
GitforCits

Postg reSQL 15
Cookbook
100+ expert solutions across scalability, performance
optimization, cloud provisioning, backup, and recovery

Peter G

PostgreSQL 15 Cookbook

100+ expert solutions across scalability, performance optimization,
essential commands, cloud provisioning, backup, and recovery

Peter G

Copyright © 2023 GitforGits
All rights reserved.

Content

Preface

Chapter 1: GETTING POSTGRESOL 15 READY

Recipe#!: Simplifying Understanding of PostgreSOL Architecture

Recipe#2: Installing PostgreSOL 15 from Binaries

Recipe#3: Installing PostgreSOL 15 from Source Code

Recine#4: Upgrade to Minor & Major Releases

Recipe#5: Parsing Database Start-up Logs

Recipe#6: Using PostgreSOL Server Access Solutions

Recipe#7: Discovering PostgreSOL Database Structural Objects

Recipe#8: Understanding PostgreSOL Memory Configuration

Recipe#9: Understanding Use of Key Configuration Parameters

Chapter 2: Performing Basic PostgreSOL Operations

Recipe#!: Understanding AdventureWorks Database in this Book

Recipe#2: Selecting Right Database Schema

Recipe#3: Selecting Indexing Techniques

Recipe#4: Building Concurrent Index

Recipe#5: Prepare Database Log Directory

Recipe#6: Using PostgreSOL TOAST

Recipe#7: Create and Administer PostgreSQL Temporary Table

Recipe#8: Using SELECT in WITH Queries

Recipe#9: Running Recursive Query

Recipe# 10: Writing Common Table Expression (CTE)

Chapter 3: PostgreSQL Cloud Provisioning

Recipe#!: Create PostgreSQL Cloud Instance and Manage Database
Connection with AWS EC2 and RDS

Recipe#2: Native Backup/Restore with AWS EC2 Instance

Recipe#3: Natively Backup/Restore with AWS RDS Instance

Recipe#4: Manage Connection to Database on AWS

Recipe#5: Perform Replication of Database on AWS

Recipe#6: Run PostgreSOL Bi-directional Replication using pglogical

Chapter 4: Database Migration to Cloud and PostgreSQL

Recipe#!: Migrating from On-premise to AWS EC2/RDS Instance

Recipe#2: Utilizing AWS Data Migration Service (DMS)

Recipe#3: Migrating Database from EC2 to RDS Instance

Recipe#4: Preparing Pgloader to Use with Database

Recipe#5: Migrating from MySQL to PostgreSOL

Recipe#6: Setting Up Foreign Data Wrapper (FDW)

Chapter 5: WAL. Auto Vacuum & ArchiveLog

Recipe#!: Enable and Disable Archive Mode

Recipe#2: WAL Compression Option for Space Management

Recipe#3: Configure WAL Performance Parameter

Recipe#4: Administer Continuous Archiving

Recipe#5: Using Remote WAL Archive Options

Recipe#6: Exploring Vacuum Process

Recipe#7: Estimate Transaction Log Size

Recipe#8: Debug PostgreSOL Autovaccum

Recipe#9: Delete PostgreSOL Archive Logs

Chapter 6: Partitioning and Sharding Strategies

Recipe#!: Setup Partitioning in PostgreSOL 15

Recipe#2: Vertical & Horizontal Partitioning

Recipe#3: Perform Attaching, Detaching and Drop Partition

Recipe#4: Tables Partitioning using Table Inheritance

Recipe#5: Implement Automatic Partition

Recipe#6: Partition Pruning

Recipe#7: Run Declarative Partition

Recipe#8: Administer Performance with Table Partitioning

Recipe#9: Setting up Shard with FWD

Recipe# 10: Configure Sharding with Citusdata

Recipe#! 1: Repair Shards

Chapter 7: Solving Replication, Scalability & High Availability

Recipe#!: Using Master-Slave Replication

Recipe#2: Setup Delay Standby

Recipe#3: Install and Configure ‘repmgr’

Recipe#4: Cloning Database with ‘repmgr’

Recipe#5: Perform PITR Recovery using Delay Standby

Recipe#6: Deploy High Availability Cluster with Patroni

Recine#7: Using HAProxy and PgBouncer for High Availability

Recipe# 8: Perform Database Up grade on Replication Cluster

Chapter 8: Blob. JSQN Query, CAST Operator & Connections

Recipe#!: Perform Querying

Recipe#2: Import BLOB Data Types

Recipe#3: Running Queries using Shell Script

Recipe#4: Working with Postgres JSQN Query

Recipe#5: Working with Postgres CAST Operator

Recipe#6: Assuring Database Consistency and Integrity

Chapter 9: Authentication. Audit & Encryption

Recipe#!: Manage Roles. Membership. Attributes. Authentication and
Authorizations

Recipe#2: Setting Up SSL Authentication

Recipe#3: Configure Encryption

Recine#4: Install and Configure pgAudit

Recipe#5: Using Audit Log with PostgreSOL Trigger

Recipe#6: Using log^statement/Audit Trail

Recipe#7: Install and Configure LDAP Authentication

Chapter 10: Implementing Database Backup Strategies

Recipe#!: Automate Database Backup

Recipe#2: Execute Continuous Archiving PostgreSOL Backup

Recipe#3: Working with ‘pg r>robackup’ and ‘pgBackRest’

Recipe#4: Install and Configure Barman

Recipe#5: Perform Incremental/Differential Backup

Recipe#6: Execute Schema Level Backup

Recipe#7: Perform Backup Monitoring using pg stat activity

Chapter 11: Exploring database Recovery & Restoration Methods

Recipe#!: Perform Full and PITR Recovery

Recipe#2: Restore Database using Barman

Recipe#3: Perform Incremental/Differential Restore

Recipe#4: Working with Tablespace Recovery

Recipe#5: Working with Tables Recovery

Recipe#6: Working with Schema Level Restore

Recipe#7: Monitor Restore Operations

Recipe#8: Working with Recovery Mode

Recipe#9: Working with Recovery Target Potions

Chapter 12: Prometheus & Continuous Monitoring

Recipe#!: Installing and Configuring Prometheus

Recipe#2: Real-time Monitoring using Prometheus

Recipe#3: Using Statistic Collector and Analyzer

Recipe#4: Using Prometheus to Monitor Active Session

Recipe#5: Parse Query String

Recipe#6: Use Database Connection Pooling

Recipe#7: Vacuum amd Bloat

Recipe#8: Using ‘fsync’

Chapter 13: Debugging PostgreSOL

Recipe#!: Benchmarking and its Importance

Recipe#2: Benchmark Performance using PGBench

Recipe#3: Responding Error Messages

Preface

If you're a PostgreSQL database administrator looking for a
comprehensive guide to managing your databases, look no further than the
PostgreSQL 15 Cookbook. With 100 ready solutions to common database
management challenges, this book provides a complete guide to
administering and troubleshooting your databases.

Starting with cloud provisioning and migration, the book covers all
aspects of database administration, including replication, transaction logs,
partitioning, sharding, auditing, realtime monitoring, backup, recovery,
and error debugging. Each solution is presented in a clear, easy-to-follow
format, using a real database called 'adventureworks' to provide an on-job
practicing experience.

Throughout the book, you'll learn how to use tools like pglogical,
pgloader, WAL, repmgr, Patroni, HAProxy, PgBouncer, pgBackRest,
pgAudit and Prometheus, gaining valuable experience and expertise in
managing your databases.

With its focus on practical solutions and real-world scenarios, the
PostgreSQL 15 Cookbook is an essential resource for any PostgreSQL
database administrator. Whether you're just starting out or you're a
seasoned pro, this book has everything you need to keep your databases
running smoothly and efficiently.
In this book you will learn how to:

Streamline your PostgreSQL databases with cloud provisioning and
migration techniques
Optimize performance and scalability through effective replication,
partitioning, and sharding

Safeguard your databases with robust auditing, backup, and recovery
strategies
Monitor your databases in real-time with powerful tools like pgAudit,
Prometheus, and Patroni
Troubleshoot errors and debug your databases with expert techniques and
best practices
Boost your productivity and efficiency with advanced tools like pglogical,
pgloader, and HAProxy.

With the PostgreSQL 15 Cookbook as your guide, you'll gain valuable
insights and expertise in managing your PostgreSQL databases, while
learning practical solutions to common database management challenges.
Whether you're a novice or an experienced PostgreSQL administrator, this
book has everything you need to take your database management skills to
the next level and become a PostgreSQL expert.

GitforGits

Prerequisites

This book is ideal for database administrators, developers, and IT
professionals who are responsible for managing and troubleshooting
PostgreSQL databases. It is also suitable for beginners looking to learn
more about PostgreSQL administration and best practices.

Codes Usage
Are you in need of some helpful code examples to assist you in your
programming and documentation? Look no further! Our book offers a
wealth of supplemental material, including code examples and exercises.

Not only is this book here to aid you in getting your job done, but you
have our permission to use the example code in your programs and
documentation. However, please note that if you are reproducing a
significant portion of the code, we do require you to contact us for
permission.

But don't worry, using several chunks of code from this book in your
program or answering a question by citing our book and quoting example
code does not require permission. But if you do choose to give credit, an
attribution typically includes the title, author, publisher, and ISBN. For
example, "PostgreSQL 15 Cookbook by Peter G".

If you are unsure whether your intended use of the code examples falls
under fair use or the permissions outlined above, please do not hesitate to

reach out to us at

We are happy to assist and clarify any concerns.

Acknowledgement
I would like to express my deep gratitude to GitforGits, for their
unwavering support and guidance throughout the writing of this book.
Their expertise and attention to detail helped to ensure that the content
was accurate, informative, and accessible to readers of all levels of
expertise. Their contributions, from copyediting and design to marketing
and promotion, have been invaluable in making this book a success.

Finally, I would like to thank my family and friends for their love and
support, which has been a constant source of inspiration throughout this
journey. Writing this book would not have been possible without their
encouragement and encouragement.

Thank you all for your contributions to this project, and for your ongoing
support of my work.

Chapter 1: GETTING POSTGRESQL 15 READY

Recipe#!: Simplifying Understanding of PostgreSQL Architecture

PostgreSQL is a powerful, open-source database management system that
is widely used in applications that require efficient and reliable data
storage and retrieval. PostgreSQL is an object-relational database
management system (ORDBMS), which means that it is designed to store
and retrieve data using an object-oriented approach while also supporting
the relational database model.

The PostgreSQL architecture is built around a client-server model, with
the PostgreSQL server process at the center. The server process is
responsible for handling all database requests from clients, and it
communicates with clients using the PostgreSQL network protocol.
Clients can connect to the server process using various methods, including
a command-line interface (CLI), graphical user interface (GUI), or
application programming interface (API).

In addition to the server process, the PostgreSQL architecture includes
several auxiliary processes that work together to ensure efficient and
reliable data storage and retrieval. These processes include the background
writer, the checkpoint process, the autovacuum process, and the write-
ahead log (WAL) writer process.

The background writer is responsible for writing modified data from
memory to disk, while the checkpoint process ensures that the data on disk
is consistent with the current state of the database. The auto vacuum
process is responsible for cleaning up dead rows in the database, and the
WAL writer process is responsible for managing transaction logs.

PostgreSQL stores data in databases, which are composed of several
objects, including tables, indexes, sequences, and views. Tables are used
to store data, while indexes are used to improve the performance of data
retrieval. Sequences are used to generate unique values, and views are
used to provide a customized view of data to clients.

PostgreSQL also supports various data types, including numeric, text,
date/time, and Boolean. This flexibility allows developers to build
applications that can handle a wide range of data types and formats.

Overall, the PostgreSQL architecture is designed to provide efficient and
reliable data storage and retrieval in a wide range of applications. Its
client-server model, auxiliary processes, and support for various data
types make it a versatile and powerful database management system.

Recipe#2: Installing PostgreSQL 15 from Binaries

To install PostgreSQL 15 from binaries on a Linux machine, follow these
steps:

Download the PostgreSQL 15 binaries for your Linux distribution from
the PostgreSQL download page.

• Extract the downloaded archive to a directory of your choice.

• Create a new system user to run the PostgreSQL service:

sudo adduser postgres

• Change to the extracted directory and run the installation script:

cd postgresql-15.x.y

sudo ./configure

sudo make

sudo make install

Initialize the PostgreSQL database cluster:

sudo su - postgres

initdb -D /usr/local/pgsql/data

exit

• Start the PostgreSQL service:

sudo systemctl start postgresql

You can now connect to the PostgreSQL server using the psql command
line utility.

Recipe#3: Installing PostgreSQL 15 from Source Code

To install PostgreSQL 15 from source code on a Linux machine, follow
these steps:

• Download the PostgreSQL 15 source code from the PostgreSQL
download page.

• Extract the downloaded archive to a directory of your choice.

• Install the required dependencies:

sudo apt-get install build-essential libreadline-dev zliblg-dev flex bison

• Change to the extracted directory and run the configuration script:

cd postgresql-15.x.y

./configure

• Compile and install PostgreSQL:

make

sudo make install

Initialize the PostgreSQL database cluster:

sudo su - postgres

initdb -D /usr/local/pgsql/data

exit

• Start the PostgreSQL service:

sudo systemctl start postgresql

You can now connect to the PostgreSQL server using the psql command
line utility.

Recipe#4: Upgrade to Minor & Major Releases

To upgrade to a minor release of PostgreSQL (e.g., from version 15.1 to
15.2), follow these steps:

• Download the new PostgreSQL binaries for your system from the
PostgreSQL download page.

• Stop the PostgreSQL service:

sudo systemctl stop postgresql

• Extract the downloaded archive to a temporary directory.

• Replace the existing PostgreSQL binaries with the new ones:

sudo cp -R new_postgresql_directory /usr/local/pgsql/

• Restart the PostgreSQL service:

sudo systemctl start postgresql

To upgrade to a major release of PostgreSQL (e.g., from version 14 to
version 15), follow these steps:

Create a backup of your existing PostgreSQL database:

pg_dumpall > backup.sql

• Stop the PostgreSQL service:

sudo systemctl stop postgresql

Download and install the new version of PostgreSQL using the
installation method of your choice.
• Upgrade the existing PostgreSQL database:

sudo pg_upgrade -b /usr/local/pgsql/14/bin -B /usr/local/pgsql/15/bin -d
/usr/local/pgsql/14/data -D /usr/local/pgsql/15/data

• Start the PostgreSQL service:

sudo systemctl start postgresql

Verify the upgrade was successful by connecting to the new version of
PostgreSQL and checking that your data is intact.

Recipe#5: Parsing Database Start-up Logs

The PostgreSQL server logs various messages during start-up, including
information about the server version, database configuration, and startup
process. To parse these logs, follow these steps:

Locate the PostgreSQL log files. By default, PostgreSQL logs to the
pg_l°g subdirectory of the data directory.

• Open the log file using a text editor or command-line utility.

• Look for lines that start with a timestamp, such as:

2023-03-22 12:34:56.789 EDT [12345] LOG: database system is ready to
accept connections

Use the timestamp to identify the sequence of events during the server
startup process.

• Look for lines that contain error messages or warnings, such as:

2023-03-22 12:34:56.789 EDT [12345] ERROR: relation "table_name"
does not exist

Use the error message to identify and troubleshoot any issues that
occurred during the server startup process.

Recipe#6: Using PostgreSQL Server Access Solutions

PostgreSQL provides several server access solutions, including the
following:
Command-line interface (CLI): PostgreSQL provides a command-line
utility called psql that allows you to connect to a PostgreSQL server and
execute SQL commands.
Graphical user interface (GUI): Several GUI tools are available for
PostgreSQL, including pgAdmin and DBeaver. These tools provide a
visual interface for managing databases and executing SQL commands.
Application programming interface (API): PostgreSQL provides several
APIs for interacting with the server programmatically, including libpq and
JDBC.

To use these server access solutions, follow these steps:
• Install the desired server access solution on your system.
Configure the connection settings for the PostgreSQL server, including the
server address, port number, and authentication credentials.
• Connect to the PostgreSQL server using the selected access solution.
Use the access solution to execute SQL commands, manage databases and
database objects, and monitor server activity.

Recipe#7: Discovering PostgreSQL Database Structural Objects

PostgreSQL databases are composed of several structural objects,
including tables, indexes, sequences, views, and stored procedures.

To discover these objects, follow these steps:
• Connect to the PostgreSQL server using a server access solution,
such as psql.
• List the available databases using the \1 command.
• Select the database of interest using the \c command.
• List the available schema using the \dn command.
• Select the schema of interest using the SET search_path command.
List the available objects in the selected schema using the \dt, \di, \ds, and
\df commands.
Use the available commands and documentation to explore the available
objects and their properties.

Recipe# 8: Understanding PostgreSQL Memory Configuration

PostgreSQL uses memory in several ways, including for caching data and
executing queries. To configure memory usage in PostgreSQL, follow
these steps:
• Determine the available system memory and the expected workload
for the PostgreSQL server.
• Configure the following memory-related parameters in the
postgresql.conf configuration file:
shared_buffers: This parameter specifies the amount of memory allocated
for shared memory buffers used for caching data. The default value is
typically 25% of the available system memory.
work_mem: This parameter specifies the amount of memory allocated for
each worker process used for sorting and hashing. The default value is
typically 4MB.
maintenance_work_mem: This parameter specifies the amount of memory
allocated for maintenance tasks, such as vacuuming and indexing. The
default value is typically 64MB.
max_connections: This parameter specifies the maximum number of
concurrent connections allowed to the server. The default value is
typically 100.
Monitor memory usage and adjust the configuration parameters as needed
to optimize performance and avoid resource exhaustion.

Recipe#9: Understanding Use of Key Configuration Parameters

PostgreSQL provides several configuration parameters that can be
adjusted to optimize performance and functionality. Some of the key
parameters and their advantages are listed below:

shared_buffers: This parameter specifies the amount of memory allocated
for shared memory buffers used for caching data. Increasing this value can
improve read performance by reducing the frequency of disk reads.
work_mem: This parameter specifies the amount of memory allocated for
each worker process used for sorting and hashing. Increasing this value
can improve query performance by allowing more data to be sorted or
hashed in memory.
maintenance_work_mem: This parameter specifies the amount of memory
allocated for maintenance tasks, such as vacuuming and indexing.
Increasing this value can improve maintenance performance by allowing
more data to be processed in memory.
max_connections: This parameter specifies the maximum number of
concurrent connections allowed to the server. Increasing this value can
improve scalability by allowing more clients to connect to the server
simultaneously.
effective_cache_size: This parameter specifies the estimated size of the
operating system's disk cache. Adjusting this value can help the query
planner make better decisions about query execution plans by providing a
more accurate estimate of the available cache.

auto vacuum: This parameter specifies whether automatic vacuuming of
tables and indexes should be performed. Enabling this parameter can help

maintain database performance by cleaning up dead rows and improving
index efficiency.
checkpoint_timeout: This parameter specifies the frequency at which
checkpoints are performed. Adjusting this value can help balance the
trade-off between recovery time and server performance by reducing the
amount of data that needs to be recovered after a crash.
checkpoint_completion_target: This parameter specifies the amount of
time that a checkpoint should take as a fraction of the checkpoint_timeout
value. Adjusting this value can help optimize server performance by
balancing the trade-off between checkpoint frequency and checkpoint
overhead.
effective_io_concurrency: This parameter specifies the number of
concurrent I/O operations that can be performed on the server. Adjusting
this value can help optimize server performance by allowing the server to
perform more I/O operations in parallel.
max_wal_size: This parameter specifies the maximum size of the write-
ahead log (WAL) files. Adjusting this value can help optimize server
performance by balancing the trade-off between WAL size and recovery
time after a crash.

temp_buffers: This parameter specifies the amount of memory allocated
for temporary data used in sorting and hashing. Increasing this value can
improve query performance by allowing more data to be sorted or hashed
in memory.
random_page_cost: This parameter specifies the estimated cost of a
random page access. Adjusting this value can help the query planner make
better decisions about query execution plans by providing a more accurate
estimate of the cost of random I/O operations.
seq_page_cost: This parameter specifies the estimated cost of a sequential
page access. Adjusting this value can help the query planner make better
decisions about query execution plans by providing a more accurate
estimate of the cost of sequential I/O operations.

max_worker_processes: This parameter specifies the maximum number of
background worker processes that can be spawned by the server.
Increasing this value can help improve scalability by allowing more
background processes to be used for maintenance and other tasks.

By adjusting these parameters based on your system requirements and
workload, you can optimize the performance and functionality of your
PostgreSQL server.

It is important to note that changing these configuration parameters can
have both positive and negative effects on your PostgreSQL server's
performance and stability. Therefore, it is important to carefully test and
monitor your server after making any changes to these parameters to
ensure that they have the desired effect.

In addition to the configuration parameters listed above, PostgreSQL also
provides a wide range of other parameters that can be used to customize
the behavior of the server. These parameters are documented in the
PostgreSQL documentation and can be adjusted as needed to meet your
specific requirements.

Overall, understanding the key configuration parameters in PostgreSQL
and how they affect server performance and functionality is an important
aspect of database administration. By carefully configuring and
monitoring your PostgreSQL server, you can ensure that it provides
reliable, efficient, and high-performance data storage and retrieval for
your applications.

Chapter 2: Performing Basic PostgreSQL Operations

Recipe#!: Understanding AdventureWorks Database in this Book

The AdventureWorks database, is accessible through the below link:
https://github.com/kittenpub/database-repository/blob/main/data.zip

This database is an open-source PostgreSQL sample database designed as
a learning tool for database professionals and application developers. This
comprehensive database contains information about various aspects of a
fictitious bicycle and accessories manufacturing company called
Adventure Works Cycles. It contains numerous tables, views, stored
procedures, and other database objects that help simulate real-world
business scenarios. The AdventureWorks database serves as an ideal
resource in this book for understanding how to design, develop, and
manage complex database structures and applications using PostgreSQL
15.

The AdventureWorks database is organized into several schemas to
facilitate better organization and management of database objects. The
schemas include:

Production: This schema encompasses the manufacturing and production
process, including information about products, product categories, product
models, work orders, and bill of materials. It also contains data about
product descriptions, manufacturing steps, and product inventory.

Sales: The Sales schema is responsible fortracking sales-related
information, such as customers, sales orders, sales order details, sales

territories, and salespersons. It also manages shipping and billing
addresses, as well as special offers and discounts.

Purchasing: The Purchasing schema deals with the procurement process
for raw materials and components required for production. It includes
information about vendors, purchase orders, purchase order details, and
vendor contacts.

HumanResources: This schema manages employee-related data such as
employee information, job titles, pay structures, and departmental
hierarchies. It also handles data on employee shifts and attendance.

Person: The Person schema centralizes data about people involved with
the company, including employees, customers, vendors, and contacts. It
stores personal details such as names, addresses, email addresses, and
phone numbers.

dbo: The dbo schema contains a set of miscellaneous database objects that
do not belong to any specific business area or schema.

The AdventureWorks database enables users to practice various database
tasks and operations, such as creating and altering tables, building
relationships between tables, writing SQL queries, designing and
implementing stored procedures, triggers, and views, and performing
performance optimizations. It also serves as a useful resource for
understanding database normalization and the principles of good database
design.

The tables within the AdventureWorks database are designed to simulate
realistic business scenarios, with primary and foreign key relationships,
indexes, and constraints. The data is carefully crafted to demonstrate the
complexities and intricacies of real-world business processes.

To further enhance the learning experience, the AdventureWorks database
also includes a set of pre-defined views that can be used to simplify
complex queries and retrieve data efficiently. These views cover various
aspects of the business, such as sales summary, production details, and
customer information. Additionally, there are stored procedures and
functions to demonstrate the use of procedural programming within the
database.

Recipe#2: Selecting Right Database Schema

PostgreSQL is a powerful relational database management system
(RDBMS) that allows you to organize your data using schemas. A schema
is a logical container that groups together related database objects such as
tables, views, indexes, and sequences. This helps to organize the database,
making it more manageable and easier to maintain. In this recipe, we will
discuss in detail the concept of defining PostgreSQL schemas, their types,
and how to create them.

PostgreSQL Schema Types

PostgreSQL supports two types of schemas, Public and Private.
Public Schema: Public schema is the default schema created by
PostgreSQL. When a new database is created, all the objects are
automatically created in the public schema. This schema is accessible to
all users who have access to the database.
Private Schema: A private schema is created by a user and can only be
accessed by that user or other users who have been granted explicit
permission. Private schemas allow users to organize their objects and data,
limiting access to them for security reasons.

Creating Schema

To create a new schema, use the CREATE SCHEMA command, followed
by the name of the new schema:

CREATE SCHEMA sales;

This will create a new schema called "sales". By default, the schema will
be created in the current database's search path.

You can also specify the owner of the schema using the
AUTHORIZATION clause:

CREATE SCHEMA sales AUTHORIZATION sales_user;

This command creates a new schema called "sales" and sets "sales_user"
as the owner of the schema.

Moving Object to Different Schema

To move an object to a different schema, use the ALTER SCHEMA
command, followed by the object you want to move and the new schema:

ALTER TABLE sales.orders SET SCHEMA sales;

This command moves the "orders" table from the "sales" schema to the
"orders" schema.

Benefits of Using PostgreSOL Schema

Organizing database objects into schemas can provide many benefits,
including:

Improved Manageability: Schemas help to organize database objects into
logical groups based on their function or purpose. This makes it easier to
manage and maintain the database.
Enhanced Security: Private schemas allow users to limit access to their
objects and data, improving security.
Easier Collaboration: Schemas can help teams collaborate more
effectively by providing a clear organization structure for their database
objects.
Better Performance: By organizing database objects into schemas, you can
optimize database performance by reducing the number of queries needed
to retrieve data.

Defining PostgreSQL schemas is a crucial part of database management
that allows you to logically group related database objects together.
Schemas provide many benefits, including improved manageability,
enhanced security, and better performance. By following the steps
outlined in this recipe, you can create, move, and manage schemas in
PostgreSQL, making your database more organized and easier to
maintain.

Recipe#3: Selecting Indexing Techniques

Indexing is a crucial aspect of database optimization that helps to speed up
queries by creating a separate data structure that points to the location of
data in a table. PostgreSQL offers various indexing techniques that can be
used to improve database performance. In this recipe, we will discuss the
different indexing techniques supported by PostgreSQL and how they can
be used to optimize database queries.

Indexing Techniques in PostgreSQL

PostgreSQL supports the following indexing techniques:

B-tree Indexing: This is the default indexing technique used in
PostgreSQL. It is used to index data that can be sorted in a particular
order, such as numbers or text. B-tree indexing is efficient for range
queries, such as finding values within a specific range. To create a B-tree
index in PostgreSQL, use the following command:

CREATE INDEX idx_order_id ON sales.orders(order_id);

This creates a B-tree index on the "order_id" column in the "orders" table.

Hash Indexing: Hash indexing is used to index data that can be hashed,
such as integer values. Hash indexing is faster than B-tree indexing for
equality comparisons but slower for range queries. To create a hash index
in PostgreSQL, use the following command:

CREATE INDEX idx customer id ON sales.customers USING HASH
(customer_id);

This creates a hash index on the "customer_id" column in the "customers"
table.

GiST Indexing: GiST stands for Generalized Search Tree, and it is used
for complex data types such as geometric shapes or text documents. GiST
allows custom search algorithms to be used for indexing. To create a GiST
index in PostgreSQL, use the following command:

CREATE INDEX idx_product_geom ON production.products USING
GiST (geom);

This creates a GiST index on the "geom" column in the "products" table.

SP-GiST Indexing: SP-GiST stands for Space-Partitioned Generalized
Search Tree, and it is used for indexing spatial data or other complex data
types. To create an SP-GiST index in PostgreSQL, use the following
command:

CREATE INDEX idx_product_geom ON production.products USING
SPGIST (geom);

This creates an SP-GiST index on the "geom" column in the "products"
table.

GIN Indexing: GIN stands for Generalized Inverted Index, and it is used
for indexing array data types or full-text search. To create a GIN index in
PostgreSQL, use the following command:

CREATE INDEX idx_product_tags ON production.products USING GIN
(tags);

This creates a GIN index on the "tags" column in the "products" table.

BRIN Indexing: BRIN stands for Block Range INdex, and it is used for
large tables where only a small portion of the table is accessed frequently.
BRIN uses summary information to quickly locate data within a range of
blocks. To create a BRIN index in PostgreSQL, use the following
command:

CREATE INDEX idx_orders_date ON sales.orders USING BRIN
(order_date);

This creates a BRIN index on the "order_date" column in the "orders"
table.

Choosing Right Indexing Technique

The choice of indexing technique depends on the nature of the data and
the types of queries that are run against the database. For example, if there
are many range queries on a particular column, then a BRIN index might
be the most suitable. If there are complex data types like geometric
shapes, then a GiST or SP-GiST index would be the most suitable. For

simple queries on numeric or text data types, a B-tree or hash index might
be sufficient.

Indexing is an essential technique used to optimize database performance.
PostgreSQL supports various indexing techniques such as B-tree, hash,
GiST, SP-GiST, GIN, and BRIN, each designed to handle specific data
types and queries. By using the appropriate indexing technique, database
administrators can improve query performance and reduce the time
required to execute complex queries. It is essential to note that choosing
the right indexing technique requires a thorough understanding of the data
and the types of queries that will be run against the database. Therefore,
careful consideration should be taken before creating an index to avoid
negatively impacting database performance.

Recipe#4: Building Concurrent Index

Concurrent indexing is a technique used to create an index on a table
while allowing other database operations to continue running. In
PostgreSQL, creating an index on a large table can take a long time and
block other database operations, which can have a negative impact on
database performance. Concurrent indexing allows for the creation of
indexes on large tables without affecting the performance of other
database operations.

Creating Concurrent Index in PostgreSQL

To create a concurrent index in PostgreSQL, we can use the
CONCURRENTLY option with the CREATE INDEX command. Here is
an example:

CREATE INDEX CONCURRENTLY idx order id ON
sales. orders(order_id);

This command creates a concurrent index on the "order_id" column in the
"orders" table in the "sales" schema.

When creating a concurrent index, PostgreSQL performs the following
steps:
PostgreSQL creates a new temporary index on the table, which takes
additional disk space.

PostgreSQL scans the table to build the index. During this process, the
table is locked for write operations, but read operations are allowed.
Once the new index is built, PostgreSQL swaps the old index with the
new index. This step requires a brief table lock, during which all write
operations are blocked.
• PostgreSQL drops the old index, freeing up disk space.

Advantages and Disadvantages of Concurrent Indexing

Concurrent indexing has several advantages over traditional indexing,
including:
Improved performance: Concurrent indexing allows other database
operations to continue running, which can improve database performance.
Reduced downtime: Concurrent indexing reduces the amount of downtime
required to create an index on a large table.
Flexibility: Concurrent indexing allows for the creation of indexes on
large tables without affecting the performance of other database
operations.

However, concurrent indexing also has some disadvantages, including:
Increased resource requirements: Concurrent indexing requires more
system resources than traditional indexing, which can slow down other
database operations.
• Longer indexing times: Concurrent indexing can take longer to
create than traditional indexing.
Additional disk space: Concurrent indexing requires additional disk space
to create a temporary index.
Not suitable for all scenarios: Concurrent indexing may not be suitable for
all scenarios, such as when there are heavy write operations on the table.

When to Use Concurrent Indexing?

Concurrent indexing should be used when creating an index on a large
table that is frequently accessed, and when other database operations
cannot be interrupted. It is especially useful when the database is being
accessed by many users simultaneously, and database downtime is not an
option.

It is essential to note that concurrent indexing may not be suitable for all
scenarios. In particular, it may not be suitable when there are heavy write
operations on the table, as creating a concurrent index requires locking the
table for write operations during the indexing process.

Concurrent indexing is a useful technique that can improve database
performance by allowing the creation of indexes on large tables while
allowing other database operations to continue running. While concurrent
indexing has several advantages, including improved performance and
reduced downtime, it also has some disadvantages, including increased
resource requirements and longer indexing times. Database administrators
should carefully consider the specific requirements of their database and
use concurrent indexing only when it is suitable for their specific scenario.

Recipe#5: Prepare Database Log Directory

The PostgreSQL database log directory is a directory used to store log
files containing information about database activity and errors. The log
directory is important for database administrators to monitor database
activity, troubleshoot errors, and improve database performance. In this
recipe, we will explain how to prepare the log directory for the
AdventureWorks database.

Creating Log Directory for AdventureWorks Database

To prepare the log directory for the AdventureWorks database, follow
these steps:

• Create a directory for the log files

We can create a directory for the log files using the following command:

sudo mkdir /var/log/postgresql

This creates a directory called "postgresql" in the "/var/log" directory.

• Change the ownership of the directory to the postgres user

To change the ownership of the directory to the postgres user, we can use
the following command:

sudo chown postgres:postgres /var/log/postgresql

This command changes the ownership of the "postgresql" directory to the
"postgres" user.

• Edit the PostgreSQL configuration file to specify the log directory

To specify the log directory in the PostgreSQL configuration file, we need
to edit the "postgresql.conf' file. We can do this using the following
command:

sudo nano /etc/postgresql/12/main/postgresql.conf

This command opens the PostgreSQL configuration file in the nano text
editor.

Find the line that starts with 'logging_collector' and uncomment it by
removing the character:
The "logging_collector" parameter is used to enable the PostgreSQL
logging collector, which collects log messages and writes them to a file.
We need to uncomment this parameter by removing the character at the
beginning of the line.

logging_collector = on

• Find the line that starts with 'log_directory' and specify the log
directory

The "log_directory" parameter specifies the directory where the log files
will be stored. We need to specify the directory we created earlier:

log_directory = '/var/log/postgresqf

• Save and exit the configuration file

After making the changes, we need to save the file and exit the text editor.

• Restart the PostgreSQL server to apply the changes

To apply the changes, we need to restart the PostgreSQL server using the
following command:

sudo systemctl restart postgresql

This command restarts the PostgreSQL service, and the changes we made
to the configuration file will take effect.

In this recipe, we have explained how to prepare the log directory for the
AdventureWorks database. By following these steps, database
administrators can create a directory for the log files, specify the log
directory in the PostgreSQL configuration file, and restart the PostgreSQL
server to apply the changes.

Recipe#6: Using PostgreSQL TOAST

PostgreSQL TOAST (The Oversized-Attribute Storage Technique) is a
mechanism used to store large data types like text, XML, and binary data.
It compresses the large data types and stores them in a separate table to
save disk space. In this recipe, we will explain how to use TOAST in the
AdventureWorks database.

Using TOAST in AdventureWorks Database

To use TOAST in the AdventureWorks database, we can follow these
steps:

• Create a table with a large data type column:

We can create a table with a large data type column using the following
SQL command:

CREATE TABLE production.product_descriptions (

productjd INT PRIMARY KEY,

description TEXT

);

In the above example, we created a table called "product_descriptions" in
the "production" schema with two columns: "product_id" and
"description." The "description" column is a large data type column that
will be stored using TOAST.

• Insert data into the table:

We can insert data into the "product_descriptions" table using the
following SQL command:

INSERT INTO production.product_descriptions VALUES

(1, 'Lorem ipsum dolor sit amet, consectetur adipiscing elit.'),

(2, 'Nulla facilisi. Vestibulum eleifend augue ut turpis suscipit, at varius
enim sagittis.'),

(3, 'Phasellus consectetur, dolor sit amet efficitur porttitor, nunc lacus
sollicitudin orci, vel lobortis arcu justo vel nibh.'),

(4, 'Donee gravida felis quis enim dapibus, vel eleifend turpis tempor.'),

(5, 'Nam porttitor elementum risus, id iaculis enim semper ut.');

In the above example, we inserted five rows of data into the
"product_descriptions" table.

View the TOAST table:

To see the TOAST table created for the "description" column, we can use
the following SQL command:

SELECT * FROM pg_toast.pg_toast_394;

Note that the name of the TOAST table depends on the table and column
name. In this case, the name is "pg_toast_394."

In this recipe, we explained how to use TOAST in the AdventureWorks
database by creating a table with a large data type column, inserting data
into the table, and viewing the TOAST table created for the "description"
column. By using TOAST, database administrators can save disk space
and improve database performance when working with large data types in
PostgreSQL.

Recipe#7: Create and Administer PostgreSQL Temporary Table

PostgreSQL temporary tables are tables that exist only for the duration of
a database session. They are used to store temporary data that is not
needed beyond the current transaction or session. In this recipe, we will
explain how to use temporary tables in the AdventureWorks database.

Using Temporary Tables in AdventureWorks Database

To create a temporary table in the AdventureWorks database, we can use
the following SQL command:

CREATE TEMP TABLE sales.temp orders AS SELECT * FROM
sales.orders WHERE order_date = '2023-03-22';

In the above example, we created a temporary table named "temp_orders"
in the "sales" schema. The table was created using the "orders" table as a
source, and only rows where the "order_date" is '2023-03-22' were copied
into the temporary table.

To drop a temporary table, we can use the following SQL command:

DROP TABLE sales.temp orders;

Note that temporary tables are automatically dropped at the end of the
session or transaction, so there is no need to explicitly drop them.

Temporary tables can be useful in situations where we need to store
intermediate results during complex queries or data transformations. They
can also be used in stored procedures to store temporary data during the
execution of the procedure.

In this recipe, we explained how to use temporary tables in the
AdventureWorks database by creating a temporary table based on the
"orders" table and dropping it. By using temporary tables, database
administrators can improve query performance and simplify data
transformations in PostgreSQL.

Recipe#8: Using SELECT in WITH Queries

In PostgreSQL, WITH queries, also known as Common Table Expressions
(CTE), are used to define a temporary result set that can be used in a
subsequent query. The WITH clause can contain one or more SELECT
statements that define the result set. In this recipe, we will explain how to
use SELECT in WITH queries in the AdventureWorks database.

Using SELECT in WITH Queries

To use SELECT in WITH queries in the AdventureWorks database, we
can use the following example SQL command:

WITH sales today AS (

SELECT * FROM sales.orders WHERE order date = '2023-03-22'

)

SELECT COUNT(*) FROM sales.today;

In the above example, we defined a CTE named 'sales_today' that contains
all orders placed on '2023-03-22'. The subsequent SELECT statement
counts the number of rows in the 'sales_today' result set.

The WITH clause can also be used to define multiple CTEs, which can
then be used in a subsequent query. Here is an example:

WITH

sales_today AS (

SELECT * FROM sales.orders WHERE order date = '2023-03-22'

),

sales_yesterday AS (

SELECT * FROM sales.orders WHERE order_date = '2023-03-21'

)

SELECT

COUNT(*) as today_count,

SUM(order_total) as today_sales,

COUNT(*) FILTER (WHERE order status = 'Shipped') as
today_shipped,

COUNT(*) FILTER (WHERE order status = 'Canceled') as
today_canceled,

COUNT(*) FILTER (WHERE order status = 'On Hold') as
today_on_hold,

(SELECT COUNT(*) FROM sales_yesterday) as yesterday_count

FROM sales_today;

In the above example, we defined two CTEs named 'sales_today' and
'sales_yesterday'. The subsequent SELECT statement calculates various
statistics based on orders placed on '2023-03-22'. The query also includes
a subquery that counts the number of orders placed on '2023-03-21' using
the 'sales_yesterday' CTE.

In this recipe, we explained how to use SELECT in WITH queries in the
AdventureWorks database by defining a CTE that contained all orders
placed on a particular date and using the result set in a subsequent query.
By using CTEs, database administrators can simplify complex queries and
improve query performance in PostgreSQL.

Recipe#9: Running Recursive Query

PostgreSQL supports recursive queries using the WITH RECURSIVE
clause. A recursive query is a query that refers to its own output in the
query definition, and it is used to query hierarchical data like
organizational charts or product categories. In this recipe, we will explain
how to run a recursive query in the AdventureWorks database.

Running Recursive Query in AdventureWorks Database

To run a recursive query in the AdventureWorks database, we can use the
following example:

WITH RECURSIVE product_categories AS (

SELECT category_id, category_name, parent_category_id

FROM production, categories

WHERE parent category id IS NULL

UNION ALL

SELECT c.category_id, c.category_name, c.parent_category_id

FROM production, categories c

JOIN product_categories pc ON pc.category_id = c.parent_category_id

)

SELECT * FROM product categories;

In the above example, we defined a recursive CTE (common table
expression) named 'product_categories' that starts with the top-level
categories that have a NULL parent_category_id. The subsequent
SELECT statement selects all rows from the 'product_categories' CTE,
which includes all categories and their parent-child relationships.

The recursive CTE is defined using the WITH RECURSIVE clause,
which specifies the name of the CTE ('product_categories') and the initial
SELECT statement that defines the base case for the recursion. The
UNION ALL operator is used to combine the output of the base case with
the output of the recursive case.

The recursive case is defined using another SELECT statement that joins
the 'categories' table with the 'product_categories' CTE using the
'category_id' and 'parent_category_id' columns. This creates a recursive
loop that traverses the hierarchy of categories until all categories have
been included in the CTE.

In this recipe, we explained how to run a recursive query in the
AdventureWorks database using a CTE named 'product_categories'. By
using recursive queries, database administrators can simplify complex
queries and improve query performance in PostgreSQL.

Recipe# 10: Writing Common Table Expression (CTE)

Common Table Expressions (CTE) is a feature of PostgreSQL that allows
the creation of a named temporary result set that can be used in a
subsequent query. It is similar to a derived table or subquery, but it
provides a more readable and reusable way to define complex queries.
CTEs can reference other CTEs or tables and can be used to simplify
queries that require multiple joins or subqueries.

CTE Syntax

The syntax for creating a CTE in PostgreSQL is as follows:

WITH cte_name (columnl, column2, ...) AS (

SELECT columnl, column2, ...

FROM table_name

WHERE condition

)

SELECT *

FROM cte_name;

In this syntax, cte_name is the name given to the CTE, and column 1,
column2, and so on are the columns returned by the SELECT statement.
The SELECT statement is used to define the temporary result set for the
CTE.

Writing CTE Queries

To illustrate the usage of CTEs, let's consider an example in the
AdventureWorks database. Suppose we want to retrieve the top 10
customers who have made the most purchases in the last month. We can
use a CTE to accomplish this as shown below:

WITH customer_sales AS (

SELECT customer_id, SUM(total_due) as total_sales

FROM sales.orders

WHERE order_date >= '2023-02-01' AND order_date < '2023-03-01'

GROUP BY customer id

ORDER BY total_sales DESC

LIMIT 10

)

SELECT c.customer_id, c.first_name, c.last_name, cs.total_sales

FROM customer_sales cs

JOIN sales.customers c ON cs.customer_id = c.customer_id;

In the above example, we created a CTE named customer_sales that sums
the total sales for each customer in the last month and sorts them in
descending order. The LIMIT 10 clause limits the results to the top 10
customers. The subsequent SELECT statement joins the customer_sales
CTE with the sales.customers table to get the customer details.

Multiple CTEs

CTEs can also be used to simplify queries that require multiple joins or
subqueries. For example, suppose we want to retrieve the products that
have not been sold in the last month. We can use a CTE to accomplish this
as shown below:

WITH last_month_orders AS (

SELECT product_id, SUM(quantity) as total_quantity

FROM sales.orders

WHERE order_date >= '2023-02-01' AND order_date < '2023-03-01'

GROUP BY product_id

),

all_products AS (

SELECT product_id, product_name

FROM production.products

)

SELECT ap.product_name

FROM all_products ap

LEFT JOIN last_month_orders Imo ON ap.product_id = lmo.product_id

WHERE lmo.product_id IS NULL;

In the above example, we created two CTEs: last_month_orders that sums
the quantity of each product sold in the last month and all_products that
retrieves all products. The subsequent SELECT statement joins the
all_products CTE with the last_month_orders CTE using a left join to get
all products that have not been sold in the last month.

In summary, Common Table Expressions (CTE) is a powerful feature of
PostgreSQL that allows the creation of a temporary result set that can be
used in a subsequent query. CTEs can simplify queries that require
multiple joins or subqueries and can improve query readability.

Chapter 3: PostgreSQL Cloud Provisioning

Recipe# 1: Create PostgreSQL Cloud Instance and Manage Database
Connection with AWS EC2 and RDS

Creating a PostgreSQL Cloud Instance and Managing Database
Connection with AWS EC2 for the AdventureWorks Database:

Setup AWS Account

To begin, sign up for an Amazon Web Services (AWS) account if you
haven't already:
https://aws.amazon.com/

Once you have an account, log in to the AWS Management Console and
choose your desired region from the top-right corner.

Create Amazon RDS PostgreSQL Instance

In the AWS Management Console, search for "RDS" and click on "RDS -
Managed Relational Database Service".

In the RDS Dashboard, click on "Create database" and choose "Standard
Create" as the creation method.

Select "PostgreSQL" as the engine type and choose the desired version.

In the "Templates" section, select 'Tree tier" for experimentation or
choose "Production" for a more robust setup.

https://aws.amazon.com/

In the "Settings" section, provide a unique DB instance identifier, master
username, and password. Save these credentials for future reference.

In the "DB instance size" section, choose the appropriate instance class
based on your needs.

Expand the "Storage" section and configure the storage type, allocated
storage, and storage autoscaling as needed.

In the "Connectivity" section, choose the appropriate VPC, subnet group,
and enable "Publicly accessible" if you want to access the database from
outside the VPC.

Set up a new security group or choose an existing one to manage access to
the instance. Make a note of the security group, as it will be needed later.

In the "Database authentication" section, select "Password authentication".

Expand the "Additional configuration" section and set the initial database
name to "adventureworks".

Configure backups, monitoring, and maintenance options as desired.

Click on "Create database" to begin the provisioning process. It may take
a few minutes to complete.

Download and Extract AdventureWorks Database

Download the AdventureWorks PostgreSQL database sample from the
provided link: https://github.com/kittenpub/database-
repository/blob/main/data.zip

Extract the contents of the "data.zip" file to a folder on your local
machine.

Modify Security Group to Allow Inbound Traffic

In the AWS Management Console, search for "EC2" and click on "EC2 -
Virtual Servers in the Cloud".

In the EC2 Dashboard, click on "Security Groups" under "Network &
Security" in the left-hand menu.

Find the security group associated with your RDS instance and click on
the "Inbound rules" tab.

Click on "Edit inbound rules" and add a new rule with the following
settings:

Type: PostgreSQL

Protocol: TCP

Port range: 5432

ithub.com/kittenpub/database-

Source: Custom (enter your IP address or the IP address range of the
systems that need access)

Click on "Save rules" to apply the changes.

Connect to RDS Instance and Import AdventureWorks Database

Install pgAdmin, a popular PostgreSQL management tool, on your local
machine: https://www.pgadmin.org/download/

Open pgAdmin and click on "Add New Server" to create a new
connection.

In the "General" tab, provide a name for the connection.

In the "Connection" tab, enter the endpoint of your RDS instance
(available in the RDS Dashboard) as the "Hostname/Address" and use port
"5432". Enter the master username and password you set up earlier.

Click "Save" to create the connection. You should now see your RDS
instance in the list of servers on the left side of pgAdmin.

Connect to the "adventureworks" database and right-click on it, then select
"Query Tool" to open a new query editor.

Open the extracted AdventureWorks SQL file from the "data.zip" archive
in a text editor. Copy the entire content and paste it into the query editor in
pgAdmin.

https://www

Click on the "Execute" button (or press the F5 key) to run the SQL
commands. This process will create tables and import data into the
"adventureworks" database. It may take some time to complete.

Launch EC2 Instance

In the AWS Management Console, search for "EC2" and click on "EC2 -
Virtual Servers in the Cloud".

Click on "Instances" in the left-hand menu and then click the "Launch
Instance" button.

Choose an Amazon Machine Image (AMI) that meets your requirements.
For example, you can use the "Amazon Linux 2 AMI" for a Linux-based
instance.

Choose an instance type based on your performance and budget
requirements, then click "Next: Configure Instance Details".
Configure the instance details as needed, making sure to select the same
VPC as your RDS instance. Click "Next: Add Storage".

Configure storage as needed and click "Next: Add Tags".

Add any desired tags for identification and click "Next: Configure
Security Group".

Create a new security group or select an existing one. Confirm to add
rules to allow traffic for your desired services (e.g., SSH, HTTP, or
HTTPS). Click "Review and Launch".

Review your instance settings and click "Launch".

A dialog box will prompt you to select or create a key pair. Choose an
existing key pair or create a new one, then download the private key file
(.pern) and store it in a secure location.

Click "Launch Instances" to start the provisioning process.

Configure EC2 Instance and Connect to RDS PostgreSOL Instance

SSH into your EC2 instance using the private key file (.pern) and the
appropriate user (e.g., "ec2-user" for Amazon Linux 2).

Update the package repositories and install the PostgreSQL client:

sudo yum update -y

sudo yum install -y postgresql

Use the "psql" command to connect to the RDS PostgreSQL instance:

psql -host= -port=5432 -username= -password -
dbname=adventureworks

Replace with the endpoint of your RDS instance, and with the master
username you set up earlier.

You should now be connected to the "adventureworks" database on your
RDS instance. You can execute SQL queries and manage the database as
needed.
By following these steps, you have successfully created a PostgreSQL
cloud instance on AWS RDS and connected it to an EC2 instance. You
have also imported the AdventureWorks sample database, allowing you to
manage and interact with it using pg Admin and the PostgreSQL client on
the EC2 instance.

Recipe#2: Native Backup/Restore with AWS EC2 Instance

Create Backup Directory on EC2 Instance

SSH into your EC2 instance using the private key file (.pern) and the
appropriate user (e.g., "ec2-user" for Amazon Linux 2).

Create a backup directory on your EC2 instance to store the database
backup files:

mkdir -/adventure works_backups

Backup AdventureWorks Database using_pg dump

Install the PostgreSQL client on the EC2 instance if you haven't already:

sudo yum update -y

sudo yum install -y postgresql

Use the pg_dump command to create a backup of the AdventureWorks
database:

pg_dump -host= -port=5432 -username= -password -format=custom -
-file=~/adventureworks_backups/adventureworks_backup.dump -
dbname=adventureworks

Replace with the endpoint of your RDS instance, and with the master
username you set up earlier.
Enter your master password when prompted. The backup process will
create a binary dump file named "adventureworks_backup.dump" in the
" adventureworks_backups" directory.

Transfer Backup File to Amazon S3 for Long-term Storage

Install the AWS CLI on your EC2 instance:

sudo yum install -y awscli

Configure the AWS CLI by running:

aws configure

Enter your AWS Access Key, Secret Access Key, default region, and
output format when prompted.

Create a new Amazon S3 bucket to store the backup files:

aws s3api create-bucket -bucket adventureworks-backups- -region -
create-bucket-configuration LocationConstraint=

Replace with a unique identifier, and with the region in which you want to
create the bucket.

Upload the backup file to the Amazon S3 bucket:

aws s3 cp ~/adventureworks_backups/adventureworks_backup.dump
s3: // adventureworks-backups-/adventure works_backup. dump

Replace with the unique identifier you used when creating the bucket.

Restore Database from Backup File Using jogrestore

To restore the database, you first need to create a new empty database on
the RDS instance. Connect to the RDS instance using the "psql"
command:

psql -host= -port=5432 -username= -password -dbname=postgres

Replace with the endpoint of your RDS instance, and with the master
username you set up earlier.

Enter your master password when prompted, and run the following SQL
command to create a new empty database named
"adventureworks_restore":

CREATE DATABASE adventureworks restore;

Exit the "psql" command-line interface by typing \q and pressing Enter.

Use the "pg_restore" command to restore the AdventureWorks database
from the backup file to the newly created "adventureworks_restore"
database:

pg_restore -host= -port=5432 -username= -password -
dbname=adventureworks_restore -verbose
-/adventure works_backups/ adventure works_backup

pg_restore -host= -port=5432 -username= -password -
dbname=adventureworks_restore -verbose
-/adventure works_backups/ adventure works_backup. dump

Replace with the endpoint of your RDS instance, and with the master
username you set up earlier.

Enter your master password when prompted. The restore process will
begin, and you will see a verbose output of the restoration progress. Once
completed, the "adventureworks_restore" database should contain the
same data as the original "adventureworks" database.

Verify Restoration

Connect to the "adventureworks_restore" database using the "psql"
command:

psql -host= -port=5432 -username= -password -
dbname=adventureworks_restore

Replace with the endpoint of your RDS instance, and with the master
username you set up earlier.

Enter your master password when prompted, and run the following SQL
command to verify that the restored database contains the same tables as
the original database:

\dt

You should see a list of tables that match the original "adventureworks"
database.

You can also run SELECT queries on the restored database to ensure the
data is intact and matches the original database.

By following these steps, you have successfully backed up and restored
the AdventureWorks database using native PostgreSQL tools on an AWS
EC2 instance. You have also learned how to store the backup files on
Amazon S3 for long-term storage and transfer the backup files between
your EC2 instance and Amazon S3.

Recipe#3: Natively Backup/Restore with AWS RDS Instance

In AWS RDS, backups can be managed automatically with snapshots, or
you can create manual snapshots. This recipe will cover both methods and
demonstrate how to restore the database from a snapshot.

Enable Automated Backups for RDS Instance

In the AWS Management Console, navigate to the RDS Dashboard.

Click on "Databases" in the left-hand menu and select the RDS instance
hosting the AdventureWorks database.

In the "Details" tab, click on the "Modify" button.

Scroll down to the "Backup" section and set the "Backup retention period"
to a value greater than 0 (e.g., 7 days). This will enable automated
backups.

Choose the preferred backup window or let AWS choose it for you by
selecting "No preference."

Click on "Continue" and choose whether to apply the changes
immediately or during the next maintenance window. Then, click on
"Modify DB Instance."

Create Manual Snapshot of Database

In the RDS Dashboard, click on "Databases" in the left-hand menu and
select the RDS instance hosting the AdventureWorks database.

In the "Details" tab, click on the "Actions" button and choose "Take
snapshot."

Provide a unique name for the snapshot and click on the "Take snapshot"
button. The snapshot creation process will begin and may take some time
to complete.

Restore Database from Snapshot

In the RDS Dashboard, click on "Snapshots" in the left-hand menu.

Select the snapshot you want to restore from (either an automated backup
or a manual snapshot).

Click on the "Actions" button and choose "Restore snapshot."

In the "Restore DB Instance" page, provide a unique name for the new
RDS instance that will be created from the snapshot.

Configure the DB instance settings, such as instance class, storage type,
and storage size, as needed.

In the "Settings" section, provide a new master username and password
for the restored instance.

Choose the appropriate VPC, subnet group, and security group for the
restored instance. Ensure that the security group allows inbound traffic for
PostgreSQL on port 5432.

Configure any additional settings as needed, such as "Database
authentication," "Backup," "Monitoring," and "Maintenance."

Click on "Restore DB Instance" to begin the restoration process. It may
take some time to complete.

Verify Restored Database

Once the restored RDS instance is available, connect to it using a
PostgreSQL client, such as pgAdmin or psql, with the new master
username and password.

In the client, connect to the "adventureworks" database and verify the
tables and data by running SQL queries. The restored database should
contain the same data as the original database at the time of the snapshot.

Point Your Application to Restored Database

If you want to use the restored database instead of the original one, update
your application's database connection settings to point to the endpoint of

the restored RDS instance. Confirm to update any necessary credentials as
well.

By following these steps, you have successfully backed up and restored
the AdventureWorks database using native AWS RDS features, such as
automated backups and manual snapshots. These methods provide a
simple and efficient way to manage database backups in the AWS cloud
without needing to use traditional PostgreSQL tools like pg_dump and
pg_restore.

Recipe#4: Manage Connection to Database on AWS

Configure Security Groups

Ensuring the security of your database connection is crucial. You can start
by configuring the security group associated with your RDS instance to
allow incoming connections from specific IP addresses or ranges.
Following are the steps:

• In the AWS Management Console, navigate to the RDS Dashboard.

Click on "Databases" in the left-hand menu and select the RDS instance
hosting the AdventureWorks database.

In the "Details" tab, locate the "Security group rules" section, click on the
security group.

• In the "Inbound rules" tab, click on the "Edit inbound rules" button.

• Add a new rule with the following settings:

Type: PostgreSQL

Protocol: TCP

Port range: 5432

In Source, Choose "Custom" and enter the IP address or range you want to
allow, or use "My IP" to allow only your current IP address.

• Click on "Save rules" to apply the changes.

Use Connection Pooler

Connection pooling helps improve performance and manage database
connections efficiently by reusing existing connections instead of opening
and closing new connections for each request.

One popular connection pooler for PostgreSQL is PgBouncer. To install
and configure PgBouncer on an EC2 instance, follow these steps:

SSH into your EC2 instance using the private key file (.pern) and the
appropriate user (e.g., "ec2-user" for Amazon Linux 2).

Update the package repositories and install PgBouncer:

sudo yum update -y

sudo yum install -y pgbouncer

Create a directory for the PgBouncer configuration files and logs:

mkdir -/pgbouncer

Create a new PgBouncer configuration file (pgbouncer.ini) in the newly
created directory with the following content:

[databases]

adventureworks = host= port=5432 dbname=adventureworks

[pgbouncer]

listen_addr = *

listen_port = 6432

auth_type = md5

auth_file = users.txt

logfile = pgbouncer.log

pidfile = pgbouncer. pid

admin_users =

Replace with the endpoint of your RDS instance, and with the master
username you set up earlier.

Create a new file (users.txt) in the same directory to store the
authentication credentials for your RDS instance. Add the following line
to the file:

nn mi

Replace and with the master username and password you set up earlier.

Start PgBouncer by running the following command:

pgbouncer -/pgbouncer/pgbouncer. ini

Configure your application to connect to the PgBouncer instance by
updating the connection string to use the EC2 instance's IP address or
DNS name and port 6432.

Monitor Connection Metrics

Monitoring your database connections can provide valuable insights into
performance, bottlenecks, and potential issues. AWS RDS offers various
monitoring options, including Amazon RDS Performance Insights and
Amazon CloudWatch.

Enable Amazon RDS Performance Insights

In the RDS Dashboard, click on "Databases" in the left-hand menu and
select the RDS instance hosting the AdventureWorks database.

In the "Details" tab, click on the "Modify" button.

Scroll down to the "Monitoring" section and enable "Performance
Insights."

Choose the desired retention period for the performance data and click on
"Continue."

Choose whether to apply the changes immediately or during the next
maintenance window.

Then, click on "Modify DB Instance."

Access Amazon RDS Performance Insights

In the RDS Dashboard, click on "Databases" in the left-hand menu and
select the RDS instance hosting the AdventureWorks database.

In the "Details" tab, click on the "Performance Insights" link to access the
Performance Insights dashboard.

Use the dashboard to analyze various metrics related to database
connections, such as active connections, wait events, and query
performance.

Monitor Amazon CloudWatch Metrics:

In the RDS Dashboard, click on "Databases" in the left-hand menu and
select the RDS instance hosting the AdventureWorks database.

In the "Details" tab, click on the "Monitoring" tab to view the CloudWatch
metrics.

Focus on the "DatabaseConnections" metric to monitor the number of
connections to your RDS instance.

Optimize Application Connection Management

Implement best practices for managing connections in your application to
minimize the overhead and improve performance.

Use connection strings with appropriate timeouts and limits to avoid
excessive idle connections or long-running queries.

Optimize your application's connection management by closing
connections when they are no longer needed.

Use a connection pooler, like PgBouncer, to efficiently manage database
connections and reuse them whenever possible.

Monitor and fine-tune connection pooler settings, such as connection
limits and timeouts, to optimize performance.

In summary, managing connections to the AdventureWorks PostgreSQL
database on AWS involves configuring security groups, using connection

poolers like PgBouncer, monitoring connection metrics with Amazon
RDS Performance Insights and Amazon CloudWatch, and optimizing
application connection management. Implementing these best practices
will help you maintain a secure, efficient, and high-performance
connection to your PostgreSQL database hosted on AWS RDS.

Recipe#5: Perform Replication of Database on AWS

To replicate the AdventureWorks PostgreSQL database on AWS, you can
use Amazon RDS's built-in support for read replicas. Read replicas allow
you to offload read traffic from your primary database instance, which can
help balance the load and improve performance.

Enable Automatic Backups for RDS Instance

In the AWS Management Console, navigate to the RDS Dashboard.

Click on "Databases" in the left-hand menu and select the RDS instance
hosting the AdventureWorks database.

In the "Details" tab, click on the "Modify" button.

Scroll down to the "Backup" section and set the "Backup retention period"
to a value greater than 0 (e.g., 7 days). This will enable automatic
backups, which are required for creating read replicas.

Choose the preferred backup window or let AWS choose it for you by
selecting "No preference."

Click on "Continue" and choose whether to apply the changes
immediately or during the next maintenance window. Then, click on
"Modify DB Instance."

Create Read Replica

In the RDS Dashboard, click on "Databases" in the left-hand menu and
select the RDS instance hosting the AdventureWorks database.

In the "Details" tab, click on the "Actions" button and choose "Create read
replica."

Provide a unique name for the read replica instance.

Configure the DB instance settings, such as instance class, storage type,
and storage size, as needed.

Choose the appropriate VPC, subnet group, and security group for the
read replica instance. Ensure that the security group allows inbound traffic
for PostgreSQL on port 5432.

Configure any additional settings as needed, such as "Multi-AZ
deployment," "Database authentication," "Backup," "Monitoring," and
"Maintenance."

Click on "Create read replica" to start the replication process. It may take
some time to complete.

Verify Read Replica

Once the read replica instance is available, connect to it using a
PostgreSQL client, such as pgAdmin or psql, with the master username
and password.

In the client, connect to the "adventureworks" database and verify the
tables and data by running SQL queries. The read replica should contain
the same data as the primary database at the time of the snapshot.

Redirect Read Traffic to Read Replica

Update your application's database connection settings to direct read
traffic to the read replica endpoint instead of the primary RDS instance.
Depending on your application architecture, you can implement a load
balancer or use custom code to distribute the read traffic among the
primary and replica instances.

Monitor Replication Performance

In the RDS Dashboard, click on "Databases" in the left-hand menu and
select the read replica instance.

In the "Details" tab, click on the "Monitoring" tab to view the Amazon
CloudWatch metrics.

Focus on the "ReplicaLag" metric to monitor the replication lag between
the primary and replica instances. Ideally, the lag should be minimal to
ensure data consistency and up-to-date results for read queries.

Promote Read Replica (Optional)

If needed, you can promote a read replica to a standalone RDS instance.
This is useful in disaster recovery scenarios or when you want to create a
separate environment for testing or development.

In the RDS Dashboard, click on "Databases" in the left-hand menu and
select the read replica instance.

In the "Details" tab, click on the "Actions"

In the "Details" tab, click on the "Actions" button and choose "Promote
read replica." A warning message will appear, stating that promoting the
read replica will cause it to function as a standalone instance and break the
replication. Click on "Promote read replica" to proceed.

The promotion process may take some time to complete. Once it is
finished, the instance will function as a standalone RDS instance, and you
can manage it like any other RDS instance.

Delete Read Replica (Optional)

If you no longer need the read replica, you can delete it to save costs and
resources.

In the RDS Dashboard, click on "Databases" in the left-hand menu and
select the read replica instance.

In the "Details" tab, click on the "Actions" button and choose "Delete."

In the "Delete DB instance" dialog, choose whether to create a final
snapshot before deleting the instance. If you want to save the current state
of the database, select "Create final snapshot" and provide a unique name
for the snapshot.

Check the acknowledgment box, stating that you understand that deleting
the instance will result in data loss, and click on "Delete DB Instance."

By following these steps, you have practically replicated the
AdventureWorks database on AWS using Amazon RDS read replicas.
Read replicas help distribute the read traffic, improve performance, and
provide a scalable solution for high-availability scenarios. Additionally,
you can monitor replication performance using Amazon CloudWatch and
manage the replica instances as needed by promoting or deleting them.

Recipe#6: Run PostgreSQL Bi-directional Replication using pglogical

Bi-directional replication, also known as multi-master replication, allows
two or more PostgreSQL databases to replicate data changes between
them. It is useful for load balancing and ensuring high availability in
distributed environments. One of the tools available for bi-directional
replication in PostgreSQL is pglogical, a logical replication extension.

In this recipe, we will assume you have two RDS instances running the
AdventureWorks database, named adventureworks_primary and
adventureworks_secondary. We will set up bi-directional replication
between these instances using pglogical.

Enable pglogical Extension on both RDS Instances

Modify the shared_preload_libraries parameter on both instances to
include pglogical. In the RDS Dashboard, select the instances and click
"Modify". Under "Database options", add pglogical to the list of shared
libraries.

In the same modification window, enable the rds.logical_replication
parameter by setting it to 1.

Apply the changes immediately or during the next maintenance window
and wait for the instances to be modified.

Connect to both RDS Instances

Use a PostgreSQL client, such as pgAdmin or psql, to connect to both
RDS instances with the master username and password.

Install pglogical Extension on both Instances

On both instances, connect to the AdventureWorks database and run the
following SQL command to create the pglogical extension:

CREATE EXTENSION pglogical;

Configure Replication Nodes

On both instances, create a replication node with a unique node name and
connection information:

SELECT pglogical.create_node(

node_name :='adventureworks_primary_node',

dsn := 'host=adventureworks_primary_endpoint port=5432
dbname=adventureworks user= password

);

SELECT pglogical.create_node(

node_name := 'adventureworks_secondary_node',

dsn := 'host=adventureworks_secondary_endpoint port=5432
dbname=adventureworks user= password

);

Replace the placeholders with the actual endpoint URLs, master
username, and master password for your instances.

On both instances, add all tables in the AdventureWorks database to the
replication set:

SELECT pglogical.replication_set_add_all_tables('default',
ARRAY['public']);

On both instances, add all sequences in the AdventureWorks database to
the replication set:

SELECT pglogical.replication_set_add_all_sequences('default',
ARRAY['public']);

Create Replication Subscriptions

On the primary instance, create a subscription to the secondary instance:

SELECT pglogical.create_subscription(

subscription_name :=' adventure works_primary_to_secondary',

provider_dsn := 'host=adventureworks_secondary_endpoint port=5432
dbname=adventureworks user= password-,

replication_sets := ARRAYf'default'],

synchronize_structure := false,

synchronize_data := true

);

On the secondary instance, create a subscription to the primary instance:

SELECT pglogical.create_subscription(

subscription_name :=' adventureworks_secondary_to_primary',

provider_dsn := 'host=adventureworks_primary_endpoint port=5432
dbname=adventureworks user= password-,

replication_sets := ARRAYf'default'],

synchronize_structure := false,

synchronize_data := true

);

Replace the placeholders with the actual endpoint URLs, master
username, and master password for your instances.

Verify Replication

On both instances, insert, update, or delete some data in the
AdventureWorks database and verify that the changes are replicated to the
other instance.

On both instances, monitor the replication status by querying the
pglogical.show_subscription_status() function:

SELECT * FROM pglogical.show_subscription_status();

If the replication is working correctly, you should see the status column as
'replicating' for both subscriptions.

Troubleshooting

If you encounter any issues or replication lag, you can check the
PostgreSQL logs on both instances for errors or warnings related to
pglogical.

In the RDS Dashboard, click on "Databases" in the left-hand menu and
select the RDS instance.

In the "Details" tab, click on the "Logs & events" tab to view the logs.

Look for any errors or warnings related to pglogical and resolve them
accordingly.

Manage Replication

As your application evolves, you may need to add or remove tables,
sequences, or indexes from the replication set. Use the following pglogical
functions to manage the replication set:

To add a table to the replication set:

SELECT pglogical.replication_set_add_table('defaulf,

To remove a table from the replication set:

SELECT pglogical.replication_set_remove_table('default',

To add a sequence to the replication set:

SELECT pglogical.replication_set_add_sequence('default',

To remove a sequence from the replication set:

SELECT pglogical.replication_set_remove_sequence('defaulf,

By following these steps, you have practically set up bi-directional
replication for the AdventureWorks database on AWS using pglogical.
This replication allows you to distribute database load, improve
performance, and ensure high availability in your distributed PostgreSQL
environment. Additionally, you can monitor the replication status and
manage the replication set using pglogical functions.

Chapter 4: Database Migration to Cloud and PostgreSQL

Recipe#!: Migrating from On-premise to AWS EC2/RDS Instance

This recipe assumes you have an on-premise PostgreSQL server hosting
the AdventureWorks database and want to migrate it to an AWS EC2 or
RDS instance.

Prepare On-premise Environment

Make sure your on-premise PostgreSQL server is running and accessible.

Ensure you have the necessary credentials for the PostgreSQL server
(username and password).

Create Backup of AdventureWorks Database

Create a backup of the AdventureWorks database on your on-premise
server using the pg_dump tool:

pg_dump -U -W -F t -f adventureworks_backup.tar adventureworks

Replace with your PostgreSQL username. You will be prompted for the
password.

Setup AWS Environment

If you haven't already, create an AWS account and sign in to the AWS
Management Console.

Create an EC2 instance or RDS instance for hosting the AdventureWorks
database, as described in previous responses.

If using RDS, ensure that the necessary extensions (e.g., postgis) are
installed on the RDS instance.

Transfer Backup to AWS Environment

You need to transfer the adventureworks_backup.tar file created in Step 2
to the AWS environment. There are several methods to do this, including:

• Using SCP (for EC2 instances):

scp -i adventureworks_backup.tar ec2-user@:/home/ec2-user/

Replace with the path to your EC2 private key and with the public DNS of
your EC2 instance.

• Using S3 (for RDS instances or EC2 instances):

Create an Amazon S3 bucket in the same region as your RDS/EC2
instance.

Upload the adventureworks_backup.tar file to the S3 bucket.

If using an EC2 instance, download the file from the S3 bucket to your
EC2 instance.

Restore AdventureWorks Database

• If using an EC2 instance:

Install PostgreSQL on the EC2 instance, if not already installed.

• Create an empty AdventureWorks database:

createdb -U -W adventureworks

• Restore the backup to the new database:

pg_restore -U -W -d adventureworks adventureworks_backup.tar

• If using an RDS instance:

Create an empty AdventureWorks database using a PostgreSQL client,
such as pgAdmin or psql:
sql

CREATE DATABASE adventure works;

Restore the backup to the new database using the pg_restore tool,
connecting to the RDS instance:

pg_restore -h -U -W -d adventure works adventure works_backup. tar

Replace and with your RDS instance's endpoint and master username,
respectively.

Update Application Settings

Update your application's database connection settings to point to the new
AWS EC2 or RDS instance.

Verify Migration

Connect to the AdventureWorks database on the AWS EC2 or RDS
instance using a PostgreSQL client, such as pgAdmin or psql.

Run some SQL queries to verify the tables, data, and other objects have
been migrated correctly.

Monitor and Optimize

Monitor the performance and resource usage of your EC2 or RDS instance
and optimize as needed. You can use Amazon CloudWatch to monitor
AWS resources and set up alerts for specific events.

For EC2 instances, you can monitor CPU utilization, disk I/O, and
network traffic, among other metrics.

For RDS instances, you can monitor additional database-specific metrics
such as the number of database connections, read and write IOPS, and
query latency.

Depending on your findings, you may need to:
Scale the EC2 or RDS instance vertically by increasing the instance size
(CPU, memory, and storage).
Optimize the PostgreSQL configuration parameters for better
performance, such as shared_buffers, effective_cache_size, and
maintenance_work_mem.
Analyze and optimize slow-running queries using the EXPLAIN
command or other query profiling tools.

• Implement caching, indexing, and partitioning strategies to improve
database performance.

By following these steps, you have practically migrated the
AdventureWorks database from an on-premise PostgreSQL server to an
AWS EC2 or RDS instance. Migration to AWS provides benefits such as
scalability, high availability, and the ability to leverage various AWS
services for monitoring and optimization.

Recipe#2: Utilizing AWS Data Migration Service (DMS)

AWS Data Migration Service (DMS) simplifies migrating your databases
to the AWS Cloud, while minimizing downtime. DMS can migrate your
data to and from most widely used commercial and open-source
databases, including PostgreSQL.

In this recipe, we'll walk through the process of migrating the
AdventureWorks database from an on-premise PostgreSQL server to an
Amazon RDS for PostgreSQL instance using AWS DMS.

Prepare On-premise Environment

Make sure your on-premise PostgreSQL server is running and accessible.
Ensure you have the necessary credentials for the PostgreSQL server
(username and password).

Setup AWS Environment

If you haven't already, create an AWS account and sign in to the AWS
Management Console.

Create an Amazon RDS for PostgreSQL instance, as described in previous
responses, to host the AdventureWorks database.

Create VPC Peering Connection (Optional)

If your on-premise PostgreSQL server is hosted in an Amazon VPC, you
may need to create a VPC peering connection between the VPC hosting
your on-premise server and the VPC hosting the RDS instance.

In the AWS Management Console, navigate to the VPC Dashboard.
Click on "Peering Connections" in the left-hand menu and click on the
"Create Peering Connection" button.

Provide the VPC IDs for both the requester and accepter VPCs and click
"Create Peering Connection".

Accept the peering connection request on the accepter VPC side.

Create AWS DMS Replication Instance

In the AWS Management Console, navigate to the DMS Dashboard.

Click on "Replication instances" in the left-hand menu and click on the
"Create replication instance" button.

Provide a name and description for the replication instance, choose an
instance class, and set the allocated storage.

Select the VPC that contains your on-premise PostgreSQL server and
RDS instance (or the VPCs connected by the peering connection), then
click "Create" to launch the replication instance.

Create Source and Target Endpoints

In the DMS Dashboard, click on "Endpoints" in the left-hand menu and
click on the "Create endpoint" button.

Create a source endpoint for your on-premise PostgreSQL server:

Select "Source endpoint".

Provide an endpoint identifier, source engine (PostgreSQL), and
connection information for your on-premise PostgreSQL server, including
server name, port, username, and password.
Click "Create endpoint".

Create a target endpoint for your RDS instance:

Select "Target endpoint".

Provide an endpoint identifier, target engine (PostgreSQL), and
connection information for your RDS instance, including server name,
port, username, and password.

Click "Create endpoint".

Test Endpoints

In the "Endpoints" section of the DMS Dashboard, select the source
endpoint and click on the "Test connection" button.

Choose the replication instance you created earlier and click "Run test".

The test should return a "successful" status. If not, troubleshoot the
connection issues.

Repeat the test for the target endpoint.

Create Database Migration Task

In the DMS Dashboard, click on "Database migration tasks" in the left
hand menu and click on the "Create task" button.

Provide a name and description for the migration task.

Select the replication instance, source endpoint, and target endpoint you
created earlier.

Choose a migration type. For a one-time migration, choose "Migrate
existing data" (Full Load).

If you want to replicate ongoing changes after the full load, choose
"Migrate existing data and replicate ongoing changes" (Full Load + CDC).

Under "Task Settings", configure any additional settings you need, such
as:

Enable logging: If you want to log detailed information about the
migration process.

Stop task after full load completes: If you want the task to stop
automatically after the full load phase.

Target table preparation mode: You can choose "Do nothing", "Drop
tables on target", or "Truncate" depending on how you want the target
tables to be prepared before the migration.

Under "Table mappings", create rules to specify which tables and schemas
to migrate. For the AdventureWorks database, you can create a single rule
with the source schema set to "public" and the target schema set to
"public". Ensure the selection rule action is set to "Include".

Click "Create task" to create the migration task.

Start the Migration Task

In the "Database migration tasks" section of the DMS Dashboard, select
the migration task you created.

Click on the "Start/Resume" button to start the migration process.

Monitor the progress of the migration task. You can view the status,
progress, and any warnings or errors in the DMS Dashboard.

Verify the Migration

Connect to the AdventureWorks database on the RDS instance using a
PostgreSQL client, such as pgAdmin or psql.

Run some SQL queries to verify the tables, data, and other objects have
been migrated correctly.

Monitor and Optimize

Monitor the performance and resource usage of your RDS instance and
DMS replication instance, and optimize as needed. You can use Amazon
CloudWatch to monitor AWS resources and set up alerts for specific
events.

Depending on your findings, you may need to:

Scale the RDS instance vertically by increasing the instance size (CPU,
memory, and storage).

Optimize the PostgreSQL configuration parameters for better
performance, such as shared_buffers, effective_cache_size, and
maintenance_work_mem.

Analyze and optimize slow-running queries using the EXPLAIN
command or other query profiling tools.

Implement caching, indexing, and partitioning strategies to improve
database performance.

By following these steps, you have practically migrated the
AdventureWorks database from an on-premise PostgreSQL server to an
Amazon RDS for PostgreSQL instance using AWS Data Migration
Service. DMS simplifies the migration process and minimizes downtime,
allowing you to benefit from the scalability, high availability, and various
AWS services for monitoring and optimization.

Recipe#3: Migrating Database from EC2 to RDS Instance

This recipe assumes you have the AdventureWorks database hosted on an
Amazon EC2 instance and want to migrate it to an Amazon RDS instance.

Prepare EC2 Environment

Make sure your EC2 instance hosting the PostgreSQL server is running
and accessible.
Ensure you have the necessary credentials for the PostgreSQL server
(username and password).

Create Backup of AdventureWorks Database

Create a backup of the AdventureWorks database on your EC2 instance
using the pg_dump tool:

pg_dump -U -W -F t -f adventureworks_backup.tar adventureworks

Replace with your PostgreSQL username. You will be prompted for the
password.

Setup RDS Environment

If you haven't already, create an AWS account and sign in to the AWS
Management Console.

Create an Amazon RDS for PostgreSQL instance to host the
AdventureWorks database, as described in previous responses.

Transfer Backup to RDS Environment

Upload the adventureworks_backup.tar file created in Step 2 to an
Amazon S3 bucket:

Create an Amazon S3 bucket in the same region as your RDS instance.

Upload the adventureworks_backup.tar file to the S3 bucket.

Grant RDS Access to S3 Bucket

Create an IAM role that grants your RDS instance permission to access
the S3 bucket:

In the AWS Management Console, navigate to the IAM Dashboard.

Click on "Roles" in the left-hand menu and click on the "Create role"
button.

Select "RDS" as the service that will use this role and click "Next:
Permissions".

Search for "AmazonS3ReadOnlyAccess" in the "Filter policies" search
box, select the policy, and click "Next: Tags".

Add any tags you need and click "Next: Review".

Provide a name and description for the role and click "Create role".

In the RDS Dashboard, click on "Databases" in the left-hand menu and
select the RDS instance.

In the "Details" tab, click on the "Modify" button.

In the "Database options" section, set the "IAM DB authentication" option
to "Enabled" and select the IAM role you just created for the "S3
import/export role" option.

Click "Continue" and choose "Apply immediately" in the confirmation
dialog.

Restore AdventureWorks Database

Create an empty AdventureWorks database on your RDS instance using a
PostgreSQL client, such as pgAdmin or psql:

CREATE DATABASE adventure works;

Use the AWS CLI to execute the aws rds restore-db-instance-from-s3
command to restore the backup from the S3 bucket to the
AdventureWorks database on the RDS instance:

aws rds restore-db-instance-from-s3 \

-db-instance-identifier \

-db-instance-class \

-engine postgres \

-master-username \

-master-user-password \

-vpc-security-group-ids \

-s3-bucket-name \

-s3-prefix adventure works_backup. tar \

-source-engine postgres \

-source-engine-version \

-region \

-availability-zone

ZONE>

—no-multi-az

-no-publicly-accessible

-db-name adventureworks

-backup-retention-period 7

Replace the following placeholders with your specific values:
• ": A unique name for the new RDS instance.
• ": The instance class for the RDS instance (e.g.,' db.t2.micro').
• ": The master username for the RDS instance.
• ": The master user password for the RDS instance.
• ": The VPC security group ID for the RDS instance.
• ": The name of the S3 bucket containing the backup file.

• ": The PostgreSQL version used on your EC2 instance (e.g.,
'13.3').
• ": The AWS region where the RDS instance is located (e.g., 'us-
west-2').
• ": The availability zone for the RDS instance (e.g.,'us-west-2a').

Verify the Migration

Connect to the AdventureWorks database on the RDS instance using a
PostgreSQL client, such as pgAdmin or psql.

Run some SQL queries to verify the tables, data, and other objects have
been migrated correctly.

Monitor and Optimize

Monitor the performance and resource usage of your RDS instance and
optimize as needed. You can use Amazon CloudWatch to monitor AWS
resources and set up alerts for specific events.

Depending on your findings, you may need to:
Scale the RDS instance vertically by increasing the instance size (CPU,
memory, and storage).
Optimize the PostgreSQL configuration parameters for better
performance, such as ' shared_buffers',' effective_cache_size', and
' maintenance_work_mem'.
Analyze and optimize slow-running queries using the 'EXPLAIN'
command or other query profiling tools.
• Implement caching, indexing, and partitioning strategies to improve
database performance.

By following these steps, you have practically migrated the
AdventureWorks database from an Amazon EC2 instance to an Amazon
RDS instance. This migration process allows you to take advantage of the
managed features of RDS, such as automatic backups, patching, and high
availability, while maintaining the performance and flexibility of
PostgreSQL.

Recipe#4: Preparing Pgloader to Use with Database

Pgloader is a powerful open-source data migration tool that helps you load
data from various sources, including other databases, into PostgreSQL. In
this recipe, we'll walk you through the process of preparing Pgloader and
making it ready for use with your AdventureWorks database.

Install Pgloader

Pgloader is available for various platforms, including Linux, macOS, and
Windows. Choose the appropriate installation method for your platform:

On Debian-based Linux distributions (Ubuntu, Debian):

sudo apt-get update

sudo apt-get install pgloader

On macOS (using Homebrew):

brew update

brew install pgloader

On Windows:

Download the latest Pgloader Windows binary from the GitHub releases
page: https://github.com/dimitri/pgloader/releases

Extract the downloaded ZIP file to a directory of your choice.

Add the extracted directory to your system's PATH environment variable.

Verify the Installation

Run the following command in your terminal or command prompt to
verify that Pgloader is installed correctly:

pgloader -version

This should display the version number of Pgloader.

Prepare Source and Target Databases

Ensure that your source database (e.g., MySQL, SQL Server, SQLite) and
your target PostgreSQL database are running and accessible. Confirm you
have the necessary credentials (username and password) for both
databases.

Create Pgloader Command File

A Pgloader command file defines the migration process, including the
source and target databases, schema transformations, and data loading

ithub.com/dimitri/

options. Create a new text file named pgloader_command_file.load and
add the following contents:

LOAD DATABASE

FROM

INTO

WITH include drop, create tables, create indexes, reset sequences

data only

SET maintenance_work_mem to '128MB', work_mem to '12MB',
search_path to 'public'

CAST type to drop typemod

BEFORE LOAD DO

$$ create schema if not exists public; $$;

Replace the placeholders with your specific values:
: The connection string for your source database (e.g.,
mysql://user:password@localhost/source_db for MySQL or
sqlite:///path/to/sqlite.db for SQLite).

• : The connection string for your target PostgreSQL database (e.g.,
postgresql://user:password@localhost/target_db).

and : If needed, specify any data type casting rules to convert source data
types to target data types (e.g., type datetime to timestamptz).

Run the Migration

Execute the following command to start the migration process using the
Pgloader command file:

pgloader pgloader_command_file.load

Pgloader will read the command file and migrate the data from the source
database to the target PostgreSQL database. Monitor the progress in the
terminal or command prompt, and pay attention to any warnings or errors.

Verify the Migration

Connect to the target PostgreSQL database using a PostgreSQL client,
such as pgAdmin or psql.

Run some SQL queries to verify the tables, data, and other objects have
been migrated correctly.

Monitor and Optimize

Monitor the performance and resource usage of your PostgreSQL database
and optimize as needed. Depending on your findings, you may need to:

Optimize the PostgreSQL configuration parameters for better
performance, such as shared_buffers, effective_cache_size, and
maintenance_work_mem.
Analyze and optimize slow-running queries using the EXPLAIN
command or other query profiling tools.
• Implement caching, indexing, and partitioning strategies to improve
database performance.

Scale the PostgreSQL instance vertically by increasing the instance size
(CPU, memory, and storage) if hosted on a cloud provider like AWS or
Google Cloud Platform.

By following these steps, you have prepared Pgloader and made it ready
for use with your AdventureWorks database. Pgloader simplifies the
migration process by automatically handling schema and data type
conversions, allowing you to focus on optimizing your PostgreSQL
database and application performance.

Remember that migrating data from one database system to another can
involve various challenges, such as different data types, collations, and
indexing strategies. It is essential to thoroughly test the migrated data and
application behavior to ensure a smooth transition to PostgreSQL.
Additionally, it's crucial to have a rollback plan in case of migration
failures or unexpected issues that arise during the migration process.

Recipe#5: Migrating from MySQL to PostgreSQL

In this recipe, we'll walk you through the process of migrating the
AdventureWorks database from MySQL to PostgreSQL using Pgloader.

Install Pgloader

Follow the instructions in the previous recipe to install Pgloader on your
preferred platform (Linux, macOS, or Windows).

Prepare MySQL and PostgreSQL Environments

Make sure your MySQL server hosting the AdventureWorks database is
running and accessible. Ensure you have the necessary credentials
(username and password).

Create an empty AdventureWorks database on your PostgreSQL server

CREATE DATABASE adventure works;

Ensure that the PostgreSQL server hosting the AdventureWorks database
is running and accessible. Confirm you have the necessary credentials
(username and password).

Create Pgloader Command File

Create a new text file named mysql_to_postgresql.load and add the
following contents:

LOAD DATABASE

FROM mysql://:@:/adventureworks

INTO postgresql://: /adventure works

WITH include drop, create tables, create indexes, reset sequences

data only

SET maintenance_work_mem to '128MB', work_mem to '12MB',
search_path to 'public'

CAST type datetime to timestamptz drop typemod,

type date drop not null using zero-dates-to-null,

type tinyint to small int

BEFORE LOAD DO

$$ create schema if not exists public; $$;

Replace the placeholders with your specific values:
• : Your MySQL username.
• : Your MySQL password.
• : Your MySQL server's hostname or IP address.
• : Your MySQL server's port number (default: 3306).
• : Your PostgreSQL username.
• : Your PostgreSQL password.
• : Your PostgreSQL server's hostname or IP address.
• : Your PostgreSQL server's port number (default: 5432).

Run the Migration

Execute the following command to start the migration process using the
Pgloader command file:

pgloader mysql_to_postgresql.load

Pgloader will read the command file and migrate the data from the
MySQL database to the PostgreSQL database. Monitor the progress in the
terminal or command prompt and pay attention to any warnings or errors.

Verify the Migration

Connect to the AdventureWorks database on the PostgreSQL server using
a PostgreSQL client, such as pgAdmin or psql.

Run some SQL queries to verify the tables, data, and other objects have
been migrated correctly.

Handle Application Changes

Update your application's database connection settings to use the new
PostgreSQL database.

Additionally, you might need to adjust the application code to
accommodate differences between MySQL and PostgreSQL, such as:
• SQL syntax differences (e.g., LIMIT and OFFSET vs. FETCH and
OFFSET).
• Changes in data types, functions, and operators.
• Different behavior for transactions and locking.

Monitor and Optimize

Monitor the performance and resource usage of your PostgreSQL database
and optimize as needed. Depending on your findings, you may need to:

Optimize the PostgreSQL configuration parameters for better
performance, such as shared_buffers, effective_cache_size, and
maintenance_work_mem.

Analyze and optimize slow-running queries using the EXPLAIN
command or other query profiling tools.

By following these steps, you have practically migrated the
AdventureWorks database from MySQL to PostgreSQL using Pgloader.
Migrating from one database system to another can involve various
challenges, such as different data types, collations, and indexing
strategies. It is essential to thoroughly test the migrated data and
application behavior to ensure a smooth transition to PostgreSQL.
Additionally, it's crucial to have a rollback plan in case of migration
failures or unexpected issues that arise during the migration process.

Recipe#6: Setting Up Foreign Data Wrapper (FDW)

Foreign Data Wrappers (FDWs) allow you to access and manipulate data
stored in remote data sources from within a PostgreSQL database. In the
context of database migration, you can use FDWs to access data in the
source database (e.g., Oracle, MySQL, SQL Server) and migrate it to
PostgreSQL.

Following is how to set up an FDW for migrating the AdventureWorks
database to PostgreSQL:

Install Required FDW Extensions

PostgreSQL supports various FDWs out of the box, such as postgres_fdw
for accessing PostgreSQL databases and oracle_fdw for accessing Oracle
databases. Depending on your source database, you may need to install
additional FDW extensions.

Following is an example of installing the mysql_fdw extension for
accessing MySQL databases:

sudo apt-get update

sudo apt-get install postgresql-contrib-13

sudo apt-get install libmysqlclient-dev

sudo apt-get install postgresql-13-mysql-fdw

Create FDW Server

To create an FDW server, you need to define a server object that specifies
the connection parameters and options for accessing the remote data
source. Following is an example of creating an FDW server for accessing
a MySQL database:

CREATE SERVER mysql server

FOREIGN DATA WRAPPER mysql_fdw

OPTIONS (host 'mysql.example.com', port '3306', dbname
'adventureworks', username 'user', password 'password');

Replace the placeholders with your specific values:
• mysql_server: The name of the FDW server object.
• mysql_fdw: The name of the FDW wrapper.
• host, port, dbname, username, password: The connection parameters
for accessing the MySQL database.

Create FDW User Mapping

To create an FDW user mapping, you need to specify the remote user
credentials for accessing the remote data source. Following is an example
of creating an FDW user mapping for the previously created FDW server:

CREATE USER MAPPING FOR postgres

SERVER mysql_server

OPTIONS (username 'user', password 'password');

Replace the placeholders with your specific values:
postgres: The name of the local PostgreSQL user who will be accessing
the FDW server.
• mysql_server: The name of the FDW server object.
• username, password: The remote user credentials for accessing the
MySQL database.

Create FDW Table

To create an FDW table, you need to define a table object that maps to a
remote table in the FDW server. Following is an example of creating an
FDW table for accessing the salesorderheader table in the
AdventureWorks database:

CREATE FOREIGN TABLE salesorderheader (

salesorderid integer,

revisionnumber integer,

orderdate date,

duedate date,

shipdate date,

status integer,

onlineorderflag boolean,

salesordernumber character varying,

purchaseordemumber character varying,

accountnumber character varying,

customerid integer,

salespersonid integer,

territoryid integer,

billtoaddressid integer,

shiptoaddressid integer,

shipmethodid integer,

creditcardid integer,

creditcardapprovalcode character varying,

currencyrateid integer,

subtotal numeric(18,2),

taxamt numeric(l 8,2),

freight numeric(18,2),

totaldue numeric(18,2),

comment text

)

SERVER mysql_server

OPTIONS (schema_name 'sales', table_name 'salesorderheader');

Replace the placeholders with your specific values:
• salesorderheader': The name of the remote table in the MySQL
database.
sales: The name of the schema in the MySQL database containing the
salesorderheader table.

Migrate the Data

To migrate the data from the FDW table to a native PostgreSQL table,
execute the following command:

INSERT INTO postgres_salesorderheader

SELECT * FROM salesorderheader;

Replace postgres_salesorderheader with the name of the native
PostgreSQL table you want to migrate the data to.

Verify the Migration

Run some SQL queries to verify the tables, data, and other objects have
been migrated correctly.

Handle Application Changes

Update your application's database connection settings to use the new
PostgreSQL database.

Additionally, you might need to adjust the application code to
accommodate differences between the source database and PostgreSQL,
such as:
• SQL syntax differences (e.g., LIMIT and OFFSET vs. FETCH and
OFFSET).
• Changes in data types, functions, and operators.
• Different behavior for transactions and locking.

By following these steps, you have practically migrated the
AdventureWorks database to PostgreSQL using FDW. Migrating from one
database system to another can involve various challenges, such as
different data types, collations, and indexing strategies. It is essential to
thoroughly test the migrated data and application behavior to ensure a
smooth transition to PostgreSQL. Additionally, it's crucial to have a
rollback plan in case of migration failures or unexpected issues that arise
during the migration process.

Chapter 5: WAL, Auto Vacuum & ArchiveLog

Recipe#!: Enable and Disable Archive Mode

To enable or disable the Archive mode for a PostgreSQL database, you
need to have an existing PostgreSQL database and server. In this case, I
will provide you with general instructions on how to enable or disable
Archive mode for a PostgreSQL database, as the link provided does not
have a direct impact on the Archive mode.

Archive mode in PostgreSQL refers to the Write-Ahead Logging (WAL)
mechanism, which logs all modifications made to the database. When
Archive mode is enabled, completed WAL files are stored for later usage,
allowing Point-In-Time Recovery (PITR) or replication.

To enable/disable Archive mode, follow these steps:

Update postgresql.conf Configuration Pile

This file is usually located in the PostgreSQL data directory, which can be
found by running the following command:

SHOW data_directory;

Open the postgresql.conf file with your preferred text editor.

Enable Archive Mode

To enable Archive mode, find and modify the following parameters in the
postgresql.conf file:

wal_level = replica

archive_mode = on

archive_command = 'cp %p /path/to/archive/directory/%f

Replace /path/to/archive/directory with the directory where you want to
store archived WAL files. Confirm the PostgreSQL user has write access
to this directory.

Disable Archive Mode

To disable Archive mode, find and modify the following parameters in the
postgresql.conf file:

wal_level = replica

archive_mode = off

You can comment out or remove the archive_command line as it is not
used when Archive mode is disabled.

Restart PostgreSQL Server

After making the changes, you need to restart the PostgreSQL server for
the changes to take effect. You can do this using the appropriate command
for your operating system.

For example, on Linux systems, you can use:

sudo systemctl restart postgresql

On Windows systems, you can restart the PostgreSQL service from the
Services management console or use the following command in the
Command Prompt (running as Administrator):

net stop postgresql && net start postgresql

Now you have enabled or disabled Archive mode for your PostgreSQL
database. Please note that enabling or disabling Archive mode is a global
setting that affects all databases on the PostgreSQL server.

Recipe#2: WAL Compression Option for Space Management

Write-Ahead Logging (WAL) compression is an option in PostgreSQL
that helps reduce the storage space required for WAL files. By enabling
WAL compression, PostgreSQL compresses the main data portion of
WAL records, which reduces the amount of I/O and storage needed to
maintain the WAL. This can improve write performance and help manage
space, especially for larger databases.

To enable WAL compression, follow these steps:

Locate postgresql.conf Configuration File

As mentioned in the previous recipe, the postgresql.conf file is usually
located in the PostgreSQL data directory. You can find the location by
running the following command:

SHOW data_directory;

Open the postgresql.conf file with your preferred text editor.

Enable WAL Compression

Find the wal_compression parameter in the postgresql.conf file.
Uncomment the line if it's commented (remove the at the beginning of
the line) and set it to on:

wal_compression = on

Save the changes to the postgresql.conf file.

Restart PostgreSOL Server

After making the changes, you need to restart the PostgreSQL server for
the changes to take effect. You can do this using the appropriate command
for your operating system.

For example, on Linux systems, you can use:

sudo systemctl restart postgresql

On Windows systems, you can restart the PostgreSQL service from the
Services management console or use the following command in the
Command Prompt (running as Administrator):

net stop postgresql && net start postgresql

After completing these steps, WAL compression will be enabled, and
PostgreSQL will compress the main data portion of new WAL records.
This will help save storage space and improve write performance. Keep in
mind that compression comes with some CPU overhead, but it is typically
a reasonable trade-off for the space savings and I/O reduction achieved.

Recipe#3: Configure WAL Performance Parameter

To configure and manage Write-Ahead Logging (WAL) performance in a
PostgreSQL database, you can adjust several parameters in the
postgresql.conf file. Tuning these parameters helps balance the trade-offs
between write performance, recovery time, and replication lag. Following
is a practical recipe on how to configure and manage these parameters:

Locate postgresql.conf Configuration File

As mentioned before, the postgresql.conf file is usually located in the
PostgreSQL data directory. You can find the location by running the
following command:

SHOW data_directory;

Open the postgresql.conf file with your preferred text editor.

Configure WAL Performance Parameters

There are several parameters you can adjust to manage WAL performance.

Here are some of the most important ones:
wal_level: Determines the level of detail written to the WAL. Higher
levels increase the amount of information logged, which can affect
performance but may be required for certain features, like logical

replication or point-in-time recovery. Valid options are minimal, replica,
and logical. For most cases, the default value replica is a good balance.

wal_level = replica

wal_buffers: Specifies the number of disk-page buffers used for WAL
data. Increasing this value can improve write performance but uses more
shared memory. The default is -1, which sets the size to 1/32 of
shared_buffers or 8MB, whichever is smaller. You can experiment with
larger values (e.g., 16MB) to see if it improves performance.

wal_buffers = 16MB

checkpoint_timeout: Determines the maximum time between automatic
checkpoints. Increasing this value reduces the frequency of checkpoints,
which can improve write performance but may increase recovery time.
The default is 5 minutes. You can try increasing it to 10 minutes and
monitor the impact on performance and recovery time.

checkpoint_timeout = lOmin

max_wal_size: Specifies the amount of WAL that can be generated
between checkpoints. When this limit is reached, a checkpoint will be
triggered. Increasing this value can improve write performance but may
increase recovery time. The default is 1GB. You can try increasing it to
2GB and monitor the impact on performance and recovery time.

max_wal_size = 2GB

min_wal_size: Specifies the minimum amount of WAL space reserved for
the system. The system tries to maintain this much space for WAL at all
times. The default is 80MB. Increasing this value can help avoid running
out of WAL space during high-load periods.

min_wal_size = 128MB

synchronous_commit: Controls whether transaction commits must wait
for WAL records to be flushed to disk. Disabling synchronous commit
(off) can improve write performance but may result in data loss in case of
a crash. The default is on. Use this setting with caution and only if you can
afford potential data loss.

synchronous_commit = off

Save the changes to the postgresql.conf file.

Restart PostgreSOL Server

After making the changes, you need to restart the PostgreSQL server for
the changes to take effect. You can do this using the appropriate command
for your operating system.

For example, on Linux systems, you can use:

sudo systemctl restart postgresql

On Windows systems, you can restart the PostgreSQL service from the
Services management console or use the following command in the
Command Prompt (running as Administrator):

net stop postgresql && net start

Monitor WAL Performance

After making the changes and restarting the server, monitor the
performance to see if the changes had the desired effect. You can use
various tools to monitor WAL performance, such as pg_stat_replication,
pg_stat_archiver, and pg_stat_bgwriter.

For example, to check the replication lag of a replica, run the following
command:

SELECT client_addr, pg_xlog_location_diff(sent_location,
replay_location) AS replication_lag

FROM pg_stat_replication;

To check the status of the WAL archiver, run the following command:

SELECT archived_count, last_archived_wal, last_archived_time

FROM pg_stat_archiver;

To check the number of buffers written by the background writer, run the
following command:

SELECT checkpoints_timed, checkpoints_req, buffers_checkpoint,
buffers_clean, buffers_backend

FROM pg_stat_bgwriter;

Monitor the performance over time and adjust the parameters as needed to
achieve the desired balance between write performance, recovery time,
and replication lag.

The above aforesaid steps are the recommended ones to configure and
manage WAL performance in a PostgreSQL database. Keep in mind that
tuning WAL performance requires a good understanding of the workload
and system characteristics, and should be done with caution. Always test
changes in a non-production environment before applying them to
production.

Recipe#4: Administer Continuous Archiving

Continuous Archiving is the process of continuously copying Write-
Ahead Log (WAL) files to a separate storage location, which can then be
used for Point-In-Time Recovery (PITR) or for replication purposes.
PostgreSQL 15 includes several improvements and new features for
Continuous Archiving, including the ability to use multiple archive
destinations and to specify a custom script to manage archiving.

Here are the steps to administer Continuous Archiving in PostgreSQL 15:

Configure Archive Command

In PostgreSQL 15, you can specify a custom script to manage archiving
by setting the archive_command parameter in the postgresql.conf file. The
script should copy WAL files to a designated archive destination, such as a
remote server or cloud storage.

For example, to use rsync to copy WAL files to a remote server, you can
set the archive_command parameter to:

archive_command = 'rsync %p
username@remotehost:/path/to/archive/%f

This command will copy the WAL file specified by %p to the remote
server, using the username username and storing the file in the
/path/to/archive directory with the same filename as the WAL file (%f).

Configure Archive Mode

To enable Continuous Archiving, you need to set the archive_mode
parameter to on in the postgresql.conf file:

archive_mode = on

This parameter tells PostgreSQL to archive WAL files as they are written
to disk.

Specify Archive Destinations

PostgreSQL 15 allows you to specify multiple archive destinations, which
can be useful for redundancy or load balancing. To specify multiple
archive destinations, you can set the archive_destinations parameter in the
postgresql.conf file:

archive_destinations =
7path/to/archivel/,username@remotehost:/path/to/archive2/'

This parameter specifies two archive destinations: a local directory
(/path/to/archivel/) and a remote server
(username@remotehost:/path/to/archive2/). The two destinations are
separated by a comma.

Restart PostgreSQL

After making changes to the postgresql.conf file, you need to restart
PostgreSQL to apply the changes:

systemctl restart postgresql-15

This command restarts PostgreSQL 15 on a systemd-based system.

Test Archiving

To test archiving, you can create a new database and insert some data.
Then, create a checkpoint by running the following command:

SELECT pg_create_checkpoint();

This command creates a checkpoint, which flushes all changes to disk and
generates a new WAL file.

Check that the WAL file has been archived by checking the archive
destination(s) specified in the archive_command and archive_destinations
parameters.

Monitor Archiving

You can monitor archiving using various system views and functions, such
as pg_stat_archiver and pg_switch_wal. These views provide information
about the status of archiving, such as the number of WAL files archived
and the last archived WAL file.

For example, to check the status of archiving, run the following command:

SELECT *

FROM pg_stat_archiver;

This command shows the status of archiving, including the last archived
WAL file and the number of WAL files waiting to be archived.

The above aforesaid steps are the recommended ones to administer
Continuous Archiving in PostgreSQL 15. Continuous Archiving is an
important tool for ensuring data durability and high availability in
PostgreSQL databases.

Recipe#5: Using Remote WAL Archive Options

Remote WAL archiving is the process of copying Write-Ahead Log
(WAL) files from a primary PostgreSQL server to a remote server for
disaster recovery purposes. This is typically done using a tool like rsync or
scp to copy the files over the network. PostgreSQL provides several
options for working with remote WAL archiving, including specifying the
remote archive location, setting up SSH keys for secure file transfer, and
using compression to reduce network traffic.

Following are the steps to work with remote WAL archive options in
PostgreSQL:

Configure Archive Command

To specify the remote archive location, you can set the archive_command
parameter in the postgresql.conf file to a command that copies WAL files
to the remote server. For example, to use rsync to copy WAL files to a
remote server with IP address 192.0.2.1, you can set the
archive_command parameter to:

archive_command = 'rsync %p user@l92.0.2.1 :/path/to/archive/%f

This command will copy the WAL file specified by %p to the remote
server, using the username user and storing the file in the /path/to/archive
directory with the same filename as the WAL file (%f).

Setup SSH Keys

To secure the file transfer, it is recommended to set up SSH keys for
authentication. This allows the primary server to authenticate with the
remote server without requiring a password.

First, create a public/private key pair on the primary server by running the
following command:

ssh-keygen

This command creates a public/private key pair in the ~/.ssh directory.

Then, copy the public key to the remote server by running the following
command:

ssh-copy-id user@l 92.0.2.1

This command copies the public key to the remote server and adds it to
the authorized_keys file, allowing the primary server to authenticate
without a password.

Test Archiving

To test remote WAL archiving, you can create a new database and insert
some data. Then, create a checkpoint by running the following command:

SELECT pg_create_checkpoint();

This command creates a checkpoint, which flushes all changes to disk and
generates a new WAL file.

Check that the WAL file has been archived on the remote server by
checking the archive destination specified in the archive_command
parameter.

Enable Compression (optional)

To reduce network traffic and improve performance, you can enable
compression for remote WAL archiving by adding the -z option to the
rsync command in the archive_command parameter:

archive_command = 'rsync -z %p user@l92.0.2.1 :/path/to/archive/%f

This command enables compression for the file transfer, which can help
reduce the amount of data transferred over the network.

The above aforesaid steps are the recommended ones to work with remote
WAL archive options in PostgreSQL. Remote WAL archiving is an
important tool for disaster recovery and high availability in PostgreSQL
databases.

Recipe#6: Exploring Vacuum Process

In PostgreSQL, the VACUUM process is used to reclaim storage space
occupied by dead rows and to improve query performance. When a row is
deleted or updated, the old version of the row is not immediately removed
from the table. Instead, it becomes a dead row, which is still visible to
other transactions but cannot be accessed by any new transactions. These
dead rows consume disk space and may cause performance issues if they
accumulate over time.

The VACUUM process scans the table and removes dead rows, freeing up
storage space and improving query performance. In addition to removing
dead rows, VACUUM also reclaims unused space within the table and
updates the visibility information of rows to improve query planning.

To perform a VACUUM on the adventureworks database, you can use the
following command:

VACUUM FULL;

This command performs a full VACUUM of all tables in the database,
which may take some time for larger databases. It removes dead rows and
reclaims unused space within the tables, which can improve performance
and reduce disk space usage.

Note that VACUUM can cause some level of locking, and may affect
concurrent access to the tables being vacuumed. For this reason, it is

recommended to schedule regular VACUUM operations during periods of
low database activity.

In addition to the VACUUM process, PostgreSQL provides several other
tools for managing database storage and performance, such as pg_dump
for backing up and restoring databases, and pg_repack for optimizing
table storage. These tools can be useful for managing the adventure works
database and ensuring its performance and stability.

Recipe#7: Estimate Transaction Log Size

To estimate the transaction log size for a PostgreSQL database, you can
use the following SQL statement:

SELECT

(SELECT sum(pg_database_size(datname)) FROM pg_database
WHERE datname = 'adventureworks') /
current_setting('wal_segment_size')::numeric *
current_setting('wal_retention_bytes'):: numeric /
current_setting('wal_segment_size')::numeric AS log_size;

This SQL statement calculates the estimated size of the transaction log for
the adventureworks database, based on the current database size and the
configuration settings for the transaction log size.

The calculation is based on the following factors:
• The size of the database, obtained using pg_database_size()
• The size of each WAL segment, obtained using
current_setting('wal_segment_size')
• The retention period of the transaction log, obtained using
current_setting('wal_retention_bytes')
The result is expressed in units of WAL segments, which can be used to
determine the disk space required for the transaction log.

This is an estimation, and the actual transaction log size may vary
depending on the workload and usage patterns of the database. It is
recommended to monitor the transaction log size regularly and adjust the
configuration settings as needed to avoid running out of disk space.

To run the SQL statement, you can use any PostgreSQL client tool, such
as psql or PgAdmin. Following is an example of how to run the SQL
statement using psql:

Open a terminal window and connect to the adventureworks database
using psql:

psql -d adventureworks

Enter the SQL statement in the psql prompt:

SELECT

(SELECT sum(pg_database_size(datname)) FROM pg_database
WHERE datname = 'adventureworks') /
current_setting('wal_segment_size')::numeric *
current_setting('wal_retention_bytes'):: numeric /
current_setting('wal_segment_size')::numeric AS log_size;

Press Enter to execute the SQL statement.

The result will be displayed in the psql prompt, showing the estimated size
of the transaction log in WAL segments.

This is how you can use an SQL statement to estimate the transaction log
size for a PostgreSQL database.

Recipe#8: Debug PostgreSQL Autovaccum

Autovacuum is a process in PostgreSQL that automatically reclaims
storage space and optimizes table performance. However, sometimes
autovacuum may not work as expected, leading to performance issues and
disk space usage problems. Here are the steps to debug auto vacuum
problems in PostgreSQL for the adventureworks database:

Check Autovacuum Settings

The first step is to check the autovacuum settings for the adventureworks
database. You can do this by running the following query:

SELECT name, setting FROM pg_settings WHERE name LIKE
'auto vacuum%';

This query shows the current values of autovacuum-related parameters,
such as autovacuum_vacuum_scale_factor,
autovacuum_analyze_scale_factor, and autovacuum_freeze_max_age.

Check that the settings are appropriate for the workload and database size.

Check Autovacuum Logs

Autovacuum logs can provide valuable information about the behavior of
the autovacuum process, including the tables being vacuumed and the

reasons for vacuuming. Check the PostgreSQL log files for autovacuum
messages, such as:

LOG: automatic vacuum of table "public.orders": index scans: 1

This message shows that the autovacuum process vacuumed the orders
table in the public schema, and performed one index scan.

Monitor Table Statistics

PostgreSQL provides several system views for monitoring table statistics,
such as pg_stat_all_tables and pg_stat_user_tables. These views provide
information about table sizes, dead row counts, and other performance
metrics. Check these views to identify tables that may require vacuuming
or analyzing.

For example, to list tables that have a high number of dead rows, you can
run the following query:

SELECT schemaname, relname, n_dead_tup

FROM pg_stat_user_tables

WHERE n_dead_tup > 1000;

This query shows tables in the user schema that have more than 1000 dead
rows.

Manually Vacuum Tables

If autovacuum is not working as expected, you can manually vacuum
tables using the VACUUM command. For example, to vacuum the orders
table in the public schema, you can run the following command:

VACUUM public.orders;

This command vacuums the orders table, removing dead rows and
reclaiming unused space.

Increase Autovacuum Settings

If autovacuum is not keeping up with the workload, you may need to
increase the autovacuum settings to vacuum tables more frequently or
more aggressively. You can do this by changing the
autovacuum_vacuum_scale_factor and autovacuum_analyze_scale_factor
parameters in the postgresql.conf file, or by using the ALTER TABLE
command to set per-table autovacuum settings.

For example, to set the autovacuum_vacuum_scale_factor parameter to
0.05 for the adventure works database, you can run the following
command:

ALTER DATABASE adventureworks SET
autovacuum_vacuum_scale_factor = 0.05;

This command sets the autovacuum_vacuum_scale_factor parameter to
0.05, which causes autovacuum to vacuum tables more frequently.

The above aforesaid steps are the recommended ones to debug
auto vacuum problems in PostgreSQL for the adventure works database. By
monitoring autov

Recipe#9: Delete PostgreSQL Archive Logs

In PostgreSQL, archive logs are used for point-in-time recovery and
replication. However, over time these logs can accumulate and take up a
significant amount of disk space. To delete archive logs for the
adventureworks database, you can use the following steps:

Determine the Archive Directory Location

To delete archive logs, you need to determine the location of the archive
directory for the adventure works database. You can check the value of the
archive_command parameter in the postgresql.conf file to determine the
directory location. For example, if the archive_command parameter is set
to:

archive_command = 'cp %p /mnt/server/archives/%f

This indicates that archive logs are stored in the /mnt/server/archives
directory.

Determine the Retention Policy

The retention policy determines how long archive logs should be retained
before they are eligible for deletion. You can check the value of the
archive_timeout parameter in the postgresql.conf file to determine the
retention policy. For example, if the archive_timeout parameter is set to:

archive_timeout = 86400

This indicates that archive logs should be retained for 24 hours (86400
seconds) before they are eligible for deletion.

Identify Archive Logs to Delete

Once you have determined the archive directory location and retention
policy, you can identify archive logs that are eligible for deletion. To do
this, you can list the contents of the archive directory and filter the list
based on the retention policy. For example, to list archive logs in the
/mnt/server/archives directory that are older than 24 hours, you can run
the following command:

find /mnt/server/archives -type f -mtime +1

This command lists all files (-type f) in the /mnt/server/archives directory
that were last modified more than 1 day ago (-mtime +1).

Delete Archive Logs

Once you have identified archive logs that are eligible for deletion, you
can delete them using the rm command. For example, to delete all archive
logs in the /mnt/server/archives directory that are older than 24 hours, you
can run the following command:

find /mnt/server/archives -type f -mtime +1 -delete

This command deletes all files (-type f) in the /mnt/server/archives
directory that were last modified more than 1 day ago (-mtime +1).

The above aforesaid steps are the recommended ones to delete archive
logs for the adventureworks database in PostgreSQL. Note that deleting
archive logs can affect the ability to perform point-in-time recovery and
replication, so it is important to carefully manage archive log retention
and deletion policies.

Chapter 6: Partitioning and Sharding Strategies

Recipe#!: Setup Partitioning in PostgreSQL 15

Partitioning is a technique used in PostgreSQL to improve query
performance and manage large tables by dividing them into smaller, more
manageable partitions. Each partition is essentially a smaller table with its
own set of indexes and storage characteristics, allowing queries to be
processed more efficiently and reducing the risk of table bloat.

Below is how to set up partitioning in PostgreSQL 15 for the
adventure works database:

Choose Partitioning Strategy

There are several partitioning strategies available in PostgreSQL, such as
range partitioning, list partitioning, and hash partitioning. Choose a
partitioning strategy that is appropriate for the data and queries in the
adventure works database.

Create Partitioned Table

To create a partitioned table in PostgreSQL, use the CREATE TABLE
command with the PARTITION BY clause. Lor example, to create a
partitioned table for orders based on the order date, you can run the
following command:

CREATE TABLE orders (

id serial PRIMARY KEY,

order_date date NOT NULL,

customer_id integer NOT NULL,

)

PARTITION BY RANGE (order date);

This command creates a partitioned table for orders, partitioned by the
order_date column using range partitioning.

Create Partitions

Once the partitioned table is created, you can create partitions by using the
CREATE TABLE command with the PARTITION OF clause. For
example, to create a partition for orders placed in January 2023, you can
run the following command:

CREATE TABLE orders_202301 PARTITION OF orders

FOR VALUES FROM ('2023-01-01') TO ('2023-02-01');

This command creates a partition for orders placed in January 2023, with
a range of'2023-01-01' to '2023-02-01'.

Index Partitions

Indexes can be created on each partition separately or on the partitioned
table as a whole. Depending on the partitioning strategy and the queries
being executed, it may be more efficient to create indexes on each
partition separately. For example, to create an index on the customer_id
column for the orders_202301 partition, you can run the following
command:

CREATE INDEX orders_202301_customer_id_idx ON orders_202301
(customer_id);

This command creates an index on the customer_id column for the
orders_202301 partition.

Insert Data

Once the partitions are created, you can insert data into the partitioned
table as usual. PostgreSQL will automatically route the data to the
appropriate partition based on the partitioning strategy.

Optimize Partitions

Over time, the performance of the partitions may degrade due to bloat and
other factors. To optimize partitions, you can use tools such as VACUUM
and pg_repack to reclaim storage space and reorganize the data within the
partitions.

The above aforesaid steps are the recommended ones to set up partitioning
in PostgreSQL 15 for the adventureworks database. Note that partitioning
can significantly improve query performance and manageability for large
tables, but it requires careful planning and ongoing maintenance to ensure
optimal performance.

Recipe#2: Vertical & Horizontal Partitioning

In addition to regular partitioning, PostgreSQL also supports vertical and
horizontal partitioning to further improve query performance and
manageability for large tables.

Vertical partitioning involves splitting a table into multiple tables based on
columns, with each table containing a subset of columns. This can be
useful when certain columns are accessed more frequently than others, or
when certain columns contain large amounts of data that can be stored
separately for improved query performance. To achieve vertical
partitioning in PostgreSQL, you can use the CREATE TABLE command
to create separate tables for each subset of columns, and use the JOIN
operation to combine the results of multiple tables.

Horizontal partitioning involves splitting a table into multiple tables based
on rows, with each table containing a subset of rows. This can be useful
when a table contains a large number of rows that are accessed
infrequently, or when certain rows can be logically grouped together for
improved query performance. To achieve horizontal partitioning in
PostgreSQL, you can use the regular partitioning techniques described in
the previous solution.

For the adventure works database, here are examples of howto achieve
vertical and horizontal partitioning:

Vertical Partitioning

Suppose the orders table in the adventureworks database contains a large
amount of data in the order_details column, which is rarely accessed. To
vertically partition the orders table based on this column, you can create a
separate table for the order_details column, and join the two tables as
needed. Following is an example of how to do this:

CREATE TABLE orders (

id serial PRIMARY KEY,

order_date date NOT NULL,

customer_id integer NOT NULL,

);

CREATE TABLE order details (

id serial PRIMARY KEY,

order_id integer REFERENCES orders (id),

details jsonb NOT NULL

);

This command creates two tables: orders and order_details. The orders
table contains the columns that are frequently accessed, while the
order_details table contains the order_id and details columns.

To retrieve the order_details for a specific order, you can join the two
tables as follows:

SELECT orders.*, order_details.details

FROM orders

JOIN order_details ON orders.id = order_details.order_id

WHERE orders.id = 123;

Horizontal Partitioning

Suppose the orders table in the adventureworks database contains a large
number of rows, making queries slow and inefficient. To horizontally
partition the orders table based on the order_date column, you can create
separate tables for each partition, and use a parent table to route queries to
the appropriate partition. Following is an example of how to do this:

CREATE TABLE orders (

id serial PRIMARY KEY,

order_date date NOT NULL,

customer_id integer NOT NULL,

CREATE TABLE orders_2022 (

CHECK (order_date >= '2022-01-01' AND order_date < '2023-01-01')

) INHERITS (orders);

CREATE TABLE orders_2023 (

CHECK (order_date >= '2023-01-01' AND order_date < '2024-01-01')

) INHERITS (orders);

CREATE TABLE orders_2024 (

CHECK (order_date >= '2024-01-01' AND order_date < '2025-01-01')

) INHERITS (orders);

This command creates three tables: orders, orders_2022, orders_2023, and
orders_2024. Each partition contains a subset of rows based on the
order_date column. The INHERITS clause indicates that each child table
inherits the structure of the parent table.

To insert data into the appropriate partition, you can specify the partition
name in the INSERT statement. For example:

INSERT INTO orders_2022 (order_date, customer_id,...)

VALUES ('2022-01-01', 123,...);

To retrieve data from the partitioned table, you can query the parent table
as usual. PostgreSQL will automatically route the query to the appropriate
partition based on the CHECK constraints defined in each child table.

SELECT *

FROM orders

WHERE order_date >= '2022-01-01' AND order_date < '2023-01-01';

This command retrieves all rows from the orders table where the
order_date is in the year 2022.

The above aforesaid steps are the recommended ones to achieve vertical
and horizontal partitioning in PostgreSQL for the adventureworks
database. By partitioning large tables, you can improve query performance

and manageability, while also reducing the risk of table bloat and other
performance issues.

Recipe#3: Perform Attaching, Detaching and Drop Partition

In PostgreSQL, partitions can be attached and detached from a partitioned
table dynamically, allowing for flexible management of data over time.
Following is howto perform attaching, detaching, and dropping partitions
with PostgreSQL 15 for the adventureworks database:

Attaching Partition

To attach a new partition to a partitioned table, you can use the ALTER
TABLE command with the ATTACH PARTITION clause. For example, to
attach a partition for orders placed in February 2023, you can run the
following command:

ALTER TABLE orders

ATTACH PARTITION orders_202302

FOR VALUES FROM ('2023-02-01') TO ('2023-03-01');

This command attaches a new partition named orders_202302 to the
orders table, with a range of'2023-02-01' to '2023-03-01'.

Detaching Partition

To detach a partition from a partitioned table, you can use the ALTER
TABLE command with the DETACH PARTITION clause. For example,
to detach the orders_202302 partition from the orders table, you can run
the following command:

ALTER TABLE orders

DETACH PARTITION orders_202302;

This command detaches the orders_202302 partition from the orders table.

Dropping Partition

To drop a partition completely from the database, you can use the DROP
TABLE command. For example, to drop the orders_202302 partition from
the database, you can run the following command:

DROP TABLE orders_202302;

This command drops the orders_202302 partition from the database.

Note that when dropping a partition, you should ensure that any data
contained in the partition is no longer needed or has been moved to
another partition. Dropping a partition will permanently delete all data
contained in the partition, so it should be done with care.

The above aforesaid steps are the recommended ones to perform
attaching, detaching, and dropping partitions with PostgreSQL 15 for the

adventure works database. By dynamically managing partitions, you can
improve data management and performance for large tables over time.

Recipe#4: Tables Partitioning using Table Inheritance

In PostgreSQL, it is possible to partition an existing table by using table
inheritance. Table inheritance allows you to create a child table that
inherits the structure of a parent table, while also adding additional
columns or constraints. Following is how to use table inheritance for table
partitioning in the adventure works database:

Create Parent Table

To partition an existing table, you first need to create a parent table that
will serve as the basis for the child tables. For example, to partition the
orders table in the adventureworks database by month, you can create a
parent table called orders_parent with the following command:

CREATE TABLE orders_parent (

id serial PRIMARY KEY,

order_date date NOT NULL,

customer_id integer NOT NULL,

);

This command creates a parent table called orders_parent with the same
structure as the orders table.

Create Child Tables

Once the parent table is created, you can create child tables that inherit its
structure. To create a child table for orders placed in January 2023, you
can use the following command:

CREATE TABLE orders_202301 (

CHECK (order_date >= '2023-01-0T AND order_date < '2023-02-01')

) INHERITS (orders_parent);

This command creates a child table called orders_202301 that inherits the
structure of the orders_parent table. The CHECK constraint defines the
range of order_date values that should be stored in this partition.

You can create additional child tables for each partition as needed, using
the same structure as the parent table.

Index Child Tables

Indexes can be created on each child table separately or on the parent table
as a whole. Depending on the partitioning strategy and the queries being
executed, it may be more efficient to create indexes on each child table

separately. For example, to create an index on the customer_id column for
the orders_202301 partition, you can run the following command:

CREATE INDEX orders_202301_customer_id_idx ON orders_202301
(customer_id);

This command creates an index on the customer_id column for the
orders_202301 partition.

Insert Data

Once the child tables are created, you can insert data into the partitioned
table as usual. PostgreSQL will automatically route the data to the
appropriate partition based on the partitioning strategy.

Optimize Partitions

Over time, the performance of the partitions may degrade due to bloat and
other factors. To optimize partitions, you can use tools such as VACUUM
and pg_repack to reclaim storage space and reorganize the data within the
partitions.

The above aforesaid steps are the recommended ones to use table
inheritance for table partitioning in the adventure works database. Note
that table inheritance can be a powerful technique for partitioning existing
tables, but it requires careful planning and ongoing maintenance to ensure
optimal performance.

Recipe#5: Implement Automatic Partition

In PostgreSQL 10 and later versions, the concept of declarative
partitioning was introduced, which allows for automatic partitioning of
data based on predefined rules. This can simplify the process of managing
large tables by automatically creating and managing partitions, based on
predefined rules. Following is how to implement automatic partitioning in
PostgreSQL 15 for the adventureworks database:

Create Partitioned Table

To create a partitioned table, you can use the CREATE TABLE command
with the PARTITION BY clause, and specify the partitioning strategy. For
example, to partition the orders table in the adventureworks database by
month, you can run the following command:

CREATE TABLE orders (

id serial PRIMARY KEY,

order_date date NOT NULL,

customer_id integer NOT NULL,

)

PARTITION BY RANGE (order date);

This command creates a partitioned table called orders with the same
structure as the orders table, and specifies that the table should be
partitioned based on the order_date column.

Create Partitions Automatically

Once the partitioned table is created, you can create partitions
automatically based on predefined rules using the CREATE TABLE
command. For example, to create a partition for orders placed in January
2023, you can run the following command:

CREATE TABLE orders_202301 PARTITION OF orders

FOR VALUES FROM ('2023-01-01') TO ('2023-02-01');

This command creates a partition called orders_202301 for the orders
table, based on the order_date values in the range of'2023-01-01' to '2023
02-01'.

You can create additional partitions as needed, and PostgreSQL will
automatically route data to the appropriate partition based on the
partitioning strategy.

The above aforesaid steps are the recommended ones to implement
automatic partitioning in PostgreSQL 15 for the adventureworks database.
Automatic partitioning can simplify the process of managing large tables,
and help ensure optimal performance by automatically creating and
managing partitions based on predefined rules.

Recipe#6: Partition Pruning

Partition pruning is a technique used by PostgreSQL to speed up queries
on partitioned tables by eliminating partitions that do not contain relevant
data. This is achieved by analyzing the query conditions and identifying
which partitions are likely to contain relevant data, and then only scanning
those partitions during query execution. Partition pruning can greatly
improve query performance on large partitioned tables, by reducing the
amount of data that needs to be scanned.

Following is how to make partition pruning useful for the adventure works
database:

Define Partition Ranges

To enable partition pruning, you first need to define the partition ranges
for the table. This can be done using the CREATE TABLE command with
the PARTITION BY clause, as described in the previous solution.

Index Partitions

Indexes can be created on each partition separately or on the partitioned
table as a whole, as described in the previous solution. Indexes can greatly
improve query performance by allowing PostgreSQL to quickly locate
relevant data within each partition.

Optimize Partitions

As with regular tables, partitions may need to be optimized over time to
ensure optimal performance. Tools such as VACUUM and pg_repack can
be used to reclaim storage space and reorganize the data within the
partitions.

Use Partition Key in Queries

To take advantage of partition pruning, queries must be written to include
the partition key in the WHERE clause. For example, to retrieve all orders
placed in January 2023, you can run the following command:

SELECT *

FROM orders

WHERE order_date >= '2023-01-01' AND order_date < '2023-02-01';

This command includes the order_date column in the WHERE clause,
which allows PostgreSQL to identify the relevant partition(s) and only
scan those partitions during query execution. Without the partition key in
the WHERE clause, PostgreSQL would need to scan all partitions, which
would be much slower for large tables.

By following these steps, you can make partition pruning useful for the
adventureworks database, and greatly improve query performance on
large partitioned tables.

Recipe#7: Run Declarative Partition

To run declarative partitioning on the adventureworks database using
PostgreSQL 15, you can follow these steps:

Create Child Tables

Use the CREATE TABLE statement with the PARTITION OF clause to
create the child tables that will inherit from the partitioned table. For
example, to create a child table called orders January that will hold all
orders from January 2023, you could use the following statement:

CREATE TABLE orders January PARTITION OF orders_partitioned

FOR VALUES FROM ('2023-01-01') TO ('2023-02-01');

This statement creates the orders January table as a child table of
orders_partitioned and specifies that it should hold all orders with an
order_date between January 1, 2023, and February 1, 2023.

You can create additional child tables as needed for the other months.

Add Constraints to Child Tables

Use the ALTER TABLE statement to add constraints to the child tables as
needed. For example, to add a foreign key constraint to the orders January

table, you could use the following statement:

ALTER TABLE orders January ADD CONSTRAINT
orders J anuary_customer_fk

FOREIGN KEY (customer id) REFERENCES customers(id);

This statement adds a foreign key constraint to the customer Jd column in
the orders January table that references the id column in the customers
table.

Optimize Partitions

As with any table, partitions may need to be optimized over time to ensure
optimal performance. Use the VACUUM and pg_repack tools to reclaim
storage space and reorganize the data within the partitions.

With these steps, you can run declarative partitioning on the
adventureworks database using PostgreSQL 15.

Recipe#8: Administer Performance with Table Partitioning

Table partitioning in PostgreSQL can be a powerful technique for
improving database performance, especially for very large tables. Here are
some tips for administering performance with table partitioning in the
adventure works database:

Choose Appropriate Partitioning Strategy

There are several different partitioning strategies available in PostgreSQL,
including range partitioning, list partitioning, and hash partitioning. The
best strategy for your database will depend on the characteristics of your
data and your query workload. It's important to choose an appropriate
partitioning strategy that will enable efficient partition pruning and avoid
excessive partition overlap.

Use Appropriate Partition Ranges

When defining partition ranges, it's important to choose appropriate
ranges that will allow for efficient partition pruning. For example, if
you're partitioning a table by date, it may be best to use monthly partitions
rather than daily partitions, depending on the size of the table and the
typical query workload.

Optimize Partition Size

It's important to optimize the size of each partition to balance query
performance with storage efficiency. If partitions are too small, there may
be too much overhead associated with managing them. If partitions are too
large, query performance may suffer due to excessive partition overlap.

Monitor Partition Size and Bloat

Regularly monitor the size and bloat of partitions to ensure optimal
performance. Use tools such as VACUUM and pg_repack to reclaim
storage space and reorganize the data within the partitions as needed.

Use Appropriate Indexing

Ensure that each partition is appropriately indexed to support efficient
query execution. This may require creating separate indexes on each
partition, or using a single index on the partitioned table as a whole,
depending on the query workload.

Test and Optimize Queries

Test queries to ensure that they are taking advantage of partition pruning
and that performance is optimized. Make adjustments to the partitioning
strategy or indexing as needed to ensure optimal query performance.

By following these tips, you can administer performance with table
partitioning in the adventureworks database and ensure that queries
execute efficiently on very large tables.

Recipe#9: Setting up Shard with FWD

Setting up sharding with FWD (Flexible Web Data) in PostgreSQL
involves partitioning data across multiple servers or instances, typically
based on a specific key or range of keys. Here are the steps to set up
sharding with FWD for the adventure works database:

Choose Sharding Key

The sharding key is the column or set of columns used to partition the data
across multiple servers or instances. For example, if you want to shard the
orders table in the adventureworks database, you could use the
customer_id column as the sharding key.

Create Shards

Each shard represents a separate database instance or server. Use the
CREATE DATABASE command to create the shards, specifying the
necessary parameters such as host, port, and database name.

Create Shard Man

The shard map is a table that maps the sharding key values to specific
shards. Use the CREATE TABLE command to create the shard map table,
specifying the necessary columns such as the sharding key and shard ID.

Insert Data into Shard Mao

Use the INSERT INTO command to insert data into the shard map table,
mapping each sharding key value to the appropriate shard ID.

Configure FWD

FWD is a middleware layer that handles routing requests to the
appropriate shard based on the sharding key value. Configure FWD to
handle requests to the adventureworks database, and to route those
requests to the appropriate shard based on the shard map.

Migrate Data

Finally, migrate data from the original orders table to the appropriate
shard, based on the shard map. This can be done using tools such as
pg_dump and pg_restore, or using custom scripts.

With these steps, you can set up sharding with FWD for the
adventureworks database in PostgreSQL, allowing you to scale out your
database horizontally and improve performance.

Recipe# 10: Configure Sharding with Citusdata

Configuring sharding with Citusdata in PostgreSQL involves using the
Citus extension to partition data across multiple nodes, typically based on
a specific key or range of keys. Here are the steps to configure sharding
with Citusdata for the adventure works database:

Install Citus Extension

Install the Citus extension on each node where you want to store data.
This can be done using the CREATE EXTENSION command, or by
installing the extension from source.

Choose Sharding Key

The sharding key is the column or set of columns used to partition the data
across multiple nodes. For example, if you want to shard the orders table
in the adventureworks database, you could use the customer_id column as
the sharding key.

Create Distributed Table

Use the CREATE TABLE command with the DISTRIBUTED BY clause
to create a distributed table, specifying the necessary columns such as the
sharding key. For example:

CREATE TABLE orders (

id SERIAL PRIMARY KEY,

order date DATE NOT NULL,

customer id INTEGER NOT NULL,

) DISTRIBUTED BY (customer id);

This statement creates a orders table that is distributed across multiple
nodes based on the customer_id column.

Migrate Data

Migrate data from the original orders table to the distributed table using
tools such as pg_dump and pg_restore, or using custom scripts.

Optimize Performance

As with any database, there are several strategies to optimize performance,
such as indexing, query optimization, and load balancing. Citus provides
additional features such as distributed indexes and distributed SQL that
can further optimize performance.

Add Nodes

To scale out your database horizontally, add additional nodes to the cluster
using the citus_add_node command. This will automatically rebalance the
data across all nodes, ensuring even distribution of data.

With these steps, you can configure sharding with Citusdata for the
adventureworks database in PostgreSQL, allowing you to scale out your
database horizontally and improve performance.

Recipe#! 1: Repair Shards

Repairing shards in a sharded PostgreSQL cluster involves fixing data
inconsistencies or other issues that may arise due to hardware or software
failures. Here are the steps to repair shards in a Citusdata sharded cluster
for the adventure works database:

Identify the Problem

Use monitoring tools and query logs to identify the nature of the problem
with the shard. This may include data inconsistencies, network issues,
hardware failures, or other problems.

Take the Shard Offline

If the problem is severe enough, take the shard offline to prevent further
data inconsistencies or other issues. Use the DROP NODE command to
remove the node from the cluster.

Repair the Problem

Depending on the nature of the problem, there may be several strategies to
repair the shard. For example, if there are data inconsistencies, you may
need to use data replication tools such as pg_dump and pg_restore to
restore the data on the node. Alternatively, you may need to replace
hardware or fix network issues to restore the node to proper operation.

Rejoin the Shard

Once the problem has been resolved, rejoin the shard to the cluster using
the citus_add_node command. This will automatically rebalance the data
across all nodes, ensuring even distribution of data.

Monitor and Optimize Performance

After repairing the shard, monitor the performance of the cluster to ensure
that it is operating as expected. Use strategies such as indexing, query
optimization, and load balancing to optimize performance as needed.

By following these steps, you can repair shards in a Citusdata sharded
cluster for the adventureworks database, ensuring high availability and
reliability for your data.

Chapter 7: Solving Replication, Scalability & High Availability

Recipe#!: Using Master-Slave Replication

Master-Slave Replication is a technique used to create a copy of the
master database, called a slave or replica, to achieve high availability and
scalability. This technique involves copying the data from the master
database to one or more slave databases in real-time, using a process
called streaming replication. This means that any changes made to the
master database are immediately replicated to the slave databases,
ensuring that all the databases are always in sync.

To use Master-Slave Replication to scale the given PostgreSQL database,
we first need to set up a master database and one or more slave databases.
Here are the steps:

Setup Master Database

Install PostgreSQL on the server where the master database will be
hosted.

Create a new database using the following command: createdb dbname

Create a new user and grant it replication privileges using the following
commands:

CREATE USER replication user WITH REPLICATION PASSWORD
'password';

GRANT REPLICATION TO replication user;

Modify the PostgreSQL configuration file, postgresql.conf, to allow
replication by setting the following parameters:

wal_level = replica

max_wal_senders = 10

wal_keep_segments = 10

Restart the PostgreSQL service to apply the changes.

Setup Slave Database

Install PostgreSQL on the server where the slave database will be hosted.

Create a new database using the following command: createdb dbname
Modify the PostgreSQL configuration file, postgresql.conf, to allow
replication by setting the following parameters:

hot_standby = on

Create a recovery.conf file in the data directory of the slave database and
configure it with the following parameters:

standby_mode = 'on'

primary_conninfo = 'host=master_ip_address port=5432
user=replication_user password=password'

Replace master_ip_address, replication_user, and password with the actual
values for your master database.

Start PostgreSOL Dervice on Slave Database

Connect to the master database and create a replication slot using the
following command:

SELECT * FROM
pg_create_physical_replication_slot('replication_slot_name');

Note: Replace replication_slot_name with a unique name for your
replication slot.

Verify that the replication slot has been created using the following
command:

SELECT * FROM pg_replication_slots;

Connect to the slave database and start streaming replication by running
the following command:

pg_basebackup -h master_ip_address -D /path/to/data/directory -P -U
replication_user -R

Note: Replace master_ip_address, /path/to/data/directory, and
replication_user with the actual values for your master database.

Start PostgreSOL Service on Slave Database

Once the replication is set up, any changes made to the master database
will be immediately replicated to the slave database(s), allowing for high
availability and scalability. To scale further, you can add more slave
databases as needed.

Recipe#2: Setup Delay Standby

Setting up a Delayed Standby is a technique used to introduce a delay in
the replication process between the master and slave databases. This
technique can be useful in scenarios where you need to be able to recover
from data corruption or human error.

Here are the steps to set up Delayed Standby in PostgreSQL:

Create a replication slot and a standby server as described in the previous
solution.

Configure the standby server with the replication settings by modifying
the postgresql.conf file as follows:

hot_standby = on

primary_conninfo = 'host=master_ip_address port=5432
user=replication_user password=password'

recovery_target_timeline = 'latest'

Note: Replace the master_ip_address, replication_user, and password with
your actual values.

Create a recovery.conf file in the standby data directory, which tells
PostgreSQL to use delayed replication.

standby_mode = on

primary_conninfo = 'host=master_ip_address port=5432
user=replication_user password=password'

recovery_target_timeline = 'latest'

recoverytargetjime = 'YYYY-MM-DD HH:MI:SS'

Note: Replace the master_ip_address, replication_user, password, and
YYYY-MM-DD HH:MI:SS with your actual values. The
recovery_target_time parameter is used to specify the delay in the
replication process.

Start the standby server and verify that replication is working by checking
the logs.

To test the delayed replication, you can perform a test on the master
database and then use the pg_wal_replay_pause() function on the standby
server to introduce a delay.

For example, to introduce a delay of 1 hour, run the following command
on the standby server:

SELECT pg_wal_replay_pause(now() - interval' 1 hour');

This will pause the replay of the WAL logs for 1 hour, after which it will
resume automatically.

Note: Delayed Standby can introduce a delay in the replication process,
which means that there will be a delay in the availability of the replicated
data on the standby server. This technique should be used only when
necessary and after careful consideration of the trade-offs involved.

Recipe#3: Install and Configure ‘repmgr’

Repmgr is a popular tool used to manage replication and failover in
PostgreSQL. It provides automated management and monitoring of
PostgreSQL replication clusters, making it easier to set up and maintain
PostgreSQL replication environments. Here are the steps to install and
configure Repmgr in PostgreSQL 15:

Install Renmgr

Install the repmgr package on all the nodes in the replication cluster using
the following command:

sudo apt-get install repmgr

Install the PostgreSQL client packages on all the nodes in the replication
cluster using the following command:

sudo apt-get install postgresql-client

Configure Repmgr

Create a repmgr user on all the nodes in the replication cluster using the
following command:

sudo -u postgres createuser repmgr -createrole -superuser -login

Create a repmgr database on all the nodes in the replication cluster using
the following command:

sudo -u postgres createdb repmgr -O repmgr

Configure the repmgr configuration file (repmgr. conf) on the primary
node with the following settings:

node_id = 1

node_name = primary

conninfo = host=primary_ip_address user=repmgr dbname=repmgr

data_directory = /path/to/postgresql/data

Note: Replace primary_ip_address and /path/to/postgresql/data with the
actual values for your primary node.

Copy the repmgr. conf file to all the other nodes in the replication cluster.

Initialize the repmgr metadata on the primary node using the following
command:

repmgr primary register

Note: This command will create the repmgr schema and tables in the
repmgr database, and add the primary node to the metadata.

Check that the metadata is correct using the following command:

repmgr cluster show

Start Replication

Set up streaming replication between the primary node and the standby
node(s) using the standard PostgreSQL streaming replication techniques
as described in the previous solution.
On each standby node, register it with repmgr using the following
command:

repmgr standby register

Check that the replication is working correctly using the following
command:

repmgr cluster show

Note: This command will display the status of all the nodes in the
replication cluster.
Failover:

In the event of a primary node failure, promote a standby node to become
the new primary node using the following command:

repmgr standby promote

This command will stop the old primary node, promote the designated
standby node to become the new primary node, and update the repmgr
metadata accordingly.

Repmgr provides many other features, including monitoring, automatic
failover, and automatic reconfiguration of the replication cluster. These
features can be configured by modifying the repmgr.conf file.

Recipe#4: Cloning Database with ‘repmgr’

To clone a PostgreSQL database using repmgr, you can use the repmgr
standby clone command. This command creates a new standby node by
cloning an existing standby or primary node in the replication cluster.

Here are the steps to clone a PostgreSQL database using repmgr:

Choose the Source Node

Decide which node in the replication cluster you want to use as the source
for the clone.
This can be either a primary node or a standby node.

Create a New Node

Create a new node for the clone by installing PostgreSQL and repmgr, and
configuring the PostgreSQL and repmgr settings as you would for any
other standby node.

Ensure that the new node has access to the same data directory as the
source node.

Clone the Source Node

On the new node, use the repmgr standby clone command to clone the
source node.

The basic syntax of the command is as follows:

repmgr standby clone SOURCENODECONNFNFO
DEST NODE CONNINFO [options]

SOURCE_NODE_CONNINFO is the connection information for the
source node.

DEST_NODE_CONNINFO is the connection information for the new
node.

[options] are any additional options you want to specify, such as -dry-run
to simulate the cloning process.

For example, to clone a standby node with the connection information
host=source_ip_address user=repmgr dbname=repmgr port=5432 to a new
node with the connection information host=new_ip_address user=repmgr
dbname=repmgr port=5432, you would run the following command on the
new node:

repmgr standby clone host=source_ip_address user=repmgr
dbname=repmgr port=5432 host=new_ip_address user=repmgr
dbname=repmgr port=5432

Verify the Clone

After the cloning process completes, verify that the new node is
functioning as a standby node by using the repmgr cluster show command
on any node in the replication cluster.
The new node should be listed as a standby node, and replication should
be working correctly.
Note: The cloning process creates a new standby node, which is an exact
replica of the source node at the time of the cloning. To keep the new node
in sync with the source node, you should ensure that streaming replication
is enabled and working correctly between the two nodes.

Recipe#5: Perform PITR Recovery using Delay Standby

Performing Point-in-Time Recovery (PITR) with a delayed standby node
involves restoring the standby node to a specific point in time in the past,
after introducing a delay in the replication process. Here are the steps to
perform PITR recovery using a delayed standby node in PostgreSQL:

Determine Recovery Point

Identify the specific point in time to which you want to recover the
database.

Note the timestamp of the recovery point.

Create recovery, conf File

Create a recovery.conf file in the data directory of the delayed standby
node.
In the recovery.conf file, set the following parameters:

standby_mode = on

primary_conninfo = 'host=master_ip_address port=5432
user=replication_user password=password'

recovery_target_timeline = 'latest'

recoveryJarget-time = 'YYYY-MM-DD HH:MI:SS'

master_ip_address, replication_user, and password should be replaced
with the actual values for your master database.

YYYY-MM-DD HH:MI:SS should be replaced with the timestamp of the
recovery point.

Save and close the recovery.conf file.

Start the Recovery Process

Stop the PostgreSQL service on the delayed standby node.

Copy the WAL archive files from the master database to the delayed
standby node up to the recovery point.

Start the PostgreSQL service on the delayed standby node.

The recovery process should start automatically and continue until the
database has been recovered to the specified point in time.

Verify the Recovery

Verify that the database has been recovered to the specified point in time
by checking the contents of the database and comparing them to a known

good state.

Ensure that the delay standby node is now fully operational and
synchronized with the master database.

Note: Delayed standby nodes introduce a delay in the replication process,
which means that the recovered database may be out of sync with the
master database by a certain amount of time. This should be taken into
consideration when performing PITR recovery using a delayed standby
node. Additionally, ensure that you have sufficient disk space to store the
WAL archive files needed for the recovery process.

Recipe#6: Deploy High Availability Cluster with Patroni

Patroni is an open-source tool that provides High Availability (HA) for
PostgreSQL. It is a Python-based solution that simplifies the management
and deployment of PostgreSQL HA clusters. Patroni uses the etcd key
value store to store and manage the configuration and state information for
the PostgreSQL cluster, and it provides automatic failover and replication
management for PostgreSQL.

Here are the steps to deploy a High Availability cluster with Patroni:

Install and Configure etcd

Install etcd on a separate server or node outside of the PostgreSQL cluster.
Configure etcd to listen on a specific IP address and port.

Ensure that etcd is accessible from all the nodes in the PostgreSQL cluster.

Install and Configure Patroni

Install Patroni on all the nodes in the PostgreSQL cluster.

Configure Patroni on each node with the appropriate settings, such as the
connection information for the PostgreSQL instance, the location of the
etcd server, and the cluster name.

Ensure that the etcd endpoints and cluster name are consistent across all
the nodes in the cluster.

Initialize PostgreSQL Cluster

On the primary node, initialize the PostgreSQL cluster using the pg_ctl
initdb command.

Create a PostgreSQL user and database for replication purposes, and grant
replication privileges to the user.

Start the PostgreSQL instance on the primary node.

Start Patroni Instances

Start the Patroni instances on all the nodes in the cluster.

Patroni will automatically discover the primary node and the standby
nodes, and configure replication between them.

Verify that replication is working correctly by checking the PostgreSQL
logs.

Test the Lailover

To test the failover, simulate a failure of the primary node by stopping the
PostgreSQL service or shutting down the server.

Patroni will automatically detect the failure and promote one of the
standby nodes to become the new primary node.

Verify that the new primary node is operational and that replication is
working correctly.

Note: Patroni provides many additional features, such as automated
backup and restore, monitoring, and logging. These features can be
configured by modifying the Patroni configuration file (patroni.yml).
Additionally, Patroni can be integrated with other tools and technologies,
such as Kubernetes, to provide even greater flexibility and scalability.

Recipe#7: Using HAProxy and PgBouncer for High Availability

HAProxy and PgBouncer are two popular open-source tools used to
provide High Availability for PostgreSQL databases. Here are the steps to
use HAProxy and PgBouncer for high availability of a PostgreSQL
database:

Install HAProxy and PgBouncer

Install HAProxy and PgBouncer on a separate server or node outside of
the PostgreSQL cluster.

Configure HAProxy to listen on a specific IP address and port, and to
forward traffic to the PgBouncer instances.

Configure PgBouncer with the appropriate settings, such as the connection
information for the PostgreSQL instances and the pool mode.

Configure PostgreSQL Instances

Configure the PostgreSQL instances to allow connections from the
HAProxy and PgBouncer servers.

Ensure that the PostgreSQL instances are configured with the appropriate
settings, such as the maximum number of connections and the
authentication method.

Start the PgBouncer Instances

Start the PgBouncer instances on all the nodes in the PostgreSQL cluster.

Configure the PgBouncer instances to use the same configuration file and
to listen on the same IP address and port.

Start the HAProxy Server

Start the HAProxy server and configure it to balance traffic between the
PgBouncer instances.

Ensure that the HAProxy configuration is set up with the appropriate
settings, such as the load balancing algorithm and the health check
method.

Test the Failover

To test the failover, simulate a failure of one of the PostgreSQL instances
by stopping the PostgreSQL service or shutting down the server.

HAProxy will automatically detect the failure and redirect traffic to the
remaining PostgreSQL instances.

PgBouncer will automatically reconnect to the remaining PostgreSQL
instances and continue to balance the connection pool.

Note: HAProxy and PgBouncer provide many additional features, such as
SSL support, connection pooling, and query routing. These features can be
configured by modifying the HAProxy and PgBouncer configuration files.
Additionally, HAProxy and PgBouncer can be integrated with other tools
and technologies, such as Kubernetes, to provide even greater flexibility
and scalability.

Recipe#8: Perform Database Upgrade on Replication Cluster

A replication cluster is a group of PostgreSQL database instances that are
configured to replicate data between them. Replication clusters are used to
provide High Availability (HA), load balancing, and disaster recovery
capabilities for PostgreSQL databases. The replication cluster typically
consists of a primary database instance and one or more standby database
instances that are configured to replicate the data from the primary
instance.

Performing a database upgrade on a replication cluster involves upgrading
the primary database instance and then upgrading the standby database
instances. Here are the steps to perform a database upgrade on a
replication cluster:

Upgrade the Primary Database Instance

Stop the PostgreSQL service on the primary database instance.

Install the new version of PostgreSQL on the primary database instance.

Run the upgrade script to upgrade the data directory to the new version.

Modify the PostgreSQL configuration files as necessary for the new
version.

Start the PostgreSQL service on the primary database instance.

Upgrade the Standby Database Instances

Stop the PostgreSQL service on each standby database instance.

Install the new version of PostgreSQL on each standby database instance.

Run the upgrade script to upgrade the data directory to the new version.

Modify the PostgreSQL configuration files as necessary for the new
version.

Start the PostgreSQL service on each standby database instance.

Test the Replication

Verify that the replication is working correctly by checking the
PostgreSQL logs and the replication status on each standby database
instance.

Ensure that the standby database instances are fully synchronized with the
primary database instance.

Note: It is important to ensure that all the instances in the replication
cluster are running the same version of PostgreSQL to avoid compatibility
issues and other problems. Additionally, it is recommended to perform a

backup of the database before upgrading to ensure that you have a known
good state in case of problems during the upgrade process.

Chapter 8: Blob, JSON Query, CAST Operator & Connections

Recipe#!: Perform Querying

To query the given PostgreSQL database, you need to follow these steps:

Download the Dataset

First, download the data.zip file from the provided link and extract it to a
folder on your local machine.

Create New PostgreSQL Database

Open the command prompt or terminal and run the following command to
create a new database:

createdb adventureworks

Import the Extracted SOL File

Navigate to the folder where you extracted the data.zip file and locate the
awbuild.sql file.

Import the SQL file into the adventureworks database using the following
command:

psql -U username -d adventureworks -f awbuild.sql

Replace username with your PostgreSQL username. You may be
prompted for a password, so provide the correct one for your PostgreSQL
installation.

Connect to PostgreSQL Database

Use the following command to connect to the adventureworks database:

psql -U username -d adventureworks

Replace username with your PostgreSQL username.

Query the Database

Now you can run SQL queries on the adventureworks database. For
example, to query all records from the product table, execute the
following SQL command:

SELECT * FROM product;

Remember that you can replace this query with any other SQL query you
want to run on the adventureworks database.

Exit PostgreSQL Prompt

To exit the PostgreSQL prompt, type \q and press Enter.

These steps should help you query the given PostgreSQL database using
PostgreSQL 15. Confirm you have PostgreSQL 15 installed and
configured on your machine before performing these steps.

Recipe#2: Import BLOB Data Types

To import BLOB data types (Binary Large Objects) into PostgreSQL,
you'll need to use the bytea data type. The bytea data type is used to store
binary data like images, audio files, or other binary files.

Following is an practical illustration of how to import BLOB data into a
PostgreSQL table:

Create New Table with bytea Column

CREATE TABLE files (

id SERIAL PRIMARY KEY,

file_name VARCHAR(255),

file_data bytea

);

This creates a table called files with an id, a file_name, and a file_data
column to store the BLOB data.

Convert Bbinary File to Hex-encoded String

Before you import the binary file into PostgreSQL, you need to convert it
into a hex-encoded string. You can use Python to achieve this. Following
is a simple Python script that reads a file and outputs its hex-encoded
string representation:

def convert_to_hex(file_path):

with open(file_path, 'rb') as file:

return '\\x' + file.read().hex()

file_path = 'path/to/y our/file, ext'

hex_string = convert_to_hex(file_path)

print(hex_string)

Replace 'path/to/your/file.ext' with the path to your binary file. Run the
script and note the output hex-encoded string.

Import BLOB Data into Table

Now, you can insert the hex-encoded string into the files table. Use the
following SQL query to insert the data:

INSERT INTO files (file_name, file_data)

VALUES ('your_file_name.ext', E'WxYOURHEXSTRING');

Replace 'your_file_name.ext' with the name of your binary file, and
WxYOUR_HEX_STRING with the hex-encoded string you got from the
Python script (including the \\x prefix).

Retrieve BLOB Data

To retrieve the BLOB data from the table, you can use a SELECT query
like this:

SELECT file_name, file_data FROM files WHERE id = 1;

This will return the file_name and file_data for the record with id 1. To
work with the BLOB data in your application, you might need to convert
it back to its original binary form.

These steps demonstrate how to import BLOB data types into a
PostgreSQL table using the bytea data type.

Recipe#3: Running Queries using Shell Script

To run queries using a shell script in PostgreSQL 15, you can create a
shell script that connects to the database and executes SQL commands
using the psql command-line tool.

The given below is an example of a shell script that runs a query on a
PostgreSQL database:

Create a new file with the .sh extension, e.g., query_example.sh.

Add the following content to the file:

#!/bin/bash

Replace these variables with your own PostgreSQL credentials

DB_NAME=" y our_database_name"

DB_USER="your_postgresql_username"

DB_PASS="your_postgresql_password"

DBHOST-'localhost"

DB_PORT="5432"

SQL query to execute

QUERY-' SELECT * FROM your_table_name;"

Execute the SQL query using psql

export PGPAS SWORD-'$DB_PASS"

psql -h "$DB_HOST" -p "$DB_PORT" -U "$DB_USER" -d
"$DB_NAME" -c "$QUERY"

unset PGPASSWORD

Replace the placeholders with the appropriate values for your PostgreSQL
setup: your_database_name, your_postgresql_username,
your_postgresql_password, your_table_name, and any other connection
details if needed (e.g., DB_HOST and DB_PORT).

Save the shell script file and make it executable:

chmod +x query_example.sh

Run the shell script:

,/query_example. sh

This script will connect to the specified PostgreSQL database and execute
the given SQL query.

The query result will be displayed in the terminal.

You can modify the QUERY variable in the shell script to execute
different SQL queries, or you can add more queries by creating new
variables and appending additional psql commands. Confirm to keep the
single quotes and semicolon around the query.

Recipe#4: Working with Postgres JSON Query

PostgreSQL provides powerful support for working with JSON data using
JSON and JSONB data types. In the adventureworks database, there is no
JSON data by default. However, I will provide you with an example of
how to work with JSON data in a PostgreSQL table, which you can apply
to the adventureworks database or any other PostgreSQL database.

Create Table with JSONB Column

CREATE TABLE customer info (

id SERIAL PRIMARY KEY,

data JSONB

);

This creates a table called customer_info with an id column and a data
column to store JSON data.

Insert JSON Data into Table

INSERT INTO customer_info (data) VALUES

('{"name": "JohnDoe", "email": "john@example.com", "age": 30,
"address": {"street": "123 Main St", "city": "New York", "state": "NY",
"zip": "10001"}}'),

('{"name": "Jane Doe", "email": "jane@example.com", "age": 28,
"address": {"street": "456 Main St", "city": "New York", "state": "NY",
"zip": "10002"}}');

This inserts two records with JSON data into the customer_info table.

Query JSQN

You can query JSON data using various PostgreSQL JSON functions and
operators. Here are some examples:

Select a specific JSON field

SELECT data-»'name' AS name FROM customer_info;

This query extracts the 'name' field from the JSON data and returns it as a
column named 'name'.

Filter rows based on a JSON field

SELECT * FROM customer_info WHERE data-»'age':: integer >= 30;

This query returns all records where the 'age' field in the JSON data is
greater than or equal to 30.

mailto:john@example.com
mailto:jane@example.com

Update a JSON field

UPDATE customer_info SET data = jsonb_set(data, '{address,zip}',
'"10003"') WHERE data-»'email' = 'john@example.com';

This query updates the 'zip' field inside the 'address' object for the record
with the email 'john@example.com'.

Check if a JSON field exists

SELECT * FROM customer_info WHERE data ? 'email';

This query returns all records that have an 'email' field in their JSON data.

These examples should give you an idea of how to work with JSON data
in PostgreSQL. You can apply these concepts to the adventureworks
database or any other PostgreSQL database that contains JSON

Recipe#5: Working with Postgres CAST Operator

The PostgreSQL CAST operator is used to convert a value of one data
type to another data type. You can use the CAST operator in various
situations, such as converting data types in a query, transforming data
when inserting or updating records, and filtering data based on a specific
data type.

Here are some examples of how to use the CAST operator in PostgreSQL:

Converting Data Types in SELECT Query

SELECT CAST(some_column AS integer) FROM some_table;

This query converts the values in some_column to the integer data type.

Alternatively, you can use the :: syntax for casting:

SELECT some_column: integer FROM some_table;

Converting Data Types When Inserting Records

Suppose you have a table called prices with the following structure:

CREATE TABLE prices (

id SERIAL PRIMARY KEY,

price NUMERIC(10, 2)

);

If you want to insert a new record with a price value as a string, you can
use the CAST operator:

INSERT INTO prices (price) VALUES (CAST('10.50' AS NUMERIC(10,

2)));

Or using the :: syntax:

INSERT INTO prices (price) VALUES ('10.50': :NUMERIC(10, 2));

Converting Data Types When Updating Records

Suppose you want to update the price value of a specific record and the
new price value is a string:

UPDATE prices SET price = CAST('15.75' AS NUMERIC(10, 2))
WHERE id= 1;

Or using the :: syntax:

UPDATE prices SET price = '15.75'::NUMERIC(10, 2) WHERE id = 1;

Filtering Data Based on Specific Data Type

Suppose you have a table called orders with a created_at column of type
timestamp and you want to fetch records created on a specific date:

SELECT * FROM orders WHERE CAST(created_at AS date) = '2022
10-01';

Or using the :: syntax:

SELECT * FROM orders WHERE created_at::date = '2022-10-01';

These examples demonstrate how to use the PostgreSQL CAST operator
to convert values between different data types. You can apply these
concepts to any PostgreSQL database, including the adventureworks
database.

Recipe#6: Assuring Database Consistency and Integrity

To confirm the database consistency and integrity in PostgreSQL 15, you
can use several built-in mechanisms such as Constraints, Triggers, Foreign
Keys, and Views.

Here are some practical examples of how to confirm database consistency
and integrity in PostgreSQL 15:

Constraints

Constraints are rules that restrict the values in a column or set of columns.
You can use constraints to ensure that the data in your table meets specific
criteria.
For example, to ensure that the email column in the customer table is
unique and not null, you can create a unique constraint and a not-null
constraint:

ALTER TABLE customer ADD CONSTRAINT unique email UNIQUE
(email);

ALTER TABLE customer ALTER COLUMN email SET NOT NULL;

This constraint ensures that each customer has a unique and non-null
email address.

Triggers

Triggers are special types of functions that automatically execute when
certain events occur, such as an insert, update, or delete operation on a
table. You can use triggers to perform custom validation and maintain
referential integrity.

For example, to prevent an order from being deleted if it has related items
in the order_item table, you can create a trigger:

CREATE OR REPLACE FUNCTION delete_order() RETURNS
TRIGGER AS $$

BEGIN

IF EXISTS (SELECT 1 FROM order item WHERE order id = OLD.id)
THEN

RAISE EXCEPTION 'Cannot delete order with related items';

END IF;

RETURN OLD;

END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER delete order trigger BEFORE DELETE ON orders

FOR EACH ROW EXECUTE FUNCTION delete_order();

This trigger ensures that you cannot delete an order if it has any related
items.

Foreign Keys

Foreign keys are constraints that enforce referential integrity between two
tables. You can use foreign keys to ensure that data in one table
corresponds to data in another table.

For example, to create a foreign key constraint between the order_item
and product tables, you can use the following command:

ALTER TABLE order item ADD CONSTRAINT fk_product FOREIGN
KEY (product_id) REFERENCES product(id);

This foreign key constraint ensures that each product ID in the order_item
table corresponds to a valid ID in the product table.

Views

Views are virtual tables that are based on the result of a SELECT query.
You can use views to simplify complex queries and ensure consistent data
representation.

For example, to create a view that shows the total sales for each product,
you can use the following command:

CREATE VIEW product_sales AS

SELECT product_id, SUM(quantity * price) AS total_sales

FROM order_item

GROUP BY product_id;

This view ensures that you always get accurate total sales data for each
product.

These are some practical examples of how to confirm database
consistency and integrity in PostgreSQL 15 using built-in mechanisms
such as Constraints, Triggers, Foreign Keys, and Views. By applying these
techniques, you can ensure that your data is accurate, reliable, and
consistent.

Chapter 9: Authentication, Audit & Encryption

Recipe# 1: Manage Roles, Membership, Attributes, Authentication and
Authorizations

PostgreSQL provides a robust and flexible security model that allows for
fine-grained control over roles, authentication, authorization, and
attributes. Here are the steps to manage roles membership, attributes,
authentication, and authorizations in PostgreSQL:

Creating Roles

In PostgreSQL, roles are used to represent users, groups, or applications.
To create a role, use the CREATE ROLE statement. For example, to create
a role called "sales", use the following statement:

CREATE ROLE sales;

Adding Members to Roles

Once you have created a role, you can add members to it using the
GRANT statement. For example, to add a user called "alice" to the "sales"
role, use the following statement:

GRANT sales TO alice;

Setting Role Attributes

PostgreSQL allows you to set various attributes for a role, such as
password, login, and valid until. To set attributes for a role, use the
ALTER ROLE statement. For example, to set a password for the "sales"
role, use the following statement:

ALTER ROLE sales PASSWORD 'password';

Authenticating Users

PostgreSQL provides several authentication methods, including password,
ident, and LDAP. The authentication method is specified in the
pg_hba.conf file. To use password authentication, set the authentication
method to "md5" and add a password for the user. For example, to set a
password for the "alice" user, use the following statement:

ALTER USER alice PASSWORD 'password';

Setting User Authorizations

Once you have authenticated a user, you can set their authorizations using
the GRANT statement. For example, to grant the "sales" role to the "alice"
user, use the following statement:

GRANT sales TO alice;

Restricting User Access

You can also restrict user access using the REVOKE statement. For
example, to revoke the "sales" role from the "alice" user, use the following
statement:

REVOKE sales FROM alice;

Managing Object Permissions

In PostgreSQL, you can manage object permissions using the GRANT
and REVOKE statements. For example, to grant SELECT permission on a
table called "employees" to the "sales" role, use the following statement:

GRANT SELECT ON employees TO sales;

To revoke SELECT permission on the same table from the "sales" role,
use the following statement:

REVOKE SELECT ON employees FROM sales;

By following these steps, you can effectively manage roles membership,
attributes, authentication, and authorizations in PostgreSQL.

Recipe#2: Setting Up SSL Authentication

Setting up SSL authentication in PostgreSQL involves the following steps:

Generate SSL Certificate and Key Pair

You can either generate a self-signed SSL certificate and key pair or
obtain a trusted SSL certificate from a trusted certificate authority (CA).

Configure PostgreSQL to use SSL

You can configure PostgreSQL to use SSL by adding the appropriate
settings to the postgresql.conf file. The settings include ssl = on,
ssl_cert_file, ssl_key_file, and ssl_ca_file.

For example, to enable SSL, set ssl = on in the postgresql.conf file. Then,
specify the path to the SSL certificate and key files using the ssl_cert_file
and ssl_key_file settings, respectively. If you are using a self-signed SSL
certificate, you can skip the ssl_ca_file setting. If you are using a trusted
SSL certificate, you need to specify the path to the CA certificate file
using the ssl_ca_file setting.

Configure Client Authentication

To enable SSL authentication for clients, you need to specify the
appropriate settings in the pg_hba.conf file. The settings include hostssl,

cert, and clientcert.

For example, to require SSL authentication for a user called "alice"
connecting from a specific IP address, add the following entry to the
pg_hba.conf file:

hostssl all alice 192.168.1.100/24 cert clientcert=l

This entry specifies that SSL authentication is required for the user "alice"
connecting from the IP address range 192.168.1.100/24. The clientcert=l
option indicates that the client must present a valid SSL certificate for
authentication.

Test SSL Authentication

Once you have configured SSL authentication, you can test it by
connecting to PostgreSQL using an SSL-enabled client, such as psql with
the -sslmode=require option.

For example, to connect to PostgreSQL using psql with SSL
authentication, use the following command:

psql "postgresql://alice@192.168.1.100/mydb?sslmode=require"

This command specifies that SSL authentication is required for the
connection, and the client must present a valid SSL certificate for
authentication.

By following these steps, you can set up SSL authentication in
PostgreSQL to secure client connections to the database server.

Recipe#3: Configure Encryption

To configure encryption in PostgreSQL, you can use the Transparent Data
Encryption (TDE) feature provided by various third-party tools or encrypt
data at the application layer before storing it in the database. Here are the
steps to configure TDE using one of the popular tools, OpenS SL:

Install QpenS SL

If OpenSSL is not already installed on your system, install it using the
appropriate package manager for your operating system.

Generate Encryption Key

Use the OpenS SL command-line tool to generate an encryption key. For
example, to generate a 256-bit AES encryption key, use the following
command:

openssl rand -out mykey.bin 32

This command generates a random 256-bit key and saves it to a file called
mykey.bin.

Encrypt Database Files

Use the OpenSSL command-line tool to encrypt the database files. For
example, to encrypt a database called "mydb" located in the
/var/lib/postgresql/data directory, use the following command:

openssl enc -aes-256-cbc -in /var/lib/postgresql/data/mydb -out
/var/lib/postgresql/data/mydb.enc -pass file:mykey.bin

This command encrypts the "mydb" database file using 256-bit AES
encryption and saves the encrypted file to mydb.enc. The -pass
file:mykey.bin option specifies that the encryption key is stored in the
mykey.bin file.

Modify PostgreSOL Configuration

Modify the postgresql.conf file to specify the location of the encrypted
database files. Add the following line to the file:

data_directory = 7var/lib/postgresql/data_encrypted'

This line specifies that the encrypted database files are located in the
/var/lib/postgresql/data_encrypted directory.

Start PostgreSOL

Start the PostgreSQL server and verify that it is using the encrypted
database files by connecting to it and running queries.

By following these steps, you can configure encryption in PostgreSQL
using the OpenSSL tool to secure the database files. Note that this is just
one way to configure encryption, and there are many other tools and
methods available to encrypt data in PostgreSQL.

Recipe#4: Install and Configure pgAudit

pgAudit is a PostgreSQL extension that provides detailed audit logging
capabilities for PostgreSQL database servers. It allows database
administrators to log and monitor all SQL statements executed on the
database server, including the user who executed the statement, the time it
was executed, and the database object affected by the statement. This
information can be used for security and compliance purposes, such as
detecting unauthorized access, identifying performance bottlenecks, and
tracking changes to sensitive data.

To install and configure pgAudit for your PostgreSQL database, follow
these steps:

Install pgAudit

pgAudit can be installed using the PostgreSQL package manager, such as
yum or apt-get, or by compiling from source code. To install pgAudit
using the package manager, use the following command:

sudo apt-get install postgresql-14-pgaudit

Enable pgAudit

To enable pgAudit, add the pgAudit extension to the PostgreSQL server
using the CREATE EXTENSION statement. For example, to enable
pgAudit for a database called "mydb", use the following command:

psql -d mydb -c 'CREATE EXTENSION pgaudit;'

Configure pgAudit

pgAudit can be configured using the pgaudit. conf file, which is located in
the PostgreSQL data directory. The file specifies which events should be
logged, such as read or write statements, and which fields should be
included in the log entries, such as the user name, database name, and
statement text. The configuration can be customized to meet specific audit
requirements.

For example, to log all read and write statements for the "mytable" table in
the "mydb" database, add the following line to the pgaudit.conf file:

log = 'read, write' mydb.mytable

Restart PostgreSQL

After configuring pgAudit, restart the PostgreSQL server to apply the
changes. Use the appropriate command for your operating system to
restart the server. For example, on Ubuntu, use the following command:

sudo systemctl restart postgresql

Test pgAudit

To test pgAudit, execute some SQL statements on the database and verify
that they are logged in the pgAudit log file. The log file is located in the
PostgreSQL data directory and can be viewed using a text editor or the
pgaudit_logfile view.

For example, to view the pgAudit log file for a database called "mydb",
use the following command:

psql -d mydb -c 'SELECT * FROM pgaudit_log;'

By following these steps, you can install and configure pgAudit for your
PostgreSQL database to provide detailed audit logging capabilities. Note
that pgAudit is just one way to enable audit logging in PostgreSQL, and
there are many other tools and methods available to audit PostgreSQL
databases.

Recipe#5: Using Audit Log with PostgreSQL Trigger

Let us see below a practical example of using audit log with PostgreSQL
trigger:

Consider that we have a table called "customers" with the following
columns: id, name, email, and status. We want to log all changes to this
table in an audit log table called "customers_audit". We can achieve this
by creating a trigger on the "customers" table that inserts a row into the
"customers_audit" table whenever a change is made to the "customers"
table.

Create Audit Log Table

We need to create the "customers_audit" table with the columns that we
want to log. For example:

CREATE TABLE customers audit (

id SERIAL PRIMARY KEY,

timestamp TIMESTAMP DEFAULT NOW(),

user id INTEGER,

action TEXT,

old_data JSONB,

new_data JSONB

);

Create Trigger Function

We need to create a trigger function that will be called whenever a change
is made to the "customers" table. This function will insert a row into the
"customers_audit" table with the old and new values of the changed row.

CREATE OR REPLACE FUNCTION customers_audit_trigger()
RETURNS TRIGGER AS $$

DECLARE

data_old JSONB;

data_new JSONB;

BEGIN

IF TG OP = 'DELETE' THEN

data_old = rowtoJson(OLD);

INSERT INTO customers_audit (user_id, action, old_data)

VALUES (current_user, TG_OP, data_old);

RETURN OLD;

ELSIF TGOP = 'UPDATE' THEN

data_old = rowtoJson(OLD);

data_new = row_toJson(NEW);

INSERT INTO customers_audit (user_id, action, old_data, new_data)

VALUES (current_user, TG_OP, data_old, data_new);

RETURN NEW;

ELSIF TG OP = 'INSERT' THEN

data_new = row_toJson(NEW);

INSERT INTO customers_audit (user_id, action, new_data)

VALUES (current_user, TG_OP, data_new);

RETURN NEW;

END IF;

RETURN NULL;

END;

$$

LANGUAGE plpgsql;

Create the trigger: We need to create a trigger on the "customers" table
that will call the "customers_audit_trigger" function whenever a change is
made to the table.

CREATE TRIGGER customers audit

AFTER INSERT OR UPDATE OR DELETE ON customers

FOR EACH ROW

EXECUTE FUNCTION customers_audit_trigger();

Now, whenever a change is made to the "customers" table, the trigger will
call the "customers_audit_trigger" function, which will insert a row into
the "customers_audit" table with the old and new values of the changed

row, as well as the user who made the change and the type of change
(insert, update, or delete).

To view the audit log, simply query the "customers_audit" table. For
example, to view all changes made by a specific user:

SELECT * FROM customers audit WHERE user id =123;

By using triggers in this way, we can easily log changes to any table in a
PostgreSQL database and maintain a detailed audit trail.

Recipe#6: Using log_statement/Audit Trail

In PostgreSQL 15, the log_statement configuration parameter controls
which SQL statements are logged to the server log. By default,
log_statement is set to none, which means that no statements are logged.

Using log statement

However, you can set it to one of the following values to log SQL
statements:
ddl: Log all data definition language (DDL) statements, such as CREATE,
ALTER, and DROP.
mod: Log all DDL and data modification language (DML) statements,
such as INSERT, UPDATE, and DELETE.
all: Log all statements, including DDL, DML, and utility statements, such
as VACUUM and EXPLAIN.

To enable log_statement, you need to modify the postgresql.conf file and
set the log_statement parameter to the desired value. For example, to log
all statements, add the following line to the postgresql.conf file:

log_statement = 'all'

Once you have enabled log_statement, you can view the logged
statements in the server log, which is usually located in the PostgreSQL
data directory. You can also configure PostgreSQL to log statements to a
separate file or send them to a remote log server.

The given below is a practical example of using log_statement to audit
SQL statements in a PostgreSQL database:

Consider that we have a database called "sales" and we want to log all
SQL statements executed on the database for security and compliance
purposes. We can enable log_statement to log all statements to the server
log, as follows:

Modify postgresql.conf File

Locate the postgresql.conf file in the PostgreSQL data directory and open
it in a text editor. Add the following line to enable log_statement:

log_statement = 'all'

Restart PostgreSQL

Restart the PostgreSQL server to apply the changes. Use the appropriate
command for your operating system to restart the server. For example, on
Ubuntu, use the following command:

sudo systemctl restart postgresql

Execute SOL Statements

Execute some SQL statements on the "sales" database to generate some
log entries. For example:

SELECT * FROM customers;

INSERT INTO orders (customer_id, total) VALUES (123, 100.00);

UPDATE customers SET name = 'Alice' WHERE id = 123;

View the Log

Open the server log file, which is usually located in the PostgreSQL data
directory, and search for the logged statements. The logged statements will
include the user who executed the statement, the time it was executed, and
the statement text.

By using log_statement in this way, we can easily log SQL statements
executed on a PostgreSQL database and maintain a detailed audit trail.
Note that log_statement can generate a lot of log entries and can impact
server performance, so it's important to use it judiciously and consider the
performance implications.

Recipe#7: Install and Configure LDAP Authentication

LDAP (Lightweight Directory Access Protocol) authentication is a way of
authenticating users against a centralized directory service, such as
Microsoft Active Directory or OpenLDAP With LDAP authentication,
users can log in to a PostgreSQL database using their credentials stored in
the directory service, rather than having to create a separate account in the
database. This provides a centralized and secure way of managing user
accounts across multiple applications and services.

To use LDAP authentication with PostgreSQL, you need to configure the
pg_hba.conf file to use the LDAP authentication method. Here are the
steps to configure LDAP authentication in PostgreSQL:

Install LDAP Authentication Package

You need to install the LDAP authentication package for PostgreSQL. The
package is usually provided by your Linux distribution, such as openldap
or Idap-utils.

Configure LDAP Client

You need to configure the LDAP client on the PostgreSQL server to
connect to the LDAP directory service. The configuration includes the
LDAP server name, port number, and search base.

Configure pg hba.conf

You need to modify the pg_hba.conf file to specify the LDAP
authentication method for the users you want to authenticate using LDAP.
For example:

host all all 192.168.1.0/24 Idap
ldapserver=ldap.example.com ldapport=389 ldapprefix="cn="
ldapsuffix=",ou=users,dc=example,dc=com"

This line specifies that all users connecting from the IP address range
192.168.1.0/24 should be authenticated using LDAP against the server
ldap.example.com on port 389. The Idapprefix and Idapsuffix options
specify the format of the user's distinguished name (DN) in the LDAP
directory.

Test LDAP Authentication

To test LDAP authentication, connect to the PostgreSQL database using a
user account stored in the LDAP directory service. For example, use the
following command:

psql -h localhost -U cn=john,ou=users,dc=example,dc=com -d mydb

This command connects to the "mydb" database using the user account
with the DN cn=john,ou=users,dc=example,dc=com in the LDAP
directory.

ldap.example.com
ldap.example.com

By following these steps, you can configure LDAP authentication in
PostgreSQL to authenticate users against a centralized directory service.
Note that LDAP authentication can provide a convenient and secure way
of managing user accounts, but it requires some setup and configuration.

Chapter 10: Implementing Database Backup Strategies

Recipe#!: Automate Database Backup

Let us see below how to automate the backup of the PostgreSQL
AdventureWorks database:

Create Backup Script

Create a backup script that uses the pg_dump utility to backup the
AdventureWorks database. For example:

#!/bin/bash

DATE=$(date+%Y-%m-%d_%H-%M-%S)

BACKUP_DIR=/path/to/backup/dir

DB_NAME=AdventureWorks

PG_DUMP=/usr/bin/pg_dump

$PG_DUMP -Fc $DB_NAME >
$BACKUP_DIR/$DB_NAME-$DATE.dump

This script creates a backup file in the specified directory with the name
" AdventureWorks-YYYY-MM-DD_HH-MM-SS. dump", where the date
and time are the current date and time.

Make Backup Script Executable

Make the backup script executable using the following command:

chmod +x /path/to/backup/script.sh

Test the Backup Script

Test the backup script by running it manually and verifying that it creates
a backup file in the specified directory.

Schedule the Backup

Use a cron job to schedule the backup script to run at regular intervals. For
example, to run the backup script every day at midnight, add the following
line to the crontab file:

go*** /path/to/backup/script.sh

This will run the backup script every day at midnight and create a new
backup file with the current date and time.

By following these steps, you can automate the backup of the PostgreSQL
AdventureWorks database and ensure that you have a regular backup in
case of data loss or system failure. Note that it's important to store the
backup files in a secure location and test the backup and restore process
regularly to ensure that it's working correctly.

Recipe#2: Execute Continuous Archiving PostgreSQL Backup

Continuous Archiving PostgreSQL Backup is a technique that involves
continuously archiving the transaction logs of a PostgreSQL database to a
backup location. This allows for point-in-time recovery of the database in
case of a failure.

Check out below how to set up continuous archiving backup for the
AdventureWorks database:

Enable Archiving

In the postgresql.conf file, set the archive_mode parameter to on to enable
archiving. Lor example:

archive_mode = on

This will enable the archive command to be executed for each transaction
that is committed.

Setup the Archive Command

In the postgresql.conf file, set the archive_command parameter to specify
the command to be executed for each transaction that is archived. Lor
example:

archive_command = 'cp %p /path/to/backup/archive/%f

This will copy each archived transaction log to the specified backup
archive directory.

Create Base Backup

Create a base backup of the AdventureWorks database using the
pg_basebackup utility. For example:

pg_basebackup -U postgres -D /path/to/backup/base -Ft -Xs -P

This will create a backup of the database cluster in the specified directory.

Start PostgreSQL with the backup as the data directory: Start PostgreSQL
using the backup directory as the data directory. For example:

postgres -D /path/to/backup/base

Test the Archiving

Execute some transactions on the database and verify that the transaction
logs are being archived to the backup archive directory.

By following these steps, you can set up continuous archiving backup for
the AdventureWorks database and ensure that you have a continuous
backup of the transaction logs for point-in-time recovery in case of a

failure. Note that it's important to monitor the backup process and verify
that the backup files are being created correctly.

Recipe#3: Working with ‘pg_probackup’ and ‘pgBackRest’

pg_probackup and pgBackRest are popular backup and restore tools for
PostgreSQL. Checkout below how to work with each tool:

pg probackuo

pg_probackup is a backup and recovery tool for PostgreSQL that provides
features such as incremental backups, validation, and point-in-time
recovery. Checkout below how to use pg_probackup:

Install pg.probackup

Install pg_probackup using the package manager of your operating system
or by building from source.

Configure pg jprobackuo

Configure pg_probackup by creating a configuration file, which is usually
located in the PostgreSQL data directory. The configuration file specifies
options such as the backup directory, compression settings, and retention
policy.

Create Backup

Create a backup using the pg_probackup backup command. For example:

pg_probackup backup -B /path/to/backup/dir -D /path/to/postgresql/data

This will create a full backup in the specified backup directory.

Validate the Backup

Validate the backup using the pg_probackup validate command. For
example:

pg_probackup validate -B /path/to/backup/dir

This will verify the integrity of the backup and report any errors.

Restore the VBbackup

Restore the backup using the pg_probackup restore command. For
example:

pg_probackup restore -B /path/to/backup/dir -D /path/to/new/data/dir -i
backup_id

This will restore the specified backup to the new data directory.

pgBackRest

pgBackRest is a backup and restore tool for PostgreSQL that provides
features such as compression, incremental backups, and parallelism.
Checkout below how to use pgBackRest:

Install pgBackRest

Install pgBackRest using the package manager of your operating system
or by building from source.

Configure pgBackRest

Configure pgBackRest by creating a configuration file, which is usually
located in the PostgreSQL data directory. The configuration file specifies
options such as the backup directory, compression settings, and retention
policy.

Create Backup

Create a backup using the pgbackrest backup command. For example:

pgbackrest backup -pgl-path=/path/to/postgresql/data -backup-
path=/path/to/backup/dir

This will create a full backup in the specified backup directory.

Validate the Backup

Validate the backup using the pgbackrest check command. For example:

pgbackrest check -stanza=default

This will verify the integrity of the backup and report any errors.

Restore the Backup

Restore the backup using the pgbackrest restore command. For example:

pgbackrest restore -pgl-path=/path/to/new/data/dir -backup-
path=/path/to/backup/dir -type=full

This will restore the specified backup to the new data directory.

By using pg_probackup or pgBackRest, you can create reliable and
efficient backups of your PostgreSQL database and ensure that you have a
solid backup and recovery strategy. Note that both tools have extensive
documentation and support for advanced features, so it's important to read
the documentation carefully and test the backup and restore process
thoroughly.

Recipe#4: Install and Configure Barman

Barman is an open-source backup and recovery tool for PostgreSQL that
is designed for enterprise environments. Barman provides features such as
remote backups, incremental backups, retention policies, and point-in
time recovery. Checkout below how to install and configure Barman:

Install Barman

Install Barman using the package manager of your operating system or by
building from source.

Configure Barman

Configure Barman by creating a configuration file, which is usually
located in the Barman data directory. The configuration file specifies
options such as the backup directory, compression settings, and retention
policy. Below is an example configuration file:

[barman]

barman_home = /var/lib/barman

log_file = /var/log/barman/barman.log

minimum_redundancy = 1

[pg]

description = PostgreSQL

conninfo = host=pgserver user=barman dbname=postgres

backup_method = rsync

retention_policy = REDUNDANCY 1

This configuration file specifies that the backup directory is located in the
Barman home directory, the backup method is rsync, and the retention
policy is to keep at least one full backup.

Add Barman User to PostgreSQL

Add the Barman user to PostgreSQL with the necessary privileges to
perform backups. For example:

CREATE USER barman WITH SUPERUSER LOGIN;

Create Backup

Create a backup using the barman backup command. For example:

barman backup pg

This will create a full backup of the PostgreSQL database specified in the
configuration file.

Verify the Backup

Verify the backup using the barman check command. For example:

barman check pg

This will verify the integrity of the backup and report any errors.

Restore the Backup

Restore the backup using the barman recover command. For example:

barman recover pg latest /path/to/new/data/dir

This will restore the most recent backup to the new data directory.

By using Barman, you can create a reliable and efficient backup and
recovery strategy for your PostgreSQL database in an enterprise
environment. Note that Barman has extensive documentation and support
for advanced features, so it's important to read the documentation
carefully and test the backup and restore process thoroughly.

Recipe#5: Perform Incremental/Differential Backup

Performing incremental or differential backups in PostgreSQL 15 involves
creating backups that only contain changes made to the database since the
last full backup. This can be useful for reducing backup times and storage
requirements. Below is how to perform incremental and differential
backups in PostgreSQL 15:

Incremental Backup

Create a full backup
Create a full backup of the PostgreSQL database using a backup tool such
as pg_dump, pg_dumpall, pg_basebackup, or a third-party tool such as
pgBackRest or Barman. For example:

pg_dumpall -U postgres -f /path/to/full/backup.sql

Create incremental backup
Create an incremental backup of the PostgreSQL database using a tool
that supports incremental backups, such as pgBackRest or Barman. For
example, to create an incremental backup with pgBackRest:

pgbackrest backup -type=incremental -pgl-path=/path/to/postgresql/data
-backup-path=/path/to/incremental/backup

This will create an incremental backup that contains changes made to the
database since the last full backup.

Restore the backup
To restore the database, you need to first restore the full backup and then
apply the incremental backup. For example, to restore the backup using
pgBackRest:

pgbackrest restore -type=incremental -pgl-path=/path/to/new/data/dir -
backup-path=/path/to/full/backup -delta /path/to/incremental/backup

This will restore the full backup to the new data directory and then apply
the changes in the incremental backup.

Differential Backup

Create a full backup
Create a full backup of the PostgreSQL database using a backup tool such
as pg_dump, pg_dumpall, pg_basebackup, or a third-party tool such as
pgBackRest or Barman. For example:

pg_dumpall -U postgres -f /path/to/full/backup.sql

Create a differential backup
Create a differential backup of the PostgreSQL database using a tool that
supports differential backups, such as pgBackRest or Barman. For
example, to create a differential backup with pgBackRest:

pgbackrest backup -type=diff -pgl-path=/path/to/postgresql/data -
backup-path=/ path/to/differential/backup

This will create a differential backup that contains changes made to the
database since the last full backup.

Restore the backup
To restore the database, you need to first restore the full backup and then
apply the differential backup. For example, to restore the backup using
pgBackRest:

pgbackrest restore -type=diff -pgl-path=/path/to/new/data/dir -backup-
path=/path/to/full/backup -delta /path/to/differential/backup

This will restore the full backup to the new data directory and then apply
the changes in the differential backup.

By using incremental or differential backups, you can reduce the backup
times and storage requirements of your PostgreSQL database and ensure
that you have a reliable backup and recovery strategy in case of a failure.
Note that it's important to test the backup and restore process thoroughly
to ensure that it's working correctly.

Recipe#6: Execute Schema Level Backup

A schema-level backup in PostgreSQL involves backing up a specific
schema or set of schemas in a database. This can be useful for selectively
backing up parts of a database, such as a particular application or module.
Below is how to execute a schema-level backup for the AdventureWorks
database:

Create Backup Directory

Create a backup directory where the schema-level backup files will be
stored. For example:

mkdir /path/to/schema/backup

Create Schema-level Backup

Create a schema-level backup using the pg_dump utility. Specify the -
schema option to specify the schema(s) to be backed up. For example, to
backup the "sales" and "production" schemas in the AdventureWorks
database:

pg_dump -U postgres -h localhost -F c -b -v -f
/path/to/schema/backup/adventureworks_sales_production.backup -n sales
-n production adventureworks

This will create a compressed backup file in the specified directory that
contains the specified schemas.

Verify the Backup

Verify the integrity of the backup file by restoring it to a test database and
running some test queries to ensure that the schema(s) are present and
functional.

By using a schema-level backup, you can selectively backup parts of your
PostgreSQL database and save time and storage space. Note that it's
important to test the backup and restore process thoroughly to ensure that
it's working correctly. Also, it's recommended to perform regular full
backups in addition to schema-level backups to ensure that you have a
complete backup of your database.

Recipe#7: Perform Backup Monitoring using pg_stat_activity

You can monitor the backup of the AdventureWorks database in
PostgreSQL 15 using the pg_stat_activity view. This view displays
information about all active connections and transactions in the
PostgreSQL server, including backup processes.

Below is how to use pg_stat_activity to monitor the backup of the
AdventureWorks database:

Connect to Database

Connect to the AdventureWorks database using a database client or the
psql utility.

Query ng stat activity

Execute the following query to view all active connections and
transactions in the PostgreSQL server:

SELECT * FROM pg_stat_activity;

This will display information about all active connections and transactions
in the server, including backup processes.

Filter by Backup Process

To filter the output by backup process, you can search for queries that
contain the pg_dump or pg_dumpall command in the query column of the
pg_stat_activity view. For example:

SELECT * FROM pg stat activity WHERE query LIKE 'pg_dump%' OR
query LIKE 'pg_dumpall%';

This will display information about all backup processes that are currently
running in the server.

Monitor Backup Progress

To monitor the progress of a specific backup process, you can look at the
query column to identify the backup command and the state column to
identify the current state of the backup process. For example, a state of
"active" indicates that the backup process is still running, while a state of
"idle" indicates that the backup process has completed.

By using pg_stat_activity to monitor the backup of the AdventureWorks
database, you can ensure that the backup process is running correctly and
track the progress of the backup. Note that it's important to monitor the
backup process regularly and verify that the backup files are being created
correctly.

Chapter 11: Exploring database Recovery & Restoration Methods

Recipe#!: Perform Full and PITR Recovery

Full Recovery

Full recovery involves restoring the database from a complete backup. To
perform a full recovery of a PostgreSQL database, follow these steps:

Ensure you have a complete backup of the database. PostgreSQL has a
built-in tool called pg_dump that you can use to create a backup. If you
already have a backup, skip this step. If not, run the following command:

pg_dump -U your_user -W -F t your_database > backup.tar

Replace your_user and your_database with the appropriate values for your
setup.

Drop the existing database to prepare for the recovery:

dropdb -U your_user your_database

Create a new, empty database with the same name as the original:

createdb -U your_user your_database

Restore the backup to the newly created database:

pg_restore -U your_user -d your_database -F t backup.tar

After the command completes, your database should be fully recovered.

Point-in-Time Recovery (PITR)

PITR allows you to restore your database to a specific point in time. To
perform PITR for a PostgreSQL database, follow these steps:

Configure your PostgreSQL instance for continuous archiving by setting
the following parameters in the postgresql.conf file:

wal_level = replica

archive_mode = on

archive_command = 'cp %p /path/to/archive/%f

The wal_level setting must be set to replica to enable archiving. The
archive_mode setting must be set to on to turn on archiving. The
archive_command setting specifies the command to use for archiving.
This command should copy the WAL file %p to the archive directory
/path/to/archive/%f, where %f is the filename of the WAL file. You should
replace /path/to/archive/ with the path to the directory where you want to
store the archive files.

Restart the PostgreSQL server to apply the new configuration.

Create a base backup of the database using pg_basebackup. This creates a
snapshot of the database at a specific point in time. Run the following
command:

pg_basebackup -U your_user -D /path/to/backup -Ft -Xs -P

Replace your_user with the appropriate value for your setup, and
/path/to/backup with the path to the directory where you want to store the
backup.

After the base backup is created, start the PostgreSQL server in recovery
mode by creating a recovery, conf file in the data directory with the
following contents:

standby_mode = on

primary_conninfo = 'host=localhost port=5432 user=your_user'

restore_command = 'cp /path/to/archive/%f "%p"'

recoverytargetjime = 'YYYY-MM-DD HH:MI:SS'

Replace your_user with the appropriate value for your setup. The
primary_conninfo setting specifies the connection information for the
primary server, which is used to fetch WAL files.

The restore_command setting specifies how to restore archived WAL
files. The recovery_target_time setting specifies the time to recover to.

Start the PostgreSQL server in recovery mode:

pg_ctl start -D /path/to/data -w -t 600

Replace /path/to/data with the path to the data directory for the
PostgreSQL instance.

After the server starts, it will apply WAL files to bring the database to the
specified point in time. Once it reaches the target time, it will stop
applying WAL files and the database will be in a consistent state at that
time. You can then use the database normally.

Note: When performing PITR, it's important to keep the WAL archive
files in a safe place, as they are required for the recovery process.

Recipe#2: Restore Database using Barman

Barman is an open-source backup and recovery tool for PostgreSQL. It
provides a simple and reliable solution for backing up and restoring
PostgreSQL databases, including support for Point-in-Time Recovery
(PITR). In this recipe, I will describe how to restore the given database
using Barman.

Before proceeding with the restore process, you need to confirm that you
have:

Installed Barman and configured it to manage the backups of your
PostgreSQL database.

Taken a backup of your PostgreSQL database using Barman.

Assuming that you have met the above requirements, follow the steps
below to restore the database using Barman:

Check the status of the backups in Barman by running the following
command:

barman list-backup your_database

This will show you a list of backups that have been taken for your
database, along with their status.

Select the backup that you want to restore and mark it as "restored" by
running the following command:

barman mark-restore your_database backup_id

Replace backup_id with the ID of the backup that you want to restore.
This command tells Barman to mark the backup as "restored" so that it
will not be used for future PITR operations.

Create a temporary directory for the restore process:

mkdir /path/to/restore

Replace /path/to/restore with the path to the directory where you want to
store the restored database.

Restore the base backup by running the following command:

barman recover -remote-ssh-command "ssh user@your_server" -target
directory /path/to/restore your_database backup_id

Replace user@your_server with the SSH connection information for your
PostgreSQL server, /path/to/restore with the path to the directory where
you want to restore the database, your_database with the name of your
PostgreSQL database, and backup_id with the ID of the backup that you
want to restore. This command tells Barman to restore the base backup for
your database to the specified directory.

After the base backup is restored, start the PostgreSQL server in recovery
mode:

pg_ctl -D /path/to/restore start

Replace /path/to/restore with the path to the directory where you restored
the database.

Wait for the PostgreSQL server to apply the archived WAL files to the
restored database. You can monitor the progress of the recovery process
by running the following command:

tail -f /path/to/restore/pg_log/postgresql-.log

Replace with the date on which you restored the database. This command
will show you the latest entries in the PostgreSQL log file, which will
include information about the recovery process.

Once the recovery process is complete, stop the PostgreSQL server:

pg_ctl -D /path/to/restore stop

Copy the restored database to the original PostgreSQL data directory:

rsync -av /path/to/restore/ /var/lib/postgresql/data/

Replace /path/to/restore with the path to the directory where you restored
the database, and /var/lib/postgresql/data/ with the path to the PostgreSQL
data directory on your server.

Change the ownership of the data directory to the PostgreSQL user:

chown -R postgres:postgres /var/lib/postgresql/data/

This command ensures that the PostgreSQL user has the necessary
permissions to access the restored database.

Start the PostgreSQL server:

systemctl start postgresql

Verify that the database is accessible and working properly by connecting
to it with a PostgreSQL client:

psql -U postgres your_database

This command will connect you to the restored database using the
PostgreSQL client. You can then execute SQL commands to verify that
the data is intact.

Recipe#3: Perform Incremental/Differential Restore

Barman provides support for incremental and differential backups, which
can be used to reduce the amount of data that needs to be restored during a
recovery operation. In this recipe, I will describe how to perform an
incremental or differential restore of the adventureworks database using
Barman.
Assuming that you have already taken a full backup of the
adventureworks database and at least one incremental or differential
backup, follow the steps below to perform an incremental or differential
restore:

Check the status of the backups in Barman by running the following
command:

barman list-backup adventure works

This will show you a list of backups that have been taken for the
adventure works database, along with their status.

Select the full backup that you want to restore and mark it as "restored" by
running the following command:

barman mark-restore adventureworks full_backup_id

Replace full_backup_id with the ID of the full backup that you want to
restore. This command tells Barman to mark the full backup as "restored"

so that it will not be used for future PITR operations.

Create a temporary directory for the restore process:

mkdir /path/to/restore

Replace /path/to/restore with the path to the directory where you want to
store the restored database.

Restore the full backup by running the following command:

barman recover -remote-ssh-command "ssh user@your_server" -target
directory /path/to/restore adventureworks full_backup_id

Replace user@your_server with the SSH connection information for your
PostgreSQL server, /path/to/restore with the path to the directory where
you want to restore the database, adventureworks with the name of your
PostgreSQL database, and full_backup_id with the ID of the full backup
that you want to restore. This command tells Barman to restore the full
backup for your database to the specified directory.

After the full backup is restored, start the PostgreSQL server in recovery
mode:

pg_ctl -D /path/to/restore start

Replace /path/to/restore with the path to the directory where you restored
the database.

Wait for the PostgreSQL server to apply the archived WAL files to the
restored database. You can monitor the progress of the recovery process
by running the following command:

tail -f /path/to/restore/pg_log/postgresql-.log

Replace with the date on which you restored the database. This command
will show you the latest entries in the PostgreSQL log file, which will
include information about the recovery process.

Once the recovery process is complete, stop the PostgreSQL server:

pg_ctl -D /path/to/restore stop

Copy the restored database to the original PostgreSQL data directory:

rsync -av /path/to/restore/ /var/lib/postgresql/data/

Replace /path/to/restore with the path to the directory where you restored
the database, and /var/lib/postgresql/data/ with the path to the PostgreSQL
data directory on your server.

Change the ownership of the data directory to the PostgreSQL user:

chown -R postgres:postgres /var/lib/postgresql/data/

This command ensures that the PostgreSQL user has the necessary
permissions to access the restored database.

Start the PostgreSQL server:

systemctl start postgresql

If you have taken an incremental or differential backup after the full
backup, mark it as "restored" by running the following command:

barman mark-restore adventureworks incremental_backup_id

Replace incremental_backup_id with the ID of the incremental or
differential backup that you want to restore. This command tells Barman
to mark the backup as "restored" so that it will not be used for future PITR
operations.

Restore the incremental or differential backup by running the following
command:

barman recover -remote-ssh-command "ssh user@your_server" -target
directory /path/to/restore -delta
/path/to/full/backup/incremental_backup_id.tar.gz adventureworks
incremental_backup_id

Replace user@your_server with the SSH connection information for your
PostgreSQL server, /path/to/restore with the path to the directory where
you want to restore the database, adventureworks with the name of your

PostgreSQL database, incremental_backup_id with the ID of the
incremental or differential backup that you want to restore, and
/path/to/full/backup/incremental_backup_id.tar.gz with the path to the full
backup that the incremental or differential backup is based on. This
command tells Barman to restore the incremental or differential backup
for your database to the specified directory, using the full backup as the
base.

After the incremental or differential backup is restored, start the
PostgreSQL server in recovery mode:

pg_ctl -D /path/to/restore start

Wait for the PostgreSQL server to apply the archived WAL files to the
restored database. You can monitor the progress of the recovery process
by running the following command:

tail -f /path/to/restore/pg_log/postgresql-.log

Once the recovery process is complete, stop the PostgreSQL server:

pg_ctl -D /path/to/restore stop

Copy the restored database to the original PostgreSQL data directory:

rsync -av /path/to/restore/ /var/lib/postgresql/data/

Replace /path/to/restore with the path to the directory where you restored
the database, and /var/lib/postgresql/data/ with the path to the PostgreSQL

data directory on your server.

Change the ownership of the data directory to the PostgreSQL user:

chown -R postgres:postgres /var/lib/postgresql/data/

Start the PostgreSQL server:

systemctl start postgresql

Verify that the database is accessible and working properly by connecting
to it with a PostgreSQL client:

psql -U postgres adventureworks

This command will connect you to the restored database using the
PostgreSQL client. You can then execute SQL commands to verify that
the data is intact.

By following all the above lengthy steps, You have successfully
performed an incremental or differential restore of the adventureworks
database using Barman.

Recipe#4: Working with Tablespace Recovery

Tablespaces in PostgreSQL are a way of organizing database objects into
separate directories on disk. They provide a mechanism for controlling the
physical layout of database files and can be used to improve performance
and manageability. Barman supports tablespace recovery, which allows
you to restore individual tablespaces in case of a disaster. In this recipe, I
will describe how to work with tablespace recovery for the
adventureworks database using Barman.

Assuming that you have already taken a backup of the adventureworks
database that includes tablespaces, follow the steps below to perform
tablespace recovery:

Check the status of the backups in Barman by running the following
command:

barman list-backup adventure works

This will show you a list of backups that have been taken for the
adventure works database, along with their status.

Select the backup that you want to restore and mark it as "restored" by
running the following command:

barman mark-restore adventureworks backup_id

Replace backup_id with the ID of the backup that you want to restore.
This command tells Barman to mark the backup as "restored" so that it
will not be used for future PITR operations.

Create a temporary directory for the restore process:

mkdir /path/to/restore

Replace /path/to/restore with the path to the directory where you want to
store the restored tablespaces.

Restore the tablespaces by running the following command:

barman recover-tablespace -remote-ssh-command "ssh
user@your_server" -target-directory /path/to/restore -tablespace-name
your_tablespace_name adventureworks backup_id

Replace user@your_server with the SSH connection information for your
PostgreSQL server, /path/to/restore with the path to the directory where
you want to restore the tablespaces, your_tablespace_name with the name
of the tablespace that you want to restore, adventureworks with the name
of your PostgreSQL database, and backup_id with the ID of the backup
that you want to restore. This command tells Barman to restore the
specified tablespace for your database to the specified directory.

After the tablespaces are restored, copy them to the original directory on
disk:

rsync -av /path/to/restore/ /var/lib/postgresql/data/pg_tblspc/

Replace /path/to/restore with the path to the directory where you restored
the tablespaces, and /var/lib/postgresql/data/pg_tblspc/ with the path to the
PostgreSQL tablespace directory on your server.

Change the ownership of the tablespace directory to the PostgreSQL user:

chown -R postgres:postgres /var/lib/postgresql/data/pg_tblspc/

Restart the PostgreSQL server to apply the changes:

systemctl restart postgresql

By now, You have successfully performed tablespace recovery for the
adventureworks database using Barman.

Recipe#5: Working with Tables Recovery

In PostgreSQL, tables are the fundamental objects that store data in a
database. In case of a disaster, it may be necessary to restore individual
tables from a backup. Barman supports table-level recovery, which allows
you to restore individual tables from a backup without affecting the rest of
the database. In this recipe, I will describe how to work with table
recovery for the adventureworks database using Barman.

Assuming that you have already taken a backup of the adventureworks
database that includes the tables that you want to restore, follow the steps
below to perform table recovery:

Check the status of the backups in Barman by running the following
command:

barman list-backup adventure works

This will show you a list of backups that have been taken for the
adventure works database, along with their status.

Select the backup that you want to restore and mark it as "restored" by
running the following command:

barman mark-restore adventureworks backup_id

Replace backup_id with the ID of the backup that you want to restore.
This command tells Barman to mark the backup as "restored" so that it
will not be used for future PITR operations.

Create a temporary directory for the restore process:

mkdir /path/to/restore

Replace /path/to/restore with the path to the directory where you want to
store the restored table.

Restore the table by running the following command:

barman recover-table -remote-ssh-command "ssh user@your_server" -
target-directory /path/to/restore -tablespace-name your_tablespace_name
adventureworks backup_id your_table_name

Replace user@your_server with the SSH connection information for your
PostgreSQL server, /path/to/restore with the path to the directory where
you want to restore the table, your_tablespace_name with the name of the
tablespace that contains the table you want to restore, adventureworks
with the name of your PostgreSQL database, backup_id with the ID of the
backup that you want to restore, and your_table_name with the name of
the table that you want to restore. This command tells Barman to restore
the specified table for your database to the specified directory.

After the table is restored, create a new table with the same schema in the
database:

psql -U postgres -d adventureworks -c "CREATE TABLE
your_table_name (LIKE your_table_name INCLUDING ALL);"

Replace your_table_name with the name of the table that you want to
restore.

Use the pg_restore utility to load the data from the restored table into the
new table:

pg_restore -data-only -table=your_table_name -
dbname=adventure works /path/to/restore/your_table_name. sql

Replace your_table_name with the name of the table that you want to
restore, /path/to/restore with the path to the directory where you restored
the table, and adventureworks with the name of your PostgreSQL
database.

Verify that the data is restored correctly by querying the new table:

psql -U postgres -d adventureworks -c "SELECT COUNT(*) FROM
your_table_name;"

Replace your_table_name with the name of the table that you restored and
the table recovery for the adventureworks database using Barman is
successful.

Recipe#6: Working with Schema Level Restore

In PostgreSQL, a schema is a logical container for database objects such
as tables, views, and functions. In case of a disaster, it may be necessary to
restore individual schemas from a backup. Barman supports schema-level
recovery, which allows you to restore individual schemas from a backup
without affecting the rest of the database. In this recipe, I will describe
how to work with schema-level restore for the adventureworks database
using Barman.

Assuming that you have already taken a backup of the adventureworks
database that includes the schema that you want to restore, follow the
steps below to perform schema-level restore:

Check the status of the backups in Barman by running the following
command:

barman list-backup adventure works

This will show you a list of backups that have been taken for the
adventure works database, along with their status.

Select the backup that you want to restore and mark it as "restored" by
running the following command:

barman mark-restore adventureworks backup_id

Replace backup_id with the ID of the backup that you want to restore.
This command tells Barman to mark the backup as "restored" so that it
will not be used for future PITR operations.

Create a temporary directory for the restore process:

mkdir /path/to/restore

Replace /path/to/restore with the path to the directory where you want to
store the restored schema.

Restore the schema by running the following command:

barman recover-schema -remote-ssh-command "ssh user@your_server" -
-target-directory /path/to/restore -tablespace-name your_tablespace_name
adventureworks backup_id your_schema_name

Replace user@your_server with the SSH connection information for your
PostgreSQL server, /path/to/restore with the path to the directory where
you want to restore the schema, your_tablespace_name with the name of
the tablespace that contains the schema you want to restore,
adventureworks with the name of your PostgreSQL database, backup_id
with the ID of the backup that you want to restore, and
your_schema_name with the name of the schema that you want to restore.
This command tells Barman to restore the specified schema for your
database to the specified directory.

After the schema is restored, use the pg_restore utility to create a new
schema in the database with the same name:

pg_restore -schema-only -dbname=adventureworks
/path/to/restore/your_schema_name. sql

Replace /path/to/restore with the path to the directory where you restored
the schema, and adventureworks with the name of your PostgreSQL
database.

Verify that the schema is restored correctly by querying the new schema:

psql -U postgres -d adventureworks -c "\d your_schema_name.*;"

Replace your_schema_name with the name of the schema that you
restored and the schema-level restore is complete.

Recipe#7: Monitor Restore Operations

Barman provides several options for monitoring restore operations in
progress. In this recipe, I will describe how to monitor restore operations
for the adventureworks database using Barman.

Check the status of the restore operation by running the following
command:

barman list-restore adventureworks

This will show you a list of all restores that are in progress or have been
completed for the adventureworks database. The output will include the
status of each restore, the name of the backup being restored, and the
target directory for the restore.

To monitor the progress of a restore operation, run the following
command:

barman show-restore adventureworks restore_id

Replace restore_id with the ID of the restore operation that you want to
monitor. This command will show you the status of the restore operation,
the name of the backup being restored, and the target directory for the
restore. It will also show you the progress of the restore operation,
including the number of files that have been restored and the estimated
time remaining.

To view the log messages for a restore operation, run the following
command:

barman show-restore-logs adventureworks restore_id

Replace restore_id with the ID of the restore operation that you want to
monitor. This command will show you the log messages for the restore
operation, including any errors or warnings that were encountered during
the restore process.

If you want to stop a restore operation that is in progress, run the
following command:

barman stop-restore adventureworks restore_id

Replace restore_id with the ID of the restore operation that you want to
stop. This command will stop the restore operation and remove the restore
lock on the backup that was being restored. By this, you have learned how
to monitor restore operations using Barman.

Recipe#8: Working with Recovery Mode

In Barman, recovery mode is a state in which the PostgreSQL server is
running using data that has been recovered from a backup. In this mode,
you can perform several tasks, including testing the restored data and
performing point-in-time recovery operations. In this recipe, I will
describe how to work with recovery mode for the adventureworks
database using Barman.

Assuming that you have already restored the adventureworks database
using Barman, follow the steps below to start the PostgreSQL server in
recovery mode:

Open the postgresql.conf file located in the data directory of your
PostgreSQL installation:

nano /var/lib/postgresql/data/postgresql.conf

Uncomment the following lines in the file:

recovery, conf

include_dir = 'conf.d'

Save and close the file.

Create a recovery.conf file in the conf.d directory:

nano /var/lib/postgresql/data/conf.d/recovery.conf

Add the following lines to the file:

standby_mode = 'on'

primary_conninfo = 'host=your_server port=5432 user=your_user
password=your_password'

restore_command =' barman-wal-restore your_barman_server
adventureworks %f %p'

trigger_file = '/var/lib/postgresql/data/failover.trigger'

Replace your_server with the IP address or hostname of your PostgreSQL
server, your_user and your_password with the PostgreSQL user
credentials that you want to use for the recovery process,
your_barman_server with the hostname or IP address of your Barman
server, and /var/lib/postgresql/data/failover.trigger with the path to the
failover trigger file.

The restore_command parameter specifies the command that will be used
to retrieve WAL files from Barman during the recovery process. %f and
%p are placeholders for the WAL file name and path, respectively.

Save and close the recovery.conf file.

Create the failover trigger file:

touch /var/lib/postgresql/data/failover. trigger

Start the PostgreSQL server in recovery mode:

pg_ctl -D /var/lib/postgresql/data/ -1 /var/lib/postgresql/data/logfile start

Verify that the PostgreSQL server is running in recovery mode:

psql -U postgres -c "SELECT pg_is_in_recovery();"

The output should be t, indicating that the PostgreSQL server is running in
recovery mode.

Recipe#9: Working with Recovery Target Options

In PostgreSQL, recovery target options are parameters that can be used to
specify the recovery target for a point-in-time recovery operation. These
options allow you to recover the database to a specific point in time or up
to a certain transaction ID. In this recipe, I will describe how to work with
recovery target options for the adventureworks database using Barman.

Assuming that you have already restored the adventureworks database
using Barman and started the PostgreSQL server in recovery mode, follow
the steps below to work with recovery target options:

To recover the database up to a specific point in time, add the following
line to the recovery.conf file:

recoverytargetjime = 'YYYY-MM-DD HH:MI:SS'

Replace YYYY-MM-DD HH:MI:SS with the date and time up to which
you want to recover the database.

To recover the database up to a specific transaction ID, add the following
line to the recovery.conf file:

recovery_target_xid = 'transaction_ID'

Replace transaction_ID with the transaction ID up to which you want to
recover the database.

To recover the database up to the last transaction that was committed
before a specific point in time, add the following line to the recovery.conf
file:

recoverytargetjime = 'YYYY-MM-DD HH:MI:SS'

recovery_target_inclusive = 'false'

Replace YYYY-MM-DD HH:MI:SS with the date and time before which
you want to recover the database.

To recover the database to the end of the WAL logs, add the following line
to the recovery.conf file:

recovery_target = 'immediate'

This will recover the database up to the end of the WAL logs, which is the
point at which the last backup was taken.

Save and close the recovery.conf file.

Restart the PostgreSQL server in recovery mode:

pg_ctl -D /var/lib/postgresql/data/ -1 /var/lib/postgresql/data/logfile restart

Verify that the PostgreSQL server is running in recovery mode:

psql -U postgres -c "SELECT pg_is_in_recovery();"

The output should be t, indicating that the PostgreSQL server is running in
recovery mode.

Chapter 12: Prometheus & Continuous Monitoring

Recipe#!: Installing and Configuring Prometheus

Prometheus is a powerful monitoring system that collects and stores
metrics from various sources and allows you to query and visualize the
data. In this recipe, I will describe how to install and configure
Prometheus for the adventure works database.

Install Prometheus by downloading the latest release from the official
website:

wget
https://github.eom/prometheus/prometheus/releases/download/v2.30.3/pro
metheus-2.30.3. Iinux-amd64 .tar. gz

tar xvfz prometheus-2.30.3. Iinux-amd64.tar.gz

This will download and extract the Prometheus binary to the current
directory.

Configure Prometheus by editing the prometheus.yml file:

nano prometheus-2.30.3.Iinux-amd64/prometheus.yml

Add the following lines to the file:

global:

https://github.com/prometheus/prometheus/releases/download/v2.30.3/pro

scrape_interval: 15s

scrape_configs:

- job_name: 'postgres'

static_configs:

- targets: ['localhost:9090']

metrics_path: '/metrics'

params:

query: |

postgres_exporter_database_size_bytes {database-' adventure works"}

postgres_exporter_table_size_bytes {database-' adventure works"}

This configuration file tells Prometheus to scrape metrics from the
PostgreSQL server running on the local machine on port 9090. It also
specifies the metrics to collect, which include the size of the
adventure works database and tables.

Save and close the prometheus.yml file.

Start the Prometheus server:

prometheus-2.30.3. Iinux-amd64/prometheus —config. file=prometheus-
2.3 0.3. hnux-amd64/prometheus .yml

Verify that the Prometheus server is running by accessing the web
interface:

http://localhost:9090

This will open the Prometheus web interface, where you can view and
query the collected metrics.

http://localhost:9090

Recipe#2: Real-time Monitoring using Prometheus

Once you have installed and configured Prometheus for the
adventureworks database, you can use it to do real-time monitoring of the
database by querying the collected metrics. In this recipe, I will describe
how to use Prometheus to perform real-time monitoring of the
adventure works database.

Access the Prometheus web interface:

http://localhost:9090

Navigate to the "Graph" section of the web interface.

In the "Expression" input box, enter the following query to display the
size of the adventure works database:

postgres_exporter_database_size_bytes {database-' adventure works"}

This query will display the size of the adventureworks database in bytes.

In the "Expression" input box, enter the following query to display the
size of the salesorderdetail table in the adventure works database:

postgres_exporter_table_size_bytes {database-' adventure works",
table-' salesorderdetail"}

http://localhost:9090

This query will display the size of the salesorderdetail table in bytes.

To monitor the rate of queries being executed on the adventureworks
database, enter the following query in the "Expression" input box:

rate(pg_stat_database_xact_commit{ datname- adventure works'} [5m])

This query will display the rate of transactions being committed to the
adventure works database over the last 5 minutes.

To monitor the memory usage of the PostgreSQL server, enter the
following query in the "Expression" input box:

node_memory_MemTotal - node_memory_MemFree -
node_memory_Buffers - node_memory_Cached

This query will display the amount of memory being used by the
PostgreSQL server.

You can also create custom queries to monitor specific aspects of the
adventureworks database, such as the number of orders placed or the
average order amount.

By now, you have successfully used Prometheus to perform real-time
monitoring of the adventure works database. By querying the collected
metrics, you can gain insights into the performance and usage of the
database, and take proactive measures to optimize its performance.

Recipe#3: Using Statistic Collector and Analyzer

PostgreSQL's statistics collector and analyzer are powerful tools that
allow you to collect and analyze performance metrics and usage statistics
for your database. In this recipe, I will describe how to use the statistics
collector and analyzer for the adventureworks database.

Enable the statistics collector by adding the following line to the
postgresql.conf file:

#stats_collector = off

stats_collector = on

This will enable the statistics collector, which will start collecting metrics
about the database's performance and usage.

Restart the PostgreSQL server for the changes to take effect:

systemctl restart postgresql.service

Verify that the statistics collector is running by checking the contents of
the pg_stat directory:

Is /var/lib/postgresql/data/pg_stat/

This directory should contain several files that correspond to different
aspects of the database's performance, such as pg_stat_database,
pg_stat_activity, and pg_stat_user_tables.

Use the pg_stat_database view to monitor database-level statistics, such as
the number of queries being executed and the amount of data being read
and written:

SELECT datname, numbackends, xact_commit, xact_rollback, blks_read,
blkshit FROM pg_stat_database WHERE datname- adventure works';

This query will display the number of active connections, transactions
committed and rolled back, and the number of blocks read and hit for the
adventure works database.

Use the pg_stat_user_tables view to monitor table-level statistics, such as
the number of queries being executed on a specific table and the amount
of data being read and written:

SELECT relname, seq_scan, seq_tup_read, idx_scan, idx_tup_fetch,
n_tup_ins, n_tup_upd, n_tup_del FROM pg_stat_user_tables WHERE
schemaname-public' AND relname-salesorderdetaif;

This query will display the number of sequential and index scans and
tuples read for the salesorderdetail table in the public schema.

Use the pg_stat_activity view to monitor the current activity on the
PostgreSQL server, including the queries being executed and the users
connected to the server:

SELECT datname, usename, query FROM pg_stat_activity WHERE
datname- adventureworks';

This query will display the active queries being executed on the
adventureworks database and the users connected to the server. By
analyzing these metrics, you can identify performance bottlenecks and
optimize the database's configuration and queries for better performance.

Recipe#4: Using Prometheus to Monitor Active Session

You can use Prometheus to monitor the number of active sessions on the
PostgreSQL server running the adventureworks database. To do this, you
can use the pg_stat_activity view in conjunction with Prometheus's
postgres_exporter module, which exposes PostgreSQL metrics in a format
that can be consumed by Prometheus. In this recipe, I will describe how to
use Prometheus to monitor active sessions for the adventureworks
database.

Install the postgres_exporter module by following the installation
instructions provided in the official documentation:

git clone https://github.com/wrouesnel/postgres_exporter.git

cd postgres_exporter

This will download and compile the postgres_exporter module.

Start the postgres_exporter module:

,/postgres_exporter -extend.query-path=/path/to/custom/queries -
web.listen-address-':9187" -disable-default-metrics

This will start the postgres_exporter module on port 9187 and enable it to
run custom queries located in the specified directory.

https://github.com/wrouesnel/postgres_exporter.git

Configure Prometheus to scrape metrics from the postgres_exporter
module:

global:

scrape_interval: 15s

scrape_configs:

- job_name: 'postgres_exporter'

static_configs:

-targets: ['localhost:9187']

Save and close the prometheus.yml file.

Restart the Prometheus server:

prometheus — config. file=prometheus. yml

Verify that Prometheus is scraping metrics from the postgres_exporter
module by accessing the Prometheus web interface:

http://localhost:9090

http://localhost:9090

Navigate to the "Graph" section of the web interface.

In the "Expression" input box, enter the following query to display the
number of active sessions on the PostgreSQL server:

postgresql_activity_count

This query will display the number of active sessions on the PostgreSQL
server, including the adventure works database.

Recipe#5: Parse Query String

In PostgreSQL, you can parse a query string using the pg_query_parse()
function, which returns a parse tree for the specified query. The parse tree
contains information about the syntax and structure of the query, including
the tables, columns, and conditions used in the query. In this recipe, I will
describe how to parse a query string for the adventureworks database.

Connect to the adventure works database using psql:

psql -U postgres -d adventureworks

Enter the following command to enable the pg_stat_statements extension,
which provides statistics about the execution of SQL statements on the
server:

CREATE EXTENSION IF NOT EXISTS pg_stat_statements;

Execute some SQL statements on the adventure works database to
populate the pg_stat_statements view:

SELECT * FROM salesorderdetail;

SELECT * FROM salesorderheader WHERE orderdate >= '2007-01-01';

Enter the following command to parse a query string:

SELECT * FROM pg_query_parse('SELECT * FROM salesorderdetail;');

This command will return a parse tree for the specified query, which
contains information about the tables and columns used in the query.

To parse a more complex query, enter the following command:

SELECT * FROM pg_query_parse('SELECT * FROM salesorderheader
WHERE orderdate >= "2007-01-01" ORDER BY orderdate DESC LIMIT

10;');

This command will return a parse tree for the specified query, which
includes information about the conditions, sorting, and limiting used in the
query. You have successfully parsed a query string for the adventureworks
database using the pg_query_parse() function. By analyzing the parse tree,
you can gain insights into the syntax and structure of the query, which can
help you optimize the database's configuration and queries for better
performance.

Recipe#6: Use Database Connection Pooling

Database connection pooling is a technique that allows multiple client
applications to share a pool of database connections, which can improve
the performance and scalability of the database. In PostgreSQL, you can
use various connection pooling solutions to implement connection pooling
for the adventure works database, such as PgBouncer and pgpool-II. In this
recipe, I will describe how to use PgBouncer to implement database
connection pooling for the adventureworks database.

Install PgBouncer by following the installation instructions provided in
the official documentation:

sudo apt-get install pgbouncer

Configure PgBouncer by editing the pgbouncer.ini file:

nano /etc/pgbouncer/pgbouncer. ini

Set the following parameters in the [databases] section of the
pgbouncer.ini file:

[databases]

adventureworks = host=localhost port=5432 dbname=adventureworks
user=postgres password=postgres

This specifies the connection details for the adventureworks database.

Set the following parameters in the [pgbouncer] section of the
pgbouncer.ini file:

[pgbouncer]

listen_addr = *

listen_port = 6432

auth_type = md5

auth_file = /etc/pgbouncer/userlist.txt

server reset query = DISCARD ALL

max_client_conn =100

default_pool_size = 20

This specifies the settings for the PgBouncer instance, such as the
listening address and port, authentication type and file, maximum number
of client connections, and default pool size.

Create the userlist.txt file and add the following line to it:

"postgres" "postgres"

This specifies the authentication credentials for the PostgreSQL user.

Start the PgBouncer server:

pgbouncer -d /etc/pgbouncer/pgbouncer.ini

Connect to the adventureworks database using PgBouncer by specifying
the PgBouncer server address and port in the connection string:

psql -U postgres -h localhost -p 6432 -d adventureworks

This will connect to the adventureworks database through the PgBouncer
connection pool. You have successfully implemented database connection
pooling for the adventureworks database using PgBouncer. By sharing a
pool of database connections, you can reduce the overhead of establishing
new connections and improve the performance and scalability of the
database.

Recipe#7: Vacuum amd Bloat

In PostgreSQL, the VACUUM command is used to reclaim disk space and
optimize the performance of the database by removing dead rows and
updating the table statistics. Bloat refers to the excessive usage of disk
space by the database, which can occur due to various reasons such as
unoptimized queries, long-running transactions, and inefficient
maintenance operations. In this recipe, I will describe in detail about
vacuum and bloat for the adventureworks database.

Understanding Vacuum

The VACUUM command is used to reclaim disk space and optimize the
performance of the database by removing dead rows and updating the
table statistics. Dead rows are rows that are no longer needed and can be
safely removed from the table.

The VACUUM command performs the following operations:
• Removes dead rows from the table.
Updates the table statistics, which are used by the PostgreSQL query
planner to optimize queries.
• Reclaims disk space by compacting the table.

The VACUUM command can be run on a specific table, a specific
schema, or the entire database.

Understanding Bloat

Bloat refers to the excessive usage of disk space by the database, which
can occur due to various reasons such as unoptimized queries, long-
running transactions, and inefficient maintenance operations. Bloat can
cause performance degradation and disk space exhaustion, and should be
addressed through regular maintenance operations such as VACUUM and
REINDEX.

Bloat can occur in the following forms:
Table bloat: Occurs when a table has more dead rows than live rows,
resulting in inefficient disk usage and slow queries.
Index bloat: Occurs when an index has become too large due to excessive
fragmentation or redundant data, resulting in slow queries and excessive
disk usage.
Database bloat: Occurs when the database has become too large due to
excessive table and index bloat, resulting in slow queries, long backup
times, and excessive disk usage.

Addressing Bloat

Bloat can be addressed through regular maintenance operations such as
VACUUM and REINDEX, which reclaim disk space and optimize the
performance of the database.
The following steps can be taken to address bloat in the adventureworks
database:
Use the VACUUM command to reclaim disk space and optimize the
performance of the database by removing dead rows and updating the
table statistics.
Use the ANALYZE command to update the table statistics and optimize
the query planner.

Use the REINDEX command to rebuild indexes that have become bloated
due to excessive fragmentation or redundant data.
Monitor the disk usage of the database and ensure that it does not exceed
the available disk space.

Tune the queries and transactions to reduce the usage of disk space and
optimize the performance of the database.

To summarize, vacuum and bloat are critical concepts in PostgreSQL that
should be understood and addressed through regular maintenance
operations to ensure optimal performance and disk space usage of the
adventure works database.

Recipe#8: Using ‘fsync’

In PostgreSQL, fsync is a configuration parameter that determines
whether or not the database writes data to disk immediately after each
transaction commit, fsync is an important parameter because it affects the
durability and reliability of the database, as well as its performance.

When fsync is enabled, the database writes data to disk immediately after
each transaction commit, ensuring that the data is safely stored on disk
and is recoverable in the event of a system crash or power failure.
However, this can impact performance, as the write operations can be
slow and cause delays in the transaction processing.

When fsync is disabled, the database does not write data to disk
immediately after each transaction commit, which can improve
performance but can also increase the risk of data loss or corruption in the
event of a system crash or power failure. Therefore, it is important to
carefully consider the implications of enabling or disabling fsync based on
the specific requirements and constraints of your application.

To use fsync for the adventure works database, you can follow these steps:

Connect to the adventure works database using psql:

psql -U postgres -d adventureworks

Enter the following command to view the current value of the fsync
parameter:

SHOW fsync;

This command will display the current value of the fsync parameter,
which is either on or off.

Enter the following command to change the value of the fsync parameter:

SET fsync TO off;

This command will disable the fsync parameter, which can improve
performance but can also increase the risk of data loss or corruption in the
event of a system crash or power failure.

Enter the following command to verify that the fsync parameter has been
disabled:

SHOW fsync;

This command will display the current value of the fsync parameter,
which should be off.

To enable fsync again, enter the following command:

SET fsync TO on;

This command will enable the fsync parameter, which ensures that the
data is safely stored on disk and is recoverable in the event of a system
crash or power failure.

Enter the following command to verify that the fsync parameter has been
enabled:

SHOW fsync;

This command will display the current value of the fsync parameter,
which should be on. By carefully considering the implications of enabling
or disabling fsync, you can ensure optimal performance and data safety
for your application.

Chapter 13: Debugging PostgreSQL

Recipe#!: Benchmarking and its Importance

Benchmarking is the process of measuring and evaluating the performance
of a system under controlled conditions. In the context of PostgreSQL,
benchmarking is an important tool for measuring the performance and
scalability of the database, as well as identifying and resolving
performance bottlenecks and other issues. In this recipe, I will describe in
detail about benchmarking and its importance for PostgreSQL
performance.

Understanding Benchmarking

Benchmarking involves measuring and evaluating the performance of a
system under controlled conditions, such as by running a set of predefined
workloads and measuring the response times and throughput of the
system. Benchmarking can be used to identify performance bottlenecks,
evaluate the scalability of the system, and compare the performance of
different configurations or systems.

In the context of PostgreSQL, benchmarking involves running a set of
predefined queries or transactions on the database and measuring the
response times, throughput, and other performance metrics.
Benchmarking can be performed using various tools and frameworks,
such as pgbench, HammerDB, and Apache JMeter.

Importance of Benchmarking for PostgreSQL Performance

Benchmarking is an important tool for measuring and evaluating the
performance of the PostgreSQL database, as well as identifying and
resolving performance bottlenecks and other issues.

The following are some of the key benefits of benchmarking for
PostgreSQL performance:

Identifying performance bottlenecks: By running a set of predefined
workloads on the database and measuring the response times and
throughput, benchmarking can help identify performance bottlenecks and
other issues that may be impacting the performance of the database.
Evaluating seal ability: Benchmarking can be used to evaluate the
scalability of the database and identify the maximum number of
concurrent connections or transactions that the database can handle
without experiencing performance degradation.
Comparing configurations: Benchmarking can be used to compare the
performance of different configurations or systems, such as different
hardware or software configurations or different PostgreSQL versions.
Optimizing queries and indexes: By analyzing the performance metrics
obtained from benchmarking, developers and administrators can identify
opportunities to optimize queries, indexes, and other database objects for
better performance.
Validating changes: Benchmarking can be used to validate the
performance impact of changes to the database configuration, schema, or
workload, such as upgrading to a new PostgreSQL version or adding a
new index.

Benchmarking is a critical tool for measuring and evaluating the
performance of the PostgreSQL database, as well as identifying and
resolving performance bottlenecks and other issues. By regularly

benchmarking the database under controlled conditions and analyzing the
performance metrics, developers and administrators can optimize the
performance and scalability of the PostgreSQL database for better
application performance and user experience.

Recipe#2: Benchmark Performance using PGBench

pgbench is a built-in benchmarking tool that comes with PostgreSQL. It is
a simple and flexible tool for benchmarking the performance of
PostgreSQL databases. In this recipe, I will describe in detail how to use
pgbench to benchmark the performance of the adventure works database.

Connect Adventureworks Database using.psql

psql -U postgres -d adventureworks

Create Test Table for Benchmarking

CREATE TABLE test (id serial PRIMARY KEY, data text);

This command creates a simple table with an id column and a data
column.

Generate Test Data using_pgbench

pgbench -i -s 10 adventure works

This command generates test data for the adventureworks database, with a
scale factor of 10. The scale factor determines the size of the test data, and
should be adjusted based on the specific requirements and constraints of
your application.

Run Benchmark using pgbench

pgbench -c 10 -j 2 -T 60 -M prepared adventureworks

This command runs a benchmark on the adventureworks database with 10
client connections, 2 threads per client, and a duration of 60 seconds. The
-M prepared option specifies that pgbench should use prepared statements,
which can improve performance by reducing the overhead of parsing and
planning queries.

The benchmark results will be displayed in the console, including the
number of transactions per second, the average latency, and other
performance metrics.

Use the benchmark results to identify performance bottlenecks and other
issues that may be impacting the performance of the database. The
following are some key performance metrics to consider:
• Transactions per second: The number of transactions that were
processed per second.
• Latency: The average time it took to process each transaction.
Connection and query throughput: The number of connections and queries
that were processed per second.
Errors and timeouts: The number of errors and timeouts that occurred
during the benchmark.

By analyzing these performance metrics, you can identify opportunities to
optimize queries, indexes, and other database objects for better
performance.

Cleanup Test Data

To clean up the test data and the test table, use the following command:

pgbench -c 1 -j 1 -T 10 -M prepared -n -f cleanup, sql adventureworks

This command runs a cleanup script to remove the test data and the test
table from the adventure works database.

Recipe#3: Responding Error Messages

There are many different types of error messages that can occur while
using PostgreSQL database. In this recipe, I will describe some common
error messages and how to respond to them using the adventureworks
database as an example.

Syntax Error

Syntax errors occur when you enter an invalid command or SQL
statement. For example, if you try to run the following SQL statement:

SELECT * FROM employee WHERE name = 'John';

This will result in a syntax error, because there is no name column in the
employee table. To correct this error, you should check the table schema
and modify the SQL statement to reference a valid column:

SELECT * FROM employee WHERE first name = 'John';

Unique Constraint Violation

Unique constraint violations occur when you try to insert a record with a
value that already exists in a unique column. For example, if you try to
insert a new employee with a duplicate email address:

INSERT INTO employee (first_name, last_name, email) VALUES ('John',
'Doe', 'jdoe@example.com');

This will result in a unique constraint violation, because the email address
jdoe@example.com already exists in the employee table. To correct this
error, you should either update the existing record with the new data or
insert a new record with a unique email address.

Insufficient Privileges

Insufficient privileges errors occur when you try to execute a command or
SQL statement without the necessary permissions. For example, if you try
to create a new table without the CREATE TABLE privilege:

CREATE TABLE sales (id serial PRIMARY KEY, amount numeric);

This will result in an insufficient privileges error. To correct this error, you
should grant the necessary privileges to the user or role:

GRANT CREATE TABLE TO myuser;

Connection Refused

Connection refused errors occur when you try to connect to a database but
the connection is refused or rejected by the server. For example, if you try
to connect to the adventureworks database but the server is not running or
is not configured to accept connections:

mailto:jdoe@example.com

psql -U postgres -d adventureworks

This will result in a connection refused error. To correct this error, you
should check that the server is running and configured correctly, and that
the database is accessible over the network.

Server Crashed

Server crashed errors occur when the PostgreSQL server crashes or shuts
down unexpectedly. When this happens, you may see an error message
like:

FATAL: the database system is in recovery mode

To correct this error, you should try to identify and resolve the cause of the
server crash, such as hardware failures, memory leaks, or software bugs.
You may also need to perform a database recovery operation to restore the
database to a consistent state.

Overall, error messages are a common occurrence when working with
PostgreSQL databases. By understanding the different types of error
messages and how to respond to them, you can effectively troubleshoot
issues and maintain the reliability and availability of the adventureworks
database.

Thank You

Epilogue

As we conclude this PostgreSQL 15 Cookbook, we reflect on the many
features and capabilities of this powerful relational database management
system. Over the course of this book, we have explored a wide range of
topics, from basic installation and configuration to advanced query
optimization and security.

PostgreSQL 15 offers many new features and enhancements, including
improved performance, better support for distributed transactions, and
enhanced security features. With these new capabilities, PostgreSQL 15 is
even more powerful and reliable than ever before.

As you continue to work with PostgreSQL 15, we hope that this cookbook
has served as a helpful guide, providing you with practical solutions to
common challenges and inspiring you to explore the many possibilities of
this remarkable database system.

We thank you for choosing this cookbook as your guide to PostgreSQL
15, and we hope that it has exceeded your expectations. We encourage you
to continue to explore this rich and dynamic ecosystem, and to share your
knowledge and experiences with others in the PostgreSQL community.

May your journey with PostgreSQL 15 be a rewarding and fulfilling one,
and may you continue to build robust, scalable, and secure applications
with this exceptional database system.

Thank You

	Postg reSQL 15 Cookbook

