YT FI G \

PROGRAMMING |FFEL_"L{FH}TID§E

—l._. T e oy K
& Complete Crash '::'-l-_'-"]

—_._.ll-._ —_..._—_—. i -

DR s R R e

- St b o .;I-l'l-.r-'-'I
— - o g —_ __-_
La ‘r’-‘,._,,__r.* "'I' _‘= Ea '
‘_—_—l-l'l—.--'—‘__—.— _l—'.—l—

L= -."""-'-.l_r-.-.l =

F.i'l—'l.-.—.—_ =
'- T A

-I.- -_* _.
- -~
-.;_..'r-

MIKE KERNELL

PYTHON PROGRAMMING FOR
BEGINNERS

THE COMPLETE CRASH COURSE TO MASTERING
PYTHON IN 7 DAYS. LEARN CODING FAST WITH
HANDS-ON PROJECTS & TIPS TO GET AN UNFAIR
ADVANTAGE AND BECOME THE #1 PROGRAMMER!

MIKE KERNELL

CONTENTS

Author Bio

1. Introduction to Python Programming
The History of Python Programming
Features of Python Programming [.anguage
Applications of Python Programming L.anguage
Getting Started with Python Programming
Setting Up Your Development Environment
Writing Your First Python Program

2. Installing and Setting Up Python Environment

Installing Python
Setting Up Your Development Environment

Python Basics: Data Types and Variables
Python Operators and Expressions
Control Flow Statements in Python
Python Functions and Modules

Working with Strings in Python

Python Lists and Tuples

. Python Dictionaries and Sets

10. Object-Oriented Programming in Python

11. File Handling in Python
Opening and Closing Files
Reading Files
Writing Files
Appending to Files
Working with Binary Files

12. Exception Handling in Python

13. Debugging and Testing in Python

Debugging in Python
Testing in Python

Best Practices for Debugging and Testing in Python
14. Web Scraping with Python

©® NP U AW

15. Hands-On Project: Building a Simple Python Game

Conclusions

Copyright © 2023 by Mike Kernell. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher.

This book is protected under U.S. copyright law, which states that copyright protection
subsists from the time the work is created in fixed form. The copyright in the work of
authorship immediately becomes the property of the author who created the work.

Published by Mike Kernell.
Printed in the United States of America.

Disclaimer: This book is not intended as a substitute for professional advice. The
information provided in this book is for general informational purposes only and does not
establish a professional relationship. The author and publisher make no representation or
warranties with respect to the accuracy or completeness of the contents of this book and
specifically disclaim any implied warranties of merchantability or fitness for a particular
purpose. The author and publisher shall not be liable in any event for incidental or
consequential damages in connection with or arising out of the furnishing, performance, or
use of the information in this book.

AUTHOR BIO

Mike Kernell, the author, has extensive technical knowledge in information security,
cryptography, algorithm analysis, design, and implementation, graph drawing, and
computational geometry, among other areas. In addition, these are some of the things that
he is interested in learning more about in the future.

He worked as a full-time developer before transitioning to programming books. He has
also worked for a software development firm and a website dedicated to computer science
creative writing. Mike has had a long-standing interest in computing as a conceptual
framework in the classroom for many years.

He has worked on countless numbers of software projects over the previous 35 years in
various positions. Among his many publications are working on Python Programming,
Extreme Programming, Object-Oriented Programming, and C++ Coding. He has scores of
papers published in different trade magazines to his credit. He was a past editor of the
Python Report and presently contributes a monthly Craftsman piece to the Software
Development magazine's Craftsman section.

He considers himself among such individuals one of the numerous software specialists
who give program management consulting, object-oriented software design consulting,
training, and development services to big organizations worldwide. He participates in the
community's life as a computer science instructor. Mike got interested in computer
architecture during great innovation and change. Mike Kernell has also worked as a
technical contributor, technical manager, and technical consultant executive with various
high-technology organizations.

"Any sufficiently advanced technology is indistinguishable from magic."
[Arthur C. Clarke]

CHAPTER1

INTRODUCTION TO PYTHON
PROGRAMMING

W elcome to the world of Python programming! In this chapter, we will

be exploring the basics of Python programming language, including its
history, features, and applications. Python is a versatile and powerful
programming language used in a variety of industries, from software
development and data science to artificial intelligence and web development.
Whether you're a complete beginner or a seasoned programmer looking to
add Python to your skillset, this chapter will provide you with a solid
foundation to start your journey.

THE HISTORY OF PYTHON PROGRAMMING

Before we delve into the nitty-gritty of Python programming, let's take a step
back and explore the origins of this powerful language. Python was created
by Guido van Rossum, a Dutch programmer, in the late 1980s while working
at the National Research Institute for Mathematics and Computer Science in
the Netherlands. Van Rossum was looking for a successor to the ABC
language, which was widely used in the scientific community but lacked
certain features that he believed were essential for efficient programming. In
February 1991, Python was released to the public, and it quickly gained
popularity among programmers due to its simplicity, readability, and ease of

use.

FEATURES OF PYTHON PROGRAMMING
LANGUAGE

Python is a high-level programming language that is designed to be easy to
read and write. Its syntax is simple and straightforward, making it an ideal
choice for beginners who are just starting to learn how to code. Some of the
key features of Python include:

e Dynamically typed: Unlike other programming languages such as
C++ and Java, Python does not require the programmer to declare
variable types. This means that variables can be assigned different
types of data throughout the program, which makes it more
flexible and easier to use.

e Interpreted: Python is an interpreted language, which means that it
is executed line-by-line rather than being compiled into machine
code before execution. This makes it faster to write and test code,
as changes can be made quickly and easily.

¢ Object-oriented: Python is an object-oriented language, which
means that it is designed around the concept of objects. Objects
are instances of classes, which are like blueprints for creating
objects. This allows programmers to create complex data
structures and reuse code more efficiently.

e Cross-platform: Python can run on a variety of platforms,
including Windows, macOS, and Linux, making it a versatile
language that can be used for a wide range of applications.

APPLICATIONS OF PYTHON PROGRAMMING

LANGUAGE

Python has become one of the most popular programming languages in the
world, thanks to its versatility and ease of use. It is used in a wide range of
industries and applications, including:

e Web development: Python is widely used in web development,
thanks to frameworks such as Django and Flask that make it easy
to build web applications quickly and efficiently.

e Data science: Python is a popular language in the field of data
science, thanks to its powerful libraries such as NumPy, Pandas,
and Matplotlib, which make it easy to perform complex data
analysis and visualization tasks.

o Artificial intelligence and machine learning: Python is widely
used in the field of Al and machine learning, thanks to libraries
such as TensorFlow, Keras, and PyTorch that make it easy to
build and train machine learning models.

o Software development: Python is a popular language for software
development, thanks to its ease of use and readability. It is used to
build a wide range of applications, from simple command-line
tools to complex enterprise software.

GETTING STARTED WITH PYTHON
PROGRAMMING

Now that you have a basic understanding of Python's history, features, and
applications, it's time to start learning how to write Python code. In this
section, we will go through the steps needed to set up your development
environment and write your first Python program.

SETTING UP YOUR DEVELOPMENT
ENVIRONMENT

Before you can start writing Python code, you need to set up your
development environment. There are several ways to do this, but one of the
most popular and user-friendly options is to use an Integrated Development
Environment (IDE). An IDE is a software application that provides a range of
tools and features to help you write, debug, and test your code.

One popular Python IDE is PyCharm, which is available for free from
JetBrains. To get started with PyCharm, you can download and install it from
the official website. Once you have installed PyCharm, you can create a new
project and start writing code.

WRITING YOUR FIRST PYTHON PROGRAM

Now that you have set up your development environment, it's time to write
your first Python program. In this section, we will go through the steps
needed to create a simple "Hello, World!" program.

Open up PyCharm and create a new Python file by clicking File > New >
Python File. Name the file "hello_world.py" and click OK. You should see a
blank file open up in the editor.

Type the following code into the editor:

python EI Copy code

print("Hello, World!"

This is a simple Python program that uses the print function to output the

message "Hello, World!" to the console.

Save the file by clicking File > Save or by pressing Ctrl + S (Windows)
or Cmd + S (macOS). You should save the file in a folder where you can
easily find it later.

To run the program, click the green "Run" button at the top of the
PyCharm window, or press Shift + F10 (Windows) or Control + R (macOS).
You should see the message "Hello, World!" printed to the console.

Congratulations! You have written and executed your first Python
program.

In this chapter, we have explored the basics of Python programming,
including its history, features, and applications. We have also gone through
the steps needed to set up your development environment and write your first
Python program.

Python is a powerful and versatile programming language that can be
used in a wide range of applications, from web development and data science
to artificial intelligence and machine learning. By mastering the basics of
Python programming, you will be well on your way to becoming a skilled
programmer and opening up new opportunities for yourself in the tech
industry.

In the next chapter, we will explore the basics of Python syntax, including
variables, data types, and operators. Stay tuned!

CHAPTER 2

INSTALLING AND SETTING UP PYTHON
ENVIRONMENT

N ow that we have covered the basics of Python programming in the

previous chapter, it's time to set up our Python environment so that we
can start writing and executing Python code. In this chapter, we will cover the
different ways to install and set up Python, as well as some popular tools and
packages that can help streamline the development process.

INSTALLING PYTHON

Python is an open-source programming language, which means that it can be
downloaded and installed for free from the official website. The website
offers the latest version of Python, as well as earlier versions for those who
need them.

To install Python, simply navigate to the official website and download
the version that is appropriate for your operating system. Once you have
downloaded the installer, double-click on it to begin the installation process.
The installer will guide you through the process of installing Python on your
system.

SETTING UP YOUR DEVELOPMENT

ENVIRONMENT

Once you have installed Python on your system, you need to set up your
development environment. This involves choosing an IDE or text editor, as
well as installing any necessary packages and libraries.

There are several popular Python IDEs available, including PyCharm,
Visual Studio Code, and Sublime Text. These IDEs offer a range of features
and tools to help you write, debug, and test your code. Choose the one that
best suits your needs and preferences.

In addition to your IDE or text editor, you may need to install additional
packages and libraries to support your development work. Python has a vast
ecosystem of third-party packages and libraries, many of which are available
for free from the official Python Package Index (PyPI).

Some popular packages and libraries include NumPy, Pandas, Matplotlib,
and TensorFlow, which are commonly used in data science and machine
learning projects. To install these packages, you can use the pip package
manager, which comes bundled with Python.

To install a package using pip, open up a terminal or command prompt
and enter the following command:

java] Copy code

pip install package-name

Replace "package-name" with the name of the package you want to
install. Pip will download and install the package and any dependencies that
it requires.

Once you have installed your IDE or text editor and any necessary
packages and libraries, you are ready to start writing Python code.

Creating Your First Python Program

To create your first Python program, open up your IDE or text editor and
create a new file. Name the file "hello_world.py" and save it in a folder
where you can easily find it later.

In the file, enter the following code:

7] Copy code

This is a simple program that uses the print function to output the
message "Hello, World!" to the console.

Save the file and then run the program by opening up a terminal or
command prompt, navigating to the folder where you saved the file, and
entering the following command:

] copy code

python hello_world.py

You should see the message "Hello, World!" printed to the console.

In this chapter, we have covered the basics of installing and setting up
Python on your system. We have discussed how to install Python, choose an
IDE or text editor, and install any necessary packages and libraries. We have
also created our first Python program and executed it.

Python is a powerful and versatile programming language that can be
used in a wide range of applications. By mastering the basics of installing and
setting up Python, you will be well on your way to becoming a skilled Python
developer and opening up new opportunities for yourself in the tech industry.

In the next chapter, we will explore the basics of Python syntax, including

variables, data types, and operators. Stay tuned!

CHAPTER 3

PYTHON BASICS: DATA TYPES AND
VARIABLES

W elcome to Chapter 3 of "Python Programming for Beginners: The
Complete Crash Course to Mastering Python in 7 Days & Learn
Coding Fast with Hands-On Project with Tips to Get an Unfair Advantage to
become the #1 programmer!" In this chapter, we will be exploring the
fundamentals of Python programming, including data types and variables.

Data types and variables are essential concepts in programming because
they help us store and manipulate data. In Python, there are several data
types, including integers, floats, booleans, and strings.

Integers are whole numbers, such as 1, 2, 3, etc. Floats, on the other hand,
are decimal numbers, such as 1.2, 3.14, etc. Booleans are values that can
either be true or false. Lastly, strings are sequences of characters enclosed in
quotes, such as "Hello, World!".

Variables, on the other hand, are containers for storing data values. They
are like labels that we use to refer to a particular value. To create a variable in

m_mn

Python, we simply assign a value to it using the operator.

For example, let's say we want to create a variable "x" and assign it the
value of 5. We can do this by typing "x = 5" in the Python shell or in a
Python script.

X =105

Now, we can refer to the value of "x" by typing its name. For example, if

we want to print the value of "x" to the console, we can use the "print"
function:

print(x)

This will output "5" to the console.

Variables can also be used in arithmetic operations. For example, let's say
we want to create a new variable "y" that is the sum of "x" and 3. We can do
this by typing "y = x + 3" in the Python shell or in a Python script.

y=x+3

Now, the value of "y" is 8 (i.e., the sum of "x" and 3). We can print the

value of "y" to the console using the "print" function:

print(y)

This will output "8" to the console.

In Python, variables can also be reassigned. This means that we can
change the value of a variable after it has been created. For example, let's say
we want to change the value of "x" to 10. We can do this by typing "x = 10"
in the Python shell or in a Python script.

x =10

Now, the value of "x" is 10. We can print the value of "x" to the console
to verify this:

print(x)

This will output "10" to the console.

In addition to the basic data types and variables, Python also supports
more advanced data structures, such as lists, tuples, and dictionaries. We will
be exploring these data structures in more detail in later chapters.

In summary, data types and variables are fundamental concepts in Python
programming. They allow us to store and manipulate data, and they form the
building blocks of more advanced programming concepts. By mastering
these concepts, you will be well on your way to becoming a proficient Python
programmer.

Thank you for reading Chapter 3 of "Python Programming for Beginners:

The Complete Crash Course to Mastering Python in 7 Days & Learn Coding
Fast with Hands-On Project with Tips to Get an Unfair Advantage to become
the #1 programmer!" We hope you found this chapter informative and
engaging. Stay tuned for the next chapter, where we will be exploring Python
operators and expressions.

CHAPTER 4

PYTHON OPERATORS AND
EXPRESSIONS

Welcome to Chapter 4 of "Python Programming for Beginners: The

Complete Crash Course to Mastering Python in 7 Days & Learn
Coding Fast with Hands-On Project with Tips to Get an Unfair Advantage to
become the #1 programmer!" In this chapter, we'll be diving into the world of
Python operators and expressions.

Operators are symbols in Python that are used to perform operations on
variables and values. They allow us to manipulate data and perform
calculations. In Python, there are several types of operators, including
arithmetic operators, comparison operators, assignment operators, logical
operators, and bitwise operators.

Arithmetic operators are used to perform mathematical calculations.
These operators include addition (+), subtraction (-), multiplication (*),
division (/), modulus (%), and exponentiation (**). Let's take a closer look at
each of these operators.

The addition operator (+) is used to add two values together. For
example, if we have two variables a and b that contain the values 5 and 10,
respectively, we can use the addition operator to add them together:

) Copy code

a+b
print(c)

This will output the value 15, which is the result of adding 5 and 10
together.

The subtraction operator (-) is used to subtract one value from another.
For example, if we have two variables a and b that contain the values 10 and
5, respectively, we can use the subtraction operator to subtract b from a:

] copy code

=a-b

print(c)

This will output the value 5, which is the result of subtracting 5 from 10.

The multiplication operator (*) is used to multiply two values together.
For example, if we have two variables a and b that contain the values 5 and
10, respectively, we can use the multiplication operator to multiply them
together:

If] Copy code

=a*b

print(c)

This will output the value 50, which is the result of multiplying 5 and 10
together.

The division operator (/) is used to divide one value by another. For
example, if we have two variables a and b that contain the values 10 and 5,
respectively, we can use the division operator to divide a by b:

®) Copy code

=a/b

print(c)

This will output the value 2.0, which is the result of dividing 10 by 5.

The modulus operator (%) is used to find the remainder of a division
operation. For example, if we have two variables a and b that contain the
values 10 and 3, respectively, we can use the modulus operator to find the
remainder of dividing a by b:

] Copy code

=a%b
print(c)

This will output the value 1, which is the remainder of dividing 10 by 3.

The exponentiation operator (**) is used to raise one value to the power
of another. For example, if we have two variables a and b that contain the
values 2 and 3, respectively, we can use the exponentiation operator to raise a
to the power of b:

) Copy code

=a*b

print(c)

This will output the value 8, which is 2 raised to the power of 3.

In addition to arithmetic operators, Python also has comparison operators,
which are used to compare two values. These operators include less than (<),
greater than Operators and expressions are an essential part of any
programming language, and Python is no exception. In this chapter, we will
delve into Python operators and expressions, which are used to perform
arithmetic and logical operations on data types.

Python supports a wide range of operators, including arithmetic operators,
comparison operators, logical operators, bitwise operators, and assignment
operators. Let's discuss each of these operators in detail.

Arithmetic Operators: Arithmetic operators are used to perform

mathematical operations on numerical values in Python. The arithmetic
operators in Python include addition (+), subtraction (-), multiplication (*),
division (/), modulus (%), exponentiation (**), and floor division (//).

Comparison Operators: Comparison operators are used to compare two
values in Python. They return a boolean value (True or False) depending on
the condition. The comparison operators in Python include equal to (==), not
equal to (!=), greater than (>), less than (<), greater than or equal to (>=), and
less than or equal to (<=).

Logical Operators: Logical operators are used to combine two or more
conditions and return a boolean value. The logical operators in Python
include AND, OR, and NOT.

Bitwise Operators: Bitwise operators are used to perform bitwise
operations on the binary representation of the data. The bitwise operators in
Python include AND (&), OR (]), XOR (), NOT (~), left shift (<<), and right
shift (>>).

Assignment Operators: Assignment operators are used to assign a value
to a variable in Python. The assignment operators in Python include =, +=, -
=, *=, /=, %=, **=, &=, |5, A=, <<=, and >>=.

Expressions: Expressions are combinations of values, variables, and
operators that evaluate to a single value. In Python, expressions can be simple
or complex, and they can involve multiple operators and operands.

Now that we have discussed the different operators and expressions in
Python, let's take a look at some examples to understand their usage.

Example 1: Arithmetic Operators a = 10 b = 5 print(a + b) # Output: 15
print(a - b) # Output: 5 print(a * b) # Output: 50 print(a / b) # Output: 2.0
print(a % b) # Output: O print(a ** b) # Output: 100000 print(a // b) # Output:
2

Example 2: Comparison Operators a = 10 b = 5 print(a == b) # Output:
False print(a != b) # Output: True print(a > b) # Output: True print(a < b) #
Output: False print(a >= b) # Output: True print(a <= b) # Output: False

Example 3: Logical Operatorsa=10b =5c =7 print(a>bandb <c) #
Output: True print(a > b or b > ¢) # Output: True print(not(a > b and b < ¢)) #
Output: False

Example 4: Bitwise Operators a = 10 # Binary value: 1010 b = 5 # Binary
value: 0101 print(a & b) # Output: 0 print(a | b) # Output: 15 print(a A b) #
Output: 15 print(~a) # Output: -11 print(a << 2) # Output: 40 print(a >> 2) #
Output: 2

Example 5: Assignment Operators

In Python, there are several assignment operators that can be used to
assign values to variables. These include the following:

e = (simple assignment)

e += (addition assignment)

e -= (subtraction assignment)

e *= (multiplication assignment)

e /= (division assignment)

¢ %= (modulus assignment)

e //= (floor division assignment)

e **= (exponentiation assignment)

Here's an example of using these operators:

a=10b=5

a +=b # This is equivalent to a = a + b print("a =", a) # Output: a = 15

a -= b # This is equivalent to a = a - b print("a =", a) # Output: a = 10

a *= b # This is equivalent to a = a * b print("a =", a) # Output: a = 50

a /= b # This is equivalent to a = a/ b print("a =", a) # Output: a = 10.0

a %= b # This is equivalent to a = a % b print("a =", a) # Output: a = 0.0

a //= b # This is equivalent to a = a // b print("a =", a) # Output: a = 0.0

a **=b # This is equivalent to a = a ** b print("a =", a) # Output: a = 0.0
As you can see, these operators allow you to perform arithmetic

operations and assign the result to a variable in one step.

One thing to keep in mind is that the type of the variable can change
when using certain assignment operators. For example, if you divide an
integer by another integer using the /= operator, the result will be a float,
even if the operands were integers. If you want to keep the result as an
integer, you can use the //= operator instead.

CHAPTER 5

CONTROL FLOW STATEMENTS IN
PYTHON

I n this chapter, we will cover the control flow statements in Python. Control

flow statements are used to control the flow of execution of a program.
There are three types of control flow statements in Python: if-else statements,
for loops, and while loops. These statements are used to make decisions and
perform repetitive tasks.

1. If-Else Statements

If-else statements are used to make decisions based on the value of a
variable or expression. The if-else statement is used to execute a block of
code if a condition is true and another block of code if the condition is false.

The syntax for an if-else statement is:

D Copy code

The if keyword is used to start the if-else statement, followed by the

condition to be checked. The colon (:) is used to indicate the start of a block
of code. The block of code under the if statement will be executed if the
condition is true. The block of code under the else statement will be executed
if the condition is false.

Here is an example:

] Copy code

python 2] copy code

X 15 greater than

In the above example, the if condition is true because the value of x is
greater than 5. Therefore, the block of code under the if statement is
executed, which prints the message "x is greater than 5".

1. For Loops

For loops are used to iterate over a sequence of values or elements. The
for keyword is used to start the for loop, followed by a variable that will hold
each value or element of the sequence in each iteration. The in keyword is
used to specify the sequence to be iterated over. The colon (:) is used to

indicate the start of the block of code to be executed in each iteration.
The syntax for a for loop is:

7] Copy code

Here is an example:

D Copy code

1

fruits = ["apple”
for fruit in fruits:
print(fruit)

Output:

EI Copy code

In the above example, the fruits list contains three elements. The for loop
iterates over each element of the list and assigns it to the fruit variable in
each iteration. The block of code under the for loop is executed in each
iteration, which prints the value of fruit.

1. While Loops

While loops are used to perform repetitive tasks until a condition is true.
The while keyword is used to start the while loop, followed by the condition
to be checked. The colon (:) is used to indicate the start of the block of code
to be executed in each iteration. The block of code under the while loop will
be executed repeatedly until the condition is true.

The syntax for a while loop is:

python (7] Copy code

while condition:

Here is an example:

ﬂ Copy code

while i <=
print(i)

1 +=

Output:

ﬂ Copy code

In the above example, the while loop is used to print the numbers from 1

1. Nested if Statements

to 5. The condition i <= 5 is true for the first iteration, so the block of code
under the while loop is

Sometimes, we might need to test for multiple conditions, and we can

python

age =
gender = 'female'

1f age >=

Lf gender == '

else:

print('You

else:

print('You are

are a female adult')

a minor ')

achieve this using nested if statements. In nested if statements, an if statement
is placed inside another if statement. Here's an example:

] Copy code

In this example, we first test if the age is greater than or equal to 18. If it

1. The elif Statement

is, we then test if the gender is male or female using a nested if statement. If
the gender is male, we print "You are a male adult'. If the gender is not male,
we assume it is female and print 'You are a female adult'. If the age is less
than 18, we simply print "You are a minor'.

The elif statement is a shorthand way of writing a nested if statement.

Instead of having to write multiple if statements, we can use the elif statement
to test multiple conditions in a more concise way. Here's an example:

python 7] Copy code

Gge =
gender = 'female'’

if age >= and gender == 'male’:

print('You > g male adult')

elif age >= 1 gender == '
print('You are a female adult')
else:
print('You are a minor')

In this example, we use the and operator to test if the age is greater than
or equal to 18 and the gender is male or female. If both conditions are true,
we print the appropriate message. If the age is less than 18, we simply print
"You are a minor'.

1. The while Loop

The while loop is used to execute a block of code repeatedly while a
specified condition is true. Here's an example:

python 7] Copy code

count =
while count <
print('The count is:', count)

count +=

print('The

In this example, we first initialize a variable called count to 0. We then
use a while loop to print the value of count while it is less than 5. We also
increment the value of count by 1 in each iteration of the loop. Once count
becomes 5, the while loop terminates and we print "The while loop has
ended'.

1. The for Loop

The for loop is used to iterate over a sequence of elements, such as a list,
tuple, or string. Here's an example:

D Copy code

T

fruits = ['c e', 'banana', 'orange'

for fruit in fruits:
print(fruit)

print('Tr or loop has ended')

In this example, we have a list of fruits, and we use a for loop to iterate

over each fruit and print it. Once all the fruits have been printed, we print
"The for loop has ended'.

In this chapter, we have covered the basics of control flow statements in
Python. We have learned about if statements, comparison operators, logical
operators, nested if statements, the elif statement, while loops, and for loops.
These are essential concepts in programming and understanding them is
crucial for developing programs that can make decisions and perform
repetitive tasks.

CHAPTER 6
PYTHON FUNCTIONS AND MODULES

I n this chapter, we will dive into Python functions and modules, two of the
most powerful tools in the Python language. Functions and modules allow

you to organize your code and reuse it across different parts of your program
or even across different programs. We'll start by exploring what functions are
and how to define them, and then we'll move on to modules, which allow you
to organize your functions and variables into reusable units.

Functions in Python

Functions are blocks of code that can be called multiple times within a
program. They are used to perform a specific task, and they can take inputs,
process those inputs, and return outputs. Functions are an essential part of
any programming language, and Python is no exception. In fact, Python has a
rich set of built-in functions, including print(), input(), and len(), to name just
a few.

Defining a Function

To define a function in Python, you start with the def keyword, followed
by the name of the function and a pair of parentheses. Inside the parentheses,
you can list any arguments that the function takes, separated by commas.
Then you end the line with a colon, and the function code is indented on the
following lines.

Here's an example:

7] Copy code

In this example, we've defined a function called greet that takes one
argument, name. When called, the function will print a greeting message
using the name provided as an argument.

Calling a Function

Once you've defined a function, you can call it anywhere in your program
by using its name and passing any required arguments in parentheses. Here's
an example:

D Copy code

greet("Alice")

When this line of code is executed, it will call the greet() function and
pass the string "Alice" as an argument. The output of this code will be:

[copy code
Hello, Alice!

Returning a Value

Functions can also return a value back to the caller using the return
keyword. Here's an example:

] Copy code

In this example, we've defined a function called square that takes one
argument, x. The function calculates the square of the input and returns it
using the return keyword. You can then capture the returned value in a
variable and use it later in your program. Here's an example:

[C] Copy code

result = square(5)
print(result) # Output:

In this example, we've called the square() function with an argument of 5,
which will return the value 25. We then capture that value in a variable called
result and print it to the console.

Modules in Python

Modules are Python files that contain Python code, such as functions,
classes, and variables. By organizing your code into modules, you can break
your program into smaller, more manageable pieces, and you can reuse those
pieces in other programs.

Creating a Module

To create a module, you simply create a Python file with a .py extension
and put your code inside it. Here's an example:

C] Copy code

"4+ name + "!")

In this example, we've created a module called mymodule.py that
contains a single function called greet.

Using a Module

To use a module in your program, you simply import it using the import
statement. Here's an example:

python C] copy code

import mymodule

mymodule.greet("Alice")

In this example, we've imported the mymodule module using the import
statement. We can then call the greet() function from the module by using the
module name followed by the function name, separated by a dot.

In addition to defining and calling functions, Python also allows you to
create modules, which are files containing Python code that can be used in
other programs. Modules can contain functions, classes, and variables, and
they can be imported into other programs using the import statement.

To create a module, simply create a new file with a .py extension and
write your Python code inside it. For example, you could create a file called
my_module.py and define a function inside it like this:

ﬂ Copy code

(nhame):
print("Hello, " + name + "!™)

To use this function in another Python program, you can import the
my_module module and call the function like this:

python (7 Copy code
import my_module

my_module.say_hello("Alice™)

This would print out the message "Hello, Alice!".

Python also has a number of built-in modules that provide additional
functionality. For example, the math module provides mathematical
functions like sqrt() and sin(), while the random module provides functions
for generating random numbers.

To use a built-in module, you simply need to import it using the import
statement. For example, to use the sqrt() function from the math module,
you would do:

lua El Copy code

import math

X = math.sqrt(25)

print(x)

This would print out the value 5.0, which is the square root of 25.

In addition to importing entire modules, you can also import specific
functions or variables from a module using the from keyword. For example,
to import just the sqrt() function from the math module, you would do:

lua (7] Copy code

from math import sqrt

X = sqrt(25)

print(x)

This would produce the same result as the previous example.

One thing to be aware of when importing modules is that if you have two
or more modules with the same name, there can be naming conflicts. To
avoid this, you can use the as keyword to give a module a different name
when you import it. For example:

python E] Copy code

import my_module as mm

mm.say_hello("Bob™)

This would print out the message "Hello, Bob!" using the say_hello()
function from the my_module module, but without any naming conflicts.

In summary, modules are a powerful feature of Python that allow you to
reuse code in multiple programs, and Python's built-in modules provide a
wide range of additional functionality that you can use in your programs. By
mastering functions and modules, you'll be able to write more complex and

sophisticated programs in Python.

CHAPTER 7
WORKING WITH STRINGS IN PYTHON

Strings are an essential part of any programming language, and Python is

no exception. In this chapter, we will explore the world of strings in
Python and learn how to manipulate them.

What is a String?

In Python, a string is a sequence of characters enclosed in quotation
marks. A string can be created using either single quotes ('...") or double
quotes ("..."). For example:

python |j Copy code

my_str‘ing = "Hell

This creates a string variable called my_string with the value "Hello,
World!".

String Concatenation

String concatenation is the process of combining two or more strings into
a single string. In Python, string concatenation is performed using the +
operator. For example:

python 2] copy code

first_name
last_name

full_name first_name + " " + last_name

print(full_name)

In the above example, we first define two string variables first_name and
last_name. We then concatenate these two strings using the + operator and
store the result in a new variable called full_name.

String Indexing and Slicing

Like most programming languages, Python allows you to access
individual characters in a string using indexing. In Python, string indexing
starts at 0. For example:

python 2] Copy code

my_string = "Hello, World!'
print(my_string[0])
print(my_string[1])
print(my_string[2])

In the above example, we access the first three characters of the string
my_string using indexing.

You can also access a range of characters in a string using slicing. In
Python, slicing is performed using the colon (:) operator. For example:

python] copy code

my_string = "Hello, World!"
print(my_string[0:5])
print(my_string[7:])

In the above example, we slice the string my_string to get the first five
characters and the rest of the string after the seventh character.

String Formatting

String formatting is a way to create a new string by substituting variables
into a template string. In Python, string formatting is performed using the
Jformat() method or using f-strings. For example:

python |:| Copy code

name = "John"
age =
print("My name is {} and am {} years old.".format(name, age))

In the above example, we use the .format() method to substitute the
variables name and age into a template string.

Alternatively, we can use f-strings, which provide a more concise and
readable way to format strings:

python El Copy code

—
age =

print(f"My name is {name} and I am {

String Methods

Python provides a variety of string methods that allow you to manipulate
strings in various ways. Here are some of the most commonly used string
methods:

e upper() - converts all the characters in a string to uppercase

¢ lower() - converts all the characters in a string to lowercase

o strip() - removes whitespace from the beginning and end of a
string

¢ replace() - replaces a substring in a string with a new substring

o split() - splits a string into a list of substrings based on a specified
delimiter

Let's move on to some more advanced string operations, such as
formatting. String formatting is the process of constructing a string from a
template string by substituting values for placeholders. Python provides
multiple ways to format strings, including the % operator, the format()
method, and f-strings.

The % operator is an older method for string formatting, but it is still
supported in Python 3. It involves specifying a format string with
placeholders for variables, followed by a tuple of values to be substituted for
the placeholders. For example:

python EI Copy code

name
age =
print("My name is %s and am %c s old." % (name, age))

This would output: "My name is Alice and I am 25 years old."”

In the format string, %s represents a string placeholder, and %d
represents a numeric placeholder. The values to be substituted for these
placeholders are provided in the tuple following the string.

The format() method is a newer, more versatile way to format strings. It
allows for named placeholders and the ability to specify the formatting of the
substituted values. Here is an example:

] Copy code

ars old.".format(name=name, ag

This would output: "My name is Bob and I am 30.00 years old."

In the format string, {name} and {age:.2f} represent placeholders. The
values to be substituted are provided in the format() method as keyword
arguments, with the names matching the placeholders in the string. The:.2f
after the age placeholder specifies that the value should be formatted as a
floating-point number with two decimal places.

Finally, f-strings (also called formatted string literals) are a newer and
more concise way to format strings. They are similar to the format() method,
but with a more intuitive syntax. Here is an example:

python tl Copy code

name = "Charlie"
age =
print(f"My name is

This would output: "My name is Charlie and I am 35 years old."

In the string, the placeholders are specified inside curly braces, and the
values to be substituted are provided directly after the variable name.

These are just a few examples of the many string operations available in
Python. With these tools at your disposal, you can easily manipulate and
analyze text data in your programs.

CHAPTER 8
PYTHON LISTS AND TUPLES

In Python, lists and tuples are two important data types that allow you to
store collections of items. Lists and tuples are similar, but they have some
key differences.
Lists are ordered collections of items, and you can add, remove, or
modify items after you create the list. Lists are denoted by square brackets [].
For example, you can create a list of strings as follows:

) Copy code

Tuples, on the other hand, are immutable ordered collections of items,
meaning you can't change the items after you create the tuple. Tuples are
denoted by parentheses (). For example, you can create a tuple of integers as
follows:

makefile E] Copy code

my_tuple = (1, 2, 3)

In this chapter, we'll take a closer look at how to use lists and tuples in
Python.

Creating Lists and Tuples

To create a list in Python, you simply enclose a comma-separated
sequence of values in square brackets, like so:

) Copy code

To create a tuple, you enclose the values in parentheses instead:

makefile) Copy code

my_tuple = (1, 2, 3)

You can also create an empty list or tuple by simply using the empty
brackets or parentheses, respectively:

makefile |:| Copy code

empty_list = []

empty_tuple =)

Accessing Items in Lists and Tuples

To access an item in a list or tuple, you use the index of the item. The
index of the first item in the list or tuple is 0, the second item has an index of
1, and so on. You can use square brackets to access the item at a particular
index:

) Copy code

my_list = ["apple", "banana", "orange'

print(my_list[0]) # prints "apple"

my_tuple = (1, 2, 3)
print(my_tuple[Z]) # prints

You can also use negative indices to access items from the end of the list
or tuple:

|:| Copy code

my_list = ["apple", "banana", "orange"
print(my_list[-1]) # prints "orange"

my_tuple = (1, 2, 3)
print(my_tuple[-2]) # prints

Slicing Lists and Tuples

You can use slicing to access a range of items in a list or tuple. To slice a
list or tuple, you specify the starting and ending indices separated by a colon
inside the square brackets:

D Copy code

my_list = ["apple", "banana"

print(my_list[1:4]) # prints ["banana”, "orange"

my_tuple = (1, 2, 3, 4, 5)
print(my_tuple[2:4]) # prints (3, 4)

If you omit the starting index, Python assumes you want to start at the
beginning of the list or tuple. If you omit the ending index, Python assumes
you want to slice to the end of the list or tuple:

) copy code

my_list = ["apple”)
print(my_list[:3]) # prints
print(my_list[2:]) # prints

my_tuple = (1, 2, 3, 4, 5)
print(my_tuple[:2]) # prints (1,

print(my_tuple[3:]) # prints (4,

Another useful feature of lists is slicing, which allows you to extract a
portion of the list. Slicing is done by specifying a starting and ending index,
separated by a colon. For example, to extract the first three elements of a list,
you would use the slice my_list[0:3]. It's worth noting that the ending index
is exclusive, meaning that the slice will include all elements up to, but not
including, the element at the ending index.

You can also use slicing to modify a portion of a list. For example, to
change the last two elements of a list, you could use the slice my_list[-2:] to
select the last two elements, and then assign new values to that slice.

Tuples, on the other hand, are similar to lists in that they can store
multiple items, but they are immutable. This means that once a tuple is
created, you cannot modify its contents. Tuples are created using parentheses
instead of square brackets, like this: my_tuple = (1, 2, 3). You can access
individual elements of a tuple using indexing, just like with lists.

One common use of tuples is to return multiple values from a function.
For example, a function that calculates the area and perimeter of a rectangle
could return a tuple containing both values. To create a tuple with multiple

values, simply separate them with commas, like this: my_tuple = (area,
perimeter).

In addition to lists and tuples, Python also provides several other data
structures, including sets and dictionaries. Sets are similar to lists, but they
can only contain unique values, meaning that duplicates are automatically
removed. Sets are created using curly braces, like this: my_set = {1, 2, 3}.
You can also create a set from a list by using the set() function, like this:
my_set = set(my_list).

Dictionaries, on the other hand, are a more complex data structure that
allow you to store key-value pairs. Each key in a dictionary maps to a
corresponding value, like an entry in a phone book. Dictionaries are created
using curly braces, like this: my_dict = {'keyl': valuel, 'key2': value2}.
You can access individual values in a dictionary using the corresponding key,
like this: my_dict['key1'].

Overall, understanding the different data structures in Python is crucial
for writing effective and efficient code. By choosing the right data structure
for your needs, you can improve the performance of your code and make it
easier to read and maintain.

CHAPTER 9
PYTHON DICTIONARIES AND SETS

In Python, dictionaries and sets are two powerful data structures used to
store collections of data. They provide a way to map unique keys to

corresponding values and efficiently perform set operations, respectively. In
this chapter, we will explore both data structures and their various methods
and operations.

Dictionaries

A dictionary is an unordered collection of key-value pairs enclosed in
curly braces {}. The keys must be unique, immutable objects such as strings,
numbers, or tuples. Values can be of any data type, including other
dictionaries.

Here's an example of creating a dictionary:

makefile (7] Copy code

my_dict = {"apple":

We can access the values of the dictionary using the keys:

python 2] copy code

print(my_dict["apple"]) #

We can also use the get() method to retrieve the value of a key:

python D Copy code

print(my_dict.get("banana")) #

If the key does not exist in the dictionary, get() method returns None or a
default value specified as the second argument.

python If_] Copy code

print(my_dict.get("grape", 0)) #

To add a new key-value pair to the dictionary, we can simply assign a
value to a new key:

(] Copy code

my_dict["pear"] =
print(my_dict) # Output: {'apple’:

We can also modify the value of an existing key:

(] Copy code

print(my_dict) # Output: {'apple': 2, 'banana':

To remove a key-value pair from the dictionary, we can use the del
keyword or the pop() method:

2 Copy code

del my_dict["pear"
print(my_dict) # Output: {'apple': 7, "banana’:

value = my_dict ("orange™)
print(value) # Output:
print(my_dict) # Output: {'apple': 2, 'banana':

We can iterate over the keys of the dictionary using a for loop:

[2| Copy code

n my_dict:
key, my_dict[key])

We can also use the items() method to iterate over the key-value pairs:

2] Copy code

for key, value in my_dict O:

print(key, value)

Sets

A set is an unordered collection of unique elements enclosed in curly
braces {}. Sets are useful when we want to perform set operations such as
union, intersection, and difference.

Here's an example of creating a set:

makefile 2} Copy code

my_set = {1s 2, 3, 4, 5}

We can add new elements to the set using the add() method:

D Copy code

my_set ©)
print(my_set) # Output: {1,

To remove an element from the set, we can use the remove() method:

Ei Copy code

my_set 3)
print(my_set) # Output: {1,

We can perform set operations using the built-in methods:

IMELCHIE ﬂ Copy code

setl = {1, 2, 3, 4}
set2 = {3, 4, 5, 6}

print(setl.union(set2)) #

Example 2 shows how to create a dictionary and access its values. In this
example, we create a dictionary named car that contains keys and values that
describe a car. We can access the values of the dictionary using the keys. The
keys() method returns a list of all the keys in the dictionary.

Example 2: Creating a Dictionary and Accessing its Values

(] Copy code

car = {'brand': 'Ford', 'model': 'Mustang’,

F’Fint(cqp[w ; ,])
print(car[’ 1'7)
F""iﬂt(car["y:zg r 1])

print(car.keys())

In Example 2, we use the keys() method to get all the keys in the
dictionary. The values() method returns a list of all the values in the
dictionary.

Example 3: Getting All the Values in a Dictionary

] Copy code

car = {'brand': 'Ford', 'model': 'Mustang’,

Get all the

print(car.values())

In Example 3, we use the values() method to get all the values in the
dictionary.

Sets in Python

A set is an unordered collection of unique elements. Sets are used to
eliminate duplicate values in a sequence and to perform mathematical set
operations such as union, intersection, and difference.

To create a set in Python, we use the set() function or we enclose a
sequence of values in curly braces {}.

Example 4: Creating a Set

5] Copy code

fruits = set(['apple’', 'banana', 'orange'])

humbers

print(fruits)

print(numbers) # Output:

In Example 4, we create a set using the set() function and using curly
braces. We can also add elements to a set using the add() method and remove

elements using the remove() method.
Example 5: Adding and Removing Elements from a Set

7} Copy code

fruits.add(pear
print(fruits)

fruits.remove('banan
print(fruits)

In Example 5, we create a set and add an element to the set using the
add() method. We then remove an element from the set using the remove()
method.

We can also perform mathematical set operations on sets in Python. The
union() method returns a set containing all the elements of the two sets, the
intersection() method returns a set containing the elements that are common
to the two sets, and the difference() method returns a set containing the
elements that are in one set but not in the other.

Example 6: Set Operations in Python

E] Copy code

CHAPTER 10

OBJECT-ORIENTED PROGRAMMING IN
PYTHON

O bject-oriented programming (OOP) is a programming paradigm that

emphasizes the use of objects and their interactions to design and build
applications. Python is an object-oriented language, and it provides powerful
support for OOP concepts such as classes, objects, inheritance,
polymorphism, and encapsulation.

Classes and Objects

A class is a blueprint for creating objects. It defines a set of attributes that
each object of the class will have, and a set of methods that the objects can
perform. To create a class, you use the class keyword, followed by the name
of the class and a colon.

t] Copy code

This creates a Person class that doesn't do anything yet. To create an
object of this class, you use the name of the class followed by parentheses.

python) Copy code

p = Person()

This creates an object p of the Person class. You can now access the
attributes and methods of the object using the dot notation.

python E] Copy code

p.nClme = '.](.:lf"']"']]
p.age =

print(p.name)
print(p.age)

This adds the name and age attributes to the p object and assigns them
the values 'John' and 30', respectively. You can now access these attributes
using the dot notation.

B Copy code

(self, name, age):
self.name = name
self.age = age

p = Person('John', 30)

print(p.name)
print(p.age)

This creates a Person class with a constructor that takes two parameters,

name and age. The constructor initializes the name and age attributes of the
object using the values passed as arguments. You can now create an object of
the class by passing values for name and age.

D Copy code

(self, name, age):
self.name = name
self.age = age

(self):

print(f'Hello, my name is {self.name} and I am {self.age} years old.

p = Person('John', 30)

p.say_hello(Q)

This creates a Person class with a say_hello method that prints a message
introducing the person. The method uses the self parameter to access the
attributes of the object. You can now call this method on an object of the
class to print the message.

Inheritance

Inheritance is a mechanism in OOP that allows you to create a new class
from an existing class. The new class, called a subclass or derived class,
inherits the attributes and methods of the existing class, called the superclass
or base class. The subclass can then add new attributes and methods or
override the attributes and methods of the superclass.

B Copy code

)z
(self, name, age, student_id):
super().__init__(name, age)
self.student_id = student_id

def (self):
super().say_hello()
print(f'My student ID is {self.student_id}.")

s = Student('Jane', 20, '123456')
s.say_hello(Q)

This creates a Student class that inherits from the Person class. The
Student class has a student_id attribute in addition to the name and age
attributes of the Person class. To create a Student object, we simply call the
constructor of the Student class, passing the required arguments:

pythonCopy code

class Student(Person): def _ init_ (self, name, age, student_id):
super().__init_ (name, age) self.student_id = student_id # Create a Student
object s = Student("John", 20, "123456789") print(s.name) print(s.age)
print(s.student_id)

The output of this code would be:

ﬂ Copy code

John

20
123456789

Here, we created a Student object s with name "John", age 20, and

student ID "123456789". We then printed the values of the name, age, and
student_id attributes of the object.

In addition to inheritance, Python also supports other object-oriented
programming concepts such as encapsulation and polymorphism.
Encapsulation is the practice of hiding the implementation details of an object
and exposing only the necessary information to the outside world. This is
achieved in Python through the use of public and private attributes and
methods.

In Python, we can denote a private attribute or method by prefixing its
name with an underscore (_). This does not prevent the attribute or method
from being accessed from outside the class, but it signals to other
programmers that it should not be accessed directly.

Polymorphism is the ability of objects of different types to be used
interchangeably. In Python, polymorphism is achieved through the use of
duck typing, which means that the type of an object is determined by its
behavior rather than its class. For example, if two objects have a quack()
method, they can both be treated as ducks regardless of their actual class.

In conclusion, object-oriented programming is a powerful paradigm that
allows us to model real-world problems in a natural way. Python provides
strong support for object-oriented programming with its support for classes,
inheritance, encapsulation, and polymorphism. Understanding these concepts
and how to use them effectively can greatly improve the quality and
maintainability of our code.

CHAPTER T1
FILE HANDLING IN PYTHON

W orking with files is an essential part of many programming tasks.
Python provides an easy-to-use and powerful set of built-in functions

and libraries for handling files. In this chapter, we will cover the basics of file

handling in Python, including opening, reading, writing, and closing files.

OPENING AND CLOSING FILES

To work with a file in Python, you need to open it first. The built-in open()
function is used to open a file. The open() function takes two arguments: the
filename and the mode in which the file should be opened. The mode can be
'r' for reading, 'w' for writing, or 'a’ for appending. If the mode argument is
not specified, 'r' is assumed.

For example, to open a file named 'example.txt’ in read mode, you can
use the following code:

ﬂ Copy code

After you have finished working with the file, you should close it using
the close() method:

go B Copy code

file.close()

It is a good practice to close the file after you have finished working with
it, as it frees up system resources and ensures that any changes made to the
file are saved.

READING FILES

After you have opened a file for reading, you can read its contents using
various methods provided by Python. The most common method is the
read() method, which reads the entire contents of the file as a single string:

lua () Copy code

file = open('example.
contents = file.read()
print(contents)
file.close()

This code will open the file 'example.txt', read its contents, and print
them to the console.

If you want to read the contents of the file line by line, you can use the
readline() method:

file = open('example.txt', 'r')
line = file O
while line:

print(line)

line = file.readline()
file.close()

D Copy code

This code will open the file 'example.txt’, read its contents line by line,

and print each line to the console.

WRITING FILES

To write to a file, you need to open it in write or append mode using the

open() function. In write mode, the contents of the file are overwritten, while

in append mode, new data is added to the end of the file.

To write data to a file, you can use the write() method, which writes a

string to the file:

lua

file = open('example.t

file.write('Hello,
file.write('This is a test.\n'
file.close()

() Copy code

This code will open the file 'example.txt’ in write mode, write two lines

to it, and close the file.

You can also use the writelines() method to write a list of strings to a file:

lua ﬂ Copy code

file = open('example.txt'
lines = ['Hello,
file.writelines(lines)
file.close()

This code will open the file 'example.txt' in write mode, write two lines
to it, and close the file.

APPENDING TO FILES

To append data to a file, you need to open it in append mode using the open()
function:

lua E] Copy code

file = open('ex
file.write('This
file.close()

This code will open the file 'example.txt’' in append mode, write a new
line to it, and close the file.

WORKING WITH BINARY FILES

Python can also work with binary files, such as image files Binary files are
those that contain non-textual data, such as image files, audio files, and
executable files. In Python, working with binary files is just as easy as

working with text files. The main difference is that you need to open them in
binary mode.

To open a file in binary mode, you need to specify the mode as 'rb'
instead of 'r'. For example, to read a binary file, you can use the following
code:

python (] Copy code

vith open('image.png’

data = f.read(

This code opens the file 'image.png' in binary mode and reads all of its
content into the variable data.

Similarly, to write binary data to a file, you can use the 'wb' mode. For
example:

python (] Copy code

th open(?iw--«_-;_‘ nage }‘.-."
f.write(data)

This code opens a new file called 'new_image.png' in binary mode and
writes the contents of the data variable to it.

It's important to note that binary files should only be manipulated in
binary mode. Attempting to open a binary file in text mode or vice versa can
result in data corruption.

In addition to working with binary files, Python also provides a powerful
set of tools for working with directories and file paths. The os module
provides functions for manipulating file paths and directories, such as

os.path.join() for joining paths, os.path.dirname() for getting the directory
name of a file, and os.path.exists() for checking if a file or directory exists.

For example, to check if a file called 'file.txt' exists in the current
directory, you can use the following code:

lua] Copy code

import os

else:
print('File does

This code uses the os.path.exists() function to check if the file 'file.txt'
exists in the current directory. If it does, it prints 'File exists', otherwise it
prints 'File does not exist'.

In addition to file manipulation, the os module also provides functions for
working with directories, such as os.mkdir() for creating a new directory,
os.listdir() for listing the contents of a directory, and os.rmdir() for
removing a directory.

Overall, file handling is a crucial part of many Python programs, and the
language provides a rich set of tools for working with files, directories, and
file paths. By understanding these tools and how to use them effectively, you
can build powerful programs that can read and write a wide variety of file
formats, both text and binary.

CHAPTER 12
EXCEPTION HANDLING IN PYTHON

Python is known for its readability and ease of use, but even the best

programmers make mistakes. When your program encounters an error, it
can cause your entire program to stop running, leading to lost time and
productivity. To address this issue, Python has a built-in exception handling
mechanism that allows you to catch and handle errors in a more controlled
way.

Exception handling is the process of handling errors that may occur
during the execution of a program. Python has a number of built-in
exceptions that can be raised when a problem occurs. Some examples of
built-in exceptions include TypeError, ValueError, and ZeroDivisionError.
These exceptions are raised when the program encounters a problem with the
type of data being used, the value of a variable, or a divide-by-zero error.

To handle exceptions in Python, you use the try and except keywords.
The try block is used to enclose the code that might raise an exception, while
the except block is used to specify how to handle the exception.

Here's an example:

ﬂ Copy code

X = int(input("Please enter a number: "))
y=1/x
print(y)
except ZeroDivisionError:
print("Cannot divide by zero!")
except ValueError:

print("Invalid input!™)

In this example, we're using the try block to ask the user for a number and
then calculating its reciprocal. If the user enters 0, the program will raise a
ZeroDivisionError. If the user enters a non-numeric value, the program will
raise a ValueError.

By using the except block, we're able to catch and handle these errors in a
more controlled way. In the case of a ZeroDivisionError, we print out an
error message indicating that we cannot divide by zero. In the case of a
ValueError, we print out an error message indicating that the user entered an
invalid input.

In addition to handling built-in exceptions, you can also define your own
exceptions in Python. This can be useful if you want to create your own
custom error messages or if you want to handle a specific type of error in a
specific way.

Here's an example of defining and using a custom exception:

python ﬂ Copy code

class

pass

def (n):
if n<
raise NegativeNumberError("Cannot calculate square root of negative
return math.sqrt(n)
try:
calculate_square_root(-5)
except NegativeNumberError as e:
print(e)

In this example, we're defining a custom exception called
NegativeNumberError that will be raised if the input number is negative.
We're then using the raise keyword to raise this exception if the input number
is negative. Finally, we're catching this exception in the except block and
printing out the custom error message.

In addition to try-except blocks, Python also provides a finally block that
can be used to clean up resources that were used in the try block, regardless
of whether an exception was raised. This can be useful if you need to release
resources, such as closing files or database connections, that were opened in
the try block.

Here's an example of using the finally block:

(7] Copy code

&

except:

print("Error occurred while writing to file")

finally:
f.close()

In this example, we're opening a file in write mode and writing a string to
it. If an exception occurs while writing to the file, we print out an error
message. Regardless of whether an exception was raised or not, we use the
finally block to close the file.

In conclusion, exception handling is an essential part of programming in
Python. By using try and except blocks, you can gracefully handle errors and
prevent your program from crashing. However, it's important to use them
judiciously and not rely on them as a way to ignore errors.

One thing to keep in mind is that catching an exception should not be the
end goal of your code. Instead, you should strive to write code that minimizes
the occurrence of exceptions in the first place. This involves writing robust
code that handles different edge cases and input scenarios.

Another thing to keep in mind is that exceptions can also be raised
intentionally in order to signal an error condition or to control program flow.
For example, the built-in ValueError exception can be raised when a
function receives an argument of the wrong type or when an invalid value is
detected. By raising these exceptions, the function can communicate to the
caller that there was an error without crashing the entire program.

Finally, it's important to know that Python comes with a large number of
built-in exceptions, such as TypeError, ValueError, ZeroDivisionError,
and more. You can also define your own custom exceptions by creating a

class that inherits from the built-in Exception class. This can be useful if you
want to create a specific exception type for a certain type of error in your
program.

In summary, exception handling is an important topic in Python
programming. By using try-except blocks, you can gracefully handle errors
and prevent your program from crashing. However, it's important to use them
judiciously and not rely on them as a way to ignore errors. Writing robust
code that minimizes the occurrence of exceptions is the best way to prevent
errors from happening in the first place.

CHAPTER 13
DEBUGGING AND TESTING IN PYTHON

D ebugging and testing are two critical aspects of software development,
and Python provides several tools to help developers identify and fix
errors in their code.

DEBUGGING IN PYTHON

Debugging is the process of identifying and fixing errors or bugs in software.
Python provides several tools for debugging code, including:

1. print() statements: One of the simplest debugging techniques is to
add print() statements to your code. You can use print() statements
to display the value of variables, track the execution flow, and
identify where your code is failing.

2. Debugger: Python comes with a built-in debugger that allows you
to step through your code line by line and examine the values of
variables at each step. You can use the pdb module to activate the
debugger and start debugging your code.

3. IDEs: Many popular Python Integrated Development
Environments (IDEs), such as PyCharm and Visual Studio Code,
provide built-in debugging tools. These tools allow you to set

breakpoints in your code, examine the values of variables, and
step through your code line by line.

TESTING IN PYTHON

Testing is the process of verifying that software behaves as expected under
various conditions. Python provides several tools for testing code, including:

1. unittest: The unittest module provides a framework for writing
and running tests for your Python code. You can use this module
to write test cases that verify the functionality of your code.

2. pytest: pytest is an alternative testing framework that provides a
more concise syntax for writing tests. It also includes several
advanced features, such as test discovery and fixtures, that make it
easier to write and manage tests.

3. doctest: The doctest module allows you to write tests directly in
your Python docstrings. You can use this module to create self-
contained tests that are easy to read and maintain.

BEST PRACTICES FOR DEBUGGING AND
TESTING IN PYTHON

1. Start small: When debugging, start with small test cases to isolate
the problem. When testing, start with simple test cases to verify
the basic functionality of your code.

2. Use version control: Version control systems, such as Git, can
help you track changes to your code and revert to previous
versions if necessary.

3. Use descriptive names: Use descriptive names for your variables,

functions, and test cases to make your code easier to read and
understand.
4. Automate testing: Use automated testing tools to run your test
cases automatically and catch errors before they reach production.
5. Use assertions: Use assertions to check the correctness of your
code. Assertions are statements that assert a condition is true, and
if the condition is false, the program will raise an AssertionError.

Debugging and testing are essential parts of software development, and
Python provides several tools to help you identify and fix errors in your code.
By using these tools and following best practices, you can write more reliable
and maintainable Python code. Remember to start small, use version control,
use descriptive names, automate testing, and use assertions to check the
correctness of your code.

CHAPTER 14
WEB SCRAPING WITH PYTHON

W eb scraping is a technique used to extract data from websites. It
involves the use of tools and technologies to automate the process of
extracting data from the HTML and other elements of web pages. Python has
become one of the most popular programming languages for web scraping
due to its flexibility, ease of use, and extensive libraries for web scraping.
Web scraping is widely used in various fields, such as e-commerce,
finance, marketing, and research. It is useful for tasks like price monitoring,
sentiment analysis, customer feedback analysis, and competitor analysis.
In this chapter, we will cover the basics of web scraping with Python. We
will discuss the following topics:

Understanding the basics of web scraping

Using Beautiful Soup for web scraping

Scraping data from websites with requests

Handling dynamic web pages with Selenium

Common challenges in web scraping and how to overcome them
Understanding the basics of web scraping

ok W=

Before we dive into the specifics of web scraping with Python, it's
important to have a basic understanding of how web scraping works. At its

core, web scraping involves sending HTTP requests to web pages and
extracting data from the HTML code of those pages.

There are several methods of web scraping, including manual web
scraping, semi-automatic web scraping, and automatic web scraping. Manual
web scraping involves manually copying and pasting data from web pages
into a spreadsheet or other document. Semi-automatic web scraping involves
using tools that automate part of the web scraping process, but still require
some manual intervention. Automatic web scraping involves using software
to fully automate the web scraping process.

1. Using Beautiful Soup for web scraping

One of the most popular Python libraries for web scraping is Beautiful
Soup. Beautiful Soup is a Python library that is used to parse HTML and
XML documents. It allows us to navigate and search the parsed tree of
HTML or XML, extract data from it, and save it to a file or database.

The first step in using Beautiful Soup is to install it. We can do this using
pip, the Python package manager. Once we have installed Beautiful Soup, we
can use it to parse HTML and XML documents.

Here's an example of using Beautiful Soup to extract data from a web

page:

python (] Copy code

import requests
from bs4 import BeautifulSoup

url = "https://www.example.com"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser"')

links = []
for 1link in soup.find_all('a’):
links.append(link.get('href'))

for link in 1links:
print(link)

print("\nTitle:")

print(title)

In this example, we first import the necessary modules: requests and
BeautifulSoup. We then define a URL and send an HTTP GET request to the
URL using the requests module. The response is then parsed using Beautiful
Soup, and we extract all the links on the page and the page title.

1. Scraping data from websites with requests
In addition to Beautiful Soup, another popular Python library for web

scraping is requests. Requests is a Python library that is used to send HTTP
requests and handle HTTP responses. It is often used in conjunction with

Beautiful Soup for web scraping.
Here's an example of using requests to extract data from a web page:

python Ij Copy code
Lmport requests

url = "https: xample.com"
response = requests.get(url)

Frint the response content

print(response.content)

In this example, we simply define a URL and send an HTTP GET request
to the URL using requests. The response content is then printed to the
console.

1. Handling dynamic web pages with Selenium One of the
challenges in web scraping is dealing with dynamic web pages
that are generated using JavaScript. In such cases, the HTML
content is not fully loaded at once, and elements may only appear
after a certain user action, like scrolling or clicking a button.

Selenium is a tool that can be used to automate browser actions, making it
a useful tool for web scraping dynamic pages. Selenium allows you to
simulate user actions, such as clicking on a button or scrolling down a page,
which can trigger the dynamic content to load. Once the dynamic content has
loaded, you can scrape it as you would with static pages.

To use Selenium, you'll need to install it using pip and download a driver
for the browser you want to use. Then you can create a new instance of the
browser and use its methods to navigate to the page and interact with its

elements.
Here's an example of using Selenium to scrape a dynamic page:

python [j Copy code

from selenium import webdriver

driver = webdriver.Chrome(executable_path=driver_path)

dynamic_content = driver.find_elements_by_css_selector('.dynamic-content")

for element in dynamic_content:
print(element.text)

clos
driver.quitQ)

In this example, we use the Chrome driver and navigate to a page with a
"Load More" button that triggers the loading of additional content. We use
the find_element_by_css_selector method to find the button and click it,
triggering the loading of additional content. Then we use the
find_elements_by_css_selector method to find all the elements with the
class dynamic-content and scrape their text.

1. Best practices for web scraping Web scraping can be a powerful
tool, but it's important to use it ethically and responsibly. Here are
some best practices to follow when web scraping:

e Respect website terms of service: Before scraping a website,
check its terms of service to ensure that you are allowed to scrape
its content. Some websites may explicitly prohibit web scraping,
while others may have restrictions on the frequency or volume of
scraping.

¢ Use polite scraping techniques: Avoid overloading websites with
requests or scraping large amounts of data in a short period of
time. This can cause server overload and may lead to your IP
address being blocked.

e Avoid scraping personal information: Be mindful of the data
you're scraping and avoid scraping personal information like
names, addresses, and phone numbers.

e Attribute scraped data: If you plan to use scraped data in a public-
facing project, be sure to attribute it to the original source.

e Be prepared for website changes: Websites can change frequently,
so be prepared to update your scraping code if the website's
structure or layout changes.

¢ Stay up to date on legal issues: Laws surrounding web scraping
are complex and can vary by jurisdiction. Stay informed on legal
issues surrounding web scraping and consult with a lawyer if you
have concerns.

By following these best practices, you can ensure that your web scraping
activities are ethical and responsible. Additionally, using web scraping tools
and libraries like BeautifulSoup and Scrapy can help simplify the scraping
process and make it easier to handle various challenges that arise.

CHAPTER 15

HANDS-ON PROJECT: BUILDING A
SIMPLE PYTHON GAME

A fter learning the basics of Python, it's time to put your skills to the test
and build a fun game using Python! In this chapter, we will walk through
the steps of building a simple game that will allow players to move a
character on the screen to collect points.
Step 1: Set Up the Game Window First, we need to create the game
window. We will use the Pygame library to create a window with a
background color and a title.

python (7] Copy code

import pygame

T v L= 11 ~ Pyranme
- | CldLlZe rygame

pygame.init()

Set up the display window
screen = pygame.display.set_mode((.)
pygame.display.set_caption("My Game™)

! . Pl | . i -
ICKground color

background_color = (

This code imports the Pygame library, initializes it, and sets up the game
window with a size of 800x600 and a title of "My Game". The background
color is set to white.

Step 2: Load the Images Next, we need to load the images for the
character and the points. We will use the pygame.image.load() function to
load the images.

ﬂ Copy code

iIcter i1mage

character_image = pygame.image.load("character.png")

point_image = pygame.image.load("point.png™)

This code loads the character image and the point image using their file
names.

Step 3: Create the Character and Points Now, we will create the character
and the points using classes. We will define a Character class and a Point
class.

() Copy code

(self, x, y):
self.x = x
self.y = y

(self):
screen.blit(character_image, (self.x, self.y))

(self):

(self, x, y):
self.x = x
self.y = y

(self):

screen.blit(point_image, (self.x, self.y))

The Character class has an __init__ method that sets the initial position
of the character. The draw method is used to draw the character on the
screen. The move_left, move_right, move_up, and move_down methods

are used to move the character in the corresponding directions.

The Point class has an __init__ method that sets the initial position of the
point. The draw method is used to draw the point on the screen.

Step 4: Create the Game Loop Now, we will create the game loop. The
game loop is responsible for updating the screen and checking for user input.

EI Copy code

Create the character and points
character = Character(. D)
points = [Point(100,), Point(200,), Point(300,)]

running = True

while running:

for event in pygame.event.get():
1f event.type == pygame.QUIT:
running = False
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
character.move_left()
elif event.key == pygame.K_RIGHT:
character.move_right()
elif event.key == pygame.K_UP:
character.move_up()
elif event.key == pygame.K_DOWN:
character.move_down

Next, we'll define the main function, which will be responsible for
running the game. Inside the main function, we'll create an instance of the
Game class and call the play method on it to start the game.

ﬂ Copy code

def main():
game = Game()

game.play(Q)

if __name__ == "__main__":
main()

In this main function, we first create an instance of the Game class using
the default constructor. Then, we call the play() method on the game object,
which will start the game.

Now, let's run the game and see how it works.

less () copy code

$ python game

Welcome to the Number Guessing Game!

I'm thinking of a number between 1 and . You have 5 guesses to get it rig

Guess
Too high. You have 4 guesses left.

Guess
Too low. You have 3 guesses left.

Guess
Too high. You have 7 guesses left.

Guess
Too low. You have 1 guess left.

Guess
Congratulations! You guessed the number in 5 tries.

Do you want to play again? (y/n) n

In this example, we first see the welcome message and the instructions for
the game. Then, we're prompted to enter our first guess. After each guess,
we're told whether our guess was too high or too low and how many guesses
we have left. If we run out of guesses without guessing the correct number,
we're told that we've lost. If we guess the correct number within the allotted
number of guesses, we're told that we've won. Finally, we're asked whether
we want to play again.

Overall, this simple game demonstrates some of the key concepts of
programming in Python, including object-oriented programming, conditional
statements, loops, and user input. By building and playing this game, you'll

gain hands-on experience with these concepts and become more comfortable
with the Python programming language.

CONCLUSIONS

Python is an incredibly powerful and versatile programming language that
has become increasingly popular in recent years. Its ease of use, flexibility,
and wide range of libraries and frameworks make it an ideal choice for a wide
variety of applications, from web development and scientific computing to
data analysis and machine learning.

In this book, we have covered the fundamentals of Python programming,
starting with basic data types and control structures, and working our way up
to more advanced topics like object-oriented programming, web scraping,
and game development.

We have explored the key features of the language, such as its dynamic
typing system, built-in data structures, and powerful libraries like NumPy,
Pandas, and Matplotlib. We have also learned how to work with external data
sources, including CSV files, JSON, and databases.

Throughout the book, we have emphasized the importance of good
programming practices, such as writing modular and reusable code, handling
errors gracefully, and using testing frameworks to ensure the reliability of our
code.

We have also covered some of the latest developments in the Python
ecosystem, including the rise of data science and machine learning, the
growing popularity of web frameworks like Django and Flask, and the

emergence of new libraries and tools like PyTorch and TensorFlow.

As you continue your journey with Python, we encourage you to continue
exploring the language's many capabilities and to keep up with the latest
developments in the Python community. Whether you are a beginner or an
experienced programmer, there is always more to learn and discover in this
vibrant and exciting language.

We hope that this book has provided you with a solid foundation in
Python programming and has inspired you to continue exploring the
possibilities of this powerful language. We wish you all the best in your
programming journey and look forward to seeing what you create with
Python in the future.

	Title Page
	Contents
	Copyright
	Author Bio
	Dedication
	1. Introduction to Python Programming
	2. Installing and Setting Up Python Environment
	3. Python Basics: Data Types and Variables
	4. Python Operators and Expressions
	5. Control Flow Statements in Python
	6. Python Functions and Modules
	7. Working with Strings in Python
	8. Python Lists and Tuples
	9. Python Dictionaries and Sets
	10. Object-Oriented Programming in Python
	11. File Handling in Python
	12. Exception Handling in Python
	13. Debugging and Testing in Python
	14. Web Scraping with Python
	15. Hands-On Project: Building a Simple Python Game
	Conclusions

