

Rust Servers, Services, and Apps MEAP V14

1. MEAP_VERSION_14
2. Welcome
3. Part_1_Web_servers_and_services
4. 1_Why_Rust_for_web_applications?
5. 2_Writing_a_basic_web_server_from_scratch
6. 3_Building_a_RESTful_Web_Service
7. 4_Performing_database_operations
8. 5_Handling_Errors
9. 6_Evolving_the_APIs_and_fearless_refactoring

10. Part_2_Server-side_web_applications
11. 7_Introduction_to_server-side_web_apps_in_Rust
12. 8_Working_with_templates_for_tutor_registration
13. 9_Working_with_forms_for_course_maintenance
14. Part_3_Advanced_topic:_Async_Rust
15. 10_Understanding_Async_Rust
16. 11_Building_a_P2P_node_with_Async_Rust
17. Part_4_Moving_to_production
18. 12_Deploying_web_services_with_Docker
19. Appendix_A._Postgres_installation

MEAP VERSION 14

Welcome
Thank you for purchasing the MEAP edition of Rust Servers, Services, and
Apps.

Rust is a hot topic right now. It has been named most loved programming
language in developer surveys for five consecutive years, and interest is
growing among software developers and engineers alike, from both ends of
the spectrum: low-level system programmers and higher-level application
developers all want to explore and learn Rust. That said, one question that
gets asked frequently is whether Rust is really suitable and ready for the web.
Most of the learning material available in this space is really introductory in
nature, and doesn’t provide a view into how Rust can handle more complex
scenarios encountered in web development. In this book, I aim to show you
how Rust, in spite of its reputation for being a systems programming
language, is really a surprisingly delightful language to build web
applications in.

Of course, most (if not all) web development happens using web frameworks,
rather than directly using a vanilla programming language. The web
frameworks in Rust are much younger than full-featured and battle-tested
frameworks like Rails, Django or Laravel. But in spite of its young
ecosystem, Rust provides several compelling benefits for the web domain,
including an expressive and static type system that translates to higher system
reliability, lower and consistent resource usage, superior performance, and
options for lower-level control than what is possible with other web
development languages.

In this book I will show you how to apply Rust to the web domain. Using a
practical full-length project, we will push the limits and see how Rust
measures up to real-world challenges. We’ll build a low-level web server, a
web service, a server- rendered application, and a WASM-based front-end
(single-page application), and these scenarios will give you a pretty good
foundation to evaluate for yourself how you can apply Rust at work or to a
side-project in the web domain. Perhaps more importantly, this book will

help you identify use cases for which you would not use Rust, and instead opt
for the safety and comfort of another programming language and ecosystem.
Along the way, I will also share practical tips and pitfalls, and best practices
gained from my experience running Rust backend servers and applications in
production environments.

If you have read The Rust Programming Language (a.k.a "the Book"), are
eager to apply Rust to a practical domain that you are already familiar with,
and are interested in strengthening your knowledge of Rust fundamentals,
this book is for you. Further, I’ve made a conscious choice not to make this
book all about learning any specific web framework or library (though I’ve
made choices of tools for purposes of narrative and coding examples).

What I will not attempt to do in this book is to draw the battle-lines on which
is the best programming language. So, if you are familiar with Rust but not
yet convinced of its value proposition, this book may not be for you. Nor is
this book aimed at people who have absolutely no knowledge of what Rust is
about or what it offers. That said, if you’ve tried Rust and love it already, and
are also interested in the web domain, I invite you to join me on the journey
to explore Rust for the web, and I welcome your feedback in the liveBook's
Discussion Forum for the book.

Best regards,

Prabhu Eshwarla

In this book

MEAP VERSION 14 About this MEAP Welcome Brief Table of Contents
Part 1 Web servers and services 1 Why Rust for web applications? 2 Writing
a basic web server from scratch 3 Building a RESTful Web Service 4
Performing database operations 5 Handling Errors 6 Evolving the APIs and
fearless refactoring Part 2 Server-side web applications 7 Introduction to
server-side web apps in Rust 8 Working with templates for tutor registration
9 Working with forms for course maintenance Part 3 Advanced topic: Async
Rust 10 Understanding Async Rust 11 Building a P2P node with Async Rust
Part 4 Moving to production 12 Deploying web services with Docker
Appendix A. Postgres installation

Part 1 Web servers and services
Rust is a great programming language that is trending very positively
nowadays. It has initially been advertised as essentially a “systems
programming” language, along other famous ones like C or Go(lang). Indeed,
it is gradually finding its way in the Linux kernel: it is currently confined to
drivers and modules but its intrinsic qualities – mainly expressiveness,
memory safety, and performance – will certainly open it the doors to more
crucial part of the operating system. At a slower pace, Rust is also making
inroads into the still confidential realm of Web Assembly (WASM), in the
browser or in the serverless cloud.

Just like with Go, innovative developers have shown that Rust’s applicability
went beyond systems programming and that it could be used, for example, to
develop efficient web applications backend, supported by databases.

In this first part of the book, we will develop a simple yet representative web
application using REST web services, backed by a relational database. We
won’t address the UI aspects yet; these will be handled in the second part. We
are perfectly aware that the choices made in this book are not the only
options available to developers but this book doesn’t claim to be an
encyclopaedia of Rust developments: choices had to be made to keep the
book focused and readable.

This part will first set the foundations of our web application, thinking big
but starting small. It will then address increasingly specialized topics, such as
database persistence, error handling, and API maintenance and refactoring.

After having completed this part, you will be able to set up and develop
robust application backends, complete with routing and error handling, using
Rust and a handful of field-proven crates. You will then be ready to tackle
Part 2.

1 Why Rust for web applications?
This chapter covers

Introduction to modern web applications
Choosing Rust for web applications
Visualizing the example application

Connected web applications that work over the internet form the backbone of
modern businesses and human digital lives.

As individuals, we use consumer-focused apps for social networking &
communications, for e-commerce purchases, for travel bookings, to make
payments, manage finances, for education, and to entertain ourselves, just to
name a few. Likewise, business-focused applications are used across
practically all functions and processes in an enterprise.

Today’s web applications are mind-bogglingly complex distributed systems.
Users of these applications interact through web or mobile front-end user
interfaces. But the users rarely see the complex environment consisting of
backend services and software infrastructure components that respond to user
requests made through sleek app user interfaces. Popular consumer apps have
thousands of backend services and servers distributed in data centers across
the globe. Each feature of an app may be executed on a different server,
implemented with a different design choice, written in a different
programming language and located in a different geographical location. The
seamless in-app user experience makes things look so easy. But developing
modern web applications is anything but easy.

We use web applications everytime we tweet, watch a movie on Netflix,
listen to a song on Spotify, make a travel booking, order food, play an online
game, hail a cab, or use any of the numerous online services as part of our
daily lives.

Web sites provide information about your business. Web applications

provide services to your customers.

-- Author

In short, without distributed web applications, businesses and modern digital
society would come to a grinding halt.

In this book, you will learn the concepts, techniques and tools to design and
develop distributed web services and applications using Rust, that
communicate over standard internet protocols. Along the way, you will see
core Rust concepts in action through practical working examples.

This book is for you if you are a web backend software engineer, full stack
application developer, cloud or enterprise architect, CTO for a tech product
or simply a curious learner who is interested in building distributed web
applications that are incredibly safe, efficient, highly performant, and do not
incur exorbitant costs to operate and maintain. Through a working example
that is progressively built out through the rest of this book, I will show you
how to build web services, traditional web application backends in pure Rust.

As you will notice throughout the chapters, Rust is really a general-purpose
language that efficiently supports the development of many different kinds of
applications. This book presents a single application only but the techniques
demonstrated are applicable to many other situations, using the same or other
crates.

In this chapter we will review the key characteristics of distributed web
applications, understand how and where Rust shines, and outline the example
application we will build together in this book.

1.1 Introduction to modern web applications

In this section, we will learn more about the structure of modern, distributed
web applications.

Distributed systems have components that may be distributed across several
different computing processors, communicate over a network, and

concurrently execute workloads. Technically, your home computer itself
resembles a networked distributed system (given the modern multi-CPU and
multi-core processors).

Popular types of distributed systems include:

1. Distributed networks such as telecommunication networks and the
Internet

2. Distributed client-server applications. Most web-based applications fall
in this category

3. Distributed P2P applications such as BitTorrent and Tor
4. Real-time control systems such as air traffic and industrial control
5. Distributed server infrastructures such as cloud, grid and other forms of

scientific computing

Distributed systems are broadly composed of three parts: distributed
applications networking stack and hardware/OS infrastructure.

Distributed applications can use a wide array of networking protocols to
communicate internally between its components. However, HTTP is the
overwhelming choice today for a web service or web application to
communicate with the outside world, due to its simplicity and universality.

Web applications are programs that use HTTP as the application-layer
protocol, and provide some functionality that is accessible to human users
over standard internet browsers. When these web applications are not
monolithic, but composed of tens or hundreds of distributed application
components that cooperate and communicate over a network, they are called
distributed web applications. Examples of large-scale distributed web
applications include social media applications such as Facebook & Twitter,
ecommerce sites such as Amazon or eBay, sharing-economy apps like Uber
& Airbnb, entertainment sites such as Netflix, and even user-friendly cloud
provisioning applications from providers such as AWS, Google and Azure.

Figure 1.1 provides a representative logical view of the distributed systems
stack for a modern web application.

Figure 1.1. Distributed systems stack (simplified)

While in the real-world, such systems can be distributed over thousands of
servers, in the figure you can see three servers which are connected through a
networking stack. These servers may all be within a single data center or
distributed on the cloud geographically. Within each server, a layered view of
the hardware and software components is shown. A logical breakup of the
distributed system is described here:

Hardware and OS infrastructure components such as physical servers
(in data center or cloud), operating system, and virtualisation/container
runtimes. Devices such as embedded controllers, sensors, and edge
devices also can be classified in this layer (think of a futuristic case
where tweets are triggered to social media followers of a supermarket
chain when stocks of RFID-labelled items are placed or removed from
supermarket shelves).

Networking stack comprises the four-layered Internet Protocol suite
which forms the communication backbone for the distributed system

components to communicate with each other across physical hardware.
The four networking layers are (ordered by lowest to highest level of
abstraction):

Network link/access layer,
Internet layer,
Transport layer and
Application layer

The first three layers are implemented at the hardware/OS level on most
operating systems. For most distributed web applications, the primary
application layer protocol used is HTTP. Popular API protocols such as
REST, gRPC and GraphQL use HTTP.

For more details, see the documentation at tools.ietf.org/id/draft-baker-ietf-
core-04.html.

Distributed applications: Distributed applications are a subset of
distributed systems. Modern n-tier distributed applications are built as a
combination of:

Application front-ends: these can be mobile apps (running on iOS
or Android) or web front-ends running in an internet browser.
These app front-ends communicate with application backend
services residing on remote servers (usually in a data center or a
cloud platform). End users interact with application front-ends
Application backends: These contain the application business rules,
database access logic, computation-heavy processes such as image
or video processing, and other service integrations. They are
deployed as individual processes (such as systemd processes on
Unix/Linux) running on physical or virtual machines, or as
microservices in container engines (such as Docker) managed by
container orchestration environments (such as Kubernetes). Unlike
the application front-ends, application backends expose their
functionality through application programming interfaces (APIs).
Application front-ends interact with application backend
services to complete tasks on behalf of users.
Distributed software infrastructure includes components that

provide supporting services for application backends. Examples are
protocol servers, databases, KV stores, caching, messaging, load
balancers and proxies, service discovery platforms, and other such
infrastructure components that are used for communications,
operations, security and monitoring of distributed applications.
Application backends interact with distributed software
infrastructure for purposes of service discovery,
communications, lifecycle support, security and monitoring, to
name a few.

Now that we have an overview of distributed web applications, let’s take a
look at the benefits of using Rust for building them.

1.2 Choosing Rust for web applications

Rust can be used to build all the three layers of distributed applications -
front-ends, backend services and software infrastructure components. But
each of these layers has a different set of concerns and characteristics to
address. It is important to be aware of these while discussing the benefits of
Rust.

For example, the client front-ends deal with aspects such as user interface
design, user experience, tracking changes in application state and rendering
updated views on screen, and constructing and updating DOM.

Considerations while designing backend services include well-designed APIs
to reduce roundtrips, high throughput (measured requests per second),
response time under varying loads, low and predictable latency for
applications such as video streaming and online gaming, low memory and
CPU footprint, service discovery and availability.

Software infrastructure layer is concerned primarily with extremely low
latencies, low-level control of network and other operating-system resources,
frugal usage of CPU and memory, efficient data structures and algorithms,
built-in security, small start-up and shut-down time, and ergonomic APIs for
usage by application backend services.

As you can see, a single web application comprises components with at least
three sets of characteristics and requirements. While each of these is a topic
for a separate book in itself, we will look at things more holistically, and
focus on a set of common characteristics that broadly benefit all the three
layers of a web application.

1.2.1 Characteristics of web applications

Web applications can be of different types.

Highly mission-critical applications such as autonomous control of
vehicles and smart grids, industrial automation, and high-speed trading
applications where successful trades depend on ability to quickly and
reliably respond to input events
High-volume transaction and messaging infrastructures such as e-
commerce platforms, social networks and retail payment systems
Near-real time applications such as online gaming servers, video or
audio processing, video conferencing and real-time collaboration tools

These applications can be seen to have a common set of requirements which
can be expressed as below.

1. Should be safe, secure and reliable
2. Should be resource-efficient
3. Have to minimize latency
4. Should support high concurrency

In addition, the following would be nice-to-have requirements for such
services:

1. Should have quick start-up and shut-down time
2. Should be easy to maintain and refactor
3. Must offer developer productivity

It is important to note that all the above requirements can be addressed both
at the level of individual services and at the architectural level. For example,
high concurrency can be achieved by an individual service by adopting multi-
threading or async I/O as forms of concurrency. Likewise, high concurrency

can be achieved at an architectural level by adding several instances of a
service behind a load balancer to process concurrent loads. When we talk of
benefits of Rust in this book, we are talking at an individual service-level,
because architectural-level options are common to all programming
languages.

1.2.2 Benefits of Rust for web applications

We’ve earlier seen that modern web applications comprise web front-ends,
backends and software infrastructure. The benefits of Rust for developing
web front-ends, either to replace or supplement portions of javascript code, is
a hot topic nowadays. It will however not be discussed in this book as this
topic deserves a book on its own to be handled appropriately.

Here we will focus primarily on the benefits of Rust for application backends
and software infrastructure services. Rust meets all of the critical
requirements that we discussed in the previous section, for such services.
Let’s see how.

Rust is safe

When we talk about program safety, there are three distinct aspects to
consider - type safety, thread safety and memory safety.

Type safety: Rust is a statically typed language. Type checking, which
verifies and enforces type constraints, happens at compile-time. The type of a
variable has to be known at compile time. If you do not specify a type for a
variable, the compiler will try to infer it. If it is unable to do so, or if it sees
conflicts, it will let you know and prevent you from proceeding ahead. In this
context, Rust is in a similar league as Java, Scala, C and C++. Type safety in
Rust is very strongly enforced by the compiler, but with helpful error
messages. This helps to safely eliminate an entire class of run-time errors.

Memory safety: Memory safety is, arguably, one of the most unique aspects
of the Rust programming language. To do justice to this topic, let’s analyze
this in detail.

Mainstream programming languages can be classified into two groups based
on how they provide memory management.

The first group comprises languages with manual memory management such
as C and C++. The second group contains languages with a garbage collector
such as Java, C#, Python, Ruby and Go.

Since developers are not perfect, manual memory management also means
acceptance of a degree of unsafety, and thus lack of program correctness. So,
for cases where low-level control of memory is not necessary and absolute
performance is not a must, garbage collection as a technique has become the
mainstream feature of many modern programming languages over the last 20
to 25 years. Even though garbage collection has made programs safer than
manually managing memory, they come with their limitations in terms of
execution speed, consuming additional compute resources, and possible
stalling of program execution. Also garbage collection only deals with
memory and not other resources such as network sockets, and database
handles.

Rust is the first popular language to propose an alternative — automatic
memory management and memory safety without garbage collection. As you
are probably aware, it achieves this through a unique ownership model. Rust
enables developers to control the memory layout of their data structures and
makes ownership explicit. Rust’s ownership model of resource management
is modeled around RAII (Resource Acquisition is Initialization)- a C++
programming concept, and smart pointers that enable safe memory usage.

By way of a quick refresher, in this model, each value declared in a Rust
program is assigned an owner. Once a value is given away to another owner,
it can no longer be used by the original owner. The value is automatically
destroyed (memory is deallocated) when the owner of the value goes out of
scope.

Rust can also grant temporary access to a value, to another variable or
function. This is called borrowing. Rust compiler (specifically, the borrow
checker) ensures that a reference to a value does not outlive the value being
borrowed. To borrow a value, the & operator is used (called a reference).
References are of two types - immutable reference &T, which allows sharing

but not mutation, and mutable reference &mut T, which allows mutation but
not sharing. Rust ensures that whenever there is a mutable borrow of an
object, there are no other borrows of that object (either mutable or
immutable). All this is enforced at compile time, leading to elimination of
entire classes of errors involving invalid memory access.

To summarize, you can program in Rust without fear of invalid memory
access, in a language without a garbage collector. Rust provides compile-time
guarantees to protect from the following categories of memory safety errors,
by default:

1. Null pointer dereferences: Case of a program crashing because a pointer
being dereferenced is null

2. Segmentation faults where programs attempt to access a restricted area
of memory

3. Dangling pointers, where a value associated with a pointer no longer
exists.

4. Buffer overflows, due to programs accessing elements before the start or
beyond the end of an array. Rust iterators don’t run out of bounds.

Thread safety: In Rust, memory and thread safety (which seem like two
completely different concerns) are solved using the same foundational
principle of ownership. For type safety, Rust ensures no undefined behaviour
due to data races, by default. While some of the web development languages
may offer similar guarantees, Rust goes one step further and prevents you
from sharing objects between threads that are not thread-safe. Rust marks
some data types as thread-safe, and enforces these for you. Most other
languages do not make this distinction between thread-safe and thread-
unsafe data structures. The Rust compiler categorically prevents all types of
data races, which makes multi-threaded programs much safer.

Here are a couple of references for a deep-dive into this topic:

Send and Sync traits: doc.rust-lang.org/book/ch16-04-extensible-
concurrency-sync-and-send.html
Fearless concurrency with Rust: blog.rust-lang.org/2015/04/10/Fearless-
Concurrency.html

In addition to what was discussed, there are a few other features of Rust that
improve safety of programs:

All variables in Rust are immutable by default, and explicit declaration
is required before mutating any variable. This forces the developer to
think through how and where data gets modified, and what is the
lifetime of each object.
Rust’s ownership model handles not just memory management, but
management of variables owning other resources such as network
sockets, database and file handles, and device descriptors.
Lack of a garbage collector prevents non-deterministic behaviour.
Match clauses (which are equivalent to Switch statements in other
languages) are exhaustive, which means that the compiler forces the
developer to handle every possible variant in the match statement, thus
preventing developers from inadvertently missing out handling of
certain code flow paths that may result in unexpected run-time
behaviour.
Presence of Algebraic data types that make it easier to represent the data
model in a concise verifiable manner.

Rust’s statically-typed system, ownership & borrowing model, lack of a
garbage collector, immutable-by-default values, and exhaustive pattern
matching all of which are enforced by the compiler, provide Rust with an
undeniable edge for developing safe applications.

Rust is resource-efficient

System resources such as CPU, memory and disk space have progressively
become cheaper over the years. While this has proved to be very beneficial in
the development and scaling of distributed applications, it also brings a few
drawbacks. First of all, there is a general tendency among software teams to
simply throw more hardware to solve scalability challenges - more CPU,
more memory and more disk space. This is achieved either by adding more
CPU/memory/disk resources to the server (vertical scaling, a.k.a scaling up)
or by adding more machines to the network to share the load (horizontal
scaling, a.k.a scaling out). But one of the reasons why these have become
popular is due to limitations in language design of mainstream web

development languages of today. High level web-development languages
such as Javascript, Java, C#, Python and Ruby do not allow fine-grained
memory control to limit memory usage. Many programming languages do
not utilize multi-core architectures of modern CPUs well. Dynamic scripting
languages do not make efficient memory allocations because the type of the
variable is known only at run-time, so optimizations are not possible unlike
statically-typed languages.

Rust offers the following innate features that enable creation of resource-
efficient services:

Due to its ownership model of memory management, Rust makes it hard
(if not impossible) to write code that leaks memory or other resources.
Rust allows developers to tightly control memory layout for their
programs.
Rust does not have a garbage collector (GC), like a few other
mainstream languages, that consumes additional CPU and memory
resources. For example, GC code runs in separate threads and consumes
resources.
Rust does not have a large complex runtime. This gives tremendous
flexibility to run Rust programs even in underpowered embedded
systems and microcontrollers like home appliances and industrial
machines. Rust can run in bare metal without kernels.
Rust discourages deep copy of heap-allocated memory and provides
various types of smart pointers to optimize memory footprint of
programs. The lack of a runtime in Rust makes it one of the few modern
programming languages appropriate for extremely low-resource
environments.

Rust combines the best of static typing, fine-grained memory control.
efficient use of multi-core CPUs and built-in asynchronous I/O semantics that
make it very resource efficient in terms of CPU and memory utilization. All
these aspects translate to lower server costs and a lower operational burden
for small and large applications alike.

Rust has low latency

Latency for a roundtrip network request and response depends both on
network latency and service latency. Network latency is impacted by many
factors such as transmission medium, propagation distance, router efficiency
and network bandwidth. Service latency is dependent on many factors such as
I/O delays in processing the request, whether there is a garbage collector that
introduces non-deterministic delays, Hypervisor pauses, amount of context
switching (eg in multi-threading), serialization and deserialization costs, etc.

From a purely programming language perspective, Rust provides low latency
due to low-level hardware control as a systems programming language. Rust
also does not have a garbage collector and run-time, has native support for
non-blocking I/O, a good ecosystem of high-performance async (non-
blocking) I/O libraries and runtimes, and zero-cost abstractions as a
fundamental design principle of the language. Additionally, by default, Rust
variables live on the stack which is faster to manage.

Several different benchmarks have shown comparable performance between
idiomatic Rust and idiomatic C++ for similar workloads, which is faster than
those that can be obtained with mainstream web development languages.

Rust enables fearless concurrency

We previously looked at concurrency features of Rust from a program safety
perspective. Now let’s look at Rust concurrency from the point of view of
better multi-core CPU utilization, throughput and performance for application
and infrastructure services.

Rust is a concurrency-friendly language that enables developers to leverage
the power of multi-core processors.

Rust provides two types of concurrency - classic multi-threading and
asynchronous I/O.

Multi-threading: Rust’s traditional multi-threading support provides for both
shared-memory and message-passing concurrency. Type-level guarantees are
provided for sharing of values. Threads can borrow values, assume
ownership and transition the scope of a value to a new thread. Rust also

provides data race safety which prevents thread blocking, improving
performance. In order to improve memory efficiency and avoid copying of
data shared across threads, Rust provides reference counting as a mechanism
to track the use of a variable by other processes/threads. The value is dropped
when the count reaches zero, which provides for safe memory management.
Additionally, mutexes are available in Rust for data synchronisation across
threads. References to immutable data need not use mutex.

Async I/O: Async event-loop based non-blocking I/O concurrency primitives
are built into the Rust language with zero-cost futures and async-await. Non-
blocking I/O ensures that code does not hang while waiting for data to be
processed.

Further, Rust’s rules of immutability provide for high levels of data
concurrency.

Rust is a productive language

Even though Rust is first a systems-oriented programming language, it also
adds the quality-of-life features of higher-level and functional programming
languages.

Here is a (non-exhaustive) list of a few higher-level abstractions in Rust that
make for a productive and delightful developer experience:

1. Closures with anonymous functions. These capture the environment and
can be executed elsewhere (in a different method or thread context).
Anonymous functions can be stored inside a variable and can be passed
as parameters for functions and across threads.

2. Iterators
3. Generics and macros that provide for code generation and reuse
4. Enums such as Option and Result that are used to express success/failure
5. Polymorphism through traits
6. Dynamic dispatch through trait objects

Rust allows developers to build not just efficient, safe and performant
software, but also optimizes for developer productivity with its

expressiveness. It is not without reason that Rust has won the most loved
Programming language in the StackOverflow developer survey for five
consecutive years: 2016- 2020. The survey can be accessed at:
insights.stackoverflow.com/survey/2020. For more insights into why senior
developers love Rust, read this link: stackoverflow.blog/2020/06/05/why-the-
developers-who-use-rust-love-it-so-much/.

We have so far seen how Rust offers a unique combination of memory safety,
resource-efficiency, low latency, high concurrency and developer
productivity. These impart Rust with the characteristics of low-level control
and speed of a system programming language, the developer productivity of
higher-level languages and a very unique memory model without a garbage
collector. Application backends and infrastructure services directly benefit
from these characteristics in order to provide low-latency responses under
high loads, while being highly efficient in usage of system resources such as
multi-core CPUs and memory. In the next subsection, we will take a look at
some of the limitations of Rust.

What does Rust not have?

When it comes to choice of programming languages, there is no one-size-fits-
all, and no language can be claimed to be suitable for all use cases. Further,
due to the nature of programming language design, what may be easy to do in
one language could be difficult in another. However, in the interest of
providing a complete view to enable decision on using Rust for the web, here
are a few things one needs to be cognizant of:

1. Rust has a steep learning curve. It is definitely a bigger leap for people
who are newcomers to programming, or are coming from dynamic
programming or scripting languages. The syntax can be difficult to read
at times, even for experienced developers.

2. There are some things that are harder to program in Rust compared to
other languages - for example, single and double linked lists. This is due
to the way the language is designed.

3. Rust compiler is slower than many other compiled languages, as of this
writing. But compilation speed has progressively improved over the last
few years, and work is underway to continually improve this.

4. Rust’s ecosystem of libraries and community is still maturing, compared
to other mainstream languages.

5. Rust developers are relatively harder to find and hire at scale.
6. Adoption of Rust in large companies and enterprises is still in early

days. It does not yet have a natural home to nurture it such as Oracle for
Java, Google for Golang and Microsoft for C#.

In this section, we have seen the benefits and drawbacks of using Rust to
develop application backend services. In the next section, we will see a
preview of the example application that we’ll build in this book.

1.3 Visualizing the example application

In this book, we will build web servers, web services and web applications in
Rust, and demonstrate concepts through a full-length example. Note that our
goal is not to develop a feature-complete or architecture-complete distributed
application, but to learn how to use Rust for the web domain.

This is a very important message: we will only explore some paths - actually
a very limited number of all possible ones - and totally disregard others that
can be as promising and interesting. This is a deliberate choice, to keep our
discourse focused. For example, only REST web services will be developed,
leaving SOAP services completely aside. We fully realize how arbitratry it is.

This book will also not address some important aspects of modern software
development, like Continuous Integration/Continuous Delivery (CI/CD).
These are very important topics in today’s practice but there was nothing
specific to Rust to be explained and we preferred not to address these aspects
in the context of this book.

On the other hand, because we consider containerization as a major trend,
nowadays, and because we deemed it interesting to show the deployment of a
distributed application developed in Rust as containers, we will show how
easy it is to deploy and run our example application using Docker and
docker-compose.

Similarly, in the final chapters of the book, we will also make a short

digression into the realm of peer-to-peer (P2P) networks, that are one of the
most striking usages of async capabilities. This part of the book will however
be slightly disconnected from the example application, as we didn’t find a
compelling use case for integrating P2P with it. Making use of P2P in the
case of our example application is therefore left as an exercise for our
readers.

Let us now introduce our example application.

1.3.1 What will we build?

EzyTutors - A digital storefront for tutors

Are you a tutor with a unique skill or knowledge that you’d like to monetize?
Do you have the necessary time and resources to set up and manage your
own website?

EzyTutors is just for you. Take your training business online in just a
few minutes.

We will build a digital storefront for tutors to publish their course catalogs
online. Tutors can be individuals or training businesses. The digital storefront
will be a sales tool for tutors, not a marketplace.

We’ve defined the product vision. Let’s now talk about the scope, followed
by the technical stack.

The storefront will allow tutors to register themselves and then sign in. They
can create a course offering and associate it with a course category. A web
page with their course list will be generated for each tutor, which they can
then share on social media with their network. There will also be a public
website that will allow learners to search for courses, browse through courses
by tutor, and view course details.

Figure 1.2 shows the logical design of our example application.

Figure 1.2. Our example application

Our technical stack will consist of a web service, and a server-rendered web
app, written in pure Rust. Of course, there are several very popular
approaches, like developing the GUI using a mature web framework such as
React, Vue or Angular but we won’t use this approach, to keep focused on
Rust. There are many good books on this topic.

The course data will be persisted in a relational database. The tools used in
this book are Actix web for the web framework, SQLx for database
connections and Postgres for the database. Importantly, the design will be
asynchronous all the way. Both Actix web and SQLx support full
asynchronous I/O, which is very suited for our web application workload that
is more I/O heavy than computation-heavy.

We’ll first build a web service exposing RESTful APIs that connects to a
database, and deals with errors and failures in an application-specific manner.
We’ll then simulate application lifecycle changes by enhancing the data
model, and adding additional functionality, which will require refactoring of
code and database migration. This exercise will demonstrate one of the key
strengths of Rust, i.e. the ability to fearlessly refactor the code (and reduce
technical debt) with the aid of a strongly-typed system and a strict but helpful
compiler that has our back.

In addition to the web service, our example will demonstrate how to build a
front-end in Rust; the chosen example will be a server-rendered client app.
We’ll use a template engine to render templates and forms for the server-
rendered web application. It would be possible as well to implement a
WASM-based in-browser app but such an undertaking falls out of the scope
of this book.

Our web application can be developed and deployed on any platform that
Rust supports - Linux, Windows and Mac OS. What this means is that we
will not use any external library that restricts usage to any specific computing
platform. Our application will be capable of being deployed either in a
traditional server-based deployment, or in any cloud platform, either as a
traditional binary, or in a containerized environment (such as docker and
kubernetes).

The chosen problem domain for the example application is a practical
scenario, but is not complex to understand. This allows us to focus on the
core topic of the book, i.e., how to apply Rust to the web domain. As a bonus,
we’ll also strengthen understanding of Rust by seeing in action concepts such
as traits, lifetimes, Result and Option, structs and enums, collections, smart
pointers, derivable traits, associated functions and methods, modules and
workspaces, unit testing, closures, and functional programming.

This book is about learning the foundations of web development in Rust.
What is not covered in this book are topics around how to configure and
deploy additional infrastructural components and tools such as reverse proxy
servers, load balancers, firewalls, TLS/SSL, monitoring servers, caching
servers , Devops tools, CDNs etc, as these are not Rust-specific topics (but
needed for large-scale production deployments).

In addition to building business functionality in Rust, our example
application will demonstrate good development practices such as automated
tests, code structuring for maintainability, separating configuration from
code, generating documentation, and of course, writing idiomatic Rust.

Are you ready for some practical Rust on the web?

1.3.2 Technical guidelines for the example application

This isn’t a book about system architecture or software engineering theory.
However, I would like to enumerate a few foundational guidelines adopted in
the book that will help you better understand the rationale for the design
choices made for the code examples in this book.

1. Project structure: We’ll make heavy use of the Rust module system to
separate various pieces of functionality, and keep things organized.
We’ll use Cargo workspaces to group related projects together, which
can include both binaries and libraries.

2. Single Responsibility principle: Each logically-separate piece of
application functionality should be in its own module. For example, the
handlers in the web tier should only deal with processing HTTP
messages. The business and database access logic should be in separate
modules.

3. Maintainability:

Variable and function names must be self-explanatory.
Keep formatting of code uniform using Rustfmt
Write automated test cases to detect and prevent regressions, as the
code evolves iteratively.
Project structure and file names must be intuitive to understand.

4. Security: In this book, we’ll cover API authentication using JWT, and
password-based user authentication. Infrastructure and network-level
security are not covered. However, it is important to recall that Rust
inherently offers memory safety without a garbage collector, and thread-
safety that prevents race conditions, thus preventing several classes of
hard-to-find and hard-to-fix memory, concurrency and security bugs.

5. Application Configuration: Separating configuration from the
application is a principle adopted for the example project.

6. Usage of external crates: Keep usage of external crates to a minimum.
For example, custom error handling functionality is built from scratch in
this book, rather than use external crates that simplify and automate
error handling. This is because taking short-cuts using external libraries
sometimes impedes the learning process and deep understanding.

7. Async I/O: It is a deliberate choice to use libraries that support fully
asynchronous I/O in the example application, both for network
communications and for database access.

Now that we’ve covered the topics we’ll be discussing in the book, the goals
of the example project, and the guidelines we’ll use to steer design choices,
we can start digging into web servers and web services: the topic of our next
chapter.

1.4 Summary

Modern web applications are an indispensable component of digital
lives and businesses. But they are complex to build, deploy and operate.
Distributed web applications comprise application front-ends, backend
services and distributed software infrastructure.
Application backends and software infrastructure are composed of
loosely coupled, cooperative network-oriented services. These have
specific run-time characteristics to be satisfied, which have an impact on
the tools and technologies used to build them.
Rust is a highly suitable language to develop distributed web
applications, due to its safety, concurrency, low latency and low
hardware-resource footprint.
This book is suitable for readers who are considering Rust for
distributed web application development.

We overviewed the example application we will be building in this
book. We also reviewed the key technical guidelines adopted for the
code examples in the book.

2 Writing a basic web server from
scratch
This chapter covers

Writing a TCP server in Rust
Writing an HTTP server in Rust

In this chapter, you will delve deep into TCP and HTTP communications
using Rust.

These protocols are generally abstracted away for developers through higher-
level libraries and frameworks used to build web applications. So, why is it
important to discuss low level protocols? This would be a fair question.

Learning to work with TCP and HTTP is important because they form the
foundation for most communications on the Internet. Popular application
communication protocols and techniques such as REST, gRPC, and
websockets use HTTP and TCP for transport. Designing and building basic
TCP and HTTP servers in Rust gives the confidence to design, develop and
troubleshoot higher-level application backend services.

However, if you are eager to get started with the example application, you
can move to Chapter 3, and later come back to this chapter at a time
appropriate for you.

In this chapter, you will learn the following:

Write a TCP client and server.
Build a library to convert between TCP raw byte streams and HTTP
messages.
Build an HTTP server that can serve static web pages (aka web server)
as well as json data (aka web service). Test the server with standard
HTTP clients such as cURL (command line) tool and web browser.

Through this exercise, you will understand how Rust data types and traits can
be used to model a real-world network protocol, and strengthen your
fundamentals of Rust.

The chapter is structured into two sections. In the first section, you will
develop a basic network server in Rust that can communicate over TCP/IP. In
the second section, you will build a web server that responds to GET requests
for web pages and json data. You will achieve all this using just the Rust
standard library (no external crates). The HTTP server that you are going to
build is not intended to be full-featured or production-ready. But it will serve
our stated purpose.

Let’s get started.

We spoke about modern applications being constructed as a set of
independent components and services, some belonging to the front-end, some
backend and some part of the distributed software infrastructure.

Whenever we have separate components, the question arises as to how these
components talk to each other. How does the client (web browser or mobile
app) talk to the backend service? How do the backend services talk to the
software infrastructure such as databases? This is where the networking
model comes in.

A networking model describes how communication takes place between the
sender of a message and its receiver. It addresses questions such as , in what
format the message should be sent and received, how the message should be
broken up into bytes for physical data transmission, how errors should be
handled if data packets do not arrive at the destination etc. The OSI model is
the most popular networking model, and is defined in terms of a
comprehensive seven-layered framework. But for purposes of internet
communications, a simplified four-layer model called the TCP/IP model is
more often adequate to describe how communications take place over the
internet between the client making a request and the server that processes that
request. The TCP/IP model is described here
(www.w3.org/People/Frystyk/thesis/TcpIp.html).

The TCP/IP model is a simplified set of standards and protocols for

communications over the internet. It is organized into four abstract layers:
Network Access layer, Internet Layer, Transport Layer and the Application
layer, with flexibility on wire protocols that can be used in each layer. The
model is named after the two main protocols it is built on- Transmission
Control Protocol (TCP) and Internet Protocol(IP). This is shown in figure 2.1.
The main thing to note is that these four layers complement each other in
ensuring that a message is sent successfully from the sending process to the
receiving process.

Figure 2.1. TCP/IP network model

We will now look at the role of each of these four layers in communications.

The Application layer is the highest layer of abstraction. The semantics of the
message are understood by this layer. For example, a web browser and web
server communicate using HTTP, or an email client and email server
communicate using SMTP(Simple Mail Transfer Protocol). There are other
such protocols such as DNS (Domain Name Service) and FTP (File Transfer
Protocol). All these are called application-layer protocols because they deal
with specific user applications - such as web browsing, emails or file

transfers.In this book, we will focus mainly on the HTTP protocol at the
application layer.

The Transport layer provides reliable end-to-end communication. While the
application layer deals with messages that have specific semantics (such as
sending a GET request to get shipment details), the transport protocols deal
with sending and receiving raw bytes. (Note: all application layer protocol
messages eventually get converted into raw bytes for transmission by the
transport layer). TCP and UDP are the two main protocols used in this layer,
with QUIC (Quick UDP Internet Connection) also being a recent entrant.
TCP is a connection-oriented protocol that allows data to be partitioned for
transmission and reassembled in a reliable manner at the receiving end. UDP
is a connectionless protocol and does not provide guarantees on delivery,
unlike TCP. UDP is consequently faster and suitable for certain class of
applications eg DNS lookups, voice or video applications.In this book, we
will focus on the TCP protocol for transport layer.

The Network layer uses IP addresses and routers to locate and route packets
of information to hosts across networks. While the TCP layer is focused on
sending and receiving raw bytes between two servers identified by their IP
addresses and port numbers, the network layer worries about what is the best
path to send data packets from source to destination. We do not need to
directly work with the network layer as Rust’s standard library provides the
interface to work with TCP and sockets, and handles the internals of network
layer communications.

The Network Access layer is the lowest layer of the TCP/IP network model. It
is responsible for transmission of data through a physical link between hosts,
such as by using network cards.For our purposes, it does not matter what
physical medium is used for network communications.

Now that we have an overview of the TCP/IP networking model, we’ll learn
how to use the TCP/IP protocol to send and receive messages in Rust.

2.1 Writing a TCP server in Rust

In this section, you will learn how to perform basic TCP/IP networking

communications in Rust, fairly easily. Let’s start by understanding how to
use the TCP/IP constructs in the Rust standard library.

2.1.1 Designing the TCP/IP communication flow

The Rust standard library provides networking primitives through the
std::net module for which documentation can be found at: doc.rust-
lang.org/std/net/ . This module supports basic TCP and UDP
communications. There are two specific data structures, TcpListener and
TcpStream, which have the bulk of the methods needed to implement our
scenario.

Let us see how to use these two data structures.

TcpListener is used to create a TCP socket server that binds to a specific port.
A client can send a message to a socket server at the specified socket address
(combination of IP address of the machine and port number). There may be
multiple TCP socket servers running on a machine. When there is an
incoming network connection on the network card, the operating system
routes the message to the right TCP socket server using the port number.

Example code to create a socket server is shown here.

use std::net::TcpListener;

let listener = TcpListener::bind("127.0.0.1:3000")

After binding to a port, the socket server should start to listen for the next
incoming connection. This is achieved as shown here:

listener.accept()

For listening continually (in a loop) for incoming connections, the following
method is used:

listener.incoming()

The listener.incoming() method returns an iterator over the connections
received on this listener. Each connection represents a stream of bytes of type

TcpStream. Data can be transmitted or received on this TcpStream object.
Note that reading and writing to TcpStream is done in raw bytes. Code
snippet is shown next.(Note: error handling is excluded for simplicity)

for stream in listener.incoming() {

 //Read from stream into a bytes buffer

 stream.read(&mut [0;1024]);

 // construct a message and write to stream

 let message = "Hello".as_bytes();

 stream.write(message)

}

Note that

for reading from a stream, we have constructed a bytes buffer (called
byte slice in Rust).
for writing to a stream, we have constructed a string slice and converted
it to a byte slice using as_bytes() method

So far, we’ve seen the server side of TCP socket server. On the client side, a
connection can be established with the TCP socket server as shown:

let stream = TcpStream.connect("172.217.167.142:80")

To recap, connection management functions are available from the
TcpListener struct of the std::net module. To read and write on a connection,
TcpStream struct is used.

Let’s now apply this knowledge to write a working TCP client and server.

2.1.2 Writing the TCP server and client

Let’s first setup a project structure . Figure 2.2 shows the workspace called
scenario1 which contains four projects - tcpclient, tcpserver, http and
httpserver.

For Rust projects, a workspace is a container project which holds other
projects. The benefit of the workspace structure is that it enables us to
manage multiple projects as one unit. It also helps to store all related projects
seamlessly within a single git repo. We will create a workspace project called

scenario1. Under this workspace, we will create four new Rust projects using
cargo, the Rust project build and dependencies tool. The four projects are
tcpclient, tcpserver, http and httpserver.

Figure 2.2. Cargo workspace project

The commands for creating the workspace and associated projects are listed
here.

Start a new cargo project with:

cargo new scenario1 && cd scenario1

The scenario1 directory can also be referred to as the workspace root.

Under scenario1 directory, create the following four new Rust projects:

cargo new tcpserver

cargo new tcpclient

cargo new httpserver

cargo new --lib http

tcpserver will be the binary project for TCP server code

tcpclient will be the binary project for TCP client code
httpserver will be the binary project for HTTP server code
http will be the library project for http protocol functionality

Now that the projects are created, we have to declare scenario1 project as a
workspace and specify its relationship with the four subprojects. Add the
following:

Listing 2.1. scenario1/Cargo.toml

[workspace]

members = [

 "tcpserver","tcpclient", "http", "httpserver",

]

We will now write the code for TCP server and client in two iterations:

1. In the first iteration, we will write the TCP server and client to do a
sanity check that connection is being established from client to server.

2. In the second iteration, we will send a text from client to server and have
the server echo it back.

General note about following along with the code

Many of the code snippets shown in this chapter (and across the book) have
inline numbered code annotations to describe the code. If you are copying
and pasting code (from any chapter in this book) into your code editor, ensure
to remove the code annotation numbers (or the program will not compile).
Also, the pasted code may sometimes be misaligned, so manual verification
may be needed to compare pasted code with the code snippets in the chapter,
in case of compilation errors.

Iteration 1

Go to tcpserver folder and modify src/main.rs as follows:

Listing 2.2. First iteration of TCP server (tcpserver/src/main.rs)

use std::net::TcpListener;

fn main() {

 let connection_listener = TcpListener::bind(

 [CA]"127.0.0.1:3000").unwrap(); #1

 println!("Running on port 3000");

 for stream in connection_listener.incoming() { #2

 let _stream = stream.unwrap(); #3

 println!("Connection established");

 }

}

From root folder of workspace (scenario1), run :

cargo run -p tcpserver #1

The server will start and the message Running on port 3000 is printed to the
terminal. We now have a working TCP server listening on port 3000 on
localhost.

Let’s next write a TCP client to establish connection with the TCP server.

Listing 2.3. tcpclient/src/main.rs

use std::net::TcpStream;

fn main() {

 let _stream = TcpStream::connect("localhost:3000").unwrap(); #1

}

In a new terminal, from root folder of workspace, run :

cargo run -p tcpclient

You will see the message "connection established" printed to terminal where
the TCP server is running as shown:

Running on port 3000

Connection established

We now have a TCP server running on port 3000, and a TCP client that can
establish connection to it.

We now can try sending a message from our client and have the server echo
it back.

Iteration 2:

Modify the tcpserver/src/main.rs file as follows:

Listing 2.4. Completing the TCP server

use std::io::{Read, Write}; #1

use std::net::TcpListener;

fn main() {

 let connection_listener = TcpListener::bind("127.0.0.1:3000").unwrap();

 println!("Running on port 3000");

 for stream in connection_listener.incoming() {

 let mut stream = stream.unwrap(); #2

 println!("Connection established");

 let mut buffer = [0; 1024];

 stream.read(&mut buffer).unwrap(); #3

 stream.write(&mut buffer).unwrap(); #4

 }

}

In the code shown, we are echoing back to the client, whatever we receive
from it. Run the TCP server with cargo run -p tcpserver from the
workspace root directory.

Read and Write traits

Traits in Rust define shared behaviour. They are similar to interfaces in other
languages, with some differences. The Rust standard library(std) defines
several traits that are implemented by data types within std. These traits can
also be implemented by user-defined data types such as structs and enums.

Read and Write are two such traits defined in the Rust standard library.

Read trait allows for reading bytes from a source. Examples of sources that
implement the Read trait include File, Stdin (standard input), and TcpStream.
Implementers of the Read trait are required to implement one method -
read(). This allows us to use the same read() method to read from a File,

Stdin, TcpStream or any other type that implements the Read trait.

Similarly, the Write trait represents objects that are byte-oriented sinks.
Implementers of the Write trait implement two methods - write() and flush().
Examples of types that implement the Write trait include File, Stderr, Stdout
and TcpStream. This trait allows us to write to either a File, standard output,
standard error or TcpStream using the write() method.

The next step is to modify the TCP client to send a message to the server, and
then print what is received back from the server. Modify the file
tcpclient/src/main.rs as follows:

Listing 2.5. Completing the TCP client

use std::io::{Read, Write};

use std::net::TcpStream;

use std::str;

fn main() {

 let mut stream = TcpStream::connect("localhost:3000").unwrap();

 stream.write("Hello".as_bytes()).unwrap(); #1

 let mut buffer = [0; 5];

 stream.read(&mut buffer).unwrap(); #2

 println!(

 "Got response from server:{:?}", #3

 str::from_utf8(&buffer).unwrap()

);

}

Run the TCP client with cargo run -p tcpclient from the workspace root.
Make sure that the TCP Server is also running in another terminal window.

You will see the following message printed to the terminal window of the
TCP client:

Got response from server:"Hello"

Congratulations. You have written a TCP server and a TCP client that can
communicate with each other.

Result type and unwrap() method

In Rust, it is idiomatic for a function or method that can fail to return a
Result<T,E> type. This means the Result type wraps another data type T in
case of success, or wraps an Error type in case of failure, which is then
returned to the calling function. The calling function in turn inspects the
Result type and unwraps it to receive either the value of type T or type Error
for further processing.

In the examples so far, we have made use of the unwrap() method in several
places, to retrieve the value embedded within the Result object by the
standard library methods. unwrap() method returns the value of type T if
operation is successful , or panics in case of error. In a real-world application,
this is not the right approach, as Result type in Rust is for recoverable
failures, while panic is used for unrecoverable failures. However, we have
used it because use of unwrap() simplifies our code for learning purposes.
We will cover proper error handling in later chapters.

In this section, we have learnt how to do TCP communications in Rust. You
have also noticed that TCP is a low-level protocol which only deals in byte
streams. It does not have any understanding of the semantics of messages and
data being exchanged. For writing web applications, semantic messages are
easier to deal with than raw byte streams. So, we need to work with a higher-
level application protocol such as HTTP, rather than TCP. This is what we
will look at in the next section.

2.2 Writing an HTTP server in Rust

In this section, we’ll build a web server in Rust that can communicate with
HTTP messages.

But Rust does not have built-in support for HTTP. There is no std::http
module that we can work with. Even though there are third-party HTTP
crates available, we’ll write one from scratch. Through this, we will learn
how to apply Rust for developing lower-level libraries and servers, that
modern web applications in turn rely upon.

Let’s first visualize the features of the web server that we are going to build.
The communication flow between the client and the various modules of the

web server is depicted in figure 2.3.

Figure 2.3. Web server message flow

Our Web server will have four components - Server, Router, Handler and
HTTP library. Each of these components has a specific purpose, in line with
Single Responsibility Principle (SRP). The Server listens for incoming TCP

byte streams. The HTTP library interprets the byte stream and converts it to
HTTP Request (message). The router accepts an HTTP Request and
determines which handler to invoke. The handler processes the HTTP
request and constructs an HTTP response. The HTTP response message is
converted back to a byte stream using the HTTP library, which is then sent
back to the client.

Figure 2.4 shows another view of the HTTP client-server communications,
this time depicting how the HTTP messages flow through the TCP/IP
protocol stack. The TCP/IP communications are handled at the operating
system level both at the client and server side, and a web application
developer only works with HTTP messages.

Figure 2.4. HTTP communications with protocol stack

Let’s build the code in the following sequence:

Build the HTTP library
Write the main() function for the project
Write the server module

Write the router module
Write the handler module

For convenience, figure 2.5 shows a summary of the code design, showing
the key modules, structs and methods for the http library and httpserver
project.

Figure 2.5. Design overview of web server

We’ll be writing code for the modules, structs and methods shown in this
figure. Here is a short summary of what each component in the figure does:

http: Library containing types HttpRequest and HttpResponse. It
implements the logic for converting between HTTP requests and
responses, and corresponding Rust data structures.
httpserver: Main web server that incorporates a main() function, socket
server, handler and router, and manages the coordinations among them.
It serves as both a web server (serving html) and a web service(serving
json).

Shall we get started?

2.2.1 Parsing HTTP request messages

In this section we will build an HTTP library. The library will contain data
structures and methods to do the following:

Interpret an incoming byte stream and convert it into an HTTP Request
message
Construct an HTTP response message and convert it into a byte stream
for transmitting over the wire

We are now ready to write some code.

Recall that we have already created a library called http under scenario1
workspace.

The code for HTTP library will be placed under http/src folder.

In http/src/lib.rs, add the following code:

pub mod httprequest;

This tells the compiler that we are creating a new publicly-accessible module
called httprequest in the http library.

Also, delete the pre-generated test script (by cargo tool) from this file. We’ll

write test cases later.

Create two new files httprequest.rs and httpresponse.rs under http/src, to
contain the functionality to deal with HTTP requests and responses
respectively.

We will start with designing the Rust data structures to hold an HTTP
request. When there is an incoming byte stream over a TCP connection, we
will parse it and convert it into strongly-typed Rust data structures for further
processing. Our HTTP server program can then work with these Rust data
structures, rather than with TCP streams.

Table 1 shows a summary of Rust data structures needed to represent an
incoming HTTP request:

Table 2.1. Table showing the list of data structures we will be building.

Data structure name Rust data type Description

HttpRequest struct Represents an HTTP
request

Method enum
Specifies the allowed
values (variants) for
HTTP Methods

Version enum Specifies allowed values
for HTTP Versions

We’ll implement a few traits on these data structures, to impart some
behaviour. Table 2 shows a description of the traits we will implement on the
three data structures.

Table 2.2. Table showing the list of traits implemented by the data structures for HTTP requests.

Rust trait implemented Description

From<&str>
This trait enables conversion of
incoming string slice into
HttpRequest data structure

Debug Used to print debug messages

PartialEq Used to compare values as part of
parsing and automated test scripts

Let’s now convert this design into code. We’ll write the data structures and
methods.

Method

We will code the Method enum and trait implementations here.

Add the following code to http/src/httprequest.rs.

The code for Method enum is shown here. We use an enum data structure as
we want to allow only predefined values for the HTTP method in our
implementation. We will only support two HTTP methods in this version of
implementation- GET and POST requests. We’ll also add a third type -
Uninitialized, to be used during initialization of data structures in the
running program.

Add the following code to http/src/httprequest.rs:

#[derive(Debug, PartialEq)]

pub enum Method {

 Get,

 Post,

 Uninitialized,

}

The trait implementation for Method is shown here (to be added to
httprequest.rs):

impl From<&str> for Method {

 fn from(s: &str) -> Method {

 match s {

 "GET" => Method::Get,

 "POST" => Method::Post,

 _ => Method::Uninitialized,

 }

 }

}

Implementing the from method in From trait enables us to read the method
string from the HTTP request line, and convert it into Method::Get or
Method::Post variant. In order to understand the benefit of implementing this
trait and to test if this method works, let’s write some test code. As will be
the case throughout this book, our test will be unit tests. We have deliberately
limited testing to unit tests to focus on Rust-specific aspects.

Coming back to our tests, let’s add the following to http/src/httprequest.rs:

#[cfg(test)]

mod tests {

 use super::*;

 #[test]

 fn test_method_into() {

 let m: Method = "GET".into();

 assert_eq!(m, Method::Get);

 }

}

From the workspace root, run the following command:

cargo test -p http

You will notice a message similar to this stating that the test has passed.

running 1 test

test httprequest::tests::test_method_into ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

The string "GET" is converted into Method::Get variant using just the .into()
syntax, which is the benefit of implementing the From trait. It makes for
clean, readable code.

Let’s now look at the code for the Version enum.

Version

The definition of Version enum is shown next. We will support two HTTP
versions just for illustration though we will be working only with HTTP/1.1
for our examples. There is also a third type - Uninitialized, to be used as
default initial value.

Add the following code to http/src/httprequest.rs:

#[derive(Debug, PartialEq)]

pub enum Version {

 V1_1,

 V2_0,

 Uninitialized,

}

The trait implementation for Version is similar to that for Method enum (to
be added to httprequest.rs).

impl From<&str> for Version {

 fn from(s: &str) -> Version {

 match s {

 "HTTP/1.1" => Version::V1_1,

 _ => Version::Uninitialized,

 }

 }

}

Implementing the from method in From trait enables us to read the HTTP
protocol version from the incoming HTTP request, and convert it into a
Version variant.

Let’s test if this method works. Add the following to http/src/httprequest.rs
inside the previously-added mod tests block (after the test_method_into()
function), and run the test from the workspace root with cargo test -p http :

 #[test]

 fn test_version_into() {

 let m: Version = "HTTP/1.1".into();

 assert_eq!(m, Version::V1_1);

 }

You will see the following message on your terminal:

running 2 tests

test httprequest::tests::test_method_into ... ok

test httprequest::tests::test_version_into ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Both the tests pass now. The string "HTTP/1.1" is converted into
Version::V1_1 variant using just the .into() syntax, which is the benefit of
implementing the From trait.

HttpRequest

This represents the complete HTTP request. The structure is shown in code
here. Add this code to the beginning of the file http/src/httprequest.rs.

Listing 2.6. Structure of HTTP request

use std::collections::HashMap;

#[derive(Debug, PartialEq)]

pub enum Resource {

 Path(String),

}

#[derive(Debug)]

pub struct HttpRequest {

 pub method: Method,

 pub version: Version,

 pub resource: Resource,

 pub headers: HashMap<String, String>,

 pub msg_body: String,

}

The From<&str> trait implementation for HttpRequest struct is at the core of
our exercise. What this enables us to do is to convert the incoming request
into a Rust HTTP Request data structure that is convenient to process further.

Figure 2.6 shows the structure of a typical HTTP request.

Figure 2.6. Structure of HTTP request

The figure shows a sample HTTP request consisting of a request line, a set of

one or more header lines followed by a blank line, and then an optional
message body. We’ll have to parse all these lines and convert them into our
HTTPRequest type. That is going to be the job of the from() function as part
of the From<&str> trait implementation.

The core logic for the From<&str> trait implementation is listed here:

1. Read each line in the incoming HTTP request. Each line is delimited by
CRLF (\r\n).

2. Evaluate each line as follows:

If the line is a request line (we are looking for the keyword HTTP
to check if it is a request line as all request lines contain HTTP
keyword and version number), extract the method, path and HTTP
version from the line.
If the line is a header line (identified by separator ':'), extract key
and value for the header item and add them to the list of headers for
request. Note there can be multiple header lines in an HTTP
request. To keep things simple, let’s make the assumption that the
key and value must be composed of printable ASCII characters
(i.e., characters that have values between 33 and 126 in base 10,
except colon).
If a line is empty (\n\r), then treat it as a separator line. No action is
needed in this case
If the message body is present, then scan and store it as String.

Add the following code to http/src/httprequest.rs.

Let’s look at the code in smaller chunks. First, here is the skeleton of the
code. Don’t type this in yet, this is just to show the structure of code.

impl From<String> for HttpRequest {

 fn from(req: String) -> Self {}

}

fn process_req_line(s: &str) -> (Method, Resource, Version) {}

fn process_header_line(s: &str) -> (String, String) {}

We have a from() method that we should implement for the From trait. There

are two other supporting functions for parsing request line and header lines
respectively.

Let’s first look at the from() method. Add the following to httprequest.rs.

Listing 2.7. Parsing incoming HTTP requests: from() method

impl From<String> for HttpRequest {

 fn from(req: String) -> Self {

 let mut parsed_method = Method::Uninitialized;

 let mut parsed_version = Version::V1_1;

 let mut parsed_resource = Resource::Path("".to_string());

 let mut parsed_headers = HashMap::new();

 let mut parsed_msg_body = "";

 // Read each line in the incoming HTTP request

 for line in req.lines() {

 // If the line read is request line, call function

 [CA]process_req_line()

 if line.contains("HTTP") {

 let (method, resource, version) = process_req_line(line);

 parsed_method = method;

 parsed_version = version;

 parsed_resource = resource;

 // If the line read is header line, call function

 [CA]process_header_line()

 } else if line.contains(":") {

 let (key, value) = process_header_line(line);

 parsed_headers.insert(key, value);

 // If it is blank line, do nothing

 } else if line.len() == 0 {

 // If none of these, treat it as message body

 } else {

 parsed_msg_body = line;

 }

 }

 // Parse the incoming HTTP request into HttpRequest struct

 HttpRequest {

 method: parsed_method,

 version: parsed_version,

 resource: parsed_resource,

 headers: parsed_headers,

 msg_body: parsed_msg_body.to_string(),

 }

 }

}

Based on the logic described earlier, we are trying to detect the various types
of lines in the incoming HTTP Request, and then constructing an
HTTPRequest struct with the parsed values. We’ll look at the two supporting
methods next.

Here is the code for processing the request line of the incoming request. Add
it to httprequest.rs, after the impl From<String> for HttpRequest {} block.

Listing 2.8. Parsing incoming HTTP requests: process_req_line() function

fn process_req_line(s: &str) -> (Method, Resource, Version) {

 // Parse the request line into individual chunks split by whitespaces.

 let mut words = s.split_whitespace();

 // Extract the HTTP method from first part of the request line

 let method = words.next().unwrap();

 // Extract the resource (URI/URL) from second part of the request line

 let resource = words.next().unwrap();

 // Extract the HTTP version from third part of the request line

 let version = words.next().unwrap();

 (

 method.into(),

 Resource::Path(resource.to_string()),

 version.into(),

)

}

And here is the code for parsing the header line. Add it to httprequest.rs after
process_req_line() function.

Listing 2.9. Parsing incoming HTTP requests: process_header_line() function

fn process_header_line(s: &str) -> (String, String) {

 // Parse the header line into words split by separator (':')

 let mut header_items = s.split(":");

 let mut key = String::from("");

 let mut value = String::from("");

 // Extract the key part of the header

 if let Some(k) = header_items.next() {

 key = k.to_string();

 }

 // Extract the value part of the header

 if let Some(v) = header_items.next() {

 value = v.to_string()

 }

 (key, value)

}

This completes the code for the From trait implementation for the
HTTPRequest struct.

Let’s write a unit test for the HTTP request parsing logic in
http/src/httprequest.rs, inside mod tests (tests module). Recall that we’ve
already written the test functions test_method_into() and test_version_into()
in the tests module. The tests module should look like this at this point in
httprequest.rs file:

#[cfg(test)]

mod tests {

 use super::*;

 #[test]

 fn test_method_into() {

 let m: Method = "GET".into();

 assert_eq!(m, Method::Get);

 }

 #[test]

 fn test_version_into() {

 let m: Version = "HTTP/1.1".into();

 assert_eq!(m, Version::V1_1);

 }

}

Now add another test function to the same tests module in the file, after the
test_version_into() function.

Listing 2.10. Test scripts for parsing HTTP requests

 #[test]

 fn test_read_http() {

 let s: String = String::from("GET /greeting HTTP/1.1\r\nHost:

 [CA]localhost:3000\r\nUser-Agent: curl/7.64.1\r\nAccept:

 [CA]*/*\r\n\r\n"); #1

 let mut headers_expected = HashMap::new(); #2

 headers_expected.insert("Host".into(), " localhost".into());

 headers_expected.insert("Accept".into(), " */*".into());

 headers_expected.insert("User-Agent".into(), " curl/7.64.1".into());

 let req: HttpRequest = s.into(); #3

 assert_eq!(Method::Get, req.method); #4

 assert_eq!(Version::V1_1, req.version); #5

 assert_eq!(Resource::Path("/greeting".to_string()), req.resource); #6

 assert_eq!(headers_expected, req.headers); #7

 }

Run the test with cargo test -p http from the workspace root folder.

You should see the following message indicating that all the three tests have
passed:

running 3 tests

test httprequest::tests::test_method_into ... ok

test httprequest::tests::test_version_into ... ok

test httprequest::tests::test_read_http ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

We have completed the code for HTTP request processing. This library is
able to parse an incoming HTTP GET or POST message, and convert it into a
Rust data struct.

Let’s now write the code to process HTTP responses.

2.2.2 Constructing HTTP response messages

Let’s define a struct HTTPResponse which will represent the HTTP Response
message within our program. We will also write a method to convert this
struct (serialize) into a well-formed HTTP message that can be understood by
an HTTP client (such as a web browser).

Let’s first recap the structure of an HTTP Response message. This will help
us define our struct.

Figure 2.7 shows the structure of a typical HTTP response.

Figure 2.7. Structure of HTTP response

First create a file http/src/httpresponse.rs, if not created earlier. Add
httpresponse to the module exports section of http/lib.rs, to look like this:

pub mod httprequest;

pub mod httpresponse;

Add the following code to http/src/httpresponse.rs.

Listing 2.11. Structure of HTTP response

use std::collections::HashMap;

use std::io::{Result, Write};

#[derive(Debug, PartialEq, Clone)]

pub struct HttpResponse<'a> {

 version: &'a str,

 status_code: &'a str,

 status_text: &'a str,

 headers: Option<HashMap<&'a str, &'a str>>,

 body: Option<String>,

}

The HttpResponse struct contains a protocol version, status code, status
description, a list of optional headers and an optional body. Note the use of
lifetime annotation 'a for all the member fields that are of reference types.

Lifetimes in Rust

In Rust, every reference has a lifetime, which is the scope for which the
reference is valid. Lifetimes in Rust are an important feature aimed at
preventing dangling pointers and use-after-free errors that are common in
languages with manually-managed memory (such as C/C++). The Rust
compiler either infers (if not specified) or uses (if specified) the lifetime
annotation of a reference to verify that a reference does not outlive the
underlying value it points to.

Also note the use of #[derive] annotation for traits Debug, PartialEq and
Clone. These are called derivable traits, because we are asking the compiler
to derive the implementation of these traits for our HttpResponse struct. By
implementing these traits, our struct acquires the ability to be printed out for
debugging purposes, can have its member values compared with other values,
and have itself cloned.

The list of methods that we will implement for the HttpResponse struct is
shown here:

1. Default trait implementation: We earlier auto-derived a few traits
using #[derive] annotation. We’ll now manually implement the Default
trait. This lets us specify default values for the struct members.

2. Method new(): This method creates a new struct with default values for
its members.

3. Method send_response(): This method serializes the contents of the
Http struct into a valid HTTP response message for on-the-wire
transmission, and sends the raw bytes over the TCP connection.

4. Getter methods: We’ll also implement a set of getter methods for
version, status_code, status_text, headers and body, which are the

member fields of the struct HttpResponse.
5. From trait implementation: Lastly, we will implement the From trait

that helps us convert HttpResponse struct into a String type representing
a valid HTTP response message.

Let’s add the code for all these under http/src/httpresponse.rs.

Default trait implementation

We’ll start with the Default trait implementation for HttpResponse struct.

Listing 2.12. Default trait implementation for HTTP response

impl<'a> Default for HttpResponse<'a> {

 fn default() -> Self {

 Self {

 version: "HTTP/1.1".into(),

 status_code: "200".into(),

 status_text: "OK".into(),

 headers: None,

 body: None,

 }

 }

}

Implementing Default trait allows us to do the following to create a new
struct with default values:

let mut response: HttpResponse<'a> = HttpResponse::default();

new() method implementation

The new() method accepts a few parameters , sets the default for the others
and returns a HttpResponse struct. Add the following code under impl block
of HttpResponse struct. As this struct has a reference type for one of its
members, the impl block declaration has to also specify a lifetime parameter
(shown here as 'a).

Listing 2.13. new() method for HttpResponse (httpresponse.rs)

impl<'a> HttpResponse<'a> {

 pub fn new(

 status_code: &'a str,

 headers: Option<HashMap<&'a str, &'a str>>,

 body: Option<String>,

) -> HttpResponse<'a> {

 let mut response: HttpResponse<'a> = HttpResponse::default();

 if status_code != "200" {

 response.status_code = status_code.into();

 };

 response.headers = match &headers {

 Some(_h) => headers,

 None => {

 let mut h = HashMap::new();

 h.insert("Content-Type", "text/html");

 Some(h)

 }

 };

 response.status_text = match response.status_code {

 "200" => "OK".into(),

 "400" => "Bad Request".into(),

 "404" => "Not Found".into(),

 "500" => "Internal Server Error".into(),

 _ => "Not Found".into(),

 };

 response.body = body;

 response

 }

}

The new() method starts by constructing a struct with default parameters. The
values passed as parameters are then evaluated and incorporated into the
struct.

send_response() method

The send_response() method is used to convert the HttpResponse struct into a
String, and transmit it over the TCP connection. This can be added within the
impl block, after the new() method in httpresponse.rs.

impl<'a> HttpResponse<'a> {

 // new() method not shown here

 pub fn send_response(&self, write_stream: &mut impl Write) ->

 [CA]Result<()> {

 let res = self.clone();

 let response_string: String = String::from(res);

 let _ = write!(write_stream, "{}", response_string);

 Ok(())

 }

}

This method accepts a TCP Stream (that implements a Write trait) as input,
and writes the well-formed HTTP Response message to the stream.

Getter methods for HTTP response struct

Let’s write getter methods for each of the members of the struct. We need
these to construct the HTML response message in httpresponse.rs.

Listing 2.14. Getter methods for HttpResponse

impl<'a> HttpResponse<'a> {

 fn version(&self) -> &str {

 self.version

 }

 fn status_code(&self) -> &str {

 self.status_code

 }

 fn status_text(&self) -> &str {

 self.status_text

 }

 fn headers(&self) -> String {

 let map: HashMap<&str, &str> = self.headers.clone().unwrap();

 let mut header_string: String = "".into();

 for (k, v) in map.iter() {

 header_string = format!("{}{}:{}\r\n", header_string, k, v);

 }

 header_string

 }

 pub fn body(&self) -> &str {

 match &self.body {

 Some(b) => b.as_str(),

 None => "",

 }

 }

}

The getter methods allow us to convert the data members into string types.

From trait

Lastly, let’s implement the method that will be used to convert (serialize)
HTTPResponse struct into an HTTP response message string, in
httpresponse.rs.

Listing 2.15. Code to serialize Rust struct into HTTP Response message

impl<'a> From<HttpResponse<'a>> for String {

 fn from(res: HttpResponse) -> String {

 let res1 = res.clone();

 format!(

 "{} {} {}\r\n{}Content-Length: {}\r\n\r\n{}",

 &res1.version(),

 &res1.status_code(),

 &res1.status_text(),

 &res1.headers(),

 &res.body.unwrap().len(),

 &res1.body()

)

 }

}

Note the use of \r\n in format string. This is used to insert a new line
character. Recall that the HTTP response message consists of the following
sequence: status line, headers, blank line and optional message body.

Let’s write a few unit tests. Create a test module block as shown and add
each test to this block. Don’t type this in yet, this is just to show the structure
of test code.

#[cfg(test)]

mod tests {

 use super::*;

 // Add unit tests here. Each test needs to have a #[test] annotation

}

We’ll first check for construction of HTTP response struct for message with
status code of 200 (Success).

Add the following to httpresponse.rs towards the end of the file.

Listing 2.16. Test script for HTTP success (200) message

#[cfg(test)]

mod tests {

 use super::*;

#[test]

 fn test_response_struct_creation_200() {

 let response_actual = HttpResponse::new(

 "200",

 None,

 Some("Item was shipped on 21st Dec 2020".into()),

);

 let response_expected = HttpResponse {

 version: "HTTP/1.1",

 status_code: "200",

 status_text: "OK",

 headers: {

 let mut h = HashMap::new();

 h.insert("Content-Type", "text/html");

 Some(h)

 },

 body: Some("Item was shipped on 21st Dec 2020".into()),

 };

 assert_eq!(response_actual, response_expected);

 }

}

We’ll test one for 404 (page not found) HTTP message. Add the following
test case within the mod tests {} block, after the test function
test_response_struct_creation_200():

Listing 2.17. Test script for 404 message

 #[test]

 fn test_response_struct_creation_404() {

 let response_actual = HttpResponse::new(

 "404",

 None,

 Some("Item was shipped on 21st Dec 2020".into()),

);

 let response_expected = HttpResponse {

 version: "HTTP/1.1",

 status_code: "404",

 status_text: "Not Found",

 headers: {

 let mut h = HashMap::new();

 h.insert("Content-Type", "text/html");

 Some(h)

 },

 body: Some("Item was shipped on 21st Dec 2020".into()),

 };

 assert_eq!(response_actual, response_expected);

 }

Lastly, we’ll check if the HTTP response struct is being serialized correctly
into an on-the-wire HTTP response message in the right format. Add the
following test within the mod tests {} block, after the test function
test_response_struct_creation_404().

Listing 2.18. Test script to check for well-formed HTTP response message

 #[test]

 fn test_http_response_creation() {

 let response_expected = HttpResponse {

 version: "HTTP/1.1",

 status_code: "404",

 status_text: "Not Found",

 headers: {

 let mut h = HashMap::new();

 h.insert("Content-Type", "text/html");

 Some(h)

 },

 body: Some("Item was shipped on 21st Dec 2020".into()),

 };

 let http_string: String = response_expected.into();

 let response_actual = "HTTP/1.1 404 Not Found\r\nContent-Type:

 [CA]text/html\r\nContent-Length: 33\r\n\r\nItem was

 [CA]shipped on 21st Dec 2020";

 assert_eq!(http_string, response_actual);

 }

Let’s run the tests now. Run the following from the workspace root:

cargo test -p http

You should see the following message showing that 6 tests have passed in the
http module. Note this includes tests for both HTTP request and HTTP

response modules.

running 6 tests

test httprequest::tests::test_method_into ... ok

test httprequest::tests::test_version_into ... ok

test httpresponse::tests::test_http_response_creation ... ok

test httpresponse::tests::test_response_struct_creation_200 ... ok

test httprequest::tests::test_read_http ... ok

test httpresponse::tests::test_response_struct_creation_404 ... ok

test result: ok. 6 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

If the test fails, check for any typos or misalignment in the code (if you had
copy pasted it). In particular re-check the following string literal (which is
quite long and prone to mistakes):

"HTTP/1.1 404 Not Found\r\nContent-Type:text/html\r\nContent-Length:

[CA]33\r\n\r\nItem was shipped on 21st Dec 2020";

If you are still having trouble executing the tests, refer back to the git repo.

This completes the code for the http library. Let’s recall the design of the http
server, shown again in figure 2.8.

Figure 2.8. Web server message flow

We’ve written the http library. Let’s write the main() function, server, router
and handler. We will have to switch from http project to httpserver project
directory from here on, to write code.

In order to refer to the http library from httpserver project, add the following
to the Cargo.toml of the latter.

[dependencies]

http = {path = "../http"}

2.2.3 Writing the main() function and server module

Let’s take a top-down approach. We’ll start with the main() function in
httpserver/src/main.rs:

Listing 2.19. main() function

mod handler;

mod server;

mod router;

use server::Server;

fn main() {

 // Start a server

 let server = Server::new("localhost:3000");

 //Run the server

 server.run();

}

The main function imports three modules - handler , server and router.

Next, create three files - handler.rs, server.rs and router.rs under
httpserver/src.

Server module

Let’s write the code for the server module in httpserver/src/server.rs.

Listing 2.20. Server module

use super::router::Router;

use http::httprequest::HttpRequest;

use std::io::prelude::*;

use std::net::TcpListener;

use std::str;

pub struct Server<'a> {

 socket_addr: &'a str,

}

impl<'a> Server<'a> {

 pub fn new(socket_addr: &'a str) -> Self {

 Server { socket_addr }

 }

 pub fn run(&self) {

 // Start a server listening on socket address

 let connection_listener = TcpListener::bind(

 [CA]self.socket_addr).unwrap();

 println!("Running on {}", self.socket_addr);

 // Listen to incoming connections in a loop

 for stream in connection_listener.incoming() {

 let mut stream = stream.unwrap();

 println!("Connection established");

 let mut read_buffer = [0; 90];

 stream.read(&mut read_buffer).unwrap();

 // Convert HTTP request to Rust data structure

 let req: HttpRequest = String::from_utf8(

 [CA]read_buffer.to_vec()).unwrap().into();

 // Route request to appropriate handler

 Router::route(req, &mut stream);

 }

 }

}

The server module has two methods:

new() accepts a socket address (host and port), and returns a Server instance.
run() method performs the following:

binds on the socket,
listens to incoming connections,
reads a byte stream on a valid connection,
converts the stream into an HttpRequest struct instance
Passes the request to Router for further processing

2.2.4 Writing the router and handler modules

The router module inspects the incoming HTTP request and determines the
right handler to route the request to, for processing. Add the following code
to httpserver/src/router.rs.

Listing 2.21. Router module

use super::handler::{Handler, PageNotFoundHandler, StaticPageHandler,

[CA]WebServiceHandler};

use http::{httprequest, httprequest::HttpRequest,

[CA]httpresponse::HttpResponse};

use std::io::prelude::*;

pub struct Router;

impl Router {

 pub fn route(req: HttpRequest, stream: &mut impl Write) -> () {

 match req.method {

 // If GET request

 httprequest::Method::Get => match &req.resource {

 httprequest::Resource::Path(s) => {

 // Parse the URI

 let route: Vec<&str> = s.split("/").collect();

 match route[1] {

 // if the route begins with /api, invoke Web service

 "api" => {

 let resp: HttpResponse =

 [CA]WebServiceHandler::handle(&req);

 let _ = resp.send_response(stream);

 }

 // Else, invoke static page handler

 _ => {

 let resp: HttpResponse =

 [CA]StaticPageHandler::handle(&req);

 let _ = resp.send_response(stream);

 }

 }

 }

 },

 // If method is not GET request, return 404 page

 _ => {

 let resp: HttpResponse = PageNotFoundHandler::handle(&req);

 let _ = resp.send_response(stream);

 }

 }

 }

}

The Router checks if the incoming method is a GET request. If so, it
performs checks in the following order:

If the GET request route begins with /api, it routes the request to the
WebServiceHandler
If the GET request is for any other resource, it assumes the request is for
a static page and routes the request to the StaticPageHandler
If it is not a GET request, it sends back a 404 error page

Let’s look at the Handler module next.

Handlers

For the handler modules, let’s add a couple of external crates to handle json
serialization and deserialization - serde and serde_json. The Cargo.toml file
for httpserver project would look like this:

[dependencies]

http = {path = "../http"}

serde = {version = "1.0.117",features = ["derive"]}

serde_json = "1.0.59"

Add the following code to httpserver/src/handler.rs.

Let’s start with module imports:

use http::{httprequest::HttpRequest, httpresponse::HttpResponse};

use serde::{Deserialize, Serialize};

use std::collections::HashMap;

use std::env;

use std::fs;

Let’s define a trait called Handler as shown:

Listing 2.22. Trait Handler definition

pub trait Handler {

 fn handle(req: &HttpRequest) -> HttpResponse;

 fn load_file(file_name: &str) -> Option<String> {

 let default_path = format!("{}/public", env!("CARGO_MANIFEST_DIR"));

 let public_path = env::var("PUBLIC_PATH").unwrap_or(default_path);

 let full_path = format!("{}/{}", public_path, file_name);

 let contents = fs::read_to_string(full_path);

 contents.ok()

 }

}

Note that the trait Handler contains two methods:

handle(): This method has to be implemented for any other user data

type to implement the trait.
load_file() : This method is to load a file (non-json) from public
directory in httpserver root folder. The implementation is already
provided as part of trait definition.

We’ll now define the following data structures:

StaticPageHandler - to serve static web pages,
WebServiceHandler - to serve json data
PageNotFoundHandler - to serve 404 page
OrderStatus - struct used to load data read from json file

Add the following code to httpserver/src/handler.rs.

Listing 2.23. Data structures for handler

#[derive(Serialize, Deserialize)]

pub struct OrderStatus {

 order_id: i32,

 order_date: String,

 order_status: String,

}

pub struct StaticPageHandler;

pub struct PageNotFoundHandler;

pub struct WebServiceHandler;

Let’s implement the Handler trait for the three handler structs. Let’s start
with the PageNotFoundHandler.

impl Handler for PageNotFoundHandler {

 fn handle(_req: &HttpRequest) -> HttpResponse {

 HttpResponse::new("404", None, Self::load_file("404.html"))

 }

}

If the handle method on PageNotFoundHandler struct is invoked, it would
return a new HttpResponse struct instance with status code:404, and body
containing some html loaded from file 404.html.

Here is the code for StaticPageHandler.

Listing 2.24. Handler to serve static web pages

impl Handler for StaticPageHandler {

 fn handle(req: &HttpRequest) -> HttpResponse {

 // Get the path of static page resource being requested

 let http::httprequest::Resource::Path(s) = &req.resource;

 // Parse the URI

 let route: Vec<&str> = s.split("/").collect();

 match route[1] {

 "" => HttpResponse::new("200", None,

 [CA]Self::load_file("index.html")),

 "health" => HttpResponse::new("200", None,

 [CA]Self::load_file("health.html")),

 path => match Self::load_file(path) {

 Some(contents) => {

 let mut map: HashMap<&str, &str> = HashMap::new();

 if path.ends_with(".css") {

 map.insert("Content-Type", "text/css");

 } else if path.ends_with(".js") {

 map.insert("Content-Type", "text/javascript");

 } else {

 map.insert("Content-Type", "text/html");

 }

 HttpResponse::new("200", Some(map), Some(contents))

 }

 None => HttpResponse::new("404", None,

 [CA]Self::load_file("404.html")),

 },

 }

 }

}

If the handle() method is called on the StaticPageHandler, the following
processing is performed:

If incoming request is for localhost:3000/, the contents from file
index.html is loaded and a new HttpResponse struct is constructed
If incoming request is for localhost:3000/health, the contents from file
health.html is loaded, and a new HttpResponse struct is constructed
If the incoming request is for any other file, the method tries to locate
and load that file in the httpserver/public folder. If a file is not found, it

sends back a 404 error page. If the file is found, the contents are loaded
and embedded within an HttpResponse struct. Note that the Content-
Type header in HTTP Response message is set according to the type of
file.

Let’s look at the last part of the code - WebServiceHandler.

Listing 2.25. Handler to serve json data

impl WebServiceHandler {

 fn load_json() -> Vec<OrderStatus> { #1

 let default_path = format!("{}/data", env!("CARGO_MANIFEST_DIR"));

 let data_path = env::var("DATA_PATH").unwrap_or(default_path);

 let full_path = format!("{}/{}", data_path, "orders.json");

 let json_contents = fs::read_to_string(full_path);

 let orders: Vec<OrderStatus> =

 serde_json::from_str(json_contents.unwrap().as_str()).unwrap();

 orders

 }

}

// Implement the Handler trait

impl Handler for WebServiceHandler {

 fn handle(req: &HttpRequest) -> HttpResponse {

 let http::httprequest::Resource::Path(s) = &req.resource;

 // Parse the URI

 let route: Vec<&str> = s.split("/").collect();

 // if route if /api/shipping/orders, return json

 match route[2] {

 "shipping" if route.len() > 2 && route[3] == "orders" => {

 let body = Some(serde_json::to_string(

 [CA]&Self::load_json()).unwrap());

 let mut headers: HashMap<&str, &str> = HashMap::new();

 headers.insert("Content-Type", "application/json");

 HttpResponse::new("200", Some(headers), body)

 }

 _ => HttpResponse::new("404", None, Self::load_file("404.html")),

 }

 }

}

If handle() method is called on the WebServiceHandler struct, the following
processing is done:

If the GET request is for localhost:3000/api/shipping/orders, the json
file with orders is loaded, and this is serialized into json, which is
returned as part of the body of the response.
If it is any other route, a 404 error page is returned.

We’re done with the code. We now have to create the html and json files, in
order to test the web server.

2.2.5 Testing the web server

In this section, we’ll first create the test web pages and json data. We’ll then
test the web server for various scenarios and analyse the results.

Create two subfolders data and public under httpserver root folder. Under
public folder, create four files - index.html, health.html, 404.html, styles.css.
Under the data folder, create the following file - orders.json.

The indicative contents are shown here. You can alter them as per your
preference.

httpserver/public/index.html

Listing 2.26. Index web page

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 <link rel="stylesheet" href="styles.css">

 <title>Index!</title>

 </head>

 <body>

 <h1>Hello, welcome to home page</h1>

 <p>This is the index page for the web site</p>

 </body>

</html>

httpserver/public/styles.css

h1 {

 color: red;

 margin-left: 25px;

}

httpserver/public/health.html

Listing 2.27. Health web page

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 <title>Health!</title>

 </head>

 <body>

 <h1>Hello welcome to health page!</h1>

 <p>This site is perfectly fine</p>

 </body>

</html>

httpserver/public/404.html

<!DOCTYPE html>

 <html lang="en">

<head>

<meta charset="utf-8" /> <title>Not Found!</title>

 </head>

 <body>

 <h1>404 Error</h1>

 <p>Sorry the requested page does not exist</p>

 </body>

</html>

httpserver/data/orders.json

Listing 2.28. Json data file for orders

[

 {

 "order_id": 1,

 "order_date": "21 Jan 2020",

 "order_status": "Delivered"

 },

 {

 "order_id": 2,

 "order_date": "2 Feb 2020",

 "order_status": "Pending"

 }

]

We’re ready to run the server now.

Run the web server from the workspace root as shown:

cargo run -p httpserver

Then from either a browser window or using curl tool, test the following
URLs:

localhost:3000/

localhost:3000/health

localhost:3000/api/shipping/orders

localhost:3000/invalid-path

You’ll notice that if you invoke these commands on the browser, for the first
URL you should see the heading in red font. Go to network tab in chrome
browser (or equivalent dev tools on other browsers) and view the files
downloaded by browser. You’ll see that in addition to the index.html file, the
styles.css is also automatically downloaded by the browser which results in
the styling applied to the index page. If you inspect further, you can see that
Content-Type of text/css has been sent for the css file and text/html has been
send for the HTML file, from our web server to the browser.

Likewise, if you inspect the response content-type sent for
/api/shipping/orders path, you will see application/json received by the
browser as part of response headers.

This concludes the section on building a web server.

In this section, we have written an HTTP server and a library of http
messages that can serve static pages, as well as serve json data. While the
former capability is associated with the term web server, the latter is where
we start to see web service capabilities. Our httpserver project functions as
both a static web server as well as a web service serving json data. Of course,
a regular web service would serve more methods than just GET requests. But
this exercise was intended to demonstrate capabilities of Rust to build such a

web server and web service from scratch, without using any web frameworks
or external http libraries.

I hope you enjoyed following along the code, and got to a working server. If
you have any difficulties, you can refer back to the code repository for
chapter 2.

This brings an end to the two core objectives of the chapter, viz to build a
TCP server/client and to build an HTTP server.

The complete code for this chapter can be found at
git.manning.com/agileauthor/eshwarla/-/tree/master/code.

2.3 Summary

The TCP/IP model is a simplified set of standards and protocols for
communication over the internet. It is organized into four abstract
layers: Network Access layer, Internet Layer, Transport Layer and the
Application layer. TCP is the transport-layer protocol over which other
application-level protocols such as HTTP operate. We built a server and
client that exchanged data using the TCP protocol.
TCP is also a stream-oriented protocol where data is exchanged as a
continuous stream of bytes.
We built a basic TCP server and client using the Rust standard library.
TCP does not understand the semantics of messages such as HTTP. Our
TCP client and server simply exchanged a stream of bytes without any
understanding of the semantics of data transmitted.
HTTP is an application layer protocol and is the foundation for most
web services. HTTP uses TCP in most cases as the transport protocol.
We built an HTTP library to parse incoming HTTP requests and
construct HTTP responses. The HTTP requests and responses were
modeled using Rust structs and enums.
We built an HTTP server that serves two types of content - static web
pages (with associated files such as stylesheets), and json data.
Our web server can accept requests and send responses to standard
HTTP clients such as browsers and curl tool.
We added additional behaviour to our custom structs by implementing

several traits. Some of them were auto-derived using Rust annotations,
and others were hand-coded. We also made use of lifetime annotations
to specify lifetimes of references within structs.

You now have the foundational knowledge to understand how Rust can be
used to develop a low-level HTTP library and web server, and also
beginnings of a web service. In the next chapter we will dive right into
developing web services using a production-ready web framework that is
written in Rust.

3 Building a RESTful Web Service
This chapter covers

Getting started with Actix
Writing a RESTful web service

In this chapter, we will build our first real web service.

The web service will expose a set of APIs over HTTP, and will use the
Representational State Transfer (REST) architectural style.

We’ll build the web service using Actix, a lightweight web framework
written in Rust, which is also one of the most mature in terms of code
activity, adoption and ecosystem. We will warm-up by writing introductory
code in Actix to understand its foundational concepts and structure. Later, we
will design and build a set of REST APIs using an in-memory data store that
is thread-safe.

The complete code for this chapter can be found at
git.manning.com/agileauthor/eshwarla/-/tree/master/code.

Let’s get started.

Why Actix?

This book is about developing high performance web services and
applications in Rust. The web frameworks considered while writing this book
were Actix, Rocket, Warp and Tide. While Warp and Tide are relatively
newer, Actix and Rocket lead the pack in terms of adoption and level of
activity. Actix was chosen over Rocket as Rocket does not yet have native
async support, and async support is a key factor to improve performance in
I/O-heavy workloads (such as web service apis) at scale.

3.1 Getting started with Actix

In this book, you are going to build a digital storefront aimed at tutors.

Let’s call our digital platform EzyTutors, because we want tutors to easily
publish their training catalogs online, which can trigger the interest of
learners and generate sales.

To kickstart this journey, we’ll build a set of simple APIs that allow tutors to
create a course and learners to retrieve courses for a tutor.

This section is organised into two parts. In the first section, we will build a
basic async HTTP server using Actix that demonstrates a simple health-check
API. This will help you understand the foundational concepts of Actix. In the
second section, we will design and build REST APIs for the tutor web
service. We will rely on an in-memory data store (rather than a database) and
use test-driven development. Along the way, you will be introduced to key
Actix concepts such as routes, handlers, HTTP request parameters and HTTP
responses.

Let’s write some code, shall we?

3.1.1 Writing the first REST API

In this section we’ll write our first Actix server, which can respond to an
HTTP request.

A note about the environment

There are many ways to organize code that you will be building out over the
course of this book.

The first option is to create a workspace project (similar to the one we created
in Chapter 2), and create separate projects under the workspace, one per
chapter.

The second option is to create a separate cargo binary project for each
chapter. Grouping options for deployment can be determined at a later time.

Either approach is fine, but in this book, we will adopt the first approach to

keep things organised together. We’ll create a workspace project - ezytutors
which will hold other projects.

Create a new project with

cargo new ezytutors && cd ezytutors

This will create a binary cargo project. Let’s convert this into a workspace
project. Under this workspace, let’s store the web service and web
applications that we will build in future chapters.

Add the following to Cargo.toml:

[workspace]

members = ["tutor-nodb"]

tutor-nodb will be the name of the webservice we will be creating in this
chapter. Create another cargo project as follows:

cargo new tutor-nodb && cd tutor-nodb

This will create a binary Rust project called tutor-nodb under the ezytutors
workspace. For convenience, we will call this tutor web service henceforth.
The root folder of this cargo project contains src subfolder and Cargo.toml
file.

Add the following dependencies in Cargo.toml of course web service:

[dependencies]

actix-web = "4.2.1" #1

actix-rt = "2.7.0" #2

Add the following binary declaration to the same Cargo.toml file, to specify
the name of the binary file.

[[bin]]

name = "basic-server"

Let’s now create a source file called basic-server.rs under the tutor-
nodb/src/bin folder. This will contain the main() function which is the entry
point for the binary.

There are four basic steps to create and start a basic HTTP server in Actix:

Configure routes: Routes are paths to various resources in a web server.
For our example, we will configure a route /health to do health checks
on the server.
Configure handler: Handler is the function that processes requests for a
route. We will define a health-check handler to service the /health route.
Construct a web application and register routes and handlers with the
application.
Construct an HTTP server linked to the web application and run the
server.

These four steps are shown in the code with annotations. Add the following
code to src/bin/basic-server.rs. Don’t worry if you don’t understand all the
steps and code, just type it in for now, and they will be explained in detail
later.

Note: I would highly recommend that you type in the code line-by-line rather
than copy and paste it into your editor. This will provide a better return on
your investment of time in learning, as you will be practising rather than just
reading.

Listing 3.1. Writing a basic Actix web server

// Module imports

use actix_web::{web, App, HttpResponse, HttpServer, Responder};

use std::io;

// Configure route #1

pub fn general_routes(cfg: &mut web::ServiceConfig) {

 cfg.route("/health", web::get().to(health_check_handler));

}

//Configure handler #2

pub async fn health_check_handler() -> impl Responder {

 HttpResponse::Ok().json("Hello. EzyTutors is alive and kicking")

}

// Instantiate and run the HTTP server

#[actix_rt::main]

async fn main() -> io::Result<()> {

 // Construct app and configure routes #3

 let app = move || App::new().configure(general_routes);

 // Start HTTP server #4

 HttpServer::new(app).bind("127.0.0.1:3000")?.run().await

}

You can run the server in one of two ways.

If you are in the ezytutors workspace folder root, run the following command:

cargo run -p tutor-nodb --bin basic-server

The -p flag tells cargo tool to build and run the binary for project tutor-nodb,
within the workspace.

Alternatively, you can run the command from within the tutor-nodb folder as
follows:

cargo run --bin basic-server

In a web browser window, visit the following URL:

localhost:3000/health

You will see the following printed:

Hello, EzyTutors is alive and kicking

Congratulations! You have built your first REST API in Actix.

3.1.2 Understanding Actix concepts

In the previous section, we wrote a basic Actix web server (aka Actix HTTP
server). The server was configured to run a web application with a single
route /health which returns the health status of the web application service.
Figure 3.1 shows the various components of Actix that we used in the code.

Figure 3.1. Actix Basic server

Here is the sequence of steps:

1. When you typed localhost:3000/health in your browser, an HTTP GET
request message was constructed by the browser, and sent to the Actix
basic-server listening at localhost:3000 port.

2. The Actix basic-server inspected the GET request and determined the
route in the message to be /health. The basic server then routed the
request to the web application (App) that has the /health route defined.

3. The web application in turn determined the handler for the route /health
to be health_check_handler() and routed the message to the handler.

4. The health_check_handler() constructs an HTTP response with a text
message and sends it back to the browser.

You would have noticed the terms HTTP server, Web Application, Route and
Handler used prominently. These are key concepts within Actix to build web
services. Recall that we used the terms server, route and handler also in

chapter 2. Conceptually, these are similar. But let us understand them in more
detail in the context of Actix.

HTTP (web) Server: It is responsible for serving HTTP requests. It
understands and implements the HTTP protocol. By default, the HTTP server
starts a number of threads (called workers) to process incoming requests.

Actix concurrency

Actix supports two levels of concurrency. It supports asynchronous I/O
wherein a given os-native thread performs other tasks while waiting on I/O
(such as listening for network connections). It also supports multi-threading
for parallelism, and starts a number of OS-native threads (called workers)
equal to the number of logical CPUs in the system, by default.

Actix HTTP server is built around the concept of web applications and
requires one for initialization. It constructs an application instance per OS
thread.

App: This represents an Actix web application. An Actix web application is a
grouping of the set of routes it can handle.

Routes and handlers A route in Actix tells the Actix web server how to
process an incoming request.

A route is defined in terms of a route path, an HTTP method and a handler
function. Said differently, a request handler is registered with an application’s
route on a path for a particular HTTP method. The structure of an Actix route
is illustrated in figure here.

Figure 3.2. Structure of Actix route

This is the route we implemented earlier for health check:

cfg.route(

 "/health", #1

 web::get() #2

 .to(health_check_handler)); #3

The route shown above specifies that if a GET HTTP request arrives for the
path /health, the request should be routed to the request handler method
health_check_handler().

A request handler is an asynchronous method that accepts zero or more
parameters and returns an HTTP response.

The following is a request handler that we implemented in the previous
example.

pub async fn health_check_handler() -> impl Responder {

 HttpResponse::Ok().json("Hello, EzyTutors is alive and kicking")

}

In code shown, health_check_handler() is a function that implements
Responder trait. Types that implement Responder trait acquire the capability
to send HTTP responses. Note that our handler does not accept any input
parameter, but it is possible to send data along with HTTP requests from the
client, that will be made available to handlers. We’ll see such an example in
the next section.

More about Actix-web

Listed here are a few more details about the Actix web framework.

Actix-web is a modern, rust-based, light-weight and fast web framework.
Actix-web has consistently featured among the best web frameworks in
TechEmpower performance benchmarks, which can be found here:
www.techempower.com/benchmarks/. Actix-web is among the most mature
Rust web frameworks and supports several features as listed here:

Support for HTTP/1.x and HTTP/2
Support for request and response pre-processing

Middleware can be configured for features such as CORS, session
management, logging, and authentication
It supports asynchronous I/O. This provides the ability for the Actix
server to perform other activities while waiting on network I/O.
Content compression
Can connect to multiple databases
Provides an additional layer of testing utilities (over the Rust testing
framework) to support testing of HTTP requests and responses
Supports static web page hosting and server-rendered templates

More technical details about the Actix web framework can be found here:
docs.rs/crate/actix-web/2.0.0

Using a framework like Actix-Web significantly speeds up the time for
prototyping and development of web APIs in Rust, as it takes care of the low-
level details of dealing with HTTP protocols and messages, and provides
several utility functions and features to make web application development
easier.

While Actix-web has an extensive feature set, we’ll be able to cover only a
subset of the features in this book. The features that we’ll cover include
HTTP methods that provide CRUD (Create-Read-Update-Delete)
functionality for resources, persistence with databases, error handling, state
management, JWT authentication, and configuring middleware.

In this section, we built a basic Actix web service exposing a health check
API, and reviewed key features of the Actix framework. In the next section,
we will build the web service for the EzyTutors social network.

3.2 Building web APIs with REST

This section will take you through the typical steps in developing a RESTful
web service with Actix.

A web service is a network-oriented service. Network-oriented services
communicate through messages over a network. Web services use HTTP as
the primary protocol for exchanging messages. There are several architectural

styles that can be used to develop web services such as SOAP/XML,
REST/HTTP and gRPC/HTTP. In this chapter we will use the REST
architectural style.

REST APIs

REST stands for Representational State transfer. It is a term used to visualize
web services as a network of resources each having its own state. Users
trigger operations such as GET, PUT , POST or DELETE on resources
identified by URIs (for example, www.google.com/search?
q=weather%20berlin can be used to get the current weather at Berlin).
Resources are application entities such as users, shipments, courses etc.
Operations on resources such as POST and PUT can result in state changes in
the resources. The latest state is returned to the client making the request.

REST architecture defines a set of properties (called constraints) that a web
service must adopt, and are listed below:

Client-server architecture for separation of concerns, so client and
server are decoupled and can evolve independently.
Statelessness: Stateless means there is no client context stored on the
server between consecutive requests from the same client.
Layered system: Allows the presence of intermediaries such as load
balancers and proxies between the client and the server.
Cacheability: Supports caching of server responses by clients to improve
performance.
Uniform interface: Defines uniform ways to address and manipulate
resources, and to standardize messages.
Well defined state changes: For example, GET requests do not result in
state change, but POST, PUT and DELETE messages do.

Note that REST is not a formal standard, but an architectural style. So, there
may be variations in the way RESTful services are implemented.

A web service that exposes APIs using the REST architectural style is called
a RESTful web service. We’ll build a RESTful web service in this section for
our EzyTutors digital storefront. We’ve chosen the RESTful style for the
APIs because they are intuitive, widely used, and suited for external-facing

APIs (as opposed to say, gRPC which is more suited to APIs between
internal services).

The core functionality of our web service in this chapter will be to allow
posting of a new course, retrieving course list for a tutor, and retrieving
details for an individual course. Our initial data model will contain just one
resource: course. But before getting to the data model, let’s finalize the
structure of the project and code organization, and also determine how to
store this data in memory in a way that is safely accessible across multiple
Actix worker threads.

3.2.1 Define project scope and structure

In this section, let’s define the scope of what we’ll be building, and how code
will be organised within the project.

We will build three RESTful APIs for the tutor web service. These APIs will
be registered on an Actix web application, which in turn will be deployed on
the Actix HttpServer.

The APIs are designed to be invoked from a web front-end or mobile
application. We’ll test the GET API requests using a standard browser, and
the POST request using curl, a command-line HTTP client (you can also use
a tool like Postman, if you prefer).

We’ll use an in-memory data structure to store courses, instead of a database.
This is just for simplicity. A relational database will be added in the next
chapter.

Figure 3.3 shows the various components of the Web service that we’ll be
building.

Figure 3.3. Components of the web service

Figure 3.3 shows how the HTTP requests from web and mobile clients are
handled by the web service. Recall a similar figure we saw for the basic-
server in the previous section. Here is the sequence of steps in the request and
response message flow:

1. The HTTP requests are constructed by web or mobile clients and sent to
the domain address and port number where the Actix web server is
listening.

2. The Actix web server routes the request to the Actix web app.
3. The actix web app has been configured with the routes for the three

APIs. It inspects the route configuration, determines the right handler for
the specified route, and forwards the request to the handler function.

4. The request handlers parse the request parameters, read or write to the
in-memory data store, and return an HTTP response. Any errors in
processing are also returned as HTTP responses with the appropriate

status codes.

This, in brief, is how a request-response flow works in Actix web.

Here is a closer look at the APIs that we will build:

1. POST /courses: Create a new course and save it in the webservice.
2. GET /courses/tutor_id: Get a list of courses offered by a tutor
3. GET /courses/tutor_id/course_id: Get course details

We have reviewed the scope of the project. We can now take a look at how
the code will be organised. Figure 3.4 shows the code structure.

Figure 3.4. Project structure of EzyTutors web service

Here is the structure of the project:

1. bin/tutor-service.rs Contains the main() function
2. models.rs Contains the data model for the web service

3. state.rs Application state is defined here
4. routes.rs Contains the route definitions
5. handlers.rs Contains handler functions that respond to HTTP requests
6. Cargo.toml Configuration file and dependencies specification for the

project

Next, update the Cargo.toml to look like this:

Listing 3.2. Configuration for the Basic Actix web server

[package]

name = "tutor-nodb"

version = "0.1.0"

authors = ["peshwar9"]

edition = "2018"

default-run="tutor-service"

[[bin]]

name = "basic-server"

[[bin]]

name = "tutor-service"

[dependencies]

#Actix web framework and run-time

actix-web = "3.0.0"

actix-rt = "1.1.1"

You will notice that we’ve defined two binaries for this project. The first one
is basic-server which we built in the previous section. The second one is
tutor-service which we will build now.

We also have two dependencies to include - actix-web framework and actix-
runtime.

Note also that under the [package] tag, we’ve added a parameter default-run
with a value tutor_service. This tells cargo that by default the tutor_service
binary should be built unless otherwise specified. This allows us to build and
run the tutor service with cargo run -p tutor-nodb, rather than cargo run -p
tutor-nodb --bin tutor-service.

Create a new file, tutor-nodb/src/bin/tutor-service.rs. This will contain the
code for the web service in this section.

We’ve covered the project scope and structure. Let’s turn our attention to
another topic - how we will store the data in the web service. We’ve already
said we don’t want to use a database, but want to store data in memory. This
is fine in case of a single-threaded server, like the one we built in the last
chapter. But Actix is a multi-threaded server. Each thread (Actix worker)
runs a separate instance of the application. How can we make sure that two
threads are not trying to mutate the data in-memory simultaneously. Of
course, Rust has features such as Arc and Mutex that we can use to address
this problem. But then, where in the web service should we define the shared
data, and how can we make this available to the handlers where the
processing will take place? Actix Web framework gives us a way to address
in an elegant way. Actix allows us to define application state of any custom
type, and access it using a built-in extractor. Let’s take a closer look at this in
the next section.

3.2.2 Define and manage application state

The term application state can be used in different contexts to mean different
things.

W3C defines application state (reference link here:
www.w3.org/2001/tag/doc/state.html) as how an application is: its
configuration, attributes, condition or information content. State changes
happen in an application component when triggered by an event. More
specifically, in the context of applications that provide a RESTful web API to
manage resources over a URI (such as the one we’re discussing in this
chapter), application state is closely related to the state of the resources that
are part of the application. In this chapter we are specifically dealing with
course as the only resource. So, it can be said that the state of our application
changes as courses are added or removed for a tutor. In most real-world
applications, the state of resources is persisted to a data store. However, in
our case, we will be storing the application state in memory.

Actix web server spawns a number of threads by default, on startup (this is

configurable). Each thread runs an instance of the web application and can
process incoming requests independently. However, by design, there is no
built-in sharing of data across Actix threads. You may wonder why we would
want to share data across threads? Take an example of a database connection
pool. It makes sense for multiple threads to use a common connection pool to
handle database connections. Such data can be modeled in actix as
Application state. This state is injected by Actix framweork into the request
handlers such that the handler can access state as a parameters in their
method signatures. All routes within an Actix app can share application state.

Why do we want to use application state for the tutor web service?

Because we want to store a list of courses in memory as application state.
We’d like this state to be made available to all the handlers and shared safely
across different threads. But before we go to courses, let’s try a simpler
example to learn how to define and use application state with Actix.

Let’s define a simple application state type with two elements - a string data
type (representing a static string response to health check request) and an
integer data type (representing the number of times a user has visited a
particular route).

The string value will be shared immutable state accessible from all threads,
i.e the values cannot be modified after initial definition.

The number value will be shared mutable state, i.e, the value can be mutated
from every thread. However, before modifying value, the thread has to
acquire control over the data. This is achieved by defining the number value
with protection of Mutex, a mechanism provided in Rust standard library for
safe cross-thread communications.

Here is the plan for the first iteration of the tutor-service.

Define application state for health check API in src/state.rs,
Update the main function (of Actix server) to initialize and register
application state in src/bin/tutor-service.rs,
Define the route for healthcheck route in src/routes.rs
Construct HTTP response in src/handlers.rs using this application state.

Define application state

Add the following code for application state in tutor-nodb/src/state.rs.

use std::sync::Mutex;

pub struct AppState {

 pub health_check_response: String, #1

 pub visit_count: Mutex<u32>, #2

}

Initialize and register application state

Add the following code in tutor-nodb/src/bin/tutor-service.rs

Listing 3.3. Building an Actix web server with application state

use actix_web::{web, App, HttpServer};

use std::io;

use std::sync::Mutex;

#[path = "../handlers.rs"]

mod handlers;

#[path = "../routes.rs"]

mod routes;

#[path = "../state.rs"]

mod state;

use routes::*;

use state::AppState;

#[actix_rt::main]

async fn main() -> io::Result<()> {

 let shared_data = web::Data::new(AppState { #1

 health_check_response: "I'm good. You've already asked me ".to_string(),

 visit_count: Mutex::new(0),

 });

 let app = move || { #2

 App::new()

 .app_data(shared_data.clone()) #3

 .configure(general_routes) #4

 };

 HttpServer::new(app).bind("127.0.0.1:3000")?.run().await #5

}

Define route

Let’s define the health check route in tutor-nodb/src/routes.rs.

use super::handlers::*;

use actix_web::web;

pub fn general_routes(cfg: &mut web::ServiceConfig) {

 cfg.route("/health", web::get().to(health_check_handler));

}

Update health check handler to use application state

Add the following code for health check handler in tutor-
nodb/src/handlers.rs

Listing 3.4. Health check handler using application state

use super::state::AppState;

use actix_web::{web, HttpResponse};

pub async fn health_check_handler(app_state: web::Data<AppState>) ->

[CA]HttpResponse { #1

 let health_check_response = &app_state.health_check_response;

 let mut visit_count = app_state.visit_count.lock().unwrap();

 let response = format!("{} {} times", health_check_response,

 [CA]visit_count); #4

 *visit_count += 1; #5

 HttpResponse::Ok().json(&response)

}

To recap, we

defined app state in src/state.rs,
registered app state with the Web application in src/bin/tutor-service.rs,
defined the route in src/routes.rs, and
wrote a health check handler function to read and update application
state in src/handlers.rs.

From the root directory of tutor web service (i.e. ezytutors/tutor-nodb), run
the following command:

cargo run

Note that since we have mentioned the default binary in Cargo.toml as shown
here, cargo tool runs the course-service binary by default:

default-run="tutor-service"

Otherwise, we would have had to specify the following command to run the
tutor-service binary, as there are two binaries defined in this project.

cargo run --bin tutor-service

Go to a browser, and type the following in the URL window:

localhost:3000/health

Every time you refresh the browser window, you will find the visit count
being incremented. You’ll see a message similar to this:

I'm good. You've already asked me 2 times

We’ve so far seen how to define and use application state. This is quite a
useful feature for sharing data and injecting dependencies across the
application in a safe manner. We’ll use more of this feature in the coming
chapters.

3.2.3 Defining the data model

Before we develop the individual APIs for the tutor web service, let’s first
take care of two things:

Define the data model for the web service
Define the in-memory data store.

These are pre-requisites to build APIs.

Defining the data model for courses

Let’s define a Rust data structure to represent a course. A course in our web
application will have the following attributes:

Tutor id: Denotes the tutor who offers the course.
Course id: This is a unique identifier for the course. In our system, a
course id will be unique for a tutor.
Course name: This is the name of the course offered by tutor
Posted time: Timestamp when the course was recorded by the web
service.

For creating a new course, the user (of the API) has to specify the tutor_id
and course_name. The course_id and posted_time will be generated by the
web service.

We have kept the data model simple, in order to retain focus on the objective
of the chapter. For recording posted_time, we will use a third-party crate (a
library is called a crate in Rust terminology) chrono.

For serializing and deserializing Rust data structures to on-the-wire format
(and vice versa) for transmission as part of the HTTP messages, we will use
another third-party crate, serde.

Let’s first update the Cargo.toml file in the folder ezytutor/tutor-nodb, to add
the two external crates - chrono and serde.

[dependencies]

//actix dependencies not shown here

Data serialization library

serde = { version = "1.0.110", features = ["derive"] }

Other utilities

chrono = {version = "0.4.11", features = ["serde"]}

Add the following code to tutor-nodb/src/models.rs.

Listing 3.5. Data model for courses

use actix_web::web;

use chrono::NaiveDateTime;

use serde::{Deserialize, Serialize};

#[derive(Deserialize, Serialize, Debug, Clone)] #1

pub struct Course {

 pub tutor_id: i32,

 pub course_id: Option<i32>,

 pub course_name: String,

 pub posted_time: Option<NaiveDateTime>, #2

}

impl From<web::Json<Course>> for Course { #3

 fn from(course: web::Json<Course>) -> Self {

 Course {

 tutor_id: course.tutor_id,

 course_id: course.course_id,

 course_name: course.course_name.clone(),

 posted_time: course.posted_time,

 }

 }

}

In the code shown, you will notice that course_id and posted_time have been
declared to be of type Option<i32> and Option<NaiveDateTime>
respectively. What this means is that these two fields can either hold a valid
value of type i32 and chrono::NaiveDateTime respectively, or they can both
hold a value of None if no value is assigned to these fields.

Further, in the code statement annotated by <3>, you will notice a From trait
implementation. This is a trait implementation that contains a function to
convert web::Json<Course> to Course data type. What exactly does this
mean?

We earlier saw that application state that is registered with the Actix web
server is made available to handlers using the extractor web::Data<T>.
Likewise, data from incoming request body is made available to handler
functions through the extractor web::Json<T>. When a POST request is sent
from a web client with the tutor_id and course_name as data payload, these
fields are automatically extracted from web::Json<T> Actix object and
converted to Course Rust type, by this method. This is the purpose of the
From trait implementation in code listing 3.5.

Derivable traits

Traits in Rust are like interfaces in other languages. They are used to define
shared behaviour. Data types implementing a trait share common behaviour
that is defined in the trait. For example, we can define a trait called
RemoveCourse as shown.

trait RemoveCourse {

 fn remove(self, course_id) -> Self;

}

struct TrainingInstitute;

struct IndividualTutor;

impl RemoveCourse for IndividualTutor {

 // An individual tutor's request is enough to remove a course.

}

impl RemoveCourse for TrainingInstitute {

 // There may be additional approvals needed to remove a course

 [CA]offering for business customers

}

Assuming we have two types of tutors - training institutes (business
customers) and individual tutors, both types can implement the
RemoveCourse trait (which means they share a common behaviour that
courses offered by both types can be removed from our web service).
However the exact details of processing needed for removing a course may
vary because business customers may have multiple levels of approvals
before a decision on removing a course is taken. This is an example of a
custom trait. The Rust standard library itself defines several traits, which are
implemented by the types within Rust. Interestingly, these traits can be
implemented by custom structs defined at the application-level. For example,
Debug is a trait defined in the Rust standard library to print out value of a
Rust data type for debugging. A custom struct (defined by application) can
also choose to implement this trait to print out values of the custom type for
debugging. Such trait implementations can be auto-derived by the Rust
compiler when we specify the #[derive()] annotation above the type
definition Such traits are called derivable traits. Examples of derivable traits
in Rust include Eq, PartialEq, Clone, Copy and Debug.

Note that such trait implementations can also be manually implemented, if
complex behaviour is desired.

Adding course collection to application state

We have defined the data model for course. Now, how will we store courses
as they are added?

We do not want to use a relational database or a similar persistent data store.
So, let’s start with a simpler option.

We earlier saw that Actix provides the feature to share application state
across multiple threads of execution. Why not use this feature for our in-
memory data store?

We had earlier defined an AppState struct in tutor-nodb/src/state.rs to keep
track of visit counts. Let’s enhance that struct to also store the course
collection.

use super::models::Course;

use std::sync::Mutex;

pub struct AppState {

 pub health_check_response: String,

 pub visit_count: Mutex<u32>,

 pub courses: Mutex<Vec<Course>>, #1

}

Since we have altered the definition of application state, we should reflect
this in main() function.

In tutor-nodb/src/bin/tutor-service.rs, make sure that all the module imports
are correctly declared.

Listing 3.6. Module imports for main() function

use actix_web::{web, App, HttpServer};

use std::io;

use std::sync::Mutex;

#[path = "../handlers.rs"]

mod handlers;

#[path = "../models.rs"]

mod models;

#[path = "../routes.rs"]

mod routes;

#[path = "../state.rs"]

mod state;

use routes::*;

use state::AppState;

Then, in main() function, initialize courses collection with an empty vector
collection in AppState.

async fn main() -> io::Result<()> {

 let shared_data = web::Data::new(AppState {

 health_check_response: "I'm good. You've already asked me ".to_string(),

 visit_count: Mutex::new(0),

 courses: Mutex::new(vec![]), #1

 });

// other code

}

While we haven’t written any new API yet, we have done the following:

Added a data model module,
Updated the main() function, and
Changed application state struct to include a course collection
Updated routes and handlers
Updated Cargo.toml

Let’s ensure that nothing is broken. Build and run the code with the following
command from within the tutor-nodb folder:

cargo run

You should be able to test with the following URL from the web browser,
and things should work as before:

curl localhost:3000/health

If you are able to view the health page with message containing visitor count,
you can proceed ahead. If not, review the code in each of the files for
oversight or typos. If you still cannot get it to work, refer to the completed
code within the code repository.

We’re now ready to write the code for the three course-related APIs in the

coming sections.

For writing the APIs, let’s first define a uniform set of steps that we can
follow (like a template). We will execute these steps for writing each API. By
the end of this chapter, these steps should become ingrained in you.

Step 1: Define the route configuration
Step 2: Write the handler function
Step 3: Write automated test scripts
Step 4: Build the service and test the API

The route configuration for all new routes will be added in tutor-
nodb/src/routes.rs and the handler function will be added in tutor-
nodb/src/handlers.rs. The automated test scripts will also be added under
tutor-nodb/src/handlers.rs for our project.

3.2.4 Post a course

Let’s now write the code to implement a REST API for posting a new course.
We’ll follow the set of steps defined towards the end of the previous section,
to implement the API.

Step 1: Define the route configuration

Let’s add the following route to tutor-nodb/src/routes.rs, after the
general_routes block:

pub fn course_routes(cfg: &mut web::ServiceConfig) {

 cfg

 .service(web::scope("/courses")

 .route("/", web::post().to(new_course)));

}

The expression service(web::scope("/courses")) creates a new resource scope
called courses, under which all APIs related to courses can be added. A scope
is a set of resources with a common root path. A set of routes can be
registered under a scope. Application state can be shared among routes within
the same scope. For example, we can create two separate scope declarations,

one for courses and one for tutors, and access routes registered under them as
follows.

localhost:3000/courses/1 // retrieve details for course with id 1

localhost:3000/tutors/1 // retrieve details for tutor with id 1

These are only examples for illustration, but don’t test them yet as we have
not yet defined these routes. What we have defined so far is one route under
courses which matches an incoming POST request with path /courses/ and
routes it to handler called new_course.

Let’s look at how we can invoke the route, after implementing the API. The
command shown next could be used to post a new course.

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"

[CA]-d '{"tutor_id":1, "course_name":"Hello , my first course !"}'

Note, this command will not work yet, because we have to do two things.
First, we have to register this new route group with the web application that is
initialized in the main() function. Secondly, we have to define the
new_course handler method.

Modify the main() function in tutor-nodb/src/bin/tutor-service.rs to look like
this.

 let app = move || {

 App::new()

 .app_data(shared_data.clone())

 .configure(general_routes)

 .configure(course_routes) #1

 };

We’ve completed the route configuration. But the code won’t compile yet.
Let’s write the handler function to post a new course.

Step 2: Write the handler function

Recall that an Actix handler function processes an incoming HTTP Request
using the data payload and URL parameters sent with the request, and sends
back an HTTP response. Let’s write the handler for processing a POST

request for a new course. Once the new course is created by the handler, it is
stored as part of the AppState struct, which is then automatically made
available to the other handlers in the application. Add the following code to
tutor-nodb/src/handlers.rs.

Listing 3.7. Handler function for posting a new course

// previous imports not shown here

use super::models::Course;

use chrono::Utc;

pub async fn new_course(#1

 new_course: web::Json<Course>,

 app_state: web::Data<AppState>,

) -> HttpResponse {

 println!("Received new course");

 let course_count_for_user = app_state

 .courses

 .lock()

 .unwrap() #2

 .clone()

 .into_iter() #3

 .filter(|course| course.tutor_id == new_course.tutor_id) #4

 .count(); #5

 let new_course = Course { #6

 tutor_id: new_course.tutor_id,

 course_id: Some(course_count_for_user + 1),

 course_name: new_course.course_name.clone(),

 posted_time: Some(Utc::now().naive_utc()),

 };

 app_state.courses.lock().unwrap().push(new_course); #7

 HttpResponse::Ok().json("Added course") #8

}

To recap, this handler function

gets write access to the course collection stored in the application state
(AppState)
extracts data payload from the incoming request,
generates a new course id by calculating number of existing courses for
the tutor, and incrementing by 1
creates a new course instance and
adds the new course instance to the course collection in AppState.

Let’s write the test scripts for this function, which we can use for automated
testing.

Step 3: Write automated test scripts

Actix web provides supporting utilities for automated testing, over and above
what Rust provides. To write tests for Actix services, we first have to start
with the basic Rust testing utilities - placing tests within the tests module and
annotating it for the compiler. In addition, Actix provides an annotation #
[actix_rt::test] for the async test functions, to instruct the Actix runtime to
execute these tests.

Let’s create a test script for posting a new course. For this, we need to
construct course details to be posted, and also initialize the application state .
These are annotated with steps <5> and <6> in test script shown here.

Add this code in tutor-nodb/src/handlers.rs, towards the end of the source
file.

Listing 3.8. Test script for posting a new course

#[cfg(test)] #1

mod tests { #2

 use super::*; #3

 use actix_web::http::StatusCode;

 use std::sync::Mutex;

 #[actix_rt::test] #4

 async fn post_course_test() {

 let course = web::Json(Course { #5

 tutor_id: 1,

 course_name: "Hello, this is test course".into(),

 course_id: None,

 posted_time: None,

 });

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 courses: Mutex::new(vec![]),

 });

 let resp = new_course(course, app_state).await;

 assert_eq!(resp.status(), StatusCode::OK);

 }

}

Run the tests from the tutor-nodb folder, with the following command:

cargo test

You should see the test successfully executed with a message that looks
similar to this:

running 1 test

test handlers::tests::post_course_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Step 4: Build the service and test the API

Build and run the server from the tutor-no-db folder with :

cargo run

From a commandline run the following curl command: (or you can use a GUI
tool like Postman):

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"

[CA]-d '{"tutor_id":1, "course_name":"Hello , my first course !"}'

You should see the message "Added course" returned from server.

You’ve now built the API for posting a new course. Next, let’s retrieve all
existing courses for a tutor.

3.2.5 Get all courses for a tutor

Here we’ll implement the handler function to retrieve all courses for a tutor.
We know the drill, there are four steps to follow.

Step 1: Define the route configuration

Since we have the foundation of code established, things should be quicker

from now.

Let’s add a new route in src/routes.rs.

pub fn course_routes(cfg: &mut web::ServiceConfig) {

 cfg.service(

 web::scope("/courses")

 .route("/", web::post().to(new_course))

 .route("/{tutor_id}", web::get().to(get_courses_for_tutor)), #1

);

}

Step 2: Write the handler function

The handler function

retrieves courses from AppState,
filters courses corresponding to tutor_id requested, and
returns the list.

The code shown here is to be entered in src/handlers.rs

Listing 3.9. Handler function to get all courses for a tutor

pub async fn get_courses_for_tutor(

 app_state: web::Data<AppState>,

 params: web::Path<(i32)>,

) -> HttpResponse {

 let tutor_id: i32 = params.0;

 let filtered_courses = app_state

 .courses

 .lock()

 .unwrap()

 .clone()

 .into_iter()

 .filter(|course| course.tutor_id == tutor_id) #1

 .collect::<Vec<Course>>();

 if filtered_courses.len() > 0 {

 HttpResponse::Ok().json(filtered_courses) #2

 } else {

 HttpResponse::Ok().json("No courses found for tutor".to_string())

 }

}

Step 3: Write automated test scripts

In this test script, we will invoke the handler function get_courses_for_tutor.
This function takes two arguments - application state and a URL path
parameter (denoting tutor id). For example, if the user types the following in
the browser, it means he/she wants to see list of all courses with tutor_id = 1

localhost:3000/courses/1

Recall that this maps to the route definition in src/routes.rs, also shown here
for reference:

 .route("/{tutor_id}", web::get().to(get_courses_for_tutor))

The Actix framework automatically passes the application state and the URL
path parameter to the handler function get_courses_for_tutor, in normal
course of execution. However for testing purposes, we would have to
manually simulate the function arguments by constructing an application
state object and URL path parameter. You will see these steps annotated with
<1> and <2> respectively in the test script shown next.

Enter the following test script within the tests module in src/handlers.rs.

Listing 3.10. Test script for retrieving courses for a tutor

 #[actix_rt::test]

 async fn get_all_courses_success() {

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 courses: Mutex::new(vec![]),

 });

 let tutor_id: web::Path<(i32)> = web::Path::from((1));

 let resp = get_courses_for_tutor(app_state, tutor_id).await;

 assert_eq!(resp.status(), StatusCode::OK);

 }

Step 4: Build the service and test the API

Build and run the server from folder tutor-nodb with :

cargo run

Post a few courses from command line as shown (or use a GUI tool like
Postman):

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"

[CA]-d '{"tutor_id":1, "course_name":"Hello , my first course !"}'

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"

[CA]-d '{"tutor_id":1, "course_name":"Hello , my second course !"}'

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"

[CA]-d '{"tutor_id":1, "course_name":"Hello , my third course !"}'

From a web browser, type the following in URL box:

localhost:3000/courses/1

You should see the courses displayed as shown next:

[{"tutor_id":1,"course_id":1,"course_name":"Hello , my first course !",

[CA]"posted_time":"2020-09-05T06:26:51.866230"},{"tutor_id":1,"course_id":2,

[CA]"course_name":"Hello , my second course !","posted_time":

[CA]"2020-09-05T06:27:22.284195"},{"tutor_id":1,"course_id":3,

[CA]"course_name":"Hello , my third course !",

[CA]"posted_time":"2020-09-05T06:57:03.850014"}]

Try posting more courses and verify results.

Our web service is now capable of retrieving course list for a tutor.

3.2.6 Get details of a single course

In this section, we’ll implement the handler function to search and retrieve
details for a specific course. Let’s again go through the defined 4-step
process.

Step 1: Define the route configuration

Add a new route as shown here in src/routes.rs.

pub fn course_routes(cfg: &mut web::ServiceConfig) {

 cfg.service(

 web::scope("/courses")

 .route("/", web::post().to(new_course))

 .route("/{tutor_id}", web::get().to(get_courses_for_tutor))

 .route("/{tutor_id}/{course_id}", web::get().to(get_course_detail)), #1

);

}

Step 2: Write the handler function

The handler function is similar to the previous API (to get all courses for a
tutor), except for the additional step to filter on course id also.

Listing 3.11. Handler function to retrieve details for a single course

pub async fn get_course_detail(

 app_state: web::Data<AppState>,

 params: web::Path<(i32, i32)>,

) -> HttpResponse {

 let (tutor_id, course_id) = params.0;

 let selected_course = app_state

 .courses

 .lock()

 .unwrap()

 .clone()

 .into_iter()

 .find(|x| x.tutor_id == tutor_id && x.course_id == Some(

 [CA]course_id)) #1

 .ok_or("Course not found"); #2

 if let Ok(course) = selected_course {

 HttpResponse::Ok().json(course)

 } else {

 HttpResponse::Ok().json("Course not found".to_string())

 }

}

Step 3: Write automated test scripts

In this test script, we will invoke the handler function get_course_detail. This
function takes two arguments - application state and URL path parameters.
For example, if the user types the following in the browser, it means the user

wants to see details of course with user id = 1 (first parameter in URL path)
and course id = 1 (second parameter in URL path).

localhost:3000/courses/1/1

Recall that this maps to the route definition in src/routes.rs, shown next for
reference:

 .route("/{tutor_id}/{course_id}", web::get().to(get_course_detail)),

The Actix framework automatically passes the application state and the URL
path parameters to the handler function get_course_detail in normal course of
execution. But for testing purposes, we would have to manually simulate the
function arguments by constructing an application state object and URL path
parameters. You will see these steps annotated with <1> and <2> respectively
in the test script shown.

Add the following test function to tests module within src/handlers.rs.

Listing 3.12. Test case to retrieve course detail

 #[actix_rt::test]

 async fn get_one_course_success() {

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 courses: Mutex::new(vec![]),

 });

 let params: web::Path<(i32, i32)> = web::Path::from((1, 1));

 let resp = get_course_detail(app_state, params).await;

 assert_eq!(resp.status(), StatusCode::OK);

 }

Step 4: Build the server and test the API

Build and run the server from folder tutor-nodb with :

cargo run

Post two new courses from command line with:

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"

[CA]-d '{"tutor_id":1, "course_name":"Hello , my first course !"}'

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"

[CA]-d '{"tutor_id":1, "course_name":"Hello , my second course !"}'

From a web browser type the following in URL box:

localhost:3000/courses/1/1

You should see the course detail displayed for tutor_id = 1 and course_id = 1,
as shown here:

{"tutor_id":1,"course_id":1,"course_name":"Hello , my first course !",

[CA]"posted_time":"2020-09-05T06:26:51.866230"}

You can add more courses, and check if the correct detail is displayed for the
other course ids.

Our web service is now capable of retrieving details for a single course.

Note that the tests shown in this chapter are only to demonstrate how to write
test scripts for various types of APIs with different types of data payload and
URL parameters sent from the web client. Real-world tests would be more
exhaustive covering various success and failure scenarios.

In this chapter, you’ve built a set of RESTful APIs for a tutor web application
from scratch starting with data models, routes , application state, and request
handlers. You also wrote automated test cases using Actix web’s inbuilt test
execution support for web applications.

Congratulations, you have built your first web service in Rust! What you
have learned in this chapter, namely implementing RESTful web services,
can be reused in a large variety of applications. This is the beauty of REST:
its principles are simple and stable and can be reused in many situations.

3.3 Summary

Actix is a modern, light-weight web framework written in Rust. It
provides an async HTTP server that offers safe concurrency and high

performance.
The key components of Actix web we used in this chapter are
HttpServer, App, routes, handlers , request extractors, HttpResponse and
application state. These are the core components needed to build
RESTful APIs in Rust using Actix.
A webservice is a combination of one or more APIs, accessible over
HTTP, at a particular domain address and port. APIs can be built using
different architectural styles. REST is a popular and intuitive
architectural style used to build APIs, and aligns well with the HTTP
protocol standards.
Each RESTful API is configured as a route in Actix. A route is a
combination of a path that identifies a resource, HTTP method and
handler function.
A RESTful API call sent from a web or mobile client is received over
HTTP by the Actix HttpServer listening on a specific port. The request
is passed on to the Actix web application registered with it. One or more
routes are registered with the Actix web application, which routes the
incoming request to a handler function (based on request path and
HTTP method).
Actix provides two types of concurrency - multi-threading and Async
I/O. This enables development of high performance web services.
The Actix HTTP server uses multi-threading concurrency by starting
multiple worker threads on startup, equal to the number of logical CPUs
in the system. Each thread runs a separate instance of the Actix web
application.
In addition to multi-threading, Actix uses Async I/O, which is another
type of concurrency mechanism. This enables an Actix web application
to perform other tasks while waiting on I/O on a single thread. Actix has
its own Async runtime that is based on Tokio, a popular, production-
ready async library in Rust.
Actix allows the web application to define custom application state, and
provides a mechanism to safely access this state from each handler
function. Since each application instance of Actix runs in a separate
thread, Actix provides a safe mechanism to access and mutate this
shared state without conflicts or data races.
At a minimum, a RESTful API implementation in Actix requires a route
configuration and a handler function to be added.

Actix also provides utilities for writing automated test cases.

In the next chapter we will continue with the code built here, and add a
persistence layer for the web service, using a relational database.

4 Performing database operations
This chapter covers

Writing our first async connection to database
Setting up the web service and writing unit tests
Creating and querying records from the database

In the previous chapter, we built a web service that uses an in-memory data
store. In this chapter, we’ll enhance that web service. We’ll replace the in-
memory data store with a relational database.

Our enhanced web service will expose the same set of APIs as before, but we
will now have a proper database to persist the data to disk, because we do not
want our data to get lost everytime we restart the web service. As there are
many parts to take in, this database-backed web service will be developed
iteratively and incrementally over three iterations of code.

In the first iteration, we’ll learn how to connect asynchronously to a postgres
database, using a database connection pool, from a vanilla Rust program.

In the second iteration, we’ll set up the project structure for the Actix-based
web service and write unit tests.

In the third iteration, we’ll write the actual handler functions to create
database records and query the results.

At the end of each iteration, you will have a working version of code that can
be inspected, run and tested independently.

The final code structure for this chapter is shown in figure 4.1.

Figure 4.1. Project structure

With these goals in mind, let’s get started.

Go to the root of the ezytutors workspace root (which we created in the
previous chapter), and execute the following two steps:

Add the following to Cargo.toml. Note that tutor-nodb was the project
we created in the previous chapter.

[workspace]

members = ["tutor-nodb", "tutor-db"]

Create a new cargo project - tutor-db:

cargo new tutor-db

cd tutor-db

Note that all subsequent command-line statements in this chapter will need to
be run from this project root folder (ezytutors/tutor-db). To make it easier
let’s set an environment variable for project root:

export PROJECT_ROOT=.

Note: The dot at the end of the export statement represents the current
directory. Alternatively, replace it with a suitable fully qualified path name.

Environment Variables

In this chapter we will use the following environment variables. Please
ensure to set it either manually in your shell session or add it to your shell
profile script (e.g. .bash_profile).

PROJECT_ROOT: Represents the home directory of the project. For this
chapter it is the tutor-db root directory, which also contains the Cargo.toml
file for the project.

DATABASE_USER: Represents the database username that has access
(read/write) rights to the database (which we will create later in this chapter).

The complete code for this chapter can be found at
github.com/peshwar9/rust-servers-services-apps/tree/master/chapter4/.

Software versions

This chapter has been tested with the following versions of software:

rustc: 1.59.0
actix-web: 4.2.1
actix-rt: 2.7.0
sqlx: 0.6.2
Platform: Ubuntu 22.04 (LTS) x64

If you have any difficulty in compiling or building the program, you can
adjust your development environment to develop and test with these versions.

4.1 Writing our first async connection to database
(Iteration 1)

In this section, we’ll write a simple Rust program to connect to the postgres
database, and query the database. All code in this section will reside in just
one file: tutor-db/src/bin/iter1.rs.

4.1.1 Selecting the database and connection library

In this chapter, we’ll be using PostgreSQL (we will refer to it as simply
postgres henceforth) as the relational database. Postgres is a popular open
source relational database that is known for its scalability, reliability, feature
set and ability to handle large complicated data workloads.

To connect to postgres, we’ll use the Rust sqlx crate. This crate requires
writing queries as raw SQL statements. sqlx performs compile-time checking
of the query, provides a built-in connection pool, and returns an
asynchronous connection to postgres. Compile-time checking is very useful
to detect and prevent run-time errors.

Having an asynchronous connection to the database for our web service
means that our tutor web service is free to perform other tasks while waiting
on a response from the database. If we were to use a synchronous (hence
blocking) connection to the database (such as with Diesel ORM), the web
service would have to wait until the database operation is completed.

Why use sqlx?

Using asynchronous database connections can improve transaction
throughput and performance response time of the web service under heavy
loads, all other things being equal. Hence the use of sqlx.

The primary alternative to sqlx is to use Diesel, a pure-Rust ORM (object-
relational mapper) solution. For those who are used to ORMs from other
programming languages and web frameworks, Diesel may be a preferred
option. But at the time of writing this chapter, Diesel does not yet support
asynchronous connections to databases. Given that the Actix framework is

asynchronous, it makes the programming model simpler by using async
connections to the database too, using a library such as sqlx.

Let’s start with setting up the database first.

4.1.2 Setting up the database and connecting with async pool

In this section, we’ll perform the prerequisites needed to get started with
databases. Here are the steps:

1. Add sqlx dependency to Cargo.toml
2. Install postgres and verify installation
3. Create a new database and set up access credentials
4. Define the database model in Rust and create a table in the database
5. Write Rust code to connect to the database and perform a query

For step 5, we’ll not use the Actix web server, but instead write a vanilla Rust
program. The primary goal of this section is to eliminate database setup and
configuration issues, learn to use sqlx to connect to databases, and to do a
sanity test for database connectivity. By the end of this section, you will have
learned to query the postgres database using sqlx and display query results on
your terminal.

Let’s look at each step in detail.

Step 1: Add sqlx dependencies to Cargo.toml

As discussed earlier, we’ll use the sqlx async client to communicate with a
postgres database. Add the following dependencies in Cargo.toml of tutor-db
project (located in $PROJECT_ROOT):

[dependencies]

#Actix web framework and run-time #1

actix-web = "4.1.0"

actix-rt = "2.7.0"

#Environment variable access libraries

dotenv = "0.15.0" #2

#Postgres access library

sqlx = {version = "0.6.2", default_features = false, features =

[CA]["postgres","runtime-tokio-native-tls", "macros","chrono"]} #3

Data serialization library

serde = { version = "1.0.144", features = ["derive"] } #4

Other utils

chrono = {version = "0.4.22", features = ["serde"]} #5

Openssl for build (if openssl is not already installed on the dev server)

openssl = { version = "0.10.41", features = ["vendored"] } #6

Step 2: Install postgres and verify installation

Please refer to Appendix A: Postgres installation.

Step 3: Create a new database and access credentials

Switch over to the postgres account on your development machine/server. If
you are on linux, you can use the following command:

sudo -i -u postgres

You can now access a Postgres prompt (shell) with the following command:

psql

This will log you into the PostgreSQL prompt, and you can interact with the
postgres database. You should now be able to see the following prompt (let’s
call it psql shell prompt).

postgres=#

Now that we are at the psql shell prompt, we can create a new database, a
new user and associate the user with the database.

First, let’s create a database - ezytutors with the following command:

postgres=# create database ezytutors;

Next, create a new user truuser with password 'mypassword' (replace
username and password with your own) as shown:

postgres=# create user truuser with password 'mypassword';

Grant access privileges for the newly created user to the ezytutors database:

postgres=# grant all privileges on database ezytutors to truuser;

You can quit the postgres shell prompt with:

postgres=# \q

Exit out of the postgres user account with:

exit

You should now be in the prompt of the original user with which you logged
into the Linux server (or development machine).

Now ensure you are able to log into the postgres database using the new user
and password.

Let’s first set an environment variable for the database user as follows:

export DATABASE_USER=truuser

Note: Feel free to replace value of DATABASE_USER with the user name
you created in the previous step.

On the commandline, you can use the following command to login to the
database ezytutors_ with the database user name created. The --password
flag is to prompt for password entry:

psql -U $DATABASE_USER -d ezytutors --password

Type the password at the prompt, and you should get logged into a psql shell
with the following prompt:

ezytutors=>

At this prompt type the following to list the databases:

\list

You’ll see the ezytutors database listed similar to this:

 List of databases

 Name | Owner | Encoding | Collate | Ctype | Access privileges

-----------+----------+----------+---------+---------+----------------------

ezytutors | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =Tc/postgres +

 | | | | | postgres=CTc/postgres+

 | | | | | truuser=CTc/postgres

If you’re reached this far, great! If not, consult postgres installation and setup
instructions for your target development environment at:
www.postgresql.org/docs/12/app-psql.html

Note: You can also perform the above steps from a GUI admin interface
should you choose to install a GUI tool such as cpanel (from a cloud
provider) or pgadmin tool (which is available to download for free).

Step 4: Define the Rust database model and create a table

We’re now ready to define our database model in the Rust program, and
create the database table. There are a couple of ways in which you can do
this:

By using plain database sql scripts which are independent of a database
access library such as sqlx.
Using sqlx CLI

We will use the first approach for this chapter because sqlx CLI is in early
beta at the time of this writing. But depending on when you are reading this,
you may choose to use SQL CLI if there is a stable release by then.

Create a file database.sql under src folder of project root, and enter the
following script:

/* Drop table if it already exists*/

drop table if exists ezy_course_c4;

/* Create a table. */

/* Note: Don't put a comma after last field */

create table ezy_course_c4

(

 course_id serial primary key,

 tutor_id INT not null,

 course_name varchar(140) not null,

 posted_time TIMESTAMP default now()

);

/* Load seed data for testing */

insert into ezy_course_c4

 (course_id,tutor_id, course_name,posted_time)

values(1, 1, 'First course', '2020-12-17 05:40:00');

insert into ezy_course_c4

 (course_id, tutor_id, course_name,posted_time)

values(2, 1, 'Second course', '2020-12-18 05:45:00');

We are creating a table with the name ezy_course_c4. The c4 suffix is to
indicate this is from chapter 4, as this allows us to evolve the table definition
in a future chapter.

Run the script with the following command from your terminal command
prompt. Enter a password if prompted.

psql -U $DATABASE_USER -d ezytutors < $PROJECT_ROOT/src/database.sql

This script creates a table called ezy_course_c4 within the ezytutors__
database, and loads seed data for testing.

From the SQL shell or admin GUI, run the following sql statement and verify
that the records are displayed from database ezytutors, table ezy_course_c4.

psql -U $DATABASE_USER -d ezytutors --password

select * from ezy_course_c4;

You should see a result displayed similar to this:

course_id | tutor_id | course_name | posted_time

-----------+----------+---------------+---------------------

 1 | 1 | First course | 2020-12-17 05:40:00

 2 | 1 | Second course | 2020-12-18 05:45:00

(2 rows)

Step 5: Write code to connect to the database and to query the table

We’re now ready to write Rust code to connect to the database! In
src/bin/iter1.rs under project root, add the following code.

use dotenv::dotenv;

use std::env;

use std::io;

use sqlx::postgres::PgPool;

use chrono::NaiveDateTime;

#[derive(Debug)] #1

pub struct Course {

 pub course_id: i32,

 pub tutor_id: i32,

 pub course_name: String,

 pub posted_time: Option<NaiveDateTime>,

}

#[actix_rt::main] #2

async fn main() -> io::Result<()> {

 dotenv().ok(); #3

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let db_pool = PgPool::connect(&database_url).await.unwrap();

 let course_rows = sqlx::query!(

 r#"select course_id, tutor_id, course_name, posted_time from

 [CA]ezy_course_c4 where course_id = $1"#,

 1

)

 .fetch_all(&db_pool)

 .await

 .unwrap();

 let mut courses_list = vec![];

 for course_row in course_rows {

 courses_list.push(Course {

 course_id: course_row.course_id,

 tutor_id: course_row.tutor_id,

 course_name: course_row.course_name,

 posted_time: Some(chrono::NaiveDateTime::from(

 [CA]course_row.posted_time.unwrap())),

 })

 }

 println!("Courses = {:?}", courses_list);

 Ok(())

}

Create a .env file in the project root directory and make the following entry:

DATABASE_URL=postgres://<my-user>:<mypassword>@127.0.0.1:5432/ezytutors

Replace <my-user> and <mypassword> with the userid and password that
you used while setting up the database. 5432 refers to the default port where

the postgresql server runs and ezytutors is the name of the database we wish
to connect to.

Run the code with the following command:

cargo run --bin iter1

Note that by using the --bin flag, we are telling the Cargo tool to run the
main() function located in iter1.rs from the $PROJECT_ROOT/src/bin
directory.

You should see the list of query results displayed to your terminal as shown
here.

Courses = [Course { course_id: 1, tutor_id: 1, course_name: "First course",

[CA]posted_time: 2020-12-17T05:40:00 }]

Great! We are now able to connect to the database from a Rust program using
sqlx crate.

Running the program from workspace root instead of project root

Note that you can also choose to run the program from the workspace root
(ezytutors directory) instead of the project root (tutordb directory). If so, you
need to add an additional flag to the cargo run command as shown:

cargo run --bin iter1 -p tutordb

Since the ezytutors workspace contains many projects, we need to tell the
cargo tool which project to execute. This is done by using the -p flag along
with the project name (tutordb).

Note also that if you choose to do this, the .env file containing the database
access credentials should be located within the workspace root as opposed to
the project root. But in this chapter, we will follow the convention of
executing the program from the project root only.

4.2 Setting up the web service and writing unit tests

(Iteration 2)

Now that we know how to connect to a postgres database using sqlx, let’s get
back to writing our database-backed web service. By the end of this section,
you will have a code structure for the web service that includes routes,
database model, application state, main() function, unit test scripts for the
three APIs, and skeletal code for the handler functions. This section serves as
an interim checkpoint. You will be able to compile the web service, and
ensure there are no compilation errors, before proceeding any further. But the
web service won’t perform anything useful until we write the handler
functions in the next section. Here are the steps we’ll perform in this section:

1. Setup dependencies & routes
2. Setup the application state and the data model
3. Setup the connection pool using dependency injection
4. Write unit tests

4.2.1 Setup dependencies and routes

Create a folder called iter2 under $PROJECT_ROOT/src. The code for this
section will be organized as follows:

src/bin/iter2.rs : contains the main() function
src/iter2/routes.rs: contains routes
src/iter2/handlers.rs: contains handler functions
src/iter2/models.rs: contains the data structure to represent a course and
utility methods
src/iter2/state.rs: Application state containing the dependencies injected
into each thread of application execution

Basically, the main() function will be in the iter.rs_ file under src/bin folder
of project root, and the rest of the files will be placed under src/iter2__
folder.

We’ll reuse the same set of routes defined in the previous chapter. The code
to be placed in $PROJECT_ROOT/src/iter2/routes.rs is shown here:

Listing 4.1. Routes for Tutor web service

use super::handlers::*;

use actix_web::web;

pub fn general_routes(cfg: &mut web::ServiceConfig) {

 cfg.route("/health", web::get().to(health_check_handler));

}

pub fn course_routes(cfg: &mut web::ServiceConfig) {

 cfg.service(

 web::scope("/courses")

 .route("/", web::post().to(post_new_course)) #1

 .route("/{tutor_id}", web::get().to(get_courses_for_tutor)) #2

 .route("/{tutor_id}/{course_id}", web::get().to(

 [CA]get_course_details)), #3

);

}

4.2.2 Setup the application state and the data model

Let’s define the data model in src/iter2/models.rs under project root.

Here we’ll define a data structure to represent a course. We’ll also write a
utility method that accepts the JSON data payload sent with the HTTP POST
request, and converts it into the Rust Course data structure. Place the
following code in $PROJECT_ROOT/src/iter2/models.rs.

Listing 4.2. Data model for the tutor web service

use actix_web::web;

use chrono::NaiveDateTime;

use serde::{Deserialize, Serialize};

#[derive(Deserialize, Serialize, Debug, Clone)]

pub struct Course { #1

 pub course_id: i32,

 pub tutor_id: i32,

 pub course_name: String,

 pub posted_time: Option<NaiveDateTime>,

}

impl From<web::Json<Course>> for Course { #2

 fn from(course: web::Json<Course>) -> Self {

 Course {

 course_id: course.course_id,

 tutor_id: course.tutor_id,

 course_name: course.course_name.clone(),

 posted_time: course.posted_time,

 }

 }

}

For connecting to postgres, we’ll have to define a database connection pool,
and make it available across worker threads. We can achieve this by defining
a connection pool as part of the application state.

Add the following code to $PROJECT_ROOT/src/iter2/state.rs:

use sqlx::postgres::PgPool;

use std::sync::Mutex;

pub struct AppState {

 pub health_check_response: String,

 pub visit_count: Mutex<u32>,

 pub db: PgPool,

}

In the AppState struct, we have retained the two fields from the previous
chapter needed for health check response, and added an additional field db
which represents the sqlx postgres connection pool.

With the application state definition done, it’s time to write the main()
function for the web service.

4.2.3 Setup connection pool using dependency injection

In the main() function for the web service, we will perform the following:

Retrieve environment variable DATABASE_URL for credentials to
connect to the database
Create a sqlx connection pool
Create application state and add connection pool to it
Create a new Actix web application and configure it with routes. Inject
AppState struct as a dependency into the web application so it is made
available to handler functions across threads
Initialize Actix web server with the web application and run the server

The code listing for the main() function in $PROJECT_ROOT/src/bin/iter2.rs
is shown here.

Listing 4.3. Tutor web service main() function

use actix_web::{web, App, HttpServer};

use dotenv::dotenv;

use sqlx::postgres::PgPool;

use std::env;

use std::io;

use std::sync::Mutex;

#[path = "../iter2/handlers.rs"]

mod handlers;

#[path = "../iter2/models.rs"]

mod models;

#[path = "../iter2/routes.rs"]

mod routes;

#[path = "../iter2/state.rs"]

mod state;

use routes::*;

use state::AppState;

#[actix_rt::main]

async fn main() -> io::Result<()> {

 dotenv().ok(); #1

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let db_pool = PgPool::connect(&database_url).await.unwrap();

 // Construct App State

 let shared_data = web::Data::new(AppState {

 health_check_response: "I'm good. You've already

 [CA]asked me ".to_string(),

 visit_count: Mutex::new(0),

 db: db_pool,

 });

 //Construct app and configure routes

 let app = move || {

 App::new()

 .app_data(shared_data.clone()) #3

 .configure(general_routes)

 .configure(course_routes)

 };

 //Start HTTP server

 HttpServer::new(app).bind("127.0.0.1:3000")?.run().await

}

Rest of the main() function is similar to what we wrote in the previous
chapter. Let’s also write the handler functions in
$PROJECT_ROOT/src/iter2/handlers.rs.

Listing 4.4. Handler functions skeleton

use super::models::Course;

use super::state::AppState;

use actix_web::{web, HttpResponse};

pub async fn health_check_handler(app_state: web::Data<AppState>) ->

[CA]HttpResponse {

 let health_check_response = &app_state.health_check_response;

 let mut visit_count = app_state.visit_count.lock().unwrap();

 let response = format!("{} {} times", health_check_response,

 [CA]visit_count);

 *visit_count += 1;

 HttpResponse::Ok().json(&response)

} #1

pub async fn get_courses_for_tutor(

 _app_state: web::Data<AppState>,

 _params: web::Path<(i32,)>,

) -> HttpResponse {

 HttpResponse::Ok().json("success")

}

pub async fn get_course_details(

 _app_state: web::Data<AppState>,

 _params: web::Path<(i32, i32)>,

) -> HttpResponse {

 HttpResponse::Ok().json("success")

}

pub async fn post_new_course(

 _new_course: web::Json<Course>,

 _app_state: web::Data<AppState>,

) -> HttpResponse {

 HttpResponse::Ok().json("success")

}

We’ve written the skeletal code for the three tutor handler functions. These
don’t do much except to return a success response for now. The goal is to
verify that the code for web service compiles without errors before we
implement the database access logic in the next section.

Verify the code with the following command from the project root:

cargo check --bin iter2

The code should compile without errors, and the server should start up. You
may see a few warnings related to unused variables, but let’s ignore it for
now as this is only an interim checkpoint. Let’s now write the unit tests for
the three handler functions.

4.2.4 Write the unit tests

In the previous section, we wrote dummy handler functions that simply return
a success response. In this section, let’s write the unit tests that invoke these
handler functions. In the process, you’ll learn how to simulate HTTP request
parameters (which would otherwise come through an external API call),
simulate Application state being passed from the Actix framework to the
handler function, and how to check for responses from the handler functions
in the test functions.

We’ll write three unit test functions to test the three corresponding handler
functions we wrote in the previous section i.e. to get all courses for a tutor, to
get course details for an individual course, and to post a new course.

Let’s now add the following unit test code to
$PROJECT_ROOT/src/iter2/handlers.rs file.

Listing 4.5. Unit tests for the handler functions

#[cfg(test)]

mod tests {

 use super::*; #1

 use actix_web::http::StatusCode;

 use chrono::NaiveDate;

 use dotenv::dotenv;

 use sqlx::postgres::PgPool;

 use std::env;

 use std::sync::Mutex;

 #[actix_rt::test]

 async fn get_all_courses_success() {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file"); #2

 let pool: PgPool = PgPool::connect(&database_url).await.unwrap();

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 db: pool,

 });

 let tutor_id: web::Path<(i32,)> = web::Path::from((1,));

 let resp = get_courses_for_tutor(app_state, tutor_id).await;

 assert_eq!(resp.status(), StatusCode::OK);

 }

 #[actix_rt::test]

 async fn get_course_detail_test() {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let pool: PgPool = PgPool::connect(&database_url).await.unwrap();

 let app_state: ... #8

 let params: web::Path<(i32, i32)> = web::Path::from((1, 2));

 let resp = get_course_details(app_state, params).await;

 assert_eq!(resp.status(), StatusCode::OK);

 }

 #[actix_rt::test]

 async fn post_course_success() {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let pool: PgPool = PgPool::connect(&database_url).await.unwrap();

 let app_state: ... #8

 let new_course_msg = Course {

 course_id: 1,

 tutor_id: 1,

 course_name: "This is the next course".into(),

 posted_time: Some(NaiveDate::from_ymd(2020, 9, 17).and_hms(

 [CA]14, 01, 11)),

 };

 let course_param = web::Json(new_course_msg);

 let resp = post_new_course(course_param, app_state).await;

 assert_eq!(resp.status(), StatusCode::OK);

 }

}

The code is annotated for one of the test functions. The same concepts hold
good for the other two test functions as well, and you should be able to read
the test function code and follow it without much difficulty.

Let’s run the unit tests with:

cargo test --bin iter2

You should see the three tests pass successfully with the following message:

running 3 tests

test handlers::tests::get_all_courses_success ... ok

test handlers::tests::post_course_success ... ok

test handlers::tests::get_course_detail_test ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

The tests pass even though we haven’t written any database access logic
because we are returning an unconditional success response from the
handlers. We’ll fix that in the next section. But we have built the basic project
structure with all the required pieces (routes, application state, main()
function, handlers and unit tests) and now know how to tie all of them
together.

4.3 Creating and querying records from the
database (Iteration 3)

In this section, we’ll write the database access code for the tutor APIs.

Create a folder named iter3 under $PROJECT_ROOT/src. The code for this
section will be organized as follows:

src/bin/iter3.rs : contains the main() function
src/iter3/routes.rs: contains routes
src/iter3/handlers.rs: contains handler functions

src/iter3/models.rs: contains the data structure to represent a course and
a few utility methods
src/iter3/state.rs: Application state containing the dependencies injected
into each thread of application execution
src/iter3/db_access.rs: We don’t want the database access logic to be a
part of the handler function, to adhere to the single responsibility
principle. So, we’ll create a new file
$PROJECT_ROOT/src/iter3/db_access.rs for the database access logic.
Separating out database access will also be helpful if we want to switch
databases (say from postgres to Mysql) in future, in which case we can
just rewrite the database access functions with the new database while
retaining the same handler functions and database access function
signatures.

Of the files listed for this iteration, we can reuse the code for routes.rs,
state.rs and models.rs from iteration 2. That leaves us to focus our efforts in
this section primarily on making the required adjustments to the main()
function and handler code, and to write the core database access logic.

Let’s look at the code for database access in three parts, each part
corresponding to one of the APIs.

4.3.1 Writing database access functions

The steps for using sqlx to query records from postgres tables are listed here:

Construct the SQL query using sql query! macro
Execute the query using fetch_all() method passing the connection pool
Extract the results and convert them into a Rust struct that can be
returned from the function.

The code in $PROJECT_ROOT/src/iter3/db_access.rs is shown here.

Listing 4.6. Database access code for retrieving all courses for a tutor

use super::models::Course;

use sqlx::postgres::PgPool;

pub async fn get_courses_for_tutor_db(pool: &PgPool, tutor_id: i32) ->

[CA]Vec<Course> {

 // Prepare SQL statement

 let course_rows = sqlx::query!(#1

 "SELECT tutor_id, course_id, course_name, posted_time FROM

 [CA]ezy_course_c4 where tutor_id = $1",

 tutor_id

)

 .fetch_all(pool) #2

 .await

 .unwrap();

 // Extract result

 course_rows #3

 .iter()

 .map(|course_row| Course {

 course_id: course_row.course_id,

 tutor_id: course_row.tutor_id,

 course_name: course_row.course_name.clone(),

 posted_time: Some(chrono::NaiveDateTime::from(

 [CA]course_row.posted_time.unwrap())),

 })

 .collect()

}

We’re using the fetch_all() method to retrieve all records from the database
that match the sql query. The fetch_all() method accepts a postgres
connection pool as a parameter. The await keyword after fetch_all() denotes
that we are making an asynchronous call to the postgres database using the
sqlx crate.

Note the use of iter() method to convert the retrieved database records into a
Rust iterator. The map() function then converts each database row (returned
by the iterator) into a Rust data structure of type Course.

Finally, the results from applying the map() function on all database records
are accumulated into a Rust Vec data type by using the collect() method. The
vector of Course struct instances is then returned from the function.

Note also the use of chrono module to convert the posted_time value of a
course retrieved from the database, into a NaiveDateTime type from the
chrono crate.

Overall, you’ll notice that the code is quite concise due to the use of elegant

functional programming constructs that Rust provides.

The code for retrieving the course details given a course-id and tutor-id is
largely similar. The main difference is the use of fetch_one() method instead
of fetch_all() that we used previously, as here we are retrieving details for a
single course. Place this code in the same file i.e.
$PROJECT_ROOT/src/iter3/db_access.rs.

Listing 4.7. Database access code for retrieving details of a single course

pub async fn get_course_details_db(pool: &PgPool, tutor_id: i32,

[CA]course_id: i32) -> Course {

 // Prepare SQL statement

 let course_row = sqlx::query!(#1

 "SELECT tutor_id, course_id, course_name, posted_time FROM

 [CA]ezy_course_c4 where tutor_id = $1 and course_id = $2",

 tutor_id, course_id

)

 .fetch_one(pool) #2

 .await

 .unwrap();

 // Execute query

 Course { #3

 course_id: course_row.course_id,

 tutor_id: course_row.tutor_id,

 course_name: course_row.course_name.clone(),

 posted_time: Some(chrono::NaiveDateTime::from(

 [CA]course_row.posted_time.unwrap())),

 }

}

Lastly, we’ll look at the database access code to post a new course. The query
is constructed, and then executed. The inserted course is then retrieved,
converted into a Rust struct and returned from the function. Place the
following code in $PROJECT_ROOT/src/iter3/db_access.rs .

Listing 4.8. Database access code for posting a new course

pub async fn post_new_course_db(pool: &PgPool, new_course: Course) ->

[CA]Course {

 let course_row = sqlx::query!("insert into ezy_course_c4 (

 [CA]course_id,tutor_id, course_name) values ($1,$2,$3) returning

 [CA]tutor_id, course_id,course_name, posted_time", new_course.course_id,

 [CA]new_course.tutor_id, new_course.course_name) #1

 .fetch_one(pool) #2

 .await.unwrap();

 //Retrieve result

 Course { #3

 course_id: course_row.course_id,

 tutor_id: course_row.tutor_id,

 course_name: course_row.course_name.clone(),

 posted_time: Some(chrono::NaiveDateTime::from(

 [CA]course_row.posted_time.unwrap())),

 }

}

Note that we’re not passing the posted_time value to the insert query. This is
because, while creating the table in the database, we have set the default
value of this field to the system generated current time. Refer to the file
$PROJECT_ROOT/src/database.sql where this default is defined as shown:

posted_time TIMESTAMP default now()

Note on using MySQL instead of Postgres database

Note that the sql crate supports both MySQL and SQLite, in addition to
Postgres. Readers who prefer to follow along this chapter using a MySQL
database in place of Postgres can refer to the instructions for the sqlx crate
repository at github.com/launchbadge/sqlx.

However, one thing to note is that the SQL syntax supported for MySQL
differs from that of Postgres, so the query statements listed in this chapter
need some modifications to use with MySQL. For example, while using
MySQL, the $ sign used to denote parameters (eg $1) should be replaced
with a question mark (?). Also, Postgres supports a returning clause in SQL
statement that can be used to return values of columns modified by an insert,
update or delete operation, but MySQL does not support the returning clause
directly.

This completes the code for database access. Next, let’s look at the handler
functions that invoke these database access functions.

4.3.2 Writing handler functions

We’ve so far seen the code for database access. We now need to invoke these
database functions from the corresponding handler functions. Recall that the
handler functions are invoked by the Actix framework based on the API route
(defined in routes.rs) on which the HTTP request arrives (eg POST new
course, GET courses for tutor etc).

The code for the handler functions to be placed in
$PROJECT_ROOT/src/iter3/handlers.rs is shown here.

Listing 4.9. Handler function for retrieving query results

use super::db_access::*;

use super::models::Course;

use super::state::AppState;

use std::convert::TryFrom;

use actix_web::{web, HttpResponse};

pub async fn health_check_handler(app_state: web::Data<AppState>) ->

[CA]HttpResponse {

 let health_check_response = &app_state.health_check_response;

 let mut visit_count = app_state.visit_count.lock().unwrap();

 let response = format!("{} {} times", health_check_response, visit_count);

 *visit_count += 1;

 HttpResponse::Ok().json(&response)

}

pub async fn get_courses_for_tutor(

 app_state: web::Data<AppState>,

 params: web::Path<(i32,)>,

) -> HttpResponse {

 let tuple = params.0; #1

 let tutor_id: i32 = i32::try_from(tuple.0).unwrap(); #2

 let courses = get_courses_for_tutor_db(&app_state.db, tutor_id).await;

 HttpResponse::Ok().json(courses)

}

pub async fn get_course_details(

 app_state: web::Data<AppState>,

 params: web::Path<(i32, i32)>,

) -> HttpResponse {

 let tuple = params;

 let tutor_id: i32 = i32::try_from(tuple.0).unwrap();

 let course_id: i32 = i32::try_from(tuple.1).unwrap(); #5

 let course = get_course_details_db(

 [CA]&app_state.db, tutor_id, course_id).await;

 HttpResponse::Ok().json(course)

}

pub async fn post_new_course(

 new_course: web::Json<Course>,

 app_state: web::Data<AppState>,

) -> HttpResponse {

 let course = post_new_course_db(&app_state.db, new_course.into()).await;

 HttpResponse::Ok().json(course)

}

In the code listing shown earlier, each of the handler functions is fairly
straightforward and performs steps similar to those listed here:

1. Extract connection pool from Application state (appstate.db)
2. Extract parameters sent as part of the HTTP Request (params argument)
3. Invoke the corresponding database access function (the function names

suffixed with db)
4. Return the result from the database access function as an HTTP

Response

Let’s understand these steps with the example of the handler function
get_course_details(). This function is called whenever there is an HTTP
request that arrives on the route "/{tutor_id}/{course_id}". Example of such a
request is localhost:3000/courses/1/2 where the http client (e.g. internet
browser) is requesting to see details of a course which has a tutor-id of 1 and
course-id of 2.

Let’s go through the code in detail for this handler function, in slow-mode:

In order to extract the course details for a given tutor-id and course-id, we
need to talk to the database. But the handler function does not know (nor does
it need to know, in keeping with the single responsibility principle of good
software design) how to talk to the database. So it will have to rely on the
database access function get_course_details_db(), which we wrote in the
source file $PROJECT_ROOT/src/iter3/db_access.rs.

This is the signature of this function:

pub async fn get_course_details_db(pool: &PgPool, tutor_id: i32,

[CA]course_id: i32) -> Course

In order to invoke the database access function, the handler function needs to
pass three parameters: a database connection pool, tutor-id and course-id.

The connection pool is available as part of the application state object. In the
main() function of iteration 2, we already saw the code for how the
application state is constructed with the connection pool, and then injected
into the Actix web application instance. Every Actix handler function will
then automatically have access to application state as a parameter (which is
automatically populated by the Actix framework when the handler is
invoked).

As a result, in this handler, the first parameter app_state represents a value of
type AppState (recall that this struct is defined in
$PROJECT_ROOT/src/iter3/state.rs), whose definition is reproduced here:

pub struct AppState {

 pub health_check_response: String,

 pub visit_count: Mutex<u32>,

 pub db: PgPool,

}

Hence app_state.db refers to the db member of struct AppState, and
represents the connection pool which can be passed to the database function
get_course_details_db().

The next two parameters to pass to the database access function are tutor-id
and course-id. Note that these are available as part of an incoming HTTP
request of the form http(s)://{domain}:{port}/{tutor-id}/{course-id}. In order
to extract the parameters from the request, the Actix web framework provides
utilities called extractors. An extractor can be accessed as an argument to the
handler function (similar to application state we saw earlier). In our case, as
we are expecting two numeric parameters from the HTTP request, the handler
function signature has a parameter of type web::Path<(i32, i32)>, which
basically yields a tuple containing two integers of type (i32, i32). In order to
extract the value of the tutor-id and course-id from params, we will have to
perform a two-step process.

The following line

 let tuple = params.0;

provides a tuple of form (i32, i32).

Then the following two lines are used to extract and convert the tutor-id and
course-id from i32 to i32 type (which is the type expected by the database
access function):

 let tutor_id: i32 = i32::try_from(tuple.0).unwrap();

 let course_id: i32 = i32::try_from(tuple.1).unwrap();

Now we can invoke the database access function with the application state ,
tutor-id and course-id as shown:

 let course = get_course_details_db(&app_state.db, tutor_id,

 [CA]course_id).await;

Finally, we take the return value of type Course from the database function,
serialize it to Json type and embed it into an HTTP response with success
status code, all in a succinct expression (you can now see why Rust rocks!):

 HttpResponse::Ok().json(course)

The other two handler functions are similar in structure to what we’ve just
seen.

Recall that in the source file handlers.rs, we also had the handler function for
health check and the unit tests. These remain unchanged from the previous
iteration. Note that error handling has been excluded from this iteration, to
put the learning focus on database access.

4.3.3 Writing the main() function for the database-backed web
service

We’ve written the database access and handler functions. Let’s complete the
final piece of code before we can test our web service. Add the following
code to the main() function in $PROJECT_ROOT/src/bin/iter3.rs.

Listing 4.10. main() function for the third iteration

use actix_web::{web, App, HttpServer};

use dotenv::dotenv;

use sqlx::postgres::PgPool;

use std::env;

use std::io;

use std::sync::Mutex;

#[path = "../iter3/db_access.rs"]

mod db_access;

#[path = "../iter3/handlers.rs"]

mod handlers;

#[path = "../iter3/models.rs"]

mod models;

#[path = "../iter3/routes.rs"]

mod routes;

#[path = "../iter3/state.rs"]

mod state;

use routes::*;

use state::AppState;

#[actix_rt::main]

async fn main() -> io::Result<()> {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let db_pool = PgPool::connect(&database_url).await.unwrap();

 let shared_data = web::Data::new(AppState { #1

 health_check_response: "I'm good. You've already

 [CA]asked me ".to_string(),

 visit_count: Mutex::new(0),

 db: db_pool,

 });

 let app = move || { #2

 App::new()

 .app_data(shared_data.clone()) #3

 .configure(general_routes) #4

 .configure(course_routes) #4

 };

 //Start HTTP server

 HttpServer::new(app).bind("127.0.0.1:3000")?.run().await #5

}

We’re now ready to test and run the web service. First let’s run the automated
tests with:

cargo test --bin iter3

You should see the three test cases execute successfully as shown:

running 3 tests

test handlers::tests::post_course_success ... ok

test handlers::tests::get_all_courses_success ... ok

test handlers::tests::get_course_detail_test ... ok

Note: if you run the cargo test command more than once, the program will
exit with an error. This is because we are trying to insert a record with the
same course_id twice. To get around this, log into the psql shell and run the
following command:

delete from ezy_course_c4 where course_id=3;

We are inserting a record with course_id value of 3 in the test function. Once
we delete this database record, we can rerun the test.

In order to make this step easier, this delete sql statement can be placed
within a script file. The file $PROJECT_ROOT/iter3-test-clean.sql contains
this script if you’d like to use it. Execute the script as follows:

psql -U $DATABASE_USER -d ezytutors --password <

[CA]$PROJECT_ROOT/iter3-test-clean.sql

You can now rerun:

cargo test --bin iter3

Let’s now run the server:

cargo run --bin iter3

From a browser , enter the following url to retrieve query results for tutor id
1.

http://localhost:3000/courses/1

Or if you are behind a firewall you can use curl to run it:

curl localhost:3000/courses/1

You should see something similar to what’s shown here as the response:

[{"course_id":1,"tutor_id":1,"course_name":"First course",

[CA]"posted_time":"2020-12-17T05:40:00"},{"course_id":2,"tutor_id":1,

[CA]"course_name":"Second course","posted_time":"2020-12-18T05:45:00"},

[CA]{"course_id":3,"tutor_id":1,"course_name":"Third course",

[CA]"posted_time":"2020-12-17T11:55:56.846276"}]

You will find three query results in your list. We had added two courses as
part of database.sql script. We then added a new course using the unit tests.

Let’s next test posting a new course using curl:

curl -X POST localhost:3000/courses/ \

-H "Content-Type: application/json" \

-d '{"tutor_id":1, "course_id":4, "course_name":"Fourth course"}'

You should see a response from the Actix web server similar to this:

{"course_id":4,"tutor_id":1,"course_name":"Fourth course",

[CA]"posted_time":"2021-01-12T12:58:19.668877"}

You can now try to retrieve details for the newly posted course, as shown
here, from a browser:

http://localhost:3000/courses/1/4

Note: If you are behind a firewall run this command with curl as previously
suggested.

You’ll see a result similar to this, in the browser:

{"course_id":4,"tutor_id":1,"course_name":"Fourth course",

[CA]"posted_time":"2021-01-12T12:58:19.668877"}

This concludes iteration 3.

With this, we have completed the implementation of three APIs for the tutor
web service backed by a database store. We have built the functionality to
post a new course, persist it to the database, and then query the database for a
list of courses and individual course details. Congratulations!

You now have two important tools at hand to implement a wide spectrum of
services: RESTful web services (from the previous chapter) and database
persistence (in this chapter). Maybe you have already noticed it: the vast
majority of corporate applications are of the "CRUD" (Create, Read, Update,
Delete) type, that is, they mainly offer the user the possibility to create,
update and possibly delete information. Armed with the knowledge aquired
in the last two chapters, you can already go a long way …

You may also have noticed that in this chapter, we covered only the happy
path scenarios, and did not account for, or handle, any errors that might
occur. But this is unrealistic as many things can go wrong in a distributed
web application. This will be discussed in the next chapter. In addition, we’ll
also cover how we can secure our APIs in the next chapter.

4.4 Summary

SQLx is a Rust crate that provides asynchronous database access to
many databases including postgres and MySql. It has built in connection
pooling.
Connecting to a database from Actix using sqlx includes the following
three broad steps: 1) In the main() function of the web service, create a
sqlx connection pool and inject it into application state, 2) In the handler
function, access the connection pool and pass it to the database access
function, 3) In the database access function, construct the query and
execute it on the connection pool.
The web service with its three APIs was built in this chapter over three
iterations: 1) In iteration 1, we configured the database, configured sqlx
connection to the database, and tested the connection through a vanilla
Rust program (not with Actix web server) 2) In iteration 2, we setup the
database model, routes , state and the main() function for the web

service. 3) In iteration 3, we wrote the database access code for the three
APIs along with the unit tests. The codebase for each of the iterations
can be built and tested independently as part of the learning path.

Our tutor web service is now functional, but it does not yet have the ability to
handle errors or to authenticate users making the API calls. In the next
chapter, we will cover these topics.

5 Handling Errors
This chapter covers

Setting up the project structure
Basics of error handling in Rust and Actix Web
Defining a custom error handler
Error handling for retrieving all courses
Error handling for retrieving course details
Error handling for posting a new course
Summary

In the previous chapter, we wrote the code to post and retrieve courses
through an API. But what we demonstrated and tested were the happy path
scenarios. In the real world however, many types of failures can occur. The
database server may be unavailable, the tutor id provided in request may be
invalid, there may be a web server error, and so on. It is important that our
web service is able to detect the errors , handle them gracefully and send a
meaningful error message back to the user or client sending the API request.
This is done through error handling, which is the focus of this chapter. Error
handling is important not just for stability of our web service, but also to
provide a good user experience.

Figure 5.1. Unifying error handling in Rust

Figure 5.1 summarizes the error handling approach that we will adopt in this
chapter. We’ll add custom error handling to our web service that unifies
different types of errors that can be encountered in the application. The
outcome will be that whenever there is an invalid request or unexpected
malfunction in server code execution, the client will receive a meaningful and
appropriate HTTP status code and error message. To achieve this, we will use
a combination of the core Rust features for error handling and the features
provided by Actix, while customizing the error handling for our application.

5.1 Setting up the project structure

We will use the code built in the previous chapter as the starting base to add
error handling. If you’ve been following along, you can use your own code
from chapter 4 to start adding error handling. Alternatively, clone the
following repo: github.com/peshwar9/rust-servers-services-apps and use the
code for iteration 3 from chapter 4 as the starting point. We’ll build the code
in this chapter as iteration 4, so first go to the project root (ezytutors/tutor-db)

and create a new folder iter4 under src.

The code for this section will be organized as follows:

src/bin/iter4.rs : main() function.
src/iter4/routes.rs: Contains routes.
src/iter4/handlers.rs: Handler functions.
src/iter4/models.rs: Data structure to represent a Course and utility
methods.
src/iter4/state.rs: Application state containing the dependencies that are
injected into each thread of application execution.
src/iter4/db_access.rs: Database access code separated out from the
handler function, for modularity
src/iter4/errors.rs: Custom error data structure and associated error
handling functions

Of the files listed,

there will be no changes to the source code for routes.rs, models.rs or
state.rs compared to chapter 4.
For handlers.rs and db_access.rs, we can start with the respective code
from chapter 4, but we will modify them to incorporate custom error
handling.
errors.rs is a new source file that we’ll add.

The project structure should look similar to that shown in figure 5.1

Figure 5.2. Project structure

Let’s also create a new version of the database tables for this chapter by
following these steps:

1. Amend the database.sql script from the previous chapter to look like this:

/* Drop table if it already exists*/

drop table if exists ezy_course_c5;

/* Create a table. */

/* Note: Don't put a comma after last field */

create table ezy_course_c5

(

 course_id serial primary key,

 tutor_id INT not null,

 course_name varchar(140) not null,

 posted_time TIMESTAMP default now()

);

/* Load seed data for testing */

insert into ezy_course_c5

 (course_id,tutor_id, course_name,posted_time)

values(1, 1, 'First course', '2021-03-17 05:40:00');

insert into ezy_course_c5

 (course_id, tutor_id, course_name,posted_time)

values(2, 1, 'Second course', '2021-03-18 05:45:00');

Note that the main change we have done to the script from the last chapter is
to change the name of the table from ezy_course_c4 to ezy_course_c5.

2. Run the script from the command line as shown to create the table and load
sample data:

psql -U <user-name> -d ezytutors < database.sql

Ensure to provide the right path to the database.sql file, and enter the
password if prompted.

3. After creating the new table, we need to give permission to this new table
for the database user. Run the following commands from the terminal
command-line.

psql -U <user-name> -d ezytutors // Login to psql shell

GRANT ALL PRIVILEGES ON TABLE __ezy_course_c5__ to <user-name>

\q // Quit the psql shell

Replace the <user-name> with your own, and execute the commands.

4. Write the main() function: From the previous chapter, copy src/bin/iter3.rs
into your project directory for this chapter under src/bin/iter4.rs, and modify
references to iter3 with iter4. The final code for iter4.rs should look as
shown:

use actix_web::{web, App, HttpServer};

use dotenv::dotenv;

use sqlx::postgres::PgPool;

use std::env;

use std::io;

use std::sync::Mutex;

#[path = "../iter4/db_access.rs"] #1

mod db_access;

#[path = "../iter4/errors.rs"]

mod errors;

#[path = "../iter4/handlers.rs"]

mod handlers;

#[path = "../iter4/models.rs"]

mod models;

#[path = "../iter4/routes.rs"]

mod routes;

#[path = "../iter4/state.rs"]

mod state;

use routes::*;

use state::AppState;

#[actix_rt::main]

async fn main() -> io::Result<()> {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let db_pool = PgPool::connect(&database_url).await.unwrap();

 // Construct App State

 let shared_data = web::Data::new(AppState {

 health_check_response: "I'm good.

 [CA]You've already asked me ".to_string(),

 visit_count: Mutex::new(0),

 db: db_pool,

 });

 //Construct app and configure routes

 let app = move || {

 App::new()

 .app_data(shared_data.clone())

 .configure(general_routes)

 .configure(course_routes)

 };

 //Start HTTP server

 let host_port = env::var("HOST_PORT").expect(

 [CA]"HOST:PORT address is not set in .env file");

 HttpServer::new(app).bind(&host_port)?.run().await

}

Also ensure to add the environment variables for database access and server
port numbers in .env file.

Do a sanity check by running the server with:

cargo run --bin iter4

This is the end state of Chapter 3, but recreated as the starting point for
chapter 4.

Let’s now take a quick tour of the basics of error handling in Rust, which we
can then put to use for designing custom error handling for our web service.

5.2 Basics of error handling in Rust and Actix Web

Broadly, programming languages use one of two approaches for error
handling - exception handling or return value. Rust uses the latter. This is
different compared to languages like Java, Python or Javascript, where
exception handling is used. In Rust, error handling is seen as an enabler of
the reliability guarantees provided by the language, so Rust wants the
programmer to handle errors explicitly rather than throw exceptions. Towards
this goal, Rust functions that have a possibility of failures return a Result
enum type whose definition is shown here:

enum Result<T, E> {

 Ok(T),

 Err(E),

}

A Rust function signature would contain a return value of type Result<T,E>,
where T is the type of value that will be returned in a success case, and E is
the type of Error value that will be returned in case of a failure. A Result type
basically is a way of saying that a computation or function can return one of
two possible outcomes, a value in case of a successful computation or an
error in case of failures.

Let’s see an example. Here is a simple function that parses a string into an
integer , squares it and returns a value of type i32. If the parsing fails, it
returns an error of type ParseIntError.

fn square(val: &str) -> Result<i32, ParseIntError> {

 match val.parse::<i32>() {

 Ok(num) => Ok(i32::pow(num, 2)),

 Err(e) => Err(e),

 }

}

Note that the parse function of the Rust standard library returns a Result type,
which we are unwrapping (i.e. extracting value from) using a match
statement. Note the return value from this function which is of the pattern
Result<T,E> where, in this case, T is i32 and E is ParseIntError.

Let’s write a main() function that calls the square() function. Here is the
complete code:

use std::num::ParseIntError;

fn main() {

 println!("{:?}", square("2"));

 println!("{:?}", square("INVALID"));

}

fn square(val: &str) -> Result<i32, ParseIntError> {

 match val.parse::<i32>() {

 Ok(num) => Ok(i32::pow(num, 2)),

 Err(e) => Err(e),

 }

}

Run this code and you will see the following output printed to the console.

Ok(4)

Err(ParseIntError { kind: InvalidDigit })

In the first case, the square() function is able to successfully parse the
number 2 from the string, and returns the squared value enclosed in the Ok()
enum type. In the second case, an error is returned of type ParseIntError, as
the parse() function is unable to extract a number from the string.

Let’s now look at a special operator that Rust provides to make error
handling less verbose, the ? operator. Note that in the earlier code, we have
used the match clause to unwrap the Result type returned from the parse()
method. Let’s next see usage of the ? operator to reduce boilerplate code:

use std::num::ParseIntError;

fn main() {

 println!("{:?}", square("2"));

 println!("{:?}", square("INVALID"));

}

fn square(val: &str) -> Result<i32, ParseIntError> {

 let num = val.parse::<i32>()?;

 Ok(i32::pow(num,2))

}

You’ll notice that the match statement with the associated clauses has been
replaced by the ? operator. This operator tries to unwrap the integer from the
Result value and store it in the num variable. If unsuccessful, it receives the
Error from the parse() method, aborts the square function and propagates the
ParseIntError to the calling function (which in our case is the main()
function).

We’ll now take the next step to explore error handling in Rust, by adding
additional functionality to the square() function. The code here shows
additional lines of code to open a file and write the calculated square value to
it.

use std::fs::File;

use std::io::Write;

use std::num::ParseIntError;

fn main() {

 println!("{:?}", square("2"));

 println!("{:?}", square("INVALID"));

}

fn square(val: &str) -> Result<i32, ParseIntError> {

 let num = val.parse::<i32>()?;

 let mut f = File::open("fictionalfile.txt")?;

 let string_to_write = format!("Square of {} is {}", num, i32::pow(num, 2));

 f.write_all(string_to_write.as_bytes())?;

 Ok(i32::pow(num, 2))

}

When you compile this code, you’ll get an error message as follows:

the trait `std::convert::From<std::io::Error>` is not implemented

[CA]for `std::num::ParseIntError`

The error message may appear to be confusing, but what it’s trying to say is

that the File::open and write_all methods return a Result type containing an
error of type std::io::Error, which should be propagated back to the main()
function, as we have used the ? operator. However, the function signature of
square() specifically states that it returns an error of type ParseIntError. We
seem to have a problem now as there are two possible error types that can be
returned from the function - std::num::ParseIntError and std::io::Error, but
our function signature can only specify one error type.

This is where custom error types come in. Let’s define a custom error type
that can be an abstraction over the ParseIntError and io::Error types. Modify
the code as shown:

use std::fmt;

use std::fs::File;

use std::io::Write;

#[derive(Debug)]

pub enum MyError { #1

 ParseError,

 IOError,

}

impl std::error::Error for MyError {} #2

impl fmt::Display for MyError { #3

 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

 match self {

 MyError::ParseError => write!(f, "Parse Error"),

 MyError::IOError => write!(f, "IO Error"),

 }

 }

}

fn main() {

 let result = square("INVALID");

 match result { #4

 Ok(res) => println!("Result is {:?}",res),

 Err(e) => println!("Error in parsing: {:?}",e)

 };

}

fn square(val: &str) -> Result<i32, MyError> {

 let num = val.parse::<i32>().map_err(|_| MyError::ParseError)?;

 let mut f = File::open("fictionalfile.txt").map_err(

 [CA]|_| MyError::IOError)?; #6

 let string_to_write = format!("Square of {:?} is {:?}", num, i32::pow(

 [CA]num, 2));

 f.write_all(string_to_write.as_bytes())

 .map_err(|_| MyError::IOError)?;

 Ok(i32::pow(num, 2))

}

We’re making progress. We’ve so far seen how Rust uses Result type to
return errors, how we can use the ? operator to reduce boilerplate code to
propagate errors, and how to define and implement custom error types to
unify error handling at a function or application-level.

Rust’s error handling makes code safe

A Rust function can either belong to the Rust standard library, an external
crate or it can be a custom function written by the programmer. Whenever
there is a possibility of error, Rust functions return a Result data type. The
calling function must then handle the error either by a) propagating the error
further to its caller using the ? operator, b) converting any errors received
into another type before bubbling it up, c) handling the Result::Ok and
Result::Error variants using the match block, d) or simply panic on error with
.unwrap() or .expect(). This makes programs safer because it is impossible to
access invalid, null or uninitialized data that’s returned from a Rust function.

Let’s now take a look at how Actix-web builds on top of the Rust error-
handling philosophy to return errors for web services and applications.

Figure 5.3. Converting errors to HTTP responses

Actix-web has a general purpose error struct actix_web::error::Error which,
like any other Rust error type, implements the Rust standard library’s error
trait std::error::Error. Any error type that implements the Rust standard
library Error trait, can be converted into an Actix Error type with the ?
operator. The Actix Error type will then automatically be converted to an
HTTP Response message that goes back to the HTTP client.

Here is an example of a basic Actix handler function that returns a Result
type.

Create a new cargo project with cargo new and add the following to
dependencies in Cargo.toml:

[dependencies]

actix-web = "3"

Add the following code to src/main.rs:

use actix_web::{error::Error, web, App, HttpResponse, HttpServer};

async fn hello() -> Result<HttpResponse, Error> { #1

 Ok(HttpResponse::Ok().body("Hello there!")) #2

}

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 HttpServer::new(|| App::new().route("/hello", web::get().to(hello)))

 .bind("127.0.0.1:3000")?

 .run()

 .await

}

Even though the handler function signature specifies that it can return an
Error type, the handler function is so simple that there is little possiblity of
anything going wrong here.

Run the program with:

cargo run

From a browser, connect to the hello route using:

http://localhost:3000/hello

You should see the following message displayed in your browser screen:

Hello there!

Now alter the handler function to include operations that can possibly fail.

use actix_web::{error::Error, web, App, HttpResponse, HttpServer};

use std::fs::File;

use std::io::Read;

async fn hello() -> Result<HttpResponse, Error> {

 let _ = File::open("fictionalfile.txt")?;

 Ok(HttpResponse::Ok().body("File read successfully"))

}

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 HttpServer::new(|| App::new().route("/hello", web::get().to(hello)))

 .bind("127.0.0.1:3000")?

 .run()

 .await

}

Run the program again, and connect to the hello route from the browser. You
should see the following message (or similar):

No such file or directory (os error 2)

To a discerning reader, two immediate questions may come to mind:

1. The file operation returns an error of type std::io::Error, as seen in the
earlier example. How is it possible to send an error of type
std::io::Error from the handler function, when the return type specified
in function signature is actix_web::error::Error?

2. How did the browser display a text error message, when we returned an
Error type from the handler function?

To answer the first question, anything that implements the std::error::Error
trait (which the std::io::Error does), can be converted to
actix_web::error::error type, as Actix framework implements the
std::error::Error trait for its own type actix_web::error::error. This allows a
question mark (?) to be used on the std::io::Error type to convert it into
actix_web::error::error type. For reference , see this link (or a later version
of this document available at the time when you are reading this):
docs.rs/actix-web/3.3.2/actix_web/error/struct.Error.html.

To answer the second question, anything that implements the Actix Web
ResponseError trait can be converted to an HTTP response. Interestingly, the
Actix-web framework contains built-in implementations of this trait for many
common error types, and std::io::Error is one of them. For more details
about available default implementations, refer to this link (or a later version
of this document available at the time when you are reading this):
docs.rs/actix-web/3.3.2/actix_web/error/trait.ResponseError.html. The
combination of Actix Error type and ResponseError trait provide a bulk of
Actix’s error handling support for web services and applications.

Getting back to our example, this is how, when an error of type std::io::Error
is raised within the the hello() handler function, it gets eventually converted
into an HTTP Response message.

We will utilize these feature of Actix web to convert a custom error type into

an HTTP Response message in this chapter.

With this background, you are now ready to start implementing Error
handling in the tutor web service.

5.3 Defining a custom error handler

In this section, we’ll define a custom error type for our web service. Before
that, let’s define the overall approach:

1. Define a custom error enum type that encapsulates the various types of
errors that you expect to encounter within the web service.

2. Implement the From trait (from Rust standard library) to convert the
other distinct error types into your custom error type.

3. Implement the Actix ResponseError trait for the custom error type. This
enables Actix to convert the custom error into an HTTP response.

4. In the application code (e.g. handler functions), return the custom error
type instead of standard Rust error type or Actix error type.

5. There is no step 5. Just sit back and watch Actix automatically converts
any custom errors returned from the handler functions into valid HTTP
Responses which are sent back to the client.

Figure 5.4 illustrates these steps.

Figure 5.4. Steps in writing a custom error type

That’s it. Let’s start by creating a new file src/iter4/errors.rs. We’ll add the
code for this file in three parts. Here is the code for part-1.

Listing 5.1. Error handling - part 1

use actix_web::{error, http::StatusCode, HttpResponse, Result};

use serde::Serialize;

use sqlx::error::Error as SQLxError;

use std::fmt;

#[derive(Debug, Serialize)]

pub enum EzyTutorError { #1

 DBError(String),

 ActixError(String),

 NotFound(String),

}

#[derive(Debug, Serialize)]

pub struct MyErrorResponse { #2

 error_message: String,

}

We’ve defined two data structures for error handling - EzyTutorError which

is the primary error handling mechanism within the web service, and
MyErrorResponse which is the user-facing message. To convert the former to
the latter when an error occurs, let’s write a method in the impl block of
EzyTutorError.

Impl blocks

Just to recall, an impl block is Rust’s way to allow developers to specify
functions associated with a data type. This is the only way in Rust to define a
function that can be invoked on an instance of the type in a method-call
syntax. e.g. if Foo is the data type, foo is an instance of Foo, and bar() is the
function defined within impl block of Foo, then the function bar() can be
invoked on instance foo as follows: foo.bar(). Impl blocks also serve to
group together functionality associated with a user-defined data type, that
makes them easier to discover and in code maintenance. Further, Impl blocks
allow the creation of associated functions which are basically functions
associated with the data type rather than an instance of the data type. For
example, to create a new instance of Foo, an associated function new() can be
defined such that Foo:new() creates a new instance of Foo.

Listing 5.2. Error handling - part 2*

impl EzyTutorError {

 fn error_response(&self) -> String {

 match self {

 EzyTutorError::DBError(msg) => {

 println!("Database error occurred: {:?}", msg);

 "Database error".into()

 }

 EzyTutorError::ActixError(msg) => {

 println!("Server error occurred: {:?}", msg);

 "Internal server error".into()

 }

 EzyTutorError::NotFound(msg) => {

 println!("Not found error occurred: {:?}", msg);

 msg.into()

 }

 }

 }

}

We have defined a method called error_response() on our custom error struct
EzyTutorError. This method will be called when we want to send a user-
friendly message to inform the user that an error has occurred. Here we are
handling all three types of errors, with the goal of sending back a simpler,
friendly error message to the user.

We have so far defined error data structures and even written a method to
convert custom error struct to a user friendly text message. The question that
arises is how can we propagate an error to an HTTP client from the web
service? The only way an HTTP web service can communicate with a client
is through an HTTP response message, right?

So, what’s missing is a way to convert the custom error that is generated in
the server into a corresponding HTTP response message. We’ve seen in the
earlier example how to achieve this using the
actix_web::error::ResponseError trait. If a handler returns an error that also
implements ResponseError trait, Actix web will convert that error into an
HTTP response, with the corresponding status code.

In our case, this boils down to implementing the ResponseError trait on the
EzyTutorError struct. To implement this trait means to implement two
methods defined on the trait- error_response() and status_code. Let’s look at
the code:

Listing 5.3. Error handling - part 3

impl error::ResponseError for EzyTutorError {

 fn status_code(&self) -> StatusCode { #1

 match self {

 EzyTutorError::DBError(msg) | EzyTutorError::ActixError(msg) => {

 StatusCode::INTERNAL_SERVER_ERROR

 }

 EzyTutorError::NotFound(msg) => StatusCode::NOT_FOUND,

 }

 }

 fn error_response(&self) -> HttpResponse { #2

 HttpResponse::build(self.status_code()).json(MyErrorResponse {

 error_message: self.error_response(),

 })

 }

}

Now that we’ve defined the custom error type , let’s next incorporate this into
the handler and database access code for the three APIs of the web service.

5.4 Error handling for retrieving all courses

In this section, we’ll incorporate error handling for the API to retrieve the
course list for a tutor. Let’s focus on the file db_access.rs which contains
functions for database access.

Add the following import to this file (db_access.rs):

use super::errors::EzyTutorError;

The super keyword refers to the parent scope (for db_access module), which
is where the errors module is located.

Let’s look at a chunk of the existing code in the function
get_courses_for_tutor_db.

 let course_rows = sqlx::query!(

 "SELECT tutor_id, course_id, course_name,

 [CA]posted_time FROM ezy_course_c5 where tutor_id = $1",

 tutor_id

)

 .fetch_all(pool)

 .await.?;

 .unwrap();

Note in particular the unwrap() method . This is a short-cut to handle errors
in Rust. Whenever an error occurs in the database operation, the program
thread would panic and exit. The unwrap() keyword in Rust means "if the
operation is successful, return the result, which in this case is the list of
courses. In case of error just panic and abort the program".

This was alright so far, as we were just learning how to build the web service.
But this is not the expected behaviour for a production service. We cannot
allow the program execution to panic and exit, for every error in database
access. What we want to do instead is to handle the error in some way. If we
know what to do with the error itself, we can do it there. Otherwise, we can

propagate the error from the database access code to the calling handler
function, which can then figure out what to do with the error. To achieve this
propagation, we can use the question mark operator (?) instead of the
unwrap() keyword, as shown.

 let course_rows = sqlx::query!(

 "SELECT tutor_id, course_id, course_name,

 [CA]posted_time FROM ezy_course_c5 where tutor_id = $1",

 tutor_id

)

 .fetch_all(pool)

 .await?;

Note that the .unwrap() method, which operates on the result of the database
fetch operation, has now been replaced with a question mark (?). While the
earlier unwrap() operation told the Rust compiler to panic in case of errors,
the ? tells the Rust compiler that "in case of errors, convert the sqlx database
error into another error type and return from the function, propagating the
error to the calling handler function". The question now is, to what type
would the question mark operator convert the database error?

We’d have to specify that.

In order to propagate the error in this manner (using ?), we need to alter the
database method signature to return a Result type. As we’ve seen earlier, a
Result type expresses the possibility of an error. It provides a way to
represent one out of two possible outcomes in any computation or function
call - Ok(val) in case of success where val is the result of the successful
computation, or Err(err) in case of errors where err is the error returned from
the computation.

In our database fetch function, let’s define these two possible outcomes as the
following:

return a Vector of courses - Vec<Course>, in case database access is
successful, or
return an error of type EzyTutorError in case the database fetch fails.

If we revisit the await? expression at the end of the database fetch operation,
we can interpret it to mean that if the database access fails, convert the sqlx

database error into an error of type EzyTutorError, and return from the
function. In such a case of failure, the calling handler function would receive
back an error of type EzyTutorError from the database access function.

Here is the modified code in db_access.rs. The changes are highlighted in the
numbered annotations.

Listing 5.4. Error handling in database access method to retrieve courses for tutor

pub async fn get_courses_for_tutor_db(

 pool: &PgPool,

 tutor_id: i32,

) -> Result<Vec<Course>, EzyTutorError> { #1

 // Prepare SQL statement

 let course_rows = sqlx::query!(

 "SELECT tutor_id, course_id, course_name,

 [CA]posted_time FROM ezy_course_c5 where tutor_id = $1",

 tutor_id

)

 .fetch_all(pool)

 .await?; #2

 // Extract result

 let courses: Vec<Course> = course_rows

 .iter()

 .map(|course_row| Course {

 course_id: course_row.course_id,

 tutor_id: course_row.tutor_id,

 course_name: course_row.course_name.clone(),

 posted_time: Some(chrono::NaiveDateTime::from(

 [CA]course_row.posted_time.unwrap())),

 })

 .collect();

 match courses.len() { #3

 0 => Err(EzyTutorError::NotFound(

 "Courses not found for tutor".into(),

)),

 _ => Ok(courses),

 }

}

The last point about returning an error in case no courses are found for a valid
tutor id can be debated as to whether it really is an error. Let’s however just
set this argument aside for now, and use this as another opportunity to

practice error handling in Rust.

Let’s also alter the calling handler function (in iter4/handler.rs) to
incorporate error handling. First add the following import:

use super::errors::EzyTutorError;

Modify the get_courses_for_tutor() function to return a Result type:

pub async fn get_courses_for_tutor(

 app_state: web::Data<AppState>,

 path: web::Path<i32>,

) -> Result<HttpResponse, EzyTutorError> {

 let tutor_id = path.into_inner();

 get_courses_for_tutor_db(&app_state.db, tutor_id)

 .await

 .map(|courses| HttpResponse::Ok().json(courses))

}

It appears that we’ve completed the error handling implementation for
retrieving course lists. Compile and run the code with:

cargo run --bin iter4

You will notice there are compiler errors.

This is because, for the ? operator to work , each error raised in the program
should be converted first to type EzyTutorError. For example, if there is an
error in database access using sqlx, sqlx returns an error of type
sqlx::error::DatabaseError and Actix does not know how to deal with it. So,
we must tell Actix how to convert the sqlx error to our custom error type
EzyTutorError. Did you actually think Actix will do it for you? Sorry, you
have to write the code!

The code shown here is to be added to iter4/errors.rs.

Listing 5.5. Implementing From and Display traits for EzyTutorError

impl fmt::Display for EzyTutorError { #1

 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {

 write!(f, "{}", self)

 }

}

impl From<actix_web::error::Error> for EzyTutorError { #2

 fn from(err: actix_web::error::Error) -> Self {

 EzyTutorError::ActixError(err.to_string())

 }

}

impl From<SQLxError> for EzyTutorError { #3

 fn from(err: SQLxError) -> Self {

 EzyTutorError::DBError(err.to_string())

 }

}

We have now made the necessary changes to both the database access code
and the handler code, to incorporate error handling for retrieving course lists.
Build and run the code with:

cargo run --bin iter4

From a browser access the following URL:

http://localhost:3000/courses/1

You should be able to see the list of courses.

Let’s test the error conditions now.

Access the API with an invalid tutor id as shown:

http://localhost:3000/courses/10

You should see the following displayed in the browser:

{"error_message":"Courses not found for tutor"}

This is as intended.

Let’s now try simulating another type of error . This time we will simulate an
error in sqlx database access.

In the .env file change the database URL to an invalid user id. An example is

shown below:

DATABASE_URL=postgres://invaliduser:trupwd@127.0.0.1:5432/truwitter

Restart the web service with

cargo run --bin iter4

Access the valid URL as shown:

http://localhost:3000/courses/1

You should see the following error message in the browser:

{"error_message":"Database error"}

Let’s spend a few minutes understanding what happened here.

When we provided an invalid database url, on receipt of the API request, the
web service database access function tried to create a connection from the
connection pool and run the query. This operation failed and an error of type
sqlx::error::DatabaseError was raised by the sqlx client. This error was
converted to our custom error type EzyTutorError due to the following From
trait implementation in errors.rs

impl From<SQLxError> for EzyTutorError { }

The error of type EzyTutorError was then propagated from the database
access function in db_access.rs to the handler function in handlers.rs. On
receipt of this error, the handler function propagates it further to the Actix
web framework, which then converts this error into an HTML response
message with an appropriate error message.

Now, how do we check this error status code? This can be verified by
accessing the URL using a command-line HTTP client. We’ll use curl with
the verbose option as follows:

curl -v http://localhost:3000/courses/1

You should see a message in your terminal, similar to that shown here:

GET /courses/1 HTTP/1.1

> Host

: localhost:3000

> User-Agent: curl/7.64.1

> Accept: */*

>

< HTTP/1.1 500 Internal Server Error

Go back to the function status_code() in iter4/errors.rs. You’ll notice that for
database and actix errors, we are returning a status code of
StatusCode::INTERNAL_SERVER_ERROR, which translates to an HTML
response status code of 500. This matches the output generated by the curl
tool.

Before we move on, make sure you correct the database URL username to
the right value in the .env file, otherwise future tests will fail.

We have thus implemented custom error handling for the first API. Let’s also
ensure that the test scripts are not broken. Run the tests as follows:

cargo test --bin iter4

You will find that the compiler throws errors. This is because our test script
also must be modified to receive an error response from the handler. Make
changes to the test script in handlers.rs as shown:

Listing 5.6. Test script for getting all courses for tutor

 #[actix_rt::test]

 async fn get_all_courses_success() {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let pool: PgPool = PgPool::connect(&database_url).await.unwrap();

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 db: pool,

 });

 let tutor_id: web::Path<i32> = web::Path::from(1);

 let resp = get_courses_for_tutor(

 [CA]app_state, tutor_id).await.unwrap(); #1

 assert_eq!(resp.status(), StatusCode::OK);

 }

Note: Actix web does not support propagating errors using the question mark
(?) operator, so we have to use unwrap() or expect() to extract the HTTP
response from the Result type.

Rerun the following command from the command-line:

 cargo test get_all_courses_success --bin iter4

You should see the tests successfully run.

You’ll notice that in the previous command, we ran only the specific test case
get_all_courses_success. In case you run the entire test suite with cargo test -
-bin iter4, you may get an error similar to this:

DBError("duplicate key value violates unique constraint")

This is because everytime the test suite is run, a new record with course_id =
3 is inserted into the table. If the tests are run the second time, this insertion
of record fails as course_id is the primary key in table, and there cannot be
two records with the same course_id. In such a case, simply login to the psql
shell and delete the entry with course_id = 3 from the table ezy_course_c5.

There is a simpler option though. You can tell the cargo test executor to
ignore any specific test case in the test suite with the #[ignore] annotation.
You can specify this annotation as shown:

 #[ignore]

 #[actix_rt::test]

 async fn post_course_success() {

 }

Now, you can run the entire test suite with cargo test --bin iter4, and you will
see something similar to this printed on your console:

running 3 tests

test handlers::tests::post_course_success ... ignored

test handlers::tests::get_all_courses_success ... ok

test handlers::tests::get_course_detail_test ... ok

test result: ok. 2 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out

You’ll notice that the post_course_success test case has been ignored and the
other two tests have been run.

We now have to perform the same steps for the other two APIs also, i.e.,
change database access functions, handler methods and test scripts.

5.5 Error handling for retrieving course details

Let’s look at the changes needed to incorporate error handling for the second
API, i.e., getting course details.

Here is the updated database access code in db_access.rs:

Listing 5.7. Error handling in function to get course details

pub async fn get_course_details_db(pool: &PgPool, tutor_id: i32,

[CA]course_id: i32) -> Result<Course, EzyTutorError> {

 // Prepare SQL statement

 let course_row = sqlx::query!(

 "SELECT tutor_id, course_id, course_name, posted_time

 [CA]FROM ezy_course_c5 where tutor_id = $1 and course_id = $2",

 tutor_id, course_id

)

 .fetch_one(pool)

 .await;

 if let Ok(course_row) = course_row { #2

 // Execute query

 Ok(Course {

 course_id: course_row.course_id,

 tutor_id: course_row.tutor_id,

 course_name: course_row.course_name.clone(),

 posted_time: Some(chrono::NaiveDateTime::from(

 [CA]course_row.posted_time.unwrap())),

 })

} else {

 Err(EzyTutorError::NotFound("Course id not found".into()))

}

}

Let’s update the handler function:

pub async fn get_course_details(

 app_state: web::Data<AppState>,

 path: web::Path<(i32, i32)>,

) -> Result<HttpResponse, EzyTutorError> { #1

 let (tutor_id, course_id) = path.into_inner();

 get_course_details_db(&app_state.db, tutor_id, course_id)

 .await

 .map(|course| HttpResponse::Ok().json(course)) #2

}

Restart the web service with

cargo run --bin iter4

Access the valid URL as shown:

http://localhost:3000/courses/1/2

You will see the course details displayed as before. Now try accessing details
for an invalid course id:

http://localhost:3000/courses/1/10

You should see the following error message in the browser:

{"error_message":"Course id not found"}

Let’s also alter the test script async fn get_course_detail_test() in handlers.rs
to accommodate errors returned from the handler function.

let resp = get_course_details(app_state, parameters).await.unwrap(); #1

Run the test with:

cargo test get_course_detail_test --bin iter4

The test should pass.

Next, we’ll incorporate error handling for posting a new course.

5.6 Error handling for posting a new course

We’ll basically follow the same set of steps like for the other two APIs, i.e.
modify the database access function, the handler function and the test script.

Let’s start with the database access function in db_access.rs.

Listing 5.8. Error handling in database access function to post new course

pub async fn post_new_course_db(

 pool: &PgPool,

 new_course: Course,

) -> Result<Course, EzyTutorError> { #1

 let course_row = sqlx::query!("insert into ezy_course_c5 (

 [CA]course_id,tutor_id, course_name) values ($1,$2,$3)

 [CA]returning tutor_id, course_id,course_name, posted_time",

 [CA]new_course.course_id, new_course.tutor_id, new_course.course_name)

 .fetch_one(pool)

 .await?; #2

 //Retrieve result

 Ok(Course { #3

 course_id: course_row.course_id,

 tutor_id: course_row.tutor_id,

 course_name: course_row.course_name.clone(),

 posted_time: Some(chrono::NaiveDateTime::from(

 [CA]course_row.posted_time.unwrap())),

 })

}

Update the handler function:

pub async fn post_new_course(

 new_course: web::Json<Course>,

 app_state: web::Data<AppState>,

) -> Result<HttpResponse, EzyTutorError> { #1

 post_new_course_db(&app_state.db, new_course.into())

 .await

 .map(|course| HttpResponse::Ok().json(course)) #2

}

Finally, update the test script async fn post_course_success() in handlers.rs
to add unwrap() on the return value from database access function, as shown:

 #[actix_rt::test]

 async fn post_course_success() {

 /// all code not shown here

 let resp = post_new_course(course_param, app_state).await.unwrap();

 #1

 assert_eq!(resp.status(), StatusCode::OK);

 }

Rebuild and restart the web service with:

cargo run --bin iter4

Post a new course from command line with:

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"

[CA]-d '{"course_id":4, "tutor_id": 1,

[CA]"course_name":"This is the fourth course!"}'

Verify that the new course has been added with the following URL on the
browser:

http://localhost:3000/courses/1/4

Run the tests with:

cargo test --bin iter4

All three tests should successfully pass.

Let’s do a quick recap. In this chapter, you have learnt how to transform
different types of errors encountered in the web service into a custom error
type, and how to transform that into an HTTP Response message, thus
providing a meaningful message to the client in case of server errors. Along
the way, you have also picked up finer concepts of error handling in Rust that
can be applied to any Rust application. More importantly, you now know
how to handle failures gracefully, provide meaningful feedback to users, and
build a solid and stable web service.

With this, you have also completed the implementation of error handling for
the three APIs for the tutor web service. The web service is backed by a
database and can handle database and actix errors, and also invalid inputs
from users. Congratulations!

5.7 Summary

1. Rust provides a robust and ergonomic error handling approach with
features such as Result type, combinator functions such as map and
map_err that operate on the Result type, quick code prototyping options
withunwrap() and expect(), the ? operator to reduce code boilerplate,
and the ability to convert errors from one error type to another using the
From trait.

2. Actix web builds on top of Rust’s error handling features to include its
own Error type and the ResponseError trait. These enable Rust
programmers to define custom error types and have the Actix web
framework automatically convert them into meaningful HTTP response
messages at runtime, for sending back to the web client or user. Further,
Actix web provides built-in From implementations to convert Rust
standard library error types into Actix Error type, and also provides
default ResponseError trait implementations to convert Rust standard
library error types into HTTP Response messages.

3. Implementing custom error handling in Actix involves the following
steps:

Define a data structure to represent a custom error type,
Define possible values the custom error type can take (for example,
database errors, not found errors etc)
Implement ResponseError trait on the custom error type
Implement From traits to convert various types of errors (such as
sqlx errors or Actix web errors) into custom error type
Change the return values of database access functions and route
handler functions, to return the custom error type in case of errors.
The Actix web framework then converts the custom error type into
an appropriate HTTP response, and embeds the error message
within the body of the HTTP response.

4. In this chapter, custom error handling was incorporated for each of the
three APIs in the tutor web service.

Our tutor web service is now functional with a full-fledged database to
persist data, and a robust error handling framework that can be customized
further as the features evolve. In the next chapter, we will deal with another
typical real-world situation, i.e. changes in product requirements from

management team, and additional feature requests from users. Will Rust
stand up to the test of large-scale refactoring of code?

Switch to the next chapter to find out.

6 Evolving the APIs and fearless
refactoring
This chapter covers

Revamping the project structure
Enhancing the data model for course creation & management
Enabling tutor registration and management

In the previous chapter, we covered the basics of error handling in Rust and
how we can design custom error handling for our web service. After working
through the last few chapters, you should by now have the foundational
understanding of how a web service is structured using the Actix web
framework, how you can talk to a relational database for CRUD activities,
and how to handle any errors that occur while processing incoming data and
requests.

In this chapter, we will step up the pace and deal with something that we
cannot avoid in the real-world: changes.

Every actively-used web service or application evolves significantly over its
lifecycle, based on user feedback or business requirements. And many of
these newer requirements could mean breaking changes to the web
service/application. In this chapter, you’ll learn how Rust helps you cope
with situations involving drastic changes in the design and rewriting
significant parts of your existing code. You’ll use the power of the Rust
compiler and the features of the language, to come out of this challenge with
a smile on your face.

In this chapter you will fearlessly take on several changes to the web service.
You’ll redesign the data model for courses, add course routes, modify handler
and database access functions and update the test cases. You’ll also design
and build a new module in the application to manage tutor information, and
to define the relationship between tutors and courses. You’ll enhance the

error handling features of the web service to cover edge cases. If this isn’t
enough, you’ll also fully revamp the project code and directory structure to
neatly segregate code across Rust modules.

There’s no time to waste, let’s get going.

6.1 Revamping the project structure

In the previous chapter, we focused on creating and maintaining basic course
data. In this chapter we’ll enhance the course module, and also add
functionality to create and maintain tutor information. As the size of the
codebase will grow, this is a good time to rethink the project structure. So in
this section, we’ll start by reorganizing the project into a structure that aids in
code development and maintenance as the application becomes larger and
more complex.

Figure 6.1 shows two views. On the left is the project structure that we’ll start
with. On the right is the structure that we’ll end up with.

Figure 6.1. Project structure

The main change you will notice is that in the proposed project structure,
dbaccess, handlers and models are not single files, but represent folders. The
database access code for Course and Tutor will be organized under dbaccess
folder. Likewise, for models and handlers. This approach reduces the length
of individual files, while making it quicker to navigate to what you are
looking for, though it adds some complexity to the project structure.

Before we begin, let’s set up the PROJECT_ROOT environment variable to
point to the full path of the project root(ezytutors/tutor_db).

export PROJECT_ROOT=<full-path-to ezytutors/tutor-db folder>

Verify that it is set correctly using

echo $PROJECT_ROOT

Henceforth, the term project root would refer to the folder path stored in
$PROJECT_ROOT environment variable. References to other files in this
chapter will be made with respect to the project root.

The code structure is described here:

1. $PROJECT_ROOT/src/bin/iter5.rs : main() function.
2. $PROJECT_ROOT/src/iter5/routes.rs: Contains routes. This will

continue to be a single file containing all routes
3. $PROJECT_ROOT/src/iter5/state.rs: Application state containing the

dependencies that are injected into each thread of application execution.
4. $PROJECT_ROOT/src/iter5/errors.rs: Custom error data structure and

associated error handling functions
5. $PROJECT_ROOT/.env: Environment variables containing database

access credentials. This file should not be checked into the code
repository.

6. $PROJECT_ROOT/src/iter5/dbscripts: Database tables creation
scripts for postgres.

7. $PROJECT_ROOT/src/iter5/handlers:

1. $PROJECT_ROOT/src/iter5/handlers/course.rs: Course-related
handler functions

2. $PROJECT_ROOT/src/iter5/handlers/tutor.rs: Tutor-related
handler functions

3. $PROJECT_ROOT/src/iter5/handlers/general.rs: Health check
handler function

4. $PROJECT_ROOT/src/iter5/handlers/mod.rs: Converting the
directory handlers into a Rust module, so the Rust compiler knows
how to find the dependent files.

8. $PROJECT_ROOT/src/iter5/models:

1. $PROJECT_ROOT/src/iter5/models/course.rs: Course-related data
structures and utility methods

2. $PROJECT_ROOT/src/iter5/models/tutor.rs: Tutor-related data
structures and utility methods

3. $PROJECT_ROOT/src/iter5/models/mod.rs: Converting the
directory models into a Rust module, so the Rust compiler knows
how to find the dependent files.

9. $PROJECT_ROOT/src/iter5/dbaccess:

1. $PROJECT_ROOT/src/iter5/dbaccess/course.rs: Course-related
database-access methods

2. $PROJECT_ROOT/src/iter5/dbaccess/tutor.rs: Tutor-related
database-access methods

3. $PROJECT_ROOT/src/iter5/dbaccess/mod.rs: Converting the
directory dbaccess into a Rust module, so the Rust compiler knows
how to find the dependent files.

Copy the code from chapter5’s iter4 folder as the starting point for this
chapter.

Without adding any new functionality, let’s just reorganize the existing code
of chapter 5, into this new project structure.

Start with the following steps:

1. Rename $PROJECT_ROOT/src/bin/iter4.rs to
$PROJECT_ROOT/src/bin/iter5.rs

2. Rename $PROJECT_ROOT/src/iter4 folder to
$PROJECT_ROOT/src/iter5

3. Under $PROJECT_ROOT/src/iter5 create three subfolders dbaccess,
models and handlers_.

4. Move and rename $PROJECT_ROOT/src/iter5/models.rs to
$PROJECT_ROOT/src/iter5/models/course.rs

5. Create two more files under $PROJECT_ROOT/src/iter5/models folder
- tutor.rs and mod.rs. Leave both files blank for now.

6. Move and rename $PROJECT_ROOT/src/iter5/dbaccess.rs to
$PROJECT_ROOT/src/iter5/dbaccess/course.rs.

7. Create two more files under $PROJECT_ROOT/src/iter5/dbaccess
folder - tutor.rs and mod.rs. Leave both files blank for now.

8. Move and rename $PROJECT_ROOT/src/iter5/handlers.rs to
$PROJECT_ROOT/src/iter5/handlers/course.rs.

9. Create three more files under $PROJECT_ROOT/src/iter5/handlers
folder - tutor.rs, general.rs and mod.rs. Leave all three files blank for
now.

10. Create a folder $PROJECT_ROOT/src/iter5/dbscripts. Move and
rename the existing database.sql file in the project folder to this
directory, and rename it as course.sql. We’ll modify this file later.

At this stage, ensure that your project structure looks similar to that shown in
figure 6.1. Now that we have the project folder structure in place, let’s
modify the existing code to align to this new structure.

11. In the mod.rs file under $PROJECT_ROOT/src/iter5/dbaccess and
$PROJECT_ROOT/src/iter5/models folders, add the following code.

pub mod course;

pub mod tutor;

This tells the Rust compiler to consider the contents of the folders
$PROJECT_ROOT/src/iter5/models and
$PROJECT_ROOT/src/iter5/dbaccess as Rust modules. This allows us to, for
example, refer and use the Course data structure in another source file like
this. Note the similarity between the folder structure and module
organisation.

use crate::models::course::Course;

12. Similarly, in the mod.rs file under $PROJECT_ROOT/src/iter5/handlers,
add the following code.

pub mod course;

pub mod tutor;

pub mod general;

13. Add the following imports to
$PROJECT_ROOT/src/iter5/handlers/general.rs:

use super::errors::EzyTutorError;

use super::state::AppState;

use actix_web::{web, HttpResponse};

Further move the function pub async fn health_check_handler() {..} from
$PROJECT_ROOT/src/iter5/handlers/course.rs to
$PROJECT_ROOT/src/iter5/handlers/general.rs.

14. Let’s now move to the main() function. In
$PROJECT_ROOT/src/bin/iter5, adjust the module declaration paths to look
like this:

#[path = "../iter5/dbaccess/mod.rs"]

mod dbaccess;

#[path = "../iter5/errors.rs"]

mod errors;

#[path = "../iter5/handlers/mod.rs"]

mod handlers;

#[path = "../iter5/models/mod.rs"]

mod models;

#[path = "../iter5/routes.rs"]

mod routes;

#[path = "../iter5/state.rs"]

mod state;

15. Adjust the module import paths in
$PROJECT_ROOT/src/iter5/dbaccess/course.rs as shown:

use crate::errors::EzyTutorError;

use crate::models::course::Course;

16. Adjust the module import paths in
$PROJECT_ROOT/src/iter5/handlers/course.rs as shown:

use crate::dbaccess::course::*;

use crate::errors::EzyTutorError;

use crate::models::course::Course;

17. Lastly, adjust the module paths in $PROJECT_ROOT/src/iter5/routes.rs
as shown:

use crate::handlers::{course::*, general::*};

In this code refactoring exercise, ensure you do not delete any of the other
import statements already existing, such as those related to Actix web. These
are not mentioned because there is no change to their module paths.

Now from the project root check for compilation errors with the following
command:

cargo check

You can also run the test script, which should execute successfully:

cargo test

If there are still any errors, revisit the steps. Otherwise, you should see the
compilation going through successfully. Congratulations, you’ve successfully
completed the refactoring of the project code into the new structure.

By way of recap, what we have done is that the code has been split into
multiple smaller files, each performing a specific function (in line with single
responsibility principle in software engineering). Secondly, we have grouped
related files under common folders. For example, the database access code
for tutors and courses is in separate source files, while both the source files
are together placed under a dbaccess folder. We have clearly separated the
namespaces (through use of Rust modules) for handler functions, database
access, data model, routes, errors, database scripts, application state and error
handling. This kind of intuitive project structure and file-naming enables
collaboration among multiple developers that are involved in reviewing and
modifying a code repository, speeds up ramp-up time for new team member
onboarding, and reduces time-to-release for defect fixes and code
enhancements. But this type of structure could be an overkill for small
projects, so decisions on refactoring code should be made based on how code
and functional complexity evolves over time.

We can now focus on functionality enhancements starting from the next
section.

6.2 Enhancing the data model for course creation &
management

In this section, we’ll enhance the course-related APIs which will involve
changes to the Rust data model, database table structure, routes, handlers and
database access functions.

Figure 6.2 shows the final code structure for course-related APIs. In the
figure, the course-related API routes are listed, along with the names of the
respective handler functions and database access functions.

Figure 6.2. Code structure for course-related APIs

Note the general naming convention followed for the database access
functions, which are named by using the corresponding handler function

name, and suffixing db to it.

Let’s start by looking at the current Course data model in
$PROJECT_ROOT/src/iter5/models/course.rs.

pub struct Course {

 pub course_id: i32,

 pub tutor_id: i32,

 pub course_name: String,

 pub posted_time: Option<NaiveDateTime>,

}

This data structure has served its purpose until now, but it is elementary. It’s
time to add more real-world attributes to describe a course. Let’s enhance the
Course struct to add the following details:

Description: Textual information describing the course so prospective
students can decide if the course is for them
Format: The course can be delivered in multiple-formats such as self-
paced video course, e-book format or as instructor-led in-person
training.
Structure of course: We’ll right now allow the tutor to upload a
document that describes the course (such as a brochure in pdf format).
Duration of course: Length of the course. This is typically described in
terms of duration of video recording for video-based courses, duration of
in-person training hours, or recommended study hours in case of e-
books.
Price: Specify the course price in US dollars
Language: Since we expect to have an international audience for the
web app, let’s also allow courses in multiple languages.
Level: This denotes the level of the student the course is targeted at.
Possible values include Beginner, Intermediate and Expert.

In the next subsection, let’s make the actual changes to the Rust data model.

6.2.1 Making changes to the data model

Let’s begin the changes, starting with file imports.

Here is the original set of imports:

use actix_web::web;

use chrono::NaiveDateTime;

use serde::{Deserialize, Serialize};

Let’s now alter the Course data structure to incorporate the additional data
elements that we wish to capture.

Here is the updated Course data structure in
$PROJECT_ROOT/src/iter5/models/course.rs:

#[derive(Serialize, Debug, Clone, sqlx::FromRow)]

pub struct Course {

 pub course_id: i32,

 pub tutor_id: i32,

 pub course_name: String,

 pub course_description: Option<String>,

 pub course_format: Option<String>,

 pub course_structure: Option<String>,

 pub course_duration: Option<String>,

 pub course_price: Option<i32>,

 pub course_language: Option<String>,

 pub course_level: Option<String>,

 pub posted_time: Option<NaiveDateTime>,

}

Note that we’ve declared a struct that has three mandatory fields - course_id,
tutor_id and course_name, and the rest are optional (denoted by Option<T>
type). This is to reflect the possibility that a course record in the database
may not have values for these optional fields.

We’ve also auto-derived a few traits. Serialize is to be able to send the fields
of course struct back to the api client. Debug is to enable printing of struct
values during the development cycle. Clone is to help us duplicate string
values, while complying with the Rust ownership model. sqlx::FromRow is
to enable automatic conversion of a database record into the Course struct,
while reading values from the database. We’ll see how to implement this
feature when we write the database access functions.

If we look at the Course data structure, there are a couple of fields- posted
time, and course id which we plan to auto-generate at the database-level. So,

while we need these fields to fully represent a Course record, we don’t need
these to be sent by an api client, in order to create a new course. So, how do
we handle these different representations of a Course?.

Let’s create a separate data structure that would only contain the fields
relevant for the front-end for creation of a new course.

Here is the new struct CreateCourse:

#[derive(Deserialize, Debug, Clone)]

pub struct CreateCourse {

 pub tutor_id: i32,

 pub course_name: String,

 pub course_description: Option<String>,

 pub course_format: Option<String>,

 pub course_structure: Option<String>,

 pub course_duration: Option<String>,

 pub course_price: Option<i32>,

 pub course_language: Option<String>,

 pub course_level: Option<String>,

}

From this struct, we are conveying the intent that for creating a new course,
tutor_id and course_id are mandatory fields, and the rest are optional, as far
as the api client is concerned. But note that for the tutor web service, both
course_id and posted_time are also mandatory fields for creating a new
course, but these will be auto-generated internally.

You’ll also notice that we’ve auto-derived Deserialize trait for CreateCourse,
whereas we had auto-derived Serialize trait for Course struct. Why do you
think we’ve done this?

This is because the CreateCourse struct will be used as the data structure to
carry inputs from the user to the web service as part of the HTTP request
body. Hence, the Actix-web framework needs to have a way to deserialize the
data coming in over the wire into the CreateCourse Rust struct. (Note that for
HTTP requests, the API client serializes the data payload for transmission,
while the Actix-framework at the receiving end will deserialize the data back
into a suitable form for processing by application).

To be precise, the Actix web framework serializes the incoming data payload

into an Actix data type web::Json<CreateCourse>, but our application does
not understand this type. So, we’ll have to convert this Actix type into a
regular Rust struct. We’ll implement the Rust From trait to write the
conversion function, which we can then invoke at run-time, whenever a new
HTTP request is received to create a new course.

impl From<web::Json<CreateCourse>> for CreateCourse {

 fn from(new_course: web::Json<CreateCourse>) -> Self {

 CreateCourse {

 tutor_id: new_course.tutor_id,

 course_name: new_course.course_name.clone(),

 course_description: new_course.course_description.clone(),

 course_format: new_course.course_format.clone(),

 course_structure: new_course.course_structure.clone(),

 course_level: new_course.course_level.clone(),

 course_duration: new_course.course_duration.clone(),

 course_language: new_course.course_language.clone(),

 course_price: new_course.course_price,

 }

 }

}

Note that this conversion is relatively straight-forward , however if there is a
possibility of errors during conversion, we would use the TryFrom trait,
instead of the From trait. Errors can occur, for example, if we call any Rust
standard lib function that returns a Result type, such as converting a string
value to an integer.

The same conversion function implementing the TryFrom trait is shown here
just as a reference:

First you’ll need to import the TryFrom trait from the Rust standard library.

use std::convert::TryFrom;

Then you’ll need to implement the try_from function and declare the type for
Error that will be returned in case of problems in processing.

impl TryFrom<web::Json<CreateCourse>> for CreateCourse {

 type Error = EzyTutorError;

 fn try_from(new_course: web::Json<CreateCourse>) ->

 [CA]Result<Self, Self::Error> {

 Ok(CreateCourse {

 tutor_id: new_course.tutor_id,

 course_name: new_course.course_name.clone(),

 course_description: new_course.course_description.clone(),

 course_format: new_course.course_format.clone(),

 course_structure: new_course.course_structure.clone(),

 course_level: new_course.course_level.clone(),

 course_duration: new_course.course_duration.clone(),

 course_language: new_course.course_language.clone(),

 course_price: new_course.course_price,

 })

 }

}

Note that Error is a type placeholder associated with the TryFrom trait. We
are declaring it to be of type EzyTutorError since we would like to unify all
error handling with the EzyTutorError type. Within the function, we can then
raise errors of type EzyTutorError in case of faults.

However for our purposes here, it would suffice to use the From trait, as we
do not anticipate any failure conditions during this conversion. Usage of
TryFrom trait is only shown here to demonstrate how to use it if the need
arises.

We now have a way to receive data from an api client for creating a new
course. What about course updates? Can we use the same CreateCourse
struct? We cannot. This is because, while updating a course, we don’t want to
allow the tutor_id to be modified as we don’t want the course created by one
tutor to be switched over to another tutor. Secondly, the course_name field in
CreateCourse struct is mandatory. For updating a course, we don’t want to
force the user to update the name everytime. So, let’s create another struct
that’s more suitable for updating course details.

#[derive(Deserialize, Debug, Clone)]

pub struct UpdateCourse {

 pub course_name: Option<String>,

 pub course_description: Option<String>,

 pub course_format: Option<String>,

 pub course_structure: Option<String>,

 pub course_duration: Option<String>,

 pub course_price: Option<i32>,

 pub course_language: Option<String>,

 pub course_level: Option<String>,

}

Note that all the fields here are optional, which is the way it should be for a
good user experience.

We’ll also have to write the From trait implementation for UpdateCourse,
similar to that for CreateCourse. Here is the code:

impl From<web::Json<UpdateCourse>> for UpdateCourse {

 fn from(update_course: web::Json<UpdateCourse>) -> Self {

 UpdateCourse {

 course_name: update_course.course_name.clone(),

 course_description: update_course.course_description.clone(),

 course_format: update_course.course_format.clone(),

 course_structure: update_course.course_structure.clone(),

 course_level: update_course.course_level.clone(),

 course_duration: update_course.course_duration.clone(),

 course_language: update_course.course_language.clone(),

 course_price: update_course.course_price,

 }

 }

}

Before we forget, in the file $PROJECT_ROOT/src/iter5/models/course.rs,
delete the From trait implementation to convert from web::Json<Course> to
Course struct, which we wrote in the previous chapter, as we now have
separate structs for receiving data from users (CreateCourse and
UpdateCourse) and for sending data back (Course).

This concludes the data model changes for the Course data struct.

However, we’re not done yet. We have to change the model of the physical
database tables to add the new fields.

In the course.sql file under $PROJECT_ROOT/src/iter5/dbscripts, add the
following database scripts:

/* Drop tables if they already exist*/

drop table if exists ezy_course_c6;

/* Create tables. */

/* Note: Don't put a comma after last field */

create table ezy_course_c6

(

 course_id serial primary key,

 tutor_id INT not null,

 course_name varchar(140) not null,

 course_description varchar(2000),

 course_format varchar(30),

 course_structure varchar(200),

 course_duration varchar(30),

 course_price INT,

 course_language varchar(30),

 course_level varchar(30),

 posted_time TIMESTAMP default now()

);

Note the main changes compared to the script we wrote in the previous
chapter:

1. Database table name now has the c6 suffix. This is to allow us to test the
code for each chapter independently.

2. The additional data elements we have designed in the Course data
structure are reflected in the table creation script.

3. Note in particular the use of NOT NULL constraint specified for tutor_id
and course_name. This will be enforced by the database, and we’ll not
be able to add a record without these columns. In addition, course_id
which is marked as the primary key and posted_time which is
automatically set to current time by default, are also enforced at the
database-level. The rest of the fields that do not have a NOT NULL
constraint are optional columns. If you refer back to the Course struct,
you’ll notice that these columns are also the ones marked as Option<T>
type in the Course struct definition. In this way, we have aligned the
database column constraints with the Rust struct.

To test the database script, run the following command from the command-
line. Make sure the right path to the script file is specified.

psql -U <user-name> -d ezytutors < <path.to.file>/course.sql

Replace <user-name> and <path.to-file> with your own, and enter password

if prompted. You should see the scripts execute successfully. To verify that
the tables have indeed been created as per the script specification, login to
psql shell with the following command and verify:

psql -U <user-name> -d ezytutors

\d #1

\d+ ezy_course_c6 #2

\q #3

After creating the new table, we need to give permissions to the database
user. Run the following commands from the terminal command-line.

psql -U <user-name> -d ezytutors // Login to psql shell

GRANT ALL PRIVILEGES ON TABLE __ezy_course_c6__ to <user-name>

\q // Quit the psql shell

Replace the <user-name> with your own, and execute the commands. This
<user-name> should be the same as that you’ve configured in the .env file.
Note that you can also choose to execute this step directly as part of the
database scripts after creating the table, should you choose.

With this, we conclude the data model changes.

In the next subsection, let’s make the changes to the API processing logic to
accommodate the data model changes.

6.2.2 Making changes to Course APIs

Recall that in the previous section, we enhanced the data model for Course,
and created new database scripts to create the new structure of the Course
that we have designed.

We’ll now have to modify the application logic to incorporate the data model
changes. To verify this, just run the following command from the project
root:

cargo check

You’ll see that there are errors in the database access and handler functions
that need to be fixed. Let’s do that now.

We’ll start with the routes in $PROJECT_ROOT/src/iter5/routes.rs. Modify
the code to look like this:

use crate::handlers::{course::*, general::*};

use actix_web::web;

pub fn general_routes(cfg: &mut web::ServiceConfig) {

 cfg.route("/health", web::get().to(health_check_handler));

}

pub fn course_routes(cfg: &mut web::ServiceConfig) {

 cfg.service(

 web::scope("/courses")

 .route("", web::post().to(post_new_course)) #1

 .route("/{tutor_id}", web::get().to(get_courses_for_tutor)) #2

 .route("/{tutor_id}/{course_id}", web::get().to(get_course_details)) #3

 .route(

 "/{tutor_id}/{course_id}",

 web::put().to(update_course_details), #4

)

 .route("/{tutor_id}/{course_id}", web::delete().to(delete_course)), #5

);

}

Note that we are importing the handler functions from two modules:
crate::handlers::course and crate::handlers::general.

Also note the use of the appropriate HTTP methods for the various routes, for
example post() method to create a new course, get() method to retrieve a
single course or a list of courses, put() method to update a course and delete()
method for deleting a course.

Notice also the use of URL path parameters {tutor_id} and {course_id} to
identify specific resources on which to operate.

You may have a question at this point about the CreateCourse and
UpdateCourse structs that we designed as part of the data model to enable
creation and update of course records. Why are they not visible in the routes
definition? This is because these structs are sent as part of the HTTP request
payload, which is automatically extracted by Actix and made available to the
respective handler functions. Only the URL Path parameters, HTTP methods
and names of handler functions for a route are specified as part of the routes

declaration in Actix Web.

Let’s next focus on the handler functions in
$PROJECT_ROOT/src/iter5/handlers/course.rs.

Here are the module imports:

use crate::dbaccess::course::*;

use crate::errors::EzyTutorError;

use crate::models::course::{CreateCourse, UpdateCourse};

use crate::state::AppState;

use actix_web::{web, HttpResponse};

First, recall that the handler functions are called whenever an HTTP request
arrives at one of the routes defined in routes.rs. In case of courses, for
example, it can be a GET request to retrieve a list of courses for a tutor or a
POST request to create a new course. The handler functions corresponding to
each of the valid course routes will be stored in this file. The handler
functions, in turn, make use of the Course data models and database access
functions, and these are reflected in the module imports.

Here, we’re importing the database access functions (as the handlers will
invoke them), custom error type, data structures from the Course model,
AppState (for database connection pool), and Actix utilities needed for HTTP
communications with the client front-end.

Let’s write the various handler functions corresponding to the routes, one by
one.

Here is the handler method to retrieve all courses for a tutor.

pub async fn get_courses_for_tutor(

 app_state: web::Data<AppState>,

 path: web::Path<i32>,

) -> Result<HttpResponse, EzyTutorError> {

 let tutor_id = path.into_inner();

 get_courses_for_tutor_db(&app_state.db, tutor_id)

 .await

 .map(|courses| HttpResponse::Ok().json(courses))

}

This function accepts a URL path parameter that refers to the tutor_id, which
is encapsulated in the Actix data structure web::Path<i32>. The function
returns an HTTP Response containing either the data requested, or an error
message.

The handler function in turn invokes the database access function
get_courses_for_tutor_db to access the database and retrieve the course list.

The return value from the database access function is handled through the
map construct in Rust to construct a valid HTTP Response message with the
success code, and send the list of courses back as part of the HTTP response
body.

In case of errors while accessing the database, the database access functions
raise error of type EzyTutorError which is then propagated back to the
handler functions, where this error is transformed into an Actix error type,
and then sent back to the client through a valid HTTP Response message.
This error translation is handled by the Actix framework, provided the
application implements the Actix ResponsError trait on the EzyTutorError
type, which we have done in the previous chapter.

Let’s next look at the code for retrieving an individual course record.

pub async fn get_course_details(

 app_state: web::Data<AppState>,

 path: web::Path<(i32, i32)>,

) -> Result<HttpResponse, EzyTutorError> {

 let (tutor_id, course_id) = path.into_inner();

 get_course_details_db(&app_state.db, tutor_id, course_id)

 .await

 .map(|course| HttpResponse::Ok().json(course))

}

Similar to the previous function, this function is also invoked in response to
an HTTP::GET request. The difference is that here, we will receive the
tutor_id and course_id as part of URL path parameters, which will help us
uniquely identify a single course record in the database.

Note the use of .await keyword in these handler functions while invoking the
corresponding database access functions. Since the database access library we

use,sqlx, uses an asynchronous connection to the database, we use the .await
keyword to denote an asynchronous call to communicate with the database.

Moving on, here is the code for the handler function to post a new course.

pub async fn post_new_course(

 new_course: web::Json<CreateCourse>,

 app_state: web::Data<AppState>,

) -> Result<HttpResponse, EzyTutorError> {

 post_new_course_db(&app_state.db, new_course.into()?)

 .await

 .map(|course| HttpResponse::Ok().json(course))

}

This handler function is invoked for an HTTP::POST request received on the
route specified in the routes.rs file. The Actix framework deserializes the
HTTP request body of this POST request, and makes the data available to the
post_new_course() handler function within the web::Json<CreateCourse>
data structure. Recall that we have written a conversion method to convert
from web::Json<CreateCourse> to CreateCourse struct as part of the From
trait implementation in models/course.rs file, which we are invoking within
the handler function using the expression new_course.into()?. Note that if we
had implemented the conversion function using the TryFrom trait instead of
the From trait, we would invoke the conversion using
new_course.try_into()?, with the ? denoting the possibility of an error being
returned from the conversion function.

In this handler function, after a new course is created, the database access
function returns the newly created course record, which is then sent back
from the web service within the body of an HTTP Response message.

Next, let’s look at the handler function to delete a course.

pub async fn delete_course(

 app_state: web::Data<AppState>,

 path: web::Path<(i32, i32)>,

) -> Result<HttpResponse, EzyTutorError> {

 let (tutor_id, course_id) = path.into_inner();

 delete_course_db(&app_state.db, tutor_id, course_id)

 .await

 .map(|resp| HttpResponse::Ok().json(resp))

}

This handler function is invoked in response to an HTTP::DELETE request.
The handler function invokes the delete_course_db database access function
to perform the actual deletion of the course record in the database. On
successful deletion, the handler function receives a message confirming
successful deletion, which is then sent back as part of the HTTP Response.

Here is the handler function to update details for a course.

pub async fn update_course_details(

 app_state: web::Data<AppState>,

 update_course: web::Json<UpdateCourse>,

 path: web::Path<(i32, i32)>,

) -> Result<HttpResponse, EzyTutorError> {

 let (tutor_id, course_id) = path.into_inner();

 update_course_details_db(&app_state.db, tutor_id,

 [CA]course_id, update_course.into())

 .await

 .map(|course| HttpResponse::Ok().json(course))

}

This handler function is invoked in response to an HTTP::PUT request on the
specified route in routes.rs file. It receives two URL path parameters -
tutor_id and course_id which are used to uniquely identify a course in the
database. The input parameters for the course to be modified are sent from
the web/API front-end to the Actix web server route as part of the HTTP
request body, and this is made available by Actix to the handler function as
web::Json::UpdateCourse.

Note the use of update_course.into() expression. This is used to convert
web::json::UpdateCourse to UpdateCourse struct. To achieve this, we’ve
earlier implemented the From trait in the models/course.rs file.

The updated course details are then sent back as part of the HTTP response
message.

Let’s also write the unit test cases for the handler functions.

In the handlers/course.rs file, add test cases (after the code for handler
functions) within the tests module as shown:

#[cfg(test)]

mod tests {

 //write test cases here

}

All the test cases and module imports for testing should be placed within this
tests module block.

Let’s add the module imports first:

 use super::*;

 use actix_web::http::StatusCode;

 use actix_web::ResponseError;

 use dotenv::dotenv;

 use sqlx::postgres::PgPool;

 use std::env;

 use std::sync::Mutex;

Let’s start with the test case for getting all courses for a tutor.

 #[actix_rt::test]

 async fn get_all_courses_success() {

 dotenv().ok(); #1

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file"); #2

 let pool: PgPool = PgPool::connect(&database_url).await.unwrap();

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 db: pool,

 });

 let tutor_id: web::Path<i32> = web::Path::from(1); #5

 let resp = get_courses_for_tutor(

 [CA]app_state, tutor_id).await.unwrap(); #6

 assert_eq!(resp.status(), StatusCode::OK); #7

 }

Here is the test case to retrieve an individual course.

 #[actix_rt::test]

 async fn get_course_detail_success_test() {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let pool: PgPool = PgPool::connect(&database_url).await.unwrap();

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 db: pool,

 });

 let parameters: web::Path<(i32, i32)> = web::Path::from((1, 2));

 let resp = get_course_details(app_state, parameters).await.unwrap();

 assert_eq!(resp.status(), StatusCode::OK);

 }

The test function is mostly similar to the previous one, except that here we
are retrieving a single course from the database.

What happens if we provide an invalid course id or tutor id? In the handler
and database access functions, we handle such a case by returning an error.
Let’s see if we can verify this scenario.

 #[actix_rt::test]

 async fn get_course_detail_failure_test() {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let pool: PgPool = PgPool::connect(&database_url).await.unwrap();

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 db: pool,

 });

 let parameters: web::Path<(i32, i32)> = web::Path::from((1, 21));

 let resp = get_course_details(app_state, parameters).await;

 match resp {

 Ok(_) => println!("Something wrong"),

 Err(err) => assert_eq!(err.status_code(),

 [CA]StatusCode::NOT_FOUND), #3

 }

 }

Next, we’ll write the test case to post a new course.

 #[ignore]

 #[actix_rt::test]

 async fn post_course_success() {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let pool: PgPool = PgPool::new(&database_url).await.unwrap();

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 db: pool,

 });

 let new_course_msg = CreateCourse { #1

 tutor_id: 1,

 course_name: "Third course".into(),

 course_description: Some("This is a test course".into()),

 course_format: None,

 course_level: Some("Beginner".into()),

 course_price: None,

 course_duration: None,

 course_language: Some("English".into()),

 course_structure: None,

 };

 let course_param = web::Json(new_course_msg); #2

 let resp = post_new_course(course_param, app_state).await.unwrap();

 assert_eq!(resp.status(), StatusCode::OK);

 }

Rest of the code is largely similar to the previous test cases. Note also the
usage of #[ignore] at the top of the test case. This ensures that cargo test
command will ignore this test case whenever it is invoked. This is because
we may not want to create a new test case everytime we run test cases for
sanity checks, and in such a case, we can use the #[ignore] annotation.

Shown next is the test case to update a course.

 #[actix_rt::test]

 async fn update_course_success() {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let pool: PgPool = PgPool::connect(&database_url).await.unwrap();

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 db: pool,

 });

 let update_course_msg = UpdateCourse { #1

 course_name: Some("Course name changed".into()),

 course_description: Some(

 [CA]"This is yet another test course".into()),

 course_format: None,

 course_level: Some("Intermediate".into()),

 course_price: None,

 course_duration: None,

 course_language: Some("German".into()),

 course_structure: None,

 };

 let parameters: web::Path<(i32, i32)> = web::Path::from((1, 2));1

 let update_param = web::Json(update_course_msg);

 let resp = update_course_details(app_state,

 [CA]update_param, parameters)

 .await

 .unwrap();

 assert_eq!(resp.status(), StatusCode::OK);

 }

Lastly, here is the test case to delete a course.

 #[ignore]

 #[actix_rt::test]

 async fn delete_test_success() {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let pool: PgPool = PgPool::connect(&database_url).await.unwrap();

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 db: pool,

 });

 let parameters: web::Path<(i32, i32)> = web::Path::from((1, 5));

 let resp = delete_course(app_state, parameters).await.unwrap();

 assert_eq!(resp.status(), StatusCode::OK);

 }

What if we were to provide an invalid tutor-id or course-id? Let’s write a test
case for that.

 #[actix_rt::test]

 async fn delete_test_failure() {

 dotenv().ok();

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let pool: PgPool = PgPool::connect(&database_url).await.unwrap();

 let app_state: web::Data<AppState> = web::Data::new(AppState {

 health_check_response: "".to_string(),

 visit_count: Mutex::new(0),

 db: pool,

 });

 let parameters: web::Path<(i32, i32)> = web::Path::from((1, 21));

 let resp = delete_course(app_state, parameters).await;

 match resp {

 Ok(_) => println!("Something wrong"),

 Err(err) => assert_eq!(err.status_code(),

 [CA]StatusCode::NOT_FOUND), #2

 }

 }

This concludes the unit test cases for the various handler functions. But we’re
not yet ready to run the tests as we have not implemented the database access
functions. Let’s look at them now in
$PROJECT_ROOT/src/iter5/dbaccess/course.rs.

Let’s begin with the database access function to retrieve all courses for a
tutor, along with all the module imports for the file.

use crate::errors::EzyTutorError;

use crate::models::course::*;

use sqlx::postgres::PgPool;

pub async fn get_courses_for_tutor_db(

 pool: &PgPool,

 tutor_id: i32,

) -> Result<Vec<Course>, EzyTutorError> {

 // Prepare SQL statement

 let course_rows: Vec<Course> = sqlx::query_as!(#1

 Course,

 "SELECT * FROM ezy_course_c6 where tutor_id = $1",

 tutor_id

)

 .fetch_all(pool) #2

 .await?; #3

 Ok(course_rows) #4

}

The query_as! macro comes in handy to map the columns in the database
record into the Course data struct. This mapping is done automatically by
sqlx if the sqlx::FromRow trait is implemented for Course struct. We have
done this in the models module by auto-deriving this trait as outlined here.

#[derive(Deserialize, Serialize, Debug, Clone, sqlx::FromRow)]

pub struct Course {

// fields

}

Without the query_as! macro, we would have to manually perform the
mapping of each database column to the corresponding Course struct field.

Here is the next function to retrieve a single course from the database.

pub async fn get_course_details_db(

 pool: &PgPool,

 tutor_id: i32,

 course_id: i32,

) -> Result<Course, EzyTutorError> {

 // Prepare SQL statement

 let course_row = sqlx::query_as!(#1

 Course,

 "SELECT * FROM ezy_course_c6 where tutor_id = $1 and course_id = $2",

 tutor_id,

 course_id

)

 .fetch_optional(pool) #2

 .await?;

 if let Some(course) = course_row { #3

 Ok(course)

 } else { #4

 Err(EzyTutorError::NotFound("Course id not found".into()))

 }

}

The code for adding a new course to the database is shown here:

pub async fn post_new_course_db(

 pool: &PgPool,

 new_course: CreateCourse,

) -> Result<Course, EzyTutorError> {

 let course_row= sqlx::query_as!(Course,"insert into ezy_course_c6 (

 [CA]tutor_id, course_name, course_description,course_duration,

 [CA]course_level, course_format, course_language, course_structure,

 [CA]course_price) values ($1,$2,$3,$4,$5,$6,$7,$8,$9) returning

 [CA]tutor_id, course_id,course_name, course_description,

 [CA]course_duration, course_level, course_format, course_language,

 [CA]course_structure, course_price, posted_time",

 new_course.tutor_id, new_course.course_name,

 [CA]new_course.course_description,

 new_course.course_duration, new_course.course_level,

 [CA]new_course.course_format, new_course.course_language,

 [CA]new_course.course_structure, new_course.course_price) #1

 .fetch_one(pool) #2

 .await?;

 Ok(course_row)

}

Specifically, note the usage of the returning keyword in the sql insert
statement. This is a feature supported by Postgres database, which enables us
to retrieve the newly inserted course details as part of the same insert query
(instead of having to write a separate sql query).

Let’s look at the function to delete a course from the database.

pub async fn delete_course_db(

 pool: &PgPool,

 tutor_id: i32,

 course_id: i32,

) -> Result<String, EzyTutorError> {

 // Prepare SQL statement

 let course_row = sqlx::query!(#1

 "DELETE FROM ezy_course_c6 where tutor_id = $1 and course_id = $2",

 tutor_id,

 course_id,

)

 .execute(pool) #2

 .await?;

 Ok(format!("Deleted {:#?} record", course_row)) #3

}

Lastly, let’s look at the code to update details of a course.

pub async fn update_course_details_db(

 pool: &PgPool,

 tutor_id: i32,

 course_id: i32,

 update_course: UpdateCourse,

) -> Result<Course, EzyTutorError> {

 // Retrieve current record

 let current_course_row = sqlx::query_as!(#1

 Course,

 "SELECT * FROM ezy_course_c6 where tutor_id = $1 and course_id = $2",

 tutor_id,

 course_id

)

 .fetch_one(pool) #2

 .await

 .map_err(|_err| EzyTutorError::NotFound(

 [CA]"Course id not found".into()))?; #3

 // Construct the parameters for update:

 #4

 let name: String = if let Some(name) = update_course.course_name {

 name

 } else {

 current_course_row.course_name

 };

 let description: String = if let Some(desc) = ... #9

 let format: String = if let Some(format) = ... #9

 let structure: String = if let Some(structure) = ... #9

 let duration: String = if let Some(duration) = ... #9

 let level: String = if let Some(level) = ... #9

 let language: String = if let Some(language) = ... #9

 let price = if let Some(price) = ... #9

 // Prepare SQL statement

 let course_row =

 sqlx::query_as!(#5

 Course,

 "UPDATE ezy_course_c6 set course_name = $1,

 [CA]course_description = $2, course_format = $3,

 course_structure = $4, course_duration = $5, course_price = $6,

 [CA]course_language = $7,

 course_level = $8 where tutor_id = $9 and course_id = $10

 [CA]returning tutor_id, course_id,

 course_name, course_description, course_duration, course_level,

 [CA]course_format,

 course_language, course_structure, course_price, posted_time ",

 [CA]name, description, format,

 structure, duration, price, language,level, tutor_id, course_id

)

 .fetch_one(pool) #6

 .await;

 if let Ok(course) = course_row { #7

 Ok(course)

 } else {

 Err(EzyTutorError::NotFound("Course id not found".into()))

 }

}

Note the lines of code corresponding to coding annotation <4>. Since the
UpdateCourse struct contains a set of optional fields, we will have to first
verify which field has been sent by the api client. If a new value has been sent
for a field, we need to update it. Otherwise, we need to retain the original
value present in the database. To achieve this, we are first extracting the
current course record containing all the fields. Then if the value of a
particular field is sent by the api client, we use it to update the database,
otherwise we use the existing value to update.

With this, we’ve now completed the code changes to the data model, routes,
handlers, test cases, and database access functions for courses.

You can now check for any compilation errors by running this command
from the $PROJECT_ROOT:

cargo check

If it compiles successfully, you can build and run the server with:

cargo run

You can test the HTTP::GET related APIs from the browser with:

http://localhost:3000/courses/1 #1

http://localhost:3000/courses/1/2 #2

The POST, PUT and DELETE APIs can be tested with Curl or from a GUI
tool such as Postman. The Curl commands shown here can be executed on
the command-line from $PROJECT_ROOT.

curl -X POST localhost:3000/courses -H "Content-Type: application/json" \

 -d '{"tutor_id":1, "course_name":"This is a culinary course",

 [CA]"course_level":"Beginner"}' #1

curl -X PUT localhost:3000/courses/1/5 -H "Content-Type: application/json"

[CA]-d '{"course_name":"This is a master culinary course",

[CA]"course_duration":"8 hours of training", course_format:"online"}' #2

curl -X DELETE http://localhost:3000/courses/1/6 #3

Ensure to change the course_id and tutor_id values based on your database
data setup.

Further, you can run the test cases with:

cargo test

You can selectively disable the tests to be ignored with the #[ignore]
annotation at the beginning of a test case function declaration.

With this, we come to the end of the changes for the Course related
functionality. We’ve covered a lot of ground, which is summarized here:

1. We made changes to the Course data model to add additional fields,
some of which are also optional values requiring the use of Option<>
type in struct member declaration

2. We added data structures for creating and updating a course
3. We implemented conversion methods from Actix Json data structs into

CreateCourse and UpdateCourse structs. We saw how to use both
TryFrom and From traits

4. We modified the routes to cover create, update, delete and retrieve
functions for course data.

5. We wrote the handler functions for each of these routes.
6. We wrote the unit test cases for each handler function. We wrote a

couple of test cases where errors are returned from the handler
functions, instead of a success response.

7. We wrote the database access functions corresponding to each handler
method. We saw the usage of query_as! macro to significantly reduce
the boilerplate code for mapping columns from a database record into
Rust struct fields.

Are you exhausted already? Writing real-world web services and applications
involve considerable work for sure.

In the next section, we’ll add functionality for data maintenance of tutors.

6.3 Enabling tutor registration and management

In this section, we’ll design and write the code for tutor-related APIs which
will include the Rust data models for tutors, database table structure, routes,
handlers and database access functions for tutor data management.

Figure 6.3 shows the overall code structure for tutor-related APIs.

Figure 6.3. Code structure for tutor-related APIs

You’ll notice that we have five routes. There is also a handler function and a
database access function corresponding to each route.

Let’s first look at the data model and routes.

6.3.1 Data model and routes for tutor

Let’s first add a new struct Tutor to the data model, in
$PROJECT_ROOT/src/iter5/models/tutor.rs file.

Start with the module imports.

use actix_web::web;

use serde::{Deserialize, Serialize};

Define the struct as shown.

#[derive(Deserialize, Serialize, Debug, Clone)]

pub struct Tutor {

 tutor_id: i32,

 tutor_name: String,

 tutor_pic_url: String,

 tutor_profile: String

}

We’ve defined a Tutor struct that contains the following information:

Tutor Id: this would be a unique id to represent a tutor, and will be auto-
generated by the database.
Tutor name: Full name of the tutor.
Tutor picture URL: URL of the tutor photo/image.
Tutor profile: A brief profile of the tutor.

Let’s create two more structs, one to define the fields needed to create a new
course, and another for updating it.

#[derive(Deserialize, Debug, Clone)]

pub struct NewTutor {

 pub tutor_name: String,

 pub tutor_pic_url: String,

 pub tutor_profile: String,

}

#[derive(Deserialize, Debug, Clone)]

pub struct UpdateTutor {

 pub tutor_name: Option<String>,

 pub tutor_pic_url: Option<String>,

 pub tutor_profile: Option<String>,

}

We need two separate structs because for creating a tutor, we require all the
fields, but for updating, all fields are optional.

And similar to what we did for the Course data struct, here are the functions
to convert from web::Json<NewTutor> to NewTutor, and
web::Json<UpdateTutor> to UpdateTutor.

impl From<web::Json<NewTutor>> for NewTutor {

 fn from(new_tutor: web::Json<NewTutor>) -> Self {

 NewTutor {

 tutor_name: new_tutor.tutor_name.clone(),

 tutor_pic_url: new_tutor.tutor_pic_url.clone(),

 tutor_profile: new_tutor.tutor_profile.clone(),

 }

 }

}

impl From<web::Json<UpdateTutor>> for UpdateTutor {

 fn from(new_tutor: web::Json<UpdateTutor>) -> Self {

 UpdateTutor {

 tutor_name: new_tutor.tutor_name.clone(),

 tutor_pic_url: new_tutor.tutor_pic_url.clone(),

 tutor_profile: new_tutor.tutor_profile.clone(),

 }

 }

}

This completes the data model changes for Tutor.

Next, let’s add the tutor-related routes in
$PROJECT_ROOT/src/iter5/routes.rs.

pub fn tutor_routes(cfg: &mut web::ServiceConfig) {

 cfg.service(

 web::scope("/tutors")

 .route("/", web::post().to(post_new_tutor)) #1

 .route("/", web::get().to(get_all_tutors)) #2

 .route("/{tutor_id}", web::get().to(get_tutor_details)) #3

 .route("/{tutor_id}", web::put().to(update_tutor_details)) #4

 .route("/{tutor_id}", web::delete().to(delete_tutor)), #5

);

}

Don’t forget to update the module imports, to import the handler functions
for tutors, which we will shortly write, in file
$PROJECT_ROOT/src/iter5/routes.rs.

use crate::handlers::{course::*, general::*, tutor::*};

We’ll have to register the new tutor-routes in the main() function. Otherwise,
the Actix framework will not recognize requests coming on the tutor routes,
and also will not know how to route them to their handlers.

In $PROJECT_ROOT/src/bin/iter5.rs, add tutor routes after course routes
while constructing the Actix App as shown here:

 .configure(course_routes)

 .configure(tutor_routes)

We can now move on to the handler functions in the next section.

6.3.2 Handler functions for tutor routes

We’ve already seen how handler functions are written for Course. Let’s
move quickly, only slowing down to look at any differences.

Here is the first handler method to retrieve all tutors, along with the module
imports. Add this code to the $PROJECT_ROOT/src/iter5/handlers/tutor.rs
file.

use crate::dbaccess::tutor::*;

use crate::errors::EzyTutorError;

use crate::models::tutor::{NewTutor, UpdateTutor};

use crate::state::AppState;

use actix_web::{web, HttpResponse};

pub async fn get_all_tutors(app_state: web::Data<AppState>) ->

[CA]Result<HttpResponse, EzyTutorError> {

 get_all_tutors_db(&app_state.db)

 .await

 .map(|tutors| HttpResponse::Ok().json(tutors))

}

pub async fn get_tutor_details(

 app_state: web::Data<AppState>,

 web::Path(tutor_id): web::Path<i32>,

) -> Result<HttpResponse, EzyTutorError> {

 get_tutor_details_db(&app_state.db, tutor_id)

 .await

 .map(|tutor| HttpResponse::Ok().json(tutor))

}

The two functions linked to HTTP::GET request are shown here.
get_all_tutors() takes no parameters, while get_tutor_details() takes a
tutor_id as a path parameter. Both invoke database access functions with the
same name as the handler functions, but with a db suffix. The return value
from the database access function is returned back to the web client in the
body of an HttpResponse message.

Here are the handler functions for posting a new tutor entry, updating tutor
details and deleting a tutor from the database.

pub async fn post_new_tutor(

 new_tutor: web::Json<NewTutor>,

 app_state: web::Data<AppState>,

) -> Result<HttpResponse, EzyTutorError> {

 post_new_tutor_db(&app_state.db, NewTutor::from(new_tutor))

 .await

 .map(|tutor| HttpResponse::Ok().json(tutor))

}

pub async fn update_tutor_details(

 app_state: web::Data<AppState>,

 web::Path(tutor_id): web::Path<i32>,

 update_tutor: web::Json<UpdateTutor>,

) -> Result<HttpResponse, EzyTutorError> {

 update_tutor_details_db(&app_state.db, tutor_id,

 [CA]UpdateTutor::from(update_tutor))

 .await

 .map(|tutor| HttpResponse::Ok().json(tutor))

}

pub async fn delete_tutor(

 app_state: web::Data<AppState>,

 web::Path(tutor_id): web::Path<i32>,

) -> Result<HttpResponse, EzyTutorError> {

 delete_tutor_db(&app_state.db, tutor_id)

 .await

 .map(|tutor| HttpResponse::Ok().json(tutor))

}

Here we see the three functions that are similar to how we did it for courses.
The functional syntax of Rust makes the code really crisp and pleasant to
read.

As an exercise, you can write the test cases for these handler methods. Refer
back to the test cases for courses, if you have any doubts. In any case, the test
cases will be available as part of the Git repo for the chapter, and are not
included here only to restrict the length of this chapter. In the next section,
we’ll address the database access layer.

6.3.3 Database access functions for tutor routes

We’ll now look at the database access functions for tutors. These should be
placed in $PROJECT_ROOT/src/iter5/dbaccess/tutor.rs file.

Here is the database access function to get the list of tutors, along with the
module imports:

use crate::errors::EzyTutorError;

use crate::models::tutor::{NewTutor, Tutor, UpdateTutor};

use sqlx::postgres::PgPool;

pub async fn get_all_tutors_db(pool: &PgPool) ->

[CA]Result<Vec<Tutor>, EzyTutorError> {

 // Prepare SQL statement

 let tutor_rows =

 sqlx::query!("SELECT tutor_id, tutor_name, tutor_pic_url,

 [CA]tutor_profile FROM ezy_tutor_c6")

 .fetch_all(pool)

 .await?;

 // Extract result

 let tutors: Vec<Tutor> = tutor_rows

 .iter()

 .map(|tutor_row| Tutor {

 tutor_id: tutor_row.tutor_id,

 tutor_name: tutor_row.tutor_name.clone(),

 tutor_pic_url: tutor_row.tutor_pic_url.clone(),

 tutor_profile: tutor_row.tutor_profile.clone(),

 })

 .collect();

 match tutors.len() {

 0 => Err(EzyTutorError::NotFound("No tutors found".into())),

 _ => Ok(tutors),

 }

}

Note that we’re not using the query_as! macro to map the retrieved database
records into Tutor struct. Instead, we are manually performing this mapping
within the map method. You may wonder why we have to take a more
tedious approach compared to having the mapping automatically done by
sqlx using query_as! macro. There are two main reasons for this:

1. The query_as! macros works as long as the field names in struct match
the database column names. But there may be situations where this may
not be feasible

2. Secondly, you may have additional fields in the struct compared to
database columns. For example you may want to have a
derived/computed field, or you may want a Rust struct to represent a
tutor along with the list of her courses. In such cases, it is necessary to
know how to perform this database-to-struct mapping manually. Hence,
we are taking this approach more as a learning exercise, as it is always
useful to have a wider repertoire of tools in a developer’s kit.

Here is the database function to retrieve details for an individual tutor:

pub async fn get_tutor_details_db(pool: &PgPool, tutor_id: i32) ->

[CA]Result<Tutor, EzyTutorError> {

 // Prepare SQL statement

 let tutor_row = sqlx::query!(

 "SELECT tutor_id, tutor_name, tutor_pic_url,

 [CA]tutor_profile FROM ezy_tutor_c6 where tutor_id = $1",

 tutor_id

)

 .fetch_one(pool)

 .await

 .map(|tutor_row|

 Tutor {

 tutor_id: tutor_row.tutor_id,

 tutor_name: tutor_row.tutor_name,

 tutor_pic_url: tutor_row.tutor_pic_url,

 tutor_profile: tutor_row.tutor_profile,

 }

)

 .map_err(|_err| EzyTutorError::NotFound("Tutor id not found".into()))?;

Ok(tutor_row)

}

Note the particular use of map_err here. If there is no record found in the
database, a sqlx error is returned, which we are converting to an
EzyTutorError type using map_err, before propagating the error back to the
calling handler function using ? operator.

Here is the function to post a new tutor:

pub async fn post_new_tutor_db(pool: &PgPool, new_tutor: NewTutor) ->

[CA]Result<Tutor, EzyTutorError> {

 let tutor_row = sqlx::query!("insert into ezy_tutor_c6 (

 [CA]tutor_name, tutor_pic_url, tutor_profile) values ($1,$2,$3)

 [CA]returning tutor_id, tutor_name, tutor_pic_url, tutor_profile",

 [CA]new_tutor.tutor_name, new_tutor.tutor_pic_url,

 [CA]new_tutor.tutor_profile)

 .fetch_one(pool)

 .await?;

 //Retrieve result

 Ok(Tutor {

 tutor_id: tutor_row.tutor_id,

 tutor_name: tutor_row.tutor_name,

 tutor_pic_url: tutor_row.tutor_pic_url,

 tutor_profile: tutor_row.tutor_profile,

 })

}

We’re constructing a query to insert a new tutor record in ezy_tutor_c6 table.
Then we’re fetching the inserted row and mapping it to the Rust tutor struct,
which is returned back to the handler function.

The code for updating and deleting a tutor is not shown here. I would suggest
you write it as an exercise. The completed code will be available in the code
repo for this chapter, which you can refer to in case of doubts.

6.3.4 Database scripts for tutor

We’re done with the application logic for the APIs. But lastly, we’ll have to
create a new table in the database for tutors, before we can even compile this
code (Note that sqlx performs compile-time checking of database table
names, and columns, so the compilation will fail if any of these don’t exist or
if table description does not match the sql statements).

Place the following database script under
$PROJECT_ROOT/src/iter5/dbscripts/tutor-course.sql.

/* Drop tables if they already exist*/

drop table if exists ezy_course_c6 cascade; #1

drop table if exists ezy_tutor_c6;

/* Create tables. */

create table ezy_tutor_c6 (#2

 tutor_id serial primary key,

 tutor_name varchar(200) not null,

 tutor_pic_url varchar(200) not null,

 tutor_profile varchar(2000) not null

);

create table ezy_course_c6 #3

(

 course_id serial primary key,

 tutor_id INT not null,

 course_name varchar(140) not null,

 course_description varchar(2000),

 course_format varchar(30),

 course_structure varchar(200),

 course_duration varchar(30),

 course_price INT,

 course_language varchar(30),

 course_level varchar(30),

 posted_time TIMESTAMP default now(),

 CONSTRAINT fk_tutor #4

 FOREIGN KEY(tutor_id) #4

 REFERENCES ezy_tutor_c6(tutor_id) #4

 ON DELETE cascade

);

grant all privileges on table ezy_tutor_c6 to <username>; #5

grant all privileges on table ezy_course_c6 to <username>;

grant all privileges on all sequences in schema public to <username>;;

/* Load seed data for testing */ #6

insert into ezy_tutor_c6(tutor_id, tutor_name, tutor_pic_url,tutor_profile)

values(1,'Merlene','http://s3.amazon.aws.com/pic1',

[CA]'Merlene is an experienced finance professional');

insert into ezy_tutor_c6(tutor_id, tutor_name, tutor_pic_url,tutor_profile)

values(2,'Frank','http://s3.amazon.aws.com/pic2',

[CA]'Frank is an expert nuclear engineer');

insert into ezy_course_c6

 (course_id,tutor_id, course_name,course_level, posted_time)

values(1, 1, 'First course', 'Beginner' , '2021-04-12 05:40:00');

insert into ezy_course_c6

 (course_id, tutor_id, course_name, course_format, posted_time)

values(2, 1, 'Second course', 'ebook', '2021-04-12 05:45:00');

6.3.5 Run and test the tutor APIs

Run the following command from the command-line to execute the database
script.

psql -U <user-name> -d ezytutors < <path.to.file>/tutor-course.sql

Replace <user-name> and <path.to-file> with your own, and enter password
when prompted. You should see the scripts execute successfully. To verify
that the tables have indeed been created as per the script specification, login
to psql shell with the following command and verify:

psql -U <user-name> -d ezytutors

\d #1

\d+ ezy_tutor_c6 #2

\d+ ezy_course_c6 #2

\q #3

Compile the program to check for errors. After resolving any errors, build
and run the web server with:

cargo check

cargo run --bin iter5

You can first run the automated tests with:

cargo test

Before running the test scripts ensure the data being queried for in test cases
is present in the database, or prepare the data appropriately.

You can also manually execute the CRUD APIs from Curl for tutor as
shown:

curl -X POST localhost:3000/tutors/ -H "Content-Type: application/json"

[CA]-d '{ "tutor_name":"Jessica", "tutor_pic_url":

[CA]"http://tutor1.com/tutor1.pic", "tutor_profile":

[CA]"Experienced professional"}' #1

curl -X PUT localhost:3000/tutors/8 -H "Content-Type: application/json"

[CA]-d '{"tutor_name":"James", "tutor_pic_url":"http://james.com/pic",

[CA]"tutor_profile":"Expert in thermodynamics"}' #2

curl -X DELETE http://localhost0/tutors/8 #3

From a browser, you can execute the HTTP::GET apis with:

http://localhost:3000/tutors/ #1

http://localhost:3000/tutors/2 #2

As an exercise, you can also try deleting a tutor for which course records
exist. You should receive an error message. This is because courses and
tutors are linked by foreign-key constraint in the database. Once you delete
all courses for a tutor-id, that tutor can be deleted from the database.

Another exercise you can try out is to provide an invalid json as part of
creating or updating a tutor or course (for example by removing a double
quote or a curly brace from json data for creating or updating a tutor). You’ll
find that neither does the command get executed on the server, nor do you get
any error message stating that json is invalid. This is not user-friendly. To fix
this, let’s make a few changes.

In the file ezytutors/tutor-db/src/iter5/errors.rs, add a new entry
InvalidInput(String) in the EzyTutorError enum, which will then look like
this:

#[derive(Debug, Serialize)]

pub enum EzyTutorError {

 DBError(String),

 ActixError(String),

 NotFound(String),

 InvalidInput(String),

}

InvalidInput(String) denotes that EzytutorError enum can take a new
invariant - InvalidInput, that in turn can accept a string value as parameter.
For all errors arising out of invalid parameters sent by the API client, we’ll
use this new variant.

Also in the same errors.rs file, make the following additional changes,
caused by the addition of the new enum variant.

In the function error_response() add the code to deal with the
EzyTutorError::InvalidInput type:

 fn error_response(&self) -> String {

 match self {

 EzyTutorError::DBError(msg) => {

 println!("Database error occurred: {:?}", msg);

 "Database error".into()

 }

 EzyTutorError::ActixError(msg) => {

 println!("Server error occurred: {:?}", msg);

 "Internal server error".into()

 }

 EzyTutorError::NotFound(msg) => {

 println!("Not found error occurred: {:?}", msg);

 msg.into()

 }

 EzyTutorError::InvalidInput(msg) => {

 println!("Invalid parameters received: {:?}", msg);

 msg.into()

 }

 }

 }

In the ResponseError trait implementation, add code to deal with the new
enum variant.

 fn status_code(&self) -> StatusCode {

 match self {

 EzyTutorError::DBError(_msg) | EzyTutorError::ActixError(_msg) => {

 StatusCode::INTERNAL_SERVER_ERROR

 }

 EzyTutorError::InvalidInput(_msg) => StatusCode::BAD_REQUEST,

 EzyTutorError::NotFound(_msg) => StatusCode::NOT_FOUND,

 }

 }

We’re now ready to make use of this new error variant in our code. Add the
following code in $PROJECT_ROOT/src/bin/iter5.rs__, while creating an
Actix app instance, to raise an error if the Json data received at the server is
invalid:

let app = move || {

 App::new()

 .app_data(shared_data.clone())

 .app_data(web::JsonConfig::default().error_handler(|_err, _req| {

 EzyTutorError::InvalidInput(

 [CA]"Please provide valid Json input".to_string()).into()

 }))

 .configure(general_routes)

 .configure(course_routes)

 .configure(tutor_routes)

};

Now whenever you provide an invalid json data, you’ll receive the specified
error message.

With this, we conclude this chapter that shows how to refactor code in Rust
and Actix-web , and add functionality in a way that you as the developer
retain complete control over the entire process. Our tutor web service is now
more complex and aligned to the real-world, rather than being just an
academic example. It has two types of entities (tutors and courses) that have a
defined relationship between them at the database-level, and eleven API end-
points. It can handle five broad classes of errors - database-related errors,
Actix-related errors, bad user input parameters, handling requests on
resources that do not exist (Not_found), and badly-formatted json in input
requests. It can seamlessly process concurrent requests as it uses async calls
both in the actix-layer and database-access layer without any bottlenecks. The
project code is well organized which will enable further evolution of the web
service over time, and more importantly, will be easily understandable as

newer developers take charge of the existing code base. The project code and
configuration are separated by using the .env file which contains database
access credentials and other such config information. Dependency injection is
built into the project through Application state (in state.rs), which serves as a
placeholder in which to add more dependencies that need to be propagated to
the various handler functions. The project itself does not use too many
external crates and eschews short-cuts and magical crates (such as crates that
automate code generation for error handling or database functions), but the
reader is encouraged to experiment with other third-party crates, with this
foundational knowledge of doing things the hard way.

You’ll observe that throughout this process, the Rust compiler has been a
great friend and guide to help you achieve your goals.

If you have been able to follow me successfully until this step, I applaud your
perseverance.

I hope this chapter has given you the confidence to fearlessly take on tasks to
enhance any Rust web codebase, even if you were not the original author of
the code.

6.4 Summary

In this chapter, we enhanced the data model for courses, added more
course API routes and evolved the code for handlers and database access
along with the test cases.
We also added functionality to allow creation, update, deletion and
querying of tutor records. We created the database model and scripts to
store tutor data, and defined the relationship between tutors and courses
with foreign-key constraints. We created new routes for tutor-related
CRUD APIs, wrote the handler functions, database access code and test
cases.
In the handler code, we saw how to create separate data structures for
creation and update of tutor and course data, and how to use From and
TryFrom traits to write functions for converting between data types. We
also saw how to mark fields in data structures as optional using the
Option<T> type, and map it to the corresponding column definitions in

the database.
In the database code, we learnt how to use query_as! macro to simplify
and reduce boiler-plate code by auto-deriving sqlx::FromRow for the
Course struct, where the mapping between database columns and fields
of the Course struct was derived automatically by sqlx. We also learnt
how to perform this mapping from database record to Rust structs
manually, in cases where usage of query_as! macro is not possible or
desirable.
We learnt to write code in the handler and database access layers in a
concise but highly readable manner using Rust’s functional constructs.
We strengthened knowledge of error-handling concepts by revisiting the
entire error management workflow, and fine-tuning error handling to
make the user experience more interactive and meaningful.
We restructured the project code organisation to support projects as they
get larger and more complex with separate and clearly marked areas to
store code for handlers, database access functions, data models and
database scripts. We also separated the source files that contain tutor and
course functionality by organizing them into Rust modules.
We saw how to test code using automated test scripts that can
automatically handle both success and error conditions. We also tested
the API scenarios using both Curl commands and from the browser.

For such refactoring, there isn’t a specific order of steps that can be
prescribed, but generally it helps to start from the outside (user interface), and
work your way through the various layers of the application. For example, if
there is some new information requested from the web service, start with
defining the new route, define the handler function, then the data model and
database access function. If this necessitates changes to the database schema,
modify the database creation/update scripts and also any associated migration
scripts. The database access functions provide a layer of abstraction to switch
to a different database, if needed, as part of refactoring. While the Rust
compiler is your best friend to help you succeed in refactoring, your next best
friend would be the automated test scripts that you wrote previously, that will
help to ensure there is no regression of functionality.

With this, we also conclude the first part of the book, which is on developing
a web service using Rust. We will however revisit a few more topics on the

web service in the last portion of the book when we discuss how to prepare
the web service and application for production deployment.

In the next part of the book, we’ll move on to client-side web with Rust
where we’ll cover how to develop server-rendered web front-ends using Rust
and Actix-web.

See you in the next chapter.

Part 2 Server-side web applications
Part 1 focused on the business logic part of our web application. It set the
foundations on which a user-friendly User Interface (UI) can be built. In line
with best practices, the various concerns were separated: data processing
from a business perspective, data persistence … (Identification and
authorization could have been handled but haven’t. We will do it now.)

In this part, we will now tackle the interaction with our users. In a web
application, this interaction takes place in the user’s browser, using the
combined power of HTML, CSS and JavaScript (or TypeScript). There are
currently several ways to implement a web user interface. At one end of the
spectrum, one can find popular Single-Page Application (SPA) frameworks,
like React, Angular or Vue. Such frameworks provide for a very rich user
experience (UX), in many cases as rich as the one provided by desktop
applications. At the other end of the spectrum, there is server-side rendering.

Whereas, in a typical SPA, the UI is built dynamically, in the browser, as the
user starts to interact with the application, with server-side rendering, the
UI’s HTML pages are delivered “fully baked” by the server. This does not
mean that these pages cannot exhibit some dynamic behavior (for example,
by showing or hiding sections) but the pages’ structure is definitely defined
on the server and does not change once in the browser.

Both SPA’s and Server-Side Rendering have their pro’s and con’s. In this
book, we have opted for server-side rendering based on templates, essentially
because it was the most straightforward path for a Rust-exclusive approach.

Once you will have completed Part 2, you will have gained a solid foundation
to develop web applications UI using server-side rendering. You will also
have gained more insight as to the respective merits of server-side rendering
and Rich Web Application approaches.

7 Introduction to server-side web
apps in Rust
This chapter covers

Serving a static web page with Actix
Rendering a dynamic web page with Actix and Tera
Adding user input with forms
Displaying a list with templates
Writing and running client-side tests
Connecting to the backend web service

In chapters 3-6 of the book, we built out the Tutors web service from scratch
using Rust and the Actix web framework. In this section, we’ll focus on
learning the basics of building a web application in Rust.

It may sound strange that a system programming language is being used to
create a web application. But that’s the power of Rust. It can straddle the
worlds of system and application programming with ease.

In this chapter, you will get introduced to concepts and tools for working
with Rust to build web applications. At this point it is important to recall that
there are two broad techniques for building web applications - server-side
rendering (SSR) and single page applications (SPA), each possibly in the
form of progressive web application (PWA). In this section, we’ll focus on
the former, and in later chapters we’ll cover the latter. We will not cover
PWAs in this book.

More specifically, the focus for chapters 7-9 is to learn how develop a simple
web application that can be used by users to register and login to a web
application, view lists and detail views, and perform standard CRUD (create-
read-update-delete) operations on data using web-based forms. Along the
way, you will learn how to render dynamic web pages using the Actix web
framework along with a template engine. While we can use any Rust web

framework (Actix web, Rocket and Warp to name a few) to achieve the same
goal, staying with Actix web helps us leverage the learnings from the previous
chapters.

With this background, we are ready to get started.

Server-side rendering is a web development technique where web pages are
rendered on the server and then sent to the client (web browser). In this
approach, a web application running on the server combines static HTML
pages (e.g., from a web designer) with data (fetched either from a database or
from other web services) and sends a fully-rendered web page to the browser
for displaying to the user. Web applications that use such a technique are
called server-rendered or server-side web apps. With this approach, websites
load faster, and the web page content reflects that latest data, as every request
typically involves fetching the latest copy of user data (exception is when
caching techniques are adopted on the server). As a side note, to keep data
specific for a user, web sites either require users to login to authenticate /
identify themselves, or use cookies to personalize content for a user.

Web pages can either be static or dynamic.

An example of a static web page is the home screen of your bank website
which typically serves as a marketing tool for the bank, and also provides
useful links for its customers to use the services of the bank. This page is the
same for whoever accesses the bank’s home page URL. In this sense, it is a
static web page.

A dynamic web page is what you see when you log in to your bank with your
authorized credentials (such as a username and password), and view your
account balances and statements. This page is dynamic in the sense that each
customer views his or her own balance, but the web page may also contain
static components such as the bank’s logo and other common styling of the
web page (such as colours, fonts, layout etc) which are shown to all
customers viewing the account balances.

We know how to create a static web page. A web designer can do this either
writing the HTML and CSS scripts by hand or use one of the many available
tools for this purpose. But how does one convert a static web page to a

dynamic web page?

This is where a template engine comes in.

Figure 7.1. Server-side rendering of web pages

Figure 7.1 shows the various components that go into rendering a dynamic
web page.

A template engine is one of the primary tools to convert a static web page
into a dynamic web page. It expects a template file as input and generates an
HTML file as output. In the process it embeds data (passed to it by the web
application) into the template file to generate an HTML file. This process is
dynamic in two ways. Firstly, the data is loaded on demand. Secondly, the
data is tailored to the individual user requesting the data.

For developing server-side web apps in Rust, we will use the following
tools/components:

1. Actix web server which will host a web application running at a specific
port on the server, and route requests to the handler functions provided
by the web application.

2. A web application written in Rust and deployed on the Actix web
server, that will serve content in response to requests from a browser.
This will contain the core handler logic that knows how to respond to
various types of HTTP requests.

3. Tera, a template engine that’s popular in the python world, and has been

ported to Rust.
4. Our own backend Tutor web service which we developed in the previous

section, which will fetch the data from the database, and manage
database interactions. The web application will talk to the tutor web
service to retrieve data and perform transactions, rather than dealing
with the database itself.

5. Built-in HTTP client from the Actix web framework, to talk to the tutor
web service.

If the concept of server-side rendering (SSR) is still a bit clear to you, why
don’t we learn SSR with Rust by actually writing out some example code? If
a picture is worth a thousand words, then even a few lines of code are worth
several times that.

Note that this chapter is about learning how to build a web application by
looking at smaller snippets of code, and understanding how the various
pieces fit together to construct a web application. However, it is only in the
next chapter that we will actually design and build the tutor web application.
Here is a quick mind map of the examples you will be building in this
chapter. These examples represent the most common tasks in any web
application that allows users to view and maintain data from a browser-based
user interface.

1. Section 7.1 will show how to serve static web pages with Actix web.
2. Section 7.2 will cover generation of dynamic web pages using Tera, a

popular template engine in the web development world.
3. In Section 7.3, you’ll learn to capture user input with an HTML form.
4. Section 7.4 is about displaying lists of information using Tera HTML

templates
5. You earlier learnt how to write automated tests for the web service

(server-side), in section 7.5 you’ll learn to write client-side tests.
6. We’ll conclude the chapter in section 7.6 by connecting the front-end

web application with the backend web service using an HTTP client.

With this background, let’s get to the first section.

7.1 Serving a static web page with Actix

In the previous chapters, we used the Actix web server to host our tutor web
service. In this first section of this chapter, we’ll use Actix to serve a static
web page. Consider this as the 'Hello World' program for web application
development.

Let’s first setup the project structure:

1. Make a copy of the ezytutors workspace repo from Chapter 6, to work
within this chapter.

2. Create a new Rust cargo project with cargo new tutor-web-app-ssr
3. Rename tutor-db folder under ezytutors workspace to tutor-web-service.

This way the two repos under the workspace can be referred to
unambiguously as web service and web app.

4. In Cargo.toml of the workspace folder, edit the workspace section to
look like this:

[workspace]

members = ["tutor-web-service","tutor-web-app-ssr"]

We now have two projects in the workspace, one for the tutor web service
(which we developed earlier) and another for the tutor web app that is
rendered server-side (which we are yet to develop).

5. cd tutor-web-app-ssr

Switch to the tutor-web-app-ssr folder. That’s where we’ll write the code for
this section. Henceforth, let’s refer to this folder as the project root folder. To
avoid confusion , set this as an environment variable in each of the terminal
sessions you will be working with for this project, as shown:

export $PROJECT_ROOT=.

6. Update Cargo.toml to add the following dependencies.

[dependencies]

actix-web = "4.2.1"

actix-files="0.6.2"

actix-web is the core actix web framework and actix-files helps in serving
static files from the web server.

7. Create a static folder under $PROJECT_ROOT. Create a file static-web-
page.html under $PROJECT_ROOT/static with the following html code.

<!DOCTYPE html>

<html>

<head>

 <title>XYZ Bank Website</title>

</head>

<body>

 <h1>Welcome to XYZ bank home page!</h1>

 <p>This is an example of a static web page served from Actix

 [CA]Web server.</p>

</body>

</html>

This is a simple static web page. We’ll see how to serve this page with the
Actix server.

8. Create a bin folder under $PROJECT_ROOT/src. Create a new source file
static.rs under $PROJECT_ROOT/src/bin and add the following code:

use actix_files as fs; #1

use actix_web::{error, web, App, Error, HttpResponse, HttpServer, Result};

#[actix_web::main]

async fn main() -> std::io::Result<()> { #2

 let addr = env::var("SERVER_ADDR").unwrap_or_else(|_|

 [CA] "127.0.0.1:8080".to_string());

 println!("Listening on: {}, open browser and visit have a try!",addr);

 HttpServer::new(|| {

 App::new().service(fs::Files::new(

 [CA]"/static", "./static").show_files_listing()) #3

 })

 .bind(addr)? #4

 .run() #5

 .await #6

}

This program creates a new web application, registers a service with the web
application to serve files from the file system (on disk), when a GET request
is made to the web server on the route starting with /static. The web
application is then deployed on the web server, and the web server is started.

9. Run the web server with cargo run --bin static.

10. From a browser, visit the following url:

http://localhost:8080/static/static-web-page.html

You should see the web page appear in your browser.

Let’s now try to understand what we just did. We wrote a program to serve a
static web page from an Actix web server. When we requested a particular
static file, the actix_files service looked for it within the /static folder and
returned it to the browser, which was then displayed to the user.

This is an example of a static page, because the content of this page does not
change depending on the user who requests this page. In the next section,
we’ll see an example of how to build dynamic web pages with Actix.

7.2 Rendering a dynamic web page with Actix and
Tera

What if we wanted to show custom content for each user? How would you
write an HTML page which presents content dynamically? Note that
displaying a dynamic web page does not mean everything in the page
changes for every user, but that the web page has both static and dynamic
parts to it.

Figure 7.2. Dynamic web pages with Actix and Tera

We’ve earlier seen a generic view of server-side rendering in figure 7.1.

Figure 7.2 shows how server-side rendering of dynamic web pages can be
implemented using Actix web and Tera template engine. Note that in the
figure, a local database is shown as a source of data for the dynamic web
page, but it is also possible to retrieve data from an external web service. In
fact, this is the design approach that we will use in this book.

For this, we will define the HTML file in a specific template format. Details
of the Tera template format can be viewed at: tera.netlify.app/docs/. Here is
an example of a very simple template. Add this to
$PROJECT_ROOT/static/iter1/index.html.

<!DOCTYPE html>

<html>

<head>

 <title>XYZ Bank Website</title>

</head>

<body>

 <h1>Welcome {{ name }}, to XYZ bank home page!</h1>

 <p>This is an example of a dynamic web page served with Actix and

 [CA]Tera templates.</p>

</body>

</html>

Note the use of the tag {{name}}. This tag is substituted by Tera at run-time
with the actual name of the user, when the web page is requested by the
browser. Tera can retrieve this value from wherever you want it to - from a
file, a database, or simply hard-coded values.

Let’s modify the program we wrote earlier to cater to such dynamic web page
requests using Tera.

In $PROJECT_ROOT/Cargo.toml add the following dependencies:

tera = "1.17.0"

serde = { version = "1.0.144", features = ["derive"] }

We’re adding the tera crate for templating support and serde crate to enable
custom data structures to be serialized/deserialized between the web browser
and the web server.

In $PROJECT_ROOT/src/bin, copy the contents of the file static.rs we wrote
earlier into a new file iter1.rs, and modify the following code to look like
this:

use tera::Tera;

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 println!("Listening on: 127.0.0.1:8080, open browser and visit

 [CA] have a try!");

 HttpServer::new(|| {

 let tera = Tera::new(concat!(#1

 env!("CARGO_MANIFEST_DIR"),

 "/static/iter1/**/*"

))

 .unwrap();

 App::new()

 .data(tera) #2

 .service(fs::Files::new(

 [CA]"/static", "./static").show_files_listing()) #3

 .service(web::resource("/").route(web::get().to(index)))

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

Let’s now write the index handler:

async fn index(tmpl: web::Data<tera::Tera>) -> Result<HttpResponse, Error> {

 let mut ctx = tera::Context::new(); #1

 ctx.insert("name", "Bob"); #2

 let s = tmpl

 .render("index.html", &ctx) #3

 .map_err(|_| error::ErrorInternalServerError("Template error"))?;

 Ok(HttpResponse::Ok().content_type("text/html").body(s))

}

Run the server with cargo run --bin iter1. Then from a web browser
access the following URL:

http://localhost:8080/

You should see the following message displayed on the web page:

Welcome Bob, to XYZ bank home page!

This is a trivial example, but serves to illustrate the concept of how dynamic
web pages can be constructed using Actix. The Tera website listed earlier has
a lot of features that can be used as part of the template including control
statements such as if and for loops, which you can explore at leisure.

We’ve so far seen how to render both static web(HTML) pages and dynamic
HTML pages. But the examples so far dealt with displaying some
information to a user. Does Actix also support writing HTML pages that
accept user input? We’ll find out in the next section.

7.3 Adding user input with forms

In this section we’ll create a web page that accepts user inputs through a
form. Here is a form that’s as simple as it can get. Create a folder
$PROJECT_ROOT/static/iter2 and place the following html in a new file
form.html under this folder. This html code contains a form that accepts a
tutor name, and then submits a POST request containing the tutor name, to
the Actix web server.

<!doctype html>

<html>

<head>

 <meta charset=utf-8>

 <title>Forms with Actix & Rust</title>

</head>

<body>

 <h3>Enter name of tutor</h3>

 <form action=/tutors method=POST>

 <label>

 Tutor name:

 <input name="name">

 </label>

 <button type=submit>Submit form</button>

 </form>

 <hr>

</html>

Note the <input> element of HTML that is used to accept user input for a
tutor name. The <button> tag is used to submit the form to the web server.
This form is encapsulated in an HTTP POST request sent to the web server
on the route /tutors, which is specified in the <form action=""> attribute.

Let’s create a second html file under the $PROJECT_ROOT/static/iter2
folder called user.html, which will display the name submitted by the user in
the previous form.

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>Actix web</title>

</head>

<body>

 <h1>Hi, {{ name }}!</h1>

 <p>

 {{ text }}

 </p>

</body>

</html>

This HTML file has a template variable {{name}}. When this page is shown
to the user, the value of the template variable {{name}} is replaced with the
actual tutor name that was entered by the user in the previous form.

Let’s now add this route, and also a handler to deal with this POST request.

In $PROJECT_ROOT/src/bin, create a new file iter2.rs, and add the
following code to iter2.rs.

... // imports removed for concision; see full source code from GitHub

// store tera template in application state

async fn index(#1

 tmpl: web::Data<tera::Tera>

) -> Result<HttpResponse, Error> {

 let s = tmpl

 .render("form.html", &tera::Context::new()) #2

 .map_err(|_| error::ErrorInternalServerError("Template error"))?;

 Ok(HttpResponse::Ok().content_type("text/html").body(s))

}

#[derive(Serialize, Deserialize)] #3

pub struct Tutor {

 name: String,

}

async fn handle_post_tutor(#4

 tmpl: web::Data<tera::Tera>,

 params: web::Form<Tutor>,

) -> Result<HttpResponse, Error> {

 let mut ctx = tera::Context::new();

 ctx.insert("name", ¶ms.name); #5

 ctx.insert("text", "Welcome!");

 let s = tmpl

 .render("user.html", &ctx)

 .map_err(|_| error::ErrorInternalServerError("Template error"))?;

 Ok(HttpResponse::Ok().content_type("text/html").body(s))

}

#[actix_web::main]

async fn main() -> std::io::Result<()> { #6

 println!("Listening on: 127.0.0.1:8080");

 HttpServer::new(|| {

 let tera = Tera::new(concat!(

 env!("CARGO_MANIFEST_DIR"),

 "/static/iter2/**/*"

))

 .unwrap();

 App::new()

 .data(tera) #7

 .configure(app_config)

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

fn app_config(config: &mut web::ServiceConfig) { #8

 config.service(

 web::scope("")

 .service(web::resource("/").route(web::get().to(index)))

 .service(web::resource("/tutors").route(web::post().to(

 [CA]handle_post_tutor)))

);

}

To recap, in the code shown, when a user visits the "/" route, the form.html is
displayed which contains a form. When the user enters the name in the form
and presses the submit button, a POST request is generated on route /tutors,
which invokes another handler function handle_post_tutor. In this handler,
the name entered by the user is accessible through the web::Form extractor.
The handler injects this name into a new Tera context object. The Tera render
function is then invoked with the context object, to show user.html page to
the user.

Run the web server with:

cargo run --bin iter2

From a browser access the URL:

http://localhost:8080/

You should first see the form displayed. Enter a name and click the Submit
form button. You should see the second html displayed containing the name
you entered.

This concludes this section on demonstrating how you can accept user inputs
and process it. In the next section, we’ll cover another common feature of the
template engine - ability to display lists.

7.4 Displaying a list with templates

In this section, we’ll learn how to display a list of data elements dynamically
on a web page. In the tutor web app, one of the things a user would want is to
see a list of tutors or courses. This list is dynamic because the user may either
want to see a list of all tutors in the system, or a subset of tutors based on

some criteria. Likewise, the user may want to see a listing of all courses
available on the site or the courses for a particular tutor. How would we use
Actix and Tera to show such information? Let’s find out.

Create a folder iter3 under $PROJECT_ROOT/static. Create a new file
list.html here and add the following html.

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>Actix web</title>

</head>

<body>

 <h1>Tutors list</h1>

 #1

 {% for tutor in tutors %} #2

 #3

 <h5>{{tutor.name}}</h5> #4

 {% endfor %} #5

</body>

</html>

To summarize, we have written an HTML file that contains a template
control statement (using a for loop) which loops through each tutor in a list
and displays the tutor name on the web page.

Next, let’s write the handler function to implement this logic, and the main
function for the web server.

Create a new file iter3.rs under $PROJECT_ROOT/src/bin and add the
following code:

use actix_files as fs;

use actix_web::{error, web, App, Error, HttpResponse, HttpServer, Result};

use serde::{Deserialize, Serialize};

use tera::Tera;

#[derive(Serialize, Deserialize)]

pub struct Tutor { #1

 name: String,

}

async fn handle_get_tutors(tmpl: web::Data<tera::Tera>) ->

[CA]Result<HttpResponse, Error> { #2

 let tutors: Vec<Tutor> = vec![#3

 Tutor {

 name: String::from("Tutor 1"),

 },

 ... #4

];

 let mut ctx = tera::Context::new(); #5

 ctx.insert("tutors", &tutors); #6

 let rendered_html = tmpl

 .render("list.html", &ctx) #7

 .map_err(|_| error::ErrorInternalServerError("Template error"))?;

 Ok(HttpResponse::Ok().content_type("text/html").body(rendered_html))

}

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 println!("Listening on: 127.0.0.1:8080");

 HttpServer::new(|| {

 let tera = Tera::new(concat!(

 env!("CARGO_MANIFEST_DIR"),

 "/static/iter3/**/*"

))

 .unwrap();

 App::new()

 .data(tera)

 .service(fs::Files::new(

 [CA]"/static", "./static").show_files_listing())

 .service(web::resource("/tutors").route(web::get().to(

 [CA]handle_get_tutors))) #8

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

Run the web server with:

cargo run --bin iter3

From a web browser, access the following URL:

http://localhost:8080/tutors

You should see the list of tutors displayed.

After the initial euphoria of seeing the tutor list displayed has waned, you
will start to notice that the web page isn’t particularly impressive or aesthetic.
You would most certainly now want to add some css to the web page. Sure, it
can be done easily. Here is an example css just for illustration purposes. Place
this code in styles.css under /static folder, which we have already declared in
the main function to be the source of static assets.

/* css */

ul {

 list-style: none;

 padding: 0;

 }

 li {

 padding: 5px 7px;

 background-color: #FFEBCD;

 border: 2px solid #DEB887;

 }

In list.html under $PROJECT_ROOT/iter3__ , add the css file to the head
block of html as follows:

<head>

 <meta charset="utf-8" />

 <link rel="stylesheet" type="text/css" href="/static/styles.css" />

 <title>Actix web</title>

</head>

Run the web server again and visit the /tutors route from a web browser. You
should now see the css styles reflect on the web page. This may still not be
the prettiest of pages, but you now understand how you can add your own
styling to the web page.

But if you’re like me, and don’t want to write your own custom css, you can
import one of your preferred css frameworks like this. Change the HEAD

section of list.html file to import tailwind.css, a popular modern css library.
You can import Bootstrap, Foundation, Bulma , or any other css framework
of choice.

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>Actix web</title>

 <link href="https://unpkg.com/tailwindcss@^1.0/dist/tailwind.min.css"

 [CA]rel="stylesheet">

</head>

<body>

 <h1 class="text-2xl font-bold mt-8 mb-5">Tutors list</h1>

 <ul class="list-disc list-inside my-5 pl-2">

 {% for tutor in tutors %}

 <ol class="list-decimal list-inside my-5 pl-2">

 <h5 class="text-1xl font-bold mb-4 mt-0">{{tutor.name}}</h5>

 {% endfor %}

</body>

</html>

Compile and run the server again, and this time you should see something
hopefully a little more appealing to your eye.

We will not spend much time on CSS styles in this book, but CSS being an
integral part of web pages, it is important for you to know how to use it with
Actix and templates.

We’ve so far seen different ways to show dynamic content in web pages
using Actix and Tera. Let’s now shift gears and focus on one more important
aspect of developing front-end web apps: automated unit and integration
tests. Just as we were able to write test cases for the backend tutor web
service, is it also possible to write test cases for the front-end web app in Rust
with Actix and tera? Let’s find out in the next section.

7.5 Writing and running client-side tests

For this section, we’ll not be writing any new application code, but instead
reuse one of the handler functions that we’ve previously written, and learn
how to write unit test cases for the handler.

Let’s use the code we wrote in iter2.rs. Specifically, here is the handler
function that we’ll focus on:

async fn handle_post_tutor(

 tmpl: web::Data<tera::Tera>,

 params: web::Form<Tutor>,

) -> Result<HttpResponse, Error> {

 let mut ctx = tera::Context::new();

 ctx.insert("name", ¶ms.name);

 ctx.insert("text", "Welcome!");

 let s = tmpl

 .render("user.html", &ctx)

 .map_err(|_| error::ErrorInternalServerError("Template error"))?;

 Ok(HttpResponse::Ok().content_type("text/html").body(s))

}

This handler can be invoked from the command-line using a curl POST
request as shown.

curl -X POST localhost:8080/tutors -d "name=Terry"

Let’s write a unit test case for this handler function.

In $PROJECT_ROOT/Cargo.toml, add the following section:

[dev-dependencies]

actix-rt = "2.2.0"

actix-rt is the Actix async runtime, which is needed to execute the
asynchronous test functions.

In $PROJECT_ROOT/src/bin/iter2.rs, add the following test code towards
the end of the file (as a convention, the Rust unit test cases are located
towards the end of the source file).

#[cfg(test)] #1

mod tests { #2

 use super::*;

 use actix_web::http::{header::CONTENT_TYPE, HeaderValue, StatusCode};

 use actix_web::web::Form;

 #[actix_rt::test] #3

 async fn handle_post_1_unit_test() {

 let params = Form(Tutor { #4

 name: "Terry".to_string(),

 });

 let tera = Tera::new(concat!(#5

 env!("CARGO_MANIFEST_DIR"),

 "/static/iter2/**/*"

))

 .unwrap();

 let webdata_tera = web::Data::new(tera); #6

 let resp = handle_post_tutor(

 [CA]webdata_tera, params).await.unwrap(); #7

 assert_eq!(resp.status(), StatusCode::OK); #8

 assert_eq!(

 resp.headers().get(CONTENT_TYPE).unwrap(), #9

 HeaderValue::from_static("text/html")

);

 }

}

Run the tests from $PROJECT_ROOT with:

cargo test --bin iter2

You should see that the test passes.

We’ve just written a unit test case by invoking the handler function directly.
We were able to do it because we know the handler function signature. This
is ok for a unit test case, but how would we simulate a web client posting an
HTTP request with the form data?

That’s the domain of integration testing. Let’s write an integration test case to
simulate a user form submission.

Add the following to tests module in $PROJECT_ROOT/src/bin/iter2.rs.

 use actix_web::dev::{HttpResponseBuilder, Service, ServiceResponse};

 use actix_web::test::{self, TestRequest};

 // Integration test case

 #[actix_rt::test]

 async fn handle_post_1_integration_test() {

 let tera = Tera::new(concat!(

 env!("CARGO_MANIFEST_DIR"),

 "/static/iter2/**/*"

))

 .unwrap();

 let mut app = test::init_service(App::new().data(tera).configure(

 [CA]app_config)).await; #1

 let req = test::TestRequest::post() #2

 .uri("/tutors")

 .set_form(&Tutor {

 name: "Terry".to_string(),

 })

 .to_request(); #3

 let resp: ServiceResponse = app.call(req).await.unwrap(); #4

 assert_eq!(resp.status(), StatusCode::OK); #5

 assert_eq!(

 resp.headers().get(CONTENT_TYPE).unwrap(), #6

 HeaderValue::from_static("text/html")

);

 }

You’ll notice that Actix provides rich support for testing in the form of built-
in services, modules and functions, which we can use to write unit or
integration tests.

Run the tests from $PROJECT_ROOT with:

cargo test --bin iter2

You should see both unit and integration tests pass.

With this, we conclude the section on learning to write unit and integration
test cases for front-end web apps built with Actix and tera. We’ll be using
what we have learnt here, to write the actual test cases while developing the
tutor web application.

7.6 Connecting to the backend web service

In a previous section, we displayed a list of tutors on a web page using mock
data. In this section, we’ll fetch data from the backend tutor web service to
display on the web page instead of mock data. Note that technically, we can
directly talk to a database from the Actix web application, but that’s not what
we want to do. The main reason is that we do not want to duplicate the
database access logic that is already present in the web service. Another
reason is that we do not want to expose the database access credentials in
both the web service and web application, which could increase the surface
area of any security/hacking attacks.

We know that the backend tutor web service exposes various REST APIs. To
talk to the web service from the web application, we need an HTTP client
that can be embedded within the web application. While there are other
external crates available for this, let’s use the built-in HTTP client in the
Actix-web framework. We also need a way to parse and interpret the json
data that is returned from the web service. For this, we’ll use the serde_json
crate.

Add the following to $PROJECT_ROOT/Cargo.toml:

serde_json = "1.0.64"

Let’s now write the code to connect to make a GET request to the tutor web
service and retrieve the list of tutors.

Create a new file iter4.rs under $PROJECT_ROOT/src/bin and copy the
contents of iter3.rs to it, to get a headstart.

Using serde_jsoncrate, we can deserialize the incoming json payload in
HTTP response into a strongly typed data structure. In our case, we want to
convert the json sent by the tutor web service into a Vec<Tutor> type. We
would also like to define the structure of the Tutor struct to match the
incoming json data. Remove the old definition of Tutor struct in the file
$PROJECT_ROOT/src/bin/iter4.rs and replace it with the following:

#[derive(Serialize, Deserialize, Debug)]

pub struct Tutor {

 pub tutor_id: i32,

 pub tutor_name: String,

 pub tutor_pic_url: String,

 pub tutor_profile: String,

}

Within the same source file, in the handle_get_tutors handler function, let’s
connect to the tutor web service to retrieve the tutor list. In that case, we can
remove the hardcoded values. Import the actix_web client module and modify
the code for the handle_get_tutors handler function as shown:

use actix_web::client::Client;

async fn handle_get_tutors(tmpl: web::Data<tera::Tera>) ->

[CA]Result<HttpResponse, Error> {

 let client = Client::default(); #1

 // Create request builder and send request

 let response = client

 .get("http://localhost:3000/tutors/") #2

 .send() #3

 .await #4

 .unwrap() #5

 .body() #6

 .await #4

 .unwrap(); #5

 let str_list = std::str::from_utf8(&response.as_ref()).unwrap();

 let tutor_list: Vec<Tutor> = serde_json::from_str(str_list).unwrap();

 let mut ctx = tera::Context::new();

 ctx.insert("tutors", &tutor_list);

 let rendered_html = tmpl

 .render("list.html", &ctx)

 .map_err(|_| error::ErrorInternalServerError("Template error"))?;

 Ok(HttpResponse::Ok().content_type("text/html").body(rendered_html))

}

The rest of the code related to rendering Tera templates is similar to what
we’ve seen before.

Next, create a new folder $PROJECT_ROOT/static/iter4. Under this folder
place a copy of the list.html file from $PROJECT_ROOT/static/iter3. Alter
the list.html file to change the template variable {{tutor.name}} to

{{tutor.tutor_name}}, because that’s the structure of the data sent back from
the tutor web service.

Here is the updated list.html listing, under iter4 folder.

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>Actix web</title>

 <link href="https://unpkg.com/tailwindcss@^1.0/dist/tailwind.min.css"

 [CA]rel="stylesheet">

</head>

<body>

 <h1 class="text-2xl font-bold mt-8 mb-5">Tutors list</h1>

 <ul class="list-disc list-inside my-5 pl-2">

 {% for tutor in tutors %}

 <ol class="list-decimal list-inside my-5 pl-2">

 <h5 class="text-1xl font-bold mb-4 mt-0">{{tutor.tutor_name}}</h5>

 {% endfor %}

</body>

</html>

Also alter the main() function in iter4.rs to look for Tera templates in
$PROJCT_ROOT/static/iter4 folder. Here is the updated main() function.

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 println!("Listening on: 127.0.0.1:8080!");

 HttpServer::new(|| {

 let tera = Tera::new(concat!(env!("CARGO_MANIFEST_DIR"),

 [CA]"/static/iter4/**/*")).unwrap();

 App::new()

 .data(tera)

 .service(fs::Files::new("/static", "./static").show_files_listing())

 .service(web::resource("/tutors").route(web::get().to(

 [CA]handle_get_tutors)))

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

What we have done so far is to fetch the tutor list from the tutor web service
(instead of the hard-coded values used in iteration 3), and use it to display the
tutor list in list.html file, which is rendered when an HTTP request arrives
from a client at route /tutors.

To test this, first go to folder tutor_web_service under the ezytutors
workspace, and run the server in a separate terminal. This server should now
be listening on localhost:3000. Test the server with the following command:

cargo run --bin iter6

iter6 was the last iteration we built for the tutor web service_.

Then from another terminal, run the tutor_ssr_app web server from
$PROJECT_ROOT with the following command:

cargo run --bin iter4

We now have the tutor web service running on port 3000 and tutor web app
running on port 8080, both on localhost. Here’s what should happen: when
the user visits the /tutors route on port 8080, the request would go to the web
handler of the web app, which then would call out to the tutor web service to
retrieve the tutor list. The tutor web app handler would then inject this data
into tera template and display the web page back to the user.

To test this from a browser, visit the URL:

localhost:8080/tutors

You should see the list of tutor names populated in the web page, which was
retrieved from our tutor web service. If you have reached this far,
congratulations! If you encounter any errors, just retrace the code back to the
last point when you had it working, and reapply the changes in sequence
again by following the appropriate instructions in this chapter.

With this we have learnt the critical aspects of developing a client-side
application with Actix. In the next chapter we will use the knowledge and

skills gained in this chapter, to write the code for the tutor web application.

7.7 Summary

In this chapter, we covered the basics of working with Actix to develop
a server-side web application.
We first learnt how to serve static web pages using Actix.
In the second section, we built a simple dynamic web page using Actix
and Tera templates. We learnt how to inject Tera into the web
application and make it available to all the handlers. We also learnt how
to create a Tera context object, insert data into it, and render the Tera
html template by passing on the values for the template variables
defined in Tera template.
In the third section, we learnt how to accept user inputs through a form,
and trigger an HTTP request on a specific route of the web application,
on submission of the form by the user.
In the fourth section, we learnt how to render a list of tutor names in a
web page using Tera templates.
We then learnt how to write unit and integration test cases for the web
application handlers.
In the final section, we connected to the backend tutor web service api,
and retrieved the list of tutors. The tutor list was displayed to the user.
Rust can be used to not just build backend web services, but also front-
end web applications.
Server-side rendering (SSR) is a web architectural pattern that involves
creating a fully-rendered web page on the server and simply sending it
to the browser for display. SSR typically involves serving a mix of static
and dynamic content on a web page.
Actix Web and Tera template engine are powerful tools to implement
server-side rendering in Rust-based web applications.
Tera template engine is instantiated and injected into the web
application in the main() function. The tera instance is made available to
all the handler functions by the Actix web framework. The route handler
functions, in turn, can use tera templates to construct dynamic web
pages that are sent back to the browser client as part of the HTTP
response body.
HTML forms are used to capture user inputs, and post those inputs to a

route on the Actix web application. The corresponding route handler
then processes that HTTP request and sends back an HTTP response
containing the dynamic web page.
The control flow features of Tera templates can be used to display lists
of information on a web page. The contents of the list can be retrieved
either from a local database or an external web service, and injected into
the web page template.
Actix Web Client can be used as an HTTP client to communicate
between the Actix web application front-end and Actix web service
backend.

In the next part of the book, we’ll jump straight into writing the tutor web
application that can act as a client front-end to the tutor web service.

See you in the next chapter.

8 Working with templates for tutor
registration
This chapter covers

Designing tutor registration feature
Setting up the project structure
Displaying the registration form
Handling registration submission

In the previous chapter, we covered the basics of working with Actix to
develop a server-side web application. In this chapter we’ll learn more details
of how to work with templates, by creating a tutor registration form using
Actix and Terra.

Templates and forms are an important feature of web applications. They are
used quite commonly for registration, sign in, capturing user profile, payment
information or KYC (know-your-customer) details for regulatory purposes
and performing CRUD (create-read-update-delete) operations on data. While
capturing user inputs, it is also necessary to validate them and provide
feedback to the user in case of errors. In cases where the forms involve data
updates, existing information has to be presented to the user in the form,
allowing the user to change it. There are also elements of styling to be added
for aesthetic appeal. On submission of forms, the form data needs to be
serialized into an HTTP request which should then invoke the right handler
functions for processing and storing the form data. Finally, the user needs to
be given feedback on the success of the form submission, and then optionally
taken to the next screen. We’ll learn how to do all these in this chapter using
Actix Web, Tera template engine and a few other components.

Let’s first start with the design of what we will be building here.

8.1 Designing tutor registration feature

In this chapter we’ll write an html template and associated code to allow
tutors to register.

Figure 1 shows the tutor registration form.

Figure 8.1. Tutor registration form

For registration, we’ll accept six fields: username, password, password
confirmation, tutor name, tutor image url, and brief tutor profile. The first
three will be used for user management functions, and the others will be used
to send the request to the tutor web service to create a new tutor in the
database.

Let’s first setup the project code structure and basic scaffolding.

8.2 Setting up the project structure

First copy/clone the code from Chapter 7. We’ll build on this code structure.
Navigate to folder tutor-web-app-ssr under ezytutors. This represents the
project root.

Let’s also set the PROJECT_ROOT environment variable to /path-to-
folder/ezytutors/tutor-web-app-ssr. Henceforth, we’ll refer to this folder as
$PROJECT_ROOT.

Let’s organize the code under the PROJECT_ROOT as follows:

1. Create a folder iter5 under $PROJECT_ROOT/src. This will contain the
data model, routes handler functions, definitions for custom error type
and application state, and database sql scripts.

2. Create a folder iter5 under $PROJECT_ROOT/static. This folder will
contain the html/terra templates.

3. Create a file iter5-ssr.rs under $PROJECT_ROOT/bin. This is the main
function that will configure and startup the Actix web server (to serve
the web application that we are building).

4. Under $PROJECT_ROOT/src/iter5, create the following files:

routes.rs: Stores the routes for the web application on which HTTP
requests can be received.
model.rs: Contains the data model definitions.
handler.rs: Contains the handler functions associated with the
various routes, to process the incoming HTTP requests.
state.rs: To store the data structure representing the application

state, which will be injected into the handlers (aka dependency
injection)
errors.rs: Contains the custom error type and associated functions
to construct suitable error messages for users
dbaccess.rs: Contains the functions that access the database for
reading and writing tutor data.
dbscripts/user.sql: Create a folder dbscripts under
$PROJECT_ROOT/src/iter5, and create a file user.sql under it.
This will contain the sql scripts to create a database table.
mod.rs: To configure the $PROJECT_ROOT/src/iter5 directory as
a Rust module that can be imported into other files.

We’re now ready to start coding.

Let’s begin with the routes definition in
$PROJECT_ROOT/src/iter5/routes.rs.

use crate::handler::{handle_register, show_register_form}; #1

use actix_files as fs; #2

use actix_web::web;

pub fn app_config(config: &mut web::ServiceConfig) { #3

 config.service(

 web::scope("")

 .service(fs::Files::new(

 [CA]"/static", "./static").show_files_listing()) #4

 .service(web::resource("/").route(web::get().to(

 [CA]show_register_form))) #5

 .service(web::resource("/register").route(web::post().to(

 [CA]handle_register))), #6

);

}

With this, we can move on to the model definition in
$PROJECT_ROOT/src/iter5/model.rs.

Add the following data structures to model.rs:

Listing 8.1. Data Model

use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug)]

pub struct TutorRegisterForm { #1

 pub username: String,

 pub password: String,

 pub confirmation: String,

 pub name: String,

 pub imageurl: String,

 pub profile: String,

}

#[derive(Serialize, Deserialize, Debug)]

pub struct TutorResponse { #2

 pub tutor_id: i32,

 pub tutor_name: String,

 pub tutor_pic_url: String,

 pub tutor_profile: String,

}

#[derive(Serialize, Deserialize, Debug, sqlx::FromRow)]

pub struct User { #3

 pub username: String,

 pub tutor_id: Option<i32>,

 pub user_password: String,

}

Let’s next define the application state in
$PROJECT_ROOT/src/iter5/state.rs.

use sqlx::postgres::PgPool;

pub struct AppState {

 pub db: PgPool,

}

The AppState will hold the Postgres connection pool object, which will be
used by the database access functions. The AppState will be injected into
each handler function by Actix-web, we’ll see later how to configure this
while creating the Actix application instance.

Let’s also create an error.rs file under $PROJECT_ROOT/src/iter5 to define
a custom error type. This is mostly similar to the error definition we earlier
created for the tutor web service, but with some minor changes.

Listing 8.2. Custom error type

use ... #1

#[derive(Debug, Serialize)]

pub enum EzyTutorError { #2

 DBError(String),

 ActixError(String),

 NotFound(String),

 TeraError(String),

}

#[derive(Debug, Serialize)]

pub struct MyErrorResponse { #3

 error_message: String,

}

impl std::error::Error for EzyTutorError {} #4

impl EzyTutorError { #5

 fn error_response(&self) -> String {

 match self {

 EzyTutorError::DBError(msg) => {

 println!("Database error occurred: {:?}", msg);

 "Database error".into()

 }

 EzyTutorError::ActixError(msg) => { ... } #1

 EzyTutorError::TeraError(msg) => { ... } #1

 EzyTutorError::NotFound(msg) => { ... } #1

 }

 }

}

impl error::ResponseError for EzyTutorError { #6

 fn status_code(&self) -> StatusCode {

 match self {

 EzyTutorError::DBError(_msg)

 | EzyTutorError::ActixError(_msg)

 | EzyTutorError::TeraError(_msg) =>

 [CA]StatusCode::INTERNAL_SERVER_ERROR,

 EzyTutorError::NotFound(_msg) => StatusCode::NOT_FOUND,

 }

 }

 fn error_response(&self) -> HttpResponse {

 HttpResponse::build(self.status_code()).json(MyErrorResponse {

 error_message: self.error_response(),

 })

 }

}

impl fmt::Display for EzyTutorError { #7

 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {

 write!(f, "{}", self)

 }

}

impl From<actix_web::error::Error> for EzyTutorError {

 fn from(err: actix_web::error::Error) -> Self {

 EzyTutorError::ActixError(err.to_string())

 }

}

impl From<SQLxError> for EzyTutorError { ... }

We’ve so far defined the routes, data model, application state and error type.
Let’s next write the scaffolding for the various handler functions. These
won’t do much, but will establish the code structure which we can build on in
future sections.

In $PROJECT_ROOT/src/iter5/handler.rs, add the following:

use actix_web::{Error, HttpResponse, Result};

pub async fn show_register_form() -> Result<HttpResponse, Error> {

 let msg = "Hello, you are in the registration page";

 Ok(HttpResponse::Ok().content_type("text/html").body(msg))

}

pub async fn handle_register() -> Result<HttpResponse, Error> {

 Ok(HttpResponse::Ok().body(""))

}

As you can see, the handler functions don’t really do much, but it is sufficient
for us to establish the initial code structure that we can build on.

Lastly, let’s write the main() function that will configure the web application
with the associated routes configuration, and launch the web server.

Add the following code to $PROJECT_ROOT/bin/iter5-ssr.rs.

Listing 8.3. main() function

#[path = "../iter5/mod.rs"] #1

mod iter5; #1

use iter5::{dbaccess, errors, handler, model, routes, state::AppState};

use routes::app_config; #1

use actix_web::{web, App, HttpServer}; #2

use dotenv::dotenv; #3

use std::env; #3

use sqlx::postgres::PgPool; #4

use tera::Tera;

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 dotenv().ok(); #5

 //Start HTTP server

 let host_port = env::var("HOST_PORT").expect(

 [CA]"HOST:PORT address is not set in .env file"); #6

 println!("Listening on: {}", &host_port);

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file"); #6

 let db_pool = PgPool::connect(&database_url).await.unwrap();

 // Construct App State

 let shared_data = web::Data::new(AppState { db: db_pool });

 HttpServer::new(move || { #8

 let tera = Tera::new(concat!(env!("CARGO_MANIFEST_DIR"),

 [CA]"/static/iter5/**/*")).unwrap();

 App::new()

 .data(tera)

 .app_data(shared_data.clone())

 .configure(app_config)

 })

 .bind(&host_port)? #9

 .run() #9

 .await #9

}

We have to do a couple of more things. First, add the dotenv package to
Cargo.toml file in $PROJECT_ROOT. Make sure the Cargo.toml file looks
similar to this:

[dependencies]

actix-web = "4.2.1"

actix-files="0.6.2"

tera = "1.17.0"

serde = { version = "1.0.144", features = ["derive"] }

serde_json = "1.0.85"

awc = "3.0.1"

sqlx = {version = "0.6.2", default_features = false, features =

[CA]["postgres","runtime-tokio-native-tls", "macros", "chrono"]}

rust-argon2 = "1.0.0"

dotenv = "0.15.0"

[dev-dependencies]

actix-rt = "2.7.0"

Configure the host, port and database details in the .env file in
$PROJECT_ROOT as shown:

HOST_PORT=127.0.0.1:8080

DATABASE_URL=postgres://ssruser:mypassword@127.0.0.1:5432/ezytutor_web_ssr

The DATABASE_URL specifies the username(ssruser) and
password(mypassword) for database access. It also specifies the port number
at which the postgres database processes are running, and the name of the
database (eytutor_web_ssr) to connect to. We’ll cover more details of this in
a later section.

Lastly, add the following entries to mod.rs under
$PROJECT_ROOT/src/iter5. This will export the functions and data
structures we have defined and allow them to be imported and used
elsewhere in the application.

pub mod dbaccess;

pub mod errors;

pub mod handler;

pub mod model;

pub mod routes;

pub mod state;

We’re ready to test. Run the following from $PROJECT_ROOT

cargo run --bin iter5-ssr

You should see the Actix web server startup and listen on the specified
host:port combination in the .env file.

From a browser, try the following URL route (adjust the port number to your
own in .env file):

localhost:8080/

You should see the following message displayed on your browser screen:

Hello, you are in the registration page

We have now established the basic project structure and are ready to
implement the logic to display registration form to the user.

8.3 Displaying the registration form

In earlier chapters, we have built the APIs on the tutor web service for
adding, updating and deleting tutor information. We tested these APIs using
command-line tools. What we’re going to do in this chapter is to add the
following two additional features:

1. Provide a web user interface where tutors can register
2. Store user credentials in a local database (for user management)

Note that on #2, user management can be done in different ways. It can be
built directly into the backend web service or it can be handled in the front-
end web application. In this chapter, we’ll adopt the latter approach, mainly
to demonstrate how to implement separation of responsibilities between the
backend web service and front-end web application as a design choice. In this
model, the backend web service takes care of the core business and data
access logic to store and apply rules on tutor and course data, while the front-
end web application handles the user authentication and session management
functions. In such a design, we would have the tutor web service running in a
trusted zone behind the firewall, receiving HTTP requests only from the
trusted front-end web application.

Let’s now take a look at the tutor registration workflow shown in figure 2.

Figure 8.2. Tutor registration flow

1. User visits the landing page URL. The web browser will make a GET
request on index route '/', which is routed by Actix web server to the
handler function show_register_form(). This function will send the
registration form back to the web browser as an HTTP response. The
Tutor registration form is now displayed to the user.

2. The user starts to fill out the registration form. There may be invalid
inputs from users which need to be corrected (e.g. password does not
meet minimum length criteria). How do we communicate this to the
user?

3. For this, the HTML specifications allow us to do a few types of basic
validation checks within the browser itself, rather than make a round-trip
to the server every time. We’ll make use of this to enforce mandatory
field checks and field length checks, so that in case of errors in user
input, feedback is provided to the user right within the web browser.

4. User completes and submits the registration form. A POST request is
sent to the Actix web server on the /register route. The Actix web
framework routes the request to the handle_register() web handler.

5. The handle_register() function checks to see if the password and
password confirmation fields match. If they don’t, the registration form

is displayed back to the user with an appropriate error message. This is a
case of validating user input on the server rather than from within the
browser which we performed in an earlier step. (Note that it is possible
to perform this validation using custom jQuery or javascript in the
browser, but we’re avoiding that approach in this book, if only to
demonstrate that it is possible to write complete web applications in
Rust without javascript. But you can use javascript, should you choose)

6. If passwords match, the handle_register() function makes a POST
request on the backend tutor web service, to create a new tutor entry in
the database.

7. The username and password provided by the user in the registration
form are stored in a local database on the tutor web application (note:
not in tutor web service), for the purpose of authenticating the user in
future.

8. A confirmation page is returned by the handle_register() function as
HTTP response, to the web browser.

Now that we understand what we’re going to build, let’s start with the static
assets and templates for tutor registration.

In #PROJECT_ROOT/static/iter5/ create a file register.html, add the
following contents.

Listing 8.4. Registration template

<!doctype html>

<html>

<head>

 <meta charset=utf-8>

 <title>Tutor registration</title>

 <link rel="stylesheet" href="/static/tutor-styles.css"> #1

</head>

<body> #2

 <div class="header">

 <h1>Welcome to EzyTutor</h1>

 <p>Start your own online tutor business in a few minutes</p>

 </div>

 <div class="center">

 <h2>

 Tutor registration

 </h2>

 <form action=/register method=POST> #7

 <label for="userid">Enter username</label>

 <input type="text" name="username" value="{{current_username}}"

 [CA]autocomplete="username" minlength="6"

 maxlength="12" required>
 #4

 <label for="password">Enter password</label>

 <input type="password" name="password"

 [CA]value="{{current_password}}" autocomplete="new-password"

 minlength="8" maxlength="12" required>
 #3

 <label for="confirm">Confirm password</label>

 <input type="password" name="confirmation"

 [CA]value="{{current_confirmation}}" autocomplete="new-password"

 minlength="8" maxlength="12" required>
 #5

 <label for="userid">Enter tutor name</label>

 <input type="text" name="name" value="{{current_name}}"

 [CA]maxlength="12" required>

 <label for="imageurl">Enter tutor image url</label>

 <input type="text" name="imageurl" value="{{current_imageurl}}"

 [CA]maxlength="30">

 <label for="profile">Brief tutor profile</label>

 <input type="text" name="profile" value="{{current_profile}}"

 [CA]maxlength="40">

 <label for="error"> #6

 <p style="color:red">{{error}}</p>

 </label>

 <button type=submit id="button1">Register</button>

 </form>

 <form action=/signinhome method=GET>

 <button type=submit id="button2">Sign in</button>

 </form>

 </div>

 <p>

 <div id="footer">

 (c)Photo by Author

 </div>

 </p>

</html>

Let’s now create a file tutor-styles.css under $PROJECT_ROOT/static folder
and add the following styling to it.

Listing 8.5. tutor-styles.css

.header {

 padding: 20px;

 text-align: center;

 background: #fad980;

 color: rgb(48, 40, 43);

 font-size: 30px;

}

.center {

 margin: auto;

 width: 20%;

 min-width: 150px;

 border: 3px solid #ad5921;

 padding: 10px;

}

body, html {

 height: 100%;

 margin: 0;

 font-kerning: normal;

}

h1 {

 text-align: center;

}

p {

 text-align: center;

}

div {

 text-align: center;

}

div {

 background-color: rgba(241, 235, 235, 0.719);

}

body {

 background-image: url('/static/background.jpg');

 background-repeat: no-repeat;

 background-attachment: fixed;

 background-size: cover;

 height: 500px;

}

#button1, #button2 {

 display: inline-block;

}

#footer {

 position: fixed;

 padding: 10px 10px 0px 10px;

 bottom: 0;

 width: 100%;

 /* Height of the footer*/

 height: 20px;

}

These are pretty standard css constructs, and provided here by way of
minimal styling for the landing page showing the tutor registration form. You
are encouraged to write your own styling for the page, if you are familiar
with css.

Note that the css file refers to a background image /static/background.jpg.
You can find this image uploaded to the git repo for the chapter. Download
the file and place it under $PROJECT_ROOT/static folder. Alternatively, you
can use your own background image (or none at all).

We’re now ready to write the code for the show_register_form() handler
function.

In $PROJECT_ROOT/src/iter5/handler.rs__, update the code as follows:

Listing 8.6. Handler function to show registration form

use actix_web::{web, Error, HttpResponse, Result}; #1

use crate::errors::EzyTutorError; #1

pub async fn show_register_form(tmpl: web::Data<tera::Tera>) ->

[CA]Result<HttpResponse, Error> { #2

 let mut ctx = tera::Context::new(); #3

 ctx.insert("error", ""); #4

 ctx.insert("current_username", "");

 ctx.insert("current_password", "");

 ctx.insert("current_confirmation", "");

 ctx.insert("current_name", "");

 ctx.insert("current_imageurl", "");

 ctx.insert("current_profile", ""); #4

 let s = tmpl

 .render("register.html", &ctx) #5

 .map_err(|_| EzyTutorError::TeraError(

 [CA]"Template error".to_string()))?;

 Ok(HttpResponse::Ok().content_type("text/html").body(s)) #6

}

We can do a quick test now. From $PROJECT_ROOT Run the Actix server
with the following command, from $PROJECT_ROOT:

cargo run --bin iter5-ssr

Assuming you have followed all the steps described, you should be able to
see the landing page showing the registration form, when you visit the
following URL from a browser (replace port number with whatever you have
configured in the .env file):

localhost:8080/

You have successfully displayed the tutor registration form. It’s time to
accept user inputs and post the completed form back to the Actix web server.
Let’s see how that can be done, in the next section.

8.4 Handling registration submission

We’ve seen how to display the registration form, in the previous section. Go
ahead and try to fill out the values. Specifically try the following:

1. Hit the Register button without entering any value. You should see the
message 'Please fill in this field', or something similar depending upon
which browser you use, for all the fields which are marked as required
in the html template.

2. For input fields where minlength or maxlength have been specified in
the html template, you will see error messages displayed in the browser
whenever your input does not meet the criteria.

Note that these are in-browser validations enabled by the HTML specification
itself. We have not written any custom code for these validations.

However, these in-browser validations cannot be used to implement more

complex validation rules. They have to be implemented in the server-side
handler functions. One example of a validation rule in the tutor registration
form is that the password and the password confirmation fields must contain
the same value. For this, we will submit the form data to the Actix server and
write the validation code in the handler function. (Note that as mentioned
earlier, this password check validation can be performed within the browser
using jquery or javascript, but we are adopting a pure-Rust approach in this
book).

If you recall the registration workflow we saw in the previous section, we
also have to perform the following key steps in the handler function:

1. Verify if the password and password confirmation fields match. If not,
return the form back to the user along with a suitable error message. The
values the user filled previously should also be returned along with the
form, and should not be lost/discarded.

2. If the password check is successful, a POST request needs to be made
on the backend tutor web service to create a new tutor. We’ll be using
the awc crate (from Actix web ecosystem) as the HTTP client to talk to
the tutor web service.

3. The web service returns details of the newly created tutor record, which
also includes a database-generated tutor-id. This tutor id represents a
unique tutor record in the tutor web service. The web application needs
to remember this for future use (eg. when requesting the web service for
the user profile of the tutor, or to retrieve course list for the tutor). We
need to store this information somewhere within the web application.

4. The username and password entered by the user in the registration form
also needs to be recorded within the web application, so it can be used
for authenticating the tutor in future.

For storing tutor-id, username and password, we will be using postgres as the
database. While you can use any database (or even a lighter key value store
for this purpose), postgres has been chosen as you have already learnt how to
use it with Actix in earlier chapters, and this avoids you having to learn how
to configure and use yet another datastore with Rust and Actix. If you need a
refresher on how to use and configure postgres with sqlx and Actix, it is
recommended that you refer back to Chapter 4.

Storing passwords in clear text form in the database is an insecure approach
and is highly discouraged for production use. So, we’ll use a third-party crate
argon2 for storing hashes of passwords in the database, rather than storing
them in clear text form.

Recall that we’ve already added the sqlx, awc and argon2 crates to
Cargo.toml in the beginning of the chapter. Here is a recap of the three crates
that we added.

sqlx = {version = "0.3.5", default_features = false, features =

[CA]["postgres","runtime-tokio", "macros"]}

rust-argon2 = "0.8.3"

awc = "2.0.3"

Let’s now look at the database layer. We need a database only to store
registered users with their credentials. We’ve previously defined the User
data structure in the model.rs file as shown:

#[derive(Serialize, Deserialize, Debug, sqlx::FromRow)]

pub struct User {

 pub username: String,

 pub tutor_id: i32,

 pub user_password: String,

}

Let’s create a table in the database to store user information. In
$PROJECT_ROOT/src/iter5 you’ve already created a file dbscripts/user.sql.
Place the following code in this file:

drop table if exists ezyweb_user; #1

create table ezyweb_user #2

(

 username varchar(20) primary key,

 tutor_id INT,

 user_password CHAR(100) not null

);

Login to the psql shell prompt. From project root, run the following
command:

create database __ezytutor_web_ssr__; #1

create user __ssruser__ with password 'mypassword'; #2

grant all privileges on database ezytutor_web_ssr to ssruser; #3

Log out of psql and log back in to see if the credentials are working

psql -U $DATABASE_USER -d ezytutor_web_ssr -- password

\q

Here $DATABASE_USER refers to the username created in the database.

Lastly, quit the psql shell, and from the project root, run the following
command to create the database table. Before that, ensure to set the database
user in the environment variable $DATABASE_USER, so it becomes
convenient for reuse.

psql -U $DATABASE_USER -d ezytutor_web_ssr < src/iter5/dbscripts/user.sql

Log back into the psql shell, and run the following commands to check if the
table has been created correctly.

\d+ ezyweb_user

You should see the metadata for the table created. If you have any trouble in
following these steps related to postgres, refer back to chapter 4.

We’re now ready to write the database access functions to store and read
tutor data. In $PROJECT_ROOT/src/iter5/dbaccess.rs, add the following
code:

Listing 8.7. Database access function to store and read tutor data

use crate::errors::EzyTutorError; #1

use crate::model::*; #1

use sqlx::postgres::PgPool; #1

//Return result

pub async fn get_user_record(pool: &PgPool, username: String) ->

[CA]Result<User, EzyTutorError> { #2

 // Prepare SQL statement

 let user_row = sqlx::query_as!(

 User,

 "SELECT * FROM ezyweb_user where username = $1",

 username

)

 .fetch_optional(pool)

 .await?;

 if let Some(user) = user_row {

 Ok(user)

 } else {

 Err(EzyTutorError::NotFound("User name not found".into()))

 }

}

pub async fn post_new_user(pool: &PgPool, new_user: User) ->

[CA]Result<User, EzyTutorError> { #3

 let user_row= sqlx::query_as!(User,"insert into ezyweb_user (

 [CA]username, tutor_id, user_password) values ($1,$2,$3)

 [CA]returning username, tutor_id, user_password",

 new_user.username, new_user.tutor_id, new_user.user_password)

 .fetch_one(pool)

 .await?;

 Ok(user_row)

}

Writing such database access functions should be familiar to you by now, as
we dealt with them extensively in previous chapters on building the tutor web
service.

Let’s now move on to the handler functions to perform registration.

Now, which handler function should we write to handle registration form
submission? You’ll recall that when a form is submitted, the browser invokes
a POST HTTP request on the /register route, and in the routes configuration
we have specified the handler function as handle_register() for this route.
Let’s head into the handler.rs file under $PROJECT_ROOT/src/iter5, and
update the handle_register() function as follows:

Listing 8.8. Function to handle registration form submission

use crate::dbaccess::{get_user_record, post_new_user}; #1

... #2

use serde_json::json; #1

pub async fn handle_register(#3

 tmpl: web::Data<tera::Tera>,

 app_state: web::Data<AppState>,

 params: web::Form<TutorRegisterForm>,

) -> Result<HttpResponse, Error> {

 let mut ctx = tera::Context::new();

 let s;

 let username = params.username.clone();

 let user = get_user_record(&app_state.db, username.to_string()).await;

 let user_not_found: bool = user.is_err();

 //If user is not found in database, proceed to verification of passwords

 if user_not_found {

 if params.password != params.confirmation { #5

 ctx.insert("error", "Passwords do not match");

 ... #2

 s = tmpl

 .render("register.html", &ctx)

 .map_err(|_| EzyTutorError::TeraError(

 [CA]"Template error".to_string()))?;

 } else { #6

 let new_tutor = json!({

 "tutor_name": ... #2

 });

 let awc_client = awc::Client::default(); #7

 let res = awc_client #7

 .post("http://localhost:3000/tutors/")

 .send_json(&new_tutor) #8

 .await

 .unwrap() #8

 .body() #9

 .await?; #9

 let tutor_response: TutorResponse = serde_json::from_str(

 [CA]&std::str::from_utf8(&res)?)?;

 s = format!("Congratulations. ...); #11

 // Hash the password

 let salt = b"somerandomsalt"; #12

 let config = Config::default(); #12

 let hash =

 argon2::hash_encoded(params.password.clone().as_bytes(),

 [CA]salt, &config).unwrap(); #12

 let user = User { #13

 ... #2

 };

 let _tutor_created = post_new_user(

 [CA]&app_state.db, user).await?; #13

 }

 } else {

 ctx.insert("error", "User Id already exists");

 ...

 s = tmpl

 .render("register.html", &ctx)

 ...; <2,14>

 };

 Ok(HttpResponse::Ok().content_type("text/html").body(s)) #15

}

We are ready to test this. Before that, we have to ensure that the backend
tutor web service is running. Go to ezytutors/tutor-web-service folder and run
the web service with as follows:

cargo run --bin iter5

Run the web application from $PROJECT_ROOT with:

cargo run --bin iter5-ssr

From a browser, access the URL - localhost:8080/. Fill out the form and
hit the Register button. If all data is entered correctly, you should see a
message displayed on the screen:

Congratulations. You have been successfully registered with EzyTutor and your tutor id is: __xx__. To start using EzyTutor, please login with your credentials

As a sidenote on the way interaction with the user is handled, the solution
presenteed here is not the best option, for at least two reasons: firstly, in case
of error, we end up repeating much code to rebuild the form, and secondly, if
the user bookmarks that endpoint thinking it’s the registration endpoint, it
will actually display a blank page when the bookmark is used. Redirecting to
"/" would be a better option. However, this modifiection is not trivial and is
left as an exercise to the reader.

Try registering with the same username again. You should see the
registration form populated with the values you entered, along with the
following error message.

User Id already exists

Register one more time, but this time ensure that the password and password

confirmation fields don’t match. You should once again see the registration
form populated with the values you entered, along with the following error
message.

Passwords do not match

These few tests conclude the section on tutor registration.

With this, we conclude this section and chapter. We’ve seen how to define a
template with template variables, display the registration form to the user,
perform in-browser and in-handler validations, send an HTTP request from
the template, make an HTTP request to a backend web service, and store the
user in a local database. We also defined a custom error type to unify error
handling. We also learnt how to hash passwords before storing them in a
database for security purposes.

Of course, at this stage with a real application intended for production, there
are many improvements that could be added to the current implementation.

However, as already mentioned, this is not the goal of this book. We just
illustrate, in a fairly straightforward way, how such applications can be
kickstarted, using the right Rust crates.

8.5 Summary

Architecturally, a server-rendered Rust web application consists of
HTML templates (that are defined and rendered using a template library
like Tera), routes on which HTTP requests arrive, handler functions that
process the HTTP requests and a database access layer that abstracts
details of storing and retrieving data.
A standard HTML form can be used to capture user inputs in an Actix
web application. Infusing Tera template variables into the HTML form
provides a better user experience and feedback to guide the user.
User input validations in forms can be performed either within the
browser, or in the server handler function. Normally, simple validations
such as field length checks are done using the former, and more complex
validations (such as whether the username is already registered) is done

in the server handler function. When the user submits the form, a POST
HTTP request along with the form data is sent by the browser to the
Actix web server, on the specified route.
A custom error type can be defined to unify error handling in the web
application. In case of errors in the form data entered by the user, the
corresponding form tera template is re-rendered by the handler function,
and sent to the browser, along with a suitable error message.
Data pertaining to user management (such as username, password) is
stored within the web application in a local data store (we have used
postgres database in this chapter). The passwords are stored as hashes,
and not clear text for security purposes.

In the next chapter, we’ll conclude the server-side web application and cover
topics including signing-in a user and creating forms for course data
maintenance.

See you in the next chapter.

9 Working with forms for course
maintenance
This chapter covers

Designing user authentication
Setting up the project structure
Implementing user authentication
Routing HTTP requests
Creating a resource with HTTP POST method
Updating a resource with HTTP PUT method
Deleting a resource with HTTP DELETE method

In the previous chapter, we looked at registration of tutors. You may recall
that when a user registers as a tutor, the information about the tutor is stored
across two databases. Profile details of the tutor such as name, image and
area of specialization are maintained in a database within the backend tutor
web service. Registration details of the user such as userid and password are
stored locally in a database within the web application.

In this chapter, we will build on top of the code from the previous chapter.
We’ll learn to write a Rust front-end web app that allows users to sign in to
the application, interact with a local database, and communicate with a
backend web service.

Note that the primary focus of this chapter will not be on writing the
HTML/javascript user interface for the web application (as that is not the
focus of this book). For this reason, only two forms (the sign-in form and the
user notification screen) will be discussed in this chapter; no other form will
be implemented. Instead, we will focus on writing all the other components
that make up a web application in Rust, including routes, request handlers,
and data models, and learn how to invoke APIs on the back-end web service.
In lieu of a user interface, we will test the APIs of the web application from a
command-line HTTP tool. The task of writing the rest of the

HTML/javascript-based UI for the web application using Tera templates is
left to the reader as an exercise.

Let’s first start with the tutor sign in (authentication) functionality.

9.1 Designing user authentication

For tutor sign in, we’ll accept two fields- username and password, and use it
to authenticate tutors to the web application.

Figure 1 shows the tutor signin form.

Figure 9.1. Tutor sign in form

Let’s now take a look at the workflow for tutor signin in figure 2. Note that
the term Actix web server in figure 2 refers to the front-end web application
server, and not the backend tutor web service.

Figure 9.2. Tutor signin flow

1. User visits the landing page URL. The tutor signin form is displayed.
2. Basic validation for username and password is performed within the

form itself using HTML features, without having to send requests to the
web Actix server.

3. If there are errors in validation, feedback is provided to the user.
4. User submits the signin form. A POST request is sent to the Actix web

server on the signin route, which then routes the request to the
respective route handler.

5. The route handler function verifies the username and password, by
retrieving the user credentials from the local database.

6. If the authentication is not successful, the signin form is displayed back
to the user with an appropriate error message. Examples of error
messages include incorrect username or password.

7. If the user is authenticated successfully, the user is directed to the home
page of the tutor web application.

Now that we are clear about what we will be developing in this chapter, let’s
set up the project code structure and basic scaffolding.

9.2 Setting up the project structure

First clone the ezytutors repo from chapter8.

Let’s then set the PROJECT_ROOT environment variable to /path-to-
folder/ezytutors/tutor-web-app-ssr. Henceforth, we’ll refer to this folder as
$PROJECT_ROOT.

Let’s organize the code under project root as follows:

1. Make a copy of the folder $PROJECT_ROOT/src/iter5, and rename it as
$PROJECT_ROOT/src/iter6.

2. Make a copy of the folder $PROJECT_ROOT/static/iter5, and rename it
as $PROJECT_ROOT/static/iter6. This folder will contain the html/tera
templates.

3. Make a copy of the file $PROJECT_ROOT/src/bin/iter5-ssr.rs, and
rename it to $PROJECT_ROOT/src/bin/iter6-ssr.rs. This file contains
the main() function that will configure and startup the Actix web server
(to serve the web application that we are building). In iter6-ssr.rs,
replace all references to iter5 with iter6.

Also make sure that the .env file in $PROJECT_ROOT is configured
correctly for HOST_PORT and DATABASE_URL environment variables.

We’re ready to start coding.

Let’s begin with the routes definition in
$PROJECT_ROOT/src/iter6/routes.rs.

use crate::handler::{handle_register, show_register_form, show_signin_form,

[CA]handle_signin}; #1

use actix_files as fs;

use actix_web::web;

pub fn app_config(config: &mut web::ServiceConfig) {

 config.service(

 web::scope("")

 .service(fs::Files::new("/static", "./static").show_files_listing())

 .service(web::resource("/").route(web::get().to(show_register_form)))

 .service(web::resource("/signinform").route(web::get().to(

 [CA]show_signin_form))) #2

 .service(web::resource("/signin").route(web::post().to(

 [CA]handle_signin))) #3

 .service(web::resource("/register").route(web::post().to(

 [CA]handle_register))),

);

}

With this, we can move on to the model definition in
$PROJECT_ROOT/src/iter6/model.rs.

Add the TutorSigninForm data structure to model.rs:

// Form to enable tutors to sign in

#[derive(Serialize, Deserialize, Debug)]

pub struct TutorSigninForm { #1

 pub username: String,

 pub password: String,

}

With the basic structure of the project setup, we can now start to write code
for signing in users.

9.3 Implementing user authentication

After defining routes and data model, let’s write the handler functions for
signing in users, in $PROJECT_ROOT/src/iter6/handler/auth.rs.

First, make the following change to the imports:

use crate::model::{TutorRegisterForm, TutorResponse,

[CA] TutorSigninForm, User}; #1

Add the following handler functions to the same file. Replace references to
iter5 with iter6 in this file.

pub async fn show_signin_form(tmpl: web::Data<tera::Tera>) ->

[CA]Result<HttpResponse, Error> { #1

 let mut ctx = tera::Context::new();

 ctx.insert("error", "");

 ctx.insert("current_name", "");

 ctx.insert("current_password", "");

 let s = tmpl

 .render("signin.html", &ctx)

 .map_err(|_| EzyTutorError::TeraError(

 [CA]"Template error".to_string()))?;

 Ok(HttpResponse::Ok().content_type("text/html").body(s))

}

pub async fn handle_signin(#2

 tmpl: web::Data<tera::Tera>,

 app_state: web::Data<AppState>,

 params: web::Form<TutorSigninForm>,

) -> Result<HttpResponse, Error> {

Ok(HttpResponse::Ok().finish())

}

Recall that the show_signin_form handler function is invoked in response to a
request that arrives on route /signinform, as defined in the routes definition.

Let’s design the actual sign in html form. This form will be displayed when
the user chooses to sign in to the EzyTutor web application. Create a new file
signin.html file under $PROJECT_ROOT/static/iter6, and add the following
to it. Note that there should already be another file register.html already
present in the same folder.

Listing 9.1. Tutor signin form

<!doctype html>

<html>

<head>

 <meta charset=utf-8>

 <title>Tutor registration</title>

 <style>

 ... #1

 </style>

</head>

<body>

 <div class="header">

 <h1>Welcome to EzyTutor</h1>

 <p>Start your own online tutor business in a few minutes</p>

 </div>

 <div class="center">

 <h2>

 Tutor sign in

 </h2>

 <form action=/signin method=POST> #2

 <label for="userid">Enter username</label>

 <input type="text" name="username" autocomplete="username"

 [CA]value="{{current_name}}" minlength="6"

 maxlength="12" required>

 <label for="password">Enter password</label>

 <input type="password" name="password"

 [CA]autocomplete="new-password" value="{{current_password}}"

 minlength="8" maxlength="12" required>

 <label for="error">

 <p style="color:red">{{error}}</p>

 </label>

 <button type=submit id="button2">Sign in</button>

 </form>

 <form action=/ method=GET>

 <button type=submit id="button2">Register</button>

 </form>

 </div>

 <p>

 <div id="footer">

 (c)Photo by Author

 </div>

 </p>

</html>

Add another file user.html to $PROJECT_ROOT/static/iter6. This will be
displayed after successful signin by the user.

Listing 9.2. User notification screen

<!DOCTYPE html>

<html>

<head>

 <meta charset=\"utf-8\" />

 <title>{{title}}</title>

</head>

<body>

 <h1>Hi, {{name}}!</h1>

 <p>{{message}}</p>

</body>

</html>

Lastly, let’s look at the main() function in $PROJECT_ROOT/src/bin/iter6-
ssr.rs__. Modify it to look like below:

Here are the imports:

#[path = "../iter6/mod.rs"]

mod iter6;

use actix_web::{web, App, HttpServer};

use actix_web::web::Data;

use dotenv::dotenv;

use iter6::{dbaccess, errors, handler, model, routes, state};

use routes::app_config;

use sqlx::postgres::PgPool;

use std::env;

use tera::Tera;

And, this is the main() function:

Listing 9.3. main() function

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 dotenv().ok();

 //Start HTTP server

 let host_port = env::var("HOST_PORT").expect(

 [CA]"HOST:PORT address is not set in .env file");

 println!("Listening on: {}", &host_port);

 let database_url = env::var("DATABASE_URL").expect(

 [CA]"DATABASE_URL is not set in .env file");

 let db_pool = PgPool::connect(&database_url).await.unwrap();

 // Construct App State

 let shared_data = web::Data::new(state::AppState { db: db_pool });

 HttpServer::new(move || {

 let tera = Tera::new(concat!(env!("CARGO_MANIFEST_DIR"),

 [CA]"/static/iter6/**/*")).unwrap();

 App::new()

 .app_data(Data::new(tera))

 .app_data(shared_data.clone())

 .configure(app_config)

 })

 .bind(&host_port)?

 .run()

 .await

}

We can test now. Run the following command from $PROJECT_ROOT.

cargo run --bin iter6-ssr

Note: If you get the error: no implementation for `u32 - usize:

Run the following:

cargo update -p lexical-core

From a browser, access the following route:

localhost:8080/signinform

You should be able to see the signin form. You can also invoke the signing
form by accessing the index route / , which shows the registration form, and
by using the button shown to switch to the signin form.

Once you have this working, you are ready to implement the logic for signing
in the user. Add the following to $PROJECT_ROOT/src/iter6/handler.rs.
Don’t forget to remove the placeholder function with the same name created
earlier.

Listing 9.4. Handler function for signin

pub async fn handle_signin(

 tmpl: web::Data<tera::Tera>,

 app_state: web::Data<AppState>,

 params: web::Form<TutorSigninForm>,

) -> Result<HttpResponse, Error> {

 let mut ctx = tera::Context::new();

 let s;

 let username = params.username.clone();

 let user = get_user_record(&app_state.db,

 [CA] username.to_string()).await; #1

 if let Ok(user) = user {

 let does_password_match = argon2::verify_encoded(

 &user.user_password.trim(),

 params.password.clone().as_bytes(),

)

 .unwrap();

 if !does_password_match {

 ctx.insert("error", "Invalid login");

 ctx.insert("current_name", ¶ms.username);

 ctx.insert("current_password", ¶ms.password);

 s = tmpl

 .render("signin.html", &ctx)

 .map_err(|_| EzyTutorError::TeraError(

 [CA]"Template error".to_string()))?;

 } else {

 ctx.insert("name", ¶ms.username);

 ctx.insert("title", &"Signin confirmation!".to_owned());

 ctx.insert(

 "message",

 &"You have successfully logged in to EzyTutor!".to_owned(),

);

 s = tmpl

 .render("user.html", &ctx)

 .map_err(|_| EzyTutorError::TeraError(

 [CA]"Template error".to_string()))?;

 }

 } else {

 ctx.insert("error", "User id not found");

 ctx.insert("current_name", ¶ms.username);

 ctx.insert("current_password", ¶ms.password);

 s = tmpl

 .render("signin.html", &ctx)

 .map_err(|_| EzyTutorError::TeraError(

 [CA]"Template error".to_string()))?;

 };

 Ok(HttpResponse::Ok().content_type("text/html").body(s))

}

Let’s test the signin function now. Run the following command from
$PROJECT_ROOT.

cargo run --bin iter6-ssr

From a browser, access the following route:

localhost:8080/signinform

Enter the correct username and password. You should see the confirmation
message.

Load the signin form once again, and this time enter a wrong password for a
valid username. Verify that you get the error message.

Try entering the form the third time, this time with an invalid user name.
Again, you should see an error message.

With this, we conclude this section. We’ve so far seen how to define
templates using Tera template library to generate dynamic web pages, and to
display the registration and sign in forms to the user. We’ve also
implemented the code to register and sign in a user, and handle errors in user
inputs. We also defined a custom error type to unify error handling.

Let’s now move on to managing course details. From now on, we will focus
on the services and won’t look at the corresponding forms. We will first
implement routing and then develop the functions required for resource
maintenance.

9.4 Routing HTTP requests

In this section, we’ll add the ability for a tutor to maintain courses.

We currently have all handler functions in a single file. We’ll now have to
add handlers for course maintenance also. So, let’s first organize handler
functions into its own module, that gives the ability to split the handler
functions across multiple source files.

Start by creating a new handler folder under $PROJECT_ROOT/src/iter6.

Move $PROJECT_ROOT/src/iter6/handler.rs into
$PROJECT_ROOT/src/iter6/handler and rename it as auth.rs, as this deals
with registration and login functionality. (i.e. mv
$PROJECT_ROOT/src/iter6/handler.rs
$PROJECT_ROOT/src/iter6/handler/auth.rs in linux).

Create new files course.rs and mod.rs under
$PROJECT_ROOT/src/iter6/handler folder. In mod.rs add the following
code to structure the files in the handler folder and export them as a Rust
module.

pub mod auth; #1

pub mod course; #2

Modify $PROJECT_ROOT/src/iter6/routes.rs as shown:

Listing 9.5. Adding routes for course maintenance

use crate::handler::auth::{handle_register, handle_signin,

[CA]show_register_form, show_signin_form}; #1

use crate::handler::course::{handle_delete_course, handle_insert_course,

[CA]handle_update_course}; #2

use actix_files as fs;

use actix_web::web;

pub fn app_config(config: &mut web::ServiceConfig) { #3

 config.service(

 web::scope("")

 .service(fs::Files::new("/static", "./static").show_files_listing())

 .service(web::resource("/").route(web::get().to(show_register_form)))

 .service(web::resource("/signinform").route(web::get().to(

 [CA]show_signin_form)))

 .service(web::resource("/signin").route(web::post().to(

 [CA]handle_signin)))

 .service(web::resource("/register").route(web::post().to(

 [CA]handle_register))),

);

}

pub fn course_config(config: &mut web::ServiceConfig) { #4

 config.service(

 web::scope("/courses") #5

 .service(web::resource("new/{tutor_id}").route(web::post().to(

 [CA]handle_insert_course))) #6

 .service(#7

 web::resource("{tutor_id}/{course_id}").route(web::put().to(

 [CA]handle_update_course)),

)

 .service(#8

 web::resource("delete/{tutor_id}/{course_id}")

 .route(web::delete().to(handle_delete_course)),

),

);

}

Note that where we have specified the {tutor_id} and {course_id} as path
parameters, they can be extracted from the request’s path with help of
extractors provided by the Actix web framework.

Also make sure to add the new course maintenance routes in
$PROJECT_ROOT/bin/iter6-ssr.rs as shown:

Make the following change to import statement:app-name:

use routes::{app_config, course_config};

In the main() function, make the change to add course_config routes.

 HttpServer::new(move || {

 let tera = Tera::new(concat!(env!("CARGO_MANIFEST_DIR"),

 [CA]"/static/iter6/**/*")).unwrap();

 App::new()

 .app_data(Data::new(tera))

 .app_data(shared_data.clone())

 .configure(course_config) #1

 .configure(app_config) #2

 })

 .bind(&host_port)?

 .run()

 .await

Next, let’s for now add the placeholder handler functions for course
maintenance in $PROJECT_ROOT/src/iter6/handler/course.rs. We’ll write

the actual logic to call the backend web service, a little later.

Listing 9.6. Placeholders for course maintenance handler functions

use actix_web::{web, Error, HttpResponse, Result};

use crate::state::AppState;

pub async fn handle_insert_course(

 _tmpl: web::Data<tera::Tera>,

 _app_state: web::Data<AppState>,

) -> Result<HttpResponse, Error> {

 println!("Got insert request");

 Ok(HttpResponse::Ok().body("Got insert request"))

}

pub async fn handle_update_course(

 _tmpl: web::Data<tera::Tera>,

 _app_state: web::Data<AppState>,

) -> Result<HttpResponse, Error> {

 Ok(HttpResponse::Ok().body("Got update request"))

}

pub async fn handle_delete_course(

 _tmpl: web::Data<tera::Tera>,

 _app_state: web::Data<AppState>,

) -> Result<HttpResponse, Error> {

 Ok(HttpResponse::Ok().body("Got delete request"))

}

As you will note, the handler functions do nothing for now, except to return a
message. We will implement the intended handler functionality later in this
chapter.

Note the use of underscore (_) before the variable names. This is because, we
are not going to be using these parameters within the body of the handler
function yet, and so adding an underscore before the variable names will
prevent compiler warnings.

Let’s do a quick test of these four routes:

Run the server with:

cargo run --bin iter6-ssr

To test the POST , PUT and DELETE requests, try the following from the
command line:

curl -H "Content-Type: application/json" -X POST -d '{}'

[CA]localhost:8080/courses/new/1

curl -H "Content-Type: application/json" -X PUT -d '{}'

[CA]localhost:8080/courses/1/2

curl -H "Content-Type: application/json" -X DELETE -d '{}'

[CA]localhost:8080/courses/delete/1/2

You should see the following messages returned from the server,
corresponding to the three HTTP requests shown above:

Got insert request

Got update request

Got delete request

We've now verified that the routes have been established correctly, and the
HTTP requests are being routed to the correct handler functions. In the next
section, let’s implement the actual logic for adding a course for a tutor in the
handler function.

9.5 Creating a resource with HTTP POST method

In this section, we’ll add a new course for a given tutor, by sending an API
request to the backend tutor web service.

Go to the code repo for Chapter 6 (i.e., /path-to-chapter4-
folder/ezytutors/tutor-db), and start the tutor web service with the following
command:

cargo run --bin iter5

The tutor web service should now be ready to receive requests from the tutor
web application. Let’s now write the code for the course handler in the web
application, in $PROJECT_ROOT/src/iter6/handler/course.rs.

Modify the $PROJECT_ROOT/src/iter6/model.rs to add the following:

Listing 9.7. Data model changes for course maintenance

#[derive(Deserialize, Debug, Clone)]

pub struct NewCourse { #1

 pub course_name: String,

 pub course_description: String,

 pub course_format: String,

 pub course_duration: String,

 pub course_structure: Option<String>,

 pub course_price: Option<i32>,

 pub course_language: Option<String>,

 pub course_level: Option<String>,

}

#[derive(Deserialize, Serialize, Debug, Clone)]

pub struct NewCourseResponse { #2

 pub course_id: i32,

 pub tutor_id: i32,

 pub course_name: String,

 pub course_description: String,

 pub course_format: String,

 pub course_structure: Option<String>,

 pub course_duration: String,

 pub course_price: Option<i32>,

 pub course_language: Option<String>,

 pub course_level: Option<String>,

 pub posted_time: String,

}

impl From<web::Json<NewCourseResponse>> for NewCourseResponse {

 fn from(new_course: web::Json<NewCourseResponse>) -> Self {

 NewCourseResponse {

 tutor_id: new_course.tutor_id,

 course_id: new_course.course_id,

 course_name: new_course.course_name.clone(),

 course_description: new_course.course_description.clone(),

 course_format: new_course.course_format.clone(),

 course_structure: new_course.course_structure.clone(),

 course_duration: new_course.course_duration.clone(),

 course_price: new_course.course_price,

 course_language: new_course.course_language.clone(),

 course_level: new_course.course_level.clone(),

 posted_time: new_course.posted_time.clone(),

 }

 }

}

Also make sure to add the following module import, which is required by the
From trait implementation.

use actix_web::web;

Next, let’s re-write the handler function to create a new course. In
$PROJECT_ROOT/src/iter6/handler/course.rs, add the following module
imports:

use actix_web::{web, Error, HttpResponse, Result}; #1

use crate::state::AppState;

use crate::model::{NewCourse, NewCourseResponse, UpdateCourse,

[CA] UpdateCourseResponse}; #2

use serde_json::json; #3

use crate::state::AppState;

Then modify the handle_insert_course handler function as shown:

Listing 9.8. Handler function for inserting a new course

pub async fn handle_insert_course(#1

 _tmpl: web::Data<tera::Tera>, #2

 _app_state: web::Data<AppState>, #3

 path: web::Path<i32>,

 params: web::Json<NewCourse>, #4

) -> Result<HttpResponse, Error> {

 let tutor_id = path.into_inner(); #5

 let new_course = json!({ #6

 "tutor_id": tutor_id,

 "course_name": ¶ms.course_name,

 "course_description": ¶ms.course_description,

 "course_format": ¶ms.course_format,

 "course_structure": ¶ms.course_structure,

 "course_duration": ¶ms.course_duration,

 "course_price": ¶ms.course_price,

 "course_language": ¶ms.course_language,

 "course_level": ¶ms.course_level

 });

 let awc_client = awc::Client::default(); #7

 let res = awc_client #8

 .post("http://localhost:3000/courses/")

 .send_json(&new_course)

 .await

 .unwrap()

 .body()

 .await?;

 println!("Finished call: {:?}", res);

 let course_response: NewCourseResponse = serde_json::from_str(

 [CA]&std::str::from_utf8(&res)?)?; #9

 Ok(HttpResponse::Ok().json(course_response)) #10

}

Build and run the Web ssr client from the $PROJECT_ROOT as shown:

cargo run --bin iter6-ssr

Let’s test the new course creation with a curl request. Ensure that the tutor
web service is running. From another terminal, run the following command:

curl -X POST localhost:8080/courses/new/1 -d '{"course_name":"Rust web

[CA]development", "course_description":"Teaches how to write web apps in

[CA]Rust", "course_format":"Video", "course_duration":"3 hours",

[CA]"course_price":100}' -H "Content-Type: application/json"

Verify if the new course has been added by running a GET request on the
tutor web service:

curl localhost:3000/courses/1

You should see the new course in the list of courses retrieved for tutor-id = 1.

In the next section, we’ll write the handler function to update a course.

9.6 Updating a resource with HTTP PUT method

Let’s write the data structure for updating a course in
$PROJECT_ROOT/src/iter6/model.rs file.

Listing 9.9. Data model changes for updating courses

// Update course

#[derive(Deserialize, Serialize, Debug, Clone)]

pub struct UpdateCourse { #1

 pub course_name: Option<String>,

 pub course_description: Option<String>,

 pub course_format: Option<String>,

 pub course_duration: Option<String>,

 pub course_structure: Option<String>,

 pub course_price: Option<i32>,

 pub course_language: Option<String>,

 pub course_level: Option<String>,

}

#[derive(Deserialize, Serialize, Debug, Clone)]

pub struct UpdateCourseResponse { #2

 pub course_id: i32,

 pub tutor_id: i32,

 pub course_name: String,

 pub course_description: String,

 pub course_format: String,

 pub course_structure: String,

 pub course_duration: String,

 pub course_price: i32,

 pub course_language: String,

 pub course_level: String,

 pub posted_time: String,

}

impl From<web::Json<UpdateCourseResponse>> for UpdateCourseResponse {

 fn from(new_course: web::Json<UpdateCourseResponse>) -> Self {

 UpdateCourseResponse {

 tutor_id: new_course.tutor_id,

 course_id: new_course.course_id,

 course_name: new_course.course_name.clone(),

 course_description: new_course.course_description.clone(),

 course_format: new_course.course_format.clone(),

 course_structure: new_course.course_structure.clone(),

 course_duration: new_course.course_duration.clone(),

 course_price: new_course.course_price,

 course_language: new_course.course_language.clone(),

 course_level: new_course.course_level.clone(),

 posted_time: new_course.posted_time.clone(),

 }

 }

}

You’ll also notice that we have defined similar data structures for creating a
course (NewCourse, NewCourseResponse) and for updating a course
(UpdateCourse, UpdateCourseResponse). Is it possible to optimize by
reusing the same structs for both create and update operations? Some
optimisation may be possible in a real-project scenario. However for the sake
of writing this example code, we have assumed that for creating a new
course, the set of mandatory fields needed are different from that needed to

update a course (where there is no mandatory field). Also, separating data
structs for create and update operations makes it easier to understand, while
learning.

Next, let’s rewrite the handler function to update course details in
$PROJECT_ROOT/src/iter6/handler/course.rs.

Listing 9.10. Handler function for updating a course

pub async fn handle_update_course(

 _tmpl: web::Data<tera::Tera>,

 _app_state: web::Data<AppState>,

 web::Path((tutor_id, course_id)): web::Path<(i32, i32)>,

 params: web::Json<UpdateCourse>,

) -> Result<HttpResponse, Error> {

 let update_course = json!({ #1

 "course_name": ¶ms.course_name,

 "course_description": ¶ms.course_description,

 "course_format": ¶ms.course_format,

 "course_duration": ¶ms.course_duration,

 "course_structure": ¶ms.course_structure,

 "course_price": ¶ms.course_price,

 "course_language": ¶ms.course_language,

 "course_level": ¶ms.course_level,

 });

 let awc_client = awc::Client::default(); #2

 let update_url = format!("http://localhost:3000/courses/{}/{}",

 [CA]tutor_id, course_id); #3

 let res = awc_client #4

 .put(update_url)

 .send_json(&update_course)

 .await

 .unwrap()

 .body()

 .await?;

 let course_response: UpdateCourseResponse = serde_json::from_str(

 [CA]&std::str::from_utf8(&res)?)?; #5

 Ok(HttpResponse::Ok().json(course_response))

}

Make sure to import the update-related structs as shown:

use crate::model::{NewCourse, NewCourseResponse, UpdateCourse,

[CA] UpdateCourseResponse};

Build and run the Web ssr client from the $PROJECT_ROOT as shown:

cargo run --bin iter6-ssr

Let’s test with a curl request to update the course we previously created.
Ensure that the tutor web service is running. From a new terminal, run the
following command. Replace the tutor-id and course-id with those of the new
course that you previously created.

curl -X PUT -d '{"course_name":"Rust advanced web development",

[CA]"course_description":"Teaches how to write advanced web apps in Rust",

[CA]"course_format":"Video", "course_duration":"4 hours",

[CA]"course_price":100}' localhost:8080/courses/1/27 -H

[CA]"Content-Type: application/json"

Verify if the course details have been updated by running a GET request on
the tutor web service:

curl localhost:3000/courses/1

Note: Replace course_id: 1 with the correct value for the tutor_id for which
you updated the course.

You should see the updated course details reflected.

Let’s move on to deleting a course.

9.7 Deleting a resource with HTTP DELETE
method

Let’s update the handler function to delete a course in
$PROJECT_ROOT/src/iter6/handler/course.rs.

Listing 9.11. Handler function for deleting a course

pub async fn handle_delete_course(

 _tmpl: web::Data<tera::Tera>,

 _app_state: web::Data<AppState>,

 path: web::Path<(i32, i32)>, #1

) -> Result<HttpResponse, Error> {

 let (tutor_id, course_id) = path.into_inner();

 let awc_client = awc::Client::default(); #2

 let delete_url = format!("http://localhost:3000/courses/{}/{}",

 [CA]tutor_id, course_id); #3

 let _res = awc_client.delete(delete_url).send().await.unwrap();

 Ok(HttpResponse::Ok().body("Course deleted"))

}

Build and run the tutor web app from the $PROJECT_ROOT as shown:

cargo run --bin iter6-ssr

Run the delete request as shown:

curl -X DELETE localhost:8080/courses/delete/1/19

Replace tutor_id and course_id with your own.

Verify if the course has been deleted by running a query on the tutor web
service.

curl localhost:3000/courses/1

Replace the tutor_id with your own. You should see that the course has been
deleted in the _tutor web service.

With this, we have seen how to add, update and delete a course from the web
client front-end written in Rust.

As an exercise, readers can do the following additional tasks:

1. Implement a new route to retrieve the list of courses for a tutor
2. Create HTML/Tera templates for creating, updating and deleting a

course
3. Add additional error handling for cases with invalid user inputs.

Once all these elements are in place, our application will be on the right path
for completion. We can congratulate ourselves: the hardest part of our project

is done!

Let us wrap up …

9.8 Summary

In this chapter, we learnt how to structure and write a web application
project in Rust that talks to a backend web service.
We designed and implemented the user authentication functionality that
allows the user to enter the credentials in an HTML form, and then
stores them in a local database. Handling of errors in user inputs was
also covered.
We discussed how to how to structure the project and modularize the
code for a web front-end application that includes HTTP request
handlers, database interaction logic, data model and web UI/Html
templates.
We wrote code to create, update and delete specific data in the database
in response to HTTP POST, PUT and DELETE method requests. We
also understood how to extract parameters sent as part of the HTTP
requests.
We learnt how to construct HTTP requests to invoke APIs on a backend
web service, and to interpret the responses received, including data
serialization and deserialization.
In summary, you have learnt how to build a web application in Rust that
can communicate with a backend web service, interact with a local
database and perform basic create, update and delete operations on data
in response to incoming HTTP requests.

With this, we come to the conclusion of this chapter and also this section on
Rust web application development.

In the next chapter, we’ll take a look at an advanced topic relating to
asynchronous servers in Rust.

See you in the next chapter.

Part 3 Advanced topic: Async Rust
This third part departs significantly from the path followed so far. It is totally
devoted to asynchronous programming. Although not new – by far –,
asynchronous (or async, for short) programming remains a hot topic today,
because it remains of utmost importance in modern systems. Async
programming is one of the techniques that allows to make the best possible
use of computing resources, when data processing activities vary widely in
time or when there is latency in the system. This explains that async
programming is all the more significant for systems, the more they are
distributed.

We start with a brief recap(itulation?) on concurrent programming, a topic
closely related to asynchronous programming and then delve into the
fascinating world of async programming. Async programming has very much
evolved from the early days, thanks to the rise of Functional Programming
supported by powerful languages like Haskell or Scala. Luckily, many
functional programming idioms have found their way either in Rust itself or
in very good crates authored by savvy Rust developers.

After having demonstrated Rust’s capabilities in async programming, this
part then moves on to the more complex world of “peer-to-peer (P2P)”
architectures, that further builds on async programming. Granted: P2P is not
required for simple, low-traffic web applications like EzyTutors but we felt it
useful to make the reader aware of the vast potential of Rust in advanced
distributed architectures.

Mastering asynchronous programming does not come easy. Through the step-
by-step approach applied in this part, you will gain enough knowledge to
design and develop sophisticated yet efficient distributed applications that
make the best possible use of computing resources, thanks to asynchronous
programming.

10 Understanding Async Rust
This chapter covers

Introduction to Async programming concepts
Writing concurrent programs
Diving deeper into async Rust
Understanding futures
Implementing a custom future

We have now reached the last section of this book.

In the previous chapters, we covered building a web service and a web
application using Rust. To build these, we've used the Actix web framework
for handling the network communications. We’ve mostly submitted HTTP
requests to the Actix web server from a single browser window or from a
command-line terminal. But have you thought about what happens when tens
or hundreds of users send requests concurrently for registering tutors or
courses? Or more broadly, how do modern web servers handle tens of
thousands of concurrent requests? Read on, to find out.

In this last section, we will put our EzyTutors web application aside for a
while to focus on fascinating aspects of Rust that allow to implement very
efficient, state-of-the-art services … We will come back to EzyTutors briefly,
at the end of the book, to show how to deploy it in an efficient and flexible
way.

In this chapter, we will thus take a detour from our web application, and look
under the hood to understand what is asynchronous Rust, what is the need to
use it, and how it works in practice. By the end of this chapter you’ll have a
better understanding of the magic that Actix (and other similar modern web
frameworks) perform to handle heavy concurrent loads, while delivering
swift responses to user requests.

Note that this chapter and the next one are intended as advanced topics,

aimed at those who want to get into the details of asynchronous programming
in Rust. However, it is not necessary at all to complete them to do web
programming in Rust. As a reader, you can choose to skip these chapters and
come back to them at a later stage when you are ready for an async deep-
dive.

Let’s now get started with a few basic concepts of concurrent programming.

10.1 Introduction to Async programming concepts

In computer science, concurrency is the ability of different parts of a
program to be executed out-of-order or at the same time simultaneously,
without affecting the final outcome.

Strictly speaking, executing parts of a program out-of-order is concurrency,
while executing multiple tasks simultaneously is parallelism. But in practice,
both concurrency and parallelism are used in conjunction to achieve the
overall outcome of processing multiple requests arriving at the same time in
an efficient and safe manner. Figure 10.1 illustrates this difference. However,
for this chapter, let’s use the term concurrency to broadly refer to both of
these aspects.

Figure 10.1. Concurrency vs Parallelism

Now you may wonder, why would one want to execute parts of a program
out-of-order? After all, programs are supposed to execute from top to bottom,
statement by statement, right?

There are two primary drivers for doing concurrent programming - one from
the demand side and another from the supply side.

On the demand side (as in user demand), the expectation for programs to run
faster drives software devs to consider concurrent programming techniques.

On the supply side (as in hardware supply), the availability of multiple CPUs
(and/or multiple cores in CPUs) on computers (even the ones that are sold to
end users like you and me, and not just the high-end servers in data centers)
creates an opportunity for software developers to write programs that can
take advantage of multiple cores/processors available, in order to make the
overall execution faster and efficient.

But designing and coding concurrent programs is a complex task. It starts
with determining what tasks to perform concurrently. How do the developers
determine which parts of code can be executed concurrently?

Let’s go back to Figure 10.1. It shows two tasks - task 1 and task 2 to be
executed. Let’s assume here that tasks 1 and 2 are two functions in a Rust
program. The easiest way to visualize is to schedule task1 on cpu1 and task2
on cpu2. This is shown under parallel processing. But is this the most
efficient model for utilizing the available CPU time?

It may not be. To understand this better, let’s classify all processing
performed by software programs broadly into two categories: CPU-intensive
tasks and I/O-intensive tasks, even though most code in the real-world
involves a mix of both. Examples of CPU-intensive tasks are genome
sequencing, video encoding, graphics processing and computing
cryptographic proofs in a blockchain. Examples of I/O-intensive tasks are
accessing data from file systems or databases, and processing network
TCP/HTTP requests.

In CPU-intensive tasks, most of the work involves accessing data in memory,
loading the program instructions and data on the stack, and executing them.
What kind of concurrency is possible here? Let’s take a simple example of a
program that takes a list of numbers and computes the square root of each
number. The programmer can write a single function that

takes a reference to a list of numbers loaded into memory,
iterates through the list in a sequence,
computes the square root for each number and
writes the result back to memory.

This would be an example of sequential processing. In a computer where
there are multiple processors/cores, the programmer also has the opportunity
to structure the program in such a way that each number is read from memory
and sent for square-root processing to the next available CPU/core, as each
number can be processed independent of the other. While, this is a trivial
example, it gives an idea of the type of opportunity available for
programmers to utilize multiple processors/cores in complex computation-
intensive tasks.

Let’s next look at where the opportunity is for concurrency in I/O-intensive
tasks. Here, let’s take the familiar example of HTTP request processing in
web services and applications, which is generally more I/O-intensive than
CPU-intensive.

In web applications, data is stored in databases, and all Create, Read, Update,
Delete operations, corresponding to HTTP POST, GET, PUT and
DELETE requests respectively, require the web application to transfer data
to and from the database. This requires the processor (CPU) to wait for the
data to be read or written to disk. And in spite of advances in disk
technologies, disk access is slow (in the range of milliseconds as opposed to
memory access which is in nanoseconds). So, if the application is trying to
retrieve 10,000 user records from a Postgres database, it makes calls to the
operating system for disk access, and the CPU 'waits' during this time. Now,
what options does the programmer have when a part of her code makes the
processor wait? The answer is to have the processor perform another task.
This is an example of an opportunity available to programmers to design
concurrent programs.

Another source of 'delays' or 'waiting' in web applications is network request
handling. The HTTP model is quite simple. The client establishes a
connection to the remote server and issues a request (sent as an HTTP request
message). The server then processes the request, issues a response and closes
the connection. (Note: HTTP/2 has brought some improvements to minimize
the number of request-response cycles and handshakes. For more details on
HTTP/2, here is a book reference: www.manning.com/books/http2-in-
action). The challenge arises when a new request arrives while the processor
is still serving the previous request. For example, a GET request arrives to
retrieve a set of courses for Tutor 1, and while this is still being processed, a
new request arrives to POST a new course from Tutor 2. Should the second
request wait in queue until the first request is fully processed? Or can we
scchedule the second request on the next available core/processor? This is
when we start to appreciate the need for concurrent programming.

We have so far seen examples of opportunities available to programmers to
use concurrent programming techniques both in computation-intensive tasks
and I/O-intensive tasks. Let’s now look at the tools available to programmers

to write concurrent programs.

Figure 10.2. Synchronous, asynchronous and multi-threading

Figure 10.2 shows the various options available to programmers to structure
their code for execution on the CPU(s). To be more specific, it highlights the
differences between synchronous processing and the two modes of
concurrent processing - multi-threading and async processing. It illustrates
the differences using an example of a case where there are three tasks to be
executed - task 1, task 2 and task 3.

Let’s also assume task 1 to contain three parts:

part-1: processing of input data,
part-2: a blocking operation, and then

part-3: packaging the data to be returned from the task

Note the blocking operation. This means that the current thread of execution
is blocked waiting for some external operation to complete, e.g., reading from
a large file or database.

Let’s now look at how to handle these tasks in three different programming
modes - synchronous processing, multi-threaded processing and async
processing.

In the case of synchronous processing, the processor completes part-1, waits
for the result of the blocking operation, and then proceeds to execute part-3
of the task.

If the same task were to be executed in multi-threaded mode, task 1 that
contains the blocking operation can be spawned off on a separate operating
system thread, while the processor can execute other tasks on another thread.

If async processing is used, an async runtime (such as Tokio) manages
scheduling of tasks on the processor. In this case, it executes task 1 until the
point when it blocks waiting for I/O. At this point, the async runtime
schedules the second task. When the blocking operation completes on the
first task, it is then scheduled for execution back on the processor.

At a high level, this is how synchronous processing differs from the two
modes of concurrent processing. It is left to the programmer to determine
which is the best approach for the particular use case and computation
involved.

Let’s now go to the second example of a web server receiving multiple
simultaneous network requests, and see how the two types of concurrent
processing techniques can be applied here.

Figure 10.3. Multi-threading in HTTP request processing

The first approach to concurrency involves using native operating system
threads as shown in figure 10.3, i.e. start a new thread within the web server
process to handle each incoming request. The Rust standard library provides
good built-in support for multi-threading with the std::thread module. In this
model, we are distributing the program (web server) computation on to
multiple threads. This can improve performance because threads can run
simultaneously. However, it’s not as simple as that. Multi-threading adds a
new layer of complexity including

unpredictability about order of execution of threads,
deadlocks where multiple threads are trying to access the same piece of
data in memory, and
race conditions (where for example one thread may have read a piece of
data from memory and is performing some computation with it, while
another thread updates the value in the meantime).

Writing multi-threaded programs requires careful design compared to single-

threaded programs.

There is another challenge in multi-threading, which is to do with the type of
threading model implemented by the programming language. There are two
types of threading models: 1:1 thread model where there is a single operating
system thread per language thread, and M:N model where there are M green
(quasi) threads per N operating system threads. The Rust standard library
implements the 1:1 thread model. But this does not mean that we can create
an endless number of threads corresponding to new network requests, as
generally each operating system has a limit on the number of threads, and this
is also influenced by stack size and amount of virtual memory available in the
server. In addition, there is a context switching cost associated with multiple
threads, as when a CPU switches from one thread to another, it needs to save
the local data, program pointer etc, of the current thread, and load the
program pointer and data for the next thread. Overall using operating system
threads incurs cost of context switching, and also some resource costs in the
operating system to manage the threads.

So, multi-threading, while suitable for certain scenarios, is not the perfect
solution for all situations that require concurrent processing.

Figure 10.4. Async in HTTP request processing

The second approach to concurrent programming (which is also getting
popular over the last several years in mainstream programming languages) is
Asynchronous programming (or Async in short). This is illustrated in figure
10.4 for the scenario of web request processing.

In web applications, async programming can be used on both the client-side
and server-side.

Figure 10.4 shows how async processing can be used by an API server/web
service to handle multiple incoming requests concurrently, on the server-side.
Here, as each HTTP request is received by the async web server, it spawns a
new async task to handle it. The scheduling of various async tasks on the
available CPU(s) is handled by the async runtime.

Figure 10.5 shows how async looks on the client-side. Let’s consider the
example of a javascript application running within a browser trying to upload
a file to the server. Without concurrency, the screens would freeze for the
user until the file is uploaded and response is received from the server, and
the user wouldn’t be able to do anything else during this period. With async
on the client-side, the browser-based UI can continue to process user inputs,
while waiting for the server to respond to the previous request.

Figure 10.5. Client-side async processing

We’ve until now seen the differences between synchronous, multi-threaded
and async programming using several examples. Let’s next learn how to

implement these different techniques in code.

10.2 Writing concurrent programs

In this section, we’ll see how to write synchronous, multi-threaded and async
programs in Rust.

We’re going to dive into some beginner code straight away showing
synchronous processing.

Start a new project with

cargo new --bin async-hello

cd async-hello

Add the following code to src/main.rs:

fn main() {

 println!("Hello before reading file!");

 let file_contents = read_from_file();

 println!("{:?}", file_contents);

 println!("Hello after reading file!");

}

fn read_from_file() -> String {

 String::from("Hello, there")

}

This is a simple Rust program. It has a function read_from_file() that
simulates reading a file and returning the contents. This function is invoked
from the main function. Note that the call from the main() function to
read_from_file() function is synchronous, i.e., the main() function waits for
the called function to finish execution and return, before continuing with the
rest of the main() program.

Run the program with:

cargo run

You should see the following printed out to your terminal:

Hello before reading file!

"Hello, there"

Hello after reading file!

There’s nothing special with this program. Now let’s simulate some delay in
reading the file by adding a timer. Modify src/main.rs to look like this:

use std::thread::sleep; #1

use std::time::Duration; #2

fn main() {

 println!("Hello before reading file!");

 let file_contents = read_from_file();

 println!("{:?}", file_contents);

 println!("Hello after reading file!");

}

// function that simulates reading from a file

fn read_from_file() -> String {

 sleep(Duration::new(2, 0)); #3

 String::from("Hello, there")

}

Note that the main() function still only synchronously calls the
read_from_file() function, i.e. it waits until the called function is complete
(including the delay introduced) before printing out the file contents.

Run the program with:

cargo run

You can now see the final print statement on your terminal after the specified
timer delay period.

Let’s add another computation to the mix. Modify the program in src/main.rs
as shown:

use std::thread::sleep;

use std::time::Duration;

fn main() {

 println!("Hello before reading file!");

 let file1_contents = read_from_file1(); #1

 println!("{:?}", file1_contents);

 println!("Hello after reading file1!");

 let file2_contents = read_from_file2(); #2

 println!("{:?}", file2_contents);

 println!("Hello after reading file2!");

}

// function that simulates reading from a file

fn read_from_file1() -> String {

 sleep(Duration::new(4, 0));

 String::from("Hello, there from file 1")

}

// function that simulates reading from a file

fn read_from_file2() -> String {

 sleep(Duration::new(2, 0));

 String::from("Hello, there from file 2")

}

Run the program again, and you’ll see that there is a 4-second delay in the
execution of the first function and a 2-second delay for the second function,
amounting to a total delay of 6 seconds. Can we not do better?

Since the two files are distinct, why can we not read the two files at the same
time? Can we use a concurrent programming technique here? Sure, we can
use the native operating system threads to achieve this. Modify the code in
src/main.rs as shown:

use std::thread;

use std::thread::sleep;

use std::time::Duration;

fn main() {

 println!("Hello before reading file!");

 let handle1 = thread::spawn(|| { #1

 let file1_contents = read_from_file1();

 println!("{:?}", file1_contents);

 });

 let handle2 = thread::spawn(|| { #2

 let file2_contents = read_from_file2();

 println!("{:?}", file2_contents);

 });

 handle1.join().unwrap(); #3

 handle2.join().unwrap(); #4

}

// function that simulates reading from a file

fn read_from_file1() -> String {

 sleep(Duration::new(4, 0));

 String::from("Hello, there from file 1")

}

// function that simulates reading from a file

fn read_from_file2() -> String {

 sleep(Duration::new(2, 0));

 String::from("Hello, there from file 2")

}

Run the program again. This time you’ll see that it does not take 6 seconds
for the two functions to complete execution, but much less because both the
files are being read concurrently in two separate operating-system threads of
execution.

We’ve just seen concurrency in action using multi-threading.

What if there was another way to process the two files concurrently on a
single thread? Let’s explore this further using asynchronous programming
techniques.

For writing basic multi-threaded programs, the Rust standard library itself
contains the needed primitives (even though external libraries such as rayon
are available that have additional features). However, for writing and
executing async programs, only bare essentials are provided by the Rust
standard library which is not adequate, and this necessitates the use of
external async libraries. In this chapter we will make use of tokio async
runtime to illustrate how asynchronous programs can be written in Rust.

Add the following to cargo.toml

[dependencies]

tokio = { version = "1", features = ["full"] }

Modify the src/main.rs file as shown:

use std::thread::sleep;

use std::time::Duration;

#[tokio::main] #1

async fn main() { #2

 println!("Hello before reading file!");

 let h1 = tokio::spawn(async { #3

 let _file1_contents = read_from_file1();

 });

 let h2 = tokio::spawn(async { #3

 let _file2_contents = read_from_file2();

 });

 let _ = tokio::join!(h1, h2); #4

}

// function that simulates reading from a file

async fn read_from_file1() -> String { #5

 sleep(Duration::new(4, 0));

 println!("{:?}", "Processing file 1");

 String::from("Hello, there from file 1")

}

// function that simulates reading from a file

async fn read_from_file2() -> String { #5

 sleep(Duration::new(2, 0));

 println!("{:?}", "Processing file 2");

 String::from("Hello, there from file 2")

}

You’ll see many similarities to the previous multithreaaded example. New
async tasks are spawned similar to spawning new threads. The join! macro
waits for all the async tasks to complete before completing execution of the
main() function.

However you’ll also notice a few key differences. All the functions including
main() have been prefixed with the async keyword. Another key difference is
the annotation #[tokio::main]. We’ll delve deeper into these concepts shortly,
but let’s first try to execute the program.

Run the program with cargo run and you’ll see the following message
printed to the terminal:

Hello before reading file!

The statement is printed from the main() function. But you will notice that
the print statements from the two functions read_from_file_1() and

read_from_file_2() are not printed. It means the functions are not even
executed.

The reason is that in Rust, asynchronous functions are lazy, in that they are
executed only when activated with the .await keyword.

Let’s try this one more time and add the await keyword in the call to the two
functions. Change the code in src/main.rs as shown:

use std::thread::sleep;

use std::time::Duration;

#[tokio::main]

async fn main() {

 println!("Hello before reading file!");

 let h1 = tokio::spawn(async {

 let file1_contents = read_from_file1().await; #1

 println!("{:?}", file1_contents);

 });

 let h2 = tokio::spawn(async {

 let file2_contents = read_from_file2().await; #1

 println!("{:?}", file2_contents);

 });

 let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file

async fn read_from_file1() -> String {

 sleep(Duration::new(4, 0));

 println!("{:?}", "Processing file 1");

 String::from("Hello, there from file 1")

}

// function that simulates reading from a file

async fn read_from_file2() -> String {

 sleep(Duration::new(2, 0));

 println!("{:?}", "Processing file 2");

 String::from("Hello, there from file 2")

}

Run the program again. You should see the following output on your
terminal:

Hello before reading file!

"Processing file 2"

"Hello, there from file 2"

"Processing file 1"

"Hello, there from file 1"

Let’s see what just happened. Both the functions called from main() are
spawned as separate asynchronous tasks on the Tokio runtime, which
schedules execution of both functions concurrently (analogous to running the
two functions on two separate threads). The difference is that these two tasks
can both be scheduled either on the current thread or on different threads
depending on how we configure the Tokio runtime. You’ll also notice that the
function read_fron_file2() completes execution before read_from_file1().
This is because the sleep time interval for the former is 2 seconds while for
the latter it’s 4 seconds. So, even though the read_from_file1() was spawned
earlier to the read_from_file2() function in the main() function, the async
runtime executed read_from_file2() first because it woke up from the sleep
interval earlier than read_from_file1().

In this section, we’ve seen simple examples of how to write synchronous,
multi-threaded and async programs in Rust. In the next section, let’s go down
the async Rust rabbithole.

10.3 Diving deeper into async Rust

As seen earlier, asynchronous programming allows us to process multiple
tasks at the same time on a single operating system thread. But how is this
possible? A CPU can only process one set of instructions at a time, right?

The trick to achieve this is to exploit situations in code execution when the
CPU is waiting for some external event or action to complete. Examples
could be waiting to read/write a file to disk, waiting for bytes to arrive on a
network connection, or waiting for timers to complete (like we saw in the
previous example). So, while a piece of code or a function is idle waiting on a
disk subsystem or network socket for data, the async runtime (such as Tokio)
schedules other async tasks on the processor that are able to continue
execution. When the system interrupts arrive from the disk or I/O
subsystems, the async runtime recognizes this, and schedules the original task

to continue processing.

As a general guideline, programs that are I/O bound (i.e. rate of progress of
the program depends on the speed of the I/O subsystem) may be good
candidates for asynchronous task execution as opposed to CPU-bound tasks
(i.e. rate of progress of a program is dependent on the speed of the CPU, as in
the case of complex number-crunching). Note that this is a broad and general
guideline, but as always, there are exceptions.

Since we deal a lot with network I/O and file/database I/O in web
development, asynchronous programming, if done right, can speed up overall
program execution and improve response times for end users. Imagine a case
where your web server has to handle 10,000 or more concurrent connections.
Using multithreading to spawn a separate OS thread per connection would be
prohibitively expensive from a system resource consumption perspective.
Actually, early web servers used this model, but then hit the limitations when
it came to web-scale systems. This is the reason Actix web framework (and
many other Rust frameworks) have an async runtime built into the
framework. As a matter of fact, Actix web uses the Tokio library underneath,
for asynchronous task execution (with some modifications/enhancements).

Async/.await keywords represent the core built-in set of primitives in the Rust
standard library for asynchronous programming. They are just special Rust
syntax that make it easier for Rust devs to write asynchronous code that looks
like synchronous code.

However at the core of Rust async is a concept called futures. Futures are
single eventual values produced by an asynchronous computation (or
function). Async functions in Rust return a future. Futures basically represent
deferred computations.

Promises in Javascript

In Javascript, the analogous concept to a Rust future is a promise. When
javascript code is executed within a browser, and when a user makes a
request to fetch a URL or load an image, it does not block the current thread.
The user can continue to interact with the web page. This is achieved by the
javascript engine (e.g. V8 in Chrome browser) using asynchronous

processing for network fetch requests. However, note that a Rust future is a
lower-level concept than a promise in javascript. A Rust future is something
that can be polled for readiness, while a javascript promise has higher
semantics (e.g., a promise can be rejected). However, in the context of this
discussion, this analogy is useful.

Does this mean our previous program actually used futures? Short answer is ,
yes. Let’s rewrite the program to show usage of futures.

use std::thread::sleep;

use std::time::Duration;

use std::future::Future;

#[tokio::main]

async fn main() {

 println!("Hello before reading file!");

 let h1 = tokio::spawn(async {

 let file1_contents = read_from_file1().await;

 println!("{:?}", file1_contents);

 });

 let h2 = tokio::spawn(async {

 let file2_contents = read_from_file2().await;

 println!("{:?}", file2_contents);

 });

 let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file

fn read_from_file1() -> impl Future<Output=String> { #1

 async { sleep(Duration::new(4, 0)); #2

 println!("{:?}", "Processing file 1");

 String::from("Hello, there from file 1")

 }

}

// function that simulates reading from a file

fn read_from_file2() -> impl Future<Output=String> { #1

 async { #2

 sleep(Duration::new(3, 0));

 println!("{:?}", "Processing file 2");

 String::from("Hello, there from file 2")

 }

}

Run the program. You should see the same result as earlier.

Hello before reading file!

"Processing file 2"

"Hello, there from file 2"

"Processing file 1"

"Hello, there from file 1"

The main change we’ve made to the program is within the two functions -
read_from_file1() and read_from_file2(). The first difference you’ll notice is
that the return value of the function has changed from String to impl
Future<Output=String>. This is a way of saying that the function returns a
future, or more specifically, something that implements the Future trait.

Async keyword defines an async block or function. Specifying this keyword
on a function or a code block instructs the compiler to transform the code into
something that generates a future. This is the reason the following two types
of function signatures are analogous:

Function example 1:

async fn read_from_file1() -> String {

 sleep(Duration::new(4, 0));

 println!("{:?}", "Processing file 1");

 String::from("Hello, there from file 1")

}

Function example 2:

fn read_from_file1() -> impl Future<Output=String> {

 async { sleep(Duration::new(4, 0));

 println!("{:?}", "Processing file 1");

 String::from("Hello, there from file 1")

 }

}

Using the async keyword in example 1 is just syntactic sugar for writing code
shown in example 2.

Let’s see what the Future trait looks like:

pub trait Future {

 type Output;

 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;

}

A future represents an asynchronous computation. The Output type
represents the data type returned when a future successfully completes. In our
example we are returning a String data type from the function, and so we
specified the function return value as impl Future<Output=String>.

The poll method is critical to the functioning of the asynchronous program.
This method is called by the Async runtime to check if the asynchronous
computation has completed. The poll function returns a data type which is of
enum type, which can have one of two possible values:

Poll::Pending #1

Poll::Ready(val) #2

The question then would be, who calls the poll function? Rust futures are
lazy, as we saw earlier where the following statement did not execute:

 let h1 = tokio::spawn(async {

 let _file1_contents = read_from_file1();

 });

Rust futures need someone to constantly follow-up with them for completion.
Like a project manager who micromanages!

This role is performed by an async executor, which is part of the async
Runtime. The future executors take a set of futures and take them to
completion by calling poll on them. In our case, the Tokio library has a future
executor that performs this function. This is the reason we annotate the
function with the async keyword:

async fn read_from_file1() -> String {

 sleep(Duration::new(4, 0));

 println!("{:?}", "Processing file 1");

 String::from("Hello, there from file 1")

}

or write async code block within a function to achieve the same effect like
this:

fn read_from_file1() -> String {

 async {

 sleep(Duration::new(4, 0));

 println!("{:?}", "Processing file 1");

 String::from("Hello, there from file 1")

 }

}

The async keyword in front of a function or a code block tells the Tokio
executor that a future is returned which needs to be driven to completion. But
how does the Tokio executor know when the async function is ready to yield
a value? Does it keep pooling the async function repeatedly? To understand
how the Tokio executor does this, let’s take a closer look at futures in the next
section.

10.4 Understanding futures

To understand futures better, let’s use the concrete example of Tokio async
library.

Figure 10.6 shows the relationship between Tokio runtime, spawned task and
a future.

Figure 10.6. Tokio executor

The tokio runtime is the component that manages the async tasks and
schedules them on the processor for execution. There can be several async
tasks spawned in a given program. Each async task may contain one or more
futures that return a Poll::Ready when the future is ready to be executed or a
Poll:::Pending when it is waiting for an external event (eg a network packet
to arrive or a database to return a value).

In the previous section we wrote a main() program that spawned two async
tasks which simulated (dummy) futures. In this section and the next, we’ll
write code that will help us better understand how futures work. In this
section, we’ll see the structure of a future, and in the next section, we’ll write
a custom async timer as a future. The program will look like what’s shown in
figure 10.7.

Figure 10.7. Custom Future

What is the purpose of writing a custom future? It’s the best way to
understand how a future works. So, let’s write one.

Modify src/main.rs to look as shown:

use std::future::Future;

use std::pin::Pin; #1

use std::task::{Context, Poll}; #2

use std::thread::sleep;

use std::time::Duration;

struct ReadFileFuture {} #3

impl Future for ReadFileFuture { #4

 type Output = String; #5

 fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) ->

 Poll<Self::Output> { #6

 println!("Tokio! Stop polling me");

 Poll::Pending

 }

}

#[tokio::main]

async fn main() {

 println!("Hello before reading file!");

 let h1 = tokio::spawn(async {

 let future1 = ReadFileFuture {};

 future1.await

 }); #7

 let h2 = tokio::spawn(async {

 let file2_contents = read_from_file2().await;

 println!("{:?}", file2_contents);

 });

 let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file

fn read_from_file2() -> impl Future<Output = String> {

 async {

 sleep(Duration::new(2, 0));

 println!("{:?}", "Processing file 2");

 String::from("Hello, there from file 2")

 }

}

Referring back to annotation <1>, we’ve introduced a new concept of a Pin.
The reason is that, futures have to be polled repeatedly by the async runtime,
so pinning futures to a particular spot in memory is necessary for safe
functioning of the code within the async block. This is an advanced concept,
so for now it would suffice to treat it as a technical requirement in Rust to
write futures, even if you do not understand it fully.

Referring to annotation <6>, the poll() function is called by Tokio executor in
its attempt to resolve the future into a final value (of type String, in our
example). If the future value is not available, the current task is registered
with the Waker component, so that when the value from the future becomes
available, the Waker component can inform the Tokio runtime to call the
poll() function again on the future. The poll() function returns one of two
values: Poll::Pending if the future is not ready yet, or
Poll::Ready(future_value) if the future_value is available from the function.

Figure 10.8 illustrates the sequence of steps in program execution:

Figure 10.8. Future- Step 1

future vs Future

If you are confused between a future and a Future, recall that a future is an
asynchronous computation that can return a value at a future point of time. It
returns a Future type (or something that implements the Future trait). But to
return a value, the future has to be polled by the async runtime executor.

Notice the changes we’ve made to the main() function, compared to the code
in the previous section. The main (pun intended) change is that we’ve
replaced the call to the async function read_from_file1() that returns a future
of type impl Future<Output=String> with a custom implementation that
returns a future with the same return type impl Future<Output=String>,

Run the program and you should see the following output on your terminal:

Hello before reading file!

Tokio! Stop polling me

"Processing file 2"

"Hello, there from file 2"

You’ll also notice that the program does not terminate and continues to hang
as though it’s waiting for something.

Referring back to Figure 10.8, let’s understand what just happened here. The
main() function calls two pieces of asynchronous computations (code that
returns a Future): ReadFileFuture {} and read_from_file2(). It spawns each
of these as asynchronous tasks on the Tokio runtime. The Tokio executor
(part of the Tokio runtime) first polls the first future, which returns
Poll::Pending . It then polls the second future which yields a value of
Poll::Ready after the sleep timer expires, and so the corresponding statements
are printed to the terminal. Then Tokio runtime continues to wait for the first
future to be ready to be scheduled for execution. But this will never happen
as we are unconditionally returning Poll::Pending from the poll function).
Also note that once a future has finished, the tokio runtime will not call it
again. That’s why the second function is executed only once.

How does the tokio executor know when to poll the first future again? Does it
keep polling repeatedly? The answer is no, as otherwise we would have seen
the print statement within the poll function several times on the terminal, but
we saw that the poll function was executed only once.

The way Tokio (and Rust async design) handles it is using a Waker
component. When a task that’s polled by the async executor is not ready to
yield a value, the task is registered with a Waker, and a handle to the Waker
is stored in the Context object associated with the task. The Waker has a
wake() method that can be used to tell the async executor that the associated
task should be awoken. When the wake() method is called, the Tokio executor
is informed that it’s time to poll the async task again by invoking the poll()
function on the task.

Let’s see this in action.

Modify the poll() function in src/main.rs code as shown:

impl Future for ReadFileFuture {

 type Output = String;

 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) ->

 Poll<Self::Output> { #1

 println!("Tokio! Stop polling me");

 cx.waker().wake_by_ref(); #2

 Poll::Pending

 }

}

Figure 10.9 describes this flow.

Figure 10.9. Future- Step 2

Run the program again, and you should see the poll() function being invoked
continually. This is because in the poll function we are calling the
wake_by_ref() function on the Waker instance, which in turn tells the async
executor to poll the function again, and the cycle repeats. wake_by_ref()
function wakes up the task associated with the Waker.

When you run the program, you should see the print statements continually
being printed to the terminal as shown, until the program is terminated:

Tokio! Stop polling me

Tokio! Stop polling me

Tokio! Stop polling me

Tokio! Stop polling me

Tokio! Stop polling me

Tokio! Stop polling me

Tokio! Stop polling me

Tokio! Stop polling me

...

Now you may wonder, what is the Waker component? And how does it fit
into the Tokio ecosystem? Figure 10.10 shows the various components of
Tokio in context of the underlying hardware and operating system.

Figure 10.10. Tokio components

The Tokio runtime needs to understand operating system (kernel) methods
such as epoll to start I/O operations such as reading from a network or
writing to a file.

The Tokio runtime registers the async handler to be called when an event
happens as part of the I/O operation. The component of the Tokio runtime
that listens to these events from the kernel and communicates to the rest of
the Tokio runtime is the reactor.

Tokio executor is the component that takes a future and drives it to
completion by calling the poll() function of the future, whenever the future

can make progress.

How do the futures indicate to the executor that they are ready to make
progress? They call the wake() function of the Waker component. The Waker
component informs the executor, which then places the future back on the
queue and invokes the poll() function again, until the future has completed.

Here is a simplified flow of activities that show how the various Tokio
components work together, using an example of reading from a file:

1. Main function of a program spawns async task 1 on the Tokio runtime.
2. Async task 1 has a future that reads data from a large file.
3. The request to read from the file is handed over to the kernel’s file

subsystem.
4. In the meantime, async task 2 is scheduled for processing by the Tokio

runtime.
5. When the file operation associated with async task 1 is complete, the file

subsystem triggers an operating system interrupt, which is translated
into an event that is recognized by the Tokio reactor.

6. The Tokio reactor informs async task 1 that the data from the file
operation is ready.

7. Async task 1 informs the Waker component registered with it, that it is
ready to yield a value.

8. The Waker component informs the Tokio executor to call the poll()
function associated with async task 1.

9. Tokio executor schedules async task 1 for processing, and invokes the
poll() function.

10. Async task 1 yields a value.

In summary, the future, which performs an I/O operation in an async fashion,
is informed by the Tokio reactor about an I/O event. On receipt of the I/O
event, the future becomes ready to make progress and invokes the Tokio
Waker component. The Waker component then tells the Tokio executor that
the future is ready to make progress, which triggers the Tokio executor to
schedule the future for execution and invoke the poll() function on the
future,.

With this background, let’s continue with our coding exercise.

Let’s now modify the previous program to return a valid value from the poll()
function, and see what happens. Modify the poll() function in src/main.rs as
shown and rerun the program:

use std::future::Future;

use std::pin::Pin;

use std::task::{Context, Poll};

use std::thread::sleep;

use std::time::Duration;

struct ReadFileFuture {}

impl Future for ReadFileFuture {

 type Output = String;

 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) ->

 Poll<Self::Output> {

 println!("Tokio! Stop polling me");

 cx.waker().wake_by_ref();

 Poll::Ready(String::from("Hello, there from file 1")) #1

 }

}

#[tokio::main]

async fn main() {

 println!("Hello before reading file!");

 let h1 = tokio::spawn(async {

 let future1 = ReadFileFuture {};

 println!("{:?}", future1.await);

 });

 let h2 = tokio::spawn(async {

 let file2_contents = read_from_file2().await;

 println!("{:?}", file2_contents);

 });

 let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file

fn read_from_file2() -> impl Future<Output = String> {

 async {

 sleep(Duration::new(2, 0));

 String::from("Hello, there from file 2")

 }

}

Figure 10.11. Future- Step 3

You should now see the following output on your terminal:

Hello before reading file!

Tokio! Stop polling me

"Hello, there from file 1"

"Hello, there from file 2"

The program now does not hang as it completes successfully after executing
the two async tasks to completion.

In the next section, we’ll take this program one step further and enhance the
future to implement an asynchronous timer functionality. When the time
elapses, the Waker informs the Tokio runtime that the task associated with it
is ready to be polled again. When the Tokio runtime polls the function the

second time, it receives a value from the function.

This should help us understand even better how futures work.

10.5 Implementing a custom future

Let’s create a new future representing an async timer that performs the
following:

1. Accepts an expiration time

2. Whenever it is polled by the runtime executor, it will do the following
checks:

If the current time is >= expiration time, then return Poll::Ready
with a String value
If the current time < expiration time, it will go to sleep until the
expiration time, and then trigger the wake() call on the Waker,
which then will inform the async runtime executor to schedule and
execute the task again.

Figure 10.12 describes the logic of the custom future in this scenario:

Figure 10.12. Future- Step 4

Modify src/main.rs to look as shown:

use std::future::Future;

use std::pin::Pin;

use std::task::{Context, Poll};

use std::thread::sleep;

use std::time::{Duration, Instant};

struct AsyncTimer { #1

 expiration_time: Instant,

}

impl Future for AsyncTimer { #2

 type Output = String; #3

 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) ->

 Poll<Self::Output> { #4

 if Instant::now() >= self.expiration_time { #5

 println!("Hello, it's time for Future 1");

 Poll::Ready(String::from("Future 1 has completed"))

 } else {

 println!("Hello, it's not yet time for Future 1. Going to sleep");

 let waker = cx.waker().clone();

 let expiration_time = self.expiration_time;

 std::thread::spawn(move || { #6

 let current_time = Instant::now();

 if current_time < expiration_time {

 std::thread::sleep(expiration_time - current_time);

 }

 waker.wake();

 });

 Poll::Pending

 }

 }

}

#[tokio::main]

async fn main() {

 let h1 = tokio::spawn(async {

 let future1 = AsyncTimer { #8

 expiration_time: Instant::now() + Duration::from_millis(4000),

 };

 println!("{:?}", future1.await);

 });

 let h2 = tokio::spawn(async {

 let file2_contents = read_from_file2().await;

 println!("{:?}", file2_contents);

 });

 let _ = tokio::join!(h1, h2);

}

// function that simulates reading from a file

fn read_from_file2() -> impl Future<Output = String> {

 async {

 sleep(Duration::new(2, 0));

 String::from("Future 2 has completed")

 }

}

Note that we’ve implemented a custom future and invoked it within the main
function. We’ve also retained the call to the second future read_from_file2()
from the main function, that we had implemented earlier. Note that both

futures eventually implement a timer, but the first future is a fully async way
to implement the timer functionality, while the second future simulates an
async timer (but uses a synchronous call to the std::thread::sleep()
internally).

Run the program and you should see the following output on your terminal:

Hello, it's not yet time for Future 1. Going to sleep

"Future 2 has completed"

Hello, it's time for Future 1

"Future 1 has completed"

Let’s analyze what just happened here. Figure 10.13 illustrates the sequence
of events.

Figure 10.13. Future- Step 5

1. In the main() function, the first async computation to be scheduled on
the async runtime is the call to the future AsyncTimer, which is our
custom future implementation. Let’s call this future1.

2. The async executor calls the poll() function on future1. Since the
expiration time has not yet been reached, first the statement "Hello, it’s
not yet time for Future 1. Going to sleep" is printed to the terminal. The
poll() function then spawns a new thread and initiates a thread sleep.
The poll function then returns Poll::Pending, which indicates to the
executor that other tasks can be scheduled for execution as this async
function is not yet ready to yield a value.

3. The async runtime in the meanwhile schedules the task
read_from_file2() for execution. This function pauses the current thread
for 2 seconds and then returns Poll::Ready with a String value. The print

statement "Future 2 has completed" from this future is printed to the
terminal.

4. In the meantime, the first future becomes ready to yield a value. It calls
the wake() function on the Waker associated with this async task, which
in turn informs the async executor that future1 is ready to be scheduled
for execution again as it is now ready to yield a value. The executor calls
the poll() function on future1, which now returns Poll::Ready with a
string value. Note that the following two print statements are printed to
the terminal: "Hello, it’s time for Future 1" and "Future 1 has
completed".

I hope the exercises in this chapter gave you a better understanding of how
async functions work and how they are implemented in Rust. In many cases,
you may not even implement your own futures, but instead use the dev-
friendly APIs provided by async runtimes such as Tokio, or by higher level
frameworks such as Actix web. But it helps to understand how async and
futures work under the hood.

With this, we conclude this section on writing a custom future.

Future and async programming are key mechanisms for implementing
efficient and robust distributed applications. You have now very good
foundations to build a variety of asynchronous applications or components in
a standard and very readable (and therefore maintainable) way!

10.6 Summary

In this chapter, we learnt the differences between concurrency and
parallelism
We learnt the differences between multithreaded and async models of
concurrency with practical examples. We first wrote a basic program to
simulate reading from two files using synchronous code. Then we
converted the program to use a multithreaded model of concurrency and
observed the difference in execution performance. We then learnt how
to write basic asynchronous programs using the Tokio runtime library.
We went deeper into the asynchronous programming concepts in Rust
including async/.await, futures and the Future trait. We saw examples of

how to use them.
Lastly we wrote a custom future that implements the Future trait, and
specifies the conditions under which the future is not ready to return a
value (i,e returns Poll::Pending), and when it is ready to yield a value
(i,e, Poll::Ready). We then learnt how to use the custom future and
schedule it for execution on the async runtime. We analyzed the detailed
sequence of events around how the async runtime schedules and
executes our custom future to completion.

With this, we come to an end of this chapter. We’ll implement a networking
project in async Rust in the next chapter.

See you soon!

11 Building a P2P node with Async
Rust
This chapter covers

Introduction to peer-to-peer networks
Understanding the core architecture of libp2p networking
Exchanging ping commands between peer nodes
Discovering peers in a p2p network

In the previous chapter we covered the basics of async programming in
general, and how to write async code with Rust. In this chapter we’ll build a
few simple examples of p2p applications using a low-level P2P networking
library and asynchronous programming using Rust.

But why learn about P2P?

P2P is a networking technology that enables sharing of various computing
resources such as CPU, network bandwidth and storage across different
computers. P2P is today a very commonly used method for sharing files
(such as music, images and other digital media) between users online.
Bittorrent and Gnutella are examples of popular file sharing p2p apps. They
do not rely on a central server or an intermediary to connect multiple clients.
And most importantly, they make use of users' computers as both clients and
servers, thus offloading computations away from a central server. How do
p2p networks operate and how are they different?

Let’s delve into the foundational concepts behind peer-to-peer networks.

11.1 Introduction to peer-to-peer networks

Traditional distributed systems deployed within the enterprise or the web use
the client-server paradigm. A web browser and a web server together serve as

a good example of a client-server system where the web browser (the client)
requests information (e.g., a GET Request), or a computation (e.g.,
POST/PUT/DELETE requests), on a particular resource hosted on the web
server (the server). The web server then determines if the client is authorized
to receive that information or perform that computation, and then fulfills the
request.

Peer to peer networks (P2P) are another type of distributed systems. In P2P, a
set of nodes (or peers) interact directly with one another to collectively
provide a common service, without having a central coordinator or
administrator. Examples of peer to peer systems include file-sharing
networks such as IPFS and Bittorrent, and blockchain networks such as
Bitcoin and Ethereum. Each node (or peer) in a P2P system can act as both a
client (requesting information from other nodes) and a server
(storing/retrieving data and performing necessary computations in response
to client requests). While all the nodes in a P2P network need not be
identical, one key characteristic that differentiates client-server networks
from P2P networks is the absence of dedicated servers that have unique
privileges. In open, permissionless P2P networks, any node can decide to
offer a full or partial set of services associated with a P2P node.

Compared to client-server networks, P2P networks enable a different class of
applications to be built over them that are permissionless, fault-tolerant and
censorship-resistant.

Permissionless because no server can cut off access to information to a client,
as the data and state are replicated across multiple nodes.

Fault-tolerant because there is no single point of failure, such as a central
server.

Censorship-resistant as in networks such as blockchains.

P2P computing also enables better utilization of resources. Imagine all the
network bandwidth, storage, processing power that’s available with the
clients at the edge of the network that are not utilized in client-server
computing.

Figure 11.1. Client-server vs peer-to-peer computing

Figure 11.1 illustrates the differences between a client-server and a p2p
network. Note that we will use the terms node and peer interchangeably in
the context of a p2p network.

However building P2P systems can be more complex than traditional client-
server systems. Some of the technical requirements associated with building
P2P systems include:

Transport: Each peer in a P2P network can speak a different protocol,
e.g. HTTP(s), TCP, UDP, etc.
Identity: Each peer needs to know the identity of the peer to which it
wants to connect and send a message.
Security: Each peer should be able to communicate with other peers in a
secure manner without the risk of a third-party intercepting or modifying

messages
Peer routing: Each peer can receive a message from other peers through
a variety of routes (like how data packets are distributed in IP protocol),
which means that each peer should have the ability to route the message
to other peers if the message is not intended for itself.
Messaging: P2P networks should be able to send point-to-point
messages or group messages (in a publish/subscribe pattern)

Let’s take a closer look at each of these requirements:

Transport: The TCP/IP and UDP protocols are ubiquitous and are popular for
writing networked applications. But there are other higher-level protocols
such as HTTP (layered over TCP) and QUIC (layered over UDP). Each peer
in a P2P network should have the ability to initiate a connection to another
node, and be able to listen to incoming connections over multiple protocols
because of the diversity of peers in the network.

Peer identity: Unlike the web development domain where a server is
identified by a unique domain name (such as www.rust-lang.org, which is
then resolved to the IP address of the server using a Domain name service),
nodes in a peer-to-peer network need a unique identity so that the other nodes
can reach them. Nodes in a peer-to-peer network use a public and private key
pair (asymmetric public key cryptography) to establish secure
communications with other nodes. The identity of a node in a peer-to-peer
network is called the PeerId, which is a cryptographic hash of the node’s
public key.

Security: The cryptographic key pair and PeerId enable a node to establish
secure, authenticated communication channels with its peers. But that’s only
one aspect of security. Nodes also need to implement frameworks for
authorization, which establish rules for what kinds of operations can be
performed by which node. There are also network level security threats to be
addressed such as sybil attacks (where one of the node operators spins up a
large number of nodes with distinct identities to gain an advantageous
position in the network), or eclipse attacks (where a group of malicious nodes
collude to target a specific node such that the latter cannot reach any
legitimate nodes). More information about differences between Sybil and
eclipse attacks can be found publicly on the internet.

Peer routing: A node in a P2P network first needs to find other peers in order
to communicate. This is achieved by maintaining a peer routing table, which
contains references to other peers in the network. But in a P2P network that
has thousands of nodes or more that are changing dynamically (i.e. nodes join
and leave the network), it is difficult for any single node to maintain a
complete and accurate routing table for all nodes in the network. Peer
routing enables nodes to route messages that are not meant for them, to the
destination nodes.

Messaging: Nodes in a P2P network can send messages to specific nodes, but
can also participate in broadcast messaging protocols. An example is
publish/subscribe where nodes register interest in a particular topic
(subscribe) and any node that sends messages on that topic (publish) is
received by all the nodes that subscribe to that topic. This technique is
commonly used to transmit the contents of a message to the entire network.
Note that publish/subscribe is a well known architectural pattern for
messaging in a distributed system, between a sender and a receiver.

Stream multiplexing: We’ve previously seen (in the earlier paragraph on
transport) how a node in a P2P network can support multiple transports.
Stream multiplexing is a way to send multiple streams of information over a
common communication link. In case of P2P, it allows multiple independent
'logical' streams to share a common P2P transport layer. This becomes
important when considering the possibility of a node having multiple streams
of communications with different peers, or the possibility that there can also
be many concurrent connections between two remote nodes. Stream
multiplexing helps to optimize the overheads of establishing connections
between peers. (Note: Multiplexing is common in backend services
development where a client can establish an underlying network connection
with a server, and then multiplex different streams (each with unique port
numbers) over the underlying network connection).

In this section, we have looked at a few foundational concepts that are
involved in the design of peer-to-peer systems. In the next section, we’ll take
a closer look at a popular Rust library that is used for P2P networking, as we
will be using this library to write some async Rust code in later sections.

11.2 Understanding the core architecture of libp2p
networking

Writing your own networking layer for P2P applications is a mammoth task.
Also, if someone has already done the hard work, we do not want to reinvent
the wheel. So, we will use a low-level p2p networking library called libp2p
which makes it a lot easier to build P2P applications upon.

To be more specific, libp2p is a modular system of protocols, specifications
and libraries that enable the development of peer-to-peer applications. libp2p
supports three programming languages at the time of writing - Go, Javascript
and Rust. libp2p is used by many popular projects such as IPFS, Filecoin and
Polkadot.

Figure 11.2. Components of libp2p

Figure 11.2 highlights the key modules of libp2p that are used to build a
robust peer-to-peer network.

Transport: Responsible for the actual transmission and receipt of data from
one peer node to another

Identity: libp2p uses public key cryptography (PKI) as the basis of peer node
identity. A unique peer id is generated for each node using a cryptographic
algorithm.

Security: Nodes sign messages using their private key. Also, the transport
connections between nodes can be upgraded into secure encrypted channels
so that the remote peers can mutually trust one another, and no third party can

intercept communications between them.

Peer discovery: Enables peers to find and communicate to one another in the
libp2p network

Peer routing: Enables communication with a Peer node using the knowledge
of other peers.

Content routing: Enables peer nodes to get a piece of content from other
peers, without knowing which peer has it

PubSub: Enables sending messages to a group of peers that are interested in
a topic.

In this chapter you will learn how to leverage a subset of the features of the
libp2p protocol to build p2p applications using Rust.

Let’s now start by taking a look at a few core primitives of the Rust libp2p
library, using code examples.

11.2.1 Peer ids and Key Pairs

Let’s start with generating peer ids and key pairs for a P2P node.

Cryptographic key pairs are used by p2p nodes to sign messages and peer ids
represent unique peer identities that are used to uniquely identify nodes on
the p2p network.

Figure 11.3. Identity of a p2p node

Start a new project with cargo new p2p-learn

In Cargo.toml, add the following entry:

libp2p = "0.42.2" #1

tokio = { version = "1.16.1", features = ["full"] } #1

Create a folder bin under src folder. Create a new file src/bin/iter1.rs, and
add the following code to it.

use libp2p::{identity, PeerId}; #1

#[tokio::main] #2

async fn main() { #3

 let new_key = identity::Keypair::generate_ed25519(); #4

 let new_peer_id = PeerId::from(new_key.public()); #5

 println!("New peer id: {:?}", new_peer_id);

}

What are public and private keys?

Cryptographic identity uses Public Key infrastructure (PKI), which is used
widely to provide unique identities for users, devices and applications and to
secure end-to-end communications. It works by creating two different
cryptographic keys, also known as a keypair comprising a private key and a
public key, which have a mathematical relationship between them. Keypairs
have many wide applications, but in the P2P network, nodes identify and
authenticate themselves to each other using keypairs. The public key can be
shared with others in a network, but the private key of a node must never be
revealed.

A good example of using a keypair is in traditional server access. For
example, if you want to connect to a remote server (using ssh) hosted in a
data center or a cloud, a keypair can be configured for access instead of using
a password. In this example, a user can generate a key pair and configure the
public key on the remote server, which grants access to the user. But how
does the remote server know which user is the owner of that public key? To
enable this, when connecting (over SSH) to the remote server, the user must
specify the private key (associated with the public key stored on the server).
The private key is never sent to the remote server, but the SSH client
(running on the local server) uses the private key of user to authenticate itself
to the remote SSH server.

Private and public keys have many other uses, such as for
encryption/decryption and digital signatures, but that is out of scope for this
chapter.

Run the program with cargo run --bin iter1, and you should see
something similar to this printed to your terminal:

New peer id: PeerId("12D3KooWBu3fmjZgSMLkQ2p1DG35UmEayYBrhsk6WEe1xco1JFbV")

In libp2p, a peer’s identity is stable and verifiable for the entire lifetime of a
peer. However, libp2p makes a distinction between a peer’s identity and its
location. As discussed before, the identity of a peer is the peer id. The
location of a peer is the network address at which the peer can be reached.
For example, a peer can be reached over TCP, websockets, QUIC or any
other protocol. libp2p encodes these network addresses in a self-describing
format called multiaddresses (multiaddr). So, in libp2p, multiaddress
represents the location of a peer. We’ll look at how to use multiaddresses in
the next section.

11.2.2 Multiaddresses

When humans share contact information, they use their phone numbers,
social media profiles or physical location addresses (in case of receiving
delivery of goods). When nodes on a p2p network share their contact
information, they send a multiaddress containing both the network address
and their peer id.

The peer id component of a multiaddress for a node is represented like this:

/p2p/12D3KooWBu3fmjZgSMLkQ2p1DG35UmEayYBrhsk6WEe1xco1JFbV

The string
12D3KooWBu3fmjZgSMLkQ2p1DG35UmEayYBrhsk6WEe1xco1JFbV
represents the peer id of the node. Recall that we learnt how to generate the
peer id for a node in the previous section.

The network address component of a multiaddress (also known as transport
address), looks like this:

/ip4/192.158.1.23/tcp/1234

This says that IPv4 is the transport protocol used, the IP address is
192.158.1.23 and the TCP port on which it listens is 1234.

The complete multiaddress of a node is just a combination of the peer id and
network address and looks like this:

/ip4/192.158.1.23/tcp/1234/p2p/12D3KooWBu3fmjZgSMLkQ2p1DG35UmEayYBrhsk6WEe1xco1JFbV

Peers exchange this multiaddress with other peers, in the format shown here.

The libp2p library internally converts this "name-based" address -
/ip4/192.158.1.23 into a regular IP address, using the DNS protocol.

Figure 11.4. Multiaddress of a p2p node

We’ll see usage of multiadress in code, in the next section.

11.2.3 Swarm and network behaviour

Swarm is the network manager module within a given P2P node, in libp2p. It
maintains all active and pending connections to remote nodes from a given
node, and manages the state of all the substreams that have been opened.

The structure and context of Swarm is depicted in figure 11.5, and is
explained in detail further in this section.

Figure 11.5. Network management for a p2p node

Let’s now extend the previous example. Create a new file src/bin/iter2.rs and
add the following code:

use libp2p::swarm::{DummyBehaviour, Swarm, SwarmEvent}; #1

use libp2p::futures::StreamExt; #2

use libp2p::{identity, PeerId};

use std::error::Error;

#[tokio::main]

async fn main() -> Result<(), Box<dyn Error>> {

 let new_key = identity::Keypair::generate_ed25519();

 let new_peer_id = PeerId::from(new_key.public());

 println!("local peer id is: {:?}", new_peer_id);

 let behaviour = DummyBehaviour::default();

 let transport = libp2p::development_transport(new_key).await?;

 let mut swarm = Swarm::new(transport, behaviour, new_peer_id);

 swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;

 loop {

 match swarm.select_next_some().await {

 SwarmEvent::NewListenAddr { address, .. } => {

 println!("Listening on local address {:?}", address)

 }

 _ => {}

 }

 }

}

With reference to annotation <1>, it is necessary to construct a swarm

network manager before being able to communicate with other nodes. Swarm
represents a low-level interface and provides fine-grained control over the
libp2p network. Swarm is constructed using a combination of transport,
network behaviour and peer id for the node. We’ve previously seen what a
transport and a peer_id is. Let’s now look at what is network behaviour.

While the transport specifies how to send bytes over the network, network
behaviour specifies what bytes to send and to whom. Examples of network
behaviours in libp2p include Ping (where nodes send and respond to ping
messages), mDNS which is used to discover other peer nodes on the network
and Kademlia (used for peer routing and content routing functionality). In our
example, to keep it simple to start with, we have used a dummy network
behaviour. Multiple network behaviours can be associated with a single
running node.

Let’s next look at the line of code in annotation <7>:
swarm.select_next_some().await. The await keyword is used to schedule the
asynchronous task to poll the protocols and connections, and when ready,
swarm events are received. When there is nothing to process, the task will be
idle and the swarm will output Poll::Pending. This is another example of
async Rust in action.

One thing to note is that the same code runs on all nodes of a libp2p network,
unlike a client-server model where the client and the server have different
codebases.

Let’s run the code as described here.

Create two terminal sessions on your computer. From the first terminal, from
the project root directory, run:

cargo run --bin iter2

You should see an output similar to below printed to your terminal for the
first node.

local peer id is: PeerId("12D3KooWByvE1LD4W1oaD2AgeVWAEu9eK4RtD3GuKU1jVEZUvzNm") #1

Listening on local address "/ip4/127.0.0.1/tcp/55436" #2

Listening on local address "/ip4/192.168.1.74/tcp/55436"

From the second terminal, from the project root directory, run the following:

cargo run --bin iter2

You should see terminal output similar to this for the second node:

local peer id is: PeerId("12D3KooWQiQZA5zcLzhF86kuRoq9f6yAgiLtGqD5bDG516kVzW46")

Listening on local address "/ip4/127.0.0.1/tcp/55501"

Listening on local address "/ip4/192.168.1.74/tcp/55501"

Again you can see the local address on which node2 is listening (printed out
to the terminal).

If you got so far, it’s a good start.

However, there isn’t anything interesting happening in this code. We were
able to start two nodes and ask them to connect to each other. But we don’t
know whether the connection has been established correctly, or if the two can
communicate. Let’s enhance this code in the next section to exchange ping
commands between nodes.

11.3 Exchanging ping commands between peer
nodes

Create a new file src/bin/iter3.rs and add the following code:

use libp2p::swarm::{Swarm, SwarmEvent};

use libp2p::futures::StreamExt;

use libp2p::ping::{Ping, PingConfig};

use libp2p::{identity, Multiaddr, PeerId};

use std::error::Error;

#[tokio::main]

async fn main() -> Result<(), Box<dyn Error>> {

 let new_key = identity::Keypair::generate_ed25519();

 let new_peer_id = PeerId::from(new_key.public());

 println!("local peer id is: {:?}", new_peer_id);

 let transport = libp2p::development_transport(new_key).await?;

 let behaviour = Ping::new(PingConfig::new().with_keep_alive(true));

 let mut swarm = Swarm::new(transport, behaviour, new_peer_id);

 swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;

 if let Some(remote_peer) = std::env::args().nth(1) {

 let remote_peer_multiaddr: Multiaddr = remote_peer.parse()?;

 swarm.dial(remote_peer_multiaddr)?;

 println!("Dialed remote peer: {:?}", remote_peer);

 }

 loop {

 match swarm.select_next_some().await {

 SwarmEvent::NewListenAddr { address, .. } => {

 println!("Listening on local address {:?}", address)

 }

 SwarmEvent::Behaviour(event) => println!("Event received from peer is {:?}", event),

 _ => {}

 }

 }

}

In annotation <2>, 0.0.0.0 means all IPv4 addresses on the local machine. For
example, if a host has two IP addresses, 192.168.1.2 and 10.0.0.1, and a
server running on the host listens on 0.0.0.0, it will be reachable at both IPs.
The 0 port means to choose a random available port.

In annotation <3>, the remote node multiaddress is parsed from the command
line parameter. The local node then establishes a connection to the remote
node on this multiaddress.

Let’s now build and test this p2p example with two nodes.

Create two terminal sessions on your computer. From the first terminal, from
the project root directory, run:

cargo run --bin iter3

Let’s call this node1.

You should see an output similar to below printed to your terminal for the
first node.

local peer id is: PeerId("12D3KooWByvE1LD4W1oaD2AgeVWAEu9eK4RtD3GuKU1jVEZUvzNm")

Listening on local address "/ip4/127.0.0.1/tcp/55872"

Listening on local address "/ip4/192.168.1.74/tcp/55872"

Note that at this point there is no remote node to connect to , so the local
node just prints out the listen event along with the multiaddress at which it is
listening for new connections. So, the Ping network behaviour, even though it
has been configured in the local node, is not active yet. For this, we need to
start the second node.

From the second terminal, from the project root directory, run the following.
Make sure to specify the multiaddress of the first node in the command line
parameter.

cargo run --bin iter3 /ip4/127.0.0.1/tcp/55872

Let’s call this node2.

At this point node2 has started and it will also print out the local address on
which it is listening. Since the remote node multiaddress has been specified,
node2 establishes connection with node1 and then starts to listen to events.
On receipt of the incoming connection from node2, node 1 sends the ping
message to node2, and node2 responds with a pong message. These messages
should start to appear on the terminals of both node1 and node2, and continue
in a loop after a time interval (approx every 15 seconds or so). Note also that
the P2P node uses async Rust with the Tokio runtime to execute concurrent
tasks to process multiple data streams and events coming from remote nodes.

In this section, we have seen how to have two P2P nodes exchange ping
messages with each other. In this example, we connected node2 to node1 by
specifying the multiaddress node1 is listening on. But in a P2P network,
nodes join and leave dynamically. In the next section we’ll see how peer
nodes can discover each other on a p2p network.

11.4 Discovering peers

Let’s code a P2P node this time to automatically detect other nodes on the
network, on startup.

use libp2p::{

 futures::StreamExt,

 identity,

 mdns::{Mdns, MdnsConfig, MdnsEvent},

 swarm::{Swarm, SwarmEvent},

 PeerId,

};

use std::error::Error;

#[tokio::main]

async fn main() -> Result<(), Box<dyn Error>> {

 let id_keys = identity::Keypair::generate_ed25519();

 let peer_id = PeerId::from(id_keys.public()); #1

 println!("Local peer id: {:?}", peer_id);

 let transport = libp2p::development_transport(id_keys).await?;

 let behaviour = Mdns::new(MdnsConfig::default()).await?;

 let mut swarm = Swarm::new(transport, behaviour, peer_id);

 swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;

 loop {

 match swarm.select_next_some().await {

 SwarmEvent::NewListenAddr { address, .. } => {

 println!("Listening on local address {:?}", address)

 }

 SwarmEvent::Behaviour(MdnsEvent::Discovered(peers)) => {

 for (peer, addr) in peers {

 println!("discovered {} {}", peer, addr);

 }

 }

 SwarmEvent::Behaviour(MdnsEvent::Expired(expired)) => {

 for (peer, addr) in expired {

 println!("expired {} {}", peer, addr);

 }

 }

 _ => {}

 }

 }

}

mDNS is a protocol defined by RFC 6762
(datatracker.ietf.org/doc/html/rfc6762) which resolves host names to IP
addresses. In libp2p, it is used to discover other nodes on the network.

The network behaviour mDNS implemented in libp2p will automatically
discover other libp2p nodes on the local network.

Let’s see this working by building and running the code with:

cargo run --bin iter4

Let’s call this node1.

You’ll see something similar to this printed to the terminal window of node1:

Local peer id: PeerId("12D3KooWNgYbVg8ZyJ4ict2N1hdJLKoydB5sTqwiWN2SHtC3HwWt")

Listening on local address "/ip4/127.0.0.1/tcp/50960"

Listening on local address "/ip4/192.168.1.74/tcp/50960"

Note that in this example, node1 is listening on TCP port 50960.

Then from terminal 2, run the program with the same command. Note that
unlike before, we are not specifying the multiaddress of node 1.

cargo run --bin iter4

Let’s call this node2.

You should be able to see similar messages printed to the terminal of node2.

Local peer id: PeerId("12D3KooWCVVb2EyxB1WdAcLeMuyaJ7nnfUCq45YNNuFYcZPGBY1f")

Listening on local address "/ip4/127.0.0.1/tcp/50967"

Listening on local address "/ip4/192.168.1.74/tcp/50967"

discovered 12D3KooWNgYbVg8ZyJ4ict2N1hdJLKoydB5sTqwiWN2SHtC3HwWt /ip4/192.168.1.74/tcp/50960

discovered 12D3KooWNgYbVg8ZyJ4ict2N1hdJLKoydB5sTqwiWN2SHtC3HwWt /ip4/127.0.0.1/tcp/50960

Notice that node2 was able to discover node1 listening on port 50960, which
is the port on which node1 is listening on. While node2 itself is listening to
new events and messages on port 50967.

Start a third node (node3) from another terminal. You should see the
following:

cargo run --bin iter4

You’ll see the following messages on the terminal of node3:

Local peer id: PeerId("12D3KooWC95ziPjTXvKPNgoz3CSe2yp6SBtKh785eTdY5L2YK7Tc")

Listening on local address "/ip4/127.0.0.1/tcp/50996"

Listening on local address "/ip4/192.168.1.74/tcp/50996"

discovered 12D3KooWCVVb2EyxB1WdAcLeMuyaJ7nnfUCq45YNNuFYcZPGBY1f /ip4/192.168.1.74/tcp/50967

discovered 12D3KooWCVVb2EyxB1WdAcLeMuyaJ7nnfUCq45YNNuFYcZPGBY1f /ip4/127.0.0.1/tcp/50967

discovered 12D3KooWNgYbVg8ZyJ4ict2N1hdJLKoydB5sTqwiWN2SHtC3HwWt /ip4/192.168.1.74/tcp/50960

discovered 12D3KooWNgYbVg8ZyJ4ict2N1hdJLKoydB5sTqwiWN2SHtC3HwWt /ip4/127.0.0.1/tcp/50960

Notice that node3 has discovered both node1 listening on port 50960 and
node2 listening on port 50967.

This looks trivial, until you realise that we have not told node3 where the
other two nodes are running. Using the mDNS protocol, node3 was able to
detect and connect to other libp2p nodes on the local network.

11.5 Summary

In client-server model of computation, the client and server represent
two distinct pieces of software wherein the server is the custodian of
data and associated computation, and the client requests the server to
send data or perform a computation on a resource managed by the
server. In P2P networks, communication occurs between peer nodes,
each of which can perform the role of both the client and the server. One
key characteristic that differentiates client-server networks from P2P
networks is the absence of dedicated servers that have unique privileges
libp2p is a modular system of protocols, specifications and libraries that
enable development of peer-to-peer applications. It is used in many
prominent p2p projects. Key architectural components of libp2p include
transport, identity, security, peer discovery, peer routing, content routing
and messaging.
Using code examples, we looked into how to generate a unique peer id
for a node that other nodes can use to uniquely identify it.
We also delved into the basics of multiaddresses, and how they
represent the complete path to communicate with a node over the P2P
network. The peer id of a node is a part of the overall multiaddress of
the node.
We wrote a Rust program where nodes exchange simple ping-pong
commands among themselves. This example demonstrated how to
configure the swarm network management object for a node to listen
and act on specific events on the p2p network.

We concluded the chapter by writing another Rust program with the
libp2p library that shows how peer nodes can use the mDNS protocol to
discover each other on a p2p network.

For readers looking for additional code challenges, here are a couple of P2P
applications that can be built using libp2p:

1. Implement a simple p2p chat application
2. Implement a distributed p2p key-value store.
3. Implement a distributed file storing network (like IPFS)

Hint: The libp2p library has several pre-built code examples which can be
referred to, in order to implement these exercises. Reference to the code
repository is provided at the end of this chapter.

With this, we come to an end of this chapter, and also this section on
advanced topics. In the next (and last) chapter, we’ll learn how to prepare
Rust servers and apps for production deployment.

See you in the next chapter!

11.6 References

This chapter has heavily drawn material from the libp2p documentation at
libp2p.io/. The code examples use the Rust implementation of the libp2p
protocol which can be found here: github.com/libp2p/rust-libp2p.

Part 4 Moving to production
The last part of this book touches briefly on the deployment of web
applications. Containers are now a mature and widely accepted technology,
both in the cloud as in corporate data centers. This is no surprise, given the
flexibility and other benefits (isolation, security, startup times, …) offered by
containers. In complex environments, with large distributed applications,
containers need to be orchestrated, with solutions like Kubernetes or, even
beyond pure Kubernetes, OpenShift.

In this book, we will stay at a fairly basic level in the use of Docker; the
purpose is to show how to use Docker in a quite simple context while still
reaping benefits from it. Our EzyTutors application will be built and
deployed using docker-compose, a basic orchestration tool for Docker.

Yet, after having read this part, the reader will be able to transpose what he
has learned to the deployment of any Rust developments involving a few
containers, like a web server offering services backed by a relational
database.

12 Deploying web services with
Docker
This chapter covers

Introduction to production deployment of Rust servers and apps
Writing the first Docker container
Building the database container
Packaging the web service with Docker
Orchestrating Docker containers with Docker Compose

In the previous sections of this book, we learned how to build a web service
and a web application using Rust. We also looked closer into async
programming and even addressed P2P architecture. We tested out
developments in a local development environment. This is only the first step.
The ultimate goal is usually to deploy in a production environment.
Production deployment involves many aspects that are outside of the scope of
this book, such as selection of an infrastructure provider, packaging the
software, configuring secrets, adding configurable logs for monitoring and
debugging, adding application-level security to the web service API
endpoints, adding server-level security (with TLS, CORS), protecting secrets
such as access credentials and keys, configuring monitoring tools and alerts,
adding database backups. and a lot more. It is not the intent of this book to
provide an exhaustive guide to all the considerations in preparing and
deploying an application or service into production, or to enumerate the best
practices in this regard. This is because this is not a Rust-specific topic, and
also because there is a lot of publicly available material (and other books)
that cover this topic very well.

In this last chapter, we will focus only on packaging the software, using a
popular technique, called "containerization". It is one of the popular (and now
largely mainstream) methods of production deployment. It involves
packaging the application components and its dependencies in a container.
This container can then be deployed on multiple environments including the

cloud.

One of the advantages of using conainers, already on one’s development
workstation, is that the application is cleanly separated from the other
containers, avoiding the risks of incompatible libraries.

Packaging software in containers is a whole subject in itself. We can only
scratch the surface here. For a deeper dive into the fascinating world of
containers, please consider reading books such as "Docker in Action, 2nd
ed." by Jeff Nickoloff and Stephen Kuenzli, and "Learn Docker in a Month of
Lunches" by Elton Stoneman, both titles from Manning. Besides, more and
more, containers are not deployed in isolation but rather in clusters that need
to be very well orchestrated. Kubernetes is probably the most popular
container orchestrator nowadays. Several Manning titles will quickly bring
you up to date about Kubernetes, for example, "Kubernetes in Action, 2nd
ed." by Marko Lukša, or "Kubernetes for Developers" by William Denniss,
also from Manning. In the present book, we won’t go as far as using
Kubernetes (as this would require much explanation and is not absolutely
needed in our case) but we will resort to a simpler (but less powerful)
solution, called docker-compose. Docker-compose is an interesting solution
for development environments that don’t all require the power of a true
container orchestrator.

Back to the packaging of our service, we’ll first take a detailed look at the
steps needed to containerize the Rust web service. Once the web service is
available as a Docker container, it is no different from a web service or
application written in any other programming language from a production
deployment standpoint, and all the standard guidelines and options to deploy
Docker containers would apply.

Let’s get started with a broad overview of the production deployment
lifecycle.

12.1 Introduction to production deployment of
servers and apps

12.1.1 Software deployment cycle

The software deployment cycle involves multiple levels of developer unit and
integration testing followed by preparation and deployment of the release.
Once the release is deployed and running, the system is monitored, key
parameters are measured and optimization is performed.

While the specific steps in the production deployment lifecycle varies by
team and DevOps technologies, figure 12.1 shows a representative set of
steps that are typically performed.

Figure 12.1. Production deployment lifecycle

Let’s take a look at the various stages. The actual development steps and
terminology used by various organisations differ widely, however let’s use
the following to gain a common conceptual understanding in broad strokes:

1. Build: Software is written (or modified) and the binary is locally built
by the developer(s). Note that in most cases, this would be a
development build (which facilitates debugging and takes lesser time to
build), as opposed to a production build (which optimizes binary size
but typically takes longer to build in most programming languages).

2. Dev test: The developers perform unit tests in a local development
environment.

3. Staging: The code is merged with the other branches that are planned as

part of a software release, and deployed in a staging environment. Here
integration tests are performed involving code and modules written by
other developers.

4. Package for release: After successful integration tests, the final
production build is constructed. The method of packaging will involve
decisions on how the binary will be deployed (e.g as a stand-alone
binary, or deployed in a container or a public cloud service). In this
chapter we will focus on how to create a Docker build for the Rust
web service.

5. Configure and deploy: The production binary file is then deployed to
the target environment (eg. virtual machine), and the needed
configuration and environmental parameters are set up. This is also the
stage where connection to additional components in the production
infrastructure is performed. For example, the binary may be required to
work with load balancers or reverse proxies. In this chapter we will use
Docker Compose to streamline the process of configuring,
automating builds, starting and stopping the set of Docker
containers needed to run the web service.

6. Secure: It is here that additional security requirements are configured
such as authentication (e.g. for user and API authentication),
authorization (setting up user and group permissions) and network and
server security (e.g. firewalls, encryption, secrets storage, TLS-
termination, certificates, CORS, IP port enabling etc).

7. Operate and Monitor: This is where the server/binary is started in
order to receive network requests, and the performance of the server is
monitored using network, server, application and cloud-monitoring
tools. Examples of such tools include Nagios, Prometheus, Kibana and
Grafana, to name a few.

In organizations where DevOps tools are deployed, continuous integration ,
continuous delivery and contnuous deployment practices and tools are used to
automate many of these steps. There is a plethora of publicly available
material if you want to understand these terms in more detail.

In this chapter, we will focus only on a subset of these topics and show how
to perform them in the context of the Rust programming language. We will
specifically cover steps #4-Package for release and #5- Configure and

deploy. For the latter, we will only focus on deploying the Docker containers
on a Linux Ubuntu virtual machine, but the Docker containers can be
deployed to any cloud provider (though there may be provider-specific steps
needed for the deployment).

You will specifically learn the following:

a) Building the release binary and packaging: You’ll learn how to build
the Rust server as a Docker image that can be deployed to any host with a
container runtime. You’ll learn how to write Dockerfiles, create Docker
volumes and networks, configure environment variables, do multi-step
Docker builds and reduce the size of final Docker images.

b) Configuring and deploying the web service: You’ll learn how to use
Docker Compose to define runtime configuration of the web service and
postgres database containers, define the dependencies between them,
configure run-time environment variables, initiate Docker builds, and to start
and stop the Docker containers through simple commands.

Let’s start with a brief introduction to Docker.

12.1.2 Docker container basics

Container technology has changed the way software is built, deployed and
managed, enabling DevOps automation by bridging the gap between
development and IT operation teams. Docker is both the name of the
company that played a major role in popularizing container technology, and
also the name of the software product.

Docker containers are completely isolated environments with their own
processes, networking interfaces and volume mounts. One important aspect
of Docker containers is that they all ultimately share the same operating
system kernel.

Figure 12.2. Containerized vs traditional VM-deployed Applications

(Ref: www.docker.com/resources/what-container/)

Figure 12.2 shows the differences between a traditional VM-hosted vs
containerized applications. Virtual machines are an abstraction of physical
hardware turning one physical server into multiple 'logical' servers. The
hypervisor allows multiple VMs to run on a single machine. Each VM
includes a full copy of the operating system. On the other hand, containers
are an abstraction at the application layer that package code and
dependencies together. Multiple containers run on the same physical machine
and share the OS kernel with other containers. For more details refer to :
www.docker.com.

Figure 12.3 shows a simple layered view of how Docker containers fit on the
hardware infrastructure. Docker containers can contain any software
application - a web service, a web application, a database or a messaging
system, to name a few. Docker containers are lightweight (compared to
VMs), can start up and shut down very quickly, and are self-contained in
terms of the software application and all associated dependencies such as
third-party crates and other libraries.

Figure 12.3. Docker container basics

One interesting aspect of Docker containers is that while the Docker host can
be running the Ubuntu operating system, the Docker container can
encapsulate the web service process running on Debian OS. This gives
tremendous flexibility during development and deployment.

How does this facilitate the handshake between the software developers and
the operations teams?

In traditional software deployment, the development team hands over the
software components and associated configuration (in our case, the web
service code repo, build instructions, instructions on prerequisites to be set
up, postgres database scripts, environment files with secrets etc). The
operations team will then have to follow the instructions to build and deploy
the web service in the production environment. Developers are likely to build
and test code in an environment different from the production environment.
The operations team, unfamiliar with the software, may run into issues which
will require the presence of the development teams to resolve.

Docker containers solve this problem. Developers specify the infrastructure
configuration, instructions to set up the environment, download and link the
dependencies, and build the binary in a Dockerfile. The Dockerfile is a text
file in YAML syntax. It allows one to specify parameters such as what is the
base Docker image, environment variables to use, filesystem volumes to
mount, ports to expose etc. The Dockerfile is then built into a customized
Docker image, based on the rules specified in the Dockerfile.

The Docker image is the template from which multiple container runtimes
can be instantiated. (The relationship between a Docker image and a Docker
container is similar to the relationship between a class and an object in
object-oriented programming languages.).

The developers instantiate the Docker image into Docker containers and test
their software application. They then hand over the Docker image to the
software operations team for a production deployment. Given that the Docker
image is guaranteed to run the same way in any hardware infrastructure
(Docker host), it becomes a lot easier for the operations teams to deploy and
instantiate the software application in the production environment. Docker
thus dramatically reduces the friction and human errors in production
deployment of software applications. However, one flipside of using Docker
is that it requires skilled Docker engineers to configure the build rules for an
application.

More information about Docker can be found here: docs.docker.com/get-
started/overview/.

A prerequisite for this chapter is to install the Docker development
environment in your development machine or server (Mac, Windows or
Linux). See instructions here: docs.docker.com/get-docker/.

In the next section, we will write our first Docker container, and optimize its
size.

12.2 Writing the first Docker container

In this section we will check the installation of Docker, write a Dockerfile,
build the Dockerfile into a Docker image, and optimize the size of the final
Docker image using a multi-stage build.

Let’s start with checking the Docker installation.

12.2.1 Check Docker installation

You can create a project folder in your development server to follow-along

with the code in this section.

From the terminal, check Docker installation with:

docker --version

You should get a response similar to the following one, on your terminal:

Docker version 20.10.16, build aa7e414

Let’s test the official Docker image:

docker pull hello-world

You should see similar output:

Using default tag: latest

latest: Pulling from library/hello-world

2db29710123e: Pull complete

Digest: sha256:80f31da1ac7b312ba29d65080fddf797dd76acfb870e677f390d5

[CA]acba9741b17

Status: Downloaded newer image for hello-world:latest

docker.io/library/hello-world:latest

Now check if the Docker image is available on your local dev server:

docker images

You should see the following:

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest feb5d9fea6a5 8 months ago 13.3kB

You will see a Docker image hello-world available in your local dev server,
with a Docker image id specified. Note also the size of the docker image.
We’ll talk later in the chapter about optimizing the size of Docker images.

As mentioned earlier, a Docker image is a template to create a Docker
container instance. Let’s instantiate the Docker image and see what happens:

docker run hello-world

If you see the following message, your Docker environment is good to go:

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

 (amd64)

3. The Docker daemon created a new container from that image which runs the

 executable that produces the output you are currently reading.

4. The Docker daemon streamed that output to the Docker client, which sent

 it to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

This official Docker image prints out the 'Hello from Docker!' message.
That’s all it does.

While using a Docker image created by someone else is useful, it is more
interesting to create our own Docker image. Let’s do that next.

12.2.2 Writing a simple Docker container

Start a new project with

cargo new --bin docker-rust

cd docker-rust

This will be the project root folder.

Add Actix web to Cargo.toml dependencies:

[dependencies]

actix-web = "4.2.1"

Add the following to src/main.rs:

use actix_web::{get, web, App, HttpResponse, HttpServer, Responder};

#[get("/")]

async fn gm() -> impl Responder {

 HttpResponse::Ok().body("Hello, Good morning!")

}

async fn hello() -> impl Responder {

 HttpResponse::Ok().body("Hello there!")

}

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 HttpServer::new(|| {

 App::new()

 .service(gm)

 .route("/hello", web::get().to(hello))

 })

 .bind(("0.0.0.0", 8080))?

 .run()

 .await

}

Let’s first build and run the server in the regular mannet (without Docker):

cargo run

From the browser window, test the following:

localhost:8080

localhost:8080/hello

You should see the following messages (corresponding to the previous two
GET requests) in the browser window:

Hello, Good morning!

Hello there!

Now that we’ve confirmed that the web service is working, let’s containerize
this web service with Docker.

Figure 12.4 shows what we will be building.

Figure 12.4. First Docker container

Create a new file Dockerfile-basic in the project root, and add the following:

Use the main rust Docker image

FROM rust

copy app into docker image

COPY . /app

Set the workdirectory

WORKDIR /app

build the app

RUN cargo build --release

start the application

CMD ["./target/release/docker-rust"]

Run the following command to build the Docker image

docker build -f Dockerfile-basic . -t docker-rust-basic

You will see a series of messages ending with these:

 => => exporting layers 0.8s

 => => writing image

[CA]sha256:

[CA]20fe6699b10e9945a1f0072607da46f726476f82b15f9fbe3102a68becb7e1a3 0.1s

 => => naming to docker.io/library/docker-rust-basic

To check the docker image that has been built, run the following command:

docker images

You should see an output on your terminal similar to this:

REPOSITORY TAG IMAGE ID CREATED SIZE

docker-rust-basic latest 20fe6699b10e 9 seconds ago 1.32GB

You will notice that a Docker image with name docker-rust-basic has been
created, with a specific Docker image id. The Docker image has a size of
1.32 GB. The reason is that Docker images include all the layers along with
all their dependencies. For example, in this case, the Rust Docker image
contains the Rust compiler and all the intermediate build artifacts which are
not necessary to run the final application. But getting a large Docker image
size in the first iteration is normal, as our initial priority is to get the Docker
image defined and constructed the right way. We’ll see later how to reduce
the size of the Docker image.

Let’s run the web server within this Docker container as shown:

docker run -p 8080:8080 -t docker-rust-basic

From the browser window, test the following:

localhost:8080

localhost:8080/hello

You should see the respective messages displayed in the browser window.

We have now tested the web service in two versions: the basic version with
cargo run and the Dockerized version.

But we’re not done yet. The problem we still have is that the Docker image
of the web service has a size of 1.32 GB. Not exactly small. Docker binaries
are expected to have a small footprint, but the Dockerized version of this very
simple (and trivial) Rust web service has a large size. Can we fix it? Let’s
look at it in the next section.

12.2.3 Multi-stage Docker build

In this section, let’s try to reduce the size of the Docker image.

Figure 12.5 shows what we will be doing in this section.

Figure 12.5. Lite Docker container

Create a new Dockerfile - Dockerfile-lite in the project root, and add the

following:

Use the main rust Docker image

FROM rust as build

copy app into Docker image

COPY . /app

Set the workdirectory

WORKDIR /app

build the app

RUN cargo build --release

use google distroless as runtime image

FROM gcr.io/distroless/cc-debian11

copy app from builder

COPY --from=build /app/target/release/docker-rust /app/docker-rust

WORKDIR /app

start the application

CMD ["./docker-rust"]

Run the following command to build the Docker image

docker build -f Dockerfile-lite . -t docker-rust-lite

To check the Docker image that has been built, run the following command:

docker images

You should see an output on your terminal similar to this:

REPOSITORY TAG IMAGE ID CREATED SIZE

docker-rust-lite latest 40103591baaf 12 seconds ago 31.8MB

You’ll now notice that the size of the Docker image has reduced to 31.8 MB.

Before we analyze it, let’s first confirm that this Docker image actually
works. Run the Docker image with the following command:

docker run -p 8080:8080 -t docker-rust-lite

Check the running container with:

docker ps

You should see the container docker-rust-lite shown in the list.

From the browser window, test the following:

localhost:8080

localhost:8080/hello

You should see the respective greeting messages displayed in the browser
window.

So, how did this work?

We used what is called a multi-stage build. A multi-stage Docker build is a
series of steps to create a Docker image. The main benefit of a multi-stage
build is to clean up after a development build and reduce the size of the final
binary by removing extraneous files in the final Docker image. It lets
developers automate the process of creating several versions of a binary
aimed at different target OS environments, and also offers security and
caching benefits.

A Docker multi-stage build uses several FROM statements to reference a
specific image for that stage. Each stage can be named using the AS keyword.
In the Dockerfile-lite example shown previously, we have two stages. The
first stage of build builds a release binary. The second stage of build uses
google distroless as a runtime image, and copies over the release binary
previously created, which results in a smaller Docker image size.

Figure 12.6. Multi Stage builds

Figure 12.6 shows an example of a Docker multi-stage build with two steps.
A single Dockerfile defines two build steps. The first build step creates a dev
build docker image which contains dev-related artifacts. The second build
step builds a production-ready Docker image which achieves a smaller size
by excluding unwanted files.

More details on multi-stage Docker builds can be found here:
docs.docker.com/develop/develop-images/multistage-build/.

To summarize, the main difference between what’s shown in Fig 12.4 and
Fig 12.5 is that in the latter we have built the docker image in two steps, with
the second (final) step excluding all the development tools and artifacts in the
final Docker image.

Now that we understand how to build and optimize a basic Rust actix
program with Docker, let’s shift our focus to the ezytutors web service.

12.3 Building the database container

The ezytutors web backend has two distinct components - the web service
serving the APIs and the postgres database.

Figure 12.7 shows a visual representation of how we want to package the two
components as docker containers, and have mobile and web clients send
requests.

Figure 12.7. Docker Compose configuration

Let’s first Dockerize the postgres database. We’ll talk about how to package
the ezytutors web service as a container in the next section.

But is there any real benefit of packaging the database as a Docker container?

Yes, because we want the database to be easily portable across machines,

and not tied to a specific hardware environment. We also eventually want to
be able to operate (start, stop etc) the database and the web service together
as one unit, which makes it easier if the database is also packaged as a
container.

Let’s get started.

12.3.1 Packaging the Postgres database

First clone the git repo for the book. Navigate to chapter6/ezytutors/tutor-db.
This is the project root folder for the web service.

a) Install Docker Compose on the Ubuntu server (or your own OD flavour).
You may refer to documentation here: docs.docker.com/compose/install/.
The command to verify it on Ubuntu is : docker compose version. You
should see an output similar to this:

Docker Compose version v2.5.0

b) Create a new Docker network to interconnect the tutor web service and the
postgres database containers.

docker network create tutor-network

docker ls

You should see something similar to this:

6fc670fb70ba bridge bridge local

75d560b02bbe host host local

7d2c59b2f3a5 none null local

e230e1a9c55d tutor-network bridge local

c) Create a Docker volume.

Docker volumes are the preferred way to persist data generated by and used
by Docker containers. They are completely managed by Docker. They are
easy to backup and, using volume drivers, allow you to store data on remote
hosts or cloud providers. A volume’s contents exist outside the lifecycle of a
Docker container. More details can be found here:
docs.docker.com/storage/volumes/.

Let’s create a Docker volume as shown:

docker volume create tutor-data

docker volume ls

You should see an output like this:

DRIVER VOLUME NAME

local tutor-data

d) Stop the postgresql database instance if running on the Docker host:

systemctl status postgresql

systemctl stop postgresql

e) Create a new Docker Compose file with the name docker-compose.yml.
Add the following:

version: '3'

services: #1

 db: #2

 container_name: tutor-postgres

 restart: always

 image: postgres:latest #3

 environment: #4

 - POSTGRES_USER=postgres

 - POSTGRES_PASSWORD=postgres

 - POSTGRES_DB=ezytutors

 volumes:

 - tutor-data:/var/lib/postgresql/data #5

 - ./c12-data/initdb.sql:/docker-entrypoint-initdb.d/initdb.sql #6

 - ./c12-data/init-tables.sql:/

 [CA]docker-entrypoint-initdb.d/init-tables.sql #7

 ports: #8

 - 5432:5432

 networks: #9

 - tutor-network

volumes: #10

 tutor-data:

networks: #11

 tutor-network:

With reference to annotation <1>, each entry under the services: keyword
represents a separate docker container. In this case, we’re telling Docker

Compose that db is the name of the service and that a separate Docker
container should be spun up for the db service.

With reference to annotation <5>, the volume tutor-data on the Docker host
is mapped to /var/lib/postgresql/data (default database folder of postgres)
within the Docker container.

With reference to annotation <6> initdb.sql contains the database scripts to
create the database and users, and grant permissions.

With reference to annotation <7>, init-tables.sql contains the database scripts
to create the database tables and load initial test data.

f) Build and run the postgres Docker image.

docker compose up -d

docker ps

You should see an output similar to this:

CONTAINER ID IMAGE COMMAND CREATED |

d43b6ae99846 postgres:latest "docker-entrypoint.s…" 4 seconds ago |

| STATUS PORTS NAMES

| Up 1 second 0.0.0.0:5432->5432/tcp, :::5432->5432/tcp tutor-postgres

The Docker container tutor-postgres has been instantiated from the Docker
image postgres:latest.

Let’s check if the database and tables have been created and if test data has
been loaded. For this, connect to the Docker container:

docker exec -it d43b6ae99846 /bin/bash #1

psql postgres://postgres:postgres@localhost:5432/ezytutors #2

\list #3

You should see a terminal output similar to this:

psql (12.11 (Ubuntu 12.11-0ubuntu0.20.04.1), server 14.3 (Debian 14.3-1.pgdg110+1))

WARNING: psql major version 12, server major version 14.

 Some psql features might not work.

Type "help" for help.

ezytutors=# \list

 List of databases

 Name | Owner | Encoding| Collate | Ctype | Access privileges

---------+---------+---------+-----------+-----------+----------------------

ezytutors| postgres| UTF8 | en_US.utf8| en_US.utf8|

postgres | postgres| UTF8 | en_US.utf8| en_US.utf8|

template0| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

 | | | | | postgres=CTc/postgres

template1| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

 | | | | | postgres=CTc/postgres

(4 rows)

You should see the database ezytutors listed. This is because we placed the
initdb.sql within the Docker container, in the folder /docker-entrypoint-
initdb.d. Any script placed within this folder should be automatically
executed when the container starts.

Just enter \q and exit the psql shell, followed by exit in the Docker bash shell,
to exit the Docker container.

There is another way to access the database, which is to connect to the
Docker container and execute psql from within it, as shown:

docker ps

docker exec -it 0027d5c1cfaf /bin/bash

psql -U postgres

\list

You should see such an output:

bash-5.1# psql -U postgres

psql (11.16)

Type "help" for help.

postgres=# \list

 List of databases

 Name | Owner | Encoding| Collate | Ctype | Access privileges

---------+---------+---------+-----------+-----------+----------------------

ezytutors| postgres| UTF8 | en_US.utf8| en_US.utf8| =Tc/postgres +

 | | | | | postgres=CTc/postgres+

 | | | | | truuser=CTc/postgres

postgres | postgres| UTF8 | en_US.utf8| en_US.utf8|

template0| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

 | | | | | postgres=CTc/postgres

template1| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

 | | | | | postgres=CTc/postgres

(4 rows)

You’ll notice that both are acceptable ways to access the postgres database
within the tutor-postgres container.

We see that the ezytutors database has been created.

Let’s check if the user truuser has been created and privileges assigned to the
user. From within the Docker container, execute the following command at
the command prompt:

 psql -U truuser ezytutors

 ezytutors=>\list

If you are able to see ezytutors database listed, it’s good. Otherwise, execute
the following steps:

Let’s run these commands within the psql shell:

postgres=# drop database ezytutors

postgres=# \list

You should see a similar output:

postgres=# drop database ezytutors;

DROP DATABASE

postgres=# \list

 List of databases

 Name | Owner | Encoding| Collate | Ctype | Access privileges

---------+---------+---------+-----------+-----------+----------------------

postgres | postgres| UTF8 | en_US.utf8| en_US.utf8|

template0| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

 | | | | | postgres=CTc/postgres

template1| postgres| UTF8 | en_US.utf8| en_US.utf8| =c/postgres +

 | | | | | postgres=CTc/postgres

(3 rows)

We have deleted the database ezytutors because we want to execute the
initdb.sql script in its entirety once again.

Now let’s run the two initialization scripts that we stored within the Postgres
Docker container under docker-entrypoint-initdb.d.

Go back to the Docker container bash shell (not psql shell), and execute the
following commands:

postgres=# \i /docker-entrypoint-initdb.d/initdb.sql

You should see a similar output in your terminal:

postgres=# \i /docker-entrypoint-initdb.d/initdb.sql

CREATE DATABASE

CREATE ROLE

GRANT

ALTER ROLE

ALTER ROLE

The initdb.sql script creates the database, creates a new user truuser, and
grants all permissions to this new user on the database ezytutors.

Now quit the psql shell with \q and log back in from the Docker container
bash shell with the truuser id as shown:

 psql -U truuser ezytutors

 ezytutors=>\list

You should see the following on your terminal:

ezytutors=> \list

 List of databases

 Name | Owner |Encoding| Collate | Ctype |Access privileges

 --------+---------+--------+-----------+-----------+------------------

ezytutors|postgres |UTF8 |en_US.utf8 |en_US.utf8 |=Tc/postgres +

 | | | | |postgres=CTc/postgres+

 | | | | |truuser=CTc/postgres

postgres |postgres |UTF8 |en_US.utf8 |en_US.utf8 |

template0|postgres |UTF8 |en_US.utf8 |en_US.utf8 |=c/postgres +

 | | | | |postgres=CTc/postgres

template1|postgres |UTF8 |en_US.utf8 |en_US.utf8 |=c/postgres +

 | | | | |postgres=CTc/postgres

(4 rows)

The ezytutors database can now be accessed by truuser. In the next section,

we’ll look at how to create database tables within the Docker container.

12.3.2 Creating database tables

From the command prompt of the Postgres Docker container, check if the
database tables have been created using:

ezytutors=> \d

Did not find any relations.

If you see the list of tables, then it’s all good. But if you see the error message
above Did not find any relations, then we need to manually run the script to
create tables and load test data.

Let’s now create the tutor and course related tables in ezytutors database, and
then list the database tables (called relations in postgres language). We’ll do
this by executing the init-tables.sql script.

You should see this:

ezytutors=> \i /docker-entrypoint-initdb.d/init-tables.sql

psql:/docker-entrypoint-initdb.d/init-tables.sql:4: NOTICE:

[CA]table "ezy_course_c6" does not exist, skipping

DROP TABLE

psql:/docker-entrypoint-initdb.d/init-tables.sql:5: NOTICE:

[CA]table "ezy_tutor_c6" does not exist, skipping

DROP TABLE

CREATE TABLE

CREATE TABLE

GRANT

GRANT

INSERT 0 1

INSERT 0 1

INSERT 0 1

INSERT 0 1

ezytutors=> \d

 List of relations

 Schema | Name | Type | Owner

--------+-----------------------------+----------+---------

 public | ezy_course_c6 | table | truuser

 public | ezy_course_c6_course_id_seq | sequence | truuser

 public | ezy_tutor_c6 | table | truuser

 public | ezy_tutor_c6_tutor_id_seq | sequence | truuser

(4 rows)

The tables have been created. Let’s also check if the initial test data has been
loaded into tutor and course tables:

ezytutors=> select tutor_id, tutor_name, tutor_pic_url from ezy_tutor_c6;

 tutor_id | tutor_name | tutor_pic_url

 ----------+------------+-----------------------------

 1 | Merlene | http://s3.amazon.aws.com/pic1

 2 | Frank | http://s3.amazon.aws.com/pic2

(2 rows)

ezytutors=> select course_id, tutor_id, course_name, course_format,

course_level, from ezy_course_c6;

 course_id | tutor_id | course_name | course_format | course_level

-----------+----------+---------------+--------------------+---------+

 1 | 1 | First course | | Beginner

 2 | 2 | Second course | ebook |

(2 rows)

All good so far.

It is now time to conduct a test. What happens when we stop the container?.
Will the data persist between container restarts?

For this, let us add a new record to the tutor table, shut down the container
and restart it to check if the data has persisted.

 ezytutors=> insert into ezy_tutor_c6 values(

 [CA]3,'Johnny','http://s3.amazon.aws.com/pic2',

 [CA]'Johnny is an expert marriage counselor');

 ezytutors=> \q

 exit

 root@1dfd3bd87e2c:/# exit

Exit the psql shell with q, and then issue the exit command on the bash shell
of the Docker postgres container. This should take you to your project home
folder.

Now shut down the Docker container with:

docker compose down

docker ps

Your postgres container should no longer be running.

Now restart the container, and get into the running container shell:

docker compose up -d

docker ps

docker exec -it 7e7c11273911 /bin/bash

Then, in the container, login to the database with psql client, and check that
the tutor table has the additional entry that you added previously:

root@7e7c11273911:/# psql -U truuser ezytutors

psql (14.3 (Debian 14.3-1.pgdg110+1))

Type "help" for help.

ezytutors=> \d

 List of relations

 Schema | Name | Type | Owner

--------+-----------------------------+----------+---------

 public | ezy_course_c6 | table | truuser

 public | ezy_course_c6_course_id_seq | sequence | truuser

 public | ezy_tutor_c6 | table | truuser

 public | ezy_tutor_c6_tutor_id_seq | sequence | truuser

(4 rows)

ezytutors=> select * from ezy_tutor_c6;

 tutor_id | tutor_name | tutor_pic_url | tutor_profile

----------+------------+-------------------------------+-------------------

 1 | Merlene | http://s3.amazon.aws.com/pic1 | Merlene is an ..

 2 | Frank | http://s3.amazon.aws.com/pic2 | Frank is an ..

 3 | Johnny | http://s3.amazon.aws.com/pic2 | Johnny is an ..

(3 rows)

The data has indeed been persisted.

We have now completed the task to create a postgres database container ,
initialize the database, and load test data. This concludes the setup of the
Docker postgres container.

As the next step, we can now move on to Dockerizing the tutor web service
in the next section.

12.4 Packaging the web service with Docker

In the previous section, we packaged the ezytutors postgres database as a
Docker container. In this section, let us turn our attention to packaging the
tutor web service as a Docker container.

We will first create a Dockerfile. This is because we want to create a custom
Docker image for the tutor web service (as opposed to using the standard
postgres image in the previous section). The custom Dockerfile is required
because of two reasons:

There is no standard Docker image available in Docker hub for our tutor
web service. This is our custom code, and we need to give instructions
in Dockerfile to package it as a container
We want to specify instructions to create a static self-contained binary ,
without the use of shared libraries. By default the Rust standard library
dynamically links to the system libc implementation. Since we want a
100% static binary for the web service, we will use musl libc on the
Linux distribution we use within the web service Docker container.

Why use RUST with MUSL?

By default, Rust statically links all Rust code. But if you use the standard
library (which we do in this book), it will dynamically link to the system libc
implementation. Operating system differences can cause Rust binaries to
break when run in a different environment compared to that they were
compiled in. For example, if the binary was built using newer version of
Glibc compared to the target system (where the Rust program is deployed
and run), it will fail to run. One of the approaches to avoid this problem is to
statically compile MUSL into the binaries.

MUSL is a lightweight replacement for Glibc used in Alpine Linux. When
MUSL is statically compiled into your Rust program, you can create a self-
contained executable that will run without dependencies on Glibc. Credits:
mng.bz/44ra This is the approach we will use in this book, to package Rust in
Docker containers.

Let us first create the Dockerfile for the tutor web service.

Create a Dockerfile named Dockerfile-tutor-webservice, and add the
following:

Use the main rust docker image

FROM rust as build #1

RUN apt-get update && apt-get -y upgrade #2

RUN apt-get install libssl-dev #2

RUN apt-get -y install pkg-config musl musl-dev musl-tools #2

RUN rustup target add x86_64-unknown-linux-musl #3

copy app into Docker image

COPY . /app #4

Set the workdirectory

WORKDIR /app #5

build the app

RUN cargo build --target x86_64-unknown-linux-musl --release --bin iter5 #6

CMD ["./target/x86_64-unknown-linux-musl/release/iter5"] #7

We have created the Dockerfile. We can run the Docker build command
directly on this Dockerfile. But we will do it in a different way. Let us see
how in the next section.

12.5 Orchestrating Docker containers with Docker
Compose

In this section, we will use Docker Compose to create a multi-container
configuration for the ezytutors application.

Why use Docker Compose?

Docker Compose is a client-side tool that lets you run an application stack
with multiple containers.

While Docker has made it easy to create local development environments for
individual services, when there are multiple docker containers to manage for

an application (as we have in our ezytutors example), it becomes
cumbersome. Docker Compose solves this problem by specifying the
configuration of one or more Docker containers within a single YAML
configuration file.

Using Docker Compose, you can specify the build instructions, storage
configuration, environment variables and network parameters for each
Docker container that is part of a single application. Once defined, Docker
Compose allows you to build, start and stop all the containers using a single
set of commands.

Let us add tutor web service as a service within the Docker Compose file that
we created in the previous section for the postgres database container. In this
way, we have a single Docker Compose file that has details of both the
Docker containers needed to build and run the tutor web service. Also, we
can specify the dependencies between the two containers, and connect them
through a common Docker network. Also, we can specify the Docker volume
to which postgres data should be persisted between Docker container runs.

Figure 12.8 shows a visual representation of key elements of the final Docker
Compose file for our application.

Figure 12.8. Docker Compose configuration

In docker-compose.yml, add tutor-webservice as a service. The complete
Docker Compose yml file should look like this:

version: '3'

services:

 db: #1

 container_name: tutor-postgres

 restart: always

 image: postgres:latest

 environment:

 - POSTGRES_USER=postgres

 - POSTGRES_PASSWORD=postgres

 - POSTGRES_DB=ezytutors

 volumes:

 - tutor-data:/var/lib/postgresql/data

 - ./c12-data/initdb.sql:/docker-entrypoint-initdb.d/initdb.sql

 - ./c12-data/init-tables.sql:/docker-entrypoint-initdb.d/init-tables.sql

 ports:

 - 5432:5432

 networks:

 - tutor-network

 api: #2

 restart: on-failure

 container_name: tutor-webservice

 build: #3

 context: ./

 dockerfile: Dockerfile-tutor-webservice

 network: host

 environment: #4

 - DATABASE_URL=${DATABASE_URL}

 - HOST_PORT=${HOST_PORT}

 depends_on:

 - db #5

 ports:

 - ":3000:3000" #6

 networks:

 - tutor-network #7

volumes:

 tutor-data:

networks:

 tutor-network:

We can now start the postgres database container with:

docker compose up db -d

This will start the database container alone, as a background process.

Before we build and run the tutor web service container, let us first check the
environment variable settings.

cat .env

You should see this:

DATABASE_URL=postgres://truuser:trupwd@localhost:5432/ezytutors

HOST_PORT=0.0.0.0:3000

Let us set the DATABASE_URL environment variable in the current
terminal shell:

source .env

echo $DATABASE_URL

You should see the value of database url correctly set as the environment
variable. This step is important because sqlx does compile-time checking of
the database, while building the tutor web service.

postgres://truuser:trupwd@localhost:5432/ezytutors

Let us double-check that the postgres url is accessible from the Docker host
shell (to avoid unwanted delays in compilation process):

psql postgres://truuser:trupwd@localhost:5432/ezytutors

\q

If this takes you to the postgres shell, you are ready to build the tutor web
service container, as shown:

docker compose build api

It will take a while, depending on the configuration of your machine. So, go
grab a coffee (or another drink of your choice).

Once the process is complete, check the built image with:

docker images

You should see this:

REPOSITORY TAG IMAGE ID CREATED SIZE

tutor-db_api latest 23bee1bda139 52 seconds ago 2.87GB

postgres latest 5b21e2e86aab 7 days ago 376MB

Now that we have built the web service container, let us start it up. But before
that we will have to shutdown the running postgres container, as the Docker
Compose file will start both the api (web service container) and db (postgres
container) services together.

Get the Docker image id and remove the running postgres container.

docker ps

docker stop <image id>

docker rm <image id>

Before we start the containers, there is one step to be done.

Recall that the tutor web service uses the DATABASE_URL environment
variable to connect to the postgres database. While building the web service
container, we set the following value to DATABASE_URL:

DATABASE_URL=postgres://truuser:trupwd@localhost:5432/ezytutors

Note that the value after the @ symbol represents the host on which the
postgres database runs. During the build phase, we set it to localhost. But for
the tutor webservice container (named as api service in Docker Compose
file), localhost refers to itself. If so, how did it connect to the postgres
container at build time? This is because we made a small hack at build time.
If you look back at the Docker Compose file to build the tutor web service,
you will notice the network parameter set to host.

 api:

 restart: on-failure

 container_name: tutor-webservice

 build:

 context: ./

 dockerfile: Dockerfile-tutor-webservice

 network: host

This parameter enabled the build process of the tutor web service container to
proceed, by connecting to the localhost port of the docker host from which
the Docker container build happened. But this is not suitable for a production
environment. This is the reason we have created a separate Docker network
called tutor-network, and specified that both containers are to be connected to
this network. Let us verify it with:

docker network ls

docker inspect tutor-network

If you do not see any reference to the tutor web service or postgres
containers, then add them manually as shown:

docker network connect tutor-network tutor-webservice

docker network connect tutor-network tutor-postgres

docker inspect tutor-network

You should see a similar output:

"Containers": {

 "26a5fc9ac00d815cb933bf66755d1fd04f6dca1efe1ffbc96f28da50e65238ba": {

 "Name": "tutor-postgres",

 "EndpointID":

 [CA]"e870c365731463198fbdf46ea4a7d22b3f9f497727b410852b86fe1567c8a3e6",

 "MacAddress": "02:42:ac:1b:00:03",

 "IPv4Address": "172.27.0.3/16",

 "IPv6Address": ""

 },

 "af6e823821b36d13bf1b381b2b427efc6f5048386b4132925ebd1ea3ecfa5eaa": {

 "Name": "tutor-webservice",

 "EndpointID":

 [CA]"015e1dbc36ae8e454dc4377ad9168b6a01cae978eac4e0ec8e14be98d08b4f1c",

 "MacAddress": "02:42:ac:1b:00:02",

 "IPv4Address": "172.27.0.2/16",

 "IPv6Address": ""

 }

},

The two containers tutor-postgres and tutor-webservice have been added to
the tutor-network.

Now within a network, the containers can access each other by the container
names. So, the tutor-webservice can access the postgres container using the

name tutor-postgres. Let us now modify the database url as shown, in the
.env file:

DATABASE_URL=postgres://truuser:trupwd@tutor-postgres:5432/ezytutors

Note that the host value is now set to tutor-postgres instead of localhost. Let
us set the environment variable in the shell, and restart the containers.

source .env

echo $DATABASE_URL

echo $HOST_PORT

docker compose down #1

docker compose up -d #2

docker network connect tutor-network tutor-webservice #3

docker network connect tutor-network tutor-postgres #3

docker inspect tutor-network #4

Now from your server terminal (not inside Docker), run the following to
check the web service endpoint:

curl localhost:3000/tutors/

You should see the following result:

[{"tutor_id":1,"tutor_name":"Merlene",

[CA]"tutor_pic_url":"http://s3.amazon.aws.com/pic1",

[CA]"tutor_profile":"Merlene is an experienced finance professional"},

[CA]{"tutor_id":2,

[CA]"tutor_name":"Frank",

[CA]"tutor_pic_url":"http://s3.amazon.aws.com/pic2",

[CA]"tutor_profile":"Frank is an expert nuclear engineer"},

[CA]{"tutor_id":3,

[CA]"tutor_name":"Johnny",

[CA]"tutor_pic_url":"http://s3.amazon.aws.com/pic2",

[CA]"tutor_profile":"Johnny is an expert marriage counselor"}]

Note that the additional entry you added to the list of tutors is also shown,
confirming that the database changes are persisted to the local volume across
container restarts. You can run tests on the other end points also as an
exercise.

Congrats, if you have come this far. You have successfully Dockerized the
tutor web service and the postgres database. You have also made the task

greatly simpler by using Docker Compose to build, start and stop all the
containers together with simple commands.

With this, we can conclude this chapter.

12.6 Suggested exercises

For readers looking for additional code challenges, here are a few:

1. Docker build commands can take a long time to create a Docker image.
Explore usage of cargo chef (github.com/LukeMathWalker/cargo-chef)
to speed up container builds

2. Add middleware to the Actix web server, which can be used to add
additional functionality such as CORS, JWT authentication of API
endpoints and logging levels. For more details see here:
actix.rs/docs/middleware/

3. The size of the tutor web service container image in the previous section
is large ~ 2.87 GB. As an exercise, enhance the Dockerfile Dockerfile-
tutor-webservice to include a multi-stage build and reduce the size of the
Docker image. More details on multi-stage builds can be found here:
docs.docker.com/develop/develop-images/multistage-build/.

12.7 Summary

Rust web services, applications and databases can be packaged into
Docker containers. Docker is a popular way to build and run light-
weight containers that removes friction between the software developers
and operations teams.
Docker files contain the instructions to build the Docker image. From
the image, containers can be instantiated which can service requests. For
containerizing Rust programs, building static Rust binaries with MUSL
helps avoid issues with libc versions on different target environments.
Multi-stage Docker builds can be used to reduce the size of final Docker
images. In case of Rust, the first stage involves installing the Rust
development environment and associated dependencies to build the
static Rust binary. The second stage involves removing the Rust

compiler and intermediate build artifacts by creating a new base image
and copying only the final Rust static (self-contained) binary.
Docker containers can be grouped together using Docker Compose, a
tool to build, run and manage the life cycle of a set of Docker containers
together
We defined two services (Docker containers) as part of the Docker
Compose file - a postgres database and the tutor web service
docker build , docker images, docker run, docker ps, docker inspect,
docker compose up, docker compose down, and docker compose build
are some of the commonly used Docker commands
Since sqlx does compile-time checking of the database, the postgres
container is started first, and then the tutor web service is built.
Docker containers can be interconnected using a custom Docker
network.
Docker volumes can be used to persist data to disk between Docker
container runs.
Docker Compose greatly simplifies the lifecycle management of a group
of containers
Dockerfiles and Docker Compose files for a project can be used to
deploy an application or service on various virtual infrastructure and
cloud providers

With this, we come to an end of this chapter, and also this book.

This book is designed to get you started on the journey to writing web
services and applications in Rust. But this is where I get off, and let you
explore and enjoy the world of Rust web development on your own.

I wish you the best in your continued exploration of Rust servers, services
and apps development.

Appendix A. Postgres installation
You may choose to install postgres in one of the following ways:

Local installation on macOS, Windows or Linux/Unix development
environment
Run postgres database in a docker container
Connect to a hosted and managed postgres database on the cloud such as
AWS, Azure , google cloud, heroku or digital ocean

The instructions to install postgres on a Linux Ubuntu server is given here:

Refresh the local package index:

 sudo apt update

Install the postgres package along with a contrib package that has additional
utilities.

 sudo apt install postgresql postgresql-contrib

Now the postgres software is installed. The installation also automatically
starts the postgresql server as a systemd process in Linux. To verify this,
type:

ps aux | grep postgres

You should see the postgres processes running in the background.

Let’s now interact with the postgres database management system.

By default, postgres uses the concept of "role" (which is similar to users in
Linux/Unix) to handle authentication and authorization. The installation
process creates a user account called postgres. Log into the account as
shown:

 sudo -i -u postgres

You should now see the shell corresponding to postgres user;

From here, you can access the Postgres shell prompt , which allows us to
interact with the postgres database management system to perform tasks such
as creating database, creating users etc. Simply type:

 psql

This will log you into a PSQL prompt.

You can exit out of the prompt anytime using:

 \q

Now exit the postgres user prompt with

exit

Next, we need to make a change to the postgres configuration to allow peer
authentication:

Look for pg_hba.conf file under /etc/postgres. For example, for a postgres
version 12 installation, this file can be found at:

/etc/postgresql/12/main/pg_hba.conf

Open the file in a text editor such as vim or nano and look for the following
entry:

"local" is for Unix domain socket connections only

local all all peer

Replace peer with md5 as shown:

local all all md5

Save the file and restart the postgres server as follows:

sudo systemctl restart postgresql

This configuration change allows you to login to a postgres database with a
password, once you are logged into the server.

Note also the following steps that need to be performed: * Create a database
* Create a user and associate a password * Assign privileges for the user to
the database

Once these steps have been done, you will be able to login to the postgres
database from the command line, using:

psql -U <database-user> -d <database-name> --password

The database-user and database-name have to be replaced with your own.
The --password flag will prompt for a password entry.

For more details, refer to postgres official documentation at
www.postgresql.org/docs/.

	MEAP_VERSION_14
	Welcome
	Part_1_Web_servers_and_services
	1_Why_Rust_for_web_applications?
	2_Writing_a_basic_web_server_from_scratch
	3_Building_a_RESTful_Web_Service
	4_Performing_database_operations
	5_Handling_Errors
	6_Evolving_the_APIs_and_fearless_refactoring
	Part_2_Server-side_web_applications
	7_Introduction_to_server-side_web_apps_in_Rust
	8_Working_with_templates_for_tutor_registration
	9_Working_with_forms_for_course_maintenance
	Part_3_Advanced_topic:_Async_Rust
	10_Understanding_Async_Rust
	11_Building_a_P2P_node_with_Async_Rust
	Part_4_Moving_to_production
	12_Deploying_web_services_with_Docker
	Appendix_A._Postgres_installation

