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Preface

Mathematical Methods for Physics is a course which describes
mathematical tools that allow to solve partial differential equations
(PDE), typical of physical problems. Despite a large number of
textbooks on this topic, few explain in a detailed manner the
process of solving the problems that typically arise in the context of
physics. Another original feature of this book is the emphasis on the
mathematical formulation of the problems, as well as the analysis of
several alternative ways to solve them, and a graphical analysis of
the results when appropriate.

The book uses teaching material from the mandatory course
Mathematical Methods of Physics III at the Autonomous University
of Madrid (Universidad Autonoma de Madrid - UAM). It presents
substantially (about one-third) expanded and essentially updated
version of the book previously published by the authors (in Spanish)
in the “Collecion de estudios” series (Ediciones UAM, 2020). It can
also be considered as a supplementary resource to another textbook
(only in Spanish): Métodos matemadticos de la Fisica: Método de
Fourier, by Arkadi P. Levanyuk and Andrés Cano. The current book
contains the solution to several problems from this book.

The book starts with an introduction to the Fourier Method,
analyzing simple problems as the vibrations of a harmonic oscillator.
In this context, Green’s functions are introduced in system of zero
(oscillators) or one (strings) dimensions, since the search for these
functions only represents a specialized method to find particular
solutions to the non-homogeneous part of PDEs.

The rest of the chapters contain solved problems in Cartesian
coordinates in one, two, and three dimensions, in polar, cylindrical,
and spherical coordinates. Graphic illustrations and representations
of the solutions (using MATLABs PDE Toolbox) are frequently



xiv
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introduced. Finally, the book shows the problems related to the
Fourier transform operation. It includes several related theorems,
such as the theorem of convolution, with practical applications.
Furthermore, this book also shows the methods to apply the Fourier
transform to the process of solving PDE, mostly in one dimension.

We would like to thank all the physics grade students of
Universidad Autonoma de Madrid who have contributed to the
book, especially those who helped finding typos in the draft
of the Spanish version, particularly Cristina Viviente, Carolina
Alvarez, Aitana Hurtado, Alejandro Blanco, Miguel Turad, Santiago
Agui, Gonzalo Morras, and Javier Robledo. We would also like to
express our gratitude to the comments and support shown by
our colleagues of the Condensed Matter Physics Department at
Universidad Autonoma de Madrid, José Vicente Alvarez, Guillermo
Goémez Santos, Juan José Palacios, Arkadi Levanyuk, Sebastian Vieira
and Raul Villar during the preparation of the book.

We also acknowledge “UAM Ediciones” for granting permission
to Jenny Stanford Publishing for using in this book, Mathematical
Methods for Physics: Problems and Solutions, by Farkhad G. Aliev
and Antonio Lara, the figures from the book Problemas Resueltos de
Métodos Matemdticos de la Fisica, Método de Fourier, by Farkhad G.
Aliev and Antonio Lara, edited by UAM Ediciones in 2019.

Finally, Farkhad Aliev acknowledges Tatiana Alieva for helping
clarify several aspects of the Fourier transform and for her patience.

Farkhad G. Aliev and Antonio Lara



Chapter 1

Harmonic Oscillator and Green’s
Function

The Fourier method, in its simplest version, consists in expanding
in harmonic functions (solutions of the harmonic oscillator) the
solution of a differential equation. For this reason, we consider
useful to begin this book with some simple examples of the solution
of problems involving a harmonic oscillator. The application of initial
conditions of some simple, as well as complicated, equations will
be considered (as, for example, friction terms or non-homogeneous
terms in the equation, such as external forces).

Using the solution of the oscillator problem, it will be useful
to introduce the concept of Green’s functions, solving some
examples that explain the application of this concept, very useful in
solving non-homogeneous problems. In the last chapter, about the
application of the Fourier transform for solving partial differential
equations, we will use some of the solutions obtained in this chapter,
in particular those of an oscillator with friction.

In general, the obtained solutions for an oscillator will be
frequently used as part of the solutions (in time and space) when
dealing with problems up to three spatial dimensions, where the so-
lutions will be expanded in sums of orthogonal functions, multiplied
by coefficients or other non-orthogonal functions that satisfy the
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Harmonic Oscillator and Green’s Function

boundary conditions. We hope that these simple examples facilitate
the understanding of the solutions of the problems in later chapters.

1.1 Damped Harmonic Oscillator

Consider a damped harmonic oscillator such that w3 <n/2m
(consider also the case w3 > 1/2m), where wy is the eigenfrequency
of the oscillator, m is the mass and 7 is the friction constant of
the oscillator moving in a viscous medium (take the friction force
proportional to the oscillator velocity).

(a) Find the mass position as a function of time if at t = 0 it is at
rest, but at a distance x( from its equilibrium position.

(b) Find the mass position as a function of time if at t = 0 it is at
its equilibrium position, and is hit in such a way that it has a
velocity vy.

(c) Show that, for large enough dampings, these movements could
have been deduced from the equation nx + kx = 0. Explain why.

See also problem 1.4 from [1].

7

Figure 1.1

Solution:

(a) The mass displacement with respect to its equilibrium position
will be called x. The general solution for w3 >n/2m is the

(equation 1.24 from [1]):
x(t) = Ae "' sin(Qot + §) (1.1)

ino: _ Z 2.2 _ k..2 _ 1
being: Qo = \oj —y% w5 = ;5 ¥° = 3. From the zero

initial velocity condition we have: 3—’; =0 A(—y)sin(d8) +



(b)

()

Damped Harmonic Oscillator

A2 cos(8) = 0, wheretan(s) = % From the condition of initial

position we have: x(0) = xo = Asin§, with A=_3¢. For the case

w3 < 1/2m we have equation (1.25) from [1]):

X(t) = Cre77*" + Cre™" (1.2)
being y. = vy £+ /y? — w%. From the condition of zero initial
velocity we have: 2| = Ci(—y4) + C2(—y-) = 0, where

% = —[;—;) From the condition of initial position: x(0) = xo =
C1 + Cz,where C1 = gil ()}:f), C2 = 11([;;

r4 4
In this case only the initial conditions change:

General solution for w? > 1/2m (equation 1.24 from [1]):

x(t) = Ae " sin(Qot + 6) (1.3)

From the zero initial displacement we have: x(0) = 0 =
Asin(8). Then we have §=0, and x(t) = Ae "'sin(Qot). From
the condition of zero initial speed we have, using § = 0:

0x

— = vy = A(—y) sin(0) + A2, cos(0)
at |,

which yields A = s‘;—‘;, so that:
Vo ¢ .
x(t) = —e 7" sin(Qpt) (1.4)
Qo
The general solution for w3 < n/2m is (equation 1.25 from [1]):

x(t) = Cie "' + Cre -t (1.5)

From the condition of zero initial displacement: x(0)=0= C; +
Cz —> C1 = — Cz

dx
From the condition of zero initial velocity: 9t =Ci1(—y+)+
=0
C2(=y-) =vo
With this we obtain the constants values: C; = V+‘f’y_ ;€1 =
V_"f"m and finally the position as a function of time:
1%
X() = — [t — e ] (1.6)

Y+ — V-
This is the case of a “relaxator” n — oo. In this limit, y is much
larger than w( and the following simplifications are possible:

3
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Harmonic Oscillator and Green’s Function

vy —> 2y

y_-—0
With this, the solution of the equation of motion also simplifies:
x(t) = Cie7 "+ Cre 7t — x(t) =~ Cre™ " (1.7)
The value of y_ can be approximated with a power series: y_ =
Y — VY —at ~ y(1_1+%) = 4 = &1 = & where
Vi—wi~1- ‘“7‘23 has been used.
On the other hand, treating the movement of the relaxator from

the oscillator equation:
2

d;(—i-nxt—{—kx_O—)nx—l-kx_O (1.8)
Once again the decaying solution is obtained: x(t) = e, where

a =

EIES

1.2 Properties of the Ordinary Linear Differential
Equation for a Forced Oscillator

This section discusses the linearity properties of the equation
describing the movement of a forced oscillator, as well as methods
for its resolution.

Solution:

(1) The equation of motion for a harmonic oscillator with mass
m and spring constant k in a viscous medium with friction
coefficient n and under the influence of an external force F (t)
is:

2
m%+n%+kX =F(t) (1.9)
The same equation normalized by the mass is:

d2

w7 2,3—+on £ (1.10)



(2)

(3)

Properties of the Ordinary Linear Differential Equation for a Forced Oscillator

with 8 = a)(z) = %, flt) = % This is an linear, second
order, non- homogeneous, ordinary differential equation (i.e. the
variable X (t) only depends on one parameter, t). The goal of this

exercise is to clarify the meaning of the linearity of differential
equations using the oscillator problem as an example.

If we rewrite the equation as:

DIx ()] = f(8) (1.11)

With the operator D = L‘f—; + 2,3% + w3, the linearity property
of the differential operator of the equation is formulated as:

DlaX1(t) + bX2(t)] = aD[X1(t)] + bD[X2(8)] (1.12)

Then, if we separate the non-homogeneous term of the equation
in two parts:

f@) = A1)+ f2(8) (1.13)
The solution will be divided in two parts as well:
X = X1(6) + X2(0) (1.14)
corresponding to D[X;(t)] = f;(t) because:
D[X1(t)+X2(t)] = D[X1(O)]+ D[X2(8)] = fi(t)+ f2(¢) (1.15)

If we now propose that fi = f(¢t) and f, = 0, we will
separate the ordinary differential equation (or, as will be
shown later,; also the partial differential equation) in two, one
non-homogeneous equation with a particular solution X, and
another homogeneous X:

[Xp(O)] = f(O) (1.16)

D[Xn(t)] = 0 (1.17)

so that to find the final solution we will just need to apply the
initial conditions to the total solution:

X(0) = X,(0) + X4() (1.18)

5
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(4) Finding a particular solution might be at times a matter of

luck, and sometimes the Green’s function method must be used.
The property of linearity is used to introduce the method of
Green’s functions by separating the non-homogeneous part of
the equation (for example, in this problem, the applied force)
into infinitesimal parts (for example, here, Dirac’s delta-like
hits on the mass), which facilitate the search for each of the
corresponding particular solutions.
Green’s function is obtained by solving a specific problem for
each situation, with its boundary conditions, etc.. For example,
in the case of a frictionless oscillator, Green’s function found in
[1], which can be deduced from the equivalence of the problems
with an instantaneous hit, resulting in a non-zero initial velocity,
can be employed for any external force on a frictionless
oscillator. To conclude we will mention that another method for
solving homogeneous differential equations is the separation of
the non-homogeneous function (and its solution) into Fourier
series, consisting in orthogonal functions obtained from the
solution of the corresponding Sturm-Liouville problem. In the
case of infinite or semi-infinite systems, the Fourier transform
method is used, solving the problem in reciprocal space and
later applying the inverse Fourier’s transform.

1.3 General Definition of Green’s Functions

This exercise discusses the general aspects of Green’s functions from
a non-homogeneous differential equation in a general form in a
unidimensional space.

Solution: We suppose a differential equation of the form:
Lu(x)= f (1.19)

where L is a differential operator (with derivatives with respect to
x) and f being a function of x. The Green’s function G(x, x¢) is

the solution that corresponds to an inhomogeneous equation with
the same operator L than the original equation but with a non-



Expansion of Green’s Function in a Series of Orthogonal Eigenfunctions

homogeneous, Dirac’s delta like term:
LG(x, x0) = §(x — x0) (1.20)

Note: the L operator acts on a variable x, while X is a parameter.
Next we consider the following equation:

b
u(x) = / G(x, x0) f (x0)dxo (121)

We check that this u function is a particular solution of the equation,
applying the L operator to both sides of the previous equation:

b b
Lu(x) = L/ G(x, x0) f(x0)dxo = / LG(x, x0) f(x0)dxo
b
= [ 8 = xa) fxa)dno = 160 (122)

Note 1: The integration range [a, b] depends on the space where the
problem is defined, finite or infinite.

Note 2: Once the problem for Green’s function has been solved, we
can get the solution for every non-homogeneous integrable part.

Note 3: Analogous expressions are obtained in higher dimensions
(2D, 3D).

1.4 Expansion of Green’s Function in a Series of
Orthogonal Eigenfunctions

Show that Green’s function of a particular problem can be expanded
in a series of orthogonal eigenfunctions, which are the solutions
of the corresponding Sturm-Liouville problem for those boundary
conditions.

Solution: We will suppose that we need to solve the following
differential equation with homogeneous boundary conditions:

Lu(x) = f(x) (1.23)

Being L a homogeneous second order differential operator. We will
suppose that we can solve the Sturm-Liouville problem by finding a

7
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set of orthogonal functions v, which fulfill the following conditions.
Lv,(x) = Apvy (1.24)

with boundary conditions. The solution will be expanded as a
combination of the v, functions and we will suppose that there is an
infinite number of such eigenvalues and eigenfunctions (in principle,
nothing forbids this assumption).

u(x) = cqvn (1.25)
n=1

Replacing this solution into the equation (1.23) we have:

Lu(x) = chLvn = ch/lnv,, = f(x) (1.26)
n=1 n=1

Both parts are multiplied by the former expression by the
orthogonal functions v,,(x) with the index m independent from the
index n and we will integrate in the interval where the v, (x) are
defined.

b o0 b
/ f(X)vm(x)dx = ch/l,,/ VpVmdx = cn/ln|vn|2 (1.27)
a n=1 a

Simplifying, for the case |v,|?> = 1, we have:

b
Ch = %n/a fF(xva(x)dx' (1.28)

With this expression the solution can be rewritten as:

00 b
ut) =3 1 [ FO )
n=1 n a

= i - / bV (xJva(x) f(x")dx’ (1.29)
n=1 An a ! !

Comparing this with the definition of the solution obtained by the
Green’s function method:

b
u(x) = / G(x, x") f(x"dx' (1.30)

The following is Green’s function is obtained:

o]

Gx, x)=)_ %V,,(x’)v,,(x) (1.31)

n=1 "



Green’s Function of an Oscillator with Friction
1.5 Green’s Function of an Oscillator with
Friction

Find Green’s function of an oscillator in a viscous medium in the limit
of very low friction.

Figure 1.2

Solution: We can write the following equation of motion u(t)
(normalized by the mass m) of a harmonic oscillator with a spring
constant k in a viscous medium with friction coefficient n, and under
the action of an external force F (t):

d’u
o+ 2B+ whu= (1 (132)
with B = JL, w3 = %, f(t) = % If we solve this very equation for

an instant hlt (described by a delta function) the solution would be
Green’s function G(t):

dZ

de?
One of the methods to find the oscillator Green’s function is
replacing the hit (non-homogeneous equation) by the solution of
a homogeneous equation with initial conditions: G(t = &) =
0; 4 dt = C where C = 1inthe case f(t) = §(t — t).

Usmg this method, in [1] the equation 1.24 is deduced. This
solution represents the movement of an oscillator corresponding to
the initial conditions, which is proportional to Green’s function of
a oscillator with friction (with proportionality constant A). For the

+2,3—+a)0 —8(t—t) (1.33)

9
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case of a very low friction Qo = /@i — y2 — wo:
Gp = Ae P sin [ (t — to)] (1.34)

To find the A coefficient, equation (1.33) is integrated in an
infinitesimal range, centered in the instant ¢:

dG to+e to+e
o +/ [Zﬁ + w? }dt: 1 (1.35)
to—€ to—e€

As the initial velocity is null, %] _ o_c = 0, since the oscillator
is at rest prlor to being hit. Furthermore, the integral is equal to 0:
the first term 4 e ¢ when integrated once with respect to time gives G.
When G is evaluated in ¢ + € and ) — ¢, letting e — 0, G|t°+é =0,
due to the continuity of the function G. A similar argument is applied
to the second term of the integral, which will be an order higher in

t. Then, replacing the function 1.34 in the condition % e = 1 the
A= wig coefficient is obtained.
Green’s function is:
0 (t < t)
G = (1.36)

a-e P sin [ag (¢ — to)] (¢ > t)
Note that for § = 0 the solution is converted into Green'’s function

of a frictionless harmonic oscillator. Let us now consider a gaussian
pulse att = 0:

fy=e" (1.37)

To find the particular solution the following integral must be solved
first:

up(t) = / t [e-X21e—W-X) sin [wo(t — x)]| dx (1.38)
0 o

This integral doesn’t have an analytic solution.

Another possible problem which can be solved using Green'’s
function: We can, for example, seek the particular solution of an
oscillator with very low friction if the external force acts upon the
oscillator from the instant —a to the instant +a and transfers a linear
momentum /. To do this, the next steps should be followed:

e Evaluate the force density f(t) from the transferred momentum
and the mass m.
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e Find the solution using the Green’s function method and Green’s
function found in this problem.

e To solve the integral we will need to use Wolfram Alpha or some
other computer algebra system.

1.6 Movement of an Oscillator under the
Influence of a Constant Force, Solved by Two
Methods

Find the solution for the movement of an oscillator with natural
frequency wy, which is initially at rest (¢ = 0) if, at t = 0 a force
fo starts acting upon it.

f(t)
fo

t=0 t

Figure 1.3

Solution: Problem to be solved:
2
L4 wiu= f(t)

‘s (1.39)
u(0) = %’tzo -0
_[f®=0 (t<0)
/= { fO=f (= 0)} (1.40)

We will compare two different methods for solving the problem, a)
and b):

(a) The first method is based on the search for a particular
solution. The total solution is the sum of the particular solution
of the non-homogeneous equation and the solution of the
homogeneous equation.

u(t) = C1 cos (wot) + C2 sin (wot) + L‘; (1.41)
@
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(b)

Applying the initial conditions, we have C; = —fy and C, = 0.
Then:

u(t) = —[1 — cos (wot)] (1.42)

So
w2
@

The second method for searching the solution is based on the

application of the Green’s function method, with the known

function for a harmonic oscillator (equation 1.65 from [1]).

—+00 t
w® = [ F@)6te - o = 2 [ sinfonte - w)ldo
- (1.43)
With the change of variable wy(t — &) = x = —wod(tp) = dx
(t) = fo / sin (x)dx = ﬁ[1 —cos (wot)] (1.44)
N (@0)? g

Note. in the latter case, the particular solution obtained with
the Green’s function method is the same as the final solution. To
show it, we search for the solution as the sum of the solution of
the homogeneous and the particular equations:

u(t) = €1 cos (wot) + Cy sin (wpt) + ——[1 —cos (wot)] (1.45)

fo
(@0)?

Applying the initial conditions, we would have: C; = C; =0

1.7 Oscillator Forced by a Rectangular Hit, Solved

An

with Green’s Functions

oscillator with mass m = 1 Kg and a natural frequency wy =

1 rad/s is initially at rest. Starting at t = —1 and until t = +1,
the oscillator is subject to a force of value f = 1 N/kg. Find the
particular solution using the Green'’s function method.

X 1| f(N/kg)
< f(1)
m t(s)
-1 1

Figure 1.4
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We will use the Green’s function method, integrating it for the
duration of the external force. Since this force acts for a limited time,
there will be two parts: one for t < 1 and another for ¢t > 1.

Mathematical formulation:

CX LX) = f(t)
{fd=1 (—1<t<1)} (1.46)

Solution:
+o0
Xpari® = [ F0)6EE x)dx (147)

Starting from the known form of Green’s function for an oscillator of
mass m and natural frequency wy = 1, for a given time t we have:

Gt x) = <Si“(0t _(’;)> ’;)< t) (1.48)

Given the form of the force, the solution will be split into parts.
Before applying the force, the mass is at rest:

Xpare(t < —=1) =0 (1.49)

Then for t > —1 the solution will be of the form:

X pare(t > —1) = /_t f(x)sin(t — x)dx = /_tl sin(t — x)dx
(1.50)

The particular solution is differentfort < +1andt > +1.Int < +1

it will be:
t

/sin(t — x)dx = —(—cos(t — x)|* ;)
el

= cos(0) —cos(t+ 1) =1—cos(t+1) (1.51)
And in the second, t > +1:

Xpar®) = [ £G0sin(e— x)dx

1 ¢
= /sin(t —x)dx + / 0« sin(t — x)dx
-1 1

=cos(t —1) —cos(t+ 1) (1.52)

13
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The final solution is presented graphically:

0 (t<-1)
Xpare(t) = ¢ 1 —cos(t+ 1) (-1<t<1) (1.53)
cos(t—1)—cos(t+1) (t>1)

Figure 1.5

1.8 Movement of a Mass after an Instantaneous
Exponential Hit

Using the Green'’s function method, find the response of a mass m =
1 to a hit with force density e~¢, which occurs at t = 0. The mass is
free to move and there is no friction. Consider the case in which the
mass is at rest prior to being hit.

0 t<0}

f(t)={ et t=0

)

Figure 1.6



Movement of a Mass after an Instantaneous Exponential Hit

Mathematical formulation:

maY = f(6)

du
0)=0; —
u(0) dt

(1.54)
=0 (t<t)

t=0

We are searching for Green’s function G(t, ) of the following
differential equation, which describes the instantaneous hit (Dirac’s
delta function like) at t = ¢t,.

LG

de?
dG
G(0)=0; —
(0) T

(1.55)
=0 (t<t)

t=0

We seek a solution separated into parts for the different time ranges
where the equation is homogeneous. Later both solutions will be
joined using the initial condition and integrating the equation in the
environment of the anomalous point t = 0.

6t 1) = {A(to)t+ B(t) (< to)}
@)t + D) (> )

From the general definition of Green'’s function, we have (for time
values a and b in the interval taken into account):

(1.56)

b
x = / G(t, t0) f(t)dto (157)

x:/t (Ato+B)-0-dty=0—>x=0 (t<D0) (1.58)

[e¢]

But if the equation of motion for G is integrated around the delta-like
hit:

d2G tote 42 to+e
LT _s(t— ——ldt = 5(t—t)de (159
=0~ [ Ghde= [T se-wmar 159)

The right hand side of this equation is just the integral of a delta
function, which is equal to 1. The left hand side is the integral of a
derivative, which means that the order of the derivative is decreased
by 1:
% —jf/\/: 1 (1.60)
tote ty—e

15
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From that the value of the constants after the hit is obtained: ‘fj—f ly =
C=1Gl,=0=Cty+D— D=—¢t,

0 (t < t) }
G(t, = 1.61
(& ) {t_to o) (1.61)
Solution for ¢t > 0 (when the force is applied):
+o00o t +o0
u(t) = / e "G(t, to)dty = / e "Gt to)dt0+/ e "G(t, t)db
’ ’ ‘ (1.62)
t
u(t) = / e "G(t, ty)dty (1.63)
0
asG=0fort < ty
u(t)=t—14e* (1.64)

Representing the result graphically:

6
__ 4
5 2
% 2 4 s
t(s)
Figure 1.7

1.9 Shape of a String in Mechanical Equilibrium,
Solved by the Green’s Function Method

Solve the equation:

d*u
with boundary conditions u(0, 7/2) = 0 using the Green’s function

method.
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u 6(x-xy)
G(x,xg)

A X
0\l ] m2

Figure 1.8

Solution: To find the Green’s function the following differential
equation must be solved:
d?*G(x, xo)
dx?
with the boundary conditions G(x = 0) = G(x = 7/2) =0
We apply an analogous method to the one already used to solve
the problem considered in section 3.2.5 from [1], by dividing space
in two region (x < x¢ and x > Xg) and solving first two independent
homogeneous problems.
The resulting Green’s function is defined by parts:
A(xo) sin(x) + B(xo) cos(x) (x < xo)
Gx, o) = { C (x0) sin(x) + D(xo) cos(x) (x > Xo) } (1.67)
We apply boundary conditions and bind these functions to find
the coefficients 4, B, C and D. From the boundary conditions we
arrive at:

Glx, x0) = { A(x0) sin(x) (x < x0) } (1.68)

D(xo) cos(x) (x > x0)

+ G(x, x0) = 8(x — x0) (1.66)

The continuity equation of the solution is:
A(x¢) sin(x¢) = D(xq) cos(xo) (1.69)
The difference between the derivatives to both sides is equal to 1

(it is obtained by integrating equation 1.66 around an infinitesimal
surrounding of the delta function.)

—D(x0) sin(x¢) — A(xo) cos(xp) =1 (1.70)

Solving the system of two equations with two unknown variables we
obtain:

A(x¢) = — cos(xo)

D(xo) = — sin(xo) (171)



18 | Harmonic Oscillator and Green’s Function

Then the Green’s function has a value:

G(x, xo) = { — cos(xo) sin(x) (x < Xo) }

— sin(xg) cos(x) (x > xq) (1.72)

Once obtained the Green’s function we can use it to solve the
original problem. To find the particular solution we need to solve
the following integral:

/2 X /2
u(x) = / z-G(x, z)dz = / z-G(x, z)dz+/ z-G(x, z)dz
0 0
) (1.73)
To solve the integral with the z variable it's important to distinguish
the parts of the Green’s function, corresponding to z > x and z < x.
The following figure can help clarify this:

G(z,x) 6(z-x)

Z<X Z>X

[\ x
0 | xo | 2

Figure 1.9

We finally arrive at the result:
/2
u(x) = / z-G(x, z)dz
0

X /2
=- cos(x)/ z - sin(z)dz — sin(x)/ z-cos(z)dz (1.74)
0 X
Integrating by parts we arrive at:

u(x) =x —m/2sin(x) (1.75)
1.10 Case Study: Transversal Displacement of a
Tense String Glued to an Elastic Plane

Determine the transversal displacement of a tense string of length
L which is attached to an elastic plane and upon which a force acts



Transversal Displacement of a Tense String Glued to an Elastic Plane | 19

with the following density:

fo, f <X < 3TL
fx)= ; 5L (1.76)
0, X < 3 X > 7

Consider the case in which the two ends of the string cannot
move. Solve the problem with the Green’s function method.

Figure 1.10

Mathematical formulation:
Ut _ q2y(x) + @ =0

dx?

(1.77)
u(0) =u(L)=0; a?=1~

Since we will solve the problem using Green’s functions, we will
first use a density of forces f(x) = §(x — xo)-

ulx) 4

Figure 1.11

We have once again a solution with the form corresponding to an
infinite plane:

_ Jux) = Are™® + Bre™ (x < x0)
U(X) o { uz(x) = Azefax + Bzeax (X - XO) } (178)
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From the boundary conditions, we get:

{ U(O):A1+81=0—>A1=—Bl } (179)

u(L) = Aze ™t + Byett =0 — B, = —Aze %t

From the condition of continuity of the string, and replacing
these values of B; and B5:

ui(xo) = uz(xp) — Aq[e”0 — ™) = Ay[e” ™ — g~ 2ale]

(1.80)

The condition of continuity of the derivatives is obtained by
integrating the equation:

d*u(x) () = _3(x —xo)

dx? T

(1.81)

around the point x¢ in an interval 2¢, where we will later lete — 0:
Doing as in previous problems we get:

duz(x)
dx

_duy(x)
dx

=—= (1.82)

Xo+e€ Xo—¢&

From here:
1
Az[(—a)e™ ™ — ge L™ ] 4 qA1e™™ + aA ™ = 7 (1.83)

Here we arrive at a system of two equations with two unknowns to
solve A1

—ax, —2al ,ax —ax, axpl — 1
Az[e™ 0 + 71" ] — Aq[e” ™0 + ™) =

(1.84)
Al[e—axo _ eaxo] — Az[e—axo _ e—ZaLeaxo]

This method is rather formal and not the fastest one. We will now
explore another more direct way to find the final solution.

Observing carefully the symmetry of the solution and the
boundary conditions we can present the solution in a more
transparent way, which already includes other boundary conditions
(we also arrive at this form if we seek a solution as a sum of
hyperbolic functions).
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_ [ u1(x) = Asinh(ax) (x < xo)
u(x) = {uz(x) = Bsinh(a(L—x)) (x > Xo)} (1.85)

Again we apply the condition of continuity of the solutions:
(1.86)

u1(x0) = uz(x0) — Asinh(axg) = B sinh(a(L — x¢))

Replacing these values, we get:
ui(x) = Asinh(ax) (x < x0)

- (1.87)
uz(x) = At sinh(a(L— x))  (x > Xo)

Applying the previous expression to the condition of continuity of

the derivatives:
dus(x) duy(x) 1
dx |y te dx |y e T
(1.88)
we have:
inh
(—a) m cosh(a(L — xo)) — aA cosh(axq) = -7~
(1.89)

A 1 sinh(a(L — x¢))
T aT sinh(axo) cosh(a(L — xg)) 4 cosh(axo) sinh(a(L — xo))
(1.90)

In this manner we get Green’s function:
up(x) = A(xo) sinh(ax) x < xo

sinh(axo) _ ginh(g(L —x)) x > Xo

G(x, x0) =
uz(x) = A(X0) sohtati—s)
(1.91)

To find the solution of a non-homogeneous equation starting

from a Green'’s function:
L

/G(x, x)dx’ (1.92)

BN

L
u(x) = / FOOGE X)X = fo
0

NI

where x’ is the point of application of the point force. In Green’s

function previously obtained , x’ = xq.
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Note. we can get to the solution of the problem without using
Green'’s functions:

% —adtux)+ M =0 (1.93)
u(0) =u(L) =0 '

The solution again is composed of three parts: two of them
correspond to the ranges where the equation is homogeneous and
the third one, to the central part (non-homogeneous equation). The
first two parts are sought in a similar manner to how we did for
finding Green'’s function:
u1(x) = Asinh(ax) (x < L/4)
uz(x) = Bsinh(a(L—x)) (x> 3L/4)

By symmetry it mustbe: A = B

uz(x)?

We search for uz(x) as the sum of the solutions of the
homogeneous equation u(x) and the particular solution up(x) of
the non-homogeneous equation. The homogeneous equation has

solution:

dZ;;gx) — a?up(x) = 0 — up(x) = C cosh [a <x — ;)} (1.95)

The non-homogeneous equation has a particular solution:

d2
s:;z(X) - azup(x) = —% (1.96)

A particular solution of this equation consists in taking u,(x) as
a constant and replacing we obtain its value: u,(x) = a’;—“T Then:
L
uz(x) = Ccosh la(x—= ||+ i (1.97)
2 a?T
We introduce the conditions of continuity of the functions and
their derivatives at the point 3L/4, integrating the differential
inhomogeneous equation in an environment € around this point.

us <5:1_L> = Uz (T) (198)
duz

dx

We obtain a system of two equations with two unknowns, C
and A.

u(x) = (1.94)

_ dl,lz

3L dx
x=7

(1.99)

3L
X=7
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C cosh (ak) + L2 = Asinh (at
(a5) (a5) (1100)
—C sinh (a%) = A cosh (a%)

u(x)

L/4  3L/4

Figure 1.12

1.11 Forced Harmonic Oscillator, Solved with
Green’s Functions

An oscillator with mass m = 1 kg and an eigenfrequency wy = 1
Rad/s is initially at rest.

Starting at t = 0 a force starts acting on the oscillator with a value
that exponentially decays with time e~. Find the particular solution

for this case.
X
—
%M@ f(t)
m

Figure 1.13

Mathematical formulation:

du(t) | WALC]

df et 2 (1.101)
f‘{o a<m}
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For this oscillator with natural frequency wy = 1, Green’s
function is sin (¢ — x), which allows to write the particular solution

as:
t

t
Upare(t) = / f(x)sin(t — x)dx = /e’x sin(t —x)dx (1.102)
—00 0
From integral tables we have:

L ¢

/e_x sin(t — x)dx = [;e_x [cos(t — x) — sin(t — x)]} (1.103)
0

0

Upare(t) = %[e’t — cos(t) + sin(2)] (1.104)

Finally the result is shown graphically, from which we can observe
the oscillator’s larger amplitude of motion at the beginning (and
which decays due to the exponential decay).

05{8%
£
St
(5]
T 00
=
a
€
<

.0‘5_

0 20 40

t(s)

Figure 1.14



Chapter 2

Problems in One Dimension

In this chapter the method to seek solutions will be generalized
and applied to confined systems in one dimension. We will analyze
several physical processes, described by linear differential equations
in partial derivatives in one spatial dimension. The solution will be
found using the Fourier method, expanding it in series of harmonic
functions.

Of course, in the cases of a static string the problem will consist
in solving a second order differential equation with boundary
conditions. Whereas in the case of transversal oscillations along
a string or longitudinal ones in a solid rod, it is obvious that the
solution needs to consist of harmonic functions, in the case of the
diffusion equation the interpretation will be more abstract.

To summarize, the goal of this chapter is to start from some
simple examples to show the basic methods to solve the wave and
diffusion equation, and static Poisson problems. In the case of a
string with forces applied to it, sometimes we will use the Green’s
function method introduced in the previous chapter.

The appendix contains a summary of the different equations
of the physical processes described, using second order PDEs, as
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well as solutions of the Sturm-Liouville problems for a harmonic
oscillator with different types of homogeneous boundary conditions.

2.1 Closed String

Consider a string (tension T, linear density of mass p, length L) with
the shape of a circular ring. The string is free to move across its
entire length (with no gravity).

Find the oscillations of the string if we know the displacement
u(x, 0) = f(x) and the velocity u¢(x, 0) = ¥ (x) at the instantt = 0
with respect to the plane of equilibrium (we can call x the variable
that indicates the position along the string).

Figure 2.1
Mathematical formulation:
9* a2 T
L O<x<Lc*=—
ot? 0x?
u(0,t) =u(L ¢t
ou __du 21
ox x=0_ ox x=L ( . )
ulx, t =0) = f(x)
au
=y(x
AR
Sturm-Liouville problem: We use separation of variables:
ux, ) =T(t) - X(x) (2.2)

We arrive at the Sturm-Liouville problem for the spatial part X (x):
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d*x
i +1X =0 (2.3)

The general solution (having considered 4 > 0) is: X(x) =
A cos +/Ax + B sin/ax.

The eigenvalues are found with the boundary conditions, which
are adapted to the spatial part of the solution:

ux=0,t)=ulx=1L1¢) Xx=0=X(x=1)
ou|  du T Yoex|  ax
ox x=0 B ax x=L ax x=0 B ax x=L

(2.4)

We arrive at the following system of equations to find the
eigenvalues:

A = Acos~/AL+ Bsin+/AL

(2.5)
Bx/A = —Ax A sin AL+ Ba#A cos /AL
Equating DET=0:
Tni?
cosVAL=+1 — AL=7n— 1, = [T} (2.6)
General solution:
(o]
h h n
8 =3 |Ancos (e7¢) + Busin (et | cos (o)
u(x, t) nz:; n COS CL + B, sin CL cos LX
> h hn n
€y cos (e-t) + Dysin (e-¢) | sin (Tox)
+;{ncos CL + D, sin CL sin LX
(2.7)

Note: if we try to isolate the values of A or B in the previous system
(replacing the obtained condition for the eigenvalues) we arrive at
expressions of the type A = A and B = B. Precisely, due to the
uncertainty in the origin of coordinates we cannot fix the phase of
every eigenfunction (that is, we cannot fix the ratio 4,/ B,) contrary
to the case of open strings. In the latter the position of the string ends
fixes the phase of each eigenfunction. To illustrate this, consider the
following figure:
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< 1,04 o= 4
g PR N
\
2. \ =Eigenfunction 1| /
o5 054 Eigenfunction 2| , -
T \
> /

f c \
20 /
[T 0,0 \ g
2 /
v g \
oe \ /
o @ -0,5 q
g2 . 7
as Two possible eigenmodes

-1,0 1 with the same eigenvalue I ~ 7

0 1 2 3 4 5 6
X
Figure 2.2

Final solution: The coefficients are obtained by imposing the
initial conditions and using the properties of orthogonality (in this

. 2
case to each eigenvalue 4, = [Lﬂ correspond two orthogonal
degenerated eigenfunctions cos (Z"x) and sin (Z"x)):

L
A, = %/f(x) cos (”—L"x) dx (n>0) (2.8)
0

L
17
Ay = LO/ f(x)dx (2.9)
L
Cy = %/f(x) sin (”—L"x) dx (2.10)
0
) L
B, = — ¥ (x) cos (n—Lnx) dx (n>0) (2.11)
0
L
D, = % ¥ (x) sin (n—Lnx) dx (2.12)
0

Notes: the By term does not exist, since it enters the summation as
0- By
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2.2 Sturm-Liouville Problem with Boundary
Conditions of the Second and Third Kind

Find the eigenvalues and eigenfunctions of the Sturm-Liouville
problem in a string whose right end is free to move and its left end
is connected to a spring.

Figure 2.3
Mathematical formulation:
W =0
sl U=
dx?
d
U huo) =o; (2.13)
dx |,_o
d
dul _
dx|,_,
Here h = B/ T is the ratio between the spring constant and the

tension (in the general case of a string).

The more formal method to solve this problem consists in finding
a solution as the sum of two linearly independent solutions and to
apply the boundary conditions.

u(x) = Asin(v/x) + B cos(v/Ax) (2.14)

However, in this case we can take a shortcut noting that the only
solution than can possibly satisfy the second boundary condition
must have the form:

u(x) = B cos(vA[x — L]) (2.15)
Applying the first boundary condition:
—B/Asin(v/A[—L]) — hB cos(v/A[—L]) = 0 (2.16)
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VAsin(v/AL) — hcos(v/AL) = 0 (2.17)

The zeroes of the equation: tan(v/AL) = % give us the eigenvalues
of the problem.

The following graphical representation shows how the eigenvalues
of the problem are found:

BT TR N

Figure 2.4

Note. These orthogonal functions could be used to seek the solution
of, for example, the heat propagation in a 1D bar with its right
end thermally insulated and the left end in contact with an outer
medium, with which it exchanges heat according to Newton’s law.

2.3 Stationary String in a Gravitational Field

A string of length L is stretched with a tension T and is fixed at
x = 0. The other end (without a gravitational field) is kept at the
same height as the first end. Furthermore, it is subject to an elastic
force (it is connected to a spring with elastic constant ). The elastic
force is zero when (in the absence of gravitational field) the right
end is at the same height as the one at x = 0. Find the shape of the
string when there is a gravitational field. Consider the linear density
of mass p is uniform. What will the solution be in the limit 8 — 00?
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9|

Figure 2.5

Mathematical formulation:
d?u(x)
dx?
u(x=0)=0 (2.18)

du

dx |,_,

T

=g

Solution: We look for the general solution and apply the boundary
conditions.

u(x) = %xz Y Cx+D (2.19)

From the first boundary condition u(0) = 0 we have D = 0. From
the second condition:

du pgL?
T | +pu(l)=0— pgL+CT +p +CLl =0
dx |,_; 2T
(2.20)
L2T L
C = _pgL2T +pL (2.21)
2T T +BL

C must be negative to guarantee u(L) < 0.

The solution in the limit 8 = oo corresponds to both ends fixed
and is (as can be checked by imposing 8 = oo in the result) obtained
in [1]:

u(x) = %(x2 — Lx) (2.22)

Comment: in the case of also solving the vibrations of the string with
the same contours, the shape of the solution could include the static
shape of the string and vibrations of a string with homogeneous
boundary conditions and no external forces could be summed to
the previous to describe oscillations of the string with the new
equilibrium position.



32 | Problems in One Dimension

2.4 Static String with Boundary Conditions of the
Third Kind at Both Ends

The ends of a tense string (tension T') can move transversally, since
they are attached to two springs (of elastic constant g8). Find the
form of the string when, under the action of a constant point force
(F) applied at xq it is in mechanical equilibrium. See also problem
(3.4) from and section 3.2.2 from [1].

F

Figure 2.6

Mathematical formulation and general solution:

Gravity is neglected in this problem:

dZ
T U)oy = —Fa(x — xo) (2.23)
dx?
The boundary conditions are:
d
T = pu(0)
X |,_o
d
-1 2 = Bua()
X |,y

We seek a solution by parts:
_ Ul(X) (0 <X < XO)
10 = { uz(x) (xo <x <1L) (2.24)

Since in the indicated ranges the equation is homogeneous (there
are no forces applied):

d?u(x)
T =0 (2.25)
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uj(x) =A1x+B; (0 <x <xp)
u(x) = (2.26)
u(x) =Ax+ B, (xo<x<1)
Now the boundary conditions and the continuity of the functions
u1,2(x). Also the parameter ¢ is used for the discontinuity at xo.

First continuity condition: u; (xg — &) = uz(xo + ¢) (lime — 0)
Second continuity condition: We integrate equation (2.23) in an
interval 2¢ centered at xg and take the limit ¢ — 0:

T lim [uzx (X0 — &) — Urx(Xo + €)] = —F (2.27)
Applying the four conditions to the solution (2.26) we arrive at a
system of four equations with four unknowns A; ;; By, 2:
A1xo + B1 = Azxo + B2

dy—dy= L
e T (2.28)

TA =8B

—T Az = B(A2L+ B2)

Final solution

From this system of equations, the coefficients A, A, B1, B, are
determined and we arrive at the solution u(x). From the two last
equations we can write the solution as:

A1<X+T) (0 <x < x0)
u(x) = p r (2.29)
8pt[A; <X—L—'B> (xo <x < L)

From the two first equations from the system, we finish obtaining
the value of the coefficients.

F T
A= F(p_ BT
T 2T + LB

_ﬁX0+T>
2T + LB

F(,Bx0+T)
Ay = —— (22210
T \2T + LB

)(,BX()-I—T)
2T + LB

F
By =~
p (2.30)

F
Bz ?
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We can check that the solution is converted in that which is
explained in [1] for the case of fixed ends (8 — o0).

Note 1: the function @ represents the Green’s function of the
problem.

Note 2: Since it's a static problem this solution can be extended
to problems described by an equation like the heat equation but
without first order time derivative.

2.5 String with a Point Mass Hanging from One
of Its Ends

Consider a string of length L, tension T and linear density of mass
p. The string has the left end fixed and the right end can move
freely in the transversal direction. The string is placed in the Earth’s
gravitational field (g). Determine the stationary form of the string
after an infinite amount of time if there is a point mass m hanging
from its right end (x = L).

mg}

Figure 2.7

Mathematical formulation
We assume that the mass is at a distance ¢ — 0 from the right end

at x = L. First we will discuss how to find the density of forces. The
total force applied to the string is directed in the negative direction:

f0) = = =~ [og + mgs(x — L+ #)] (231)

This form describes two contributions:
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Without the point mass:
L
F1 = /gpdx = pglL (2.32)
0
Force due to the point mass:

F; = | mgd(x — L+ ¢&)dx = mg (2.33)

o&\_\SP

General solution Then the equation to be solved will be:

0%u 0%u
Paz T = —[pg + mgd(x — L+ ¢)] (2.34)
since ‘312—; — 0
d’u
—T— = —[pg +mgé(x — L+ ¢)] (2.35)
dx?
And we have the boundary conditions:
0
u(0,6)=0; | —o (2.36)
0X |,

We will solve the problem by parts. The first part uq(x, t) will be
comprised between the points x = 0 and x = L — ¢. There,

d?uy rg
=— 2.37
dx? T (2:37)
Whose function is, considering the left boundary condition:
2
09 X
ui(x) = 7‘97 + Bx (2.38)

On the other hand, the equation for the solution u;(x), to the right of
the point mass, when ¢ — 0 will be:

d2U2
—-T—=0 2.39
I (2.39)
from the right boundary condition:

dU2

— =0 2.40
dx |,_; ( )
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Final solution Integrating the wave equation in the surroundings of
the point L — ¢ we find the change of derivative in the point where
the point mass is:

d d
_du _ [_ duz ] = "9 (2.41)
dx x=L—¢ dx x=L—¢ T
since ‘% |X=L7€ = 0 due to the right boundary condition:
d
du =" (2.42)
dx x=L—¢ T

This derivative determines the angle of the string at the point where
the mass is attached. Appling this last condition to u; (x) in the limit
e — 0:

duq rg mg

=—L+B=—— 2.43
dx |,_; . T + T ( )

Then: m
p=-P9,_ ™ (2.44)

T T

The form of the string is:

_rgxt (pg i) 2.45
m) ="y kg (243)

Note. In principle, the possible alternative way would be to ignore
the point mass in the equation (it would be Tg% = gp, with p =
const) and to include the point mass only as the effect that gravity
would have on it through the boundary condition at the end x = L:
Tg—)’;|sz — mg = 0. However, the advantage of the method used is
that it first detaches the mass from the border so that it could be
used to find the dynamics of the problem ( formulate and resolve
the Sturm-Liouville problem) and then to search for the dynamic

solution asymptotes at the limit e — 0.

2.6 String with a Point Mass in Its Center and
Second and Third Type Boundary Conditions

A string with tension T and linear density of mass p has a point
mass m in its center (x = L/2). The right end can move freely and
the left one is connected to a spring with constant 8. Determine the
eigenfunctions and eigenvalues of the Sturm-Liouville problem and
the static form of the string in the gravitational field.
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Figure 2.8
Mathematical formulation

Ju? Ju?

— =T —=0
PR T ~ T
0
Al _huy=o0 (2.46)
ox x=0
0
ul o _,
0X |,

Being h = % The density of mass is p(x) = p + mé(x — %). The total
L
mass of the string, for this density is the expected one: [ p(x)dx =

0
p L+ m. If the mass were delocalized we would need to formulate the
density in different parts, but we take it to be point-like.

Sturm-Liouville problem Separating variables we arrive to the
Sturm-Liouville problem:

2

X

20 _hx0) =0 (2.47)
dx x=0

x|

dx |,_,

To find the eigenfunctions avoiding the anomalous point where
the linear density of mass diverges, we need to separate the
eigenfunctions in two parts.

Xi1(x)=4 sin(\//Tpx) + B cos(\//Tpx) (2.48)
X2(x) = C cos(y/Ap[x — L]) (2.49)

(here the second boundary condition has already been applied). The
first condition is applied for X (x):

37
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A+/2p cos(1/Ap0) —B+/Ap sin(+/2p0)
—h[A sin(y/2p0) 4 B cos(y/1p0)] =0 (2.50)

AVAp —hB =0 (2.51)
Then B = A¥%

Xi(x)=A [sin(\/fpx) + @ cos(\//%x)} (2.52)

We impose the continuity condition for the eigenfunctions:

L N2 L L
A {sin (\//lpz) + Tpcos («//lp2>] — C cos («//lp2> =0
(2.53)
We now apply the discontinuity of the first derivatives of the
eigenfunctions by integrating equation (2.47) around the point x =
L/2.
dX;

dX,
dx

L dx
x=3

[ () o)
+C {\//T,osin (W;) — Amcos <\//Tp§>:| =0 (2.55)

L L
= AmX, (2) = CAmcos (x//lpz) (2.54)
x=1

— 21
:? 14
T
x ]
o ]
(V] 1 2 3 4
X (a.u.)
0.01 1
b4 «
o 0.00
<
S -0.01
-0.02 4
1 2 3 4
X (a.u.)

Figure 2.9 Example of a graphic representation of equation (2.54.
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With the system of equations (2.53, 2.55) we can form a determinant
which, when equated to zero, gives the eigenvalues A,,. Furthermore,
from equation (2.53), we have:

A cos(vAp 1)

= 2.56
C (VB s (VE) )
Then:
sin(y/A,0X) + —— F cos(v/An0X) (x < g)
Xn(x) =Ax . /lné +W /lné
sm( p2> h :05< '02> cos (Vplx — 1) <x>£>
cos <\/WE>

(2.57)

Static form of the string in the presence of the gravitational field The
general mathematic formulation (without specifying the position of
the mass. xq) is:

d?u(x
1) o fe) = lomgst ) gl (258)
We look for a solution by parts:
L
u(x) (O <X < 2)
(2.59)

u(x) =
uz(x) (5 <X < L>

Since in the indicated ranges the equation is non-homogeneous the
following type (assuming a uniform density):

d?u(x)
T = 2.60
axZ (2.60)
9P L
ZTX +Aix+B; |0<x < =
— u(x) = (2.61)

gr

2T
We formulate the boundary and continuity conditions for the
functions uj »(x). We use the parameter &, which measures the
proximity to the point %

L
= x? 4+ Ax + By (2<X<L>
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Continuity of the solution: uy (§ — &) = uz (5 4+ ¢) (lime — 0)

2 2

p | L L o | L L

9 M A M rm=2 M + 4, M +B  (262)
L

(Az - Al)i = Bl - BZ (263)

Discontinuity of the derivatives: We integrate equation (2.58) in the
proximity ¢ of the point % and take the limit ¢ — 0.

Lre bre b
d?u(x)
T iz = f(x)dx ={e > 0} =mg | §(x—x0)dx = mg
X
(2.64)
We arrive at:
gr L gp L
T|==z+A4|—T|—7z-+41| = 2.65
[T2+z] {Tz+1} myg (2.65)
A — 4y =19 (2.66)
T
Boundary condition for the right end: ‘% |X=L =0
4,=-2p (2.67)
T
Condition for the left end:
d
T 2 _gu)=o0 (2.68)
dx |,
T Aq
TA,— BB =0— By = (2.69)

B

Final solution We have a system of four equations with four
unknowns A1, 2; By, 2:

L
(A2 — AI)E =B1—B
Ay — Ay = %
(2.70)

A, =9,

T

TA

B = —1

B
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pgL
Ay = — [T‘Fnﬂ

1
By = —E[ngJr mg]

(2.71)
4, =9,
T
1 mgL
B, = —=[pglL -z
2 ﬂ[pg + mg] 5T

1 L
ﬂ[xZ—ZLx]—Ex——(,ogL~|—mg) 0<x<~
= ) 27 T B 2

g . mgL 1 L

—[x* - 2Lx] — — — = (pgL = L

o =21 = S — (g +mg)(2<x<
(2.72)

2.7 Static Form of a String with a Mass

In the middle point of a tense string a mass m is placed. The string
has a fixed end and the other can move transversally. Determine the
shape of the string when, under the action of gravity, is in mechanical
equilibrium.

L/2 |

mg|

Figure 2.10
Mathematical formulation:
d?u(x)
T— 5 =—fx) = —[-mgs(x — x0) — gp] (2.73)

(Note that the forces are directed in the negative direction).
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We will look for the solution in the form of two functions:

u(x) (0 <x < g)

u(x) = (2.74)

uz(x) (% <x<1l)

In the indicated ranges the equation is non-homogeneous (uniform
density approximation).
d’u(x)

T
dx?

(2.75)

L
%X2+A1X+Bl (0<X<)

gr

—X

2T
We formulate the boundary conditions and the continuity conditions
for the functions uj;(x), introducing the parameter &, which
measures the proximity to %

— u(x) = (2.76)

L
+ Ax + B> (2<X<L>

Continuity condition 1:

uy (; - 8> =u (; + 8) (e —>0) (2.77)

L]? L L]? L
g’;M + A M+31=§’;M + A, H+Bz (2.78)

Continuity condition 2: We integrate equation (2.73) in the
proximity of size ¢ around the point % and consider the limit: lim

e — 0:
Lte Lie f+e
d*u
T Fr i f(x)dx ={e > 0}=mg | §(x —x9)dx = mg
Lg Lg Lg

(2.79)

We arrive at the second continuity condition:

d d

T .lim | 22 44 — mg (2.80)

e—0 dx Ly dx L_g

2 2

r H? B] N Az} 7 [9;) [ﬂ + Al} —mg  (281)
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mg

Ay — Ay = - (2.82)
Now we consider the boundary conditions:
u1(0)=0— B; =0 (2.83)
d
el 0o Pria,=0 (2.84)
dx |,_; T

Applying these four conditions to the solution (2.76) we arrive at
a four equation system, with four unknowns 4; 2, B1, 2.

A L+B =A L+B
15 1=425 + B
Ay—ay="2
T (2.85)
B1=0
gp
—L+A4,=0
T + Az
L
%[XZ—ZLX]—gX <O<x<>
u(x) = mal /L (2.86)
ﬂ[)(Z—ZLX]—i —<x<lL
2T 2T 2

Note 1: The correct result must imply continuity in the derivative at
x = L/2 form=0.

Note 2: A similar problem can be formulated, consisting of the heat
conduction in a thin bar or rod (one dimensional problem) which
has a similar solution.

2.8 Heat Conduction through a Semi-Insulated
Bar

Consider a bar of length L thermically insulated on the left end (x =
0) and in thermal contact with a reservoir at T = 0 on the right end
(x = L). The material has a thermal diffusion coefficient equal to x.

Find the temperature distribution as a function of time if at t =
0 both ends are at T = 0 and the temperature distribution has a
triangular shape with maximum value T = © at the center of the
bar.

43
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Thermally insulated

N\

Figure 2.11

Solution:

Mathematical formulation

du(x,t)  d*u(x,t)

2.87
at X dxe (2:87)
20, (x < ;)
u(x, t) = (2.88)
2—IE")(L— X) (x > 2>
Ul o ux=1)=0 (2.89)
dx |,—o

Sturm-Liouville problem We replace a solution of the type u(x, t) =
A(t)X (x) in the heat equation and separate variables:
We have the next Sturm-Liouville problem for X (x):

dx?
T TAX =0 (2.90)

dX

— =0, X(L)=0; (2.91)
dx x=0

The general solution for X (x) is:

Xx)==C sin(ﬁx) + B cos(\/zx)

from i% w0 = OwegetC = O0andfrom X (L) =0, VAL = 7(2n+1),

withn=0,1, 2, ...
The eigenvalues are: 1, = [ (2n + 1)] 2

The eigenfunction are: X,(x) = cos [2(2n + 1)x]
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General solution We take into account now also the temporal part
which resulted from the previous separation of variables:

dAn
dt

With which we get to the general solution:

n=0 (2.92)

u(x, t) = Z Ap exp(—xAnt) cos {%(Zn + 1)X} (2.93)

Final solution Initial conditions:

20 L
TX <X < 2)

u(x, 0) = 20 L (2.94)
—(L— x) (x > 2)

Equating them to the solution att = 0: ) | A, cos[5;(2n + 1)x]
Using the orthogonality of cos [ (2n + 1)x] we find the A,
coefficients:

L

L2
20 20
An = /TXCOS(/lnX)dX—i-/T(L—X) cos(A,x)dx
0 L/2
40 10 | 10 |
= F/xcos(ﬂnx)dx—l— T/COS(/lnX)dX - F/XCOS(AnX)dX
0 L2 L2
40 10 | 40 [
= T/xcos(ﬁnx)dx—i- T/cos(/l,,x)dx - ?/xcos(/l,,x)dx
0 Lj2 L2
Y2 cos(4,x)

4 X sm(/lnx)
An

L2
0 }

40 [ xsin(1,x) [*
L/2 iz An

L2 An

cos(1,x)

40 sm(/l x)
_l’_ JEE—
L Ay

L/z}
(2.95)

From where we get:

16 2n+1
A = 09 b (ALY (2.96)
72(2n + 1)? 2 2
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2.9 Variation of the Temperature of a Thin Rod as
a Function of Time

Suppose a bar that is at a temperature Ty until ¢ = 0. At this
moment both ends of the bar are brought into contact with two
thermal reservoirs at temperatures T; and Ty. Find the distribution
of temperature in the bar as a function of time.
-T;

Figure 2.12

Mathematical formulation:

du(x, t)  d’u(x,t)
ot 1T ax?
0,t) =T,
u(0.9) = To (2.97)
U(L, t) = T1
u(x,0) =T,

We look for a solution as the sum of a function uy(x, t) (which
satisfies the non-homogeneous boundary conditions) and another
function v(x, t) (which satisfies the homogeneous boundary condi-
tions).

u(x, t) = up(x) +v(x, t) (2.98)
Since the boundary conditions do not depend on time, we can choose
the uy(x) function to be independent of time and, as we will see,
correspond to the stationary solution.
Boundary conditions for ug(x).

v(0,t) =0 — ug(0) = Ty
V(L, t) =0—- UO(L) = T1
Then the simplest solution is:

uo(x) = To +

Ty — T,
! 5 Ox (2.99)
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Mathematical formulation of the problem for v(x, t)
v 9%
ot~ Yox2

V(. =0 (2.100)

v(L t)=0

_ To-=T
v(x, 0) = ~2x

We will use the method of separation of variables for the
eigenfunctions in the x direction:

Xn(x) = A, sin {anx} (2.101)
Ay = [’T—L"r (2.102)

The solution for the temporal part is obtained by solving the
equation:
dc,

2 T ( )
General solution The general solution is:
n
u(x, t) = Z Ape "t sin [Tx} (2.104)

From the initial conditions v(x, 0) = {{=Ttx} = }" 4, sin [Zx]
using the orthogonality of the eigenfunctions sin[*x] we find the
coefficients of the expansion:

2 [L/Ty—-T To—T
Anzf/ ( 0 1x> sin [n—nx} dx:2M(—1)”
L/, L L 7n
(2.105)

Final solution The final solution is:
T, —T
u(x, t) =Ty + ! 0

x+v(x,t) (2.106)

2.10 Thermal Conduction in a Bar with Insulated
Ends

Find the variation of temperature as a function of time in a bar of
length L with both ends thermally insulated if the initial distribution
of temperature is T (x, 0) = f(x).
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Thermally insulated boundaries

re g

A\

T(t=0)=f(x) 7
Figure 2.13
Mathematical formulation:
du ,0%u
— =Ct—
at ax2
al . 87” (2.107)
x|,y X[,
u(x, 0) = f(x)

Sturm-Liouville problem We use the separation of variables
method:
ulx, t) =T X(x) (2.108)

To find the eigenfunctions X,(x) we have a problem analogous to a
string, but free on both ends. The Sturm-Liouville problem for X (x)
is:

dX

ax T

dx ax . (2.109)
dx x=0 B dx x=L B

Eigenfunctions and eigenvalues:
Xn(x) = cos (/vnx) (2.110)
mTny?2
Uy = (7) n=0123,... (2.111)

General solution The general solution is u(x, t) = >_ T,(£) X ,(x)

Final solution Replacing this solution in the heat equation and
using the orthogonality properties of the eigenfunctions we get to
the equation for the T,(¢t) coefficients, which determines the initial
conditions.

T, (t) = Ape ()’ (2.112)
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Solution:

oo
u(x, t) = Ao + Z Ane ()t cos (n—Lnx) (2.113)
n=1

Using the initial conditions:
= n
Fx) = Ao + ;:1 Ay cOs (Tx) (2.114)

and taking advantage of the orthogonality of the X,(x) eigenfunc-
tions we determine the coefficients of the expansion:
L

An = %/f[x) cos (LL"X) dx (2.115)

0

2.11 Variation of the Temperature of a Bar as a
Function of Time

A bar of length L = 1 has a thermal diffusivity coefficient equal to 1
(the ratio between the heat capacity times density and the thermal
conductivity). At the initial instant (¢ = 0) the temperature of the
bar has an exponential distribution T (x, 0) = e ™. Att = 0, both
ends are connected to a thermal reservoir with temperature equal
to zero. Find the time variation of temperature of the bar.

T (t=0)
,,,,,,,,,,,,,,,,,,,,,, R
| |
\T=O(t>0)/
Figure 2.14
Mathematical formulation:
du(x, t d?u(x, t k
u, o _ pdux g kK (2.116)
dt dx? Cpp

First boundary condition: u(0) = 0
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Second boundary condition: u(L) = 0
Initial condition: u(x, 0) = e (0 < x < L)

¢ = thermal diffusivity; k- thermal conductivity; c, = heat capacity;
p- linear density of mass.

General solution Considering L = ¢ = 1, when we use a solution
obtained by separation of variables u = T ()X (x) we get the
following general solution of the problem (with “fixed borders”),
expanded in eigenfunctions for the given boundary conditions.

oo
u(x, t) = Z Bne "t sin(nx) (2.117)
n=1
Using the boundary conditions of the eigenfunctions and the initial

condition we find the value of the coefficients:
1

B, = Z/e_x sin(mwnx)dx

0
1

2 —X
= m[— sin(mwnx) — wn cos(mwnx)]
0
2mn _
== m[l + (—1)n+1e 1] (2118)
Final solution The final solution is:
o0
2
u(x, =3 ﬁ“ + (~1)" e e ™ sin(rnx)
=1
' (2.119)

2.12 Relaxation of Temperature in a Rod with a
Local Heat Source

The stationary distribution of temperature of a very thin rod whose
lateral surfaces are kept thermally insulated is initially determined
by the presence of a local heat source with density f(x) = Q&(x —
X()).

The left end of the bar is in contact with a thermal reservoir at
zero temperature, while the right end exchanges heat according to
Newton’s law with the outer medium, whichisat T = 0.
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Find the temperature distribution along the bar when, starting at
t = 0, the heat source is turned off.

| !
_ Heat exchange according
=0 ‘ v to Newton's Law
x=0 Xo x=L
Figure 2.15

Mathematical formulation (for times prior to t = 0)

du d?

u
Co— —k— =
Py k2 =)
u(0)=0 (2.120)
3
M _hum=o
ax x=L

We will first find the stationary distribution at ¢ < 0 in order to
determine the initial condition.

d’u q
a2 = TP X
u(0) =20 (2.121)
ad
A _hum=o
0X |,_p
We seek a solution in two parts:
ui(x)= Ax+ B (x < x0)
= 2.122
u(x) {uz(x)z Cx+D (x > xo) ( )
From the boundary conditions:
u(0) - B=0
ou
— —hu(l)=0—-C—-—hCL—hD=0 (2.123)
0X |,y
hD
= 1
1—hL (1)

From the condition of continuity:

l,ll(Xo) = le(Xo)
{ Axg=Cxo+D  (2) } (2.124)
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The condition of continuity of the derivatives is obtained by
integrating the heat equation:

dZ
ﬁu(x) = —%S(X — Xp) (2.125)
In the surroundings of xo £ ¢
du; duq Q
) — | —= =—_= 2.126
|: dX :|x0+a |: dX :|X05 k ( )

From herewe get: A — C = —% 3)

We have a system of three equations (1-3) with three unknowns,
A, B and C. Once we have found the form of the distribution of
temperature at t = 0 (the ¥ (x) function) we can find its relaxation
after the local heat source has been turned off (f(x) = 0). The

T (x, t=0)

T=0— ‘ 7 Heat exchange according
to Newton's Law
Xo

Figure 2.16

resulting time dependent problem to determine the time evolution
of the temperature after turning off the heat source is:

ou %u 0
Pt~ ax?
u(x=0)=

(2.127)

0
M hux=1=0
0X |,y
u(x.t =0) =y (x)

Sturm-Liouville problem We seek the solution of the heat equation
using the method of separation of variables and expand the solution
in orthogonal eigenfunctions.

u(x, ) =Y T(Ov(x) (2.128)
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being v(x) the solutions of the Sturm-Liouville problem:

v w0

v _ -

dx?

v(0) =0 (2.129)
9

Y —wx=Dp=o0

0X |,

Carefully observing the boundary conditions, we can present the
solution in a more transparent form that contains the left boundary
condition (we can also get to this form if we seek the solution as the
sum of trigonometric functions).

v(x) = Asin(v/1x) (2.130)
Applying the condition of the right boundary:
d
L x=Dp=o0 (2.131)
dx |,
VA cos(vAL) — hsin(~/AL) =0 (2.132)
We get to a transcendent equation for the 4, eigenvalues:
A
tan(v/aL) = % (2.133)
General Solution Replacing u(x) = > T(t)v(x) into the heat
equation we arrive at the equation for the temporal part:
dT(t
d£ ) + A4, T(t)=0 (2.134)

with the solution T (t) = E,e "¢
The general solution is:

u(x, t) =Y Epe """ sin(y/,x)

Final solution From the initial condition, and using the orthogonal-
ity of the eigenfunctions we find the E, coefficients:

Y(x) =Y Ensin(y/2,x) (2.135)
L ! )
/Ip(x) sin(y/2,x)dx = E, sin(\/T,,x)’ (2.136)
0
[ 60 sin(WTn)dx
0

(2.137)

n—

[sin(v/Zx)|”
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2.13 Heat Transfer in an Insulated Bar According
to Newton’s Law

Consider a one-dimensional bar of length L, insulated in its left end
(x = 0). The right end (x = L) is in contact with the outer medium,
which is at a temperature T, and they exchange heat according to
Newton'’s law (with constant h). The thermal diffusivity coefficient
is x and the thermal conductivity coefficient is k = 1. Find the
variations of the temperature as a function of time if at ¢ = 0 the
central part of the bar (L/4 < x < 3L/4) is at a temperature O,
different from that of the outer medium.

This end exchanges heat with
Thermally the outer medium at T=Tg
insulated end according to Newton's law
0 =
T L
e —_——

T
T=To— /& 314 %

Figure 2.17

Mathematical formulation
du(x, t) d?u(x, t)
=X

2.138
at dx? ( )
Initial conditions:
To+0® L 3L
- <X < —
u(x, 0) = 0 4 4 (2.139)
T L 3L '
To X< —X > —
4 4
it . d —
Boundary condition 1: ﬁ‘;(:o =0
Boundary condition 2: 9| _ = —h[u(L, t) — To]

The sign imposed in the second boundary condition is determined
by the form of the Fourier law and the direction of the vector normal
to the boundary.
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Sturm-Liouville problem We seek the solution by subtracting the
thermal background T, so that we have homogeneous boundary
conditions:

ulx,t) =v(x, t)+ To (2.140)

The problem is solved by separation of variables: v(x,t) =
A(t)X (x). That is substituted in the heat equation. The spatial part
is:
dx2
dx?
To obtain the boundary conditions for the Sturm-Liouville problem
from the boundary conditions for the general solution:

vix, ) =Y An(0)Xa(x) (2.142)

The boundary conditions must be imposed. For condition 1:

+,X=0 (2.141)

dv dXx,

— = An(t =0 2.143

dx |,_o Z () dx |,_o ( )
Since A,(t) is independent from the position, d;;" w0 =20

In a similar fashion we obtain for boundary condition 2:

dX,
dx

The Sturm-Liouville problem we need to solve then is:

ﬂ +AX =0
dx?
dXx
dx
dx

dx

+hX(L)=0 (2.144)

x=L

=0 (2.145)

x=0

+hX(L)=0
L

x=
General solution The general solution for X (x) is:

X(x) = Asin(v/Ax) + B cos(v/Ax) (2.146)
From the condition “% o Wehave A =0
And from “% |X:L + hX(L) = 0 we get:

—/Asin(v/AL) = —h cos(v/AL) (2.147)
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The eigenvalues 4, are given by the equation

tan(v/AL) = jﬁ (2.148)
Then
X,(x) = By cos[v/4,x] (2.149)
The temporal part is:
dA;t(t) + xAnAn(t) =0 (2.150)
The general solution for the complete problem is:
v(ix, t) = Z Ape Xt cos[/A,x] (2.151)
n

Final solution We have the initial condition:

L 3L
® Z <X < Z
v(x,0) =

L 3L
0 X< —X>—
(<52=7)

Using the orthogonality of the eigenfunctions cos(s/4,x) it is
possible to find the coefficients A,:

L 3L
(C)] —<X< —
4 4

ZA,, cos[/A.x] = L 3L (2152)
- 0 (x < X > )
4 4
Ay = - © /cos[\//TnX]dX
/ ]cos[\//l_nx]yzdx L
0
. 3L1 _ fei L
_ Ofsin[vA, ¥ — (sin[v4, §1) (2.153)

Vs | |eost /[ dx
0
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2.14 Case Study: Heat Transfer in a Semi-Infinite
1D Bar: Periodically Varying Temperature

Consider a semi-infinite bar in 1D (that is, we do not consider the
contour of the bar, only the left end, at x = 0 and the rightend, atx =
00). The temperature at x = 0 has been changingintimeas T = To+
T, cos(wt) since t = —oo. The thermal diffusivity coefficientis yx, the
density of the material is p and the thermal conductivity coefficient
is k. Find the stationary (although time dependent) distribution of
temperature of the bar, as a function of distance to x = 0.

The temperature at the end changes
periodically T,+T;cos(wt)

_ oo

|
x=0 X

Figure 2.18

Mathematical formulation We first subtract the temperature Ty, to
study the variations relative to it:

ulx,t)=v(x, t)—Top (2.154)
The heat equation to be solved is:

du(x, t)  9%u(x,t)
ot T ax

(2.155)

where x = % is the thermal diffusivity coefficient.
The initial conditions are not specified.

Boundary condition 1: u(0, t) = T; cos(wt). We will present this
condition as u(0, t) = T;e~'“%, and once the problem is solved, only
the real part of the solution will be considered.

Boundary condition 2: u(oco, t) =0

We seek the solution using the method of separation of variables
u(x, t) = T (£)X(x). Substituting this solution in the heat equation,
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and separating variables:

1dT  x d*X
- =2 " - 1= t 2.156
T dt X dx? cons (2.156)
In the stationary case the temporal dependence will be the same as

that of the external excitation (same frequency).

T(t) ~e '@t (2.157)
Then
1dT x d*X ,
Ta S xdE s (2158)

The equation for the spatial part is:
d’x
X— +ivX =0 (2.159)
dx?

Note that this is not a Sturm-Liouville problem. We are looking for
solutions of the form X o ef*, and substituting it we arrive at:

xBeP = —iweP - =+, 2 (2.160)
\ x

The following relations will help isolate —i:

i 1=

V=i=Velt =i = 2.161
7z (2161)
General solution If we define 8y = %, the general solution for
X (x) is:
X = Dellmhox 4 cem(1=box (2.162)

From the second boundary condition we have: u(oco,t) =0 — D =
0. Then, the solution will be:

u(x, t) = T ()X (x) = Ce@te(1=1hox (2.163)

From the first boundary condition: u(0, t) = Tie7'*f - C =T
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Then:
u(x, t) = Tie ' @te~(1=Nhox — T, g=fox gl (—0t+fox) (2.164)

Final solution Considering the real part of the solution will give us
the variations in temperature as a function of time and distance to
the bar left end.

u(x, t) = Tie P¥ cos(—wt + Box) (2.165)

The thermal wave decay length is 5 = \/%

The wave half period is obtained from the phase of the temporal
part —wt + Box, taken for a given instant ¢, the spatial separation
X9 = X1 — X2 between the points x; and x,, with phases 0 and =

respectively. This separation is:
Boxo =7 (2.166)

Along this distance (x¢), the maximum temperature of the oscilla-
tions decays by a factor: e = 0.043.

Analyzing the solution one can see that at every instant the
temperature in the zone fox > 7 has an opposite sign to the
temperature in the surroundings of x = 0.

An analogous problem would be the calculation of the tempera-
ture as a function of time at a certain depth underground. We would
see that the temperature would increase in winter with respect
to its value in summer. This possibility is shown in the graph,
analyzing the profile of temperature at the instants ¢; (summer) and
t; (winter).

v 06
2
© 0.4
3
0.2%
& ?
< 0.0} §
Y
(@]
n-0.2
C
@]
'5-0.4
o
©—0.6
> 1 2 3 4 5 6 17

Distance (x)

Figure 2.19

59



60

Problems in One Dimension

2.15 Case Study: Vibrations of Two United Bars

Consider a non-homogeneous bar (0 < x < L) with a uniform cross
section (S). This bar is created by uniting two homogeneous bars of
length L/2 with densities p; and p; and Young’'s moduli E; and E>,
but with the same speed of sound in both materials: E1/p1 = E2/p>.
The end at x = 0 can’t move and a constant force F is applied to the
end at x = Lup until ¢ = 0. At that instant, the force is no longer
applied. Find the eigenfrequencies and the profile of the principal
tone of the vibrations.

L/2
¢ F (t<0)
| | -—
P1,E; P2,E>
Figure 2.20
Mathematical formulation
?u 9 u
— — — |E(x)—| =0 t>0 2.167
PEI5s — o [ (x)ax} (t>0) (2.167)
Eq <0 <x < 2)
E(x) = L (2.168)
E, ( <X < L>
2
01 (0 <Xx < )
p(x) = L (2.169)
02 (2 <x<lL
The boundary conditions are: u(0) = §%| _ = 0fort > 0.

One of the initial conditions is: %—‘t‘ —0 = 0

For the other initial condition, which gives the initial displacement
u1,2(x, 0) in one of two parts of the bar, we start from the definition
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of tension in the bar:

F duq(x) F
1 S 1 ax — u1(x, 0) SE1X ( )
In the same manner it is obtained:
F
UZ(X, 0) = TE2X + COHSt (2171)

From the continuity equation we have:

U (; 0> =u, (; o> (2.172)

with this, we can isolate the unknown constant:

FL /1 1
Const= — | —— — (2.173)
25 \Eq E,
Then:
F
ﬁx (0 <X < 2)
M 1
ux, t=0)=9 p FL/1 1)\ /(L
—_— Xt — = - = —<x<L
SE,” " 2S\E, E,) \2
(2.174)
u(x,t=0)

\

L/2 L X

Figure 2.21

Sturm-Liouville problem To seek the solution of the problem we
will use the method of separation of variables in the with u =
T (t)v(x):

1d*T 1 dEx)% 5
— = =A== 2.175
T dtz2  px)v(x) dx @ ( )
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We arrive at the following Sturm-Liouville problem for v(x):

d[E (x)4
% + p(X)v(x) =0 (2.176)
X
With the boundary conditions: v(0) = 0 and Z—Z ‘x:L = 0.
Note: the orthogonality condition is:
L
(o = An) [ pWa (337 (x)dx = 0 (2.177)
0
General solution Separating equation (2.176) and its solutions in
two parts:
d2V1 a)2 L
v o o x>k (2.179)
— 4+ =V = > — .
dx2 a2’ 2
witha} , = 212

P1,2

We find the boundary conditions and the union of v;, and its

derivatives:

v1(0) =0 (1)

de

ava —0 ..

dx |,_, (1)
L L 2.180
dV1 de 3

Vx| L= Eg L)

Final solution The last condition is found integrating the wave
equation near L/2.

L L
2te 2te

d[.d
/ - {Ed:] dx + 1 / p(X)v(x)dx = 0 (2.181)

L L
5—¢€ 5—€

From condition (i) — v1(x) = A sin (jx) (2.182)
1
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From condition (ii) — v,(x) = B cos <w(x — L)) (2.183)
az
e e . (oL o L
From condition (iii) - Asin| —= ) = Bcos | — = (2.184)
aq 2 az 2
-, . w o L o o L
From condition (iv) - AE;—cos| —= | = —BE,;—sin [ ———
ay aq 2 ap ap 2
(2.185)

Using conditions (iii) and (iv) we have a system of two equations
with two unknown, A and B. Expressing this system in matrix form
we can obtain the values of 4 and B by equating the determinant of
the coefficients to 0:

E, . w L\ . o L Eq w L w L
——sin{ —=|sin{ —= )+ —cos| —=]cos| —= ] =0
dp aq 2 ay 2 a, aq 2 ay 2
(2.186)
From this equation we find the eigenvalues (related to the resonant
frequencies). In the limit of a homogeneous bar (p; = p2; E1 = E3)

we arrive to the condition for eigenvalues corresponding to the bar
with the right end free and the left one immobile.

L L L
sin? 22 - cos? 22— cos o) = 0 (2.187)
a? a? a

Finally, the frequencies w, are obtained in the case of a non-
homogeneous bar, but with materials of the same speed of sound:

El/,O1 = Ez/pz (2188)
w L
—E;sin| —= | xsin|{ —= | + Eqcos| —= ) xcos|—= ) =0
a? 2
(2.189)
Then:
L E
tan? <‘”> it (2.190)
a 2 Ez
The relation of amplitudes B, /A, will be, when the speeds of sounds
are equal:
sin (ﬂé) L E
From condition (iii) — B,/A4, = —\ez) tan ) 5L
cos (ﬂé) a?z E;
a; 2

(2.191)
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Then with A, = 1 (we are only interested in the shape of the mode,
this value simplifies the result), the profile of the first harmonic is:

v1(x) = sin (%x) (0 <X < g)
Vi) = Ei o L
va(x) = \/;cos {;"(x — L)} <2 <Xx< L>
(2.192)

To find the coefficient T, (t) of the solution we start from the general
solution u(x, t) = Y T,(t)va(x). Using the initial conditions for an
initial displacement u(x, 0), using the properties of orthogonality
and integrating, we arrive at:
L
Ju(x, 0)p(x)vaydx
T1(0) =

) (2.193)

Of,o(x)v(zl)dx

Note. v(y) is the profile of the mode corresponding to the main tone
(n=1).

Finally the mode of the lowest frequency is found:
u1(x, t) = T1(0)v( cos(w1t) (2.194)

(using the condition that the initial velocity is zero).

2.16 Distribution of Temperature in a
Non-Homogeneous Bar

A unidimensional bar of length L is made by joining two homoge-
neous bars (L = L; + L;) with different thermal conductivity coef-
ficients (k1,2) and thermal diffusion coefficients aiz =k1,2/01,2C1,2,
where p;,, are the densities of each material and Cy; are the heat
capacities. The lateral surface and the right end of the bar are
insulated (see figure), while the left end is in contact with a reservoir
at zero temperature. In the initial moment (t = 0) the temperature
at every point of the bar is equal to T = 0. Find the temperature
of the bar in the neighborhood of the thermally insulated end as a
function of time.
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Note: Only write the integrals for the temporal coefficients, there is
no need to solve them. See also problem (4.10) from [1].

L
g

Figure 2.22

Mathematical formulation:

It's important to write from the beginning a single heat equation to
describe the whole system (it’s incorrect to have two equations, one
for each material).

PG o D [ (x )] (2195)
. k1 (0 <X < Ll)
k(x) = {kz (L < x < L)} (2.196)

p1 (0 <x <L)
p(x) = {m (L < x < L)} (2.197)

_JC1(0<x <L)
Ckx) = {Cz (L1<x<L)} (2198)

Boundary conditions: u(0) = =0

|x L
Initial conditions: u(x, 0) = Ty

Solution We separate variables to find the solution:

u="T(t) v(x) (2.199)

p(X)C(X)* % [ (x )] (2.200)
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14T kIGE]

=dx_ _ “dX- _—_) 2.201
T dt px)C(x)v(x) ( )
Sturm-Liouville problem for the solution v(x):
d av
— |k(x)— | + p(x)C(x)v(x) =0 (2.202)
ax ax

Boundary conditions: v(0) = 3| 0

x=L
Note: as already mentioned, it's important to formulate a single
Sturm-Liouville problem from the beginning, since the orthogonal-
ity will be applicable to the corresponding function v(x) and not to
each of the parts in which this function will be later divided. The
orthogonality condition (see section 4.1.3 from [1]) is:

L
(An — /lm)/p(x)C[x)vnvmdx =0 (2.203)
0
Separating the equation (2.202) in two parts:
d*v p1C1
A =0 2.204
axz T ( ki ) & (2:200)
d*v; 02C32
P [l =0 2.205
Ty ( £ ) v, (2.205)
or in another manner:
d2V1 1
Al = =0 2.206
dx? + (a%) . ( )
d2V2 1
Al = =0 2.207
dx? + (a%) vz ( )

: 2 _ ki
Withaj , = Pt

We find the boundary conditions and continuity conditions of the
functions vy, 3:

(1) v1(0) =0 — vy1(x) = Asin (ﬁx)

a

(2) %|X=L =0 — vz(x) = Bcos (*g[x - L))
(3) vi(L1) = va(L1)

d d
(4) kl £|X=L1 =Ky %L{:Ll
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The last condition has been found by integrating the heat equation
near Lq:

Li+e€ d d Li+e

/7 K dx +a / p(X)C(x)v(x)dx = 0 (2.208)
dx | dx

Li—e Li—e

Using the eigenfunctions and conditions (3, 4) we need to solve a
system with two equations and two unknowns (4, B). From the
condition that the determinant of this equation in matrix form must
be zero, we find the eigenvalues A;.

From (3) we have: 4 sin (%Ll) — Bcos {aij(Ll — L)} =0

From (4) we have:
A A A A
Ak1£ cos <[L1> + Bkz£ sin [[(Ll — L)] =0
a; a; a az
Equating the determinant of the coefficient matrix (which repre-
sents equations 3 and 4) to zero, we get the equation to obtain the

eigenvalues A,:

klﬁ cos <ﬁLl> cos (ﬁ(Ll — L))
aq ay

a;
A A A
—+ sin <«/_L1> kz£ sin <«/_(L1 — L)) =0 (2209)
ai ay ay
Which is simplified to:
VAn VAn k
tan ( (L1 — L)) tan ( L1) __a® (2.210)
a I kaa,
We find the ratio between the amplitudes B,/A,:
Asin(L1)

Since B = W

Then the form of the solutions v, ; (for A = 1) could be:

)

v1(x) = sin (ax (0 <x < L) (2.211)
1

v2(x) = (Li<x<1)

sin(aﬂl"Ll) ( /,1,7( L))
cos X —
cos (*élz"(Ll - L)) az

(2.212)
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2
3 /-\
- 0
S
> -2
0 1 2 3 4
X (a.u.)
0.00
x \
ke
~
> -0.02
©
-0.04
0 1 2 3 4
X (a.u.)

Figure 2.23 Example of eigenfunction for the spatial problem

Final solution We calculate now the coefficients T,(t) of the
solution. Solution for x = L:

u(x = L) =>_ Ta(t)va(L) (2.213)
n
Using the initial conditions and the orthogonality:
L
To | p()C(x)va(x)dx
T,(0) = LO (2.214)
[ p(x)C(x)v2(x)dx
0

Solution of the equation for the temporal coefficients:

dT,
— 24+ ,T,=0 2.215
T ( )

To(t) = Tp(0)e " (2.216)

Finally:
sin (aif L1)

cos (aij(Ll — L))

u(x = L) = T,(0)e ™" (2.217)
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2.17 Case Study: Variation in the lon
Concentration in a Rod with Flux across Its
Ends

A one-dimensional rod of length L has an initial distribution of ion
concentrations at t = 0 which can be described by the function f(x):
Starting at t = 0 ion fluxes J; and J; cross across the ends of the rod
x = 0 and x = L. Along its length, the rod exchanges ions with the
outer medium (which has zero ion concentration), proportionally
to the concentration on the surface q(x) = —hu (h is a positive
constant). Find the distribution of the concentrations of ions as a
function of the position x and time t if the diffusion coefficient is D
(another positive constant).

\\\ 412/
‘Il/"\ \\

Figure 2.24

Mathematical formulation We will call the ion concentration u(x, t)
and the problem is solved in one dimension. Strictly speaking a
unidimensional problem would only have boundary conditions at
the ends of the rod. In this case we are artificially treating the
length of the rod as a boundary, since it exchanges heat with its
medium. But instead of including this information as a boundary (to
do that we would need to solve the problem in 3D with cylindrical
coordinates and apply a boundary condition at the cylinder radius),
we will include it as a non-homogeneous term in the diffusion
equation:

du 9%u
— =D— —hu
at 0x2
ou
D= =]
x|,y (2.218)
Dau —
0x X:L_ 2
u(x, t=0)= f(x)
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The sign of the term linear in temperature of the differential
equation is determined by the condition that the system loses
energy to its surroundings when an excess of temperature is present.

As this is a non-homogeneous equation with non-homogeneous
boundary conditions, we will search for the solution as the sum of
two functions u(x, t) = w(x) + v(x, t).

(i) The function w(x) describes the stationary part of the solution
w(x) (that is, it's independent of time and it would be the
solution in the limit ¢ — o00). This solution will take into account
the non-homogeneous boundaries, which persist at all times.

(ii) The other part of the solution would describe the transient part
v(x, t) in the presence of homogeneous boundaries (the non-
homogeneous contribution of these is already included in w, it
must not be included once again).

The expression u(x,t) = w(x) + v(x,t) is substituted in the
differential equation, and we get:

v 02w 0%v

—=D—+D— —hw—h 2.219

e~ Cax Do MW (2:219)
The problem is separated into two different problems for the
functions w(x) and v(x, t) which include the whole of the initial and
boundary conditions:

ou

87)( o = Ql

oul - _ 0, (2.220)
9x x=L

u(x, 0) = f(x)

With Q; = J1/D and Q; = J2/D. The non-homogeneous boundary
conditions for w(x) are:

ow
% =0
x=0
aw 0 (2.221)
0x x=L_ 2
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Then, to keep the global conditions for the solution u = v + w, the
conditions for v(x, t) need to change to:
0
v,
ax x=0
ov
_ =0
0X |,y

v(x, 0) = f(x) —w(x)

The complete formulation for both partial problems is then:

(2.222)

Problem (1) for the transient part

id :azaz—v—hv
ot 0x2
av

ax

=0 (2.223)
av

- =0

X |,y

v(x,0) = f(x) —w(x)
Problem (2) for the stationary part

32w

D— —hw=0
d0x?
ow

ax

— 0 (2.224)

x=0

ow ~ 0
0x x=L_ z

The general solution for problem 2 is:

w(x) = A sinh <\/gx> + B cosh (\/@X)

Applying the first boundary condition ‘;—f o = Q1 we get:

h h
A\/;cosh (\/; 0) =0, —> A= Ql\/? (2.225)

Applying the second boundary condition %—‘;‘(’ . = Q2 wearrive at
the expression:

o2y e (y[52) < oy o B1) s ez
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Then:

p o 2T rcosh <\/%L) (2.227)
\/%sinh (\/%L>
The solution of problem 2 is:

- h
ol fun({3)- T ()

(2.228)

Problem (1) for the transient part

To solve the transient part we use the method of separation of
variables:
vix,t) =T X(x) (2.229)
Separating variables we get:
h+ 140 1dx
TT‘“ =Y = A (2.230)
We take A > 0 to arrive to a Sturm-Liouville with eigenfunctions:

Eigenfunctions: X ,(x) = cos (%x)

Eigenvalues: 1, = (”—L”)z

The differential equation for T (¢) is:

dT Tny?2
— =—|D(— h| T 2.231
dt [ ( L )+ } (2.231)
The amplitudes of the temporal coefficients are:
mn 2
To() = Ane (PCEY 1)t (2.232)
Then, the general solution is:
o0
_ 7(0(”—[’)2+h>t n
v(x, t) = ;Ane cos ( 7 x) (2.233)
Applying the initial conditions:
oo
n
,0) = f(x) = w(x) = Ay cos (7 2.234
Ve, 0) = 1) = w(x) =3 Aneos (7 x) (2234)

Finally, using the orthogonality of the eigenfunctions cos (%"x) the
coefficients of the expansion of the function v(x, t) are found:

L
A, = %/0 (f(x) — w(x)) cos (”—L"x) dx (2.235)
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2.18 Oscillations of a Non-Homogeneous String

A non-homogeneous string of length L and fixed at its ends is made
of two strings of the same length and different densities p; and 2,
(see figure) and is initially at rest. At t = 0 it is hit at its central point.
The hit transfers a momentum equal to /. Find the displacement as
a function of time.

See also problem (4.6) in [1] and section 4.1.3.

U
A A wm A

Figure 2.25
Mathematical formulation
92u 9%u
— —T—=0 2.236
p(x) oi2 a2 ( )
L
01 (0 <Xx< 2)
o(x) = (2.237)

2 L L
01 5 <X <

T is the tension, and it is assumed to be constant along the whole
string.

Boundary conditions: u(0) = u(L) =0
Initial condition 1: u(x, t =0) =0

Initial condition 2, considering that the momentum transferred by
the hit is received by a fragment of string of length 2¢, centered at
x=1L/2:

du i L L
R [ G — Z o e<x<=-+e (2.238)
oty ) elo1+2p1) 2 2

0 L+
X>—-+4e¢
2
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Sturm-Liouville problem Considering the initial conditions (zero
initial displacement, non-zero initial velocity), the shape of the
solution as a sum of eigenfunctions will be:

u(x, ) =Y Q,(OXs(x) = _ A, sin(w,t) X, (x) (2.239)

Replacing that in the wave equation u = Q(t) - X(x), we separate
variables:
1 d?Q 1 d’X

Sl S 2.240
QT dt2 ~ p(x)X dx? " ( )
The temporal part is:
d?Q
T +4,TQ=0 (2.241)
From here we obtain the possible frequencies of the oscillations:
w? = 2,T (2.242)
The equation for the spatial form of each mode of oscillation is:
ED
dx?

Taking into account the boundary conditions, the solution of this
equation is presented as a function in two parts X1 ; with boundary
conditions X1(0) = X,(L) =0

X1 = By sin(/p14,X) (0 <X < ;)
XH(X) = L
X2 = Cysin(y/2p14n(L — X)) <2 <X < L)
(2.244)

The relation between B, and C, is obtained from the continuity
equation:

L L
B, sin (\/,01/1,,2> = C, sin <\/2p1/1n2) (2.245)

Then the solution can be expressed in the form:

L
X1n = Bysin (/p14,x) (0 <Xx< E)
. L
Xa(x) = sin («/plxl,i) L
Xon = BniL sin (v/2p1a (L — X)) (E <Xx< L)
sin («/2,01/1,,5)

(2.246)



Oscillations of a Non-Homogeneous String | 75

Integrating equation (2.243) for every mode in an interval (¢) around
the central point:

L L
7€ 7€

D' dX
/ dxzndx +//lnp(x)Xndx= d):z

L
27¢€ 2

anl
dx

L
7€

L
§+€

%Jre
/l,,,olX,,ldx + //l,,,ozX,,zdx =0 (2247)

L
2

_I_

| |
n NI m

[N

The first term is the integral of a second derivative, which directly
yields a first derivative. The second term is the integral of an
integrable function. When we make € — 0 these integrals become

Zero.

Then, lettinge — 0,

anl
dx

_ anZ
x=L/2 dx

(2.248)

x=L/2

X (a.u.)

3 4

x (a.u.)

Figure 2.26 Example of eigenfunctions and their derivatives

That gives a transcendental equation to obtain the eigenvalues A,:

)

sk [ (L
= 2plﬂnm Ccos |: 2,01),,1 <2>:| (2249)
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Note: the orthogonality condition (see 4.30 from [1]) is:
L
(o= dn) [ POIXLOXn()X =0 (2250)
0
Final solution We will use now the second initial condition to find

the coefficients 4,
0 X< -——t
2

du I L L
= =NdoX,x)= — (= - z
el ~ 2O =Y (2 8<X<2+8)
L
0 <X>2+8

(2.251)
Both parts are multiplied by p(x) x X,,(x) and are integrated from
0to L.

L

I L L
A"a),,/,o(x)Xﬁ(x)dx =—Xn| 3 )leor+e201] =1 x X5 | 5
e3p1 2

0

2
(2.252)
Then the coefficients of the expansion of the solution as a Fourier
series are:
I'xX, (%
A, =— n(2) (2.253)
on [ p(X)X2(x)dx
0

2.19 Forced Oscillations of a String

Find the oscillations of a string with length L, fixed at its ends, which
att > 0 is subject to a force with density: f(x, t) = Ae ‘sin(mwx/L).
The ration between the tension of the string T and its linear density
p is a®> = T/p. Consider that the string wasn’t oscillating at t = 0
and that its linear density is p = 1.
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f(x,t)=Ae sin(mx/L)

Figure 2.27

Mathematical formulation

Pu _ 29 — ge~tgin (Z) (t > 0)

a9tz axz

u(0,t)=20

u(Lt)=0 (2.254)
u(x,0)=0

& =0 =10

Solution We separate variables to expand the solution of the
non-homogeneous equation in eigenfunctions of the homogeneous
problem with boundary conditions:

u(x, t) = i T, ()X n(x) (2.255)
n=1
X, = sin (’LL"X) P (’LL")Z (2.256)
f: {d;;” + aZ/l,,T,,] X, = Aesin (%) (2.257)

n=1
Taking advantage of the orthogonality of the eigenfunctions we
arrive at the equation:

L

d*T, ) 24e7t /XN . /7N

a2 +a 4, Ty = fut) = T /sm (T) sin (TX) dx (2.258)
0

@) ={Ae8,} = { ge— EZ ; B } (2.259)

We obtain the equation of a forced oscillator (with null initial
conditions), corresponding to the excitation of a single eigenmode
(main mode). The solution of the temporal part can be found by two
alternative methods.
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The first could be to consider a particular solution of the type
Ty,,(t) = C et (being C a constant still to be determined) plus the
solution of the homogeneous equation. The second method would
consist in finding the particular solution from Green'’s equation for a

forced oscillator.
t

AL
Ty, (6) = —/e sm[ (t f)} dt’ (2.260)
ma
0
The solution is:

up(x, t) = T1p()X1(x)

||
‘£
::

/e sm (t — x)} dx
0
A ¢ Ta L . /ma . (T
- T { ~cos (Te) + - sin (o) fsin ()
(2.261)
It can be shown that from the second way of finding the particular

solution, it fulfills the null initial conditions and then is also the final
solution u(x, t) = u,(x, t).

2.20 Case Study: Oscillations of a String Subject
to an External Force

A string of length L, with both ends fixed ant initially at rest, is acted
upon by an external force of density f(x, t) = sinh(x) starting at
t = 0. Find the oscillations of the string at times later than t = 0.
Consider that the speed of sound in the string (c) and the density

(p) are equal to one.
f(x)=0 (t<0)

f(x)=sinh(x) (t>0)

AN

Figure 2.28
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Mathematical formulation

?u  ,0%u 1 . 9%u  3%u ]

ﬁ—c ﬁzzmnh(x)—) ﬁ—ﬁzsmh[x] (t>0)

(2.262)

Boundary conditions: u(x =0) =u(x = L) =0
Initial conditions: u(x, 0) = 4| _ =0
This problem can be solved by three methods. One is more “physical”
and the other is more formal. The third one uses Green’s functions.

Method 1

The string will change its shape as a result of the application of the
external force. In the limit of long times the small oscillations will

occur on a string of the new equilibrium shape. At infinite times

the oscillations will have disappeared due to friction (that is, g%‘ =

— sinh(x)). The static shape of the string is only a function of the
spatial variable. Then, the solution can be sought as the sum of two

functions:
ulx, t) =v(x, t) + w(x) (2.263)
The problem is separated into two, so that the summing the
corresponding solutions the initial equation and conditions are
respected.
— - — — E)T = sinh(x) (2.264)
From the first boundary condition:
v(0) + w(0) = 0 - we will assume: v(0) = w(0) =0 (2.265)
From the second boundary condition:
v(L) +w(L) =0 - wewillassume: v(L) =w(L) =0 (2.266)
From the first initial condition:
v(x,t=0)+w(x) =0 — wehave:v(x, 0) = —w(x) (2.267)
From the second initial condition:

av av
— 4+ 0 =0 — we have: — =0 (2.268)
9t |i=o 9t |0

The problem is separated into two (a,b):
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To formulate the problem for the function w(x) we will use the result
of replacing u(x, t) = v(x, t) + w(x) into the wave equation:
9%v  9%v 9w ,
9@ " ax? " axz = SMHE) (2.269)
a) The equation to be solved for the function describing the static
shape of the string under the external force is:
d2
¥ _sinh(x) (2.270)
dx?

The boundary conditions for w(x) are:
w(0)=w(L)=0 (2.271)

The solution of the problem for w(x) can be found by integrating
twice the equation:

w = —sinh(x)+Cx + D (2.272)

Alternatively, the same general form can be obtained by presenting
the solution as the sum of a particular solution: w, = — sinh(x) and
a general solution for the homogeneous problem ‘;27‘2’ =0.

Applying the conditions w(0) = 0 and w(L) = 0 we get
respectively D = 0 and C = % Then the equilibrium position
of the string under the action of the external force is:

sinh(L)

w(x) = —sinh(x) + X (2.273)

b) Now we will get the solution of the time dependent problem.
0%v 9%y
otz 9x?

With boundary conditions: v(0) = v(L) = 0.

-0 (2.274)

The initial conditions for v(x) are:

iti . _ o inh(L)
Condition 1: v(x, 0) = —w(x) = sinh(x) — ==x
Condition 2: 2%| =0

ot le=0 —

General solution The general solution is known for v:

v(x, t) = Z Aj cos (n—:t) sin (n—Lnx) (2.275)
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Final solution Applying the initial conditions and using the
orthogonality properties we get the coefficients:

smh(L)
v(x,0) = ZA sin <TX) sinh(x) — (2.276)
2 / inh(L)
. sin . /mn
Z/ {smh(x] -1 x} sin (TX) dx (2.277)
0
The integrals can be solved, for example, with Wolfram-Alpha:
. . Thn
/smh(x) sin (TX) dx
_ L[Lcosh(x) sin (%"x) — mn sinh(x) cos(%x)] + Const
I2 + (wn)?
(2.278)
. /7n L[Lsin (Z2x) — nx cos (Zx)]
/x sin (TX> dx = (n)? + Const
(2.279)
2 [sinh(L) .
n=— ——-[mncos(mwn) — sin(wn)]
{ L(7)?
+cosh(L) sin(7rn) — 77 sinh(L) cos(nn)}
() +1
_ 2cos(rn) sinh(L)rn { 1 1 ]
B ? (P (P +1
_ 2cos(rn) sinh(L)rn { 1 }
? (2 + 1Y

2 cos(mn) sinh(L) L? 217 (—1)"sinh(L)
[[(,,,,)2 + LZ]] ~ n [(xn): + 7]
(2.280)

mn

Method 2

While the Method 1 could be described as a “physical approach”
as it introduces the new equilibrium position respect which free
oscillations are found, we consider below also more formal approach
to solve the same problem.
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Sturm-Liouville problem

We separate variables: u(x,t) = A(x)B(t). The spatial part is
expanded into the orthogonal eigenfunctions of the Sturm-Liouville
problem:

d*A

&) AA(X) =0 (2.281)
dx?
A(0)=0; A(L)=0 (2.282)
The solution is then:
n

=3 Bt sin(— ) 2.283
u(x, 1) Z n(6) sin ((—-x (2.283)
We can replace this solution in: ‘3;7;‘ — 327’2‘ = sinh(x) Using the

orthogonality of the eigenfunctions sin (”—L”x) to arrive at the non-
homogeneous equation for the coefficients B, (t).

(—1)"sinh(L)

dZB,,(t) Tn\?2
TN 2.284
) ( L) n(t) n 2 + (tn)? ( )
Initial conditions: B,(0) = 0; d(ﬁ" 0 =0

The general solution is the sum of the solution of the homogeneous
equation and the particular solution.
217 (—1)" sinh(L)

2.2
an L2+ (wn)? (2.285)

By, (t) part = —

”—ft) _ 212 (=1)"sinh(L) (2.286)

. /Th
Bn(t) = Csin (Tt) + D cos ( an I+ (n)?

First initial condition:
B 21? (—1)" sinh(L)

B,(0)=0 D= - 2.287
n(0) - an [2+ (7n)? ( )
Second initial condition:
dB
oo clo0sc=0 (2.288)
dt |,_, L

General solution
217 (—1)"sinh(L) mn 217 (—1)"sinh(L)
———————- oS ( t) -

zn L7+ (wn)? L zn L2+ (wn)?

B, (t) =
L
(2.289)

and the solution is:
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u(x, t) = i il;m (COS (%t) - 1) sin (LLnx)
n=1 (2.290)

Method 3 (using Green’s function of an oscillator)

The problem of the coefficients B,(t) can be solved using Green'’s
function that was previously used to solve the equation of a forced
oscillator:

d?B,(t) /7n\2 3 (—1)"sinh(L)
o +(7) Bu(t) = ~2n-p o = o 229D)

Bp(t) = C sin (n—Lnt> + Dcos (n—:t) + n—Ln / fn sin V—;[t— T]} dt
0

(2.292)
Since both initial conditions are null the solution of the homoge-
neous equation is trivial (C = D = 0). Then we will get:
t
(—1)"sinh(L) ,

Thn
Bn(t) = _ZLW sin |:T(t— 'L'):| dt

_ 2L (1) sinh(L) (cos (”—"t) — 1) (2.293)
7n L[? 4 (7n)? L

Note that the form of the solutions obtained with methods 2 and 3

(expanding by orthogonal functions) are equal, but they are different

to the solution obtained by the method 1, in which part of the

solution has analytic form.

2.21 Case Study: Oscillations of the Gas in a
Semi-Open Tube

A tube which is open on one end moves along its axial direction with
a constant velocity V. At t = 0 the tube stops suddenly. Determine
the longitudinal gas vibrations inside the tube as a function of the
distance to the closed end (x) and time (t). Note: see also problem
5.6 b) from [1].

83
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—>» V
Figure 2.29

Mathematical formulation The problem is formulated in terms of
“condensation” u = p— py, being p( the density of gas in equilibrium.
%u  ,0%u
a1 ax?
Boundary condition 1: 34| _ =0

=0 0<x<Lt>0) (2.294)

Boundary condition 2: u(L, t) = 0
Initial condition 1: u(x, 0) = 0

To find a second initial condition for the time derivative of the gas

density at t = 0 we will use the simplified continuity equation
(chapter 5 of [1]):

ap dv

- = —po— 2.295

ot |,y Po dx ( )
where v(x) is the velocity of the molecules, which at ¢t = 0 is

constant for x > 0 and zero for x < 0 (that is, is the Heaviside
function). Considering that v(x) has the form of the Heaviside
function multiplied by V, where V is the velocity of the molecules,
and using the properties of the derivative of this function (Appendix
1 of [1]), we can write:

d,
di;(x, t=0) = —poV8(x) (2.296)
Then the second boundary condition is:
0
U V() (2.297)
9t |0
-ou
ot =0
x|=0 X

Figure 2.30
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Solution The general solution is analogous to the oscillations of a
string with the left end free, and the right one fixed.

u(x, £) = Z To(6) - Xn(x) = Z:; C, sin(wyt) - cos (’T[Zgjl]x>
= Z Cy sin(wyt) - cos (71[2;;—1])() (2.298)
n=0

This result is obtained by expanding the solution in orthogonal
functions which are solutions of the Sturm-Liouville problem:

d*x

TxZ +1X =0
dX
dx

= X(L)=0
= w(2n+1)
—x

X,(x) = cos <

n=—

2L

2L

) (2.299)

{n(Zn—f-l)r

We have also used already the first initial condition [u(x, 0) = 0] to
find the form of the temporal solutions. Finally we apply the second
initial condition to find the coefficients C,:

ou
9t |0

w[2n 4+ 1]

=—pVi(x) = Zann - €OS ( 51

x> (2.300)

We use the orthogonality of the functions X, (x):

L
Cphw, X 5= —poV (2.301)
2p0V
Cp= — P (2.302)
w(2n+1)
The final solution will be:
200V 1 _ m[2n+1]
, ) =— t _—
u(x, t) - HE:O @t D sin(wyt) cos ( 51 X

(2.303)
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2.22 Variation of the Temperature in a Thin Rod
Exchanging Heat through Its Surface

The initial temperature of a rod of length L and neglectable cross
section is described by a function f(x). From t = 0 both ends
x = 0, L are connected to a thermal reservoir at T = 0. The
lateral surface of the rod exchanges heat with an outer medium at
a temperature uy according to Newton’s law (this is, a heat exchange
of the form h(u — up) where h is a constant). Find the distribution of
temperature as a function of time.

CEndat | S
e I I s
A %
b e
=0 X=
Figure 2.31

Mathematical formulation

ou ,0%u

— =aq*— — h(u -

ot a 9x2 (u ll())

u(0,t) = u(L, t) = 0 (2.304)

ulx, t=0)= f(x)
We will find the solution as the sum of two functions: one
corresponds to a stationary solution up 4+ w(x), independent of time,
which is the solution at t — 0©0), and another transient solution
v(x, t).
Replacing in the wave equation:

u(x, t) =up+w(x)+v(xt) (2.305)
) d wo 0%
i dxz +a 8— —hw(x) — hv(x, t) (2.306)

We separate the problem in two equations for the w(x) and v(x, t)
functions.
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Equation for the temporal part:

v ,3%
E =da a? - hV(X, t) (2307)
With the boundary and initial conditions:
u0,t)=u(L t)=0 v(0,t)=v(L t)=0
N
u(x,0) = f(x) v(x,0) = f(x) —uo — w(x)
(2.308)
Equation for the stationary part:
d2
22 hw(x) =0 (2.309)
dx
Boundary conditions for w(x):
u(0,t)=u(L, t)=v(0,t)=v(L t)=0 (2.310)
Then uy +w(0) = up +w(L) =0
and we will have w(0) = w(L) = —uyg
General solution for equation (2.309)
h h
w(x) = Asinh ({x) + Bsinh <{(L— x)) (2.311)

it . I I Up
Boundary condition 1: w(0) = —up — B = Y

T3 . _ _ Up
Boundary condition 2: w(L) = —ug - A = vy,
Solution:

ot g (YA w
w(x) = n (%L) smh( . x) - ((ithL) sinh

(2.312)

On the other hand, to solve equation (2.307) we separate variables:

vix,t) =T(O)X(x)
Replacing in (2.307):

1dT d*Xx
ht 1 @ _
a? X

(2.313)

(2.314)

We operate in this manner to get to a Sturm-Liouville problem
for the spatial part and choose 4 > 0 to achieve oscillating

eigenfunctions.
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Eigenfunctions and eigenvalues:

X(x) = sin (”—L"x) (2.315)
2
A= [%} (2.316)
Differential equation for T (¢):
qr _ [”"]ZM T (2.317)
dc L '
The time dependent coefficients of the solution are:
To(t) = Ape~ (T H)E (2.318)

General solution The general solution is:
_(rzn . Tn
vix, t) = Z Aye (17 ]2+h)f51n (TX> (2.319)
Final solution Applying the initial conditions:
. /7N
v(x,0) = f(x) — g —w(x) = > _ A,sin (Tx) (2.320)
and using the orthogonality of the sin(*/'x) eigenfunctions we get
the coefficients of the Fourier expansion:

A, = i/OL[f(x) — up — w(x)] sin (n—Lnx) dx (2.321)

2.23 Distribution of Temperature in a Thin Wire
with Losses on Its Surface

Find the variations in temperature as a function of time in a wire
(length L, thermal diffusion coefficient k, linear density of mass p
and heat capacity € = 1) ifitis thin (that is, treat it as if it exchanges
heat along its whole length, unlike what would really happen if it was
a purely 1D problem, where heat exchange can only occurat x = 0
and x = L. The wire losses heat through its surface by unit length
and by unit time with a constant h, according to Newton'’s law.

The right end is thermally insulated and the left one is in contact
with a thermic reservoir at temperature T = 0. The temperature of
the outer medium is also T = 0. At the initial moment (¢t = 0) the
temperature of the wire is a linear function of the distance to the left
end: T (x, 0) = Ax.
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Fommm—n
| Thermally |

! insulated |

[ Endat |

Figure 2.32

Mathematical formulation The density of heat sources acting on
the wire can be described by:
(dq/dx)
, t) == —— =
flo =
where dq is the heat dissipated by the interval dx, while ug is

the temperature of the outer medium, towards which the heat is
dissipated; §t = 1 second. The problem to be solved consists of:
du(x, t) kazu(x, t)
ot 0x?
Initial condition: u(x, t = 0) = Ax

—hlu(x, t) — ug] (2.322)

—h-u(x,t)

au(x, t)

=0
x=L
(2.323)

Boundary conditions: u(x =0, t) =

Sturm-Liouville problem We seek the solution by expanding in
eigenfunctions of the homogeneous problem, of known value for the
spatial part:

2n+1
vp(x) = sin (Wx) (2.324)
2
i . _ ([ 7(2n+1)
The eigenvalues are: 1, = (%)

The general solution is replaced in the heat equation, and the
eigenvalues are used as the result of applying the differential

9% .
operator 3 .5:

u(x, ) =Y Ap(O)va(x) (2.325)

> 8;; va(X) = =k Y An(O)va(x) —h > An(B)va(x) (2.326)

89



90

Problems in One Dimension

Both sides are multiplied by v,,(x) and integrated from 0 to L. Using
the orthogonality of the eigenfunctions we arrive at the following
equation for the coefficients A,:
dA4n(1)
at

+ (kdy + h)An(t) = 0 (2.327)
And:
A, (t) = Cpe~ (it (2.328)

General solution The general solution, separating the temporal and
spatial variables, is:

2 1
u(x, t) = Z Cpe~ ()t gin <7T(;L+)x>
n

—ht kgt i (20 4+ 1)
= g c " _— 2.329
e d ne sin ( 51 X ( )

Final solution Applying the initial conditions:
2 1
u(x, 0) = Zc (”("H) Ax (2.330)

We have the identltles:

L
. (7(2n+1) 41?2
A/XSII] <2LX> dx = Am COS(T[n)
0

412 .
= Am(—l) (2.331)

L
_(m@n+1) \1*,  wl2n+1) L
0

Finally we arrive at the coefficients of the expansion used as

solution:

BAL .

Note: only due to the specific form of the non-homogeneous term
(proportional to the solution) in this case it would be possible to
solve the problem also using the separation of variables method, but
applied to the whole PDE, and not only to the homogeneous part.
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2.24 Case Study: Oscillations of a Finite String
with Friction

A string of length L with both ends fixed is placed in a viscous
medium with friction proportional to the transversal component of
the velocity (with proportionality coefficient k). Consider that initial
displacement of the string has the form of the function f(x) and that
the initial transversal velocity is ¥ (x). The sound speed is equal to
c. Find the transversal oscillations from t = 0 if the linear density of
mass is equal to 1.

(%

WX

Y

Figure 2.33

Mathematical formulation

92 92 ad

J_czlz—kl k>0

ot? 0x2 ot

u(0,t)=u(L t)=0 (2.334)

au
ulx,t=0)= f(x); —| =vx)
Sturm-Liouville problem

The method of separation of variables is used: u(x,t) =

> Ta(B)Xn (x).

Xn(x) are orthogonal eigenfunctions, which are solutions of the
Sturm-Liouville problem with boundary conditions:
d*x + A, X, =0
dxz = "t (2.335)
X(0)=X(L)=0
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The eigenfunctions are known:

. /TN mn\?2
ansm(Tx); Anz(L) (n=1,23...) (2336

General solution Replacing X (x) in the wave equation, we obtain
the equation for the temporal part.

d*T, drT, an \2
ok —i—(Tc) To(t) = 0 (2.337)

We seek a solution of the form T,(t) = e*, which replaced in the
previous equation gives:

2
o + ke + (”L" c) —0 (2.338)
ki\/k2—4(LfC)2 ko (kY _mnNe_ K,
e ) (2) - (L) =32
(2.339)
The values of «,, will be real when:

2 kL
12— 4 (”—"c) S0, n<—— (2.340)

L 2mc

There will be two independent solutions:

Tl,n(t) = e"‘lt

The solution can be simplified by creating two independent

combinations:
Ty o(t) + Ty a(t . ePt 4 e=ft
fi= M _ ef%% — e 3t cosh(Byt) (2.342)
Ty n(t) = Tou(t  eft — g=Pt
f = M _ e—%% = ¢ 3 sinh(B,t) (2.343)

The solution for the range of indices n < % (n is compared to the
maximum integer value of % for which the solutions of a1, are
still real) must be presented in the form of a combination of two
independent solutions in general, with different weights:

To(t) = e 2'[ A, cosh(Bat) + By sinh(B,t)] (2.344)
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Finally the indices n > % — «1,2 will have complex values (we try

to compare n to the minimum integer of % for which the solutions
of 3, start to be imaginary):

k k\? /mn 2 k
am:—zi\/<2) —(Tc) =3 L, (2.345)

Analogously we have:

To(t) = € 2'[An coS(Bat) + By sin(Bnt)] (2.346)

The general solution for the problem will be:

u(x, ) =% Y [Aycosh(But) + B, sinh(B,t)] sin (’LL”X)

kL
<=
N=37c 2mc

+e % Z [Ay cos(Bnt) + By, sin(B,t)] sin (n—Lnx)

N> 97¢

(2.347)

Final solution The coefficients A, and B, are found by applying the
initial conditions:

Note: we can use the same names of the indices A, and B, of the
sum, since they are separated in two sums with two different ranges
of n that don’t overlap.

From the first initial condition:

u(x,0) = f(x) = Z Apsin (—x) (2.348)

1<n<oo

Using the orthogonality of the eigenfunctions X, = sin (”—L"x)

= i/Lf(x) sin (n—LnX> dx (2.349)
0

Analogously, applying the second initial condition:

du =y (x)= Z ( I;)A sm( ) Z BB, sm(—x)

t=0 1<n<oo 1<n<oo
(2.350)

ot
3 (—';An +ﬁan) xsin(Tox) =y (235D)

1<n<oo
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We arrive at:
L
(—;A" +ﬁnB,,) - %/w(x) sin (”—L"x) dx
Bn—;[ Ap+ — /1/f(x)sm T >dx]
L
% [i/f(x)sm dx+ /1//(x)51n (Tnx) dx‘|
0
(2.352)

2.25 Propagation of a Thermal Pulse in a Thin
Bar with Insulated Ends

At t = 0 the temperature distribution in a very thin rod whose
surface and its ends stay thermally insulated is T (x) = A§(x — xo).

Find the distribution of temperature along the rod as a function
of time.

Figure 2.34

Mathematical formulation

du ,0%u

A R

at ax2

ol _ou| (2.353)
x|,y  OX|,_,

u(x, t=0) = Ad(x — xo)

Sturm-Liouville problem Using the method of separation of vari-
ables:
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u(x, ) = T ()X (x) (2.354)

To find the eigenfunctions of the spatial part X, (x) we need to solve
a problem similar to that of a string with both ends free:

Figure 2.35

The Sturm-Liouville problem for X (x) is:

d*x
— 4+ 11X =0
s (2.355)
dXx _dX —0 '
dx |,_o ©dx YL N
The eigenfunctions and eigenvalues for this problem are:
Xn(x) = cos(v/AnX); (2.356)
T2
A, = (T) n=01,2...) (2.357)

Including this value for the X,(x) in the solution u(x,t) =
> Ta()X,(x) and replacing it in the heat equation, and taking
advantage of the orthogonality of the eigenfunctions, we arrive at
an equation for the coefficients T, (t). They are determined by using
the initial conditions:

T, (¢) = Bye <" () (2.358)

General solution The solution is:

[o.¢]
mn .7Tn
u(x, t) = By + Z Bne UiVt cos (TX) (2.359)

n=1
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Final solution Using the initial conditions:
= mn
u(x,0) = By + Z B, cos (—x) = AS§(x — xo) (2.360)
n=1 L

And taking advantage of the orthogonality of the eigenfunctions
X, (x), we have forn = 0:

L L
0 " 0
Bo/cos (]TLX) dx = BgL = / AS(x — xp) cos <7TLX) dx

0

0
L
= /A(S(x —Xxp)dx = A (2.361)
0

By =

A
— 2.362
; (2:362)

For n# 0 we have:

AS(x — xp) cos (n—nx) dx

(oo]

B
o\h
(@)

o
7}
no
/

R
|3
>
N—
QL
>
Il
(o]

B

\

Il
o\h

L
mn
— Acos (TX()) (2.363)
Then the coefficients of the series are:
f 2A
B, = /A8 (x — xo) cos (ﬂx) dx = — cos (Exo) (2.364)
L L L
0

2.26 Forced Oscillations of a Hanging String in a
Gravitational Field

Consider a heavy string of length L and linear mass density p = 1
(in the presence of gravity), hanging from a point which oscillates
(transversally to the string) like this: ug sin(wt).

Determine the displacement of the string in the limit of small
oscillations (see also problem 4.9 and section 4.1.4 from [1]).
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u, sin(wt)

l

9|
X
Figure 2.36
Mathematical formulation
%u(x,t) 0 du(x, t)
— = — T =0 2.365
P79 ax { (=% (2.365)
The oscillating end of the string will be described with the boundary
condition u(0,t) = ugsin(wt). The equation will simplify by
considering that the tension is due to gravity.
T (x) = pgx (2.366)
Then:
0%u(x, t) o [ du(x,t)
-7 g =0 2.367
oz Iox [x ax ] (2.367)

Sturm-Liouville problem and general solution We will seek the
solution by separating space and time variables as:

u(x) = C X(x) sin(wt) (2.368)

Replacing that into the wave equation:

d [ dX
—o?x(x) sinfwt) — g [x O sinwn =0 (2369
dx dx
2 1 d [ dX
e I NCESCI) (2.370)
g X(x)dx dx
We seek the solution of the equation:
1 d [ dX(x)
— =—1@1>0 2.371
X (x) dx [X dx } (1>0) (2:371)
The solution of the equation:
d [ dX
4 AXX) L v = 0 (2.372)
dx dx
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is the zero order Bessel function if the function has no discontinu-
ities.
With the change of variable: § = ./x we arrive at the equation:

d?X(E) | 1dX(E)

42X =0 2.373

G tEog H® (2373)
which has a solution of the form:

X(x) = Jo(2v/Ax) (2.374)

Since Jo(0) =1 — C =uy

Final solution The non-trivial solutions correspond to the values:

1= (2.375)
g

Then the solution will be:
u(x, t) = upjo(2v1x) sin(wt) (2.376)

Note: the shape of the string (the number of nodes) will change with
the applied frequency.

2.27 Case Study: Temperature Equilibrium in a
Bar with Heat Sources

Consider a bar of length L with heat capacity C, density p and heat
conduction coefficient k. The left end of the bar (x = 0) is insulated,
while the right end (x = L) is in contact with the outer medium,
which is at Ty and exchanges heat according to Newton’s law (with
negative constant H). At the initial moment the temperature of the
bar is equal to Ty. Find the variation of temperature as a function of
time if starting at ¢ = 0 in the central part of the bar (L/4 < x <
3L/4) are heat sources with a constant density F.
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Thermally
insulated The exterior temperature
end is constant (T=Tp)

This end exchanges heat
with the exterior (T=T,)
according to Newton's law

— N

T 1
L/4 3L/4
Density of heat sources for t>0

Figure 2.37

Mathematical formulation

dulx,t)  d%u(x,t)

C —k =
iy o2 f(x)
1 3
fe) = L
0 (x < -Lx> L)
4 4 (2.377)

u(x,0) =T,
du
- =0
dx x=0

d
k& CH@L O -To)

dx|,_,

We have chosen the sign for the heat exchange in the right end so

that the negative gradient of temperature describes the heat flux in
the positive direction.

T Heat flux »

/L

L X

Figure 2.38 Heat flux directionatx = L

Main method of resolution We seek the solution subtracting

first the thermal background T, to have homogeneous boundary
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conditions.
wv(x, t) | d%v(x, t)
—k
ot ax2
1 3
o) = L
0 x<-Lx>-L
4 4

= f(x)

v(x,t)=u(x, t) — Ty

vix,t=0)=0

dv —0

dx|,_o

dv H
— =—hv(L t); h=—
ax| = mLo K

(2.378)

Sturm-Liouville problem We seek the solution as a summation:

vix, ) =Y An(O)Xa(x) (2.379)

The spatial part is expanded in orthogonal eigenfunctions which

solve the Sturm-Liouville problem:

d*X,
dx?
dX,
dx

+1X,=0

=0 (2.380)

x=0

dX
L = —hX,(L)
dx x=L
Xn(x) = Asin(y/A,x) + B cos(+/Apx) (2.381)
From the first boundary condition: %Xz o = 0= A/, cos(v/1,0)

dx
we have A = 0. From the second boundary condition: ‘% et

hX (L) = 0 we deduce the equation: /2 sin(+/AL) = h cos(v/AL).Ina
more compact form this equation, from which we get the eigenvalues
A, is:

h

tan(ﬁL) = 7

(2.382)

Then we get the eigenfunctions:

X,(x) = By cos[v/A,x] (2.383)
Note: here n = 1, 2, 3... indicates the numeration of eigenvalues
and the corresponding eigenfunctions.
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General solution To analyze the temporal part, we replace the
expansion in eigenfunctions into equation (2.378):

d2
_kﬁ zn:An(t)Xn(X)

o lz 4,0, () = /() (2384)

Y dAd n() y kZA (t)d Xn (X) — flx)  (2:385)
) ["A;t“) # 1o al0)] X110 = 222 (2386)

(where x = C—kp). Both parts of the previous expression are multiplied
by X, (x) and integrated between 0 and L. Using the orthogonality of
the eigenfunctions X, (x) we arrive at the equation'

L
[d*‘;t(” +xanAn(t)] / (X, ()P dx = — / FEOXn(x)dx
0

3

2

%@
o ot
= — [ cos[v/Axx]dx
Cp %
(2.387)
%
dAn(t F
d( ) + xAnAn(t) = I cos[v/Apx]dx
Cp [[cos /Aux]?dx L
0
(2.388)
dAn(t F[sin /1,3 — sin /1, &
d( ) A = FISm "4 SinVng] _ £, (2:389)
JA:Cp [[cos o/Aux]2dx
0
Note about the norm:
2 L 2al,
/[cos(ax) a +Zm( al) #* E (in general)  (2.390)
a
The general solution of the obtained equation:
dA,(t
0 + x A An(t) = fa (2.391)

dt
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is the sum of the solutions of the homogeneous equation:

A hom(t) = Ap(0)e 41t (2.392)

and the particular solution of the non-homogeneous equation:

fn
Ap pare = —— 2.393
, part X/ln ( )
Final solution Finally the solution is:
Ap(t) = Ap(0)e x4t 4 S (2.394)
XAn

All is left to do is using the initial condition to find the coefficients
An(0):

v(x,0) = A, (0)X,(x) =) {An(O)eO + Xf; } X,(x)=0
! (2.395)

n

From here we get the values 4,(0) = — Xf/ .

Finally the solution is:

u(x, t) =Ty + Z X{'{ [1— e %] cos (\//Tnx) (2.396)

Alternative method In this alternative method we subtract a
thermal background T, (this method is more “physical”). The
solution can be separated into two, one corresponding to the profile
of temperature w(x) reached in the limit ¢ = oo and another
transitory one v(x, t)

u(x, t) =v(x, t) + w(x) (2.397)
Complete problem:

au(x, t) d?u(x, t)

C —k =

[y I f(x)

1 3
fx) = Ly
0 (x < -Lx> L)
4 4 (2.398)

u(x,0)=0

du .

dx x=0 B

du
— = —hu(L t

dx| = huo
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Problem 1 for w(x):

d*w(x)
K =
1 3
£ = o
0 (x <-Lx> L> (2.399)
4 4
d
dw|
dx |,_o
d
W _hw()
dx |,_,

Problem 2 for v(x, t)
av(x,t) d*v(x, t)
C —k =
P ot dx?
ux,t=0)=0—-v(x,0) = —w(x)

0

dv (2.400)

dx
dv
dx
With this separation we reach the solution by solving two simpler
problems. To find w(x) we can find the solution in three intervals

of x:
1
wi(x) <0 <Xx < 4L)

w(x) = { wy(x) (iL <Xx< f;L) (2.401)

=0
x=0

= —hv(L, t)

x=L

w3(x) <iL <Xx< L)

Problem for wy(x)

2 1
—k dwlz(x) =0 (0<x<3D
X (2.402)

dW1

ki) -0

dx |,_o

Since W1(X) = A1X + B1

d
Y 05 A =05 wix) =B (2.403)
dx |,—o
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Problem for w3 (x)

2
—szo <43}L<X<L>

2
dx (2.404)

d
aws = —hws(L)
dx

x=L

Since w3(x) = Azx + Bs

dW3

dx + hws(L) = 0 — Az + h(A3L+ B3)

x=L

=0— A3(1+hL)+ Bsh =0 (2.405)

In this way we can relate the constants A3 and Bs.

Finally we formulate the problem for w;(x).

a2 Fo/1 3
dwel) _ _F (L 3 (2.406)
dx? k 4 4
F 2
wo(x) =——x"+Ax+B; (2.407)

2k

From the continuity conditions in the boundary, and their deriva-
tives, between wi(x), wy(x) and ws(x) we find the values of the
coefficients. Un this way we will have five conditions for the five
unknown constants.

(1) A3(1+hL)+ Bsh =0
5 LN F(IN' (N L\ _p
()W2<Z>f—ﬂ<z> + z<1>+ 27W1(Z>7 1

F L dW1
) X:fﬁ(z)“‘ﬁﬁ

. BLY _ _F (3L\* 3L\ 3LY _ o, (3L .,
()W2<Z>__ﬁ<7> + 2(T>+ 2_W3<Z>_ 3<T>+ 3

F /3L dws

5 w2 S L

) 3L k(4>+2 dx
4

sz

=0
dx

x=—

3L =43

X=—

(2.408)
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FL
Ay = —

4k
4 _FL
3T Tk

B = I Lz(h+1>—2<L>2> (2.409)
2k \ h L 2

e (£ (22)-(2))
2k \ h L 4
FL1+ hL

~ 2k h

3

Equations (1-5) allow us to find the form of w(x). The problem 2
for v(x, t) is homogeneous with homogeneous boundary conditions
of the second and third type and with known initial conditions.
We solve it by expanding into orthogonal functions, which we have
found in the first method of solving the problem.

v(ix, t) = Z Ape "t cos(y/A,x) (2.410)

Applying the initial conditions u(x, 0) = 0 — v(x, 0) = —w(x)

—w(x) = Z Ay cos[\//Tnx] (2.411)

and using the orthogonality of the eigenfunctions cos(y/4,x)
between 0 and L we solve the 4, coefficients.

—fw(x) cos[/Anx]dx
Ay = 2 (2.412)

fL[cos Anx)2dx
0

While the first way of solving the problem expands the function
w(x) of the second part in a summation of orthogonal functions, the
second method obtains explicitly their form as a function in parts
(see figure).
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Thermally W(X)
insulated ﬁ
end This end exchanges heat
\ E with the exterior (T=T,)
45

N
{ Fl4\—|

\ according to Newton's law
L/ 3L/4

Density of heat sources for >0

Figure 2.39

2.28 Case Study: String under a Gravitational
Field

Consider a string of length L, tension T and linear density of mass
p. The string has its left end connected to a spring (with constant
B) and the right end can move freely in the transversal direction.
At the instant t = 0 the string is at rest in the horizontal position,
since there is no gravitational field. From ¢ = 0 onwards the string
becomes subject to the Earth’s gravitational field (g).

Determine the form of the string as a function of time for t > 0.

é 90 i “ T

Figure 2.40

Mathematical formulation
3%u 3%u

Pﬁ—Tﬁzf(X) (t>0)
ou
0x
ou
ax x=L
ulx,t=0)=0

T — Bu(0,£) =0

x=0

=0 (2.413)

ou
ot

t=0




String under a Gravitational Field

We will discuss first how to find the density of force. The force
applied to an element of length [ in the string, which is directed in
the negative direction, is:

F

F=-plg; flx)=7=-pg (2.414)
Then, the problem to be solved is:

u 0%

e Cpe= 9 70

a

M huo, =0

0X |,_o

ul (2.415)

0X |,y

u(x,t=0)=0

au

i =0

at |,_o

Being c? = % andh =2
The solution of problem (2.415) can be decomposed into two
functions: one which corresponds to the new equilibrium of the
string (at rest and without oscillations) and a transient part towards
that new equilibrium.
u(x, t) =v(x, t) + w(x) (2.416)

The function w(x) is the solution of the equation that includes the
gravitational field but not the temporal evolution:

d*w

CZW = g (t > 0)

dw

= —hw)=0 (2.417)
dx x=0

dw _

dx |,_,

On the other hand, the function v(x, t) is the solution of the transient
homogeneous equation:
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d>v  ,d%
0
Yl =0
ox x=0
vl (2.418)
0X |,y
v(x,t=0)=—-w(x)
0
Yoo
9t |i—o
We look for the solution for w(x):
d*w g g
el — w(x) = ﬁx + Ax+ B (2.419)
d
20 Zi+a=0 (2.420)
dx |,_; c
dw
—_— —hw(0)=0—- A—hB=0 (2.421)
dx x=0
The coefficients are found like this:
g g
A=-=1 B=-— 2.422
c? hc? ( )
The stationary solution will be:
_ 49 2 9 g ,_ 9 2 2L
w(x) = zx - C—ZLX - EL_ 202 (x —2Lx — h) (2.423)

Sturm-Liouville problem To solve the transient part, we will seek
a solution by expanding in eigenfunctions of the spatial Sturm-
Liouville problem with second and third type boundaries.

v = Qn(8) Xn(x) (2.424)

The Sturm-Liouville problem, adapting the boundary conditions of
u(x, t) to the spatial part X (x), is:

dz—X +1X =0
dx?
dX

dx
dX

dx

— hX(0)=0 (2.425)

x=0

=0

x=L




String under a Gravitational Field

Applying the second boundary condition:

Xa(x) = cos[vA(x — L)] (2.426)
And applying the first:
—/Asin(—=vAL) — h cos(v/AL) = 0 (2.427)
The eigenvalues A, satisfy then:
tan(y/A,L) = & (2.428)
Being (n = 1, 2,3...). These eigenvalues are marked with the

subindex n, but they are unrelated to n in such a simple fashion
as in the case of a string with fixed ends. Their values are not
as “predictable” and they must be determined numerically or
graphically from the transcendental equation:

General solution General solution and initial conditions:

v(x, t) = Z [A,, cos(wnt) + By sin(w,t)] cos {\//Tn(x — L)}

(2.429)
Being w, = c/Ap

Final solution From the second initial condition 2

gy |t:0 = 0 we have
B, = 0.

From the first initial condition:

2L
vix,t=0)=—w(x) = —% (xz —2Ix — h)

= Z Apcos[/Aa(x — L)]  (2.430)

Using the orthogonality of the eigenfunctions:

L
5 [ (e Y oty

0
L
- A,,/ (cos[\//Tn(x - L)])2 dx (2.431)
0
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The coefficients of the expansion are then:

fL (x? — 2Lx — 28) cos[\/ A, (x — L)]dx
A, = —% L (2.432)
0f(cos [VAn(x — L)])

The final solution is:

u(x, t) = % (x —2Lx — ) +Z A, cos(wpt) cos[f(x —L)]
(2.433)

Alternative solution

Sturm-Liouville problem We seek the solution of the problem
(2.415) as a sum:

u(x, ) = Qu(t) X(x) (2.434)

where X,(x) is a set of orthogonal eigenfunctions of the previous
Sturm-Liouville problem.

a*x +1X =0
dx? N
dX

dx
dX

dx x=L

—hX(0)=0 (2.435)

x=0

=0

General solution Substituting the general solution (2.434) in the
wave equation gives:

2
ZQn

dtZX()—CZQn(t) =g~

2 Qn
-3 +cmnm} =

u(x,0)=0

(2.436)

ou
At |,
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Final solution Using the orthogonality of the eigenfunctions X,(x)
we multiply both sides of:

> a0, + 0,0, Xa(x) = —g (2.437)
- dtz n<¥n n .
dZ i 2
[ dg” +cz/an,,} / (cos[\//ln(x - L)]) dx
0
L
= —g/cos[\//ln(x — L)]dx (2.438)
0
We are left with the equation:
d*Qn | ,
T +c“,Q, = E, (2.439)

fcos[JA_n(x — L)]dx
0

En=—g-
J (cos[/An(x — L)])2 dx
0

-9 sinly/, 1] (2.440)

VA [% + \/% sin(v/A,L) COS(“/’T"L)}

/Lcos [\//Tn(x - L)} dx = —\/1/1_ sin [\//THL} (2.441)

0

/L (cos [\//Tn(x - L)D2 dx = [; + \/1/1_n sin(\//TnL) cos(\//TnL)]
0

(2.442)
This is the equation of an oscillator at rest and without gravity, to
which a constant gravitational force is applied at t = 0. We will seek
the solution as the sum of the homogeneous and particular solution:

Qn hom(t) = Ay cos(wnt) + By sin(wpt) (2.443)

Ey
A,

Qn, part(t) = (2444)
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With the general solution, we can apply the initial conditions to find
the coefficients:

ul, )= [An cos(wnt) + By sin(wnt) + CZEJ X.(x) (2.445)

n n

From the first initial condition:

Ey
u(x, 0) = Z {A,, + cu] Xa(x)=0 (2.446)
we get:
E,
Ap=— 2.447
8 ca, ( )

From the second initial condition:

% = [Ba] Xa(x) =0 (2.448)
t=0 n
We get:
B,=0 (2.449)
Finally:
u(, =3 cf/l [1 — cos(wnt)] cos [\/Z(x — L)} (2.450)

n

2.29 String with Oscillations Forced in One of Its
Ends

Find the forced oscillations in a mass of length L and speed of sound
c ifit’s fixed in an end (x = L) and the other one moves periodically
according to u(0, t) = sin(wt). Consider the case of a string at rest

up until t = 0.
a(x,t)

, /’\
sin(wt)

0 L X

Figure 2.41
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Mathematical formulation

d*u 2 d*u

dt? dx?

u(0, t) = sin(wt) (t>0)

u(L, £) =0 (t > 0) (2.451)
0]

u(x,0) = o =0
at |,_o

We look for the solution as the sum of a stationary and a transient
one.

ulx, t) =w(x, t) +v(x, t) (2.452)

In this case, the stationary part is not independent of time, but
it corresponds to a regime of periodic oscillations which follow
the external excitation with the same frequency. The transient part
describes how the string goes from the initial to the stationary state
at long times.

Formulation of the stationary problem:

d*w  ,d*w

@ e 0w
u(0, t) = sin(wt) (—oo < t < +00) (2.453)
u(L, t)=0 (o0 < t < 400)

The stationary solution must be proportional to sin(wt), as
previously indicated, since the string at long times will only oscillate
with the external frequency. Separating variables:

w(x, t) = Asin(wt) X (x) (2.454)
Replacing this form of the solution into equation (*) we have:
d*x
—0’X —*—= =0 (2.455)
dx

The general solution for X (x), which already assumes the boundary
condition for x = L, is:

X(x) = Bsin [g(L . x)} (2.456)

In problems of this kind, in which only the end which is not at
x = 0 is fixed, it is useful to change the origin of coordinates of the
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argument of the sine function so that it is zero at x = L. What is left
is to apply the boundary condition at x = 0:

sin(wt)X (0) = B sin(wt) sin [5@)] (2.457)
from where we have
1
B=— = (2.458)
Wi, ) = sin(wt) s,.in [gL(L —x)] (2.459)
sin [<£]

Mathematical formulation of the transient problem, taking into
account, because of the time dependence of the stationary part, that
at the initial instant we have w(x, 0) in all the string

d?v 2 d*v

dt? dx?

v(0,)=0 (t>0)

u(L, t)=0 (t>0) (2.460)
vix,t=0)=0

av 0w

dtly Oty

From the previous result we have:
o sin [i(L — x)}

—o sin [£1]

ow

— 2.461
ot ( )

The general solution corresponds to the problem of a string which is
free and fixed at the left and right borders respectively.

o0
nx-—1L
v(x, ) = 3 [Cysin(@nt) + Dy cos(w,t)] sin [”(XL)} (2.462)
n=1
with 0, = c%. It is evident that the first initial condition v(x, t =
0) = 0 forces us to impose D, = 0. To find the C,, we use the second
initial condition:

Ve(x) = wp Z Cp sin [nn(xL—L)] = —w(x, 0) (2.463)

n=1
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Final solution All that is left is using the orthogonality of the
eigenfunctions sin [w[”} to find the coefficients of the expansion

of the transient solution.

1y B sinl G dx

@n fOL [sin [%HZ dx

(2.464)

n

2.30 Oscillations of a String with a Force That
Increases Linearly in Time

Find the forced oscillations of a string of length = that is initially
at rest if, from ¢t = 0 a force starts acting on it, with a distributed
density of force t x sin(x). The speed of sound is a. Suppose that the
linear density of mass of the string is p = 1.

f(x,t)=t sin(x)

Figure 2.42
Mathematical formulation
d%u ,0%u .
PYel —a Pl tsin(x)
u(x,0) =u,(x,0)=0 (2.465)

u(0,t) =u(mr, t)=0

Since the profile of the force corresponds to one of the eigenmodes
of the string, we will look for the solution of this non-homogeneous
equation as the product of the sought-after amplitude and the profile
of this only mode excited by the forced vibrations.

u(x, t) = v(t) sin(x) (2.466)

Replacing this solution into the wave equation:

d*v 2 :
e sin(x) + a“v(t) sin(x) = tsin(x) — (2.467)
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2

e
with initial conditions: v(0) = ‘t 0 =0
Seeking the solution as the sum of solutions of the homogeneous
equation and a particular solution, we get to the general solution:

+atv(t) =t (2.468)

v(t) = C1 cos(at) + C; sin(at) + a—tz (2.469)
From the initial conditions we have:
€1=0,C; = —a% (2.470)
v(it) = — {t - 1 sm(at)} (2.471)
The final solution is:
u(x, £)) = SmX {t— cllsm(at)} (2.472)

Alternative resolution method (non-intuitive) We can seek the
solution as an expansion of orthogonal functions:

u(x, ) =Y va(DXn(x) (2.473)
being X ,(x) the solutions of the Sturm-Liouville problem:
a°X +1X =0
dx? N (2.474)

X(0)=X()=0

Xn(x) = sin(nx); A, = (n)? (2.475)

Replacing the summation in the wave equation:

Z [ddztz } Xn(x) = tsin(x) (2.476)

We use the orthogonality properties of the eigenfunctions, multi-
plying by X,,(x) and integrating in the range 0 < x < . In the
summation on the left side only the term with n = m is different
from zero:

d?v,
dtV2 +a*n®v —/sm(x) sin(nx)dx (2.477)



Lateral Photoeffect

(n=1)

(n#1)
In this way we get to the same non-homogeneous equation that we

obtained with the intuitive method:

3%vy(t)
ot?

(2.478)

S Ny

/sin(x) sin(nx)dx =
0

+a’vi(t) =t (2.479)

2.31 Case Study: Lateral Photoeffect

Consider a thin rod (length L). Around x,, where a laser light is
directed, mobile charge carriers are generated, and they diffuse
along the rod with a diffusion coefficient D.

Find the variation of the concentration of carriers as a function
of time and position if, starting at t = 0 the laser starts generating
P particles by unit time and length. At the initial moment the carrier
concentration generated by the laser was equal to zero.

Consider that the particles generated by the laser, when they
diffuse along the rod (consider only the coordinate x) are anni-
hilated by their corresponding antiparticles (electrons “annihilate”
with holes) at a rate proportional to the local concentration (that
is, the annihilation is proportional to a constant H). Furthermore,
consider that there is a leak of particles at the ends of the bar, with
fluxes proportional to the concentration (with constant h), due to
the rod ends being connected through a resistor.

Laser:
Exchange of particles with the outer
medium, proportional to the f=P&(x-Xo)
concentration (with constant h)

Figure 2.43

117



118

Problems in One Dimension

Mathematical formulation

du(x, t) 9%u(x, t)
T - D 2 = Pé(x —x9) — Hu
u(x,0)=0
d (2.480)
M huo, =0
dx |,_o
o vhu =0
dx x=L

The function u(x, t) represents the particle concentration.

D is the diffusion coefficient.

P is a coefficient proportional to the laser power by unit length.

H is a coefficient inversely proportional to the recombination time.

h is a coefficient proportional to the leak of particles through the rod
ends.

We seek the solution as a summation of eigenfunctions of the Sturm-
Liouville problem for homogeneous boundaries:

u(x, ) = Qu(0)Xn(x) (2.481)
Sturm-Liouville problem The Sturm-Liouville problem is:
d’Xn
W +1,X=0
dX
n — hX,(0) =0 (2.482)
dx |,—o
dXy —
e e, ThXa(L) =0

General solution
Xn(x) = Acos (\//T,,X) + Bsin (@x) (2.483)
Applying the first boundary condition:
—A\//Tnsin(0)+B\//Tncos(0)—h[A cos(0)+Bsin(0)] = 0 (2.484)

VA

B/, —hA=0-—> A=8B .

(2.485)



Lateral Photoeffect

Then:

Xn(x) =

(2.486)

We can see that if the second boundary condition is applied, we
won’t be able to determine the value of B, and 4 and B will
always depend on each other and will never be fully determined. In
principle some other condition would be necessary, but we can set
B = 1 to simplify matters. What is really important is the form of the
eigenfunctions, not so much their absolute value, since we still need
to apply the initial condition, where another coefficient will solve the
uncertainty that we now face. This is a consequence of the boundary
conditions of this problem. Applying the second boundary condition
(and considering the ratio between the A and B coefficients):

—m@sin (\//TnL> + \//Tncos (\//THL)
(\/7L) + sin (\FL)] =0 (2.487)

Operating, we arrive at the equation that determines the A,
eigenvalues:

o[

tan (ﬁL) - jh:/_/;z (2.488)

Final solution To analyze the temporal part, we replace the
expansion of the solution in orthogonal eigenfunctions into equation
(2.480):

dQn(t) d*X, (x)

Xn(x )—DZQn(t) = P8(x — xo) — Hu(x, )
(2.489)

Z |:dQn( t) +[DA, + H]Qn(t):| Xn(x) = P8(x — xo) (2.490)

Multiplying both sides by X,(x) and integrating between 0 and L,
using the orthogonality of the X, (x) eigenfunctions, we arrive at an
equation for the amplitudes of the Q,(t) modes:

|:dQn(t)
dt

L L
DA+ H]Qn(t)} / [X,()]2dx = P / 5(x—x0)Xn(x)dx
0

0
(2.491)
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P | Y& Tnx0) + sin(v/,

dQ"(t)+[D/l 0= [ cos(v/AnXo) sm[\/_xo)} 5
f{ A cos(/ApX) + sin (\/_x)}

’ (2.492)

Note: In the case that the laser had a more realistic cross section, for
instance gaussian, P§(x — xo) would need to be changed by

pe*(X*Xo)Z/C2
where ¢ will be related to the width of the laser beam.

In the case of a gaussian cross section:

P fLe’ b {% cos(/Anx) + sin[Jﬂ_nx)] dx
o= (2.493)

fL[ Ao cos(\/_x)—l—sm(\/_x)}
0

General solution The general solution of the equation is:
dQn(t)
dt

Final solution The amplitudes Q,(t) are the solution of the
homogeneous equation:

+ [DA, + H1Qn(t) = fn (2.494)

Qn,hom(t) = Qn(0)e™ P+ (2.495)
plus the particular solution of the non-homogeneous equation:
fn
n, part = —— 2.496
Q , part [D/ln + H] ( )
Then the solution for Q,(¢) is:
0 = Qu()e- @it __In 2.497
0i(8) = Qi (0)e Sy (2497)
We just need to impose the initial condition to find the Q,(0)
coefficients.
ux, 0)= 3 00X, = 3 [Qn(O) sl e =0
n n
(2.498)

_fa

From here we get the values Q,(0) = e



Lateral Photoeffect

Finally the solution of the problem of the variation of the lateral
photoeffect as a function of time is:

u(x, t) = Z 7D/lnfn+ o [1— e (PAtH)]

n

x [\/}f_" cos <\//Tnx) + sin <\//Tnx)} (2.499)

The distribution of the concentration of carriers at ¢, after applying
the laser pulse is:

5,6 = X g (1 O]

X [\/;_" cos (\/Zx) + sin (\//Tnxﬂ (2.500)

The distribution u(x) of the carrier concentration in the limit t = oo
is:

u(x, o0) = Z D/lnfﬁ [\/;—" cos(v/AnX) + sin(\/ﬂx)] (2.501)

n

Note: there is an alternative method to find the stationary
distribution u(x, co) (that is, when w = 0) by solving the
problem analytically:

d*u(x, t

p9UE D asix — xo) - Hu
dx?

du
= —huL =0 (2.502)
dx |,
= +huL =0
dx|,_,

The solution is separated in two intervals (x < x¢) and (x > xo),
where the equation becomes homogeneous and, in this way, we
get a solution by parts (two exponential functions) that must be
continuous at (x = xp), as well as using the boundary conditions
at the ends to find the coefficients of the linearly independent
solutions.

Now we will see how to find the temporal variation of the
distribution of carriers after turning off the illumination.
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Mathematical formulation

ow(x, t d*w(x, t
0 _pdwlo
at dx?

(t =t — tp), tis now the time after turning off the laser.

w(x, 0) = u(x, t)

%V o —hw(0,)=0

Dl Thw(L, ) =0
(2.503)

General solution Once again we seek the solution as an expansion
in orthogonal eigenfunctions, solutions of the Sturm-Liouville that
correspond to the homogeneous boundaries.

wx, 1) =) Qu(Xa(x) (2.504)
obviously the X, (x); 1, are not the same as before.

Replacing w(x, t) into (2.503)

3 [d%'t(t) 4 [Da, + H]Qn(t):| X,(x)=0 (2:505)
d(i;t(t) +[DAy + H]Qu(8) = 0 (2:506)

This equation has a solution:
0n(t) = Aye(PArtH)E (2.507)

Final solution Then the solution is:

w(x, t) = ; Ape~ (Pt [\/;—" cos (\/EX) + sin <\//Tnx)}

(2.508)
Applying the initial conditions:

u(x, ) = ZA [ (fx)—i—sm(\/»x)] (2.509)

and using the orthogonallty of the X, (x) we arrive at:

fu(x to) { 4 cos(/AnX) + sm[\/_x)} dx
A= 2 (2.510)
J [‘/TT" cos(x/Anx) + sin(\//l_,,x)} dx

0
which solves the problem.




Oscillations of a String under the Influence of a Gravitational Field

2.32 Oscillations of a String under the Influence
of a Gravitational Field

A string of length Lwith both ends fixed and initially at rest, from t =
0 onwards is subject to the action of the gravitational field. Find the
oscillations of the string starting at t = 0. Consider that the speed of
sound of the string is (¢) and the density (o) are equal to one.

f(x,t)=-pg (t>0)

Figure 2.44

Mathematical formulation
Pu_ L0 —pg _
at? axz  p
u(0)=0; u(l)=0 (2.511)

0
u(x, 0) =0; a—l: =0
t=0

-9

Sturm-Liouville problem We seek the solution by expanding it in
orthogonal eigenfunctions that are the solutions of the homoge-
neous Sturm-Liouville problem:

X +AX =0
dx2 N
u(0) =0 (2.512)
u(l)=0
With known eigenfunctions, that yield the solution:
. /Th
u(x, ) = > Ba(6)sin (Tx) (2.513)

General solution We can replace this solution into the waves
equation. We use the orthogonality of the sin(“}" x) eigenfunctions to
arrive at the non-homogeneous equation for the B, (t) coefficients.

d’B, TN\ 2 2
(2 0= e
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Final solution with the initial conditions:

_dB,

B,(0) = 0; =0
(0) it

x=0

The general solution is the sum of the solution to the homogeneous
equation and the particular solution. The latter can be considered as
By, pare =Constant:

29
Bn, part(t) = - E

2
<L> [1 - cos (7n)] = —ZgiLz[1 - (—=1)"]
mn (nm)3
(2.515)

Bp(t) = C sin (n—:t) + D cos (n—;t) — (Znil; [1—(-1)"] (2.516)

First initial condition B,(0) = 0 —

2g1%
= 9% 11— (=17 (2.517)
(nm)3
Second initial condition: dft" o =0—>CH=0C=0
Then:
2gL* n mn
B(0) = ¢ 51 = (1)) {cos (Tt) - 1} (2.518)

The solution (with [1 — (—1)"] = 0 for even n) is:

u(x, t) = f: [(21sz12)71]3’ [cos (n—Lnt) — 1} sin (n—Lnx) (2.519)

k=0

2.33 Dynamic String with Free Ends and a Point
Mass at x = X,

A string of length L, tension T and linear density p has a point mass
m at x = xo. Both ends of the string are free and the string is initially
at rest and without any external fields applied. Find the movement
of the string from ¢t = 0, when it becomes subject to the gravitational
field.



Dynamic String with Free Ends and a Point Mass at x = Xg

2o

Figure 2.45

Mathematical formulation (t < 0)

9%u 92u
o _ 12—
PE5a ~ Toxz
3
Al o (2.520)
X |,_o
3
ou -0
ox x=L

with
L
p(x) =p +mdé(x — xo) — /,O(X)dx =pL+m
0

Sturm-Liouville problem Separating variables we arrive at the
Sturm-Liouville problem:

2
W + /l,O(X)X =0
axi o _g (2.521)
dx |,—o
x| _,
dx |,_;

To find the eigenfunctions while avoiding the anomalous point
where the linear density of mass diverges, we must separate the
eigenfunctions in two parts:

X1(x) = Acos(+/Apx) (2.522)
(having applied the first boundary condition).
X7(x) = Beos(\/Ap(x — L)) (2.523)

(having applied the second boundary condition).
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u (a.u.)

- o o~
<

0.005 p
0.000

oo \_/

~0.010

X (a.u.)

du/dx

Figure 2.46 Numeric example of eigenfunction and its derivative

Now we apply the condition of continuity of the eigenfunctions at
X = Xp-

A cos (\/7)(0) B cos (f(xo — L)) (2.524)

Orthogonal eigenfunctions:

A cos(/1,0x)
N _ 2.525
O ) o () |7

cos (v/Anp(xo — L)

where A, are the eigenfunctions to be determined. Now we
apply the condition of discontinuity of the first derivatives of the
eigenfunctions, integrating equation (2.521) around x = xq:

dXi
dx

dX,
dx

= AmX4(x¢) = Admcos (\Fxo) (2.526)

X=Xo X=Xq

—4 [\/Apsin(y/Apxo) — Am cos(+/Apxo)|
+B+/Apsin {\/E(xo - L)} —0 (2.527)

The eigenvalues A, can be obtained from the result of equating to
zero the determinant of coefficients that results from expressing
equations 2.524 and 2.527 in matrix form. Furthermore, we see that
Ao = 0 is also an eigenvalue, since it satisfies both equations 2.524
and 2.527 and describes the X((x) = A eigenfunction. We now solve
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the problem of the oscillations of the string for ¢t > 0:

du? T d*u
a2~ px)dx2 = 9
du B
Zl’i x=0 (2.528)
e =0
dX x=L
9
ulx,t=0)= au =0
ot |,—o
General solution We seek a solution u(x,t) = Y @n(t)Xn(x)

n
with X,(x) being the previously found eigenmodes (the spatial
dependency does not change in the whole problem). Replacing into
the wave equation we have:

d?Q, d?
> |2 w0 - aor | =g @529

d?Q,
> { 5t2(t) + Qn(t)T/ln} Xn(x) =—g (2.530)

Applying the orthogonality of the X,(x) and integrating from 0 to L
with a weight p(x):

L
f,o(x)Xn(x]dx
+ T2, Qn(t) = —g L
J p(X)[Xn(x)]?dx
0

dZQn()

,ofLX,,(x)dx + mX,(xo)
=—g— = fo (2531)
J p(X)[Xn(x)]2dx
0

The general solution for @,(t) is composed of the solution of the
homogeneous equation and the particular solution:

fa

Qn(t) = Cp cos (wnt) + Dy, sin (wyt) + 71

(2.532)
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Final solution Applying both initial conditions:

_h
T A,

D,=0
The final solution is:

u(x, )= Tf; (1 — cos wat) X (x) (2.533)

n=1
with w? = T2,
To find the inhomogeneous part of the solution that corresponds to
Ao = 0 (free fall of the string) we need to solve the equation:

d*Qo(t)
dt?
which will give us the displacement due to the acceleration of the

string with the point mass in the presence of the gravitational field
2
(with Xo = 1): =%

Xo(x)=—g (2.534)

Alternative method Separating the solution in two: one of them
describes the static form of the string in under the gravitational field,
w(x). The other is a transient function v(x.t). We replace u(x.t) =
v(x.t) + w(x) into the wave equation:

—_— - ———— = — 2.535
e~ px)dx®  p(dx2 9 (2.535)
Problem for w(x):
d*w(x) g
awl _, (2.536)
dx x=0
dw _0
dx x=L B

We are left with a defined solution (for which a constant is still to
be found), consisting in two inverted parabolic functions, united at
X = Xp.
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The problem for v(x.t) is:

v T o
otz p(x) ax2
dv
dx
vl o (2.537)
dx|,_,

=0

av
at g

We seek the solution by separating by the X, (x) eigenfunctions
obtained earlier at different regions for the transient part:

v =) (B Xa(x) (2.538)

2.34 Oscillations in a String Interrupted by a
Spring

A homogeneous string of length L and tension T is connected to a
spring with constant 8 on its mid-point (L/2). Its ends can move
freely in the direction transversal to the string. From t = —oco a
local, periodic force acts on the string at x = x,. Find the stationary
oscillations of the string at the right end (x = L).

sin(wh) (x-x)

Figure 2.47

Mathematical formulation

2 2
97u Tal+5(x—L/2)ﬁu = §(x—xp) sin(wt) (—o0 <t < 400)

Pae " ox2
(2.539)



130

Problems in One Dimension

Both terms with Delta functions describe the linear density of local
forces.
The boundary conditions are:

al
0x

_Bu

= — =0
x=0 ax

x=L

Since we are looking for the stationary solution, we do not need any
initial condition.

Sturm-Liouville problem We will seek the general solution as a
function with a forced temporal variation and eigenfunctions of the
system:

u(x, ) =Y _A,(0X,(x) =) _ Q,sen(wt) X,(x) (2.540)

Replacing this into the wave equation we get:

d?X,(x)

5 4 8(x — L/2)BX, ()| = 8(x—x0)

>, [p(—wz)xn(x) -T

(2.541)
To find X,(x) we first need to formulate the Sturm-Liouville
problem separating the variables of the homogeneous equation.
By doing this we arrive at an equation with both boundaries
homogeneous of the second type. The condition of the discontinuity
of the derivative can be deduced by integrating the Sturm-Liouville
problem close to the point of junction of both strings.

42X ()
dx?
The solution for the orthogonal functions X,(x) will be sought in
two parts Xp1,2(x) (that correspond to two parts with respect to the
point on which the string rests, when the differential equation can
be simplified):

denl,Z(X)
dx?

anl (X) _ anZ
dx x=0 a dx x=L

+ Condition of continuity of X 1,2 and

discontinuity of its derivatives atx = L/2

—8(x — L/2)BXn(X) = —AnXn (2.542)

T +/1an1,2 =0

=0 (2.543)




Oscillations in a String Interrupted by a Spring

It's more comfortable to seek the solution as a function by parts
of the following form, since it applies the first two boundary
conditions:

Xn1 = A, cos(/A,x) (0 <Xx< ;)
Xn(x) = (2.544)

Xn2 = By cos(v/An(L — X)) <§ <x< L)

We will have to join two parts of the solution by parts imposing the
continuity conditions at x = L/2 and the last condition will be for
the variation of the derivatives at x = L/2.

The application of the continuity conditions entails the following
conditions at x = L/2:

X Ly _ X L

nl 2 — An2 2
T anl T anZ
dx

(2.545)

L
+ IBan () =0
x=L/2 2

The condition of variation of the derivatives is obtained by
integrating equation (2.542) in the proximities of x = L/2

BX,

x=L/2 dx

X ¥

Figure 2.48

To correctly write this boundary condition for the change of the
derivatives of each eigenmode we need to add the two projections
of the tension on the vertical axis (that act on the spring on each
side) and equate them to the tension of the spring due to the vertical
displacement (see figure). Applying the form before specifying that
the two functions X; and X, we get relations for the relative
amplitude of X; and X, and the equation to find the eigenvalues of
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the problem:
A, — B, =0

AnT (—=v/An sin[(v/An(L/2)] — BT (/A sin[(v/Ax(L/2)]
+B cos[(v/An(L/2)] = 0 —

AnT (VA sin[(v/An(L/2)] + By T (+/An sin[(v/2n(L/2)]
= B cos[(V/An(L/2)]

(2.546)

The determinant of the first and third equations in matrix form
will give us the eigenvalues of the problem. Replacing the general
solution into the wave equation (2.539) and eliminating the
temporal term we will obtain:

> Q[ = pa®]Xn(x) = 8(x — x0) (2547)

Final solution Multiplying both sides by the orthogonal function X,
and integrating between the limits 0 and L we will get the solution
for the Q, coefficients:

Xn
Qn= - (xo) (2.548)
[Xnl” [An — pr]
The final solution is:
u(L, t) = Qnsin(wt)X,(L) (2.549)

2.35 Point Like Heat Exchange

An insulated bar, whose temperature changes as T, cos(wt) at the
point xg, exchanges heat with an external media at T = 0 according
to Newton’s law at x = L/2. Find the stationary distribution of
temperature along the bar.

Mathematical formulation
AT (x,t) 92T (x,t)
—K
ot ax?

+hT (x, £)§ (x - ;) = Ty cos(wt)§(x—xo)
(2.550)



Point Like Heat Exchange

T, cos(wt) Heat exchange
(Newton's Law)

7
T T
Xo L/2

Thermally insulated

Figure 2.49

We use the method of separation of variables and take only the real
part of the solution:

T(x )= QuOXa(x) =) Xp(x)e ' (2.551)
And we have the boundary conditions:
aT
— =0 (2.552)
0X [y—o,1

Replacing in the heat equation:

—iwCpXp(x) — K 07X, () + hX,(x)s (x — L) = —Tyd(x — x0)
0x2 2
(2.553)
S (o (xmg) o)
K + | —hé|{x—=) —iwCp | X,(x) = —Toé(x — x0)
0x2 2
(2.554)

Sturm-Liouville problem We can formulate the following Sturm-
Liouville problem:
d?X,(x)
dx?
The solution will be defined by parts, to the left and to the right of
the singularity at x = L/2:
Xn(x)0<x<L/2

Xn(x) = (2.556)
Xnp(x) L/2 <x < L

— hs (x - ;) + 4, Xn(x) =0 (2.555)

The function is continuous at x = L/2 but its derivative is not:
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dX dX h
n o = —Xa(L/2) (2.558)
dx x=L/2 dx x=L2 K
The boundary conditions are:
anl anZ
= =0 2.559
dx x=0 dx x=L ( )
Ay cos(+/(1n)x) 0<x<1L/2
Xn(x) = (2.560)

Bocos(x/(A)(x = L) L/2<x <L
A, cos(\/A,L/2) = B, cos(\/A,L/2) — A, = B, (2.561)

VB sin(y/1,1/2) + /1) By sin(y/ArL/2) = B, cos(v/AnL/2)

K

— tan (\/2/1_"> = Kj/l_n (2.562)

This equation gives the eigenvalues 4, but has no analytical solution,

the eigenvalues must be found numerically.
To find the A, coefficients we replace in the heat equation:

> [k Xn(x) + iwcpX (x)] = —ToS(x — x0) (2.563)
To 2 2To cos(+/Anxo)(kAn +iwCp)
A = ———--- A/ ﬂ =
" kdy—iwCp L cos(/dnxo) K222 + w?C%p2
(2.564)

The final solution will be (using e~'“* = cos(wt) —i sin(wt) and using
only the real part of A,e~'“):

T(x, t)=
2T, N2 L
>on % cos(v/A,X)(k A, cos(wt) + wCp sin(wt)) 0<x< 3
2T VA L
>on % cos(v/An(x — L)) (x A, cos(wt) + wCp sin(wt)) 3 <x<L

(2.565)



Chapter 3

Bidimensional Problems

This chapter describes in a detailed manner the solutions of
different problems in confined systems in two dimensions in
Cartesian coordinates. The solutions will be sought by using the
method of separation of variables, as functions of two (for example
for static Laplace or Poisson problems) or three variables in the
case of wave or diffusion problems (when time is considered). The
separation of variables will be performed in order to expand the
solution in orthogonal functions in one or two dimensions.

In the case of converting the initial problem in several simpler
problems we need to take care that the Laplace problem with
all boundaries of homogeneous type has trivial solution (zero
or a constant). Just like in the previous chapter, when possible,
the steps of the solution will be distributed in four stages: (i)
General formulation of the problem, including the PDE, the initial
conditions (if they exist) and the boundary conditions. (ii) Search
for the solution from a partial solution, by solving a Sturm-Liouville
problem. (iii) Steps to reach the general solution. (iv) Steps to find
the final solution of the problem.
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In several cases the intermediate solutions will be analyzed
graphically, whereas the final solutions will be presented using the
PDE tool from MATLAB.

3.1 Forced Oscillations of a Membrane

A rectangular membrane whose sides have lengths a and b and
with two fixed borders the other two (on opposite sides) are free,
is subject to a point force, perpendicular to the plane, of value
A sin(wt) at the point indicated in the figure (0 <x <band 0 <y
< a). Find the eigenfunctions of the Sturm-Liouville problem and
the frequencies of the vibrations excited by the applied force.

Fixed boundaries Point that oscillates

\ \\ out of the plane
P

b

Figure 3.1

Mathematical formulation

Although the point force is applied on the border, it can be
represented as applied on a point infinitely close to the border, at
a distance ¢:

f(x, y, t) = Asin (0t) 8 (x - lz)) Sy —[a—el)  (3.1)

And then consider the solution in the limit ¢ — 0. The equation to
be solved is:

?u , (0*u  d%u A b

ﬁ—c <8x2 + 8yz> = ; sin(wt)$ (x — 2) S(y—[a—e¢]) (3.2)
being p the density of the material of the membrane and c the speed
of sound.



Forced Oscillations of a Membrane

Sturm-Liouville problem

We will look for the excited vibrations by expanding the solution:

u(x,y,0) = _ Tam(O)vam(x, ¥) (3:3)

into orthogonal eigenfunction of the following Sturm-Liouville
problem:

%v 9%

X2 + W +Av=0

v(0,y) =v(b,y) =0 (3.4)
av av

Wleo Wlma

The eigenfunctions and eigenvalues of this problem are known. The
normalized eigenfunctions are:

Vom = \/i_b sin (%Ix) cos (?y) (3.5)

General solution

Replacing the solution in the non-homogeneous wave equation and
using the results of the spatial eigenfunctions we arrive at:

S {5 e () (5) ] ron v

= 4 sin(wt) § (x — b) Sdy—[a—c¢]) (3.6)
0 2

Final solution

Multiplying the previous relation by v,n(x,y) and integrating
between 0 < x < band 0 < y < a we have:

e[ (5)+ (2)] o
= /ady/bdx«/ifb:: sin(wt) § (x — g) 8(y — [a — €]) sin <7%Ix> cos <?y>
0 0

= \/%% sin(wt) sin <?g> cos (?(u - e))

(3.7)
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o (o0 — 2k
Note: sin (%) = { (1)t EZ _ Zk)—i— 1) }

Note: cos (“%(a —¢)) [for ¢ — 0] = cos(zm) = (—1)"{m =
0,12...}
Then the modes excited by the applied force will be:
k+1)2 m?
Wpptm = €T {bz +— (3.8)

Note: modes in the x direction with even value of n that have nodes
in the central vertical line of the membrane are not excited, since
they are suppressed by the symmetry of the applied force.

3.2 Oscillations of a Membrane Fixed at Two
Boundaries

A square membrane, whose sides are of length = have two opposite
boundaries free to move (at y = 0 and y = x) and the other two
(x = 0, x = m), fixed. Starting at ¢ = 0 the membrane is subject
to a periodic force with areal density of the form sin(¢t) sin(x) cos(y).
Find the membrane displacement for ¢ > 0. Consider that the surface
density and the speed of sound in the membrane are equal to 1.

sin(t) sin(x) cos(y)

\

T

Figure 3.2
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Mathematical formulation

82 82 32
BTI; = 2 (3;; + 8;;) + sin(t) - sin(x) - cos(y)
ou _
ay y=0
du —0=0
Boundary conditions: { 3y y—r
= 3.9
ux=0)=0 (39)
ux=mn)=0
u(x,y,0)=0
Initial conditions: Ju
i =0
9t |r—o

Sturm-Liouville problem

We seek the solution as an expansion of orthogonal functions:

(o]
u(x, 5,0 = > Apm(Q)vam(x, ¥) (3.10)
n,m
where v,,, are the solutions of the Sturm-Liouville problem:
o + o +Av=0
ax%  ay? N
av
_ =0
Y ly—o
ov _ (3.11)
Boundary conditions: Wy
v(x=0)=0
vix=m)=0

The eigenfunctions are well known. For the side 7 of this membrane:

Vam (X, ¥) = sin(nx) cos(my) (n=12... m=0,1,2...)
(3.12)
with eigenvalues:

Apm = n* + m? (3.13)
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General solution Replacing

u(x,y, t) = Z Apm(£) sin(nx) cos(my) (3.14)

n,m

into equation (3.9)

S (ZAm | 2, 41| sin(nx) costmy) = sin(e)sin(x)-cos(y)

s ot?

(3.15)
Applying the orthogonality of the v,,,(x, y) eigenfunctions we arrive
at the equation for the amplitudes A,,,(t).

Due to the membrane being excited with a force with the
spatial profile of a single mode, only this mode gets excited,
A11(t). Mathematically it is the consequence that the rest of the
eigenfunctions are orthogonal with the function that describes the
profile of the applied force. Once the orthogonality conditions have
been applied and, integrating both functions in the range [0, 7] we
have:

d?Aq(t
T;() + 11 A11(t) = sin(t) (3.16)

Since 111 = 1% 4+ 1% = 2 we will need to solve the next equation:
d?Aq1(t)
S de2
A11(0)=0 (3.17)
dAqy
dt |,

+ 2A11(t) = sin(t)

The particular solution is A11, par¢(t) = sin(t):

The general solution of the homogeneous equation is:

d2A11
2411 =0 3.18
dtZ + 1 ( )
A11 hom = C sin(v/2t) + D cos(v/2t) (3.19)

Applying the initial conditions to the solution A1; = A11hom +
All,part:



Electrostatic Field inside a Semi-Infinite Region

C sin(v/2 0) + D cos(+/2 0) + sin(0) = 0 390
(C\/fcos(\/f 0) — D+/2sin(+/2 0) + cos(0) = 0) (3.20)
We have:
D=0
<cﬁ+1=o> (3.21)
Aq1(t) = _«/15 sin(v/2t) + sin(t) (3.22)

Final solution
u(x, y, t) = Ay sin(x) cos(y)

= |sin(t) — % sin(x/zt) sin(x) cos(y) (3.23)

Note: in the case that the membrane oscillates in a viscous medium
we could approximate the viscosity by inserting a term proportional
to the velocity (« %). The solution method is the same with this new
term, changing only the form of the equation for A(t), where we will
have a term with the first derivative of A(t).

3.3 Electrostatic Field inside a Semi-Infinite
Region

Find the electrostatic potential inside a semi-infinite region, limited
by conductor plates at (y = 0, y = b, x = 0) if the plateatx = 0 is
connected to a V, potential (see figure).

The plates at y = 0, y = b are grounded and there are no charges
inside the region.

V=0

v=v, | |b >

V=0

Figure 3.3




142

Bidimensional Problems

Mathematical formulation

%u  d%u
Fr
u(0,y) ="V,

u(x,0)=u(x,b)=0

(3.24)

ux > o00,y)=0
Sturm-Liouville problem

Separating variables and taking advantage of the homogeneous
boundary conditions in the y direction the solution is expanded in

eigenfunctions of the Sturm-Liouville problem. We seek the solution
as:

u=XXYW) (3.25)

Separating variables we arrive at the Sturm-Liouville problem for
Y(y):

Y=o
dy? B (3.26)
Y(0)=Y() =0

The Y (y) functions, when replaced into the Laplace equation, give
rise to the problem for X (x):

X'—aX =0 (3.27)
which has a solution in the form of two exponential solutions:
Xn(x) = Ape 5% + Byt ¥ (3.28)

General solution The general solution is then:
> n
uCe, y) =Y sin (1) [Ane ¥ + Bre ¥ 3.29
(x,5) Zsm(by){ e + Bre (3.29)
n=1
Final solution

From the boundary condition at infinity, we must impose: u(x —
00, y) = 0 so that the solution does not diverge.
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Because of which B, = 0 and the solution simplifies:
[o.¢]
. n _mny
u(x,y)= ; Ap sin (Ty) e b (3.30)

Imposing the boundary condition u(0, y) = Vy we have:

Vo = iAn sin (%"y) (3.31)

and using the orthogonality of the eigenfunctions (in the y
direction):

b
Vo
T/ dy Ap (3.32)
0
The integral has a value:

b
b _ =
/sin (%;Iy) dy = E[cos (rn) — cos(0)] = { . 2 E: - ;l]:)—i- 1) }

0
(3.33)
where k are integer numbers from k = 0.

We finally arrive at the solution in a compact form:
. 2k+1
4Vo _nkeny, S (ﬂ( b )y)
e b X 7
— (2k+1)

Graphical representation (using MATLAB’s PDE Toolbox with the
right boundary at a finite distance and null electric field transversal

to the boundary).
1 -
0.9
0.1
-1
-1.5 0 1.5

Figure 3.4
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3.4 Distribution of Electrostatic Potential in a
Rectangle

A metallic prism has a rectangular cross section L, x L, and infinite
length (along the z axis). The whole prism is grounded except for the
central region of the face at x = 0 which, being insulated from the
rest, is at electric potential V (the thickness of this region is L, /2.
Supposing that L, >> L, obtain an approximate expression for the
electric potential.

Ly

Vo >

Figure 3.5

Mathematical formulation This problem can be solved with
Laplace’s equation:

%u  3%u
— +-—=0 3.35
0x2 + ay? (3.35)
Boundary conditions 1 and 2:
u(x,0)=0 (3.36)
ulx,L,)=0 (3.37)
Boundary conditions 3 and 4:
u(Ly, y) =0 (3.38)
L
0 i
(y ~ >
L 3L
u(0,y)=f) =4 (4y <y< 4y) (3.39)
3L
0 ' 4
U=

It can be solved in an analogous fashion to the example described in
section 2.2.2 from [1]:

We use separation of spatial variables:u = X - Y.



Distribution of Electrostatic Potential in a Rectangle

Solution Sturm-Liouville problem in the y direction:
3%y
-5 +4Y =0 (3.40)
dy
With homogeneous boundary conditions of the first type. The
corresponding eigenfunctions and eigenvalues are:

v, = sin (Xy) (3.41)
1, =" 2 3.42
"‘(g) (342

We will look for the solution of the problem as an eigenfunction
expansion:

u(x,y)= Z X,(x) sin (Zy) (3.43)
Replacing this solution into Laplace’s equation:
Z{dZX"—AX}sin(m>:0 (3.44)
a dxZ n&n L y :
Then the equations to find X, are:
% — A Xn=0
dx? e
Xn(Ly) =0 (3.45)
Xn(0) = Ay

Final solution The A, coefficients are given by:

u(0,y) = 3" X,(0) sin (I”y) — o) =1{ v (Ly <y=< 3”)
y

Using the orthogonality of the Y,:

3Ly

2 / . Tn 2 Tn 3mn
X,,(O):L—Vo/sm I y dy:L—VO cos (T)—COS 2
y y y
Ly

@

(3.47)
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Solution for the X ,:

Xa(x) = Che V¥ 4 Dpev/ X (3.48)
Imposing the boundary conditions:
Cpe Vil 4 ppeVinls — 0 (3.49)
Cn+ Dp = A (3.50)
Ap
D, = 1 ooiis (3.51)
A, e lx
Cn = avih 1 (3.52)

Considering the solution in the limit
Chn— Ap.

L — oo we have: D, — 0 and
v

3.5 Distribution of Temperature in a
Semi-Insulated and Semi-Infinite Slab

a) Find the stationary distribution of temperature u(x, y) inside a
box with respect to the temperature of its base (which is constant
but is not defined). The box is infinite in the z direction and semi-
infinite for x > 0. The facesat y = 0 and y = L are thermally
insulated. The face (x = 0, 0 < y < L) receives heat with a density
of flux Fy x y x (L — y). The thermal conductivity of the box is k.

b) Solve the same problem supposing that the lower boundary
exchanges heat with the outer medium, which is at a temperature
Ty, according to the Newton’s law, with constant h.

Insulated boundaries
~7

L

Heat flux

F(y)=Foy(L-y) | >c0

Figure 3.6



Distribution of Temperature in a Semi-Insulated and Semi-Infinite Slab

a) Mathematical formulation

The variable u represents the temperature with respect to the
original temperature of the bar, which is unknown, therefore u
represents the variations of temperature. As the bar is infinite and
the heat occurs by a source at x = 0, the other boundary, at x — oo
remains at the initial temperature u = 0, since the heat would
require an infinite time to get there. Since the slab is infinite in the z
direction it's enough to solve Laplace’s equation in two dimensions
(see figure).

92 2

87)(1;4_5[21: 0<x<oo 0<y<l)
au ou

Sl =5 =ulteoy) =0

8y y=0 ay y=L

ou 0

bl =% —

ox| _, YL=)

(3.53)

Sturm-Liouville problem

We seek the general solution by separating variables, with the
intention of expanding the solution in a Fourier series with
orthogonal functions (in the y direction, which has second type
boundary conditions).

ulx, y) = X(x)Y(y) (3.54)
We arrive at two equations:

Equation for the Sturm-Liouville problem for Y (y):

a*y +AY =0
4y’ . 3.55
dv| _av| (3-55)
dy y=0 dy y=L
Which has eigenfunctions and eigenvalues:
Y,(y) = cos ("T”y) n=0,12.) (3.56)
A, = (ﬂi) ? (3.57)
n — L .
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The equation and the corresponding solutions for X (x) are:
dZ
— —AX =0 3.58
02 (3-58)

Xo(x) = Ape (T 4 BT (n=0,1,2,...) (3.59)

General solution

u(x, y) = Z {Ane(_%") + Bne(%")} cos (%y) (n=0,1,2,...)
(3.60)
Note: Ay must no appear in the sum, since the base temperature of
the problem is not defined. We are only interested in the variations
of temperature due to the heat flux. Applying the boundary
condition:
u(4o0,y)=0 (3.61)
Wearriveat B,=0(n=1,2,...)

Imposing the other boundary condition:

e () ()
= (3.62)

Final solution Using the orthogonality of the eigenfunctions Y, we
get the coefficients:

Ap(n > 1) (3.63)
L
2F, I3
y(L—y) cos(nL y) dy = i, 3k[( D"+ 1] (3.64)
0

Finally the variation of temperature along the x axis, due to the
supplied heat flux is:

__2Fp

n
~ krn

=\ 2F,L? (m nw
u(x, y) = Z n3n3k[(_1)n + 1le (£ cos <7y> (3.65)
n=even>0

The term with n = 0 does not exist in the sum, since the solution is
defined with respect to the unknown temperature of the object.

b) Now we solve the problem supposing that the lower border losses
heat according to Newton’s Law, towards the surroundings, with
temperature Ty, with constant h.
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Insulated boundary

Heat flux

F(y)=Foy(L-y) 0O

N Semi insulated boundary

Figure 3.7

In this case, resetting the value of the constant Ty would not change
the boundary conditions (neither left nor upper). The solution with
the Ty background subtracted tends to zero in the limit x equal to
infinity.

Sturm-Liouville problem

We formulate the same Laplace’s problem, with the same boundary
conditions, except for the lower border, which would change from
type two to type three. The equation for the Sturm-Liouville
problem for Y (y) is, considering the direction of the heat flux:

d’y +AY =0

dy? -
dY

—k—| 4+hY(0)=0 (3.66)
d.y y=0

av|

d.y y:L

Sign of the first boundary condition is chosen to relate correctly
the derivative of the solution in vertical coordinate (y) with
corresponding direction of the heat flow. A solution which satisfies
the second boundary condition is:

Yu(y) = Cn cos (\/T,,(y . L)) n=12..) (3.67)

From the first boundary condition:

Cn [k\//Tnsin <\//TL> + hcos (\//TL)} ~0 (3.68)

The solutions of the equation are the eigenvalues:

tan (@L) = k;}/ll_n

(3.69)
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The equation and its solutions for X (x) are:
d*X AX=0
dx? N

Xn(x) = Ape V4X 4 B, etvinx n=1,2..)

(3.70)

General solution The general solution will be:

u(x, y) = Z {Ane_ LX 4 Bhet ’I"X} cos/ A, [y—L] (n=1,2,..)
3.71)

Final solution Applying the condition:
u(4o0,y) =0 (3.72)
We have B, = 0,withn=1, 2, ...

Imposing the condition:
du F

0
= =—2y-y) = YAV cos (Vb - D)
=0
" (3.73)
Using the orthogonality of the eigenfunctions Y, we obtain the
coefficients A,(n > 1)

L
Fy Ofy(L—y) cos (vAuly — L]) dy
A, = - (3.74)
o [ eos (Ely — 1) dy

L
./y(L—y) cos[\/ﬂ(y — L)]dy = /TLH {1 — cos (\//THL)]

0

24/, L — sin(/2,L)
- (1n)*/?

/L{COS (\/ZD’—L])rdy: ZmLZ\S/i;:ZJT”L)
0

L n sin(2+/1,1)
2 42,
Fy 11— cos(y/A;1)] — 2Aaspi/bl

k2, %‘f‘ sini{;/%?,L)

(3.75)

(3.76)

A=

(3.77)
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Finally the variation of the temperature along the x axis due to the
supplied heat is:

o0

ux,y) =" {Ane"/ﬂx cos <\/Tn[y - L]) + To] (3.78)

n=1

3.6 Oscillations of a Semi-Fixed Membrane

A square membrane of side L has a fixed border, whereas the other
three can move transversally. The border opposite to the fixed one
is kept at a distance h from its mechanical equilibrium position. At
t = 0 that border is released. Determine the form of the membrane
as a function of time (in the absence of gravity).

Figure 3.8
Mathematical formulation
d*u 20 0
— —c“Au =
dt?
u(0,y,t)=0
u u ou 0
. = - = - = 3.79
8X x=L 8}/ y=0 a.y y=L ( )
h
» 0 = -
ux, y, 0) = 7x
0
wul
It |
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Sturm-Liouville problem The solution is expanded into eigenfunc-
tions of the Sturm-Liouville problem in 2D:

u(x,y, =3 Tan(OXa()Ya(y) (3.80)

Formulating the Sturm-Liouville problem we get the eigenfunctions:
2 1
X (x)Ya(y) = sin (Wx) cos (? y) (3.81)
wheren=20,1,2...0oandm=20,1,2...00

And the eigenvalues:

(3.82)

e oy

/1an|:

General solution The general solution and the initial conditions
are:

u(x,y, t) = Z [Apm cos(wpmt) + Bum sin(wpmt)] sin

2 1
X (n(;:)x) cos (%y) (3.83)
u

Using the second initial condition: $*

Bt’t:O = 0 we have B, = 0

Also, from the first initial condition:

h 2n+1
ux, y,0) = 7x = A sin (77(;L+)X) cos (%y) (3.84)
nm

Final solution Using the orthogonality of the eigenfunctions:
L L
/ h  (7(2n+1) / Tm
—xsin | ————x | dx | cos (—y) dy
L 2L L
0 0

L L
_ o (m(2n+1) 2 (Tm
_A,,m/sm <2L x ) dx [ cos ( ; y) dy  (3.85)
0 0

Finally we obtain the coefficients Ap,:
A sine function is orthogonal to a constant value (which is one of the

orthogonal eigenfunctions of the cos (”—Loy)). The integral:
L

/cos (?y) dy=0 (3.86)

0
for the indices m # 0
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For m = 0 the previous integral equals L. In that case, the A,
coefficients are not zero. We would need these integrals to obtain
its value:

L
/cos —y dy=1 (m=0) (3.87)
0
L
/ sin? (71(2;;—1))() dx = % (3.88)
0

With the two sums only the terms with n indices survive. Finally, the
coefficients are:

L
2h 2n+1 8h (-1)"
Ano = W/xsin LA DA Gt )
LL 2L 72 (2n + 1)2
0

3.7 Stationary Temperature in a Rectangle with
Heat Losses through Its Boundaries

Find the stationary distribution of temperature (T) in a rectangle
(a, b). Two of its sides (x = 0, a) are in contact with a thermal
reservoir at T = 0. The thermal conductivity is k = 1. The boundary
at y = 0 exchanges a heat flux with the outer medium, which
creates a gradient of temperature in the direction perpendicular to
aoT
the boundary, given by: rm = —2T(x,y = 0). The opposite
.y y:O

border (y = b) exchanges a heat flux with a density — f(x) per unit
time and unit surface.

Ré -f(x)
b A
7
T=0 T=0
0 X
\J a ”

"T‘ 2T(x,y=0)

Figure 3.9
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Mathematical formulation

9%u N ’u 0
axz  ayr
ux=0=ux=a)=0
du (3.90)
— + 2u(x,0)=0
dy y=0
du
— =fx)
dy y=b
Sturm-Liouville problem
We separate variables:
vix, y) =X(x)-Y(y) (3.91)

We arrive at two equations, one for X and another one for Y. The
Sturm-Liouville problem for X is:

a*x +1X =0
dx? o
X(0)=X(a)=0 (3.92)

Xa(x) = sin (%x) n=12..)
The sign of the constant A is chosen to expand the solution in

eigenfunctions, orthogonal in the x direction, where there are
homogeneous boundary conditions.

Equation and solution for the y variable:

d’y AY =0
dy? B
Y, (y) = Ancosh (%y) + Bp sinh (%y) n=12...)

(3.93)
The solution can also be written as a linear combination of two
exponential solutions.

d*y
oz — AV =0
(3.94)
Y,(y) = Ape” @Y + BpetaV
The latter form is the most convenient one when any of the
boundaries of the rectangle in the y is not fixed.
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General solution

In this case the best form of the general solution is:

ulx,y) = Z {A,, cosh (%Ty) + Bp sinh (%Ty)] sin (%Tx)

n=12...) (3.95)
Applying the boundary condition: Z—; . +2u=0—

nmw . /nmw nmw
Z {Bn— + ZA,,} sin (—x) =0— B,— + 24,
- a a a

2aA,
=0— B, =—

(3.96)

We arrive at the following general solution:

u(x,y) = Z Ay [cosh (%y) - rZTJC'Ir sinh (n;Ty)} sin (%x)
! (3.97)

Final solution

Imposing the second boundary condition: ‘;—; b= f(x)

flx)= Z Ap {%T sinh (%tb) — 2 cosh (n%b)} sin (I%TX)
! (3.98)

and using the orthogonality of the eigenfunctions, we find the
coefficients A,:

2 r . /nm
An = a [" sinh (“£b) — 2 cosh (“Zb)] /f(x) st (TX) dx
0
(3.99)

Next, the graphic solution of the problem for the case f(x) = 2 is
shown, using the PDE Toolbox module from MATLAB:
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1.0,

6
0.5
4
y 0.0
ﬁ 2
-0.5
-1.0- — 0
-1 0 1
X
Figure 3.10

3.8 Case Study: Heat Leak from a Rectangle

Find the temporal variations of temperature of a rectangular
membrane of sides a and b with thermal conductivity k, heat
capacity € and mass density m. Until ¢ = 0 two contiguous
borders are thermally insulated and the other two are in contact
with a thermal bath at Ty, so that the membrane is initially at
thermal equilibrium. At ¢t = 0 one of the insulated borders changes
and starts exchanging heat with the outer medium (which is at
T = 0), according to Newton’s law (with constant h). Initially all the
membrane is at temperature T = T.

y
A
Insulated boundary
b
Semi insulated
— boundary
T=T,
0 (t>0)
T=T, a X

Figure 3.11
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Mathematical formulation

au
— —«kAu=0
at
u(0,y)=To
u(x,0) =T,
Boundary condition (t > 0): ou -0
Y |y—p
0
k| _hux=a)=0
0X |4_q
Initial condition: u(x, y, 0) = Ty
(3.100)

Wherex = C—kp. We seek the solution by shifting the origin of

temperatures: v(x, y, t) = u(x, y, 0) — Ty, to be able to expand the
solution in orthogonal functions in the y direction.

0
v kAv =10
at
v(0,y)=0
v(x,0)=0
Boundary condition: v —0
Y |y—p
0
k| 4 hv(x =a) = —hT,
0X |,_q
Initial condition: v(x, y, 0) = 0

(3.101)
The problem is split in two parts: one with a stationary solution

w(x, y) and the other with the transient solution S(x, y, t), which
will be added.

vix,y,t) =w(x,y)+ S(x, 5, t) (3.102)
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The stationary problem (to arrive at a non-trivial solution) must be:

Aw =0

w(0,y)=0

w(x,0)=0

aw _
ad

kY 4 hw(a, y) = —hT,
0X |y_qg

On the other hand, the transient problem is:

aS
— —kAS=0
ot
S0,y)=0
S(x,0)=0
0S
e =0
(08
0X |,

Sturm-Liouville problem

We first seek the solution of the first problem in the form:

+hS(a,y) =0
a

Initial condition: S(x, y, 0) = —w(x, y)

wix, y) = Xa(x) Ya(y)

(3.103)

(3.104)

(3.105)

where Y, (y) are orthogonal eigenfunctions, since both boundaries in
the y direction are homogeneous. Solving the corresponding Sturm-

Liouville problem we have:

Ya(y) = sin(y/Any)

L [n(2n+ 1)]2

2b

(3.106)

(3.107)
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We arrive at the equation for the X (x) function, replacing w(x, y) in
the Poisson’s equation:
da’Xx,
dx?
Considering the boundary conditions, it is convenient to write the
solution in the form:

X, = A, sinh ( /lnx> + B, cosh ( /l,,x) (3.109)

— A, Xp =0 (3.108)

General solution

w(x,y) = Z {An sinh (\//Tnx) + B, cosh (\//Tnx)} Y.(y)

n
(3.110)
Applying the boundary condition w(0, y) = 0 we have B, = 0.

Applying the condition k %‘x:a + hw(x =a) =—hT,

ZA,, {k\//Tncosh (\//Tna) + hsinh (J/Tna)} Y,(y) = —hT,

(3.111)
And using the orthogonality of the eigenfunctions:

Ap {k\//l»,,cosh <\//Tna) + hsinh (\//Tnaﬂ /b|Yn[y)|2 dy
0

b
- —hTO/Y,,(y)dy (3.112)
0
b
{sin (VAny) dy

2 7(2n+1) 1 = 2
‘bm{“’s( 2 )‘}‘bm

(3.113)

gb' |sin (Jl_ny)|2 dy

2Toh
by, [ky/2n cosh (v/A,a) + hsinh (V,a)]

To solve the second homogeneous problem the general solution is
quite simple, since it has the form of a summation of the product
of both eigenfunctions in two dimensions X,(x) - Y,(y) and the
temporal part. Contrary to the previous case, here, due to the

Ay = (3.114)

159
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equation having a temporal part, when doing the separation of
variables we get two sets of different eigenvalues, one for each

direction:
Sy, )= Tun(OXm(X)Ya(y) (3.115)
mn
Ya(y) = sin (Viny) (3.116)
2
. _ | 7(2n+1)
with u, = [%}
Xm(x) = sin(y/vmx) (3.117)
with v, defined according to the boundary condition:
dX
k=" +hXu(a)=0 (3.118)
dx x=a
Which produces the transcendental equation:
k
tan (/vma) = —7/Vn (3.119)

The temporal solutions can be obtained replacing > Tyn(£)X (%)
mn

Y, (y) in the homogeneous equation, and we get the problem:
dTmn

dt
Which has a solution:

Tn(£) = Toun (0)e < Grtom)t (3.121)
The general solution is:
Sy, ) =Y Ta(0)e ™ U™l sin (/vpx) sin (iny)  (3.122)

mn

+ k(ttn + Vi) Ton = 0O (3.120)

Final solution

We solve the problem by including the initial condition:

—w(x, y) = Z Tinn (0) sin (y/vmx) sin (/iny) (3.123)
mn
And using the orthogonality of X ,,(x) and Y, (y) we get:

/ f w(x, y) sin (\/vmx) sin (/fny) dxdy
Tin(0) = =2 (3.124)

b
ffsin2 (/Vmx) sin® (/mny) dxdy
00
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3.9 Rectangular Hit on a Square Membrane

Find the movement of a square membrane of side b which is which
has two fixed opposite borders, whereas the other two are free. At
t = 0 a vertical hit transfers a total impulse I to the surface. The
hit is uniformly distributed over a rectangle centered in the origin
(b/2 x b/4). The tension is T, the density of the membrane by unit
surface is p. Consider that the membrane does not vibrate until the
initial instant (t = 0).

y
3b/4- Y
b/2 - f I >>>>>>>>>
b/4 -} e
x
3b/8 5b/8
Figure 3.12
Mathematical formulation
Pu a*Au=0
ot?
u(0,y,t)=0
u(b,y, t)=0
Boundary condition: { | _
ay y=0
up
By y=b
u(x,y,0)=0
Initial conditions: { ju B % (inside the rectangle)
9t fimo 0 (outside the rectangle)

(3.125)

Being: a® =



162

Bidimensional Problems

We separate variables u(x, y, t) = T()X (x)Y(y) = T (t)v(x, y):
Sturm-Liouville problem

Av(x,y)+Av(x,y) =0
v(0,y)=0

v(b,y)=0

av
dy
av
dy

(3.126)

y=0

y=b

The normalized eigenfunctions of the Laplacian operator, with these
boundary conditions, are:

Vam(x, ¥) = gsin (ﬂ> cos <m%) (3.127)

With eigenvalues:

ny 2 m\ 2
Anmz(nf) +<7‘r—) n=1,2...;m=01,2...)

b b (3.128)
General solution
The equation for the temporal part is:
d;:;”” + a? Ay Tam(t) = 0 (3.129)

with solutions:
Tpm(t) = Apm sin (a /l,,mt) + Bum cOS (a /l,,mt) (3.130)
Final solution

From the first initial condition we have B,,, = 0.

Then the general solution can be written (with normalized eigen-
functions) as:
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u(x,y, t) = Z {Anmlz) sin(m/ﬂt)} sin (%) cos (M)

b
nm
(3.131)
Applying the second initial condition:
((x,y,0) = Anméa Anm €0S ( a+/ Apm0
) nm 2
. /NTX mmy
X sin (T> cos ( b ) (3.132)

81 (3b Sb) (b 3b>

— <x<—|, |-<y<—

pb? \ 8 8 4 4 (3.133)

0  (restofvalues of x, y)

Using the properties of orthogonality, we multiply by
%sin (55 cos(%) both sides and integrate between 0 and b for
x and y, to obtain the coefficients of the expansion, which are:

»lg

nmam_/dx/dy—sm Zx)cos (%) (3.134)

8 4
81 . /nhmXx mmy
Anm = m /dx/dy Sin (T) CoS (T) (3135)
3b b
8 %

3.10 Case Study: Distribution of Temperature in a
Peltier Element

Arectangular, homogeneous film (A BC D) has two borders (AC, BC)
thermally insulated. The other two are kept at a temperature T =
To. Find the stationary distribution of temperature (with respect
to Tp) supposing that the film absorbs heat homogeneously at a
constant rate Q (constant by unit time and unit surface).
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Insulated boundaries

YA L

B (0b) cab) |

4
A

D(0.0 A(a0)
; V X
u=0-"
Figure 3.13

Mathematical formulation

We will formulate the solution u(x, y, t) with respect to the
temperature of the environment T = Tj.

The solution which will produce fewer Gibbs phenomena consists
in expanding the solution in orthogonal functions in one of the
directions with homogeneous boundaries. An alternative way is,
expanding the solution in eigenfunctions of the Sturm-Liouville
problem in the two homogeneous directions, replacing the solution
in the non-homogeneous equation and find the coefficients of the
expansion. This method is possible thanks to the presence of two
pairs of opposite homogeneous boundaries.

Mathematical formulation subtracting T, to the solution:

du 3%u  9%u
Cpld _p(CE LM
T (axz +8y2) ¢

Stationary equation : k o + ot _ Q
yed \axz o ayr)
(3.136)
0
u(x =0) = o =
0X | ,—q
0
uy =0)= 2| =
Y lyp
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Method 1

In this method we will use an expansion in one-dimensional
eigenfunctions.

Sturm-Liouville problem

Searching a solution as ) Y(y)X(x), we formulate the Sturm-
Liouville problem only for the x direction:

d*x
T TAX=0
(3.137)
dX
X = 0 = — =
x=0)=— .
The eigenfunctions are:
2 1
Xn(x) = sin (Wx) (3.138)
2a
The eigenvalues are:
2n+1)1?
1, = {”(”H] (3.139)
2a

General solution

The general solution is:

u(x, y) = Z Yo(y) si (”(2” +1) > (3.140)

Replacing this solutlon into the heat equation we have:

0 2n+1)1? 2n+1

_ZY,,[y) 7(2n +1) sin 7(2n+ )x
2a 2a
n=0
o0 o0
d’y, . (n(2n+1) Q . (m(2n+1)

+,,2:; a2 sin ( >a x) == ;Cn sin (Za x)

(3.141)

2 Q. (7n(2n+1) _ 4Q
a / x> ( 2a ) W=ty G
0

where

165
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In this case what we did is basically first expand the inhomogeneous
part of the equation in Fourier series of orthogonal eigenfunctions
in the x direction and apply the orthogonality conditions so that we
have the non-homogeneous differential equation in the y variable.
The equation to find Y (y) then will be:

d?Y, [z(@2n+1)]° 40
_ A S 3.143
dy? [ 2a } kr(2n+1) ( )
dy,
Yoy = 0) = =0 (3.144)
dy y:b

Final solution

We look for the solution as the sum of the homogeneous equation
and the particular solution. The solution of the homogeneous

equation (using the condition: ‘f})’/" = 0) is:
y:
2 1
Yo hom(y) = An cosh (”('Z’H(b . y)> (3.145)
a
The particular solution is:
16 Qa?
Y,() = Qa (3.146)

 kn3(2n+1)3
This form of the solution already satisfies the boundary condition
for y = b. Applying the last boundary condition, we have: Y,(0) = 0:

m(2n+1) 16 Qa?
Y, hom(0) + Y, (0) = A, cosh ( P b) — k3 (2n + 1) =
(3.147)
The coefficients are:
16 Qa? 1
Qa (3.148)

"7 knd(2n+ 1) cosh (Wb)
a

The final solution is:

160(12 00 1 cosh (W)
a
U(X, J’) = T kn3 Z (21’1 + 1)3 cosh (M) _
n=0 2a
2 1
« sin (’T(’Z’HX) (3.149)
a

In the figure we represent the numeric solution of the problem
obtained with MATLAB’S PDE Toolbox module.
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1.0 12
0.5 9
y 0.0 6
-0.5 3
1.0 0
-1 0 1

Figure 3.14

Method 2

The alternative method consists in expanding the solution in
orthogonal functions in two dimensions:

u(x, ) = AumXn(x)¥n(y) (3.150)

Although it is mathematically possible, this method which uses the
homogeneity of the boundaries, would result in a higher number of
Fourier series summations and therefore more Gibbs phenomena
(thatis, the divergence of the solution next to the boundaries, if there
is an increasing contribution of harmonics for higher eigenvalues).

Sturm-Liouville problem

To find X,(x)Yn(y) we solve the Sturm-Liouville problem in two
dimensions.

%v 3%

IxZ + W = —AnmV
av
ax
av
ay

o (3.151)

X=a

v(x=0)=

vy =0)=

y=b

7 (2n + 1)X) sin (n(Zm + 1)y

7 o ) (3.152)

nwmwzm(
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(3.153)

_[r@n+1D]? | [72m+ 1))
/l”m_[Za] +[2b}

General solution Replacing u(x,y) = > AmmXn(x)Ym(y) in the
nm

Poisson’s equation we get:

w(2n+1) . (7(2m+1) Q
__ZA”’"A"’"S ( 2a ) m< 2b y>=_k
(3.154)

Multiplying both sides by sin (”(Z"H)X) sin (”%Lb“)y)

ab
and integrating between | [ dxdy gives:
00

C(r@n+D) N\ || . /=zCm+1) \|?
sin| ——X S(sm | —————y
2a 2b

a

b
_Q w(2n+1) . (7(2m+1)
=% 0/0/ < > sin <2b y) dxdy

Anm/lnm

(3.155)
b
. (m(2n+1) . (m(2m+1)
Anm = abkA, // ( 2a > st <2by) dxdy
00
(3.156)

The Poisson problem previously solved could be part of another,
more complicated, problem related to the variation of temperature
in the same element: This could be the problem, and the method to
solve it, which would use the previous results: the two boundaries
(AC and BC) of a homogeneous rectangular film ABCD are
thermally insulated. The other two are kept at a temperature Ty.
Find the distribution of temperature of that element as a function of
time supposing that the initial temperature (before t = 0)is T = T,
and that starting at t = 0 the film loses heat homogeneously at a
constant pace Q=constant (by unit time and unit surface).

Note: As before, the solution u(x, y, t) will be formulated with
respect to the temperature of the surroundings T = Ty. The solution
will be sought as the sum of the stationary solution, w(x, y) at times
t — oo and the transient solution v(x, y, t).
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Idea for a solution:

c du . d%u  *u\ 0
Y dx? yz )
d
ux=0)= & —o (3.157)
0X |y—q
d
ay y:b

Replacing u(x, y, t) = v(x, y, t) + w(x, y) in the previous problem
we separate the problem in two:

c v . 82v+82v _0
Lot axz a2 ) T
d
v(x=0)= kad =0
ax x=a
Problem 1: (3.158)
d
vy=0)= 2| =0
3}7 y=b
vix,y,t=0)=—-w(x,y)
3w 9w
k=) =
(axz " ayZ) ¢
ow
Problem 2: { w(0,y) = — =0 (3.159)
0X |y_g
0
w(x, 0) = ow =
8_)/' y=b

Final solution

Problem 2 has already been solved. The solution of problem 1
has the form of an expansion of orthogonal eigenfunctions in two
dimensions:

Ak 2 1 2 1
vix,y t)= Z A,,me< A"’"Cﬂ)tsin (n(;;)x) sin (n(r;;_)y)

(3.160)
The coefficients A4,,, are found by applying the initial conditions.

n,m
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3.11 Case Study: Charged Filament inside a Prism

A metallic tube has a square cross section L x L and infinite length.
In the interior of the tube there is a charged filament, also of infinite
length, with a linear density of charge Q. Find the electrostatic
potential inside the tube.

Ay
Q
L ®
X
- >
Figure 3.15
Method 1
Mathematical formulation
9%u  9%u Q
— +—=f(x,y)=——5x)s(y — L/2
oz T 02 fx,y) - (x)s(y — L/2) (3.161)

u(—L/2,y) =u(+L/2,y) =u(x,0)=u(x,L)=0

being & the vacuum electric permittivity.

The presence of homogeneous boundary conditions allows to
expand the solution in orthogonal eigenfunctions.

Note: since in this particular case we want to expand the solution in
a summation of orthogonal functions in the vertical direction, it is
more convenient to fix the position of the y axis over the base of the
rectangle.
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Sturm-Liouville problem

In the present case, to minimize the influence of the Gibbs
phenomenon we are going to seek the solution as an expansion in
eigenfunctions of the homogeneous Sturm-Liouville problem in y.

u(x, ) = 3 X4(x)sin (”—Zy) (3.162)

being X ,(x) the coefficients of the expansion which depend on the x
coordinate.

General solution

Replacing this expression in equation (3.161) we get:

da*x

3 [ o /lnX,,] sin (ﬂ) — sy —1/2)  (3163)
" dx L €0

with 1, = (”—L”)Z. Using the orthogonality properties of the

eigenfunctions sin (%) we arrive at the inhomogeneous equation

for X ,(x), with the corresponding boundary conditions:

2Q mn
2x, ek 4 in (22 —
e k= fo= ] i W (F) =2k
9x 0— n=2k
Xn(=L/2) =0
Xo(+L1/2) =0
(3.164)

Final solution

In the zone of the system corresponding to a homogeneous equation
(thatis, outside the special point describing the point charge) we get
the following solutions:

mn (L
Xt = inh| — [ = — 1
o = Cysin ( T (2 x)) (3.165)
X-—c_sinn (" ( L4 (3.166
, = C_sin T\ X .166)

From the symmetry conditions of the solution, we get: C; = C_.
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On the other hand, integrating equation (3.164) around the charge
Q (in an environment of width € — 0) we will get an expression for
the difference of the derivatives of the solution:

+ —
di - di = EQ[_l)(ZkH) — (3.167)
dx te dx |_. Leg
2k+1 2k+1 2
(—2c,) kY )cogl(”( - )) =29 e (3168)
L 2 L&
_1)@k+1)
C.=C_= _e (=1) (3.169)
€0 7 (2k + 1) cosh (@)
2
.
sinh(L/2+x) &l  sinh(L/2-X)
> b, |
c 1] 1
0 |

L2 0 L2

Figure 3.16
Then the solution is:

C, sinh {(71(2](4_1)> . (L —x)] x>0
00 L 2

ux, )=

k=0 C_ sinh [(W) . (; +x)] x<0

n (Wy) (3.170)

The figure shows the solutions for X, (x).
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Method 2

In this particular case, the idea is to develop the solution separating
it in a summation of orthogonal functions both in vertical and
horizontal directions. Then it will be more convenient to fix the
position of the axes on the sides of the rectangle.

AY

L

Figure 3.17

Passing the axes x,y through the sides of the rectangle, the
corresponding Poisson’s problem will be:

9%u  9%u Q
St =fxy)=——68kx—-L/2)s(y — L/2)
axc  ay €0 (3.171)
u(0,y)=u(L,y)=u(x,0)=u(x,L) =0
General solution
We seek the solution in the form:
. /7n . /am
u(x, y) = ;Anm sin (TX) sin (Ty> (3.172)
Replacing in Poisson’s equation:
92 02
Fu U Qs — 12)sly — 1/2) (3.173)
0x2  9y2 €
TN\ 2 am\2| . /7mn . /T7n
— 2 Am () () s () sin (%)
= —Qé(x —L/2)s(y — L/2) (3.174)

€0
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Final solution

Using the orthogonality of the eigenfunctions sin(**); sin(**

Apm {(T)Z + (an)z] %% sin (nzn) sin (?) (3.175)
Solution:
ulx, y) = Zn; €3 (m) ysin () sin ()
X sin (n—[‘x) sin (Ty) (3.176)

Only the odd terms of the summation, withn = 2k+1,m=2f 41,
will remain.

3.12 Case Study: Capacity in a Rectangular Tube

Two very thin parallel plates with density of charge Qg and — Qg are
situated inside a metallic, rectangular box, infinite in the z direction.
The faces at x = 0 and x = a are grounded (zero potential),
whereas the other two are metallic with a surface charge density o.
Find the distribution of electrostatic potential inside the box. Note:
the solution will be independent of z due to the symmetry in that
direction.

Metallic (surface charge density o)

<

o

+Q,

I— Q, [

0 a X

Metallic (surface charge density o)

Figure 3.18
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Mathematical formulation

There is no dependence on the z variable due to the symmetry.

Au(x, y, z) = f(x, ¥, 2)

u(0, y) =u(a, y) =0

u o

o e (3.177)
u o

3y y=b - €0

with the inhomogeneity of the equation expressed in the following
manner:

fx,y, 2) = g(x)h(y)

0 (0=x=< %)
Qo [a 3a
9 =1 "%, <4 =X= 4) (3.178)
3a

y dy y=b -
b N
Au=f
— -
¢ a
0 7 X

du
Jy

|a

o)

0

y=0

Figure 3.19
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As this is a non-homogeneous problem with non-homogeneous
boundary conditions, we will separate the problem in the sum of
two, which consider independently the non-homogeneous equation
v(x, y) and the homogeneous boundary conditions w(x, y).

ux,y)=vx, y)+wx,y) (3.179)

The first problem is non-homogeneous with homogeneous bound-
ary conditions.

Av(x, y) = f(x,¥)

v(0,y)=v(a,y)=0

al =0 (3.180)
ay y=0

o,

ay y=b

The second problem is homogeneous with non-homogeneous
boundary conditions.

Aw(x,y)=0

w(0,y) =w(a,y) =0

wy __9 (3.181)
8_}/ y=0 €0

ow o

8_)/ y=b - &0

Solution of problem 1

Sturm-Liouville problem

The solution is sought by expanding into eigenfunctions of the
Sturm-Liouville problem:
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Av(x,y)+Av(x,y) =0
v(0,y) =v(a,y) =0
vy (3.182)
8_)/ y=0
0
v,
Y ly—p
The eigenfunctions and eigenvalues are well known:
v(x, y) = sin (%"x) cos (%y) (3.183)
TNy 2 Tmy2
= (Z2)"+ (57) (3.184)
a b

General solution

The solution of the non-homogeneous problem 3.180 will be looked
for in the form:

v(ix,y)= nzmz Apm sin (?x) cos (?y) (3.185)
Replacing in the equation (3.180)
- Z/lnmA,,m sin (%nx) cos (%y) = f(x, ) (3.186)
n,m
Multiplying both sides by sin (Z2x) cos (“y) and integrating in
j dx fb dy we have:
0 0

a

b
ﬂnmAnm/Sinz (%HX) dX‘/COS2 (?J’) dy
0 0

a

b
= /g(x) sin (%nx> dx/h(_y) cos (%y) dy (3.187)
0

b
/sin2 (?x) dx = g /cos2 (%y) dy = g (3.188)
0
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a b
[ 9(x)dx [ h(y)dy
Anm - 0 0
Anm(%)
0 afTsin (Z2x) dx {cos (%3{) — cos (%%)}
_ _x0734
T e /lnm(%)

— B feos () cos ()]
" gp ab - Ayy N 4 4
3
X [cos (%n) — cos (T)} (3.189)

Take into account that for m = 0, the modulus and the coefficients
Anm will differ in a factor 2 due to:

b
2 (TM _
/cos ( ; y) dy = b (3.190)
0

Solution of problem 2
General solution
We seek the solution by expanding into orthogonal eigenfunctions

in the x direction, since the problem has homogeneous boundary
conditions:

w(x,y) = Z Y, (y) sin (7;—”)() (3.191)

This summation is replaced in the equation: Aw(x, z) = 0. We arrive
at the following equation for Y, (y):

d?y, N\ 2
o (7) Ya(y) =0 (3.192)

With the general solution:

Y,(y) = C, sinh (%”y) + D, cosh (%”y) (3.193)

We apply the boundary conditions for y = 0:
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n N Tn N . /7n o
Z [Cn— cosh (—0) — D,— sinh (—0)} sin (—x) = ——
- a a a a a &0
(3.194)

a2 sin (”—"x) S (3.195)
a a €0
Using the orthogonality of the eigenfunctions sin (’;—"x) we find one

of the coefficients:

a

1
C,=— 7 [ sin (n—nx> dx
zn fsm (Z2x) dx &0 o a
0
a
N
= — i d
nanggob/Sln( a X) X
2 2
= —gi[cos(nn) —-1] = a9 —[(-1D)"—-1] (3.196)
TNneymn (7”1)2
Then:
2a o
"= g (1 =1 (3197)
(mn)* e

The other boundary condition for y = b is applied:

Z {C,,E cosh (Hb) — DnE sinh (Eb)} sin (Ex> —
- a a a a a &0
(3.198)
Using the orthogonality for the eigenfunctions sin (%”x)

a

C,,na—n cosh (%b)—Dn%n sinh (%nb) = <2> ;/sm (”a >dx
0

(3.199)
mn . 2a o n
C, cosh <7b> ~ D, smh( b) g L= = -
(3.200)
Then:
[1 + cosh(Z7h)] 2a o " [1 + cosh(Z?b)]
Dn = sinh(Zb) (rm)zi[( "= ]W

(3.201)
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3.13 Temperature Distribution inside a Box
Heated by Two Transistors

Find the stationary distribution of temperature T (x, y) inside a box
with thermal conductivity k. The box is infinite in the z direction and
semi-infinite in the y > 0 direction. The face at x = a is in contact
with a thermal reservoir at T = 0. The face at x = 0 is thermally
insulated. The face at y = 0 receives a heat flux from the exterior
according to what is shown in the figure (4 is the heat flux density).

[ee]
y A A

>
a

3a/8 7a/8 f
a/8 | 5a/8 !/ Heat flux
y t L ———f= density =A

v '
X

/ /
Figure 3.20

Solution

We need to solve Laplace’s equation in two dimensions with the
following boundary conditions:

au
aXZO:O, u(x =a) =0;
0 (0<x<a/8)
A (a/8 < x < 3a/8)
—k 2—u =< 0 (3a/8 <x <5a/8) ; = Q(x) (3.202)
Yly=0 | 4 (5a/8 < x < 7a/8)
0 (7a/8a <x < a)
u(y = +o0) =0)
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Mathematical formulation:

0%u N %u 0
axz = 9yr
au
ux=a)= — =0
ox |, (3.203)
dul Q).
3y |0 k'’
u(y =+00) =0

Sturm-Liouville problem

We first seek the general solution of the problem.

0%u N 0%u 0
9x2 T a2
%’; oy (3.204)
— =ulx=a)=0
0X |0
Separating variables:
ulx, y) =Xx)Y() (3.205)

We arrive at two second order differential equations.

We have the following Sturm-Liouville problem for the x direction:

X x=o
dx? -
dax
Xy (3.206)
dx x=0

2n+1
X, (x) = ([ n+ 1l ) n=01,2,...

2a

For the y direction we have:

d*y

— =AY =0
dy?

(3.207)
With a solution:

[2n+1]7

10) = A,el 5 4 p,e(F5)

n=0,1,2... (3.208)
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General solution

Then the general solution could be sought as an expansion in
orthogonal function:

[2n+1]x [2n+1]x

u(x, y) = Z {Ane<_#y) + Bne(ﬁy)]

X €O0S <[2r12-|;11]nx) (n=0,1,2,...) (3.209)

Final solution

From the condition u(x, +00) = 0
We arriveat B, = 0with(n=0, 1, 2,...).

Imposing the boundary conditions:

du _ Z <_ [2n + 1]71> Ane(_wo) cos ([Zn + 1]nx>
9y {y—o - 2a 2a
Qx)
e (3.210)

[2n+1]x

Using the orthogonality of the cos ( 5

x) eigenfunctions:

We find the value of the A, coefficients:

_[2n+1]rrAn/a [C ([2n+1]n )}
2a 0

_,/ 0(x) cos ([2"+1”x> dx (3.211)

_ 4 a [2n + 1]7
A, = m/o Q(x) cos (2(1X> dx (3.212)

Finally the solution is:

[2r1+1]*r [Zn + 1]7-[
u(x, y) = _ Ay el S(Zax> (n=0,1,2...)
(3.213)




Chapter 4

Three-Dimensional Problems

This chapter expands to three dimensions the Fourier method
introduced in the previous chapters. Just like before, when it is
reasonable, we will use the same stages to standardize the solution
process of wave, diffusion, Laplace and Poisson problems. In order
to expand the solution in orthogonal functions one should choose
correctly the directions in which the oppositely situated interfaces
have homogeneous boundary conditions.

4.1 Stationary Temperature Distribution inside a
Prism with a Thin Heater in One of Its Faces

Find the stationary distribution of temperature inside a prism (of
dimensions a, b, ¢) with a thermal conductivity coefficient k = 1.
The face x = 0 generates a power W = I?R []/s] due to heat
sources distributed as a very thin homogeneous heater (for example,
aresistor R which carries an electric current I). The heater is placed
inside the prism, very close to the surface (at a depth ¢ — 0). All the
heat generated is distributed towards the inside of the prism. The
faces z = 0 and z = c are kept at a temperature T = 0. All the
remaining faces are thermally insulated.
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Farkhad G. Aliev and Antonio Lara
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c/a

%
b y

c/4

Figure 4.1

Mathematical formulation

Since the heat sources are distributed in one of the faces, we solve
Laplace’s equation in a prism in which five of the six faces have
homogeneous boundary conditions.
Au(x,y,2z)=0

u(z=0)=u(z=c)=0

bul _ou[ _dul
x| yl_o  Wlep
x=a y y=0 y y=b c (41)
0 O<z<—
4
ou b\ ¢ 3c
—kf = , Z) = 5 — — — —_—
x| _ =02 Q<y 2>4<Z<4
3c
0 —<z<c
4

The value of the Q constant is determined using the condition that
the integral of the density of flux f(y, z) through all the surface
of the face (0, y, z) equals the total emitted flux W. Applying this
normalization condition, we have Q = 2W/c
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Sturm-Liouville problem

The solution is an expansion of orthogonal eigenfunctions, corre-
sponding to the planes with x constant, for which the boundary
conditions are homogeneous. In the y — z plane this Sturm-Liouville
problem will be solved:

Av(y,z)+av(y,z) =0
viz=0)=v(z=¢)=0 (4.2)
av

y

_ av
y=0 a.y

y=b

which gives the eigenfunctions:
n . /7mTm
Vym = COS (—y) sin (—z) (4.3)
b c
and the eigenvalues
TN\2
Ay = (I) [n? + m?] (4.4)

General solution The general solution can be expanded in the base
of orthogonal functions v,,,. The coefficients of the expansion will
depend on the x coordinate:

U(X, Y Z) = Z an(X)Vnm(,V, Z) (45)

Replacing this solution in the equation Au(x, y, z) = 0 and using the
orthogonality of the eigenfunctions we get the equations for w,, (x):

d*wpm

T3~ AW = 0 (4.6)

since A, > 0 the solutions are a combination of exponential
functions or, more easily, since the second boundary condition for
dg’x"’" = 0 we can present the solution in a more
compact way:

X = ais:

X=a

Wym(x) = Aym cosh (\//l,,m [a — x]) (4.7)

185
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Final solution
Now we can apply the first boundary condition for x = 0 to find the

coefficients App:
ou . Z dwnm
dx
n,m

ox
= =" Awn\/Tamsinh (ay/Zam ) van(y, 2) = = f 1, /K (49)

Using the orthogonality of vy, (v, 2)

b c
[ [ f, 2) cos (%1y) sin (*z) dydz

Apm\/ Am sinh (“M) _00

Vam(y, 2) = (4-8)

x=0

x=0

==

jcosz (Z2y) sin® (*z) dydz
0

(4.10)
Using the following relations:
3
/sin (@z) dz
c
7
0 m=2kk=0,1,2,...
= 3rm am
—Cm<cos —cos>m=2k+1,k=0,1,2,...
7 4
(4.11)

[0 8) s ()= (3)

0 n=21+1,1=0,1,2...

f=}

(-1)'n=21,1=0,1,2...
(4.12)

We can present the coefficients Ay as:

b
A= (1) o . =
7'[(2](‘ + 1)«//111( sinh (a /l]k) 4

X [cos (W) — cos <7T(2];+1))] (4.13)
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with
Ay = (%)2 (202 + (2k + 1)?] (4.14)

The final solution is:

u(x,y, z) = ;; Ak cosh (\/ﬂ[a — x]) cos <anIy)

n (n(2k+1)z> (4.15)

c

4.2 Case Study: Forced Gas Oscillations in a
Prism: Case of a Homogeneous Force

A prism of square cross section (b x b) and length L is open in one
of its ends. One of its lateral faces (massless, i.e., with no inertia)
can move. A force acts on that wall, perpendicular to it, with the
value F(t) = Fysin(wpt), which creates periodic variations in the
pressure next to it. Find the pressure of the gas next to the opposite
wall, assuming no resonance conditions occur.

z

L

X 4

> <«—— Open face

Closed faces é:::;""’

Pad

Oscillating face (x=b)

Figure 4.2

Mathematical formulation

The equation for the oscillations in a 3D gas are presented in terms
of u = P — Py (pressure relative to the equilibrium pressure).
The problem consists of two open boundaries, three closed and one
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which moves periodically:

9 2
wxyzt) a’Au=0
at?
3
ar _y
0X |,
F
u(x = b) = — sin(wot)
) Lb (4.16)
aUu _p
8y y=0
uy=1L=0
au ou

E z=0 9z z=b
Sturm-Liouville Problem
Since the boundary conditions for (y, z) are homogeneous, the

solution will consist in an expansion into orthogonal eigenfunctions.
We separate variables:

u(x, y,z ) =>_ Qx OW(, 2) (4.17)
Where W(x, z) are the solutions of the Sturm-Liouville problem.
AW+AW =0
ow _
9 ly=o (4.18)
Wy=L=0
ow
- =0
0z z=0,b

The eigenfunctions and eigenvalues are:

Wom(x, z) = cos <7T(22L+1)y> cos (?z) (4.19)

w(2n+1) 2 Tm12
Ao = {ZL} + {T} (n, m=0,1,2,..)  (420)
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General solution

We seek a general solution in the form:

u(x, 5,z t) = > _ Qun(x) sin (wot) Wn(y, 2) (4.21)

This solution is replaced into the wave equation:

2
> Qs D 15, 2 — @2 ity x Wi, 2

— a?Qum(x, ) x sin(wot) AW =0
(4.22)

2
Z [—a)o2 Qum(x) — a* ddfgm + @* 2y Qun(X) | X Wam(y, 2) = 0
" (4.23)

Final solution

Using the orthogonality of W(y, z) it is possible to arrive at the
equation for the coefficients Qp,(x):

sznm + [a)OZ - az/lnm]

02 72 Qum(x) =0 (4.24)
Applying the first boundary condition:
d d
dup -, dQm) (4.25)
ax x=0 dx x=0

Applying the second boundary condition:
u(x = b) = Z Qum (D) sin (wot) X Wim(x, 2) = — sm (wot) (4.26)

We use the orthogonality of W(y, z) and arrive at another boundary
condition for Q,n,(b, t)

Qnm( ) LmenM//an(y Z)dde— nm (4’ 27)

189
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with
L b 0 (m#0)
//cos (n(Zn +1) ) X COS (?2) dydz = 20(—1)"
0 0 m (m=0)
(4.28)

That is, only the coefficients Qno(b) = Ano have non-zero values
since the profile of the eigenfunctions in the z direction has several
constants due to the plain profile of the pressure on the applied to
the mobile wall. Then the problem for Q,o(x, t) is:

dz QnO + [wOZ - az/lnm]

dx? a2 Qno(x) =10

dQnO -0 (4—.29)
dx x=0

Qno(b) = Ano

Now two different cases with two qualitatively different solutions
will be considered:

Case 1

s —a*dy > 0 (4.30)
For high frequencies (depending on n) we will get oscillatory
solutions:

1 111 dQﬂ — .
Imposing the boundary condition <3| _ = 0:

2
0no(x) = C cos ,/% ~ Ao X (4.31)

Imposing the second boundary condition:

Qno(b) = C cos (H %j — /ln() b) = AnO (432)

AnO

Then:

c— (4.33)
cos < f;—zz — Ano b)
The magnitudes of the modes when w2 > a?4, are:
A 2
Qno(x) = " cos 2 _ Ano X (4.34)

2
cos (\/‘L‘;zz—/lnob> a
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Case 2:
wE —a*Ay0 < 0 (4.35)

The solutions are exponentially decaying:

dZ Q 0 wZ
dX; — [Ano — ?g]QnO(X) =0
dQno —0 (4.36)
dx x=0 B
QnO(b) = Ano
Imposing the boundary condition % o = 0
w2
Qno(x) = C cosh | {/ Ano — ?g X (4.37)

Imposing the second boundary condition:

2
Quo(b) = C cosh | {/ A0 — % bl = 4n (4.38)

Ap
C= 0 (4.39)

cosh (\//lno — ‘:—52) b>

Solution for the amplitudes at low excitation frequencies:

Then:

A 2
Qno(x) = o cosh Ano — % X (4.40)

w? 2
cosh (\//1”0 -2 b>

Finally we get to the pressure at the wall opposite to the oscillating
one (this is, for x = 0):

u(0, y, z, t) = sin(wot) Z

n cos (\/%—ﬂno b)
2

[n:w; > ale,,o]

; Ano 7(2n+1)
+ sin(wot) Z — cos ( 51 y)
n cosh | \/dpo — 22

[n: i < a*An0] (4.41)

Ao (n(Zn +1) )
cos | ——y
2L
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4.3 Case Study: Forced Gas Oscillations in a
Prism: Case of an Inhomogeneous Force

A tube of square section, of side length b is closed on one of its ends.
On the other there are two pistons which move with velocities U (t)
and —U (t). Supposing that U (t) = A sin(wt) and that the tube length
is L >> b, find the variation of pressure inside the tube.

Ut
’ <4 b
§ 1| U
b

Figure 4.3

Mathematical formulation

The equation for the oscillations of a gas in 3D (in terms of the
pressure u = P — Py, with Py being the equilibrium pressure) is:

WY 2 any g (4.42)
at?
Formulation of the boundary conditions for the five closed bound-
aries:
au
ax

_Bu
x=0,b 0z

. ou
2=0,b ay

For the forced boundary (y = 0) we need to use the relation between
the velocity of the gas and its local pressure:

av
poE =—VP =—-Vu(x,y, z) (4.44)

Considering the projection in y of the equation (4.44) and the plane
y = 0 we get the following relation:

v,
poa—ty =-Vyu(x,y, 2) (4.45)

=0 (4.43)
y=L
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from which we get at the boundary conditions for the plane y = 0:
dul [ —poAwcos(wt) ((z <x<b (4.46)
Y {y—o poAwcos(wt) (3 <x <b)

It is the last boundary condition and is non-homogeneous. Further-

more, intuitively we see that the solution of the problem does not

depend on z.

Sturm-—Liouville problem

Since the boundary conditions for x and z are homogeneous we
will expand the solution into eigenfunctions which are solutions of
the Sturm-Liouville problem in those directions, using separation of
variables:

ux, y,z,t) = Q. t) x W(x, 2) (4.47)

AW +AW =0
IW 0 (4-48)

aﬁ z=0,b;x=0,b

The normalized eigenfunctions and eigenvalues are:
2 mn Tm
Wom(x, z) = 3 cos (TX) cos (TZ) (4.49)
T\Z 2 2

Ay = (3) 2 +m?(nm=12,...) (4.50)

Note that this type of normalization is not applicable to cases with n,
m=0.

General solution

u(, y, 2, ) = Qun(y, ) Wam(x, 2) (4.51)

Replacing 4.47 into the wave equation

9% Qum(y, ) 202 Qum(y, )
Z TWM(X, z) —a T

—a? Qum(y, )AW =0 (4.52)

an (XI Z)

nm

+ az/lannm(y; t) an(X, Z) =0
(4.53)

P00 9 0m(0, 0
ot? ay?
nm

193
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Final solution

Using the orthogonality of W(x, z) we get at the equation for the
coefficients Q,n(y, t):

Q0 0) 9 Qunl, 0

2 -
Te 3y + a*Aym Qum(y, £) = 0 (4.54)
We need to include the boundary condition:
0 ,t
ul 5 Qe O 20 (4.55)
ay y=L nm 3}/ y=L
0 Lt
AL OZ00 | (4.56)
8y y=L
The boundary condition for the oscillating face is:
0 a ,t
l = Qnm(y ) an(X, Z)
ay y=0 nm a.y y=0
b
—poAwcos(wt) [0 < x < >
= (4.57)

b
poAw cos(wt) (2 <X < b)

Using the orthogonality of W(x, z) we arrive at the condition:

b b
nm ’t
/ / Wl Adxdz = 220 B1 P
0 0 W ly=o v y=0
8 nm It
_ 2Qmb. 8 (458)
a.y y=0

Then the equation for Q,,(y, t) is:

Q. t)  ,3*Qun(y, )
T
1m0  _
ay y=1
Qum(y, OI|  _ 20 du
9y a bf{ 9

y=0 y=0

az/lnm Qnm(y, t) =0

Wom(x, z)dxdz

(4.59)
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Since the boundary conditions are for the derivatives, the solution
would require to define a constant. We can check that when n, m =

0:
/b
y=0 4

b

0 QOO U" t)

Woo(x, z)dxdz
ay

dxdz=0 (4.60)

— Qoo(y, t) = const=(if the initial conditions are null) = 0

When n, m # 0:
d [ d
,
M - // ou m(X, Z)dxdz
ay y=0 0 0 ay y=0
b ; ) b
= / 8711 o 5 cos (n—bnx) dx/cos (?z) dz =
0 0
(4.61)
Fo 2 b
u TN Tm
= / 5 o 3 cos (7)() dx x P sin (TZ) . =0 (4.62)
0

Then the modes with n and m different from zero are not excited
(due to the symmetry of the problem there are no excited modes in
the z direction). Finally we need to check the case withn % 0,m = 0

//3“

Who(x, z)dxdz

cos (%x) dx = (4.63)

y=0

= V24w cos(wt) |— [ — sin(ﬂx + (2 sin Tl
n b/, n b )y

= ZﬁbAa) [sin (%n)} cos(wt) = ¢, cos(wt)
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Then the problem for Qno(y, t) is:

aanO(y' t) zaano(y' t) 2
5¢2 —a ayz +a /lannO(y: t) =0

0mb. 9| _ (4.64)
ay y=L

0 ,t
ay y=0

We obtain an equation analogous to that of a string attached to
an elastic plane, with a free right boundary and the left boundary
moving periodically, with a derivative proportional to cos(wt).
The solution of the last problem will be sought as Qu,(y, t) =

H,(y) cos(wt):

9%H,
—? Hy(y) — a* ) Z(y) + az/anHnLV) =0 (4.65)
Y
or
d*H, 2
O (2 VY Hp) =0 (4.66)
dy? a?
First boundary condition:
nm ] t dHn
Qb0 _ dhB)| =0 (4.67)
dy y=L dy y=L
RRLELTIC2] B (4.68)
dy y=L
Second boundary condition:
9Qum(y, t dH,
M = 701) cos(wt) = ¢, cos(wt) (4.69)
a.y y=0 dy y=0
dH,
— 701) = @p (4.70)
dy y=0

Equation for H,(y) :

d*Ha(y) | (&

a2 (az _/an) H,(y) =0

dH,

ELLLICA} B (4.71)
d.y y=L

dH.(y)|  _
dy y=0 !
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First case:

0)2
(az - /1,,0> - 0 (4.72)

We get oscillating solutions. Using the first boundary condition:

H,(y) = C cos <\/ C:—j — Ano [L—y)> (4.73)

Imposing the second boundary condition:

oH 2 ’
0| —cm sin <m L) = o0 (474)
=0 a a

ay
@n

y
Then

C=- (4.75)
/% — Ao sin (,/‘;j — Ao L)
Then the magnitudes
©n cos(wt) cos ( “‘1’—22 — Ano (L— y))
Qnoy, ) = — (4.76)
2 . 2
\/ &z — Ano sin <\/2’2 —/l,,OL>
The final solution in this case is:
ulx, y, 2, 6) =Y Quo(y, YWao(x, 2) (4.77)
n
The minimum frequency of the induced sound is:
2 2
w2 = a’dy = a? (%) [12 +0%] = (%a) (4.78)

We consider the second case: (‘;)—22 - /l,,g) < 0 providing exponen-
tially decreasing solutions.
3% Hu(y)
Coyr
IH,(y)
dy
IH,(y)
dy

2
(/lno - ‘:2) Ha(y) = 0

=0 (4.79)
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From the first boundary condition:

H,(y) = C cosh ( Ano — wz) (L—W).

a?

Imposing the second boundary condition:

dH 2 z
n) =C\/Ano — w—z sinh [ {/An0 — “’7 L| =¢, (4.80)
dy |y a a
Then:
Pn
C = (4.81)
\/Ano — % sinh ( Ao — % L)
So are the amplitudes obtained:
¢n cos(wt) cosh /Ao — ‘;)—22 (L—y)
Qno(y, t) = (4.82)

\/Ano — % sinh ( Ao — % L)
Forw < omin = (5a) & ulx, 5,z t) = > Qnoy, ) Wio(x, 2)

Final note: in the case of coincidence of the frequency of the
piston with any of the frequencies of the standing waves in the
perpendicular direction of propagation (in the y direction), these
transversal waves will be excited, suppressing any solution in the
y direction.

Mathematically this is reflected in the fact that there are no solutions

in the y direction for:
w?
(az = /l,,()) (4.83)

which satisfies both boundary conditions, being it a straight line
with zero derivative at y = L and with finite value of the derivative
fory = 0.

4.4 Case Study: Optimization of the Size of an
Atomic Bomb: Diffusion Equation in
Cartesian Coordinates

Calculate the critical size needed to control the diffusion processes
in a radioactive medium in the shape of a cube of side L. Consider a
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medium with neutron diffusion (concentration = C) produced by a
fission chain reaction.

)L_ ' O\

 —
| | IR,

??

5

L/2

Figure 4.4

Considerations

The neutrons multiply at each location at a rate proportional to their
concentration:

8C » J
% — BC(x, v, 2) (4.84)
Equation to solve:
C(x,y, zt
% — DAC(x,y,z t)=BC(x,y,2zt) (4.85)
aC(x,y,zt)

oL —BC(x,y,2zt)— DAC(x,y,2zt)=0 (4.86)
These processes have two limit situations:

(a) If the size of the radioactive sample is small in comparison
with the mean free path of the neutrons, they will escape
very fast without colliding with the uranium atoms. Therefore,
there won't be an effective production of new neutrons and the
contribution to the diffusion (AC(x, y, z, t)) will be much higher
than the term which describes the production of neutrons due to
their effective escape outside the bomb. Then in the first case of
small size (with a small ratio between volume and surface):

BC(x,y, 2z t) << DAC(x,y, z t) (4.87)
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z
» y
* L
i
L h L < neutron mean
! A free path
«n 1 !
' | n |
! L
"""""" L2
L
Figure 4.5

In this limit the equation to be solved would have the form of a
diffusion equation:

aC(x,y, z t)

Py — DAC(x,y,2z t)=0 (4.88)

High concentration (C>>AC)

|

Low concentration (C<<AC)

Figure 4.6

(b) Ifthe sampleisverylarge in comparison with the mean free path
the neutrons will collide with the uranium atoms with a higher
chance, which will trigger the chain reaction: The contribution
of the diffusion AC should be lower than the production of
neutrons BC.

BC(x,y,2zt) >> DAC(x,y, z t) (4.89)
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Figure 4.7

In this second limit the equation to be solved is:

aC(x,y, z t)

P —BC(x,y,2zt)=0 (4.90)

This equation has an exponential solution:
Clx,y, zt) ~ e (4.91)

We seek the moment of the transition of the solution between
the stable case and the exponential growth. For a cube of side L:

736()(5{‘2‘0 —BC(x,y,2t)— DAC(x,y,2 t)=0
C(surface, t) =0 (4.92)

C(X,_y; ZI 0) == (p(x’y‘ Z)

Notes:

(a) The null boundary conditions are used as an approximation to
simplify the solution.

(b) The null boundary conditions describe the fact that the neutrons
escape very fast from the surface and their concentration there
is taken to be null.
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Sturm-Liouville problem

We separate variables:
Clx,y,z,t)=v(x,y, 2z) x T(t) (4.93)
and arrive at the Sturm-Liouville for v(x, y, z).

Av(x,y,zZ)+Aav(x,y,2z) =0
(4.94)
v(surface) = 0

the normalized eigenfunctions and eigenvalues are:

Vnmk(Xﬁ Y Z) = Xn(X)Ym(y)Zk(Z)
= (2>3/2 sin (n—nx) sin (m ) sin (nkz> (4.95)
S \L L L’ L '

2
Aoie = (%) [n? + m? + k%] (4.96)
being n, m, k positive integers.

General solution

We replace C(x, y, z, t) = Vpmr(X, ¥, 2) - Tumk(t) into equation (4.92).
We arrive at the equation for the magnitude of the modes Tppy:

0 Tpmi(t)

Py BTamk(t) + DAnmk Tpmic(£) = 0 (4.97)

The solution is: Tpmi(t) = Apmre®~ P4t The general solution of
equation (4.92) is:

n Tm k
C(x,y, 7z t)= A e P PAmit 5 gin (n—x) sin (— ) sin [ —z
x, ¥, 2 1) nzm:k K 3 Y T

(4.98)
a) Let us consider that the condition of stability of the solution: g —
DApmi < 0 is satisfied for every eigenvalue A,

Then, the solution is totally stable if 8 — DA11; < 0 is satisfied (then
it will be satisfied for the rest of the A,mk).
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Final solution

To summarize the first part of the solution: the condition of stability
is:

B— DAy =B — 3D (%)2 <0 (4.99)

/3D
L<nw % = L, (4.100)

For L < L the solution is stable. For L > L. the solution is unstable.

Now we consider the stability of the half of the cube to calculate its
critical size.
Eigenvalues of the solution for half of the cube:

T

Aomic = (z)z [(2n)? + m? + k2] (4.101)

Normalized eigenfunctions:

2\?% /4 ) w2n . /mm ) wk
Vnmk(x,y,z) = L 1 sin TX sin (Ty) sin TZ

(4.102)

Amin = Ag11 = (%)2 [(2) +12+ 12 =6 (%)2 (4.103)
6D

Lcr == — 4104

T 5 ( )

Therefore if we consider a cube of size: 77 / 3ﬁ—D <L<m \/?

The bomb could explode when the two halves are brought together,
but each of the halves is stable.

£

Figure 4.8
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4.5 Oscillations of a Gas in a Cube

We have a gas (with speed of sound c) inside a cubic container of side
L. This container is divided in two equal halves, with densities of the
gas equal to pg+ 1 and pg — p1 in each half (consider that p; << pg).
Atthe instant t = 0 the division of the container is removed. Find the
vibrations of the gas density as a function of time.

Al T Z]
a ¥ P 4

Figure 4.9

Mathematical formulation

We seek a solution for u(x, y, z, t) = p — po, this is, the relative
variation of the gas density with respect to the equilibrium density
Po-
%u(x, y,z t)
at?
With boundary conditions
normal to each surface).

=c*Au(x, y, z t) (4.105)
u(x,y,zt) __ ; ; i
ELnL = 0 (being n the direction

The initial conditions are:

fx) xgy) xv(2)

L
01 0<x<E

u(x,y,z0) = flx) = L
—P1 ( )

E<X<L
g =10<y<1)
viz)=1(0<z< 1)

ou
ot

-0 (4.106)
t=0

Sturm-Liouville problem

The solution is expanded in orthogonal eigenfunctions in all three
spatial directions, since all boundary conditions are homogeneous.
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The eigenfunctions and eigenvalues are known to be:
p —(”")2+<”m)2+ kY’ (4.107)
RN L L '
k
Xn(X)Ym(y)Zk(2) = cos (n—:x) cos (%y) cos (an> (4.108)

General solution

ulx,y, zt)= Z Anmk COS (\/ An,m,kct)

n,mk

k
X COS (Hx) cos (my) cos ﬂ—z (4.109)
L L L
Final solution

The A, nx coefficients are obtained from the initial conditions, using
the orthogonality of the eigenfunctions.

u(x,y,z,t=0) = f(x) x gly) x v(2)
= Z Apmk COS (n—nx> cos (H ) cos n—kz
- e L L’ L
n,mk
(4.110)
Both sides are multiplied by X ,(x)Y,(y)Z(2) and integrated:

L L L
///dxdydz
00 0

Only the coefficients with n different from zero but with m, k = 0
remain. Then:

ZL
An,=<2) feycos () d
0.0 7 0/ xcos(Lx)x

L2 L

4
= '01 /cos dx—/cos (%x) dx

0 L2

4p1 L
O L R )

801 L . /7n
2 wn (sm (7)) (4111)
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4.6 Stationary Temperature Distribution inside a
Prism

Find the stationary distribution of temperature inside a prism of
dimensions a, b, c. The temperature of the face x = 0 is kept as
T(x = 0,y,zt) = Ayz The faces z = 0 and z = c are kept at
T = 0. All remaining faces are thermally insulated.

Z

=0
\ y 4 y

"

b

Figure 4.10

We must solve Laplace’s equation in a prism in which five of the six
faces have homogeneous boundary conditions.

Mathematical formulation

Au(x,y,z)=0

u(x =0)= Ayz

uz=0)=u(z=c)=0 (4.112)
u _ ou _ u —0
aX x=a 8y y=0 ay y=b

We first consider the faces with x constant, for which the boundary
conditions are homogeneous.
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Sturm-Liouville problem

In the Y Z plane we can solve the following Sturm-Liouville problem:

Av(y,z)+Av(y,z) =0

viz=0)=v(z=¢)=0

(4.113)
av v _
8y y=0 ay y=b
with eigenfunctions:
Tn . /mTm
Vym = COS (Ty) sin (TZ> (4.114)

and eigenvalues:

Ao = (?)2 n (?)2 (n=0,1,23.); (m=1,2, 3.
(4.115)

General solution

The general solution can be expanded in the base of the v, and the
coefficients will depend on the x coordinate:

u(,y,2) =Y _ Wam(X)Vam(y, 2) (4.116)
n,m
Replacing into Laplace’s equation: Au(x,y,z) = 0 we get the

equations we need to solve:

d2
EWan(X) () = 0 (4.117)
dx?
with the boundary condition:
d
dwim®) | _ (4.118)

dx

X=a

207
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Figure 4.11

With this type of condition is more convenient to search for a
solution of the form:

Wym(x) = Apm sinh(y/ Aymx) + Bpm cosh(y/ Aum(a — x))  (4.119)

Final solution

Applying the boundary condition, we have:
Wim(X)x(x = a) = Apm/ Aum cosh(\//EG)
+ Bum\/Anm sinh((a —a)) =0 (4.120)
We conclude that the coefficients 4,,, = 0, and:
Wam(X) = Bam cosh(y/Am(a — x)) (4.121)

The general solution using the second boundary condition is:

u(x,y,2) =Y Bam cosh(\/Aam(a@ — X))Vam (¥, 2) (4.122)

We use the first boundary condition to find B,;,:

u(0,y,z)=Ayz= Z Bpm cosh(v/ Aym@)Vam(y, 2) (4.123)
n,m

Using the orthogonality of v,,(y, z) we arrive at the expression
for Buym

A 1
cosh(v/Auma@) [V [ cos? (Zy) sin? (27) dydz

| /Ob /0 yzcos (ET;I y) sin (?z) dydz (4.124)

nm —
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Note on the modulus of the eigenfunctions for different values of
n, m.

.2 /TTmM _ c
/ sin? (%°2) dz = 5 (4.125)
0
b
b
[ eost () ar= {129 s g%} (4.126)
0
Furthermore:
/ 2
/zsin (?z) dz = 7:7m(_1)m+1 (4.127)
0
h Yy -1 m0)
— [(—1)" =11 (n 75 0
/ycos (?Y) dy = Zzznz (4.128)
0 > (n=0)
Then:
= Aibc'; _q1ym+1
Bom = Tm cosh(a//lnma)( 1) (4.129)
_ 4 Abc (=)™ o
" cosh(y/Ayma) 713n2m[( 1" =1] (4.130)

4.7 Variation of the Temperature inside a Cube:
From Poisson to a Diffusion Problem

A thermal reservoir keeps the surface of a cube of size L x L x L
at a temperature Ty. In the center of this cube there is a point heat
source which supplies g units of heat by unit time. This heat source
is suddenly turned off at t = 0. Find the temperature in the inside
of the cube from that moment if the thermal conductivity of the
material is k.



210

Three-Dimensional Problems

LA z
All faces at T=T,
Heat source
. (until t=0)
o |
L y
X
Figure 4.12

Mathematical formulation

First we need to solve Poisson’s equation for t < 0 to get the initial
conditions for the diffusion problem, which starts at t = 0.

Mathematical formulation of problem 1 (¢ > 0):

ou(x, y, z t)
at
u0,y,z t)=u(L,y, z ) =u(x,0,z t) =u(x, L zt)

Cp —kAu(x,y,zt)=0

=ulx,y0t)=ulkxy Lt)=T,

U(X,y; Zl O) = f(x'.yJ Z)

(4.131)
To find f(x, y, z) we need to formulate and solve the stationary
problem 2:

Au(xz)—q8xL6 L(SZL

VA= 2)°\V 72 2
u(0,y,z2)=u(L y, z) =u(x, 0, 2)=u(x, L, 2) (4.132)
=u(lx,y,0)=ulx,y, L)=T

We shift the solution by a value Ty (v(x, y, z) = u(x,y, z) — To)

and seek the solution by expanding v(x, y, z) in a summation of

orthogonal eigenfunctions, corresponding to the following Sturm-
Liouville problem (homogeneous boundary conditions of the first
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type):
Av(x,y,z)+av(x,y,2) =0
v(0,y,z2)=v(L y z)=v(x,0,2)=v(x, L 2) (4.133)
=v(x,y,0)=v(xy L)=0

Sturm-Liouville problem

Seeking the solution with the method of separation of variables (for
example in the normalized form), we get:

22 . /mn o o/mm . (7l
v(x,y, z) = Tz sin <TX) sin (Ty) sin <LZ> (4.134)

= () 2 (3 s
nml — I I I .
Then we look for the solution of the non-homogeneous equation
(4.132) as:

2+/2 n m 1
vix, y, 2) = Z Apmi L;fz— sin (ﬂL ) sin (nTy) sin (jTLz>
n,m,l
(4.136)

2V2 . /mn N\ . (mm N . (7l
Z Anmlm/lnml sin (TX> sin (Ty) sin TZ

n,m,j
__1 _E _E _E
= kb‘ (x 2) 3 ( 2) 8 (z 2> (4.137)

Using the orthogonality of the eigenfunctions we will get the
coefficients of the sum.

2 L¥* 8 / / / LY L
nm X— = - 5 zZ— =
1= k/lnmI 22 13 2 2
. /7n . o/mm wl
sin (TX) sin (Ty) sin ( 7 ) dxdydz =
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q 242 . o/mnN . /mTmyN . 7l q 242 -

= ————s5in (—) sin (—) sin| — | = — (1)
kdpm L3/2 2 2 2 kdpm L3/2

(4.138)

Appy only finite forn = 2n’ + 1; m = 2m’' + 1; 1 = 2I' + 1 (that is,
odd integers). Then

8q (_1)n+m+l
“(X'y, Z) = f(x'y, Z) = TO + —
KL o ()" + () + ()
. /Th . /mTm . l
X sin (TX) sin (Ty) sin (LZ) (4.139)

wheren=2n"+1;, m=2m+1;1=2I'"+1

We now move on to the solution of problem 1 (¢ > 0), again shifting
the solution by Ty.

w(x,y,z t) =u(x,y,2t)— To (4.140)

ow(x, y, z t) ow(x, y, z t)
Cp——————— —_—

—kAw(x,y,z t)=0
ot x.y.28=0- ot

1
——Aw(x,y,zt)=0
X
w(0,y,zt)=w(Ly zt)=w(kx,0,zt)=w(kx,Lzt)

=w(kx, 50, t)=wk,y, Lt)=0

w(x, 2 0)=f(x,y,2)—To
(4.141)

Separating variables in the form w(x, y, z, t) = T()X(x)Y(¥)Z(2)
we get to the solution in terms of the already obtained eigenfunc-
tions.

242 n Tm wl
Y, — C —Anmi Xt i (7 ) i <7 > i -
w(x, y, z) nzml nml € 372 sin LX sin Ly sin LZ
(4.142)
Final solution
Applying the initial condition:

wx,y,20)=f(x,y,2)— Ty =
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= 87q = 1)n+m+1 sin (n—nx) sin (my) sin (nlz>
K S CP o CP P+ G2\ L L L
242 /7n . /mm . wl
X:I Cnmlm sin (TX) sin (Ty) sin (LZ> (4.143)
n,m,

and using the orthogonality of the eigenfunctions

sin (%x), sin (Zy), sin (”TIZ), we get the coefficients:

q 2«/2 (_1)n+m+l
Cnml = 7

T T T 2
K L32 (zm)? 4 (zm)? 4 (o)
n=2n"4+1,m=2m+1;1=2I'+1 (4.144)

4.8 Variation of the Pressure inside a Rectangular
Prism due to the Periodic Action of a Piston

Find the temporal variation of the relative pressure (with initial
value equal to zero) inside the rectangular prism shown in the figure
below if starting at ¢ = 0 the pressure in one of the faces varies as
Py sin(wt).

_*
L v Ly
Figure 4.13

Mathematical formulation

We will look for the solution S(x, y, z, t) as the sum of the stationary
solution u(x, y, z, t) established at t — oo (which will be reached
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due to friction), and the transient solution w(x, y, z, t). The equation
to be solved is:

0%2S(x, y, z, t)

at?
Sx,y,zt=0)=0

—c?AS(x,y,2t)=0

Cuxy )} =0
o B = (4.145)
(X = all surfaces except the base)

(n = perpendicular to every surface)

S(x,y, 0, t) = Py sin(wt)
Replacing the following form of the solution:
Sx, ¥,z t)=w(x, Y,z t)+v(x, y, z) sin(wt) (4.146)

With the stationary solution (without initial conditions), considered
to be u = v(x, y, z) sin(wt). We have:

*w 20 2 2 .
a2 w“vsin(wt) — ¢ Aw — c¢“Av sin(wt) = 0 (4.147)

The problem is separated in two:
Formulation of the problem for the transitory part:

’w(x,y, zt)
at?
w(x,y,zt=0)=0

—cAw(x, y,zt) =0

w(x, y,z1t)
an N
(all homogeneous of the second type)

Conditions 1-5: 0

w(x,y,0,t)=0

(4.148)
This problem has a rather straightforward solution, as an expansion
of three types of orthogonal functions. We just need to find the initial
conditions by solving the problem for v(x, y, z).
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Formulation of problem (2) for the spatial part of the stationary
solution:
—w?v(x, y,2) —c2Av(x, y,2) =0

wv(x,y, z)
on
(all homogeneous of the second type)

Conditions 1-5: =0

v(x,y,0)= Py
(4.149)
We will explain the initial details of how to find the stationary

solution:
2

Av(x,y, z) + %V[X’ y,2z)=0 (4.150)

General solution

The solution for v(x, y, z) (of the Poisson type) is expanded as:
v(x,y,z) = Z Com(Z)Wnm(x, y) (4.151)

Where the coefficients w,,(x, y) are obtained by solving the Sturm-
Liouville problem in 2D:

Aan(X; y) = _/lannm(X: y)
(4.152)

Second type boundary conditions

We replace the summation into Poisson’s equation.
d? C,,m (2)

chm(Z)Aan(X y) +Z ”m(x' y)
+CT Z Cnm(Z)an(X, J’) =0 (4153)

We use the result to solve the Sturm-Liouville problem:

d? Cnm
S Com(D= AumWan(x, )] +Z @ i, )

+C—2 Z Com(Z)Wam(x, ) =0 (4.154)
The sum is rewritten as:

Z {Cnm[z)[—/l,,m] + dan(Z) Crm (Z)} Wim(X,y) =0
(4.155)
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Final solution

Applying the orthogonality of the w,,,(x, y) functions we arrive at a
solution for the z variable:

dZC,,m(Z) w?
T + [CZ - /lnm:| Cnm(2) (4.156)

We have these boundary conditions:

av(x, y, x) dCpm(2)
At (z=1) > —=22) =y Zm® ,
(=0 == =D gy | wmlxy)
-0 anm(Z) -0
dZ z=L

At(z=0)—>v(x,y,0) = chm(O)W,,m(X, y)=Po

Using the orthogonality of the w,;(x, y) eigenfunctions we get:

LU‘ POan(X: Y)dXdy
J Wam(x, y)12dxdy

Cim(0) = (4.157)

4.9 Case Study: Variation of Temperature inside a
Prism: From Laplace to Poisson Problems

A prism has dimensions a x b x c. One of its faces is in contact
with a thermal reservoir at a temperature Ty, another isothermally
insulated (this face shares an edge with the former) and the rest are
in contact with a reservoir at a temperature T;. At the instantt = 0
the first face is put also at a temperature Ty, and the center of the
prism starts to act as a heat point source which supplies Q []/s].

(1) Find the variation of the temperature with time.
(2) How will the heat flux across the prism surface change with
time?
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z
C
//To
b y
a x
Thermally insulated
Figure 4.14

First we attempt to solve Laplace’s equation in a prism to obtain the
initial conditions which will be used in Poisson’s problem (from t =
0 onwards).

Mathematical formulation

Formulation for t < 0:
Au(x,y,z)=0

u©,y,z)=u(x,b,z2) =u(x,y,0)=u(0,y,c)=T,

u(a,y,2) = Ty (4.158)

au _
8_)/ y=0

To create homogeneous boundary conditions, we shift the origin of
temperatures: u(x, y, z) = g(x, y, z) + T1. The problem for g(x, y, z)
is:

Ag(x,y,z)=0

)

ﬁ = Or g(aP Y, Z) = TO - Tl (4159)
8)/ y=0

9(0,y,2) =g(x,b,2) =g(x,y,0) =9g(0,y,c) =0
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Sturm-Liouville problem

We can seek the solution by expanding it into orthogonal eigen-
functions, corresponding to Sturm-Liouville problems in the y and
z directions (with homogeneous boundary conditions). Seeking the
solution by separation of variables, we will use this to choose the
signs of the constants.

gx,y,z2)=Xx) xY(y) x Z(2) (4.160)

1d%X | 1d% | 1d°Z
From Ag(x,y,z) =0 — YWjLYdyz a2z =0

Sturm-Liouville problem in the y direction:
d*y )
2 + o Y=0
dy (4.161)
Boundary conditions: % =0;Y(b)=0
Y ly=0

Provides us with the eigenfunctions Y,, = cos (%y) ;om =

0,1, 2, 3... and eigenvalues «,, = %b“). The Sturm-Liouville
problem in the z direction is:

d*z ey

dz2 (4.162)

Boundary conditions: Z(0) = Z(c) = 0
Gives us the eigenfunctions Z;=sin (%z);] = 1,2,3... and

eigenvalues g; = ”’

The problem in the x direction is not a Sturm-Liouville problem,

since the boundary at x = a is inhomogeneous of the first kind.
2

dx?
Boundary conditions: X (0) = 0;

— (i +BHX =0

The condition on the opposite face is: g(a, y, z) = To — T1
(4.163)

General solution

The general solution for X (x) is written more conveniently as:

X(x) = E sinh (\/a,zn + /3,2x> + H cosh <\/a,2n + ,3,2X> (4.164)
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The condition X (0) = 0 gives H = 0.

Then the general solution to the Laplace’s problem will be:

2 1
gx,y,2) = ZAmI sinh (\/oc,zn + ,B,zx) X €S <7r(r2nb+)y>
I,m

x sin (T[IZ> (4.165)

c

Final solution

Imposing the condition g(a, y, z) = To — T1 we get the coefficients
of the summation:

To—T1 = Z A,y sinh <\/a,2n + ,3,2a>
I,m

cos w(2m+1) sin ml
X —y | x —z
2b 4 c
(4.166)

Taking advantage of the orthogonality of the eigenfunctions Y, Z;.

/ / (To — T1) cos ( (Zm L ) X sin (ﬂ?lz> bz
2
= A,y sinh (ma> cos <$)]>

2

sin| —2
Cc

(4.167)
4 (TO - Tl) n(Zm + 1)
A = e / / (%)
©sinh[y/ (a2 + BHal
x sin (nclz) dydz (4.168)
4 To—T 2bc
A = 02 1) Ty GEVUECEV B
sinh <, /(2 + ,Blz)a)
(4.169)
16 bc (To — T1) —
=1 be w2l(2m + 1) 2@m+1)12 ny? (i=0dd)
Am = sinh (\/ {T] (%) )
0 (1=even)

(4.170)

219



220 | Three-Dimensional Problems

Then the solution of Laplace’s problem (which gives the initial
condition at t = 0) is:

u(x,y,z 0)=Ty+16(Ty — T1) X (4.171)

X Z (" ! ! X

2
m,1=odd 7M1 Gin (\/[77(2;";1)]2 + (”C")Za>
x sinh \/[Zb} + (7) X | xcos (Zby

) <7TI )
xsin [ —z
c

Mathematical formulation of Poisson’s problem (t > 0)

q(x, y, 7)
Cp

= (e 2)3 (5= 2)s )

u(0,y,z)=u(a,y,z) =u(x,b,z) =u(x,y,0) =u(0,y,c)=T;

0
B—Z(x, Y,z t)— xAu(x,y, z t) =

u
at|,_o
ux,y,z0)=T,+g(x,y, 2)

(4.172)
This problem can be solved by separating it into two: one for
w(x, y, z), non-homogeneous (Poisson), which corresponds to the
solution at infinite times (¢ = +o¢) and transient one v(x, y, z, t) as
a function of time, which is a solution of the homogeneous problem:

ux,y,zt)=v(x, 5,z t) + w(x, y, 2) (4.173)

Replacing into the formulation of Poisson’s problem we have the
equation:

w(x,y, z t) q(x, y, 2)
Cp

o —xAv(x, ¥,z t)—xAw(x, y, z) = (4.174)

awv(x,y, z t)
at

cavi == o(e )5 (r=8)se-)

—xAv(x,y,2zt)=0
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Distributing the boundary conditions between the two problems:
w(0,y,z)=w(a,y z)=w(x, b z) =w(x,y, 0)

=w0y, =" (4.176)
ow
- =0
ay y=0

v(0,y,z2)=v(a,y,z)=v(x,b,z)=v(x,y,0) =v(0,y,¢c) =0
av
=0

ay y=0

(4177)
We also can obtain the initial condition for the temporal problem
using the relation:

ux,y,z0)=v(x,y 2z 0)+wx,y,z) (4.178)

Then v(x,y,2z0) = u(x,y,20) — w(x,y, z). The function
u(x, y, z, 0) has been obtained from the solution of the Laplace’s
problem. Then we solve first the stationary problem:

Q a b c
Aw(x, y, z) = _ES (x — 5) 8 (y— 2) 5 (z— 5)
w(0,y,2) =w(a,y, z) =w(x, b, z) = w(x, y, 0)
=w(0,y,c)=T,
ow

— =0
ay

y=0

(4.179)
If we seek the solution as w(x, y, z) = T1 + f(x, y, z) we will get for
f(x, y, z) the problem with homogeneous boundary conditions.

Q a b c
Af(x,y,Z)Z—XCIO(S<X—2)(S( —2>8(Z—2)
f(0,y,2) = fla,y,2) = f(x,b,2) = f(x,y,0) = f(0,y,c) =0

of
ay y=0

=0
(4.180)
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Sturm-Liouville problem

The solution will be expanded into eigenfunctions of the following
Sturm-Liouville problem:

As(x,y,2)+ A%s(x,y,2) =0
5(0,y,z2)=s(a,y,z2)=s(x,b,z) =s(x,y,0)=s(0,y,c)=0

as
ay

y=0
(4.181)

They are known:

. /7N 7(2m+1) . (7l
Snmi (%, ¥, Z) = sin (—x) X 0S| ———y | xsin| —z
a

2b c
(4.182)
TNy 2 7(2m+1) z 7l\?
At = (7) + <2b> + (C) (4.183)
General solution
The solution will be sought in the form:
[y = ComSam(x, y, 2)
n,m,l
2 1 1
= Z Cnmi Sin (—x) cos (n(rznb—l—)y) sin (tz)
n,m,l
(4.184)

Replacing into Poisson’s equation:

3 Ottt == (=33 [r=3)s e 3)

n,m,l
(4.185)
Using the orthogonality:

8 b
Com = /// x—f ( —)5(2—))(
nm,abc %xCp 2 2
. /7n m(2m+1) ) l
sin (7x> cos <2by> sin (CZ> dxdydz =
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8 2 1 1
= ﬁ% sin (%n) cos <n(rrz}+)) sin (T;> (4.186)
nmabc xLp

It is obvious that C,,; = 0 for even values of n, I. Then the solution
for the stationary part is:

w(x,y,z) = Ti + 8¢ Z isin (Ln) cos <n(2m+1)>

xCpabc ~ A%, 2 4
_ (mwl\ . /mn 7(2m+1) . (7l
x sin [ — ] sin (—x) cos | ———=y |sin| —z
2 a 2b c
(4.187)

Now we solve the transient part.

Mathematical formulation
aw(x,y, z t)
ot
v(0,y,z2)=v(a,y,z)=v(x,b,z)=v(x,y,0) =v(0,y,¢c) =0

—xAv(x,y,2zt)=0

av

b =0
ay y=0
vix,y,zt=0)=u(x,y,z t=0)—w(x,y, 2)

(4.188)
The solution is sought by separating the temporal and spatial parts
as:

v(x,y,zt)= Z Anmi Toami (©)Sumi (%, ¥, 2) =

n,m,l

. /7n m(Z2m+1 . ml
Z Apmi Tomi () sin (TX) cos <(2b)y> sin (CZ>

n,m,l
(4.189)
Replacing in the equation to be solved, we will obtain an equation
for the temporal part:

dTum(t
Z Anmi {dtl() + X’liml Tnml(t)} Snml(xt Y, Z) =0 (4190)

n,m,l
From here Ty (t) = Const - eCx4imt)

vy, 20 =) A s (x, y, 2) (4.191)

n,m,l

223
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Final solution

The constants A,,; are obtained from the initial conditions.

vy, 20) = ulx,y,20) ~wx, ¥, 2 =Y A X Suni(X, ¥, 2)
n,m,l

(4.192)
In particular, we can write:

Z Apmi X Spmi(X, ¥, 2) = T1 + 16(Tp — T1)

n,m,l

1 1
X Z D"
m2l(Zm+1
m,I=odd ( )sinh (\/[n(zz)ﬂ)r I (”C")za>

) 7(2m+1) 2 TNy 2 7(2m+ 1)
x sinh \/[Zb} + (T) x | x cos (Zby
l 8 1 2 1
wcoin (a) <1 - 280 ST i () cos (D)
c xCpabc —~ A5, 2 4

. wl\ . /7n T(2m+1) . l
X sin <2> sin (TX) cos <2by> sin (Cz> (4.193)

Using the orthogonality properties:

Anml (%) = E(_1)m 1§I(T0 _ Tl) !
T (2m+ 1) : (2m+1) 2 n\2
sinh [7217 ] + (%)°a

4
x/asin (T;—nx) x sinh (\/[”(2’;’;‘1)}2 + (”C”)ZX> dx
0

abc 8Q ) (nn) T(2m+1)
————————sin(— ) cos | ——
8 xCpabc? 2 4

nml

. ([« abc
x sin (7> - T1? (4.194)

From integral tables we have:

b sin(ax)x cosh(bx) — a cos(ax) x sinh(bx)

const.
a? + b? *

/sin(ax) x sinh(bx)dx=
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Then:

(To — T1) 32
m2l(2m+1) [”(2+b+1]]2 + (?)2 + ()2

—i sin (E) cos (7r(2m+1)) sin (nl) (4.195)
xCp 2 4 2

Then the solution for t > 0 is:

2 1
ux, y, 7, t) = Z Apmt x €% sin (%”X) cos (N(r;b—i_)y)

Anml — (_ 1)m+n+1

n,m,l
wl 8Q 1 mn
xsin| —z|+T1+———— —— sin (—)
( c > xCpabc n,zm,:l A2 2
m(2m+1)\ . (=l . (yrn )
X cos | ———= | sin | — | sin [ —x
4 2 a

X COS (7T(Zm+1)y> sin (nlz) (4.196)
2b c

To find the heat across the surface:
Qsup = —///(w x n)ds = {w = —kVu(x, y, z t)}
N

——//V/(wa)dV=k///V(Au)dV

=k///(Av~|—Aw)dV
—k///[Av—XCp(S(x—;>5( —2)8(2—;)}dV
—k///AvdV—— (4.197)

Since we have:

Av = A Z Anmle(ix/lﬁ’"lt) X Spmi (X, Y, 2)

n,m,l

- Z /lﬁmIAnml x el Xt x Smi (%, y,2)  (4.198)

n,m,l
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The total heat across the surface by unit time is:

kQ _
Qun =~ o= S Kty x &0 [ [ [ 5101035, 21
xtp n,m,l %4
kQ
=< _ kA% A
XCp n‘Zm nml {Anml
2abc

m n 1
Xm(—l) X [1-(-1)"x[1-(-1)]

4.10 Case Study: Distribution of Temperature
inside a Periodically Heated Prism

A prism of length L and square cross section a x a, with thermal
diffusivity coefficient x has all of its surface thermally insulated
except for one of its bases. In the middle of this base the temperature
varies periodically as Tysin(wt), meanwhile the temperature in the
other half is — Tysin(wt). These oscillations exist at all times (—oo <
t < 00). Find the distribution of temperature inside a prism as a
function of position and time.

Z
A

————— - -T,sin(wt)
a X

T,sin(wt)

Figure 4.15
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Mathematical formulation

|
Eu(x, y,z,t)— xAu(x,y,zt)=0

d
N ] )’ == O
{ on uee v 7) } by
(X = all surface except the base)

(n = perpendicular to every surface)

Boundary conditions at the base: u(x, y, 0, t) = F(x, y) sin(wt)
a
To (0 <y< E)

F(X'Y)z a
—To (E <y<a>

(4.199)

The solution will be sought as an expansion in orthogonal eigen-
functions in the x, y directions, corresponding to homogeneous
boundary conditions.

u(x, 5,2, 6) =Y _ Oun(z Wam(x, y) (4.200)

nm

Sturm-Liouville problem
We formulate the Sturm-Liouville problem for w,;(x, y)

AWpnm(X, y) + AsmWim(x, y) = 0

9 ) (4.201)
J— ) = | 5= B = 0
[ —w(x y)} - awte )|
The corresponding eigenfunctions and eigenvalues are:
Wnm(x, y) = cos (n—nx> cos (my) (4.202)
a a

N2 5 27 <rri
anm=(f) [n? + m?] withm, n =0, 1,2, 3... (4.203)
a
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General solution

Replacing u(x,y,zt) = Y Oum(z t)cos (Zx)cos (Zy) into
nm

(4.199) we arrive at equations to find ®,,(z, t). The result of the

substitution is:

00nm(z, t)
Z ——nmis )

dt Wnm(X, ¥) — X

nm
02@um(z t)

nm ltA nm ’
Ounla O wan(r,3) + -2

Whnm(X, y)} =0 (4.204)

Applying the orthogonality of w,,(x, ¥):

d 92
Z |:dt®nm(zt t) - X@G‘)nm(z; t) + X/lnme)nm(z' t):| a)nm(xﬁ J’) =0

" (4.205)

ad 02
—Onm(z,t) = X |75 Om(z t) — AmOnm(z, t)| =0  (4.206)
dt dz
Formulation of the problem in terms of the variables (z,t):
8®nm(Z: t) 32®nm(zy t)
dt dz?

— AamOnm(2, t)} =0

a@)nm(z' t)
z
Second boundary condition: ?

o (4.207)

z=L

First boundary condition:

We use the orthogonality of wyn,(x, y) to find the second boundary
condition.

u(x,y,0,t)= Z ®nm(0, t) cos (%nx) cos (%y)

nm

= F(x, y) sin(wt) (4.208)

Multiplying both sides by cos(”"x) cos(*;* y) and integrating:

/H/HG,,m(O, t) [cos (%nx)r [cos (?y)} : dxdy = sin (wt)
00

/a/aF(x, y) cos (?x) cos (?y) dxdy (4.209)
0 0
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We get:

]

F(x, y) cos(%7x) cos(" " y)dxdy
®nm(0, t) = sin(wt)

[cos(Zx)]2[cos(% 1t y)|2dxdy

/
Z‘

O—na

= {pm Sin(wt) (4.210)

The second boundary condition is presented as an imaginary
exponential function, to search the solution of (4.207) in complex
form, and then take only the imaginary part. Using real functions we
would not be able to cancel them out after the substitution, due to
the lack of second derivatives.

This form allows to easily separate the variables z and ¢t at the cost of
having to solve an equation for the complex function Z (z). We define
the following function J (2, t) = Znm(2)el®?

Onm(z, t) = Im{]am(z, t)} (4.211)

dt dZ2 - Anm]nm(z; t) =0

- 8]nm(Z: t) -0
dz 7L B
]nm(o; t) = gnme(iwt)

Eliminating the exponentials which multiply each member of the
equation:

3 mm(z t) . {82],,,”(2, t)

(4.212)

327
i0Zum(2) — x [dz"z’(z) - /lan,,m(z)} —0
—{ dZw@|  _ (4.213)
dz z=L a
an(O) = Cnm
or
327 ml(z iw
%() - an(Z) |:/lnm + :| =0
A X
dZum(2) -0 (4.214)
dz |,_; -

an(o) = Cnm
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We can check that ¢, is finite only for values m = 2k + 1 (this is,

L

odd) and forn = 0:
jjq F(x,y) cos(%ox) cos(%"y)dxdy
fok = o =
[ [Teos(zP[cos(2y)paxdy T
i (4.215)
(4.216)

We seek the general solution in the form:
Zum(2) = Anm€” ™ + Bpme= %/ Cm

Final solution

Imposingn =0, m = 2k + 1:
From the first boundary condition:
dZo(2) = @e(L/COk) _ @e(*L/COk) =0 (4.217)
Cok Cok
(4.218)

z=L

dz
To the second boundary condition:
8Ty K

Z,m(0)=A Byy= ——(—1
nm( ) ok + Bok 7T(2k+1)( )

Eliminating the index n = 0, since the rest of the coefficients with
Arel/Cd — Brel=l/¢ = @
(4.219)

8T,
A+ By = ——> (—1)k

n > 0 are zero:

By

w2k +1)
Ay = Byet2L/C0
8T, (4.220)
B.l[e(=2L/C) 1 11 = ———(—1)
le =t
8To f
= -1 4.221
7 (2k 4 1)[e(-2L/Cd 4 1]( ) ( )
8T,
- (-1)*

8T e(—2L/Cy)
= (-1)'=
7w (2k + 1)[eCL/C) 4 1]
(4.222)

7 (2k + 1)[eC2L/CD + 1]

Ay



Heating Rectangular Resistor with Different Boundary Conditions | 231

From

Z(2) = Ji(z t) = Zi(2)elD (4.223)

Ok(z t) = Im{Jk(z t)} (4.224)

ux,y,z,t)=u(y, z t) = Z Ok(z, t) cos (71[2];4_1])) (4.225)
k

Note: observing the form of the solution (which does not depend
on x) we see that the propagating thermal wave (independent of x)
preserves the transversal symmetry of the profile of the heating of
the heated surface.

4.11 Heating Rectangular Resistor with Different
Boundary Conditions

A rectangular bar (a x b x c¢) with an electric resistance R and
thermal conductivity coefficient k is heated with a constant current
I that produces a heat Q = LZT}E per unit time and volume. The
heat exchange with the outer medium at zero temperature occurs
through the surface of the bar, according to Newton’s law. Determine
the stationary distribution of temperature in the bar.

Disipation = Q A T:T1

Figure 4.16

Mathematical formulation

I’R
_kAU(X, Y Z) = f(xr Y, Z) = 7 (4226)
abc
I’R  —Q

Au(x,y, z) = — (4.227)

kx abc ~ k
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Boundary condition:
wu(x,y, z)
an

where n is normal to each surface and A = ¢, being « the Newton’s
law heat exchange constant.

4+ Au(x,y,z)=0 (4.228)

Boundary conditions (the subindices indicate derivatives with
respect to the variable of the subindex, for example u, = % etc.):

uy(0,y,2z)+ Au(0,y,z) =0
ux(a,y, z) — Au(a, y,z) =0
uy(x,0,2z)+Au(x,0,2)=0
uy(x,b,z) — Au(x,b,z) =0
us(x,y,0)+ Au(x,y,0)=0
u,(x,y,¢c)—Au(x,y,c)=0

(4.229)

Sturm-Liouville problem

The idea is to seek the solution by expanding it in a series
of orthogonal eigenfunctions in the three spatial directions (that
is, solutions of the Sturm-Liouville problem with homogeneous
boundary conditions of the third kind).

Au(x,y, z)+ u(x,y,z2) =0 (4.230)

Separating variables as: u(x, y, z) = X (x)Y (y)Z(z), we have:
Xxx Yyy Zzz
X Y Z
(we impose that the A constant be negative, since we are looking for
the expansion of the solution in orthogonal functions, in this case
sinusoidal).

-2 (4.231)

We separate the Sturm-Liouville problem in three different, inde-
pendent problems, in the x, y, z directions:

Xxx Y, Zzz
. = —x (4.232)

)

x 7 Y Z

The general solution will be sought as:

U= Comi X Xn(x) X Y (¥) X Zi(2) (4.233)
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We find as an example the form of the X,(x) eigenfunctions, solving
the following problem (the solutions for the functions Y,,(y) and
Z(z) are found in a similar manner):

d*x
C) LX) =0 (4.234)
dx?
With the boundary conditions:
Xx(0)+A4X(0)=0
{ Xy(a) — AX(a) =0 (4.235)

General solution

The general solution for X, (x) is:

Xn(x) = Ap cos(\/vnX) + By sin(y/vpx) (4.236)

We seek the values of A, and B, with the boundary conditions:
First condition: X,(0) + AX(0) =0 — A,A+ /v, B, =0

Second condition: X,(a) — AX(a) = 0 — A,[—./vasin(\/vya) —
A cos(/vpa)] + By[/vy cos(/vya) — Asin(/v,a)] =0

The values of 4 and B can be obtained from this system of equations
by seeking that the determinant of the system be null. With this we
will have the equation to find the v, eigenvalues and the respective
eigenfunctions for the y and z coordinates.

Equating the determinant of the matrix of the equations for the two
boundary conditions to zero we end up arriving at an equation for
the eigenvalues:

A2 — v,

2A. /v,
We would obtain the eigenfunctions as (replacing the ratio between
the A, and B, coefficients):

= tan"!(/vpa) (4.237)

Xn(x)=— \/:_"B,, cos(4/vnx) + By sin(y/vnX) (4.238)
A similar procedure should give us Y (y) and Z (z).

To find the solution of the non-homogeneous equation (4.255), we
expand the solution as a sum of the obtained orthogonal functions:

Aupmk(X, Y, Z) + Anmictnmk(X, ¥, 2) = 0 (4.239)

233
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We replace u = > Cumk - Unmk(X, ¥, ) into the equation:
nmk

Au(x,y,z) = _TQ (4.240)

And arrive at the relation:
—Q
Z CnmkAunmk(X, Y Z) = T (4241)
nmk

Using the solutions of the Sturm-Liouville problem, we have:

-Q
Z _An,m,kcnmkunmk(xf Y Z) = T (4242)

nmk
with An,mk = Vn + tm + Xk

We will now use the orthogonality of the uymk(x, ¥, 2) = X,(x)
Yin(y)Z(z) eigenfunctions to find the C,nx coefficients.

We arrive at:
2
_/ln,m,kCnmk ”unmk(x; Y, Z)”

_;Q a prb pc
== /o /O/OXn(x)Ym(y)Zk(z)dxdydz (4.243)

Finally:
a rb rc
X, (%)Y, Zy(z)dxdydz
Comie = Qfg f() f() n( ) m(y) k() : y (4244)
k x /ln,m,k ”unmk(X: Y, Z)“
Note: in this case we attempt to separate the solution in two:
u=v+w (4.245)

one of them being v(x, y, z), the solution to the homogeneous
equation with homogeneous boundary conditions of the third kind
and the other being w(x, y, z), the solution of the non-homogeneous
equation, leads us nowhere.

It is clear that the boundary conditions applied to each of these
functions, when they are all considered at the same time, must
recover the boundary conditions of the initial problem.
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Mathematical formulation of the problem for v

Av(x,y,z)=0 (4.246)

Boundary conditions: W + Av(x, y, z) = 0 (n is normal to each
of the surfaces), which explicitly turns out to be:
vx(0,y,2)+ Av(0,y,2) =0
vi(a,y,z)— Av(a,y,z) =0
v, (x,0,2z)+ Av(x,0,2) =0

4.247
vy(x,b,z) — Av(x,b, 2) =0 ( )
v.(x,y,0)+ Av(x,y,0) =0
v,(x,y,¢c)—Av(x,y,c)=0

Mathematical formulation of the problem for w

Aw(x,y, z) = —% (4.248)
wy(0,y,2)+ Aw(0,y,2) =0
wyl(a, y,z) — Aw(a, y,z) =0
wy(x,0,2)+ Aw(x,0,2) =0

4.249
wy(x, b, z) — Aw(x, b, z) =0 ( )
w,(x,y,0)+ Aw(x, y,0) =0
wy(x,y,¢)—Aw(x,y,¢c) =0

Solution

The solution for the Laplace’s problem for v is trivial:
vix,y,z2)=0 (4.250)
since the totality of the heat crossing the surfaces is zero:

The solution of the problem for w(x, y, z) is the same, as we
previously showed for u(x, y, z).

4.12 Heating of a Rectangular Resistor with the

Same Boundary Conditions

A rectangular bar (a x b x c¢) with an electric resistance R and
thermal conductivity coefficient k is heated with a constant current
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I that produces a heat Q = 2275 per unit time and volume. The heat
exchange with the outer medium at temperature T; occurs through
the surface of the bar, according to Newton'’s law, except at the base
(z = 0) where the exchange takes place with the outer medium at a
temperature T5.

Determine the stationary distribution of temperature in the bar.

Disipation = Q *
4

o---

&~ :
\J

Figure 4.17

Mathematical formulation

I’R
—kAu(x,y,2)= f(x,y,2) = — (4.251)

abc

I?R —-Q
Au(x,y, z) = — = — 4.252
u(x. y.2) k x abc k ( )
Boundary condition:
a ) )

% + Au(x, y,2) =0 (4.253)

where n is the normal direction to each surface and 4 = %, being o
the Newton’s law heat exchange constant.

One we subtract the T; value from the solution, the boundary
conditions will be as follows (the subindices indicate derivatives
with respect to the variable of the subindex, for example u, = %'
etc.):

uy(0,y,2)+ Au(0,y,2z) =0
uy(a, y,z) — Au(a, y,z) =0
uy(x,0,2)+ Au(x,0,2) =0

uy(x, b, z) — Au(x, b,z2) =0 (4:254)
U,(x,y,0)+ Au(x,y,0) =T, — T,
Uy(x,y,¢c)—Au(x,y,¢c)=0
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Next we split problem intwo: u =v +w

We have an inhomogeneous problem w with all the boundary
conditions being homogeneous of the third type (this problem has
been already solved previously) and a Laplace equation for v with
all boundary conditions homogeneous of the third type, except the
base, which is inhomogeneous of the third type.

Av(x,y,z)=0 (4.255)
Boundary conditions:
vx(0,y,2z)+ Av(0,y,2) =0
vi(a,y,z) —Av(a, y,2z) =0
vy(x,0,2)+ Av(x,0,2) =0
vy(x,b,z) —Av(x,b,2) =0
v,(x,y,0)+ Av(x,y,0) =T, — T
v.(x,y,¢)— Au(x,y,c)=0

(4.256)

Sturm-—Liouville problem

The idea is to seek the solution by expanding it in a series of
orthogonal eigenfunctions in the two spatial directions x, y (that
is, solutions of the Sturm-Liouville problem with homogeneous
boundary conditions of the third kind) and finding the solution
for the differential equation in the z direction with two boundary
conditions.

Separating variables as: u(x, y, z) = X (x)Y (¥)Z(z) and substituting
into the Laplace equation, we have:
Xa Yy  Zn

< +%+7=0 (4.257)
X Y,
;X + % =2 (4.258)

(we impose that the A constant be negative, since we are looking for
the expansion of the solution in orthogonal functions, in this case
sinusoidal).

We separate the Sturm-Liouville problem in two different, indepen-
dent problems, in the x, y directions:
Xxx Yy

= —; —= = —; 4.259
X v v I (4.259)
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The general solution will be sought as:

V= Xa(x) X Yu(y) x Z(2) (4.260)

We find as an example the form of the X ,(x) eigenfunctions, solving
the following problem (the solutions for the functions Y;,(y) are
found in a similar manner):

d*x
() +vX(x)=0 (4.261)
dx?
With the boundary conditions:
X:(0)+AX(0)=0
{ X¢(@) — AX(a) =0 (4.262)

General solution

The general solution for X ,(x) is:

Xn(x) = Ap cos(y/vnx) + By sin(y/vpx) (4.263)
We seek the values of A, and B, with the boundary conditions:
First condition: X,(0) + AX(0) =0 — A,A+ /v,B, =0
Second condition: X,(a) — AX(a) = 0 — A,[—./vasin(\/vya) —
A cos(/vpa)] + B[/, cos(/vya) — Asin(/vy,a)] =0
The values of A and B can be obtained from this system of equations
by seeking that the determinant of the system be null. With this we

will have the equation to find the v, eigenvalues and the respective
eigenfunctions for the y and z coordinates.

Equating the determinant of the matrix of the equations for the two
boundary conditions to zero we end up arriving at an equation for
the eigenvalues:

A? —vy
> ﬁ = tan"!(/v,a) (4.264)

We would obtain the eigenfunctions as (replacing the ratio between
the A, and B, coefficients):

Xn(x)=— \/I:_"B,, cos(4/vnx) + By sin(y/vnx) (4.265)

A similar procedure should give us Y (y).
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We therefore come to formulate the equation for Z(2):

4?7 (2)
dx?

—vZ(2)=0 (4.266)
which has following general solution:

Z(2) = Cpun cosh(y/(12)) + Bmn cosh(y/(12))

The general solution therefore will be

V= Cpncosh(v/(12)) + Bmn cosh(y/(12)) x Xa(x) X Y(y)
(4.267)
Applying the boundary conditions and the orthogonality conditions
of X,(x) and Y,,(y) we arrive at a system of two equations and find
the values of C,,,, and B,;,.

Note: An alternative way to solve the formulated 3D Poisson
problem with one of the boundaries being inhomogeneous of the 3rd
type is to search directly the solution in form:

u=> Z(z) x Xp(x) x Yu(y) (4.268)

Once we substitute the above expression into the 3D Poisson
equation and use the fact that X ,(x) and Y, (x) are set of orthogonal
functions, as they are solutions of 2D Sturm-Liouville problem, we
arrive to inhomogeneous equation for the Z(z) function with one of
two boundaries (z=0) being inhomogeneous of the 3rd kind.

The general solution for Z (z) will be represented as sum previously
found solution of homogeneous equation and particular solution Z,
(which is a constant A already defined by the form of 1D second
order differential equation).

Z(2) = Znw(2) + Zp = Cpn cosh(y/(12)) 4 Dy cosh(y/(12)) + A

The solution for the C,, and D, in Z(z) will be found after
application of two (homogeneous and inhomogeneous) boundary
conditions of the 3rd type to the general solutionu = > Z(2)- X ,(x)-

Yo (y).
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4.13 Case Study: Distribution of Photocarriers
Induced by a Laser

Suppose that a metallic bar (dimensions a, b, ¢, see Figure) with
diffusion coefficient equal to 1 is in contact (its base) with a charge-
neutral semiconductor. Until ¢ = 0 a laser had been shone over a
very small area (normally called “spot”) while the remaining part
of the contact allows carrier leakage through semi-transparent to
diffusion interface (with leakage flux proportional with factor of B to
the difference in metal and semiconductor surface concentrations).
The distribution of generated photocarriers near the interface
providing local flux injection can be approximated by a Dirac’s Delta
function (with flux rate proportional to A factor). The carriers were
injected from the semiconductor to the metal in a stationary manner
(until t = 0) through a slit situated in the proximities of the central
point of contact of the bar with the semiconductor.

Determine the distribution of carriers inside the bar as a function
of time if at £ = 0 the laser is turned off and never used again.

z

0 Wy a  *
\ Laser

Losées through semi
transparent face (z=0)

Figure 4.18

Solution:

We first seek the stationary distribution of carriers up until ¢ = 0.

If we consider that the sources of photoelectrons are at the interface,
we need to solve Laplace’s equation in a prism in which five out of
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the six faces have homogeneous boundary conditions. The central
part of the face at (z = 0) injects photoelectrons through a small
square slit (¢ << a, b, c), corresponding to the laser spot). The rest
of the parts of the z = 0 face are semi-transparent to the electrons.
Then the boundary conditions are not homogeneous for the face at
z=0.

Mathematical formulation

Au(x,y,z)=0
au
— 4+ Bu(z=0)=A x3d(x —a/2) x3(y — b/2)
0z |,_0
oul  _ou| _ou _ou _ou _,
ox x=0 ox x=a ay y=0 8}/ y=b 0z z=cC
(4.269)

To express the non-homogeneous boundary condition, we have used
that z = 0 is semitransparent for the electrons (condition described
using boundary conditions of the third type) and at the application
point of the laser appears an excess of carriers described by a Dirac’s
Delta function.

Sturm-Liouville problem

We expand the solution in orthogonal eigenfunction, corresponding
to four homogeneous surfaces. We can arrive at the same result by
separating variables, replacing the solution of Laplace’s equation
and using the dimensions that have homogeneous boundary
conditions to lower the dimensionality of the derivatives thanks to
the solution of the Sturm-Liouville problem.

In the x — y plane (with homogeneous boundary conditions), we
solve the problem:

Av(x, y) +av(x,y) =0
av __ v v
ox x|, dy

_ av
y=0 ay

_o (4270)

y=b

x=0

with eigenfunctions v, = cos(%7x) cos(%"y)

and eigenvalues A, = 72[(2)? + (£)?].
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General solution

The general solution can be expanded in the base of the v,
functions and the coefficients will depend on the x coordinate:

u(x,y, z) = Z Wnm(Z2)Vam(x, ¥) (4.271)

Replacing in the Laplace’s equation: Au(x, y, z) =0

We arrive at the equations we need to solve:

dZ
T () = 0 (4:272)
with the boundary condition: d‘;’;’" =0

Wum(2) = Fum sinh(v/ Aymx) + Cpm cosh[v/Apm(c — 2)]  (4.273)

Applying the boundary condition:

= 0= Fm\/Anm cosh (x//l,,mc)—}—C,,m\//lnm sinh(c—¢c) =0
‘ (4.274)

Then we get the F,,, = 0 and wy;,(2) = Cumcosh[v/Anm(c — 2)]
coefficients.

dwym
dz

zZ=

The general solution will be:
u(x,y, z) = ZC”’" cosh {\//l,,m(c — z)} Vam(X, )
n,m

=u(x,y,20)= f(x,y 2) (4.275)
We use the second boundary condition to find Cyp:

u

+ Bu(z =0)
0z

z=0

== ComV/Aam SN[/ A () Vam(x, ¥)
+B Z Cum COSh[\/ /lnm(c)]vnm(xﬁ y)

= A x S(x —a/2) x 8(y — b/2) (4.276)
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Final solution

Using the orthogonality of v,,(y, z) we arrive at the expression for
Bnm:

Cnm {—Msinh {M(c)} + B cosh [\/m(c)} } X
/Oa Ab cos? (%nx) cos’ (?y) dxdy

=A x/a/bé(x—a/Z)(S(y—b/Z)cos (%nx) cos (?y) dxdy
o Jo

= A x cos (%) cos (?) (4.277)
Then
A
Cnm = oS VI (O)] = Vo Sinh [V ()]
1

X —— (4.278)
Ji J2 cos? (22x) cos? (7y) dxdy

Note about the modulus of the eigenfunctions for different values of
n (or m):

b
: 5 (n#0)
2 (TN 2
/cos (Ty) dy = (4.279)
0 b (n=0)
Next we will consider the temporal variation of the concentration of
photoelectrons after turning the laser off.

Mathematical formulation

u A 0

_ u=

ot~

0

9 Buz=0)=0

0z z=0

u _ u _ ou _ u . ou _
0X |9 0X|4_q Y |y=o Y |y=p 0z |,_.
ulx,y,x,t=0)= f(x,y, 2)

(4.280)
We seek the solution by separating spatial and temporal variables.

u=Q(t) xv(x,y, z) (4.281)
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Sturm-Liouville problem

v(x, y, z) are eigenfunctions of the Sturm-Liouville problem.

Av+ v =0

0

Y L Buz=0)=0

9z |,

av v v v v _
ox x=0 ax x=a ay y=0 3y y=b 0z z=cC

(4.282)
We separate variables: v(x, y, z)) = X(x) - Y (y) - Z(2)

1 &@X(x) | 1 &®Y(Qy) 1 d*Z(2) _

Av+Av =0 -2
VEVEDT Y0 A Yo @ 2@ dz
(4.283)
Tny 2 Tm\ 2
_<7) _(T) k= — A (4.284)

To satisfy the boundary conditions we then use a solution of the
type:

v(x,y, z) = cos (%nx) cos (?y) cos[\/vk(z — c)] (4.285)

The equation to find the v, eigenvalues is:
dv

1 + Bv(z=0) = 0 > —/vsin[\/vkc] + B cos[\/vkc] =0

z=0
(4.286)

The eigenvalues are solutions of the equation:

sin(y/vk€) /U (4.287)

cos(/vk¢) B

Equation and solution for the temporal part:

dQ B
E + /lnka =0 (4288)

Q(t) = Anmice (4.289)
u=>"Qt) x vamk(x, y, 2) (4.290)

= Z ApmiceT4m D cos (?x) cos (%y) cos[/vk(z—c)] (4.291)
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Final solution

From the initial condition:

n
ulx,y,z, t=0) = A0 cos (—x)
( y ) Z nmk a

X COS (%y) cos[/vk(z—)] = f(x, ¥, 2)
(4.292)

we will get the coefficients of the expansion using the properties of
orthogonality of the eigenfunctions.

4.14 Heater inside a Prism

A rectangular prism of dimensions a, b, ¢, has a heat capacity C,
density of mass p and thermal conductivity coefficient k. Until t = 0
it's in thermal equilibrium at a temperature T = Ty. From the
instant t > 0 onwards an electrical current I starts circulating
through a wire with electrical resistance R, of length c¢/2, centered at
(%, %, t<z< %) in the vertical direction. Consider that the upper
and lower boundaries are thermally insulated, while the other four
are in contact with a thermal reservoir at a temperature T = Tj.

(i) Find the variation of temperature if the applied current I = I,
from t = 0 onwards is continuous current.
(ii) Solve the same problem if the current is alternating I(t) =

Iy cos(wt)
(iii) Find the stationary solution (when all transient solutions damp
out) if the alternating current is applied since t = —oo.

The upper (z=c) and lower (z=0)
boundaries are thermally insulated

C
N

— Four lateral

: /7 faces at T=T,
*IZR

1

1

Figure 4.19
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Mathematical formulation
du(x, y, z, t) o [ du(x,y, zt)]
Cx,y,2)px,y,2)——F—— — < |k—————
at ox | ax
B 'kau(x, ¥, 7 t)]
ay L ay |
d [ du(x,y, zt)]
+7 kM :f(X‘ y' Z, t)

0z | 0z
(4.293)

There is a transient process until equilibrium is reached. In our case
we will assume that k, C, p=constants.

The resulting equation with boundary conditions is:
8“ » ) 4 t
Co x5 2t
at

21%R a b c 3c
fx,y, 2)= p S(X—Z)S( —2) (4<Z<4)

—kAu(x,y,2)= f(x, ¥,z t)

u(x,0,z)=u(x,b,z) =u(0,y,z) =u(a, y, z) =Ty

au au
92l 02l
(4.294)
fona =2 (= Do (y-2)n - (- 5+ (§)]
(4.295)

Sturm-Liouville problem

All boundaries are homogeneous. In this case it's possible to
search for a solution by expanding it into orthogonal eigenfunctions
in all three directions. These functions are solutions of Sturm-
Liouville problems with homogeneous boundary conditions. To find
the homogeneous boundary conditions in the y direction we can
perform this change of variable:

ux,y,z,t)=v(x,y z t)+ Ty (4.296)
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a ) ) ) t

% —kAv(x,y,2)= f(x,y, 2 t) (t>0)
v(x,0,2)=v(x,b,z)=v(0,y,2z2)=v(a,y,z) =0
av v _
0z, 07|,

(4.297)
We seek the solution by expanding in orthogonal eigenfunctions in
the y, z directions, where we have homogeneous problems.

vix,y,z)=>_ T(HQK,y, 2) (4.298)

Eigenfunctions and eigenvalues of the Sturm-Liouville problem for

QAx, y, 2):
AQ(x, y,2) +4Q(x, ¥, 2) =0

Qx, 0,2) = Q(x, b, 2z) = Q(0, y, 2) = Qa, y, 2) = 0 (4.299)

Q| _ae| _,
9z |,_o 0z |,_,
Eigenfunction
. n . Tm Tl
Q(x, y, z) = sin (7)() sin (Ty) cos (Cz) (4.300)
1= () 1y’ (4.301)
~\a b c '

n=123...,m=123...;1=01,23...

General solution
We replace the solution v(x, y, z, t) = > Tom () Qumi(x, y, Z) into

n,m,l
the equation:

awv(x,y, zt)

T —kAv(x,y,2)= f(x, ) 2) (4.302)

and use the orthogonality of Qnm(x,y, z) we arrive at the non-
homogeneous equation for Ty, (t):
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0 Thmi
Co Z %Qnml(xy Y, Z)+k Z Tnml(t)/lnml QnmI(X: Y, Z)Zf(X, Y, Z)
n,m,l n,m,l

(4.303)

0 Thm
Z |:CIO 9t ! + k/lnml Tnml(t):| Qnml(xv Y, Z) = f(x, Y Z) (4304)

n,m,l

Multiplying both sides by Qnm(x, ¥, Z) and integrating we get to the
non-homogeneous equation to find T, (t):

aTnmI k 1 Jf(xl y! Z)Qnml(xy y: Z)dXdde
+—Anmi Tnml(t) =

at ' Cp Co  [|Qum(x,y, 22| dxdydz = Jomi
1’4

(4.305)

Final solution

Seeking the solution in the form of a summation of solutions of the
homogeneous equation and the particular solution, and applying the
initial condition T,,; (0)=0 we find T,,; (t), and in this way the
solution.

b
[ @t . 27|y = 42
14

/f(x; Y Z) QnmI(X, Y Z)dXdde =
4

b

ZIIZR /(JS(X_‘21>sin(n:x>dx/51n<n;ny)5( —12)) dy
0

0

3
¢

/cos (ﬂclz> dz (4.306)

4

TS

We have:
a
/8 (x — %) sin (n—nx) dx = sin (%n) (non-zero only for odd n)
a

0
(4.307)
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b
b
/sin <@y> 3 ( — 2) dy = sin (%) (non-zero only for odd m)
0

(4.308)

/cos <7TIZ> dz = £ [sin (3711) — sin (nlﬂ (4.309)
c wl 4 4

The transient solution, which is composed by a particular solution
and the solution of the non-homogeneous equations, and that
satisfies the initial conditions, is:

Tomi(8) = —Cp L [1 — et (4:310)
k/lnml
Finally the solution will be: u(x,y,z t) = To — > Cpf=i[1 —
n,m,l m

el %49 sin (Tx) sin (%) cos (£ z)
(i) We now consider the solution when the applied current changes
periodically in time I = I cos(wt).

The alternating current changes the non-homogeneous term of the
equation and the dissipated power will be:

(Io)*R n (I0)*R

I2R = R(Iy)?*[cos(wt)]* = 5 5

cos(2wt).

Then the inhomogeneous part changes to:

Floy,7) = UO;ZR % cos(Zwt):|

s -2) (%)

(4.311)

In the same manner as we did in (i), replacing:

vix,y,z)=> T(0Qk,y,2) (4.312)
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into the equation and applying the orthogonality of the Q(x, y, z)
functions we get to a differential equation for T (t):

f f(X, Y Z) Qnml(x, V, Z)dXdde

CopdTnm 14
————— + ki T (t) =
+ KAnmi Trmi (£) f |Qnm1(X' Y, Z)2| dxdydz
1’4

at

= nml[l-’_cozﬂ (4313)

The solution is made of a particular solution and a solution of the
homogeneous equation.

The solution of the homogeneous equation is:
Tomi(part)(t) = A x el=xAmitl (4.314)
Where yx = % is the thermal diffusivity coefficient.

The particular solution of the non-homogeneous equation is sought
as:

Tomi(nh)(t) = a x cos(2wt) + b x sin(2wt) + Const (4.315)

Replacing this form into the non-homogeneous equation and
applying the initial condition (trivial) we find the coefficients:

1 n 1
Zk/lnml (prC)z + (k/lnml)z

Tnml(t) = A X e[_X)"m’t] + Fumi |:

kA
x [ ;’"’ cos(2wt) + Cpw sin(Za)t)” (4.316)
with
1 k/lnml
A=—_F 4317
nml [zmnm, t l2wpCy + (ka,,m,)Z]] (4.317)

4.15 Cube with a Heater

A cube of side L has all of its surfaces thermally insulated. At its
central point (L/2, L/2, L/2) there is a point like heat source that
supplies a heat density in the form B-sin(wt) since t = —oo. Find the
stationary distribution of temperature. The thermal conductivity is
k, its specific heat is C and its density is p.
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=

(L/2,L/2,L12)

\
\

yY=_—-—-—-
1

| .

I

1

1

Figure 4.20

Mathematical formulation

The heat equation describes the distribution of temperature u =
u(x,y, z t):

cp2% _ knu = Bsin(wt)s (x— =) s s (2L
Lot - @ 2)°\V 72 2

(4.318)
The boundary conditions at the insulated boundaries are:
ou __du __du __du __du __du _
ox x=0 ax x=L 8_}1 y=0 ay y=L 0z z=0 9z z=L
(4.319)

Since the heat source has been acting for a long time, we can assume
that the transient variations of temperature will have died out by
now and u will oscillate with the same frequency w as that of the
heat source. In the heat equation there is a first order derivative
with respect to time, so we will consider that the perturbation is of
the form Be/“'§(F — 7o), with 7 = (x,y,2z) and 7y = L/2(1, 1, 1).
Separating variables we will search for a solution of the form
i(x,y, 2z t) = e“v(x,y, z) and take only the imaginary part to
obtain the final solution: u = 3Jii. Replacing in the heat equation:

Cpiwe' v — ke'”*Av = Be'®'§(F —7y) = Cpiwv — kAV
— BS(F — To) (4.320)
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Sturm-Liouville problem

The Sturm-Liouville problem for the spatial variables is:
Av = —Av (4.321)
The boundary conditions for v can be obtained from those of u:
av av av
lyoor  Wlymoyr 0z

Separating variables: v(x, y, z) o« X(x)Y(y)Z(z), with boundary

conditions X'(0) = X'(L) = Y'(0) =Y'(L) = Z'(0) = Z'(L) = 0.
Av 1 d2X+ 1 d2Y+ 1 d*z
v X(x)dx?  Y(y)dy?  Z(z) dz?

Since each term is independent, all must be constant:

=0 (4.322)

z=0,L

=-2 (4.323)

X'(x)=—-vX(x); X'(0)=X'(L)=0
Y'(Y)=-npY(W) Y (0)=Y(L)=0 (4.324)
Z'(2)=-nZ(z); Z'(0)=2Z'(L)=0

and the eigenvalue of the global problem will be the sum of those of

the problems for each variable: 1 = v + u + 5. For the X (x) function
the general solution will be:

X (x) = A cos(+/vx) + B sin(y/vx)

Since X'(0) = 0 = B = 0. From the other boundary condition,
to obtain a non-trivial solution: X’(L) = 0 = ,/vL = n. For the
y and z variables we have identical solutions:

nmwx nm\2
Xn(x):COS(T); Vn:(T) ;. n=0,1,2...
2
Ym(Y)ZCOS(nLLTy); U«m:(an); m=0,1,2...

Z(z) = cos —I nm = —1 2 [1=0,1,2
— : — : =0,1,2...
I [ I [

(4.325)
The solution of the Sturm-Liouville problem is:

l
v(x,y, z) = Aym coOS (?) cos (m—:y) cos <72Z) (4.326)
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whose coefficients A, must be determined, with eigenvalues:

2
/g
szw+um+m=2ﬂﬁ+mﬁuﬁ (4.327)
Replacing into 4.320 the solution of the Sturm-Liouville problem:

Z [C,OICU + k/lnml]Anlen(X)Ym()/)Zl(Z)

n,m,l

L L L
s (x-7)o(v-5)s(s-5)  wam
2 2 2

We now apply the orthogonality of the eigenfunctions by multiplying
both sides by X,(x)Y,(v)Z;(z) and integrate over the intervals x €
[0, L],y € [0, L] and z € [0, L].

L oL L
. , (NITX , (mmy )
Apmi[Cpiw + k/l,,ml]/o /0 /0 cos (—L ) cos (—L ) cos
1 L L L l
(IZ) dxdydz = B/o /0 /0 cos (%) cos (m—:y) cos <722>
L L L
x6(x—=)8ly—=|6|z— = )dxdydz
2 2 2
nm mm I
= Boos (=) cos () cos (2)

Final solution

B cos (%) cos (- )cos(%’)
[Cote -+ Kam]lcos (%) leos (") leos (152)1
(4.329)

- Anml

where the square modulus of the X, (x) eigenfunction is:

L n=0

|cos(mrx)| —/OLcos2 (?)dx: g 2o

with equivalent expressions for Y;,(y) and Z;(z). We mention that as
the average (background) temperature in the problem is not known,
we should not consider the evaluation of the Aggg term. We see
that if at least one of the three indices (n, m, or ) is odd we have

Apm = 0. And if the three are even, cos () cos (%) cos (&) =
( 1)(n+m+1)/2
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With all this:
eia)t
ﬁ X; ’ Z! t = ~ .+ 1.,
(xy ) rgn:ICplw—i-k/l,,ml

even

B cos (45%) cos () cos ()

|cos("’”‘)| Ico s(m”y)| |co s(l’zz)|2

(4.330)

To obtain the final solution u(x, y, z, t) we will take the imaginary
part of the last expression. We can rewrite the complex denomina-
tor:

Cpiw + kdpm = /(Cpw)? + (kA pm)?e! @ Cre/lim))  (4,331)

elot el (wt—arctan(Cpw/(kdnm)))
SN\ m=———7—) =%
(C,Ola) + k/lnm1> \/(Cpa))z + (k/lnmI)z
sin (a)t — arctan (kc/f“’l ))
o (4.332)
\/(C,O(U)Z + (k/lnml)z

The final solution is:

: o Cow
sin (a)t arctan (M"ml ))

o V(Cpw)? + (klum)?

even

ulx,y, zt)=

n+m+l

nrrx)

B( 1)"7 cos ( os (™) cos (122) (4.333)
|cos (2% )| |cos ()| 2|cos(l”z)



Chapter 5

Problems in Polar Coordinates

The previous chapters consider examples of problems in homoge-
neous spaces (using Cartesian coordinates). One of the simplest
ways of breaking the symmetry is the presence of a symmetry
point in a bi-dimensional space or of a symmetry axis in three-
dimensional space.

The corresponding problems will be solved using cylindrical
coordinates, which implies using new variables (angle, radius),
keeping only a Cartesian variable to describe the space along the
symmetry axis. As a consequence, the form of the Laplacian operator
will change and the solutions of the Sturm-Liouville problem in the
radial variable will be Bessel and Neumann functions. Also, the way
to describe some features such as points, circles or thin cylinder
changes, using the Dirac’s Delta function in cylindrical coordinates.
This chapter is limited to problems in cylindrical coordinates in two
dimensions (i.e polar coordinates), or in three when the problem is
infinite along the cylinder axis.
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5.1 Separation of Variables in a Circular
Membrane

Find the eigenfunctions and eigenvalues of the Sturm-Liouville
problem corresponding to a circular membrane of radius R with its

border fixed.

Solution:

The problem is:
Au+u=20
u(p=R)=0
10 [ du +182u+/lu—0
pop |Pop] T p? 092 B
We apply the method of separation of variables.
u= R(p)- ®(¢)
1d dR <I>+Rd2cp+/lR()<D()—0
pdp | dp p? dg? Pl =
We divide both sides by R(p)®(¢) and multiply by p?

Then:

with A > 0.

d [ dr
p%[p%}+/12__1d2¢)— ol
R P =T ode THT

Sturm-Liouville for the angular variable

d*® +ud=0
— +pud=
dg?
periodicity of 2
Radial problem:
1d{dR}+[/l mZ}R 0
Z—|p— _ " |rR=0>
pdp | dp p?
d’R 1dR + s m? R—0
dp*  pdp el

(5.1)

(5.2)

(5.3)
(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

This is Bessel’s equation, which gives us the radial orthogonal
eigenfunctions. Applying the boundary conditions will give us the

eigenvalues of the problem.
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5.2 Electric Potential in a Circular Sector: Case 1
A region is limited by three conductors: two perpendicular planes
(electrically grounded) and a quarter of an infinite cylinder of radius

R. The potential of the curved surface is Vy. Find the electrostatic
potential at any point inside this region.

u=V,

Figure 5.1

Mathematical formulation

Note: as the problem is infinite in the z direction the solution will
not depend on this variable, due to symmetry reasons.

19 [ du(p,9)] , 1 du*(p, ¢)
—— |p + — =0
P dp dp p?  dg?
u(,o,O):u(p, %):0 (5.9)
u(R, ¢) ="V
Sturm-Liouville problem
Separating variables u(p, ¢9) = Q(p)®(¢) we arrive at two
equations:
1 ad ad , 1 /3%°®
— | p— pM =——(— ) =42 (5.10)
Q\' dp ap d \ 9¢?

We impose the positive sign for A4 so that we can expand in
trigonometric functions of the angular variable, since in these
variables the boundary conditions are homogeneous. The Sturm-
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Liouville problem is:

O e=0
dy? B
T
®(0) = @ (5) —0

Eigenvalues and eigenfunctions:
®,(¢) = A, cos(vA9) + By, sin(v/1¢)
®0)=0—>4,=0
®(2)=0- Bysin (Va2 ) =0
2 2
Then +/A = 2n Eigenfunctions ®,(¢) = B, sin(2ng);
Eigenvalues 1 = (2n);n=1,2,3...

General solution

Now we solve the equation for the radial part.

d { dQ(p, ¢)
ptp @)

— —10=0
dp dp } ¢

2
pzd Q(p) +o {dQ(p)

—4n’Q0=0
dp? dp] e

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

We look for the solution as Q(p) = p* since all components of the

equation are of the same order in the p variable.
Replacing, we get: a(a — 1) + o — 4n? =0
Then:

o = 12n

Q(p) = C1p™ 4 C2p~*"

(5.17)

(5.18)
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Final solution

Since the solution is finite at p = 0 it is necessary that C; = 0. The
general solution is:

u(p, ) = _ Bnp" sin(2ng) (5.19)

We impose the boundary condition (p = R) to find the coefficients.
u(R, ¢) = Vo= > _ B,R*"sin(2nyp) (5.20)
n

Due to the orthogonality of the angular eigenfunctions, using the
integrals:

x 0 =2k
o sin? (%) _ )"
/sm(ano) =——=91 (5:21)
s n — N = 2]( + 1
n
Z
/ sin?(2ng) = % (5.22)
0
We get the coefficients: B, = -4
Then:
< 4y, 0\ 202k+1) 22k 4 1 £ 23
W=D Gy () SMEREEDl 629

5.3 Electric Potential in a Circular Sector: Case 2

Find the distribution of electric potential inside a circular sector
without charges, which spans an angle (0 < ¢ < «), if the electric
potential at the boundaries is as specified in the figure.

Y]

,

Figure 5.2
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Mathematical formulation

Au=20

U, (0<op < =
uR) = f9)={ ( ) (>-24)

u(p, 0) =u(p, ) =0

Sturm-—Liouville problem

We separate variables to get to the eigenfunctions of the problem:

ulp, ¢) = Q(P)®(9) (5:25)

The Sturm-Liouville problem for ®(¢) is:

2

I L o) =0
dy? o= (5.26)

®(0) = ¢(ar) = 0

Angular eigenfunctions and eigenvalues:

®(¢) = sin (%w) (5.27)
2
A, = (%") (5.28)

General solution

The equation for the radial part is:

d?Q  dQ
2 X4 p—=—-2Q0=0 5.29
o dp2+pdp Q (5.29)

With radial solutions: Q(r) = p«

The general solution is:

u(p, 9) = Anp sin () (5:30)
n=0
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Final solution

Imposing the boundary conditions and using the orthogonality of
the eigenfunctions: sin (%’Qp)

u(R, ¢) = flp) = > A,R¥ sin (%"q)) (531)
n=1

jf(w) sin (%ngo) dp = A,R% jsinz (%n(p) dp  (5.32)

We get the coefficients of the Fourier series:

}f(w) sin (Z2¢) dg

27
A, = — — 5.33
" R« ( )

5.4 Stationary Distribution of the Concentration
of Particles in a Sector of an Infinite Cylinder

Consider a sector of a cylinder of infinite length, with radius p = R,
with a diffusivity coefficient D. The angle of aperture is 0 < ¢ <
«. One of the flat faces is in contact with the outer medium, which
has a concentration of particles n = 0. The other flat face does not
allow particles to go through it. The curved face exchanges particles
with the outer medium with a flux density: = —n(R, ¢) — Ag. Find
the distribution of the concentration of particles inside the cylinder.
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. e
Unpermeable \
\‘/ Particle flux -n(R,®)-Ap
Diffusion LR

a coefficient D

R Y

Permeable, in contact with the vacuum (n=0)

|

Figure 5.3

Mathematical formulation

We need to solve Laplace’s problem (the diffusion equation is
reduced to Laplace’s one in the stationary case) in the angular sector
0 < ¢ < a, with boundary conditions:

Au=0
d
u(p,0)= = =0
99 |p—a (5.35)
ou
-D — = —u(R, ¢) — Agp
9P | p—r
u(0, ) < oo

Sturm-Liouville problem

Separating variables u = ®(¢) x Q(p) we arrive at a Sturm-Liouville
problem for the angular variable, whose solution, once replaced into
the Laplace’s equation, gives an equation for p.

d2>®

- (f) +AD(0) =0
, qf (5.36)
T —e=0
99 |,y

Solution:
®(¢) = sin <7T(2nz+1)q))
7 (5.37)

4= <n(2n +1)
2a

2
> (n=0,1,2...)
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General solution

In the radial direction the equation has a solution in the form of a
power expansion:

d*Q(p) | dQ(p) @n+1)]*
P TP, _[” 2a } e
Qo) = o175

Applying the condition u(0, ¢) < co we obtain the form of the radial
solutions:

(2n+1]]

Qo) = p* 7% (5.39)

The general solution is:

o n 1] 2 1
u= Z Cn,o 2: sin <n (nz:l_)fp) (5.40)

Final solution

We find the derivative of u(p, ¢) for p = R:
d 2 1 @] 2 1
ou Y ¢, _@n+ D] ifaegn] (2014 )(p
20 20

ap
(5.41)

p=R

Applying the boundary condltlon forp =

_D§:c{ @"+U} r ] ( GRRY )
-S cR [~ 5] sin( (2n 2+ 1 ) Ag
_ ] ([ @Gn+D] 1
—Ap =Y C,R" (1 D [n » ] R)

. ( 2n+1) )
xsin | T——¢
20

Finally, using the orthogonality of the angular eigenfunctions we get
the coefficients C,:

¢, R (1 ) [n(Zn * 1)] 1)
" 2 R

o

o (2n+1) 2
0 20

(5.42)
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The final solution is:

24 & _1)n+1
u(p, 9) = — Z 2 {(M])
i [n%} ot [ 0] (1_% [n(z%n})
21 2n+1
er[ 2o ] sin (n(nzl_)(p> (544)

5.5 Instantaneous Hit on a Membrane with
Circular Sector Form

Find the oscillations of a membrane with the form of a circular
sector, of an angular aperture o and with radii r and R. The
membrane is fixed in the curved part, free on one of the sides, and
half-free on the other with a constant A presenting the relation
between the spring constant and the membrane tension. The
membrane, initially at rest, receives a point hit at the instant t = 0
at the location (¢ = 0, p = R/2).

Note 1: Consider that the hit satisfies this condition for the initial

au au

velocity —| :lime,o [ —| pdpde = V, being Qe a surface
ot t=0 Qe at t=0

of radius € around the surroundings of the point where the hit is

exerted.

Note 2: Consider that at the inner radius (r) the membrane is free.
Suppose thatr/R << 1.

Half free

Fixed

PR et \q‘)
_Nf_— - ' Free
r<<R R
Point-like hit
Figure 5.4

The hit is represented using the Dirac’s delta function in cylindrical
coordinates (see Appendix). We look for the density so that the total
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impulse transferred to the membrane is py Vp:

‘;05 ( R ) () (5.45)

ou
At |,

We see the relation between the total impulse transferred (I), the
density of mass of the material (py) and the constant V.

I:/p

Qe

ou
ot |, pdpdco = poVo (5.46)

Mathematical formulation

1 au?(p, @, ) 138 du 1 du(p, ¢, t) _0
a? ot? pap |"dp 02 92 -
u(p, ¢, 0) =0;
au R
= =)
at =g ( 2> ()
8 (5.47)
u(R,t) =0; =0
90 | por
au
— + Au(p, o, t) = 0;
09 | ,—q
d
aaur o
¢ | ,—0

a is the speed of sound of the membrane. The general solution for
a sector of the membrane with one of the half fixed boundaries
(boundary conditions of the third kind) and other of the second kind
is:

u(p, o, t) = Z {A,,m cos[ar/Anmt] + Bnm sinfa /l,,mt]}

X Ry, (v/ Anmp) cos(vmep) (5.48)

Sturm-Liouville problem

The solution of (5.48) is obtained with the method of separation of
variables:

u=) T(6)-R(p) (¢) (5.49)
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When replacing this expression into the wave equation we get to
the angular Sturm-Liouville problem, to lower the number of second
derivatives:

d*®(p, ¢, t)

T +v®d=0

do

| +A®@)=0 (5.50)
de |,

do|

dgo =0

To find the angular eigenfunctions first we look for the general
solution of the Sturm-Liouville problem:

®(¢) = C cos(ve) + Dsin(ve) (5.51)

Due to the fourth boundary condition, we have D = 0. The
eigenvalues v, are sought by applying the third boundary condition:

ou

3 + Au(p, o, t) = 0 > —+/Ap sin(vya) + A cos(vpa) =0
2

o (5.52)
Then the eigenvalues with solutions of the equation tan(v,a) = VA
are all possible eigenvalues v,, of the angular Sturm-Liouville (here
the index m enumerates the eigenvalues).

Once the angular problem is solved, we arrive at the following
equation for the radial variable (now there is no z variable and the
angular eigenvalues are no longer integer numbers).

+ (/l— [‘2”2]2) R=0

The solution of this problem gives us a set of radial solutions

R= Cl]vm( V /lnmp) + CZ]fvm( V /lnmp)

This is due to the fact that in general the index vy, is not an integer.

d*R

1dR
dp?

o dp

(5.53)

General solution

(5.54)

The possible values A,, are the nth solutions of the equation
obtained by imposing the condition DET=0 to the system of two
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equations with two unknowns at which we arrive by imposing the
first and second boundary conditions:

Cl]vm (\/ Anm R) + CZ]—v,,, (\/ Anm R) =0

(5.55)
Cl]ljm (VAnmr) + C2]ivm (v Anmr) =0
Then:
]Um(mR) ']Lvm(\/mr) _]—vm(\/mR) ]‘jm(\/m;“) =0
(5.56)

Also from the first or second boundary conditions we can obtain
the ratio between the coefficients C; and C, and in this manner
determine the form of the radial function.

General solution:

u(p, ¢, ) =Y _ Bumsin[a\/Aumt]R, (\/Amp) cOS(vme)  (5.57)

Final solution

One the form of the general solution is known, we look for the
coefficients of the expansion using the initial conditions. From the
first one we have: A, = 0, and from the second:

au Vo R
A= (m7)
= Z(a\//l,,m)B,,m cos[a\//lan]RVm (v/ Anmp) cos(vme)

(5.58)

We use the orthogonality of the radial and angular eigenfunctions to
find the coefficients B,,,.

Multiplying both sides of the previous relation by
R «

R, (v Aup) cos(vig) and integrating [ [ pdpdy
r o

R «
1 R
VO//R\,I(\//lkIP) cos (v1¢) ;8 (p - 2> $(p)pdpdy =
r o

R «
= Z Bnm(a V /lnm) / / R\,m (\/ /lnmp)Rw(\/ /lklp)
nm r 0

cos(v;¢) cos(vne)pdpdy (5.59)
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Due to the orthogonality of the radial and angular eigenfunctions we
find the coefficients:

R «a
Vo [ [ R, (v Aup) cos(wig) ;8(p — 5)3(¢)pdpdy
ro

(av/Zom) || Ro (8 Tamo) || N cOS(vm@) 12
_ VORum(\/ Anm%)
(ay/Zm) || R (v Tmp) || lcos (vmep) I

The final solution is:

Bnm =

(5.60)

VO Rvm (\/ /lnmg)
(0, 0, ) =
e Zn; (@v/Zam) || R (8 Am0) || I cOS(vm) 12

x sin[av/ Aumt] Ry, (\/ Anmp) coS(Vin@) (5.61)

5.6 Linear Heating of a Disk

Find the variation in temperature inside a disk of radius R if at
t = 0 itis heated by uniformly distributed heat sources. The density
of heat sources is equal to ACpot (being A a constant, C the heat
capacity and pg the density of the material) due to the supplied
power increases linearly with time. The initial temperature of the
disk at t = 0 equals zero. The outer boundary of the disk (0 = R)
is kept in contact with a thermal reservoir at zero temperature.
Consider that the coefficient of thermal diffusivity equals a?.

Homogeneously distributed
heat sources ACpgt,
acting since t=0

/

Surface at a temperature 7=0

Figure 5.5
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Mathematical formulation

We need to solve the non-homogeneous Fourier problem with
homogeneous boundary conditions:

9
ai: — a2 Au(p, ¢) = At (t > 0)
u(p =R, 0, t)=0 (5.62)

u(p, p, t=0)=0

Sturm-Liouville problem

The solution is expanded into series of the orthogonal eigenfunc-
tions of the Sturm-Liouville problem in a circle of radius R with
homogeneous boundary conditions:
{ Av(p, 9) 4+ v(p, 9) =0 } (5.63)
V(R,9)=0
The eigenfunctions of the problem are known and consist of radial
and angular solutions:

Vnk(p' (,0) = Ank]n < /lgk):o) : COS(I’I(p) + Bnk]n ( /lglk)p) : Sin(n¢)

(5.64)
being 1% solutions of the equation J, ( 2’%) =0
Solution
We seek a general solution in the form:
u(p, ¢, 1) = > wau()Vuk(p, ©) (5.65)
n, k

Since the solution must not depend on the angle it can be simplify
by just keeping the eigenfunctions with angular symmetry (withn =
0):

u(p, @, 8) = wi(®) - Jo ( Aé")p) (5.66)
k

Replacing this general solution into equation (5.62), and using the
orthogonality of the eigenfunctions:

Jo ( ﬁé”p) (5.67)

269
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we arrive at an equation for wy(t) :

dwi 5

+ a“Ay wi(t) = At -
I k(6 Ji (5.68)
wi(t=0)=0

The values of f are obtained from:

1 R
o L)
o (Vi)

_ 2
o ()

X]n] —

(5.69)

Here we have used: x"J,_1(x) and also the condition of
orthogonality of the Bessel functions (the quote symbol (’) indicates
derivative):

: ® 0 R* T, 0\’
/0 ]u( Av p)]v( Up)pd,o= 2 |:]U< vR>:| Skl
(5.70)

The solution of the problem 5.68 is expressed as the sum of a
particular solution s,(t) (which subtracts the non-homogeneous
part of equation 5.68) plus a homogeneous solution s(t). Finally
we will apply the initial condition to find the coefficients: Then the
solution of 5.68 is:

wi(t) = s(t) + s,(t) (5.71)
We propose the particular solution as:
sp(t) =Bt+C (5.72)
Replacing this expression in 5.68:
A
B = f("k) (5.73)
a2,
A
C = —% (5.74)
[a®25]?
Equation for the homogeneous solution s(t):
+ a2aPs(6) = (5.75)

d
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Afk
[a225"12
The solution is an exponential function. The solution of the non-
homogeneous equation which satisfies the initial conditions is:

Wk[t) = Afk [t_ azfl(k)] + [ Afk e(flllegk)t)
0

$(0) = —s,(0) = (5.76)

az/]gk) az/lg")]Z
A 1 2,0
= f(k;d b= ® (1 el t>> (5.77)
aza, aza,
The final solution is:
ulp, 9, ) =>_ wi(8) - Jo ( AE,’%) (5.78)
k

5.7 Case Study: Laplace’s Problem in a Sector
with Non-Homogeneous Boundary
Conditions

The straight sides of a circular sector (with aperture angle o and
radius R) are ate temperatures Ty, T», while the temperature of the
curved partis f(¢) (¢ is the angular variable).

Find the stationary distribution of temperature inside the sector.
Mathematical formulation
We apply the principle of linearity on the Laplace’s equation to

solve the problem in the sector with non-homogeneous boundary
conditions (see figure).

(o) [(T-T1)e/a+T,=g(9)] f(9)-9(9)
T, 0
Au=0 + Au,=0
a a

Figure 5.6
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We note that the solution cannot be decomposed in any other way,
since only in this manner can we have homogeneous boundary
conditions in the angular variable. In this fashion we have the
possibility to expand the solutions in orthogonal eigenfunctions.

T(P) T(®) T(®)
Af(q)) g(e)
: L= / +
: : i ; f(@)-9(e)
: : . : L 7~
T1 T2 ® T1 T2 ® T1 T2 ®
Figure 5.7

If u(r, ¢) is the solution of the initial problem u (r, ¢) and u;(r, ¢)
are solutions of problems (b) and (c).

Separating the solution in two we have:
Au(r, ) = Auy(r, ¢) + Aua(r, ) =0
ur, ) =ui1(rn0)+ux(r,0)=T1+0=T;
ur, o) =ur(n )+ u(na) =T +0=T,

u(R, ¢) = u1(R, ¢) + uz(R, ¢) = g(¢) + f(») —g(¢) = f(¢)
(5.79)
To separate the problem in two helps to separate the solution
of the initial problem (a) in two solutions, one of which only
depends on the angle u;(r, 9) = u;(¢), while the other u;(r, ¢)
has homogeneous boundary conditions, which allow to expand the
solution in Fourier series for the angular variable:

Ifus(r, ) = u1(p) then 2 = &4 — o

The problem of the Laplace’s equation is:

1 d?%u,
r2 de?
Solution: u1(¢) = A x ¢ + B (A, B =Const)

Auq(r, ) =0 — =0 (5.80)

We will use the boundary conditions to find the function u;:

First condition: u;(¢ =0)=T; > B=T,
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iy . _ _ _ T)—T-
Second condition: uj(¢p =a) =T, > A= 21

Then u; (¢) = % x @ + T is the solution of problem (1) and does
not depend on the radial variable.

General solution

The general solution of the problem has been obtained before
(problem of the electric potential inside a circular sector):

o0
- n
uz(r, ) = Z A,r« sin (n—<p> (5.81)
o
n=1
We just need to apply the boundary condition at r = R to

find the coefficients by applying the orthogonality of the angular
eigenfunctions

s n n
Fl@) - g(¢) = 2 AR sin (7")) (5.82)

We will now find the solution u; for a specific case of a sector with
radius R = 1. Let us consider the following boundary conditions:

Ti=0; To=1; a = %; £(1, ¢) = 3sin(4¢) (5.83)
The problem to find the function u;(r, ¢) is:
Auy(r, ¢) =0
uz(r,0) =0
Us(r, @) = 0 (5.84)
w(R 9) = f(6) ~ glo) = 3sin(de) — -~
The general solution in the specific case will be:
ua(r, ¢) = ) (1" [Ay sin(4ng)] (5.85)

Final solution

The final solution will be obtained by imposing the boundary
conditions:

us(R, ) = 3sin(4g) — 2 — S ()[4, sin(4ng)]  (5.86)

T
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f(9)-9(9)
| .
)
0
Figure 5.8

and using the orthogonality of the eigenfunctions sin(4n¢) in the
interval (0 < ¢ < 7) we arrive at the final solution:

/4
2 o 4y
A, = ) 0/ [3 sin(4¢) - ] sin(4ng)de
2
A =3+ = n=1)
= N (5.87)
4, =209 s g
n
Then:
2\ 4 — D™
uz(r, @) = <3 + n) r*sin(4¢) + 2 Z T(r) sin(4n¢g)
"~ (5.88)

5.8 Case Study: Temperature Distribution in a
Disk with Heaters

A disk of radius R with heat capacity C = 1, density py = 1, thermal
conductivity k = 1 and thermal diffusivity x = 1, has its outer
surface in contact with a thermal reservoir at zero temperature .
Find the stationary distribution of temperature inside the disk if in
its inside there are heat sources with density f = F - xy.
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u(R)=0
Figure 5.9
Mathematical formulation

Cro e — kaulp, 0) = Fry 0<p<R)
ou _ o F g = F g

5t xAu(p, ¢) = ™ = tm” sin(g) cos(¢) = Cr? [3sin(2¢)] (0=p =R)

F . F .

Au(p, ¢) = fﬁpz sin(2¢) = ffpz sin(2¢) (0<p<R)
u(R, ¢, t)=0

u(0, ¢, t) < o0

(5.89)

Due to the symmetry of the heat sources, the problem can be solved
in several ways:

Method 1
Sturm-Liouville problem
As itis a Poisson’s problem in a circle without a hole at its center and

with homogeneous boundary conditions, we can seek a solution in
the form of a sum of orthogonal functions:

u(p, 9) =Y Un(v/Aamp)

+DNp(\/ Anm )] [Anm sin(me) 4 Bam cos(mg)] (5.90)
And to satisfy the second boundary condition:

u(p, ¢) = Z]m(\/ AnmP)[Anm sin(me) + Bpm cos(mg)]

= Z CrmVnm(0, ¢) (591)
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where v,n(p, ¢) are well known eigenfunction of the Sturm-
Liouville problem.

Av(p, ¢) + v(p, ) =0(0<p <R)
V(R,9) =10 (5.92)
v(0, ) < 00

Solution

We replace this in the equation:

S AanJ s T} A Sin(m) + Ba cos(img)] = 5 sin(2g)

(5.93)
We use the orthogonality of the angular functions cos(mg),
multiplying both sides of (5.93) and integrating from 0 to 27, with
which we get at B, = 0.

The orthogonality of the Bessel functions and of sin(mg) is used,
multiplying by them both sides of (5.93) and integrating from 0 to
27 and we check that only the coefficients A,; # 0.

R 27
Az / Un(y/ D)1 pdp / isin(2¢) % dg
0 0

R 27
F
== / Tl Tamp)0dp / sin29)Pdg  (5.94)

0 0
Finally:
R
[ Im(NAump) p3dp
0

R

A2 [Um(v/Aamp)12pdp
0

F
A= 3 (5.95)

Solution as an expansion of Bessel functions:

u(p, ¢) = sin(2¢) Y _ AnaJ2(v/n2p) (5.96)
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Method 2

We will separate the problem in two: an inhomogeneous one,
where we will not care about the boundaries, with a particular
solution s and another one for the function v, with a homogeneous
equation, with inhomogeneous boundary conditions to satisfy the
homogeneous boundary conditions of the total solution.

u(p, ) =s(p, ¢) +v(p, ) (5.97)

The heat equation is multiplied by p?. The inhomogeneous problem
with a particular solution must satisfy the equation:

3211 ou 82u I
2 4 .
P°—+p—+ — =——p SIn Z(p 5.98
9p? op  3¢? 2 in(2¢) ( )

u(R, ¢) =0 (5.99)

Due to the symmetry of the inhomogeneous part, the particular
solution can be sought in the form:

s(p, ¢) = w(p) sin(2¢) (5.100)

Replacing in (5.98) we get an equation for w(p):
F
P tp——4w=——-p (5.101)
o

We can seek the solution in the form w(p) = Cp®, since all terms to
the left side are raised to the same power:

F
ala — 1)p* +ap® — 4p* = —Ep4 (5.102)
F 4
Clafa = 1) + o —4]p" = 5P (5.103)
From where: o = 4;C = — .. Then:
F, .
s(o, ¢) = =2, 0" sin(2¢) (5.104)

We formulate the Laplace’s problem for v(p, ¢)

Av(p, ) =0
{v(R, 0) = —s(R, w)} (>105)
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General solution
The general solution of the Laplace’s problem in the (whole) disk is:
v(p, @) =) _ p"[Asin(mg) + By cos(mg)] (5.106)
m
Final solution

Applying the boundary conditions and using the orthogonality of the
angular function we find the coefficients:

> R™[Apsin(mg) + By cos(mg)] = 2F—4R4 sin(2¢)  (5.107)

B, =0 (5.108)

Due to the angular asymmetry, only the A, coefficient remains.

F

R?A, = ﬁRA‘ (5.109)
F
Ay = ﬁRZ (5.110)

Then: v(p, ¢) = 4 R?p? sin(2¢). Finally the solution of the problem
(as a power expansion) is:

F
u(p, 9) =s(p, @) +v(p, ¢) = ﬁpZ[RZ — p?]sin(2¢)  (5.111)

Method 3

This is a modified version of Method 2. Instead of searching for
a solution as an expansion in 2D orthogonal functions (radial and
angular in Method 1) we will only use the orthogonality of the
angular functions.

u(p, ¢) =D R(p) - Pmly) (5.112)

with

2
T Omle) _ —m?®,,(¢) (5.113)
dy?
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Replacing the solution into the heat equation, rewritten as:

,0%U du  9%u F ,
S tpe o =——p sin(2 5.114
Pap +p8p+8<p2 > P sin(2¢) ( )
u(R, ¢) =0 (5.115)
u(0, ¢) < o0 (5.116)
We get
dR F
Zcpm(w) [p +pd— —m R} Ep‘* sin(2¢)  (5.117)
or
,d*R  dR
S [Awsin(me) + B cos(mg)] | p* oy + p o — m’R
m d 2 dp
F, .
=—5°F sin(2¢) (5.118)

Using the orthogonality of the eigenfunctions ®,,(¢) we have B,, =
0. In a similar fashion, multiplying by sin(m¢) and integrating from
0 to 2 we see that only the term with m = 2 remains. With this we
can formulate an equation for the radial function (without having
normalized angular eigenfunctions we can suppose 4; = 1).

F
— —4R=——p* (5.119)

Similar to Method 2, we find the particular solution and sum it to
the solution of the homogeneous equation, we use the boundary
condition to find R(p).

5.9 Diffusion in an Infinite Cylinder with Heat
Sources

Find the distribution of temperature in an infinite cylinder of radius
R if, starting at t = 0, inside a cylinder a heat source with density
f = —xy starts acting. Consider that the cylinder surface is always
in contact with a heat reservoir at Ty. The heat capacity is C, the
density is pg, the coefficient of thermal conductivity is k.
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u(R,0)=0

f=-xy
(t>0)

Figure 5.10

Mathematical formulation

The origin of temperatures is shifted by Ty. Due to the cylindrical
symmetry, we use these coordinates:

A Au = ou Au = ! 2 sin(2¢)
ot Cpo T ot XN T T 200, \ (5.120)
u(R,p,t) =0

We now look for a solution by separating it into two: one which
corresponds to the stationary distribution of temperature w(p, ¢),
and another corresponding to the transient part.

u(p, ¢, t) =wlp, ¢) +v(p, ¢, t) (5.121)

1
Aw = —— p?sin(2
w T (2¢)
u(R, ¢, t) =0 (5.122)
With no initial condition

The previous problem (5.8) contains a solution of the stationary
problem for w(p, ¢).

The problem for v(p, ¢, t) is:

— —xAv =0
ot~

V(R, ¢, ) =0 (5.123)

v(p, ¢, 0) = —w(p, ¢)
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Sturm-Liouville problem

We will separate the temporal variable from the spatial ones:

V= Z Qnm(t)snm(pt QD) (5124)

This last problem will be solved by expanding the solution
into orthogonal eigenfunctions of the Sturm-Liouville problem,
corresponding to the homogeneous boundary of the first kind:

As(p, )+ As(p, ) =0
{S(R’ o) =0 } (5.125)

The corresponding eigenfunctions and eigenvalues are well known.

[s(o, ©)nm = Jm(\/ AmnP)[Anm cos(mg) + Bpp sin(me)]  (5.126)

The eigenvalues correspond to the zeros of the Bessel function
Jm(v/AmR) = 0. Then, replacing the expression v(p, ¢, t) =
> Qnm(t)snm(p, ¢) into equation (5.123) we arrive at the equation
for the temporal part, which has an exponential solution:

Qnm(t) = e~ *m* (5.127)
General solution
vip, 9, ) = e ] (\/Anmp) [Anm cOS(m@) + Bum sin(me)]
(5.128)
Final solution

The initial condition is applied:

—w(p, 9) =D Jm(v/AmP)[Anm C0S(M@) + By sin(me)]
(5.129)

We use the orthogonality of the angular and radial functions to
obtain the coefficients of the sum A, and B,,.
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5.10 Variation of the Temperature in a Quarter of
a Disk

Find the variation of temperature in a membrane in the form of a
quarter of a disk with radii a and b. The two straight boundaries
are in contact with a thermal reservoir at zero temperature and
the curved ones exchange heat with the outer medium at zero
temperature according to Newton’s law, with a constant h. Starting
at t = 0 in the central part (indicated in the figure) acts a local heat
source of value F [J/(cm?- s)]:

olr — 521 x 8p — §)

(5.130)

frho,)=F

The density of the material is p, the heat capacity is C and the
thermal conduction coefficient is k

Exchange with the outer medium

Heat source
6((a+b)/2,n/4)

T=0
Figure 5.11
Mathematical formulation
Ju ou f k
Co— — kAu = — — xAu=— = —
Pt u=f— g U= (X Cp>
u
-k — = +hu(a, ¢, t
or|,_ +hu(a, ¢, t)
du
—k=-|  =—hulb e t) (5.131)
I'lr=b
u(r,0,t)=0
u(r, %, t)=20
u(r,¢,0)=0
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The next figure shows a schematic representation of the heat fluxes
along the radial direction:

T mmm Heat fluxes wmlp-

/ N

b al X

Figure 5.12

Sturm-Liouville problem

The solution is presented as a sum of eigenfunctions in two
dimensions:

u(r, ¢, )= QOV( ¢) (5.132)

Where V (r, ¢) is the solution of the Sturm-Liouville problem:

AV o)+ AV(re)=0

ov +hV(a )=20

o |, k =

w — ﬁy(b’ 9)=0 (5.133)
or |,—p k

V(rb0)=0

b1
Vi, z)=0
)

We separate variables to get to the solution. We will obtain the
eigenfunctions for the radial and angular part. We take v as a
positive value to guarantee that we will have orthogonal angular
eigenfunctions.

V(r¢)=R(r) () (5.134)
d dR(r) 2
T (FT) +Ar°R 1 d’o(y)

(withv > 0)
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The general solution of the angular part is:

O(p) =

From the second boundary condition: ®(0) =0 — A =0

A cos(v/vp) + Bsin(y/ve)

(5.136)

From the third boundary condition: ®(3) =0 — /v5 =mn

Then the eigenvalues are:

The eigenfunction are:

() = sin(2mey)

v = (2m)?

m=12.)

Equation for the radial part:

d ( dR(r)
FE <r dr >+

[Ar? — (2m)*]R(r) =0

General solution for the radial part:
R(r) = C x Jam(WAr) + D x Nop(¥/Ar)

From the first and second boundary conditions:

d

or

+D

[ pm (V)
& [ ("
[ o ()] b
i [1on (V)] =

dr=a

o

r=,

dr=b

—|C x Jom (y//l,((zm)r) + D x Nop, (\u(z'" r)

h ;
- (2 +
(V™)

h 2m 2m
+ [C x Jam(\/ A% ™a) + D x Ny, <\//l,(( )aﬂ =
d [ em, (2m) . ]
E_C X Jom (\/ + D x Nom | \/ A |

h
p [C X J 2m < A,Ezm)b) + D x Ny ( a,(f'")bﬂ =0

h m
()
= h o -
.t (%)

(5.137)

(5.138)

(5.139)

(5.140)

(5.141)

=0

=0
(5.142)
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By equating to zero the determinant of the previous system of
equations we get the eigenvalues Ay,. From one of the boundary
conditions, we get the ratio between the coefficients C and D:

% |:N2m (\//l(zm >:| + %NZm( A;{Zm)a)

r=a (5.143)
4 [12m< AZ™r ﬂ + 2 om (\/ﬂ“’" )

Spatial eigenfunctions to expand the solution:
Vim(r, @) = [R(r)]mk x sin(2mg) (5-144)

C=-D

Solution

Replacing the solution u(r, ¢, ) = > Q(t)Vim(r, ¢) into the heat
equatlon — xXAu = i we get:

ZdQ"’"mvkm( D)= 10X AVinlri0) = L (5.145)

km dt km

Fa(r—“%“)xw—%)
Cp r

d Qi
> { X +kam(t)akm} Vin(r, ¢) =
km

(5.146)
We use the orthogonality by multiplying both sides by Vi, (r, ¢); and

a 7z
integrating [ [ rdrde:
b 0

dQim a
Z { cQI]Lf +XQk’"(t)/lkm} //[Vkm(r: ©)Prdrde =
b

km

7//Vkm(r <p)5( (‘”b)) x5 (9 %) drde (5.147)

d ka

+ X Qiem () Akm

az ,
I [ Vim(r, )8 ( %) x 8 (p—Z)drdy
—_ b0 : = agn (5.148)

j f [Viem(r, @)1?rdrde
b 0
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The solution of the equation:

kom(t)
dt

+ X Akm Qkm (£) = ctkm (5.149)

is obtained as the sum of a particular solution:

Akm

Qkm, pare(t) = i (5.150)
and the solution of the homogeneous equation:
Qkm,hom (£) = Ael=* ) (5.151)
Then:
Qn(t) = Ael7xAmd | hm_ (5.152)
X Ak
Then, imposing the initial conditions to the whole solution:
u(r, @, 0)=> [Ae(_“"mo) + m} Vim(r, @) =0 (5.153)

km

We find the coefficient A = — X“/’{;{“ . Finally:

u(r, o, t) = Z [X“/’l‘k’"m} (1 — eC7 4D [R(r)]mk X sin(2me)
(5.154)

km

5.11 Oscillations of a Quarter of a Membrane

Find the amplitude of the main tone (the lowest frequency) of a
membrane with fixed boundaries and the shape of 1/4 of a circle,
with tension T and surface mass density p. A point-like hit hits the
membrane at rest at ¢t = 0 in the indicated location, with a total
transfer of momentum K:
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Hit at (R/2, T/4)

Figure 5.13
Mathematical formulation
3%u 5
— —a*Au=0
ot2
T
a? = —
0
u(R, ¢, t) =0
u(r,0,£)=0
(5.155)
u (r, z, t) =0
2
u(r,,0)=0
R b4
ou| K8<r_2> X5(¢_2>
|y P r

The last relation is found from the following integral of the initial
velocity in the surface (S) of the disk:

]
{[» “’ rdrde = K (5.156)
at | —g
S
Sturm-Liouville problem

We use separation of variables to formulate the Sturm-Liouville
problem, which turns out to be:
AV(rhbg)+AV(r¢)=0

V(R, ¢) =0
V(r,0)=0

'03)-

(5.157)
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To find the eigenvalues and eigenfunctions we separate variables
once again. We get eigenfunctions for the angular and radial parts.

V(r ¢) = R(r) - ©(¢) (5.158)
rdrBy LR 1 d*d(p)
- =30 4 = (5.159)

(with v > 0, since the sign of the constant from the separation
of variables must be greater than zero to have orthogonal angular
solutions). The general solution of the angular part is:

®(¢p) = A cos(v/ve) + Bsin(v/vg) (5.160)
From the second boundary condition: ®(0) =0 — A =0
From the third boundary condition: ®(3) =0 — /v5 =mn
Then the angular eigenvalues are:
v = (2m)? (5.161)

The angular eigenfunctions are:

®(¢) = sin(2mg) m=1,2,..) (5.162)
Equation for the radial part:
d dR
P (RO L2 - 2m)ARE) = 0 (5.163)
dr dr

General solution for the radial part:
R(r) = C X Jam(NAr) + D x Nop(~/r) (5.164)
SinceR(0)=0—- D=0

From the first boundary condition, imposing R(0) = 0 we will get
the eigenvalues 1*™:

R(R) = C X Jom ( AE’”]R) =0 (5.165)

The spatial eigenfunctions to expand the solution are:

Vien(r, @) = Jom <\/a,£2"’)r) x sin(2mg) (5.166)
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General solution

We have the following general solution:

u(r, 9, 8) = Qum(t)Viem(r, ¢) (5.167)

where Qyn(t) are solutions of the equation:

2 Q )

m —

a2 + a4 Qem(t) = 0 (5.168)
Then:
Ugm(r, @, t) = Z { cW m cos(a+/At) + C,Ef,} sin ( Aft)}

X Jom ( Agr) x sin(2mg) (5.169)

Frequencies of the excited modes: w?, = a?Am

The minimum value of wy, corresponds to the minimum value of
Akm, which happens for k = 1, m = 1. Profile of the lowest mode:

ui(n o, t) = [ §1) cos (a\//l?t> 11 sin ( [t)]
X Jp <\/Er> X sin(2¢) (5.170)

Final solution

We search the coefficients Clll), C(Z) as a result of the hit, using the

initial conditions:

u11(r, ¢, 0) = [ 11 cos( \/70) —i—C11 sin (a\/EOH
« I (\/Er> x sin(2¢) = 0 (5.171)

We get C ﬂ) =0
We search C ﬁ) using the initial condition for the velocity:

ou
ot

= Z [C,g,?a AR cos (a AZ’O)} Jom ( /l;("r) x sin(2mg)

_ Ko -8 x 8- 1)
0 r

t=0

(5.172)
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Since we are only interested in the frequency of the main mode
(k, m = 1), we multiply the former expression by the corresponding

eigenfunction:
)2 <\//1%r) x sin(2¢) (5.173)

and using the orthogonality of the other eigenfunction we find the
amplitude of the main tone:

Z[ngn)a /U("]/ Jom (/A1) )2 (@r) rdrx sin(2mg) sin(2¢)
// Ks(r_ 2 <\F ) sin(2¢) ((p— %) rdrdg (5.174)

Only the terms with indices k, m = 1 remain.

2 : 2
/ 2 K R
4 p 2 4
(5.175)
The final result for the amplitude of the main tone is:
~J2(Va15)sin(27)
ay/A ‘]2 (\//llr)‘ X 7'51“(2“’)‘2

X J2 <\/> ) sin(2¢) sin ( \//l?t> (5.176)

5.12 Case Study: Variation of the Temperature in
a Cylinder with a Thin Heater

Ciya

uyi(r e t) =

A disk has a hole in its center. The outer surface (radius R;) is
thermally insulated. The outer surface (radius R;) is put into contact
with a thermal reservoir at zero temperature. Find the variations
of temperature as a function of time if the disk was in thermal
equilibrium at zero temperature and, starting at ¢ = 0 a thin heater
of power P with the shape of half a ring, centered and with radius
R = (R1 + R2)/2 between the inner and outer radii of the disk. The
thermal conductivity of the material is k, the heat capacity is C and
the density is pg.
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Insu[ated

Very thin heater
Figure 5.14

Solution:

We seek the solution as the sum of a transient function and a
stationary one.

Mathematical formulation

There is no z variable.

u
C,ooa —kAu(p, ¢, t) = f(p, ¢) (R1 = p = R2); (t > 0)
Ju k S, 9)
a - CfpuAu(,O, @, t) = C‘;)[:p
u(p, ¢, t=0)=0
U(Rz, @, t) =0
u _
ap p=R1

(5.177)
We define mathematically the non-homogeneous part of the
equation:
flp, ¢) =g(p) - h(e)

_ P (R +Ry)
gle) =50 (p 2 > (5.178)
0 0<gp=<m)

h(e) =

1 (7 <¢ < 2m)
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The constant of the non-homogeneous part is found by integrating
the density of heat (with unknown constant) in the whole area
and integrating it to the power radiated by the heater. Since it is a
non-homogeneous and non-stationary problem, with homogeneous
boundary conditions, we will split it into the sum of two problems:
one corresponds to the stationary solution at t — o0, and the other
is the transient problem.

u(p, ¢, t) =v(p, ¢, t) +wlp, ¢) (5.179)

0 k
Y AV e =0 (Ri<p<R)i(t>0)
at Cpo

v(ip, p,t=0)=—-w (p, ¢)

V(Rz, ¢, £) = 0 (>-180)

av
dp =Ry

The second problem is homogeneous with non-homogeneous
boundary conditions:

=0

Aw(p, ) = — f[pk' #) (R1 <p <Ry
w(Rz, ¢) =0 (5.181)
ow
- — 0
dp p=Ry

We start with the stationary problem.

Sturm-Liouville problem

We seek the radial solution by expanding by eigenfunctions of the
Sturm-Liouville problem:

Aw(p, ¢) + Aw(p, ) =0

ow
bl -0
ap p=Ry

The orthogonal eigenfunctions and the eigenvalues are well known:

Wom(0, ©) = [Anm) m(v/Aamp) + BamNe(v/Aamp)]1el™) (5.183)
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For the time being, this form only considers the periodicity of the
solution (with period 27 and the general form of the radial part:
a combination of two linearly independent solutions (Bessel and
Neumann).

Applying the boundary conditions, we will obtain the eigenvalues
Anm:

W(R2, ¢) = 0 = [Anm) m(vV/AumR2) + Bam Nm(V/AnmR2)] = 0

ow
% =0— [\/ /lnmAnmUm(\/ /lnmr)]p=R1
p=R1
+ Bam/Anm[Nm (v /lnmr)]p=R1 =0
(5.184)
Solution

The solution of the determinant of the previous system of equations
gives us the eigenvalues A,,. On the other hand, using the equation
of the first boundary condition:

]m(«/ /lnm RZ)
" Nm(\/ /lnm RZ)

We can write the eigenfunctions (not normalized) as:

an(p' (P) = l:]m(\/ /lnmp) Ijvm((\/ﬂi,Z))N (\/ nmp)

X[Cpm sin(mg) + Dy, cos(me)] (5.186)

Bpn = —A (5.185)

The solution of the stationary problem will be sought by replacing
its form:

w(o, ) = S Un(y/Aamp) - %_ mwm(\/anmp)]

><'[Cnm sin(mg) + Dy, cos(me)] (5.187)

into equation (5.181):

/ ]m(\/ /lnmRZ) /
ann:/lnm |:]m( ﬂnmp) - mlvm( /lnmp)
9(p) - h(p)

X[Cpm sin(me) 4+ Dy, cos(me)] = T (5.188)

293



294 | Problems in Polar Coordinates

Multiplying both sides by orthogonal eigenfunctions and integrating

/pdp/sin(mw)dgp (5.189)

we will get the coefficients Cp, and Dyt

]m( /lnmp)— ]m(\/ nmRZ)

Cnm nm
N (\/ nm RZ)
Ry 27
1 m nmR .

- / T/ Aomp) {Vm((? %Nm(\/xmp)g(mpdp / h(g) sin(my)de

R1 0

(5.190)
2

/1nm

X
2
‘]m(\/ Anmp) - %%Nm(\’ /lnmp)H

Ry
X%/ {]m(\/ﬂp) - Mm(\/ﬂp)} 8(p — R)dp x

F Nm(V /lnmRZ)
7 2p
x/sin(mw)dw = 5 X
. 72l /() — 42 N (T

Ve Jn(V/ A R2) Vo
|:]m( /lnmpo)_ mRz)N( /lnmR)i|

cos(rm) — cos(2nm)
A

(5.191)

In a similar way:

2 P

Dnm = )
v b
‘]m(\/ Anmp) — {V:(( /*i:';};zz)) Ny (v Anmp) H

/lnm

Ry
x /Um(\/ Anmp) — MNm(\/ Anmp)]8(p — R)dp x
Ry

Nm(\/ Anm RZ)
2w
/ (mp)d 2P
x | cos(mg)dp = 5 X
T ﬂzk/lnm )]m(\/ /Inmp) - %%Nm(\/ /lnmp)H

T

{sin(Zn m) — sin(rm)
X

} —om=1) (5.192)

m
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The coefficients that correspond to the case m = 0 are:
P

oV Tmop) — 2CT0 0 Ny (VT p)H

Jo(V/ Ao R2)
X [/m(\/HR - WNO[\/HR)} (5.193)

Note that the modulus of the angular eigenfunction in the case m = 0
is equal to 2.

DnO =

ﬂk/ln()

Solution of the problem 5.180

We seek the solution by separating the temporal and spatial
variables, and expanding by the previously obtained orthogonal
eigenfunctions (the solutions of the Sturm-Liouville problem with
homogeneous boundary conditions):

E;‘;—CI;Av(,o,ga,lf)—()(}?z <p=R1)(t>0)

v(p, ¢, 0) = -w(p, ¢)

v(Ryy ¢, 8) = 0 (5.194)
av _

0l

We seek v(p, ¢, t) = > s(p, ¢) - T (t)

with the same orthogonal functions as in the previous part:

As(p, )+ As(p, ) =0
(5.195)

T k
5 + (CT)O/UT(t) =0

_ Lo
The temporal solutions give ‘% = e @' The general solution is:

—_k QF m \//lnmR
v(p, ¢, t):Ze( ! )X []m(\/ /lnmp)_ljv((\//l—Rzz))Nm(\/ Anmp)

X [Knm sin(me)+ My, cos(mg)] (5.196)
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Applying the initial condition v(p, ¢, 0) = —w(p, ¢) and using the
orthogonality of the spatial and angular eigenfunctions and we find
the coefficients K, = —Cnm; Muym = —Dym.

Note: the alternative method (less physically transparent) which
will provide the same result consists of seeking the solution as
vip, o, t) = >.s(p, ¢) - T(t) being s(p, ¢) orthogonal functions
which are solutions of the previous Sturm-Liouville problem.
Replacing this form into the initial non-homogeneous equation
and applying the orthogonality of the functions will give us a
non-homogeneous first order differential equation for the T (t)
function. Its solution will be sought as the sum of the solutions of
the homogeneous problem and a particular solution (a constant).
Applying the initial condition (trivial) we will find the coefficient of
the solution of the homogeneous equation.

5.13 Forced Oscillations in a Circular Membrane

Find the oscillations of a membrane of radius R fixed at its boundary
if, starting at ¢t = 0 it is subjected to a force homogeneously
distributed, with density f(t) = Py sin(wt). For t < 0 the membrane
is at rest.

R

ft)

Figure 5.15

Mathematical formulation

Since the problem is symmetric in the angular coordinate the
equation we need to solve is:
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1ou*(p,t) 139 u

—— |p— | = (Po/T) sin(wt t>0
R {a} (Po/T)sin(w) (¢ > 0)

ou
u(p, 0) = ot =0 (5.197)
t o

u(R,t)=20
u(0, t) < oo

with a? = T/p,. Using the principle of superposition we will seek

the solution as the sum of:

(i) A solution of the inhomogeneous problem, w(p, t), stationary
(independent of the initial conditions).

(ii) A solution of the homogeneous problem v(p, t) but with new
initial conditions to compensate the stationary solution, so that
the overall initial conditions are null.

In our case the null initial conditions correspond to the total

solution.

u(p, t) =wlp, ) +v(p, t) (5.198)

In this way the original problem is obtained as superposition, i.e.,

sum, of these simpler subproblems.

Problem 1:

1 aw?(p, t 19 a
Lwlo g 1901 W _ b rysinwt)
at  ot? pop | 0p
w(R, t) =0 (5.199)
w(0, t) < o0
Problem 2:
1vi(p,t) 193 [ av
— 7 1p=|=0
a?  3t? pdp | dp
u(p, 0) =w(p, 0) +v(p, 0) =0—v(p, 0) = —w(p, 0)
av 0w (5.200)
T P TN P
V(R,t) =0
v(0,t) < o0
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We seek the solution of the inhomogeneous problem w(p, t) as:
w(p, t) = A(p) sin(wt) (5.201)

We replace this expression into problem (1) and divide the result by
a factor sin(wt)

2dzA dA  p*w? P,
PPt p——+—A=——p
dp dp a T (5.202)
A(R)=0

The solution is the sum of the solution of the homogeneous equation
(A1) and the particular solution (43).

A(p) = A1(p) + A2(p) (5.203)
Equation to find A1 (p):
d*A dA 20?
2 1 1 P
— A1 =0 5.204
dp? te dp + a2 ! ( )
General solution
With the change of variable x = £2 this equation turns into the

equation for the zeroth order Bessel’s equation:

dA dA dA
a7 _eax _ a4 (9) (5.205)
dp dx p dx \a
d?A  d*A (dx\® d*A jo\?
S e (7) (5.206)
dp? dx? \ dp dx? \a
(due to g%‘ = 0). With this we obtain an equation for the new
variable x:
d“A dA
2 1 1 2
— A = 5.207
dx? X dx txA ( )
or
d*A 1dA
— oA =0 (5.208)

dx? ' x dx
With the following solution:

Ay =C-Jo()=CJo (%“’) (5.209)
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Note: The radial solution cannot include the Neumann function.
We seek the particular solution A,(p) to satisfy the boundary
conditions:

A(R)=A1(R)+ A2(R)=0 (5.210)
The particular solution A4, (p) is a constant:
P()a2
A =— 5.211
2(0) = 7 (5.211)
We impose the boundary conditions:
Rw Poa?®
A(R)=A1(R)+ A2(R)=C - Jo [ — ) - 2= =0 (5.212)
a T w?
And obtain the constant:
Poa® 1
od (5.213)

T Ta? Jo(R2)
Then:
w(p, t) = A(p) sin(wt) = [A1(p) + Az(p)] sin(wt)

P 2 po

=2 (1 "(Raw) - 1) sin(wt) (5.214)
Tw ]0(7)

As we know the form of w(p, t), we now seek the solution of the

homogeneous equation (which depends on the initial conditions).

1av¥(pt) 138 { av}

a?  ot? pdp | dp
u(p, 0) =w(p, 0) +v(p, 0) =0 — v(p, 0) = —w(p, 0)
av aw
— ,0)=— — ,0
3t tzo(p ) m [zo(p )
V(R,t) =0
v(0, t) < o0
(5.215)
First initial condition:
pw
Pya? Jo(=)
4 _ _1|sin(w0)=0

V[,O, 0) = _W(IO’ 0) = T w2 Row
Jo <>
a
(5.216)
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Second initial condition:

2 pw
v = — aw = _@hoa <]O( a) — 1> cos(w0)
0t |0 0t |i—o T w? ]0(%)
_ Pod® [ Jo(%)
=70 <]o(Raw) - 1) (5.217)

Sturm-Liouville problem

The homogeneous problem (5.215) is solved by separating vari-

ables:
v(p,t) = D(p)- T(t) (5.218)
We will obtain two differential equations independent of the angular
variable:
,d*D dD )
Y doZ + ,Odf +0°D=0
dsz p (5.219)
27
F 4+ Aa°T =0

The solutions for the radial part are eigenfunctions of the following
Sturm-Liouville problem:

G LL P
do?  pdp N (5.220)

D(R) =0; D(0) < o0

D(p) = Jo(\/Aup);  VAn= XT’;O (5.221)

where x,o are the n-th zeros of the Bessel’s function of argument
zero Jo(xp0) = 0. Solution of the temporal part:

Tn(t) = Cq cos (a%t) + C; sin (ax—;()t) (5.222)
General solution for the homogeneous equation.

v(p, t) = Z]o(\//Tnp) [Cln cos (ax—;ot) + Cy, sin (a%t)}
! (5.223)
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Final solution

We find the coefficients of the sum using the initial conditions:
Applying the first condition: v(p, 0) =0 — C1, =0

Applying the second condition:

v Poa?® ]0(%) . Xno
at |, T Te (]O(Ra"’) B 1> - ZI:CZ"(“?)]O(\/ZP)

From here, to find the C;, coefficients, we multiply both sides of the
previous relation by the orthogonal eigenfunctions Jo(+/4xp) and

R
integrate | pdp. We use the property of orthogonality of Bessel's
0

functions.
R 0 (ifn # k)
/]0(@0)]0(@9)9‘10 =< p2 (5.224)
0 7[/6()(")]2 (ifn=k)

being ] j(x) the derivative of the Bessel’s function at the zeros x =
Xp. Furthermore, we will use the following relation:

X

/z]o(z)dz = xJ1(x) (5.225)
and the integral: 0
/Rlo(@p)]o(kp)pdp = %U;(km (k+1,) (5.226)
And arrive at
Con = — ;f:}ﬁf:) <w2R2 L x,,a2> (5.227)

The final solution is:

2 po
u(p, t) =wlp, t) +v(p, t) = Poa <]0( a)

Tw? \ Jo(%?)

2P0(16!)R3 Z 1 1
T xn) §(xn) \ @?R? — x,0?

n

x Jo(v/Anp) sin (ax—g)t) (5.228)

— 1) sin(wt)
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Note: The obtained solution is valid supposing that the frequency
of the outer force does not coincide with any of the resonant
frequencies of the membrane. If that were the case, in the resonance
condition the amplitude would increase non-stop (due to the lack
of friction) and the stationary situation would never be reached the
membrane would break first. In any case we would be beyond the
limit of small oscillations withing which the wave equation is valid.

5.14 Case Study: Stationary Distribution of
Temperature Inside the Sector of a Disk

Find the stationary distribution of temperature in a fourth of a
circular ring (outer radius a, inner radius b and spans an angle
/2. The membrane (with thermal conductivity k) is insulated on
three boundaries and semi-insulated in the inner curved boundary,
where there is a heat exchange with the outer medium, which stays
at T = 0 according to Newton’s law with a constant h. Inside
the membrane there are heat sources localized along a curved line
inside the sector (7/8 < ¢ < 37/8) at a distance R from the center.
The total dissipated power is such that: lim._, ﬂ f(p, @)pdody =

Fy being Qe the infinitesimal surface around the heat sources.

,311/8
/ Ir]:sulated

Heater

Semi insulated =~

Figure 5.16
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We know that:

A A 3
flp, ¢) = =38(p — R)G(¢) = =8(p — R)S 1 (g <@ < g)
P P

Applying this condition: Fo = [[ 45(p — R)G(¢)pdpde = § A
Qe

From what we get: 4 = *fo
T

Mathematical formulation
[1 9 ou 1 au?(p, ¢, t) 4F, 1

k| = p o |+ P = 2280 — R)G(w)

Lpdp | 9p P dg TP

u
s =0
a(p =0

u

I p——

0
ul
9P | p—q

—k — = —hu(b, ¢) (u > 0 — outwards flux)
p=b

(5.230)

The following figure shows a schematic representation of the heat
fluxes at the boundaries along the radial direction:

T < Heat flux
. 04

K

Zero heat flux

u---‘-

a X

Figure 5.17
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Sturm-Liouville problem

Since all boundaries are homogeneous, we can seek the solution by
expanding it in eigenfunctions of the Sturm-Liouville problem.

u(p, 9) = > DamVam(p, ¢) (5.231)

Where the v, (o, ¢) satisfy:

Av(p, ¢) +v(p, ) =0

av
g
av
g
av
ap
av

ap

9=0

=5=0 (5.232)
(4

p=a

—Hv(b9)=0 (H=-})

p=b

We seek the solution using the separation of variables method:

v(p, ¢) = R(p) - P(¢) (5.233)

We get the following Sturm-Liouville problem for the angular
variable ¢:

do
dy
do

= (5.234)
=0

We general form of the angular eigenfunctions is:

®(¢) = C - cos(/1r9) + E - sin(/1e) (5.235)

Due to the first initial condition, we get E = 0. The eigenvalues pp,
are sought by applying the second boundary condition:
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do
gl =0=sin (ﬁ%) (5.236)
=5
f% —m (5.237)
wm = (2m)? (m=0,1,23..) (5.238)

By replacing v(p, ¢) = R(p) cos(2mg) into equation (5.339) we
arrive at the following equation for the radial variable:

3R 10R 2m)?
R LR (MY g (5.239)
ap?  pop p?

The solution of this problem gives us the set of radial functions:

an(p) = Anm]Zm( V /lnmp) + BnmNZm(\/ /lnmp) (5240)

General solution

The general solution is:

u(,o, ¢, t) = Z |:Anm]2m( V /lnmp) + BnmNZm(\/ /lnmp):| COS(ZmW)

n,m

(5.241)
The possible values A,,, are the n-th zero of the equation, obtained
by equating to zero the determinant of the system of two equations
with two unknowns formed by the first and second boundary
conditions:

dR —0
ol =
dﬁ p=a (5.242)
—_— — HR(b) =0
dp | ,—p
d VA dNym (/A
Anm~/Lam M + Bum/om M -0
dp p=a dp p—a
d VA
Anm /lnm M - H]zm(\/ ﬂnmb)+
1Y o=b
dNom(/A
+ Bumn/Anm w — HN3p(/Aamb) = 0
p=b

(5.243)
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Also from the first or second boundary conditions can we obtain the
relation between the coefficients A,, and By, and in this way be
able to determine the form of the final solution.

dp _
Bnm = _Anm p=a 5.244
ANen (o) (5244
dp p=a
So that:
dp -
Rum(p) = ]Zm(\/mp) - A (\//l_p) r=a Nom(v/ Anmp)]
T .

(5.245)

Final solution

Once the form of the general solution has been clarified we
find the coefficients of the expansion, replacing u(p, ¢, t) =
> ApmRum(p) cos(2me) into (5.337):

n,m

—Au(p, ¢, ) =Y ApmdnmRum(p) cos(2mg) = (5.246)
n,m
/lnm
= 3 Ao |Jan s Aam) = == (T | cost2me)
— nm“tnm 2m nm szm(\/mp) 2m nm
dp p=a
4Fy 1
ﬁfa( o — R)G(¢) (5.247)

We use the orthogonality of the radial and angular eigenfunctions
to find the coefficients A,,. Both sides of the previous relation

a z
are multiplied by R,m(p) cos(2mg) and integrated [ [ pdpdg. Due

b0
to the orthogonality the radial R,,(p) and angular cos(2mg)
eigenfunctions, we get the coefficients App:

Apmdm ||an(p)||2 lIcos(2me)||*

il / / Rum(p) cos(2me)3(p — R)G(¢)dpdg (5.248)
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_ 4Fg Rum(R)7;[sin(3m/4) — sin(rm/4)]

Apm = — (5.249)
"kt dam [ Ram(0)11? llcos(2me) |2
We must consider that:
b1
5 7 (m #0)
lcos(2me)||“ = T (5.250)
ol -0
~ (m=0)
4F Ruo(R)Z
o= Fo_ Rm(R)g (5.251)

— kat Auo I Ruo(0)I* %

Alternative method
Sturm-Liouville problem

Another way to solve the problem is shown next, expressing the
solution only in a set of orthogonal eigenfunctions in the angular
direction:

u(p, 9) = Rm(p) - Pm(p) (5.252)

Where the ®,,(¢) come from solving the same angular Sturm-
Liouville problem:

P2 t
A G2 700 B
92
o) _ 0 (5.253)
de |,—o '
do o
do o=t
D, (¢) = cos(2me) (5.254)
wm = (2m)? (m=0,1,2,3...) (5.255)

Replacing u(p, ¢) = > Ru(p)®m(¢) in (5.337) we get to the

following non-homogeneous equation for the radial variable:

1d d 1d°®Pn(9)  f(p, ¢)
zm: q’m(‘ﬂ);% (’odpRm('O)) + Rm(ﬂ); =—

dy? k
(5.256)
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1d d 4m? 0,
|2 (05 R0)) = Rat) - | costamg) = - L0
— pdp \ dp P k
(5.257)
d*R, 1dR, 4m? ,
Z[ L - ”Z'Rm] cos2mg) = — L9 (5258)
— | dp p dp P k
Applying the orthogonality:
/2 @Ry LRy _Am P 1 cos@me)
dp> ~ pdp  p2 " v
. z
=~y [ 00 ) costzmedy (5.259)
0

Considering the case for m = 0:

d®R, 1dR, 4m® 7=  4F1
do> pdp p2 "] 27

S8R / 6(¢) cos(0)dy
0

(5.260)

dsz 1dR, 4m> b1 4Fy 1 T
— — R,| — = 5(p — R)— 5.261
[dp2+pdp u m}z (- R (5261

T knop
Equation to solve for m = 0:
d’Ry 1dRy 2Fy 1

——=-"—"Z5(p—R 5.262
a2 o dp kT (p—R) (5.262)

Boundary conditions:

In the case m # 0

d’R,, 1dR, 4m* 1n 4F,1 7
— — Rn| =—=——=8(p—R) | G 2my)d
{dpz o m} = 3(o-R) [ Gl costzme)de
0
(5.263)
The equation to be solved is:

d’R 1dR 4m? 8F 1
m —C0m M = S0 (o — R)F  (5.264)
dp>  p dp  p? o

k2
Where F,, = sin(3’"T”) — sin("F")
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We solve first the case m # 0. Except at p = R we have the following
homogeneous equation:

d*R, 1dR 4m?
dpzm + Eidpm Y Rm =0

dR

—| =0 (5.265)

dp | ,—q

_x 4R
dp

= —hR(b) =0
p=b

General solution

The general solutions are:

Ry(p) = Ap™ + Bp=2" (p < R)

(5.266)
R (p) = Cp*™ + Dp~*™ (p > R)
Applying the third boundary conditions:
2mCa®™ ! — 2mDa=?""1=0 (5.267)

Then: C = Da*™

Applying the fourth boundary condition:
k(2mAb*™! — 2mBb~*""1) = h(Ab*™ + Bb~*™) (5.268)

2km Ab*" + B~ 2Bb
- —p- 0 5.269
h ~ (Ab?™1_ Bb-2m-1 B_apm (%09
2km 2Bb
b- = = (5.270)
2k 2k 2k
2Bb=(b— =) (B— Ab*™) =B (b— =0 ) —ap*m (b — =0
h h h
(5.271)
2k 2k
B (Zb —b+ hm) = (b = h’") (—Ab*™) (5.272)
(b~ 2o
B=—Ab*""— 1~ = AT (5.273)
(b + Zmy

Imposing the continuity at p = R:
R, (R) = R!(R) (5.274)
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ARZm _ ATR—Zm — Da4mR2m + DR—Zm — D[a4mR2m + R—Zm]
(5.275)
[a4mR2m + R—Zm]
R2m _ Y R—2m
We set the condition for the change in derivatives at p = R:

A=D (5.276)

"Erd?R,  1dRy  4m? 8FoFy [ 1
m m m 08m
- - Rm| pdp = — ~8(p—R)pd
/|:d,02+,0d,0 P m]pp = /p(p )pdp
—& —&
(5.277)
R+e
d2 Rm < dR R+e dR R+e
R/e dpz dlo R—e d'o R—¢
Since R |f*=0 fore — 0
R+£dR
/ d—’"dp =R|IfF*=0 (¢—0) (5.279)
R—c¢ P
R+sR
/ 7md,0 = (5.280)
R—¢

(for ¢ — 0 as both functions are continuous and finite at p = R)

Then:
dR|R+e R(dR+ dR—)
p — =R|——-—
dp |p_s dp dp
8FF, 8F,F
0m 0m
= — 8(p — R)dp = — = 5.281
s [ st Rdp = =210 = 0 (5281)
R—¢

Replacing R*, R~
2mCR*™1 — 2mDR™*"! — 2mAR*"' + 2mBR™*"! = Q,

(5.282)
Renaming (to simplify the equations):
o =a'" (5.283)
p — 2km
T = b‘“”( ) (5.284)

(b+ Zm)
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[a4mR2m+ R—Zm]

8= Rom _ Y R=2m (5.285)
We obtain:
C=0D;, B=—-"TA; A=6D (5.286)
Equation (5.282) is left as:
oDR?*"t _ pR=?m-1 _§spR?*™! _ys§DRIM1 = g—’" (5.287)
m
So we arrive at the value of the last coefficient of the expansion:
Qm
D=D, =
™7 2m[(o — §)R?2m1 — (1 — Y8)R-2m-1]
4FyFp, 1
=— 5.288
mkn? [(o —§)R?™1 — (1 — Y§)R-2m-1] ( )
An =68Dy (5.289)
B = —Y8Dp, (5.290)
Cn=0Dy (5.291)
Finally we consider the case m = 0:
d*R 1dR 2Fp 1
m " 20250 —R) (5.292)

[ + —_
dp? o dp km p
The general solution of the homogeneous equation in this case is:
Ry (p) = Ao+ Bolnp(p < R)

Rn(p) = (5.293)
R{(p) = Co+ Dolnp(p > R)

dR D
= :ozfzo_u)(,:o (5.294)

p=a

B
k?() = h(Ao¢ + BoInb) (5.295)

k
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Final solution

From the continuity condition:

Ry (R) = R{(R) (5.297)

AO + B() InR = C() (5298)

Finally the condition of the change of derivatives is used:

R+e R+e

d’R 1dR 2F 1
/ 04 2= pdp=—=2 [ Z8(p— R)pdp  (5.299)
dp? o dp km 0

—& R—¢

Using the same arguments as in the previous discussion:

dR*|  dR 2F,
oy (il N i IO 5.300
( dp [g dp R) kn ( )
By 2F,
R(0-22)=_%20 5.301
( R) km ( )
Then:
2F, 2F [ k 2F, [ k
Bo="2 Ag="" (% _b);co=""2(" —Inb+InR
0% k' 70 kn(hb n) 0 kn(hb no+in

(5.302)
From the final solution:

o0
Ao+ Bolnp + 3" [Anp*™ + Bnp~*"] cos(2mg) (for p < R)

m=1

00
Co+ [Cmp®™ + Dmp~2™] cos(2my) (fOI' p>R)

m=1

u(p, ) =

(5.303)

Note: the second method is more complex from the mathematical
point of view but usually describes better the solutions in the
proximities of the anomalous points without using expansions
in two or three dimensions in terms of trigonometric functions,
minimizing the so called “Gibbs phenomena”.
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5.15 Variation of the Temperature in Two
Semi-Cylinders

Find the temporal variation of the temperature in a cylinder
composed of two infinite semi-cylinders, with all the curved surfaces
thermally insulated, except for the flat surfaces in contact. The inner
radius is R; while the outer radius is R;. Initially (¢ < 0), before
being thermally connected, the temperatures of the semi-cylinders
were To — Ty and Ty + T;.

Starting at t = 0 the cylinders are united thermally to form a
whole cylinder, completely insulated from the outside. Consider that
the thermal contact is perfect between the two halves, so that the
thermal conductivity k is homogeneous across the cylinder. The heat
capacity is C and the density is p. The thermal diffusivity coefficient
isa? =k/pC.

R
TotTs /7 T,

L
Ry

----- —

The curved regions are insulated

Figure 5.18

Mathematical formulation

We seek the solution as the relative variation of temperature with

respect to the thermal equilibrium temperature (T = T;), which
will happen at infinite times.
u(IO! Y, t) = T/(p! ®, t) - TO (5304)

u(p, ¢, t > 00)=0 (5.305)
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The problem to be solved is (there is no z variable, since the cylinder

is infinite):

W —a?Au(p, ¢, ) =0
T (0<¢<n)
u(/): (p' t = O) =
—T1 (7 < ¢ < 27)
ou N
8/) p=Ry
ou
o =0
810 p=R;

Sturm-Liouville problem

We separate variables:

u=Wip,¢) T(t)

(5.306)

(5.307)

We start with the eigenfunctions of the Sturm-Liouville problems

for the (p, ¢) variables:

AW+ AW =0
Wl
dp p=R1
dp p=R;

+ AW =0

10 aw 192w
pdp [pap] 02 92
Separating variables once again W = R(p) - ®(¢)
Pislp G+ R 1d%0
R ® dg?
Angular Sturm-Liouville problem:

d>®
—4+ud=0

"

P(p) = Py + 27)
Eigenfunctions and eigenvalues:

®(¢) = A cos(mg) + B sin(mg)

(5.308)

(5.309)

(5.310)

(5.311)

(5.312)
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The radial problem is:

d dR

p— [p] + Ap R —m?*R =0 (5.313)
do | dp
d dR

p— |p=| +[1p*—m*IR =0 (5.314)
do | dp

General solution for the radial equation:
R(p) = CJm(v/'2p) + DNu(~/2p) (5.315)

Due to the solution not being necessarily finite at p = 0, in general
C,D#0.

Let us calculate now the eigenvalues of the Sturm-Liouville problem.
We know that the general solution is:

u=73_ R(p)®(e)Q) (5.316)
From the boundary conditions: u = 0 we deduce:
ap p=R1,2
dR
> o 2(p)Q() =0
P p=R1,2

Since ®(¢); Z(z) can have any value, to satisfy the boundary
conditions it is necessary that:

dR
- =0
d,O p=R1

We have two equations for finding the eigenvalues of the radial
problem:

d
a5 [CIm(YA0) + DNu(V20)] = 0
Applying the boundary conditions:
d
= [CInVA0) + DNp(VAp)] =0
dp (

p=R) (5.317)
=0

p=R3)
Eigenvalue equation to calculate A,, (comes from equating to zero

the determinant of the previous system of equations):

Jh(WARY) - NL(VAR,) = ] ,(VAR,) - N (VAR:) (5.318)

L 1e)(Ap) + DN/ 0)]
dp (
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The radial orthogonal eigenfunctions (not normalized) are obtained
by using, for example, the first equation:

Cnm]r/n(\/ /lnle) = _DnmN,/n(\/ /lnle) (5319)
Then:
] ; (V Anle)
Dpm = —Com———F————= 5.320
N;/n(\/ Anle) ( )

Finally, the radial eigenfunctions will be:

Ram(0) = Jm(\/mp) — AW AmBY Ay (5.321)

N;/n (V Anm Rl)
General solution
The general solution is:
oo
u= Z an(P, (,0) Qnm(t)
n=1;m=0
oo
]y/n(\/ /lnm Rl)
= Jm(V/ Anmp) — Z =5 Nm(v/ Anm )
nzgn;zo |: m nm N,,n( /lnle) m nm
X [Anm cos(m@) + Bum sin(me)] Qnm(t) (5-322)
Replacing the solution in the heat equation W —a’Au(p, ¢, t) =

0 we get:

Z [dQnm(t) + Clz/lnm Qnm(t) ' an(,O, (ﬂ) = 0 (5'323)

n=1;m=0 dt
Problem for the temporal coefficients:
dQum(t
dt( ) + az/ln,anm[t) =0

Qnmk(t) = e(—ale,,,mt)

The general solution is:

00 (—a?dn mt) B J,(VAamR1)
n:hzmzoe |:]m(\/mp) N [le)N (v Anmp)

X [Anpm cos(mg) + Bpm sin(mg)] (5.325)

(5.324)
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Final solution

To find the coefficients we impose the initial conditions:

Tt 0<g<m) | _
u(p, ¢, 0) = {—T1 (m <<p<2n)}_
_ = _ ] (V nle)
= nz;zo {Jm(\/anmp) N TRy (v/Anmp)
X [Anm cos(mg) + Bpp sin(me)] (5.326)

The initial condition is antisymmetric with respect to the angle (¢).
This implies that all coefficients corresponding to terms which are
symmetric in the angular variable must be null (it can be checked
mathematically by multiplying by cos(mg), since the function on the
left part is antisymmetric in the angular variable, just like sin(m¢)).

Then we will have the relation:
0 = Ay |lcos(me)||*> = Apm =0 (5.327)

To find B,,x we multiply both sides by sin(m’¢) R, (p) and integrate
R, 27

between the limits | [ pdpde.
Ry 0

We get the result:

Ry

T J (v Anm R1)
/ []m( Anmp) — N,/n(\//l_nmRﬂNm(\/mp)] pdp

b4 27
Ty /sm(mgo)dcp — Tl/sin(qu)d(p) =
0
R

g

2

/7Y ]r;q(V/lnle) /S ] d
ZTl}J |:]m( /lnmp) N;n(le)Nm( /lnmp) pdp

/sin(mgo)dgo =

0
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_ —  LWARY . —
= Bum ]m( /lnmp) N’,n(ﬁRl)Nm( Anmp)] ||sm(m<p)||
Bm7:273[(1_(_1yq
m

R,
JUn(/Tonr) - Sl S N, () ol

X
, 2
U (V) = 8L N (o)) sinGme)] I
mV ARl

(5.328)
The final solution is:
00
u(p, o, t) =T+ Z Bnme(—az/l,.,mt)
n=1;m=1
]r;q(\/ /lnm Rl) .
VA — ————— Np(/1
X {]m( nmp) A&i\/Z;;Rl) m( nmp) 5”10n¢)

(5.329)

5.16 Stationary Temperature inside an Infinite
Cylindrical Tube

Find the stationary distribution of temperature u(p, ¢) in an infinite
cylindrical tube with radii p; = 1 and p, = 2 if the temperature in
on the inner surface is u(1) = sin?(p), whereas the temperature on
the outer surface is u(2) = 0.

Figure 5.19
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Mathematical formulation

Due to the symmetry we will solve the problem in cylindrical
coordinates. Since the cylinder is infinite there is no dependence on
the z coordinate. The mathematical formulation is that of Laplace’s
problem in a disk with the specified boundary conditions.

General solution

In these conditions the general solution for the Laplace’s equation
Au =0is:
u(p, ) = C1In(p) + C2 + Y _(Anp" + Bp™") cos(ng)
n>1
+(Dnp" + Enp™") sin(ng) (5.330)

We impose the boundary conditions:

u(l, ¢) = C2+ > _(An+ By) cos(ng) + (D, + En) sin(ng)

n>1

1 1
= sin?(¢) = 573 cos(2¢) (5.331)

u(2, ¢) = C1In(2) + C2 + Y _(2"An + 27" B,) cos(ng)

n>1

+(2"D, + 27"E,) sin(ng) = 0 (5.332)

Here we have attempted to use the boundary conditions at the inner
surface in a form corresponding to the Fourier series expansion.

We can use the orthogonality of the angular eigenfunctions or use
the easiest method to equate the Fourier coefficients so that the
relations are valid for all the ¢ angles.

1
C, = 5
Ciln2+C,=0
. (5.333)
Az + By = 3

1
4A2~|—ZBZ=0
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Final solution

The solutions are:

o1
! 21n2
1
CZ = E
\ (5.334)
A —_ —
2730
5 __ 8
z 15

The final solution is:

1 Inp 02 8
——(1-22 L 2 .
u(p, ¢) > ( an) + <30 15 2) cos(2¢) (5.335)

5.17 Case Study: Time Variation of the Density of
Viruses Emitted by a Thin Filament Placed in
a Sector of a Disk

Find the distribution of density of viruses (diffusion coefficient D)
as a function of time in a two-dimensional space with the shape of
a fourth of a circular ring (spanning an angle /2, with outer radius
a and inner radius b). The membrane is impermeable in three of its
boundaries and semi-permeable in the inner curved boundary, due
to the exchange of viruses with the outer medium, with a constant
concentration n = ny. This exchange happens according to Newton’s
law with a constant factor h.

Inside the membrane there is a source of viruses in the form of
a thin curved line inside the angular sector (7/8 < ¢ < 37/8)
at a distance R from the center. It starts to release viruses since
t = 0. The total flux (number of viruses per unit time) is such that:
lim._, ﬂ f(p, 9)pdpdp = Fy being Qe the infinitesimal surface

around the source of virus.
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’ 3'IT/8 Impermeable
! 4

Virus source

Semi-permeablé ’-
—» b

Figure 5.20

Deduction of the inhomogeneous part of the equation

It is clear that

A A b4 3
f(p, @) = =8(p — R)G(p) = =8(p — R){ 1 (8 <g¢< 8)
p p

(5.336)

Applying this condition: Fo = [[ £8(p — R)G(¢)pdpdy = A

Qe

We get: A = 4o

o
Mathematical formulation

Subtracting the virus concentration of the outer medium ng from
the solution we transform the semi-permeable boundary in a
homogeneous boundary of the third kind without affecting the type
of the other boundaries. The formulation of the temporal variation
of concentration u(p, ¢, t) with respect to ny will be the following:
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du(p, ¢, t) _p {1 d [ 3u} iauz(p‘ o, t) _ 4Fy 1
pIp

oF 9] T a2 - p5(p — R)G(p)
u
39 |,
u
ol
u
3,0
-D du = —hu(b, ¢) (u > 0 — Outward flux)

ap p=b

(5.337)

Sturm-Liouville problem

As all the boundaries are homogeneous, we can seek the solution
by expanding it in orthogonal eigenfunctions that solve the Sturm-
Liouville problem:

u(p, ) =Y Tam()Vam(p, ¢) (5.338)

Where the v, (p, ¢) satisfy:

Av(p, ¢) +v(p, ¢) =0

av

890 =0
av

b4
@w 2 (5.339)
av
9P | p—a

0
2l _Hvbg)=0 (H=-1
ap p=b

We seek the solution using the method of separation of variables:

v(p, ¢) = R(p) - P(¢) (5.340)



Time Variation of the Density of Viruses Emitted by a Thin Filament Placed in a Sector | 323

We arrive at the Sturm-Liouville problem for the angular variable:

AD%(p, ¢, t
A 2 700 B
D2
do —0
do oo = (5.341)
do 0
—| 5=
do (pzz
The angular eigenfunctions in their general form are:
®(¢) = C - cos(/rig) + E - sin(/7ig) (5.342)

Due to the first boundary condition, we have E = 0. The eigenvalues
m are sought applying the second boundary condition:

do

. T
d¢w=§=0=sm(¢ﬁ2) (5.343)
T
\/ﬁi =7mm (5.344)
um=(2m? (m=0,1,23...) (5.345)

When we replace v(p, ¢) = R(p) cos(2mg) into equation (5.339) we
get at the following equation for the radial variable:

92R  19R 2m]?
YRR (HBEME p g (5.346)
ap?  pop p?

The solution of this problem gives us the set of radial solutions:

Rum(P) = Aum] 2m(\/2amp) + B Nam(\/Aam ) (5.347)

The possible values of A, are the n-th zero of the equation obtained
when we equal to zero the determinant of the system of equations of
the first and second boundary conditions:

dR

- =0

d

iRl (5.348)
_ HR(b) =0

dp p=b
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A 1 d]Zm(V Anmp) +B 1 dNZm(V Anmp) -0
dp p=a dp P
d VA
Anm /lnm M - H]Zm(\/ Anmb)‘l_
1Y p=b
dNypm(A/A
+BumA/Anm Zm[dpnmp) - HNZm(\/ /lnmb) =0
p=b
(5.349)

We can also find the ration of the A, and B,,, coefficients from the
first or second equation and, in this way, determine the form of the
radial solution.

dJ2m(v/ Anmp)
dp

_Anm
dNZm(\/ /lnm/))
dp

Bpm = p=a (5.350)

p=a

So that:

d]Zm(\/ Anmp)
dp

dNzm(/ Aamp)
dp

L NZm( V /lnmp)]

p=a

an(p) = JZm(\/ Anmp) -

(5.351)

General solution

The general solution will be:

u(p, ¢, 1) = Tam(t) Rum(p) cos(2mgp) (5-352)

n,m

Final solution

Once we clarify the form of the general solution we will
search the coefficients of the expansion, replacing u(p, ¢, t) =
> Tam(&) Rum(p) cos(2mg) in (5.337):

n,m

nm 4 1
3 {aTat(t) + D Tam(£) | Vam(p, 0) = %;5(0 ~ R)Gle)

n,m

(5.353)
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Using the orthogonality in the radial and angular eigenfunctions to
arrive at the equation for the T,,(t) coefficients, we can multiply
both sides of the previous relation by R, (p) cos(2mg) and integrate

a z
| [ pdpde. Due to the orthogonality of the radial Rnnm(p) and
b 0

angular cos(2mg) eigenfunctions we get the following equation for
the coefficients T, (t):

[N

3T um 4F 3
) D Ton(0)=1 / / Run(p) cos(2mg)s(p— R)G(¢)dpdy
b (5.354)
or
L B
Ianl® | g 4o R lsin@m/4)  sinGmr/4)
ot 7 | Rm(P) I llcos(2Zmg)|
= Fom (5.355)

We need to consider separately the terms corresponding to m = 0
since:

llcos(2me)|1? = { i EZ 7 g% } (5.356)
* (m =

4Fy Ruw(R)Z
Fro = 2Fo_Roo(R)y (5.357)

T |IRao(0)I* F
All that is left to do is to solve the equation for T,,(t) by searching
the solution as the sum of the homogeneous solution and a
particular solution and impose the initial conditions T,,,(0) = 0.

F
Tum(t) = Tom,n(t) + Tnm,p(t) = Aum e(=DAmt) | Di
/lnm
(5.358)
Imposing the initial conditions we get:
an
Apm = — 5.359
nm D, ( )
Finally
F
u(p, ¢, t) = Z —M 11 — PO R, (p) cos(2me)  (5.360)

DAnm

n,m
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Chapter 6

Problems in Cylindrical Coordinates

We now start solving problems in cylindrical coordinates in three
spatial dimensions. The new aspect with respect to the 2D case is
the need to consider carefully the direction along which we set the
orthogonality conditions. This analysis is especially relevant when
we solve Laplace problems since, depending on the type of non-
homogeneous boundary conditions the radial solution will change
substantially, from Bessel functions of first or second type to Bessel
functions of imaginary argument (modified Bessel functions).

Just like in the previous chapters in the case of having to
solve problems with non-homogeneous boundary conditions in the
azimuthal angle, it is important to ensure (inserting a constant or a
compensatory function) that both boundaries are homogeneous.

6.1 General Solution of the Heat Equationin a
Finite Cylinder with a Hole

Find the general solution for the temporal variation of temperature
in a finite cylinder of height h with inner and outer radii R; and R;.
Both curved surfaces are thermally insulated. The flat surfaces are
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in contact with a thermal reservoir at T = 0. At the initial moment
the temperature is given by f(p, ¢, z).

Figure 6.1
Mathematical formulation
au(p, o, t
L N T
at
u(p, ¢, z,0) = f(p, ¢, 2)
ou
i =0
9P | =g, (6.1)
ou _
dp P=R;
u(p, ¢, 0,t)=0
u(p, ¢, h,t)=0
Sturm-Liouville problem
We separate variables:
u=Wip, ¢ z) T(t) (6.2)

We need to find the eigenfunctions of the Sturm-Liouville problems
in the variables (p, ¢, z) to eliminate the second derivatives of the

Laplacian.
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Auxiliary problem:

AW 4+ AW =0

ow

- =0

ap p=Ry

awy (6.3)

3,0 p=R;

W(p, ¢, 0)=0

W(p, ¢, h) =0
19 aW'+ 182W+82W+AW_0 (64)
pop "0 | T o2 ag? T 02 B '

Separating variables once again: W = R(p) - ®(¢) - Z(z) we get to
the angular and vertical Sturm-Liouville problems:
d*® +ud=0
dgz T HE T (6.5)
(p) = @(p +271)
Eigenfunctions and eigenvalues:
®(¢) = A cos(mgp) + B sin(mg) w=m? (m integers) (6.6)
Sturm-Liouville problem in the vertical direction:

dZZ+ Z=0
&L
a7 (67)

Z(0)=Z(h)=0
Eigenfunctions and eigenvalues

Z(z) = sin (71;12) (6.8)

2
n
== 6.9
0= () (69
(with n integers greater than zero).

The radial problem is:
d [ dR
p— [p— |+ [(A—1)p* —m*|R =0 (6.10)
dp dp

or
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d*R 1 [dR m?
dp2_|_p[dp}+[(/l—u)—p2]7€=0 (6.11)
General solution of the radial function:
R(p) = CJm(V[1=v]-p) + DNu(/[1=v]-p)  (612)
General solution

We seek the general solution: u = Y R(p)®(¢)Z(2) Q(t)

From the first boundary condition:

ou dR
— =0— — D(P)Z(2)Q(t)=0  (6.13)
ap p=R1, R, Z dp p=R1, R,
, dR
Since the ®(¢); Z(z); Q(t) can be any value, — = 0to

P lpo=R1, R,
satisfy the first two boundary conditions.

We have two equations to find the eigenvalues (tagged with the
index k) from the radial problem:

d
%[C]m(\/ [1—=v]-p)+ DNp(~/[A =] p)]lp=r, =0

(6.14)
d

%[C]m(\/ [1—=v]-p)+ DNp(/[A =] p)]lp=r, =0

Equation to find the eigenvalues A, :
Jm([W/A=v]- R1) - Np(+/[1—v] - R2)
=Jn(vV/[1=v]-R2) - Ny (v/[4—Vv]- Ry) (6.15)

Being /' and N’ the derivatives of the Bessel’s and Neumann’s
functions. Using the relation

Cnmk]y/n(\/ [Anmk — va] - Rl) = _DnmkNy/n(\/ [Anmk — va] - Rl)

(6.16)

We get at:
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[/lnmk - Vn] : Rl)
" N; (VT wmk — vn] - R1)

Obtaining the (not normalized) orthogonal radial eigenfunctions

Rumk(0) = Jm(V/ [Anmk — va] - P)

]y/n(\/ /lnmk — Vn Rl)
- N};}(le) Nm(m . p) (618)

General solution:

D = —C (6.17)

Z ank(pv ®, Z) Qnmk(t) =

n=1;m=0
= Z sin ( ) |:]m(\/ nmk — Unp)
n,k=1;m=0

] (V nmk — Vn Rl)
N/ ( /—nmk o] - R1) N (\/ [Anmk — val - p)

X [Anmk COS(mQO) + Bnmk Sln(mq))] Qnmk(t) (619)

Final solution

To conclude, we will find the temporal coefficients:

d
at Qnmk(t) + az/lnkanmk(t) =0

(6.20)
G EE
The general solution is:
> n
u= Z sin (hz) (=@ Amit) []m(\/ [Anmk — va] - P)
n, k=1,m=0
] V[ vn] - R
( nmk — n 1) m( /[/lnmk p):|
[/lnmk Rl)
X [A,,m cos(mg) + B,,m sin(mg)] (6.21)

To find the coefficients we need to impose the initial conditions
and use the orthogonality of the radial, angular and vertical
eigenfunctions.
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6.2 Case Study: Heating of a Cylinder

Consider a cylinder (radius R and height L) with its curved surface
thermally insulated. The thermal conductivity, heat capacity and
density of the material are k, C, p respectively. Until ¢ = 0 the
cylinder is at thermal equilibrium and with both flat surfaces in
contact with a thermal reservoir at Ty. At t = 0 the thermal reservoir
at Ty is removed at the upper face, and a heat flux J (p) starts going
through this boundary. Find: (i) The new stationary distribution
of temperature (that is, the distribution of temperature after an
infinite time and that is independent of time). (ii) The variation of
the distribution of temperature in the cylinder as a function of time
after t = 0.

Heat flux starting at t=0

Insulated |-
curved
surface L

Base in contact with reservoir at T=T,

Figure 6.2

Mathematical formulation

To simplify the calculations we subtract Ty from the solution.
Furthermore, due to the angular symmetry of the supplied flux, as
well as of the boundary conditions, the solution will not depend on
the angular variable.
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=0 (6.22)

u(p,z 0)=0
We will first formulate problem (i), stationary, for a function w(p, z)
(solution at times t — 00):

Aw =0
w(p, 0) =0
w _ (6.23)
9p | ,—r
vl J(0)
9z |,., TR?

We will seek the solution as the sum of the solutions of two
problems: a stationary one w(p, z) which will be the solution of
Laplace’s equation with a non-homogeneous boundary and the
solution of the transient problem v(p, z, t), with all its boundaries
being homogeneous, such that the total solution will be:

u(p, z, t) =w(p, z2) +v(p, z t) (6.24)

Temperature
w(p,p)=stationary solution

v(p.e.t)=
transient

solution u(p,.t)=v(p,9.t)+w(p,9)=

total solution

>

Tt

Figure 6.3

The problem for w(p, z) does not have initial conditions, whereas
the initial condition of the transient problem can be obtained from



334

Problems in Cylindrical Coordinates

the initial condition for u(p, z, t):

u(p,z,0)=w(p,z)+v(p,z 0)=0 (6.25)
Transient problem (ii) for v(p, z, t), at t > 0 is:
W Av=0
ac KoV T
v(p,0)=0
L I (6.26)
ap p=R
ov B
0z |, -
v(p, z 0) = —w(p, 2)

We can check that adding both problems we recover the original
problem for u(p, z, t).

Sturm-Liouville problem

We seek the solution of problem (i) by expanding it into eigenfunc-
tions of the Sturm-Liouville for p to eliminate the radial Laplacian
from the heat equation. In our case the boundary conditions are
only homogeneous in the vertical direction (z). These facts will be
important for choosing the sign of the constant of the separation of
variables.

19 [ v d%v
T |p— — =0 6.27
p dp [pap] 72 (6:27)
v=TR(p) Z(2) (6.28)

1d [ drR

o dp [PE} 1d*Z
L L Ay | 6.29
R Z dz? ( )

With 4 > 0 for the auxiliary problem we choose the negative sign
before the constant of separation, to be able to expand the solution
in orthogonal radial eigenfunctions (since in this direction we have
homogeneous boundary conditions):

d*z

— —AZ =0

dz?

Z(0)=0 (6.30)
dz

—| = finite

Z |y
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We choose Z(z) = Asinh(+/1z) to automatically satisfy the first
boundary condition. Then, after reducing the number of partial
derivatives, the problem for R(p) remains like so:

1d [ d
—— {pR} +AR =0 (6.31)
dp

We multiply the equation by p? and the radial problem then is:

d [ dR
p— |p—=| +Ap*R =10 (6.32)
dp dp

The general solution for the radial equation is a linear combination
of Bessel and Neumann functions of order zero:

R(p) = CJo(¥2p) + DNo(v/20) (6:33)
Due to the solution being finiteatp =0 — D = 0.

Calculation of the eigenvalues: general solution (for finite eigenval-
ues):

w =" AJo(vAp)sinh(v1z) (6.34)
a
From the second boundary condition we deduce: 8—“ =0 —
1Y p=R
dR . .
> o Z(z) = 0. Since Z(z) can have any value, the following
P lp=R
condition must be fulfilled:
dR d Pl
it = M (6.35)
dp p=R dp p=R

which gives the equation for the eigenvalues 4, related to the null
ug') from the derivative of the zeroth order Bessel function:

VAR = " (6.36)
m7?
A, = l“}g] (6.37)

Since the first eigenvalue in this case is zero, we will consider
separately its contribution to the solution.
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General solution
The general solution is:
o0
w(p, 2) =) AnJo(V/Anp) sinh(v/1,2) (6.38)
n=1

To find the coefficients of the expansion we will apply the third
boundary condition:

owl__J(0) ZZAn\//THJO(\/m) cosh(y/A,L)  (6.39)
n=2

9z|,,  kmR?

Using the orthogonality of the radial eigenfunctions we get the
coefficients. To find A, we multiply both sides by Jo(+/Anp) and
R

integrate between the limits [ pdp:
0

R
. Of] (p)] o (W Anp) pdp
A 6.40
K RE Ao |[Jo(%p)||* cosh(v/A,1) o

We can simplify the results using the following relations:

a 2
Jx] (o)1 () ax =5 |1 (%)}23“ (6.41)
Jo(x) = —J1(x)

Note: due to the conditions of the curved boundary (homogeneous
of the second type) the first term of the sum (n = 1), which
corresponds to A; = 0, will be treated separately since the
corresponding radial equation will provide constant values and the
solution of the problem in vertical direction z would be a linear
function. This term describes the possible linear variation of the
temperature in the z direction if the mean value of the heat flux
across the surface is finite. In the case that J (o) = J is a constant,
the only term of the solution that is not null is the first one, which
would give us the solution w(z) = k;%. The rest of the terms
A, = 0 with n > 2 will be null due to the orthogonality of the
constant (eigenfunction in the radial direction) with the rest of the

eigenfunction J /4.
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Problem for the transient part

Due to the homogeneity of all boundaries, we expand the solution in
series of orthogonal functions in two dimensions.

av
= xAv=0 6.42
o XAV (6.42)
v(p,z,t) =T(t) - R(p) Z(2) (6.43)
dT
— RZ-TxARZ)=0 (6.44)
1dT  ARZ) 1 d dR+1dZZ_ _
T dt = Rz  Rpdp|Pdp| " Zdzz TV
(6.45)
d2z
Z(0)=0 (6.46)
z|  _ .
dz |, o
2n+1
Z.(2) = sin <7T(ZZL)Z> n=0,123...) (647
1d [ dR
ey po (6.48)
dp p=R a
Radial eigenfunctions:
M(k]
Rk(p) = Jo %,0 (6.49)

where the ug{) are zeros of the derivative of the zeroth order Bessel
function. The eigenvalues of the Sturm-Liouville problem for the
product of the radial function and the vertical one are:

L ren+10\2  [uP] /ren+ 1)\ co
wevt (TR) = | () e

The general solution is:
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(k)
v(p,z t) = Z Tn k()]0 <P> i (71(2;1;—1)2) (6.51)

Solving the equation for the temporal part + Aakx T = 0 we get
at exponential equations:

0
Tok(t) =T, k(O)e(_[(%)z""(L(zﬁfn)Z]Xt) (6.52)

Final solutions

Finally we apply the initial conditions:

(K)
~w(p, 7) = Zrnkm)/o <p> i (”(ZZL“)) (653)

Using the orthogonality of the radial eigenfunctions and the vertical
ones we get the coefficients of the expansion.

[ [wip, 2] (‘%p) sin (”(2”“) )pdpdz
Ty i(0) = =23 (6.54)

(k)

[l (<F0)] oo [ sn (52 a2

6.3 Case Study: Stationary Distribution of
Temperature inside a Semicylinder

Find the stationary distribution of temperature of a semicylinder of
length L and radius py in which three of the four surfaces are kept at
different temperatures.

Figure 6.4
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Mathematical formulation

From the theory we know we can decompose Laplace’s equation, by
using the linearity of the equation and the principle of superposition.
To be able to expand the solution in angular eigenfunctions we
subtract T, from the solution.

The problem is split: we use the linearity of the
equation and the principle of superposition

The problem is reformulated so that the flat
part has homogeneous boundary conditions

Figure 6.5

The remaining problem is split into two problems we know how to
solve:

Problem (1):
u(p, ¢,2) = Ram(p)Vam(9, 2) (6.55)
with:
Vam(@, 2) = ©u(@)Zm(2) = sin (ng) sin (?z) (6.56)
and

(6.57)

Rom(p) = Rnm(po) (@p)

In(%pOJ ! L
From the boundary conditions and orthogonality of the eigenfunc-
tions we get the coefficients Rp,.

T3 —-T; = Z Rum(00)Vam (9, 2) (6.58)
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(T3 — T3) fsin(%z)dz}sin(mp)dgo
Ram(po) = ———— 0 (6.59)

s

[ sin®(Ez)dz [ sin®*(ngp)dy
0 0

4T — T2)(1 - (=1)") ([ - (=1)")

an(,Oo) = 2 (660)
w2nm
Only the odd indices n, m persist
Problem (2): we solve this problem, to separate variables:
1
—Au=0 (6.61)
u
u=~Z(z)- ®(p)-R(p) (6.62)
we obtain:
1dzZ+11d2cI>+1 d’R 1dR —0 (6.63)
Z dz2  ®dp2de? R \|dp® pdp| '
Sturm-Liouville problem
Solving the Sturm-Liouville problem for the angular part:
1d*z m2+1 d’R 1dR —0 (6.64)
Zdz2 p? R \|dp? pdp| '

. /Tm
Ppm(p) = sin (7¢)
= sin (mg) (from the boundary conditions)(m > 1) (6.65)

Assigning —’;’—22 + % {‘575 + %fj—ﬂ = -4 (1 > 0) we arrive at
Bessel’s equation for the radial part:
{d2R+1dR}+<A m2>R—0 (6.66)
dp?*  pdp ) '

Applying the boundary conditions:
Rim(p0) = Jm < A’,;,m) =0 (6.67)

we obtain the eigenvalues A¥ . Finally the equation for z is:
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d*z
-7~ X7 =0 (6.68)

Zm(z) = Agm sinh (\//I’,‘nz> + Bym cosh (1 //lfnz) (6.69)

General solution

The general solution of problem (2) is:

u(p, ¢, z) = Z [Akm sinh (@Z)
+ By, cosh (@Z)] Im ( Aﬁq,o) sin(mg) (6.70)

Final solution

We just need to apply the boundary conditions and to use the
orthogonality of the radial and angular eigenfunctions to obtain the
coefficients Ay, Bim :

u(p, ¢, 0) =Y BinJm ( Ai;p) sin(mg) = (T1 = T2)  (6.71)

Po g
(T = T2) [ Jm (V) pdp [ sin(me)de
Bin = ——5—— 0 (6.72)

JSUn ( ﬂﬁp)]zpdpfsinz(mw)dw
0 0

27— T~ (-1 [ 1 (V) oo
0

Biom = (6.73)

am [ Um ( ﬁ’,;p)]zpdp
Only the odd m indices persist.

Applying another boundary condition we also find the A, indices:

u(p, p.L) = Z {Akm sinh ( /l’,‘nL) + Bym cosh ( /l’,‘,,L)}

% Jm ( A’,;p) sin(mg) = (T; — T2) (6.74)



342 | Problems in Cylindrical Coordinates

{Akm sinh < ﬂ’,‘,,L) + Bym cosh ( /lfnLﬂ

2T~ T~ (-1 [ I (/A0 oo
= — 0 = Bun  (6.75)
ﬂmf[/m( ﬂi‘np)]zpdp
0

Bim[1 — cosh ( /U‘nL)]

(6.76)

km =

sinh ( 3 L)

6.4 Case Study: Laplace’s Equation in a Cylinder
with No Homogeneous Contours

Find the stationary distribution of temperature in a cylinder with
radius R and height L whose curved surface is in contact with
a thermal reservoir at a temperature T (¢, z). The upper base is
traversed by a heat flux outwardly with a density equals to f(p, ¢).
The lower base exchanges heat according to the Newton’s law (with
constant h) with the outer medium at zero temperature. Consider
the thermal conductivity is k = 1.

Heat flux density f(p,¢)
R

Temperature~ T(p,2)

Heat exchange according to
Newton's law

Figure 6.6
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Mathematical formulation
AU(p, ¢, 2)=0

Ulp=R ¢,2)=T(p, 2)

U (6.77)
kS| = fo,0)
z z=L
au
—k—| +hU=0
0z |,_o

Using the principle of superposition we split the problem into two
simpler ones:

Ulp, ¢, z) =ulp, ¢, 2) +v(p, ¢, 2) (6.78)

In the same manner we split the boundary conditions: For the
boundary at z = Lwe have (using k = 1):

aUu au av
—_ — , —_ - — —_
9z z=L f(p go) 9z z=L 9z z=L
au av
=flp ) +0—— - e
Z =L 0z z=L
(6.79)
For the boundary at z = 0 we have:
aUu 0 0
— —hU(p,(p,Z:O]:O—)—u Al
0z z=0 0z z=0 0z z=0

—hu(p, ¢, z=0)—hv(p, 9, z=0)=0— (6.80)

ou

0z

3
— hu(z = 0) = 0; :TV —hv(z=0)=0 (681
VA

z=0

z=0

For the boundary at p = R we choose:
u(p=R,0,2)=T(p,2; v(r =R, ¢,2) =0 (6.82)

The problem (1) to be solved is:
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Null heat flux den\sity

Sturm-Liouville problem

Separating variables:

Temperature T(¢,2) L
Heat flux density f(p,¢)
R C_ D
Heat exchér/Ige according to
Newton's law
Temperature T(9,2) L +
T Heat flux density f(0,9)
R
Heat exchange according
to Newton's law Temperature;T=0
e X
Heat exchange according to
Newton's law
Figure 6.7
Au(p, @, Z) =0
au
a. :hu[p, 901220)
9z |, o
ul (6.83)
9z |,
u(R, ¢, 2) =Ty, 2)
u(p =0, ¢,2) <o
u=R(p)P(p)Z(2) (6.84)

We intend to expand the solution in eigenfunctions of the Sturm-
Liouville problems for the p, ¢, z variables to remove the corre-
sponding second derivatives from the Laplacian. In this case the
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boundary conditions are homogeneous only in the vertical direction
z and non-homogeneous in the radial direction p. These facts will
influence our decision with respect to the constant of the separation
of variables:

19 0 1 92 92
i Pt T AL (6.85)
pop | dp p2 0@ 072
Separating variables:
11d [ dR] 11d®_ 1dz _ (6:56)
R pdp 'Od,o p2 & de?2 7 dz2 '

With 4 > 0 in the auxiliary problem the positive sign is written
before the constant so that we can expand the solution in orthogonal
eigenfunctions in z, since in this direction there are homogeneous
boundaries of the second type.

d*z +4AZ=0
dz? N
dZ
dz |,_,
dZ B
dz |,_,
We have the eigenfunctions:
Z(2) = A cos (ﬁ[z - L]) (6.88)
The eigenvalues A will be solutions of the equation:
h
tan (ﬁL) == (6.89)

Then, when reducing the number of partial derivatives, the problem

for R(p) is:
1d dR m?
—— |p—| - /1+>R:0
pdp[ dp} ( p?

Here we have already used the eigenvalues m? of the Sturm-Liouville
problem for the whole cylinder. The angular eigenfunctions are:
A cos (mg) + B sin (mg)

(6.90)
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General solution

The general solution of the radial equation is a linear combination of
modified Bessel and Neumann functions of order m:

R(p) = Cln (VAp) + DKy (V1p) (6.91)

D = 0 since the solution must be finite at p = 0. The general solution
is:

u= Z Z I («/Zp) [Apm cos(m@)+ By, sin (mg)] cos (ﬁ[z — L])
n=1 m=0
(6.92)

Final solution

We will use the third boundary condition to find the coefficients:

uR, @, )=T(p, )= Y In (VAR) [Aun cos(me)

n=1 m=0

+ Bum sin (mg)] cos (\//_l[z — L]) (6.93)

We use the orthogonality of the angular and vertical eigenfunctions
to obtain the coefficients. For that we multiply by the eigenfunctions
in ¢ and z and integrate both sides of the previous equation:

2n L
//cos (m'¢) cos (\/Aw[z — L])dzdg
00

2

L
// T (@, 2) - cos (mg) cos (\/A,[z — L])dzdp =
00

= In(\/2nR) - A - || cos (m) 12|l cos (v/Anlz — L[> (6.94)

T [ Ttp, 2) - costm) cos (VATz — L)dzdy
00

Im(V/2nR) - || cos (mg) |12 || cos (v/An[z — L])||?

For m > 0. On the other hand, for the other coefficient, we multiply
by sin (mg) in the orthogonality condition and we have:

Apm = (6.95)
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2 L

| [ T (g, 2) - sin (mg) cos (v/An[z — L])dzdg
Bnm = 09 . (696)
In(v/AnR) - || sin (mg)||2]| cos (/A [z — L]) |12
Form > 1.
Problem (2) is:
Av(p, 9,2) =0
2 =9
Z|z2=0
2 =S (697)
0z |,_;
V(R, 9,2) =0
vip=0,¢, 2) <0

We have here considered that the flux entering the cylinder through
the upper base propagates in the negative direction.

Sturm-Liouville problem

Separating variables in a manner similar to the previous case:

11d dR+11d2<I>_ ldzZ_ 1 (6.98)

R pdp 'Od,o O p2de? 7 dz2 '
With 2 > 0, we write the negative sign before the constant of
separation to be able to expand the solution in radial eigenfunctions
antes (since in this direction we have homogeneous boundary

conditions) as well as in the angular functions:

°z AZ =0 (6.99)
dz? - '
Z(z) = A cosh(v/1z) + B sinh(v/12) (6.100)
The problem for R(p) is:
1d [ dR 2
. [,o} + (/1 - mz> R=0 (6.101)
pdp | dp P

Solution for the radial eigenfunctions:

R(p) = CJm(~/20) (6.102)
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The equation to find the eigenvalues by applying the boundary
conditions of the radial problem is:

Jm(v/AmmR) =0 (6.103)
Labelling as ji,, the zeros of the Bessel function of order m:
2
VAR = tnm —> Ay = [“}’;’"} (6.104)

General solution

We write the general solution of problem (2):

v(p, ¢, z) = Z Z Im( V AmnP)[Anm cos(me) + By, sin (me)]

n=1 m=0

x [cosh(v/ Amnz) + Cpm sinh(+/ Amn2z)] (6.105)

To find the coefficients we will apply consecutively the first and
second boundary conditions.

First condition:

av

E = Z Z Jm(\/ Amn ) [Anm €0s(M@) + Bym sin (M) Cpm/ Amn

z=0  p=1m=0

=h Z Jm(v/ A 0)[Anm €05(m@) + By sin (me)]

n=1,m=0

(6.106)
From here we obtain the value of the coefficients Cp,;, = h//Amn

We note that in the hypothetical case of both keeping both
coefficients, for example D, and C,, in the solution for the function
in z, applying the boundary condition in the proper manner we
get the ratio Cpp,/ Dy just like we obtained it when only the C,,
coefficients were used (with D,,, = 1).

In the opposite case of maintaining only the D, coefficients of the
cosh(z) function, taking C,, = 1, we would obtain values of Dy,
which are the inverse of those obtained for C,,, (supposing D, =
1). We now apply the second boundary condition:
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—flo, @)= > Jm(/Amnp)[Anm cOS(m@) + Bum sin (me)]

n=1,m=0
X [Ayn sinh(v/ A L) + h cosh(+/ Amn L)] (6.107)

Final solution

We multiply by the radial orthogonal functions (with weight p)
and consecutively the two angular functions cos (m¢) and sin (mg),
integrating in the range of orthogonality, to find the coefficients of
the expansion:

2w

R
—//f(p, ©)] m(v/ Amnp) cos (me) pdpde =
0 0
A [\/am,, sinh (v/AmL) + h cosh (\//lm,,L)}
R 27
/ v/ T} 2odp / (cos (m))*de (6.108)
0 0

From where we find A,,,. And for the other coefficient:

2

R
- / / (0, 0 (/L) sin (mg)pdpde =
0 0

= Bunn |/ A 5inh (/Ann L) + h cosh (/A )| W a7~ (6:109)

From where we would find B,,.

6.5 Heating of 1/16 of a Cylinder

Consider a cylindrical sector (radii R;, R;, height L) in the form of
a w8 sector, with its curved surfaces and vertical walls insulated
and connected to a thermal reservoir at temperature Ty at its base.
The thermal conductivity coefficient of the material is ky. Find the
stationary distribution of temperature supposing that the total heat
flux J is homogeneously distributed through its upper surface and
directed towards the cylinder.
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Heat flux /
through the upper:

base ’,——"E

// :

: |

~ A (]

I

1

1

i = Insulated flat and
: curved surfaces

1
1
|
1
1

————— 1= !
|
!

]

7 Ry 4 R;
\\ ’
Base in contact with

reservoir at T=T,

Figure 6.8

Mathematical formulation

We subtract the constant T from the solution. In the present
problem, the direction of the flux corresponds to the injection of heat
into the cylinder.

Au=20
ulp, 9, z=0)=0
du —16]
ko —| =y om
0z|,—, 7(R{—R3)
au

P | p=r, (6.110)
u

ap p=Rz
u

% (p:()
au

%(p:

Sturm-Liouville problem

Due to the presence of a non-homogeneous upper contour, we
seek the solution by expanding it into eigenfunctions of the Sturm-



Heating of 1/16 of a Cylinder

Liouville problem in the p and ¢ directions, to eliminate the angular-
radial Laplacian from the heat equation.

In this case the boundary conditions are homogeneous only in the
radial and azimuthal direction (of the second kind) and are non-
homogeneous in the z direction. This matters when we need to
decide the sign of the constant of separation.

19 du N 1 9%u N 9%u _0 (6111)
pop |"op] T p20gr T 922 '
u=R(p) 2(¢)-Z(2) (6.112)

11d ]| dR 1 1 d*®(p) 1d*z
—I—p— - =———=-1 (6.113)
Rpdp | dp| p*®(p) dy? Z dz*
With 4 > 0, we choose the negative sign to be able to expand the
solution in radial eigenfunctions (since in this direction there are

homogeneous boundary conditions):

d’z AZ =0

dz? -

zZ(0)=0 (6.114)
dz o

— = finite

dz |,_,

We choose Z(z) = Asinh(y/12) to automatically satisfy the first
boundary condition.

d*®(¢)
o2 +vd(p) =0
d¢
e IR 6.115
dg |, o ( )
d
i I
do p=2
JU - % — mrx — v = (8m)? (6.116)

®(¢) = cos(8my) (m=0,1,2,3..) (6.117)
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Then, by reducing the number of partial derivatives, the problem for
R(p) is:

1d | dR (8m)?

—— |p7—|+|[A———=—|R=0 (6.118)
pdp | dp P

The general solution of the radial equation is a linear combination of
Bessel and Neumann functions of order 8m:

R(p) = CJgm(v/2p) + DNgm(v/20) (6.119)

We calculate the eigenvalues A,,x by equating to zero the determi-
nant of the system of two equations formed by radial boundary
conditions. In this way we find a non-trivial combination of
coefficients:

dJsm(v/4 dNgm(v/2
C M +D M -0 (6.120)
dp dp
p=R2 p=Rz
dJgm(v 4 dNgm(v/2
c Ys (vVp) L p N (vVp) _o (6.121)
dp dp
p=R; p=R;

In what follows, to avoid cumbersome expressions we will use the
following nomenclature for the Bessel functions:

d]Sm(\/mp)
d

1Y p=R

= Usmlo(v/AnR1) (6.122)

And an analogous expression for the Neumann functions.

General solution

The general solution is:

— S U8m]p(\//1_mkR2)
u= 2 ,; Crk [lsm(\/ Amkp) — mlvsm(\/ Amkp)
x cos(8mey) sinh(\/ Amkz) (6.123)

Note that the Bessel and Neumann functions are of order 8m and
that the eigenvalues A have both indices m and k, since we use them
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both for the vertical and the angular eigenfunctions. To find the
coefficients of the expansion we apply the last boundary condition:

chmk\ﬁ [JBm(Fp)

dz L k=1m=0
[ smlp (v/Amk R2)
_W%m(\/mp)} cos(8mg) cosh(y/AmiL)
16]

[ A— 6.124
ko (R — R2) (6.124)

Final solution

Using the orthogonality of the radial and angular eigenfunctions we
get the coefficients C ;. We multiply both sides by:

Jem(/ Amkp) — WNgm(\/mp)} cos(8me)

[N8m],0(\/ /lmkRZJ
(6.125)
Ry §
and integrate between the limits | [ pdpdy
Ry 0
Co = 16]
™= Amko(RE— RE)
Ry §
I Usn(V ko) — Bl P2 Ny (o k)] cos(8me) pdpdys
X p
| UV Toic) = B8 N (T ]| - lcos(8mg) I” cosh (v Aril)
(6.126)
We have:
i 0 (m=1)
/cos(8m<p)d<p =9 (6.127)
0 8 (m=0)

We see that the solution does not depend on the angular variable.
Then:

16]
»\//lgkﬂ'ko(R% — R%)

R,
S Uo(v/Aokp) — S Ny (/Agrp)lodp
R

Cok =

X
|Uol/n) - B ot Aauo]| coshiv/Aaet
(6.128)
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Note: we have shown a general solution path that would change
little in the case of varying homogeneous boundary conditions, for
example going from the second type to the first or third homoge-
neous type. In the case of type 2 homogeneous lateral boundary
conditions, we note that due to the homogeneous distribution of
injected heat flux, there are no physical reasons for this heat flux to
adhere any lateral component in the radial or azimuthal directions.
This implies that, for the case of contours considered, the solution
in series obtained presents the development of a solution constant
in angular and radial variables and which only lineally changes as a
function of the vertical variable (z).

6.6 Distribution of Temperature inside a Finite
Semi-Cylinder with a Centered Hole

Find the stationary distribution of temperature inside a semi-
cylinder of length L with a hole (outer and inner radii g, b) if all its
plane surfaces are at a temperature Tj.

Through both curved surfaces (inner and outer) the heat fluxes
F1 and F; are supplied (both constants have negative values). The
thermal conductivity of the material is equal to k.

Figure 6.9

Mathematical formulation

We subtract T from the solution. Due to the absence of heat sources
inside the semicylinder se describe the problem with Laplace’s
equation:
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Au=20
d

A B
9P | p—a

L I (6.129)
9P | p=p

u(p,0,z) =u(p,n,z2)=0

u(p, ¢, 0) =ulp, ¢, L) =0

The F; and F, constants must be negative numbers to have a valid
physical meaning.

The hole is centered in the axis and the boundary conditions of
the curved surfaces are non-homogeneous of the third type. The
Laplacian is expressed in cylindrical coordinates.

10 ou 1 9%u d%u
—— |p— ——+—=0 6.130
p dp [p 3/)] p? d¢p? "oz ( )
Sturm-—Liouville problem
We separate variables to find the solution:
u=R(p)  ®(¢)- Z(2) (6.131)
1d [ LR} Lo 2z
P 143 &2z
LA L AR T (6.132)

R 02 d | Z
and finding the functions ®(¢); Z(z) from the corresponding
Sturm-Liouville problems:

2

'z +AZ=0
dz? B (6.133)

Z(0)=2Z(L)=0

O =0
dpz T HE T (6.134)

®(0) = ¢(7) =0

So that the eigenfunctions are: ®(¢)Z(z) = sin(ng) sin(*"z) (with
n=123...,m=1,2,3...)
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The equation for the radial part is:

Ay (T
Rt ) (L) —0 (6.135)
d*R 1dR n® Tmy 2
- =4 (E) | R=0 6.136
dp?  pdp LOZ <L>} ( )

General solution

The general solution of the previous equation consists in Bessel
functions of imaginary argument (modified Bessel function) and
also McDonald functions (which are not considered for whole
cylinders). The general solution is:

u(p, ¢.2) = [Aunln (7-0)

4 BunK» (%p)} sin(ng) sin (?z) (6.137)

Final solution

To find the A,, and B,, coefficients we will use the first and
second boundary conditions to get the general solution and apply
the conditions of heat fluxes across the curved surfaces.

> [Anm¥14 (%G) + Bnm?&; (?a)] sin (ng) sin (?z) - _%
> [x‘h.,n?l,/, (?b) + Bnm%K;, <?b>] sin (ng) sin (?z) = %
(6.138)

Where I’ and K’ are the derivatives of the modified Bessel
function and the McDonald function with respect to p. Using the
orthogonality of the angular eigenfunctions (¢) and in the (2)
direction we arrive at two equations with two unknowns to find the
Anm and B, coefficients.
, (Tm ,/mTm
Al (7a) + Bk, () = am
(6.139)
, (Tm ,/mTm
Aty (55°b) + Bk, (T°b) = o
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L
Oy = ——— // sin(ng) sin —Z) dodz
S mmy ||sm(n<p)||2 Hsm
L Fi m
= i in(—z)dod
erk //sm(ngo) sm( 7 z) pdz
00
_ﬂ [1 — cos(nr)] L[1 — cos(mm)] (6.140)
mk n mm
Analogously:
L
Bam = // sin(ng) sin —z) dodz
mm Isin(ne) || |sm (Zrz H

_ AR [1 — cos(nm)] L[1 — cos(mn)]

— (6.141)
mk n mrm

It is clear that both coefficients are zero for n, m = even. Finally we
will get the coefficients:

o=y o=, ()]
1 ,
o ks ()] 2 () s () =
Coam K (TR (TR) | L (ph)
Bum | K}, (Tb)f I <?a> = Bum nm <ma)
(6.142)
or
5 __ Bli(Pa) —awnl (D)
" K (PR (TRa) — K ("Ra) I (T2 b)
(6.143)
A 1 ﬁnmlf/l %0)—0{,"” (nmb)K/ a)]

= Onm — Tm yrmm y(mTm Tm
lr/z(%a) Kr/I(Tb)In(Ta) Kn(Ta)ln( L b)
(6.144)
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6.7 Distribution of Temperature inside a Hollow
Cylinder with a Heater

Find the stationary distribution of temperature inside a cylinder
of height L with a centered hole or radius R; and with an outer
radius R;. The plane surfaces are in contact with a thermal reservoir
at a temperature Ty, the inner surface is at zero temperature and
the outer surface exchanges heat with the outer medium at a zero
temperature according to Newton's law (with constant W).

Inside the cylinder acts a heat source in the form of a thin tube or
radius @ and also height L, which dissipates an energy density F.

Hollow
To Heat source:
thin cylinder with
radius (R-R;)/2

The outer surface
exchanges heat
according to Newton's R;

R,

law <
\ Height L

To

Inner surface at zero
temperature

Figure 6.10

Mathematical formulation

F 1 R, — R
—kAu(p, ¢, 2) = 553 <,0 - {221}>

ll(p, ®, 0) = Ll(p, Y, L) =To

W(Ry, ¢, 2) = 0 (6.145)
9

k% —weu(Ry 0 2)
ap p=R;

Note: we will consider that the contact surface between the heater
and the flat faces does not modify the boundary conditions inn z.
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Sturm-Liouville problem

We will expand the solution in eigenfunctions of the Sturm-Liouville
problems for the variables (p, ¢), with the idea of eliminating the
second derivatives of the Laplacian in those directions, since the
boundary conditions in the vertical direction are inhomogeneous:

u="V(p, ¢) Z(2)
Sturm-Liouville problem for V (p, ¢):
Ay Ve, @)+ AV (o, ¢) =0

V(R1, ¢)=0
oV
— + HV(R2,9)=0
ap p=R;
w
H=—

k

(6.146)

(6.147)

The eigenfunctions (using for brevity the complex form for the

angular solutions) are:

Van(p: @) = | AnnJ m(s/ A} + Bam N/ Lamp) | €777 (6.148)

Applying the third and fourth boundary conditions:
[Anm]m(v /lnm Rl) + BnmNm(V /lnm Rl)] =0

v/ Anm [Anm]rgq(\/ /lnmRZ) + BnmNr/n(\/ Anm RZJ] +
+H[Anm]m(\/ /lnmRz) + BnmNm(V /lnmRZ)] =0

or

[Anm]m(v /lnle) + BnmNm(\/ /lnle)] =0
Anm[\/ Anm],;q{\/ /lnmRZ) + H]m(\/ /lnmRZ)]

+Bnm[\/ /lnmNr/n(\/ /lnmRZ) + Nm(\/ /lnmRZ)] =0

The condition DET()=0 will give us the eigenvalues A,,

Furthermore, since By, = —Anm% Vj’""f;l])

we get the not normalized eigenfunctions in the form:

(6.149)

(6.150)

Vnm(pt (,0) = ]m(\/ /lnmp) ]m( nle) N (\/ nmp)} e( img)

Non(v/Aam R1)

(6.151)
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General solution

Looking for the solution as summation of orthogonal eigenfunctions:
u=> Vmlp, ¢)- Z(2) (6.152)

nm
and replacing in the initial problem (6.145)

a F 1 R, — R
S P SR ET)
(6.153)
2

d
Z Ay o Vam(p, @) - Z(2) + Vam(p, (p)EZ(Z)

nm

F 1 R, — Ry
=———-96 — 6.154
i’ ([ 7]) (159
dZ
S ~danVan(p, @) - 2D + Van(p, 9) 55 2(2)
F 1 R, — Ry
—_ " 5 — 6.155
it (0= [577) (159
or, finally:
d*Z(z) F 1 R, — Ry
/lan nm ) _7*8 -
ij[ 2 (z)] 00 =iy <p { . D
(6.156)
RzZT[
Multiplying both sides by V,ym (0, ¢) and integrating [ [ pdpde, we
R 0
will get:
d*Z(z
|:d£) - /lan(Z):| ”Vnm(p' (p)HZ =
]m Y% nle)
= m nm Np, nm
5o {] VA0 = (AR O AP 0

Ry

2
R, — R :
(p_{ E 1Ddp/e(_lm)d‘/’:
0

ol (v )

2w
(\/ /lnle Np <\/ Anm |:Rl:|):| /e(_im(p)d(p (6157)
0




Distribution of Temperature inside a Hollow Cylinder with a Heater

Since
27 (img)
—meldep = 0 0
Of ¢ ¢ =0(m#0) (6.158)
2 (m=0)
Then we get at the equation for the function Z(z2):
d*Z(z)
a2 AnoZ(2)
Ry=R Jo(v/ Ao R1) Ry—R
R e (VA [5]) - BN, (/A [55)
27k 1Vao (o, 9)II* !
(6.159)

We also need to find the boundary conditions for Z(z). From the first
and second boundary conditions:

> Vamlo, 0) - Z(0) = To (6.160)
and "

> Vamlo, 9) - Z(0) = To (6.161)
we get: "

R
S UV Aamp) = LB N (T dp
Z(0)=Z(L)=To™

=ToZ,

(6.162)
We need to solve the non-homogeneous equation in the z direction
with the corresponding boundary conditions:
d*Z(z)
——— — Z(2) =
dz2 2 (@) = o (6.163)
Z(0)=Z(L) = ToZ,

1Vao (o, 9)II?

by searching the solution as the sum of a particular solution and the
solution of the homogeneous equation. The particular solution is:
Z,(2) = -2 (6.164)
/an

The general solution of the homogeneous equation is well known:

Z1(2) = C sinh(y/A,02) + D cosh(y/,02) (6.165)

361



362 | Problems in Cylindrical Coordinates

Final solution

Applying the boundary conditions:

C sinh(4/4,00) + D cosh(4/1,00) + ;—” =Ty
n0

(6.166)
=T,
D=Ty— -2
-0 Ano
C sinh(/ A0 L) + (To - /1> cosh(+/AnoL) + —
" (6.167)
or
Qn
D=T,—
/lno
(6.168)
C= [To - /l] [1 — cosh(v/2u0L)]/ sinh(/Ano L)
n0
Finally:
_ ]m(\/_Rl)
= Z []o(mp) NolR) No(v/Ano, p)]

KTO—A) [1 — cosh(y/AnoL)][sinh(y/An0z)/ sinh(y/AnoL)]
+ (To - A) cosh(\//?oz)} (6.169)
n0

6.8 Case Study: Temperature in a Cylinder with
Bases Thermally Insulated

Find the stationary distribution of temperature inside a cylinder
of height h with a central hole of radius R; and an outer radius
R;. The flat faces are thermally insulated. The inner surface is in
contact with a thermal reservoir at zero temperature and the outer
surface is in contact with another reservoir at a temperature T =

cos (3¢).



Temperature in a Cylinder with Bases Thermally Insulated

T=cos(30) Insulated

N

R2

R, Height h

SN

|

—
~—
=0 Insulated

Figure 6.11

Mathematical formulation

Au(p, ¢,2) =0

ou _ ou _o
3z, 02|, (6.170)
u(p =R, 9,2)=0

u(p = Rz, ¢, z) = cos(3¢)

Sturm-Liouville problem

We separate variables:

u="V(p, ) Z(2) (6.171)
We seek the expansion of the solution in eigenfunctions of the
Sturm-Liouville problems in the (¢, z) directions, to able to remove
the second derivatives from the Laplacian, since the radial boundary
condition in the radial direction is inhomogeneous.

AlV(p, ¢)-Z(2)] = ZAV(p, )+ V(p, )AZ(2) =0 (6.172)
ZAV+VAZ AV AZ

— =0 6.173
VZ %4 + Z ( )
Auxiliary problems:

d*z

ﬁ =+ vZ = 0

dZ

i =0 (6.174)

dz |,_,

dzZ —0

dz z=h
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Z,(z) = cos (nhnz) (6.175)
an\?
Up = (h> (n=0,1,2,3,...) (6.176)

Then, when reducing the number of partial derivatives, the problem
for V(p, ¢) is:

10 [Lov] 12y 2
0 |:’03,0:|+ 7 342 AZ n
= C—y=(= 6.177
% z "7\ (6.177)
Then:
1o [ ov] 192V T\, o (6.178)
pop "op| " p?ag? h B '

General solution

In this moment we can present the general solution as the product
of angular and radial functions and eigenfunctions of the z variable.

U= Valp, ¢)- Za(2) (6.179)

n=0
We can simplify the problem by checking that the solution doesn’t
depend on the z variable. Precisely:

u(p = R2) =Y _ Va(Re, ¢) - Zu(2) = cos (3¢) (6.180)
n=0

We multiply the equation by cos(”Tkz) and integrate it between 0 and
h in the z direction. Of the whole summation, only the term with
index n = 0 remains. Then u = Vy(p, ¢). The equation to find
Vo(p, @) is then:
1 d aV 1 9%V,
p—2 9 _0 (6.181)
pop | op p? dp?
We multiply the equation by p? and separate variables once again
Vo(p, ¢) = R(p) - P(¢)

pdp [0 %% ] 1d*®

= 6.182
R ) dgo ( )
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With n > 0 we arrive at a Sturm-Liouville problem to expand the
solution in angular eigenfunctions:

d*® +nd =0
de? 1T (6.183)
(p) = @(p +271)
The eigenfunctions and eigenvalues are:
®(p) = ™) (6.184)
n = m? (6.185)
The radial problem then is:
d [ dR 2
— |p—| —mMR= 6.186
P 3 [p & } m ( )
d*R dR
2 2
— — —mR= 6.187
dp? +p & m ( )
The general solution is then a known function. For m = 0:
R(p) = Ao + Bo log(p) (6.188)
Form # 0:
R(p) = Amp™ + Bmp™™ (6.189)

We apply the fourth boundary condition:
u(p = R;) = Ao + Bolog R

+ > [An(R2)"™ + Bn(R2)™"] - cos (mg) = cos (3¢)

m=1

(6.190)

Using the orthogonality of the angular eigenfunctions we see that
only A3 and B3 remain. The terms of the expansion of the general
solution which are proportional to sin (mg) will be zero due to
their orthogonality with the function which describes the boundary:
cos (3¢). Furthermore, the terms Ay and B, are zero due to the
average of the function cos (3¢) in the range 27 is zero.

> _[A3(R2)® + B3(R2) ] cos (mg) = cos(3p) ~ (6.191)

m=1
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Then applying the orthogonality we see that the only non-trivial
term of the summation is m = 3:

[43(R2)® + B3(R2)"*]Icos(3p)|* = |cos(3¢) (6.192)
Or alternatively:
A3(R;)® + B3(Ry) 3 =1 (6.193)
We apply the third boundary condition:
u(p = Ry) = A3(R)®+B3(R1)3=0 (6.194)
We solve
ROR3
By = —1-2_ 6.195
R3
A3 = ———2 6.196
Final solution
The final result is:
3 -3 R, ’ p° — R?
u=[A3(p)’ + B3(p) °lcos(Bp) = | — | —g——¢ cos(3¢)
Jo Ry — R}
(6.197)

Additional notes: the solution could depend on the z variable due
to the different conditions of the curved boundary (which would
include the dependence on z) separating variables and expanding
the solution in orthogonal eigenfunctions in the z direction, and as a
function of the angular variable, the solution would be:

u(p, ¢, 2) = Y [Aumsin(mg) + Bun cos(me)]-  (6.198)

m,n>1

n Im(% R1) n n
[Im <h'0) — (Km(ﬂhan)> Km <h,o)] - cos (hz) (6.199)

Also the solution would depend on the z variable if the conditions on
the flat boundaries had changed with the corresponding changes in
the radial solution (from polynomial to modified Bessel functions)
even if the curved boundary were kept as in the original formulation
of the problem, that is, without a variation in the vertical direction.



Cylinder with a Heater of xy Symmetry

Finally if we impose directly n = 0 in the solution we see that the
McDonald function K(x) diverges atx = 0.

If we remove the hole from the problem, we would be left with
the summation formed only by radial modified Bessel functions
I,(0) = 1, which would mean that the solution would not depend
on neither the vertical nor the radial variables, and only on the angle
imposed by the boundary condition.

6.9 Case Study: Cylinder with a Heater of xy
Symmetry

Find the stationary distribution of temperature in a cylinder of
radius R and height L if inside the cylinder there are energy sources
acting as a thin film in the plane z = L/2. The density of the
heat sources is f = xy and the maximum distance of the source
from the center is R/2. Consider that the curved surface is at a
constant temperature Ty. The flat faces are insulated. The thermal
conductivity coefficient is k.

Insulated

f=xy |

e

T=To—7

Figure 6.12

Mathematical formulation

The background temperature Ty is subtracted from the solution.
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1 L R
—koAu = p? cos(p) sin(p) = E’OZ sin(2¢) - 8 (z— E) ; (0 <p< 5)
u(R,¢)=0
u
= =0
0z z=0,L
(6.200)
1, L R
——p“sin(2¢) - 8 (z— 7> (0 <p< 7>
Lo L 2o ? ?
pap Pop] " 07 0g? T 022 T R
0 <7 <p< R)
u(R,¢)=0
dul
02 | 0,1
(6.201)

Note: integrating the density of heat sources can help to check that
the total applied power is W = 0 since half of the source dissipates
heat and the other half absorbs it

Sturm-Liouville problem

We now seek the solution by separating it in two orthogonal
eigenfunctions of the following Sturm-Liouville problem:

Av(p, ¢, 2) + Av(p, ¢, 2z) =0

V(R ¢) =0 (6.202)
vl _
0z |,0,1 B

The corresponding eigenfunctions and eigenvalues are well known.

(o, @)nmk = Jm(V/ [Anmk — 1] - £)[Anmk cos(me)
k
~+ Bpmi sin(meg)] - cos (Zz) (6.203)
with e = ()% k=0,1,2,...,m=0,1,2,..,n=0,1,2,....

The index n counts the zeros of the Bessel function, which gives the

eigenvalues:
Ji (/T — ] - R) = 0 (6.204)
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General solution

We replace the expression for the general solution:

u= Z V(,O; ®, Z)nmk (6205)
into equation (6.201):
A (e, ¢ Dlnmk = 1 sin(2¢) - 8 ( z L (6.206)
101 @l nmk = Zkop (p 2 *

Note that it's one of the few cases where the solution can be sought
as the sum of orthogonal eigenfunctions, since their coefficients are
already present in the angular eigenfunctions.

S dnlv(, . Ao = 530 sin2g) (z - ;) (6:207)

Final solution

Using the orthogonality of the eigenfunctions we get the coefficients:

Z Anmk]m( [/1nmk - ,U/k] : IO) [Anmk COS("W’)

. km
~+ Bpmk sin(me)] cos <LZ> =
1 L
= 2Topz sin(2¢) - 8 (z — 2> (6.208)

Itis clear that A,k = 0
. km
Z Bnmk/lnmk]m( V [/lnmk - /’Lk] . :0) Sln(m(p) Cos TZ

1 L
= Z—kopz sin(2¢) - 8 (z— 2) (6.209)

Multiplying both sides by Jm(v/[Aamk — il - p) sin(mg) - cos (X z)
R2x L

and integrating between [ [ [ pdpdpdz we get:

000

R/2 2 L
L P In /o= - p)dp [ sin(2g) sin(m)de [ 8(z ~ §) cos (52) dz
0 0 0

2k

Bomk = 2 2
Anmt |/ Pham = 2] - )| Isin(mg)? [cos(%2 2]

(6.210)
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Only the following coefficients remain:
R/2
L cos(5) [ PP To(V [k = pud - p)dp
_ - 0
= —
2Ko A1 |/ m (VT nzic — pae] - p)HZ ]cos(sz)‘

(6.211)

Buok
Finally:

km
u = Ty + sin(2¢) Z Brakdnaic) 2(v/ [An2k — 1] - p) cos (LZ>
nk

(6.212)

Alternative method
Sturm-Liouville problem

Just like in the first method we convert all boundaries to homo-
geneous by subtracting the temperature Ty, we seek the solution
as an expansion in radial and angular eigenfunctions. The vertical
direction z is described by a function that we need to find:

A [ X vonle 00 Zm(2)] = 5 p?sin2e) -5 (- 3 ) (6213

where v(p, ¢)um are the eigenfunctions of a Sturm-Liouville
problem in a whole disk with first type boundary conditions.

v(0, @)nm = Jm(v/ [Anm] - p) sin(mg) (6.214)

Applying this condition (i.e., lowering the amount of second
derivatives operators in the Laplacian from three to one) and

integrating the resulting equations between the limits of the
R 2m

variations in the radial and angular variables [ [ pdpdg. We arrive
00

at a non-homogeneous differential equation for the Z(z) function

with two different homogeneous boundary conditions of the second
type which is solved by a solution by parts in the homogeneous
ranges of the z variable. We then apply the two conditions for the
insulated boundaries (z = 0; L), besides the condition of continuity
for the functions and the condition for the difference of their
derivatives.



Semi-Cylinder with a Thin Heater

6.10 Case Study: Semi-Cylinder with a Thin
Heater

Consider a half of a cylinder (height L, radius R = L/2, thermal
conductivity k) with its two flat horizontal sides in contact with a
thermal reservoir at zero temperature and the vertical flat face is
thermally insulated. The curved part is insulated except for a thin
line in the form of a helix, through which a power W is uniformly
supplied. Find the stationary distribution of temperature inside the
cylinder, considering that all the heat generated by the resistance is
directed towards the inside of the semi-cylinder.

T=0 L/2 )
H
Insulated curved E !Back flat face,
surface except the +—  insulated
thin part with heater s L
\\
Thin helix-like heater
doing a half turn,
emitting a power W
T=0
Figure 6.13

Mathematical formulation

Au=20
u(p, ¢, 0) =0
u(p, ¢, L)=0
(6.215)
u 2W Ly
e — — _78 zZ— —
00| 1 L2 T
d 0
dul - _oul o
a(p ¢=0 8§0 o=m

Integrating in the ¢ angle and in the z direction the right part of
the non-homogeneous boundary condition, we note that the surface
power corresponds to the total power radiated by the heater, W. In
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cylindrical coordinates the equation to be solved is:

10 a 1 92 92
- pl 77u+7u:0 (6.216)
pop | dp p2 0@ 0z2

Sturm-Liouville problem

We separate variables, taking into account that in the ¢ and z
directions we have homogeneous boundaries:

u=R(p)- P(p)-Z(2) (6.217)

11d{dR] 1 1d*® 1d*Z

|+ 5= =0 6.218
Rodp | dp ( )

p? @ dy? + Z dz?
As always, we solve the ®(¢) and Z(z) functions using the Sturm-
Liouville problems with the corresponding boundary conditions.
The first Sturm-Liouville problem is:

2

z
42 L az=o0
s (6.219)

Z(0)=Z(L)=0

The second Sturm-Liouville problem is:

o +ud=0
/J, =
dy?
d¢ _do B (6.220)
d(p 0=0 d(p o=n
®(9)Z(2) = Apm cos(me) sin (n—;z)

m=123..., m=0,1,213...) (6.221)
The differential equation for the radial part is:
1d
;%[P% 1

mn\?2
s ?(_mz) _ (T) =0 (6.222)

d*R N 1dR m? N (nn>2 R (6.223)
do?  pdp [ p? L B '
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General solution

The general solution of (6.236) is a Bessel function of imaginary
argument (modified Bessel function). This time we discard the
McDonald function, since it would diverge in the origin.

u(p, ¢, z) = Z ApmIn (n—l‘np> cos(mg) sin (n—:z) (6.224)
n,m

To find the A,, and B, coefficients we will use the third boundary
condition, differentiating the general solution and applying the
condition of heat flux through the curved surface.

cos(mg) sin (Ez) = 2w 8 <z— L(p)

S gy 0 41 (E0)

L dp L k2w bid

n,m —L
2

(6.225)

Final solution

Using the orthogonality of the angular and vertical eigenfunctions
we get the relation for the coefficients (with € = % form > 1 and
€ = form = 0).

W OfLO]MZ - )] cos(mg) sin(Zz)dzdp

Anm = =
knw?L gr,, (Z2p 5
’"5 i) llcos(me)|1? [|sin("2)
1% L
r=z
sin(ng) cos(me)d
ow Of (ng) cos(me)de B
knemx?L qj, (71 p) i
e L
Io PZ%
aw 1 f
= /sin(mp) cos(my)dy =
knem21? gp . (%1p)
_BANLT 0
d
IO ,DZEL
2w 1 1 — cos((n + m)x)
"~ knen?l2 dl, (22p) (n+m)
dp m
-2

(6.226)

p
1 — cos((n — m)x)
(n—m) }
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Finally we check the units of the result. Recalling that [k] = W/(mK)
the obtained result will have units of temperature (K).

6.11 Half Cylinder with Two Inward Fluxes

Find the stationary distribution of temperature inside a half cylinder
of radius R, height L and thermal conductivity coefficient k. The flat
back surface is thermally insulated and the curved surface at the
front has a temperature Ty. Each of the remaining surfaces (upper
and lower) is traversed by a heat flux Q (homogeneously distributed
across the boundaries) as indicated in the figure.

Q=total inward heat flux

\
C d
/ s:lrfr\;ie atT,

Flat insulated
surface \ Height L

Q=total inward heat flux

Figure 6.14
Mathematical formulation
Au=20
0
k| =20/(xRY)
0z z=0
ou )
—k — = —-2Q/(wR?) (6.227)
0z |,_;
u(R, ¢, z2) =Ty
ou u
_— = — = 0
09|, 0@ |,en




Half Cylinder with Two Inward Fluxes

Subtracting Ty from the solution we achieve the curved boundary
with homogeneous boundary conditions, and the conditions in the
rest of the boundaries don’t change.

The solution can be expanded in a sum of orthogonal functions in the
radial and angular variable. We will apply the method of separation
of variables. In cylindrical coordinates the equation to be solved
becomes:

19 [ du 1 9%u  0%u

Sturm-Liouville problem

For the separation of variables method we need to consider that in
the ¢ and z directions we have homogeneous boundaries:

u=R(p)- P(p)-Z(2) (6.229)

11d dR 11d*® 1d*Z

Rois Va) P reag a0 1O
11d dR 1 1d%*e 1d*Z
Fods o) prode = g = (62

The choice of the sign of the constant of the separation of variables
is due to inability to formulate a Sturm-Liouville problem for Z(z)
(because of the non-homogeneous boundary conditions), whereas
we can express ®(¢) as a set of orthogonal eigenfunctions. The
second Sturm-Liouville problem is:

d’o

—+ud=0

dy? 6.232
d¢ _do _o (6.232)
d§0 ¢=0 dgﬂ o=m

®(¢) = cos(mg) m=123..., m=0,1,2,3...) (6.233)

The problem in the z direction has the form:

d*Z 17 —
dz? B
9z
—k — = Const (p, ¢) (6.234)
0z |,_o
d
—k oau = —Const (p, ¢)
0z |,
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Z(z) = A cosh(vAz) 4+ B sinh(v/12) (6.235)
The differential equation for the radial part is:

d*R 1dR m?
02

o+ 4 A-—|R=0 6.236
deijdpJr ] ( )

The radial solutions are J ,(+/1p), neglecting the Neumann functions
that diverge at the origin of coordinates. The Ay, eigenvalues are
given by the zeroes of the m-th order Bessel function: /,,(vAR) =0

General solution

u(p, ¢, 2) = Y _ Jm(v/Amkp) c0s(me)[ Ami cosh(y/Ami2)
m,k
+ B sinh(v/Ami2)] (6.237)

Final solution

To find the Apx and By coefficients we will apply two non-
homogeneous boundary conditions (corresponding to the fluxes)
by differentiating the general solution and applying the heat flux
density condition across each of the bases.

k> Buier/Amic) m(\/ Amicp) cos(mg) = 2Q/(wR?)  (6.238)
m,k

—k Z(Amk Amk Sinh( V /lka) + Bukv/ Amk COSh( V /lka))]m
m,k
(v/Amip) cos(me) = —2Q/(x R?) (6.239)

Finally, using the orthogonality of the radial J ,(+/Amkp) and angular
cos(mg) functions we get the ration of the A,,x and B, coefficients:
R b4
20 [ Im(VAmkp)pdp [ cos(mep)dy
0 0

_k /lm R2 R b4
NV U m(/Tmep) 2 0dp [ [cos(mg)]2dg
0 0

Bmk =

(6.240)

Only the coefficients of index m = 0 remain:
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L2 Of]o(x/m)pdp 6261

Y KR [Uo 200 |

Likewise for Ay only the coefficients with m = 0 remain.
R
Jo(~/Aokp) pdp

AOk:k 20 2 Ofo(R 0kP) B hBO"
VT (oD (Yol Aty D
_ 1 + cosh(+/Agr L) (6.242)

— By — > W TOkR
% sinh(yv/AokL)

Since for the remaining indices m we apply the orthogonality
condition:

[Amk/ Amk sSinh(\/ Amk L) + 04/ Amk cosh(v/ AmkL)] = 0

(6.243)

6.12 Heat Flux through Half a Cylinder

Find the stationary distribution of temperature in a half cylinder of
length L, radius py and thermal conductivity k if a heat flux of value
] = Jo(Lz — z?) enters through the curved surface and exits through
the bases, being homogeneously distributed. Consider that the flat
face opposite to the curved surface is thermally insulted.

J heat flux

Thermally insulated

Heat exits through
these boundaries

Figure 6.15
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Solution:

To find all boundary conditions we must equate the flux that enters
through the curved surface to the flux that exits through the lateral
faces. The total flux that enters through the curved surface is

7 oL L L
—/ / ]o[ZZ—LZ]Rd(deZ—R]()T[ [/ zzdz—L/ ZdZ]
o Jo 0 0

P ] wRjoL?
5-7)- T
(6.244)

Both lateral surfaces get half of that flux:

W(iz=0 d RjoL? L3
wEz=0) -k - ]20 = _Jo (negative flux)
S |,y 6 [TR} 2 6R
(6.245)
Wiz=1L 0 L3
we=1 =—k o = +]07 (positive flux)  (6.246)
S 0z |, 6R

The sign of the fluxes exiting through both sides is different since, by
symmetry, they propagate in opposite directions.

Mathematical formulation

Au=20
ou
-k — = JolLz — 7*]
ap p=R
ou
3 oo (6.247)
u 13
*5} =_%*
z=0
ou 3
_k = — 4 L’
9z |, Tk

We can split the problem in two:

u(p, ¢, z) =wl(p, ¢, z) +v(p, ¢, z)
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Problem 1:
Aw =0
a
k| = Jollz— 2]
9P | R
aw (6.248)
-k — =0
3(/7 0,7
a
A —0
9Z |,—0,1
Problem 2:
Av =0
0
LA B
ap p=R
v ]0L3 (6249)
T oz|,_,  6R
0 L3
A L L
0z |, 6R
Strum Liouville problem
We separate variables for w(p, ¢, z):
w(p, ¢, 2) = R(p) - ®(¢) - Z(2)
119 oR +1182<D_ 1822_
Rpop\" op) T @ p2op?r T Z 022
The Sturm-Liouville problem in the z direction is:
d*z +AZ =0
— —
Z; (6.250)
= -0
dz |,,1

The eigenfunctions of the problem are:
nz

Z(z) = cos (T)

and the eigenvalues,
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The Sturm-Liouville problem in the angular direction is:

d*o +10 =0
— —
gfb (6.251)
il =0
d(p =0,
The eigenfunctions of the problem are:
(¢) = cos (my)
The radial equation is:
d dR
p— [p— ) — (W*+m*)R =0 (6.252)
dp dop
or:
@R LdR _mt ] (6.253)
dp?  pdp | p? B '
The radial solutions are modified Bessel functions:
R(p) = Aumlm(¥2p) (6.254)

The general solution is:

W(p, 9, 2) = > Aunln(x/A0) cos(me) - cos (”—ZZ) (6.255)

We apply the boundary conditions:

—k aiw — ]o[LZ _ ZZ]
ap p=R
= Z \//TnAnmI,/n(\//TnR) cos(mg) - cos (LZZ)
n,m

(6.256)
Applying the condition of orthogonality:
Jo fOL(LZ —z%) cos (Z1) dz - [ cos(mg)de

_k\/ﬁ_nlfn[Jﬁ_nR) - fOL o cos?(me) cos? (%) dpdz
(6.257)

nm =

Only the terms with m = 0 remain:

Jo fOL(Lz —z*)cos (%) dz

Ao =
" kA 15 (VA R) - £

(6.258)
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Now we turn to problem 2. As no boundary condition depends on ¢
and there are no heat fluxes at ¢ = 0, 7 the solution will not depend
on the angular variable.

10 1% 2V

——\|p— )+ =0 (6.259)

p dp ap 0272

Separating variables: V = R(p) - Z(2):

1d ( dj) d2z
I @z

pdo \"do) _ ) (6.260)
R Z

The sign of A is chosen to arrive at hyperbolic solutions in z:

d*z
57 —AZ(@=0-2(2) =4 sinh(v/12) + B cosh(v/1z) (6.261)
VA
Radial solution:
1d [ dR
—— (p=—)+AR=0— R(p) = Pl 6.262
(PG ) HaR =0 RO s ) (6262)

The Ay eigenvalues are found from the zeroes of the derivatives of
the Bessel function:

A= (%)2 (6.263)

General solution

The general solution is:

Vo, )=y [Aisinh(v/A4z) + By cosh(\/4i2)| Jo(v/Aun)

k
(6.264)

Final solution

To get the constants necessary to obtain the final solution we apply
the boundary conditions. Applying the boundary condition at z = 0:

k oV ]0L3 .
- Ez=0=_ﬁ=_ zk:Ak\//Tkjo(\//Tkp)—)
JoI? foR Jo(WAkp)pdp

A, =
T k- 6R[Jo(SAp)

(6.265)
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Applying now the boundary condition at z = L:

A 3 {Ak\//chosh(\/IkL) T Bk\//Tksinh(\//TkL)]

0z z=L k

Jol?
X Jo(VAkp) =~ (6.266)

. 1 ]0L3
B = T sinh (VD) [ 6R A"ﬁ‘mh(\/ﬂ”}

y I3 Jo(WAp)pdp
1o(v/Akp)II?

(6.267)



Chapter 7

Problems in Spherical Coordinates

The present chapter gives several examples of the detailed solution
of problems that can be described using spherical coordinates
when the symmetry break is due to a symmetry center. Spherical
coordinates use three variables (azimuthal and polar angles, and
radius). As a result, the form of the Laplacian operator changes, as
well as the form of the solutions to the Sturm-Liouville problem in
the radial variable (spherical Bessel functions) and in the polar angle
(Legendre polynomials). Furthermore, also the way to describe
some spatial features, such as points, circles or spherical shells
changes, by using the Dirac’s Delta function in spherical coordinates.

It is important to stress that in the case of problems with non-
homogeneous contours in planes perpendicular to the vector of
the azimuthal angle it is necessary to insert a constant or use a
compensatory function in order to formulate correctly the Sturm-
Liouville problem in the azimuthal angle. Only in this manner will
we be able to formulate the equations as a function of the polar angle
and in the appropriate cases, the radial coordinate and get solutions
in the form of Legendre polynomials.
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Problems in Spherical Coordinates

7.1 Electric Potential between Two Spheric Shells

Find the electrostatic potential inside a sphere whose outer part
(r = b) is at zero potential (u(b) = 0), whereas the inner part
(r = a) is at a potential equal to V sin(8) sin(¢).

u(a)=Vysin(B)sin(p)

AN
u(b)=0
Figure 7.1
Mathematical formulation

Au=20 (a<r<b)
10 2 ou n 1 Ar u—0
r2 or or r2 o0t = (7.1)
u(r =b) = f(6, ¢) = Vysin(0) sin(¢)
u(r=a)=0

We seek the solution of the equation:

0 [, /du
— — A =0 7.2
ar [r (37‘)} + Aol (7.2)
Using the method of separation of variables:
u(r, 0, 9) =R(r)-V (0, ¢) (7.3)
dr.2(dR
—re(5: Ay, V
Gl _BeV (7.4)
R |4

Sturm-Liouville problem

We use the positive sign for A because we expect to get periodic
eigenfunctions for the angular variables, while the radial solution is
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expected to correspond to inhomogeneous boundary conditions. We
arrive at the problem:

AoV +V =0 (7.5)

1 0 {sin(@) (aagﬂ + ! 82—]/ +AV =0 (7.6)

sin(6) 060 sin?(0) dg?
By separating variables once again: V = ©(0) - ®(¢)
sin(0) 4 [sin(0)(£2)] + Asin?(0) - ©() 1 d?o
o) " Ta@de )
(7.7)

We choose the positive sign for v because we expect to obtain a
periodic solution (eigenfunctions) for the angular variable (¢). The
problem for (¢) is then:

d*®
di(pz + Vq)((p) =0 (78)
D(p) = @(¢ + 27) (7.9)

The solution for the part depending on the azimuthal angle is:

®(¢) = A cos(mg) + B sin(mg) (7.10)

v =m? (7.11)

2

Now that we have v = m*, we can find the solution for the function

e(0)

sin(@)% [sin[@) <‘£)} + Asin?(0) - ©(0) = m?*©  (7.12)

d dG
sin(6) [sin(@) <d(;ﬂ + [Asin?(0) — m?]©@) =0  (7.13)
The solution are Legendre polynomials:

0(0) = P (cos(6)) (7.14)

With eigenvalues: 4 = n(n 4+ 1). Now, since we have A = n(n+ 1) we
can find the radial function

d [, (dR B
dr[r (m)] —n(n+1R=0 (7.15)
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d*R dR
2 —_— —_— e =
r (drz ) +2r (dr ) nn+1R=0 (7.16)

We seek the solution as:

R(r)y=r* (7.17)

riafe — Dro 2 4+ 2rar® —n(n+1)r* =0 (7.18)
o’ +a—nn+1)=0 (7.19)

a1 =n (7.20)

ay=-n-1 (7.21)

Therefore R(r) = Cr" + Dr~"~!. We cannot discard any of the two
members since the problem is contained in (@ < r < b), and no
divergences at the origin are considered.

General solution

We form the general solution for the problem:

u(r, 0,9) = > Y [Comr™ + Damr ™"~ '1P{™ (cos(6))

n>mm=0

X [Apm cos(me) + Bnm sin(me)] (7.22)

An equivalent, but more convenient way to present this summation:

o0 00 bn+l r2n+1 _ 02n+1
06,0 = 33 (Gt ) (et ) A Ceosto)

n>m m=0

X [Anm cos(m@) + Bpy, sin(me)]

© an+1 b2n+1 _ r2n+1 -
m
+ Z Z (b2n+1 _ 02n+1>( il ) P.™ (cos(9))

n>m m=0

X [Cpm cos(me) + Dppm sin(me)] (7.23)
Imposing one of the boundary conditions:

0o pn+l p2nt+l _ g2n+l
u(b, 9, ) = Z Z <b2n+1 _ a2n+1> ( b+l )

n>mm=0

x P{™ (cos(0)) - [Anm cos(mg) + Bam sin(mg)] + 0 =0
(7.24)
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Final solution

And using the orthogonality of Pn(’”) (cos(#)), from cos(me¢) and from
sin(mg) we get:

2
[P (cos(@))]|” - Anm licos(me)l* =0 — A =0 (7.25)

1P (cos(6))|” - Bam lisin(m)l2 =0 — Bum =0 (7.26)
Imposing the other boundary condition:

X n+1 2n+1 2n+1
a b —a
p(m)
Z Z <b2n+1 aZn+1> < PrES] > ™ (cos 0)

n>mm=0

X [Crnm cos(me) + D sin(mg)] = Vo sin(0) sin(e) (7.27)

Then:

(e olNNe o]

>N P (cos(8)) - [Com cos(me) + Dym sin(me)]

n>m m=0
= V} sin(0) sin(¢)
(7.28)

Using the orthogonality of P{™(cos#) and of cos(mg) we multiply
w2

by P{™(cos6) and cos(mg) and integrate [ [ sin(6)d6de. Then:
00

2
[P (cos(@))]|” - Cum llcos(me) [ = 0 — Com =0 (7:29)

Finally, using the orthogonality of P(™(cos(6)) and sin(mg) we
multiply (7.28) by P{™(cos(f)) and by sin(mg) and integrate

T 27

[ [ sin(0)d6de. From there:
00

> ) " PI™(cos6) - Dop sin(mg) = Vq sin(6) sin(p) (7.30)

n>mm=0

1P (cos(0))|| - Dam lIsin(me) >

T 27

=V, / / P (cos(#)) sin(#) sin(¢) sin(mgp)dody  (7.31)
0 0
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|PC™ (cos(@))|| - Dam lIsin(me) >

by

=V, / P™(cos(0)) sin?(0)d6 - [Isin(@) | 81,m  (7.32)
0
whenm#1— Dy, =0

m
Vof P{™ (cos 0) sin?(6)d6
0

whenm=1— D, = HPn“”](cosmHz

Since Pl(l) (cos(0)) = sin(6), of all the coefficients only D;; = Vj
remains. The final solution is:

00 a"“ b2n+1 _ r2n+1
u(r, 6, ¢) = Z <b2n+1 — 02n+1> ( rn+l >

n>1

g
Vo [ P\™(cos()) sin® 6d6
0

PM(cos(6)) sin(p) (7.33)

Pn(””(cos(e))H2

or more simply:

2 3.3
u(r, 6, ¢) = Vo (b3a_a3) (b rzr >cos(<p)-sin(9) (7.34)

7.2 Distribution of Temperature inside a Sphere

A sphere has radius R. Its surface is kept at a temperature that
depends on the angles as: Ty sin(36) cos(¢). Find the distribution of
temperature inside this object.

—u(R)=T,sin(36)cos(p)

Figure 7.2
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Mathematical formulation

Au(r,0,9)=0 (0<r<R)

19 [, [du 1

o (5| + 7o =0 (7.35)
u(r = R) = f(6, ¢) = Ty sin(30) cos(¢)

u(0, 8, p) < oo

General solution

The general solution of the Laplace problem in spherical coordinates
has been obtained in detail in the previous problem.

u(r, 0,¢) =Y > [r" + Damr " '1PI™ (cos(6))

n>mm=0
X [Apm cos(mg) + Bpp sin(me)] (7.36)
Since the solution would need to be finite forr =0 — D,, =0
o0 o0
u(r, 6, ¢) = Y [P (€05(0)) - [Anm COS(me) + Bo sin(my)]

n>m m=0

(7.37)

Final solution

Using the orthogonality of cos(mg) and of sin(mg) and applying the
first boundary condition:

o0 oo
u(R, 6, ¢) = Tosin(36) cos(p) = Y > [R"]P"(cos())
n>m m=0
X[Anm cos(mg) + By, sin(mg)] (7.38)
Multiplying by cos(mg) and integrating from 0 to 2rx:

o0

Tosin(30) = Y An R"PM(cos(6)) (7.39)
n=1

Multiplying by P((cos(#)) and by sin(#) and integrating from 0 to
7 and also using the modulus of the Legendre functions we have:
T T
A = —— 0 / sin(36) (Y (cos(6)) sin(6)d6
R [PV (cos(6))]? sin(6)d6 o
0

(7.40)
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The sin(36) term can be expressed in terms of Legendre polynomials
by taking into account the following relations, to simplify the
calculation of the integral of the condition of orthogonality:

sin(36) = sin(6)[4 cos?(0) — 1] (7.41)

We know that:
PP (cos(6)) = sin(6) (7.42)
PM (cos(0)) = sin(0)[5 cos?(0) — 1] (7.43)

sin(6)[4 cos?(0) — 1] = sin(0)[5 cos?(0) — 1]% — %sin(@)

= §P3(1) (cos(0)) — %le (cos(0)) (7.44)

Only two coefficients of the summation remain:

A = = To
R [1P{P(cos )12 sin(6)d6
0
/ (-é) P (cos(0)) P (cos(6)) sin(6)do = —ST—; (7.45)
0
Az = = fo
R3 [[P{P(cos 0)]? sin(6)d6
0
T4 4T,
/ g103“)(cos(e))1r>3“)(cos(9))sin(@)de = S—R‘; (7.46)
0
Finally:
u(r, 0, ) = > Amr" PP (cos(6)) cos(p) (7.47)

n=1,3

7.3 Laplace Problem in a Sphere with a
Difference of Potential

Find the electrostatic potential inside a sphere of radius R whose
upper part (0 < 6 < w/2)is at a fixed potential equal to u; while the
lower part (/2 < 6 < ) is at a potential uj.
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Figure 7.3

Mathematical formulation

Formulation for v(r, 8, ¢) = u(r, 6, ¢) — uz

Av(r,0,9)=0 (0<r<R)

19 r? ov +1A v=0
r2 or or r2=0et =

up —u; (0 <6 <m/2)
vir=R)= f(6) =

0 (r/2 <0 <)
(7.48)

General solution

The general solution of the Laplace problem (both internal and
external) in spherical coordinates is:

v 0, 0= 3 (%) P (c0s))-[Aum cosme) + Bun sin(mg)]
n>m m=0

(7.49)
Since the solution does not depend on the angle ¢ we will have to
expand the solution with m = 0:

v(r, 6) = f: A, (%) P, (cos(6)) (7.50)
n=0

Imposing the boundary condition:

0= 40 () Ptcosto (751)
n=0
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Final solution

To find the coefficients A,, we will use the orthogonality of the
angular eigenfunctions (Legendre polynomials). Multiplying the

previous expression by P, (cos(¢)) and integrating [ sin(6)d6¢
0

T

/f(@) P, (cos(0)) sin(0)d0 = A, / P,(cos 0) Py /(cos(6)) sin(6)d6
0

0
(7.52)

T
2

} f(0)Pa(cos(0)) sin(0)d6  [(uy — uz) P,(cos(6)) sin(p)do
_0 _0

! IPa(cos 6)° a 1P (cos(6))II? 53
A, = 2”2+ s — ) / P, (cos 6) sin(8)d6
0
1
- 2”; LI uz)/P"(x)dx (7.54)
0

1
since [ P,(x)dx = 1; Ag = 3(u1 — uz)
0

On the other hand, since the P, (x) functions are even (k =
1,23...):
1

1
1
/ P, (x)dx = 3 / P, (x)dx (7.55)
0 -1
But due to the orthogonality:
1

/PZk(x) Py(x)dx =0 (7.56)
-1
Then we will obtain: A, = 0; (k = 1, 2, 3...). Finally we consider
n = 2k + 1, with k integer numbers. In this case also:
1 1

/PZkH(x)Po(x)dx = / P,  (x)dx =0 (7.57)

-1 -1
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However, since P,, ., (x) are now odd functions:

1
/PZk+l (x)dx #£0 (7.58)
0
To find this integral we use recurrence formulas:
(2n+ 1) Py(x) = Py (x) — Pp_y(x) (7.59)
Then:
1
[ Pustrix = 0 / [Phsal() — Phux)ldx
0
= 23 1Pe2(0) = Pu(0)] (7.60)
Since:
Pais2(1) = Pu(1) = 1 (7.61)
Paky2(1) — P(1) =0 (7.62)
Finally
2(2k+1)+1
Agieyr = %(lﬁ — U)o K13 [P2k+2(0) — P2k (0)]
ui—u
= ) (0~ PatO)] (763)
Solution:

u(r, 0) = uz +v(r, 0) = up + ~ (u1 ) 4 W) “2) S [Pais2(0)

2k+1
—Pu(0)] ()" Parcra(cos(®))

(ug —uz)
2

x> [Pais2(0) — Po(0)] (%)ZM Pyr1(cos(0))  (7.64)

1
= E(U1 + uz) +

393
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7.4 Electric Potential inside a Spherical Sector

Find the electrostatic potential inside a metallic spherical sector
whose curved surface is grounded, whereas its flat surfaces, which
comprise an angle 7 /4 are kept at a difference of potential V, with
respect to ground.

u(a)=0
U=V0<\ /4
Figure 7.4
Mathematical formulation
Av=20 (0<r<a)
19 r2 ov + ! Ay ,v=0
r2 or or rz=0et =
vir=R)=0 (7.65)
vip=0)="V,
v( - ”) —V
¢ = 2) = 0

We seek the solution to the equation in the form u = v — V} to have
homogeneous boundary conditions in the azimuthal variable.
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(7.66)

We seek the solution of Laplace’s equation by generating a solution
from orthogonal functions in the angular variables.

0 |, (ou
— — A =0 7.67
7 (Gr)] + snvn (767
Separating variables:
u(r, 6, 9) = R(r)- V (6, ¢) (7.68)
d r.2(dR
=[r (5~ Ny, V
al"Ca)l _ BogV_ (7.69)
R 4

Sturm-Liouville problem

We choose the positive sign for A since we expect to obtain periodic
solutions (eigenfunctions) for the angular variables.

We get to the problem:
Np oV +AV =0 (7.70)
1 9 oV 1 9%V

— |sin(0) | — ———— +4AV =0 7.71
sin(6) 96 [Sm( ) (39 )} T i) 97 T (7.71)

Once again we separate variables: V = ©(6) - (¢)

sin(0) & [sin(0)(£2)] + Asin?(6) - ©(6) 1 d*® 0
= — =V >
0(0) D(p) dy?

(7.72)

We choose the positive sign for v because we expect to get a periodic
solution for the ¢ angular variable.
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We first find the solution for the whole sphere and then apply the
boundary conditions specific to the azimuthal angle in the whole
sphere.

d?o
d? +v®(p) =0 (7.73)
() = D¢ + 27) (7.74)

The solution for the part that depends on the azimuthal angle is well
known:

®(¢) = A cos(mg) + B sin(mg) (7.75)

v = m? (7.76)

Now that we have v = m?, we can find the solution for the ©(6)
function.

sin(@)% [sin(@) (‘fgﬂ + Asin?(0) - ©(0) = m*©  (7.77)

Cod [ de L, N
sm(@)@ [sm(@) <d@ﬂ + [Asin“(0) —m“]1®(0) =0 (7.78)
Its solution are Legendre polynomials.
0(0) = P™(cos(6)) (7.79)

With eigenvalues: 4 = n(n + 1). Now, since we have 4 = n(n+ 1) we
can find the radial function:

% [rz <‘;f)] —n(n+1)R=0 (7.80)
2 <Cc’;§) Lo <‘$) —n(n+1)R=0 (7.81)

We seek the solution as: R(r) =r“

riafe — Dro 2 4+ 2rar® —n(n+1)r* =0 (7.82)
o’ +a—nn+1)=0 (7.83)

a1 =n (7.84)

0 =—n—1 (7.85)

So that the radial solution in general is: R(r) = r" + Dr—""!
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General solution

For the general solution of the problem only the values of m will be
integer for the whole sphere.

u(r,0,9) =3 Y [r" + Dyr " 1P{™ (cos(6))

n>m m=0
X [Apm cos(me) + Bpp sin(me)] (7.86)
Since the solution should be finiteatr =0 — D,, = 0
o0 o0
u(r, 6, ¢) = > S [F"1P™ (c0s(8)) - [Ann cos(mp) + Bun sin(mg)]
n>m m=0

(7.87)
In the next step we can already apply the boundary conditions
specific to the 7 /4 sector in the azimuthal angle by searching specific
values of m.

ulp=0=0— A, =0 (7.88)
7
u ((p - Z) -0 (7.89)
. T T .
sin (mz)_0—>1_kn (k=0,1,2,... =integer); m = 4k
(7.90)
Then:
u(r, 0, ) = Z Z Bk [r"1P*) (cos(#)) sin(4ke) (7.91)
n>4k k=1
Imposing the first boundary condition: u(r = a) = —Vj
o0 o0
~Vo=u(r,6,¢) =) > Bula"|P{*(cos(6)) sin(4kp) (7.92)
n>4k k=1

Final solution

Using now the orthogonality of P(*¥)(cos(6)); and of sin(4kg) we will
get the By coefficients. We multiply by P*¥(cos(6)) and sin(4k¢)

T4
and integrate (7.92) between [ [ sin(0)d6de:
00

Ve / / P (cos(6)) sin(0) sin 4kpdody
0 0

= Bu || P9 (cos(6))” - lIsin(4ke)])? (7.93)
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T ™
—V, [ sin(4kg)dg [ P{*(cos(6)) sinodo
0 0
2
‘ P,,(4k)(cos(0))H - IIsin(4kg)|1?
Rk —1] x [ P*V(cos(0)) sinodo

= . (7.94)
| P coson)| " Isin(4ke)

Final solution:

v(r, 6, 9) = Vo + i i Bu[r™ P*¥ (cos(6)) sin(4kg)  (7.95)
n>4k k=1

Additional note. It is possible to solve the problem by rotating the
portion so that one of its flat surfaces lays horizontally. In this case
the length of the azimuthal variable is between zero and 7, whereas
the polar angle will be comprised between 7 /4 and 7 /2.

7.5 Electric Potential of a Metallic Sphere inside
a Homogeneous Electric Field

A uniform electric field E occupies all space, directed in the z
direction, so that the corresponding electric potential is u = —Ez.
A metallic sphere of radius R is placed in this field. Calculate the
equilibrium distribution of electric potential outside the sphere
supposing that the electric potential inside the surface of the sphere
is zero.

,——\/—r u(r=o)=-Ez

0 4

://\\:

Figure 7.5
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Mathematical formulation
Au(r, 0,9) =0 (R<r <o0)
u(r=o00,0,¢9) = —Ez= —Ercos(0) (7.96)
ur=R,0,9)=0

The general solution of the Laplace problem in spheric coordinates
(problem 7.1) has the form:

U0, 9) = 3 D1 + Do " 1P co5(0)

n>m m=0

X [Apm cos(me) 4+ Bpm sin(me)] (7.97)

General solution

Both boundary conditions don’t have any azimuthal dependence. In
this way the solution will be presented as an expansion in Legendre
functions. This can be demonstrated explicitly by integrating the
boundary conditions with the orthogonal azimuthal eigenfunctions
and showing that the only term that remains corresponds to the
index m = 0.
oo
u(r,0) =Y _[Anr" + Bur™"']P,(cos(6)) (7.98)
n=0

We impose the first boundary condition:

u(r =00,0) = —Ercos(0) = —ErP;(cos(0)) = i A,r" P,(cos0)
n=0

(7.99)
We impose the orthogonality (that 1is, multiplying by
Py(cos(#)) sin(#) and integrating from 0 to x). It can be seen that
the term with n = k = 1 remains, and corresponds to A; = —E.
Finally we apply the second boundary condition:

u(r=R,0)=0= By + (—ER+ BiR"*)P;(cos6)

o0
+> " Byr " Py(cos6) (7.100)

n=2
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Final solution

Imposing the orthogonality (that is, multiplying by Px(cos(8)) sin(6)
and integrating from 0 to ) it can be shown that only the term with
n = k = 1 remains. As a consequence we have (—ER + B1R7%) =0,
which gives B; = ER3

Then the final result will be:

u(r = R, 0) = E[—r 4+ R*/r?*]P;(cos(6)) (7.101)

7.6 Case Study: Variation of Temperature in a
Sphere Quadrant with Non-Homogeneous
Boundaries

A quadrant of a sphere is initially at thermal equilibrium at zero
temperature. Find the distribution of temperature as a function of
time if stating at ¢ = 0 the temperature in the flat face at ¢ = 0
is brought into contact with a thermal reservoir at T = T, and
the other flat face at ¢ = /2 is fixed at another temperature
T = Ti, while the temperature in the curved boundary (r = R)
is set according to:

Ti—Ty  8(6—n/2)
T 7.102
2 T Tsine) ¢ (7.102)

Ti-To ,, 6(6-1/2)

U=Tot 277 *+=5in(0)

9

Figure 7.6
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Mathematical formulation

We will find a solution as the variation of temperature with respect
to the equilibrium temperature in the initial instant (U). The
problem to be solved is:

aU

— —cAU =0

ot

U(r,6,0)=T,

Uro,7/2)=T (7.103)

T]_—To 5(9—7’[/2)
72 7 sin(9)

U(R, 0, ¢) = To +

U(r, 09, t=0)=0

We will split the problem in two: one stationary with inhomoge-
neous boundary conditions and another with temporal evolution
but with homogeneous boundary conditions:

Ur 6,0, t)=T( 0,9, t)+ E(, 0, ¢), (7.104)
so that:
AE =0
E(r,6,0)=Tp
(7.105)

E(r,0,7/2) =T,

T,—Ty 8(00—m/2)
72 Y7 sin(e)

The boundary conditions of the previous stationary part leave the

boundary conditions for the temporal part as homogeneous, but the
initial condition changes:

E(R,0,9)=To +

oT

— —cAT =0

at

T(r,6,0)=0

T(r,6,7/2)=0 (7.106)
T(R,0,9)=0

T(r,0,p,t=0)=—E(6, ¢)
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First we will solve the stationary part so that we can use the new
initial condition in the transient part.

Solution of the stationary part

The first thing that must be done to solve the stationary part is to
homogenize the boundaries in ¢ to be able to expand the solution
of this coordinate in orthogonal eigenfunctions. To do that we will
write the stationary part as:

Ty
/2
In this fashion W has homogeneous boundaries in the ¢ coordinate
and satisfies Laplace’s equation:

T, —
E(r, 6, 9)=W(,0,¢)+ To+

(7.107)

AW =0

W(r, 6, 0) = 0

W(r, 6, 7/2) = 0 (7.108)
5(6 — /2

W(R, 6, ¢) = (Sm(’;)/)

It is not necessary to have homogeneous boundaries in the radial
part, since that part of the solution will not be expanded in
orthogonal eigenfunctions.

Sturm-Liouville problem

To solve W we separate variables:
W(r,0,9)=R(r) Y0, ¢) (7.109)

Inserting this into Laplace‘s equation we arrive at:

d (p2dR 1%y
ar (rR ) _ sm(e) 6 (Sm(e)y 7) T @ i =1 (7.110)
With this we obtain the following two equations:
dZR dR
—+2r— —AR =0
dr? + dr

(7.111)

1 9 sin(@) + Loy +AY =0
sin(#) 96 00 sin?(9) 0¢? N
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First we solve the equation for the angular variable Y. To do that we
separate variables once again: Y (6, ¢) = 0(0) - ¢(¢). With this we
get to equation:

d (i dv

- (sin(8) 7= "

sin(@)‘w(;)‘m) + Asin?(6) = _% = L. (7.112)

We first solve the part for the ¢ coordinate, taking into account that
¢(0) = ¢(r/2) = 0 must be satisfied. With this we easily get that:

¢ =sin(Zm¢p) m=1,2,3,... (7.113)

In this way we arrive at the value of the separation constant: u =
(2m)?. With this value we can solve the part of the # coordinate.
For that it will be necessary to perform the change of variable:
x = cos(#). With this we get the equation:

d2o dv (2m)
2
(1—x)dxz—2xdx+</l—1_xz>19=0 (7.114)

and its solution are Legendre polynomials:
9@M (@) = PP (cos(0)) A=n(+1)andn>2m (7.115)

Knowing the values of 1 allows to solve the equation for the radial
part. Because of the form of the equation for R it is easy to guess
that the solutions are powers of r, so that the solution of the radial
partis:

R(r) = Ar" + Br~(t1) (7.116)
Since the solution cannot diverge at r = 0 we impose B = 0. With

all this we can now write the general solution of the stationary part:

oo nj/2

W, 60,9)=> > Apmr"sin(2mg) P (cos(0))  (7.117)

n=0 m=1
Imposing the radial boundary condition:

80 —m/2
W(R, 0, ¢) = 56 —n/2) . all )w (7.118)
sin(6)
We find the value of the coefficients A, 1,:

oo nj/2

¢ =3 ApmR"sin(2mg) P*™ (cos(6)) (7.119)

n=0 m=1

30 —m/2)
sin(0)
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Considering that:
i 2 (n+2m)!
2m .
| /6 . P%™ (cos(6)) PP™ (cos(6)) sin(6)d6 = 1 =z
(7.120)
/2
/ sin(2me) sin(2m’'¢)dg = 2 Sm,m (7.121)
=0
/2 T
/ ¢ sin(2mg)dy = —— cos(mmx) (7.122)
o= 4m

Doing the respective integrals of the boundary conditions we can see
that the value of the coefficients is:

1 (=)™ (2n + 1)(n — 2m)!PZ™(0)

A =
) mR"(n + 2m)!

(7.123)

Remembering that P! (x) is an even function if n + [ is even and it
is odd if n 4 I is odd, it is easy to realize that A, = 0 if n is an odd
number and A4,,, # 0 if n is an even number. We can now write the
solution of the stationary part E. To do that we take n = 2k. In this
way the solution is:

ZZ 1 (=)™ (4k + 1)(2k — Zm)'P(Zm](O)er

E(r 6, ¢) = mR2(2k + 2m)!

kOml

T, — T
sin(2me) PE™ (cos(6)) + To + 171/2 0

(7.124)

Solution of the temporal part

Knowing the stationary solution we can solve the temporal part, now
that we explicitly know the initial condition for the transient part.
We start from equation:

aT
& AT =0 (7.125)
at

We separate variables:
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T(r 0, t)="1(t)- M(r, 6, ¢) (7.126)

Inserting that into the equation we arrive at:

T/ AM

I (7.127)

cT M
We use the negative sign in the constant of separation of variables so
that the solution doesn’t diverge at infinite times. From the previous
equation we arrive at two equations, one for the temporal part an

another for the spatial part:

'+ Act=0
(7.128)
AM+AM =0
To solve the spatial part M(r, 6, ¢) we do:
1
A=A+ 50y (7.129)
r
Separating variables: M = R(r) - Y(6, ¢), and imposing that

the angular part satisfies a Sturm-Liouville problem, since it has
homogeneous boundaries:

Ng oY +0Y =0 (7.130)
We separate variables once again:
Y(0, 9) =0(0) - ¢(9) (7.131)

We impose that the part with ¢ satisfies a Sturm-Liouville problem,
since it has homogeneous boundaries:

" +up=0 (7.132)
With this and the boundary conditions we arrive at:
¢ = sin(Zmy) m=1,273,... (7.133)

Inserting this into the equation for Y (6, ¢), just like we did
previously, we get:

2*M) = P (cos(@))  v=10+1); I=2m (7.134)

Inserting this in the equation for the spatial part M and imposing
that the solution doesn’t diverge at r = 0 we find that the solution
for the radial part is:

1
—= (~ar) (7.135)

Ri(r) = NG
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Solution of the temporal part z(t)

Knowing the value of the A;; we can solve the equation for the
temporal part, whose solution ends up being:

T(t) = e et (7.136)

General solution

Knowing the solutions for the spatial and temporal part we have the
general solution:

oo oo /2

T(f’, 6, o, t) = Z Z Z Ai,l,meili'wt

i=0 =0 m=1

sin(2mg) P cos(0)) =12 (/Ar)  (7137)

Final solution

Finally the value of the A;; , coefficients will be obtained with the
initial condition and remembering that:

T 7/2 R
/ / / M mMj: p r? sin(0)drd0de = E; | m8i,i:8118mmr
6=0 =0

(7.138)
with

. 1
M, | m = sin(2mg) P )(cos(é))ﬁ Jis1/2 («//l,»,[r) (7.139)

Then the value of the coefficients is:

b4 /2 R
/ / / E(r, 0, 9)M;; mr* sin()drdode
60=0 Jo=0 Jr=0

(7.140)

Ai,l,m = -

i,l,m

Remembering that:

ZZ” D"k + 1)(2k = 2m) PR (0)

E(r6,¢) = mR2(2k + 2m)!

k=0 m=1

Ty — T,
sin(2me) PL2™ (cos(6)) + To + —————

(7.141)
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the numeric value of the constants A4;;, is found evaluating the
integrals. Finally the expression of the coefficients can be shrunken.
We need to consider two cases. For odd values of I:

7.[( 1)m+1 T —
Ai,l,m =
4m 7T/2 9=0 Jr= 0

P,(Z’")(cos(Q))ﬁ]Hl/z (\%") sin(0)drd6 (7.142)

For even values (I = 2k, k=1, 2, 3 L)

7 (1)1 PE™ (0) —
Ai,l,m = 4mR2k T' 7]14_1/2 ( T‘) dr +
1 m+1 T
i G L e / / r2 P2 (cos())
4m /2 Jo=o Jr=o
1 .
e (\mr) sin(0)drdo (7.143)

7.7 Case Study: Stationary Distribution of
Temperature in a Sphere with Heat Sources

Find the stationary distribution of temperature inside a sphere or
radius R with internal heat sources distributed with a density equal
to f(r, 6, ¢). The surface is in contact with a thermal reservoir at
temperature T = g(6, ¢).

Apply the obtained result to the following particular case:
Consider a sphere in contact with two thermal reservoirs at different
temperatures T1 (0 < ¢ <m)and T, (7 < ¢ < 27). Inside this sphere
(with thermal conductivity k, heat capacity C and density p) along its
equator (symmetrically with respect to the center) a very thin, ring-
like heater of radius R/2 and which radiates a power W is placed.

u(r=R)=g(6,9)

-kAu=f(r,6,¢)

Figure 7.7
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Mathematical formulation

u_ o f6,9)
at pC
u(R,0,9)=0 (t<0)
(7.144)
u(R, 0, 9) = g(6, 9) (t>0)
a’ = LS
pC

General mathematical formulation for the case of a stationary
process in thermal equilibrium with boundary conditions:

Au(r, 6, ¢) = _Jn09)
k (7.145)
u(R, 6, ¢) =g(6, ¢)
To solve the problem we will decompose it in two:
u=uj+u; (7.146)

where u; is the solution of the inhomogeneous problem and u,
that of the homogeneous problem with inhomogeneous boundary
condition (see description of the decomposition in the next figure)
Problem (1):

u(r=R)=9(6,¢) u(r=R)=g(6,¢)

-kAu=f(r,6,9)

Figure 7.8
) 9)
Auy(r, 6, ¢) = _f8.9)
k (7.147)
Lll(R, 9, (p) =0

Problem (2)
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Auy(r,6,9)=0
(7.148)
uz(R, 0, 9) =g(0, ¢)

General solution

Problem (2) is solved by expanding the solution in sums of spherical
harmonics:

uz(r, 6, 9) =Y Awm (%) P{™ (cos(0))e™
=2 Aum (%) Yo,m(6, ¢) (7.149)

Using the orthogonality of the spherical harmonics we find the A4,
coefficients.

g(e, (/7) = Z Aann,m(e; 90) (7150)
27
[ [ 90, 9)Ynm(6, ¢) sin(6)dody
Ay = =2 5 (7.151)
Hyn,m(e; QO)H

Problem (1) is solved by expanding the solution in terms of
orthogonal eigenfunctions that solve the Sturm-Liouville problem.

Av(r,0,9)+Av=0
0O<r<R);(0<0<m);(0<g<2m) (7.152)
V(R,0,9)=0

The form of the corresponding eigenfunctions is:

Vamie(1, 0, @) = jn(v /lnkr)Pn(m)(cos(e))eim(ﬂ = Jn(\/ Ak ) Yi,m (0, ¢)
(7.153)
being j,(+/Ankr) spherical Bessel functions.

{jl(Z) = \/Z]H;(Z)} (7.154)
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General solution

Then, expanding the solution in terms of the summation of
Vimk(1, 0, ¢)
ui(r, 0, ) = Z Bumik X jn(v/Ankr) P™ (cos 6)e™

nmk

= Bumk X jn(\/AnkI) Y, m(6, ©) (7.155)

nmk

Final solution

Using the orthogonality we can solve the general problem:

- Z Ank Bnmk % jn(«//l_nkr)yn‘m(e, @) = _M

> > (7.156)

Using the orthogonality of the orthogonal functions v, (1, 8, ¢), we
find the B,k coefficients:

R2n m

[ [ [ £, 6, 9) X ju(VAkE)Yn,m(6, )r?sin(0)drdody
000

k/lnk ”Vnmk(rr 0, §0)||2

Bnmk =

(7.157)
To solve the proposed case we need to replace in the general
formulas the following functions for the given boundary conditions
and the density of heat sources:

T1 (0 < <m)
g0, ¢) = (7.158)
Ty (m < ¢ < 27)
C R b4

(due to the azimuthal symmetry of the heater). Normalization to find
the C constant:
R 2 n

/ / / f(r, 0)r*sin(@)dodg =C -2r = W (7.160)
0 0 O

Then C = % We use the relations of the general solution previously
found:
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R2m 7
Of { { @00 = 51800 = 3) ja(VAkr) Y, m (6, @)r? sin(6)drdedy
Bnmk =
ki 1Vamk (1, 6, 9) I
in(V Ak 5P (0
- WJ"(""—Z)"U2 (7.161)
kdnk [Vamk (1, 0, )|
Only the term with index m = 0 remains due to the azimuthal

symmetry. Furthermore, only the terms with even values of n (n =
21,1 =1,2,...)persists, since Py _;(0) =0

i R
B — W Jn(v/Anic5) Pa(0) (7.162)

ki Vo (1, 6, 9112

Particular solution for the part of the solution described with the
Laplace equation:

2
[ [ 96, )Ynm(0, ¢) sin(0)dode
Anm = 00 5
[[Yn,m(, @)
T 4 . 27 )
[ Pm(0) sin(0)do{ [ T1e(™)dg + [ T,elim)dy)
_ 0 0 4 B
[¥om(® @)’
T e[im'zr],1 T 17?(,mﬂ) T
_ M= +T in ]/p,gn(e)sin(e)dez
[Yo,m(8, @) /
1
_ pimm) B
_1 e [T, — T] z/p’;"(x)dx (7.163)
m Ym0, o)

-1

Note 1: In this case the A, coefficients will be complex numbers
since we have used the expansion of the solution with complex
azimuthal functions.

Note 2: Furthermore, due to the properties of Legendre polynomials
only the coefficients with even values of n + m remain, since for odd
values of n + m the function P)"(x) is asymmetric.
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7.8 Gas in Two Semi-Spheres

A gas is enclosed in: a (a) a spheric; (b) semi-spheric container. This
container is divided in two equal halves and the densities of the gas
in each of them are po+p1 and pg—p1 (p1 << po). At a given time the
division disappears. Find the variation in the gas density afterwards
considering that the radius is R and the speed of sound is ¢ = 1.

t<0 t>0

[2m )
o/

Figure 7.9

Part (a) Mathematical formulation

We will suppose that the plane separating both gases is at ¢ = 7.
The problem will be solved for the u = p — py variable.

General solution

The general solution for the variations from the equilibrium
pressure (po) is:

u(r, 6,0, t) = Z[A’dm sin(y/Aut)
+ Biam cos(v/ )] i (v/Aar) PL™ (cos(6))e™

(7.164)
where jj(/Ar)— are the spherical Bessel functions with boundary
conditions (g—f“l = ) (being n the direction normal to the surface).

Final solution

We impose the initial conditions. From the null initial velocity we get
Apim = 0. From the initial displacement:



Gas in Two Semi-Spheres | 413

i1
P£1 (9 < E)
u(, 6, ¢, 0) = .
e (0> 3)
=" Bumji(v/Aar) P™ (cos(6))e™  (7.165)
P1
i >0
/2 !
; T
—P1
Figure 7.10
Due to the symmetry of the problem in the azimuthal angle it is
clear that only exist terms with m = 0 in the sum. We use the

orthogonality of the spherical Bessel functions and the Legendre
polynomials to find the By, coefficients:

Figure 7.11
R
By = ,Ol/jl(v Ar)ridr

0

/2 n

| Pi(cos(8))sin(6)d6 — [ Pi(cos(P)) sin(#)d6

0 /2

x

(7.166)
i (v Zar) || 1l Po(cos(6)) 112
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The subtraction of the integrals is finite only for odd values of I. The

physical reason is the anti-symmetry of the initial conditions with

respect to the plane 6 = 7.

Part (b)

Figure 7.12

Now the initial conditions create an additional asymmetry with
respect to the ¢ = 0 plane:

[ m O<g<n)
u(r, 6, 9, 0) = {_pl < < Zn)} (7.167)

Sturm-Liouville problem

We expand the solution in eigenfunctions of the Sturm-Liouville
problem with boundary conditions where the gas oscillates:

Au+Au=0
Curved boundary: a—u =0
y: or | = (7.168)
ou
Flat boundary: — =
0=m/2

General solution

The solution for the variations from the equilibrium pressure (o) is:
u(r, 0, ¢, t) = Z[Aklm Sin(\//lk]t)

+Biam c05(v/ a1 i (v/Aar) P (cos(6))e ™
(7.169)

Here jj(/Ar) are spherical Bessel functions with the same
boundary conditions (g% = 0, being n the direction normal to
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the surface). Furthermore, the second boundary condition converts
into the following condition for the Legendre polynomials which are
admitted in the solution.

dP™(x)

=0 7.170
Ix (7.170)

x=0
From the relation that allows to generate PI(m) (x) by differentiating
the Legendre polynomials m times, we deduce that the solution only
admits those indices m, I for which m 4+ I is even, since:

m d
P = (1 - D[P (7.171)
and only P;(x) with even [ satisfy the condition for which the
derivative of the Legendre polynomial is zero at x = O0:

L1PM X)) (x=0)=0

Final solution

We now impose the initial conditions. Since the initial velocity is
zero: Aym = 0. The initial displacement is:
p1 (0<¢<m)
u(r, 6, ¢,0) =
—p1 (T < ¢ < 27)

=" Bumji(s/4uar) "™ (cos ()™ (7.172)
We use the orthogonality of the spherical Bessel functions, of
the Legendre polynomials and of the azimuthal eigenfunctions to
find the By, coefficients. Due to the symmetry of the problem
(antisymmetric initial conditions with respect to ¢ = 0) in the
azimuthal angle it is clear that ¢™ — sin(mg) (with m =
1, 2, 3,...). We determine the coefficients as the solution of the
equation:

2
Biam | 7/ 2ar)||” I1Pi(cos(@DI1? lsin(mg)|1* =
/2

R
=p / Ji(\/ Ar)ridr / P (cos(6))d cos(6)

0 0

bid 2

X /sin(m<p)d<p—/sin(mg0)dcp (7.173)

0 T
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Note: in the final expansion of the solution only the coefficients with
odd m will remain, and those for which (m + [) is even. See the

P _

x=0

previous discussion about the condition:

7.9 Case Study: Forced Oscillations in a
Semi-Sphere

A gas is enclosed in a semi-spherical container. The curved surface
is divided in two equal halves. One of them moves radially so that
r = R + § sin(wt) is the radius of the recipient in the corresponding
zone. The other curved half is open to the outer medium. Find
the stationary oscillations of the gas density inside the recipient
considering that § << R and the equilibrium pressure is Py.
Consider the case (a) of slow (isothermal) oscillations and (b)

adiabatic oscillations with constants (%)' = k. In the (b) case
La

consider that the open curved boundary from (a) is now closed.

Displacement=>5 sin(wt)

Figure 7.13

Part (a)

We first study the limit case of slow variations (w — 0)). We estimate
that the relative variation of the volume is:
AV mR%*Ssin(wt)  38sin(wt)
v nR® - R
3

(7.174)

We can evaluate the relative variation of the pressure (in isothermal

it . AP _ AV __  3ésin(wt) . .
conditions) as: = T = TR Recalling that AP =
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AP 3Pydsin(wt)
k kR
Mathematical formulation for Ap = u(r, 0, ¢, t)

Ap = = Asin(wt) (7.175)

9%u )
— =a“Au
at?

i o (flat closed base)
oz

0 ((p<—%;(p>%); <0<9<;>}

A sin(wt) (7% <@ < %), (0<9 < %)

u(R, 0, ¢, t) = f(6, ¢) sin(wt) = {

(7.176)

We seek the stationary solution, which should be periodical and
proportional to sin(wt)

u(r, 0, p, t) =V (r 0, ¢) - sin(wt) (7.177)

Replacing in the wave equation and obtaining the following equation

(1)2
AV +—=V =0
a

LA I (7.178)
o=

390 |,_ T
2

V(R, 0, ¢) = f(0, ¢)

Sturm-Liouville problem

The previous is a Poisson problem that we can solve by expanding
V (r, 8, ¢) in a sum of orthogonal functions in the angular directions
(spherical harmonics Y (6, ¢)).

V(r,6,0) =R()- Y (6, ¢) (7.179)
We know how to solve the Sturm-Liouville problem which appears
in the angular part:

Ap,Y +uY =0 (7.180)

Y (0, ¢) = P"(cos0)[A cos(my) + Bsin(my)] (m=0,1,2,3,...)
(7.181)
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Eigenvalues: p;, = I(l + 1);1 > |m)|

v
Applying the condition 50

0=2

d P/™(cos(6))
do

_ dP"(x)

=0 7.182
ot h (7.182)
-2

x=0

is only satisfied if (I + m) = even. This condition is obtained from
the relation which allows to generate P,(m) (x) differentiating m times
Legendre polynomials in the following manner:

PI) = (1 — 22 0 P'(X) (7.183)

Since for odd values of I, P;(x) is an asymmetric function and only
the P;(x) with I = even are symmetric functions which satisfy

dP,(x)

X x=0
times this function we keep its symmetry, from which we deduce

that the solution only admits the m, | indices for which m + [ is
even. Replacing Y (6, ¢) in the equation for V (r, 6, ¢) we obtain an
equation for R(r) (which is not a Sturm-Liouville problem):

2 <dZR) +r(‘m> n {wz_"’m]nzo (7.184)

dr? dr a? r2

the condition: = 0, only differentiating m = even

Its solutions are Bessel functions of semi even order:

Jiv12(%r)

R[(F):C \/F

(7.185)
General solution
With the previous, the general solution results:
] 1+1/2( r) m
u(r, 6, ¢, 1) = Z P/" (cos(6))[Aim cos(me)

—|—Blm sm(mgo)] - sin(wt) (7.186)
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Final solution

To find the coefficients we use the boundary condition for r = R and
the orthogonality for the eigenfunctions:

Ji+12(¢ R)
u(R, 0, ¢, t) = — 2 - p"(cosO)[Am cos(mg)
ovE

~+ B, sin(mg)] - sin(wt) =
= f(6, ¢) sin(wt) (7.187)

The symmetry of the function f(6, ¢) with respect to ¢ = 0 imposes
Bm =0

3" 2R pinieoso)) cosime) = f10,4)  (7.188)
I,m

VR
We find:
A f f P™(cos(0)) cos(mg) sin(6)dody
Aim = —* (7.189)
LG [ ] 1P eos(o)cos(mg) sine)dody
Simplification:
x ] )
/cos(m<p)d<p = Hl sin(me) i m (m odd) (7.190)
-3

0 (meven)

N

Part (b)

Mathematical formulation

In the case of mathematical formulation for fast displacements of the
border the boundary condition for the gas near it can be obtained
in a more precise manner. The starting point is that the normal
component of the velocity of the molecules of the gas must be equal
to the normal velocity of the mobile boundary. We first estimate the
relative variation of volume:

vy, = dw cos(wt) (7.191)

419
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The following formula relates the velocity of the molecules with the

s condensation parameter, which describes the relative variation in
density: s = 220,
Lo

t
vV=vy— k/Vsdt’ (7.192)
0

differentiating this relation with respect to time and considering the
normal component to the mobile border we get:

i) ) k 9
Ly = ks =P (7.193)

Then the boundary condition for the mobile border will be:

ap
on

Po 0 Lo o2 .
=———V,=—96 t 7.194
. 9= o sin(wt) ( )

The mathematical formulation for this case, in terms of the gas
density, will be:

Pu

— =a“Au

ot?

au

—| 7 = 0(flat closed base)

00 |g_Z

ou b4 b4 b4
RO,6,0=0 (p<-"59>7);(0<6<7)

3rr:R( @, t) ¢<—5i9>5 <9<

0

ou = P0502 sin(wt) <—E <@g < E) ; (0 <6< E)

or|,_g k 2 2 2

(7.195)

Final solution

This problem can have analytic solution using similar methods to
those previously considered.

7.10 Heat Transfer in an Eight of a Sphere

An eight of a sphere has radius R, thermal conductivity k, heat
capacity C and density p. Two of its flat surfaces (vertical, see the
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figure) are thermally insulated. Initially the base, as well as the
curved surface, stay at a temperature Ty. Until ¢t = 0 the body was at
thermal equilibrium. Find the variation of temperature as a function
of time if starting at t = 0, one half of its curved surface is put into
contact with a thermal reservoir at a temperature T; while the other
is putat T5.

Flat vertical surfaces
are thermally insulated

Figure 7.14

Mathematical formulation

We first formulate the problem by subtracting from the solution the
constant temperature Ty:
au
Co— —kAu(r, 8,9, t) =0
at
u(r,6,9,0)=0
T; —To (0 <@ <7m/4)

u(R,0,¢,t>0)= f(6, ¢) =
T1—To (m/4 < ¢ < m/2)

ou . u _o
a(p =0 a(p (p:%
ul@ =n/2)=0

(7.196)
We seek the solution by splitting the problem in two: one is
stationary (the solution of Laplace’s equation in the limit t — o0)
and transient one:

u(r, 6, ¢, t) =v(r, 0, ) +w(r, 06, ¢, t) (7.197)
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Mathematical formulation for the stationary solution v(r, 6, ¢)
Av(r, 6, ¢) =0)

10 2 v + 1 A 0
-2 had il V=
r2 or or rz =0
T, —To (0<¢<m/4)

vir=R)= f(0,¢) =
T1—Ty (m/4 < ¢ <7m/2)

av _ov _o
a(p =0 3(/7 w:%
v =7/2) =0

(7.198)
Mathematical formulation for the transient solution w(r, 9, ¢, t)

9
C,oa—V:—kAW(r,O,w,t)zo(O<r<R);t>0

w(r, 0, ¢, 0) = —v(r, 8, )

w(R,6,9,t>0)=0 (7.199)
0 0

wl o _aw

a(p ¢=0 ago (p:z

w(r,0=m/2,¢t)=0

General solution

We first solve the stationary problem: The general solution of the
Laplace’s problem in spherical coordinates has previously been
found in several Laplace’s problems as, for example, the electric
potential between two spherical shells. Without repeating the steps,
we start directly from the result:

v(r, 0, 9) => Y [r" + Dunr "1™ (cos(6))

n>m m=0
X [Anm sin(mg) + Bum cos(me)] (7.200)
As the solution must be finite forr =0 — D,,, =0
o [o¢]
v(r, 0, ¢) = Z Z[r”]P,f”’) (cos(0)) x [Anm sin(mg) 4+ Bpm cos(me)]
n>m m=0

(7.201)
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Final solution

We now use the orthogonality of cos(m¢) and sin(mg).

av
From the second boundary condition: 30 = 0weget A,, = 0.
@ =0
av
From — = 0 we get:
a(p Q=m/2

sin(m%):O m%:kﬂ—)m:Zk (k=0,1,2,...)
(7.202)
Then:

v(r, 0, 9) =Y Bulr"]1P(cos(6)) cos(2ke) (7.203)
n>2k k=0

Imposing the first boundary condition: v(r, 8, ¢)(6 = 7 /2) = 0. We
arrive at the condition P{?¥ (cos 7/2) = P(2K(0) = 0

For this condition to be satisfied, it must happen that n + 2k is odd.
Finally we need to use the orthogonality of the angular functions
(spherical harmonics) to find the B, coefficients. From the first
boundary condition:

vir=R)= f(6,¢) =>_ > BulR"IP(cos(6)) cos(2ke)
n>2k k=0
(n + 2k = odd) (7.204)

Using now the orthogonality of the P2X(cos(6)) and cos(2kg) in
the interval (0 < 6x/2) and (0 < ¢ < =m/2) we will get the
By coefficients. We multiply by P(2¥(cos(6)) and cos(2k¢) and

2 2
integrate equation (7.204) between [ [ sin(0)dode
00
3

/ / £(6, 9) P2 (cos(0)) sin(6) cos(2kp)dodg
0

0

= Bu[R"] / / [P29) (cos(8))]%[cos(2ke)]? sin(6)dOdy
0 0

(7.205)
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(T2 — To) f f P9 (cos(0)) sin(6) cos(2kp)dOdy + (T1 — To) f ] P (cos(6)) sin(6) cos(2kg)dody
00 4

T

By =

[R"] f f[P"”"] (cos(6))]2 [cos(2ke)]? sin(8)dOdy
00

(7.206)

Calculating the integrals:

[cos(2ke)]?dg = % (7.207)

S
IR

/[Pn(Zk)(COS(9))]2 sin(0)dé = ok %/[P,I(Zk)(cos 6)]? sin(0)d6
0 0

1 2(n+2k)
T 2(@2n+ 1)(n—2k)!

p 1. [nk 1 . wk
/cos(Zl«p)d(p =2k [sm (2> - 0} = ok sin (2) (7.209)
0

(7.208)

1 k 1 k
cos(2kg)de = ok {sin(nk) — sin (712)] =~k sin (712)

(7.210)

EE}
[N

Then

(T2 — To) f f P9 (cos(0)) sin(6) cos(2kp)dOdy + (T1 — To) f ]‘ P (cos(6)) sin(0) cos(2ky)dody
00 0 %

B = EES
[R"] Of Of[P,,””(cos(e))]z[cos(zm)]z sin(0)dodg
(7.211)
with
7k 0 (k=21
— | = 7.212
S‘“(Z) {(—1)’(k=21+1)} (7.212)

We now solve the transient problem by separating the solution in
series of orthogonal functions.
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Due to the presence of all homogeneous boundaries (the radial and
the two angular, of the second type in the azimuthal angle) we seek
the solution as:

W(I", 0, ¢, t) = Z ink(t) ank(r: 0, (p)

nlk
=Y Q;k(t)muzf/;/mPIZk(cos(e)) cos(2kg)
n,lk

(7.213)

Here, in the same manner as was done in the Laplace problem we
have already assumed the boundary conditions in the azimuthal
direction.

Furthermore, we note that the values of A,, are obtained when we
apply the homogeneous boundary conditions of the first type for the
radial part:

d " d

r=

1
—ﬁml/z(ﬁnm =0 (7.214)

Replacing the sum from equation (7.213) into the diffusion equation
we need to solve, and recalling that the Vy(r, 6, ¢) eigenfunctions
are solutions of the Sturm-Liouville problem:

AV(r,6,9)+AV(r,0,9) =0 (0<r < R)
V(R,6,9)=0
du ou (7.215)
de »=0 dg w=%
vi@=m/2)=0
we arrive at an equation for the Q,;x(t) coefficients:
d t
co T 4kt et = 0 (7.216)

with exponential solutions:

_kln
Qnik(t) = Due™ o ° (7.217)

425
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Applying the initial condition and using the orthogonality of the
eigenfunctions we get the Dy coefficients:

w(r, 6, ¢, 0) = Z Dnzkmﬁ P,Zk(cos(e)) cos(2ky)
n,lk

=—v(r6,¢) (7.218)

Just like in the Laplace’s problem, in order to satisfy the third
homogeneous boundary condition of the first kind for 6 = 7 it's
necessary that the members of the sum with odd I + 2k remain, since
only these Legendre polynomials are asymmetric (that is, satisfy the
third boundary condition).

7.11 Case Study: Heated Quarter of a Sphere

The two flat surfaces of a region with the form of a quarter of a
sphere with radius a are kept at a temperature T while the spherical
surface is kept at zero temperature. Inside the region a thin metallic
wire that is heated by a DC current /. Find the stationary distribution
of temperature inside the region if the resistance of the wire is R.

Figure 7.15

Mathematical formulation

Non-stationary case T = u(r, 6, ¢, t):

{ p% =kAu+ f(r, 6, ¢) } (7.219)
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Formulation of the stationary case:

u
— =0 7.220
3 ( )

We give a description of the problem considering the normalization:

IPR5(0—3) x 8(p — )
a rZ sin(6)

f(r, 0, ¢) = (7.221)
Note: an alternative to describe the heater could be to present it
as a tube with infinitesimal but constant radius. In this case the
dissipated local power density as a function of distance from the
central point would be constant and would lead us to remove therm
r? in the denominator with the corresponding difficulties of solving
the problem in spherical coordinates.

Formulation with boundary conditions:

_kAu(r' 9! §0) = f(l", 9! §0)

u(r,8,0)=u(r,6,n)=T
(7.222)
ulr, 5, 9) =T

u(a, 8, 9) =0

Since we are capable of solving Laplace’s equation with some
homogeneous boundaries and Poisson’s equation with some homo-
geneous boundaries, using the principle of superposition we seek
the solution as the sum of two functions:

u(r, 0, ) =g(r, 06, ) + h(r, 6, ¢) (7.223)
Poisson’s problem (1)
—kAh = f(r, 6, ¢)
h(r,6,0)=h(r,6,7)=0

h(r, Z,9) =0
h(a,6,¢9)=0

(7.224)

427
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Laplace’s problem (2)

Ag=0

g(r6,0)=gr0,7)=T
- (7.225)
- =T

g, 2,<p)

9(a,6,¢)=0

Sturm-Liouville problem

We first solve problem (1) and expand the solution as the sum of
orthogonal eigenfunctions of the Sturm-Liouville problem:

AV +aV =0
V(r,6,0)=V@ro,7)=0
- (7.226)
V(b= ¢)=0
(5 @)
V(a,6,9)=0
We separate variablesas V. = R(r) - Y (6, ¢)
19 r? ad +1A V4+AV =0 (7.227)
r2 or or rz =0 N '
d r.2(dR 2
Z[re(52)] + ar*R Ng Y
ol Car)l e AT (7.228)
R Y
Solving the problem for the angular part:
Ng oY + 1Y =0 (7.229)
Separating variables:
Y(6, ¢) = ©(0) - (¢) (7.230)
sin(0) & [sin(0) (42)] + w sin®(0) - ©(6) 1 d*® 0
= — = >
0(0) P(p) do?
(7.231)

We choose the positive sign for u, v since we expect to get periodic
solutions for the angular variables.
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The result of the problem for ¢ is:

2

a-®
W+V<D((p)=0

h(r, 6, 0) — ®(0) =0 (7.232)

h(r,0,7) > () =0

®(p) = A cos(my) + Bsin(mg); v = m? (7.233)
P0)=0—-A4=0—

() = sin(me) (7.234)

Now that we have v = m?, we can find the solution of the ®(6)

function:

sin(@)% {sin(e) (‘ZI(:)] + [wsin®(0) — m*]©) =0 (7.235)
Its solution are Legendre polynomials: ®(9) = P™(cos(6))
Eigenvalues: u = n(n + 1)
Imposing the boundary condition:

0 (%) = PM(0) =0 (7.236)

Figure 7.16

From the properties of the Legendre polynomials, this condition is
only satisfied when:

n—m=odd=2I+1, m=n-2l+1,n=1,2,3...;
1=0,1,2,3... withm <n (7.237)
In this way: ©(8) = P/"2+1(cos(6)); u = n(n + 1)
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We can finally solve the equation for R(r):

2 d’R (IR e L1 2
—(n+=
dr? dr 2
Its solution is the Bessel function of half-integer order:

(n) (n)
Tnv12(\/ A1) Npi12(\/ A1)
Ru(r)=C +C

n( ) 1 \/F 2
As the solution must be finite at r = 0 we have that C, = 0. The
eigenvalues of the problem are obtained from the solution of the

equation:
Jns12 <\/A,E")a) =0 (7.240)

So that the eigenfunctions of the Sturm-Liouville problem in a
quarter of a sphere are:

Jn+1/2 (\/ ﬁl@’")
Vienn = P ™ (cos(6)) sin(my) (7.241)
Jr

m=n-2[+1

R=0 (7.238)

(7.239)

where

(7.242)
Jne12(y/Aa) = 0
As these functions fulfill the boundary conditions for problem (1),
we propose to seek its solutions as:

h(r, 6, ¢) = > Cimayn X Viomn (7.243)
km(I)n

General solution

We replace the previous general solution in problem (1):

{—kAh = —kA Z Cimyn - Vien = k Z Crmyn X /1;(:1) Vien = f (1, 0, 90)}

km(I)n km(I)n
(7.244)
Expanding more explicitly:
(m)
Jnv12(n/ A1) .
k Z Crm(hn X /l,((")an(m) (cos(0)) sin(mg)
km(In r
I?RS(O —Z)x8(p — Z
_ PR = %) x0lp = 3) (7.245)

a r?sin(6)
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Final solution

To find the coefficients we will use the orthogonality of the
eigenfunctions:

T
We multiply by sin(m’'¢) and integrate [ d¢
0

Jnt1s2 ( /11(<) ) B

k> Cimpyn A,E”)TPH(’”J (cos(0)) / sin(m') sin(mg)de
km(ln 0

I2R5(6—2) [

= —M /sm(m ) x 8 ((p - —) do — (7.246)

a r?sin(6)
0

(.
Jns1/2 ( Ay ) .
kz Chonn x A NG P™(cos(#)) x 5
kn

_ IziR(S(@ — 1) sin(m%)
a r2sin(0)

(7.247)

/2
We multiply now by P[m) (cos()) and integrate [ sin(6)d6
0

Tnv1/2 (\//1;((”)7") - /2
k> Ciomn % 12"1#5 / PU" (cos(0)) ™ (cos(6)) sin(0)d6
0

/2
PR, my\ [800-%)
=~ sin (mi) / sy P)(cos(6)) sin(6)d6  (7.248)

The expression becomes:

kZC 5 /l(n]]n-‘rl/Z(\//lk r)m ||P(’”)(cos(9))||
kmn «/_ 2 2

= IaR %P(m) (cos (%)) sin (m%) (7.249)
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Jnrr2(y/20r)

I and

Finally we need to multiply this expression by

a
integrate [ r?dr. We get:
0

()
k§ :Ck /l(n)n Hp(m)(cosw))H /a]n+1/2 < Ay r)
mn

2 NG
0
Jnt1/2 (\/ ﬂ;@”)
X NG r’dr =

a (r})
_ ”TRp,gm) (cos (Z)) sin (m?) / (1) Jrive (fﬁ) Far

0

(7.250)

_ 0 m = even
s () = (1) m = odd (7.251)
furthermore m=n— 21 +1
Then, the form of the coefficients for the expansion of h(r, 9, ¢) is:

W4

a
LR pln-21+11(cos (2 sin([n — 21 + 1]5) / Pt e D gy
Clkn = P(’"]( (9))”2 2
n Ccos
k/l;((")%f H]nJrl/Z(\/ A4
(7.252)
Mathematical formulation of problem (2)
Ag=20
g(r0,0)=gr6,7)=T
. . - (7.253)
g ] 2) (p -
g((], 0, (ﬂ) =0

It's more convenient to reformulate the problem to expand in
angular eigenfunctions. We use a new functiong = g’ + T
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The problem in Laplace’s equation is:

Ag' =0

gre,0)=4g(r0o6r)=0

(7.254)
"2, 9)=0

g ) 25

g/(ar 9' (/)) =-T

Sturm-Liouville problem

We separate variables to seek the solution as a sum of angular
orthogonal eigenfunctions g¢¢ = R(r) - V (0, ¢). We write the
Laplacian as:

d dR
G degV (7.255)
R |4 '
Solving the problem for the angular part:
Ng oV +AV =0 (7.256)
Separating variables:
V (6, 9) = 0(6) - 2(¢) (7.257)
sin(0) & [sin(0)(£2)] + Asin?(0) - ©() 1 d*® 0
= — =V >
0(0) D(p) do?
(7.258)

We choose the positive sign for 4, v because we expect to get
periodic solutions (eigenfunctions) for the angular variables. The
result of the problem for ¢ is:

d’®
—— +vd(p) =0

dg?
g'(r,6,0) > &0)=0 (7.259)
g6, m)—> d@)=0

®(p) = Acos(mg) + Bsin(mg); v =m’ (7.260)

®0)=0—->A=0— (7.261)
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®(¢p) = sin(me) (7.262)

Now that we have v = m?, we can find the solution for the ©(6)
function:

sin(@)c% {sin(e) (ZC:)] + [Asin?(0) — m*]1©() =0 (7.263)
Its solution are Legendre polynomials:
0(0) = P™(cos(9)) (7.264)
Eigenvalues: 1, = n(n + 1)
Imposing the boundary condition in the plane: ©(%) = P{™(0) = 0

Just like for the previous function h, from the properties of Legendre
polynomials we deduce that this condition is only satisfied when:

n—m=odd=2+1 m=n—-2l+1 n=1,2,3...;
1=0,1,2,3,... withm<n (7.265)

In this manner:
O(0) = PI"=2+1(cos(0)); Ay =n(n+1) (7.266)
We can finally solve the equation for R(r) :

i C
bl

2
2 (R L (R s R =0 (7.268)
dr? dr

Ay (7.267)

Its solutions are a linear combination of: R, (r) = C1r" + Cor—(*+1)

Since the solution must be finite for r = 0 we have C; = 0.

General solution

With the previous we have the general solution:

g = Z Comr™ PI™ (cos(6)) sin(mg) (7.269)

n,m



Heated quarter of a sphere

Final solution

We impose the boundary conditions and use the orthogonality to
find the C,,, coefficients:
> Coma" P{™ (cos(6)) sin(mg) = —T (7.270)

n,m
We multiply by sin(m’¢) and integrate f do:

Z Chma” P(m) (cos[@))/sm(m @) sin(mp)dp = —T /sm(m p)dy
0

n,m

(7.271)
zn: Coma™ P™ (cos(8)) x % - —T%[(—nm 1] (7.272)

/2
We now multiplicate by Pn(,m) (cos(9)) and integrate [ sin(6)d6:
0
/2
Z Comad" X = / P (cos(6)) P (cos(6)) sin(0)do
0
/2

— _Tl[(—nm —1] / P (cos(6)) sin(0)do  (7.273)
m

7 || P{™ (cos(6)) ||2
2 2

_ w / P (cos(6)) sin(@)do  (7.274)

Cpma™ x

/2
AT —1)" -1
Com = —— [(=1) 2] / P™ (cos(6)) sin(8)d6
T n(m)(cose)H ma"

(7.275)
withm=n-21+1;,n=1,2,3...;1 =0,1, 2,3,... and with
m<n

So the final solution is:
u(r,8,9)=9g'(r,6,9)+h(r,0,9)+T (7.276)

435
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7.12 Case Study: Two Concentric Semi-Spheres

Find the stationary distribution of the displacement u(r, 6, ¢, t)
inside a semi-sphere composed of two semi-spheres (radii R1, R>)
with different densities (p1, p2) and Young moduli E;, E,. The
common base of the semi-spheres is fixed, while the curved part
is subject to a force in the form of an acoustic plane pressure wave
Py sin(wt) from t = 0 and directed along 6 = 0.

Plane pressure wave acting
over curved outer surface

/P EDN\

Flat part of both semi-spheres is fixed

Figure 7.17

Mathematical formulation

9%u 1
— — ——VI[E(r)Vu(r, 06, ¢, t)] =0
sz~ o VEOVU 60, 0]
lu(r=20,0, ¢, t)] < oo
(7.277)
au(r, 6, o, t .
EZM = Py sin(wt) cos(6)
ar r=R;

u(r,0 =n/2,¢,t)=0
Where

_pifO0O<r<Ry
'O(r)_{pzifR1<r<Rz

Elif0<r<R1
E =
(r) {EzifR1<r<R2
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We seek the stationary solution (t — o0). Because the excitation
is of the form sin(wt), at long times the displacement will change
periodically as sin(wt) (can be seen in the boundary condition).

Then,
u(r, 8, ¢, t) =U(r, 8, ¢) sin(wt).
Equation (7.277), dividing both sides by sin(wt), is of the form:
1
_C()ZU(I", 6! §0) - 7V[E(r)VU (rl 9! gﬂ)] =0
p(r)

[lU(r=0,6, ¢, t)] < oo

(7.278)
au(r, 0, ¢)
2

ar r=R;
U0 =n/2,¢)=0

E = Py cos(8)

Sturm-Liouville problem

We expand in orthogonal eigenfunctions in the angular directions
(6, @), since they have homogeneous boundary conditions. Separat-
ing variables:

U(r, 0,¢)=R(r)V(O, )

d 2 dR(r) . 02
11 [£(PEOED) g (singdk) + L2

L + sin® 9 d¢? _ 2
p(r) 1 R(r) v, ¢) N
(7.279)
Sturm-Liouville problem for the angular part:
AoV (0, 9)+AV(0,¢) =0
1 0 (cinpgdV 192V
sinf 96 (Slneﬁ) + sin? 0 W ] (7280)

V (6, 9)
We separate variables and formulate an auxiliar Sturm-Liouville
problem for ¢.

V (6, ¢) = 6(0)P(¢)

sin@% (sin@ 3%9]) , d%(zﬁ")
fasin?o=——2_ —, (7.281)
e) @ (¢)
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Azimuthal part (¢)

{<I>”(<p) + - @) = 0}
®(p) = @(p) + 27

®(¢) = A cos(me) + By, sin(me)

p=m
Polar part (6)
1 9 00(0) m?
—— | sinf——— A— ®Mv)=0
sin&BH( 00 )+< sin29> ©)
With the change x = cos68, becomes the associated Legendre

equation, whose solution are the associated Legendre polynomials.

O(6) = P,"(cosH)

A=n(n+1)
Applying the boundary condition:
Ur,0=n/2,9)=0=>00 =n/2)=0= P"(0)=0
Due to the properties of Legendre polynomials n + m must be odd.
General solution
u(r, 0,9, 8) =Y Y Ram(r)P"(cos 0)e™™ sin(wt) (7.282)
nom

By substituting equation (7.280) into (7.279), we get to the general
solution (7.282) and arrive to an equation for the radial part.

1d dR(r)
Zar T E(r)
- R(r) ) — =0

We divide the problem in regions 0 < r < Ry and Ry < r < Ry,
where p and E are constants in each region, resulting equations of

the form:
1 1d dRi(r) 1
—~——E—— (r? - = =-w’p 0 R
Ri(r) 'rZdr (r dr r2 emi=r=i
1 1d
rzdr

dR 1
(r2 2(}‘)) — = =-w*p Ri<r<R;

Ry(r) dr
(7.283)
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d’R, 2dR 2 DY &
L (R G ) - A e
dr? r dr

aq r?
d’R, 2dR 2 DY 5
2+772+ &_M R, =0Ry <r <Ry
dr? r dr ay r2

(7.284)
With a; = E;/p;, a1 # a since we cannot assume that the speed of
sound is equal in both materials.

The solution of R; is:

- Anm w?
Ri(r)=—+]J \[ =T
ﬁ n+1 aq
2
g ") Bn,m] w? n C"'mN w?
r) = —r —r
v Ve ) T Ve

(7.285)
Where we have used that | R1(0)| < oo.
The boundary conditions are:
e Continuity of the function:
R1(R1) = Ry(R1) (7.286)
e Continuity of the derivatives:
dR dR
g AR g dRa) (7.287)
dr lr=r, dr lr=r;
The third boundary condition is obtained by imposing
au (r, 0,
EZM’ — Py(cos 0)) (7.288)
ar r=R;

Due to the symmetry of the problem, we see that the only index
that remains is m = 0 (there is no azimuthal dependence). We will
equate the cos 6 term to the first Legendre polynomial (P;(cos6) =
cos ).

dR P
> =2 Py(cos) = — Py(cosh) (7.289)
" dr Ez
Multiplying both sides by P,(cosf)sin6, and integrating in 6
between 0 and 7 /2
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dﬁz 2 Po 0=r/2 .
W|P,,(cos 0)|c = . P1(cos8) P,(cos @) sinfdd (7.290)
2

6=m/2 x=1
/ Py (cos0) P,(cos0)sinfdo = / P1(x)Py(x)dx (7.291)
6=0 x=0

Next we will evaluate this integral, considering that P,(x) is odd for
odd values of n, and even when n is even.

Case with odd n:

/1 P1(x) Py(x)dx = 1 /1 Pi(x)P,(x)dx = 1L81,n (7.292)
0 2/

22n+1
1 1 0ifn#1
/ Pi(x)P,(x)dx = f/ Pi(x)Pp(x)dx = { 1 (7.293)
0 2/ 3 ifn=1

Since we are considering the integral of an even function (product
of two odd functions), that is symmetric with respect to 0. We have
applied the orthogonality condition of the Legendre polynomials.

Case of even n:

/ 1 P1(x)Py(x)dx # 0 (7.294)
0

However, from the boundary condition U (r, 8 = 7/2, ¢) = 0, we
had concluded that n should be odd, because of which the only
possibility isn = 1.

The third boundary condition has the form:
d Ry (r)

dr
From 7.286, 7.287 and 7.295 we calculate A4, B; and C; (m = 0).

E;

=P (7.295)
F=R2

A1 a)2

—r
ﬁ]3/2 a

~ Bl 0)2 C1 (1)2
Ry(r) = ﬁh/z gr + ?Na/z gr

Ri(r) =

(7.296)
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Using 7.286:

A/ R] 3/2 aZ ! A/ R] 3/2 aZ ! '

d A1 (1)2
E.— | 2L el
13 ﬁ]3/2 \/ alr

r=Rq
d Bl 0)2 C1 0)2
=FE,— | — — —N. — 7.298
20 ﬁ]3/2 \/ azr + NG 3/2 azr ( )
L dr=Rq
Using 7.295:
g4 | By i B Y @, —P
25 NG 3/2 e NG 3/2 e = Py
L Jdr=R

(7.299)
Equations (7.297), (7.298) and (7.299) are a system of three
equations with three unknowns (44, By, C1).

For simplicity we rename:

L, = e (7.300)

\/7 3/2 a = j\ai, .

1 2

oz %r = n(a;, r) (7.301)
d 1 w?
== Y- — j'(ai, R; 7.302
ar ﬁ]3/2 a r j'(ai, R;) ( )

d r=R;

d | 1 | w?
— | —=N. — =n'(a;, R 7.303
ar | or 3/2 p r n'(a;, R;) ( )

Jd r=R;
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From 7.299 we get:
—n'(az, R)C1 + 5

B = - 7.304
' Jj'(az, R2) ( )
Replacing in 7.297
_ n(az R) = e j(az, R) . mila k)
1= - 1+ -
Jj(a1, R1) J'(az, R2)j(a1, R1)
(7.305)
Replacing now in 7.298
n(az, Ry) — ?igﬁjﬁﬁj(az. R1) w2 jaz Ry) Jan Ry)
ai, =
: jlay, Ry) i R)jlan Ry )T
—n'(az, R))C, + 20
= Ez ( ,2 2) ! E2 j/(a21 Rl) + E2C1n,(02, Rl) (7306)
j'(az, R2)

We now isolate C4

2jlaz R Poj'(az, R
- 2l 2. ) Eqj'(a1, R1) + 70,] (a2, R1) =
j'(az, R2)j(a1, R1) Jj'(az, R2)

_ _n'(az, R2)j(az, R1) | n(az R1)
= [El ( J'(az Ra)jlan, Ry jan, Rl)) Jaw R

n/(az, RZ) . )
o (M] (a2, R1) — n'(az, R1))]

Cl is:

¢, = —PO%j(Gz, R1)j'(a1, R1) + Poj'(az, R1)j(a1, R1) (7307)
E1x1j'(a1, R1) + Ez2x2j (a1, R1)

x1 = —n'(az, R2)j(az, R1) + n(az, R1)j'(az R2)

x2 = n'(az, R2)j'(az, R1) —n'(az, R1)j'(az, R2)

The constants A; and B are obtained in a similar fashion.

Final solution

u(r, 0, ¢, t) = R(r) cos 6 sin(wt) (7.308)
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A1 w
i ﬁ]wz <1zalr) 0<F<R1
B1 w C1 w
W]g/z (1/(127')4-\/?1\]3/2 <1/azr> R1<I"<R2

7.13 Case Study: Variation of Temperature in a
Semisphere

Find the distribution of temperature u(r, 6, ¢, t) in a semisphere of
radius r = R with ¢ € (0, 7)rad, centered in (0,0,0). For r = R the
temperature is u(r = R, 0, ¢, t) = Ty. For ¢ = 0 and ¢ = x the
temperature is zero. Situated at a polar angle 6 = 6, half of a ring (of
radius ry < R) emits heat with aheatflux J - et - ¢, with ¢ € (0, 7).
At the initial instant ¢t = 0 the temperature is u(r, 6, ¢, t = 0) = 0.
C is the heat capacity, k is thermal conductivity and p, the density of
mass.

Figure 7.18
Mathematical formulation
0
= —k/(Con)Au = f(r6,0,0) (7.309)

With « = k/(Cpo) being the thermal diffusivity.
With f = f(r, 9, ¢, t):
f=fe frr)- fo(0) - fo(9) - filt)
=—]/(C-po-m-ro)-8(r —ro)-8(6 —60) - e™* - ¢/ (mr?sin(6))
(7.310)
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The term J -e~t-¢/(r - ry) represents the heat flux of the ring, being
(7 - ro) the length of the half ring.
S(r—r
fo = const =~ /(Coon?re), () = "0

’

hO =20 fo=e A=t @310
With the Laplacian Au:
Au = rlza(gér ,«2) + %Ag,wu (7.312)
s
Bopll = sin1(9) £ .asém(@)) * sini(Q) . ?):01; (7:313)
Initial conditions:
umr 6,9, t=0)=0 (7.314)
Boundary conditions:
lu(r =10,6, )| <400, u(r=R)=T,
Uulp=0)=0,u(p=n)=0 (7.315)

We divide the problem in two parts, one is stationary (1) w(r, 6, ¢)
that we choose to be homogeneous with non homogeneous
boundary conditions and the other is transient (2) v(r, 6, ¢, t) and
is non homogeneous but with homogeneous boundary conditions:

u(r, 6, ¢, t) =w(r, 6, ¢)+v( 0, ¢, t) (7.316)
Problem 1
Aw(r, 6,9) =0 (7.317)

lw(r=0,0, ¢)| <400, w(r=R)=T,,
wie=0)=0, wl=nr)=0 (7.318)
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Sturm-Liouville problem
We separate variables: w(r, 6, ¢) = > > C - R(r) - Vp,,.

a(r?. 3R Ao,V
M/Rz—g'i‘”=1>o (7.319)
ar %4
And so, we have the value of V:
1 9(% -sin(® 1 2V
_ : (5 ©) ——— - —+1-V=0 (7.320)
sin(6) a0 sin(9) 9¢?

At the same time we solve the Sturm-Liouville problem for ®(¢p),
©(6), with V (9, ¢) = ©(6) - D(¢)

32D (¢)
92

+2,-®=0 (7.321)

Boundary conditions of ®(¢)

P(0)=0,o(m)=0 (7.322)
General solution
The general solution for ®(¢) (7.321) is:

() = Cy - cos(y/ Ay, - 9) + C,, - sin(/ A, - ¢) (7.323)

Using the boundary conditions for ®(¢) at ¢ = 0, # we impose the
temperature to be zero.

®(p) =C, -sin(m - ¢); \/, =m (7.324)

The polar component, which for whichweneed A =n-(n+1),1 >
|m|, so that the solution doesn’t diverge:

30(9)

30 + (sinz(e)

d
1/ sin(6)- ( o(—m2)+n~(n+1))~®=0

(7.325)
The solutions are Legendre polynomials:
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0(0) = PMcos(®) (7.326)

The radial part R(r) doesn’t satisfy a Sturm-Liouville problem, since
its boundaries are not homogeneous (u(r = R) = Ty # 0).

p?-d*R(r)/dr*+2-p-dR/dr —n(n+1)R =0 (7.327)
Has as a general solution:
R()=C,-r"+c¢.r D (7.328)

Imposing that u(r = 0) must not diverge we get that the term C/ -
r~+1) is zero:

R(r)=¢C,-r" (7.329)

The boundary condition w(r = R) = T, is now obtained by
multiplying both sides of the equation by ®(6) - ®(¢) - sin(#) and
integrating 6 between 0 and 7 and ¢ between 0 and x:

~Jo 3 To- PI(cos(9)) - sin(6) - sin(m - ) d6 dg

nm D — s (7.330)
R [7(Pa"™ (cos(0)))? - sin(0) db [, sin®(¢) dg
¢ T Jo Pi™(cos(6)) - sin(0) dO[(—1)™D) 4 1]/m (7.331)
R [T (P{™ (cos(6)))? - sin(6) d6 - 7 /2
Consideringm = 2 -1 + 1, with | € Z (integer numbers):
To- [ -PZHD 6)) -sin(0) - do -2/(2-1+1
| To- Jg P! D(cos(6) sin(6) - d6 2/2-141) o)

R [T (P (cos(6)))? - sin(6) d6 - /2
And the general solution for the stationary problem is:

w(r, ®,¢9) = > Cu-r"- PI™(cos(6)) -sin(m-¢)  (7.333)

n,l
Problem 2

az—v Av(r, 6, ¢, t) = _J S(r—ro)-8(0 —6y)-e "
Y 0,0, 1) = Cpo - 2710 0 0
1

— 7.334
*onr sin(6) ( )
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vir=0,6,¢) <+oo,v(r=R)=0,v(p=0)=0,v(p=m)=0

(7.335)
v(it=0)=—w(r, 0, ¢) (7.336)
Sturm-—Liouville problem
Separating variablesv = > T (t) - N(r, 6, ¢):
For N = N(r, 6, ¢):
AN(r, 6,9)+ A -N=0 (7.337)

Next we separate variables once again: N(r, 8, ¢) = R'(r) - V'(0, ¢).
And also for the 6 and ¢ coordinates: V' = v/(6) - ®'(¢)
AV'(0,9)+ g - V' =0 (7.338)

For the transient part v, we use m’ as the index for the azimuthal part
d’(¢) and n’ for ©'(9).

For ®'(0) (for v) the equation and boundary conditions are the same
as for ®(0) (from the stationary problem w) (7.325), because of
which its solution are Legendre polynomials:

1 (292 sin)) 1
sin(6) 30 + <sin2(9)
/19/ =n. [n’ + 1) (7339)

- (=m?) +/19') L0/ =0;

O(0) = P (cos(6)) (7.340)

In the same manner the index associated to 0, Ay in this case, 1y =
n’ - (n’ + 1) so that ®'(0) doesn’t diverge.

Since the boundary conditions and the equation for ¢ are equal
than for w, ®'(¢) has the same solution: ®'(¢) = C, - sin(m’ - ¢).

In the case of R'(r):

1 d(r?-dR'/d
1 dU-dRYdr) e R =0 (7.341)
r2 dr

R'(r=0) <4o00;R(r=R)=0 (7.342)

447
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We use that 1y = n’ - (n’ + 1) so that ® = P!" doesn’t diverge and
using the change of variable: b(r) = /- R :

d%b '+ 1/2)
U (Y e V0 i S (7.343)
er r2
With solution:
by (r) = Cr1 - Jwy1/2(r) + Crz2 - Nyy1/2(r) (7.344)
(- Nys1/2( -
R(r) = Cn " +1/f/(r 0 gy “/\Z/(r ) (7.345)

Using u(r = 0) < +o0o we get that the Neumann term (divergent at
r = 0) must be zero (C,, = 0):
c Jw+1/2(A - 1)
T
Jr
Imposing R(r = R) = 0 we get the equation of the eigenvalues 1’:
Jws12(A - R)

R,(r) = (7.346)

=0 7.347
¥ (7.347)
Using (7.337)andv = > . T - N(r, 0, ¢):
aT
(at +x /1/~T> ‘N=f(r,0, 00 (7.348)

General solution
Using the orthogonality of N = R'(r) - V'(6, ¢):

(aaz Gk T> N= (600 (7.349)

With ¢ € (0, 7) rad (llmits of the semisphere):

onr B0 [ oo

x@'(0) - @' (¢)r?-sin(@)drddde  (7.350)
On the other hand we indicate the explicit value of f,, f;, fy with

(7.311):
T J R
— T =— e t. S(r—r
ot T C-po-m?-ro|N|? n/o (r=ro)

T T
xdr/ 8(9—90)d9/ ody (7.351)
0 0
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Using the next property of the Dirac’s delta function:

fab f(x)6(x — x0)dx = f(x0), with a < xo < b € R (real numbers),

we get at:

oT / 2/m' - (=1)"*' - fo - R'(ro) - ©'(60)

— kK- A - T — R ~ .

ot 7/2IN? [y R'(r)? - r2dr - [ ©'(6)?sin(h) do
(7.352)

eft

The term that multiplies e™* is renamed for simplicity:

_ Ym0 fo RU() - O'(6)
©T /2N [F R r2dr - [T ©/(0) sin(0) do

To find T (¢t) (general solution) we find the sum of the solution of the
homogeneous equation Tj(t) and the particular solution T,(t). We
first solve the homogeneous equation for T} (t):

oT
e X Ty=0 (7.353)
ot
Whose solution is exponential:
Th=C-e " (7.354)

Final solution

To find the particular solution we use the method of the unknown
coefficients, introducing a particular solution C’ - e~¢, suposing that
k-A'—1#0.

T,=F e (k-2 —1) (7.355)
Then T (t), withk - 2’ — 1 # 0O is:
T =Th+Tp=C-e """ +F etk -1 —1) (7.356)
Ifc -2 —1=0:
Tt)=C-e "+ F,-t-e* (7.357)
We use the initial condition of v (7.336) (v(t = 0) = —w(r, 6, ¢)):
—w(r,0,9)=> T(0) - R(r)-©'(0) @(¢) (7.358)

To calculate the C constant of T (t) we use the orthogonality of
R'(r), ©®'(0), ®'(¢), and integrate:
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[T w6, 9) - R'(r) - ©'(6) - @'(¢) - r? - sin(0)drdode
[T T [FR(r)? - ©/(0)2 - @'()? - 12 - sin(0)drdodg

= T(0)
(7.359)

In the case of k - ' — 1 # 0 (eq. 7.356):

PR i J —w(r 6, ¢) - R'(r)- ©'(6) - ®'(p) - r* - sin(8)drdody
[T TR R(r)? - ©/(0)% - d'(9)? - 12 - sin(6)drdody

“Fe kA — 1)) (7.360)

Ifc - A’ —1=0(7.357):

oot [ FIS ST w0 0,0) RE)-©/0) - @/(g)-r? - sin@)drdode
- [T T R )2 0(6)2 - /(9)2 - r2 - sin(0)drdode ‘
(7.361)

Then the solution forv = v(r, 6, ¢, t), withx - I’ — 1 £ 0 is:
v(r 0,0, ) =(C-e ™+ F e t/(k-2 —1))
/ A ,
> “”i(/;/r) - P (cos()) - sin(m’ - ¢)
(7.362)
The solution forv = v(r, 0, ¢, t), withx - ' — 1 = 0:
v, 0, ) =(C-e "+ F.-t-e
/ A ,
) Jur1plV A1) +1/25;/ . Py (cos(8)) - sin(m’ - ¢)
(7.363)

In this manner, the final solution is u = w+ v (stationary + transient
solution):

u(r,6,9)=> _C-r"- Pi™(cos(6)) - sin(m- ¢) + T ()

y Z Jwi12(JA - 1)

o - P (cos()) - sin(m’ - ¢)

(7.364)
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7.14 Case Study: Oscillating Sphere Filled With
Gas

Find the variations of pressure as a function of time and position
when a sphere of radius ay filled with gas of density py and with
a speed of sound c oscillates periodically with a frequency w and a
maximum velocity vy (v(t) = vy - sin(wt)) along the z direction.

Consider that the periodic movement of the sphere has been going
on for long enough, so that transient vibrations of the gas have
damped out and there are no resonances.

y4

N

Figure 7.19

Mathematical formulation

This stationary and periodic process (stationary doesn’t necessarily
mean time independent) can be described with the following
homogeneous equation:

o°p c2AP =0

at? (7.365)

+ boundary condition?

We get the boundary conditions for the pressure from our
knowledge of the variation of the velocity of the molecules.

451
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Solution

The oscillations of the molecules inside the sphere are described by
its velocity along z

v(t) = vo - sin(wt)i, (7.366)
where i, is a unitary vector along z.

The boundary condition for the pressure is inhomogeneous since,
in general, it depends on the angle. To find it we will use the
ratio between the radial derivative of the pressure (i.e., the normal
component of the pressure gradient near the surface) and the
normal component of the velocity of the molecules near the sphere
surface.

a(v-n) 1 9P

+— = =0 7.367
at £0 ar r=ay ( )

where 1 is a vector normal to the surface.

Given the azimuthal symmetry of the problem and the temporal
dependency of the movement of the sphere we can neglect the
azimuthal variation of the solution, and search the solution as:

P(r,0,t) =P(r, ) cos (wt) (7.368)
When we replace this solution into the wave equation we get:
—P(r, §)w? cos(wt) — c? cos (wt)AP(r, ) =0 (7.369)
2
_AP(r, 6) = (%) P(r, 0) (7.370)

To solve the equation we will use the method of separation of
variables as: P(r, 8) = R(r)®(6),

Which yields the equation:

1d [ ,dR 1 d /. de o\?
D2 2 (sino"2) = (2 7.371
R dr (r dr) ©sin0 do (Sm de) (c) e (7371

Applying the angular and radial separation of variables with a
constant of separation v:

1 d Sin0d® 1d erR +<a))2r2
— —_— = — — —_— — =V
®sind do do R dr dr c
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With the change of variable x = cos6 — % = — sinG% we can
reformulate the angular equation ® as:

1d /., dO d ,,dO

—_—— —_— = —_ — 1— —_— =

o dx (sm de)—l—v 0 Ix (( x)dx>+v® 0
(7.373)

Considering the periodicity of the solution in the azimuthal and
polar angles this equation has solutions in the form of Legendre
polynomials:

®;(0) = Pi(x) = P;(cos®) wherev =1(I + 1) (7.374)

Taking into account that v = (/4 1) we get an equation for the radial

part:
1d [ ,dR o\ I0+1)\
= (r dr) + ((C) > )R -0 (7.375)

Its solution is: R;(r) = ji (2r)

And the general solution will be:

P, 6) =Y Pi(cos6)ji (%r) A (7.376)
1=0

Applying the boundary condition for the derivative of the pressure
in the radial variable we get:

(v, - n d
— 00 e - 1) = vgpow cos(wt) cos(f) = —
at or |,—q
=— Z Pi(cos0)j] (gao) <9> 4 | cos(wt)
P c c

(7.377)

CVopo COSH = — Z Pi(cos0)j] (an> A (7.378)
c

1=0
where j;() represents the derivative of the spherical Bessel function.

Using the orthogonality of the Legendre polynomials to find the
coefficients:

—vopoc | Pi(cos8) cos 6 sinHdo
A= 0

7.379
Ji (2ao) || Py(cos )| ( )
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A =0 1#1
VopoC (7380)
(@
Ji ()
To conclude, we have the solution:
VO'OOC) J1 (8,,) cos(0) cos(wt) (7.381)
c

A =—

P(r, 9, t) - _ﬁ
ji (%o

7.15 Case Study: Stationary Distribution of
Temperature in a Planet Close to a Star

Find the stationary temperature distribution of a spherical planet
(neglect rotation) composed of two materials with different thermal
conductivity coefficients (k; from the center of the planet to R1; k;
between R; and R;). The planet absorbs a heat flux with density u
from the radiation of a star, far enough so that we can consider it as
plane waves in the direction ®=0. The whole surface of the planet
radiates heat according to Newton’s law with coefficient h, towards
the outer space with temperature T = 0.

By v v

'A R
L/

2

Figure 7.20

Mathematical formulation

We will solve the heat equation in spherical coordinates. Since we
look for the stationary case, the heat equation becomes Laplace’s



Stationary Distribution of Temperature in a Planet Close to a Star

equation.

V. k(r)VT)=0 (7.382)

k1 If r<R
k(r) = (7.383)

K7 if Ri<r<R,
In the surface of the sphere there are two heat fluxes simultaneously,
one due to the radiation from the star, the other from the heat losses
of the planet. The heat flux coming from the star is proportional to
its power density u, and will depend on the incidence on the planet.
Then, we have:

fon=fo-A=p- (=2 A=—u-cos(6) (7.384)
The radiation emitted by the planet is taken as normal to its surface:
fon=h-T(r =Rz2) (7.385)

where T (r = R;) is the temperature distribution in the surface and
h is the Newton’s law constant.

From Fourier’s law we get the boundary condition at the planet
surface.

(7.386)

oT . T
k2 lrory = wocos(B) —h-T(r=Ra) if 0¢c (o, E)

g =—h- T =R) if oe(%x)
or 2
(7.387)
Due to the discontinuity at « we will assume that the solution is of
the form:
Ti(r,0,¢) if r<Ry
T 6, ¢)= (7.388)
Tz(r,9,¢>) lf R1§F§R2
where the functions T; and T, satisfy Laplace’s equation in their
respective regions.

Since the solutions of the differential equation must be continuous,
we have:

Tl(f' = Rl, 9, ¢) = Tz(r = Rl, 9, d)) (7389)
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The second condition that relates T; and T, is obtained in the
following way:

V- (k(r)VT)=0

¢=21 0=m R+e R
= lim / / V. («(r)VT)dVv
>0 Jp=0 =0 JR—e

= /KI%Tld*s—/KﬁTzd@: 0
s s
= Kl%Tl(Rl) = Kz%Tz(R1) -7
Ty aT,
= K1W|r:R1 = K2W|r:R1 (7390)
This implies that the heat flux from region 1 to region 2 (and vice

versa) compensate each other in the stationary regime.

To summarize:
Tl(r! 9; ¢) If r S Rl
T(r,0, ¢)= (7.391)
T;(r,0,¢) if Ri<r=<R;
|Ti(r, 6 =0, 7, ¢)| < o0
VT1=04¢ Ti(r, 6, ) = T1(r, 0, ¢ + 27) (7.392)
[Ti(r=0,6,¢)] <oo

|To(r, 6 =0, 7, ¢)| < 0

To(r, 6, ¢) = Ta(r, 0, ¢ + 27)

V=0 Kz%\r:,gz —j-cos(0)—h-To(r = Ry) if6e (o, %)
KZ%\r:RZ ——h-To(r=R,) iffe (% n)
(7.393)
Relation between T; and T;
Ti(r =R, 0,¢9) =T2(r = Ry, 6, ¢)
9T, 3T, (7.394)
KIW r=R; = KZW k.
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Solution of the problem

Due to the azimuthal symmetry of the problem, we can determine
that both T; and T, will be independent functions of ¢. Then,
separating variables, we have:

T1,2(r, 0) = L1,2(r)©1,2(0) (7.395)

Replacing in the differential equation:

L 00
VTLZ r2 ar(rz 12) rzsm0 30 (51n9 12)

= =0 (7.396)
Ty, Ly,2 1,2
Sturm-Liouville in the angular variable:
90 3 (2 0L
sm9 36 (sm@ 12) ﬂ(r 12) = —v (7397)
O1,2 L2

The solutions of this equation for 6 with boundary conditions
|©1,2(0 = 0, )| < oo are Legendre polynomials.

®1,2(0) = Py(cos®) where v=n(n+1) (7.398)

Then we are left with this equation for the radial variable:
r’L{,+2rli, — vl ;=0 (7.399)
= Ly 20 (r) = 11" + cor~ D (7.400)

Since r = 0 is described by T; but not by T, the former must satisfy
|T1(r = 0)] < oo, so that L;(r) and L,(r) get the following form:

Lin(r) = Apr™  Lpn(r) = Bar" + Cpr(+D (7.401)

So finally we have:

o0

oo
Ti(r, ) = Z Apr"Py(cos8) Tu(r, 6) = Z[Bnr” + C,r~ 1P, (cos 6)
n=0 n=0

(7.402)

To get the value of the constants we first apply the conditions
relating T, to T».

Ti(r = Ri, 6, $) = To(r = Ry, 6,¢) = A, = By + C, R "™+
(7.403)
aTl 8T2 n-+ 1

Ki——|r=p, = k2——lr=p, = K14np =28, +
or ar

k2Co R;(2n+1]
(7.404)
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Simplifying these equations we arrive at the following ratios of the
coefficients:

o
Ap=B,(14+a,) ; C,= B"R—T?Hl) (7.405)
1
Being o, parameters such that:
_ &
o = —— 2 (7.406)

K1 n+1
K2 + n
Since «,, diverges for n = 0 we cannot consider it for the solution,

thereforen=1, 2, 3...

Now that we have found the ratios between the coefficients, we will
determine B, from the inhomogeneous boundary condition at r =
R;.

T2 -1 o ~(n+2)
K2W|r:Rz =Kz Y poq Ba[nRy ™ — R;T':Hl)(n +1)R; "D P, (cos 0)

= fe(0) —h-T(r=Rz)

n-cos(0) if 6e (O, %)
where f,(6) =
. b
0 if fe (5, n)
= k2 302y BalnRy ™ — Gy (n + 1)r = "D Py (cos 6)
1

= fo(0) —hY_poq Bal[RS + %R;("‘*ﬂ]ﬂ(cos 0)
1

= 2% Bu[(hR} + x2nRE~Y) + %(m;w” —ke2(n + 1)R; "] P, (cos 0)
1

= fe(6)
(7.407)
Using the orthogonality of the Legendre polynomials and knowing

that || P,(cos 0)||* = 71 We get the value of the B, coefficients.

B — 2n+1 Mfo% P,(cos 6) cos 6 sin 0d6
' n (hR; + Kan;"l) + %Umz—("“) —i(n+ 1)R2—[n+2))
1

(7.408)

Then the final solution is:

Ti =12 Bu(1+a,)r"Py(cos®) if r <Ry
T(r,0)=
T =302 Balr" — Rgznﬂ)r*("“)]P,,(cos 6) if Ri<r<R,
(7.409)
Note: Black body radiation
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To be more realistic the problem should consider that both the star
and the planet emit heat as black bodies. In the case of the star, the
total power will be given by Stefan-Boltzmann'’s law:

=47 R%e,0 T}

PTotaI,e = eerT surfie

surf,e

(7.410)

Where T, f. is the temperature of the star surface, R, is the radius
of the star, €, the emissivity and o the Stefan-Boltzmann constant.

Then, to find the power density u, we will divide the total power
between the surface of a sphere of radius D, being D the distance
from the star to the planet, since the star emits radiation in an
isotropic manner.

_ Ptotal,e o Rz
= 4zpz ~ p2°
The planet also emits heat as a black body and we have the equation:

T}

surf,e

(7.411)

2
KZZB [an - R (2n+1) (n+ 1R, " )] Ppn(cos®)
= fe(6) — €0 T*(r = Ry)

oo
= K2 Z B, [nRg’_l — W(n +1)r- (””]1 P,(cos )
1

n=1

4
RS + (Zm) Ry ("“)] Py (cos 9)]

= fu(6) - lz B,

(7.412)

from which it’s complicated to determine the B, coefficients. Alinear
approximation can be done to simplify the calculations.

7.16 Pre-Heated Quarter of a Sphere

Find the distribution of temperature of a quarter of a sphere of
radius R. One of its flat surfaces is kept at T = 0 and the other two
surfaces are thermally insulated. The curved surface is pre heated
fromt = —oc0ctot = 0 by a heat source. The source is located at
0 = %,from ¢ = 7 to ¢ = 3 and radiates heat with a power W. The
thermal conduct1v1ty is k and the thermal diffusion coefficient is y.
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Heater (W)
2

=

Insulated

Figure 7.21

Solution:

Mathematical formulation

oT AT =0
ac K00 T
T(r,6,0,t)=T(0,7,t) =0
oT oT
% =0; —kai =f(9, ¢)
0=5% I lr=r
IT (0,6, ¢,t)] <oco
With:
T
0 if —,
ifp < 2
2W 3
fO.9)= = s(0-2)| 2 <9 ==,
7 R? sin(0) 3 4 4
0 ifp = X
> —,
4

(7.413)
(7.414)

(7.415)

(7.416)

(7.417)

We must solve two problems, a stationary one, u(r, 6, ¢) to find the
initial conditions that we will have at ¢t = 0 and a transient one
w(r, 0, ¢, t), after the heat source has been turned off and we have

homogeneous boundary conditions.

a) Stationary problem:
Au=0
u(r,0,0)=u(r,0,7)=0

u ou

0; —k—| = f(6,0)u(0,6,P)| <00

20 P - or |,—g
2

(7.418)



Pre-Heated Quarter of a Sphere

Sturm-Liouville problem

Since we have homogeneous boundary conditions for 6 and ¢, we
separate variables such that u(r, 9, ¢) = R(r)v(6, ¢) and we have
the Sturm-Liouville problem for v(6, ¢):

ANgpv +puv =0 (7.419)
v(©,0)=v(6,7)=0 (7.420)
av
90,

Separating variables once again: v(0, ¢) = ©(0)®(¢)

1 3/ . 00(0) 1 PD(P)
0(0) sin(e)ﬁ(sm(e) 20 )+ sn2@)o(p) 992 M0
(7.421)
Sturm-Liouville problem for ®(¢)
9*D(¢)
=0
dg? o) (7.422)

®(0) = ¢(7) =0

We have the eigenfunctions ®(¢) = sin(me¢), with v = m
have:

2 so we

0 RICIC
sin(@)a—e(sin(e)%) + (usin?(0) —m?)O@O) =0 (7.423)
The solutions are Legendre polynomials ®(6) = P™(cos(6)) and
the eigenvalues are ;& = n(n + 1). Due to the boundary condition for
6 = 7, the only valid solutions of ©(6) will be those for which m + n
is an even number.

General solution

Replacing in the heat equation:
1.9/ ,0u(r6,¢)
T rZor (r ar

We have:

1
) +Aoeulr, 6,$) =0 (7.424)
r

19 (- IR(r)
[ — r —_—
r2 or or

Whose solutions are R(r) = Ar" + Br~("*1), Due to the boundary

n

condition forr = 0, R(r) = Ar".

) - LR =0 (7.425)
r
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The solution for u is:

u(r, 6, ¢) = i i Apmr™ P (cos(6)) sin(me) (7.426)

n>mm=0

Final solution

We will find the coefficients by using the boundary condition atr =
R and the orthogonality of the eigenfunctions.

—k = f(6, ¢) (7.427)

au
T'lr=r

a

> 2w N\ [
_ (1) p(m) T__ " _r -
; kA,mnR P, (cos(6)) 2 = 7RZsin(0) {8 (9 3 )} /% sin(m¢)d¢

(7.428)

ikA nRO-D ) (cos(0)) % = — 2V a(e - 5)
e " 2 mmRZsin(0) 3

X |:COS (MTm) — COS (T):|
(7.429)

2(n + m)!
(2n+ 1)(n — m)!

- % {C"s (%Tm) - cos (%)} /0 P{™ (cos(6))8 (6 — %)d@
(7.430)

kA,nR"~1 % =

Finally we find the A, coefficients:

2w @n+1)(n-—m)t ., b4
A"m_anzk mn(n + m)! Pn (COS<§>)

X [cos (%Tm) — cos (n;n)} (7.431)

It can be observed that if m is even A,,,, will be zero. Therefore only
the terms with odd values of n and m remain, since n + m must be
even due to the boundary conditions of the 6 variable.
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We already have the initial condition from the transient problem
w(r, 6, ¢, t), which can be formulated as:
ow

— —xAw =0
ot~

w(r,6,0,t)=w(r,6,7,t)=0

ow

_ow
36 |,_ T

_o (7.432)

r=R

w(0, 0, ¢, t)| < o0

w(r, 6, ¢, 0) = u(r, 6, ¢)
Since we have homogeneous boundary conditions for r, 8 and ¢
we separate variables so that w(r, 6, ¢, t) = Q(t)g(r, 0, ¢) and we
formulate a Sturm-Liouville problem for g(r, 6, ¢):

Ag+1g=0

g(r,0,0)=g(r,0,7)=0

5 _ag (7.433)
30 |, " or|_p

2
19(0, 6, )| < o0

We once again separate variables: g(r, 6, ¢) = R(r)v(6, ¢).

We already have the eigenfunctions of the angular variables and
their boundary conditions remain the same, therefore v(6, ¢) =
P™ (cos(6)) sin(m¢). Replacing in the Sturm-Liouville problem, we
get an equation for R(r)

%;7 (rz%ﬁn) + (/l - r%) R(r) =0 (7.434)
We had previously found the values of © to be © = n(n + 1). The
solutions for R(r), due to the condition atr = 0, are Bessel functions
of order n + %; Ru(r) = %ﬁ]“%(ﬂr).
The values of A can be found using the boundary condition forr = R.
There exists an infinite set of eigenvalues for every n. If we label z; ,
the k-fold root of the equation d’"(z) , where j,(z) = WJH% (2)
are spherical Bessel functions. The eigenvalues can be written as

tow = (%)?
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With this we have an equation for the temporal part:

d
373 + xAkn@ =10 (7.435)

Its solutions are proportional to e~ X4,

The solutions of w will be:

Wit 0,6.0 =33 Bunse 1 ]"“(fk" ) b cos(o)) sinms)

n>m m=0

(7.436)

Where m + n must be even. To find the B,,, constants we will use
the initial condition and the orthogonality of the eigenfunctions.

P™(cos(0)) sin(m¢p) =

n>m m=0 ﬁ
Z Z . — P(m)(cos(Q)) sin(m’¢) (7.437)
n'>m m'=0

The orthogonality of the angular eigenfunctions lets us know that
n = n’, m = m'’. Therefore in w only the odd values of n and m will
not be zero. For the orthogonality of the Bessel functions, we have:

f rhn "*2 V Aiar) ridr
Bumic = (7.438)
a3 Wﬂknr)H

The final solution is:
u(r, 6, ¢) if t<0,
T(r6,9¢,t)=
w(r0,¢,t) if t>0



Chapter 8

Fourier Transform and Its Applications

To solve the problems described with PDEs and defined in infinite
or semi-infinite spaces we will apply the integral Fourier transform
(FT). The properties of the FT are detailed in Chapter 9 of [1],
whereas the details of the method to solve PDEs using the FT can be
found in Chapter 7 of [5] both of the main texts in the bibliography.

In this section, the following nomenclature will be used:

e We will use § to refer to the Fourier transform operator and !
to refer to the inverse Fourier transform.

e The functions to which the Fourier transform is applied will
be written between square brackets [ and ]. In this way,
S[ f(x)] will be the operation consisting in applying the Fourier
transform to the f(x) function, which returns a g(w) function,
being w the variable in reciprocal space (if x is the variable in
real space).

e The parentheses (and) will be used as usual, to indicate the
variable on which a function depends, which includes the
function consisting in applying the Fourier transform to another
function. So sometimes we will see: §[f](w), which means
that the Fourier transform is applied to the f function (which
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depends on the x variable, although it is omitted for simplicity)
and the result is a function of the w variable (this implicitly tells
us that f is a function of x).

8.1 Reciprocity of the Fourier Transform

Using the symmetric version of the Fourier transform show that the
following relation hods in real space (x)

SUAE) =F ' f1(=x) (8.1)
In other words: the Fourier transform of a function f(w), evaluated
at x is equal to the inverse transform of the same function f(w)
evaluated at (—x). Based on the relation (8.1) deduce the rules of
the multiple application (several consecutive times) of the Fourier
transform.
Using the symmetric version of the Fourier transform:

+00
Fx) = SF1(x) = J;_n / e flw)do (82)
Also:
+00
Flex) = 5 fl(-x) = J;_n / ¢ f(w)do

= {we use the kernel: e™“*}  (8.3)

400
S0 = J;_n / 1 f(w)do (84)

Then F(—x) = F[f1(x). Applying 3~ we have F[F(—x)] =
SIS = f(w)
From here we deduce the property of reciprocity with respect to
multiple applications of the Fourier transform. We start with the
double application:
FLF ()] = FIF (0] (8.5)
Replacing §[F (x)] by f(w) = § F(—x) and changing the order of
application of § with § !
FSIF ()] = §'S[F (-x)] = F(-x) (8.6)
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Then: F(x) is even only if §?[F(x)] = F(x). On the other hand,
F(x) is odd only if F?[F(x)] = —F(x). In any case the relation:
S*[F (x)] = F(x) holds.

Graphical representation of the consecutive action of the § operator
on a function defined in real space:

flw)=8[F(x)]

F(-x)=§[f(w)]= F(x)=g[f(-w)]=
F[F(x)] FF(x)]
f-w)=8[F(-x)]=
FIF(X)]
Figure 8.1

8.2 Fourier Transform of a Bidirectional Pulse

Using the symmetric version of the Fourier transform find the
spectrum of a bidirectional pulse:

-1(-1<x<0)
fx)=< +1(0=<x<1) (8.7)

0 x<—-Lx>1)

Figure 8.2
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e
1 {7 (1—¢€*) N (e7i® — 1)} _ 2cos(w) —2
T V2 —iw —iw N

_ . ]2 cos(w) — 1
= 1\/:70) (8.8)

The Fourier transform of an antisymmetric function is an imaginary
function because:

+00 1
1 —iwx _ L —lwx iwx _
S[f](w)Zm_/e f(X)dX—m l / dX—i—O/e dx] =

e ¥ = cos(wx) — i sin(wx) (8.9)

+oo
Then, the integral cancels out \/% J cos(wx) f(x)dx and we are

+o00 -
left with:—i [ sin(wx) f(x)dx
Graphical representation (schematic only for positive frequencies)
of the square of the modulus of the Fourier transform (spectral
power):

0.30

0.20

0.10

Spectral power (a.u.)

0.00

w

Figure 8.3

8.3 Loss Spectrum of a Relaxator

Find and analyze the Fourier transform of a current pulse with the
form of a relaxator:

fO=e"(t>0)
fl)=0 (t<0)

(8.10)
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The obtained imaginary part represents the energy losses. Show a
graph of the losses of the relaxator during a period of the excitation
as a function of frequency.

We use the symmetric form of the Fourier transform:

+00
. 1 .
S f1(@ / O F)dt = — / e e 'dt
[fl(w) = \/—n f(® oL
—00 0
L / e~ latiolqy (8.11)
V2
T
The integral is solved:
FLA@) = L et 1 L el
= ——e = =
@ oa+iw 0 at+io ativo—iw
o .o
= rar i e (8.12)
The value of the imaginary part during a period (T is:
1 1 2
@ @ (8.13)

+w? T 270+ ?
We have the corresponding graph (only positive frequencies are

2
shown): 5= —2— vs.w

Losses by
period

A\
)

Figure 8.4

8.4 Inverse Fourier Transform of a Function

Find the inverse Fourier transform §~![f(w)] of the following
function which is defined in the frequency domain.

flo) = (8.14)

w? 4+ 4w + 13
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We first note that:
0 +40+13=(0+2)*+9 (8.15)
Using Fourier transform tables we know:
2a
~1 _ ,—alt]
=e 8.16
§ [wz - az} (8.16)
Then:
1 1
-1 _ -3l
— | =—e 8.17
5 || = 5 (8.17)

Here we have also used the rule: §~! [aF (»)] = a3~ ! [F (w)] and we
have multiplied and divided the expression by a factor 6 to be able
to use the expression of the transform from the tables with a = 3.
Applying the displacement in reciprocal space to wy = 2, (using the
rule 7 [F (w — wp)] = f(t)e'“t) we obtain the answer for our case:

1 1 .
-1 —2it ,—3t|
3 { > 9] = 6e e (8.18)

8.5 Fourier Transform of the Product of Two
Functions

Show that the Fourier transform of the product of two functions
is equal to the convolution between their respective Fourier
transforms.

We first recall the definition of convolution between two functions
f*g:

+00
Lf *gl(x) = \/;—n / flx —t)g(t)dt (8.19)

Furthermore, the convolution has the following reciprocity prop-

erty:
1 +o0
[f *g](x) = m/ f(E)gx —§)ds =g fl(x)  (8.20)
We will use the symmetric form of the Fourier transform:

+00
S0 = o= [ e flax (8.21)
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Applying the Fourier transform to the product of two functions f - g:

+0oo
. _ L —ikx _ i i -1
SIf-9] = mé e”™ f(x)g(x)dx = {presenting g(x) with F'of G(k) }

+00 +00
— . _ L —ikx i ik'x / /
=3[f-9]1= «/ﬁi/ dxe™ "™ f(x) [m/e G(k)dk]

= {Changing the order of integration}
1 +o0 1 +o0
= —— [ G(K)dK | — /e’ikx x)e**dx
Nz / o [m f&)

+00 +00
— 1 / 1 —i(k—K)x
= mé G(K)dk [mé flx)e dx‘|

+00
- L /G(k’)F(k—k/)dk’ =[G F](K) (8.22)
27'[7OC

In the end we get:
SLf - g1 = [G(k) = F (k)] (8.23)
In a similar manner it can be shown that:
SLf xgl = F(k) - G(k) (8.24)
Applying F~! to the relation (8.23) we get:
f-9=3"1G(K) * F (k)] (8.25)
Finally, applying § ! to the relation (8.24) we get:

[f*g] =T '[F(K) - G(K)] (8.26)

8.6 Example of the Calculation of the Fourier
Transform of a Product of Two Functions
from the Convolution Operation

From the relation of the Fourier transform of the product of two
functions and the convolution operation, find the Fourier transform
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of a rectangular pulse of amplitude 1 in the temporal range (-1 <
t < 1) with a periodic modulation cos (wyt).

1,04
0,5
o 001
=
-0,5
1,01
1 0 1
t
Figure 8.5

We first recall the definition of the convolution between two
functions f x g :

+o00
Lf *gl(x) = / flx —t)g(t)dt (8:27)

We have previously obtained the following relation (the numeric
factor depends on how the convolution is defined):

1
V21

Rewriting this expression in terms of the Fourier transform to pass
from the time domain to the frequency domain:

S - 9] = [F * G](K) (8.28)

+oo
1 1 / / /
SU©-900) = 7l #6100 = / F(0)G(o — o)do
(8.29)
In our case:
0(t<-1)
fO=<1(-1<t<+1) (8.30)
0t>1)

g(t) = {cos(wot) (—o0 < t < +00)} (8.31)



Parseval Theorem Formulated for Two Different Functions

1 +0o0 1 1 +00
Flcos wot] = —— /[cos wotle "t = ——~ /[e’i“’Of + etiet|eTiet gy
WV A/ 2
2 4 2 I
+00 +00
— 1 / e-H[—wo][e—iu)tdt + 1 / eiwote—iwtdt
2+/21 24/ 27
—00 —00
1
= ———[8(w+ wp) + 8(w — wp)] (8.32)

2+/27m

On the other hand, the Fourier transform of the rectangular pulse
f(t) is well known:

+1

—L —liwt _¥ —iw__ i _LSIH(Q))
S[f(t)]—m_[e N L R
(8.33)

We need to use the definition of the Fourier transform of the product
of functions, finding the convolution:

+00
1 1 2 in(e’
lcos(oot) - £()] = [ b0 + ol - o)

RNz

+8([w — wo] — @)]dw’ =
1 {sin(a} + wo) n sin(w — wy)

- 2w 21

(8.34)
w + wo w — Wy

8.7 Parseval Theorem Formulated for Two
Different Functions

Show that the integral of the product of a function f(x) and a
different conjugated function g*(x) is equal to the integral of the
product between the corresponding Fourier transforms (Parseval
theorem applied to two different functions):

+o00 +00
/ f(x)g*(x)dx = / F(k)G* (k)dk (8.35)

where F(k); G(k) are the Fourier transforms of the functions

f(x); g(x).
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We will use the asymmetric definition of the Fourier transform to
calculate:

+o00
gi(x) = / G*(k)e'™ dk (8.36)
Then:
+00 +00
/ f)g*(x)dx = / fx) / G* (k)™ dkdx = / / G (k) f(x)e*™ dxdk =
+00 _foooo
/ dkG*(k) / f(x)e*dx = / G*(K)F (k)dk (8.37)

In the particular case g*(x) = f*(x) we arrive at the well-known
Parseval identity:

+00 +00 +00
/f(X)f*(X)dX=/If(X)IZdX=/IF(k)|2dk (8.38)

8.8 Wiener—Khinchin (WK) Theorem

Show that the spectral density of a signal (in power) is the Fourier
transform of the autocorrelation of this signal.

Before explaining the solution, spectral power of a signal will be
defined. We know that the spectral power of an electromagnetic,
sound, etc., signal is proportional to the square of the modulus of
its amplitude.

Parseval identity applied to Fourier series indicates that the total
power of a signal is proportional to the sum of the squares of the
amplitudes of all its harmonics.

If the accumulated power in the dw interval is |g(w)|*dw, then
|g(@)|? will be the spectral density of a function f(t).

This problem considers the method to calculate the spectral power
from the autocorrelation of a function.
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Formal solution

We will use the symmetric version of the Fourier transform:
1 +00 1 +00
o [ 8@ o= - [ gy @e o ©:39)
2 27
—o0 —00

Note: as can be seen, in this case we define the direct transform as
the transition from frequency the domain to the time domain. We
do this to remark the freedom that there exists in the definition of
the Fourier transform. Depending on this definition the form of the
theorems of convolution and correlation can change.

Then:

1 +00
— / g (w)g(w)e “tdw = (8.40)
2w
—00
{g(w) is written as a Fourier transform}
+ood +o0
= / Z—wg*(w)e*fwf / f()e dt = (8.41)
bid
—0o0 —00
{Exchanging the order of integration:}
+00 +00 * +oo
/ do —lio(t'—t) / / *
dt’' f(t') UGS = [ dt f(YSf(£ -]
—0 —00 —o0
(8.42)
Then:
17 Vi
o / 1g(@)]? e dw = / dt f(O)f(E — 1" (8.43)
T
—00 —00

Is the autocorrelation of the f(t) function. Generalizing this result
to the cross correlation between two different functions f(t) and
g(t) we can deduce the analogous relation to the theorem of
convolution—specifically that the cross correlation between two
functions equals the Fourier transform of the product of their
corresponding Fourier transforms.

[f *g] =S[F* (o) - G(w)] (8.44)
Applying §~! to both sides of the relation of autocorrelation we get
the Wiener-Khinchin theorem.
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1 +00
5 [2” / |g(w)|2e-"wfdw] = 19()I* = g()g’ ()

o0

=5 [ / dt I f(E ~ t)]*] (8.45)

This is an important relation which is employed in signal processing
in many electronic devices, as those which measure the spectral
power of signals such as noise, vibrations, etc. In the case of real
signals, the W-K theorem becomes:

+00 +oo
§ {/ dt f()f (¢ - f)]*} =3 [/ dt’f(t/)[f(t’—t)]] =

= 9(0)|* = g(®)g* (@) = g(®)g(—w)
(8.46)

The change of sign is due to the antisymmetric character of the
imaginary part of the Fourier transform of a real signal.

8.9 Fourier Transform of an Oscillation
Modulated by a Gaussian Pulse

Find the Fourier transform g(w) of the following function f(t) =
cos(wot) - e~ G,
Present the results graphically.
f(t)
1 4

3 -1 1 3

Figure 8.6
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We will use the symmetric form of the Fourier transform:

+0o0 +o0
1 ot 1 /7. _(Ey2
®) = —— | e f)dt= —— [ e cos(wot) - e P dt =
9() m/ fode= 722 (of)

+00 +00
1 it : ty2 1 i i ty2
- - e—lw e—lwot . e—(?] dt+ /e—m)telwot . e—(;) dt =
2+/2m / 2/ 2m
1 +o0 1 +o0
_ Cifwtop)t | (L) / im0t | (8 gp _
= e el dt + e e\l dt =
zm/ 221
1 1
= E%'[f](w + wo) + ES[f] (@ — o) (8.47)

From integrals tables we have:
+00
1 —iwt  —(£)? T (e
S[f](a))zﬁ e -e 'r dt:ﬁe 2 (84‘8)
—00

Then

_ ( (w+wg)T ) 2 _ ( (0—wg)T ) 2
T e 2 +e 2

w) = 8.49
9l) = y (849)
Schematic graphic representation of the result:
“ g(w)
ftt)
t
f(t) g(w)
1 1y
0 ]
-1 | | | 0 . | | |
-3 -1 1 3 -10 -5 O 5 10
t w(au)

Figure 8.7
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8.10 Autoconvolution of a Rectangular Pulse

Find the convolution of the following rectangular pulse with itself.
Use Fourier transforms from tables to facilitate calculations. Present
the result graphically.

-1 1 t
Figure 8.8

Mathematical description of the pulse:

1t <1
f®)= (8.50)
0t >1

The Fourier transform of this pulse is:

+1
F (w) = F[f1(w) = [§ symmetrical] = \/;_n /e‘i“’tdt
1

_ 1 efiw'_ el _ E sin(a)) (851)
V2m iw Vr o

To find the convolution between two functions we will use the
convolution theorem in the following form:

[f*g] =T '[F () G(o)] (8.52)

In terms of the time and frequency variables we can write:

+o0
\/;—n/f(t')g(t—f)dt”=3‘1[F(w)G(w)] (8.53)

Since we seek the convolution of the function with itself the relation
becomes:

+00
1 / /) __ 1 w )
«/E_/ fW)ft—t)dt =F[F(w)F ()] (8.54)
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We know that F (w) = \/g% Then:

N2 g w

—00

+0o0
1 o e 1 [ 2[sin@)]?® .
mé FEVf(E—t)dt =F 1 [(F(@))?] = / [ }e do =

(8.55)

\/7 (1 — |t|> It] <2
T 2 - (8.56)

0 [t] > 2
Graphic representation of the result:

fY

From integrals tables:

-1 1 t

fO*f(Y)
2/

I

-2 2

Figure 8.9

Note: the operation of convolution between two functions f(t)*g(t)
must not be mixed up with the cross correlation (CC) f(¢t) x g(t). In
a way the correlation is conceptually simpler than the convolution
since the two functions in a correlation are not conceptually
different as can be those in a convolution. In the correlation the
functions are in general different or they represent data sets that can
contain similarities. We investigate their “correlation” by comparing
them directly, by superposing them, with one of them shifted either
left or right.

The definition of crossed correlation between the f(t) and g(t)
functions is:

+00
FO*g(0) = \/;_n / FOE+O)de (857)
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Where f*(t) is the conjugated of f(t). The relation between CC and
convolution is as follows:

FO*g(0) = f*(—8) *g() (858)
Precisely:
+00
FOxg(0) = —— / FH-t)g(t - O)dt (8:59)
g \/ﬁ_ g .

Changing variables: (—t' — t) and exchanging the limits of
integration we get the result we were looking for:

f*(—t)*g(t)=—% / FH g+ )dr
+o00

400
= \/;—n / fr(@)g(t +7)dr = f(t) »g(t) (8.60)

Note that the CC operation, unlike the convolution, is not commuta-
tive:

fO)*g() #g() » f(8) (8.61)
Note: the case of the cross correlation of two complex functions
is considered in the following website: http://mathworld.wolfram.
com/Cross-CorrelationTheorem.html

8.11 Fourier Transform of a Bipolar Triangular
Pulse

Find the Fourier transform of the pulse shown in the figure. How is
the Fourier transform of the convolution of the signal with itself?

Solution:

We describe mathematically the function:
1—-x (0<x=<1)
fx)=¢ -1—-x(-1<x<0) (8.62)

0 (IxI>1)


http://www.mathworld.wolfram.com
http://www.mathworld.wolfram.com
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f(x |1

-1

Figure 8.10

sign(x) — x (|x] < 1)
fx) = (8.63)
0 (|x] > 1)

Alternatively:

+00 +oo
L0 = J% / F)eT e dx = J% / F)[cos(x) — i sin(wx)]

(8.64)

Since f(x) is an odd function and we integrate between symmetric
limits:

+00
i .
- \/E/ f(x) sin(wx)dx

0 1
i . .
= i {[(—1 — x) sin(wx)dx + 0/(1 —X) sm(a)x)dx} (8.65)

/x sin(wx)dx = X coz)(a)x) + smcgaz)x) (8.66)
Then:
0
. cos(wx) xcos(wx) sin(wx) 0 1 sin(w)
/(—1 — x) sin(wx)dx = [ + » - ]71 =—-—
-1
(8.67)
On the other hand:
1
1 .
/(1 — x) sin(wx)dx = o sn:u(za)) (8.68)

0
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Then:

3] = iﬁ [Sm(‘fjj‘“] (8.69)

The convolution between two equal signals is:

+00
LF(O) * F(O](2) = é_n / flr — O f(Dde (8.70)

We will use the version of the theorem of convolution which relates
the Fourier transform of the convolution of two signals to the
product of their Fourier transforms. This relation can be rewritten
in terms of the spectral (w) and temporal (t) variables as:

SILA@) * fF(B]1(2)] = F (@) - F(w) (8.71)
where F () is the Fourier transform of [ f(¢)]. In our particular case:

sin(w) — w

2
B/ * FOIO] = F) - Flo) = = [wz} (8.72)

8.12 Fourier Transform of a Rectangular Pulse

Using the symmetric version of the Fourier transform find the
spectrum of a triangular pulse:

Flx) = {(1)_ a glf_ifxlj 1)} (8.73)
W
f(x)=1-ABS(x) g(w)
1
f(t)
t
-1 \ 7 X

Figure 8.11
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Using the symmetric Fourier transform:

+00 +1
S[f]((l)) = \/]2-—7_[ / eiiwxf(X)dX = \/;_ﬂ /(1 _ |X|)€7iwxdx
0 4

(8.74)
We will use the fact that the transform is applied on a symmetric
function. Since /¥ = cos(wx) — i sin(wx)

+1
1 -
m;((l — |x])[cos(wx) — i sin(wx)]dx (8.75)

+1
i ) _
m[(l — |x]) sin(wx)dx = 0 (8.76)

The integral is composed of the sum of a symmetric function and an
antisymmetric one. The limits are symmetric.

+1 .
! 2
271_/1(1 — |x[) cos(wx)dx = T 0/(1 — |x|) cos(wx)dx (8.77)

Is the integral of a symmetric function between symmetric limits.
This integral can be solved by parts with the change of variables:

{u=(1-|x]); dv = d[sin(wx)]} (8.78)

And the integral is expressed as:

1
2 ! 2
1 — |x|) x [sin(wx + /sina)xdx:
’w\/ﬁ( [x]) x [sin( )]0 a)2n0 (wx)
I 1
2 /sin( X)dx [ 2 | cos(wx)
= . = — —_
w21 ) b1 w? |
_ /2 cos(w) — 1 _ 21— cos(w) (8.79)
T w? T w?

The graphic representation of the result is shown next (only for
positive frequencies).
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i'u
p:; 1E-74 s i q li 4
E| o 1
1E-94 1
E E
1E-11 .
10 20 30
w
Figure 8.12

8.13 Fourier Transform of the Convolution of a
Triangular Pulse with Itself

Find the Fourier transform of the convolution of the triangular pulse
shown in the figure below with itself.

1-lx[(-1<x<1)

flx) = (8.80)
0 x<-1,x>1)
f(x)=1-ABS(x)
o 1
-1 \ 1 X
Figure 8.13

We know that, by definition, the convolution between two functions
is the inverse Fourier transform of the product of their Fourier
transforms, which without normalization is:

+00
frglx]l = / flx — 0g(8)dt = F[F (K)G(K)] (8-81)
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Appling the Fourier transform to this relation an supposing that f =
g, the Fourier transform of the auto-convolution is:

+00
SIf+fIxl1 =3 /f(x—t)f(t)dt =8 [F(OF (K] = [F (K)]?

(8.82)
The Fourier transform of the triangular pulse is:
21— k
Fll) = /212 cost®) (8.83)
7T k2
Furthermore we can simplify it using the relation:
.2 (k
1 — cos(k) = 2sin 2 (8.84)
/8 sin? (X
F(k)=4/— (2) (8.85)
T k2

The solution is:

T 8 [sin? (£)]°
5| [ foe-ased =n[ kf] (8.86)

F(k)

1012

Figure 8.14

Note: the next figure indicates the schematic form of the convolution
of a triangular pulse with itself (this is, proportional to inverse
Fourier transform of sin*(x/2)]/ x*):
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0.06

0.04

i

0.02

0.00

-1.0 0.0 1.0
X
Figure 8.15

8.14 Fourier Transform of a Shifted Rectangular
Pulse with a Sine Modulation

Find the Fourier transform of a modulated rectangular pulse, shifted
in time to ty. Before the shift the pulse was defined in a temporal
range (-t < t < t), with an amplitude I /27 (the surface of the total
pulse is I) and with a periodic modulation (sin wyt). Consider the
case of the shift of the pulse without shifting the modulation.

f(t)

-t 27T— >

t=t,

t=0
Figure 8.16
Mathematical description of the pulse:
L —t<t<tph+r
2t
=< o t>to+1) x sin(wot) = f(t) x sin(wet)  (8.87)

0 (t<ty—r1)
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We first use the Fourier transform of a shifted rectangular pulse
without modulation.

+00
SLAE— ] = = [ Fle—we e = (¢ =t~ )}

1 “+00
_ e—iet+) gy —
— / £¢)

. Ji . i
e 190 F () = me"‘”t" Smcg‘:’) (8.88)

The product of f(t) by sin(wyt) is equivalent to:

a) Shifting the Fourier transform to (+wy)
b) Shifting the Fourier transform to (—wy)
c) Subtract these shifted Fourier transforms and divide by 2i.

Using this rule we find:
I —iotron Si[(@ + wo)T] i
S[fm(ﬂhﬁ e ' 0]%7@)4—%)1 — g7lomwo)io (o)
(8.89)
The strictly mathematical method consists in using the theorem
of convolution, seeking the Fourier transform of f,(t) = f(t) x
sin(wopt) as the transform of the product of two functions from the

operation of convolution between the respective Fourier transforms.
+0o0

sin[(w — wy) 7]

SLA(t—to) - g(8)] = F (@) * G(w) = / F(w—n)G(n)dn (8.90)
with f(¢t) previously defined and g(t) = sin(wgt). Using for F(w)
the previously obtained result (8.88), as well as G(w) = i\/g[ﬁ (w+
wp) — §(w — wp)], we arrive at the previous result (8.89).

8.15 Case Study: Solution of a PDE Using the
Fourier Transform: Case 1

Using the Fourier method, solve the following partial derivative
equation with initial condition:

3 9
9 _pf_y (8.91)
Jat 0x
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u(x, 0) = f(x) = cos(x) (8.92)
The x variable is defined in the range (—oo0 < x < 400)

First the Fourier transform is applied to the equation to be solved.
We will use the symmetric form of the transform.
+00

We define a new function v(k, t) = §[u] = \/% [ u(x, e *dx

Applying the property of the Fourier transform of the derivative of a
function:

d
&v(k, t) — t*(ik)v(k, t) = 0 (8.93)
and with the initial condition:
v(k, t = 0) = §[cos(x)] = F (k) (8.94)
We arrive at an ordinary differential equation:
dv(k, t i kt3
VD _ rede = a | RE (8.95)
v(k, t) 3
Then:
vk, £) = C(K)e™s (8.96)

being C (k) an unknown function which is determined by the initial
conditions (t = 0).

Since v(k, 0) = F (k) we get the solution:
ike3
vk £) = F(K)e's (8.97)

To find the final solution we must apply the inverse transform to
v(k, t):

— L ikx _ i @ ikx _
u(x, t) = T / v(k, t)e'"“dk = \/ﬁ_/ F(k)e s e™dk =
1k x+ _ e
\/_ / F (k)e )dk = cos (x + 3> (8.98)
since
u(x, 0) = F (k)e'*™dk = cos(x) (8.99)

]
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Note: An alternative method to find the inverse transform is to use
the particular value of the function F (k).

From Fourier transform tables we know:

+00
F(k):&[cos(x)]:&/cos(x)e_ikxdx=\/f[é(k—l)v%(k—}-l)]

(8.100)
Then:
1 7
ike3 :
u(x,t) = — | F(k)es e®dk =
0= [ F®
-0
1 +00
. 3
=3 /[8(k— 1) + 8(k + 1)]e*+5)dk
-0

e i+5) + et +S) 3

t
= = cos — 8.101
5 <x + 3 > ( )

8.16 Case Study: Solution of a PDE Using the
Fourier Transform: Case 2

Solve the wave equation with known initial conditions using the
Fourier method. Show the solution as an inverse Fourier transform.

u 0%
- axe
2 sin(x)
u(x, 0 = \/; X (8.102)
au
9l
—o<x<oot>0

We keep (t) constant and find the Fourier transform of the wave
equation with respect to x.
32
at2
From the first initial condition:

Flul(w, t) = —c?0*F[u](w, t) (8.103)
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X 0wl >1

[ul(@, 0) = § stm(x)] (@) = f(w) = { Llel < 1} (8.104)

Furthermore, from the second initial condition %S[U](a), 0) = 0.
The general solution of (8.103) is that of a harmonic oscillator.
Flul(w, t) = A(w) sin(cwt) + B(w) cos(cwt). From the second initial
condition A(w) = 0 and from the first one, B(w) = f(w). Then
Slul(ew, t) = f(w)cos(cwt). In this way, using the inverse Fourier
transform the solution will be:

+00

u(x, t) = 3 [ f(@) cos(cwt)] = \/‘1;_ / [f (@) cos(cwt)]e™dw =
4
+1 )
= \/;_/cos(cwt)e("x"’)dw (8.105)
T
1

8.17 Case Study: Solution of a PDE Using the
Fourier Transform: Case 3

Find the solution to:
d*X(t)
2
applying the Fourier transform.

a’X(t) = f(t) (8.106)

Notes:

a) We need to impose the condition that the solution satisfies
f(t = 4o0o) — 0 to ensure the existence of the Fourier
transform of the functions we’ll consider.

b) The solution requires the use of the definition of the Fourier
transform of the product of two functions, as well as the use of
Fourier transform tables.

Equation to be solved:
d*X(t)
dt?
To solve the problem we will suppose that: §[X(t)] = G(w) and
S[f()] = F(w). Applying the Fourier transform operator to the

a’X(t) = f(t) (8.107)
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equation:
d*X (t)
5 o a’X(t) = f(t) (8.108)
or
—w*G(w) — a*G(w) = F(w) (8.109)
—[0* + a*]G(w) = F (o) (8.110)
L C)
G(w) = o7+ o] (8.111)
We now use Fourier transform tables:
(calt] _ 2@
3 [eCalD] = o+ o] (8.112)

Then, defining a new function Y (@) we can write:

Y(w) = — =3 =7 [—zlae(‘“'“)] (8.113)

02+
We will now use the convolution theorem, which relates the Fourier
transform of the product of two functions to a convolution. In the
present case we can write:

G(@) = Y(0)F(0) = §y(t) * f(8)] (8.114)
where an asterisk indicates the convolution operation between the
functions y(t) and f(t).

Think to find the solution:
X(t) =3 [G(@)] =T Y (@)F (@)]
=F 3@ * FO] = () * f(2)] (8.115)
(that is, the solution of the problem is the convolution between the
functions y(¢t) and f(t)). Using the definition of the convolution (not
normalized) we get the solution for the displacement of the forced
relaxator:
+00
X(t) = —% / e-atTD £()dr (8.116)
—00
Note: the solution could describe the movement of an object in

one dimension in a medium with a friction proportional to the
displacement under an external random force.
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8.18 Case Study: Solution of a PDE Using the
Fourier Transform: Case 4

Using the Fourier method, solve the following PDE with initial
condition:

du ;0%
U _pft_y
ot 9x?

u(x, 0) = f(x) = sin(x)
The x variable is defined in the range (—oo0 < x < 4-00)

We first apply the Fourier Transform to the equation to be solved:

We will use the symmetric version of the transform.
+00 .

We define a new function v(k, t) = [u] = % [ u(x, e~ *dx
—00

Applying the property of the Fourier Transform of the derivative of

a function:
%v(k, )+ k*v(k, t) = 0 (8.117)
and with the initial condition:
v(k t =0) = §[sin(x)] = F (k) (8.118)
We get to an ordinary differential equation:
‘C’(Ef’t;) — _KRAdt=d [_';2 ﬂ (8.119)

Then:
124
vk £) = C(K)e s (8.120)
being C(k) an unknown function that is determined by the initial
conditions (t = 0).

Since v(k, 0) = F (k) we get the solution:
k2

v(k t) = F(k)e™*

From the tables of Fourier Transforms we know:

(8.121)

+00
F(K)=3[sin(x)]= «/;_T[ / sin(x)e"™dx = i\/Z[cS(k—l)—S(k—i-l)]

(8.122)
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To find the final solution we must apply the inverse Fourier
Transform to v(k, t):

K2t

F(k)e

u(x, t) = e dk =

+00
7=
21
—0o0
t4

. too 4
= /[S(k— 1) — 5k + 1) die = (7% sin(x)

(8.123)

8.19 Case Study: Solution of a PDE Using the
Fourier Transform: Case 5

Using the Fourier method, solve the next PDE with initial condition:
u
ot

u(x, 0) = f(x) = sin(x)

The x variable is defined in the range (—oco < x < 4+00)

3
+ sin[t)a—z —0

We first apply the Fourier Transform to the equation to be solved.
We will use the symmetric version of the transform.

+00
We define a new function v(k, t) = §[u] = ﬁ [ u(x, e~ dx

Applying the property of the Fourier Transform of the derivative of
a function:

%v(k, t) + sin(t)(ik)v(k, t) =0 (8.124)
and with the initial condition:
v(k t =0) = §[sin(x)] = F (k) (8.125)
We arrive at an ordinary differential equation:
dv(k, t
vk 8 = —(ik) sin(t)dt = d [ik cos(t)] (8.126)

v(k, ©)
Then:
v(k, t) = C(k)e'keos®) (8.127)
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where C (k) an unknown function that is determined thanks to the
initial conditions (¢ = 0). Since v(k, 0) = F (k) we get the solution:

C(k) = F eflk‘) (8.128)
v(k, t) = F (k)eikcos@-1) (8.129)

From the Fourier Transforms tables, we know:

+00
F (k)=3F[sin(x)] = % / sin(x)e ™dx = i\/j[S(k—l)—S(k—i-l)]

(8.130)
To find the final solution we must apply the inverse transform to
v(k, t):

+00
1 . .
U(X, t) — / F(k)elk(cos(t]fl]elkxdk —
N 2m .
. oo
- IE / [8(k — 1) — 8(k + 1)]e/kxreos@D g
—00
= sin(cos(t) + x — 1)) (8.131)

8.20 Case Study: Solution of a PDE Using the
Fourier Transform: Case 6

Using the Fourier method, solve the next PDE with initial condition:

du N _,0%u
B 2
at ax2

u(x, 0) = f(x) =e ™

The x variable is defined in the range (—oo0 < x < 4-00)

=0

We first apply the Fourier Transform to the equation to be solved:

We will use the symmetric version of the transform.

400

We define a new function v(k, t) = §[u] = \/% [ u(x, e ™ dx

—00
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Applying the property of the Fourier Transform of the derivative of
a function:

%v(k, t)+e (—k*)v(k t) =0 (8.132)

and with the initial condition we get from The Fourier Transforms
tables:

2 1
kt=0)= =F(k)=1/— 8.133
vk t=0)=§fWI=FR) =/ “7—5  (8133)
We arrive at an ordinary differential equation:
dv(k, t) It
= —(k dt 8.134
Vg = (e (8134)
Then:
v(k t) = C(k)etKe ™ (8.135)

where C (k) an unknown function that is determined thanks to the
initial condition (t = 0).

Since v(k, 0) = F (k) we get the solution:

2 1
k, 0) = C(k)e"¥) = /= 8.136
V(K 0) (Ke 71+ k? ( )
1 /2 1 _—
_ il (—k“e™)
vk 0=~ ./n e (8.137)

To find the final solution we must apply the inverse transform to
v(k, t):

u(x, t) = C (ke Fe ek gk (8.138)

+0o0

1
7
8.21 Case Study: Solution of the Diffusion

Equation in an Infinite String with
Convection Using the Fourier Transform

Solve the diffusion with convection problem for a 1-D infinite system
(the additional term is due to the mass transfer) using the Fourier
method.
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(i) Find the variation of the concentration with time u(x, t),
considering that the distribution of the concentrationatt = 0 is

u(x, 0) = f(x).
(ii) Consider the case of an initial point like distribution: u(x, 0) =
8(x).

Note: the equation of convection-diffusion is basically the diffusion
equation, modified with an inhomogeneous term, proportional
to the velocity ¢ = Const, multiplied by the gradient of the
concentration, i.e., 2%,

We formulate the problem:

dux, ) _ %ulx, 6 3
O D My e oute, )= £00)

f(£00) =0
(8.139)

We apply the Fourier transform in order to pass the diffusion
equation and the initial condition to reciprocal space (x — w).

0x2
dulx,0)] d
s[ ot } =2l @9 (14
5 {3“(“)} — iU (o, ) (8.142)
ox
S0 = F(0) (8.143)
WD _iewts (@, )+ kotU (0,8 = 0
- (8.144)
U(w, 0) = F()
O | (ke — iU (@, ) = 0

dt (8.145)
U(w, 0) = F(w)
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We seek the solution in the form U (o, t) = A(w)e**

% = A(w)ae™ (8.146)
The equation to be solved is:
A(w)ae®t + [ko? —icw]A(w)e™ =0 (8.147)
o = — (ko — icw) (8.148)
U(w, t) = A(w)et ke’ ~iceld (8.149)
Applying the initial condition:
U(w, t) = F(w)el Tk’ ~icold (8.150)

Final solution (inverse symmetric Fourier transform):

u(x, t) = F (w)et ke ~icolt) gliwx) g ) (8.151)

+o0
7=
2
—00
We will consider the case of a particular point like distribution:
u(x, 0) = §(x). In this case:

1
F(w) = ——— = const 8.152
@)=V (8.152)
+00
u(x, t) = L / Le(—[sz_icw]ne(im)dm
2r 27
+oo
= i / e(—kat]e[iw(x+ct]]dw (8.153)
27
—o0
Since S—l[e(—awz)]( ) = e('%)
U="ra
Inserting the new variables:
X+Ct=f;kt=a (8154)

2 2
1 %) ol-%E]

JZr Za | Akt
From this solution we deduce the Green’s function of the diffusion
equation with convection, replacing x by x — &, being x = £ the point
of application of the initial pulse. In a similar fashion, the Green's
function in the case of the heat equation in 1D (¢ = 0) and with
u(x, 0) = f(x — &) will be:

ulx, t) =

(8.155)

e[ Ikt
4kt

ulx, &, t) = (8.156)
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8.22 Application of the Fourier Transform to Find
the Displacements of a String Attached to
an Elastic Fabric

Using the Fourier transform method, find the solution for a wave
which propagates along an infinite thread connected to an elastic
fabric if all initial conditions (displacement and velocity) are known.

u

X
Figure 8.17
Formulation of the problem:
Pu(x, ) ,0%u(x, t)
P c I —ku(x, t)
u(x,0) = f(x)
au (8.157)
Bty v (x)
f(F£00); ¥ (£00) =0
¢, k>0

We apply the Fourier transform to pass to reciprocal space both the
equation and the initial conditions.

Slux )] = U (o, ) (8.158)
3 [W] — U (o, 8) (8.159)
0x2

(8.160)

3 ’u(x,y)]  0°U(o,t)
[ at? ] o

SLF()] = F(w) (8.161)
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Sl (x)] = ¥(w) (8.162)
2
% + U (w, t) + kU (w, t) =0
02U (o, t)
37;20 — C(w, t) =0
C*=c*o® +k (8.163)
U(w, 0) =F(x)
ou
|, YW
The general solution is:
U (w, t) = A(w) cos(Cwt) + B(w) sin(Cwt) (8.164)
U(w, 0) = F(x) = A(w) (8.165)
w = V(w) = CowB(w) (8.166)
ot |,_o
B(w) = V(@) (8.167)
Cw
U(w) |
U(w, t) = F(w) cos(Cwt) + - sin(Cwt) (8.168)
Final result:
+o0
u(x, t) = \/;_n / [F(w) cos(Cwt) + \D(Z)’) sin(Cot) | el“Ydw

(8.169)

8.23 Case Study: Oscillations in an Infinite String
with Friction

Solve the oscillations in an infinite string with a friction proportional
to the vertical component of the velocity (with a proportionality
coefficient K) using the Fourier method. Consider that the initial
displacement is f(x) and the initial velocity is 1 (x). The speed of
sound is equal to c.



500 | Fourier Transform and Its Applications

V

Figure 8.18

Mathematical formulation:

9%u T 92u K ou
— ———=——— (00 <x <00)
atz  p 0x? p ot
9%u 9%u du

2 _
ﬁ—ca?——ka (—OO<X<OO)
u(x, 0) = f(x)

(8.170)

u
Py o = ¥(x)
f(£00); ¥ (£00) =0
k>0

We will apply the Fourier transform to pass to reciprocal space the
equation and the initial conditions. We use w to refer to the wave

vector.
Flu(x, )] = U(w, t) (8.171)
5 [W] = —’U(w, t) (8.172)
ax2
’u(x, )]  9%U(w, t)
3 [ e ] =—p (8.173)
SLf(x)] = F(w) (8.174)
Sy (x)] = ¥(w) (8.175)
d*U(w, t) . dU(w,t) B
i + k T + 20U (w, t) =0
U(w, 0) = F (o) (8.176)
AU
ETI A




Oscillations in an Infinite String with Friction

We seek the solution in the form U (o, t) = A(w)e**

d*U (w, t
# — A(w)a?e (8.177)
dU (o, t
D _ g myaet (8.178)
dt
Equation to be solved:
A(w)a?e®t + kA(w)ae™ + *w’A(w)e*t =0 (8.179)
o +ka + fw* =0 (8.180)
k = k% —4ctw? k
wip = —mp YOTEOOR X g (8.181)
’ 2 2 2
We will have real values for frequencies that satisfy:
k
k? — 4cw® > 0; |w| < % (8.182)
c

There will be two linearly independent solutions:

Ui(ow, t) = A(w)ent
(8.183)
Uz(w, t) = A(w)e*?t
We can simplify the solution creating two linearly independent
combinations:

_Uilo, )+ Uz(o, t) ettt 4 =P

V1 (C(), t) 2 — A(w)e(_’%tJ 2
= A(w)e"29 cosh(Bt) (8.184)
_ (+88) _ p(=89)
Vo, ) = OO0 _ ot
= A(»)e" 19 sinh(B¢) (8.185)

The solution of equation (8.176) for the frequency range |w| < Z—I‘C
must be presented in the form of a combination of two independent

solutions, in general with different weights:
U(w, t) = e"9[A(w) cosh(Bt) + B(w) sinh(B)] (8.186)
Finally for frequencies |w| > 712 — a1,2 =, complex values:

k JIE—4c?  k
az=—z % =5 iy (8.187)
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Analogously, we get:
Uw, t) = e CI[A(w) cos(yt) + B(w) sin(yt)] (8.188)

Applying the Fourier transform to the initial conditions we get
A(w); B(w):

U(w, 0) = F(w) = A(w)
aUu k k
el V() = —5A(0) + B(w) (le < 26) (8.189)
aUu k k
o L =V¥(w) = _EA(G)) + vy B(w) (|a)| > 26)
Final solution:
1 +00
u(x, t) = E, / U (w, t)el“Ydw (8.190)

8.24 Case Study: Fourier Transform to Find the
Distribution of Temperature in a
Semi-Infinite Bar

Using the method of the Fourier transform find the stationary
distribution of temperature u(x, y) in a flat, semi-infinite bar (2-
D) if the variation of temperature in the inner boundary is known:
u(x, 0) = f(x), and the rest of the boundaries are in contact with a
thermal reservoir at zero temperature.

y
B
u(0,y)=0 X—»

u(x,B)=0

u(x,0)=f(x)

Figure 8.19



Stationary Temperature in a Semi Infinite Bar

Formulation of the problem:
2 2

0 0
Eu(x, y)+ WU(X' y)=0
0<x<+400);(0<y=<bh
u(x, 0) = f(x)

(8.191)
u(x, B)=0

f(x > 00)— 0

u(x, y) < N (i.e, the solution is finite)
One of the possible methods is to create a virtual image of the system
for x < 0 and extend the boundary conditions anti-symmetrically
there for the boundary at y = 0, this is, reflect anti-symmetrically
the function u(x, 0) = f(x).

u(x,0)=f(x)
= } X
," u(-x,0)=-f(x)
Figure 8.20

To find the differential equation and the boundary conditions in
reciprocal space the Fourier transform is applied to convert x — w.

Alternatively, we write u(x, y) as an inverse Fourier transform and
replace it into the equation:

+o00
1 .
u(x.y)=ﬁ / U(o, y)ei“Ndw (8.192)
—oQ

9%u _

1 +00
2 (iwx)
—00
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0%u 8 U
%u  d%u 1 ) 32U (w, ¥)]
I T —0?U (o, — 27 pliex) g, — 0
I’ + a2 o / [ o°U(w, y)+ dy? e w
—00
(8.195)
The equation to be solved in reciprocal space is:
32U (w, y) W
a7 " U(w,y)
U(w, 0) = F (o) (8.196)
U(w,B)=0

From the first boundary condition we obtain its transform F ():
1 1 7
— [ U(w, 0)e'dw = — / F(w)el“dw 8.197
7= [veo Vi ) (8:197)
—00
Analogously we arrive at the second boundary condition u(x, B) =

0 — U(w, B) = 0. This condition in reciprocal space allows us to
write the general solution of (8.196) more transparently:

U(w, y) = Asinh[w(B — y)] (8.198)
Applying the first boundary condition (w):
U (w, 0) = Asinh[w(B)] = F(w) (8.199)

we arrive at the normalized solution:
sinh[w(B — y)]

Ulw,y)= F(ﬂ))m (8.200)
Final solution:
sinh[w(B — y)] pliex)
u(x,y) = / F ) = nnwB)] sinh[w(B)] do
_ 1 i +/Oof(z)e[i“’z]dz SthlelB = )] g,
= o sinh[w(B)]

(8.201)



8.25 Case Study: Application of the Fourier
Transform to Find the Distribution of

Distribution of Temperature in a Semi-Plane

Temperature in a Semi-Plane

Using the Fourier Transform method find the stationary distribution
of temperature u(x, y) in a semi-plane if we know the variation of

temperature at its boundary: u(x,

0) = f(x).

\

u(x,0)=f(x)

Figure 8.21

Mathematical formulation

92 92

——ulx y)+-—ulxy)=0
dy

dx?
Boundary condition:

f(x] > 00) = 0

u(y - 00) = 0;u(|x| > 00) -> 0

u(x,y) <N

(—oo<x <+400);y>0

u(x, 0) = f(x)

(The solution is finite)

(8.202)

We can apply the Fourier Transform to the x variable, leaving y as a
parameter (x — ) and solve the problem in reciprocal space. This
is possible since x is defined in the range [—o00, 4-00].

The alternative mode (with some more calculations, but equivalent)
is to use u(x, y) from the inverse Fourier Transform and replace the

derivatives in the equation.

T
ulx,y)= E / U(w, y)e(iwx)dw
—00

(8.203)
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92 ;
l;(;z " _ J_ / —0?U (0, )i dw (8.204)
0%u(x, 82U
oy «/27r
2u(x,y)  d%u(x,y) 2 PU@NT oy g
dx2 dyz F/[wU(w,y)-{-T e dow =0
(8.206)
The equation to be solved in reciprocal space is:
02U (w,
y — a)ZU(a), y)
dy (8.207)

U(w, 0) = F(o,0)
The boundary condition in reciprocal space (w) has been obtained
by transforming the boundary conditions in (x,0)

u(x, 0) = f(x) (8.208)
Writing this relation using the inverse Fourier Transform:
+00
L / U (w, 0)el“Ydw = L / F(w, 0)e/dw  (8.209)
V2w ' V2m '
—00

The general solution is U (w, y) = A(w)el®) + B(w)e~*)
Due to the need that the solution be convergent for y — oo, we are
going to impose A(w) = 0.

In this case we must use the modulus of the w variable in the
exponential variation of the solution to guarantee that the solution
will not diverge, regardless of the sign of w.

Using the other boundary condition (in reciprocal space) so that y =
0 we write the solution (in reciprocal space):

U(w, y) = F(w)e1*W) (8.210)
Finally, the general form of the solution to the Laplace equation in
the semi-plane (2-D) will be:

+00
1 .
u(x,y) = T / F (w)et1eWelex) gg, (8.211)
—0Q



Distribution of Temperature in a Semi-Plane

To arrive at the more detailed form of the solution we must solve
the integral by writing F(w) as a Fourier Transform: F(w) =

1 (—iwz)
f(z)et7'*"dz
V27 J

+oo [ +00
u(x, y) = / / f(2)et“dz| el-leWelieN gy (8.212)
—00 —00
Changing the order of integration:
400 [ +o0

1 .
u(X,J’)=E / / elmio=AleW gy | f(z)dz  (8.213)

—00 — 00
The value of the integral is:
+00 2
[—io(—2)] p(—10lY) g ) — 34 8.214
/ e e ) Vo x—2° ( )
So we arrive to so-called Poisson’s integral formula:
+00
u(x, y) = = / Y f(2)dz (8.215)
g VF (=2 |
—00

Example of application:

We suppose the following distribution of temperature at the
boundary:
To (A <x < B)

fx)= (8.216)
0 (x<A4;x> B)

Then we will have: 5

B
_T() # _TO L Z) =
u(x,y) = /y +(x—Z)2 A/y2+(x—2)2d<y>_
)={e=(57))
U\
z; [1+é {/ [1+;§2]d$—tan 1(€)+const}

B — A— T
tan™? (y X) —tan~! ( " X)] = ;O[QDB — 4]

(8.217)
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Where ¢4, p are angles of visibility of the points A and B from the
point (x, y)

Y
Xy
°\
\\\
\ ~
A\ N
\B \\
0.\\ S~
N T X

Figure 8.22

Note: The formulas of this type also exist in 3D coordinates to
present the solutions of the Laplace equation in integral form.

8.26 Fourier Transform of the General Solution
of Laplace’s Problem in a Disk

Show that the Fourier Transform of the general solution of Laplace’s
problem in a disk has the form of an infinite sum of Dirac’s Delta
functions.

Solution:

The mathematical description of the solution of Laplace’s problem
in a disk is expanded in periodic angular functions in the azimuthal
angle ¢:

u(p, ¢) = Z[A(n, p) cos(ng) + B(n, p) sin(ng)] (8.218)

n>0
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Applying the Fourier Transform to the solution we get:

+o0

1
MM@¢H=F@w®=:E;
n>0 00

+00

n>0 [_°

+J;_WB(n, p)z /sin(ngo)e_i‘“‘”dw

Writing

1 . .
cos(ng) = E[e“""’ + e "]

1 . .
sin(ng) = E[e*’”“’ —e ']

We get integrals of the type:
+00
/ et"e19%dy = §(n — w)
—00
or
/ e Me%dy = §(n + w)

—0Q

A(n, 'O)Z /cos(ngo)e‘”"“’dw +

(8.219)

(8.220)

(8.221)

(8.222)

(8.223)

This implies that the Fourier Transform of the general solution of
Laplace’s problem in a disk is an infinite sum of Dirac’s Delta type of
functions. This is a consequence of applying the Fourier Transform

to a function which is periodic every 2.
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Appendix

Dirac’s Delta Function in Cylindrical and Spherical
Coordinates

In spherical coordinates: §(F —rp) = m&(r—rgw(@ —60)8(¢—¢o)

p4

y
X
Without azimuthal dependence (ring): §(F — Fp) = mé(r -
ro)8(6 — 6o)
Z
Without polar nor azimuthal dependence: §(F — ro) = 2> 8(r — ro)
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Without azimuthal dependence (ring): §(F —rp) = %S(p —p0)8(z—
o)

Z
AT
S

-

2

Po
N
X\

Without azimuthal nor polar dependence (very thin tube): §(F —
70) = 258(0 — po)



Appendix

Physical Equations

e Transversal displacement
d?u T d%u 1
= = ——f(x, 0
ez p(x)dx*  p(x)
Boundary conditions:
o Fixed boundaries: u(%,t) =0
o Free boundaries: %(E, t)=0
o Boundary linked to a spring: right: T%(L, t) + Bu(L, t) =
0; left: T 44(0, £) — Bu(0, t) = 0
e Longitudinal oscillations along a rod
d?u 1 d du 1
e [E@) | = f
dt p(x) dx dx o(x)
Boundary conditions:
o Fixed boundaries: u(%, t) =0
o Free boundaries or linked to a spring: section 5.1.2 of [1]

e Heat transport in three dimensions
dT d dT
cipm = — L e | = £(i, ¢
Mo 5, — = {x(n) dﬁ} f@, 1)

Boundary conditions:

o Boundaries at zero temperature: T (%, t) = 0

o Boundaries thermally insulated: ‘%(Z, t)=0

o Thermal flux proportional to the temperature at the
boundaries, with the temperature of the outer medium
equal to zero: K(E)%(E, +aT(X,t)=0
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o Note that the sign must change due to the change between
the boundaries X

e Electrostatic potential

Ap=—L
€€

o Electrically grounded boundaries: ¢(%, t) = 0

o Normal component of the electric field when the boundary
is a charged metal interfacing vacuum: E, = %

o Some other conditions are described in [1]

e Gas pressure in three dimensions

d*p

F —CIZAP = —aZV . f
o Openboundaries: P(X, t) = Pex
o Closed boundaries: ‘2—5(2, t)=0

o For other types of boundary conditions see [1]

e Diffusion in one dimension

dn d

dn
di dx (D(X)dx> = f(x, t)

Some Sturm-Liouville Problems for the
Oscillations in a String

a°X +1X =0
dx? o
e Both boundaries fixed:

o Boundary conditions: X(0) = X(L) =0
o Eigenfunctions: X, (x) = sin(y/4nx)
o Eigenvalues: A, = (**)?

e Both boundaries free:

- dXx dX
o Boundary conditions: — = —
dx |,_, dx

o Eigenfunctions: X, (x) = cos(+/4nx)

o Eigenvalues: 1, = (%F)?

=0

x=L
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e Free right boundary, fixed left boundary:

dX

o Boundary conditions: X (0) = — =0
dx |,

o Eigenfunctions: X, (x) = sin(y/1,x)

o Eigenvalues: 1, = (#417)?

e Free left boundary, fixed right boundary:

dX

o Boundary conditions: X (L) = — =0
dx x=0

o Eigenfunctions: X, (x) = cos(+/1,X)

o Eigenvalues: 1, = (¥4 7)?
e Right boundary linked to a spring, free left boundary:
dX

HAX (L) =0;

=0
x=0

. dX
o Boundary conditions: T —

x=L
o Eigenfunctions: X,(x) = cos(+/1,X)

o Eigenvalues: /1, = % {arctan (TL@) + 21’17‘[}
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