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Preface

Mathematical Methods for Physics is a course which describes

mathematical tools that allow to solve partial differential equations

(PDE), typical of physical problems. Despite a large number of

textbooks on this topic, few explain in a detailed manner the

process of solving the problems that typically arise in the context of

physics. Another original feature of this book is the emphasis on the

mathematical formulation of the problems, as well as the analysis of

several alternative ways to solve them, and a graphical analysis of

the results when appropriate.

The book uses teaching material from the mandatory course

Mathematical Methods of Physics III at the Autonomous University

of Madrid (Universidad Autonoma de Madrid - UAM). It presents

substantially (about one-third) expanded and essentially updated

version of the book previously published by the authors (in Spanish)

in the “Collecion de estudios” series (Ediciones UAM, 2020). It can

also be considered as a supplementary resource to another textbook

(only in Spanish): Métodos matemáticos de la Fı́sica: Método de
Fourier, by Arkadi P. Levanyuk and Andrés Cano. The current book

contains the solution to several problems from this book.

The book starts with an introduction to the Fourier Method,

analyzing simple problems as the vibrations of a harmonic oscillator.

In this context, Green’s functions are introduced in system of zero

(oscillators) or one (strings) dimensions, since the search for these

functions only represents a specialized method to find particular

solutions to the non-homogeneous part of PDEs.

The rest of the chapters contain solved problems in Cartesian

coordinates in one, two, and three dimensions, in polar, cylindrical,

and spherical coordinates. Graphic illustrations and representations

of the solutions (using MATLABs PDE Toolbox) are frequently
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introduced. Finally, the book shows the problems related to the

Fourier transform operation. It includes several related theorems,

such as the theorem of convolution, with practical applications.

Furthermore, this book also shows the methods to apply the Fourier

transform to the process of solving PDE, mostly in one dimension.

We would like to thank all the physics grade students of

Universidad Autonoma de Madrid who have contributed to the

book, especially those who helped finding typos in the draft

of the Spanish version, particularly Cristina Viviente, Carolina

Alvarez, Aitana Hurtado, Alejandro Blanco, Miguel Turad, Santiago

Agui, Gonzalo Morras, and Javier Robledo. We would also like to

express our gratitude to the comments and support shown by

our colleagues of the Condensed Matter Physics Department at

Universidad Autonoma de Madrid, José Vicente Álvarez, Guillermo

Gómez Santos, Juan José Palacios, Arkadi Levanyuk, Sebastián Vieira

and Raúl Villar during the preparation of the book.

We also acknowledge “UAM Ediciones” for granting permission

to Jenny Stanford Publishing for using in this book, Mathematical
Methods for Physics: Problems and Solutions, by Farkhad G. Aliev

and Antonio Lara, the figures from the book Problemas Resueltos de
Métodos Matemáticos de la Fı́sica, Método de Fourier, by Farkhad G.

Aliev and Antonio Lara, edited by UAM Ediciones in 2019.

Finally, Farkhad Aliev acknowledges Tatiana Alieva for helping

clarify several aspects of the Fourier transform and for her patience.

Farkhad G. Aliev and Antonio Lara
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Chapter 1

Harmonic Oscillator and Green’s
Function

The Fourier method, in its simplest version, consists in expanding

in harmonic functions (solutions of the harmonic oscillator) the

solution of a differential equation. For this reason, we consider

useful to begin this book with some simple examples of the solution

of problems involving a harmonic oscillator. The application of initial

conditions of some simple, as well as complicated, equations will

be considered (as, for example, friction terms or non-homogeneous

terms in the equation, such as external forces).

Using the solution of the oscillator problem, it will be useful

to introduce the concept of Green’s functions, solving some

examples that explain the application of this concept, very useful in

solving non-homogeneous problems. In the last chapter, about the

application of the Fourier transform for solving partial differential

equations, we will use some of the solutions obtained in this chapter,

in particular those of an oscillator with friction.

In general, the obtained solutions for an oscillator will be

frequently used as part of the solutions (in time and space) when

dealing with problems up to three spatial dimensions, where the so-

lutions will be expanded in sums of orthogonal functions, multiplied

by coefficients or other non-orthogonal functions that satisfy the

Mathematical Methods for Physics: Problems and Solutions
Farkhad G. Aliev and Antonio Lara
Copyright c© 2024 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4968-71-3 (Hardcover), 978-1-003-41088-1 (eBook)
www.jennystanford.com
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boundary conditions. We hope that these simple examples facilitate

the understanding of the solutions of the problems in later chapters.

1.1 Damped Harmonic Oscillator

Consider a damped harmonic oscillator such that ω2
0 <η/2m

(consider also the case ω2
0 > η/2m ), where ω0 is the eigenfrequency

of the oscillator, m is the mass and η is the friction constant of

the oscillator moving in a viscous medium (take the friction force

proportional to the oscillator velocity).

(a) Find the mass position as a function of time if at t = 0 it is at

rest, but at a distance x0 from its equilibrium position.

(b) Find the mass position as a function of time if at t = 0 it is at

its equilibrium position, and is hit in such a way that it has a

velocity v0.

(c) Show that, for large enough dampings, these movements could

have been deduced from the equation ηẋ + kx = 0. Explain why.

See also problem 1.4 from [1].

Figure 1.1

Solution:

(a) The mass displacement with respect to its equilibrium position

will be called x . The general solution for ω2
0 >η/2m is the

(equation 1.24 from [1]):

x(t) = Ae−γ t sin(�0t + δ) (1.1)

being: �0 =
√

ω2
0 − γ 2; ω2

0 = k
m ; γ 2 = η

2m . From the zero

initial velocity condition we have: ∂x
∂t

∣∣
t=0

= A(−γ ) sin(δ) +
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A�0 cos(δ) = 0, where tan(δ) = �0

γ
. From the condition of initial

position we have: x(0) = x0 = A sin δ, with A= x0

sin δ
. For the case

ω2
0 < η/2m we have equation (1.25) from [1]):

x(t) = C1e−γ+t + C2e−γ−t (1.2)

being γ± = γ ±
√

γ 2 − ω2
0. From the condition of zero initial

velocity we have: ∂x
∂t

∣∣
t=0

= C1(−γ+) + C2(−γ−) = 0, where
C1

C2
= −( γ−

γ́+
) From the condition of initial position: x(0) = x0 =

C1 + C2, where C1 = x0
γ−
γ́+ −1

( γ−
γ́+

) ; C2 = x0

1− γ−
γ́+

(b) In this case only the initial conditions change:

General solution for ω2
0 > η/2m (equation 1.24 from [1]):

x(t) = Ae−γ t sin(�0t + δ) (1.3)

From the zero initial displacement we have: x(0) = 0 =
A sin(δ). Then we have δ=0, and x(t) = Ae−γ t sin(�0t). From

the condition of zero initial speed we have, using δ = 0:

∂x
∂t

∣∣∣∣
t=0

= v0 = A(−γ ) sin(0) + A�0 cos(0)

which yields A = v0

�0
, so that:

x(t) = v0

�0

e−γ t sin(�0t) (1.4)

The general solution for ω2
0 < η/2m is (equation 1.25 from [1]):

x(t) = C1e−γ+t + C2e−γ−t (1.5)

From the condition of zero initial displacement: x(0)=0= C1 +
C2 → C1 = − C2

From the condition of zero initial velocity:
dx
dt

∣∣∣∣
t=0

= C1(−γ+)+
C2(−γ−) = v0

With this we obtain the constants values: C2 = v0

γ́+−γ́−
; C1 =

v0

γ́−−γ́+
and finally the position as a function of time:

x(t) = v0

γ́+ − γ́−
[e−γ−t − e−γ+t] (1.6)

(c) This is the case of a “relaxator” η → ∞. In this limit, γ is much

larger than ω0 and the following simplifications are possible:
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γ+ → 2γ

γ− → 0

With this, the solution of the equation of motion also simplifies:

x(t) = C1e−γ+t + C2e−γ−t → x(t) � C2e−γ−t (1.7)

The value of γ− can be approximated with a power series: γ− =
γ −

√
γ 2 − ω2

0 � γ
(

1 − 1 + ω2
0

2γ 2

)
= ω2

0

2γ
= k

m
1

2 η

2m
= k

η
, where√

1 − ω2
0 � 1 − ω2

0

2
has been used.

On the other hand, treating the movement of the relaxator from

the oscillator equation:

m
d2x
dt2

+ ηxt + kx = 0 → ηẋ + kx = 0 (1.8)

Once again the decaying solution is obtained: x(t) = e−at , where

a = k
η

.

1.2 Properties of the Ordinary Linear Differential
Equation for a Forced Oscillator

This section discusses the linearity properties of the equation

describing the movement of a forced oscillator, as well as methods

for its resolution.

Solution:

(1) The equation of motion for a harmonic oscillator with mass

m and spring constant k in a viscous medium with friction

coefficient η and under the influence of an external force F (t)

is:

m
d2 X
dt2

+ η
d X
dt

+ kX = F (t) (1.9)

The same equation normalized by the mass is:

d2 X
dt2

+ 2β
d X
dt

+ ω2
0 X = f (t) (1.10)



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Properties of the Ordinary Linear Differential Equation for a Forced Oscillator 5

with β = η

2m , ω2
0 = k

m , f (t) = F
m . This is an linear, second

order, non-homogeneous, ordinary differential equation (i.e. the

variable X (t) only depends on one parameter, t). The goal of this

exercise is to clarify the meaning of the linearity of differential

equations using the oscillator problem as an example.

(2) If we rewrite the equation as:

D[X (t)] = f (t) (1.11)

With the operator D = d2

dt2 + 2β d
dt + ω2

0, the linearity property

of the differential operator of the equation is formulated as:

D[aX 1(t) + bX 2(t)] = aD[X 1(t)] + bD[X 2(t)] (1.12)

Then, if we separate the non-homogeneous term of the equation

in two parts:

f (t)) = f1(t) + f2(t) (1.13)

The solution will be divided in two parts as well:

X = X 1(t) + X 2(t) (1.14)

corresponding to D[X i (t)] = fi (t) because:

D[X 1(t)+ X 2(t)] = D[X 1(t)]+ D[X 2(t)] = f1(t)+ f2(t) (1.15)

(3) If we now propose that f1 = f (t) and f2 = 0, we will

separate the ordinary differential equation (or, as will be

shown later, also the partial differential equation) in two, one

non-homogeneous equation with a particular solution X p and

another homogeneous X h:

D[X p(t)] = f (t) (1.16)

D[X h(t)] = 0 (1.17)

so that to find the final solution we will just need to apply the

initial conditions to the total solution:

X (t) = X p(t) + X h(t) (1.18)
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(4) Finding a particular solution might be at times a matter of

luck, and sometimes the Green’s function method must be used.

The property of linearity is used to introduce the method of

Green’s functions by separating the non-homogeneous part of

the equation (for example, in this problem, the applied force)

into infinitesimal parts (for example, here, Dirac’s delta-like

hits on the mass), which facilitate the search for each of the

corresponding particular solutions.

Green’s function is obtained by solving a specific problem for

each situation, with its boundary conditions, etc.. For example,

in the case of a frictionless oscillator, Green’s function found in

[1], which can be deduced from the equivalence of the problems

with an instantaneous hit, resulting in a non-zero initial velocity,

can be employed for any external force on a frictionless

oscillator. To conclude we will mention that another method for

solving homogeneous differential equations is the separation of

the non-homogeneous function (and its solution) into Fourier

series, consisting in orthogonal functions obtained from the

solution of the corresponding Sturm–Liouville problem. In the

case of infinite or semi-infinite systems, the Fourier transform

method is used, solving the problem in reciprocal space and

later applying the inverse Fourier’s transform.

1.3 General Definition of Green’s Functions

This exercise discusses the general aspects of Green’s functions from

a non-homogeneous differential equation in a general form in a

unidimensional space.

Solution: We suppose a differential equation of the form:

Lu(x) = f (1.19)

where L is a differential operator (with derivatives with respect to

x) and f being a function of x . The Green’s function G(x , x0) is

the solution that corresponds to an inhomogeneous equation with

the same operator L than the original equation but with a non-



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Expansion of Green’s Function in a Series of Orthogonal Eigenfunctions 7

homogeneous, Dirac’s delta like term:

LG(x , x0) = δ(x − x0) (1.20)

Note: the L operator acts on a variable x , while x0 is a parameter.

Next we consider the following equation:

u(x) =
∫ b

a
G(x , x0) f (x0)dx0 (1.21)

We check that this u function is a particular solution of the equation,

applying the L operator to both sides of the previous equation:

Lu(x) = L
∫ b

a
G(x , x0) f (x0)dx0 =

∫ b

a
LG(x , x0) f (x0)dx0

=
∫ b

a
δ(x − x0) f (x0)dx0 = f (x) (1.22)

Note 1: The integration range [a, b] depends on the space where the

problem is defined, finite or infinite.

Note 2: Once the problem for Green’s function has been solved, we

can get the solution for every non-homogeneous integrable part.

Note 3: Analogous expressions are obtained in higher dimensions

(2D, 3D).

1.4 Expansion of Green’s Function in a Series of
Orthogonal Eigenfunctions

Show that Green’s function of a particular problem can be expanded

in a series of orthogonal eigenfunctions, which are the solutions

of the corresponding Sturm–Liouville problem for those boundary

conditions.

Solution: We will suppose that we need to solve the following

differential equation with homogeneous boundary conditions:

Lu(x) = f (x) (1.23)

Being L a homogeneous second order differential operator. We will

suppose that we can solve the Sturm–Liouville problem by finding a
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set of orthogonal functions vn which fulfill the following conditions.

Lvn(x) = λnvn (1.24)

with boundary conditions. The solution will be expanded as a

combination of the vn functions and we will suppose that there is an

infinite number of such eigenvalues and eigenfunctions (in principle,

nothing forbids this assumption).

u(x) =
∞∑

n=1

cnvn (1.25)

Replacing this solution into the equation (1.23) we have:

Lu(x) =
∞∑

n=1

cn Lvn =
∞∑

n=1

cnλnvn = f (x) (1.26)

Both parts are multiplied by the former expression by the

orthogonal functions vm(x) with the index m independent from the

index n and we will integrate in the interval where the vm(x) are

defined.∫ b

a
f (x)vm(x)dx =

∞∑
n=1

cnλn

∫ b

a
vnvmdx = cnλn|vn|2 (1.27)

Simplifying, for the case |vn|2 = 1, we have:

cn = 1

λn

∫ b

a
f (x ′)vn(x ′)dx ′ (1.28)

With this expression the solution can be rewritten as:

u(x) =
∞∑

n=1

1

λn

∫ b

a
f (x ′)vn(x ′)dx ′vn(x)

=
∞∑

n=1

1

λn

∫ b

a
vn(x ′)vn(x) f (x ′)dx ′ (1.29)

Comparing this with the definition of the solution obtained by the

Green’s function method:

u(x) =
∫ b

a
G(x , x ′) f (x ′)dx ′ (1.30)

The following is Green’s function is obtained:

G(x , x ′) =
∞∑

n=1

1

λn
vn(x ′)vn(x) (1.31)
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1.5 Green’s Function of an Oscillator with
Friction

Find Green’s function of an oscillator in a viscous medium in the limit

of very low friction.

Figure 1.2

Solution: We can write the following equation of motion u(t)

(normalized by the mass m) of a harmonic oscillator with a spring

constant k in a viscous medium with friction coefficient η, and under

the action of an external force F (t):

d2u
dt2

+ 2β
du
dt

+ ω2
0u = f (t) (1.32)

with β = η

2m , ω2
0 = k

m , f (t) = F
m . If we solve this very equation for

an instant hit (described by a delta function) the solution would be

Green’s function G(t):

d2G
dt2

+ 2β
dG
dt

+ ω2
0G = δ(t − t0) (1.33)

One of the methods to find the oscillator Green’s function is

replacing the hit (non-homogeneous equation) by the solution of

a homogeneous equation with initial conditions: G(t = t0) =
0; dG

dt

∣∣
t=t0

= C where C = 1 in the case f (t) = δ(t − t0).

Using this method, in [1] the equation 1.24 is deduced. This

solution represents the movement of an oscillator corresponding to

the initial conditions, which is proportional to Green’s function of

a oscillator with friction (with proportionality constant A). For the
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case of a very low friction �0 =
√

ω2
0 − γ 2 → ω0:

G p = Ae−β(t−t0) sin [ω0(t − t0)] (1.34)

To find the A coefficient, equation (1.33) is integrated in an

infinitesimal range, centered in the instant t0:

dG
dt

∣∣∣∣
t0+ε

t0−ε

+
∫ t0+ε

t0−ε

[
2β

dG
dt

+ ω2
0G
]

dt = 1 (1.35)

As the initial velocity is null, dG
dt

∣∣
t=t0−ε

= 0, since the oscillator

is at rest prior to being hit. Furthermore, the integral is equal to 0:

the first term dG
dt , when integrated once with respect to time gives G.

When G is evaluated in t0 + ε and t0 − ε, letting ε → 0, G|t0+ε
t0−ε = 0,

due to the continuity of the function G. A similar argument is applied

to the second term of the integral, which will be an order higher in

t. Then, replacing the function 1.34 in the condition dG
dt

∣∣
t0+ε

= 1 the

A = 1
ω0

coefficient is obtained.

Green’s function is:

G =
⎧⎨
⎩

0 (t < t0)

1
ω0

e−β(t−t0) sin [ω0(t − t0)] (t > t0)

⎫⎬
⎭ (1.36)

Note that for β = 0 the solution is converted into Green’s function

of a frictionless harmonic oscillator. Let us now consider a gaussian

pulse at t = 0:

f (t) = e−t2

(1.37)

To find the particular solution the following integral must be solved

first:

u p(t) =
∫ t

0

[
e−x2 1

ω0

e−β(t−x) sin [ω0(t − x)]

]
dx (1.38)

This integral doesn’t have an analytic solution.

Another possible problem which can be solved using Green’s

function: We can, for example, seek the particular solution of an

oscillator with very low friction if the external force acts upon the

oscillator from the instant −a to the instant +a and transfers a linear

momentum I . To do this, the next steps should be followed:

• Evaluate the force density f (t) from the transferred momentum

and the mass m.
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• Find the solution using the Green’s function method and Green’s

function found in this problem.

• To solve the integral we will need to use Wolfram Alpha or some

other computer algebra system.

1.6 Movement of an Oscillator under the
Influence of a Constant Force, Solved by Two
Methods

Find the solution for the movement of an oscillator with natural

frequency ω0, which is initially at rest (t = 0) if, at t = 0 a force

f0 starts acting upon it.

Figure 1.3

Solution: Problem to be solved:

u =

⎧⎪⎨
⎪⎩

d2u
dt2 + ω2

0u = f (t)

u(0) = du
dt

∣∣
t=0

= 0

⎫⎪⎬
⎪⎭ (1.39)

f =
{

f (t) = 0 (t < 0)

f (t) = f0 (t ≥ 0)

}
(1.40)

We will compare two different methods for solving the problem, a)

and b):

(a) The first method is based on the search for a particular

solution. The total solution is the sum of the particular solution

of the non-homogeneous equation and the solution of the

homogeneous equation.

u(t) = C1 cos (ω0t) + C2 sin (ω0t) + f0

ω2
0

(1.41)
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Applying the initial conditions, we have C1 = − f0

ω2
0

and C2 = 0.

Then:

u(t) = f0

ω2
0

[1 − cos (ω0t)] (1.42)

(b) The second method for searching the solution is based on the

application of the Green’s function method, with the known

function for a harmonic oscillator (equation 1.65 from [1]).

u p(t) =
∫ +∞

−∞
f (t0)G(t − t0)dt0 = f0

ω0

∫ t

0

sin [ω0(t − t0)]dt0

(1.43)

With the change of variable ω0(t − t0) = x → −ω0d(t0) = dx

u p(t) = − f0

(ω0)2

∫ t

0

sin (x)dx = f0

ω2
0

[1 − cos (ω0t)] (1.44)

Note. in the latter case, the particular solution obtained with

the Green’s function method is the same as the final solution. To

show it, we search for the solution as the sum of the solution of

the homogeneous and the particular equations:

u(t) = C1 cos (ω0t)+C2 sin (ω0t)+ f0

(ω0)2
[1−cos (ω0t)] (1.45)

Applying the initial conditions, we would have: C1 = C2 = 0

1.7 Oscillator Forced by a Rectangular Hit, Solved
with Green’s Functions

An oscillator with mass m = 1 Kg and a natural frequency ω0 =
1 rad/s is initially at rest. Starting at t = −1 and until t = +1,

the oscillator is subject to a force of value f = 1 N/kg. Find the

particular solution using the Green’s function method.

Figure 1.4
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We will use the Green’s function method, integrating it for the

duration of the external force. Since this force acts for a limited time,

there will be two parts: one for t < 1 and another for t > 1.

Mathematical formulation:{
d2 X
dt2 + X (t) = f (t)

f = 1 (−1 < t < 1)

}
(1.46)

Solution:

X part(t) =
+∞∫

−∞
f (x)G(t, x)dx (1.47)

Starting from the known form of Green’s function for an oscillator of

mass m and natural frequency ω0 = 1, for a given time t we have:

G(t, x) =
(

sin(t − x) x < t
0 (x > t)

)
(1.48)

Given the form of the force, the solution will be split into parts.

Before applying the force, the mass is at rest:

X part(t < −1) = 0 (1.49)

Then for t > −1 the solution will be of the form:

X part(t > −1) =
∫ t

−∞
f (x) sin (t − x)dx =

∫ t

−1

sin(t − x)dx

(1.50)

The particular solution is different for t < +1 and t > +1. In t < +1

it will be:
t∫

−1

sin(t − x)dx = −(− cos(t − x)|t
−1)

= cos(0) − cos(t + 1) = 1 − cos(t + 1) (1.51)

And in the second, t > +1:

X part(t) =
t∫

−∞
f (x) sin(t − x)dx

=
1∫

−1

sin(t − x)dx +
t∫

1

0 ∗ sin(t − x)dx

= cos(t − 1) − cos(t + 1) (1.52)
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The final solution is presented graphically:

X part(t) =
⎧⎨
⎩

0 (t < −1)

1 − cos(t + 1) (−1 < t < 1)

cos(t − 1) − cos(t + 1) (t > 1)

⎫⎬
⎭ (1.53)

Figure 1.5

1.8 Movement of a Mass after an Instantaneous
Exponential Hit

Using the Green’s function method, find the response of a mass m =
1 to a hit with force density e−t , which occurs at t = 0. The mass is

free to move and there is no friction. Consider the case in which the

mass is at rest prior to being hit.

Figure 1.6
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Mathematical formulation:⎧⎪⎨
⎪⎩

m d2u
dt2 = f (t)

u(0) = 0;
du
dt

∣∣∣∣
t=0

= 0 (t < t0)

⎫⎪⎬
⎪⎭ (1.54)

We are searching for Green’s function G(t, t0) of the following

differential equation, which describes the instantaneous hit (Dirac’s

delta function like) at t = t0.⎧⎪⎨
⎪⎩

d2G(t, t0)

dt2 = δ(t − t0)

G(0) = 0;
dG
dt

∣∣∣∣
t=0

= 0 (t < t0)

⎫⎪⎬
⎪⎭ (1.55)

We seek a solution separated into parts for the different time ranges

where the equation is homogeneous. Later both solutions will be

joined using the initial condition and integrating the equation in the

environment of the anomalous point t = 0.

G(t, t0) =
{

A(t0)t + B(t0) (t < t0)

C (t0)t + D(t0) (t > t0)

}
(1.56)

From the general definition of Green’s function, we have (for time

values a and b in the interval taken into account):

x =
∫ b

a
G(t, t0) f (t0)dt0 (1.57)

x =
∫ t

−∞
(At0 + B) · 0 · dt0 = 0 → x = 0 (t < 0) (1.58)

But if the equation of motion for G is integrated around the delta-like

hit:

d2G
dt2

= δ(t − t0) →
∫ t0+ε

t0−ε

d2G
dt2

dt =
∫ t0+ε

t0−ε

δ(t − t0)dt (1.59)

The right hand side of this equation is just the integral of a delta

function, which is equal to 1. The left hand side is the integral of a

derivative, which means that the order of the derivative is decreased

by 1:

dG
dt

∣∣∣∣
t0+ε

−
�

�
��dG

dt

∣∣∣∣
t0−ε

= 1 (1.60)
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From that the value of the constants after the hit is obtained: dG
dt |t0

=
C = 1, G|t0

= 0 = C t0 + D → D = −t0,

G(t, t0) =
{

0 (t < t0)

t − t0 (t > t0)

}
(1.61)

Solution for t > 0 (when the force is applied):

u(t) =
∫ +∞

0

e−t0 G(t, t0)dt0 =
∫ t

0

e−t0 G(t, t0)dt0+
∫ +∞

t
e−t0 G(t, t0)dt0

(1.62)

u(t) =
∫ t

0

e−t0 G(t, t0)dt0 (1.63)

as G = 0 for t < t0

u(t) = t − 1 + e−t (1.64)

Representing the result graphically:

Figure 1.7

1.9 Shape of a String in Mechanical Equilibrium,
Solved by the Green’s Function Method

Solve the equation:

d2u
dx2

+ u = x (1.65)

with boundary conditions u(0, π/2) = 0 using the Green’s function

method.
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Figure 1.8

Solution: To find the Green’s function the following differential

equation must be solved:

d2G(x , x0)

dx2
+ G(x , x0) = δ(x − x0) (1.66)

with the boundary conditions G(x = 0) = G(x = π/2) = 0

We apply an analogous method to the one already used to solve

the problem considered in section 3.2.5 from [1], by dividing space

in two region (x < x0 and x > x0) and solving first two independent

homogeneous problems.

The resulting Green’s function is defined by parts:

G(x , x0) =
{

A(x0) sin(x) + B(x0) cos(x) (x < x0)

C (x0) sin(x) + D(x0) cos(x) (x > x0)

}
(1.67)

We apply boundary conditions and bind these functions to find

the coefficients A, B , C and D. From the boundary conditions we

arrive at:

G(x , x0) =
{

A(x0) sin(x) (x < x0)

D(x0) cos(x) (x > x0)

}
(1.68)

The continuity equation of the solution is:

A(x0) sin(x0) = D(x0) cos(x0) (1.69)

The difference between the derivatives to both sides is equal to 1

(it is obtained by integrating equation 1.66 around an infinitesimal

surrounding of the delta function.)

−D(x0) sin(x0) − A(x0) cos(x0) = 1 (1.70)

Solving the system of two equations with two unknown variables we

obtain:

A(x0) = − cos(x0)

D(x0) = − sin(x0)
(1.71)
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Then the Green’s function has a value:

G(x , x0) =
{− cos(x0) sin(x) (x < x0)

− sin(x0) cos(x) (x > x0)

}
(1.72)

Once obtained the Green’s function we can use it to solve the

original problem. To find the particular solution we need to solve

the following integral:

u(x) =
∫ π/2

0

z · G(x , z)dz =
∫ x

0

z · G(x , z)dz +
∫ π/2

x
z · G(x , z)dz

(1.73)

To solve the integral with the z variable it’s important to distinguish

the parts of the Green’s function, corresponding to z > x and z < x .

The following figure can help clarify this:

Figure 1.9

We finally arrive at the result:

u(x) =
∫ π/2

0

z · G(x , z)dz

= − cos(x)

∫ x

0

z · sin(z)dz − sin(x)

∫ π/2

x
z · cos(z)dz (1.74)

Integrating by parts we arrive at:

u(x) = x − π/2 sin(x) (1.75)

1.10 Case Study: Transversal Displacement of a
Tense String Glued to an Elastic Plane

Determine the transversal displacement of a tense string of length

L which is attached to an elastic plane and upon which a force acts
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with the following density:

f (x) =
{

f0, L
4
< x < 3L

4

0, x < L
4

, x > 3L
4

}
(1.76)

Consider the case in which the two ends of the string cannot

move. Solve the problem with the Green’s function method.

Figure 1.10

Mathematical formulation:⎧⎪⎨
⎪⎩

d2u(x)

dx2 − a2u(x) + f (x)

T = 0

u(0) = u(L) = 0; a2 = β

T

⎫⎪⎬
⎪⎭ (1.77)

Since we will solve the problem using Green’s functions, we will

first use a density of forces f (x) = δ(x − x0).

Figure 1.11

We have once again a solution with the form corresponding to an

infinite plane:

u(x) =
{

u1(x) = A1e−ax + B1eax (x < x0)

u2(x) = A2e−ax + B2eax (x > x0)

}
(1.78)
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From the boundary conditions, we get:{
u(0) = A1 + B1 = 0 → A1 = −B1

u(L) = A2e−aL + B2eaL = 0 → B2 = −A2e−2aL

}
(1.79)

From the condition of continuity of the string, and replacing

these values of B1 and B2:

u1(x0) = u2(x0) → A1[e−ax0 − eax0 ] = A2[e−ax0 − e−2aLeax0 ]

(1.80)

The condition of continuity of the derivatives is obtained by

integrating the equation:

d2u(x)

dx2
− a2u(x) = −δ(x − x0)

T
(1.81)

around the point x0 in an interval 2ε, where we will later let ε → 0:

Doing as in previous problems we get:

du2(x)

dx

∣∣∣∣
x0+ε

− du1(x)

dx

∣∣∣∣
x0−ε

= − 1

T
(1.82)

From here:

A2[(−a)e−ax0 − ae−2aLeax0 ] + a A1e−ax0 + a A1eax0 = − 1

T
(1.83)

Here we arrive at a system of two equations with two unknowns to

solve A1, 2⎧⎨
⎩

A2[e−ax0 + e−2aLeax0 ] − A1[e−ax0 + eax0 ] = 1
aT

A1[e−ax0 − eax0 ] = A2[e−ax0 − e−2aLeax0 ]

⎫⎬
⎭ (1.84)

This method is rather formal and not the fastest one. We will now

explore another more direct way to find the final solution.

Observing carefully the symmetry of the solution and the

boundary conditions we can present the solution in a more

transparent way, which already includes other boundary conditions

(we also arrive at this form if we seek a solution as a sum of

hyperbolic functions).
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u(x) =
{

u1(x) = A sinh(ax) (x < x0)

u2(x) = B sinh(a(L − x)) (x > x0)

}
(1.85)

Again we apply the condition of continuity of the solutions:

u1(x0) = u2(x0) → A sinh(ax0) = B sinh(a(L − x0)) (1.86)

Replacing these values, we get:⎧⎨
⎩

u1(x) = A sinh(ax) (x < x0)

u2(x) = A sinh(ax0)

sinh(a(L−x0))
sinh(a(L − x)) (x > x0)

⎫⎬
⎭ (1.87)

Applying the previous expression to the condition of continuity of

the derivatives:

du2(x)

dx

∣∣∣∣
x0+ε

− du1(x)

dx

∣∣∣∣
x0−ε

= − 1

T

(1.88)

we have:

(−a)A
sinh(ax0)

sinh(a(L − x0))
cosh(a(L − x0)) − a A cosh(ax0) = − 1

T
→

(1.89)

A = 1

aT
sinh(a(L − x0))

sinh(ax0) cosh(a(L − x0)) + cosh(ax0) sinh(a(L − x0))

(1.90)

In this manner we get Green’s function:

G(x , x0) =
⎧⎨
⎩

u1(x) = A(x0) sinh(ax) x < x0

u2(x) = A(x0) sinh(ax0)

sinh(a(L−x0))
sinh(a(L − x)) x > x0

⎫⎬
⎭

(1.91)

To find the solution of a non-homogeneous equation starting

from a Green’s function:

u(x) =
L∫

0

f (x ′)G(x , x ′)dx ′ = f0

3
4

L∫
L
4

G(x , x ′)dx ′ (1.92)

where x ′ is the point of application of the point force. In Green’s

function previously obtained , x ′ = x0.
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Note. we can get to the solution of the problem without using

Green’s functions:

{
d2u(x)

dx2 − a2u(x) + f (x)

T = 0

u(0) = u(L) = 0

}
(1.93)

The solution again is composed of three parts: two of them

correspond to the ranges where the equation is homogeneous and

the third one, to the central part (non-homogeneous equation). The

first two parts are sought in a similar manner to how we did for

finding Green’s function:

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

u1(x) = A sinh(ax) (x < L/4)

u2(x) = B sinh(a(L − x)) (x > 3L/4)

By symmetry it must be: A = B
u3(x)?

⎫⎪⎪⎬
⎪⎪⎭ (1.94)

We search for u3(x) as the sum of the solutions of the

homogeneous equation uh(x) and the particular solution u p(x) of

the non-homogeneous equation. The homogeneous equation has

solution:

d2uh(x)

dx2
− a2uh(x) = 0 → uh(x) = C cosh

[
a
(

x − L
2

)]
(1.95)

The non-homogeneous equation has a particular solution:

d2u p(x)

dx2
− a2u p(x) = − f0

T
(1.96)

A particular solution of this equation consists in taking u p(x) as

a constant and replacing we obtain its value: u p(x) = f0

a2 T . Then:

u3(x) = C cosh

[
a
(

x − L
2

)]
+ f0

a2T
(1.97)

We introduce the conditions of continuity of the functions and

their derivatives at the point 3L/4, integrating the differential

inhomogeneous equation in an environment ε around this point.

u3

(
3L
4

)
= u2

(
3L
4

)
(1.98)

du3

dx

∣∣∣∣
x= 3L

4

= du2

dx

∣∣∣∣
x= 3L

4

(1.99)

We obtain a system of two equations with two unknowns, C
and A.
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⎧⎨
⎩

C cosh
(

a L
4

)+ f0

a2 T = A sinh
(

a L
4

)
−C sinh

(
a L

4

) = A cosh
(

a L
4

)
⎫⎬
⎭ (1.100)

Figure 1.12

1.11 Forced Harmonic Oscillator, Solved with
Green’s Functions

An oscillator with mass m = 1 kg and an eigenfrequency ω0 = 1

Rad/s is initially at rest.

Starting at t = 0 a force starts acting on the oscillator with a value

that exponentially decays with time e−t . Find the particular solution

for this case.

Figure 1.13

Mathematical formulation:⎧⎪⎪⎨
⎪⎪⎩

d2u(t)

dt2
+ u(t) = f (t)

m

f =
{

e−t (t > 0)

0 (t < 0)

}
⎫⎪⎪⎬
⎪⎪⎭ (1.101)
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For this oscillator with natural frequency ω0 = 1, Green’s

function is sin (t − x), which allows to write the particular solution

as:

u part(t) =
t∫

−∞
f (x) sin(t − x)dx =

t∫
0

e−x sin(t − x)dx (1.102)

From integral tables we have:

t∫
0

e−x sin(t − x)dx =
[

1

2
e−x [cos(t − x) − sin(t − x)]

]t

0

(1.103)

u part(t) = 1

2
[e−t − cos(t) + sin(t)] (1.104)

Finally the result is shown graphically, from which we can observe

the oscillator’s larger amplitude of motion at the beginning (and

which decays due to the exponential decay).

Figure 1.14
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Chapter 2

Problems in One Dimension

In this chapter the method to seek solutions will be generalized

and applied to confined systems in one dimension. We will analyze

several physical processes, described by linear differential equations

in partial derivatives in one spatial dimension. The solution will be

found using the Fourier method, expanding it in series of harmonic

functions.

Of course, in the cases of a static string the problem will consist

in solving a second order differential equation with boundary

conditions. Whereas in the case of transversal oscillations along

a string or longitudinal ones in a solid rod, it is obvious that the

solution needs to consist of harmonic functions, in the case of the

diffusion equation the interpretation will be more abstract.

To summarize, the goal of this chapter is to start from some

simple examples to show the basic methods to solve the wave and

diffusion equation, and static Poisson problems. In the case of a

string with forces applied to it, sometimes we will use the Green’s

function method introduced in the previous chapter.

The appendix contains a summary of the different equations

of the physical processes described, using second order PDEs, as

Mathematical Methods for Physics: Problems and Solutions
Farkhad G. Aliev and Antonio Lara
Copyright c© 2024 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4968-71-3 (Hardcover), 978-1-003-41088-1 (eBook)
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well as solutions of the Sturm–Liouville problems for a harmonic

oscillator with different types of homogeneous boundary conditions.

2.1 Closed String

Consider a string (tension T , linear density of mass ρ, length L) with

the shape of a circular ring. The string is free to move across its

entire length (with no gravity).

Find the oscillations of the string if we know the displacement

u(x , 0) = f (x) and the velocity ut(x , 0) = ψ(x) at the instant t = 0

with respect to the plane of equilibrium (we can call x the variable

that indicates the position along the string).

Figure 2.1

Mathematical formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

= c2
∂2u
∂x2

(
0 < x < L; c2 = T

ρ

)
u(0, t) = u(L, t)

∂u
∂x

∣∣∣∣
x=0

= ∂u
∂x

∣∣∣∣
x=L

u(x , t = 0) = f (x)

∂u
∂t

∣∣∣∣
t=0

= ψ(x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Sturm–Liouville problem: We use separation of variables:

u(x , t) = T (t) · X (x) (2.2)

We arrive at the Sturm–Liouville problem for the spatial part X (x):
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d2 X
dx2

+ λX = 0 (2.3)

The general solution (having considered λ > 0) is: X (x) =
A cos

√
λx + B sin

√
λx .

The eigenvalues are found with the boundary conditions, which

are adapted to the spatial part of the solution:⎧⎪⎪⎨
⎪⎪⎩

u(x = 0, t) = u(x = L, t)

∂u
∂x

∣∣∣∣
x=0

= ∂u
∂x

∣∣∣∣
x=L

⎫⎪⎪⎬
⎪⎪⎭→

⎧⎪⎪⎨
⎪⎪⎩

X (x = 0) = X (x = L)

∂X
∂x

∣∣∣∣
x=0

= ∂X
∂x

∣∣∣∣
x=L

⎫⎪⎪⎬
⎪⎪⎭

(2.4)

We arrive at the following system of equations to find the

eigenvalues:⎧⎪⎨
⎪⎩

A = A cos
√
λL + B sin

√
λL

B��√λ = −A��√λ sin
√
λL + B��√λ cos

√
λL

⎫⎪⎬
⎪⎭ (2.5)

Equating DET=0:

cos
√
λL = ±1 →

√
λL = πn → λn =

[πn
L

]2

(2.6)

General solution:

u(x , t) =
∞∑

n=0

[
An cos

(
c
πn
L

t
)

+ Bn sin
(

c
πn
L

t
)]

cos
(πn

L
x
)

+
∞∑

n=1

[
Cn cos

(
c
πn
L

t
)

+ Dn sin
(

c
πn
L

t
)]

sin
(πn

L
x
)
(2.7)

Note: if we try to isolate the values of A or B in the previous system

(replacing the obtained condition for the eigenvalues) we arrive at

expressions of the type A = A and B = B . Precisely, due to the

uncertainty in the origin of coordinates we cannot fix the phase of

every eigenfunction (that is, we cannot fix the ratio An/Bn) contrary

to the case of open strings. In the latter the position of the string ends

fixes the phase of each eigenfunction. To illustrate this, consider the

following figure:
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Figure 2.2

Final solution: The coefficients are obtained by imposing the

initial conditions and using the properties of orthogonality (in this

case to each eigenvalue λn = [
πn
L

]2
correspond two orthogonal

degenerated eigenfunctions cos
(
πn
L x
)

and sin
(
πn
L x
)

):

An = 2

L

L∫
0

f (x) cos
(πn

L
x
)

dx (n > 0) (2.8)

A0 = 1

L

L∫
0

f (x)dx (2.9)

Cn = 2

L

L∫
0

f (x) sin
(πn

L
x
)

dx (2.10)

Bn = 2

πnc

L∫
0

ψ(x) cos
(πn

L
x
)

dx (n > 0) (2.11)

Dn = 2

πnc

L∫
0

ψ(x) sin
(πn

L
x
)

dx (2.12)

Notes: the B0 term does not exist, since it enters the summation as

0 · B0
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2.2 Sturm–Liouville Problem with Boundary
Conditions of the Second and Third Kind

Find the eigenvalues and eigenfunctions of the Sturm–Liouville

problem in a string whose right end is free to move and its left end

is connected to a spring.

Figure 2.3

Mathematical formulation:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

du2

dx2
+ λu = 0

du
dx

∣∣∣∣
x=0

− hu(0) = 0;

du
dx

∣∣∣∣
x=L

= 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.13)

Here h = β/T is the ratio between the spring constant and the

tension (in the general case of a string).

The more formal method to solve this problem consists in finding

a solution as the sum of two linearly independent solutions and to

apply the boundary conditions.

u(x) = A sin(
√
λx) + B cos(

√
λx) (2.14)

However, in this case we can take a shortcut noting that the only

solution than can possibly satisfy the second boundary condition

must have the form:

u(x) = B cos(
√
λ[x − L]) (2.15)

Applying the first boundary condition:

−B
√
λ sin(

√
λ[−L]) − hB cos(

√
λ[−L]) = 0 (2.16)
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√
λ sin(

√
λL) − h cos(

√
λL) = 0 (2.17)

The zeroes of the equation: tan(
√
λL) = h√

λ
give us the eigenvalues

of the problem.

The following graphical representation shows how the eigenvalues

of the problem are found:

Figure 2.4

Note. These orthogonal functions could be used to seek the solution

of, for example, the heat propagation in a 1D bar with its right

end thermally insulated and the left end in contact with an outer

medium, with which it exchanges heat according to Newton’s law.

2.3 Stationary String in a Gravitational Field

A string of length L is stretched with a tension T and is fixed at

x = 0. The other end (without a gravitational field) is kept at the

same height as the first end. Furthermore, it is subject to an elastic

force (it is connected to a spring with elastic constant β). The elastic

force is zero when (in the absence of gravitational field) the right

end is at the same height as the one at x = 0. Find the shape of the

string when there is a gravitational field. Consider the linear density

of mass ρ is uniform. What will the solution be in the limit β → ∞?
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Figure 2.5

Mathematical formulation:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T
d2u(x)

dx2
= ρg

u(x = 0) = 0

T
du
dx

∣∣∣∣
x=L

= −βu(L)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.18)

Solution: We look for the general solution and apply the boundary

conditions.

u(x) = ρg
2T

x2 + C x + D (2.19)

From the first boundary condition u(0) = 0 we have D = 0. From

the second condition:

T
du
dx

∣∣∣∣
x=L

+ βu(L) = 0 → ρgL + C T + β

[
ρgL2

2T
+ C L

]
= 0

(2.20)

C = −ρgL
2T

2T + βL
T + βL

(2.21)

C must be negative to guarantee u(L) < 0.

The solution in the limit β = ∞ corresponds to both ends fixed

and is (as can be checked by imposing β = ∞ in the result) obtained

in [1]:

u(x) = ρg
2T

(x2 − Lx) (2.22)

Comment: in the case of also solving the vibrations of the string with

the same contours, the shape of the solution could include the static

shape of the string and vibrations of a string with homogeneous

boundary conditions and no external forces could be summed to

the previous to describe oscillations of the string with the new

equilibrium position.
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2.4 Static String with Boundary Conditions of the
Third Kind at Both Ends

The ends of a tense string (tension T ) can move transversally, since

they are attached to two springs (of elastic constant β). Find the

form of the string when, under the action of a constant point force

(F ) applied at x0 it is in mechanical equilibrium. See also problem

(3.4) from and section 3.2.2 from [1].

Figure 2.6

Mathematical formulation and general solution:

Gravity is neglected in this problem:

T
d2u(x)

dx2
= − f (x) = −F δ(x − x0) (2.23)

The boundary conditions are:

T
∂u1

∂x

∣∣∣∣
x=0

= βu1(0)

−T
∂u2

∂x

∣∣∣∣
x=L

= βu2(L)

We seek a solution by parts:

u(x) =
{

u1(x) (0 < x < x0)

u2(x) (x0 < x < L)

}
(2.24)

Since in the indicated ranges the equation is homogeneous (there

are no forces applied):

T
d2u(x)

dx2
= 0 → (2.25)
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u(x) =
⎧⎨
⎩

u1(x) = A1x + B1 (0 < x < x0)

u2(x) = A2x + B2 (x0 < x < L)

⎫⎬
⎭ (2.26)

Now the boundary conditions and the continuity of the functions

u1, 2(x). Also the parameter ε is used for the discontinuity at x0.

First continuity condition: u1(x0 − ε) = u2(x0 + ε) (lim ε → 0)

Second continuity condition: We integrate equation (2.23) in an

interval 2ε centered at x0 and take the limit ε → 0:

T · lim
ε→0

[u2x (x0 − ε) − u1x (x0 + ε)] = −F (2.27)

Applying the four conditions to the solution (2.26) we arrive at a

system of four equations with four unknowns A1, 2; B1, 2:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1x0 + B1 = A2x0 + B2

A2 − A1 = − F
T

T A1 = βB1

−T A2 = β(A2 L + B2)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.28)

Final solution

From this system of equations, the coefficients A1, A2, B1, B2 are

determined and we arrive at the solution u(x). From the two last

equations we can write the solution as:

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

A1

(
x + T

β

)
(0 < x < x0)

8 pt[A2

(
x − L − T

β

)
(x0 < x < L)

⎫⎪⎪⎬
⎪⎪⎭ (2.29)

From the two first equations from the system, we finish obtaining

the value of the coefficients.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = F
T

(
1 − βx0 + T

2T + Lβ

)

B1 = F
β

(
1 − βx0 + T

2T + Lβ

)

A2 = − F
T

(
βx0 + T
2T + Lβ

)

B2 = F
T

(
L + T

β

)(
βx0 + T
2T + Lβ

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.30)
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We can check that the solution is converted in that which is

explained in [1] for the case of fixed ends (β → ∞).

Note 1: the function u(x , x0)

F represents the Green’s function of the

problem.

Note 2: Since it’s a static problem this solution can be extended

to problems described by an equation like the heat equation but

without first order time derivative.

2.5 String with a Point Mass Hanging from One
of Its Ends

Consider a string of length L, tension T and linear density of mass

ρ. The string has the left end fixed and the right end can move

freely in the transversal direction. The string is placed in the Earth’s

gravitational field (g). Determine the stationary form of the string

after an infinite amount of time if there is a point mass m hanging

from its right end (x = L).

Figure 2.7

Mathematical formulation

We assume that the mass is at a distance ε → 0 from the right end

at x = L. First we will discuss how to find the density of forces. The

total force applied to the string is directed in the negative direction:

f (x) = F
L

= − [ρg + mgδ(x − L + ε)] (2.31)

This form describes two contributions:
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Without the point mass:

F1 =
L∫

0

gρdx = ρgL (2.32)

Force due to the point mass:

F2 =
L∫

0

mgδ(x − L + ε)dx = mg (2.33)

General solution Then the equation to be solved will be:

ρ
∂2u
∂t2

− T
∂2u
∂x2

= −[ρg + mgδ(x − L + ε)] (2.34)

since d2u
dt2 → 0

−T
d2u
dx2

= −[ρg + mgδ(x − L + ε)] (2.35)

And we have the boundary conditions:

u(0, t) = 0;
∂u
∂x

∣∣∣∣
x=L

= 0 (2.36)

We will solve the problem by parts. The first part u1(x , t) will be

comprised between the points x = 0 and x = L − ε. There,

d2u1

dx2
= ρg

T
(2.37)

Whose function is, considering the left boundary condition:

u1(x) = ρg
T

x2

2
+ Bx (2.38)

On the other hand, the equation for the solution u2(x), to the right of

the point mass, when ε → 0 will be:

−T
d2u2

dx2
= 0 (2.39)

from the right boundary condition:

du2

dx

∣∣∣∣
x=L

= 0 (2.40)
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Final solution Integrating the wave equation in the surroundings of

the point L − ε we find the change of derivative in the point where

the point mass is:

− du1

dx

∣∣∣∣
x=L−ε

−
[
− du2

dx

∣∣∣∣
x=L−ε

]
= mg

T
(2.41)

since du2

dx

∣∣
x=L−ε

= 0 due to the right boundary condition:

du1

dx

∣∣∣∣
x=L−ε

= −mg
T

(2.42)

This derivative determines the angle of the string at the point where

the mass is attached. Appling this last condition to u1(x) in the limit

ε → 0:
du1

dx

∣∣∣∣
x=L−ε

= ρg
T

L + B = −mg
T

(2.43)

Then:

B = −ρg
T

L − mg
T

(2.44)

The form of the string is:

u1(x) = ρg
T

x2

2
−
(ρg

T
L + mg

T

)
x (2.45)

Note. In principle, the possible alternative way would be to ignore

the point mass in the equation (it would be T ∂2u
∂x2 = gρ, with ρ =

const) and to include the point mass only as the effect that gravity

would have on it through the boundary condition at the end x = L:

T ∂u
∂x

∣∣
x=L − mg = 0. However, the advantage of the method used is

that it first detaches the mass from the border so that it could be

used to find the dynamics of the problem ( formulate and resolve

the Sturm–Liouville problem) and then to search for the dynamic

solution asymptotes at the limit ε → 0.

2.6 String with a Point Mass in Its Center and
Second and Third Type Boundary Conditions

A string with tension T and linear density of mass ρ has a point

mass m in its center (x = L/2). The right end can move freely and

the left one is connected to a spring with constant β . Determine the

eigenfunctions and eigenvalues of the Sturm–Liouville problem and

the static form of the string in the gravitational field.
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Figure 2.8

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x)
∂u2

∂t2
− T

∂u2

∂x2
= 0

∂u
∂x

∣∣∣∣
x=0

− hu(0) = 0

∂u
∂x

∣∣∣∣
x=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.46)

Being h = β

T . The density of mass is ρ(x) = ρ + mδ(x − L
2

). The total

mass of the string, for this density is the expected one:
L∫

0

ρ(x)dx =
ρL+m. If the mass were delocalized we would need to formulate the

density in different parts, but we take it to be point-like.

Sturm–Liouville problem Separating variables we arrive to the

Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2 X
dx2

+ λρ(x)X = 0

d X
dx

∣∣∣∣
x=0

− hX (0) = 0

d X
dx

∣∣∣∣
x=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.47)

To find the eigenfunctions avoiding the anomalous point where

the linear density of mass diverges, we need to separate the

eigenfunctions in two parts.

X 1(x) = A sin(
√
λρx) + B cos(

√
λρx) (2.48)

X 2(x) = C cos(
√
λρ[x − L]) (2.49)

(here the second boundary condition has already been applied). The

first condition is applied for X 1(x):
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A
√
λρ cos(

√
λρ0) −B

√
λρ sin(

√
λρ0)

−h[A sin(
√
λρ0) + B cos(

√
λρ0)] = 0 (2.50)

A
√
λρ − hB = 0 (2.51)

Then B = A
√
λρ
h

X 1(x) = A
[

sin(
√
λρx) +

√
λρ

h
cos(

√
λρx)

]
(2.52)

We impose the continuity condition for the eigenfunctions:

A
[

sin

(√
λρ

L
2

)
+

√
λρ

h
cos

(√
λρ

L
2

)]
− C cos

(√
λρ

L
2

)
= 0

(2.53)

We now apply the discontinuity of the first derivatives of the

eigenfunctions by integrating equation (2.47) around the point x =
L/2.

d X 1

dx

∣∣∣∣
x= L

2

− d X 2

dx

∣∣∣∣
x= L

2

= λmX 2

(
L
2

)
= Cλm cos

(√
λρ

L
2

)
(2.54)

A
[√
λρ cos

(√
λρ

L
2

)
− λρ

h
sin

(√
λρ

L
2

)]

+C
[√
λρ sin

(√
λρ

L
2

)
− λm cos

(√
λρ

L
2

)]
= 0 (2.55)

Figure 2.9 Example of a graphic representation of equation (2.54.
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With the system of equations (2.53, 2.55) we can form a determinant

which, when equated to zero, gives the eigenvalues λn. Furthermore,

from equation (2.53), we have:

A
C

= cos(
√
λρ L

2
)

sin
(√
λρ L

2

)+
√
λρ
h cos

(√
λρ L

2

) (2.56)

Then:

X n(x) = A ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(
√
λnρx) +

√
λnρ

h
cos(

√
λnρx)

(
x <

L
2

)

sin

(√
λnρ

L
2

)
+

√
λnρ

h
cos

(√
λnρ

L
2

)

cos

(√
λnρ

L
2

) cos
(√
λnρ[x − L]

) (
x >

L
2

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.57)

Static form of the string in the presence of the gravitational field The

general mathematic formulation (without specifying the position of

the mass. x0) is:

T
d2u(x)

dx2
= − f (x) = −[−mgδ(x − x0) − gρ] (2.58)

We look for a solution by parts:

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

u1(x)

(
0 < x <

L
2

)

u2(x)

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭ (2.59)

Since in the indicated ranges the equation is non-homogeneous the

following type (assuming a uniform density):

T
d2u(x)

dx2
= gρ (2.60)

→ u(x) =

⎧⎪⎪⎨
⎪⎪⎩

gρ
2T

x2 + A1x + B1

(
0 < x <

L
2

)
gρ
2T

x2 + A2x + B2

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭ (2.61)

We formulate the boundary and continuity conditions for the

functions u1, 2(x). We use the parameter ε, which measures the

proximity to the point L
2

.
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Continuity of the solution: u1

( L
2

− ε
) = u2

( L
2

+ ε
)

(lim ε → 0)

gρ
2T

[
L
2

]2

+ A1

[
L
2

]
+ B1 = gρ

2T

[
L
2

]2

+ A2

[
L
2

]
+ B2 (2.62)

(A2 − A1)
L
2

= B1 − B2 (2.63)

Discontinuity of the derivatives: We integrate equation (2.58) in the

proximity ε of the point L
2

and take the limit ε → 0.

T

L
2
+ε∫

L
2
−ε

d2u(x)

dx2
= −

L
2
+ε∫

L
2
−ε

f (x)dx = {ε → 0} = mg

L
2
+ε∫

L
2
−ε

δ(x−x0)dx = mg

(2.64)

We arrive at:

T
[

gρ
T

L
2

+ A2

]
− T

[
gρ
T

L
2

+ A1

]
= mg (2.65)

A2 − A1 = mg
T

(2.66)

Boundary condition for the right end: du2

dx

∣∣
x=L = 0

A2 = − gρ
T

L (2.67)

Condition for the left end:

T
du
dx

∣∣∣∣
x=0

− βu(0) = 0 (2.68)

T A1 − βB1 = 0 → B1 = T A1

β
(2.69)

Final solution We have a system of four equations with four

unknowns A1, 2; B1, 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A2 − A1)
L
2

= B1 − B2

A2 − A1 = mg
T

A2 = − gρ
T

L

B1 = T A1

β

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.70)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = −
[
ρgL

T
+ mg

T

]

B1 = − 1

β
[ρgL + mg]

A2 = − gρ
T

L

B2 = − 1

β
[ρgL + mg] − mgL

2T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.71)

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

ρg
2T

[x2 − 2Lx] − mg
T

x − 1

β
(ρgL + mg)

(
0 < x <

L
2

)
ρg
2T

[x2 − 2Lx] − mgL
2T

− 1

β
(ρgL + mg)

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭

(2.72)

2.7 Static Form of a String with a Mass

In the middle point of a tense string a mass m is placed. The string

has a fixed end and the other can move transversally. Determine the

shape of the string when, under the action of gravity, is in mechanical

equilibrium.

Figure 2.10

Mathematical formulation:

T
d2u(x)

dx2
= − f (x) = −[−mgδ(x − x0) − gρ] (2.73)

(Note that the forces are directed in the negative direction).
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We will look for the solution in the form of two functions:

u(x) =

⎧⎪⎨
⎪⎩

u1(x) (0 < x <
L
2

)

u2(x) (
L
2

< x < L)

⎫⎪⎬
⎪⎭ (2.74)

In the indicated ranges the equation is non-homogeneous (uniform

density approximation).

T
d2u(x)

dx2
= gρ (2.75)

→ u(x) =

⎧⎪⎪⎨
⎪⎪⎩

gρ
2T

x2 + A1x + B1

(
0 < x <

L
2

)
gρ
2T

x2 + A2x + B2

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭ (2.76)

We formulate the boundary conditions and the continuity conditions

for the functions u1, 2(x), introducing the parameter ε, which

measures the proximity to L
2

.

Continuity condition 1:

u1

(
L
2

− ε

)
= u2

(
L
2

+ ε

)
(ε → 0) (2.77)

gρ
2T

[
L
2

]2

+ A1

[
L
2

]
+ B1 = gρ

2T

[
L
2

]2

+ A2

[
L
2

]
+ B2 (2.78)

Continuity condition 2: We integrate equation (2.73) in the

proximity of size ε around the point L
2

and consider the limit: lim

ε → 0:

T

L
2
+ε∫

L
2
−ε

d2u
dx2

= −
L
2
+ε∫

L
2
−ε

f (x)dx = {ε → 0} = mg

L
2
+ε∫

L
2
−ε

δ(x − x0)dx = mg

(2.79)

We arrive at the second continuity condition:

T · lim
ε→0

[
du2

dx

∣∣∣∣
L
2
+ε

− du1

dx

∣∣∣∣
L
2
−ε

]
= mg (2.80)

T
[

gρ
T

[
L
2

]
+ A2

]
− T

[
gρ
T

[
L
2

]
+ A1

]
= mg (2.81)
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A2 − A1 = mg
T

(2.82)

Now we consider the boundary conditions:

u1(0) = 0 → B1 = 0 (2.83)

du2

dx

∣∣∣∣
x=L

= 0 → gρ
T

L + A2 = 0 (2.84)

Applying these four conditions to the solution (2.76) we arrive at

a four equation system, with four unknowns A1, 2, B1, 2.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1

L
2

+ B1 = A2

L
2

+ B2

A2 − A1 = mg
T

B1 = 0

gρ
T

L + A2 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.85)

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

ρg
2T

[x2 − 2Lx] − mg
T

x
(

0 < x <
L
2

)
ρg
2T

[x2 − 2Lx] − mgL
2T

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭ (2.86)

Note 1: The correct result must imply continuity in the derivative at

x = L/2 for m = 0.

Note 2: A similar problem can be formulated, consisting of the heat

conduction in a thin bar or rod (one dimensional problem) which

has a similar solution.

2.8 Heat Conduction through a Semi-Insulated
Bar

Consider a bar of length L thermically insulated on the left end (x =
0) and in thermal contact with a reservoir at T = 0 on the right end

(x = L). The material has a thermal diffusion coefficient equal to χ .

Find the temperature distribution as a function of time if at t =
0 both ends are at T = 0 and the temperature distribution has a

triangular shape with maximum value T = � at the center of the

bar.
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Figure 2.11

Solution:

Mathematical formulation

∂u(x , t)

∂t
= χ

d2u(x , t)

dx2
(2.87)

u(x , t) =

⎧⎪⎪⎨
⎪⎪⎩

2�
L x

(
x <

L
2

)
2�

L (L − x)

(
x >

L
2

)
⎫⎪⎪⎬
⎪⎪⎭ (2.88)

du
dx

∣∣∣∣
x=0

= 0; u(x = L) = 0 (2.89)

Sturm–Liouville problem We replace a solution of the type u(x , t) =
A(t)X (x) in the heat equation and separate variables:

We have the next Sturm–Liouville problem for X (x):

d X 2

dx2
+ λX = 0 (2.90)

d X
dx

∣∣∣∣
x=0

= 0; X (L) = 0; (2.91)

The general solution for X (x) is:

X (x) = C sin(
√
λx) + B cos(

√
λx)

from d X
dx

∣∣
x=0

= 0 we get C = 0 and from X (L) = 0,
√
λL = π

2
(2n+1),

with n = 0, 1, 2, . . .

The eigenvalues are: λn = [ π
2L(2n + 1)

]2

The eigenfunction are: X n(x) = cos
[

π
2L(2n + 1)x

]
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General solution We take into account now also the temporal part

which resulted from the previous separation of variables:

d An

dt
+ χ An = 0 (2.92)

With which we get to the general solution:

u(x , t) =
∑

An exp(−χλnt) cos
[ π

2L
(2n + 1)x

]
(2.93)

Final solution Initial conditions:

u(x , 0) =

⎧⎪⎪⎨
⎪⎪⎩

2�

L
x

(
x <

L
2

)
2�

L
(L − x)

(
x >

L
2

)
⎫⎪⎪⎬
⎪⎪⎭ (2.94)

Equating them to the solution at t = 0:
∑

An cos[ π
2L(2n + 1)x]

Using the orthogonality of cos
[
π
2L(2n + 1)x

]
we find the An

coefficients:

An = 2

L

⎡
⎢⎣

L/2∫
0

2�

L
x cos(λnx)dx +

L∫
L/2

2�

L
(L − x) cos(λnx)dx

⎤
⎥⎦

= 4�

L2

L/2∫
0

x cos(λnx)dx + 4�

L

L∫
L/2

cos(λnx)dx − 4�

L2

L∫
L/2

x cos(λnx)dx

= 4�

L2

L/2∫
0

x cos(λnx)dx + 4�

L

L∫
L/2

cos(λnx)dx − 4�

L2

L∫
L/2

x cos(λnx)dx

= 4�

L2

{
x sin(λnx)

λn

∣∣∣∣
L/2

0

− cos(λnx)

λn

∣∣∣∣
L/2

0

}

+ 4�

L

{
− sin(λnx)

λn

∣∣∣∣
L

L/2

}
− 4�

L2

{
x sin(λnx)

λn

∣∣∣∣
L

L/2

− cos(λnx)

λn

∣∣∣∣
L

L/2

}

(2.95)

From where we get:

An = 16�

π2(2n + 1)2

[
2 cos

(
π

2

2n + 1

2

)
− 1

]
(2.96)
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2.9 Variation of the Temperature of a Thin Rod as
a Function of Time

Suppose a bar that is at a temperature T0 until t = 0. At this

moment both ends of the bar are brought into contact with two

thermal reservoirs at temperatures T1 and T0. Find the distribution

of temperature in the bar as a function of time.

Figure 2.12

Mathematical formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x , t)

∂t
= χ

d2u(x , t)

dx2

u(0, t) = T0

u(L, t) = T1

u(x , 0) = T0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.97)

We look for a solution as the sum of a function u0(x , t) (which

satisfies the non-homogeneous boundary conditions) and another

function v(x , t) (which satisfies the homogeneous boundary condi-

tions).

u(x , t) = u0(x) + v(x , t) (2.98)

Since the boundary conditions do not depend on time, we can choose

the u0(x) function to be independent of time and, as we will see,

correspond to the stationary solution.

Boundary conditions for u0(x).

v(0, t) = 0 → u0(0) = T0

v(L, t) = 0 → u0(L) = T1

Then the simplest solution is:

u0(x) = T0 + T1 − T0

L
x (2.99)
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Mathematical formulation of the problem for v(x, t)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

= χ
∂2v
∂x2

v(0, t) = 0

v(L, t) = 0

v(x , 0) = T0−T1

L x

(2.100)

We will use the method of separation of variables for the

eigenfunctions in the x direction:

X n(x) = An sin
[πn

L
x
]

(2.101)

λn =
[πn

L

]2

(2.102)

The solution for the temporal part is obtained by solving the

equation:

dCn

dt
+ χλnCn = 0 (2.103)

General solution The general solution is:

u(x , t) =
∑

Ane−χλnt sin
[πn

L
x
]

(2.104)

From the initial conditions v(x , 0) = { T0−T1

L x
} = ∑

An sin
[
πn
L x
]

using the orthogonality of the eigenfunctions sin[πn
L x] we find the

coefficients of the expansion:

An = 2

L

∫ L

0

(
T0 − T1

L
x
)

sin
[πn

L
x
]

dx = 2
(T0 − T1)

πn
(−1)n

(2.105)

Final solution The final solution is:

u(x , t) = T0 + T1 − T0

L
x + v(x , t) (2.106)

2.10 Thermal Conduction in a Bar with Insulated
Ends

Find the variation of temperature as a function of time in a bar of

length L with both ends thermally insulated if the initial distribution

of temperature is T (x , 0) = f (x).
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Figure 2.13

Mathematical formulation:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂t

= c2
∂2u
∂x2

∂u
∂x

∣∣∣∣
x=0

= ∂u
∂x

∣∣∣∣
x=L

u(x , 0) = f (x)

(2.107)

Sturm–Liouville problem We use the separation of variables

method:

u(x , t) = T (t)X (x) (2.108)

To find the eigenfunctions X n(x) we have a problem analogous to a

string, but free on both ends. The Sturm–Liouville problem for X (x)

is: ⎧⎪⎪⎨
⎪⎪⎩

d X
dx

+ νX = 0

d X
dx

∣∣∣∣
x=0

= d X
dx

∣∣∣∣
x=L

= 0

⎫⎪⎪⎬
⎪⎪⎭ (2.109)

Eigenfunctions and eigenvalues:

X n(x) = cos
(√

νnx
)

(2.110)

νn =
(πn

L

)2

n = 0, 1, 2, 3, . . . (2.111)

General solution The general solution is u(x , t) =∑ Tn(t)X n(x)

Final solution Replacing this solution in the heat equation and

using the orthogonality properties of the eigenfunctions we get to

the equation for the Tn(t) coefficients, which determines the initial

conditions.

Tn(t) = Ane−( cπn
L )

2
t (2.112)
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Solution:

u(x , t) = A0 +
∞∑

n=1

Ane−( cπn
L )

2
t cos

(πn
L

x
)

(2.113)

Using the initial conditions:

f (x) = A0 +
∞∑

n=1

An cos
(πn

L
x
)

(2.114)

and taking advantage of the orthogonality of the X n(x) eigenfunc-

tions we determine the coefficients of the expansion:

An = 2

L

L∫
0

f (x) cos
(πn

L
x
)

dx (2.115)

2.11 Variation of the Temperature of a Bar as a
Function of Time

A bar of length L = 1 has a thermal diffusivity coefficient equal to 1

(the ratio between the heat capacity times density and the thermal

conductivity). At the initial instant (t = 0) the temperature of the

bar has an exponential distribution T (x , 0) = e−x . At t = 0, both

ends are connected to a thermal reservoir with temperature equal

to zero. Find the time variation of temperature of the bar.

Figure 2.14

Mathematical formulation:
du(x , t)

dt
= c2 d2u(x , t)

dx2
, c2 = k

cpρ
(2.116)

First boundary condition: u(0) = 0
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Second boundary condition: u(L) = 0

Initial condition: u(x , 0) = e−x (0 < x < L)

c = thermal diffusivity; k- thermal conductivity; cp = heat capacity;

ρ- linear density of mass.

General solution Considering L = c = 1, when we use a solution

obtained by separation of variables u = T (t)X (x) we get the

following general solution of the problem (with “fixed borders”),

expanded in eigenfunctions for the given boundary conditions.

u(x , t) =
∞∑

n=1

Bne−(πn)2t sin(πnx) (2.117)

Using the boundary conditions of the eigenfunctions and the initial

condition we find the value of the coefficients:

Bn = 2

1∫
0

e−x sin(πnx)dx

= 2e−x

[1 + (πn)2]
[− sin(πnx) − πn cos(πnx)]

∣∣∣∣
1

0

= 2πn
[1 + (πn)2]

[1 + (−1)n+1e−1] (2.118)

Final solution The final solution is:

u(x , t) =
∞∑

n=1

2πn
[1 + (πn)2]

[1 + (−1)n+1e−1]e−(πn)2t sin(πnx)

(2.119)

2.12 Relaxation of Temperature in a Rod with a
Local Heat Source

The stationary distribution of temperature of a very thin rod whose

lateral surfaces are kept thermally insulated is initially determined

by the presence of a local heat source with density f (x) = Qδ(x −
x0).

The left end of the bar is in contact with a thermal reservoir at

zero temperature, while the right end exchanges heat according to

Newton’s law with the outer medium, which is at T = 0.
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Find the temperature distribution along the bar when, starting at

t = 0, the heat source is turned off.

Figure 2.15

Mathematical formulation (for times prior to t = 0)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cρ
du
dt

− k
d2u
dx2

= f (x)

u(0) = 0

∂u
∂x

∣∣∣∣
x=L

− hu(L) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.120)

We will first find the stationary distribution at t < 0 in order to

determine the initial condition.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d2u
dx2

= −q
k
δ(x − x0)

u(0) = 0

∂u
∂x

∣∣∣∣
x=L

− hu(L) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.121)

We seek a solution in two parts:

u(x) =
{

u1(x) = Ax + B (x < x0)

u2(x) = C x + D (x > x0)

}
(2.122)

From the boundary conditions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(0) → B = 0

∂u
∂x

∣∣∣∣
x=L

− hu(L) = 0 → C − hC L − hD = 0

C = hD
1 − hL

(1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.123)

From the condition of continuity:{
u1(x0) = u2(x0)

Ax0 = C x0 + D (2)

}
(2.124)
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The condition of continuity of the derivatives is obtained by

integrating the heat equation:

d2

dx2
u(x) = − Q

k
δ(x − x0) (2.125)

In the surroundings of x0 ± ε[
du2

dx

]
x0+ε

−
[

du1

dx

]
x0−ε

= − Q
k

(2.126)

From here we get: A − C = − Q
k (3)

We have a system of three equations (1-3) with three unknowns,

A, B and C . Once we have found the form of the distribution of

temperature at t = 0 (the ψ(x) function) we can find its relaxation

after the local heat source has been turned off ( f (x) = 0). The

Figure 2.16

resulting time dependent problem to determine the time evolution

of the temperature after turning off the heat source is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂u
∂t

− k
∂2u
∂x2

= 0

u(x = 0) = 0

∂u
∂x

∣∣∣∣
x=L

− hu(x = L) = 0

u(x .t = 0) = ψ(x)

(2.127)

Sturm–Liouville problem We seek the solution of the heat equation

using the method of separation of variables and expand the solution

in orthogonal eigenfunctions.

u(x , t) =
∑

T (t)v(x) (2.128)
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being v(x) the solutions of the Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d2v
dx2

+ λv = 0

v(0) = 0

∂v
∂x

∣∣∣∣
x=L

− hv(x = L) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.129)

Carefully observing the boundary conditions, we can present the

solution in a more transparent form that contains the left boundary

condition (we can also get to this form if we seek the solution as the

sum of trigonometric functions).

v(x) = A sin(
√
λx) (2.130)

Applying the condition of the right boundary:

dv
dx

∣∣∣∣
x=L

− hv(x = L) = 0 (2.131)

√
λ cos(

√
λL) − h sin(

√
λL) = 0 (2.132)

We get to a transcendent equation for the λn eigenvalues:

tan(
√
λL) =

√
λ

h
(2.133)

General Solution Replacing u(x) = ∑
T (t)v(x) into the heat

equation we arrive at the equation for the temporal part:
dT (t)

dt
+ λnT (t) = 0 (2.134)

with the solution T (t) = Ene−λnt

The general solution is:

u(x , t) =
∑

Ene−λnt sin(
√
λnx)

Final solution From the initial condition, and using the orthogonal-

ity of the eigenfunctions we find the En coefficients:

ψ(x) =
∑

n

En sin(
√
λnx) (2.135)

L∫
0

ψ(x) sin(
√
λnx)dx = En

∣∣∣sin(
√
λnx)

∣∣∣2 (2.136)

En =

L∫
0

ψ(x) sin(
√
λnx)dx

∣∣sin(
√
λnx)

∣∣2 (2.137)
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2.13 Heat Transfer in an Insulated Bar According
to Newton’s Law

Consider a one-dimensional bar of length L, insulated in its left end

(x = 0). The right end (x = L) is in contact with the outer medium,

which is at a temperature T0 and they exchange heat according to

Newton’s law (with constant h). The thermal diffusivity coefficient

is χ and the thermal conductivity coefficient is k = 1. Find the

variations of the temperature as a function of time if at t = 0 the

central part of the bar (L/4 < x < 3L/4) is at a temperature �,

different from that of the outer medium.

Figure 2.17

Mathematical formulation

∂u(x , t)

∂t
= χ

d2u(x , t)

dx2
(2.138)

Initial conditions:

u(x , 0) =

⎧⎪⎪⎨
⎪⎪⎩

T0 + �

(
L
4

< x <
3L
4

)

T0

(
x <

L
4

; x >
3L
4

)
⎫⎪⎪⎬
⎪⎪⎭ (2.139)

Boundary condition 1: du
dx

∣∣
x=0

= 0

Boundary condition 2: du
dx

∣∣
x=L = −h[u(L, t) − T0]

The sign imposed in the second boundary condition is determined

by the form of the Fourier law and the direction of the vector normal

to the boundary.
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Sturm–Liouville problem We seek the solution by subtracting the

thermal background T0 so that we have homogeneous boundary

conditions:

u(x , t) = v(x , t) + T0 (2.140)

The problem is solved by separation of variables: v(x , t) =
A(t)X (x). That is substituted in the heat equation. The spatial part

is:

d X 2
n

dx2
+ λn X = 0 (2.141)

To obtain the boundary conditions for the Sturm–Liouville problem

from the boundary conditions for the general solution:

v(x , t) =
∑

An(t)X n(x) (2.142)

The boundary conditions must be imposed. For condition 1:

dv
dx

∣∣∣∣
x=0

=
∑

An(t)
d X n

dx

∣∣∣∣
x=0

= 0 (2.143)

Since An(t) is independent from the position, d X n
dx

∣∣
x=0

= 0

In a similar fashion we obtain for boundary condition 2:

d X n

dx

∣∣∣∣
x=L

+ hX (L) = 0 (2.144)

The Sturm–Liouville problem we need to solve then is:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2 X
dx2

+ λX = 0

d X
dx

∣∣∣∣
x=0

= 0

d X
dx

∣∣∣∣
x=L

+ hX (L) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.145)

General solution The general solution for X (x) is:

X (x) = A sin(
√
λx) + B cos(

√
λx) (2.146)

From the condition d X
dx

∣∣
x=0

we have A = 0

And from d X
dx

∣∣
x=L + hX (L) = 0 we get:

−
√
λ sin(

√
λL) = −h cos(

√
λL) (2.147)
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The eigenvalues λn are given by the equation

tan(
√
λL) = h√

λ
(2.148)

Then

X n(x) = Bn cos[
√
λnx] (2.149)

The temporal part is:

d An(t)

dt
+ χλn An(t) = 0 (2.150)

The general solution for the complete problem is:

v(x , t) =
∑

n

Ane−χλnt cos[
√
λnx] (2.151)

Final solution We have the initial condition:

v(x , 0) =

⎧⎪⎪⎨
⎪⎪⎩

�

(
L
4

< x <
3L
4

)

0

(
x <

L
4

; x >
3L
4

)
⎫⎪⎪⎬
⎪⎪⎭

Using the orthogonality of the eigenfunctions cos(
√
λnx) it is

possible to find the coefficients An:

∑
n

An cos[
√
λnx] =

⎧⎪⎪⎨
⎪⎪⎩

�

(
L
4

< x <
3L
4

)

0

(
x <

L
4

; x >
3L
4

)
⎫⎪⎪⎬
⎪⎪⎭ (2.152)

An = �

L∫
0

∣∣cos[
√
λnx]

∣∣2 dx

3L
4∫

L
4

cos[
√
λnx]dx

= �{sin[
√
λn

3L
4

] − {sin[
√
λn

L
4

]}
√
λn

L∫
0

∣∣cos[
√
λnx]

∣∣2 dx

(2.153)
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2.14 Case Study: Heat Transfer in a Semi-Infinite
1D Bar: Periodically Varying Temperature

Consider a semi-infinite bar in 1D (that is, we do not consider the

contour of the bar, only the left end, at x = 0 and the right end, at x =
∞). The temperature at x = 0 has been changing in time as T = T0+
T1 cos(ωt) since t = −∞. The thermal diffusivity coefficient is χ , the

density of the material is ρ and the thermal conductivity coefficient

is k. Find the stationary (although time dependent) distribution of

temperature of the bar, as a function of distance to x = 0.

Figure 2.18

Mathematical formulation We first subtract the temperature T0, to

study the variations relative to it:

u(x , t) = v(x , t) − T0 (2.154)

The heat equation to be solved is:

∂u(x , t)

∂t
= χ

∂2u(x , t)

∂x2
(2.155)

where χ = k
Cρ is the thermal diffusivity coefficient.

The initial conditions are not specified.

Boundary condition 1: u(0, t) = T1 cos(ωt). We will present this

condition as u(0, t) = T1e−iωt , and once the problem is solved, only

the real part of the solution will be considered.

Boundary condition 2: u(∞, t) = 0

We seek the solution using the method of separation of variables

u(x , t) = T (t)X (x). Substituting this solution in the heat equation,
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and separating variables:

1

T
dT
dt

= χ

X
d2 X
dx2

= −λ = const (2.156)

In the stationary case the temporal dependence will be the same as

that of the external excitation (same frequency).

T (t) ∼ e−iωt (2.157)

Then

1

T
dT
dt

= χ

X
d2 X
dx2

= −iω (2.158)

The equation for the spatial part is:

χ
d2 X
dx2

+ iωX = 0 (2.159)

Note that this is not a Sturm–Liouville problem. We are looking for

solutions of the form X ∝ eβx , and substituting it we arrive at:

χβ2eβx = −iωeβx → β = ±
√

−iω
χ

(2.160)

The following relations will help isolate −i :

√−i =
√

e−i π
2 = e−i π

4 = 1 − i√
2

(2.161)

General solution If we define β0 =
√

ω
2χ

, the general solution for

X (x) is:

X = De(1−i)β0 x + C e−(1−i)β0 x (2.162)

From the second boundary condition we have: u(∞, t) = 0 → D =
0. Then, the solution will be:

u(x , t) = T (t)X (x) = C e−iωte−(1−i)β0 x (2.163)

From the first boundary condition: u(0, t) = T1e−iωt → C = T1
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Then:

u(x , t) = T1e−iωte−(1−i)β0 x = T1e−β0 x ei(−ωt+β0 x) (2.164)

Final solution Considering the real part of the solution will give us

the variations in temperature as a function of time and distance to

the bar left end.

u(x , t) = T1e−β0 x cos(−ωt + β0x) (2.165)

The thermal wave decay length is 1
β0

=
√

2χ
ω

The wave half period is obtained from the phase of the temporal

part −ωt + β0x , taken for a given instant t1, the spatial separation

x0 = x1 − x2 between the points x1 and x2, with phases 0 and π

respectively. This separation is:

β0xo = π (2.166)

Along this distance (x0), the maximum temperature of the oscilla-

tions decays by a factor: e−π = 0.043.

Analyzing the solution one can see that at every instant the

temperature in the zone β0x > π
2

has an opposite sign to the

temperature in the surroundings of x = 0.

An analogous problem would be the calculation of the tempera-

ture as a function of time at a certain depth underground. We would

see that the temperature would increase in winter with respect

to its value in summer. This possibility is shown in the graph,

analyzing the profile of temperature at the instants t1 (summer) and

t2 (winter).

Figure 2.19
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2.15 Case Study: Vibrations of Two United Bars

Consider a non-homogeneous bar (0 < x < L) with a uniform cross

section (S). This bar is created by uniting two homogeneous bars of

length L/2 with densities ρ1 and ρ2 and Young’s moduli E1 and E2,

but with the same speed of sound in both materials: E1/ρ1 = E2/ρ2.

The end at x = 0 can’t move and a constant force F is applied to the

end at x = L up until t = 0. At that instant, the force is no longer

applied. Find the eigenfrequencies and the profile of the principal

tone of the vibrations.

Figure 2.20

Mathematical formulation

ρ(x)
∂2u
∂t2

− ∂

∂x

[
E (x)

∂u
∂x

]
= 0 (t > 0) (2.167)

E (x) =

⎧⎪⎪⎨
⎪⎪⎩

E1

(
0 < x <

L
2

)

E2

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭ (2.168)

ρ(x) =

⎧⎪⎪⎨
⎪⎪⎩

ρ1

(
0 < x <

L
2

)

ρ2

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭ (2.169)

The boundary conditions are: u(0) = ∂u
∂x

∣∣
x=L = 0 for t > 0.

One of the initial conditions is: ∂u
∂t

∣∣
t=0

= 0

For the other initial condition, which gives the initial displacement

u1, 2(x , 0) in one of two parts of the bar, we start from the definition
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of tension in the bar:

T1 = F
S

= E1

∂u1(x)

∂x
→ u1(x , 0) = F

S E1

x (2.170)

In the same manner it is obtained:

u2(x , 0) = F
S E2

x + Const (2.171)

From the continuity equation we have:

u1

(
L
2

, 0

)
= u2

(
L
2

, 0

)
(2.172)

with this, we can isolate the unknown constant:

C onst = F L
2S

(
1

E1

− 1

E2

)
(2.173)

Then:

u(x , t = 0) =

⎧⎪⎪⎨
⎪⎪⎩

F
S E1

x
(

0 < x <
L
2

)
F

S E2

x + F L
2S

(
1

E1

− 1

E2

) (
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭

(2.174)

Figure 2.21

Sturm–Liouville problem To seek the solution of the problem we

will use the method of separation of variables in the with u =
T (t)v(x):

1

T
d2T
dt2

= 1

ρ(x)v(x)

d[E (x) dv
dx ]

dx
= −λ = −ω2 (2.175)
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We arrive at the following Sturm–Liouville problem for v(x):

d[E (x) dv
dx ]

dx
+ λρ(x)v(x) = 0 (2.176)

With the boundary conditions: v(0) = 0 and dv
dx

∣∣
x=L = 0.

Note: the orthogonality condition is:

(λn − λm)

L∫
0

ρ(x)vn(x)vm(x)dx = 0 (2.177)

General solution Separating equation (2.176) and its solutions in

two parts:

d2v1

dx2
+ ω2

a2
1

v1 = 0

(
x <

L
2

)
(2.178)

d2v2

dx2
+ ω2

a2
2

v2 = 0

(
x >

L
2

)
(2.179)

with a2
1, 2 = E1, 2

ρ1, 2

We find the boundary conditions and the union of v1, 2 and its

derivatives:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1(0) = 0 (i)

dv2

dx

∣∣∣∣
x=L

= 0 (i i)

v1

(
L
2

)
= v2

(
L
2

)
(i i i)

E1

dv1

dx

∣∣∣∣
x=

L
2

= E2

dv2

dx

∣∣∣∣
x=

L
2

(iv)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.180)

Final solution The last condition is found integrating the wave

equation near L/2.

L
2
+ε∫

L
2
−ε

d
dx

[
E

dv
dx

]
dx + λ

L
2
+ε∫

L
2
−ε

ρ(x)v(x)dx = 0 (2.181)

From condition (i) → v1(x) = A sin

(
ω

a1

x
)

(2.182)
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From condition (ii) → v2(x) = B cos

(
ω

a2

(x − L)

)
(2.183)

From condition (iii) → A sin

(
ω

a1

L
2

)
= B cos

(
ω

a2

L
2

)
(2.184)

From condition (iv) → A E1

ω

a1

cos

(
ω

a1

L
2

)
= −B E2

ω

a2

sin

(
− ω

a2

L
2

)
(2.185)

Using conditions (iii) and (iv) we have a system of two equations

with two unknown, A and B . Expressing this system in matrix form

we can obtain the values of A and B by equating the determinant of

the coefficients to 0:

− E2

a2

sin

(
ω

a1

L
2

)
sin

(
ω

a2

L
2

)
+ E1

a1

cos

(
ω

a1

L
2

)
cos

(
ω

a2

L
2

)
= 0

(2.186)

From this equation we find the eigenvalues (related to the resonant

frequencies). In the limit of a homogeneous bar (ρ1 = ρ2; E1 = E2)

we arrive to the condition for eigenvalues corresponding to the bar

with the right end free and the left one immobile.

sin2

(
ω

a
L
2

)
− cos2

(
ω

a
L
2

)
= − cos

(
ωL
a

)
= 0 (2.187)

Finally, the frequencies ωn are obtained in the case of a non-

homogeneous bar, but with materials of the same speed of sound:

E1/ρ1 = E2/ρ2 (2.188)

−E2 sin

(
ω

a
L
2

)
× sin

(
ω

a
L
2

)
+ E1 cos

(
ω

a
L
2

)
× cos

(
ω

a
L
2

)
= 0

(2.189)

Then:

tan2

(
ωn

a
L
2

)
= E1

E2

(2.190)

The relation of amplitudes Bn/An will be, when the speeds of sounds

are equal:

From condition (iii) → Bn/An =
sin
(

ωn
a1

L
2

)
cos
(

ωn
a2

L
2

) = tan

(
ωn

a
L
2

)
=
√

E1

E2

(2.191)
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Then with An = 1 (we are only interested in the shape of the mode,

this value simplifies the result), the profile of the first harmonic is:

v(x) =

⎧⎪⎪⎨
⎪⎪⎩

v1(x) = sin
(ωn

a
x
) (

0 < x <
L
2

)

v2(x) =
√

E1

E2

cos
[ωn

a
(x − L)

] ( L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭

(2.192)

To find the coefficient T1(t) of the solution we start from the general

solution u(x , t) = ∑
Tn(t)vn(x). Using the initial conditions for an

initial displacement u(x , 0), using the properties of orthogonality

and integrating, we arrive at:

T1(0) =

L∫
0

u(x , 0)ρ(x)v(1)dx

L∫
0

ρ(x)v2
(1)dx

(2.193)

Note. v(1) is the profile of the mode corresponding to the main tone

(n = 1).

Finally the mode of the lowest frequency is found:

u1(x , t) = T1(0)v(1) cos(ω1t) (2.194)

(using the condition that the initial velocity is zero).

2.16 Distribution of Temperature in a
Non-Homogeneous Bar

A unidimensional bar of length L is made by joining two homoge-

neous bars (L = L1 + L2) with different thermal conductivity coef-

ficients (k1, 2) and thermal diffusion coefficients a2
1, 2 = k1, 2/ρ1, 2C1, 2,

where ρ1, 2 are the densities of each material and C1, 2 are the heat

capacities. The lateral surface and the right end of the bar are

insulated (see figure), while the left end is in contact with a reservoir

at zero temperature. In the initial moment (t = 0) the temperature

at every point of the bar is equal to T = 0. Find the temperature

of the bar in the neighborhood of the thermally insulated end as a

function of time.
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Note: Only write the integrals for the temporal coefficients, there is

no need to solve them. See also problem (4.10) from [1].

Figure 2.22

Mathematical formulation:

It’s important to write from the beginning a single heat equation to

describe the whole system (it’s incorrect to have two equations, one

for each material).

ρ(x)C (x)
∂u
∂t

− ∂

∂x

[
k(x)

∂u
∂x

]
= 0 (2.195)

k(x) =
{

k1 (0 < x < L1)

k2 (L1 < x < L)

}
(2.196)

ρ(x) =
{
ρ1 (0 < x < L1)

ρ2 (L1 < x < L)

}
(2.197)

C (x) =
{

C1 (0 < x < L1)

C2 (L1 < x < L)

}
(2.198)

Boundary conditions: u(0) = ∂u
∂x

∣∣
x=L = 0

Initial conditions: u(x , 0) = T0

Solution We separate variables to find the solution:

u = T (t) · v(x) (2.199)

ρ(x)C (x)
∂u
∂t

− ∂

∂x

[
k(x)

∂u
∂x

]
= 0 (2.200)
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1

T
dT
dt

=
d

dx [k(x) dv
dx ]

ρ(x)C (x)v(x)
= −λ (2.201)

Sturm–Liouville problem for the solution v(x):

∂

∂x

[
k(x)

∂v
∂x

]
+ λρ(x)C (x)v(x) = 0 (2.202)

Boundary conditions: v(0) = ∂v
∂x

∣∣
x=L = 0

Note: as already mentioned, it’s important to formulate a single

Sturm–Liouville problem from the beginning, since the orthogonal-

ity will be applicable to the corresponding function v(x) and not to

each of the parts in which this function will be later divided. The

orthogonality condition (see section 4.1.3 from [1]) is:

(λn − λm)

L∫
0

ρ(x)C (x)vnvmdx = 0 (2.203)

Separating the equation (2.202) in two parts:

d2v1

dx2
+ λ
(
ρ1C1

k1

)
v1 = 0 (2.204)

d2v2

dx2
+ λ
(
ρ2C2

k2

)
v2 = 0 (2.205)

or in another manner:

d2v1

dx2
+ λ
(

1

a2
1

)
v1 = 0 (2.206)

d2v2

dx2
+ λ
(

1

a2
2

)
v2 = 0 (2.207)

With a2
1, 2 = k1, 2

ρ1, 2C1, 2

We find the boundary conditions and continuity conditions of the

functions v1, 2:

(1) v1(0) = 0 → v1(x) = A sin
(√
λ

a1
x
)

(2) dv2

dx

∣∣
x=L = 0 → v2(x) = B cos

(√
λ

a2
(x − L)

)
(3) v1(L1) = v2(L1)

(4) k1
dv1

dx

∣∣
x=L1

= k2
dv2

dx

∣∣
x=L1
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The last condition has been found by integrating the heat equation

near L1:
L1+ε∫

L1−ε

d
dx

[
k

dv
dx

]
dx + λ

L1+ε∫
L1−ε

ρ(x)C (x)v(x)dx = 0 (2.208)

Using the eigenfunctions and conditions (3, 4) we need to solve a

system with two equations and two unknowns (A , B). From the

condition that the determinant of this equation in matrix form must

be zero, we find the eigenvalues λi .

From (3) we have: A sin
(√
λ

a1
L1

)
− B cos

[√
λ

a2
(L1 − L)

]
= 0

From (4) we have:

Ak1

√
λ

a1

cos

(√
λ

a1

L1

)
+ Bk2

√
λ

a2

sin

[√
λ

a2

(L1 − L)

]
= 0

Equating the determinant of the coefficient matrix (which repre-

sents equations 3 and 4) to zero, we get the equation to obtain the

eigenvalues λn:

k1

√
λ

a1

cos

(√
λ

a1

L1

)
cos

(√
λ

a2

(L1 − L)

)

+ sin

(√
λ

a1

L1

)
k2

√
λ

a2

sin

(√
λ

a2

(L1 − L)

)
= 0 (2.209)

Which is simplified to:

tan

(√
λn

a2

(L1 − L)

)
tan

(√
λn

a1

L1

)
= −k1a2

k2a1

(2.210)

We find the ratio between the amplitudes Bn/An:

Since B = A sin
(√

λ
a1

L1

)

cos
(√

λ
a2

(L1−L)
)

Then the form of the solutions v1, 2 (for A = 1) could be:

v1(x) = sin

(√
λn

a1

x
)

(0 < x < L1) (2.211)

v2(x) = sin(
√
λn

a1
L1)

cos
(√
λn

a2
(L1 − L)

) cos

(√
λn

a2

(x − L)

)
(L1 < x < L)

(2.212)
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Figure 2.23 Example of eigenfunction for the spatial problem

Final solution We calculate now the coefficients Tn(t) of the

solution. Solution for x = L:

u(x = L) =
∑

n

Tn(t)vn(L) (2.213)

Using the initial conditions and the orthogonality:

Tn(0) =
T0

L∫
0

ρ(x)C (x)vn(x)dx

L∫
0

ρ(x)C (x)v2
n (x)dx

(2.214)

Solution of the equation for the temporal coefficients:

dTn

dt
+ λnTn = 0 (2.215)

Tn(t) = Tn(0)e−λnt (2.216)

Finally:

u(x = L) =
∑

n

Tn(0)e−λnt
sin
(√
λ

a1
L1

)
cos
(√
λ

a2
(L1 − L)

) (2.217)
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2.17 Case Study: Variation in the Ion
Concentration in a Rod with Flux across Its
Ends

A one-dimensional rod of length L has an initial distribution of ion

concentrations at t = 0 which can be described by the function f (x):

Starting at t = 0 ion fluxes J 1 and J 2 cross across the ends of the rod

x = 0 and x = L. Along its length, the rod exchanges ions with the

outer medium (which has zero ion concentration), proportionally

to the concentration on the surface q(x) = −hu (h is a positive

constant). Find the distribution of the concentrations of ions as a

function of the position x and time t if the diffusion coefficient is D

(another positive constant).

Figure 2.24

Mathematical formulation We will call the ion concentration u(x , t)

and the problem is solved in one dimension. Strictly speaking a

unidimensional problem would only have boundary conditions at

the ends of the rod. In this case we are artificially treating the

length of the rod as a boundary, since it exchanges heat with its

medium. But instead of including this information as a boundary (to

do that we would need to solve the problem in 3D with cylindrical

coordinates and apply a boundary condition at the cylinder radius),

we will include it as a non-homogeneous term in the diffusion

equation: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= D
∂2u
∂x2

− hu

D
∂u
∂x

∣∣∣∣
x=0

= J 1

D
∂u
∂x

∣∣∣∣
x=L

= J 2

u(x , t = 0) = f (x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.218)
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The sign of the term linear in temperature of the differential

equation is determined by the condition that the system loses

energy to its surroundings when an excess of temperature is present.

As this is a non-homogeneous equation with non-homogeneous

boundary conditions, we will search for the solution as the sum of

two functions u(x , t) = w(x) + v(x , t).

(i) The function w(x) describes the stationary part of the solution

w(x) (that is, it’s independent of time and it would be the

solution in the limit t → ∞). This solution will take into account

the non-homogeneous boundaries, which persist at all times.

(ii) The other part of the solution would describe the transient part

v(x , t) in the presence of homogeneous boundaries (the non-

homogeneous contribution of these is already included in w, it

must not be included once again).

The expression u(x , t) = w(x) + v(x , t) is substituted in the

differential equation, and we get:

∂v
∂t

= D
∂2w
∂x2

+ D
∂2v
∂x2

− hw − hv (2.219)

The problem is separated into two different problems for the

functions w(x) and v(x , t) which include the whole of the initial and

boundary conditions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂x

∣∣∣∣
x=0

= Q1

∂u
∂x

∣∣∣∣
x=L

= Q2

u(x , 0) = f (x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.220)

With Q1 = J 1/D and Q2 = J 2/D. The non-homogeneous boundary

conditions for w(x) are:

⎧⎪⎪⎨
⎪⎪⎩

∂w
∂x

∣∣∣∣
x=0

= Q1

∂w
∂x

∣∣∣∣
x=L

= Q2

⎫⎪⎪⎬
⎪⎪⎭ (2.221)



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Variation in the Ion Concentration in a Rod with Flux across Its Ends 71

Then, to keep the global conditions for the solution u = v + w, the

conditions for v(x , t) need to change to:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂v
∂x

∣∣∣∣
x=0

= 0

∂v
∂x

∣∣∣∣
x=L

= 0

v(x , 0) = f (x) − w(x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.222)

The complete formulation for both partial problems is then:

Problem (1) for the transient part⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

= a2
∂2v
∂x2

− hv

∂v
∂x

∣∣∣∣
x=0

= 0

∂v
∂x

∣∣∣∣
x=L

= 0

v(x , 0) = f (x) − w(x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.223)

Problem (2) for the stationary part⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D
∂2w
∂x2

− hw = 0

∂w
∂x

∣∣∣∣
x=0

= Q1

∂w
∂x

∣∣∣∣
x=L

= Q2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.224)

The general solution for problem 2 is:

w(x) = A sinh

(√
h
D

x

)
+ B cosh

(√
h
D

x

)

Applying the first boundary condition ∂w
∂x

∣∣
x=0

= Q1 we get:

A

√
h
D

cosh

(√
h
D

· 0

)
= Q1 → A = Q1

√
D
h

(2.225)

Applying the second boundary condition ∂w
∂x

∣∣
x=L = Q2 we arrive at

the expression:

Q1

√
D
h

√
h
D

cosh

(√
h
D

L

)
+ B

√
h
D

sinh

(√
h
D

L

)
= Q2 (2.226)
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Then:

B =
Q2 − Q1 cosh

(√
h
D L
)

√
h
D sinh

(√
h
D L
) (2.227)

The solution of problem 2 is:

w(x) = Q1

√
D
h

sinh

(√
h
D

x

)
+

Q2 − Q1 cosh
(√

h
D L
)

√
h
D sinh

(√
h
D L
) cosh

(√
h
D

x

)

(2.228)

Problem (1) for the transient part

To solve the transient part we use the method of separation of

variables:

v(x , t) = T (t)X (x) (2.229)

Separating variables we get:

h + 1
T

dT
dt

D
= 1

X
d X
dx

= −λ (2.230)

We take λ > 0 to arrive to a Sturm–Liouville with eigenfunctions:

Eigenfunctions: X n(x) = cos
(
πn
L x
)

Eigenvalues: λn = (πn
L

)2

The differential equation for T (t) is:

dT
dt

= −
[

D
(πn

L

)2

+ h
]

T (2.231)

The amplitudes of the temporal coefficients are:

Tn(t) = Ane−
(

D( πn
L )

2+h
)

t
(2.232)

Then, the general solution is:

v(x , t) =
∞∑

n=0

Ane−
(

D( πn
L )

2+h
)

t
cos
(πn

L
x
)

(2.233)

Applying the initial conditions:

v(x , 0) = f (x) − w(x) =
∞∑

n=0

An cos
(πn

L
x
)

(2.234)

Finally, using the orthogonality of the eigenfunctions cos
(
πm

L x
)

the

coefficients of the expansion of the function v(x , t) are found:

An = 2

L

∫ L

0

( f (x) − w(x)) cos
(πn

L
x
)

dx (2.235)
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2.18 Oscillations of a Non-Homogeneous String

A non-homogeneous string of length L and fixed at its ends is made

of two strings of the same length and different densities ρ1 and 2ρ1

(see figure) and is initially at rest. At t = 0 it is hit at its central point.

The hit transfers a momentum equal to I . Find the displacement as

a function of time.

See also problem (4.6) in [1] and section 4.1.3.

Figure 2.25

Mathematical formulation

ρ(x)
∂2u
∂t2

− T
∂2u
∂x2

= 0 (2.236)

ρ(x) =

⎧⎪⎪⎨
⎪⎪⎩

ρ1

(
0 < x <

L
2

)

2ρ1

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭ (2.237)

T is the tension, and it is assumed to be constant along the whole

string.

Boundary conditions: u(0) = u(L) = 0

Initial condition 1: u(x , t = 0) = 0

Initial condition 2, considering that the momentum transferred by

the hit is received by a fragment of string of length 2ε, centered at

x = L/2:

∂u
∂t

∣∣∣∣
t=0

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

(
x <

L
2

− ε

)
I

ε(ρ1 + 2ρ1)

(
L
2

− ε < x <
L
2

+ ε

)

0

(
x >

L
2

+ ε

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.238)
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Sturm–Liouville problem Considering the initial conditions (zero

initial displacement, non-zero initial velocity), the shape of the

solution as a sum of eigenfunctions will be:

u(x , t) =
∑

n

Qn (t)X n(x) =
∑

n

An sin(ωnt)X n(x) (2.239)

Replacing that in the wave equation u = Q(t) · X (x), we separate

variables:

1

QT
d2 Q
dt2

= 1

ρ(x)X
d2 X
dx2

= −λn (2.240)

The temporal part is:

d2 Q
dt2

+ λnT Q = 0 (2.241)

From here we obtain the possible frequencies of the oscillations:

ω2
n = λnT (2.242)

The equation for the spatial form of each mode of oscillation is:

d2 X
dx2

+ λnρ(x)X = 0 (2.243)

Taking into account the boundary conditions, the solution of this

equation is presented as a function in two parts X 1, 2 with boundary

conditions X 1(0) = X 2(L) = 0

X n(x) =

⎧⎪⎪⎨
⎪⎪⎩

X 1 = Bn sin(
√
ρ1λnx)

(
0 < x <

L
2

)

X 2 = Cn sin(
√

2ρ1λn(L − x))

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭

(2.244)

The relation between Bn and Cn is obtained from the continuity

equation:

Bn sin

(√
ρ1λn

L
2

)
= Cn sin

(√
2ρ1λn

L
2

)
(2.245)

Then the solution can be expressed in the form:

X n(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X 1n = Bn sin
(√

ρ1λnx
) (

0 < x <
L
2

)

X 2n = Bn

sin

(√
ρ1λn

L
2

)

sin

(√
2ρ1λn

L
2

) sin
(√

2ρ1λn(L − x)
) ( L

2
< x < L

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.246)
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Integrating equation (2.243) for every mode in an interval (ε) around

the central point:

L
2
+ε∫

L
2
−ε

d2 X n

dx2
dx +

L
2
+ε∫

L
2
−ε

λnρ(x)X ndx = d X n2

dx

∣∣∣∣
L
2
+ε

− d X n1

dx

∣∣∣∣
L
2
−ε

+
L
2∫

L
2
−ε

λnρ1 X n1dx +
L
2
+ε∫

L
2

λnρ2 X n2dx = 0 (2.247)

The first term is the integral of a second derivative, which directly

yields a first derivative. The second term is the integral of an

integrable function. When we make ε → 0 these integrals become

zero.

Then, letting ε → 0,

d X n1

dx

∣∣∣∣
x=L/2

= d X n2

dx

∣∣∣∣
x=L/2

(2.248)

Figure 2.26 Example of eigenfunctions and their derivatives

That gives a transcendental equation to obtain the eigenvalues λn:

√
ρ1λn cos

[√
ρ1λn

(
L
2

)]

=
√

2ρ1λn
sin(

√
ρ1λn

L
2

)

sin(
√

2ρ1λn
L
2

]
cos

[√
2ρ1λn

(
L
2

)]
(2.249)
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Note: the orthogonality condition (see 4.30 from [1]) is:

(λn − λm)

L∫
0

ρ(x)X n(x)X m(x)dx = 0 (2.250)

Final solution We will use now the second initial condition to find

the coefficients An

∂u
∂t

∣∣∣∣
t=0

=
∑

n

Anωn X n(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

(
x <

L
2

− ε

)
I

ε[ρ1 + 2ρ1]

(
L
2

− ε < x <
L
2

+ ε

)

0

(
x >

L
2

+ ε

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.251)

Both parts are multiplied by ρ(x) × X m(x) and are integrated from

0 to L.

Anωn

L∫
0

ρ(x)X 2
n (x)dx = I

ε3ρ1

X n

(
L
2

)
[ερ1 + ε2ρ1] = I × X n

(
L
2

)

(2.252)

Then the coefficients of the expansion of the solution as a Fourier

series are:

An = I × X n
( L

2

)
ωn

L∫
0

ρ(x)X 2
n (x)dx

(2.253)

2.19 Forced Oscillations of a String

Find the oscillations of a string with length L, fixed at its ends, which

at t > 0 is subject to a force with density: f (x , t) = Ae−t sin(πx/L).

The ration between the tension of the string T and its linear density

ρ is a2 = T /ρ. Consider that the string wasn’t oscillating at t = 0

and that its linear density is ρ = 1.
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Figure 2.27

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2 − a2 ∂2u

∂x2 = Ae−t sin
(
πx
L

)
(t > 0)

u(0, t) = 0

u(L, t) = 0

u(x , 0) = 0

∂u
∂t

∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.254)

Solution We separate variables to expand the solution of the

non-homogeneous equation in eigenfunctions of the homogeneous

problem with boundary conditions:

u(x , t) =
∞∑

n=1

Tn(t)X n(x) (2.255)

X n = sin
(πn

L
x
)

; λn =
(πn

L

)2

(2.256)

∞∑
n=1

[
d2Tn

dt2
+ a2λnTn

]
X n = Ae−t sin

(πx
L

)
(2.257)

Taking advantage of the orthogonality of the eigenfunctions we

arrive at the equation:

d2Tn

dt2
+ a2λnTn = fn(t) = 2Ae−t

L

L∫
0

sin
(πx

L

)
sin

(πn
L

x
)

dx (2.258)

fn(t) = {A e−tδ1, n
} =

{
Ae−t (n = 1)

0 (n �= 1)

}
(2.259)

We obtain the equation of a forced oscillator (with null initial

conditions), corresponding to the excitation of a single eigenmode

(main mode). The solution of the temporal part can be found by two

alternative methods.
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The first could be to consider a particular solution of the type

T1, p(t) = C e−t (being C a constant still to be determined) plus the

solution of the homogeneous equation. The second method would

consist in finding the particular solution from Green’s equation for a

forced oscillator.

T1 p(t) = AL
πa

t∫
0

e−t′
sin
[π

L
(t − t′)

]
dt′ (2.260)

The solution is:

u p(x , t) = T1 p(t)X 1(x)

= AL
πa

sin
(π

L
x
) t∫

0

e−x sin
[π

L
(t − x)

]
dx

= A[
1 + ( πa

L )2
] {e−t − cos

(πa
L

t
)

+ L
πa

sin
(πa

L
t
)}

sin
(π

L
x
)

(2.261)

It can be shown that from the second way of finding the particular

solution, it fulfills the null initial conditions and then is also the final

solution u(x , t) = u p(x , t).

2.20 Case Study: Oscillations of a String Subject
to an External Force

A string of length L, with both ends fixed ant initially at rest, is acted

upon by an external force of density f (x , t) = sinh(x) starting at

t = 0. Find the oscillations of the string at times later than t = 0.

Consider that the speed of sound in the string (c) and the density

(ρ) are equal to one.

Figure 2.28
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Mathematical formulation
∂2u
∂t2

− c2 ∂
2u

∂x2
= 1

ρ
sinh(x) → ∂2u

∂t2
− ∂2u

∂x2
= sinh(x) (t > 0)

(2.262)

Boundary conditions: u(x = 0) = u(x = L) = 0

Initial conditions: u(x , 0) = ∂u
∂t

∣∣
t=0

= 0

This problem can be solved by three methods. One is more “physical”

and the other is more formal. The third one uses Green’s functions.

Method 1

The string will change its shape as a result of the application of the

external force. In the limit of long times the small oscillations will

occur on a string of the new equilibrium shape. At infinite times

the oscillations will have disappeared due to friction (that is, ∂2u
∂x2 =

− sinh(x)). The static shape of the string is only a function of the

spatial variable. Then, the solution can be sought as the sum of two

functions:

u(x , t) = v(x , t) + w(x) (2.263)

The problem is separated into two, so that the summing the

corresponding solutions the initial equation and conditions are

respected.

∂2v
∂t2

− ∂2v
∂x2

− ∂2w
∂x2

= sinh(x) (2.264)

From the first boundary condition:

v(0) + w(0) = 0 → we will assume: v(0) = w(0) = 0 (2.265)

From the second boundary condition:

v(L) + w(L) = 0 → we will assume: v(L) = w(L) = 0 (2.266)

From the first initial condition:

v(x , t = 0) + w(x) = 0 → we have: v(x , 0) = −w(x) (2.267)

From the second initial condition:

∂v
∂t

∣∣∣∣
t=0

+ 0 = 0 → we have:
∂v
∂t

∣∣∣∣
t=0

= 0 (2.268)

The problem is separated into two (a,b):
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To formulate the problem for the function w(x) we will use the result

of replacing u(x , t) = v(x , t) + w(x) into the wave equation:

∂2v
∂t2

− ∂2v
∂x2

− ∂2w
∂x2

= sinh(x) (2.269)

a) The equation to be solved for the function describing the static

shape of the string under the external force is:

d2w
dx2

= − sinh(x) (2.270)

The boundary conditions for w(x) are:

w(0) = w(L) = 0 (2.271)

The solution of the problem for w(x) can be found by integrating

twice the equation:

w = − sinh(x) + C x + D (2.272)

Alternatively, the same general form can be obtained by presenting

the solution as the sum of a particular solution: wp = − sinh(x) and

a general solution for the homogeneous problem d2w
dx2 = 0.

Applying the conditions w(0) = 0 and w(L) = 0 we get

respectively D = 0 and C = sinh(L)

L . Then the equilibrium position

of the string under the action of the external force is:

w(x) = − sinh(x) + sinh(L)

L
x (2.273)

b) Now we will get the solution of the time dependent problem.

∂2v
∂t2

− ∂2v
∂x2

= 0 (2.274)

With boundary conditions: v(0) = v(L) = 0.

The initial conditions for v(x) are:

Condition 1: v(x , 0) = −w(x) = sinh(x) − sinh(L)

L x

Condition 2: ∂v
∂t

∣∣
t=0

= 0

General solution The general solution is known for v:

v(x , t) =
∑

An cos
(πn

L
t
)

sin
(πn

L
x
)

(2.275)
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Final solution Applying the initial conditions and using the

orthogonality properties we get the coefficients:

v(x , 0) =
∑

An sin
(πn

L
x
)

= sinh(x) − sinh(L)

L
x (2.276)

An = 2

L

L∫
0

[
sinh(x) − sinh(L)

L
x
]

sin
(πn

L
x
)

dx (2.277)

The integrals can be solved, for example, with Wolfram-Alpha:∫
sinh(x) sin

(πn
L

x
)

dx

= L[Lcosh(x) sin
(
πn
L x
)− πn sinh(x) cos(πn

L x)]

L2 + (πn)2
+ Const

(2.278)

∫
x sin

(πn
L

x
)

dx = L[Lsin
(
πn
L x
)− πnx cos

(
πn
L x
)

]

(πn)2
+ Const

(2.279)

An = 2

L

[
sinh(L)

L(πn
L )2

[πn cos(πn) − sin(πn)]

+cosh(L) sin(πn) − πn
L sinh(L) cos(πn)

(πn
L )2 + 1

]

= 2 cos(πn) sinh(L)πn
L2

[
1

(πn
L )2

− 1

(πn
L )2 + 1

]

= 2 cos(πn) sinh(L)πn
L2

[
1

[(πn
L )2 + 1](πn

L )2

]

= 2 cos(πn) sinh(L)

πn

[
L2

[(πn)2 + L2]

]
= 2L2

πn
(−1)n sinh(L)

[(πn)2 + L2]

(2.280)

Method 2

While the Method 1 could be described as a “physical approach”

as it introduces the new equilibrium position respect which free

oscillations are found, we consider below also more formal approach

to solve the same problem.
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Sturm–Liouville problem

We separate variables: u(x , t) = A(x)B(t). The spatial part is

expanded into the orthogonal eigenfunctions of the Sturm–Liouville

problem:

d2 A(x)

dx2
+ λA(x) = 0 (2.281)

A(0) = 0; A(L) = 0 (2.282)

The solution is then:

u(x , t) =
∑

n

Bn(t) sin
(πn

L
x
)

(2.283)

We can replace this solution in: ∂2u
∂t2 − ∂2u

∂x2 = sinh(x) Using the

orthogonality of the eigenfunctions sin
(
πn
L x
)

to arrive at the non-

homogeneous equation for the coefficients Bn(t).

d2 Bn(t)

dt2
+
(πn

L

)2

Bn(t) = −2πn
(−1)n sinh(L)

L2 + (πn)2
(2.284)

Initial conditions: Bn(0) = 0; d Bn
dt

∣∣
t=0

= 0

The general solution is the sum of the solution of the homogeneous

equation and the particular solution.

Bn(t)part = −2L2

πn
(−1)n sinh(L)

L2 + (πn)2
(2.285)

Bn(t) = C sin
(πn

L
t
)

+ D cos
(πn

L
t
)

− 2L2

πn
(−1)n sinh(L)

L2 + (πn)2
(2.286)

First initial condition:

Bn(0) = 0 → D = 2L2

πn
(−1)n sinh(L)

L2 + (πn)2
(2.287)

Second initial condition:

d Bn

dt

∣∣∣∣
t=0

= 0 → C
πn
L

= 0 → C = 0 (2.288)

General solution

Bn(t) = 2L2

πn
(−1)n sinh(L)

L2 + (πn)2
cos
(πn

L
t
)

− 2L2

πn
(−1)n sinh(L)

L2 + (πn)2

(2.289)

and the solution is:
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u(x , t) =
∞∑

n=1

2L2

πn
(−1)n sinh(L)

L2 + (πn)2

(
cos
(πn

L
t
)

− 1
)

sin
(πn

L
x
)

(2.290)

Method 3 (using Green’s function of an oscillator)

The problem of the coefficients Bn(t) can be solved using Green’s

function that was previously used to solve the equation of a forced

oscillator:

d2 Bn(t)

dt2
+
(πn

L

)2

Bn(t) = −2πn
(−1)n sinh(L)

L2 + (πn)2
= fn (2.291)

Bn(t) = C sin
(πn

L
t
)

+ D cos
(πn

L
t
)

+ L
πn

t∫
0

fn sin
[πn

L
(t − τ )

]
dτ

(2.292)

Since both initial conditions are null the solution of the homoge-

neous equation is trivial (C = D = 0). Then we will get:

Bn(t) = −2L
(−1)n sinh(L)

L2 + (πn)2

t∫
0

sin
[πn

L
(t − τ )

]
dτ

= 2L2

πn
(−1)n sinh(L)

L2 + (πn)2

(
cos
(πn

L
t
)

− 1
)

(2.293)

Note that the form of the solutions obtained with methods 2 and 3

(expanding by orthogonal functions) are equal, but they are different

to the solution obtained by the method 1, in which part of the

solution has analytic form.

2.21 Case Study: Oscillations of the Gas in a
Semi-Open Tube

A tube which is open on one end moves along its axial direction with

a constant velocity V . At t = 0 the tube stops suddenly. Determine

the longitudinal gas vibrations inside the tube as a function of the

distance to the closed end (x) and time (t). Note: see also problem

5.6 b) from [1].
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Figure 2.29

Mathematical formulation The problem is formulated in terms of

“condensation” u = ρ−ρ0, being ρ0 the density of gas in equilibrium.

∂2u
∂t2

− a2 ∂
2u

∂x2
= 0 (0 < x < L; t > 0) (2.294)

Boundary condition 1: ∂u
∂x

∣∣
x=0

= 0

Boundary condition 2: u(L, t) = 0

Initial condition 1: u(x , 0) = 0

To find a second initial condition for the time derivative of the gas

density at t = 0 we will use the simplified continuity equation

(chapter 5 of [1]):

∂ρ

∂t

∣∣∣∣
t=0

= −ρ0

dv
dx

(2.295)

where v(x) is the velocity of the molecules, which at t = 0 is

constant for x > 0 and zero for x < 0 (that is, is the Heaviside

function). Considering that v(x) has the form of the Heaviside

function multiplied by V , where V is the velocity of the molecules,

and using the properties of the derivative of this function (Appendix

1 of [1]), we can write:

dρ
dt

(x , t = 0) = −ρ0V δ(x) (2.296)

Then the second boundary condition is:

∂u
∂t

∣∣∣∣
t=0

= −ρ0V δ(x) (2.297)

Figure 2.30
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Solution The general solution is analogous to the oscillations of a

string with the left end free, and the right one fixed.

u(x , t) =
∑

n

Tn(t) · X n(x) =
∞∑

n=0

Cn sin(ωnt) · cos

(
π[2n + 1]

2L
x
)

=
∞∑

n=0

Cn sin(ωnt) · cos

(
π[2n + 1]

2L
x
)

(2.298)

This result is obtained by expanding the solution in orthogonal

functions which are solutions of the Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 X
dx2

+ λX = 0

d X
dx

∣∣∣∣
x=0

= X (L) = 0

X n(x) = cos

(
π(2n + 1)

2L
x
)

λn =
[
π(2n + 1)

2L

]2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.299)

We have also used already the first initial condition [u(x , 0) = 0] to

find the form of the temporal solutions. Finally we apply the second

initial condition to find the coefficients Cn:

∂u
∂t

∣∣∣∣
t=0

= −ρ0V δ(x) =
∞∑

n=0

Cnωn · cos

(
π[2n + 1]

2L
x
)

(2.300)

We use the orthogonality of the functions X n(x):

Cnωn × L
2

= −ρ0V (2.301)

Cn = − 2ρ0V
π(2n + 1)

(2.302)

The final solution will be:

u(x , t) = −2ρ0V
π

∞∑
n=0

1

(2n + 1)
sin(ωnt) cos

(
π[2n + 1]

2L
x
)

(2.303)
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2.22 Variation of the Temperature in a Thin Rod
Exchanging Heat through Its Surface

The initial temperature of a rod of length L and neglectable cross

section is described by a function f (x). From t = 0 both ends

x = 0, L are connected to a thermal reservoir at T = 0. The

lateral surface of the rod exchanges heat with an outer medium at

a temperature u0 according to Newton’s law (this is, a heat exchange

of the form h(u − u0) where h is a constant). Find the distribution of

temperature as a function of time.

Figure 2.31

Mathematical formulation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t

= a2
∂2u
∂x2

− h(u − u0)

u(0, t) = u(L, t) = 0

u(x , t = 0) = f (x)

(2.304)

We will find the solution as the sum of two functions: one

corresponds to a stationary solution u0 +w(x), independent of time,

which is the solution at t → ∞), and another transient solution

v(x , t).

Replacing in the wave equation:

u(x , t) = u0 + w(x) + v(x , t) (2.305)

∂v
∂t

= a2 d2w
dx2

+ a2 ∂
2v

∂x2
− hw(x) − hv(x , t) (2.306)

We separate the problem in two equations for the w(x) and v(x , t)

functions.
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Equation for the temporal part:

∂v
∂t

= a2 ∂
2v

∂x2
− hv(x , t) (2.307)

With the boundary and initial conditions:⎧⎨
⎩

u(0, t) = u(L, t) = 0

u(x , 0) = f (x)

⎫⎬
⎭→

⎧⎨
⎩

v(0, t) = v(L, t) = 0

v(x , 0) = f (x) − u0 − w(x)

⎫⎬
⎭

(2.308)

Equation for the stationary part:

a2 d2w
dx2

− hw(x) = 0 (2.309)

Boundary conditions for w(x):

u(0, t) = u(L, t) = v(0, t) = v(L, t) = 0 (2.310)

Then u0 + w(0) = u0 + w(L) = 0

and we will have w(0) = w(L) = −u0

General solution for equation (2.309)

w(x) = A sinh

(√
h

a
x

)
+ B sinh

(√
h

a
(L − x)

)
(2.311)

Boundary condition 1: w(0) = −u0 → B = − u0

sinh[
√

h
a L]

Boundary condition 2: w(L) = −u0 → A = − u0

sinh[
√

h
a L]

Solution:

w(x) = − u0

sinh
(√

h
a L
) sinh

(√
h

a
x

)
− u0

sinh
(√

h
a L
) sinh

(√
h

a
(L − x)

)

(2.312)

On the other hand, to solve equation (2.307) we separate variables:

v(x , t) = T (t)X (x) (2.313)

Replacing in (2.307):

h + 1
T

dT
dt

a2
=

d2 X
dx2

X
= −λ (2.314)

We operate in this manner to get to a Sturm–Liouville problem

for the spatial part and choose λ > 0 to achieve oscillating

eigenfunctions.
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Eigenfunctions and eigenvalues:

X (x) = sin
(πn

L
x
)

(2.315)

λ =
[πn

L

]2

(2.316)

Differential equation for T (t):

dT
dt

= −
([πn

L

]2

+ h
)

T (2.317)

The time dependent coefficients of the solution are:

Tn(t) = Ane−([ πn
L ]2+h)t (2.318)

General solution The general solution is:

v(x , t) =
∑

Ane−([ πn
L ]2+h)t sin

(πn
L

x
)

(2.319)

Final solution Applying the initial conditions:

v(x , 0) = f (x) − u0 − w(x) =
∑

An sin
(πn

L
x
)

(2.320)

and using the orthogonality of the sin(πn
L x) eigenfunctions we get

the coefficients of the Fourier expansion:

An = 2

L

∫ L

0

[ f (x) − u0 − w(x)] sin
(πn

L
x
)

dx (2.321)

2.23 Distribution of Temperature in a Thin Wire
with Losses on Its Surface

Find the variations in temperature as a function of time in a wire

(length L, thermal diffusion coefficient k, linear density of mass ρ

and heat capacity C = 1) if it is thin (that is, treat it as if it exchanges

heat along its whole length, unlike what would really happen if it was

a purely 1D problem, where heat exchange can only occur at x = 0

and x = L. The wire losses heat through its surface by unit length

and by unit time with a constant h, according to Newton’s law.

The right end is thermally insulated and the left one is in contact

with a thermic reservoir at temperature T = 0. The temperature of

the outer medium is also T = 0. At the initial moment (t = 0) the

temperature of the wire is a linear function of the distance to the left

end: T (x , 0) = Ax .
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Figure 2.32

Mathematical formulation The density of heat sources acting on

the wire can be described by:

f (x , t) = (dq/dx)

δt
= −h[u(x , t) − u0] (2.322)

where dq is the heat dissipated by the interval dx , while u0 is

the temperature of the outer medium, towards which the heat is

dissipated; δt = 1 second. The problem to be solved consists of:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u(x , t)

∂t
= k

∂2u(x , t)

∂x2
− h · u(x , t)

Initial condition: u(x , t = 0) = Ax

Boundary conditions: u(x = 0, t) = ∂u(x , t)

∂x

∣∣∣∣
x=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.323)

Sturm–Liouville problem We seek the solution by expanding in

eigenfunctions of the homogeneous problem, of known value for the

spatial part:

vn(x) = sin

(
π(2n + 1)

2L
x
)

(2.324)

The eigenvalues are: λn =
(

π(2n+1)

2L

)2

The general solution is replaced in the heat equation, and the

eigenvalues are used as the result of applying the differential

operator ∂2

∂x2 :

u(x , t) =
∑

n

An(t)vn(x) (2.325)

∑
n

∂ An

∂t
vn(x) = −k

∑
n

An(t)λnvn(x) − h
∑

n

An(t)vn(x) (2.326)
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Both sides are multiplied by vm(x) and integrated from 0 to L. Using

the orthogonality of the eigenfunctions we arrive at the following

equation for the coefficients An:

∂ An(t)

∂t
+ (kλn + h)An(t) = 0 (2.327)

And:

An(t) = Cne−(kλn+h)t (2.328)

General solution The general solution, separating the temporal and

spatial variables, is:

u(x , t) =
∑

n

Cne−(kλn+h)t sin

(
π(2n + 1)

2L
x
)

= e−ht
∑

n

Cne−kλnt sin

(
π(2n + 1)

2L
x
)

(2.329)

Final solution Applying the initial conditions:

u(x , 0) =
∑

n

Cn sin

(
π(2n + 1)

2L
x
)

= Ax (2.330)

We have the identities:

A

L∫
0

x sin

(
π(2n + 1)

2L
x
)

dx = A
4L2

[π(2n + 1)]2
cos(πn)

= A
4L2

[π(2n + 1)]2
(−1)n (2.331)

L∫
0

[
sin

(
π(2n + 1)

2L
x
)]2

dx = πL(2n + 1)

[2π(2n + 1)]
= L

2
(2.332)

Finally we arrive at the coefficients of the expansion used as

solution:

Cn = 8AL
[π(2n + 1)]2

(−1)n (2.333)

Note: only due to the specific form of the non-homogeneous term

(proportional to the solution) in this case it would be possible to

solve the problem also using the separation of variables method, but

applied to the whole PDE, and not only to the homogeneous part.
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2.24 Case Study: Oscillations of a Finite String
with Friction

A string of length L with both ends fixed is placed in a viscous

medium with friction proportional to the transversal component of

the velocity (with proportionality coefficient k). Consider that initial

displacement of the string has the form of the function f (x) and that

the initial transversal velocity is ψ(x). The sound speed is equal to

c. Find the transversal oscillations from t = 0 if the linear density of

mass is equal to 1.

Figure 2.33

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

− c2
∂2u
∂x2

= −k
∂u
∂t

c, k > 0

u(0, t) = u(L, t) = 0

u(x , t = 0) = f (x);
∂u
∂t

∣∣∣∣
t=0

= ψ(x)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.334)

Sturm–Liouville problem

The method of separation of variables is used: u(x , t) =∑
Tn(t)X n(x).

X n(x) are orthogonal eigenfunctions, which are solutions of the

Sturm–Liouville problem with boundary conditions:⎧⎪⎨
⎪⎩

d2 X
dx2

+ λn X n = 0

X (0) = X (L) = 0

⎫⎪⎬
⎪⎭ (2.335)
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The eigenfunctions are known:

X n = sin
(πn

L
x
)

; λn =
(πn

L

)2

(n = 1, 2, 3 . . .) (2.336)

General solution Replacing X (x) in the wave equation, we obtain

the equation for the temporal part.

d2Tn

dt2
+ k

dTn

dt
+
(πn

L
c
)2

Tn(t) = 0 (2.337)

We seek a solution of the form Tn(t) = eαt , which replaced in the

previous equation gives:

α2 + kα +
(πn

L
c
)2

= 0 (2.338)

α1, 2 = − k
2

±
√

k2 − 4(πn
L c)2

2
= − k

2
±
√(

k
2

)2

−
(πn

L
c
)2

= − k
2

±βn

(2.339)

The values of α1, 2 will be real when:

k2 − 4
(πn

L
c
)2

> 0; n ≤ kL
2πc

(2.340)

There will be two independent solutions:{
T1, n(t) = eα1t

T2, n(t) = eα2t

}
(2.341)

The solution can be simplified by creating two independent

combinations:

f1 = T1, n(t) + T2, n(t)

2
= e− kt

2
eβt + e−βt

2
= e− k

2
t cosh(βnt) (2.342)

f2 = T1, n(t) − T2, n(t)

2
= e− kt

2
eβt − e−βt

2
= e− k

2
t sinh(βnt) (2.343)

The solution for the range of indices n ≤ kL
2πc (n is compared to the

maximum integer value of kL
2πc for which the solutions of α1, 2 are

still real) must be presented in the form of a combination of two

independent solutions in general, with different weights:

Tn(t) = e− k
2

t[An cosh(βnt) + Bn sinh(βnt)] (2.344)
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Finally the indices n > kL
2πc → α1, 2 will have complex values (we try

to compare n to the minimum integer of kL
2πc for which the solutions

of α1, 2 start to be imaginary):

α1, 2 = − k
2

±
√(

k
2

)2

−
(πn

L
c
)2

= − k
2

± iβn (2.345)

Analogously we have:

Tn(t) = e− k
2

t[An cos(βnt) + Bn sin(βnt)] (2.346)

The general solution for the problem will be:

u(x , t) = e− kt
2

∑
n≤ kL

2πc

[An cosh(βnt) + Bn sinh(βnt)] sin
(πn

L
x
)

+e− kt
2

∑
n> kL

2πc

[An cos(βnt) + Bn sin(βnt)] sin
(πn

L
x
)

(2.347)

Final solution The coefficients An and Bn are found by applying the

initial conditions:

Note: we can use the same names of the indices An and Bn of the

sum, since they are separated in two sums with two different ranges

of n that don’t overlap.

From the first initial condition:

u(x , 0) = f (x) =
∑

1≤n<∞
An sin

(πn
L

x
)

(2.348)

Using the orthogonality of the eigenfunctions X n = sin
(
πn
L x
)

An = 2

L

L∫
0

f (x) sin
(πn

L
x
)

dx (2.349)

Analogously, applying the second initial condition:

∂u
∂t

∣∣∣∣
t=0

=ψ(x)=
∑

1≤n<∞

(
− k

2

)
An sin

(πn
L

x
)
+
∑

1≤n<∞
βBn sin

(πn
L

x
)

(2.350)∑
1≤n<∞

(
− k

2
An + βn Bn

)
× sin

(πn
L

x
)

= ψ(x) (2.351)
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We arrive at:

(
− k

2
An + βn Bn

)
= 2

L

L∫
0

ψ(x) sin
(πn

L
x
)

dx

Bn = 1

βn

⎡
⎣ k

2
An + 2

L

L∫
0

ψ(x) sin
(πn

L
x
)

dx

⎤
⎦

= 1

βn

⎡
⎣k

L

L∫
0

f (x) sin
(πn

L
x
)

dx + 2

L

L∫
0

ψ(x) sin
(πn

L
x
)

dx

⎤
⎦

(2.352)

2.25 Propagation of a Thermal Pulse in a Thin
Bar with Insulated Ends

At t = 0 the temperature distribution in a very thin rod whose

surface and its ends stay thermally insulated is T (x) = Aδ(x − x0).

Find the distribution of temperature along the rod as a function

of time.

Figure 2.34

Mathematical formulation⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂t

= c2
∂2u
∂x2

∂u
∂x

∣∣∣∣
x=0

= ∂u
∂x

∣∣∣∣
x=L

= 0

u(x , t = 0) = Aδ(x − x0)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.353)

Sturm–Liouville problem Using the method of separation of vari-

ables:
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u(x , t) = T (t)X (x) (2.354)

To find the eigenfunctions of the spatial part X n(x) we need to solve

a problem similar to that of a string with both ends free:

Figure 2.35

The Sturm–Liouville problem for X (x) is:⎧⎪⎪⎨
⎪⎪⎩

d2 X
dx2

+ λX = 0

d X
dx

∣∣∣∣
x=0

= d X
dx

∣∣∣∣
x=L

= 0

⎫⎪⎪⎬
⎪⎪⎭ (2.355)

The eigenfunctions and eigenvalues for this problem are:

X n(x) = cos(
√
λnx); (2.356)

λn =
(πn

L

)2

(n = 0, 1, 2, . . .) (2.357)

Including this value for the X n(x) in the solution u(x , t) =∑
Tn(t)X n(x) and replacing it in the heat equation, and taking

advantage of the orthogonality of the eigenfunctions, we arrive at

an equation for the coefficients Tn(t). They are determined by using

the initial conditions:

Tn(t) = Bne−c2( πn
L )

2
t (2.358)

General solution The solution is:

u(x , t) = B0 +
∞∑

n=1

Bne−c2( πn
L )2t cos

(πn
L

x
)

(2.359)
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Final solution Using the initial conditions:

u(x , 0) = B0 +
∞∑

n=1

Bn cos
(πn

L
x
)

= Aδ(x − x0) (2.360)

And taking advantage of the orthogonality of the eigenfunctions

X n(x), we have for n = 0:

B0

L∫
0

cos

(
π0

L
x
)

dx = B0 L =
L∫

0

Aδ(x − x0) cos

(
π0

L
x
)

dx

=
L∫

0

Aδ(x − x0)dx = A (2.361)

B0 = A
L

(2.362)

For n �= 0 we have:

Bn

L∫
0

cos2
(πn

L
x
)

dx = Bn
L
2

=
L∫

0

Aδ(x − x0) cos
(πn

L
x
)

dx

= A cos
(πn

L
x0

)
(2.363)

Then the coefficients of the series are:

Bn =
L∫

0

Aδ (x − x0) cos
(πn

L
x
)

dx = 2A
L

cos
(πn

L
x0

)
(2.364)

2.26 Forced Oscillations of a Hanging String in a
Gravitational Field

Consider a heavy string of length L and linear mass density ρ = 1

(in the presence of gravity), hanging from a point which oscillates

(transversally to the string) like this: u0 sin(ωt).

Determine the displacement of the string in the limit of small

oscillations (see also problem 4.9 and section 4.1.4 from [1]).
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Figure 2.36

Mathematical formulation

ρ
∂2u(x , t)

∂t2
− ∂

∂x

[
T (x)

∂u(x , t)

∂x

]
= 0 (2.365)

The oscillating end of the string will be described with the boundary

condition u(0, t) = u0 sin(ωt). The equation will simplify by

considering that the tension is due to gravity.

T (x) = ρgx (2.366)

Then:

∂2u(x , t)

∂t2
− g

∂

∂x

[
x
∂u(x , t)

∂x

]
= 0 (2.367)

Sturm–Liouville problem and general solution We will seek the

solution by separating space and time variables as:

u(x) = C X (x) sin(ωt) (2.368)

Replacing that into the wave equation:

−ω2 X (x) sin(ωt) − g
d

dx

[
x

d X (x)

dx

]
sin(ωt) = 0 (2.369)

−ω2

g
− 1

X (x)

d
dx

[
x

d X (x)

dx

]
= 0 (2.370)

We seek the solution of the equation:

1

X (x)

d
dx

[
x

d X (x)

dx

]
= −λ (λ > 0) (2.371)

The solution of the equation:

d
dx

[
x

d X (x)

dx

]
+ λX (x) = 0 (2.372)
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is the zero order Bessel function if the function has no discontinu-

ities.

With the change of variable: ξ = √
x we arrive at the equation:

d2 X (ξ)

dξ2
+ 1

ξ

d X (ξ)

dξ
+ 4λX (ξ) = 0 (2.373)

which has a solution of the form:

X (x) = J 0(2
√
λx) (2.374)

Since J 0(0) = 1 → C = u0

Final solution The non-trivial solutions correspond to the values:

λ = ω2

g
(2.375)

Then the solution will be:

u(x , t) = u0 J 0(2
√
λx) sin(ωt) (2.376)

Note: the shape of the string (the number of nodes) will change with

the applied frequency.

2.27 Case Study: Temperature Equilibrium in a
Bar with Heat Sources

Consider a bar of length L with heat capacity C , density ρ and heat

conduction coefficient k. The left end of the bar (x = 0) is insulated,

while the right end (x = L) is in contact with the outer medium,

which is at T0 and exchanges heat according to Newton’s law (with

negative constant H ). At the initial moment the temperature of the

bar is equal to T0. Find the variation of temperature as a function of

time if starting at t = 0 in the central part of the bar (L/4 < x <

3L/4) are heat sources with a constant density F .
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Figure 2.37

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂u(x , t)

∂t
− k

∂2u(x , t)

∂x2
= f (x)

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

F
(

1

4
L < x <

3

4
L
)

0

(
x <

1

4
L; x >

3

4
L
)
⎫⎪⎪⎬
⎪⎪⎭

u(x , 0) = T0

du
dx

∣∣∣∣
x=0

= 0

−k
du
dx

∣∣∣∣
x=L

= H (u(L, t) − T0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.377)

We have chosen the sign for the heat exchange in the right end so

that the negative gradient of temperature describes the heat flux in

the positive direction.

Figure 2.38 Heat flux direction at x = L

Main method of resolution We seek the solution subtracting

first the thermal background T0 to have homogeneous boundary
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conditions.

v(x , t) = u(x , t) − T0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂v(x , t)

∂t
− k

∂2v(x , t)

∂x2
= f (x)

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

F
(

1

4
L < x <

3

4
L
)

0

(
x <

1

4
L; x >

3

4
L
)
⎫⎪⎪⎬
⎪⎪⎭

v(x , t = 0) = 0

dv
dx

∣∣∣∣
x=0

= 0

dv
dx

∣∣∣∣
x=L

= −hv(L, t); h = H
k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.378)

Sturm–Liouville problem We seek the solution as a summation:

v(x , t) =
∑

n

An(t)X n(x) (2.379)

The spatial part is expanded in orthogonal eigenfunctions which

solve the Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2 X n

dx2
+ λX n = 0

d X n

dx

∣∣∣∣
x=0

= 0

d X n

dx

∣∣∣∣
x=L

= −hX n(L)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.380)

X n(x) = A sin(
√
λnx) + B cos(

√
λnx) (2.381)

From the first boundary condition: d X n
dx

∣∣
x=0

= 0 = A
√
λn cos(

√
λn0)

we have A = 0. From the second boundary condition: d X
dx

∣∣
x=L +

hX (L) = 0 we deduce the equation:
√
λ sin(

√
λL) = h cos(

√
λL). In a

more compact form this equation, from which we get the eigenvalues

λn is:

tan(
√
λL) = h√

λ
(2.382)

Then we get the eigenfunctions:

X n(x) = Bn cos[
√
λnx] (2.383)

Note: here n = 1, 2, 3 . . . indicates the numeration of eigenvalues

and the corresponding eigenfunctions.
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General solution To analyze the temporal part, we replace the

expansion in eigenfunctions into equation (2.378):

Cρ
∂

∂t

[∑
n

An(t)X n(x)

]
− k

d2

dx2

[∑
n

An(t)X n(x)

]
= f (x) (2.384)

Cρ
∑

n

d An(t)

dt
X n(x) − k

∑
n

An(t)
d2 X n(x)

dx2
= f (x) (2.385)

∑
n

[
d An(t)

dt
+ χλn An(t)

]
X n(x) = f (x)

Cρ
(2.386)

(where χ = k
Cρ ). Both parts of the previous expression are multiplied

by X m(x) and integrated between 0 and L. Using the orthogonality of

the eigenfunctions X n(x) we arrive at the equation:[
d An(t)

dt
+ χλn An(t)

] L∫
0

[X n(x)]2dx = 1

Cρ

L∫
0

f (x)X n(x)dx

= F
Cρ

3L
4∫

L
4

cos[
√
λnx]dx

(2.387)

d An(t)

dt
+ χλn An(t) = F

Cρ
L∫

0

[cos
√
λnx]2dx

3L
4∫

L
4

cos[
√
λnx]dx

(2.388)

d An(t)

dt
+ χλn An(t) = F [sin

√
λn

3L
4

− sin
√
λn

L
4

]

√
λnCρ

L∫
0

[cos
√
λnx]2dx

= fn (2.389)

Note about the norm:
L∫

0

[cos(ax)]2dx = 2aL + sin(2aL)

4a
�= L

2
(in general) (2.390)

The general solution of the obtained equation:

d An(t)

dt
+ χλn An(t) = fn (2.391)
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is the sum of the solutions of the homogeneous equation:

An, hom(t) = An(0)e−χλnt (2.392)

and the particular solution of the non-homogeneous equation:

An, part = fn

χλn
(2.393)

Final solution Finally the solution is:

An(t) = An(0)e−χλnt + fn

χλn
(2.394)

All is left to do is using the initial condition to find the coefficients

An(0):

v(x , 0) =
∑

n

An(0)X n(x) =
∑

n

[
An(0)e0 + fn

χλn

]
X n(x) = 0

(2.395)

From here we get the values An(0) = − fn
χλn

Finally the solution is:

u(x , t) = T0 +
∑

n

fn

χλn

[
1 − e−χλnt] cos

(√
λnx
)

(2.396)

Alternative method In this alternative method we subtract a

thermal background T0 (this method is more “physical”). The

solution can be separated into two, one corresponding to the profile

of temperature w(x) reached in the limit t = ∞ and another

transitory one v(x , t)

u(x , t) = v(x , t) + w(x) (2.397)

Complete problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂u(x , t)

∂t
− k

d2u(x , t)

dx2
= f (x)

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

F
(

1

4
L < x <

3

4
L
)

0

(
x <

1

4
L; x >

3

4
L
)
⎫⎪⎪⎬
⎪⎪⎭

u(x , 0) = 0

du
dx

∣∣∣∣
x=0

= 0

du
dx

∣∣∣∣
x=L

= −hu(L, t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.398)



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Temperature Equilibrium in a Bar with Heat Sources 103

Problem 1 for w(x):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k
d2w(x)

dx2
= f (x)

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

F
(

1

4
L < x <

3

4
L
)

0

(
x <

1

4
L; x >

3

4
L
)
⎫⎪⎪⎬
⎪⎪⎭

dw
dx

∣∣∣∣
x=0

= 0

dw
dx

∣∣∣∣
x=L

= −hw(L)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.399)

Problem 2 for v(x , t)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂v(x , t)

∂t
− k

d2v(x , t)

dx2
= 0

u(x , t = 0) = 0 → v(x , 0) = −w(x)

dv
dx

∣∣∣∣
x=0

= 0

dv
dx

∣∣∣∣
x=L

= −hv(L, t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.400)

With this separation we reach the solution by solving two simpler

problems. To find w(x) we can find the solution in three intervals

of x :

w(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w1(x)

(
0 < x <

1

4
L
)

w2(x)

(
1

4
L < x < 3

4
L
)

w3(x)

(
3

4
L < x < L

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.401)

Problem for w1(x)⎧⎪⎪⎨
⎪⎪⎩

−k
d2w1(x)

dx2
= 0 (0 < x <

1

4
L)

dw1

dx

∣∣∣∣
x=0

= 0

⎫⎪⎪⎬
⎪⎪⎭ (2.402)

Since w1(x) = A1x + B1

dw
dx

∣∣∣∣
x=0

= 0 → A1 = 0 → w1(x) = B1 (2.403)
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Problem for w3(x)

⎧⎪⎪⎨
⎪⎪⎩

−k
d2w3(x)

dx2
= 0

(
3

4
L < x < L

)
dw3

dx

∣∣∣∣
x=L

= −hw3(L)

⎫⎪⎪⎬
⎪⎪⎭ (2.404)

Since w3(x) = A3x + B3

dw3

dx

∣∣∣∣
x=L

+ hw3(L) = 0 → A3 + h(A3 L + B3)

= 0 → A3(1 + hL) + B3h = 0 (2.405)

In this way we can relate the constants A3 and B3.

Finally we formulate the problem for w2(x).

d2w2(x)

dx2
= − F

k

(
1

4
L < x <

3

4
L
)

(2.406)

w2(x) = − F
2k

x2 + A2x + B2 (2.407)

From the continuity conditions in the boundary, and their deriva-

tives, between w1(x), w2(x) and w3(x) we find the values of the

coefficients. Un this way we will have five conditions for the five

unknown constants.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) A3(1 + hL) + B3h = 0

(2) w2

(
L
4

)
= − F

2k

(
L
4

)2

+ A2

(
L
4

)
+ B2 = w1

(
L
4

)
= B1

(3)
dw2

dx

∣∣∣∣
x=

L
4

= − F
k

(
L
4

)
+ A2 = dw1

dx

∣∣∣∣
x=

L
4

= 0

(4) w2

(
3L
4

)
= − F

2k

(
3L
4

)2

+ A2

(
3L
4

)
+ B2 = w3

(
3L
4

)
= A3

(
3L
4

)
+ B3

(5)
dw2

dx

∣∣∣∣
x=

3L
4

= − F
k

(
3L
4

)
+ A2 = dw3

dx

∣∣∣∣
x=

3L
4

= A3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.408)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2 = F L
4k

A3 = − F L
2k

B1 = F
2k

(
L2

h

(
h + 1

L

)
− 2

(
L
2

)2
)

B2 = F
2k

(
L2

h

(
h + 1

L

)
−
(

3L
4

)2
)

B3 = F L
2k

1 + hL
h

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.409)

Equations (1-5) allow us to find the form of w(x). The problem 2

for v(x , t) is homogeneous with homogeneous boundary conditions

of the second and third type and with known initial conditions.

We solve it by expanding into orthogonal functions, which we have

found in the first method of solving the problem.

v(x , t) =
∑

n

Ane−χλnt cos(
√
λnx) (2.410)

Applying the initial conditions u(x , 0) = 0 → v(x , 0) = −w(x)

−w(x) =
∑

n

An cos[
√
λnx] (2.411)

and using the orthogonality of the eigenfunctions cos(
√
λnx)

between 0 and L we solve the An coefficients.

An =
−

L∫
0

w(x) cos[
√
λnx]dx

L∫
0

[cos
√
λnx]2dx

(2.412)

While the first way of solving the problem expands the function

w(x) of the second part in a summation of orthogonal functions, the

second method obtains explicitly their form as a function in parts

(see figure).
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Figure 2.39

2.28 Case Study: String under a Gravitational
Field

Consider a string of length L, tension T and linear density of mass

ρ. The string has its left end connected to a spring (with constant

β) and the right end can move freely in the transversal direction.

At the instant t = 0 the string is at rest in the horizontal position,

since there is no gravitational field. From t = 0 onwards the string

becomes subject to the Earth’s gravitational field (g).

Determine the form of the string as a function of time for t > 0.

Figure 2.40

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂2u
∂t2

− T
∂2u
∂x2

= f (x) (t > 0)

T
∂u
∂x

∣∣∣∣
x=0

− βu(0, t) = 0

∂u
∂x

∣∣∣∣
x=L

= 0

u(x , t = 0) = 0

∂u
∂t

∣∣∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.413)
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We will discuss first how to find the density of force. The force

applied to an element of length l in the string, which is directed in

the negative direction, is:

F = −ρlg; f (x) = F
l

= −ρg (2.414)

Then, the problem to be solved is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

− c2
∂2u
∂x2

= −g (t > 0)

∂u
∂x

∣∣∣∣
x=0

− hu(0, t) = 0

∂u
∂x

∣∣∣∣
x=L

= 0

u(x , t = 0) = 0

∂u
∂t

∣∣∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.415)

Being c2 = T
ρ

and h = β

T
The solution of problem (2.415) can be decomposed into two

functions: one which corresponds to the new equilibrium of the

string (at rest and without oscillations) and a transient part towards

that new equilibrium.

u(x , t) = v(x , t) + w(x) (2.416)

The function w(x) is the solution of the equation that includes the

gravitational field but not the temporal evolution:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c2
d2w
dx2

= g (t > 0)

dw
dx

∣∣∣∣
x=0

− hw(0) = 0

dw
dx

∣∣∣∣
x=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.417)

On the other hand, the function v(x , t) is the solution of the transient

homogeneous equation:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2v
dt2

− c2
d2v
dx2

= 0 (t > 0)

∂v
∂x

∣∣∣∣
x=0

− hv(0, t) = 0

∂v
∂x

∣∣∣∣
x=L

= 0

v(x , t = 0) = −w(x)

∂v
∂t

∣∣∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.418)

We look for the solution for w(x):

d2w
dx2

= g
c2

→ w(x) = g
2c2

x2 + Ax + B (2.419)

dw
dx

∣∣∣∣
x=L

= 0 → g
c2

L + A = 0 (2.420)

dw
dx

∣∣∣∣
x=0

− hw(0) = 0 → A − hB = 0 (2.421)

The coefficients are found like this:

A = − g
c2

L; B = − g
hc2

L (2.422)

The stationary solution will be:

w(x) = g
2c2

x2 − g
c2

Lx − g
hc2

L = g
2c2

(
x2 − 2Lx − 2L

h

)
(2.423)

Sturm–Liouville problem To solve the transient part, we will seek

a solution by expanding in eigenfunctions of the spatial Sturm–

Liouville problem with second and third type boundaries.

v(x , t) =
∑

n

Qn(t) X n(x) (2.424)

The Sturm–Liouville problem, adapting the boundary conditions of

u(x , t) to the spatial part X (x), is:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2 X
dx2

+ λX = 0

d X
dx

∣∣∣∣
x=0

− hX (0) = 0

d X
dx

∣∣∣∣
x=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.425)
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Applying the second boundary condition:

X n(x) = cos[
√
λ(x − L)] (2.426)

And applying the first:

−
√
λ sin(−

√
λL) − h cos(

√
λL) = 0 (2.427)

The eigenvalues λn satisfy then:

tan(
√
λn L) = h√

λn
(2.428)

Being (n = 1, 2, 3 . . .). These eigenvalues are marked with the

subindex n, but they are unrelated to n in such a simple fashion

as in the case of a string with fixed ends. Their values are not

as “predictable” and they must be determined numerically or

graphically from the transcendental equation:

General solution General solution and initial conditions:

v(x , t) =
∑

n

[An cos(ωnt) + Bn sin(ωnt)] cos
[√
λn(x − L)

]
(2.429)

Being ωn = c
√
λn

Final solution From the second initial condition ∂v
∂t

∣∣
t=0

= 0 we have

Bn = 0.

From the first initial condition:

v(x , t = 0) = −w(x) = − g
2c2

(
x2 − 2Lx − 2L

h

)

=
∑

n

An cos[
√
λn(x − L)] (2.430)

Using the orthogonality of the eigenfunctions:

− g
2c2

L∫
0

(
x2 − 2Lx − 2L

h

)
cos[

√
λn(x − L)]dx

= An

L∫
0

(
cos[

√
λn(x − L)]

)2

dx (2.431)
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The coefficients of the expansion are then:

An = − g
2c2

L∫
0

(
x2 − 2Lx − 2L

h

)
cos[

√
λn(x − L)]dx

L∫
0

(
cos[

√
λn(x − L)]

)2 dx
(2.432)

The final solution is:

u(x , t) = g
2c2

(
x2 − 2Lx − 2L

h

)
+
∑

n

An cos(ωnt) cos[
√
λn(x − L)]

(2.433)

Alternative solution

Sturm–Liouville problem We seek the solution of the problem

(2.415) as a sum:

u(x , t) =
∑

n

Qn(t) X n(x) (2.434)

where X n(x) is a set of orthogonal eigenfunctions of the previous

Sturm–Liouville problem.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2 X
dx2

+ λX = 0

d X
dx

∣∣∣∣
x=0

− hX (0) = 0

d X
dx

∣∣∣∣
x=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.435)

General solution Substituting the general solution (2.434) in the

wave equation gives:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
n

d2 Qn

dt2
X n(x) − c2

∑
n

Qn(t)
d2 X n

dx2
= −g →

→∑
n

[
d2 Qn

dt2
+ c2λn Qn(t)

]
X n(x) = −g

u(x , 0) = 0

∂u
∂t

∣∣∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.436)
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Final solution Using the orthogonality of the eigenfunctions X n(x)

we multiply both sides of:∑
n

[
d2 Qn

dt2
+ c2λn Qn

]
X n(x) = −g (2.437)

[
d2 Qn

dt2
+ c2λn Qn

] L∫
0

(
cos[

√
λn(x − L)]

)2

dx

= −g

L∫
0

cos[
√
λn(x − L)]dx (2.438)

We are left with the equation:

d2 Qn

dt2
+ c2λn Qn = En (2.439)

En = −g

L∫
0

cos[
√
λn(x − L)]dx

L∫
0

(
cos[

√
λn(x − L)]

)2 dx

= g√
λn

sin[
√
λn L][

L
2

+ 1√
λn

sin(
√
λn L) cos(

√
λn L)

] (2.440)

L∫
0

cos
[√
λn(x − L)

]
dx = − 1√

λn
sin
[√
λn L
]

(2.441)

L∫
0

(
cos
[√
λn(x − L)

])2

dx =
[

L
2

+ 1√
λn

sin(
√
λn L) cos(

√
λn L)

]

(2.442)

This is the equation of an oscillator at rest and without gravity, to

which a constant gravitational force is applied at t = 0. We will seek

the solution as the sum of the homogeneous and particular solution:

Qn, hom(t) = An cos(ωnt) + Bn sin(ωnt) (2.443)

Qn, part(t) = En

c2λn
(2.444)
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With the general solution, we can apply the initial conditions to find

the coefficients:

u(x , t) =
∑

n

[
An cos(ωnt) + Bn sin(ωnt) + En

c2λn

]
X n(x) (2.445)

From the first initial condition:

u(x , 0) =
∑

n

[
An + En

c2λn

]
X n(x) = 0 (2.446)

we get:

An = − En

c2λn
(2.447)

From the second initial condition:

∂u
∂t

∣∣∣∣
t=0

=
∑

n

[ωn Bn] X n(x) = 0 (2.448)

We get:

Bn = 0 (2.449)

Finally:

u(x , t) =
∑

n

En

c2λn
[1 − cos(ωnt)] cos

[√
λn(x − L)

]
(2.450)

2.29 String with Oscillations Forced in One of Its
Ends

Find the forced oscillations in a mass of length L and speed of sound

c if it’s fixed in an end (x = L) and the other one moves periodically

according to u(0, t) = sin(ωt). Consider the case of a string at rest

up until t = 0.

Figure 2.41



April 5, 2023 0:23 JSP Book - 9in x 6in Main

String with Oscillations Forced in One of Its Ends 113

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2u
dt2

− c2
d2u
dx2

= 0

u(0, t) = sin(ωt) (t > 0)

u(L, t) = 0 (t > 0)

u(x , 0) = ∂u
∂t

∣∣∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.451)

We look for the solution as the sum of a stationary and a transient

one.

u(x , t) = w(x , t) + v(x , t) (2.452)

In this case, the stationary part is not independent of time, but

it corresponds to a regime of periodic oscillations which follow

the external excitation with the same frequency. The transient part

describes how the string goes from the initial to the stationary state

at long times.

Formulation of the stationary problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2w
dt2

− c2
d2w
dx2

= 0 (∗)

u(0, t) = sin(ωt) (−∞ < t < +∞)

u(L, t) = 0 (−∞ < t < +∞)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.453)

The stationary solution must be proportional to sin(ωt), as

previously indicated, since the string at long times will only oscillate

with the external frequency. Separating variables:

w(x , t) = A sin(ωt)X (x) (2.454)

Replacing this form of the solution into equation (*) we have:

−ω2 X − c2 d2 X
dx2

= 0 (2.455)

The general solution for X (x), which already assumes the boundary

condition for x = L, is:

X (x) = B sin
[ c
ω

(L − x)
]

(2.456)

In problems of this kind, in which only the end which is not at

x = 0 is fixed, it is useful to change the origin of coordinates of the
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argument of the sine function so that it is zero at x = L. What is left

is to apply the boundary condition at x = 0:

sin(ωt)X (0) = B sin(ωt) sin
[ c
ω

(L)
]

(2.457)

from where we have

B = 1

sin
[ cL
ω

] (2.458)

w(x , t) = sin(ωt) sin
[ c
ω

(L − x)
]

sin
[ cL
ω

] (2.459)

Mathematical formulation of the transient problem, taking into

account, because of the time dependence of the stationary part, that

at the initial instant we have w(x , 0) in all the string⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2v
dt2

− c2
d2v
dx2

= 0

v(0, t) = 0 (t > 0)

u(L, t) = 0 (t > 0)

v(x , t = 0) = 0

∂v
∂t

∣∣∣∣
t=0

= − ∂w
∂t

∣∣∣∣
t=0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.460)

From the previous result we have:

∂w
∂t

∣∣∣∣
t=0

= ω sin
[ c
ω

(L − x)
]

sin
[ c
ω

L
] (2.461)

The general solution corresponds to the problem of a string which is

free and fixed at the left and right borders respectively.

v(x , t) =
∞∑

n=1

[Cn sin(ωnt) + Dn cos(ωnt)] sin

[
πn(x − L)

L

]
(2.462)

with ωn = c πn
L . It is evident that the first initial condition v(x , t =

0) = 0 forces us to impose Dn = 0. To find the Cn we use the second

initial condition:

vt(x) = ωn

∞∑
n=1

Cn sin

[
πn(x − L)

L

]
= −wt(x , 0) (2.463)
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Final solution All that is left is using the orthogonality of the

eigenfunctions sin
[
πn(x−L)

L

]
to find the coefficients of the expansion

of the transient solution.

Cn = −1

ωn

∫ L
0

∂w
∂t

∣∣
t=0

sin[πn(x−L)

L ]dx∫ L
0

[
sin
[
πn(x−L)

L

]]2

dx
(2.464)

2.30 Oscillations of a String with a Force That
Increases Linearly in Time

Find the forced oscillations of a string of length π that is initially

at rest if, from t = 0 a force starts acting on it, with a distributed

density of force t × sin(x). The speed of sound is a. Suppose that the

linear density of mass of the string is ρ = 1.

Figure 2.42

Mathematical formulation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2u
∂t2

− a2
∂2u
∂x2

= t sin(x)

u(x , 0) = ut(x , 0) = 0

u(0, t) = u(π, t) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.465)

Since the profile of the force corresponds to one of the eigenmodes

of the string, we will look for the solution of this non-homogeneous

equation as the product of the sought-after amplitude and the profile

of this only mode excited by the forced vibrations.

u(x , t) = v(t) sin(x) (2.466)

Replacing this solution into the wave equation:

d2v
dt2

sin(x) + a2v(t) sin(x) = t sin(x) → (2.467)
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→ d2v
dt2

+ a2v(t) = t (2.468)

with initial conditions: v(0) = dv
dt

∣∣
t=0

= 0

Seeking the solution as the sum of solutions of the homogeneous

equation and a particular solution, we get to the general solution:

v(t) = C1 cos(at) + C2 sin(at) + t
a2

(2.469)

From the initial conditions we have:

C1 = 0, C2 = − 1

a3
(2.470)

v(t) = 1

a2

[
t − 1

a
sin(at)

]
(2.471)

The final solution is:

u(x , t)) = sin x
a2

[
t − 1

a
sin(at)

]
(2.472)

Alternative resolution method (non-intuitive) We can seek the

solution as an expansion of orthogonal functions:

u(x , t) =
∑

n

vn(t)X n(x) (2.473)

being X n(x) the solutions of the Sturm–Liouville problem:⎧⎪⎨
⎪⎩

d2 X
dx2

+ λX = 0

X (0) = X (π) = 0

⎫⎪⎬
⎪⎭ (2.474)

X n(x) = sin(nx); λn = (n)2 (2.475)

Replacing the summation in the wave equation:∑
n

[
d2vn

dt2
+ a2n2vn

]
X n(x) = t sin(x) (2.476)

We use the orthogonality properties of the eigenfunctions, multi-

plying by X m(x) and integrating in the range 0 ≤ x ≤ π . In the

summation on the left side only the term with n = m is different

from zero:

d2vn

dt2
+ a2n2vn = 2t

π

π∫
0

sin(x) sin(nx)dx (2.477)
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π∫
0

sin(x) sin(nx)dx =
⎧⎨
⎩

π

2
(n = 1)

0 (n �= 1)

⎫⎬
⎭ (2.478)

In this way we get to the same non-homogeneous equation that we

obtained with the intuitive method:

∂2v1(t)

∂t2
+ a2v1(t) = t (2.479)

2.31 Case Study: Lateral Photoeffect

Consider a thin rod (length L). Around x0, where a laser light is

directed, mobile charge carriers are generated, and they diffuse

along the rod with a diffusion coefficient D.

Find the variation of the concentration of carriers as a function

of time and position if, starting at t = 0 the laser starts generating

P particles by unit time and length. At the initial moment the carrier

concentration generated by the laser was equal to zero.

Consider that the particles generated by the laser, when they

diffuse along the rod (consider only the coordinate x) are anni-

hilated by their corresponding antiparticles (electrons “annihilate”

with holes) at a rate proportional to the local concentration (that

is, the annihilation is proportional to a constant H ). Furthermore,

consider that there is a leak of particles at the ends of the bar, with

fluxes proportional to the concentration (with constant h), due to

the rod ends being connected through a resistor.

Figure 2.43
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Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x , t)

∂t
− D

∂2u(x , t)

∂x2
= P δ(x − x0) − H u

u(x , 0) = 0

du
dx

∣∣∣∣
x=0

− hu(0, t) = 0

du
dx

∣∣∣∣
x=L

+ hu(L, t) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.480)

The function u(x , t) represents the particle concentration.

D is the diffusion coefficient.

P is a coefficient proportional to the laser power by unit length.

H is a coefficient inversely proportional to the recombination time.

h is a coefficient proportional to the leak of particles through the rod

ends.

We seek the solution as a summation of eigenfunctions of the Sturm–

Liouville problem for homogeneous boundaries:

u(x , t) =
∑

n

Qn(t)X n(x) (2.481)

Sturm–Liouville problem The Sturm–Liouville problem is:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d2 X n
dx2

+ λn X = 0

d X n

dx

∣∣∣∣
x=0

− hX n(0) = 0

d X n
dx

∣∣
x=L + hX n(L) = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.482)

General solution

X n(x) = A cos
(√
λnx
)

+ B sin
(√
λnx
)

(2.483)

Applying the first boundary condition:

−A
√
λn sin(0)+B

√
λn cos(0)−h[A cos(0)+B sin(0)] = 0 (2.484)

B
√
λn − h A = 0 → A = B

√
λn

h
(2.485)
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Then:

X n(x) =
√
λn

h
cos(

√
λnx) + sin(

√
λnx) (2.486)

We can see that if the second boundary condition is applied, we

won’t be able to determine the value of B , and A and B will

always depend on each other and will never be fully determined. In

principle some other condition would be necessary, but we can set

B = 1 to simplify matters. What is really important is the form of the

eigenfunctions, not so much their absolute value, since we still need

to apply the initial condition, where another coefficient will solve the

uncertainty that we now face. This is a consequence of the boundary

conditions of this problem. Applying the second boundary condition

(and considering the ratio between the A and B coefficients):

−
√
λn

h

√
λn sin

(√
λn L
)

+
√
λn cos

(√
λn L
)

+h
[√
λn

h
cos
(√
λn L
)

+ sin
(√
λn L
)]

= 0 (2.487)

Operating, we arrive at the equation that determines the λn

eigenvalues:

tan
(√
λn L
)

= 2h
√
λn

λn − h2
(2.488)

Final solution To analyze the temporal part, we replace the

expansion of the solution in orthogonal eigenfunctions into equation

(2.480):∑
n

d Qn(t)

dt
X n(x) − D

∑
n

Qn(t)
d2 X n(x)

dx2
= P δ(x − x0) − H u(x , t)

(2.489)∑
n

[
d Qn(t)

dt
+ [Dλn + H ]Qn(t)

]
X n(x) = P δ(x − x0) (2.490)

Multiplying both sides by X n(x) and integrating between 0 and L,

using the orthogonality of the X n(x) eigenfunctions, we arrive at an

equation for the amplitudes of the Qn(t) modes:[
d Qn(t)

dt
+ [Dλn + H ]Qn(t)

] L∫
0

[X n(x)]2dx = P

L∫
0

δ(x−x0)X n(x)dx

(2.491)
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d Qn(t)

dt
+[Dλn+H ]Qn(t)=

P
[√
λn
h cos(

√
λnx0) + sin(

√
λnx0)

]
L∫

0

[√
λn
h cos(

√
λnx) + sin

(√
λnx
)]2

dx
= fn

(2.492)

Note: In the case that the laser had a more realistic cross section, for

instance gaussian, P δ(x − x0) would need to be changed by

P e−(x−x0)2/c2

where c will be related to the width of the laser beam.

In the case of a gaussian cross section:

fn =
P

L∫
0

e− (x−x0)2

c2

[√
λn
h cos(

√
λnx) + sin(

√
λnx)

]
dx

L∫
0

[√
λn
h cos(

√
λnx) + sin(

√
λnx)

]2

dx

(2.493)

General solution The general solution of the equation is:

d Qn(t)

dt
+ [Dλn + H ]Qn(t) = fn (2.494)

Final solution The amplitudes Qn(t) are the solution of the

homogeneous equation:

Qn, hom(t) = Qn(0)e−(Dλn+H )t (2.495)

plus the particular solution of the non-homogeneous equation:

Qn, part = fn

[Dλn + H ]
(2.496)

Then the solution for Qn(t) is:

Qn(t) = Qn(0)e−(Dλn+H )t + fn

Dλn + H
(2.497)

We just need to impose the initial condition to find the Qn(0)

coefficients.

u(x , 0) =
∑

n

Qn(0)X n(x) =
∑

n

[
Qn(0) + fn

Dλn + H

]
X n(x) = 0

(2.498)

From here we get the values Qn(0) = − fn
Dλn+H



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Lateral Photoeffect 121

Finally the solution of the problem of the variation of the lateral

photoeffect as a function of time is:

u(x , t) =
∑

n

fn

Dλn + H

[
1 − e−(Dλn+H )t]

×
[√
λn

h
cos
(√
λnx
)

+ sin
(√
λnx
)]

(2.499)

The distribution of the concentration of carriers at t0, after applying

the laser pulse is:

u(x , t0) =
∑

n

fn

Dλn + H

[
1 − e−(Dλn+H )t0

]

×
[√
λn

h
cos
(√
λnx
)

+ sin
(√
λnx
)]

(2.500)

The distribution u(x) of the carrier concentration in the limit t = ∞
is:

u(x , ∞) =
∑

n

fn

Dλn + H

[√
λn

h
cos(

√
λnx) + sin(

√
λnx)

]
(2.501)

Note: there is an alternative method to find the stationary

distribution u(x , ∞) (that is, when ∂u(x , t)

∂t = 0) by solving the

problem analytically:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−D
d2u(x , t)

dx2
= Aδ(x − x0) − H u

du
dx

∣∣∣∣
x=0

− hu(L, t) = 0

du
dx

∣∣∣∣
x=L

+ hu(L, t) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.502)

The solution is separated in two intervals (x < x0) and (x > x0),

where the equation becomes homogeneous and, in this way, we

get a solution by parts (two exponential functions) that must be

continuous at (x = x0), as well as using the boundary conditions

at the ends to find the coefficients of the linearly independent

solutions.

Now we will see how to find the temporal variation of the

distribution of carriers after turning off the illumination.
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Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w(x , t)

∂t
− D

d2w(x , t)

dx2
= −H w

(t = t′ − t0), t is now the time after turning off the laser.

w(x , 0) = u(x , t0)

dw
dx

∣∣
x=0

− hw(0, t) = 0

dw
dx

∣∣
x=L + hw(L, t) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.503)

General solution Once again we seek the solution as an expansion

in orthogonal eigenfunctions, solutions of the Sturm–Liouville that

correspond to the homogeneous boundaries.

w(x , t) =
∑

n

Qn(t)X n(x) (2.504)

obviously the X n(x); λn are not the same as before.

Replacing w(x , t) into (2.503)∑
n

[
d Qn(t)

dt
+ [Dλn + H ]Qn(t)

]
X n(x) = 0 (2.505)

d Qn(t)

dt
+ [Dλn + H ]Qn(t) = 0 (2.506)

This equation has a solution:

Qn(t) = Ane−(Dλn+H )t (2.507)

Final solution Then the solution is:

w(x , t) =
∑

n

Ane−(Dλn+H )t
[√
λn

h
cos
(√
λnx
)

+ sin
(√
λnx
)]

(2.508)

Applying the initial conditions:

u(x , t0) =
∑

n

An

[√
λn

h
cos
(√
λnx
)

+ sin
(√
λnx
)]

(2.509)

and using the orthogonality of the X n(x) we arrive at:

An =

L∫
0

u(x , t0)
[√
λn
h cos(

√
λnx) + sin(

√
λnx)

]
dx

L∫
0

[√
λn
h cos(

√
λnx) + sin(

√
λnx)

]2

dx
(2.510)

which solves the problem.
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2.32 Oscillations of a String under the Influence
of a Gravitational Field

A string of length Lwith both ends fixed and initially at rest, from t =
0 onwards is subject to the action of the gravitational field. Find the

oscillations of the string starting at t = 0. Consider that the speed of

sound of the string is (c) and the density (ρ) are equal to one.

Figure 2.44

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

− c2
∂2u
∂x2

= −ρg
ρ

= −g

u(0) = 0; u(L) = 0

u(x , 0) = 0;
∂u
∂t

∣∣∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.511)

Sturm–Liouville problem We seek the solution by expanding it in

orthogonal eigenfunctions that are the solutions of the homoge-

neous Sturm–Liouville problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2 X
∂x2

+ λX = 0

u(0) = 0

u(L) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.512)

With known eigenfunctions, that yield the solution:

u(x , t) =
∑

Bn(t) sin
(πn

L
x
)

(2.513)

General solution We can replace this solution into the waves

equation. We use the orthogonality of the sin(πn
L x) eigenfunctions to

arrive at the non-homogeneous equation for the Bn(t) coefficients.

d2 Bn

dt2
+
(πn

L

)2

Bn(t) = −g
2

nπ
(1 − cosπn) (2.514)
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Final solution with the initial conditions:

Bn(0) = 0;
d Bn

dt

∣∣∣∣
x=0

= 0

The general solution is the sum of the solution to the homogeneous

equation and the particular solution. The latter can be considered as

Bn, part =Constant:

Bn, part(t) = − 2g
nπ

(
L
πn

)2

[1 − cos (πn)] = − 2gL2

(nπ)3
[1 − (−1)n]

(2.515)

Bn(t) = C sin
(πn

L
t
)

+ D cos
(πn

L
t
)

− 2gL2

(nπ)3
[1 − (−1)n] (2.516)

First initial condition Bn(0) = 0 →

D = 2gL2

(nπ)3
[1 − (−1)n] (2.517)

Second initial condition: d Bn
dt

∣∣
t=0

= 0 → C πn
L = 0C = 0

Then:

Bn(t) = 2gL2

(nπ)3
[1 − (−1)n]

[
cos
(πn

L
t
)

− 1
]

(2.518)

The solution (with [1 − (−1)n] = 0 for even n) is:

u(x , t) =
∞∑

k=0

4gL2

[(2k + 1)π]3

[
cos
(πn

L
t
)

− 1
]

sin
(πn

L
x
)

(2.519)

2.33 Dynamic String with Free Ends and a Point
Mass at x = x0

A string of length L, tension T and linear density ρ has a point mass

m at x = x0. Both ends of the string are free and the string is initially

at rest and without any external fields applied. Find the movement

of the string from t = 0, when it becomes subject to the gravitational

field.
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Figure 2.45

Mathematical formulation (t < 0)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x)
∂2u
∂t2

− T
∂2u
∂x2

= 0

∂u
∂x

∣∣∣∣
x=0

= 0

∂u
∂x

∣∣∣∣
x=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.520)

with

ρ(x) = ρ + mδ(x − x0) →
L∫

0

ρ(x)dx = ρL + m

Sturm–Liouville problem Separating variables we arrive at the

Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d X 2

dx2
+ λρ(x)X = 0

d X
dx

∣∣∣∣
x=0

= 0

d X
dx

∣∣∣∣
x=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.521)

To find the eigenfunctions while avoiding the anomalous point

where the linear density of mass diverges, we must separate the

eigenfunctions in two parts:

X 1(x) = A cos(
√
λρx) (2.522)

(having applied the first boundary condition).

X 2(x) = B cos(
√
λρ(x − L)) (2.523)

(having applied the second boundary condition).
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Figure 2.46 Numeric example of eigenfunction and its derivative

Now we apply the condition of continuity of the eigenfunctions at

x = x0:

A cos
(√
λρx0

)
− B cos

(√
λρ(x0 − L)

)
= 0 (2.524)

Orthogonal eigenfunctions:

X n(x) =

⎧⎪⎪⎨
⎪⎪⎩

A cos(
√
λnρx)

A
cos
(√
λnρx0

)
cos
(√
λnρ(x0 − L)

) cos
(√
λnρ(x − L)

)
⎫⎪⎪⎬
⎪⎪⎭ (2.525)

where λn are the eigenfunctions to be determined. Now we

apply the condition of discontinuity of the first derivatives of the

eigenfunctions, integrating equation (2.521) around x = x0:

d X 1

dx

∣∣∣∣
x=x0

− d X 2

dx

∣∣∣∣
x=x0

= λmX 1(x0) = Aλm cos
(√
λρx0

)
(2.526)

−A
[√
λρ sin(

√
λρx0) − λm cos(

√
λρx0)

]
+B
√
λρ sin

[√
λρ(x0 − L)

]
= 0 (2.527)

The eigenvalues λn can be obtained from the result of equating to

zero the determinant of coefficients that results from expressing

equations 2.524 and 2.527 in matrix form. Furthermore, we see that

λ0 = 0 is also an eigenvalue, since it satisfies both equations 2.524

and 2.527 and describes the X 0(x) = A eigenfunction. We now solve
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the problem of the oscillations of the string for t > 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du2

dt2
− T

ρ(x)

d2u
dx2

= −g

du
dx

∣∣∣∣
x=0

= 0

du
dx

∣∣∣∣
x=L

= 0

u(x , t = 0) = ∂u
∂t

∣∣∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.528)

General solution We seek a solution u(x , t) = ∑
n

Qn(t)X n(x)

with X n(x) being the previously found eigenmodes (the spatial

dependency does not change in the whole problem). Replacing into

the wave equation we have:

∑
n

[
d2 Qn(t)

dt2
X n(x) − Qn(t)T

1

ρ(x)

d2 X n(x)

dx2

]
= −g (2.529)

∑
n

[
d2 Qn(t)

dt2
+ Qn(t)T λn

]
X n(x) = −g (2.530)

Applying the orthogonality of the X n(x) and integrating from 0 to L
with a weight ρ(x):

d2 Qn(t)

dt2
+ T λn Qn(t) = −g

L∫
0

ρ(x)X n(x)dx

L∫
0

ρ(x)[X n(x)]2dx

= −g
ρ

L∫
0

X n(x)dx + mX n(x0)

L∫
0

ρ(x)[X n(x)]2dx

= fn (2.531)

The general solution for Qn(t) is composed of the solution of the

homogeneous equation and the particular solution:

Qn(t) = Cn cos (ωnt) + Dn sin (ωnt) + fn

T λn
(2.532)
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Final solution Applying both initial conditions:

Cn = − fn

T λn

Dn = 0

The final solution is:

u(x , t) =
∞∑

n=1

fn

T λn
(1 − cosωnt)X n(x) (2.533)

with ω2
n = T λn

To find the inhomogeneous part of the solution that corresponds to

λ0 = 0 (free fall of the string) we need to solve the equation:

d2 Q0(t)

dt2
X 0(x) = −g (2.534)

which will give us the displacement due to the acceleration of the

string with the point mass in the presence of the gravitational field

(with X 0 = 1): −gt2

2

Alternative method Separating the solution in two: one of them

describes the static form of the string in under the gravitational field,

w(x). The other is a transient function v(x .t). We replace u(x .t) =
v(x .t) + w(x) into the wave equation:

d2v
dt2

− T
ρ(x)

d2v
dx2

− T
ρ(x)

d2w
dx2

= −g (2.535)

Problem for w(x): ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d2w(x)

dx2
= ρ(x)

g
T

dw
dx

∣∣∣∣
x=0

= 0

dw
dx

∣∣∣∣
x=L

= 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.536)

We are left with a defined solution (for which a constant is still to

be found), consisting in two inverted parabolic functions, united at

x = x0.
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The problem for v(x .t) is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2v
∂t2

− T
ρ(x)

∂2v
∂x2

= 0

dv
dx

∣∣∣∣
x=0

= 0

dv
dx

∣∣∣∣
x=L

= 0

v(x , t = 0) = −w(x)

∂v
∂t

∣∣∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.537)

We seek the solution by separating by the X n(x) eigenfunctions

obtained earlier at different regions for the transient part:

v(x , t) =
∑

n

Qn(t)X n(x) (2.538)

2.34 Oscillations in a String Interrupted by a
Spring

A homogeneous string of length L and tension T is connected to a

spring with constant β on its mid-point (L/2). Its ends can move

freely in the direction transversal to the string. From t = −∞ a

local, periodic force acts on the string at x = x0. Find the stationary

oscillations of the string at the right end (x = L).

Figure 2.47

Mathematical formulation

ρ
∂2u
∂t2

−T
∂2u
∂x2

+δ(x −L/2)βu = δ(x −x0) sin(ωt) (−∞ < t < +∞)

(2.539)
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Both terms with Delta functions describe the linear density of local

forces.

The boundary conditions are:

∂u
∂x

∣∣∣∣
x=0

= ∂u
∂x

∣∣∣∣
x=L

= 0

Since we are looking for the stationary solution, we do not need any

initial condition.

Sturm–Liouville problem We will seek the general solution as a

function with a forced temporal variation and eigenfunctions of the

system:

u(x , t) =
∑

n

An (t)X n(x) =
∑

n

Qn sen(ωt)X n(x) (2.540)

Replacing this into the wave equation we get:

∑
n

Qn

[
ρ(−ω2)X n(x) − T

d2 X n(x)

dx2
+ δ(x − L/2)βX n(x)

]
= δ(x−x0)

(2.541)

To find X n(x) we first need to formulate the Sturm–Liouville

problem separating the variables of the homogeneous equation.

By doing this we arrive at an equation with both boundaries

homogeneous of the second type. The condition of the discontinuity

of the derivative can be deduced by integrating the Sturm–Liouville

problem close to the point of junction of both strings.

T
d2 X n(x)

dx2
− δ(x − L/2)βX n(x) = −λn X n (2.542)

The solution for the orthogonal functions X n(x) will be sought in

two parts X n1, 2(x) (that correspond to two parts with respect to the

point on which the string rests, when the differential equation can

be simplified):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T
d2 X n1, 2(x)

dx2
+ λn X n1, 2 = 0

d X n1(x)

dx

∣∣∣∣
x=0

= d X n2

dx

∣∣∣∣
x=L

= 0

+ Condition of continuity of X n1, 2 and

discontinuity of its derivatives at x = L/2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.543)
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It’s more comfortable to seek the solution as a function by parts

of the following form, since it applies the first two boundary

conditions:

X n(x) =

⎧⎪⎪⎨
⎪⎪⎩

X n1 = An cos(
√
λnx)

(
0 < x <

L
2

)

X n2 = Bn cos(
√
λn(L − x))

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭ (2.544)

We will have to join two parts of the solution by parts imposing the

continuity conditions at x = L/2 and the last condition will be for

the variation of the derivatives at x = L/2.

The application of the continuity conditions entails the following

conditions at x = L/2:

⎧⎪⎪⎨
⎪⎪⎩

X n1

(
L
2

)
= X n2

(
L
2

)

T
d X n1

dx

∣∣∣∣
x=L/2

− T
d X n2

dx

∣∣∣∣
x=L/2

+ βX n1

(
L
2

)
= 0

⎫⎪⎪⎬
⎪⎪⎭ (2.545)

The condition of variation of the derivatives is obtained by

integrating equation (2.542) in the proximities of x = L/2

Figure 2.48

To correctly write this boundary condition for the change of the

derivatives of each eigenmode we need to add the two projections

of the tension on the vertical axis (that act on the spring on each

side) and equate them to the tension of the spring due to the vertical

displacement (see figure). Applying the form before specifying that

the two functions X 1 and X 2 we get relations for the relative

amplitude of X 1 and X 2 and the equation to find the eigenvalues of
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the problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

An − Bn = 0

AnT (−√
λn sin[(

√
λn(L/2)] − BnT (

√
λn sin[(

√
λn(L/2)]

+β cos[(
√
λn(L/2)] = 0 →

AnT (
√
λn sin[(

√
λn(L/2)] + BnT (

√
λn sin[(

√
λn(L/2)]

= β cos[(
√
λn(L/2)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.546)

The determinant of the first and third equations in matrix form

will give us the eigenvalues of the problem. Replacing the general

solution into the wave equation (2.539) and eliminating the

temporal term we will obtain:∑
n

Qn [λn − ρω2]X n(x) = δ(x − x0) (2.547)

Final solution Multiplying both sides by the orthogonal function X m

and integrating between the limits 0 and L we will get the solution

for the Qn coefficients:

Qn = X n(x0)

|X n|2 [λn − ρω2]
(2.548)

The final solution is:

u(L, t) =
∑

n

Qn sin(ωt)X n(L) (2.549)

2.35 Point Like Heat Exchange

An insulated bar, whose temperature changes as T0 cos(ωt) at the

point x0, exchanges heat with an external media at T = 0 according

to Newton’s law at x = L/2. Find the stationary distribution of

temperature along the bar.

Mathematical formulation

Cρ
∂T (x , t)

∂t
−κ

∂2T (x , t)

∂x2
+hT (x , t)δ

(
x − L

2

)
= T0 cos(ωt)δ(x−x0)

(2.550)
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Figure 2.49

We use the method of separation of variables and take only the real

part of the solution:

T (x , t) =
∑

n

Qn(t)X n(x) =
∑

n

X n(x)e−iωt (2.551)

And we have the boundary conditions:

∂T
∂x

∣∣∣∣
x=0, L

= 0 (2.552)

Replacing in the heat equation:

−iωCρX n(x) − κ
∂2 X n(x)

∂x2
+ hX n(x)δ

(
x − L

2

)
= −T0δ(x − x0)

(2.553)

κ
∂2 X n(x)

∂x2
+
(

−hδ
(

x − L
2

)
− iωCρ

)
X n(x) = −T0δ(x − x0)

(2.554)

Sturm–Liouville problem We can formulate the following Sturm–

Liouville problem:

d2 X n(x)

dx2
− hδ

(
x − L

2

)
+ λn X n(x) = 0 (2.555)

The solution will be defined by parts, to the left and to the right of

the singularity at x = L/2:

X n(x) =
⎧⎨
⎩

X n1(x) 0 < x < L/2

X n2(x) L/2 < x < L

⎫⎬
⎭ (2.556)

The function is continuous at x = L/2 but its derivative is not:

X n1(L/2) = X n2(L/2) (2.557)
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d X n2

dx

∣∣∣∣
x=L/2

− d X n1

dx

∣∣∣∣
x=L/2

= h
κ

X n(L/2) (2.558)

The boundary conditions are:

d X n1

dx

∣∣∣∣
x=0

= d X n2

dx

∣∣∣∣
x=L

= 0 (2.559)

X n(x) =
⎧⎨
⎩

An cos(
√

(λn)x) 0 < x < L/2

Bn cos(
√

(λn)(x − L)) L/2 < x < L

⎫⎬
⎭ (2.560)

An cos(
√
λn L/2) = Bn cos(

√
λn L/2) → An = Bn (2.561)

√
λn Bn sin(

√
λn L/2) +

√
λn)Bn sin(

√
λn L/2) = h

κ
Bn cos(

√
λn L/2)

→ tan

(√
λn

2

)
= h

κ
√
λn

(2.562)

This equation gives the eigenvalues λn but has no analytical solution,

the eigenvalues must be found numerically.

To find the An coefficients we replace in the heat equation:∑
[−κλn X n(x) + iωcρX n(x)] = −T0δ(x − x0) (2.563)

An = T0

κλn − iωCρ
2

L
cos(

√
λnx0) = 2T0 cos(

√
λnx0)(κλn + iωCρ)

κ2λ2
n + ω2C 2ρ2

(2.564)

The final solution will be (using e−iωt = cos(ωt)−i sin(ωt) and using

only the real part of Ane−iωt):

T (x , t) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n

2T0 cos(
√
λn x0)

κ2λ2
n + ω2C 2ρ2

cos(
√
λn x)(κλn cos(ωt) + ωCρ sin(ωt)) 0 < x <

L
2

∑
n

2T0 cos(
√
λn x0)

κ2λ2
n + ω2C 2ρ2

cos(
√
λn(x − L))(κλn cos(ωt) + ωCρ sin(ωt))

L
2

< x < L

(2.565)
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Chapter 3

Bidimensional Problems

This chapter describes in a detailed manner the solutions of

different problems in confined systems in two dimensions in

Cartesian coordinates. The solutions will be sought by using the

method of separation of variables, as functions of two (for example

for static Laplace or Poisson problems) or three variables in the

case of wave or diffusion problems (when time is considered). The

separation of variables will be performed in order to expand the

solution in orthogonal functions in one or two dimensions.

In the case of converting the initial problem in several simpler

problems we need to take care that the Laplace problem with

all boundaries of homogeneous type has trivial solution (zero

or a constant). Just like in the previous chapter, when possible,

the steps of the solution will be distributed in four stages: (i)

General formulation of the problem, including the PDE, the initial

conditions (if they exist) and the boundary conditions. (ii) Search

for the solution from a partial solution, by solving a Sturm–Liouville

problem. (iii) Steps to reach the general solution. (iv) Steps to find

the final solution of the problem.
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In several cases the intermediate solutions will be analyzed

graphically, whereas the final solutions will be presented using the

PDE tool from MATLAB.

3.1 Forced Oscillations of a Membrane

A rectangular membrane whose sides have lengths a and b and

with two fixed borders the other two (on opposite sides) are free,

is subject to a point force, perpendicular to the plane, of value

A sin(ωt) at the point indicated in the figure (0 < x < b and 0 < y
< a). Find the eigenfunctions of the Sturm–Liouville problem and

the frequencies of the vibrations excited by the applied force.

Figure 3.1

Mathematical formulation

Although the point force is applied on the border, it can be

represented as applied on a point infinitely close to the border, at

a distance ε:

f (x , y, t) = A sin (ωt) δ

(
x − b

2

)
δ(y − [a − ε]) (3.1)

And then consider the solution in the limit ε → 0. The equation to

be solved is:

∂2u
∂t2

−c2

(
∂2u
∂x2

+ ∂2u
∂y2

)
= A

ρ
sin(ωt)δ

(
x − b

2

)
δ(y−[a−ε]) (3.2)

being ρ the density of the material of the membrane and c the speed

of sound.
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Sturm–Liouville problem

We will look for the excited vibrations by expanding the solution:

u(x , y, t) =
∑

Tnm(t)vnm(x , y) (3.3)

into orthogonal eigenfunction of the following Sturm–Liouville

problem: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2v
∂x2

+ ∂2v
∂y2

+ λv = 0

v(0, y) = v(b, y) = 0

∂v
∂y

∣∣∣∣
y=0

= ∂v
∂y

∣∣∣∣
y=a

= 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.4)

The eigenfunctions and eigenvalues of this problem are known. The

normalized eigenfunctions are:

vnm = 2√
ab

sin
(πn

b
x
)

cos
(πm

a
y
)

(3.5)

General solution

Replacing the solution in the non-homogeneous wave equation and

using the results of the spatial eigenfunctions we arrive at:∑
n, m

{
∂2Tnm

∂t2
+ c2π2

[(n
b

)2

+
(m

a

)2
]

Tnm

}
vnm

= A
ρ

sin(ωt) δ

(
x − b

2

)
δ(y − [a − ε]) (3.6)

Final solution

Multiplying the previous relation by vnm(x , y) and integrating

between 0 < x < b and 0 < y < a we have:

∂2Tnm

∂t2
+ c2π2

[(n
b

)2

+
(m

a

)2
]

Tnm

=
a∫

0

dy

b∫
0

dx
2√
ab

A
ρ

sin(ωt) δ

(
x − b

2

)
δ(y − [a − ε]) sin

(πn
b

x
)

cos
(πm

a
y
)

= 2√
ab

A
ρ

sin(ωt) sin

(
πn
b

b
2

)
cos

(πm
a

(a − ε)
)

(3.7)
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Note: sin
(
πn
2

) =
{

0 (n = 2k)

(−1)k (n = 2k + 1)

}

Note: cos
(
πm

a (a − ε)
)

[for ε → 0] = cos(πm) = (−1)m{m =
0, 1, 2, . . .}
Then the modes excited by the applied force will be:

ω2
2k+1, m = c2π2

{
(2k + 1)2

b2
+ m2

a2

}
(3.8)

Note: modes in the x direction with even value of n that have nodes

in the central vertical line of the membrane are not excited, since

they are suppressed by the symmetry of the applied force.

3.2 Oscillations of a Membrane Fixed at Two
Boundaries

A square membrane, whose sides are of length π have two opposite

boundaries free to move (at y = 0 and y = π) and the other two

(x = 0, x = π), fixed. Starting at t = 0 the membrane is subject

to a periodic force with areal density of the form sin(t) sin(x) cos(y).

Find the membrane displacement for t > 0. Consider that the surface

density and the speed of sound in the membrane are equal to 1.

Figure 3.2
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Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

= c2

(
∂2u
∂x2

+ ∂2u
∂y2

)
+ sin(t) · sin(x) · cos(y)

Boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂y

∣∣∣∣
y=0

= 0

∂u
∂y

∣∣∣∣
y=π

= 0 = 0

u(x = 0) = 0

u(x = π) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Initial conditions:

⎧⎪⎨
⎪⎩

u(x , y, 0) = 0

∂u
∂t

∣∣∣∣
t=0

= 0

⎫⎪⎬
⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

Sturm–Liouville problem

We seek the solution as an expansion of orthogonal functions:

u(x , y, t) =
∞∑

n, m

Anm(t)vnm(x , y) (3.10)

where vnm are the solutions of the Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2v
∂x2

+ ∂2v
∂y2

+ λv = 0

Boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂y

∣∣∣∣
y=0

= 0

∂v
∂y

∣∣∣∣
y=π

= 0

v(x = 0) = 0

v(x = π) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.11)

The eigenfunctions are well known. For the side π of this membrane:

vnm(x , y) = sin(nx) cos(my) (n = 1, 2 . . . m = 0, 1, 2 . . .)

(3.12)

with eigenvalues:

λnm = n2 + m2 (3.13)
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General solution Replacing

u(x , y, t) =
∞∑

n, m

Anm(t) sin(nx) cos(my) (3.14)

into equation (3.9)

∞∑
n, m

[
∂2 Anm(t)

∂t2
+c2λnm Anm(t)

]
sin(nx) cos(my) = sin(t)·sin(x)·cos(y)

(3.15)

Applying the orthogonality of the vnm(x , y) eigenfunctions we arrive

at the equation for the amplitudes Anm(t).

Due to the membrane being excited with a force with the

spatial profile of a single mode, only this mode gets excited,

A11(t). Mathematically it is the consequence that the rest of the

eigenfunctions are orthogonal with the function that describes the

profile of the applied force. Once the orthogonality conditions have

been applied and, integrating both functions in the range [0, π] we

have:

d2 A11(t)

dt2
+ λ11 A11(t) = sin(t) (3.16)

Since λ11 = 12 + 12 = 2 we will need to solve the next equation:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d2 A11(t)

dt2
+ 2A11(t) = sin(t)

A11(0) = 0

d A11

dt

∣∣∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.17)

The particular solution is A11, part(t) = sin(t):

The general solution of the homogeneous equation is:

d2 A11

dt2
+ 2A11 = 0 (3.18)

A11, hom = C sin(
√

2t) + D cos(
√

2t) (3.19)

Applying the initial conditions to the solution A11 = A11, hom +
A11, part:
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(
C sin(

√
2 0) + D cos(

√
2 0) + sin(0) = 0

C
√

2 cos(
√

2 0) − D
√

2 sin(
√

2 0) + cos(0) = 0

)
(3.20)

We have: (
D = 0

C
√

2 + 1 = 0

)
(3.21)

A11(t) = − 1√
2

sin(
√

2t) + sin(t) (3.22)

Final solution

u(x , y, t) = A11 sin(x) cos(y)

=
[

sin(t) − 1√
2

sin(
√

2t)

]
sin(x) cos(y) (3.23)

Note: in the case that the membrane oscillates in a viscous medium

we could approximate the viscosity by inserting a term proportional

to the velocity (α du
dt ). The solution method is the same with this new

term, changing only the form of the equation for A(t), where we will

have a term with the first derivative of A(t).

3.3 Electrostatic Field inside a Semi-Infinite
Region

Find the electrostatic potential inside a semi-infinite region, limited

by conductor plates at (y = 0, y = b, x = 0) if the plate at x = 0 is

connected to a V0 potential (see figure).

The plates at y = 0, y = b are grounded and there are no charges

inside the region.

Figure 3.3
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Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x2

+ ∂2u
∂y2

= 0

u(0, y) = V0

u(x , 0) = u(x , b) = 0

u(x → ∞, y) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.24)

Sturm–Liouville problem

Separating variables and taking advantage of the homogeneous

boundary conditions in the y direction the solution is expanded in

eigenfunctions of the Sturm–Liouville problem. We seek the solution

as:

u = X (x)Y (y) (3.25)

Separating variables we arrive at the Sturm–Liouville problem for

Y (y): ⎧⎪⎨
⎪⎩

d2Y
dy2

+ λY = 0

Y (0) = Y (b) = 0

⎫⎪⎬
⎪⎭ (3.26)

The Y (y) functions, when replaced into the Laplace equation, give

rise to the problem for X (x):

X ′′ − λX = 0 (3.27)

which has a solution in the form of two exponential solutions:

X n(x) = Ane− πn
b x + Bne+ πn

b x (3.28)

General solution The general solution is then:

u(x , y) =
∞∑

n=1

sin
(πn

b
y
) [

Ane− πn
b x + Bne

πn
b x
]

(3.29)

Final solution

From the boundary condition at infinity, we must impose: u(x →
∞, y) = 0 so that the solution does not diverge.
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Because of which Bn = 0 and the solution simplifies:

u(x , y) =
∞∑

n=1

An sin
(πn

b
y
)

e− πn
b x (3.30)

Imposing the boundary condition u(0, y) = V0 we have:

V0 =
∞∑

n=1

An sin
(πn

b
y
)

(3.31)

and using the orthogonality of the eigenfunctions (in the y
direction):

2V0

b

b∫
0

sin
(πn

b
y
)

dy = An (3.32)

The integral has a value:

b∫
0

sin
(πn

b
y
)

dy = b
πn

[cos (πn) − cos(0)] =
{−2 (n = 2k + 1)

0 (n = 2k)

}

(3.33)

where k are integer numbers from k = 0.

We finally arrive at the solution in a compact form:

u(x , y) = 4V0

π

∞∑
k=0

e− π(2k+1)

b x
sin
(

π(2k+1)

b y
)

(2k + 1)
(3.34)

Graphical representation (using MATLAB’s PDE Toolbox with the

right boundary at a finite distance and null electric field transversal

to the boundary).

Figure 3.4



April 5, 2023 0:23 JSP Book - 9in x 6in Main

144 Bidimensional Problems

3.4 Distribution of Electrostatic Potential in a
Rectangle

A metallic prism has a rectangular cross section Lx × Ly and infinite

length (along the z axis). The whole prism is grounded except for the

central region of the face at x = 0 which, being insulated from the

rest, is at electric potential V0 (the thickness of this region is Ly/2.

Supposing that Lx >> Ly , obtain an approximate expression for the

electric potential.

Figure 3.5

Mathematical formulation This problem can be solved with

Laplace’s equation:

∂2u
∂x2

+ ∂2u
∂y2

= 0 (3.35)

Boundary conditions 1 and 2:

u(x , 0) = 0 (3.36)

u(x , Ly) = 0 (3.37)

Boundary conditions 3 and 4:

u(Lx , y) = 0 (3.38)

u(0, y) = f (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

(
y <

Ly

4

)

V0

(
Ly

4
< y <

3Ly

4

)

0 (y >
3Ly

4
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.39)

It can be solved in an analogous fashion to the example described in

section 2.2.2 from [1]:

We use separation of spatial variables: u = X · Y .
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Solution Sturm–Liouville problem in the y direction:

∂2Y
∂y2

+ λY = 0 (3.40)

With homogeneous boundary conditions of the first type. The

corresponding eigenfunctions and eigenvalues are:

vn = sin

(
πn
Ly

y
)

(3.41)

λn =
(
πn
Ly

)2

(3.42)

We will look for the solution of the problem as an eigenfunction

expansion:

u(x , y) =
∑

X n(x) sin

(
πn
Ly

y
)

(3.43)

Replacing this solution into Laplace’s equation:∑
n

[
d2 X n

dx2
− λn X n

]
sin

(
πn
Ly

y
)

= 0 (3.44)

Then the equations to find X n are:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2 X n

dx2
− λn X n = 0

X n(Lx ) = 0

X n(0) = An

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.45)

Final solution The An coefficients are given by:

u(0, y) =
∑

X n(0) sin

(
πn
Ly

y
)

= f (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

(
y <

Ly
4

)

V0

(
Ly
4

< y <
3Ly

4

)

0

(
y >

3Ly
4

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.46)

Using the orthogonality of the Yn:

X n(0) = 2

Ly
V0

3Ly
4∫

Ly
4

sin

(
πn
Ly

y
)

dy = 2

Ly
V0

[
cos
(πn

4

)
− cos

(
3πn

4

)]

(3.47)
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Solution for the X n:

X n(x) = Cne−√
λn x + Dne

√
λn x (3.48)

Imposing the boundary conditions:

Cne−√
λn Lx + Dne

√
λn Lx = 0 (3.49)

Cn + Dn = An (3.50)

Dn = An

1 − e2
√
λn Lx

(3.51)

Cn = Ane2
√
λn Lx

e2
√
λn Lx − 1

(3.52)

Considering the solution in the limit Lx
Ly

→ ∞ we have: Dn → 0 and

Cn → An.

3.5 Distribution of Temperature in a
Semi-Insulated and Semi-Infinite Slab

a) Find the stationary distribution of temperature u(x , y) inside a

box with respect to the temperature of its base (which is constant

but is not defined). The box is infinite in the z direction and semi-

infinite for x > 0. The faces at y = 0 and y = L are thermally

insulated. The face (x = 0, 0 < y < L) receives heat with a density

of flux F0 × y × (L − y). The thermal conductivity of the box is k.

b) Solve the same problem supposing that the lower boundary

exchanges heat with the outer medium, which is at a temperature

T0, according to the Newton’s law, with constant h.

Figure 3.6
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a) Mathematical formulation

The variable u represents the temperature with respect to the

original temperature of the bar, which is unknown, therefore u
represents the variations of temperature. As the bar is infinite and

the heat occurs by a source at x = 0, the other boundary, at x → ∞
remains at the initial temperature u = 0, since the heat would

require an infinite time to get there. Since the slab is infinite in the z
direction it’s enough to solve Laplace’s equation in two dimensions

(see figure).⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x2

+ ∂2u
∂y2

= 0 (0 < x < ∞, 0 < y < L)

∂u
∂y

∣∣∣∣
y=0

= ∂u
∂y

∣∣∣∣
y=L

= u(+∞, y) = 0

∂u
∂x

∣∣∣∣
x=0

= − F0

k
y(L − y)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.53)

Sturm–Liouville problem

We seek the general solution by separating variables, with the

intention of expanding the solution in a Fourier series with

orthogonal functions (in the y direction, which has second type

boundary conditions).

u(x , y) = X (x)Y (y) (3.54)

We arrive at two equations:

Equation for the Sturm–Liouville problem for Y (y):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2Y
dy2

+ λY = 0

dY
dy

∣∣∣∣
y=0

= dY
dy

∣∣∣∣
y=L

= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.55)

Which has eigenfunctions and eigenvalues:

Yn(y) = cos
(nπ

L
y
)

(n = 0, 1, 2, . . .) (3.56)

λn =
(nπ

L

)2

(3.57)
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The equation and the corresponding solutions for X (x) are:

d2 X
dx2

− λX = 0 (3.58)

X n(x) = Ane−( nπ
L x) + Bne( nπ

L x) (n = 0, 1, 2, . . .) (3.59)

General solution

u(x , y) =
∑[

Ane(− nπ
L x) + Bne( nπ

L x)
]

cos
(nπ

L
y
)

(n = 0, 1, 2, . . .)

(3.60)

Note: A0 must no appear in the sum, since the base temperature of

the problem is not defined. We are only interested in the variations

of temperature due to the heat flux. Applying the boundary

condition:

u(+∞, y) = 0 (3.61)

We arrive at Bn = 0 (n = 1, 2, . . .)

Imposing the other boundary condition:

du
dx

∣∣∣∣
x=0

= − F0

k
y(L − y) =

∑
An

(
−nπ

L

)
e−( nπ

L 0) cos
(nπ

L
y
)

(3.62)

Final solution Using the orthogonality of the eigenfunctions Yn we

get the coefficients:

An(n ≥ 1) (3.63)

An = 2F0

kπn

L∫
0

y(L − y) cos
(nπ

L
y
)

dy = 2F0 L3

π3n3k
[(−1)n + 1] (3.64)

Finally the variation of temperature along the x axis, due to the

supplied heat flux is:

u(x , y) =
∞∑

n=even>0

2F0 L3

π3n3k
[(−1)n + 1]e−( nπ

L x) cos
(nπ

L
y
)

(3.65)

The term with n = 0 does not exist in the sum, since the solution is

defined with respect to the unknown temperature of the object.

b) Now we solve the problem supposing that the lower border losses

heat according to Newton’s Law, towards the surroundings, with

temperature T0, with constant h.
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Figure 3.7

In this case, resetting the value of the constant T0 would not change

the boundary conditions (neither left nor upper). The solution with

the T0 background subtracted tends to zero in the limit x equal to

infinity.

Sturm–Liouville problem

We formulate the same Laplace’s problem, with the same boundary

conditions, except for the lower border, which would change from

type two to type three. The equation for the Sturm–Liouville

problem for Y (y) is, considering the direction of the heat flux:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2Y
dy2

+ λY = 0

−k
dY
dy

∣∣∣∣
y=0

+ hY (0) = 0

dY
dy

∣∣∣∣
y=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.66)

Sign of the first boundary condition is chosen to relate correctly

the derivative of the solution in vertical coordinate (y) with

corresponding direction of the heat flow. A solution which satisfies

the second boundary condition is:

Yn(y) = Cn cos
(√
λn(y − L)

)
(n = 1, 2, . . .) (3.67)

From the first boundary condition:

Cn

[
k
√
λn sin

(√
λn L
)

+ h cos
(√
λn L
)]

= 0 (3.68)

The solutions of the equation are the eigenvalues:

tan
(√
λn L
)

= −h
k
√
λn

(3.69)
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The equation and its solutions for X (x) are:⎧⎪⎨
⎪⎩

d2 X
dx2

− λX = 0

X n(x) = Ane−√
λn x + Bne+√

λn x (n = 1, 2, . . .)

⎫⎪⎬
⎪⎭ (3.70)

General solution The general solution will be:

u(x , y) =
∑[

Ane−√
λn x + Bne+√

λn x
]

cos
√
λn[y−L] (n = 1, 2, . . .)

(3.71)

Final solution Applying the condition:

u(+∞, y) = 0 (3.72)

We have Bn = 0, with n = 1, 2, . . .

Imposing the condition:

du
dx

∣∣∣∣
x=0

= − F0

k
y(L − y) =

∑
[An(−

√
λn)e0] cos

(√
λn(y − L)

)
(3.73)

Using the orthogonality of the eigenfunctions Yn we obtain the

coefficients An(n ≥ 1)

An = F0

k
√
λn

L∫
0

y(L − y) cos
(√
λn[y − L]

)
dy

L∫
0

cos
(√
λn[y − L]

)2 dy
= (3.74)

L∫
0

y(L − y) cos[
√
λn(y − L)]dy = L

λn

[
1 − cos

(√
λn L
)]

−2
√
λn L − sin(

√
λn L)

(λn)3/2
(3.75)

L∫
0

[
cos
(√
λn[y − L]

)]2

dy = 2
√
λn L + sin(2

√
λn L)

4
√
λn

= L
2

+ sin(2
√
λn L)

4
√
λn

(3.76)

An = F0

k
√
λn

L
λn

[1 − cos(
√
λn L)] − 2

√
λn L−sin(

√
λn L)

(λn)3/2

L
2

+ sin(2
√
λn L)

4
√
λn

(3.77)
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Finally the variation of the temperature along the x axis due to the

supplied heat is:

u(x , y) =
∞∑

n=1

[
Ane−√

λn x cos
(√
λn[y − L]

)
+ T0

]
(3.78)

3.6 Oscillations of a Semi-Fixed Membrane

A square membrane of side L has a fixed border, whereas the other

three can move transversally. The border opposite to the fixed one

is kept at a distance h from its mechanical equilibrium position. At

t = 0 that border is released. Determine the form of the membrane

as a function of time (in the absence of gravity).

Figure 3.8

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2u
dt2

− c2�u = 0

u(0, y, t) = 0

∂u
∂x

∣∣∣∣
x=L

= ∂u
∂y

∣∣∣∣
y=0

= ∂u
∂y

∣∣∣∣
y=L

= 0

u(x , y, 0) = h
L

x

∂u
∂t

∣∣∣∣
t=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.79)
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Sturm–Liouville problem The solution is expanded into eigenfunc-

tions of the Sturm–Liouville problem in 2D:

u(x , y, t) =
∑
nm

Tnm(t)X n(x)Yn(y) (3.80)

Formulating the Sturm–Liouville problem we get the eigenfunctions:

X n(x)Yn(y) = sin

(
π(2n + 1)

2L
x
)

cos
(πm

L
y
)

(3.81)

where n = 0, 1, 2 . . . ∞ and m = 0, 1, 2 . . . ∞
And the eigenvalues:

λnm =
[
π(2n + 1)

2L

]2

+
[πm

L

]2

(3.82)

General solution The general solution and the initial conditions

are:

u(x , y, t) =
∑
nm

[Anm cos(ωnmt) + Bnm sin(ωnmt)] sin

×
(
π(2n + 1)

2L
x
)

cos
(πm

L
y
)

(3.83)

Using the second initial condition: ∂u
∂t

∣∣
t=0

= 0 we have Bnm = 0

Also, from the first initial condition:

u(x , y, 0) = h
L

x =
∑
nm

Anm sin

(
π(2n + 1)

2L
x
)

cos
(πm

L
y
)

(3.84)

Final solution Using the orthogonality of the eigenfunctions:
L∫

0

h
L

x sin

(
π(2n + 1)

2L
x
)

dx

L∫
0

cos
(πm

L
y
)

dy

= Anm

L∫
0

sin2

(
π(2n + 1)

2L
x
)

dx

L∫
0

cos2
(πm

L
y
)

dy (3.85)

Finally we obtain the coefficients Anm:

A sine function is orthogonal to a constant value (which is one of the

orthogonal eigenfunctions of the cos
(
π0
L y
)

). The integral:

L∫
0

cos
(πm

L
y
)

dy = 0 (3.86)

for the indices m �= 0
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For m = 0 the previous integral equals L. In that case, the Anm

coefficients are not zero. We would need these integrals to obtain

its value:
L∫

0

cos2
(πm

L
y
)

dy = L (m = 0) (3.87)

L∫
0

sin2

(
π(2n + 1)

2L
x
)

dx = L
2

(3.88)

With the two sums only the terms with n indices survive. Finally, the

coefficients are:

An0 = 2

L
h
L

L∫
0

x sin

(
π(2n + 1)

2L
x
)

dx = 8h
π2

(−1)n

(2n + 1)2
(3.89)

3.7 Stationary Temperature in a Rectangle with
Heat Losses through Its Boundaries

Find the stationary distribution of temperature (T ) in a rectangle

(a, b). Two of its sides (x = 0, a) are in contact with a thermal

reservoir at T = 0. The thermal conductivity is k = 1. The boundary

at y = 0 exchanges a heat flux with the outer medium, which

creates a gradient of temperature in the direction perpendicular to

the boundary, given by:
∂T
∂y

∣∣∣∣
y=0

= −2T (x , y = 0). The opposite

border (y = b) exchanges a heat flux with a density − f (x) per unit

time and unit surface.

Figure 3.9
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Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x2

+ ∂2u
∂y2

= 0

u(x = 0) = u(x = a) = 0

du
dy

∣∣∣∣
y=0

+ 2u(x , 0) = 0

du
dy

∣∣∣∣
y=b

= f (x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.90)

Sturm–Liouville problem

We separate variables:

v(x , y) = X (x) · Y (y) (3.91)

We arrive at two equations, one for X and another one for Y . The

Sturm–Liouville problem for X is:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2 X
dx2

+ λX = 0

X (0) = X (a) = 0

X n(x) = sin
( nπ

a x
)

(n = 1, 2, . . .)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.92)

The sign of the constant λ is chosen to expand the solution in

eigenfunctions, orthogonal in the x direction, where there are

homogeneous boundary conditions.

Equation and solution for the y variable:

d2Y
dy2

− λY = 0

Yn(y) = An cosh
(nπ

a
y
)

+ Bn sinh
(nπ

a
y
)

(n = 1, 2, . . .)

(3.93)

The solution can also be written as a linear combination of two

exponential solutions.

d2Y
dy2 − λY = 0

Yn(y) = Ane− nπ
a y + Bne+ nπ

a y

(3.94)

The latter form is the most convenient one when any of the

boundaries of the rectangle in the y is not fixed.
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General solution

In this case the best form of the general solution is:

u(x , y) =
∑

n

[
An cosh

(nπ
a

y
)

+ Bn sinh
(nπ

a
y
)]

sin
(nπ

a
x
)

(n = 1, 2, . . .) (3.95)

Applying the boundary condition: du
dy

∣∣∣
y=0

+ 2u = 0 →

∑
n

[
Bn

nπ
a

+ 2An

]
sin
(nπ

a
x
)

= 0 → Bn
nπ
a

+ 2An

= 0 → Bn = −2a An

nπ
(3.96)

We arrive at the following general solution:

u(x , y) =
∑

n

An

[
cosh

(nπ
a

y
)

− 2a
nπ

sinh
(nπ

a
y
)]

sin
(nπ

a
x
)

(3.97)

Final solution

Imposing the second boundary condition: du
dy

∣∣∣
y=b

= f (x)

f (x) =
∑

n

An

[nπ
a

sinh
(nπ

a
b
)

− 2 cosh
(nπ

a
b
)]

sin
(nπ

a
x
)

(3.98)

and using the orthogonality of the eigenfunctions, we find the

coefficients An:

An = 2

a
[ nπ

a sinh
( nπ

a b
)− 2 cosh

( nπ
a b
)] a∫

0

f (x) sin
(nπ

a
x
)

dx

(3.99)

Next, the graphic solution of the problem for the case f (x) = 2 is

shown, using the PDE Toolbox module from MATLAB:
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Figure 3.10

3.8 Case Study: Heat Leak from a Rectangle

Find the temporal variations of temperature of a rectangular

membrane of sides a and b with thermal conductivity k, heat

capacity C and mass density m. Until t = 0 two contiguous

borders are thermally insulated and the other two are in contact

with a thermal bath at T0, so that the membrane is initially at

thermal equilibrium. At t = 0 one of the insulated borders changes

and starts exchanging heat with the outer medium (which is at

T = 0), according to Newton’s law (with constant h). Initially all the

membrane is at temperature T = T0.

Figure 3.11
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Mathematical formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− κ�u = 0

Boundary condition (t > 0):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0, y) = T0

u(x , 0) = T0

∂u
∂y

∣∣∣∣
y=b

= 0

−k
∂u
∂x

∣∣∣∣
x=a

− hu(x = a) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Initial condition: u(x , y, 0) = T0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.100)

Where κ = k
Cρ . We seek the solution by shifting the origin of

temperatures: v(x , y, t) = u(x , y, 0) − T0, to be able to expand the

solution in orthogonal functions in the y direction.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

− κ�v = 0

Boundary condition:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(0, y) = 0

v(x , 0) = 0

∂v
∂y

∣∣∣∣
y=b

= 0

k
∂v
∂x

∣∣∣∣
x=a

+ hv(x = a) = −hT0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Initial condition: v(x , y, 0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.101)

The problem is split in two parts: one with a stationary solution

w(x , y) and the other with the transient solution S(x , y, t), which

will be added.

v(x , y, t) = w(x , y) + S(x , y, t) (3.102)
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The stationary problem (to arrive at a non-trivial solution) must be:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�w = 0

w(0, y) = 0

w(x , 0) = 0

∂w
∂y

∣∣∣∣
y=b

= 0

k
∂w
∂x

∣∣∣∣
x=a

+ hw(a, y) = −hT0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.103)

On the other hand, the transient problem is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂t

− κ�S = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(0, y) = 0

S(x , 0) = 0

∂S
∂y

∣∣∣∣
y=b

= 0

k
∂S
∂x

∣∣∣∣
x=a

+ hS(a, y) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Initial condition: S(x , y, 0) = −w(x , y)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.104)

Sturm–Liouville problem

We first seek the solution of the first problem in the form:

w(x , y) =
∑

n

X n(x) Yn(y) (3.105)

where Yn(y) are orthogonal eigenfunctions, since both boundaries in

the y direction are homogeneous. Solving the corresponding Sturm–

Liouville problem we have:

Yn(y) = sin(
√
λn y) (3.106)

λn =
[
π(2n + 1)

2b

]2

(3.107)
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We arrive at the equation for the X (x) function, replacing w(x , y) in

the Poisson’s equation:

d2 X n

dx2
− λn X n = 0 (3.108)

Considering the boundary conditions, it is convenient to write the

solution in the form:

X n = An sinh
(√
λnx
)

+ Bn cosh
(√
λnx
)

(3.109)

General solution

w(x , y) =
∑

n

[
An sinh

(√
λnx
)

+ Bn cosh
(√
λnx
)]

Yn(y)

(3.110)

Applying the boundary condition w(0, y) = 0 we have Bn = 0.

Applying the condition k ∂w
∂x

∣∣
x=a + hw(x = a) = −hT0∑

n

An

[
k
√
λn cosh

(√
λna
)

+ h sinh
(√
λna
)]

Yn(y) = −hT0

(3.111)

And using the orthogonality of the eigenfunctions:

An

[
k
√
λn cosh

(√
λna
)

+ h sinh
(√
λna
)] b∫

0

|Yn(y)|2 dy

= −hT0

b∫
0

Yn(y)dy (3.112)

b∫
0

sin
(√
λn y
)

dy

b∫
0

∣∣sin
(√
λn y
)∣∣2 dy

= − 2

b
√
λn

[
cos

(
π(2n + 1)

2

)
− 1

]
= 2

b
√
λn

(3.113)

An = − 2T0h
b
√
λn
[
k
√
λn cosh

(√
λna
)+ h sinh

(√
λna
)] (3.114)

To solve the second homogeneous problem the general solution is

quite simple, since it has the form of a summation of the product

of both eigenfunctions in two dimensions X n(x) · Yn(y) and the

temporal part. Contrary to the previous case, here, due to the
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equation having a temporal part, when doing the separation of

variables we get two sets of different eigenvalues, one for each

direction:

S(x , y, t) =
∑
mn

Tmn(t)X m(x)Yn(y) (3.115)

Yn(y) = sin
(√

μn y
)

(3.116)

with μn =
[
π(2n+1)

2b

]2

X m(x) = sin(
√
νmx) (3.117)

with νm defined according to the boundary condition:

k
d X m

dx

∣∣∣∣
x=a

+ hX m(a) = 0 (3.118)

Which produces the transcendental equation:

tan
(√

νma
) = − k

h
√
νm (3.119)

The temporal solutions can be obtained replacing
∑
mn

Tmn(t)X m(x)

Yn(y) in the homogeneous equation, and we get the problem:

dTmn

dt
+ κ(μn + νm)Tmn = 0 (3.120)

Which has a solution:

Tmn(t) = Tmn(0)e−κ(μn+νm)t (3.121)

The general solution is:

S(x , y, t) =
∑
mn

Tn(0)e−κ(μn+νm)t sin
(√

νmx
)

sin
(√

μn y
)

(3.122)

Final solution

We solve the problem by including the initial condition:

−w(x , y) =
∑
mn

Tmn(0) sin
(√

νmx
)

sin
(√

μn y
)

(3.123)

And using the orthogonality of X m(x) and Yn(y) we get:

Tmn(0) = −

a∫
0

b∫
0

w(x , y) sin
(√

νmx
)

sin
(√

μn y
)

dxdy

a∫
0

b∫
0

sin2
(√

νmx
)

sin2
(√

μn y
)

dxdy

(3.124)
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3.9 Rectangular Hit on a Square Membrane

Find the movement of a square membrane of side b which is which

has two fixed opposite borders, whereas the other two are free. At

t = 0 a vertical hit transfers a total impulse I to the surface. The

hit is uniformly distributed over a rectangle centered in the origin

(b/2 × b/4). The tension is T , the density of the membrane by unit

surface is ρ. Consider that the membrane does not vibrate until the

initial instant (t = 0).

Figure 3.12

Mathematical formulation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

− a2�u = 0

Boundary condition:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0, y, t) = 0

u(b, y, t) = 0

∂u
∂y

∣∣∣∣
y=0

= 0

∂u
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Initial conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x , y, 0) = 0

∂u
∂t

∣∣∣∣
t=0

=
⎧⎨
⎩

8I
ρb2

(inside the rectangle)

0 (outside the rectangle)

⎫⎬
⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.125)

Being: a2 = T
ρ
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We separate variables u(x , y, t) = T (t)X (x)Y (y) = T (t)v(x , y):

Sturm–Liouville problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�v(x , y) + λv(x , y) = 0

v(0, y) = 0

v(b, y) = 0

∂v
∂y

∣∣∣∣
y=0

= 0

∂v
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.126)

The normalized eigenfunctions of the Laplacian operator, with these

boundary conditions, are:

vnm(x , y) = b
2

sin
(nπx

b

)
cos
(mπy

b

)
(3.127)

With eigenvalues:

λnm =
(
π

n
b

)2

+
(
π

m
b

)2

(n = 1, 2, . . . ; m = 0, 1, 2, . . .)

(3.128)

General solution

The equation for the temporal part is:

d2Tnm

dt2
+ a2λnmTnm(t) = 0 (3.129)

with solutions:

Tnm(t) = Anm sin
(

a
√
λnmt

)
+ Bnm cos

(
a
√
λnmt

)
(3.130)

Final solution

From the first initial condition we have Bnm = 0.

Then the general solution can be written (with normalized eigen-

functions) as:
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u(x , y, t) =
∑
nm

[
Anm

b
2

sin(a
√
λnmt)

]
sin
(nπx

b

)
cos
(mπy

b

)
(3.131)

Applying the second initial condition:

ut(x , y, 0) =
∑
nm

[
Anm

b
2

a
√
λnm cos

(
a
√
λnm0

)]

× sin
(nπx

b

)
cos
(mπy

b

)
(3.132)

=

⎧⎪⎨
⎪⎩

8I
ρb2

(
3b
8

< x <
5b
8

)
,

(
b
4

< y <
3b
4

)

0 (rest of values of x , y)

⎫⎪⎬
⎪⎭ (3.133)

Using the properties of orthogonality, we multiply by
2
b sin ( nπx

b ) cos( mπy
b ) both sides and integrate between 0 and b for

x and y, to obtain the coefficients of the expansion, which are:

Anma
√
λnm =

5b
8∫

3b
8

dx

3b
4∫

b
4

dy
8I
ρb2

sin
(nπx

b

)
cos
(mπy

b

)
(3.134)

Anm = 8I
ρb2a

√
λnm

5b
8∫

3b
8

dx

3b
4∫

b
4

dy sin
(nπx

b

)
cos
(mπy

b

)
(3.135)

3.10 Case Study: Distribution of Temperature in a
Peltier Element

A rectangular, homogeneous film (A BC D) has two borders (AC , BC )

thermally insulated. The other two are kept at a temperature T =
T0. Find the stationary distribution of temperature (with respect

to T0) supposing that the film absorbs heat homogeneously at a

constant rate Q (constant by unit time and unit surface).
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Figure 3.13

Mathematical formulation

We will formulate the solution u(x , y, t) with respect to the

temperature of the environment T = T0.

The solution which will produce fewer Gibbs phenomena consists

in expanding the solution in orthogonal functions in one of the

directions with homogeneous boundaries. An alternative way is,

expanding the solution in eigenfunctions of the Sturm–Liouville

problem in the two homogeneous directions, replacing the solution

in the non-homogeneous equation and find the coefficients of the

expansion. This method is possible thanks to the presence of two

pairs of opposite homogeneous boundaries.

Mathematical formulation subtracting T0 to the solution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂u
∂t

− k
(
∂2u
∂x2

+ ∂2u
∂y2

)
= −Q

Stationary equation : k
(
∂2u
∂x2

+ ∂2u
∂y2

)
= Q

u(x = 0) = ∂u
∂x

∣∣∣∣
x=a

= 0

u(y = 0) = ∂u
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.136)
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Method 1

In this method we will use an expansion in one-dimensional

eigenfunctions.

Sturm–Liouville problem

Searching a solution as
∑

Y (y)X (x), we formulate the Sturm–

Liouville problem only for the x direction:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2 X
dx2

+ λX = 0

X (x = 0) = d X
dx

∣∣∣∣
x=a

= 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.137)

The eigenfunctions are:

X n(x) = sin

(
π(2n + 1)

2a
x
)

(3.138)

The eigenvalues are:

λn =
[
π(2n + 1)

2a

]2

(3.139)

General solution

The general solution is:

u(x , y) =
∞∑

n=0

Yn(y) sin

(
π(2n + 1)

2a
x
)

(3.140)

Replacing this solution into the heat equation we have:

−
∞∑

n=0

Yn(y)

[
π(2n + 1)

2a

]2

sin

(
π(2n + 1)

2a
x
)

+
∞∑

n=0

d2Yn

dy2
sin

(
π(2n + 1)

2a
x
)

= Q
k

=
∞∑

n=0

Cn sin

(
π(2n + 1)

2a
x
)

(3.141)

where

Cn = 2

a

a∫
0

Q
k

sin

(
π(2n + 1)

2a
x
)

dx = 4Q
kπ(2n + 1)

(3.142)
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In this case what we did is basically first expand the inhomogeneous

part of the equation in Fourier series of orthogonal eigenfunctions

in the x direction and apply the orthogonality conditions so that we

have the non-homogeneous differential equation in the y variable.

The equation to find Y (y) then will be:

d2Yn

dy2
−
[
π(2n + 1)

2a

]2

Yn = 4Q
kπ(2n + 1)

(3.143)

Yn(y = 0) = dYn

dy

∣∣∣∣
y=b

= 0 (3.144)

Final solution

We look for the solution as the sum of the homogeneous equation

and the particular solution. The solution of the homogeneous

equation

(
using the condition: dYn

dy

∣∣∣
y=b

= 0

)
is:

Yn, hom(y) = An cosh

(
π(2n + 1)

2a
(b − y)

)
(3.145)

The particular solution is:

Yp(y) = − 16Qa2

kπ3(2n + 1)3
(3.146)

This form of the solution already satisfies the boundary condition

for y = b. Applying the last boundary condition, we have: Yn(0) = 0:

Yn, hom(0) + Yp(0) = An cosh

(
π(2n + 1)

2a
b
)

− 16Qa2

kπ3(2n + 1)3
= 0

(3.147)

The coefficients are:

An = 16Qa2

kπ3(2n + 1)3

1

cosh
(

π(2n+1)

2a b
) (3.148)

The final solution is:

u(x , y) = 16Qa2

kπ3

∞∑
n=0

1

(2n + 1)3

⎡
⎣cosh

(
(2n+1)(b−y)π

2a

)
cosh

(
(2n+1)bπ

2a

) − 1

⎤
⎦

× sin

(
π(2n + 1)

2a
x
)

(3.149)

In the figure we represent the numeric solution of the problem

obtained with MATLAB’S PDE Toolbox module.
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Figure 3.14

Method 2

The alternative method consists in expanding the solution in

orthogonal functions in two dimensions:

u(x , y) =
∑
n, m

Anm X n(x)Ym(y) (3.150)

Although it is mathematically possible, this method which uses the

homogeneity of the boundaries, would result in a higher number of

Fourier series summations and therefore more Gibbs phenomena

(that is, the divergence of the solution next to the boundaries, if there

is an increasing contribution of harmonics for higher eigenvalues).

Sturm–Liouville problem

To find X n(x)Ym(y) we solve the Sturm–Liouville problem in two

dimensions. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2v
∂x2

+ ∂2v
∂y2

= −λnmv

v(x = 0) = ∂v
∂x

∣∣∣∣
x=a

= 0

v(y = 0) = ∂v
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.151)

X n(x)Ym(y) = sin

(
π(2n + 1)

2a
x
)

sin

(
π(2m + 1)

2b
y
)

(3.152)
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λnm =
[
π(2n + 1)

2a

]2

+
[
π(2m + 1)

2b

]2

(3.153)

General solution Replacing u(x , y) = ∑
n, m

Anm X n(x)Ym(y) in the

Poisson’s equation we get:

= −
∑
n, m

Anmλnm sin

(
π(2n + 1)

2a
x
)

sin

(
π(2m + 1)

2b
y
)

= − Q
k

(3.154)

Multiplying both sides by sin
(

π(2n+1)

2a x
)

sin
(

π(2m+1)

2b y
)

and integrating between
a∫

0

b∫
0

dxdy gives:

Anmλnm

∥∥∥∥sin

(
π(2n + 1)

2a
x
)∥∥∥∥

2

·
∥∥∥∥sin

(
π(2m + 1)

2b
y
)∥∥∥∥

2

= Q
k

a∫
0

b∫
0

sin

(
π(2n + 1)

2a
x
)

sin

(
π(2m + 1)

2b
y
)

dxdy

(3.155)

Anm = 4Q
abkλnm

a∫
0

b∫
0

sin
(
π(2n + 1)

2a
x
)

sin

(
π(2m + 1)

2b
y
)

dxdy

(3.156)

The Poisson problem previously solved could be part of another,

more complicated, problem related to the variation of temperature

in the same element: This could be the problem, and the method to

solve it, which would use the previous results: the two boundaries

(AC and BC ) of a homogeneous rectangular film A BC D are

thermally insulated. The other two are kept at a temperature T0.

Find the distribution of temperature of that element as a function of

time supposing that the initial temperature (before t = 0) is T = T0,

and that starting at t = 0 the film loses heat homogeneously at a

constant pace Q=constant (by unit time and unit surface).

Note: As before, the solution u(x , y, t) will be formulated with

respect to the temperature of the surroundings T = T0. The solution

will be sought as the sum of the stationary solution, w(x , y) at times

t → ∞ and the transient solution v(x , y, t).
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Idea for a solution:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂u
∂t

− k
(
∂2u
∂x2

+ ∂2u
∂y2

)
= −Q

u(x = 0) = ∂u
∂x

∣∣∣∣
x=a

= 0

u(y = 0) = ∂u
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.157)

Replacing u(x , y, t) = v(x , y, t) + w(x , y) in the previous problem

we separate the problem in two:

Problem 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂v
∂t

− k
(
∂2v
∂x2

+ ∂2v
∂y2

)
= 0

v(x = 0) = ∂v
∂x

∣∣∣∣
x=a

= 0

v(y = 0) = ∂v
∂y

∣∣∣∣
y=b

= 0

v(x , y, t = 0) = −w(x , y)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.158)

Problem 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k
(
∂2w
∂x2

+ ∂2w
∂y2

)
= −Q

w(0, y) = ∂w
∂x

∣∣∣∣
x=a

= 0

w(x , 0) = ∂w
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.159)

Final solution

Problem 2 has already been solved. The solution of problem 1

has the form of an expansion of orthogonal eigenfunctions in two

dimensions:

v(x , y, t) =
∑
n, m

Anme
(

−λnm
k

Cρ

)
t

sin

(
π(2n + 1)

2a
x
)

sin

(
π(2m + 1)

2b
y
)

(3.160)

The coefficients Anm are found by applying the initial conditions.
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3.11 Case Study: Charged Filament inside a Prism

A metallic tube has a square cross section L × L and infinite length.

In the interior of the tube there is a charged filament, also of infinite

length, with a linear density of charge Q. Find the electrostatic

potential inside the tube.

Figure 3.15

Method 1

Mathematical formulation

⎧⎪⎨
⎪⎩

∂2u
∂x2

+ ∂2u
∂y2

= f (x , y) = − Q
ε0

δ(x)δ(y − L/2)

u(−L/2, y) = u(+L/2, y) = u(x , 0) = u(x , L) = 0

⎫⎪⎬
⎪⎭ (3.161)

being ε0 the vacuum electric permittivity.

The presence of homogeneous boundary conditions allows to

expand the solution in orthogonal eigenfunctions.

Note: since in this particular case we want to expand the solution in

a summation of orthogonal functions in the vertical direction, it is

more convenient to fix the position of the y axis over the base of the

rectangle.
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Sturm–Liouville problem

In the present case, to minimize the influence of the Gibbs

phenomenon we are going to seek the solution as an expansion in

eigenfunctions of the homogeneous Sturm–Liouville problem in y.

u(x , y) =
∑

n

X n(x) sin
(πny

L

)
(3.162)

being X n(x) the coefficients of the expansion which depend on the x
coordinate.

General solution

Replacing this expression in equation (3.161) we get:∑
n

[
d2 X n

dx2
− λn X n

]
sin
(πny

L

)
= − Q

ε0

δ(x)δ(y − L/2) (3.163)

with λn = (πn
L )2. Using the orthogonality properties of the

eigenfunctions sin
(
πny

L

)
we arrive at the inhomogeneous equation

for X n(x), with the corresponding boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2 X n

∂x2
− λn X n = fn =

⎧⎨
⎩− 2Q

Lε0

δ(x) sin
(πn

2

)
→ n = 2k + 1

0 → n = 2k

⎫⎬
⎭

X n(−L/2) = 0

X n(+L/2) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.164)

Final solution

In the zone of the system corresponding to a homogeneous equation

(that is, outside the special point describing the point charge) we get

the following solutions:

X +
n = C+ sinh

(
πn
L

(
L
2

− x
))

(3.165)

X −
n = C− sinh

(
πn
L

(
L
2

+ x
))

(3.166)

From the symmetry conditions of the solution, we get: C+ = C−.
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On the other hand, integrating equation (3.164) around the charge

Q (in an environment of width ε → 0) we will get an expression for

the difference of the derivatives of the solution:

d X +

dx

∣∣∣∣
+ε

− d X −

dx

∣∣∣∣
−ε

= 2

L
Q
ε0

(−1)(2k+1) → (3.167)

(−2C+)
π(2k + 1)

L
cosh

(
π(2k + 1)

2

)
= 2

L
Q
ε0

(−1)(2k+1) (3.168)

C+ = C− = − Q
ε0

(−1)(2k+1)

π(2k + 1) cosh
(

π(2k+1)

2

) (3.169)

Figure 3.16

Then the solution is:

u(x , y) =
∞∑

k=0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C+ sinh

[(
π(2k + 1)

L

)
·
(

L
2

− x
)]

x > 0

C− sinh

[(
π(2k + 1)

L

)
·
(

L
2

+ x
)]

x < 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

× sin

(
π(2k + 1)

L
y
)

(3.170)

The figure shows the solutions for X n(x).
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Method 2

In this particular case, the idea is to develop the solution separating

it in a summation of orthogonal functions both in vertical and

horizontal directions. Then it will be more convenient to fix the

position of the axes on the sides of the rectangle.

Figure 3.17

Passing the axes x , y through the sides of the rectangle, the

corresponding Poisson’s problem will be:⎧⎪⎨
⎪⎩

∂2u
∂x2

+ ∂2u
∂y2

= f (x , y) = − Q
ε0

δ(x − L/2)δ(y − L/2)

u(0, y) = u(L, y) = u(x , 0) = u(x , L) = 0

⎫⎪⎬
⎪⎭ (3.171)

General solution

We seek the solution in the form:

u(x , y) =
∑

n

Anm sin
(πn

L
x
)

sin
(πm

L
y
)

(3.172)

Replacing in Poisson’s equation:

∂2u
∂x2

+ ∂2u
∂y2

= − Q
ε0

δ(x − L/2)δ(y − L/2) (3.173)

−
∑
nm

Anm

[(πn
L

)2

+
(πm

L

)2
]

sin
(πn

L
x
)

sin
(πn

L
y
)

= − Q
ε0

δ(x − L/2)δ(y − L/2) (3.174)
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Final solution

Using the orthogonality of the eigenfunctions sin(πnx
L ); sin(πmy

L )

Anm

[(πn
L

)2

+
(πm

L

)2
]

= 4

L2

Q
ε0

sin
(πn

2

)
sin
(πm

2

)
(3.175)

Solution:

u(x , y) = 4Q
ε0 L2

∑
n, m

1[
(πn

L )2 + (πm
L )2
] sin

(πn
2

)
sin
(πm

2

)

× sin
(πn

L
x
)

sin
(πm

L
y
)

(3.176)

Only the odd terms of the summation, with n = 2k + 1; m = 2 f + 1,

will remain.

3.12 Case Study: Capacity in a Rectangular Tube

Two very thin parallel plates with density of charge Q0 and −Q0 are

situated inside a metallic, rectangular box, infinite in the z direction.

The faces at x = 0 and x = a are grounded (zero potential),

whereas the other two are metallic with a surface charge density σ .

Find the distribution of electrostatic potential inside the box. Note:

the solution will be independent of z due to the symmetry in that

direction.

Figure 3.18
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Mathematical formulation

There is no dependence on the z variable due to the symmetry.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u(x , y, z) = f (x , y, z)

u(0, y) = u(a, y) = 0
∂u
∂y

∣∣∣∣
y=0

= − σ

ε0

∂u
∂y

∣∣∣∣
y=b

= σ

ε0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.177)

with the inhomogeneity of the equation expressed in the following

manner: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x , y, z) = g(x)h(y)

g(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 (0 ≤ x ≤ a
4

)

− Q0

ε0

(
a
4

≤ x ≤ 3a
4

)

0

(
3a
4

≤ x ≤ 1

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

h(y) = δ

(
y − 3b

4

)
− δ

(
y − b

4

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.178)

Figure 3.19
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As this is a non-homogeneous problem with non-homogeneous

boundary conditions, we will separate the problem in the sum of

two, which consider independently the non-homogeneous equation

v(x , y) and the homogeneous boundary conditions w(x , y).

u(x , y) = v(x , y) + w(x , y) (3.179)

The first problem is non-homogeneous with homogeneous bound-

ary conditions.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�v(x , y) = f (x , y)

v(0, y) = v(a, y) = 0

∂v
∂y

∣∣∣∣
y=0

= 0

∂v
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.180)

The second problem is homogeneous with non-homogeneous

boundary conditions.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�w(x , y) = 0

w(0, y) = w(a, y) = 0

∂w
∂y

∣∣∣∣
y=0

= − σ

ε0

∂w
∂y

∣∣∣∣
y=b

= σ

ε0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.181)

Solution of problem 1

Sturm–Liouville problem

The solution is sought by expanding into eigenfunctions of the

Sturm–Liouville problem:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�v(x , y) + λv(x , y) = 0

v(0, y) = v(a, y) = 0

∂v
∂y

∣∣∣∣
y=0

= 0

∂v
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.182)

The eigenfunctions and eigenvalues are well known:

v(x , y) = sin
(πn

a
x
)

cos
(πm

b
y
)

(3.183)

λnm =
(πn

a

)2

+
(πm

b

)2

(3.184)

General solution

The solution of the non-homogeneous problem 3.180 will be looked

for in the form:

v(x , y) =
∑
n, m

Anm sin
(πn

a
x
)

cos
(πm

b
y
)

(3.185)

Replacing in the equation (3.180)

−
∑
n, m

λnm Anm sin
(πn

a
x
)

cos
(πm

b
y
)

= f (x , y) (3.186)

Multiplying both sides by sin
(
πn
a x
)

cos
(
πm

b y
)

and integrating in
a∫

0

dx
b∫

0

dy we have:

λnm Anm

a∫
0

sin2
(πn

a
x
)

dx

b∫
0

cos2
(πm

b
y
)

dy

=
a∫

0

g(x) sin
(πn

a
x
)

dx

b∫
0

h(y) cos
(πm

b
y
)

dy (3.187)

For m ≥ 1:

a∫
0

sin2
(πn

a
x
)

dx = a
2

b∫
0

cos2
(πm

b
y
)

dy = b
2

(3.188)
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Anm =

a∫
0

g(x)dx
b∫

0

h(y)dy

λnm( ab
4

)

= − Q0

ε0

3a
4∫

a
4

sin
(
πn
a x
)

dx
{

cos
(
πm

b
3b
4

)− cos
(
πm

b
b
4

)}
λnm( ab

4
)

= Q0

ε0

4

ab · λnm

a
πn

[
cos
(πm

4

)
− cos

(
3πm

4

)]

×
[

cos
(πn

4

)
− cos

(
3πn

4

)]
(3.189)

Take into account that for m = 0, the modulus and the coefficients

Anm will differ in a factor 2 due to:

b∫
0

cos2
(πm

b
y
)

dy = b (3.190)

Solution of problem 2

General solution

We seek the solution by expanding into orthogonal eigenfunctions

in the x direction, since the problem has homogeneous boundary

conditions:

w(x , y) =
∑

n

Yn(y) sin
(πn

a
x
)

(3.191)

This summation is replaced in the equation: �w(x , z) = 0. We arrive

at the following equation for Yn(y):

d2Yn

dy2
−
(πn

a

)2

Yn(y) = 0 (3.192)

With the general solution:

Yn(y) = Cn sinh
(πn

a
y
)

+ Dn cosh
(πn

a
y
)

(3.193)

We apply the boundary conditions for y = 0:
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∑
n

[
Cn

πn
a

cosh
(πn

a
0
)

− Dn
πn
a

sinh
(πn

a
0
)]

sin
(πn

a
x
)

= − σ

ε0

(3.194)∑
n

Cn
πn
a

sin
(πn

a
x
)

= − σ

ε0

(3.195)

Using the orthogonality of the eigenfunctions sin
(
πn
a x
)

we find one

of the coefficients:

Cn = − 1

πn
a

a∫
0

sin2
(
πn
a x
)

dx

σ

ε0

a∫
0

sin
(πn

a
x
)

dx

= − 1
πn
a

a
2

σ

ε0

a∫
0

sin
(πn

a
x
)

dx

= 2

πn
σ

ε0

a
πn

[cos(πn) − 1] = 2a
(πn)2

σ

ε0

[(−1)n − 1] (3.196)

Then:

Cn = 2a
(πn)2

σ

ε0

[(−1)n − 1] (3.197)

The other boundary condition for y = b is applied:∑
n

[
Cn

πn
a

cosh
(πn

a
b
)

− Dn
πn
a

sinh
(πn

a
b
)]

sin
(πn

a
x
)

= σ

ε0

(3.198)

Using the orthogonality for the eigenfunctions sin
(
πn
a x
)

Cn
πn
a

cosh
(πn

a
b
)
−Dn

πn
a

sinh
(πn

a
b
)

=
(

2

a

)
σ

ε0

a∫
0

sin
(πn

a
x
)

dx

(3.199)

Cn cosh
(πn

a
b
)

− Dn sinh
(πn

a
b
)

= 2a
(πn)2

σ

ε0

[1 − (−1)n] = −Cn

(3.200)

Then:

Dn = Cn
[1 + cosh(πn

a b)]

sinh(πn
a b)

= 2a
(πn)2

σ

ε0

[(−1)n − 1]
[1 + cosh(πn

a b)]

sinh(πn
a b)

(3.201)
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3.13 Temperature Distribution inside a Box
Heated by Two Transistors

Find the stationary distribution of temperature T (x , y) inside a box

with thermal conductivity k. The box is infinite in the z direction and

semi-infinite in the y > 0 direction. The face at x = a is in contact

with a thermal reservoir at T = 0. The face at x = 0 is thermally

insulated. The face at y = 0 receives a heat flux from the exterior

according to what is shown in the figure (A is the heat flux density).

Figure 3.20

Solution

We need to solve Laplace’s equation in two dimensions with the

following boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x

∣∣∣∣
x=0

= 0; u(x = a) = 0;

−k
∂u
∂y

∣∣∣∣
y=0

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (0 < x < a/8)

A (a/8 < x < 3a/8)

0 (3a/8 < x < 5a/8)

A (5a/8 < x < 7a/8)

0 (7a/8a < x < a)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= Q(x)

u(y = +∞) = 0)

(3.202)



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Temperature Distribution inside a Box Heated by Two Transistors 181

Mathematical formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x2

+ ∂2u
∂y2

= 0

u(x = a) = ∂u
∂x

∣∣∣∣
x=0

= 0

∂u
∂y

∣∣∣∣
y=0

= − Q(x)

k
;

u(y = +∞) = 0

(3.203)

Sturm–Liouville problem

We first seek the general solution of the problem.⎧⎪⎪⎨
⎪⎪⎩

∂2u
∂x2

+ ∂2u
∂y2

= 0

∂u
∂x

∣∣∣∣
x=0

= u(x = a) = 0

(3.204)

Separating variables:

u(x , y) = X (x)Y (y) (3.205)

We arrive at two second order differential equations.

We have the following Sturm–Liouville problem for the x direction:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 X
dx2

+ λX = 0

d X
dx

∣∣∣∣
x=0

= X (a) = 0

X n(x) = cos

(
[2n + 1]π

2a
x
)

n = 0, 1, 2, . . .

(3.206)

For the y direction we have:

d2Y
dy2

− λY = 0 (3.207)

With a solution:

Yn(y) = Ane
(

− [2n+1]π

2a y
)

+ Bne
(

+ [2n+1]π

2a y
)

n = 0, 1, 2, . . . (3.208)
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General solution

Then the general solution could be sought as an expansion in

orthogonal function:

u(x , y) =
∑[

Ane
(

− [2n+1]π

2a y
)

+ Bne
(

[2n+1]π

2a y
)]

× cos

(
[2n + 1]π

2a
x
)

(n = 0, 1, 2, . . .) (3.209)

Final solution

From the condition u(x , +∞) = 0

We arrive at Bn = 0 with (n = 0, 1, 2, . . .).

Imposing the boundary conditions:

∂u
∂y

∣∣∣∣
y=0

=
∑

n

(
− [2n + 1]π

2a

)
Ane

(
− [2n+1]π

2a 0
)

cos

(
[2n + 1]π

2a
x
)

= − Q(x)

k
(3.210)

Using the orthogonality of the cos
(

[2n+1]π

2a x
)

eigenfunctions:

We find the value of the An coefficients:

− [2n + 1]π

2a
An

∫ a

0

[
cos

(
[2n + 1]π

2a
x
)]2

dx

= −1

k

∫ a

0

Q(x) cos

(
[2n + 1]π

2a
x
)

dx (3.211)

An = 4

k[2n + 1]π

∫ a

0

Q(x) cos

(
[2n + 1]π

2a
x
)

dx (3.212)

Finally the solution is:

u(x , y) =
∑

Ane
(

− [2n+1]π

2a y
)

cos

(
[2n + 1]π

2a
x
)

(n = 0, 1, 2, . . .)

(3.213)
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Chapter 4

Three-Dimensional Problems

This chapter expands to three dimensions the Fourier method

introduced in the previous chapters. Just like before, when it is

reasonable, we will use the same stages to standardize the solution

process of wave, diffusion, Laplace and Poisson problems. In order

to expand the solution in orthogonal functions one should choose

correctly the directions in which the oppositely situated interfaces

have homogeneous boundary conditions.

4.1 Stationary Temperature Distribution inside a
Prism with a Thin Heater in One of Its Faces

Find the stationary distribution of temperature inside a prism (of

dimensions a, b, c) with a thermal conductivity coefficient k = 1.

The face x = 0 generates a power W = I 2 R [J/s] due to heat

sources distributed as a very thin homogeneous heater (for example,

a resistor R which carries an electric current I ). The heater is placed

inside the prism, very close to the surface (at a depth ε → 0). All the

heat generated is distributed towards the inside of the prism. The

faces z = 0 and z = c are kept at a temperature T = 0. All the

remaining faces are thermally insulated.

Mathematical Methods for Physics: Problems and Solutions
Farkhad G. Aliev and Antonio Lara
Copyright c© 2024 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4968-71-3 (Hardcover), 978-1-003-41088-1 (eBook)
www.jennystanford.com
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Figure 4.1

Mathematical formulation

Since the heat sources are distributed in one of the faces, we solve

Laplace’s equation in a prism in which five of the six faces have

homogeneous boundary conditions.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u(x , y, z) = 0

u(z = 0) = u(z = c) = 0

∂u
∂x

∣∣∣∣
x=a

= ∂u
∂y

∣∣∣∣
y=0

= ∂u
∂y

∣∣∣∣
y=b

= 0

−k
∂u
∂x

∣∣∣∣
x=0

= f (y, z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 0 < z <
c
4

Qδ
(

y − b
2

)
c
4

< z <
3c
4

0
3c
4

< z < c

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

The value of the Q constant is determined using the condition that

the integral of the density of flux f (y, z) through all the surface

of the face (0, y, z) equals the total emitted flux W . Applying this

normalization condition, we have Q = 2W/c
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Sturm–Liouville problem

The solution is an expansion of orthogonal eigenfunctions, corre-

sponding to the planes with x constant, for which the boundary

conditions are homogeneous. In the y − z plane this Sturm–Liouville

problem will be solved:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�v(y, z) + λv(y, z) = 0

v(z = 0) = v(z = c) = 0

∂v
∂y

∣∣∣∣
y=0

= ∂v
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.2)

which gives the eigenfunctions:

vnm = cos
(πn

b
y
)

sin
(πm

c
z
)

(4.3)

and the eigenvalues

λnm =
(π

L

)2

[n2 + m2] (4.4)

General solution The general solution can be expanded in the base

of orthogonal functions vnm. The coefficients of the expansion will

depend on the x coordinate:

u(x , y, z) =
∑
n, m

wnm(x)vnm(y, z) (4.5)

Replacing this solution in the equation �u(x , y, z) = 0 and using the

orthogonality of the eigenfunctions we get the equations for wnm(x):

d2wnm

dx2
− λnmwnm = 0 (4.6)

since λnm > 0 the solutions are a combination of exponential

functions or, more easily, since the second boundary condition for

x = a is: dwnm
dx

∣∣
x=a = 0 we can present the solution in a more

compact way:

wnm(x) = Anm cosh
(√
λnm[a − x]

)
(4.7)
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Final solution

Now we can apply the first boundary condition for x = 0 to find the

coefficients Anm:

∂u
∂x

∣∣∣∣
x=0

=
∑
n, m

dwnm

dx

∣∣∣∣
x=0

vnm(y, z) = (4.8)

= −
∑
n, m

Anm

√
λnm sinh

(
a
√
λnm

)
vnm(y, z) = − f (y, z)/k (4.9)

Using the orthogonality of vnm(y, z)

Anm

√
λnm sinh

(
a
√
λnm

)
=

b∫
0

c∫
0

f (y, z) cos
(
πn
b y
)

sin
(
πm

c z
)

dydz

b∫
0

c∫
0

cos2
(
πn
b y
)

sin2
(
πm

c z
)

dydz

(4.10)

Using the following relations:
3
4

c∫
c
4

sin
(πm

c
z
)

dz

=

⎧⎪⎪⎨
⎪⎪⎩

0 m = 2k, k = 0, 1, 2, . . .

− c
πm

(
cos

3πm
4

− cos
πm

4

)
m = 2k + 1, k = 0, 1, 2, . . .

⎫⎪⎪⎬
⎪⎪⎭

(4.11)

b∫
0

δ

(
y − b

2

)
cos
(πn

b
y
)

dy = cos
(πn

2

)

=
⎧⎨
⎩

0 n = 2l + 1, l = 0, 1, 2 . . .

(−1)l n = 2l , l = 0, 1, 2 . . .

⎫⎬
⎭

(4.12)

We can present the coefficients Alk as:

Alk = (−1)l Qc
π(2k + 1)

√
λlk sinh

(
a
√
λlk
) bc

4

×
[

cos

(
3π(2k + 1)

4

)
− cos

(
π(2k + 1)

4

)]
(4.13)
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with

λlk =
(π

L

)2 [
(2l)2 + (2k + 1)2

]
(4.14)

The final solution is:

u(x , y, z) =
∑
l , k

Alk cosh
(√
λlk[a − x]

)
cos

(
π2l

b
y
)

× sin

(
π(2k + 1)

c
z
)

(4.15)

4.2 Case Study: Forced Gas Oscillations in a
Prism: Case of a Homogeneous Force

A prism of square cross section (b × b) and length L is open in one

of its ends. One of its lateral faces (massless, i.e., with no inertia)

can move. A force acts on that wall, perpendicular to it, with the

value F (t) = F0 sin(ω0t), which creates periodic variations in the

pressure next to it. Find the pressure of the gas next to the opposite

wall, assuming no resonance conditions occur.

Figure 4.2

Mathematical formulation

The equation for the oscillations in a 3D gas are presented in terms

of u = P − P0 (pressure relative to the equilibrium pressure).

The problem consists of two open boundaries, three closed and one
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which moves periodically:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u2(x , y, z, t)

∂t2
− a2�u = 0

∂u
∂x

∣∣∣∣
x=0

= 0

u(x = b) = F0

Lb
sin(ω0t)

∂u
∂y

∣∣∣∣
y=0

= 0

u(y = L) = 0

∂u
∂z

∣∣∣∣
z=0

= ∂u
∂z

∣∣∣∣
z=b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.16)

Sturm–Liouville Problem

Since the boundary conditions for (y, z) are homogeneous, the

solution will consist in an expansion into orthogonal eigenfunctions.

We separate variables:

u(x , y, z, t) =
∑

Q(x , t)W(y, z) (4.17)

Where W(x , z) are the solutions of the Sturm–Liouville problem.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�W + λW = 0

∂W
∂y

∣∣∣∣
y=0

= 0

W(y = L) = 0

∂W
∂z

∣∣∣∣
z=0, b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.18)

The eigenfunctions and eigenvalues are:

Wnm(x , z) = cos

(
π(2n + 1)

2L
y
)

cos
(πm

b
z
)

(4.19)

λnm =
[
π(2n + 1)

2L

]2

+
[πm

b

]2

(n, m = 0, 1, 2, .. .) (4.20)
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General solution

We seek a general solution in the form:

u(x , y, z, t) =
∑
nm

Qnm(x) sin (ω0t) Wnm(y, z) (4.21)

This solution is replaced into the wave equation:

∑
nm

Qnm(x)
d2 sin(ω0t)

dt2
×Wnm(y, z) − a2 d2 Qnm

dx2
sin(ω0t) × Wnm(y, z)

− a2 Qnm(x , t)× sin(ω0t)�W =0

(4.22)

∑
nm

[
−ω0

2 Qnm(x) − a2 d2 Qnm

dx2
+ a2λnm Qnm(x)

]
× Wnm(y, z) = 0

(4.23)

Final solution

Using the orthogonality of W(y, z) it is possible to arrive at the

equation for the coefficients Qnm(x):

d2 Qnm

dx2
+
[
ω0

2 − a2λnm
]

a2
Qnm(x) = 0 (4.24)

Applying the first boundary condition:

∂u
∂x

∣∣∣∣
x=0

→ d Qnm

dx

∣∣∣∣
x=0

= 0 (4.25)

Applying the second boundary condition:

u(x = b) =
∑
nm

Qnm(b) sin (ω0t) × Wnm(x , z) = F0

Lb
sin (ω0t) (4.26)

We use the orthogonality of W(y, z) and arrive at another boundary

condition for Qnm(b, t)

Qnm(b) = F0

Lb
1

|Wnm(y, z)|2

L∫
0

b∫
0

Wnm(y, z)dydz = Anm (4.27)
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with

L∫
0

b∫
0

cos

(
π(2n + 1)

2L
y
)

× cos
(πm

b
z
)

dydz =

⎧⎪⎨
⎪⎩

0 (m �= 0)

2L(−1)n

π(2n + 1)
(m = 0)

⎫⎪⎬
⎪⎭

(4.28)

That is, only the coefficients Qn0(b) = An0 have non-zero values

since the profile of the eigenfunctions in the z direction has several

constants due to the plain profile of the pressure on the applied to

the mobile wall. Then the problem for Qn0(x , t) is:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d2 Qn0

dx2
+ [ω0

2 − a2λnm]

a2
Qn0(x) = 0

d Qn0

dx

∣∣∣∣
x=0

= 0

Qn0(b) = An0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.29)

Now two different cases with two qualitatively different solutions

will be considered:

Case 1
ω2

0 − a2λn0 > 0 (4.30)

For high frequencies (depending on n) we will get oscillatory

solutions:

Imposing the boundary condition d Qn0

dx

∣∣
x=0

= 0:

Qn0(x) = C cos

⎛
⎝
√

ω2
0

a2
− λn0 x

⎞
⎠ (4.31)

Imposing the second boundary condition:

Qn0(b) = C cos

(√
ω2

a2
− λn0 b

)
= An0 (4.32)

Then:

C = An0

cos

(√
ω2

a2 − λn0 b
) (4.33)

The magnitudes of the modes when ω2
0 > a2λn0 are:

Qn0(x) = An0

cos

(√
ω2

a2 − λn0 b
) cos

⎛
⎝
√

ω2
0

a2
− λn0 x

⎞
⎠ (4.34)
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Case 2:

ω2
0 − a2λn0 < 0 (4.35)

The solutions are exponentially decaying:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d2 Qn0

dx2
− [λn0 − ω2

0

a2
]Qn0(x) = 0

d Qn0

dx

∣∣∣∣
x=0

= 0

Qn0(b) = An0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.36)

Imposing the boundary condition d Qn0

dx

∣∣
x=0

= 0:

Qn0(x) = C cosh

⎛
⎝
√
λn0 − ω2

0

a2
x

⎞
⎠ (4.37)

Imposing the second boundary condition:

Qn0(b) = C cosh

⎛
⎝
√
λn0 − ω2

0

a2
b

⎞
⎠ = An0 (4.38)

Then:

C = An0

cosh

(√
λn0 − ω2

0

a2 b
) (4.39)

Solution for the amplitudes at low excitation frequencies:

Qn0(x) = An0

cosh

(√
λn0 − ω2

0

a2 b
) cosh

⎛
⎝
√
λn0 − ω2

0

a2
x

⎞
⎠ (4.40)

Finally we get to the pressure at the wall opposite to the oscillating

one (this is, for x = 0):

u(0, y, z, t) = sin(ω0t)
∑

n

An0

cos

(√
ω2

a2 − λn0 b
) cos

(
π(2n + 1)

2L
y
)

[n : ω2
0 > a2λn0]

+ sin(ω0t)
∑

n

An0

cosh

(√
λn0 − ω2

0

a2 b
) cos

(
π(2n + 1)

2L
y
)

[n : ω2
0 < a2λn0] (4.41)
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4.3 Case Study: Forced Gas Oscillations in a
Prism: Case of an Inhomogeneous Force

A tube of square section, of side length b is closed on one of its ends.

On the other there are two pistons which move with velocities U (t)

and −U (t). Supposing that U (t) = A sin(ωt) and that the tube length

is L >> b, find the variation of pressure inside the tube.

Figure 4.3

Mathematical formulation

The equation for the oscillations of a gas in 3D (in terms of the

pressure u = P − P0, with P0 being the equilibrium pressure) is:

∂u2(x , y, z, t)

∂t2
− a2�u = 0 (4.42)

Formulation of the boundary conditions for the five closed bound-

aries:

∂u
∂x

∣∣∣∣
x=0, b

= ∂u
∂z

∣∣∣∣
z=0, b

= ∂u
∂y

∣∣∣∣
y=L

= 0 (4.43)

For the forced boundary (y = 0) we need to use the relation between

the velocity of the gas and its local pressure:

ρ0

∂V
∂t

= −∇ P = −∇u(x , y, z) (4.44)

Considering the projection in y of the equation (4.44) and the plane

y = 0 we get the following relation:

ρ0

∂Vy

∂t
= −∇yu(x , y, z) (4.45)
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from which we get at the boundary conditions for the plane y = 0:

∂u
∂y

∣∣∣∣
y=0

=
{−ρ0 Aω cos(ωt) (0 < x < b

2
)

ρ0 Aω cos(ωt) ( b
2
< x < b)

}
(4.46)

It is the last boundary condition and is non-homogeneous. Further-

more, intuitively we see that the solution of the problem does not

depend on z.

Sturm–Liouville problem

Since the boundary conditions for x and z are homogeneous we

will expand the solution into eigenfunctions which are solutions of

the Sturm–Liouville problem in those directions, using separation of

variables:

u(x , y, z, t) = Q(y, t) × W(x , z) (4.47)⎧⎪⎨
⎪⎩

�W + λW = 0

∂W
∂ �n
∣∣∣∣

z=0, b;x=0, b
= 0

⎫⎪⎬
⎪⎭ (4.48)

The normalized eigenfunctions and eigenvalues are:

Wnm(x , z) = 2

b
cos
(πn

b
x
)

cos
(πm

b
z
)

(4.49)

λnm =
(π

b

)2

[n2 + m2] (n, m = 1, 2, . . .) (4.50)

Note that this type of normalization is not applicable to cases with n,

m = 0.

General solution

u(x , y, z, t) =
∑
nm

Qnm(y, t)Wnm(x , z) (4.51)

Replacing 4.47 into the wave equation∑
nm

∂2 Qnm(y, t)

∂t2
Wnm(x , z) −a2 ∂

2 Qnm(y, t)

∂y2
Wnm(x , z)

−a2 Qnm(y, t)�W = 0 (4.52)∑
nm

[
∂2 Qnm(y, t)

∂t2
− a2 ∂

2 Qnm(y, t)

∂y2
+ a2λnm Qnm(y, t)

]
Wnm(x , z) = 0

(4.53)
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Final solution

Using the orthogonality of W(x , z) we get at the equation for the

coefficients Qnm(y, t):

∂2 Qnm(y, t)

∂t2
− a2 ∂

2 Qnm(y, t)

∂y2
+ a2λnm Qnm(y, t) = 0 (4.54)

We need to include the boundary condition:

∂u
∂y

∣∣∣∣
y=L

=
∑
nm

Qnm(y, t)

∂y

∣∣∣∣
y=L

Wnm(x , z) = 0 (4.55)

→ ∂Qnm(y, t)

∂y

∣∣∣∣
y=L

= 0 (4.56)

The boundary condition for the oscillating face is:

∂u
∂y

∣∣∣∣
y=0

=
∑
nm

∂Qnm(y, t)

∂y

∣∣∣∣
y=0

Wnm(x , z)

=

⎧⎪⎪⎨
⎪⎪⎩

−ρ0 Aω cos(ωt)

(
0 < x <

b
2

)

ρ0 Aω cos(ωt)

(
b
2

< x < b
)
⎫⎪⎪⎬
⎪⎪⎭ (4.57)

Using the orthogonality of W(x , z) we arrive at the condition:

b∫
0

b∫
0

∂u
∂y

∣∣∣∣
y=0

Wnm(x , z)dxdz = ∂Qnm(y, t)

∂y

∣∣∣∣
y=0

|Wnm(x , z)|2

= ∂Qnm(y, t)

∂y

∣∣∣∣
y=0

(4.58)

Then the equation for Qnm(y, t) is:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂2 Qnm(y, t)

∂t2
− a2

∂2 Qnm(y, t)

∂y2
+ a2λnm Qnm(y, t) = 0

∂Qnm(y, t)

∂y

∣∣∣∣
y=L

= 0

∂Qnm(y, t)]

∂y

∣∣∣∣
y=0

=
b∫

0

b∫
0

∂u
∂y

∣∣∣∣
y=0

Wnm(x , z)dxdz

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.59)
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Since the boundary conditions are for the derivatives, the solution

would require to define a constant. We can check that when n, m =
0:

∂Q00(y, t)

∂y

∣∣∣∣
y=0

=
b∫

0

b∫
0

∂u
∂y

∣∣∣∣
y=0

W00(x , z)dxdz

= 1

b

b∫
0

b∫
0

∂u
∂y

∣∣∣∣
y=0

dxdz = 0 (4.60)

→ Q00(y, t) = const=(if the initial conditions are null) = 0

When n, m �= 0:

∂Qnm(y, t)

∂y

∣∣∣∣
y=0

=
b∫

0

b∫
0

∂u
∂y

∣∣∣∣
y=0

Wnm(x , z)dxdz

=
b∫

0

∂u
∂y

∣∣∣∣
y=0

2

b
cos
(πn

b
x
)

dx

b∫
0

cos
(πm

b
z
)

dz =

(4.61)

=
b∫

0

∂u
∂y

∣∣∣∣
y=0

2

b
cos
(πn

b
x
)

dx ×
∣∣∣∣ b
πm

sin
(πm

b
z
)∣∣∣∣

b

0

= 0 (4.62)

Then the modes with n and m different from zero are not excited

(due to the symmetry of the problem there are no excited modes in

the z direction). Finally we need to check the case with n �= 0, m = 0

∂Qn0(y, t)

∂y

∣∣∣∣
y=0

=
b∫

0

b∫
0

∂u
∂y

∣∣∣∣
y=0

Wn0(x , z)dxdz

=
b∫

0

√
2

b
dz

b∫
0

∂u
∂y

∣∣∣∣
y=0

cos
(πn

b
x
)

dx = (4.63)

=
√

2Aω cos(ωt)

[
−
(

b
πn

sin(
πn
b

x
)b/2

0

+
(

b
πn

sin
πn
b

x
)b

b/2

]

= 2
√

2b
πn

Aω
[

sin
(πn

2

)]
cos(ωt) = ϕn cos(ωt)
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Then the problem for Qn0(y, t) is:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂2 Qn0(y, t)

∂t2
− a2

∂2 Qn0(y, t)

∂y2
+ a2λnm Qn0(y, t) = 0

∂Qnm(y, t)

∂y

∣∣∣∣
y=L

= 0

∂Qnm(y, t)

∂y

∣∣∣∣
y=0

= ϕn cos(ωt)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.64)

We obtain an equation analogous to that of a string attached to

an elastic plane, with a free right boundary and the left boundary

moving periodically, with a derivative proportional to cos(ωt).

The solution of the last problem will be sought as Qn0(y, t) =
Hn(y) cos(ωt):

−ω2 Hn(y) − a2 ∂
2 Hn(y)

∂y2
+ a2λn0 Hn(y) = 0 (4.65)

or

d2 Hn(y)

dy2
+
(
ω2

a2
− λn0

)
Hn(y) = 0 (4.66)

First boundary condition:

d Qnm(y, t)

dy

∣∣∣∣
y=L

= d Hn(y)

dy

∣∣∣∣
y=L

cos(ωt) = 0 (4.67)

→ d Hn(y)

dy

∣∣∣∣
y=L

= 0 (4.68)

Second boundary condition:

∂Qnm(y, t)]

∂y

∣∣∣∣
y=0

= d Hn(y)

dy

∣∣∣∣
y=0

cos(ωt) = ϕn cos(ωt) (4.69)

→ d Hn(y)

dy

∣∣∣∣
y=0

= ϕn (4.70)

Equation for Hn(y) :⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2 Hn(y)

dy2
+
(
ω2

a2
− λn0

)
Hn(y) = 0

d Hn(y)

dy

∣∣∣∣
y=L

= 0

d Hn(y)

dy

∣∣∣∣
y=0

= ϕn

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.71)
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First case: (
ω2

a2
− λn0

)
> 0 (4.72)

We get oscillating solutions. Using the first boundary condition:

Hn(y) = C cos

(√
ω2

a2
− λn0 (L − y)

)
(4.73)

Imposing the second boundary condition:

∂Hn(y)

∂y

∣∣∣∣
y=0

= −C

√
ω2

a2
− λn0 sin

(√
ω2

a2
− λn0 L

)
= ϕn (4.74)

Then

C = − ϕn√
ω2

a2 − λn0 sin

(√
ω2

a2 − λn0 L
) (4.75)

Then the magnitudes

Qn0(y, t) = −
ϕn cos(ωt) cos

(√
ω2

a2 − λn0 (L − y)

)
√

ω2

a2 − λn0 sin

(√
ω2

a2 − λn0 L
) (4.76)

The final solution in this case is:

u(x , y, z, t) =
∑

n

Qn0(y, t)Wn0(x , z) (4.77)

The minimum frequency of the induced sound is:

ω2
min = a2λ10 = a2

(π
b

)2

[12 + 02] =
(π

b
a
)2

(4.78)

We consider the second case:
(

ω2

a2 − λn0

)
< 0 providing exponen-

tially decreasing solutions.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂2 Hn(y)

∂y2
−
(
λn0 − ω2

a2

)
Hn(y) = 0

∂Hn(y)

∂y

∣∣∣∣
y=L

= 0

∂Hn(y)

∂y

∣∣∣∣
y=0

= ϕn

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.79)
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From the first boundary condition:

Hn(y) = C cosh

(√
λn0 − ω2

a2

)
(L − y).

Imposing the second boundary condition:

d Hn(y)

dy

∣∣∣∣
y=0

= C

√
λn0 − ω2

a2
sinh

(√
λn0 − ω2

a2
L

)
= ϕn (4.80)

Then:

C = ϕn√
λn0 − ω2

a2 sinh

(√
λn0 − ω2

a2 L
) (4.81)

So are the amplitudes obtained:

Qn0(y, t) =
ϕn cos(ωt) cosh

√
λn0 − ω2

a2 (L − y)√
λn0 − ω2

a2 sinh

(√
λn0 − ω2

a2 L
) (4.82)

For ω < ωmin = (π
b a) ⇔ u(x , y, z, t) =∑ Qn0(y, t)Wn0(x , z)

Final note: in the case of coincidence of the frequency of the

piston with any of the frequencies of the standing waves in the

perpendicular direction of propagation (in the y direction), these

transversal waves will be excited, suppressing any solution in the

y direction.

Mathematically this is reflected in the fact that there are no solutions

in the y direction for: (
ω2

a2
= λn0

)
(4.83)

which satisfies both boundary conditions, being it a straight line

with zero derivative at y = L and with finite value of the derivative

for y = 0.

4.4 Case Study: Optimization of the Size of an
Atomic Bomb: Diffusion Equation in
Cartesian Coordinates

Calculate the critical size needed to control the diffusion processes

in a radioactive medium in the shape of a cube of side L. Consider a



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Optimization of the Size of an Atomic Bomb 199

medium with neutron diffusion (concentration = C ) produced by a

fission chain reaction.

Figure 4.4

Considerations

The neutrons multiply at each location at a rate proportional to their

concentration:

∂C (x , y, z)

∂t
= βC (x , y, z) (4.84)

Equation to solve:
∂C (x , y, z, t)

∂t
− D�C (x , y, z, t) = βC (x , y, z, t) (4.85)

or
∂C (x , y, z, t)

∂t
− βC (x , y, z, t) − D�C (x , y, z, t) = 0 (4.86)

These processes have two limit situations:

(a) If the size of the radioactive sample is small in comparison

with the mean free path of the neutrons, they will escape

very fast without colliding with the uranium atoms. Therefore,

there won’t be an effective production of new neutrons and the

contribution to the diffusion (�C (x , y, z, t)) will be much higher

than the term which describes the production of neutrons due to

their effective escape outside the bomb. Then in the first case of

small size (with a small ratio between volume and surface):

βC (x , y, z, t) << D�C (x , y, z, t) (4.87)
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Figure 4.5

In this limit the equation to be solved would have the form of a

diffusion equation:

∂C (x , y, z, t)

∂t
− D�C (x , y, z, t) = 0 (4.88)

Figure 4.6

(b) If the sample is very large in comparison with the mean free path

the neutrons will collide with the uranium atoms with a higher

chance, which will trigger the chain reaction: The contribution

of the diffusion �C should be lower than the production of

neutrons βC .

βC (x , y, z, t) >> D�C (x , y, z, t) (4.89)
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Figure 4.7

In this second limit the equation to be solved is:

∂C (x , y, z, t)

∂t
− βC (x , y, z, t) = 0 (4.90)

This equation has an exponential solution:

C (x , y, z, t) ∼ eβt (4.91)

We seek the moment of the transition of the solution between

the stable case and the exponential growth. For a cube of side L:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂C (x , y, z, t)

∂t − βC (x , y, z, t) − D�C (x , y, z, t) = 0

C (surface, t) = 0

C (x , y, z, 0) = ϕ(x , y, z)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.92)

Notes:

(a) The null boundary conditions are used as an approximation to

simplify the solution.

(b) The null boundary conditions describe the fact that the neutrons

escape very fast from the surface and their concentration there

is taken to be null.
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Sturm–Liouville problem

We separate variables:

C (x , y, z, t) = v(x , y, z) × T (t) (4.93)

and arrive at the Sturm–Liouville for v(x , y, z).⎧⎨
⎩

�v(x , y, z) + λv(x , y, z) = 0

v(surface) = 0

⎫⎬
⎭ (4.94)

the normalized eigenfunctions and eigenvalues are:

vnmk(x , y, z) = X n(x)Ym(y)Z k(z)

=
(

2

L

)3/2

sin
(πn

L
x
)

sin
(πm

L
y
)

sin

(
πk
L

z
)

(4.95)

λnmk =
(π

L

)2

[n2 + m2 + k2] (4.96)

being n, m, k positive integers.

General solution

We replace C (x , y, z, t) = vnmk(x , y, z) · Tnmk(t) into equation (4.92).

We arrive at the equation for the magnitude of the modes Tnmk:

∂Tnmk(t)

∂t
− βTnmk(t) + DλnmkTnmk(t) = 0 (4.97)

The solution is: Tnmk(t) = Anmke(β−Dλnmk)t The general solution of

equation (4.92) is:

C (x , y, z, t) =
∑
n, m, k

Anmke(β−Dλnmk)t×sin
(πn

L
x
)

sin
(πm

L
y
)

sin

(
πk
L

z
)

(4.98)

a) Let us consider that the condition of stability of the solution: β −
Dλnmk < 0 is satisfied for every eigenvalue λnmk.

Then, the solution is totally stable if β − Dλ111 < 0 is satisfied (then

it will be satisfied for the rest of the λnmk).
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Final solution

To summarize the first part of the solution: the condition of stability

is:

β − Dλ111 = β − 3D
(π

L

)2

< 0 (4.99)

L < π

√
3D
β

= Lcr (4.100)

For L < Lcr the solution is stable. For L > Lcr the solution is unstable.

Now we consider the stability of the half of the cube to calculate its

critical size.

Eigenvalues of the solution for half of the cube:

λ2nmk =
(π

L

)2

[(2n)2 + m2 + k2] (4.101)

Normalized eigenfunctions:

vnmk(x , y, z) =
(

2

L

)2(
4

L

)
sin

(
π2n

L
x
)

sin
(πm

L
y
)

sin

(
πk
L

z
)

(4.102)

λmin = λ211 =
(π

L

)2

[(2)2 + 12 + 12] = 6
(π

L

)2

(4.103)

Lcr = π

√
6D
β

(4.104)

Therefore if we consider a cube of size: π
√

3D
β

< L < π
√

6D
β

The bomb could explode when the two halves are brought together,

but each of the halves is stable.

Figure 4.8
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4.5 Oscillations of a Gas in a Cube

We have a gas (with speed of sound c) inside a cubic container of side

L. This container is divided in two equal halves, with densities of the

gas equal to ρ0+ρ1 and ρ0−ρ1 in each half (consider that ρ1 << ρ0).

At the instant t = 0 the division of the container is removed. Find the

vibrations of the gas density as a function of time.

Figure 4.9

Mathematical formulation

We seek a solution for u(x , y, z, t) = ρ − ρ0, this is, the relative

variation of the gas density with respect to the equilibrium density

ρ0.

∂2u(x , y, z, t)

∂t2
= c2�u(x , y, z, t) (4.105)

With boundary conditions ∂u(x , y, z, t)

∂n = 0 (being n the direction

normal to each surface).

The initial conditions are:

u(x , y, z, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x) × g(y) × v(z)

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

ρ1

(
0 < x <

L
2

)

−ρ1

(
L
2

< x < L
)
⎫⎪⎪⎬
⎪⎪⎭

g(y) = 1 (0 < y < L)

v(z) = 1 (0 < z < L)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∂u
∂t

∣∣∣∣∣
t=0

= 0 (4.106)

Sturm–Liouville problem

The solution is expanded in orthogonal eigenfunctions in all three

spatial directions, since all boundary conditions are homogeneous.
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The eigenfunctions and eigenvalues are known to be:

λn, m, k =
(πn

L

)2

+
(πm

L

)2

+
(
πk
L

)2

(4.107)

X n(x)Ym(y)Z k(z) = cos
(πn

L
x
)

cos
(πm

L
y
)

cos

(
πk
L

z
)

(4.108)

General solution

u(x , y, z, t) =
∑
n, m, k

Anmk cos
(√
λn, m, kct

)

× cos
(πn

L
x
)

cos
(πm

L
y
)

cos

(
πk
L

z
)

(4.109)

Final solution

The Anmk coefficients are obtained from the initial conditions, using

the orthogonality of the eigenfunctions.

u(x , y, z, t = 0) = f (x) × g(y) × v(z)

=
∑
n, m, k

Anmk cos
(πn

L
x
)

cos
(πm

L
y
)

cos

(
πk
L

z
)

(4.110)

Both sides are multiplied by X n(x)Yn(y)Z m(z) and integrated:

L∫
0

L∫
0

L∫
0

dxdydz

Only the coefficients with n different from zero but with m, k = 0

remain. Then:

An0, 0 =
(

2

L

)2
L∫

0

f (x) cos
(πn

L
x
)

dx

= 4ρ1

L2

⎡
⎣ L/2∫

0

cos
(πn

L
x
)

dx −
L∫

L/2

cos
(πn

L
x
)

dx

⎤
⎦

= 4ρ1

L2

L
πn

(
sin
(πn

2

)
− sin (πn) + sin

(πn
2

))
= 8ρ1

L2

L
πn

(
sin
(πn

2

))
(4.111)
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4.6 Stationary Temperature Distribution inside a
Prism

Find the stationary distribution of temperature inside a prism of

dimensions a, b, c. The temperature of the face x = 0 is kept as

T (x = 0, y, z, t) = Ayz. The faces z = 0 and z = c are kept at

T = 0. All remaining faces are thermally insulated.

Figure 4.10

We must solve Laplace’s equation in a prism in which five of the six

faces have homogeneous boundary conditions.

Mathematical formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u(x , y, z) = 0

u(x = 0) = Ayz

u(z = 0) = u(z = c) = 0

∂u
∂x

∣∣∣∣
x=a

= ∂u
∂y

∣∣∣∣
y=0

= ∂u
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.112)

We first consider the faces with x constant, for which the boundary

conditions are homogeneous.
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Sturm–Liouville problem

In the Y Z plane we can solve the following Sturm–Liouville problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�v(y, z) + λv(y, z) = 0

v(z = 0) = v(z = c) = 0

∂v
∂y

∣∣∣∣
y=0

= ∂v
∂y

∣∣∣∣
y=b

= 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.113)

with eigenfunctions:

vnm = cos
(πn

b
y
)

sin
(πm

c
z
)

(4.114)

and eigenvalues:

λnm =
(πn

b

)2

+
(πm

c

)2

(n = 0, 1, 2, 3...); (m = 1, 2, 3...)

(4.115)

General solution

The general solution can be expanded in the base of the vnm and the

coefficients will depend on the x coordinate:

u(x , y, z) =
∑
n, m

wnm(x)vnm(y, z) (4.116)

Replacing into Laplace’s equation: �u(x , y, z) = 0 we get the

equations we need to solve:

d2wnm(x)

dx2
− λnmwnm(x) = 0 (4.117)

with the boundary condition:

dwnm(x)

dx

∣∣∣∣
x=a

= 0 (4.118)
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Figure 4.11

With this type of condition is more convenient to search for a

solution of the form:

wnm(x) = Anm sinh(
√
λnmx) + Bnm cosh(

√
λnm(a − x)) (4.119)

Final solution

Applying the boundary condition, we have:

wnm(x)x (x = a) = Anm

√
λnm cosh(

√
λnma)

+ Bnm

√
λnm sinh((a − a)) = 0 (4.120)

We conclude that the coefficients Anm = 0, and:

wnm(x) = Bnm cosh(
√
λnm(a − x)) (4.121)

The general solution using the second boundary condition is:

u(x , y, z) =
∑
n, m

Bnm cosh(
√
λnm(a − x))vnm(y, z) (4.122)

We use the first boundary condition to find Bnm:

u(0, y, z) = Ayz =
∑
n, m

Bnm cosh(
√
λnma)vnm(y, z) (4.123)

Using the orthogonality of vnm(y, z) we arrive at the expression

for Bnm

Bnm = A
cosh(

√
λnma)

1∫ b
0

∫ c
0

cos2
(
πn
b y
)

sin2
(
πm

c z
)

dydz∫ b

0

∫ c

0

yz cos
(πn

b
y
)

sin
(πm

c
z
)

dydz (4.124)
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Note on the modulus of the eigenfunctions for different values of

n, m.

c∫
0

sin2
(πm

c
z
)

dz = c
2

(4.125)

b∫
0

cos2
(πn

b
y
)

dy =
{ b

2
(n �= 0)

b (n = 0)

}
(4.126)

Furthermore:

c∫
0

z sin
(πm

c
z
)

dz = c2

πm
(−1)m+1 (4.127)

b∫
0

y cos
(πn

c
y
)

dy =

⎧⎪⎪⎨
⎪⎪⎩

b2

π2n2
[(−1)n − 1] (n �= 0)

b2

2
(n = 0)

⎫⎪⎪⎬
⎪⎪⎭ (4.128)

Then:

B0m = Abc
πm

1

cosh(
√
λnma)

(−1)m+1 (4.129)

Bnm = 4Abc
cosh(

√
λnma)

(−1)m

π3n2m
[(−1)n − 1] (4.130)

4.7 Variation of the Temperature inside a Cube:
From Poisson to a Diffusion Problem

A thermal reservoir keeps the surface of a cube of size L × L × L
at a temperature T0. In the center of this cube there is a point heat

source which supplies q units of heat by unit time. This heat source

is suddenly turned off at t = 0. Find the temperature in the inside

of the cube from that moment if the thermal conductivity of the

material is k.
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Figure 4.12

Mathematical formulation

First we need to solve Poisson’s equation for t < 0 to get the initial

conditions for the diffusion problem, which starts at t = 0.

Mathematical formulation of problem 1 (t > 0):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂u(x , y, z, t)

∂t
− k�u(x , y, z, t) = 0

u(0, y, z, t) = u(L, y, z, t) = u(x , 0, z, t) = u(x , L, z, t)

= u(x , y, 0, t) = u(x , y, L, t) = T0

u(x , y, z, 0) = f (x , y, z)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.131)

To find f (x , y, z) we need to formulate and solve the stationary

problem 2:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u(x , y, z) = −q
k
δ

(
x − L

2

)
δ

(
y − L

2

)
δ

(
z − L

2

)
u(0, y, z) = u(L, y, z) = u(x , 0, z) = u(x , L, z)

= u(x , y, 0) = u(x , y, L) = T0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.132)

We shift the solution by a value T0 (v(x , y, z) = u(x , y, z) − T0)

and seek the solution by expanding v(x , y, z) in a summation of

orthogonal eigenfunctions, corresponding to the following Sturm–

Liouville problem (homogeneous boundary conditions of the first



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Variation of the Temperature inside a Cube: From Poisson to a Diffusion Problem 211

type):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�v(x , y, z) + λv(x , y, z) = 0

v(0, y, z) = v(L, y, z) = v(x , 0, z) = v(x , L, z)

= v(x , y, 0) = v(x , y, L) = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.133)

Sturm–Liouville problem

Seeking the solution with the method of separation of variables (for

example in the normalized form), we get:

v(x , y, z) = 2
√

2

L3/2
sin
(πn

L
x
)

sin
(πm

L
y
)

sin

(
πl
L

z
)

(4.134)

λnml =
(πn

L

)2

+
(πm

L

)2

+
(
πl
L

)2

(4.135)

Then we look for the solution of the non-homogeneous equation

(4.132) as:

v(x , y, z) =
∑
n, m, l

Anml
2
√

2

L3/2
sin
(πn

L
x
)

sin
(πm

L
y
)

sin

(
πl
L

z
)

(4.136)

∑
n, m, j

Anml
2
√

2

L3/2
λnml sin

(πn
L

x
)

sin
(πm

L
y
)

sin

(
πl
L

z
)

= −q
k
δ

(
x − L

2

)
δ

(
y − L

2

)
δ

(
z − L

2

)
(4.137)

Using the orthogonality of the eigenfunctions we will get the

coefficients of the sum.

Anml = q
kλnml

L3/2

2
√

2

8

L3

∫ L

0

∫ L

0

∫ L

0

δ

(
x − L

2

)
δ

(
y − L

2

)
δ

(
z − L

2

)

sin
(πn

L
x
)

sin
(πm

L
y
)

sin

(
πl
L

z
)

dxdydz =
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= q
kλnml

2
√

2

L3/2
sin
(πn

2

)
sin
(πm

2

)
sin

(
πl
2

)
= q

kλnml

2
√

2

L3/2
(−1)n+m+l

(4.138)

Anml only finite for n = 2n′ + 1; m = 2m′ + 1; l = 2l ′ + 1 (that is,

odd integers). Then

u(x , y, z) = f (x , y, z) = T0 + 8q
kL3

∑
n, m, l

(−1)n+m+l(
πn
L

)2 + (πm
L

)2 + (πl
L

)2

× sin
(πn

L
x
)

sin
(πm

L
y
)

sin

(
πl
L

z
)

(4.139)

where n = 2n′ + 1; m = 2m′ + 1; l = 2l ′ + 1

We now move on to the solution of problem 1 (t > 0), again shifting

the solution by T0.

w(x , y, z, t) = u(x , y, z, t) − T0 (4.140)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂w(x , y, z, t)

∂t
− k�w(x , y, z, t) = 0 → ∂w(x , y, z, t)

∂t

− 1

χ
�w(x , y, z, t) = 0

w(0, y, z, t) = w(L, y, z, t) = w(x , 0, z, t) = w(x , L, z, t)

= w(x , y, 0, t) = w(x , y, L, t) = 0

w(x , y, z, 0) = f (x , y, z) − T0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.141)

Separating variables in the form w(x , y, z, t) = T (t)X (x)Y (y)Z (z)

we get to the solution in terms of the already obtained eigenfunc-

tions.

w(x , y, z) =
∑
n, m, l

Cnml e−λnmlχt 2
√

2

L3/2
sin
(πn

L
x
)

sin
(πm

L
y
)

sin

(
πl
L

z
)

(4.142)

Final solution

Applying the initial condition:

w(x , y, z, 0) = f (x , y, z) − T0 =
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= 8q
kL3

∑
n, m, l

(−1)n+m+l

(πn
L )2 + (πm

L )2 + (πl
L )2

sin
(πn

L
x
)

sin
(πm

L
y
)

sin

(
πl
L

z
)

=
∑
n, m, l

Cnml
2
√

2

L3/2
sin
(πn

L
x
)

sin
(πm

L
y
)

sin

(
πl
L

z
)

(4.143)

and using the orthogonality of the eigenfunctions

sin
(
πn
L x
)

, sin
(
πm

L y
)

, sin
(
πl
L z
)

, we get the coefficients:

Cnml = q
k

2
√

2

L3/2

(−1)n+m+l(
πn
L

)2 + (πm
L

)2 + (πl
L

)2

n = 2n′ + 1; m = 2m′ + 1; l = 2l ′ + 1 (4.144)

4.8 Variation of the Pressure inside a Rectangular
Prism due to the Periodic Action of a Piston

Find the temporal variation of the relative pressure (with initial

value equal to zero) inside the rectangular prism shown in the figure

below if starting at t = 0 the pressure in one of the faces varies as

P0 sin(ωt).

Figure 4.13

Mathematical formulation

We will look for the solution S(x , y, z, t) as the sum of the stationary

solution u(x , y, z, t) established at t → ∞ (which will be reached
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due to friction), and the transient solution w(x , y, z, t). The equation

to be solved is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2 S(x , y, z, t)

∂t2
− c2�S(x , y, z, t) = 0

S(x , y, z, t = 0) = 0{
∂

∂�n u(x , y, z)

}
�

= 0

(� = all surfaces except the base)

(�n = perpendicular to every surface)

S(x , y, 0, t) = P0 sin(ωt)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.145)

Replacing the following form of the solution:

S(x , y, z, t) = w(x , y, z, t) + v(x , y, z) sin(ωt) (4.146)

With the stationary solution (without initial conditions), considered

to be u = v(x , y, z) sin(ωt). We have:

∂2w
∂t2

− ω2v sin(ωt) − c2�w − c2�v sin(ωt) = 0 (4.147)

The problem is separated in two:

Formulation of the problem for the transitory part:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2w(x , y, z, t)

∂t2
− c2�w(x , y, z, t) = 0

w(x , y, z, t = 0) = 0

Conditions 1-5:
∂w(x , y, z, t)

∂n
= 0

(all homogeneous of the second type)

w(x , y, 0, t) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.148)

This problem has a rather straightforward solution, as an expansion

of three types of orthogonal functions. We just need to find the initial

conditions by solving the problem for v(x , y, z).
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Formulation of problem (2) for the spatial part of the stationary

solution:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ω2v(x , y, z) − c2�v(x , y, z) = 0

Conditions 1-5:
∂v(x , y, z)

∂n
= 0

(all homogeneous of the second type)

v(x , y, 0) = P0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.149)

We will explain the initial details of how to find the stationary

solution:

�v(x , y, z) + ω2

c2
v(x , y, z) = 0 (4.150)

General solution

The solution for v(x , y, z) (of the Poisson type) is expanded as:

v(x , y, z) =
∑
nm

Cnm(z)wnm(x , y) (4.151)

Where the coefficients wnm(x , y) are obtained by solving the Sturm–

Liouville problem in 2D:⎧⎨
⎩

�wnm(x , y) = −λnmwnm(x , y)

Second type boundary conditions

⎫⎬
⎭ (4.152)

We replace the summation into Poisson’s equation.∑
Cnm(z)�wnm(x , y) +

∑ d2Cnm(z)

dz2
wnm(x , y)

+ω2

c2

∑
Cnm(z)wnm(x , y) = 0 (4.153)

We use the result to solve the Sturm–Liouville problem:∑
Cnm(z)[−λnmwnm(x , y)] +

∑ d2Cnm(z)

dz2
wnm(x , y)

+ω2

c2

∑
Cnm(z)wnm(x , y) = 0 (4.154)

The sum is rewritten as:∑{
Cnm(z)[−λnm] + d2Cnm(z)

dz2
+ ω2

c2
Cnm(z)

}
wnm(x , y) = 0

(4.155)
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Final solution

Applying the orthogonality of the wnm(x , y) functions we arrive at a

solution for the z variable:

d2Cnm(z)

dz2
+
[
ω2

c2
− λnm

]
Cnm(z) (4.156)

We have these boundary conditions:

At (z = L) → ∂v(x , y, x)

∂z

∣∣∣∣
z=L

=
∑ dCnm(z)

dz

∣∣∣∣
z=L

wnm(x , y)

= 0 → dCnm(z)

dz

∣∣∣∣
z=L

= 0

At (z = 0) → v(x , y, 0) =
∑

Cnm(0)wnm(x , y) = P0

Using the orthogonality of the wnm(x , y) eigenfunctions we get:

Cnm(0) =
�

P0wnm(x , y)dxdy�
[wnm(x , y)]2dxdy

(4.157)

4.9 Case Study: Variation of Temperature inside a
Prism: From Laplace to Poisson Problems

A prism has dimensions a × b × c. One of its faces is in contact

with a thermal reservoir at a temperature T0, another isothermally

insulated (this face shares an edge with the former) and the rest are

in contact with a reservoir at a temperature T1. At the instant t = 0

the first face is put also at a temperature T1, and the center of the

prism starts to act as a heat point source which supplies Q [J/s].

(1) Find the variation of the temperature with time.

(2) How will the heat flux across the prism surface change with

time?



April 5, 2023 0:23 JSP Book - 9in x 6in Main

From Laplace to Poisson Problems 217

Figure 4.14

First we attempt to solve Laplace’s equation in a prism to obtain the

initial conditions which will be used in Poisson’s problem (from t =
0 onwards).

Mathematical formulation

Formulation for t < 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u(x , y, z) = 0

u(0, y, z) = u(x , b, z) = u(x , y, 0) = u(0, y, c) = T1

u(a, y, z) = T0

∂u
∂y

∣∣∣∣
y=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.158)

To create homogeneous boundary conditions, we shift the origin of

temperatures: u(x , y, z) = g(x , y, z)+ T1. The problem for g(x , y, z)

is:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�g(x , y, z) = 0

∂g
∂y

∣∣∣∣
y=0

= 0; g(a, y, z) = T0 − T1

g(0, y, z) = g(x , b, z) = g(x , y, 0) = g(0, y, c) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.159)
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Sturm–Liouville problem

We can seek the solution by expanding it into orthogonal eigen-

functions, corresponding to Sturm–Liouville problems in the y and

z directions (with homogeneous boundary conditions). Seeking the

solution by separation of variables, we will use this to choose the

signs of the constants.

g(x , y, z) = X (x) × Y (y) × Z (z) (4.160)

From �g(x , y, z) = 0 → 1
X

d2 X
dx2 + 1

Y
d2Y
dy2 + 1

Z
d2 Z
dz2 = 0

Sturm–Liouville problem in the y direction:

d2Y
dy2

+ α2Y = 0

Boundary conditions: ∂Y (y)

∂y

∣∣∣
y=0

= 0; Y (b) = 0

(4.161)

Provides us with the eigenfunctions Ym = cos
(

π(2m+1)

2b y
)

; m =
0, 1, 2, 3 . . . and eigenvalues αm = π(2m+1)

2b . The Sturm–Liouville

problem in the z direction is:⎧⎪⎨
⎪⎩

d2 Z
dz2

+ β2 Z = 0

Boundary conditions: Z (0) = Z (c) = 0

⎫⎪⎬
⎪⎭ (4.162)

Gives us the eigenfunctions Zl =sin
(
πl
c z
)

; l = 1, 2, 3 . . . and

eigenvalues βl = πl
c

The problem in the x direction is not a Sturm–Liouville problem,

since the boundary at x = a is inhomogeneous of the first kind.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2 X
dx2

− (α2
m + β2

l )X = 0

Boundary conditions: X (0) = 0;

The condition on the opposite face is: g(a, y, z) = T0 − T1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.163)

General solution

The general solution for X (x) is written more conveniently as:

X (x) = E sinh

(√
α2

m + β2
l x
)

+ H cosh

(√
α2

m + β2
l x
)

(4.164)
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The condition X (0) = 0 gives H = 0.

Then the general solution to the Laplace’s problem will be:

g(x , y, z) =
∑
l , m

Aml sinh

(√
α2

m + β2
l x
)

× cos

(
π(2m + 1)

2b
y
)

× sin

(
πl
c

z
)

(4.165)

Final solution

Imposing the condition g(a, y, z) = T0 − T1 we get the coefficients

of the summation:

T0 − T1 =
∑
l , m

Aml sinh

(√
α2

m + β2
l a
)

× cos

(
π(2m + 1)

2b
y
)

× sin

(
πl
c

z
)

(4.166)

Taking advantage of the orthogonality of the eigenfunctions Ym Zl .

∫ b

0

∫ c

0

(T0 − T1) cos

(
π(2m + 1)

2b
y
)

× sin

(
πl
c

z
)

dydz

= Aml sinh

(√
α2

m + β2
l a
)∥∥∥∥cos

(
π(2m + 1)

2b
y
)∥∥∥∥

2

×
∥∥∥∥sin

(
πl
c

z
)∥∥∥∥

2

(4.167)

Aml = 4

bc
(T0 − T1)

sinh[

√
(α2

m + β2
l )a]

b∫
0

c∫
0

cos

(
π(2m + 1)

2b
y
)

× sin

(
πl
c

z
)

dydz (4.168)

Aml = 4

bc
(T0 − T1)

sinh

(√
(α2

m + β2
l )a
) 2bc

π2l(2m + 1)
(−1)m[1 − (−1)l ] →

(4.169)

Aml =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)m 16

bc
bc

π2l(2m + 1)

(T0 − T1)

sinh

⎛
⎝
√[

π(2m + 1)

2b

]2

+
(πn

c

)2

a

⎞
⎠

(l=odd)

0 (l=even)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.170)
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Then the solution of Laplace’s problem (which gives the initial

condition at t = 0) is:

u(x , y, z, 0) = T1 + 16(T0 − T1)× (4.171)

×
∑

m, l=odd

(−1)m 1

π2l(2m + 1)

1

sinh

(√
[π(2m+1)

2b ]2 + (πn
c )2a

) ×

× sinh

⎛
⎝
√[

π(2m + 1)

2b

]2

+
(πn

c

)2

x

⎞
⎠× cos

(
π(2m + 1)

2b
y
)

× sin

(
πl
c

z
)

Mathematical formulation of Poisson’s problem (t > 0)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

(x , y, z, t) − χ�u(x , y, z, t) = q(x , y, z)

Cρ

q(x , y, z) = Qδ
(

x − a
2

)
δ

(
y − b

2

)
δ
(

z − c
2

)
u(0, y, z) = u(a, y, z) = u(x , b, z) = u(x , y, 0) = u(0, y, c) = T1

∂u
∂t

∣∣∣∣
y=0

= 0

u(x , y, z, 0) = T1 + g(x , y, z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.172)

This problem can be solved by separating it into two: one for

w(x , y, z), non-homogeneous (Poisson), which corresponds to the

solution at infinite times (t = +∞) and transient one v(x , y, z, t) as

a function of time, which is a solution of the homogeneous problem:

u(x , y, z, t) = v(x , y, z, t) + w(x , y, z) (4.173)

Replacing into the formulation of Poisson’s problem we have the

equation:

∂v(x , y, z, t)

∂t
−χ�v(x , y, z, t)−χ�w(x , y, z) = q(x , y, z)

Cρ
(4.174)

⎧⎪⎪⎨
⎪⎪⎩

∂v(x , y, z, t)

∂t
− χ�v(x , y, z, t) = 0

χ�w(x , y, z) = − Q
Cρ

δ
(

x − a
2

)
δ

(
y − b

2

)
δ
(

z − c
2

)
⎫⎪⎪⎬
⎪⎪⎭

(4.175)
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Distributing the boundary conditions between the two problems:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w(0, y, z) = w(a, y, z) = w(x , b, z) = w(x , y, 0)

= w(0, y, c) = T1

∂w
∂y

∣∣∣∣
y=0

= 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.176)

⎧⎨
⎩

v(0, y, z) = v(a, y, z) = v(x , b, z) = v(x , y, 0) = v(0, y, c) = 0
∂v
∂y

∣∣∣∣
y=0

= 0

⎫⎬
⎭

(4.177)

We also can obtain the initial condition for the temporal problem

using the relation:

u(x , y, z, 0) = v(x , y, z, 0) + w(x , y, z) (4.178)

Then v(x , y, z, 0) = u(x , y, z, 0) − w(x , y, z). The function

u(x , y, z, 0) has been obtained from the solution of the Laplace’s

problem. Then we solve first the stationary problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�w(x , y, z) = − Q
χCρ

δ
(

x − a
2

)
δ

(
y − b

2

)
δ
(

z − c
2

)
w(0, y, z) = w(a, y, z) = w(x , b, z) = w(x , y, 0)

= w(0, y, c) = T1

∂w
∂y

∣∣∣∣
y=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.179)

If we seek the solution as w(x , y, z) = T1 + f (x , y, z) we will get for

f (x , y, z) the problem with homogeneous boundary conditions.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� f (x , y, z) = − Q
χCρ

δ
(

x − a
2

)
δ

(
y − b

2

)
δ
(

z − c
2

)
f (0, y, z) = f (a, y, z) = f (x , b, z) = f (x , y, 0) = f (0, y, c) = 0

∂ f
∂y

∣∣∣∣
y=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.180)
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Sturm–Liouville problem

The solution will be expanded into eigenfunctions of the following

Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�s(x , y, z) + λ2s(x , y, z) = 0

s(0, y, z) = s(a, y, z) = s(x , b, z) = s(x , y, 0) = s(0, y, c) = 0

∂s
∂y

∣∣∣∣
y=0

= 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.181)

They are known:

snml (x , y, z) = sin
(πn

a
x
)

× cos

(
π(2m + 1)

2b
y
)

× sin

(
πl
c

z
)

(4.182)

λ2
nml =

(πn
a

)2

+
(
π(2m + 1)

2b

)2

+
(
πl
c

)2

(4.183)

General solution

The solution will be sought in the form:

f (x , y, z) =
∑
n, m, l

Cnml snml (x , y, z)

=
∑
n, m, l

Cnml sin
(πn

a
x
)

cos

(
π (2m + 1)

2b
y
)

sin

(
πl
c

z
)

(4.184)

Replacing into Poisson’s equation:∑
n, m, l

−Cnmlλ
2
nml snml (x , y, z) = − Q

χCρ
δ
(

x − a
2

)
δ

(
y − b

2

)
δ
(

z − c
2

)
(4.185)

Using the orthogonality:

Cnml = 8

λ2
nml abc

Q
χCρ

∫ a

0

∫ b

0

∫ c

0

δ
(

x − a
2

)
δ

(
y − b

2

)
δ
(

z − c
2

)
×

sin
(πn

a
x
)

cos

(
π(2m + 1)

2b
y
)

sin

(
πl
c

z
)

dxdydz =
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= 8

λ2
nml abc

Q
χCρ

sin
(πn

2

)
cos

(
π(2m + 1)

4

)
sin

(
πl
2

)
(4.186)

It is obvious that Cnml = 0 for even values of n, l . Then the solution

for the stationary part is:

w(x , y, z) = T1 + 8Q
χCρabc

∑
n, m, l

1

λ2
nml

sin
(πn

2

)
cos

(
π(2m + 1)

4

)

× sin

(
πl
2

)
sin
(πn

a
x
)

cos

(
π(2m + 1)

2b
y
)

sin

(
πl
c

z
)

(4.187)

Now we solve the transient part.

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v(x , y, z, t)

∂t
− χ�v(x , y, z, t) = 0

v(0, y, z) = v(a, y, z) = v(x , b, z) = v(x , y, 0) = v(0, y, c) = 0

∂v
∂y

∣∣∣∣
y=0

= 0

v(x , y, z, t = 0) = u(x , y, z, t = 0) − w(x , y, z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.188)

The solution is sought by separating the temporal and spatial parts

as:

v(x , y, z, t) =
∑
n, m, l

Anml Tnml (t)snml (x , y, z) =

∑
n, m, l

Anml Tnml (t) sin
(πn

a
x
)

cos

(
π(2m + 1)

2b
y
)

sin

(
πl
c

z
)

(4.189)

Replacing in the equation to be solved, we will obtain an equation

for the temporal part:∑
n, m, l

Anml

{
dTnml (t)

dt
+ χλ2

nml Tnml (t)

}
snml (x , y, z) = 0 (4.190)

From here Tnml (t) = C onst · e(−χλ2
nml t)

v(x , y, z, t) =
∑
n, m, l

Anml e(−χλ2
nml t)snml (x , y, z) (4.191)
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Final solution

The constants Anml are obtained from the initial conditions.

v(x , y, z, 0) = u(x , y, z, 0) − w(x , y, z) =
∑
n, m, l

Anml × snml (x , y, z)

(4.192)

In particular, we can write:∑
n, m, l

Anml × snml (x , y, z) = T1 + 16(T0 − T1)

×
∑

m, l=odd

(−1)m 1

π2l(2m + 1)

1

sinh

(√[
π(2m+1)

2b

]2

+ (πn
c

)2a

)

× sinh

⎛
⎝
√[

π(2m + 1)

2b

]2

+
(πn

c

)2

x

⎞
⎠× cos

(
π(2m + 1)

2b
y
)

× sin

(
πl
c

z
)

− T1 − 8Q
χCρabc

∑
n, m, l

1

λ2
nml

sin
(πn

2

)
cos

(
π(2m + 1)

4

)

× sin

(
πl
2

)
sin
(πn

a
x
)

cos

(
π(2m + 1)

2b
y
)

sin

(
πl
c

z
)

(4.193)

Using the orthogonality properties:

Anml

(
abc

8

)
= bc

4
(−1)m 16(T0 − T1)

π2l(2m + 1)

1

sinh

(√[
π(2m+1)

2b

]2

+ (
πn
c

)2
a

)

×
a∫

0

sin
(πn

a
x
)

× sinh

⎛
⎝
√[

π(2m + 1)

2b

]2

+
(πn

c

)2

x

⎞
⎠ dx

−abc
8

8Q
χCρabcλ2

nml
sin

(πn
2

)
cos

(
π(2m + 1)

4

)

× sin

(
πl
2

)
− T1

abc
8

(4.194)

From integral tables we have:

∫
sin(ax)× sinh(bx)dx= b sin(ax)× cosh(bx) − a cos(ax) × sinh(bx)

a2 + b2
+ const.
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Then:

Anml = (−1)m+n+1 (T0 − T1)

π2l(2m + 1)

32

[π(2m+1)

2b ]2 + (πn
c )2 + (πn

a )2

− Q
χCρ

sin
(πn

2

)
cos

(
π(2m + 1)

4

)
sin

(
πl
2

)
(4.195)

Then the solution for t > 0 is:

u(x , y, z, t) =
∑
n, m, l

Anml × e(−χλ2
nml t) sin

(πn
a

x
)

cos

(
π(2m + 1)

2b
y
)

× sin

(
πl
c

z
)

+ T1 + 8Q
χCρabc

∑
n, m, l

1

λ2
nml

sin
(πn

2

)

× cos

(
π(2m + 1)

4

)
sin

(
πl
2

)
sin
(πn

a
x
)

× cos

(
π(2m + 1)

2b
y
)

sin

(
πl
c

z
)

(4.196)

To find the heat across the surface:

Qsup = −
∫ ∫ ∫

s
(w × n)ds = {w = −k∇u(x , y, z, t)}

= −
∫ ∫ ∫

V

(∇ × w)dV = k
∫ ∫ ∫

V
(�u)dV

= k
∫ ∫ ∫

V
(�v + �w)dV

= k
∫ ∫ ∫

V

[
�v − Q

χCρ
δ
(

x − a
2

)
δ

(
y − b

2

)
δ
(

z − c
2

)]
dV

= k
∫ ∫ ∫

V
�vdV − kQ

χCρ
(4.197)

Since we have:

�v = �

[∑
n, m, l

Anml e(−χλ2
nml t) × snml (x , y, z)

]

= −
∑
n, m, l

λ2
nml Anml × e(−χλ2

nml t) × snml (x , y, z) (4.198)
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The total heat across the surface by unit time is:

Qsup = − kQ
χCρ

−
∑
n, m, l

kλ2
nml Anml × e(−χλ2

nml t)

∫ ∫ ∫
V

snml (x , y, z)]dV

= − kQ
χCρ

−
∑
n, m, l

kλ2
nml Anml

× 2abc
π3nl(2m + 1)

(−1)m × [1 − (−1)n] × [1 − (−1)l ]

4.10 Case Study: Distribution of Temperature
inside a Periodically Heated Prism

A prism of length L and square cross section a × a, with thermal

diffusivity coefficient χ has all of its surface thermally insulated

except for one of its bases. In the middle of this base the temperature

varies periodically as T0sin(ωt), meanwhile the temperature in the

other half is −T0sin(ωt). These oscillations exist at all times (−∞ <

t < ∞). Find the distribution of temperature inside a prism as a

function of position and time.

Figure 4.15
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Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

dt
u(x , y, z, t) − χ�u(x , y, z, t) = 0{
∂

∂ �n u(x , y, z)

}
�

= 0

(� = all surface except the base)

(�n = perpendicular to every surface)

Boundary conditions at the base: u(x , y, 0, t) = F (x , y) sin(ωt)

F (x , y) =

⎧⎪⎨
⎪⎩

T0

(
0 < y <

a
2

)
−T0

(a
2

< y < a
)
⎫⎪⎬
⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.199)

The solution will be sought as an expansion in orthogonal eigen-

functions in the x , y directions, corresponding to homogeneous

boundary conditions.

u(x , y, z, t) =
∑
nm

�nm(z, t)wnm(x , y) (4.200)

Sturm–Liouville problem

We formulate the Sturm–Liouville problem for wnm(x , y)

⎧⎪⎨
⎪⎩

�wnm(x , y) + λnmwnm(x , y) = 0[
∂

dx
w(x , y)

]
x=0, a

=
[

∂
dy w(x , y)

]
y=0, a

= 0

⎫⎪⎬
⎪⎭ (4.201)

The corresponding eigenfunctions and eigenvalues are:

wnm(x , y) = cos
(πn

a
x
)

cos
(πm

a
y
)

(4.202)

λnm =
(π

a

)2

[n2 + m2] with m, n = 0, 1, 2, 3 . . . (4.203)
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General solution

Replacing u(x , y, z, t) = ∑
nm

�nm(z, t) cos
(
πn
a x
)

cos
(
πm

a y
)

into

(4.199) we arrive at equations to find �nm(z, t). The result of the

substitution is:∑
nm

∂�nm(z, t)

dt
wnm(x , y) − χ

[
�nm(z, t)�wnm(x , y) + ∂2�nm(z, t)

dz2
wnm(x , y)

]
= 0 (4.204)

Applying the orthogonality of wnm(x , y):

∑
nm

[
∂

dt
�nm(z, t) − χ

∂2

dz2
�nm(z, t) + χλnm�nm(z, t)

]
ωnm(x , y) = 0

(4.205)

∂

dt
�nm(z, t) − χ

[
∂2

dz2
�nm(z, t) − λnm�nm(z, t)

]
= 0 (4.206)

Formulation of the problem in terms of the variables (z,t):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂�nm(z, t)

dt
− χ

[
∂2�nm(z, t)

dz2
− λnm�nm(z, t)

]
= 0

First boundary condition:
∂�nm(z, t)

dz

∣∣∣∣
z=L

= 0

Second boundary condition: ?

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.207)

We use the orthogonality of wnm(x , y) to find the second boundary

condition.

u(x , y, 0, t) =
∑
nm

�nm(0, t) cos
(πn

a
x
)

cos
(πm

a
y
)

= F (x , y) sin(ωt) (4.208)

Multiplying both sides by cos(πn
a x) cos(πm

a y) and integrating:

a∫
0

a∫
0

�nm(0, t)
[

cos
(πn

a
x
)]2 [

cos
(πm

a
y
)]2

dxdy = sin (ωt)

a∫
0

a∫
0

F (x , y) cos
(πn

a
x
)

cos
(πm

a
y
)

dxdy (4.209)



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Distribution of Temperature inside a Periodically Heated Prism 229

We get:

�nm(0, t) = sin(ωt)

a∫
0

a∫
0

F (x , y) cos(πn
a x) cos(πm

a y)dxdy

a∫
0

a∫
0

[cos(πn
a x)]2[cos(πm

a y)]2dxdy

= ζnm sin(ωt) (4.210)

The second boundary condition is presented as an imaginary

exponential function, to search the solution of (4.207) in complex

form, and then take only the imaginary part. Using real functions we

would not be able to cancel them out after the substitution, due to

the lack of second derivatives.

This form allows to easily separate the variables z and t at the cost of

having to solve an equation for the complex function Z (z). We define

the following function J nm(z, t) = Z nm(z)e(iωt)

�nm(z, t) = I m{ J nm(z, t)} (4.211)

→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ J nm(z, t)

dt
− χ

[
∂2 J nm(z, t)

dz2
− λnm J nm(z, t)

]
= 0

∂ J nm(z, t)

dz

∣∣∣∣
z=L

= 0

J nm(0, t) = ζnme(iωt)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.212)

Eliminating the exponentials which multiply each member of the

equation:

→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

iωZ nm(z) − χ

[
∂2 Z nm(z)

dz2
− λnm Z nm(z)

]
= 0

d Z nm(z)

dz

∣∣∣∣
z=L

= 0

Z nm(0) = ζnm

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.213)

or ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2 Z nm(z)

dz2
− Z nm(z)

[
λnm + iω

χ

]
= 0

d Z nm(z)

dz

∣∣∣
z=L

= 0

Z nm(0) = ζnm

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.214)
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We can check that ζnm is finite only for values m = 2k + 1 (this is,

odd) and for n = 0:

ζ0k =

a∫
0

a∫
0

F (x , y) cos(π0
a x) cos(πm

a y)dxdy

a∫
0

a∫
0

[cos(π0
a x)]2[cos(πm

a y)]2dxdy
= 8T0

π(2k + 1)
(−1)k

(4.215)

We seek the general solution in the form:

Z nm(z) = Anmez/Cnm + Bnme−z/Cnm (4.216)

with Cnm = 1√
λnm+ iω

χ

Final solution

Imposing n = 0, m = 2k + 1:

From the first boundary condition:

d Z 0k(z)

dz

∣∣∣∣
z=L

= A0k

C0k
e(L/C0k) − B0k

C0k
e(−L/C0k) = 0 (4.217)

To the second boundary condition:

Z nm(0) = A0k + B0k = 8T0

π(2k + 1)
(−1)k (4.218)

Eliminating the index n = 0, since the rest of the coefficients with

n > 0 are zero: ⎧⎪⎨
⎪⎩

Ake(L/Ck) − Bke(−L/Ck) = 0

Ak + Bk = 8T0

π(2k + 1)
(−1)k

⎫⎪⎬
⎪⎭ (4.219)

⎧⎪⎨
⎪⎩

Ak = Bke(−2L/Ck)

Bk[e(−2L/Ck) + 1] = 8T0

π(2k + 1)
(−1)k

⎫⎪⎬
⎪⎭ (4.220)

Bk = 8T0

π(2k + 1)[e(−2L/Ck) + 1]
(−1)k (4.221)

Ak= 8T0e(−2L/Ck)

π(2k + 1)[e(−2L/Ck) + 1]
(−1)k= 8T0

π(2k + 1)[e(2L/Ck) + 1]
(−1)k

(4.222)
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From

Z k(z) → J k(z, t) = Z k(z)e(iωt) (4.223)

�k(z, t) = Im{ J k(z, t)} (4.224)

u(x , y, z, t) = u(y, z, t) =
∑

k

�k(z, t) cos

(
π[2k + 1]

a
y
)

(4.225)

Note: observing the form of the solution (which does not depend

on x) we see that the propagating thermal wave (independent of x)

preserves the transversal symmetry of the profile of the heating of

the heated surface.

4.11 Heating Rectangular Resistor with Different
Boundary Conditions

A rectangular bar (a × b × c) with an electric resistance R and

thermal conductivity coefficient k is heated with a constant current

I that produces a heat Q = I 2 R
abc per unit time and volume. The

heat exchange with the outer medium at zero temperature occurs

through the surface of the bar, according to Newton’s law. Determine

the stationary distribution of temperature in the bar.

Figure 4.16

Mathematical formulation

−k�u(x , y, z) = f (x , y, z) = I 2 R
abc

(4.226)

�u(x , y, z) = − I 2 R
k × abc

= −Q
k

(4.227)
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Boundary condition:

∂u(x , y, z)

∂n
+ Au(x , y, z) = 0 (4.228)

where n is normal to each surface and A = α
k , being α the Newton’s

law heat exchange constant.

Boundary conditions (the subindices indicate derivatives with

respect to the variable of the subindex, for example ux = ∂u
∂x , etc.):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ux (0, y, z) + Au(0, y, z) = 0

ux (a, y, z) − Au(a, y, z) = 0

uy(x , 0, z) + Au(x , 0, z) = 0

uy(x , b, z) − Au(x , b, z) = 0

uz(x , y, 0) + Au(x , y, 0) = 0

uz(x , y, c) − Au(x , y, c) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.229)

Sturm–Liouville problem

The idea is to seek the solution by expanding it in a series

of orthogonal eigenfunctions in the three spatial directions (that

is, solutions of the Sturm–Liouville problem with homogeneous

boundary conditions of the third kind).

�u(x , y, z) + λu(x , y, z) = 0 (4.230)

Separating variables as: u(x , y, z) = X (x)Y (y)Z (z), we have:

X xx

X
+ Yyy

Y
+ Z zz

Z
= −λ (4.231)

(we impose that the λ constant be negative, since we are looking for

the expansion of the solution in orthogonal functions, in this case

sinusoidal).

We separate the Sturm–Liouville problem in three different, inde-

pendent problems, in the x , y, z directions:

X xx

X
= −ν;

Yyy

Y
= −μ;

Z zz

Z
= −χ (4.232)

The general solution will be sought as:

u =
∑

Cnmk × X n(x) × Ym(y) × Z k(z) (4.233)
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We find as an example the form of the X n(x) eigenfunctions, solving

the following problem (the solutions for the functions Ym(y) and

Z k(z) are found in a similar manner):

d2 X (x)

dx2
+ νX (x) = 0 (4.234)

With the boundary conditions:{
X x (0) + A X (0) = 0

X x (a) − A X (a) = 0

}
(4.235)

General solution

The general solution for X n(x) is:

X n(x) = An cos(
√
νnx) + Bn sin(

√
νnx) (4.236)

We seek the values of An and Bn with the boundary conditions:

First condition: X x (0) + A X (0) = 0 → An A + √
νn Bn = 0

Second condition: X x (a) − A X (a) = 0 → An[−√
νn sin(

√
νna) −

A cos(
√
νna)] + Bn[

√
νn cos(

√
νna) − A sin(

√
νna)] = 0

The values of A and B can be obtained from this system of equations

by seeking that the determinant of the system be null. With this we

will have the equation to find the νn eigenvalues and the respective

eigenfunctions for the y and z coordinates.

Equating the determinant of the matrix of the equations for the two

boundary conditions to zero we end up arriving at an equation for

the eigenvalues:

A2 − νn

2A
√
νn

= tan−1(
√
νna) (4.237)

We would obtain the eigenfunctions as (replacing the ratio between

the An and Bn coefficients):

X n(x) = −
√
νn

A
Bn cos(

√
νnx) + Bn sin(

√
νnx) (4.238)

A similar procedure should give us Y (y) and Z (z).

To find the solution of the non-homogeneous equation (4.255), we

expand the solution as a sum of the obtained orthogonal functions:

�unmk(x , y, z) + λnmkunmk(x , y, z) = 0 (4.239)
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We replace u = ∑
nmk

Cnmk · unmk(x , y, z) into the equation:

�u(x , y, z) = −Q
k

(4.240)

And arrive at the relation:∑
nmk

Cnmk�unmk(x , y, z) = −Q
k

(4.241)

Using the solutions of the Sturm–Liouville problem, we have:

∑
nmk

−λn, m, kCnmkunmk(x , y, z) = −Q
k

(4.242)

with λn, m, k = νn + μm + χk

We will now use the orthogonality of the unmk(x , y, z) = X n(x)

Ym(y)Z k(z) eigenfunctions to find the Cnmk coefficients.

We arrive at:

−λn, m, kCnmk ‖unmk(x , y, z)‖2

= −Q
k

∫ a

0

∫ b

0

∫ c

0

X n(x)Ym(y)Z k(z)dxdydz (4.243)

Finally:

Cnmk = Q
∫ a

0

∫ b
0

∫ c
0

X n(x)Ym(y)Z k(z)dxdydz

k × λn, m, k ‖unmk(x , y, z)‖2
(4.244)

Note: in this case we attempt to separate the solution in two:

u = v + w (4.245)

one of them being v(x , y, z), the solution to the homogeneous

equation with homogeneous boundary conditions of the third kind

and the other being w(x , y, z), the solution of the non-homogeneous

equation, leads us nowhere.

It is clear that the boundary conditions applied to each of these

functions, when they are all considered at the same time, must

recover the boundary conditions of the initial problem.



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Heating of a Rectangular Resistor with the Same Boundary Conditions 235

Mathematical formulation of the problem for v

�v(x , y, z) = 0 (4.246)

Boundary conditions: ∂v(x , y, z)

∂n + Av(x , y, z) = 0 (n is normal to each

of the surfaces), which explicitly turns out to be:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

vx (0, y, z) + Av(0, y, z) = 0

vx (a, y, z) − Av(a, y, z) = 0

vy(x , 0, z) + Av(x , 0, z) = 0

vy(x , b, z) − Av(x , b, z) = 0

vz(x , y, 0) + Av(x , y, 0) = 0

vz(x , y, c) − Av(x , y, c) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.247)

Mathematical formulation of the problem for w

�w(x , y, z) = − Q
k

(4.248)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

wx (0, y, z) + Aw(0, y, z) = 0

wx (a, y, z) − Aw(a, y, z) = 0

wy(x , 0, z) + Aw(x , 0, z) = 0

wy(x , b, z) − Aw(x , b, z) = 0

wz(x , y, 0) + Aw(x , y, 0) = 0

wz(x , y, c) − Aw(x , y, c) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.249)

Solution

The solution for the Laplace’s problem for v is trivial:

v(x , y, z) = 0 (4.250)

since the totality of the heat crossing the surfaces is zero:

The solution of the problem for w(x , y, z) is the same, as we

previously showed for u(x , y, z).

4.12 Heating of a Rectangular Resistor with the
Same Boundary Conditions

A rectangular bar (a × b × c) with an electric resistance R and

thermal conductivity coefficient k is heated with a constant current
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I that produces a heat Q = I 2 R
abc per unit time and volume. The heat

exchange with the outer medium at temperature T1 occurs through

the surface of the bar, according to Newton’s law, except at the base

(z = 0) where the exchange takes place with the outer medium at a

temperature T2.

Determine the stationary distribution of temperature in the bar.

Figure 4.17

Mathematical formulation

−k�u(x , y, z) = f (x , y, z) = I 2 R
abc

(4.251)

�u(x , y, z) = − I 2 R
k × abc

= −Q
k

(4.252)

Boundary condition:

∂u(x , y, z)

∂n
+ Au(x , y, z) = 0 (4.253)

where n is the normal direction to each surface and A = α
k , being α

the Newton’s law heat exchange constant.

One we subtract the T1 value from the solution, the boundary

conditions will be as follows (the subindices indicate derivatives

with respect to the variable of the subindex, for example ux = ∂u
∂x ,

etc.): ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ux (0, y, z) + Au(0, y, z) = 0

ux (a, y, z) − Au(a, y, z) = 0

uy(x , 0, z) + Au(x , 0, z) = 0

uy(x , b, z) − Au(x , b, z) = 0

uz(x , y, 0) + Au(x , y, 0) = T2 − T1

uz(x , y, c) − Au(x , y, c) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.254)
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Next we split problem in two: u = v + w

We have an inhomogeneous problem w with all the boundary

conditions being homogeneous of the third type (this problem has

been already solved previously) and a Laplace equation for v with

all boundary conditions homogeneous of the third type, except the

base, which is inhomogeneous of the third type.

�v(x , y, z) = 0 (4.255)

Boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

vx (0, y, z) + Av(0, y, z) = 0

vx (a, y, z) − Av(a, y, z) = 0

vy(x , 0, z) + Av(x , 0, z) = 0

vy(x , b, z) − Av(x , b, z) = 0

vz(x , y, 0) + Av(x , y, 0) = T2 − T1

vz(x , y, c) − Au(x , y, c) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.256)

Sturm–Liouville problem

The idea is to seek the solution by expanding it in a series of

orthogonal eigenfunctions in the two spatial directions x , y (that

is, solutions of the Sturm–Liouville problem with homogeneous

boundary conditions of the third kind) and finding the solution

for the differential equation in the z direction with two boundary

conditions.

Separating variables as: u(x , y, z) = X (x)Y (y)Z (z) and substituting

into the Laplace equation, we have:

X xx

X
+ Yyy

Y
+ Z zz

Z
= 0 (4.257)

X xx

X
+ Yyy

Y
= −λ (4.258)

(we impose that the λ constant be negative, since we are looking for

the expansion of the solution in orthogonal functions, in this case

sinusoidal).

We separate the Sturm–Liouville problem in two different, indepen-

dent problems, in the x , y directions:

X xx

X
= −ν;

Yyy

Y
= −μ; (4.259)
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The general solution will be sought as:

v =
∑

X n(x) × Ym(y) × Z (z) (4.260)

We find as an example the form of the X n(x) eigenfunctions, solving

the following problem (the solutions for the functions Ym(y) are

found in a similar manner):

d2 X (x)

dx2
+ νX (x) = 0 (4.261)

With the boundary conditions:{
X x (0) + A X (0) = 0

X x (a) − A X (a) = 0

}
(4.262)

General solution

The general solution for X n(x) is:

X n(x) = An cos(
√
νnx) + Bn sin(

√
νnx) (4.263)

We seek the values of An and Bn with the boundary conditions:

First condition: X x (0) + A X (0) = 0 → An A + √
νn Bn = 0

Second condition: X x (a) − A X (a) = 0 → An[−√
νn sin(

√
νna) −

A cos(
√
νna)] + Bn[

√
νn cos(

√
νna) − A sin(

√
νna)] = 0

The values of A and B can be obtained from this system of equations

by seeking that the determinant of the system be null. With this we

will have the equation to find the νn eigenvalues and the respective

eigenfunctions for the y and z coordinates.

Equating the determinant of the matrix of the equations for the two

boundary conditions to zero we end up arriving at an equation for

the eigenvalues:

A2 − νn

2A
√
νn

= tan−1(
√
νna) (4.264)

We would obtain the eigenfunctions as (replacing the ratio between

the An and Bn coefficients):

X n(x) = −
√
νn

A
Bn cos(

√
νnx) + Bn sin(

√
νnx) (4.265)

A similar procedure should give us Y (y).
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We therefore come to formulate the equation for Z (z):

d2 Z (z)

dx2
− νZ (z) = 0 (4.266)

which has following general solution:

Z (z) = Cmn cosh(
√

(λz)) + Bmn cosh(
√

(λz))

The general solution therefore will be

v =
∑

Cmn cosh(
√

(λz)) + Bmn cosh(
√

(λz)) × X n(x) × Ym(y)

(4.267)

Applying the boundary conditions and the orthogonality conditions

of X n(x) and Ym(y) we arrive at a system of two equations and find

the values of Cmn and Bmn.

Note: An alternative way to solve the formulated 3D Poisson

problem with one of the boundaries being inhomogeneous of the 3rd

type is to search directly the solution in form:

u =
∑

Z (z) × X n(x) × Ym(y) (4.268)

Once we substitute the above expression into the 3D Poisson

equation and use the fact that X n(x) and Yn(x) are set of orthogonal

functions, as they are solutions of 2D Sturm–Liouville problem, we

arrive to inhomogeneous equation for the Z (z) function with one of

two boundaries (z=0) being inhomogeneous of the 3rd kind.

The general solution for Z (z) will be represented as sum previously

found solution of homogeneous equation and particular solution Z p

(which is a constant A already defined by the form of 1D second

order differential equation).

Z (z) = Z h(z) + Z p = Cmn cosh(
√

(λz)) + Dmn cosh(
√

(λz)) + A

The solution for the Cmn and Dmn in Z (z) will be found after

application of two (homogeneous and inhomogeneous) boundary

conditions of the 3rd type to the general solution u =∑ Z (z)·X n(x)·
Ym(y).
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4.13 Case Study: Distribution of Photocarriers
Induced by a Laser

Suppose that a metallic bar (dimensions a, b, c, see Figure) with

diffusion coefficient equal to 1 is in contact (its base) with a charge-

neutral semiconductor. Until t = 0 a laser had been shone over a

very small area (normally called “spot”) while the remaining part

of the contact allows carrier leakage through semi-transparent to

diffusion interface (with leakage flux proportional with factor of B to

the difference in metal and semiconductor surface concentrations).

The distribution of generated photocarriers near the interface

providing local flux injection can be approximated by a Dirac’s Delta

function (with flux rate proportional to A factor). The carriers were

injected from the semiconductor to the metal in a stationary manner

(until t = 0) through a slit situated in the proximities of the central

point of contact of the bar with the semiconductor.

Determine the distribution of carriers inside the bar as a function

of time if at t = 0 the laser is turned off and never used again.

Figure 4.18

Solution:

We first seek the stationary distribution of carriers up until t = 0.

If we consider that the sources of photoelectrons are at the interface,

we need to solve Laplace’s equation in a prism in which five out of
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the six faces have homogeneous boundary conditions. The central

part of the face at (z = 0) injects photoelectrons through a small

square slit (ε << a, b, c), corresponding to the laser spot). The rest

of the parts of the z = 0 face are semi-transparent to the electrons.

Then the boundary conditions are not homogeneous for the face at

z = 0.

Mathematical formulation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�u(x , y, z) = 0

∂u
∂z

∣∣∣∣
z=0

+ Bu(z = 0) = A × δ(x − a/2) × δ(y − b/2)

∂u
∂x

∣∣∣∣
x=0

= ∂u
∂x

∣∣∣∣
x=a

= ∂u
∂y

∣∣∣∣
y=0

= ∂u
∂y

∣∣∣∣
y=b

= ∂u
∂z

∣∣∣∣
z=c

= 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.269)

To express the non-homogeneous boundary condition, we have used

that z = 0 is semitransparent for the electrons (condition described

using boundary conditions of the third type) and at the application

point of the laser appears an excess of carriers described by a Dirac’s

Delta function.

Sturm–Liouville problem

We expand the solution in orthogonal eigenfunction, corresponding

to four homogeneous surfaces. We can arrive at the same result by

separating variables, replacing the solution of Laplace’s equation

and using the dimensions that have homogeneous boundary

conditions to lower the dimensionality of the derivatives thanks to

the solution of the Sturm–Liouville problem.

In the x − y plane (with homogeneous boundary conditions), we

solve the problem:⎧⎨
⎩

�v(x , y) + λv(x , y) = 0
∂v
∂x

∣∣∣∣
x=0

= ∂v
∂x

∣∣∣∣
x=a

= ∂v
∂y

∣∣∣∣
y=0

= ∂v
∂y

∣∣∣∣
y=b

= 0
(4.270)

with eigenfunctions vnm = cos(πn
a x) cos(πm

b y)

and eigenvalues λnm = π2[( n
a )2 + ( m

b )2].
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General solution

The general solution can be expanded in the base of the vnm

functions and the coefficients will depend on the x coordinate:

u(x , y, z) =
∑
n, m

wnm(z)vnm(x , y) (4.271)

Replacing in the Laplace’s equation: �u(x , y, z) = 0

We arrive at the equations we need to solve:

d2wnm(z)

dz2
− λnmwnm(z) = 0 (4.272)

with the boundary condition: dwnm
dz

∣∣
z=c = 0

wnm(z) = Fnm sinh(
√
λnmx) + Cnm cosh[

√
λnm(c − z)] (4.273)

Applying the boundary condition:

dwnm

dz

∣∣∣∣
z=c

= 0= Fnm

√
λnm cosh

(√
λnmc

)
+Cnm

√
λnm sinh(c−c) = 0

(4.274)

Then we get the Fnm = 0 and wnm(z) = Cnm cosh[
√
λnm(c − z)]

coefficients.

The general solution will be:

u(x , y, z) =
∑
n, m

Cnm cosh
[√
λnm(c − z)

]
vnm(x , y)

= u(x , y, z, 0) = f (x , y, z) (4.275)

We use the second boundary condition to find Cnm:

∂u
∂z

∣∣∣∣
z=0

+ Bu(z = 0)

= −
∑
n, m

Cnm

√
λnm sinh[

√
λnm(c)]vnm(x , y)

+B
∑
n, m

Cnm cosh[
√
λnm(c)]vnm(x , y)

= A × δ(x − a/2) × δ(y − b/2) (4.276)
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Final solution

Using the orthogonality of vnm(y, z) we arrive at the expression for

Bnm:

Cnm

{
−
√
λnm sinh

[√
λnm(c)

]
+ B cosh

[√
λnm(c)

]}
×∫ a

0

∫ b

0

cos2
(πn

a
x
)

cos2
(πm

b
y
)

dxdy

= A ×
∫ a

0

∫ b

0

δ(x − a/2)δ(y − b/2) cos
(πn

a
x
)

cos
(πm

b
y
)

dxdy

= A × cos
(πn

2

)
cos
(πm

2

)
(4.277)

Then

Cnm = A
B cosh[

√
λnm(c)] − √

λnm sinh[
√
λnm(c)]

× 1∫ a
0

∫ b
0

cos2
(
πn
a x
)

cos2
(
πm

b y
)

dxdy
(4.278)

Note about the modulus of the eigenfunctions for different values of

n (or m):

b∫
0

cos2
(πn

b
y
)

dy =

⎧⎪⎪⎨
⎪⎪⎩

b
2

(n �= 0)

b (n = 0)

⎫⎪⎪⎬
⎪⎪⎭ (4.279)

Next we will consider the temporal variation of the concentration of

photoelectrons after turning the laser off.

Mathematical formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− χ�u = 0

∂u
∂z

∣∣∣∣
z=0

+ Bu(z = 0) = 0

∂u
∂x

∣∣∣∣
x=0

= ∂u
∂x

∣∣∣∣
x=a

= ∂u
∂y

∣∣∣∣
y=0

= ∂u
∂y

∣∣∣∣
y=b

= ∂u
∂z

∣∣∣∣
z=c

= 0

u(x , y, x , t = 0) = f (x , y, z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.280)

We seek the solution by separating spatial and temporal variables.

u = Q(t) × v(x , y, z) (4.281)
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Sturm–Liouville problem

v(x , y, z) are eigenfunctions of the Sturm–Liouville problem.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�v + λv = 0

∂v
∂z

∣∣∣∣
z=0

+ Bv(z = 0) = 0

∂v
∂x

∣∣∣∣
x=0

= ∂v
∂x

∣∣∣∣
x=a

= ∂v
∂y

∣∣∣∣
y=0

= ∂v
∂y

∣∣∣∣
y=b

= ∂v
∂z

∣∣∣∣
z=c

= 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.282)

We separate variables: v(x , y, z)) = X (x) · Y (y) · Z (z)

�v + λv = 0 → 1

X (x)

d2 X (x)

dx2
+ 1

Y (y)

d2Y (y)

dy2
+ 1

Z (z)

d2 Z (z)

dz2
= −λ

(4.283)

−
(πn

a

)2

−
(πm

b

)2

− νk = −λnmk (4.284)

To satisfy the boundary conditions we then use a solution of the

type:

v(x , y, z) = cos
(πn

a
x
)

cos
(πm

b
y
)

cos[
√
νk(z − c)] (4.285)

The equation to find the νk eigenvalues is:

dv
dz

∣∣∣∣
z=0

+ Bv(z = 0) = 0 → −√
νk sin[

√
νkc] + B cos[

√
νkc] = 0

(4.286)

The eigenvalues are solutions of the equation:

sin(
√
νkc)

cos(
√
νkc)

=
√
νk

B
(4.287)

Equation and solution for the temporal part:

d Q
dt

+ λnmk Q = 0 (4.288)

Q(t) = Anmke(−λnmkt) (4.289)

u =
∑

Q(t) × vnmk(x , y, z) (4.290)

=
∑

Anmke(−λnmkt) cos
(πn

a
x
)

cos
(πm

b
y
)

cos[
√
νk(z−c)] (4.291)
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Final solution

From the initial condition:

u(x , y, z, t = 0) =
∑

Anmke(−λnmk0) cos
(πn

a
x
)

× cos
(πm

b
y
)

cos[
√
νk(z − c)] = f (x , y, z)

(4.292)

we will get the coefficients of the expansion using the properties of

orthogonality of the eigenfunctions.

4.14 Heater inside a Prism

A rectangular prism of dimensions a, b, c, has a heat capacity C ,

density of mass ρ and thermal conductivity coefficient k. Until t = 0

it’s in thermal equilibrium at a temperature T = T0. From the

instant t > 0 onwards an electrical current I starts circulating

through a wire with electrical resistance R , of length c/2, centered at( a
2

, b
2

, c
4
< z < 3c

4

)
in the vertical direction. Consider that the upper

and lower boundaries are thermally insulated, while the other four

are in contact with a thermal reservoir at a temperature T = T0.

(i) Find the variation of temperature if the applied current I = I0

from t = 0 onwards is continuous current.

(ii) Solve the same problem if the current is alternating I (t) =
I0 cos(ωt)

(iii) Find the stationary solution (when all transient solutions damp

out) if the alternating current is applied since t = −∞.

Figure 4.19



April 5, 2023 0:23 JSP Book - 9in x 6in Main

246 Three-Dimensional Problems

Mathematical formulation

C (x , y, z)ρ(x , y, z)
∂u(x , y, z, t)

∂t
− ∂

∂x

[
k
∂u(x , y, z, t)

∂x

]

− ∂

∂y

[
k
∂u(x , y, z, t)

∂y

]

+ ∂

∂z

[
k
∂u(x , y, z, t)

∂z

]
= f (x , y, z, t)

(4.293)

There is a transient process until equilibrium is reached. In our case

we will assume that k, C , ρ=constants.

The resulting equation with boundary conditions is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂u(x , y, z, t)

∂t
− k�u(x , y, z) = f (x , y, z, t)

f (x , y, z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0
(

z <
c
4

)
2I 2 R

c
δ
(

x − a
2

)
δ

(
y − b

2

) (
c
4

< z <
3c
4

)

0

(
z >

3c
4

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

u(x , 0, z) = u(x , b, z) = u(0, y, z) = u(a, y, z) = T0

∂u
∂z

∣∣∣∣
z=0

= ∂u
∂z

∣∣∣∣
z=c

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.294)

f (x , y, z) = 2I 2 R
c

δ
(

x − a
2

)
δ

(
y − b

2

)
H
[
−
(

z − c
2

)2

+
( c

4

)2
]

(4.295)

Sturm–Liouville problem

All boundaries are homogeneous. In this case it’s possible to

search for a solution by expanding it into orthogonal eigenfunctions

in all three directions. These functions are solutions of Sturm–

Liouville problems with homogeneous boundary conditions. To find

the homogeneous boundary conditions in the y direction we can

perform this change of variable:

u(x , y, z, t) = v(x , y, z, t) + T0 (4.296)
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cρ
∂v(x , y, z, t)

∂t
− k�v(x , y, z) = f (x , y, z, t) (t > 0)

v(x , 0, z) = v(x , b, z) = v(0, y, z) = v(a, y, z) = 0

∂v
∂z

∣∣∣∣
z=0

= ∂v
∂z

∣∣∣∣
z=c

= 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.297)

We seek the solution by expanding in orthogonal eigenfunctions in

the y, z directions, where we have homogeneous problems.

v(x , y, z, t) =
∑

T (t)Q(x , y, z) (4.298)

Eigenfunctions and eigenvalues of the Sturm–Liouville problem for

Q(x , y, z):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�Q(x , y, z) + λQ(x , y, z) = 0

Q(x , 0, z) = Q(x , b, z) = Q(0, y, z) = Q(a, y, z) = 0

∂Q
∂z

∣∣∣∣
z=0

= ∂Q
∂z

∣∣∣∣
z=c

= 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.299)

Eigenfunction

Q(x , y, z) = sin
(πn

a
x
)

sin
(πm

b
y
)

cos

(
πl
c

z
)

(4.300)

λ =
(πn

a

)2

+
(πm

b

)2

+
(
πl
c

)2

(4.301)

n = 1, 2, 3 . . . ; m = 1, 2, 3, . . . ; l = 0, 1, 2, 3 . . .

General solution
We replace the solution v(x , y, z, t) = ∑

n, m, l
Tnml (t)Qnml (x , y, z) into

the equation:

Cρ
∂v(x , y, z, t)

∂t
− k�v(x , y, z) = f (x , y, z) (4.302)

and use the orthogonality of Qnml (x , y, z) we arrive at the non-

homogeneous equation for Tnml (t):
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Cρ
∑
n, m, l

∂Tnml

∂t
Qnml (x , y, z)+k

∑
n, m, l

Tnml (t)λnml Qnml (x , y, z)= f (x , y, z)

(4.303)

∑
n, m, l

[
Cρ

∂Tnml

∂t
+ kλnml Tnml (t)

]
Qnml (x , y, z) = f (x , y, z) (4.304)

Multiplying both sides by Qnml (x , y, z) and integrating we get to the

non-homogeneous equation to find Tnml (t):

∂Tnml

∂t
+ k

Cρ
λnml Tnml (t) = 1

Cρ

∫
V

f (x , y, z)Qnml (x , y, z)dxdydz∫
V

∣∣Qnml (x , y, z)2
∣∣ dxdydz

= fnml

(4.305)

Final solution

Seeking the solution in the form of a summation of solutions of the

homogeneous equation and the particular solution, and applying the

initial condition Tnml (0)=0 we find Tnml (t), and in this way the

solution. ∫
V

∣∣Qnml (x , y, z)2
∣∣ dxdydz = abc

8∫
V

f (x , y, z)Qnml (x , y, z)dxdydz =

2I 2 R
l

a∫
0

δ
(

x − a
2

)
sin
(πn

a
x
)

dx

b∫
0

sin
(πm

b
y
)
δ

(
y − b

2

)
dy

3
4

c∫
1
4

c

cos

(
πl
c

z
)

dz (4.306)

We have:

a∫
0

δ
(

x − a
2

)
sin
(πn

a
x
)

dx = sin
(πn

2

)
(non-zero only for odd n)

(4.307)
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b∫
0

sin
(πm

b
y
)
δ

(
y − b

2

)
dy = sin

(πm
2

)
(non-zero only for odd m)

(4.308)

3
4

c∫
1
4

c

cos

(
πl
c

z
)

dz = c
πl

[
sin

(
3πl

4

)
− sin

(
πl
4

)]
(4.309)

The transient solution, which is composed by a particular solution

and the solution of the non-homogeneous equations, and that

satisfies the initial conditions, is:

Tnml (t) = −Cρ
fnml

kλnml
[1 − e(− k

Cρ λnml t)] (4.310)

Finally the solution will be: u(x , y, z, t) = T0 − ∑
n, m, l

Cρ fnml
kλnml

[1 −

e(− k
Cρ λnml t)] sin

(
πn
a x
)

sin
(
πm

b y
)

cos
(
πl
c z
)

(ii) We now consider the solution when the applied current changes

periodically in time I = I0 cos(ωt).

The alternating current changes the non-homogeneous term of the

equation and the dissipated power will be:

I 2 R = R(I0)2[cos(ωt)]2 = (I0)2 R
2

+ (I0)2 R
2

cos(2ωt).

Then the inhomogeneous part changes to:

f (x , y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
(

z <
c
4

)

2

[
(I0)2 R

2
+ (I0)2 R

2
cos(2ωt)

]

c
δ
(

x − a
2

)
δ

(
y − b

2

) (
c
4

< z <
3c
4

)

0

(
z >

3c
4

)

(4.311)

In the same manner as we did in (i), replacing:

v(x , y, z, t) =
∑

T (t)Q(x , y, z) (4.312)
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into the equation and applying the orthogonality of the Q(x , y, z)

functions we get to a differential equation for T (t):

Cρ∂Tnml

∂t
+ kλnml Tnml (t) =

∫
V

f (x , y, z)Qnml (x , y, z)dxdydz∫
V

∣∣Qnml (x , y, z)2
∣∣ dxdydz

= Fnml
[1 + cos(2ωt)]

2
(4.313)

The solution is made of a particular solution and a solution of the

homogeneous equation.

The solution of the homogeneous equation is:

Tnml ( part)(t) = A × e[−χλnml t] (4.314)

Where χ = k
Cρ is the thermal diffusivity coefficient.

The particular solution of the non-homogeneous equation is sought

as:

Tnml (nh)(t) = a × cos(2ωt) + b × sin(2ωt) + Const (4.315)

Replacing this form into the non-homogeneous equation and

applying the initial condition (trivial) we find the coefficients:

Tnml (t) = A × e[−χλnml t] + Fnml

[
1

2kλnml
+ 1

(2ωρC )2 + (kλnml )2

×
[

kλnml

2
cos(2ωt) + Cρω sin(2ωt)

]]
(4.316)

with

A = −Fnml

[
1

2kλnml
+ kλnml

2[(2ωρC )2 + (kλnml )2]

]
(4.317)

4.15 Cube with a Heater

A cube of side L has all of its surfaces thermally insulated. At its

central point (L/2, L/2, L/2) there is a point like heat source that

supplies a heat density in the form B ·sin(ωt) since t = −∞. Find the

stationary distribution of temperature. The thermal conductivity is

k, its specific heat is C and its density is ρ.
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Figure 4.20

Mathematical formulation

The heat equation describes the distribution of temperature u =
u(x , y, z, t):

Cρ
∂u
∂t

− k�u = B sin(ωt)δ

(
x − L

2

)
δ

(
y − L

2

)
δ

(
z − L

2

)
(4.318)

The boundary conditions at the insulated boundaries are:

∂u
∂x

∣∣∣∣
x=0

= ∂u
∂x

∣∣∣∣
x=L

= ∂u
∂y

∣∣∣∣
y=0

= ∂u
∂y

∣∣∣∣
y=L

= ∂u
∂z

∣∣∣∣
z=0

= ∂u
∂z

∣∣∣∣
z=L

= 0

(4.319)

Since the heat source has been acting for a long time, we can assume

that the transient variations of temperature will have died out by

now and u will oscillate with the same frequency ω as that of the

heat source. In the heat equation there is a first order derivative

with respect to time, so we will consider that the perturbation is of

the form Beiωtδ(�r − �r0), with �r = (x , y, z) and �r0 = L/2(1, 1, 1).

Separating variables we will search for a solution of the form

ũ(x , y, z, t) = eiωtv(x , y, z) and take only the imaginary part to

obtain the final solution: u = �ũ. Replacing in the heat equation:

Cρiωeiωtv − keiωt�v = Beiωtδ(�r − �r0) =⇒ Cρiωv − k�v

= Bδ(�r − �r0) (4.320)
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Sturm–Liouville problem

The Sturm–Liouville problem for the spatial variables is:

�v = −λv (4.321)

The boundary conditions for v can be obtained from those of u:

∂v
∂x

∣∣∣∣
x=0, L

= ∂v
∂y

∣∣∣∣
y=0, L

= ∂v
∂z

∣∣∣∣
z=0, L

= 0 (4.322)

Separating variables: v(x , y, z) ∝ X (x)Y (y)Z (z), with boundary

conditions X ′(0) = X ′(L) = Y ′(0) = Y ′(L) = Z ′(0) = Z ′(L) = 0.

�v
v

= 1

X (x)

d2 X
dx2

+ 1

Y (y)

d2Y
dy2

+ 1

Z (z)

d2 Z
dz2

= −λ (4.323)

Since each term is independent, all must be constant:⎧⎪⎪⎨
⎪⎪⎩

X ′′(x) = −νX (x); X ′(0) = X ′(L) = 0

Y ′′(y) = −μY (y); Y ′(0) = Y ′(L) = 0

Z ′′(z) = −ηZ (z); Z ′(0) = Z ′(L) = 0

(4.324)

and the eigenvalue of the global problem will be the sum of those of

the problems for each variable: λ = ν +μ+ η. For the X (x) function

the general solution will be:

X (x) = A cos(
√
νx) + B sin(

√
νx)

Since X ′(0) = 0 =⇒ B = 0. From the other boundary condition,

to obtain a non-trivial solution: X ′(L) = 0 =⇒ √
νL = nπ . For the

y and z variables we have identical solutions:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X n(x) = cos
(nπx

L

)
; νn =

(nπ
L

)2

; n = 0, 1, 2 . . .

Ym(y) = cos
(mπy

L

)
; μm =

(mπ

L

)2

; m = 0, 1, 2 . . .

Zl (z) = cos

(
lπz

L

)
; ηl =

(
lπ
L

)2

; l = 0, 1, 2 . . .

(4.325)

The solution of the Sturm–Liouville problem is:

v(x , y, z) = Anml cos
(nπx

L

)
cos
(mπy

L

)
cos

(
lπz

L

)
(4.326)
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whose coefficients Anml must be determined, with eigenvalues:

λnml = νn + μm + ηl = π2

L2
(n2 + m2 + l2) (4.327)

Replacing into 4.320 the solution of the Sturm–Liouville problem:∑
n, m, l

[Cρiω + kλnml ]Anml X n(x)Ym(y)Zl (z)

= Bδ

(
x − L

2

)
δ

(
y − L

2

)
δ

(
z − L

2

)
(4.328)

Final solution

We now apply the orthogonality of the eigenfunctions by multiplying

both sides by X n(x)Ym(y)Zl (z) and integrate over the intervals x ∈
[0, L], y ∈ [0, L] and z ∈ [0, L].

Anml [Cρiω + kλnml ]

∫ L

0

∫ L

0

∫ L

0

cos2
(nπx

L

)
cos2

(mπy
L

)
cos2

(
lπz

L

)
dxdydz = B

∫ L

0

∫ L

0

∫ L

0

cos
(nπx

L

)
cos
(mπy

L

)
cos

(
lπz

L

)

×δ

(
x − L

2

)
δ

(
y − L

2

)
δ

(
z − L

2

)
dxdydz

= B cos
(nπ

2

)
cos
(mπ

2

)
cos

(
lπ
2

)

=⇒ Anml = B cos
( nπ

2

)
cos
(mπ

2

)
cos
( lπ

2

)
[Cρiω + kλnml ]|cos

( nπx
L

)|2|cos
(mπy

L

)|2|cos
( lπz

L

)|2

(4.329)

where the square modulus of the X n(x) eigenfunction is:

|cos
(nπx

L

)
|
2

=
∫ L

0

cos2
(nπx

L

)
dx =

⎧⎨
⎩

L, n = 0
L
2

, n �= 0

with equivalent expressions for Ym(y) and Zl (z). We mention that as

the average (background) temperature in the problem is not known,

we should not consider the evaluation of the A000 term. We see

that if at least one of the three indices (n, m, or l) is odd we have

Anml = 0. And if the three are even, cos
( nπ

2

)
cos
(mπ

2

)
cos
( lπ

2

) =
(−1)(n+m+l)/2.
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With all this:

ũ(x , y, z, t) =
∑
n, m, l
even

eiωt

Cρiω + kλnml

× B(−1)
n+m+l

2 cos
( nπx

L

)
cos
(mπy

L

)
cos
( lπz

L

)
|cos

( nπx
L

)|2|cos
(mπy

L

)|2|cos
( lπz

L

)|2
(4.330)

To obtain the final solution u(x , y, z, t) we will take the imaginary

part of the last expression. We can rewrite the complex denomina-

tor:

Cρiω + kλnml =
√

(Cρω)2 + (kλnml )2ei arctan(Cρω/(kλnml )) (4.331)

�
(

eiωt

Cρiω + kλnml

)
= �

(
ei(ωt−arctan(Cρω/(kλnml )))√

(Cρω)2 + (kλnml )2

)

=
sin
(
ωt − arctan

(
Cρω
kλnml

))
√

(Cρω)2 + (kλnml )2
(4.332)

The final solution is:

u(x , y, z, t) =
∑
n, m, l
even

sin
(
ωt − arctan

(
Cρω
kλnml

))
√

(Cρω)2 + (kλnml )2

× B(−1)
n+m+l

2 cos
( nπx

L

)
cos
(mπy

L

)
cos
( lπz

L

)
|cos

( nπx
L

)|2|cos
(mπy

L

)|2|cos
( lπz

L

)|2
(4.333)
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Chapter 5

Problems in Polar Coordinates

The previous chapters consider examples of problems in homoge-

neous spaces (using Cartesian coordinates). One of the simplest

ways of breaking the symmetry is the presence of a symmetry

point in a bi-dimensional space or of a symmetry axis in three-

dimensional space.

The corresponding problems will be solved using cylindrical

coordinates, which implies using new variables (angle, radius),

keeping only a Cartesian variable to describe the space along the

symmetry axis. As a consequence, the form of the Laplacian operator

will change and the solutions of the Sturm–Liouville problem in the

radial variable will be Bessel and Neumann functions. Also, the way

to describe some features such as points, circles or thin cylinder

changes, using the Dirac’s Delta function in cylindrical coordinates.

This chapter is limited to problems in cylindrical coordinates in two

dimensions (i.e polar coordinates), or in three when the problem is

infinite along the cylinder axis.
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5.1 Separation of Variables in a Circular
Membrane

Find the eigenfunctions and eigenvalues of the Sturm–Liouville

problem corresponding to a circular membrane of radius R with its

border fixed.

Solution:

The problem is: {
�u + λu = 0

u(ρ = R) = 0

}
(5.1)

with λ > 0.
1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
+ 1

ρ2

∂2u
∂ϕ2

+ λu = 0 (5.2)

We apply the method of separation of variables.

u = R(ρ) · �(ϕ) (5.3)

1

ρ

d
dρ

[
ρ

d R
dρ

]
� + R

ρ2

d2�

dϕ2
+ λR(ρ) · �(ϕ) = 0 (5.4)

We divide both sides by R(ρ)�(ϕ) and multiply by ρ2

Then:

ρ d
dρ

[
ρ d R

dρ

]
R

+ λρ2 = − 1

�

d2�

dϕ2
= μ = m2 (5.5)

Sturm–Liouville for the angular variable

⎧⎪⎨
⎪⎩

d2�

dϕ2
+ μ� = 0

periodicity of 2π

⎫⎪⎬
⎪⎭ (5.6)

Radial problem:

1

ρ

d
dρ

[
ρ

d R
dρ

]
+
[
λ − m2

ρ2

]
R = 0 → (5.7)

d2 R
dρ2

+ 1

ρ

d R
dρ

+
[
λ − m2

ρ2

]
R = 0 (5.8)

This is Bessel’s equation, which gives us the radial orthogonal

eigenfunctions. Applying the boundary conditions will give us the

eigenvalues of the problem.
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5.2 Electric Potential in a Circular Sector: Case 1

A region is limited by three conductors: two perpendicular planes

(electrically grounded) and a quarter of an infinite cylinder of radius

R . The potential of the curved surface is V0. Find the electrostatic

potential at any point inside this region.

Figure 5.1

Mathematical formulation

Note: as the problem is infinite in the z direction the solution will

not depend on this variable, due to symmetry reasons.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

ρ

∂

∂ρ

[
ρ
∂u(ρ , ϕ)

∂ρ

]
+ 1

ρ2

∂u2(ρ , ϕ)

∂ϕ2
= 0

u(ρ , 0) = u
(
ρ ,

π

2

)
= 0

u(R , ϕ) = V0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.9)

Sturm–Liouville problem

Separating variables u(ρ , ϕ) = Q(ρ)�(ϕ) we arrive at two

equations:

1

Q

(
ρ

∂

∂ρ

[
ρ
∂Q(ρ , ϕ)

∂ρ

])
= − 1

�

(
∂2�

∂ϕ2

)
= +λ (5.10)

We impose the positive sign for λ so that we can expand in

trigonometric functions of the angular variable, since in these

variables the boundary conditions are homogeneous. The Sturm–
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Liouville problem is:

⎧⎪⎨
⎪⎩

d2�

dϕ2
+ λ� = 0

�(0) = �
(π

2

)
= 0

⎫⎪⎬
⎪⎭ (5.11)

Eigenvalues and eigenfunctions:

�n(ϕ) = An cos(
√
λϕ) + Bn sin(

√
λϕ) (5.12)

�(0) = 0 → An = 0 (5.13)

�
(π

2

)
= 0 → Bn sin

(√
λ
π

2

)
= 0 (5.14)

Then
√
λ = 2n Eigenfunctions �n(ϕ) = Bn sin(2nϕ);

Eigenvalues λ = (2n)2; n = 1, 2, 3 . . .

General solution

Now we solve the equation for the radial part.

ρ
d

dρ

[
ρ

d Q(ρ , ϕ)

dρ

]
− λQ = 0 (5.15)

ρ2 d2 Q(ρ)

dρ2
+ ρ

[
d Q(ρ)

dρ

]
− 4n2 Q = 0 (5.16)

We look for the solution as Q(ρ) = ρα since all components of the

equation are of the same order in the ρ variable.

Replacing, we get: α(α − 1) + α − 4n2 = 0

Then:

α = ±2n (5.17)

Q(ρ) = C1ρ
2n + C2ρ

−2n (5.18)
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Final solution

Since the solution is finite at ρ = 0 it is necessary that C2 = 0. The

general solution is:

u(ρ , ϕ) =
∑

n

Bnρ
2n sin(2nϕ) (5.19)

We impose the boundary condition (ρ = R) to find the coefficients.

u(R , ϕ) = V0 =
∑

n

Bn R2n sin(2nϕ) (5.20)

Due to the orthogonality of the angular eigenfunctions, using the

integrals:
π
2∫

0

sin(2nϕ) = sin2
( nπ

2

)
n

=

⎧⎪⎨
⎪⎩

0 n = 2k

1

n
n = 2k + 1

⎫⎪⎬
⎪⎭ (5.21)

π
2∫

0

sin2(2nϕ) = π

4
(5.22)

We get the coefficients: Bn = 4V0

nπ R2n

Then:

u(ρ , ϕ) =
∞∑

k=0

4V0

(2k + 1)π

( ρ
R

)2(2k+1)

sin[2(2k + 1)]ϕ (5.23)

5.3 Electric Potential in a Circular Sector: Case 2

Find the distribution of electric potential inside a circular sector

without charges, which spans an angle (0 < ϕ < α), if the electric

potential at the boundaries is as specified in the figure.

Figure 5.2
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Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�u = 0

u(R) = f (ϕ) =

⎧⎪⎨
⎪⎩

U 2

(
0 < ϕ <

α

2

)
U 1

(α
2

< ϕ < α
)
⎫⎪⎬
⎪⎭

u(ρ , 0) = u(ρ , α) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.24)

Sturm–Liouville problem

We separate variables to get to the eigenfunctions of the problem:

u(ρ , ϕ) = Q(ρ)�(ϕ) (5.25)

The Sturm–Liouville problem for �(ϕ) is:⎧⎪⎨
⎪⎩

d2�

dϕ2
+ λ�(ϕ) = 0

�(0) = �(α) = 0

⎫⎪⎬
⎪⎭ (5.26)

Angular eigenfunctions and eigenvalues:

�(ϕ) = sin
(πn

α
ϕ
)

(5.27)

λn =
(πn

α

)2

(5.28)

General solution

The equation for the radial part is:

ρ2 d2 Q
dρ2

+ ρ
d Q
dρ

− λQ = 0 (5.29)

With radial solutions: Q(r) = ρ
πn
α

The general solution is:

u(ρ , ϕ) =
∞∑

n=0

Anρ
πn
α sin

(πn
α

ϕ
)

(5.30)
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Final solution

Imposing the boundary conditions and using the orthogonality of

the eigenfunctions: sin
(
πn
α
ϕ
)

u(R , ϕ) = f (ϕ) =
∞∑

n=1

An R
πn
α sin

(πn
α

ϕ
)

(5.31)

α∫
0

f (ϕ) sin
(πn

α
ϕ
)

dϕ = An R
πn
α

α∫
0

sin2
(πn

α
ϕ
)

dϕ (5.32)

We get the coefficients of the Fourier series:

An = 2

α

α∫
0

f (ϕ) sin
(
πn
α
ϕ
)

dϕ

R
πn
α

(5.33)

An = 2

αR
πn
α

⎡
⎣ α/2∫

0

U 2 sin
(πn

α
ϕ
)

dϕ +
α∫

α/2

U 1 sin
(πn

α
ϕ
)

dϕ

⎤
⎦ =

= 2

αR
πn
α

[
U 2

α

πn

[
1 − cos

(πn
2

)]
+ U 1

α

πn

[
cos
(πn

2

)
− cos(πn)

]]
(5.34)

5.4 Stationary Distribution of the Concentration
of Particles in a Sector of an Infinite Cylinder

Consider a sector of a cylinder of infinite length, with radius ρ = R ,

with a diffusivity coefficient D. The angle of aperture is 0 < ϕ <

α. One of the flat faces is in contact with the outer medium, which

has a concentration of particles n = 0. The other flat face does not

allow particles to go through it. The curved face exchanges particles

with the outer medium with a flux density: = −n(R , ϕ) − Aϕ. Find

the distribution of the concentration of particles inside the cylinder.
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Figure 5.3

Mathematical formulation

We need to solve Laplace’s problem (the diffusion equation is

reduced to Laplace’s one in the stationary case) in the angular sector

0 < ϕ < α, with boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u = 0

u(ρ , 0) = ∂u
∂ϕ

∣∣∣∣
ϕ=α

= 0

−D
∂u
∂ρ

∣∣∣∣
ρ=R

= −u(R , ϕ) − Aϕ

u(0, ϕ) < ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.35)

Sturm–Liouville problem

Separating variables u = �(ϕ)× Q(ρ) we arrive at a Sturm–Liouville

problem for the angular variable, whose solution, once replaced into

the Laplace’s equation, gives an equation for ρ.

⎧⎪⎪⎨
⎪⎪⎩

d2�(ϕ)

dϕ2
+ λ�(ϕ) = 0

∂�

∂ϕ

∣∣∣∣
ϕ=α

= �(0) = 0

⎫⎪⎪⎬
⎪⎪⎭ (5.36)

Solution:⎧⎪⎪⎨
⎪⎪⎩

�(ϕ) = sin

(
π

(2n + 1)

2α
ϕ

)

λn =
(
π(2n + 1)

2α

)2

(n = 0, 1, 2 . . .)

⎫⎪⎪⎬
⎪⎪⎭ (5.37)
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General solution

In the radial direction the equation has a solution in the form of a

power expansion:⎧⎪⎨
⎪⎩

ρ2
d2 Q(ρ)

dρ2
+ ρ

d Q(ρ)

dρ
−
[
π

(2n + 1)

2α

]2

Q(ρ) = 0

Qn(ρ) = ρ
±
[
π

(2n+1)

2α

]

⎫⎪⎬
⎪⎭ (5.38)

Applying the condition u(0, ϕ) < ∞ we obtain the form of the radial

solutions:

Qn(ρ) = ρ
+
[
π

(2n+1)

2α

]
(5.39)

The general solution is:

u =
∑

Cnρ
+
[
π

(2n+1)

2α

]
sin

(
π

(2n + 1)

2α
ϕ

)
(5.40)

Final solution

We find the derivative of u(ρ , ϕ) for ρ = R:

∂u
∂ρ

∣∣∣∣
ρ=R

=
∑

Cn

[
π

(2n + 1)

2α

]
R+

[
π

(2n+1)

2α

]
−1

sin

(
π

(2n + 1)

2α
ϕ

)
(5.41)

Applying the boundary condition for ρ = R

−D
∑

Cn

[
π

(2n + 1)

2α

]
R+

[
π

(2n+1)

2α

]
−1

sin

(
π

(2n + 1)

2α
ϕ

)
=

−
∑

Cn R+
[
π

(2n+1)

2α

]
sin

(
π

(2n + 1)

2α
ϕ

)
− Aϕ (5.42)

−Aϕ =
∑

Cn R+
[
π

(2n+1)

2α

](
1 − D

[
π

(2n + 1)

2α

]
1

R

)

× sin

(
π

(2n + 1)

2α
ϕ

)
Finally, using the orthogonality of the angular eigenfunctions we get

the coefficients Cn:

Cn R+
[
π

(2n+1)

2α

](
1 − D

[
π

(2n + 1)

2α

]
1

R

)

= −2A
α

α∫
0

ϕ sin

(
π

(2n + 1)

2α
ϕ

)
dϕ = −2A

α

(−1)n[
π

(2n+1)

2α

]2
(5.43)
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The final solution is:

u(ρ , ϕ) = 2A
α

∞∑
n=0

(−1)n+1[
π

(2n+1)

2α

]2

R+
[
π

(2n+1)

2α

] (
1 − D

R

[
π

(2n+1)

2α

])
ρ

+
[
π

(2n+1)

2α

]
sin

(
π

(2n + 1)

2α
ϕ

)
(5.44)

5.5 Instantaneous Hit on a Membrane with
Circular Sector Form

Find the oscillations of a membrane with the form of a circular

sector, of an angular aperture α and with radii r and R . The

membrane is fixed in the curved part, free on one of the sides, and

half-free on the other with a constant A presenting the relation

between the spring constant and the membrane tension. The

membrane, initially at rest, receives a point hit at the instant t = 0

at the location (ϕ = 0, ρ = R/2).

Note 1: Consider that the hit satisfies this condition for the initial

velocity
∂u
∂t

∣∣∣∣
t=0

: limε→0

∫
�ε

∂u
∂t

∣∣∣∣
t=0

ρdρdϕ = V0 being �ε a surface

of radius ε around the surroundings of the point where the hit is

exerted.

Note 2: Consider that at the inner radius (r) the membrane is free.

Suppose that r/R << 1.

Figure 5.4

The hit is represented using the Dirac’s delta function in cylindrical

coordinates (see Appendix). We look for the density so that the total
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impulse transferred to the membrane is ρ0V0:

∂u
∂t

∣∣∣∣
t=0

= V0

ρ
δ

(
ρ − R

2

)
δ(ϕ) (5.45)

We see the relation between the total impulse transferred (I ), the

density of mass of the material (ρ0) and the constant V0.

I =
∫
�ε

ρ0

∂u
∂t

∣∣∣∣
t=0

ρdρdϕ = ρ0V0 (5.46)

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a2

∂u2(ρ , ϕ, t)

∂t2
− 1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
− 1

ρ2

∂u2(ρ , ϕ, t)

∂ϕ2
= 0

u(ρ , ϕ, 0) = 0;

∂u
∂t

∣∣∣∣
t=0

= V0

ρ
δ

(
ρ − R

2

)
δ(ϕ)

u(R , t) = 0;
∂u
∂ρ

∣∣∣∣
ρ=r

= 0

∂u
∂ϕ

∣∣∣∣
ϕ=α

+ Au(ρ , α, t) = 0;

∂u
∂ϕ

∣∣∣∣
ϕ=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.47)

a is the speed of sound of the membrane. The general solution for

a sector of the membrane with one of the half fixed boundaries

(boundary conditions of the third kind) and other of the second kind

is:

u(ρ , ϕ, t) =
∑
n, m

{
Anm cos[a

√
λnmt] + Bnm sin[a

√
λnmt]

}

× Rνm (
√
λnmρ) cos(νmϕ) (5.48)

Sturm–Liouville problem

The solution of (5.48) is obtained with the method of separation of

variables:

u =
∑

T (t) · R(ρ) · �(ϕ) (5.49)
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When replacing this expression into the wave equation we get to

the angular Sturm–Liouville problem, to lower the number of second

derivatives: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2�(ρ , ϕ, t)

dϕ2
+ ν� = 0

d�
dϕ

∣∣∣∣
ϕ=α

+ A�(α) = 0

d�
dϕ

∣∣∣∣
ϕ=0

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.50)

To find the angular eigenfunctions first we look for the general

solution of the Sturm–Liouville problem:

�(ϕ) = C cos(νϕ) + D sin(νϕ) (5.51)

Due to the fourth boundary condition, we have D = 0. The

eigenvalues νm are sought by applying the third boundary condition:

∂u
∂ϕ

∣∣∣∣
ϕ=α

+ Au(ρ , α, t) = 0 → −
√
λm sin(νmα) + A cos(νmα) = 0

(5.52)

Then the eigenvalues with solutions of the equation tan(νmα) = A
νm

are all possible eigenvalues νm of the angular Sturm–Liouville (here

the index m enumerates the eigenvalues).

Once the angular problem is solved, we arrive at the following

equation for the radial variable (now there is no z variable and the

angular eigenvalues are no longer integer numbers).

d2 R
dρ2

+ 1

ρ

d R
dρ

+
(
λ − [νm]2

ρ2

)
R = 0 (5.53)

General solution

The solution of this problem gives us a set of radial solutions

R = C1 J νm (
√
λnmρ) + C2 J −νm (

√
λnmρ) (5.54)

This is due to the fact that in general the index νm is not an integer.

The possible values λnm are the nth solutions of the equation

obtained by imposing the condition DET=0 to the system of two
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equations with two unknowns at which we arrive by imposing the

first and second boundary conditions:⎧⎨
⎩

C1 J νm (
√
λnm R) + C2 J −νm (

√
λnm R) = 0

C1 J ′
νm

(
√
λnmr) + C2 J ′

−νm
(
√
λnmr) = 0

⎫⎬
⎭ (5.55)

Then:

J νm (
√
λnm R) · J ′

−νm
(
√
λnmr) − J −νm (

√
λnm R) · J ′

νm
(
√
λnmr) = 0

(5.56)

Also from the first or second boundary conditions we can obtain

the ratio between the coefficients C1 and C2 and in this manner

determine the form of the radial function.

General solution:

u(ρ , ϕ, t) =
∑
n, m

Bnm sin[a
√
λnmt]R

νm
(
√
λnmρ) cos(νmϕ) (5.57)

Final solution

One the form of the general solution is known, we look for the

coefficients of the expansion using the initial conditions. From the

first one we have: Anm = 0, and from the second:

∂u
∂t

∣∣∣∣
t=0

= V0

ρ
δ

(
ρ − R

2

)
δ(ϕ)

=
∑
n, m

(a
√
λnm)Bnm cos[a

√
λnm0]R

νm
(
√
λnmρ) cos(νmϕ)

(5.58)

We use the orthogonality of the radial and angular eigenfunctions to

find the coefficients Bnm.

Multiplying both sides of the previous relation by

R
νm

(
√
λklρ) cos(νlϕ) and integrating

R∫
r

α∫
0

ρdρdϕ

V0

R∫
r

α∫
0

R
νl

(
√
λklρ) cos (νlϕ)

1

ρ
δ

(
ρ − R

2

)
δ(ϕ)ρdρdϕ =

=
∑
n, m

Bnm(a
√
λnm)

R∫
r

α∫
0

R
νm

(
√
λnmρ)Rνl (

√
λklρ)

cos(νlϕ) cos(νmϕ)ρdρdϕ (5.59)
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Due to the orthogonality of the radial and angular eigenfunctions we

find the coefficients:

Bnm =
V0

R∫
r

α∫
0

R
νl

(
√
λklρ) cos(νlϕ) 1

ρ
δ(ρ − R

2
)δ(ϕ)ρdρdϕ

(a
√
λnm)

∥∥Rνm (
√
λnmρ)

∥∥2 ‖cos(νmϕ)‖2

= V0 Rνm (
√
λnm

R
2

)

(a
√
λnm)

∥∥Rνm (
√
λnmρ)

∥∥2 ‖cos(νmϕ)‖2
(5.60)

The final solution is:

u(ρ , ϕ, t) =
∑
n, m

V0 Rνm (
√
λnm

R
2

)

(a
√
λnm)

∥∥Rνm (
√
λnmρ)

∥∥2 ‖cos(νmϕ)‖2

× sin[a
√
λnmt]Rνm (

√
λnmρ) cos(νmϕ) (5.61)

5.6 Linear Heating of a Disk

Find the variation in temperature inside a disk of radius R if at

t = 0 it is heated by uniformly distributed heat sources. The density

of heat sources is equal to ACρ0t (being A a constant, C the heat

capacity and ρ0 the density of the material) due to the supplied

power increases linearly with time. The initial temperature of the

disk at t = 0 equals zero. The outer boundary of the disk (ρ = R)

is kept in contact with a thermal reservoir at zero temperature.

Consider that the coefficient of thermal diffusivity equals a2.

Figure 5.5
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Mathematical formulation

We need to solve the non-homogeneous Fourier problem with

homogeneous boundary conditions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t

− a2�u(ρ , ϕ) = At (t > 0)

u(ρ = R , ϕ, t) = 0

u(ρ , ϕ, t = 0) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.62)

Sturm–Liouville problem

The solution is expanded into series of the orthogonal eigenfunc-

tions of the Sturm–Liouville problem in a circle of radius R with

homogeneous boundary conditions:{
�v(ρ , ϕ) + λv(ρ , ϕ) = 0

v(R , ϕ) = 0

}
(5.63)

The eigenfunctions of the problem are known and consist of radial

and angular solutions:

vnk(ρ , ϕ) = Ank J n

(√
λ

(k)
n ρ

)
· cos(nϕ) + Bnk J n

(√
λ

(k)
n ρ

)
· sin(nϕ)

(5.64)

being λ(k)
n solutions of the equation J n

(√
λ

(k)
n R
)

= 0

Solution

We seek a general solution in the form:

u(ρ , ϕ, t) =
∑
n, k

wnk(t)vnk(ρ , ϕ) (5.65)

Since the solution must not depend on the angle it can be simplify

by just keeping the eigenfunctions with angular symmetry (with n =
0):

u(ρ , ϕ, t) =
∑

k

wk(t) · J 0

(√
λ

(k)
0 ρ

)
(5.66)

Replacing this general solution into equation (5.62), and using the

orthogonality of the eigenfunctions:

J 0

(√
λ

(k)
0 ρ

)
(5.67)
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we arrive at an equation for wk(t) :⎧⎨
⎩

dwk

dt
+ a2λ

(k)
0 wk(t) = At · fk

wk(t = 0) = 0

⎫⎬
⎭ (5.68)

The values of fk are obtained from:

fk = 1∣∣∣∣
∣∣∣∣ J 0

(√
λ

(k)
0 ρ

)∣∣∣∣
∣∣∣∣

2

∫ R

0

J 0

(√
λ

(k)
0 ρ

)
ρdρ

= 2

R ·
√
λ

(k)
0 · J 1

(√
λ

(k)
0 R
) (5.69)

Here we have used: d[xn J n]

dx = xn J n−1(x) and also the condition of

orthogonality of the Bessel functions (the quote symbol (’) indicates

derivative):∫ R

0

J ν

(√
λ

(k)
ν ρ

)
J ν

(√
λ

(l)
ν ρ

)
ρdρ = R2

2

[
J ′
ν

(√
λ

(l)
ν R
)]2

δkl

(5.70)

The solution of the problem 5.68 is expressed as the sum of a

particular solution sp(t) (which subtracts the non-homogeneous

part of equation 5.68) plus a homogeneous solution s(t). Finally

we will apply the initial condition to find the coefficients: Then the

solution of 5.68 is:

wk(t) = s(t) + sp(t) (5.71)

We propose the particular solution as:

sp(t) = Bt + C (5.72)

Replacing this expression in 5.68:

B = A fk

a2λ
(k)
0

(5.73)

C = − A fk

[a2λ
(k)
0 ]2

(5.74)

Equation for the homogeneous solution s(t):

ds
dt

+ a2λ
(k)
0 s(t) = 0 (5.75)
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s(0) = −sp(0) = A fk

[a2λ
(k)
0 ]2

(5.76)

The solution is an exponential function. The solution of the non-

homogeneous equation which satisfies the initial conditions is:

wk(t) = A fk

a2λ
(k)
0

[
t − 1

a2λ
(k)
0

]
+ A fk

[a2λ
(k)
0 ]2

e
(

−a2λ
(k)
0 t

)

= A fk

a2λ
(k)
0

[
t − 1

a2λ
(k)
0

(
1 − e

(
−a2λ

(k)

0 t
))]

(5.77)

The final solution is:

u(ρ , ϕ, t) =
∑

k

wk(t) · J 0

(√
λ

(k)
0 ρ

)
(5.78)

5.7 Case Study: Laplace’s Problem in a Sector
with Non-Homogeneous Boundary
Conditions

The straight sides of a circular sector (with aperture angle α and

radius R) are ate temperatures T1, T2, while the temperature of the

curved part is f (ϕ) (ϕ is the angular variable).

Find the stationary distribution of temperature inside the sector.

Mathematical formulation

We apply the principle of linearity on the Laplace’s equation to

solve the problem in the sector with non-homogeneous boundary

conditions (see figure).

Figure 5.6
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We note that the solution cannot be decomposed in any other way,

since only in this manner can we have homogeneous boundary

conditions in the angular variable. In this fashion we have the

possibility to expand the solutions in orthogonal eigenfunctions.

Figure 5.7

If u(r, ϕ) is the solution of the initial problem u1(r, ϕ) and u2(r, ϕ)

are solutions of problems (b) and (c).

Separating the solution in two we have:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�u(r, ϕ) = �u1(r, ϕ) + �u2(r, ϕ) = 0

u(r, 0) = u1(r, 0) + u2(r, 0) = T1 + 0 = T1

u(r, α) = u1(r, α) + u2(r, α) = T2 + 0 = T2

u(R , ϕ) = u1(R , ϕ) + u2(R , ϕ) = g(ϕ) + f (ϕ) − g(ϕ) = f (ϕ)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.79)

To separate the problem in two helps to separate the solution

of the initial problem (a) in two solutions, one of which only

depends on the angle u1(r, ϕ) = u1(ϕ), while the other u2(r, ϕ)

has homogeneous boundary conditions, which allow to expand the

solution in Fourier series for the angular variable:

If u1(r, ϕ) = u1(ϕ) then ∂u
∂r = ∂2u

∂r2 = 0

The problem of the Laplace’s equation is:

�u1(r, ϕ) = 0 → 1

r2

d2u1

dϕ2
= 0 (5.80)

Solution: u1(ϕ) = A × ϕ + B (A , B =Const)

We will use the boundary conditions to find the function u1:

First condition: u1(ϕ = 0) = T1 → B = T1
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Second condition: u1(ϕ = α) = T2 → A = T2−T1

α

Then u1(ϕ) = T2−T1

α
×ϕ + T1 is the solution of problem (1) and does

not depend on the radial variable.

General solution

The general solution of the problem has been obtained before

(problem of the electric potential inside a circular sector):

u2(r, ϕ) =
∞∑

n=1

Anr
πn
α sin

(πn
α

ϕ
)

(5.81)

We just need to apply the boundary condition at r = R to

find the coefficients by applying the orthogonality of the angular

eigenfunctions

f (ϕ) − g(ϕ) =
∞∑

n=1

An R
πn
α sin

(πn
α

ϕ
)

(5.82)

We will now find the solution u2 for a specific case of a sector with

radius R = 1. Let us consider the following boundary conditions:

T1 = 0; T2 = 1; α = π

4
; f (1, ϕ) = 3 sin(4ϕ) (5.83)

The problem to find the function u2(r, ϕ) is:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�u2(r, ϕ) = 0

u2(r, 0) = 0

u2(r, α) = 0

u2(R , ϕ) = f (ϕ) − g(ϕ) = 3 sin(4ϕ) − 4ϕ

π

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.84)

The general solution in the specific case will be:

u2(r, ϕ) =
∑

(r)4n[An sin(4nϕ)] (5.85)

Final solution

The final solution will be obtained by imposing the boundary

conditions:

u2(R , ϕ) = 3 sin(4ϕ) − 4ϕ

π
=
∑

(1)4n[An sin(4nϕ)] (5.86)
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Figure 5.8

and using the orthogonality of the eigenfunctions sin(4nϕ) in the

interval (0 < ϕ < π
4

) we arrive at the final solution:

An = 2

(π/4)

π/4∫
0

[
3 sin(4ϕ) − 4ϕ

π

]
sin(4nϕ)dϕ

=

⎧⎪⎪⎨
⎪⎪⎩

A1 = 3 + 2

π
n = 1)

An = 2
(−1)n+1

πn
(n ≥ 2)

⎫⎪⎪⎬
⎪⎪⎭ (5.87)

Then:

u2(r, ϕ) =
(

3 + 2

π

)
r4 sin(4ϕ) + 2

∞∑
n=2

(−1)n+1

πn
(r)4n sin(4nϕ)

(5.88)

5.8 Case Study: Temperature Distribution in a
Disk with Heaters

A disk of radius R with heat capacity C = 1, density ρ0 = 1, thermal

conductivity k = 1 and thermal diffusivity χ = 1, has its outer

surface in contact with a thermal reservoir at zero temperature .

Find the stationary distribution of temperature inside the disk if in

its inside there are heat sources with density f = F · xy.
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Figure 5.9

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ0

∂u
∂t

− k�u(ρ , ϕ) = F xy (0 ≤ ρ ≤ R)

∂u
∂t

− χ�u(ρ , ϕ) = F
Cρ0

xy = F
Cρ0

ρ2 sin(ϕ) cos(ϕ) = F
Cρ0

ρ2[ 1
2

sin(2ϕ)] (0 ≤ ρ ≤ R)

�u(ρ , ϕ) = − F
2k

ρ2 sin(2ϕ) = − F
2
ρ2 sin(2ϕ) (0 ≤ ρ ≤ R)

u(R , ϕ, t) = 0

u(0, ϕ, t) < ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.89)

Due to the symmetry of the heat sources, the problem can be solved

in several ways:

Method 1

Sturm–Liouville problem

As it is a Poisson’s problem in a circle without a hole at its center and

with homogeneous boundary conditions, we can seek a solution in

the form of a sum of orthogonal functions:

u(ρ , ϕ) =
∑
n, m

[ J m(
√
λnmρ)

+DNm(
√
λnmρ)][Anm sin(mϕ) + Bnm cos(mϕ)] (5.90)

And to satisfy the second boundary condition:

u(ρ , ϕ) =
∑
n, m

J m(
√
λnmρ)[Anm sin(mϕ) + Bnm cos(mϕ)]

=
∑
n, m

Cnmvnm(ρ , ϕ) (5.91)
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where vnm(ρ , ϕ) are well known eigenfunction of the Sturm–

Liouville problem.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�v(ρ , ϕ) + λv(ρ , ϕ) = 0 (0 ≤ ρ ≤ R)

v(R , ϕ) = 0

v(0, ϕ) < ∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.92)

Solution

We replace this in the equation:

∑
n, m

λnm J m(
√
λnmρ)[Anm sin(mϕ) + Bnm cos(mϕ)] = F

2
ρ2 sin(2ϕ)

(5.93)

We use the orthogonality of the angular functions cos(mϕ),

multiplying both sides of (5.93) and integrating from 0 to 2π , with

which we get at Bnm = 0.

The orthogonality of the Bessel functions and of sin(mϕ) is used,

multiplying by them both sides of (5.93) and integrating from 0 to

2π and we check that only the coefficients An2 �= 0.

Anmλn2

R∫
0

[ J m(
√
λnmρ)]2ρdρ

2π∫
0

|sin(2ϕ)|2 dϕ

= F
2

R∫
0

J m(
√
λnmρ)ρ3dρ

2π∫
0

|sin(2ϕ)|2 dϕ (5.94)

Finally:

An2 = F
2

R∫
0

J m(
√
λnmρ)ρ3dρ

λn2

R∫
0

[ J m(
√
λnmρ)]2ρdρ

(5.95)

Solution as an expansion of Bessel functions:

u(ρ , ϕ) = sin(2ϕ)
∑

n

An2 J 2(
√
λn2ρ) (5.96)
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Method 2

We will separate the problem in two: an inhomogeneous one,

where we will not care about the boundaries, with a particular

solution s and another one for the function v , with a homogeneous

equation, with inhomogeneous boundary conditions to satisfy the

homogeneous boundary conditions of the total solution.

u(ρ , ϕ) = s(ρ , ϕ) + v(ρ , ϕ) (5.97)

The heat equation is multiplied by ρ2. The inhomogeneous problem

with a particular solution must satisfy the equation:

ρ2 ∂
2u

∂ρ2
+ ρ

∂u
∂ρ

+ ∂2u
∂ϕ2

= − F
2
ρ4 sin(2ϕ) (5.98)

u(R , ϕ) = 0 (5.99)

Due to the symmetry of the inhomogeneous part, the particular

solution can be sought in the form:

s(ρ , ϕ) = w(ρ) sin(2ϕ) (5.100)

Replacing in (5.98) we get an equation for w(ρ):

ρ2 d2w
dρ2

+ ρ
dw
dρ

− 4w = − F
2
ρ4 (5.101)

We can seek the solution in the form w(ρ) = Cρα , since all terms to

the left side are raised to the same power:

α(α − 1)ρα + αρα − 4ρα = − F
2
ρ4 (5.102)

C [α(α − 1) + α − 4]ρα = − F
2
ρ4 (5.103)

From where: α = 4; C = − F
24

. Then:

s(ρ , ϕ) = − F
24

ρ4 sin(2ϕ) (5.104)

We formulate the Laplace’s problem for v(ρ , ϕ){
�v(ρ , ϕ) = 0

v(R , ϕ) = −s(R , ϕ)

}
(5.105)
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General solution

The general solution of the Laplace’s problem in the (whole) disk is:

v(ρ , ϕ) =
∑

m

ρm[Am sin(mϕ) + Bm cos(mϕ)] (5.106)

Final solution

Applying the boundary conditions and using the orthogonality of the

angular function we find the coefficients:∑
m

Rm[Am sin(mϕ) + Bm cos(mϕ)] = F
24

R4 sin(2ϕ) (5.107)

Bm = 0 (5.108)

Due to the angular asymmetry, only the A2 coefficient remains.

R2 A2 = F
24

R4 (5.109)

A2 = F
24

R2 (5.110)

Then: v(ρ , ϕ) = F
24

R2ρ2 sin(2ϕ). Finally the solution of the problem

(as a power expansion) is:

u(ρ , ϕ) = s(ρ , ϕ) + v(ρ , ϕ) = F
24

ρ2[R2 − ρ2] sin(2ϕ) (5.111)

Method 3

This is a modified version of Method 2. Instead of searching for

a solution as an expansion in 2D orthogonal functions (radial and

angular in Method 1) we will only use the orthogonality of the

angular functions.

u(ρ , ϕ) =
∑

m

R(ρ) · �m(ϕ) (5.112)

with

d2�m(ϕ)

dϕ2
= −m2�m(ϕ) (5.113)
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Replacing the solution into the heat equation, rewritten as:

ρ2 ∂
2u

∂ρ2
+ ρ

∂u
∂ρ

+ ∂2u
∂ϕ2

= − F
2
ρ4 sin(2ϕ) (5.114)

u(R , ϕ) = 0 (5.115)

u(0, ϕ) < ∞ (5.116)

We get

∑
m

�m(ϕ)

[
ρ2 d2 R

dρ2
+ ρ

d R
dρ

− m2 R
]

= − F
2
ρ4 sin(2ϕ) (5.117)

or ∑
m

[Am sin(mϕ) + Bm cos(mϕ)]

[
ρ2 d2 R

dρ2
+ ρ

d R
dρ

− m2 R
]

= − F
2
ρ4 sin(2ϕ) (5.118)

Using the orthogonality of the eigenfunctions �m(ϕ) we have Bm =
0. In a similar fashion, multiplying by sin(mϕ) and integrating from

0 to 2π we see that only the term with m = 2 remains. With this we

can formulate an equation for the radial function (without having

normalized angular eigenfunctions we can suppose A2 = 1).

ρ2 d2 R
dρ2

+ ρ
d R
dρ

− 4R = − F
2
ρ4 (5.119)

Similar to Method 2, we find the particular solution and sum it to

the solution of the homogeneous equation, we use the boundary

condition to find R(ρ).

5.9 Diffusion in an Infinite Cylinder with Heat
Sources

Find the distribution of temperature in an infinite cylinder of radius

R if, starting at t = 0, inside a cylinder a heat source with density

f = −xy starts acting. Consider that the cylinder surface is always

in contact with a heat reservoir at T0. The heat capacity is C , the

density is ρ0, the coefficient of thermal conductivity is k.
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Figure 5.10

Mathematical formulation

The origin of temperatures is shifted by T0. Due to the cylindrical

symmetry, we use these coordinates:⎧⎨
⎩

∂u
∂t

− k
Cρ0

�u = ∂u
∂t

− χ�u = − 1

2Cρ0

ρ2 sin(2ϕ)

u(R , ϕ, t) = 0

⎫⎬
⎭ (5.120)

We now look for a solution by separating it into two: one which

corresponds to the stationary distribution of temperature w(ρ , ϕ),

and another corresponding to the transient part.

u(ρ , ϕ, t) = w(ρ , ϕ) + v(ρ , ϕ, t) (5.121)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�w = − 1

2k
ρ2 sin(2ϕ)

u(R , ϕ, t) = 0

With no initial condition

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.122)

The previous problem (5.8) contains a solution of the stationary

problem for w(ρ , ϕ).

The problem for v(ρ , ϕ, t) is:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂v
∂t

− χ�v = 0

v(R , ϕ, t) = 0

v(ρ , ϕ, 0) = −w(ρ , ϕ)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.123)



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Diffusion in an Infinite Cylinder with Heat Sources 281

Sturm–Liouville problem

We will separate the temporal variable from the spatial ones:

v =
∑

Qnm(t)snm(ρ , ϕ) (5.124)

This last problem will be solved by expanding the solution

into orthogonal eigenfunctions of the Sturm–Liouville problem,

corresponding to the homogeneous boundary of the first kind:

{
�s(ρ , ϕ) + λs(ρ , ϕ) = 0

s(R , ϕ) = 0

}
(5.125)

The corresponding eigenfunctions and eigenvalues are well known.

[s(ρ , ϕ)]nm = J m(
√
λmnρ)[Anm cos(mϕ) + Bnm sin(mϕ)] (5.126)

The eigenvalues correspond to the zeros of the Bessel function

J m(
√
λmn R) = 0. Then, replacing the expression v(ρ , ϕ, t) =∑

Qnm(t)snm(ρ , ϕ) into equation (5.123) we arrive at the equation

for the temporal part, which has an exponential solution:

Qnm(t) = e−χλmnt (5.127)

General solution

v(ρ , ϕ, t) =
∑

e−χλmnt J m(
√
λnmρ)[Anm cos(mϕ) + Bnm sin(mϕ)]

(5.128)

Final solution

The initial condition is applied:

−w(ρ , ϕ) =
∑

J m(
√
λnmρ)[Anm cos(mϕ) + Bnm sin(mϕ)]

(5.129)

We use the orthogonality of the angular and radial functions to

obtain the coefficients of the sum Anm and Bnm.
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5.10 Variation of the Temperature in a Quarter of
a Disk

Find the variation of temperature in a membrane in the form of a

quarter of a disk with radii a and b. The two straight boundaries

are in contact with a thermal reservoir at zero temperature and

the curved ones exchange heat with the outer medium at zero

temperature according to Newton’s law, with a constant h. Starting

at t = 0 in the central part (indicated in the figure) acts a local heat

source of value F [J/(cm2· s)]:

f (r, ϕ, t) = F
δ[r − (a+b)

2
] × δ(ϕ − π

4
)

r
(5.130)

The density of the material is ρ, the heat capacity is C and the

thermal conduction coefficient is k

Figure 5.11

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂u
∂t

− k�u = f → ∂u
∂t

− χ�u = f
Cρ

(
χ = k

Cρ

)

−k
∂u
∂r

∣∣∣∣
r=a

= +hu(a, ϕ, t)

−k
∂u
∂r

∣∣∣∣
r=b

= −hu(b, ϕ, t)

u(r, 0, t) = 0

u(r, π
2

, t) = 0

u(r, ϕ, 0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.131)
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The next figure shows a schematic representation of the heat fluxes

along the radial direction:

Figure 5.12

Sturm–Liouville problem

The solution is presented as a sum of eigenfunctions in two

dimensions:

u(r, ϕ, t) =
∑

Q(t)V (r, ϕ) (5.132)

Where V (r, ϕ) is the solution of the Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�V (r, ϕ) + λV (r, ϕ) = 0

∂V
∂r

∣∣∣∣
r=a

+ h
k

V (a, ϕ) = 0

∂V
∂r

∣∣∣∣
r=b

− h
k

V (b, ϕ) = 0

V (r, 0) = 0

V (r,
π

2
) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.133)

We separate variables to get to the solution. We will obtain the

eigenfunctions for the radial and angular part. We take ν as a

positive value to guarantee that we will have orthogonal angular

eigenfunctions.

V (r, ϕ) = R(r) · �(ϕ) (5.134)

r d
dr

(
r d R(r)

dr

)
+ λr2 R

R
= − 1

�(ϕ)

d2�(ϕ)

dϕ2
= +ν (5.135)

(with ν > 0)
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The general solution of the angular part is:

�(ϕ) = A cos(
√
νϕ) + B sin(

√
νϕ) (5.136)

From the second boundary condition: �(0) = 0 → A = 0

From the third boundary condition: �(π
2

) = 0 → √
ν π

2
= mπ

Then the eigenvalues are:

ν = (2m)2 (5.137)

The eigenfunction are:

�(ϕ) = sin(2mϕ) (m = 1, 2, .. .) (5.138)

Equation for the radial part:

r
d

dr

(
r

d R(r)

dr

)
+ [λr2 − (2m)2]R(r) = 0 (5.139)

General solution for the radial part:

R(r) = C × J 2m(
√
λr) + D × N2m(

√
λr) (5.140)

From the first and second boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dr

[
C × J 2m

(√
λ

(2m)
k r

)
+ D × N2m

(√
λ

(2m)
k r

)]
r=a

+

+h
k

[
C × J 2m(

√
λ

(2m)
k a) + D × N2m

(√
λ

(2m)
k a

)]
= 0

d
dr

[
C × J 2m

(√
λ

(2m)
k r

)
+ D × N2m

(√
λ

(2m)
k r

)]
r=b

−

−h
k

[
C × J 2m

(√
λ

(2m)
k b

)
+ D × N2m

(√
λ

(2m)
k b

)]
= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.141)

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
[

d
dr

[
J 2m

(√
λ

(2m)
k r

)]
r=a

+ h
k

J 2m

(√
λ

(2m)
k a

)]
+

+D
[

d
dr

[
N2m

(√
λ

(2m)
k r

)]
r=a

+ h
k

N2m

(√
λ

(2m)
k a

)]
= 0

C
[

d
dr

[
J 2m

(√
λ

(2m)
k r

)]
r=b

− h
k

J 2m

(√
λ

(2m)
k b

)]
+

+D
[

d
dr

[
N2m

(√
λ

(2m)
k r

)]
r=b

− h
k

N2m

(√
λ

(2m)
k b

)]
= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.142)
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By equating to zero the determinant of the previous system of

equations we get the eigenvalues λkm. From one of the boundary

conditions, we get the ratio between the coefficients C and D:

C = −D

d
dr

[
N2m

(√
λ

(2m)
k r

)]
r=a

+ h
k N2m(

√
λ

(2m)
k a)

d
dr

[
J 2m

(√
λ

(2m)
k r

)]
r=a

+ h
k J 2m

(√
λ

(2m)
k a

) (5.143)

Spatial eigenfunctions to expand the solution:

Vkm(r, ϕ) = [R(r)]mk × sin(2mϕ) (5.144)

Solution

Replacing the solution u(r, ϕ, t) = ∑
Q(t)Vkm(r, ϕ) into the heat

equation ∂u
∂t − χ�u = f

Cρ we get:∑
km

d Qkm(t)

dt
Vkm(r, ϕ) − χQkm(t)

∑
km

�Vkm(r, ϕ) = f
Cρ

(5.145)

∑
km

[
d Qkm

dt
+ χQkm(t)λkm

]
Vkm(r, ϕ) = F

Cρ

δ
(

r − (a+b)

2

)
× δ(ϕ − π

4
)

r
(5.146)

We use the orthogonality by multiplying both sides by Vkm(r, ϕ); and

integrating
a∫

b

π
2∫

0

rdrdϕ:

∑
km

[
d Qkm

dt
+ χQkm(t)λkm

] a∫
b

π
2∫

0

[Vkm(r, ϕ)]2rdrdϕ =

= F
Cρ

a∫
b

π
2∫

0

Vkm(r, ϕ)δ

(
r − (a + b)

2

)
× δ
(
ϕ − π

4

)
drdϕ (5.147)

d Qkm

dt
+ χQkm(t)λkm

= F
Cρ

a∫
b

π
2∫

0

Vkm(r, ϕ)δ
(

r − (a+b)

2

)
× δ
(
ϕ − π

4

)
drdϕ

a∫
b

π
2∫

0

[Vkm(r, ϕ)]2rdrdϕ

= αkm (5.148)
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The solution of the equation:

d Qkm(t)

dt
+ χλkm Qkm(t) = αkm (5.149)

is obtained as the sum of a particular solution:

Qkm, part(t) = αkm

χλkm
(5.150)

and the solution of the homogeneous equation:

Qkm, hom(t) = Ae(−χλkmt) (5.151)

Then:

Qkm(t) = Ae(−χλkmt) + αkm

χλkm
(5.152)

Then, imposing the initial conditions to the whole solution:

u(r, ϕ, 0) =
∑
km

[
Ae(−χλkm0) + αkm

χλkm

]
Vkm(r, ϕ) = 0 (5.153)

We find the coefficient A = − αkm
χλkm

. Finally:

u(r, ϕ, t) =
∑
km

[
αkm

χλkm

] (
1 − e(−χλkmt)

)
[R(r)]mk × sin(2mϕ)

(5.154)

5.11 Oscillations of a Quarter of a Membrane

Find the amplitude of the main tone (the lowest frequency) of a

membrane with fixed boundaries and the shape of 1/4 of a circle,

with tension T and surface mass density ρ. A point-like hit hits the

membrane at rest at t = 0 in the indicated location, with a total

transfer of momentum K :
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Figure 5.13

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

− a2�u = 0

a2 = T
ρ

u(R , ϕ, t) = 0

u(r, 0, t) = 0

u
(

r,
π

2
, t
)

= 0

u(r, ϕ, 0) = 0

∂u
∂t

∣∣∣∣
t=0

= K
ρ

δ

(
r − R

2

)
× δ
(
ϕ − π

4

)
r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.155)

The last relation is found from the following integral of the initial

velocity in the surface (S) of the disk:�
S

ρ
∂u
∂t

∣∣∣∣
t=0

r dr dϕ = K (5.156)

Sturm–Liouville problem

We use separation of variables to formulate the Sturm–Liouville

problem, which turns out to be:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�V (r, ϕ) + λV (r, ϕ) = 0

V (R , ϕ) = 0

V (r, 0) = 0

V
(

r,
π

2

)
= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.157)
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To find the eigenvalues and eigenfunctions we separate variables

once again. We get eigenfunctions for the angular and radial parts.

V (r, ϕ) = R(r) · �(ϕ) (5.158)

r d
dr (r dR(r)

dr ) + λr2R
R = − 1

�(ϕ)

d2�(ϕ)

dϕ2
= +ν (5.159)

(with ν > 0, since the sign of the constant from the separation

of variables must be greater than zero to have orthogonal angular

solutions). The general solution of the angular part is:

�(ϕ) = A cos(
√
νϕ) + B sin(

√
νϕ) (5.160)

From the second boundary condition: �(0) = 0 → A = 0

From the third boundary condition: �(π
2

) = 0 → √
ν π

2
= mπ

Then the angular eigenvalues are:

ν = (2m)2 (5.161)

The angular eigenfunctions are:

�(ϕ) = sin(2mϕ) (m = 1, 2, . . .) (5.162)

Equation for the radial part:

r
d

dr

(
r

dR(r)

dr

)
+ [λr2 − (2m)2]R(r) = 0 (5.163)

General solution for the radial part:

R(r) = C × J 2m(
√
λr) + D × N2m(

√
λr) (5.164)

Since R(0) = 0 → D = 0

From the first boundary condition, imposing R(0) = 0 we will get

the eigenvalues λ
(2m)
k :

R(R) = C × J 2m

(√
λ

(2m)
k R

)
= 0 (5.165)

The spatial eigenfunctions to expand the solution are:

Vkm(r, ϕ) = J 2m

(√
λ

(2m)
k r

)
× sin(2mϕ) (5.166)
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General solution

We have the following general solution:

u(r, ϕ, t) =
∑

Qkm(t)Vkm(r, ϕ) (5.167)

where Qkm(t) are solutions of the equation:

d2 Q
dt2

+ a2λm
k Qkm(t) = 0 (5.168)

Then:

ukm(r, ϕ, t) =
∑[

C (1)
km cos(a

√
λm

k t) + C (2)
km sin

(
a
√
λm

k t
)]

× J2m

(√
λm

k r
)

× sin(2mϕ) (5.169)

Frequencies of the excited modes: ω2
km = a2λkm

The minimum value of ωkm corresponds to the minimum value of

λkm, which happens for k = 1, m = 1. Profile of the lowest mode:

u11(r, ϕ, t) =
[

C (1)
11 cos

(
a
√
λ1

1t
)

+ C (2)
11 sin

(
a
√
λ1

1t
)]

× J2

(√
λ1

1r
)

× sin(2ϕ) (5.170)

Final solution

We search the coefficients C (1)
11 , C (2)

11 as a result of the hit, using the

initial conditions:

u11(r, ϕ, 0) =
[

C (1)
11 cos

(
a
√
λ1

10

)
+ C (2)

11 sin

(
a
√
λ1

10

)]

× J2

(√
λ1

1r
)

× sin(2ϕ) = 0 (5.171)

We get C (1)
11 = 0

We search C (2)
11 using the initial condition for the velocity:

∂u
∂t

∣∣∣∣
t=0

=
∑[

C (2)
km a
√
λm

k cos
(

a
√
λm

k 0
)]

J2m

(√
λm

k r
)

× sin(2mϕ)

= K
ρ

δ(r − R
2

) × δ(ϕ − π
4

)

r
(5.172)
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Since we are only interested in the frequency of the main mode

(k, m = 1), we multiply the former expression by the corresponding

eigenfunction:

J2

(√
λ1

1r
)

× sin(2ϕ) (5.173)

and using the orthogonality of the other eigenfunction we find the

amplitude of the main tone:

∑
[C (2)

km a
√
λm

k ]

∫ ∫
J2m(
√
λm

k r) J2

(√
λ1

1r
)

rdr× sin(2mϕ) sin(2ϕ)

=
∫ ∫

K
ρ

δ(r − R
2

)

r
J2

(√
λ1

1r
)

sin(2ϕ)δ
(
ϕ − π

4

)
rdrdϕ (5.174)

Only the terms with indices k, m = 1 remain.

C (2)
1, 1a
√
λ1

1

∣∣∣∣ J2

(√
λ1

1r
)∣∣∣∣

2

× |sin(2ϕ)|2

4
= K

ρ
J2

(√
λ1

1

R
2

)
sin
(

2
π

4

)
(5.175)

The final result for the amplitude of the main tone is:

u1, 1(r, ϕ, t) =
K
ρ

J2(
√
λ1

1
R
2

) sin(2π
4

)

a
√
λ1

1

∣∣∣ J2

(√
λ1

1r
)∣∣∣2 × |sin(2ϕ)|2

4

× J2

(√
λ1

1r
)

sin(2ϕ) sin

(
a
√
λ1

1t
)

(5.176)

5.12 Case Study: Variation of the Temperature in
a Cylinder with a Thin Heater

A disk has a hole in its center. The outer surface (radius R1) is

thermally insulated. The outer surface (radius R2) is put into contact

with a thermal reservoir at zero temperature. Find the variations

of temperature as a function of time if the disk was in thermal

equilibrium at zero temperature and, starting at t = 0 a thin heater

of power P with the shape of half a ring, centered and with radius

R = (R1 + R2)/2 between the inner and outer radii of the disk. The

thermal conductivity of the material is k, the heat capacity is C and

the density is ρ0.
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Figure 5.14

Solution:

We seek the solution as the sum of a transient function and a

stationary one.

Mathematical formulation

There is no z variable.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ0

∂u
∂t

− k�u(ρ , ϕ, t) = f (ρ , ϕ) (R1 ≤ ρ ≤ R2); (t > 0)

∂u
∂t

− k
Cρ0

�u(ρ , ϕ, t) = f (ρ ,ϕ)

Cρ0

u(ρ , ϕ, t = 0) = 0

u(R2, ϕ, t) = 0

∂u
∂ρ

∣∣∣∣
ρ=R1

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.177)

We define mathematically the non-homogeneous part of the

equation: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (ρ , ϕ) = g(ρ) · h(ϕ)

g(ρ) = P
πρ

δ

(
ρ − (R1 + R2)

2

)

h(ϕ) =
⎧⎨
⎩

0 (0 ≤ ϕ ≤ π)

1 (π < ϕ < 2π)

⎫⎬
⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.178)
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The constant of the non-homogeneous part is found by integrating

the density of heat (with unknown constant) in the whole area

and integrating it to the power radiated by the heater. Since it is a

non-homogeneous and non-stationary problem, with homogeneous

boundary conditions, we will split it into the sum of two problems:

one corresponds to the stationary solution at t → ∞, and the other

is the transient problem.

u(ρ , ϕ, t) = v(ρ , ϕ, t) + w(ρ , ϕ) (5.179)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

− k
Cρ0

�v(ρ , ϕ, t) = 0 (R1 ≤ ρ ≤ R2); (t > 0)

v(ρ , ϕ, t = 0) = −w (ρ , ϕ)

v(R2, ϕ, t) = 0

∂v
∂ρ

∣∣∣∣
ρ=R1

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.180)

The second problem is homogeneous with non-homogeneous

boundary conditions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�w(ρ , ϕ) = − f (ρ , ϕ)

k
(R1 ≤ ρ ≤ R2)

w(R2, ϕ) = 0

∂w
∂ρ

∣∣∣∣
ρ=R1

= 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.181)

We start with the stationary problem.

Sturm–Liouville problem

We seek the radial solution by expanding by eigenfunctions of the

Sturm–Liouville problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�w(ρ , ϕ) + λw(ρ , ϕ) = 0

w(R2, ϕ) = 0

∂w
∂ρ

∣∣∣∣
ρ=R1

= 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.182)

The orthogonal eigenfunctions and the eigenvalues are well known:

wnm(ρ , ϕ) = [Anm J m(
√
λnmρ) + Bnm Nm(

√
λnmρ)]e(imϕ) (5.183)
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For the time being, this form only considers the periodicity of the

solution (with period 2π and the general form of the radial part:

a combination of two linearly independent solutions (Bessel and

Neumann).

Applying the boundary conditions, we will obtain the eigenvalues

λnm:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w(R2, ϕ) = 0 → [Anm J m(
√
λnm R2) + Bnm Nm(

√
λnm R2)] = 0

∂w
∂ρ

∣∣∣∣
ρ=R1

= 0 → [
√
λnm Anm[ J m(

√
λnmr)]ρ=R1

+Bnm
√
λnm[Nm(

√
λnmr)]ρ=R1

= 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.184)

Solution

The solution of the determinant of the previous system of equations

gives us the eigenvalues λnm. On the other hand, using the equation

of the first boundary condition:

Bnm = −Anm
J m(

√
λnm R2)

Nm(
√
λnm R2)

(5.185)

We can write the eigenfunctions (not normalized) as:

wnm(ρ , ϕ) =
[

J m(
√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)

]
×[Cnm sin(mϕ) + Dnm cos(mϕ)] (5.186)

The solution of the stationary problem will be sought by replacing

its form:

w(ρ , ϕ) =
∑
n, m

[ J m(
√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)]

×[Cnm sin(mϕ) + Dnm cos(mϕ)] (5.187)

into equation (5.181):

∑
n, m

λnm

[
J m(
√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)

]

×[Cnm sin(mϕ) + Dnm cos(mϕ)] = g(ρ) · h(ϕ)

k
(5.188)
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Multiplying both sides by orthogonal eigenfunctions and integrating
R2∫

R1

ρdρ

2π∫
0

sin(mϕ)dϕ (5.189)

we will get the coefficients Cnm and Dnm:

Cnm

∥∥∥∥ J m(
√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)

∥∥∥∥
2

‖sin(mϕ)‖2 =

= 1

kλnm

R2∫
R1

J m(
√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)g(ρ)ρdρ

2π∫
0

h(ϕ) sin(mϕ)dϕ

(5.190)

Cnm = 2

kλnm

∥∥∥ J m(
√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)

∥∥∥2
×

× P
π2

R2∫
R1

[
J m(

√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)

]
δ(ρ − R)dρ ×

×
2π∫
π

sin(mϕ)dϕ = 2P

π2kλnm

∥∥∥ J m(
√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)

∥∥∥2
×

×
[

J m(
√
λnmρ0) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnm R)

]

×
[

cos(πm) − cos(2πm)

m

]
(5.191)

In a similar way:

Dnm = 2

kλnm

∥∥∥ J m(
√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)

∥∥∥2

P
π2

×

×
R2∫

R1

[ J m(
√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)]δ(ρ − R)dρ ×

×
2π∫
π

cos(mϕ)dϕ = 2P

π2kλnm

∥∥∥ J m(
√
λnmρ) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)

∥∥∥2
×

×
[

J m(
√
λnm R) − J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnm R)

]

×
[

sin(2πm) − sin(πm)

m

]
= 0 (m ≥ 1) (5.192)
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The coefficients that correspond to the case m = 0 are:

Dn0 = P

πkλn0

∥∥∥ J 0(
√
λn0ρ) − J 0(

√
λn0 R2)

N0(
√
λn0 R2)

N0(
√
λn0ρ)

∥∥∥2
×

×
[

J m(
√
λn0 R − J 0(

√
λn0 R2)

N0(
√
λn0 R2)

N0(
√
λn0 R)

]
(5.193)

Note that the modulus of the angular eigenfunction in the case m = 0

is equal to 2π .

Solution of the problem 5.180

We seek the solution by separating the temporal and spatial

variables, and expanding by the previously obtained orthogonal

eigenfunctions (the solutions of the Sturm–Liouville problem with

homogeneous boundary conditions):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

− k
Cρ0

�v(ρ , ϕ, t) = 0 (R2 ≤ ρ ≤ R1); (t > 0)

v(ρ , ϕ, 0) = −w(ρ , ϕ)

v(R2, ϕ, t) = 0

∂v
∂ρ

∣∣∣∣
ρ=R1

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.194)

We seek v(ρ , ϕ, t) =∑ s(ρ , ϕ) · T (t)

with the same orthogonal functions as in the previous part:⎧⎪⎨
⎪⎩

�s(ρ , ϕ) + λs(ρ , ϕ) = 0

∂T
∂t

+ ( k
Cρ0
λ)T (t) = 0

⎫⎪⎬
⎪⎭ (5.195)

The temporal solutions give dT
dt = e(− k

Cρ0
λt)

. The general solution is:

v(ρ , ϕ, t)=
∑
n, m

e(− k
Cρ0
λt)×
[

J m(
√
λnmρ)− J m(

√
λnm R2)

Nm(
√
λnm R2)

Nm(
√
λnmρ)

]

× [Knm sin(mϕ)+Mnm cos(mϕ)] (5.196)
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Applying the initial condition v(ρ , ϕ, 0) = −w(ρ , ϕ) and using the

orthogonality of the spatial and angular eigenfunctions and we find

the coefficients Knm = −Cnm; Mnm = −Dnm.

Note: the alternative method (less physically transparent) which

will provide the same result consists of seeking the solution as

v(ρ , ϕ, t) = ∑
s(ρ , ϕ) · T (t) being s(ρ , ϕ) orthogonal functions

which are solutions of the previous Sturm–Liouville problem.

Replacing this form into the initial non-homogeneous equation

and applying the orthogonality of the functions will give us a

non-homogeneous first order differential equation for the T (t)

function. Its solution will be sought as the sum of the solutions of

the homogeneous problem and a particular solution (a constant).

Applying the initial condition (trivial) we will find the coefficient of

the solution of the homogeneous equation.

5.13 Forced Oscillations in a Circular Membrane

Find the oscillations of a membrane of radius R fixed at its boundary

if, starting at t = 0 it is subjected to a force homogeneously

distributed, with density f (t) = P0 sin(ωt). For t < 0 the membrane

is at rest.

Figure 5.15

Mathematical formulation

Since the problem is symmetric in the angular coordinate the

equation we need to solve is:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a2

∂u2(ρ , t)

∂t2
− 1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
= (P0/T ) sin(ωt) (t > 0)

u(ρ , 0) = ∂u
∂t

∣∣∣∣
t=0

= 0

u(R , t) = 0

u(0, t) < ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.197)

with a2 = T /ρ0. Using the principle of superposition we will seek

the solution as the sum of:

(i) A solution of the inhomogeneous problem, w(ρ , t), stationary

(independent of the initial conditions).

(ii) A solution of the homogeneous problem v(ρ , t) but with new

initial conditions to compensate the stationary solution, so that

the overall initial conditions are null.

In our case the null initial conditions correspond to the total

solution.

u(ρ , t) = w(ρ , t) + v(ρ , t) (5.198)

In this way the original problem is obtained as superposition, i.e.,

sum, of these simpler subproblems.

Problem 1:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

a2

∂w2(ρ , t)

∂t2
− 1

ρ

∂

∂ρ

[
ρ
∂w
∂ρ

]
= (P0/T ) sin(ωt)

w(R , t) = 0

w(0, t) < ∞

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.199)

Problem 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a2

∂v2(ρ , t)

∂t2
− 1

ρ

∂

∂ρ

[
ρ
∂v
∂ρ

]
= 0

u(ρ , 0) = w(ρ , 0) + v(ρ , 0) = 0 → v(ρ , 0) = −w(ρ , 0)

∂v
∂t

∣∣∣∣
t=0

= − ∂w
∂t

∣∣∣∣
t=0

v(R , t) = 0

v(0, t) < ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.200)
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We seek the solution of the inhomogeneous problem w(ρ , t) as:

w(ρ , t) = A(ρ) sin(ωt) (5.201)

We replace this expression into problem (1) and divide the result by

a factor sin(ωt)⎧⎪⎨
⎪⎩

ρ2
d2 A
dρ2

+ ρ
d A
dρ

+ ρ2ω2

a2
A = − P0

T
ρ2

A(R) = 0

⎫⎪⎬
⎪⎭ (5.202)

The solution is the sum of the solution of the homogeneous equation

(A1) and the particular solution (A2).

A(ρ) = A1(ρ) + A2(ρ) (5.203)

Equation to find A1(ρ):

ρ2 d2 A1

dρ2
+ ρ

d A1

dρ
+ ρ2ω2

a2
A1 = 0 (5.204)

General solution

With the change of variable x = ρω

a this equation turns into the

equation for the zeroth order Bessel’s equation:

d A
dρ

= d A
dx

x
ρ

= d A
dx

(ω
a

)
(5.205)

d2 A
dρ2

= d2 A
dx2

(
dx
dρ

)2

= d2 A
dx2

(ω
a

)2

(5.206)

(due to d2 x
dρ2 = 0). With this we obtain an equation for the new

variable x :

x2 d2 A1

dx2
+ x

d A1

dx
+ x2 A1 = 0 (5.207)

or

d2 A1

dx2
+ 1

x
d A1

dx
+ A1 = 0 (5.208)

With the following solution:

A1 = C · J 0(x) = C · J 0

(ρω
a

)
(5.209)
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Note: The radial solution cannot include the Neumann function.

We seek the particular solution A2(ρ) to satisfy the boundary

conditions:

A(R) = A1(R) + A2(R) = 0 (5.210)

The particular solution A2(ρ) is a constant:

A2(ρ) = − P0a2

T ω2
(5.211)

We impose the boundary conditions:

A(R) = A1(R) + A2(R) = C · J 0

(
Rω

a

)
− P0a2

T ω2
= 0 (5.212)

And obtain the constant:

C = P0a2

T ω2

1

J 0( Rω
a )

(5.213)

Then:

w(ρ , t) = A(ρ) sin(ωt) = [A1(ρ) + A2(ρ)] sin(ωt)

= P0a2

T ω2

(
J 0( ρω

a )

J 0( Rω
a )

− 1

)
sin(ωt) (5.214)

As we know the form of w(ρ , t), we now seek the solution of the

homogeneous equation (which depends on the initial conditions).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a2

∂v2(ρ , t)

∂t2
− 1

ρ

∂

∂ρ

[
ρ
∂v
∂ρ

]
= 0

u(ρ , 0) = w(ρ , 0) + v(ρ , 0) = 0 → v(ρ , 0) = −w(ρ , 0)

∂v
∂t

∣∣∣∣
t=0

(ρ , 0) = − ∂w
∂t

∣∣∣∣
t=0

(ρ , 0)

v(R , t) = 0

v(0, t) < ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.215)

First initial condition:

v(ρ , 0) = −w(ρ , 0) = − P0a2

T ω2

⎛
⎜⎜⎝ J 0(

ρω

a
)

J 0

(
Rω

a

) − 1

⎞
⎟⎟⎠ sin(ω0) = 0

(5.216)
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Second initial condition:

∂v
∂t

∣∣∣∣
t=0

= − ∂w
∂t

∣∣∣∣
t=0

= −ωP0a2

T ω2

(
J 0( ρω

a )

J 0( Rω
a )

− 1

)
cos(ω0)

= − P0a2

T ω

(
J 0( ρω

a )

J 0( Rω
a )

− 1

)
(5.217)

Sturm–Liouville problem

The homogeneous problem (5.215) is solved by separating vari-

ables:

v(ρ , t) = D(ρ) · T (t) (5.218)

We will obtain two differential equations independent of the angular

variable: ⎧⎪⎪⎨
⎪⎪⎩

ρ2
d2 D
dρ2

+ ρ
d D
dρ

+ λρ2 D = 0

d2T
dt2

+ λa2T = 0

⎫⎪⎪⎬
⎪⎪⎭ (5.219)

The solutions for the radial part are eigenfunctions of the following

Sturm–Liouville problem:⎧⎪⎨
⎪⎩

d2 D
dρ2

+ 1

ρ

d D
dρ

+ λD = 0

D(R) = 0; D(0) < ∞

⎫⎪⎬
⎪⎭ (5.220)

D(ρ) = J 0(
√
λnρ);

√
λn = xn0

R
(5.221)

where xn0 are the n-th zeros of the Bessel’s function of argument

zero J 0(xn0) = 0. Solution of the temporal part:

Tn(t) = C1 cos
(

a
xn0

R
t
)

+ C2 sin
(

a
xn0

R
t
)

(5.222)

General solution for the homogeneous equation.

v(ρ , t) =
∑

n

J 0(
√
λnρ)

[
C1n cos

(
a

xn0

R
t
)

+ C2n sin
(

a
xn0

R
t
)]

(5.223)
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Final solution

We find the coefficients of the sum using the initial conditions:

Applying the first condition: v(ρ , 0) = 0 → C1n = 0

Applying the second condition:

∂v
∂t

∣∣∣∣
t=0

= − P0a2

T ω

(
J 0( ρω

a )

J 0( Rω
a )

− 1

)
=
∑

n

C2n(a
xn0

R
) J 0(
√
λnρ)

From here, to find the C2n coefficients, we multiply both sides of the

previous relation by the orthogonal eigenfunctions J 0(
√
λkρ) and

integrate
R∫

0

ρdρ. We use the property of orthogonality of Bessel’s

functions.

R∫
0

J 0(
√
λnρ) J 0(

√
λkρ)ρdρ =

⎧⎪⎨
⎪⎩

0 (if n �= k)

R2

2
[ J ′

0(xn)]2 (if n = k)

⎫⎪⎬
⎪⎭ (5.224)

being J ′
0(xn) the derivative of the Bessel’s function at the zeros x =

xn. Furthermore, we will use the following relation:
x∫

0

zJ 0(z)dz = x J 1(x) (5.225)

and the integral:

R∫
0

J 0(
√
λnρ) J 0(kρ)ρdρ = xn J ′

0(xn) J 0(kR)

k2 − λn
(k �= λn) (5.226)

And arrive at:

C2n = − 2P0aωR3

T xn J ′
0(xn)

(
1

ω2 R2 − xna2

)
(5.227)

The final solution is:

u(ρ , t) = w(ρ , t) + v(ρ , t) = P0a2

T ω2

(
J 0( ρω

a )

J 0( Rω
a )

− 1

)
sin(ωt)

−2P0aωR3

T

∑
n

1

xn J ′
0(xn)

(
1

ω2 R2 − xna2

)

× J 0(
√
λnρ) sin

(
a

xn0

R
t
)

(5.228)
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Note: The obtained solution is valid supposing that the frequency

of the outer force does not coincide with any of the resonant

frequencies of the membrane. If that were the case, in the resonance

condition the amplitude would increase non-stop (due to the lack

of friction) and the stationary situation would never be reached the

membrane would break first. In any case we would be beyond the

limit of small oscillations withing which the wave equation is valid.

5.14 Case Study: Stationary Distribution of
Temperature Inside the Sector of a Disk

Find the stationary distribution of temperature in a fourth of a

circular ring (outer radius a, inner radius b and spans an angle

π/2. The membrane (with thermal conductivity k) is insulated on

three boundaries and semi-insulated in the inner curved boundary,

where there is a heat exchange with the outer medium, which stays

at T = 0 according to Newton’s law with a constant h. Inside

the membrane there are heat sources localized along a curved line

inside the sector (π/8 < ϕ < 3π/8) at a distance R from the center.

The total dissipated power is such that: limε→0

�
�ε

f (ρ , ϕ)ρdρdϕ =
F0 being �ε the infinitesimal surface around the heat sources.

Figure 5.16
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We know that:

f (ρ , ϕ) = A
ρ
δ(ρ − R)G(ϕ) = A

ρ
δ(ρ − R)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0
(

0 < ϕ <
π

8

)

1

(
π

8
< ϕ <

3π

8

)

0

(
3π

8
< ϕ <

π

2

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.229)

Applying this condition: F0 = �
�ε

A
ρ
δ(ρ − R)G(ϕ)ρdρdϕ = π

4
A

From what we get: A = 4F0

π

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k
[

1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
+ 1

ρ2

∂u2(ρ , ϕ, t)

∂ϕ2

]
= 4F0

π

1

ρ
δ(ρ − R)G(ϕ)

∂u
∂ϕ

∣∣∣∣
ϕ=0

= 0

∂u
∂ϕ

∣∣∣∣
ϕ=

π

2

= 0

∂u
∂ρ

∣∣∣∣
ρ=a

= 0

−k
∂u
∂ρ

∣∣∣∣
ρ=b

= −hu(b, ϕ) (u > 0 → outwards flux)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.230)

The following figure shows a schematic representation of the heat

fluxes at the boundaries along the radial direction:

Figure 5.17
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Sturm–Liouville problem

Since all boundaries are homogeneous, we can seek the solution by

expanding it in eigenfunctions of the Sturm–Liouville problem.

u(ρ , ϕ) =
∑

Dnmvnm(ρ , ϕ) (5.231)

Where the vnm(ρ , ϕ) satisfy:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�v(ρ , ϕ) + λv(ρ , ϕ) = 0

∂v
∂ϕ

∣∣∣∣
ϕ=0

= 0

∂v
∂ϕ

∣∣∣∣
ϕ

= π
2

= 0

∂v
∂ρ

∣∣∣∣
ρ=a

= 0

∂v
∂ρ

∣∣∣∣
ρ=b

− H v(b, ϕ) = 0 (H = − h
k )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.232)

We seek the solution using the separation of variables method:

v(ρ , ϕ) = R(ρ) · �(ϕ) (5.233)

We get the following Sturm–Liouville problem for the angular

variable ϕ: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂�2

∂ϕ2
+ μ� = 0

d�
dϕ

∣∣∣∣
ϕ=0

= 0

d�
dϕ

∣∣∣∣
ϕ=

π

2

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.234)

We general form of the angular eigenfunctions is:

�(ϕ) = C · cos(
√
μϕ) + E · sin(

√
μϕ) (5.235)

Due to the first initial condition, we get E = 0. The eigenvalues μm

are sought by applying the second boundary condition:
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d�
dϕ

∣∣∣∣
ϕ= π

2

= 0 = sin
(√

μ
π

2

)
(5.236)

√
μ
π

2
= πm (5.237)

μm = (2m)2 (m = 0, 1, 2, 3...) (5.238)

By replacing v(ρ , ϕ) = R(ρ) cos(2mϕ) into equation (5.339) we

arrive at the following equation for the radial variable:

∂2 R
∂ρ2

+ 1

ρ

∂R
∂ρ

+
(
λ − [2m]2

ρ2

)
R = 0 (5.239)

The solution of this problem gives us the set of radial functions:

Rnm(ρ) = Anm J 2m(
√
λnmρ) + Bnm N2m(

√
λnmρ) (5.240)

General solution

The general solution is:

u(ρ , ϕ, t) =
∑
n, m

[
Anm J 2m(

√
λnmρ) + Bnm N2m(

√
λnmρ)

]
cos(2mϕ)

(5.241)

The possible values λnm are the n-th zero of the equation, obtained

by equating to zero the determinant of the system of two equations

with two unknowns formed by the first and second boundary

conditions: ⎧⎪⎪⎨
⎪⎪⎩

d R
dρ

∣∣∣∣
ρ=a

= 0

d R
dρ

∣∣∣∣
ρ=b

− H R(b) = 0

⎫⎪⎪⎬
⎪⎪⎭ (5.242)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Anm
√
λnm

d J 2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

+ Bnm
√
λnm

d N2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

= 0

Anm
√
λnm

d J 2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=b

− HJ2m(
√
λnmb)+

+Bnm
√
λnm

d N2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=b

− HN2m(
√
λnmb) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.243)
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Also from the first or second boundary conditions can we obtain the

relation between the coefficients Anm and Bnm, and in this way be

able to determine the form of the final solution.

Bnm = −Anm

d J 2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

d N2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

(5.244)

So that:

Rnm(ρ) = J 2m(
√
λnmρ) −

d J 2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

d N2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

N2m(
√
λnmρ)]

(5.245)

Final solution

Once the form of the general solution has been clarified we

find the coefficients of the expansion, replacing u(ρ , ϕ, t) =∑
n, m

Anm Rnm(ρ) cos(2mϕ) into (5.337):

−�u(ρ , ϕ, t) =
∑
n, m

Anmλnm Rnm(ρ) cos(2mϕ) = (5.246)

=
∑
n, m

Anmλnm

⎡
⎢⎢⎢⎣ J 2m(

√
λnmρ) −

d J 2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

d N2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

N2m(
√
λnmρ)

⎤
⎥⎥⎥⎦ cos(2mϕ)

= 4F0

kπ
1

ρ
δ(ρ − R)G(ϕ) (5.247)

We use the orthogonality of the radial and angular eigenfunctions

to find the coefficients Anm. Both sides of the previous relation

are multiplied by Rnm(ρ) cos(2mϕ) and integrated
a∫

b

π
2∫

0

ρdρdϕ. Due

to the orthogonality the radial Rnm(ρ) and angular cos(2mϕ)

eigenfunctions, we get the coefficients Anm:

Anmλnm ‖Rnm(ρ)‖2 ‖cos(2mϕ)‖2

= 4F0

kπ

a∫
b

π
2∫

0

Rnm(ρ) cos(2mϕ)δ(ρ − R)G(ϕ)dρdϕ (5.248)
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Anm = 4F0

kπ

Rnm(R) 1
2m [sin(3πm/4) − sin(πm/4)]

λnm ‖Rnm(ρ)‖2 ‖cos(2mϕ)‖2
(5.249)

We must consider that:

‖cos(2mϕ)‖2 =

⎧⎪⎨
⎪⎩

π

4
(m �= 0)

π

2
(m = 0)

⎫⎪⎬
⎪⎭ (5.250)

An0 = 4F0

kπ
Rn0(R)π

4

λn0 ‖Rn0(ρ)‖2 π
2

(5.251)

Alternative method

Sturm–Liouville problem

Another way to solve the problem is shown next, expressing the

solution only in a set of orthogonal eigenfunctions in the angular

direction:

u(ρ , ϕ) =
∑

Rm(ρ) · �m(ϕ) (5.252)

Where the �m(ϕ) come from solving the same angular Sturm–

Liouville problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂�2(ρ , ϕ, t)

∂ϕ2
+ μ� = 0

d�
dϕ

∣∣∣∣
ϕ=0

= 0

d�
dϕ

∣∣∣∣
ϕ= π

2

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.253)

�m(ϕ) = cos(2mϕ) (5.254)

μm = (2m)2 (m = 0, 1, 2, 3 . . .) (5.255)

Replacing u(ρ , ϕ) = ∑
m

Rm(ρ)�m(ϕ) in (5.337) we get to the

following non-homogeneous equation for the radial variable:∑
m

�m(ϕ)
1

ρ

d
dρ

(
ρ

d
dρ

Rm(ρ)

)
+ Rm(ρ)

1

ρ

d2�m(ϕ)

dϕ2
= − f (ρ , ϕ)

k
(5.256)
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∑
m

[
1

ρ

d
dρ

(
ρ

d
dρ

Rm(ρ)

)
− Rm(ρ)

4m2

ρ2

]
cos(2mϕ) = − f (ρ , ϕ)

k
(5.257)

∑
m

[
d2 Rm

dρ2
+ 1

ρ

d Rm

dρ
− 4m2

ρ2
Rm

]
cos(2mϕ) = − f (ρ , ϕ)

k
(5.258)

Applying the orthogonality:

π
2∫

0

[
d2 Rm

dρ2
+ 1

ρ

d Rm

dρ
− 4m2

ρ2
Rm

]
‖cos(2mϕ)‖2

= −1

k

π
2∫

0

f (ρ , ϕ) cos(2mϕ)dϕ (5.259)

Considering the case for m = 0:

[
d2 Rm

dρ2
+ 1

ρ

d Rm

dρ
− 4m2

ρ2
Rm

]
π

2
= −4F0

kπ
1

ρ
δ(ρ−R)

π
2∫

0

G(ϕ) cos(0)dϕ

(5.260)[
d2 Rm

dρ2
+ 1

ρ

d Rm

dρ
− 4m2

ρ2
Rm

]
π

2
= −4F0

kπ
1

ρ
δ(ρ − R)

π

4
(5.261)

Equation to solve for m = 0:

d2 R0

dρ2
+ 1

ρ

d R0

dρ
= −2F0

kπ
1

ρ
δ(ρ − R) (5.262)

Boundary conditions:

In the case m �= 0

[
d2 Rm

dρ2
+ 1

ρ

d Rm

dρ
− 4m2

ρ2
Rm

]
π

4
=−4F0

kπ
1

ρ
δ(ρ−R)

π
2∫

0

G(ϕ) cos(2mϕ)dϕ

(5.263)

The equation to be solved is:[
d2 Rm

dρ2
+ 1

ρ

d Rm

dρ
− 4m2

ρ2
Rm

]
= −8F0

kπ2

1

ρ
δ(ρ − R)Fm (5.264)

Where Fm = sin( 3mπ
4

) − sin( mπ
4

)
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We solve first the case m �= 0. Except at ρ = R we have the following

homogeneous equation:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d2 Rm
dρ2 + 1

ρ
d Rm
dρ − 4m2

ρ2 Rm = 0

d R
dρ

∣∣∣∣
ρ=a

= 0

−k
d R
dρ

∣∣∣∣
ρ=b

= −hR(b) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.265)

General solution

The general solutions are:⎧⎨
⎩

R−
m(ρ) = Aρ2m + Bρ−2m (ρ < R)

R+
m(ρ) = Cρ2m + Dρ−2m (ρ > R)

⎫⎬
⎭ (5.266)

Applying the third boundary conditions:

2mC a2m−1 − 2mDa−2m−1= 0 (5.267)

Then: C = Da4m

Applying the fourth boundary condition:

k(2mAb2m−1 − 2mBb−2m−1) = h(Ab2m + Bb−2m) (5.268)

2km
h

= Ab2m + Bb−2m

(Ab2m−1 − Bb−2m−1)
= b − 2Bb

B − Ab4m
(5.269)

b − 2km
h

= 2Bb
B − Ab4m

(5.270)

2Bb=
(

b − 2km
h

)(
B − Ab4m)=B

(
b − 2km

h

)
−Ab4m

(
b − 2km

h

)
(5.271)

B
(

2b − b + 2km
h

)
=
(

b − 2km
h

)(−Ab4m) (5.272)

B = −Ab4m (b − 2km
h )

(b + 2km
h )

= −Aϒ (5.273)

Imposing the continuity at ρ = R:

R−
m(R) = R+

m(R) (5.274)
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A R2m − AϒR−2m = Da4m R2m + DR−2m = D[a4m R2m + R−2m]

(5.275)

A = D
[a4m R2m + R−2m]

R2m − ϒR−2m
(5.276)

We set the condition for the change in derivatives at ρ = R:

R+ε∫
R−ε

[
d2 Rm

dρ2
+ 1

ρ

d Rm

dρ
− 4m2

ρ2
Rm

]
ρdρ = −8F0 Fm

kπ2

R+ε∫
R−ε

1

ρ
δ(ρ− R)ρdρ

(5.277)

R+ε∫
R−ε

d2 Rm

dρ2
ρdρ =

(
ρ

d R
dρ

− R
)∣∣∣∣

R+ε

R−ε

=
(
ρ

d R
dρ

)∣∣∣∣
R+ε

R−ε

(5.278)

Since R |R+ε
R−ε= 0 for ε → 0

R+ε∫
R−ε

d Rm

dρ
dρ = R |R+ε

R−ε= 0 (ε → 0) (5.279)

R+ε∫
R−ε

Rm

ρ
dρ = 0 (5.280)

(for ε → 0 as both functions are continuous and finite at ρ = R)

Then:

ρ
d R
dρ

∣∣∣∣
R+ε

R−ε

= R
(

d R+

dρ
− d R−

dρ

)

= −8F0 Fm

kπ2

R+ε∫
R−ε

δ(ρ − R)dρ = −8F0 Fm

kπ2
= Qm (5.281)

Replacing R+, R−

2mC R2m−1 − 2mDR−2m−1 − 2mA R2m−1 + 2mB R−2m−1 = Qm

(5.282)

Renaming (to simplify the equations):

σ = a4m (5.283)

ϒ = b4m (b − 2km
h )

(b + 2km
h )

(5.284)
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δ = [a4m R2m + R−2m]

R2m − ϒR−2m
(5.285)

We obtain:

C = σ D; B = −ϒ A; A = δD (5.286)

Equation (5.282) is left as:

σ DR2m−1 − DR−2m−1 − δDR2m−1 − ϒδDR−2m−1 = Qm

2m
(5.287)

So we arrive at the value of the last coefficient of the expansion:

D = Dm = Qm

2m[(σ − δ)R2m−1 − (1 − ϒδ)R−2m−1]

= −4F0 Fm

mkπ2

1

[(σ − δ)R2m−1 − (1 − ϒδ)R−2m−1]
(5.288)

Am = δDm (5.289)

Bm = −ϒδDm (5.290)

Cm = σ Dm (5.291)

Finally we consider the case m = 0:

d2 Rm

dρ2
+ 1

ρ

d Rm

dρ
= −2F0

kπ
1

ρ
δ(ρ − R) (5.292)

The general solution of the homogeneous equation in this case is:

Rm(ρ) =
⎧⎨
⎩

R−
0 (ρ) = A0 + B0 ln ρ(ρ < R)

R+
0 (ρ) = C0 + D0 ln ρ(ρ > R)

⎫⎬
⎭ (5.293)

d R
dρ

∣∣∣∣
ρ=a

= 0 = D0

a
= 0 → D0 = 0 (5.294)

k
B0

b
= h(A0 + B0 ln b) (5.295)

A0 = B0

(
k

hb
− ln b

)
(5.296)
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Final solution

From the continuity condition:

R−
0 (R) = R+

0 (R) (5.297)

A0 + B0 ln R = C0 (5.298)

Finally the condition of the change of derivatives is used:

R+ε∫
R−ε

[
d2 R0

dρ2
+ 1

ρ

d R0

dρ

]
ρdρ = −2F0

kπ

R+ε∫
R−ε

1

ρ
δ(ρ − R)ρdρ (5.299)

Using the same arguments as in the previous discussion:

R
(

d R+

dρ

∣∣∣∣
R

− d R−

dρ

∣∣∣∣
R

)
= −2F0

kπ
(5.300)

R
(

0 − B0

R

)
= −2F0

kπ
(5.301)

Then:

B0 = 2F0

kπ
; A0 = 2F0

kπ

(
k

hb
− ln b

)
; C0 = 2F0

kπ

(
k

hb
− ln b + ln R

)
(5.302)

From the final solution:

u(ρ , ϕ) =

⎧⎪⎪⎨
⎪⎪⎩

A0 + B0 ln ρ +
∞∑

m=1

[Amρ
2m + Bmρ

−2m] cos(2mϕ) (for ρ < R)

C0 +
∞∑

m=1

[Cmρ
2m + Dmρ

−2m] cos(2mϕ) (for ρ > R)

⎫⎪⎪⎬
⎪⎪⎭

(5.303)

Note: the second method is more complex from the mathematical

point of view but usually describes better the solutions in the

proximities of the anomalous points without using expansions

in two or three dimensions in terms of trigonometric functions,

minimizing the so called “Gibbs phenomena”.
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5.15 Variation of the Temperature in Two
Semi-Cylinders

Find the temporal variation of the temperature in a cylinder

composed of two infinite semi-cylinders, with all the curved surfaces

thermally insulated, except for the flat surfaces in contact. The inner

radius is R1 while the outer radius is R2. Initially (t < 0), before

being thermally connected, the temperatures of the semi-cylinders

were T0 − T1 and T0 + T1.

Starting at t = 0 the cylinders are united thermally to form a

whole cylinder, completely insulated from the outside. Consider that

the thermal contact is perfect between the two halves, so that the

thermal conductivity k is homogeneous across the cylinder. The heat

capacity is C and the density is ρ. The thermal diffusivity coefficient

is a2 = k/ρC .

Figure 5.18

Mathematical formulation

We seek the solution as the relative variation of temperature with

respect to the thermal equilibrium temperature (T = T0), which

will happen at infinite times.

u(ρ , ϕ, t) = T ′(ρ , ϕ, t) − T0 (5.304)

u(ρ , ϕ, t → ∞) = 0 (5.305)
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The problem to be solved is (there is no z variable, since the cylinder

is infinite):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(ρ ,ϕ, t)

∂t − a2�u(ρ , ϕ, t) = 0

u(ρ , ϕ, t = 0) =
⎧⎨
⎩

T1 (0 < ϕ < π)

−T1 (π < ϕ < 2π)

⎫⎬
⎭

∂u
∂ρ

∣∣∣∣
ρ=R1

= 0

∂u
∂ρ

∣∣∣∣
ρ=R2

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.306)

Sturm–Liouville problem

We separate variables:

u = W(ρ , ϕ) · T (t) (5.307)

We start with the eigenfunctions of the Sturm–Liouville problems

for the (ρ , ϕ) variables:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�W + λW = 0

∂W
∂ρ

∣∣∣∣
ρ=R1

= 0

∂W
∂ρ

∣∣∣∣
ρ=R2

= 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.308)

1

ρ

∂

∂ρ

[
ρ
∂W
∂ρ

]
+ 1

ρ2

∂2W
∂ϕ2

+ λW = 0 (5.309)

Separating variables once again W = R(ρ) · �(ϕ)

ρ d
dρ [ρ d R

dρ ] + λρ2 R

R
= − 1

�

d2�

dϕ2
= μ (5.310)

Angular Sturm–Liouville problem:⎧⎪⎨
⎪⎩

d2�

dϕ2
+ μ� = 0

�(ϕ) = �(ϕ + 2π)

⎫⎪⎬
⎪⎭ (5.311)

Eigenfunctions and eigenvalues:

�(ϕ) = A cos(mϕ) + B sin(mϕ) (5.312)
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The radial problem is:

ρ
d

dρ

[
ρ

d R
dρ

]
+ λρ2 R − m2 R = 0 (5.313)

ρ
d

dρ

[
ρ

d R
dρ

]
+ [λρ2 − m2]R = 0 (5.314)

General solution for the radial equation:

R(ρ) = C J m(
√
λρ) + DNm(

√
λρ) (5.315)

Due to the solution not being necessarily finite at ρ = 0, in general

C , D �= 0.

Let us calculate now the eigenvalues of the Sturm–Liouville problem.

We know that the general solution is:

u =
∑

R(ρ)�(ϕ)Q(t) (5.316)

From the boundary conditions:
∂u
∂ρ

∣∣∣∣
ρ=R1, 2

= 0 we deduce:

∑ d R
dρ

∣∣∣∣
ρ=R1, 2

�(ϕ)Q(t) = 0

Since �(ϕ); Z (z) can have any value, to satisfy the boundary

conditions it is necessary that:

d R
dρ

∣∣∣∣
ρ=R1, 2

= 0

We have two equations for finding the eigenvalues of the radial

problem:

d
dρ

[C J m(
√
λρ) + DNm(

√
λρ)] = 0

Applying the boundary conditions:⎧⎪⎪⎨
⎪⎪⎩

d
dρ

[
C J m(

√
λρ) + DNm(

√
λρ)
]

(ρ=R1)
= 0

d
dρ

[
C J m(

√
λρ) + DNm(

√
λρ)
]

(ρ=R2)
= 0

⎫⎪⎪⎬
⎪⎪⎭ (5.317)

Eigenvalue equation to calculate λnm (comes from equating to zero

the determinant of the previous system of equations):

J ′
m(

√
λR1) · N ′

m(
√
λR2) = J ′

m(
√
λR2) · N ′

m(
√
λR1) (5.318)
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The radial orthogonal eigenfunctions (not normalized) are obtained

by using, for example, the first equation:

Cnm J ′
m(
√
λnm R1) = −Dnm N ′

m(
√
λnm R1) (5.319)

Then:

Dnm = −Cnm
J ′

m(
√
λnm R1)

N ′
m(

√
λnm R1)

(5.320)

Finally, the radial eigenfunctions will be:

Rnm(ρ) = J m(
√
λnmρ) − J ′

m(
√
λnm R1)

N ′
m(

√
λnm R1)

Nm(
√
λnmρ) (5.321)

General solution

The general solution is:

u =
∞∑

n=1;m=0

Wnm(ρ , ϕ)Qnm(t)

=
∞∑

n=1;m=0

[
J m(
√
λnmρ) − J ′

m(
√
λnm R1)

N ′
m(

√
λnm R1)

Nm(
√
λnmρ)

]

×[Anm cos(mϕ) + Bnm sin(mϕ)]Qnm(t) (5.322)

Replacing the solution in the heat equation ∂u(ρ ,ϕ, t)

∂t −a2�u(ρ , ϕ, t) =
0 we get:

∞∑
n=1;m=0

[
d Qnm(t)

dt
+ a2λnm Qnm(t)

]
· Wnm(ρ , ϕ) = 0 (5.323)

Problem for the temporal coefficients:⎧⎨
⎩

d Qnm(t)

dt
+ a2λn, m Qnm(t) = 0

Qnmk(t) = e(−a2λn, mt)

⎫⎬
⎭ (5.324)

The general solution is:

u =
∞∑

n=1;m=0

e(−a2λn, mt)

[
J m(
√
λnmρ) − J ′

m(
√
λnm R1)

N ′
m(

√
λnm R1)

Nm(
√
λnmρ)

]

×[Anm cos(mϕ) + Bnm sin(mϕ)] (5.325)
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Final solution

To find the coefficients we impose the initial conditions:

u(ρ , ϕ, 0) =
{

T1 (0 < ϕ < π)

−T1 (π < ϕ < 2π)

}
=

=
∞∑

n=1;m=0

[
J m(
√
λnmρ) − J ′

m(
√
λnm R1)

N ′
m(

√
λnm R1)

Nm(
√
λnmρ)

]

×[Anm cos(mϕ) + Bnm sin(mϕ)] (5.326)

The initial condition is antisymmetric with respect to the angle (ϕ).

This implies that all coefficients corresponding to terms which are

symmetric in the angular variable must be null (it can be checked

mathematically by multiplying by cos(mϕ), since the function on the

left part is antisymmetric in the angular variable, just like sin(mϕ)).

Then we will have the relation:

0 = Anm ‖cos(mϕ)‖2 → Anm = 0 (5.327)

To find Bnmk we multiply both sides by sin(m′ϕ)Rnm(ρ) and integrate

between the limits
R2∫

R1

2π∫
0

ρdρdϕ.

We get the result:

R2∫
R1

[
J m(
√
λnmρ) − J ′

m(
√
λnm R1)

N ′
m(

√
λnm R1)

Nm(
√
λnmρ)

]
ρdρ

⎡
⎣T1

π∫
0

sin(mϕ)dϕ − T1

2π∫
π

sin(mϕ)dϕ)

⎤
⎦ =

2T1

R2∫
R1

[
J m(
√
λnmρ) − J ′

m(
√
λnm R1)

N ′
m(

√
λnm R1)

Nm(
√
λnmρ)

]
ρdρ

⎡
⎣ π∫

0

sin(mϕ)dϕ

⎤
⎦ =
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= Bnm

∥∥∥∥∥ J m(
√
λnmρ) − J ′

m(
√
λR1)

N ′
m(

√
λR1)

Nm(
√
λnmρ)]

∥∥∥∥∥
2

‖sin(mϕ)‖2

Bnm = 2T1

[
(1 − (−1)m

m

]

×

R2∫
R1

[ J m(
√
λnmρ) − J ′

m(
√
λnm R1)

N ′
m(

√
λnm R1)

Nm(
√
λnmρ)]ρdρ

∥∥∥[ J m(
√
λnmρ) − J ′

m(
√
λR1)

N ′
m(

√
λR1)

Nm(
√
λnmρ)]

∥∥∥2

‖sin(mϕ)]‖2

(5.328)

The final solution is:

u(ρ , ϕ, t) = T0 +
∞∑

n=1;m=1

Bnme(−a2λn, mt)

×
[

J m(
√
λnmρ) − J ′

m(
√
λnm R1)

N ′
m(

√
λnm R1)

Nm(
√
λnmρ)

]
sin(mϕ)

(5.329)

5.16 Stationary Temperature inside an Infinite
Cylindrical Tube

Find the stationary distribution of temperature u(ρ , ϕ) in an infinite

cylindrical tube with radii ρ1 = 1 and ρ2 = 2 if the temperature in

on the inner surface is u(1) = sin2(ϕ), whereas the temperature on

the outer surface is u(2) = 0.

Figure 5.19
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Mathematical formulation

Due to the symmetry we will solve the problem in cylindrical

coordinates. Since the cylinder is infinite there is no dependence on

the z coordinate. The mathematical formulation is that of Laplace’s

problem in a disk with the specified boundary conditions.

General solution

In these conditions the general solution for the Laplace’s equation

�u = 0 is:

u(ρ , ϕ) = C1 ln(ρ) + C2 +
∑
n≥1

(Anρ
n + Bnρ

−n) cos(nϕ)

+(Dnρ
n + Enρ

−n) sin(nϕ) (5.330)

We impose the boundary conditions:

u(1, ϕ) = C2 +
∑
n≥1

(An + Bn) cos(nϕ) + (Dn + En) sin(nϕ)

= sin2(ϕ) = 1

2
− 1

2
cos(2ϕ) (5.331)

u(2, ϕ) = C1 ln(2) + C2 +
∑
n≥1

(2n An + 2−n Bn) cos(nϕ)

+(2n Dn + 2−n En) sin(nϕ) = 0 (5.332)

Here we have attempted to use the boundary conditions at the inner

surface in a form corresponding to the Fourier series expansion.

We can use the orthogonality of the angular eigenfunctions or use

the easiest method to equate the Fourier coefficients so that the

relations are valid for all the ϕ angles.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2 = 1

2

C1 ln 2 + C2 = 0

A2 + B2 = −1

2

4A2 + 1

4
B2 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.333)
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Final solution

The solutions are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 = − 1

2 ln 2

C2 = 1

2

A2 = 1

30

B2 = − 8

15

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.334)

The final solution is:

u(ρ , ϕ) = 1

2

(
1 − ln ρ

ln 2

)
+
(
ρ2

30
− 8

15ρ2

)
cos(2ϕ) (5.335)

5.17 Case Study: Time Variation of the Density of
Viruses Emitted by a Thin Filament Placed in
a Sector of a Disk

Find the distribution of density of viruses (diffusion coefficient D)

as a function of time in a two-dimensional space with the shape of

a fourth of a circular ring (spanning an angle π/2, with outer radius

a and inner radius b). The membrane is impermeable in three of its

boundaries and semi-permeable in the inner curved boundary, due

to the exchange of viruses with the outer medium, with a constant

concentration n = n0. This exchange happens according to Newton’s

law with a constant factor h.

Inside the membrane there is a source of viruses in the form of

a thin curved line inside the angular sector (π/8 < ϕ < 3π/8)

at a distance R from the center. It starts to release viruses since

t = 0. The total flux (number of viruses per unit time) is such that:

limε→0

�
�ε

f (ρ , ϕ)ρdρdϕ = F0 being �ε the infinitesimal surface

around the source of virus.
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Figure 5.20

Deduction of the inhomogeneous part of the equation

It is clear that

f (ρ , ϕ) = A
ρ
δ(ρ − R)G(ϕ) = A

ρ
δ(ρ − R)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0
(

0 < ϕ <
π

8

)

1

(
π

8
< ϕ <

3π

8

)

0

(
3π

8
< ϕ <

π

2

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.336)

Applying this condition: F0 = �
�ε

A
ρ
δ(ρ − R)G(ϕ)ρdρdϕ = π

4
A

We get: A = 4F0

π

Mathematical formulation

Subtracting the virus concentration of the outer medium n0 from

the solution we transform the semi-permeable boundary in a

homogeneous boundary of the third kind without affecting the type

of the other boundaries. The formulation of the temporal variation

of concentration u(ρ , ϕ, t) with respect to n0 will be the following:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(ρ , ϕ, t)

∂t
− D

[
1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
+ 1

ρ2

∂u2(ρ , ϕ, t)

∂ϕ2

]
= 4F0

π

1

ρ
δ(ρ − R)G(ϕ)

∂u
∂ϕ

∣∣∣∣
ϕ=0

= 0

∂u
∂ϕ

∣∣∣∣
ϕ= π

2

= 0

∂u
∂ρ

∣∣∣∣
ρ=a

= 0

−D
∂u
∂ρ

∣∣∣∣
ρ=b

= −hu(b, ϕ) (u > 0 → Outward flux)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.337)

Sturm–Liouville problem

As all the boundaries are homogeneous, we can seek the solution

by expanding it in orthogonal eigenfunctions that solve the Sturm–

Liouville problem:

u(ρ , ϕ) =
∑

Tnm(t)vnm(ρ , ϕ) (5.338)

Where the vnm(ρ , ϕ) satisfy:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�v(ρ , ϕ) + λv(ρ , ϕ) = 0

∂v
∂ϕ

∣∣∣∣
ϕ=0

= 0

∂v
∂ϕ

∣∣∣∣
ϕ

= π

2
= 0

∂v
∂ρ

∣∣∣∣
ρ=a

= 0

∂v
∂ρ

∣∣∣∣
ρ=b

− H v(b, ϕ) = 0 (H = − h
D )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.339)

We seek the solution using the method of separation of variables:

v(ρ , ϕ) = R(ρ) · �(ϕ) (5.340)
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We arrive at the Sturm–Liouville problem for the angular variable:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂�2(ρ , ϕ, t)

∂ϕ2
+ μ� = 0

d�
dϕ

∣∣∣∣
ϕ=0

= 0

d�
dϕ

∣∣∣∣
ϕ=

π

2

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.341)

The angular eigenfunctions in their general form are:

�(ϕ) = C · cos(
√
μϕ) + E · sin(

√
μϕ) (5.342)

Due to the first boundary condition, we have E = 0. The eigenvalues

μm are sought applying the second boundary condition:

d�
dϕ

∣∣∣∣
ϕ= π

2

= 0 = sin
(√

μ
π

2

)
(5.343)

√
μ
π

2
= πm (5.344)

μm = (2m)2 (m = 0, 1, 2, 3 . . .) (5.345)

When we replace v(ρ , ϕ) = R(ρ) cos(2mϕ) into equation (5.339) we

get at the following equation for the radial variable:

∂2 R
∂ρ2

+ 1

ρ

∂R
∂ρ

+
(
λ − [2m]2

ρ2

)
R = 0 (5.346)

The solution of this problem gives us the set of radial solutions:

Rnm(ρ) = Anm J 2m(
√
λnmρ) + Bnm N2m(

√
λnmρ) (5.347)

The possible values of λnm are the n-th zero of the equation obtained

when we equal to zero the determinant of the system of equations of

the first and second boundary conditions:⎧⎪⎪⎨
⎪⎪⎩

d R
dρ

∣∣∣∣
ρ=a

= 0

d R
dρ

∣∣∣∣
ρ=b

− H R(b) = 0

⎫⎪⎪⎬
⎪⎪⎭ (5.348)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Anm
√
λnm

d J 2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

+ Bnm
√
λnm

d N2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

=0

Anm
√
λnm

d J 2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=b

− H J 2m(
√
λnmb)+

+Bnm
√
λnm

d N2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=b

− H N2m(
√
λnmb) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.349)

We can also find the ration of the Anm and Bnm coefficients from the

first or second equation and, in this way, determine the form of the

radial solution.

Bnm = −Anm

d J 2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

d N2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

(5.350)

So that:

Rnm(ρ) = J 2m(
√
λnmρ) −

d J 2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

d N2m(
√
λnmρ)

dρ

∣∣∣∣
ρ=a

N2m(
√
λnmρ)]

(5.351)

General solution

The general solution will be:

u(ρ , ϕ, t) =
∑
n, m

Tnm(t)Rnm(ρ) cos(2mϕ) (5.352)

Final solution

Once we clarify the form of the general solution we will

search the coefficients of the expansion, replacing u(ρ , ϕ, t) =∑
n, m

Tnm(t)Rnm(ρ) cos(2mϕ) in (5.337):

∑
n, m

[
∂Tnm(t)

∂t
+ DλnmTnm(t)

]
vnm(ρ , ϕ) = 4F0

π

1

ρ
δ(ρ − R)G(ϕ)

(5.353)
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Using the orthogonality in the radial and angular eigenfunctions to

arrive at the equation for the Tnm(t) coefficients, we can multiply

both sides of the previous relation by Rnm(ρ) cos(2mϕ) and integrate
a∫

b

π
2∫

0

ρdρdϕ. Due to the orthogonality of the radial Rnm(ρ) and

angular cos(2mϕ) eigenfunctions we get the following equation for

the coefficients Tnm(t):

∂Tnm(t)

∂t
+DλnmTnm(t)=4F0

π

a∫
b

π
2∫

0

Rnm(ρ) cos(2mϕ)δ(ρ−R)G(ϕ)dρdϕ

(5.354)

or

∂Tnm(t)

∂t
+ DλnmTnm(t) = 4F0

π

Rnm(R) 1
2m [sin(3mπ/4) − sin(mπ/4)]

‖Rnm(ρ)‖2 ‖cos(2mϕ)‖2

= Fnm (5.355)

We need to consider separately the terms corresponding to m = 0

since:

‖cos(2mϕ)‖2 =
{

π
4

(m �= 0)
π
2

(m = 0)

}
(5.356)

Fn0 = 4F0

π

Rn0(R)π
4

‖Rn0(ρ)‖2 π
2

(5.357)

All that is left to do is to solve the equation for Tnm(t) by searching

the solution as the sum of the homogeneous solution and a

particular solution and impose the initial conditions Tnm(0) = 0.

Tnm(t) = Tnm, h(t) + Tnm, p(t) = Anm e(−Dλnmt) + Fnm

Dλnm

(5.358)

Imposing the initial conditions we get:

Anm = − Fnm

Dλnm
(5.359)

Finally

u(ρ , ϕ, t) =
∑
n, m

Fnm

Dλnm
[1 − e(−Dλnmt)]Rnm(ρ) cos(2mϕ) (5.360)
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Chapter 6

Problems in Cylindrical Coordinates

We now start solving problems in cylindrical coordinates in three

spatial dimensions. The new aspect with respect to the 2D case is

the need to consider carefully the direction along which we set the

orthogonality conditions. This analysis is especially relevant when

we solve Laplace problems since, depending on the type of non-

homogeneous boundary conditions the radial solution will change

substantially, from Bessel functions of first or second type to Bessel

functions of imaginary argument (modified Bessel functions).

Just like in the previous chapters in the case of having to

solve problems with non-homogeneous boundary conditions in the

azimuthal angle, it is important to ensure (inserting a constant or a

compensatory function) that both boundaries are homogeneous.

6.1 General Solution of the Heat Equation in a
Finite Cylinder with a Hole

Find the general solution for the temporal variation of temperature

in a finite cylinder of height h with inner and outer radii R1 and R2.

Both curved surfaces are thermally insulated. The flat surfaces are

Mathematical Methods for Physics: Problems and Solutions
Farkhad G. Aliev and Antonio Lara
Copyright c© 2024 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4968-71-3 (Hardcover), 978-1-003-41088-1 (eBook)
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in contact with a thermal reservoir at T = 0. At the initial moment

the temperature is given by f (ρ , ϕ, z).

Figure 6.1

Mathematical formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(ρ , ϕ, t)

∂t
− a2�u(ρ , ϕ, z, t) = 0

u(ρ , ϕ, z, 0) = f (ρ , ϕ, z)

∂u
∂ρ

∣∣∣∣
ρ=R1

= 0

∂u
∂ρ

∣∣∣∣
ρ=R2

= 0

u(ρ , ϕ, 0, t) = 0

u(ρ , ϕ, h, t) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1)

Sturm–Liouville problem

We separate variables:

u = W(ρ , ϕ, z) · T (t) (6.2)

We need to find the eigenfunctions of the Sturm–Liouville problems

in the variables (ρ , ϕ, z) to eliminate the second derivatives of the

Laplacian.



April 5, 2023 0:23 JSP Book - 9in x 6in Main

General Solution of the Heat Equation in a Finite Cylinder with a Hole 329

Auxiliary problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�W + λW = 0

∂W
∂ρ

∣∣∣∣
ρ=R1

= 0

∂W
∂ρ

∣∣∣∣
ρ=R2

= 0

W(ρ , ϕ, 0) = 0

W(ρ , ϕ, h) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.3)

1

ρ

∂

∂ρ

[
ρ
∂W
∂ρ

]
+ 1

ρ2

∂2W
∂ϕ2

+ ∂2W
∂z2

+ λW = 0 (6.4)

Separating variables once again: W = R(ρ) · �(ϕ) · Z (z) we get to

the angular and vertical Sturm–Liouville problems:⎧⎪⎨
⎪⎩

d2�

dϕ2
+ μ� = 0

�(ϕ) = �(ϕ + 2π)

⎫⎪⎬
⎪⎭ (6.5)

Eigenfunctions and eigenvalues:

�(ϕ) = A cos(mϕ) + B sin(mϕ) μ = m2 (m integers) (6.6)

Sturm–Liouville problem in the vertical direction:⎧⎪⎨
⎪⎩

d2 Z
dz2

+ νZ = 0

Z (0) = Z (h) = 0

⎫⎪⎬
⎪⎭ (6.7)

Eigenfunctions and eigenvalues

Z (z) = sin

(
πn
h

z
)

(6.8)

ν =
(
πn
h

)2

(6.9)

(with n integers greater than zero).

The radial problem is:

ρ
d

dρ

[
ρ

dR
dρ

]
+ [(λ − ν)ρ2 − m2

]
R = 0 (6.10)

or
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d2R
dρ2

+ 1

ρ

[
dR
dρ

]
+
[

(λ − ν) − m2

ρ2

]
R = 0 (6.11)

General solution of the radial function:

R(ρ) = C J m(
√

[λ − ν] · ρ) + DNm(
√

[λ − ν] · ρ) (6.12)

General solution

We seek the general solution: u =∑R(ρ)�(ϕ)Z (z)Q(t)

From the first boundary condition:

∂u
∂ρ

∣∣∣∣
ρ=R1, R2

= 0 →
∑ dR

dρ

∣∣∣∣
ρ=R1, R2

�(ϕ)Z (z)Q(t) = 0 (6.13)

Since the �(ϕ); Z (z); Q(t) can be any value,
dR
dρ

∣∣∣∣
ρ=R1, R2

= 0 to

satisfy the first two boundary conditions.

We have two equations to find the eigenvalues (tagged with the

index k) from the radial problem:

⎧⎪⎪⎨
⎪⎪⎩

d
dρ

[C J m(
√

[λ − ν] · ρ) + DNm(
√

[λ − ν] · ρ)]ρ=R1
= 0

d
dρ

[C J m(
√

[λ − ν] · ρ) + DNm(
√

[λ − ν] · ρ)]ρ=R2
= 0

⎫⎪⎪⎬
⎪⎪⎭ (6.14)

Equation to find the eigenvalues λnmk :

J ′
m([
√
λ − ν] · R1) · N ′

m(
√

[λ − ν] · R2)

= J ′
m(
√

[λ − ν] · R2) · N ′
m(
√

[λ − ν] · R1) (6.15)

Being J ′ and N ′ the derivatives of the Bessel’s and Neumann’s

functions. Using the relation

Cnmk J ′
m(
√

[λnmk − νn] · R1) = −DnmkN ′
m(
√

[λnmk − νn] · R1)

(6.16)

We get at:
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Dnmk = −Cnmk
J ′

m(
√

[λnmk − νn] · R1)

N ′
m(

√
[λnmk − νn] · R1)

(6.17)

Obtaining the (not normalized) orthogonal radial eigenfunctions

Rnmk(ρ) = J m(
√

[λnmk − νn] · ρ)

− J ′
m(

√
λnmk − νn R1)

N ′
m(

√
λnmk − νn R1)

Nm(
√

[λnmk − νn] · ρ) (6.18)

General solution:

u =
∞∑

n=1;m=0

Wnmk(ρ , ϕ, z)Qnmk(t) =

=
∞∑

n, k=1;m=0

sin

(
πn
h

z
)[

J m(
√
λnmk − νnρ)

− J ′
m(

√
[λnmk − νn] · R1)

N ′
m(

√
[λnmk − νn] · R1)

Nm(
√

[λnmk − νn] · ρ)

]
×

×[Anmk cos(mϕ) + Bnmk sin(mϕ)]Qnmk(t) (6.19)

Final solution

To conclude, we will find the temporal coefficients:⎧⎨
⎩

d
dt

Qnmk(t) + a2λnmk Qnmk(t) = 0

Qnmk(t) = e(−a2λnmkt)

⎫⎬
⎭ (6.20)

The general solution is:

u =
∞∑

n, k=1;m=0

sin

(
πn
h

z
)

e(−a2λnmkt)
[

J m(
√

[λnmk − νn] · ρ)

− J ′
m(

√
[λnmk − νn] · R1)

N ′
m(

√
[λnmk − νn] · R1)

Nm(
√

[λnmk − νn] · ρ)

]
×[Anm cos(mϕ) + Bnm sin(mϕ)] (6.21)

To find the coefficients we need to impose the initial conditions

and use the orthogonality of the radial, angular and vertical

eigenfunctions.
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6.2 Case Study: Heating of a Cylinder

Consider a cylinder (radius R and height L) with its curved surface

thermally insulated. The thermal conductivity, heat capacity and

density of the material are k, C , ρ respectively. Until t = 0 the

cylinder is at thermal equilibrium and with both flat surfaces in

contact with a thermal reservoir at T0. At t = 0 the thermal reservoir

at T0 is removed at the upper face, and a heat flux J (ρ) starts going

through this boundary. Find: (i) The new stationary distribution

of temperature (that is, the distribution of temperature after an

infinite time and that is independent of time). (ii) The variation of

the distribution of temperature in the cylinder as a function of time

after t = 0.

Figure 6.2

Mathematical formulation

To simplify the calculations we subtract T0 from the solution.

Furthermore, due to the angular symmetry of the supplied flux, as

well as of the boundary conditions, the solution will not depend on

the angular variable.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− χ�u = 0

u(ρ , 0) = 0

∂u
∂ρ

∣∣∣∣
ρ=R

= 0

−k
∂u
∂z

∣∣∣∣
z=L

= J (ρ)

π R2
(t > 0)

u(ρ , z, 0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.22)

We will first formulate problem (i), stationary, for a function w(ρ , z)

(solution at times t → ∞):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�w = 0

w(ρ , 0) = 0

∂w
∂ρ

∣∣∣∣
ρ=R

= 0

−k
∂w
∂z

∣∣∣∣
z=L

= J (ρ)

π R2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.23)

We will seek the solution as the sum of the solutions of two

problems: a stationary one w(ρ , z) which will be the solution of

Laplace’s equation with a non-homogeneous boundary and the

solution of the transient problem v(ρ , z, t), with all its boundaries

being homogeneous, such that the total solution will be:

u(ρ , z, t) = w(ρ , z) + v(ρ , z, t) (6.24)

Figure 6.3

The problem for w(ρ , z) does not have initial conditions, whereas

the initial condition of the transient problem can be obtained from
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the initial condition for u(ρ , z, t):

u(ρ , z, 0) = w(ρ , z) + v(ρ , z, 0) = 0 (6.25)

Transient problem (ii) for v(ρ , z, t), at t > 0 is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

− χ�v = 0

v(ρ , 0) = 0

∂v
∂ρ

∣∣∣∣
ρ=R

= 0

∂v
∂z

∣∣∣∣
z=L

= 0

v(ρ , z, 0) = −w(ρ , z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.26)

We can check that adding both problems we recover the original

problem for u(ρ , z, t).

Sturm–Liouville problem

We seek the solution of problem (i) by expanding it into eigenfunc-

tions of the Sturm–Liouville for ρ to eliminate the radial Laplacian

from the heat equation. In our case the boundary conditions are

only homogeneous in the vertical direction (z). These facts will be

important for choosing the sign of the constant of the separation of

variables.
1

ρ

∂

∂ρ

[
ρ
∂v
∂ρ

]
+ ∂2v

∂z2
= 0 (6.27)

v = R(ρ) · Z (z) (6.28)

1
ρ

d
dρ

[
ρ dR

dρ

]
R = − 1

Z
d2 Z
dz2

= −λ (6.29)

With λ > 0 for the auxiliary problem we choose the negative sign
before the constant of separation, to be able to expand the solution

in orthogonal radial eigenfunctions (since in this direction we have

homogeneous boundary conditions):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d2 Z
dz2

− λZ = 0

Z (0) = 0

d Z
dz

∣∣∣∣
L
= finite

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.30)
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We choose Z (z) = A sinh(
√
λz) to automatically satisfy the first

boundary condition. Then, after reducing the number of partial

derivatives, the problem for R(ρ) remains like so:

1

ρ

d
dρ

[
ρ

dR
dρ

]
+ λR = 0 (6.31)

We multiply the equation by ρ2 and the radial problem then is:

ρ
d

dρ

[
ρ

dR
dρ

]
+ λρ2R = 0 (6.32)

The general solution for the radial equation is a linear combination

of Bessel and Neumann functions of order zero:

R(ρ) = C J 0(
√
λρ) + DN0(

√
λρ) (6.33)

Due to the solution being finite at ρ = 0 → D = 0.

Calculation of the eigenvalues: general solution (for finite eigenval-

ues):

w =
∑

A J 0(
√
λρ) sinh(

√
λz) (6.34)

From the second boundary condition we deduce:
∂u
∂ρ

∣∣∣∣
ρ=R

= 0 →
∑ dR

dρ

∣∣∣∣
ρ=R

Z (z) = 0. Since Z (z) can have any value, the following

condition must be fulfilled:

dR
dρ

∣∣∣∣
ρ=R

= d J 0(
√
λρ)

dρ

∣∣∣∣∣
ρ=R

(6.35)

which gives the equation for the eigenvalues λn related to the null

μ
(n)
0 from the derivative of the zeroth order Bessel function:√

λn R = μ
(n)
0 (6.36)

λn =
[
μ

(n)
0

R

]2

(6.37)

Since the first eigenvalue in this case is zero, we will consider

separately its contribution to the solution.
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General solution

The general solution is:

w(ρ , z) =
∞∑

n=1

An J 0(
√
λnρ) sinh(

√
λnz) (6.38)

To find the coefficients of the expansion we will apply the third

boundary condition:

∂w
∂z

∣∣∣∣
z=L

= − J (ρ)

kπ R2
=

∞∑
n=2

An

√
λn J 0(

√
λnρ) cosh(

√
λn L) (6.39)

Using the orthogonality of the radial eigenfunctions we get the

coefficients. To find An we multiply both sides by J 0(
√
λn′ρ) and

integrate between the limits
R∫

0

ρdρ:

An = − 1

kπ R2
√
λn

R∫
0

J (ρ) J 0(
√
λnρ)ρdρ

∥∥ J 0(μn
R ρ)
∥∥2

cosh(
√
λn L)

(6.40)

We can simplify the results using the following relations:⎧⎪⎨
⎪⎩

a∫
0

x J ν
( xνk

a

)
J ν
( xνl

a

)
dx = a2

2

[
J ′
ν

( xνk

a

)]2

δkl

J ′
0(x) = − J 1(x)

⎫⎪⎬
⎪⎭ (6.41)

Note: due to the conditions of the curved boundary (homogeneous

of the second type) the first term of the sum (n = 1), which

corresponds to λ1 = 0, will be treated separately since the

corresponding radial equation will provide constant values and the

solution of the problem in vertical direction z would be a linear

function. This term describes the possible linear variation of the

temperature in the z direction if the mean value of the heat flux

across the surface is finite. In the case that J (ρ) = J is a constant,

the only term of the solution that is not null is the first one, which

would give us the solution w(z) = − J z
kπ R2 . The rest of the terms

An = 0 with n ≥ 2 will be null due to the orthogonality of the

constant (eigenfunction in the radial direction) with the rest of the

eigenfunction J 0

√
λn.
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Problem for the transient part

Due to the homogeneity of all boundaries, we expand the solution in

series of orthogonal functions in two dimensions.

∂v
∂t

− χ�v = 0 (6.42)

v(ρ , z, t) = T (t) · R(ρ) · Z (z) (6.43)

dT
dt

RZ − T χ�(RZ ) = 0 (6.44)

1

χT
dT
dt

= �(RZ )

RZ
= 1

Rρ

d
dρ

[
ρ

dR
dρ

]
+ 1

Z
d2 Z
dz2

= −υ − α = −λ
(6.45)⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d2 Z
dz2

+ αZ = 0

Z (0) = 0

d Z
dz

∣∣∣∣
z=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.46)

Z n(z) = sin

(
π(2n + 1)

2L
z
)

(n = 0, 1, 2, 3 . . .) (6.47)

⎧⎪⎪⎨
⎪⎪⎩

1

ρ

d
dρ

[
ρ

dR
dρ

]
+ υR = 0

dR
dρ

∣∣∣∣
ρ=R

= 0

⎫⎪⎪⎬
⎪⎪⎭ (6.48)

Radial eigenfunctions:

Rk(ρ) = J 0

(
μ

(k)
0

R
ρ

)
(6.49)

where the μ
(k)
0 are zeros of the derivative of the zeroth order Bessel

function. The eigenvalues of the Sturm–Liouville problem for the

product of the radial function and the vertical one are:

λnk = υ +
(
π(2n + 1)

2L

)2

=
[
μ

(k)
0

R

]2

+
(
π(2n + 1)

2L

)2

(6.50)

The general solution is:
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v(ρ , z, t) =
∞∑
n, k

Tn, k(t) J 0

(
μ

(k)
0

R
ρ

)
sin

(
π(2n + 1)

2L
z
)

(6.51)

Solving the equation for the temporal part dT
dt + λnkχT = 0 we get

at exponential equations:

Tn, k(t) = Tn, k(0)e(−[(
μ

(k)
0
R )2+(

π(2n+1)

2L )2]χt) (6.52)

Final solutions

Finally we apply the initial conditions:

−w(ρ , z) =
∞∑
n, k

Tn, k(0) J 0

(
μ

(k)
0

R
ρ

)
sin

(
π(2n + 1)

2L
z
)

(6.53)

Using the orthogonality of the radial eigenfunctions and the vertical

ones we get the coefficients of the expansion.

Tn, k(0) = −

R∫
0

L∫
0

w(ρ , z) J 0

(
μ

(k)
0

R ρ
)

sin
(

π(2n+1)

2L z
)
ρdρdz

R∫
0

∣∣∣ J 0

(
μ

(k)
0

R ρ
)∣∣∣2 ρdρ

L∫
0

∣∣∣sin
(

π(2n+1)

2L z
)∣∣∣2 dz

(6.54)

6.3 Case Study: Stationary Distribution of
Temperature inside a Semicylinder

Find the stationary distribution of temperature of a semicylinder of

length L and radius ρ0 in which three of the four surfaces are kept at

different temperatures.

Figure 6.4
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Mathematical formulation

From the theory we know we can decompose Laplace’s equation, by

using the linearity of the equation and the principle of superposition.

To be able to expand the solution in angular eigenfunctions we

subtract T2 from the solution.

Figure 6.5

The remaining problem is split into two problems we know how to

solve:

Problem (1):

u(ρ , ϕ, z) =
∑

Rnm(ρ)vnm(ϕ, z) (6.55)

with:

vnm(ϕ, z) = �n(ϕ)Z m(z) = sin (nϕ) sin
(πm

L
z
)

(6.56)

and

Rnm(ρ) = Rnm(ρ0)

In(πm
L ρ0)

In

(πm
L

ρ
)

(6.57)

From the boundary conditions and orthogonality of the eigenfunc-

tions we get the coefficients Rnm.

T3 − T2 =
∑

Rnm(ρ0)vnm(ϕ, z) (6.58)
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Rnm(ρ0) =
(T3 − T2)

L∫
0

sin(πm
L z)dz

π∫
0

sin(nϕ)dϕ

L∫
0

sin2(πm
L z)dz

π∫
0

sin2(nϕ)dϕ

(6.59)

Rnm(ρ0) = 4(T3 − T2)(1 − (−1)n)(1 − (−1)m)

π2nm
(6.60)

Only the odd indices n, m persist

Problem (2): we solve this problem, to separate variables:

1

u
�u = 0 (6.61)

u = Z (z) · �(ϕ) · R(ρ) (6.62)

we obtain:

1

Z
d2 Z
dz2

+ 1

�

1

ρ2

d2�

dϕ2
+ 1

R

[
d2 R
dρ2

+ 1

ρ

d R
dρ

]
= 0 (6.63)

Sturm–Liouville problem

Solving the Sturm–Liouville problem for the angular part:

1

Z
d2 Z
dz2

− m2

ρ2
+ 1

R

[
d2 R
dρ2

+ 1

ρ

d R
dρ

]
= 0 (6.64)

�m(ϕ) = sin
(πm

π
ϕ
)

= sin (mϕ) (from the boundary conditions)(m ≥ 1) (6.65)

Assigning −m2

ρ2 + 1
R

[
d2 R
dρ2 + 1

ρ
d R
dρ

]
= −λ (λ > 0) we arrive at

Bessel’s equation for the radial part:[
d2 R
dρ2

+ 1

ρ

d R
dρ

]
+
(
λ − m2

ρ2

)
R = 0 (6.66)

Applying the boundary conditions:

Rkm(ρ0) = J m

(√
λk

mρ0

)
= 0 (6.67)

we obtain the eigenvalues λk
m. Finally the equation for z is:
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d2 Z
dz2

− λk
m Z = 0 (6.68)

Z km(z) = Akm sinh

(√
λk

mz
)

+ Bkm cosh

(√
λk

mz
)

(6.69)

General solution

The general solution of problem (2) is:

u(ρ , ϕ, z) =
∑[

Akm sinh

(√
λk

mz
)

+Bkm cosh

(√
λk

mz
)]

J m

(√
λk

mρ

)
sin(mϕ) (6.70)

Final solution

We just need to apply the boundary conditions and to use the

orthogonality of the radial and angular eigenfunctions to obtain the

coefficients Akm, Bkm :

u(ρ , ϕ, 0) =
∑

Bkm J m

(√
λk

mρ

)
sin(mϕ) = (T1 − T2) (6.71)

Bkm =
(T1 − T2)

ρ0∫
0

J m

(√
λk

mρ
)
ρdρ

π∫
0

sin(mϕ)dϕ

ρ0∫
0

[ J m

(√
λk

mρ
)

]2ρdρ
π∫
0

sin2(mϕ)dϕ
(6.72)

Bkm =
2(T1 − T2)[1 − (−1)m]

ρ0∫
0

J m

(√
λk

mρ
)
ρdρ

πm
∫ ρ0

0
[ J m

(√
λk

mρ
)

]2ρdρ
(6.73)

Only the odd m indices persist.

Applying another boundary condition we also find the Anm indices:

u(ρ , ϕ. L) =
∑[

Akm sinh

(√
λk

mL
)

+ Bkm cosh

(√
λk

mL
)]

× J m

(√
λk

mρ

)
sin(mϕ) = (T1 − T2) (6.74)



April 5, 2023 0:23 JSP Book - 9in x 6in Main

342 Problems in Cylindrical Coordinates

[
Akm sinh

(√
λk

mL
)

+ Bkm cosh

(√
λk

mL
)]

=
2(T1 − T2)[1 − (−1)m]

ρ0∫
0

J m

(√
λk

mρ
)
ρdρ

πm
ρ0∫
0

[ J m

(√
λk

mρ
)

]2ρdρ
= Bkm (6.75)

Akm =
Bkm[1 − cosh

(√
λk

mL
)

]

sinh
(√
λk

mL
) (6.76)

6.4 Case Study: Laplace’s Equation in a Cylinder
with No Homogeneous Contours

Find the stationary distribution of temperature in a cylinder with

radius R and height L whose curved surface is in contact with

a thermal reservoir at a temperature T (ϕ, z). The upper base is

traversed by a heat flux outwardly with a density equals to f (ρ , ϕ).

The lower base exchanges heat according to the Newton’s law (with

constant h) with the outer medium at zero temperature. Consider

the thermal conductivity is k = 1.

Figure 6.6
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Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�U (ρ , ϕ, z) = 0

U (ρ = R , ϕ, z) = T (ϕ, z)

−k
∂U
∂z

∣∣∣∣
z=L

= f (ρ , ϕ)

−k
∂U
∂z

∣∣∣∣
z=0

+ hU = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.77)

Using the principle of superposition we split the problem into two

simpler ones:

U (ρ , ϕ, z) = u(ρ , ϕ, z) + v(ρ , ϕ, z) (6.78)

In the same manner we split the boundary conditions: For the

boundary at z = L we have (using k = 1):

− ∂U
∂z

∣∣∣∣
z=L

= f (ρ , ϕ) → − ∂u
∂z

∣∣∣∣
z=L

− ∂v
∂z

∣∣∣∣
z=L

= f (ρ , ϕ) + 0 → − ∂u
∂z

∣∣∣∣
z=L

= 0; − ∂v
∂z

∣∣∣∣
z=L

= f

(6.79)

For the boundary at z = 0 we have:

∂U
∂z

∣∣∣∣
z=0

−hU (ρ , ϕ, z = 0) = 0 → ∂u
∂z

∣∣∣∣
z=0

+ ∂v
∂z

∣∣∣∣
z=0

−hu(ρ , ϕ, z = 0) − hv(ρ , ϕ, z = 0) = 0 → (6.80)

∂u
∂z

∣∣∣∣
z=0

− hu(z = 0) = 0;
∂v
∂z

∣∣∣∣
z=0

− hv(z = 0) = 0 (6.81)

For the boundary at ρ = R we choose:

u(ρ = R , ϕ, z) = T (ϕ, z); v(ρ = R , ϕ, z) = 0 (6.82)

The problem (1) to be solved is:
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Figure 6.7

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u(ρ , ϕ, z) = 0

∂u
∂z

∣∣∣∣
z=0

= hu(ρ , ϕ, z = 0)

∂u
∂z

∣∣∣∣
z=L

= 0

u(R , ϕ, z) = T (ϕ, z)

u(ρ = 0, ϕ, z) < ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.83)

Sturm–Liouville problem

Separating variables:

u = R(ρ)�(ϕ)Z (z) (6.84)

We intend to expand the solution in eigenfunctions of the Sturm–

Liouville problems for the ρ , ϕ, z variables to remove the corre-

sponding second derivatives from the Laplacian. In this case the
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boundary conditions are homogeneous only in the vertical direction

z and non-homogeneous in the radial direction ρ. These facts will

influence our decision with respect to the constant of the separation

of variables:

1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
+ 1

ρ2

∂2u
∂ϕ2

+ ∂2u
∂z2

= 0 (6.85)

Separating variables:

1

R
1

ρ

d
dρ

[
ρ

dR
dρ

]
+ 1

ρ2

1

�

d2�

dϕ2
= − 1

Z
d2 Z
dz2

= +λ (6.86)

With λ > 0 in the auxiliary problem the positive sign is written
before the constant so that we can expand the solution in orthogonal

eigenfunctions in z, since in this direction there are homogeneous

boundaries of the second type.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2 Z
dz2

+ λZ = 0

d Z
dz

∣∣∣∣
z=0

− hZ (z = 0) = 0

d Z
dz

∣∣∣∣
z=L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.87)

We have the eigenfunctions:

Z (z) = A cos
(√
λ[z − L]

)
(6.88)

The eigenvalues λ will be solutions of the equation:

tan
(√
λL
)

= h√
λ

(6.89)

Then, when reducing the number of partial derivatives, the problem

for R(ρ) is:

1

ρ

d
dρ

[
ρ

dR
dρ

]
−
(
λ + m2

ρ2

)
R = 0 (6.90)

Here we have already used the eigenvalues m2 of the Sturm–Liouville

problem for the whole cylinder. The angular eigenfunctions are:

A cos (mϕ) + B sin (mϕ)
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General solution

The general solution of the radial equation is a linear combination of

modified Bessel and Neumann functions of order m:

R(ρ) = C Im

(√
λρ
)

+ DKm

(√
λρ
)

(6.91)

D = 0 since the solution must be finite at ρ = 0. The general solution

is:

u =
∞∑

n=1

∞∑
m=0

Im

(√
λρ
)

[Anm cos(mϕ)+Bnm sin (mϕ)] cos
(√
λ[z − L]

)
(6.92)

Final solution

We will use the third boundary condition to find the coefficients:

u(R , ϕ, z) = T (ϕ, z) =
∞∑

n=1

∞∑
m=0

Im

(√
λR
)

[Anm cos(mϕ)

+Bnm sin (mϕ)] cos
(√
λ[z − L]

)
(6.93)

We use the orthogonality of the angular and vertical eigenfunctions

to obtain the coefficients. For that we multiply by the eigenfunctions

in ϕ and z and integrate both sides of the previous equation:

2π∫
0

L∫
0

cos (m′ϕ) cos (
√
λn′ [z − L])dzdϕ

2π∫
0

L∫
0

T (ϕ, z) · cos (mϕ) cos (
√
λn[z − L])dzdϕ =

= Im(
√
λn R) · Anm · ‖ cos (mϕ)‖2‖ cos (

√
λn[z − L])‖2 (6.94)

Anm =

2π∫
0

L∫
0

T (ϕ, z) · cos(mϕ) cos (
√
λn[z − L])dzdϕ

Im(
√
λn R) · ‖ cos (mϕ)‖2‖ cos (

√
λn[z − L])‖2

(6.95)

For m ≥ 0. On the other hand, for the other coefficient, we multiply

by sin (mϕ) in the orthogonality condition and we have:



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Laplace’s Equation in a Cylinder with No Homogeneous Contours 347

Bnm =

2π∫
0

L∫
0

T (ϕ, z) · sin (mϕ) cos (
√
λn[z − L])dzdϕ

Im(
√
λn R) · ‖ sin (mϕ)‖2‖ cos (

√
λn[z − L])‖2

(6.96)

For m ≥ 1.

Problem (2) is: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�v(ρ , ϕ, z) = 0

∂v
∂z

∣∣∣∣
z=0

= hv(ρ , ϕ)

∂v
∂z

∣∣∣∣
z=L

= − f (ρ , ϕ)

v(R , ϕ, z) = 0

v(ρ = 0, ϕ, z) < ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.97)

We have here considered that the flux entering the cylinder through

the upper base propagates in the negative direction.

Sturm–Liouville problem

Separating variables in a manner similar to the previous case:

1

R
1

ρ

d
dρ

[
ρ

dR
dρ

]
+ 1

�

1

ρ2

d2�

dϕ2
= − 1

Z
d2 Z
dz2

= −λ (6.98)

With λ > 0, we write the negative sign before the constant of

separation to be able to expand the solution in radial eigenfunctions

antes (since in this direction we have homogeneous boundary

conditions) as well as in the angular functions:

d2 Z
dz2

− λZ = 0 (6.99)

Z (z) = A cosh(
√
λz) + B sinh(

√
λz) (6.100)

The problem for R(ρ) is:

1

ρ

d
dρ

[
ρ

dR
dρ

]
+
(
λ − m2

ρ2

)
R = 0 (6.101)

Solution for the radial eigenfunctions:

R(ρ) = C J m(
√
λρ) (6.102)
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The equation to find the eigenvalues by applying the boundary

conditions of the radial problem is:

J m(
√
λmn R) = 0 (6.103)

Labelling as μnm the zeros of the Bessel function of order m:

√
λmn R = μnm → λmn =

[μnm

R

]2

(6.104)

General solution

We write the general solution of problem (2):

v(ρ , ϕ, z) =
∞∑

n=1

∞∑
m=0

J m(
√
λmnρ)[Anm cos(mϕ) + Bnm sin (mϕ)]

×[cosh(
√
λmnz) + Cnm sinh(

√
λmnz)] (6.105)

To find the coefficients we will apply consecutively the first and

second boundary conditions.

First condition:

∂v
∂z

∣∣∣∣
z=0

=
∞∑

n=1

∞∑
m=0

J m(
√
λmnρ)[Anm cos(mϕ)+Bnm sin (mϕ)]Cnm

√
λmn

= h
∞∑

n=1, m=0

J m(
√
λmnρ)[Anm cos(mϕ) + Bnm sin (mϕ)]

(6.106)

From here we obtain the value of the coefficients Cnm = h/
√
λmn

We note that in the hypothetical case of both keeping both

coefficients, for example Dnm and Cnm in the solution for the function

in z, applying the boundary condition in the proper manner we

get the ratio Cnm/Dnm just like we obtained it when only the Cnm

coefficients were used (with Dnm = 1).

In the opposite case of maintaining only the Dnm coefficients of the

cosh(z) function, taking Cnm = 1, we would obtain values of Dnm

which are the inverse of those obtained for Cnm (supposing Dnm =
1). We now apply the second boundary condition:
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− f (ρ , ϕ) =
∞∑

n=1, m=0

J m(
√
λmnρ)[Anm cos(mϕ) + Bnm sin (mϕ)]

×[λmn sinh(
√
λmn L) + h cosh(

√
λmn L)] (6.107)

Final solution

We multiply by the radial orthogonal functions (with weight ρ)

and consecutively the two angular functions cos (mϕ) and sin (mϕ),

integrating in the range of orthogonality, to find the coefficients of

the expansion:

−
R∫

0

2π∫
0

f (ρ , ϕ) J m(
√
λmnρ) cos (mϕ)ρdρdϕ =

Amn

[√
λmn sinh (

√
λmn L) + h cosh (

√
λmn L)

]
R∫

0

| J m(
√
λmnρ)|2ρdρ

2π∫
0

(cos (mϕ))2dϕ (6.108)

From where we find Amn. And for the other coefficient:

−
R∫

0

2π∫
0

f (ρ , ϕ) J m(
√
λmnρ) sin (mϕ)ρdρdϕ =

= Bmn

[√
λmn sinh (

√
λmn L) + h cosh (

√
λmn L)

]
‖ J mn‖2π (6.109)

From where we would find Bmn.

6.5 Heating of 1/16 of a Cylinder

Consider a cylindrical sector (radii R2, R1, height L) in the form of

a π8 sector, with its curved surfaces and vertical walls insulated

and connected to a thermal reservoir at temperature T0 at its base.

The thermal conductivity coefficient of the material is k0. Find the

stationary distribution of temperature supposing that the total heat

flux J is homogeneously distributed through its upper surface and

directed towards the cylinder.



April 5, 2023 0:23 JSP Book - 9in x 6in Main

350 Problems in Cylindrical Coordinates

Figure 6.8

Mathematical formulation

We subtract the constant T0 from the solution. In the present

problem, the direction of the flux corresponds to the injection of heat

into the cylinder.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u = 0

u(ρ , ϕ, z = 0) = 0

−k0

∂u
∂z

∣∣∣∣
z=L

= −16 J
π(R2

1 − R2
2)

∂u
∂ρ

∣∣∣∣
ρ=R1

= 0

∂u
∂ρ

∣∣∣∣
ρ=R2

= 0

∂u
∂ϕ

∣∣∣∣
ϕ=0

= 0

∂u
∂ϕ

∣∣∣∣
ϕ= π

8

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.110)

Sturm–Liouville problem

Due to the presence of a non-homogeneous upper contour, we

seek the solution by expanding it into eigenfunctions of the Sturm–
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Liouville problem in the ρ and ϕ directions, to eliminate the angular-

radial Laplacian from the heat equation.

In this case the boundary conditions are homogeneous only in the

radial and azimuthal direction (of the second kind) and are non-

homogeneous in the z direction. This matters when we need to

decide the sign of the constant of separation.

1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
+ 1

ρ2

∂2u
∂ϕ2

+ ∂2u
∂z2

= 0 (6.111)

u = R(ρ) · �(ϕ) · Z (z) (6.112)

1

R
1

ρ

d
dρ

[
ρ

d R
dρ

]
+ 1

ρ2

1

�(ϕ)

d2�(ϕ)

dϕ2
= − 1

Z
d2 Z
dz2

= −λ (6.113)

With λ > 0, we choose the negative sign to be able to expand the

solution in radial eigenfunctions (since in this direction there are

homogeneous boundary conditions):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d2 Z
dz2

− λZ = 0

Z (0) = 0

d Z
dz

∣∣∣∣
z=L

= finite

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.114)

We choose Z (z) = A sinh(
√
λz) to automatically satisfy the first

boundary condition.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2�(ϕ)

dϕ2
+ υ�(ϕ) = 0

dφ
dϕ

∣∣∣∣
ϕ=0

= 0

dφ
dϕ

∣∣∣∣
ϕ= π

8

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.115)

√
υ · π

8
= mπ → υ = (8m)2 (6.116)

�(ϕ) = cos(8mϕ) (m = 0, 1, 2, 3...) (6.117)
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Then, by reducing the number of partial derivatives, the problem for

R(ρ) is:

1

ρ

d
dρ

[
ρ

d R
dρ

]
+
[
λ − (8m)2

ρ2

]
R = 0 (6.118)

The general solution of the radial equation is a linear combination of

Bessel and Neumann functions of order 8m:

R(ρ) = C J 8m(
√
λρ) + DN8m(

√
λρ) (6.119)

We calculate the eigenvalues λmk by equating to zero the determi-

nant of the system of two equations formed by radial boundary

conditions. In this way we find a non-trivial combination of

coefficients:

C
d J 8m(

√
λρ)

dρ

∣∣∣∣∣
ρ=R2

+ D
d N8m(

√
λρ)

dρ

∣∣∣∣∣
ρ=R2

= 0 (6.120)

C
d J 8m(

√
λρ)

dρ

∣∣∣∣∣
ρ=R1

+ D
d N8m(

√
λρ)

dρ

∣∣∣∣∣
ρ=R1

= 0 (6.121)

In what follows, to avoid cumbersome expressions we will use the

following nomenclature for the Bessel functions:

d J 8m(
√
λmρ)

dρ

∣∣∣∣
ρ=R1

= [ J 8m]ρ(
√
λm R1) (6.122)

And an analogous expression for the Neumann functions.

General solution

The general solution is:

u =
∞∑

k=1

∞∑
m=0

Cmk

[
J 8m(

√
λmkρ) − [ J 8m]ρ(

√
λmk R2)

[N8m]ρ(
√
λmk R2)

N8m(
√
λmkρ)

]

× cos(8mϕ) sinh(
√
λmkz) (6.123)

Note that the Bessel and Neumann functions are of order 8m and

that the eigenvalues λ have both indices m and k, since we use them
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both for the vertical and the angular eigenfunctions. To find the

coefficients of the expansion we apply the last boundary condition:

du
dz

∣∣∣∣
L
=

∞∑
k=1

∞∑
m=0

Cmk

√
λmk

[
J 8m(

√
λmkρ)

− [ J 8m]ρ(
√
λmk R2)

[N8m]ρ(
√
λmk R2)

N8m(
√
λmkρ)

]
cos(8mϕ) cosh(

√
λmk L)

= 16 J
πk0(R2

1 − R2
2)

(6.124)

Final solution

Using the orthogonality of the radial and angular eigenfunctions we

get the coefficients Cmk. We multiply both sides by:[
J 8m(

√
λmkρ) − [ J 8m]ρ(

√
λmk R2)

[N8m]ρ(
√
λmk R2)

N8m(
√
λmkρ)

]
cos(8mϕ)

(6.125)

and integrate between the limits
R2∫

R1

π
8∫

0

ρdρdϕ

Cmk = 16 J√
λmkπk0(R2

1 − R2
2 )

×

×

R2∫
R1

π
8∫

0

[ J 8m(
√
λmkρ) − [ J 8m]ρ (

√
λmk R2)

[N8m]ρ (
√
λmk R2)

N8m(
√
λmkρ)] cos(8mϕ)ρdρdϕ

∥∥∥[ J 8m(
√
λmkρ) − [ J 8m]ρ (

√
λmk R2)

[N8m]ρ (
√
λmk R2)

N8m(
√
λmkρ)]

∥∥∥2 ‖cos(8mϕ)‖2 cosh(
√
λmk L)

(6.126)

We have:
π
8∫

0

cos(8mϕ)dϕ =
⎧⎨
⎩

0 (m ≥ 1)

π

8
(m = 0)

⎫⎬
⎭ (6.127)

We see that the solution does not depend on the angular variable.

Then:

C0k = 16 J√
λ0kπk0(R2

1 − R2
2)

×

R2∫
R1

[ J 0(
√
λ0kρ) − [ J 0]ρ (

√
λ0k R2)

[N0]ρ(
√
λ0k R2)

N0(
√
λ0kρ)]ρdρ

∥∥∥[ J 0(
√
λ0kρ) − [ J 0]ρ (

√
λ0k R2)

[N0]ρ(
√
λ0k R2)

N0(
√
λ0kρ)]

∥∥∥2

cosh(
√
λ0k L)

(6.128)
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Note: we have shown a general solution path that would change

little in the case of varying homogeneous boundary conditions, for

example going from the second type to the first or third homoge-

neous type. In the case of type 2 homogeneous lateral boundary

conditions, we note that due to the homogeneous distribution of

injected heat flux, there are no physical reasons for this heat flux to

adhere any lateral component in the radial or azimuthal directions.

This implies that, for the case of contours considered, the solution

in series obtained presents the development of a solution constant

in angular and radial variables and which only lineally changes as a

function of the vertical variable (z).

6.6 Distribution of Temperature inside a Finite
Semi-Cylinder with a Centered Hole

Find the stationary distribution of temperature inside a semi-

cylinder of length L with a hole (outer and inner radii a, b) if all its

plane surfaces are at a temperature T0.

Through both curved surfaces (inner and outer) the heat fluxes

F1 and F2 are supplied (both constants have negative values). The

thermal conductivity of the material is equal to k.

Figure 6.9

Mathematical formulation

We subtract T0 from the solution. Due to the absence of heat sources

inside the semicylinder se describe the problem with Laplace’s

equation:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u = 0

−k
∂u
∂ρ

∣∣∣∣
ρ=a

= F1

−k
∂u
∂ρ

∣∣∣∣
ρ=b

= −F2

u(ρ , 0, z) = u(ρ , π, z) = 0

u(ρ , ϕ, 0) = u(ρ , ϕ, L) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.129)

The F1 and F2 constants must be negative numbers to have a valid

physical meaning.

The hole is centered in the axis and the boundary conditions of

the curved surfaces are non-homogeneous of the third type. The

Laplacian is expressed in cylindrical coordinates.

1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
+ 1

ρ2

∂2u
∂ϕ2

+ ∂2u
∂z2

= 0 (6.130)

Sturm–Liouville problem

We separate variables to find the solution:

u = R(ρ) · �(ϕ) · Z (z) (6.131)

1
ρ

d
dρ

[
ρ d R

dρ

]
R

+ 1

ρ2

d2�
dϕ2

�
+

d2 Z
dz2

Z
= 0 (6.132)

and finding the functions �(ϕ); Z (z) from the corresponding

Sturm–Liouville problems:⎧⎪⎨
⎪⎩

d2 Z
dz2

+ λZ = 0

Z (0) = Z (L) = 0

⎫⎪⎬
⎪⎭ (6.133)

⎧⎪⎨
⎪⎩

d2�

dϕ2
+ μ� = 0

�(0) = �(π) = 0

⎫⎪⎬
⎪⎭ (6.134)

So that the eigenfunctions are: �(ϕ)Z (z) = sin(nϕ) sin(πm
L z) (with

n = 1, 2, 3 . . . , m = 1, 2, 3 . . .)
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The equation for the radial part is:

1
ρ

d
dρ

[
ρ d R

dρ

]
R

+ 1

ρ2
(−n2) −

(πm
L

)2

= 0 (6.135)

d2 R
dρ2

+ 1

ρ

d R
dρ

−
[

n2

ρ2
+
(πm

L

)2
]

R = 0 (6.136)

General solution

The general solution of the previous equation consists in Bessel

functions of imaginary argument (modified Bessel function) and

also McDonald functions (which are not considered for whole

cylinders). The general solution is:

u(ρ , ϕ, z) =
∑[

Anm In

(πm
L

ρ
)

+Bnm Kn

(πm
L

ρ
)]

sin(nϕ) sin
(πm

L
z
)

(6.137)

Final solution

To find the Anm and Bnm coefficients we will use the first and

second boundary conditions to get the general solution and apply

the conditions of heat fluxes across the curved surfaces.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑[
Anm

πm
L

I ′
n

(πm
L

a
)

+ Bnm
πm

L
K ′

n

(πm
L

a
)]

sin (nϕ) sin
(πm

L
z
)

= − F1

k

∑[
Anm

πm
L

I ′
n

(πm
L

b
)

+ Bnm
πm

L
K ′

n

(πm
L

b
)]

sin (nϕ) sin
(πm

L
z
)

= F2

k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.138)

Where I ′ and K ′ are the derivatives of the modified Bessel

function and the McDonald function with respect to ρ. Using the

orthogonality of the angular eigenfunctions (ϕ) and in the (z)

direction we arrive at two equations with two unknowns to find the

Anm and Bnm coefficients.⎧⎪⎨
⎪⎩

Anm I ′
n

(πm
L

a
)

+ Bnm K ′
n

(πm
L

a
)

= αnm

Anm I ′
n

(πm
L

b
)

+ Bnm K ′
n

(πm
L

b
)

= βnm

⎫⎪⎬
⎪⎭ (6.139)
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αnm =− L
πm

F1

k ‖sin(nϕ)‖2
∥∥sin

(
πm

L z
)∥∥2

π∫
0

L∫
0

sin(nϕ) sin
(πm

L
z
)

dϕdz

= − L
πm

F1

k π
2

L
2

π∫
0

L∫
0

sin(nϕ) sin
(πm

L
z
)

dϕdz

= −4F1

mk
[1 − cos(nπ)]

n
L[1 − cos(mπ)]

mπ
(6.140)

Analogously:

βnm = L
πm

F2

k ‖sin(nϕ)‖2
∥∥sin

(
πm

L z
)∥∥2

π∫
0

L∫
0

sin(nϕ) sin
(πm

L
z
)

dϕdz

= 4F2

mk
[1 − cos(nπ)]

n
L[1 − cos(mπ)]

mπ
(6.141)

It is clear that both coefficients are zero for n, m = even. Finally we

will get the coefficients:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Anm = 1

I ′
n

(πm
L

a
) [αnm − Bnm K ′

n

(πm
L

a
)]

1

I ′
n

(πm
L

a
) [αnm − Bnm K ′

n

(πm
L

a
)]

I ′
n

(πm
L

b
)

+ Bnm K ′
n

(πm
L

b
)

= βnm

Bnm

⎡
⎢⎣K ′

n

(πm
L

b
)

−
K ′

n

(πm
L

a
)

I ′
n

(πm
L

b
)

I ′
n

(πm
L

a
)

⎤
⎥⎦ = βnm − αnm

I ′
n

(πm
L

b
)

I ′
n

(πm
L

a
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.142)

or

Bnm = βnm I ′
n(πm

L a) − αnm I ′
n(πm

L b)

K ′
n(πm

L b)I ′
n(πm

L a) − K ′
n(πm

L a)I ′
n(πm

L b)

(6.143)

Anm = 1

I ′
n(πm

L a)

[
αnm − βnm I ′

n(πm
L a) − αnm I ′

n(πm
L b)K ′

n(πm
L a)]

K ′
n(πm

L b)I ′
n(πm

L a) − K ′
n(πm

L a)I ′
n(πm

L b)

]
(6.144)
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6.7 Distribution of Temperature inside a Hollow
Cylinder with a Heater

Find the stationary distribution of temperature inside a cylinder

of height L with a centered hole or radius R1 and with an outer

radius R2. The plane surfaces are in contact with a thermal reservoir

at a temperature T0, the inner surface is at zero temperature and

the outer surface exchanges heat with the outer medium at a zero

temperature according to Newton’s law (with constant W).

Inside the cylinder acts a heat source in the form of a thin tube or

radius R2−R1

2
and also height L, which dissipates an energy density F .

Figure 6.10

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k�u(ρ , ϕ, z) = F
2π

1

ρ
δ

(
ρ −

[
R2 − R1

2

])
u(ρ , ϕ, 0) = u(ρ , ϕ, L) = T0

u(R1, ϕ, z) = 0

−k
∂u
∂ρ

∣∣∣∣
ρ=R2

= W · u(R2, ϕ, z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.145)

Note: we will consider that the contact surface between the heater

and the flat faces does not modify the boundary conditions inn z.
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Sturm–Liouville problem

We will expand the solution in eigenfunctions of the Sturm–Liouville

problems for the variables (ρ , ϕ), with the idea of eliminating the

second derivatives of the Laplacian in those directions, since the

boundary conditions in the vertical direction are inhomogeneous:

u = V (ρ , ϕ) · Z (z) (6.146)

Sturm–Liouville problem for V (ρ , ϕ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ρ ,ϕV (ρ , ϕ) + λV (ρ , ϕ) = 0

V (R1, ϕ) = 0

∂V
∂ρ

∣∣∣∣
ρ=R2

+ H V (R2, ϕ) = 0

H = W
k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.147)

The eigenfunctions (using for brevity the complex form for the

angular solutions) are:

Vnm(ρ , ϕ) =
[

Anm J m(
√
λnmρ) + Bnm Nm(

√
λnmρ)

]
e(−imϕ) (6.148)

Applying the third and fourth boundary conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[Anm J m(
√
λnm R1) + Bnm Nm(

√
λnm R1)] = 0

√
λnm
[

Anm J ′
m(

√
λnm R2) + Bnm N ′

m(
√
λnm R2)

]+
+H [Anm J m(

√
λnm R2) + Bnm Nm(

√
λnm R2)] = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.149)

or ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[Anm J m(
√
λnm R1) + Bnm Nm(

√
λnm R1)] = 0

Anm[
√
λnm J ′

m(
√
λnm R2) + H J m(

√
λnm R2)]

+Bnm[
√
λnm N ′

m(
√
λnm R2) + Nm(

√
λnm R2)] = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.150)

The condition DET()=0 will give us the eigenvalues λnm

Furthermore, since Bnm = −Anm
J m(

√
λnm R1)

Nm(
√
λnm R1)

we get the not normalized eigenfunctions in the form:

Vnm(ρ , ϕ) =
[

J m(
√
λnmρ) − J m(

√
λnm R1)

Nm(
√
λnm R1)

Nm(
√
λnmρ)

]
e(−imϕ)

(6.151)
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General solution

Looking for the solution as summation of orthogonal eigenfunctions:

u =
∑
nm

Vnm(ρ , ϕ) · Z (z) (6.152)

and replacing in the initial problem (6.145)∑
nm

[
�ρ ,ϕ + d2

dz2

]
Vnm(ρ , ϕ) · Z (z) = − F

2πk
1

ρ
δ

(
ρ −

[
R2 − R1

2

])
(6.153)∑

nm

�ρ ,ϕVnm(ρ , ϕ) · Z (z) + Vnm(ρ , ϕ)
d2

dz2
Z (z)

= − F
2πk

1

ρ
δ

(
ρ −

[
R2 − R1

2

])
(6.154)

∑
nm

−λnmVnm(ρ , ϕ) · Z (z) + Vnm(ρ , ϕ)
d2

dz2
Z (z)

= − F
2πk

1

ρ
δ

(
ρ −

[
R2 − R1

2

])
(6.155)

or, finally:∑
nm

[
d2 Z (z)

dz2
− λnm Z (z)

]
Vnm(ρ , ϕ) = − F

2πk
1

ρ
δ

(
ρ −

[
R2 − R1

2

])
(6.156)

Multiplying both sides by Vn′m′ (ρ , ϕ) and integrating
R2∫

R1

2π∫
0

ρdρdϕ, we

will get:[
d2 Z (z)

dz2
− λnm Z (z)

]
‖Vnm(ρ , ϕ)‖2 =

= − F
2πk

R2∫
R1

[
J m(
√
λnmρ) − J m(

√
λnm R1)

Nm(
√
λnm R1)

Nm(
√
λnmρ)

]
δ

(
ρ −

[
R2 − R1

2

])
dρ

2π∫
0

e(−imϕ)dϕ =

= − F
2πk

[
J m

(√
λnm

[
R2 − R1

2

])
− J m(

√
λnm R1)

N m

(√
λnm R1

)
Nm

(√
λnm

[
R2 − R1

2

])] 2π∫
0

e(−imϕ)dϕ (6.157)
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Since ⎧⎪⎨
⎪⎩

2π∫
0

e(−imϕ)dϕ = 0 (m �= 0)

2π (m = 0)

⎫⎪⎬
⎪⎭ (6.158)

Then we get at the equation for the function Z (z):

d2 Z (z)

dz2
− λn0 Z (z)

= − F
2πk

J 0

(√
λno
[ R2−R1

2

])− J 0(
√
λn0 R1)

N0(
√
λ0R1)

N0

(√
λn0

[ R2−R1

2

])
‖Vn0(ρ , ϕ)‖2

= αn

(6.159)

We also need to find the boundary conditions for Z (z). From the first

and second boundary conditions:∑
nm

Vnm(ρ , ϕ) · Z (0) = T0 (6.160)

and ∑
nm

Vnm(ρ , ϕ) · Z (0) = T0 (6.161)

we get:

Z (0)= Z (L)=T0

R2∫
R1

[ J m(
√
λnmρ) − J m(

√
λnm R1)

Nm(
√
λnm R1)

Nm(
√
λnmρ)]dρ

‖Vn0(ρ , ϕ)‖2
= T0 Z n

(6.162)

We need to solve the non-homogeneous equation in the z direction

with the corresponding boundary conditions:⎧⎪⎨
⎪⎩

d2 Z (z)

dz2
− λn0 Z (z) = αn

Z (0) = Z (L) = T0 Z n

⎫⎪⎬
⎪⎭ (6.163)

by searching the solution as the sum of a particular solution and the

solution of the homogeneous equation. The particular solution is:

Z p(z) = αn

λn0

(6.164)

The general solution of the homogeneous equation is well known:

Z h(z) = C sinh(
√
λn0z) + D cosh(

√
λn0z) (6.165)
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Final solution

Applying the boundary conditions:⎧⎪⎨
⎪⎩

C sinh(
√
λn00) + D cosh(

√
λn00) + αn

λn0

= T0

C sinh(
√
λn0 L) + D cosh(

√
λn0 L) + αn

λn0

= T0

⎫⎪⎬
⎪⎭ (6.166)

⎧⎪⎪⎨
⎪⎪⎩

D = T0 − αn

λn0

C sinh(
√
λn0 L) +

(
T0 − αn

λn0

)
cosh(

√
λn0 L) + αn

λn0

= T0

⎫⎪⎪⎬
⎪⎪⎭

(6.167)

or ⎧⎪⎪⎨
⎪⎪⎩

D = T0 − αn

λn0

C =
[

T0 − αn

λn0

]
[1 − cosh(

√
λn0 L)]/ sinh(

√
λn0 L)

⎫⎪⎪⎬
⎪⎪⎭ (6.168)

Finally:

u =
∑

n

[
J 0(
√
λn0ρ) − J m(

√
λn0 R1)

Nm(
√
λn0 R1)

N0(
√
λn0ρ)

]
×

×
[(

T0− αn

λn0

)
[1 − cosh(

√
λn0 L)][sinh(

√
λn0z)/ sinh(

√
λn0 L)]

+
(

T0 − αn

λn0

)
cosh(

√
λn0z)

]
(6.169)

6.8 Case Study: Temperature in a Cylinder with
Bases Thermally Insulated

Find the stationary distribution of temperature inside a cylinder

of height h with a central hole of radius R1 and an outer radius

R2. The flat faces are thermally insulated. The inner surface is in

contact with a thermal reservoir at zero temperature and the outer

surface is in contact with another reservoir at a temperature T =
cos (3ϕ).
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Figure 6.11

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�u(ρ , ϕ, z) = 0

∂u
∂z

∣∣∣∣
z=0

= ∂u
∂z

∣∣∣∣
z=h

= 0

u(ρ = R1, ϕ, z) = 0

u(ρ = R2, ϕ, z) = cos(3ϕ)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.170)

Sturm–Liouville problem

We separate variables:

u = V (ρ , ϕ) · Z (z) (6.171)

We seek the expansion of the solution in eigenfunctions of the

Sturm–Liouville problems in the (ϕ, z) directions, to able to remove

the second derivatives from the Laplacian, since the radial boundary

condition in the radial direction is inhomogeneous.

�[V (ρ , ϕ) · Z (z)] = Z�V (ρ , ϕ) + V (ρ , ϕ)�Z (z) = 0 (6.172)
Z�V + V �Z

V Z
= �V

V
+ �Z

Z
= 0 (6.173)

Auxiliary problems: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2 Z
dz2

+ υZ = 0

d Z
dz

∣∣∣∣
z=0

= 0

d Z
dz

∣∣∣∣
z=h

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.174)
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Z n(z) = cos

(
πn
h

z
)

(6.175)

υn =
(
πn
h

)2

(n = 0, 1, 2, 3, . . .) (6.176)

Then, when reducing the number of partial derivatives, the problem

for V (ρ , ϕ) is:

1
ρ

∂
∂ρ

[
ρ ∂V

∂ρ

]
+ 1

ρ2
∂2 V
∂ϕ2

V
= −�Z

Z
= ν =

(
πn
h

)2

(6.177)

Then:

1

ρ

∂

∂ρ

[
ρ
∂V
∂ρ

]
+ 1

ρ2

∂2V
∂ϕ2

−
[(

πn
h

)2
]

V = 0 (6.178)

General solution

In this moment we can present the general solution as the product

of angular and radial functions and eigenfunctions of the z variable.

u =
∞∑

n=0

Vn(ρ , ϕ) · Z n(z) (6.179)

We can simplify the problem by checking that the solution doesn’t

depend on the z variable. Precisely:

u(ρ = R2) =
∞∑

n=0

Vn(R2, ϕ) · Z n(z) = cos (3ϕ) (6.180)

We multiply the equation by cos(πk
h z) and integrate it between 0 and

h in the z direction. Of the whole summation, only the term with

index n = 0 remains. Then u = V0(ρ , ϕ). The equation to find

V0(ρ , ϕ) is then:

1

ρ

∂

∂ρ

[
ρ
∂V0

∂ρ

]
+ 1

ρ2

∂2V0

∂ϕ2
= 0 (6.181)

We multiply the equation by ρ2 and separate variables once again

V0(ρ , ϕ) = R(ρ) · �(ϕ)

ρ d
dρ [ρ dR

dρ ]

R = − 1

�

d2�

dϕ2
= η (6.182)



April 5, 2023 0:23 JSP Book - 9in x 6in Main

Temperature in a Cylinder with Bases Thermally Insulated 365

With η > 0 we arrive at a Sturm–Liouville problem to expand the

solution in angular eigenfunctions:⎧⎪⎨
⎪⎩

d2�

dϕ2
+ η� = 0

�(ϕ) = �(ϕ + 2π)

⎫⎪⎬
⎪⎭ (6.183)

The eigenfunctions and eigenvalues are:

�(ϕ) = e(imϕ) (6.184)

η = m2 (6.185)

The radial problem then is:

ρ
d

dρ

[
ρ

dR
dρ

]
− m2R = 0 (6.186)

ρ2 d2R
dρ2

+ ρ
dR
dρ

− m2R = 0 (6.187)

The general solution is then a known function. For m = 0:

R(ρ) = A0 + B0 log(ρ) (6.188)

For m �= 0:

R(ρ) = Amρ
m + Bmρ

−m (6.189)

We apply the fourth boundary condition:

u(ρ = R2) = A0 + B0 log R2

+
∞∑

m=1

[Am(R2)m + Bm(R2)−m] · cos (mϕ) = cos (3ϕ)

(6.190)

Using the orthogonality of the angular eigenfunctions we see that

only A3 and B3 remain. The terms of the expansion of the general

solution which are proportional to sin (mϕ) will be zero due to

their orthogonality with the function which describes the boundary:

cos (3ϕ). Furthermore, the terms A0 and B0 are zero due to the

average of the function cos (3ϕ) in the range 2π is zero.

∞∑
m=1

[A3(R2)3 + B3(R2)−3] cos (mϕ) = cos (3ϕ) (6.191)
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Then applying the orthogonality we see that the only non-trivial

term of the summation is m = 3:

[A3(R2)3 + B3(R2)−3] |cos(3ϕ)|2 = |cos(3ϕ)|2 (6.192)

Or alternatively:

A3(R2)3 + B3(R2)−3 = 1 (6.193)

We apply the third boundary condition:

u(ρ = R1) = A3(R1)3 + B3(R1)−3 = 0 (6.194)

We solve

B3 = R6
1 R3

2

R6
1 − R6

2

(6.195)

A3 = − R3
2

R6
1 − R6

2

(6.196)

Final solution

The final result is:

u = [A3(ρ)3 + B3(ρ)−3] cos (3ϕ) =
(

R2

ρ

)3
ρ6 − R6

1

R6
2 − R6

1

cos(3ϕ)

(6.197)

Additional notes: the solution could depend on the z variable due

to the different conditions of the curved boundary (which would

include the dependence on z) separating variables and expanding

the solution in orthogonal eigenfunctions in the z direction, and as a

function of the angular variable, the solution would be:

u(ρ , ϕ, z) =
∞∑

m, n≥1

[Anm sin(mϕ) + Bnm cos(mϕ)]· (6.198)

[
Im

(
πn
h

ρ

)
−
(

Im(πn
h R1)

Km(πn
h R1)

)
Km

(
πn
h

ρ

)]
· cos

(
πn
h

z
)

(6.199)

Also the solution would depend on the z variable if the conditions on

the flat boundaries had changed with the corresponding changes in

the radial solution (from polynomial to modified Bessel functions)

even if the curved boundary were kept as in the original formulation

of the problem, that is, without a variation in the vertical direction.
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Finally if we impose directly n = 0 in the solution we see that the

McDonald function K(x) diverges at x = 0.

If we remove the hole from the problem, we would be left with

the summation formed only by radial modified Bessel functions

In(0) = 1, which would mean that the solution would not depend

on neither the vertical nor the radial variables, and only on the angle

imposed by the boundary condition.

6.9 Case Study: Cylinder with a Heater of xy
Symmetry

Find the stationary distribution of temperature in a cylinder of

radius R and height L if inside the cylinder there are energy sources

acting as a thin film in the plane z = L/2. The density of the

heat sources is f = xy and the maximum distance of the source

from the center is R/2. Consider that the curved surface is at a

constant temperature T0. The flat faces are insulated. The thermal

conductivity coefficient is k0.

Figure 6.12

Mathematical formulation

The background temperature T0 is subtracted from the solution.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k0�u = ρ2 cos(ϕ) sin(ϕ) = 1

2
ρ2 sin(2ϕ) · δ

(
z − L

2

)
;

(
0 < ρ <

R
2

)

u(R , ϕ) = 0

∂u
∂z

∣∣∣∣
z=0, L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.200)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
+ 1

ρ2

∂2u
∂ϕ2

+ ∂2u
∂z2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

2k0

ρ2 sin(2ϕ) · δ
(

z − L
2

) (
0 < ρ <

R
2

)

0

(
R
2

< ρ < R
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

u(R , ϕ) = 0

∂u
∂z

∣∣∣∣
z=0, L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.201)

Note: integrating the density of heat sources can help to check that

the total applied power is W = 0 since half of the source dissipates

heat and the other half absorbs it

Sturm–Liouville problem

We now seek the solution by separating it in two orthogonal

eigenfunctions of the following Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�v(ρ , ϕ, z) + λv(ρ , ϕ, z) = 0

v(R , ϕ) = 0

∂v
∂z

∣∣∣∣
z=0, L

= 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.202)

The corresponding eigenfunctions and eigenvalues are well known.

[v(ρ , ϕ)]nmk = J m(
√

[λnmk − μk] · ρ)[Anmk cos(mϕ)

+Bnmk sin(mϕ)] · cos

(
kπ
L

z
)

(6.203)

with μk = ( kπ
L )2; k = 0, 1, 2, . . . , m = 0, 1, 2, . . . , n = 0, 1, 2, . . . .

The index n counts the zeros of the Bessel function, which gives the

eigenvalues:

J m(
√

[λnmk − μk] · R) = 0 (6.204)
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General solution

We replace the expression for the general solution:

u =
∑

v(ρ , ϕ, z)nmk (6.205)

into equation (6.201):

�
∑

[v(ρ , ϕ, z)]nmk = − 1

2k0

ρ2 sin(2ϕ) · δ
(

z − L
2

)
(6.206)

Note that it’s one of the few cases where the solution can be sought

as the sum of orthogonal eigenfunctions, since their coefficients are

already present in the angular eigenfunctions.

∑
λnmk[v(ρ , ϕ, z)]nmk = 1

2k0

ρ2 sin(2ϕ) · δ
(

z − L
2

)
(6.207)

Final solution

Using the orthogonality of the eigenfunctions we get the coefficients:∑
λnmk J m(

√
[λnmk − μk] · ρ)[Anmk cos(mϕ)

+Bnmk sin(mϕ)] cos

(
kπ
L

z
)

=

= 1

2k0

ρ2 sin(2ϕ) · δ
(

z − L
2

)
(6.208)

It is clear that Anmk = 0∑
Bnmkλnmk J m(

√
[λnmk − μk] · ρ) sin(mϕ) cos

(
kπ
L

z
)

= 1

2k0

ρ2 sin(2ϕ) · δ
(

z − L
2

)
(6.209)

Multiplying both sides by J m(
√

[λnmk − μk] · ρ) sin(mϕ) · cos
( kπ

L z
)

and integrating between
R∫

0

2π∫
0

L∫
0

ρdρdϕdz we get:

Bnmk = 1

2k0

R/2∫
0

ρ3 J m(
√

[λnmk − μk] · ρ)dρ
2π∫
0

sin(2ϕ) sin(mϕ)dϕ
L∫

0

δ(z − L
2

) cos
( kπ

L z
)

dz

λnmk

∣∣∣ J m(
√

[λnmk − μk] · ρ)
∣∣∣2 |sin(mϕ)|2

∣∣cos( kπ
L z)

∣∣2
(6.210)
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Only the following coefficients remain:

Bn2k = 1

2k0

cos
( kπ

2

) R/2∫
0

ρ3 J 2(
√

[λn2k − μk] · ρ)dρ

λn2k
∥∥ J m(

√
[λn2k − μk] · ρ)

∥∥2 ∣∣cos( kπ
L z)
∣∣2 (6.211)

Finally:

u = T0 + sin(2ϕ)
∑
n, k

Bn2kλn2k J 2(
√

[λn2k − μk] · ρ) cos

(
kπ
L

z
)

(6.212)

Alternative method

Sturm–Liouville problem

Just like in the first method we convert all boundaries to homo-

geneous by subtracting the temperature T0, we seek the solution

as an expansion in radial and angular eigenfunctions. The vertical

direction z is described by a function that we need to find:

�
[∑

vnm(ρ , ϕ) · Z nm(z)
]

= 1

2k0

ρ2 sin(2ϕ) · δ
(

z − L
2

)
(6.213)

where v(ρ , ϕ)nm are the eigenfunctions of a Sturm–Liouville

problem in a whole disk with first type boundary conditions.

v(ρ , ϕ)nm = J m(
√

[λnm] · ρ) sin(mϕ) (6.214)

Applying this condition (i.e., lowering the amount of second

derivatives operators in the Laplacian from three to one) and

integrating the resulting equations between the limits of the

variations in the radial and angular variables
R∫

0

2π∫
0

ρdρdϕ. We arrive

at a non-homogeneous differential equation for the Z (z) function

with two different homogeneous boundary conditions of the second

type which is solved by a solution by parts in the homogeneous

ranges of the z variable. We then apply the two conditions for the

insulated boundaries (z = 0; L), besides the condition of continuity

for the functions and the condition for the difference of their

derivatives.
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6.10 Case Study: Semi-Cylinder with a Thin
Heater

Consider a half of a cylinder (height L, radius R = L/2, thermal

conductivity k) with its two flat horizontal sides in contact with a

thermal reservoir at zero temperature and the vertical flat face is

thermally insulated. The curved part is insulated except for a thin

line in the form of a helix, through which a power W is uniformly

supplied. Find the stationary distribution of temperature inside the

cylinder, considering that all the heat generated by the resistance is

directed towards the inside of the semi-cylinder.

Figure 6.13

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u = 0

u(ρ , ϕ, 0) = 0

u(ρ , ϕ, L) = 0

−k
∂u
∂ρ

∣∣∣∣
ρ= L

2

= − 2W
L2π

δ

(
z − Lϕ

π

)
∂u
∂ϕ

∣∣∣∣
ϕ=0

= ∂u
∂ϕ

∣∣∣∣
ϕ=π

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.215)

Integrating in the ϕ angle and in the z direction the right part of

the non-homogeneous boundary condition, we note that the surface

power corresponds to the total power radiated by the heater, W . In
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cylindrical coordinates the equation to be solved is:

1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
+ 1

ρ2

∂2u
∂ϕ2

+ ∂2u
∂z2

= 0 (6.216)

Sturm–Liouville problem

We separate variables, taking into account that in the ϕ and z
directions we have homogeneous boundaries:

u = R(ρ) · �(ϕ) · Z (z) (6.217)

1

R
1

ρ

d
dρ

[
ρ

d R
dρ

]
+ 1

ρ2

1

�

d2�

dϕ2
+ 1

Z
d2 Z
dz2

= 0 (6.218)

As always, we solve the �(ϕ) and Z (z) functions using the Sturm–

Liouville problems with the corresponding boundary conditions.

The first Sturm–Liouville problem is:⎧⎪⎨
⎪⎩

d2 Z
dz2

+ λZ = 0

Z (0) = Z (L) = 0

⎫⎪⎬
⎪⎭ (6.219)

The second Sturm–Liouville problem is:⎧⎪⎪⎨
⎪⎪⎩

d2�

dϕ2
+ μ� = 0

dφ
dϕ

∣∣∣∣
ϕ=0

= d�
dϕ

∣∣∣∣
ϕ=π

= 0

⎫⎪⎪⎬
⎪⎪⎭ (6.220)

�(ϕ)Z (z) = Anm cos(mϕ) sin
(πn

L
z
)

(n = 1, 2, 3 . . . , m = 0, 1, 2, 3 . . .) (6.221)

The differential equation for the radial part is:

1
ρ

d
dρ [ρ d R

dρ ]

R
+ 1

ρ2
(−m2) −

(πn
L

)2

= 0 (6.222)

d2 R
dρ2

+ 1

ρ

d R
dρ

−
[

m2

ρ2
+
(πn

L

)2
]

R = 0 (6.223)
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General solution
The general solution of (6.236) is a Bessel function of imaginary

argument (modified Bessel function). This time we discard the

McDonald function, since it would diverge in the origin.

u(ρ , ϕ, z) =
∑
n, m

Anm Im

(πn
L
ρ
)

cos(mϕ) sin
(πn

L
z
)

(6.224)

To find the Anm and Bnm coefficients we will use the third boundary

condition, differentiating the general solution and applying the

condition of heat flux through the curved surface.

∑
n, m

Anm
πn
L

d Im
(
πn
L ρ
)

dρ

∣∣∣∣∣
ρ= L

2

cos(mϕ) sin
(πn

L
z
)

= 2W
kL2π

δ

(
z − Lϕ

π

)
(6.225)

Final solution
Using the orthogonality of the angular and vertical eigenfunctions

we get the relation for the coefficients (with ε = π
2

for m ≥ 1 and

ε = π for m = 0).

Anm = 2W
knπ2 L

L∫
0

π∫
0

δ(z − Lϕ
π

)) cos(mϕ) sin(πn
L z)dzdϕ

d Im
(
πn
L ρ
)

dρ

∣∣∣∣∣
ρ= L

2

‖cos(mϕ)‖2
∥∥sin(πm

L z)
∥∥2

=

= 2W
knεπ2 L

π∫
0

sin(nϕ) cos(mϕ)dϕ

d Im
(
πn
L ρ
)

dρ

∣∣∣∣∣
ρ= L

2

L
2

=

= 4W
knεπ2 L2

1

d Im
(
πn
L ρ
)

dρ

∣∣∣∣∣
ρ= L

2

π∫
0

sin(nϕ) cos(mϕ)dϕ =

= 2W
knεπ2 L2

1

d Im
(
πn
L ρ
)

dρ

∣∣∣∣∣
ρ= L

2

[
1 − cos((n + m)π)

(n + m)

+1 − cos((n − m)π)

(n − m)

]
(6.226)
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Finally we check the units of the result. Recalling that [k] = W/(mK)

the obtained result will have units of temperature (K).

6.11 Half Cylinder with Two Inward Fluxes

Find the stationary distribution of temperature inside a half cylinder

of radius R , height L and thermal conductivity coefficient k. The flat

back surface is thermally insulated and the curved surface at the

front has a temperature T0. Each of the remaining surfaces (upper

and lower) is traversed by a heat flux Q (homogeneously distributed

across the boundaries) as indicated in the figure.

Figure 6.14

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u = 0

−k
∂u
∂z

∣∣∣∣
z=0

= 2Q/(π R2)

−k
∂u
∂z

∣∣∣∣
z=L

= −2Q/(π R2)

u(R , ϕ, z) = T0

∂u
∂ϕ

∣∣∣∣
ϕ=0

= ∂u
∂ϕ

∣∣∣∣
ϕ=π

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.227)
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Subtracting T0 from the solution we achieve the curved boundary

with homogeneous boundary conditions, and the conditions in the

rest of the boundaries don’t change.

The solution can be expanded in a sum of orthogonal functions in the

radial and angular variable. We will apply the method of separation

of variables. In cylindrical coordinates the equation to be solved

becomes:

1

ρ

∂

∂ρ

[
ρ
∂u
∂ρ

]
+ 1

ρ2

∂2u
∂ϕ2

+ ∂2u
∂z2

= 0 (6.228)

Sturm–Liouville problem

For the separation of variables method we need to consider that in

the ϕ and z directions we have homogeneous boundaries:

u = R(ρ) · �(ϕ) · Z (z) (6.229)

1

R
1

ρ

d
dρ

[
ρ

d R
dρ

]
+ 1

ρ2

1

�

d2�

dϕ2
+ 1

Z
d2 Z
dz2

= 0 (6.230)

1

R
1

ρ

d
dρ

[
ρ

d R
dρ

]
+ 1

ρ2

1

�

d2�

dϕ2
= − 1

Z
d2 Z
dz2

= −λ (6.231)

The choice of the sign of the constant of the separation of variables

is due to inability to formulate a Sturm–Liouville problem for Z (z)

(because of the non-homogeneous boundary conditions), whereas

we can express �(ϕ) as a set of orthogonal eigenfunctions. The

second Sturm–Liouville problem is:⎧⎪⎪⎨
⎪⎪⎩

d2�

dϕ2
+ μ� = 0

dφ
dϕ

∣∣∣∣
ϕ=0

= d�
dϕ

∣∣∣∣
ϕ=π

= 0

⎫⎪⎪⎬
⎪⎪⎭ (6.232)

�(ϕ) = cos(mϕ) (m = 1, 2, 3 . . . , m = 0, 1, 2, 3 . . .) (6.233)

The problem in the z direction has the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 Z
dz2

− λZ = 0

−k
∂ Z
∂z

∣∣∣∣
z=0

= Const (ρ , φ)

−k
∂u
∂z

∣∣∣∣
z=L

= −Const (ρ , φ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.234)
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Z (z) = A cosh(
√
λz) + B sinh(

√
λz) (6.235)

The differential equation for the radial part is:

d2 R
dρ2

+ 1

ρ

d R
dρ

+
[
λ − m2

ρ2

]
R = 0 (6.236)

The radial solutions are J m(
√
λρ), neglecting the Neumann functions

that diverge at the origin of coordinates. The λkm eigenvalues are

given by the zeroes of the m-th order Bessel function: J m(
√
λR) = 0

General solution

u(ρ , ϕ, z) =
∑
m, k

J m(
√
λmkρ) cos(mϕ)[Amk cosh(

√
λmkz)

+Bmk sinh(
√
λmkz)] (6.237)

Final solution

To find the Amk and Bmk coefficients we will apply two non-

homogeneous boundary conditions (corresponding to the fluxes)

by differentiating the general solution and applying the heat flux

density condition across each of the bases.

−k
∑
m, k

Bmk

√
λmk J m(

√
λmkρ) cos(mϕ) = 2Q/(π R2) (6.238)

−k
∑
m, k

(Amk

√
λmk sinh(

√
λmk L) + Bmk

√
λmk cosh(

√
λmk L)) J m

(
√
λmkρ) cos(mϕ) = −2Q/(π R2) (6.239)

Finally, using the orthogonality of the radial J m(
√
λmkρ) and angular

cos(mϕ) functions we get the ration of the Amk and Bmk coefficients:

Bmk = − 2Q
k
√
λmkπ R2

R∫
0

J m(
√
λmkρ)ρdρ

π∫
0

cos(mϕ)dϕ

R∫
0

[ J m(
√
λmkρ)]2ρdρ

π∫
0

[cos(mϕ)]2dϕ
(6.240)

Only the coefficients of index m = 0 remain:
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B0k = − 2Q
k
√
λ0kπ R2

R∫
0

J 0(
√
λ0kρ)ρdρ

R∫
0

[ J 0(
√
λ0kρ)]2ρdρ

(6.241)

Likewise for Amk only the coefficients with m = 0 remain.

A0k = 2Q
k
√
λ0kπ R2

R∫
0

J 0(
√
λ0kρ)ρdρ

sinh(
√
λ0k L)

R∫
0

[ J 0(
√
λ0kρ)]2ρdρ

− B0k

tanh(
√
λ0k L)

= −B0k
1 + cosh(

√
λ0k L)

sinh(
√
λ0k L)

(6.242)

Since for the remaining indices m we apply the orthogonality

condition:

[Amk

√
λmk sinh(

√
λmk L) + 0

√
λmk cosh(

√
λmk L)] = 0

(6.243)

6.12 Heat Flux through Half a Cylinder

Find the stationary distribution of temperature in a half cylinder of

length L, radius ρ0 and thermal conductivity k if a heat flux of value

J = J 0(Lz− z2) enters through the curved surface and exits through

the bases, being homogeneously distributed. Consider that the flat

face opposite to the curved surface is thermally insulted.

Figure 6.15
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Solution:

To find all boundary conditions we must equate the flux that enters

through the curved surface to the flux that exits through the lateral

faces. The total flux that enters through the curved surface is

−
∫ π

0

∫ L

0

J 0[z2 − Lz]Rdϕdz = −R J 0π

[∫ L

0

z2dz − L
∫ L

0

zdz
]

= −π R J 0

[
L3

3
− L3

2

]
= π R J 0 L3

6

(6.244)

Both lateral surfaces get half of that flux:

W(z = 0)

S
= −k

∂u
∂z

∣∣∣∣
z=0

= π R J 0 L3

6
[
π R2

2

]
· 2

= − J 0 L3

6R
(negative flux)

(6.245)

W(z = L)

S
= −k

∂u
∂z

∣∣∣∣
z=L

= + J 0 L3

6R
(positive flux) (6.246)

The sign of the fluxes exiting through both sides is different since, by

symmetry, they propagate in opposite directions.

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u = 0

−k
∂u
∂ρ

∣∣∣∣
ρ=R

= J 0[Lz − z2]

∂u
∂ϕ

∣∣∣∣
ϕ=0,π

−k
∂u
∂z

∣∣∣∣
z=0

= − J 0 L3

6R

−k
∂u
∂z

∣∣∣∣
z=L

= + J 0 L3

6R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.247)

We can split the problem in two:

u(ρ , ϕ, z) = w(ρ , ϕ, z) + v(ρ , ϕ, z)
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Problem 1: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�w = 0

−k
∂w
∂ρ

∣∣∣∣
ρ=R

= J 0[Lz − z2]

−k
∂w
∂ϕ

∣∣∣∣
0,π

= 0

−k
∂w
∂z

∣∣∣∣
z=0, L

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.248)

Problem 2: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�v = 0

−k
∂v
∂ρ

∣∣∣∣
ρ=R

= 0

−k
∂v
∂z

∣∣∣∣
z=0

= − J 0 L3

6R

−k
∂v
∂z

∣∣∣∣
zL

= + J 0 L3

6R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.249)

Strum Liouville problem

We separate variables for w(ρ , ϕ, z):

w(ρ , ϕ, z) = R(ρ) · �(ϕ) · Z (z)

1

R
1

ρ

∂

∂ρ

(
ρ · ∂R

∂ρ

)
+ 1

�

1

ρ2

∂2�

∂ϕ2
= − 1

Z
∂2 Z
∂z2

= +λ

The Sturm–Liouville problem in the z direction is:⎧⎪⎪⎨
⎪⎪⎩

d2 Z
dz2

+ λZ = 0

d Z
dz

∣∣∣∣
z=0, L

= 0

(6.250)

The eigenfunctions of the problem are:

Z (z) = cos
(πnz

2

)
and the eigenvalues,

λ =
(πn

L

)2
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The Sturm–Liouville problem in the angular direction is:⎧⎪⎪⎨
⎪⎪⎩

d2�

dϕ2
+ λ� = 0

d�
dϕ

∣∣∣∣
ϕ=0,π

= 0

(6.251)

The eigenfunctions of the problem are:

�(ϕ) = cos (mϕ)

The radial equation is:

ρ
d

dρ

(
ρ

d R
dρ

)
− (λρ2 + m2)R = 0 (6.252)

or:

d2 R
dρ2

+ 1

ρ

d R
dρ

−
[

m2

ρ2
+ λ
]

= 0 (6.253)

The radial solutions are modified Bessel functions:

R(ρ) = Anm Im(
√
λρ) (6.254)

The general solution is:

W(ρ , ϕ, z) =
∑
n, m

Anm Im(
√
λρ) cos(mϕ) · cos

(πnz
L

)
(6.255)

We apply the boundary conditions:

−k
∂w
∂ρ

∣∣∣∣
ρ=R

= J 0[Lz − z2]

=
∑
n, m

√
λn Anm I ′

m(
√
λn R) cos(mϕ) · cos

(πnz
L

)
(6.256)

Applying the condition of orthogonality:

Anm = − J 0

∫ L
0

(Lz − z2) cos
(
πn
L

)
dz · ∫ π

0
cos(mϕ)dϕ

k
√
λn I ′

m(
√
λn R) · ∫ L

0

∫ π

0
cos2(mϕ) cos2

(
πnz

L

)
dϕdz

(6.257)

Only the terms with m = 0 remain:

An0 = − J 0

∫ L
0

(Lz − z2) cos
(
πn
L

)
dz

k
√
λn I ′

0(
√
λn R) · L

2

(6.258)
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Now we turn to problem 2. As no boundary condition depends on ϕ

and there are no heat fluxes at ϕ = 0, π the solution will not depend

on the angular variable.

1

ρ

∂

∂ρ

(
ρ
∂V
∂ρ

)
+ ∂2V

∂z2
= 0 (6.259)

Separating variables: V = R(ρ) · Z (z):

1
ρ

d
dρ

(
ρ d R

dρ

)
R

= −
d2 Z
dz2

Z
= −λ (6.260)

The sign of λ is chosen to arrive at hyperbolic solutions in z:

d2 Z
dz2

− λZ (z) = 0 → Z (z) = A sinh(
√
λz) + B cosh(

√
λz) (6.261)

Radial solution:

1

ρ

d
dρ

(
ρ

d R
dρ

)
+ λR = 0 → R(ρ) = J 0(

√
λkρ) (6.262)

The λk eigenvalues are found from the zeroes of the derivatives of

the Bessel function:

λk =
(μk

R

)2

(6.263)

General solution

The general solution is:

V (ρ , z) =
∑

k

[
Ak sinh(

√
λkz) + Bk cosh(

√
λkz)

]
J 0(
√
λkρ)

(6.264)

Final solution

To get the constants necessary to obtain the final solution we apply

the boundary conditions. Applying the boundary condition at z = 0:

−k
∂V
∂z

∣∣∣∣
z=0

= − J 0 L3

6R
= −k

∑
k

Ak

√
λk J 0(

√
λkρ) →

Ak = J 0 L3
∫ R

0
J 0(

√
λkρ)ρdρ√

λk · k · 6R‖ J 0(
√
λkρ)‖ (6.265)
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Applying now the boundary condition at z = L:

−k
∂V
∂z

∣∣∣∣
z=L

=
∑

k

[
Ak

√
λk cosh(

√
λk L) + Bk

√
λk sinh(

√
λk L)

]

× J 0(
√
λkρ) = J 0 L3

6R
(6.266)

Bk = 1√
λk sinh(

√
λk L)

[
J 0 L3

6R
− Ak

√
λk cosh(

√
λk L)

]

×
∫ R

0
J 0(

√
λkρ)ρdρ

‖ J 0(
√
λkρ)‖2

(6.267)
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Chapter 7

Problems in Spherical Coordinates

The present chapter gives several examples of the detailed solution

of problems that can be described using spherical coordinates

when the symmetry break is due to a symmetry center. Spherical

coordinates use three variables (azimuthal and polar angles, and

radius). As a result, the form of the Laplacian operator changes, as

well as the form of the solutions to the Sturm–Liouville problem in

the radial variable (spherical Bessel functions) and in the polar angle

(Legendre polynomials). Furthermore, also the way to describe

some spatial features, such as points, circles or spherical shells

changes, by using the Dirac’s Delta function in spherical coordinates.

It is important to stress that in the case of problems with non-

homogeneous contours in planes perpendicular to the vector of

the azimuthal angle it is necessary to insert a constant or use a

compensatory function in order to formulate correctly the Sturm–

Liouville problem in the azimuthal angle. Only in this manner will

we be able to formulate the equations as a function of the polar angle

and in the appropriate cases, the radial coordinate and get solutions

in the form of Legendre polynomials.

Mathematical Methods for Physics: Problems and Solutions
Farkhad G. Aliev and Antonio Lara
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7.1 Electric Potential between Two Spheric Shells

Find the electrostatic potential inside a sphere whose outer part

(r = b) is at zero potential (u(b) = 0), whereas the inner part

(r = a) is at a potential equal to V0 sin(θ) sin(ϕ).

Figure 7.1

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u = 0 (a < r < b)

1

r2

∂

∂r

[
r2

(
∂u
∂r

)]
+ 1

r2
�θ ,ϕu = 0

u(r = b) = f (θ , ϕ) = V0 sin(θ) sin(ϕ)

u(r = a) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.1)

We seek the solution of the equation:

∂

∂r

[
r2

(
∂u
∂r

)]
+ �θ ,ϕu = 0 (7.2)

Using the method of separation of variables:

u(r, θ , ϕ) = R(r) · V (θ , ϕ) (7.3)

d
dr [r2( d R

dr )]

R
= −�θ ,ϕV

V
= λ > 0 (7.4)

Sturm–Liouville problem

We use the positive sign for λ because we expect to get periodic

eigenfunctions for the angular variables, while the radial solution is
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expected to correspond to inhomogeneous boundary conditions. We

arrive at the problem:

�θ ,ϕV + λV = 0 (7.5)

1

sin(θ)

∂

∂θ

[
sin(θ)

(
∂V
∂θ

)]
+ 1

sin2(θ)

∂2V
∂ϕ2

+ λV = 0 (7.6)

By separating variables once again: V = �(θ) · �(ϕ)

sin(θ) d
dθ [sin(θ)( d�

dθ )] + λ sin2(θ) · �(θ)

�(θ)
= − 1

�(ϕ)

d2�

dϕ2
= ν > 0

(7.7)

We choose the positive sign for ν because we expect to obtain a

periodic solution (eigenfunctions) for the angular variable (ϕ). The

problem for (ϕ) is then:

d2�

dϕ2
+ ν�(ϕ) = 0 (7.8)

�(ϕ) = �(ϕ + 2π) (7.9)

The solution for the part depending on the azimuthal angle is:

�(ϕ) = A cos(mϕ) + B sin(mϕ) (7.10)

ν = m2 (7.11)

Now that we have ν = m2, we can find the solution for the function

�(θ)

sin(θ)
d

dθ

[
sin(θ)

(
d�
dθ

)]
+ λ sin2(θ) · �(θ) = m2� (7.12)

sin(θ)
d

dθ

[
sin(θ)

(
d�
dθ

)]
+ [λ sin2(θ) − m2]�(θ) = 0 (7.13)

The solution are Legendre polynomials:

�(θ) = P (m)
n (cos(θ)) (7.14)

With eigenvalues: λ = n(n + 1). Now, since we have λ = n(n + 1) we

can find the radial function

d
dr

[
r2

(
d R
dr

)]
− n(n + 1)R = 0 (7.15)
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r2

(
d2 R
dr2

)
+ 2r

(
d R
dr

)
− n(n + 1)R = 0 (7.16)

We seek the solution as:

R(r) = rα (7.17)

r2α(α − 1)rα−2 + 2rαrα−1 − n(n + 1)rα = 0 (7.18)

α2 + α − n(n + 1) = 0 (7.19)

α1 = n (7.20)

α2 = −n − 1 (7.21)

Therefore R(r) = Crn + Dr−n−1. We cannot discard any of the two

members since the problem is contained in (a ≤ r ≤ b), and no

divergences at the origin are considered.

General solution

We form the general solution for the problem:

u(r, θ , ϕ) =
∞∑

n≥m

∞∑
m=0

[Cnmrn + Dnmr−n−1]P (m)
n (cos(θ))

×[Anm cos(mϕ) + Bnm sin(mϕ)] (7.22)

An equivalent, but more convenient way to present this summation:

u(r, θ , ϕ) =
∞∑

n≥m

∞∑
m=0

(
bn+1

b2n+1 − a2n+1

)(
r2n+1 − a2n+1

rn+1

)
P (m)

n (cos(θ))

× [Anm cos(mϕ) + Bnm sin(mϕ)]

+
∞∑

n≥m

∞∑
m=0

(
an+1

b2n+1 − a2n+1

)(
b2n+1 − r2n+1

rn+1

)
P (m)

n (cos(θ))

× [Cnm cos(mϕ) + Dnm sin(mϕ)] (7.23)

Imposing one of the boundary conditions:

u(b, θ , ϕ) =
∞∑

n≥m

∞∑
m=0

(
bn+1

b2n+1 − a2n+1

)(
b2n+1 − a2n+1

bn+1

)

×P (m)
n (cos(θ)) · [Anm cos(mϕ) + Bnm sin(mϕ)] + 0 = 0

(7.24)
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Final solution

And using the orthogonality of P (m)
n (cos(θ)), from cos(mϕ) and from

sin(mϕ) we get:∥∥P (m)
n (cos(θ))

∥∥2 · Anm ‖cos(mϕ)‖2 = 0 → Anm = 0 (7.25)

∥∥P (m)
n (cos(θ))

∥∥2 · Bnm ‖sin(mϕ)‖2 = 0 → Bnm = 0 (7.26)

Imposing the other boundary condition:

∞∑
n≥m

∞∑
m=0

(
an+1

b2n+1 − a2n+1

)(
b2n+1 − a2n+1

an+1

)
P (m)

n (cos θ)

×[Cnm cos(mϕ) + Dnm sin(mϕ)] = V0 sin(θ) sin(ϕ) (7.27)

Then:

∞∑
n≥m

∞∑
m=0

P (m)
n (cos(θ)) · [Cnm cos(mϕ) + Dnm sin(mϕ)]

= V0 sin(θ) sin(ϕ)

(7.28)

Using the orthogonality of P (m)
n (cos θ) and of cos(mϕ) we multiply

by P (m)
n (cos θ) and cos(mϕ) and integrate

π∫
0

2π∫
0

sin(θ)dθdϕ. Then:

∥∥P (m)
n (cos(θ))

∥∥2 · Cnm ‖cos(mϕ)‖2 = 0 → Cnm = 0 (7.29)

Finally, using the orthogonality of P (m)
n (cos(θ)) and sin(mϕ) we

multiply (7.28) by P (m)
n (cos(θ)) and by sin(mϕ) and integrate

π∫
0

2π∫
0

sin(θ)dθdϕ. From there:

∞∑
n≥m

∞∑
m=0

P (m)
n (cos θ) · Dnm sin(mϕ) = V0 sin(θ) sin(ϕ) (7.30)

∥∥P (m)
n (cos(θ))

∥∥2 · Dnm ‖sin(mϕ)‖2

= V0

π∫
0

2π∫
0

P (m)
n (cos(θ)) sin2(θ) sin(ϕ) sin(mϕ)dθdϕ (7.31)
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∥∥P (m)
n (cos(θ))

∥∥2 · Dnm ‖sin(mϕ)‖2

= V0

π∫
0

P (m)
n (cos(θ)) sin2(θ)dθ · ‖sin(ϕ)‖2 δ1, m (7.32)

when m �= 1 → Dnm = 0

when m = 1 → Dn1 =
V0

π∫
0

P (m)
n (cos θ) sin2(θ)dθ

∥∥∥P (m)
n (cos θ)

∥∥∥2

Since P (1)
1 (cos(θ)) = sin(θ), of all the coefficients only D11 = V0

remains. The final solution is:

u(r, θ , ϕ) =
∞∑

n≥1

(
an+1

b2n+1 − a2n+1

)(
b2n+1 − r2n+1

rn+1

)

×
V0

π∫
0

P (m)
n (cos(θ)) sin2 θdθ

∥∥∥P (m)
n (cos(θ))

∥∥∥2
P (1)

n (cos(θ)) sin(ϕ) (7.33)

or more simply:

u(r, θ , ϕ) = V0

(
a2

b3 − a3

)(
b3 − r3

r2

)
cos(ϕ) · sin(θ) (7.34)

7.2 Distribution of Temperature inside a Sphere

A sphere has radius R . Its surface is kept at a temperature that

depends on the angles as: T0 sin(3θ) cos(ϕ). Find the distribution of

temperature inside this object.

Figure 7.2
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Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u(r, θ , ϕ) = 0 (0 < r < R)

1

r2

∂

∂r

[
r2

(
∂u
∂r

)]
+ 1

r2
�θ ,ϕu = 0

u(r = R) = f (θ , ϕ) = T0 sin(3θ) cos(ϕ)

u(0, θ , ϕ) < ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.35)

General solution

The general solution of the Laplace problem in spherical coordinates

has been obtained in detail in the previous problem.

u(r, θ , ϕ) =
∞∑

n≥m

∞∑
m=0

[rn + Dnmr−n−1]P (m)
n (cos(θ))

×[Anm cos(mϕ) + Bnm sin(mϕ)] (7.36)

Since the solution would need to be finite for r = 0 → Dnm = 0

u(r, θ , ϕ) =
∞∑

n≥m

∞∑
m=0

[rn]P (m)
n (cos(θ)) · [Anm cos(mϕ) + Bnm sin(mϕ)]

(7.37)

Final solution

Using the orthogonality of cos(mϕ) and of sin(mϕ) and applying the

first boundary condition:

u(R , θ , ϕ) = T0 sin(3θ) cos(ϕ) =
∞∑

n≥m

∞∑
m=0

[Rn]P (m)
n (cos(θ))

×[Anm cos(mϕ) + Bnm sin(mϕ)] (7.38)

Multiplying by cos(mϕ) and integrating from 0 to 2π :

T0 sin(3θ) =
∞∑

n=1

An1 Rn P (1)
n (cos(θ)) (7.39)

Multiplying by P (1)
n (cos(θ)) and by sin(θ) and integrating from 0 to

π and also using the modulus of the Legendre functions we have:

An1 = T0

Rn
π∫
0

[P (1)
n (cos(θ))]2 sin(θ)dθ

π∫
0

sin(3θ)P (1)
n (cos(θ)) sin(θ)dθ

(7.40)
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The sin(3θ) term can be expressed in terms of Legendre polynomials

by taking into account the following relations, to simplify the

calculation of the integral of the condition of orthogonality:

sin(3θ) = sin(θ)[4 cos2(θ) − 1] (7.41)

We know that:

P (1)
1 (cos(θ)) = sin(θ) (7.42)

P (1)
3 (cos(θ)) = sin(θ)[5 cos2(θ) − 1] (7.43)

sin(θ)[4 cos2(θ) − 1] = sin(θ)[5 cos2(θ) − 1]
4

5
− 1

5
sin(θ)

= 4

5
P (1)

3 (cos(θ)) − 1

5
P (1)

1 (cos(θ)) (7.44)

Only two coefficients of the summation remain:

A11 = T0

R1
π∫
0

[P (1)
1 (cos θ)]2 sin(θ)dθ

π∫
0

(
−1

5

)
P (1)

1 (cos(θ))P (1)
1 (cos(θ)) sin(θ)dθ = − T0

5R
(7.45)

A31 = T0

R3
π∫
0

[P (1)
3 (cos θ)]2 sin(θ)dθ

π∫
0

4

5
P (1)

3 (cos(θ))P (1)
3 (cos(θ)) sin(θ)dθ = 4T0

5R3
(7.46)

Finally:

u(r, θ , ϕ) =
∑

n=1, 3

An1rn P (1)
n (cos(θ)) cos(ϕ) (7.47)

7.3 Laplace Problem in a Sphere with a
Difference of Potential

Find the electrostatic potential inside a sphere of radius R whose

upper part (0 < θ < π/2) is at a fixed potential equal to u1 while the

lower part (π/2 < θ < π) is at a potential u2.
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Figure 7.3

Mathematical formulation

Formulation for v(r, θ , ϕ) = u(r, θ , ϕ) − u2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�v(r, θ , ϕ) = 0 (0 < r < R)

1

r2

∂

∂r

[
r2

(
∂v
∂r

)]
+ 1

r2
�θ ,ϕv = 0

v(r = R) = f (θ) =
⎧⎨
⎩

u1 − u2 (0 < θ < π/2)

0 (π/2 < θ < π)

⎫⎬
⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.48)

General solution

The general solution of the Laplace problem (both internal and

external) in spherical coordinates is:

v(r, θ , ϕ)=
∞∑

n≥m

∞∑
m=0

( r
R

)n
P (m)

n (cos(θ))·[Anm cos(mϕ)+Bnm sin(mϕ)]

(7.49)

Since the solution does not depend on the angle ϕ we will have to

expand the solution with m = 0:

v(r, θ) =
∞∑

n=0

An

( r
R

)n
Pn(cos(θ)) (7.50)

Imposing the boundary condition:

f (θ) =
∞∑

n=0

An

(
R
R

)n

Pn(cos(θ)) (7.51)
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Final solution

To find the coefficients An, we will use the orthogonality of the

angular eigenfunctions (Legendre polynomials). Multiplying the

previous expression by Pn′ (cos(θ)) and integrating
π∫
0

sin(θ)dθ

π∫
0

f (θ)Pn′ (cos(θ)) sin(θ)dθ = An

π∫
0

Pn(cos θ)Pn′ (cos(θ)) sin(θ)dθ

(7.52)

An =

π∫
0

f (θ)Pn(cos(θ)) sin(θ)dθ

‖Pn(cos θ)‖2
=

π
2∫

0

(u1 − u2)Pn (cos(θ)) sin(θ)dθ

‖Pn(cos(θ))‖2

(7.53)

An = 2n + 1

2
(u1 − u2)

π
2∫

0

Pn (cos θ) sin(θ)dθ

= 2n + 1

2
(u1 − u2)

1∫
0

Pn (x)dx (7.54)

since
1∫

0

P
0
(x)dx = 1 ; A0 = 1

2
(u1 − u2)

On the other hand, since the P
2k (x) functions are even (k =

1, 2, 3 . . .):

1∫
0

P
2k (x)dx = 1

2

1∫
−1

P
2k (x)dx (7.55)

But due to the orthogonality:

1∫
−1

P
2k (x)P0(x)dx = 0 (7.56)

Then we will obtain: A2k = 0; (k = 1, 2, 3 . . .). Finally we consider

n = 2k + 1, with k integer numbers. In this case also:

1∫
−1

P
2k+1

(x)P0(x)dx =
1∫

−1

P
2k+1

(x)dx = 0 (7.57)
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However, since P
2k+1

(x) are now odd functions:

1∫
0

P
2k+1

(x)dx �= 0 (7.58)

To find this integral we use recurrence formulas:

(2n + 1)Pn(x) = P ′
n+1(x) − P ′

n−1(x) (7.59)

Then:

1∫
0

P
2k+1

(x)dx = 1

4k + 3

1∫
0

[P ′
2k+2(x) − P ′

2k(x)]dx

= 1

4k + 3
[P2k+2(0) − P2k(0)] (7.60)

Since:

P2k+2(1) = P2k(1) = 1 (7.61)

P2k+2(1) − P2k(1) = 0 (7.62)

Finally

A2k+1 = 2(2k + 1) + 1

2
(u1 − u2)

1

4k + 3
[P2k+2(0) − P2k(0)]

= (u1 − u2)

2
[P2k+2(0) − P2k(0)] (7.63)

Solution:

u(r, θ) = u2 + v(r, θ) = u2 + 1

2
(u1 − u2) + (u1 − u2)

2

∑
[P2k+2(0)

−P2k(0)]
( r

R

)2k+1

P2k+1(cos(θ))

= 1

2
(u1 + u2) + (u1 − u2)

2

×
∑

[P2k+2(0) − P2k(0)]
( r

R

)2k+1

P2k+1(cos(θ)) (7.64)
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7.4 Electric Potential inside a Spherical Sector

Find the electrostatic potential inside a metallic spherical sector

whose curved surface is grounded, whereas its flat surfaces, which

comprise an angle π/4 are kept at a difference of potential V0 with

respect to ground.

Figure 7.4

Mathematical formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�v = 0 (0 < r < a)

1

r2

∂

∂r

[
r2

(
∂v
∂r

)]
+ 1

r2
�θ ,ϕv = 0

v(r = R) = 0

v(ϕ = 0) = V0

v
(
ϕ = π

4

)
= V0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.65)

We seek the solution to the equation in the form u = v − V0 to have

homogeneous boundary conditions in the azimuthal variable.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u = 0 (0 < r < a)

1

r2

∂

∂r

[
r2

(
∂u
∂r

)]
+ 1

r2
�θ ,ϕu = 0

u(r = a) = −V0

u(ϕ = 0) = 0

u
(
ϕ = π

4

)
= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.66)

We seek the solution of Laplace’s equation by generating a solution

from orthogonal functions in the angular variables.

∂

∂r

[
r2

(
∂u
∂r

)]
+ �θ ,ϕu = 0 (7.67)

Separating variables:

u(r, θ , ϕ) = R(r) · V (θ , ϕ) (7.68)

d
dr [r2( d R

dr )]

R
= −�θ ,ϕV

V
= λ > 0 (7.69)

Sturm–Liouville problem

We choose the positive sign for λ since we expect to obtain periodic

solutions (eigenfunctions) for the angular variables.

We get to the problem:

�θ ,ϕV + λV = 0 (7.70)

1

sin(θ)

∂

∂θ

[
sin(θ)

(
∂V
∂θ

)]
+ 1

sin2(θ)

∂2V
∂ϕ2

+ λV = 0 (7.71)

Once again we separate variables: V = �(θ) · �(ϕ)

sin(θ) d
dθ [sin(θ)( d�

dθ )] + λ sin2(θ) · �(θ)

�(θ)
= − 1

�(ϕ)

d2�

dϕ2
= ν > 0

(7.72)

We choose the positive sign for ν because we expect to get a periodic

solution for the ϕ angular variable.
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We first find the solution for the whole sphere and then apply the

boundary conditions specific to the azimuthal angle in the whole

sphere.

d2�

dϕ2
+ ν�(ϕ) = 0 (7.73)

�(ϕ) = �(ϕ + 2π) (7.74)

The solution for the part that depends on the azimuthal angle is well

known:

�(ϕ) = A cos(mϕ) + B sin(mϕ) (7.75)

ν = m2 (7.76)

Now that we have ν = m2, we can find the solution for the �(θ)

function.

sin(θ)
d

dθ

[
sin(θ)

(
d�
dθ

)]
+ λ sin2(θ) · �(θ) = m2� (7.77)

sin(θ)
d

dθ

[
sin(θ)

(
d�
dθ

)]
+ [λ sin2(θ) − m2]�(θ) = 0 (7.78)

Its solution are Legendre polynomials.

�(θ) = P (m)
n (cos(θ)) (7.79)

With eigenvalues: λ = n(n + 1). Now, since we have λ = n(n + 1) we

can find the radial function:

d
dr

[
r2

(
d R
dr

)]
− n(n + 1)R = 0 (7.80)

r2

(
d2 R
dr2

)
+ 2r

(
d R
dr

)
− n(n + 1)R = 0 (7.81)

We seek the solution as: R(r) = rα

r2α(α − 1)rα−2 + 2rαrα−1 − n(n + 1)rα = 0 (7.82)

α2 + α − n(n + 1) = 0 (7.83)

α1 = n (7.84)

α2 = −n − 1 (7.85)

So that the radial solution in general is: R(r) = rn + Dr−n−1
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General solution

For the general solution of the problem only the values of m will be

integer for the whole sphere.

u(r, θ , ϕ) =
∞∑

n≥m

∞∑
m=0

[rn + Dnmr−n−1]P (m)
n (cos(θ))

×[Anm cos(mϕ) + Bnm sin(mϕ)] (7.86)

Since the solution should be finite at r = 0 → Dnm = 0

u(r, θ , ϕ) =
∞∑

n≥m

∞∑
m=0

[rn]P (m)
n (cos(θ)) · [Anm cos(mϕ) + Bnm sin(mϕ)]

(7.87)

In the next step we can already apply the boundary conditions

specific to theπ/4 sector in the azimuthal angle by searching specific

values of m.

u(ϕ = 0) = 0 → Anm = 0 (7.88)

u
(
ϕ = π

4

)
= 0 (7.89)

sin
(

m
π

4

)
= 0 → π

4
= kπ (k = 0, 1, 2, . . . = integer); m = 4k

(7.90)

Then:

u(r, θ , ϕ) =
∞∑

n≥4k

∞∑
k=1

Bnk[rn]P (4k)
n (cos(θ)) sin(4kϕ) (7.91)

Imposing the first boundary condition: u(r = a) = −V0

−V0 = u(r, θ , ϕ) =
∞∑

n≥4k

∞∑
k=1

Bnk[an]P (4k)
n (cos(θ)) sin(4kϕ) (7.92)

Final solution

Using now the orthogonality of P (4k)
n (cos(θ)); and of sin(4kϕ) we will

get the Bnk coefficients. We multiply by P (4k)
n (cos(θ)) and sin(4kϕ)

and integrate (7.92) between
π∫
0

π
4∫

0

sin(θ)dθdϕ:

−V0

π∫
0

π
4∫

0

P (4k)
n (cos(θ)) sin(θ) sin 4kϕdθdϕ

= Bnk
∥∥P (4k)

n (cos(θ))
∥∥2 · ‖sin(4kϕ)‖2 (7.93)
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Bnk =
−V0

π
4∫

0

sin(4kϕ)dϕ
π∫
0

P (4k)
n (cos(θ)) sin θdθ

∥∥∥P (4k)
n (cos(θ))

∥∥∥2

· ‖sin(4kϕ)‖2

=
V0

4k [(−1)k − 1] ×
π∫
0

P (4k)
n (cos(θ)) sin θdθ

∥∥∥P (4k)
n (cos(θ))

∥∥∥2

· ‖sin(4kϕ)‖2

(7.94)

Final solution:

v(r, θ , ϕ) = V0 +
∞∑

n≥4k

∞∑
k=1

Bnk[rn]P (4k)
n (cos(θ)) sin(4kϕ) (7.95)

Additional note. It is possible to solve the problem by rotating the

portion so that one of its flat surfaces lays horizontally. In this case

the length of the azimuthal variable is between zero and π , whereas

the polar angle will be comprised between π/4 and π/2.

7.5 Electric Potential of a Metallic Sphere inside
a Homogeneous Electric Field

A uniform electric field �E occupies all space, directed in the z
direction, so that the corresponding electric potential is u = −E z.

A metallic sphere of radius R is placed in this field. Calculate the

equilibrium distribution of electric potential outside the sphere

supposing that the electric potential inside the surface of the sphere

is zero.

Figure 7.5
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Mathematical formulation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u(r, θ , ϕ) = 0 (R < r < ∞)

u(r = ∞, θ , ϕ) = −E z = −E r cos(θ)

u(r = R , θ , ϕ) = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.96)

The general solution of the Laplace problem in spheric coordinates

(problem 7.1) has the form:

u(r, θ , ϕ) =
∞∑

n≥m

∞∑
m=0

[rn + Dnmr−n−1]P (m)
n (cos(θ))

×[Anm cos(mϕ) + Bnm sin(mϕ)] (7.97)

General solution

Both boundary conditions don’t have any azimuthal dependence. In

this way the solution will be presented as an expansion in Legendre

functions. This can be demonstrated explicitly by integrating the

boundary conditions with the orthogonal azimuthal eigenfunctions

and showing that the only term that remains corresponds to the

index m = 0.

u(r, θ) =
∞∑

n=0

[Anrn + Bnr−n−1]Pn(cos(θ)) (7.98)

We impose the first boundary condition:

u(r = ∞, θ) = −E r cos(θ) = −E r P1(cos(θ)) =
∞∑

n=0

Anrn Pn(cos θ)

(7.99)

We impose the orthogonality (that is, multiplying by

Pk(cos(θ)) sin(θ) and integrating from 0 to π). It can be seen that

the term with n = k = 1 remains, and corresponds to A1 = −E .

Finally we apply the second boundary condition:

u(r = R , θ) = 0 = B0 + (−E R + B1 R−2)P1(cos θ)

+
∞∑

n=2

Bnr−n−1 Pn(cos θ) (7.100)
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Final solution

Imposing the orthogonality (that is, multiplying by Pk(cos(θ)) sin(θ)

and integrating from 0 to π) it can be shown that only the term with

n = k = 1 remains. As a consequence we have (−E R + B1 R−2) = 0,

which gives B1 = E R3

Then the final result will be:

u(r = R , θ) = E [−r + R3/r2]P1(cos(θ)) (7.101)

7.6 Case Study: Variation of Temperature in a
Sphere Quadrant with Non-Homogeneous
Boundaries

A quadrant of a sphere is initially at thermal equilibrium at zero

temperature. Find the distribution of temperature as a function of

time if stating at t = 0 the temperature in the flat face at ϕ = 0

is brought into contact with a thermal reservoir at T = T0 and

the other flat face at ϕ = π/2 is fixed at another temperature

T = T1, while the temperature in the curved boundary (r = R)

is set according to:

T0 + T1 − T0

π/2
ϕ + δ(θ − π/2)

sin(θ)
ϕ (7.102)

Figure 7.6
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Mathematical formulation

We will find a solution as the variation of temperature with respect

to the equilibrium temperature in the initial instant (U ). The

problem to be solved is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂t

− c�U = 0

U (r, θ , 0) = T0

U (r, θ , π/2) = T1

U (R , θ , ϕ) = T0 + T1 − T0

π/2
ϕ + δ(θ − π/2)

sin(θ)
ϕ

U (r, θϕ, t = 0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.103)

We will split the problem in two: one stationary with inhomoge-

neous boundary conditions and another with temporal evolution

but with homogeneous boundary conditions:

U (r, θ , ϕ, t) = T (r, θ , ϕ, t) + E (r, θ , ϕ), (7.104)

so that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�E = 0

E (r, θ , 0) = T0

E (r, θ , π/2) = T1

E (R , θ , ϕ) = T0 + T1 − T0

π/2
ϕ + δ(θ − π/2)

sin(θ)
ϕ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.105)

The boundary conditions of the previous stationary part leave the

boundary conditions for the temporal part as homogeneous, but the

initial condition changes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T
∂t

− c�T = 0

T (r, θ , 0) = 0

T (r, θ , π/2) = 0

T (R , θ , ϕ) = 0

T (r, θ , ϕ, t = 0) = −E (r, θ , ϕ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.106)
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First we will solve the stationary part so that we can use the new

initial condition in the transient part.

Solution of the stationary part

The first thing that must be done to solve the stationary part is to

homogenize the boundaries in ϕ to be able to expand the solution

of this coordinate in orthogonal eigenfunctions. To do that we will

write the stationary part as:

E (r, θ , ϕ) = W(r, θ , ϕ) + T0 + T1 − T0

π/2
ϕ (7.107)

In this fashion W has homogeneous boundaries in the ϕ coordinate

and satisfies Laplace’s equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�W = 0

W(r, θ , 0) = 0

W(r, θ , π/2) = 0

W(R , θ , ϕ) = δ(θ − π/2)

sin(θ)
ϕ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.108)

It is not necessary to have homogeneous boundaries in the radial

part, since that part of the solution will not be expanded in

orthogonal eigenfunctions.

Sturm–Liouville problem

To solve W we separate variables:

W(r, θ , ϕ) = R(r) · Y (θ , ϕ) (7.109)

Inserting this into Laplace’s equation we arrive at:

d
dr

(
r2 dR

dr

)
R = −

1
sin(θ)

∂
∂θ

(
sin(θ) ∂Y

∂θ

)+ 1

sin2(θ)

∂2Y
∂ϕ2

Y
= λ (7.110)

With this we obtain the following two equations:⎧⎪⎪⎨
⎪⎪⎩

r2
d2R
dr2

+ 2r
dR
dr

− λR = 0

1

sin(θ)

∂

∂θ

(
sin(θ)

∂Y
∂θ

)
+ 1

sin2(θ)

∂2Y
∂ϕ2

+ λY = 0

⎫⎪⎪⎬
⎪⎪⎭ (7.111)
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First we solve the equation for the angular variable Y . To do that we

separate variables once again: Y (θ , ϕ) = ϑ(θ) · φ(ϕ). With this we

get to equation:

sin(θ)

d
dθ

(
sin(θ) dϑ

dθ

)
ϑ

+ λ sin2(θ) = −φ′′

φ
= μ. (7.112)

We first solve the part for the ϕ coordinate, taking into account that

φ(0) = φ(π/2) = 0 must be satisfied. With this we easily get that:

φ = sin(2mφ) m = 1, 2, 3, . . . (7.113)

In this way we arrive at the value of the separation constant: μ =
(2m)2. With this value we can solve the part of the θ coordinate.

For that it will be necessary to perform the change of variable:

x = cos(θ). With this we get the equation:

(1 − x2)
d2ϑ

dx2
− 2x

dϑ
dx

+
(
λ − (2m)

1 − x2

)
ϑ = 0 (7.114)

and its solution are Legendre polynomials:

ϑ (2m)
n (θ) = P (2m)

n (cos(θ)) λ = n(n + 1) and n ≥ 2m (7.115)

Knowing the values of λ allows to solve the equation for the radial

part. Because of the form of the equation for R it is easy to guess

that the solutions are powers of r , so that the solution of the radial

part is:

R(r) = Arn + Br−(n+1) (7.116)

Since the solution cannot diverge at r = 0 we impose B = 0. With

all this we can now write the general solution of the stationary part:

W(r, θ , ϕ) =
∞∑

n=0

n/2∑
m=1

An, mrn sin(2mϕ)P (2m)
n (cos(θ)) (7.117)

Imposing the radial boundary condition:

W(R , θ , ϕ) = δ(θ − π/2)

sin(θ)
ϕ (7.118)

We find the value of the coefficients An, m:

δ(θ − π/2)

sin(θ)
ϕ =

∞∑
n=0

n/2∑
m=1

An, m Rn sin(2mϕ)P (2m)
n (cos(θ)) (7.119)
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Considering that:

∫ π

θ=0

P (2m)
n′ (cos(θ))P (2m)

n (cos(θ)) sin(θ)dθ = 2

2n + 1

(n + 2m)!

(n − 2m)!
δn.n′

(7.120)

∫ π/2

ϕ=0

sin(2mϕ) sin(2m′ϕ)dϕ = π

4
δm, m′ (7.121)

∫ π/2

ϕ=0

ϕ sin(2mϕ)dϕ = − π

4m
cos(mπ) (7.122)

Doing the respective integrals of the boundary conditions we can see

that the value of the coefficients is:

An, m = 1

2

(−1)m+1(2n + 1)(n − 2m)!P (2m)
n (0)

mRn(n + 2m)!
(7.123)

Remembering that P (l)
n (x) is an even function if n + l is even and it

is odd if n + l is odd, it is easy to realize that An, m = 0 if n is an odd

number and An, m �= 0 if n is an even number. We can now write the

solution of the stationary part E . To do that we take n = 2k. In this

way the solution is:

E (r, θ , ϕ) =
∞∑

k=0

k∑
m=1

1

2

(−1)m+1(4k + 1)(2k − 2m)!P (2m)
2k (0)

mR2k(2k + 2m)!
r2k

sin(2mϕ)P (2m)
2k (cos(θ)) + T0 + T1 − T0

π/2
ϕ (7.124)

Solution of the temporal part

Knowing the stationary solution we can solve the temporal part, now

that we explicitly know the initial condition for the transient part.

We start from equation:

∂T
∂t

− c�T = 0 (7.125)

We separate variables:
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T (r, θ , ϕ, t) = τ (t) · M(r, θ , ϕ) (7.126)

Inserting that into the equation we arrive at:

τ ′

cτ
= �M

M
= −λ (7.127)

We use the negative sign in the constant of separation of variables so

that the solution doesn’t diverge at infinite times. From the previous

equation we arrive at two equations, one for the temporal part an

another for the spatial part:⎧⎨
⎩

τ ′ + λcτ = 0

�M + λM = 0

⎫⎬
⎭ (7.128)

To solve the spatial part M(r, θ , ϕ) we do:

� = �r + 1

r2
�θ ,ϕ (7.129)

Separating variables: M = R(r) · Y (θ , ϕ), and imposing that

the angular part satisfies a Sturm–Liouville problem, since it has

homogeneous boundaries:

�θ ,ϕY + νY = 0 (7.130)

We separate variables once again:

Y (θ , ϕ) = ϑ(θ) · φ(ϕ) (7.131)

We impose that the part with φ satisfies a Sturm–Liouville problem,

since it has homogeneous boundaries:

φ′′ + μφ = 0 (7.132)

With this and the boundary conditions we arrive at:

φ = sin(2mϕ) m = 1, 2, 3, . . . (7.133)

Inserting this into the equation for Y (θ , φ), just like we did

previously, we get:

ϑ
(2m)
l (θ) = P (2m)

l (cos(θ)) ν = l(l + 1); l ≥ 2m (7.134)

Inserting this in the equation for the spatial part M and imposing

that the solution doesn’t diverge at r = 0 we find that the solution

for the radial part is:

Rl (r) = 1√
r

J l+1/2(
√
λr) (7.135)
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Solution of the temporal part τ(t)

Knowing the value of the λi, l we can solve the equation for the

temporal part, whose solution ends up being:

τ (t) = e−λi, l ct (7.136)

General solution

Knowing the solutions for the spatial and temporal part we have the

general solution:

T (r, θ , ϕ, t) =
∞∑

i=0

∞∑
l=0

l/2∑
m=1

Ai, l , me−λi, l ct

sin(2mϕ)P (2m)
l (cos(θ))

1√
r

J l+1/2(
√
λr) (7.137)

Final solution

Finally the value of the Ai, l , m coefficients will be obtained with the

initial condition and remembering that:∫ π

θ=0

∫ π/2

ϕ=0

∫ R

r=0

Mi, l , m Mi ′ , l ′ , m′r2 sin(θ)drdθdϕ = Ei, l , mδi, i ′δl , l ′δm, m′

(7.138)

with

Mi, l , m = sin(2mϕ)P (2m)
l (cos(θ))

1√
r

J l+1/2

(√
λi, lr
)

(7.139)

Then the value of the coefficients is:

Ai, l , m = − 1

Ei, l , m

∫ π

θ=0

∫ π/2

ϕ=0

∫ R

r=0

E (r, θ , ϕ)Mi, l , mr2 sin(θ)drdθdϕ

(7.140)

Remembering that:

E (r, θ , ϕ) =
∞∑

k=0

k∑
m=1

1

2

(−1)m+1(4k + 1)(2k − 2m)!P (2m)
2k (0)

mR2k(2k + 2m)!
r2k

sin(2mϕ)P (2m)
2k (cos(θ)) + T0 + T1 − T0

π/2
ϕ (7.141)
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the numeric value of the constants Ai, l , m is found evaluating the

integrals. Finally the expression of the coefficients can be shrunken.

We need to consider two cases. For odd values of l :

Ai, l , m = π(−1)m+1

4m
T1 − To

π/2

∫ π

θ=0

∫ R

r=0

r2

P (2m)
l (cos(θ))

1√
r

J l+1/2

(√
λi, lr
)

sin(θ)drdθ (7.142)

For even values (l = 2k, k = 1, 2, 3 . . .):

Ai, l , m = π(−1)m+1 P (2m)
2k (0)

4mR2k

∫ R

r=0

r2 1√
r

J l+1/2

(√
λi, lr
)

dr +

+π(−1)m+1

4m
T1 − To

π/2

∫ π

θ=0

∫ R

r=0

r2 P (2m)
l (cos(θ))

1√
r

J l+1/2

(√
λi, lr
)

sin(θ)drdθ (7.143)

7.7 Case Study: Stationary Distribution of
Temperature in a Sphere with Heat Sources

Find the stationary distribution of temperature inside a sphere or

radius R with internal heat sources distributed with a density equal

to f (r, θ , ϕ). The surface is in contact with a thermal reservoir at

temperature T = g(θ , ϕ).

Apply the obtained result to the following particular case:

Consider a sphere in contact with two thermal reservoirs at different

temperatures T1 (0 <ϕ <π) and T2 (π <ϕ < 2π). Inside this sphere

(with thermal conductivity k, heat capacity C and density ρ) along its

equator (symmetrically with respect to the center) a very thin, ring-

like heater of radius R/2 and which radiates a power W is placed.

Figure 7.7
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Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− a2�u = f (r, θ , ϕ)

ρC

u(R , θ , ϕ) = 0 (t < 0)

u(R , θ , ϕ) = g(θ , ϕ) (t > 0)

a2 = k
ρC

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.144)

General mathematical formulation for the case of a stationary

process in thermal equilibrium with boundary conditions:⎧⎪⎨
⎪⎩

�u(r, θ , ϕ) = − f (r, θ , ϕ)

k

u(R , θ , ϕ) = g(θ , ϕ)

⎫⎪⎬
⎪⎭ (7.145)

To solve the problem we will decompose it in two:

u = u1 + u2 (7.146)

where u1 is the solution of the inhomogeneous problem and u2

that of the homogeneous problem with inhomogeneous boundary

condition (see description of the decomposition in the next figure)

Problem (1):

Figure 7.8

⎧⎪⎨
⎪⎩

�u1(r, θ , ϕ) = − f (r, θ , ϕ)

k

u1(R , θ , ϕ) = 0

⎫⎪⎬
⎪⎭ (7.147)

Problem (2)
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⎧⎨
⎩

�u2(r, θ , ϕ) = 0

u2(R , θ , ϕ) = g(θ , ϕ)

⎫⎬
⎭ (7.148)

General solution

Problem (2) is solved by expanding the solution in sums of spherical

harmonics:

u2(r, θ , ϕ) =
∑
nm

Anm

( r
R

)n
P (m)

n (cos(θ))eimϕ

=
∑
nm

Anm

( r
R

)n
Yn, m(θ , ϕ) (7.149)

Using the orthogonality of the spherical harmonics we find the Anm

coefficients.

g(θ , ϕ) =
∑
nm

AnmYn, m(θ , ϕ) (7.150)

Anm =

2π∫
0

π∫
0

g(θ , ϕ)Yn, m(θ , ϕ) sin(θ)dθdϕ

∥∥Yn, m(θ , ϕ)
∥∥2

(7.151)

Problem (1) is solved by expanding the solution in terms of

orthogonal eigenfunctions that solve the Sturm–Liouville problem.⎧⎪⎪⎨
⎪⎪⎩

�v(r, θ , ϕ) + λv = 0

(0 < r < R); (0 < θ < π); (0 < ϕ < 2π)

v(R , θ , ϕ) = 0

⎫⎪⎪⎬
⎪⎪⎭ (7.152)

The form of the corresponding eigenfunctions is:

vnmk(r, θ , ϕ) = jn(
√
λnkr)P (m)

n (cos(θ))eimϕ = jn(
√
λnkr)Yn, m(θ , ϕ)

(7.153)

being jn(
√
λnkr) spherical Bessel functions.{

jl (z) =
√

π

2z
J l+ 1

2
(z)

}
(7.154)
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General solution

Then, expanding the solution in terms of the summation of

vnmk(r, θ , ϕ)

u1(r, θ , ϕ) =
∑
nmk

Bnmk × jn(
√
λnkr)P (m)

n (cos θ)eimϕ

=
∑
nmk

Bnmk × jn(
√
λnkr)Yn, m(θ , ϕ) (7.155)

Final solution

Using the orthogonality we can solve the general problem:

−∑
nmk
λnk Bnmk × jn(

√
λnkr)Yn, m(θ , ϕ) = − f (r, θ , ϕ)

k
(7.156)

Using the orthogonality of the orthogonal functions vnmk(r, θ , ϕ), we

find the Bnmk coefficients:

Bnmk =

R∫
0

2π∫
0

π∫
0

f (r, θ , ϕ) × jn(
√
λnkr)Yn, m(θ , ϕ)r2 sin(θ)drdθdϕ

kλnk ‖vnmk(r, θ , ϕ)‖2

(7.157)

To solve the proposed case we need to replace in the general

formulas the following functions for the given boundary conditions

and the density of heat sources:

g(θ , ϕ) =
⎧⎨
⎩

T1 (0 < ϕ < π)

T2 (π < ϕ < 2π)

⎫⎬
⎭ (7.158)

f (r, θ) = C
r2 sin(θ)

δ

(
r − R

2

)
δ
(
θ − π

2

)
(7.159)

(due to the azimuthal symmetry of the heater). Normalization to find

the C constant:

R∫
0

2π∫
0

π∫
0

f (r, θ)r2 sin(θ)dθdϕ = C · 2π = W (7.160)

Then C = W
2π

. We use the relations of the general solution previously

found:
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Bnmk =

R∫
0

2π∫
0

π∫
0

W
2πr2 sin(θ)

δ(r − R
2

)δ(θ − π
2

) jn(
√
λnkr)Yn, m(θ , ϕ)r2 sin(θ)drdθdϕ

kλnk ‖vnmk(r, θ , ϕ)‖2

= W
jn(

√
λnk

R
2

)P 0
n (0)

kλnk ‖vnmk(r, θ , ϕ)‖2
(7.161)

Only the term with index m = 0 remains due to the azimuthal

symmetry. Furthermore, only the terms with even values of n (n =
2l , l = 1, 2, . . .) persists, since P 0

2l+1(0) = 0

Bnmk = W
jn(

√
λnk

R
2

)Pn(0)

kλnk ‖vnmk(r, θ , ϕ)‖2
(7.162)

Particular solution for the part of the solution described with the

Laplace equation:

Anm =

2π∫
0

π∫
0

g(θ , ϕ)Yn, m(θ , ϕ) sin(θ)dθdϕ

∥∥Yn, m(θ , ϕ)
∥∥2

=

π∫
0

P m
n (θ) sin(θ)dθ{

π∫
0

T1e(imϕ)dϕ +
2π∫
π

T2e(imϕ)dϕ}
∥∥Yn, m(θ , ϕ)

∥∥2
=

= [T1
e(imπ)−1

im + T2
1−e(imπ)

im ]∥∥Yn, m(θ , ϕ)
∥∥2

π∫
0

P m
n (θ) sin(θ)dθ =

= 1 − e(imπ)

im
[T1 − T2]∥∥Yn, m(θ , ϕ)

∥∥2

1∫
−1

P m
n (x)dx (7.163)

Note 1: In this case the Anm coefficients will be complex numbers

since we have used the expansion of the solution with complex

azimuthal functions.

Note 2: Furthermore, due to the properties of Legendre polynomials

only the coefficients with even values of n + m remain, since for odd

values of n + m the function P m
n (x) is asymmetric.
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7.8 Gas in Two Semi-Spheres

A gas is enclosed in: a (a) a spheric; (b) semi-spheric container. This

container is divided in two equal halves and the densities of the gas

in each of them are ρ0+ρ1 and ρ0−ρ1 (ρ1 << ρ0). At a given time the

division disappears. Find the variation in the gas density afterwards

considering that the radius is R and the speed of sound is c = 1.

Figure 7.9

Part (a) Mathematical formulation

We will suppose that the plane separating both gases is at θ = π
2

.

The problem will be solved for the u = ρ − ρ0 variable.

General solution

The general solution for the variations from the equilibrium

pressure (ρ0) is:

u(r, θ , ϕ, t) =
∑

[Aklm sin(
√
λkl t)

+Bklm cos(
√
λkl t)] jl (

√
λklr)P (m)

l (cos(θ))eimϕ

(7.164)

where jl (
√
λklr)− are the spherical Bessel functions with boundary

conditions
(
∂u
∂ �n = 0

)
(being �n the direction normal to the surface).

Final solution

We impose the initial conditions. From the null initial velocity we get

Aklm = 0. From the initial displacement:
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u(r, θ , ϕ, 0) =

⎧⎪⎨
⎪⎩

ρ1

(
θ <

π

2

)
−ρ1

(
θ >

π

2

)
⎫⎪⎬
⎪⎭

=
∑

Bklm jl (
√
λklr)P (m)

l (cos(θ))eimϕ (7.165)

Figure 7.10

Due to the symmetry of the problem in the azimuthal angle it is

clear that only exist terms with m = 0 in the sum. We use the

orthogonality of the spherical Bessel functions and the Legendre

polynomials to find the Bkl coefficients:

Figure 7.11

Bkl = ρ1

R∫
0

jl (
√
λklr)r2dr

×

π/2∫
0

Pl (cos(θ)) sin(θ)dθ −
π∫

π/2

Pl (cos(θ)) sin(θ)dθ

∥∥ jl (
√
λklr)

∥∥2 ‖Pl (cos(θ))‖2
(7.166)
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The subtraction of the integrals is finite only for odd values of l . The

physical reason is the anti-symmetry of the initial conditions with

respect to the plane θ = π
2

.

Part (b)

Figure 7.12

Now the initial conditions create an additional asymmetry with

respect to the ϕ = 0 plane:

u(r, θ , ϕ, 0) =
{

ρ1 (0 < ϕ < π)

−ρ1 (π < ϕ < 2π)

}
(7.167)

Sturm–Liouville problem

We expand the solution in eigenfunctions of the Sturm–Liouville

problem with boundary conditions where the gas oscillates:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�u + λu = 0

Curved boundary:
∂u
∂r

∣∣∣∣
r=R

= 0

Flat boundary:
∂u
∂θ

∣∣∣∣
θ=π/2

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7.168)

General solution

The solution for the variations from the equilibrium pressure (ρ0) is:

u(r, θ , ϕ, t) =
∑

[Aklm sin(
√
λkl t)

+Bklm cos(
√
λkl t)] jl (

√
λklr)P (m)

l (cos(θ))eimϕ

(7.169)

Here jl (
√
λklr) are spherical Bessel functions with the same

boundary conditions ( ∂u
∂ �n = 0, being �n the direction normal to
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the surface). Furthermore, the second boundary condition converts

into the following condition for the Legendre polynomials which are

admitted in the solution.

d P (m)
l (x)

dx

∣∣∣∣∣
x=0

= 0 (7.170)

From the relation that allows to generate P (m)
l (x) by differentiating

the Legendre polynomials m times, we deduce that the solution only

admits those indices m, l for which m + l is even, since:

P (m)
l (x) = (1 − x2)

m
2

d
dxm

[Pl (x)] (7.171)

and only Pl (x) with even l satisfy the condition for which the

derivative of the Legendre polynomial is zero at x = 0:
d

dx [P (m)
l (x)](x = 0) = 0

Final solution

We now impose the initial conditions. Since the initial velocity is

zero: Aklm = 0. The initial displacement is:

u(r, θ , ϕ, 0) =
⎧⎨
⎩

ρ1 (0 < ϕ < π)

−ρ1 (π < ϕ < 2π)

⎫⎬
⎭

=
∑

Bklm jl (
√
λklr)P (m)

l (cos(θ))eimϕ (7.172)

We use the orthogonality of the spherical Bessel functions, of

the Legendre polynomials and of the azimuthal eigenfunctions to

find the Bklm coefficients. Due to the symmetry of the problem

(antisymmetric initial conditions with respect to ϕ = 0) in the

azimuthal angle it is clear that eimϕ → sin(mϕ) (with m =
1, 2, 3, . . .). We determine the coefficients as the solution of the

equation:

Bklm

∥∥∥ jl (
√
λklr)

∥∥∥2 ‖Pl (cos(θ))‖2 ‖sin(mϕ)‖2 =

= ρ1

R∫
0

jl (
√
λklr)r2dr

π/2∫
0

P (m)
l (cos(θ))d cos(θ)

×
⎡
⎣ π∫

0

sin(mϕ)dϕ −
2π∫
π

sin(mϕ)dϕ

⎤
⎦ (7.173)
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Note: in the final expansion of the solution only the coefficients with

odd m will remain, and those for which (m + l) is even. See the

previous discussion about the condition:
d P (m)

l (x)

dx

∣∣∣∣∣
x=0

= 0

7.9 Case Study: Forced Oscillations in a
Semi-Sphere

A gas is enclosed in a semi-spherical container. The curved surface

is divided in two equal halves. One of them moves radially so that

r = R + δ sin(ωt) is the radius of the recipient in the corresponding

zone. The other curved half is open to the outer medium. Find

the stationary oscillations of the gas density inside the recipient

considering that δ << R and the equilibrium pressure is P0.

Consider the case (a) of slow (isothermal) oscillations and (b)

adiabatic oscillations with constants
(

∂ P
∂ρ

)
i, a

= k. In the (b) case

consider that the open curved boundary from (a) is now closed.

Figure 7.13

Part (a)

We first study the limit case of slow variations (ω→ 0)). We estimate

that the relative variation of the volume is:

�V
V

= π R2δ sin(ωt)
π R3

3

= 3δ sin(ωt)

R
(7.174)

We can evaluate the relative variation of the pressure (in isothermal

conditions) as: �P
P0

= �V
V = 3δ sin(ωt)

R . Recalling that �P =
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(
∂ P
∂ρ

)
i
�ρ = k�ρ

�ρ = �P
k

= 3P0δ sin(ωt)

kR
= A sin(ωt) (7.175)

Mathematical formulation for �ρ = u(r, θ , ϕ, t)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

= a2�u

∂u
∂θ

∣∣∣∣
θ=

π

2

= 0 (flat closed base)

u(R , θ , ϕ, t) = f (θ , ϕ) sin(ωt) =

⎧⎪⎪⎨
⎪⎪⎩

0
(
ϕ < −π

2
; ϕ >

π

2

)
;

(
0 < θ <

π

2

)

A sin(ωt)
(

−π

2
< ϕ <

π

2

)
;

(
0 < θ <

π

2

)

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.176)

We seek the stationary solution, which should be periodical and

proportional to sin(ωt)

u(r, θ , ϕ, t) = V (r, θ , ϕ) · sin(ωt) (7.177)

Replacing in the wave equation and obtaining the following equation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�V + ω2

a2
V = 0

∂V
∂θ

∣∣∣∣
θ=

π

2

= 0

V (R , θ , ϕ) = f (θ , ϕ)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.178)

Sturm–Liouville problem

The previous is a Poisson problem that we can solve by expanding

V (r, θ , ϕ) in a sum of orthogonal functions in the angular directions

(spherical harmonics Y (θ , ϕ)).

V (r, θ , ϕ) = R(r) · Y (θ , ϕ) (7.179)

We know how to solve the Sturm–Liouville problem which appears

in the angular part:

�θ ,ϕY + μY = 0 (7.180)

Y (θ , ϕ) = P m
l (cos θ)[A cos(mϕ) + B sin(mϕ)] (m = 0, 1, 2, 3, . . .)

(7.181)
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Eigenvalues: μlm = l(l + 1); l ≥ |m|

Applying the condition
∂V
∂θ

∣∣∣∣
θ= π

2

= 0

d P m
l (cos(θ))

dθ

∣∣∣∣
θ= π

2

= d P m
l (x)

dx

∣∣∣∣
x=0

= 0 (7.182)

is only satisfied if (l + m) = even. This condition is obtained from

the relation which allows to generate P (m)
l (x) differentiating m times

Legendre polynomials in the following manner:

P (m)
l (x) = (1 − x2)

m
2

dm Pl (x)

dxm
(7.183)

Since for odd values of l , Pl (x) is an asymmetric function and only

the Pl (x) with l = even are symmetric functions which satisfy

the condition:
d Pn(x)

dx

∣∣∣∣
x=0

= 0, only differentiating m = even

times this function we keep its symmetry, from which we deduce

that the solution only admits the m, l indices for which m + l is

even. Replacing Y (θ , ϕ) in the equation for V (r, θ , ϕ) we obtain an

equation for R(r) (which is not a Sturm–Liouville problem):

r2

(
d2R
dr2

)
+ r
(

dR
dr

)
+
[
ω2

a2
− μlm

r2

]
R = 0 (7.184)

Its solutions are Bessel functions of semi even order:

Rl (r) = C
J l+1/2(ω

a r)√
r

(7.185)

General solution

With the previous, the general solution results:

u(r, θ , ϕ, t) =
∑
l , m

J l+1/2(ω
a r)√

r
P m

l (cos(θ))[Alm cos(mϕ)

+Blm sin(mϕ)] · sin(ωt) (7.186)
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Final solution

To find the coefficients we use the boundary condition for r = R and

the orthogonality for the eigenfunctions:

u(R , θ , ϕ, t) =
∑
l , m

J l+1/2(ω
a R)√

R
P m

l (cos θ)[Alm cos(mϕ)

+Blm sin(mϕ)] · sin(ωt) =
= f (θ , ϕ) sin(ωt) (7.187)

The symmetry of the function f (θ , ϕ) with respect to ϕ = 0 imposes

Blm = 0

∑
l , m

Alm
J l+1/2(ω

a R)√
R

P m
l (cos(θ)) cos(mϕ) = f (θ , ϕ) (7.188)

We find:

Alm =
A

π
2∫

0

π
2∫

− π
2

P m
l (cos(θ)) cos(mϕ) sin(θ)dθdϕ

J l+1/2( ω
a R)√

R

π
2∫

0

π∫
−π

[P m
l (cos(θ))]2[cos(mϕ)]2 sin(θ)dθdϕ

(7.189)

Simplification:

π
2∫

− π
2

cos(mϕ)dϕ =
∣∣∣∣ 1

m
sin(mϕ)

∣∣∣∣
+ π

2

− π
2

=

⎛
⎜⎝

2

m
(m odd)

0 (m even)

⎞
⎟⎠ (7.190)

Part (b)

Mathematical formulation

In the case of mathematical formulation for fast displacements of the

border the boundary condition for the gas near it can be obtained

in a more precise manner. The starting point is that the normal

component of the velocity of the molecules of the gas must be equal

to the normal velocity of the mobile boundary. We first estimate the

relative variation of volume:

vn = δω cos(ωt) (7.191)
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The following formula relates the velocity of the molecules with the

s condensation parameter, which describes the relative variation in

density: s = ρ−ρ0

ρ0
.

v = v0 − k

t∫
0

∇sdt′ (7.192)

differentiating this relation with respect to time and considering the

normal component to the mobile border we get:

∂

∂t
vn = −k

∂

∂n
s = − k

ρ0

∂ρ

∂n
(7.193)

Then the boundary condition for the mobile border will be:

∂ρ

∂n

∣∣∣∣
r=R

= −ρ0

k
∂

∂t
vn = ρ0

k
δω2 sin(ωt) (7.194)

The mathematical formulation for this case, in terms of the gas

density, will be:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

= a2�u

∂u
∂θ

∣∣∣∣
θ=

π

2

= 0 (flat closed base)

∂u
∂r

∣∣∣∣
r=R

(R , θ , ϕ, t) = 0
(
ϕ < −π

2
;ϕ >

π

2

)
;
(

0 < θ <
π

2

)
∂u
∂r

∣∣∣∣
r=R

= ρ0

k
δω2 sin(ωt)

(
−π

2
< ϕ <

π

2

)
;
(

0 < θ <
π

2

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.195)

Final solution

This problem can have analytic solution using similar methods to

those previously considered.

7.10 Heat Transfer in an Eight of a Sphere

An eight of a sphere has radius R , thermal conductivity k, heat

capacity C and density ρ. Two of its flat surfaces (vertical, see the
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figure) are thermally insulated. Initially the base, as well as the

curved surface, stay at a temperature T0. Until t = 0 the body was at

thermal equilibrium. Find the variation of temperature as a function

of time if starting at t = 0, one half of its curved surface is put into

contact with a thermal reservoir at a temperature T1 while the other

is put at T2.

Figure 7.14

Mathematical formulation

We first formulate the problem by subtracting from the solution the

constant temperature T0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂u
∂t

− k�u(r, θ , ϕ, t) = 0

u(r, θ , ϕ, 0) = 0

u(R , θ , ϕ, t > 0) = f (θ , ϕ) =
⎧⎨
⎩

T2 − T0 (0 < ϕ < π/4)

T1 − T0 (π/4 < ϕ < π/2)

⎫⎬
⎭

∂u
∂ϕ

∣∣∣∣
ϕ=0

= ∂u
∂ϕ

∣∣∣∣
ϕ= π

2

= 0

u(θ = π/2) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.196)

We seek the solution by splitting the problem in two: one is

stationary (the solution of Laplace’s equation in the limit t → ∞)

and transient one:

u(r, θ , ϕ, t) = v(r, θ , ϕ) + w(r, θ , ϕ, t) (7.197)
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Mathematical formulation for the stationary solution v(r, θ , ϕ)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�v(r, θ , ϕ) = 0)

1

r2

∂

∂r

[
r2

(
∂v
∂r

)]
+ 1

r2
�θ ,ϕv = 0

v(r = R) = f (θ , ϕ) =
⎧⎨
⎩

T2 − T0 (0 < ϕ < π/4)

T1 − T0 (π/4 < ϕ < π/2)

⎫⎬
⎭

∂v
∂ϕ

∣∣∣∣
ϕ=0

= ∂v
∂ϕ

∣∣∣∣
ϕ=

π

2

= 0

v(θ = π/2) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.198)

Mathematical formulation for the transient solution w(r, θ , ϕ, t)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cρ
∂w
∂t

− k�w(r, θ , ϕ, t) = 0 (0 < r < R); t > 0

w(r, θ , ϕ, 0) = −v(r, θ , ϕ)

w(R , θ , ϕ, t > 0) = 0

∂w
∂ϕ

∣∣∣∣
ϕ=0

= ∂w
∂ϕ

∣∣∣∣
ϕ=

π

2

= 0

w(r, θ = π/2, ϕ, t) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.199)

General solution

We first solve the stationary problem: The general solution of the

Laplace’s problem in spherical coordinates has previously been

found in several Laplace’s problems as, for example, the electric

potential between two spherical shells. Without repeating the steps,

we start directly from the result:

v(r, θ , ϕ) =
∞∑

n≥m

∞∑
m=0

[rn + Dnmr−n−1]P (m)
n (cos(θ))

×[Anm sin(mϕ) + Bnm cos(mϕ)] (7.200)

As the solution must be finite for r = 0 → Dnm = 0

v(r, θ , ϕ) =
∞∑

n≥m

∞∑
m=0

[rn]P (m)
n (cos(θ)) × [Anm sin(mϕ) + Bnm cos(mϕ)]

(7.201)
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Final solution

We now use the orthogonality of cos(mϕ) and sin(mϕ).

From the second boundary condition:
∂v
∂ϕ

∣∣∣∣
ϕ=0

= 0 we get Anm = 0.

From
∂v
∂ϕ

∣∣∣∣
ϕ=π/2

= 0 we get:

sin
(

m
π

2

)
= 0 m

π

2
= kπ → m = 2k (k = 0, 1, 2, . . .)

(7.202)

Then:

v(r, θ , ϕ) =
∞∑

n≥2k

∞∑
k=0

Bnk[rn]P (2k)
n (cos(θ)) cos(2kϕ) (7.203)

Imposing the first boundary condition: v(r, θ , ϕ)(θ = π/2) = 0. We

arrive at the condition P (2k)
n (cosπ/2) = P (2k)

n (0) = 0

For this condition to be satisfied, it must happen that n + 2k is odd.

Finally we need to use the orthogonality of the angular functions

(spherical harmonics) to find the Bnk coefficients. From the first

boundary condition:

v(r = R) = f (θ , ϕ) =
∞∑

n≥2k

∞∑
k=0

Bnk[Rn]P (2k)
n (cos(θ)) cos(2kϕ)

(n + 2k = odd) (7.204)

Using now the orthogonality of the P (2k)
n (cos(θ)) and cos(2kϕ) in

the interval (0 < θπ/2) and (0 < ϕ < π/2) we will get the

Bnk coefficients. We multiply by P (2k)
n (cos(θ)) and cos(2kϕ) and

integrate equation (7.204) between

π
2∫

0

π
2∫

0

sin(θ)dθdϕ

π
2∫

0

π
2∫

0

f (θ , ϕ)P (2k)
n (cos(θ)) sin(θ) cos(2kϕ)dθdϕ

= Bnk[Rn]

π
2∫

0

π
2∫

0

[P (2k)
n (cos(θ))]2[cos(2kϕ)]2 sin(θ)dθdϕ

(7.205)
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Bnk =
(T2 − T0)

π
2∫

0

π
4∫

0

P (2k)
n (cos(θ)) sin(θ) cos(2kϕ)dθdϕ + (T1 − T0)

π
2∫

0

π
2∫

π
4

P (2k)
n (cos(θ)) sin(θ) cos(2kϕ)dθdϕ

[Rn]

π
2∫

0

π
2∫

0

[P (2k)
n (cos(θ))]2[cos(2kϕ)]2 sin(θ)dθdϕ

(7.206)

Calculating the integrals:

π
2∫

0

[cos(2kϕ)]2dϕ = π

4
(7.207)

π
2∫

0

[P (2k)
n (cos(θ))]2 sin(θ)dθ = αkn = 1

2

π∫
0

[P (2k)
n (cos θ)]2 sin(θ)dθ

= 1

2

2(n + 2k)!

(2n + 1)(n − 2k)!
(7.208)

π
4∫

0

cos(2kϕ)dϕ = 1

2k

[
sin

(
πk
2

)
− 0

]
= 1

2k
sin

(
πk
2

)
(7.209)

π
2∫

π
4

cos(2kϕ)dϕ = 1

2k

[
sin(πk) − sin

(
πk
2

)]
= − 1

2k
sin

(
πk
2

)

(7.210)

Then

Bnk =
(T2 − T0)

π
2∫

0

π
4∫

0

P (2k)
n (cos(θ)) sin(θ) cos(2kϕ)dθdϕ + (T1 − T0)

π
2∫

0

π
2∫

π
4

P (2k)
n (cos(θ)) sin(θ) cos(2kϕ)dθdϕ

[Rn]

π
2∫

0

π
2∫

0

[P (2k)
n (cos(θ))]2[cos(2kϕ)]2 sin(θ)dθdϕ

(7.211)

with

sin

(
πk
2

)
=
{

0 (k = 2l)

(−1)l (k = 2l + 1)

}
(7.212)

We now solve the transient problem by separating the solution in

series of orthogonal functions.
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Due to the presence of all homogeneous boundaries (the radial and

the two angular, of the second type in the azimuthal angle) we seek

the solution as:

w(r, θ , ϕ, t) =
∑
n, l , k

Qnlk(t)Vnlk(r, θ , ϕ)

=
∑
n, l , k

Qlk(t)
J l+1/2(

√
λnr)√

r
P 2k

l (cos(θ)) cos(2kϕ)

(7.213)

Here, in the same manner as was done in the Laplace problem we

have already assumed the boundary conditions in the azimuthal

direction.

Furthermore, we note that the values of λn are obtained when we

apply the homogeneous boundary conditions of the first type for the

radial part:

d
dr

[
J l+1/2(

√
λnr)√

r

]
r=R

= d
dr

[
J l+1/2(

√
λnr)

]
r=R

− 1

2R
J l+1/2(

√
λn R) = 0 (7.214)

Replacing the sum from equation (7.213) into the diffusion equation

we need to solve, and recalling that the Vnlk(r, θ , ϕ) eigenfunctions

are solutions of the Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�V (r, θ , ϕ) + λV (r, θ , ϕ) = 0 (0 < r < R)

V (R , θ , ϕ) = 0

∂u
∂ϕ

∣∣∣∣
ϕ=0

= ∂u
∂ϕ

∣∣∣∣
ϕ=

π

2
v(θ = π/2) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.215)

we arrive at an equation for the Qnlk(t) coefficients:

Cρ
d Qnlk(t)

dt
+ kλn Qnlk(t) = 0 (7.216)

with exponential solutions:

Qnlk(t) = Dnlke− kλn
Cρ t (7.217)
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Applying the initial condition and using the orthogonality of the

eigenfunctions we get the Dnlk coefficients:

w(r, θ , ϕ, 0) =
∑
n, l , k

Dnlk
J l+1/2(

√
λnr)√

r
P 2k

l (cos(θ)) cos(2kϕ)

= − v(r, θ , ϕ) (7.218)

Just like in the Laplace’s problem, in order to satisfy the third

homogeneous boundary condition of the first kind for θ = π
2

it’s

necessary that the members of the sum with odd l +2k remain, since

only these Legendre polynomials are asymmetric (that is, satisfy the

third boundary condition).

7.11 Case Study: Heated Quarter of a Sphere

The two flat surfaces of a region with the form of a quarter of a

sphere with radius a are kept at a temperature T while the spherical

surface is kept at zero temperature. Inside the region a thin metallic

wire that is heated by a DC current I . Find the stationary distribution

of temperature inside the region if the resistance of the wire is R .

Figure 7.15

Mathematical formulation

Non-stationary case T = u(r, θ , ϕ, t):{
ρ
∂u
∂t

= k�u + f (r, θ , ϕ)

}
(7.219)
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Formulation of the stationary case:

∂u
∂t

= 0 (7.220)

We give a description of the problem considering the normalization:

f (r, θ , ϕ) = I 2 R
a

δ(θ − π
4

) × δ(ϕ − π
2

)

r2 sin(θ)
(7.221)

Note: an alternative to describe the heater could be to present it

as a tube with infinitesimal but constant radius. In this case the

dissipated local power density as a function of distance from the

central point would be constant and would lead us to remove therm

r2 in the denominator with the corresponding difficulties of solving

the problem in spherical coordinates.

Formulation with boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−k�u(r, θ , ϕ) = f (r, θ , ϕ)

u(r, θ , 0) = u(r, θ , π) = T

u(r, π
2

, ϕ) = T

u(a, θ , ϕ) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7.222)

Since we are capable of solving Laplace’s equation with some

homogeneous boundaries and Poisson’s equation with some homo-

geneous boundaries, using the principle of superposition we seek

the solution as the sum of two functions:

u(r, θ , ϕ) = g(r, θ , ϕ) + h(r, θ , ϕ) (7.223)

Poisson’s problem (1)

⎧⎪⎪⎨
⎪⎪⎩

−k�h = f (r, θ , ϕ)

h(r, θ , 0) = h(r, θ , π) = 0

h(r, π
2

, ϕ) = 0

h(a, θ , ϕ) = 0

⎫⎪⎪⎬
⎪⎪⎭ (7.224)
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Laplace’s problem (2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�g = 0

g(r, θ , 0) = g(r, θ , π) = T

g(r,
π

2
, ϕ) = T

g(a, θ , ϕ) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7.225)

Sturm–Liouville problem

We first solve problem (1) and expand the solution as the sum of

orthogonal eigenfunctions of the Sturm–Liouville problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�V + λV = 0

V (r, θ , 0) = V (r, θ , π) = 0

V (r,
π

2
, ϕ) = 0

V (a, θ , ϕ) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7.226)

We separate variables as V = R(r) · Y (θ , ϕ)

1

r2

∂

∂r

[
r2

(
∂V
∂r

)]
+ 1

r2
�θ ,ϕV + λV = 0 (7.227)

d
dr [r2( dR

dr )] + λr2R
R = −�θ ,ϕY

Y
= μ > 0 (7.228)

Solving the problem for the angular part:

�θ ,ϕY + μY = 0 (7.229)

Separating variables:

Y (θ , ϕ) = �(θ) · �(ϕ) (7.230)

sin(θ) d
dθ [sin(θ)( d�

dθ )] + μ sin2(θ) · �(θ)

�(θ)
= − 1

�(ϕ)

d2�

dϕ2
= ν > 0

(7.231)

We choose the positive sign for μ, ν since we expect to get periodic

solutions for the angular variables.
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The result of the problem for ϕ is:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2�

dϕ2
+ ν�(ϕ) = 0

h(r, θ , 0) → �(0) = 0

h(r, θ , π) → �(π) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7.232)

�(ϕ) = A cos(mϕ) + B sin(mϕ); ν = m2 (7.233)

�(0) = 0 → A = 0 →
�(ϕ) = sin(mϕ) (7.234)

Now that we have ν = m2, we can find the solution of the �(θ)

function:

sin(θ)
d

dθ

[
sin(θ)

(
d�
dθ

)]
+ [μ sin2(θ) − m2]�(θ) = 0 (7.235)

Its solution are Legendre polynomials: �(θ) = P (m)
n (cos(θ))

Eigenvalues: μ = n(n + 1)

Imposing the boundary condition:

�
(π

2

)
= P (m)

n (0) = 0 (7.236)

Figure 7.16

From the properties of the Legendre polynomials, this condition is

only satisfied when:

n − m = odd = 2l + 1; m = n − 2l + 1; n = 1, 2, 3 . . . ;

l = 0, 1, 2, 3 . . . with m < n (7.237)

In this way: �(θ) = P [n−2l+1]
n (cos(θ));μ = n(n + 1)
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We can finally solve the equation for R(r):

r2

(
d2R
dr2

)
+ r
(

dR
dr

)
+
[
λr2 −

(
n + 1

2

)2
]
R = 0 (7.238)

Its solution is the Bessel function of half-integer order:

Rn(r) = C1

J n+1/2(

√
λ

(n)
k r)√

r
+ C2

Nn+1/2(

√
λ

(n)
k r)√

r
(7.239)

As the solution must be finite at r = 0 we have that C2 = 0. The

eigenvalues of the problem are obtained from the solution of the

equation:

J n+1/2

(√
λ

(n)
k a
)

= 0 (7.240)

So that the eigenfunctions of the Sturm–Liouville problem in a

quarter of a sphere are:

Vkmn =
J n+1/2

(√
λ

(n)
k r
)

√
r

P (m)
n (cos(θ)) sin(mϕ) (7.241)

where ⎧⎨
⎩

m = n − 2l + 1

J n+1/2(

√
λ

(n)
k a) = 0

⎫⎬
⎭ (7.242)

As these functions fulfill the boundary conditions for problem (1),

we propose to seek its solutions as:

h(r, θ , ϕ) =
∑

km(l)n

Ckm(l)n × Vkmn (7.243)

General solution

We replace the previous general solution in problem (1):

⎧⎨
⎩−k�h = −k�

∑
km(l)n

Ckm(l)n · Vkmn = k
∑

km(l)n

Ckm(l)n × λ(n)
k Vkmn = f (r, θ , ϕ)

⎫⎬
⎭

(7.244)

Expanding more explicitly:

k
∑

km(l)n

Ckm(l)n × λ(n)
k

J n+1/2(

√
λ

(n)
k r)√

r
P (m)

n (cos(θ)) sin(mϕ)

= I 2 R
a

δ(θ − π
4

) × δ(ϕ − π
2

)

r2 sin(θ)
(7.245)
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Final solution

To find the coefficients we will use the orthogonality of the

eigenfunctions:

We multiply by sin(m′ϕ) and integrate
π∫
0

dϕ

k
∑

km(l)n

Ckm(l)n × λ(n)
k

J n+1/2

(√
λ

(n)
k r

)
√

r
P (m)

n (cos(θ))

π∫
0

sin(m′ϕ) sin(mϕ)dϕ

= I 2 R
a

δ
(
θ − π

4

)
r2 sin(θ)

π∫
0

sin(m′ϕ) × δ
(
ϕ − π

2

)
dϕ → (7.246)

k
∑

kn

Ckmn × λ(n)
k

J n+1/2

(√
λ

(n)
k r
)

√
r

P (m)
n (cos(θ)) × π

2

= I 2 R
a

δ(θ − π
4

) sin(mπ
2

)

r2 sin(θ)
(7.247)

We multiply now by P (m)
n′ (cos(θ)) and integrate

π/2∫
0

sin(θ)dθ

k
∑

kn

Ckmn × λ(n)
k

J n+1/2

(√
λ

(n)
k r

)
√

r
π

2

π/2∫
0

P (m)

n′ (cos(θ))P (m)
n (cos(θ)) sin(θ)dθ

= I 2 R
a

sin
(

m
π

2

) π/2∫
0

δ(θ − π

4
)

r2 sin(θ)
P (m′)

n (cos(θ)) sin(θ)dθ (7.248)

The expression becomes:

k
∑

k

Ckmn × λ(n)
k

J n+1/2(

√
λ

(n)
k r)√

r
π

2

∥∥P (m)
n (cos(θ))

∥∥2

2

= I 2 R
a

1

r2
P (m)

n

(
cos
(π

4

))
sin
(

m
π

2

)
(7.249)
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Finally we need to multiply this expression by
J n+1/2(

√
λ

(n)

k′ r)√
r and

integrate
a∫

0

r2dr . We get:

k
∑

k

Ckmn × λ(n)
k

π

2

∥∥P (m)
n (cos(θ))

∥∥2

2

a∫
0

J n+1/2

(√
λ

(n)
k‘ r
)

√
r

×
J n+1/2

(√
λ

(n)
k r
)

√
r

r2dr =

= I 2 R
a

P (m)
n

(
cos
(π

4

))
sin
(

m
π

2

) a∫
0

(
1

r2

) J n+1/2

(√
λ

(n)
k′ r
)

√
r

r2dr

(7.250)⎧⎪⎪⎨
⎪⎪⎩

sin
(

m
π

2

)
=
⎧⎨
⎩

0 m = even

(−1)m+1 m = odd

⎫⎬
⎭

furthermore m = n − 2l + 1

⎫⎪⎪⎬
⎪⎪⎭ (7.251)

Then, the form of the coefficients for the expansion of h(r, θ , ϕ) is:

Clkn =
I 2 R

a P [n−2l+1]
n (cos

(
π
4

)
) sin([n − 2l + 1]π

2
)

a∫
0

J n+1/2(

√
λ

(n)

k‘
r)√

r dr

kλ(n)
k

π
2

∥∥∥P (m)
n (cos(θ))

∥∥∥2

2

∥∥∥∥ J n+1/2(

√
λ

(n)
k‘ r)

∥∥∥∥
2

(7.252)

Mathematical formulation of problem (2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�g = 0

g(r, θ , 0) = g(r, θ , π) = T

g(r,
π

2
, ϕ) = T

g(a, θ , ϕ) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.253)

It’s more convenient to reformulate the problem to expand in

angular eigenfunctions. We use a new function g = g′ + T0
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The problem in Laplace’s equation is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�g′ = 0

g′(r, θ , 0) = g′(r, θ , π) = 0

g′(r,
π

2
, ϕ) = 0

g′(a, θ , ϕ) = −T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.254)

Sturm–Liouville problem

We separate variables to seek the solution as a sum of angular

orthogonal eigenfunctions g′ = R(r) · V (θ , ϕ). We write the

Laplacian as:

d
dr [r2( dR

dr )]

R = −�θ ,ϕV
V

= λ > 0 (7.255)

Solving the problem for the angular part:

�θ ,ϕV + λV = 0 (7.256)

Separating variables:

V (θ , ϕ) = �(θ) · �(ϕ) (7.257)

sin(θ) d
dθ [sin(θ)( d�

dθ )] + λ sin2(θ) · �(θ)

�(θ)
= − 1

�(ϕ)

d2�

dϕ2
= ν > 0

(7.258)

We choose the positive sign for λ, ν because we expect to get

periodic solutions (eigenfunctions) for the angular variables. The

result of the problem for ϕ is:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d2�

dϕ2
+ ν�(ϕ) = 0

g′(r, θ , 0) → �(0) = 0

g′(r, θ , π) → �(π) = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.259)

�(ϕ) = A cos(mϕ) + B sin(mϕ); ν = m2 (7.260)

�(0) = 0 → A = 0 → (7.261)
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�(ϕ) = sin(mϕ) (7.262)

Now that we have ν = m2, we can find the solution for the �(θ)

function:

sin(θ)
d

dθ

[
sin(θ)

(
d�
dθ

)]
+ [λ sin2(θ) − m2]�(θ) = 0 (7.263)

Its solution are Legendre polynomials:

�(θ) = P (m)
n (cos(θ)) (7.264)

Eigenvalues: λn = n(n + 1)

Imposing the boundary condition in the plane: �(π
2

) = P (m)
n (0) = 0

Just like for the previous function h, from the properties of Legendre

polynomials we deduce that this condition is only satisfied when:

n − m = odd = 2l + 1 m = n − 2l + 1 n = 1, 2, 3 . . . ;

l = 0, 1, 2, 3, . . . with m < n (7.265)

In this manner:

�(θ) = P [n−2l+1]
n (cos(θ)); λn = n(n + 1) (7.266)

We can finally solve the equation for R(r) :

d
dr [r2( dR

dr )]

R = λn (7.267)

r2

(
d2R
dr2

)
+ r
(

dR
dr

)
− n(n + 1)R = 0 (7.268)

Its solutions are a linear combination of: Rn(r) = C1rn + C2r−(n+1)

Since the solution must be finite for r = 0 we have C2 = 0.

General solution

With the previous we have the general solution:

g′ =
∑
n, m

Cnmrn P (m)
n (cos(θ)) sin(mϕ) (7.269)
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Final solution

We impose the boundary conditions and use the orthogonality to

find the Cnm coefficients:∑
n, m

Cnman P (m)
n (cos(θ)) sin(mϕ) = −T (7.270)

We multiply by sin(m′ϕ) and integrate
π∫
0

dϕ:

∑
n, m

Cnman P (m)
n (cos(θ))

π∫
0

sin(m′ϕ) sin(mϕ)dϕ = −T

π∫
0

sin(m′ϕ)dϕ

(7.271)∑
n

Cnman P (m)
n (cos(θ)) × π

2
= −T

1

m
[(−1)m − 1] (7.272)

We now multiplicate by P (m)
n′ (cos(θ)) and integrate

π/2∫
0

sin(θ)dθ :

∑
n

Cnman × π

2

π/2∫
0

P (m)
n′ (cos(θ))P (m)

n (cos(θ)) sin(θ)dθ

= −T
1

m
[(−1)m − 1]

π/2∫
0

P (m)
n′ (cos(θ)) sin(θ)dθ (7.273)

Cnman × π

2

∥∥P (m)
n (cos(θ))

∥∥2

2

= −T
[(−1)m − 1]

m

π/2∫
0

P (m)
n (cos(θ)) sin(θ)dθ (7.274)

Cnm = −4T
π

[(−1)m − 1]∥∥∥P (m)
n (cos θ)

∥∥∥2

man

π/2∫
0

P (m)
n (cos(θ)) sin(θ)dθ

(7.275)

with m = n − 2l + 1; n = 1, 2, 3 . . . ; l = 0, 1, 2, 3, . . . and with

m < n

So the final solution is:

u(r, θ , ϕ) = g′(r, θ , ϕ) + h(r, θ , ϕ) + T (7.276)
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7.12 Case Study: Two Concentric Semi-Spheres

Find the stationary distribution of the displacement u(r, θ , ϕ, t)

inside a semi-sphere composed of two semi-spheres (radii R1, R2)

with different densities (ρ1, ρ2) and Young moduli E1, E2. The

common base of the semi-spheres is fixed, while the curved part

is subject to a force in the form of an acoustic plane pressure wave

P0 sin(ωt) from t = 0 and directed along θ = 0.

Figure 7.17

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

− 1

ρ(r)
∇[E (r)∇u(r, θ , ϕ, t)] = 0

|u(r = 0, θ , ϕ, t)| < ∞

E2

∂u(r, θ , ϕ, t)

∂r

∣∣∣
r=R2

= P0 sin(ωt) cos(θ)

u(r, θ = π/2, ϕ, t) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.277)

Where

ρ(r) =
{
ρ1 i f 0 < r < R1

ρ2 i f R1 < r < R2

E (r) =
{

E1 i f 0 < r < R1

E2 i f R1 < r < R2
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We seek the stationary solution (t → ∞). Because the excitation

is of the form sin(ωt), at long times the displacement will change

periodically as sin(ωt) (can be seen in the boundary condition).

Then,

u(r, θ , ϕ, t) = U (r, θ , ϕ) sin(ωt).

Equation (7.277), dividing both sides by sin(ωt), is of the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ω2U (r, θ , ϕ) − 1

ρ(r)
∇[E (r)∇U (r, θ , ϕ)] = 0

|U (r = 0, θ , ϕ, t)| < ∞

E2

∂U (r, θ , ϕ)

∂r

∣∣∣
r=R2

= P0 cos(θ)

U (r, θ = π/2, ϕ) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.278)

Sturm–Liouville problem

We expand in orthogonal eigenfunctions in the angular directions

(θ , ϕ), since they have homogeneous boundary conditions. Separat-

ing variables:

U (r, θ , ϕ) = R(r)V (θ , ϕ)

1

ρ(r)
· 1

r2

⎡
⎣ d

dr

(
r2 E (r) d R(r)

dr

)
R(r)

+
1

sin θ
∂
∂θ

(
sin θ ∂V

∂θ

)+ 1

sin2 θ

∂2 V
∂ϕ2

V (θ , ϕ)

⎤
⎦ = −ω2

(7.279)

Sturm–Liouville problem for the angular part:

�θ ,ϕV (θ , ϕ) + λV (θ , ϕ) = 0

1
sin θ

∂
∂θ

(
sin θ ∂V

∂θ

)+ 1

sin2 θ

∂2 V
∂ϕ2

V (θ , ϕ)
= −λ (7.280)

We separate variables and formulate an auxiliar Sturm–Liouville

problem for ϕ.

V (θ , ϕ) = �(θ)�(ϕ)

sin θ ∂
∂θ

(
sin θ

∂�(θ)

∂θ

)
�(θ)

+ λ sin2 θ = −
d2�(ϕ)

dϕ2

�(ϕ)
= μ (7.281)
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Azimuthal part (ϕ) {
�′′(ϕ) + μ · �(ϕ) = 0

�(ϕ) = �(ϕ) + 2π

}

�(ϕ) = Am cos(mϕ) + Bm sin(mϕ)

μ = m2

Polar part (θ)

1

sin θ

∂

∂θ

(
sin θ

∂�(θ)

∂θ

)
+
(
λ − m2

sin2 θ

)
�(θ) = 0

With the change x = cos θ , becomes the associated Legendre

equation, whose solution are the associated Legendre polynomials.

�m
n (θ) = P m

n (cos θ)

λ = n(n + 1)

Applying the boundary condition:

U (r, θ = π/2, ϕ) = 0 ⇒ �(θ = π/2) = 0 ⇒ P m
n (0) = 0

Due to the properties of Legendre polynomials n + m must be odd.

General solution

u(r, θ , ϕ, t) =
∑

n

∑
m

Rnm(r)P m
n (cos θ)eimϕ sin(ωt) (7.282)

By substituting equation (7.280) into (7.279), we get to the general

solution (7.282) and arrive to an equation for the radial part.

1
r2

d
dr

(
r2 E (r) d R(r)

dr

)
R(r)

− λ
r2

= −ω2ρ(r)

We divide the problem in regions 0 < r < R1 and R1 < r < R2,

where ρ and E are constants in each region, resulting equations of

the form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

R̃1(r)
E1

1

r2

d
dr

(
r2

d R̃1(r)

dr

)
− λ

r2
= −ω2ρ1 0 < r < R1

1

R̃2(r)
E2

1

r2

d
dr

(
r2

d R̃2(r)

dr

)
− λ

r2
= −ω2ρ2 R1 < r < R2

(7.283)
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2 R̃1

dr2
+ 2

r
d R̃1

dr
+
(
ω2

a1

− n(n + 1)

r2

)
R̃1 = 0 0 < r < R1

d2 R̃2

dr2
+ 2

r
d R̃2

dr
+
(
ω2

a2

− n(n + 1)

r2

)
R̃2 = 0 R1 < r < R2

(7.284)

With ai = Ei/ρi , a1 �= a2 since we cannot assume that the speed of

sound is equal in both materials.

The solution of R̃i is:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R̃1(r) = An, m√
r

J
n+

1

2

⎛
⎝
√

ω2

a1

r

⎞
⎠

R̃2(r) = Bn, m√
r

J
n+

1

2

⎛
⎝
√

ω2

a2

r

⎞
⎠+ Cn, m√

r
N

n+
1

2

⎛
⎝
√

ω2

a2

r

⎞
⎠
(7.285)

Where we have used that |R̃1(0)| < ∞.

The boundary conditions are:

• Continuity of the function:

R̃1(R1) = R̃2(R1) (7.286)

• Continuity of the derivatives:

E1

d R̃1(r)

dr

∣∣∣
r=R1

= E2

d R̃2(r)

dr

∣∣∣
r=R1

(7.287)

The third boundary condition is obtained by imposing

E2

∂U (r, θ , ϕ)

∂r

∣∣∣
r=R2

= P0(cos θ)) (7.288)

Due to the symmetry of the problem, we see that the only index

that remains is m = 0 (there is no azimuthal dependence). We will

equate the cos θ term to the first Legendre polynomial (P1(cos θ) =
cos θ).

∑
n

d R̃2

dr
Pn(cos θ) = P0

E2

P1(cos θ) (7.289)

Multiplying both sides by Pn(cos θ) sin θ , and integrating in θ

between 0 and π/2
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d R̃2

dr
|Pn(cos θ)|2 = P0

E2

∫ θ=π/2

θ=0

P1(cos θ)Pn(cos θ) sin θdθ (7.290)

∫ θ=π/2

θ=0

P1(cos θ)Pn(cos θ) sin θdθ =
∫ x=1

x=0

P1(x)Pn(x)dx (7.291)

Next we will evaluate this integral, considering that Pn(x) is odd for

odd values of n, and even when n is even.

Case with odd n:∫ 1

0

P1(x)Pn(x)dx = 1

2

∫ 1

−1

P1(x)Pn(x)dx = 1

2

2

2n + 1
δ1, n (7.292)

∫ 1

0

P1(x)Pn(x)dx = 1

2

∫ 1

−1

P1(x)Pn(x)dx =

⎧⎪⎨
⎪⎩

0 if n �= 1

1

3
if n = 1

(7.293)

Since we are considering the integral of an even function (product

of two odd functions), that is symmetric with respect to 0. We have

applied the orthogonality condition of the Legendre polynomials.

Case of even n: ∫ 1

0

P1(x)Pn(x)dx �= 0 (7.294)

However, from the boundary condition U (r, θ = π/2, ϕ) = 0, we

had concluded that n should be odd, because of which the only

possibility is n = 1.

The third boundary condition has the form:

E2

d R̃2(r)

dr

∣∣∣
r=R2

= P0 (7.295)

From 7.286, 7.287 and 7.295 we calculate A1, B1 and C1 (m = 0).⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R̃1(r) = A1√
r

J 3/2

⎛
⎝
√

ω2

a1

r

⎞
⎠

R̃2(r) = B1√
r

J 3/2

⎛
⎝
√

ω2

a2

r

⎞
⎠+ C1√

r
N3/2

⎛
⎝
√

ω2

a2

r

⎞
⎠

(7.296)
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Using 7.286:

A1√
R1

J 3/2

⎛
⎝
√

ω2

a1

R1

⎞
⎠

= B1√
R1

J 3/2

⎛
⎝
√

ω2

a2

R1

⎞
⎠+ C1√

R1

N3/2

⎛
⎝
√

ω2

a2

R1

⎞
⎠ (7.297)

Using 7.287:

E1

d
dr

⎡
⎣ A1√

r
J 3/2

⎛
⎝
√

ω2

a1

r

⎞
⎠
⎤
⎦

r=R1

= E2

d
dr

⎡
⎣ B1√

r
J 3/2

⎛
⎝
√

ω2

a2

r

⎞
⎠+ C1√

r
N3/2

⎛
⎝
√

ω2

a2

r

⎞
⎠
⎤
⎦

r=R1

(7.298)

Using 7.295:

E2

d
dr

⎡
⎣ B1√

r
J 3/2

⎛
⎝
√

ω2

a2

r

⎞
⎠+ C1√

r
N3/2

⎛
⎝
√

ω2

a2

r

⎞
⎠
⎤
⎦

r=R2

= P0

(7.299)

Equations (7.297), (7.298) and (7.299) are a system of three

equations with three unknowns (A1, B1, C1).

For simplicity we rename:

1√
r

J 3/2

⎛
⎝
√

ω2

ai
r

⎞
⎠ = j(ai , r) (7.300)

1√
r

N3/2

⎛
⎝
√

ω2

ai
r

⎞
⎠ = n(ai , r) (7.301)

d
dr

⎡
⎣ 1√

r
J 3/2

⎛
⎝
√

ω2

ai
r

⎞
⎠
⎤
⎦

r=Ri

= j ′(ai , Ri ) (7.302)

d
dr

⎡
⎣ 1√

r
N3/2

⎛
⎝
√

ω2

ai
r

⎞
⎠
⎤
⎦

r=Ri

= n′(ai , Ri ) (7.303)
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From 7.299 we get:

B1 = −n′(a2, R2)C1 + P0

E2

j ′(a2, R2)
(7.304)

Replacing in 7.297

A1 =
n(a2, R1) − n′(a2, R2)

j ′(a2, R2)
j(a2, R1)

j(a1, R1)
C1 +

P0

E2
j(a2, R1)

j ′(a2, R2) j(a1, R1)

(7.305)

Replacing now in 7.298

E1

(
n(a2, R1) − n′(a2, R2)

j ′(a2, R2)
j (a2, R1)

j (a1, R1)
C1+

P0

E2
j (a2, R1)

j ′(a2, R2) j (a1, R1)

)
j ′(a1, R1) =

= E2

−n′(a2, R2)C1 + P0

E2

j ′(a2, R2)
j ′(a2, R1) + E2C1n′(a2, R1) (7.306)

We now isolate C1

−
P0

E2
j(a2, R1)

j ′(a2, R2) j(a1, R1)
E1 j ′(a1, R1) + P0 j ′(a2, R1)

j ′(a2, R2)
=

= C1

[
E1

(
−n′(a2, R2) j(a2, R1)

j ′(a2, R2) j(a1, R1)
+ n(a2, R1)

j(a1, R1)

)
j ′(a1, R1)

+E2

(
n′(a2, R2)

j ′(a2, R2)
j ′(a2, R1) − n′(a2, R1)

)]
C1 is:

C1 = −P0
E1

E2
j(a2, R1) j ′(a1, R1) + P0 j ′(a2, R1) j(a1, R1)

E1χ1 j ′(a1, R1) + E2χ2 j(a1, R1)
(7.307)

⎧⎨
⎩

χ1 = −n′(a2, R2) j(a2, R1) + n(a2, R1) j ′(a2, R2)

χ2 = n′(a2, R2) j ′(a2, R1) − n′(a2, R1) j ′(a2, R2)

The constants A1 and B1 are obtained in a similar fashion.

Final solution

u(r, θ , ϕ, t) = R̃(r) cos θ sin(ωt) (7.308)
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R̃(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1√
r

J 3/2

(√
ω

a1

r
)

0 < r < R1

B1√
r

J 3/2

(√
ω

a2

r
)

+ C1√
r

N3/2

(√
ω

a2

r
)

R1 < r < R2

7.13 Case Study: Variation of Temperature in a
Semisphere

Find the distribution of temperature u(r, θ , ϕ, t) in a semisphere of

radius r = R with ϕ ∈ (0, π)rad, centered in (0,0,0). For r = R the

temperature is u(r = R , θ , ϕ, t) = T0. For ϕ = 0 and ϕ = π the

temperature is zero. Situated at a polar angle θ = θ0 half of a ring (of

radius r0 < R) emits heat with a heat flux J · e−t · ϕ, with ϕ ∈ (0, π).

At the initial instant t = 0 the temperature is u(r, θ , ϕ, t = 0) = 0.

C is the heat capacity, k is thermal conductivity and ρ0 the density of

mass.

Figure 7.18

Mathematical formulation
∂u
∂t

− k/(Cρ0)�u = f (r, θ , ϕ, t) (7.309)

With κ = k/(Cρ0) being the thermal diffusivity.

With f = f (r, θ , ϕ, t):

f = fc · fr (r) · fθ (θ) · fϕ(ϕ) · ft(t)

= − J /(C · ρ0 · π · r0) · δ(r − r0) · δ(θ − θ0) · e−t · ϕ/(πr2 sin(θ))

(7.310)
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The term J · e−t ·ϕ/(π · r0) represents the heat flux of the ring, being

(π · r0) the length of the half ring.

fc ≡ const = − J /(Cρ0π
2r0), fr (r) = δ(r − r0)

r2
,

fθ (θ) = δ(θ − θ0)

sin(θ)
, fϕ = ϕ, ft(t) = e−t (7.311)

With the Laplacian �u:

�u = 1

r2

∂
(
∂u
∂r · r2

)
∂r

+ 1

r2
�θ ,ϕu (7.312)

�θ ,ϕu = 1

sin(θ)
· ∂
(
∂u
∂θ

· sin(θ)
)

∂θ
+ 1

sin2(θ)
· ∂

2u
∂ϕ2

(7.313)

Initial conditions:

u(r, θ , ϕ, t = 0) = 0 (7.314)

Boundary conditions:

|u(r = 0, θ , ϕ)| < +∞, u(r = R) = T0,

u(ϕ = 0) = 0, u(ϕ = π) = 0 (7.315)

We divide the problem in two parts, one is stationary (1) w(r, θ , ϕ)

that we choose to be homogeneous with non homogeneous

boundary conditions and the other is transient (2) v(r, θ , ϕ, t) and

is non homogeneous but with homogeneous boundary conditions:

u(r, θ , ϕ, t) = w(r, θ , ϕ) + v(r, θ , ϕ, t) (7.316)

Problem 1

�w(r, θ , ϕ) = 0 (7.317)

|w(r = 0, θ , ϕ)| < +∞, w(r = R) = T0,

w(ϕ = 0) = 0, w(ϕ = π) = 0 (7.318)
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Sturm–Liouville problem
We separate variables: w(r, θ , ϕ) =∑∑ C · R(r) · Vθ ,ϕ .

∂
(
r2 · ∂R

∂r

)
∂r

/R = −�θ ,ϕV
V

= λ > 0 (7.319)

And so, we have the value of V :

1

sin(θ)
· ∂
(
∂V
∂θ

· sin(θ)
)

∂θ
+ 1

sin2(θ)
· ∂

2V
∂ϕ2

+ λ · V = 0 (7.320)

At the same time we solve the Sturm–Liouville problem for �(ϕ),

�(θ), with V (θ , ϕ) = �(θ) · �(ϕ)

∂2�(ϕ)

∂ϕ2
+ λϕ · � = 0 (7.321)

Boundary conditions of �(ϕ)

�(0) = 0, �(π) = 0 (7.322)

General solution

The general solution for �(ϕ) (7.321) is:

�(ϕ) = Cϕ · cos(
√
λϕ · ϕ) + C ′

ϕ · sin(
√
λϕ · ϕ) (7.323)

Using the boundary conditions for �(ϕ) at ϕ = 0, π we impose the

temperature to be zero.

�(ϕ) = C ′
ϕ · sin(m · ϕ);

√
λϕ = m (7.324)

The polar component, which for which we need λ = n · (n + 1), l ≥
|m|, so that the solution doesn’t diverge:

1/ sin(θ)·
d
(

∂�(θ)

∂θ
· sin(θ)

)
∂θ

+
(

1

sin2(θ)
· (−m2) + n · (n + 1)

)
·� = 0

(7.325)

The solutions are Legendre polynomials:
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�(θ) = P (m)
n cos(�) (7.326)

The radial part R(r) doesn’t satisfy a Sturm–Liouville problem, since

its boundaries are not homogeneous (u(r = R) = T0 �= 0).

ρ2 · d2 R(r)/dr2 + 2 · ρ · d R/dr − n(n + 1)R = 0 (7.327)

Has as a general solution:

R(r) = Cr · rn + C ′
r · r−(n+1) (7.328)

Imposing that u(r = 0) must not diverge we get that the term C ′
r ·

r−(n+1) is zero:

R(r) = Cr · rn (7.329)

The boundary condition w(r = R) = T0 is now obtained by

multiplying both sides of the equation by �(θ) · �(ϕ) · sin(θ) and

integrating θ between 0 and π and ϕ between 0 and π :

Cnm =
∫ π

0

∫ π

0
T0 · P (m)

n (cos(θ)) · sin(θ) · sin(m · ϕ) dθ dϕ

Rn
∫ π

0
(P (m)

n (cos(θ)))2 · sin(θ) dθ
∫ π

0
sin2(ϕ) dϕ

(7.330)

Cnm = T0 · ∫ π

0
P (m)

n (cos(θ)) · sin(θ) dθ[(−1)(m+1) + 1]/m

Rn
∫ π

0
(P (m)

n (cos(θ)))2 · sin(θ) dθ · π/2
(7.331)

Considering m = 2 · l + 1, with l ∈ Z (integer numbers):

Cnl = T0 · ∫ π

0
·P (2·l+1)

n (cos(θ)) · sin(θ) · dθ · 2/(2 · l + 1)

Rn
∫ π

0
(P (2·l+1)

n (cos(θ)))2 · sin(θ) dθ · π/2
(7.332)

And the general solution for the stationary problem is:

w(r, �, ϕ) =
∑
n, l

Cnl · rn · P (m)
n (cos(θ)) · sin(m · ϕ) (7.333)

Problem 2

∂2v
∂t2

− �v(r, θ , ϕ, t) = − J
Cρ0 · 2πr0

· δ(r − r0) · δ(θ − θ0) · e−t

×ϕ
1

2πr2 sin(θ)
(7.334)
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|v(r = 0, θ , ϕ)| < +∞, v(r = R) = 0, v(ϕ = 0) = 0, v(ϕ = π) = 0

(7.335)

v(t = 0) = −w(r, θ , ϕ) (7.336)

Sturm–Liouville problem

Separating variables v =∑ T (t) · N(r, θ , ϕ):

For N = N(r, θ , ϕ):

�N(r, θ , ϕ) + λ′ · N = 0 (7.337)

Next we separate variables once again: N(r, θ , ϕ) = R ′(r) · V ′(θ , ϕ).

And also for the θ and ϕ coordinates: V ′ = v ′(θ) · �′(ϕ)

�V ′(θ , ϕ) + λθ ′ · V ′ = 0 (7.338)

For the transient part v , we use m′ as the index for the azimuthal part

�′(ϕ) and n′ for �′(θ).

For �′(θ) (for v) the equation and boundary conditions are the same

as for �(θ) (from the stationary problem w) (7.325), because of

which its solution are Legendre polynomials:

1

sin(θ)
·
∂
(

∂�′(θ)

∂θ
· sin(θ)

)
∂θ

+
(

1

sin2(θ)
· (−m2) + λθ ′

)
· �′ = 0;

λθ ′ = n′ · (n′ + 1) (7.339)

�(θ) = P m′
n′ (cos(θ)) (7.340)

In the same manner the index associated to θ , λθ ′ in this case, λθ ′ =
n′ · (n′ + 1) so that �′(θ) doesn’t diverge.

Since the boundary conditions and the equation for ϕ are equal

than for w, �′(ϕ) has the same solution: �′(ϕ) = C ′
ϕ · sin(m′ · ϕ).

In the case of R ′(r):

1

r2
· d(r2 · d R ′/dr)

dr
+ (λ′ − λθ ′/r2)R ′ = 0 (7.341)

R ′(r = 0) < +∞; R ′(r = R) = 0 (7.342)
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We use that λθ ′ = n′ · (n′ + 1) so that �′ = P m′
n′ doesn’t diverge and

using the change of variable: b(r) = √
r · R ′ :

d2b(r)

dr2
+
(
λ − (n′ + 1/2)2

r2

)
b(r) = 0 (7.343)

With solution:

bn′ (r) = Cr1 · J n′+1/2(r) + Cr2 · Nn′+1/2(r) (7.344)

R ′
n′ (r) = Cr1

J n′+1/2(λ′ · r)√
r

+ Cr2

Nn′+1/2(λ′ · r)√
r

(7.345)

Using u(r = 0) < +∞ we get that the Neumann term (divergent at

r = 0) must be zero (Cr2 = 0):

R ′
n′ (r) = Cr1 · J n′+1/2(λ′ · r)√

r
(7.346)

Imposing R(r = R) = 0 we get the equation of the eigenvalues λ′:
J n′+1/2(λ′ · R)√

R
= 0 (7.347)

Using (7.337) and v =∑ T · N(r, θ , ϕ):(
∂T
∂t

+ κ · λ′ · T
)

· N = f (r, θ , ϕ, t) (7.348)

General solution

Using the orthogonality of N = R ′(r) · V ′(θ , ϕ):(
∂T
∂t

+ κ · λ′ · T
)

· N = f (r, θ , ϕ, t) (7.349)

With ϕ ∈ (0, π) rad (limits of the semisphere):

∂T
∂t

+ κ · T = fc · ft(t)

|N|2

∫ π

0

∫ π

0

∫ R

0

fr (r) fθ (θ)R ′(r)

×�′(θ) · �′(ϕ)r2 · sin(θ) dr dθ dϕ (7.350)

On the other hand we indicate the explicit value of fc , fr , fθ with

(7.311):

∂T
∂t

+ κ · T = − J
C · ρ0 · π2 · r0|N|2

· e−t · π
∫ R

0

δ(r − r0)

× dr
∫ π

0

δ(θ − θ0) dθ
∫ π

0

ϕdϕ (7.351)
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Using the next property of the Dirac’s delta function:∫ b
a f (x)δ(x − x0)dx = f (x0), with a < x0 < b ∈ R (real numbers),

we get at:

∂T
∂t

+κ ·λ′ · T = 2/m′ · (−1)m′+1 · fc · R ′(r0) · �′(θ0)

π/2|N|2
∫ R

0
R ′(r)2 · r2 dr · ∫ π

0
�′(θ)2 sin(θ) dθ

· e−t

(7.352)

The term that multiplies e−t is renamed for simplicity:

Ft = 2/m′ · (−1)m′+1 · fc · R ′(r0) · �′(θ0)

π/2|N|2
∫ R

0
R ′(r)2 · r2 dr · ∫ π

0
�′(θ)2 sin(θ) dθ

To find T (t) (general solution) we find the sum of the solution of the

homogeneous equation Th(t) and the particular solution Tp(t). We

first solve the homogeneous equation for Th(t):

∂Th

∂t
+ κ · λ′ · Th = 0 (7.353)

Whose solution is exponential:

Th = C · e−κλ′t (7.354)

Final solution

To find the particular solution we use the method of the unknown

coefficients, introducing a particular solution C ′ · e−t , suposing that

κ · λ′ − 1 �= 0.

Tp = Ft · e−t/(κ · λ′ − 1) (7.355)

Then T (t), with κ · λ′ − 1 �= 0 is:

T (t) = Th + T p = C · e−λ′κt + Ft · e−t/(κ · λ′ − 1) (7.356)

If κ · λ′ − 1 = 0:

T (t) = C · e−t + Ft · t · e−t (7.357)

We use the initial condition of v (7.336) (v(t = 0) = −w(r, θ , ϕ)):

−w(r, θ , ϕ) =
∑

T (0) · R ′(r) · �′(θ) · �′(ϕ) (7.358)

To calculate the C constant of T (t) we use the orthogonality of

R ′(r), �′(θ), �′(ϕ), and integrate:



April 5, 2023 0:23 JSP Book - 9in x 6in Main

450 Problems in Spherical Coordinates

∫ π

0

∫ π

0

∫ R
0

−w(r, θ , ϕ) · R ′(r) · �′(θ) · �′(ϕ) · r2 · sin(θ)drdθdϕ∫ π

0

∫ π

0

∫ R
0

·R ′(r)2 · �′(θ)2 · �′(ϕ)2 · r2 · sin(θ)drdθdϕ
= T (0)

(7.359)

In the case of κ · λ′ − 1 �= 0 (eq. 7.356):

C = eλ
′ ·κt ·

(∫ π

0

∫ π

0

∫ R
0

−w(r, θ , ϕ) · R ′(r) · �′(θ) · �′(ϕ) · r2 · sin(θ)drdθdϕ∫ π

0

∫ π

0

∫ R
0

·R ′(r)2 · �′(θ)2 · �′(ϕ)2 · r2 · sin(θ)drdθdϕ

−Ft · e−t/(κ · λ′ − 1)

)
(7.360)

If κ · λ′ − 1 = 0 (7.357):

C = et ·
(∫ π

0

∫ π

0

∫ R
0 −w(r, θ , ϕ) · R ′(r) · �′(θ) · �′(ϕ) · r2 · sin(θ)drdθdϕ∫ π

0

∫ π

0

∫ R
0 ·R ′(r)2 · �′(θ)2 · �′(ϕ)2 · r2 · sin(θ)drdθdϕ

)
− Ft · t

(7.361)

Then the solution for v = v(r, θ , ϕ, t), with κ · λ′ − 1 �= 0 is:

v(r, θ , ϕ, t) = (C · e−λ′κt + Ft · e−t/(κ · λ′ − 1))

×
∑ J n′+1/2(

√
λ′ · r)√

r
· P m′

n′ (cos(θ)) · sin(m′ · ϕ)

(7.362)

The solution for v = v(r, θ , ϕ, t), with κ · λ′ − 1 = 0:

v(r, θ , ϕ, t) = (C · e−t + Ft · t · e−t)

×
∑ J n′+1/2(

√
λ′ · r)√

r
· P m′

n′ (cos(θ)) · sin(m′ · ϕ)

(7.363)

In this manner, the final solution is u = w +v (stationary + transient

solution):

u(r, θ , ϕ) =
∑

C · rn · P (m)
n (cos(θ)) · sin(m · ϕ) + T (t)

×
∑ J n′+1/2(

√
λ′ · r)√

r
· P m′

n′ (cos(θ)) · sin(m′ · ϕ)

(7.364)
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7.14 Case Study: Oscillating Sphere Filled With
Gas

Find the variations of pressure as a function of time and position

when a sphere of radius a0 filled with gas of density ρ0 and with

a speed of sound c oscillates periodically with a frequency ω and a

maximum velocity v0 (v(t) = v0 · sin(ωt)) along the z direction.

Consider that the periodic movement of the sphere has been going

on for long enough, so that transient vibrations of the gas have

damped out and there are no resonances.

Figure 7.19

Mathematical formulation

This stationary and periodic process (stationary doesn’t necessarily

mean time independent) can be described with the following

homogeneous equation:⎧⎪⎨
⎪⎩

∂2 P
∂t2

− c2�P = 0

+ boundary condition?

⎫⎪⎬
⎪⎭ (7.365)

We get the boundary conditions for the pressure from our

knowledge of the variation of the velocity of the molecules.



April 5, 2023 0:23 JSP Book - 9in x 6in Main

452 Problems in Spherical Coordinates

Solution

The oscillations of the molecules inside the sphere are described by

its velocity along z

�v(t) = v0 · sin(ωt)ûz (7.366)

where ûz is a unitary vector along z.

The boundary condition for the pressure is inhomogeneous since,

in general, it depends on the angle. To find it we will use the

ratio between the radial derivative of the pressure (i.e., the normal

component of the pressure gradient near the surface) and the

normal component of the velocity of the molecules near the sphere

surface.

∂(�v · �n)

∂t
+ 1

ρ0

∂ P
∂r

∣∣∣∣
r=a0

= 0 (7.367)

where �n is a vector normal to the surface.

Given the azimuthal symmetry of the problem and the temporal

dependency of the movement of the sphere we can neglect the

azimuthal variation of the solution, and search the solution as:

P (r, θ , t) = P(r, θ) cos (ωt) (7.368)

When we replace this solution into the wave equation we get:

−P(r, θ)ω2 cos(ωt) − c2 cos (ωt)�P(r, θ) = 0 (7.369)

−�P(r, θ) =
(ω

c

)2

P(r, θ) (7.370)

To solve the equation we will use the method of separation of

variables as: P(r, θ) = R(r)�(θ),

Which yields the equation:

− 1

R
d

dr

(
r2 dR

dr

)
− 1

� sin θ

d
dθ

(
sin θ

d�
dθ

)
=
(ω

c

)2

r2 (7.371)

Applying the angular and radial separation of variables with a

constant of separation ν:

− 1

� sin θ

d
dθ

(
sin θ

d�
dθ

)
= 1

R
d

dr

(
r2 dR

dr

)
+
(ω

c

)2

r2 = ν

(7.372)
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With the change of variable x = cos θ → d
dθ = − sin θ d

dx we can

reformulate the angular equation � as:

1

�

d
dx

(
sin2 θ

d�
dx

)
+ ν = 0 → d

dx

(
(1 − x2)

d�
dx

)
+ ν� = 0

(7.373)

Considering the periodicity of the solution in the azimuthal and

polar angles this equation has solutions in the form of Legendre

polynomials:

�l (θ) = Pl (x) = Pl (cos θ) where ν = l(l + 1) (7.374)

Taking into account that ν = l(l+1) we get an equation for the radial

part:

1

r2

d
dr

(
r2 dR

dr

)
+
((ω

c

)2

− l(l + 1)

r2

)
R = 0 (7.375)

Its solution is: Rl (r) = jl
(
ω
c r
)

And the general solution will be:

P(r, θ) =
∞∑

l=0

Pl (cos θ) jl

(ω
c

r
)

Al (7.376)

Applying the boundary condition for the derivative of the pressure

in the radial variable we get:

−ρ0

∂( �ve · �n)

∂t
= v0ρ0ω cos(ωt) cos(θ) = ∂ P

∂r

∣∣∣∣
r=a0

= −
( ∞∑

l=0

Pl (cos θ) j ′
l

(ω
c

a0

)(ω
c

)
Al

)
cos(ωt)

(7.377)

cv0ρ0 cos θ = −
∞∑

l=0

Pl (cos θ) j ′
l

(ω
c

a0

)
Al (7.378)

where j ′
l () represents the derivative of the spherical Bessel function.

Using the orthogonality of the Legendre polynomials to find the

coefficients:

Al =
−v0ρ0c

π∫
0

Pl (cos θ) cos θ sin θdθ

j ′
l

(
ω
c a0

) ‖Pl (cos θ)‖ (7.379)
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Al = 0 l �= 1

A1 = − v0ρ0c

j ′
1

(ω
c

a0

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.380)

To conclude, we have the solution:

P (r, θ , t) = − v0ρ0c
j ′
1

(
ω
c a0

) j1

(ω
c

r
)

cos(θ) cos(ωt) (7.381)

7.15 Case Study: Stationary Distribution of
Temperature in a Planet Close to a Star

Find the stationary temperature distribution of a spherical planet

(neglect rotation) composed of two materials with different thermal

conductivity coefficients (k1 from the center of the planet to R1; k2

between R1 and R2). The planet absorbs a heat flux with density μ

from the radiation of a star, far enough so that we can consider it as

plane waves in the direction �=0. The whole surface of the planet

radiates heat according to Newton’s law with coefficient h, towards

the outer space with temperature T = 0.

Figure 7.20

Mathematical formulation

We will solve the heat equation in spherical coordinates. Since we

look for the stationary case, the heat equation becomes Laplace’s
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equation.

∇ · (κ(r) �∇T ) = 0 (7.382)

κ(r) =
⎧⎨
⎩

κ1 if r ≤ R1

κ2 if R1 ≤ r ≤ R2

(7.383)

In the surface of the sphere there are two heat fluxes simultaneously,

one due to the radiation from the star, the other from the heat losses

of the planet. The heat flux coming from the star is proportional to

its power density μ, and will depend on the incidence on the planet.

Then, we have:

fen = �fe · n̂ = μ · (−ẑ) · n̂ = −μ · cos(θ) (7.384)

The radiation emitted by the planet is taken as normal to its surface:

f pn = h · T (r = R2) (7.385)

where T (r = R2) is the temperature distribution in the surface and

h is the Newton’s law constant.

From Fourier’s law we get the boundary condition at the planet

surface.

�f · n̂ = −κ
∂T
∂ n̂

(7.386)

⎧⎪⎪⎨
⎪⎪⎩

κ2

∂T
∂r

|r=R2
= μ · cos(θ) − h · T (r = R2) if θ ∈

(
0,

π

2

)

κ2

∂T
∂r

|r=R2
= −h · T (r = R2) if θ ∈

(π
2

, π
)

(7.387)

Due to the discontinuity at κ we will assume that the solution is of

the form:

T (r, θ , φ) =
⎧⎨
⎩

T1(r, θ , φ) if r ≤ R1

T2(r, θ , φ) if R1 ≤ r ≤ R2

(7.388)

where the functions T1 and T2 satisfy Laplace’s equation in their

respective regions.

Since the solutions of the differential equation must be continuous,

we have:

T1(r = R1, θ , φ) = T2(r = R1, θ , φ) (7.389)
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The second condition that relates T1 and T2 is obtained in the

following way:

∇ · (κ(r) �∇T ) = 0

⇒ lim
ε→0

∫ φ=2π

φ=0

∫ θ=π

θ=0

∫ R+ε

R−ε

∇ · (κ(r) �∇T )dV

=
∫

S
κ1

�∇T1
�dS −

∫
S
κ2

�∇T2
�dS = 0

⇒ κ1
�∇T1(R1) · r̂ = κ2

�∇T2(R1) · r̂

⇒ κ1

∂T1

∂r
|r=R1

= κ2

∂T2

∂r
|r=R1

(7.390)

This implies that the heat flux from region 1 to region 2 (and vice

versa) compensate each other in the stationary regime.

To summarize:

T (r, θ , φ) =
⎧⎨
⎩

T1(r, θ , φ) i f r ≤ R1

T2(r, θ , φ) i f R1 ≤ r ≤ R2

(7.391)

∇T1 = 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|T1(r, θ = 0, π, φ)| < ∞

T1(r, θ , φ) = T1(r, θ , φ + 2π)

|T1(r = 0, θ , φ)| < ∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.392)

∇T2 = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|T2(r, θ = 0, π, φ)| < ∞

T2(r, θ , φ) = T2(r, θ , φ + 2π)

κ2

∂T2

∂r
|r=R2

= μ · cos(θ) − h · T2(r = R2) i f θ ∈
(

0,
π

2

)

κ2

∂T2

∂r
|r=R2

= −h · T2(r = R2) i f θ ∈
(π

2
, π

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.393)

Relation between T1 and T2⎧⎪⎪⎨
⎪⎪⎩

T1(r = R1, θ , φ) = T2(r = R1, θ , φ)

κ1

∂T1

∂r

∣∣∣∣r=R1
= κ2

∂T2

∂r

∣∣∣∣
r=R1

⎫⎪⎪⎬
⎪⎪⎭ (7.394)
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Solution of the problem

Due to the azimuthal symmetry of the problem, we can determine

that both T1 and T2 will be independent functions of φ. Then,

separating variables, we have:

T1, 2(r, θ) = L1, 2(r)�1, 2(θ) (7.395)

Replacing in the differential equation:

∇T1, 2

T1, 2

=
1
r2

∂
∂r (r2 ∂L1, 2

∂r )

L1, 2

+
1

r2 sin θ
∂
∂θ

(sin θ
∂�1, 2

∂θ
)

�1, 2

= 0 (7.396)

Sturm–Liouville in the angular variable:

1
sin θ

∂
∂θ

(sin θ
∂�1, 2

∂θ
)

�1, 2

= −
∂
∂r (r2 ∂L1, 2

∂r )

L1, 2

= −ν (7.397)

The solutions of this equation for θ with boundary conditions

|�1, 2(θ = 0, π)| < ∞ are Legendre polynomials.

�1, 2(θ) = Pn(cos θ) where ν = n(n + 1) (7.398)

Then we are left with this equation for the radial variable:

r2 L′′
1, 2 + 2r L′

1, 2 − νL1, 2 = 0 (7.399)

⇒ L1, 2;n(r) = c1rn + c2r−(n+1) (7.400)

Since r = 0 is described by T1 but not by T2, the former must satisfy

|T1(r = 0)| < ∞, so that L1(r) and L2(r) get the following form:

L1;n(r) = Anrn L2;n(r) = Bnrn + Cnr−(n+1) (7.401)

So finally we have:

T1(r, θ) =
∞∑

n=0

Anrn Pn(cos θ) T2(r, θ) =
∞∑

n=0

[Bnrn + Cnr−(n+1)]Pn(cos θ)

(7.402)

To get the value of the constants we first apply the conditions

relating T1 to T2.

T1(r = R1, θ , φ) = T2(r = R1, θ , φ) ⇒ An = Bn + Cn R−(2n+1)
1

(7.403)

κ1

∂T1

∂r
|r=R1

= κ2

∂T2

∂r
|r=R1

⇒ κ1 An = κ2 Bn + n + 1

n
κ2Cn R−(2n+1)

1

(7.404)
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Simplifying these equations we arrive at the following ratios of the

coefficients:

An = Bn(1 + αn) ; Cn = Bn
αn

R−(2n+1)
1

(7.405)

Being αn parameters such that:

αn = 1 − κ1

κ2

κ1

κ2
+ n+1

n

(7.406)

Since αn diverges for n = 0 we cannot consider it for the solution,

therefore n = 1, 2, 3 . . .

Now that we have found the ratios between the coefficients, we will

determine Bn from the inhomogeneous boundary condition at r =
R2.

κ2
∂T2

∂r
|r=R2

= κ2

∑∞
n=1 Bn[nRn−1

2 − αn

R−(2n+1)
1

(n + 1)R−(n+2)
2 ]Pn(cos θ)

= fe(θ) − h · T (r = R2)

where fe(θ) =

⎧⎪⎪⎨
⎪⎪⎩

μ · cos(θ) if θ ∈
(

0,
π

2

)

0 if θ ∈
(π

2
, π
)

⇒ κ2

∑∞
n=1 Bn[nRn−1

2 − αn

R−(2n+1)
1

(n + 1)r−(n+2)]Pn(cos θ)

= fe(θ) − h
∑∞

n=1 Bn[Rn
2 + αn

R−(2n+1)
1

R−(n+1)
2 ]Pn(cos θ)

⇒ ∑∞
n=1 Bn[(hRn

2 + κ2nRn−1
2 ) + αn

R−(2n+1)
1

(hR−(n+1)
2 − κ2(n + 1)R−(n+2))

2 ]Pn(cos θ)

= fe(θ)

(7.407)

Using the orthogonality of the Legendre polynomials and knowing

that ||Pn(cos θ)||2 = n
2n+1

, we get the value of the Bn coefficients.

Bn = 2n + 1

n
μ
∫ π

2
0

Pn(cos θ) cos θ sin θdθ

(hRn
2 + κ2nRn−1

2 ) + αn

R−(2n+1)
1

(hR−(n+1)
2 − κ2(n + 1)R−(n+2)

2 )

(7.408)

Then the final solution is:

T (r, θ) =

⎧⎪⎨
⎪⎩

T1 = ∑∞
n=1 Bn(1 + αn)rn Pn(cos θ) if r ≤ R1

T2 = ∑∞
n=1 Bn[rn − αn R(2n+1)

1 r−(n+1)]Pn(cos θ) if R1 ≤ r ≤ R2

(7.409)

Note: Black body radiation
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To be more realistic the problem should consider that both the star

and the planet emit heat as black bodies. In the case of the star, the

total power will be given by Stefan-Boltzmann’s law:

PT otal , e = εe AσT 4
sur f, e = 4π R2

e εeσT 4
sur f, e (7.410)

Where Tsur f, e is the temperature of the star surface, Re is the radius

of the star, εe the emissivity and σ the Stefan-Boltzmann constant.

Then, to find the power density μ, we will divide the total power

between the surface of a sphere of radius D, being D the distance

from the star to the planet, since the star emits radiation in an

isotropic manner.

μ = Ptotal , e

4π D2
= R2

e

D2
εeσT 4

sur f, e (7.411)

The planet also emits heat as a black body and we have the equation:

κ2

∞∑
n=1

Bn

[
nRn−1

2 − αn

R−(2n+1)
1

(n + 1)R−(n+2)
2

]
Pn(cos θ)

= fe(θ) − εpσT 4(r = R2)

⇒ κ2

∞∑
n=1

Bn

[
nRn−1

2 − αn

R−(2n+1)
1

(n + 1)r−(n+2)

]
Pn(cos θ)

= fe(θ) − εpσ

[ ∞∑
n=1

Bn

[
Rn

2 + αn

R−(2n+1)
1

R−(n+1)
2

]
Pn(cos θ)

]4

(7.412)

from which it’s complicated to determine the Bn coefficients. A linear

approximation can be done to simplify the calculations.

7.16 Pre-Heated Quarter of a Sphere

Find the distribution of temperature of a quarter of a sphere of

radius R . One of its flat surfaces is kept at T = 0 and the other two

surfaces are thermally insulated. The curved surface is pre heated

from t = −∞ to t = 0 by a heat source. The source is located at

θ = π
3

, from φ = π
4

to φ = 3π
4

and radiates heat with a power W . The

thermal conductivity is k and the thermal diffusion coefficient is χ .
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Figure 7.21

Solution:

Mathematical formulation
∂T
∂t

− χ�T = 0 (7.413)

T (r, θ , 0, t) = T (r, θ , π, t) = 0 (7.414)

∂T
∂θ

∣∣∣∣
θ= π

2

= 0; −k
∂T
∂r

∣∣∣∣
r=R

= f (θ , φ) (7.415)

|T (0, θ , φ , t)| < ∞ (7.416)

With:

f (θ , φ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if φ <
π

4
,

2W
π R2 sin(θ)

[
δ
(
θ − π

3

)]
if
π

4
≤ φ ≤ 3π

4
,

0 if φ >
3π

4
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.417)

We must solve two problems, a stationary one, u(r, θ , φ) to find the

initial conditions that we will have at t = 0 and a transient one

w(r, θ , φ , t), after the heat source has been turned off and we have

homogeneous boundary conditions.

a) Stationary problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u = 0

u(r, θ , 0) = u(r, θ , π) = 0

∂u
∂θ

∣∣∣∣
θ=

π

2

= 0; −k
∂u
∂r

∣∣∣∣
r=R

= f (θ , φ)|u(0, θ , φ)| < ∞

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.418)
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Sturm–Liouville problem

Since we have homogeneous boundary conditions for θ and φ, we

separate variables such that u(r, θ , φ) = R(r)v(θ , φ) and we have

the Sturm–Liouville problem for v(θ , φ):

�θ ,φv + μv = 0 (7.419)

v(θ , 0) = v(θ , π) = 0 (7.420)

∂v
∂θ

∣∣∣∣
θ= π

2

= 0

Separating variables once again: v(θ , φ) = �(θ)�(φ)

1

�(θ) sin(θ)

∂

∂θ

(
sin(θ)

∂�(θ)

∂θ

)
+ 1

sin2(θ)�(φ)

∂2�(φ)

∂φ2
+μ = 0

(7.421)

Sturm–Liouville problem for �(φ)⎧⎪⎨
⎪⎩

∂2�(φ)

∂φ2
+ ν�(φ) = 0

�(0) = �(π) = 0

⎫⎪⎬
⎪⎭ (7.422)

We have the eigenfunctions �(φ) = sin(mφ), with ν = m2, so we

have:

sin(θ)
∂

∂θ

(
sin(θ)

∂�(θ)

∂θ

)
+ (μ sin2(θ) − m2)�(θ) = 0 (7.423)

The solutions are Legendre polynomials �(θ) = P (m)
n (cos(θ)) and

the eigenvalues are μ = n(n + 1). Due to the boundary condition for

θ = π
2

, the only valid solutions of �(θ) will be those for which m + n
is an even number.

General solution

Replacing in the heat equation:

�u = 1

r2

∂

∂r

(
r2 ∂u(r, θ , φ)

∂r

)
+ 1

r2
�θ ,φu(r, θ , φ) = 0 (7.424)

We have:

1

r2

∂

∂r

(
r2 ∂R(r)

∂r

)
− μ

r2
R(r) = 0 (7.425)

Whose solutions are R(r) = Arn + Br−(n+1). Due to the boundary

condition for r = 0, R(r) = Arn.
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The solution for u is:

u(r, θ , φ) =
∞∑

n≥m

∞∑
m=0

Anmrn P (m)
n (cos(θ)) sin(mφ) (7.426)

Final solution

We will find the coefficients by using the boundary condition at r =
R and the orthogonality of the eigenfunctions.

−k
∂u
∂r

∣∣∣∣
r=R

= f (θ , φ) (7.427)

∞∑
n≥m

−kAnmnR(n−1) P (m)
n (cos(θ))

π

2
= 2W

π R2 sin(θ)

[
δ
(
θ − π

3

)]∫ 3π
4

π
4

sin(mφ)dφ

(7.428)

∞∑
n≥m

kAnmnR(n−1) P (m)
n (cos(θ))

π

2
= 2W

mπ R2 sin(θ)

[
δ
(
θ − π

3

)]

×
[

cos
(3πm

4

)
− cos

(πm
4

)]
(7.429)

kAnmnR(n−1) 2(n + m)!

(2n + 1)(n − m)!

π

2
=

= 2W
mπ R2

[
cos
(3πm

4

)
− cos

(πm
4

)]∫ π
2

0

P (m)
n (cos(θ))δ

(
θ − π

3

)
dθ

(7.430)

Finally we find the Anm coefficients:

Anm = 2W
π2 R2k

(2n + 1)(n − m)!

mn(n + m)!
P (m)

n

(
cos
(π

3

))

×
[

cos
(3πm

4

)
− cos

(πm
4

)]
(7.431)

It can be observed that if m is even Anm will be zero. Therefore only

the terms with odd values of n and m remain, since n + m must be

even due to the boundary conditions of the θ variable.
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We already have the initial condition from the transient problem

w(r, θ , φ , t), which can be formulated as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w
∂t

− χ�w = 0

w(r, θ , 0, t) = w(r, θ , π, t) = 0

∂w
∂θ

∣∣∣∣
θ=

π

2

= ∂w
∂r

∣∣∣∣
r=R

= 0

|w(0, θ , φ , t)| < ∞

w(r, θ , φ , 0) = u(r, θ , φ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.432)

Since we have homogeneous boundary conditions for r , θ and φ

we separate variables so that w(r, θ , φ , t) = Q(t)g(r, θ , φ) and we

formulate a Sturm–Liouville problem for g(r, θ , φ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�g + λg = 0

g(r, θ , 0) = g(r, θ , π) = 0

∂g
∂θ

∣∣∣∣
θ=

π

2

= ∂g
∂r

∣∣∣∣
r=R

= 0

|g(0, θ , φ)| < ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.433)

We once again separate variables: g(r, θ , φ) = R(r)v(θ , φ).

We already have the eigenfunctions of the angular variables and

their boundary conditions remain the same, therefore v(θ , φ) =
P (m)

n (cos(θ)) sin(mφ). Replacing in the Sturm–Liouville problem, we

get an equation for R(r)

1

r2

∂

∂r

(
r2 ∂R(r)

∂r

)
+
(
λ − μ

r2

)
R(r) = 0 (7.434)

We had previously found the values of μ to be μ = n(n + 1). The

solutions for R(r), due to the condition at r = 0, are Bessel functions

of order n + 1
2

; Rn(r) = 1√
r J n+ 1

2
(
√
λr).

The values of λ can be found using the boundary condition for r = R .

There exists an infinite set of eigenvalues for every n. If we label z′
k, n

the k-fold root of the equation d jn(z)

dz , where jn(z) = √
π/(2z) J n+ 1

2
(z)

are spherical Bessel functions. The eigenvalues can be written as

λk, n = ( z′
k, n

R

)2
.
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With this we have an equation for the temporal part:

∂Q
∂t

+ χλk, n Q = 0 (7.435)

Its solutions are proportional to e−χλk, nt .

The solutions of w will be:

w(r, θ , φ , t) =
∞∑

n≥m

∞∑
m=0

Bnmke−χλk, nt
J n+ 1

2
(
√
λk, nr)√

r
P (m)

n (cos(θ)) sin(mφ)

(7.436)

Where m + n must be even. To find the Bnm constants we will use

the initial condition and the orthogonality of the eigenfunctions.

∞∑
n≥m

∞∑
m=0

Bnmk

J n+ 1
2

(
√
λk, nr)

√
r

P (m)
n (cos(θ)) sin(mφ) =

=
∞∑

n′≥m′

∞∑
m′=0

An′m′rn′
P (m′)

n′ (cos(θ)) sin(m′φ) (7.437)

The orthogonality of the angular eigenfunctions lets us know that

n = n′, m = m′. Therefore in w only the odd values of n and m will

not be zero. For the orthogonality of the Bessel functions, we have:

Bnmk = Anm

∫ R
0

rn
J n+ 1

2
(
√
λk, nr)

√
r r2dr∣∣∣∣ J n+ 1

2
(
√
λk, nr)

∣∣∣∣2 (7.438)

The final solution is:

T (r, θ , φ , t) =
⎧⎨
⎩

u(r, θ , φ) if t ≤ 0,

w(r, θ , φ , t) if t > 0
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Chapter 8

Fourier Transform and Its Applications

To solve the problems described with PDEs and defined in infinite

or semi-infinite spaces we will apply the integral Fourier transform

(FT). The properties of the FT are detailed in Chapter 9 of [1],

whereas the details of the method to solve PDEs using the FT can be

found in Chapter 7 of [5] both of the main texts in the bibliography.

In this section, the following nomenclature will be used:

• We will use F to refer to the Fourier transform operator and F−1

to refer to the inverse Fourier transform.

• The functions to which the Fourier transform is applied will

be written between square brackets [ and ]. In this way,

F[ f (x)] will be the operation consisting in applying the Fourier

transform to the f (x) function, which returns a g(ω) function,

being ω the variable in reciprocal space (if x is the variable in

real space).

• The parentheses (and) will be used as usual, to indicate the

variable on which a function depends, which includes the

function consisting in applying the Fourier transform to another

function. So sometimes we will see: F[ f ](ω), which means

that the Fourier transform is applied to the f function (which

Mathematical Methods for Physics: Problems and Solutions
Farkhad G. Aliev and Antonio Lara
Copyright c© 2024 Jenny Stanford Publishing Pte. Ltd.
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depends on the x variable, although it is omitted for simplicity)

and the result is a function of the ω variable (this implicitly tells

us that f is a function of x).

8.1 Reciprocity of the Fourier Transform

Using the symmetric version of the Fourier transform show that the

following relation hods in real space (x)

F[ f ](x) = F−1[ f ](−x) (8.1)

In other words: the Fourier transform of a function f (ω), evaluated

at x is equal to the inverse transform of the same function f (ω)

evaluated at (−x). Based on the relation (8.1) deduce the rules of

the multiple application (several consecutive times) of the Fourier

transform.

Using the symmetric version of the Fourier transform:

F (x) = F[ f ](x) = 1√
2π

+∞∫
−∞

e−iωx f (ω)dω (8.2)

Also:

F(−x) = F−1[ f ](−x) = 1√
2π

+∞∫
−∞

eiω(−x) f (ω)dω

= {we use the kernel: e+iωx} (8.3)

F[ f ](x) = 1√
2π

+∞∫
−∞

e−iωx f (ω)dω (8.4)

Then F(−x) = F[ f ](x). Applying F−1 we have F−1[F(−x)] =
F−1F[ f ](x) = f (ω)

From here we deduce the property of reciprocity with respect to

multiple applications of the Fourier transform. We start with the

double application:

F2[F (x)] = FF[F (x)] (8.5)

Replacing F[F (x)] by f (ω) = F−1 F (−x) and changing the order of

application of F with F−1

FF[F (x)] = F−1F[F (−x)] = F (−x) (8.6)
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Then: F (x) is even only if F2[F (x)] = F (x). On the other hand,

F (x) is odd only if F2[F (x)] = −F (x). In any case the relation:

F4[F (x)] = F (x) holds.

Graphical representation of the consecutive action of the F operator

on a function defined in real space:

Figure 8.1

8.2 Fourier Transform of a Bidirectional Pulse

Using the symmetric version of the Fourier transform find the

spectrum of a bidirectional pulse:

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 (−1 ≤ x ≤ 0)

+1 (0 ≤ x ≤ 1)

0 (x < −1; x > 1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.7)

Figure 8.2
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F[ f ](ω) = 1√
2π

+∞∫
−∞

e−iωx f (x)dx = 1√
2π

⎡
⎣−

0∫
−1

e−iωx dx +
1∫

0

e−iωx dx

⎤
⎦ =

= 1√
2π

[
− (1 − eiω)

−iω
+ (e−iω − 1)

−iω

]
= 2 cos(ω) − 2

−iω
√

2π

= i

√
2

π

cos(ω) − 1

ω
(8.8)

The Fourier transform of an antisymmetric function is an imaginary

function because:

e−iωx = cos(ωx) − i sin(ωx) (8.9)

Then, the integral cancels out 1√
2π

+∞∫
−∞

cos(ωx) f (x)dx and we are

left with:−i
+∞∫
−∞

sin(ωx) f (x)dx

Graphical representation (schematic only for positive frequencies)

of the square of the modulus of the Fourier transform (spectral

power):

Figure 8.3

8.3 Loss Spectrum of a Relaxator

Find and analyze the Fourier transform of a current pulse with the

form of a relaxator: ⎧⎨
⎩

f (t) = e−αt (t > 0)

f (t) = 0 (t < 0)

⎫⎬
⎭ (8.10)
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The obtained imaginary part represents the energy losses. Show a

graph of the losses of the relaxator during a period of the excitation

as a function of frequency.

We use the symmetric form of the Fourier transform:

F[ f ](ω) = 1√
2π

+∞∫
−∞

e−iωt f (t)dt = 1√
2π

+∞∫
0

e−αte−iωtdt

= 1√
2π

+∞∫
0

e−(α+iω)tdt (8.11)

The integral is solved:

F[ f ](ω) = − 1

α + iω
e−(α+iω)t

∣∣∣∣
+∞

0

= 1

α + iω
= 1

α + iω
α − iω
α − iω

= α

α2 + ω2
− i

ω

α2 + ω2
(8.12)

The value of the imaginary part during a period (T ) is:

ω

α2 + ω2
· 1

T
= 1

2π

ω2

α2 + ω2
(8.13)

We have the corresponding graph (only positive frequencies are

shown): 1
2π

ω2

α2+ω2 vs. ω

Figure 8.4

8.4 Inverse Fourier Transform of a Function

Find the inverse Fourier transform F−1[ f (ω)] of the following

function which is defined in the frequency domain.

f (ω) = 1

ω2 + 4ω + 13
(8.14)
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We first note that:

ω2 + 4ω + 13 = (ω + 2)2 + 9 (8.15)

Using Fourier transform tables we know:

F−1

[
2a

ω2 + a2

]
= e−a|t| (8.16)

Then:

F−1

[
1

ω2 + 32

]
= 1

6
e−3|t| (8.17)

Here we have also used the rule: F−1 [aF (ω)] = aF−1 [F (ω)] and we

have multiplied and divided the expression by a factor 6 to be able

to use the expression of the transform from the tables with a = 3.

Applying the displacement in reciprocal space to ω0 = 2, (using the

ruleF−1 [F (ω − ω0)] = f (t)eiω0t) we obtain the answer for our case:

F−1

[
1

ω2 + 4ω + 9

]
= 1

6
e−2i te−3|t| (8.18)

8.5 Fourier Transform of the Product of Two
Functions

Show that the Fourier transform of the product of two functions

is equal to the convolution between their respective Fourier

transforms.

We first recall the definition of convolution between two functions

f ∗ g :

[ f ∗ g](x) = 1√
2π

+∞∫
−∞

f (x − t)g(t)dt (8.19)

Furthermore, the convolution has the following reciprocity prop-

erty:

[ f ∗ g](x) = 1√
2π

+∞∫
−∞

f (ξ)g(x − ξ)dξ = [g ∗ f ](x) (8.20)

We will use the symmetric form of the Fourier transform:

F[ f ](k) = 1√
2π

+∞∫
−∞

e−ikx f (x)dx (8.21)
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Applying the Fourier transform to the product of two functions f · g:

F[ f · g] = 1√
2π

+∞∫
−∞

e−ikx f (x)g(x)dx = {
presenting g(x) with F-1of G(k)

}

= F[ f · g] = 1√
2π

+∞∫
−∞

dxe−ikx f (x)

⎡
⎣ 1√

2π

+∞∫
−∞

eik′x G(k′)dk′

⎤
⎦

= {Changing the order of integration}

= 1√
2π

+∞∫
−∞

G(k′)dk′

⎡
⎣ 1√

2π

+∞∫
−∞

e−ikx f (x)eik′x dx

⎤
⎦

= 1√
2π

+∞∫
−∞

G(k′)dk′

⎡
⎣ 1√

2π

+∞∫
−∞

f (x)e−i(k−k′)x dx

⎤
⎦

= 1√
2π

+∞∫
−∞

G(k′)F (k − k′)dk′ = [G ∗ F ](k) (8.22)

In the end we get:

F[ f · g] = [G(k) ∗ F (k)] (8.23)

In a similar manner it can be shown that:

F[ f ∗ g] = F (k) · G(k) (8.24)

Applying F−1 to the relation (8.23) we get:

f · g = F−1[G(k) ∗ F (k)] (8.25)

Finally, applying F−1 to the relation (8.24) we get:

[ f ∗ g] = F−1[F (k) · G(k)] (8.26)

8.6 Example of the Calculation of the Fourier
Transform of a Product of Two Functions
from the Convolution Operation

From the relation of the Fourier transform of the product of two

functions and the convolution operation, find the Fourier transform
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of a rectangular pulse of amplitude 1 in the temporal range (−1 <

t < 1) with a periodic modulation cos (ω0t).

Figure 8.5

We first recall the definition of the convolution between two

functions f ∗ g :

[ f ∗ g](x) =
+∞∫

−∞
f (x − t)g(t)dt (8.27)

We have previously obtained the following relation (the numeric

factor depends on how the convolution is defined):

F[ f (x) · g(x)] = 1√
2π

[F ∗ G](k) (8.28)

Rewriting this expression in terms of the Fourier transform to pass

from the time domain to the frequency domain:

F[ f (t) · g(t)] = 1√
2π

[F ∗ G](ω) = 1√
2π

+∞∫
−∞

F (ω′)G(ω − ω′)dω′

(8.29)

In our case:

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (t < −1)

1 (−1 < t < +1)

0 t > 1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.30)

g(t) = {cos(ω0t) (−∞ < t < +∞)} (8.31)
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F[cosω0t] = 1√
2π

+∞∫
−∞

[cosω0t]e−iωtdt = 1√
2π

1

2

+∞∫
−∞

[e−iω0t + e+iω0t]e−iωtdt

= 1

2
√

2π

+∞∫
−∞

e+i(−ω0)te−iωtdt + 1

2
√

2π

+∞∫
−∞

eiω0te−iωtdt

= 1

2
√

2π
[δ(ω + ω0) + δ(ω − ω0)] (8.32)

On the other hand, the Fourier transform of the rectangular pulse

f (t) is well known:

F[ f (t)] = 1√
2π

+1∫
−1

e−iωtdt = 1

(−iω)
√

2π
[e−iω−e+iω] = 2√

2π

sin(ω)

ω

(8.33)

We need to use the definition of the Fourier transform of the product

of functions, finding the convolution:

F[cos(ω0t) · f (t)] = 1√
2π

1

2
√

2π

2√
2π

+∞∫
−∞

sin(ω′)
ω′ [δ([ω + ω0] − ω′)

+δ([ω − ω0] − ω′)]dω′ =
= 1

2π
√

2π

[
sin(ω + ω0)

ω + ω0

+ sin(ω − ω0)

ω − ω0

]
(8.34)

8.7 Parseval Theorem Formulated for Two
Different Functions

Show that the integral of the product of a function f (x) and a

different conjugated function g∗(x) is equal to the integral of the

product between the corresponding Fourier transforms (Parseval

theorem applied to two different functions):

+∞∫
−∞

f (x)g∗(x)dx =
+∞∫

−∞
F (k)G∗(k)dk (8.35)

where F (k); G(k) are the Fourier transforms of the functions

f (x); g(x).
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We will use the asymmetric definition of the Fourier transform to

calculate:

g∗(x) =
+∞∫

−∞
G∗(k)eikx dk (8.36)

Then:

+∞∫
−∞

f (x)g∗(x)dx =
+∞∫

−∞
f (x)

+∞∫
−∞

G∗(k)eikx dkdx =
+∞∫

−∞

+∞∫
−∞

G∗(k) f (x)eikx dxdk =

=
+∞∫

−∞
dkG∗(k)

+∞∫
−∞

f (x)eikx dx =
+∞∫

−∞
G∗(k)F (k)dk (8.37)

In the particular case g∗(x) = f ∗(x) we arrive at the well-known

Parseval identity:

+∞∫
−∞

f (x) f ∗(x)dx =
+∞∫

−∞
| f (x)|2 dx =

+∞∫
−∞

|F (k)|2 dk (8.38)

8.8 Wiener–Khinchin (WK) Theorem

Show that the spectral density of a signal (in power) is the Fourier

transform of the autocorrelation of this signal.

Before explaining the solution, spectral power of a signal will be

defined. We know that the spectral power of an electromagnetic,

sound, etc., signal is proportional to the square of the modulus of

its amplitude.

Parseval identity applied to Fourier series indicates that the total

power of a signal is proportional to the sum of the squares of the

amplitudes of all its harmonics.

If the accumulated power in the dω interval is |g(ω)|2dω, then

|g(ω)|2 will be the spectral density of a function f (t).

This problem considers the method to calculate the spectral power

from the autocorrelation of a function.
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Formal solution

We will use the symmetric version of the Fourier transform:

1

2π

+∞∫
−∞

|g(ω)|2 e−iωtdω = 1

2π

+∞∫
−∞

g(ω)g∗(ω)e−iωtdω (8.39)

Note: as can be seen, in this case we define the direct transform as

the transition from frequency the domain to the time domain. We

do this to remark the freedom that there exists in the definition of

the Fourier transform. Depending on this definition the form of the

theorems of convolution and correlation can change.

Then:

1

2π

+∞∫
−∞

g∗(ω)g(ω)e−iωtdω = (8.40)

{g(ω) is written as a Fourier transform}

=
+∞∫

−∞

dω
2π

g∗(ω)e−iωt

+∞∫
−∞

f (t′)eiωt′
dt′ = (8.41)

{Exchanging the order of integration:}
+∞∫

−∞
dt′ f (t′)

⎡
⎣ +∞∫
−∞

dω
2π

g(ω)e−iω(t′−t)

⎤
⎦

∗

=
+∞∫

−∞
dt′ f (t′)[ f (t′ − t)]∗

(8.42)

Then:

1

2π

+∞∫
−∞

|g(ω)|2 e−iωtdω =
+∞∫

−∞
dt′ f (t′)[ f (t′ − t)]∗ (8.43)

Is the autocorrelation of the f (t) function. Generalizing this result

to the cross correlation between two different functions f (t) and

g(t) we can deduce the analogous relation to the theorem of

convolution—specifically that the cross correlation between two

functions equals the Fourier transform of the product of their

corresponding Fourier transforms.

[ f  g] = F[F ∗(ω) · G(ω)] (8.44)

Applying F−1 to both sides of the relation of autocorrelation we get

the Wiener–Khinchin theorem.
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F−1

⎡
⎣ 1

2π

+∞∫
−∞

|g(ω)|2 e−iωtdω

⎤
⎦ = |g(ω)|2 = g(ω)g∗(ω)

= F−1

⎡
⎣ +∞∫

−∞

dt′ f (t′)[ f (t′ − t)]∗

⎤
⎦ (8.45)

This is an important relation which is employed in signal processing

in many electronic devices, as those which measure the spectral

power of signals such as noise, vibrations, etc. In the case of real

signals, the W-K theorem becomes:

F−1

⎡
⎣ +∞∫
−∞

dt′ f (t′)[ f (t′ − t)]∗

⎤
⎦ = F−1

⎡
⎣ +∞∫
−∞

dt′ f (t′)[ f (t′ − t)]

⎤
⎦ =

= |g(ω)|2 = g(ω)g∗(ω) = g(ω)g(−ω)

(8.46)

The change of sign is due to the antisymmetric character of the

imaginary part of the Fourier transform of a real signal.

8.9 Fourier Transform of an Oscillation
Modulated by a Gaussian Pulse

Find the Fourier transform g(ω) of the following function f (t) =
cos(ω0t) · e−( t

τ
)2

.

Present the results graphically.

Figure 8.6
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We will use the symmetric form of the Fourier transform:

g(ω) = 1√
2π

+∞∫
−∞

e−iωt f (t)dt = 1√
2π

+∞∫
−∞

e−iωt cos(ω0t) · e−( t
τ )2

dt =

= 1

2
√

2π

+∞∫
−∞

e−iωte−iω0t · e−( t
τ )2

dt + 1

2
√

2π

+∞∫
−∞

e−iωteiω0t · e−( t
τ )2

dt =

= 1

2
√

2π

+∞∫
−∞

e−i(ω+ω0)t · e−( t
τ )2

dt + 1

2
√

2π

+∞∫
−∞

e−i(ω−ω0)t · e−( t
τ )2

dt =

= 1

2
F[ f ](ω + ω0) + 1

2
F[ f ](ω − ω0) (8.47)

From integrals tables we have:

F[ f ](ω) = 1√
2π

+∞∫
−∞

e−iωt · e−( t
τ

)2

dt = τ√
2

e−( ωτ
2

)2

(8.48)

Then

g(ω) = τ√
2

⎧⎨
⎩e−

(
(ω+ω0)τ

2

)2

+ e−
(

(ω−ω0)τ

2

)2

2

⎫⎬
⎭ (8.49)

Schematic graphic representation of the result:

Figure 8.7
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8.10 Autoconvolution of a Rectangular Pulse

Find the convolution of the following rectangular pulse with itself.

Use Fourier transforms from tables to facilitate calculations. Present

the result graphically.

Figure 8.8

Mathematical description of the pulse:

f (t) =
⎧⎨
⎩

1 |t| ≤ 1

0 |t| > 1

⎫⎬
⎭ (8.50)

The Fourier transform of this pulse is:

F (ω) = F[ f ](ω) = [F symmetrical] = 1√
2π

+1∫
−1

e−iωtdt

= 1√
2π

e−iω − eiω

iω
=
√

2

π

sin(ω)

ω
(8.51)

To find the convolution between two functions we will use the

convolution theorem in the following form:

[ f ∗ g] = F−1[F (ω) · G(ω)] (8.52)

In terms of the time and frequency variables we can write:

1√
2π

+∞∫
−∞

f (t′)g(t − t′)dt′ = F−1[F (ω)G(ω)] (8.53)

Since we seek the convolution of the function with itself the relation

becomes:

1√
2π

+∞∫
−∞

f (t′) f (t − t′)dt′ = F−1[F (ω)F (ω)] (8.54)
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We know that F (ω) =
√

2
π

sin(ω)

ω
. Then:

1√
2π

+∞∫
−∞

f (t′) f (t − t′)dt′ = F−1
[

(F (ω))2
] = 1√

2π

+∞∫
−∞

2

π

[
sin(ω)

ω

]2

e+iωtdω =

(8.55)

From integrals tables:⎧⎪⎨
⎪⎩
√

2

π

(
1 − |t|

2

)
|t| ≤ 2

0 |t| > 2

⎫⎪⎬
⎪⎭ (8.56)

Graphic representation of the result:

Figure 8.9

Note: the operation of convolution between two functions f (t)∗g(t)

must not be mixed up with the cross correlation (CC) f (t)  g(t). In

a way the correlation is conceptually simpler than the convolution

since the two functions in a correlation are not conceptually

different as can be those in a convolution. In the correlation the

functions are in general different or they represent data sets that can

contain similarities. We investigate their “correlation” by comparing

them directly, by superposing them, with one of them shifted either

left or right.

The definition of crossed correlation between the f (t) and g(t)

functions is:

f (t)  g(t) = 1√
2π

+∞∫
−∞

f ∗(t′)g(t + t′)dt′ (8.57)
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Where f ∗(t) is the conjugated of f (t). The relation between CC and

convolution is as follows:

f (t)  g(t) = f ∗(−t) ∗ g(t) (8.58)

Precisely:

f ∗(−t) ∗ g(t) = 1√
2π

+∞∫
−∞

f ∗(−t′)g(t − t′)dt′ (8.59)

Changing variables: (−t′ → τ ) and exchanging the limits of

integration we get the result we were looking for:

f ∗(−t) ∗ g(t) = − 1√
2π

−∞∫
+∞

f ∗(τ )g(t + τ )dτ

= 1√
2π

+∞∫
−∞

f ∗(τ )g(t + τ )dτ = f (t)  g(t) (8.60)

Note that the CC operation, unlike the convolution, is not commuta-

tive:

f (t)  g(t) �= g(t)  f (t) (8.61)

Note: the case of the cross correlation of two complex functions

is considered in the following website: http://mathworld.wolfram.

com/Cross-CorrelationTheorem.html

8.11 Fourier Transform of a Bipolar Triangular
Pulse

Find the Fourier transform of the pulse shown in the figure. How is

the Fourier transform of the convolution of the signal with itself?

Solution:

We describe mathematically the function:

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − x (0 < x ≤ 1)

−1 − x (−1 ≤ x < 0)

0 (|x| > 1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.62)

http://www.mathworld.wolfram.com
http://www.mathworld.wolfram.com
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Figure 8.10

Alternatively:

f (x) =
⎧⎨
⎩

sign(x) − x (|x| < 1)

0 (|x| > 1)

⎫⎬
⎭ (8.63)

F[ f (x)] = 1√
2π

+∞∫
−∞

f (x)e(−iωx)dx = 1√
2π

+∞∫
−∞

f (x)[cos(ωx) − i sin(ωx)]

(8.64)

Since f (x) is an odd function and we integrate between symmetric

limits:

− i√
2π

+∞∫
−∞

f (x) sin(ωx)dx

= − i√
2π

⎧⎨
⎩

0∫
−1

(−1 − x) sin(ωx)dx +
1∫

0

(1 − x) sin(ωx)dx

⎫⎬
⎭ (8.65)

∫
x sin(ωx)dx = − x cos(ωx)

ω
+ sin(ωx)

ω2
(8.66)

Then:
0∫

−1

(−1 − x) sin(ωx)dx =
[

cos(ωx)

ω
+ x cos(ωx)

ω
− sin(ωx)

ω2

]0

−1

= 1

ω
− sin(ω)

ω2

(8.67)

On the other hand:
1∫

0

(1 − x) sin(ωx)dx = 1

ω
− sin(ω)

ω2
(8.68)



April 5, 2023 0:23 JSP Book - 9in x 6in Main

482 Fourier Transform and Its Applications

Then:

F[ f (x)] = i

√
2

π

[
sin(ω) − ω

ω2

]
(8.69)

The convolution between two equal signals is:

[ f (t) ∗ f (t)](τ ) = 1√
2π

+∞∫
−∞

f (τ − t) f (t)dt (8.70)

We will use the version of the theorem of convolution which relates

the Fourier transform of the convolution of two signals to the

product of their Fourier transforms. This relation can be rewritten

in terms of the spectral (ω) and temporal (τ ) variables as:

F[[ f (t) ∗ f (t)](τ )] = F (ω) · F (ω) (8.71)

where F (ω) is the Fourier transform of [ f (t)]. In our particular case:

F[[ f (t) ∗ f (t)](τ )] = F (ω) · F (ω) = − 2

π

[
sin(ω) − ω

ω2

]2

(8.72)

8.12 Fourier Transform of a Rectangular Pulse

Using the symmetric version of the Fourier transform find the

spectrum of a triangular pulse:

f (x) =
{

1 − |x| (−1 ≤ x ≤ 1)

0 (x < −1; x > 1)

}
(8.73)

Figure 8.11
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Using the symmetric Fourier transform:

F[ f ](ω) = 1√
2π

+∞∫
−∞

e−iωx f (x)dx = 1√
2π

+1∫
−1

(1 − |x|)e−iωx dx

(8.74)

We will use the fact that the transform is applied on a symmetric

function. Since e−iωx = cos(ωx) − i sin(ωx)

1√
2π

+1∫
−1

(1 − |x|)[cos(ωx) − i sin(ωx)]dx (8.75)

i√
2π

+1∫
−1

(1 − |x|) sin(ωx)dx = 0 (8.76)

The integral is composed of the sum of a symmetric function and an

antisymmetric one. The limits are symmetric.

1√
2π

+1∫
−1

(1 − |x|) cos(ωx)dx = 2√
2π

1∫
0

(1 − |x|) cos(ωx)dx (8.77)

Is the integral of a symmetric function between symmetric limits.

This integral can be solved by parts with the change of variables:

{u = (1 − |x|); dv = d[sin(ωx)]} (8.78)

And the integral is expressed as:

∣∣∣∣ 2

ω
√

2π
(1 − |x|) × [sin(ωx)]

∣∣∣∣
1

0

+ 2

ω
√

2π

1∫
0

sin(ωx)dx =

= 2

ω
√

2π

1∫
0

sin(ωx)dx = −
√

2

π

∣∣∣∣cos(ωx)

ω2

∣∣∣∣
1

0

= −
√

2

π

cos(ω) − 1

ω2
=
√

2

π

1 − cos(ω)

ω2
(8.79)

The graphic representation of the result is shown next (only for

positive frequencies).
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Figure 8.12

8.13 Fourier Transform of the Convolution of a
Triangular Pulse with Itself

Find the Fourier transform of the convolution of the triangular pulse

shown in the figure below with itself.

f (x) =
⎧⎨
⎩

1 − |x| (−1 ≤ x ≤ 1)

0 (x < −1; x > 1)

⎫⎬
⎭ (8.80)

Figure 8.13

We know that, by definition, the convolution between two functions

is the inverse Fourier transform of the product of their Fourier

transforms, which without normalization is:

f ∗ g[x] =
+∞∫

−∞
f (x − t)g(t)dt = F−1[F (k)G(k)] (8.81)
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Appling the Fourier transform to this relation an supposing that f =
g, the Fourier transform of the auto-convolution is:

F[ f ∗ f [x]] = F

⎡
⎣ +∞∫
−∞

f (x − t) f (t)dt

⎤
⎦ = FF−1[F (k)F (k)] = [F (k)]2

(8.82)

The Fourier transform of the triangular pulse is:

F (k) =
√

2

π

1 − cos(k)

k2
(8.83)

Furthermore we can simplify it using the relation:

1 − cos(k) = 2 sin2

(
k
2

)
(8.84)

F (k) =
√

8

π

sin2
( k

2

)
k2

(8.85)

The solution is:

F

⎡
⎣ +∞∫
−∞

f (x − t) f (t)dt

⎤
⎦ = 8

π

[
sin2

( k
2

)
k2

]2

(8.86)

Figure 8.14

Note: the next figure indicates the schematic form of the convolution

of a triangular pulse with itself (this is, proportional to inverse

Fourier transform of sin4(x/2)]/ x4):
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Figure 8.15

8.14 Fourier Transform of a Shifted Rectangular
Pulse with a Sine Modulation

Find the Fourier transform of a modulated rectangular pulse, shifted

in time to t0. Before the shift the pulse was defined in a temporal

range (-τ < t < τ ), with an amplitude I/2τ (the surface of the total

pulse is I ) and with a periodic modulation (sinω0t). Consider the

case of the shift of the pulse without shifting the modulation.

Figure 8.16

Mathematical description of the pulse:

fm(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I
2τ

(t0 − τ < t < t0 + τ

0 (t > t0 + τ )

0 (t < t0 − τ )

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

× sin(ω0t) = f (t) × sin(ω0t) (8.87)
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We first use the Fourier transform of a shifted rectangular pulse

without modulation.

F[ f (t − t0)] = 1√
2π

+∞∫
−∞

f (t − t0)e−iωtdt = {t′ = t − t0)
}

= 1√
2π

+∞∫
−∞

f (t′)e−iω(t′+t0)dt′ =

e−iωt0 F (ω) = I√
2π

e−iωt0
sin(ωτ )

ωτ
(8.88)

The product of f (t) by sin(ω0t) is equivalent to:

a) Shifting the Fourier transform to (+ω0)

b) Shifting the Fourier transform to (−ω0)

c) Subtract these shifted Fourier transforms and divide by 2i .

Using this rule we find:

F[ fm(t)]= I

i
√

2π

[
e−i(ω+ω0)t0

sin[(ω + ω0)τ ]

(ω + ω0)τ
− e−i(ω−ω0)t0

sin[(ω − ω0)τ ]

(ω − ω0)τ

]
(8.89)

The strictly mathematical method consists in using the theorem

of convolution, seeking the Fourier transform of fm(t) = f (t) ×
sin(ω0t) as the transform of the product of two functions from the

operation of convolution between the respective Fourier transforms.

F[ f (t − t0) · g(t)] = F (ω) ∗ G(ω) =
+∞∫

−∞
F (ω − η)G(η)dη (8.90)

with f (t) previously defined and g(t) = sin(ω0t). Using for F (ω)

the previously obtained result (8.88), as well as G(ω) = i
√

π
2

[δ(ω +
ω0) − δ(ω − ω0)], we arrive at the previous result (8.89).

8.15 Case Study: Solution of a PDE Using the
Fourier Transform: Case 1

Using the Fourier method, solve the following partial derivative

equation with initial condition:
∂u
∂t

− t2 ∂u
∂x

= 0 (8.91)
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u(x , 0) = f (x) = cos(x) (8.92)

The x variable is defined in the range (−∞ < x < +∞)

First the Fourier transform is applied to the equation to be solved.

We will use the symmetric form of the transform.

We define a new function v(k, t) = F[u] = 1√
2π

+∞∫
−∞

u(x , t)e−ikx dx

Applying the property of the Fourier transform of the derivative of a

function:

∂

∂t
v(k, t) − t2(ik)v(k, t) = 0 (8.93)

and with the initial condition:

v(k, t = 0) = F[cos(x)] = F (k) (8.94)

We arrive at an ordinary differential equation:

dv(k, t)

v(k, t)
= (ik)t2dt = d

[
ikt3

3

]
(8.95)

Then:

v(k, t) = C (k)e
ikt3

3 (8.96)

being C (k) an unknown function which is determined by the initial

conditions (t = 0).

Since v(k, 0) = F (k) we get the solution:

v(k, t) = F (k)e
ikt3

3 (8.97)

To find the final solution we must apply the inverse transform to

v(k, t):

u(x , t) = 1√
2π

+∞∫
−∞

v(k, t)eikx dk = 1√
2π

+∞∫
−∞

F (k)e
ikt3

3 eikx dk =

= 1√
2π

+∞∫
−∞

F (k)eik
(

x+ t3

3

)
dk = cos

(
x + t3

3

)
(8.98)

since

u(x , 0) = 1√
2π

+∞∫
−∞

F (k)eikx dk = cos(x) (8.99)
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Note: An alternative method to find the inverse transform is to use

the particular value of the function F (k).

From Fourier transform tables we know:

F (k)=F[cos(x)]= 1√
2π

+∞∫
−∞

cos(x)e−ikx dx =
√

π

2
[δ(k−1)+δ(k+1)]

(8.100)

Then:

u(x , t) = 1√
2π

+∞∫
−∞

F (k)e
ikt3

3 eikx dk =

= 1

2

+∞∫
−∞

[δ(k − 1) + δ(k + 1)]eik(x+ t3

3
)dk

= e−i(x+ t3

3
) + e+i(x+ t3

3
)

2
= cos

(
x + t3

3

)
(8.101)

8.16 Case Study: Solution of a PDE Using the
Fourier Transform: Case 2

Solve the wave equation with known initial conditions using the

Fourier method. Show the solution as an inverse Fourier transform.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

= c2
∂2u
∂x2

u(x , 0) =
√

2

π

sin(x)

x
∂u
∂t

∣∣∣∣
t=0

= 0

−∞ < x < ∞; t > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.102)

We keep (t) constant and find the Fourier transform of the wave

equation with respect to x .

∂2

∂t2
F[u](ω, t) = −c2ω2F[u](ω, t) (8.103)

From the first initial condition:
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F[u](ω, 0) = F

[√
2

π

sin(x)

x

]
(ω) = f (ω) =

{
1 |ω| < 1

0 |ω| > 1

}
(8.104)

Furthermore, from the second initial condition d
dtF[u](ω, 0) = 0.

The general solution of (8.103) is that of a harmonic oscillator.

F[u](ω, t) = A(ω) sin(cωt) + B(ω) cos(cωt). From the second initial

condition A(ω) = 0 and from the first one, B(ω) = f (ω). Then

F[u](ω, t) = f (ω) cos(cωt). In this way, using the inverse Fourier

transform the solution will be:

u(x , t) = F−1[ f (ω) cos(cωt)] = 1√
2π

+∞∫
−∞

[ f (ω) cos(cωt)]e(i xω)dω =

= 1√
2π

+1∫
1

cos(cωt)e(i xω)dω (8.105)

8.17 Case Study: Solution of a PDE Using the
Fourier Transform: Case 3

Find the solution to:

d2 X (t)

dt2
− a2 X (t) = f (t) (8.106)

applying the Fourier transform.

Notes:

a) We need to impose the condition that the solution satisfies

f (t = ±∞) → 0 to ensure the existence of the Fourier

transform of the functions we’ll consider.

b) The solution requires the use of the definition of the Fourier

transform of the product of two functions, as well as the use of

Fourier transform tables.

Equation to be solved:

d2 X (t)

dt2
− a2 X (t) = f (t) (8.107)

To solve the problem we will suppose that: F[X (t)] = G(ω) and

F[ f (t)] = F (ω). Applying the Fourier transform operator to the
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equation:

F

[
d2 X (t)

dt2
− a2 X (t) = f (t)

]
(8.108)

or

−ω2G(ω) − a2G(ω) = F (ω) (8.109)

−[ω2 + a2]G(ω) = F (ω) (8.110)

G(ω) = − F (ω)

[ω2 + a2]
(8.111)

We now use Fourier transform tables:

F
[
e(−a|t|)] = 2a

[ω2 + a2]
(8.112)

Then, defining a new function Y (ω) we can write:

Y (ω) = − 1[
ω2 + a2

] = F[y(t)] = F

[
− 1

2a
e(−a|t|)

]
(8.113)

We will now use the convolution theorem, which relates the Fourier

transform of the product of two functions to a convolution. In the

present case we can write:

G(ω) = Y (ω)F (ω) = F[y(t) ∗ f (t)] (8.114)

where an asterisk indicates the convolution operation between the

functions y(t) and f (t).

Think to find the solution:

X (t) = F−1[G(ω)] = F−1[Y (ω)F (ω)]

= F−1F[y(t) ∗ f (t)] = [y(t) ∗ f (t)] (8.115)

(that is, the solution of the problem is the convolution between the

functions y(t) and f (t)). Using the definition of the convolution (not

normalized) we get the solution for the displacement of the forced

relaxator:

X (t) = − 1

2a

+∞∫
−∞

e(−a|t−τ |) f (τ )dτ (8.116)

Note: the solution could describe the movement of an object in

one dimension in a medium with a friction proportional to the

displacement under an external random force.
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8.18 Case Study: Solution of a PDE Using the
Fourier Transform: Case 4

Using the Fourier method, solve the following PDE with initial

condition:

∂u
∂t

− t3 ∂
2u

∂x2
= 0

u(x , 0) = f (x) = sin(x)

The x variable is defined in the range (−∞ < x < +∞)

We first apply the Fourier Transform to the equation to be solved:

We will use the symmetric version of the transform.

We define a new function v(k, t) = F[u] = 1√
2π

+∞∫
−∞

u(x , t)e−ikx dx

Applying the property of the Fourier Transform of the derivative of

a function:

∂

∂t
v(k, t) + t3k2v(k, t) = 0 (8.117)

and with the initial condition:

v(k, t = 0) = F[sin(x)] = F (k) (8.118)

We get to an ordinary differential equation:

dv(k, t)

v(k, t)
= −k2t3dt = d

[−k2t4

4

]
(8.119)

Then:

v(k, t) = C (k)e
−k2t4

4 (8.120)

being C (k) an unknown function that is determined by the initial

conditions (t = 0).

Since v(k, 0) = F (k) we get the solution:

v(k, t) = F (k)e
−k2t4

4 (8.121)

From the tables of Fourier Transforms we know:

F (k)=F[sin(x)]= 1√
2π

+∞∫
−∞

sin(x)e−ikx dx = i

√
π

2
[δ(k−1)−δ(k+1)]

(8.122)
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To find the final solution we must apply the inverse Fourier

Transform to v(k, t):

u(x , t) = 1√
2π

+∞∫
−∞

F (k)e
−k2t4

4 eikx dk =

= i
2

+∞∫
−∞

[δ(k − 1) − δ(k + 1)]e
(

ikx−k2 t4

4

)
dk = e

(
− t4

4

)
sin(x)

(8.123)

8.19 Case Study: Solution of a PDE Using the
Fourier Transform: Case 5

Using the Fourier method, solve the next PDE with initial condition:

∂u
∂t

+ sin(t)
∂u
∂x

= 0

u(x , 0) = f (x) = sin(x)

The x variable is defined in the range (−∞ < x < +∞)

We first apply the Fourier Transform to the equation to be solved.

We will use the symmetric version of the transform.

We define a new function v(k, t) = F[u] = 1√
2π

+∞∫
−∞

u(x , t)e−ikx dx

Applying the property of the Fourier Transform of the derivative of

a function:

∂

∂t
v(k, t) + sin(t)(ik)v(k, t) = 0 (8.124)

and with the initial condition:

v(k, t = 0) = F[sin(x)] = F (k) (8.125)

We arrive at an ordinary differential equation:

dv(k, t)

v(k, t)
= −(ik) sin(t)dt = d [ik cos(t)] (8.126)

Then:

v(k, t) = C (k)eik cos(t) (8.127)
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where C (k) an unknown function that is determined thanks to the

initial conditions (t = 0). Since v(k, 0) = F (k) we get the solution:

C (k) = F (k)

eik
(8.128)

v(k, t) = F (k)eik(cos(t)−1) (8.129)

From the Fourier Transforms tables, we know:

F (k)=F[sin(x)]= 1√
2π

+∞∫
−∞

sin(x)e−ikx dx = i

√
π

2
[δ(k−1)−δ(k+1)]

(8.130)

To find the final solution we must apply the inverse transform to

v(k, t):

u(x , t) = 1√
2π

+∞∫
−∞

F (k)eik(cos(t)−1)eikx dk =

= i
2

+∞∫
−∞

[δ(k − 1) − δ(k + 1)]eik(x+cos(t)−1)dk

= sin(cos(t) + x − 1)) (8.131)

8.20 Case Study: Solution of a PDE Using the
Fourier Transform: Case 6

Using the Fourier method, solve the next PDE with initial condition:

∂u
∂t

+ e−t ∂
2u

∂x2
= 0

u(x , 0) = f (x) = e−|x|

The x variable is defined in the range (−∞ < x < +∞)

We first apply the Fourier Transform to the equation to be solved:

We will use the symmetric version of the transform.

We define a new function v(k, t) = F[u] = 1√
2π

+∞∫
−∞

u(x , t)e−ikx dx
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Applying the property of the Fourier Transform of the derivative of

a function:

∂

∂t
v(k, t) + e−t(−k2)v(k, t) = 0 (8.132)

and with the initial condition we get from The Fourier Transforms

tables:

v(k, t = 0) = F[ f (x)] = F (k) =
√

2

π

1

1 + k2
(8.133)

We arrive at an ordinary differential equation:

dv(k, t)

v(k, t)
= −(k2)e−tdt (8.134)

Then:

v(k, t) = C (k)e(−k2e−t) (8.135)

where C (k) an unknown function that is determined thanks to the

initial condition (t = 0).

Since v(k, 0) = F (k) we get the solution:

v(k, 0) = C (k)e(−k2) =
√

2

π

1

1 + k2
(8.136)

v(k, t) = 1

e(−k2)

√
2

π

1

1 + k2
e(−k2e−t) (8.137)

To find the final solution we must apply the inverse transform to

v(k, t):

u(x , t) = 1√
2π

+∞∫
−∞

C (k)e(−k2e−t)eikx dk (8.138)

8.21 Case Study: Solution of the Diffusion
Equation in an Infinite String with
Convection Using the Fourier Transform

Solve the diffusion with convection problem for a 1-D infinite system

(the additional term is due to the mass transfer) using the Fourier

method.
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(i) Find the variation of the concentration with time u(x , t),

considering that the distribution of the concentration at t = 0 is

u(x , 0) = f (x).

(ii) Consider the case of an initial point like distribution: u(x , 0) =
δ(x).

Note: the equation of convection-diffusion is basically the diffusion

equation, modified with an inhomogeneous term, proportional

to the velocity c = Const, multiplied by the gradient of the

concentration, i.e., c ∂u
∂x .

We formulate the problem:⎧⎪⎪⎨
⎪⎪⎩

∂u(x , t)

∂t
= k

∂2u(x , t)

∂x2
+ c

∂u
∂x

(−∞ < x < ∞); k, c > 0u(x , 0) = f (x)

f (±∞) = 0

⎫⎪⎪⎬
⎪⎪⎭

(8.139)

We apply the Fourier transform in order to pass the diffusion

equation and the initial condition to reciprocal space (x → ω).

F

[
∂2u(x , t)

∂x2

]
= −ω2U (ω, t) (8.140)

F

[
∂u(x , t)

∂t

]
= d

dt
U (ω, t) (8.141)

F

[
∂u(x , t)

∂x

]
= iωU (ω, t) (8.142)

F [ f (x)] = F (ω) (8.143)

⎧⎪⎨
⎪⎩

dU (ω, t)

dt
− icωU (ω, t) + kω2U (ω, t) = 0

U (ω, 0) = F (ω)

⎫⎪⎬
⎪⎭ (8.144)

⎧⎪⎨
⎪⎩

dU (ω, t)

dt
+ [kω2 − icω]U (ω, t) = 0

U (ω, 0) = F (ω)

⎫⎪⎬
⎪⎭ (8.145)
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We seek the solution in the form U (ω, t) = A(ω)eαt

dU (ω, t)

dt
= A(ω)αeαt (8.146)

The equation to be solved is:

A(ω)αeαt + [kω2 − icω]A(ω)eαt = 0 (8.147)

α = −(kω2 − icω) (8.148)

U (ω, t) = A(ω)e(−[kω2−icω]t) (8.149)

Applying the initial condition:

U (ω, t) = F (ω)e(−[kω2−icω]t) (8.150)

Final solution (inverse symmetric Fourier transform):

u(x , t) = 1√
2π

+∞∫
−∞

F (ω)e(−[kω2−icω]t)e(iωx)dω (8.151)

We will consider the case of a particular point like distribution:

u(x , 0) = δ(x). In this case:

F (ω) = 1√
2π

= const (8.152)

u(x , t) = 1√
2π

+∞∫
−∞

1√
2π

e(−[kω2−icω]t)e(iωx)dω

= 1

2π

+∞∫
−∞

e(−kω2t)e[iω(x+ct)]dω (8.153)

Since F−1[e(−aω2)](τ ) = e

(
− τ2

4a

)

√
2a

Inserting the new variables:

x + ct = τ ; kt = a (8.154)

u(x , t) = 1√
2π

e(− τ2

4a )

√
2a

= e[− (x+ct)2

4kt ]

√
4πkt

(8.155)

From this solution we deduce the Green’s function of the diffusion

equation with convection, replacing x by x −ξ , being x = ξ the point

of application of the initial pulse. In a similar fashion, the Green’s

function in the case of the heat equation in 1D (c = 0) and with

u(x , 0) = f (x − ξ) will be:

u(x , ξ , t) = e[− (x−ξ)2

4kt ]

√
4πkt

(8.156)
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8.22 Application of the Fourier Transform to Find
the Displacements of a String Attached to
an Elastic Fabric

Using the Fourier transform method, find the solution for a wave

which propagates along an infinite thread connected to an elastic

fabric if all initial conditions (displacement and velocity) are known.

Figure 8.17

Formulation of the problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u(x , t)

dt2
− c2

∂2u(x , t)

dx2
= −ku(x , t)

u(x , 0) = f (x)

∂u
∂t

∣∣∣∣
t=0

= ψ(x)

f (±∞);ψ(±∞) = 0

c, k > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.157)

We apply the Fourier transform to pass to reciprocal space both the

equation and the initial conditions.

F[u(x , y)] = U (ω, t) (8.158)

F

[
∂2u(x , y)

∂x2

]
= −ω2U (ω, t) (8.159)

F

[
∂2u(x , y)

∂t2

]
= ∂2U (ω, t)

∂t2
(8.160)

F[ f (x)] = F (ω) (8.161)
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F[ψ(x)] = !(ω) (8.162)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2U (ω, t)

∂t2
+ c2ω2U (ω, t) + kU (ω, t) = 0

∂2U (ω, t)

∂t2
− C 2U (ω, t) = 0

C 2 = c2ω2 + k

U (ω, 0) = F (x)

∂U
∂t

∣∣∣∣
t=0

= !(x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.163)

The general solution is:

U (ω, t) = A(ω) cos(Cωt) + B(ω) sin(Cωt) (8.164)

U (ω, 0) = F (x) = A(ω) (8.165)

∂U
∂t

∣∣∣∣
t=0

= !(ω) = CωB(ω) (8.166)

B(ω) = !(ω)

Cω
(8.167)

U (ω, t) = F (ω) cos(Cωt) + !(ω)

Cω
sin(Cωt) (8.168)

Final result:

u(x , t) = 1√
2π

+∞∫
−∞

[
F (ω) cos(Cωt) + !(ω)

Cω
sin(Cωt)

]
e(iωx)dω

(8.169)

8.23 Case Study: Oscillations in an Infinite String
with Friction

Solve the oscillations in an infinite string with a friction proportional

to the vertical component of the velocity (with a proportionality

coefficient K) using the Fourier method. Consider that the initial

displacement is f (x) and the initial velocity is ψ(x). The speed of

sound is equal to c.
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Figure 8.18

Mathematical formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

− T
ρ

∂2u
∂x2

= − K
ρ

∂u
∂t

(−∞ < x < ∞)

∂2u
∂t2

− c2
∂2u
∂x2

= −k
∂u
∂t

(−∞ < x < ∞)

u(x , 0) = f (x)

∂u
∂t

∣∣∣∣
t=0

= ψ(x)

f (±∞);ψ(±∞) = 0

c, k > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.170)

We will apply the Fourier transform to pass to reciprocal space the

equation and the initial conditions. We use ω to refer to the wave

vector.

F[u(x , t)] = U (ω, t) (8.171)

F

[
∂2u(x , t)

∂x2

]
= −ω2U (ω, t) (8.172)

F

[
∂2u(x , t)

∂t2

]
= ∂2U (ω, t)

∂t2
(8.173)

F[ f (x)] = F (ω) (8.174)

F[ψ(x)] = !(ω) (8.175)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2U (ω, t)

dt2
+ k

dU (ω, t)

dt
+ c2ω2U (ω, t) = 0

U (ω, 0) = F (ω)

∂U
∂t

∣∣∣∣
t=0

= !(ω)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8.176)
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We seek the solution in the form U (ω, t) = A(ω)eαt

d2U (ω, t)

dt2
= A(ω)α2eαt (8.177)

dU (ω, t)

dt
= A(ω)αeαt (8.178)

Equation to be solved:

A(ω)α2eαt + kA(ω)αeαt + c2ω2 A(ω)eαt = 0 (8.179)

α2 + kα + c2ω2 = 0 (8.180)

α1, 2 = − k
2

±
√

k2 − 4c2ω2

2
= − k

2
± β (8.181)

We will have real values for frequencies that satisfy:

k2 − 4c2ω2 > 0; |ω| ≤ k
2c

(8.182)

There will be two linearly independent solutions:⎧⎨
⎩

U 1(ω, t) = A(ω)eα1t

U 2(ω, t) = A(ω)eα2t

⎫⎬
⎭ (8.183)

We can simplify the solution creating two linearly independent

combinations:

V1(ω, t) = U 1(ω, t) + U 2(ω, t)

2
= A(ω)e(− k

2
t) e(+βt) + e(−βt)

2
=

= A(ω)e(− k
2

t) cosh(βt) (8.184)

V2(ω, t) = U 1(ω, t) − U 2(ω, t)

2
= A(ω)e(− k

2
t) e(+βt) − e(−βt)

2
=

= A(ω)e(− k
2

t) sinh(βt) (8.185)

The solution of equation (8.176) for the frequency range |ω| < k
2c

must be presented in the form of a combination of two independent

solutions , in general with different weights:

U (ω, t) = e(− k
2

t)[A(ω) cosh(βt) + B(ω) sinh(βt)] (8.186)

Finally for frequencies |ω| > k
2c → α1, 2 =, complex values:

α1, 2 = − k
2

±
√

k2 − 4c2ω2

2
= − k

2
± iγ (8.187)
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Analogously, we get:

U (ω, t) = e−( k
2

t)[A(ω) cos(γ t) + B(ω) sin(γ t)] (8.188)

Applying the Fourier transform to the initial conditions we get

A(ω); B(ω):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U (ω, 0) = F (ω) = A(ω)

∂U
∂t

∣∣∣∣
t=0

= !(ω) = − k
2

A(ω) + βB(ω)

(
|ω| ≤ k

2c

)
∂U
∂t

∣∣∣∣
t=0

= !(ω) = − k
2

A(ω) + γ B(ω)

(
|ω| > k

2c

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8.189)

Final solution:

u(x , t) = 1√
2π

+∞∫
−∞

U (ω, t)e(iωx)dω (8.190)

8.24 Case Study: Fourier Transform to Find the
Distribution of Temperature in a
Semi-Infinite Bar

Using the method of the Fourier transform find the stationary

distribution of temperature u(x , y) in a flat, semi-infinite bar (2-

D) if the variation of temperature in the inner boundary is known:

u(x , 0) = f (x), and the rest of the boundaries are in contact with a

thermal reservoir at zero temperature.

Figure 8.19
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Formulation of the problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2

dx2
u(x , y) + ∂2

dy2
u(x , y) = 0

(0 ≤ x < +∞) ; (0 ≤ y ≤ b)

u(x , 0) = f (x)

u(x , B) = 0

f (x → ∞) → 0

u(x , y) < N (i.e., the solution is finite)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.191)

One of the possible methods is to create a virtual image of the system

for x < 0 and extend the boundary conditions anti-symmetrically

there for the boundary at y = 0, this is, reflect anti-symmetrically

the function u(x , 0) = f (x).

Figure 8.20

To find the differential equation and the boundary conditions in

reciprocal space the Fourier transform is applied to convert x → ω.

Alternatively, we write u(x , y) as an inverse Fourier transform and

replace it into the equation:

u(x , y) = 1√
2π

+∞∫
−∞

U (ω, y)e(iωx)dω (8.192)

∂2u
∂x2

= 1√
2π

+∞∫
−∞

−ω2U (ω, y)e(iωx)dω (8.193)
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∂2u
∂y2

= 1√
2π

+∞∫
−∞

∂2U (ω, y)

dy2
e(iωx)dω (8.194)

∂2u
dx2

+ ∂2u
dy2

= 1√
2π

+∞∫
−∞

[
−ω2U (ω, y) + ∂2U (ω, y)

dy2

]
e(iωx)dω = 0

(8.195)

The equation to be solved in reciprocal space is:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2U (ω, y)

dy2
= ω2U (ω, y)

U (ω, 0) = F (ω)

U (ω, B) = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8.196)

From the first boundary condition we obtain its transform F (ω):

1√
2π

+∞∫
−∞

U (ω, 0)e(iωx)dω = 1√
2π

+∞∫
−∞

F (ω)e(iωx)dω (8.197)

Analogously we arrive at the second boundary condition u(x , B) =
0 → U (ω, B) = 0. This condition in reciprocal space allows us to

write the general solution of (8.196) more transparently:

U (ω, y) = A sinh[ω(B − y)] (8.198)

Applying the first boundary condition (ω):

U (ω, 0) = A sinh[ω(B)] = F (ω) (8.199)

we arrive at the normalized solution:

U (ω, y) = F (ω)
sinh[ω(B − y)]

sinh[ω(B)]
(8.200)

Final solution:

u(x , y) = 1√
2π

+∞∫
−∞

F (ω)
sinh[ω(B − y)]

sinh[ω(B)]
e(iωx)dω =

= 1

2π

+∞∫
−∞

⎡
⎣ +∞∫
−∞

f (z)e(−iωz)dz

⎤
⎦ sinh[ω(B − y)]

sinh[ω(B)]
e(iωx)dω

(8.201)
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8.25 Case Study: Application of the Fourier
Transform to Find the Distribution of
Temperature in a Semi-Plane

Using the Fourier Transform method find the stationary distribution

of temperature u(x , y) in a semi-plane if we know the variation of

temperature at its boundary: u(x , 0) = f (x).

Figure 8.21

Mathematical formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2

dx2
u(x , y) + ∂2

dy2
u(x , y) = 0 (−∞ < x < +∞); y > 0

Boundary condition: u(x , 0) = f (x)

f (|x| → ∞) → 0

u(y → ∞) → 0; u(|x| → ∞) → 0

u(x , y) < N (The solution is finite)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.202)

We can apply the Fourier Transform to the x variable, leaving y as a

parameter (x → ω) and solve the problem in reciprocal space. This

is possible since x is defined in the range [−∞, +∞].

The alternative mode (with some more calculations, but equivalent)

is to use u(x , y) from the inverse Fourier Transform and replace the

derivatives in the equation.

u(x , y) = 1√
2π

+∞∫
−∞

U (ω, y)e(iωx)dω (8.203)
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∂2u(x , y)

∂x2
= 1√

2π

+∞∫
−∞

−ω2U (ω, y)e(iωx)dω (8.204)

∂2u(x , y)

∂y2
= 1√

2π

+∞∫
−∞

∂2U (ω, y)

dy2
e(iωx)dω (8.205)

∂2u(x , y)

dx2
+ ∂2u(x , y)

dy2
= 1√

2π

+∞∫
−∞

[
−ω2U (ω, y) + ∂2U (ω, y)

dy2

]
e(iωx)dω = 0

(8.206)

The equation to be solved in reciprocal space is:⎧⎪⎨
⎪⎩

∂2U (ω, y)

dy2
= ω2U (ω, y)

U (ω, 0) = F (ω, 0)

⎫⎪⎬
⎪⎭ (8.207)

The boundary condition in reciprocal space (ω) has been obtained

by transforming the boundary conditions in (x ,0)

u(x , 0) = f (x) (8.208)

Writing this relation using the inverse Fourier Transform:

1√
2π

+∞∫
−∞

U (ω, 0)e(iωx)dω = 1√
2π

+∞∫
−∞

F (ω, 0)e(iωx)dω (8.209)

The general solution is U (ω, y) = A(ω)e(ωy) + B(ω)e(−ωy)

Due to the need that the solution be convergent for y → ∞, we are

going to impose A(ω) = 0.

In this case we must use the modulus of the ω variable in the

exponential variation of the solution to guarantee that the solution

will not diverge, regardless of the sign of ω.

Using the other boundary condition (in reciprocal space) so that y =
0 we write the solution (in reciprocal space):

U (ω, y) = F (ω)e(−|ω|y) (8.210)

Finally, the general form of the solution to the Laplace equation in

the semi-plane (2-D) will be:

u(x , y) = 1√
2π

+∞∫
−∞

F (ω)e(−|ω|y)e(iωx)dω (8.211)
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To arrive at the more detailed form of the solution we must solve

the integral by writing F (ω) as a Fourier Transform: F (ω) =
1√
2π

+∞∫
−∞

f (z)e(−iωz)dz

u(x , y) = 1

2π

+∞∫
−∞

⎡
⎣ +∞∫
−∞

f (z)e(−iωz)dz

⎤
⎦ e(−|ω|y)e(iωx)dω (8.212)

Changing the order of integration:

u(x , y) = 1

2π

+∞∫
−∞

⎡
⎣ +∞∫
−∞

e[−iω(x−z)]e(−|ω|y)dω

⎤
⎦ f (z)dz (8.213)

The value of the integral is:
+∞∫

−∞
e[−iω(x−z)]e(−|ω|y)dω = 2y

y2 + (x − z)2
(8.214)

So we arrive to so-called Poisson’s integral formula:

u(x , y) = 1

π

+∞∫
−∞

y
y2 + (x − z)2

f (z)dz (8.215)

Example of application:

We suppose the following distribution of temperature at the

boundary:

f (x) =
⎧⎨
⎩

T0 (A < x < B)

0 (x < A; x > B)

⎫⎬
⎭ (8.216)

Then we will have:

u(x , y) = T0

π

B∫
A

y
y2 + (x − z)2

dz = T0

π

B∫
A

y2

y2 + (x − z)2
d
(

z
y

)
=

= T0

π

B∫
A

1[
1 + (z−x)2

y2

]d
(

z
y

)
=
{
ξ =

(
z − x

y

)}

= T0

π

B−x
y∫

A−x
y

1

[1 + ξ2]
dξ
{∫

1

[1 + ξ2]
dξ = tan−1(ξ) + const

}

= T0

π

[
tan−1

(
B − x

y

)
− tan−1

(
A − x

y

)]
= T0

π
[ϕB − ϕA]

(8.217)
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Where ϕA , B are angles of visibility of the points A and B from the

point (x , y)

Figure 8.22

Note: The formulas of this type also exist in 3D coordinates to

present the solutions of the Laplace equation in integral form.

8.26 Fourier Transform of the General Solution
of Laplace’s Problem in a Disk

Show that the Fourier Transform of the general solution of Laplace’s

problem in a disk has the form of an infinite sum of Dirac’s Delta

functions.

Solution:

The mathematical description of the solution of Laplace’s problem

in a disk is expanded in periodic angular functions in the azimuthal

angle ϕ:

u(ρ , ϕ) =
∑
n≥0

[A(n, ρ) cos(nϕ) + B(n, ρ) sin(nϕ)] (8.218)
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Applying the Fourier Transform to the solution we get:

F[u(ρ , ϕ)] = F (ρ , ω) = 1√
2π

A(n, ρ)
∑
n≥0

⎡
⎣ +∞∫
−∞

cos(nϕ)e−iωϕdϕ

⎤
⎦+

+ 1√
2π

B(n, ρ)
∑
n≥0

⎡
⎣ +∞∫
−∞

sin(nϕ)e−iωϕdϕ

⎤
⎦ (8.219)

Writing

cos(nϕ) = 1

2
[e+inϕ + e−inϕ] (8.220)

sin(nϕ) = 1

2i
[e+inϕ − e−inϕ] (8.221)

We get integrals of the type:

+∞∫
−∞

e+inϕe−iωϕdϕ = δ(n − ω) (8.222)

or

−∞∫
−∞

e−inϕe−iωϕdϕ = δ(n + ω) (8.223)

This implies that the Fourier Transform of the general solution of

Laplace’s problem in a disk is an infinite sum of Dirac’s Delta type of

functions. This is a consequence of applying the Fourier Transform

to a function which is periodic every 2π .
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Dirac’s Delta Function in Cylindrical and Spherical
Coordinates

In spherical coordinates: δ(�r− �r0) = 1
r2 sin (θ)

δ(r−r0)δ(θ−θ0)δ(ϕ−ϕ0)

Without azimuthal dependence (ring): δ(�r − �r0) = 1
2πr2 sin(θ)

δ(r −
r0)δ(θ − θ0)

Without polar nor azimuthal dependence: δ(�r − �r0) = 1
4πr2 δ(r − r0)
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In cylindrical coordinates: δ(�r − �r0) = 1
ρ
δ(ρ − ρ0)δ(ϕ − ϕ0)δ(z − z0)

Without azimuthal dependence (ring): δ(�r − �r0) = 1
2πρ

δ(ρ−ρ0)δ(z−
z0)

Without azimuthal nor polar dependence (very thin tube): δ(�r −
�r0) = 1

2πρ
δ(ρ − ρ0)
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Physical Equations

• Transversal displacement

d2u
dt2

− T
ρ(x)

d2u
dx2

= 1

ρ(x)
f (x , t)

Boundary conditions:

� Fixed boundaries: u(�, t) = 0
� Free boundaries: du

dx (�, t) = 0
� Boundary linked to a spring: right: T du

dx (L, t) + βu(L, t) =
0; left: T du

dx (0, t) − βu(0, t) = 0

• Longitudinal oscillations along a rod

d2u
dt2

− 1

ρ(x)

d
dx

[
E (x)

du
dx

]
= 1

ρ(x)
f

Boundary conditions:

� Fixed boundaries: u(�, t) = 0
� Free boundaries or linked to a spring: section 5.1.2 of [1]

• Heat transport in three dimensions

C (�n)ρ(�n)
dT
dt

− d
d�n
[
κ(�n)

dT
d�n
]

= f (�n, t)

Boundary conditions:

� Boundaries at zero temperature: T (�, t) = 0
� Boundaries thermally insulated: dT

d�n (�, t) = 0
� Thermal flux proportional to the temperature at the

boundaries, with the temperature of the outer medium

equal to zero: κ(�) dT
d�n (�, t) + αT (�, t) = 0
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� Note that the sign must change due to the change between

the boundaries �

• Electrostatic potential

�φ = − ρ

εε0

� Electrically grounded boundaries: φ(�, t) = 0
� Normal component of the electric field when the boundary

is a charged metal interfacing vacuum: En = ρ

εε0

� Some other conditions are described in [1]

• Gas pressure in three dimensions

d2 P
dt2

− a2�P = −a2∇ · f

� Open boundaries: P (�, t) = Pext
� Closed boundaries: d P

dn (�, t) = 0
� For other types of boundary conditions see [1]

• Diffusion in one dimension

dn
dt

− d
dx

(
D(x)

dn
dx

)
= f (x , t)

Some Sturm–Liouville Problems for the
Oscillations in a String

d2 X
dx2

+ λX = 0

• Both boundaries fixed:

� Boundary conditions: X (0) = X (L) = 0
� Eigenfunctions: X n(x) = sin(

√
λnx)

� Eigenvalues: λn = ( nπ
L )2

• Both boundaries free:

� Boundary conditions:
d X
dx

∣∣∣∣
x=0

= d X
dx

∣∣∣∣
x=L

= 0

� Eigenfunctions: X n(x) = cos(
√
λnx)

� Eigenvalues: λn = ( nπ
L )2
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• Free right boundary, fixed left boundary:

� Boundary conditions: X (0) = d X
dx

∣∣∣∣
x=L

= 0

� Eigenfunctions: X n(x) = sin(
√
λnx)

� Eigenvalues: λn = ( 2n+1
2

π
L )2

• Free left boundary, fixed right boundary:

� Boundary conditions: X (L) = d X
dx

∣∣∣∣
x=0

= 0

� Eigenfunctions: X n(x) = cos(
√
λnx)

� Eigenvalues: λn = ( 2n+1
2

π
L )2

• Right boundary linked to a spring, free left boundary:

� Boundary conditions: T
d X
dx

∣∣∣∣
x=L

+βX (L) = 0;
d X
dx

∣∣∣∣
x=0

= 0

� Eigenfunctions: X n(x) = cos(
√
λnx)

� Eigenvalues:
√
λn = 1

L

[
arctan

(
β

T
√
λn

)
+ 2nπ

]
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