

100 Days of Coding
In Python

Giuliana Carullo

This book is for sale at http://leanpub.com/100daysofcoding

This version was published on 2020-03-22

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

© 2019 - 2020 Giuliana Carullo

http://leanpub.com/100daysofcoding
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Also By Giuliana Carullo
Code Reviews 101

Technical Leadership

Identity Management 101

Stop Procrastinating

pip install python

http://leanpub.com/u/giucar
http://leanpub.com/codereviews101thewisdomofgoodcoding
http://leanpub.com/technicalleadership
http://leanpub.com/identitymanagement101thesecureworldofunsecureunicorns
http://leanpub.com/stopprocrastinating
http://leanpub.com/pipinstallpython

Contents

Preface . i
Why this Book? . i
Who This Book is Meant For ii

Part 1 - The Basics 1

Introduction . 2
The Study Plan . 2
Where it All Begins 2

Fundamentals . 4
The beloved hello world 5

The command line 5
.py code . 5
The main . 6
Coding Practice of the day 7

Basic Input/Output . 9
Output manipulation 9
Give it to me! . 12

Basic Types . 14
Numeric Types . 14
Strings . 16
Other types . 16

CONTENTS

Coding Practice of the day 17

Structure of a Python Program 19
Statements and Expressions 20
Functions . 21
Modules . 22
Packages . 24
Modular Programming 25
Import . 26

Absolute vs relative 27
Importing a package 27

Putting it all together 27
Coding Practice of the day 28

Variables . 30
Referencing . 31
Keywords . 32

What To Avoid 33
Convensions . 33

Coding Practice of the day 35

Python Objects . 37
Class . 37
Initialization . 37
Attributes . 37
Methods . 37

Functions . 37
@properties . 38
Coding Practice of the day 41

Polymorphism . 43
Inheritance . 44

This is…Super! . 46
Overload . 47

CONTENTS

Override . 48
Types of Inheritance 48
Coding Practice of the day 49

Composition . 50
Rule of Thumb . 50
Coding Practice of the day 52

Conditional Flows . 54
If statement . 55
Multiple Checks . 56
Membership . 58
Coding Practice of the day 60

Loops . 62
While . 63
For . 64
Further Modifying the Flow 64

Break . 64
Continue . 65
pass . 65

Coding Practice of the day 67

Error Handling . 69
Coding Practice of the day 70

Documentation . 72
The Syntax . 73
If the Code is Good I don’t need Comments Phi-

losophy . 74
Conditions and Flows 74
IO Definition . 75
Inline Comments . 76
TODOs . 77
That’s Obvious . 77

CONTENTS

Did you just lie to that programmer? 79
Comments Driven Development (CDD) 79
Coding Conventions 80
Coding Practice of the day 81

Part 2 - Algorithms 83

Introduction . 84

Recursion . 86
Coding Practice of the day 87

Iteration . 89
Coding Practice of the day 90

Greedy Agorithms . 92
Thinking Greedy . 92
Coding Practice of the day 93

Dynamic Programming 95
Coding Practice of the day 96

NP-Hard problems . 98
Coding Practice of the day 99

Part 3 - Data Structures 101

Introduction . 102
Intro to Data Structures 103

Array . 105
Internals . 107
Coding Practice of the day 108

CONTENTS

Linked-List . 111
Internals . 112
Coding Practice of the day 113

Doubly Linked-List . 115
Internals . 116
Coding Practice of the day 117

Stack . 119
Internals . 120
Coding Practice of the day 121

Queue . 123
Internals . 124
Coding Practice of the day 125

Hash Map . 127
Internals . 129
Coding Practice of the day 130

Binary Search Trees . 131
Internals . 133
Coding Practice of the day 134

Takeaway . 136

Further Reading . 138

Part 4 - Design Patterns 139

Introduction . 140
Design Patterns . 141

Creational . 143
Singleton . 144

CONTENTS

The code . 145
Don’ts . 145
Coding Practice of the day 146

Lazy Initialization . 148
The Code . 149
Don’ts . 149
Coding Practice of the day 150

Builder . 152
The Code . 152
Don’ts . 154
Coding Practice of the day 155

Abstract Factory . 157
The Code . 157
Don’ts . 159
Coding Practice of the day 160

Factory Method . 162
The Code . 162
Don’ts . 163
Coding Practice of the day 164

Structural . 166
Adapter . 167

What . 167
How . 167
When . 168
Don’ts . 168
Coding Practice of the day 169

Decorator . 171
What . 171
How . 171
When . 173
Don’ts . 173
Coding Practice of the day 174

CONTENTS

Facade . 176
What . 176
How . 176
When . 178
Don’ts . 178
Coding Practice of the day 179

Composite . 181
What . 181
How . 182
When . 183
Don’ts . 184
Coding Practice of the day 185

Behavioural . 187
Observer . 188

What . 188
How . 189
When . 190
Don’ts . 191
Coding Practice of the day 192

Publisher-Subscriber 194
What . 194
How . 194
When . 197
Don’ts . 197
Coding Practice of the day 198

Iterator . 200
What . 200
How . 200
When . 202
Don’ts . 202
Coding Practice of the day 203

Visitor . 205

CONTENTS

What . 205
How . 205
When . 207
Don’ts . 207
Coding Practice of the day 208

State . 210
What . 210
How . 210
When . 211
Don’ts . 212
Coding Practice of the day 213

Chain of Responsibility 215
What . 215
How . 215
When . 217
Don’ts . 217
Coding Practice of the day 218

Part 5 - Solutions 220

The Basics . 221
Basic types . 222
Structure of a Python Program 224
Variables . 226
Python Objects . 228
Polymorphism . 230
Conditional Flows . 232
Loops . 235
Errors . 237
Documentation . 239

Algorithms . 241

CONTENTS

Data Structures . 242
Array . 243
Linked-List . 247
Stack . 250
Queue . 253
HashMap . 256
Binary Search Tree . 259

Design Patterns . 262

Conclusions . 263

About the author . 264

More from Giuliana Carullo 265
More from Giuliana Carullo 265

Feedback and Errata . 267

References . 268

Preface

Welcome to an intense session during which you will learn
Python. This book will be your friend for the next 100 days to
help you along the journey of learning the fundamentals of
Computer Science and how to program them in Python.

This book will provide you step by step focused daily theory
and practice to help you master:

1. programming foundation in Python;
2. main algorithms concepts;
3. popular data structures that you will encounter often in

your life as a programmer;
4. design patterns that will help you in writing marvelous

code.

Why this Book?

Sure enough plenty of books have beenwritten on Python and
the official documentation [PSF] is - and always will - remain
the source of knowledge. A go to for doubts.

Preface ii

However, this book has been specifically designed to walk
you through - step by step - not only Python syntax but also
fundamentals of computer science that will make you a well-
rounded programmer.

Who This Book is Meant For

If you are new to programming - in general - this book is right
for you. Indeed it walks through the core concept of program-
ming as well as detailing relative Python implementations.

Part 1 - The Basics

Introduction

This book is broken down into 5 Parts:

1. Introduction: covering basic concepts of Object Ori-
ented Programming and their Python implementation.

2. Algorithms: including greedy approaches, dynamic pro-
gramming and an introduction to np-hard problems.

3. Data Structures: explaining the main data structures
that you will encounter in your journey as a program-
mer.

4. Design Pattern: providing the foundation of software
architectures.

5. Solutions: for all the coding exercises presented.

The Study Plan

Where it All Begins

Introduction 3

.

Fundamentals

Let’s start with a general introduction to the Python language.

The goal of this Chapter is to give you the essential elements
of the language and start getting used to Python code. In
the first Chapters, indeed, what I am going to is to give
you enough knowledge and hands-on practice - by means of
excercises - to start writing basic code that you’ll find in real
life.

This is in line with the general idea of this book: it is not
meant to deal with all the details and shades of the language,
yet gently walk you through - in the shortest amount of time
possible - your first programs in Python.

The remaining of the Chapter assumes you have your en-
vironment set up (i.e. python installed) and you know basic
terminal interaction.

If you are not completely new to either Python or program-
ming in general, you might want to quickly glance at this
Chapter or completely skip it altogether depending on your
knowledge.

Fundamentals 5

The beloved hello world

Yes, it is kind-of a tradition to start every programming
languagewith an hello world. Yet, from a simple excercise you
can start getting confortable with the syntax. Before learning
to drive a car, you need to sit into one. And this is what
we’ll be doing in this Section. We’ll - indeed - walk through
different ways to run Python code.

In Python, the code to print ‘Hello, World’ is:

1 print('Hello, World')

The command line

To execute our code let’s open our terminal and run first the
command

1 >>> python

This command allows you to run - line by line - your code.

Type in the above hello-world code and look the magic
happen!

Just kidding, let’s warm up!

.py code

Command line works for quick few lines testing. In any real
scenarios you’d want to write code that you can run, re-run
and reuse. So let’s save our code in a file.

Fundamentals 6

1. Create a file with .py extension (hello.py)
2. Open the file with the preferred editor (or IDE - e.g.,

Pycharm)
3. Type in the example and save
4. Open the terminal, navigate - if needed - to the folder

that contains your hello.py
5. Run the code by

1 >>> python hello.py

Different process, same output.

The main

main() is a function provided by most programming lan-
guages with the purpose of defining where the program starts.
Generally, this special function has a specific signature that
defines it’s inputs (arguments) and output (return).

Python automatically runs programs line-by-line scripts from
the top to the bottom. However, the language still provides a
way to alter the flow of execution. One the most basic is, as
you figured, main.

Back to our example.

Create another file named hello_main.py and type in the
following code.

1 if __name__ == "__main__":

2 print("Hello, World")

If no typos or syntax issues exist you will get the same result
as from the previous examples.

Fundamentals 7

Coding Practice of the day

Warm up
Play around with the code provided in this Sec-
tion. Change indentation, remove parts of the
code and get familiar with the error messages you
get out of the changes.

Medium
Try to fix the following code:

1 if __name__ == "__main__":

2 print("Hello, "World"")

The expected result is the print of the line: Hello, “World”.

Fundamentals 8

See you
tomorrow!

Fundamentals 9

Basic Input/Output

We started, with a simple excercise, to learn how to print a
simple sentence (string) with the print command. However, in
most common situations you might want to concatenate sev-
eral sentences, maybe numbers, etc. Hence in the following
we’ll learn some basic manipulation and how to implement
it.

Output manipulation

String concatenation

Consider the example where you want to print two separate
words: “Hello, “ and “World”.

The easiest way to achieve it by using the “+” operator as
follows:

1 print('Hello, ' + 'World')

String literals

Sequence escaping

Coding Practice of the day

Warm up
TBD

Fundamentals 10

Medium
TBD

Power-up
TBD

Fundamentals 11

See you
tomorrow!

Fundamentals 12

Give it to me!

We learned how to print, let’s get our feet wet with getting
some custom-input as well. The most basic tool that Python
gives us is the input() function.

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Fundamentals 13

See you
tomorrow!

Basic Types

Numeric Types

Basic numeric types in Python are:

• integers
• float
• complex

Integers are finite numbers, either positive or negative, with-
out decimals.

1 num_int_pos = 42

2 num_int_neg = -42

Float numbers are numbers, either positive or negative, with
decimals. Python also supports the scientific notation, as
show in the following snippet (line 3).

Basic Types 15

1 num_float_pos = 42.0

2 num_float_neg = -42.0

3 num_float_scientific = 42e2

Just as a reminder, the scientific notation - which is indicated
with an e or an E - defines the power of 10 of the given num-
ber. In the example above, we declared a scientific number
which is the power 10 of 42.

Putting all together, run the following code to match numbers
to their relative type counterpart.

1 numbers = (42, -42, 42.0, -42.0, 42e2)

2

3 for n in numbers:

4 print(type(n))

The output will look like:

1 >>> <class 'int'>

2 >>> <class 'int'>

3 >>> <class 'float'>

4 >>> <class 'float'>

5 >>> <class 'float'>

Even if you will encounter them way less often in your day
to day programming, it is worth to mention that Python
also supports complex numbers. In mathematical terms, a
complex number is one that has a real part and an imaginary
one. This type of number can be expressed as:

Basic Types 16

1 num_complex = 42+1j

In this example, 42 is the real portion, while the j indicates the
imaginary counterpart.

Strings

A strings is a sequence of characters. In Python, strings are
declared bywrapping characters eitherwith a single or double
quotation mark.

Hence:

1 var_string = 'hello Python!'

is the same as:

1 var_string = "hello Python!"

even if I recommend maintaining consistency of the notation
you want to use in your code for the sake of uniformity and
readability.

Other types

Basic Types 17

Coding Practice of the day

Warm up
Write the Python code that counts the number of
character in a string. Print the result.

Medium
TBD

Power up
TBD

Basic Types 18

See you
tomorrow!

Structure of a Python
Program

I know, I hear you. We learned already about Python, but we
want to get our teeth in our first program. Let’s do it. Just few
more concepts to go.

Structure of a Python Program 20

Statements and Expressions

A statement is an instruction that the interpreter (in case of
Python) can execute.

Assignment, as we have seen so far, is a specific type of state-
ment called: expression. Generally speaking, other example
of expressions are:

• any arithmetic operation (e.g., sum, subtraction, divi-
sion)

• operating with strings (e.g., concatenation)
• calling a function

For example:

1 # summing first four numbers is an expression

2 sum = 1 + 2 + 3 + 4

3

4 # string concatenation is an expression

5 signature = "name" + "surname"

A statement could be mistakenly defined as: a single line of
code. But it not 100% true. I can be a single line of code as
in the case of assigment (and often it is) but it can also be a
more complex/long instructions. Statements can, indeed, be
multi-line, even the simple ones. For example:

1 # single line statement

2 signature = "name" + "surname"

has the same outcome of:

Structure of a Python Program 21

1 # multi-line statement

2 signature = "name" + \

3 "surname"

As well as:

1 # yet another multi-line statement

2 signature = "name" +

3 / "surname"

The istruction is the same, but it is scattered on several
sequential lines. The first multi-line variations is reffered to
as explicit line continuation, while the second one is the
implicit variation.

Functions

A set of statements that are functional to executing a logically
coherent piece of code can be grouped together to form a
function. The general shape of a function in Python (pseudo-
code) is:

1 # general function

2 def foo_bar(params):

3 statement1

4 statement2

5 ...

6 return "done"

Functions are composed of:

• the signature:

Structure of a Python Program 22

– the def keywork
– the name of function (e.g., foo_bar)
– a variable number of parameters (in our example
params). Parameters are used to provide input to
the function.

• the body of the function, i.e., the set of statements that
all together express the logic

• return statement:
– in the form return value
– used to define an output to the function
– can be optional

Modules

Modules are the basic way of organizing code in Python. They
are an arbitrary composition of:

• variables
• functions
• classes

The following snippet showcases the simplies module on
earth: hello.py.

Structure of a Python Program 23

1 name = 'Giuliana'

2

3 def hello():

4 print('Hi {}, my dear! '.format(name))

5

6 if __name__ == "__main__":

7 hello()

One of the key benefits of using modules - other than simply
structuring our code - is to write them once and reuse them
every time it is needed to.

Consider another module, multiple.py that wants to greet an
arbitrary number of times instead of just one. This cheerful
module can resuse hello.py as follows.

1 import basics.modules.hello as greet

2

3 def multiple_hello(number:int):

4 i = 0

5 while i < number:

6 greet.hello()

7 i+=1

8

9 if __name__ == "__main__":

10 number = input("How many times? ")

11

12 #converting number from string to int

13 number = int(number)

14 multiple_hello(number)

Structure of a Python Program 24

input() function
This function allows to read from keyboard.
Specifically, it displays the message and then
waits for user’s input. input() returns the string
representation of anything typed before hitting
enter when the message is promped.

The import function might still be fairly obscure to you at this
point in time but…no worries! We will go deeper on it in this
Chapter.

Packages

Simply speaking, a package is a way to group several modules
together. Why do they exist?! Well imagine having all your
files in your lapton in a single massive folder… confusing isn’t
it?

Packages are a way for structuring your code (modules) in
a logically cohesive way and, hence, creating a hierarchical
organization of your code.

Structure of a Python Program 25

Fig x.x - Package Structure

Pretty simple, right?

Modular Programming

Other than simplifying our lifes from cahotic code, func-
tions, modules and packages allow us to implementmodular
programming. There are plenty of benefits from using this
approach:

• Scoping, which is where variables and function live
(known as namespace). By breaking down the visibility

Structure of a Python Program 26

of our variables, functions and modules allows for better
collision avoidance between identifiers.

• Reduced Complexity, analogously to the folder exam-
ple. By breaking down the code into small pieces, it is
easy to focus on a single aspect of the problem at hand.

• Reusability, which is the capability to write the code
once and reuse it twice. Without modular programming,
you would have a gigantic single block of code. What
if you want to reuse few lines of code? Copy-paste.
Duplicating code is not only painful but also a bad
practice (wewill get more into details on reusability later
on in this book).

• Mainteinability: by logically splitting the code in cohe-
sive smaller pieces and by sprinkling on top of it few
more good practices (e.g., low cohesion, which means
maintaining as minimum dependencies between differ-
ent software components), the code will result less error-
prone as well as easier to change, expand and reuse over
time.

Import

We spoke about scoping and reusability. One limits visibility
the other allows for reusing code. But how do we use code
with limited visibility? Import!

Let’s deal with the simplest import on earth, shown in the
following Figure.

Structure of a Python Program 27

Fig x.x - Simple import

Where module1.py is

1 print('Imports are so cool!')

and module2.py is

1 import module1

The output from the above code is:

Fig x.x - Simple import: result

Mission accomplished!

Absolute vs relative

Importing a package

Putting it all together

Structure of a Python Program 28

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Structure of a Python Program 29

See you
tomorrow!

Variables
If you are completely new to variables, let’s kick start this
discussion with a definition:

A variable is a mechanism used to store or reference data
that can be:

1. Initialized
2. modified over time
3. reference memory locations
4. dismissed

In other words we can define a variable as:

a simbolic (i.e., human readable) representation to a loca-
tion in memory

Creating a variable in Python is super simple:

1 my_first_var = 42

If you already have experience with other programming
languages, let’s use your knowledge as a reference to better
understand what Python is doing here. In Java, for example a
variable can be declared as:

Variables 31

1 int my_first_var = 42

The first big difference between Python and other languages
(Java, C, C++ included) is that there is no need for declaring
the type of the variable. When creating a variable in Java, the
following steps are executed:

1. hey! that is a int: let me allocate just enough memory to
store an integer

2. let me reference that location
3. cool, now I have to save 42 at that localtion

The main consequence (and difference) is that types are way
more strict in other programming languages. Hence a variable
in Python can change over time:

• in terms of data (likewise all the other programming
languages)

• in terms of type (peculiarity of Python)

Indeed in Python something like:

1 my_first_var = 42

2 my_first_var = "I am now a string!"

is totally fine.

Referencing

Let’s go deeper into what happens with variables. A variable
is a reference to an object in memory. The object might be
a basic type - e.g., an integer, a data structure, e.g., a list, or a
custom object, i.e. defined with the usage of Class.

Variables 32

1 my_first_var = 42

2 my_second_var = "my_first_var"

In the above example, my_second_var points at the same
memory object as my_first_var.

For those of you with a background in C, the above code is
similar with what happens with pointers.

1 int my_var = 20;

2

3 //declaring a pointer

4 int *ptr;

5 ptr = &var;

It is evident, however, that in C the pointer, i.e. ptr has to
reference the same data type of the variable it is pointing
to. Python is more flexible and a variable can reference any
type at any point of its life. A blessing and a curse (for good
coding).

Keywords

Keywords arewords reserved to Python. Yes: Python can. And
you can only used them as Python meant them to be. The
following is a list of keywords.

Variables 33

and as assert break
class continue def del
elif else except False
for from finally global
if import is in
lambda None nonlocal not
or pass raise return
True try while with
yield

For now, you just have to know that you cannot use them for:
* identifiers, * function names, * class names, * you name it.

What they do will be covered in the various Sections of this
book, so keep reading and learning. ## Naming Conventions

Naming convention might deserve - as a topic - an entire
chapter - and I did in Code Reviews 101. However, I’ll try to
keep your brain nice and quiet on the topic.

First and foremost, don’t skip this section, a bit wordy for
sure (we want code! I hear you!). But they do exist for a good
reasong: readability.

What To Avoid

Rule number 1: Don’t use keywords as a variable name. Rule
number 2: don’t use keywords as a variable name. You got it.

Convensions

Here are the basics convensions for Python:

• Package and Module: all lower case, crisp and short. If
more than a single word, use an underscore (_) as a
separato.

Variables 34

• Classes: CamelCase. If you hate Java you can refer to it
as CapWords as well.

• Variables, Functions and Methods: as for package and
modules. AlthoughmixedCase can also be used. Which
one to pick? Base the decision on: consistency.

• Global Variables: don’t use them. If you really really
(really) have to use them (minimal scope), the follow the
same rule set as normal variables.

• Constants: easy to spot in the code: all caps. As an
example:

1 CONSTANT= 'I am a constant'

Variables 35

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Variables 36

See you
tomorrow!

Python Objects

Class

Initialization

Attributes

Methods

Functions

Python Objects 38

@properties

Properties provide a pythonic way for accessing and setting
variables (i.e., getters and setters).

Let’s start with an example.

1 class Book():

2 def __init__(self, title):

3 self._title = title

Suppose that the code above needs to integrate with another
application that gathers titles in. Let’s also suppose that at
a certain point this external applications puts a limit on the
length of the title: cannot be more that 20 characters (a bit of
a weird constraints but… hey! What can we do?!)

So we change our code such that we can add constraints when
setting our title:

1 class BookConstraints():

2 def __init__(self, title):

3 self._title = title

4

5 def get_title(self):

6 return self._title

7

8 def set_title(self, new_title):

9 if len(new_title) > 20:

10 raise ValueError("Title '{}' is too lon\

11 g".format(new_title))

12 self._title = new_title

Looking at the execution:

Python Objects 39

1 if __name__ == "__main__":

2

3 book_with_constraints = BookConstraints ("pip i\

4 nstall python")

5 book_with_constraints.set_title("pip install --\

6 target=your:brain python")

We get the following output:

1 Traceback (most recent call last):

2 ...

3 ValueError: Title 'pip install --target=your:brain \

4 python' is too long

It worked! But we have the pythonic way for achieving this
result.

1 class PythonicBook():

2 def __init__(self, title):

3 self._title = title

4

5 def get_title(self):

6 return self._title

7

8 def set_title(self, new_title):

9 if len(new_title) > 20:

10 raise ValueError("Title '{}' is too lon\

11 g".format(new_title))

12 self._title = new_title

13 print("This is magic!")

14

15 title = property(get_title, set_title)

Python Objects 40

Observe that, the last line makes a property object title. The
actual operation happens on the private title, however _title
(public) constitutes an interface to it.

If we run the code:

1 if __name__ == "__main__":

2

3 pybook = PythonicBook("pip install python")

4 pybook.title = "pip install python"

5 pybook.title = "pip install --target=your:brain\

6 python"

we get the following output:

1 This is magic!

2

3 Traceback (most recent call last):

4 ...

5 ValueError: Title 'pip install --target=your:brain \

6 python' is too long

where the first set passes the check hence printing “This is
Magic” and the second one triggering our error.

Python Objects 41

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Python Objects 42

See you
tomorrow!

Polymorphism

Polymorphism is a foundational concept in Object Oriented
programming. It refers to the ability to access the same
method that - depending on the object is called upon -
presents a different behaviour/output.

A simple example of application of polymorphism is given by
the built-in function type().

1 print(type(1))

2 print(type('hello'))

3

4

5 >>> <class 'int'>

6 >>> <class 'str'>

Polymorphism 44

Inheritance

Inheritance is a way to implement polymorphism. Specifi-
cally, it enables an object to embed and potentially extend
or redefine properties of another object.

The inherited class is called:

• Super Class,
• Base Class or
• Parent Class.

On the other side, the object inheriting from the super class
is called:

• Sub Class,
• Children or
• Derived Class

Inheritance can also be expressed as:

a Sub class implements a Super Class.

A simple example of inheritance in the following.

Polymorphism 45

1 class Car():

2 def move_front(self):

3 return 'move front'

4

5 def move_back(self):

6 return 'Move back'

7

8 def brake(self):

9 return 'Break'

10

11 class Berlina(Car):

12

13 def shape(self):

14 return 'I can do everything a car can, but \

15 with a different shape!'

16

17 if __name__ == "__main__":

18 car_generic = Car()

19 print ('I can: {}, {}, {}'.format(car_generic.m\

20 ove_front(),

21 car_generic.m\

22 ove_back(), car_generic.brake()))

23 car_berlina = Berlina()

24 print('I can: {}, {}, {}. \n{}'.format(car_gene\

25 ric.move_front(),

26 car_berl\

27 ina.move_back(),

28 car_berl\

29 ina.brake(),

30 car_berl\

31 ina.shape()))

Logically speaking it can be applied when an ‘is’ relationship

Polymorphism 46

can be applied between subclass and superclass.

This is…Super!

We saw so far how to extend a class. However, we implicitely
used another method: super() (lines 21/22 of the previous
snippet).

As you might have noticed, we did not defined any brake()
method for our Berlina class, whilst the Car still brakes.

This situation can be made explicit by the following Python
code (not needed, just for the purpose of explaining what is
happening).

1 class Berlina(Car):

2

3 def shape(self):

4 return 'I can do everything a car can, but \

5 with a different shape!'

6

7 def brake(self):

8 return super().brake()

Its general form (Python 3) is:

1 super().methodName(args)

Polymorphism 47

Overload

Super() also becomes very handy when we want to provide
an enhanced version in a subclass for a specific function.

For example:

1 class CustomBerlina(Berlina):

2

3 def __init__(self):

4 self._color = None

5

6 # an example of overloading

7 def shape(self, color=None):

8 super().shape()

9 self._color = color

10 print('Now I am {}'.format(color))

11 return 'Always a Berlina, but I am {}'.form\

12 at(self._color)

13

14 if __name__ == "__main__":

15 car_berlina = CustomBerlina()

16 print('I can: {}, {}, {}. \n{}'.format(car_berl\

17 ina.move_front(),

18 car_berl\

19 ina.move_back(),

20 car_berl\

21 ina.brake(),

22 car_berl\

23 ina.shape('red')))

What we did is overloading a method of the superclass by
adding optional arguments to the relative signature.

Polymorphism 48

Override

For the sake of going through another concept (i.e., override),
let’s create a Limousine out of a Berlina.

1 class Limo(Berlina):

2

3 # an example of override

4 def shape(self):

5 print('Just a little of a stretch')

6

7

8 if __name__ == "__main__":

9 car_berlina = Limo()

10 car_berlina.shape()

By overriding a method, we substitute the code in the parent
class with what is specified in the subclass.

As shown in the example, the signature remains the same (and
needs to be as such), whilst the method’s code changed.

Congratulations! With a little of a stretch we transformed a
Berlina into a Limo!

Types of Inheritance

Polymorphism 49

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Polymorphism 50

Composition

Composition, differently from inheritance, is applied for ‘have’
relationships between objects. A simple example of composi-
tion is shown in the following snippet.

1 class Windscreen():

2 def __str__(self):

3 return 'windscreen'

4

5 class Gear():

6 def __str__(self):

7 return 'gear'

8

9 class Car():

10 def __init__(self):

11 self._windscreen = Windscreen()

12 self._gear = Gear()

13

14 def __str__(self):

15 return 'I have : {} and {}.'.format(self._w\

16 indscreen, self._gear)

17

18 if __name__ == "__main__":

19 car = Car()

20 print(car)

Rule of Thumb

A commonly applied principle when finding the right trade-
off between inheritance and composition states that:

Polymorphism 51

to achieve polymorphism, composition should be pre-
ferred instead of inheritance.

Composition usually present a more flexible design, thus
resulting maintainable in the long run. Not only design based
on composition might be easier to write in first place. It will
also accommodate future requirements and changes without
requiring a complete restructuring of the hierarchy

Polymorphism 52

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Polymorphism 53

See you
tomorrow!

Conditional Flows

Conditionals are used to logically alter the “normal” path of
the code.

The most commonly used conditionals are:

• if statement
• loop (that we will consider in next Chapter)

Conditionals use mathematical operations like:

• Equality: a == b
• Not Equals: a != b
• Less than: a < b
• Less than or equal to: a <= b
• Greater than: a > b
• Greater than or equal to: a >= b

to enforce the flow to change if a certain runtime condition
happens.

As a simple example:

Conditional Flows 55

1 a = 10

2 b = 1

3 print(a==b)

4

5 b =10

6 print(a==b)

7

8

9 >>> False

10 >>> True

The above code acts exactly as its explicit version:

1 if a==b:

2 print(True)

3 else:

4 print(False)

If statement

This is also our very first example of if statement. Its general
form is:

Conditional Flows 56

Fig n.n - Basic if flow

Relative pseudo-code:

1 if condition_is_true:

2 print(True)

3 # flow of the code if condition holds true

4 else:

5 print(False)

6 # flow of the code otherwise

Multiple Checks

The flow can also be further altered by using elif :

Conditional Flows 57

Fig n.n - Complete if flow

Relative pseudo-code:

1 if condition_is_true:

2 print(True)

3 # flow of the code if condition holds true

4 elif condition_2_is_true:

5 print(True)

6 # flow if condition_2 holds true

7 else:

8 print(False)

9 # flow of the code if both condition and condit\

10 ion_2 are not true

In summary, if/elif structure allows for a cascade of checks.

Python also supports AND and OR operators to perform
multiple checks at the same time. This is very handy when,

Conditional Flows 58

for example, the same behaviour needs to be applied when -
from the example above - either condition or condition2 hold
true.

In this case the previous snippet can be rewritten as:

1 if condition or condition_2:

2 print(True)

3 # flow of the code if condition holds true

4 else:

5 print(False)

6 # flow of the code if both condition and condit\

7 ion_2 are not true

Membership

Python also supports more complex checks for structured
data, including:

• Membership: in
• Non Membership: not in

The form of usage is as follows:

1 if condition in data:

2 # do something

3 else:

4 # do something else

A simple example of using membership is:

Conditional Flows 59

1 i = 3

2 if i in range(5):

3 print('I am included in the range!')

Conditional Flows 60

Coding Practice of the day

Warm up
Implement a Python program that,
given in input a letter l, prints if l is
a vowel or a consonant.

Medium
Implement a Python program that,
given in input an object o, checks
its type (string, integer or none of
these).
Hint: study how isistance() work.

Power-up
TBD

Â {pagebreak}

Conditional Flows 61

See you
tomorrow!

Loops

Loops are a way to apply common logic (blocks of code)
multiple times until a condition is met.

The flow diagram for loops is shown in the following:

Loops 63

Fig n.n - Basic if flow

Python supports two types of loops:

• while
• for

While

The syntax for the while construct is as follows:

1 while condition:

2 # block of repetitive code

3 ...

Loops 64

For

The syntax for the for construct is as follows:

1 for condition:

2 # block of repetitive code

3 ...

Further Modifying the Flow

Break

Break and continue are two other statements to alterate the
flow of a loop.

1 for i in range(10):

2 if i == 4:

3 print('Got bored: interrupting the loop')

4 break

5 print('Iter {} - Looping again!'.format(i))

The above code has as output:

1 >>> Iter 0 - Looping again!

2 >>> Iter 1 - Looping again!

3 >>> Iter 2 - Looping again!

4 >>> Iter 3 - Looping again!

5 >>> Got bored: interrupting the loop

Break interrupts the loop even if the condition, in our example
i in range(10), still holds true.

Loops 65

Continue

Continue allows to skip the current iteration if a certain
condition holds true. Back to our previous example, using
continue instead of break.

1 for i in range(10):

2 if i == 4:

3 print('Got bored: interrupting this iterati\

4 on')

5 continue

6 print('Iter {} - Looping again!'.format(i))

The above code has as output:

1 >>> Iter 0 - Looping again!

2 >>> Iter 1 - Looping again!

3 >>> Iter 2 - Looping again!

4 >>> Iter 3 - Looping again!

5 >>> Got bored: interrupting this iteration

6 >>> Iter 5 - Looping again!

7 >>> Iter 6 - Looping again!

8 >>> Iter 7 - Looping again!

9 >>> Iter 8 - Looping again!

10 >>> Iter 9 - Looping again!

Hence it only skips the fifth iteration.

pass

The _pass statement allows the code to get lazy and do
absolutely nothing. Nothing! For example:

Loops 66

1 import time

2

3 start = time.time()

4 for i in range(5):

5 # busy wait

6 time.sleep(1)

7 pass

8

9 print('I have been doing nothing for {} seconds.'.f\

10 ormat(time.time()-start))

The output would look like:

1 I have been doing nothing for 5.01263427734375 seco\

2 nds.

Differently from break and continue, pass can be used also
within a method or function to enable it to do (again) nothing.

1 def feeling_lazy():

2 pass

Loops 67

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Loops 68

See you
tomorrow!

Error Handling

Error Handling 70

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Error Handling 71

See you
tomorrow!

Documentation

Spoiler alert: documentation and comments - done for good -
matter. Mumble, mumble.

This Chapter will go streight to the point: how to write good
comments to support your colleagues and… the future version
of you! We will walk through some of the bad practices and
provide guidance on how to write documentation…for good.

Documentation 73

The Syntax

Python, analogously to other programming languages, sup-
ports two types of comments: * in-line, achieved by placing a
character before the actual comment (one liner) * extended
documentation, achieved by wrapping multiple lines of text
within ”””.

We already saw in-line comments so far, but for the sake of
completeness, here it is an example of this style of comment.

1 while condition:

2 # I am an in-line comment

3 ...

An example of extended documentation is in the following
snippet.

1 """

2 I am an extended documentation.

3 In this case I document the following function.

4 Mumble mumble.

5 """

6

7 def mumble_mumble():

8 pass

Extended documentation is also refferred to as docstrings.

Documentation 74

If the Code is Good I don’t need
Comments Philosophy

Someone approaches the philosophy of ‘if the code is good, I
don’t need comments’. Which is partially true, having a good
piece of code surely is the way to go (at the end of the day,
well-written code is all this book is about). However, this
philosophy might be applicable for a very small codebase.

As soon as the code grows in size, youmight end up in reading
the code line by line for each and every piece you need to build
upon. What if the code is well written but still implements
complex algorithms? And if also naming is not in track, you
are setting your-future-self and your colleagues for failure.

Far away from recommending pages-long comments, but
they should be in place and well written (as described in the
following Sections), even for good code. As a plus: people will
complain about not well documented code, they will not do
it for more verbose descriptions.

Conditions and Flows

Comments serve the purpose of specifying how the method-
/procedure performs its task. They are not meant to punish
so-so code writers. Comments are a way to succinctly abstract
the inner work of your code in common language. And
supplementing comments with pre- and post- conditions is
beneficial.

A pre-condition is defined as a set of conditions that need to
hold true when the method or function is called.

Documentation 75

A post-condition is a statement describing the condition
after the method or function has performed its duties.

Embedding them into your comments is not only beneficial
from a readability perspective, but it will also help during
test design. Consider, for example, the scenario in which you
have a subset of the team strictly focusing on designing and
developing tests. In this case, it will be surely cost saving for
them to have specified exactly the conditions that need to
hold true before and after a call. It will be definitely faster
and easier for them to check for edge cases, possible errors
and design overall better and more complete test cases.

Clear pre- and post-conditions also helps in defining the flow
(i.e., the logic) of the block of code. What to expect? Docu-
menting the flow should also include any raised Exception.
Yes, please, I definitely want to know if the code I am using
might go ‘boom’ at a certain point.

IO Definition

Comments should clearly document the type of input(s) and
output(s). This is especially true for dynamically typed lan-
guages like Python. Let’s look at the following code snippet.
It is an example of both so-so naming and confusion created
by missing defined types into the documentation.

1 def add(first, second):

2 #method body

3 ...

It is pretty clear that the method is performing an add op-
eration. However, it is not clear the type of the inputs. Are

Documentation 76

these operands? Are they integers? Float numbers? Strings?
Is the method performing more complex operations on data
structures? The parameter first might be a dictionary, a list,
or anything else, and it might be performing more complex
operations to add the parameter second to it. Or they might
be both data structures and the method is adding the elements
from the second data structures to the first one.

Yes, you might read the code to understand the inputs’ types.
Is it the most effective solutions? In this case, the snip is
simple, so yes it takes short time to check it out. Otherwise,
we are back to the consequences of the ‘If the code is good, I
don’t need comments’ philosophy.

You might also think: ‘well… if I improve the names of the
parameters (first and second), I can avoidwriting comments?’.
The answer is still: probably no. What happens to the ab-
straction power of the method? What about its reusability? It
might be context-dependent, of course. But the rule of thumb
is, clearly state the IO’s types.

Inline Comments

Toomany inline comments instead of - as an example - a clear
comment on top of the method, drive me crazy. This does not
mean to avoid inline comments at all costs. They should be
present where actually needed. Anyway, when a method can
be effectively described with docstrings, I would definitely go
for this option.

From time to time, too many inline comments might also
hint other issues within the code. Indeed, it might be the
case of too complex, too long, more than a single feature
implemented by the code. When it is not easy to shortly and

Documentation 77

effectively describe the code you wrote, check again the code.
Is it implementing just one feature? Is it too long? Might it be
split? If so, you have more than a single defect to fix.

TODOs

Inline comments are also used to signal a block of code that
needs to be debugged, tested, or generally improved. In other
words, they are the handy TODO and FIX-ME comments we
all introduce in our code to avoid breaking the process of
writing our most creative, productive piece of coding art.

A nice piece of craft could be:

1 def my_magnificent_method():

2 # TODO: comment me, Giuliana said so

3 ...

Even if I would love to read such code, please don’t wait a
decade before fixing any TODO and FIX-ME. They are meant
to be temporary, and they should remain so. Even more, no
TODOs and FIX ME in the code you are somehow releasing.

That’s Obvious

Writing comments is good.Writing good comments is tremen-
dous! However, commenting also obvious things is not ap-
propriate. If the code is really simple, there is not need for
commenting each and every line of it. Consider the following
example:

Documentation 78

1 ...

2 # gets the glossary of the book

3 glossary = book.get_glossary()

4 # check the keywords we are looking for

5 if keyword in glossary:

6 # return the associated definition

7 return glossary[keyword]

8 else:

9 # return None since the keyword is not in gloss\

10 ary

11 return None

12 ...

It is obvious what the code is doing, and good variable naming
helps. A lot. A better commenting style would be:

1 ...

2 # Returns the definition for a keyword if it exist\

3 s.

4 # None otherwise.

5 glossary = book.get_glossary()

6 if keyword in glossary:

7 return glossary[keyword]

8 else:

9 return None

10 ...

It is much more readable, isn’t it?

Documentation 79

Did you just lie to that
programmer?

Comments are intrinsically virtuous and worthy of reward.
They really are. Writing good comments such that it is easy
for a programmer to understand the functionality and just
glance over it, whilst lying is a big no no.

If you write top notch comments, but you lie in them I
appreciate your sense of humor. I really do. But please, don’t.

Comments Driven Development
(CDD)

Comments Driven Development (CDD) is centered on writ-
ing plain text description of the code first, then the actual
implementation. They help in brainstorming the solution,
setting clear inputs and outputs and describing the kind of
functionality is going to be implemented.

As an analogy, think about teaching something to someone.
In order to properly express in natural language a certain
concept, you have to have a good understanding of it. The
same happens with CDD: you are able to write the comment
only if you properly thought about what that piece of code is
going to implement.

Furthermore, often times we are so inspired that we start
compulsively typing lines and lines of code, to discover, only
in the end, that we have to travel back in time to remember
what they were supposed to do.

Documentation 80

Even if I don’t think about implementing CDD is an absolute
must, it can be handy.

Coding Conventions

Some coding conventions like PEP8 [Python Software Foun-
dation] for Python, impose the presence of docstrings only for
public modules, functions, classes, and methods. They remain
optional for private or protected, where usually a comment
after the function signature still describe the method.

As soon as you become aware of the language you are going
to use for your project, check coding conventions and stick
with them.

Documentation 81

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Documentation 82

See you
tomorrow!

Part 2 - Algorithms

Introduction

So far, we learned the main elements of Python’s syntax and
the logic behind them: what they do, how they are used.

However, syntax means nothing if not in perspective of
solving problems.

An algorithm, even before writing a single line of code, can
be defined as a mean of solving logically a problem.

More generally, an algorithm can be used to solve and be
applied to a variety of applications.

In this Chapter, we’ll learn:

• general knowledge behind algorithms, including how
performances are defined;

• some classes of algorithms that you migh encounter in
your life as a programmer.

You might be thinking: why do I even need to know algo-
rithms at all?

Introduction 85

Spoiler alert: well, most interviews ask about algorithms.

Jokes apart, some applications might not be of obvious appli-
cation at first glance, whilst they can be used in many real
world scenarios.

Recursion

Recursion 87

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Recursion 88

See you
tomorrow!

Iteration

Iteration 90

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Iteration 91

See you
tomorrow!

Greedy Agorithms

Thinking Greedy

Greedy Agorithms 93

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Greedy Agorithms 94

See you
tomorrow!

Dynamic Programming

Dynamic Programming 96

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Dynamic Programming 97

See you
tomorrow!

NP-Hard problems

We wrote enormous quantity of code used, re-used and
misused since the first programming language was born.

Yet, so many problems are NP-Hard. Isn’t it fascinating?

NP-Hard problems 99

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

NP-Hard problems 100

See you
tomorrow!

Part 3 - Data
Structures

Introduction

Welcome to an introduction to one of the most beautiful
pieces of art out there: data structures!

Introduction 103

Intro to Data Structures

Data structures are used into any single piece of code out
there, even the simpliest - yet useful - one. And they do play
an important role into building up your coding skills. When
picking a choosing them a lot of trade-offs and scenarios need
to be considered. And when properly implemented into the
context of your code they allow for the following benefits:

• Readability: using appropriate data structures can allow
you to not overcomplicate code hence improving how
easy to read and understand code is.

• Better overall design. Starting from project requirements
thinking about data structures is fundamental and it
allows for well organized data, improved performances
both in terms of time and memory. Worth to stress
further that, performances should not be an after though
into the coding process. As a consequence, themore suit-
able the data structure is, the more optimized, effective
and efficient your code will be as a result.

Main data structures are summarized in the following table,
together with their relative average time complexity for basic
operations, including: access, insert, delete, search).

Introduction 104

Data
Struc-
ture

Access Insert Delete Search

Array O(1) O(n) O(n) O(n)
Linked-
List

O(n) O(1) O(1) O(n)

Doubly
Linked-
List

O(n) O(1) O(1) O(n)

Queue O(n) O(1) O(1) O(n)
Stack O(n) O(1) O(1) O(n)
Hash
Map

Constant
(avg)

O(1) O(1) O(1)

Binary
Search
Tree

O(log
n)

O(log
n)

O(log
n)

O(log
n)

Table 3.1 - Time Complexity (average)

Array

Arrays are one of the easiest and most used data structures.
It consists of a collection of elements that can be accessed by
means of their position, namely indexes. Arrays can be linear
(i.e. single dimension) or multidimensional (e.g., matrixes).

Array 106

Fig 3.2 - Array

Arrays are generally fixed in size (i.e., how many elements
they contain), which is defined during initialization. They are
homogeneous data structures. In other words thet do support
only a single type (e.g., all integers).

Some languages support dynamic sizin as well as different
data types. In Python, these variation of the classic array is
called a list. The underlying implementation of a list differs
from arrays and in the remaining of the section we will use
the more flexible list for our examples. In Python, lists are
defined as:

1 array = [1, "string", 0.2]

and all the types are properly managed

Array 107

1 type(array[0])

2 >>> <type 'int'>

3

4 type(array[1])

5 >>> <type 'str'>

6

7 type(array[2])

8 >>> <type 'float'>

They come with several pros and cons.

Th benefits of using this data structure comes from their
easiness and the linear access to the elements as shown in
Table 4.1 – where n is the number of elements into the list.

Main cons is that inserting and deleting items from the list
is expensive due to shifting operation required. The worst-
case scenario, indeed is the following: consider deleting the
first element of the list which is at index = 0. This operation
creates an empty spot. To maintain index and ordering, all
the items from index = 1 and following needs to be shifted
one position backward. This gives us a complexity of O(n).
Analogous considerations are for insertion.

Internals

Array 108

Coding Practice of the day

Warm up
Given an array A of integers in in-
put, print it in reverse.
Example

A = [1,2,3,4,5]

Printed Result:

5 4 3 2 1

Medium
Given an array A of integers in in-
put, reverse and print it without
using builtin functions.
Example

A = [1,2,3,4,5]

Reverse:

A = [5,4,3,2,1]

Array 109

Power-up
Given two arrays A and B, count the
occurrences of B being a subset of
the elements of A.
Example 1

A = [1,1,1,1,1]

B = [1,1]

occurrences = 4

Example 2

A = [0,1,1,0,1,0]

B = [0,1]

occurrences = 2

Array 110

See you
tomorrow!

Linked-List

A Linked-List is a collection of nodes, where each node is
composed by a value and a pointer to the next node into the
list.

Linked-List 112

Fig 3.3 - Linked-List

Compared to arrays, add and remove operation implement a
slightly more complex logic - yet since no shifting is required.

Specifically, removal an item from a list can be performed by
changing the pointer of the element prior to the one that needs
to be removed. The prior element will need to point to the
element following the item that needs to be removed from
the list Time complexity remains O(n) in the worst case.

Indeed, since we lost direct access by means of indexes
provided by arrays, in order to find the item that needs to be
removed, we need to navigate the entire list until we reach its
predecessor. Removing the last element of the list represents
the worst case.

Internals

Linked-List 113

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Linked-List 114

See you
tomorrow!

Doubly Linked-List

ADoubly Linked-List is similar to the previous one. However,
each element (also called node or item) stores also a pointer
to the previous element in the list.

Doubly Linked-List 116

Fig 3.4 - Doubly Linked-List

As you can already imagine, adding and removal operation
add another bit of logic complexity since two pointers (pre-
decessor and successor) need to be updated when these op-
erations are performed. As a consequence add and remove
operations still take O(n) due to the sequential access needed
to locate the right node.

Internals

Doubly Linked-List 117

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Doubly Linked-List 118

See you
tomorrow!

Stack

A Stack is a collection of elements that is managed with Last
In First Out (LIFO) policy. Internal implementation varies and
can be achieved using either Arrays or Linked-Lists.

Stack 120

Fig 3.5 - Stack

The Stack data structures exposed three main methods:

1. top(), that returns the element on top of the stack,
2. pop(), that removes and returns the element on the top

of the stack,
3. put(), that adds a new element at the top of the stack.

Some of the problems that mostly benefits from the utilization
of this data structure includes pattern validation (e.g., well-
parenthesized expressions) as well as general parsing prob-
lems due to the LIFO policy.

Internals

Stack 121

Coding Practice of the day

Warm up
Given an array A of integers in in-
put, print its elements in revers by
using a stack.
Example

A = [1,2,3,4,5]

Printed Result

5 4 3 2 1

Medium
TBD

Power-up
Implement a Stack class and pro-
vide the logic of main methods:
top(), pop() and put().

Stack 122

See you
tomorrow!

Queue

AQueue is defined as a collection of elements that is managed
with First In First Out (FIFO) policy. Similarly to Stacks, it can
be implemented either with Arrays or Linked-Lists.

Queue 124

Fig 3.6 - Queue

Queues provide three main methods, in a similar fashion to
what is performed by Stacks:

1. peak(), that returns the first (figurative left to right)
element in the queue,

2. remove(), that removes the first element and returns it,
3. add(), that adds a new element at the end of the queue.

Queues are often used in concurrent programming, where
several tasks need to be executed as well as patterns for
messages exchange. In broader terms, queues suit well cases
where order preservation is necessary, hence benefiting from
a FIFO approach.

Internals

Queue 125

Coding Practice of the day

Warm up
TBD

Medium
Implement main Queue methods
using a Stack.

Power-up
TBD

Queue 126

See you
tomorrow!

Hash Map

Hash Maps have a very different storage strategy for the data:
each element is broken down into a (key, values) pair.

In spite of a more complex internal logic, using Hash Maps
has the main benefit of providing insert, delete and lookup
operation in O(1) time in the average case.

Hash Map 128

Fig 3.7 - Hash Map

As the name of this data structures expresses, keys are stored
in locations (also referred to as slots) based on their hash
code. Upon inserting a new element, a hash function is
applied to the key, resulting into an hash code which is used
then to place and associate the relative inputted value.

Different implementation can use different Hash functions.
Yet they have a common characteristic: the same key must
corrispond always to the one and one only hash code. A good
hash function also must minimize cases where two different
keys correspond to the same hash code, in which case it would
produce a collision.

Worth also to notice that the benefits in terms of run time,
strictly depend on the strength of the hash function. Indeed,
one other characteristic of a solid hash faction is its capability
to uniformly spread the entire set of available slots, namely

Hash Map 129

the bucket (e.g., an array of keys).

Hash maps have good performances in many real-world
scenarios.

Internals

Hash Map 130

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD
Â {pagebreak}

See you
tomorrow!

Binary Search Trees

Trees is another fairly used data structure when modeling
real-world scenarios.

Formally, a tree is a collection of elements, where each of them
has a value and a variable number of pointers to other nodes
(namely, childs). Nodes in a tree are organized in a top-down
fashion, meaning that pointers usually link nodes from the top
to thr bottom and each node has a single pointer referencing
to it.

The note at the top is called the root of the tree. Nodes at the
very bottom do not have childs and are called the leaves of
the tree.

Binary Search Trees 132

Fig 3.8 - Tree

A lot of problems require a particular type of tree: binary tree.
What distinguish a tree from a binary one is that each node in
the binary tree has at most two child, namely left and right.

When ordering is required, an extension of the Binary Tree
is used: the Binary Search Tree is used. BS Trees are built by
embedding ordering among its elements in such a way that,
for every node:

• the left child’s value is always less that or equal to the
node’s value;

• the right child’s value is always greater than or equal to
the node’s value.

As also the name of this type of data structure suggests, the
benefits occurring from its utilization emerge when a fast
search of elements is needed.

Binary Search Trees 133

This is enabled by the ordering enforced upon node creation,
that allows for excluding half of the tree at every step of the
search (in the average case).

In general terms, recursive problems are well modelled by
trees.

Internals

Binary Search Trees 134

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Binary Search Trees 135

See you
tomorrow!

Takeaway

This Chapter on data structures is not meant to be a data
structure book. It aims at providing you a quick yet useful
introduction on using data structures in common scenarios.

I’d love to close this Chapter on data structures also providing
you some indicators that can guide you when opting for one
data structure in favore of another one:

• the size of data,
• how frequently data changes and its type,
• which operation are more frequent in your context.

Some rules of thumb:

1. do not force the API of a given data structure. If you
are thinking about extending if with operations that
are not natively supported, probably you’d be better off
switching to a different data structure;

Takeaway 137

2. do not think only at the scenario you are facing at the
moment. Think long term. This is way common when
thinking about the size of the data and how it might
evolve in the future.

3. use the 80/20 pareto principle to help you choose the best
data structure. This is useful for optimization purposes.
Which operation do you perform the most? Than gener-
ally needs to be optimized.

4. don’t overcomplicate. More complex data structure still
requires some more memory management and process-
ing.

Further Reading
I love data structures. And amazing books are out there that
dig deeper into various data structures and algorithms in
general. Top of the list [Cormen et al.] is a must read if you
haven’t yet.

Part 4 - Design
Patterns

Introduction

This Part of the book we will go through some general
concepts around software architectures, specifically:

• common and widely used design patterns;
• does and don’ts;
• main issues you might encounter at design time.

Introduction 141

Design Patterns

Let’s shower a smelly architecture. One of the common ways
to improve the design is by using appropriate design patterns.
Patterns are simply a way to organize conceptual problems
and relative code to solve common issues.

They are broken down into 4 main categories:

• creational, design patterns that aim at focusing on
object creation;

• structural, that simplify and optimize the relations be-
tween different objects;

• behavioural, that establishes common pattern for com-
munications between components;

• concurrency, that are specifically designed to address
multi-threading scenarios.

In this Section, we will learn common patterns from the first
three categories and shown in the following Table.

Concurrency patterns are a bit of a streatch and not part of the
general goal for this book. However, foundations about con-
current programming will be discussed in the Concurrency,
Parallelism and Performances Chapter.

Introduction 142

Class Patterns
Creational Singleton

Lazy Initialization
Builder
Abstract Factory
Factory Method

Structural Adapter
Decorator
Facade
Composite

Behavioural Observer
Publisher-Subscriber
Iterator
Visitor
State
Chain of Responsibility

Creational

In this Section, we will explore some of the main Creational
design patterns.

Class Patterns
Creational Singleton

Lazy Initialization
Builder
Abstract Factory
Factory Method

Creational 144

Singleton

Fig 5.1 - Singleton

A Singleton is the easiest pattern you can learn. It goal it to
restrict the number of instances of a class.

The objective is achieved by hiding the constructor of the
sclass by means of declaring it private. A get_instance()
method is used, instead, to create the singleton object. This
method indeed will only instantiate the object upon the first
very first call. Following calls will result in the method simply
returning the instance previously created.

A Singleton might be useful when there is a need for shared
yet controlled access to resources (e.g., concurrency). Gen-
erally speaking singletons are implemented when one - and
only one - object needs to be created. A simple scenario
includes logging.

Creational 145

The code

The following snippet of code provides a simple implementa-
tion of the Singleton pattern in Python.

1 class Singleton:

2

3 def __init__(self):

4 if Singleton.__instance:

5 raise Exception("I am a singleton!")

6 else:

7 Singleton.__instance = self

8

9 @staticmethod

10 def get_instance():

11 if not Singleton.__instance:

12 Singleton()

13 return Singleton.__instance

Don’ts

The Singleton has not the best branding and has been pointed
out in few cases as a ‘bad smell’. One of the reason for it that
if not properly implemented programmers can fall into the
trap of the ‘First lady’ smell. In other words, a Singleton - if
misused - can result into a massive components that tries to
do everything by itself. As almost everything on earth, I do
not see a problem in the Singleton per se. Internet can be used
for good or for bad. Singletons can be used good, or bad.

However, if you find yourself in growing the logic of your
singleton more and more over time, you are probably using
the wrong pattern for the problem that you are trying to solve.

Creational 146

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Creational 147

See you
tomorrow!

Creational 148

Lazy Initialization

Fig 5.2 - Lazy Initialization

The goal of the Lazy Initialization pattern is to instantiate an
object only when required - for real.

Instead of creating the object into the constructor, this pattern
invokes the construction only when the object received the
first call by means of one of its methods.

The main reasoning behind this pattern is that some logic
that goes into logic creation can be computationally heavy.
Hence, performances can be optimized by postponing it until
the moment it is really needed to be performed.

Lazy Load is a common variation and implementation of this
pattern applied to databases (DBs). Would you load the entire
DB in advance and have it handy just in case it is needed?
Nope, not really. Hence, the Lazy Load only retrieves the
portion of data needed and stores it in memory when an
actual computation is needed.

Creational 149

The Code

The following snippet of code provides an example of Lazy
initialization in Python.

1 class MyHeavyObject:

2 def __init__(self):

3 self._heavy = []

4

5 @property

6 def heavy(self):

7 if not self._heavy:

8 print ('I am doing heavy computation.')

9 # expensive computation

10 ...

Don’ts

As for most of this patterns: do not overcomplicate your
solution. Specifically, if you have a performance bottleneck
(e.g., small and simple objects that are often accessed) do not
use Lazy Initialization.

Creational 150

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Creational 151

See you
tomorrow!

Creational 152

Builder

Fig 5.3 - Builder

The Builder breaks down the creation of a complex object
into smaller separated creational tasks, alongside the KISS
(Keep It Simple Stupid) principle. It

Specifically, the Builder pattern provides an expernal inter-
face that allows for the creation of the complex object as
a single task. However, it internally handles the breakdown
on the big object into smaller objects using what are called
ConcreteBuilders, each of which performing one step of the
entire processing pipeline.

As a result, this pattern is helpful when the object to be built
can be constructed via an arbitrary number of tasks.

The Code

The example code below shows the creation of a laptop.
Virtually, a laptop can be broken down into several creational
tasks that need to be performed in order to have the final
product such as CPU, RAM, disk, etc.

Creational 153

1 # Abstract Builder

2 class Builder(object):

3 def __init__(self):

4 self.laptop = None

5

6 def new_laptop(self):

7 self.laptop = Laptop()

8

9

10 # Concrete Builder

11 class BuilderVirtualLaptop(Builder):

12 def build_cpu(self):

13 self.laptop.cpu ='whatever cpu'

14

15 def build_ram(self):

16 self.laptop.ram = 'whatever ram'

17

18 ...

19

20

21 # Product

22 class Laptop(object):

23 def __init__(self):

24 self.cpu = None

25 self.ram = None

26 ...

27

28 # print of laptop info

29 def __repr__(self):

30 return 'Laptop with cpu = {} and ram = {}'.\

31 format(self.cpu, self.ram)

32

33 # Director

Creational 154

34 class Director(object):

35 def __init__(self):

36 self.builder = BuilderVirtualLaptop()

37

38 def construct_laptop(self):

39 self.builder.new_laptop()

40 self.builder.build_cpu()

41 self.builder.build_ram()

42 ...

43

44 def get_building(self):

45 return self.builder.laptop

46

47 #Simple Client

48 if __name__=="__main__":

49 director = Director()

50 director.construct_laptop()

51 building = director.get_building()

52 print building

Don’ts

The definition is fairly simple, thus stick with it, taking
into account that embracing this design pattern has minor
disadvantages including writing more Lines of Code (LOCs).
A signal that a builder is not appropriate is when the Builder
constructor has a long list of parameters required to deal with
each Concrete Builder.

Creational 155

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Creational 156

See you
tomorrow!

Creational 157

Abstract Factory

Fig 5.4 - Abstract Factory

The Abstract Factory pattern hides the complexity of object
creation when slightly different versions of the same object
needs to be built.

In other words, the Abstract Factory Component internally
manages different components that represent different flavors
of the final object.

A (very) figurative example is the case of Operating System
(OS). The OS can be modeled as an Abstract Factory, and it
returns an instance of one of the different flavors (different
components) it supports (e.g., Linux, Mac, Windows).

In general, this pattern can be used every time we want to
support extensions of a conceptually single object.

The Code

An example of python implementation is in the following.

Creational 158

1 # Interface for operations supported by the factory

2 class AbstractFactory():

3

4 def create_linux(self):

5 pass

6

7 def create_win(self):

8 pass

9

10 # Concrete factory. Managing object creation.

11 class ConcreteFactoryOS(AbstractFactory):

12

13 def create_linux(self):

14 return ConcreteProductLinux()

15

16 def create_win(self):

17 return ConcreteProductWin()

18

19 # Abstract Linux product

20 class AbstractProductLinux():

21

22 def interface_linux(self):

23 pass

24

25 # Concrete linux product

26 class ConcreteProductLinux(AbstractProductLinux):

27

28 def interface_linux(self):

29 print 'running linux'

30

31

32 # Abstract win product

33 class AbstractProductWin():

Creational 159

34

35 def interface_win(self):

36 pass

37

38

39 # Concrete win product

40 class ConcreteProductWin(AbstractProductWin):

41

42 def interface_win(self):

43 print 'running win'

44

45 # Factory usage and testing out

46 if __name__ == "__main__":

47 factory = ConcreteFactoryOS()

48 product_linux = factory.create_linux()

49 product_win = factory.create_win()

50 product_linux.interface_linux()

51 product_win.interface_win()

Don’ts

Once again: be carefull when adding complexity and layers of
abstraction. Indeed, adding a new product is not that scalable
since it requires new implementations for each factory.

Creational 160

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Creational 161

See you
tomorrow!

Creational 162

Factory Method

Fig 5.5 - Factory Method

This pattern is similar to the abstract factory, hence often
times confused. Guess what? Instead of building a factory
object, this pattern can be synthesized as a factory (actual)
method.

The factory method, differently from the abstract factory,
instead of dealing with the composition of different sub-
objects, it is meant to create an object hiding internal details,
whilst being a single concrete product.

The Code

The following snippet shows a simple implementation of the
pattern.

1 # First Product

2 class ProductA(object):

3 def __init__(self):

4 print ('Building Product A')

5

6 # Second Product

7 class ProductB(object):

8 def __init__(self):

9 print ('Building Product B')

10

Creational 163

11 # Factory Method

12 def factory_method(product_type):

13 if product_type == 'PA':

14 return ProductA()

15 elif product_type == 'PB':

16 return ProductB()

17 else:

18 raise ValueError('Cannot find: {}'.format(p\

19 roduct_type))

20

21

22 # Client: testing out

23 if __name__ == '__main__':

24 for product_type in ('PA', 'PB'):

25 product = factory_method(product_type)

26 print(str(product))

Don’ts

The recommendation follows the same guideline: do not opt
for factories when object abstraction is not needed.

Creational 164

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Creational 165

See you
tomorrow!

Structural

This Section walks through the principal Structural patterns.
I like to think about this category as a big puzzle. You have
interfaces and code which are already in place. But you still
have to make all the components interact and work in the best
possible way. The following patterns helps in achieving it.

Class Patterns
Structural Adapter

Decorator
Facade
Composite

Structural 167

Adapter

A piece of the puzzle.

Fig 5.6 - Adapter

What

The adapter is also known aswrapper. It wraps another object,
redefining its interface.

How

Anew class simply encapsulated the incompatible object, thus
providing the desired interface.

In the following, a general implementation of this pattern.

Structural 168

1 # Adapter: our wripping class

2 class Adapter:

3

4 def __init__(self):

5 self._adaptee = Adaptee()

6

7 def request(self):

8 self._adaptee.legacy_request()

9

10

11 # Adaptee: existing interface

12 class Adaptee:

13

14 def legacy_request(self):

15 print 'Matchy-matchy now! yay!'

16

17

18 # Client: testing out

19 if __name__ == "__main__":

20 adapter = Adapter()

21 adapter.request()

When

It provides a simple way for solving compatibility issues
between different interfaces. Suppose a caller is expecting a
different interface from a certain object (callee) it can bemade
compatible by means of the adapter. They can be handy for
legacy software. It enables reusability for a low price.

Don’ts

Fairly trivial, up to the reader.

Structural 169

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Structural 170

See you
tomorrow!

Structural 171

Decorator

Some software craft.

Fig 5.7 - Decorator

What

The Decorator also enable reusability by means of enhancing
an object behaviour.

How

Similarly to the previous pattern it wraps the object adding
the wanted functionalities.

A simplified example of decorator is shown in the following
snippet of code.

Structural 172

1 # Decorator interface

2 class Decorator:

3 def __init__(self, component):

4 self._component = component

5

6 def operation(self):

7 pass

8

9

10 # Decorator

11 class ConcreteDecorator(Decorator):

12 """

13 Add responsibilities to the component.

14 """

15

16 def operation(self):

17 self._component.operation()

18 print 'And some more makeup!'

19

20 # Component that needs to be decorated

21 class Component:

22

23 def operation(self):

24 print 'I have some makeup on!'

25

26

27 # Client: testing out

28 if __name__ == "__main__":

29 component = Component()

30 decorator = ConcreteDecorator(component)

31 decorator.operation()

Structural 173

When

It helps in fighting the First Lady Component smell. Thus,
it adds functionalities to an object, whilst maintaining Sin-
gle Responsibility Principle. Indeed, the decorator allows for
additional behaviour without impacting the decorated com-
ponent.

Don’ts

Simple yet powerful, don’t have to addmuch. But, don’t make
the decorator become the new First Lady.

Structural 174

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Structural 175

See you
tomorrow!

Structural 176

Facade

Putting it all together.

Fig 5.8 - Facade

What

A Facade, can be somehow ideally associated with the Ab-
stract Factory. However, instead of creating an object, it
provides a simpler interface for different other more complex
interfaces.

How

This pattern provides a brand new higher-level interface in
order to make the Subsystems (often independent classes with
complex logic) easier to use and interact with.

Structural 177

1 # Facade

2 class Facade:

3

4 def __init__(self):

5 self._subsystem_1 = Subsystem1()

6 self._subsystem_2 = Subsystem2()

7

8 def operation(self):

9 self._subsystem_1.operation1()

10 self._subsystem_2.operation2()

11

12 # Subsystem

13 class Subsystem1:

14

15 def operation1(self):

16 print 'Subsystem 1: complex operations'

17

18

19 # Subsystem

20 class Subsystem2:

21

22 def operation2(self):

23 print 'Subsystem 2: complex operations'

24

25

26 # Client

27 if __name__ == "__main__":

28 facade = Facade()

29 facade.operation()

Structural 178

When

If you are looking at your architecture and it is highly coupled,
a facade might help in reducing it.

Don’ts

It is very easy to make a facade that acts as a Single Lady,
please avoid it at all costs.

Structural 179

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Structural 180

See you
tomorrow!

Structural 181

Composite

Uniform is good.

Fig 5.9 - Composite

What

The Composite pattern provides an interface - again. It aims
at managing a group of complex objects and single objects
exposing similar functionalities in a uniform manner.

Structural 182

How

It composes objects into a tree structure, in such a way that
nodes in the tree - unregarding whether they are a leaf (single
object) or complex object (i.e. - non leaves) - can be accessed
in a similar way, abstracting complexity to the caller. In
particular, when a method is called on a node, if it is a leaf,
the node manages it autonomously. Otherwise, the node calls
the method upon its childrens.

1 # Abstract Class

2 # Defining the interface for all the components in \

3 the composite

4 class Component():

5

6 def operation(self):

7 pass

8

9 # Composite: managing the tree structure

10 class Composite(Component):

11

12 def __init__(self):

13 self._children = set()

14

15 def operation(self):

16 print 'I am a Composite!'

17 for child in self._children:

18 child.operation()

19

20 def add(self, component):

21 self._children.add(component)

22

23 def remove(self, component):

Structural 183

24 self._children.discard(component)

25

26 # Leaf node

27 class Leaf(Component):

28

29 def operation(self):

30 print 'I am a leaf!'

31

32 # Client: testing out

33 if __name__ == "__main__":

34 # Tree structure

35 leaf = Leaf()

36 composite = Composite()

37 composite.add(leaf)

38 composite_root = Composite()

39 leaf_another = Leaf()

40 composite_root.add(composite)

41 composite_root.add(leaf_another)

42

43 # Same operation on the entire tree

44 composite_root.operation()

When

This pattern can be usedwhen you have to selectivelymanage
a group of heterogeneous and hierarchical objects as the
would ideally the same object. Indeed, this pattern allows for
same exploration of the hierarchy, independently from the
node type (i.e., leaf and composite).

Structural 184

Don’ts

Take a deeper look at your tree structure. A lot of initialized,
whilst not used nodes at the frontier (i.e. leaves), might signal
some refactoring required.

Structural 185

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Structural 186

See you
tomorrow!

Behavioural

Finally, this Section explores Behavioural patterns, e.g., those
structures that help in designing common relationships be-
tween components.

Class Patterns
Behavioural Observer

Publisher-Subscriber
Iterator
Visitor
State
Chain of Responsibility

Behavioural 188

Observer

At a glance.

Fig 5.10 - Observer

What

In Operating Systems, a common way of notifying changes
happening in the system are polling and interrupts mecha-
nisms. In the context of higher-level programming, a smarter

Behavioural 189

way for notifying changes has been ideated: The Observer
pattern.

How

A component - whose state needs to be notified - stores a
list of dependencies. Each and every time a change occurs, it
notifies it to its stored list.

1 # The observable subject

2 class Subject:

3 def __init__(self):

4 self._observers = set()

5 self._state = None

6

7 def subscribe(self, observer):

8 observer._subject = self

9 self._observers.add(observer)

10

11 def unsubscribe(self, observer):

12 observer._subject = None

13 self._observers.discard(observer)

14

15 def _notify(self):

16 for observer in self._observers:

17 observer.update(self._state)

18

19 def set_state(self, arg):

20 self._state = arg

21 self._notify()

22

23 # Interface for the Observer

Behavioural 190

24 class Observer():

25

26 def __init__(self):

27 self._subject = None

28 self._observer_state = None

29

30 def update(self, arg):

31 pass

32

33 # Concrete observer

34 class ConcreteObserver(Observer):

35

36 def update(self, subject_state):

37 self._observer_state = subject_state

38 print 'Uh oh! The subject changed state to:\

39 {}'.format(subject_state)

40 # ...

41

42 # Testing out

43 if __name__ == "__main__":

44 subject = Subject()

45 concrete_observer = ConcreteObserver()

46 subject.subscribe(concrete_observer)

47

48 # External changes: testing purposes

49 subject.set_state('Ping')

50 subject.set_state('Pong')

When

When you need different objects to perform - automatically
- some functions based on the state of another one (one-to-
many).

Behavioural 191

Don’ts

Once again, keep it simple, evaluate if the conditions above
and do not add unnecessary complexity.

Behavioural 192

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Behavioural 193

See you
tomorrow!

Behavioural 194

Publisher-Subscriber

Please, let me know.

Fig 5.11 - Publisher Subscriber

What

Similarly to the previous one, it enables to monitor state
changes.

How

As confusing as it might initially sound, this pattern is very
similar to the previous one, but they are not actually the same.

Behavioural 195

There are two basic components: publisher - the entity who’s
state is monitored, and subscriber - the one that is interested
in receiving state changes. The main difference is that the
dependency between them is abstracted by a third component
- often referred to as broker, that manages the states update.

1 # Publisher

2 class Publisher:

3 def __init__(self, broker):

4 self.state = None

5 self._broker = broker

6

7 def set_state(self, arg):

8 self._state = arg

9 self._broker.publish(arg)

10

11

12 # Subscriber

13 class Subscriber():

14 def __init__(self):

15 self._publisher_state = None

16

17 def update(self, state):

18 self._publisher_state = state

19 print 'Uh oh! The subject changed state to:\

20 {}'.format(state)

21 # ...

22

23 # Broker

24 class Broker():

25 def __init__(self):

26 self._subscribers = set()

27 self._publishers = set()

Behavioural 196

28

29 # Setting up a publisher for testing purpos\

30 es

31 pub = Publisher(self)

32 self._publishers.add(pub)

33

34 # Triggering changes: only for testing purposes

35 def trigger(self):

36 for pub in self._publishers:

37 pub.set_state('Ping')

38

39 def subscribe(self, subscriber):

40 self._subscribers.add(subscriber)

41

42 def unsubscribe(self, subscriber):

43 self._subscribers.discard(subscriber)

44

45 def publish(self, state):

46 for sub in self._subscribers:

47 sub.update(state)

48

49 # Testing out

50 if __name__ == "__main__":

51 # Setting an example

52 broker = Broker()

53 subscriber = Subscriber()

54 broker.subscribe(subscriber)

55

56 # External changes: testing purposes

57 broker.trigger()

Be aware that the code provided above is only for showcasing
the interactions between the two main components. Some

Behavioural 197

methods - e.g., trigger() - are added only to allow a simple
flow of execution.

When

This third-party exchange is helpful in any context where
message exchange is required without components (publisher
with relative subscribers) being aware of each-others exis-
tence.

Don’ts

Don’t overlook the scalability requirements of your solution.
The broker might constitute a bottleneck for the entire mes-
sage exchange.

Behavioural 198

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Behavioural 199

See you
tomorrow!

Behavioural 200

Iterator

Looking forward.

Fig 5.12 - Iterator

What

The iterator allows to navigate elements within an object,
abstracting internal management.

How

Commonly, this pattern exposes two method next() and has-
Next() to perform the traversal.

Behavioural 201

Python implementations normally require an iterable object
to implement:

1. iter, that returns the instance object.
2. next, that will return the next value of the iterable.

A simple implementation of these two method is presented in
the following snippet.

1 # Our collection of elements

2 class MyCollection():

3

4 def __init__(self):

5 self._data = list()

6

7 def populate(self):

8 for el in range(0, 10):

9 self._data.append(el)

10

11 def __iter__(self):

12 return Iterator(self._data)

13

14 # Our iterator

15 class Iterator():

16

17 def __init__(self, data):

18 self._data = data

19 self._counter = 0

20

21 def next(self):

22 if self._counter == len(self._data):

23 raise StopIteration

Behavioural 202

24 to_ret = self._data[self._counter]

25 self._counter = self._counter + 1

26 return to_ret

27

28 # Testing out

29 if __name__ == "__main__":

30 collection = MyCollection()

31 collection.populate()

32 for el in collection:

33 print el

In the above example, StopIteration signals no more elements
in the collection.

When

Probably one of the most common applications is for data
structures where elements within them can be (often times
sequentially) accessed without knowing inner functioning.
However, it can be used any time a traversal is neededwithout
introducing changes to current interfaces.

Don’ts

If the collection is small and simple, it might be not really
required.

Behavioural 203

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Behavioural 204

See you
tomorrow!

Behavioural 205

Visitor

I’ll be there is a second.

Fig 5.13 - Visitor

What

The Visitor allows to decouple operational logic (i.e., algo-
rithms) that would be - otherwise - scattered throughout
different similar objects.

How

A Visitor that provides a visit() interface that allows to
traverse the objects. A ConcreteVisitor that implements the
actual traversal. A Visitable interface that defines an accept()
method. A ConcreteVisitable that given the visitor object
implements the accept operation.

Behavioural 206

1 # Visitable supported operations

2 class VisitableElement():

3 def accept(self, visitor):

4 pass

5

6 # Concrete element to be visited

7 class ConcreteElement(VisitableElement):

8 def __init__(self):

9 self._el = 'Concrete element'

10

11 def accept(self, visitor):

12 visitor.visit(self)

13

14 # Visitor allowed operations

15 class Visitor():

16

17 def visit(self, concrete_element_a):

18 pass

19

20 # Implementing actual visit

21 class ConcreteVisitor(Visitor):

22

23 def visit(self, concrete_element):

24 print 'Visiting {}'.format(concrete_element\

25 ._el)

26

27 # Testing out

28 if __name__ == "__main__":

29 concrete_visitor = ConcreteVisitor()

30 concrete_element = ConcreteElement()

31 concrete_element.accept(concrete_visitor)

Behavioural 207

When

An example of application of the visitor pattern is within data
structures for tree traversal (e.g., pre-order, in-order, post-
order). It suites fairly well tree-like structures (e.g., syntax
parsing), but is not strictly tight to these cases. Visitor pattern
is not used only for tree-like structures.

Don’ts

Avoid building visitors around unstable components.

Behavioural 208

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Behavioural 209

See you
tomorrow!

Behavioural 210

State

How are you doing?

Fig 5.14 - State

What

This pattern enables context-aware objects.

How

It’s design is fairly simple: a Context, that represents the
external interface, a State abstract class, different State im-
plementations that define the actual states.

In the following a simple implementation of this design
pattern.

Behavioural 211

1 # Context definition

2 class Context:

3

4 def __init__(self, state):

5 self._state = state

6

7 def manage(self):

8 self._state.behave()

9

10 # Abstract State class

11 class State():

12

13 def behave(self):

14 pass

15

16 # Concrete State Implementation

17 class ConcreteState():

18

19 def behave(self):

20 print 'State specific behaviour!'

21

22 # Testing out

23 if __name__ == "__main__":

24 state = ConcreteState()

25 context = Context(state)

26 context.manage()

When

The State pattern is helpful each time the behaviour of an
object is dependent of its state. In other words, it is applicable
when the objects requires changes in behaviour depending on
state’s changes.

Behavioural 212

Don’ts

Pay close attention of when you actually use it. The number
of states might exponentially grow.

Behavioural 213

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Behavioural 214

See you
tomorrow!

Behavioural 215

Chain of Responsibility

Micromanaging is never the case.

Fig 5.15 - Chain of Responsibility

What

The Chain of Responsibility pattern fosters decoupling the
sender of request from the receiver.

How

More objects within a pipeline are given a chance to handle
an incoming request. In particular, the request is passed
sequentially through the pipeline until an object is actually
able to handle it.

1 # Handler Interface

2 class Handler():

3

4 def __init__(self,request=None, successor=None):

5 self._successor = successor

6

7 def handle_request(self):

8 pass

9

10 # Concrete Handler

Behavioural 216

11 class IntegerHandler(Handler):

12

13 def handle_request(self):

14 if request.get_type() is int:

15 print self.__class__.__name__

16 elif self._successor is not None:

17 self._successor.handle_request()

18

19 # Another Concrete Handler

20 class StringHandler(Handler):

21

22 def handle_request(self):

23 if request.get_type() is str:

24 print self.__class__.__name__

25 elif self._successor is not None:

26 self._successor.handle_request()

27

28 # Simple Request object

29 class Request():

30

31 def __init__(self):

32 self._el = 'I am a string'

33

34 def get_type(self):

35 return type(self._el)

36

37 # Testing out

38 if __name__ == "__main__":

39 request = Request()

40 string_handler = StringHandler(request=request)

41 int_handler = IntegerHandler(request=request,su\

42 ccessor=string_handler)

43 int_handler.handle_request()

Behavioural 217

When

In cases when you want to simplify the request object and
different objects might be added at runtime to actually handle
it. It is pretty handy because you can decide which and in
which order handlers are added to the chain.

Don’ts

Back to non-functional requirements. Keep an eye on the
required performances. Toomany handlers (executed sequen-
tially, in worst case skipping up to the very last handler in the
chain) might impact code performances. Also bear in mind
that debugging these pattern could fairly difficult.

Behavioural 218

Coding Practice of the day

Warm up
TBD

Medium
TBD

Power-up
TBD

Behavioural 219

See you
tomorrow!

Part 5 - Solutions

The Basics

The Basics 222

Basic types

Warm up
Write the Python code that counts
thenumber of character in a string.
Print the result.

Solution

1 def count_char(text):

2 return len(text)

3

4 count = count_char('Welcome to the Python World\

5 ')

6 print(count)

The Basics 223

Medium
TBD

Solution

1

The Basics 224

Structure of a Python Program

Warm up
TBD

Solution

1

The Basics 225

Medium
TBD

Solution

1

The Basics 226

Variables

Warm up
TBD

Solution

1

The Basics 227

Medium
TBD

Solution

1

The Basics 228

Python Objects

Warm up
TBD

Solution

1

The Basics 229

Medium
TBD

Solution

1

The Basics 230

Polymorphism

Warm up
TBD

Solution

1

The Basics 231

Medium
TBD

Solution

1

The Basics 232

Conditional Flows

Warm up
Implement a Python program that,
given in input a letter l, prints if l is
a vowel or a consonant.

Solution

1 def vowel_or_consonant(l):

2 vowels = ['a', 'e', 'i', 'o', 'u']

3 if l in vowels:

4 print('I am {} and I am a vowel!'.format(l))

5 else:

6 print('I am {} and I am a consonant!'.forma\

7 t(l))

8

9

10 if __name__ == "__main__":

11 l = 'a'

12 vowel_or_consonant(l)

13 l = 'g'

14 vowel_or_consonant(l)

The Basics 233

Medium
Implement a Python program that,
given in input an object o, checks
its type (string, integer or none of
these).
Hint: study how isistance() work.

Solution

1 def check_types(o):

2 if isinstance(o, str):

3 print ('I am {} and I am a string')

4 elif isinstance(o, int):

5 print('I am {} and I am an integer')

6 else:

7 print('I am a mysterious type. hee-hee')

8

9 if __name__ == "__main__":

10 o = "I am a string"

11 check_types(o)

12

13 o = 42

14 check_types(o)

15

16 o = list()

17 check_types(o)

The Basics 234

Power-up
TBD

The Basics 235

Loops

Warm up
TBD

Solution

1

The Basics 236

Medium
TBD

Solution

1

The Basics 237

Errors

Warm up
TBD

Solution

1

The Basics 238

Medium
TBD

Solution

1

The Basics 239

Documentation

Warm up
TBD

Solution

1

The Basics 240

Medium
TBD

Solution

1

Algorithms

Data Structures

Data Structures 243

Array

Warm up
Given an array A of integers in in-
put, print it in reverse.
Example

A = [1,2,3,4,5]

Printed Result:

5 4 3 2 1

Solution

1 def reverse_array(A):

2 for i in reversed(range(len(A))):

3 print(A[i])

Data Structures 244

Medium
Given an array A of integers in in-
put, reverse and print it without
using builtin functions.
Example

A = [1,2,3,4,5]

Reverse:

A = [5,4,3,2,1]

Solution

1 def reverse_array(A):

2 start = 0

3 end = len(A)-1

4

5 while start<end:

6 A[start], A[end] = A[end], A[start]

7 start+=1

8 end-=1

9

10 print(A)

Data Structures 245

Power-up
Given two arrays A and B, count the
occurrences of B being a subset of
the elements of A.
Example 1

A = [1,1,1,1,1]

B = [1,1]

occurrences = 4

Example 2

A = [0,1,1,0,1,0]

B = [0,1]

occurrences = 2

Solution

1 def count_occurrences(A,B):

2

3 # corner case

4 if len(B) > len(A):

5 return 0

6

7 no_occur = 0

8 for i in range(len(A)):

9 flag = True

10 tmp = i

11 for j in range(len(B)):

12 if tmp >= len(A) or A[tmp] != B[j]:

13 flag = False

14 break

Data Structures 246

15 tmp += 1

16 if flag:

17 no_occur+=1

18

19 return no_occur

Data Structures 247

Linked-List

Warm up
TBD

Solution

1

Data Structures 248

Medium
TBD

Solution

1

Data Structures 249

Power-up
TBD

Solution

1

Data Structures 250

Stack

Warm up
Given an array A of integers in in-
put, print its elements in revers by
using a stack.
Example

A = [1,2,3,4,5]

Printed Result

5 4 3 2 1

Solution

1 def reverse_array(A):

2 # using list as stack

3 stack = []

4 for el in A:

5 stack.append(el)

6 for i in range(len(stack)):

7 print(stack.pop())

Data Structures 251

Medium
TBD

Solution

1

Data Structures 252

Power-up
Implement a Stack class and pro-
vide the logic of main methods:
top(), pop() and put().

Solution

1 class Stack:

2 def __init__(self, elements=[]):

3 self._stack = []

4

5 # eventually populating the stack

6 if elements:

7 for el in elements:

8 self.put(el)

9

10

11 def top(self):

12 if self._stack:

13 return self._stack[len(self._stack)\

14 -1]

15

16 raise Exception('Empty stack')

17

18 def pop(self):

19 to_ret = self.top()

20 self._stack.remove(self._stack[len(self\

21 ._stack)-1])

22 return to_ret

23

24 def put(self, el):

25 self._stack.append(el)

Data Structures 253

Queue

Warm up
TBD

Solution

1

Data Structures 254

Medium
TBD

Solution

1

Data Structures 255

Power-up
TBD

Solution

1

Data Structures 256

HashMap

Warm up
TBD

Solution

1

Data Structures 257

Medium
TBD

Solution

1

Data Structures 258

Power-up
TBD

Solution

1

Data Structures 259

Binary Search Tree

Warm up
TBD

Solution

1

Data Structures 260

Medium
TBD

Solution

1

Data Structures 261

Power-up
TBD

Solution

1

Design Patterns

Conclusions

About the author
Giuliana Carullo, CCSK certified, has computer science in her
DNA and has been programming for more than a decade. She
holds a Master Degree in Computer Science and she’s been
doing research for the last six years, whilst wearing another
hat: the project manager.

Giuliana is in love with the intersection point between science
and human behavior. She believes that there is more than one
way to good, much more to do bad, but she ends up being
really opinionated on what good is.

In her spare time, she loves towrite and to help others in doing
their best at their jobs and with their careers.

More from Giuliana
Carullo
More from Giuliana Carullo

Code Reviews 101: The Wisdom of Good Coding

Given her strong background on Software Engineering, Giu-
liana Carullo shows readers how to perform Code Reviews.
What you will get away with from this book is knowledge
covering a wide scope of challenges and practices on good
coding from code, design and architectural smells to mea-
sures, processed and methodologies to perform reviews– the
right way. If you want to have some fun, check it out. Code
Reviews 101¹

Technical Leadership: Dreams, success and unicorns.

Given her experience with software engineering teams, Giu-
liana Carullo presents readers a - very opinionated - view on
what makes or breaks a good technical leader.

This book is not yet another book on influencing people
and on how to communicate properly. These are massively
important skills, and plenty of amazing books have been
already written on these topics. It born as a vision – often
times really personal – on who a technical leader is, how

¹https://leanpub.com/codereviews101thewisdomofgoodcoding

https://leanpub.com/codereviews101thewisdomofgoodcoding
https://leanpub.com/codereviews101thewisdomofgoodcoding
https://leanpub.com/codereviews101thewisdomofgoodcoding

More from Giuliana Carullo 266

he/she acts and what it takes to be a good one. Technical
Leadership²

²https://leanpub.com/technicalleadership

https://leanpub.com/technicalleadership
https://leanpub.com/technicalleadership
https://leanpub.com/technicalleadership

Feedback and Errata
Feedback from readers is always more than welcome and
highly valued. Let me know what you think about this book.
What you liked? What you disliked? What you would like to
read in a future version on the topic?

Even if care is taken to ensure accuracy of this book, some
errors can happen.

Anything that can go wrong will go wrong - Murphy

If you find a mistake, a typo, something missing, please report
it, so I can improve the book.

References
[Cormen et al.]

[PSF] Python Software foundation. https://docs.python.org/3/

[Python Software Foundation]

	Table of Contents
	Preface
	Why this Book?
	Who This Book is Meant For

	Part 1 - The Basics
	Introduction
	The Study Plan
	Where it All Begins

	Fundamentals
	The beloved hello world
	The command line
	.py code
	The main
	Coding Practice of the day

	Basic Input/Output
	Output manipulation
	Give it to me!

	Basic Types
	Numeric Types
	Strings
	Other types
	Coding Practice of the day

	Structure of a Python Program
	Statements and Expressions
	Functions
	Modules
	Packages
	Modular Programming
	Import
	Absolute vs relative
	Importing a package

	Putting it all together
	Coding Practice of the day

	Variables
	Referencing
	Keywords
	What To Avoid
	Convensions

	Coding Practice of the day

	Python Objects
	Class
	Initialization
	Attributes
	Methods
	Functions

	@properties
	Coding Practice of the day

	Polymorphism
	Inheritance
	This is…Super!
	Overload
	Override
	Types of Inheritance
	Coding Practice of the day

	Composition
	Rule of Thumb
	Coding Practice of the day

	Conditional Flows
	If statement
	Multiple Checks
	Membership
	Coding Practice of the day

	Loops
	While
	For
	Further Modifying the Flow
	Break
	Continue
	pass

	Coding Practice of the day

	Error Handling
	Coding Practice of the day

	Documentation
	The Syntax
	If the Code is Good I don’t need Comments Philosophy
	Conditions and Flows
	IO Definition
	Inline Comments
	TODOs
	That's Obvious
	Did you just lie to that programmer?
	Comments Driven Development (CDD)
	Coding Conventions
	Coding Practice of the day

	Part 2 - Algorithms
	Introduction
	Recursion
	Coding Practice of the day

	Iteration
	Coding Practice of the day

	Greedy Agorithms
	Thinking Greedy
	Coding Practice of the day

	Dynamic Programming
	Coding Practice of the day

	NP-Hard problems
	Coding Practice of the day

	Part 3 - Data Structures
	Introduction
	Intro to Data Structures

	Array
	Internals
	Coding Practice of the day

	Linked-List
	Internals
	Coding Practice of the day

	Doubly Linked-List
	Internals
	Coding Practice of the day

	Stack
	Internals
	Coding Practice of the day

	Queue
	Internals
	Coding Practice of the day

	Hash Map
	Internals
	Coding Practice of the day

	Binary Search Trees
	Internals
	Coding Practice of the day

	Takeaway
	Further Reading

	Part 4 - Design Patterns
	Introduction
	Design Patterns

	Creational
	Singleton
	The code
	Don'ts
	Coding Practice of the day

	Lazy Initialization
	The Code
	Don'ts
	Coding Practice of the day

	Builder
	The Code
	Don'ts
	Coding Practice of the day

	Abstract Factory
	The Code
	Don'ts
	Coding Practice of the day

	Factory Method
	The Code
	Don'ts
	Coding Practice of the day

	Structural
	Adapter
	What
	How
	When
	Don'ts
	Coding Practice of the day

	Decorator
	What
	How
	When
	Don'ts
	Coding Practice of the day

	Facade
	What
	How
	When
	Don'ts
	Coding Practice of the day

	Composite
	What
	How
	When
	Don'ts
	Coding Practice of the day

	Behavioural
	Observer
	What
	How
	When
	Don'ts
	Coding Practice of the day

	Publisher-Subscriber
	What
	How
	When
	Don'ts
	Coding Practice of the day

	Iterator
	What
	How
	When
	Don'ts
	Coding Practice of the day

	Visitor
	What
	How
	When
	Don'ts
	Coding Practice of the day

	State
	What
	How
	When
	Don'ts
	Coding Practice of the day

	Chain of Responsibility
	What
	How
	When
	Don'ts
	Coding Practice of the day

	Part 5 - Solutions
	The Basics
	Basic types
	Structure of a Python Program
	Variables
	Python Objects
	Polymorphism
	Conditional Flows
	Loops
	Errors
	Documentation

	Algorithms
	Data Structures
	Array
	Linked-List
	Stack
	Queue
	HashMap
	Binary Search Tree

	Design Patterns

	Conclusions
	About the author
	More from Giuliana Carullo
	More from Giuliana Carullo

	Feedback and Errata
	References

