




Graph Algorithms for Data Science

1. MEAP_VERSION_7
2. Welcome
3. 1_Graphs_and_network_science:_An_introduction
4. 2_Representing_network_structure_-_design_your_first_graph_model
5. 3_Your_first_steps_with_the_Cypher_query_language
6. 4_Exploratory_graph_analysis
7. 5_Introduction_to_social_network_analysis
8. 6_Projecting_monopartite_networks_with_Cypher_Projection
9. 7_Inferring_co-occurrence_networks_based_off_bipartite_networks

10. 8_Constructing_a_nearest_neighbor_similarity_network
11. 9_Node_embeddings_and_classification
12. 10_Link_prediction
13. 11_Knowledge_graph_completion





MEAP VERSION 7



Welcome
Thanks for purchasing the MEAP for Graph Algorithms for Data Science.

This book has been written for anyone with no experience with graphs to
more experienced graph users to augment their understanding of graph
algorithms and their role in the various analysis. With traditional analytics,
you are trying to make sense of data points, whereas with graph analytics,
you are more focused on analyzing connections between data points. Graph
algorithms are designed to investigate those connections between data points
and help you explore who is well connected, who has the most influence,
how communities form, and more.

When I first started experimenting with graph analytics five years ago, there
weren't many tools available, and you would often need to combine a few
tools helping you construct a graph and then analyze it. Not only that, but
there weren't many tutorials or courses available that would explain the graph
analysis workflow in simple terms. For this reason, I've decided to write this
book that would minimize the number of tools needed to get started and
explain graph algorithms and analysis workflow in basic terms.

I will present the advantages of using a graph database and teach you how to
construct a graph from structured and unstructured data using NLP
techniques. Along the way, you will learn how to use Cypher query language
to manipulate graph structure and extract valuable insights. Next, I will walk
you through the typical graph algorithms like PageRank and community
detection/clustering algorithms and demonstrate how to use them in practice.
The last part of the book will focus on graph machine learning, specifically
how to translate graph topology and structure into machine learning model
input by using node embedding models and graph neural networks.

Please let me know your thoughts and ideas in the liveBook Discussion
forum on what's been written so far. Your feedback is invaluable in
improving and increasing the understanding of this book.



Thanks again for your interest and for purchasing the MEAP!

—Tomaž Bratanič

In this book

MEAP VERSION 7 About this MEAP Welcome Brief Table of Contents 1
Graphs and network science: An introduction 2 Representing network
structure - design your first graph model 3 Your first steps with the Cypher
query language 4 Exploratory graph analysis 5 Introduction to social network
analysis 6 Projecting monopartite networks with Cypher Projection 7
Inferring co-occurrence networks based off bipartite networks 8 Constructing
a nearest neighbor similarity network 9 Node embeddings and classification
10 Link prediction 11 Knowledge graph completion



1 Graphs and network science: An
introduction
This chapter covers:

Introducing networks and graphs
Introducing node degree characterization of a network
Spotting graph-shaped tasks
Introducing machine learning on graphs

Networks are everywhere, and they do matter. First of all, where are these
networks? Communication networks are one example. For example, the
internet consists of routers. Routers analyze the incoming data, determine the
optimal path to the destination, and forward the data to the next device along
the route. Another example are the social media platforms. You use those
platforms to connect with other users. Most of your connections are local,
ranging from your family and friends to coworkers. And then you have some
connections from distant friends that can span oceans and continents. When
you map all those connections, what you end up with is referred to as a social
network.

Figure 1.1. World-wide social network.





Also very interestingly, your biological existence depends on networks.
Proteins are called the building blocks of the body. They form the machinery
that helps sustain life. Proteins rarely act alone as their functions tend to be
regulated. The identification of protein interactions can lead to a better
understanding of diseases and the development of drugs and treatments. The
process of mapping those interactions results in protein-protein interaction
networks, also known as PPI.

Figure 1.2. Protein-protein interaction network.



One can also map the connections between neurons in a brain as a network,



also known as the connectome. Not only is it possible, but scientists from
Google AI and a research team from Janelia Research Campus in Virginia
have released a detailed network of the neuronal connectivity of an animal as
well as the human brain.[Shan Xu et al, 2020]

I hope by now, you have realized that networks are everywhere. You just
have to open your eyes to see them. When looking at the world, you can spot
networks occurring in politics, markets, art, and even the dependencies
between code modules form as a network. If you’ve ever developed any code
beyond Hello World, you probably imported other libraries or code from
your other modules.

Figure 1.3. Python code module dependency network.



In Figure 1.3, you can observe that the Pandas library has an external
dependency on the NumPy library. All the other dependencies are between
internal code modules in the Pandas library and are several levels deep.

Now we can move on to the second question. Why do networks matter? The
usefulness of networks and the underlying graph theory lies in its ability to



model many real-world situations and applications. In Figure 1.1, we
visualized a network where the nodes represent people, and the relationships
represent friendship links. Instead of treating entities as independent from one
another in your analysis, you must realize that we live in a connected world.
Using the graph approach to analysis, you consider that the world is
connected and, therefore, the entities are often not independent. Your job as a
network scientist is to map and understand those connections in real-world
scenarios. In the social network example, given the friendship network
topology, you can find influencers or leaders. Information about a network’s
leaders might help you spread your information throughout the whole graph
more efficiently. You could also try to find the nodes that would break the
network if they were removed. Finding the most critical nodes can help you
disrupt or upgrade the resilience of a network. Another example would be to
find segments or communities of like-minded people. The information about
the segments could be used as input to your recommendation engine or to
improve your target advertising persona. Understanding the segments of
customers you are dealing with is also very helpful in a business domain.
Instead of looking at people’s friendship links, you might be interested in
their purchasing and product usage behavior patterns. There are so many real-
world network applications that it is impossible to squeeze them into a single
chapter or even a book.

1.1 Introduction to graph theory

Before we delve more into network science and its applications, you will first
have to learn a bit of graph theory. First of all, what is the difference between
graphs and networks? The term graph is used more in mathematical
terminology and refers to a general language for describing and analyzing
entities and their relations or interactions. On the other hand, the term
network is used to describe a real-world dataset containing entities and their
relationships, such as a social network, a communication network, or a road
network. In practice, the distinction between the terms graph and network is
blurred, and the terms are often used interchangeably. In this book, I will try
to stick to using the term graph when introducing mathematical theory and
concepts and use the term network when describing real-world entities and
their relationships.



1.1.1 What is a graph?

Interestingly, if you google images of a graph, you will find similar images
like the following:

Figure 1.4. A sample bar chart visualization.

Even the first definition of a graph in the Merriam Webster dictionary
describes a diagram representing a variable compared to that of one or more
other variables. In this book, we will refer to any diagram or a graph that
visualizes a series of one or more points, lines, or areas as a chart.
Furthermore, in this book, the term graph is reserved to describe a set of
nodes (also known as vertices) and relationships (also known as connections,



edges, or links).

The history of graph theory can be traced to the 18th century when the Swiss
mathematician Leonhard Euler solved the Königsberg bridge problem.
[Leonhard Euler, 1736] In that time, seven bridges spanned over the forked
river in Königsberg. According to folklore, the puzzle arose of whether a
person could take a walk through the town in a way in which they would
cross each bridge exactly once. Euler argued that no such path exists. Euler’s
solution is simple, once you look at the problem from a graph perspective.

Figure 1.5. A graph visualization of the Königsberg bridge problem.

The problem of finding a way that crosses every bridge exactly once turns
into finding a path through the graph that traverses every relationship exactly
once. For a walk that crosses every relationship in a graph exactly once to be
possible, either none or precisely two nodes can have an odd number of edges
attached to them. However, in the Königsberg bridge problem, all nodes have
an odd number of relationships, making a walk that crosses every bridge once
impossible. In solving this puzzle, Euler started a field that is today known as
graph theory.

1.2 How to spot a graph-shaped problem



Before beginning with network analysis, you must ask yourself if a graph-
based approach is suitable for your problem. While almost any use-case can
be modeled as a graph, a specific set of scenarios is uniquely suited for
graph-based analysis.

The first scenario deals with self-referencing relationships between entities of
the same type. In relational databases, a self-referencing relationship occurs
between data points within the same table. One such example would be a
Facebook friendship network, where you have a single entity type and
multiple relationships between them.

Figure 1.6. Facebook friendship network.

Figure 1.6 represents a small friendship network, where there is a single type
of nodes called User that can have one or more relationship to other users.
Graphs are commonly encouraged to use in analysis when you are dealing
with many data joins. As far as I have seen, the most frequent and
straightforward demonstration of graphs is the friend of a friend query. The



idea behind the friend of a friend query is that you are interested in persons
who are two or more hops or joins distant from the original person. Having
many joins when dealing with larger datasets might be computationally
expensive in traditional relational databases but is quick and easy when
storing the data in a graph database due to treating relationships as a first-
class data structure. The trick is that instead of computing joins between data
entities by scanning foreign key indexes at query runtime, native graph
databases store a physical representation of relationships at import. This trick
delivers a better query performance when traversing relationships between
your data points. There are many scenarios for a graph with self-referencing
relationships:

Detecting social networks influencers
Analyzing consequences of vulnerabities in a dependency network
Inspecting organizational hierarchies

Another fairly common graph scenario is discovering paths or routes between
entities or locations. Most of you have probably used navigational systems to
find the most optimal route for your travels.

Figure 1.7. Transportation network.



Figure 1.7 visualizes an example transportation network between cities in
Belgium and Netherlands. The cities are represented as nodes, while the
transportation modes are represented as relationships between cities. For
example, you could bike from Antwerp to Rotterdam in about 330 minutes or
take the train from Hague to Amsterdam for 37 minutes.

Like mentioned, you could use a transportation network to calculate the most
optimal route based on your specifications. The route could be optimized by
time, distance, or cost. You could also analyze the network as a whole and try
to predict traffic congestions based on the network structure or find critical
connections that would disrupt the whole network if, for example, an accident



occurred. In a relational database, you would have to hypothesize the order of
relationships you must join to find an available path between two entities. In
the example in Figure 1.7, there are three relationship options you could
choose to traverse. You could hop from one city to another using the road,
railroad, or bike network. Another problem you might face with traditional
databases is that you don’t know beforehand how many relationships you
must traverse to get from node A to node B. Not knowing beforehand
precisely which and how many relationships you must traverse could lead to
potentially complex and computationally expensive queries. Treating your
data as a graph helps you mitigate those two problems.

Finding optimal routes can be applied on following scenarios:

Logistics and routing
Infrastructure management
Finding optimal paths to make new contacts

Another very powerful use-case for graphs is examining indirect or hidden
relationships. Consider the following graph:

Figure 1.8. User-item network.



Figure 1.8 represents a network of customers and their purchases. The
purchased products can also be categorized into groups like apparel or
technical goods. You can observe that both Clair and Aditya bought a phone
that falls into the technical goods category.

While there are no direct relationships between customers, you can compare
their purchasing patterns and find similar customers. Essentially, you could
define segments of customers using this approach. These types of graphs are
also frequently used in collaborative filtering recommender systems, where
you search for similar customers or products commonly purchased together.
You could also examine how many purchases have items that span across
many product categories. There are many more scenarios where user-item
networks come in handy, like movie recommendations on Netflix or song
recommendations on Spotify. Essentially, any scenario where a person is
rating, purchasing, or voting for an item can be modeled as a user-item
network. As another example, think of app store reviews or parliament



members voting on laws and resolutions. You could then investigate how
similarly members of parliament vote and compare that to their political party
association.

1.3 Machine learning on graphs

In the last couple of years, the field of machine learning on graphs has taken
of. The main idea behind graph machine learning is to manually define or
automatically learn the node representations and encode them in the
embedding space.

Figure 1.9. Encoding node position into the embedding space. Copyright (c) 2017 Manan Shah,
SNAP Group



Figure 1.9 demonstrates the idea of encoding nodes in a network into
embedding or euclidian space. In a traditional machine learning workflow,



each data point is represented as a vector of integers or floating points. The
vectors are then fed into a machine learning model during training and
inference. The primary challenge of machine learning on graphs is finding a
way to represent or encode network structure as a vector to be easily fed into
a machine learning model.

For example, let’s say you have been given the task of predicting a person’s
net worth based on their characteristics and attributes. The dataset contains
features that describe each data point and the target variable that needs to be
predicted. With supervised classification, the training data contains both the
features as well as the target variable value, which you can use to train your
machine learning or deep neural network model. Once you have trained the
model, you can use it to predict the net worth of previously unseen data
points and examine how well it works.

Figure 1.10. Traditional machine learning approach, where you treat each data point as
independant.

Figure 1.10 shows an example dataset, where each data point is described by
features such as age, hobby, and education. The data points are considered



independent, which means they are not related or connected. You would then
train a machine learning model based on the available features to predict a
person’s net worth.

You might know that people are very interconnected, and many people will
tell you that networking is a vital part of getting more and better job or other
opportunities in life. Since you haven’t encoded any of the networking
attributes as data point features, you will skip all that information about
connections that might help you more accurately predict a person’s net worth
better. Essentially, you treat each data point as independent and ignore its
context. Here is where graph machine learning and node representation
learning come into play.

First, you need to map those connections or relationships between people.
The relationships could be of various types like friends, coworkers, family, or
others. Similarly, you could also define the strength of a connection. For
example, if you hang out with a friend almost every day, the relationship is
stronger than if you only meet once every couple of months. In graph
terminology, the strength of the relationship is characterized by its weight.
For simplicity’s sake, the following example will not differentiate between
relationship types or weights.

The most basic network characteristic of a node is its degree. A node degree
is a local characteristic of a node and is simply the count of its relationships.
A local characteristic of a node does not take into account the whole network.
Specifically, node degree considers only direct neighbors, but other local
characteristics of a node could, for example, consider friends of a friend. If
you consider only direct neighbors, you can say that you are examining a
node’s neighborhood one hop away. Likewise, if you would also consider
friends of friends, you are considering all nodes that are at most two hops
away.

In the example of predicting a person’s net worth, one could argue that a
person with more connections will have more opportunities in life, which
could correlate with their net worth. Another benefit of having many
connections is having access to more experts in their respective fields.
Talking to experts and understanding their points of view could help you
make better decisions, which could also correlate to your net worth.



Figure 1.11. Add the number of connections each person has as a feature.

Left hand-side of Figure 1.11 visualizes mapped connections between data
points. In this example, you can say that connections represent friendships
between persons. We hypothesized that the number of friendship links might
correlate with one’s net worth. To incorporate the count of relationships each
node has (node degree) as a model feature, you simply count the connections
and add them as an element in the data point representation table.

With the node degree example, you have just added a single "graphy" feature
to describe a data point, while the rest of the machine learning workflow
remains the same. While simply counting the number of connections does not
require specialized storage or tools, it is a nice example to get you thinking
about relationships between the data points and how you could use them in
your machine learning workflow.

Graph algorithms usually refer to more global operations that consider the
whole network as an input. Imagine that the information in the network can
only flow through existing connections. For example, in Figure 1.11, if node
A wants to communicate with node I, the information must flow through



nodes E and G. A graph algorithm called Betweenness centrality can be used
to identify the node’s influence over the information flow in the network. The
assumption behind the Betweenness centrality is that the information always
flows along the shortest paths between pairs of nodes. Then, the node’s
importance over the information flow is simply the count of those shortest
paths that pass through the node. The Betweenness centrality can be used to
identify bridges between different communities or, in our example, find
nodes with a strong influence over the information flow of the network.

Figure 1.12. Add the betweenness centrality as a feature of a person.

In the example in Figure 1.12, node E is the bridge between the upper and
bottom communities. First of all, it makes node E be the vital connection or a
bridge between the two communities. If node E was removed from the
network, the two communities couldn’t communicate anymore. Secondly, as
a lot of information flows through it, it is probably well informed and has
access to the type of information other nodes do not. Lastly, it can withhold



passing the information forward and effectively cutting the communication
lines between half of the network.

In the context of social networks, a person with better access to information
can make better decisions. Not only that, but they can exert their influence
over the information flow. As a practical example, say that you are a manager
who reports directly to the CEO of the company. All the information from the
CEO to your managees flows through you. You get to hear both sides of the
story but have the option to decide which information you will pass along to
the CEO or your subordinates. Since data or information is sometimes
regarded as being a more valuable resource than oil, one’s influence over the
information flow could correlate with their net worth. Similarly, as with the
node degree, you could use the Betweenness centrality score as one of the
model’s features that predicts a person’s net worth.

So far, both node degree and Betweenness centrality values are examples of
manual feature engineering. Manual feature engineering is a process of
identifying relevant data points representations that could correlate with the
target variable by hand. Recent advancements in machine learning on graphs
focus heavily on automatically encoding a node’s network position. The field
of research that studies automatically encoding nodes' position in a network
as a vector is called node representation learning. The key here is the
learning part, where you train an embedding model or a neural network to
describe a node in the network with a feature vector.

You might be familiar with image or text embedding models, which perform
similarly to node embedding models. Both images and text can be
represented as a graph.

Figure 1.13. Both image and text can be represented as a graph.



Text and images have a pre-determined graph shape used to derive word or
image representations by the embedding models. Without going into specifics
of text or image embedding models, they essentially derive a pixel or word
vector representation by observing its neighborhood. Most, if not all, real-
world networks don’t have a pre-determined shape and can vary significantly
from domain to domain. While the node embedding models take great
inspiration from both word and image embedding models, they are designed
to work on graphs with any shape and form.

Probably you have come across an anecdote that a person is an average of
their best friends. I’ve also read some articles that not only your direct
friends, but also friends of friends, influence your life options and choices.
Instead of manually describing relevant person features as we did before, we
can utilize a node embedding model that will automatically encode a node’s
neighborhood as a vector that can be used in a downstream machine learning
flow.

Figure 1.14. Learn node representation automatically by aggregating its neighborhood.



Some node embedding models encode only the nodes' position in the
network, while others also consider nodes' properties. For example, graph
neural networks consider both node properties and their position in a network
to derive the final vector representation. In the example scenario of predicting
a person’s net worth, you could utilize a graph neural network to derive a
node’s vector representation that could be used to predict a person’s net
worth more accurately.

Through the practical examples in this book, you will learn how to spot
graph-shaped problems and construct a graph. Next, you will learn how to
calculate and interpret both the local and global node characteristics like the
node degree and the Betweenness centrality. The last part of the book is
dedicated to machine learning on graphs, where you will learn how to
improve your model’s accuracy by encoding the network’s structure as your
data point feature sets.

1.4 Summary

Networks are everywhere and they do matter
A bar or line chart is not regarded as a graph in this book
Problems that require a graph-based approach have interconnected data
points such as self-referencing relationships in a social network or paths
in a transportation network
Sometimes the relationships between data points are not explicitly
defined but can be inferred based on indirect patterns, as in the example



of users purchasing products
Node degree attribute represents the count of relationships a node has
Node degree is a local characteristic that examines the node’s direct
neighborhood
Graph algorithms like the Betweeness centrality move beyond the direct
neighborhood of a node and inspect the whole network
Node embedding models are used to automatically encode a node’s
network position as a vector
Encoding network information for a downstream machine learning task
can greatly improve your accuracy

1.5 References

[Shan Xu et al, 2020] Xu CS, Januszewski M, Lu Z, Takemura S-Y,
Hayworth KJ, Huang G, Shinomiya K, Maitin-Shepard J, Ackerman D, Berg
S, et al. A connectome of the adult Drosophila central brain. bioRxiv. 2020
[accessed 2021 Jan 21]:2020.01.21.911859.
www.biorxiv.org/content/10.1101/2020.01.21.911859v1.
doi:10.1101/2020.01.21.911859

[Leonhard Euler, 1736], "Solutio problematis ad geometriam situs
pertinentis". Comment. Acad. Sci. U. Petrop 8, 128–40, 1736

[Erdős Rényi, 1959] P. ERDŐS-A. RÉNYI, On random graphs.
I,Publicationes Mathematicae (Debrecen),6 (1959), pp. 290–297.

[S.Brin and L. Page, 1998] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer networks and ISDN systems,
30(1-7):107–117, 1998.

[Albert, R., Jeong, H. & Barabási, 1999] Albert, R., Jeong, H. & Barabási,
AL. Diameter of the World-Wide Web. Nature 401, 130–131 (1999).
doi.org/10.1038/43601

[Barabási and Albert, 1999] Barabási, A.L., & Albert, R. (1999). Emergence
of Scaling in Random Networks. Science, 286(5439), 509–512.



2 Representing network structure -
design your first graph model
This chapter covers:

Math and text representation of graphs
Introducing graph databases
Labeled-property graph model schema design
Extracting information from text

In the previous chapter, you learned the basics of graph theory. Before you
dig more into practical network analysis, you first have to learn how to
practically represent network structures. The most basic graph representation
is the mathematical data structure adjacency matrix.

Figure 2.1. Adjacency matrix representing a network structure

An adjacency matrix is a square matrix, where the matrix elements indicate
whether pairs of nodes are connected or not in the graph. The adjancency
matrix dimensions are equal to the number of nodes in the graph. It can also
be expanded to represent weighted graphs. Instead of having zeroes
indicating the presence of the relationships, you store the relationship weight
as the matrix element. You will not be using it in the examples of this book,
but you can check out the adjacency matrix appendix if you want to learn



more. Another mathematical structure to represent networks is called the
edge list data structure.

Figure 2.2. A directed unweighted graph represented with a edge list data structure

An edge or relationship list is a simple data structure where each row
represents a relationship of a given network. The first row in the edge list of
Figure 2.2 represents a directed relationship from node A to node B. There
are five rows in the edge list, which represent five relationships of the
network. It also supports representing multi-graphs, where you can have
multiple relationships between a given pair of nodes. An edge list can be
expanded to hold the information about relationship weights.

Figure 2.3. A directed weighted graph represented with a edge list data structure



The value of the relationship weight is stored in a separate column. You
could also store additional information about the relationship in the edge list,
such as the time component. One limitation of the edge list is that it does not
allow isolated nodes to be present. Isolated nodes are nodes without any
relationships. This limitation can be solved by introducing a node list next to
the edge list.

Figure 2.4. With addition of the node list, you can represent isolated nodes in a network

By introducing the node list next to the relationship list, you can describe
networks with isolated nodes present. The network in Figure 2.4 has an
isolated node E. Node E is isolated because it is described in the node list but
has no entries in the relationship list. The node list can also be expanded to
store various properties of the nodes. For example, the node list in Figure 2.4
contains information about nodes' age. Node and relationship lists are very
frequently used as input to network visualization tools. When trying to
visualize a network, you could store the size and the color of the visualized
node as additional properties in the node list. Node and edge lists are useful
when you have a defined graph structure that doesn’t require additional data
manipulations or transformations. However, in practice, I have noticed that
you often need to transform and manipulate the network data to fit your
problem best. A typical example would be translating indirect relationships
into direct ones. While you could use a scripting language for data
transformations directly with node and edge lists, I recommend using a graph
database and dedicated graph-pattern query languages.



Before you learn more about graph databases, we will also look at the text
representation of simple networks. The text representation of networks comes
in handy when you want to communicate the network structure via text
quickly. We will borrow the syntax from the Cypher query language.
Cypher’s syntax provides a visual way to match patterns of nodes and
relationships in the graph using ASCII-Art syntax. Its syntax describing
nodes and relationships is also the basis for the future Graph Query Language
(GQL), which aims to unify the graph-pattern query language the same as
SQL did for relational databases. An example node representation in Cypher
looks like the following:

(:Person {name:"Thomas"})

To depict nodes in Cypher, you surround a node with parentheses, for
example (node). The colon is used to describe the type of a node. In the
above example, the node type is defined as Person. Nodes can also have
properties, which are depicted as key-value pairs inside the brackets of a
node. There is a single key value pair inside the curly brackets,
{name:"Thomas"}, that represents the name property of the node.
Relationships in Cypher are surrounded with a square bracket.

-[:FRIEND{since:2016}]->

Similarly to nodes, you describe the type of relationship with a colon.
Relationships can also have properties defined as key-value pairs inside the
curly brackets. A relationship can never exist in solitude without existing
source and target nodes. Cypher syntax is frequently used to describe patterns
of a network. For example, you can specify a simple friendship network with
the following syntax:

(:Person {name:"Thomas"})-[:FRIEND {since:2016}]->(:Person
{name:"Elaine"})

This Cypher syntax describes a friendship relationship between Thomas and
Elaine and can be visualized as the following network.

Figure 2.5. Example friendship network between Thomas and Elaine



Both Thomas and Elaine are persons, and they are friends since 2016. If you
look carefully, you can observe a direction indicator of the relationship at the
end of the text representation. With it, you can differentiate between directed
and undirected relationships. If you want to describe the friendship
relationship as undirected, all you have to do is omit the relationship direction
indicator.

-[:FRIEND{since:"2016"}]-

I need to add a small disclaimer here. Many of the graph databases don’t
directly support storing undirected relationships. I will show you how to deal
with undirected relationships in a graph database in Chapter 3.

Try to represent the relationship you have with the organization you are
employed at with the Cypher syntax. There are two types of nodes present in
this graph pattern, a person and an organization or a business. You can also
add additional node or relationship properties as you see fit.

I could describe my relationship with the Manning publication using the
following Cypher syntax:

(:Person {name:"Tomaz"})-[:WRITES_FOR {since:2020}]->(:Organization
{name:"Manning Publication"})

2.1 Graph databases

A native graph database is typically a type of NoSQL database designed to
store graph representations. There are also some implementations of graph
layers on top of SQL databases, but we won’t cover them here. The key
difference between a native graph database and other databases is that native
graph databases support index-free adjacency. Index-free adjacency ensures



that you can traverse relationships without using an index. This allows the
performance of graph traversal to be independent of the overall graph size.
The query cost is only associated with the part of the graph touched or
walked by the query. For example, if you were to traverse all the
relationships of a node, the query performance is only dependant on the
number of connections a node has. On the other hand, traditional relational
databases traverse relationships by performing join operations. Join operation
is typically an intersection operation between two sets, where the relational
database uses an index to detect where those two sets overlap. As a
consequence, the size of the data or the overall graph affects the query
performance. Also, the cost of queries in a relational database grows
exponentially with the number of joins. From a performance perspective, the
index-free adjacency versus a traditional join operation is the most important
thing to consider when thinking about using a native graph database. In
general, the graph databases can be split into two categories based on the
underlying graph model they use.

2.1.1 RDF Graph Database

First, you will learn about the Resource Description Framework (RDF) graph
model. While most RDF graph databases do not support index-free
adjacency, it is still relevant to learn about their underlying graph model.
RDF databases, also known as triplestores, are designed to store and allow
the retrieval of triples using graph-pattern queries. A triple is a data entity
that consists of subject, predicate, and object. The triple data structure can be
visualized as following:

Figure 2.6. A graph visualization of a triplet with two nodes(Subject and Object) and a
relationship connecting them (Predicate).

Although not explicitly specified in a triple, by RDF standard, there can be



three kinds of nodes in an RDF graph:

IRI: An IRI or an internationalized resource identifier denotes any real-
world entity or concept. An IRI is used to identify nodes in the graph in
an unambiguous way. You can describe a single node in multiple triples
by using the same resource identifier (IRI).
Literal: Literals are values used to represent datatypes like strings,
numbers, or dates.
Blank node: Blank nodes are nodes without an identifier used in special
RDF modeling scenarios.

Predicates can be interpreted as relationships between two nodes or as
defining an attribute value. As the underlying data structure is a triple, an
attribute value is stored as a literal node, and the predicate forms a
relationship between the subject node and the literal object node. Each
predicate has a resource identifier that defines the type of relationship. The
relationships are always directed as they point from the subject to the object
node. For example, let’s say that you want to represent the following
information as an RDF graph:

Thomas is 40 years old
Thomas is friend with Elaine
Thomas is a person

Figure 2.7. Table and network visualization of a RDF graph, where Thomas is 40 years old and is
friends with Elaine



You can observe that you are doing a complete data normalization by
representing a network with an RDF graph model. RDF’s abstraction level is
a triple, where the subject and object of the triple are represented as nodes,
and the predicate is represented as a relationship. Consequently, there is no
internal structure available on the nodes and relationships, meaning that you
are not dealing with internal node or relationship properties. but store the
properties as a separate node with a literal value. Although, in practice, you
might consider literal node values as node attributes, the underlying triple
data structure treats them as separate nodes. In the example in Figure 2.7, the
node Thomas is disambiguated by using a resource identifier
"http://schema.org/Thomas". Resource identifiers follow the structure of a
URI. For this example, I have made up the resource identifiers values. I have
also omitted the schema.org prefix in the network visualization for readability
purposes. The node Thomas has three relationships. Two of them point to
another resource node, while the age relationship is pointing to a literal value
and can be interpreted as a node attribute.

In my opinion, WikiData is the most famous graph database based on the
RDF graph model. WikiData acts as central storage for the structured data of
its sister projects Wikipedia and others. It features a SPARQL endpoint that
you can use to extract relevant data. This book will teach you the most basic
SPARQL queries that will allow you to fetch relevant data from WikiData
and enrich your graph with additional information. You can also explore the
WikiData graph with your favorite internet browser. For example, you can
look up and find information about Tom Hanks on the WikiData webpage.

Figure 2.8. WikiData web page with information about Tom Hanks available at
www.wikidata.org/wiki/Q2263



Tom Hanks is a resource node in the WikiData graph. Its id is Q2263 and in
the Figure 2.8 is always regarded as the subject of the triple data structure.
That being said, this does not limit Tom Hanks to appear as a object of the
triple data structure in any other examples. You can observe that Tom Hanks
is a citizen of both the United States of America and Greece.

As mentioned, most RDF graph databases do not support index-free
adjacency. For this reason, I will not use them as a source of truth for
network analysis in this book. However, a lot of world knowledge is stored in
RDF databases such as WikiData and DBpedia. Both WikiData and DBpedia



provide publicly available APIs that you can use to retrieve information and
enrich your existing graph with it. In later chapters, you will use the
WikiData SPARQL API to enrich your graph. Also, the RDF has a couple of
standard serialization formats that are helpful when exchanging network data,
so if you ever come across them, you will know the underlying structure they
represent.

2.1.2 Labeled-property graph database

The other category of graph databases is based on the labeled property graph
model (LPG). A key difference between the labeled property graph model
and the RDF model is that with LPG, both nodes and relationships can have
internal structures. The internal structures are node or relationship properties
stored as key-value pairs. Nodes also have a special type of property called a
label, which is used to represent node roles in your domain. For example, you
could use the label to categorize whether a node represents a person or an
organization. All relationships are directed and have exactly a single type
assigned to them. As mentioned, relationships can also store properties. To
demonstrate a simple LPG graph model, I will use the same information as in
the RDF example:

Thomas is 40 years old
Thomas is friend with Elaine
Thomas is a person

Figure 2.9. Labeled-property graph model representing the example data

As you can observe, the key difference from the RDF approach to graph
modeling is that labeled-property graph(LPG) supports both node and
relationship properties stored as key-value pairs. In the example in Figure
2.9, the age information is now stored as an internal node property. Another
key difference is that you can group or categorize nodes into distinct sets



using a node label. In Figure 2.9, both Thomas and Elaine nodes have a label
that indicates they are categorized as persons. You might have observe that
the Cypher query syntax you learned before is used to describe LPG model
domain.

In some domain use cases, you might still want to represent literal values as
separate nodes. A typical example is the fraud detection scenario, where you
are interested in examining customers who share the same address, social
security number, or phone number.

Figure 2.10. Labeled-property graph model representing a fraud investigation domain

Nothing is stopping you from modeling your graph where some literal values
are represented as separate nodes. The graph model depends on your task,
and with the LPG model, you can represent a literal value both as an internal
node property (key-value pair) as well as a separate node. Similarly, you have
the option to represent the label as a separate node as well. A classic example
would be describing class hierarchy with the LPG model.

Figure 2.11. Labeled-property graph model representing a class hierarchy domain



As mentioned, the graph model depends on the task you are trying to solve.
With labeled property graphs, the abstraction level is nodes, relationships,
labels, and properties.

In this book, you will be using an LPG graph database as a source of truth for
graph analysis. You will learn how to use node and edge lists to construct an
LPG graph and also fetch data from an RDF graph database (Wikipedia) to
enrich the graph model. It is completely fine if you want to use an RDF graph
database as the source of truth in your further graph analysis. I will, however,
not go through the details of constructing an RDF graph model to best fit
your graph analysis task in this book.

2.2 Designing your first labeled-property graph
model

Now imagine a scenario in which a client asks you to perform a network
analysis of the Twitter social network. The client will provide all the relevant
data. Your task is to represent the data as a graph and gain various insights by



performing network analysis. You will be using the LPG model to represent
the Twitter social network. A general approach to graph modeling is working
it backward and starting with the questions you want to answer. Here,
unfortunately, no specific questions were posed in the assignment. It is your
job as a network scientist to do your best and find as many insights as
possible. You can start by trying to describe the domain you have at hand. In
the Twitter example, the most basic specifications would be:

A user can follow other users
A user can publish tweets
A user can retweet posts from other users

In this section, you will learn how to develop a LPG graph model.

2.2.1 Follower network

On Twitter, you have the option to follow other users. By following users,
you are subscribing to their activity and indicate that you would like to see
followed users' tweets on your feed. The follower network specification is:

A user can follow other users

As an exercise, try to design the follower graph model. As a rule of thumb,
you would like the entities to be represented as nodes. You can also borrow
some logic from English grammar. The subject and object of a sentence are
often represented as nodes, and the verb describes the relationship.
Adjectives can be translated into properties. When designing graph model,
take into consideration whether the direction of a relationship holds semantic
value.

There is no "correct" way to design a graph model. However, there are some
general guidelines that you should follow. In the follower network
specification, both the subject and the object of the sentence are users and can
be represented as nodes. Relationships can be used to represent the verb of
the specification sentence. Here, it makes sense to represent a follow
interaction as a relationship between two users.

Figure 2.12. Twitter follower network model



A single relationship pattern from the Figure 2.12 can be represented with the
Cypher’s pattern syntax as:

(:User{id:"Vanessa", registeredAt:"2019-03-05"})-
[:FOLLOWS{since:"2020-01-01"}]->(:User{id:"Thomas",
registeredAt:"2011-03-05"})

Each node in Figure 2.12 has a label User attached to it. The node label is
used to categorize nodes that represent users. As there is only a single label of
nodes present, you are dealing with a monopartite network. A good practice
is to have an unique identifier for node disambiguation in place for all the
nodes of the network. In the Twitter social network, you could use the
Twitter handle as the user’s unique identifier. The data also contains the
signup date for users, which you can store as the node’s registeredAt
property. The specification did not explicitly state that the FOLLOWS
relationship is not symmetrical. In Figure 2.12, you can observe that Kim
follows Vanessa, but Vanessa does not follow Kim. In other words, Kim will
see Vanessa’s tweets on her feed, while Vanessa will not see anything from
Kim. You can conclude that the direction of the relationships holds semantic
value, and as a result, you are dealing with a directed network. The
FOLLOWS relationship has no notion of strength assigned to it, which
implies that the Twitter follower network is unweighted. You do, however,
know when the relationship was created. The information about the
relationship creation date can be stored as relationship property.



Before continuing, you can examine the types of questions or insights you
could answer using this graph model. Social networks are a prime example
where you could try to identify influencers. A simple metric to evaluate
influencers is by looking at a users' direct followers count. The more
followers a user has, the more widely his tweets will be distributed. However,
there is a difference if your followers are also influential or not. Having a
Fortune 500 CEO following you might be more influential than having your
neighbor following you. Probably, the most famous graph algorithm to
evaluate the transitive influence of a node is PageRank. A transitive
relationship is an indirect relationship between two nodes, where for example
a node A is connected to node B, and node B is connected to node C. In this
example, node A is not directly related to node C but has an indirect
relationship through node B, which implies they are transitively connected.
Suppose that a Fortune 500 CEO has more connections than your neighbor.
In that case, you will gain more transitive relations and consequently network
influence by having a Fortune 500 CEO follow you than having your
neighbor following you. Another type of analysis often used for social
networks is to try and deduce community structure. In the last couple of
years, it has become increasingly popular to use graphs for predictive
analytics. For example, the popular saying is that a person is the average of
his closest (five) friends. You could use this assumption and try to predict a
property of a person based on the users he follows. Since the followers' graph
contains the time component for both the nodes and relationships, you could
also examine how the network evolved over time and use that information to
predict how it will grow in the future.

2.2.2 User - Tweet network

Tweets are the primary way you can share content on Twitter. The simplest
description of User - Tweet network is:

A user can publish a tweet

To get into the flow of designing graph models, try to develop a graph model
that describes the above specification. In the long run, it will be beneficial for
you if you take a whiteboard or a sketchbook and draw some basic graph
models. When I am designing a graph model, I am trying to answer the



following questions:

How many different types of nodes are present?
What kind of properties do these nodes have?
Which property would you use to store the unique identifier of nodes?
What type of relationship are present?
Is a single relationship type enough to accurately describe your domain?
Does the relationship direction hold any semantic value?
How do properties qualify or quantify relationships?

If you again try to develop a graph model from the specification, you might
come up with the following graph pattern:

(:User)-[:PUBLISH]->(:Tweet)

For more compact text representation of the model, you can usually leave the
node and relationship properties out of the Cypher pattern syntax. There are
two types of nodes present, users and tweets. All you need to add is a
relationship between them to indicate the author of the tweet. A good practice
is to describe your graph model as domain-specific as possible. You could
have also used a more generic label for tweets such as a Post. With more
generic labels, you might run into issues along the way if you were asked to
add additional information about users from Facebook, LinkedIn, or
Stackflow. In this scenario, you wouldn’t want to merge content from all
social media platforms under a single generic node label Post.

Figure 2.13. User - Tweet network



You have already established an unique identifier for users in the previous
exercise. Now you can do something similar and assume there is an unique id
created for each tweet when it is created. The unique identifier, creation time,
and the tweet’s text are stored as the properties of a Tweet node. As there are
two distinct labels of nodes present, you are dealing with a bipartite network.
In this example, the direction of the relationship is not that important. You
could turn the relationship direction around and change the relationship type
to something more appropriate like PUBLISHED_BY. Both approaches are
correct. You have to pick one and stick to it. My preference is to define
relationship types in active voice, which is PUBLISH in this example. What
you don’t want to have is both modeling options present at the same time.
You don’t have to worry about query performance as there is no penalty for
traversing a relationship in the opposite direction in a native graph database.

Figure 2.14. A bipartite network graph model, where a single relationship type is enough to
contain all the relevant information



The right-side example in Figure 2.14 demonstrates what you should avoid
when you are developing a graph model. Adding the relationship in the
opposite direction adds no semantic value and is entirely redundant. You also
don’t have to worry about getting from a Tweet to a User. With Cypher query
language syntax, you can traverse any relationship in the opposite direction,
or you can completely ignore the direction.

Another question that might come up is why you store the tweet creation date
as a property of the node and not the relationship. It is a valid question, and
as always, it mostly depends on the domain you are dealing with. In the
Twitter universe, a tweet can only have a single author. Having a single
author implies that a tweet will have precisely one PUBLISH relationship
pointing to it. And so, a tweet is created only once. When you are making
such decisions, you should always include the types of queries you want to
execute on this graph model. If you think of the most basic use case, where
you want to count the number of tweets per day, it is simpler to have the
creation date stored as a property of the tweet node instead of the PUBLISH
relationship. You will learn more about how graph-pattern query languages
work in the following chapter. Users liking a tweet would be an example
where adding the creation date on the relationship makes more sense. While
there can be only a single tweet author, many users can like a given tweet. To
capture the creation time of a like from a particular user, it makes sense to



store the creation time information as relationship property. If you wanted to
store the time information about the likes on the Tweet node in the form of an
array of dates, you would lose the information about which users gave a like
at that particular time.

Figure 2.15. An example of a twitter post LIKE relationship, where it makes sense to store the
creation date as a property of the relationship

From the network science perspective, having only PUBLISH relationships
between users and tweets is not so interesting. As each tweet has only a
single relationship pointing to it, there are no overlaps or similarities between
tweets that you could try to analyze. However, if you added LIKES
relationships to the model, you could analyze which users like the same or
similar content and create segments of users based on the content they like.

2.2.3 Retweet network

The only remaining task specification is the definition of a graph model for
retweets. When users strongly react to a tweet, they might want to share it
with their followers to amplify its reach. In this case, they have the option of
retweeting the original tweet. Optionally, users can like the retweet, and those
likes do not count towards the original tweet. The task specification was
defined as:



A user can retweet posts from other users

This specification is a bit more complex than the previous two. You can’t just
extract the subject and the object of the sentence and use that to describe the
nodes. The User - Tweet network is already defined, so you can expand on
that and add the retweets somehow in the graph model. There are several
graph model variations that you can choose from. A simple option is to add
the RETWEET relationship between the user and the original tweet.

Figure 2.16. Graph model of the retweet network, where the RETWEET relationship is defined
between the original tweet and the user who retweeted

Cypher syntax to describe this pattern looks like:

(:User)-[:PUBLISH]->(:Tweet)<-[:RETWEETS]-(:User)

Here, you are using the RETWEET relationship between a user and the
original tweet. This graph schema does not treat a retweet as an actual tweet.
This is neither good nor bad. It all depends on your use case and what do you
want to achieve with the analysis. There is, however, a slight problem with
this approach. On Twitter, a retweet can also have likes that are tied to the
retweet and not the original post. With the LPG model, you can’t create a
relationship that is pointing to another relationship. Using the graph model in
Figure 2.16, you lose the ability to attach likes to the retweet. Later in this
chapter, you will extract information from retweets text, such as hashtags and



mentions. There, you will again face the issue of not having the ability to
attach hashtags and mention information to the retweet relationship. If the
Twitter domain did not allow separate likes that are not counted separately,
then having a retweet as a relationship would make sense. Unfortunately, that
is not the case when dealing with the Twitter domain. To solve this issue, you
can treat the retweet as a separate tweet that references the original tweet to
avoid this limitation. This way, you keep the graph consistency while also
allowing you to add additional information to retweets later on.

Figure 2.17. Graph model of the retweet network, where the retweet is treated as an tweet that
references the original tweet

You can still easily differentiate between tweets and retweets. For now, don’t
worry about the underlying data and how you can retrieve it. You will learn
more about the Twitter data source in the next chapter. When retweeting a
tweet on Twitter, a user can optionally add their comment to the retweet. In
this example, we have skipped this scenario because it was not a part of the



specifications. However, we will take a look at how to model quote tweet
interactions in the next chapter. A retweet has an outgoing RETWEETS
relationship, and the original tweet can only have an incoming RETWEETS
relationship. The graph model where you store the retweet as a separate node
also allows you to add other relationships to it later in the analysis if needed.
Again, you want to evaluate how you can use this graph to extract insights.
Remember, most often, users retweet a tweet when they strongly react to its
content and want to share it with their followers. You could count the
retweets and try to identify the most popular tweet topics or their authors.
You could also infer a new direct relationship between users based on the
retweet pattern. Translating indirect graph patterns to direct relationships is a
frequent intermediate step in the network analysis. In the retweet network
case, you could infer a direct relationship between users based on how often
they retweet other users.

Figure 2.18. Inferring an new network from an indirect pattern of retweet relationships

Figure 2.18 demonstrates a scenario where Vanessa just retweeted a tweet
from Kim. If you assume that a retweet is always a positive interaction, you



could presume that Vanessa actively promotes Kim’s tweet and amplifies its
reach. This indirect amplification pattern can be translated to a direct
relationship between Kim and Vanessa, as shown in Figure 2.18. You can use
the text representation to show that you take the following graph pattern:

(:User)-[:PUBLISH]->(:Tweet)<-[:RETWEETS]-(:User)

And translate this indirect relationship pattern into a direct relationship
between users:

(:User)-[:AMPLIFY]->(:User)

By translating an indirect pattern to a direct relationship, you are creating a
new inferred network. The type of the inferred relationship depends on your
domain use case. Here, I have chosen the AMPLIFY type, as the retweet
amplifies the reach of the original tweet. The new inferred AMPLIFY
relationship is directed as the direction of the relationship holds semantic
value. It is also weighted as you can quantify the strength of the AMPLIFY
relationship by counting the number of retweets. If a user retweets a post
from another user a single time, then the weight of the AMPLIFY relationships
is one. However, if a user regularly retweets posts from another user, the
weight would be equal to the number of retweets. You could, again, search
for influencers within this inferred network or try to find communities of
users who actively support each other by promoting their content.

2.2.4 Representing graph schema

The beauty of the graph approach to data modeling is that you can always
connect new information to an existing graph. You can now combine all the
graph model decisions so far into a single graph model.

Figure 2.19. Labeled-property graph representing a twitter network, where users can follow one
another and they can also publish and retweet posts.



Over the years, people have come up with ways to represent an LPG graph
schema. There is no official standard to present an LPG graph schema, but I
will show you how most people I have seen approach it.

Figure 2.20. Twitter social network graph model representation



All node types or labels are represented as a single node. There are two
different labels of nodes present in the current Twitter network
representation. You can describe them as two nodes in the graph schema
representation. The node properties are added to the node representing each
label. Some people like to add example values to the node properties, but I
prefer to add their data type as the value. For now, there is no agreed way to
visualize if a node property is optional or not or if it is used as a unique
identifier. Relationships between the same label of nodes are represented as a
self-loop. A self-loop is a relationship that has the same start and end node.
On the right side of Figure 2.20, there are two self-loops present. The
FOLLOWS relationship starts and points to nodes with a type User.
Unfortunately, again, there is no agreed way of presenting when a
relationship direction has semantic value (should be treated as directed or
undirected) or not. For now, you have to read the fine print that comes along
with the graph schema visualization.



2.3 Extracting knowledge from text

You have learned how to construct a graph model based on the graphy
features of the data. Next, you will learn how you can extract relevant
information from the text and incorporate them into your knowledge graph
model. To get a sense of what information you can extract from the tweet
content, let’s look at an example tweet.

Figure 2.21. An example tweet where mentions, links, and hashtags are present



2.3.1 Links

The first information you could extract from tweet content is any link or
URLs mentioned in the tweet. It should be a pretty straightforward process to
process any links from the text.

Now that you have some experience developing a labeled-property graph
(LPG) model, what do you think is the best approach to add the link
information in the Twitter graph model? You have already defined the tweet
in the model, now you only need to add the extracted links information to
them.

I can think of two options. You could either store the url as the tweet node
property or you could store it as a separate node and add a relationship
between the link and the tweet.

Figure 2.22. Two options for storing the extracted link from the tweet

Which approach do you think is better? With both approaches, you have the
option to store one or many links as you can use a list of strings as a node



property. The real question depends on your queries. Do you want to group
tweets with the same links in your analysis or not? If you store links as node
properties, it will be computationally more expensive to find tweets with the
same link as you need to compare all elements in a list between all pairs of
tweets. It would be similar to a relational database join, where you scan
foreign keys at query runtime to find intersections of joins between pairs of
nodes. You can avoid that by storing links as separate nodes. By using
separate nodes to represent links, you only need to traverse two relationships
to get from one tweet to another or even all tweets with the same links. This
approach will scale much better if you are interested in grouping nodes with
the same links.

When considering whether you want to store information as separate nodes or
node properties, one thing to note is to examine if the values are standardized.
A typical example I’ve seen is with city names.

Figure 2.23. An example graph, where city names that are not standardized

When discrete values are not standardized, storing that information as



separate nodes don’t make sense. The whole point of using separate nodes to
store information is to allow faster traversals at query runtime. When values
are not standardized, you lose the ability to traverse fast between persons that
live in the same city. A rule of thumb is that a single real-world entity or
concept should be represented as a single node in the graph. In Figure 2.22,
Zürich is represented as three different nodes, which would return invalid
information if you were trying to find persons who live in the same city.
While storing the city information as a node property does not solve the issue
of finding people who live in the same city, at least you don’t represent a
single real-world entity as multiple nodes in your graph. Another
consideration to take into account is how specific that information is. For
example, suppose the information is very unspecific and doesn’t add much
value from the information point of view, like the gender of a user. In that
case, it is better to store that information as a node property. One reason for
that is that you avoid having nodes that can be connected to large parts of the
graphs. With the gender example, you could have nodes connected to almost
half of the users in the graph. Nodes connected to large parts of the graphs
are called super nodes, and you generally want to avoid them in your graph
as they can hinder query performance.

2.3.2 Hashtags

The other information you can extract from tweet content is the hashtags.
People use the hashtag symbol (#) before a relevant keyword or phrase in
their tweet to categorize them. A tweet can contain many hashtags. It makes
sense to store hashtags as separate nodes and connect tweets to them.

Figure 2.24. Graph model of tweet’s hashtags



An important consideration is that you want to avoid generic relationship
types like HAS, where you could use it in many scenarios. You want your
relationship types to have meaning, for example, if you traverse a LINKS_TO
relationship from a tweet, you will always land at Link node. Similarly, if
you traverse a HAS_TAG relationship from a tweet, you will always arrive to a
Tag node. What you don’t want to end up is with a single relationship type
that can lead to many different node types. Using a generic relationship type
can hinder the expressiveness of a graph model and also negatively affect
query processing times.

The graph in the Figure 2.23 is a bipartite network consisting of tweet and
hashtag nodes. When dealing with a bipartite network, it is common analysis
workflow step to project it to a monopartite network. This process is also
called network folding. While network folding is not a frequently used term, I
have seen Jure Leskovec from Stanford use it, so I added it for completeness.
For example, if a pair of tweets share the same hashtag, you could assume
that they are somehow connected. It is a similar process as you have seen in
the retweet network, where you translate indirect graph patterns to direct
relationships.



Figure 2.25. Twitter hashtag network folding or monopartite network projection

You can observe that you always have the option to project a bipartite
network to both types of nodes. In a bipartite network of tweets and their
hashtags, you can project it to a monopartite network of tweets or hashtags.
How do you name the new inferred relationship depends on the domain. I
have added a similar relationship between tweets as I assume that tweets with
more overlapping hashtags can be deemed more similar. On the other hand,
hashtags can also be similar if they frequently co-occur. To put it in text
representation of networks, you can transform the following indirect graph
pattern:

(:Tweet)-[:HAS_TAG]->(:Tag)<-[:HAS_TAG]-(:Tweet)

to a more direct graph pattern:

(:Tweet)-[:SIMILAR]-(:Tweet)

You might have noticed that a common approach to network analysis is to



reduce a complex graph pattern to a network with a single type of nodes and
relationships. This is because most classical graph algorithms like centrality
or community detection algorithms are designed to have a monopartite
network as an input. With monopartite projections, the direction of the
relationship often does not hold any semantic value. If tweet A is similar to
tweet B, then also tweet B is similar to tweet A. You can also quantify the
strength of similarity between two tweets by counting the number of common
hashtags they have. As a result, most inferred similarity networks are
undirected and weighted, like in this example. On the other hand, previously
inferred amplification network based on retweets is directed and also
weighted. You could analyze the inferred similarity network of tweets and try
to find users who publish similar content. Note that you could also combine
information from other parts of the graph to infer a new monopartite network.

2.3.3 Mentions

A user can mention other users in his tweet by using the mention symbol
(@). A mention can be understood as an invitation to comment or a callout,
and other times you only want to notify users to look at specific content. You
already have users defined in the graph schema, so it only makes sense to
connect tweets to mentioned users.

Figure 2.26. Graph model of tweets’s mentions



Similar to hashtag network, the mention network is also a classic bipartite
network. As such, you can project it to a monopartite network of users or
tweets.

Figure 2.27. Twitter mention network folding or monopartite projection



For example, you could analyze which users are frequently co-mentioned and
try to examine the community structure of the inferred co-mention network
between users. Another thing you could examine is if the mentioned person
interacted with the tweet or not. You could also combine mention
information with other information in the graph and inspect the most
common hashtags of tweets where a user is being mentioned. One thing you
could also do is to take the mention information and turn them into follower
recommendations. Suppose a user is notifying you about specific concent, but
you don’t already follower the content author. In this case, one could
recommend you follow them directly.

2.3.4 Final Twitter social network schema

Designing graph model schema is an iterative process. You have slowly
added additional information to the graph model, and it gradually became
richer in knowledge. While adding new data to the graph model, designing a
self-describing graph schema is recommended. With a self-describing graph
model, you can avoid additional work to create a schema manual for others to



learn about the information the graph stores and how to query it. Lastly, the
graph schema might change depending on the queries you will be executing,
as you might want to optimize the performance of specific queries. You can
observe the following graph structure if you put all the graph model design
considerations you made so far into a single visualization.

Figure 2.28. Twiter social network with extracted knowledge from text

Figure 2.27 visualizes an example Twitter network, where there are four
distinct types or labels of nodes present. There are users, tweets, hashtags,
and link nodes in the final Twitter graph model. Along the way, you have



also introduced six different types of relationships. If you sum it up, you can
represent this example network with the following graph schema:

Figure 2.29. Final Twitter social network graph schema representation

You only want to add the inferred relationships that will be actually
instantiated to the graph schema. Inferred relationships and similarity
networks are created based on assumptions you might make during the
network analysis. You don’t know which inferred relationships will be
instantiated yet, so it makes sense to leave them out of the graph schema for
now.

You might have noticed that a common theme to network analysis is to
translate indirect graph patterns and relationships to direct ones. Using a
graph database with a dedicated graph-pattern query language makes it easier
for you to instantiate those network transformations. For example, you can
translate the retweet links between tweets to direct amplification relationships
between users. Another frequent scenario is translating a bipartite network to
a monopartite network. The reason behind monopartite projections is that
most graph algorithms are designed to work on networks with a single type of
node and relationships. In the next chapter, you will learn the basics of
Cypher and how to import a network based on the graph model you derived
in this chapter.

2.4 Summary



Mathematical data structures to represent graphs are adjacency matrix
and edge list
Most graph databases fall into either the RDF or the LPG categories
Graph modeling is an iterative process
Graph model can be represented with the graph model schema
visualization
You can extract knowledge from text with simple text processing
Reducing indirect graph patterns to direct relationships is a common
approach in network analysis



3 Your first steps with the Cypher
query language
This chapter covers:

Introducing the Cypher query language
Cypher query clauses
Best practices for importing a CSV into a graph database

So far, you have learned a bit of graph theory and how to approach the
property graph modeling process. Now, you will begin to learn how to
perform network analysis through practical use cases. To follow the examples
in this book, you need to set up a Neo4j development environment. If you
need some help with the setup, I have added the Neo4j Development
Environment appendix to help you get started.

This chapter will introduce Cypher query language clauses and best practices
for importing data into a graph database. First, I will do a quick recap of
using Cypher query language syntax to represent networks in a textual
format. If you are already familiar with the Cypher query syntax, you can
skip most of the chapter and just import the data as shown in the last section.
Remember from the previous chapter, the Cypher syntax uses parenthesis to
encapsulate a representation of a node.

Figure 3.1. Cypher query language syntax to represent a node with its label and properties



In this example, I have described a node with a label Person. The label of the
node is always preceded by a colon. The node properties are key-value pairs
wrapped inside the curly brackets. The example node has only a single
property with a key name and its value "Thomas". In Cypher, you can also
add a variable at the start of the node. A variable is used as a reference to the
specific node. You can choose any name for the reference variable. In this
example, I have chosen reference variable to be thomas. The node variable
allows you to refer to the particular node later in the Cypher statement, and it
is only valid within the context of a single Cypher statement. You can use the
node variable to access its properties, labels, use it in expressions, or create
new patterns related to a given node.

In Cypher, the relationships are represented with square brackets.

Figure 3.2. Cypher query language syntax to represent a relationship with its type and properties



A relationship can only exist when it is adjacent to a source and target node.
When you are describing a relationship with Cypher, you always need to
include the adjacent nodes. Each relationship has a single type. Similar to
node labels, the relationship type is also preceded by a colon. The example in
Figure 3.2 describes a relationship with a type FRIEND. Relationship
properties are described like node properties, and each relationship can be
assigned a variable, in this example f, that can be used later in the Cypher
statement to refer to the given connection.

In Neo4j, each relationship is stored as directed. You can, however, ignore
the relationship direction when executing a Cypher query or a graph
algorithm on top of the stored graph. A common practice in Neo4j is to store
an undirected relationship as a single directed relationship. When executing
Cypher queries, you can then ignore the direction of the relationship and treat
it as undirected. While this is a relevant aspect in Neo4j, it is hard to
understand at first, so I will show you practical examples of how to
differentiate between storing the graph and how you query it throughout the
book.

3.1 Cypher query language clauses

Armed with the knowledge of how to describe a node and a relationship in
Cypher, you will now begin to learn the Cypher clauses. To follow along
with the examples, you need to have a working Neo4j environment ready. I



recommend you use the Neo4j Browser to execute Cypher queries. Again, if
you need some help with setting up Neo4j environment and accessing the
Neo4j Browser, I suggest you look at the Neo4j Development Environment
appendix.

3.1.1 RETURN clause

The first Cypher clause you will learn is the RETURN clause. While Cypher
query language clauses are not case-sensitive, it is preferred to write Cypher
clauses in upper case for easier readibility. Find more information about
Cypher style guide by following this link. The RETURN clause is used to
retrieve information from the database via a graph query. There can be only a
single RETURN clause in a Cypher query and only as the last clause of query.
Exceptions, where you can have multiple RETURN clauses in a query, are
unions and subqueries.

Execute the following Cypher query in Neo4j Browser.

Listing 3.1. An example of a RETURN clause, where a key "name" is retrieved

RETURN 'Alicia' AS name

Executing the Cypher query in the Listing 3.1 returns a table with a single
row and a single column, where name is title of the column and Alicia is its
only value. The mentioned query also uses the AS operator. With the AS
operator, you can name or alias a variable reference.

3.1.2 WITH clause

Using the WITH clause, you can manipulate the data as an intermediate step
before passing the results to the next part of the Cypher query. The
intermediate data manipulations within a query before passing them on to the
next part can be one or more of the following:

filter results
select results
aggregate results



paginate results
limit results

Listing 3.2. An example of a WITH clause, where the WITH clause is used to define new data
references

WITH 3 AS x, 6 AS y

RETURN x * y AS result

In the Listing 3.2, the WITH clause is used to define x and y variables and the
RETURN clause returns a multiplication value of x and y.

As an exercise, try to define your first and last name in the WITH statement
and return your full name in the RETURN statement. The structure of the query
should be very similar to the query in Listing 3.2. You can concatenate
strings in Cypher using the + operator.

There can also be multiple WITH clauses in sequence in a single query. Using
multiple WITH statements is useful when you have to do a lot of output
manipulation as an intermediate step of the Cypher query.

Listing 3.3. An example of using two WITH clauses in a sequence

WITH 'Tomaz' AS first_name

WITH 'Bratanic' AS last_name, first_name

RETURN first_name + ' ' + last_name AS result

In Listing 3.3, the first_name variable is defined in the first WITH clause and
the last_name variable in the second WITH clause. You could define them
both in a single WITH clause, but I have decided to split them into two clauses
for this demonstration. You might have noticed why I have included the
first_name variable in the second WITH clause as well. The WITH clause
affects the variables in scope. Any variables not included in the WITH clause
are not carried over to the next part of the query. I think that as a part of
becoming familiar with any tool is to get familiar with the errors.

Execute the following query to generate your first error.

Listing 3.4. An example cypher query that raises a missing variable definition error



WITH 'Michael' AS first_name

WITH 'Jackson' AS last_name

RETURN first_name + ' ' + last_name AS result

Figure 3.3. Cypher syntax error where a variable is not defined

Anytime you see a variable not defined error, you have either misspelled a
variable or name or forgot to include it in the WITH clause.

The WITH clause is also frequently used to filter intermediate results. Adding
the WHERE clause, you have the ability to filter the results of the WITH
statement.

Listing 3.5. An example cypher query that uses the WHERE clause to filter results of a WITH
statement

WITH 'Elon' AS first_name, 'Musk' as last_name

WHERE first_name = 'Elon'

RETURN *

Cypher query in Listing 3.5 uses the WHERE clause to filter only results where
the first_name variable is equal to "Elon". You might have noticed that the
mentioned query uses a wildcard operator * in the RETURN clause. The
wildcard operator * will return all variables that are in scope and it can also
be used in the WITH clause. An important thing to note is that a WHERE clause
only looks at and filters the output of the WITH statement and cannot stand on
its own.

3.1.3 CREATE clause

The CREATE clause is used to store nodes and relationships in the graph



database. Using Cypher syntax to describe node and relationship patterns,
you can store any graph pattern you can imagine.

You will begin by creating a single node in the graph.

Listing 3.6. Cypher query that stores a node with a label Person and a property "name" with
value "Satish"

CREATE (p:Person{name:'Satish'})

RETURN p

The statement in Listing 3.6 creates a new node with a label Person and a
single node property. You can observe that adding a reference variable to the
new node allows you to return it as an output of the query. With every
execution of the query in Listing 3.6, a new node will be created in the
database. The CREATE clause does not check for existing data in the graph
database. It blindly follows the command to create a new pattern in the
database.

To get some exercise with graph creation, create a new node in the graph
with a label Person and two node properties. The first node property holds
the information about your name and the second node property should hold
the information about your age.

You can use multiple CREATE clauses in a single Cypher statement. By using
the variable of nodes and relationships, you can modify and connect them in
the subsequent CREATE queries.

Listing 3.7. Cypher query that stores two nodes and a relationship between them in the database

CREATE (elaine:Person{name:'Elaine'}), (michael:Person {name: 'Michael'})

CREATE (elaine)-[f:FRIEND]->(michael)

RETURN *

Cypher statement in Listing 3.7 demonstrates how to create two nodes and a
relationship between them. In the first CREATE clause, two nodes are created,
and in the second CREATE clause, a relationship between them is added. While
you could combine these two CREATE clauses into a single clause, it is
recommended as best practice to create nodes and relationships separately.



Try to create two nodes, one that represents you and one that represents the
organization you work at. Probably, you will want to use different node
labels to describe a person and an organization. In the same Cypher
statement, then also create a relationship between yourself and your
employer. You can try to add a relationship property indicating when you
started to work for your current role.

Remember, you can only store directed relationships in the Neo4j graph
database. Let’s see what happens when you try to create an undirected
relationship.

Listing 3.8. Cypher query that tries to stores an undirected relationship in the database and fails

CREATE (elaine:Person{name:'Elaine'}), (michael:Person {name: 'Michael'})

CREATE (elaine)-[:FRIEND]-(michael)

RETURN *

As mentioned, this query fails due to only being able to store directed
relationships in the database. While the relationship direction arrow seems
such a small part of the query, it is very influential to how the query will
behave.

Another common misconception among beginners is that they forget that the
reference variables are only visible within the same query and have to be
defined in the intermediate WITH scopes if there are any. As stated previously,
the CREATE statement performs no database lookup before inserting new data
in the graph. The following Cypher query looks ok at first glance, but it is
actually very terrible.

Listing 3.9. Cypher query that stores two empty nodes with no labels and a relationship between
them in the database

CREATE (ankit)-[f:FRIEND]->(elaine)

RETURN *

Can you deduce why? As the CREATE statement performs no database lookups
and does not have variable reference visibility between Cypher queries, it will
just create a new pattern we have described. Interestingly, the query in
Listing 3.9 creates a FRIEND relationship between two nodes with no labels



and no properties. You have to be very careful to avoid these types of
situations. There are no situations in the LPG model where you would want
to have nodes without any label stored in the database. At a minimum, you
can add a generic Node label to each node.

The labeled-property graph model is so flexible that it allows you to create
nodes without labels or properties. You should always strive to add at least a
label to every node you store in the database. Having labeled nodes will help
with model readability and also query execution performances. I can safely
say that if you have nodes without a label in your graph, something is wrong
with either your model or your import process.

The goal of this exercise is to create three nodes and two relationships
between them. The nodes should represent the city, country, and continent
you currently live in. Add a relationship between the city and the country,
and the second relationship between the country and the continent. Take a
couple of minutes to decide what relationship types you want to use and the
direction of relationships.

3.1.4 MATCH clause

Using the MATCH clause, you can search for existing graph patterns stored in
the database. Cypher is a declarative query language, which means you only
need to specify the pattern you are interested in and let the query engine take
care of how to retrieve those patterns from the database. In the previous
section, you have created at least three nodes with the label Person and
different name property values. If you want to find a Person node with a
specific name property value, you can use the following query.

Listing 3.10. Cypher query that searches and retrieves any nodes with a label Person, that have a
"name" property with a value of "Satish"

MATCH (p:Person {name:'Satish'})

RETURN p

You can observe why it was critical first to learn how to describe node and
relationship patterns with Cypher before you wrote your first Cypher clause.
When you know how to describe a graph pattern, you can use the MATCH



clause to retrieve it from the database. The query in Listing 3.10 uses the so-
called inline graph pattern matching. Inline pattern matching uses Cypher
pattern syntax to describe a node or relationship pattern with its labels and
properties. The opposite of inline pattern matching is using a WHERE clause to
describe a graph pattern.

Listing 3.11. Cypher query that searches and retrieves any nodes with a label Person, that have a
"name" property with a value of "Satish" using a WHERE clause

MATCH (p)

WHERE p:Person AND p.name = 'Satish'

RETURN p

The query in Listing 3.11 will produce the exact same query plan and results
as the query in Listing 3.10. The inline syntax is just syntactic sugar that
reads better for humans. Using the WHERE clause, you have described you
want to retrieve a node with a label Person and a name property with a value
of "Satish". While inline graph pattern matching is limited to the equality
operator, meaning you can only describe a node with an exact label and node
properties, the WHERE clause allows for more flexibility. My personal
preference is to describe the node label with inline graph pattern and provide
additional matching filters in the WHERE clause.

Listing 3.12. Cypher query that combines inline graph pattern matching with a WHERE clause
to describe a graph pattern

MATCH (p:Person)

WHERE p.name = 'Satish' OR p.name = 'Elaine'

RETURN p.name AS person

As an exercise, try to retrieve all the nodes with a label Person from the
database. You can use the inline graph pattern description, or you can use a
WHERE clause. In the RETURN statement, only return the name properties of the
nodes.

You can always have multiple MATCH clauses in a sequence. Similar to the
WITH clause, the WHERE clause only applies to the previous MATCH clause. If
you use many MATCH clauses in a sequence, make sure to append a WHERE
clause to each MATCH clause where needed.



Listing 3.13. Cypher query that combines inline graph pattern matching with a WHERE clause
to describe a graph pattern

MATCH (satish:Person)

WHERE satish.name = 'Satish'

MATCH (elaine:Person)

WHERE elaine.name = 'Elaine'

RETURN *

A WHERE clause can only exist when it follows a WITH, MATCH, or an OPTIONAL
MATCH clause. When you have many MATCH or WITH clauses in sequence, make
sure to append the WHERE clause after each of them where needed. You might
sometimes get the same results even if you only use a single WHERE clause
after multiple MATCH statements, but the query performance will most likely
be worse. You can learn more about query performance and optimization in
the Cypher profiling appendix.

The MATCH clause is often used to find existing nodes or relationships in the
database and then insert additional data with a CREATE or MERGE clause. For
example, you could use the MATCH clause to find nodes labeled Person with
names "Elaine" and "Satish" and create a new relationship between them.

Listing 3.14. Cypher query that find two nodes in the database and creates a new FRIEND
relationship between them

MATCH (from:Person), (to:Person)

WHERE from.name = 'Satish' AND to.name = 'Elaine'

CREATE (from)-[:FRIEND]->(to)

RETURN *

The statement in Listing 3.14 combines the MATCH and the CREATE clause to
create a new relationship between existing nodes in the database.

If you haven’t yet created a Person node with your name as the value of the
name node property, please do that first. As a next step, in a separate query,
use the MATCH clause to find the Person nodes with your name and "Elaine",
that also needs to exist in your database, and create a new FRIEND relationship
between them. You can add any additional relationship properties you think
are appropriate.



A crucial concept when using the MATCH clause is to recognize that if a single
MATCH clause within the query does not find any data matching the provided
pattern in the database, the query will return no results. If you use a single
MATCH clause to retrieve a non-existing graph pattern from the database, you
will get no results.

Listing 3.15. Cypher query that matches a non-existent graph pattern in the database

MATCH (org:Organization)

WHERE org.name = 'Acme Inc'

RETURN *

It is intuitive that when you try to retrieve a non-existent graph pattern from
the database, you will get no results. What is not so intuitive is that when you
have multiple MATCH clauses in sequence, if only a single MATCH clause tries to
retrieve a non-existent pattern from the database, the whole query will return
no results.

Listing 3.16. Cypher query that matches both an existing and a non-existing graph pattern in the
database

MATCH (p:Person)

WHERE p.name = 'Satish'

MATCH (org:Organization)

WHERE org.name = 'Acme Inc'

RETURN *

The query in Listing 3.16 first tries to find a Person node with a name
property "Satish". You have already executed this part of the query before, so
you know that this pattern exist in the database. The second MATCH clause
tries to retrieve a non-existent pattern from the database. If only a single
MATCH clause in the query retrieves no pattern from the database, the result of
the query will be empty.

OPTIONAL MATCH clause

If you do not want your query to stop when a single MATCH clause finds no
existing graph patterns in the database, you can use the OPTIONAL MATCH
clause. The OPTIONAL MATCH clause would return a null value if no matching



patterns were found in the database instead of returning no results, behaving
similarly as an OUTER JOIN in SQL. You can rewrite the query in Listing
3.16 to expect and handle non-existing Organization pattern by using the
OPTIONAL MATCH clause.

Listing 3.17. Cypher query that matches both an existing and a non-existing graph pattern in the
database

MATCH (p:Person)

WHERE p.name = 'Satish'

OPTIONAL MATCH (org:Organization)

WHERE org.name = 'Acme Inc'

RETURN *

By using the OPTIONAL MATCH clause, the query does not return empty results
when no graph patterns are found.

3.1.5 Set clause

A SET clause is used to update labels of nodes and properties of both nodes
and relationships. SET clause is very often used in combination with the
MATCH clause to update existing node or relationship properties.

Listing 3.18. Cypher query that uses a SET clause to update existing node properties

MATCH (t:Person)

WHERE t.name = 'Satish'

SET t.interest = 'Gardening',

    t.hungry = True

There is also a special syntax for SET clause to change or mutate many
properties using a map data structure. The map data structure comes from
Java and is identical to a dictionary in Python or a JSON object in Javascript.

Listing 3.19. Cypher statement that uses a map data structure in combination with the SET
clause to update many node properties

MATCH (e:Person)

WHERE e.name = 'Elaine'

SET e += {hungry: false, pet: 'dog'}



Note that if the += operator of the SET clause is replaced with only =, then it
overrides all existing properties with only those provided in the map.

By now, there is hopefully a Person node with your name in the database.
Use the SET clause to add additional node properties, such as the information
about your favorite food or your pet name.

With the SET clause, you can also add additional labels to nodes.

Listing 3.20. Cypher query that adds a secondary label to an existing node

MATCH (t:Person)

WHERE t.name = 'Satish'

SET t:Author

Multiple node labels are helpful when you want to tag your nodes for faster
and easier retrieval. In the example in Listing 3.20, you have added the
Author label to the Satish node, and in the following exercise, you will add
the Reader label to the node representing you. This way, you can easily
differentiate between readers and authors in your database. A good guideline
to follow when using multiple node labels is that node labels should be
semantically orthogonal. Semantically orthogonal means that node labels
shouldn’t hold the same or similar meaning and should have nothing to do
with one another. Seconodary node labels are used to group nodes into
different buckets, so that each subset is easily accessible. In my work, I have
also noticed that using multiple labels is helpful in scenarios where you pre-
calculate some values and assign additional node labels based on those
values. For example, if you work with customer in a marketing funnel, you
can add the secondary label to a node according to its funnel stage.

Figure 3.4. Using multiple node labels to assign customer funnel stage

Match the Person node representing you, i.e., it has your name as the name



property value, and add a secondary Reader label to it.

3.1.6 REMOVE clause

The REMOVE clause is the opposite of the SET clause. It is used to remove node
labels and node and relationship properties. Removing a node property can
also be understood as setting its value to null. If you want to remove the
hungry property from the Person node with the name "Satish", you can
execute the following Cypher query.

Listing 3.21. Cypher query that removes a node property from an existing node in the database

MATCH (t:Person)

WHERE t.name = 'Satish'

REMOVE t.hungry

With the REMOVE clause, you can also remove labels from existing nodes.

Listing 3.22. Cypher query that removes a node label from an existing node in the database

MATCH (t:Person)

WHERE t.name = 'Satish'

REMOVE t:Author

3.1.7 DELETE clause

The DELETE clause is used to delete nodes and relationships in the database.
You can first inspect the content of your graph database (if the graph is very
tiny), with the following Cypher query

Listing 3.23. Cypher query that retrieves all nodes and relationships in the database

MATCH (n)

OPTIONAL MATCH (n)-[r]->(m)

RETURN n,r,m

If you run the query in the Listing 3.23 in Neo4j Browser, you should get a
similar graph visualization to mine.



Figure 3.5. Visual representation of the current stored graph in database

There are currently five nodes and three relationships in the database. You
could have a few more nodes and relationships if you completed the
exercises. That is no problem. First, you will delete the relationship between
Person nodes with the name properties "Satish" and "Elaine". To perform a
graph pattern deletion, you must first use the MATCH clause to find the graph
pattern and then use the DELETE clause to delete it from the database.

Listing 3.24. Cypher query that deletes a relationship between Person nodes with the name
properties "Satish" and "Elaine".

MATCH (n:Person)-[r]->(m:Person)

WHERE n.name = 'Satish' AND m.name = 'Elaine'

DELETE r

In Listing 3.24, the MATCH clause first matches any relationships directed from
the Person node representing Satish to the node representing Elaine. Notice



that I didn’t define any relationship type in the MATCH clause. When you omit
the relationship type in the graph pattern description, the MATCH clause will
search for relationships of any type between described nodes. Very similarly,
you can also delete a node from a database.

Listing 3.25. Cypher query that deletes a single node from the database.

MATCH (n:Person)

WHERE n.name = 'Satish'

DELETE n

To get to know a new Cypher error, you can execute the following query.

Listing 3.26. Cypher query that deletes a single node from the database.

MATCH (n:Person)

WHERE n.name = 'Elaine'

DELETE n

You might wonder why you could delete the node representing Satish, but
you cannot delete a node representing Elaine. Luckily, the error is very
descriptive.

Figure 3.6. An error when you want to delete a node that has existing relationships to other nodes

You cannot delete a node that still has relationships attached to it.

DETACH DELETE clause

As deleting nodes with existing relationships is a frequent procedure, the
Cypher query language provides a DETACH DELETE clause that first deletes all



the relationships attached to a node and then deletes the node itself. You can
try to delete the node representing Elaine with the DETACH DELETE clause.

Listing 3.27. Cypher statement that deletes a single node and all of its relationships from the
database by using the DETACH DELETE clause

MATCH (n:Person)

WHERE n.name = 'Elaine'

DETACH DELETE n

This statement deleted both the relationships attached to the node as well as
the node itself.

Try to delete the node representing yourself or the node representing a Person
with the name "Michael". If the given node still has existing relationships,
you must use the DETACH DELETE clause to first delete the relationships and
then delete the node.

A Cypher statement that might come in handy when you are toying around
with a graph database, hopefully not in production, is to delete all the nodes
and relationships in the database.

Listing 3.28. Cypher statement that deletes all the nodes and relationships in the database

MATCH (n)

DETACH DELETE n

Query in Listing 3.28 will first use the MATCH clause to find all the nodes in
the database. As you don’t include any node label in the node description, the
query engine will return all nodes in the database. With the DETACH DELETE
clause, you instruct the query engine first to delete all attached relationships
to a node and then the node itself. Once the statement is finished, you should
be left with an empty database.

3.1.8 MERGE clause

In this section, I will assume that you are starting with an empty database. If
you still have data stored inside the database, please run the query in Listing
3.28.



The MERGE clause can be understood as a combination of using both MATCH
and CREATE clauses. Using the MERGE clause, you instruct the query engine
first to try to match a given graph pattern, and if it does not exist, it should
then create this pattern.

Listing 3.29. Cypher query that uses MERGE clause to ensure that a Person node with a name
Alicia exists in the database

MERGE (a:Person {name:'Alicia'})

The MERGE clause only supports inline graph pattern description and cannot be
used in combination with a WHERE clause. The statement in Listing 3.29
ensures that a Person node with the name property "Alicia" exists in the
database. You can rerun this query multiple times, and there will always be
precisely a single Person node with the name "Alicia" in the database. A
statement that can be rerun multiple times and always output the same results
is also known as an idempotent statement. When you import data into the
graph database, it is advisable to use MERGE instead of the CREATE clause.
Using the MERGE clause, you don’t have to worry about later deduplication of
nodes, and you can rerun a query multiple times without corrupting your
database structure. What do you think will happen if we try to use MERGE
clause to describe a Person node with the name "Alicia" and an additional
node property location?

Listing 3.30. Cypher query merges a single node with two node properties

MERGE (t:Person {name:'Alicia', location:'Chicago'})

Try to match and retrieve all nodes in the database that have a Person label
and a name property with value "Alicia".

The query to retrieve all nodes with a label Person and a name property
"Alicia" is as follows:

Listing 3.31. Cypher query that retrieves all nodes with a label Person and name property
"Alicia"

MATCH (n:Person)

WHERE n.name = 'Alicia'



RETURN n

If you are using the Neo4j Browser interface, you can quickly observe in the
graph visualization that there exist two nodes with a label Person and the
name property "Alicia".

Figure 3.7. Results of the query in Listing 3.31

There are two Person nodes with the same name property in the database.
Wasn’t it mentioned just before that the MERGE clause is idempotent?
Remember, the MERGE clause first tries to match an existing graph pattern, and
only if it does not exist, it then creates the full given graph pattern. When you
executed the query in Listing 3.30 to merge a Person node with two node
properties, the graph engine first searched for the given pattern. A Person
node with the name property "Alicia" and location property "Chicago" did
not exist in the database at that moment. Following the MERGE logic, it then
created a new Person node with those two properties.

When designing a graph model, a best practice is to define a unique identifier
for each node label. A unique identifier consists of defining a unique property
value for each node in the graph. For example, if you assumed that the name
property of the Person nodes is unique, you could use the following MERGE
clause to import Person nodes.



Listing 3.32. Cypher query that merges a node on its unique identifier property and then adds
additional properties to the node

MERGE (t:Person{name:"Amy"})

ON CREATE SET t.location = "Taj Mahal", t.createdAt = datetime()

ON MATCH SET t.updatedAt = datetime()

A MERGE clause can be followed by optional ON CREATE SET and ON MATCH
SET. In the MERGE clause, you have used the unique identifier of nodes to
merge the nodes. If the node is created during this query, you can define
additional node properties that should be set with the ON CREATE SET clause.
Conversely, if the node with the label Person and the name property "Amy"
already existed in the database, then the ON MATCH SET clause will be
invoked.

The Cypher statement in Listing 3.32 will first merge a Person node with the
name property "Amy". If a node with a label Person and the name property
"Amy" does not exist in the database before, then the MERGE clause will create
one and invoke the ON CREATE SET clause to set the location and createdAt
properties on the node. Suppose the mentioned node already existed in the
database. In that case, the query engine will not create any new nodes, and it
will only update the updatedAt node property with the current time as
described in the ON MATCH SET clause. The datetime() function in Cypher
returns the current time.

Very frequently, your import query will look like the following:

Listing 3.33. Cypher query that merges two nodes and then merges a relationship between them

MERGE (j:Person{name:"Jane"})

MERGE (s:Person{name:"Samay"})

MERGE (j)-[:FRIEND]->(s)

The most frequent Cypher structure when importing data into Neo4j is first to
merge the nodes separately and then merge any relationships between them.
Using the MERGE clause, you don’t have to worry about data duplication or
multiple query executions. The statement in Listing 3.34 will ensure that the
three graph patterns with two nodes describing Jane and Samay and a FRIEND
relationship exists between them. You can rerun this query multiple times



and the output will always be the same.

The MERGE clause also supports merging an undirected relationship. This fact
is a bit confusing. At the beginning of the chapter, I mentioned that you can
only store a directed relationship in the Neo4j database. Let’s see what
happens if you run the following query.

Listing 3.34. Cypher query that merges two nodes and then merges an undirected relationship
between them

MERGE (j:Person{name:"Alex"})

MERGE (s:Person{name:"Andrea"})

MERGE (j)-[f:FRIEND]-(s)

RETURN *

You can observe that two new Person nodes were created. When you
describe an undirected relationship in the MERGE clause, the query engine first
tries to match the relationship while ignoring the direction. Practically, it
searches for a relationship in both directions. If there are no relationships
between the nodes in any direction, it then creates a new relationship pointing
from the left to the right node. Having the ability to describe an undirected
relationship in the MERGE clause allows us to import undirected networks
more conveniently. If you assume that the FRIEND relationship is undirected,
meaning that if Alex is friends with Andrea, then also Andrea is friends with
Alex, then you could only store a single directed relationship between them
and treat it as undirected when you are executing graph algorithms or queries.
You will learn more about this approach in the following chapters. For now,
it is enough that you are aware that it is possible to describe an undirected
relationship in the MERGE clause.

When creating or importing data to Neo4j, you want to split a Cypher
statement into multiple MERGE clauses and merge nodes and relationships
separately. When merging nodes, the best approach is to only include the
node’s unique identifier property in the MERGE clause and add additional node
properties with the ON MATCH SET or ON CREATE SET clauses.

Handling relationships is a bit different. If there can be at most a single
relationship of one type between two nodes, like the FRIEND example, then do
not include any relationship properties in the MERGE clause. Instead, use the ON



CREATE SET ` or `ON MATCH SET clauses to set any relationship properties.
However, if your graph model contains multiple relationships of the same
type between a pair of nodes, then only use the unique identifier property of
the relationship in the MERGE statement and set any additional properties the
same as above.

3.2 Importing CSV files with Cypher

You have learned the basic Cypher clauses that will help you get started.
Now, you will learn how to import data from external sources. A frequent
input data structure for a graph database is either a CSV or a JSON format.
The first data structure you will learn how to import is the CSV-like data
structure. Interestingly, dealing with CSV files and importing data from a
relational database is almost identical. In both scenarios, you are dealing with
a table that has, hopefully, named columns. In this section, you will define
unique constraints and import a Twitter dataset into Neo4j graph database.

3.2.1 Cleanup the database

You need to empty the database before continuing as you don’t want random
nodes from the previous examples to persist.

Listing 3.35. Cypher query that deletes all the nodes and relationships in the database

MATCH (n)

DETACH DELETE n

3.2.2 Twitter graph model

Figure 3.8. Initial Twitter graph model you will import



In the previous chapter, you went through a graph model design process.
There were no data limitations. You just assumed that you could get any
relevant data. Like anything in life, you can’t always get what you asked for.
But there might be some additional data that wasn’t considered before.

You will start by importing the follower network between users. There was a
since property of the FOLLOWS relationship in the initial graph model.
Unfortunately, the Twitter API doesn’t provide the date of creating the
FOLLOWS relationship, so you will have to remove it from the model.

This is not a problem with the initial graph modeling design. You have made
some assumptions that later didn’t hold up. That is why the graph modeling
process is iterative. You start with some assumptions and change the graph
model accordingly as you learn more. On the other hand, the assumption that
there can only be a single author of a given tweet turns out valid. And you did
not take into account that a user can also reply to a given tweet and not just
retweet it. The graph model has been updated to support storing the
information when a tweet was made in response to another tweet by adding
an IN_REPLY_TO relationship. I also wanted to introduce the difference
between just retweeting a post or adding a comment to the retweet. The
Twitter interface allows you to add a comment to the retweet by using the
Quote Tweet option.

Figure 3.9. Add a comment to the retweet by using the Quote Tweet option



Because adding a comment has different semantics than just retweeting a
post, I wanted to differentiate between the two scenarios by using different
relationship types.

Figure 3.10. Differentiate between retweets and quotes by using different relationship types

By clearly differentiating between retweets and quotes, it would be easier for
you to find quotes in the graph and analyze their responses. For example, you
could use NLP techniques to detect the sentiment of the comments and
examine which tweets or users are more likely to receive positive or negative
sentiment comments. Unfortunately, while I was thinking of including them
in our graph import, I did not fetch any quote tweets during my scraping
process, so we will skip importing and analyzing them.

In the initial import, you will also ignore the hashtags, mentions, and links of
a tweet.

3.2.3 Unique constraints

The Neo4j graph database model is considered to be schema-less, meaning



that you can add any types of nodes and relationships without defining the
graph schema model. There are, however, some constraints you can add to
your graph model to ensure data integrity. In my graph journey, I have only
used the unique node property constraint so far. There are two benefits of
using the unique node property constraint. The first benefit is to ensure that
the value of a given node property is unique for all the nodes with a specific
label. As a beginner, this feature is handy as it lets you know and stops an
import query that would corrupt data integrity. An additional benefit of
defining a unique node constraint is that it automatically creates an index on
the specified node property. By creating an index on the specified node
property, you will optimize the performance of import and analytical Cypher
queries. For the initial import, you will define two node unique constraints.
One unique constraint will ensure that there can only be a single User node
with a specific id property in the database. The second unique constraint
guarantees that the id property of nodes with label Tweet will be unique for
each node.

Listing 3.36. Cypher query that defines two unique node constraints

CREATE CONSTRAINT IF NOT EXISTS ON (u:User) ASSERT u.id IS UNIQUE;

CREATE CONSTRAINT IF NOT EXISTS ON (p:Tweet) ASSERT p.id IS UNIQUE;

3.2.4 LOAD CSV clause

Cypher query language has a LOAD CSV clause that enables you to open and
retrieve information from CSV files. The LOAD CSV clause can fetch local
CSV files as well as CSV files from the internet. Having the ability to fetch
CSV files from the internet comes in very handy as you don’t have to
download the CSV files to your local computer first. I have stored all the
relevant CSV files on GitHub (github.com/tomasonjo/graphs-network-
science) for easier access. The LOAD CSV clause can load CSV files that
contain a header or not. If the header is present, each row of the CSV file will
be available as a map data structure that can be used later in the query.
Conversely, when there is no header present, the rows will be available as
lists. The LOAD CSV can also be used in combination with a FIELDTERMINATOR
clause to set a custom delimiter, where for example you are dealing with a tab
separated value format.



To retrieve information from a specific CSV file, you can use the following
query:

Listing 3.37. Cypher query that fetches and displays information from a CSV file

LOAD CSV WITH HEADERS FROM

"https://raw.githubusercontent.com/tomasonjo/graphs-network-science/main/dataset/twitter/users.csv" as row

WITH row

LIMIT 5

RETURN row

The CSV file must be publicly accessible as the LOAD CSV clause does not
feature any authorization support. The statement in Listing 3.38 also
introduces the LIMIT clause. The LIMIT clause is used to limit the number of
results you want to retrieve. It can also be used in combination with a WITH
clause.

One thing to note is that the LOAD CSV clause returns all values as strings and
makes no attempt to identify data types. You have to convert the values to the
correct data type in your import Cypher statements.

3.2.5 Importing the Twitter social network

I have prepared five CSV files that contain the following information:

User information
Follower network
Information about tweets and their authors
Information about the RETWEETS relationships between posts
Information about the IN_REPLY_TO relationships between posts

It is a good practice to split the graph import into multiple statements. I could
have probably prepared a single CSV file with all the relevant information.
Still, it makes more sense to split the import into multiple statements for
more readability and faster import performance. If you are dealing with
graphs with millions of nodes, then it is advisable to split the import of nodes
and relationships. In this case, you are dealing with only thousands of nodes,
so you don’t have to worry about query optimization that much. My general
rule of thumb is to split the import queries by node labels and relationship



types as much as possible.

To begin with, you will import user information into Neo4j. As mentioned,
all the data is publicly available on GitHub, so there is no need to download
any files. The CSV structure for user information has the following structure:

Table 3.1. User CSV structure

id name username createdAt

333011425
ADEYEMO
ADEKUNLE
King

ADEYEMOADEKUNL2 2011-07-
10T20:36:58

1355257214529892352 Wajdi
Alkayal WajdiAlkayal 2021-01-

29T20:51:28

171172327 NLP
Excellence excellenceNLP 2010-07-

26T18:48:47

You can use the following Cypher statement to import user information into
the Neo4j database.

Listing 3.38. Cypher query that imports user information from a CSV file

LOAD CSV WITH HEADERS FROM

"https://raw.githubusercontent.com/tomasonjo/graphs-network-science/main/dataset/twitter/users.csv" as row

MERGE (u:User{id:row.id})

ON CREATE SET u.name = row.name,

              u.username = row.username,

              u.registeredAt = datetime(row.createdAt)

You could have used the CREATE clause to import user information. If you
started with an empty database, and if you trust that I have prepared a CSV
file without duplicates, the result would be identical.



Dealing with real-world datasets, you often can’t afford the luxury of
assuming you have clean data present. Hence, it makes sense to write cypher
statements that can handle duplicates or other anomalies and are also
idempotent. In the Cypher statement in Listing 3.38, the LOAD CSV clause first
fetches the CSV information from the GitHub repository. The LOAD CSV then
iterates over every row in the file and executes the Cypher statement that
follows. In this example, it executes the MERGE clause in combination with ON
CREATE SET for every row in the CSV file.

Retrieve five random users from the database to inspect the results and
validate that the import process of users worked correctly.

Figure 3.11. Visualization of random five users in the database

Currently, you only have nodes without any relationships in the database.
You will continue by importing FOLLOWS relationships between users. The



CSV file that contains the information about the follower has the following
structure:

Table 3.2. Followers CSV structure

source target

14847675 1355257214529892352

1342812984234680320 1355257214529892352

1398820162732793859 1355257214529892352

The followers CSV file has only two columns. The source column describes
the start node id, and the target column describes the end node id of the
follower relationships. When dealing with larger CSV files, you can use the
USING PERIODIC COMMIT clause to split the import into several transactions.
Splitting the import into several transactions can spare you the headache of
running out of memory when doing large imports. By default, USING
PERIODIC COMMIT clause will split the transaction for every 1000 rows. The
followers CSV has almost 25000 rows. Instead of importing the whole CSV
file in a single transaction, you should use the PERIODIC COMMIT clause to
split it into 25 transactions effectively. For some reason, you need to prepend
:auto when using PERIODIC COMMIT in Neo4j Browser. In other cases, for
example, when you are using a Neo4j Python driver to import the data, you
don’t need to prepend the :auto operator.

Listing 3.39. Cypher query that imports follower network from a CSV file

#A

:auto USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM

"https://raw.githubusercontent.com/tomasonjo/graphs-network-science/main/dataset/twitter/followers.csv" as row

#B

MATCH (s:User{id:row.source})



#C

MATCH (t:User{id:row.target})

#D

MERGE (s)-[:FOLLOWS]->(t)

The statement in Listing 3.40 first retrieves the information from a CSV file
located on GitHub. The following query steps will be executed for every row
in the CSV file. For each row, it matches the source and the target User node.
Here, you assume all the User nodes are already present in the database.
Remember, if the MATCH clause does not find a pattern, it skips the execution
of the rest of the query for a specific row.

In statement in Listing 3.40, if, for example, a source node was not found by
the MATCH clause, the Cypher query will skip the creation of the FOLLOWS
relationship. You could avoid this limitation by using the MERGE clause
instead of the MATCH clause to identify the source and target User nodes.
There is, however, a drawback that any node created by the MERGE clause in
this statement would only have the id property and no other information as
they were missing from the CSV file containing user information.

Once both the source and the target nodes are identified, the query then
merges a FOLLOWS relationship between them. Using the MERGE clause, you
ensure that there will be exactly one FOLLOWS relationship from the source to
the target User node in the database. This way, you don’t have to worry about
having duplicates in the input CSV file or rerunning the query multiple times.
Another critical consideration is that the FOLLOWS relationship in the Twitter
domain has semantic value. For this reason, you need to add the relationship
direction indicator in the MERGE clause to ensure that the relationship is
imported correctly.

When you are using the MATCH clause to identify nodes in Cypher import
queries, be aware that no additional nodes will be created during the import,
and so, all the relationships between nodes that do not exist in the database
will also be skipped during the import process.

Retrieve five FOLLOWS relationships from the database to validate the import
process.

Figure 3.12. Visualization of random five FOLLOWS relationships in the database



Next, you will import the tweets and their authors. The CSV structure of the
tweets is as follows:

Table 3.3. Twitter posts CSV structure

id text createdAt author

12345 Example text 2021-06-
01T08:53:22 134281298

1399649667567 Graph data
science is cool!

2021-06-
01T08:53:18 54353345

Exploring social 2021-06-



13996423457567 networks 01T08:45:23 4324323

The id column of the Tweets CSV file describes the Twitter post id that will
be used as the unique identifier. The file also includes the text and the date of
creation, as well as the id of the author. There are 12000 rows in the CSV
file, so you will again use the PERIODIC COMMIT clause for batching purposes.

Listing 3.40. Cypher query that imports tweets from a CSV file

:auto USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "https://raw.githubusercontent.com/tomasonjo/graphs-network-science/main/dataset/twitter/tweets.csv" as row

#A

MATCH (a:User{id:row.author})

#B

MERGE (p:Tweet{id:row.id})

ON CREATE SET p.text = row.text,

              p.createdAt = datetime(row.createdAt)

#C

MERGE (a)-[:PUBLISH]->(p)

If you look closely, you can observe that the query structure in Listing 3.41 is
similar to the query in Listing 3.40. When you are importing any relationship
into the database, you will most likely match or merge both source and target
nodes and then connect them. In the first step, the query matches on the User
node. Next, you use the MERGE clause to create the Tweet nodes. Although all
the Tweet nodes need to be created as there are none in the database
beforehand, I still like to use the MERGE clause to have idempotent queries. It
is the best experience for you as a user, and it is an excellent practice to
follow. Last but not least, a relationship between the user and the tweet is
created.

To validate the import process, retrieve the text property of three random
tweet nodes.

In the last two import queries, you will import additional RETWEETS and
IN_REPLY_OF relationships. Both the retweets and the in reply to CSV files
have the same structure:



Table 3.4. Retweets and in reply to CSV files structure

source target

14847675 1355257214529892352

1342812984234680320 1355257214529892352

1398820162732793859 1355257214529892352

You will begin by importing the RETWEETS relationship.

Listing 3.41. Cypher query that imports retweets relationships from a CSV file

LOAD CSV WITH HEADERS FROM

"https://raw.githubusercontent.com/tomasonjo/graphs-network-science/main/dataset/twitter/retweets.csv" as row

#A

MATCH (source:Tweet{id:row.source})

#B

MATCH (target:Tweet{id:row.target})

#C

MERGE (source)-[:RETWEETS]->(target)

The query structure to add relationships to a database mostly identifies the
source and target nodes and then adds a connection between the two. You
have to take special care whether you use MATCH or MERGE to identify nodes. If
you use the MATCH clause, then no new nodes will be created, and so any
relationships that don’t have both the source and the target node already in
the database will be ignored during the import. On the other hand, if you use
the MERGE clause, you might end up with new Tweet nodes with only the id
but no text property or even the author connected to it. Using the MERGE
clause to add relationships, you ensure that there will be precisely one
relationship of that type between source and target nodes no matter how
many times the connection occurs in the underlying data or how often you
run the import query. There are options to change the query to import more
than a single relationship type between a pair of nodes and still use the MERGE



clause.

Match five RETWEETS relationships between a pair of tweets from the
database. Inspect the text of the original and the retweeted post.

The final import statement imports the IN_REPLY_TO relationships. It has
almost identical structure as importing the RETWEETS relationship, only the
type of relationship is changed.

Listing 3.42. Cypher query that imports IN_REPLY_TO relationships from a CSV file

LOAD CSV WITH HEADERS FROM

"https://raw.githubusercontent.com/tomasonjo/graphs-network-science/main/dataset/twitter/replies.csv" as row

#A

MATCH (source:Tweet{id:row.source})

#B

MATCH (target:Tweet{id:row.target})

#C

MERGE (source)-[:IN_REPLY_TO]->(target)

Congratulations, you have imported the initial Twitter graph into Neo4j.
Neo4j has a special procedure that enables you to inspect and visualize the
graph schema of the stored graph in the database.

Listing 3.43. Schema introspection procedure

CALL db.schema.visualization()

If you run the schema introspection procedure in Neo4j Browser, you should
get the following schema visualization.

Figure 3.13. Visualization of generated graph schema based on the stored graph.



If you get the exact same graph schema visualization, you are ready to learn
more about the analytical Cypher queries and graph algorithms in the next
chapter. If the generated schema is not identical, rerun all the import queries.

3.3 Summary

Cypher syntax to describe graph patterns
Basic Cypher clauses and their caveats
Unique node property constraints
How to import a graph from a CSV file
How to split CSV import into multiple transactions



4 Exploratory graph analysis
This chapter covers

Exploring a graph with Cypher query language
Aggregating data with the Cypher query language
Using existential subqueries to filter by graph patterns
Accessing relationship store to efficiently count relationships
Handling query cardinality when using multiple clauses in a single
Cypher statement

This chapter will teach you how to perform an exploratory data analysis of
the imported Twitter social network using Cypher query language. Imagine
you are working as a social media consultant and want to find as many
insights as possible. As is typical with any analysis, you begin with an
exploratory data analysis to get an overview of the data you are working
with.

I will present how I collected the data to give you a feeling of the data you
will be working on in this chapter. The imported Twitter social network was
scraped using the official Twitter API. I have fetched tweets that are part of
the NLP or Knowledge graph topics. At this time, I had information about
tweets and users who were either mentioned or published tweets. Next, I
fetched additional meta-data about users in the graph, such as their
registration date and follower relationships. All the users in the imported
graph have either published a tweet or were mentioned by one. I did not
include all the user followers because that would explode the graph, and the
network would end up consisting of a couple of million users.

One part of the exploratory graph analysis will consist of counting the
number of nodes and relationships in the network. With the Twitter network,
it is also essential to know the timeline of the created tweets. You will learn
how to aggregate time-based information with Cypher query language. As the
last part of the exploratory analysis, you will examine some outliers in the
dataset, like users who posted the most tweets or were mentioned the most.



That was the high-level theory overview of what you will be learning in this
chapter, so now let’s get to practical examples. To follow along with the
examples in this chapter, you must have a Neo4j database instance with
Twitter network data imported as described in Chapter 3.

4.1 Exploring the Twitter network with Cypher
query language

You will start with exploratory graph analysis using the Cypher query
language. The goal of the exploratory analysis is to get to know the dataset
and teach you Cypher query syntax that will allow you to aggregate and filter
data. I would recommend you use the Neo4j Browser environment, which
can be used to develop Cypher queries and return the query results in the
form of a table as well as a network visualization. Neo4j Browser has a
beginner-friendly feature that visualizes all the relationships between
resulting nodes, even when the relationships are not part of the query results.

Figure 4.1. Untick the "Connect result nodes" in Neo4j Browser.

To avoid confusion, untick the "Connect result nodes" feature as shown in the
Figure 4.1.



If you open the database tab in the top-right corner of the Neo4j Browser, it
will show a simple report indicating the number and the type of nodes and
relationships in the database.

Figure 4.2. Neo4j Browser database report

There is a total of 15654 nodes in the database. As you already know, nodes
are labeled either as Tweet or User. In addition, there are also 58369
connections across four relationships types. Both the node labels and the
relationship types in the left-side toolbar are clickable. For example, if you
click on the FOLLOWS relationship type, the tool will generate a Cypher
statement that returns a sample of 25 FOLLOWS relationships.

Listing 4.1. Generated cypher query that visualizes a sample of 25 FOLLOWS relationships.



MATCH p=()-[r:FOLLOWS]->()

RETURN p LIMIT 25;

The generated statement in Listing 4.1 returns the results as the path data
object. A sequence of connected nodes and relationships can be represented
as a path data type. Cypher query syntax allows paths to be referenced by a
variable name, similar to node and relationship variables.

You should get a similar visualization as shown in the following image by
executing the generated Cypher statement.

Figure 4.3. A subgraph of the followers network

Exercise 4.1



As an exercise, generate Cypher statements to visualize sample RETWEETS and
PUBLISH relationships. You can click on the relationship types in the left-side
toolbar, or you can use the statement in Listing 4.1 as the base and change the
relationship type accordingly.

4.1.1 Aggregating data with Cypher query language

Aggregating and counting data points is the basis of all data analysis. In the
context of graph analysis, you will first learn how to count various graph
patterns like the number of nodes and relationships. If you already have some
experience with relational databases and SQL query language, you will see
that Cypher follows a similar syntax for aggregating data. The first
aggregation function you will learn is the count() function. It is used to
count the number of rows or values produced by the MATCH clause.

To count the number of the nodes in the database, you can execute the
following Cypher statement:

Listing 4.2. Count the number of nodes.

#1

MATCH (n)

#2

RETURN count(n) AS numberOfNodes;

There is a total of 15654 nodes in the graph. The count() function appears in
two variants:

count(*) - Returns the number of rows produced by Cypher statement
count(variable or expression) - Return the number of non-null
values produces by an expression

To test both variants of the count() functions, you will count the number of
User nodes and the non-null values of their registeredAt properties.

Listing 4.3. Count the number of User nodes and their non-null values of registeredAt
properties.

MATCH (u:User)



RETURN count(*) AS numberOfRows,

       count(u.registeredAt) AS numberOfUsersWithRegisteredAtDate

Table 4.1. Results of the Cypher statement in Listing 4.3

numberOfRows numberOfUsersWithRegisteredAtDate

3594 3518

There are 3594 User nodes in the graph, but only 3518 of them have the non-
null registeredAt property. The graph is missing the registration date
information for 76 users. When preparing a dataset summary, you usually
present the number of missing values as a ratio and not as an absolute
number. In Neo4j, you have to be careful because when you divide an integer
by an integer, the result will also be an integer. To avoid this issue, you can
cast either of the variables to float data type.

Execute the following Cypher statement to evaluate the ratio of non-null
values for the registeredAt node property of User nodes.

Listing 4.4. Calculate the ratio of non-null values of registeredAt node property.

#1

MATCH (u:User)

#2

WITH count(*) AS numberOfRows,

     count(u.registeredAt) AS usersWithRegisteredAtDate

#3

RETURN toFloat(usersWithRegisteredAtDate) / numberOfRows * 100 AS result

If you forgot to cast either the usersWithRegisteredAtDate or
numberOfRows in Listing 4.4 to float, the result would be 0.

  Note

In Neo4j, when you divide an integer value by another integer value, the



result will also be of integer data type. If you want the result to be of float
type, such as with the ratio example in Listing 4.4, you need to cast either of
the variables to float using the toFloat() function.

Exercise 4.2

Calculate the ratio of missing values for the createdAt node property of the
Tweet nodes. The result of the statement should be a percentage of non-null
values divided by the count of tweets.

The correct answer to Exercise 4.2 is that there are no missing values for the
createdAt property of Tweet nodes.

As you might be used to from your other data projects, you want to aggregate
or count values grouped by specific values more often than not. For those
familiar with SQL aggregations, you can define the grouping keys in the
GROUP BY statement. Grouping keys are non-aggregate expressions that are
used to group the values going into the aggregate functions. Aggregation in
Cypher is different from aggregation in SQL. In Cypher, you don’t need to
specify a grouping key explicitly. As soon as any aggregation function is
used in the Cypher statement, all non-aggregated columns in the WITH or
RETURN clause become grouping keys. With Cypher query language, the
grouping keys are implicitly defined as you don’t have to explicitly add a
GROUP BY statement after the aggregation functions.

Suppose you want to count the number of nodes grouped by their node label.
The function to extract the node labels is labels(). You only need to provide
the labels() function as the grouping key alongside an aggregation function
that will count the number of nodes.

Listing 4.5. Count the number of nodes by labels.

MATCH (n)

RETURN labels(n) AS labels,

       count(n) AS count;

Table 4.2. Count of nodes grouped by their label.



labels count

["User"] 3594

["Tweet"] 12060

At the moment, there are only two types of nodes in the graph. You can
observe that the node labels are returned as a list. The list data type indicates
that you can have multiple labels on a single node. Assigning a secondary
node label is helpful in a network analysis when we want to speed up
subsequent queries by tagging relevant subsections of nodes. As mentioned,
you might notice the lack of a GROUP BY statement. In Cypher, you don’t need
to explicitly specify a grouping key. As soon as an aggregation function is
used, all non-aggregated result columns become grouping keys.

  Note

With Cypher query language, the grouping keys are defined implicitly,
meaning that all non-aggregated columns in a WITH or RETURN clause
automatically become grouping keys.

Exercise 4.3

Count the number of relationships by their type. You can use the type()
function to extract relationship type.

To count the number of relationships grouped by their type, you start by
describing a relationship pattern with Cypher syntax. Note that you cannot
describe a relationship without its adjacent nodes. Because you are interested
in counting the relationships types, you must not specify any node labels or
relationship types in the Cypher pattern. In the last part of the statement, you
use the type() function to extract the relationship type and use it as a
grouping key in combination with the count() aggregation function.



The solution of Exercise 4.3 produces the following output.

Table 4.3. Count of relationships grouped by their type.

labels count

"PUBLISH" 12060

"FOLLOWS" 24888

"RETWEETS" 8619

"MENTIONS" 12379

"IN_REPLY_TO" 423

The number of PUBLISH relationships is identical to the number of Tweet
nodes. With the Twitter social network, a single TWEET has precisely a single
author, indicated by the PUBLISH relationship.

Interestingly, 8619 out of 12060 tweets are retweets, and 423 tweets are
replies. It looks like only around 30% of the tweets are original content. This
is not so unusual as, for example, the research by Joshua Hawthorne et al.
[Hawthorne, Joshua et al., 2013] shows that tweets by more prominent users
can have even more than three retweets per tweet. Not surprisingly, when
researchers examined the tweets by former US presidents [Minot JR et al.,
2021], the number of retweets is at least an order of magnitude higher than
usual.

What’s a bit surprising is that there are more mentions than tweets. I did not



manually parse the mentioned information as that was automatically provided
by the official Twitter API. What I’ve noticed is that when a user retweets
another user, he is automatically mentioned in the retweet.

Exercise 4.4

Inspect the text of a retweet and compare it to the original tweet’s text. Use
the LIMIT clause to limit the number of results to 1.

The solution of Exercise 4.4 produces the following output.

Table 4.4. A single comparison of tweet and retweet’s text.

retweetText originalText

"RT @Eli_Krumova: 5 Best
Practices: Writing Clean &
Professional #SQL #Code
t.co/Y4DepLfOOn v/
@SourabhSKatoch #DataScience
#AI #ML…"

"5 Best Practices: Writing Clean &
Professional #SQL #Code
t.co/Y4DepLfOOn v/
@SourabhSKatoch #DataScience
#AI #ML #MachineLearning #IoT
#IIoT #IoTPL #Python #RStats
#Cloud #CyberSecurity #Serverless
#RPA #NLP #programming #coding
#100DaysOfCode #DEVCommunity
#CodeNewbie t.co/ma03V8btZB
t.co/TOnwwHgaHQ

One immediately obvious thing is that the retweet’s text is trimmed to a fixed
length and does not always contain the original tweet’s complete text.
Another more subtle difference is that the retweet’s text is prepended with RT
followed by the original author’s handle. It seems that Twitter automatically
prepends the original user’s handle in the retweet and treats it as a mention. I
had no idea this was the case. It is a good practice to always begin with
exploratory graph analysis before diving into graph algorithms to spot such



abnormalities.

Exercise 4.5

For those of you who are more visually oriented, try to visualize a single
graph pattern where a user retweeted a post from another user. Include the
MENTION relationships of both the original and the retweeted post. Follow
these hints to help you construct the desired Cypher statement:

Match a graph pattern that describes a retweet, original tweet, and their
authors
Use the WITH clause in combination with the LIMIT clause to limit results
to a single described pattern
Separately match the MENTION relationships of the original and the
retweeted post
Visualizing networks in Neo4j Browser is easiest by returning one or
multiple path objects

This is a bit more advanced exercise, so take it step by step to construct the
final Cypher statement. You can examine the results after each step to make
sure you have correctly described the desired graph pattern.

The solution of Exercise 4.5 produces the following network visualization in
Neo4j Browser.

Figure 4.4. By default, a retweet also mentions the original tweet author.



4.1.2 Time aggregations

As with any dataset, it is essential to learn the timeline of the data points.
Both the User and the Tweet nodes contain the datetime properties. First, you
will evaluate the time windows of the tweets. You can use the min() and
max() functions on the datetime property to get the earliest and the last date
values.

Listing 4.6. Retrieve the earliest and last created date values of tweets

MATCH (n:Tweet)

RETURN min(n.createdAt) AS earliestDate, max(n.createdAt) as lastDate

The first tweet in the dataset was on the 12th of August 2016, and the last one
was on the 1st of June 2021. There is a five-year span between the first and
the last tweet. While this information is nice, it is not very descriptive. To get
a better feeling for the time window, you will calculate the distribution of
tweets by year.

In Cypher, a datetime property behaves like an object. You can access



datetime attributes such as the year and the month by using the following
Cypher syntax:

Listing 4.7. Extract datetime attributes.

MATCH (t:Tweet)

WITH t LIMIT 1

RETURN t.createdAt.year AS year,

       t.createdAt.month AS month,

       t.createdAt.day AS day,

       t.createdAt.epochSeconds AS epochSeconds;

Table 4.5. Datetime attributes of a sample tweet

year month day epochSeconds

2021 6 1 1622537602

You can then use the datetime attributes in combination with aggregation
functions.

Exercise 4.6

Calculate the distribution of tweets grouped by created year. Remember,
Cypher uses implicit grouping key aggregations, so all you need to add to the
RETURN statement is the year column and the count operator.

The solution of Exercise 4.6 produces the following output.

Table 4.6. Distribution of tweets by their creation date

year count

2021 12029



2020 19

2019 6

2018 3

2016 3

Even though the time window between the first and the last tweet is five
years, almost all the tweets are were created in 2021. Let’s drill it down even
more.

Exercise 4.7

Use the MATCH clause in combination with the WHERE clause to select all the
tweets that were created in the year 2021. You can filter datetime attributes
like you would other node properties. In the next step, calculate the
distribution of tweets by their creation month. Use both the creation year and
month as grouping keys.

By now, you probably already got into the habit of adding grouping keys as
non-aggregate values in the RETURN or WITH clause. Other than that, you only
need to be careful to use the WHERE clause to match only tweets that were
created in 2021.

The solution of Exercise 4.7 produces the following output.

Table 4.7. Distribution of tweets by their creation date

year month count



2021 6 2695

2021 5 8507

2021 4 376

2021 3 432

2021 2 8

2021 1 11

Around 93% (11202 / 12060) of the tweets were created in May and June of
2021. This might give you a hint about when I was scraping the data.

Exercise 4.8

Before you move to the rest of the chapter, I want to present you with a
challenge. Can you prepare a Cypher statement that will return the top four
days with the highest count of created tweets? Although you haven’t seen this
exact example, you already have some experience with all the clauses
required to construct this Cypher statement. Here are some hints that should
help you:

Start by matching all tweets
Use the creation year, month, and day as the grouping keys along with
the count() aggregation
Use the ORDER BY clause to order the results based on the count
descending
Use the LIMIT clause to return only the top three days



Exercise 4.8 is designed to test you on the implicit grouping aggregations in
Cypher and to use some of the previously learned clauses together. Please
take a couple of minutes and try to solve it on your own. I would recommend
you return the results after each step of the query to evaluate if you are on the
right track.

The solution of Exercise 4.8 produces the following output.

Table 4.8. Distribution of tweets by their creation date

year month day count

2021 5 31 6185

2021 6 1 2695

2021 5 30 1847

2021 5 28 62

Interestingly, how you started with a five-year time window and were able to
narrow it down to only three days by gradually digging deeper. The vast
majority of the tweets in the dataset were created between the 30th of May
and the 1st of June. This information will help you evaluate the number of
tweets and mentions given this timeframe.

4.1.3 Filtering graph patterns

Now you will investigate the network of mentions more thoroughly. You
already know that there are 12379 MENTIONS relationships, but now you want
to determine how many distinct users have been mentioned. How would you



construct the Cypher statement to retrieve the number of distinct users that
have been mentioned? As a beginner, my first thought would be to use the
following statement.

Listing 4.8. Count the number of occurrences where a user is being mentioned.

MATCH (u:User)<-[:MENTIONS]-(:Tweet)

RETURN count(u) AS countOfMentionedUsers;

At first glance, the statement in Listing 4.14 looks valid. You matched the
users who were mentioned and then returned the count of users. But the
count() function doesn’t count the number of distinct users, it counts the
number of occurrences where the user variable is not null. You have actually
counted the number of graph patterns where a User node has an incoming
MENTIONS relationship originating from a Tweet node. One way to count the
number of distinct users who were mentioned is by using the distinct prefix.
The distinct prefix is used to count the number of unique values of a
reference variable or expression.

Listing 4.9. Count the number of distinct users who were mentioned.

MATCH (u:User)<-[:MENTIONS]-(:Tweet)

RETURN count(u) AS numberOfOccurences,

       count(distinct u) AS numberOfDistinctUsers;

Table 4.9. Number of occurences and the count of distinct users who were mentioned in a tweet.

numberOfOccurences numberOfDistinctUsers

12379 1632

There are a total of 1632 distinct users who were mentioned at least once.
When doing any query aggregations, you also have to keep in mind the query
cardinality and what you are actually counting. Cardinality is the number of
rows or records of the input stream to the operation. Cypher operations



execute per record or row of the input stream to the operation. In Listing
4.15, the MATCH clause produces 12379 rows. These rows are then used as an
input to the count operator. Using the count(u) operator, you are counting
the number of non-null values of u reference variable. Since the MATCH clause
will produce no null values for the u variable, the result of the count(u)
operation is 12379.

  Note

The cardinality of the query will also affect its performance. You want to
keep the cardinality as low as possible to achieve the best execution speed.
Prefix your statement with the PROFILE clause to compare the performance of
queries. If you want to learn more about the query planner and how to
optimize query performance, read the Cypher planner appendix.

You don’t have to expand all the MENTIONS relationships to get a list of users
who have were mentioned in at least a single tweet. Using the existential
subqueries in WHERE clause, you can filter on graph patterns. An existential
subquery can be used to determine if a specified pattern exists at least once in
the graph. You can think of it as an expansion or an upgrade of the WHERE
clause in combination with the graph patterns, where you can introduce new
reference variables or even use other clauses like MATCH in the subquery. The
subquery begins and ends with curly brackets {}. You can use any of the
variables from the outer query and use them to describe a graph pattern.
However, any new variables you introduce in the subquery are not carried
over to the main query.

Listing 4.10. Count the number of distinct users who were mentioned in tweets

MATCH (n:User)

WHERE EXISTS { (n)<-[:MENTIONS]->() }

RETURN count(n) AS numberOfDistinctUsers;

The Cypher statement in Listing 4.16 produces the identical count of distinct
users to the query result in Listing 4.15 and is also more performant. The
syntax used in Listing 4.16 is useful for finding nodes in the network that are
part of at least a single described graph pattern. In this example, you don’t



care if a user was mentioned once or hundred times. You just want to match
the distinct users who were mentioned at least once.

To demonstrate which of the two Cypher statements is more optimized, I will
show the query execution plan that is produced by prefixing the statements
with the PROFILE clause.

Figure 4.5. Comparison of the query execution plans for Cypher statements in Listing 4.15 and
4.16.





Each Cypher statement gets translated into a set of database operations.
While the understanding of database operations is beyond the scope of this
book, you can evaluate the performance of the query execution by examining
the total database hits count. The Cypher statement in Listing 4.15 produces
62847 database hits, and the statement in Listing 4.16 has 26815 database
hits. With this information, you can deduce that the Cypher statement in
Listing 4.16 is more optimized.

Exercise 4.9

Count the number of distinct users who have published at least a single tweet.

Using the existential subqueries in combination with graph patterns is also
very helpful when negating a graph pattern. You could match the whole
pattern in the previous example and use the distinct to get the correct count.
However, when you want to negate a graph pattern, you cannot use it in the
MATCH clause. Hence, those are prime examples of using the existential
subqueries in the WHERE clause to negate a graph pattern.

In this example, you will count the number of distinct users who were
mentioned, but haven’t themselves published a single tweet. You must negate
the outgoing PUBLISH relationships to filter out users without any tweets.

Listing 4.11. Count the number of users who were mentioned but haven’t published a single
tweet.

MATCH (u:User)

WHERE EXISTS { (u)<-[:MENTIONS]->() } AND

  NOT EXISTS { (u)-[:PUBLISH]->() }

RETURN count(*) AS countOfDistinctUsers

Around half of the distinct users (809 / 1632) mentioned in a tweet haven’t
published any tweets themselves in our dataset. As shown in Listing 4.17,
you can easily combine multiple graph pattern predicates to filter out nodes
that fit the described graph patterns.

As mentioned, you can also introduce new reference variables in the
existential subquery. For example, if you wanted to count the number of



users mentioned in a tweet and discount the mentions that are part of the
retweet pattern, you would need to introduce a new reference variable.

You will use the existential subquery to count the number of users mentioned
in a tweet and ignore the retweet mention pattern.

Listing 4.12. Count the number of users who were mentioned in a tweet and discount the retweet
mention pattern with an existential subquery.

# A

MATCH (u:User)<-[:MENTIONS]-(tweet:Tweet)

# B

WHERE NOT EXISTS {

  (original)<-[:PUBLISH]-(u)<-[:MENTIONS]-(tweet)-[:RETWEETS]->(original)

}

# C

RETURN count(distinct u) AS countOfUsers

# A Use the MATCH clause to identify the pattern in which a User has been mentioned by a Tweet

# B Use the existential query to negate graph patterns where the MENTION relationship exists because of a retweet pattern

# C Use the distinct operator to return the distinct number of users that are part of the described graph pattern

You needed to use the existential subquery in the B part of the Listing 4.18 to
be able to introduce the reference variable original. The reference to the
original is needed as you only want to discount the specific MENTION
relationships that are part of the retweet pattern.

The results of the statement in Listing 4.18 is 1206. Therefore, around 26%
(426 / 1632) of the users who were mentioned have an incoming MENTION
relationship only because their posts were retweeted. Interestingly enough,
also around 33% (1206 / 3594) of all users were mentioned in a tweet if you
discard retweets. And if you completed the Exercise 4.9, you know that
around 75% (2764 / 3594) of all users have published at least a single tweet.

Exercise 4.10

Find the top five users who had the most distinct tweets retweeted. To make
it easier for you, I have prepared a template Cypher statement that you need
to fill in.

Listing 4.13. Template query for Exercise 4.10.



MATCH (n:User)-[:PUBLISH]->(t:Tweet)

# A

_Fill in the WHERE_

WITH n, count(*) AS numberOfRetweets

# B

_Fill in the ORDER BY_

RETURN n.username AS user, numberOfRetweets

# C

_Fill in the LIMIT_

# A Use a combination of WHERE clause with a graph pattern to filter tweets that were retweeted. A tweet that was retweeted has an incoming RETWEETS relationships.

# B Use the ORDER BY clause to order by numberOfRetweets descending

# C Use the LIMIT to return only top five users

By solving the Exercise 4.10, you should get the following results.

Table 4.10. Top five users with the highest count of tweets that were retweeted.

user numberOfRetweets

"IainLJBrown" 754

"SuzanneC0leman" 314

"Eli_Krumova" 31

"Paula_Piccard" 31

"Analytics_699" 26

It seems that "IainLJBrown" has by far the most tweets that were retweeted.
In the second place, with 354 tweets that were retweeted, is
"SuzanneC0leman". You could probably think of them as influencers as they



publish a lot but also have their followers retweet their posts a lot. After that,
there is an order of magnitude drop to only 31 retweeted posts from
"Eli_Krumova" and "Paula_Piccard".

4.1.4 Counting relationships in Neo4j

The last thing I will show you in this chapter is how to count relationships
with Cypher in Neo4j efficiently. Although you already know how to count
graph patterns and filter them, there is a simple yet very performant trick to
keep in mind when counting relationships.

For example, you could use the following Cypher statement if you wanted to
get the top five most mentioned users.

Listing 4.14. Retrieve the top five most mentioned users.

MATCH (u:User)<-[:MENTIONS]-(:Tweet)

WITH u, count(*) AS mentions

ORDER BY mentions DESC LIMIT 5

RETURN u.username AS user, mentions

There is nothing wrong with the statement in Listing 4.20. However, Neo4j is
a native graph database and it stores the count of relationships by type and
direction for each node. One reason is that counting relationships if a frequent
operation and the second reason is that it help with query planner
optimization, which we won’t go into in this book. The relationships store
count is only relevant when you are counting the number of relationships and
applying no other filters. As soon as you apply any additional filters or
predicates, the query will expand relationships and apply described filters.
However, when you only want to count the number of relationships a node
has you can use the size() operator and describe the desired graph pattern.

Listing 4.15. Optimized way of retrieving the top five most mentioned users.

MATCH (u:User)

WITH u, size((u)<-[:MENTIONS]-()) AS mentions

ORDER BY mentions DESC LIMIT 5

RETURN u.username AS user, mentions



Table 4.11. Top five users who were mentioned the most

user mentions

"IainLJBrown" 3646

"SuzanneC0leman" 673

"Analytics_699" 476

"Paula_Piccard" 460

"Eli_Krumova" 283

By far, the most mentioned user is "IainLJBrown". If you are like me, you are
probably wondering what’s the distribution of those mentioned. Is he
frequently retweeted, are posts that are mentioning him frequently retweeted,
or do people just like to mention him? From the results of Exercise 4.10, you
already know that he has 754 posts that were retweeted.

When performing multiple aggregation in sequence, you have to be mindful
of the intermediate cardinality. For example, say that you have two MATCH
clauses in a row:

Listing 4.16. Example how multiple MATCH clauses affect the query cardinality.

MATCH (u:User)

MATCH (t:Tweet)

RETURN count(*) AS numberOfRows,

       count(u) AS countOfUsers,

       count(t) AS countOfTweets



Table 4.12. Multiple aggregation in sequence without reducing cardinality

numberOfRows countOfUsers countOfUsers

43343640 43343640 43343640

You already know that this result doesn’t make sense at all. First of all, the
number of users and tweets is identical, and you definitely don’t have 43
million nodes in the graph. So why do you get these results? Each MATCH or
OPTIONAL MATCH produces a certain number of rows. Any subsequent MATCH
or OPTIONAL MATCH clauses will be executed as many times as the rows
produced by the previous MATCH clause. The first MATCH in Listing 4.22
produces 3594 rows. The second MATCH is then executed for each produced
row separately. Effectively, the second MATCH will be executed 3594 times.
There are 12060 tweets in our graph, so if you multiply 12060 * 3594, you
will get the 43 million rows.

How do you avoid this problem? In this example, you can reduce the
cardinality before the second MATCH clause to one, so that the second MATCH
clause will be executed only once. You can use any of the aggregating
functions to reduce the cardinality. Let’s say you want to count the number of
users and tweets in the graph. In this case, you can use the count() function
after the first MATCH clause to reduce the cardinality.

Listing 4.17. Reducing cardinality between multiple MATCH clauses in a sequence.

MATCH (u:User)

# A

WITH count(u) AS countOfUsers

MATCH (t:Tweet)

RETURN count(*) AS numberOfRows, countOfUsers, count(t) AS countOfTweets

# A Reduce cardinality to 1 before executing subsequent `MATCH` clause

Table 4.13. Multiple aggregation in sequence with reducing intermediate cardinality



numberOfRows countOfUsers countOfUsers

12060 3594 12060

By reducing the intermediate cardinality after the first MATCH to one, you are
making sure that any subsequent MATCH clauses will be executed only once.
This will help you with query performance as well as getting accurate results.

Exercise 4.11

Calculate the mention distribution for the user "IainLJBrown". Mentions can
come in three forms:

Someone retweeted posts from "IainLJBrown"
Someone posts an original tweet and mentions "IainLJBrown"
Someone retweets a posts that mentions "IainLJBrown"

Make sure to reduce the cardinality after each MATCH or OPTIONAL MATCH
clause. Because you don’t know beforehand if mentions to "IainLJBrown"
fall into all three categories, I advise you to use the OPTIONAL MATCH when
counting the mentions distribution.

The solution to exercise 4.11 is the following:

Listing 4.18. Calculate the distribution of mentions for user "IainLJBrown"

# A

MATCH (u:User)

WHERE u.username = "IainLJBrown"

# B

OPTIONAL MATCH (u)-[:PUBLISH]->(rt)<-[:RETWEETS]-()

WITH u, count(rt) AS numberOfRetweets

# C

OPTIONAL MATCH (u)<-[:MENTIONS]-(t)

WHERE NOT (t)-[:RETWEETS]->()

WITH u, numberOfRetweets, count(t) AS mentionsInOriginalTweets

# D

OPTIONAL MATCH (u)<-[:MENTIONS]-(ort)



WHERE (ort)-[:RETWEETS]->() AND NOT (ort)-[:RETWEETS]->()<-[:PUBLISH]-(u)

WITH u, numberOfRetweets, mentionsInOriginalTweets, count(ort) AS mentionsInRetweets

RETURN u.username AS user, numberOfRetweets,

       mentionsInOriginalTweets, mentionsInRetweets

# A Identify the user

# B Count the number of retweets their posts have received

# C Count the number of mentions in original posts

# D Count the number of mentions in retweets and exclude retweets of author's post

Table 4.14. Distribution of mentions for "IainLJBrown"

user numberOfRetweets mentionsInOriginalTweets mentionsInRetweets

"IainLJBrown" 3643 2 1

A very important detail is that you have to use the count() operator directly
after each OPTIONAL MATCH clause and not only at the end. This way, you
handle reduce the in-between cardinality to 1 after each OPTIONAL MATCH
clause and your count won’t explode. There are a couple of other ways you
could get this result, so if your query is a little different but produces the
same results, then it’s all ok. Almost all of the mentions for the user
"IainLJBrown" come from their posts being retweeted. They were only
mentioned in two original tweets, and probably one of them was retweeted
once. If you combine the information from Exercise 4.10, you know that 754
of his posts were retweeted 3643. In this Twitter subgraph, he can definitely
be regarded as an influencer.

Exercise 4.12

Fetch the top five users who have published the most tweets or retweets. Use
the size() operator to produce a more performant Cypher statement.

Congratulations, by completing all of the exercises, you have learned about
Cypher aggregations and filtering.



4.2 Summary

Cypher aggregations use implicit grouping keys
As soon as an aggregation function is used, all non-aggregated columns
become grouping keys
Existential subqueries can help you efficiently filter using graph patterns
Existential subqueries are especially useful when you want to negate a
graph pattern
Retrieving relationship count can be optimized by using the size()
operator
Cardinality is the number of rows or records of the input stream to the
operation
When execution multiple clauses or aggregation functions in sequence,
you have to be mindful of the intermediate query cardinality
You can prefix any Cypher statement with the PROFILE clause to
evaluate its performance by examining total database hits

4.3 References

[Hawthorne, Joshua et al., 2013] Hawthorne, Joshua & Houston, J. Brian &
Mckinney, Mitchell. (2013). Live-Tweeting a Presidential Primary Debate
Exploring New Political Conversations. Social Science Computer Review.
31. 552-562. 10.1177/0894439313490643.

[Minot JR et al., 2021] Minot JR, Arnold MV, Alshaabi T, Danforth CM,
Dodds PS (2021) Ratioing the President: An exploration of public
engagement with Obama and Trump on Twitter. PLOS ONE 16(4):
e0248880. doi.org/10.1371/journal.pone.0248880

4.4 Solutions to exercises

The solution to Exercise 4.1 is the following:

Listing 4.19. Generated cypher query that visualizes a sample of 25 RETWEETS relationships.

MATCH p=()-[r:RETWEETS]->()



RETURN p LIMIT 25;

The solution to Exercise 4.2 is the following:

Listing 4.20. Calculate the ratio of non-null values of createdAt node property of tweets.

MATCH (u:Tweet)

WITH count(*) AS numberOfRows,

     count(u.createdAt) AS tweetsWithCreatedAtDate

RETURN toFloat(tweetsWithCreatedAtDate) / numberOfRows * 100 AS result

The solution to Exercise 4.3 is the following:

Listing 4.21. Count the number of relationships grouped by their type.

MATCH ()-[r]->()

RETURN type(r) AS relationshipType, count(r) AS countOfRels

The solution to Exercise 4.4 is the following:

Listing 4.22. Cypher statement to compare the retweet and original tweet’s text property.

MATCH (rt:Tweet)-[:RETWEETS]->(t:Tweet)

RETURN rt.text AS retweetText, t.text AS originalText

LIMIT 1

The solution to Exercise 4.5 is the following:

Listing 4.23. Visualize a single graph pattern where a user retweeted a post from another user.

MATCH p=(:User)-[:PUBLISH]->(rt:Tweet)-[:RETWEETS]->(t:Tweet)<-[:PUBLISH]-(:User)

WITH p, rt, t LIMIT 1

MATCH prt=(rt)-[:MENTIONS]->()

MATCH pt=(t)-[:MENTIONS]->()

RETURN p,pt,prt

The solution to Exercise 4.6 is the following:

Listing 4.24. Calculate the distribution of tweets by created year.

MATCH (t:Tweet)

RETURN t.createdAt.year AS year, count(*) AS count



ORDER BY year DESC

The solution to Exercise 4.7 is the following:

Listing 4.25. Calculate the distribution of tweets created in 2021 by month.

MATCH (t:Tweet)

WHERE t.createdAt.year = 2021

RETURN t.createdAt.year AS year,

       t.createdAt.month AS month,

       count(*) as count

ORDER BY year DESC, month DESC

The solution to Exercise 4.8 is the following:

Listing 4.26. Determine the top four days by the number of tweets created.

MATCH (t:Tweet)

WITH t.createdAt.year AS year,

     t.createdAt.month AS month,

     t.createdAt.day AS day,

     count(*) AS count

ORDER BY count DESC

RETURN year, month, day, count LIMIT 4

The solution to Exercise 4.9 is the following:

Listing 4.27. Count the number of distinct users who have published at least a single tweet.

MATCH (u:User)

WHERE EXISTS { (u)-[:PUBLISH]->() }

RETURN count(*) AS countOfUsers

The solution to Exercise 4.10 is the following:

Listing 4.28. Find the top five users who had the most distinct tweets retweeted.

MATCH (n:User)-[:PUBLISH]->(t:Tweet)

WHERE EXISTS { (t)<-[:RETWEETS]-() }

WITH n, count(*) AS numberOfRetweets

ORDER BY numberOfRetweets DESC

RETURN n.username AS user, numberOfRetweets

LIMIT 5



The solution to Exercise 4.11 is the following:

Listing 4.29. Calculate the distribution of mentions for user "IainLJBrown"

# A

MATCH (u:User)

WHERE u.username = "IainLJBrown"

# B

OPTIONAL MATCH (u)-[:PUBLISH]->(rt)<-[:RETWEETS]-()

WITH u, count(rt) AS numberOfRetweets

# C

OPTIONAL MATCH (u)<-[:MENTIONS]-(t)

WHERE NOT (t)-[:RETWEETS]->()

WITH u, numberOfRetweets, count(t) AS mentionsInOriginalTweets

# D

OPTIONAL MATCH (u)<-[:MENTIONS]-(ort)

WHERE (ort)-[:RETWEETS]->() AND NOT (ort)-[:RETWEETS]->()<-[:PUBLISH]-(u)

WITH u, numberOfRetweets, mentionsInOriginalTweets, count(ort) AS mentionsInRetweets

RETURN u.username AS user, numberOfRetweets,

       mentionsInOriginalTweets, mentionsInRetweets

# A Identify the user

# B Count the number of retweets their posts have received

# C Count the number of mentions in original posts

# D Count the number of mentions in retweets and exclude retweets of author's post

The solution to Exercise 4.12 is the following:

Listing 4.30. Fetch the top five users who have published the most tweets or retweets.

MATCH (u:User)

RETURN u.username AS username, size((u)-[:PUBLISH]->()) AS countOfTweets

ORDER BY countOfTweets DESC

LIMIT 5



5 Introduction to social network
analysis
This chapter covers

Random and scale-free degree distribution model
Using metrics to characterize a network
Introducting Neo4j Graph Data Science library
Using Native Projection to project an in-memory graph
Inspecting the community structure of a graph
Finding influencers in the network

Social network analysis is a process of investigating network structures and
node roles using graph theory and algorithms. One of the earliest people to
write about network science was Hungarian author Frigyes Karinthy. He
wrote a short story Láncszemek, where he described that even though we
think the world is vast, it is, in fact, very tiny. The original story is in
Hungarian, but Adam Makkai prepared an English translation. The short
story describes a concept that is known today as the small-world concept. To
demonstrate his claim, he presented how he could connect himself to
someone far from his perspective in 1929. In his example, he showed how he,
being in Budapest, could connect to a worker in an American Ford factory.
The worker in the Ford factory knows his manager, and that manager
probably knows Henry Ford. Henry Ford probably knows an industrialist in
Hungary, and that industrialist is perhaps a friend of a friend from Karinthy’s
perspective. This way, he demonstrated that a Ford company worker is
probably four or five handshakes away from an author in Budapest. Over the
years, the small-world concept has been rebranded as the six degrees of
Kevin Bacon or six degrees of separation.

In the 1950s and 60s, Paul Erdős and Alfréd Rényi started to work on the
language to describe a network. In their 1959 paper [Erdős Rényi, 1959], they
started to examine how large networks behave. Large networks look so
complicated that one might assume they are random. Even in a social



network, it is hard to predict who is connected to whom. They assumed those
networks must be random as people might randomly meet other people or
molecules randomly interact with each other.

An essential aspect of characterizing any network is to look at the node
degree distribution. In simple terms, node degree is the count of links each
node has.

Figure 5.1. Random network degree distribution.

In a random network, the degree distribution will follow the Gaussian
distribution. The vast majority of nodes have roughly the same number of
links. There won’t be many hugely popular nodes, but there won’t be many
isolated nodes either. It turns out that almost no real-world network follows
the random network degree distribution. The reason behind this claim is that
networks have profound organizing principles. At about the same time
Google developed its famous graph algorithm PageRank [S.Brin and L. Page,
1998], Albert Barabási and his colleagues examined the structure of the web.
[Albert, R., Jeong, H. & Barabási, 1999] The web consists of web pages and



URL links pointing to other sites. This is essentially a network, where nodes
represent web pages and relationships represent their URL links. The
assumption was that the web would turn out to be a random network as
anyone can publish a web page and choose which sites they want to link to.
They discovered that the web degree distribution follows a different pattern.

Figure 5.2. Scale-free degree distribution.

This is a very different degree distribution than expected. On the web, the
vast majority of the pages no one cares about. They have one or two links
pointing to them. Then there are some pages that have hundreds of millions
of links pointing to them. Those pages are Google, Amazon, Yahoo, and
others. Such a network is incredibly uneven and is today known as a scale-
free network. It was later shown that most of the real-world networks are
scale-free networks where a few big hubs hold together many tiny nodes.
Why is that so? The truth is that networks have profound organizing
principles. For example, think of a group of people. Who is more likely to
form new connections, a person with only a few friends or a person that
already has many friends? It turns out that a person who already has many



friends is more likely to form new relationships. A simple explanation is that
they will get invited to more birthday parties and events due to their greater
number of existing connections where they can mingle with new folks. Also,
they are more likely to get introduced to new people by their existing
contacts. This network organizing principle is also known as the preferential
attachment model, which was made popular by Barabási and Albert[Barabási
and Albert, 1999].

5.1 Followers network analysis

Most graph algorithms were designed to be used on monopartite networks. If
you recall, a monopartite network contains a single type of nodes and
relationships. A typical example is a friendship network where you only have
people and their friendship relationships. Another frequently mentioned
example is the web network, where you deal with web pages and hyperlinks
connecting them. Even when dealing with a multipartite network, it is pretty
common to infer or project a monopartite network using various techniques.
The next chapter will focus more on inferring monopartite networks.

Here, you will execute your first graph algorithms on the Twitter followers
network. Even though the Twitter social graph contains multiple node types
and relationships, you can focus your graph analysis on a specific subgraph.
The followers network is monopartite as it contains only User nodes and
FOLLOWS relationships. I’ve chosen it, so you don’t have to deal with
monopartite projections just yet.

A user can follow another user, but they don’t necessarily follow them back.
This means you are dealing with a directed network. Also, the relationships
don’t have any attribute or property that would quantify their strength, which
implies you are dealing with an unweighted network.

First, you will learn how to characterize the followers network in terms of
connectedness and the density of links. For example, Stanford’s SNAP
repository contains a variety of graph datasets. If you open the Pokec social
network dataset webpage, you can observe that the following characteristics
of a network are given along with the data itself.



Number of nodes
Number of relationships
Number of nodes in the largest weakly connected component
Number of nodes in the largest strongly connected component
Average local clustering coefficient

To characterize a network, you will be using Cypher query language and
graph algorithms. Specifically, in this chapter, you will learn to use some
community detection and centrality graph algorithms. The community
detection algorithms will be used to characterize the network and also find
tightly-connected groups of users. In the context of networks, a community
refers to a densely connected group of nodes, whose members have
comparatively fewer connections to other nodes in the network. For example,
think of a friendship network.

Figure 5.3. Friendship network with nodes with outlined communities

Figure 5.3 visualizes a network of eight people and their friendship
connections. The communities are outlines with a circle. You can observe
that communities form between nodes that are densely interconnected.

For example, there are three communities in Figure 5.3. On the right side,
Frodo, Samwise, and Jack form a community. They all have connections with
each other, similar to what you would expect of a group of friends. Although



Jack has a connection with Ganesh, they don’t belong to the same
community, as Ganesh doesn’t share any ties to the other friends in Jack’s
group. This makes sense if you think about it.

Imagine you have a group of friends with whom you like to go hiking or play
board games. Let’s say they are your community of friends. Now, even
though you might make a friend at your workplace, that doesn’t
automatically make the work friend part of your community. And likely, the
work friend also has a separate group of friends they like to play board games
with. Only if both your and the work friend community joined and played
games together could you consider the two communities merging and
becoming a single community with densely connected ties. In that case, you
would belong to the same community as your work friend, with whom you
now also hang out in your free time.

Community detection techniques can be used to detect various segments of
users, discover people with common interests, or recommend new
connections within a community. Suppose you take a step away from social
networks. In that case, you could use community detection algorithms to
group proteins with similar roles or identify physicians' specialties based on
the prescription data[Shirazi et al., 2020]. Another application for community
detection algorithms is to examine the network structure of scientific
collaboration networks[Newman ME, 2001].

Now think about what makes a node have influence over the network. There
are a couple of definitions of what makes a node influential. For example, the
most basic metric to determine a node’s importance is degree centrality,
which simply counts the number of relationships a node has. The higher the
count of the relationships, the more influential the node in the network.
Another example of node importance is to examine the amount of influence a
node has over the flow of information in a network.

Figure 5.4. Friendship network with node size corresponding to their influence over the
information flow



Figure 5.4 visualizes the same network as Figure 5.3. The only difference is
that now, the node size in the visualization corresponds to its influence over
the information flow. Suppose the information can circulate only through
friendship relationships. In that case, Ganesh is the most important node in
the network as he is the bridge between all three communities. Ganesh can be
thought of as the gatekeeper of information between communities, allowing
him to choose which data and when he wants to pass along. Another thing to
note is that if Ganesh were removed from the network, it would be broken
into three parts. The other two vital nodes are Ljubica and Jack, which
connect their community with the rest of the network.



In the last part of this chapter, you will take advantage of centrality
algorithms to find the most important or influential users. There are multiple
variations of node influence measures. To calculate the influence over the
information flow in the network you can use Betweenness centrality. Like
mentioned, it has various application in social network analysis, but it can
also be used to predict congestions in a road network[Kirkley A. et al., 2018].
The most famous node centrality algorithm is probably PageRank, which was
developed to rank the websites and use the ranking information to produce
better search results [S.Brin and L. Page, 1998]. The beauty of the PageRank
algorithm is that it can be applied to other domains. For example, it has been
used to rank research paper authors based on the citations[Ying Ding et al.,
2010]. I’ve also found one example where PageRank is applied to evaluate
user reputation on Youtube[Hanm Yo-Sub et al., 2009]. Lastly, it can also be
utilized to analyze protein interactions networks[Gábor Iván and Vince
Grolmusz, 2011].

Now you can follow practical examples to learn how to utilize Cypher query
language and graph algorithms to characterize and evaluate the community
structure of the Twitter followers network, followed by identifying the most
influential nodes. To follow along with the examples in this chapter, you
must have a Neo4j database instance with Twitter network data imported as
described in Chapter 3.

5.1.1 Node degree distribution

One of the essential characteristics of a network is the node degree
distribution. With a directed network, you can split the degree distribution
into in-degree and out-degree distribution. The node in-degree counts the
number of incoming relationships, and the out-degree counts the number of
outgoing connections per node.

First, you will examine the out-degree distribution of the followers network.
If you want to evaluate any distribution quickly in Neo4j Browser, you can
use the apoc.agg.statistics function from the APOC library.

  Note



The APOC library contains around 450 procedures and functions to help you
with various tasks ranging from data integration, batching, and more. While it
is not automatically incorporated with Neo4j, I recommend you include it in
all your Neo4j projects. You can check out the official documentation to get a
sense of all the procedures it features at neo4j.com/labs/apoc/4.4/.

The apoc.agg.statistics function returns statistical values such as mean,
max, and percentile values of given values. Since, you are only counting the
number of relationships per node, you can take advantage of accessing
relationship count store with the size() function.

Listing 5.1. Evaluate the node out-degree distribution with apoc.agg.statistics function.

MATCH (u:User)

WITH u, size((u)-[:FOLLOWS]->()) as outDegree

RETURN apoc.agg.statistics(outDegree)

Table 5.1. Out-degree distribution of the followers network

total 3594

min 0

minNonZero 1.0

max 143

mean 6.924874791318865

0.5 2



0.99 57

0.75 8

0.9 21

0.95 32

stdev 11.94885358058576

There are 3594 samples or nodes in the distribution. User nodes have, on
average, around seven outgoing relationships. The 0.5 key represents the 50th
percentile value, 0.9 key represents the 90th percentile value, and so on.
While the average value of outgoing relationships is almost seven, the
median value is only 2, which indicates that 50% of nodes have two or fewer
outgoing connections. Around 10% of users have more than 21 outgoing
relationships.

You can always draw a histogram of out-degree distribution in your favorite
visualization library if you are more visually oriented like me.

Figure 5.5. Out-degree distribution chart visualized with a Seaborn histogram.



Visualizing charts is beyond the scope of this book, so I won’t go into details
of how I produced Figure 5.5. However, I will include the code in the
accompanying Jupyter notebook for those who would like to learn how to
draw histograms with the Seaborn library in Python.

Interestingly, even a small subgraph of the Twitter network follows the
power-law distribution, which is typical for real-world networks. I have
limited the bin range to visualize only nodes with an out-degree of 60 or less
for chart readability. More than 1000 nodes have zero outgoing connections,
and most nodes have less than ten links. You have previously observed that
the highest out-degree is 143, and only 5% of nodes have the out-degree
higher than 32.



Exercise 5.1

Fetch the top five users with the highest out-degree. Use the size() operator
to produce a more performant Cypher statement.

The solution to the Exercise 5.1 is:

Listing 5.2. Fetch the top five users with the highest out-degree.

MATCH (u:User)

RETURN u.username as user,

       size((u)-[:FOLLOWS]->()) as outDegree

ORDER BY outDegree DESC

LIMIT 5

Now, you will repeat the same process to evaluate the in-degree distribution.
First, you will use the apoc.agg.statistics function to evaluate the in-
degree distribution in Neo4j Browser.

Listing 5.3. Evaluate the node out-degree distribution with apoc.agg.statistics function.

MATCH (u:User)

WITH u, size((u)<-[:FOLLOWS]-()) as inDegree

RETURN apoc.agg.statistics(inDegree)

Table 5.2. Out-degree distribution of the followers network

total 3594

min 0

minNonZero 1.0

max 540



mean 6.924874791318865

0.5 0

0.99 112

0.75 4

0.9 16

0.95 35

stdev 22.7640611678852

What immediately caught my eye is that the mean value is identical for out
and in-degree. I guess it makes sense, as the total count of nodes and
relationships is identical, so the mean values should be the same. More than
half of the users have zero incoming connections. While I have scraped the
Twitter API for the follower relationships of all users, I have only included
relationships between users who have either posted or were mentioned in the
12000 scraped tweets. It looks that around half of the users don’t have any
followers included in this subgraph. One outlier has 540 incoming
relationships (followers count), meaning that one in seven users follow them.

Again, I’ll visualize the in-degree distribution with the Seaborn library.

Figure 5.6. In-degree distribution chart visualized with a Seaborn histogram.



Though I did not aim to get the power-law distribution of node in and out-
degrees, a real-world network tends to exhibit such a distribution.

Exercise 5.2

Fetch the top five users with the highest in-degree (follower count). Use the
size() operator to produce a more performant Cypher statement.

The solution to the Exercise 5.2 is:

Listing 5.4. Fetch the top five users with the highest in-degree.

MATCH (u:User)



RETURN u.username as user,

       size((u)<-[:FOLLOWS]-()) as inDegree

ORDER BY inDegree DESC

LIMIT 5

Table 5.3. Top five users with the highest in-degree

user inDegree

"elonmusk" 540

"AndrewYNg" 301

"NASA" 267

"OpenAI" 265

"GoogleAI" 264

The highest in-degree users are pretty interesting. Elon Musk takes the
crown. It seems that he is popular within the tech community or at least in
our Twitter subgraph. The second place takes none other than Andrew Ng. If
you have dabbled with any machine learning, you have probably heard of
him as he is one of the most famous machine learning instructors.

Exercise 5.3

Remember, I’ve only included users who either published a tweet or were
mentioned in one. Pick one of the top five users with the highest in-degree
and examine the tweets they published or were mentioned in.



The solution to the Exercise 5.3 is:

Listing 5.5. Examine mentions and published posts for NASA.

MATCH (u:User)

WHERE u.username = "NASA"

OPTIONAL MATCH m=(u)<-[:MENTIONS]-()

OPTIONAL MATCH p=(u)-[:PUBLISH]->()

RETURN m,p

I’ve chosen to explore NASA’s Twitter. Note that I have used the OPTIONAL
MATCH as I don’t know beforehand if NASA both published a tweet and was
mentioned in one. Again, you could use a couple of variations of the Cypher
statement to produce the same results, so don’t worry if you got correct
results but used a slightly different Cypher statement. The Cypher statement
in Listing 5.5 will produce the following visualization in Neo4j Browser.

Figure 5.7. Network visualization of tweets published by or mentioning NASA.



NASA has published a single tweet and was mentioned in two other tweets in
our dataset.

5.1.2 Introduction to Neo4j Graph Data Science library

Before continuing with network characterization, you should get familiar
with the Neo4j Graph Data Science library (GDS). The Graph Data Science
library (GDS) is a plugin for Neo4j that features more than 50 graph
algorithms ranging from community detection and centrality to node
embedding algorithms and link prediction pipelines, and more. You can get
an overview of all available graph algorithms in the official documentation.

Graph algorithms in the GDS library are executed on a projected in-memory
graph structure separate from the graph stored in the database.



Figure 5.8. Graph Data Science library workflow.

To execute graph algorithms with the GDS library, you first have to project
an in-memory graph. The projected graph is stored entirely in-memory using
an optimized data structure for scalable and parallel graph algorithm
execution. You can create a projected in-memory graph using either Native
projection or Cypher projection.

Native projection is a bit more limited in selecting or filtering a specific
subgraph you want to project, as you can only filter based on node labels and
relationship types. However, it is the recommended way of projecting a graph
as it is highly performant due to reading data directly from Neo4j storage.

The second available option for creating an in-memory graph is the Cypher
projection. With it, you get all the flexibility of the Cypher query language to
select or filter any specific subgraph you might want to project. Of course,
Cypher projection has a drawback as it is slower than Native projection and
generally recommended only for the experimental or explorational phase of a
project.

As the in-memory graph projection can be costly when dealing with large
graphs, the GDS library also features a Graph Catalog. Graph Catalog comes
in handy when you want to execute multiple graph algorithms on the same



projected graph. Instead of having to create an in-memory graph for each
algorithm execution separately, you can create an in-memory graph once and
then execute multiple graph algorithms on it. The projected graph can then be
accessed via its name when executing graph algorithms, so the naming
named graph stuck with projected graphs stored in a Graph Catalog.

Once the in-memory graph is created, you can execute graph algorithms on
top of it. Algorithms come in three tiers of maturity:

Production-ready: Indicates that the algorithm has been tested with
regards to stability and scalability.
Beta: Indicates that the algorithm is a candidate for the production-
quality tier.
Alpha: Indicates that the algorithm is experimental and might be
changed or removed at any time.

Throughout this book, I will mainly try to demonstrate production-ready
graph algorithms. I found that there is room for performance improvement
with Alpha and Beta tier graph algorithms, but the algorithm results are
accurate. So, if you see an algorithm in lower maturity tiers, you can still use
it.

Each algorithm has four modes of execution, depending on the use-case.

stream: returns results as a stream of records and does not store results
stats: returns a summmary statistics of the result and does not store
results
mutate: writes the results back to the projected in-memory graph. This
mode can only be used in combination with a named graph stored in a
Graph Catalog. It is very useful when you want to use an output of one
graph algorithm as an input to another.
write: writes the results back to the Neo4j database graph.

5.1.3 Graph Catalog and Native projection

I am a firm believer that one learns best through practical examples. You will
begin with network characterization and learn the GDS syntax and algorithm
use-cases through examples.



First off, you need to project an in-memory graph. You will use Native
Projection to create an in-memory graph that consists of User nodes and
FOLLOWS relationships. The Native Projection syntax is as follows:

Listing 5.6. Native projection syntax to create a named graph in Graph Catalog.

CALL gds.graph.project(

    graphName,

    nodeProjection,

    relationshipProjection,

    optional configuration

)

GDS procedures are executed using the CALL clause in combination with the
procedure name. The procedure to store a named graph in Graph Catalog
with Native projection is called gds.graph.project(). It contains three
mandatory and one optional parameters. The first parameter is used to name
the graph under which it will be accessed when executing graph algorithms.
The second parameter called nodeProjection defines the subset of nodes you
want to project. Similarly, the relationshipProjection parameter specifies
which relationships should be considered when creating an in-memory graph.
One important thing to note is that a relationship will be skipped during
projection if both adjacent nodes are not described in the nodeProjection
parameter. In GDS terms, the starting node of the relationship is called the
source node, and the end node is called the target node.

To project the followers network, you need to only include User nodes and
FOLLOWS relationships with no additional configuration.

Listing 5.7. Project an in-memory graph consisting of User nodes and FOLLOWS relationships.

CALL gds.graph.project('follower-network', 'User', 'FOLLOWS')

The Cypher statement in Listing 5.7 uses Native Projection to store an in-
memory graph. The first parameter specifies its name that will be used to
access it when executing graph algorithms. The second parameter defines
which nodes you want to include in the projection. When you only want to
project a single type of nodes, you can define the desired node label as a
string. Similarly, when you only want to project a single type of relationships



in the third parameter, you can specify the type as a string.

In later chapters, you will learn more about Native Projection and how to
create an in-memory graph consisting of multiple node labels and
relationship types. The GDS library also supports projecting node and
relationship properties, which is useful when dealing with weighted
networks.

5.1.4 Weakly Connected Component algorithm

The first graph algorithm you will execute is the Weakly Connected
Component algorithm, or WCC in short. It is used to find disconnected parts
or islands within a network. The WCC algorithm is probably a graph
algorithm that should be executed as the first step of any graph analysis to
evaluate graph connectivity.

Figure 5.9. Network visualization of two weakly connected components.

Figure 5.9 visualizes two weakly connected components. One component
contains John, Alicia, and Amulya. The other component contains OpenAI,
GoogleAI, NASA, and AndrewNG.



Nodes within a single weakly connected component can reach all the other
nodes if you ignore the relationship direction. For example, John can reach
Alicia even though the relationship is pointed in the other direction.
Effectively, you could say that the relationships are treated as undirected. The
algorithm considers that all nodes within the same community can reach each
other if a path exists between them irrespective of the relationships' direction.

You will execute the WCC algorithm using the write mode. As mentioned,
the write mode stores the results back to Neo4j database, but also provides
summary statistics of the algorithm result. The syntax for graph algorithm
procedures in GDS is:

Listing 5.8. Graph algorithm procedure syntax.

CALL gds.<algorithm>.<mode>(namedGraph, {optional configuration})

When using the write mode of an algorithm, you need to provide the
mandatory writeProperty parameter, which specifies the name of the node
property that the algorithm results will be stored to. The procedure to execute
the WCC algorithm is gds.wcc.

You can execute the WCC algorithm on the followers network and store the
results to Neo4j by using the following Cypher statement:

Listing 5.9. Execute the WCC algorithm on the follower network and store the results as a
followerWcc node property.

CALL gds.wcc.write('follower-network', {writeProperty:'followerWcc'})

YIELD componentCount, componentDistribution

Table 5.4. Summary statistics for the WCC algorithm executed on the followers network.

componentCount componentDistribution

{ "p99": 3,

"min": 1,



547

"max": 2997,

"mean": 6.570383912248629,

"p90": 1,

"p50": 1,

"p999": 5,

"p95": 2,

"p75": 1 }

The write mode of the algorithm stores the results to the Neo4j database and
provides the following summary statistics. The node property that contains
the algorithm results identifies the component id to which the node belongs
to.

There are 547 disconnected components in the followers network, and the
largest contains 2997 members. Most real-world networks have a single
connected component containing most of the nodes in the network and a
couple of disconnected peripheral components. As the dataset you are
analyzing is rather small, it is not unusual to have a higher count of
components. I’ve found one analysis on the Twitter network[Myers et al.,
2014], where the authors analyzed a snapshot of the Twitter network from
2012 with 175 million users and 20 billion follow relationships. The analysis
revealed that around 93% of the users belong in the largest weakly connected
component. Another analysis examined the Facebook graph[Ugander et al.,
2011], where they learned that the largest weakly connected component
contains more than 99% of all nodes.

The p90 result or the 90th percentile of the component size has a value of 1.
This indicates that 90% of the components have only a single member. When
a component contains only a single member, this means that the particular
node has no relationships.



Exercise 5.4

Count the number of members for the largest five weakly connected
components. The component ids are stored under the followerWcc property
of the User nodes. Use the followerWcc property as a grouping key in
combination with the count() function to count the number of members by
component.

The result to Exercise 5.4 is:

Listing 5.10. Count the number of users for the largest five weakly connected components.

MATCH (u:User)

WITH u.followerWcc AS componentId, count(*) AS countOfMembers

ORDER BY countOfMembers DESC

RETURN componentId, countOfMembers

LIMIT 5

Table 5.5. Member count for the largest five weakly connected components.

componentCount countOfMembers

0 2997

1293 5

1049 3

269 3

335 3



You can observe that there is a single component, which contains 85% of the
nodes in the network. The component ids are not deterministic, meaning that
you can get different values for the component ids. However the component
member distribution should be identical.

The second largest component contains only five members. You can visualize
the second largest component in Neo4j Browser with the following Cypher
statement. If you have different component ids, make sure to change the
component id in the WHERE clause.

Listing 5.11. Retrieve User nodes that have no outgoing FOLLOWS relationships.

MATCH p=(u:User)-[:FOLLOWS]->()

WHERE u.followerWcc = 1293

RETURN p

Figure 5.10. Network visualization of the second largest weakly connected component in the
follower network.



I’ve inspected the usernames shown in Figure 5.10 on Twitter and it seems
that they are some professors from Singapore and Kyoto universities. They
follow each other, but don’t have any connections to the rest of the network
in our small Twitter snapshot.

Exercise 5.5

Identify the number of weakly connected components that contain only a
single member. Remember, if a weakly connected component contains only a
single member, this effectively means that the particular node has no
incoming or outgoing relationships. Instead of using the followerWcc
property to count those components, you can simply filter the User nodes that
have no FOLLOWS relationships and count them. The count will be identical to



the number of weakly connected components with a single member.

5.1.5 Strongly Connected Components algorithm

The only difference between the Weakly and Strongly Connected
Components algorithm (SCC) is that the SCC algorithms considers
relationship directions.

Figure 5.11. Network visualization of four strongly connected components.

Figure 5.11 visualizes four strongly connected components. The first
component contains NASA, AndrewNG, and GoogleAI. You can notice that
although OpenAI can reach all of the nodes in the first component, the path
from GoogleAI to OpenAI is not possible, as the SCC algorithm does not
ignore the relationship direction. Similarly, Amulya in the third component
can be reached by Alicia and John, but a directed path from Amulya to either
John or Alicia does not exist.

The Strongly Connected Component algorithm is useful when directed paths
and reachability plays an important role. For example, imagine a road
network, where the nodes represent intersections and relationships represent
road connections. For example, many large city centers have a lot of one-way
road connections. Using the SCC algorithm, you could evaluate the



consequences of closing a single or multiple road connections and how it
would affect the reachability of places within the city.

In the context of Twitter, the Strongly Connected Component can be applied
to identify smaller well-connected groups of nodes. One research paper[Swati
et al., 2016] claims that one could use the SCC algorithm to identify groups
of users for more precise marketing targeting. Another article[Efstathiades,
Hariton et al., 2016] used the SCC algorithm to suggest a movement of the
user only following popular users while not making many connections with
other un-popular users. The result is an increased number of strongly
connected components over time.

The SCC algorithm in the GDS library is in the Alpha tier but that doesn’t
mean that you can’t use it. The only thing I would be wary of is using it on
graphs with several millions of nodes as there is no guarantee that it scales
well.

Again, you will use the write mode of the algorithm to store the results back
to the Neo4j database.

Listing 5.12. Execute the WCC algorithm on the follower network and store the results as a
followerScc node property.

CALL gds.alpha.scc.write('follower-network', {writeProperty:'followerScc'})

YIELD nodes, communityCount, p95, p99, p100, maxSetSize

Table 5.6. Summary statistics for the SCC algorithm executed on the followers network.

nodes communityCount p95 p99 p100 maxSetSize

3594 2704 1 2 796 796

As expected, the count of strongly connected components is higher than the
count of weakly connected components. There are 2704 strongly connected
components and the largest one contains 796 members.



Exercise 5.6

Count the number of members for the largest five strongly connected
components. The component ids are stored under the followerScc property
of the User nodes.

The result to Exercise 5.6 is:

Listing 5.13. Count the number of users for the largest five weakly connected components.

MATCH (u:User)

WITH u.followerScc AS componentId, count(*) AS countOfMembers

ORDER BY countOfMembers DESC

RETURN componentId, countOfMembers

LIMIT 5

Table 5.7. Member count for the largest five strongly connected components.

componentCount countOfMembers

0 796

380 20

407 7

36 6

212 4

Similarly as with the WCC algorithm, the community ids are not
deterministic. You could get different community ids, but should get the



same counts.

Exercise 5.7

Visualize the second-largest strongly connected component in Neo4j
Browser. A node can have relationships to nodes in other strongly connected
components, so you have to apply a filter to ensure all the nodes are in the
second-largest strongly connected component.

The solution to Exercise 5.7 is:

Listing 5.14. Retrieve User nodes that have no outgoing FOLLOWS relationships.

MATCH p=(u1:User)-[:FOLLOWS]->(u2:User)

WHERE u1.followerScc = 380 AND u2.followerScc = 380

RETURN p

Again, make sure that you correct the followerScc value if needed in the
WHERE clause. The Cypher statement in Listing 5.14 will produce the
following network visualization in Neo4j Browser.

Figure 5.12. Network visualization of the second largest strongly connected component in the
follower network.



By looking at the visualization in Figure 5.12, you can observe that this
community is tightly-knit as there are many connections between the nodes in
the group. Judging by the usernames, it seems they all come from the same
part of the world. Unfortunately, I am not a language expert, so I have no
idea which part of the world it is.



5.1.6 Local clustering coefficient

The local clustering coefficient, or LCC for short, is a metric that quantifies
how connected or close the neighbors of a particular node are. The LCC
value ranges from zero to one. The LCC value of 0 indicates that the
neighboring nodes have no connections between each other. On the other
hand, the LCC value of 1 indicates that the network of neighbors forms a
complete graph, where all the neighbors are connected.

Figure 5.13. Local clustering coefficient values for an undirected graph.

The local clustering coefficient is more easily understood on an undirected
graph. For example, in Figure 5.13, Stu has three neighbors. When none of
their neighbors has any connections to other neighbors, the LCC value is 0.
Thus, Stu has the LCC value of 0 in the left example of Figure 5.13. In the
middle example, Stu has the LCC value of 1/3 or 0.33. Stu has three
neighbors, so combinatorically, there are three possible relationships between
them. As there is only one connection in the middle example of Figure 5.13
between Stu’s neighbors, the LCC value for Stu is 1/3. The right-hand side
example has two connections between Stu’s neighbors, so consequently, the
LCC value for Stu is 2/3. If another relationship was created between Jack
and Amy, then all the neighbors of the Stu would form a complete graph,
which would change Stu’s LCC value to 1.

The local clustering coefficient (LCC) algorithm provides a metric to
evaluate how strongly the neighbors of a node are connected. You can
calculate the LCC value of a single node by dividing the number of existing



links between neighbor nodes with the number of possible links between
neighbor nodes. You can use the following formula to calculate the LCC on a
directed graph as well.

Figure 5.14. Local clustering coefficient values for an directed graph.

With a directed graph, the first difference is that a node has a neighboring
node if it has at least a single connection to it. Even though Stu has four
connections in Figure 5.14, they only have three distinct neighbors. A
neighbor of a node can have one incoming or outgoing connection to the
original node or both. Only the count of distinct neighbors is important with
the LCC algorithm. With a directed graph, each pair of neighbors can have up
to two relationships between them, so the total possible number of
connections between three neighbors is six. Again, you only need to count
the number of existing connections between neighbors and divide it by the
number of possible connections.

Unfortunately, the GDS library only supports the LCC algorithm for an
undirected graph. However, as the directed LCC only counts the number of
neighboring nodes and their links, you can easily implement the algorithm
using only Cypher query language.

Use the following Cypher statement to calculate the directed LCC value of
each node and store the results under the lcc node property.

Listing 5.15. Calculate the local clustering coefficient on the directed followers network.

# A



MATCH (u:User)

# B

OPTIONAL MATCH (u)-[:FOLLOWS]-(n)

WITH u,count(distinct n) as neighbors_count

# C

OPTIONAL MATCH (u)-[:FOLLOWS]-()-[r:FOLLOWS]-()-[:FOLLOWS]-(u)

WITH u, neighbors_count, count(distinct r) as existing_links

# D

WITH u,

     CASE WHEN neighbors_count < 2 THEN 0 ELSE

       toFloat(existing_links) / (neighbors_count * (neighbors_count - 1)) END as lcc

# E

SET u.lcc = lcc

# A Match all User nodes

# B Count the number of their distinct neighbors

# C Cound the number of distinct link between neighbors

# D Calculate the LCC value

# E Store the LCC value under the lcc node property

You should already be familiar with most of the Cypher syntax in Listing
5.15. You start by matching all the users in the database. Next, you count the
number of distinct neighbors. As some User nodes don’t have any FOLLOWS
relationships, you must use the OPTIONAL MATCH clause. Using the MATCH
clause would reduce the cardinality and effectively filter out all the User
nodes that don’t have any FOLLOWS relationships. If you remember from the
Weakly Connected Components example, there are around 500 User nodes
that don’t have any FOLLOWS relationships. Another tiny detail is that the
Cypher pattern in the OPTIONAL MATCH does not provide a relationship
direction. You want to count the number of distinct users irrespective of if
they have incoming, outgoing, or both relationships to the original node. As
some neighbors can have both incoming and outgoing connections with the
original User node, you need to use the distinct prefix within the count()
function to get the correct result. The only variable missing before calculating
the local clustering coefficient is the count of existing links between
neighbors. Again, you should use the OPTIONAL MATCH clause as some
neighbors might have zero connections, and you don’t want to filter those
out. I really like the Cypher syntax expressivity of defining the graph pattern
that will count the number of links between neighboring nodes.

OPTIONAL MATCH (u)-[:FOLLOWS]-()-[r:FOLLOWS]-()-[:FOLLOWS]-



(u)

You can observe that I used the reference variable u twice in this pattern.
Effectively, this graph pattern describes all triangles that the u node
participates in.

Figure 5.15. Visualized Cypher pattern to identify triangles.

As you can see, both the nodes have to be adjacent to the node u as described
in the Cypher syntax. You are only interested in counting the r relationships
between neighbors, so you assign a reference variable to it and combine the
count() function and distinct prefix to fetch the count of existing links
between neighbors. Similarly, as before, the FOLLOWS relationships in the
specified graph pattern have no specified direction as you want to consider all
possible variations of relationship directions.

Lastly, you can use the LCC algorithm formula to calculate the LCC values
for each node.

Equation 5.1

Equation 5.1 can be used to calculate the directed LCC values. You take the
count of existing links and divide it by the possible count of connections
between neighbors which is neighbors count times neighbors count - 1. The



formula does not work for nodes with the neighbor count of zero or one, as
you would end up dividing by zero. By definition, the LCC value for nodes
with less than two neighbors is undefined. However, I’ve come across some
implementations where they use 0 instead of undefined value for nodes with
less than two neighbors, which is what I have also decided to use in this
example. I’ve introduced the CASE statement to automatically assign the LCC
value of 0 for nodes with less than two neighbors. If you have some
experience with SQL query language, you will notice that the CASE statement
is identical in Cypher. In any case, the Cypher syntax for CASE clause is:

CASE WHEN predicate THEN x ELSE y END

The predicate value should be a boolean. You can then select the x value if
the boolean is true or the y value if the predicate is false.

Lastly, you store the calculated LCC value under the lcc property of User
nodes. Now that the LCC values are stored in the database, you can go ahead
and calculate the average local clustering coefficient.

Listing 5.16. Calculate the average local clustering coefficient.

MATCH (u:User)

RETURN avg(u.lcc) as average_lcc

The average local clustering coefficient is 0.06. That’s quite close to 0. One
reason for such a small LCC value is that we only have a tiny snapshot of the
Twitter network, so the information about followers is limited. Research on a
more extensive Twitter network[Myers et al., 2014] demonstrates that the
average LCC values are closer to between 0.15 and 0.20. It also seems that
users on Twitter are less tightly-knit than on Facebook[Ugander et al., 2011].
That makes sense as one typically connects with their friends and family on
Facebook, which is a more strongly connected group of users. On the other
hand, one study[Efstathiades, Hariton et al., 2016] suggests that Twitter users
prefer to follow elite users or influencers and not connect with their family
and real-life friends or neighbors as much.

5.1.7 Finding influencers with the PageRank algorithm



PageRank is probably one of the most famous graph algorithms. It was
designed by Larry Page and Sergey Brin [Brin and Page, 1999] and helped
make Google Search what it is today. It measures the transitive or directional
influence of nodes. For example, the node degree quantifies the influence or
importance of a node by considering only its direct neighbors. In contrast,
PageRank also considers the indirect relationships with other nodes in the
graph spanning over multiple hops. To put it into our Twitter subgraph
context, if, for example, Elon Musk or Andrew Ng follows you, you gain
more influence than if I followed you. PageRank evaluates the number of
followers a particular node has as well as how influential those followers are.

PageRank was initially developed for ranking web pages importance. The
algorithm considers every relationship as a vote of influence. I like to think
that if a node is pointing to another node, it essentially states that the other
node is important or influential.

Figure 5.16. PageRank treats every relationship as a vote of influence.

You can then imagine how the votes flow throughout the network via
directed relationships. Each node is initialized with its score being equal to 1
divided by the number of nodes. Then, it passes its rank through its outgoing
connections. The amount of influence passed through every relationship
equals to the node’s influence divided by the number of outgoing links. After
the first iteration, the node’s rank is equal to the sum of incoming scores from
other nodes. The algorithm then iterates this process until it converges or



until it hits a predefined number of iterations.

Figure 5.17. Simplified PageRank calculation based on network flow.

However, the simplified PageRank calculation based on the network flow has
a critical flaw. Node D in Figure 5.17 has no outgoing links. A node without
any outgoing connections is also known as a dead end. The presence of dead
ends will cause the PageRank score of some or all nodes in the network to go
down to zero as it effectively leaks the rank score out of the network.



The PageRank algorithm introduces the teleportation ability to avoid rank
leaking. The teleportation introduces a small probability of jumping to a
random node instead of following the outgoing links. In the context of
exploring web pages, imagine a web surfer traversing the internet. They
might follow outgoing links from a web page to a web page or get bored and
jump to a random page. The constant that defines the probability a surfer will
follow an outgoing link is called the damping factor. Consequently, the
probability that they will jump to a random page is 1 - damping factor. The
typical value of the damping factor is 0.85, indicating that a surfer will jump
to a random page about 15% of the time. With the standard PageRank
algorithm, the jump to a random node is uniformly distributed between all
nodes in the network, meaning that a bored surfer has equal chances to jump
to any node in the graph, including the one he is currently visiting. In this
case, the intermediate node’s rank after each iteration sums both the outgoing
link’s rank as shown in Figure 5.17 and adds the probability that a surfer will
randomly jump to that node. The teleportation ability fixes the scenario where
a dead end node leaks the whole network PageRank score, which would
effectively be leaving all nodes at rank value zero.

You can execute PageRank on the followers networks with the following
Cypher statement:

Listing 5.17. Execute PageRank on the followers network.

CALL gds.pageRank.write('follower-network', {writeProperty:'followerPageRank'})

Exercise 5.8

Retrieve the top five users with the highest PageRank score. The PageRank
score is stored under the followerPageRank node property.

The results of the Exercise 5.8 are the following:

Table 5.8. Most important nodes judging by the PageRank score.

componentCount countOfMembers



"elonmusk" 20.381862706745217

"NASA" 8.653231888111382

"wmktech" 6.937989377788902

"Twitter" 6.937989377788902

"Wajdialkayal1" 6.551413750286345

Elon Musk is by far the most influential user in our Twitter subgraph.
Interestingly, Andrew Ng, GoogleAI, and OpenAI were all in the first five
positions given the incoming degree but have lost their places when using the
PageRank score. Remember, the PageRank evaluates the number of incoming
connections as well as how influential the nodes behind the links are.
Sometimes, a node with a high PageRank score only has a small number of
influential connections.

You can examine the top followers of each user in Table 5.8 with the
following Cypher statement:

Listing 5.18. Examine the top five followers for the highest ranking users.

# A

MATCH (u:User)<-[:FOLLOWS]-(f)

WHERE u.username IN ["elonmusk", "NASA", "wmktech", "Twitter", "Wajdialkayal1"]

# B

WITH u,f

ORDER BY f.followerPageRank DESC

# C

RETURN u.username as user, round(u.followerPageRank, 2) as pagerankScore, collect(f.username)[..5] AS topFiveFollowers

ORDER BY pagerankScore DESC

# A Match the the particular group of users using the IN clause

# B Order the intermediate results by the followers pageRank score descending



# C Collect the top five followers grouped by the original users

The Cypher statement in Listing 5.18 begins by matching the top five users
by their username property. Instead of using multiple OR predicates, you can
use the IN operator to specify a list of possible values. Then you use the WITH
statement to order the results by the followers' pageRank score. Lastly, you
use the collect() function to produce an ordered list of followers by their
pageRank score. The collect() function keeps the order of the input data.
Because you first ordered the results in the WITH statement by the followers'
PageRank score, the list result of the collect() function will contain an
ordered list of followers by their PageRank score. Returning only the top five
followers per user was achieved with list slicing. You might have come
across a list or array slicing if you have done any programming or SQL
analysis before. The list slicing syntax in Cypher is as follows:

array[from..to]

The square brackets syntax will extract the array elements from the start
index "from", and up to (but excluding) the end index "to". Cypher has a
round() function that allows you to specify to round any number to the
specified precision or decimal point.

The results of the Cypher statement in Listing 5.18 are:

Table 5.9. Most important nodes judging by the PageRank score.

user pagerankScore topFiveFollowers

"elonmusk" 20.38

["fchollet",
"TheCuriousLuke",
"DrLiMengYAN1",
"douwekiela",
"threadreaderapp"]

["BIBBI02374449",



"NASA" 8.65
"Lucian2drei",
"NYTScience",
"CmccClimate",
"abhibisht89"]

"wmktech" 6.94

["Wajdialkayal1",
"alkayal_wajdi",
"Websystemer",
"AlkayalWajdi",
"SwissCognitive"]

"Twitter" 6.66

["Lucian2drei",
"Chuck_Moeller",
"Omkar_Raii",
"SportsCenter",
"philipvollet"]

"Wajdialkayal1" 6.55

["wmktech",
"Websystemer",
"taylorwfarley",
"RiM2ww",
"saye2018"]

I was hoping that Elon or NASA would appear under top followers, but
unfortunately, they don’t follow anyone in our subgraph. If, for example,
either Elon or NASA followed a user, their PageRank score would be
automatically high because they would have one of the most influential nodes
following them. A real-life analogy might be the following. Imagine you just
moved to Sweden and don’t know anyone except the president of the country.
Even though you only have one connection, that connection is very
influential, which automatically gives you a lot of influence over the network.

The only exciting follower pattern that can be found in Table 5.9 is that users



wmktech and Wajdialkayal1 follow each other. They are both influential but
also contribute to each other’s importance by following one another.

Neo4j GDS library also supports the Personalized PageRank variation. In the
PageRank definition, a surfer can get bored and randomly jump to other
nodes. With the Personalized PageRank algorithm, you can define which
nodes should the surfer jump to when he gets bored. It can be said that by
defining the sourceNodes to which the surfer is biased to jump to, you are
effectively inspecting the influence of nodes by looking through a particular
node or multiple nodes point of view.

In this example, you will use the stream mode of the Personalized PageRank
algorithm. The stream mode returns the results of an algorithm as a stream of
records. The syntax of the Personalized PageRank algorithm is almost
identical to the PageRank algorithm, except that you are also providing the
sourceNodes parameter.

Listing 5.19. Run the Personalized PageRank algorithm from the point of view of users who
registered in 2016.

# A

MATCH (u:User)

WHERE u.registeredAt.year = 2016

WITH collect(u) as sourceNodes

# B

CALL gds.pageRank.stream('follower-network', {sourceNodes: sourceNodes})

YIELD nodeId, score

# C

RETURN gds.util.asNode(nodeId).username AS user, score

ORDER BY score DESC

LIMIT 5;

# A Match the source nodes to be used in Personalized PageRank algorithm

# B Execute the Personalized PageRank algorithm

# C Use the `gds.util.asNode` function to match the specific node by its internal id

First, you have to use the MATCH clause followed by the collect() function to
produce a list of all users who registered in 2016. You can then input the
collected users as the sourceNode parameter. By defining the sourceNode
parameter, you are instructing the procedure to execute the Personalized
PageRank algorithm and use the provided nodes as the restart nodes when



teleporting. The stream mode of the PageRank algorithms outputs two
columns, nodeId and score. The nodeId represents the Neo4j internal node
id, which the database automatically generates for every node in the database.
You can use the gds.util.asNode() function to map the nodeId value to the
actual node instance. The score column represents the PageRank score for a
particular node.

What would happen if you run the Personalized PageRank and used a node
with no outgoing connections as the sourceNodes parameter.

Listing 5.20. Run the Personalized PageRank algorithm from the point of view of NASA.

MATCH (u:User)

WHERE u.username = "NASA"

WITH collect(u) as sourceNodes

CALL gds.pageRank.stream('follower-network', {sourceNodes: sourceNodes})

YIELD nodeId, score

RETURN gds.util.asNode(nodeId).username AS user, score

ORDER BY score DESC

LIMIT 3;

Table 5.10. Most important nodes judging by the PageRank score.

user score

"NASA" 0.15000000000000002

"ServerlessFan" 0

"dr_sr_simpson" 0

As there are no outgoing connections from the nodes specified in the
sourceNodes parameter, the PageRank algorithm will keep on restarting at
the selected source node, which will, in turn, leave all the other nodes with



the PageRank score of zero. When running PageRank with default settings,
all nodes with a PageRank score of 0.15 don’t have any incoming
relationships. They only get their importance through the surfer randomly
jumping to them, but they have no votes of significance from other nodes.
With the Personalized PageRank variation, you can also specify which nodes
to jump to when bored, which in turn means that some nodes will not even
get the PageRank score of 0.15 as the surfer doesn’t randomly jump to them.

Exercise 5.9

Execute the Personalized PageRank algorithm and use the User nodes who
registered in the year 2019 as the sourceNodes parameter.

5.1.8 Drop named graph

Congratulations, you have completed your first network analysis.

After you have completed the planned graph algorithms execution sequence,
it is recommended to drop the projected graph from memory. You can release
the in-memory graph by using the gds.graph.drop() procedure.

Listing 5.21. Release the follower-network graph from memory.

CALL gds.graph.drop('follower-network')

In the next chapter, you will learn how to infer monopartite networks based
on indirect relationships. You will run many of the graph algorithms you
learned in this chapter to solidify your skills of executing and understanding
their results.

5.2 Summary

Real-world networks follow power-law distribution of node degree
For a directed network, the node degree can be split into in-degree, the
count of incoming connections, and out-degree, which counts outgoing
links
Graph Data Science library uses a projected in-memory graph to execute



graph algorithm on
Native projection is the more performant variation of projecting in-
memory graphs
Weakly connected component algorithms is used to identify
disconnected parts or islands in the network
Local clustering coefficient examines how tightly-knit the neighbors of a
node are
PageRank treats each relationship as a vote of influence
PageRank has a damping factor parameter that specifies how often
should the random surfer follow an outgoing link as opposed to jumping
to a random node
With the Personalized PageRank variation, you can specify which nodes
should the random surfer teleport to, which gives you a view of the
network from a specific point of view

5.3 References

[Shirazi et al., 2020] Saeed Shirazi, Amir Albadvi, Elham Akhondzadeh,
Farshad Farzadfar, & Babak Teimourpour (2020). A new application of
community detection for identifying the real specialty of physicians.
International Journal of Medical Informatics, 140, 104161.

[Newman ME, 2001] Newman ME. The structure of scientific collaboration
networks. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):404-9. doi:
10.1073/pnas.021544898. Epub 2001 Jan 9. PMID: 11149952; PMCID:
PMC14598.

[S.Brin and L. Page, 1998] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer networks and ISDN systems,
30(1-7):107–117, 1998.

[Ying Ding et al., 2010] Ying Ding, Erjia Yan, Arthur Frazho, & James
Caverlee. (2010). PageRank for ranking authors in co-citation networks.

[Hanm Yo-Sub et al., 2009] Han, Yo-Sub & Kim, Laehyun & Cha, Jeong-
Won. (2009). Evaluation of User Reputation on YouTube. 346-353.
10.1007/978-3-642-02774-1_38.



[Gábor Iván and Vince Grolmusz, 2011] Gábor Iván, Vince Grolmusz, When
the Web meets the cell: using personalized PageRank for analyzing protein
interaction networks, Bioinformatics, Volume 27, Issue 3, 1 February 2011,
Pages 405–407, doi.org/10.1093/bioinformatics/btq680

[Kirkley A. et al., 2018] Kirkley, A., Barbosa, H., Barthelemy, M. et al. From
the betweenness centrality in street networks to structural invariants in
random planar graphs. Nat Commun 9, 2501 (2018). doi.org/10.1038/s41467-
018-04978-z

[Erdős Rényi, 1959] P. ERDŐS-A. RÉNYI, On random graphs.
I,Publicationes Mathematicae (Debrecen),6 (1959), pp. 290–297.

[Albert, R., Jeong, H. & Barabási, 1999] Albert, R., Jeong, H. & Barabási,
AL. Diameter of the World-Wide Web. Nature 401, 130–131 (1999).
doi.org/10.1038/43601

[Barabási and Albert, 1999] Barabási, A.L., & Albert, R. (1999). Emergence
of Scaling in Random Networks. Science, 286(5439), 509–512.

[Myers et al., 2014] Myers, S., Sharma, A., Gupta, P., & Lin, J. (2014).
Information Network or Social Network? The Structure of the Twitter Follow
Graph. In Proceedings of the 23rd International Conference on World Wide
Web (pp. 493–498). Association for Computing Machinery.

[Ugander et al., 2011] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.
The anatomy of the Facebook social graph. arXiv, 2011.

[Swati et al., 2016] Dhingra, Swati et al. “Finding Strongly Connected
Components in a Social Network Graph.” International Journal of Computer
Applications 136 (2016): 1-5.

[Efstathiades, Hariton et al., 2016] Efstathiades, Hariton et al. “Online social
network evolution: Revisiting the Twitter graph.” 2016 IEEE International
Conference on Big Data (Big Data) (2016): 626-635.



6 Projecting monopartite networks
with Cypher Projection
This chapter covers

Translating an indirect graph pattern into a direct relationship
Using Cypher projection to project an in-memory graph
Ignoring self-loops with Cypher projection
Introducing weighted variant of Degree centrality and PageRank
algorithms

In the previous chapter, you performed a network analysis of the Twitter
follower network. The decision to start with the follower network was
straightforward. Most graph algorithms are designed to be executed on a
monopartite network, meaning only a single node and relationship type are
present. However, the Twitter social network schema contains multiple node
types and relationships. Instead of adjusting graph algorithms to support
multipartite networks (multiple node and relationship types), the general
approach is to first project a monopartite network (single node and
relationship type). I have briefly alluded to this concept in Chapter 2, where I
presented some options on how to infer monopartite projections on the
Twitter social network.

Suppose you want to analyze the retweet network and find the most
influential users based on how often their tweets get retweeted by other users.
More often than not, you want to use the PageRank algorithm to identify the
most important nodes in the network. You chose the following graph model
to represent the retweet pattern in the Twitter social network.

Figure 6.1. Graph model that represents a retweet pattern.



If you were to execute the PageRank algorithm on the network in Figure 6.1,
which node do you think would be the most important? Remember that
PageRank treats each relationship as a vote of confidence or influence. The
influence then flows throughout the network. For me, it is easier to start with
the least influential nodes and work my way up to the most important ones.
Please take a minute or two to think about it.

Both the original tweet and the retweet have incoming relationships, so they
are already more important than users. The retweet has a single incoming
relationship, and the original tweet has two incoming connections. With the
PageRank algorithm, both the count of incoming links as well as the
importance of nodes linking to a particular node is considered when
calculating the PageRank score. So, it is not always given that a node with
more incoming links will have a higher score. However, in the retweet
network in Figure 6.1, the original tweet draws influence from its author as
well as the retweet and the retweet’s author. On the other hand, the retweet
node draws influence only from the retweet’s author, which means that the
retweet will be less important than the original tweet.

Figure 6.2. Retweet pattern where the node size represents its PageRank score.



The objective of the analysis was to determine the most influential users
based on their retweet patterns. However, as you can observe, running
PageRank on the current retweet network does not help you solve that
objective. You might be wondering which graph algorithm to use then. There
are so many different graph models in the real world that it doesn’t make
sense to adjust graph algorithms to all the variations of graph models. So, it is
your job to transform the graph to fit the algorithm and not the other way
around.

As mentioned, the standard input for the majority of the centrality and
community detection algorithms is a monopartite network. Since the
objective of the assignment is to analyze the influence of users given the
retweet information, the input to graph algorithms should contain User nodes.
As a monopartite network contains only a single type of nodes, you need to
exclude Tweet nodes somehow while preserving the information about the
retweets. In the retweet example, you could assume that if a user retweets a
post from another user, they increase or amplify the reach of the original
tweet and, consequently, the author of the original tweet. You can represent
how the users amplify other users' reach through a direct relationship between
them. How you want to name the new inferred relationship depends on your
domain and use case. In this example, I will give the new relationship type
AMPLIFY since it is used to represent how users amplify the reach of one
another through retweets. The term inferred relationship means that the



relationship is not explicitly defined in data, but is inferred or created based
on some assumptions.

Figure 6.3. Translate an indirect retweet pattern into a direct amplify relationship.

Figure 6.3 visualizes the concept of translating a graph pattern between two
User nodes that spans over three relationships into a direct link between the
two. On the left side of the visualization is the retweet pattern as it is stored in
the database. However, since you want to evaluate how influential users are
based on the retweet patterns with the PageRank algorithm, you need to
transform the indirect path between the two users into a direct relationship, as
indicated on the right side of Figure 6.3.

You could easily describe this translation with a Cypher statement.

Listing 6.1. Describe the translation of the indirect retweet pattern to a direct amplify
relationship.

MATCH (s:User)-[:PUBLISH]->()-[:RETWEETS]->()<-[:PUBLISH]-(t:User)

CREATE (s)-[:AMPLIFY]->(t);

After you have transformed all the retweet patterns into a direct relationship,



you end up with a monopartite network that contains only User nodes and
AMPLIFY relationships.

Figure 6.4. Projected monopartite network of users and amplify relationships.

Figure 6.4 visualizes a subgraph of the projected or inferred monopartite
network that represents User nodes and AMPLIFY relationships, constructed
based on the retweet pattern. Since a user can retweet posts from other users
multiple times, you can store the count as the relationship property.
Consequently, you can describe the network in Figure 6.4 as directed and
weighted.

The inferred amplify network could then be used to examine the users who
produce the best (most sharable) content under the assumption that the
retweet means that a user liked the content of the original tweet. I would
imagine that if you want to express your disagreement with the tweet’s
content, you would quote the tweet and describe your dispute with the tweet.
You defined that the quote and retweet should be stored under a different
relationship type in the original graph schema. However, since there are no
quotes in our dataset, you could assume that all the retweets are positive,
meaning that users agree with the original tweet’s content. Many studies have
been published using the retweet network ranging from a network analysis of
the European Parliament [Cherepnalkoski & Mozetic, 2015] to science and



health-related clusters retweet clusters on Twitter during the COVID-19
pandemic [Durazzi et al., 2021].

You will learn more details and caveats of various approaches to inferring
monopartite networks through practical examples. To follow the exercises in
this chapter, you need to have the Twitter network imported into the Neo4j
database as described in Chapter 3.

6.1 Translate an indirect multi-hop path into a
direct relationship

You will begin by translating the multi-hop retweet relationship into a direct
AMPLIFY relationship. With Neo4j GDS, you could take two different
approaches to accomplish this task.

Figure 6.5. Two options to translate an indirect multi-hop path to a direct relationship in a
projected graph.

While Native projection works nicely with co-occurrence networks, which
you will learn more about in the next chapter, it is limited because it doesn’t
support custom graph transformations. If you want to project a custom
transformation of the original network with Native projection, you first have
to materialize it in your Neo4j database. On the other hand, you can use
Cypher projection to load a virtual graph into memory. In this context, a



virtual graph is a graph that is not stored in the database and is constructed
only at projection time. While Cypher Projection has worse performance than
Native Projection and is not recommended for the production phase, it is a
great tool to transform smaller graphs without having to materialize them in
the database first.

6.1.1 Cypher Projection

Cypher Projection is a more flexible and expressive approach to projecting an
in-memory graph. As you might deduce from the feature’s name, you can use
Cypher statements to define the nodes and relationships you want to load in
the in-memory graph. Cypher Projection procedure is called
gds.graph.project.cypher and has three mandatory parameters.

Listing 6.2. Cypher projection syntax.

CALL gds.graph.project.cypher(

    #1

    'graphName'

    #2

    'MATCH (n)

     RETURN id(n) AS id, labels(n) AS labels, n.property AS property',

    #3

    'MATCH (s)-[r]->(t)

     RETURN id(s) AS source, id(t) AS target,

            type(r) AS type, r.weight AS weight'

)

You can think of the Cypher Projection as projecting the node and edge list
described using Cypher statements. The first parameter is used to define the
name of the projected in-memory graph and the second parameter is the Node
Cypher statement. With the Node Cypher statement, you describe the nodes
you want to project and optionally their labels or properties. The Node
Cypher statement has two reserved columns. The first and the only
mandatory column is the id column. The id column expects internal ids of
the nodes you want to project. Every time you create a node in Neo4j, an
internal id is automatically assigned to it. You can access the internal node id
by using the id() function. The second optional reserved column is the
labels column. With the labels column, you can describe the node label,
which can be later used to filter nodes at algorithm run-time. Lastly, you can



provide any node property in the Node Cypher statement you want to include
in the projection.

The third mandatory parameter of Cypher Projection is the so-called
Relationship Cypher statement. You use the Relationship Cypher statement
to describe the relationships you want to project. As mentioned, you can
project existing relationships in the database, or you can load virtual
connections that are not materialized in the database. The Relationship
Cypher statement has two mandatory columns and one reserved optional
column. To describe a relationship, you use the internal id of the start and the
end node. The reserved column for describing the start node is the source
column, while the reserved column for the end node is the target column.
The reserved optional column is the type column that defines the relationship
type. Describing the relationship type allows you additional relationship
filtering at algorithm execution time. Similarly, as with the Node Cypher
statement, you can describe any relationship properties you want to include in
the projection.

  Note

Cypher Projection is a more flexible and expressive approach to describing
the graph you project. Essentially, it is a way of defining the projected graph
using the node and relationship lists. As the node and relationship lists are
defined using Cypher statements, you can take full advantage of the
expressiveness of the Cypher Query Language to filter or transform the
desired graph projection without having to materialize it first in the database.
However, there is a downside to this approach as the performance of the
Cypher Projection is worse than the Native Projection. Due to worse
performance, Cypher Projection is not recommended for larger graphs or the
production phase.

Now you will use Cypher Projection to load the transformed retweet amplify
network as an in-memory graph. In the Node Cypher statement, you will
include users who retweeted other users or published a tweet that was
retweeted.

Exercise 6.1



Construct a Cypher statement that will return only users who retweeted other
users or were themselves retweeted. Use the MATCH clause combined with the
WHERE clause to apply the above filter. Return only the first five internal node
ids in the RETURN statement. The internal node id can be accessed with the
id() function.

The solution of Exercise 6.1 produces the following output.

Table 6.1. Internal ids of users who retweeted or were themselves retweeted.

id

0

1

2

4

6

The Cypher statement in Listing 6.3 produces the node list, which consists of
internal node ids that will be projected in the in-memory graph. Since there is
only a single node type present, defining the node labels does not bring any
additional benefits. You also don’t need any node properties to examine the
retweet amplify network, so you haven’t included any of them. Don’t worry
if your output is slightly different as the internal node ids are not explicitly
defined and could vary from import to import.



You have to prepare the Relationship Cypher statement before using Cypher
Projection to load the in-memory graph and execute graph algorithms.

Exercise 6.2

Describe the retweet pattern in the MATCH statement. Return the internal node
id of the user that retweeted another user under the source column and the
user who was retweeted under the target column. Since a user can retweet
another user multiple times, count the number of retweets and return the
number of retweets under the weight column. Return only the first five rows
of the result.

The solution of Exercise 6.2 produces the following output.

Table 6.2. Internal ids of users who retweeted or were themselves retweeted.

source target weight

1 4 7

185 4 19

142 4 7

211 4 1

952 4 1

The Cypher statement in Listing 6.4 produces an edge list, where the
relationships are represented by its source and target node id. You have



calculated an additional weight property that depicts the number of retweets
between the pair of users. The retweet amplification network can be
described as a directed, weighted network.

You can now combine the Node and Relationship Cypher statements and use
them as an input to the Cypher Projection procedure.

Listing 6.3. Load the amplify retweet network as an in-memory graph using the Cypher
Projection.

CALL gds.graph.project.cypher(

 #1

 'amplify',

 #2

 'MATCH (u:User) WHERE EXISTS { (u)-[:PUBLISH]->()-[:RETWEETS]-() }

  RETURN id(u) AS id',

 #3

 'MATCH (s:User)-[:PUBLISH]->()-[:RETWEETS]->()<-[:PUBLISH]-(t:User)

  RETURN id(s) AS source, id(t) AS target, count(*) AS weight')

 YIELD graphName, nodeCount, relationshipCount

The Cypher Projection procedure will return the following output.

Table 6.3. Cypher Projection procedure output.

graphName nodeCount relationshipCount

"amplify" 1828 2719

There are 1828 nodes and 2719 relationships in the projected in-memory
amplify graph. Now, you will perform a short network analysis of the
retweet amplification network to reinforce your experience with executing
graph algorithms.

6.1.2 Degree centrality

First, you will evaluate the node degree distribution of the inferred network.



In the previous chapter, you used a plain Cypher to calculate and visualize
the node degree distribution. Here, the retweet amplification network is not
materialized in the database, so you don’t have the option of using a plain
Cypher statement to calculate the node degree distribution. Instead, you can
use the GDS degree centrality algorithm gds.degree to evaluate the node
degree distribution

You can use the stats mode of the algorithm to examine the node degree
distribution. By default, the gds.degree centrality calculates the out-degree.
Remember, the out-degree is the count of outgoing relationships a node has,
while the in-degree counts the incoming links.

Listing 6.4. Evaluate the out-degree distribution of the inferred retweet amplification network.

CALL gds.degree.stats('amplify')

YIELD centralityDistribution

Table 6.4. Out-degree distribution of the retweet amplification network

p99 18.00011444091797

min 0.0

max 146.00096893310547

mean 1.4874205599728507

p90 2.0000076293945312

p50 1.0



p999 48.00023651123047

p95 4.000022888183594

p75 1.0

On average, a node in the network has around 1.5 outgoing relationships. The
pX values represent the percentile values. For example, the p75 represents the
75th percentile value of 1.0, which means that 75% of nodes have one or zero
outgoing relationships. You can deduce that the inferred retweet network is a
sparse.

Exercise 6.3

Use the degree centrality algorithm to calculate and return the top five nodes
with the highest out-degree in the retweet amplification network. Use the
stream mode of the algorithm to stream the results without storing them in
the database or the projected graph. The stream mode of the gds.degree
algorithm outputs nodeId and score columns. Use the gds.util.asNode to
map the node ids to node instances and retrieve the username property for the
top five nodes.

The solution of Exercise 6.3 produces the following output.

Table 6.5. Top five users by out-degree in the retweet amplification network.

user score

"textsla" 146.0

"godfrey_G_" 61.0



"iPythonistaBot" 48.0

"Beka "Bexx" Modebade" 36.0

"chidambara09" 33.0

The user textsla has retweeted posts from 146 different users. It wouldn’t
surprise me if most of the users on this list had automatic retweets in place
for specific hashtags. Since you are dealing with a weighted network, you can
also evaluate the weighted out-degree distribution. Most of the GDS library
graph algorithms support the algorithms' weighted variations by using the
relationshipWeightProperty configuration parameter.

Evaluate the weighted out-degree distribution of the retweet amplification
network with the following Cypher statement.

Listing 6.5. Evaluate the weighted out-degree distribution of the inferred retweet amplification
network.

CALL gds.degree.stats('amplify', {relationshipWeightProperty:'weight'})

YIELD centralityDistribution

Table 6.6. Weighted out-degree distribution of the retweet amplification network

p99 65.00048065185547

min 0.0

max 2006.0078048706055



mean 4.715000173456038

p90 3.0000076293945312

p50 1.0

p999 310.00194549560547

p95 7.000022888183594

p75 1.0

Although the average weighted out-degree is 4.7, the 75th percentile is only 1
and the 90th percentile only raises to 3. It seems that there are a few outliers
that raise the average of the whole population. For example, a single user has
2006 retweets. I would venture a guess that most of the highest retweeting
users are actually bots.

Exercise 6.4

Use the degree centrality algorithm to calculate and return the top five nodes
with the highest weighted out-degree in the retweet amplification network.
The solution is almost identical to the Exercise 5.3, except that you include
the relationshipWeightProperty parameter to calculate the weighted out-
degree.

The outgoing node degree can help you evaluate and identify users spreading
or distributing content the most through the network. On the other hand, you
can use the in-degree distribution to identify users who produce the most
sharable (best?) content. The node degree centrality algorithm has a
orientation parameter that allows you to evaluate in-degree, out-degree, or



combination of both. The orientation parameter has three possible inputs:

NATURAL - Evaluate out-degree (count of outgoing relationships)
REVERSE - Evaluate in-degree (count of incoming relationships)
UNDIRECTED - Evaluate the sum of both in- and out-degrees

Therefore, you can use the orientation parameter to evaluate the in-degree
distribution by setting it to REVERSE.

Listing 6.6. Return the top five users with the highest in-degree.

CALL gds.degree.stats('amplify', {orientation:'REVERSE'})

YIELD centralityDistribution

Table 6.7. In-degree distribution of the retweet amplification network

p99 29.00011444091797

min 0.0

max 117.00048065185547

mean 1.4874205599728507

p90 3.0000076293945312

p50 0.0

p999 90.00048065185547



p95 7.000022888183594

p75 1.0

More than 50% of the users haven’t been retweeted even once. In some way,
it makes sense that there are fewer users who write content that is retweeted
than users who do the retweeting. If you remember from the previous chapter
as well, the in and out-degree mean will always be identical, as the number of
connections and users stays the same, only the relationship direction is
reversed. Interestingly, in this example, also the 75th and the 90th percentile
values are identical. It seems that the in-degree distribution is a bit more top-
heavy than the out-degree. This would imply that several content creators
consistently produce content that is being retweeted. Maybe that implies
producing quality content, but we would have to investigate further. Perhaps
only their hashtag game is strong.

Exercise 6.5

Use the degree centrality algorithm to calculate and return the top five nodes
with the highest in-degree in the retweet amplification network. Use the
stream mode of the algorithm to stream the results without storing them in
the database or the projected graph.

The solution of Exercise 6.5 produces the following output.

Table 6.8. Top five users by in-degree in the retweet amplification network.

user score

"Paula_Piccard" 117.0

"IainLJBrown" 96.0



"Eli_Krumova" 90.0

"Analytics_699" 69.0

"annargrs" 65.0

A total of 117 different users have retweeted Paula_Piccard. The difference
between the first and fifth places is not as big as the out-degree distribution.
One might assume that they produce relevant and quality content as they are
often retweeted. You would have to scrape more tweets with the relevant
hashtags for more accurate results.

Exercise 6.6

Evaluate the weighted in-degree distribution with the stats mode of the
degree centrality algorithm. If you need some help, you can look at the
examples for the weighted out-degree and include the orientation
parameter. After that, use the stream mode of the algorithm to identify the
top five users with the highest weighted in-degree.

You will now execute some of the graph algorithms you learned in Chapter 4
to consolidate your knowledge of using them.

6.1.3 Weakly Connected Components

The Weakly Connected Components algorithm should be part of almost
every network analysis. With it, you can evaluate how connected the network
is and identify disconnected components.

Execute the stats mode of the WCC algorithm to get a rough feeling of how
disconnected the network is.

Listing 6.7. Evaluate the number and the size of disconnected components.



CALL gds.wcc.stats('amplify')

YIELD componentCount, componentDistribution

Table 6.9. Summary statistics for the WCC algorithm executed on the retweet amplification
network.

componentCount componentDistribution

207

{ "p99": 28,

"min": 1,

"max": 1082,

"mean": 8.830917874396135,

"p90": 6,

"p50": 2,

"p999": 1082,

"p95": 13,

"p75": 3 }

The largest component consists of 1082 members, which is around 60% of
the total users in the retweet amplification network. As mentioned before,
most real-world networks will contain a single super component containing
most of the network’s nodes and then a couple of smaller components on the
side. What is weird to me is that minimum size components contain only a
single member. With the Cypher Projection, you have filtered users who
retweeted or were retweeted. My first thought was that there should be no
components with only a single member. As this is an unexpected result, it is
worth exploring.



Execute the following Cypher statement to examine sample components with
a single member.

Listing 6.8. Examine sample components with a single member.

#1

CALL gds.wcc.stream('amplify')

YIELD nodeId, componentId

#2

WITH componentId, collect(nodeId) AS componentMembers,

     count(*) AS componentSize

#3

WHERE componentSize = 1

#4

WITH componentMembers[0] AS id

LIMIT 3

#5

MATCH p=(n)-[:PUBLISH]->()-[:RETWEETS]-()

WHERE id(n)=id

RETURN p

The Cypher statement in Listing 6.13 starts by executing the stream mode of
the WCC algorithm on the retweet amplification network. The stream mode
of the WCC algorithm outputs the nodeId column, representing the internal
node id of the node, and the componentId column, which describes to which
component the node belongs. In the B step of the Cypher statement, you
aggregate by the componentId to calculate the component size and collect its
members' node ids. Afterward, you use the WHERE clause to filter components
with only a single member. As there should be only a single element in the
componentMembers list of the single-member components, you can easily
extract the only node id using the square bracket syntax in combination with
its index position. To not overwhelm the results visualization, you will only
examine three components with a single member. The last thing you need to
do is match the retweets pattern for the three specific node ids.

The Cypher statement in Listing 6.13 will produce the following visualization
in Neo4j Browser.

Figure 6.6. Components that contain a single member, where users retweeted themselves.



On the Twitter social network, a user can also retweet their posts. In graph
theory, a self-loop is a relationship with the same start and end node. As
mentioned, the WCC algorithm is helpful to help you identify how connected
the network is as well as identify various unexpected patterns.



6.1.4 Weighted PageRank

In the last part of the retweet amplification network analysis, you will execute
the weighted PageRank algorithm to identify potential influencers.
Remember, the PageRank algorithm considers both the number of incoming
connections and the nodes' importance that links to it. Instead of simply
analyzing which user has the most retweets, you are also evaluating which
other influential nodes in the network retweeted them.

The weighted variant of the PageRank algorithm also considers the
relationship weight when calculating node importance. With the unweighted
variant of PageRank, the node’s importance is equally spread amongst its
neighbors. On the other hand, with the weighted variant, each neighbor gets
the share of importance related to the relationship weight.

Figure 6.7. Difference between weighted and unweighted PageRank calculation in a single
iteration.



As mentioned, the weighted variant of the PageRank algorithm considers the
relationship weight when it calculates how the influence spreads across the
network. Figure 6.7 visualizes a simple network consisting of three nodes.
The difference between the weighted and unweighted variants is
demonstrated as to how node A spreads its influence. With the unweighted
variant, nodes B and C get an equal share of importance from node A. In the
weighted network, the relationship from node A to C has a weight of 1, and
the connection from node A to B has a value of 2. In every iteration of the
weighted PageRank algorithm, node B will receive two-thirds of influence
from node A and node C will receive only one-third. The equation to
calculate the share of influence with the weighted PageRank algorithm is
simply dividing the relationship weight by the sum of all outgoing
relationship weights.



I think it makes sense to exclude all the self-loops from the network before
you execute the weighted PageRank algorithm. The self-loop can be
translated as the node stating that it is influential. I think that retweeting your
own tweets shouldn’t increase your influence in the network. Unfortunately,
there is no magic button you could press to exclude self-loops, so you have to
project another in-memory graph using Cypher Projection.

Exercise 6.7

Use the Cypher Projection to load the retweet amplification network into
memory and exclude all self-loops. Essentially, you only need to change the
Relationship Cypher statement to filter out relationships that start and end at
the same node. Name the new projected graph as amplify-noselfloops.

Now you can go ahead and execute the weighted PageRank algorithm on the
retweet amplification network without self-loops. Similarly, as with the
degree centrality, you only need to include the
relationshipWeightProperty parameter to execute the weighted variant of
the algorithm.

Listing 6.9. Execute the PageRank algorithm on the retweet amplification network with no self-
loops.

CALL gds.pageRank.stream('amplify-noselfloops',

  {relationshipWeightProperty:'weight'})

YIELD nodeId, score

RETURN gds.util.asNode(nodeId).username AS user, score

ORDER BY score DESC

LIMIT 5

Table 6.10. Top five users by weighted PageRank score in the retweet amplification network with
no self-loops.

user score

"Paula_Piccard" 8.270755243786214



"annargrs" 7.836125000000006

"psb_dc" 7.478576023152348

"IainLJBrown" 7.457764370226901

"Eli_Krumova" 6.95963977383344

The top five users by weighted PageRank list is similar to the list of top five
users by in-degree. Of course, the Twitter subgraph you are analyzing is
relatively tiny. While you haven’t analyzed the tweet topics or hashtags, I’ve
mentioned that I scraped the dataset by focusing on the NLP and Knowledge
graph topics. So, the following users could be good candidates to follow on
Twitter if you are interested in NLP or Knowledge graphs topic updates.

6.1.5 Drop projected in-memory graph

It is important to remember to release the projected in-memory graph once
you are done with the analysis to free up memory for other analysis. At the
moment, you should have two graph loaded in-memory. The following
Cypher statement will drop all currently projected graphs.

Listing 6.10. Release all the projected graphs from memory.

#1

CALL gds.graph.list() YIELD graphName

#2

CALL gds.graph.drop(graphName) YIELD nodeCount

RETURN 'dropped ' + graphName

6.2 Summary

Inferring monopartite networks is a frequent step in graph analysis
Cypher Projection can be used to project a virtual graph (non-existing



relationships in the database)
GDS library uses two directed relationship that point in the opposite
direction to represent an undirected relationship
You can change the relationship direction or treat it as undirected during
in-memory graph projection
Parameters nodeLabels and relationshipTypes can be used to consider
only a subset of the projected graph as an input to a graph algorithm
You can use weighted variants of the Degree centrality and Pagerank
algorithms by definining the relationshipWeightProperty parameter

6.3 References

[Cherepnalkoski & Mozetic, 2015] D. Cherepnalkoski and I. Mozetic, "A
Retweet Network Analysis of the European Parliament," 2015 11th
International Conference on Signal-Image Technology & Internet-Based
Systems (SITIS), 2015, pp. 350-357, doi: 10.1109/SITIS.2015.8.

[Durazzi et al., 2021] Durazzi, F., Müller, M., Salathé, M. et al. Clusters of
science and health related Twitter users become more isolated during the
COVID-19 pandemic. Sci Rep 11, 19655 (2021).
https://doi.org/10.1038/s41598-021-99301-0

6.4 Solutions to exercises

The solution to Exercise 6.1 is the following:

Listing 6.11. Return the first five internal ids of nodes that retweeted other users or were
themselves retweeted.

MATCH (u:User)

WHERE EXISTS { (u)-[:PUBLISH]->()-[:RETWEETS]-() }

RETURN id(u) AS id

LIMIT 5

The solution to Exercise 6.2 is the following:

Listing 6.12. Prepare the Relationship Cypher statement.



MATCH (s:User)-[:PUBLISH]->()-[:RETWEETS]->()<-[:PUBLISH]-(t:User)

RETURN id(s) AS source, id(t) AS target, count(*) AS weight

LIMIT 5

The solution to Exercise 6.3 is the following:

Listing 6.13. Return the top five users with the highest out-degree.

CALL gds.degree.stream('amplify')

YIELD nodeId, score

RETURN gds.util.asNode(nodeId).username AS user, score

ORDER BY score DESC

LIMIT 5

The solution to Exercise 6.4 is the following:

Listing 6.14. Return the top five users with the highest weighted out-degree.

CALL gds.degree.stream('amplify',

  {relationshipWeightProperty:'weight'})

YIELD nodeId, score

RETURN gds.util.asNode(nodeId).username AS user, score

ORDER BY score DESC

LIMIT 5

The solution to Exercise 6.5 is the following:

Listing 6.15. Return the top five users with the highest weighted in-degree.

CALL gds.degree.stream('amplify', {orientation:'REVERSE'})

YIELD nodeId, score

RETURN gds.util.asNode(nodeId).username as user, score

ORDER BY score DESC

LIMIT 5

The solution to Exercise 6.6 is the following:

Listing 6.16. Return the top five users with the highest weighted in-degree.

CALL gds.degree.stream('amplify', {orientation:'REVERSE',

  relationshipWeightProperty:'weight'})

YIELD nodeId, score

RETURN gds.util.asNode(nodeId).username as user, score



ORDER BY score DESC

LIMIT 5

The solution to Exercise 6.7 is the following:

Listing 6.17. Load the amplify retweet network as an in-memory graph using the Cypher
Projection and exclude self-loops.

CALL gds.graph.project.cypher(

 'amplify-noselfloops',

 'MATCH (u:User) WHERE (u)-[:PUBLISH]->()-[:RETWEETS]-()

  RETURN id(u) AS id',

 'MATCH (s:User)-[:PUBLISH]->()-[:RETWEETS]->()<-[:PUBLISH]-(t:User)

  WHERE NOT s = t

  RETURN id(s) AS source, id(t) AS target, count(*) AS weight')

 YIELD graphName, nodeCount, relationshipCount



7 Inferring co-occurrence networks
based off bipartite networks
This chapter covers

Extracting hashtags from tweets with Cypher query language
Calculating Jaccard similarity coefficient
Constructing and analyzing monopartite networks using Jaccard
similarity coefficient
Using Label Propagation algorithm to evaluate community structure of a
network
Using PageRank to find the most important node within a community

In the previous chapter, you learned how to transform a custom graph pattern
into direct relationships to use them as an input to graph algorithms like
PageRank. In this chapter, you will focus on bipartite networks and how to
project them into monopartite networks. First, a quick refresher of what a
bipartite network is.

Figure 7.1. Bipartite network of tweets and hashtags.



A bipartite network contains two sets or types of nodes. For example, Figure
7.1 visualizes the bipartite network of tweets on the left and their hashtags on
the right. As you can observe, the relationships always points from one type
of nodes to another. There are no direct connections between tweets or
hashtags.

Imagine you work in a marketing analytics role for a company that deals with
natural language processing and knowledge graphs. Your boss decided it
might be worthwhile to start advertising on Twitter. You have been assigned
the task of identifying relevant hashtags to target the company’s ideal
customer as best as possible. Since the Twitter dataset you have used so far
contains tweets about NLP and knowledge graphs, you can analyze the
hashtags present in the dataset to identify which of them the company should
target.



Your first thought might be to use the PageRank algorithm to identify the
most important hashtags. Remember, graph algorithms like PageRank expect
monopartite networks as input or at least networks where the influence can
flow throughout the connections. With a bipartite network, one type of nodes
has only incoming relationships, and the other type has only outgoing
connections. If you were to execute PageRank on the example bipartite
network of tweets and hashtags, which nodes do you think would come out
on top?

Since tweets don’t have any incoming relationships, their PageRank score
will equal the chance of the surfer randomly teleporting to them. With the
default value of the damping factor of 0.85, the PageRank score for nodes
with no incoming connections is 0.15. On the other hand, hashtags have only
incoming relationships. The influence flows from tweets to hashtags but does
not flow further as there are no outgoing connections from hashtags. In
practice, the PageRank rank of hashtags would be equal to their count of
incoming relationships (in-degree). However, the actual values of PageRank
and in-degree would be different due to distinct score calculation techniques.

Remember, the goal is to determine the most important and relevant hashtags
in the dataset. If the definition of the hashtag importance is as simple as their
frequency, then using the in-degree metric of the Tag nodes would suffice.

However, some of the hashtags in the dataset might not be relevant to the
marketing targeting objective. You could completely miss relevant hashtags
by looking at only the most frequently mentioned hashtags, as you don’t
know if the dataset is skewed towards a particular topic or not. In that case,
you would first have to identify hashtags that form various topics. A frequent
technique used to identify communities of hashtags that form various topics
is to start by examining how often pairs of hashtags co-occur in tweets. By
examining how often pairs of hashtags co-occur in the same tweet, you build
a co-occurrence network. The term co-occurrence network refers to a
network construction method that analyzes relationships between various
entities in a text. In the case of tweets and their hashtags, you can use the co-
occurrence network method to analyze relationships between hashtags that
appear in the text of a tweet.

Co-occurrence networks are constructed by connecting pairs of entities in the



text using a set of criteria defining co-occurrence. The co-occurrence
definition can vary from scenario to scenario. Sometimes the definition of co-
occurrence is defined as two entities appearing in the same sentence.
However, you could also define co-occurrence as two entities appearing in
the same article or even when the pair of entities appear within a specific
distance in a text.

Figure 7.2. Co-occurence network of medical keywords.

Figure 7.2 visualizes the co-occurrence network of keywords in medical
articles. In this example, co-occurrence is defined as two keywords occurring



in the same article. The more times a pair of keywords are present in the same
article, the stronger the connection between the two. A similar technique was
used to analyze the scientific literature surrounding the Covid-19 research.
[Al-Zaman, 2021] [Andersen et al., 2020] Not only that, but researchers have
also used the biomedical literature co-occurrence network to predict new
links. [Kastrin et al., 2014]

However, you are not limited to analyzing only the co-occurrence of
keywords in a given text. In the Game of Thrones analysis [Beveridge et al.,
2018], Andrew Beveridge popularized analyzing books through the lens of
co-occurrence entity networks. The Game of Thrones book analysis consists
of two steps. First, he identified all of the characters in the book. In the next
step, he defined a co-occurrence event between a pair of characters if they
appear within 15 words of one another. In this context, a co-occurrence event
can be understood as an interaction between a pair of characters. In my
previous works, I have used this technique and constructed a co-occurrence
or interaction network between characters in the Harry Potter and the
Philosopher’s Stone book.

Figure 7.3. Co-occurence network of characters in the first Harry Potter book.



Just by looking at the Figure 7.3, you can evaluate which are the main
characters in the first Harry Potter book and evaluate how they interact with
each other. The node size is based on the node degree, so the more
connections a node has, the bigger the node size. It only makes sense that
Harry Potter has the most interactions with other characters, as the book
narrative is mostly written from his perspective.

The first two examples of the co-occurrence analysis demonstrate scenarios
where keywords or entities are extracted from a text and then connected using
an arbitrary co-occurrence event. The third example I’ve prepared is the
visualization of how the ingredients co-occur in various dishes or recipes.

Figure 7.4. Co-occurence network of ingredients in dishes.



Again, the node size in Figure 7.4 is based on the number of connections it
has. In the center of the left-hand side community, you can observe eggs,
flours, sugar, and milk. I would imagine that the dishes with those ingredients
mostly fall under bread, pancakes, or maybe sweets. For some reason, peanut
butter is also frequently present in this community. You can observe more of
a main-dish type of ingredients on the right-hand side like onions, tomato
sauce, potatoes, and meat. Interestingly, I’ve found a research paper[Cooper,
2020] that uses the ingredient co-occurrence network to analyze packaged
food in the United States. Another research paper[Kular et al., 2011] uses the
ingredient co-occurrence network to examine the relationships between
cuisines and various cultures.

Let’s now circle back to the task of identifying the most relevant hashtags to



the marketing objective of targeting hashtags relevant to knowledge graphs
and natural language processing. You can start with a hypothesis that if two
hashtags co-occur within the same tweet, they are somehow related or fall
under a similar topic. Based on that hypothesis, the co-occurrence network
method would connect hashtags that might have the same or similar overall
topic.

Figure 7.5. Constructing a co-occurrence network of tags based on if they co-occur in the same
tweet.

Figure 7.5 visualizes the process of constructing a co-occurrence network of
hashtags based on the original bipartite network of tweets and hashtags. On
the left-hand side of the visualization is the original bipartite network. A
tweet can contain multiple hashtags. For example, tweet A has #Growth and
#Startup hashtags. In this example, the co-occurrence is defined as a pair of
hashtags co-occurring in the same tweet. Hence, on the right-hand side of the
visualization, where the co-occurrence network is visualized, there is a
relationship between the #Finance and the #Startup hashtags as they appear in



the same tweet. If you look at tweet D, you can notice that it has three
hashtags #Data, #ML, and #NLP. Since the hashtags co-occur in the same
tweet, there is a relationship between all three hashtags, as indicated on the
right-hand side of Figure 7.5.

This data transformation can be described with the following Cypher
statement.

Listing 7.1. Describe the construction of a hashtag co-occurrence network with a Cypher
statement.

MATCH (s:Tag)<-[:HAS_TAG]-(:Tweet)-[:HAS_TAG]->(t:Tag)

CREATE (s)-[:CO_OCCURRENCE]->(t);

Hashtags are used to index or define the topic of a tweet. By analyzing the
co-occurrence network of hashtags, you learn which hashtags on Twitter
often overlap, and potentially fall under the same overall topic. Constructing
a Twitter hashtag co-occurrence network was used in multiple studies. For
example, you could analyze how do hashtags help drive virality [Pervin,
2015] [Wang et al., 2016]. Another paper studies how the hashtag co-
occurrence connections differ from their semantic similarity[Türker & Sulak,
2018]. Lastly, I’ve found an exciting article[Vitale, 2018] that uses the
hashtag co-occurrence network to provide novel information and trends
regarding smoking habits.

With the requirement to find the most relevant hashtags within knowledge
graph and natural language topics, you first have to identify which hashtags
form a higher-level topic. Here, you circle back to the hypothesis made
before. If two hashtags frequently co-occur in the same tweet, you can
assume they are related and fall under the same topic. To find communities or
clusters of hashtags that form a topic, you can utilize community detection
algorithms like the Label Propagation algorithm (LPA). Label Propagation
(LPA) is an algorithm to evaluate the community structure of a network.
Most of the literature on the internet introduces the LPA as a semi-supervised
algorithm, where you can input initial communities for some nodes in the
network. However, here you will use the unsupervised variant of the LPA as
you won’t present any initial communities. The unsupervised variant of the
LPA works as follows. First, it assigns a unique community label to each



node. Then it iterates over the network and updates each node label to the one
most of its neighbors have. The idea behind this iteration is that a single
community label can quickly become dominant in a densely connected group
of nodes. Once the LPA reaches convergence, the algorithm stops, and the
resulting node labels represent their communities.

Figure 7.6. Identifying communities within the hashtag co-occurrence network.

Communities represent densely connected groups of nodes with sparser links
between groups. For example, Figure 7.6 visualizes two groups or
communities of hashtags. The left community contains #Finance, #Growth,
and #Startup hashtags. You could assign the left community as a more
business-oriented topic. On the other side, the right community in Figure 7.6
consists of #ML, #Data, and #NLP hashtags. Again, you could try to deduct
the overall topic of the right community. In this example, something like a
computer science or data science oriented topic would fit.

After you have identified communities of hashtags that form topics, you can
use the PageRank algorithm to find the most central nodes within
communities. Remember, we assume that the co-occurrence between a pair of
hashtags implies that they are somewhat related or similar. If you were to



execute the PageRank algorithm on each community separately, you would
identify the most central nodes of communities. You can assume that the
most central nodes in the community are its representatives, as the PageRank
algorithm treats every relationship as a vote. In the example of hashtag co-
occurrence network, it is a vote of similarity or relatedness. So, the most
similar hashtags to all the other hashtags in the community will rank the
highest, which you can interpret as community representatives.

To follow the exercises in this chapter, you need to have the Twitter network
imported into the Neo4j database as described in Chapter 3.

7.1 Extracting hashtags from tweets

Before you can infer the hashtag co-occurrence network, you first have to
extract hashtags from the tweet’s content. You will only extract hashtags
from tweets that are not retweets, as the retweets have the same hashtags as
the original tweets and would only skew the results. The process of extracting
hashtags is elementary text processing. You split the tweet text by the
whitespace or newline characters to create a list of words. Then you need to
filter out words that start with a hashtag # sign. Once you have completed
these two steps, you have successfully extracted hashtags from a tweet and
can store them in the database.

Listing 7.2. Extract hashtags from tweets that are not retweets.

#1

MATCH (t:Tweet)

WHERE NOT EXISTS { (t)-[:RETWEETS]->() }

#2

WITH t, replace(t.text, '\n', ' ') AS cleanText

#3

WITH t, split(cleanText, ' ') AS tokens

#4

WITH t, [el IN tokens WHERE el STARTS WITH "#" |

            toLower(replace(el,",",""))] AS hashtags

#5

WHERE size(hashtags) > 0

RETURN hashtags LIMIT 5

Table 7.1. Extracted hashtags.



hashtags

["#mindset", "#nlp", "#meditation", "#heartmath", "#bioresonance",
"#mindcoaching", "#anxiety", "#hypnosis", "#mentalhealth"]

["#sql", "#code", "#datascience", "#ai", "#ml", "#machinelearning", "#iot",
"#iiot", "#iotpl", "#python", "#rstats", "#cloud", "#cybersecurity"]

["#coaching", "#nlp", "#progressnotperfection", "#growthmindset",
"#trainyourbrain", "#parentyourselffirst"]

["#acl2021nlp"]

["#medium", "#machinelearning", "#nlp", "#deeplearning", "#autocorrect",
"#spellcheck", "#ai", "#tds", "#python"]

Interestingly, the NLP hashtag means natural language processing in the tech
community, while the personal development community uses NLP as an
acronym for neuro-linguistic programming. While I was aiming to scrape
only tweets around natural language processing and knowledge graph topics,
it seems there are also some self-development tweets in the dataset. Having
more diverse topics in our dataset is not a problem. It makes your analysis
more interesting, as you will learn the driving hashtags behind more
computer science-oriented topics as well as self-help topics.

Most marketing platforms allow you to specify particular keywords or
hashtags and exclude the undesired ones. Since your objective as a marketing
analytics person is to design a targeting strategy on Twitter, you can also
prepare a list of hashtags to be excluded. The company deals with natural
language processing, so you would want to target the #nlp hashtag. You have



learned that the #nlp hashtag is also popular in self-help topics, and since
self-help topics are not relevant to the company, it makes sense to exclude the
hashtags that fall under the self-help topics.

The Cypher statement in Listing 7.2 starts by matching all the tweets that
don’t have an outgoing RETWEETS relationship. To create a list of words for
each tweet, you use the combination of replace and split functions. First,
you use the replace function to replace all new line characters with the
whitespace characters. The syntax for the replace function is:

Listing 7.3. Replace function syntax.

replace(string, search, replace)

Replace is a basic function in most scripting languages and query language,
so I hope it doesn’t need any additional explanation. Similarly, the split is
also a very basic function and has the following syntax:

Listing 7.4. Split function syntax.

split(string, delimiter)

The input to the split function is a string and a delimiter character, while the
output is a list of elements. Again, a basic function that is available in most if
not all programming languages. The last thing to do is to filter words that
start with a hashtag # character. You can filter out hashtags from the list of
words by using the list comprehension syntax. At first sight, it seems that the
list comprehension function took some inspiration from the Python syntax.

Listing 7.5. List comprehension syntax.

[element in list WHERE predicate | element]

The list comprehension syntax is wrapped by square brackets. The element
IN list syntax is used to define a variable to reference an element in the list.
Unlike Python, element manipulation and transformation can be defined right
after the pipe | character instead of directly in the variable assignment. You
have removed commas and lowered the text in the element transformation



part of the list comprehension syntax to not differentiate between #NLP and
#nlp hashtags. You can also filter items in the list by using the WHERE clause.

Lastly, you use the size() function to filter tweets with at least a single
hashtag. The size() function returns the number of items in a list. In the
previous chapter, you learned to use the size() function to access the node
degree in an optimized way, but it can also be used to count the length of a
list.

Before continuing with the co-occurrence analysis, you will extract hashtags
and store them in the database. Every time you add a new node label in the
database, it is advisable to identify the unique property of the nodes and
define a unique constraint. With the hashtags, each node should represent a
single hashtag, so you can simply define a unique constraint on the id
property of Tag nodes.

Listing 7.6. Define unique constraint for Tag nodes on the id property.

CREATE CONSTRAINT IF NOT EXISTS ON (t:Tag) ASSERT t.id IS UNIQUE;

Finally, you can execute the following Cypher statement to extract and store
hashtags in the database.

Listing 7.7. Extract hashtags and store them to the database.

MATCH (t:Tweet)

WHERE NOT EXISTS { (t)-[:RETWEETS]->() }

WITH t, replace(t.text, '\n', ' ') AS cleanText

WITH t, split(cleanText, ' ') AS tokens

WITH t, [el IN tokens WHERE el STARTS WITH "#" |

            toLower(replace(el, ",", " "))] AS hashtags

WHERE size(hashtags) > 0

#1

UNWIND hashtags AS tag_id

MERGE (tag:Tag {id: tag_id})

MERGE (t)-[:HAS_TAG]->(tag)

The Cypher statement in Listing 7.7 introduces the UNWIND clause. The
UNWIND clause is used to transform a list of elements into rows, similar to a
FOR loop in various scripting languages. Essentially, you iterate over each



element in the list and, in this case, merge a Tag node and connect it to the
Tweet node. The UNWIND clause is always followed by the AS operator to
assign a reference variable to the element value in the produced rows.

The following Cypher statement demonstrates a simple usage of the UNWIND
clause.

Listing 7.8. UNWIND clause syntax.

UNWIND [1, 2, 3] AS i

RETURN i

Table 7.2. UNWIND clause transforms a list of elements into rows.

i

1

2

3

Exercise 7.1

Hashtags are now stored and connected to the Tweet nodes in the database.
Before jumping to the co-occurrence analysis, investigate which hashtags
appear in most tweets and retweets. Remember, you only stored hashtags for
original tweets (not retweets) in the database. Therefore, first, match the
original tweets in which the hashtags appeared. Next, count how many times
those tweets were retweeted and return the top five hashtags by the sum of
combined counts of original tweets and retweets. Since not all tweets are
retweeted, use the OPTIONAL MATCH to count the number of retweets.



Table 7.3. Most popular hashtags in tweets and retweets.

hashtag originalTweetsCount retweetCount

#nlp 1848 7532

#ai 1554 7169

#machinelearning 1474 7007

#datascience 1455 6736

#bigdata 1358 6577

The most popular hashtags are #nlp, #ai, #machinelearning, and #datascience.
Judging by the retweet count, they must frequently co-occur in the same
tweets as there are only 12 thousand tweets and retweets in total.

Now, you will proceed with the co-occurrence part of the hashtag analysis.

7.2 Analyzing the co-occurrence network

You can use Cypher query language to evaluate which hashtags most
frequently co-occur.

Exercise 7.2

Evaluate which hashtags most frequently co-occur. Use the MATCH clause to
define a graph pattern where two hashtags are present in the same tweet and
then use the count() function to count the number of tweets in which a pair



of hashtags co-occur. Return only the top five most co-occurring pairs of
hashtags.

The solution to Exercise 7.2 is the following:

Listing 7.9. Examine the top five most co-occuring pairs of hashtags.

MATCH (h1:Tag)<-[:HAS_TAG]-()-[:HAS_TAG]->(h2:Tag)

#1

WHERE id(h1) < id(h2)

WITH h1,h2,count(*) AS cooccurrences

ORDER BY cooccurrences DESC LIMIT 5

RETURN h1.id AS tag1, h2.id AS tag2, cooccurrences

Table 7.4. Top five most co-occuring pairs of hashtags.

tag1 tag2 cooccurrences

#ai #nlp 1507

#machinelearning #nlp 1428

#datascience #nlp 1410

#ai #machinelearning 1410

#datascience #ai 1405

Exercise 7.2 did not mention that you should ideally remove duplicates from
the output as you haven’t learned how to do it yet. Since every hashtag will
appear as the h1 variable as well as the h2 variable, the results will contain
duplicates. Using the strategy of deduplicating results with the id(h1) <



id(h2) is the most frequent I’ve seen in practice.

You could use a similar Cypher statement to project the co-occurrence
network with the Cypher Projection. The resulting co-occurrence network
based on the Cypher statement in Listing 7.9 would look the following:

Figure 7.7. Sample weighted and undirected co-occurrence network.

Figure 7.7 visualizes a sample hashtag co-occurrence network, where the
relationship weight represents the count of co-occurrences. You might
wonder why there are two relationships between each pair of nodes in the
opposite direction. If hashtag #NLP co-occurs with hashtag #AI, that directly
implies that hashtag #AI also co-occurs with hashtag #NLP. In the context of
graphs, you could say that the CO_OCCUR relationship is undirected as the
direction of the connection is not essential. However, the GDS library has no
concept of undirected relationships. A key concept behind an undirected
relationship is that it allows traversals in both directions. You can replicate
this functionality in a directed network by transforming a single undirected
connection into two directed links that point in the opposite direction.

Figure 7.8. A single undirected relationship can be represented as two directed relationships that
point in the opposite direction.



  Note

Graph Data Science library has no notion of undirected relationships. When
dealing with an undirected network in GDS, you represent each relationship
in the network as two directed relationships that point in the opposite
direction. In the Node Similarity algorithm example, the algorithm’s output is
an undirected network, where each undirected relationship is represented as
two directed relationships, as shown in Figure 7.8. The GDS library also
allows transforming a single relationship into two relationships that point in
the opposite direction during projection time.

While there is nothing wrong with using the count of co-occurrences as the
relationship weight, a more frequent approach is to use the Jaccard similarity
coefficient to evaluate the similarity between nodes. The Jaccard similarity
coefficient is simple to understand as it only involves dividing the
intersection by the union of two sets.

Figure 7.9. An example of two baskets with overlapping products.



Figure 7.9 visualizes two baskets, where each basket contains a set of
products. For example, basket A includes a couch, speakers, phone, and TV,
while basket B contains a phone, tv, and headphones. If you want to calculate
the Jaccard similarity coefficient between the two baskets, you first calculate
the intersection and union of the two sets of products. Both baskets contain a
phone and TV, the intersection of the two sets. There are five different
products spread across both baskets, which is the union of the two sets. To
calculate the Jaccard similarity coefficient, you simply divide the intersection
(2) by the union (5) of the two sets, which results in 0.4. The added benefit of
the Jaccard similarity coefficient is that it provides a metric that can be used
to evaluate, in this example, how similar two baskets are based on their
products.

Jaccard similarity coefficient ranges from values 0 to 1. When there is no
intersection of members between two sets, the Jaccard similarity coefficient
equals 0. For example, let’s say that basket A contains a sandwich and juice
and basket B contains a TV. There is no intersection of items between
baskets A and B, which consequently indicates that the Jaccard similarity
coefficient between the two baskets is 0. On the other hand, the Jaccard
similarity coefficient between two sets with identical members is 1. When
two sets have the Jaccard similarity coefficient of 1, it implies that the two
sets have the same number of members, with identical members in both sets.
In this example, both baskets A and B contain a sandwich and juice.
However, if we were to add or remove any item from either basket, the
Jaccard similarity would no longer be 1.



The process of evaluating the hashtag overlap with the Jaccard similarity
coefficient is the following:

Figure 7.10. Using Jaccard similarity coefficient to examine hashtag overlap.



In graph context, a typical input to the Jaccard similarity algorithm is a



bipartite network consisting of two types or sets of nodes. The idea behind
using the Jaccard similarity algorithm is to project a monopartite graph based
on the bipartite input graph. Figure 7.10 visualizes the process to transform a
network consisting of tweets and hashtags to a monopartite network of
hashtags based on how many tweets they have in common. The process if the
following:

For each hashtag, you first collect the set of tweets in which it appeared.
In the next step, you iterate over each pair of hashtags and calculate the
Jaccard similarity coefficient by dividing the intersection of the two sets
by their union.
Lastly, you have the option to store the similarity coefficient between a
pair of nodes in the form of a relationship.

The semantics of the inferred relationships depends on the domain. You
could chose the CO_OCCUR type of relationships in the hashtag example. In the
basket example, the inferred relationship could have a SIMILAR type.

The Jaccard similarity coefficient is a symmetric similarity metric. If node A
is similar to node B, that directly implies that node B is similar to node A.
Similarly to the Cypher Projection example above, the resulting co-
occurrence or similarity network will be undirected. Also, we can store the
resulting Jaccard similarity coefficient between node as relationship
properties.

7.2.1 Node Similarity algorithm

Since the Jaccard similarity coefficient can be used to evaluate how similar a
pair of nodes are, the GDS developers deemed it make sense to name the
algorithm Node similarity algorithm. Node similarity algorithm compares
sets of nodes based on their neighbors using the Jaccard similarity coefficient
or the Overlap coefficient. A typical input is a bipartite network consisting of
two types of nodes. Nodes with outgoing relationships are being compared,
while their outgoing neighbors are used to construct the comparison set.

Figure 7.11. How Node Similarity algorithm constructs comparison sets and evaluates similarity.



Figure 7.11 visualizes a simple network of users and musical genres. The
LISTENS relationships are directed from users to genres. In this scenario, the
Node Similarity algorithm will compare users based on their outgoing
neighborhood, which consists of the musical genres they are listening to.
Realizing which nodes are being compared by the Node Similarity algorithm
is crucial to executing the algorithm correctly. In our Twitter social network,
the HAS_TAG relationships point from Tweet to Tag nodes. If you wouldn’t
reverse the direction of the relationship, you would effectively be comparing
tweets based on how many tags they have in common. The GDS library
allows reversing the relationship direction during projection, so you don’t
have to transform the underlying stored graph.

When you want to transform the relationship direction during projection, you
need to use the configuration map syntax to describe the projected
relationships.

Listing 7.10. Configuration map to describe the relationship type and its orientation.



{ALIAS_OF_TYPE: {type:'RELATIONSHIP_TYPE',

                 orientation: 'NATURAL',

                 properties:['property1','property2']}

Instead of simply specifying the relationship as a string, you need to construct
a relationship configuration map. The ALIAS_OF_TYPE key specifies under
which name the projected relationship will be available in the in-memory
graph. The alias doesn’t have to be identical to relationship types that are
stored in the database. Each alias key has a value that consists of a map
describing which relationship types should be projected, their orientation, and
optional properties. You can manipulate and transform the relationship
direction with the orientation key. It has three possible values.

NATURAL: each relationship is projected the same way as it is stored
in the database
REVERSE: each relationship is reversed during graph projection
UNDIRECTED: each relationship is projected in both natural and
reverse orientation

With the orientation configuration, you have the option to project the
relationship as is, reverse its direction, or treat it as undirected. As mentioned,
to treat a relationship as undirected, the engine simply duplicates the
relationship in the opposite direction.

Moving on to the hashtag co-occurrence task, you need to project both Tweet
and Tag nodes and include the HAS_TAG relationship with a reversed direction.

Listing 7.11. Project Tweet and Tag nodes and include reversed HAS_TAG relationships.

CALL gds.graph.project(

    #1

    'tags',

    #2

    ['Tweet', 'Tag'],

    #3

    {REVERSED_HAS_TAG: {orientation:'REVERSE', type:'HAS_TAG'}});

Listing 7.11 introduces two new Native Projection syntax options. First, you
can specify multiple node labels to be projected using a list. In Listing 7.11,
you described both Tweet and Tag nodes to be projected. Secondly, you used



the configuration map syntax to describe the projected relationships. The
projected relationships will be available under the REVERSED_HAS_TAG alias
and contain HAS_TAG connections with a reversed relationship direction.

Now that you have the network of tweets and hashtags projected, you can use
the Node Similarity algorithm to infer a monopartite network. The two most
crucial hyper-parameters of the Node Similarity algorithm are the topK and
similarityCutoff parameters. With them, you can affect how dense or
sparse will the inferred network be. The similarityCutoff parameter
defines the threshold value of the Jaccard similarity coefficient between a
pair of nodes that are still regarded as similar. For example, if the
similarityCutoff is 0.5, then the relationships will be considered only
between the pairs of nodes with the Jaccard similarity score of 0.5 or higher.
On the other hand, the topK parameter specifies the limit on the number of
similar relationships per node. As you can directly affect how many
relationships should be stored with the topK and the similarityCutoff
parameters, you consequently describe how sparse or dense the inferred co-
occurrence network will be.

Defining how sparse or dense the inferred co-occurrence network between
hashtags should be will directly correlate with how broad the communities of
hashtags that form a topic will be. For example, if you use the topK value of
1, each node will have only a single outgoing relationship to its most similar
neighbor. However, if you were to increase the topK value to 2, each node
would have two outgoing relationships that specify which two nodes are the
most similar to it.

Figure 7.12. Comparison of how different topK values affect the density of the resulting co-
occurrence network.



Figure 7.12 visualizes a comparison of inferred co-occurrence networks if
different topK values are used. As mentioned, the input to the Node
Similarity algorithm is usually a bipartite network. In this example, you have



a bipartite network of tweets and hashtags. The Node Similarity algorithm
will then evaluate how similar the hashtags are based on the number of tweets
they appear in together. Once the Jaccard similarity coefficient between pairs
of hashtags is calculated, the algorithm will output the results as relationships
between hashtags. You can observe a co-occurrence network with the topK
value of 1 on the left-hand side of Figure 7.12. Using the topK value of 1,
each hashtag will have a single outgoing relationship indicating its most
similar hashtag. The resulting co-occurrence network on the left-hand side of
Figure 7.12 has eight nodes and eight relationships. For example, the #data
hashtag is the most similar to the #datascience hashtag. Even though I
previously stated that the Jaccard similarity coefficient is a symmetric
similarity metric, the #datascience hashtag does not have a reverse
relationship to the #data hashtag. Why is that so? The reason is that once you
apply a topK filter to the Node Similarity algorithm, you lose the guarantee
that all relationships will be symmetric. If you were to set the topK value to
the number of the nodes in the inferred co-occurrence network, all
relationships would be symmetric.

Going back to your scenario, once the co-occurrence network is created, the
idea is to use an algorithm like the Label Propagation to find communities of
tightly-connected hashtags. A community is defined as a group of densely
interconnected nodes that might have sparser connections with other groups.
When using a lower topK value, there will be fewer connections in the
inferred co-occurrence network. Consequently, the size of communities will
be smaller as there will be less densely interconnected nodes. Since the
communities will be smaller, there will be more of them throughout the
network. You defined that each community of hashtags will be regarded as a
single topic. Therefore, by adjusting the topK value of the Node Similarity
algorithm, you are essentially influencing how big or small the resulting
communities of hashtags will be. The larger the community of hashtags is,
the more broad the resulting topic will be. When the communities of hashtags
are larger, you might produce a less granular targeting strategy. On the other
hand, using a smaller topK value would help you find smaller communities of
hashtags and consequently devise a more narrow marketing strategy.

In Figure 7.12, you can observe that when using a topK value of 1, the
community detection algorithm identified two communities in the resulting



co-occurrence network. One community consists of #ai, #datascience, #data,
and #blockchain hashtags, while the other community contains #ml, #graph,
#network, #algorithm. When you use a higher topK value, the resulting co-
occurrence network will be more interconnected, and consequently, a
community detection algorithm will identify larger communities. A larger
community of hashtags will result in more broad topics in your use case. On
the right-hand side of Figure 7.12, you can observe that using a topK value of
2 produces a more densely-connected co-occurrence network. Since the
nodes are more densely-connected, a community detection algorithm
identified larger and fewer communities. In Figure 7.12, the algorithm
identified only a single community of hashtags when using a higher topK
value of 2. Defining the topK parameter and the similarityCutoff
parameter is a mix of science and art and depends on your use case. By
default, the topK parameter value is 10, and the similarityCutoff is 1E-42,
just slightly above zero. You can evaluate how dense the inferred network
would be with default parameter values by using the stats mode of the Node
Similarity algorithm.

Listing 7.12. Evaluate the Jaccard coefficient distribution of with default parameters.

CALL gds.nodeSimilarity.stats('tags', {similarityMetric: 'JACCARD'})

YIELD nodesCompared, similarityPairs, similarityDistribution

Table 7.5. Similarity distribution of the Node Similarity algorithm with default parameters.

nodesCompared similarityPairs similarityDistribution

{ "p1":
0.0005411244928836823,

"max":
1.000007625669241,

"p50":
0.4400005303323269,



2093 13402

"p10":
0.007575776427984238,

"p75":
1.000007625669241,

"p25":
0.11111116036772728,

"mean":
0.4971548691088963,

"stdDev":
0.39913025157864984 }

Executing the Node Similarity algorithm with default parameters would
create 13402 relationships between 2093 hashtags. The average similarity
score of those relationships is 0.49. Note that this distribution summary does
not include the similarity score between all pairs of nodes, but only for the
top ten similar neighbors of a node, as that is the default topK value.
Interestingly, the median value (p50) is close to the average similarity value,
and around 25% of relationships have the maximum possible similarity score
of 1. When the similarity score is 1, a pair of hashtags are always present
together in a tweet.

You can use the similarityCutoff parameter to exclude relationships
between pairs of hashtags with a similarity score lower than the threshold.

Listing 7.13. Use similarityCutoff parameter to define the similarity score threshold.

CALL gds.nodeSimilarity.stats('tags',

  {similarityMetric: 'JACCARD', similarityCutoff:0.33})

YIELD nodesCompared, similarityPairs, similarityDistribution

Table 7.6. Similarity distribution of the Node Similarity algorithm by setting the similarityCutoff
parameter.



nodesCompared similarityPairs similarityDistribution

2093 7733

{ "p1":
0.3333320617675781,

"max":
1.000007625669241,

"p50":
1.0000057220458984,

"p10":
0.3636360168457031,

"p75":
1.0000057220458984,

"p25":
0.5000019073486328,

"mean":
0.7893913483135638,

"stdDev":
0.2606311318508915 }

You can observe that by setting the similarityCutoff value to 0.33, only
7733 relationships would be created instead of 13402 with default parameter
values. The 25th percentile value is 0.5, and interestingly, the median value is
already the maximum score of 1. The average node degree of the resulted
network would be around 4. As indicated by the similarity distribution, the
relationships would be created between pairs of very similar or highly co-
occuring hashtags as the median value is already 1.0.

Exercise 7.3



Test out various combinations of the topK and similarityCutoff parameters
using the stats mode of the Node Similarity algorithm and evaluate how
changing their values affect the density of the inferred network.

Unfortunately, there is no clear-cut solution to defining the topK and
similarityCutoff parameters. It reminds me of the Goldilocks dilemma.
They have to be just right. If you infer too dense a graph, further analysis of
the inferred network might not produce valuable insights. The same applies if
you infer too sparse of a graph. As a beginner, I advise you to try various
parameter configurations and inspect downstream results. Later, you could
apply automatic hyper-parameter optimization methods when you grasp the
underlying data structure and how configuration values affect results.

With the hashtag co-occurrence example, you will use the similarityCutoff
value of 0.25 and the topK value of 50. As you will execute other graph
algorithms on the inferred co-occurrence network, you will use the mutate
mode of the Node Similarity algorithm. The mutate mode stores the inferred
network to the in-memory graph, which allows you to use the results of the
Node Similarity algorithm as input to other graph algorithms.

Listing 7.14. Mutate the hashtag co-occurrence network to the in-memory graph.

CALL gds.nodeSimilarity.mutate('tags',

  {topK:50, similarityCutoff:0.25,

    mutateRelationshipType:'CO_OCCURRENCE',

    mutateProperty:'score',

    similarityMetric: 'JACCARD'})

YIELD nodesCompared, relationshipsWritten

The inferred co-occurrence network of hashtags contains 2093 nodes and
9992 relationships.

7.2.2 Co-occurence network characterization

Before moving on to the community detection part, you will consolidate your
knowledge of characterizing a network using graph algorithms.

You can use the node degree algorithm to further evaluate the node degree
distribution of the inferred co-occurrence network. The thing is that the



projected tags graph now contains Tweet and Tag nodes as well as
REVERSE_HAS_TAG and CO_OCCURRENCE relationships. You can filter which
nodes or relationships the algorithm should consider at the algorithm
execution time with the nodeLabels and relationshipTypes parameters.

Listing 7.15. Evaluate node degree distribution of the hashtag co-occurrence network.

CALL gds.degree.stats('tags',

  {nodeLabels:['Tag'], relationshipTypes:['CO_OCCURRENCE']})

YIELD centralityDistribution

Table 7.7. Node degree distribution of the hashtag co-occurrence network

p99 21.00011444091797

min 0.0

max 40.00023651123047

mean 5.351917056393738

p90 13.000053405761719

p50 3.0000076293945312

p999 29.00011444091797

p95 17.00011444091797



p75 8.000053405761719

Both the nodeLabels and the relationshipTypes parameters expect a list as
an input. The ability to filter nodes and relationships at algorithm execution
time is a convenient feature that allows you to analyze various parts of the
projected graph or analyze a newly inferred network.

The average node degree of the hashtag co-occurrence network is 5.3. Some
of the hashtags have no CO_OCCURRENCE relationships, while at least one
hashtag frequently co-occurs with 40 other hashtags. The topK parameter
value of 50 did not affect the resulted network, as the highest degree is only
41.

Exercise 7.4

Execute the Weakly-Connected components algorithm on the hashtag co-
occurrence network and store the results to the database as a node property
tcWcc. Provide the nodeLabels and relationshipTypes parameters so that
the algorithm will only consider the desired subset of the projected graph.
Use the write mode of the algorithm to store the results back to the database.

Table 7.8. Summary statistics for the WCC algorithm executed on the hashtag co-occurrence
network.

componentCount componentDistribution

469

{ "p99": 19,

"min": 1,

"max": 491,

"mean": 3.9808102345415777,

"p90": 6,



"p50": 2,

"p999": 491,

"p95": 11,

"p75": 3 }

The write mode of the WCC algorithm also provides the high-level summary
of the results, similar to the stats mode. There are 469 components in the
hashtag co-occurrence network, and the largest contains 491 member, which
is around 25% of the whole network. You can imagine that you are dealing
with quite a disconnected network as most of the components have 10 or less
members.

Exercise 7.5

Identify how many components have ten or fewer members. First, you will
need to count how many members are in each component based on their
tcWcc property. After the first aggregation, you need to apply the filter and
ignore components with more than ten members. In the last step, you simply
use the count function again to count the number of filtered components.

445 components out of 467 have ten or fewer members. One of the reasons
why the inferred network is so disconnected is because you are dealing with a
tiny subset of the Twitter social network. I think that adding more data would
help to connect some of the components. On the other hand, hashtags like
meditation or self-help will probably never frequently co-occur with AI or
machine learning, and even if they do by some chance, they will never reach
the similarity threshold where the co-occurrence relationship will be created
between them.

7.2.3 Inspect community structure with Label Propagation
algorithm

So far, you have only learned how to use the Weakly and Strongly Connected



Components algorithms to evaluate the community structure. As the last part
of this chapter, you will learn how to use the Label Propagation algorithm
(LPA) to find non-overlapping communities of hashtags. What is the
difference between a community and a component? With the Weakly
Connected components algorithm, a component consists of nodes that can
reach one another in the graph when ignoring the relationship direction. On
the other hand, a community is defined as a group of densely interconnected
nodes that might have sparser connections with other groups.

Figure 7.13. Example visualization of a network community structure.

Figure 7.13 visualizes a network that consists of only a single weakly-
connected component. However, when you run a community detection
algorithm like Label Propagation (LPA) on this network, the algorithm will
identify groups of highly-connected nodes. There are three communities in
Figure 7.13. For example, there is a community on the left-hand side where
members are highly-connected. Similarly, there is another community with
densely connected nodes on the right-hand side of the visualization, while
one of those nodes also have connections to central community.

You can execute the mutate mode of the Label Propagation algorithm with
the following Cypher statement.

Listing 7.16. Execute the Label Propagation algorithm on the hashtag co-occurrence network and



store the results to the in-memory graph.

CALL gds.labelPropagation.mutate('tags',

  {nodeLabels:['Tag'], relationshipTypes: ['CO_OCCURRENCE'],

   mutateProperty:'community'})

YIELD communityCount, communityDistribution;

As you can see, most of the graph algorithms follow the same syntax, which
makes it easy to try out various graph algorithms. Again, you had to use the
nodeLabels and the relationshipTypes parameters to select the hashtag co-
occurrence network.

If you want to evaluate the results with Cypher, you need to store the mutated
community property from the in-memory graph to the Neo4j stored graph.
You can store the node properties from the in-memory graph to the database
with the gds.graph.writeNodeProperties procedure.

Run the following Cypher statement to store the mutated community property
from the in-memory graph to the database.

Listing 7.17. Write the mutated in-memory graph node properties to the database.

CALL gds.graph.writeNodeProperties('tags', ['community'])

YIELD propertiesWritten

The algorithm results are now available as the community node property of
the Tag nodes.

You will now inspect the five largest communities and examine some of their
members.

Listing 7.18. Inspect the five largest communities of hashtags.

MATCH (t:Tag)

RETURN t.community AS community,

       count(*) AS communitySize,

       collect(t.id)[..7] AS exampleMembers

ORDER BY communitySize DESC

LIMIT 5

Table 7.9. Top five largest communities of hashtags



community communitySize exampleMembers

15809 43

["#mentalism",
"#respect", "#special-
needs",
"#mondayvibes",
"#goals", "#mindset",
"#anxiety"]

15828 42

["#auto_tagging",
"#data_entry",
"#itrules",
"#writingcommunity",
"#feg", "#crypto",
"#tsa"]

17537 35

["#programming",
"#ml", "#iiot", "#iotpl",
"#rstats",
"#cybersecurity",
"#serverless"]

16093 34

["#nlpimpulse",
"#iserlohn", "#zoom",
"#selbstbild",
"#selbstwert",
"#spiegelbild",
"#werte"]

["#artproject", "#nft",
"#art", "#nfts",



16271 31 "#oculusquest",
"#gaming", "#xrhub"]

The largest community of hashtags has 43 members. From the looks of it, the
overall topic of the largest community is focused on mental health and
personal growth. At first, I wasn’t expecting these types of tweets in the
dataset, but now I know that NLP can refer to both Natural Language
Processing or Neuro-Linguistic Programming. The third and fourth largest
communities are centered around computer science and software
development. On the other hand, the fifth largest community seems to
revolve around NFTs, and interestingly also VR like Oculus Quest are
mentioned.

You can remove the limit on the members as well as the limit of rows to
further analyze the community structure.

Exercise 7.6

Identify the community of hashtags where:

#nlp is a member
#graph is a member

Table 7.10. Communities where #nlp or #graph are members

15699

["#graphdatabases", "#hcm",
"#peopleanalytics", "#hranalytics",
"#graphdatascience", "#twitch",
"#graph", "#neo4j"]

17533

["#datascience", "#ai",
"#machinelearning", "#iot",
"#python", "#nlp",
"#100daysofcode", "#deeplearning",



"#artificialintelligence", "#bigdata",
"#robots"]

The results of Exercise 7.6 provide recommendations for hashtags that you
can use to devise a marketing strategy for your company. You could also
explore other communities and search for other hashtags that might be
relevant to your company. On the other hand, you would probably want to
exclude topics of hashtags that are not relevant, like the self-help domain in
this example.

Sometimes you get large communities and want to identify only the most
central hashtags. In the marketing strategy example, you might want to
identify the most central hashtags of self-help communities to exclude them
in your targeting. By identifying the most central hashtags to exclude, you
would probably most efficiently exclude particular topics without excluding
hundreds of hashtags. You can run the PageRank algorithm to find
representatives of communities. To find representatives with the PageRank
algorithm, you need to execute it on each community separately.
Unfortunately, you can’t filter by mutated node properties at algorithm
execution time. But, you can use the subgraph projection feature, which
allows you to project a subset of an existing in-memory graph by specifying
node and relationship filters.

Listing 7.19. Subgraph Projection syntax.

CALL gds.beta.graph.project.subgraph(

  graphName: String, -> name of the new projected graph

  fromGraphName: String, -> name of the existing projected graph

  nodeFilter: String, -> predicate used to filter nodes

  relationshipFilter: String -> predicate used to filter relationships

)

You can use the nodeFilter parameter to filter nodes based on node properties
or labels. Similarly, you can use relationshipFilter parameter to filter
relationships based on their properties and types. Filter predicates are Cypher
predicates for either a node or a relationship. The filter predicate always
needs to evaluate to true or false. Variable names within predicates are not
arbitrary chosen. A node predicate must refer to variable n, while the



relationship predicate must refer to variable r.

The reason you have used the mutate mode of the Label Propagation
algorithm is that you can now used the mutated properties for subgraph
projections. If you would have used the write mode directly, the Label
Propagation algorithm results would not be available in the in-memory graph,
and so, you couldn’t filter on them.

You can execute the following Cypher statement to project a subgraph that
contains only the largest community of hashtags.

Listing 7.20. Project a subgraph that contains only the largest community of hashtags

CALL gds.beta.graph.project.subgraph(

  'largest-community',

  'tags',

#1

  'n.community = 15809',

#2

  '*'

)

Note that the community ids from the Label Propagation algorithm are not
deterministic, meaning that different values of community ids might be
assigned. If the id of the largest community is different in your case, you
need to change the #A part of the Cypher statement in Listing 7.20. Finally,
you can execute the PageRank algorithm on the newly projected largest-
community in-memory graph to identify its representatives.

Listing 7.21. Identify representatives of the largest community with the PageRank algorithm.

CALL gds.pageRank.stream('largest-community')

YIELD nodeId, score

RETURN gds.util.asNode(nodeId).id AS tag, score

ORDER BY score DESC

LIMIT 5

Table 7.11. Top five representatives of the largest community of hashtags



tag score

#selfcare 1.854847517775231

#healing 1.854847517775231

#meditation 1.7425376890993822

#mindset 1.7156089968110972

#magic 1.3470665285015495

You would want to exclude the hashtags in Table 7.11 when targeting the
#nlp hashtag to capture the natural language processing topic but exclude the
non-relevant self-help domain.

Exercise 7.7

Find representatives of other communities. You need to use the subgraph
projection feature to filter relevant nodes and then use the PageRank
algorithm to find its representatives.

Congratulations, you have learned how to infer a co-occurrence network and
analyze its community structure. The most crucial step in analyzing the
hashtag co-occurrence network was the definition of the topK and
similarityCutoff parameters of the Node Similarity algorithm. As stated,
the topK and the similarityCutoff parameters will directly affect how
dense the inferred co-occurrence network will be. Consequently, the density
of the co-occurrence network wil correlate with how large the identified
communities will be, which in the hashtag co-occurrence example means
how broad the resulting topics will be. I recommend you test out various



configurations of the two parameters and examine how it affects the resulting
hashtag communities.

7.2.4 Drop projected in-memory graphs

It is important to remember to release the projected in-memory graph once
you are done with the analysis to free up memory for other analysis. The
following Cypher statement will drop all currently projected graphs.

Listing 7.22. Release all projected graphs from memory.

#1

CALL gds.graph.list() YIELD graphName

#2

CALL gds.graph.drop(graphName) YIELD nodeCount

RETURN 'dropped ' + graphName

7.3 Summary

Inferring monopartite networks is a frequent step in graph analysis
Jaccard similarity coefficient can be calculated by dividing the
intersection by the union of two sets
GDS library uses two directed relationship that point in the opposite
direction to represent an undirected relationship
You can change the relationship direction or treat it as undirected during
in-memory graph projection
Parameters nodeLabels and relationshipTypes can be used to consider
only a subset of the projected graph as an input to a graph algorithm
Label Propagation algorithm is used to evaluate community structure of
a network
Communities represent densely connected groups of nodes with sparser
links between groups
You can use subgraph projection feature to project a subset of an
existing in-memory graph
PageRank can be used to find representatives of communities in a
hashtag co-occurrence network



7.4 References

[Cherepnalkoski & Mozetic, 2015] D. Cherepnalkoski and I. Mozetic, "A
Retweet Network Analysis of the European Parliament," 2015 11th
International Conference on Signal-Image Technology & Internet-Based
Systems (SITIS), 2015, pp. 350-357, doi: 10.1109/SITIS.2015.8.

[Durazzi et al., 2021] Durazzi, F., Müller, M., Salathé, M. et al. Clusters of
science and health related Twitter users become more isolated during the
COVID-19 pandemic. Sci Rep 11, 19655 (2021).
https://doi.org/10.1038/s41598-021-99301-0

[Al-Zaman, 2021] Al-Zaman, Md. Sayeed. (2021). A bibliometric and co-
occurrence analysis of COVID-19-related literature published between
December 2019 to June 2020. Science Editing. 8. 57-63. 10.6087/kcse.230.

[Andersen et al., 2020] Andersen, Njål et al. “The emerging COVID-19
research: dynamic and regularly updated science maps and analyses.” BMC
medical informatics and decision making vol. 20,1 309. 30 Nov. 2020,
doi:10.1186/s12911-020-01321-9

[Kastrin et al., 2014] Kastrin, Andrej & Rindflesch, Thomas & Hristovski,
Dimitar. (2014). Link Prediction in a MeSH Co-occurrence Network:
Preliminary Results.. Studies in health technology and informatics. 205. 579-
583.

[Beveridge et al., 2018] Beveridge, Andrew and Michael M. Chemers. “The
Game of Game of Thrones : Networked Concordances and Fractal
Dramaturgy.” (2018).

[Cooper, 2020] Kathryn M Cooper (2020). The ingredient co-occurrence
network of packaged foods distributed in the United States. Journal of Food
Composition and Analysis, 86, 103391.

[Kular et al., 2011] D. K. Kular, R. Menezes and E. Ribeiro, "Using network
analysis to understand the relation between cuisine and culture," 2011 IEEE
Network Science Workshop, 2011, pp. 38-45, doi:
10.1109/NSW.2011.6004656.



[Pervin, 2015] Pervin, F. (2015). Hashtag Popularity on Twitter: Analyzing
Co-occurrence of Multiple Hashtags. In Social Computing and Social Media
(pp. 169–182). Springer International Publishing.

[Wang et al., 2016] Wang, R., Liu, W. and Gao, S. (2016), "Hashtags and
information virality in networked social movement: Examining hashtag co-
occurrence patterns", Online Information Review, Vol. 40 No. 7, pp. 850-
866. https://doi.org/10.1108/OIR-12-2015-0378

[Türker & Sulak, 2018] Türker, İ., & Sulak, E. (2018). A multilayer network
analysis of hashtags in twitter via co-occurrence and semantic links.
International Journal of Modern Physics B, 32(04), 1850029.

[Vitale, 2018] Vitale Nicola. (2018). STUDY ON THE TWITTER
HASHTAG-HASHTAG CO-OCCURRENCE NETWORK AND
KNOWLEDGE DISCOVERY APPLICATON (v1.0.0). Zenodo.
https://doi.org/10.5281/zenodo.1289254

7.5 Solutions to exercises

The solution to Exercise 7.1 is the following:

Listing 7.23. Retrieve the top five hashtags by the sum of the combined tweet and retweet count.

MATCH (h:Tag)<-[:HAS_TAG]-(t:Tweet)

OPTIONAL MATCH (t)<-[r:RETWEETS]-()

RETURN h.id AS hashtag,

       count(distinct t) AS originalTweetsCount,

       count(r) AS retweetCount

ORDER BY retweetCount + originalTweetsCount DESC

LIMIT 5

The solution to Exercise 7.2 is the following:

Listing 7.24. Examine the top five most co-occuring pairs of hashtags.

MATCH (h1:Tag)<-[:HAS_TAG]-()-[:HAS_TAG]->(h2:Tag)

#1

WHERE id(h1) < id(h2)

WITH h1,h2,count(*) AS cooccurrences



ORDER BY cooccurrences DESC LIMIT 5

RETURN h1.id AS tag1, h2.id AS tag2, cooccurrences

The solution to Exercise 7.4 is the following:

Listing 7.25. Execute the WCC algorithm on the hashtag co-occurrence network and store the
results to the database.

CALL gds.wcc.write('tags',

  {writeProperty:'tcWcc',

   nodeLabels: ['Tag'], relationshipTypes: ['CO_OCCURRENCE']})

YIELD componentCount, componentDistribution;

The solution to Exercise 7.5 is as follows:

Listing 7.26. Execute the WCC algorithm on the hashtag co-occurrence network and store the
results to the database.

MATCH (t:Tag)

WITH t.tcWcc AS componentId, count(*) AS componentSize

WHERE componentSize <= 10

RETURN count(*) AS count

The solution to Exercise 7.6 is as follows:

Listing 7.27. Identify the members that are in the same community as the #NLP hashtag.

MATCH (t:Tag)

WHERE t.id IN ['#nlp', '#graph']

WITH distinct t.community AS target_community

MATCH (o:Tag)

WHERE o.community = target_community

RETURN target_community, collect(o.id) as members



8 Constructing a nearest neighbor
similarity network
This chapter covers

Manually extracting node features
Presenting network motifs and graphlets
Introducing Betweenness and Closeness centralities
Constructing a monopartite network based on pairwise cosine
similarities
Using community detection algorithm to complete a user segmentation
task

This chapter will describe constructing a similarity network based on node
properties or features. Similar to typical machine learning preprocessing
workflow, each data point or node can be represented as a vector. In the
context of graphs, there are generally two approaches you could take to
describe a node as a vector. You could manually produce a set of features that
describes a node or use node embedding models to produce vectors
representing a node in the network automatically. In this chapter, you will
manually create representations of nodes to describe their roles in the
network and then use those representations to construct an inferred similarity
network.

Figure 8.1. Extract node representations and construct a similarity network based on them.



Figure 8.1 visualizes the process of extracting node features from the
follower network. There are multiple approaches to describing a node as a
vector. In this chapter, you will manually identify and extract relevant
features that will be used to construct a similarity network. After that, you
will evaluate how similar the nodes are based on the extracted features. The
most common metric to evaluate the similarity between two vectors is cosine
similarity. Cosine similarity is defined as the cosine of the angle between two
vectors. You will calculate cosine similarity between pairs of nodes and store
the relationship between nodes deemed similar. Similarly, as in the last
chapter, you will define a similarity threshold of when a relationship should
be created. Notice that nodes that are connected in the original network are
not necessarily connected in the inferred similarity network.

Figure 8.2. Cosine similarity is measured as the cosine of the angle between two vectors.



Cosine similarity is defined as the cosine of the angle between two vectors as
visualized in Figure 8.2. The measure ranges between -1 and 1. When a pair
of vectors has an identical direction, meaning that the angle between the
vectors is zero, then the cosine similarity is 1. On the other hand, when the
two vectors have opposite directions, the cosine similarity is -1. In practice,
we deem two vectors similar when their cosine similarity is close to 1.

Imagine you work as an analyst at Twitter. Your supervisor gives you the
task of identifying the types of users on the platform. The supervisor doesn’t
tell you exactly what to look for or how to group users. There are multiple
features in the dataset that you could use to describe a user. For example, you
know how often and what hashtags they use in their tweets or retweets. You
are also aware of who they follow or mention on the platform. Apart from
that, you also have some timeline information about when a user or a tweet
was created. As with all manual feature engineering, you first have to decide
which metrics or features you will use to describe a node. Since you have a
small subset of tweets from a small time window, it doesn’t make sense to
analyze whether users have become inactive by not posting or retweeting
anymore. On the other hand, exploring features that would help you split
users by content creators and those who primarily only retweet might be



interesting. For example, you could take the total count of tweets and the
ratio between retweets and all tweets as the first two features. Another
interesting metric could be the average time it takes a user to retweet. You
could assume that if the average retweet time is minimal, you are most likely
dealing with a bot. Another metric that could help you identify bots is
inspecting if multiple users post identical content at similar times. Since you
have information about followers available, exploring some metrics that
encapsulate the position and roles of nodes in the follower network might be
worth considering. You will learn how to characterize a node’s immediate
neighborhood as well as investigate its role in the whole network. A node’s
role is a subjective interpretation of the part it plays in the network. For
example, you can use the Betweenness centrality algorithm to evaluate which
nodes act as bridges between various communities or parts of the network.
Similarly, you can use the Closeness centrality to evaluate how close a node
is to all the other nodes in the network. Presuming that most if not all
information in the Twitter social network spread through follower
relationships, you could identify nodes that can disseminate information
through the network the fastest due to their position in the network.

After the feature extraction process, you will construct a similarity network
between users based on pairwise cosine similarity between their feature
vectors. You will then use a community detection algorithm like the Label
Propagation algorithm, which was introduced in the previous chapter, to
identify various segments of users. Since the relationships connect similar
nodes, the community detection algorithm will identify groups of nodes that
are densely interconnected in the inferred similarity network. The identified
groups of users can be interpreted as user segmentation based on the
manually extracted features.

Figure 8.3. Using community detection algorithm to identify segments of users.



Figure 8.3 visualizes the process of using a community detection algorithm
on the inferred similarity network to identify groups of users that can be
interpreted as segments. The density of the inferred similarity network will
directly correlate with the size of communities. You cannot pre-define how
many segments you want to identify with this approach. However, you can
influence the size of segments by tuning the density of the inferred similarity
network.

Multiple research papers [Tinati & Carr, 2012] [Beguerisse-Díaz et al., 2014]
focus on defining user roles on the Twitter network. Although extracted
features vary from paper to paper, and one can use multiple community
detection or clustering techniques to group users together, the underlying idea
seems to be always identical. The first part involves identifying and
extracting relevant features that describe a user. The feature extraction is
done manually, allowing the analyst to explain all the features and their
relevance. For example, if you use a model that automatically transforms
nodes into vectors, it is hard to explain what those vectors mean. Lastly,
researchers then use various community detection or clustering techniques to
group users into segments.

You could use the approach of constructing a nearest neighbor graph and
evaluating its community structure to identify specific groups or clusters in
many other domains. For example, you could use this technique to segment



users to create personalized services [Voulodimos et al., 2011] or to cluster
customers to improve market forecasting and planning research [Kashwan &
Velu, 2013]. You could also use a similar approach to cluster research papers
based on their sentence roles [Fukuda & Tomiura, 2018]. While the feature
extraction might look very different in different analyses, ranging from
employing simple statistics to extracting network features or even document
embeddings, the input to the analysis will always be a vector representing
each data point. Next, plenty of algorithms are available to group data points
based on their vector representations, and I am not here to argue which is best
and why. I want to give you an example of using a graph-based approach to
unsupervised clustering, where the number of final clusters or communities is
not pre-defined.

To follow the exercises in this chapter, you need to have the Twitter network
imported into the Neo4j database as described in Chapter 3.

8.1 Feature extraction

As mentioned, the first step in the user segmentation process is the feature
extraction. Every node feature will be stored as its property. First, you will
use your Cypher knowledge to extract the number of tweets and the ratio
between retweets and tweets for each user.

Exercise 8.1

Calculate the number of tweets for each user and store it as the tweetCount
property. Make sure to include those users that have zero published tweets.
Additionally, calculate the ratio between retweets and tweets for each user.
Specifically, divide the count of retweets by the sum of retweets and tweets
and store it as the retweetRatio property. When a user has no retweets or
tweets, use a default value of zero. You can use a single or two Cypher
statements to calculate both features, whatever is easier for you.

Next, you will evaluate the distribution of how long it takes on average for a
user to retweet a tweet after it has been published. One could hypothesize that
if a user retweets a lot almost instantly, it is probably a bot.



Listing 8.1. Evaluate the distribution of average duration between a retweet and tweet created
dates.

MATCH (u:User)-[:PUBLISH]-(retweet)-[:RETWEETS]->(tweet)

#1

WITH u, toInteger(duration.between(

  tweet.createdAt, retweet.createdAt).minutes) AS retweetDelay

#2

WITH u, avg(retweetDelay) AS averageRetweetDelay

RETURN apoc.agg.statistics(averageRetweetDelay,

  [0.05, 0.10, 0.25, 0.5, 0.9]) AS result

Listing 8.1 introduces the duration.between() function, which is used to
calculate the duration between two datetimes. The duration temporal type
behaves like an object and has multiple methods to extract the duration in
years, days, minutes, and more. You can check out all the available methods
in the documentation.

Results of Cypher statement in Listing 8.1 are:

Table 8.1. Distribution of average time between retweet and original tweet per user

total 1385

min 0.0

minNonZero 0.05769228935241699

0.1 2.583343267440796

max 1439

0.05 1.0000073909759521



mean 372.21522092560997

0.25 22.00012183189392

0.5 206.00097632408142

0.9 1057.0078122615814

stdev 410.56837279615803

You can observe that you have information for only 1385 users, slightly less
than 40% of all users. Five percent of users retweet within a minute and ten
percent retweet within 2.5 minutes. We could use a combination of retweets
and average time to retweet to identify bots. If a user consistently retweets
within a minute or two, you are likely dealing with a bot. You can observe
that otherwise, the average time to retweet is around 6 hours, which makes
sense for a normal human being who is not constantly looking at their Twitter
feed.

Exercise 8.2

Calculate the average duration in minutes between tweet and retweet per user
and store it as timeToRetweet property. Use the mean value of 372 minutes
for users that have never retweeted (have missing values).

Another feature that might indicate bots is looking at if multiple users are
posting identical content.

Exercise 8.3

Inspect tweets that are not retweets with identical content, which is available



in the text property. Additionally, ignore occurrences when a single author
posts multiple tweets with the same content.

By solving Exercise 8.3, you can observe that there are only five tweets that
all have identical content. Since this feature is present with only five users,
only 1 per 1000 users, you will ignore it.

8.1.1 Motifs & Graphlets

Next, you will focus on encoding a user’s role in the follower network. Nodes
with similar roles do not have to be next to one another in the network. For
example, you could say that users with a large following have a role in
producing certain types of content. There could be multiple users with a large
following, and they don’t have to follow one another or be close in the
network, but they still hold a similar role. In this example, you are effectively
examining only the direct neighborhood of a node. You can encode a node’s
local neighborhood by counting its positions graphlets. A graphlet is a
position of a node in a distinctly connected subgraph consisting of k nodes.
You might already be familiar with 2-node graphlets, although you probably
never heard that name before.

Figure 8.4. Two-node graphlets.



Figure 8.4 visualized all the two-node directed graphlets. A two-node
directed graphlet consists of two nodes and has directed relationships. There
are three possible variations of directed relations between two nodes. When
you are counting graphlets, you are essentially counting how many times a
node is present in that graph pattern. The left-side option shows a node at
position 0 that has an outgoing connection. So, if you want to count the
graphlet at position zero for a node, you simply count the number of outgoing
connections it has. You had already done that before, although you called it
an outgoing degree. Similarly, you can count the graphlets at position 1 for
each node by evaluating its incoming degree. Lastly, with a directed graph,
you can have relationships in both directions between two nodes, as shown
on the right-side of Figure 8.4. In some social networks, when two users
follow one another, they could be regarded as friends. However, specifically
for Twitter, they differentiate between followers and friends in their API
documentation, but the definition may lead to ambigous interpretations, so I
am unsure precisely what the difference is. Anyhow, you can regard graphlet
two as friends in this example.

Exercise 8.4



Calculate the incoming and outgoing degrees for all the users in the follower
network and store the results under the inDegree ` and `outDegree
properties. Additionally, count how many friends (graphlet two) patterns are
present for each user and store the output as friendCount property.

Next, you will look at 3-node graphlets and calculate some of them to encode
a node’s local neighborhood.

Figure 8.5. Three-node graphlets.

Figure 8.5 visualizes all the 30 variations of directed three-node graphlets. It
would be a nice exercise of Cypher to calculate all of them. However, you
will only calculate three visualized graphlets in Figure 8.5.

You can also notice that Figure 8.5 shows motif numbers as well as graphlet



numbers. What is the difference between the two? A motif is a distinctly
connected subgraph, while a graphlet describes a node’s position in the motif.
For example, if you look at motif #1, you can observe that it consists of three
nodes and two relationships. With motifs, you only count how often this
pattern occurs in a network. On the other hand, you can observe that there are
three options for a node position in this motif #1, and therefore, there are
three graphlets available. Motifs are used to characterize a network structure
[Kim et al., 2011], while graphlets come in handy when you want to describe
a local neighborhood of a node[Pržulj et al, 2004].

Exercise 8.5

Calculate graphlets 5, 8, and 11 visualized in Figure 8.5 for each user in the
follower network and store them as node properties. Store the graphlet 5
under the graphlet5 node property and so on. I recommend you use a
separate Cypher statement for each graphlet calculation.

8.1.2 Betweenness centrality

You have used graphlets to encode the local neighborhood of a node.
However, you have not extracted any features that would describe a user’s
position in the global network. You will start by executing the Betweenness
centrality algorithm to extract a feature that describes how often a user acts as
a bridge between various communities. The Betweenness centrality algorithm
assumes that all information travels along the shortest paths between nodes.
The more often a node lies on those shortest paths, the higher its
Betweenness centrality rank.

Figure 8.6. Sample visualization of betweenness centrality rank.



Figure 8.6 visualizes a Marvel network of characters where relationships
appear between characters that appeared in the same comic book. The Marvel
dataset is available on Kaggle[Sanhueza, 2017] under the CC BY 3.0 license.
Both the size of the node and the size of the character name are calculated
using the Betweenness centrality. The higher the Betweenness centrality



rank, the higher the node and caption size. You can observe that nodes that
connect different communities are the largest. For example, Captain America
is at the center of the network and acts as a bridge between the central
community and all other communities. Another excellent example of the
Betweenness centrality is the Beast character, who is the only link between
the central and the bottom community in Figure 8.6. If he were to be removed
from the network, the network would be split into two separate components.
Therefore, the Beast character acts as a bridge between the bottom
community and the rest of the network. Acting as a bridge also gives a node
influence over the information flow between the two communities.

Before executing the Betweenness centrality algorithm on the follower
network, you have to project an in-memory graph. You will use the same
projected graph to execute graph algorithms and then construct the nearest
neighbor graph. For that reason, you also need to include all the previously
calculated node features in the projection.

Completing exercises 8.1 to 8.5 is a requirement to execute the following
Cypher statement that projects an in-memory graph.

Listing 8.2. Project the in-memory graph that describes the follower network and includes all the
pre-calculated node features.

CALL gds.graph.project('knnExample','User', 'FOLLOWS',

 {nodeProperties:['tweetCount', 'retweetRatio', 'timeToRetweet', 'inDegree',

  'outDegree', 'friendCount', 'graphlet5', 'graphlet8', 'graphlet11']})

Now you can go ahead and execute the Betweeness centrality algorithm. You
will use the mutate mode to store the results back to the projected graph.

Listing 8.3. Mutate the Betweenness centrality algorithm.

CALL gds.betweenness.mutate('knnExample', {mutateProperty:'betweenness'})

8.1.3 Closeness centrality

Closeness centrality is a measure that indicates how close a node is to all the
other nodes in the network. The algorithm starts by calculating the shortest
paths to all the other nodes in the network. Once the shortest paths are



calculated, the algorithm sums the distance to all the other nodes. By default,
it returns an inverse of the distance sum so that a higher score means that a
node has a higher Closeness centrality rank. One can interpret closeness as
the potential ability to reach all the other nodes as quickly as possible.

Figure 8.7. Sample visualization of closeness centrality rank.



Figure 8.7 visualizes the same Marvel network as the Figure 8.6. The
difference is that here the node and the caption size are calculated by the



Closeness centrality algorithm instead of the Betweenness centrality
algorithm. You can observe that the largest nodes are in the center of the
network, which makes sense as they can reach all the other nodes the fastest.
On the other hand, characters on the brinks of the network have a minimal
Closeness centrality rank. Captain America is in such a privileged position
that he leads in both categories of centralities. On the other hand, for
example, Iron Man is trailing far behind Spider-Man and Beast by the
Betweenness centrality. However, he is in front of them when looking at the
Closeness centrality rank due to his position in the center of the network.

Original Closeness centrality might be unreliable on disconnected graphs.
Remember, the algorithm tries to find the shortest path to all the other nodes
in the graph. If the original formula is used on disconnected graphs, the
shortest path might not exist, and therefore, the sum of all shortest paths from
a node might be infinite. In practice, there are several variations of the
closeness centrality formula that deal with disconnected graphs. In this
example, you will use the Wasserman and Faust variation of the
formula[Wasserman & Faust, 1994].

You can execute the mutate mode of the Closeness centrality algorithm with
the following Cypher statement.

Listing 8.4. Mutate the Closeness centrality algorithm.

CALL gds.beta.closeness.mutate('knnExample',

  {mutateProperty:'closeness', useWassermanFaust: true})

8.2 Constructing the nearest neighbor graph

You have completed the first step of the user segmentation process by
manually extracting the features. The second step is to group or clusters users
into segments. As mentioned, several different methods are available to
cluster data points based on vector representations. Here, you will construct a
nearest neighbor graph based on pairwise cosine similarity between vector
representations. Since evaluating cosine similarity between a large number of
data points is a relatively frequent process, some algorithm implementations
do an intelligent search and avoid comparing all pairs of data points since that



doesn’t scale well. Neo4j GDS library implements an efficient similarity
search based on the cosine similarity metric.

Before constructing the nearest neighbor graph, it is advisable to explore the
distributions and correlations between the features.

8.2.1 Evaluate features

To utilize Cypher’s full expressivity and flexibility to analyze the features,
you must store the closeness and betweenness properties from the projected
in-memory graph back to the stored graph.

You can use the gds.graph.writeNodeProperties to store the mutated
properties back to the database.

Listing 8.5. Store the mutated properties to the database.

CALL gds.graph.writeNodeProperties('knnExample',

  ['betweenness', 'closeness'])

You will start by examining which node features correlate the most. The
GDS library offers a gds.similarity.pearson(vector1, vector2)
function that calculates the correlation between two vectors. You will
compare all pairs of features and identify the most correlating ones. Many
clustering techniques are influenced by feature collinearity which can skew
results. Feature collinearity is a phenomenon when one feature highly
correlates with another one.

You can use the following Cypher statement to identify the most correlating
features.

Listing 8.6. Identify the five most correlating pair of features.

WITH ['tweetCount', 'retweetRatio', 'timeToRetweet', 'friendCount',

      'inDegree', 'outDegree', 'graphlet5', 'graphlet8',

      'graphlet11', 'closeness', 'betweenness'] AS features

MATCH (u:User)

# A

UNWIND features as feature1

UNWIND features as feature2



WITH feature1,

     feature2,

     collect(u[feature1]) as vector1,

     collect(u[feature2]) as vector2

# B

WHERE feature1 < feature2

# C

RETURN feature1,

       feature2,

       gds.similarity.pearson(vector1, vector2) AS correlation

ORDER BY correlation DESC LIMIT 5

# A Use two UNWINDs to compare each feature to all the other

# B Avoid comparing a feature with itself and remove duplicates

# C Calculate correlation

Table 8.2. Top five correlating pairs of features

feature1 feature2 correlation

friendCount graphlet5 0.8173954540589915

graphlet8 outDegree 0.7867637411832583

graphlet11 graphlet5 0.7795975711131173

friendCount graphlet11 0.6578582639591071

betweenness friendCount 0.6370096424048863

It appears that some of the features are highly correlated. For example, the
friendCount highly correlates with graphlet5, graphlet11, and betwenness
features. Also, the graphlet8 variable correlates with the outgoing degree.



To remove some of the highly correlated pairs of features, you will ignore the
friendCount, graphlet8, and graphlet5 features from from your
segmentation process.

Next, you will quickly evaluate the distributions of the remaining features.
You can use the following Cypher statement to calculate basic distribution
statistics.

Listing 8.7. Mutate the hashtag co-occurrence network to the in-memory graph.

WITH ['tweetCount', 'retweetRatio', 'timeToRetweet','inDegree',

      'outDegree', 'graphlet11', 'closeness', 'betweenness'] AS features

MATCH (u:User)

UNWIND features as feature

WITH feature,

     apoc.agg.statistics(u[feature],

                        [0.5,0.75,0.9,0.95,0.99]) as stats

RETURN feature,

       round(stats.min,2) as min,

       round(stats.max,2) as max,

       round(stats.mean,2) as mean,

       round(stats.stdev,2) as stdev,

       round(stats.`0.5`,2) as p50,

       round(stats.`0.75`,2) as p75,

       round(stats.`0.9`,2) as p90,

       round(stats.`0.95`,2) as p95,

       round(stats.`0.99`,2) as p99

Table 8.3. Feature distributions

feature min max mean stdev p50 p75 p90 p95

"tweetCount" 0.0 754.0 0.96 13.74 0.0 1.0 1.0 2.0

"retweetRatio" 0.0 1.0 0.37 0.48 0.0 1.0 1.0 1.0

"timeToRetweet" 0.0 1439.0 372.08 254.87 372.0 372.0 613.0 944.0



"inDegree" 0.0 540.0 6.92 22.76 0.0 4.0 16.0 35.0

"outDegree" 0.0 143.0 6.92 11.95 2.0 8.0 21.0 32.0

"graphlet11" 0.0 75.0 0.2 1.88 0.0 0.0 0.0 0.0

"closeness" 0.0 0.25 0.04 0.06 0.0 0.11 0.13 0.14

"betweenness" 0.0 199788.66 2385.97 10885.16 0.0 17.57 4075.66 11850.37

Interestingly, the first thing I noticed is that more than 95% of users have
graphlet11 count of zero. Some might say that you could drop the
graphlet11 feature due to its low variance. However, you will keep it in this
example. The Closeness centrality score range from 0.0 to 0.25 with an
average of 0.04. On the other hand, the Betweeness centrality is not
normalized, so the scores are much higher as it ranges from 0.0 to a value of
almost 200 thousand.

While you do not need to normalize features if you are using the cosine
similarity metric, you have to be careful if you are using any other metrics.
For example, with Euclidean distance, which is simply the distance between
two points, a normalization would definitely affect the results.

8.2.2 Inferring the similarity network

You have preprocessed and evaluated the node features. Everything is ready
to continue with the user segmentation process. In order to be able to run the
community detection algorithm and identify user segments, you first have to
infer a similarity network based on a pairwise cosine similarity metric
between user vectors. Neo4j GDS library offers an efficient cosine similarity
search with the gds.knn algorithm. The gds.knn algorithm is used to



construct a nearest neighbor similarity graph and should not be confused with
more mainstream kNN classification or regression models.

Similarly, as in the previous chapter, you can affect how dense or sparse the
inferred similarity network will be with the topK and similarityCutoff
parameters. In this example, if you infer a denser network, the resulting
communities will be larger, and therefore the user segmentation process will
output fewer segments or groups of users. On the other hand, if you infer a
sparser similarity network, the segmentation will be more granular. There is
no right or wrong way to define the topk and similarityCutoff parameters.
It always depends on your task. In this example, you will use the topK value
of 65 and leave the similarityCutoff at the default value.

Since you need to execute a community detection algorithm on the output of
the gds.knn algorithm, you will use the mutate mode to store the results to
the projected graph. The gds.knn algorithms creates new relationships
between users that pass the similarity threshold defined with the topK and
similarityCutoff parameters.

Run the following Cypher statement to execute the mutate mode of the
gds.knn algorithm.

Listing 8.8. Mutate the user similarity network to the in-memory graph.

CALL gds.knn.mutate('knnExample', {

   nodeProperties:['tweetCount', 'retweetRatio', 'timeToRetweet','inDegree',

      'outDegree', 'graphlet11', 'closeness', 'betweenness'],

   mutateRelationshipType:'SIMILAR',

   mutateProperty:'score',

   topK:65

})

8.3 User segmentation with community detection
algorithm

The last step in the user segmentation process is to execute a community
detection algorithm to identify groups or segments of users. So far, you have
used the Label Propagation algorithm to evaluate the community structure of



a network. In this chapter, you will instead use the Louvain algorithm. The
Louvain algorithm has an identical task as the Label Propagation algorithm to
group densely connected nodes into groups or communities. However, it uses
slightly different underlying mathematics to achieve this. If you are interested
in mathematics, you can read the article in which the Louvain algorithm was
proposed[Blondel et al., 2008].

Run the following Cypher statement to mutate the results of the Louvain
algorithm to the projected in-memory graph.

Listing 8.9. Store the mutated property userSegmentation to the database.

CALL gds.louvain.mutate('knnExample',

  {relationshipTypes:['SIMILAR'], mutateProperty:'userSegmentation'})

The communityCount output there are 22 identified communities. To further
investigate, you have to store the mutated userSegmentation property to be
able to analyze the segmentation with Cypher.

Listing 8.10. Mutate the hashtag co-occurrence network to the in-memory graph.

CALL gds.graph.writeNodeProperties('knnExample', ['userSegmentation'])

Finally, you can go ahead and evaluate the user segmentation results. Use the
following Cypher statement to evaluate average feature values for the five
largest user segments.

Listing 8.11. Evaluate the user segmentation results.

MATCH (u:User)

RETURN u.userSegmentation as community,

       count(*) AS memberCount,

       round(avg(u.tweetCount), 2) AS tweetCount,

       round(avg(u.retweetRatio), 2) AS retweetRatio,

       round(avg(u.timeToRetweet), 2) AS timeToRetweet,

       round(avg(u.inDegree), 2) AS inDegree,

       round(avg(u.outDegree), 2) AS outDegree,

       round(avg(u.graphlet11), 2) AS graphlet11,

       round(avg(u.betweenness), 2) AS betweenness,

       round(avg(u.closeness), 2) AS closeness

ORDER BY memberCount DESC



LIMIT 5

Table 8.4. User segmentation results

community memberCount tweetCount retweetRatio timeToRetweet inDegree

270 217 3.5 0.007 385.3 15.28

84 197 1.0 0.001 375.43 0.0

725 179 0.92 0.2 376.72 19.13

737 156 0.0 0.0 372.0 0.0

381 145 0.0 1.0 35.68 2.5

The largest segment contains 217 members, and its members have, on
average, 3.5 tweets. They almost don’t do any retweeting since their retweet
ratio is 0.07. On the other hand, they have, on average, 15 followers and
follow 19 other users. Judging by their high betweenness score, they act as
bridges between various communities. On the other hand, the fourth largest
community seems to contain inactive and isolated users, at least from our
dataset point of view. They don’t have any tweets or retweets and don’t
follow anyone or have any followers.

You can remove the LIMIT clause from the Cypher statement in Listing 8.11
to evaluate all the 22 segments. Also, you can play around with various topK
and similarityCutoff values of the gds.knn algorithm to evaluate how its
values affect the user segmentation.

In the previous chapter, you have used the PageRank algorithm to identify



representitives of hashtag communities. Here, you can apply the same
technique to identify segment representatives. First, use the subgraph
projection procedure to filter only users that are in the largest segment. After
that, use the PageRank algorithm on the newly filtered projection to identify
its representives.

Congratulations, you have learned how to manually extract node features and
complete a user segmentation process based on them with the help of
gds.knn and community detection algorithms.

8.4 Summary

A node’s role in a network can be described with various local
neighborhood and global features
Nodes with a similar role in the network don’t have to be close or
adjacent
Motifs are used to characterize a network structure
Graphlets are used to encode a node’s direct neighborhood
Betweenness centrality is used to identify nodes that act as bridges
between various communities
Closeness centrality identifies nodes that have the potential to share
information to all the other nodes the fastest
A nearest neighbor graph is constructed by evaluating one of the vector
similarity measure
The most common vector similarity measure used is cosine similarity
It is not vital to normalize input features when using cosine similarity
metric to construct a nearest neighbor graph
Louvain algorithm is very similar to Label Propagation, but uses a
different underlying mathematics
PageRank can be used to find representative nodes in the inferred
similarity network

8.5 References

[Tinati & Carr, 2012] Tinati, Ramine & Carr, Leslie & Hall, Wendy &
Bentwood, Jonny. (2012). Identifying communicator roles in twitter.



10.1145/2187980.2188256.

[Beguerisse-Díaz et al., 2014] Beguerisse-Díaz, Mariano et al. “Interest
communities and flow roles in directed networks: the Twitter network of the
UK riots.” Journal of the Royal Society, Interface vol. 11,101 (2014):
20140940. doi:10.1098/rsif.2014.0940

[Voulodimos et al., 2011] Voulodimos, Athanasios & Doulamis, Anastasios
& Patrikakis, Charalampos & Sardis, Emmanuel & Karamolegkos, Pantelis.
(2011). Employing Clustering Algorithms to Create User Groups for
Personalized Context Aware Services Provision. 10.1145/2072627.2072637.

[Kashwan & Velu, 2013] Kashwan, K.R. & Velu, C.. (2013). Customer
Segmentation Using Clustering and Data Mining Techniques. International
Journal of Computer Theory and Engineering. 5. 856-861.
10.7763/IJCTE.2013.V5.811.

[Fukuda & Tomiura, 2018] Fukuda, S., & Tomiura, Y. (2018). Clustering of
research papers based on sentence roles. In ICADL Poster Proceedings.
Hamilton, New Zealand: The University of Waikato.

[Kim et al., 2011] Tae-Hwan Kim, Junil Kim, Pat Heslop-Harrison, Kwang-
Hyun Cho, Evolutionary design principles and functional characteristics
based on kingdom-specific network motifs, Bioinformatics, Volume 27, Issue
2, 15 January 2011, Pages 245–251,
https://doi.org/10.1093/bioinformatics/btq633

[Pržulj et al, 2004] N. Pržulj, D. G. Corneil, I. Jurisica, Modeling
interactome: scale-free or geometric?, Bioinformatics, Volume 20, Issue 18,
12 December 2004, Pages 3508–3515,
https://doi.org/10.1093/bioinformatics/bth436

[Sanhueza, 2017] Claudio Sanhueza (2017, Januar) The Marvel Universe
Social Network, Version 1, https://www.kaggle.com/datasets/csanhueza/the-
marvel-universe-social-network

[Wasserman & Faust, 1994] Wasserman, S., & Faust, K. (1994). Social
network analysis: Methods and applications. Cambridge University Press.



https://doi.org/10.1017/CBO9780511815478

[Blondel et al., 2008] Vincent D Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, & Etienne Lefebvre (2008). Fast unfolding of communities in
large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10), P10008.

8.6 Solutions to exercises

The solution to Exercise 8.1 is the following:

Listing 8.12. Calculate the tweet count and retweet ratio for each user.

MATCH (u:User)

OPTIONAL MATCH (u)-[:PUBLISH]->(tweet)

WHERE NOT EXISTS { (tweet)-[:RETWEETS]->() }

WITH u, count(tweet) AS tweetCount

OPTIONAL MATCH (u)-[:PUBLISH]->(retweet)

WHERE EXISTS { (retweet)-[:RETWEETS]->() }

WITH u, tweetCount, count(retweet) AS retweetCount

WITH u, tweetCount,

  CASE WHEN tweetCount + retweetCount = 0 THEN 0

    ELSE toFloat(retweetCount) / (tweetCount + retweetCount)

      END AS retweetRatio

SET u.tweetCount = tweetCount,

    u.retweetRatio = retweetRatio

The solution to Exercise 8.2 is the following:

Listing 8.13. Calculate average time to retweet per user and store it.

MATCH (u:User)

OPTIONAL MATCH (u)-[:PUBLISH]-(retweet)-[:RETWEETS]->(tweet)

WITH u, toInteger(duration.between(

  tweet.createdAt, retweet.createdAt).minutes) AS retweetDelay

WITH u, avg(retweetDelay) AS averageRetweetDelay

SET u.timeToRetweet = coalesce(averageRetweetDelay, 372)

The solution to Exercise 8.3 is the following:

Listing 8.14. Calculate average time to retweet per user and store it.



MATCH (t1:Tweet), (t2:Tweet)

WHERE NOT EXISTS { (t1)-[:RETWEETS]->() }

  AND NOT EXISTS { (t2)-[:RETWEETS]->() }

  AND id(t1) < id(t2)

  AND NOT EXISTS { (t1)<-[:PUBLISH]-()-[:PUBLISH]->(t2) }

  AND t1.text = t2.text

RETURN t1,t2

The solution to Exercise 8.4 is the following:

Listing 8.15. Calculate the 2-node graphlets and store them as node properties.

MATCH (u:User)

WITH u,

     size((u)<-[:FOLLOWS]-()) AS inDegree,

     size((u)-[:FOLLOWS]->()) AS outDegree,

     size((u)-[:FOLLOWS]->()-[:FOLLOWS]->(u)) AS friendCount

SET u.inDegree = inDegree,

    u.outDegree = outDegree,

    u.friendCount = friendCount

The solution to Exercise 8.5 is the following:

Listing 8.16. Calculate and store the count of graphlet 5.

MATCH (u:User)

OPTIONAL MATCH p=(u)-[:FOLLOWS]->()-[:FOLLOWS]->()-[:FOLLOWS]->(u)

WITH u, count(p) AS graphlet5

SET u.graphlet5 = graphlet5

Listing 8.17. Calculate and store the count of graphlet 8.

MATCH (u:User)

OPTIONAL MATCH p=(u)-[:FOLLOWS]->()-[:FOLLOWS]->()<-[:FOLLOWS]-(u)

WITH u, count(p) AS graphlet8

SET u.graphlet8 = graphlet8

Listing 8.18. Calculate and store the count of graphlet 11.

MATCH (u:User)

OPTIONAL MATCH (u)-[:FOLLOWS]->(other1)-[:FOLLOWS]->(other2)-[:FOLLOWS]->(u),

               (u)<-[:FOLLOWS]-(other1)<-[:FOLLOWS]-(other2)<-[:FOLLOWS]-(u)

WHERE id(other1) < id(other2)

WITH u, count(other1) AS graphlet11



SET u.graphlet11 = graphlet11;

The solution to Exercise 8.6 is the following:

Listing 8.19. Project a subgraph that contains only the largest community of hashtags

CALL gds.beta.graph.project.subgraph('largestSegment', 'knnExample',

 'n.userSegmentation=270', '*')

Listing 8.20. Identify representatives of the particular community with the PageRank algorithm.

CALL gds.pageRank.stream('largestSegment',

  {relationshipTypes:['SIMILAR'], relationshipWeightProperty:'score'})

YIELD nodeId, score

RETURN gds.util.asNode(nodeId).username AS user, score

ORDER BY score DESC

LIMIT 5



9 Node embeddings and
classification
This chapter covers

Introducing node embedding models
Presenting the difference between transductive and inductive models
Examining the difference between structural roles and homophily-based
embeddings
Introducing the Node2vec algorithm
Using Node2vec embeddings in a downstream machine learning task

In the previous chapter, you used a vector to represent each node in the
network. The vectors were hand-crafted based on the features you deemed
essential. In this chapter, you will learn how to automatically generate node
representation vectors using a node embedding model. Node embedding
models fall under the dimensionality reduction category.

An example of dimensionality reduction is the body mass index (BMI). Body
mass index is commonly used to define obesity. To precisely characterize
obesity, you could look at a person’s height, weight, measure their fat
percentage, muscle content, and waist circumference. In this case, you would
be dealing with five input features to predict obesity. Instead of having to
measure all five features before an observation can be made, the doctors
came up with a body mass index.

Figure 9.1. Body-mass index chart.



Figure 9.1 visualizes a body mass index scale used to evaluate a person’s
body type. For example, if the BMI is 35 or above, the BMI scale would
regard that person as extremely obese. Body mass index is calculated by
dividing a person’s weight in kilograms by their height in square meters and



is a rough estimate of body fat. Instead of using five input features, a single
embedded feature is a good representation of the expected output. It is a good
approximation but by no means a perfect descriptor of obesity. For example,
a rugby player would be considered obese given the body mass index, but he
probably has more muscles than fat. An embedding model reduces the
dimensionality of input features while retaining a strong correlation to a
given problem. An added bonus of using an embedding model is that you
need to collect less data for training and validating the model. In the case of
BMI, you can avoid potentially costly measurements by only comparing the
height and weight ratios.

Every graph can be represented as an adjacency matrix. An adjacency matrix
is a square matrix where the elements indicate whether pairs of nodes are
connected. Such a matrix can be regarded as a high-dimensional
representation of the network.

Figure 9.2. Adjacency matrix.



Figure 9.2 visualizes an adjancency matrix representing a graph with four
nodes A, B, C, and D. Each element in the adjacency matrix indicates
whether the pair of nodes is connected. For example, the element in column
C and row D has a value of 1, which indicates that a relationship between
nodes C and D is present in the graph. If the value of the element in the
matrix is 0, then a relationship between the pair of nodes does not exist.

Now imagine you have a graph with a million nodes. In an adjacency matrix,
each node would be represented with a row in the matrix that has a million
elements. In other words, each node can be described with a vector that has a
million elements. Therefore, an adjacency matrix is regarded as a high-
dimensional network representation as it grows with the number of nodes in
the graph.

Suppose you want to train a machine learning model and somehow use the
network structure information as an input feature. Let’s say you use an
adjacency matrix as an input. There are a couple of problems with this
approach:

Too many input features
An ML model is dependant on the size of the graph
Overfitting

If you add or remove a single node from the graph, the size of the adjacency
matrix changes, and your model is no longer functional as there is a different
number of input features. Using the adjacency matrix as an input to your
model could also cause overfitting. In practice, you often want to embed a
node’s local representation to compare nodes with similar neighborhood
topology instead of using all relationships between nodes as a feature input.
Node embedding techniques try to solve these issues by learning lower-
dimensional node representation for any given network. The learned node
representations or embeddings should automatically encode the network
structure so that the similarity in the embedding space approximates the
similarity in the network. A key message is that the node representations are
learned instead of manually engineered. The doctors reduced the
dimensionality in the BMI example by a manual formula. The node
embedding techniques aim to remove painstaking manual feature engineering
and provide the best possible node representations by treating the embedding



process as a separate machine learning step. The node embedding step is a
unsupervised process since it has no training examples to learn from. Node
embedding models use techniques based on deep learning and nonlinear
dimensionality reduction to achieve this.

Figure 9.3. Adjacency matrix.

Figure 9.3 visualizes the node embedding process. The node embedding
model takes the high-dimensional representation of a graph as an input and
outputs a lower-dimensional representation. In the example of a graph with
million nodes, each node can be represented with a vector of million
elements. Suppose you execute a node embedding model on this graph. With
most node embedding models, you can define the embedding dimension. The
embedding dimension is the number of elements in the embedding matrix
that describe a node. For example, you could set the embedding dimension to
be 256. In that case, each node would be described with a vector that contains
256 elements. Reducing the number of elements from a million to 256 is
incredibly beneficial as it allows you to efficiently describe the network
topology or position of a node in a graph with a lower dimensional vector.
These lower dimensional vectors can be used in a downstream machine
learning workflow, or they can be used to infer a similarity network using the



nearest neighbour graph algorithm.

9.1 Node embedding models

Node embedding models aim to produce lower dimensional representations
of nodes while preserving network structure information.

9.1.1 Homophily versus structural roles approach

However, what does network structure information mean exactly? A common
approach is to represent nodes in the embedding space so that neighboring
nodes in the graph are close in the embedding space.

Figure 9.4. Homophily approach to node embedding.

Figure 9.4 visualizes the so-called community-based approach to node



embeddings. Neighboring nodes in the graph are also close in the embedding
space. Therefore, nodes that belong to the same community should be close
in the embedding space. This approach is designed under the node homophily
assumption that connected nodes tend to be similar or have similar labels in a
downstream machine learning workflow.

For example, you probably have similar interests as your friends. Suppose
you wanted to predict one’s interest. In that case, you could encode their
position in the friendship network with a homophily-based node embedding
model and train a supervised model based on training examples to predict or
recommend one’s interests. If the hypothesis that one has similar interests as
their friends is valid, the trained model should perform relatively well. A
node embedding algorithm that you could use in this example is the FastRP
algorithm [Chen et al., 2019].

Another approach is to encode nodes in the embedding space so that nodes
with a similar network role are close in the embedding space.

Figure 9.5. Structural roles approach to node embedding.



You have briefly been introduced with node roles in the previous chapter.
Figure 9.5 visualizes the node embedding process, where the nodes are
encoded close in the embedding space based on their network structural
roles. In the Figure 9.5, both nodes D and F act as bridges between the two
communities. One can assume that they have similar network roles, and
therefore, they are encoded close in the embedding space. You could use the
structural role embedding approach to analyze roles of researches in the
coauthorship For example, you could use structural role approach to node
embedding to analyze roles of researchers in a coauthorship network, or
perhaps determine roles of routers on the internet network. For instance, the
RolX algorithm [Henderson et al, 2012] is a node embedding algorithm that
encodes nodes with a network structural role close in the embedding space.

Which design of the node embedding models you want to use depends on the
downstream task you need to complete. Some algorithms like the Node2vec
[Grover & Leskovec, 2016] can also produce a combination of the two
embedding designs as the output.



9.1.2 Inductive versus transductive embedding models

Some node embedding models have a significant limitation. A typical process
of using a node embedding model in a machine learning workflow involves
calculating the embeddings and feeding them, for example, into a
classification machine learning model. So far, nothing unexpected. But what
happens when a new node is introduced into the network? How do you go
about calculating the embedding for the new node and inferring its class
through the trained classifier?

When dealing with a transductive node embedding algorithm, you cannot
calculate embeddings for nodes not seen during the initial embedding
calculation. You can think that transductive models create a vocabulary
during initial computation, where the key of the vocabulary represents a
node, and its value represents the embedding. If a node was not seen during
the initial computation, it is not present in the vocabulary, and hence, you
cannot simply retrieve the embeddings for the new unseen nodes. If you want
to calculate the embeddings for the new nodes, you have to calculate the
embeddings for the whole graph, meaning all the previously observed nodes
as well as the new nodes. Since the embeddings might change for existing
nodes, you must also retrain the classification model.

On the other hand, inductive node embedding models can calculate
embeddings for unseen nodes during the initial computation. For example,
you can train a model based on the initial computation of node embeddings.
When a new node is introduced, you can calculate the embedding for the new
node without re-calculating embeddings for the whole graph. Likewise, you
don’t have to re-train the classification model for every new node. Encoding
previously unseen nodes is a great advantage when dealing with growing or
multiple separate graphs. For instance, you could train a classification model
on a single graph and then use it to predict node labels for nodes of different
separate graphs. For further reading on inductive models you can read up on
the GraphSAGE model [Hamilton et al., 2017].

9.2 Node classification task

Now it is time to start with a practical example. Imagine you are working at



Twitch as a data scientist. Twitch is a streaming platform that makes is to
possible for anyone to start streaming their content to the world. In addition,
other users can interact with streamers through the chat interface.

Every day, new users join the platform who decide they want to start
streaming. Your manager wants you to identify the language of the new
streams. Since the platform is worldwide, there are probably around 30 to 50
languages that streamers use. Let’s assume that converting audio to text and
running language detection algorithms is not feasible for whatever reason.
One of the reasons could be that streamers on Twitch usually play video
games, and therefore, audio from video games could distort language
detection. What other way could you predict the languages of new streamers?
You have information about users who chat in particular streams. One could
hypothesize that users mostly chat in a single language. Therefore, if a user
chats in two streams, it is likely that both streams are in the same language.
For example, if a user is chatting in a Japanese stream and then switches a
stream and interacts with the new streamer through chat, the new stream is
likely in Japanese. There might be some exceptions with the English
language, as, for the most part, many people on the internet have at least a
basic understanding of English.

Figure 9.6. Process of predicting the language for new streams.



Figure 9.6 visualizes the process of extracting network information to predict
the new streamers' languages. Raw data has the structure of a bipartite
(:User)-[:CHATTED]→(:Stream) graph. The first step in the process is to
project a monopartite graph where the nodes represent streams, and the
relationships represent the shared audience between them. The schema of the
projected monopartite graph can be represented with the following Cypher
statement: (:Stream)-[:SHARED_AUDIENCE]-(:Stream) The monopartite
graph is undirected as if stream A shares the audience with stream B,
automatically implying that stream B also shares the audience with stream A.
In addition, you can add the count of shared audiences between streamers as
a relationship weight. Suppose that extracting raw data and transforming it
into a monopartite graph can be done by a data engineer on your team. The
data engineer can take a similar approach to what you have learned in
Chapter 7 to project a monopartite graph. Your job is now to train a
prediction model and evaluate its results.



The idea is to prepare a Jupyter notebook that can be used once a day to
predict the languages of new streamers. Remember, if streams are close in the
shared audience network, they likely have the same language. Therefore, you
will use a node embedding model that uses a homophily-based approach to
encoding nodes in the embedding space. One of the most simple and broadly
used node embedding models is the node2vec, which you will use in this
example. Once the node embeddings are calculated, you will use them for
training a random forest classification model based on training examples of
streams you already know the language. In the last step of the process, you
will evaluate the predictions with a standard classification report and
confusion matrix.

To follow the examples, you need to have a Jupyter notebook environment
ready and access a Neo4j database. The database should be empty before
starting this chapter. You will use the scikit-learn Python library to split the
data, train the model, and evaluate the results, so make sure to have it
installed. The notebook with all the code in this chapter is also available on
GitHub.

9.2.1 Define a connection to Neo4j database

Start by opening a new Jupyter notebook, or download the filled-in notebook
from the GitHub link above. You will need to have the following three
Python libraries installed to follow the code examples:

neo4j
pandas
scikit-learn

You can install all three libraries with pip or conda package manager.

First, you need to define the connection to the Neo4j database.

Listing 9.1. Define connection to Neo4j.

from neo4j import GraphDatabase

url = 'bolt://localhost:7687'



username = 'neo4j'

password = 'letmein'

driver = GraphDatabase.driver(url, auth=(username, password))

Listing 9.1 import the GraphDatabase object from the neo4j library. To
establish the connection with the Neo4j database, you need to fill in and
optionally change the credentials. Once the credentials are defined, you pass
them to the driver method of the GraphDatabase object. The driver allows
you to spawn sessions in which you can execute arbitrary Cypher statements.

Next, you will define a function that take a Cypher statement as parameter
and returns the results as a Pandas Dataframe. Pandas Dataframe is a
convenient data structure that can be used to filter, transform, or easily
integrate with other Python libraries.

Listing 9.2. Define a function that executes arbitrary Cypher statement and returns a Pandas
dataframe.

import pandas as pd

def run_query(query):

    with driver.session() as session:

        result = session.run(query)

        return pd.DataFrame([r.values() for r in result], columns=result.keys())

9.2.2 Import twitch dataset

Now that the environment is ready, you can circle back to the specified task.
Remember, the data engineer on your team was kind enough to extract the
information about the streams and chatters and perform the monopartite
projection. They prepared two CSV files with relevant information. The first
CSV file contains information about nodes in the network.

Table 9.1. Node CSV structure

id language



129004176 en

50597026 fr

102845970 ko

The node CSV contains information about stream ids and their language. In
this example, you have the language information for all the streams so that
you will be able to evaluate the classification model accuracy of the test data.
It is good practice to define unique constraints on the unique properties of
nodes to speed up the import. You will start by defining the unique constraint
on the id property of the Stream nodes.

Listing 9.3. Define constraint on stream.

run_query("""

CREATE CONSTRAINT IF NOT EXISTS ON (s:Stream) ASSERT s.id IS UNIQUE;

""")

Since you are working in a Python environment, you need to execute Cypher
statements through the run_query function as shown in Listing 9.1. The
function returns the Pandas Dataframe of the output. Here, however, you are
not interested in the result of the Cypher statement, so you don’t have to
assign the output to a new variable.

Now you can go ahead and import the information about the Twitch streams
and their languages. The CSV is available on GitHub, so you can utilize the
LOAD CSV clause to retrieve and import the CSV information into the
database.

Listing 9.4. Import nodes.

run_query("""

LOAD CSV WITH HEADERS FROM "https://bit.ly/3JjgKgZ" AS row

MERGE (s:Stream {id: row.id})

SET s.language = row.language



""")

The relationship CSV file contains information about shared audiences
between streams and their count.

Table 9.2. Relationship CSV structure

source target weight

129004176 26490481 524

26490481 213749122 54

129004176 125387632 4591

Relationship CSV contains three columns. The source and target columns
contain the stream ids that have a shared audience, while the weight column
indicates how many shared users chatted in both streams. You can import the
relationship information with the following Cypher statement.

Listing 9.5. Import relationships.

run_query("""

USING PERIODIC COMMIT 10000

LOAD CSV WITH HEADERS FROM "https://bit.ly/3S9Uyd8" AS row

MATCH (s:Stream {id:row.source})

MATCH (t:Stream {id:row.target})

MERGE (s)-[r:SHARED_AUDIENCE]->(t)

SET r.weight = toInteger(row.weight)

""")

Exercise 9.1

Inspect how many, if any, Stream nodes have no incoming or outgoing



relationships.

Luckily, there are no isolated nodes in the dataset. An isolated node is a node
that has no incoming or outgoing relationships. When extracting node
features from a dataset, always pay special attention to isolated nodes. For
example, if there were some Stream nodes without any relationships, that
would be a case of missing data. If you waited a few days, hopefully,
someone would chat in their stream, and you would create new relationships
for that particular stream so that it would not be isolated anymore. On the
other hand, isolated Stream nodes can have any language. Since most node
embedding algorithms encode isolated nodes identically, you would
introduce noise to your classification model by including isolated nodes.
Therefore, you would want to exclude all isolated nodes from the training and
test datasets.

On the other hand, if you are dealing with isolated nodes, and the
relationships are not missing, you can include isolated nodes in your
workflow. For example, imagine you were to predict a person’s net worth
based on their network role and position. Suppose a person has no
relationships and, therefore, no network influence. In that case, encoding
isolated nodes could provide a vital signal to the machine learning model that
predicts net worth. Always remember that most node embedding models will
encode isolated nodes identically. So if isolated nodes all belong to a single
class, then considering them would make sense. However, if isolated nodes
belong to various classes, then it would make sense to remove them from the
model to remove noise.

  Note

Pay special attention to isolated nodes when using node embedding models in
your machine learning workflows. Most node embedding models encode
isolated nodes identically. There are scenarios where considering isolated
nodes makes sense, for example, when all isolated nodes belong to a single
class. On the other hand, if isolated nodes belong to multiple classes, you
might introduce noise to your classification model, and therefore, it might
make sense to ignore isolated nodes altogether.



9.3 Node2vec algorithm

Now that the graph is constructed, it is your job to encode nodes in the
embedding space to be able to train the language prediction model based on
the network position of the nodes. As mentioned, you will use the node2vec
algorithm[Grover & Leskovec, 2016] to achieve this. The node2vec
algorithm is transductive and can be fine-tuned to capture either homophily
or role-based embeddings.

9.3.1 Word2vec algorithm

The node2vec algorithm is heavily inspired by the word2vec[Mikolov et al.,
2013] skip-gram model. Therefore, to properly understand node2vec, you
must first understand how the word2vec algorithm works. Word2Vec is a
shallow, two-layer neural network that is trained to reconstruct linguistic
contexts of words. The objective of the word2vec model is to produce word
representation (vectors) given a text corpus. Word representations are
positioned in the embedding space such that words that share common
contexts in the text corpus are located close to one another in the embedding
space. There are two main models used within the context of word2vec.

Continuous Bag-of-Words (CBOW)
Skip-gram model

Node2vec is inspired by the skip-gram model, so you will skip the CBOW
implementation explanation. The Skip-gram model predicts the context for a
given word. The context is defined as the adjacent words to the input term.

Figure 9.7. Process of predicting the language for new streams.



Figure 9.7 visualized how training pairs of words are collected in a skip-gram
model. Remember, the objective of the skip-gram model is to predict context
words or words that frequently co-appear with a target word. The algorithm
creates training pairs for every word in the text corpus by combining the
particular word with its adjacent words. For example, in the third row of
Figure 9.7, you can observe that the word "grey" is highlighted and defined
as the target word. The algorithm collects training samples by observing its
adjacent or neighboring words, representing the context in which the word
appears. In this example, two words to the left and the right of the highlighted
word are considered when constructing the training pair samples. The
maximum distance between words in the context window with the input word
in the center is defined as the window size.



The training pairs are then feed into shallow two-layer neural network.

Figure 9.8. Word2vec shallow neural network architecture.

Figure 9.8 visualizes the word2vec neural network architecture. Don’t worry
if you have never seen or worked with neural networks. What you need to
know if that during the training this neural network, the input is a one-hot
encoded vector representing the input word, and the output is also a one-hot
encoded vector representing the context word.

Figure 9.9. One-hot encoding technique transforms categorical values in to numerical values.



Most machine learning models cannot work directly with categorical values.
Therefore, one-hot encoding is commonly applied to convert categorical
values into numerical ones. For example, you can see that all the distinct
categories in Figure 9.9 transformed into columns through the one-hot
encoding process. There are only three distinct categories in Figure 9.9, so
there are three columns in the one-hot encoding output. Then, you can see
that the category "Blue" is encoded as 1 under the "Blue" column and 0 under
all the rest columns. Essentially, the numerical representation of the category
"Blue" is [1,0,0]. Likewise, the numerical representation of "Yellow" is
[0,0,1]. As you can observe, the one-hot encoded vectors will have a single 1
under the column of the particular category they belong to, while the other
elements of the vectors are 0. While this is a pretty straightforward technique,
it is trendy as it allows for a simple transformation of categorical values into
numerical ones, which can then be fed into machine learning models.

After the training step of the skip-gram model is finished, the neurons in the
output layer represent the probability a word will be associated with the input
word. Word2vec uses a trick where we aren’t interested in the output vector
of the neural network, but rather the goal is to learn the weights of the hidden
layer. The weights of the hidden layer are actually the word embedding we
are trying to learn. The number of neurons in the hidden layer will determine
the embedding dimension or the size of the vector representing each word in
the vocabulary. Note that the neural network does not consider the offset of
the context word, so it does not differentiate between directly adjacent
context words to the input and those more distant in the context window or
even if the context word precedes or follows the input term. Consequently,
the window size parameter has a significant influence on the results of the
word embedding. For example, one study [Levy, 2014] finds that larger



context window size tends to capture more topic/domain information. In
contrast, smaller windows tend to capture more information about the word
itself, e.g., what other words are functionally similar.

9.3.2 Random walks

So what does word2vec have to do with node embeddings? Node2vec
algorithm uses the skip-gram model under the hood. However, since you are
not working with text corpus in a graph, how do you define the training data?
The answer is quite clever. Node2vec uses random walks to generate a corpus
of “sentences” from a given network. A random walk can be interpreted as a
drunk person traversing the graph. Of course, you can never be sure of an
intoxicated person’s next step, but one thing is certain. A drunk person
traversing the graph can only hop onto a neighboring node.

Figure 9.10. Using random walks to produce sentences.

The node2vec algorithm uses random walks to produce the sentences, which
can be used as input to the word2vec model. In Figure 9.10, the random walk
starts at node A and traverses to node H via nodes C, B, and F. The random
walk length is decided arbitrarily and can be changed with the walk length
parameter. Each node in the random walk is treated as a word in the sentence,
where the size of the sentence is defined with the walk length parameter.



Random walks start from all the nodes in the graph to make sure to capture
all the nodes in the sentences. These sentences are then passed to the
word2vec skip-gram model as training examples. That is the whole gist of the
node2vec algorithm.

However, the node2vec algorithm implements second-order biased random
walks. A step in the first-order random walk only depends on its current state.
A step in the first-order random walk only depends on its current state.

Figure 9.11. First-order random walks.

Imagine you have somehow wound up at node A in Figure 9.11. Because the
first-order random walk only looks at its current state, the algorithm doesn’t
know which node it was at the earlier step. Therefore, the probability of
returning to a previous node or any other node is equal. There is no advanced
math concept behind the calculation of probability. Node A has four
neighbors, so the chance of traversing to any of them is 25% (1/4).

Suppose your graph is weighted, meaning that each relationship has a



property that stores its weight. In that case, those weights will be included in
the calculation of the traversal probability.

Figure 9.12. First-order random walks.

In a weighted graph, the chance of traversing a particular connection is its
weight divided by the sum of all neighboring weights. For example, the
probability to traverse from node A to node E in Figure 9.12 is 2 divided by 8
(25%) and the probability to traverse from node A to node D is 37.5%.

On the other hand, second-order walks take into account both the current as
well as the previous state. To put it simply, when the algorithm calculates the
traversal probabilities, it also considers where it was at the previous step.

Figure 9.13. First-order random walks.



In Figure 9.13, the walk just traversed from node D to node A in the previous
step and is now evaluating its next move. The likelihood of backtracking the
walk and immediately revisiting a node in the walk is controlled by the return
parameter p. If the value of return parameter p is low, then the chance of
revisiting node D is higher, keeping the random walk closer to the starting
node of the walk. Conversely, setting a high value to parameter p ensures
lower chances of revisiting node D and avoids 2-hop redundancy in
sampling. A higher value of parameter p also encourages moderate graph
exploration.

The inOut parameter q allows the traversal calculation to differentiate
between inward and outward nodes. Setting a high value to parameter q (q >
1) biases the random walk to move towards nodes closer to the node in the
previous step. Looking at Figure 9.13, if you set a high value for parameter q,
the random walk from node A is biased more towards node B. Such walks
obtain a local view of the underlying graph with respect to the starting node
in the walk and approximate breadth-first search. In contrast, if the value of q
is low (q < 1), the walk is more inclined to visit nodes further away from
node D. In Figure 9.13, nodes C and E are further away since they are not
neighbors of the node in the previous step. This strategy encourages outward
exploration and approximates depth-first search.

Authors of the node2vec algorithm claim that approximating depth-first
search will produce more community or homophily-based node embeddings.
On the other hand, the breadth-first search strategy for random walks
encourages structural role embeddings.



9.3.3 Calculate node2vec embeddings

Now that you have a theoretical understanding of node embeddings and the
node2vec algorithm, you will use it in a practical example. As mentioned,
your task as a data scientist at Twitch is to predict the languages of new
streamers based on shared audiences or chatters between different streams.
The graph is already constructed, so you only need to execute the node2vec
algorithm and train a classification model. As always, you first have to
project an in-memory graph. Relationships represent shared audiences
between streams. When stream A shares an audience with stream B, that
directly implies that stream B also shares an audience with stream A.
Therefore, you can treat the relationships as undirected. Additionally, you
know how many users were shared between a pair of streams, which you can
represent as a relationship weight.

Execute the following query to project an undirected weighted network of
shared audiences between streams.

Listing 9.6. Project the in-memory graph of streams and their shared audience in memory.

run_query("""

CALL gds.graph.project("twitch", "Stream",

  {SHARED_AUDIENCE: {orientation: "UNDIRECTED", properties:["weight"]}})

""")

The Cypher statement in Listing 9.6 projects an in-memory graph named
twitch. To treat relationships as undirected, you must set the orientation
parameter value to UNDIRECTED. The properties parameter of relationships
can be used to define the relationship properties to be included in the
projection.

Finally, you can go ahead and execute the node2vec algorithm. There are
multiple parameters that you could fine-tune to get the best results. However,
hyper-parameter optimization is not in the scope of this chapter. You will use
the embeddingDimension parameter value of eight, which means that each
node will be represented with a vector of eight elements. Next, you will
define the inOutFactor parameter to be 0.5, which encourages more depth-
first search walks and produces homophily-based embeddings. In this



example, you are not interested in the structural roles of nodes, and you only
want to encode how close they are in the graph. All the other parameters will
be left at default values.

Execute the following Cypher statement to execute the node2vec algorithm
and the results back to the database.

Listing 9.7. Calculate node2vec embeddings and store them to the database.

data = run_query("""

CALL gds.beta.node2vec.write('twitch',

  {embeddingDimension:8, relationshipWeightProperty:'weight',

   inOutFactor:0.5, writeProperty:'node2vec'})

""")

9.3.4 Evaluate node embeddings

Before you train the language classification model, you will evaluate the
embedding results. You will start by examining the cosine and euclidean
distance of embeddings of pairs of nodes where a relationship is present. The
cosine and euclidean distance distribution can be calculated with Cypher and
then visualized with the Seaborn library.

Listing 9.8. Evaluate the cosine and euclidean distance of embeddings of connected nodes

import matplotlib.pyplot as plt

import seaborn as sns

plt.rcParams["figure.figsize"] = [16, 9]

df = run_query("""

MATCH (c1:Stream)-[:SHARED_AUDIENCE]->(c2:Stream)

RETURN gds.similarity.euclideanDistance(

    c1.node2vec, c2.node2vec) AS distance, 'euclidean' as metric

UNION

MATCH (c1:Stream)-[:SHARED_AUDIENCE]->(c2:Stream)

RETURN gds.similarity.cosine(

    c1.node2vec, c2.node2vec) AS distance, 'cosine' as metric

"""

)

sns.displot(



    data=df,

    x="distance",

    col="metric",

    common_bins=False,

    facet_kws=dict(sharex=False),

    height=7,

)

The code in Listing 9.8 produces the following visualization.

Figure 9.14. Distribution of cosine and Euclidean distance of embeddings between pairs of nodes
where a relationship is present.

Figure 9.14 visualized the distribution of cosine and Euclidean distance of
embeddings between pairs of nodes where a relationship is present. With the
Euclidean distance, the lower the value, the more similar or close the nodes in
the embedding space. You can observe that the top of the distribution is



slightly below 1. Most of the nodes are very similar based on the Euclidean
distance. However, there are some pairs of nodes where the distance is
slightly larger. On the other hand, with the cosine similarity, two nodes are
very close in the embedding space when the value is close to one. Similarly,
most pairs of nodes where the relationship is present have a cosine similarity
close to one. So what happens when a pair of nodes have a relationship, but
their cosine similarity of embeddings is, for example, less than 0.5?

Using the following code, you can investigate the dependence of cosine
similarity between pairs of connected nodes based on their combined degree
values.

Listing 9.9. Evaluate the dependence of cosine similarity to the combined node degree values.

df = run_query("""

MATCH (c1:Stream)-[:SHARED_AUDIENCE]->(c2:Stream)

WITH c1, c2, gds.similarity.cosine(

        c1.node2vec, c2.node2vec) AS cosineSimilarity,

     size((c1)-[:SHARED_AUDIENCE]-()) AS degree1,

     size((c2)-[:SHARED_AUDIENCE]-()) AS degree2

RETURN round(cosineSimilarity,1) AS cosineSimilarity,

       avg(degree1 + degree2) AS avgDegree

ORDER BY cosineSimilarity

"""

)

sns.barplot(data=df, x="cosineSimilarity", y="avgDegree", color="blue")

The code in Listing 9.9 produces the following visualization.

Figure 9.15. Distribution of average cosine similarity of connected nodes based on the combined
node degree values.



In Figure 9.15, you can clearly see that the more connections a node has, it is,
on average, less similar to its neighbors. That makes sense in a way. Imagine
if you only have one friend, you can be almost identical to them. However,
when you have 100 friends, you can’t be identical to all of them. You can
pick some attributes from each friend that you share, but it is practically
impossible to be identical to all of them unless they are also all identical.

You have also specified the relationship weight to calculate the node2vec
embeddings. The higher the relationship weight, the more biased the random
walk is to traverse it. You can examine how the cosine similarity of
connected nodes is dependent on the relationship weight with the following
code.



Listing 9.10. Evaluate the dependence of cosine similarity of connected nodes to the relationship
weight.

df = run_query("""

MATCH (c1:Stream)-[r:SHARED_AUDIENCE]->(c2:Stream)

WITH c1, c2, gds.similarity.cosine(

     c1.node2vec, c2.node2vec) AS cosineSimilarity,

     r.weight AS weight

RETURN round(cosineSimilarity,1) AS cosineSimilarity,

       avg(weight) AS avgWeight

ORDER BY cosineSimilarity

"""

)

sns.barplot(data=df, x="cosineSimilarity", y="avgWeight", color="blue")

The code in Listing 9.10 produces the following visualization.

Figure 9.16. Distribution of average cosine similarity of connected nodes based on the combined
node degree values.



Again, you can distinctly observe the dependence of the cosine similarity of
connected nodes to the relationship weight. The higher the relationship
weight, the more likely the random walk is to traverse it. Consequently, the
more often a pair of nodes appear closely in the random walk, the more likely
their embeddings will be more similar. When a relationship weight is lower,
the random walk is biased not to traverse it. Therefore, you can observe some
examples where the embeddings are not similar at all, even when there is a
relationship between a pair of nodes. One would assume that the pair of
nodes are not connected when the cosine distance of their embeddings is
close to zero. However, it might simply be the case that the random walk is
biased in a way never to traverse the relationship between the two nodes.



9.3.5 Train a classification model

In the final section of this chapter, you will train a classification model to
predict the languages of new streamers. First, you must retrieve the relevant
data from the database and make the required preprocessing.

Listing 9.11. Retrieve and preprocess relevant data for classification training.

data = run_query("""

MATCH (s:Stream)

RETURN s.id AS streamId, s.language AS language, s.node2vec AS embedding

"""

)

#1

data['output'] = pd.factorize(data['language'])[0]

The code in Listing 9.11 begins by retrieving the data from the database. A
simple Cypher statement returns stream id, their language, and node
embeddings. Since the languages are represented as strings, you need to map
or encode them as integers. You can easily encode categorical values such as
languages to integers with the pd.factorize method.

After this step, the Dataframe should have the following structure.

Table 9.3. Pandas DataFrame structure

streamId language embedding output

129004176 en [-0.952458918094635,
…] 0

50597026 fr [-0.25458356738090515,
…] 1

102845970 ko [-1.3528306484222412, 2



… ]

In Table 9.3, you can observe that the pd.factorize method encoded the
English language under 0. The French language is mapped to 1 and so on.

The embedding column contains vectors or lists representing each data point.
So, the input to the classification model will be the embedding model, and
you will train it to predict the integer under the output column. In this
example, you will use the random forest classifier from the Scikit-learn
library. As with all machine learning training, you have to split your data into
training and test sets. You will use the train_test_split to produce the
train and test portions of the dataset.

Execute the following code to train a random forest classification model to
predict languages of new streams.

Listing 9.12. Split the dataset and train the random forest model classifier based on the training
portion of the dataset.

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

X = data['embedding'].to_list()

y = data['output'].to_list()

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,

  random_state=0)

rfc = RandomForestClassifier()

rfc.fit(X_train, y_train)

9.3.6 Evaluate predictions

The last thing you will do in this chapter is to evaluate the model on the test
data. You will begin by examining the classification report. A classification
report is used to measure the quality of predictions from a machine learning
model.

Execute the following code to produce the classification report.



Listing 9.13. Produce the classification report.

from sklearn.metrics import classification_report

y_pred = rfc.predict(X_test)

print(classification_report(y_test,y_pred))

The code in Listing 9.13 produces the following report.

Figure 9.17. Classification report.

By looking at Figure 9.17, you can observe that you are dealing with an
unbalanced dataset, as there are 384 test data points for the English language
and only 54 examples of french streams. Additionally, the language mapped
under number nine is Italian and has only 19 test data points. When dealing
with unbalanced datasets, it makes sense to examine the F1 score. Both the
F1 score and the weighted F1 score are 0.91, which is a great result. The
hypothesis that chatters usually chat in streams that share the same language
is valid.

Lastly, you will produce the confusion matrix. The confusion matrix can help
you evaluate actual versus predicted classes of data points. Execute the
following code to visualize the confusion matrix.

Listing 9.14. Calculate the tweet count and retweet ratio for each user.



from sklearn.metrics import ConfusionMatrixDisplay

ConfusionMatrixDisplay.from_predictions(y_test, y_pred,

  normalize="true", cmap="Greys")

The code in Listing 9.14 produces the following visualization.

Figure 9.18. Confusion matrix.

Remember, the English language is mapped to number 0. You can observe
that the model only misclassified between English and other languages by
examining the confusion matrix in Figure 9.18. For example, the model never
wrongly classified Korean as Portugal language. This makes sense as English
is the language of the internet, and so everybody can speak at least their



native language and a bit of English.

Exercise 9.2

Try out various configurations of the node2vec algorithm and observe how it
affects the cosine distance between embeddings of connected embeddings
and the accuracy of the classification model. You can remove the relationship
weight parameter to observe how the unweighted variant of the node2vec
algorithm behaves or fine-tune embeddingDimension, inOutFactor, and
returnFactor parameters. Check out the official documentation for the
complete list of node2vec parameters.

Congratulations, you have successfuly trained your first node classification
model based on node2vec embeddings.

9.4 Summary

Node embedding models use a dimensionality reduction technique to
produce node representations of arbitrary sizes
Node embedding models can encode nodes based on their structural
roles in the network or can follow a more homophily-based design
Some of the node embedding models are transductive, which means that
they cannot produce embeddings for nodes not seen during the training
Node2vec algorithm is inspired by the word2vec skip-gram model
Node2vec algorithm uses random walks to produce sentences, which are
then feed into the skip-gram model
Second-order random walks consider the previous step of the random
walk when calculating the next traversal possibilities
Node2vec can be fine-tuned to produced embeddings based on node
structural roles or homophily
The embedding dimension parameter defines the size of the vector that
represents nodes
Node classification is task of prediction a property or label of a node
based on its network features

9.5 References



[Chen et al., 2019] Chen, H., Sultan, S., Tian, Y., Chen, M., & Skiena, S..
(2019). Fast and Accurate Network Embeddings via Very Sparse Random
Projection.

[Henderson et al., 2012] Henderson, K., Gallagher, B., Eliassi-Rad, T., Tong,
H., Basu, S., Akoglu, L., Koutra, D., Faloutsos, C., & Li, L. (2012). RolX:
Structural Role Extraction & Mining in Large Graphs. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (pp. 1231–1239). Association for Computing Machinery.

[Grover & Leskovec, 2016] Grover, A., & Leskovec, J.. (2016). node2vec:
Scalable Feature Learning for Networks.

[Hamilton et al., 2017] William L. Hamilton, Rex Ying, & Jure Leskovec
(2017). Inductive Representation Learning on Large Graphs. CoRR,
abs/1706.02216.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey
Dean: Efficient Estimation of Word Representations in Vector Space, 2013,
arXiv:1301.3781

[Levy, 2014] Levy, Y. (2014). Dependency-Based Word Embeddings. In
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers) (pp. 302–308).
Association for Computational Linguistics.

9.6 Solutions to exercises

The solution to Exercise 9.1 is the following:

Listing 9.15. Count the nodes with no incoming or outgoing relationships.

MATCH (n:Stream)

WHERE NOT EXISTS {(n)--()}

RETURN count(*) AS result



10 Link prediction
This chapter covers

Covering link prediction workflow
Introducing link prediction dataset split
Constructing link prediction features based on node pairs
Training and evaluating a supervised link prediction classification model

Most real-world networks are dynamic and evolve through time. Take, for
example, a friendship network of people. People’s friends change over time.
They might meet new people or cease to associate with others. You might
assume that new connections are forming randomly in a friendship network.
However, it turns out that most real-world networks have a profound
organizing principle. The studies around link prediction are focused on
identifying and understanding various network-evolving mechanisms and
applying them to predict future links.

Figure 10.1. Link prediction.

Figure 10.1 visualizes a small network of people, where the relationships
represent friendships. Solid lines represent existing connections. As
mentioned, friendship networks evolve over time, and people form new
connections. Intuitively, you might assume that Luke and Rajiv in Figure



10.1 are more likely to form a future connection, visualized with a dotted
line, than Jose and Alicia due to being closer in the network. Unsurprisingly,
the number of common friends between a pair of individuals is a good
indicator of whether they are likely to meet in the future. Simply put, the
closer two individuals are in the network, the higher the probability of
forming future links. Predicting future links within a network is one of the
main objectives of the link prediction field. Accurately predicting future links
can be used in recommender systems, or it can be used to better understand
the particular network organizing principles.

On the other hand, there are networks that do not necessarily evolve over
time, but we have a limited understanding of their connections. One such
example is a biological network of drugs and diseases. A drug often has a
narrow variety of diseases it can treat. A clinical trial must be conducted to
determine whether a drug can treat any new disease. However, clinical trials
are very costly. The other problem with drug repurposing is that there is a
vast combination of drugs and diseases on which one could conduct clinical
trials. Link prediction techniques can be used to identify missing links in the
network. The process of predicting missing links in the network can be
thought as link completion.

Figure 10.2. Link completion.



Drug repurposing can be thought of as a link completion process. The
network consists of drugs and diseases as visualized in Figure 10.2. The solid
lines indicate for which diseases a drug can be used. For example, Aspirin
can be used to treat headaches, Kawasaki disease, and coronary artery
disease. On the other hand, Ramipril is known to treat coronary artery disease
and hypertension. Since both Aspirin and Ramipril can be used to treat
coronary artery disease, it might make sense to explore if Ramipril can treat
other diseases that Aspirin can. Again, you are simply looking at the number
of common neighbors between drugs to base your predictions. In this
example, one might conduct a clinical trial to evaluate if Ramipril could be
used to treat a headache. Note that this is a simplified version of a drug
repurposing scenario. In the real world, much more information about human
genes, pathways, and other biological processes is considered.

10.1 Link prediction workflow

As mentioned, most networks follow various organizing principles,



intentionally or unintentionally, that you can use in your analysis to predict
the probability of a new link between a pair of nodes. For example, in a social
network you might assume that people are more likely to become friends if
they are of similar age. However, only looking at personal characteristics
might be unsatisfactory as this approach might lose a lot of information about
a relationship between two persons. Two people might be of similar age, but
they don’t mingle in the same social groups, so the probability of them
becoming friends is lower. On the other hand, if two people have a lot of
common friends, it is more likely that they might meet and become friends. It
also turns out that if a person has a lot of friends, they are more likely to form
new connections than if they have fewer friends.

When predicting whether a new connection will be established, you are never
examining a single node in isolation but rather a pair of nodes in the graph.
Therefore, the crucial step in link prediction is to design features that encode
a pair of nodes.

Figure 10.3. Encoding pairs of nodes.



There are various approaches you could take to encode a pair of nodes. I have
grouped them into three categories as presented in Figure 10.3. First of all,
you can combine any node properties. For instance, I have used the age
difference in the social network example. You could also take the product of
node degrees or the cosine similarity of node embeddings. However, you can
also simply concatenate embeddings or any other property if that might
perform better. Distance-based metrics are another group of features you
could use in link prediction. A typical representative of this group is the
length of the shortest path between the pair of nodes. Essentially, you
calculate the number of hops you need to traverse to get from one node to
another and use that as a feature. The underlying idea is that the closer the
nodes are in the network, the more likely a link will form between them in
the future. The third group of features focuses on evaluating the
neighborhood overlap between two nodes. For example, the higher the
number of common friends, the greater the likelihood that the pair will meet
somewhere in the future. You could also calculate the Jaccard similarity



index, which would simply be a normalized version of the common friends
count. There are also other metrics that encode the overlap of the local
neighborhood that you will learn later in the chapter.

The three categories and their examples presented in Figure 10.3 do not offer
an exhaustive list of possible features. There are other ways of combining
metrics into link prediction features. However, the groups presented in Figure
10.3 cover most of the methods to generate features you will encounter in
your link prediction tasks.

A simple way of predicting links could be that you would calculate the link
prediction metrics between pairs of nodes and simply take the arbitrary top
number of them as links probable to happen in the future. However, you
could also decide to train the classification model using those link prediction
metrics. An added value of training a classification model is that it can learn
to identify patterns that you might miss when taking an unsupervised
approach. In this chapter, you will learn how to calculate various link
prediction metrics and train and evaluate a classification model based on
those metrics.

Now imagine you are still working at Twitch as a data scientist. You have
been tasked with finding ways to improve channel recommendations. So far,
you are already using the recommendation system based on shared audiences
between different channels. If there is a significant audience overlap between
two channels, you can use that information to provide recommendations to
users. As a user, you will see those recommendations in the "Users of this
channel also watch" section. What could you do to try to improve these
recommendations? One idea is that you predict which channels will share
their audiences in the future. Then you could provide these predictions as
recommendations to users. This approach might improve the overall
recommendations as you would recommend channels with existing audience
overlap and also channels with a high probability of future audience overlap.

Figure 10.4. Link prediction flow.



Figure 10.4 visualizes the network of Twitch channels or streams, where the
relationships represent the audience overlap. The solid lines represent
existing shared audience overlap and could be used to populate one section of
recommendations. As a data scientist, you could use the information about
the existing relationships to predict future audience overlap. The future
audience overlap predictions can then be used to power your
recommendation engine.

Interestingly, using future link predictions as recommendations could, in turn,
be thought of as self-fulfilling projections. Similar approaches have been
used to recommend movies [Lakshmi & Bhavani, 2021], products [Darke et
al., 2017], or even links between medical concepts [Kastrin et al., 2014]. Link
prediction can also be used with other techniques to construct a hybrid
recommendation engine.

How would you go about training a classification model that could be used to
predict future overlap of audiences between channels?

Figure 10.5. Building a link prediction model to recommend Twitch channels.



The high-level overview of the process of training a link prediction
classification model is presented in Figure 10.5. The first step is to split the
relationships into three distinct sets. One set is used to generate network
features, while the other two are used to train and evaluate the classification
model. You might run into data leakage problems if you used the same
relationships to generate the network features and train the classification
model. Data leakage occurs when your training data contains information
about the output, but similar data will not be available when the model is
used for predictions. Leakage frequently leads to high performance during the
training and possibly evaluation of the model, but unfortunately doesn’t
perform well for new predictions. If you are using any graph features with the
link prediction model, you have to take extra care to prevent any feature
leakage. Leakage in features refers to when a feature contains the same or
comparable information as the output. For example, imagine you are using
the distance-based shortest path feature between two nodes. By using the
same relationships to generate features and train the model, the model would
simply learn to classify or predict a connection between all pairs of nodes
with a network distance of one. In other words, when the network distance
between a pair of nodes is one, there is an existing relationship between the
pair of nodes. Therefore, the network distance feature and the classification
output would contain the same information, introducing feature leakage.
Essentially, you can think of data leakage as cheating on your model
evaluation by peeking at the results during training. To avoid data leakage,
you need to use one set of relationships to calculate the network features and
another relationship set to provide supervised classification examples for
training and evaluating the model.



Once the dataset split is done, you need to calculate link prediction metrics
that will be used to train a model. As mentioned before, you could calculate
network distance, the number of common neighbors, or simply aggregate
node properties. You need to calculate the features for both the positive as
well as the negative examples of links in the network. Lastly, you use these
link prediction features to train a classification model to predict whether a
link is probably to happen in the future or not. Given that the dataset was split
into training and test sets of relationships, you can evaluate your model on
the test set of the dataset. Once you determine that the classification model
performs well enough, you can use it in production to generate
recommendations for users of your platform.

To follow the exercises in this chapter, you need to have the Twitch network
imported into the Neo4j database as described in Chapter 9. The Jupyter
notebook with all the code examples in this chapter is available on
https://github.com/tomasonjo/graphs-network-
science/blob/main/notebooks/Chapter%2010.ipynb.

10.2 Dataset split

You need to split the dataset accordingly in order to be able to evaluate the
trained classification model. If your model used no graph-based features like
distance-based or neighborhood-based metrics, then you could follow the
traditional test-train data split. Imagine that you would try to predict new
links between people based on their age and education. Since both of those
features are node properties that are not graph-based, you could simply take
80% of existing relationships as the training set and evaluate your model on
the remaining 20% of relationships. Obviously, you need to add some
negative examples as the model otherwise cannot learn to differentiate
between the two outputs and might produce inaccurate predictions. Producing
negative examples is not a problem as there are many pairs of nodes that are
not connected. In practice, positive link examples scale linearly with the
number of nodes in the graph, while negative examples scale quadratically.
This could lead to a considerable class imbalance problem. However, it is a
frequent step in the link prediction process to subsample the negative
classification samples to around the same number as the positive ones. You
will learn more about negative example subsampling in the next section.



As soon as you add any graph-based features that capture the similarity or
closeness of nodes in the graph, you need to be very mindful of data leakage.
Remember, when a feature contains the same or comparable information as
the output variable but is unavailable when making predictions, you have
introduced data leakage into the workflow. The most obvious example is the
network distance between nodes in the graph. If the network features and
training examples are calculated on the same set of relationships, then the
model would simply learn that relationships exist between nodes that are only
one hop away. However, none of the pairs of nodes without a link in the
network will be classified as probable to form a connection, as none are one
hop away. Even node embeddings based on the homophily principle,
introduced in Chapter 9, could be problematic if you didn’t perform a proper
dataset split. Overall, most of the graph-based features might introduce some
data leakage issues. It is common to split the relationships into three sets to
avoid data leakage problems.

Relationship set used to generate features
Relationship set used to train the model
Relationship set used to evaluate the model

Using separate sets of relationships to generate network features and then
train and evaluate the classification, you can avoid feature leakage issues with
graph-based features. Therefore, none of the calculated network features will
have identical or very comparable information as the output variable. With
the network distance example, supervised classification examples will have a
minimum network distance of two. Both negative and positive classification
examples can have a network distance of two. In turn, the network distance
feature is not identical to the output variable and you prevent any feature
leakage.

There are many options on how to go about performing the dataset split. In
this section you will learn about the time-based and random dataset split
techniques.

10.2.1 Time-based split

In theory, link prediction is a technique to predict future connections based



on past ones. You could produce a dataset split based on the time component
if you know when the links were created.

Figure 10.6. Time-based approach to relationship split for link prediction task.

The original network in Figure 10.6 has relationships created between 2020
and 2021. In this simple graph example, you can use the relationships from
2020 to generate network features. There should be a significant number of
relationships in the feature set, as you don’t want the network to be too
disconnected or have too many isolated nodes. Having too few relationships
in the feature set might produce poor network features, which might, in turn,
not be predictive of future links. Relationships created in 2021 in Figure 10.6
are then used to construct the test and train sets. For example, you could use
80% of the newer relationships as the training set and the remaining 20% to
evaluate the model. Remember that the relationships used to generate
network features should not be used in either the train or the test sets.
Optionally, you could also introduce a validation set from the newer
relationships created in 2021 if you plan to perform any hyper-parameter



optimization of the classification model.

Use the time-based split if possible, as it accurately mimics the scenario of
predicting future links. In the example in Figure 10.6, you take existing
knowledge about relationships (year 2020) and try to predict the future (year
2021). The additional benefit is that the model should learn to capture the
underlying organizing mechanism of the network as the time-based split
follows network evolution, which should, in turn, provide better predictions.

Unfortunately, the Twitch dataset of shared audiences doesn’t have the time
component of relationships available, so you will have to resort to another
method.

10.2.2 Random split

Random split is similar to the time-based one in that you need to produce
train and test sets as well as the feature set of relationships. You can’t
differentiate between past and future relationships since no time information
is available. Instead, you randomly take a subset of relationships in the graph
as the train and test sets you will use to train and evaluate the classification
model. Random split is also useful for link completion tasks, where you
predict missing links in the network and have no time component available.

Figure 10.7. Random approach to relationship split for link prediction task.



You can observe that Figure 10.7 is almost identical to Figure 10.6. The only
difference is how to select which relationships belong to which set. With the
time-based approach, you can choose the set the relationship belongs to based
on the time property. However, since you don’t have the time information
available, you need to take the random approach. Therefore you select to
which set a relationship belongs at random.

  Note

The key concept with the link prediction dataset split is that to avoid data
leakage, the links used to calculate network features should differ from the
supervised link samples used for training and evaluating a classification
model. Feature leakage is when a feature contains the same or comparable
information as the output variable. For example, if you wouldn’t introduce a
separate feature set to calculate network features like the network distance,
the classification model would learn that pairs of nodes that are one hop or
traversal away have a 100% probability of forming or having a link. In turn,



the model accuracy on the training and test sets would be 100% as the
network distance contains the same information as the output variable.
However, the model would be terrible at predicting missing or future links.

Optionally, you can introduce a validation set if you plan to perform any
hyper-parameter optimization.

Now you will perform the random split for link prediction on the Twitch
shared audience network. You need to have the Neo4j up and running with
the Twitch dataset defined in Chapter 9 loaded. Next, you need to open a
Jupyter notebook and define the connection to the Neo4j database.

Listing 10.1. Define connection to Neo4j.

from neo4j import GraphDatabase

import pandas as pd

url = "bolt://localhost:7687"

username = "neo4j"

password = "letmein"

# Connect to Neo4j

driver = GraphDatabase.driver(url, auth=(username, password))

def run_query(query, params={}):

  with driver.session() as session:

    result = session.run(query, params)

    return pd.DataFrame([r.values() for r in result], columns=result.keys())

The code in Listing 10.1 defines the connections with the Neo4j database and
the run_query function that is used to execute any Cypher statement. Make
any necessary changes to the url, username, or password variables.

Exercise 10.1

Count the number of relationships in the Twitch shared audience network.

There are 131427 relationships in the dataset. You will begin by constructing
the feature set of relationships. Remember, the feature set needs to be the
largest as you want to retain as connected a network as possible without too
many isolated nodes or disconnected components. In this instance, you can



use 90% of all relationships in the feature set, leaving you with around 13000
positive examples for the train and test sets. To construct the feature set, you
will create new relationships with a FEATURE_REL type. Cypher offers a
rand() that returns a random floating point number in the range from 0 to 1
and follows an approximate uniform distribution. To select a random subset
of relationships for the feature set, you will use the rand() function in the
Cypher statement.

The following Cypher statement takes approximately 90% of existing
SHARED_AUDIENCE relationships and creates a new connection with the
FEATURE_REL between those pairs of nodes.

Listing 10.2. Construct a relationship feature set.

run_query("""

MATCH (s1:Stream)-[:SHARED_AUDIENCE]->(s2:Stream)

WITH s1, s2

WHERE rand() <= 0.9

MERGE (s1)-[:FEATURE_REL]->(s2);

""")

The code in Listing 10.2 selects and creates a random, non-deterministic set
of relationships. Make sure to run it only once, as the relationship split would
not be acceptable otherwise. If you have run the query multiple times for any
reason, simply delete the FEATURE_REL relationships and rerun the Cypher
statement in Listing 10.2. Note that you might get a slightly different count of
FEATURE_REL relationships when rerunning the query due to using the rand()
function.

Exercise 10.2

Now you will select the relationships for the train and test set. You will start
by producing positive samples for the classification model. The positive
samples are relationships between the pairs of nodes between which the
SHARED_AUDIENCE relationships exist but not the FEATURE_REL ones.

Match the pairs of nodes between which the SHARED_AUDIENCE exists but not
the FEATURE_REL ones. Next, use the MERGE clause to create new relationships
between those pairs of nodes with the TEST_TRAIN type. Finally, return the



count of newly created relationships.

I got the result of 13082 created relationships. You will probably get a
different number, but it should be in the same ballpark of around 13
thousand. You have prepared the positive samples for the classification
model. Now it is time to select some negative examples where the
relationship does not exist.

10.2.3 Negative samples

When training a binary classifier like the link prediction model, you should
include both positive and negative examples in the training and test sets.
Without negative examples, the model cannot learn to differentiate between
the two outputs and might produce inaccurate predictions.

A common characteristic of real-world graphs is that they are sparse. Imagine
any big social platform on the internet. You might have hundreds or
thousands of friends on the platform. However, there are millions or, in some
cases, billions of users on the platform. That means you have only a thousand
of a billion relationships possible. In the machine learning context, every user
has up to a few thousand positive examples and possibly around a billion
negative examples. If you used all the negative examples, you would have to
deal with a considerable class imbalance as the positive examples of
relationship scale linearly with the number of nodes while the negative
examples scale quadratically. Most machine learning models perform best
when the number of samples in each class is about the same. However, if the
dataset is heavily imbalanced, then you might get a high accuracy by just
predicting the majority class every time. With link prediction, if you would
predict that no link exists between any pair of nodes, you would probably get
around 99% accuracy in most cases. Thus, there would be a high probability
of misclassification of the minority class and, consequently, a poor
classification model performance. Therefore, it is common to subsample the
negative examples and use about the same number of positive and negative
samples in most link prediction workflows.

Exercise 10.3



In this exercise, you will select pairs of nodes to construct the negative
examples for the classification model. You must select about the same
number of negative samples as the positive ones produced in Exercise 10.2.
You can use the count of 13094 positive examples or the count you got in
Exercise 10.2. The negative examples should be produced in a way that no
relationship exists between the pair of nodes in feature, train, or test sets.

Start by matching a pair of nodes where the SHARED_AUDIENCE relationship
does not exist between them. Next, ensure that you have matched two
different nodes and will avoid running into situations where both the source
and the target node are the same. Once the pairs of nodes are correctly
matched, use the LIMIT clause to limit the number of negative examples to
around 13 thousand. Finally, create a relationship between the selected pairs
of nodes with the NEGATIVE_TEST_TRAIN type.

10.3 Network feature engineering

Now you will produce network features that capture the closeness or
similarity of pairs of nodes in the network. The idea is that the closer or
similar a pair of nodes are given the network metrics, the more likely they are
to form a future connection. The future connections will then be used to
provide better recommendations to Twitch users.

You might have noticed that the train and test sets are lumped together under
the TEST_TRAIN and NEGATIVE_TEST_TRAIN relationship types. As you need to
calculate the link prediction features for both the train and test sets, there is
no need to differentiate between the two just yet. Remember, all the graph-
based features for the train and test sets will be calculated strictly only on the
feature set of relationships to prevent any data leakage.

Again, you have the option to choose between learned or manually defined
features. For example, you could use the node2vec algorithm to calculate
node embeddings and then use the cosine similarity of embeddings between
pairs of nodes as a feature of the classification model. However, since you
would be using transductive node embeddings to calculate link prediction
features, you would need to retrain the classification model every time a new
node is added to the graph. While that might be satisfactory in some



scenarios, you probably don’t want to retrain a model every time a new
streamer shows up on the platform. Luckily, a lot of research was done about
link prediction features from which you can borrow some ideas for feature
engineering. It makes sense to start by selecting straightforward and
uncomplicated features and evaluating their performance. If there is a need,
you can always later use more complex techniques like inductive node
embeddings.

You must finish Exercises 10.2 and 10.3 before continuing with the code
examples to generate features.

10.3.1 Network distance

The first feature you will calculate is the network distance. The network
distance is calculated by finding the shortest path between the pair of nodes
and then counting the number of relationships in the shortest path.

Figure 10.8. Calculating network distance between a pair of nodes A and E.

Figure 10.8 visualizes the process of finding the network distance between
nodes A and E. In the first step, you need to calculate the shortest path
between the particular pair of nodes. When dealing with an unweighted
network, the shortest path represents the path that traverses the least
relationships to get from one node to another. In the example in Figure 10.8,
you must traverse two relationships to get from node A to node E. In other
words, the network distance between nodes A and E is two.



The idea behind the network distance is that the closer the two nodes in the
network, the more likely they are to form future connections. For example,
imagine you are dealing with a link prediction in a social network. The
network distance between a pair of persons in the train or test set should
never be one, as this would mean that you haven’t performed the relationship
split correctly. However, if the network distance is two, that would mean that
the pair of persons have at least one common friend. If the distance is greater
than two, the two persons don’t have any common friends and are less likely
to form future connections. In theory, the higher the network distance, the
less likely a future connection is. In your use-case, the closer the two streams
are in the network, the more likely that there will be a significant audience
overlap in the future.

Using Cypher query language, you can find the shortest unweighted path
with the shortestPath() function. In an unweighted path, the traversal of
each relationship has an identical cost, so the shortest path between two
nodes will always be the count of the total relationships in a path between
them. The shortestPath() function expects as input a Cypher pattern that
defines the source and target nodes as well as the optional allowed
relationship types in the path. For more advanced use cases, you can also
define the minimum or the maximum number of traversals or relationships in
the path.

The following Cypher statement finds the shortest path between Surya and
Jim.

Listing 10.3. Finding shortest unweighted paths with Cypher.

MATCH (source:Person {name:"Surya"}),

      (target:Person {name:"Jim"}) #1

MATCH p = shortestPath((source)-[:FRIEND|COWORKER*1..10]->(target)) #2

RETURN p

The first part of Listing 10.3 is a simple MATCH clause used to identify the
source and target nodes. Next, you need to define the shortest path constraints
using the Cypher syntax. The defined graph pattern that defines the shortest
path constrains in Listing 10.3 is:

Listing 10.4. Graph pattern used to define the shortest path constraints.



(source)-[:FRIEND|COWORKER*]->(target)

The Cypher syntax in Listing 10.4 defines the shortest path between the
source and target nodes. One constraint of the shortest path is that it can
only traverse FRIEND or COWORKER relationships. The function ignores all the
other relationship types. Note that the relationship direction is also essential.
In the example in Listing 10.4, the shortest path algorithm can only traverse
outgoing relationships throughout the path. Lastly, you need to add the *
symbol to allow the algorithm to traverse multiple relationships. If the *
symbol were missing, one of the shortest path constraints would be that the
algorithm can only traverse a single relationship.

Now you will calculate the network distance for all pairs of nodes in the train
and test sets of relationships. The test and train sets of pairs of nodes are
tagged with the TEST_TRAIN and NEGATIVE_TEST_TRAIN relationship types.
Then you must find the shortest path between all pairs of nodes in the two
sets. In the last step, you will calculate the length of the shortest path, which
is equivalent to the number of relationships, with the length() function.

Listing 10.5. Calculate the network distance between pairs of nodes in the train and test sets.

run_query("""

MATCH (s1)-[r:TEST_TRAIN|NEGATIVE_TEST_TRAIN]->(s2) #1

MATCH p = shortestPath((s1)-[:FEATURE_REL*]-(s2)) #2

WITH r, length(p) AS networkDistance #3

SET r.networkDistance = networkDistance #4

""")

You can notice that there is no direction indicator in the shortest path graph
pattern definition in Listing 10.5. Therefore, the shortest path algorithm is
able to traverse the relationship in opposite direction as well, effectively
treating the relationships as undirected.

10.3.2 Preferential attachment

Another popular metric used in link prediction is the so-called preferential
attachment. Preferential attachment is an underlying organizing principle
occurring in real-world networks where nodes with a higher number of
relationships are more likely to make new relationships. In the social network



example, people with more friends are more likely to make new connections.
They might be invited to more social events or be introduced more due to
having many friends. The preferential attachment model was first described
by Barabási and Albert [Barabási & Albert, 1999].

Figure 10.9. Nodes with higher degree are more likely to form new connections.

Figure 10.9 visualized two Stream nodes in the center with a relatively large
node degree. The preferential attachment mechanism assumes that streams
that already share a significant audience with many other streams are more
likely to form future connections. So, following the preferential attachment
principle, you could assume that the two central Stream nodes are likely to
have a shared audience overlap, as indicated by the dotted line in Figure 10.9.

To calculate the preferential attachment metric between the particular pair of
nodes, you need to multiply their node degrees. Essentially, you take the node
degree of the first node and multiply it by the node degree of the second
node. When a pair of nodes have a high preferential attachment metric, they
are more likely to form a connection in the future.



Exercise 10.4

Calculate the preferential attachment metric for pairs of nodes in the train and
test sets. Similarly to network distance metric calculation, you start by
matching the pairs of nodes that are connected with the TEST_TRAIN or
NEGATIVE_TEST_TRAIN relationships. Next, you calculate the node degrees for
both nodes. Make sure to count both incoming and outgoing relationships as
the node degree and that you count only the FEATURE_REL relationships.
Finally, multiply the two node degrees and store the results under the
preferentialAttachment property of relationships.

10.3.3 Common neighbors

The next metric you will calculate as a link prediction feature is the common
neighbors metric. The intuition behind the common neighbor metric is
simple. The more common neighbors two nodes have, the higher the chance
of a link forming in the future. In the context of social networks, the more
common friends two people have, the greater the chance that they will meet
or be introduced in the future.

Figure 10.10. Common neighbors between a pair of nodes.



Remember, due to the relationship split, none of the pairs of nodes in the
train or test set have a direct connection. However, many nodes might have a
number of common friends, as visualized in Figure 10.10. Imagine that all the
nodes in Figure 10.10 represent Twitch streams. If stream A has an audience
overlap with stream B, and stream B overlaps with stream C, then there will
likely be an audience overlap between stream A and C in the future.
Additionally, the higher the number of common neighbors between two
streams, the higher the probability of a future link.

To use the common neighbor metric in the link prediction model, you need to
calculate the number of common neighbors between all pairs of nodes in the
train and test sets.

Exercise 10.5

Calculate the common neighbor metric for pairs of nodes in the train and test
sets. Similarly to before, you start by matching the pairs of nodes that are
connected with the TEST_TRAIN or NEGATIVE_TEST_TRAIN relationships. Then
you need to count the distinct number of common neighbors between the
matched pairs of nodes. Make sure to also include the results for pairs of
nodes with no common neighbors by using OPTIONAL MATCH clause. Finally,



store the number of common neighbors between pairs of nodes under the
commonNeighbor property of relationships.

10.3.4 Adamic-Adar index

Adamic-Adar index is a link prediction metric first described by Adamic and
Adar in 2003 [Adamic & Adar, 2003]. The idea behind the Adamic-Adar
index is that the smaller degree the common neighbors between a pair of
nodes have, the more likely that they will form a connection in the future.
Again, imagine you are dealing with a social network. A pair of people have
one friend in common. If that common friend has 1000 other friends, it is less
likely that they will introduce the particular pair of people than if they only
had two friends in total.

Figure 10.11. Intuition behind Adamic-Adar index.

In example A in Figure 10.11, nodes A and B have two common neighbors or
friends. The common friends are nodes C and D. Both nodes C and D have
1000 friends in total. Since common friends of nodes A and B have a broad
group of friends themselves, it is less likely that either of the common friends
will introduce nodes A and B. On the other hand, in example B in Figure
10.11, common friends of nodes A and B have only two friends in total.



Essentially, nodes C and D are only friends with nodes A and B. Therefore,
since the friend circle of common friends is much smaller, it is more likely
that, for example, nodes A and B are both invited to a birthday party or other
social events that nodes C or D might host. A similar logic could be applied
to the Twitch overlap network.

Adamic-Adar index is calculated using the following equation.

Figure 10.12. Adamic-Adar index equation.

Don’t worry if you might not understand all the symbols in Figure 10.12. The
Adamic-Adar index is defined as the sum of the inverse logarithmic node
degree of common neighbors shared by a pair of nodes. The gist of the
Adamic-Adar index calculation is the following.

1. Start by finding all the common neighbors of nodes x and y.
2. Calculate the node degree of all common neighbors
3. Sum the inverse logarithm of node degree of all common neighbors.

The following Cypher statement calculates the Adamic-Adar index between
pairs of nodes in the train and test sets.

Listing 10.6. Calculate the Adamic-Adar index between pairs of nodes in the train and test sets.

run_query("""

MATCH (s1:Stream)-[r:TEST_TRAIN|NEGATIVE_TEST_TRAIN]->(s2:Stream)

OPTIONAL MATCH (s1)-[:FEATURE_REL]-(neighbor)-[:FEATURE_REL]-(s2)

WITH r, collect(distinct neighbor) AS commonNeighbors #1

UNWIND commonNeighbors AS cn

WITH r, count{ (cn)-[:FEATURE_REL]-() } AS neighborDegree #2

WITH r, sum(1 / log(neighborDegree)) AS adamicAdar #3

SET r.adamicAdar = adamicAdar; #4

""")

10.3.5 Clustering coefficient of common neighbors



The last link prediction that you will calculate is the clustering coefficient of
common neighbors. A clustering coefficient measures the connectedness of
the neighbors of a particular node. The value ranges from zero to one. A
value of zero indicates that the neighboring nodes have no connections with
each other. On the other hand, the value of 1 indicates that the network of
neighbors forms a complete graph where all the neighbors are connected.

The clustering coefficient of common neighbors is a link prediction variant
where you only calculate how connected the common neighbors of a
particular pair of nodes are. Researchers have shown [Wu et al., 2015] that
the clustering coefficient of common neighbors can improve the accuracy of
link prediction models.

To calculate the local clustering coefficient of common neighbors between a
pair of nodes, you need to identify the number of common neighbors as well
as the number of links between common neighbors. Once you have that, you
only need to divide the number of existing links between neighbors by the
potential number of connections. The number of potential connections
between neighbors equals the number of links if all neighbors are connected.

The following Cypher statement calculates the clustering coefficient of
common neighbors and stores the results as a relationship property.

Listing 10.7. Calculate the clustering coefficient of common neighbors between pairs of nodes in
the train and test sets.

run_query("""

MATCH (s1:Stream)-[r:TEST_TRAIN|NEGATIVE_TEST_TRAIN]->(s2:Stream)

OPTIONAL MATCH (s1)-[:FEATURE_REL]-(neighbor)-[:FEATURE_REL]-(s2)

WITH r, collect(distinct neighbor) AS commonNeighbors,

        count(distinct neighbor) AS commonNeighborCount #1

OPTIONAL MATCH (x)-[cr:FEATURE_REL]->(y) #2

WHERE x IN commonNeighbors AND y IN commonNeighbors

WITH r, commonNeighborCount, count(cr) AS commonNeighborRels

WITH r, CASE WHEN commonNeighborCount < 2 THEN 0 ELSE  #3

   toFloat(commonNeighborRels) / (commonNeighborCount *

                 (commonNeighborCount - 1) / 2) END as clusteringCoefficient

SET r.clusteringCoefficient = clusteringCoefficient #4

""")

You might have noticed that you treat relationships in the feature set as



undirected at query time throughout the example in this section. The Cypher
statement in Listing 10.7 is no different. At first, you ignore the relationship
direction when identifying common neighbors. Since the relationships are
treated as undirected, the number of potential connections is also 50% less
than if you had a directed network. Therefore, the number of potential
relationships in Cypher statement is divided by two in the second last line of
Listing 10.7.

10.4 Link prediction classification model

The only thing left to do is to train and evaluate a link prediction model. Link
prediction is a binary classification problem where you predict whether a link
is likely to form in the future or not. You will train a Random Forest
classification model to solve the link prediction task based on the features
you calculated for the train and test sets of relationships. The Random Forest
classification model is used as it is relatively robust to feature scaling and
collinearity issues. However, you could have chosen other classification
models like the logistic regression or support vector machine.

Use the following Cypher statement to retrieve link prediction features and
output from the database.

Listing 10.8. Retrieve link prediction features and class output.

data = run_query("""

MATCH (s1)-[r:TEST_TRAIN|NEGATIVE_TEST_TRAIN]->(s2)

WITH r.networkDistance AS networkDistance,

     r.preferentialAttachment AS preferentialAttachment,

     r.commonNeighbor AS commonNeighbor,

     r.adamicAdar AS adamicAdar,

     r.clusteringCoefficient AS clusteringCoefficient,

     CASE WHEN r:TEST_TRAIN THEN 1 ELSE 0 END as output

RETURN networkDistance, preferentialAttachment, commonNeighbor,

       adamicAdar, clusteringCoefficient, output

""")

The Cypher statement in Listing 10.8 retrieves the features stored on
TEST_TRAIN and NEGATIVE_TEST_TRAIN relationships. The last column in the
results of Listing 10.8 is the output column, which differentiates between



positive and negative classification examples. Positive examples are tagged
with the TEST_TRAIN relationship type and are represented with a value of 1,
while the negative examples are marked with NEGATIVE_TEST_TRAIN and are
represented as 0.

Examining the distribution of relevant features is advisable, as with any other
machine learning task. Pandas Dataframe has a describe() method that
calculates the distributions of values in columns.

Listing 10.9. Define connection to Neo4j.

data.describe()

Figure 10.13. Distribution of link prediction features.

Figure 10.13 visualizes the distribution of link prediction features.
Interestingly, the network distance feature ranges from 2 to 4. However, it is
mainly two as the mean network distance is barely 2.055. Moreover, it might
not be the most predictable feature in this example due to the low variance.
The preferential attachment has a wide range from zero to almost 3 million.
Remember, the preferential attachment is calculated by multiplying the
degrees of both nodes in the pair. The only way a preferential attachment can
be zero is that some nodes have zero connections. While all nodes have



relationships in the original network, that might not be so in the feature set,
where some connections are missing due to the data split. Interestingly, the
clustering coefficient is relatively high on average.

10.4.1 Missing values

In total, there are 26164 training and test samples. However, Figure 10.13
also indicates that some values are missing in the networkDistance and
adamicAdar columns. For example, there are only 26102 non-null values
under the networkDistance feature. The network distance is undefined
because the two nodes are not in the same component. Therefore, no path
exists between the two. As mentioned, isolated nodes in the network might be
the leading cause of missing network distance values. You can fill in the
missing values with the maximum distance value of four. Remember, the
higher the network distance between a pair of nodes, the less likely a link will
be formed in the future between them, at least in theory. So, if a pair of nodes
is not in the same component, which is a null network distance in this
example, you want to choose a value representing a significant network
distance to fill in missing values. Therefore, you decided to pick the
maximum value of the network distance (4) in the dataset to fill in the
missing values.

Another column with missing values is the adamicAdar. That might happen
when a pair of nodes have no common neighbors. You can fill in the missing
values of adamicAdar column with the mean Adamic-Adar value of about
eight.

Listing 10.10. Fill in the missing values.

data['networkDistance'].fillna(4, inplace=True)

data['adamicAdar'].fillna(8.097444, inplace=True)

10.4.2 Training the model

With all the preprocessing steps done, you can go ahead and train the link
prediction model. The data dataframe contains both the train and test sets of
relationships. Therefore, you will first use the train_test_split from the



Scikit-learn library to split the test and train sets. You will use 80% of the
samples as training examples and the remaining 20% to evaluate the model.
If you were planning to perform any hyper-parameter optimization of the
classification model, you could also produce a validation set. However,
optimizing the classification model itself is beyond the scope of this book, so
you will skip creating a validation set.

After the dataset split, you will feed the training samples into the Random
Forest model, which will learn to predict whether a link is probable in the
future or not.

Listing 10.11. Split the train/test sets and train the link prediction model.

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

X = data.drop("output", axis=1)

y = data["output"].to_list()

X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=0)

rfc = RandomForestClassifier()

rfc.fit(X_train, y_train)

The code in Listing 10.11 starts by defining the feature and target columns.
The output column is used as the target, while all the other columns are used
as model features. Next, you perform a test train split with the
train_test_split function. Lastly, you instantiate a Random Forest model
and learn it based on the training samples.

10.4.3 Evaluating the model

As with all machine learning tasks, you should evaluate the performance of
your link prediction model using the test set. You will generate a
classification report using a built-in Scikit-learn function.

Listing 10.12. Generate the classification report.

from sklearn.metrics import classification_report



y_pred = rfc.predict(X_test)

print(classification_report(y_test, y_pred))

Figure 10.14. Classification report of the link prediction model.

Congratulations, you have trained a link prediction model with an accuracy
of 92%. The accuracy is a good metric as the ratio between negative and
positive samples is even.

Lastly, you can evaluate the feature importance of the trained link prediction
model. The following code will produce an ordered dataframe with the
features ordered by their importance descending.

Listing 10.13. Evaluate the feature importance.

def feature_importance(columns, classifier):

    features = list(zip(columns, classifier.feature_importances_))

    sorted_features = sorted(features, key = lambda x: x[1]*-1)

    keys = [value[0] for value in sorted_features]

    values = [value[1] for value in sorted_features]

    return pd.DataFrame(data={'feature': keys, 'value': values})

feature_importance(X.columns, rfc)

Figure 10.15. Feature importance.



You can observe by the table in Figure 10.15 that the network distance is the
least important feature by a wide margin. That was somewhat expected due to
the low variance of the network distance feature. Interestingly, the most
relevant feature is the Adamic-Adar index, followed by the common neighbor
and preferential attachment features. Note that you might get slightly
different results due to the random dataset split used at the beginning of this
chapter.

10.5 Summary

Link prediction is a task of predicting future or missing links in the
network
Link prediction models are frequently used in recommender systems
Link prediction features are designed to encode similarity or distance
between pairs of nodes
Link prediction features can be constructed by aggregating node
properties, evaluating network distance, or examining local or global
neighborhood overlap
If you use transductive node embeddings in link prediction workflows,
you cannot generate node embeddings for new unseen nodes during
training and, therefore, cannot predict future links for nodes that weren’t
present during the training
Feature leakage is when a feature contains the same or comparable
information as the output variable. You could run into leakage isseus if
you used the same relationships to generate network features as well as
to train and evaluate a classification model. Therefore, it is necessary to
split the dataset into feature, train, and test sets. Optionally, you can
introduce a validation set if you plan to perform any hyper-parameter



optimization.
The feature set is used to calculate network features, while the test and
train sets provide classification samples to train and evaluate a model.
Optionally, you can also introduce a validation set if you plan to
implement any hyper-parameter optimization techniques.
Using all the negative examples during training would lead to a
considerable class imbalance. Therefore, it is common to subsample the
negative examples and use about the same number of positive and
negative samples.
Network distance encodes how close a pair of nodes are in the network.
The theory states that the closer a pair of nodes is, the more likely they
will form a future link.
Preferential attachment mechanism nicely captures how most real-world
networks evolve. The underlying idea is that the rich get richer.
Therefore, nodes with a higher number of existing links are more likely
to form new links in the future.
Local neighborhood overlap features can be as simple as the number of
common neighbors two nodes have to more advanced, like the Adamic-
Adar index, which assumes that the smaller degree the common
neighbors between a pair of nodes have, the more likely that the pair
will form a connection in the future.

10.6 References

[Lakshmi & Bhavani, 2021] Lakshmi, T., & Bhavani, S.. (2021). Link
Prediction Approach to Recommender Systems.

[Darke et al., 2017] Evan Darke, Zhou Zhuang, & Ziyue Wang (2017).
Applying Link Prediction to Recommendation Systems for Amazon
Products.

[Kastrin et al., 2014] Kastrin, Andrej et al. “Link prediction in a MeSH co-
occurrence network: preliminary results.” Studies in health technology and
informatics vol. 205 (2014): 579-83.

[Barabási & Albert, 1999] Albert-László Barabási, & Réka Albert (1999).
Emergence of Scaling in Random Networks. Science, 286(5439), 509-512.



[Adamic & Adar, 2003] Lada A. Adamic, & Eytan Adar (2003). Friends and
neighbors on the Web. Soc. Networks, 25, 211-230.

[Wu et al., 2015] Zhihao Wu, Youfang Lin, Jing Wang, & Steve Gregory
(2015). Efficient Link Prediction with Node Clustering Coefficient. CoRR,
abs/1510.07819.

10.7 Solutions to exercises

The solution to Exercise 10.1 is the following:

Listing 10.14. Count the number of relationships.

run_query("""

MATCH (n)-[:SHARED_AUDIENCE]->()

RETURN count(*) AS result

""")

The solution to Exercise 10.2 is the following:

Listing 10.15. Construct the positive example for the test and train sets.

# Create test/train rel

# Take the remaining 10%

train_test_size = run_query("""

MATCH (s1)-[:SHARED_AUDIENCE]->(s2)

WHERE NOT EXISTS {(s1)-[:FEATURE_REL]->(s2)}

MERGE (s1)-[r:TEST_TRAIN]->(s2)

RETURN count(r) AS result;

""")

print(train_test_size)

The solution to Exercise 10.3 is the following:

Listing 10.16. Construct the negative example for the test and train sets.

# Create negative test/train pairs

run_query("""

MATCH (s1:Stream),(s2:Stream)

WHERE NOT EXISTS {(s1)-[:SHARED_AUDIENCE]-(s2)} AND s1 < s2

WITH s1,s2



LIMIT 13082

MERGE (s1)-[:NEGATIVE_TEST_TRAIN]->(s2);

""")

The solution to Exercise 10.4 is the following:

Listing 10.17. Calculate the preferential attachment feature for pairs of nodes in the train and
test sets.

run_query("""

MATCH (s1:Stream)-[r:TEST_TRAIN|NEGATIVE_TEST_TRAIN]->(s2)

WITH r, count{ (s1)-[:FEATURE_REL]-() } *

        count{ (s2)-[:FEATURE_REL]-() } AS preferentialAttachment

SET r.preferentialAttachment = preferentialAttachment

""")

The solution to Exercise 10.5 is the following:

Listing 10.18. Calculate the common neighbors feature for pairs of nodes in the train and test
sets.

run_query("""

MATCH (s1:Stream)-[r:TEST_TRAIN|NEGATIVE_TEST_TRAIN]->(s2)

OPTIONAL MATCH (s1)-[:FEATURE_REL]-(neighbor)-[:FEATURE_REL]-(s2)

WITH r, count(distinct neighbor) AS commonNeighbor

SET r.commonNeighbor = commonNeighbor

""")



11 Knowledge graph completion
This chapter covers

Introducing heterogeneous graphs
Explaining knowledge graph embeddings
Introducing knowledge graph completion workflow
Explaining knowledge graph completion results

The previous chapter is an introduction to link prediction and completion
techniques. The difference between link prediction and completion is that the
first is a workflow to predict future links, while the latter deals with
predicting missing links. However, in practice, link prediction and
completion workflows are very similar. What wasn’t explicitly mentioned is
that the link prediction features used in Chapter 10 do not differentiate
between various node or relationship types. For example, the number of
common neighbors does not differentiate between different relationship or
node types. Therefore, the link prediction features used in Chapter 10 work
best with monopartite or homogeneous graphs. A monopartite or a
homogenous graph consists of a single node and relationship type.

Figure 11.1. Homogeneous graph consisting of Stream nodes and SHARED_AUDIENCE
relationships.

Visualization in Figure 11.1 depicts a homogeneous graph that consists of a



single node type Stream and a single relationship type SHARED_AUDIENCE.

Suppose you work at a large pharmaceutical company as a data scientist. You
have been tasked with predicting additional use cases for existing drugs that
the company produces. The strategy of identifying new use cases for existing
approved drugs is called drug repurposing. The oldest example of drug
repurposing is acetylsalicylic acid or better known as Aspirin. It was initially
used in 1899 as an analgesic to relieve pain. Later it was repurposed to be
used as an antiplatelet aggregation drug. An antiplatelet drug decreases the
ability of blood clots to form[Vane, 1971]. Aspirin was later repurposed
again as it has been shown that daily administration of aspirin can prevent the
development of cancers, particularly colorectal cancer [Rüschoff et al., 1998]
[Rothwell et al., 2011].

It is very likely that as a data scientist, you don’t have a biomedical
background and, therefore, cannot manually pick new potential use cases
based on domain expertise. What are your options? You can model known
connections between drugs and diseases as a bipartite graph.

Figure 11.2. Bipartite network of existing drugs and known treatments.



Figure 11.2 visualizes a bipartite network of approved drugs and diseases.
The relationships indicate existing applications of drugs for treating
conditions. For example, Aspirin can be used to treat headaches, Kawasaki
disease, coronary artery disease, and hypertension.

You could create a drug repurposing workflow by first determining similar
drugs. Once similar drugs have been identified, you could use that
information to predict or recommend new applications for existing drugs.

Figure 11.3. Predict new drug applications based on drug similarity.



The drug repurposing workflow visualized in Figure 11.3 has two steps:

1. Identify similar relationships
2. Recommend new drug applications based of drug similarity

The first step is to identify similar drugs. One idea could be that the more
common diseases two drugs treat, the higher the drug similarity between the
two. There are several approaches you could take to infer the similarity
relationship. You could use the Jaccard similarity coefficient, described in
Chapter 7, to calculate the drug similarity. Another idea would be to use a
node embedding model like the node2vec, presented in Chapter 9, to
calculate node embeddings and compare drugs using the cosine similarity of
node embeddings. Lastly, you could also borrow some of the link prediction
features described in Chapter 10 to calculate drug similarity. Using any of the
mentioned approaches, you would create a similarity relationship with some
sort of score between pairs of drugs.

In the second step, you could recommend new drug applications based on the
calculated similarity relationships. In the example in Figure 11.3, Aspirin and



Eplerenone are tagged as similar drugs. Therefore, you could predict potential
applications for Eplerenone by examining which conditions similar drugs like
Aspirin treat. In this specific example, the prediction would be that
Eplerenone could be potentially used to treat Kawasaki disease and
headaches.

Remember, the link prediction workflow only suggests the priority of
evaluating new applications, while the domain experts then decide and
potentially conduct clinical trials to determine new drug applications.

The described drug repurposing workflow is valid. However, with this
approach, you would overlook a lot of existing biomedical knowledge. There
is a lot of data about genes, biological processes, anatomy, and other
biomedical information that you could incorporate into your graph and
consequently into drug repurposing analysis.

Figure 11.4. Example schema of a complex biomedical graph.

Medical researchers have accrued a lot of knowledge over the years. There
are a lot of official medical databases that you can borrow information from
to construct a biomedical graph. For example, the graph schema in Figure
11.4 contains several types of nodes spanning from drugs, diseases, genes,
side effects, and more. Additionally, there are several types of relationships
present. Sometimes, multiple types of relationships are available between
particular types of nodes. In Figure 11.4, you can observe that a drug can
either upregulate or downregulate a gene.



A complex biomedical graph is an example of a heterogeneous graph, where
multiple node and relationship types are present. In a drug repurposing
workflow, you could use all the available information in a biomedical graph
to predict new TREATS relationships. However, since the graph schema is
more complicated, it requires a different approach to feature engineering than
in the previous chapters. If you were inclined to perform a manual feature
engineering workflow as described in Chapter 10, you would need to find a
way to encode various node and relationship types. For example, the number
of common neighbors, as used in Chapter 10, does not differentiate between
various node and relationship types. A disease can upregulate or
downregulate a gene, and you want to somehow encode them differently.
Therefore, manual feature engineering would likely be tedious and labor-
intensive while requiring domain expertise. While node embedding
algorithms like the node2vec algorithm remove the need for manual feature
engineering, they are not designed to differentiate between various node and
relationship types. Luckily, you are not the first person to run into this
problem. The solution to avoid manual feature engineering while having a
model that differentiates between various node and relationship types is to
use knowledge graph embedding models. Unlike node embedding models,
knowledge graph embedding models encode both nodes as well as
relationships in the embedding space. The added benefit of encoding
relationships in the embedding space is that the embedding model can learn
to differentiate between different relationship types.

11.1 Knowledge graph embedding model

As mentioned, the key difference between node embeddings and knowledge
graph embedding models is that the latter embeds the relationships as well as
nodes. Before delving into theory, you need to familiarize yourself with
knowledge graph embedding terminology.

11.1.1 Triple

Knowledge graph embedding models use triples to describe graphs. A triple
consists of two nodes known as head (h) and tail (t), and a labeled directed
relationship (r).



Figure 11.5. Triple representation.

Figure 11.5 pictures a visualization of a sample graph on the left side and a
triple representation of the same graph on the right. A triple consists of two
nodes, a head (h) and tail (t), and a directed labeled relationship (r). The head
node is the source or start node of the relationship, while the target or end
node is marked as the tail node. In the example in Figure 11.5, Ana is
considered as the head while Paris is the tail node. The whole idea of
knowledge graph embeddings is to support heterogeneous graphs and
differentiate between various types of relationships. Therefore, the relation
label in a triple defines its type. The relation label in Figure 11.5 is LIVES_IN.

Exercise 11.1

Construct two triples to define your location. The first triple should contain
information about the city you live in, while the second triple connects your
city to the country it belongs to. Choose the relation labels you find the most
appropriate.

  Note

The triple is defined to differentiate between various relationship types or
labels. However, there is no explicit definition of node labels. Therefore, the



knowledge graph embedding models do not explicitly differentiate between
different node types.

11.1.2 TransE

TransE [Bordes et al., 2013] is one of the earliest and most intuitive
knowledge graph embedding models. The objective of the TransE method is
to calculate low-dimensional vector representations, also known as
embeddings, for all the nodes and relationships in the graph. The TransE
method is frequently used to demonstrate knowledge graph embeddings as it
is simple to illustrate and relatively cheap to calculate.

Figure 11.6. TransE encoding intuition.

Figure 11.6 visualizes the concept of encoding nodes and relationships in the
embedding space. The key idea of TransE method is to encode nodes and
relationships in the embedding space so that the embedding of the head plus
relation should be close to the tail. In Figure 11.6, you can observe that the
embedding of the head node plus the embedding of the relationship is
precisely equal to the embedding of the tail node.

Figure 11.7. TransE optimization metric.



TransE method tries to produce embeddings so that for every triple in the
training set, it minimizes the distance between the sum of the head and the
relationship to the tail embedding. This optimization score can be written as h
+ r ≈ t as visualized in Figure 11.7. On the other hand, if a relationship
between the head and tail node does not exist, then the sum of head and
relation embedding should not be close to the tail (h + r != t).

You can read more about the actual mathematical implementation in the
original article [Bordes et al., 2013].

11.1.3 TransE limitations

While TransE implementation is simple and intuitive, it has some drawbacks.
There are three categories of relationships you will use to evaluate TransE
method.

The first category of relationships is the symetric relations. The triple data
structure does not allow undirected relationships. However, a category of
relationships could be treated as undirected. The undirected relationships are
referred to as symmetric within the field knowledge graph embedding
models. An example triples of symmetric relationships are:

Tomaž, SIBLING, Blaž

Blaž, SIBLING, Tomaž

If Tomaž is a sibling of Blaž, then Blaž is also a sibling of Tomaž. There is
no way around this simple fact. The question is can TransE encode
symmetric relationships?

Figure 11.8. Encoding symmetric relationships with TransE.



The TransE method produces a particular vector representation for each
relationship type. Therefore, the SIBLING vector representation in Figure 11.8
has the same direction in both instances. The problem is that a vector
representation of the same relationship type cannot point in the opposite
direction. One SIBLING vector points from the head to the tail node.
However, the second SIBLING vector starts from the second node and has the
same direction as the first SIBLING vector. Therefore, the second SIBLING
vector does not and cannot point back to the first node. Consequently, the
TransE does not support symmetric relationships from a theoretical point of
view.

The second category of relationships you will evaluate is the composition
relations. One example of the composition relation is:

John, MOTHER, Alicia

Alicia, SPOUSE, Michael

John, FATHER, Michael

Figure 11.9. Encoding composition relationships with TransE.



A composition relationship can be constructed by combining two or more
different relationships. In the example in Figure 11.9, the FATHER relationship
can be composed by adding the MOTHER and SPOUSE relationships. You can
observe that one can fit the relationship vectors to fit this graph pattern.
Therefore, the TransE method support composite relations.

The last category is the 1-to-N relationships. Essentially, this scenario
happens when a node has the same relationship to multiple other nodes. An
example of 1 to N relations is:

Surya, FRIEND, Rajiv

Surya, FRIEND, Jane

Figure 11.10. Encoding 1-to-N relationships with TransE.

The only way TransE could encode that Surya is friends with both Jane and



Rajiv is that the vector representation of Jane and Rajiv is equal. Having the
identical vector representation for Jane and Rajiv does not make sense, as
they are different entities in the graph and, therefore, should have different
embeddings. The only other solution would be that the FRIEND relationship
vector would have different directions as visualized in Figure 11.10.
However, the TransE method implements only a single vector representation
or direction for a given relationship type. Consequently, the TransE method
does not support 1-to-N relationships.

11.2 Knowledge graph completion

Now that you have gained a theoretical background in knowledge graph
embeddings, you can continue with your task of predicting new applications
for existing drugs. Imagine you work at a large pharmaceutical company that
produces aspirin. Aspirin is a mass-produced drug, and therefore, a new
application could rake in a lot of revenue. The idea is to use existing
biomedical knowledge to predict new applications. You have determined that
the best course of action would be to apply knowledge graph completion
techniques to find new potential drug applications, also known as drug
repurposing. Knowledge graph completion can be thought of as multi-class
link prediction, where you predict new links and their type. You will train a
knowledge graph embedding model to encode nodes and relationships in the
biomedical graph and then use those embeddings to identify new potential
applications for aspirin.

Figure 11.11. Drug repurposing workflow.



The drug repurposing workflow is visualized in Figure 11.11. The basis of
the whole flow is a rich and complex biomedical knowledge graph that
contains existing drugs, their treatments, and other biomedical entities like
genes and pathways. As you are working for a large company, other great
people at the company have already mapped and constructed the required
biomedical graph. Next, you need to feed the biomedical graph into a
knowledge graph embedding model. The Neo4j Graph Data Science library
currently does not support knowledge graph embedding models. Since you
won’t need to perform any graph transformations or manipulations, you can
skip using a graph database altogether. While multiple Python libraries
feature knowledge graph embedding models, I prefer PyKEEN [Ali et al.,
2021] due to its simplicity and easy-to-use interface. Additionaly, PyKEEN
implements more than 40 different knowledge graph embedding models
along with out-of-the-box support for hyper-parameter optimization. Lastly,
you will use a built-in PyKEEN method to predict new applications for
Aspirin.

You need to install pykeen and pandas libraries to follow along with the code
examples.

Listing 11.1. Install PyKEEN.

pip install pykeen==1.9.0 pandas



All the code is available as a Jupyter notebook
(https://github.com/tomasonjo/graphs-network-
science/blob/main/notebooks/Chapter%2011.ipynb).

11.2.1 Hetionet

Your coworkers have prepared a subset of the Hetionet dataset [Himmelstein
et al., 2017] to use. The original Hetionet dataset contains 47,031 nodes (11
types) and 2,250,197 relationships (24 types).

Figure 11.12. Hetionet schema. Image from Himmelstein et al (2017) available under a CC BY 4.0
License at https://elifesciences.org/articles/26726.





Graph schema of the Hetionet dataset is presented in Figure 11.12. The graph
contains various entities like genes, pathways, compounds, and diseases.
Additionally, there are 24 different types of relationships present in the graph.
Explaining all the medical terminology behind medical entities and their
relationships could take a whole book. The most important relationship for
drug repurposing workflow is the TREATS relationship that starts from a
Compound node and ends at the Disease node. Essentially, the TREATS
relationship encapsulates existing approved drug treatments. You will use
knowledge graph completion techniques to predict new TREATS relationships
originating from Aspirin or Acetylsalicylic acid node.

You will use a subset of the Hetionet dataset in this example. The subset has
the following schema.

Figure 11.13. Graph schema of the Hetionet subset that will be used in the drug repurposing
workflow.



Figure 11.13 presents a subset of the Hetionet dataset that you will use in the
drug repurposing workflow. The given subset contains 22634 nodes (3 types)
and 561716 relationships (12 types). The graph contains existing approved
drug treatments that can be found under the TREATS relationship, along with
some additional information about how compounds and diseases interact with
genes. The genes can also interact with other genes.

The subset of the Hetionet dataset is available on GitHub



(https://github.com/tomasonjo/graphs-network-
science/tree/main/dataset/hetionet) and has the following structure.

Table 11.1. Structure of the Hetionet edge CSV file.

source_name source_label target_name target_label type

SERPINF2 Gene KLK13 Gene interacts

SERPINF2 Gene SSR1 Gene interacts

SERPINF2 Gene TGM2 Gene interacts

SERPINF2 Gene UBC Gene interacts

SERPINF2 Gene SERPINB12 Gene interacts

You will use the Pandas library to load the CSV file from GitHub.

Listing 11.2. Load Hetionet subset as a Pandas dataframe.

import pandas as pd

data = pd.read_csv(

    "https://bit.ly/3X2qp1r"

)

The code in Listing 11.2 first imports the Pandas library. Next, it uses the
built-in method read_csv to load the Hetionet dataset from GitHub.

11.2.2 Dataset split



As with all machine learning workflows, you need to perform a test-train
dataset split. You can feed a graph structure to PyKEEN with a list of triples.
Remember, the triple data object consists of head, label, and tail elements.

Listing 11.3. Input triples to PyKEEN.

from pykeen.triples import TriplesFactory

tf = TriplesFactory.from_labeled_triples(

    data[["source_name", "type", "target_name"]].values,

)

The TriplesFactory is a PyKEEN class designed to store triples used for
training and evaluating the model. The code in Listing 11.3 uses the
from_labeled_triples method to input a list of triples from the Pandas
dataframe. The data dataframe contains additional information about node
labels, which we need to filter out. Therefore, the code in Listing 11.3
specifies using columns source_name, type, target_name as triples.

Now that the triples are loaded into PyKEEN, you can perform a dataset split
with the following code.

Listing 11.4. Split dataset into train, test, and validation sets.

training, testing, validation = tf.split([0.8, 0.1, 0.1])

The dataset split is performed with the split method as demonstrated in the
Listing 11.4. The method takes in an array of three values as a parameter that
defines the ratio of the training, testing, and validation sets. The first value
defines the ratio of the training set, the second value represents the testing set
ratio, and the final number specifies the size of the validation set. The third
value can be omitted as it can be calculated from the first two.

11.2.3 Train a PairRE model

While the TransE model is great for an introduction to knowledge graph
embedding models, it has its limitations. For example, a single drug can be
used to treat multiple diseases. However, as mentioned in the TransE
introduction, the TransE method cannot encode 1-to-N relationships, making



it a lousy model for biomedical knowledge graphs. Therefore, you will use a
later and better model called PairRE [Chao et al., 2020]. PairRE is capable of
encoding symmetry, composition, and 1-to-N relationships, which makes it a
great model to use for biomedical knowledge graphs. You can check the
proposing article if you are interested in details of the mathematical
implementation.

The following code trains the PairRE model based on the subset of the
Hetionet dataset you were provided.

Listing 11.5. Train a PairRE model.

from pykeen.pipeline import pipeline

result = pipeline(

    training=training,

    testing=testing,

    validation=validation,

    #1

    model="PairRE",

    #2

    stopper="early",

    epochs=100,

    #3

    random_seed=42,

)

The PairRE model can be trained with a single function, as shown in Listing
11.5. The training, testing, and validation sets are loaded via separate
arguments. You can select the model with the model argument. There are
more than 40 models you can pick from. Check the documentation
(https://pykeen.readthedocs.io/en/stable/reference/models.html) for a
complete list of available models. The early value for the stopper argument
evaluates the model every 10 epochs by default. Using the stopper option
with early value, the training pipeline can stop the training if the model
accuracy does not improve with additional epochs. Lastly, the random_seed
parameter is used to ensure result reproducibility.

The complete list of available pipeline parameters is available in the official
documentation
(https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline



  Note

The training can be performed on either CPU or GPU devices. However, the
training will be faster if you have a GPU device available. If you don’t have a
local GPU available, you can always try out free cloud environments like the
Google Colab.

11.2.4 Drug application predictions

With the PairRE model trained, you can go ahead and predict new
applications for Acetylsalicylic acid or better known as Aspirin. The
PyKEEN library offers a get_prediction_df function, which allows you to
input two elements of a triple and outputs the predictions for the third one. In
your example, you input Acetylsalicylic acid as the head and treats as
the relation element. The output of the most probably tail nodes is given in
a Pandas dataframe structure.

Listing 11.6. Predict new potential use cases for Acetylsalicylic acid.

from pykeen.models.predict import get_prediction_df

pred_df = get_prediction_df(

    result.model,

    head_label="Acetylsalicylic acid",

    relation_label="treats",

    remove_known=True,

    triples_factory=result.training,

)

pred_df.head()

Table 11.2. Top five predictions for Acetylsalicylic acid.

tail_id tail_label score

19821 autistic disorder -16.378204



19895 polycystic ovary
syndrome

-16.702688

19897 prostate cancer -17.108332

19886 ovarian cancer -17.225809

19866 malignant glioma -17.290039

Predictions with score value closer to zero are more probable. Your model
predicted that Aspirin could be potentially used to treat autistic disorder,
polycystic ovary syndrome, and some forms of cancer. These predictions can
be used to recommend a clinical trial for a particular drug use case. The
clinical trials must be carefully planned as they take a long time and are
incredibly costly [Schlander et al., 2021]. Therefore, it is essential to produce
as accurate recommendations as possible, as the cost of clinical trials can
reach more than a billion dollars.

Exercise 11.2

Predict potential new applications for Caffeine with the get_prediction_df
function.

11.2.5 Explaining predictions

After the predictions have been made, you can search the medical literature
for supporting or invalidating research. For example, if you search for a
combination of Aspirin and prostate cancer, you can find some articles that
might validate your predictions [Joshi et al., 2021]. Given that the Hetionet
article was published in 2017, it probably does not contain new medical
information from 2021. Hetionet is an aging resource that was restricted to
less than 200 diseases. In practice, pharmaceutical and other companies use
various text-mining systems deployed at scale to extract knowledge from



various medical research articles and trials to keep their biomedical graphs
updated with all the latest available information [Bachman et al., 2022].

Having supporting evidence for your predictions shows that the method of
using knowledge graph embedding models for knowledge graph completion
can yield great results. Suppose you found no supporting literature for your
predictions. In that case, you could present existing biomedical connections
to domain experts and let them decide if it holds any merit. Even though you
didn’t need a graph database for the drug repurposing workflow, it would still
be great for explaining predictions. Luckily, your coworkers at the large
pharmaceutical company have you covered, or in reality, the authors of the
Hetionet have made it available through a read-only Neo4j Browser interface.
The Hetionet Browser interface is available at https://neo4j.het.io/browser/.

The following Cypher query will visualize the first 25 paths between
Acetylsalicylic acid and prostate cancer that are up to 3 hops away.

Listing 11.7. Predict new potential use cases for Acetylsalicylic acid.

MATCH (c:Compound {name:"Acetylsalicylic acid"}),

      (d:Disease {name:"prostate cancer"})

MATCH p=(c)-[* ..3]-(d)

RETURN p LIMIT 25

The Cypher statement in Listing 11.6 produces the following visualization

Figure 11.14. Existing connections between Acetylsalicylic acid and prostate cancer.



There is the Acetylsalicylic acid on the left side of the Figure 11.14,
while the prostate cancer is on the right. Acetylsalicylic acid can be used
to palliate osteoarthritis and gout. Interestingly, osteoarthritis associates with
similar genes (blue color nodes) as prostate cancer. Another connection is



that existing drugs like Prednisone, Celecoxib, and Hydrocortisone can be
used to treat or palliate gout and osteoarthritis. Since Acetylsalicylic acid can
also be used to treat gout and osteoarthritis, it could perhaps also be used to
treat prostate cancer due to a number of drugs that can treat or palliate both.
In any case, a domain expert can evaluate existing connections and make up
their own mind. There are 1716 distinct paths with a length of up to three
hops between Acetylsalicylic acid and prostate cancer. Therefore, it is hard to
visualize them all in a single image, and a domain expert could prioritize
connections based on node or relationship types.

Exercise 11.3

Visualize the first 25 paths with a length of up to three hops between
Acetylsalicylic acid and autistic disorder. Use the existing Neo4j version of
Hetionet graph, which is available through Neo4j Browser at
https://neo4j.het.io/browser/.

11.3 Summary

A heterogeneous or multipartite graph consists of multiple node and
relationship types. There could also be numerous relationship types
between two entity types.
A triple data object is used to represent directed graphs, where multiple
relationship types are present.
A triple data object consists of head, relation, and tail elements.
Knowledge graph embedding models encode nodes and relationships in
the embedding space as opposed to node embedding models that only
encode nodes.
Knowledge graph embedding model try to calculate embedding in such
a way that for every existing triple the sum of embeddings of head and
relation are close to the embedding of the tail node.
Knowledge graph embedding models are evaluated from a theoretical
perspective if they can encode symmetry, inverse, composite, and 1-to-
N relationships.
PairRE model can encode all four categories (symmetry, inverse,
composite, and 1-to-N) of different relationships.
Knowledge graph completion can be thought of as a multi-class link



prediction problem, where you are predicting new links and also their
type.
In a drug repurposing workflow, the predictions have to evaluated by
domain experts and then validated through clinical trials in order for
them to get approved. The knowledge graph completion is only used to
prioritize the most likely candidates.

11.4 References

[Vane, 1971] VANE, J. Inhibition of Prostaglandin Synthesis as a
Mechanism of Action for Aspirin-like Drugs. Nature New Biology 231, 232–
235 (1971). https://doi.org/10.1038/newbio231232a0

[Rothwell et al., 2011] Rothwell, Peter M et al. “Effect of daily aspirin on
long-term risk of death due to cancer: analysis of individual patient data from
randomised trials.” Lancet (London, England) vol. 377,9759 (2011): 31-41.
doi:10.1016/S0140-6736(10)62110-1

[Rüschoff et al., 1998] Rüschoff, J et al. “Aspirin suppresses the mutator
phenotype associated with hereditary nonpolyposis colorectal cancer by
genetic selection.” Proceedings of the National Academy of Sciences of the
United States of America vol. 95,19 (1998): 11301-6.
doi:10.1073/pnas.95.19.11301

[Bordes et al., 2013] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J.,
& Yakhnenko, O. (2013). Translating Embeddings for Modeling Multi-
relational Data. In Advances in Neural Information Processing Systems.
Curran Associates, Inc..

[Ali et al., 2021] Ali, M., Berrendorf, M., Hoyt, C., Vermue, L., Sharifzadeh,
S., Tresp, V., & Lehmann, J. (2021). PyKEEN 1.0: A Python Library for
Training and Evaluating Knowledge Graph Embeddings. Journal of Machine
Learning Research, 22(82), 1–6.

[Himmelstein et al., 2017] Himmelstein, D., Lizee, A., Hessler, C.,
Brueggeman, L., Chen, S., Hadley, D., Green, A., Khankhanian, P., &
Baranzini, S. (2017). Systematic integration of biomedical knowledge



prioritizes drugs for repurposing. eLife, 6, e26726.

[Chao et al., 2020] Chao, L., He, J., Wang, T., & Chu, W.. (2020). PairRE:
Knowledge Graph Embeddings via Paired Relation Vectors.

[Schlander et al., 2021] Schlander, M., Hernandez-Villafuerte, K., Cheng,
CY. et al. How Much Does It Cost to Research and Develop a New Drug? A
Systematic Review and Assessment. PharmacoEconomics 39, 1243–1269
(2021). https://doi.org/10.1007/s40273-021-01065-y

[Joshi et al., 2021] S.N. Joshi, E.A. Murphy, P. Olaniyi, & R.J. Bryant
(2021). The multiple effects of aspirin in prostate cancer patients. Cancer
Treatment and Research Communications, 26, 100267.

[Bachman et al., 2022] Bachman, J., Gyori, B., & Sorger, P. (2022).
Automated assembly of molecular mechanisms at scale from text mining and
curated databases. bioRxiv.

11.5 Solutions to exercises

For me, the solution to Exercise 11.1 is the following:

Tomaz, LIVES_IN, Ljubljana

Ljubljana, PART_OF, Slovenia

The solution to Exercise 11.2 is the following:

Listing 11.8. Predict new potential use cases for Caffeine.

pred_df = get_prediction_df(

    result.model,

    head_label="Caffeine",

    relation_label="treats",

    remove_known=True,

    triples_factory=result.training,

)

pred_df.head()

The solution to Exercise 11.3 is the following:



Listing 11.9. Predict new potential use cases for Acetylsalicylic acid.

MATCH (c:Compound {name:"Acetylsalicylic acid"}),

      (d:Disease {name:"autistic disorder"})

MATCH p=(c)-[* ..3]-(d)

RETURN p LIMIT 25


	MEAP_VERSION_7
	Welcome
	1_Graphs_and_network_science:_An_introduction
	2_Representing_network_structure_-_design_your_first_graph_model
	3_Your_first_steps_with_the_Cypher_query_language
	4_Exploratory_graph_analysis
	5_Introduction_to_social_network_analysis
	6_Projecting_monopartite_networks_with_Cypher_Projection
	7_Inferring_co-occurrence_networks_based_off_bipartite_networks
	8_Constructing_a_nearest_neighbor_similarity_network
	9_Node_embeddings_and_classification
	10_Link_prediction
	11_Knowledge_graph_completion

