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W hat is math? How exactly does it 
work? And what do three siblings 
trying to share a cake have to do 

with it? In How to Bake Pi, math professor Eugenia 
Cheng provides an accessible introduction to 
the logic and beauty of mathematics, powered, 
unexpectedly, by insights from the kitchen: we learn, 
for example, how the béchamel in a lasagna can be 
a lot like the number 5, and why making a good 
custard proves that math is easy but life is hard. Of 
course, it’s not all about cooking; we’ll also run the 
New York and Chicago marathons, take a closer 
look at St. Paul’s Cathedral, pay visits to Cinderella 
and Lewis Carroll, and even get to the bottom of 
why we think of a tomato as a vegetable. At the 
heart of it all is Cheng’s work on category theory, 
a cutting-edge “mathematics of mathematics,” that 
is about � guring out how math works. � is is not 
the math of our high school classes: seen through 
category theory, mathematics becomes less about 
numbers and formulas and more about how we 
know, believe, and understand anything, including 
whether our brother took too much cake. 

Many of us think that math is hard, but, as 
Cheng makes clear, math is actually designed to 
make di�  cult things easier. Combined with her 
infectious enthusiasm for cooking and a true zest 
for life, Cheng’s perspective on math becomes this 
singular book: a funny, lively, and clear journey 
through a vast territory no popular book on math 
has explored before. How to Bake Pi o� ers a whole 
new way to think about a � eld all of us think we 
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know; it will both dazzle the constant reader of 
popular mathematics and amuse and enlighten 
even the most hardened math-phobe. 

So, what is math? Let’s look for the answer 
in the kitchen.

(continued on back fl ap)

(continued from front fl ap)
“What a charming and original book! � e central analogy—math is like cooking—turns 
out to be surprisingly apt and often funny. Light and tasty, yet so, so good for you, How 
to Bake Pi is a real treat.”  —STEVEN STROGATZ, Professor of Mathematics, 

Cornell University and author of Th e Joy of x

“I never thought I would discover a book about mathematics that’s actually cozy—armchair 
and scone cozy.  Eugenia Cheng has created some delicious associations in my mind that are 
there to stay: succulent axioms, logical cake, Möbius bagels, and pentagon custard. O�  to my 
oven!” —LEILA SCHNEPS , Professor of Mathematics at the Institut de Mathématiques de 

Jussieu of Pierre and Marie Curie University and author of Math on Trial

“Eugenia Cheng’s charming new book embeds math in a casing of wry, homespun metaphors: 
math is like vegan brownies, math is like a subway map, math is like a messy desk. Cheng is 
at home with math the way you’re at home with brownies, maps, and desks, and by the end of 
How to Bake Pi, you might be, too.” —JORDAN ELLENBERG,  Professor of Mathematics, 

University of Wisconsin–Madison and author of How Not to Be Wrong

“With this delightfully surprising book, Eugenia Cheng reveals the hidden beauty of mathematics 
with passion and simplicity. After reading How to Bake Pi, you won’t look at math (nor porridge!) 
in the same way ever again.” —ROBERTO TROTTA , Astrophysicist, Imperial College 

London and author of Th e Edge of the Sky

“� is book puts the fun back in math, fun that is nearly sucked from it in K-12 education. I 
whole-heartedly recommend this book to anyone with a casual interest in, or deep love of, logic, 
or mathematics, or baking.” —MELISSA A.  WILSON SAYRES , Assistant Professor in 

the School of Life Sciences and the Biodesign Institute, Arizona State University 

“Math is a lot like cooking. Does this seem odd? Maybe in school all you got was stale 
leftovers! Try something better: Eugenia Cheng is not only an excellent mathematician and 
pastry chef, but a great writer, too.”   —JOHN BAEZ, Professor of Mathematics at the

 University of California, Riverside 

“Neither cookery nor math are what you thought they were. But deep down they’re remarkably 
similar. A brilliant gourmet feast of what math is really about.”      —IAN STEWART, 
Emeritus Professor of Mathematics at the University of Warwick and author of Visions of Infi nity



How to Bake π





How to Bake π
An Edible Exploration  

of the Mathematics  
of Mathematics

EUGENIA CHENG

A Member of the Perseus Books Group
New York



Copyright © 2015 by Eugenia Cheng
Published by Basic Books,
A Member of the Perseus Books Group

All rights reserved. Printed in the United States of America. No part of this book may be 
reproduced in any manner whatsoever without written permission except in the case of brief 
quotations embodied in critical articles and reviews. For information, address Basic Books, 
250 West 57th Street, New York, NY 10107.

Books published by Basic Books are available at special discounts for bulk purchases in the 
United States by corporations, institutions, and other organizations. For more information, 
please contact the Special Markets Department at the Perseus Books Group, 2300 Chest-
nut Street, Suite 200, Philadelphia, PA 19103, or call (800) 810–4145, ext. 5000, or e-mail  
special.markets@perseusbooks.com.

A catalog record for this book is available from the Library of Congress.

Library of Congress Control Number: 2014957937
ISBN: 978-0-465-05171-7 (hardcover)
ISBN: 978-0-465-05169-4 (e-book)

10 9 8 7 6 5 4 3 2 1



To  
my parents  

and Martin Hyland

In memory of  
Christine Pembridge





Prologue 1

PART I:  MATH  5

  1 What Is Math? 7
  2 Abstraction 15
  3 Principles 45
  4 Process 57
  5 Generalization 71
  6 Internal vs. External 97
  7 Axiomatization 115
  8 What Mathematics Is 141

PART II:  CATEGORY THEORY 157

  9 What Is Category �eory? 159
10 Context  165
11 Relationships 183
12 Structure 205
13 Sameness 221
14 Universal Properties 239
15 What Category �eory Is 263

Acknowledgments 281
Index 283

Contents





�ey say mathematics is a glorious garden. I know
I would certainly lose my way in it without your
guidance. �ank you for walking us through the
most beautiful entrance pathway.

From a student’s letter to the author
University of Chicago, June 2014





Prologue

Here is a recipe for clotted cream.

Ingredients

Cream

Method

1. Pour the cream into a rice cooker.

2. Leave it on the “keep warm” setting with the lid slightly

open, for about 8 hours.

3. Cool it in the fridge for about 8 hours.

4. Scoop the top part off: that’s the clotted cream.

What on earth does this have to do with math?

1



2 How to Bake π

Math Myths

Myth: “Math is all about numbers.”

You might think that rice cookers are for cooking rice. This is true, but the

same piece of equipment can be used for other things as well: making clot-

ted cream, cooking vegetables, steaming a chicken. Likewise, math is about

numbers, but it’s about many other things as well.

Myth: “Math is all about getting the right answer.”

Cooking is about ways of putting ingredients together to make delicious

food. Sometimes it’s more about the method than the ingredients, just as in

the recipe for clotted cream, which only has one ingredient—the entire recipe

is just a method. Math is about ways of putting ideas together to make excit-

ing new ideas. And sometimes it’s more about the method than the “ingredi-

ents.”

Myth: “Math is all either right or wrong.”

Cooking can go wrong—your eggs can curdle, your soufflé can collapse,

your chicken can be undercooked and give everyone food poisoning. But even

if it doesn’t poison you, some food tastes better than other food. And some-

times when cooking goes “wrong” you have actually accidentally invented a

delicious new recipe. Fallen chocolate soufflé is deliciously dark and gooey.

If you forget to melt the chocolate for your cookies, you get chocolate chip

cookies. Math is like this too. In high school if you write 10 + 4 = 2 you will

be told that is wrong, but actually that’s correct in some circumstances, such

as telling the time—four hours later than 10:00 is indeed 2:00. The world of

math is more weird and wonderful than some people want to tell you.

Myth: “You’re a mathematician? You must be really clever.”

Much as I like the idea that I am very clever, this popular myth shows that

people think math is hard. The little-understood truth is that the aim of math

is to make things easier. Herein lies the problem—if you need to make things

easier, it gives the impression that they were hard in the first place. Math is
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hard, but it makes hard things easier. In fact, since math is a hard thing, math

also makes math easier.

Many people are afraid of math, or baffled by it, or both. Or they were

completely turned off it by their classes in high school. I understand this—I

was completely turned off sports in high school and have never really recov-

ered. I was so bad at sports in high school, my teachers were incredulous that

anybody so bad at sports could exist. And yet I’m quite fit now and have even

run the New York City Marathon. At least I now appreciate physical exercise,

but I still have a horror of any kind of team sports.

Myth: “How can you do research in math? You can’t just discover a new

number.”

This book is my answer to that question. It’s hard to answer it quickly at

a cocktail party without sounding trite, or taking up too much of someone’s

time, or shocking the gathered company. Yes, one way to shock people at a

polite party is to talk about math.

It’s true, you can’t just discover a new number. So what can we discover

that’s new in math? In order to explain what this “new math” could possibly

be about, I need to clear up some misunderstandings about what math is in

the first place. Indeed, not only is math not just about numbers, but the branch

of math I’m going to describe is actually not about numbers at all. It’s called

category theory

and it can be thought of as the “mathematics of mathematics.” It’s about rela-

tionships, contexts, processes, principles, structures, cakes, custard.

Yes, even custard. Because mathematics is about drawing analogies, and

I’m going to be drawing analogies with all sorts of things to explain how

math works, including custard, cake, pie, pastry, donuts, bagels, mayonnaise,

yogurt, lasagne, sushi.

Whatever you think math is . . . let go of it now. This is going to be different.
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Math





Chapter 1

What Is Math?

Gluten-Free Chocolate Brownies

Ingredients

4 oz. butter

5 oz. dark chocolate

2 medium eggs

6 oz. sugar

3 oz. potato flour

Method

1. Melt the butter and chocolate, stir together, and allow to

cool a little.

2. Whisk the eggs and the sugar together until fluffy.

3. Beat the chocolate into the egg mixture slowly.

4. Fold in the potato flour.

5. Bake in very small individual cupcake liners at 350◦F for

about 10 minutes.

7



8 How to Bake π

Math, like recipes, has both ingredients and method. And just as a recipe

would be a bit useless if it omitted the method, we can’t understand what

math is unless we talk about the way it is done, not just the things it studies.

Incidentally the method in the above recipe is quite important—these don’t

cook very well in a large tray. In math the method is perhaps even more

important than the ingredients. Math probably isn’t whatever you studied in

high school in classes called “math.” Yet somehow I always knew that math

was more than what we did in high school. So what is math?

Recipe Books
What If We Organized Recipes by Equipment?

Cooking often proceeds a bit like this: you decide what you want to cook, you

buy the ingredients, and then you cook it. Sometimes it might work the other

way round: you go wandering through the store or maybe a market, you see

what ingredients look good, and you feel inspired by them to conjure up your

meal. Perhaps there’s some particularly fresh fish, or a type of mushroom

you’ve never seen before, so you buy it and go home and look up what to do

with it afterwards.

Occasionally something completely different happens: you buy a new

piece of equipment, and suddenly you want to try making all sorts of differ-

ent things with that equipment. Perhaps you bought a blender, and suddenly

you make soup, smoothies, ice cream. You try making mashed potatoes in

it, and it goes horribly wrong (it looks like glue). Maybe you bought a slow

cooker. Or a steamer. Or a rice cooker. Perhaps you learn a new technique,

like separating eggs or clarifying butter, and suddenly you want to make as

many things as possible involving your new technique.

So we might approach cooking in two ways, and one seems much more

practical than the other. Most recipe books are divided up according to parts

of the meal rather than by techniques. There’s a chapter on appetizers, a chap-

ter on soup, a chapter on fish, a chapter on meat, a chapter on dessert, and

so on. There might be a whole chapter on an ingredient—say, a chapter on

chocolate recipes or vegetable recipes. Sometimes there are whole chapters

on particular meals—say, a chapter on Christmas dinner. But it would be quite
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odd to have a chapter on “recipes that use a rubber spatula” or “recipes that

use a balloon whisk.” Having said that, kitchen gadgets often come with use-

ful booklets of recipes you can make with your new equipment. A blender

will come with blender recipes; likewise a slow cooker or an ice cream maker.

Something similar is true of subjects of research. Usually when you say

what a subject is, you describe it according to the thing that you’re studying.

Maybe you study birds, or plants, or food, or cooking, or how to cut hair, or

what happened in the past, or how society works. Once you’ve decided what

you’re going to study, you learn the techniques for studying it, or you invent

new techniques for studying it, just as you learn how to whisk egg whites or

clarify butter.

In math, however, the things we study are also determined by the tech-

niques we use. This is similar to buying a blender and then going round see-

ing what you can make with it. This is more or less backwards compared with

other subjects. Usually the techniques we use are determined by the things

we’re studying; usually we decide what we want for dinner and then get out

the equipment for making it. But when we’re really excited about our new

blender, we try to make all our dinners with it for a while. (At least I’ve seen

people do this.)

It’s a bit of a chicken-and-egg question, but I am going to argue that math

is defined by the techniques it uses to study things, and that the things it

studies are determined by those techniques.

Cubism
When the Style Affects the Choice of Content

Characterizing math by the techniques it uses is similar to defining styles of

art, like cubism or pointillism or impressionism, where the genre is defined by

the techniques rather than by the subject matter. Or ballet and opera, where

the art form is defined by the methods and the subject matter is duly re-

stricted. Ballet is very powerful at expressing emotion but not so good at ex-

pressing dialogue or making demands for political change. Cubism is not that

effective for depicting insects. Symphonies are good at expressing tragedy

and joy but not very good at saying “Please pass the salt.”
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In math the technique we use is logic. We only want to use sheer logical

reasoning. Not experiments, not physical evidence, not blind faith or hope or

democracy or violence. Just logic. So what are the things we study? We study

anything that obeys the rules of logic.

Mathematics is the study of anything that obeys the rules

of logic, using the rules of logic.

I will admit immediately that this is a somewhat simplistic definition. But I

hope that after reading some more you’ll see why this is accurate as far as it

goes, not as circular as it sounds at first, and just the sort of thing a category

theorist would say.

The Prime Minister
Characterizing Something by What It Does

Imagine if someone asked you “Who’s the primeminister?” and you answered

“He’s the head of the government.” This would be correct but annoying, and

not really answering the right question: you’ve characterized the prime min-

ister without telling us who it is. Likewise, my “definition” of mathematics has

characterized math rather than telling you what it is. This is a little unhelpful,

or at least incomplete—but it’s just the start.

Instead of describing what math is like, can we say what math is? What

does math actually study? It definitely studies numbers, but also other things

like shapes, graphs, and patterns, and then things that you can’t see—logical

ideas. And more than that: things we don’t even know about yet. One of

the reasons math keeps growing is that once you have a technique, you can

always find more things to study with it, and then you can find more tech-

niques to use to study those things, and then you can find more things to

study with the new techniques, and so on, a bit like chickens laying eggs that

hatch chickens that lay eggs that hatch chickens. . .
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Mountains
Conquering One Enables You to See the Higher Ones

Do you know that feeling of climbing to the top of a hill, only to find that you

can now see all the higher hills beyond it? Math is like that too. The more it

progresses, the more things it comes up with to study. There are, broadly, two

ways this can happen.

First, there’s the process of abstraction. We work out how to think logi-

cally about something that logic otherwise couldn’t handle. For example, you

previously only made rice in your rice cooker, and then you work out that

you can use it to make cake, it’s just a bit different from cake made the nor-

mal way in an oven. We take something that wasn’t really math before, and

look at it differently to turn it into math. This is the reason that x’s and y’s

start appearing—we start by thinking about numbers, but then realize that

the things we do with numbers can be done to other things as well. This will

be the subject of the next chapter.

Secondly, there’s the process of generalization: we work out how to build

more complicated things out of the things we’ve already understood. This is

like making a cake in your blender, and making the frosting in your blender,

and then piling it all up.† In math this is how we get things like polynomials

and matrices, complicated shapes, four-dimensional space, and so on, out of

simpler things like numbers, triangles, and our everyday world. We’ll look

into this in Chapter 5.

These two processes, abstraction and generalization, will be the subject

of the next few chapters, but first I want to draw your attention to something

weird and wonderful about how math does these two things.

Birds
They Are Not the Same as the Study of Birds

Imagine for a second that you study birds. You study their behavior, what they

eat, how they mate, how they look after their young, how they digest food,

† Mathematical generalization isn’t the same as the kind where you go roundmaking sweeping

statements about things, but we’ll come to that later.
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and so on. However, you will never be able to build a new bird out of simpler

birds—that just isn’t how birds are made. So you can’t do generalization, at

least not in the way that math does it.

Another thing you can’t do is take something that isn’t a bird and mirac-

ulously turn it into a bird. That also isn’t how birds are made. So you can’t

do abstraction either. Sometimes we might realize we’ve made a mistake of

classification—for example, the brontosaurus “became” a form of apatosaurus.

However, we didn’t turn the brontosaurus into an apatosaurus—we merely

realized it had been one all along. We’re not magicians, so we can’t change

something into something it isn’t. But in math we can, because math stud-

ies ideas of things, rather than real things, so all we have to do to change

the thing we’re studying is to change the idea in our head. Often this means

changing the way we think about something, changing our point of view, or

changing how we express it.

A mathematical example is knots.

In the eighteenth and nineteenth centuries Vandermonde, Gauss and oth-

ers worked out how to think of knots mathematically, so that they could be

studied using the rules of logic. The idea is to imagine sticking together the

two ends of the piece of string so that becomes a closed loop. This makes

the knots impossible to create without glue, but much easier to reason with

mathematically. Each one can be expressed as a circle that has been mapped

to three-dimensional space. There are many techniques for studying this kind

of thing in the field of topology, which we’ll come back to later. Not only can

we then deduce things about real knots in string, but also about the appar-

ently impossible ones arise in nature in molecular structures.
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Geometric shapes are another, much older example of this process of turn-

ing something from the “real” world into something in the “mathematical”

world. We can think of math as developing in the following stages:

1. It started as the study of numbers.

2. Techniques were developed to study those numbers.

3. People started realizing that those techniques could be used to study

other things.

4. People went round looking for other things that could be studied like

this.

Actually, there’s a step 0, before the study of numbers: someone had to come

up with the idea of numbers in the first place. We think of them as the most

basic things you can study in math, but there was a time before numbers.

Perhaps the invention of numbers was the first-ever process of abstraction.

The story I’m going to tell is about abstract mathematics. I’m going to

argue that its power and beauty lie not in the answers it provides or the

problems it solves, but in the light that it sheds. That light enables us to see

clearly, and that is the first step to understanding the world around us.





Chapter 2

Abstraction

Mayonnaise or Hollandaise Sauce

Ingredients

2 egg yolks

112 cups olive oil

Seasoning

Method

1. Whisk the egg yolks and seasoning using a hand

whisk or immersion blender.

2. Drip the olive oil in very slowly while continuing to

whisk.

For Hollandaise sauce, use 1
2 cup melted butter instead of

the olive oil.

At some level mayonnaise and hollandaise sauce are the same—they use

the same method, but with a different type of fat incorporated into the egg

yolk. In both cases, the amazing near-magic properties of egg yolks create

something rich and unctuous. It looks so much like magic, I never tire of

watching it happen.

The similarity between mayonnaise and hollandaise sauce is the sort of

thing that mathematics goes round looking for—situations where things are

15



16 How to Bake π

somehow the same apart from some small detail. This is a way of saving

effort, so that you can understand how to do both things at once. Books might

tell you that hollandaise sauce needs to be done differently, but I ignore them

to make my life simpler. Math is also there to make things simpler, by finding

things that look the same if you ignore some small details.

Pie
Abstractions as Blueprints

Cottage pie, shepherd’s pie, and fisherman’s pie are all more or less the same—

the only difference is the filling that is sitting underneath the mashed potato

topping. Fruit crisp is also very similar—you don’t really need a different

recipe for different types of crisp, you just need to know how to make the

topping. Then you put the fruit of your choice in a dish, add the topping, and

bake it.

Another favorite of mine is upside-down cake. You put the fruit in the

bottom of the cake pan, pour the cake batter on top, and after baking it you

turn it out upside-down so that the fruit is on top. For extra effect you can

put melted butter and brown sugar on the bottom of the cake tin first, to

caramelize the fruit a bit. Of course, this works better with some fruit than

others: bananas, apples, pears, and plums work well, grapes less well. Wa-

termelon would be terrible. The same is true for crisp. Watermelon crisp?

Probably not.

Savory tarts and quiches also follow a general pattern. You bake an empty

pastry shell, put in some filling of your choice, and then top it up with a

mixture of egg and milk or cream before baking it again. The filling could be

bacon and cheese, or fish, or vegetables—whatever you feel like.

In all these cases the “recipe” is not a full recipe but a blueprint. You can

insert your own choice of fruit, meat, or other fillings to make your own

variations, within reason.

This is also how math works. The idea of math is to look for similarities

between things so that you only need one “recipe” for many different situa-

tions. The key is that when you ignore some details, the situations become

easier to understand, and you can fill in the variables later. This is the process
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of abstraction.

As with the watermelon crisp, once you’ve made the abstract “recipe” you

will find that you won’t be able to apply it to everything. But you are at least

in a position to try, and sometimes surprising things turn out to work in the

same recipe.

Think about the symmetry of an equilateral triangle. It has

two types of symmetry: reflectional and rotational. How can we

describe the different symmetries without cutting out the trian-

gle and folding it up or waving it around?

One way is that we could label the corners 1, 2, and 3,

1

2

3

and then just talk about how the numbers get swapped around.

For example, if we reflect the triangle in a vertical line, we will

swap the numbers 1 and 3. Whereas if we rotate the triangle 120◦

clockwise we will send 1 to where 2 was, 2 to where 3 was, and 3

to where 1 was.

You can try checking that the six symmetries of the trian-

gle correspond exactly to the six different ways of shuffling the

numbers 1, 2, and 3. There are three lines of symmetry, and they

correspond to swapping 1 and 3, or 1 and 2, or 2 and 3. There are

three types of rotational symmetry: 120◦ clockwise, 240◦ clock-

wise, and the “trivial” one where nothing moves.

This shows that the symmetry of an equilateral triangle is

abstractly the same as the permutations of the numbers 1, 2, and

3, and the two situations can be studied at the same time.
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Kitchen clutter
Abstraction as Tidying away the Things You Don’t Need

Abstraction is like preparing to cook something and putting away the equip-

ment and ingredients that you don’t need for this recipe, so that your kitchen

is less cluttered. It is the process of putting away the ideas you don’t need for

the present purposes, so that your brain is less cluttered.

Are you better at this in your kitchen or in your brain? (I am definitely

better at it in my brain.) Abstraction is the important first step of doing math-

ematics. It’s also a step that can make you feel uneasy because you’re stepping

away from reality a little bit. I never put my blender away because it’s such

a hassle to move it, and I want to know that I can use it at any time without

going through the rigmarole of getting it out of the cabinet. You might feel

like that about abstraction in the brain as well.

Try the following problem.

I buy two stamps for 36¢ each. How much does it cost?

When children do this sort of thing in elementary school it sometimes

gets called a “word problem,” because it has been stated in words, and they’re

told that the first step in solving this “word problem” is to turn it into numbers

and symbols:

36× 2 = ?

This is a process of abstraction. We have thrown away, or ignored, the fact

that the thing we are buying is stamps, because it doesn’t make any difference

to the answer. It could be apples, bananas, monkeys. . . the equationwould still

be the same, and so the answer would still be the same: 72 of whatever we’re

buying.

What about this one:

My father is three times as old as I am now but in ten years’ time

he will be twice as old as me. How old am I?

Or this one:

I have a recipe for frosting the top and sides of a 6-inch cake. How

much frosting do I need for the top and sides of an 8-inch cake?
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For the question about stamps you probably didn’t need to write down an

equation, because the answer was immediately obvious to you. However for

these last two questions perhaps you would need to perform some abstraction

to work out the answer, where you throw away the fact that you’re talking

about your father, or a cake and frosting, and write down some arithmetic,

with numbers and symbols. We’ll see what arithmetic we get from these word

problems a bit later in this chapter.

Cookies
How Things That Are Too Real Don’t Obey Mathematics

If you’ve ever tried teaching arithmetic to small children, you might have

come up with the following problem. You try and get them to think about a

real-life situation such as:

If Grandma gives you five cookies and Grandpa gives you five cook-

ies, how many cookies will you have?

And the child answers: “None, because I’ll eat them all!”

The trouble here is that cookies do not obey the rules of logic, so using

math to study them doesn’t quite work. Can we force cookies to obey logic?

We could impose an extra rule on the situation by adding “. . . and you’re not

allowed to eat the cookies.” If you’re not allowed to eat them, what’s the point

of them being cookies? We could treat the cookies as just things rather than

cookies. We lose some resemblance to reality, but we gain scope and with it

efficiency. The point of numbers is that we can reason about “things” without

having to change the reasoning depending on what “thing” we are thinking

about. Once we know that 2 + 2 = 4 we know that two things and another

two things make four things, whether they are cookies, monkeys, houses, or

anything else. That is the process of abstraction: going from cookies, mon-

keys, houses, or whatever, to numbers.

Numbers are so fundamental, it’s difficult to imagine life without them,

and difficult to imagine the process of inventing them. We don’t even notice

that we’re making a leap of abstraction when we count things. It’s much more

noticeable if you watch small children struggling to do it, because they’re not

yet used to making that leap.
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Eeny Meeny Miny Moe
Numbers as an Abstraction

I remember a wonderfully feisty mother at an elementary school I was help-

ing at. She remarked on how frustrating it was when other mothers competi-

tively declared that their child could count up to 20 or 30. “My son can count

up to three,” she said defiantly, “But he knows what three is.”

And she had a point. When children first “learn to count to ten” they

aren’t really doingmore than learning to recite a little poem, like “The itsy-bitsy

spider climbed up the water spout. . . .” It just so happens that the “poem” goes:

“One, two, three, four, five, six, . . . ”

Then they learn that this has something to do with pointing at things, so

they start pointing while reciting the “poem,” a bit haphazardly. Only later do

they learn that they’re supposed to point at one thing per word in the poem,

but they have trouble making sure they have only pointed at each thing once,

so they will get rather variable answers if you ask them, “Howmany ducks are

in this picture?” Or they might latch on to a particular number—say, six—and

somehow manage to count everything as being six, no matter how many

ducks there really are.

Finally they’ll get the idea that they’re supposed to match up the items

rather precisely with the words in the poem, one item per word, no more and

no less. That is when they really know how to count. This is a process of

abstraction, and a surprisingly profound one.

Imagine trying to engage in trade without knowing how to count. “Hey,

I’ll trade you one sack of grain for each of your sheep,” you say, and then you

go and line up sacks of grain against sheep to make sure you really have one

per sheep. Then you work out that it’s more practical to recite a little poem

while pointing at the sheep in rhythm, and do the same thing with the sacks

of grain. The poem could be anything as long as you recite it exactly the same

way for the sheep and for the grain. It could be “Eeny meeny miny moe.”

Finally you make up a poem once and for all to use for all your trades, and

you stick to it. And suddenly you’ve invented numbers. That is the process

of abstraction that we don’t even notice when we learn to count. So we see

that there is a crucial difference between simply learning the poem “One, two,

three, four. . . ” and understanding how to use it.
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The Baby and the Bathwater
Being Careful Not to Throw Away Too Much

It is important, as everyone knows, not to throw the baby out with the bath-

water.When we go round simplifying or idealizing our situations, we must be

careful not to oversimplify—we must not simplify our objects to the point that

they’ve lost all of their useful characteristics. If we’re thinking about stacking

Lego blocks, for example, we can ignore what color they are, but we shouldn’t

ignore what size they are, as that affects how we can stack them. But in an-

other situation we might be using Lego bricks merely as counting blocks, in

which case we can ignore their size as well.

Choosing what features to ignore should depend heavily on what context

we’re thinking about. This is a theme that will come back importantly later.

Category theory brings context to the forefront.

Suppose you’re organizing an outing for 100 people, and

you’re renting minibuses that can hold 15 people each. How

many minibuses do you need? Basically you need to calculate

100÷ 15 ≈ 6.7

But then you have to take the context into account: you can’t

book 0.7 of a minibus, so you have to round up to 7 minibuses.

Now consider a different context. You want to send a friend

some chocolates in the mail, and a first-class stamp is valid for

up to 100 g. The chocolates weigh 15 g each, so how many choco-

lates can you send? You still need to start with the same calcu-

lation
100÷ 15 ≈ 6.7

But this time the context gives a different answer: since you can’t

send 0.7 of a chocolate, you’ll need to round down to 6 choco-

lates.
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Heartbreak
Abstraction as Simplification

After one major episode of heartbreak I was getting tired of well-meaning

friends asking me for more and more details of exactly what happened, in an

attempt to “understand” it. Finally one wise friend said to me, “It’s very sim-

ple, really. You’ve lost something you loved.” That was all anyone needed to

know of the situation. She then successfully distracted me into a long discus-

sion about how it’s really more intelligent to be able to simplify things than to

complicate them, even if some people think it makes you look stupid. There’s

a subtle difference between something that’s “simple” and something that’s

“simplistic”; the latter indicates that you’ve missed the point and ignored a

complication that is crucial.

My friend’s wisdom was a type of abstraction, abstracting heartbreak

down to its very essence. Abstraction can appear to take you further and

further away from reality, but really you’re getting closer and closer to the

heart of the matter. To get to the heart, you have to strip away clothes and

skin and flesh and bone.

Road Signs
Abstraction as the Study of Ideal Versions of Things

Road signs are a form of abstraction. They don’t precisely depict what is going

on in the road but represent some idealized form of it, where just the essence

is captured. Not every humpbacked bridge looks exactly like this:†

† Road sign images are Crown Copyright and reproduced under the Open Government Li-

cence.
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but this captures the essence of humpbacked-bridge-ness. Similarly, not all

children crossing the road look exactly like this:

Nevertheless, the benefits of this system are clear. It’s much quicker to take in

a symbol than read some words while you are driving. Also it’s much easier

for foreigners to understand. The disadvantage is that when you first start

driving you have to learn what all these funny symbols mean. Some of them,

such as this one,

are much closer to reality than others, like this:

This “No entry” sign is entirely abstract: it doesn’t look like the thing it

is representing at all. (What does “No entry” look like?) But it’s also more

important—you will probably encounter more of those in your driving life

than the one warning you there might be deer crossing the road.

One side effect of the abstraction of math is that a variety of funny sym-

bols gets used as well, for the same sorts of reasons: once you know what

they mean, the symbols are much quicker to take in, and you can reserve

your mathematical brainpower for the more complicated parts of the math

you’re supposed to be focusing on. It also makes the math easier to under-

stand across different languages—it’s surprisingly easy to read a math book

in a language you don’t know.
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The most basic “funny symbols” used in math are the ones

for normal arithmetic: +,−,×,÷,=. Once you’re comfortable

with these symbols, it’s much quicker and easier to read

2 + 2 = 4

than “two plus two equals four.” As math gets more and more

complicated, the symbols get more and more complicated as

well, with things like

∑
,

∫
,

∮
,⊗,⇔, |=, . . .

I’m not going to explain what the more esoteric symbols mean here—this

is just to give an idea of some of the symbols that get used. As with road

signs, they make math look a bit incomprehensible at first, but they make it

easier in the long run.

Google Maps
The Difficulty of Relating the Map to the Reality

What’s difficult about reading a map? It’s not the actual reading of the map

that’s hard, but matching that up with reality in order to put the map to

practical use. A map is an abstraction of reality. It depicts certain aspects of

reality that are supposed to help you find your way around. The difficulty,

in practice, is in translating between the abstraction and the reality—that is,

making the link between the map and the place you’re actually trying to find

your way around.

Google maps gives us a brilliant way of moving from the abstract to the

concrete, via Street View, and GPS. Often the hardest part about using a map

is working out (a) where you are in the first place, and (b) which way you’re

facing. Those are the crucial pivot points between the map and the reality.

GPS has sorted out the business of working out where you are, and Street

View has sorted out the business of which way you’re facing by giving us a

very realistic representation of reality in the form of an actual picture of it.
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Math has to go through these steps as well. First you have to turn the

reality into an abstraction. Then you do your logical reasoning in the abstract

world. Then finally you have to turn that back into reality again. Different

people are good at different parts of this process. But really the key part is

being able to move back and forth between the abstract and the real. Still,

someone had to draw the map.

For example, suppose you have a recipe for an 8-inch-square cake, but

you want to make it round instead. What size of round cake pan should you

use? First you perform an abstraction to turn this “real-life” question into a

piece of math. We want to find a circle whose area is the same as the area of

the given square, which is 82 or 64. Now we have to remember that the area

of a circle is πr2 where r is the radius. If we write d for the diameter of the

circle (because cake pans are measured by their diameter not their radius),

this means we need

π

(
d

2

)2

= 64.

Now we actually do the logical reasoning, manipulating the algebra to find

out what the diameter d needs to be. This is the only part that’s actually

math.

(
d

2

)2

=
64

π

d

2
=

√
64

π

d = 2×
√

64

π

≈ ±9.027

Finally we take the context into account and turn this back into reality.

First of all, we don’t want the negative answer because we’re talking about

cake pans here, so the answer needs to be a positive number. Secondly, we

don’t need all those decimal places—cake tins are usually only measured to
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the nearest inch. So the answer in reality is that we need a 9-inch round pan

for our cake.

∞ ∞∞

The key in math, and with maps, is to find the most appropriate level

of abstraction for the given moment. Do you need little pictures of all the

buildings on a street when you’re looking at a street map? Do you need to

know where there is grass and where there isn’t? It depends on what you’re

using the map for, and you’ll need different maps for different situations.

If you’re driving, then you’ll want to know which streets are one-way, but

that’s not very relevant if you’re on foot. The same is true of math. There are

different levels of abstraction available for different situations.

What is the number 1? Here are two different ways of an-

swering that question, at different levels of abstraction.

First answer: 1 is the basic building block of counting.

Second answer: 1 is the only number with the property that

multiplying by it does nothing.

Each of these answers is useful in different contexts. The first

is for when we are most interested in adding numbers up; this

characterizes numbers as something called a “group”—a world

in which we can do addition. The second is for when we are also

interested in multiplying; this characterizes numbers as some-

thing called a “ring”—a world in which we can do addition and

multiplication. The study of groups is related to the symmetry of

shapes, and the study of rings is related to other aspects of the

geometry of shapes. We’ll come back to this later.

If you use an inappropriate map for the situation you’re in, you’ll get frus-

trated, whether it’s too realistic or not realistic enough. (I dislike those street

maps with pictures of buildings in three dimensions, so that they actually

obscure the lines telling you where the street goes.)
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The same is true of math—if you try and use complicated math for a sit-

uation that doesn’t call for it, you’ll think the math is pointless. It’s a bit like

using the Dewey decimal system if you only own twenty books.

High Jump
Leaps of Abstraction

I was terrible at the high jump in high school. I already said I was terrible

at all sports, but with the high jump I failed before I started—I couldn’t jump

over the bar even at its lowest. The trouble is that nobody tried to teach me

what I needed to do to get myself over that bar. Other people in my class just

seemed to be able to do it, as if by magic, and the rest of us were simply told

to do it again. And again. And again. There are only so many times you can

knock down a high jump bar, with an audience, without feeling disillusioned

and eager to give up.

Thinking about more and more abstract concepts is a bit like the high

jump. You have to get yourself over a progressively higher and higher bar,

and if nobody explains how to do it, you will keep knocking the bar off and

want to give up. Different people reach their limit of abstraction at different

moments and, just as with the high jump, people drop out at each round.

Most people are able to make the abstraction from objects to numbers and

don’t even notice that is a process of abstraction at all. One popular moment

where many people find they can’t get over the bar any more is where the

numbers turn into x’s and y’s. They can’t do it, and they also can’t see the

point of doing it, so they get disillusioned and give up. (I never saw the point

of the high jump either, but now I see that the Fosbury flop is a satisfyingly

elegant way of getting your body over a bar as efficiently as possible. If some-

one had explained to me back then that your center of gravity doesn’t even

have to go over the bar, I’d have been much more interested.)

Another popular moment where people reach their abstract limit is calcu-

lus, which involves a completely new and strange—and, frankly, a bit sneaky—

way of manipulating and reasoning with “infinitesimally small” things. Some

people get through rigorous calculus but unfortunately reach their limit half

way through their undergraduate math degree, or in the middle of their PhD.
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Rigorous calculus is something most people only meet if they

do math in college. People find it hard because it doesn’t fit with

their idea of what mathematics is—pinning things down and get-

ting answers to things with great certainty.

Calculus in high school usually consists of answering specific

questions such as “If you draw the graph of y = x2 and shade in

the space under the curve from x = 0 up to x = 2, what is the

area that you have filled in?”

In high school we are taught to answer this by “integrating” x2,

which gives x3

3 and then evaluating this at x = 2, to give the

answer 8
3 .

In college we actually prove that this argument is valid. In

high school you might see it justified somewhat experimentally,

by drawing the curve on graph paper and then counting the

squares under the line. Some of the squares will only be par-

tial squares, so you will only get a truly accurate answer if you

use infinitesimally small squares. But these don’t exist.

Rigorous calculus makes this argument into something logi-

cally watertight but baffles people because it doesn’t pin down

an answer in the way that people are expecting. Instead it says

something like: There’s no such thing as graph paper with in-

finitesimally small squares, so we use progressively smaller and

smaller squares and observe that the answer gets closer and

closer to 8
3 as the squares get smaller. Then we prove that no

matter how close we wanted it to get to 8
3 , there is a size of

square that would get us that close.
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A moment where advanced mathematicians sometimes reach their ab-

stract limit is category theory. They react in much the sameway that teenagers

do when they meet x’s and y’s—they say they don’t see the point, and resist

any further abstraction. I am always reminded of Prof. John Baez, who said

the following during an argument about abstraction on the worldwide cate-

gory theory email list:

If you do not like abstraction, why are you in mathematics? Perhaps

you should be in finance, where all the numbers have dollar signs

in front of them.

I haven’t yet met my abstract limit, but I do remember various key mo-

ments in my life where I was pushing a boundary and felt I had to make a

conscious effort to get over the next bar.

From Numbers to Pictures

My mother taught me how you can draw a graph of x2 like this:

I distinctly remember my bafflement at the fact that you could turn the pro-

cess of squaring numbers into a picture of a curve. I sat in our big green

armchair at home thinking and thinking about this until my brain felt like it

was popping out of my head. And in my memory this is the exact same feel-

ing I’ve had every time I’ve thought about a difficult mathematical concept in

my research.

From Numbers to Letters

I was perfectly comfortable solving equations with x’s, say

2x+ 3 = 7.
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I knew this would turn into

2x = 7− 3

= 4

x =
4

2

= 2.

But then I met one with a’s, b’s, and c’s instead of the numbers, something

like

ax+ b = c

and I vividly remember feeling completely at a loss as to how on earth to

find out what x was in this case, without knowing a, b, and c. I think I knew

that I should start by subtracting b from both sides, but I had no idea what

that would give on the right-hand side. I do remember that when someone

explained to me that it would be c− b I felt extremely stupid. Why couldn’t I

have worked that out myself? The answer is then

x =
c− b

a
.

Well, as I say to my students, feeling stupid for not having understood some-

thing before just shows that you are now cleverer than you were then.

From Numbers to Relationships

This is the last big leap of abstraction I remember having to make, and it hap-

pened when I was first learning category theory. For the sake of completeness

and perhaps amusement value I’ll include here what it was: the idea that a

one-object category is exactly a monoid. Laugh as much as you like; there it is.

I sat for days thinking about it and feeling like my brain was popping out of

my head, just like when I was a child and thinking about a graph for the first

time in my life. And the fact that a one-object category is exactly a monoid

is now so obvious to me that I know I am definitely cleverer now than I was

then. It’s a bit early to explain this example now, but I’ll come back to it in

the second part of the book.
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We will see that category theory studies relationships be-

tween objects. A category is a mathematical context for study-

ing these relationships. A monoid is a mathematical context

for studying something much more concrete: multiplication of

things like numbers. The fact that a one-object category is a

monoid corresponds to viewing numbers as relationships be-

tween the world and itself. This sounds quite strange, but it is

remarkably powerful.

The Goose That Laid the Golden Eggs
Making Machines for Solving Problems

It would be lovely to find a way of making golden eggs. But it would be even

better to find a way of making a goose that lays golden eggs: a goose-that-

lays-golden-eggs machine. But wouldn’t it be even better to make a machine

that makes these machines? A “goose-that-lays-golden-eggs machine” ma-

chine. This is a form of abstraction. It’s the idea of building a machine to do

something, rather than directly doing the thing yourself. So really it’s just a

form of conservation of energy, or of reserving human brainpower for the

things machines can’t do.

In order to build a machine to do something rather than doing it yourself,

you have to understand that thing at a different level. It’s like giving someone

directions. When you walk somewhere you know well, you don’t really think

about exactly what streets you’re walking on, or which way you’re turning

and when. You probably go somewhat instinctively. But when you’re telling

someone else how to get there, you have to analyze more carefully how you

do it, in order to explain it. You might have noticed that if you ask a local

person where a certain street is, they will often not be very sure, as you don’t

really think about street names when you’re wandering around your own

town.
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Something similar happens when learning a language. When you learn it

as your mother tongue, you don’t really think about how it works—you pick

it up from the adults around you instinctively. Then when you’re an adult and

a foreigner asks you to explain some aspect of the language that is confusing

them, you have to go back and analyze how you speak, in a way you might

never have done before.

If you’re building a machine to make a cake, you’ll have to analyze each

step rather carefully in order to work out how to get a machine to do it. Even

cracking an egg would require careful thought—how do we know how hard

to tap the egg against the bowl?

The previous example of solving equations is an example of

this type of machine. We start by understanding how to solve

equations such as

2x+ 3 = 7.

Then we make a “machine” for solving all such equations, that

is, we solve the equation

ax+ b = c

because then a, b, and c can be any numbers at all.

We can then try it for quadratic equations

ax2 + bx+ c = 0

and we learn that the “machine” for solving these gives the fa-

mous solution

x =
−b±√

b2 − 4ac

2a
.

As a further level of building a machine that makes these ma-

chines, there is the Fundamental Theorem of Algebra which tells

us that every polynomial equation has at least one solution, as

long as we allow complex numbers, which we’ll come to later.
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Cake Cutting
An Example of Abstraction

I remember the first independent math investigation I had to do in high

school. It was about cutting a cake into as many pieces as possible while

making a fixed number of cuts. Obviously, if you can only make one cut (in

a straight line), you’ll only get two pieces of cake, and if you can only make

two cuts, you’ll get at most four pieces. But what about three cuts? Four cuts?

And so on?

The best answer for three cuts is seven pieces of cake, like this.

Your first thought about this might be the same as mine: that this is a

stupid question, because who would ever cut a cake like that? You end up

with pieces of all sorts of different sizes. What matters more in cutting a

cake—efficiency, or the sizes of your pieces of cake?

Setting aside the question of size for a second, the point of the investi-

gation was to get us to try it experimentally for three cuts, four cuts, and so

on, and then to get us to find a formula for the maximum possible number

of pieces, in terms of the number of cuts you’re allowed to make. That is,

the aim is not just to solve the problem in any particular case but to build a

machine for solving the problem in every case. That is what a formula involv-

ing x’s and y’s and things really is—a machine. So you can feed in, say, the

number of cuts you’re allowed to make, and the machine will spew out the

answer: the number of pieces of cake you get. A formula is even better than

a machine, because it actually tells you how the machine works—it’s not just a

mysterious black box. So if the formula says the answer is

x2 + x+ 2

2

this is a machine telling us that we can feed in the number of allowed cuts in

the place of x, and the result will be the number of pieces of cake. This is a
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form of abstraction, because instead of dealing with actual problems, you’re

dealing with hypothetical problems. You’re not solving the problem; you’re

solving the problem of solving the problem. Instead of writing the formula

you could make a table of answers like this:

No. of cuts No. of pieces of cake

1 2

2 4

3 7

4 11

5 16
...

...

You can’t make this table go on forever—it will have to stop somewhere, just

because you’ll run out of paper, not to mention years of your life. The formula,

however, doesn’t stop anywhere—it is a machine for giving you the answer

for any number of cuts.

Perhaps you didn’t have to do math investigations, but perhaps you had

children doing them, and you were helping them. But you were trying to help

them without actually doing the investigation for them. That is the meta-

problem—instead of solving a problem, you’re trying to solve the problem

of getting someone else to solve the problem. Teaching is a bit like that, be-

cause you’re not just telling people answers but trying to get them to find the

answers. It’s one level removed from answering the question yourself. Teach-

ing teachers is another level of abstraction. And who teaches the people who

teach teachers?

Making a cake isn’t that clever, but inventing a new recipe for making

cakes is a bit more clever. Discovering a new number wouldn’t really count

as “interesting” because we already know the method for producing all new

numbers. If you worked out how to cure cancer, it would be somewhat im-

moral if you merely went round curing individual people’s cancer instead of

teaching the world how to cure cancer.

All of these examples of abstraction take us arguably one step further

from reality, but they have a broader scope as a result. If you shine a flashlight

from further away, you will illuminate a larger area. But be careful not to

shine it from too far away, as the light will then be too dim.
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Abstract Mathematics

Abstraction is the key to understanding what mathematics is. Abstraction

is also at the heart of why mathematics can seem removed from “real life.”

That detachment from reality is where math derives its strength, but also its

limitations. Every level of abstraction takes it further from real life, and harder

to explain what the relevance to real life is, because the relevance comes from

a domino effect—abstract mathematicsmight not be directly applicable to real

life, but rather, applicable to something else which is applicable to real life, or

via an even longer chain of applications, for example:

Category theory Topology Physics Chemistry Medicine

Abstraction is the key to understanding why mathematics is different from

science at large. Evidence-based science proceeds with, obviously, evidence at

its heart. You start with a hypothesis—something you believe might be true,

whether because of general observation, gut feeling, suspicion, anecdotes, or

whatever. Now you need to test the hypothesis rigorously by finding evidence

that holds up to scientific standards. Such standards include things like these:

• You must have a large enough sample size. Three or four cases is anec-

dotal and could have been a fluke.

• The evidence must be controlled. You must be sure that you have ac-

counted for other factors that might have affected the evidence, such as

the placebo effect, socioeconomic factors, the ages of people involved,

and so on.

• The evidence must be unbiased. For example, drug tests must be double

blind—neither the person taking the drug nor the person administering

it can know whether it’s a real drug or placebo.

In the end, the result is statistical. You come up with a large body of very

convincing evidence, but your conclusion always has a percentage certainty

attached to it.

Mathematics is different. The first step is the same—you start with a hy-

pothesis that you think might be true for some reason. But instead of testing
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it rigorously using evidence, you test it rigorously using logic. The meaning

of “rigor” is now completely different. It has nothing to do with sample sizes,

because you don’t ever use any samples—you only use thought processes.

Bias doesn’t come into it either, because all you’re doing is applying logic.

For example, to find out how much frosting you need to cover a cake, you

could do it experimentally—you could get a cake, frost it, and see how much

you used. Or you could do it logically—you could do a calculation involving

the surface area of a cake. To do this calculation you have to make an approx-

imation of the shape of a cake. Perhaps you assume it’s perfectly round and

perfectly flat on top. Of course, no cake is ever perfectly circular and flat. But

the advantage of this method is that you don’t have to make any frosting in

order to find out how much frosting you need.

Using logic instead of experiments has many different sorts of advantages.

Experiments Can Be Impractical

Suppose you want to find out how many bricks you need to build a house. It’s

not very practical to build an entire house just to find out how many bricks

you’ll need. Or what if you want to work out how changing a road layout will

affect traffic flow?

Experiments Can Be Dangerous

What if you want to find out how much traffic a bridge can carry? You can’t

just get loads of traffic to drive across it and see when it collapses.

Experiments Can Be Impossible

What if you’re trying to work out why the sun rises every day, or why the

planets behave the way they do? You can’t just change the conditions of outer

space and then see how the planets behave differently.

Experiments Can Be Undesirable

Suppose you’re trying to work out how an infectious disease can spread

across the country. You can’t just unleash the disease and see how it spreads,

because that’s exactly the thing you’re trying to avoid.
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Experiments Can Be Immoral

At the time of writing, there is a suggestion that culling the badger population

will reduce instances of tuberculosis in cows. How can this be tested? Is it

morally right to kill a whole lot of badgers to see what happens?

In all these cases, there is an important advantage to working theoret-

ically rather than experimentally, an advantage to using logic rather than

evidence. The final crucial advantage is that with logic, the conclusion is not

just “almost certainly true”: it is irrefutable.

How Does Logic Work?

A logical argument is a series of statements, each of which follows from the

previous one using only logic. That’s all very well, but where does it start?

You always have to start with a basic set of assumptions. For example, you

might assume your cake is perfectly circular. You might assume that an in-

fectious disease has a 50 percent chance of being passed from one person to

another if they meet. These basic assumptions are part of the process of ab-

straction. They usually involve turning your real-life objects into something

theoretical, so that you can reason with them using logic. The downside is

that your theoretical situation won’t be exactly the same as your real one. But

the upside is that you will now be able to apply logical process to work things

out about them. The inaccuracy of your final answer will now come from the

information you threw awaywhen you performed the initial abstraction. This

is very different from statistical results, where the inaccuracy of the final an-

swer comes from a small possibility that your hypothesis was wrong despite

the evidence.

The mathematical method (as opposed to the more talked-about scientific

method) involves making very clear what your assumptions are. People can

then disagree with your assumptions, but they aren’t entitled to disagree with

your overall conclusion, which is:

If we make these assumptions, then this conclusion is true.

For example: if one chicken can feed ten people, then two chickens can

feed twenty people. You can argue about how many people one chicken can
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really feed (probably not ten people unless it’s a scary genetically modified

giant chicken), but you can’t argue with the fact that:

If one chicken feeds ten people, then two chickens feed twenty.

But there’s still a possible flaw here: are all the chickens the same size?

We probably need to add an assumption saying “All chickens are about the

same size” to ensure that the situation behaves mathematically.

Is this an unrealistic assumption? If you’re going to order whole roast

chickens for a party with forty people, you’re probably going to do a calcula-

tion somewhat like this, even though chickens aren’t all exactly the same size.

But on the other hand, you might proceed experimentally instead: you might

rely on the experience of the caterer, who has probably held enough parties

to have experimental evidence of how many chickens to get for forty people.

Abstraction can be difficult because it takes us out of the realm of physical

objects and into the realm of “ideas” that we manipulate only in our head. But

there are some abstract ideas we’re so used to that we don’t even notice how

abstract they are any more. If we think about the size of an average chicken,

that’s an abstraction right there: an “average chicken” isn’t a real chicken

we’re considering, it’s just an idea of a chicken. As I mentioned before, num-

bers are abstract. The numbers 1, 2, 3, 4, and so on are only ideas. Because

they are ideas, we can manipulate them just using logic.

The wonderful thing about abstraction is that when you get very used to

an abstract idea, it starts to feel like an actual object instead of just being a

made-up idea. You’re probably quite comfortable with “2” as a concept. That

means you’re comfortable with that level of abstraction. Perhaps you’re less

comfortable with exactly what “−2” is. What about the square root of 2? It’s

a number such that when you multiply it by itself, the answer is 2. But what

actually is it? You might think it’s 1.414 . . . , but that is a decimal that goes

on forever without recurring—you can’t write the whole thing down, so how

do you know what it is? What about the square root of −1? We’ll investigate

these questions in more depth later, and look at why rigorous mathematics

has much more trouble with the square root of 2 than with −2 or even the

square root of −1, even though intuitively the square root of −1 is much

harder to think about because nothing like it ever appears in “real life.”
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Part of the process of abstraction is like using your imagination. Math-

ematical abstraction takes us into an imaginary world where anything is

possible as long as it’s not contradictory. Can you imagine transparent Lego

blocks? That’s not so difficult, but what about squashy Lego blocks? That’s

a bit more strange. What about Lego blocks that spontaneously change color

when you touch them? Four-dimensional Lego blocks? Invisible Lego blocks?

Lego blocks that can make coffee for you in the morning? Obviously in the

real world, just because you can imagine something doesn’t mean it actually

exists—particularly if you have a very vivid imagination. The amazing thing

about the world of math is that mathematical things exist as soon as you

imagine them. The more vivid your imagination, the more math you have

access to.

Another abstract concept that we’re quite used to is shapes. What is a

square? It’s a shape with four equal sides and four equal angles. But are there

actually any perfect squares in the world? No, any physical shape in the real

world is not going to be an absolutely microscopically pedantically perfect

square. Likewise circles. What about straight lines? Are there really any per-

fectly straight lines? Not really. And yet we’re comfortable with the idea of a

straight line, although the things in the real world are only approximations

to this ideal.

Abstraction at Work

Here I will give the abstract approach to the two example questions I posed

earlier on, so you can see what it looks like.

My father is three times as old as I am now but in ten years’ time

he will be twice as old as me. How old am I?

I’ll write x for my age, and y for my father’s age. “My father is three times as

old as I am now” becomes

y = 3x.

So far so good. “In ten years’ time he will be twice as old as me” is a bit

trickier. The key is that in ten years’ time my age will be x + 10 and his age
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will be y + 10, and we know that his age will be twice mine at that point, so

this turns into:

y + 10 = 2(x+ 10).

We can now substitute 3x into the second equation where y is, so we get:

3x+ 10 = 2(x+ 10)

= 2x+ 20 multiplying out the parentheses

so x+ 10 = 20 subtracting 2x from both sides

so x = 10 subtracting 10 from both sides

So we can conclude that I am 10 years old.

Note that we went through the following steps.

1. We started with a “real-life” situation expressed in words.

2. We performed an abstraction to turn it into logical concepts.

3. We manipulated the abstract concepts using logic.

4. We undid the abstraction to get back to the real-life situation.

There’s a further level of abstraction we can do here. The step

we did helped us solve the problem stated in words above, but if

we do another step, we can solve all similar problems.

In that problem we started with two specific equations

y = 3x

y + 10 = 2(x+ 10)

but we could replace all those numbers with letters so that we

can solve any pairs of equations involving any numbers:

y = a1x+ b1

y = a2x+ b2
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The second equation of our original equations might not look

like this to you, but when you rearrange it to get y by itself on

the left, it turns into

y = 2x+ 10

Now we can solve the general pair of equations by equating the

respective right-hand sides, since they’re both equal to y on the

left:

a1x+ b1 = a2x+ b2

And now if we put all the x terms on one side we get

a1x− a2x = b2 − b1

(a1 − a2)x = b2 − b1

x =
b2 − b1

a1 − a2

This last step is valid unless a1 = a2; in this case we are forced

to have b1 = b2 as well, which means the two equations are the

same, and we don’t have enough information to pin down what

x and y have to be—there will be infinitely many solutions.

Let’s try the other example.

I have a recipe for frosting the top and sides of a 6-inch cake.

How much frosting do I need for the top and sides of an 8-inch cake?

We assume that both cakes are round and 2 inches deep. We need to find

the area of frosting used in the 6-inch cake, and the area used in the 8-inch

cake, and see how much bigger the latter is. Because both cakes are round,

we can save some effort by calculating the area of frosting on a cake of radius

r, and then we can use r = 3 or r = 4 afterwards (the radius being half the

diameter).
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• The top of the cake is a circle, so the area is πr2.

• The side of the cake has an area that is the height times the circumfer-

ence. The circumference is 2πr, so the area is 2× 2πr = 4πr.

• Thus the total frosting for radius r is πr2 + 4πr.

We can now use this formula to work out the area covered by frosting in each

of the two cakes.

• For the 6-inch cake the radius is 3, so the total area covered by frosting

is
(π × 32) + (4π × 3) = 9π + 12π

= 21π.

• For the 8-inch cake the radius is 4, so the total area covered by frosting

is
(π × 42) + (4π × 4) = 16π + 16π

= 32π.

Finally we need to translate this into something we can use for our cake.

We want to know how much to scale up the original recipe to make enough

frosting for the bigger cake, so we need to know how much bigger the second

area is than the first. So we take the area we found for the 8-inch cake and

divide it by the area we found for the 6-inch cake:

• The ratio of 8-inch frosting to 6-inch frosting is

32π

21π
=

32

21
.

Now because this is only frosting for a cake, and not something extremely

critical like a dose of medicine, an approximate answer will do: 3221 is about 1.5,

so you need to multiply your original recipe by 1.5 to have enough frosting

for the bigger cake.

The important thing to notice here is that we made an assumption that

the cake is 2 inches high. So the final answer might be inaccurate, but only

because of this assumption. So our final, irrefutable conclusion is:
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If all the cakes are 2 inches high,

then we need to multiply the original recipe by 1.5.

This cake example is somewhat more useful than the example with my fa-

ther’s age. Where the question of age was just a silly brainteaser, the question

about frosting was a genuine situation where the abstract thought processes

helped us. We could have worked out the answer experimentally, by making

a whole load of frosting and seeing how much we needed for the bigger cake,

but that would have been a waste of frosting. The abstract approach used

more brainpower but wasted less frosting.





Chapter 3

Principles

Conference Chocolate Cake

Ingredients

5 oz. butter, softened

5 oz. sugar

2 large eggs

5 oz. self-rising flour

Cocoa powder to taste

About 7 squares of chocolate

Method

1. Cream the butter and the sugar.

2. Beat in the eggs, then fold in the flour.

3. Beat in cocoa powder until the mixture looks dark brown.

4. Half-fill 14 small silicone muffin cups with the mixture,

then put half a square of chocolate in, and cover with more

of the mixture.

5. Bake at 350◦F for about 10 minutes. Eat immediately.

I call this “conference cake” because I first made it after a conference din-

ner when a whole group of mathematicians piled into my apartment feeling

45
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merry and asked me to make dessert. It was a case of improvising something

with whatever was in the kitchen. Fortunately, my kitchen always contains

a large quantity of chocolate. Then I could follow some of the basic princi-

ples of cake making. Equal quantities of egg, flour, butter, and sugar is a good

basic starting point—other cake recipes can get very complicated, but what

for? Chocolate usually makes people happy, and putting some in the middle

of each cake means that the middle is gooey, and the excitement of the oozing

middle will distract people from whatever else happens with the desserts.

The point is that if you understand the principle behind a process rather

than just memorizing the process, you will be much more in control of the sit-

uation, better able to fix it when it goes wrong, in a better position to modify

the process for different purposes, and better able to cope in extreme situa-

tions such as missing ingredients, broken equipment, drunkenness. . .

Drunk Baking
Coping in Extreme Situations

Drunk driving is dangerous and to be avoided at all times. However, drunk

baking is quite fun if you understand what you’re doing, so when friends end

up at my place after a night out, I’m always happy to make an experimental

dessert. There are other reasons to understand the basic principles of cakes

instead of just faithfully following recipes. You might have friends with gluten

intolerance, so you need to make cakes without wheat flour. (I’ve found that

the best substitute flour for brownies is potato flour; for fruit crisps it’s oat

flour, and for pastry it’s rice flour.)

Perhaps you want to make cakes with less fat. So you need to understand

the role the fat is playing in the cake—creating air bubbles—so that you can

replace it with something that will play the same role, for example, curiously,

apple sauce.

Understanding the principles behind methods also helps you take short-

cuts without ruining everything, and if you’re lazy like me, you’ll be looking

for shortcuts all the time. Or simplifications because, for example, separat-

ing eggs turns out to be much harder when you’re drunk. Recipes involving

chocolate often say something like
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Break the chocolate into small pieces and place in a heatproof bowl.

Set the bowl over a pan of simmering water, ensuring that the base

of the bowl does not touch the base of the pan. Stir until melted.

But what they really mean is “Melt the chocolate.” I eventually became curi-

ous about this business of not letting the bowl touch the bottom of the pan

and so tried it—and it didn’t seem to make any difference. I also often melt

chocolate in the microwave or, best of all, the oven at a low temperature.

Recipe books rarely explain why they’re telling you to do something, which

I find frustrating. But then, understanding is power, and if you help some-

one understand something, you’re giving them power. Perhaps those writers

don’t want us to understand too much, otherwise we wouldn’t need them to

invent recipes for us.

For a mathematical example, it’s useful to memorize your times tables,

rather than having to count on your fingers each time. But it’s also useful to

understand how to work out the times tables in case you forget and need to

work them out from scratch.

By the way, recipes always say to use cream of tartar in meringues, but I

never have, and my meringues seem perfectly fine. Delicious, even.

Welding
My Attempt at Understanding How Cars Work

When I was sixteen I was on television welding. I was working on a car

project in high school, where we were taking an old MG apart under the su-

pervision of two of our physics teachers and rebuilding it with new parts. For

some reason I was the best at welding, and I also found it quite exciting—the

noise, the sparks, the heat, the danger, and the “magic” of joining metal to-

gether using heat. By contrast, I wasn’t very good at understanding how the

whole car worked. I just welded whatever I was told to weld.

I suppose the local TV station was

girls building a car (I hope that doesn’t seem so funny these days), so they

turned up to film us one day, and I was duly filmed welding something. The

interviewers asked us if we were doing it to impress future boyfriends, but

I was doing it because I wanted to understand the principle of how a car

amused by the idea of a ofbunch
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worked. Unfortunately, I failed. I know how to weld, but I ended up none

the wiser about how a car works, so now if my car breaks down I still have

little choice but to take it to an expert. I still think it’s a good idea to know the

principles of something that you’re using all the time, so that you’re less at its

mercy when it goes wrong and so that you have a better chance of getting the

best out of it. The trouble is that with the advance of technology, the workings

of things have become more and more deeply embedded in electronics and

code, so it’s much harder to just take something apart and stare at it.

At least if my math “breaks down” I have a chance of fixing it myself—that

is, I can check my reasoning and see where my logic was flawed. Math can

be demoralizing for children if they keep getting the wrong answer but they

don’t see what went wrong. That’s why it’s so important when teaching math

to understand the student’s way of thinking, and point out what was wrong

with their logic, not just what was wrong with their final answer.

Mars
What Do We Look for First When Looking for Life There?

When we look for the possibility of life on another planet, we start by looking

for signs of water. This is because we’ve worked out, or decided, that water is

pretty much crucial for making life viable.

When European explorers colonized faraway lands they did many things

wrong (not least, perhaps, the colonization in the first place). One thing they

did wrong was try to bring crops with them from Europe to grow in lands

with rather different climates. They had not in any way understood what

was necessary to make those crops grow and that the crops would therefore

fail in those hotter, harsher lands. Or maybe they hadn’t understood just how

different the faraway climate was going to be. In any case, the crops failed.

One purpose of studying the principles behind things is to understand

what is really making a situation work, so that you know whether it will still

work when you go to a faraway land. That’s a farawaymathematical land.

For example, one of the mathematical lands we feel most at home with is

the natural numbers. These are the numbers we use for counting: 1, 2, 3, 4,

and so on, and they’re called “natural numbers” for a reason—they feel very
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natural. The trouble is, they’re so natural we don’t even notice the things that

we’re using about them. It’s like when you break your arm, and you suddenly

notice all sorts of things that are difficult, things that you entirely take for

granted when you have the use of both hands. We might not really notice

when we particularly need to use both hands at once, or when one solo hand

will do. Brushing your teeth seems like a one-handed activity, but how do

you get the toothpaste on the toothbrush? Eating chips seems one-handed,

but how do you open the bag?

Likewise with the natural numbers. We take for granted that we can add

and multiply, and that it doesn’t matter what order we do it in. 8 + 4 is the

same as 4 + 8, and we often use this when we’re adding up—it’s much easier

to add a small number onto a big number, rather than adding a big number

onto a small number. This makes an especially significant difference to small

children who are still adding by counting on their fingers. 2 + 26 will take

a very long time if they start with 2 and count on 26, but if they start with

26 and count on 2 it will be quite quick—the difficulty for the teacher is in

convincing them that they will still get the same answer.

Likewise, 6 × 4 is the same as 4 × 6, which is a good thing, because it

means we only have to remember half our times tables. Personally I can only

do 4 × 6 by thinking of it as “six fours” and not “four sixes.” I have to think

of 8× 6 as “six eights.” But 8× 7 I have to think of as “seven eights.” Here’s a

grid of which times tables I do and don’t know—perhaps you have something

similar but different? Do you know “eight sixes” or “six eights” or both?

2 3 4 5 6 7 8 9

2 � � � � � � � �

3 � � � � � � �

4 � � � �

5 � � �

6 � � � � � �

7 � � � � �

8 � �

9 �

In this grid I’m reading down first, then across. So I don’t know “five

sixes,” but I do know “six fives.” I have no idea how my brain ended up dealing
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with times tables this way. Fortunately, turning the multiplication around

gives the same answer, so I can deduce all my times tables, even if I don’t

actually know them all.

But what if we went to a different mathematical world in which these

helpful facts weren’t true? We would need to think very hard about what the

knock-on effect would be. All sorts of things would start going wrong. Would

we be able to solve equations any more? Would we be able to draw graphs?

Would our standard techniques for anything work any more? We’ll find out

later in the book.

A more interesting principle of the natural numbers is to do with prime

numbers. Remember, a prime number is one that is only divisible by 1 and

itself (and 1 doesn’t count as prime). So the first few prime numbers are

2, 3, 5, 7, 11, 13, . . .

Now if I think of any number at all, there will be a unique way of writing

it as a product of prime numbers. For example, 6 = 2×3, and there’s no other

way of multiplying prime numbers together to get 6, except by changing the

order and doing 3× 2, which doesn’t count as different. 24 = 2× 2× 2× 3,

and there’s no other way of multiplying prime numbers together to get 24.

And so on. This is a very important property of the natural numbers, but it

doesn’t hold on all mathematical planets.

This has created problems for mathematical explorers just as unfamiliar

climates did for those trying to plant crops in faraway lands. For example,

several attempts at proving Fermat’s Last Theorem turned out to be wrong

because people thought they were working on a planet where this prime

factorization property was true, when in fact it wasn’t. They had devised a

brilliant mission to Mars assuming there was water there.

Fermat’s Last Theorem was famously written by Pierre de

Fermat in the margin of one of his books in 1637. It is about the

equation

an + bn = cn

where a, b, c, and n are positive integers.
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When n = 2 this is related to the Pythagorean theorem

about the lengths of right-angled triangles: the square of the hy-

potenuse (the longest side) is equal to the sum of the squares

on the other two sides. Most right-angled triangles are doomed

to have edges that are not whole numbers. For example if the

shorter sides are 1 cm each, the hypotenuse will have to be√
2 cm, which is not rational, let alone a whole number. How-

ever, there are some well-known, satisfying right-angled trian-

gles that do have whole-numbered sides, for example 3:4:5 and

5:12:13. This gives solutions to the above equation:

32 + 42 = 52 and 52 + 122 = 132.

By contrast, for higher values of n it is not possible to find in-

tegers a, b, and c satisfying this equation: this is Fermat’s Last

Theorem, but it was not proved until 1995, when Andrew Wiles

published a proof using very modern techniques from apparently

unrelated fields of mathematics.

The Principles of Numbers

What are the basic principles of numbers? We’re so used to them that we

don’t even notice them any more. Here are some facts about numbers that

you probably take for granted.

• We can add numbers together.

• We can subtract numbers, but the answer might be negative.

• We can multiply numbers.

• We can divide numbers, but the answer might be a fraction.

• If we add zero to a number, it stays the same.

• If we multiply a number by 1, it stays the same.

• You can’t divide by zero.
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• If you add a number to something and then take it away again, you get

back to where you started.

• If you multiply by a number and then divide by it again, you get back

to where you started.

• When you’re adding numbers, it doesn’t matter what order you do it

in.

• When you’re multiplying numbers, it doesn’t matter what order you

do it in. But when you’re mixing up +,−,×, and ÷, it does matter.

• If you multiply anything by 0, you get 0.

• If you multiply anything by −1, you get the negative of what you

started with. (If it was already negative, you get “negative negative.”)

• “Negative negative is positive.”

• If you add something to itself several times, it’s the same asmultiplying.

This is an awful lot of “basic principles,” so you might wonder if these can

be reduced to a smaller number of “extremely basic principles.” Like the fact

that there is only one Brownie Guide law:

A brownie guide thinks of others before herself and does a good turn

every day.

The principles I’ve listed get harder and harder as they go down the list,

broadly speaking. When you’re first learning about numbers it’s quite hard to

get your head around why order doesn’t matter when you add and when you

multiply. What about the fact that multiplying by 1 doesn’t change anything?

A recent study of elementary school children showed that they got this wrong

an alarming number of times. What about multiplication by zero?Why is the

answer always zero? Worse, why do we get “minus minus is plus”?

You might wonder where those principles came from in the first place.

Finding the basic principles behind something is called axiomatization, which

we’ll come back to later. The idea in math is that we take the basic princi-

ples of one world, such as numbers, and see what other worlds obey those

principles. You might be surprised to hear that the fact that multiplying by
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zero gives zero is not a basic principle: it’s something we can prove from even

more basic principles, as we’ll see later in the book.

Things that obey the same principles as numbers are forced to be quite a

lot like numbers, but they still don’t have to be actual numbers. For example,

polynomials look like this:

4x2 + 3x+ 2.

They’re not actually numbers, but they obey these same principles.

If we drop the requirement that the order of multiplication

doesn’t matter, we get even more examples. Matrices look like

this: (
1 0

3 2

)

and they obey all the above principles about numbers, apart from

the one about the order of multiplication. We do have to be a bit

careful exactly what this means, and we’ll see how later on when

we do some axiomatization.

That’s the whole point of understanding the principles—so that you can

apply them to places that aren’t quite the same as the ones you first thought

of.

Questions for the Curious

Try coloring in the following 2×2 grid. The rule is that each of the two colors

has to appear exactly once in each row and exactly once in each column. You

should find that there’s only one way of doing it.

red blue

blue
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Questions for the Bold

Try this 3× 3 one, with the same rules.

red blue green

blue

green

There should still be only one way of doing it.

The principle of each thing appearing exactly once in each row and once

in each column is a bit like a simpler version of sudoku, and is called the

Latin square property. It’s a very important principle in math when studying

groups, a branch of math we’ll come back to later.

Questions for the Daring

What about this 4× 4 one?

red blue green black

blue

green

black

There are now exactly four possible ways of doing it.

Last question: would you have found this easier or harder if those had

been numbers instead of colors? It didn’t actually matter that they were col-

ors:
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1 2 3 4

2

3

4

What about letters?

a b c d

b

c

d

Changing to numbers or letters doesn’t change the mathematics behind

the question, which is about the patterns involved, regardless of how the

squares are labeled.

Solution for the Curious: There are only two colors to choose

from, so we can just try them. Blue won’t work, so it has to be

red.
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Solution for the Bold: Start with the middle square. It can’t be

blue, because then it would be next to the other blue squares.

We could try red, but then the square to its right would have to

be green, and that would be next to the top right green square,

which is not allowed. So the middle square has to be green, and

the one to its right has to be red, and the whole square has to

look like this:

red blue green

blue green red

green red blue

Solution for the Daring:

red blue green black

blue red black green

green black red blue

black green blue red

red blue green black

blue red black green

green black blue red

black green red blue

red blue green black

blue green black red

green black red blue

black red blue green

red blue green black

blue black red green

green red black blue

black green blue red

This is a profound question in a subject called the classification

of finite groups.
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Process

Puff Pastry

Ingredients

1 lb. bread flour

1 lb. butter

Cold water

Pinch of salt

Method

· · ·

There are many different ways of combining these simple ingredients, and

most of them will not result in puff pastry. Making puff pastry is a long and

precise process, involving repeated steps of chilling, rolling, and folding to

create the deliciously delicate and buttery layers that make puff pastry differ-

ent from other kinds of pastry. Puff pastry has a reputation of being difficult

to make because of this process. A basic short pastry is much easier—it uses

the same ingredients (but less butter) and you can simply throw them in a

food processor.

One of the wonderful features of math is that, like with pastry, it can use

quite simple ingredients to make very complicated situations. This can also

make it rather offputting, like making puff pastry. Actually, I don’t think puff
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pastry is that difficult if you follow the instructions carefully. But even if you

don’t want to try doing it yourself, perhaps you can still enjoy the fact that

such simple ingredients can turn into delicious puff pastry. Math is about

understanding processes and not just eating end results.

The New York City Marathon
Not Just About Getting from A to B

In 2005 I ran the New York City Marathon. I think this is a great achievement,

so I boast about it whenever I can. In all honesty it’s a bit far-fetched to say I

“ran” it—it would be more accurate to say I “trotted” it. But I did make it from

the beginning to the end, and there are photos to prove it.

The New York marathon is different from some other marathons, say, the

Chicago Marathon, in that you do actually travel from one place to another

place: you start on Staten Island and end up in Central Park. Whereas in

Chicago you start in Grant Park and you end up in. . . Grant Park. However,

nobody thinks that simply getting from A to B is the whole point of running

the marathon—it’s how you get to the end. If it were just about getting to the

end, then everyone at the Chicago Marathon would just stand still.

When you tell people you’ve run a marathon it’s actually a bit like telling

people you’re a mathematician—some people think you’re amazing and other

people think you’re mad. Why on earth does anyone do it?

The point is the journey itself, not just the arrival at the destination. Some

journeys are simply about getting somewhere (for example, going to work in

the morning). But other journeys are about a process of discovery or appreci-

ation. It’s easy to think of math as a process of getting the right answer. And

some math is like that. But category theory, like the New York marathon, is

more about the journey and what you see along the way. It’s not about what

you know but how you know it. This is a much more nuanced question. If I

ask you “Do you know such-and-such a fact?” the answer will be either yes

or no. But if I ask you “How do you know this fact?” the answer could be

very long and complicated, and a lot more interesting than the sheer fact of

whether you know it or not.
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Pickpocket/Putpocket
When It’s Not Just About the End Result

Suppose you have a ten-dollar bill in your pocket. Now, without you noticing,

someone steals it. Also, and more strangely, someone else slips a different

ten-dollar bill into your pocket. At this point, you believe you have a ten dollar

bill in your pocket. But your reason for believing it is completely wrong. So

are you right or not? Your conclusion is correct but your reasoning is wrong.

This would count as the wrong answer in math, because we’re interested

in the process of getting to the right answer, not just the answer itself.

Here’s an example of incorrect reasoning leading to the cor-

rect answer.
4

6
− 1

3
=

4− 1

6 + 3

=
3

9

=
1

3

The final answer is correct but this is simply not the correct way

to subtract fractions.

The correct argument puts everything over the common de-

nominator 6:
4

6
− 1

3
=

4

6
− 2

6

=
4− 2

6

=
2

6

=
1

3
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Delusion
When the End Doesn’t Justify the Means

If someone is happy, but you think they are happy for the wrong reasons,

do you intervene? What if they’re happy because they’re drunk the entire

time? What if they’re happy because they’re convinced they’re God? What if

they’re happy because they’re convinced that a God you don’t believe in is

looking after them?

Would you rather they were correct, but unhappy? Or to put it another

way, does the end justify the means?

Math is a world in which the end does not justify the means: quite the

reverse. The means justifies the end; that’s the whole reason it’s there. It’s

called mathematical proof, and we’ll see what that looks like shortly.

Two Wrongs Make a Right
Why It’s Not All About Getting the Right Answer

I have marked exam questions where students were asked to do some sort

of calculation in many small steps. As it turned out, there were several steps

where they were prone to making a plus/minus error, which could result in

them getting the answer wrong by a factor of −1. So if the answer was sup-

posed to be 100, they would get the answer −100 by mistake.

The trouble was, if they made two of these errors, the error would correct

itself and they’d go back to getting 100. I seem to remember there were about

six steps with the potential for making this mistake. So as long as they made

the mistake an even number of times, they would still get the right answer.

But they would have two, four, or six mistakes in their reasoning.

In math beyond the level of arithmetic and other high school math, the

only reason you know you have the right answer is by checking that your

process was correct. It’s not like when you’re trying to find the Eiffel Tower

and you know when you’ve found it because everyone knows what the Eiffel

Tower looks like. It’s more like explorers in times gone by, who had no GPS

and no maps, so the only way they could know where they were was by

plotting their route very carefully.



Process 61

Why? Why? Why?
Why Small Children Have a Point

If you’ve ever spent time with a three-year-old, you’ll know that children that

age never stop asking why. Ever.

“Why can’t I have more dessert?”

Because you’ve had enough.

“Why?”

Because otherwise you’ll have too much sugar and won’t go to sleep.

“Why?”

Um, because your blood sugar levels will spike and your metabolic rate

will suddenly go up and. . .

Unfortunately, we suppress this instinct in children, possibly just because

it gets rather tiresome after a while. Possibly because we quite quickly get to

the point where we don’t know the answer, and we don’t like having to say

“I don’t know.” Or we don’t like reaching the end of our own understanding

of things.

But this natural instinct in children is beautiful. It’s the difference be-

tween knowledge and understanding. Sometimes they’re just trying to pester

the adults or put off going to bed, but often I think they really are baffled by

things and are trying to understand them better.

At the heart of math is the desire to understand things rather than just

know them. In some ways I just never stopped being that toddler who keeps

asking “Why?” Math is the most satisfying way I found of answering those

“Why?” questions. But then, inevitably, I started asking “Why?” about math

itself, and that’s where category theory comes in.

Mathematical Proof

In mathematics the question “Why?” is answered in the form of a proof. Proof

in math means something a bit stronger than in normal life. As we discussed

in the chapter Abstraction, it’s not about gathering evidence but about using

logic.
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For example, you might try to prove that all crows are black. You start

looking for crows. The first one you see is black. The second one you see is

black. The third one you see is black. You keep going. When do you decide you

have enough evidence that all crows are black? After a hundred? A thousand?

A million? There could still be one freak crow out there that is purple.

The thing is, crows don’t really behave according to logic, so a logical

proof would be quite difficult. You’d have to do something like find some

irrefutable genetic cause of crows being black.

This is why, in mathematics, we focus entirely on things that do behave

according to logic. The evidence gives us a hint of something we might sit

down and try to prove using mathematical methods—but it could still be

wrong. It happens plenty of times in research math that you sit down to try

and prove something that you think might be true because of some “evidence,”

and the whole thing turns out to be completely false.

What if we try and prove this:

All squares have four sides.

This is a bit silly—it’s inherent in the definition of a square that it has four

sides. (Is it inherent in the definition of a crow that it is black?) We need to

try and prove something that isn’t simply true by definition.

Let’s try and prove this:

Any number divisible by 6 is also divisible by 2.

We could start by looking for some evidence.Which numbers are divisible

by 6? Well 12 is definitely divisible by 6, and yes, it’s also divisible by 2. What

about 18? Yes, that works. What about 24? Yes, that works. At this point you

might feel very convinced. And that is important—feeling convinced is an

important part of being convinced, and convincing people of things is the

whole point of math.

Can you instead work out why this is true? You might realize that it’s

something to do with 6 being an even number.
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Let’s try it for 24. We know that 24 is divisible by 6 because

we know

24 = 6× 4

But also

6 = 3× 2

so we can substitute this in, giving

24 = 3× 2× 4

which shows that 24 is divisible by 2. We could also split the 4

into its prime factors as well and get the prime factorization of

24 that we saw in the previous chapter

24 = 3× 2× 2× 2

but we don’t need to here—once one 2 has appeared in the prod-

uct we know that 24 is divisible by 2 and we can stop.

Does this mean that any number that’s divisible by 6 must also be an even

number? It does, and now we’ll investigate why. First we should make that

fact more precise by using the following statement, in which we’ll write A to

stand for “any number.”

If A is divisible by 6, and 6 is divisible by 2, then A is divisible by 2.

We can now make this work more generally: instead of 6 we could have

any number B, and instead of 2 we could have any number C . Then we get

the following fact:

If A is divisible by B, and B is divisible by C , then A is divisible

by C .

How do you feel about replacing all those numbers by letters? That is

one moment when many people start feeling uncomfortable about math. It’s
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a step of abstraction too far for some people, but it has a point: because A, B,

and C can be any numbers, we can now understand something more broadly

true about numbers, not just about the particular numbers 6 and 2.

Moreover, this process of taking a step back allows us to draw analogies

with other things we might have seen. Can you see how the statement above,

with A, B, and C , is analogous to these ones?

• If A is bigger than B, and B is bigger than C , then A is bigger than C .

• If A is cheaper than B, and B is cheaper than C , then A is cheaper

than C .

• If A is equal to B, and B is equal to C , then A is equal to C .

This sort of relationship between A’s, B’s, and C’s is called transitivity.

Mathematicians have given it a name because it crops up in many different

situations, so it’s useful to be able to refer to it quickly and remind yourself

of other similar situations. Here are some other relationships you can try this

on.

Suppose A, B, and C are people.

1. If A is older than B, and B is older than C , does that mean A is older

than C?

2. If A is taller than B, and B is taller than C , does that mean A is taller

than C?

3. If A is the mother of B, and B is the mother of C , does that mean A is

the mother of C?

4. If A has the same birthday as B, and B has the same birthday as C ,

does that mean A has the same birthday C?

5. IfA is a friend ofB, andB is a friend of C , does that meanA is a friend

of C?

6. IfA is married toB, andB is married toC , does that meanA is married

to C?

as
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7. Now suppose A, B, and C are places. If A is east of B, and B is east of

C , does that mean A is east of C?

The first two are definitely true. But the third one isn’t—ifA is the mother

of B, and B is the mother of C , then A is the grandmother of C . So we say

that being someone’s mother is not transitive. Having the same birthday as

someone is transitive, however. What about being someone’s friend? Are you

friends with all the friends of your friends?

What about being married to someone? If polygamy isn’t allowed, then

you can only be married to one person. That means if A is married to B, and

B is married to C , thenA and C must be the same person. And that definitely

means A is not married to C .

Finally let’s think about (7). If the three places A, B, and C are all within

one city or one country, then this is true. But if we encompass the entire

world, then we get into trouble because we can go round in circles. You can

keep going east for a long time and end up back where you started. This is a

case where restricting your scope (to a single city or a single country) makes

things easier to understand than looking at the entire world.†

∞ ∞∞

Now let’s go back to our example with the numbers. “Being divisible by

something” is transitive. But in order to prove that properly, using rigorous

logic, you have to turn “being divisible by something” into a precise statement

that can be manipulated using logic. This is another step that canmake people

feel uncomfortable. In order to get into a position to use logic, we have to

leave the place where we use what we feel we understand about numbers—we

have to leave our previous comfort zone. But the long-term gains are large,

because there are places you can go with logic that you can’t go with your

gut feeling and instinct. It’s like the fact that you have to leave the comfort of

your home in order to get on a plane and see the world.

† It might not sound like it, but that was actually a genuine mathematical example. Mathe-

maticians study large and complicated surfaces by first restricting their scope to small neigh-

borhoods. They even use the word “neighborhood.”
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Here’s what that step looks like for our divisibility example.

A is divisible by B

means

A is a multiple of B

which means

A = k ×B for some natural (whole) number k.

Now we’re ready to go on our journey. When we do this in precise math-

ematical language we use a very specific structure so that everyone can agree

on what just happened. It’s like writing a story with a beginning, a middle,

and an end, except that you tell everyone what the end is going to be, before

telling them what the middle is.

The beginning is where you state what your assumptions and definitions

are. It’s like setting the scene in a story, or writing out a cast list at the begin-

ning of a play. It might look like this.

Definition. For any natural numbers A and B, we say A is divisible by B

whenever A = k ×B for some natural number k.

Nowwe tell everyone what the end is, that is, the end result that we’re go-

ing to aim for. In math there’s a hierarchy of names for end results depending

on how magnificent and groundbreaking they are supposed to be. A small

one is called a lemma, a medium-sized one is a proposition, and a properly

important one is called a theorem. When something is suspected to be true

but hasn’t actually been proved yet, it’s called a conjecture or a hypothesis.

Hence there was the “Poincaré Conjecture” and the “Riemann Hypothesis”

but there’s also “Fermat’s Last Theorem.”

In fact the process of naming things is not very consistent: it’s not clear

why one thing should be called a conjecture and another a hypothesis. More-

over, Fermat’s Last “Theorem,” which we described in the chapter Principles

was called a theorem for 358 years before a proof was ever published, which

isn’t really fair. Some extremely important things are called “Lemma,” which

sounds a bit like false modesty, but could also be because their importance

was not recognized at first.
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The Poincaré Conjecture is about what sorts of

3-dimensional shapes are possible. It is a 3-dimensional

generalization of the following fact: if a 2-dimensional surface

has no edges, and is the surface of a 3-dimensional solid with

no holes, then it must be a sphere. It is hard to imagine what

this could mean in the higher-dimensional version because it

requires us to imagine 4-dimensional solids. This is something

that is difficult to visualize but easy to reason with in mathe-

matics. Henri Poincaré proposed this in 1904, and it was called

a conjecture, as Poincaré did not know how to prove it. It was

finally proved by Grigori Perelman a hundred years later.

The Riemann Hypothesis is about the distribution of prime

numbers. A prime number is one that is only divisible by 1 and

itself, and the first few are 2, 3, 5, 7, 11, 13, 17, . . . . You might

think they form some sort of pattern, but they do not: there is

no way of knowing where prime numbers are going to pop up.

However, there are ways of predicting where they are more likely

to appear, and the Riemann Hypothesis gives a particularly good

way of doing this. This was proposed by Bernhard Riemann in

1859 and to date has still not been proved, so it is still called a

hypothesis.

The thing we’re proving here about divisibility is fairly important in the

context of numbers, so I’m going to call it a proposition.

Proposition. If A is divisible by B and B is divisible by C , then A is divisible

by C .

Now that I’ve told you the beginning and the end of the story, I’m going

to tell you the important part: the middle, the process of getting from the

beginning to the end. This is called the proof.
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Proof. Suppose

1. A is divisible by B, so A = k ×B for some natural number k, and

2. B is divisible by C , so B = j × C for some natural number j.

Then A = k × j ×C , and k × j is a natural number.

Therefore A = m×C for some natural numberm.

So by definition, A is divisible by C .

The end. �

Mathematicians don’t really write “The end” at the end; instead they will

just draw that box � over on the right to signify the end, or they will write

“QED.” This stands for “Quod erat demonstrandum,” which roughly translates

as “which is the thing that we were supposed to demonstrate.”

Did you get lost somewhere in that proof? Were you perfectly happy

with the original answer before we went into the mathematical details? Here

are some other “why” questions with various levels of answer. You can ask

yourself whether you find each answer inadequate, satisfying, or over the top,

to see what sort of level of abstraction you like.

Question: Why does anyone use a three-legged stool?

a) Because a three-legged stool is more stable than a four-legged stool.

b) Because if you try and put four legs down on the floor, one of them

might stick up a bit more than the others, leaving a gap between it and

the floor, which means the stool could wobble.

c) Because given any three points in 3-dimensional space, there is a plane

that goes through them all. Whereas given any four points, there might

not be a plane that goes through them all.

Question: Why does an octave sound nice whereas other combinations of notes

sound discordant?

a) Because an octave basically consists of two versions of the same note,

so they fit nicely with each other.
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b) Because an octave is a natural harmonic, so when you play one note

the harmonic of the octave above is already sounding anyway.

c) Because the wavelength of an octave above is exactly half the wave-

length of the octave below, so there’s no interference between them.

In each case all three answers are correct, but offer different levels of

explanation. It is a matter of personal taste whether you are satisfied with

the first answer or are still curious and seeking further explanation. It’s about

what sorts of facts you’re happy to accept as “basic” or “given.” Math tries to

take almost nothing as basic or given, apart from the rules of logic. It always

seeks further explanation.
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Generalization

Olive Oil Plum Cake

Ingredients

2–4 plums

1 egg

4 oz. ground almonds

3 oz. agave or maple syrup
1
4 cup olive oil

Method

1. Slice the plums quite thinly and arrange them cut face

down in a pretty pattern on the bottom of a cake pan lined

with parchment.

2. Whisk the rest of the ingredients together and pour gently

into the pan over the plums.

3. Bake at 350◦F for 20 minutes or until golden and set.

4. Turn out upside down so the plums are on top.

If you’ve ever invented a new recipe, you might well have started with

one from a book, or online, and modified it to your own tastes, whims, or

allergies. That is, you start with a situation you know and love, and see what

you can do that’s a bit similar but different—and maybe even better.

71
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When I was little I was allergic to food coloring, so my parents lovingly

worked out how to make fruit gelatin from scratch instead of from the ap-

pealingly (or appallingly) brightly colored Jell-O packets. Later, I was dating

someone allergic to wheat, so I invented a lot of wheat-free desserts. (It’s

a bit easier to make wheat-free main courses.) Later on I started avoiding

sugar, and I had other friends who were avoiding dairy. . . . A modern com-

plaint about cooking for friends is that so many people are following strange

restrictive diets that it’s impossible to cook for all of them at once. If you’re

faced with such friends you have several choices. You can refuse to invite

them for dinner, you can ignore their dietary preferences and cook whatever

you like, you can ask them to bring their own food, or you can rise to the

challenge.

I invented the olive oil plum cake to be gluten-free, dairy-free, sugar-free,

and paleo-compatible. The only party guest who couldn’t have it was the one

who was at that time only eating zucchini and ghee. Everyone said it was

delicious, but when they asked me what it was I didn’t know what to call

it, because it’s not really a cake—it’s a generalization of a cake. It has things

in common with a cake, looks like a cake, is made like a cake, plays the role

of a cake, but is still somehow not quite the same as a cake. It is useful in

situations that an ordinary cake would not be able to handle.

This is the point of generalization in mathematics as well—you start with

a familiar situation, and you modify it a bit so that it can become useful in

more situations. It’s called a generalization because it makes a concept more

general, so that the notion of “cake” can encompass some other things that

aren’t exactly cakes but are close. It’s not the same as a sweeping statement,

which is a different use of the word, as we’ll see later.

One example of generalization is where we move from con-

gruent triangles to similar triangles. Congruent triangles are ones

that are exactly the same—they have the same angles and the

same lengths of sides. That is, they’re the same “shape” and the

same “size.”
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For similar triangles we only demand that they’re the same

shape, not necessarily the same size. That is, they still have to

have the same angles, but we drop the rule about having the

same lengths of sides.

Because we’ve relaxed a rule, there are now more triangles that

satisfy these conditions, but it still isn’t total anarchy.

Flourless Chocolate Cake
Inventing Things by Omission

Imagine trying to “prove” that you really need to boil water to make tea. You

would probably just try to make tea without boiling the water. You discover

that it tastes disgusting (or has no taste at all) and conclude that yes, you do

need to boil water to make tea. Or you might try to “prove” that you need

gas to make your car go. You try running it on an empty tank and discover it

doesn’t go anywhere. So yes, you do need gas to make your car go.

In math, this is called proof by contradiction—you do the opposite of what

you’re trying to prove, and show that something would go horribly wrong in

that case, so you conclude that you were right all along.

Here’s an example of a small proof by contradiction. Suppose

n is a whole number and n2 is odd. We’re going to prove that n

has to be odd as well.

We begin by assuming the opposite is true, so we suppose

that n2 is odd, but that n is even. However, an even number

times an even number is always even, so this would make n2

even. This contradicts the fact that n2 was supposed to be odd,

so we must have been wrong to assume the opposite. Therefore,

the original statement that n is odd must be true.
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Sometimes proof by contradiction can be very unsatisfying because it

doesn’t really explain why something is true—it just explains why something

can’t be false. We’ll come back to this later when we talk about the difference

between “illuminating” and “unilluminating” proofs, and the background as-

sumption that if something isn’t false then it must be true.

A famous longer proof by contradiction proves that
√
2 is irrational, which

means that it can’t be written as a fraction a
b
where a and b are integers (whole

numbers). You might know that
√
2 = 1.4142135 . . . and that this decimal

expansion “goes on forever without repeating itself.” This is related to being

irrational, but is not a proof. Here is a (slightly chatty) proof.

Proof. We start by assuming the opposite of what we are trying to

prove, so we assume that there are actually two whole numbers a

and b where
√
2 = a

b
. The trick is also to assume that this fraction

is in its lowest terms, which means you can’t divide the top and

bottom by something to make a simpler fraction.

Now we square both sides to get

2 =
a2

b2

so 2b2 = a2.

So far so good. Now we know that a2 is two times something, which

means it is an even number. This means that a has to be an even

number as well, because if a were odd then a2 would also be odd.

What does it mean for a to be even? It means it is divisible by

2, which means that a
2 is still a whole number. Let’s say

a

2
= c

so a = 2c

and now substitute that into the equation above, so we get

2b2 = (2c)2

= 4c2

so b2 = 2c2.
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Now we can do the same reasoning on b that we just did for a. We

know b2 is two times something, so it’s even, which means b must

be even.

Now we’ve discovered that a and b are both even. But right at

the beginning we assumed that a
b
was a fraction in lowest terms

which means that a and b can’t both be even. This is a contradic-

tion.

So it was wrong to assume
√
2 = a

b
in the first place. This

means that
√
2 cannot be written as a fraction, so is irrational. �

Proof by contradiction can be very efficient, and mathematicians some-

times use it as a last resort when they can’t work out how to prove that

something is true directly—they instead try to prove that it can’t be false.

Sometimes that kind of proof doesn’t turn out the way you’re expecting it to.

Maybe you try to prove that you really need flour to make a chocolate cake.

So you make it without flour. . . and you discover that it’s really not that bad.

In fact, you’ve invented a whole new kind of cake: the flourless chocolate

cake, now popular in many fancy restaurants.

Likewise yeast and bread. You might try to prove (no pun intended) that

you definitely need yeast to make bread. So you try making it without yeast—and

you’ve “invented” unleavened bread.

This can happen in mathematics as well. You set out to try and prove that

something can’t be done, and you accidentally discover that it actually can,

although maybe something slightly different results. This is one way that

generalization can turn up, almost by accident. One of the most important

examples of this is from geometry, involving parallel lines.

Parallel lines
The Genius of Euclid

The story goes like this. Once upon a time Euclid set out to write down the

rules of geometry. The idea was to axiomatize geometry, that is, write down a

short list of rules from which all facts of geometry could be deduced. The idea

is that your basic rules should be absolutely fundamental, things so basic that

you can’t imagine deriving them from anything else—they simply are true.
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Anyway Euclid came up with four very simple and obvious-sounding

rules, and one annoyingly complicated one. They went something like this.

1. There’s exactly one way to draw a straight line between any two points.

2. There’s exactly one way to extend a finite straight line to turn it into

an infinitely long one.

3. There’s exactly one way to draw a circle with a given center and radius.

4. All right angles are equal.

Those sound quite obvious, don’t they? And then comes the fifth one:

5. If you draw three random straight lines they will make a triangle some-

where, if you draw them long enough, unless they meet each other at

right angles.

The idea is that if your three straight lines meet each other at right angles,

then two of themwill be parallel, and no matter how long you draw them they

will never meet up to form a triangle.

This is why the fifth law is called the “parallel postulate” even though it

doesn’t explicitly mention parallel lines. The 5th law is also what tells us

that the angles of a triangle always add up to 180◦.

This last rule sounds so much more complicated than the others that peo-

ple spent hundred of years trying to show it was redundant as a law, that is,

that it could be deduced from the other four. Everyone knew it should be true,

the only question was whether it needed to be enforced out loud, or whether

it would automatically follow from the other laws even if you didn’t say it

out loud.

People went round and round in loops and often thought they had proved

it from the first four laws, when really they had accidentally used some as-

sumption about geometry that seemed very obvious to them but was subtly
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equivalent to the fifth law. So, implicitly, they were using the fifth law to prove

the fifth law—not that earth-shattering.

In the end people decided to try to prove it by contradiction, that is, they

assumed that the first four rules held but that the parallel postulate did not,

and then set about looking for things that would go horribly wrong else-

where.

And the funny thing was, like with the flourless chocolate cake, noth-

ing ever went wrong. It was just different—they had invented a new form of

geometry.

We now know there are two types of geometry that don’t

satisfy the parallel postulate. There’s the type where you imag-

ine you’re on the surface of something round like a sphere or a

football. Here, the angles of a triangle add up to more than 180◦.

This is called elliptical geometry.

The other type is where you imagine you’re on a surface curved

the other way like the inside of a bowl. Here the angles of a tri-

angle add up to less than 180◦. This is called hyperbolic geometry.

The original case where the parallel postulate does hold is like

being on a flat surface, and is called Euclidean geometry.
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Taxicab
Generalizing the Notion of Distance

We talk about distance “as the crow flies,” but when you’re actually traveling

it’s unlikely you’ll ever travel as the crow flies—so the distance from A to B

will change depending on how you’re traveling. How much you care about

this will probably change too.

If you take a train, you usually buy your ticket at the beginning and then

you don’t worry about exactly how far the train is going. But if you take a

taxi, it really matters how far the taxi is going since you’re paying by the

mile. However, instead of the distance as the crow flies, we’re thinking about

the distance “as the taxi drives.” The trouble is this can be affected by matters

such as: is the taxi driver going the long way round? So we’d better assume

we have an honest taxi driver, just like we assume the crow is going to take

the shortest route rather than some scenic detour. The important difference is

that distance now depends on things like one-way streets, and suddenly the

principles that are followed by crow-distance might not hold for taxi-distance.

(Perhaps one day we’ll have flying taxis that will really take us as the crow

flies, but not yet.)

Here’s an example. For a crow, the distance from A to B is the same as the

distance from B to A. But this is not true for a taxi. For example if you hail

the cab at one end of a one-way street and get it to take you to the other end,

that will be a much shorter journey than when you try to go home again and

have to go the long way round.

If I get directions on Google Maps between Sheffield train station and

Sheffield town hall, I get this:

Station to town hall by car 1.4 miles

Town hall to station by car 0.9 miles

As the crow flies 0.5 miles

In a place like Sheffield it’s quite hard to work out the taxi-distance from

A to B, because the one-way system is complex, because the streets are so

bendy, and because you’re so concerned about how expensive the whole thing

is becoming you can’t really focus on distances. So let’s talk about Chicago,

where it’s much easier to work out taxi-distance for several reasons:
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1. Mostly it’s a grid system, so the roads are all long and straight and meet

at right angles.

2. The addresses are numbered according to distance, so “5734 South” (the

house number of the Math Department of the University of Chicago)

tells you how far south of zero the building is, not that it’s the 5734th

building down. This blew my mind when it was first explained to me.

800 = 1 mile, so you can calculate relatively easily how far your taxi has

to go.

3. The one-way system is fairly sensible, so that it’s mostly possible to

get where you’re going without doubling back on yourself too much,

as long as you know the system and make your turns at well-timed

moments.

4. Taxis are much cheaper than in London, so I don’t get quite so worked

up about how much it’s going to cost.

Aside from getting worked up about the cost, this doesn’t

really depend on being in a taxi rather than any other kind of car.

However, it is a genuine mathematical concept called the taxicab

metric. It might be because it’s the kind of thing mathematicians

think about when sitting in a taxi, whereas if they’re in a car

one hopes they’re concentrating on the traffic. We are gradually

building up to the notion of “metric,” by investigating what sorts

of properties distance-like notions should have.

Of course, Chicago isn’t precisely a grid system at all times, and there are

big highways that cut across the grid system at diagonals. So we’re throwing

away the details about diagonals for the time being. Later we’ll see that this

process of throwing away inconvenient details is a form of “idealization” that

is a key part of mathematics. This can seem frustrating (there simply are

diagonal highways in Chicago), but the point is to shed light on something
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rather than to model it precisely. Our aim now is to shed light on the notion

of “distance.”

Now that we’ve turned Chicago into an “ideal grid” that taxis drive across,

making only right-angled turns, the taxi-distance from A to B is simply:

Horizontal distance+ Vertical distance

That is, no matter what clever route the taxi driver takes, it can’t get any

shorter than simply driving all the way across first, and then all the way down

afterwards. Even if we make the turns in different places, say like this:

the distance is still the same, because we’re not taking into account the time it

takes to turn a corner. However, it would be longer if we did something really

bizarre, like this:
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If you remember anything about the Pythagorean theorem, you may re-

member that it tells us how to calculate the length of the diagonal edge of a

right-angled triangle. In our case, that’s the distance as the crow flies.

Vertical distance

V = 4 blocks

Horizontal distance

H= 3 blocks

Diagonal distance

D= ?

In Pythagoras’s case, that’s called the “hypotenuse.” The Pythagorean theo-

rem says

The square of the hypotenuse is equal to the sum of the squares on

the other two sides.

What this means on our diagram is:

D2 = V 2 +H2

and we can work out that the diagonal, crow-flying distance is 5.
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D =
√
V 2 +H2

=
√
42 + 32

=
√
16 + 9

=
√
25

= 5

The crow only has to fly the distance of 5 blocks. The taxi, however, has to go

the vertical distance and the horizontal distance:

Taxi distance = V +H

= 4 + 3

= 7

The taxi has to drive the distance of 7 blocks. The crow knows that taking

some sort of diagonal route across the grid would definitely be shorter. But as

a taxi, even if we tried to wiggle in a diagonal sort of fashion across the grid,

it wouldn’t help us—we’d still have to wiggle in only horizontal and vertical

straight lines, and it would still add up to the same total horizontal distance

and total vertical distance. And worse, we’d have to turn a lot of corners in

the process.

Still, the taxi-distance is a perfectly good notion of “distance,” and is an

example of generalization. Again, we have taken a notion that we know and

love, and we can now see what other notions are a bit like it but somehow

different. What sorts of things should also count as “distance”? This idealized

taxi-distance obeys two crucial rules that crow-distance obeys:

1. The distance from A to A is zero, and that’s the only way of getting a

zero distance.

2. The distance from A to B is the same as the distance from B to A.
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But there’s also a third rule that is related to Pythagoras’s triangle. It says

that if you’re trying to go from A to B, it can’t be any better to go via some

random other place C. Usually that will make it worse:

A

C

B

At best, C was on the way from A to B anyway, and going via C made no

difference.

A C B

(You might have trouble trying to persuade a taxi driver of this, though.) This

rule about stopping off on the way is called the “triangle inequality” because

it’s about the edges of a triangle—not necessarily a right-angled one any more.

It’s like a very puny version of the Pythagorean theorem.

Pythagoras: Yes! If we have a right-angled triangle then we can

work out the exact length of any side from the other two!

Triangle inequality:Um, if we have a non-right-angled triangle

then we know that the length of the third side will be at worst the

sum of the other two.

Here “worst” means “longest” (because we’re thinking taxis), so what

we’re saying is that if the sides of the triangle are x, y, and z then the biggest

x can be is y + z. You can imagine this as being an extremely long and thin

triangle where the y and z edges have pretty much done the splits, so x has

to be really long to accommodate them, like this:

x

zy

Now if we think of the edges of that triangle as the distances between our

three places A, B, and C then we get the “intermediate stopping place” rule

from before.

There are two curious things about this triangle inequality rule, I think.

The first is that the taxi-distance still obeys this rule. The second is that there’s

a perfectly common “distance-like” situation that does not, which is the cause

of endless frustration to me: train tickets.



84 How to Bake π

Train Tickets
Generalizing the Notion of Distance a Bit More

If you’ve taken many trains around the United Kingdom you’ll know exactly

what I mean. It’s the infuriating fact that sometimes, if you want to take a

train from A to B, it’s cheaper to buy two tickets, going via some other place

C. It’s particularly stupid because you don’t even have to take a different

route—you just have to split the ticket in two. You don’t always even have to

get off the train. Remember here we’re not thinking about the actual distance

covered in going from A to B, but the cost of going from A to B. In a sensible

world, this would obey the triangle inequality—it would not cost less to go

via some other place C. But in reality it does or, at least, it can.

For example, to go from Sheffield to Cardiff it can be cheaper to buy a

ticket from Sheffield to Birmingham and a ticket from Birmingham to Cardiff.

To go from Sheffield to Gatwick it can be cheaper to buy a ticket from

Sheffield to London and another from London to Gatwick.

To go from Sheffield to Bristol it can be cheaper to buy a ticket from

Sheffield to Cheltenham and another from Cheltenham to Bristol.

This is aside from the various other anomalies of UK train ticket prices,

such as:

• Sometimes it’s cheaper to go first class than standard.

• Sometimes it’s cheaper to go further—for example, London–Ely can be

cheaper than London–Cambridge even though the Ely train stops at

Cambridge on the way.

• Sometimes it’s cheaper to get a flexible ticket (where you can travel at

any time of day) rather than one where you can only travel off-peak.

These last points are harder to explain in relation to the three rules of

distance, because they’re more to do with the interaction between cost and

distance, or cost and time. So we’ll leave those for now. Often in mathematics

we focus on the easier things first, not because we’re being wimps, but be-

cause the harder things are often built up from the easier things, and so we

have to get the easier things right first.
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In order to see why rules are imposed, it’s often helpful to look at situa-

tions where they are not obeyed. Why is drinking alcohol not allowed on the

Tube? Because it caused havoc.Why is smoking not allowed in Tube stations?

Because there was a huge fire that killed people. This is similar to wanting

to understand the principles behind things, rather than just memorizing the

rules or blindly following instructions in a recipe.

Now our three rules of distance are:

1. The distance from A to B is zero when A and B are the same place, and

this is the only way the distance from A to B can be zero.

2. The distance from A to B is the same as the distance from B to A.

3. The distance from A to B can’t be made shorter by going via C.

Now that we’ve come up with a proposed list of axioms for the notion

of distance, we’ll do what is often the temptation when presented with a

list of rules: we’ll try to break them. The point of trying to break rules in

mathematics is not to be arbitarily rebellious, but to test the strength and the

boundaries of the world that we have set up.

We’ve seen distance-like situations that break rule 3 (train tickets) and 2

(one-way streets) but what about 1? You might think there’s no real situation

that violates rule 1, but here is one.

Online Dating
Generalizing the Notion of Distance Yet Further

GPS is marvelous technology. It means I get lost a lot less than I used to,

especially on buses, where I can follow my position along the map on my

phone, and then miraculously get off the bus in the right place.

GPS has also made online dating rather immediate. In the old, slow model,

you could see if someone lived in the same city as you, or within, say, 100

miles, or 200 miles. With GPS, you can see how many feet away this person

is right now. I’ve watched friends of mine do this in bars (just for a laugh,

of course. . . ) and the excitement of seeing how close someone is is palpa-

ble, especially when they’re getting closer. “Ooh, this one is only 200 feet

away. . . 150 feet away. . . 50 feet away—wait, doesn’t that mean he’s in here?”
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However, this can cause great disappointment because the distances are

based only on GPS, so they don’t take into account how far off the ground

you are. A friend of mine was lonely in a hotel room somewhere and was

perplexed at the number of interested parties who were supposedly “zero feet

away.” “And yet,” he lamented, “Here I am alone in my hotel room.”

This is an example of a distance-like notion that does not obey the first

rule of distance—that you can only be zero distance away if you’re actually in

the same place. This is also relevant to some situations that are slightly more

useful than lamenting your online dating problems. For example, suppose

your distance-like notion is not actually the distance from A to B, but the

amount of energy you need to expend to transport something from A to B.

Then if A is directly above B you can just drop it, so the energy used getting

it from A to B is zero, even though A and B are not in the same place.

A “distance-like notion” is called a metric in mathematics.

There’s one more rule it has to satisfy that we didn’t bother men-

tioning: that the distance from A to B is never negative. There are

even situations where it’s useful to relax this rule, such as if we’re

studying how much it will cost to transport something from A to

B. Not only might it cost you nothing (so the “distance” would be

zero) but someone might even pay you to do it. Coffee growers

in Costa Rica are paid to send their coffee to Europe to be decaf-

feinated, because the caffeine that is extracted is so valuable to

the makers of energy drinks.

Relaxing one or more of the usual rules for metrics is one way

to generalize the notion of distance in mathematics. A different

way combines generalization with abstraction, and gives us the

notion of topology, which we’ll look at later in this chapter.
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Three-Dimensional Pen
Generalizing by Adding Dimensions

The problem with using GPS for online dating, as we saw above, is that it

assumes we’re only in a two-dimensional world. This usually works fine for

finding your way around in a car, but not for finding a potential date inside a

skyscraper, where the third dimension is rather important.

Increasing the number of dimensions is an important form of mathemat-

ical generalization. There’s a joke that if you’re at a math research seminar

you can ask an intelligent-sounding question even if you don’t understand

anything, by saying, “Can this be generalized to higher dimensions?”

A sphere is a higher-dimensional generalization of a circle, if you think

about a circle in the right way. Let’s think about drawing a circle with a pair

of compasses (although these days we all just draw circles by selecting a circle

function on a computer). With compasses, you first choose a size (radius) for

your circle, so let’s say you open the compasses to 5 cm. Then you fix the

pointy tip on the page where the center of your circle will be, and then with

the drawing end you essentially mark every point on the page that’s exactly

5 cm from the center.

Now imagine you have a pen that can draw in midair, which is something

I’ve always dreamed of. Then you could fix your compass point somewhere,

and use your midair pen to mark every point in the air that was exactly 5 cm

from your chosen center, in all directions. This would be a sphere.

At this point mathematicians are perfectly happy to generalize this to

four, five, or even more dimensions, although we don’t exactly know what

that means. A sphere of radius 5 cm in 4-dimensional space is “all the points

in that space that are exactly 5 cm from a fixed center.” Because it’s an idea

rather than a physical object, it doesn’t matter that we don’t know what it

looks like. It only matters that the idea makes sense. But just because one

generalization makes sense doesn’t mean there aren’t others that make sense

too.
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Donut
A Different Generalization of a Circle

Imagine a donut. A ring donut.

When mathematicians say “donut” they always mean a ring donut at least

when they’re talking about math. Perhaps they should start saying “bagel”

instead.

How would you generalize a bagel? The most obvious way is to give it more

holes. A two-holed bagel!

But there is another way to generalize it. For this we have to be a bit more

careful about this bagel/donut of ours. When mathematicians think about
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donuts they’re usually only thinking about the surface of the donut, not the

solid donut. Just like when they say “sphere” they only mean the surface of

the ball, like the skin of an orange, not the whole orange. A sphere is like a

balloon, with empty space on the inside.

Likewise for donuts. Perhaps you can imagine taking a rubber tube and

bending it round into a hoop. Or perhaps imagine taking a Slinky and bending

it round so that the ends meet up. It will look like a donut, but be hollow.

This is technically called a torus.

Now, let’s think about how we made it from a tube. You could also imag-

ine trying to make it out of soap bubble—the kind you make by dipping a big

hoop in bubble liquid and waving it in the air. Imagine taking this hoop and

dragging it through the air for a while—you make a sort of bubble tube as

you go. Now imagine dragging it in a big circle so that it comes back to meet

itself. It will be like a donut—a hollow donut. A hollow bubble donut.

We made this by dragging a hoop through the air in a circle, which shows

that the torus is a generalization of a circle—all we’ve done is draw in the air

with a hoop instead of a midair pen. Now, for the generalization of the torus

things are going to get a bit weird. Imagine dragging an entire donut through

the air in a circle. It’s pretty difficult to imagine what this looks like, because

it doesn’t really fit into three-dimensional space, but perhaps you can at least

imagine that it’s definitely not the same as a two-holed donut.
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Sweeping Statements
A Different Kind of Generalization

It always rains in England.

The trains never run on time.

Opera is really expensive.

You always say that.

These are all sweeping statements, or generalizations. But they’re different

from the kind of generalizationwhere you turn a bagel into a two-holed bagel.

This kind is not about relaxing conditions to allowmore people in, but is more

like ignoring outlying cases temporarily, to focus on the central part of the

bell curve.

Of course, these sweeping statements aren’t entirely true. Occasionally,

trains do run on time. And sometimes it stops raining in England. And you

can easily get opera tickets in London for under ten pounds. And you don’t

really say “that” (whatever that is) all the time, just in certain situations. The

question is, do these exceptions matter? Do we study exceptions, or do we

study the main body of behavior?

The answer, surely, is both. And, more to the point, we can’t really study

one without studying the other. There are interesting things to be learned

from the extremities of behavior, even if those extremities are rare, so not at

all representative. But how can we know in what way something is unusual

if we don’t also study what is usual? That involves temporarily ignoring the

extremities.

Bagels, Donuts, and Coffee Cups
An Introduction to Topology

Combining our previous discussions about distances and bagels brings us to

a branch of mathematics called Topology, which studies the shapes of things.

We’ve already seen ways of generalizing the notion of “distance” so that we

have something a bit like distance, but not necessarily satisfying all of the

usual rules that distance does.
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But now we can generalize this even more, because there are times when

we don’t mind somuch exactly how far apart two things are, but only whether

we can get from one point to the other, and how. If you live in the south of

England, the Isle of Wight is probably closer than Scotland, but the fact is that

you can’t just drive there—so it’s a whole different kind of hassle.

Something similar can happen with neighborhoods of a city. Some cities,

like Chicago, can change rather abruptly from one block to the next, where

one neighborhood ends and another begins. It doesn’t matter that you’ve only

traveled one street over—the distance is very small, but you’ve gone into a

completely different neighborhood.

When we don’t care about distance it means we also don’t care about size,

just like with the similar triangles, so all these are “the same.”

Another related thing we might not worry about is curvature, so these two

shapes also count as “the same”:

In fact, the only thing we’re really worried about is the number of holes some-

thing has. So now we have a system under which not only are all triangles

“the same,” but triangles are also “the same” as squares and circles: they’re

all shapes with one hole. However a figure 8 is “different” because it has two

holes.

One way to think about this is to imagine that everything is made of

plasticine or playdough, and you want to know if you can bend one shape

into another without making any new holes or sticking anything together.
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Question: Which capital letters of the alphabet are “the

same” in this bendy sense?

• There are letters with no holes: C E F G H I J K L M N S T

U V W X Y Z

• There are letters with one hole: A D O P Q R

• There is just one letter with two holes: B

What this says is that topologically almost all letters are the

same. This is one of the reasons that computer recognition of

handwriting is so hard.

We can also try this in higher dimensions. Imagine trying to make a bagel

(a solid one, not a hollow one) out of a lump of playdough. There are basically

two ways of doing it: you could either make a sausage shape and stick the

ends together, or you could poke a hole in the lump. Either way, you’ve done

something that shows that a bagel is not topologically the same as a plain

lump. However, once you have your bagel/donut shape, you can make a coffee

cup withoutmaking any new holes or sticking anything together. The donut’s

hole can turn into the handle of the coffee cup, and then you just need to

squash an indentation in the rest of it to make the cup part. What this says is:

Topologically, a bagel is the same as a coffee cup.

However, the “two-holed bagel” pictured earlier is definitely different. The

study of which things are topologically the same and which are different has

many applications. For example, we talked about the mathematics of knots

earlier on, and these are studied using topology. The amazing idea here is like

the kind of drawing where instead of drawing on a blank page, you color in

an entire page and then erase parts to make a picture in white. Now we’ll

imagine doing this in three dimensions.
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Imagine your midair pen again, and imagine that you have “colored in”

the whole inside space of a box. Now you take a “midair eraser” and erase a

knot from what you colored in. What is left is something with a curious shape

that’s almost impossible to imagine, but very handy to study mathematically.

A Challenge for Your Imagination

The process of erasing something in three dimensions that we just described

is called taking the complement. Once we’ve done it, we can imagine that we

are allowed to squash what’s left just as if it were playdough, again with-

out making any new holes or sticking things together. Can you imagine the

following complements?

• The complement of a circle is topologically the same as a

sphere with a bar stuck across the middle of its empty insides:

• The complement of two interlocking circles

is topologically the same as a sphere with a torus stuck on the inside of

the surface, in the empty space:
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Those were only very simple shapes, and already it’s very hard to imagine

them in your head. The power of mathematics is that it enables us to study

these things rigorously without having to imagine them at all.

Here’s another example, involving cutting out shapes and sticking the

sides together to make something three-dimensional. You may remember

how to make a cube starting from a flat shape.

If you cut this out and fold it along the lines, you can stick the edges together

to make a cube. If you try it with this one

you will get a triangular pyramid that is technically called a tetrahedron.

Now imagine that you have some bendy playdough paper. Now we can

make a bagel/donut/torus out of a square like this—here we have to make

sure we stick the edges labeled A to one another, with the arrows matching

up, and likewise the edges labeled B:

A A

B

B
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Now here’s a serious challenge. Can you imagine what shape you’ll get if you

cut out this octagon and stick it together according to the labels?

A

B

A

B

C

D

C

D

The answer is: a two-holed bagel.

Now imagine trying to generalize this for even more holes. It’s pretty

hopeless to try and do this in your head, but topology gives us a way of

studying these things rigorously, for shapes much harder than those that our

imaginations can ever visualize.

A Generalization Game

What do the following shapes have in common?

square, trapezoid, rhombus, quadrilateral, parallelogram

The answer is that they all have four sides. Now can you see how to

arrange them in order of increasing generality? And what is the process of

generalization to go from each one to the next?

The answer is:

square, rhombus, parallelogram, trapezoid, quadrilateral

The processes of generalization are like this:

• A square has all four sides the same length, and all four angles the same.

• A rhombus only has all four sides the same, so the step of generalization

is to allow the angles to be different. However, they will be forced to be

in pairs—the angles opposite one another have to be the same as one

another just because the sides are all the same length.
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• A parallelogram is like a rhombus but now only the sides opposite one

another have to be the same length. There’s no generalization regard-

ing the angles, which will still be forced to be the same in opposite

pairs. Note that opposite sides are forced to be parallel, because of the

opposite angles being the same.

• A trapezoid only has the condition that one pair of opposite sides has

to be parallel. So there’s no longer any condition on the lengths of the

sides or the sizes of the angles. They can now all be different.

• A quadrilateral is any old shape with four sides, so in this step we have

generalized by dropping the condition that one pair of sides has to be

parallel.

In this example we can see that each step of generalization occurred by

dropping some conditions on the shape in question, so that more shapes were

allowed into the picture. Relaxing conditions slightly is one of the common

ways of performing a generalization in math.

You might have noticed that there’s another possible step in this gener-

alization, via another type of four-sided shape that we didn’t mention above:

the rectangle. A rectangle is a different way of generalizing a square—where

a rhombus still has the same lengths of sides, but possibly different angles, a

rectangle has the same angles, but possibly different lengths of sides. When

we relax rules one by one, we get different routes to generalization depending

on the order in which we relax the rules. Generalization is not an automatic

process. There are always different possible generalizations depending not

just on how far you go, but on what point of view you take. This is one of the

reasons mathematics as a subject keeps growing at an ever-increasing rate, as

each generalization gives rise to a multitude of others.



Chapter 6

Internal vs. External

Chocolate and prune bread pudding

Ingredients

10 oz. stale bread, without crusts

2 eggs

3 oz. brown sugar

4 oz. dark chocolate

11
4 cups milk

14 oz. chopped prunes

2 oz. melted butter

Method

1. Break the bread into small pieces and make it into bread

crumbs in a food processor.

2. Beat the eggs and the sugar, melt the chocolate gently

with the milk, and mix it into the eggs.

3. Pour over the bread and prunes in a large bowl, and leave

it to soak for a few hours.

4. Mix in the melted butter, then bake in an 8-inch square

cake pan lined with parchment, at 350◦F for 45 minutes or

until set and slightly crispy on top.

5. Serve warm with chocolate sauce.
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I came up with this recipe for chocolate and prune bread pudding after

making Christmas pudding one year (the English kind, which resembles a

dark, sticky fruit cake). I had leftover bread (which had gone stale because

I’d cut the crusts off) and prunes (which quickly go rock hard once you’ve

opened the bag). And of course I always have plenty of chocolate in the house.

There are many dishes invented by our more frugal ancestors for using

up leftovers. Cottage pie and shepherd’s pie use up leftover roast meat from

Sunday lunch. Bread pudding and French toast (or, as the French call it, “pain

perdu,” which translates literally as lost, or wasted, bread) make use of stale

bread by softening it up in egg and milk. There’s the Chinese version, where

leftover rice is similarly fried with egg to soften it up again. Overripe bananas

can be made into delicious banana bread. And everyone has their favorite dish

to make out of the mountains of leftover turkey that are somewhat inevitable

after holidays. Curry? Pie? My favorite was my mother’s turkey spaghetti

salad with peanut sauce. In all these cases you’re sort of doing things the

wrong way round if you go and and deliberately look for the ingredients to

make a dish that was supposed to use up leftovers.

There’s a similar issue even if you’re deliberately making a dish from

new ingredients, as we mentioned in Chapter 1: you could pick a recipe and

go shopping for the ingredients you need, or you could buy some ingredients

that look interesting, and invent something with them. All this illustrates the

difference between what I call internal and external motivation. If you set out

with a recipe in mind, this is an external motivation. If you make something

up from the ingredients you have, it’s an internal motivation. Sometimes you

set out with something in mind, but make it up as you go along to see what

will happen. If it then matches up with whatever you had in mind to make,

your internal and external motivations have gloriously come together. Some-

times things turn out completely differently from how you were expecting

them but are still fantastic. Or maybe you had no idea what to expect at all

(like when I first tried making raw chocolate energy bars) but it’s fantastic

anyway. This is what we might call a happy accident. That is different from

the internal and the external matching up.

Funnily enough, in the kitchen I’m much more externally motivated. In

math, I’m very internally motivated.
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Here’s a small mathematical example. If I give you the fol-

lowing numbers

25 50 75 100 3 6

you could mess around and see what other numbers you can

make by adding subtracting, multiplying, and dividing, the way

contestants do on the British TV game show Countdown, in

which they compete in number and word puzzles. That would

be like an internal motivation, where you start with some ingre-

dients and see what you can build with them.

Or if you were actually on Countdown, you might try to use

these numbers to make a given number, say, 952, like the mathe-

matician James Martin did rather spectacularly some years ago,

as follows:
(100 + 6)× 3× 75− 50

25
= 952.

That was like external motivation, where you try to build some-

thing specific in whatever way you can.

Tourism
Using a Map vs. Following Your Nose

When you’re visiting a new city, do you set out to look for particular attrac-

tions that you’ve heard about, or do you just plonk yourself in the middle of

the city and follow your nose? People often say that their favorite thing about

a vacation was when they were just wandering around and discovered some

little hidden gem down a backstreet. Sometimes this happens when you’re

trying to get to the Eiffel Tower or the Empire State Building or some other

much-trumpeted destination, and you stumble upon a fantastic little cafe on

the way.

Math is like this too. A lot of math happens by trying to answer a par-

ticular question or solve a particular problem. That is, you have a particular
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destination in mind and you just want to get there. This is external motiva-

tion. Many of the great problems in the history of math have been like this:

a particular question needs answering, and nobody really minds how it’s an-

swered as long as it gets answered.

One of the problemswith learningmath at school is that almost everything—or

maybe everything—is externally motivated. You’re always just trying to solve

a problem, and worse, it’s a problem that somebody else set for you, that you

probably have no need to solve apart from for your math homework or math

exam.

Take solving quadratic equations. You might remember from

your past, or from Chapter 2, that if you’re given an equation

like this

ax2 + bx+ c = 0

the solutions are given by this formula:

x =
−b±√

b2 − 4ac

2a
.

This formula was produced just for solving that equation. You

wouldn’t exactly come up with it for fun and think “I wonder

what I can do with this?”

In real research math, it often happens the other way, where you just give

yourself a starting point in the mathematical world, and see where it takes

you. I call this “internal motivation.” It’s a bit less dramatic, and so tends to

get less attention, just as your little gem down a backstreet is much less dra-

matic than the Eiffel Tower and probably won’t get a mention in the guide-

books. But what is it that makes Paris what it is—the Eiffel Tower, or all the

little gems down backstreets? Surely both, and indeed, the way they are jux-

taposed.
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One of the most famous instances of this is the study of prime num-

bers, which was not thought to have any useful applications for hundreds

of years. And yet, mathematicians were fascinated by studying them just be-

cause they’re intrinsically fascinating, and seem so fundamental. How could

they have known that a theorem proposed by Fermat in 1640 and proved

by Euler in 1736 would become the basis for internet cryptography several

centuries later? Even computers were hundreds of years away. Incidentally,

this is the same Fermat of “Fermat’s Last Theorem” fame, but the theorem

in question is known as “Fermat’s Little Theorem” to distinguish it from the

“big” one.

In fact, Fermat’s Last Theorem itself is an example of the curious ways in

which the internal and external motivation can interact. First, there are the

discoveries you can make along the way to the question you’re trying to an-

swer. Along the way to proving Fermat’s Last Theorem, Andrew Wiles made

many important discoveries about elliptic curves, which might not sound like

they should have anything to do with Fermat’s Last Theorem. Remember,

this theorem says it is impossible to make the following equation work with

whole numbers a, b, c, and n if n is bigger than 2:

an + bn = cn.

But there’s also the interaction the other way, the way that I find the most

satisfying and beautiful. This is where you put yourself in the middle of a city

and have in mind that you’d like to see the Notre Dame Cathedral, let’s say,

but instead of just going straight there following a map, you follow your nose

down the interesting winding streets in the way that interests you. And then

lo and behold, you find yourself at the Notre Dame. In the case of Fermat’s

Last Theorem, mathematicians were also working on elliptic curves for their

own sake, in a way that happened to help with proving the theorem.

When math is done purely by external motivation, it might be like taking

such a determined route to the Notre Dame that you walk up a horrible main

road for ages. You could say this is math that is overly utilitarian or pragmatic.

When it’s done purely by internal motivation, you might go on a very pretty

journey but never arrive at anything notable. You could say this is math that

is overly idealistic or aesthetic. When the two coincide you get a journey that
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is interesting in its own right, with a destination that is also interesting in its

own right—the best of both worlds, and the most beautiful of mathematics.

Different areas of math have a different emphasis. Number theory has

many famous unsolved problems that mathematicians are trying to solve in

whatever way they can. Category theory is a bit different. One of its aims

is to find the internal motivation behind everything, or to find the point of

view that illuminates the internal motivation that was secretly already there.

In Part II we’ll see various ways in which category theory does this. Here’s

an example. We can think about all the possible factors of 30, that is, all the

whole numbers that go into 30. These are:

1, 2, 3, 5, 6, 10, 15, 30

However, just listing them all in a row like this is not as illuminating as it

might be, because some of these factors are also factors of each other. If we

draw lines between all the ones that are factors of each other, we get a picture

like this: 30

6 10 15

2 3 5

1

However this is a bit of a mess. We can clear it up if we decide only to draw

lines where there isn’t another factor in between. So we’ll put a line between

6 and 30, but not a line directly from 2 to 30, because 6 is in between. In that

case we get this more satisfying picture:
30

6 10 15

2 3 5

1

We’ll come back to this sort of picture later and see that this is exactly how

category theory brings out structure, making concepts visible in geometrical

diagrams.
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Jungle
Invention vs. Discovery

Sometimes I think about how different the world of research was when there

were still parts of the earth unmapped, still new large animals to be discovered

least by Europeans. I suppose there are still new insects and bacteria and

plants being discovered, but imagine being the first Europeans to see a platy-

pus. And nobody believed them—when the specimen and drawing arrived in

Great Britain, in 1798, it was suspected of being a hoax, perhaps created by a

skilled taxidermist attaching a duck’s beak to some other animal.

Here’s some math that some people think is a hoax. People often say to

me “Math is always just right or wrong—I mean, 2 + 2 just is 4.” And yet, I’m

now going to explain that sometimes 2 + 2 = 1.

Do you think I’m pulling your leg? I’m actually not. There is a world of

numbers in which this is true. It’s like being on a three-hour clock instead of

a twelve-hour clock. We’re quite used to the fact that if it’s now 11:00, then

two hours later it will be 1:00. In other words:

11 + 2 = 1.

If we were on a three-hour clock

1

3 2

then two hours later than 2:00 it would be 1:00, in other words:

2 + 2 = 1.

This example might seem a bit contrived, like I’ve invented it for the sole pur-

pose of making a silly answer for two plus two. That is, I made it with external

motivation. But later on we’ll see that this “three-hour clock” number system

arises quite naturally from internal motivations, and is quite important.

at

—
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Here’s an internally motivated example of a strange mathe-

matical creature. You might remember what the graph of y =

sinx looks like:

and what the graph of y = 1
x
looks like:

Now we might blithely try combining these, to look at the graph

of y = sin 1
x
. This function is very wild.

On the other hand, sometimes mathematicians set out deliber-

ately looking for wild functions, like looking for the Loch Ness

Monster. What usually happens is that they want a particularly

wild example of a function or a space or something, so they de-

liberately make one up.

Here’s an example of a wild function that’s been “made up”

with external motivation. We say f(x) = 1 if x is rational, and

f(x) = 0 if x is irrational. This function is basically impossible

to draw because it leaps up and down between 0 and 1 all the

time.
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An example of a space that’s been deliberately made up to

confuse everyone is known as the “Hawaiian Earring.” You start

with a circle of radius 1, then you draw a circle of radius 1
2 stuck

to it somewhere on the inside.

Then you add a circle of radius 1
3 attached at the same point,

and then a circle of radius 1
4 , and then 1

5 , and you keep going

“forever.”

Remember, this is math, so you don’t actually have to sit there

drawing forever: you just have to imagine that you did. Any-

way the Hawaiian Earring has very strange and wild properties,

which are quite exciting to topologists.

Jigsaw Puzzle
Fitting Pieces Together vs. Looking at the Picture

When you sit down to do a jigsaw puzzle, do you look at the picture on the

box first, and match up all the pieces to the picture? Or do you put the picture

away and just work out how the pieces fit together by comparing them to

each other?

If you use the picture on the box, that’s like an external motivation in

math. You have a clear end result in mind, and you’re trying to get there. If
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you don’t look at the picture, that’s like internal motivation. You’re trying to

see how the pieces fit together based on their own structure and their rela-

tionships with each other, not their relationships with something external.

I’ve found that a small child’s first instinct is often the internal rather than

the external, with jigsaw puzzles. They seemmore likely to just keep trying to

fit pieces with each other if they look vaguely similar, rather than comparing

the pieces with the picture on the box. In fact, I’ve found it quite hard to

persuade small children there’s any point at all in looking at the picture on

the box; I suppose there is some stage of development where they make the

connection between the internal and the external. There’s also a more literal

sense in which they seem more interested by the internal than the external:

they tend to start with the middle of the puzzle, where the interesting part is.

Most adults have learned, at some point when they’re growing up, that the

sensible way to start a puzzle (at least, assuming it’s rectangular) is to find

the four corners, and then find all the edge pieces, and put the edge in place.

Children, at least the children I know, don’t seem to want to do that at all.

When I took physics in high school we were given a formula sheet that

made the whole thing more like a jigsaw puzzle than a test of physics knowl-

edge. So we had a list of helpful formulae that we weren’t expected to remem-

ber, such as:

force between two point charges F =
1

4πε0

Q1Q2

r2

force on a charge F = EQ

field strength for a uniform field E =
V

d

field strength for a radial field E =
Q

4πε0r2

Now, I’ll be the first to admit that a lot of it didn’t really mean anything

to me. In fact, I was quite proud that I found a way of doing extremely well
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in physics without really having to understand any physics. I just read the

question, wrote down all the letters corresponding to the quantities given in

the question, and then scanned the formula sheet for a formula containing all

the correct letters. This is like the efficient adult way of doing a jigsaw puzzle

by external processes rather than internal ones. I felt I had worked out the

most efficient way to get an A in physics with the least possible work.

Later we’ll see that category theory often bridges the gap between inter-

nal and external processes. It makes the internal processes more geometrical,

so that sometimes it really is like fitting a jigsaw puzzle together.

Here’s an example of a jigsaw puzzle in category theory. You can try fit-

ting the pieces together even without knowing what they mean. We have two

pieces:

FA GA

FB GB

αA

αB

Ff Gf

GA HA

GB HB

βA

βB

Gf Hf

and we want to make this picture:

FA GA HA

FB GB HB

αA

αB

βA

βB

Ff Hf

We can just fit the two pieces together sideways to build the picture like this:

FA GA HA

FB GB HB

αA

αB

βA

βB

Ff Gf Hf

This is a very typical calculation in category theory. The pictures get bigger

and and more complex and there are more and more pieces we get to use.
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However, because the pieces are abstract pieces, we have an endless supply

of them and we can use each one as many times as we want.

In case you’re wondering, this is part of the proof that com-

posing natural transformations component-wise yields another nat-

ural transformation. More generally, this sort of jigsaw puzzle in

category theory is called “making diagrams commute,” and is

something I find fun and satisfying.

Marathon
Getting Fit vs. Training for a Race

If you work out or do something to keep physically fit, are you always train-

ing for a specific event? Some people always aim for a specific event like a

marathon, a triathlon, or an expedition, to keep themselves motivated. Others

do it for general fitness, enjoyment, or stress release. Of course, it’s probably

some kind of combination of those things—if you don’t enjoy running in the

first place, then aiming for a marathon is hardly going to help.

When I ran the New York marathon I had to change my workout dra-

matically. I had read various articles saying that you can run a half marathon

without really specifically training for it, but not a marathon. Indeed I had al-

ready run the London Half Marathon without specifically training, other than

doing my usual every-other-day gym routine. However, I had a reasonably

fit friend who had tried to run the New York marathon without specifically

training, and he had damaged his knee.

So I did much longer workouts, building up my stamina, and followed a

pattern of fortnightly long runs that I found online somewhere, tapering off

in the last few weeks so that the longest long run occurred something like a

month before the actual marathon. It all worked fine, and I finished in exactly
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the time I planned (which was in fact extremely slow, but I had very realistic

expectations of myself).

This is all to say that for about six months my workout became externally

motivated—I had a specific aim in mind and everything was geared towards

that aim. By contrast, before that, and ever since, my workout has been in-

ternally motivated, without a specific aim (“general fitness and weight loss”

not counting as a specific aim here). The point is the workout itself, and how

much I enjoy that process in its own right.

Math is often sold for its external motivations—it is useful for getting

a job, it is useful for real-life situations. But just like with the marathon, if

you don’t enjoy it in the first place, then imposing some contrived “real” life

situation on it won’t help. Take this example that a friend of mine gave me

recently—she was trying to help her son with his homework, but needed help

herself.

George drove 764 miles last week and his car used 15 gallons of gas.

If George averages 54 miles per gallon on highways and 31 miles

per gallon in town, how many miles did he drive in town?

The sad thing about this question is that it tries to give an external motiva-

tion, but the scenario is completely contrived. Why would you need to know

how many miles George drove in town unless you’re his wife and trying to

see if he’s having an affair? Maybe George needs to know, but wouldn’t it be

easier for him to remember how far he drove on highways and just subtract

that from 764?

However, the internal motivation behind this question is much more in-

teresting to me. This problem has two unknown quantities: the number of

miles driven in town and the number of miles driven on highways. It also has

two pieces of information relating them: the total miles driven and the total

gas used. This is a jigsaw puzzle that has the right number of pieces.

The first step is abstraction—turning the wordy problem into a piece of

math with some letters, numbers, equations, and so on. If we write H for the

number of miles driven on highways and T for the number of miles driven in

town, we can then turn our two pieces of information into equations.
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• The total miles driven is 764, which means

H + T = 764.

• On highways he gets 54 miles to the gallon, so the number of gallons

used on highways is H
54 .

• In town he gets only 31 miles to the gallon, so the number of gallons

used in town is T
31 .

• The total gallons used is 15, which means if we add up the gallons used

on highways and in town, we should get 15, that is:

H

54
+

T

31
= 15.

So we have two unknowns and two equations governing them. Intuitively

you probably realize that if we had 200 unknown quantities and only one

equation governing them, we would have not nearly enough information to

work out what all the unknown quantities are. But in general if we have the

same number of equations as unknowns, then we’re in good shape.†

Personally I think that actually finding the answer at this point is the

least interesting part, but that’s because I particularly enjoy the process of

abstraction, and enjoy that more than the process of doing calculations. In

fact, did you recognize this situation from earlier in the book? Now that we

have turned George’s situation into two linear equations, it’s just another

example of the pair of equations we looked at in Chapter 2, which came from

a question about my father’s age. We have abstracted far enough to get to

a situation that we’ve already solved, so we definitely don’t need to do any

more work.

But here’s the calculation in any case.

† There are two potential problems, though: the two equations could be contradictory, or they

could be essentially the same. We won’t go into that here.
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Start with the second equation: we get rid of the fractions by

multiplying by 54 and 31, to give

31H + 54T = 15 × 54 × 31

= 25110

Now, subtracting T from both sides of the very first equation we

get

H = 764 − T

which we can now substitute in to get

31(764 − T ) + 54T = 25110

so 23684 − 31T + 54T = 25110 (multiply out)

23684 + 23T = 25110 (gather T ’s)

23T = 25110 − 23684

= 1426

T =
1426

23

= 62

So the answer is that George drove 62 miles in town. Good for him. Perhaps

he was having an affair?

Dreaming Up Some New Mathematics

All through this chapter I’ve been discussing two different ways of coming up

with a new piece of mathematics. There’s the internal way, where you follow

your nose, dig inside your imagination, and dream up something that feels

good or makes sense. And then there’s the external way, where you have a

specific problem that you want to solve, and so you build the tools to solve it.

We’ll now compare these two approaches to come up with the notion of

imaginary numbers.
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The Internal Way

You might remember being told the important rule that you “can’t take the

square root of a negative number.” The reason is that a positive number times

a positive number is positive, but a negative number times a negative number

is also positive. So if you times a number by itself it is always positive (or

zero). That means whenever you square a number, the answer will never be

negative. Taking a square root is the reverse of the process of taking a square.

So to find the square root of a negative number, we have to find a number

whose square is negative—and we’ve just decided there aren’t any.

The key to the internal motivation at this point is to feel a bit dissatisfied,

frustrated, irritated, or even outraged that you can’t take the square root of a

negative number. Imagine seeing a sign saying you’re not allowed to do some-

thing that you think is completely harmless—do you immediately want to do

that thing? Similarly, you’re now faced with a sign saying you’re not allowed

to take the square root of a negative number. But what harm would it do?

In mathematics, “harm” means “causing a logical contradiction.” If something

doesn’t cause a logical contradiction, you might as well do it.

Now, the only way that taking the square root of a negative number would

cause this kind of harm would be if you tried to claim the answer was a pos-

itive or negative number—we know that this can’t be true. So how can there

possibly be a square root of −1? Well, what if there was a whole different

type of number such that when you times it by itself the answer is a nega-

tive number? You might immediately say, “But this doesn’t exist.” Just like the

platypus?

The key in math is that things exist as soon as you imagine them, as

long as they don’t cause a contradiction. Having a square root of −1 is not

a contradiction, as long as it’s a completely new number and not any of the

positive or negative numbers we already knew about. It’s like having a com-

pletely new Lego piece. To make sure we don’t get it mixed up with our old

numbers, we call it something completely different: i. This letter i stands for

“imaginary,” because it’s some kind of new number that isn’t “real.” We’ll

come back to it later.
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The External Way

A more external way to come up with imaginary numbers is by trying to

solve quadratic equations. Remember that a quadratic equation is one involv-

ing x and x2, like

x2 + x− 2 = 0
or

2x2 − 7x+ 3 = 0.

You might be able to remember how to go about solving these, that is, finding

all the values of x that make the left-hand side equal zero. Or if you don’t

remember, I can tell you the answers and you can just check that substituting

x = 1 or x = −2 makes the first equation true, and for the second one x = 3

or x = 1
2 will do. Moreover, if you try any other number, it won’t work.

But what about this one?

x2 + x+ 1 = 0.

No matter what number you put in, positive or negative or zero, you are

doomed—the left hand side can never equal zero. At this point you might

shrug and say you never really cared about solving quadratic equations any-

way. But mathematicians don’t like leaving problems unsolved. Coming up

with the imaginary numbers is a way of fabricating solutions to the quadratic

equations that previously had no solutions. In this case the internal and the

external have come quite close to meeting up.

∞ ∞∞

Do you think it’s cheating to solve a problem by inventing a whole new con-

cept and declaring it to be the answer? For me this is one of the most exciting

aspects of math. As long as your new idea doesn’t cause a contradiction, you

are free to invent it. The key is to balance out the external and internal moti-

vations for it. If you invent a new concept that is obviously contrived only to

solve one problem, then it’s unlikely to be a good mathematical concept in the

long run, even though it won’t actually be wrong. The best new mathematical

inventions are the ones that make internal sense and also solve some existing

problems.





Chapter 7

Axiomatization

Jaffa Cakes

Ingredients

Small round flat plain cakes

Orange marmalade

Melted chocolate

Method

1. Put a little dollop of marmalade on each cake.

2. Use a small spoon to spread a thin layer of chocolate over

the marmalade and cake.

3. Chill in the fridge until the chocolate sets.

This recipe could be construed as being rather unhelpful—what kind of

ingredient is “small round flat plain cake”? What if you want to make jaffa

cakes from scratch? Then the ingredients would be eggs, sugar, flour, butter

(for the cake), oranges, and sugar (for the marmalade), cocoa butter, cocoa

powder, and sugar (for the chocolate). Or does chocolate count as a basic

ingredient?

The question of what counts as a basic ingredient and what needs to be

made from more basic ingredients is a bit subtle. It depends on what you’re

trying to achieve. Maybe for you the jaffa cakes themselves count as the basic

115
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ingredient, and you would just buy them from the store in a pack. However,

I find making things myself very satisfying, and love making my own jaffa

cakes from eggs, sugar flour, butter, oranges, and chocolate.

One of aims of mathematics is to do things “from scratch.” A consequence

of asking “Why?Why?Why?” repeatedly is that you have to boil things down

to more and more basic concepts. There is always the question of what counts

as a basic ingredient and what needs to be broken down further. As I have

mentioned before, in math the basic ingredients are called axioms and the

process of breaking something down into its basic ingredients is called ax-

iomatization.

In the end mathematics is simply about things that are true. We ask why

they are true, and we answer this question by boiling down a complicated

truth into simpler ones. So at root, axioms are the basic truths that we’re going

to accept in this particular situation. It doesn’t mean that they are absolute

truths, or that they are always true, or that they can never be broken down

further. It just means that in this particular piece of math we’re going to use

these as basic ingredients and see what happens.

Ginger Cake
Do You Have the Ingredients in Your Kitchen?

Often, when I want to try a new recipe, I’ll have to go out and buy some

new ingredient that I don’t keep in my kitchen all the time. As time goes on,

this becomes less and less of a problem as I stock more and more things in

my kitchen, especially for baking. But for example, the first time I used dark

muscovado sugar was in a ginger cake, and I had to go out and buy some. And

then of course the recipe didn’t use the exact amount in the bag, so I had some

left over and started looking around for ways of using it up. Different people

have different basic ingredients in their kitchen, and dark muscovado sugar

is now something that I do always have in my kitchen, along with chocolate,

butter, and about eight types of flour. I only buy milk and eggs for specific

recipes, whereas you might consider those kitchen staples instead of sharing

my strange attachment to almond flour.
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As I mentioned in the “internal vs. external” discussion, maybe you get in-

gredients specifically with a recipe in mind, or maybe you wander into your

kitchen and start making things up (which these days gets called “bakesper-

imenting”). Anyway, perhaps I’m being too mathematical here, but I have

always wished recipe books would arrange themselves according to “what

other recipes you can make with the same ingredients, once you’ve gone to

the trouble of buying these ones” (this exists on the internet now). Or, even

more subtly, what other recipes can you make with the same ingredients, and

the new techniques you’ve just learned?

Earlier on we introduced a “new ingredient,” which was the

imaginary number i. We declared that this would be an entirely

new number and would be the square root of−1. So all we know

about this number so far is:

i2 = −1

Your first objection is probably “But there is no such number!”

However, what’s more true is that there was no such number,

but we’ve now invented one. Just like when we only have ratio-

nal numbers there is no square root of 2, but then we invent one.

Now, what if we assume that this strange new number be-

haves like other numbers in every other respect? This is a bit like

in books or movies with time travel, where you try to make a

story in which everything is the same about human beings ex-

cept that they can now travel in time.

We could try doing things like

2i× 2i = 4i2

= 4× (−1)

= −4
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So now −4 has a square root as well. In fact, now every negative

number has a square root, because if a is a positive number with

square root
√
a, then −a has square root

√
ai because

√
ai×√

ai = a× i2

= a× (−1)

= −a

In order to understand what else happens when we invent this

number i, we need to be very sure about what rules we want it

to obey, that is, the axioms we’re going to use.

Lego
Using the Same Bricks to Build Different Things

When you sit down with a pile of Lego bricks, you have two things: a pile of

objects, and some ways of sticking them together. The great genius of Lego

(or perhaps I should say one aspect of its great genius) is that it is so simple

and yet has so many possibilities. Analyzing this genius a bit further, I think

it’s crucial that the ways of sticking bricks together are very clear, and that

there aren’t too many of them.

Math works like Lego. You start with some basic building blocks and some

ways of sticking them together, and then you see what you can build. But

there are two ways round you can do this: you can start with the bricks and

see what you can build, or you can start with something you want to build,

and see what bricks you’ll need in order to build it. For example, to build

a Lego car, you’ll probably need some wheel pieces—unless you’re building

a really big one, in which case you can make your wheel pieces from basic

bricks, like they do at Legoland.

This is related to the internal/external discussion, because in a way ax-

iomatization is an externally motivated way of dealing with an entire mathe-



Axiomatization 119

matical structure or world. It’s a way of working out how to build the struc-

ture you want, using logic.

Let’s try it with numbers. To make all the natural numbers, 1, 2, 3, 4, 5,

and so on, you only have to give yourself the number 1 as a brick, and “ad-

dition” as a way of sticking things together. It might take you a long time to

make a million in this manner, but in math we care first about whether you

can do something in principle. How long it would take is a whole separate

question. And after all, some millionaires made their millions one dollar at a

time, by selling very small items such as loom bands. I think this is why tod-

dlers get so excited about learning to climb stairs, because they realize that

all they have to do is learn to climb up one step, and then if they do that re-

peatedly they can go higher and higher and higher, perhaps all the way to the

sky. (Except, usually, some killjoy adult comes along and removes them from

the stairs.)

Things get quite exciting when you do the second type of Lego building

and then the first one afterwards. That is, first you decide you want to make a

car, and you get hold of all the pieces you need for that—wheels, doors, and so

on—and then you see what else you can make with the same pieces, perhaps

a pick-up truck, or maybe a space rocket?

You also might start to think about more exciting ways of sticking your

bricks together. When small children start playing with Lego, you might see

them just stacking bricks directly on top of each other in a big tower. It might

take them a bit longer to move to stacking them offset, so they can make

a wall. And then what about going round corners so that you can build an

entire house? Likewise with numbers—once you’re bored with just adding

them up, you move on to subtracting them, multiplying them, and dividing

them, and just like that you’ve invented fractions.

Axioms in math are like the basic Lego bricks and the ways you allow

yourself to stick them together. One of the ways that mathematicians set up

their worlds to behave according to strict logic is to axiomatize them. That

is, you decide which bricks and which ways of sticking them together you’re

going to allow. This doesn’t mean you’ll never allow yourself other bricks

and methods, but just for now you’ll only allow yourself these, to explore

how much you can build in this way.
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The important thing is that the bricks are considered to be basic—you’re

given them in a box. You don’t try and break them up, although I’m sure

there are children whose first reaction to Lego is to try and smash the blocks

to pieces.

Here are some axioms for the integers.

• You can add any two integers and get another.

• If a, b, and c are any integers, then (a+b)+c = a+(b+c).

• If a is any integer, 0 + a = a.

• For each integer a there is another one b such that

a+ b = 0.

The last rule means we know we must be talking about the inte-

gers and not just the natural numbers, because it’s really telling

us about negative numbers. But we could also be talking about

the three-hour clock. You might think we don’t appear to have

negative numbers, because we only have the numbers 1, 2, and

3, on this clock. But each of these numbers does have a partner

that makes it add up to 0 on the clock, once we remember that 0

is the same as 3:
1 + 2 = 3

2 + 1 = 3

3 + 3 = 3

These axioms are actually the axioms for the mathematical no-

tion of a group. We will see that there are plenty of other ex-

amples of groups, including things that have nothing to do with

numbers.
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Doctors and Nurses Soccer
Imposing Careful Rules So That Strange Loopholes Don’t Arise

A doctor friend of mine once told me about a doctors-and-nurses soccer tour-

nament they were having at Addenbrooke’s Hospital in Cambridge. Appar-

ently it was with mixed teams, and teams started with a bonus of one extra

goal per female member of their team. It turned out that one team realized

they had more women than anyone else and just had the entire team stand in

the goal for the whole match.

Do you think that decent people should keep to the spirit and not just the

letter of the rules? Or do you think that rules should be sufficiently watertight

not to let such peculiar loopholes occur?

In math, we are dealing with objects that only obey the rules of logic, so

we cannot possibly ask them to interpret the spirit of the rules rather than

the letter of the rules. The letter of the rules is what happens if you follow

them by exact logic, and so it is the only thing our mathematical objects will

do. So when we make those rules, we have to be careful to close the loopholes

ourselves.

Here’s an example of a mathematical loophole that can be confusing. Re-

member that a prime number is one that is “only divisible by 1 and itself.”

However, we have to add a caveat, almost like an afterthought, and declare

that the number 1 doesn’t count as prime.

Sometimes this gets explained by something like “Well a prime number

is one that has exactly two factors, whereas 1 only has one.” This is true,

but doesn’t explain why we need this rule. The key is to understand what

prime numbers are there for—they are the building blocks of numbers, where

we are trying to build numbers by multiplication rather than by addition.

If we’re building by addition, we only need the number 1 and we can keep

adding it up to get all the other numbers. If we’re building by multiplication,

the number 1 doesn’t get us anywhere, because if you multiply things by 1

nothing happens. This means it’s not a very good building block.

More technically, we want to be able to say that every whole number is

a product of prime numbers in a unique way. For example, there is only one

way of building the number 6 by multiplying prime numbers, which is 2× 3
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(the order doesn’t matter, so 3× 2 counts as the same thing). However, if we

said 1 counted as a prime number, we’d be able to do 1×2×3 and 1×1×2×3

and so on. The 1 would ruin everything, without helping us in any way at all.

So we have to rule out this loophole.

Democracy
Imposing Careful Rules Can Have Strange Effects

There is no such thing as a fair voting system.

You might have a hunch about this, or you might believe it vehemently,

based on your experience of elections. But it’s also a mathematical theorem.

The thing is, to make sense of this statement we first have to be precise

about exactly what we mean by fair. That is, we have to set up our axioms

precisely. In this case, it’s called Arrow’s Theorem. It’s relevant not just to

political elections, but also to things like competitions with a panel of judges

who need to decide on a ranking of competitors.

The axioms for a fair voting system in this setting are:

1. Non-dictatorship: The outcome is decided by more than

one person.

2. Unanimity: If everyone votes that X is better than Y ,

thenX will be ranked higher than Y in the final outcome.

3. Independence of irrelevant alternatives: The ranking of X

relative to Y should not be affected by someone changing

their mind about Z .

Arrow’s Theorem then says that if there are more than two

people (or things) to vote for, then there is no fair voting sys-

tem. Incidentally, the axiom most commonly violated by modern

democratic voting systems is the third one, which is why tactical

voting becomes a possibility.
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You might have had the experience of having an argument with mathe-

matical types, where the argument all ends up boiling down to definitions.

For example, if you try and have an argument about whether you have a soul

or not, it all hinges on what you take “soul” to mean.

One of the aims of mathematics is to study everything using logic, and

mathematicians don’t want their answers to boil down to arguments about

definitions. So they are careful to say exactly what they are using as their

definitions in the first place, like laying down the ground rules. You might

be cross when someone is disqualified from a 100 m sprint because of a false

start, but those are the precise rules of the event. You might disagree with

the rules, but you can’t (rationally) disagree with the fact that the rules were

applied.

This is one of the things that makes mathematics precise, but also one of

the things that can frustrate people about it. It is very unyielding. You can

think the rules are stupid but you can’t do anything about them. I always

thought it was annoying that squash rackets had such small heads—but that’s

part of the game. It’s part of the axioms. Do you think it’s stupid that there

is an imaginary number that is the square root of −1? Tough. It doesn’t mat-

ter that you think it’s stupid. We can play a game involving that number

as a building block, and it makes no difference whether you believe in it or

not—that is the game.

High Jump
Imposing Careful Rules to Remove Human Judgment

There’s something I find very satisfying about the high jump as a sport. Not

to take part in it, mind you (as I lamented in the chapter about abstraction),

but to watch. It’s because the rules and the aims are so clearly defined. You

have to get over a bar and that’s pretty much it. Now, for all I know there

are some minuscule technicalities that I’m missing here, but from the specta-

tor’s point of view that does seem to be what’s going on. This is unlike, say,

synchronized swimming, or wrestling, where despite the effort that has been

put into making it as objective as possible, it still appears to come down to

human judgment in the end.
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Math is about removing human judgment from things, so that everything

proceeds just by logic. This can be both satisfying, because it makes every-

thing so unambiguous, and unsatisfying, because we are essentially removing

ourselves from everything. However, the aim isn’t to turn all of human ex-

perience into this process, any more than we claim that the high jump is the

whole of life (even if it might seem like that for the competitors while they’re

doing it). The aim is to study certain aspects of a situation unambiguously.

With the high jump, the aim is to see how high a bar a human being can

jump over with a certain amount of run-up. This is beautiful to watch (there’s

something so elegant about the Fosbury flop, not betrayed by its name), but

also it fascinates me because it highlights one pure feature about human be-

ings. The 100 m sprint fascinates me for the same reason. It’s not because I’m

glad Usain Bolt will be able to catch a bus better than the rest of us.

You can almost imagine how the high jump was first “axiomatized,” that

is, how the rules came about. Again, let’s allow ourselves some historic li-

cense. Perhaps some people were challenging each other to jump over a fence.

Then one person realized that if they ran up to the fence they’d be able to

jump higher. Then there was an argument about how long a run-up would be

allowed. And then there was an argument about whether you’re allowed to

put a mattress on the other side, to break your fall. And so on.

Axiomatizing parts of math happens in a similar sort of way.

The rational numbers are formed from the integers by taking

any fractions a
b
where a and b are integers (positive or negative

whole numbers). Pretty soon you realize you need to add a clause

in there saying that b isn’t allowed to be 0, because that wouldn’t

make sense.

But then you realize you need another clause to explain that
1
2 is actually the same as 2

4 ,
3
6 , and so on. There are two ways

you can do this. One way is to declare that all your fractions

have to be in lowest terms, that is, the top and bottom have no

common factors that can be canceled out. However, this is a bit

disingenuous, because 2
4 is a perfectly good fraction.
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The more mathematicallymature way to do it is to say you’re

going to take all the fractions a
b
but impose an axiom on them

to govern when they are actually the same fraction, which goes

like this:
a

b
=

c

d
whenever a× d = c× b.

This looks a bit obscure, but comes down to the same thing as “if

we canceled both to their lowest terms, they’d be the same.” It’s

just a much more efficient way of saying it.

Cake Cutting
Imposing Careful Rules to Remove Ambiguity

If you have a brother or sister, I’m sure you encountered this problem when

you were little: how can you share the last piece of cake fairly between you?

You probably hit upon the brilliant solution “I cut, you choose!” Now, if you’re

the one cutting, it’s up to you to cut fairly, because if you make one piece

bigger than the other, your sister will obviously take the bigger one, and you’ll

only have yourself to blame.

That’s all very well, but what if you have a brother and a sister, so you

have to share the cake between three. Or four? Or eleven? It’s not so hard if

you’re sharing a round cake (you could always get out a protractor), but what

if it’s just one piece of cake? Or a dinosaur cake? How can you share it fairly?

The key here is just like in the question of a fair voting system: what

does “fair” mean? In order to try and solve this problem, we have to be clear

exactly what the problem is, and this involves axiomatizing the situation of

cake cutting. This has actually been done and turned into a mathematical

problem.

Let’s suppose we’re doing it for three people. Here are two notions of

“fairness”:

1. Everyone thinks they’ve got at least a third of the cake.

2. Nobody thinks anyone else has more cake than them.
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The first we could think of as “absolute fairness” because everyone just

evaluates their own piece of cake by itself. The second we could think of as

“relative fairness” because now everyone is comparing their piece of cake to

everyone else’s. It also gets called “envy free” because the important thing is

to make sure nobody is envious of anyone else.

If you’re only sharing cake between two people, these two types of fair-

ness are the same. But with three people or more, it gets much more compli-

cated. You might well think you have a third of the cake, but if you think your

brother’s got more than you, you think it’s unfair, even though it shouldn’t

really be your problem.

The problem is turned into a piece of mathematics by stating these rules

of fairness very precisely. We have to take into account various complicated

possibilities. Not only might the cake not be round, but it might have differ-

ent decorations, such as icing, marzipan, or cherries, that different people like

differently. When I was little my best friend and I could always share Christ-

mas cake perfectly because she didn’t like the cake, and I didn’t like the icing

and marzipan.

Once we have axiomatized the sharing of a cake so precisely, we see that

we can easily apply it to sharing anything, including things that can’t be cut

up. The problem can be solved mathematically, and the solution is rather

complicated. The interesting thing is it’s much more complicated when envy

gets involved—a mathematical proof that envy complicates the world.

Given any way of sharing the cake out between n people,

everyone personally rates each piece of cake as a proportion of

the whole. So if there are 5 people and you think the cake has

been shared perfectly fairly, you’ll give each piece a score of 1
5

or 0.2. But if you don’t think it’s fair, then maybe you’ll give the

five pieces of cake scores of

0.3, 0.25, 0.25, 0.1, 0.1
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In this example one piece was the best (perhaps because it

has a cherry on it) and two pieces were definitely shortchanged.

But someone else might rate the pieces differently (maybe

because they hate cherries).

• Absolute fairness means that everyone gets a piece of

cake that they rated at least 1
n
.

• Relative fairness means that everyone gets the piece

they rated the highest. So if I rated my piece x and your

piece y then x ≥ y.

So in the example of my friend and the icing, I rated the cake

with no icing as 1, and the icing with no cake as 0. Whereas she

rated the cake with no icing as 0, and the icing with no cake as 1.

I thought my piece was much better than hers, and she thought

hers was much better than mine, and so we were both happy,

and friends for life.

Why? Why? Why? (Again)
Where the Careful Rules of Logic Come From

When a small child keeps asking “Why?” repeatedly, you might wonder if

it’s ever going to end. The answer is: no, it isn’t. Small children seem to be

more bothered than we are about the fact that some things are inexplicable.

As adults we get used to accepting things as true even though they’re not

explained, because they’re given to us on some higher authority. Most of us

these days accept that the earth is orbiting around the sun, but most of us

have seen no evidence of this fact other than that some people told us it’s

true, and we believed them. Why do we believe them? Because we trust that

some other people have checked the first group of people out. But why do we

believe those people?

We expect children to learn how to “be reasonable,” but we also expect

them to believe things that they don’t understand. I’m not surprised that this
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is confusing to them. The adults keep flipping randomly between things that

are really parts of logic and things that are “beliefs.”

One of the points of axiomatizing a system is to make that distinction

very clear. On the one hand, we have our basic starting points, the axioms

which are truths that we don’t try to justify. On the other hand, we have

logical deductions leading us to other truths, justified from the starting point

of the axioms.

The thing is that if we don’t start with some assumptions, we won’t get

anywhere. Have you ever tried building a Lego house starting with no bricks?

Of course not. Likewise, using sheer logic is all very well, but it only enables

you to deduce things from other things. If you start with nothing, you get

nothing. So math isn’t about “absolute truth” after all, as described in the

following paradox by Lewis Carroll, first published in “What the Tortoise

Said to Achilles” in the 1895 issue ofMind.

Carroll starts with these three statements.

A. Things that are equal to the same are equal to each other.

B. The two sides of this Triangle are things that are equal to the same.

Z. The two sides of this Triangle are equal to each other.

This is the kind of situation you might get into if you measure two sides

of a triangle with a ruler and discover that they are both 5 cm long. Does that

mean the two sides of the triangle are the same length as each other? That is,

does Z logically follow from A and B? It does seem to be rather obvious. . . but

why? If a two-year-old asked you why, what would you say? It would be

rather hard to explain. The reason this is called a paradox is that Z seems so

obviously true, once you know A and B, and yet, logically there is no way

of deducing it from only A and B. It only follows because we believe the

following statement:

C. If A and B are true, Z must be true.
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Now does Z follow? Only because we believe this:

D. If A and B and C are true, Z must be true.

Now does Z follow from A, B, and C. . . ? Oh dear. We seem to have landed

ourselves in a situation where we need an infinite number of steps to get to

Z, although Z is “obviously” a consequence of A and B. This is why it’s called

a paradox.

You might want to hit me now, and say that Z just does follow from A

and B. Actually, that’s what mathematics does as well. It accepts as a basic

principle that once you know that P is true, and if you also know “P implies

Q” then you are allowed to conclude that Q is true.

In Carroll’s paradox, P would be “The two sides of this triangle equal the

same thing,” and Q would be “The two sides of this triangle equal each other.”

In mathematical logic, this basic principle is called a rule of inference be-

cause it allows us to infer something from something else. It is given the

grand name modus ponens and is so basic and obvious that it can be hard to

remember that it’s really an axiom, an ingredient that we’re allowing our-

selves to use. It’s like when you don’t count salt and pepper as ingredients

in a recipe because they’re so basic. If the “paradox” still doesn’t seem like a

paradox to you, this might be evidence of just how deeply basic this rule of

inference is in our logical thinking.

All of mathematics can be seen as a process of starting from some basic

assumptions A, B, C, and so on, and trying to use logic to get to some final

conclusion Z using the rule of inference. To help us understand how to do this

correctly, we’ll now look at a couple of ways it can go wrong. One is where

you start with correct assumptions but use the wrong process of deduction.

This is like using the right ingredients but the wrong method in a recipe. But

first we’ll look at a case where even the basic assumptions turn out to be

wrong.
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Helicobacter
The Right Rules but the Wrong Building Blocks

In 2005 the Nobel Prize for Medicine was awarded to Barry Marshall and

Robin Warren for their discovery of the bacterium Helicobacter pylori in the

stomach, and their work on its role in gastritis and ulcers. In his Nobel speech,

Warren describes the difficulties he faced in convincing the world that this

bacterium really was in the stomach. He said:

Since the early days of medical bacteriology, over one hundred years

ago, it was taught that bacteria do not grow in the stomach. When

I was a student, this was taken as so obvious as to barely rate a

mention. It was a “known fact,” like “everyone knows that the earth

is flat.”

It appears that the medical community was taking this as an axiom, some-

thing that did not need justification—as sensible as assuming that the earth is

flat. Warren continued:

As my knowledge of medicine and then pathology increased, I found

that there are often exceptions to “known facts.”

That is to say, sometimes the axioms turn out to be wrong. One of the

reasons for clearly expressing your axiomatization of a system is so that you

know which facts might need to be challenged. It’s just like when Euclid ax-

iomatized geometry, enabling mathematicians to think clearly about parallel

lines, which in turn enabled them to come up with the different forms of

geometry that we talked about earlier.

Crib Death
The Right Building Blocks but the Wrong Rules

In 1999 a lawyer, Sally Clark, was wrongly convicted of the murder of her

two baby sons. The conviction was largely based on the “expert evidence”

provided by the psychiatrist Roy Meadow. The question was whether the two

babies had each died of sudden infant death syndrome, or whether that was

too much of a coincidence. Meadow pronounced that the probability of two
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crib deaths occurring in the same family was one in 73 million. The fatal

flaw was that Meadow had come to this conclusion simply by squaring the

probability of one crib death occurring.

Now, in many situations this is the correct way to calculate the probability

of something happening twice. If you toss a coin, the probability of getting

heads is supposed to be half. If you toss it twice, the probability of getting

heads twice is:

1

2
× 1

2
=

1

4
.

However, if you tossed it a thousand times and got heads every single time,

you might begin to suspect that the coin was weighted, and that the chance

of getting heads wasn’t half at all. You would suspect the coin of being some-

what predisposed to landing on heads.

With certain illnesses you don’t need a thousand cases in one family be-

fore suspecting that the probabilities are likewise not so straightforward. If

one person in your family has the flu, you’re much more likely to get it, just

because it’s infectious. And if an illness has some genetic component, the

same is true—for example, if one female in a family has breast cancer, the

other females are much more likely to get it. This isn’t because it’s infectious,

but because the presence of one case is already enough to indicate that the

family is more prone to breast cancer.

Technically, this tells us that occurrences of breast cancer in members of

the same family are not independent events. Probability can only be calculated

by simple multiplication if events are independent.

The assumptions Roy Meadow made appeared to be these.

A. The probability of crib death is (approximately) 1 in 8,500.

B. The probability of two independent events occurring is

obtained by squaring the probability of one event occurring.

Z. Therefore the probability of two crib deaths in one family

is 1 in 8,500 squared, approximately 1 in 73 million.

But in fact there was a suppressed assumption:

C. Crib deaths in a family are independent events.
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At the time, assumptions (A) and (B) seemed irrefutable, and therefore

(Z) was accepted. But professional statisticians immediately spotted the flaw,

and the Royal Statistical Society issued a press release to draw attention to

it.† Being illogical might be dangerous, but sometimes it is even worse to

apply logic incorrectly and give oneself an air of scientific truth that is then

difficult for non-experts to refute. Sally Clark’s conviction was overturned,

but not until 2003, by which time she had already spent three years in prison

for double murder. She never recovered from her traumatic experiences, and

died of alcohol poisoning four years later.

Chess
Simple Rules, Complex Game

One of the enduringly fascinating things about chess is that the rules are

not that difficult to explain, but the resulting game is ferociously complex.

I recently explained the rules to a six-year-old and we got playing within

seconds, helped by the fact that the computer version of the game told him

where any given piece could, in principle, move to.

One very satisfying thing about making rules for a game, or axiomatizing

a system, is to see how few rules, or how few axioms, you can start with, and

still produce a really complex game. This is like when mathematicians tried

to show that the parallel postulate was redundant to Euclid’s geometry, as we

discussed in chapter Generalization. If one of your rules can be deduced from

some others, then you don’t need to say it out loud.

One of the very appealing things about category theory, mathematically,

is that you don’t need very many rules to get started. Just like math, category

theory can seem difficult for (at least) two reasons.

1. Perhaps you don’t know about or don’t care about the examples you’re

trying to illuminate. This is a problem if you’re more externally moti-

vated than internally motivated.

† The Royal Statistical Society, Letter from the President to the Lord Chancellor regarding the

use of statistical evidence in court cases, January 23, 2002.
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2. It uses very few assumptions, so it seems like you have to work harder

to get anywhere. This is a bit like doing a jigsaw puzzle with very tiny

pieces, or making a recipe from scratch instead of using a mix.

The second point is a bit like the question of sports where very little

equipment is needed (for example, running) compared with sports where very

expensive equipment is needed (for example, sailing). Unsurprisingly, richer

countries do rather better in sports involving expensive equipment. However,

I am much more interested in sports that do not use such equipment, both to

watch and also as a study of human behavior. Yes, it’s much harder to run

10 km than to cover the same distance on a bicycle, but the fact that the

competitors are only relying on their own bodies is very exciting.

Likewise, I find mathematics the most exciting of all subjects, because it

only relies on brainpower.

Number Systems, Clocks, and Symmetry
Examples of Axiomatization

I’ll now demonstrate an axiomatization of number systems that enables us to

bring “clock arithmetic” and also symmetries of shapes into the same frame

of reference. It is the mathematical notion of a group.

First of all we declare we have a set of “objects.” At this point it doesn’t

matter what those objects are—what matters is that they satisfy the rules

we’re about to impose on them. In the end we’ll see that they could be whole

numbers, fractions, symmetries of a triangle, and many other things. It won’t

work if we only take positive numbers, or irrational numbers. It won’t work

if we take birds or cars or apples.

Next we declare that we have a way of combining any two of our objects

and producing a third object of the same type. For numbers this could mean

adding them together or multiplying them. We could try doing subtraction,

but we’ll see in a minute, when we examine the rules, that this won’t obey all

the rules.

This “way of combining” objects is called a binary operation because we

take two things and perform an operation on them to produce a third. In more

abstract situations this operation might not look like combining the objects at
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all—it’s just any process that produces a third object as the answer. We might

write this as ◦ in general, because we don’t know if it’s actually going to be

+ or× or something else entirely, but we need to write it as something when

we write down what the rules are that it has to obey. Here are those rules.

Associativity

For any three objects a, b, c, the following equation must hold:

(a ◦ b) ◦ c = a ◦ (b ◦ c).
So for addition this would say things like:

(2 + 3) + 4 = 2 + (3 + 4)

and for multiplication this would say things like:

(2× 3)× 4 = 2× (3× 4).

The “abstract” formulation using a, b, c, and the funny symbol ◦ has saved

us a lot of effort, because not only can we avoid having to write down this

equation for every single number (which would be impossible, as there are

infinitely many of them) but we don’t even have to write this down for ad-

dition and multiplication separately, as they are both examples of the same

concept.

We can now see that subtraction won’t work. Because, for example,

5− (3− 1) = 5− 2 = 3

but

(5− 3)− 1 = 2− 1 = 1

so associativity does not hold.

Identity

There has to be an object that “does nothing.” We could call it E, and then

this means that for any object a,

a ◦ E = a and E ◦ a = a.

The object E is called the identity or sometimes the neutral element.
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If we’re talking about numbers and addition, can you work out what the

identity element would be? It has to be a number such that when you add it

to anything else, nothing happens. So it has to be 0.

What about if we’re doing numbers and multiplication? This time it has

to be a number such that when you multiply anything else by it, nothing

happens. So it has to be 1.

This is another reason that we can’t do this with just the irrational numbers—

because there is no irrational number that could be the identity element.

Inverses

Every object has to have an inverse object, so that they can cancel each other

out. Technically what this means is that when you combine them, the answer

has to be the identity element. So for every object a there has to be an object

b such that

a ◦ b = E and b ◦ a = E.

Can you work out what this means if we’re doing numbers and addition?

Remember that the identity element here is 0, so for any given number a we

need another number b such that

a+ b = 0 and b+ a = 0.

If this is too abstract for you, try it with an actual number, such as 2. What

number is there that we can add to 2 to make 0? The answer is −2. And this

will work for any number a, as we can always add it to−a to get 0. It’s worth

remembering at this point that this will even work for negative numbers. If

we start with −2 then the number we want to add on to get 0 is 2, but this is

the same as −(−2).

This is the reason we can’t do this with just positive numbers, even if we

include 0, because we won’t be able to get these inverses to work.

What about if we’re doing numbers and multiplication? In that case the

identity element is 1, so for each number a we need another number b such

that

a× b = 1 and b× a = 1.
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Again, you might like to try this with the number 2. What number can we

times by 2 to get 1? The answer is 1
2 . At this point we should realize two

things. First of all, we can’t do this with whole numbers—we need fractions.

Secondly, we can’t do this with 0, because it is not possible to multiply 0 by

anything and get 1 as the answer, because the answer will always be 0.

Examples

Now that we’ve axiomatized the notion of a group we can say what some

examples are. In each case we have to say what the set of objects is, and what

the method of combining them is.

• The set of integers with addition as the method of combining them is

an example, but the set of integers with multiplication is not, because

there won’t be inverses.

• The set of rational numbers with addition is an example, but the set of

rational numbers with multiplication is not, because 0 won’t have an

inverse.

• The set of irrational numbers with addition is not an example, because

addition is not even a valid binary operation on irrational numbers—if

you add two irrational numbers, you might get a rational number as the

answer. For example, we could try adding
√
2 and −√

2 and of course

we get 0, which is rational. Do you think this is “cheating”? It might be

an annoying example, but in math we stick to rules very pedantically,

whether it’s annoying or not.

• The set of natural numbers (positive whole numbers) is not an example

with addition or with multiplication, because there won’t be inverses.

• The set of natural numbers with subtraction is not an example, again

because this is not a valid binary operation on natural numbers. For

example, 1 and 4 are natural numbers, but 1 − 4 = −3, which is not a

natural number. Subtraction is a binary operation on integers, but, as

we saw above, it does not satisfy the associativity rule, so this operation

doesn’t make the integers a group.
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• Three-hour clock arithmetic is an example: the set of objects is just the

numbers 1, 2, 3, and the way of combining them is three-hour clock

addition. We can do this with any number of hours as well, to give

the n-hour clock. Mathematically this is called the integers modulo n.

Arithmetic on a clock face is then called modular arithmetic, and we’ll

come back to it several times as it’s an intriguing example.

Remember that matrices look like this:(
1 0

3 2

)

This one is a 2-by-2 matrix as it has two rows and two columns.

We can add 2-by-2 matrices by adding the numbers place by

place. So (
1 0

3 2

)
+

(
7 4

6 5

)
=

(
8 4

9 7

)

because for the top left place we do 1 + 7, for the top right we

do 0 + 4 and so on. Now we can look for a matrix that “does

nothing” when we try to add it to things. The matrix we need is:(
0 0

0 0

)

This is the matrix that plays the role of zero in the world of ma-

trices. We can check all the other axioms to show that 2-by-2

matrices form a group under addition. This also works for any

other size of matrix; we just can’t mix the sizes up because then

we won’t be able to add them together.
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Finally here’s an example that has nothing to do with numbers, to show

the power of this axiomatization. Actually, this example is where the idea of

a group really came from, which is thinking about symmetry.

We have already mentioned the symmetries of an equilateral triangle.

There are two kinds of symmetry: rotational symmetry and reflectional sym-

metry. The equilateral triangle has three symmetries of each kind.

In math, we can think of symmetry as an action that you perform on

the triangle. You can imagine cutting out a triangle and actually rotating it.

For the reflectional symmetry you can actually flip it over along the line of

symmetry. (Usually we explain reflectional symmetry as folding something

in half and the two halves matching up, but you could also imagine flipping

something over and it looking the same after flipping.)

So now we can combine these symmetries by doing first one and then

another. We can imagine rotating the triangle and then flipping it. The result

will have to be another symmetry. For example:

• If you rotate it and then rotate it again, you get another rotation.

• If you flip it and then flip it again, you will get back to the front but

possibly a different way up, so the answer in that case is a rotation.

• If you flip it and then rotate it, you will end up on the back, so in that

case the answer must be a flip, that is, a reflection. Likewise if you rotate

it and then flip it.

We could make a big 6 × 6 table showing all the possible combinations

of symmetries and what the answers are if we do two in a row. Then we

can check that the axioms are satisfied. The identity element is a symmetry

that you probably don’t think about that much: rotation through 0 degrees.

If we’re thinking about symmetry as an action, this means we’re leaving the

triangle in exactly the same place.
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Now it’s easier to see what the inverses would be. The inverse of a rota-

tion is another rotation by the same amount but backwards. The inverse of a

reflection is a reflection in the same line—if you do the same flip twice you

get back to exactly where you started. Associativity is a bit harder to see, but

if you figure out all the possibilities it does turn out to work.

This means that the symmetries of the equilateral triangle form a group.

In fact, the symmetries of any given object form a group. This is one of the

important reasons for studying groups at all, and it shows that if you look at

things abstractly you can discover unlikely similarities between them. In the

end, mathematics is all about finding similarities between things, and cate-

gory theory is about finding similarities between mathematical things.





Chapter 8

What Mathematics Is

Custard

Ingredients

6 egg yolks

2 oz. superfine sugar

1 pint heavy cream, whipping cream, or milk

Method

1. Whisk the egg yolks and sugar until very thick, pale and

creamy. If you watch carefully while whisking, you will

see the mixture change color and get noticeably thicker,

as if it’s undergone a chemical change.

2. Heat the milk or cream until bubbles appear around the

edge of the pan. Pour slowly into the egg mixture, stirring

gently.

3. Quickly wash and dry the saucepan and pour the mixture

back in. Warm it on a low heat, stirring very continuously

until it coats the back of the spoon.

Making custard is thought of as a tricky process. The reason is hidden in

the last step of the recipe. A more accurate description of the last step would

go like this.

141
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Watch for a thickening of the custard that looks like a qualitative

change, and then take it off the heat. But don’t wait until the custard

is as thick as you want it, because it will continue cooking after

you take it off the heat and then be overdone and probably curdle.

However if you don’t wait long enough then the custard will be thin

and uncooked. It might help to have a glass bowl ready, with a sieve

over it. Apparently if you pour the custard through a sieve it will

stop cooking more quickly. I’ve tried it both ways and am not sure

if I noticed a difference, but it does make me feel reassured that I’ve

taken every possible precaution. If you cut it very close then the last

part of the custard in the pan will be overcooked by the time you’ve

finished pouring, so you might want to leave the last part behind.

We can now see why custard is thought of as being difficult—the instruc-

tions are not very clear-cut. It’s not like measuring ingredients, setting the

oven temperature, and putting on a timer. The last step requires almost an

entire essay to describe it, and even then the only way to get it right is to try

it plenty of times yourself. Books often say something about waiting until the

custard coats the back of a wooden spoon in such a way that if you run your

finger through it it leaves a mark, but I have never been able to understand

this instruction, because my finger seems to leave a mark before I’ve even

started cooking the custard mixture at all. This is one of the things I find ex-

citing but a bit scary about making custard. You have to use your judgment,

in a very short space of time, and it would be hard to get a robot to do it.

I’m now going to draw this half of the book to a close by showing that

math is easy in the same sense that custard is difficult.

Logic vs. Illogic
Why Math Is Easy and Life Is Hard

It is a truth universally acknowledged that mathematics is difficult. Or at least

so it seems, based on the number of times I tell someone I’m a mathematician

only for them to respond, “Wow, you must be really clever.”

This is one of the great myths of mathematics. I’m now going to take the

bold step—perhaps the rash step—of exploding it. This is a bit like the Masked



What Mathematics Is 143

Magician, whose TV show explained how magic tricks work, with the result

that he was vilified by the Magical community. Nevertheless, I am going to

show that mathematics is easy, and in fact that it is precisely “that which is

easy.”

First I’d better make clear what I mean by “easy,” just as in the cake-cutting

problem you first have to be clear what you mean by “fair.” And here’s what I

mean: something is easy if it is attainable by logical thought processes. That

is, without having to resort to imagination, guesswork, luck, gut feeling, con-

voluted interpretation, leaps of faith, blackmail, drugs, violence, and so on.

By contrast, life is hard. That is, it involves things that are not attain-

able by logical thought processes. This can be seen as either a temporarily

necessary evil or an eternally beautiful truth. We can think either:

1. Life is like that only because we haven’t yet made ourselves logically

powerful enough to understand it all, and that we should be continually

striving for this ultimate rational goal.

or,

2. We will never be able to encompass everything by rationality alone,

and this is a necessary and beautiful aspect of human existence.

I’m in the second camp. Here’s why.

Mathematics Is Easy
As Long as You Have the Right Definition of “Easy”

What is mathematics? Earlier on I said: “Mathematics is the study of anything

that obeys the rules of logic, using the rules of logic.” What is mathematics

for? I’ll sum up the discussion of this first half of the book as follows. Math

has two broad purposes:

1. To provide a language for making precise statements about concepts,

and a system for making clear arguments about them.

2. To idealize concepts so that a diverse range of notions can be compared

and studied simultaneously by focusing only on relevant features com-

mon to all of them.
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Put more simply, mathematics is there to make difficult things easier.

There are many reasons that “things” can be difficult, andmathematics doesn’t

deal with all of them (not directly, anyway). Here are three ways in which

things can be difficult that math addresses.

1. Maybe our intuition is not strong enough to work something out.

2. Maybe there’s too much ambiguity around, making it impossible to

work out what’s really what.

3. Maybe there are too many problems to sort out and too little time in

which to do it.

Mathematics comes to our aid.

1. It helps us to construct and understand arguments that are too difficult

for ordinary intuition.

2. It is a way of eliminating ambiguity so that we can know precisely what

we’re talking about.

3. It cuts corners, answering many questions at the same time by showing

that they’re all actually the same question.

How does it do it? By abstraction: throwing out the things that cause ambi-

guity, and ignoring any details that are irrelevant to the question in hand. You

keep doing this throwing-out-and-ignoring, until you get to a point where all

you have to do is apply unambiguous logical thought and nothing else.

Bananas and Blondes
Ignoring Difficult Details

Here are some problems that we might try to sort out using our techniques

of math.

1. A banana and a banana and a banana is three bananas, a frog and a

frog and a frog is three frogs, and so on. So we think:Hmm, something’s

going on here. And it becomes 1 + 1 + 1 = 3.
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2. What about if we say, “3 blondes and 2 brunettes is how many peo-

ple?” We discard the irrelevant notion of hair color, and the question

becomes: “3 people and 2 people is how many people?” And finally this

becomes a sum: 3 + 2 = ?

3. My father is twice as old as me but ten years ago he was three times as

old as me. How old is he? Or: This bag has twice as many apples as that

one but if I take ten out of each then this one has three times as many

as that one. How many apples are there? Both of these become a pair

of equations:
x = 2y

x− 10 = 3(y − 10).

Now, in this case you might well have been able to do it without explic-

itly using simultaneous equations. But what about this problem—can

you do this one in your head?

A rope over the top of a fence has the same length on each side, and

weighs one-third of a pound per foot. On one end hangs a monkey

holding a banana, and on the other end a weight equal to the weight

of the monkey. The banana weighs 2 ounces per inch. The length of

the rope in feet is the same as the age of the monkey, and the weight of

the monkey in ounces is as much as the age of the monkey’s mother.

The combined age of the monkey and its mother is 30 years. Half the

weight of the monkey plus the weight of the banana is a quarter the

sum of the weights of the rope and the weight. The monkey’s mother

is half as old as the monkey will be when it’s three times as old as its

mother was when she was half as old as the monkey will be when it’s

as old as its mother will be when she’s four times as old as the monkey

was when it was twice as old as its mother was when she was a third

as old as the monkey was when it was as old as its mother was when

she was three times as old as the monkey was when it was a quarter

as old as it is now. How long is the banana?

4. I am very happy. How will I feel if I go bungee-jumping? This has far

too much ambiguity. So what does mathematics do with it? It ignores

it. (Which makes it much easier.)
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5. We want to understand how playing snooker works. First we imagine

that everything is perfectly spherical, perfectly smooth, and perfectly

rigid. We might think about relevant details like friction, bounciness,

spin, and so on later. We can ignore irrelevant details like color. Except

color is not irrelevant in practice; but the added pressure of trying to

pot the black to win is not a question that mathematics can deal with.

This is the crucial point: we make things easy by ignoring the things that

are hard. Mathematics is all the parts we don’t have to throw away. The easy

bits.

If Math Is Easy, Why Is It Hard?

You might be wanting to point out a flaw in my argument already: if math is

easy, why does anyone find it hard? There are as many ways to make things

difficult as there are to make them easy, and we can be sure that a whole ton

of them have been applied to mathematics.

If someone finds math hard it might also be because nobody told them

what it was for. A fork is rather hard to use as a knife. It’s also rather hard to

use if you’re trying to eat a sandwich. Or a bowl of soup. Or a bag of popcorn.

If someone finds math hard it might also be because they have no desire

to answer the question that the math is simplifying. Trigonometry makes

triangles really easy. But if you don’t care about triangles you’re unlikely to

feel that your life has been made easier by trigonometry.

But also, some people just will find things much harder if they’re not

allowed to use imagination, guesswork, or violence. Rationality says that this

behavior is to be deplored as we head towards the ideal of ultimate rationality.

The Aim of Ultimate Rationality

Many people, especially mathematicians, philosophers, and scientists, think

that we as human beings should aim to become completely rational. That if

we discover a way in which we’re not rational, we should get rid of it, iron

it out, in order to get closer to the goal of ultimate rationality. This has two

facets:
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1. We should be completely rational (that is, behave rationally and think

rationally).

2. We should be able to understand everything completely rationally.

I want to look at a little logic in order to work out what this might mean.

Background on Logic

There’s a standard logic exam question for undergraduates that tries to show,

using logic, why democracy doesn’t work. This is different from Arrow’s The-

orem, described earlier, which shows that voting systems can’t be fair. This

time we’re going to show that democracy doesn’t work as a policy-making

system.

The basic assumption we start with is that everyone in the democracy

is rational. This is defined in terms of their beliefs: we say that their beliefs

should be somehow sensible.

To make it more precise (which is what mathematicians do) we say the

beliefs of any individual are “consistent” and “deductively closed.” What does

this mean?

A set of beliefs is called consistent if it doesn’t imply a contradiction. For

starters, this means you don’t believe that something is both true and false.

For example, “I am clever, I am not clever” is clearly inconsistent. But more

than that, you don’t believe anything that leads to a contradiction. For exam-

ple if you believe

A. All mathematicians are clever.

B. I am a mathematician.

C. I am not clever.

This leads to a contradiction, because A and B together imply that I am clever,

which contradicts C.

Your set of beliefs is called closed if anything you can logically deduce

from your beliefs is also one of your beliefs. For example, if you believe
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A. All mathematicians are clever.

B. I am a mathematician.

then you must also believe

C. I am clever.

The exam question then essentially says this. Suppose there is a vote on

all beliefs, and that the government is supposed to act according to what the

majority thinks on each belief. Now look at the set of “things believed by

a majority of people” (not necessarily the same majority each time): is this

consistent or deductively closed? The trouble is that it is neither.

Here’s how this question looks when written out formally:

The beliefs of each member i of a finite non-empty set I of in-

dividuals are represented by a consistent, deductively closed set

Si of propositional formulae. Show that the set

{t | all members of I believe t}
is consistent and deductively closed. Is the set

{t | over half the members of I believe t}
deductively closed or consistent?

Whether written formally or not, it’s all a bit abstract, so let’s pick an

example. We’ll use the following three statements/beliefs:

A. College education should be free.

B. Everyone should have the chance to go to college.

C. The government should spend more on college education.

Think for a moment about which of those three statements you agree

with. I think you’ll agree that if you think college should be free and that
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everyone should have a chance to go, the government (or someone with a vast

amount of money) will have to spend more on universities. That is, statements

A and B together imply C (unless we allow college education to get a lot

worse).

Now suppose we have a grand total of three people in this democracy.

We can already produce a problem. Imagine that our three people believe the

following things.

• Person 1 believes all three things.

• Person 2 believes college should be free, but the government should not

spend more on college education. (To make this work, not everyone will

be able to go to college.)

• Person 3 believes that everyone should be able to go to college, but the

government should not spend more on it. (To make this work, college

education can’t be free.)

Now let’s see what the majority thinks. In this case, a “majority” means

at least two people.

• Two people believe that college should be free.

• Two people believe that everyone should have a chance at college.

• Two people believe the government should not spend more money on

education.

Now we try to make policy based on these majority beliefs. We have a

problem—we are supposed to make college free and open to everyone, with-

out the government spending any more money on it. The majority beliefs in

this case are neither consistent nor deductively closed. Oh dear.

Life Is Difficult

Life, frankly, is difficult. And in that context, this idea of a “completely rational

person” is absurd.

The upshot is that rational thinking simply isn’t good enough to cope

with all that life throws at us. Rationality fails us in life, because:
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• It’s too slow.

• It’s too methodical.

• It’s too inflexible.

• It’s too weak.

• It’s too powerful.

• It has no starting point.

And that’s why irrationality (or “arationality”) and illogic are not human

weaknesses but human strengths when used appropriately.

Logic Is Too Slow

In life, we don’t always have time to go through logical thought processes to

come to a decision. Emergency situations are much more urgent than that,

and in those cases the important thing is to make a decision that is fast rather

than accurate at all costs. There’s no point being right if you’ve already been

flattened by the oncoming truck.

How do we know how to throw and catch? How do we sing in tune (if we

do sing in tune)? There is math behind both of those things but we don’t have

time to calculate trajectories or vocal cord tensions while catching or singing.

The speed issue is why we have reflex actions. We have built-in reflex

actions, but we can also train reflex actions, like learning to say “You’re wel-

come” automatically every time someone says “Thank you,” or learning how

to walk all the way to lectures even when you’re still pretty much asleep.

Logic Is Too Methodical

Logical thought proceeds calmly step by step through logical inferences. This

isn’t just slow, it’s boring. You don’t get into uncharted territory by taking lit-

tle tiny safe baby steps. Remember that game Green Light, Red Light? Some-

one stands at the front and turns their back. Everyone else stands some dis-

tance away and has to try and reach the front first. But the person at the front
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can turn around at any moment, and if they see you moving, you’re sent back

to the beginning. My memory of this game is that I never won because I was

too cautious; the people who won were the daring ones who took great big

steps instead of tiny little ones like me.

The big leaps in life are the flashes of inspiration. These are nothing to

do with logic. They happen both in mathematics and in other creative parts

of life. The great geniuses of history are often the ones who’ve made great

leaps of inspiration. Now, inspiration in mathematics doesn’t mean there’s

something about mathematics that isn’t logical—you still have to use logic to

prove what you think is true—but often a flash of inspiration gives you the

idea for what you think might be true in the first place.

It’s like building bridges: it’s hard to build a bridge across a river, but easy

to cross the bridge once someone else has built it. And while you’re trying to

build the bridge, it’s helpful to be able to fly.

Logic Is Too Inflexible

Logic is too inflexible in the face of a flexible and often rather random world.

Logic is rigid and can’t deal with that randomness.

Take our use of language. We assign words to things, which essentially

means we’re doing some random association of sounds with notions. Ono-

matopoeia aside, there’s no logic to it at root. There may be some sense in

the etymology of a word, but somewhere back in the history of the word is

a random association that started the whole thing off. And we can do that

because our brains have the capacity for random association. This is nothing

to do with logic.

Logic Is Too Weak

Another situation where logic can’t help us is if there isn’t enough informa-

tion. The great thing about logic is that it eliminates the use of imagination

and guesswork. But this can be a bad thing too. There are an awful lot of situ-

ations in life where we don’t have enough information to make a completely

logical decision. Perhaps there is an unpredictable element, something ran-
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dom, something we can’t detect, or things we just don’t know, or haven’t got

the time and resources to find out.

What are we to do, just not make those decisions? Instead, we do various

things. We can think about probability. For example, a doctor tells us that

99 percent of these operations are successful, so we go ahead with it.

We can go instinctive: I don’t like the look of this dark alleyway, so I’ll

go a different way. We can guess, like choosing lottery numbers. There’s no

logic there, but it makes some people exceedingly rich. We can go random

ourselves, and let the dice decide.

Decision making is indisputably hard. You try and gather more and more

information, but at some point your information (or your time) is going to

run out, and logic is certainly not going to take you the rest of the way. It’s

just too weak. Now I’m not saying that you then have to make an irrational

decision that actually goes against rationality, but you are going to have to

make a non-rational or arational decision. Perhaps if something is pure logic,

it doesn’t count as a decision at all.

Logic Is Too Powerful

Apart from the fact that logic is too weak, logic is also too powerful. Its un-

forgivingly brutal power forces us into extreme positions if we take it too

seriously.

For example:

It’s okay to drink half a pint of beer in an evening.

If it’s okay to drink x pints of beer then it’s okay to drink x pints

and 1 ml.

In which case, it’s okay to drink any number of pints in an evening.

The first two statements seem reasonable by themselves, but the last

statement is clearly idiotic. And yet it follows logically from the first two.

It appears that, in order to be rational (closed and consistent), we either have

to believe that it’s okay to drink any number of pints in an evening (which

doesn’t sound at all rational) or we have to believe that it’s not okay to drink

any beer at all, ever.
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The problem here is the subtlety of a fine line, or a sliding scale, or gray

area between the black and the white. Somehow we are able to deal with

sliding scales in our heads in a way that logic can’t. The power of logic is in

this case its downfall. It brings me to Fuji’s paradox.

Fuji’s Paradox

I’ve named this paradox after a Japanese bond trader called Fuji who first

drew my attention to it. It’s a case in point that I don’t think he noticed that

there was a paradox at all.

It was back in the dark ages, before I realized that mathematics was easy,

while bond trading is hard. So there I was, trading futures at Goldman Sachs,

when this guy Fuji came along to tell us about the Japanese market. Now,

Japanese interest rates were already the lowest in the world, and everyone

was wondering whether they’d go any lower, even to zero. Fuji’s theory was

that they would never actually hit zero because then everyone would know

that they couldn’t go any lower, since negative interest rates would be absurd.

The thing is that Japanese interest rates go in increments of quarter per-

centage points, so the Bank of Japan can only change rates by multiples of

that. So, I thought to myself, if Fuji’s theory is right, then interest rates will

not be set at 0.25% either, because then everyone will know they can’t go any

lower, since they can’t be zero. Oh, but then they can’t be 0.5% either. Nor can

they be 0.75%, or 1%. . . which means that they can’t be any percent—which

means that Japan can’t have interest rates.

This is clearly not true—Japan did have interest rates and still does. So

what’s gone wrong? (Actually, a couple of years later, Japanese interest rates

really did go negative, but that’s another unbelievable story.)

Unexpected Hanging

Fuji’s paradox is in fact a manifestation of the “unexpected hanging” paradox.
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The prisoner is told that he will be hanged sometime this

week but on a day when he isn’t expecting it. So he thinks to

himself:well it can’t be on Sunday, because if I hadn’t been hanged

by Saturday then I’d know that it had to be Sunday, so I’d be ex-

pecting it. So it has to be Saturday at the latest. But then it can’t be

on Saturday, because if I hadn’t been hanged by Friday and it can’t

be Sunday, then I’d know it had to be Saturday and I’d be expect-

ing it. So it can’t be Saturday. . . so it can’t be Friday. . . or Thurs-

day. . . or Wednesday. . . or Tuesday. . . or Monday—which means I

won’t be hanged!

And then on Monday he is hanged, and he really isn’t ex-

pecting it.

We can only imagine how miffed he feels, hanging there trying to work

out where his logic went wrong.

Logic Has No Starting Point

My last charge against logic is that it has no starting point. If we’re not go-

ing to take anything on blind faith, we’re simply not going to get anywhere.

You can’t prove something from nothing; you can’t deduce anything from

nothing; you can’t build a Lego construction without any blocks; there’s no

such thing as a free lunch. We saw Lewis Carroll’s paradox that showed we

would at least have to accept the rule of inference modus ponens on blind

faith, otherwise we would never be able to infer anything from anything else.

But even to infer anything from anything else, we have to have something

to start with. (Having said that, I’ve had plenty of arguments with people,

mostly mathematicians, who maintain that there’s really nothing at all that

they believe without justification.)

This seems to me to be an obvious and immediate flaw in the idea of the

ultimately rational person. But does that mean we should immediately and

completely give up?



What Mathematics Is 155

The thing is, there’s still some scope for greater and lesser rationality. For

example:

• A rational person is supposed to believe that the earth is round.

• A rational person is supposed to believe that 1 + 1 = 2.

• A rational person is not supposed to believe in ghosts.

• A rational person is not supposed to believe in psychic powers.

• Is a rational person supposed to believe in God?

Where do these “supposed”s come from? They come from society. It hasn’t

always been the norm to believe that the earth is round. And in some societies

it is the rational norm to believe in God, while in others it is not. So in fact,

rationality is a sociological notion. Apparently you can still be considered ra-

tional as long as all your basic beliefs come from the big bank of basic beliefs

accepted by your society as “rational things to believe.” If your basic beliefs

are “the moon is made of soft green cheese” or “sleeping upside down is good

for the elbows” or “I must kill as many people as possible,” then someone will

soon come and take you away.

But still, I’ve had arguments with people (mainly philosophers) who get

very upset if something I’m defending comes down to something I believe,

and I declare that I believe it “because I do.” Rational people aren’t supposed

to do that, are they?

Well I believe it’s a good thing to be aware of what you’re assuming.

I repeat: I believe it’s a good thing to be aware of what you’re assuming.

Whether it’s a whole lot of things at the root of your belief tree, or, say, God.

Being aware of your assumptions is definitely part of the discipline of

mathematics, and also part of what makes math easy—everyone has to state

very clearly what their basic assumptions are. I don’t think there’s anything

wrong with believing some things without justification—they are your ax-

ioms, from which all else grows. For example, I believe in love, but I have no

justification for that. The crucial part is to be aware that these things are part

of your axioms, and not to pretend you arrived at them by pure logic.
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Mathematics Is Not Life

So: math is easy, life is hard, therefore math isn’t life.

This doesn’t mean that we shouldn’t try to extend the scope of mathe-

matics so that it includes as much as possible. We should do that, just as we

should try to become “more and more rational” by continuing to work out

what the inital premisses of our beliefs are. The pursuit of mathematics is the

process of working out exactly what is easy, and the process of making as

many things easy as possible.

But we should not feel affronted by the existence of things that can’t

be subsumed by mathematics: the irrational or arational, the “illogic” in life.

Without that there would be no language, no communication, no poetry, no

art, no fun.



Part II

Category Theory





Chapter 9

What Is Category Theory?

Not much mathematics was needed before people started doing trade. Num-

bers themselves weren’t even necessary, let alone themore complicated things

you can do with them. Negative numbers don’t make much sense if you

haven’t thought about the possibility of going into debt.

Children don’t really need numbers in the early part of their lives. If we

deliberately teach them numbers then they have the capacity to pick them up

when they’re one or two, but if we don’t actively teach them the concept, I’m

not sure when they’d pick it up. Plenty of children arrive in Kindergarten at

the age of five, able to recite their “number poem” without being able to use

it to count anything. In everyday adult life it’s hard to avoid numbers even

if it’s nothing other than prices at the supermarket, but small children get by

just fine without numbers.

Likewise, mathematics got by just fine without category theory for thou-

sands of years, but now it’s hard to avoid it in everyday mathematical life—at

least in pure math.

The distinction between “pure math” and “applied math” is a bit spurious,

or at least the gray area where they meet is pretty gray and quite large. But

broadly speaking, applied math is a bit closer to normal life. Applied math

is more likely to be modeling real things in life like the sun, water flowing

through pipes, traffic flow. It could be thought of as the theory behind things

in real life.

Pure math is one step more abstract: it is the theory behind applied math.

This is a simplification, but it will do for now.

159
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Lego, Yet Again
The Difference Between Pure and Applied Lego

Do you like using basic Lego bricks to build big sculptures? Or do you pre-

fer using the complicated little pieces to build machines, or working robots,

or train sets? Even if you don’t do Lego yourself, what do you find more

exciting—a Lego version of the Eiffel Tower built only from basic pieces, or

an articulated robot built from complex high-tech pieces? Using special pieces

is quicker, and you get a more realistic model. For example, you can have real

wheels with tires, instead of sort of bumpy angular ones. But there’s some-

thing immensely satisfying and impressive about having whole buildings and

towns built from basic pieces. The creativity and ingenuity required to do it

are fascinating.

Pure math is like using only the basic Lego bricks and building everything

from scratch. Applied math is like using special pieces. Applied math more

closely models real life, but pure math is still at the heart of it, just as you

can’t get away from the “pure” Lego building techniques just because you’ve

acquired wheel pieces.

Topology is a part of pure math that studies the shapes

of things like surfaces. It studies morphing shapes into other

shapes without breaking them or sticking them together, but it

also studies what happens when you do cut them up and stick

them together, and how you can build more complicated shapes

from simpler ones. It is, in fact, quite a lot like Lego.

Topology gets used in quantum mechanics, to build models

of subatomic particle behavior. This is called topological quan-

tum field theory and is somewhere in the gray area between ap-

plied mathematics and theoretical physics. A more large-scale

part of applied topology is in cosmology, where the shape of

space-time is studied. Even further along the applied scale is

where topology is applied to the study of knots in DNA, and

configurations that robotic arms can get into. This takes us all

the way into biology and engineering.
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Another example along the scale of pureness comes from

calculus. At root, calculus is the study of infinitesimally small

things, or things that are changing continuously rather than in

jumps. This is an important area of pure mathematics. As a field

of pure study, it is concerned with things like whether a quantity

is changing smoothly, and what its rate of change is.

It leads to the question of solving equations involving quan-

tities and their rate of change at the same time. For example if

something is moving we might know about the force being ap-

plied to it and the speed it is going, as well as the position it is

in. This sort of equation is called a differential equation and this

all takes us further towards applied mathematics and away from

pure. It relates to things like gravitational pull, radioactive decay,

and fluid flow.

When these things get applied to specific real-world situa-

tions, we have gone out of the realm of applied mathematics

and right into engineering or medicine or even finance. Differ-

ential equations are one of the most widely applied pieces of

mathematics all over the place, as almost all measurements of

things in real life are somehow fluctuating at some rate or other.

Lego Lego
When It Is Possible to Build Things out of Themselves

Have you ever tried making a Lego brick. . . out of Lego bricks? It would be a

sort of meta–Lego brick. Instead of a Lego train or a Lego car or a Lego house,

you’d have built “Lego Lego.” I have seen pictures of cakes made out of Lego

bricks: a Lego cake. And I’ve seen Lego bricks made out of cake: cake Lego.

And, inevitably, there are cakes made out of Lego bricks that are themselves

made out of cake: cake Lego cake.
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Category theory is the mathematics of mathematics. Whatever mathe-

matics does for the world, category theory does for mathematics. It’s a sort of

meta-mathematics, like Lego Lego. This means that category theory is closely

related to logic. Logic is the study of the reasoning that holds mathematics to-

gether. Category theory is the study of the structures that hold mathematics

up.

At the end of the last chapter I suggested that mathematics is “the process

of working out exactly what is easy, and the process of making as many things

easy as possible.” Category theory, then, is:

The process of working out exactly which parts of math are easy,

and the process of making as many parts of math easy as possible.

In order to understand this, we need to know what “easy” means inside

the context of mathematics. That’s really at the heart of the matter, and is

what we’ll be investigating in this second part of the book. In the first part

we saw that mathematics works by abstraction, that it seeks to study the

principles and processes behind things, and that it seeks to axiomatize and

generalize those things.

We will now see that category theory does the same thing, but entirely in-

side the mathematical world. It works by abstraction of mathematical things,

it seeks to study the principles and processes behindmathematics, and it seeks

to axiomatize and generalize those things.

Mathematics is, if you like, an organizing principle. Category theory is

also an organizing principle, just one that operates inside the world of math-

ematics. It serves to organize mathematics. Just as you don’t need a classifi-

cation system for your books until you have quite a vast collection, mathe-

matics didn’t need this kind of organizing until the middle of the twentieth

century, which is when category theory grew up. Systematizing things can be

time-consuming and complicated, but the idea is that in the end it’s supposed

to help you think more clearly.

Category theory is the study of the mathematical notion of “categories.”

Although this is a word taken from normal life, it has a different, carefully

formulated meaning in mathematics. These mathematical things called cat-

egories were first introduced by Samuel Eilenberg and Saunders Mac Lane
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in the 1940s. They were studying algebraic topology, which turns shapes and

surfaces into pieces of algebra in order to study them more rigorously. Orig-

inally this involved relating all those shapes to groups, the notion that we

introduced and axiomatized in the previous part of the book. They realized

that in order to keep a clear head while doing this, a more powerful and

expressive type of algebra was needed, a bit like groups but with some fur-

ther subtleties. Mathematics had become vast enough to need its own system

of organization. Mathematics needed to think more clearly. And so category

theory was born.

Then something wonderful happened. Just as mathematics began as the

study of numbers but then people realized the same techniques could be used

to study all sorts of other things, category theory began as a study of topology,

but then mathematicians rapidly realized that the same techniques could be

used across huge swaths of mathematics. Category theory grew up to have

greater influence than its “parents” ever imagined.





Chapter 10

Context

Lasagne

Ingredients

Bolognese sauce

Fresh lasagne noodles

Béchamel sauce

Grated parmesan

Method

1. Spread a layer of bolognese sauce over the bottom of a

baking dish. Cover with a layer of lasagne noodles, then a

layer of béchamel sauce.

2. Repeat twice more, finishing with a layer of béchamel

sauce.

3. Sprinkle parmesan over the top and bake at 350◦F for 45

minutes or until it looks delicious.

When you see this recipe, you might think, “lasagne—that’s easy.” Or you

might think, “Béchamel sauce? How do I make that?” This recipe is very sim-

ple, but only because it assumes that you already know how to make bolog-

nese sauce, béchamel sauce, and pasta. If this were a recipe with instructions

from scratch, it wouldn’t be simple at all—it would have a long list of ingre-

dients and many steps.
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Recipes look very different depending on what sort of chef they’re aimed

at. Are they for an experienced professional? A serious amateur? A novice

still learning basic skills? Category theory emphasizes the context in which

we’re thinking about things, rather than just the things themselves. This in-

cludes what sorts of details we’re interested in right now, what features do

and don’t matter in this situation, what counts as a basic assumption, and

what needs to be broken down further.

Just like in the lasagne recipe, where béchamel sauce counted as “basic,”

there are some situations where the number 5 counts as basic, and others

where it doesn’t. In the context of just the natural numbers (1, 2, 3, 4, etc.),

the number 5 has some very particular characteristics: it can only be divided

by 1 and 5, which is to say it is a prime number. However, in the context of

rational numbers (fractions) it can be divided by all sorts of things: 5 divided

by 10 is 1
2 , for example, and 5 divided by 2 is 21

2 . The character of the number

depends on the context in which we’ve placed it.

Brothers
Putting People in Context by Finding Out About Their Family

I met a guy at a party recently who, after a little bit of conversation, said to

me, “Do you have brothers? I bet you have brothers.” I said no, and asked him

why he thought I must have brothers. He replied, “Because you’re not afraid

of talking to tall, handsome men.”

Another guy at another party told me, “You’re so self-sufficient, I bet

you’re an only child.” Also wrong, but it brought to mind one of my favorite

scenes in Casino Royale, where James Bond and Vesper Lynd meet for the

first time and verbally spar on the train. Bond coolly declares she must be

an orphan, and she, equally coolly, surmises, “Since your first thought ran to

orphan, that’s what I’d say you are.”

Indeed, I suspected the guy who thought I was an only child was one

himself and so, fancying myself as Vesper Lynd, that’s what I asked him. It

was true.

It’s natural when getting to know someone to be interested in their family,

their childhood, where they are from. Some people think these questions are
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boring and pointless, or perhaps they are miffed by the questions because

they feel that these basic facts about themselves do not give a very accurate

impression of what sort of person they now are.

However, it is all part of the process of understanding a person in some

sort of context, rather than in isolation. One of the things that makes us hu-

man is the way in which we interact with other humans. An autobiography

of a famous person would not be very interesting if it did not contain any

description of the person’s family, friends, and relationships. An “absolute”

character study, out of context of other humans, would be almost impossible

to achieve.

In the same way, category theory seeks to emphasize the context in which

things are studied rather than the absolute characteristics of the things them-

selves.

This is just like what we did with the “lattice” of factors of 30, where

simply writing the factors in a list is not nearly as interesting as drawing a

picture showing how they are related to one another:

30

6 10 15

2 3 5

1

This is a way of putting the factors into context, and in the next chapter

we’ll see how exploring the relationships between things is a good way of

doing that.

If you remember what highest common factors and lowest

common multiples are, you might notice some patterns in that

picture relating numbers in one row and the numbers connected

to them in the row above and below.
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Mathematicians
Putting People into Context by Finding Out What They Do

I once went to a party and decided to try an experiment: I refused to tell

anyone what my job was. Telling people you’re a mathematician produces

all sorts of odd responses. Some people become afraid and extract themselves

very quickly, but others immediately start trying to demonstrate how “intel-

ligent” they are. Yet others immediately start trying to belittle me. One guy

responded, “But what are you going to do after that?” to which I replied, of

course, that I wanted to be a mathematician for life.

The absurd conversation proceeded like this.

Him: Well you’ll never get a job.

Me: Actually I’ve already got a job.

Him: Well you’ll never get a permanent job.

Me: Actually I’ve already got a permanent job.

Him: What, in a school or something?

Me: As a university lecturer.

Another guy discovered I was a mathematician and started grilling me on

my credibility.

Him: You mean, you work for a bank?

Me: No, I work for a university.

Him: Just teaching?

Me: I do teaching and research.

Him: Do you have a PhD?

Me: Yes.

Him: Where did you get it?

Me: Cambridge.

Him: Oh, PhDs in England are so easy to get, they don’t really count.

I channeled Vesper Lynd and surmised that the second guy must be a

failed mathematician. It turned out he had failed to get into any PhD pro-

grams in France and had gone to work for a bank instead. The first guy turned

out to be a math teacher. In a school.



Context 169

On another occasion, someone blurted out, “You mean, like the book Cat-

egories for the Working Mathematician?” As it happens, I was just starting to

study category theory at the time and was desperately trying to get hold of a

copy of this crucial book, written by one of the founders of category theory,

Saunders Mac Lane. But it was out of print and I couldn’t find one anywhere.

This guy happened to own a copy, which he had used some years earlier when

he had been a student, but he was no longer in mathematics and promised to

send me his copy of the book. So I am happy to report that sometimes there

are advantages to putting myself in context.

Sometimes a mathematical object has several jobs, and one

of them will give us a more illuminating context than others.

This is just like when a person has two jobs, one of which tells us

more about their personality than another. Perhaps they’re an

office manager and also a salsa teacher.

Here’s a mathematical example. The number 1 can be char-

acterized by its “job” as a multiplicative identity. This means that

whenever you multiply another number by 1, nothing happens.

However, this doesn’t tell us much about what context we’re

dealing with, because it’s true no matter what sort of numbers

we’re considering.

The number 1 has another “job,” which is that if you keep

adding it to itself, you get all the natural numbers 1, 2, 3, 4, 5, . . . .

In mathematical language we say 1 generates the natural num-

bers. This job is very much tied to the context of the natural

numbers.
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Online Dating
Understanding People by Seeing Them in Different Contexts

When you have a new partner, it’s always a big moment when you first meet

their friends—unless you already knew their friends. With the proliferation

of online dating, this is becoming a much bigger issue. Meeting online is

like meeting completely out of context. It’s not like meeting through mu-

tual friends, or shared interests, or shared experiences. This can also be true

if you meet someone at work—and there’s a certain moment when you first

see them in the context of their non-work friends.

People can turn out to be very different in different contexts. It’s nor-

mal for people to be different at work and outside of work, even if it’s just

that they’re more reserved at work and they let their hair down more out-

side work. For most of my career I’ve been much less myself at work, for

fear of drawing too much attention to the fact that I’m female in an ex-

tremely male-dominated environment. I tried to be as unfemale as possible,

to avoid any prejudiced accusation that my being female was making me a

worse mathematician.

But also people can be quite different among different groups of friends.

Some people you’re friends with out of longevity—you grew up with them,

and that long shared experience will keep you together even if on the face

of it you no longer have that much in common. Lives diverge and people

diverge, after all.

There are people you’re friends with out of proximity—they happen to be

around in your normal life. Perhaps you see them every day at work, perhaps

they’re your neighbors, perhaps you see them at the gym, or they have chil-

dren who are friends with your children, or you take the same bus to work

with them every day. I’ve made several friends on trains.

But then there are the people you’re friends with out of affinity. You have

something in common with them that isn’t circumstantial but is something

deep in your character. I have deep friendships with many category theorists

around the world despite the fact that we’ve never lived in the same city,

country, or in some cases hemisphere.
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Anyway, the point is that you might well behave differently among these

different types of friends. You might talk about different things, discuss them

in different ways, meet them in different types of places. So who is the “real”

you? Is it who you are among your family? And yet many of us revert to being

like small children with our family, uncovering old frustrations and perhaps

slipping back into the roles we had when we were growing up. It is hard to

break out of those roles.

Or is it who you are among your “affinity” friends? This is a bit like the

question of whether you’re more you or less you when you’ve had a few

drinks and are saying things you perhaps wouldn’t say otherwise. Are those

things more honest or simply more extreme?

Category theory does not try to answer the question of which is “more

real.” We study the number 5 in the context of whole numbers, and we study

it in the context of fractions, but we do not pass judgment on which is really

the number 5.

• In the context of natural numbers (1, 2, 3, 4, . . .), 5 is a prime number,

that is, it is only divisible by 1 and itself (and is not equal to 1). It does

not have an additive inverse or a multiplicative inverse.

• In the context of integers (. . . − 3,−2,−1, 0, 1, 2, 3, . . .), 5 now has an

additive inverse, which is −5. That is, if you add 5 and −5 you get the

additive identity 0. But 5 does not have a multiplicative inverse.

• In the context of rational numbers (fractions), 5 has a multiplicative

inverse, which is 1
5 . That is, if you multiply 5 and 1

5 you get the mutli-

plicative identity 1. And 5 isn’t prime any more because it is divisible

by all sorts of things. For example 5 is divisible by 1
2 .

• In the context of arithmetic on a 6-hour clock (“modulo 6”), 5 is actually

a generator for the number system. This means if you add 5 to itself

repeatedly you will eventually get every number in the system.
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You can try it, remembering that the only numbers in this

system are 0, 1, 2, 3, 4, 5, and that every time you get to 6 you

count it as 0 again. So 5 + 5 = 10, which is the same as 4.

4 + 5 = 9, which is the same as 3. If you keep going, adding 5

repeatedly, you’ll get 2 next, then 1, then 0, showing that 5 really

does generate all the numbers. By constrast 5 definitely doesn’t

generate all the natural numbers, because if you keep adding 5

to itself you’ll get 5, 10, 15, . . . and only ever achieve the multi-

ples of 5.

So we see that the number 5 takes on different characteristics depending

on what context we’re in. Category theory seeks to highlight the context

you’re thinking about at that moment, to emphasize its importance and raise

our awareness of it. The way it does it, as we’ll see in the next chapter, is

by emphasizing relationships between things rather than just their intrinsic

characteristics. Because as we’ve seen, even for something as simple as the

number 5, the “intrinsic characteristics” aren’t so intrinsic after all.

You might wonder which other numbers are generators for

the 6-hour clock. Of course 1 will work, but if we try adding 2 to

itself repeatedly, we’ll get 2, 4, 0, 2, 4, 0, . . . so we’ll never hit any

of the odd numbers. For 3 we’ll get

3, 0, 3, 0, 3, 0, . . .

and for 4 we’ll get

4, 2, 0, 4, 2, 0, . . .

so 3 and 4 aren’t generators either. So being a generator is a fairly

special characteristic.
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Arsenal
When Things Are More Exciting in One Context than in Another

People often look very different out of context. Orchestral conductors often

turn out to be much shorter than I imagine, because you only ever see them

standing up, on a raised podium, and in a position of massive authority. Stu-

dents often turn out to be much taller than I imagine, because most of the

time I see them they’re sitting down and I’m standing up, and I’m the one in

the position of authority.

I was once in a hotel bar in London when Arsenal walked in—the whole

soccer team and the entire entourage. I was sitting there doing some math,

as I sometimes do in bars because I like being surrounded by people and es-

pecially people having fun. I was sitting at this bar with my pen and my

black notebook in which I write every single thought, and this huge crowd

of people wearing soccer shirts came in. Being rather soccer-ignorant my-

self, I didn’t recognize the shirt, but watched these young, lanky, slightly

awkward-looking, mostly Mediterranean youngsters file in with some older

guys who were clearly their minders. The young ones went straight up to

their rooms, and the older guys came into the bar, and I thought, “Oh, it must

be some sort of visiting youth soccer team from Europe. Lucky them that they

get to stay in such a swanky hotel!”

I didn’t think much of it and carried on with my math, until one of them

came to the bar and struck up a conversation. “Is that chemistry you’re do-

ing?” he asked, peering at my notebook. I explained that I was a mathemati-

cian, and realized that he was now close enough for me to read what his shirt

said: Arsenal. Now, you might think I’m a bit thick at this point not to realize

it was Arsenal in front of my nose, but after all, people go round wearing

David Beckham shirts and it doesn’t mean they’re David Beckham. So then I

uttered the immortal line, “Um, are you part of some sort of . . . team?”

“Yes, it’s called Arsenal,” the guy replied kindly. And then he added, “It’s

a Premier League football team.” (Being English, they refer to themselves as a

football team.) I suddenly thought back to those lanky youths sloping obedi-

ently up the stairs to their rooms. They’re all millionaires, and famous! They

were very out of context.
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In math there are also concepts that are pretty unexciting in one con-

text and extremely exciting in another. For example, the Möbius strip, which

is made from a strip of paper by sticking the ends together, but instead of

making a normal cylinder

you twist the paper before sticking the ends together.

This is a very exciting surface, because it only has one side. You can try making

one of these and coloring one side. You will discover that you get all the way

round and keep going, and you will go all the way round again until you get

back to where you started, having colored what looked like both “sides,” but

without ever taking your pen off the paper. This is quite exciting. Better still,

you can try cutting one out of a bagel and spreading cream cheese on it. You

will discover that if you try and spread cream cheese on just one side, you

will end up covering both “sides” because in fact there is only one side.

However, from the topological (playdough) point of view, a Möbius strip

is not that interesting because it’s “the same” as a circle—if you started with an

ordinary circle (ring shape) of playdough, you could turn it into aMöbius strip

just by flattening it in the right way, without making new holes or sticking

things together. You would have to flatten the playdough out, working your

way around the circle bit by bit, twisting your flattening action as you go.

(This is a bit hard to imagine so you might want to try it; if you don’t have

any playdough on hand you could make some basic dough out of roughly

equal quantities of flour and water.) It turns out that the Möbius strip is an

interesting tool in topology, but is not interesting by itself.
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The way this is technically stated is by appealing to the different notions

of sameness that go best with different contexts. The notion of sameness that

we’ve introduced for topology is the playdough type, which is called homo-

topy equivalence. So technically we say that the Möbius strip is homotopy

equivalent to a circle. This is useful but unsatisfactory, because a Möbius strip

is much more exciting than a mere circle.

One way this can be expressed is by a more sophisticated mathematical

structure called a vector bundle. Remember earlier on when we were imag-

ining a magic pen that could draw in midair? Imagine if they then invented

a thick pen as well—like the kind you can use on paper to draw a line with

serious width, because the drawing end of the nib is itself in the shape of a

straight line. Imagine one of those that could draw in midair—you’d be able

to draw whole surfaces in midair. That would be amazing. It would be like

waving a lightsaber around and leaving a track.

Now, if you imagine drawing a circle in the air with a lightsaber, the

surface you make is a vector bundle over a circle. The idea is that for each

point in the circle, you now have an entire vector, that is, a line given by the

lightsaber at that instant.

The thing is, while you’re drawing the circle in the air, you can twist the

lightsaber around if you want. So perhaps you’re drawing a circle by running

round in a circle. At the beginning and end you have the lightsaber vertical,

so that your thickened circle does meet up. If you just hold the lightsaber

pointing straight up the entire time, you’ll draw a cylinder in the air. But what

if you start with the lightsaber pointing to the sky, and as you run round, you

gradually bring it down until at the end it’s pointing to the floor?† In that

case you’ll have drawn a Möbius strip, although you yourself still only ran

around in a circle to draw it. The topology of the situation only notices that

you ran round in a circle both times, so it can’t tell the difference. But the

vector bundle structure notices what twisting you were doing with your arm

at the same time, so it does see the difference.

† The key here is that your hand doesn’t stay at the same height as you run round—the cen-

ter of the lightsaber has to stay at the same height. Perhaps we should use Darth Maul’s

double-ended lightsaber so we can hold it in the middle.
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Think of a Number

Here is a basic example of how you can find out all about something just by

looking at its relationships with other things.

I am thinking of a number. If I add 2 to my number, I get 8. What is

my number?

Well, it’s not very hard to work out that the answer here is 6 (my favorite

number). Let’s try this one.

I am thinking of a number.

1. It is a positive number.

2. If I subtract 8, the answer is negative.

3. If I divide by 3, the answer is a whole number.

4. If I add it to itself, the answer has two digits.

What is my number?

Yes, the answer is still 6. Not very original, am I? However, the point

wasn’t originality, the point, as usual, was to make a point: you can under-

stand something via its relationships with other things. The examples involv-

ing my favorite number were silly examples designed for nothing other than

to make a point. (This is the kind of example that can make people think

math is useless. But some examples aren’t there to be “useful” as much as

“illustrative.”)

The point of that example was that category theory elevates the impor-

tance of relationships, so that it becomes perhaps even more important than

studying intrinsic properties of things.

One basic example is the idea of a number line. The important thing about

the numbers 1, 2, 3, . . . is not what they’re called but what order they go in.

It doesn’t really matter what they’re called, as long as the words (or symbols)

always go in the same order. So it’s sensible to draw them in a line:

−4 −3 −2 −1 0 1 2 3 4· · · · · ·

What this really does is emphasize the relationship between them, and

keep them fixed in their positions. There are various ways to generalize this.
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If we allow all real numbers (rational and irrational) we get to fill in all the

spaces between 1, 2, 3, . . . and the line goes on “forever” in both directions.

We can’t physically draw that, but we can imagine it:

−4 −3 −2 −1 0 1 2 3 4· · · · · ·

Now let’s think about the imaginary numbers we introduced in Chapter 6,

with i being
√−1, and then the multiples 2i, 3i, 4i, . . . and so on. These will

also be in a line, and moreover we can imagine aiwhere a is any real number,

so that we can fill in the gaps in this line. However, this line should not be

confused with the line for real numbers, as it’s completely different. So we

often draw it vertically instead of horizontally.

−4i

−3i

−2i

−1i

1i

2i

3i

4i

...

...

−4 −3 −2 −1 0 1 2 3 4· · · · · ·

You might naturally now start wondering what happens in the space sur-

rounding those two lines. It turns out that we arrive at the same answer if

we ask the following question: can we add and multiply imaginary numbers

according to the axioms for a group? Adding them is fine. We get things like

2i + 3i = 5i, because i should behave just like apples, monkeys, or anything

else: 2 of them added to 3 of them gives 5 of them.
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But what if we try multiplying them? We already know that

i× i = −1

which is not an imaginary number. So we have a problem. What about some-

thing like 2i × 2i? If we assume the usual laws of multiplication, we should

be able to say

2i× 2i = 2× i× 2× i

= 2× 2× i× i

= 4× (−1)

= −4

and similar things. We could write this abstractly and say that if a and b are

any real numbers,

ai× bi = −ab.

In any case, an imaginary number times an imaginary number will always

be a real number. This is a bit like the rule saying a negative number times a

negative number is positive, whereas a negative times a positive is still neg-

ative. Similarly an imaginary number times a real number is still imaginary.

We can sum this up in some tables:

× positive negative

positive positive negative

negative negative positive

× real imaginary

real real imaginary

imaginary imaginary real

Now we have a problem—or just an interesting issue—because if we want

to be able to add and multiply, we are going to have to mix up the real and

imaginary numbers. For example what if we want to do

2i× 2i+ 2i ?
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We know that 2i × 2i = −4, so 2i × 2i + 2i should really be −4 + 2i.

What is that? We have invented the complex numbers. These are what you

get when you allow yourself to add real numbers to imaginary numbers. And

this is what fills in the “space” around our real number line and our imaginary

number line:

−4i

−3i

−2i

−1i

1i

2i

3i

4i

...

...

−4 −3 −2 −1 0 1 2 3 4· · · · · ·

−4 + 2i

This is like a map where everything has an x and a y coordinate, except

now everything has a “real” coordinate and an “imaginary” coordinate. So

the point with coordinates (x, y) is the complex number x + yi. This might

sound a bit abstract—because what are these things? Whatever they “are,” we

can add and multiply them just like real numbers; moreover, we now have

solutions to all quadratic equations, even though the equations themselves

only have real numbers in them. We’ve already seen that the equation

x2 + 1 = 0

now has a solution. In fact, it has two solutions, i and −i, because by the

usual rules of multiplying negatives, −i × −i = i × i = −1. So just like all

other numbers (apart from 0), −1 also has two square roots: i and −i.
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Now every quadratic equation has a solution. For example, the innocuous-

equation

x2 − 2x+ 2 = 0

couldn’t be solved just using real numbers, but using complex numbers we get

two solutions, 1 + i and 1− i.

You can check that I’m right by substituting the numbers in

and trying it, as long as you keep a clear head about how to mul-

tiply complex numbers. You just multiply out the parentheses

slowly. We can try it with x = 1 + i:

(1 + i)2 − 2(1 + i) + 2 = 1(1 + i) + i(1 + i)− 2− 2i+ 2

= 1 + i+ i+ (−1)− 2− 2i+ 2

= 0.

All the i’s cancel out, and all the real numbers cancel out. You

can try it for x = 1− i as well.

Complex numbers are such abstract things that it can be very hard to get

your head around them at all. They really only exist because we imagined

them. But in a way this is no diUerent from a perfect circle or a straight

line—these things are all in our heads only, and don’t exactly exist in “real”

life. Remember, in math anything exists if you can imagine it and it doesn’t

cause a contradiction. Representing complex numbers in the grid with real

numbers puts them in a useful context. It gives us a way of thinking about

them that relates them to each other and relates them to things that do exist in

real life—two-dimensional patterns—so it helps us give these abstract things

their meaning. Category theory also turns the relationships between things

into patterns that we can draw on a page, as we’ll see later.

We’re going to see that category theory works by picking what relation-

ships between things we are interested in, and emphasizing those. We’ll even

looking
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generalize the notion of relationship to encompass things that at first sight

didn’t look very much like relationships, so that we can study more and more

situations using the same way of thinking. This is the subject of the next

chapter.





Chapter 11

Relationships

Porridge

Ingredients

1 cup oats

2 cups water

Salt to taste

Method

1. Put all the ingredients in a pan and bring to a boil.

2. Reduce the heat and stir until done to taste.

How big is a cup? Measuring with cups is less accurate than weighing on

a digital scale, and then there’s the issue of official cup sizes being different

in different countries. But it’s quite clever because as long as it’s all in cups

it doesn’t matter how big the cup is—you just have to use the same cup for

each ingredient.

This sort of recipe emphasizes the relationship between the things in the

recipe, rather than their absolute quantities. This is what category theory

does as well. Instead of just studying objects and their characteristics by

themselves, it emphasizes their relationships with other objects as the main

way of placing them in context.

183
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Feminism
When Equality Isn’t Equality

You might typically think of math in terms of numbers and equations. So far

I’ve described various mathematical objects that aren’t numbers, and now it’s

time to think about things that aren’t equations either. After all, what would

an equation involving circles mean? Or an equation involving surfaces or

spheres?

Equality is the most straightforward relationship between things. But

equality in mathematics is a more stringent notion than equality in normal

language. When we talk about “equality” in normal life, we usually mean

equality just from some point of view. If you think men and women are

equal, I doubt you think they’re exactly the same. You probably mean they

contribute just as much to society as one another, and deserve to be treated

just as well as one another by society. We can handle this sort of interpreta-

tion in normal language—just about. There are still plenty of arguments about

exactly what “equality” means socially. However, in math we certainly can’t

handle this sort of haziness. We are only supposed to reason using hard logic,

not subjective interpretations of things. According to hard logic, two things

are only equal if they are exactly, precisely the same in every way. In math,

nothing is equal to me except me.

You might think that this is an annoying piece of pedantry, and perhaps

it is. Sometimes the quest to rule out ambiguity can lead to this sort of annoy-

ance, where something that used to have meaning becomes so unambiguous

as to lose almost all its meaning. You might be tempted to throw up your arms

in frustration and give up at this point. In fact, maybe you did throw up your

arms in frustration at exactly this sort of thing, and that’s why you’re not a

mathematician (if you’re not). But mathematics doesn’t give up at this point.

Mathematics says: Fine, that was just the first step. We proceed in baby steps.

With each step we get a bit closer to what you really mean, with some other

notion that can be made unambiguous.

In category theory this means thinking about some broader types of struc-

ture, of which equality is just one example. We allow some other types of

relationships to exist, other than this excessively restrictive notion of “equal-
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ity.” We have already seen some examples of things that are more or less “the

same” in some contexts. For example, similar triangles are not precisely the

same as each other, but close. Then there’s the idea of “the same” we thought

about for donuts and coffee cups. And what about the relationship between

the symmetries of an equilateral triangle and the different ways of order-

ing the numbers 1, 2, 3? We will look more specifically at different notions

of “sameness” in a later chapter, but we’ll start, as category theory does, by

looking at relationships in general, whether they’re sameness or not.

Here are some relationships that category theory looks at:

• Whether numbers are greater than one another.

• Whether numbers divide one another.

• Whether spaces can be deformed into one another in the manner of

playdough.

• Functions from one set to another. A function is a process that takes

things in one set as an input and produces something in the other set

as the output. Note that we can have many different functions between

the same two sets, producing different outputs. This is why in the end

we need to think about not just whether things are related, but also how

they’re related.

• A good notion of relationship between groups is a function that also

interacts sensibly with the way of combining objects in the group. We’ll

come back to this later.

The relationships are actually called morphisms to allow for things that

aren’t even quite like relationships. For example a matrix with two rows and

three columns can be very usefully thought of as a morphism from 2 to 3,

but it’s a bit tenuous to think of it as a relationship between the numbers 2

and 3. Also, we will see that an object can have many different morphisms

to itself, but it’s a bit harder to think of an object as having many different

relationships with itself.
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Sometimes we name mathematical concepts using words

from every day life to appeal to our intuition, but sometimes we

invent words in order to try not to be biased or limited by our in-

tuition. Here are some examples of words from everyday life that

have been appropriated by mathematicians to mean something

technical: root, prime, rational, real, imaginary, complex, biased,

natural, weighted, filtered, category, ring, group, field, sheaf, stack,

module.

Here are some examples of mathematical words that are not

really from everyday life, or have simply been invented: loga-

rithm, surd, morphism, functor, monoid, tensor, operad, associahe-

dron, opetope.

Erdős Number
Measuring All Relationships Relative to One Very Special Person

The theory of “degrees of separation” of human beings is about how long a

chain of acquaintances you have to go along to get from any human being to

any other. For example, everyone I know is separated from me by only one

step, but their acquaintances are separated from me by two steps (unless I

know them already). The theory is that it only takes six degrees of separation

to link any two people in the world.

One interesting thing to do is to replace “acquaintance” with “co-author.”

So if I have published a paper written jointly by me and someone else, we

are one mathematical step apart. You can then draw diagrams of these rela-

tionships and wonder how many degrees of separation it takes to reach all

mathematicians in the world.

Paul Erdős was an eccentric Hungarian mathematician of the twentieth

century. He was eccentric even in the context of mathematicians—he had few
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possessions, lived a nomadic life traveling from place to place with just a

suitcase containing his possessions, and fueled his mathematics with coffee

and amphetamines.

He was also a prolific collaborator, possibly the most prolific of all time:

he published papers with 511 different co-authors in his lifetime. (By contrast,

I have six so far.)

His friends came up with the idea of linking all mathematicians to Erdős

by degrees of separation. So all his collaborators are one step from him, their

collaborators are two steps from him (unless they’ve also actually collabo-

rated with him), and so on. The degree of separation is lightheartedly called

the Erdős number. So his 511 co-authors have Erdős number 1, and there are

about 7,000 people with Erdős number 2—including me. By the time you get

to six degrees of separation, this encompasses 250,000 people. They are not

all mathematicians—it branches out into statistics, astronomy, and genetics,

among other things.

This relates to an important concept in category theory. Once you’ve de-

cided what kind of relationships you’re going to focus on, you can wonder

whether there’s one “special object” in your world that somehow encapsu-

lates tons of important information all by itself. That is, a sort of barometer

object, a litmus test object, a benchmark object, an Erdős-like figure. Mathe-

maticians call this a universal property.

Defining important things by their relationship with other things is some-

thing that we have already discussed.

• There is the number 0, which is the only number with the property that

when you add it to other numbers, nothing happens.

• There is the number 1, which is the only number with the property that

when you multiply other numbers by it, nothing happens.

• There is the empty set, which is the smallest of all possible sets.

• Later we’ll see that you can’t have an empty group, so the smallest of

all possible groups is a group with one object.

We will see that category theory takes this much further.
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Family Tree
Emphasizing Relationships in Pictures

Family trees are an effective way of making vivid the relationships between

people, by drawing lines—horizontal ones for brothers and sisters, and verti-

cal ones for parent-child relationships. And perhaps some other kind of sym-

bol for marriages. It becomes more complicated as families become more var-

ied, with remarriages and half siblings, stepsiblings, and so on, not to mention

if cousins marry one another. (Genograms include many more symbols to en-

capsulate many other different types of relationship.)

Drawing a family tree helps explain the “cousin” terminology that is a bit

difficult—“second cousin once removed” and so on.

a b

c d

e f

g h

i

j

k

siblings

(first) cousins

second cousins

third cousins
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cou
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The family tree model can be used in other situations, ones that aren’t

actually families, but bear some resemblance to them. My piano teacher had

no children but always said that her pupils were like her children. And in fact,

she was such a strong mentor figure, and we her pupils had such a strong

shared experience at competitions and master classes as well as from her

lessons, that we became a bit like brothers and sisters. I think of them as

my “pianistic brothers and sisters,” and we have a strong bond that lasts to

this day. My piano teacher didn’t just teach music, but instilled values and

principles in us like parents do (or at least as they should), and my piano
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siblings and I will always have that in common. Even when I meet her pupils

who are much older or younger than me, so we were never actually pupils at

the same time, I feel a bond with them.

Piano family trees are a bit more skewed than real family trees, as people

are likely to have either no piano pupils (if they don’t become piano teachers

themselves) or a very large number of pupils (if they do). This is in contrast to

having children, where a large proportion of people have a small number of

children. Still, it is fun to trace my ancestry: my pianistic great-grandmother

was Clara Schumann, wife of Robert Schumann the composer. This is actu-

ally further back than I know my genetic ancestry: I have no idea who my

great-grandparents were.

Mathematical family trees are quite a well-known phenomenon, at least

among mathematicians. In fact, there’s a website that tries to trace the mathe-

matical genealogy of all mathematicians in the world and can generate family

trees on request. In math, you count as being “born” when you get your PhD,

and your “parent” is your PhD supervisor. As with my piano teacher, this re-

sembles a family relationship as well. Many supervisors, or at least good ones

(like mine), are very strong mentor figures, who not only guide a student

towards a thesis, but shape the way they think and behave, at least intellectu-

ally.When I meet my newmathematical siblings, I always feel a connection to

them, as with my pianistic siblings; perhaps this is a bit like meeting long-lost

brothers and sisters.

Anyway, it turns out I can trace my mathematical ancestry back fur-

ther than my genetic ancestry as well: my mathematical great-grandfather

was Alan Turing, the great code breaker of the Second World War who was

treated so abominably afterwards for being homosexual, and who was re-

cently finally pardoned.

Category theory also represents relationships by diagrams, a bit like fam-

ily trees, flight maps, street maps, and our “lattice” diagram of factors of 30.

The representation is a little simplistic, but that can often seem the case with

abstraction—some crucial details have been thrown away. As usual, the result

is to highlight some feature that we’re interested in, in this case particular

types of relationships, and to be able to compare those features with other

situations.
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Category theory represents relationships by drawing arrows, to bring out

the structural features of the situation. The arrows represent the relationships

in the world that we’re currently thinking about, and we can have multiple

arrows to represent multiple relationships between the same two things. One

of the most powerful aspects of this approach is that it makes everything

geometrical, which means we can employ another useful part of our brain to

help us do the reasoning.

In fact, when we read diagrams like family trees, we’re reading themmore

topologically than geometrically. It doesn’t really matter to us what shape the

arrows are; it just matters where they start and where they end. Just like if

you’re taking the Tube, it doesn’t really matter where underground the tunnel

goes, as long as you can get on and off at the stations you want.

It’s remarkable how much insight this approach provides. We are going

to draw more and more types of diagrams that look less and less like family

trees. Here are some typical diagrams of relationships in category theory.

We’ll look more closely at what they mean a bit later.

B

A C

f g

h

A B

C D

f

g

s t

A B
s

t

Friends
Relationships That Can Go Both Ways, or Not

You could draw a picture of your network of friends too. You could start by

drawing a dot on the page for each friend, and then you could draw a line

connecting them up if they’re friends. You might immediately run into some

curious questions:

1. Is everyone a friend of themself (or is everyone their own worst en-

emy)?

2. If someone is your friend, are you necessarily their friend too?
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3. Are all your friends’ friends necessarily your friends? (Facebook wants

to say yes.)

If you decide the answer to the second question is no, then the lines con-

necting people better have arrows on them to distinguish between you being

someone’s friend, and them being your friend. Like this, perhaps:

me Tom

Scott

Here I’m Tom’s friend, and Tom is my friend. However, I am Scott’s friend,

but Scott is not my friend. (Perhaps I am kind to Scott but he is not kind to

me.)

Once you’ve drawn this graph, some features will be very visually clear.

• If you have no friends, you’ll just be a single dot on an empty page.

• If you’re very popular, you’ll have tons of lines emanating out of you.

This will be noticeable, because the people joined to you will not have so

many lines emanating out of them.

me Tom

Scott

Clare

Bob

Sarah

If you’re part of a very tightly knit, coherent group of friends, there will

be a tight knot of dots with lines going in every direction between them

me Tom

Steve

Nick

Emily

Pieter
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Category theory takes this kind of picture very seriously, but it does im-

pose some rules on the types of relationships that it can talk about. They’re

not exactly the same as the list above, but they’re related. The above three

questions about friendship charts are the important questions about some-

thing called “equivalence relations”—a particularly important type of rela-

tionship. Equivalence relations are very neat and tidy because they always

obey three rules; in the case of friendships, that corresponds to answering

“yes” to the above three questions.

The first rule is reflexivity, which says that everyone is related to them-

selves. The second rule is symmetry, which says that if A is related to B, then

B is related to A. The third and last rule is transitivity, which we already saw

in Chatper 4. This rule says that if A is related to B and B is related to C, then

A is related to C.

One example of an equivalence relation is similar triangles. Remember

that triangles are similar if they have the same angles but not necessarily the

same sides. We can check the three rules.

1. Every triangle has the same angles as itself, so is similar to itself.

2. If triangle A is similar to triangle B, then A has the same angles as B.

But then B has the same angles as A, so B is similar to A.

3. If triangle A is similar to triangle B, that means A and B have the same

angles. If triangle B is similar to triangle C, that means B and C have

the same angles. But then A and C have the same angles, so triangle A

is similar to triangle C.

A more basic (and redundant-sounding) example of an equivalence rela-

tion is equality. Again we can check the rules.

1. No matter what type of objects we’re talking about, A = A.

2. If A = B, then definitely B = A.

3. If A = B and B = C , then definitely A = C .

This is good, because if we’re going to think about a broader notion of

relation, our basic simpler notion of equality should still be included. It shows
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that equivalence relations are a generalization of equality. We’ll see that the

relations allowed in category theory are even more general than this. This

is because many relationships between mathematical objects are not as neat

and tidy as equivalence relations, but we still want to study them.

Tidying Up, or Not
Knowing When to Leave Things in Their Natural Place

When my desk is messy, all the objects are in their natural positions where

they have been left. That’s what I like to think, anyway—I have allowed my

sea of papers and copious pens and pencils (I must have at least a hundred

of them on my desk) to fill up space in the way they feel most comfortable.

However, sometimes I have to tidy up, usually because my “desk” is actually

my dining table and so if I have friends over for dinner I have to clear it up.

In that case I try to put the papers into piles, or one big pile. Once they’re

in that pile, they’re neat and tidy and much easier to carry around, but I’ve

destroyed their natural geometry. I’ll find it much harder to locate the things

I need from that pile, because it’s all just lined up in a column. Whereas when

it was spread out all over my desk, I had a sense of where everything was.

This is one of the important aspects of bringing out the natural geom-

etry of mathematics, as category theory does. It turns an abstract notion of

“relationship” into a visible notion, an arrow that we draw in a map or other

physical representation of the abstract situation. But more than that, it builds

the visible representation up in a way that has shape.

Algebra as most of us know it consists of writing symbols in a straight

line, and then in another straight line, and then in another straight line, like

several very orderly piles of paper:

2x+ 3 = 7

2x = 7− 3 = 4

x =
4

2
= 2

However, when we’re dealing with more subtle relationships between things,

those things don’t want to be tidied up into straight lines—they have a natural
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geometry on the page, and one of the prominent features of category theory

is that the natural geometry is allowed to remain.

Here’s an example of a piece of algebra-in-a-straight-line:

xC.By.zA = Az.yB.Cx

It looks rather obscure, but has natural geometry on the faces of a cube. Here

the small letters are the faces of the cube, marked with double arrows, the

capital letters are the edges, marked with single arrows. The whole thing has

a very precise meaning in category theory, one that is a bit too complicated

to go into, but perhaps you can work out what the rules are for going from

the algebra in a line, to the diagram with cubes.

=

. .

.

. .

. .A

BB

AC

B

C C

A

x

z

y

. .

. .

.

. .A

CC

A

B

C
B

B

A

z

x

y

This is really just like directions to build a structure out of smaller pieces:

rectangular faces and long thin edge pieces. If you have rectangular pieces

labeled x, y, z, there might be all sorts of different ways to fit them together.

But once you’ve stuck a C edge piece onto the corner of the x piece (which

you might call xC) and a B edge piece onto the corner of the y piece (which

youmight callBy), then there’s only one way of sticking those two composite

pieces together. Likewise the zA piece. And so on.

In fact, this has even more natural geometry as pieces of “string”:

A B C

C B A

x

y

z

=

A B C

C B A

z

y

x
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It would be even harder to explain how the string corresponds to the cubes,

but perhaps you can see that the left-hand string picture is “the same” as the

right-hand one, in the sense that if it were really made of string that was

pinned down at both ends, you could wiggle the string around to get from

the left-hand side to the right-hand side. These sorts of pictures are called

“braids” in math because they’re like braids in hair, and some mathematical

arguments all boil down to the question of whether two braids are the same

in this sense of wiggling string around.

Both the cube diagram and the one with strings are typi-

cal calculations in higher-dimensional category theory. Even ad-

vanced category theorists disagree about which type of picture

is most illuminating. Different pictures are illuminating to differ-

ent people.

All these sorts of diagrams are a key feature of category theory, especially

the ones with arrows. If you even drew just a square out of arrows

A B

C D

f

g

s t

any random pure mathematician would be likely to recognize it as something

from category theory.

There’s a theory that there are three different aspects of mathematics:

algebra, geometry, and logic. Algebra is, broadly speaking, where we ma-

nipulate symbols. Geometry deals with shape and position. Logic deals with



196 How to Bake π

making arguments about things. The theory goes that all mathematicians are

located somewhere on an edge of this triangle:

algebra

geometry logic

But category theory seems to combine all three of those things. It’s about the

structure of arguments, and it deals with algebra geometrically.

One-Way Streets
Showing Different Types of Routes in One Map

A street map is, in a way, a diagram of relationships between places. The

relationships in this case are ways of getting from A to B. If the map is very

detailed, it will have one-way streets marked on it as well, in which case a

way of getting from A to B won’t necessarily be reversible to give a way of

getting from B to A.

If the map is really detailed, it will also show bike lanes. Sometimes a route

from A to B will be for both cars and bicycles, and sometimes only for one or

the other. You might also indicate bus routes, tram lines, and steps. Steps, of

course, are unlikely to be directional. (Although there are places in the Tube

where the stairways become one-way, such as the connection between the

central line and the northern line at Bank, where there are entirely separate

spiral staircases for going down and for going up.)

All this is building up a picture of a city less in terms of where things are

and more in terms of how you can get from anything to any other thing. It’s

emphasizing the relationships between things rather than just the things, like

in category theory. One important aspect of this is that things can be related

in more than one way. Also, the relationship is not necessarily symmetric,

that is, a route from A to B is not necessarily reversible, because of things

like one-way streets. This makes it a different kind of relationship from the
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equivalence relations that we mentioned above. With relations in category

theory there’s still reflexivity (things related to themselves) and transitivity,

but there’s no longer the requirement of symmetry, and there’s a new possi-

bility, which is that things can be related in several different ways.

Here is a picture of a very small category.

B

A C

f g

g ◦ f

Here f is like a route from A to B, and g is like a route from B to C . Then

g ◦ f is a shorthand we use for the route from A to C that consists of going

along f first and then g. (There are technical reasons we put the f on the

right of the g, which I won’t go into.)

This is like a train route map from London to Sheffield via Doncaster,

except to make it a bit more geographically accurate it would look more like

this:

London

Doncaster

Sheffield

f

g

g ◦ f

although the precise layout doesn’t make any differencemathematically. The

diagram tells us there’s a train from London to Doncaster and a train from

Doncaster to Sheffield. You can take one train followed by the next to get

from London to Sheffield. These arrows don’t represent the physical route

that the train takes, but the abstract fact that there is a route from London to

Sheffield.
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In this next diagram there is an extra arrow marked from London to

Sheffield, because there is in fact a direct train from London to Sheffield where

you don’t have to change in Doncaster.

London

Doncaster

Sheffield

f

g

g ◦ f

h

This now shows that there are two routes from London to Sheffield. One of

them is the “compiled” journey involving two trains, and one of them isn’t. In

category theory, as in mathematics at large, this process of doing one thing

and then another is called composition.

You might notice that there are some routes on this map that we haven’t

drawn. For example, you can get from London to London by doing nothing.

It’s like the reflexivity of relations. You can also get from Sheffield to Sheffield,

and Doncaster to Doncaster. We could draw these in as little mini arrows

London

Doncaster

Sheffield

f

g

g ◦ f

h

but it would be a bit pointless because they’re so obvious.

We will formalize these ideas about relations and drawing arrows at the

end of the chapter.
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Axiomatization of Categories

Just like we did with groups in Chapter 8, we define categories by axioma-

tizing them. We need to know what the basic building blocks are, and how

we’re allowed to stick them together.

A category in mathematics starts with a set of objects and a set of relation-

ships between them. Now, these relationships are not necessarily symmetric,

so we need to change our wording a bit to bring this out. So instead of saying

a “relationship between A and B” it would be better to say “relationship from

A to B” to emphasize that it only goes one way. In fact, in category theory we

sometimes say “arrow from A to B” to emphasize that direction even more,

and to remind ourselves of the fact that we draw helpful pictures of these re-

lationships using arrows. We might also say “morphism” because sometimes

these things are more like a way of morphing something into something else,

like morphing a donut into a coffee cup.

Now we have to say what rules our relationships must obey.

1. (A bit like transitivity) Given an arrowA
f

B and an arrowB
g

C ,

this has to result in a composite arrow A
g◦f

B.

2. (A bit like reflexivity) Given any object A there has to be an “identity”

arrow A
I

A, which means that for any other arrow, f ◦ I = f and

I ◦ f = f .

3. Given three arrows A
f

B, B
g

C , C
h

D, we can make com-

posites in various ways, and it all has to obey this rule:

(h ◦ g) ◦ f = h ◦ (g ◦ f).

These rules might also remind you of the axioms for a group, where

we also had an identity that “does nothing” and a rule about putting three

things together. What’s happened here is that the things we’re putting to-

gether now are no longer the objects, but the relationships between them.

This is a sign that a further level of abstraction or generalization has taken

place—everything has shifted by a level. Level shifting is something that hap-

pens a lot in category theory. It is one of the things that can make you feel
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like your brain is imploding, or exploding, or getting into some weird con-

tortion like a Möbius strip. And in fact, sometimes mathematicians refer to

it as “yoga.” In the next chapter we discuss the sorts of ideas that we look at

differently once we’ve turned our brain inside out like this.

Some Examples of Categories

Here are some small examples of categories. There is a tiny one with just one

object and one arrow. Since there is only one arrow, we know it simply has

to be the identity arrow. We can draw a picture of this little category:

x

identity

Note that it doesn’t matter very much whether we call the single object x or

y or Fred or something else—the picture will still look the same. You might

think this is the tiniest and most stupid possible category, but there’s an even

smaller one that has no objects and no arrows, so we can’t really draw it. We

can’t have a category with one object and no arrows, because as soon as you

have an object, it has to have an identity arrow, because of the second axiom

we listed.

There’s a category with only one arrow that isn’t the identity, which we

might draw like this:

x y

identity identity

You might realize that it’s a bit pointless drawing the identity arrows in all

the time, because they’re always there. Usually we don’t bother drawing them

because it just takes up space. So we draw the above category like this:

x y

Here x and y could be sets and the morphism a function. Or x and y could

be groups and the morphism a function that interacts well with the group

operation. Or x and y could be topological spaces and the morphism a way

of morphing one into the other. However, just like when we turn everything

into x’s and y’s in algebra, these aren’t specific sets or groups or spaces. In
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an equation, x is a potential number, and in category theory x is a potential

set/group/space or something else, which is why it’s just called an object.

Now here’s a category in which some arrows can be composed:

x y z
f g

g ◦ f

identity identity identity

However, not only do we not bother drawing the identities, but we don’t

really need to bother drawing the composite arrow g ◦ f either, because we

know it has to be there. This is all about making our diagram more efficient,

less cluttered, and easier to read. So we draw this category like this:

x y z
f g

We’ll see in a minute that this “decluttering” is just like when we made our

lattice picture less cluttered when we were thinking about the factors of 30.

A Category with Only One Object

We can now try to understand that last leap of abstraction that I described

having trouble with in Chapter 2. It was about one-object categories. If a

category only has one object, then all its arrows start and end in the same

place although they’re not necessarily the identity:

x

For example, x could be the set of all integers. There are many different possi-

ble functions on the integers that aren’t the identity, for example, the function

that adds 1 to everything, or the function that multiplies everything by 10.

In a category with only one object, any arrows are composable, because

the end of every arrow matches the beginning of every arrow. So the single

object gives us no information, and we might as well forget about it. The

set of arrows is just a set of things that can be multiplied together but not

necessarily divided, like the natural numbers. This is called a monoid and so

we arrive at the fact that a one-object category is the same thing as a monoid.
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Some Categories of Numbers

We can make a category where the objects are all the natural numbers, and

where we have an arrow a b whenever a ≤ b. So we’ll have arrows like

these:

1 2 3

and the composite of these arrows:

1 3.

This is a special kind of category in which given any two objects there is

exactly one arrow between them—because if you think about any two natural

numbers a and b, either a ≤ b or b ≤ a. These can only both be true if a = b,

in which case we have the identity arrow going from a to itself. We can draw

this category like this

1 2 3 4 5 6 · · ·

using the same principle as before, that we don’t need to draw composite

arrows or identities. We see that all the numbers end up in a line, just as we

expect them to. A category like this is called a totally ordered set because the

objects are all in order. Can you see why we couldn’t have used < instead of

≤ for the arrows? It’s because we wouldn’t have identities. There has to be an

arrow going from everything to itself, but we don’t have 1 < 1, so it wouldn’t

work. In fact, we don’t have n < n for any number at all.

A different category of numbers comes from the factors of 30 that we

looked at before. We could draw an arrow a b whenever a is a factor of b.

In that case we get this picture:

30

6 10 15

2 3 5

1
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If we try to draw in the composites as well, we get that very much messier

picture we saw earlier:
30

6 10 15

2 3 5

1

So we see that using a little bit of a category theoretic approach has enabled us

to see the structure here more clearly, as it cleaned up our picture. This is one

of the fundamental aims of category theory—to “clean up” our thinking and

isolate crucial structure. It is quite breathtaking how this framework of ob-

jects and arrows opens up endless possibilities, and embraces structures that

we might otherwise never have thought of studying in the same light. Here

are some examples to show the range of things that can all be encapsulated by

this innocuous little picture of two objects and one morphism between them:

x y

• Two numbers and an inequality < or > or ≤ or ≥.

• Two numbers, one divisible by the other.

• Two sets and a function from one to the other.

• Two sets, one of which is completely contained in the other.

• Two groups, and a function from one to the other that interacts sensibly

with the group structure.

• Two spaces, and a way of morphing one into the other.

• Two points in space, and a path from one to the other.

• Two lines in space, and a surface connecting them up.

• A pair of numbers on the left, and the process of forgetting one of them

to leave only one number on the right.

• Two logical statements, and a proof that one follows logically from the

other.
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It might seem that nothing much has been achieved by representing all

these situations by this simple picture. However, this is just the starting point

in category theory. The next thing we can do is build the pictures up and see

what sorts of shapes emerge from multiple arrows and interactions. This is

the subject of the next chapter.



Chapter 12

Structure

Baked Alaska

Ingredients

4 egg whites

7 oz. superfine sugar

1 flat 8-inch round sponge cake

8 oz. raspberries

1 pint vanilla ice cream

Method

1. Whisk the egg whites and sugar until very stiff to make

the meringue topping.

2. Put the cake on an ovenproof dish and pile the raspberries

on top, leaving plenty of space around the edge. Then pack

the ice cream on top of that in a dome shape, still leaving

some space at the edge of the cake.

3. Pile the stiff egg whites over the ice cream, making sure

there are no gaps, and that the egg whites make a good

seal around the cake and all the way down to the dish.

4. Bake in a hot oven (425◦F) until the meringue has

browned. Eat immediately.

205
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Baked Alaska is not just food—it’s science. The various parts of it are not

just there for taste: they serve a structural purpose. The meringue topping

and the sponge cake base insulate the ice cream from the heat of the oven, so

that we get the exciting sensation of eating hot meringue and cold ice cream

at the same time.

There are plenty of other types of food that have important structural

features. Sandwiches and sushi, devised to be conveniently edible on the go.

Yorkshire puddings the Yorkshire way, where the pudding is essentially an

edible plate containing your food. Vol-au-vent, another type of edible food

container. Battered fish, where the batter protects the fish from being over-

cooked on the outside. Or that amazing way of baking a cake on a campfire,

inside a hollowed-out orange skin. Not only does the skin hold the cake batter

and protect the cake from the fire, but it also gives the cake a lovely subtle

orange flavor.

All these are examples of food where the structure is integral to the food,

and in some cases where the taste of the food is affected or even determined

by the structure. This is different from a cake in the shape of a dinosaur, where

the shape is more or less independent of the taste.

One important aspect of category theory is that it examines what part of

a mathematical idea is structural, more like a baked Alaska than a dinosaur

cake. It looks very carefully at what role everything is playing in holding the

structure together.

Parking Garage
What the Structural Part of a Building Looks Like

I was looking at a half-built building with some friends. Actually, it was prob-

ably even less than half built—it was just a shell of a structure. We were spec-

ulating about what sort of building it was going to be. Some of us were trying

to work it out by remembering what we’d read recently about new buildings

in the area. But, being a mathematician (and a pure one at that), I was staring

at it and trying to work it out from “first principles,” that is—what does the

thing in front of me actually look like?
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I suddenly realized two things. First, that it looked like a parking garage.

Secondly, that every building must look like a parking garage at that stage

in the building process. Usually when I think about the basic structure of a

building I think about stripping things away: first the furniture and decora-

tions such as wallpaper and pictures, then windows and doors, then any walls

that aren’t bearing any load.

But there’s the opposite way of thinking about the structure of a building:

building it up rather than stripping it down. After all, the structure has to be

put in place before any of the decorations go on.

A lot of math is about structures, and category theory is particularly about

structures. What is holding something up? Which parts could you remove

without making the whole thing fall down?

This is a bit like the tale of the parallel postulate, where mathematicians

spent hundreds of years trying to work out whether that fifth axiom was

actually necessary or not. Would geometry fall apart without it, or would ge-

ometry be just the same? In category theory we like to understand exactly

what part of the axioms is making everything work in any given mathemati-

cal world. This is important as it helps us generalize the situation and take it

to a slightly different world, if we know exactly what is holding it up.

Here’s a thought experiment we can do to see what is holding the integers

together. Imagine that the number 2 no longer exists. Which numbers are now

prime? Remember a prime number is one that is only divisible by 1 and itself,

and 1 doesn’t count as prime.

Under these conditions, 3 is still prime, as it’s only divisible by 1 and itself.

But what about 4? 4 used to be divisible by 2 as well, but 2 no longer exists. So

4 is now only divisible by 1 and 4, so it has become “prime.”

5 is still prime, and you might be able to generalize this fact now, and

realize that any number that used to be prime will still be prime, because it

can’t suddenly become divisible by new things—there aren’t any new things

here. (We removed the number 2, but we didn’t invent any new things in its

place.) The problem will be with even numbers, because they are no longer

going to be divisible by 2—because 2 doesn’t exist.

So 6 is now prime, because it’s no longer divisible by 3. Here we have to be

a bit more careful about what “divisible by 3” means: it means that 6 = 3× k
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where k is any whole number. But 6 is no longer 3 times anything, because 2

doesn’t exist. So 6 is only divisible by 1 and itself. Likewise 8 and 10.

We now have a curious fact—numbers can now be expressed as a product

of “primes” in different ways. Can you think of an example? Here’s one:

24 = 3× 8 = 4× 6.

In our new 2-less world, 3, 8, 4, and 6 are all “prime,” So by throwing away the

number 2 we have destroyed one of the fundamental principles of numbers,

that every natural number can be expressed as a product of prime numbers

in a unique way.†

St. Paul’s Cathedral
Three Versions of One Structure

I quite often watch television with no sound at the gym, as I prefer listening

to music to make me work out harder, but the screens are in front of my

face, so I can’t help watching. One time I watched a really cheesy docudrama

about the construction of St. Paul’s Cathedral with stilted auto-subtitles, the

type generated laboriously by voice recognition, in that crude typeface that

brings to mind a robot voice.

I didn’t knowmuch about St. Paul’s at the time except that it was designed

by Sir Christopher Wren, and I particularly didn’t know how the dome was

constructed or how long it took to build or how nearly it didn’t get finished.

I’m not even sure I appreciated its great and majestic beauty at the time; I just

knew it was large and famous.

What I learned from all this was that the dome is actually made of three

domes: an inner dome and an outer dome, both visible, and a third, hidden,

dome in between them that’s actually supporting the structure. The outer

dome is the one that’s visible across London, still proudly dominating the

skyline after all these years despite the arrival of the Shard, the Gherkin, and

other, taller buildings. It is not the sheer height of the dome that makes it

imposing—it was surpassed as the tallest building in London in 1962, and the

† Some people exclude 1 from this, but I prefer to count 1 as the “empty product”, what you

get if you don’t multiply anything.
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new skyscraper the Shard is almost three times as tall. The dome is imposing

because of its overall size, which presented a severe engineering problem at

the time: how to hold such a thing up without the base collapsing?

The inner dome serves the aesthetics of the inside of the cathedral—that

is, the interior of the cathedral needs a certain balance in its proportions,

without a ridiculously huge dome overpowering the main body of space. Until

I saw this docudrama, I didn’t realize that the dome visible on the inside was

not the same one seen from the outside.

The genius of the construction is the third, hidden structural dome that

“mediates” between them. The other two domes are much too broad and flat

to be able to support the heavy structure of the lantern at the top of the dome,

so in between them is a much pointier brick construction, which would not

be very beautiful to look at but which is strong and secure enough to support

the necessary load.

I was a PhD student at the time, and I had an epiphany that this was ex-

actly like the thesis that I was in the process of writing. My thesis involved

three expressions of the same structure, one with “internal” motivation (the

internal logic of the situation), one with “external” motivation (the applica-

tions), and a third, which was “hidden” and whose only purpose was struc-

tural, to mediate between the two.

The personal part of this drama was that, apparently, Wren had no idea

how he was going to achieve the effect he wanted. The building of the cathe-

dral had already started, and he still had no idea how to achieve it, he just had

a vision of what he was going to achieve. The idea of three domes came later.

I now have a strong belief in the difference between internal and external

motivation, structural mediation between the two, and the idea that if one

has a genuinely good idea, the means of accomplishing or justifying it will

come later. And that one can be on the point of spectacular failure just before

spectacular success. And that I love St. Paul’s Cathedral.

Category theory often studies different aspects of the same structure. It

can be fascinating to turn things inside out and see them from the other way

up—understanding something from only one point of view is far too restric-

tive. The greatest leaps forward in the history of mathematics have often been

when connections are made between apparently unrelated subjects, enabling
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communication and the transfer of both information and techniques. It’s like

the difference between building a bridge between two islands, and building a

bridge to nowhere.

Category theory grew up from the study of algebraic topology. We have

already met various ideas from topology, including surfaces, knots, bagels,

donuts, and the idea of “morphing” shapes into other shapes as if they were

made of playdough. We’ve also met various ideas from algebra, including

groups, relations, associativity, and so on.

Algebraic topology is like a road between the two “cities” of algebra and

topology. The original aim was to use algebra to study topology, but then

it turned out to be a two-way road, so topology can also be used to study

algebra. Category theory helps translate between the two cities. It enables us

to ask questions like:

• Are there features in one city that resemble features in another city?

• If we take our tools and techniques from one city to the other, will they

still work?

• Are the relationships between things in one city at all like relationships

between things in the other city?

Category theory doesn’t necessarily answer all those questions, but it

gives us a way of posing the questions, and helps us see which ideas are

important and which are irrelevant to finding the answers.

CD
Which Part Makes It a CD?

I once decided to try and remove the label from a CD. I can’t remember why—

perhaps it was so ugly I couldn’t bear to look at it any more? I had been

making my own CDs for the first time and so had a pack of self-adhesive CD

labels that I really liked using. I think my plan was to design a new label for

the CD and stick it on myself. I tried sticking a new label on top, but I could

still see the old one underneath.
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If you think this sounds like a made-up story I sympathize; I feel a bit like

I’m making this part up myself. The thing is, I now can’t for the life of me

remember why I was trying to remove the label from the CD, but I definitely

remember what happened next. I took the label off, and all I was left with

was: a transparent piece of plastic.

I felt very foolish. Was it obvious to everyone on earth except me that

the crucial part of a CD, the shiny part, was actually structurally part of the

label? That apart from this the CD was just a piece of plain plastic? (Perhaps

technically the label and the shiny part are separate layers, but for practical

purposes they were so well stuck-together that they might as well have been

the same. They didn’t come apart at all, not even a tiny bit.)

Similar things have happened to me with dresses, when I’ve thought

“That is a great dress apart from that ugly flower attachment on it.” But when

I investigate the possibility of simply removing the flower, I discover that it’s

so deeply attached to the dress it’s actually part of its structure. The dress

stays in the shop.

In category theory one of the important aspects of looking at structure is

to see what will go wrong if you discard parts of the structure. This is all part

of finding out exactly how something works in case you find yourself in a

(mathematical) world with less structure. It’s a bit like learning how to whisk

egg whites by hand as well as doing it using an electric mixer. It means you’ll

be able to do it even when you’re in a kitchen with no electric mixer. Or no

electricity. Perhaps you’re in the forest and you really need stiff egg whites?

Oh, never mind.

One mathematical version of the “electric mixer principle” is related to

how we solve quadratic equations. We saw in the chapter on axiomatization

that we can try to solve this quadratic equation

x2 − 3x+ 2 = 0

by recognizing that the left-hand side can be factored:

x2 − 3x+ 2 = (x− 1)(x − 2).

Then we conclude that one of the two parentheses must equal 0, in order for

the answer to be 0, so either x− 1 = 0 in which case x = 1, or x− 2 = 0 in

which case x = 2. So these are the two solutions.
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However, suppose we were doing this on a 6-hour clock. You can try

putting in some other values for x to see what the answer is. For example if

you put x = 4, you’ll get

x2 − 3x+ 2 = (4× 4)− (3× 4) + 2

= 16− 12 + 2

= 6

but on the 6-hour clock, 6 is the same as 0, so x = 4 actually gives 0 as the

answer here. You can check that x = 5 gives 12, which is also the same as 0.

This means that 1, 2, 4, and 5 are all solutions to this quadratic equation on

the 6-hour clock.What is going on?Where are these “extra” solutions coming

from? How can we look for them and how can we be sure we’ve found them

all?

The key is to go back and carefully look at how this argument works. The

crucial moment is where we declare that “one of the parentheses has to equal

0.” What we’re saying there is that if we multiply two things together and get

0, one of them had to be 0 already. However, while this is true with normal

numbers, it is not true on the 6-hour clock. For example,

3× 2 = 6 = 0

4× 3 = 12 = 0

This is why some new solutions have popped up even though when x = 4

neither of (x− 1) and (x− 2) is 0. The point is that when x = 4 those things

in parentheses work out to be 3 and 2, and when x = 5 they work out to be

4 and 3. So those two “extra” ways of multiplying numbers to get 0 give two

“extra” solutions to the quadratic equation.

We have gone to a mathematical world without a piece of structure that

we’re rather used to: the fact that the only way to multiply numbers to get

0 is if one of the numbers we’re multiplying was already 0. So we have to

be careful how we proceed in this other world, and also in any other world

that doesn’t have this structure. We have isolated a piece of structure that it’s

important to look for if we want to go round solving quadratic equations in

different worlds. Although there might be more solutions floating around for

us to find, we have to work a lot harder to make sure we’ve found all the right

ones if we don’t have this rather useful piece of equipment.



Structure 213

Money
Being Careful How You Spend It

If you have a lot of money—I mean—really a lot of money, you don’t ever

have to find out how anything works. If it goes wrong, you can just throw

money at it to get it fixed. You can either pay someone else to fix it, or you

can just go right ahead and buy a new one. If you’re rich, you also don’t have

to worry about exactly how much money you’re spending on things every

day, although some rich people apparently still do.

But if you’re a normal person, you do have to worry about these things, at

least if you want to avoid financial catastrophe. Even if you’re not extremely

frugal all the time, it’s good to be aware of what you’re spending money on,

so that you can rein it in if necessary.

Some mathematics is done in the “rich” way—with no fear of ever run-

ning out of (mathematical) resources, so without really paying attention to

which resources are being used. Category theory, on the other hand, is like

being frugal or at least aware of your mathematical spending. That is, the aim

is to study mathematics always being aware of what structures you are using

to get by at any given moment. You might not be using them explicitly, but

sometimes the hidden usage is even more important, precisely because it’s

hidden, so you’re likely to use it without noticing. It’s a bit like when peo-

ple accidentally get huge credit card bills because their children have bought

extras in a game on their phone, or when you run up a huge roaming bill

because your phone has connected to the internet when you’re abroad.

Category theory aims to keep track of resources, not because resources

might suddenly run out in mathematics (that’s not how mathematical re-

sources work, fortunately) but so that you can deliberately go to a planet with

fewer resources. The aim is to make connections between different mathe-

matical worlds, and develop techniques that can be used without extra effort

in those different worlds.

This is like the example with quadratic equations that we just saw. The

resource in this case is this property:

If a× b = 0 then a = 0 or b = 0 (or both).
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Now, if you think you will never end up in a world without this resource,

then you will not care about how many times you use it. But if you care

about modular arithmetic (on a clock face) or even just the possibility of going

to worlds without your resource, then you have to go back through all the

techniques you love, and work out when you used this principle and how to

get around it.

A more profound mathematical example involves something

called the Axiom of Choice. This axiom says it is possible to make

an infinite number of arbitrary choices. In normal life you might

think it’s perfectly possible to make an arbitrary choice—it’s just

like picking a raffle ticket out of a hat. The Axiom of Choice says

it’s possible to pick a raffle ticket out of each of an infinite num-

ber of hats, which might seem a bit odd to you. Mathematicians

don’t really agree on whether this is odd or not.

Processes involving some notion of “infinity” always require

great care if we’re trying to make them rigorous, and this one

about arbitrary choices turns out to be particularly difficult to

pin down, which is why it is an axiom all by itself. People are a

bit undecided about whether it should be assumed to be true or

not, and so the best approach is to be aware every time you need

to use it.

One branch of category theory deliberately goes to worlds

where this axiom is not true, to see how much of mathematics

can still be done.
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Skeleton
Last Part of a Person That Remains When All Is Stripped Away

A wonderful old professor sat next to me at dinner in Cambridge one day

when he was about ninety. It was around the time of the scandal at Alder Hey

Children’s Hospital, in Liverpool, when it was discovered that, shockingly,

organs from dead children had been removed and kept by the hospital without

authorization.

The professor told us he was worried that this scandal would put people

off organ donation and that this had moved him to contact Addenbrooke’s,

the Cambridge teaching hospital, to ask if there was anything at all useful

they could do with his old body after he died. He was too old for organ dona-

tion, but they told him that his skeleton would be useful for teaching medical

students, so he should try not to die mangled in a road accident. (He told us

this with typical glee and a twinkle in his eye. I wonder if I will be able to

speak with such cheekiness about my own future death.) A few years later

I heard that he had passed away at home; I hope that his skeleton is indeed

now being used for teaching purposes.

A skeleton is not a whole person, but it’s an important part to study in

order to understand how a person functions. It gives a person their structure.

It has little to do with thought, emotions, feelings, and so on, but it’s the

frame on which everything hangs. This is the point of studying structure in

mathematics as well.

Logic is a branch of mathematics that studies the structure of mathemat-

ical arguments. Category theory, on the other hand, studies the structure

of the mathematical objects themselves. They are similar in a way, in that

they’re both even more abstract than mathematics itself, as they study the

way mathematics is done. However, logic is more obviously used in ordinary

daily life—or rather, it is usable even if it’s often used rather badly. Any time

you construct an argument, justify your point of view, or make a decision,

some element of logic could (or should) come into it, when you start from

some more basic thoughts and proceed to some more complex ones.



216 How to Bake π

It is less obvious how the study of mathematical structure could arise in

daily life. However, it is the mental exercise of stripping away layers to reveal

important structure that is usable everywhere. It also goes the other way, as

we have the mental process of starting with simple structures and carefully

building up more complex ones. Category theory formally only does this for

mathematical structure, just like formal logic—it only really applies tomathe-

matical arguments and not normal arguments in everyday life. However, the

mental exercise in the abstract mathematical environment prepares us for the

concrete non-mathematical environment, just as working out in a gym can

make us fitter for the world outside the gym.

Battenberg Cake
An Example of a Ubiquitous Piece of Structure

Here’s an example of a mathematical structure that pops up all over the place

in different guises. Let’s start by thinking about addition on a 2-hour clock,

or, to use the technical term, addition modulo 2. This means that there are

only 2 numbers, 0 and 1. 2 counts as the same as 0, as do 4, 6, 8, 10, . . . . Also

3 counts as the same as 1, and so do all the odd numbers.

We can now draw an addition table for this. We only need the numbers 0

and 1 (because all other numbers are the same as one of these). And we need

to remember that 1 + 1 = 2 but that 2 is the same as 0, so in fact 1 + 1 = 0.

The addition table then looks like this.

+ 0 1

0 0 1

1 1 0

In fact, this is the second-smallest possible group. We have already seen that

the smallest possible group has only one object, the identity. Now we have a

group with two objects. This is related to the question we posed at the end of

the chapter on principles, about filling in the squares with colors, where each

color can only appear once in each row and each column.
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Here’s another way that this pattern appears. We can think about just

using the two numbers 1 and −1, and combining them using multiplication.

What table does that give us?

× 1 −1

1 1 −1

−1 −1 1

If you compare this with the previous table, you’ll see that it has the same

pattern, just with different labels in the boxes. We can also think about the

rotational symmetry of a rectangle. A rectangle only has two forms of rota-

tional symmetry: the rotation by 0◦, and the rotation by 180◦. If we do the

0◦ rotation followed by the 180◦ one, then the result is rotation by a total of

180◦. Likewise if we do it in the opposite order. However, if we do a rotation

by 180◦ and then another, we have gone round 360◦ and we get back to ex-

actly where we started—the same as doing rotation by 0◦, that is, nothing at

all. We can now put these in a table as well.

rotation 0 180

0 0 180

180 180 0

You might not be surprised to see that it’s the same table again. We have

already seen this pattern in the chapter on context, when we thought about

multiplying positive and negative numbers, or real and imaginary numbers,

and we drew up the following tables of results:

× positive negative

positive positive negative

negative negative positive

× real imaginary

real real imaginary

imaginary imaginary real
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In fact, the inside part of each of these tables has the same pattern as a

Battenberg cake (something like a checkerboard cake):

which is designed for the same reasons—we don’t want two squares of the

same colored cake to touch each other.

Battenberg Challenge

Here’s a challenge: can you draw a picture of a Battenberg cake, each of whose

mini cakes is itself a Battenberg cake? I call this the “iterated Battenberg.” This

means you have to start with two types of Battenberg cake, in different colors.

So there are four colors altogether. They need to fit together in a 4 × 4 grid.

In fact, we’ve seen one of these already at the end of Chapter 3. There we

had four examples of 4 × 4 grids of colors, and the first one was an iterated

Battenberg.

This pattern comes up if we look at the rotations and reflections of a

rectangle, instead of just the rotations. Another place this comes up is if we

draw a multiplication table for the odd numbers, modulo 8. We only need

to consider the numbers 1, 3, 5, 7, as all other odd numbers will be the same
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as these on the 8-hour clock. You can try filling in this multiplication table,

remembering that every time you get to 8 you go back to 0. So 3 × 3 is 9,

which is the same as 1, and so on.

× 1 3 5 7

1

3

5

7

You should get the following table, with the iterated Battenberg pattern:

× 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

Now that we have found Battenberg-type structures all over the place, we

need to explore what it means to say that all of these structures are “really

the same.” One of the easiest ways to see that they were all the same was to

isolate the structure and put it in table form as we did above. Category theory

does something similar for more general forms of structure. We have already

seen how we draw relationships between objects using arrows. We can now

boil a piece of structure down to a little diagram of arrows.

For example, we might go round looking for diagrams like this

A

X Y

or like this:
B

A C

f g

h
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In this last case, we might use rotation by 180◦ for f and g, which gives us

this diagram:
B

A A

180◦ 180◦

0◦

showing that if we do rotation by 180◦ twice, it’s the same as doing nothing.

Just like putting all the above examples in 2 × 2 tables, these category

theory diagrams help us to see the structure in different situations, and we

can then more easily see if it’s “the same” as some other piece of structure in

an otherwise completely different situation. But what does “the same” mean?

This is the subject of the next chapter.



Chapter 13

Sameness

Raw Chocolate Cookies

Ingredients

2 oz. raw cocoa butter
1
2 oz. coconut oil

4 oz. dried unsulphured apricots

2 oz. pitted dates

2 oz. ground almonds

4 oz. cornstarch

4 oz. raw cocoa powder plus more for dusting

Method

1. Gently melt the cocoa butter and coconut oil.

2. Chuck everything in the food processor and blend until it

resembles cookie dough.

3. Press the dough flat onto a sheet of parchment dusted with

additional cocoa powder, and then roll out until quite thin.

4. Cut into small squares and chill until firm.

We have already seen a recipe for gluten-free chocolate brownies. But

what if we also want to make them vegan? Sugar-free? Low-fat? All of these

things are possible, but the result becomes gradually less and less like actual

221
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brownies. Each time you make one substitution the result might be similar,

but as you make more and more substitutions, you get further and further

away from the original concept.

The above recipe is not only gluten-free, vegan, sugar-free, and low-fat,

but also raw. Aside from the arguments about the health benefits of eating

raw food, the taste benefits of raw chocolate are clear to me—unroasted cocoa

is delicate and fragrant, which is why I came up with this recipe. It’s not clear

that the name “raw cookie” makes any sense, though, as a “cookie” is some-

thing that is “cooked,” according to its name. But these chocolate thingies are

similar to cookies in other ways: the texture is similar, the flavor is similar

(but better in my opinion), and they play a similar role in my daily diet—a

treat, a snack, something to go with my coffee. I have a slightly different ver-

sion (which I mentioned earlier) that come out more like energy bars, and

that play a role more like energy bars as well.

One of the key aims of category theory is to take slightly subtle notions of

sameness and make them precise. As I discussed before, “equality” is a rather

stringent notion, and really not very many things are genuinely, rigorously

equal to each other—you can only actually be equal to yourself. However,

there are things we consider to be more or less the same in certain situations.

Category theory highlights the relationships between things, so it enables

us to look for more subtle notions of “sameness” than equality via these re-

lationships. These versions of equivalence are particularly prominent kinds

of relationships in category theory. The context is crucial, of course, as some

things will be effectively the same in some contexts but not others. One of

my favorite examples of this is when computers try and judge things as “the

same” on behalf of human beings. This happens in online shopping.

Online Shopping
Better and Worse Substitutions

Online grocery shopping has revolutionized my life. I’m really terrible at gro-

cery shopping because I get tempted by all the delicious-looking things on

the shelves, buy things that will make me put on weight, and spend too

much money. When I do my grocery shopping online, however, I’m not at
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all tempted by the offers that flash up in front of my face (although I might

be in trouble when they invent a way of making the smell of freshly baked

cookies waft out of my computer screen). Moreover, I don’t have to carry my

shopping home.

However, the companies’ method of substitution is a bit suspect, in my

opinion. Once, just before Christmas, I ordered four 500 g bags of Brussels

sprouts. Yes, I eat loads of Brussels sprouts—I find them delicious and filling

and they’re so good for you. For a treat I sometimes dip them in barely sweet-

ened homemade dark chocolate. Anyway, this particular company’s policy

was that if they were out of something you ordered, they would bring you

something else instead, which you were allowed to decline on arrival. They

didn’t have any 500 g bags of sprouts, so they substituted four 100 g bags of

sprouts instead. Yes, four bags in total, giving me a total of 400 g of sprouts

instead of 2 kg.

But the funniest substitution I’ve heard about happened to my friend who

ordered a toothbrush and was presented with a toilet brush instead. The com-

puter system was thinking too much in terms of the inherent characteristics

of the objects (“they’re both brushes”) instead of the role that they fulfill.

We have already seen that category theory studies things in context, via

their relationships with other objects, rather than just looking at what an

object is like by itself. One of the aims of this is to be able to be precise

about which things count as “the same” in particular contexts. This is at the

very heart of mathematics. As a basic example, this is really what solving

equations is all about. You start with a statement in which something is equal

to something else, and you replace it with successive statements in which

something is equal to something else in a progressively more useful way,

until you have some particularly useful information at the end.

Equations give us different ways of understanding the same concept. For

example,

3× 4 = 4× 3

tells us that if we take 3 bags with 4 apples in each, we’ll get the same num-

ber of apples as if we take 4 bags with 3 apples in each, although these two

situations are not exactly the same. Similarly, the equation

5 + (5 + 3) = (5 + 5) + 3
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tells us that if we do 5+3 and then add 5 to that, it’s the same as first doing 5+

5 and then adding 3 to that. Again, these are not exactly the same processes. In

fact, that’s why this equation is useful—because the second way (doing 5 + 5

first) is probably easier, as it gives 10, and then you have to do 10 + 3. If you

follow the left-hand side you end up having to do 5 + 8, which is probably

harder for most people than 10 + 3.

So we see that this equals sign is already hiding a lot of information. It

doesn’t mean that the left-hand side is exactly the same as the right-hand

side, because it visibly is not. It just means that if you follow the process on

the left, you’ll get the same answer as if you follow the process on the right.

This gives us the slightly uncomfortable fact that the only genuinely honest

equations are the ones where the left-hand side is exactly the same as the

right-hand side, such as 1 = 1 or x = x, and these equations are completely

useless. The only useful equations are those that tell us two different ways of

doing something are somehow the same.

As I said earlier, one of the aims of category theory is to be precise about

what “somehow the same” can mean, taking into account that different mean-

ings are useful and relevant in different situations. Category theory observes

that sometimes when we say things are “equal” we’re not being entirely hon-

est. It’s a sort of white lie that doesn’t matter too much until you get into

more delicate situations, and then your white lies start piling up and you

need to keep track of them. One of the reasons you don’t usually study cat-

egory theory until you’re an advanced undergraduate or a graduate student

of mathematics is that you can mostly get away with ignoring the piles of

mathematical white lies up until that point, without getting into too much

trouble.

Here are some examples of notions of “sameness” that we’ve already seen,

that are not precisely “equality”:

• similar triangles, which have the same angles but different lengths of

sides

• topological sameness, in which a donut is “the same” as a coffee cup

because one can be squashed into the shape of the other
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• the symmetries of an equilateral triangle, and the ways of ordering the

numbers 1, 2, 3, because we can label the corners of the triangle with

1, 2, 3 and see where they move to when we flip or rotate the triangle

• the various different versions of the Battenberg cake that we saw in

the last chapter: coming from addition modulo 2, multiplying±1, posi-

tive and negative numbers in general, real and imaginary numbers, and

rotations of a rectangle

Sometimes in category theory the process goes the other way—instead of

asking what counts as “the same” in a given context, we start by knowing

what we want to count as the same, and ask what context will make that

true. Sometimes it’s not the most obvious one. For example, the most obvious

context (or rather, category) in which to study shapes like donuts and coffee

cups does not result in the donut and coffee cup counting as “the same.” The

fact that we want them to count as the same means that mathematicians have

built much more subtle categories in which to study them. In fact, the theory

behind building these more subtle categories is an important piece of math in

its own right, which is one of the main areas of current research in the field.

In this chapter we’ll see how category theory makes these ideas precise.

Nelson’s Message
Sacrificing Some Sameness for a Greater Good

At a key moment just as the Battle of Trafalgar was about to get under way

on October 21, 1805, Lord Nelson sent out a now famous message to rouse

and inspire his fleet:

England expects that every man will do his duty.

This was raised in a flag signal before they sailed to their famous—but, for

Nelson, fatal—victory. However, Nelson’s original message was

England confides that every man will do his duty.
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That does have a slightly different tone to it. This sense of “confide” has more

or less died out now: he did not mean that England was telling a secret. He

meant that England was confident that every man would do his duty. This has

a different tone from “expects”—perhaps it is more trusting. It is not a com-

mand, not even an implied command; it is a simple statement of confidence

in the fleet, a somewhat British understatement I think. Not “Go out there

and defeat the enemy!” Imagine if someone says to you before a big event, “I

expect you will be brilliant,” as opposed to “I am confident that you will be

brilliant.”

Anyway, Nelson asked his signal lieutenant, John Pasco, to relay this mes-

sage to the fleet in flag signals, asking him to be quick, as he had one more

signal to make afterwards. Pasco respectfully suggested the word change, for

the sake of efficiency. The point was that “expects” was in the signal book

and could be signaled in one go, whereas “confides” would have to be spelled

letter by letter—much more arduous and time-consuming. Nelson authorized

the change. The message was equivalent enough for him in meaning. But to

the signal lieutenant, the new message was much simpler.

Often in mathematics the aim of finding things that are more or less the

same in a given context is similar: we can then replace an object in our

thoughts (or calculations) with one that is equivalent in the given context,

but much easier in some other respect. Perhaps it is simpler to work with, or

simpler to draw, or simpler to think about.

For example, topologically an infinitely large piece of paper is the same

as a very small piece of paper. In fact, they’re both the same as a single dot. It

is very useful to be able to swap between these things in different situations,

knowing that topologically they’re all the same. Sometimes a single dot is

the simplest thing to think about because it’s so tiny, but sometimes a whole

“piece of paper” is more useful. In life this is because you can actually draw

something on it (unlike on a tiny dot), and in math it’s quite similar. By “piece

of paper” I really mean a flat square surface. Flat surfaces are useful objects

in topology because they are building blocks that we can use to make other

surfaces as in a patchwork. We couldn’t do that with dots, because when you

stick a dot to another dot you just get a dot—the second dot has nowhere to

go except right on top of the first dot. If we tried to build a surface out of
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dots we’d never get anywhere. Imagine trying to build something out of Lego

blocks when all you have is the tiny 1×1 pieces. All you can do is stack them

up in a narrow tower. With dots it’s even worse because they have no height,

so you will go neither sideways nor upwards.

Here’s how this fact is expressed technically in mathematics.

The notion of sameness we’re using here is the “playdough” one,

which is called homotopy equivalence. The mathematical version

of a piece of paper is a plane. So we say that a plane is homotopy

equivalent to a point.

Building up spaces by gluing together smaller ones is a

process called taking colimits. And the mathematical stumbling

block we have here is that taking colimits does not preserve ho-

motopy equivalence, which means that although a plane is more

or less the same as a dot, you can stick planes together in a way

that is very different from sticking dots together. For example,

you can glue two pieces of paper along pairs of edges to make a

cylinder. A cylinder is very different from a dot, because it has a

hole in it.

Chocolate Cake
When Small Differences Add up to Big Ones by Mistake

If you offer a small child a choice of several pieces of chocolate cake, they will

almost certainly be completely sure which one is the best. If you give them

one that wasn’t the best, they will be upset and possibly cry.

Now imagine weighing the pieces of chocolate cake. You can imagine that

if you offer the child one piece that weighs 100 g and another that weighs 95

g, they might not notice the difference. So those two pieces are “more or less

the same” to the child as well as to you. Next you could offer the child the 95



228 How to Bake π

g one and a 90 g one, and they might still not notice the difference. Then 90

and 85. Then 85 and 80, and so on. You could keep going like this all the way

down to 50 g, but then if you showed them the first piece, the 100 g piece,

they’d say it was definitely bigger.

What has happened? Something odd has happened that isn’t supposed to

happen when things are the same. If you have

a = b

b = c

c = d

d = e . . .

and so on, you can keep going forever, up to, say,

y = z

and you’ll still have a = z. Not so with the child’s chocolate cake. This is

a problem. So category theory doesn’t allow any old thing to be a notion of

“sameness.” The chocolate cake one doesn’t work, for example. We would

have to use a different axiomatization to encapsulate that situation.

Category theory wants to use notions of sameness that operate enough

like equalities that we can manipulate them a bit like we are used to doing

with equalities, just with perhaps a little more care. This means we should be

able to use chains of sameness, as above, and we should be able to substitute

things that are “the same” and get a result that is “the same,” like when we

use potato flour in a brownie recipe and get something that is still more or

less the same as a brownie.

In category theory we are able to express these notions of sameness using

the relationships between objects. Remember that we draw these as arrows

and call them arrows or morphisms. Some of the arrows might be not at all

like sameness. For example, we have looked at all numbers, and drawn an

arrow a b whenever a ≤ b.

Now, obviously some of these arrows aren’t like “sameness” at all, because

we have things like 3 ≤ 10 but 10 is not at all like 3. Unfortunately, this isn’t

a very interesting example for us to think about, because numbers are so

basic that the only notion of sameness in this category is in fact equality. In
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order for us to think about more interesting notions of sameness we need to

think about the relationships between objects as being more like a process of

getting from A to B, like a route through a city. The question now is:

Is the process reversible?

In category theory, things only count as “more or less the same” if you

can reverse the process of getting from A to B. If you can only go one way

and not get back again, it doesn’t count.

Frozen Egg
Processes That Are Nearly Reversible

When you melt chocolate carefully enough, you can always let it set again

and it will be pretty much back to how it was when it started. Butter is a bit

more tricky—it is likely to separate, and then when it sets again it won’t be

quite the same.

What about ice cream? You’re not supposed to melt and refreeze ice cream

in case you get food poisoning, but I’ve done it plenty of times (not wishing to

waste the ice cream) and the refrozen ice cream seems just the same as before,

to me. And it’s never made me sick (yet). However, it does lose some air when

it’s refrozen, so the resulting ice cream is a bit more solid than before.

So much for taking something frozen, thawing it, and freezing it again.

What about freezing things that aren’t supposed to be used frozen, and thaw-

ing them again? This works fine with water, of course, and you can keep

doing it as many times as you want. Milk can look a bit suspect after you

thaw it again—if it wasn’t homogenized then it separates when it thaws and

looks disgusting, like it’s gone off. I’m still happy to use it like that for cook-

ing, but I wouldn’t give it to someone to put in their tea, as they’d probably

think I was crazy.

Have you ever frozen an egg? The result after thawing is slightly unnerv-

ing. The white seems to go back to looking completely normal, but the yolk

does not lie in a flattened little blob as you would expect a raw egg yolk to do.

It stands out from the pool of egg white as if it were a boiled egg yolk. The

first time I tried this I cut it in half and it even looked like a boiled egg yolk
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on the inside. I can’t remember what it tasted like but I must have tried it,

knowing me. The thing is that I mostly only eat egg whites, so it didn’t really

matter to me that the yolk had become peculiar. To me the frozen-and-thawed

egg was just as good as a normal egg. (Actually it was even better, as it was

much easier to remove and discard the yolk in this weird pseudo-boiled state

than when it’s raw.)

The point about all this is that freezing water is an entirely reversible

process, but the other processes are only “more or less” reversible. That is,

when you try and undo the process you get something that is only “more

or less” the same as what you started with. This is something that category

theory can deal with. There are plenty of occasions when something gives

you not exactly the right answer but more or less the right answer. Category

theory gives us a way of saying this precisely without having to wave our

arms around a bit and mumble “Um, sort of. . . ”

In mathematics, instead of saying something is reversible we

say it is invertible. One mathematical process that is invertible is

adding 2. We could draw it as a process, like this:

3
+2

5

and then we can show the reverse process like this:

5
−2

3

and to show that this really gets us back to where we started, we

could draw this:

3
+2

5
−2

3
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Actually in math we’re interested in more than just getting

back to where we started—we want to know if the process of

going there and back is the same as the process of never going

anywhere in the first place. This doesn’t make a lot of sense with

numbers, because our processes aren’t subtle enough to pick up

that kind of difference. It’s the kind of delicate situation that

only really comes up when you study things more delicate than

numbers.

Still, here’s something that isn’t invertible: squaring num-

bers. We have

3 9
squaring

but we could also do

−3 9
squaring

so when we reverse this process starting at 9, how do we know

whether the answer should be 3 or −3? We don’t. So squaring is

not invertible.

Custard
When Combining Things in a Different Order Makes a Difference

Some recipes require you to separate the egg yolks from the egg whites.

Sometimes this is because you’re only using the whites, like in meringue,

or only the yolks, like in custard. Sometimes you’re using both, but sepa-

rately, in a pleasing sort of coherence, like with lemon meringue pie, where

you use the yolks in the filling and the whites in the meringue topping. Other

recipes require you to separate them just so you can mix them together in

different ways, like with chocolate mousse, where the yolks get mixed with

the chocolate and the whites are whisked to stiff peaks and folded in.
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When you’re making custard (andmany other things with separated eggs)

you absolutely have to do everything in the right order and the right combi-

nations. You start by whisking the egg yolks with the sugar, and then you

whisk in the milk. If you started by whisking the sugar with the milk, and

then whisking in the egg yolks, it wouldn’t be the same at all.

Making cake is much less sensitive. I usually start by creaming the sugar

and the butter, then adding the eggs and then the flour. But you could start

by whisking the sugar and the eggs, and then adding the butter, although

it won’t blend so well unless it’s melted. In fact, with the advent of electric

mixers and food processors all these techniques are fairly unnecessary—you

can basically just chuck everything in the food processor at once and press

start.

We could represent the making of custard by a diagram like this:

egg yolk sugar milk

custard

We could then observe that if the sugar branch were attached to the milk

branch first instead of to the egg yolk branch, it would not be the same. That

is,

egg yolk sugar milk

not custard
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For the cake example, we have this version with four branches:

sugar butter eggs flour

cake

These diagrams are called “trees” in math, because they look a bit like

trees. The loose ends at the top, which are labelled “egg yolk,” “sugar,” and

“milk” here, are called the leaves, and the loose end at the bottom is called the

root. They’re another vivid way of bringing out the structure in a situation.

Category theory studies these kinds of relationships carefully because it’s

something we take for granted in basic mathematical worlds that isn’t true in

other ones. This is the notion of associativity again. In the normal world of

numbers, addition obeys this rule:

(5 + 5) + 3 = 5 + (5 + 3).

More generally, we can use symbols to show that this works for all numbers:

(x+ y) + z = x+ (y + z).

Now, what I’ve just shown with the custard is:

(egg yolks+ sugar) +milk 
= egg yolks+ (sugar+milk).

Here the plus sign doesn’t exactly just mean plus, and this is the whole

point—it is a more subtle process of combining things than just throwing

them together. And that’s why the two versions aren’t equal. If the process

of combining those ingredients were much more crude, like “chuck into a

bowl together,” then the two versions would be equal to each other, but they

wouldn’t very well resemble custard.

Category theory is well equipped to study other situations that are a bit

better than the custard one, where the two versions of the tree are not ex-

actly the same but more or less the same, using the relationships that we are

considering. This produces some interesting geometrical shapes as we’ll now

see.
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We could try writing down all the possible trees with four leaves, like

having four ingredients. Suppose we’re only allowed to add one thing at a

time. Here are all the possible trees:

Now, to help us see the structure in this situation we can draw an arrow every

time we have a branch moving its attaching point from left to right, because

it’s really a process of moving some brackets around:

Then we get this pentagon:
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This is a very famous pentagon in category theory, and plays an important

role whenever we’re thinking about processes of putting things together in

different combinations—which is very widespread in math, whether it’s by

addition or by more and more subtle or complicated processes. Isolating the

structure and drawing it like this as trees with arrows in between themmeans

that we can turn a piece of algebra into a geometrical shape that neatly sums

up all the information.

Moreover, we can play this game again, and write down (with some effort)

all the possible trees with five leaves. Then we can draw in the arrows again

where we have a branch moving from left to right, and if we do it carefully

we’ll find that we have a three-dimensional shape with six pentagons and

three squares. (This sounds tedious and long-winded, but I admit it’s the kind

of game I love playing. I sat down and did it for all the trees with six leaves

once as well.) You can cut it out and make it into a three-dimensional figure

from this pattern:

Just don’t try to make it out of thick card stock, because it won’t quite fit

together—it needs to be made from paper that’s a bit bendy, otherwise the

pentagons and squares would have to be a bit wonky for them all to fit to-

gether.
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And this all came from thinking carefully about how to understand the

different possible processes of combining five ingredients. These shapes can

be generalized to take account of more and more leaves, and of course the

shapes become more and more complicated. Several fields of research deal

with the problem of organizing these complicated shapes.

Some Things That May or May Not Be the Same

Let’s think about this set of numbers:

{1, 2, 3}

Which of the following sets do you think is sort of similar?

1. {2, 3, 4}

2. {2, 4, 6}

3. {−1,−2,−3}

4. {11, 12, 13}

5. {101, 102, 103}

6. {100, 200, 300}

7. {13, 28, 42}

8. {cat, dog, banana}

The first one is similar because all the numbers are just shifted up by 1.

The second is similar because all the numbers are multiplied by 2. The third

is similar because it’s just the negatives of the first set, the fourth and fifth

are shifted up by 10 and 100 respectively, and the sixth is multiplied by 100.

What about the seventh? This is a rather random-looking set with no

rhyme or reason to it. The eighth isn’t even a set of numbers.

The important thing to notice here is that we naturally think about the

relationship between the things in the set when wondering whether the sets

are similar or not. But in fact, in mathematics a “set” is just a bunch of objects
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where we have “forgotten” about any relationships between them. So math-

ematically all these sets are “the same” just because they have three objects

each. This is not a very subtle notion of sameness, which is why in category

theory we incorporate information about the relationships between things as

well. Later we’ll see that the notion of sameness for groups is more subtle,

because groups have a way of combining objects for us to think about.

The sets above are a situation where the wrong notion of “sameness”

made too many things the same. In other situations the wrong notion doesn’t

make enough things the same. For example, in the trees that we were looking

at earlier on in the chapter, what mattered was how many leaves there were,

and how the branches were connected, not the angles at which they were

connected, nor how thick the lines in question were. Sometimes notions of

sameness are not as obvious as any of these things. What about this set of

numbers?

{13, 28, 41}
This looks quite a lot like the seventh set in the above list, but there is a crucial

difference—the third number, 41, is the sum of the first two, just like in the

original set:

{1, 2, 3}
In the next chapter we’ll see how situations like this can be expressed, where

it’s a relationship between several objects that is interesting, not just between

two.





Chapter 14

Universal Properties

Fruit crisp

Ingredients

3 oz. flour

2 oz. sugar (dark muscovado is good)

2 oz. cold butter

12 oz. fruit of choice, chopped if needed

Method

1. Mix the flour and sugar.

2. Chop the butter into small cubes and then rub into the dry

ingredients with your fingertips, until it resembles bread

crumbs.

3. Put the fruit in an ovenproof dish with a little extra sugar

if it seems necessary.

4. Cover thickly with the flour mixture.

5. Bake at 350◦F for 25–30 minutes until it looks brown and

delicious.

Fruit crisp is one of my favorite desserts. I love it because it’s easy and

comforting. I love the way the topping sort of blends in with the fruit on the

239
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surface, making a gooey layer in between the crunchy part on top and the

soft fruit underneath. My favorite fruit to use is blueberries. Or plums. Or

bananas. We discussed earlier on that you can basically use any fruit you feel

like, although watermelon is a bit strange. What about tomatoes?

At this point are you thinking, “But tomatoes are a vegetable” or “Oh,

very funny”? If you think tomatoes are a vegetable, you are characterizing

them by the role they generally play in our meals, rather than their inherent

characteristics. However, according to the role they play “in nature” as part

of a plant’s reproductive mechanisms, they are technically a fruit. But if we

used them as the “fruit of choice” in the fruit crisp recipe, it would be rather

bizarre. Tomato crisp is probably feasible, but surely only without all that

sugar.

This is an example where in everyday language we characterize some-

thing by the role it plays in a particular context, rather than by its inherent

characteristics. If you insist on referring to tomatoes as fruit all the time, or

refuse to refer to peanuts as nuts because they’re really a type of bean, then

you are ignoring the context of these foods and the relationships they have

with other food and with us.

Studying the role that things play is something category theory is well

placed to do, because of the emphasis that we place on context and relation-

ships. We have already seen that some things can be completely characterized

by their relationships with other things. For example, the number 0 is the only

number you can add to anything else without anything happening. This is a

particularly special kind of relationship that category theory looks for, called

a universal property.

Cinderella
The Only Person Who Fits in the Shoe

When Prince Charming is looking for Cinderella, he doesn’t go round ask-

ing people, “Um, excuse me, are you Cinderella?” That would have made for

a much less interesting story. Instead, as we all know, he carries her glass

slipper around (setting aside ongoing arguments about whether it’s really

supposed to be glass or fur) and gets everyone to try it on. The key is that it’s
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tiny, and so he knows that there’s only one person whose foot could possibly

fit into it.

He is looking for Cinderella according to some characteristic she has,

rather than by her actual name—because he doesn’t know her name. This

is like referring to the British prime minister as “the Prime Minister” rather

than “David Cameron”—you’re referring to him by a role he fills rather than

by who he is as a person.

Category theory does this in math. Because it’s focusing on relationships

with things, it seeks to characterize objects by roles they fill in relation to

everything else. This is like playing the “think of a number” game. Try this

one.

I am thinking of a number.

If I add 1 to my number, I get 1.

If I add 2 to my number, I get 2.

In fact, if I add any number x to my number, I get x.

What is my number?

Or what about this one?

I am thinking of a number.

If multiply my number by 1, I get 1.

If I multiply my number by 2, I get 2.

In fact, if I multiply my number by any number x, I get x.

What is my number?

You have probably worked out that my first number was 0 and my second

number was 1. These are very special numbers, and they are characterized

by what I just said in the “think of a number” game. There isn’t really an-

other way of explaining what the number 1 is. Category theory makes this

watertight.

But what about this one?

I am thinking of a number.

If I square it, I get 4.

What is my number?
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Now, you probably worked out that my number could be 2. But did you re-

member that my number could also be −2? The trouble with this one was

that there was more than one possible correct answer. When Prince Charm-

ing went looking for Cinderella he was relying on the fact that there was only

one possible person whose foot fitted the shoe. And in the “think of a num-

ber” game, we rely on the fact that there’s only one possible number that fits

our description, otherwise we’re not playing fair. Category theory seeks to

characterize things in such a way that there can only be one possible answer,

so that we’ve precisely pinned down the role that this thing plays.

For example, if you think back to our axioms for numbers, we never ac-

tually said that there had to be only one possible number 0. This is because it

is redundant as a rule—we can actually deduce it from the other rules. This

shows that the property of 0 that we use characterizes it uniquely, just like

Cinderella’s slipper—there is only one number that satisfies this property. It

doesn’t really matter what name we use for it (zero or nought, for example):

as long as we know it satisfies this property, we must all be referring to the

same number.

Here’s how we show there’s only one possible 0. We know

that for any number x, 0 + x = x. Now suppose there’s another

number that behaves the same way as 0. Because it’s trying to

be another version of zero, let’s call it Z . Now, because it behaves

in the same way as 0 we know that for any number x, Z+x = x.

But because this is true for any number x, we can put in x = 0

and this gives us

Z + 0 = 0.

But we know that adding 0 to anything does nothing, so the

left-hand side is Z , giving us

Z = 0.

So the other version of zero was just the same after all.



Universal Properties 243

The same is true of inverses. Remember that the additive in-

verse of 3 is −3 because when we add them together we get 0.

But in fact −3 is the only possible number with this property,

which we can prove as follows.

Suppose there’s some other number Y which also does this,

so

3 + Y = 0.

But then we can add −3 to both sides (which amounts to sub-

tracting 3). On the left this gives us Y and on the right this gives

us −3, so we get

Y = −3.

That is, if another number Y tried to be an additive inverse for 3,

we would just discover it was −3 all along.

Finding a property that characterizes an object uniquely is one of the im-

portant aspects of a universal property. Here “universal” doesn’t mean that

the property holds universally for all objects. It’s more like a universal key

that works in all locks, or a universal password that you have on your com-

puter to release all other passwords. It is in some way superlative with respect

to all other objects.

Universal properties are like bests and worsts. Or firsts and lasts.

North Pole, South Pole
Looking at the Extremities

The North Pole and the South Pole are fascinating concepts. The idea of ac-

tually going to the North or South Pole is one of the challenges to explorers

who seek to conquer superlatives—climbing the highest mountain, for ex-

ample. One fascinating thing about the North and South Poles is that there

are no West and East poles. This is because the earth is spinning in the

east-west direction, not in the north-south direction; if it were spinning in
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the north-south direction, we would have an east and west pole instead, and

all the magnetic fields would be another way up.

Studying the natural features of the poles helps us understand things

about the world even though most of the world doesn’t resemble the poles at

all (thank goodness). There’s a reason the only human settlements in Antarc-

tica are scientific research stations.

Category theory also tries to find the “north and south poles” of each

mathematical world, even if the rest of the mathematical world doesn’t be-

have in the same way—these extremities give us insights into the rest of that

world.

Once we know what the relationships between things are, we can look

for different types of extremities. We can look for the biggest and smallest, or

the strongest and weakest? For example:

• The smallest possible set of things is the empty set, which has nothing

in it. It helps in math to treat this a bit more actively than in normal life:

it’s like saying you have a stamp collection but it happens to be empty,

rather than saying you don’t have a stamp collection at all. Perhaps it’s

more like having an empty shopping cart while you’re at the grocery

store, which is different from saying you don’t have a shopping cart.

• What about the biggest possible set? Infinite sets are very interesting,

and it is amazing to try to compare different infinite sets and discover

that some are “more infinite” than others, in a very precise mathemati-

cal sense.

These are examples of universal properties. They tell us something is spe-

cial with respect to some relevant universe. We’re not just saying something

is big, which would be a property. We’re saying it’s the biggest, or some other

mathematical version of a superlative. We’re fascinated by finding superlative

natural features of the earth, such as, the tallest mountain, the deepest ocean,

the longest river, the highest waterfall, and so on. It’s a way of characterizing

our planet by extremity—it’s a way of giving everything else on the planet

a context. Category theory looks for the extremes of worlds even if they are

not exactly typical. That’s the whole point about being extreme.
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If we’re talking about groups, the situation is a bit curious.

You can’t have a group with nothing in it, because one of the ax-

ioms for a group says it has to contain an identity object (the one

that does nothing if you combine it with any other object). This is

like the fact that you can’t really have empty ravioli, because the

whole point of ravioli is that it has something in it. Anyway, this

means that the smallest possible group is the one that has only

one object in it, the identity object. When you combine it with

itself you keep getting the same thing back again. This is like a

number system containing only the number zero. It sounds silly,

but we’ll see later that it’s quite important for abstract reasons

even if not for practical reasons.

A less obvious but more mathematically important type of extremity is

the “initial object” and “terminal object” of a category. Once we’ve drawn an

arrow for each relationship in the category, we say an initial object is one that

has exactly one arrow going out of it to every other object in the category. A

terminal object has exactly one arrow going into it from every other object

in the category. So initial objects are sort of at the “beginning” if we think of

arrows as being directional, and terminal objects are at the end.

This doesn’t actually mean “biggest” and “smallest” any more than the

North and South Poles are the biggest or smallest. It also doesn’t mean best

or worst. Remember this lattice of factors of 30:

30

6 10 15

2 3 5

1
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We can see from this picture that the biggest number is 30 and is also

terminal, and the smallest number is 1 and is initial, but this is an accident of

this particular example.

Actually, you might find it easier to see that 30 is terminal from the picture

with all the composite arrows drawn in:

30

6 10 15

2 3 5

1

If you pick any other number in the picture you can see that there’s exactly

one arrow going from it to 30. Likewise, there will be exactly one arrow going

from 1 to your number, showing that 1 is initial.

For the category containing all possible sets and all possible functions

between them, it turns out that the initial set is the empty set (which is the

smallest), but the terminal set is any set with one object—definitely not the

largest possible set.

The reason this is true is a bit technical. First of all we have

to understand what “arrows” we’re thinking about here. The ar-

rows in question are functions, where a function A B is a

way of sending every object in the set A to an object in the set

B. It doesn’t have to be a process that can be written out as a

tidy-looking function like x2 or something; it’s more like a mys-

terious machine that takes objects of A as inputs, and spits out

objects of B as outputs. If you open up the machine you might

be able to see that it works according to a simple formula, but

maybe it doesn’t. Either way it doesn’t matter how the machine

does it; it just matters what the machine gives as the outputs.
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Now, if B only has one object, there is only one possible

machine—there’s only one possible output, so no matter what

object of A you feed it as the input, the output will always be

the same, regardless of what convoluted process the machine

goes through. So there is exactly one arrow from any set to B,

making B terminal.

If A is the empty set, there is again exactly one possible ma-

chine. This time it’s because there are no possible inputs, so the

machine doesn’t get to do anything at all. We’ve finished before

we’ve even started.

As I said, universal properties often give rise to rather col-

lapsed situations.

Big Fish in a Small Pond
Moving to a Different World to Become an Extremity Somewhere Else

If you want to be the biggest fish in a pond, you might have to move to a

smaller pond, in which the bigger fish won’t fit. If you’re going to character-

ize something by a property rather than by its name, you had better make

sure there’s only one of them first. It would be hopeless to arrange to meet

someone at “the cafe in the National Gallery, London” because there are far

too many of them, whereas meeting at “the cafe in the Millennium Gallery,

Sheffield” will work just fine. There was a bar in Chicago that my friends and

I used to refer to as “The Flamingo” even though it was actually called Bar

Louie; Bar Louie was a chain with branches all over the place, but there was

only one building called The Flamingo, and only one bar in it.

My favorite whisky is Ardbeg Uigeadail, which for a while I referred to as

“the Ardbeg Unpronounceable.” I genuinely didn’t know how to pronounce it,

but discovered that if I asked for “that unpronounceable Ardbeg” in a whisky

shop, they knew exactly what I was talking about. However, there are now

other unpronounceable Ardbegs, such as “Airigh Nam Beist,” and so charac-

terizing the Uigeadail by this property no longer pins it down uniquely.
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In category theory as well, if there is more than one thing with the same

property, you can either move to a smaller pond, or be more specific about

the property you’re talking about. You can tell this is going on in normal life

when some superlative a slightly absurd number of qualifiers. For example

“the best restaurant where you can have a three-course meal for under £15

in Sheffield” isn’t the best restaurant in the whole world with a three-course

meal for under £15 (which would be quite impressive), and it isn’t the best

restaurant in Sheffield in all price ranges (which would also be impressive).

Rather, we’re restricting both the property and the world in which we’re con-

sidering it, making it somewhat less impressive.

Sheffield has the distinction of being the “largest city in England with

no professional orchestra”; this has to be restricted to England as Glasgow

doesn’t have one either. Sheffield does have a symphony orchestra; it proudly

calls itself the “best amateur symphony orchestra in South Yorkshire.” My

friends and I joke that I am the “best young female category theorist in South

Yorkshire.” Actually we could drop the “best” and the “young”—I am, to date,

the only female category theorist in South Yorkshire, unless there are some

secret ones hiding in Doncaster or something.

In the previous chapter we discussed the fact that sometimes we ask

which objects are equivalent in a given context, but sometimes we start with

an idea of which objects we want to think of as equivalent, and then find the

context in which they are so. The same thing happens with universal proper-

ties. Sometimes we look for the objects that are universal in a given context,

but sometimes we start with an idea of an object that is special, that seems

like it ought to be universal somewhere, so we go and look for the context in

which it is universal. This is like finding a smaller pond in which the fish is

biggest.

We will later see how this works for some number systems: the natural

numbers and the integers, for example. The natural numbers feel so. . . natural,

that it seems they should really be universal somehow. The same goes for the

integers. In fact, mathematicians confusingly use the word “natural” in this

more hazy instinctive sense as well as in some very precise formal senses.

If an object seems to a category theorist to be very naturally arising, then

it seems somehow organic and unforced, and it seems like it should have a
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universal property somehow. The 12-hour clock arithmetic is little contrived

because we had to pick how many hours on the clock there would be, so it

isn’t really universal. However, the number system with only a 0 in it seems

a bit silly but it’s still organic, because we didn’t have to make any arbitary

choices to make it happen. Likewise, the integers just spring up without us

really doing anything. But the integers are neither initial nor terminal among

number systems, because it turns out that the 0 number system is both initial

and terminal. So we have to find another context in which the integers are

universal, and we’ll see what it is soon.

Here’s why the smallest possible group is both initial and ter-

minal. This is also a somewhat technical fact, and it involves un-

derstanding what is the relevant notion of relationship between

groups. The answer is that an arrowA B is a way of sending

every object of A to an object ofB (just like with functions) with

the added axiom that the notion of addition has to work sensibly

once you’ve moved toB. What that means is that if you send an

object a1 to b1 and an object a2 to b2, then a1 + a2 has to go to

b1 + b2.

One consequence of this is that the identity in the group A

has to be sent to the identity in the groupB. So if the group A is

the one that only has the identity in it, you have no choice about

where to send it—it simply has to go to the identity in the group

B. This says there is precisely one arrow from A to B no matter

what B is, which means that A is initial.

However, if A is this group that only has the identity in it,

there is also precisely one arrow from B to A, because you have

no choice where to send everything in B, just like with the ex-

ample of the set with only one object. This means that A is both

terminal and initial. It’s a bit like being in a world where the

North and South Poles are the same.
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Big Garden
When Being Superlative Is a Burden

Sometimes being the biggest isn’t always the best. Having a big garden might

sound nice, but it would require an awful lot of gardening; of course, this

would be fine if you were rich enough to pay for a team of gardeners. Having

a big car might sound nice, but it’s also much more unwieldy to maneuver,

unless you’re in the United States where everyone else also has a big car, so

the roads are wider, and the parking spaces are bigger. Being extremely tall

might help if you’re a basketball player or trying to change a light bulb, but

it’s not so great when you’re trying to stuff yourself into an airplane seat or

trying to buy pants that fit.

For many things in mathematics there’s a trade-off between being the

“biggest” and being the “most practical.” The biggest ones are good in theory—

it’s illuminating to think about them, and they help to put other things in

context. But once that context has been found, the aim is often to find more

usable versions for daily mathematical life.

For example, the 12-hour clock is not universal, because we’ve imposed

a contrived rule on it that every time we get round to 12 we act as if we’re

at 0 again. However, for practical purposes this is much better. Imagine if we

never imposed a rule saying we went back to 0 again. We would have to say

things like “I’ll meet you at half past twenty-nine million six hundred and

twenty seven thousand four hundred and seventy-three.” This would be if we

told the time using all the natural numbers, rather than the 12-hour clock

version. The natural numbers are universal, but the 12-hour clock is practical.

Things that are universal are good for abstract thoughts. After all, we never

actually need all the natural numbers in daily life; we just need to know that

we will never run out in principle.

But we would still like to think about the fact that the natural numbers

arise organically by just counting and counting and counting forever. Is there

a universal property is that encapsulates this? There is, and we’re nearly

ready to see what it is.
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Erdős
When Minimalism Helps Us See What’s What

Apparently everything in Paul Erdős’s life was in service of his mathematics,

and he owned nothing and did nothing that was extraneous to this purpose.

He hardly had any possessions, and he rarely stayed very long in any one

place, traveling around with his suitcase to discuss mathematics with differ-

ent people in different places. He would turn up somewhere with his suitcase,

discuss math with someone for some days or weeks, and then move on to the

next place where he wanted to discuss math.

Category theory often seeks to characterize things by what role they play,

but it also does it the other way round as well: it thinks up a role and then

goes looking for something that plays that role in the most minimal possible

way, without any extraneous features. Because then not only does the role

characterize the thing, but the thing characterizes the role as well. It’s like the

fact that the only actor who has played Harry Potter is Daniel Radcliffe, and

for a while, Daniel Radcliffe had only ever played Harry Potter. Until Radcliffe

appeared in Equus,Harry PotterwasDaniel Radcliffe and Daniel Radcliffewas

Harry Potter. By contrast, James Bond has been played by many actors, but

people love to argue about which one is the “definitive” James Bond.

There are many composers who wrote only one violin concerto: Bruch,

Mendelssohn, Brahms, Beethoven, Sibelius, Tchaikovsky. So we can say “the

violin concerto by Tchaikovsky” (or any of the others) without ambiguity,

whereas “the violin concerto by Mozart” could refer to many different pieces,

and “the violin concerto by Schubert” would be referring to something nonex-

istent.

But most of these composers also wrote other famous works—apart from

Bruch. Bruch basically only wrote a violin concerto. (This isn’t actually true,

but the violin concerto is the only thing he wrote that’s really famous.) So

not only is his violin concerto defined by being written by him, but he is also

somewhat defined by his violin concerto.
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The category theorist James Dolan likens all this to a guy walking up

the street whose mustache is so enormous he is completely dominated by

it—in fact, the person seems to exist only as a carrier of the mustache. He’s a

“walking moustache.”

Category theorists often refer to such minimal features as “free-living.”

Imagine breaking free of all constraints and just living with the bare mini-

mum of what was necessary to sustain life. (A friend of mine ran away from

home at the age of sixteen and took her parents’ blender with her: a key

necessity to sustain life?)

Understanding the bare minimum of what something needs to sustain

its life is a key feature of category theory. In this sense, Erdős truly was a

“free-living” mathematician, living only with those things necessary to sus-

tain his mathematical life. He was in fact a “walking mathematician” in both

this figurative sense and the literal sense, walking from place to place with

his minimal suitcase.

Putting the “Natural” in the Natural Numbers

This leads us to seeing what is universal about the natural numbers. The

answer bears a pleasing resemblance to our intuition that they are what you

get naturally if you start with 1 and just keep counting forever.

In category theoretic terms, this is called “free.” It means that you start

with something and proceed freely, never imposing any extra rules on your-

self apart from the ones that automatically come with the context you’re in.

The context for natural numbers is the notion of a “monoid.” This is some-

thing that is like a group, so we can add things up in any order we want, but

without the rule saying that everything has an inverse, so we don’t worry

about negative numbers. Now, if we start with just the number 1 and make a

monoid “freely,” we know that we have to be able to do

1 + 1

1 + 1 + 1

1 + 1 + 1 + 1
...



Universal Properties 253

We know that it doesn’t matter how we put brackets around these things, but

we are not going to impose any more rules on ourselves, because we want

to be free. No rules. This means that we will never get any extra equations

saying things like

1 + 1 = 1 + 1 + 1 + 1

or anything like that. So all we do is keep adding ones, and what we get is the

natural numbers. So the natural numbers are the free monoid starting with

just the number 1.

If we demand inverses as well, so that we have a group, then starting from

just the number 1 gives us all the integers. Basically all we can do is add up

1’s as above, and then take the negative versions as well. So the integers are

the free group starting with just the number 1.

In category theory we can make free objects starting from other things

as well. We can make a free group starting from any set of things. The free-

dom of this situation is a type of universal property that is closely related to

“forgetting structure,” as we discussed in the chapter on structure. We saw

that there was the idea of “forgetting” the structure of a group to get a set,

and now we have the notion of freely building up a group starting from a set.

Likewise, we thought about rings, which are like groups but have multiplica-

tion as well as addition. We saw the notion of “forgetting” the multiplication

involved in a ring to get back a mere group, and in fact there is also the no-

tion of freely building a ring starting from a group. The process of forgetting

things and building them freely are a type of opposite, but they’re not actu-

ally inverse to one another. They’re another special type of relationship that

category theory looks at that’s even more subtle.

Exploring More Universal Properties

1+1 = 2, or Does It?

Sometimes when I tell people I’m a mathematician they make jokes about

1+ 1 being 2. Either they tell me that’s all the math they’re really sure about,

or they tell me that math is all either right or wrong because, for example

“1 + 1 just does equal 2, end of story.”
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Of course, we’ve already seen a place where 1+1=0: on the 2-hour clock.

Let’s see a way that this clock idea arises really.

Let’s start by changing the question a bit: 7+7 just does equal 14, doesn’t

it? Well yes, unless you’re working on a 12-hour clock, in which case 7:00

plus 7 hours is 2:00.

7 + 7 = 2.

But we’re trying to think about something other than clocks. What if you’re

thinking about days of the week? This works better in Chinese, where Mon-

day is called “day one,” Tuesday is called “day two,” Wednesday is called “day

three,” and so on. (Don’t be fooled though: Sunday is called “day sun.”) Any-

way, if we’re on “day five” and we add three days, we get to “day one”:

5 + 3 = 1.

Or what if we’re playing a piece of music and we’re thinking about the

beats in a measure? Say there are four beats in the measure. Then two beats

after the third beat in the measure is the first beat of the next measure:

2 + 3 = 1.

Now you might be tempted to argue, “This doesn’t count!” Actually, that’s

not a badmathematical response. Mathematicians often just declare that things

don’t count if they don’t fit into their world. However, mathematicians only

say “this doesn’t count” temporarily—if something doesn’t fit with a world

but still makes some kind of sense, they say it doesn’t count in this world but

then they go and look for the world in which it does make sense.

All of these “weird” addition laws do make some kind of sense. They’re a

lot like our normal number system—in fact, they’re enough like our normal

number system that they count as just another kind of number system. That

is to say, we could check that they satisfy the axioms for numbers that we

came up with before—the order of addition doesn’t matter, parentheses don’t

matter, there’s a number that acts like 0, and there are numbers that act like

negatives.

What about counting “not”s? Children discover that “not”s cancel each

other out, and they get very excited about making silly jokes like “I’m not not
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hungry” meaning that they are hungry. Or saying “I’m not not not not not

not not not not not not not hungry!” and then collapsing into giggles because

they know nobody has a chance of working out whether they said an even

number of “not”s, meaning that they are hungry, or an odd number, meaning

that they are not hungry.

In this case

not not hungry = hungry

or we could say:

1 not+ 1 not = 0 nots.

There: 1 + 1 = 0.

This is a perfectly valid number system; moreover, it arises naturally and

is pretty useful. In this number system, there are only two numbers, 0 and 1.

And you add them up like this:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0

As we saw in the previous chapter, we could draw this in a little addition table

like this:

+ 0 1

0 0 1

1 1 0

And it’s the same pattern as in a Battenberg cake.
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You get the same pattern if you think about NOT gates in electronics, or

light bulbs that have a light switch at two different locations in the room—if

you flip only one switch, the light will go on, but if you flip both switches, it

will go off again.

This is a pretty small number system. But is it the smallest possible? No,

there’s an even smaller one with only one number: 0. This has an addition

table like this:

+ 0

0 0

This is like a world in which you’re not allowed any sweets, ever. Like me

when I was little, as I was so allergic to food coloring and all sweets had food

coloring in those days. The only number of sweets that existed in my world

was 0, and we have landed back in the smallest possible group in which there is

only one object: the identity. Remember, the identity (if we’re thinking about

addition) is 0, because when we add it to anything else, nothing happens.

This is not a very useful number system to think about all by itself, but in

category theorywe don’t just think about number systems by themselves—we

think about relationships between number systems.

When I was little I compared my sweetless world with the world of all my

friends who got a little money each Friday and could go down to the village

sweet shop and buy quite a giant bag of sweets for even a few pennies. Simi-

larly, in category theory we compare the numberless number system with all

the other number systems, and it is the South Pole of the world of number

systems. It is the extreme number system, in which nothing much can hap-

pen (like at the South Pole) but which is still an important thing to pin down,

as it tells us where the extremity of our world is.

Extreme Notions of Distance

We’ve also looked at notions of distance, called metrics. There’s a most-

extreme-possible version of a metric where everything is distance 1 from ev-

erything else (unless they’re equal). For these abstract distances we don’t use

units, so it’s not 1 km or 1 mile, it’s just 1 something. In this way, a metric

where everything was a distance 10 apart wouldn’t be any “bigger”—because
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we don’t have any units, “1 somethings” is abstractly the same as “10 some-

things.” The point here is that everything is unavoidably separated from ev-

erything else. This notion of distance sounds a bit silly, but we can check that

it satisfies the three rules for a metric:

1. The distance between A and B is only 0 if A and B are the same (because

after all, the distance is otherwise 1).

2. The distance from A to B is the same as the distance from B to A (be-

cause either they’re the same, in which case the distance is 0, or they’re

different, in which case the distance is 1).

3. The triangle inequality—this is a bit more complicated to check, but it

does still work.

If we write the distance from A to B as d(A,B), then we need

to show:

d(A,C) ≤ d(A,B) + d(B,C)

We can draw a table with cases:

d
(A

,B
)

d
(B

,C
)

d
(A

,B
)
+
d
(B

,C
)

d
(A

,C
)

A = B = C 0 0 0 0

A = B 
= C 0 1 1 1

A 
= B = C 1 0 1 1

A 
= B 
= C,A 
= C 1 1 2 1

A 
= B 
= C,A = C 1 1 2 0

What we have to check is that the last column is always less

than or equal to the second-to-last column, which indeed it is.
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Another way of proving that this inequality is true is by doing

a proof by contradiction. Suppose there’s someA,B,C where the

inequality is false, so

d(A,C) > d(A,B) + d(B,C)

Our aim now is to “hope for the worst”—that is, to discover that

this implies some sort of contradiction, so it can’t be true.

Now, all the distances are 0 or 1, so the left-hand side can

only be 0 or 1, and the right-hand side can only be 0, 1, or

2. So the only way the left-hand side can be bigger than the

right-hand side is if the left-hand side is 1 and the right-hand

side is 0. But the only way the right-hand side can be 0 is if both

distances on the right are 0, which means A = B = C , which

means the left-hand side is 0. This makes the two sides equal,

which contradicts our assumption.

Which of these two arguments did you find easier to follow?

Which was more satisfying?

This metric is called the discrete metric, because it makes things all spaced

out in discrete bits. Nothing is very close together; everything is equally far

apart. (Perhaps this is a teleportation metric, where every place is equally

easy to get to?) The fact that this metric seems a bit absurd is not unusual for

things with universal properties—they are extreme examples of things and so

are often very collapsed on themselves or very stretched out.

You might wonder if there’s a smallest possible metric in which the dis-

tance between everything is 0. The answer is yes, except that this would mean

everything would have to equal everything else as well. Again, very collapsed

in on itself, instead of stretched out.

Extreme Notions of Category

You might be wondering if there are extremities in the land of categories

itself. The answer is yes.
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The smallest possible category is the empty one, just like the smallest pos-

sible set. And just like the smallest possible set, this is initial in the category

of categories. The terminal category is the one with exactly one object, and

exactly one arrow, that we saw before:

x

identity

This is like a conflation of the terminal set and the terminal group, because the

relevant notion of relationship between categories is a conflation of the notions

we’ve seen for sets and for groups. To get from one category to another we

must not only send every object to an object, but also every arrow to an arrow,

and composition has to work sensibly, just like addition had to work sensibly

when we were doing this for groups.

To understand this more, imagine that we’re trying to send

the triangular category to the little one:

B

A C .

f g

h x

identity

We have to feed in A,B,C and f, g, h as inputs, and the out-

puts have to be x or the identity morphism. When we feed in an

object as input, we have to get an object as output. This means

that when we feed in A,B, or C , we have to produce x as the

output. And when we feed in a morphism as input, we have to

get a morphism as output too, so when we feed in f, g, or h, we

have to produce the identity morphism as output. So there’s only

one possible “function machine” from the bigger category to the

little one. The same sort of argument will still work no matter

how big the first category is. This shows that the little one is ter-

minal.
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There are also universal versions of categories that are a bit like the dis-

crete metric we discussed above, in which the distance from everything to

everything else was 1. The category version of this is a discrete category in

which there is no arrow from anything to anything else—all the objects are

completely separate from each other.

However, unlike for metrics, we can have a sort of “opposite” notion of

this category, in which everything is related to everything else without ac-

tually being equal. In this category there is exactly one arrow from every

object to every other object. This is called the indiscrete category. It means

that rather than the objects all being very separate, the opposite is true—the

objects are not separate at all. This doesn’t mean that they’re all identical, but

it does mean that they’re all equivalent in this particular context. The chart

of the very tightly knit group of friends in the chapter on relationships is an

example of an indiscrete category. The friends in this picture aren’t identi-

cal, but they’re equivalent in the sense that perhaps they all know the same

things about each other’s lives; you know, the kind of group of friends where

if you tell something to one of them, you have effectively told all of them.

∞ ∞∞

Finding a universal property in category theory not only tells you something

important about the object in question, but it means you can look for things

that have the same sort of universal property in other contexts, and it gives

you an interesting point of comparison between those worlds. It also gives

you access to one of the things mathematics is so keen on: the possibility of

studying a diverse range of things at the same time by finding a way in which

they’re all similar.

Here are some mathematical examples of things that turn out to be com-

parable through their universal properties.

• Adding numbers up can be seen in the same light as taking unions of

sets, that is, making a new set consisting of all the objects in the pre-

vious two. So can highest common factors of numbers, or the surfaces

you get when gluing two surfaces together. These are all a type of col-

imit, which means they have a particular kind of universal property.
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• Multiplying numbers can be seen in the same light as Cartesian coor-

dinates (anX-coordinate and a Y -coordinate), or taking the maximum

or minimum of two numbers, or making a donut shape by swooping a

circle through the air (as we saw earlier on), or iterating a Battenberg

cake.

• The natural numbers can be seen in the same light as the integers, but

by contrast we can’t see the real numbers in this light; they’re genuinely

different.

The natural numbers and integers are both freely generated

structures. We can generate the natural numbers from the num-

ber 1 by adding it repeatedly. We can generate the integers

from the number 1 by adding and subtracting it repeatedly. But

there’s no way of generating the real numbers from one number

and some operations—you’re doomed to miss some of the real

numbers, even if you start with an irrational number.

Here is category theory’s way of looking at this. The natu-

ral numbers form a monoid, with addition. The integers form a

group, with addition. The real numbers form something called a

field—there’s addition, subtraction, multiplication, and division

for everything that isn’t zero. The thing is that the category of

all monoids and the category of all groups both have good uni-

versal objects inside them, whereas the category of all fields does

not.

Universal properties give us a clue about how we should move from one

world to another when making a mathematical correspondence. Just as the

prime minister of the United Kingdom is more or less analogous to the pres-

ident of the United States, we look for corresponding universal objects in

different mathematical worlds in order to understand the relationships not

just between objects inside the worlds but between entire worlds themselves.
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Some of the examples in the lists above seem much more obviously sim-

ilar to each other than others. One of the satisfying things about category

theory is that you can keep getting more abstract until more and more things

become “the same” and can be studied together. In fact, there’s a joke about

this among category theorists, which comes from a comment in the great

Categories for the Working Mathematician by one of the subject’s founders,

Saunders Mac Lane:

All concepts are Kan extensions.

A Kan extension is something with a certain universal property. Mac

Lane’s assertion is that not only can everything be understood via some uni-

versal property or other, but everything can be understood via the same uni-

versal property. This is a rather grand, unifying vision of mathematics. Al-

though it’s something of a joke, it also sheds light on what category theory is

at heart.



Chapter 15

What Category Theory Is

We said, in the first half of the book, that mathematics is there to make diffi-

cult things easy. We have now seen that category theory is the mathematics

of mathematics. So, category theory is there to make difficult mathematics

easy.

In the second half we have discussed various ways in which it goes about

this, but I want to conclude by characterizing category theory as a category

theorist would, in terms of a property: what is the glass slipper that fits cat-

egory theory exactly? That is, instead of saying what category theory looks

like, we’re going to say what role it fills.

Truth

People often think that mathematics is all either right or wrong. That’s not

true—even if a piece of math is right, it can still be good or bad, it can be

illuminating or not, it can be helpful or not, and so on.

However, there’s a grain of truth in this business of right and wrong. One

of the remarkable qualities of mathematics is that, because it’s all built from

logic and nothing else, mathematicians can readily agree when something is

right. This is very different from other fields, in which opposing theories can

be argued forever. As philosopher Michael Dummett wrote in The Philosophy

of Mathematics:

Mathematics makes a steady advance, while philosophy contin-

ues to flounder in unending bafflement at the problems it con-

fronted at the outset.

Mathematical fact has an elevated status over other kinds of fact. We’ve

already discussed the fact that scientists revere the so-called scientificmethod,

263
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the experimental method, evidence-based knowledge—where facts are de-

duced from hard evidence that can be experimentally repeated. Math isn’t

like that at all—it doesn’t use evidence, because evidence isn’t logically wa-

tertight. Evidence is the foundation of science, but it isn’t enough to give us

mathematical truth. This is why mathematics is sort of a part of science, but

also isn’t a part of science.

Mathematics uses the “logical method,” where facts are deduced only us-

ing cold, bright logic. Mathematical truth is revered because of proof: every-

thing is rigorously proved, and once it has been proved, it cannot be refuted.

You can find a mistake in a proof, but that means the supposed theorem was

never really proved in the first place. Thanks to the notion of “proof,” we have

an utterly unassailable way of knowing what is and isn’t true in mathematics.

How do we show that something is true? We prove it.

Or do we?

The wonderful thing about formal mathematical proof is that it eliminates

the use of intuition in an argument. You don’t have to guess what someone is

trying to say, or interpret their words carefully, or listen to the inflection in

their voice, or look at the expression on their face, or respond to their body

language. You don’t have to take into account the nature of your relationship

with them, the stress they’re under at the moment, the fact that they might

be drunk, or the way their past experiences might be affecting them now. You

don’t have to be able to imagine what something looks like: you don’t have

to be able to imagine eight-dimensional space, or what a pile of two million

apples would be like, or how it feels to be at the North Pole. All of these

problematic subtleties are gone.

And the trouble with formal mathematical proof is that all of these sub-

tleties are gone. The subtleties that can cause problems are also useful, but

useful for something different. They are useful for getting a personal insight

into something. You might think that mathematics shouldn’t be about per-

sonal insight, but in the end all of understanding is about personal insight.

It’s the difference between understanding and knowledge. Formal mathemat-

ical proofs may be wonderfully watertight and unambiguous, but they are

difficult to understand.
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Imagine being led, step by step, through a dark forest, but having no idea

of the overall route. If you were abandoned at the start of that route again,

you would not be able to find your way. And yet, when you’re led there step

by step, you do make it to the other side.

Mathematicians and math students all have the experience of reading a

proof and thinking “Well, I see how each step follows from the previous one,

but I don’t have a clue what’s going on.” We can read a correct proof and

be completely convinced of each logical step of the proof, but still not have

any understanding of the whole. Here’s a completely formal proof of a very

trivial-sounding fact: Any statement implies itself. Note that by “implies” here

we mean logical implication. In mathematical logic “implies” doesn’t mean

quite the same as in normal life—it means something much stricter. “A implies

B” means that if A is true, then B is definitely true without any room for

doubt. In normal life we say things like “Are you implying that I’m stupid?”

and implication is more of a suggestion or an insinuation, not a hard and fast

fact.

Back to our example of statements implying themselves. This is a bit like

things equaling themselves—the most obvious equation is:

x = x.

Shouldn’t something like this be true about logical implication as well?

For example:

• If I’m a girl, then I’m a girl.

• If it’s raining, then it’s raining.

• If 1 + 1 = 2, then 1 + 1 = 2.

And yet look how absurd and convoluted the rigorous proof of this is.

Here the little arrow sign means “implies,” and this is the completely rigorous

proof that any statement p implies itself, using the axioms of formal logic.
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I admit that I find this proof extremely exciting and satisfying, but not

even all mathematicians will agree with me. I only included it here so that

you could marvel at how ludicrously complicated it seems to be to prove

the most basic logical statement. Non-mathematicians think they’ll never un-

derstand what mathematicians do, but half the time mathematicians don’t

understand each other either. Does this proof convince mathematicians that

any statement really does imply itself? No, of course not.

So if the proof by itself doesn’t convince them of the truth, then what

does?

The Trinity of Truth

There is something else that plays the role of convincing mathematicians that

something is true. I think of it as an illumination.

I’m going to talk about three aspects of truth:

1. Belief

2. Understanding

3. Knowledge

This is a bit like the three domes of St. Paul’s Cathedral. We have Knowl-

edge, which is what the outside world sees, Belief, which is what we feel

inside ourselves, and Understanding, which holds them together.

The interplay between these three types of truth is complex. We can start

by drawing a Venn diagram for them.

Proof of (p ⇒ p)

(p ⇒ ((p ⇒ p) ⇒ p)) ⇒ ((p ⇒ (p ⇒ p)) ⇒ (p ⇒ p))

p ⇒ ((p ⇒ p) ⇒ p)

(p ⇒ (p ⇒ p)) ⇒ (p ⇒ p)

p ⇒ (p ⇒ p)

p ⇒ p
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Knowledge Belief

Understanding

KUB

K B

U

KB

KU UB

I’ve marked the different areas of overlap, so we have:

KUB: Things we know, believe, and understand. The most secure of truths.

KB: Things we know and believe, but do not understand. This includes sci-

entific facts that are certainly true, even if we don’t understand them.

For example, I don’t really understand how gravity works, but I know

and believe it works. I know and believe that the earth is round, but I

don’t understand why.

B: Things we believe, but do not understand or know. These are our ax-

ioms, where everything else begins—the things we can’t justify using

anything else. For example, for me, there are things like love and the

preciousness of life. I believe that love is the most important thing of all.

I can’t explain why, and I can’t say I know for sure it is true—because

what does that even mean?

After this things get a bit trickier.

K: Things we know, but do not understand or believe. Is this at all possi-

ble? I think if you’ve ever experienced sudden grief or heartbreak you
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might have a sense of what this is like. Those numb days after the event

when you know, rationally, that it really has happened, but you simply

can’t believe it, you can’t feel it to be true in your stomach. And you

certainly don’t understand it. Perhaps extremes of good emotions feel

like this too. Perhaps if I won the lottery I would, for a while, know

that it had happened without understanding or believing it. Winning

the lottery of love feels like that too, at least at the height of its ecstasy.

KU: Things we know and understand, but do not believe. Perhaps this is

where we get to the next stage of grieving, when we have come to un-

derstand that this terrible thing really has happened, but we still don’t

believe it. But if you’re in this state you’re probably in some state of

denial, because usually knowing and understanding something would

make you really believe it’s true.

Finally we have the following sections, which I suspect are empty.

U: Things we understand, but do not know or believe.

UB: Things we understand and believe, but do not know.

I don’t think it’s possible (or rather, reasonable) to understand something

without knowing it. In this way, understanding is different from the other

two forms of truth, which do seem to be able to exist by themselves. Truth

flows through this diagram in one direction only—from understanding flows

everything else.

Of course, it all depends somewhat on exactly howwe define these things,

but just try thinking for a second about some things you believe. Here are

some things you might believe.

• 1 + 1 = 2.

• The earth is round.

• The sun will rise tomorrow morning.

• It is very cold at the North Pole.

• My name is Eugenia.
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Why do you believe these things? Perhaps you think you understand

“why” 1 + 2 = 2—except when it isn’t, as we’ve discussed earlier. 1 + 1 = 2

if we are working in the natural numbers or integers, mostly because that’s

the definition of the number 2. But 1 + 1 = 0 if we’re working in the 2-hour

clock situation, that is, the integers modulo 2.

But why is the earth round? Why will the sun rise tomorrow morning?

Why is it cold at the North Pole? These are things that most of us know,

but without really understanding them. I think a lot of our personal scien-

tific knowledge is just that—knowledge that we believe because somebody

we trust has told it to us. We have taken it on trust, or on authority.

Why is my name Eugenia—if it is? That last one is fairly easy—assuming

that is my name, it is so because my parents chose it. But are you going to

believe that just because it’s on the cover of this book? Or would you have to

go and look up the record of my birth before believing it? (I hope not.) This is

more complex. You might believe it’s true without really knowing if it’s true

or not.

Understanding is a mediator between knowledge and belief. In the end the

aim is to get as many things as possible into the central part of the picture,

where knowledge, understanding, and belief all meet.

Here’s a mathematical example of the difference between

knowledge and understanding. Suppose you are trying to solve

an equation like this:

x+ 3 = 5

Perhaps you remember that you can “take the 3 to the other side

and switch the sign.” So the next step is

x = 5− 3

and we see that x is 2.
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However, knowing that this works is not the same as under-

standing it. Why does it work? It’s because we have an equality

between the left-hand side and the right-hand side, and so we

can do the same thing to both sides and they’ll still be equal.

Now, we want to get the x isolated by itself on one side, which

means we want to get rid of the 3 on the left. How do we do that?

We subtract 3. But if we do that on the left we have to do that

on the right as well. So what we’re really doing is:

x+ 3 = 5

x+ 3− 3 = 5− 3

x = 2

Understanding this principle rather than merely knowing the

rule makes the knowledge more transferable to other situations.

Pickpocket/Putpocket

Remember the strange case of the putpocketing from the chapter on pro-

cesses? You had a ten-dollar bill in your pocket. Someone pickpocketed you,

but also someone else slipped a different ten-dollar bill into your pocket af-

terwards. So you believe you have a ten dollar bill in your pocket.

But do you actually know you do? Perhaps you then check to see if your

ten-dollar bill is still there. At this point, you now also know you have a

ten-dollar bill in your pocket.

But until someone illuminates you about the whole story, you will not

actually understand why you have a ten-dollar bill in your pocket.
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Why? Why? Why?

Why did the chicken cross the road?

The key to understanding is the question “Why?” Why is such-and-such

true? “Because we’ve proved it” is not a satisfactory answer, at least not from

a human point of view. Why is that glass broken? “Because I dropped it,” or

“Because the molecular bonds between the glass molecules are no longer in

place.” And we’ve all heard “We apologize for the late departure of this flight.

This is due to the late arrival of the incoming flight.” And of course, why did

the chicken cross the road? Asking “Why?” is like asking what the moral of

the story is.

Let us try asking some mathematical why questions.

1. Why is the area of a triangle half the base times the height?

2. Why is minus minus one equal to one?

3. Why is zero times anything zero?

4. Why can’t you divide by zero?

5. Why is the ratio of the circumference of a circle to its diameter always

the same (it’s π)?

6. Why does the decimal expansion of π go on forever?

Let’s try answering these now. The area of a triangle is quite easy to think

about if it’s a right-angled triangle, because then the triangle is obviously half

of a rectangle:
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If it’s a more random-looking triangle, like this one:

then we have to fill it into a rectangle a bit more cleverly, say like this:

and then work out why the extra parts can be pieced together to make the

same triangle that we started with:

That’s pretty convincing, but it’s not quite a proof.

For the next one, we could do a proof using the axioms for numbers.

Formally it looks like this:

−x is defined to be the additive inverse of x, that is,

−x+ x = 0

and it is unique with this property. We need to show that 1 is the

additive inverse of −1. That is,

1 + (−1) = 0

But this is true since −1 is the additive inverse of 1.
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This is mathematically correct but not exactly convincing. Are you more

convinced if I say something like “putting a minus sign flips which way we’re

facing, and if we flip twice we get back to the direction we started”? Not

mathematical at all, but possibly more convincing. Perhaps it would be more

convincing to put it like this. Whenever we have a+ b = 0 this tells us that a

and b are additive inverses of each other, that is,

a = −b

and

b = −a.

Now, we know that−1 is the additive inverse of 1, so we can put a = −1 and

b = 1 and we get a+ b = 0. Now we can conclude that b = −a, which in this

case means

1 = −(−1)

This is essentially the same proof as before, but written out a bit less elegantly.

Did you find it more convincing?

As for multiplying by zero giving zero, there is a similarly technical and

even more unilluminating proof from the axioms, that looks like this.

Let x be any real number.

0x+ 0x = (0 + 0)x distributive law

= 0x definition of 0

Subtracting 0x from both sides, we get 0x = 0.

We have already discussed the fact that “you can’t divide by 0” really

means “0 has no multiplicative inverse according to the axioms,” but with all

of these proofs from the axioms for the real numbers, the proofs are not trying

to justify why these things are true—really they’re only to check that the
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things we feel are true really are true according to the axioms we’ve chosen.

It’s not actually an explanation of anything.

The fact about circles can be proved using calculus, but you can also try

to convince yourself like this: both the circumference and the diameter are

lengths, and when you scale a shape up or down all its lengths stay in pro-

portion.

As for the decimal expansion of π going on forever, you might remem-

ber it’s because π is irrational. But why is π irrational? I don’t know of a

particularly convincing explanation of that, except that circles are curved, di-

ameters are straight, and it would seem a bit oddly neat and tidy if the ratio

was something rational.

Actually, some rational numbers have decimal expansions

that go on forever too, such as , which is1
9 0.1111111 . . .

ever, the decimal expansion of a rational number always ends up

repeating in cycles, whereas the decimal expansion of an irra-

tional number like π or
√
2 never repeats itself.

You can always keep on asking “Why?” because there is always another

level of “Why?” that can be asked. Every child knows that the question “Why?”

is actually an infinite sequence of questions with which to harass an adult.

The point of the above examples was to illustrate the fact that if you ask

why a mathematical fact is true, the mathematical proof is often not some-

thing that will convince you why it is true. Instead, it might convince you

that it is true. And there’s the crucial difference.

Proof vs. Illumination

Proof has a sociological role; illumination has a personal role. Proof is what

convinces society; illumination is what convinces us.

. How-
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In a way, mathematics is like an emotion, which can’t ever be described

precisely in words—it’s something that happens inside an individual. What

we write down is merely a language for communicating those ideas to others,

in the hope that they will be able to reconstruct the feeling within their own

mind.

When I’m doing math I often feel like I have to do it twice—once in my

head, and then a second time to translate it into a form that can actually be

communicated to anyone else. It’s like when you have something you want

to say to someone, and it seems perfectly clear in your head, but then you

find you can’t quite put it into words. The translation is not a trivial process;

why do we try to do it at all? Why do we not just stick to the things that

are illuminating? The thing is, illumination is very difficult to define. And

moreover, different people can have different notions of what is illuminating.

So illumination by itself doesn’t make a very good organizational tool for

mathematics. In the end, doing mathematics is not just about individuals con-

vincing themselves that things are true; the point is to advance the knowledge

of the world around us, not just the knowledge inside our own head.

The Circle of Truth

I am going to describe mathematical activity in terms of moving around be-

tween these three kinds of truth.

Belief

KnowledgeUnderstanding

In math, knowledge comes from proof—we know something is true by prov-

ing it. Usually we think that the big aim of doing math is to prove theorems,

that is, move things into the “proved” area. However, I think the deeper aim is

to get things into the “believed” area—believed by as many mathematicians as

possible. But how do we do that? If I have proved something is true, how do
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I really come to believe it? I get there if I have some sort of illuminating rea-

son for believing it, rather than just following the proof through step by step.

However, once I believe it, how do I convince someone else? I show them my

proof.

We need the proof to enable us to move from the realm of my believed

things to anyone else’s:

believed by me believed by X

reason reason

proof

So the procedure is:

• I start with a truth that I believe and that I wish to communicate to

person X.

• I find a reason for it to be true.

• I turn that reason into a rigorous proof.

• I send the proof to X.

• X reads the proof and turns it into a convincing reason.

• X then accepts the truth into his realm of believed truth.

In fact, it’s not so much a circle of truth as a valley; attempting to fly

directly from belief to belief is inadvisable. We’ve all seen people try to trans-

mit beliefs directly, by yelling. So if transmitting beliefs directly is unfeasible,

why don’t I just send the reason directly to X, thus eliminatingwhat are prob-

ably the two hardest parts of this process: turning a reason into a proof, and

turning a proof into a reason?
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The answer is that a reason is harder to communicate than a proof.

I think that the key characteristic of proof is not its infallibility, but its

sturdiness in transit. Proof is the best medium for communicating my argu-

ment to X in a way that will not be in danger of ambiguity, misunderstanding,

or distortion. Proof is the bridge for getting from one person to another, but

some translation is needed on both sides.

When I read someone else’s math, I always hope that the author will have

included a reason and not just a proof. When this does happen, the benefits

are very great. Unfortunately, a lot of math is taught without any attempt at

illumination. Even worse, it’s sometimes taught without any explanation at

all. But even if it is explained, not every explanation is illuminating. For ex-

ample, we mentioned earlier that when you learned how to solve something

like

x+ 2 = 5

you might have been told, as I was: “You take the 2 over to the other side of

the equals sign and the plus becomes a minus.” This gives

x = 5− 2

so

x = 3.

This is correct, but unilluminating. Why does that trick with the equals sign

work? Apparently one way of teaching this is that the plus sign moves through

the equals sign and the vertical bar gets stuck, so + turns into −. This is a

pretty absurd way of teaching it, because then what happens when you send

a minus sign through? A very unilluminating explanation.

At least in the United Kingdom and United States, many people grow up

feeling great antipathy towards math, probably because of how they were

taught it at school, as a set of facts you’re supposed to believe, and a set of

rules you have to follow. You’re not supposed to ask why, and when you’re

wrong you’re wrong, end of story. The important stage in between the belief

and the rules has been omitted: the illuminating reasons. An illuminated ap-

proach is much less baffling, much less autocratic, and much less frightening.
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But is there always an illuminating explanation for every piece of math?

Probably not, just as there isn’t an illuminating explanation for everything

that happens in life. Some things that happen are so incredible or tragic that

no explanation is possible.

Category theory seeks to illuminate math. In fact, category theory could

be thought of as the universal way of illuminating math—it seeks to illumi-

nate, and that’s all it does. That’s its role. That’s the glass slipper into which it

perfectly fits. I’m not claiming category theory explains everything in math-

ematics, any more than mathematics explains everything in the world.

Mathematics can seem like an autocratic state with strict, unbending rules

that seem arbitrary to the citizens of this “state”: the pupils and students.

Schoolchildren try to follow the rules but are sometimes abruptly told that

they have broken a rule. They didn’t do it deliberately. Most students who

get some math questions wrong didn’t do it on purpose—they really thought

they had the right answer. Yet they’re told they’ve broken the law and will be

punished—being marked wrong feels like a punishment to them. Perhaps it

is never really explained to them what they did wrong, or perhaps it was not

explained to them in an illuminating way that could actually make sense to

them. As a result, they don’t know when they will next be found to have bro-

ken a rule, and they will creep around in fear. Eventually they’ll simply want

to escape to a more “democratic” place, a subject in which many different

views are valid.

∞ ∞∞

“Knowledge is power,” or so the adage goes. But understanding is more pow-

erful power. We have moved on from the age when knowledge was a secret,

passed around in mysterious books that could only be deciphered by a small

number of people. We have moved on from the age when there were so few

books that even those who did know how to read them were at the mercy

of those who owned them, the age when students seeking knowledge had

to gather around somebody who would read the book out loud to them, a

“lecturer”; the word “lecture” comes from the act of reading, not the act of

pontificating to an audience. Anyway we have moved on from that age.
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We are now in the age where information is everywhere. Literacy rates

still leave room for improvement, but most adults can read, and in some coun-

tries most of them have access to the internet. Many of us essentially have the

internet in our pocket at all times. Knowledge is no longer a secret.

But understanding is still kept a secret, at least in mathematics. Students

of all levels are shown the rules but kept in the dark about the reasons. We

encourage children to ask the question “Why?” but only up to a point, be-

cause beyond that point we might not understand it ourselves. So we stifle

their quest for illumination to match our own inability to provide it. Instead

of being afraid of that darkness, we should bring everyone to the edge of

it and say: Look! Here is an area that needs illumination. Bring fire, torches,

candles—anything you can think of that will cast light. Then we can lay down

our foundations and build our great buildings, cure diseases, invent fabulous

new machines, and whatever else we think the human race should be doing.

But first of all we need some light.
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