 7

15 4 8

16 2 4

17 2 4

18 3 6

19 2 4

20 1 2

Table 4-3 shows a distinct difference between degree,

which includes only the vertices and edges of the author’s



network in its calculation, and the topological dimension,

which includes higher-order interactions. For instance,

vertices 9 and 10 both have a degree of 3; however, their

topological dimensions differ, with vertex 9 having a score

of 4 and vertex 10 having a score of 6. The importance of

vertex 10 to the overall network structure is larger than the

importance of vertex 9 to the overall network structure.

Without considering higher-order interactions within the

network, we would not be able to distinguish between the

two vertices with respect to this metric.

For weighted networks, it’s possible to combine these

simplicial-complex-based metrics with graph filtration,

yielding a sequence of metrics over the filtration based on

the simplicial complex of the network. You’ll see this when

we discuss a tool called persistent homology in the next

section of this chapter. You could do the same with the Euler

characteristic or the topological dimension or a yet-to-be-

developed simplicial complex extension of network metrics.

Simplicial complex extensions of network metrics are a

very new area of study within network science, and few

packages or open source functions exist to calculate the

simplicial analogs of network metrics. However, it is hoped

that this example and some of the papers on this topic will

spark the addition of simplex-based metric within network

science packages. Perhaps you will take up the challenge

and contribute functions to the igraph package or other

open source network science tools.

The next tools we look at will involve a bit more topology

than we’ve encountered so far, so first let’s explore another

topological concept that’s useful in graph analytics and in

understanding simplicial complexes.

Introduction to Homology



The basic topological premise of our next set of tools

involves counting different dimensions of holes in an object

or dataset. Consider a piece of paper with a hole in the

middle of it or a basketball with a sphere of air inside it.

These are holes of different dimensions, and each hole

separates connected pieces of an object from other pieces

of itself. When these holes exist in manifolds or functions,

we can systematically study them and classify objects or

spaces based on the number and dimension of these holes.

Homology is the counting of varying-dimensional holes

(connected components, circles, spheres, voids, and so on)

within a given object or space, usually to classify that object

or space. For low-dimensional spaces, this is fairly

straightforward; you can actually build a physical model of

the space and count the holes. However, there are also

variants of homology that allow topologists to distinguish

between different types of objects and spaces that may be

higher dimensional or strangely shaped without requiring a

physical model.

Numbers corresponding to holes in each dimension create

a handy collection of values, called Betti numbers, that

organize the number and type of hole within a given object

or space such that each object can be classified and studied

alongside other objects whose numbers match. If you’re

familiar with algebraic topology, this is a standard procedure

for the classification of abstract mathematical structures.

Commonly, these numbers are stored in a vector. It’s a bit

abstract, but we’ll go through some simple examples.

Examples of Betti Numbers

Many sports involve using a ball, but not all balls are the

same, topologically speaking. Basketballs and baseballs are

both round balls in three-dimensional space. Basketballs are

usually bigger than baseballs, but if there were a child’s toy



basketball of the same size as a baseball, one might look at

them and think they are quite similar.

Figure 4-5: An example baseball and basketball, which look similar but are

topologically distinct

Topologically, though, they are quite distinct. These two

balls differ in second Betti numbers, which count three-

dimensional voids in an object. A vector of Betti numbers is

an infinite sequence of numbers representing the number of

holes in each dimension, starting with connected

components on the zeroth number position and moving to

circles (first number position), voids (second number

position), and higher-dimensional voids (starting from the

third position and going to infinite position). In practice,

most datasets don’t have many holes past the first Betti

number, so we can fill the rest of the vector with zeros. The

hollow basketball has a hole past the first Betti number

because it contains a void, giving a vector of Betti numbers

(1, 0, 1, 0, . . .), while the solid baseball has no holes of any

dimension, corresponding to a Betti number vector of (1, 0,

0, 0, . . .).

Some objects have more than one hole in a given

dimension. For instance, imagine gluing a second basketball

to the outer surface of the basketball in Figure 4-5. This

object would obviously have another void, yielding a Betti

number vector of (1, 0, 2, 0, . . .). A donut, or torus, has a

vector of (1, 2, 1, 0, . . .), as it has two open circles defining

the ends of the tube, which form a void when connected at



the ends. Figure 4-6 shows the classical construction of a

torus from a sheet of paper.

Figure 4-6: The construction of a torus from a sheet of paper connected at the

edges

It’s fairly easy to classify objects and spaces that can be

easily visualized in three dimensions. However, many

datasets used in the industry involve more than three

dimensions, and comparisons and classifications of these

objects require algorithms that can discern the Betti

numbers associated with those objects; among these are

genomics datasets (which can involve million-dimensional

spaces), video sequences, and multivariate time series.

The Euler Characteristic

One of the topology-based metrics shows up both in the

analysis of networks and in their higher-dimensional

simplicial complex cousins, and it ties back to the notion of

curvature introduced in prior chapters. The Euler

characteristic, often given the notation of χ, provides a

single number to summarize a topological space and is a

topological invariant, meaning that the topological quantity

being calculated does not change as the space is

continuously deformed (stretched, twisted, or otherwise

manipulated without tearing the space). The Euler

characteristic can be defined using Betti numbers;

technically, computing the Euler characteristic this way

involves an alternating sum of Betti numbers (zeroth Betti

number – first Betti number + second Betti number – third



Betti number + fourth Betti number . . . up until the highest

Betti number that exists).

The Euler characteristic can also be defined through the

dimensions of the simplicial complex (number of vertices –

number of edges + number of triangles – number of mutual

4-way interactions + . . .). However, vertices included in an

edge aren’t counted in the number of vertices. A triangle

that makes up part of a mutual four-way interaction won’t

be counted either.

However, there is an easy way to obtain the largest pieces

of a network or its higher-dimensional simplicial complex

using an igraph function related to maximal cliques (as

mentioned earlier). Maximal k – cliques denote and count

the k – 1 simplices of the full simplicial complex derived

from the network. They’re a convenient way to build the full

simplicial complex and keep track of the pieces involved at

each n-way interaction. Let’s add to the script in Listing 4-2

to count the maximal cliques in the author’s network:

#create a table counting the number of k+1 simplices in the s

implicial complex 

summ<-as.numeric(summary(cl)[,1]) 

jjj<-table(summ)

This code creates a table summarizing the maximal

cliques in the network that we previously computed. The

result should yield 11 two-cliques (one-simplices, or edges),

6 three-cliques (two-simplices, or triangles), and 1 four-

clique (three-simplices, or a mutual four-way interaction).

We can plug these values into the Euler characteristic

formula:

χ = 0 vertices – 11 edges + 6 triangles – 1 tetrahedron

This gives a χ of –6. Recent studies have shown that most

real-world networks have negative Euler characteristics.



There’s a very interesting reason that network data tends

toward negative Euler characteristics related to the

curvature of the network. Negative curvature in graphs is

associated with the robustness of the network; biological

networks with highly negative curvature can often withstand

loss of function within parts of the network without adverse

effects on the organism. The Gauss–Bonnet theorem relates

the Euler characteristic, defined through homology, and the

curvature of the object, including the manifold’s curvature

and the curvature of the manifold’s boundary. There have

been some recent attempts to link network analytics tools

such as homology and Forman–Ricci curvature for a deeper

study into network properties. This is a deep result in a

branch of mathematics called differential geometry that

connects an object’s local geometry to its global topology,

and it’s a newer area of study in network science. Now that

we know network topology and geometry are related to

each other, let’s look at a topological tool called persistent

homology.

Persistent Homology

One of the most common topology-based algorithms used in

data analysis today is persistent homology, which has been

applied in genomics, healthcare, economics, energy,

psychometrics, and many other fields. In essence, the idea

of the persistent homology algorithm is to build a point

cloud from the data, filter it into a series of simplicial

complexes based on different thresholds of the data (akin to

an MRI), and track topological features, such as holes or

voids, appearing and disappearing in each slice. For

instance, consider the three slices of cheese in Figure 4-7,

each containing holes in the shape of circles; these circles

affect the first Betti numbers of the datasets.



Figure 4-7: Three slices of a cheese block containing holes in different places

In Figure 4-7 one hole appears in all three slices, another

appears in only the middle slice, and one appears in two

slices. Holes and voids can be of different sizes in real data,

and as we move across slices, holes might grow or shrink in

diameter. Persistent homology algorithms have thresholds

for both the lifetime of a feature and the minimum size

considered for measuring a hole. In our example, we have

features that are likely noise (either too small a radius or

only appearing in one slice of our cheese) and features that

are likely real features in the dataset (such as the void

appearing in all three slices). Let’s unpack this intuition.

Say we want to compare two datasets to see whether they

are collected from the same distribution or shape. This is

common when matching image data. While image data

rarely comes with cheese holes, circles come up in image

data quite frequently in the form of eyes.

Technically speaking, by varying the distances used to

build the simplicial complex from the point cloud data (or

filtering), you can track various Betti numbers through the

filtration and assign each hole in the data an importance

score, with important features lasting over longer filtration

distances (longer persistence, in the parlance of persistent

homology). In Figure 4-7, the hole that appears in all three

slices would be considered the most important feature, and

the hole that appears in only the second slice might be a

result of noise in the data. These features can then be



plotted on a barcode or persistence diagram that tracks

these features’ lifetimes (distance scale over which they

exist in the filtration). We’ll explore barcodes and

persistence diagrams in the following example analysis.

In practice, datasets are usually examined only for low-

dimensional holes and features due to computational issues,

and the zeroth (connected components) and first (circles)

Betti numbers are used most commonly unless you are

explicitly computing high-dimensional shape data. The

example in Figure 4-7 is connected in all three slices, so it

has a zeroth Betti number of 1 across all slices. However,

circles appear and disappear through the filtration, giving a

barcode that looks like Figure 4-8.

Figure 4-8: A diagram plotting the persistence of features (holes) captured in the

box of Figure 4-7

The barcode shows the time at which features appear and

disappear. For instance, in Figure 4-8, we can see a feature

that appears at time 2 and disappears at time 3 (our bottom

cheese hole in Figure 4-7). The sequence of connected

components across the data slices has a curious relationship

with another machine learning method, single-linkage

hierarchical clustering, in which clusters at each height level

correspond to the connected components at that particular

slice. When both techniques use the same distance metric,

the results are actually identical; however, the persistent

homology approach will give more information than single-

linkage hierarchical clustering’s dendrogram regarding the



structure of the data. This means that machine learning

practitioners can choose the technique that fits the problem

best, as these two options come with their own plots and

statistical tests. For instance, with a nontechnical audience,

single-linkage hierarchical clustering might be preferable, as

dendrograms and heatmaps are more familiar to biologists

or social scientists.

Comparison of Networks with

Persistent Homology

Within the realm of network analytics, persistent homology

can be a useful way to compare network structures to see if

different networks have the same underlying geometry.

Let’s explore this further with an application to simulated

networks. In neuroscience, it’s common to translate fMRI or

PET data into a network structure, where different regions of

the brain are translated to vertices and connected to other

regions of the brain based on activity patterns (sequential

activation of an area, for instance, or co-activation of

multiple regions during one task). Often, outcomes of

interest involve comparing groups of patients, either healthy

patients against a group of patients with a particular

neurological or psychological disorder or two disease

groups, to understand differences in the brain activation

patterns across disorders.

We’ll explore the use of persistent homology in the

comparison of two such networks. Because fMRI data isn’t

readily available as open source, we’ll simulate networks in

igraph that are approximately the size of brain imaging

networks; this will demonstrate how this methodology would

be applied to imaging data that has been transformed to

network data.



The igraph package allows you to simulate many types of

network data, including Erdös–Renyi graphs, scale-free

graphs, and Watts–Strogatz graphs. We’ll create each of

these types of graphs using the script in Listing 4-3.

#simulate three graphs using the igraph package for further c

omparison 

library(igraph) 

 

#create an Erdos-Renyi graph 

g1<-erdos.renyi.game(30,0.3) 

 

#create a scale-free graph 

g2<-sample_pa(30,power=2.5,directed=F) 

 

#create a Watts-Strogatz graph 

g3<-sample_smallworld(2,5,3,0.3) 

 

#plot the three graphs created 

plot(g1,main="Erdos-Renyi Graph") 

plot(g2,main="Scale-Free Graph") 

plot(g3,main="Watts-Strogatz Graph")

Listing 4-3: A script that simulates three different types of

network structures for statistical comparison

Listing 4-3 creates three different types of networks that

can later be compared via persistent homology; it also

visualizes the networks, which should yield something

similar (but probably not identical) to Figure 4-9.



Figure 4-9: Plots of the three simulated network types

Figure 4-9 shows very different types of graphs. The scale-

free graph in the middle includes a hub with many vertices

connected to the hub but not to other vertices. The Erdös–

Renyi graph on the left and the Watts–Strogatz graph on the

right have many more interconnections, but the Watts–

Strogatz model seems to have more structure connecting

vertices into cliques, rather than randomly connecting

vertices.

Let’s apply persistent homology to these networks and

compare the distance between persistence diagrams among

these networks by adding the following to Listing 4-3; again,

your results may vary given the simulation of each network

type:

#load TDA package 

library(TDAstats) 

 

#get adjacency matrices 

m1<-as.matrix(get.adjacency(g1)) 

m2<-as.matrix(get.adjacency(g2)) 

m3<-as.matrix(get.adjacency(g3)) 



 

#compute persistent homology 

d1<-calculate_homology(m1,dim=2,format="cloud") 

d2<-calculate_homology(m2,dim=2,format="cloud") 

d3<-calculate_homology(m3,dim=2,format="cloud") 

 

#plot persistence diagrams 

plot_persist(d1) 

plot_persist(d2) 

plot_persist(d3) 

 

#compute distances among graphs 

w1<-phom.dist(d1,d2,limit.num=0) 

w2<-phom.dist(d1,d3,limit.num=0) 

w3<-phom.dist(d2,d3,limit.num=0)

This addition derives an adjacency matrix from each of

the simulated graphs and computes a persistence diagram

from this adjacency matrix, which is then compared through

the distances between the zeroth homology groups. This

script should produce three persistence diagrams that look

like Figure 4-10 (note they won’t be identical, as each run

will produce something slightly different).





Figure 4-10: Persistence diagram plot for the three simulated network types

(from top to bottom: Erdös–Renyi, scale-free, and Watts–Strogatz)

Figure 4-10 shows varying topological features found in

each of the network types. The Watts–Strogatz network and

Erdös–Renyi graphs both produce many large zeroth

homology features (the dots), while the scale-free graph has

a variety of zeroth homology feature sizes. The scale-free

graph does not have higher-order homology features, while

the other two graphs have first homology features (the

triangles), albeit very near the diagonal line (suggesting

that they may be noise). A point directly on the diagonal line

is a feature that is in only one slice of the data; the farther

from the diagonal line a point lies, the longer it has existed

in the data. With respect to our three simulated networks,

it’s hard to tell if the scale-free and Watts–Strogatz graphs

differ significantly from the Erdös–Renyi graph just by

looking at the persistence diagrams.

We can add to our script to derive a null distribution for

the Erdös–Renyi persistence diagram and use a special

distance metric, Wasserstein distance, to statistically test

the structural differences between the Erdös–Renyi

persistence diagram and the scale-free and Watts–Strogatz

persistence diagrams:

#get Wasserstein distance between random graphs with the same 

structure 

ww<-rep(NA,100) 

 

for (i in 1:100){ 

  g1<-erdos.renyi.game(30,0.3) 

  g2<-erdos.renyi.game(30,0.3) 

  m1<-as.matrix(get.adjacency(g1)) 

  m2<-as.matrix(get.adjacency(g2)) 

  d1<-calculate_homology(m1,dim=2,format="cloud") 

  d2<-calculate_homology(m2,dim=2,format="cloud") 

  ww[i]<-phom.dist(d1,d2,limit.num=0) 

} 



 

#compute 95% confidence intervals from the simulated null dis

tribution 

quantile(ww,c(0.025,0.975))

This script creates a null distribution of Erdös–Renyi

persistence diagrams from the same distribution that the

original persistence diagram was constructed from; your

results may vary, given the random component to the

simulation piece. Quantiles of our null distribution give a

confidence interval of (0.91, 8.36), which includes quite a bit

smaller distances than the distances computed between the

persistence diagrams of the Erdös–Renyi graph and the

Watts–Strogatz graph (23.59) and between the persistence

diagrams of the Erdös–Renyi graph and the scale-free graph

(39.78). Thus, we can conclude that the structures of the

Watts–Strogatz graph and the scale-free graph are not

random. There is a significant structural component to each

of these graphs.

This type of simulation can be very useful in testing

differences between persistence diagrams of brain networks

derived from fMRI and PET imaging studies, and it’s easy to

implement in R. This methodology can also be applied to

other networks with a hypothesized underlying structure,

such as social networks or power grids. Many other types of

network analysis tools can also be used to compare graph

structures, such as local and global metrics (including graph

radius and diameter, degree distributions, clustering graph

coefficients, and so on), and many of these comparisons

haven’t been explored much yet.

Summary

In this chapter, we filtered weighted networks to understand

how network metrics change as edges are removed based



on their weights. Then, we built simplicial complexes from

network data to leverage several topological tools, including

an extension of the degree metric, the Euler characteristic,

and a filtration-based algorithm called persistent homology

that can be used to compare networks. In the next chapter,

we’ll transition from network science to distance geometry

as we explore how different measurement choices impact

supervised and unsupervised learning algorithms.



5 

GEOMETRY IN DATA SCIENCE

In this chapter, we’ll

explore several tools from

geometry: we’ll look at

distance metrics and their

use in k-nearest neighbor

algorithms; we’ll discuss

manifold learning algorithms that map

high-dimensional data to potentially

curved lower-dimensional manifolds; and

we’ll see how to apply fractal geometry to

stock market data. The motivation for this

chapter follows, among other things, from

the manifold hypothesis, which posits that

real-world data often has a natural

dimensionality lower than the

dimensionality of the dataset collected. In

other words, a dataset that has 20

variables (that is, a dimensionality of 20)

might have a better representation in a

12-dimensional space or an 8-dimensional



space. Given the curse of dimensionality,

representing data in lower-dimensional

spaces is ideal (particularly when the

original dimensionality of a dataset is

large, as in genomics or proteomics data).

Choosing the right distance

measurements needed to create these

representations has important implications

for solution quality.

Introduction to Distance Metrics in

Data

Many machine learning algorithms depend on distance

metrics, which provide a measure between points or objects

in a space or manifold. Changes in choice of distance metric

can impact machine learning performance dramatically, as

we’ll see later in this chapter. Distance metrics provide a

measure between points or objects in a space or manifold.

This can be relatively straightforward like using a ruler to

measure the distance between two points on a flat sheet of

paper, as demonstrated in Figure 5-1.

Figure 5-1: A plot of two points on a sheet of paper and the line connecting them



However, measuring the distance between two points on

a sphere using a ruler will surely be a bit more complicated.

If you used a piece of string to limn out the shortest path

connecting the two points on the sphere, as in Figure 5-2,

you could mark the distance on the string and then use a

ruler to measure that distance on the straightened-out

string. This is akin to what is done with distances on

manifolds, where geodesics (shortest paths between two

points relative to the curved manifold) are lifted into the

tangent space (a zero-curvature space defined by tangent

lines, tangent planes, and higher-dimensional tangents) to

measure distances.

Figure 5-2: A plot of two points on a sphere, along with the geodesic connecting

them

We’ll explore tangent spaces and their applications in

machine learning in more depth in Chapter 6, but for now,

you can think of lifting the string to a large sheet of paper

and measuring its length with a ruler to measure distance

outside of the curved space, where it’s more difficult to

establish a standard measurement. While geodesics and

tangent spaces look counterintuitive, they follow from our

knowledge of tangents in Euclidean geometry and

derivatives in calculus.

However, there are other situations in which distances

between two points are a bit more complicated. Consider

walking from one house to another in the neighborhood, as

shown in Figure 5-3.



Figure 5-3: A plot of houses in a neighborhood, where one is walking between

two houses

Unless one is able to walk through neighboring houses

without running into exterior and interior walls (not to

mention disgruntled neighbors!), it’s not possible to draw a

straight line or geodesic between the houses that gives a

direct route, as you can see in Figure 5-4.

Figure 5-4: A plot of houses in a neighborhood, where one attempts a straight

line between houses

Instead, it’s a lot more practical to take the sidewalks (Fig

ure 5-5).



Figure 5-5: A plot of houses in a neighborhood, where one walks on the

sidewalks between houses

Distance is often discrete, rather than continuous, or lies

on a manifold with curvature. Understanding the geometry

of the data space in which the data points live can give a

good indication of what distance metric is appropriate for

the data. In the following section, we’ll go over some

common distance metrics in machine learning, and then, in

the sections after that, we’ll apply these distances to k-NN

algorithms and dimensionality reduction algorithms.

Common Distance Metrics

Given the nuances of measuring distance, it’s important to

understand some of the more common distance metrics

used in machine learning, including one we briefly

encountered in Chapter 4 (Wasserstein distance, used to

compare persistent homology results). There are an infinite

number of distance metrics, and some distance metrics

have parameters that can give rise to an infinite number of

variations. Thus, we cannot cover all possible distance

metrics one could encounter in machine learning. We’ve left

out some that are useful in recommender systems, such as



cosine distance, as they are uncommon metrics within

topological data analysis or network analysis applications.

We’ll explore some of the more common ones; if you’re

interested in going further, we suggest you explore the field

of metric geometry.

Simulating a Small Dataset

Before we start exploring common distance metrics, let’s

simulate some data with Listing 5-1.

#create data 

a<-rbinom(5,4,0.2) 

b<-rbinom(5,1,0.5) 

c<-rbinom(5,2,0.1) 

mydata<-as.data.frame(cbind(a,b,c)) 

 

#create plot 

library(scatterplot3d) 

scatterplot3d(a,b,c,main="Scatterplot of 3-Dimensional Data")

Listing 5-1: A script that simulates and plots a small

dataset

This script creates a dataset with three variables and plots

points in a three-dimensional space. This should give a plot

with points lying on the three axes (Figure 5-6).



Figure 5-6: A plot of five points, all lying on axes defined by variables a, b, and c

This dataset includes the points shown in Listing 5-2,

which we will use to calculate distances between points.

> mydata 

  a b c 

1 2 1 0 

2 0 0 1 

3 1 0 0 

4 0 0 0 

5 3 0 0

Listing 5-2: A matrix of the five points in the simulated

dataset with random variables a, b, and c

Now that we have a dataset generated, let’s look at some

standard distance metrics that can be used to measure the

distance between pairs of points in the dataset. R comes

with a handy package, called the stats package (which

comes with the base R installation), for calculating some of



the common distance metrics used on data through the

dist() function.

Using Norm-Based Distance Metrics

The first distances we’ll consider are related. The norm of a

function or vector is a measurement of the “length” of that

function or vector. The norm involves summing distance

differences to a power and then applying that power’s root

to the result. For the Euclidean distance between points, for

example, the squares of differences are summed before

taking the square root of the result. For single vectors (that

is, a single data point), the norm will be a weighted distance

from the origin, where the axes mutually intersect. You can

think of this as the length of a straight line from the origin to

the point being measured. Going back to the scatterplot of

our points, this might be drawn like in Figure 5-7.

Figure 5-7: A plot of the five points with a straight line pointing to one of the

points in the set



The most common norm used to measure metric distance

between points is probably the Euclidean distance

mentioned earlier, given by the L2-norm, defined as the

square root of squared distance between points where L is a

placeholder for the vector (or vectors) and the exponent is

the power of the norm (here, 2). This is the distance

typically taught in high school geometry classes, and it is

also referred to as the Pythagorean distance. We saw it in Fi

gure 5-4, which showed a straight line of shortest distance

between the houses (traveling as the bird flies above the

houses). Statisticians typically use the square of the

Euclidean distance metric when calculating squared errors

in regression algorithms; for reasons we won’t delve into

here, using the square of Euclidean distance is very natural.

Related to the L2-norm is the L1-norm, or Manhattan

distance. Manhattan distance calculations are much like the

neighborhood example given in Figure 5-5. Manhattan

distance is defined as the sum of point differences along

each axis, with the axes’ point differences summed into a

final tally of axis distances. Let’s say we have two points (0,

1) and (1, 0), which might represent whether a patient has a

gene mutation in either gene of interest within a disease

model. The Manhattan distance is (0 + 1) + (1 + 0), or the

sum of point differences across all vector axes. In this

example, we find the Manhattan distance is 2.

This metric is useful when working with count data or

other discrete data formats, such as the example dataset

generated earlier in this section. Figure 5-5 demonstrates

this type of distance calculation, where the person needs to

walk on the streets along the north-south and east-west

axes. Manhattan distance and L1-norms often come up in

applications of Lasso and elastic net regression, where it is

used to set beta coefficients to 0 if they are within a certain

distance of the origin, thereby performing variable selection



and creating a sparse model. This is useful in situations

where the dimensionality of the independent variable set is

high (such as in genomic data).

A generalization of both the L1-norm and L2-norm is the

Minkowski distance, which generalizes norms from L3-norms

to L∞-norms. The L∞-norm is another special instance of

norm-based distances, dubbed the Chebyshev distance.

Mathematically, Chebyshev distance is the maximum

distance between points along any axis. It is often used in

problems involving planned movements of machinery or

autonomous systems (like drones).

As the dimension of the norm increases, the Minkowski

distance values typically decrease and stabilize. Thus,

Minkowski distances with high-dimensional norms can act as

distance smoothers that rein in strange or unusually large

distance calculations found with the Manhattan or Euclidean

distance calculations. Minkowski distance does impose a few

conditions, including that the zero vector has a length of

zero, that application of a positive scalar multiple to a

vector does not change the vector’s direction, and that the

shortest distance between two points is a straight line

(known as the triangle inequality condition). In the dist()

function of R, the dimension of the norm is given by the

parameter p, with p=1 corresponding to Manhattan distance,

p=2 corresponding to Euclidean distance, and so on.

A special extension of Manhattan distance is the Canberra

distance, which is a weighted sum of the L1-norm.

Technically, Canberra distance is computed by finding the

absolute value of the distance between a pair of points

divided that by the sum of the pair of points’ absolute

values, which then is summed across point pairs. It can be a

useful distance metric when dealing with outliers, intrusion

detection, or mixed types of predictors (continuous and

discrete measures). The example point in Figure 5-7 likely



isn’t a statistical outlier, but it certainly lies in a different

part of the data space than the other simulated points.

Let’s run these distances and compare the results on the

dataset we simulated earlier in this section; add the

following to the code in Listing 5-1:

#run distance metrics on example dataset 

d1<-dist(mydata,"euclidean",upper=T,diag=T) 

d2<-dist(mydata,"manhattan",upper=T,diag=T) 

d3<-dist(mydata,"canberra",upper=T,diag=T) 

d4<-dist(mydata,"minkowski",p=1,upper=T,diag=T) 

d5<-dist(mydata,"minkowski",p=2,upper=T,diag=T) 

d6<-dist(mydata,"minkowski",p=10,upper=T,diag=T)

This code computes distance metrics for Euclidean,

Manhattan, Canberra, and Minkowski distances applied to

our example dataset. Looking at Euclidean distance

measurements between pairs of points in the simulated

dataset, shown in Table 5-1, we see values with many

decimal points for many pairs of points, owing to the square

root involved in calculating the Euclidean distance.

Table 5-1: Euclidean Distance Calculations Between Pairs of Points in Listing 5-

2’s Matrix

Euclidean 1 2 3 4 5

1 0 2.44949 1.414214 2.236068 1.414214

2 2.44949 0 1.414214 1 3.162278

3 1.414214 1.414214 0 1 2

4 2.236068 1 1 0 3

5 1.414214 3.162278 2 3 0

Moving on to Manhattan distance (Table 5-2), the

distances between pairs of points become whole numbers,

as the calculation involves discrete steps along each axis

separating the points.



Table 5-2: Manhattan Distance Calculations Between Pairs of Points in Listing

5-2’s Matrix

Manhattan 1 2 3 4 5

1 0 4 2 3 2

2 4 0 2 1 4

3 2 2 0 1 2

4 3 1 1 0 3

5 2 4 2 3 0

As expected, the Minkowski distance calculations match

the Manhattan distance for p=1 and Euclidean distance for

p=2. In Table 5-3, you can see Minkowski distances with p=1.

Table 5-3: Minkowski Distance Calculations Between Pairs of Points in Listing 5

-2’s Matrix

Minkowski p=1 1 2 3 4 5

1 0 4 2 3 2

2 4 0 2 1 4

3 2 2 0 1 2

4 3 1 1 0 3

5 2 4 2 3 0

The Canberra distance gives some similar and overlapping

values with Manhattan distance. However, some distances

are different (particularly pairs involving points 2 or 3),

owing to the weighted parts of the distance calculation, as

shown in Table 5-4.



Table 5-4: Canberra Distance Calculations Between Pairs of Points in Listing 5-

2’s Matrix

Canberra 1 2 3 4 5

1 0 3 2 3 1.8

2 3 0 3 3 3

3 2 3 0 3 1.5

4 3 3 3 0 3

5 1.8 3 1.5 3 0

For some points in Listing 5-2’s distance matrix

calculations, these three distances give the same distance

score for a pair of points (such as for points 4 and 5).

However, some of the distances are quite different when we

increase the value of p (such as points 1 and 2). If we’re

using the distance metrics in a support vector machine

classifier, we might end up with a very different line cutting

our data into groups—or very different error rates.

There are other ways to modify or extend norm-based

distances. One popular modification is like the Canberra

distance: Mahalanobis distance applies a weighting scheme

to Euclidean distance calculations before taking the square

root of the result, such that Euclidean distance is weighted

by the covariance matrix. If the covariance matrix is simply

the identity matrix, Mahalanobis distance will collapse to

Euclidean distance. If the covariance matrix is diagonal, the

result is a standardized Euclidean distance. Thus,

Mahalanobis distance provides a type of “centered”

distance metric that can identify leverage points and

outliers within a data sample. It’s often used in clustering

and discriminant analyses, as outliers and leverage points

can skew results.

There’s a simple way to calculate Mahalanobis distance in

R: the mahalanobis() function. Let’s add to our script again:



#run Mahalanobis distance metrics 

#first use the covariance to center the data 

d7<-mahalanobis(mydata,center=F,cov=cov(mydata)) 

 

#then center to one of the points of the data, in this case p

oint 1 

d8<-mahalanobis(mydata,center=c(2,1,0),cov=cov(mydata)) 

 

#then use the column means to center the data 

d9<-mahalanobis(mydata,center=colMeans(mydata),cov=cov(mydat

a))

This code will calculate Mahalanobis distance with various

centering strategies, yielding three different measures of

leverage/weighted standard distance from a defined

reference, detailed in Table 5-5.

Table 5-5: Mahalanobis Distance Results for the Individual Points from Figure 5

-7’s Matrix

Mahalanobis 1 2 3 4 5

Covariance only 6.857143 6.857143 0.857143 0 7.714286

Point 1 0 8 5.428571 6.857143 7.714286

Column means 3.2 3.2 0.628571 2.057143 2.914286

By using each point as a center, you can complete a full

distance matrix similar to how the dist() function creates

the distance matrix. You would simply loop through the

individual points and append rows to a data frame.

A few interesting observations come out of the

Mahalanobis distance calculations. When only covariance is

used, the origin becomes the reference point for calculating

distances, and point 4, which is located at the origin, has a

Mahalanobis distance of 0. However, when column means

are used to center the data, this point jumps to a much

farther away value. This suggests that point 4 is quite far

away from the column means, though it is perfectly

centered at the origin. Another interesting trend involves



point 3, which is quite close to both the origin and the

centered column means, which come out to (1.2, 0.2, 0.2) in

this dataset. Point 3 is located at (1, 0, 0), which is both

near the origin and near this centered column mean. The

other points are relatively far from both the origin and the

centered column means.

We can add these column means to our plot of this data

and visualize a bit of how Mahalanobis distance works by

adding to our script again:

#add point to dataset created earlier in this section 

colmean<-c(1.2,0.2,0.2) 

mydata<-rbind(mydata,colmean) 

 

#create plot 

library(scatterplot3d) 

scatterplot3d(mydata[,1],mydata[,2],mydata[,3], 

main="Scatterplot of 3-Dimensional Data")

This code adds the column mean point to the original

dataset to examine where the “middle” of the data should

be located in the three-dimensional space; the code should

yield a plot similar Figure 5-8.

Examining Figure 5-8 and comparing it to Figure 5-6, we

can see that a point has been placed off the axes that does

seem to occupy a central location among the five points.

Finding the central location of a dataset helps in several

data science tasks, including finding stealth outliers (outliers

without extreme values for any one variable but far from

most points in the multivariate dataset) and calculating

multivariate statistics. Some points are closer to this central

location than others, as our Mahalanobis results suggest;

these are points 3 and 4 in our dataset, which are relatively

close to the origin.



Figure 5-8: Mahalanobis distance with centering at column means for the

individual points from Listing 5-2’s matrix plotted with the column mean point

shown off the axes

These distance differences come up in many machine

learning applications, and we’ll see how distance impacts

machine learning performance and results when we apply

these distances within a k-nearest neighbors problem later

in this chapter. Performance can vary dramatically with a

different choice of metric, and using the wrong metric can

mislead model results and interpretation.

Comparing Diagrams, Shapes, and Probability

Distributions

Norm-based distance metrics are not the only class of

metrics possible in machine learning. As we saw in Chapter

4, it’s possible to calculate distance between objects other

than points, such as persistence diagrams. Roughly

speaking, these types of metrics measure differences in



probability distributions. We’ve already briefly used one of

these, the Wasserstein distance, to compare persistence

diagram distributions. Let’s take a closer look now.

Wasserstein Distance

In loose terms, Wasserstein distance compares the piles of

probability weights stacked in two distributions. It’s often

dubbed “earth-mover distance,” as the Wasserstein

distance measures the cost and effort needed to move

probability piles of one distribution to turn it into the

comparison distribution. For more mathematically

sophisticated readers, the pth Wasserstein distance can be

calculated by taking the expected value of the joint

distribution marginals to the pth power, finding the infimum

over all join probability distributions of those random

variables, and taking the pth root of the result. However, the

details of this are beyond what is expected of readers, and

we’ll stick with the intuition of earth-mover distance as we

explore this metric. Let’s visualize two distributions of dirt

piles to build some intuition behind this metric (Figure 5-9).

Figure 5-9: Two distributions of dirt piles akin to the type of probability density

functions that could be compared using Wasserstein distance metrics

Pile 1 of Figure 5-9 has a large stack of dirt toward the left

side that would need to be shoveled to the right piles if we



were to transform Pile 1’s distribution of dirt to Pile 2’s. Our

dirt mover will have to move quite a bit of dirt to transform

Pile 1 into Pile 2. However, if our Pile 2 had a distribution of

dirt piles closer to that of Pile 1, as in Figure 5-10, the

amount of work to turn Pile 1 into Pile 2 would be less for

our dirt mover.

Figure 5-10: Two distributions of dirt piles akin to the type of probability density

functions that could be compared using Wasserstein distance metrics, which

measure the amount of work needed to be done by our dirt mover to transform

Pile 1 into Pile 2

To get from Distribution 1 to Distribution 2, you can think

of someone shoveling the dirt. The amount of dirt shoveled

corresponds to the Wasserstein distance. Probability density

functions that are very similar will have a smaller

Wasserstein distance; those that are very dissimilar will

have a larger Wasserstein distance.

Thus, Wasserstein distance can be a nice metric to use in

comparing probability distributions—comparing theoretical

distributions to sample distributions to see if they match,

comparing multiple sample distributions from the same or

different populations to see if they match, or even

understanding if it’s possible to use a simpler probability

distribution in a machine learning function that

approximates the underlying data such that calculations



within a machine learning algorithm will be easier to

compute.

Although we won’t go into it here, some distributions—

including count data, yes/no data, and even machine

learning output structures like dendrograms—can be

compared through other metrics. For now, let’s look at

another way to compare probability distributions, this time

with discrete distributions.

Entropy

One common class of distance metrics involves a property

dubbed entropy. Information entropy, defined by the

negative logarithm of the probability density function,

measures the amount of nonrandomness at each point of

the probability density function. By understanding how

much information is contained in a distribution at each

value, it’s possible to compare differences in information

across distributions. This can be a handy tool for comparing

complicated probability functions or output from machine

learning algorithms, as well as deriving nonparametric

statistical tests.

Binomial distributions come up often in data science. We

might think that a random customer has no preference

between two new interface designs (50 percent preferring A

and 50 percent preferring B in an A/B test). We could

estimate the chance that 10 or 20 or 10,000 customers

prefer A over B and compare it to samples of actual

customers providing us feedback. One assumption might be

that we have different customer populations, including one

that is very small. Of course, in practice, we don’t know the

actual preference distributions of our customer populations

and may not have enough data to compare the distributions

mathematically via a proportions test. Leveraging a metric

can help us derive a test.



To understand this a bit more intuitively, let’s simulate two

binomial probability distributions with the code in Listing 5-

3.

#create samples from two different binomial probability distr

ibutions 

a<-rbinom(1000,5,0.1) 

b<-rbinom(1000,5,0.4) 

 

#create plot of probability density 

plot(density(b),ylim=c(0,2),main="Comparison of Probability D

istributions") 

lines(density(a),col="blue")

Listing 5-3: A script that simulates different binomial

probability distributions

Figure 5-11 shows that these binomial distributions have

very different density functions, with information stored in

different parts of the distribution.

Figure 5-11: Two binomial distributions’ density functions plotted for comparison



The black curve distribution, distribution b, includes a

wider spread of information over more values than

distribution a, which concentrates its information nearer to

zero (lighter gray curve). Entropy-based metrics can be used

to quantify this difference in information storage between

distributions a and b. R provides many tools and packages

for quantifying and comparing information entropy. Let’s

explore a bit further.

The philentropy package in R contains 46 different metrics

for comparing probability distributions, including many

metrics based on entropy. One of the more popular entropy

metrics is the Kullback–Leibler divergence, which measures

the relative entropy of two probability distributions.

Technically speaking, the Kullback–Leibler divergence

measures the expectation (sum for discrete distributions or

integral for continuous distributions) of the logarithmic

differences between two probability distributions. As such,

it’s a measurement of information gain or loss. This allows

us to convert information entropy into a distribution

comparison tool, which is useful when we’re trying to

compare differences between unknown or complicated

probability distributions that might not be amenable to the

usual statistical tools.

Let’s develop our intuition by returning to our two

binomial distributions, a and b. We’ll calculate the Kullback–

Leibler divergence between the two distributions by adding

the following to Listing 5-3:

#load package 

library(philentropy) 

 

#calculate Kullback-Leibler divergence 

kullback_leibler_distance(P=a,Q=b,testNA=T,unit="log2",epsilo

n=1e-05)



This code calculates the Kullback–Leibler divergence for

the two binomial distribution samples generated in Listing 5-

3. In this set of simulated data, the Kullback–Leibler

divergence is 398.5428; another simulation of these

distributions might yield a different divergence

measurement. However, using nonparametric tests, we can

compare this divergence value with the random error

component of one of our distributions to see whether there

is a statistically significant difference of entropy between

distributions a and b. We can add to our script to create a

nonparametric statistical test using entropy differences:

#create a nonparametric test 

#create a vector to hold results from the simulation loop 

test<-rep(NA,1000) 

 

#loop to draw from one of the binomial distributions to gener

ate 

#a null distribution for one of our samples 

for (i in 1:1000){ 

  new<-rbinom(1000,5,0.1) 

  test[i]<-kullback_leibler_distance(P=a,Q=new,testNA=T,unit

="log10",epsilon=1e-05) 

} 

 

#obtain the cut-off score for 95% confidence intervals, corre

sponding 

#to values above/below which a sample would be considered sta

tistically 

#different than the null distribution 

quantile(test,c(0.025,0.0975))

The confidence intervals from this test suggest confidence

intervals of 1,427–1,475, which suggests that our

distributions are significantly different. This is expected, as

distributions a and b have very different values and ranges.

Plotting the last distribution simulated (Figure 5-12) shows

that the new distribution is a much better match to a than b

is.



Figure 5-12: Three binomial distributions’ density functions plotted for

comparison, with two coming from samples of the same distribution

Using the Kullback–Leibler divergence, we’ve determined

that a and b are different populations statistically. If we saw

a confidence range including 104.2, we’d conclude that a

and b likely come from the same population distribution.

Statistical tests such as proportions tests exist to compare

binomial distributions in practice, but some discrete

distributions or sample sizes don’t have easy statistical

comparisons (such as comparisons of predicted class

distributions coming out of two convolutional neural network

classifiers).

Comparison of Shapes

As we saw in Chapter 4, sets of points and shapes, such as

persistence diagrams, can be important data structures, and

these objects can be measured and compared as well. The

next three measures will deal with this situation in more



depth. Let’s start with an example of two circles with

differing radii, as shown in Figure 5-13.

Figure 5-13: Two circles of differing radii

Now, let’s imagine these two circles are paths in a park,

and someone is walking their dog on a leash, with the dog

following the outer path and the owner following the inner

path. Figure 5-14 shows a visual.

Figure 5-14: A dog and owner connected by a leash walking on different paths at

a park

At some points, the owner and her dog are close together,

and a small leash suffices to connect them. However, as

they move counterclockwise, the distance between the



owner and their dog increases, necessitating more leash to

connect them; you can see this in Figure 5-15.

Figure 5-15: A dog and owner connected by a longer leash walking on different

paths at a park

One historically important metric that compares distances

between points on different shapes is Fréchet distance. The

version of Fréchet distance that we’ll consider here applies

to discrete measurements (usually taken to be polygons). A

grid graph is constructed from the polygons, and minmax

paths are computed to find the maximum distance that two

paths may be from each other. Many assumptions can be

placed on the paths themselves and the synchronization of

movement along those paths; the strictest requirements

give rise to what’s called a homotopic Fréchet distance,

which has applications in many robotics problems. We’ll

return to homotopy applications in Chapter 8.

For now, in more lay terms, Fréchet distance is known as

the dog-walking distance, and it has many uses in analytics.

It can be used to measure not only the maximum distance

between points on curves or shapes but the total distance

between points on shapes or curves. Many R packages

include functions to calculate one of the extant versions of

Fréchet distance, including the TSdist time-series package,



which is used in the following example. In this package, two

time series are generated from ARMA(3, 2) distributions,

with Series 3 containing 100 time points and Series 4

containing 120 time points. Time series are important in

tracking disease progression in groups of patients, tracking

stock market changes over time, and tracking buyer

behavior over time.

Let’s load these package-generated time series and plot

them to visualize potential differences using the code in Listi

ng 5-4.

#load package and time series contained in the TSdist package 

library(TSdist) 

data(example.series4) 

data(example.series3) 

my1<-example.series4 

my2<-example.series3 

 

#plot both time series 

plot(my1,main="Time Series Plots of Series 4") 

plot(my2,main="Time Series Plots of Series 3")

Listing 5-4: A script that loads and examines two time-

series datasets

Figure 5-16 shows two time series with distinct highs and

lows over time.



Figure 5-16: Plots of the two example time series

Notice the overlap between the time series isn’t perfect,

and we’d expect our comparisons to show some differences

between these time series. With Fréchet distance, it’s

possible to measure both the maximum/minimum deviation

(maximum/minimum leash length) between the time series

and the sum of deviations across the full comparison set.

We’ll examine both of these for Series 3 and Series 4 by

adding the following code to our script:

#calculate Frechet distance 

dis1<-FrechetDistance(my1,my2,FrechetSumOrMax="sum") 

dis2<-FrechetDistance(my1,my2,FrechetSumOrMax="min") 

dis3<-FrechetDistance(my1,my2,FrechetSumOrMax="max")

This code calculates the minimum, maximum, and sum of

Fréchet distances between the time series, which should

yield a value of 402.0 for the sum of distances between the

time-series curves, a value of 13.7 for the maximum

distance between points on the time series curves, and a

value of 0.03 for the minimum distance between points on

the time series curves. This suggests that the time series

have approximately the same values at some comparison

points and values that are very different at other points. The



sum of distances between the time-series curves will

converge to the integral taken with continuous time across

the series; this calculation can give a good tool for

calculating areas between functions using discrete and fairly

quick approximations.

There are other ways to compare shapes besides Fréchet

distance, though, and these are sometimes preferable. Let’s

return to our two circles again and move them so that they

are intersecting, such as in Figure 5-17.

Figure 5-17: Plot of two intersecting circles

We can think of points on each circle, much like we did to

measure Fréchet distance. Let’s consider a point on circle B

and its closest point on circle A (shown in Figure 5-17). Each

point on circle B will have a closest point on circle A, and

these form a collection of closest points. The points chosen

in Figure 5-17 are a special set of points. They are the

farthest apart of any points in our set of closest points. This

means that the maximum we’d have to travel to hop from

one circle to the other occurs with those two points. This

distance is called the Hausdorff distance, and it is found in a

lot of applications in early computer vision and image

matching tasks. These days, it is mainly used for sequence



matching, graph matching, and other discrete object

matching tasks.

However, one of the limitations of Hausdorff distance is

that the sets being compared must exist in the same metric

spaces. Thus, while we can compare points on circles, we

cannot directly compare points on a circle to those on a

sphere with Hausdorff distance or points on a Euclidean

plane to points on a positively curved sphere. The two

objects being compared must be in the same metric space.

Fortunately, a solution to this conundrum exists. We can

simply measure the farthest shortest distance from two

metric spaces when those metric spaces are mapped to a

single metric space while preserving the original distances

between points within each space (called an isometric

embedding). So, we could project the sphere and its points

to tangent space to compare with other Euclidean spaces.

Or we could embed two objects in a higher-dimensional

space similar to what is done in kernel applications. This

extension of Hausdorff distance is dubbed Gromov–

Hausdorff distance.

Let’s build some intuition around this metric. Say we have

a triangle and a tetrahedron, as in Figure 5-18.

Figure 5-18: A triangle and tetrahedron, which exist in different-dimensional

Euclidean spaces



One solution to this problem depicted in Figure 5-18 is to

simply bring the triangle into three-dimensional Euclidean

space and calculate the distances between the objects in

three-dimensional Euclidean space. Perhaps part of the

triangle overlaps with the tetrahedron when it is embedded

in three-dimensional space, as shown in Figure 5-19.

Figure 5-19: A triangle and tetrahedron, both mapped into three-dimensional

Euclidean space

It’s now possible for us to compute the farthest point sets

of the closest ones for these two objects, likely occurring at

one of the far tips of the triangle or tetrahedron in this

example.

R has a nice package for computing Gromov–Hausdorff

distances (gromovlab), so we can easily implement this

distance metric in R. Let’s first simulate a small sample from

a two-dimensional disc with the code in Listing 5-5.

#create two-dimensional disc sample 

a<-runif(100,min=-1,max=1) 

b<-runif(100,min=-1,max=1) 

 

#create circle from uniform distribution and restrict to poin



ts within the 

#circle 

d<-a^2+b^2 

w<-which(d>1) 

mydata<-cbind(a,b) 

mydata<-mydata[-w,-w] 

 

#plot sample 

plot(mydata,main="2-Dimensional Disc Sample",ylab="y",xlab

="x")

Listing 5-5: A script that samples from a two-dimensional

disc to examine Gromov–Hausdorff distance

This should give a rough disc shape when plotted; take a

look at Figure 5-20.

Figure 5-20: A sample taken from a two-dimensional disc

Now, let’s add to Listing 5-5 to simulate a sample of the

same size from the same uniform distribution that was used



to generate our two-dimensional disc sample:

#create a uniform sample from a line segment 

x<-sort(runif(dim(as.data.frame(mydata))[[1]],min=-1,max=1))

The code we’ve added samples one of the line segments

to give a one-dimensional space. This gives us two

Euclidean spaces of differing dimension. Now, we can

compute the distances between points in each sample’s

native space (two-dimensional Euclidean space for the disc,

one-dimensional Euclidean space for the line). From there,

we can compute the Gromov–Hausdorff distance between

our samples by adding the following code:

#load the package and calculate the distance matrices for use 

in calculations 

library(gromovlab) 

m1<-dist(as.matrix(mydata)) 

m2<-dist(as.matrix(x)) 

 

#calculate distance metric and compare distances with Gromov-

Hausdorff 

gromovdist(m1,m2,"lp",p=2)

This code allows us to compare distance matrices

between points in the samples. For this random sample, the

Gromov–Hausdorff distance is 5.8. We could simulate a

nonparametric test based on our metric as we did in Listing

5-3 to help us determine if the embeddings of our disc and

our line are the same statistically. Changing the metric

parameters may change the significant differences between

embeddings or the quality of an embedding, as we saw

earlier in this chapter when we compared Canberra,

Manhattan, and Euclidean distances. Interested readers are

encouraged to play around with the embedding parameters,

set up their own nonparametric tests, and see how the

results vary for Gromov–Hausdorff distances for our disc and

line sample.



The lp parameter allows one to use the norm-based

metrics examined earlier in this chapter. For this particular

comparison, we’ve used the Euclidean norm, as both

samples lie in Euclidean spaces and the distance matrices

ingested are defined by the Euclidean norm. Other norms,

such as the Manhattan or Chebyshev, are possible and

perhaps preferable for other problems, and the package is

equipped to handle graphs and trees, as well as distance

matrices. One thing to note about this particular package is

that the algorithm searches through all possible isometric

embeddings, so the compute time and memory needed may

be large for some problems.

K-Nearest Neighbors with Metric

Geometry

Metric geometry shows up in many algorithms, including k-

nearest neighbor (k-NN) analyses, which classify

observations based on the classifications of objects near

them. One way to understand this method is to consider a

high school cafeteria with different cliques of students, as

shown in Figure 5-21.

Figure 5-21: A high school cafeteria with three distinct student cliques

In the cafeteria shown in Figure 5-21, three student

cliques exist: a dark gray clique, a gray clique, and a light



gray clique. Students tend to stay near their group of

friends, as exhibited by students A, B, and C. These

students are surrounded by their friends, and classifying

them using an arbitrary number of students standing

nearest them according to a distance metric (like Euclidean

distance or number of floor tiles between students) would

give a pretty accurate classification into student cliques.

However, there are a few students, such as students D

and E, who are located near other cliques or among all three

cliques. Student E might be part of the popular clique

(bottom center) and also part of the varsity athlete clique

(top left), and student D might be popular, a varsity athlete,

and a math team member (top right). Depending on how

many students located near students D and E are

considered in classifying them into a clique, they may

belong to their main clique or be incorrectly reassigned to a

new clique, of which they may fit but not consider their

main clique. For instance, the closest 10 students may

assign student E correctly to the popular group, while the

closest 2 students would not.

Thus, k-NN methods rely on both a neighborhood size (in

this instance, the number of students nearest the student of

interest) and a distance metric defining which students are

closest to the student of interest. Let’s look at little more

closely at how distance metric can impact k-NN

classification accuracy with five nearest neighbors in a

simulated dataset with three variables impacting

classification and three noise variables, given in Listing 5-6,

which uses the knnGarden package (and includes many of

the distances covered in the simulated data analyzed with

norm-based distance metrics earlier in this chapter). You’ll

first need to download the package (https://cran.r-project.or

g/web/packages/knnGarden/index.xhtml) and install it

locally.

https://cran.r-project.org/web/packages/knnGarden/index.xhtml


#install package (and devtools if not installed) 

#your local computer might save the .tar file in a different

 path than ours 

library(devtools) 

install_local("~/Downloads/knnGarden.tar") 

 

#create data 

a<-rbinom(500,4,0.2) 

b<-rbinom(500,1,0.5) 

c<-rbinom(500,2,0.1) 

d<-rbinom(500,2,0.2) 

e<-rbinom(500,1,0.3) 

f<-rbinom(500,1,0.8) 

class<-a+e-d-rbinom(500,2,0.3) 

class[class>=0]<-1 

class[class<0]<-0 

mydata<-as.data.frame(cbind(a,b,c,d,e,f,class)) 

 

#partition data into training and test sets (60% train, 40% t

est) 

s<-sample(1:500,300) 

train<-mydata[s,] 

test<-mydata[-s,] 

 

#create KNN models with different distances and five nearest

 neighbors 

library(knnGarden) 

 

#Euclidean 

ke<-knnVCN(TrnX=train[,-7],OrigTrnG=train[,7],TstX=test[,-7], 

K=5,method="euclidean") 

accke<-length(which(ke==test[,7]))/length(test[,7]) 

 

#Canberra 

kc<-knnVCN(TrnX=train[,-7],OrigTrnG=train[,7],TstX=test[,-7], 

K=5,method="canberra") 

acckc<-length(which(kc==test[,7]))/length(test[,7]) 

 

#Manhattan 

km<-knnVCN(TrnX=train[,-7],OrigTrnG=train[,7],TstX=test[,-7], 

K=5,method="manhattan") 

acckm<-length(which(km==test[,7]))/length(test[,7])



Listing 5-6: A script that generates and classifies a sample

through k-NN classification with varying distance metric

and five neighbors

Listing 5-6 creates a sample and then runs the k-NN

algorithm to classify points based on different distance

metrics, including Manhattan, Euclidean, and Canberra

distances. In this particular simulation, all of our distances

yield similar accuracies (Euclidean distance of 81 percent,

Manhattan distance of 81 percent, and Canberra distance of

82 percent). We can consider a larger neighborhood by

modifying Listing 5-6 to include 20 nearest neighbors.

#create KNN models with different distance metrics and 20 nea

rest neighbors 

 

#Euclidean 

ke<-knnVCN(TrnX=train[,-7],OrigTrnG=train[,7],TstX=test[,-7], 

K=20,method="euclidean") 

accke<-length(which(ke==test[,7]))/length(test[,7]) 

 

#Canberra 

kc<-knnVCN(TrnX=train[,-7],OrigTrnG=train[,7],TstX=test[,-7], 

K=20,method="canberra") 

acckc<-length(which(kc==test[,7]))/length(test[,7]) 

 

#Manhattan 

km<-knnVCN(TrnX=train[,-7],OrigTrnG=train[,7],TstX=test[,-7], 

K=20,method="manhattan") 

acckm<-length(which(km==test[,7]))/length(test[,7])

This script modifies the functions that calculate the k-NN

model, with the changes marked in bold; we changed the

parameter to K=20. With this particular simulated dataset,

there are dramatic differences in classification accuracy

when 20 nearest neighbors are considered. Euclidean and

Manhattan distances give a slightly worse accuracy of 78.5

percent, and Canberra distance gives a much worse

accuracy of 57 percent. Neighborhood size matters quite a



bit in accuracy for Canberra distance, but it plays a lesser

role for Euclidean and Manhattan distances. Generally

speaking, using larger numbers of nearest neighbors

smooths the data, similarly to how a weighted average

might. These results suggest that, for our Canberra

distance, adding a larger number of nearest neighbors

might be smoothing the data too much. However, our

Manhattan and Euclidean distance runs don’t show this

smoothing effect and retain their original high performance.

As our example shows, the choice of distance metric can

matter a lot in algorithm performance—or it can matter

little. Distance metrics thus function like other parameter

choices in algorithm design.

k-NN models are among the most closely tied to metric

geometry and neighborhoods, though many other methods

rely on distance metrics or neighborhood size. There are

many recent papers that suggest a multiscale approach to

algorithm neighborhood definition can improve algorithm

performance, including applications in k-NN regression,

deep learning image classification, and persistent graph and

simplex algorithms (including persistent homology), and this

nascent field has grown in recent years.

One branch of machine learning where the choice of

distance metric matters a lot is in dimensionality reduction,

where we’re mapping a high-dimensional dataset to a lower-

dimensional space. For instance, imagine we have a

genomic dataset for a group of patients including 300 gene

loci of interest. That’s a bit too much to visualize for a

stakeholder on a PowerPoint slide. However, if we find a

good mapping to two-dimensional space, we can add a

scatterplot of our data to the slide deck in a way that is

much easier for humans to process.

Manifold Learning



Many dimensionality reduction algorithms also involve

distance metrics and k-NN calculations. One of the most

common dimensionality reduction algorithms, principal

component analysis (PCA), helps wrangle high-dimensional

data into lower-dimensional spaces using a linear mapping

between the original high-dimensional space and a lower-

dimensional target space. Essentially, PCA finds the ideal

set of linear bases to account for the most variance (packing

in most of the relevant information related to our data) with

the fewest linear bases possible; this allows us to drop many

of the data space’s bases that don’t contain much relevant

information. This helps us visualize data that lives in more

than three dimensions; it also decorrelates predictors being

fed into a model.

However, as noted, PCA assumes that data lives in a

geometrically flat space and is mapped to a lower-

dimensional flat space. As we’ve seen, this isn’t always the

case, and Euclidean metrics can give different distance

results than other distance metrics. Recently, many

attempts to relax different assumptions and generalize

dimensionality reduction to manifolds have provided a new

class of dimensionality reduction techniques, called

manifold learning. Manifold learning allows for mappings to

lower-dimensional spaces that might be curved and

generalizations of PCA to include metrics other than

Euclidean distance. A manifold is a space that is locally

Euclidean, with Euclidean space being one example of a

manifold, so some people refer to manifold learning as an

umbrella to this more general framework.

Using Multidimensional Scaling

One of the older manifold learning algorithms is

multidimensional scaling (MDS). MDS considers embeddings

of points into a Euclidean space such that distances

between points, which can be Euclidean distances, are



preserved as best as possible; this is done through the

minimization of a user-defined cost function. Defining

distances and cost functions via Euclidean distance yields

the same results as PCA. However, there is no need to limit

oneself to Euclidean distance with MDS, and many other

metrics might be more suitable for a given problem. Let’s

explore this further with a small dataset and different

distance matrices as input to our MDS algorithm; take a look

at the code in Listing 5-7.

#create data 

a<-rbinom(100,4,0.2) 

b<-rbinom(100,1,0.5) 

c<-rbinom(100,2,0.1) 

d<-rbinom(100,2,0.2) 

e<-rbinom(100,1,0.3) 

f<-rbinom(100,1,0.8) 

mydata<-as.data.frame(cbind(a,b,c,d,e,f)) 

 

#create distance matrices using different distance metrics 

m1<-dist(mydata,upper=T,diag=T) 

m2<-dist(mydata,"minkowski",p=10,upper=T,diag=T)  

m3<-dist(mydata,"manhattan",upper=T,diag=T)

Listing 5-7: A script that generates an example dataset

and calculates distance matrices from the dataset

Now that we have generated some data and have

calculated three different distance metrics, let’s see how the

choice of distance metric impacts MDS embeddings. Let’s

compute the MDS embeddings and plot the results by

adding to Listing 5-7.

#reduce dimensionality with MDS to two dimensions 

c1<-cmdscale(m1,k=2) 

c2<-cmdscale(m2,k=2) 

c3<-cmdscale(m3,k=2) 

 

#plot results 

plot(c1,xlab="Coordinate 1",ylab="Coordinate 2", 



main="Euclidean Distance MDS Results") 

plot(c2,xlab="Coordinate 1",ylab="Coordinate 2", 

main="Minkowski p=10 Distance MDS Results") 

plot(c3,xlab="Coordinate 1",ylab="Coordinate 2", 

main="Manhattan Distance MDS Results")

Our addition to Listing 5-7 should give plots that look

different from each other. In this example, the plots (shown

in Figure 5-22) do vary dramatically depending on the

metric used, suggesting that different distance metrics

result in embeddings to different spaces.

Figure 5-22: A side-by-side view of MDS results, which vary by distance metric

chosen

The plot results in Figure 5-22 suggest that Minkowski

distance yields quite different results than Euclidean or

Manhattan distances; many points are bunched together in

the Minkowski-type MDS result, which suggests it may not

distinguish between pairs of points as well as the other

metrics. However, the differences between Euclidean and

Manhattan distance MDS results are less dramatic, with

points spread out a lot more than in the case of our

Minkowski distance.



Extending Multidimensional Scaling with

Isomap

Some manifold learning algorithms extend MDS to other

types of spaces and distance calculations. Isomap extends

MDS by replacing the distance matrix with one of geodesic

distances between points calculated from a neighborhood

graph. This replacement of distance calculations with

geodesic distances allows for the use of distances that

naturally exist on spaces that are not flat, such as spheres

(for instance, geographic information system data) or

organs in a human body examined through MRIs. Most

commonly, distances are estimated by examining a point’s

nearest neighbors. This gives Isomap a neighborhood flavor

and a way to investigate the role of scaling through the

variance of the nearest neighbor parameter.

Let’s explore this modification by adding to Listing 5-7,

which simulated a dataset and explored MDS. We’ll use

Euclidean distance as a dissimilarity measure, though other

distance metrics can be used much as they were with MDS.

To understand the role of neighborhood size, we’ll create

neighborhoods of 5, 10, and 20 nearest neighbors:

#create Isomap projections of the data generated in Listing 5

-6 

library(vegan) 

 

i1<-scores(isomap(dist(mydata),ndim=2,k=5)) 

i2<-scores(isomap(dist(mydata),ndim=2,k=10)) 

i3<-scores(isomap(dist(mydata),ndim=2,k=20)) 

 

#plot results 

plot(i1,xlab="Coordinate 1",ylab="Coordinate 2",main="K=5 Iso

map Results") 

plot(i2,xlab="Coordinate 1",ylab="Coordinate 2",main="K=10 Is

omap Results") 

plot(i3,xlab="Coordinate 1",ylab="Coordinate 2",main="K=20 Is

omap Results")



This snippet of code applies Isomap to the generated

dataset in Listing 5-7 using Euclidean distance. Other

distance metrics can be used and may give different results,

as shown in the MDS analyses. The results of the Isomap

analyses suggest that neighborhood size doesn’t play a

large role in determining results for this dataset, as shown

by the scales for each coordinate in the Figure 5-23 plots.

Figure 5-23: A side-by-side view of Isomap results, which vary by number of

nearest neighbors

MDS and Isomap aim to preserve distance between points

regardless of how far apart the points lie on the data

manifold, resulting in global preservation of distance. Other

global manifold learning algorithms, which preserve

distances between points that are not in the same

neighborhood, exist. If you’re interested, you can explore

global algorithms such as kernel PCA, autoencoders, and

diffusion mapping.

Capturing Local Properties with Locally Linear

Embedding



Sometimes global properties of the manifold aren’t as

important as local properties. In fact, from the classical

definition of a manifold, local properties might sometimes

be more interesting. For instance, when we’re looking for

nearest neighbors to a point, points that are very far way

geometrically probably won’t be nearest neighbors of that

point, but points that are nearby could be nearest neighbors

with information that needs to be preserved in a mapping

between higher-dimensional and lower-dimensional spaces.

Local manifold learning algorithms aim to preserve the local

properties with less focus on preserving global properties in

the mapping between spaces.

Locally linear embedding (LLE) is one such local manifold

learning algorithm, and it is one of the more often used

manifold learning algorithms. Roughly speaking, LLE starts

with a nearest neighbor graph and then proceeds to create

sets of weights for each point given its nearest neighbors.

From there, the algorithm calculates the mapping according

to a cost function and the preservation of the nearest

neighbor weight sets for each point. This allows it to

preserve important geometric information in the data that

exists between points near each other on the manifold.

Returning to our code in Listing 5-7, let’s add to our code

and explore LLE mapping to a two-dimensional space with

varying numbers of neighbors. For this package, you’ll need

to download the package (https://mran.microsoft.com/snaps

hot/2016-08-05/web/packages/TDAmapper/README.xhtml)

and locally install it:

#install package 

library(devtools) 

install_local("~/Downloads/lle.tar") 

 

#create LLE projections of the data generated in Listing 5-6

library(lle) 

 

https://mran.microsoft.com/snapshot/2016-08-05/web/packages/TDAmapper/README.xhtml


l1<-lle(mydata,m=2,k=5) 

l2<-lle(mydata,m=2,k=10) 

l3<-lle(mydata,m=2,k=20) 

 

#plot results 

plot(l1$Y,xlab="Coordinate 1",ylab="Coordinate 2",main="K=5 L

LE Results") 

plot(l2$Y,xlab="Coordinate 1",ylab="Coordinate 2",main="K=10

 LLE Results") 

plot(l3$Y,xlab="Coordinate 1",ylab="Coordinate 2",main="K=20

 LLE Results")

This piece of code applies the LLE algorithm to our

dataset, varying the number of nearest neighbors

considered in the algorithm calculations. Let’s examine the

plots from this dataset to understand the role of nearest

neighbors in this local algorithm (Figure 5-24).

Figure 5-24: A side-by-side view of LLE results, which vary by number of nearest

neighbors

As shown in Figure 5-24, neighborhood size greatly

impacts LLE results and the spread of points in the new two-

dimensional space. Given that the number of nearest

neighbors impacts the size of the neighborhood preserved,

higher values result in less-local versions of LLE, converting



the algorithm into more of a global-type manifold learning

algorithm. Good separation seems to occur at K=20, which is

less local than K=5 but still a fairly small neighborhood for a

dataset with 100 points. A fully global algorithm exists if we

set K to 100, giving a two-dimensional plot with good

separation and spread of points across the new space; you

can see this in Figure 5-25.

Figure 5-25: A plot of LLE results using the entire sample as nearest neighbors

Other local manifold learning algorithms exist, and some

of these allow for a scaling parameters like LLE’s

neighborhood size. If you’re interested, you can explore

Laplacian eigenmaps, Hessian LLE, and local tangent space

analysis.

Visualizing with t-Distributed Stochastic

Neighbor Embedding

We’ve now seen how local algorithms can capture global

properties through neighborhood size definition. Some

manifold learning algorithms exist that explicitly capture

both local and global properties. One of the more well-



known algorithms is a visualization tool called t-distributed

stochastic neighbor embedding (t-SNE). The algorithm has

two main stages: creating probability distributions over

points in the high-dimensional space and then matching

these distributions to ones in a lower-dimensional space by

minimizing the Kullback–Leibler divergence over the two

sets of distributions. Thus, rather than starting with a

distance calculation between points, this algorithm focuses

on matching distribution distances to find the optimal space.

Instead of defining a neighborhood by k-nearest neighbors

to a point, t-SNE defines a neighborhood by the kernel’s

bandwidth over the data; this yields a parameter called

perplexity, which can also be varied to understand the role

of neighborhood size. Let’s return to the data generated in L

isting 5-7 and see how this works in practice. Add the

following code:

#create t-SNE projections of the data generated in Listing 5-

7 

library(Rtsne) 

library(dimRed) 

 

t1<-getDimRedData(embed(mydata,"tSNE",ndim=2,perplexity=5)) 

t2<-getDimRedData(embed(mydata,"tSNE",ndim=2,perplexity=15)) 

t3<-getDimRedData(embed(mydata,"tSNE",ndim=2,perplexity=25)) 

 

#plot results 

plot(as.data.frame(t1),xlab="Coordinate 1",ylab="Coordinate

2", 

main="Perplexity=5 t-SNE Results") 

plot(as.data.frame(t2),xlab="Coordinate 1",ylab="Coordinate

2", 

main="Perplexity=15 t-SNE Results") 

plot(as.data.frame(t3),xlab="Coordinate 1",ylab="Coordinate

2", 

main="Perplexity=25 t-SNE Results")

This piece of code runs t-SNE on the dataset generated

with Listing 5-7, varying the perplexity parameter. The plots



should produce something like Figure 5-26, which shows

more clumping in the lower-perplexity trial than in the trials

with higher perplexity.

Figure 5-26: A side-by-side plot of t-SNE results with differing perplexity settings

The plots for perplexity of 15 and 25 look fairly similar,

and as we increase perplexity, the range of the coordinates

in the lower-dimensional space drops. There may be projects

where more spread in the data is useful for subsequent

analyses or visualizing possible trends; other projects may

yield better results with tighter data.

In summary, the distance metrics in this chapter pop up

regularly in machine learning applications. Manifold

learning, in particular, can involve different choices of

metric, neighborhood size, and type of space onto which the

data space is mapped. Many good textbooks and papers

exist that cover these algorithms and others like them in

more detail. However, we hope that you’ve gained an

overview of dimensionality reduction methods—particularly

those that are intimately connected to metric geometry.

Before moving on, let’s consider one final use of metric

geometry.



Fractals

Another tool connected to metric geometry involves a type

of self-similarity in geometry objects called fractals.

Essentially, fractals have a pattern within the same pattern

within the same pattern within the same pattern, and so on.

Figure 5-27 has an example.

Figure 5-27: An example of a fractal. Note the self-similarity of the patterns at

different scales.

Fractals occur often in natural and man-made systems.

For instance, coastlines, blood vessels, music scales,

epidemic spread in confined spaces, stock market behavior,

and word frequency and ranking all have self-similarity

properties at different scales. Being able to measure fractal

dimension allows us to better understand the degree of self-

similarity of these phenomena. There are many fractal

dimension estimators these days, but most rely on



measuring variations in the area under a fractal curve

through some sort of iterative approach that compares

neighboring point sets’ areas.

Going back to the fractal in Figure 5-27, we could consider

adding boxes to find the area under each iterative curve and

then comparing the relative values across scales

considered, as in Figure 5-28.

Figure 5-28: An example of measuring area under a series of fractal curves at

scale

Now that we have some intuition around fractals, let’s

consider an application of fractal dimension metrics. Stock

markets are known to exhibit some degree of self-similar

behavior over periods of time. Understanding market

volatility is a major aspect of investing wisely, and one

method used to predict coming market reversal points, such

as crashes, is changing self-similarity. The closing prices of

the Dow Jones Industrial Average (one of the American stock



market indices), or DJIA, are widely available for free

download. Here, we’ll consider simulated daily closing prices

like DJIA data from the period of June 2019 to May 2020,

during which the COVID freefall happened. Figure 5-29

shows a chart of closing prices over that time period.

Figure 5-29: A plot of simulated DJIA closing prices from June 2019 to May 2020.

Note the big drops starting in late February 2020, when COVID became a global

issue.

If we were predicting future market behavior, we’d want

to employ fractal analyses with tools from time-series data

analysis, which are outside the scope of this book. However,

we can get a feel for changes in self-similarity month by

month easily by parsing the data into monthly series and

calculating each monthly series’ fractal dimension. From

there, we can examine how fractal dimension correlates

with other measures of volatility, such as the range of

closing prices within a month; we should see a positive

correlation. Listing 5-8 loads the data, parses it, calculates

fractal dimension, calculates closing price range, and runs a

correlation test between fractal dimension and range.

#load and parse stock market data 

stocks<-read.csv("Example_Stock_Data.csv") 



June2019<-stocks[stocks$Month=="June",] 

July2019<-stocks[stocks$Month=="July",] 

August2019<-stocks[stocks$Month=="August",] 

September2019<-stocks[stocks$Month=="September",] 

October2019<-stocks[stocks$Month=="October",] 

November2019<-stocks[stocks$Month=="November",] 

December2019<-stocks[stocks$Month=="December",] 

January2020<-stocks[stocks$Month=="January",] 

February2020<-stocks[stocks$Month=="February",] 

March2020<-stocks[stocks$Month=="March",] 

April2020<-stocks[stocks$Month=="April",] 

May2020<-stocks[stocks$Month=="May",] 

 

#calculate fractal dimension for each series 

library(fractaldim) 

junedim<-fd.estimate(June2019[,2],methods="hallwood")$fd 

julydim<-fd.estimate(July2019[,2],methods="hallwood")$fd 

augustdim<-fd.estimate(August2019[,2],methods="hallwood")$fd 

septemberdim<-fd.estimate(September2019[,2],methods="hallwoo

d")$fd 

octoberdim<-fd.estimate(October2019[,2],methods="hallwood")$f

d 

novemberdim<-fd.estimate(November2019[,2],methods="hallwood")

$fd 

decemberdim<-fd.estimate(December2019[,2],methods="hallwood")

$fd 

januarydim<-fd.estimate(January2020[,2],methods="hallwood")$f

d 

februarydim<-fd.estimate(February2020[,2],methods="hallwood")

$fd 

marchdim<-fd.estimate(March2020[,2],methods="hallwood")$fd 

aprildim<-fd.estimate(April2020[,2],methods="hallwood")$fd 

maydim<-fd.estimate(May2020[,2],methods="hallwood")$fd 

 

#combine fractal dimension results into a vector 

monthlyfd<-c(junedim,julydim,augustdim,septemberdim,octoberdi

m,novemberdim, 

decemberdim,januarydim,februarydim,marchdim,aprildim,maydim) 

 

#examine monthly stock price range 

monthlymax<-c(max(June2019[,2]),max(July2019[,2]),max(August2

019[,2]), 

max(September2019[,2]),max(October2019[,2]),max(November2019

[,2]), 

max(December2019[,2]),max(January2020[,2]),max(February2020[,



2]), 

max(March2020[,2]),max(April2020[,2]),max(May2020[,2])) 

 

monthlymin<-c(min(June2019[,2]),min(July2019[,2]),min(August2

019[,2]), 

min(September2019[,2]),min(October2019[,2]),min(November2019

[,2]), 

min(December2019[,2]),min(January2020[,2]),min(February2020[,

2]), 

min(March2020[,2]),min(April2020[,2]),min(May2020[,2])) 

 

monthlyrange<-monthlymax-monthlymin 

 

#examine relationship between monthly fractal dimension and m

onthly range 

cor.test(monthlyfd,monthlyrange,"greater")

Listing 5-8: A script that loads the simulated DJIA closing

data, calculates fractal dimension and range of closing

prices, and runs a correlation test to determine the

relationship between fractal dimension and closing price

range

You should find a correlation of around 0.55, or a

moderate relationship between closing price fractal

dimension and closing price range, that is around the 0.05

significance level on the correlation test. Self-similarity does

seem positively tied to one measure of market volatility. The

fractal dimension varies by month, with some months’

dimensionality being close to 1 and others’ dimensionality

being quite a bit higher. Impressively, the fractal dimension

shoots up to 2 for March 2020.

Given that we only have 12 months’ worth of data going

into our test, it’s worth noting that we still find evidence for

a positive relationship between fractal dimension and range

of closing prices. Interested readers with their own stock

market data are encouraged to optimize the time frame

windows and potential window overlap chosen to calculate

the series of fractal dimensions on their own data, as well as



investigate the correlations with other geometric tools used

in stock market change point detection, such as Forman–

Ricci curvature and persistent homology.

Summary

In this chapter, we’ve investigated metric geometry and its

application in several important machine learning

algorithms, including the k-NN algorithm and several

manifold learning algorithms. We’ve witnessed how the

choice of distance metric (and other algorithm parameters)

can dramatically impact performance. We’ve also examined

fractals and their relationship to stock market volatility.

Measuring distances between points and distributions crops

up in many areas of machine learning and impacts quality of

machine learning results. Chapter 5 barely scratches the

surface of extant tools from metric geometry. You may want

to consult the papers referenced in the R packages used in

this chapter, as well as current machine learning

publications in distance metrics.



6 

NEWER APPLICATIONS OF

GEOMETRY IN MACHINE

LEARNING

In Chapter 5, we explored

the contributions of metric

geometry to machine

learning and its myriad

uses in model

measurements and input.

However, geometry has provided many

other contributions to machine learning; in

this chapter, we’ll explore tangent-space-

based approaches to model estimation,

exterior calculus, tools related to the

intersection of curves (which can be used

to replace linear algebra in algorithms),

and rank-based models that involve vector

fields acting on datasets’ tangent spaces.

We’ll see how these tools can help in

supervised learning on small datasets,



help communities plan for disasters, and

discern choice preferences of customers.

Working with Nonlinear Spaces

Our first tool helps mathematicians and machine learning

engineers work with nonlinear spaces such as manifolds; it’s

the definition of a point’s tangent space. Thinking back to

calculus classes, we recall the tangent lines of a function are

lines that touch a point on a curve without crossing the

curve—where the slope of the curve equals the slope of the

tangent line (giving the first derivative of the curve).

Consider the sine wave example and a point on that sine

wave, along with its tangent line, shown in Figure 6-1.

Figure 6-1: A sine wave example with tangent line drawn at one of the local

maxima

This kind of tangent line works well in two dimensions.

However, trying to define tangent lines to a point on a



surface gets trickier, as many (infinitely many) lines can be

tangent to a given point (see Figure 6-2, point A).

Figure 6-2: An ellipse with multiple possible tangent lines through point A

In fact, the lines in Figure 6-2 form a two-dimensional

plane tangent to point A, akin to a sheet of paper that

touches the ellipse at point A. What one could do is glue this

tangent plane to point A, as in Figure 6-3.

Figure 6-3: An ellipse with point A and the tangent plane associated with point A

that extends tangent lines to tangent planes and spaces

In the case of higher-dimensional objects, the tangent

spaces can grow to involve more dimensions (it can be 3-

dimensional, 100-dimensional, or even an infinite-



dimensional box). These tangent spaces have a nice

connection to linear algebra. Remember that a vector space

can be defined by a set of independent vectors collected

into a matrix, called the basis of the space, technically

known as Hamel basis. The basis for the tangent space of an

object at a point, in fact, is the set of a point’s partial

derivatives. As mentioned earlier, in a one-dimensional

space, this is exactly the slope of the tangent line. This

gives a nice Euclidean space associated with each point on

the manifold, which can be used to derive unit distances

between points, provide mappings to a Euclidean space

from a manifold, and understand multicollinearity.

Multicollinearity occurs when variables are strongly

correlated, which results in matrix columns or rows that are

identical or nearly identical (causing singular matrices).

Multicollinearity is a problem for regression-based

algorithms, as it leads to redundant predictors and singular

matrices. Variables with perfect overlap of variance (highly

collinear predictors) will have the same tangent space or at

least share some overlapping tangent space.

Introducing dgLARS

One useful machine learning algorithm based on tangent

spaces is the dgLARS algorithm (dgLARS stands for

“differential geometry least angle regression”). dgLARS

extends traditional least angle regression (LARS) to an

algorithm that fits to a given model’s error tangent space.

The LARS algorithm traditionally starts with each coefficient

in the regression model set to 0, with predictors added

progressively according to which predictor is most

correlated with the outcome; coefficients are adjusted

through least squares computation until a higher correlation

enters the model. When multiple predictors have entered

the model, coefficients are increased in joint least squares

directions.



dgLARS considers the model’s tangent space, scaling the

score function used to optimize the coefficients. Each

update to the model is done using the square root of a tool

called the conditional Fisher information. The conditional

Fisher information roughly measures the amount of

information a given variable contains relative to a target

(such as an outcome variable). For more technical-minded

readers, the Fisher information of a parameter is the

variance of the parameter’s score, which is the partial

derivative of that parameter with respect to the natural

logarithm of the likelihood function.

Let’s make this concrete with an example. Say we are

creating a model to understand factors that impact

adolescent risk-taking behaviors, such as drug use or petty

crime. We may have many known factors measured already

(such as family socioeconomic status, secondary school

grades, and prior school or legal incidents). However, we’d

like to compare an index from a survey we’ve designed to

measure risk propensity in adolescents (index 1) to a known

index that measures risk-taking in adults (index 2). Both

surveys likely capture different types of information and

different levels of relevant information with respect to our

risk outcomes (Figure 6-4).



Figure 6-4: Comparison of number of questions loading onto a risk index

In the Figure 6-5 example, survey 1’s index contains a

greater volume of information. However, there may be some

overlap between the variables or irrelevant information in

survey 2’s index, and it would be nice to have a

measurement that can capture such information. Perhaps

there is some overlap of information between the questions

asked and some irrelevant information in each survey as

well. Let’s consider unique and relevant information

contained in each risk-propensity survey (Figure 6-5).



Figure 6-5: Two adjusted measures of relevant information captured in index

questions

From Figure 6-5, we see that index 1 and index 2 contain

some irrelevant information and some overlapping

information. Index 1 does seem to contain a bit more

information than index 2, and if we had to choose which

survey to administer to a larger population of at-risk

adolescents, we’d be better off starting with index 1.

This is a bit how Fisher information and variable selection

in dgLARS happen. Technically, a score is calculated through

partial derivatives of the model’s log likelihood function, and

the variance of this score is the Fisher information, which

can be entered into a matrix to capture information across

partial derivatives of the model. Interestingly, this matrix

can also be derived as the Hessian of the relative entropy

(Kullback–Leiber divergence), and the Fisher information

gives the curvature of relative entropy in this case. At a less

technical level, the Fisher information used to select



variables has to do with both a statistical measure (the log

likelihood function) and the information geometry of the

independent variables being considered.

In the case of generalized linear models, the Fisher

information matrix can be used to derive a score called the

conditional Rao score, which can test whether the

coefficient for a given variable is statistically different from

0. If the score is not statistically different from 0, the

variable is dropped from consideration in the model. In the

dgLARS algorithm, these calculations are done by searching

coefficient vectors in the model error’s tangent space,

starting with the null model. This space’s geometry is then

iteratively partitioned into three sets: selected predictors,

which have good fit scores in the error tangent space;

redundant predictors, which share an error tangent space

with selected predictors; and nonselected predictors, which

have poor fit scores in the error tangent space. Thus,

dgLARS leverages information about the model’s geometry

to find a best-fitting model.

dgLARS has had success on problems involving more

predictors than observations in datasets, and many of the

publications on this algorithm focus on genomics

applications, where the number of patients might be 300

and the number of genes sequences might be in the

1,000,000 range. R provides a package, dglars, that

implements this algorithm for generalized linear models,

including link functions for logistic regression, Poisson

regression, linear regression, and gamma regression. For

those unfamiliar with generalized linear regression, a link

function essentially is a special type of transformation of a

dependent variable that allows regression to work

mathematically for count variables, binary variables, and

other types of not normally distributed dependent variables

(with some restrictions on the geometry of the distribution).



Now that we’ve covered some of the theory, let’s put it

into practice.

Predicting Depression with dgLARS

We’d like to predict self-reported depression based on

school issues and IQ. The data we’ll use is self-reported

school issues in a self-selected sample of profoundly gifted

Quora users (with IQs above 155), including seven main

school issues (bullying, teacher hostility, boredom,

depression, lack of motivation, outside learning, put in

remediation courses). The data was reported across 22

individuals who provided scores in the profoundly gifted

range and discussed at least one of the issues of interest in

a school system, with a bias toward users in the United

States. This dataset was collected from the platform and

processed manually to obtain a final dataset with categories

of school issues for posters who met the IQ criterion. You

can find the dataset in the book’s files. Let’s load the data

first with the code in Listing 6-1.

#load data 

mydata<-read.csv("QuoraSample.csv") 

set.seed(1)

Listing 6-1: A script that loads the Quora dataset

The code in Listing 6-1 loads a dataset examining

educational interventions and a psychological metric of self-

esteem. Now let’s modify the script to run the dgLARS

algorithm on the dataset. The R package gives us the option

of doing cross-validation or running the algorithm without

cross-validation. Let’s modify Listing 6-1 to run both model

options:

#run analysis 

library(dglars) 



dg<-dglars(factor(Depression)~.,data=mydata,family="binomia

l") 

dg1<-cvdglars(factor(Depression)~.,data=mydata, 

family="binomial",control=list(nfold=2))

This runs the cross-validated and non-cross-validated

dgLARS algorithms on the full set of student data. The cross-

validated version does not work well on small datasets with

sparse predictors, so if you run into an error, keep trying to

run the cross-validated version, as some partitions may

produce an error related to splitting and fitting models to

the splits. The output from the two dgLARS algorithms

should agree on many predictors, though the cross-

validated split version of the algorithm may vary a bit, as

the data is randomly partitioned. Let’s add our script to look

at the summary of the first model:

#examine results of non-cross-validated model 

>summary(dg) 

Summary of the Selected Model 

 

    Formula: factor(Depression) ~ 1 

     Family: 'binomial' 

       Link: 'logit' 

 

Coefficients: 

     Estimate 

Int.  -1.5041 

--- 

 

                 g: 1.265 

     Null deviance: 20.86 

 Residual deviance: 20.86 

               AIC: 22.86 

 

Algorithm 'pc' (method='dgLASSO')

No factors are selected as important predictors in this

model. There are a few main reasons why no factors might

be selected by the model, including the existence of



subpopulations with opposite effects that “average out” the

angles of the subpopulations, the existence of outliers that

warp the geometry, or a true null effect for predictors.

Model fit is reasonable, with an Akaike information criterion

(AIC) of 20.86 and a residual deviance much smaller than

the null deviance with no terms added to the model. The

dispersion parameter tells us that the data fits reasonably

well to the binomial distribution (see how g is close to 1)

without problems in the distribution that sometimes occur in

real-world data.

Now let’s add to our script to look at the results from the

cross-validated trials:

#examine cross-validated model 

>summary(dg1) 

Call:  cvdglars(formula=factor(Depression) ~ ., family="binom

ial", 

    data=mydata, control=list(nfold=2)) 

 

Coefficients: 

                       Estimate 

Int.                    -1.6768 

Bullying                 0.3066 

Put.in.Remedial.Course   0.2292 

 

dispersion parameter for binomial family taken to be 1 

 

Details: 

   number of non-zero estimates: 3 

      cross-validation deviance: 12.33 

                              g: 0.9838 

                        n. fold: 2 

 

Algorithm 'pc' (method='dgLASSO')

The cross-validated model should give a bit different

result than the non-cross-validated model, suggesting the

models are finding some consistency but not completely

overlapping across folds. In the cross-validated model,

profoundly gifted children put in remedial courses tend to



have higher rates of depression, and children like the ones

in this sample who are put in remedial courses and start

showing signs of depression may benefit from this

intervention. As you can see, bullying is also a potential

issue leading to depression, suggesting something we likely

already know: that bullying in general shouldn’t be tolerated

in a school for optimal mental health outcomes.

Given the small sample size, it’s likely that a generalized

linear regression model would struggle to estimate the

coefficients. The necessary sample size for topology- and

geometry-based linear models seems to be smaller than

linear regression, and the consistent results on this problem

suggest these models can work on very, very small data.

However, there is still probably a minimum sample size

needed for cross-validation, so it’s best to avoid doing even

these analyses if the sample size is less than 10.

Predicting Credit Default with dgLARS

To understand how dgLARS works on a larger dataset with a

binary outcome (logistic regression) and more observations

and variables, let’s consider another dataset. The UCI credit

default dataset includes 30,000 credit cases in Taiwan (late

2005) and 23 predictors of defaulting, including

demographics (age, marriage status, education status, and

gender), credit limit, and prior usage and payment

information. The goals of our analysis are to figure out what

predictors are related to whether an account ends up

defaulting and to assess the model fit of our dgLARS model.

Let’s get started on this with the code in Listing 6-2.

#load data 

mydata<-read.csv("UCIDefaultData.csv") 

 

#load library 

library(dglars) 



 

#run analysis, scaling the predictors such that big numbers d

on't 

#result in large differences in coefficient values 

#scale the predictor data 

mydata1<-scale(mydata[,-c(1,25)]) 

mydata1<-cbind(mydata1,mydata$default.payment.next.month) 

colnames(mydata1)[24]<-"default.payment.next.month" 

 

#run the dglars function with and without cross-validation 

dg<-dglars(factor(default.payment.next.month)~., 

data=as.data.frame(mydata1),family="binomial") 

dg1<-cvdglars(factor(default.payment.next.month)~., 

data=as.data.frame(mydata1),family="binomial") 

summary(dg)

summary(dg1)

Listing 6-2: A script that loads, processes, and analyzes

the UCI credit default dataset with the dgLARS and cross-

validated dgLARS algorithms

This should yield two models with coefficients for most

predictors. The first model is the non-cross-validated model

version (DG), and the second model is the cross-validated

version (DG1). Table 6-1 shows results from our run of the

code.



Table 6-1: Coefficients of Terms in the UCI Credit Default dgLARS Model

Column1 DG estimate DG1 estimate

Int. –1.47 –1.45

LIMIT_BAL –0.10 –0.09

SEX –0.05 –0.04

EDUCATION –0.08 –0.07

MARRIAGE –0.08 –0.07

AGE 0.07 0.06

PAY_0 0.65 0.65

PAY_2 0.10 0.09

PAY_3 0.09 0.09

PAY_4 0.03 0.03

PAY_5 0.04 0.04

PAY_6 0.01 0.01

BILL_AMT1 –0.39 –0.15

BILL_AMT2 0.16 0.02

BILL_AMT3 0.09 0.02

BILL_AMT5 0.03 0.00

BILL_AMT6 0.02 0.00

PAY_AMT1 –0.22 –0.17

PAY_AMT2 –0.22 –0.19

PAY_AMT3 –0.05 –0.05

PAY_AMT4 –0.06 –0.06

PAY_AMT5 –0.05 –0.05

PAY_AMT6 –0.04 –0.03

Some of the biggest predictors of default include the prior

month’s billing and payment history. Those with lower usage

(BILL_AMT1), lower payments (PAY_AMT1), and on-time

payments (PAY_0) are less likely to default on payment in the

following month. This makes a lot of sense, given that most

lending metrics prioritize lending at the best rates to those

with low loads of debt and a track record of on-time

payment.



The cross-validated dgLARS model penalizes prior month

usage and payment total less than the non-cross-validated

model, suggesting that prior month on-time payment is

more important than specific numbers. The AIC score on the

first model is fairly large (27,924), but it is quite a bit

smaller than the null model’s AIC score (31,705), indicating

a better fit than the null model even with several predictors

included.

Now let’s compare this model with logistic regression and

compare the AIC fit statistics, adding the following to our

script:

#run logistic regression 

gl<-glm(factor(default.payment.next.month)~., 

data=as.data.frame(mydata1),family="binomial"(link="logit")) 

 

#calculate AIC of the model 

AIC(gl)

This snippet of code runs the logistic regression on the

dataset and calculates the model’s AIC. In this example, the

AIC should come out to around 27,925, almost exactly that

of the dgLARS models. This suggests a convergence of

logistic regression and the dgLARS algorithm; at this large a

sample size, this result is expected. Logistic regression is

the typical tool for large sample sizes, and it doesn’t seem

that we get a gain from using dgLARS in this case. However,

given the convergence on large sample sizes, it’s likely that

dgLARS gives quality results at the smaller sample sizes

that won’t work with logistic regression.

Applying Discrete Exterior

Derivatives

Another useful tool that has come out of differential

geometry is discrete exterior derivatives. Discrete exterior



derivatives involve building up discrete shapes from lower-

dimensional discrete shapes. In prior chapters, we examined

the concept of homology, which counts the holes in a given

object; technically, this is done by finding an object’s

boundaries at a specific dimension. For instance, consider

the boundaries of a triangle (Figure 6-6).

Figure 6-6: The boundaries of a triangle

We can take this a step further and break down lines into

each point connected by the line, as in Figure 6-7.

Figure 6-7: The boundaries of a line

Just as we can take apart shapes by identifying and

separating out boundaries, we can also build shapes up

from lower-dimensional boundaries by combining those

boundaries. Technically, this is called cohomology, which is

the realm of discrete exterior calculus. We might start with

two points that are related in some way (perhaps within a

certain distance of each other or sharing a characteristic)

and connect them with a line (Figure 6-8).



Figure 6-8: Two points built into a line

For more technically minded readers, we’re looking at the

discrete version of differential forms, which are cochains on

simplicial complexes. These differential forms have vector

fields associated with them. We can then define operators

that change those fields or objects, combine them, or count

what exists within a field or cochain. This allows us to

wrangle certain types of data to understand problems like

resource capacity in electrical grids or burden of disease

within social networks (or even rendering graphics across

groups of pixels within a computer screen).

This can continue up to arbitrarily many dimensions, with

lines building up triangles and triangles building up

tetrahedra and so on. We can also jump levels with discrete

exterior derivatives, going from points to triangles or

tetrahedra rather than lines. Thus, discrete data, such as

rendering pixel data or engineering data, can be grouped

and connected for further study.

One of the newer applications of discrete exterior

derivatives (and homology) is within social network analysis.

As we mentioned in prior chapters, graphs are discrete

objects of zero and one dimension (points and lines);

however, connections between individuals can be extended

from two-way mutual interactions (lines connecting points)

to cliques of 3-way (triangle) or 4-way (tetrahedron) or 100-

way mutual interactions (a very large dimensional sort of



object), as demonstrated by three colleagues mutually

connected in Figure 6-9.

Figure 6-9: A graph of three colleagues working on projects together

represented through a three-way interaction

On the left of Figure 6-9, we see three colleagues (Colleen,

Jodelle, and Yaé) who collaborate in pairs but have not

worked on a project involving all three of them. On the right

of Figure 6-9, we see a representation of a project that

involves all three colleagues working together. If they

collaborate on many papers, we can sum up their two-way

collaborations and their three-way collaborations to get a

summary total for each n-way collaboration. This might be

useful for understanding the strength of this collaborative

network’s parts.

Let’s explore how these concepts can help in disaster

logistics planning. Suppose there are four towns in a region

with all towns connected to at least one other town by a

road. Suppose also that each town has its own stock of

supplies (perhaps liters of water for each resident) in case a

cyclone hits the region and limits transportation for days or

weeks. We can model this by creating a graph in R using the

code in Listing 6-3.

#create matrix of town connections and miles between each tow

n 

towns<-matrix(c(0,0,0,4,0,0,12,2,0,12,0,6,4,2,6,0),nrow=4) 

 

#create a graph from the matrix with connections between mode

s 

#going in both directions (undirected graph) with weights 



library(igraph) 

g1<-graph_from_adjacency_matrix(towns,mode="undirected",weigh

ted=T) 

 

#plot town graph with edges labeled by weights 

plot(g1,edge.label=E(g1)$weight,main="Plot of Connected Towns 

by Road Miles") 

 

#add resource (perhaps liters of water per resident) 

V(g1)$number<-c(10,500,80,200) 

plot(g1,edge.label=E(g1)$weight,vertex.label=V(g1)$number,ver

tex.size=40, 

main="Situation 1") 

 

#find maximal cliques, representing connected resources 

mc1<-max_cliques(g1) 

mc1 

 

#add resources that are mutually connected between towns 

c1<-V(g1)$number[mc1[[1]][1]]+V(g1)$number[mc1[[1]][2]] 

c2<-V(g1)$number[mc1[[2]][1]]+V(g1)$number[mc1[[2]][2]]+ 

V(g1)$number[mc1[[2]][3]] 

 

#examine time needed to transport using shortest paths 

dis1<-distances(g1,v=V(g1),mode=c("all"),weights=E(g1)$weigh

t, 

algorithm="dijkstra")

Listing 6-3: A script that generates the example graph of

connected towns, plots the graph, adds resources to each

town, visualizes these resources, and analyzes mutually

connected town resources

Listing 6-3 creates a matrix of towns connected by roads

and then converts this into a weighted graph. Once it is in

graph form, we can add in information about resources

available in each town and plot a picture with this

information included, along with the distances between

towns connected by a road. We can then calculate mutual

resources between towns and minimum travel distances

from a given town to another. This will help us assess



resources available in a disaster and the best routes down

which to send supplies.

Listing 6-3’s first plot should output a diagram showing

which towns are connected and the number of miles

between towns, as shown in Figure 6-10.

Figure 6-10: A plot of town connectivity and miles of road between connected

towns

Figure 6-10 shows that towns 2, 3, and 4 are connected by

multiple roads, such that if one road is blocked, the town

can still be reached by looping around through another

town. However, town 1 is relatively isolated despite being

located only 4 miles from the nearest town. The road

connecting towns 2 and 3 is quite long (perhaps this is a

back road that meanders through a densely wooded area or

around several canals).

The second plot in Listing 6-3 should output a graph that

adds total resources for each town, as shown in Figure 6-11.



Figure 6-11: A plot of town connectivity, miles of road between connected towns,

and resources within each town

Figure 6-11 gives us a richer understanding of connectivity

and potentially shared resources among the four towns.

Notice that town 1 has a relatively small water supply

stocked for the disaster (10 liters per resident). However, if

the road between towns 1 and 4 holds up during the

disaster, it is easy to move some of the water from town 4

(with 200 liters per resident) to town 1, such that town 1 has

sufficient water. It’s also easy to move water between towns

4 and 2 (which has 500 liters per resident stocked up)

provided the road directly connecting these towns holds up

in the disaster.

The maximal clique calculation yields mutually connected

towns (towns with mutual n-way connections). This gives a

connection between towns 1 and 4 (with the single road)

and towns 2, 3, and 4, which are mutually connected. From

this information, we can calculate resources at each town’s

disposal should the roads hold between towns. Towns 1 and

4 mutually contain 210 resident-liters; the three-way clique

(towns 2, 3, and 4) contains 780 resident-liters.



Using a shortest path algorithm, we can calculate shortest

routes between any two towns to understand how quickly

supplies might be routed between towns should supplies run

low in a given town and roads are not damaged by the

disaster. Table 6-2 gives the miles that would need to be

driven between towns in this scenario.

Table 6-2: Shortest Distances Between Pairs of Towns

Town 1 Town 2 Town 3 Town 4

Town 1 0 6 10 4

Town 2 6 0 8 2

Town 3 10 8 0 6

Town 4 4 2 6 0

The longest route in this scenario (10 miles) is trying to

get supplies from town 3 to town 1 when town 1 runs low on

water. Notice that it’s shorter to bypass the longest road to

route supplies between towns 2 and 3 (8 miles versus 12

miles).

We can examine a scenario where one or more roads is

damaged in the disaster by adding to Listing 6-3 to remove

roads connecting towns and re-examine mutual supplies

and shortest paths:

#remove the link between vertices 2 and 4, providing an effic

ient supply

#route 

g2<-delete_edges(g1,edges="2|4") 

V(g2)$number<-c(10,500,80,200) 

plot(g2,edge.label=E(g2)$weight,vertex.label=V(g2)$number,ver

tex.size=40, 

main="Situation 2") 

 

#find maximal cliques 

mc2<-max_cliques(g2) 

mc2 

 

#find resources between sites 



c1<-V(g2)$number[mc2[[1]][1]]+V(g2)$number[mc2[[1]][2]] 

c2<-V(g2)$number[mc2[[2]][1]]+V(g2)$number[mc2[[2]][2]] 

c3<-V(g2)$number[mc2[[3]][1]]+V(g2)$number[mc2[[3]][2]] 

 

#examine time needed to transport using shortest paths 

dis2<-distances(g2,v=V(g2),mode=c("all"),weights=E(g2)$weigh

t, 

algorithm="dijkstra")

This script removes a link between towns 2 and 4,

recalculating the metrics to help us assess how the situation

has changed with the blockage of the road between towns 2

and 4. These modifications should yield a plot of situation 2

similar to Figure 6-12.

Figure 6-12: A modified plot of situation 1 with one road destroyed in the

disaster

As Figure 6-12 shows, this scenario breaks the triangle

present in situation 1, isolating town 2. If town 1’s water

supply runs low, the water must be shared between towns 1

and 2 with the expectation that it may be difficult to move

water from town 2 to replenish the supplies.

If we look at the cliques, we can see two-way connections

among towns, and mutual supplies between towns are more



spread out than in the three-way connection present in

situation 1. Towns 2 and 3 have a decent mutual supply, but

the other towns may have delays in routing needed water.

In addition, the miles needed to travel increases, as we can

see in the shortest path table (Table 6-3).

Table 6-3: Shortest Distances Among Pairs of Towns

Town 1 Town 2 Town 3 Town 4

Town 1 0 22 10 4

Town 2 22 0 12 18

Town 3 10 12 0 6

Town 4 4 18 6 0

Routing water from the town with the largest supply (town

2) has become a lot more difficult, with greatly increased

expected travel times. Should scenario 2 appear likely, it’s

probably best to redistribute the water prior to the disaster

to avoid delays in routing.

Discrete exterior derivatives have other applications.

Graphics rendering and engineering problems have been

particular areas of interest within discrete exterior

derivatives (and discrete exterior calculus in general). A few

of the more common applications in engineering are flux

and flow calculations on discrete objects or computer

modeling of processes. Within graphics rendering, graphs

are typically replaced with more general meshes.

In some instances, it is easier to use cohomology (and its

tool, discrete exterior derivatives) to study an object or

point cloud than to use persistent homology, as the end

result will find the same boundaries and objects. However,

little has been done to make explicit R packages for

applying discrete exterior derivatives to data, and code

must be parsed together as in Listing 6-3. Automation and

object manipulation code would help facilitate the adoption



of discrete exterior derivatives within data science and

other fields.

Nonlinear Algebra in Machine

Learning Algorithms

Another intriguing and recent development with respect to

geometry in machine learning is the notion of nonlinear

algebra in machine learning algorithms. Many machine

learning algorithms rely heavily on linear algebra to

compute things such as gradients, least squares estimators,

and so on. However, in relationships and spaces that aren’t

flat or involving straight lines, the linear algebra provides

only an approximation of quantities calculated. Take a look

at Figure 6-13, which shows a straight line (assumed by

linear algebra tools, such as those used in regression) and a

curved line (which may cause an estimation problem for

linear algebra tools).

Figure 6-13: A straight line and curved line

Nonlinearity introduces error into the calculations and final

result of an algorithm when curves and nonlinear spaces are

estimated using linear tools. Imagine using a ruler to

measure the lower line in Figure 6-13. It would be hard to

get an exact length of the line relative to the straight line

above. If the length of the line were a quantity that needed

to be minimized or maximized by an algorithm, such a

measurement could potentially find a nonglobal solution or



distort the quantity enough to cause problems in predictive

accuracy or model fit statistics like sum of square error or

Bayesian information criterion.

One proposed alternative to linear algebraic calculations

within machine algorithms is to use numerical algebraic

geometry, a branch of nonlinear algebra that deals with the

intersections of curves. For instance, consider the two-

dimensional ellipse intersected by a one-dimensional curve,

shown in Figure 6-14.

Figure 6-14: A plot of a curve intersecting an ellipse

Different types of matrices and matrix operations can be

used to solve nonlinear systems analogously to how linear

algebra solves linear systems; numbers populating a matrix

are simply replaced with polynomial equations. Some of

these intersecting curve problems are nonconvex problems,

which often pose issues to machine learning algorithms and

the linear algebra powering them.

Convex optimization problems are those in which the

optimization function creates a region in which a line

passing through the region is in the region continuously

(rather than passing multiple regions and nonregions within

the object), as shown in Figure 6-15.



Figure 6-15: A convex object

If, however, the region contains holes or indents, this is no

longer the case, and the region is designated as nonconvex,

such as in Figure 6-16, where the hole inside the region

splits the interior set into the set within the region and the

set within the hole.

Figure 6-16: A nonconvex object

Optimization algorithms often struggle with nonconvex

functions and regions within the optimization function, as

the linear programming commonly used to solve these

problems isn’t as amenable to nonconvex optimization

problems and as stepwise methods can get stuck in the

local optima around the hole or divots in the region.



Unfortunately, many real-world datasets and the

optimization functions used on them involve nonconvex

regions. Numerical algebraic geometry offers an accurate

solution for nonconvex optimization problems, which come

up often in real-world data situations. Once the system of

polynomials is set up in matrix form, many software

platforms and programs exist to do the computations,

including the Bertini and Macauley software, which can

connect to both R and Python. This allows for solvers that

work well in nonconvex optimization problems.

Several recent publications and workshops in numerical

algebraic geometry suggest that nonlinear algebra is a

viable alternative to the current machinery in algorithms for

other types of problems that may be convex, loosening

mathematical assumptions and providing improvements in

accuracy. One recent paper (Evans, 2018) found that the

local geometry of many possible solutions overlaps for many

types of statistical models (including Lasso, ARIMA models

for time-series data, and Bayesian networks). This means

that algorithms can’t distinguish well between potential

predictor sets or parameter values in the model space,

particularly for the sample sizes commonly used and

suggested for these problems. One can solve this problem

by either fitting the model in tangent space, as we saw in

the previous section, or using numerical algebraic geometry

instead of linear algebra for optimization. This suggests

some immediate applications of numerical algebraic

geometry and other nonlinear approaches to machine

learning algorithms for improved algorithm performance

and model fits.

Unfortunately, packages to implement these algorithms

do not exist in R at this time, so we won’t explore this

further in an example.



Comparing Choice Rankings with

HodgeRank

Discerning choice preference across a population of

customers is a common machine learning task. For instance,

a company might want customers to compare items on a list

of potential new features in software to prioritize the

engineering team’s time in the coming year. Comparing

choice rankings also helps companies market new products

and services to existing users and derive new campaigns for

items that are likely to sell well with existing customers.

Let’s look at a simple example of ranking activity

preference for a day at the beach. Perhaps we’re looking at

data that a hotel collected from recent guests on which

activities they preferred during their stay; this would allow

them to prioritize beach usage and staff hiring to meet

future demand for the main activities their guests prefer.

Here, we have three choices of activity (lying on the beach,

swimming, or surfing), with one preference as a clear

favorite (surfing). Figure 6-17 summarizes this simple

situation.

Figure 6-17: A diagram ranking three choices relative to the other choices

We can complicate this problem by adding a potentially

new fourth activity that is preferred to the other three:

kiteboarding. The ranking is still relatively easy to compute,

as all activities are preferred to lying on the beach, one is



preferable only to lying on the beach (swimming), one is

preferred to every activity but kiteboarding (surfing), and

one is preferred to the other three (kiteboarding), as shown

in Figure 6-18.

Figure 6-18: A diagram with another activity added to the preference data

All of the information is given in the diagram, with this

particular person filling out all choices relative to each other.

This is rarely the case with real-world data, as shown in Figu

re 6-19.

Figure 6-19: An incomplete preference diagram of the four activities



However, this information still shows a strong preference

toward kiteboarding, with all pair-ranks existing for

kiteboarding pairs and all pair-ranks pointing toward

kiteboarding as the most preferred activity. In real-world

data, it’s common not only to have missing information but

to have preference loops in the data, such as the one in Figu

re 6-20, where surfing is preferred to swimming, and

kiteboarding is preferred to surfing but not to swimming.

Figure 6-20: An example of incomplete and inconsistent ranking preference data

This gives a local inconsistency of where kiteboarding and

swimming might rank relative to each other when other

options are available. However, surfing and kiteboarding are

preferred to two other activities, suggesting they rank

toward the top of possible options, and kiteboarding is

preferred to surfing (giving a tiebreaker of sorts).

The situation becomes a bit more nebulous when no

consistent preferences exist globally, with each activity

preferred to another activity, as shown in Figure 6-21.



Figure 6-21: A diagram of incomplete preference data with no consistent

preferences

In the case of Figure 6-21, nothing can be said about

which activity would be preferred to other activities, and

results of the analyses would be inconclusive. This is

common when customers are asked to rank features in

financial apps or guests are asked to rank preferred

activities. Most customers will exist in subgroups with their

own unique needs, which might be the opposite needs of

another important customer subgroup. It’s a challenge to

prioritize features for development or choices to give guests

to please the largest number of customers.

Many algorithms exist to do pairwise-rank comparisons to

get a ranked list of preferences relative to each other

(SVMRank, PageRank, and more); however, in general, they

do not provide information about local and global

inconsistencies in rank that might influence where an item

or choice is placed relative to others. Algebraic geometry

recently added a tool to the collection of pairwise-rank

algorithms that can decompose the ranking results to

include information about local and global inconsistencies of

items; that would be HodgeRank, which can derive this

information by leveraging an algebraic-geometry-based



theorem common in engineering problems: the Hodge–

Helmholtz decomposition.

The Hodge–Helmholtz decomposition partitions a vector

flow (or flow on a graph) into three distinct components,

shown in Figure 6-22: the gradient flow, which is locally and

globally consistent; the curl flow, which is locally consistent

but globally inconsistent; and the harmonic flow, which is

locally inconsistent but globally consistent.

Figure 6-22: A diagram showing the flows broken down by the Hodge–Helmholtz

decomposition

In the beach examples, Figure 6-20 has a curl flow

involving swimming, surfing, and kiteboarding (also

harmonic if another activity is not ranked there). Figure 6-21

is an example of global harmonic flow (as well as local curl

flow).

The HodgeRank algorithm essentially extends PageRank

for pairwise-ranking problems; the math boils down to a

least squares problem on the graph data, allowing for

assessments of global ranking and local ranking

consistency. Thus, suspicious rankings can be flagged for a

human analyst’s review. The algorithm also allows for a lot

of missing data in the original pairwise ranking sets, making

it widely applicable to the often-incomplete data on ranking

problems in the real world (where users won’t click through



three million video options to rank each relative to all of the

others!). While a package does not exist in R and thus we

will not walk through an example, implementations do exist

in Matlab, and readers familiar with Matlab who are

interested in this algorithm are encouraged to use the

resources listed for HodgeRank.

Summary

In this chapter, we learned about newer algorithms derived

from differential and algebraic geometry and explored the

use of both dgLARS and discrete exterior calculus on data

analysis problems, including the Quora gifted sample, a

credit-lending sample, and a disaster-planning scenario.

Many more algorithms are being developed, and we’ve

given an overview of how nonlinear algebra and Hodge

theory have contributed to machine learning in recent

years, impacting important types of industry problems (such

as preference ranking and parametric model estimation).

In the next chapter, we’ll return to persistent homology

and examine another tool of algebraic topology called the

Mapper algorithm. Both of these will be used on our student

sample introduced in this chapter.



7 

TOOLS FOR TOPOLOGICAL DATA

ANALYSIS

In this chapter, we’ll

explore algorithms that

have a direct basis in

topology and use them to

understand the dataset of

self-reported educational

data encountered in Chapter 6. The

branch of machine learning that includes

topology-based algorithms is called

topological data analysis (TDA). You

already saw some TDA in Chapter 4,

where we used persistent homology to

explore network differences. Persistent

homology has gained a lot of attention in

the machine learning community lately

and has been used in psychometric data

validation, image comparison analyses,

pooling steps of convolutional neural

networks, and comparisons of small



samples of data. In this chapter, we’ll

reexamine persistent homology and look

at the Mapper algorithm (now

commercialized by Ayasdi).

Finding Distinctive Groups with

Unique Behavior

Previously, we used persistent homology to distinguish

different types of graphs. Recall from Chapter 4 that

persistent homology creates simplicial complexes from point

cloud data, applies a series of thresholds to those simplicial

complexes, and calculates a series of numbers related to

topological features present within each thresholded

simplicial complex. To compare objects, we can use

Wasserstein distance to measure the differences in

topological features across slices.

Persistent homology has many uses in industry today.

Subgroup mining, where we look for distinctive groups with

unique behavior in the data, is one prominent use. In

particular, we’re often searching for connected components

with the zeroth homology groups, or groups that are

connected to each other geometrically (such as clusters in

hierarchical clustering). In psychometric survey validation,

for example, subgroup mining allows us to find distinct

groups within the survey, such as different subtypes of

depression within a survey measuring depression.

Let’s walk through a practical example of subgroup mining

with persistent homology related to self-reported

educational data from a social networking site. We’ll

simulate data and compare persistent homology results

using the TDAstats package in R and single-linkage



hierarchical clustering using the hclust() function in R (see Li

sting 7-1). We’ll return to Chapter 6’s example dataset of

gifted Quora users self-reporting their school experiences

(see the book files for this dataset). In this example, we’ll

split the sample into sets of 11 individuals so that we can

compare the persistent homology results statistically to

ensure our measurements don’t vary across samples from

our population of students. This provides a validation that

our measurement is consistent across the population.

#load data and set seed 

mydata<-read.csv("QuoraSample.csv") 

set.seed(1)

 

#sample data to split into two datasets; remove the IQ scores 

s<-sample(1:22,11) 

set1<-mydata[s,-1] 

set2<-mydata[-s,-1]

Listing 7-1: A script that loads the educational dataset and

splits it into two sets to be explored with persistent

homology

Now that we have our dataset, we can apply persistent

homology to understand the clusters. Specifically, we’re

looking at the zeroth Betti numbers, which correspond to

connected groups, and other topological features of the

data—see Chapter 4 for a refresher.

First, we need to compute the Manhattan distances

between each student in the social network; we’ll use these

to define the filtration. Manhattan distances are often a go-

to distance metric for discrete data. Add the following to

your script:

#calculate Manhattan distance between pairs of scores 

mm1<-dist(set1,"manhattan",diag=T,upper=T)



Next, we want to apply the persistent homology algorithm

to the distance-based data to reveal the persistent features.

Using the TDAstats package, we can then add code to

compute the zeroth and first Betti numbers of this dataset,

using a relatively low-filtration setting set as the largest

scale for the approximation (this will give us larger clusters).

Finally, we can plot the results in a persistence diagram and

a plot of hierarchical clustering:

#create the Vietoris-Rips complex (turn data into a simplicia

l complex) 

library(TDAstats) 

d1<-calculate_homology(mm1,dim=1,format="cloud") 

#plot persistence diagrams where circles=connected component

s, triangles=loops 

plot_persist(d1) 

#hierachical cluster 

plot(hclust(mm1),main="Hierarchical Clustering Results, Dista

nce Data")

The calculate_homology() function converts the point-cloud

data from the distance dataset to a simplicial complex; we

can then apply a filtration to identify topological features

appearing and disappearing across the filtration. There are

other methods that can create simplicial complexes from

data, but the Rips complex in this package is one of the

easiest to compute.

Using the previous code, we’ve plotted two figures. The

call to plot_persist() should give something like Figure 7-1.

You can see there that it appears one main group exists,

along with possibly a subgroup or two at the lower filtration

level; however, the subgroup may or may not be a

significant feature, as it is near the diagonal.



Figure 7-1: A persistence diagram of the first set of educational experience data

When using the hierarchical clustering results (Figure 7-2),

it’s easy to see a main group and then several splits at

smaller distance thresholds.



Figure 7-2: A dendrogram of the simulated data

If you cut the clusters at a height of 5, the dendrogram

results suggest that two main subgroups exist. Let’s split

the set1 data according to the two main clusters found in the

hierarchical clustering by adding to Listing 7-1, first

examining the smaller cluster and then examining the larger

cluster:

#smaller cluster 

mydata[c(1,9,10,17),]

This should output the following:

> mydata[c(1,9,10,17),] 

    IQ      Bullying Teacher.Hostility Boredom Depression Lac

k.of.Motivation 

1  187             0                 1       0          0     

1 

9  182             1                 1       0          0     

1 

10 161             0                 0       1          0     

1 

17 170             1                 0       0          0     



0 

   Outside.Learning Put.in.Remedial.Course 

1                 0                      0 

9                 0                      1 

10                0                      0 

17                0                      0

In this cluster of individuals, no depression or outside

learning was reported. Some individuals did report bullying,

teacher hostility, boredom, remediation, or lack of

motivation. Let’s contrast that with the larger cluster found

in our dendrogram:

#larger cluster 

mydata[c(3,4,6,8,12,16,18),]

This should output something like this:

> mydata[c(3,4,6,8,12,16,18),] 

    IQ Bullying Teacher.Hostility Boredom Depression Lack.of.

Motivation 

3  155        0                 0       0          0          

0 

4  155        0                 0       0          0          

0 

6  174        0                 0       1          1          

1 

8  170        0                 0       0          0          

0 

12 175        0                 1       0          0          

0 

16 160        0                 1       0          0          

0 

18 185        0                 0       0          0          

1 

   Outside.Learning Put.in.Remedial.Course 

3                 1                      0 

4                 1                      0 

6                 1                      1 

8                 0                      1 

12                1                      1 



16                1                      1 

18                1                      0

Compared to the first cluster, these individuals mostly

report outside learning and no bullying. This seems to

separate learning experiences while in school. Learning

outside of school and not dealing with bullying may have

relevance to learning outcomes and overall school

experience for students.

One item of interest in this analysis is individual 6, who

seems to be an outlier in the Figure 7-2 dendrogram. This

individual did not deal with bullying or teacher hostility but

did deal with every other issue during their schooling.

Outliers can be important and influential in analyses.

Topology-based algorithms like persistent homology are

often more robust to outliers than other algorithms and

statistical models: extreme values or subgroups in the

population won’t impact the results as dramatically when

we use TDA as compared to other methods. For instance, in

our gifted sample, individual 6 might impact k-means results

more than the results of persistent homology.

Subgroup mining is one important use of persistent

homology—both for identifying groups within the dataset

and for identifying outliers that might impact optimization

steps in more traditional clustering methods. Let’s continue

by exploring another important use: as a measurement

validation tool.

Validating Measurement Tools

Many methods exist to compare dendrograms or

persistence diagrams; this is still an active area of research.

Persistence diagrams need to be turned into metric spaces,

which allows us to construct nonparametric tests with a

compatible distance metric, which in turn lets us compare



two diagrams and simulate random samples from the null

distribution, which finally we can use to compare the test

distance. All in all, this lets us validate measurement tools.

In our example, we want to validate our measurement of

school problems by comparing samples from the same

population (our Quora sample). If persistent homology

results are the same, our measurement tool is consistent,

which is a key property of measurement design in the field

of psychometrics.

For persistence diagrams, we typically use the

Wasserstein distance, as it works well for comparing

distributions and sets of points in finite samples. For

dendrograms, Hausdorff and Gromov–Hausdorff distance are

two good options, both of which measure the largest

distance within a set of smallest distances between points

on a shape. However, the Gromov–Hausdorff distance is

more complicated and imposes more structural information,

which makes it less ideal.

To compare the distances of another persistence diagram

to the current one, let’s use the second set of individuals in

our self-reported educational dataset, adding to Listing 7-1:

#compute Manhattan distance for set 2 

mm2<-dist(set2,"manhattan",diag=T,upper=T) 

 

#create the Vietoris-Rips complex 

d2<-calculate_homology(mm2,dim=1,format="cloud") 

 

#plot persistence diagrams—circles=connected components, tria

ngles=loops

plot_persist(d2)

Note that we’ve changed the dataset being analyzed to

the second set of individuals from the full sample. This

creates a comparison set that should be part of the same

population; in this example, there are more potential



subgroups that come out in the analysis. The plot should

look something like Figure 7-3.

Figure 7-3: Another persistence diagram of simulated data, this time with

different parameters used to simulate data

In Figure 7-3, we see a few distinct groups similar to Figure

7-1’s sample. We also see some points corresponding to

Betti number 1; however, given how close they are to the

line, these points are likely noise. The farther from the

diagonal line a point lies, the more likely it is a real feature

in the dataset. These new Betti number features are

different than our prior sample but likely not real features.

Computing the distance between the diagrams is easy

with the TDAstats package. Add these lines to your script:

#calculate distance between diagrams 

w<-phom.dist(d1,d2,limit.num=0) 

w



This computes the distance between the persistence

diagrams for the zeroth and first homology groups shown in

Figure 7-1 and Figure 7-3 and should yield a distance of

approximately 10.73 (zeroth homology) and 0.44 (first

homology), though the values may vary according to your

version of R. Now it’s possible to compute the distances

between random samples drawn from the original sample.

The TDAstats package has a handy way of computing this

within a function so that we don’t have to write the entire

test ourselves. Let’s add these pieces to our script:

#compute permutation test and examine p-values from output 

permutation_test(d1,d2,iterations=25)

This script will now compute a permutation test between

the two samples’ features, yielding a test statistic and p-

value for each homology level computed. As expected, our

zeroth homology differences are not significant at a 95

percent confidence level (p = 0.08). Given that we don’t

have any first homology features in our first sample, we do

see a significant difference between the samples for our first

homology differences; however, the statistic itself is 0,

suggesting that this is an artificial finding.

While this example involves a convenience sample

without an actual survey being administered, it does relate

to how a real psychometric tool administered across

population samples can be validated through persistent

homology. We can also use this methodology to compare

differences across different populations to explore how a

measurement’s behavior changes across populations.

Perhaps one sample of students had been accelerated

(skipped one or more grades) and one had not. We might

end up with very different self-reported experiences in

school. In this case, the measurement tool might show very

different behavior across the proposed accelerated and

nonaccelerated groups.



Using the Mapper Algorithm for

Subgroup Mining

In data science, we often are faced with clustering problems

where data has extreme variable scale differences, includes

sparse or spread-out data, includes outliers, or has

substantial group overlap. These scenarios can pose issues

to common clustering algorithms like k-means (group

overlap, in particular) or DBSCAN (sparse or spread-out

data). The Mapper algorithm—which finds clusters through a

multistage process based on binning, clustering, and pulling

back the clusters into a graph or simplicial complex—is

another useful clustering tool for subgroup mining. This

algorithm ties together some of the concepts in Morse

theory with the filtration concept in persistent homology to

provide a topologically grounded clustering algorithm.

Stepping Through the Mapper Algorithm

The basic steps of the Mapper algorithm involve filtering a

point cloud using a scalar-valued function called a Morse

function; we then separate data into overlapping bins,

cluster data within each bin, and connect the clusters into a

graph or simplicial complex, based on overlap of the

clusters across bins. To visualize this, let’s consider a simple

point cloud with a defined scalar-valued function; we’ll

shade the object according to the results we get when

applying the function to the point cloud. Take a look at the

results in Figure 7-4.



Figure 7-4: A multishaded object with a Morse function defined by a shade

gradient

This shape can now be chunked into four overlapping bins.

This allows us to see potentially interesting relationships

between areas with slightly different Morse function values,

which will become relevant when we apply a clustering

algorithm, as in Figure 7-5.

Figure 7-5: Binning results that chunk Figure 7-4 by shade gradient

Now that we’ve binned our function (Figure 7-5), we can

start clustering. The clustering across bins can get a little bit

more complicated than simply applying a clustering

algorithm. This clustering is needed to define the complex

and the overlapping of clusters across bins. Clustering

within each of these bins and combining results to

understand connectivity of clusters across bins would give a

final result. An advantage of the Mapper algorithm is that

results can be easily visualized as a graph or simplex; the

final result of our example would likely output something

like Figure 7-6, where two distinct groups evolve from a

single point connecting them.



Figure 7-6: The clusters defined by binning the results of Figure 7-4

In practice, a distance metric—correlation, Euclidean

distance, Hamming distance, and so on—is typically applied

to the raw data before filtering as a way to process the point

cloud data and create better filter functions prior to

clustering. Clustering of the distance metric dataset can be

done with a variety of algorithms, though single-linkage

hierarchical clustering is usually used in practice. The

coordinate systems used generally don’t matter for Mapper

results or results from other TDA algorithms.

There are a few advantages of the Mapper algorithm over

other clustering methods, as well as topological data

analysis compared to other methods in general. Invariance

under small perturbations (noise) in the data allows Mapper

to be more robust than k-means, which is sensitive to

different starting seeds and can come up with very different

results for each run. (Note that Mapper is sensitive to

parameter changes but fairly robust to repeated runs with

added noise.) The compression or visualization of results

allows for easy visualization of clustering results for high-

dimensional data. The lack of dependence on coordinate

systems allows us to compare data on different scales or

collected from different platforms. In addition, Mapper can

deal with cluster overlap, which poses significant challenges

to k-means algorithms and their derivatives. Lastly,

Mapper’s ability to handle sparsity and outliers gives it an

advantage over DBSCAN. This makes it ideal for use on

small datasets, datasets where predictors might outnumber



observations, or messy data that is likely to contain a lot of

noise.

Using TDAmapper to Find Cluster Structures in

Data

The TDAmapper R package provides an implementation of

the Mapper algorithm that can handle many types of

processed data. For this example, we’ll return again to the

self-reported educational dataset from the sample of gifted

Quora users, including seven main school issues (bullying,

teacher hostility, boredom, depression, lack of motivation,

outside learning, put in remediation courses) reported

across 22 individuals who provided scores in the gifted

range and discussed at least one of the issues of interest.

The objective is to understand the relation between issues

within this sample (somewhat like creating subscales within

the measurement). This is binary data, so we’ll use inverse

Hamming distance to obtain a distance matrix. Hamming

distance measures bit-by-bit differences in binary strings to

get a dissimilarity measurement. Other distances can be

used on binary data, but Hamming distance works well to

compare overall differences between individuals scored on

binary variables.

Let’s load the data and prepare it for analysis in Listing 7-

2:

#load data and clean 

mydata<-read.csv("QuoraSample.csv") 

mydata<-mydata[,-1] 

 

#load Mapper, igraph, and distance packages 

library(TDAmapper) 

library(igraph) 

library(e1071) 

 

#process data to turn it into a distance matrix 

df<-data.frame() 



for (j in 1:7){ 

  for (i in 1:7){ 

    df[i,j]<-1/(hamming.distance(mydata[,i],mydata[,j])) 

  } 

} 

df[df>1]<-1

Listing 7-2: A script that loads and processes the data to

obtain a distance matrix

The code in Listing 7-2 loads our dataset and packages

needed for the analysis and then processes the data to

obtain a distance matrix to feed into the Mapper algorithm.

Other distances can be used on binary data, but Hamming

distance works well to compare overall differences between

individuals scored on binary variables.

Now let’s apply the Mapper algorithm. We’ll set Mapper to

process the distance matrix using three intervals with 70

percent overlap and three bins for clustering. A higher

overlap parameter on a small dataset will encourage

connectivity between clusters found across bins; in practice,

a setting between 30 to 70 percent usually gives good

results. In addition, the small number of intervals and bins

correspond to about half the number of instances to be

clustered in this dataset, which usually works well in

practice. Generally, it’s useful to use different parameter

settings, as the results will vary depending on starting

parameters; a few recent papers have suggested that the

Mapper algorithm with nonvarying parameters is not wholly

stable with respect to results. We’ll also set Filter values

according to minimum and maximum Hamming distances.

We can do both by adding these lines to the script in Listing

7-2:

#apply mapper 

j<-mapper1D(as.matrix(df),num_intervals=3,percent_overlap=70, 

num_bins_when_clustering=3, 



filter_values=c(0.025,0.05,0.075,0.1,0.125,0.15,0.2)) 

summary(j) 

j$points_in_vertex

This code runs the Mapper algorithm on the data with the

parameters set earlier. The summary gives a list of objects

in the Mapper object regarding results. The summary of

points within a vertex gives us information as to how these

variables separate into clusters.

Exploring the Mapper object yields some insight into

which issues cluster together. We can gather a lot of

information from the Mapper object, but this exploration will

be limited to understanding which points from the dataset

ended up in which cluster (vertex) in the Mapper object.

Let’s examine the output from our last addition to Listing 7-

2:

$points_in_vertex 

$points_in_vertex [[1]] 

[1] 1 

 

$points_in_vertex [[2]] 

[1] 2 

 

$points_in_vertex [[3]] 

[1] 3 

 

$points_in_vertex [[4]] 

[1] 4 

 

$points_in_vertex [[5]] 

[1] 5 

 

$points_in_vertex [[6]] 

[1] 3 4 5 6

 

$points_in_vertex [[7]] 

[1] 4 5 6 7



From the previous results, which show which variable

shows up in which clusters, we can see that variables 1 and

2 (bullying and teacher hostility) tend to occur in isolation

(points vertices 1 and 2), while other issues tend to occur in

clusters (points in the remaining vertices). Given that these

are authority-social and peer-social issues of social etiology

rather than curriculum etiology, this makes some sense.

How teachers interact and how students behave is typically

independent of the curriculum, while issues stemming from

lack of challenge in the classroom stem directly from a

curriculum cause.

Adding to our script, we can plot in igraph to obtain a bit

more insight into the connectivity of the clusters:

#create graph from the mapper object's adjacency information 

g1<-graph.adjacency(j$adjacency,mode="undirected") 

plot(g1)

This code turns the Mapper’s overlapping cluster results

into a graph object that can be plotted and analyzed to see

how the clusters overlap with each other.

Figure 7-7 shows the isolation of the socially stemming

issues of teacher hostility and bullying by peers. The

curriculum-based issues tend to overlap to some extent with

lack of motivation and outside learning (items 5 and 6)

being the strong ties between these clusters.



Figure 7-7: A network plot of the clusters found in the Quora sample analysis

One of the noted issues with Mapper is its instability with

respect to overlap and binning of the filtration. For instance,

changing the bin overlap to 20 percent results in the

unconnected graph shown in Figure 7-8.

Figure 7-8: A network plot of the Quora sample results with a different

parameter defining bin overlap

Some recent papers suggest using multiple scales to

stabilize the output; however, most exploration of this

notion is purely theoretical at this point. In general, using a



variety of overlap fractions can yield a general idea of

cluster structures in the data.

Summary

In this chapter, we explored a few tools from topological

data analysis. We compared data from samples of an

educational population using persistent homology and

explored educational experience groups within a self-

selected sample of profoundly gifted individuals. TDA has

grown quite a bit in recent years, and many problems can

be solved with one or more tools from TDA. In the next

chapter, we’ll explore one more popular tool from this

growing field.



8 

HOMOTOPY ALGORITHMS

In this chapter, we’ll

explore algorithms related

to homotopy, a way to

classify topological objects

based on path types around

the object, including

homotopy-based calculations of regression

parameters. Local minima and maxima

often plague datasets: they provide

suboptimal stopping points for algorithms

that explore solution spaces locally. In the

next few pages, we’ll see how homotopy

solves this problem.

Introducing Homotopy

Two paths or functions are homotopic to each other if they

can be continuously deformed into each other within the

space of interest. Imagine a golf course and a pair of

golfers, one who is a better putter than the other. The ball

can travel to the hole along many different paths. Imagine

tracing out the path of each shot on the green with rope.



One path might be rather direct. The other might meander

quite a bit before finding the hole, particularly if the green is

hilly. A bad golfer may have to make many shots, resulting

in a long, jagged path. But no matter how many hills exist or

how many strokes it takes for the golfer’s ball to make it into

the hole, we could shorten each of these paths by

deforming the rope, as depicted in Figure 8-1.

Figure 8-1: A long path to the hole of a golf course (left) deformed to a shorter

path to the hole (right)

Let’s stretch the analogy somewhat and imagine a

sinkhole has appeared in the golf course. Topological objects

and spaces with holes can complicate this deformation

process and lead to many different possible paths from one

point to another. Paths can connect two points on an object.

Depending on the object’s properties, these paths can

sometimes “wiggle” enough to overlap with another path

without having to cut the path into pieces to get around an

obstacle (usually a hole). Winding paths around holes

presents a problem to continuous deformation of one path

into another. It’s not possible for the path to wind or wiggle

around a hole, such that a path between points will

necessarily overlap with another path. Different types of



paths begin to emerge as holes and paths around holes are

added. One path might make only one loop around a hole

before connecting two points. Another might make several

loops around a hole before connecting two points. Imagine

golfing again. Let’s say that the green has an obstacle (such

as a rock or a water hazard) in the middle of it, creating a

torus with tricky hills around it that can force a bad shot to

require circumnavigating the rock to get back to the hole, as

you can see in Figure 8-2.

Figure 8-2: Two paths with the same start and end points on a torus course

(donut) that cannot be morphed into each other without being cut or having the

inner hole removed

In this scenario, we can no longer deform paths into each

other without cutting the line or removing the hole. As more

holes or holes of larger dimension are added, more classes

of equivalent paths begin to emerge, with equivalent paths

having the same number of loops around one or more holes.

A two-dimensional course will have fewer possible paths

from the tee to the hole than a three-dimensional course, as

fewer possible types of obstacles and holes in the course

exist. A space with many holes or obstacles in many

different dimensions presents a lot of obstacles that paths

can wind around. This means many unique paths exist for

that space.



Given that datasets often contain holes of varying

dimension, many different classes of paths may exist in the

data. Random walks on the data, common in Bayesian

analyses and robotic navigation path-finding tasks, may not

be equivalent. This can be an advantage in navigation

problems, allowing the system to choose from a set of

different paths with different cost weights related to length,

resource allocation, and ease of movement. For instance, in

the path-finding problem in Figure 8-3, perhaps obstacle 2

has sharp ends that could harm the system should it get too

close, making the leftmost path the ideal one for the system

to take.

Figure 8-3: An example obstacle course with navigation from a start point to a

finish point with several possible solutions

Figure 8-3 shows three paths, and none of them can be

deformed into another of the paths without moving an

obstacle or cutting the path. These are unique paths in the

space. By counting the total number of unique paths, we

can classify the space topologically.



Introducing Homotopy-Based

Regression

As mentioned, datasets often contain obstacles in the form

of local optima, that is, local maximums and minimums.

Gradient descent algorithms and other stepwise

optimization algorithms can get stuck there. You can think of

this as the higher-dimensional version of hills and valleys

(saddle points, which are higher-dimensional inflection

points, can also pose optimization issues). Getting stuck in a

local optimum provides less-than-ideal solutions to an

optimization problem.

Homotopy-based algorithms can help with the estimation

of parameters in high-dimensional data containing many

local optima, under which conditions many common

algorithms such as gradient descent can struggle. Finding a

solution in a space with fewer local optima and then

continuously deforming that solution to the original space

can lead to better accuracy of estimates and variables

selected in a model.

To provide more insight, consider a blindfolded person

trying to navigate through an industrial complex (Figure 8-

4). Without a tether, they are sure to bump into obstacles

and potentially think they have hit their target when they

are stopped by one of the larger obstacles.



Figure 8-4: A blindfolded person navigating an obstacle course

However, if they are given a rope connecting their starting

point to their ending point, they can navigate between the

points a bit better and know that any obstacle they

encounter is likely not the true ending point. There are

many possible ways to connect the start and finish points. Fi

gure 8-5 shows one possible rope configuration.

Figure 8-5: A blindfolded person navigating an obstacle course with a guide rope

A blindfolded person struggling to avoid physical

obstacles is analogous to a machine learning algorithm

avoiding local optima. For example, let’s consider a function



of two variables with a global maximum and minimum but

other local optima, as derived in Listing 8-1.

#load plot library and create the function 

library(scatterplot3d) 

x<-seq(-10,10,0.01) 

y<-seq(-10,10,0.01) 

z<-2*sin(y)-cos(x) 

which(z==min(z)) 

which(z==max(z)) 

scatterplot3d(x,y,z,main="Scatterplot of 3-Dimensional Data")

Listing 8-1: A script that creates a function of two

variables with a global minimum and maximum but many

other local optima

The code in Listing 8-1 produces the plot in Figure 8-6,

from which we can see many minima and maxima. The

other optima are local optima, some of which are very close

to the global minimum or maximum.

Figure 8-6: A scatterplot of three-dimensional data, namely, a function with

many local optima



An algorithm trying to optimize this function will likely get

stuck in one of the local optima, as the values near the local

optima are increasing or decreasing from that optimum’s

value. Some algorithms that have been known to struggle

with this type of optimization include gradient descent and

the expectation-maximization (EM) algorithm, among

others. Optimization strategies such as evolutionary

algorithms will also likely take a long time to find global

solutions, making them less ideal for this type of data.

Homotopy-based calculations provide an effective solution

to this problem of local optima traps; algorithms employing

homotopy-based calculations can wiggle around or out of

local optima. In essence, these algorithms start with an easy

optimization problem, in which no local optima are present,

and deform the solution slowly according to the dataset and

its geometry, avoiding local optima as the deformation

proceeds.

Homotopy-based optimization methods commonly used

these days in machine learning include support vector

machines, Lasso, and even neural networks. The lasso2

package of R is one package that implements homotopy-

based models; in this case, lasso2 implements a homotopy-

based model for the Lasso algorithm. Let’s first explore

model fit and solutions for the data generated in Listing 8-1,

in which the outcome has many local optima and the

predictors are collinear, a problem for many machine

learning algorithms. Add the following to the code in Listing

8-1:

#partition into training and test samples 

mydata<-as.data.frame(cbind(x,y,z)) 

set.seed(10) 

s<-sample(1:2001,0.7*2001) 

train<-mydata[s,] 

test<-mydata[-s,]



Now, the model is ready to be built and tested. The

outcome of interest (our variable z) is not normally

distributed, but a Gaussian distribution is the closest

available distribution for use in the model. In the following

addition to the script in Listing 8-1, the etastart parameter

needs to be set to null before starting the model iterations,

and a bound needs to be in place to guide the homotopy-

based parameter search. Generally, a lower setting is best:

#load package and create model 

library(lasso2) 

etastart<-NULL 

las1<-gl1ce(z~.,train,family=gaussian(),bound=0.5,standardize

=F) 

lpred1<-predict(las1,test) 

sum((lpred1-test$z)^2)/601

This script now fits a homotopy-based Lasso model to the

training data and then predicts test data outcomes based on

this model, allowing us to assess the model fit. The mean

square error for this sample, calculated in the final line,

should be near 2.30. (Again, results may vary with R

versions, as the seeding and sampling algorithms changed.)

The results of the model suggest that one term dominates

the behavior of the function:

> las1 

Call: 

gl1ce(formula=z ~ .,data=train,family=gaussian(),standardize=

F, 

    bound=0.5) 

 

Coefficients: 

(Intercept)           x           y 

 0.05068903  0.04355682  0.00000000 

 

Family: 

 

Family: gaussian 

Link function: identity 



 

 

The absolute L1 bound was       :  0.5 

The Lagrangian for the bound is :  1.305622e-13

These results, which may vary for readers with different

versions of R, show that only one variable is selected as

important to the model. x contributes more to the prediction

of z than y contributes, according to our model. Linear

regression isn’t a great tool to use on this problem, given

the nonlinear relationships between x or y and z, but it does

find some consistency in the relationship.

To compare with another method, let’s create a linear

regression model and add it to Listing 8-1:

#create linear model 

l<-lm(z~.,train) 

summary(l) 

lpred<-predict(l,test) 

sum((lpred1-test$z)^2)/601

This code trains a linear model on the training data and

predicts test set outcomes, similar to how the homotopy-

based model was fit with the previous code. You may get a

warning with your regression model, as there is covarying

behavior of x and y (which presents issues to linear

regression models per the assumption of noncollinearity).

Let’s take a look at this model’s results:

> summary(l) 

 Call: 

lm(formula=z ~ .,data=train) 

 

Residuals: 

     Min       1Q   Median       3Q      Max 

-2.51261 -1.48663  0.07368  1.48680  2.37086 

 

Coefficients: (1 not defined because of singularities) 

            Estimate Std. Error t value Pr(>|t|) 



(Intercept) 0.050689   0.041267   1.228     0.22 

x           0.043557   0.007112   6.124 1.18e-09 *** 

y                 NA                    NA 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '

 1 

 

Residual standard error: 1.544 on 1398 degrees of freedom 

Multiple R-squared:  0.02613,   Adjusted R-squared:  0.02543 

F-statistic: 37.51 on 1 and 1398 DF,  p-value: 1.183e-09

The mean square error (MSE) for this sample should be

near 2.30, which is the same as the homotopy-based model.

MSE accounts for both variance and bias in the estimator,

giving a balanced view of how well the algorithm is

performing on a regression task. However, the collinearity is

problematic for the linear regression model. Penalized

models avoid this issue, including homotopy-based Lasso

models. Of note, the coefficients found by the linear

regression and the homotopy-based Lasso model are

identical. Typically, models with different optimization

strategies will vary a bit on their estimates. In this case, the

sample size is probably large and the number of predictors

few enough for both algorithms to converge to a global

optimum.

Comparing Results on a Sample

Dataset

Let’s return to our self-reported educational dataset and

explore the relationships between school experiences, IQ,

and self-reported depression. Because we don’t know what

the function between these predictors and depression

should be, we don’t know what sort of local optima might

exist. However, we do know that a training dataset with 7

predictors and 16 individuals (70 percent of the data) will be

sparse, and it’s possible that local optima are a problem in



the dataset. There is evidence that geometry-based linear

regression models work better on sparse datasets than

other algorithms, and it’s possible that our homotopy-based

Lasso model will work better, as well.

Let’s create Listing 8-2 and partition the data into training

and test sets.

#load data and set seed 

mydata<-read.csv("QuoraSample.csv") 

set.seed(1)

 

#sample data to split into two datasets with stratified sampl

ing 

#to ensure more balance in the training set with respect to d

epression 

m1<-mydata[mydata$Depression==1,] 

m2<-mydata[mydata$Depression==0,] 

s1<-sample(1:4,3) 

s2<-sample(1:18,6) 

train<-rbind(m1[s1,],m2[s2,]) 

test<-rbind(m1[-s1,],m2[-s2,])

Listing 8-2: A script that loads and then analyzes the

Quora IQ sample

Now, let’s run a homotopy-based Lasso model and a

logistic regression model to compare results on this small,

real-world dataset:

#run the homotopy-based Lasso model 

las1<-gl1ce(factor(Depression)~.,train,family=binomial(),boun

d=2,standardize=F) 

lpred1<-round(predict(las1,test,type="response")) 

length(which(lpred1==test$Depression))/length(test$Depressio

n) 

 

#run the logistic regression model 

gl<-glm(factor(Depression)~.,train,family=binomial(link="logi

t")) 

glpred<-round(predict(gl,test,type="response")) 



length(which(glpred==test$Depression))/length(test$Depressio

n)

From running the models in the previous script addition,

we should see that the homotopy-based Lasso model has a

higher accuracy (~85 percent) than the logistic regression

(~70 percent); additionally, the logistic regression model

spits out a warning message about fitted probabilities of 0

or 1 occurring. This means the data is quite separated into

groups, which can happen when small data with strong

relationships to an outcome is split. Depending on your

version of R or GUI, you may end up with a different sample

and, thus, somewhat different fit statistics and results.

Because this is a relatively small sample to begin with, it’s

possible that you’ll have slightly different results than the

ones presented here. Some samples may not have any

instances of a given predictor within the dataset. Larger

samples would create more stable models across samples.

Let’s look more closely at the homotopy-based Lasso

model and its coefficients:

> las1 

Call: 

gl1ce(formula=factor(Depression) ~ .,data=train,family=binomi

al(), 

    standardize=F,bound=2) 

 

Coefficients: 

           (Intercept)                     IQ               B

ullying 

           -8.31322182             0.04551602             0.0

0000000 

     Teacher.Hostility                Boredom     Lack.of.Mot

ivation 

            0.00000000             0.51213722             0.0

0000000 

      Outside.Learning Put.in.Remedial.Course 

           -1.01281345             0.42953330 

 

Family: 



 

Family: binomial 

Link function: logit 

 

 

The absolute L1 bound was       :  2 

The Lagrangian for the bound is :  0.4815216

From the previous output, we can see that, for this

sample, higher IQ, endorsement of boredom, and being put

in a remedial class increase the likelihood of self-reported

depression. However, outside learning has a strong

protective effect. In fact, outside learning can completely

counterbalance the risk from boredom and being placed in a

remedial course. This suggests that parents of profoundly

gifted children who are experiencing school issues may be

able to mitigate some of the potential adverse outcomes,

such as depression, by providing outside learning

opportunities, such as college courses in the evening,

tutoring outside of school, or other opportunities for the

child to learn. The role of outside learning opportunities has

been explored to some extent in the giftedness literature

with similar results, but more research is needed on this

topic.

Now, let’s compare these results with the results of the

logistic regression model:

> summary(gl) 

CALL: 

glm(formula=factor(Depression) ~ .,family=binomial(link="logi

t"), 

    data=train) 

 

Deviance Residuals: 

        20          21           6          16          18    

4 

 3.971e-06   1.060e-05    -3.971e-06  -3.971e-06  -2.110e-08 

        11           2          19 

-8.521e-06  -1.060e-05  -1.060e-05 



 

Coefficients: 

                         Estimate Std. Error z value Pr(>|z|) 

(Intercept)            -7.297e+02  1.229e+06  -0.001        1 

IQ                      3.934e+00  6.742e+03   0.001        1 

Bullying               -1.421e+01  5.193e+05   0.000        1 

Teacher.Hostility       2.798e+01  3.424e+05   0.000        1 

Boredom                -1.967e+01  8.765e+04   0.000        1 

Lack.of.Motivation      4.174e+01  2.496e+05   0.000        1 

Outside.Learning       -6.535e+01  2.765e+05   0.000        1 

Put.in.Remedial.Course  1.121e+02  2.712e+05   0.000        1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 1.1457e+01  on 8  degrees of freedom 

Residual deviance: 5.6954e-10  on 1  degrees of freedom 

AIC: 16 

Number of Fisher Scoring iterations: 24

Examining the previous output, it seems that the logistic

regression model could not handle the dataset, giving errors

and spitting out very large coefficients. This is likely related

to the smallness of the data, where the linear system is

underdetermined; however, this is not a situation where the

number of predictors outnumber the number of individuals

in the sample, so it is likely a function of the data itself

rather than purely sample size.

Note the model fails to find any significant predictors of

self-reported depression. Linear regression can’t handle this

dataset very well, and the results are not reliable. For some

samples, certain variables may not be computable in the

linear regression model at all. Homotopy-based models (and

other types of penalized models) often work better on small

datasets, and there is some evidence that they perform

better for datasets with many local optima. While this

dataset is a bit small for fitting a model, it does demonstrate

the power of homotopy-based optimization (and penalized

regression, in general) on very small datasets, and its



results make a lot more sense than the linear regression

model’s results.

Summary

In this chapter, we gave you an overview of homotopy and

its applications in machine learning, including through an

example of homotopy as an extension of regression-based

algorithms on a simulated problem and a real dataset.

Homotopy can help regression algorithms avoid local optima

that often trap local optimizers.

Other uses of homotopy algorithms in the field of artificial

intelligence include navigational problems. For instance, an

autonomous cart may need to navigate the halls and

obstacles of a hospital by weighting different possible paths

from its current location to its destination. Homotopy

algorithms are often used to generate the possible paths,

which are then weighted by time cost or hazard cost of the

route. Bounds can also be placed to avoid generating paths

that obviously aren’t viable (such as going through areas

where the cart can’t physically go or wouldn’t be wanted—

such as an operating room). It’s likely that this branch of

topological data analysis will grow in the coming years, and

we encourage you to explore other uses of homotopy in

machine learning, robotics, differential equations, and

engineering.



9 

FINAL PROJECT: ANALYZING

TEXT DATA

In this chapter, we’ll put

together some of the tools

developed in previous

chapters by working on a

project related to linguistics

and psychology. Many

important data projects today deal with

text data, from text matching to chatbots

to customer sentiment analysis to

authorship discernment and linguistic

analysis. We’ll look at a small dataset of

linguistic features derived from different

creative writing samples to see how

language usage varies over genres; some

genres encourage a different writing

process that reflects a different author

mindset, such as writing a personal essay

versus writing a spontaneous haiku.



Specifically, we’ll look at cluster overlap using k-NN and

our distance metric of choice, then visualize the feature

space by reducing the dimensionality of the dataset, then

use dgLARS to create a cross-validated model distinguishing

poetry types by features, and finally examine a predictive

model based on language embedding. By completing a

whole project, we’ll see how these tools can fit together to

derive insight from data.

Building a Natural Language

Processing Pipeline

In Chapter 1, we briefly discussed the importance of text

data and how natural language processing (NLP) pipelines

can transform text data into model features that fit well with

supervised learning methods. This is the approach we’ll take

with our upcoming project. We’ll use Python to transform

the text data into features and then use R to analyze those

features.

The first step is to parse the data; we have to break the

blocks of text into more manageable chunks—either

sentences within a paragraph or words and punctuation

within a sentence. This allows us to analyze small pieces of

text and combine the results into a sentence, a document,

or even a set of documents. For instance, in this chapter,

you might want to parse each section, then each paragraph,

and then each word in each paragraph to understand how

the language usage varies between introductory material

and application examples.

Sometimes, you’ll want to take out punctuation, certain

types of filler words, or additions to root words. Root words

exclude endings like ing, which change the tense of a verb

or turn one part of speech into another. Consider the

differences between dribble, dribbled, and dribbling with



respect to a basketball practice. If the point guard is

dribbling the ball, the action is occurring now. If they’ve

already dribbled for an entire game, they are probably tired

and have put the ball back on the rack. However, the point

guard’s action, whether past or present, is the same. It

doesn’t matter much if they’re doing it now or did it

yesterday. Stemming and lemmatizing are two approaches

that break words into root words: stemming does this by

reducing words to their roots regardless of whether the root

is still a word; lemmatizing reduces words to roots in a way

that ensures the root is still a word.

Once text is parsed to the extent necessary for your

specific application, you can start analyzing each piece.

Sentiment analysis aims to understand the emotions behind

the words and phrases of a given piece of text. For instance,

“terrible product!!! never buy” has a fairly negative tone

compared to “some users may not like how the product

smells.” Sentiment analysis quantifies emotions within the

text by tallying up totals for each emotion within the text,

such that each receives a score and can be rolled into a final

score, if preferred.

Once parsing is done, we can apply named entity

recognition, which matches words to lists of important

people, places, or terms of interest in a field. For instance,

when processing medical notes related to patient discharge

and outcome, you might want to match words to a list of

diagnoses.

In other applications, it may be important to tag parts of

speech, including pronouns, verbs, prepositions, adjectives,

and more. Some people might use certain parts of speech at

higher rates than others, and understanding these patterns

can give insight into the text source’s personality,

temporary state of mind, or even truthfulness. For some NLP

applications, it’s possible to load these factors onto a given



outcome or set of outcomes to create entirely new metrics

from text data.

Each of these analysis types can be integrated into a

relational database as additional features for downstream

models. For instance, as we’ll see later in the chapter, we

can tag parts of speech, normalize them by the length of

that particular document, and feed those features into

models. You can also vectorize the words that exist in the

document or set of documents to count frequencies of each

word that exists in the set of documents for a given

document. This often precedes deep learning models and

visualization methods within NLP applications.

Again, because R has limited NLP capabilities compared to

Python, we’ve done this first step—parsing the text data

into features—in Python and provided the resulting data in

the files for the book. We’ll then do the analysis using R. We

used Python’s NLTK toolkit to parse the text data, and while

these steps are beyond the scope of this book, we have

included the scripts in our Python downloadable repository

(https://nostarch.com/download/ShapeofData_PythonCode.zi

p), and we encourage you to take the raw data provided and

see if you can build a similar NLP pipeline.

The Project: Analyzing Language in

Poetry

Modern poetry includes many types of poems with different

structures, literary devices, and subject matters. For

instance, formal-verse poems, such as sonnets or villanelles,

have a defined number of stressed and total syllables in

each line and a defined rhyme scheme. These types of

poems often make heavy use of other literary devices, such

as allusion or conceit (reference to other works as a

juxtaposition of ideas), alliteration or assonance (repetition

https://nostarch.com/download/ShapeofData_PythonCode.zip


of a certain sound), or meter (patterns of stressed syllables

within a line of poetry). This is an example of formal verse (a

sonnet):

Ever After

 

Her glass slipper turns to his M-16,

her elegant dress to faded fatigues.

He’s a shell of the man from their intrigues,

served five months patrol away from his queen.

 

Cinders to palace, her dreams now rubble,

she watches her carriage morph to Abrams tank,

as if her fairy tale were some cruel prank.

He shouts, “Hurry, men! March on the double!”

 

Her clock strikes twelve, his tank an IED,

and widower’s daughter is left widow.

She has but memories, now as shadows,

to comfort her dark days of misery.

Her ever after has no tomorrow,

leaving Cinderella grief and sorrow.

In contrast, free-verse poetry doesn’t have a defined

rhyme scheme for the end of each line, may have varying

line lengths (or consistently long, short, or medium lines),

and tends to use literary devices such as meter or rhyme for

emphasis of a particular piece of the poem. This is an

example of a free-verse poem with short line lengths:



Anya

 

Gaunt,

made-up,

wobbling in heels

too big for tiny feet,

heels

that sparkle and clack

against cold concrete

 

as wind

whips her teased hair

like a lasso

roping a steer

 

as snow

binds to tight jeans

like the shackles

she wore on the ship to her Shangri La

 

as streetlight

catches a gleam in her eyes,

a glimpse as she stares into

tonight

 

her fifteenth birthday.

Some poems don’t fit neatly into free verse or formal

verse, such as prose poetry (where line breaks don’t exist)

or haibun (a Japanese form that incorporates prose poetry

with different types of haiku). Modern haiku and its related

forms juxtapose two images or thoughts with a turn, such as

a dash, that connects the two images or thoughts in a

moment of insight. Typically, modern haiku doesn’t conform

to the Japanese syllable count requirements, but it usually



includes some reference to season and nature (or human

nature in the case of the related form, senryu). Haibun knits

a story together through the poem title, the haiku, and the

prose pieces. Here’s one example of a modern haiku:

shooting stars—

the dash between

born and died

From prior research, we know that different authors can

be identified by their preferred word choices and their

unique usage of different parts of speech (this is a core

feature of antiplagiarism software); we also know that

language usage varies by the author’s state of mind.

However, it’s unknown if the same author constructs poetry

differently depending on the type of poem they are writing.

Because haiku and haibun originated as a spark of insight

juxtaposing ideas, it’s possible that the different genesis of

the poem influences the use of language and grammar

within the poem.

Let’s dive into the dataset a bit before we start visualizing

it. We have eight haiku, eight haibun, eight free-verse

poems, and eight formal-verse poems in the dataset. We’ll

group them into haiku-based poems and other poems to

simplify the analyses by how poems are typically generated

(free association versus crafting). The features we’ll

consider are punctuation fraction, noun fraction, verb

fraction, personal pronoun fraction, adjective fraction,

adverb fraction, and preposition/conjunction fraction. Given

the construction of each poem type, it’s likely some of these

factors will vary. With a larger sample of poems, you could

use other parts of speech or break categories, such as

verbs, into their individual components.

We’ll be completing these steps in Python, so we’ll

overview only the steps used rather than dive into code. You



can find the processed data in the files for this book.

Tokenizing Text Data

The first step in processing the poems for analysis is

tokenizing the text data, meaning we need to parse our

poems into individual words and punctuation marks. The

Treebank tokenizer uses regular expressions to parse words

in sentences, handle contractions and other combinations of

words and punctuation, and splice quotes. These are

important steps for parsing poem text data, as punctuation

is interspersed with words and phrases at relatively high

rates. Haiku, in particular, tends to use punctuation to

create a cut in the poem to link two different images or

ideas.

Because the Treebank tokenizer often splits contractions

and other words that connect with punctuation, it’s useful to

the regex tokenizer to count the number of actual words

that exist in the text and parse them into words that can

contain punctuation. Given how short some poems are, we

want to make sure we aren’t inflating word counts. The

regex tokenizer results give us an accurate word count to

normalize parts of speech or punctuation proportions.

After obtaining the lengths of tokenizer results, we can

subtract the number of words from the number of tokens to

derive a length of punctuation in the text. This allows us to

compare fractions of words and fractions of punctuation for

different poem types, which likely varies by poem type (and

by poem author, according to prior research on linguistic

differences in text passages by author).

Tagging Parts of Speech

To tag relevant parts of speech, we’ll use the averaged

perceptron tagger, a supervised learning algorithm that

tends to have pretty good accuracy across text types and



has been pretrained for the NLTK package. While it’s a bit

slow on large volumes of text, our text samples are fairly

small, allowing the application to tag words without much

processing power required. It’s possible to scale NLTK’s

averaged perceptron tagger application to very large

datasets using the big data technologies that we’ll consider

in the next chapter.

We’ll parse out nouns, verbs, personal pronouns, adverbs,

adjectives, and prepositions and conjunctions and count the

numbers of each category that exist in each text sample.

Nouns include singular, plural, common, and proper noun

combinations. Verbs include all type and tense

combinations. Personal pronouns include pronouns and

possessive pronouns. Adverbs and adjectives include

comparative and superlative forms of adverbs and

adjectives. Prepositions and coordinating conjunctions are

also tagged and counted.

Some other tagged parts of speech exist in the averaged

perceptron tagger, and other taggers may include further

divisions of parts of speech. If you want to explore how parts

of speech can be used to distinguish text types, text

authorship, or demographics of the text author, you may

want to use another tagger or disaggregate nouns, verbs,

and so on, from their individual components. However, this

will result in more columns within your dataset, so we

recommend you collect more samples if you’re doing that

type of nuanced analysis of text attributes and parts-of-

speech analysis.

Normalizing Vectors

Because our text samples include some short samples and

some long samples according to poem type, we’ll want to

standardize the parts-of-speech counts before we work with

the data. Our approach includes normalization of



punctuation by token count (punctuation and word count

totals) and normalization of parts-of-speech count by word

count, summarized in this chapter’s files. This should give

good enough features to demonstrate poem type

differences and still allow for good dimensionality reduction

results to visualize our dataset.

For a more nuanced approach that parses out types of

verbs, nouns, and so on, you could derive fractions of part

of speech category or break down fractions within parts of

speech to engineer more detailed features for your analysis.

If you’re familiar with Python, we encourage you to play

around with the NLP pipeline and customize your analyses

for more insight into poem-type linguistic differences.

For now, let’s move onto the analysis in R.

Analyzing the Poem Dataset in R

We’ll start by loading the processed poem dataset and

exploring the features we’ve derived using the code in Listin

g 9-1.

#load poem data and set session seed 

mydata<-read.csv("PoemData.csv") 

summary(mydata)

Listing 9-1: A script that reads in the processed poem data

Adverbs tend to be the least-represented features,

accounting for only 0–10.5 percent of words used in any

given poem. Nouns tend to be the most frequent words

appearing in this set of poems, accounting for 12.5–53.5

percent of words in a given poem. Personal pronouns are

rare, with more than a quarter of the poems not containing

a personal pronoun (likely due to the haiku, which tend not

to use them). Punctuation usage varies quite a bit, from no



representation in a haiku to nearly half of a free-verse poem

being composed of punctuation (a list poem of medical

diagnoses at a hospital). Given this variation, it’s likely we

have good features to use in our analyses.

Let’s set the seed for our analyses and visualize the parts-

of-speech features with t-SNE, using the shape of each

visualized point as a designation of the poem type; add the

following code to Listing 9-1:

#grab relevant pieces of data 

mydata1<-mydata[,-1] 

haiku<-which(mydata1$Type=="haiku") 

mydata1$Type[haiku]<-1 

mydata1$Type[-haiku]<-2 

set.seed(1)

 

#create and plot t-SNE projections of poem data 

library(dimRed) 

t1<-getDimRedData(embed(mydata1[,-1],"tSNE",ndim=2,perplexity

=5)) 

plot(as.data.frame(t1),xlab="Coordinate 1",ylab="Coordinate

 2",main="Perplexity=5 t-SNE Results",pch=ifelse(mydata1$Type

==1,1,2))



Figure 9-1: A t-SNE plot of poem features by poem type, with type represented

by either circles or triangles (perplexity=5)

From the plot in Figure 9-1, we can see that our poems

tend to separate out into clusters where most points are of

the same type. This means a kernel-based model or nearest

neighbor model is probably sufficient for classifying poem

type by features.

Given some separation of points by features, it’s likely we

can apply algorithms to cluster our data and use supervised

learning to understand which differences exist between

haiku-type poems and other poems.

Let’s divide our sample into training and test fractions and

then apply a Euclidean-distance-based k-NN algorithm to

classify poem types based on a poem’s five nearest

neighbors by adding to our code so far:

#create Canberra KNN models with different distances and five 

nearest neighbors 

library(knnGarden) 



s<-sample(1:32,24) 

train<-mydata1[s,] 

test<-mydata1[-s,] 

kc<-knnVCN(TrnX=train[,-1],OrigTrnG=train[,1],TstX=test[,-1], 

K=5,method="euclidean")

Since our t-SNE plot (Figure 9-1) suggests some

separation and points generally near poems of a similar

type, it’s likely that this model has worked well. Let’s

examine the predicted and true labels for our test set under

the k-NN model through this addition to our code:

#examine performance 

which(kc==test$Type) 

> 1, 2, 3, 4, 5, 6, 7, 8

It looks like this model correctly classifies all test poems,

suggesting a high-quality model that can separate types of

poems based on features.

We’ll examine these potential type differences by feature

further using a 10-fold cross-validated dgLARS model in an

additional step to our code:

#create a cross-validated dgLARS model 

library(dglars) 

dg1<-cvdglars(factor(Type)~.,data=mydata1, 

family="binomial",control=list(nfold=10)) 

dg1

Because we are working with a small dataset, it’s possible

that one or more of your folds will have issues, giving a

slightly different model than the results shown here:

#examine the dgLARS model 

> dg1 

 

Call:  cvdglars(formula=factor(Type) ~ .,family="binomial",da

ta=mydata1,

    control=list(nfold=10)) 



 

Coefficients: 

                   Estimate 

Int.                -1.4782 

Punctuation_Length   0.3113 

Adverb_Count        -0.2767 

 

dispersion parameter for binomial family taken to be 1 

 

Details: 

   number of non-zero estimates: 3 

      cross-validation deviance: 2.687 

                              g: 0.4573 

                        n. fold: 10

Your model should show differences in punctuation

fraction and adverb fraction. Free-verse and formal-verse

poems have higher rates of punctuation usage. Given that

these types of poems are more likely to use full sentences

rather than connected phrases, the differences in

punctuation usage are consistent with expected differences.

The differences in adverb fractions aren’t as expected.

However, adverb usage is linked to many different transient

and fixed personality traits. It’s possible that haiku taps into

a different transient mood or trait, creating style differences

reflected in adverb usage. Subject matter may also

influence this difference.

Importantly, this analysis shows that parts-of-speech and

punctuation patterns vary within samples of writing by the

same author in the same type of writing (poetry). Given that

prior research suggests that some of these input features

can be used to identify the likely author of a text, it may be

prudent to rethink authorship prediction based on parts-of-

speech analysis. Different subject matters, different types of

writing, and different life stages of the author may influence

word choice, sentence structure, and usage of punctuation.



To see how the poems group together within each poem

type, let’s visualize the persistence diagrams for each poem

type through adding to our code:

#create the Vietoris-Rips complexes 

library(TDAstats) 

set1<-mydata1[mydata1$Type==1,-1] 

set2<-mydata1[mydata1$Type==2,-1] 

 

#compute Manhattan distance for set 1, compute Rips diagram,

 and plot 

mm1<-dist(set1,"manhattan",diag=T,upper=T) 

d1<-calculate_homology(as.matrix(mm1),dim=1,threshold=0,forma

t="cloud") 

plot_persist(d1) 

 

#compute Manhattan distance for set 2, compute Rips diagram,

 and plot 

mm2<-dist(set2,"manhattan",diag=T,upper=T) 

d2<-calculate_homology(as.matrix(mm2),dim=1,threshold=0,forma

t="cloud") 

plot_persist(d2)

Figure 9-2 shows the persistence diagrams for haiku and

non-haiku samples, highlighting some differences in poem

clustering within type:



Figure 9-2: Persistence diagrams by poem type

As we can see in Figure 9-2, non-haiku poems tend to

cluster more consistently, while haiku poems spread out

without a lot of separation involving multiple poems

grouped together. This suggests that haiku features vary

from poem to poem, while non-haiku poems show more

consistency in features. The spontaneity of the composition

may result in a wider variety of poem structures found with

haiku poems. Data related to spontaneousness of poem

creation and time spent crafting the poem may shed light

on conscious language usage differences between poems

(such as haiku) that arise from a single moment and those

that are created with more intent behind their creation.

Using Topology-Based NLP Tools

NLP as a field has evolved over the past years, and some

common tools in NLP leverage topology to solve important

problems. Early embedding tools tended to tally word

frequencies within and across documents of interest to

parse text data into numeric data that works well in

machine learning algorithms. However, words often don’t



contain all the semantic information needed to make sense

of a sentence or paragraph or entire document. Negatives,

such as no or not, modify actions or actors within a

sentence. For instance, “she did let him in the house” is a

very different statement semantically than “she did not let

him in the house.” Depending on what you’re trying to

predict or classify, simple mappings from individual words to

a matrix of numbers don’t work well.

In addition, a document or collection of documents might

have 30,000+ words that occur at least once. Most common

words will occur often with little value added by their

presence. Important words might occur only once or twice.

This leads us into the problem of dimensionality again when

we try to sift through the data for important trends.

Fortunately, recent years have seen some great

developments in low-dimensional embeddings via

topological mapping with special types of neural networks.

Pretrained transformer models are neural networks that can

pass information forward and backward through their hidden

layers to obtain optimal topological mappings for text data.

Pretrained transformer models learn low-dimensional

embeddings of text data from massive training sets in the

language or languages of interest. BERT (Bidirectional

Encoder Representations from Transformers) and its

sentence-based embedding cousin, SBERT, are two of the

most common open source pretrained transformer models

used to embed text data into lower-dimensional, dense

matrices for use in machine learning tasks. BERT models

can be extended to languages that are not currently

supported, such as embeddings of text in Hausa or Lingala

or Rushani; this has the potential to accelerate language

translation services and preserve endangered languages.

GPT-3, trained on a similar premise as BERT, has created

accurate translations and chatbots that can parse meaning

from input text rather than match keywords or eat up



computing resources trying to process high-dimensional

matrices within machine learning algorithms.

Using Python, we’ve built a BERT model on our poem set

based on their serious tone or humorous tone to show how

BERT embeddings can fit with our supervised learning tools

in this book. (Note that the order of poems has changed

from the original set with the data munging to get BERT

embeddings and pass them back to a .csv file.) You can

consult Python’s transformer package to learn more about

how BERT models are imported and leveraged in text

embedding or refer to the Python scripts for this chapter (htt

ps://nostarch.com/download/ShapeofData_PythonCode.zip).

However, we’ll stick to importing the results into R and

visualizing the data in a smaller dimension, as we did with

our poem linguistic features earlier in the chapter. Let’s

create a t-SNE embedding and plot it with Listing 9-2.

#load poem data 

#load data 

mydata<-read.csv("BertSet.csv") 

 

#create the embedding 

library(dimRed) 

t1<-getDimRedData(embed(mydata[,-1],"tSNE",ndim=2,perplexity=

5)) 

 

#plot the results 

plot(as.data.frame(t1),xlab="Coordinate 1",ylab="Coordinate

 2",main="Perplexity=5 t-SNE Results",pch=ifelse(mydata$Type=

="serious",1,2))

Listing 9-2: A script that loads BERT data for serious and

humorous poems, embeds the data with t-SNE, and plots

the results

Figure 9-3 shows the embedding, which demonstrates that

poems separate into clusters by poem type. This mirrors our

haiku versus non-haiku poem results in Figure 9-1, where we

https://nostarch.com/download/ShapeofData_PythonCode.zip


saw features separating out by type in the t-SNE

embedding. Again, this suggests that a machine learning

classifier should work well with our dataset.

Figure 9-3: A plot of t-SNE embedding results, with serious or humorous types of

poems denoted by circles and triangles, respectively (perplexity=5)

Now that we know a machine learning model may do well

at classifying this data, let’s fit a Lasso model with

homotopy continuation to handle the small sample size by

adding Listing 9-3:

#get training data split 

set.seed(1)

s<-sample(1:25,0.85*25) 

train<-mydata[s,] 

test<-mydata[-s,] 

 

#build Lasso model 

library(lasso2) 

etastart<-NULL 

las1<-gl1ce(factor(Type)~.,train,family=binomial(link=probi



t),bound=5,standardize=F) 

lpred1<-round(predict(las1,test,type="response")) 

 

#examine results 

lpred1 

> 1 1 1 0 1

test$Type 

> [1] serious serious humor serious

Listing 9-3: A script that loads BERT data for serious and

humorous poems, splits the data into training and test

sets, builds a Lasso model with homotopy continuation

fitting, and shows prediction and actual values for test

data

The dataset has 384 components from the embedded

BERT model and 25 poems. Your version of R may split the

data and fit the model differently, but in our version of R,

the test data has three serious poems followed by a

humorous one followed by a serious one. The model predicts

a serious poem, a serious one, a serious one, a humorous

one, and a serious one (giving a model accuracy of 100

percent). Given how small this training set is compared to

the 384 predictors fed into our model, this is great

performance. Note that the selected features have little

meaning semantically, as they are simply embeddings.

Coupling topology-based methods into pipelines to process

and model small datasets can provide decent prediction

where other models will fail entirely.

Summary

In this chapter, we applied several of the methods

overviewed in the book on a linguistics question involving a

dataset of features derived from NLP-processed poems; we

also embedded our data and created a model to predict

tone differences in our poem set.



For the first problem, we reduced the dimensionality of

the dataset to visualize group differences, applied two

supervised learning models to understand classification

accuracy and important features distinguishing the poetry

types, and visualized topological features that exist in both

sets of poems. This showed us that language usage,

particularly punctuation, varies across poem types.

We then looked at context-aware embeddings and

predicting the tone of our poem set using a topology-based

embedding method and a topology-based classification

model, which showed that we could get fairly accurate

prediction building a model from 384 embedded

components and a training set of 21 poems.

In the next chapter, we’ll wrap up the book by looking at

ways to scale topological data analysis algorithms with

distributed and quantum computing approaches.



10 

MULTICORE AND QUANTUM

COMPUTING

In the previous chapters,

we overviewed many tools

that come from the fields of

geometry and topology. We

saw how these algorithms

can impact network

analytics, natural language processing,

supervised learning, time-series analytics,

visualization, and unsupervised learning.

Many more algorithms rooted in topology

exist, including hybrid algorithms that

improve existing models such as

convolutional or recurrent neural

networks, and the field has the potential

to contribute thousands more to the field

of machine learning.

However, one of the major issues facing the development

and application of topological and geometric machine

learning algorithms is computational cost. While most will



not, calculating certain network metrics can scale to

network sizes of one million or one billion (or more!). Other

classes of algorithms, such as persistent homology or

manifold learning, won’t scale well; some will reach issues

on a standard laptop at around 20,000 rows of data.

Calculating a distance matrix for a large set of data will also

require a lot of time and computing resources.

Yet there are a couple of potential options for practitioners

who hope to scale these methods. In this chapter, we’ll

review multicore approaches and quantum computing

solutions. Solutions like the ones presented in this chapter

are in their infancy, and as the algorithms in this book are

adopted as big data algorithms, it’s likely standard

packages will be developed for quantum topological data

analysis (TDA) algorithms and distributed TDA algorithms.

Multicore Approaches to Topological

Data Analysis

One approach to algorithm scaling is to map pieces of the

data to different computer cores or systems, compute the

desired quantities on each core’s worth of data at the same

time, and reassemble each core’s data quantity

computations into a single dataset. For instance, suppose

we want to calculate betweenness centrality for each vertex

in a million-vertex network. Even if this is a sparse network

without many edges, each betweenness centrality

calculation will take a long time to compute. However, if we

have access to a million cores, we can map the network to

each core and compute betweenness centrality for one

vertex in the network with each core. While the compute

time may still be long, the total time needed to compute

betweenness centrality for all one million vertices will be

much less than what it would take computing each



betweenness centrality one after another in a loop (as we

did in prior chapters for much smaller networks). While a

million cores isn’t possible for most organizations, the time

savings from 10 cores or 30 cores can be a substantial

speedup.

It’s also possible to map only part of a dataset to each

core to compute some sort of metric. For instance, say we

have a dataset of 300,000 individuals who completed an

online customer survey. Calculating the distance between all

300,000 individuals’ responses would take a lot of

computing resources. However, distance matrices are

necessary in many manifold learning and topological data

analysis algorithms; it’d be good to have a quicker way to

calculate this. We can map different pieces of the data to

different cores to compute smaller distances matrices that

can be assembled into the full 300,000-by-300,000-distance

matrix after the cores have computed each piece. Again,

we’ll see large time savings.

In general, these multicore approaches fall under the

umbrella of distributed computing, where multiple cores are

leveraged to compute pieces of a problem to assemble

when all cores have their solutions computed. Most cloud

computing resources will have support for distributed

computing, and some R and Python packages that can be

run on the cloud support distributed computing options.

However, it’s usually up to the machine learning or data

engineer to define distributed computing steps into the

algorithm being used. Figure 10-1 shows a simple example

of how data might be parsed and sent to different cores.



Figure 10-1: A mapping of three sections of data to three cores that will perform

a mathematical or algorithmic step in the machine learning pipeline

In Figure 10-1, we parse our dataset into three pieces to

map to three cores that will compute the quantities we

desire. In a simple big data case, this might involve

computing the minimum and maximum values found in

each column of the dataset. We’d then compute the

minimum and maximum values across cores, save that

value, and spit out the minimum and maximum values for

each column from the full set of data. It may not help much

if we have a dataset of only a few million rows, but it will

speed up the computational process a lot if we’re dealing

with trillions of rows of data.

Multicore approaches work well for network algorithms,

such as those encountered in Chapters 2 through 4, and

they have had some success with persistent homology and

discrete exterior calculus. As long as the problem is local in

nature or can be broken into smaller pieces for some steps,

multicore approaches are viable. For instance, in robotics

path-planning homotopy algorithms, we can break up the

potential routes around obstacles and calculate some

optimality for each route.

Unfortunately, few multicore versions of the algorithms in

this book currently exist in R or Python. However, it is an

area being actively explored in research, and if you’re

familiar with multicore frameworks on big data platforms,

you are encouraged to play around with ways to apply this



approach to persistent homology, manifold learning, or

other geometry-based algorithms.

Quantum Computing Approaches

Another approach to scaling geometry-based algorithms is

to implement them on a different type of computer that can

leverage distributed computing natively. Quantum

computing is a recent buzzword, and a lot of mystery and

myths still surround the field, even within data science and

software engineering. Progress has been faster than

expected, but the technology is still in its early stages, with

current systems having stark limitations and companies

pouring money into hardware research and development.

However, some question network algorithms already exist,

and network science is one of the areas of machine learning

that could benefit the most from quantum computing. In this

section, we’ll go through some basics of quantum

computing and list some of the quantum algorithms related

to graph theory and network science that exist as of 2023.

To start, quantum computing hardware can take on

several different forms, each of which has its advantages

and disadvantages. The type of circuit in the computer

dictates what sort of algorithms can be developed on the

machine, and some types of circuits are more amenable to

network analytics. Two types of hardware seem to be the

focus of most research and development these days, and

they’ll be the focus of this discussion.

The current systems have many limitations, including the

need to cool the circuits, effects due to quantum scales

(tunneling through energy barriers, fields created by

interacting particles, and so on), and random error inherent

in the qubits. Nevertheless, researchers have been able to

explore potential new algorithms and quantum versions of



existing algorithms through the quantum computers that

exist and the simulation packages in Python. Graph theory

and network algorithms, in particular, seem well suited to

quantum computing, and the ability to search through

combinatorics solutions simultaneously with qubits suggests

that network science will get a boost when quantum

computing scales to larger circuits.

Using the Qubit-Based Model

We’ll start with the version of quantum hardware that is

most like classical computers: the qubit-based model, which

replaces classical bits with a quantum version of the bit,

qubits, the quantum version of the 0 and 1 bits that underlie

classical circuits. Rather than taking values of only 0 or 1 at

a given time, qubits can exist simultaneously in the 1 and 0

state until the qubit is observed (where it will collapse to a 0

or a 1 state), and they can also rotate through computer

gates to take fractional values. This means qubits can exist

in many different states and be evolved through quantum

gates into a final, optimized state. This makes them very

flexible. Figure 10-2 shows the difference between bits and

qubits.

Figure 10-2: A plot comparing classical bits with qubits

Let’s quickly go through the two main types of hardware

that use qubits. Don’t worry if you don’t understand every



term here; just keep the high-level ideas in mind. Two types

of chipsets use qubits. Both rely on quantum principles of

qubits (such as superposition) to speed up computation and

improve accuracy. The first is a gate-based circuit that’s

similar to classical hardware, in which gate operations act

on qubit states (such as the rotation gate). Gate-based

circuits are the most common, and some examples include

IBM’s machines and Rigetti’s machines; in general, gate-

based algorithms speed up algorithms and provide easy

benchmarking of algorithms. The other option, currently

used by D-Wave on its machines, relies on quantum

annealing (physical heating and cooling processes) through

the changing of magnetic fields to act on qubit states rather

than manipulating qubits through gates. In general, there

aren’t as many performance and accuracy guarantees or

bounds on this type of system as a gate-based quantum

hardware.

Using the Qumodes-Based Model

Besides the qubit model, the other dominant model is the

qumodes-based circuit model, which is a photon-based

circuit being developed by Xanadu, a Canadian company.

Currently, software and algorithms based on photonic

computing—which uses photons in place of qubits—are only

simulations of the machine, but this type of simulation

allows for the development of some interesting applications.

This type of circuit employs wave functions, which are

continuous distributions, in place of qubits (which collapse

to a 1 or 0 when measured). Wave functions can then be

squeezed, mapped, or operated on by other types of

geometric transformations of the function without collapsing

to a 1 or 0. This computer doesn’t exist yet, but simulation

programs do exist in Python (as of 2023), similar to

simulation programs available for qubit circuits.



Using Quantum Network Algorithms

Several quantum network science algorithms exist that

relate to properties of graphs. Clique-finding algorithms are

particularly useful in network science, and quantum clique-

finding algorithms already exist. Maximal clique algorithms

seem to enjoy a speedup on the very small problems

they’ve been tested on.

One important caveat of quantum algorithms is their

probabilistic nature. Rather than getting, say, a list of

cliques in the output, a quantum algorithm will run multiple

times, creating arrays of clique lists, which can be combined

into probabilistic scores of clique existence in the network.

This can be helpful in prioritizing cliques for further parts of

a project or zeroing in on the cliques of most interest within

a very large network, though the latter will require much

larger circuits than exist today.

Quantum maximum flow and minimum cut algorithms

also exist; these algorithms aim to partition the graph into

communities with the fewest possible cuts that maximize

information flow on the graph. Applications thus far have

explored importance-scoring uses to rank edges and

vertices by importance to the graph structure and

communication potential. They show some promise for

sparse graphs and provide a probabilistic framework for

deriving importance scores.

A basic quantum maximum flow and minimum cut

algorithm using the R package QuantumOps does exist,

though the capability is limited to small, sparse graphs.

Using a qubits approach, the problem is first translated to a

quantum approximation optimization algorithm, or QAOA. A

QAOA formulation is a combinatorial algorithm that relies on

the superposition of qubit states and something called

unitary operators to solve optimization problems. Unitary

operators are a type of linear algebra operator with special



properties that match well to the underlying quantum

mechanics of qubit circuits. Because of the probabilistic

nature of solutions, it’s best to run the algorithm multiple

times for more exact answers. In this case, let’s run the

algorithm 10 times (an arbitrary number large enough to

generate usable results with a probabilistic solution) and

explore this function in a bit more depth by using the script

in Listing 10-1, which reloads Graph 1 from Listing 4-1.

#load QuantumOps package 

library(QuantumOps) 

 

#transform Graph 1 from Listing 4-1 to unweighted graph 

mydata1<-as.matrix(read.csv("Graph1w.csv",header=F)) 

mydata1[mydata1>0]<-1 

 

#run the quantum approximation optimization algorithm maximum 

cut algorithm 

q<-QAOA_maxcut(mydata1,p=10) 

 

#explore the results 

q

Listing 10-1: Running the maxcut algorithm on Graph 1,

first seen in Chapter 4, 10 times

Note that the output from this algorithm contains 27

items, with our original graph containing six vertices. In

general, this version of quantum maximum cut algorithms

will include 2(n+1) items in the output, with problems scaling

to larger graphs. The output is also in raw format with this

algorithm, leaving the user to translate the output to the

most likely cuts made. A couple of existing Python packages

give a more usable output, but this package provides a way

for you to explore some qubit-based computing simulations

within R.

In addition to maximum flow and minimum cut algorithms,

there are quantum versions of random walk algorithms, and



it would be possible to build a community-finding algorithm

or PageRank-type algorithm from them. In fact, some

quantum PageRank algorithms have been proposed in the

past few years and studied theoretically. However, this type

of application has not been explored much in practice thus

far. It does provide an avenue for further research and

potential applications to network science in the future.

Other examples that are more tied to graph theory than

network science include graph-coloring algorithms and

algorithms focused on testing graph properties (such as

isomorphism and connectivity). Quantum querying on

graphs and quantum versions of Dijkstra’s algorithm or

other shortest path algorithms are in their infancy, but they

show promise in the future of quantum graph theory

algorithms and quantum network science algorithms.

Though quantum computing is a nascent technology,

graph theory and network science have already seen the

potential gains from quantum algorithms, and it is likely

more algorithms will be developed in the future. The extant

algorithms generally run in Python for now, but it’s likely

that new interfaces to quantum computers will exist in the

future, as more companies develop quantum computers and

provide access to researchers.

Speeding Up Algorithms with Quantum

Computing

Most algorithms do not have quantum computing or

simulated quantum computing packages available yet.

However, it’s possible to leverage basic mathematical tools

that do exist in quantum computing and simulated quantum

computing packages to assemble algorithms such as the

ones in this book step-by-step. The R package QuantumOps

has some of these tools available for us to explore, so let’s

dive into an example of basic mathematics computations on



a quantum system. Please note, this package only simulates

algorithms that would be run on a quantum computer, so

the speedups on your classical laptop won’t be what you’d

see on a real quantum computer. However, the following

example will show one way that quantum algorithms are

being developed to run on quantum computers to speed up

computation for problems that require a lot of

computational power as the complexity grows.

There are many algorithms that find the greatest common

denominator between two numbers, and it’s possible to do

this within a quantum computing framework. The greatest

common denominator refers to the largest number that will

divide both numbers of interest; for instance, the largest

number that divides both 12 and 20 is 4. We can factor 12

into its divisors (1, 2, 3, 4, 6, 12) and factor 20 into its

divisors (1, 2, 4, 5, 10, 20). We can then see that 4 is the

largest number to occur in both sets of divisors. This is a

simple problem for us to do by hand when the numbers are

small; however, in many encryption applications, the

numbers to factor or determine to be prime can involve 12

or more digits. Factoring these requires a computer.

The gcd() function in QuantumOps finds the greatest

common denominator between two numbers the way they

would be found on a quantum computer. Let’s try our

example with 12 and 20 as our input numbers and see how

this works with the gcd() function; see Listing 10-2.

#load QuantumOps package 

library(QuantumOps) 

 

gcd(12,20)

Listing 10-2: Finding the greatest common denominator of

12 and 20



You should see an output of 4 from Listing 10-2’s code,

which corresponds to the greatest common denominator of

12 and 20 that we found by hand. This function can

compute common denominators of much larger numbers

that would be impractical to compute by hand. Let’s plug in

two new, larger numbers (say, 14,267 and 11,345) and find

their greatest common denominator with this function by

modifying the gcd() function in Listing 10-2 to take these

parameters:

gcd(14267,11345)

According to our output, the greatest common

denominator between these two numbers is 1. Neither of

these numbers is a prime, but they do not share any

divisors. This algorithm runs quickly for numbers this large,

and if you are interested in cybersecurity applications of

factoring algorithms, you are encouraged to try numbers on

the scale that you are using in your applications to further

explore this function and its capabilities. On quantum

systems, it’s possible to run this algorithm for much larger

numbers in a reasonable compute time. This means that

security algorithms based on factoring will not perform well

once quantum computing becomes more accessible outside

of research settings.

The QuantumOps package does not include some of the

more advanced mathematical tools upon which algorithms

are built, but it’s possible to define dot products, norms, and

other linear algebra tools important to distance metric

design, as well as define other linear algebra tools

underlying common machine learning tasks. On a real

quantum computer, we’d be able to run algorithms much

more quickly and for much larger problems than the ones

we’ve considered. However, the QuantumOps package



allows us to explore some of what does exist in the quantum

algorithm research that is done on quantum computers.

Using Image Classifiers on Quantum Computers

One of the hot topics in machine learning today is image

classification, in which machine learning is used to classify

input images according to the category labels it is given.

Typically, you’ll have a set of images with category labels

associated to them that can be used to train a machine

learning algorithm to identify characteristics (such as color,

lines, circles, or more complicated patterns) that signal an

image belongs to a certain class. For instance, consider the

problem of labeling certain types of plants or animals based

on pictures that may or may not contain one or more of the

categories we’re hoping to automatically tag. Consider Figur

e 10-3, which depicts the flowering part of a cannonball

tree.



Figure 10-3: A picture of a blooming cannonball tree at Fairchild Tropical

Gardens (native to Central and South America)

Now look at Figure 10-4, which depicts an elephant.



Figure 10-4: A picture of an elephant walking down a road in Kruger National

Park, South Africa

There are many challenges to classifying images such as

these. In Figure 10-3, for instance, we don’t see the entire

tree in the image (making it difficult to recognize as a tree

rather than a bush or vine), and the tree is in bloom

(meaning that other pictures of a cannonball tree may not

have flowers in them). In Figure 10-4, the elephant is

walking away from the camera (meaning there is no animal

face), the image has a lens filter applied (changing the

natural color), and the image contains other types of things

(plants, a road, and so on). Most real-world sets of images

don’t contain full images of only the category of interest

that are plainly visible in the same color scheme (think of all

the images of a cat that come up when you try searching

Google Images for a cat). A good classifier needs to

generalize to a lot of different types of cats in different

lighting with other things included in the image.

We might also be facing category imbalance among the

set of images we’re using to train the algorithm. We might

have a lot of pictures of orchids, tulips, jaguars, and

kangaroos, but we may have relatively few pictures of black



bat flowers, Gaboon vipers, or African dwarf sawsharks. For

instance, we may have an entirely new plant that isn’t found

in nature or a rare plant or flower for which many images

don’t exist, such as the hybrid shown in Figure 10-5.

Figure 10-5: A picture of a genetically engineered new species of plant at

Fairchild Tropical Gardens

Typically, image classification algorithms involve

pretrained or custom-built convolutional neural networks,

which were discussed in Chapter 1. To quickly review,

convolutional neural networks (CNNs), a type of deep

learning algorithm, find relevant features by optimizing

maps from the input image layer to a series of different

types of layers to the output layer containing the category

labels. Within a CNN architecture, some layers find salient



features within categories of images, which are pooled in

other layers that find the best feature sets from prior layers

and feed them into the next layer of feature-finding layers.

It’s common for these architectures to involve many layers,

and they usually require a large set of training data to

perform well. Further, they require a lot of computational

power.

Because quantum computing offers faster runtimes for

many algorithms and can leverage superposition to broaden

search capabilities, the merging of deep learning algorithms

such as CNNs with quantum computing offers a synergy to

find relevant features more quickly and with less input data.

In many real-world applications, we don’t have access to

every image that comes up on a Google search. We might

have only a few hundred medical images of a rare condition

or not have the computational power to optimize hundreds

of parameters on an animal image set that includes

thousands of pictures of hundreds of snake species that

pose a threat to farmers or villages in the developing world.

However, many quantum neural network algorithms exist

as of 2023, and many show competitive performance on

problems such as image classification (though scaling is still

an issue given the qubit number limitations of current

quantum computers). We’ll explore one recently developed

in South Africa to handle image classification problems

similarly to CNNs, the circuit-centric quantum classifier that

exists in the QuantumOps package for general usage and

usage on a famous image analytics benchmark dataset.

The details of circuit-centric quantum classifiers are a bit

physics-heavy. It’s okay if you don’t follow all of this; we’ll

see it in action later in this section.

The basic approach of the circuit-centric quantum

classifier is to learn the quantum gate parameters of the

circuit through supervised learning, such as fitting hidden



neural network–layer parameters in deep learning

algorithms. The independent variables are coded into

quantum systems amplitudes, which are manipulated by

quantum gates. These single- and two-qubit gates are

optimized through single-qubit measurement, which

collapses the system from superposition into a single state.

Gradients are learned by multiple runs of the algorithm, as

in the approach in the quantum min cut and max flow

algorithm earlier in this chapter. As with deep learning

algorithms, we use dropout regularization fractions, which

prune and add to the circuit during each iteration. The result

is an optimized quantum architecture that modifies

independent variable sets to create high-quality suggested

dependent variable labels based on the training set

independent and dependent variables.

While the exact details of how the quantum operators

train the algorithm are beyond the scope of this book, the

algorithm essentially modifies the quantum physics

governing the processing of independent variables through

the quantum circuit to produce accurate predictions of the

dependent variable. One of the advantages of this approach

is fewer parameters in the neural network architecture and

training process to train compared to CNNs, which speeds

up the fitting process and avoids the need for deep

expertise in architecture design to obtain an architecture

that fits the problem well.

The data we’ll explore comes from one of the most

common image analytics benchmark datasets. The MNIST

dataset contains tens of thousands of images of handwritten

digits (0–9). These were collected from sets of 250 and 500

writers and combined into a single dataset. Because

different people and different cultures have different ways of

writing numbers (such as the slashed 7 in certain parts of

Europe to distinguish it from a 1) and different people often

have different slants to their writing (right, left, center,



down, up, straight, and so on), classifying which digit is in

the image is a more challenging problem than it first

appears.

Let’s dive into an example that applies this circuit-centric

quantum classifier in QuantumOps to the recognition of a

single digit in the MNIST dataset with Listing 10-3.

#load QuantumOps package 

library(QuantumOps) 

 

QuantumMNIST256Classifier(matrix(sample(256,replace=TRUE),nro

w=1),array(1),0,1,1,.001,1,"test")

Listing 10-3: Training a quantum classifier to recognize

the digit 0

Listing 10-3 creates a sample of images with the target

class set to the digit 0 (classifying 0 versus any other

number), a learning parameter of 1, no decay of the

learning rate over each iteration, a low bias (which allows

other parameters to update faster), and one training

iteration. Depending on your machine, it may take a while to

run, as the algorithm is simulating a quantum system; it

may even require a machine with more computational

power. With a CNN, we’d need many more parameters

associated with the network (not to mention needing to tune

the architecture for the number and type of hidden layers),

more training time, and more computational power. With

this code, we optimize 33 quantum gates and find a matrix

of the entire optimized classifier circuit. This represents the

quantum architecture that will parse handwritten digits

corresponding to 0 versus every other digit. We could repeat

this process until we find quantum classifiers for each digit

class in MNIST. On an actual quantum computer, this

implementation would be much faster, as none of the

circuitry would need to be simulated on a classical circuit.



While other incarnations of quantum neural networks

exist, most don’t have open source implementations yet. We

encourage you to explore extant papers and tinker around

with possible implementations of quantum neural networks

on existing quantum systems. Most quantum computing

companies have partnerships available for researchers in

academia and industry to accelerate quantum algorithm

design progress, and if you have access to a quantum

computer, you can run the algorithms of this chapter (and

other simulated packages) on a real quantum computer to

leverage gains in computational speed.

Summary

In this chapter, we explored distributed computing solutions

to scale algorithms, such as our computationally intensive

network and TDA algorithms. We also introduced quantum

computing frameworks, simulated a quantum graph

algorithm for finding min flow and max cut solutions, ran a

simulation of quantum greatest common denominator

algorithms, and explored a simulated quantum classifier in

the spirit of CNNs to explore the potential of quantum. As

quantum computers grow in size and availability to

researchers and industry data scientists, it’s likely that you’ll

have access to quantum computers in the future to

implement these types of algorithms on real systems that

will improve performance over classical algorithms.

Given the current pace of circuit design, other solutions

may be developed in the future to help scale the algorithms

in this book that struggle on big data within current

computational infrastructure, and we hope that tools to

scale algorithms will help accelerate the development of

new tools from the fields of geometry and topology. The

field of topological data analysis is rapidly growing. More

research in the field may lead to novel algorithms that solve



general or niche problems in machine learning and data

analysis.
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Chapter 9 Dataset Poems

The following are the Farrelly poem credits by row number in

the dataset:

 Frogpond, volume 41:3

 Frogpond, volume 41:3

 Presence, Winter 2019

 Another Trip Around the Sun, 2019

 Failed Haiku, December 2020

 Bundled Wildflowers, 2020

 Frogpond, volume 43:3

 Failed Haiku, January 2020

 “Brother” in Frogpond, volume 42:1

 “Writing on the Wall” in Haibun Today, volume 13:3,

September 2019

 “Fires and Stones” in Haibun Today, volume 12:4, December

2018

 “Captain’s Log, Major Azax” in Leading Edge, issue 75

 “Snug Jackets” in #Femku, March 2019

 “Browsing History” in drifting-sands-haibun, issue 1

 “A Shadow in the Night” in Night to Dawn, issue 38

 “Crossing the Styx” in cattails, April 2020

 “Anya” in Vine Leaves Literary Journal, issue 10

 “Overtown Store Front” in StepAway, 2013

 “After War” in Cacti Fur, March 2017



 “Jackson ER” in POND, volume 38

 “Consuming Fire” in Four and Twenty, volume 4:11

 Four and Twenty, volume 6:8

 “Moonlit Night” in The Marquette Journal, Fall 2005

 “Do You See Me Sleeping Over There” in Lake City Lights,

2012

 “Reminder Notes in a Trash Can” in The Casserole, 2014

 “Calvin Today” in The Casserole, 2014

 “Slick City Streets” in The MacGuffin, volume 36:3

 “Teachings of a Street Prophet” in The Recusant, 2012

 “Blue Eyes” in RiverLit, 2013

 “Ever After” in The Transnational, volume 1

 “Saturday Night Fire” in Vine Leaves Literary Journal, issue 4

 “Forgotten” in Lake City Lights, 2012



Index

Please note that index links to approximate location of each

term.

A

adjacency matrices

centrality, 27, 30, 33–35

directed and undirected networks, 27

disease spread tracking, 67, 69

persistent homology, 91–92

spectral theory, 49–50

weighted networks, 27

Akaike information criterion (AIC), 137, 140

algebraic connectivity, 50, 51

alpha (attenuation parameter), 35, 39

alpha centrality. See Katz centrality

authority centrality

defined, 35

measuring in social networks, 39–41

averaged perceptron tagger, 183–184

B



Barabási-Albert model, 52

basis (Hamel basis), 133

BERT (Bidirectional Encoder Representations from

Transformers), 189–190

beta, 70

Betti numbers, 85–86

defined, 85

Euler characteristic, 87

examples of, 85–86

persistent homology, 88–89

subgroup mining, 156–157

validating measurement tools, 161

betweenness of vertices

applications of, 32–33

bridges, 64

community mining, 60

disease spread tracking, 68

graph filtration, 79

measuring in social networks, 37, 38, 41, 42

overview of, 32–33

predictions with social media network metrics, 57, 59

topological data analysis, 194

Bidirectional Encoder Representations from Transformers

(BERT), 189–190

binomial distributions

dispersion, 137



entropy, 107–110

Bonacich centrality. See Katz centrality

bridges

betweenness, 38, 64, 68

disease spread tracking, 68

predictions with social media network metrics, 56–57

walktrap algorithm, 61

browseVignettes(), xxii

C

calculate_homology(), 157

Canberra distance, 101–102, 103, 118

Čech complexes, 82

centrality, 29–42

applications of, 30

applying clustering to social media dataset, 60

authority centrality, 35

betweenness of vertices, 32–33

closeness of vertices, 31

defined, 30

degree of vertices, 30–31

disease spread tracking, 68

distance and, 24

eigenvector centrality, 33–34

graph filtration, 77–79

hub centrality, 35



Katz centrality, 35

measuring in example social network, 36–42

PageRank centrality, 34–35

predictions with social media network metrics, 56–59

spectral theory, 27, 49

topological data analysis, 194

topological dimension, 82

Chebyshev distance, 101, 116

choice ranking comparison, 149–152

HodgeRank, 152

missing information, 150–151

no consistent preferences, 151

overview of, 149–150

preference loops, 150–151

circuit-centric quantum classifiers, 203–204

classification and classifiers

bot account detection, 64, 66

convolutional neural network classifiers, 110

curse of dimensionality, 16–17

decision boundaries, 10–11

defined, 2

homology, 85–86

homotopy, 167, 169

image classification, 18–20, 200–204

logistic regression classifiers, 16–17



metric geometry, 116–119

overfitting and underfitting, 13

overview of, 10–11

poetry analysis project, 186, 189–190

predicting edge formation, 59

quantum classifiers, 203–204

supervised classifiers, 59, 65

support vector machine classifiers, 103

closed triangles, 43, 49

closeness of vertices

measuring in social networks, 37, 38

overview of, 31

CNNs (convolutional neural networks), 18–19, 110, 202–20

4

cohomology, 141, 146

community mining (clustering vertices), 59–64

evaluating quality outcome of clusters, 61–62

exploring networks with random walks, 61

overview of, 59–60

running clustering algorithms, 62–64

spinglass clustering, 62

conditional Fisher information, 134–135

conditional Rao score, 135

connected components

graph Laplacian, 50, 51

homology, 85–86, 89



random walk algorithms, 34

subgroup mining, 156

convex optimization problems, 148

convolutional neural networks (CNNs), 18–19, 110, 202–20

4

COVID-19 pandemic, 72–73, 127

curl flow, 152

curse of dimensionality, 7, 14, 95

geometric perspective, 17

overview of, 13–17

perturbed points in Euclidean space, 14–16

D

data geometry, 1–21

machine learning, 2–4

matching algorithms, 4

supervised learning, 2–3

unsupervised learning, 3

structured data, 4–17

dummy variables, 5–7

numerical spreadsheets, 8–10

supervised learning, 10–17

unstructured data, 17–21

image data, 18–20

network data, 17–18

text data, 20–21



data integrity, 4

data points

in structured data, 4, 7–9

supervised learning, 9, 11, 14, 17

unsupervised learning, 3

data science geometry, 95–129

distance metrics, 96–116

entropy, 107–110

norm-based distance metrics, 99–105

shape comparison, 110–116

small dataset simulation, 98–99

Wasserstein distance, 105–107

fractals, 125–129

k-nearest neighbors with metric geometry, 116–119

manifold learning, 119–125

Isomap, 121–122

locally linear embedding, 122–124

multidimensional scaling, 120–122

t-distributed stochastic neighbor embedding, 124–125

decision boundaries

classification, 10–11

overfitting, 13

decision trees

decision boundaries, 10, 11

overfitting, 13



deep learning

convolutional neural networks, 18, 202–203

defined, 4

geometric, 18

Riemannian manifolds, 18

vector embeddings, 20–21

degree of networks, 48–49

degree of vertices (degree centrality). See also Katz

centrality

applications of, 31

community mining, 60

Forman–Ricci curvature, 46

graph filtration, 76, 78–79

graph Laplacian, 50

in-degree and out-degree, 30

k-means clustering, 60, 61

limitations of, 31

measuring in social networks, 41

overview of, 30–31

scale-free graphs, 52

topological dimension, 82–84

triadic closure, 43

dendrograms, 89, 107, 158–160

density of networks

disease spread tracking, 69, 71

graph filtration, 77



overview of, 48–49

dependent variables

defined, 2

dummy variables, 5

image classification, 203

link functions, 135

regression, 11, 12

supervised learning, 2–3

vertex centrality metrics, 56, 58

dgLARS algorithm, 133–140

credit default prediction, 138–140

cross-validated vs. non-cross-validated, 136–140

depression prediction, 136–138

overview of, 133–136

poetry analysis project, 186

risk propensity measurement, 134–135

dglars package, 136

diameter of networks

graph filtration, 79–80

network comparison, 65–66

overview of, 49

differential geometry, 88. See also dgLARS algorithm

differential geometry least angle regression algorithm.

See dgLARS algorithm

Dijkstra’s algorithm, 199

dimensionality



curse of, 7, 13–17, 95

defined, 14

reduction of, 95, 119–120, 184

unsupervised learning, 3

directed networks, 19

applications of, 26

authority centrality, 39–40

converting undirected to, 39–40

defined, 26

degree of vertices, 30

edges, 28

eigenvector centrality, 34

hub centrality, 39–40

interconnectivity of networks, 48

networks in R, 26–27

PageRank algorithm, 33

Twitter, 17, 26

disaster logistics planning, 142–146

discrete exterior derivatives, 140–146

cohomology, 141, 146

differential forms, 141

disaster logistics planning, 142–146

engineering problems, 146

overview of, 140, 141

social network analysis, 141–142



dist(), 99, 101, 104

distance metrics, 96–116

entropy, 107–110

norm-based distance metrics, 99–105

overview of, 96–98

shape comparison, 110–116

small dataset simulation, 98–99

Wasserstein distance, 105–107

distributed computing, 194–195

diversity of vertices, 42

Dow Jones Industrial Average (DJIA), 127–128

dummy variables, 5–7

categorical variables, 5–6

geometry of, 5–7

multicollinearity, 7

D-Wave, 197

E

Ebola outbreak, 29

eccentricity of vertices

diameter and, 49

graph filtration, 80

overview of, 45

radius and, 49

edge lists, 26–27

edges



adjacent, 28

closeness of vertices, 31

degree of vertices, 30

density of networks, 48–49

depiction of, 25

directed and undirected networks, 17, 26

disease spread tracking, 67–69, 70

diversity of vertices, 42

Erdös-Renyi graphs, 51–52

Euler characteristic, 87

Forman–Ricci curvature, 46–47

graph filtration, 76–78, 80

intracommunity and intercommunity edges, 61

link prediction in social media, 58–59

network comparison, 65

overview of, 25

path length, 28

weighted and unweighted networks, 28–29

efficiency of networks, 49

efficiency of vertices, 44–45

eigen(), 50

eigenvalues, 33, 49–50

eigenvectors, 33, 49–50

eigenvector centrality, 33–39

authority and hubness, 35



Katz centrality and, 36

measuring in social networks, 38–39

overview of, 33–34

PageRank centrality and, 34–35

elastic net regression, 101

EM algorithm, 171

entities

named entity recognition, 180

spread of, 66–68

vertices and edges, 25

entropy, 107–110

diversity of vertices, 42

relative, 135

Shannon entropy, 42

epidemiology

centrality, 30

disease spread tracking, 67–74

spectral radius, 50

Erdös-Renyi graphs, 51–52

network comparison, 65–66

persistent homology, 90–93

Euclidean distance

curse of dimensionality, 14, 16

k-nearest neighbors, 118–119, 186

multidimensional scaling, 121, 122



network distance and, 29

norm-based distance metrics, 99–103

spreadsheet geometry, 9

Euclidean vector space

curse of dimensionality, 15, 16

defined, 8

manifolds, 119

multidimensional scaling, 120–122

shape comparison, 113–116

spreadsheet geometry, 8

tangent spaces, 133

vector embeddings, 21

Euler characteristic, 87–88

Betti numbers, 87

Gauss-Bonnet theorem, 88

maximal cliques, 87

negative, 87

simplicial complexes, 87

expectation-maximization (EM) algorithm, 172

F

Facebook

bot account detection, 18, 24

degree of vertices, 30

global network metrics, 47

link prediction, 58



network distance, 24

text search, 20

undirected networks, 17, 26

fast greedy clustering, 61–64

feature importance, 3

filtration

graph filtration, 76–81

network filtration, 75–94

Fisher information, 134–135

flag complexes, 82–83

fMRI. See functional magnetic resonance imaging

Forman–Ricci curvature

differential geometry, 88

disrupting communication and disease spread, 72–73

overview of, 45–47

stock market change point detection, 129

Forman–Ricci flow, 73–74

fractals, 125–129

Fréchet distance, 111–112

functional magnetic resonance imaging

network comparison, 64, 66

persistent homology, 90–93

G

gamma, 70

gate-based circuits, 196–197



Gauss-Bonnet theorem, 88

Gaussian distribution, 172–173

Gaussian noise, 14

gcd(), 199–200

genomics, 17, 88, 136

datasets, 86, 101, 119

geodesics, 33, 44, 121

tangent spaces and, 96–97

geometric deep learning, 18

geospatial data, 8–9, 9

gerrymandering, 24

global network metrics, 47–51

graph filtration, 79

interconnectivity of networks, 48–49

network comparison, 93

spectral measures of networks, 49–51

spreading processes on networks, 49

Google

image search, 202–203

PageRank algorithm, 33

PageRank centrality, 34–35

text search, 20

GPT-3, 189

gradient descent, 169–171

gradient flow, 152



graph diameter, 79–80

graph filtration, 76–81

brain imaging studies, 80

degree centrality, 78–79

graph diameter, 79–80

graph Laplacian, 50–51

graph theory, 24, 195, 198–199

greatest common denominator, 199–200

greedy algorithms, 61–64

Gromov-Hausdorff distance, 113–116, 160

gromovlab package, 114

H

Hamel basis, 133

Hamming distance, 163–164

harmonic flow, 152

Hausdorff distance, 113, 160

hclust(), 156

heatmaps, 11, 89

help(), xxii

hierarchical clustering, 3, 89, 156–158, 163

Hodge-Helmholtz decomposition, 152

HodgeRank, 152

homology, 85–94

Betti numbers, 85–86

cohomology, 140–141, 146



defined, 85

differential geometry, 88

Euler characteristic, 87–88

persistent homology, 88–89, 129, 159, 195

measurement validation and, 160–161

network comparison and, 89–94, 155–156

subgroup mining and, 156–157, 159, 162

homotopic Fréchet distance, 111

homotopy algorithms, 167–177

comparing, 173

homotopic, defined, 167

homotopy-based regression, 169–174

logistic regression vs. homotopy-based regression, 174–

176

overview of, 167–168, 169

hub centrality

community mining, 60

defined, 35

graph filtration, 77

measuring in social networks, 39–42

unsupervised learning, 60

hyperparameters

classification, 11

defined, 3

overfitting, 13

regression, 12



I

IBM, 197

igraph library, 27, 29–30, 35, 43, 52, 85, 87, 90, 165

cluster_edge_betweenness(), 64

default value, 39

eccentricity(), 49

edge_density(), 48, 69

efficiency(), 49

sample_gnp(), 51

sample_pa(), 52

sample_smallworld(), 52

sir(), 70

spectrum(), 50

transitivity(), 49

image classification

convolutional neural networks, 18–20

quantum computing approaches, 200–204

image data

convolutional neural networks, 18–19, 20

Forman–Ricci flow, 73–74

overview of, 18–20

persistent homology, 88–89

in-degree, 30

independent variables

decision trees, 11



defined, 2

dgLARS algorithm, 135

dimensionality, 14, 101

dummy variables, 5, 7

geometric deep learning, 18

image classification, 19, 203

multicollinearity, 7

supervised learning, 2–3

unsupervised learning, 3

vertex centrality metrics, 57–58

instances. See data points

interconnectivity of networks, 40, 44, 47–49, 52

inverse Hamming distance, 164

Isomap, 121–122

isometric embedding, 113, 116

K

Katz centrality

eigenvector centrality and, 35

measuring in social networks, 39

overview of, 35

k-means clustering, 3

community mining, 59–60

vs. Mapper algorithm, 161, 163

k-nearest neighbors (k-NN), 2–3

decision boundaries, 10, 11



dummy variables, 7

metric geometry, 116–119

overfitting, 13

poetry analysis project, 186

regression, 11–12

knnGarden package, 117

KONECT Windsurfer Network, 69–71

Kullback-Leibler divergence

dgLARS algorithm, 135

entropy, 108–110

t-distributed stochastic neighbor embedding, 124

L

Lasso algorithm

homotopy-based optimization, 172, 174–176

Lasso regression, 101

poetry analysis project, 190

lasso2 package, 172

linear dependence, 7

linear regression, 2–3

dgLARS algorithm, 136, 138

making predictions with social media network metrics, 5

7

multicollinearity, 7

supervised regression, 12

vs. homotopy-based regression, 173–174, 176



link functions, 136

link prediction, 58–59

locally linear embedding (LLE), 122–124

local optima, 169–172, 174, 176

logistic regression, 2

curse of dimensionality, 16

decision boundaries, 10, 11

dgLARS algorithm, 140

link functions, 136

multicollinearity, 7

overfitting, 13

vs. homotopy-based regression, 174–176

Louvain clustering, 62–64

M

machine learning categories, 2–4

matching algorithms, 4

supervised learning, 2–3

unsupervised learning, 3

mahalanobis(), 103

Mahalanobis distance, 103–104, 105

Manhattan distance, 100–102

k-nearest neighbors, 116, 118–119

multidimensional scaling, 121, 122

subgroup mining, 156–157

manifold hypothesis, 95



manifold learning, 119–125

Isomap, 121–122

locally linear embedding, 122–124

multidimensional scaling, 120–122

vs. principal component analysis, 119

t-distributed stochastic neighbor embedding, 124–125

manifolds

defined, 8

distance metrics, 96, 98, 194

Gauss-Bonnet theorem, 88

homology, 85, 88

Riemannian manifolds, 18

tangent spaces, 132–133

Mapper algorithm, 161–166

stepping through, 162–163

using TDAmapper to find cluster structures in data, 163–

166

matching algorithms, 4

Matlab, 152

maximal cliques, 82–84

disaster logistics planning, 144

Euler characteristic, 87

quantum network algorithms, 197

MDS (multidimensional scaling), 120–122

median(), 70

metric geometry, 98



fractals, 125–129

k-nearest neighbors, 116–119

manifold learning, 119–125

Minkowski distance, 101–102, 121

MNIST dataset, 204

model fit

dgLARS algorithm, 137–138

homotopy-based regression, 172

nonlinearity, 147, 149

modularity, 61–64

Morse functions, 162

multicollinearity, 7, 133

multicore approaches, 193–195

multidimensional scaling (MDS), 120–122

N

named entity recognition, 180

natural language processing

pipelines, 180–181

topology-based tools, 188–191

network analysis, 55–74

spread analysis, 66–74

disease spread tracking between towns, 67–69

disease spread tracking between windsurfers, 69–72

disrupting communication and disease spread, 72–74

supervised learning, 56–59



diary entry prediction in social media, 56–58

link prediction in social media, 58–59

unsupervised learning, 59–64

applying clustering to the social media dataset, 59–60

community mining, 61–64

network comparison, 64–66

network depth, 31, 33

network distance, 28–29

applications of, 24, 28–29

defined, 28

link prediction in social media, 59

persistent homology, 91–93

weighted and unweighted networks, 28

network filtration, 75–94

graph filtration, 76–81

homology, 85–94

Betti numbers, 85–86

Euler characteristic, 87–88

persistent homology, 88–89

comparison with, 90–94

simplicial complexes, 81–85

network geometry, 23–54

directed and undirected networks, 18

global network metrics, 47–51

interconnectivity of a network, 48–49



spectral measures of a network, 49–51

spreading processes on a network, 49

models for real-world behavior, 51–53

Erdös-Renyi graphs, 51–52

scale-free graphs, 51–52

Watts-Strogatz graphs, 52–53

network science, 24–25

network theory, 25–29

directed networks, 26

networks in R, 26–27

paths and network distance, 28–29

overview of, 17–18

Riemannian manifolds, 18

vertex metrics, 30–47

centrality, 30–42

diversity of vertices, 42

eccentricity of vertices, 45

efficiency of vertices, 44–45

Forman–Ricci curvature, 45–47

triadic closure, 43–44

networks, defined, 8

neural networks, 2

convolutional, 18–19, 202–204

decision boundaries, 10, 11, 13

homotopy-based optimization, 172



quantum, 203–204

topology-based NLP tools, 189

neuroscience and brain imaging

graph filtration, 80

network comparison, 64

persistent homology, 90–93

NLP. See natural language processing

NLTK toolkit, 181, 183–184

nodes. See vertices

nonconvex objects, 147–148

nonlinear algebra, 146–149

convex optimization problems, 148

nonconvex objects, 147–148

numerical algebraic geometry, 147–149

vs. linear algebra, 146–147

nonlinear spaces, 132–140

dgLARS algorithm, 133–140

credit default prediction, 138–140

depression prediction, 136–138

overview of, 133–136

tangent spaces, 132–133, 135

nonselected predictors, 135

norms, defined, 99

numerical algebraic geometry, 147–149

numerical spreadsheets. See spreadsheets



O

observations. See data points

open triangles, 43

out-degree, 30

outlier detection, 24

network comparison, 66

stealth outliers, 104

subgroup mining, 159

overfitting

curse of dimensionality, 14, 16–17

overview of, 13

P

PageRank algorithm, 33, 198

PageRank centrality, 34–35

community mining, 60

link prediction in social media, 59

measuring in social networks, 38–39, 41, 42

paths, defined, 28

PCA (principal component analysis), 3, 119

perplexity, 124–125

Perron-Frobenius theorem, 34

persistence diagrams

measurement tool validation, 159–161

persistent homology, 89, 91–93

poetry analysis project, 187–188



shape comparison, 110

subgroup mining, 157

persistent homology, 88, 155–159

measurement tool validation, 160–162

multicore approaches, 195

network comparison, 90–94

outlier detection, 159

overview of, 88–89

stock market change point detection, 129

subgroup mining, 156–159

PET (positron emission tomography), 64, 90–93

philentropy package, 108

plot_persist(), 157

poetry analysis project, 180–188

analysis in R, 184–188
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