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1.1  Introduction

In recent years, autonomous driving has become quite a popular topic in the research 
community as well as in industry, and even in the press, but besides the fact that it is 
exciting and revolutionary, why should we deploy autonomous vehicles? One reason is that 
ridesharing using clean‐energy autonomous vehicles will completely revolutionize the 
transportation industry by reducing pollution and traffic problems, by improving safety, 
and by making our economy more efficient.

More specifically and starting with pollution reduction: there are about 260 million cars 
in the US today. If we were to convert all cars to clean‐energy cars, we would reduce annual 
carbon emissions by 800 million tons, which would account for 13.3% of the US commit-
ment to the Paris Agreement [1]. Also, with near‐perfect scheduling, if ridesharing autono-
mous vehicles could be deployed, the number of cars could be reduced by 75% [2]. 
Consequently, these two changes combined have the potential to yield an annual reduction 
of 1 billion tons in carbon emission, an amount roughly equivalent to 20% of the US 
Commitment to the Paris Agreement.

As for safety improvement, human drivers have a crash rate of 4.2 accidents per million 
miles (PMM), while the current autonomous vehicle crash rate is 3.2 crashes PMM [3]. Yet, 
as the safety of autonomous vehicles continues to improve, if the autonomous vehicle 
crash rate PMM can be made to drop below 1, a whopping 30 000 lives could be saved annu-
ally in the US alone [4].

Lastly, consider the impact on the economy. Each ton of carbon emission has around a 
$220 impact on the US GDP. This means that $220 B could be saved annually by converting 
all vehicles to ride‐sharing clean‐energy autonomous vehicles [5]. Also, since the average 
cost per crash is about $30 000 in the US, by dropping the autonomous vehicle crash rate 
PMM to below 1, we could achieve another annual cost reduction of $300 B [6]. Therefore, 
in the US alone, the universal adoption of ride‐sharing clean‐energy autonomous vehicles 
could save as much as $520 B annually, which almost ties with the GDP of Sweden, one of 
the world’s largest economies.

Nonetheless, the large‐scale adoption of autonomous driving vehicles is now meeting 
with several barriers, including reliability, ethical and legal considerations, and, not least of 
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which, affordability. What are the problems behind the building and deploying of 
autonomous vehicles and how can we solve them? Answering these questions demands 
that we first look at the underlying design.

1.2  High Cost of Autonomous Driving Technologies

In this section we break down the costs of existing autonomous driving systems, and dem-
onstrate that the high costs of sensors, computing systems, and High‐Definition (HD) 
maps are the major barriers of autonomous driving deployment [7] (Figure 1.1).

1.2.1  Sensing

The typical sensors used in autonomous driving include Global Navigation Satellite System 
(GNSS), Light Detection and Ranging (LiDAR), cameras, radar and sonar: GNSS receivers, 
especially those with real‐time kinematic (RTK) capabilities, help autonomous vehicles local-
ize themselves by updating global positions with at least meter‐level accuracy. A high‐end 
GNSS receiver for autonomous driving could cost well over $10 000.

LiDAR is normally used for the creation of HD maps, real‐time localization, as well as 
obstacle avoidance. LiDAR works by bouncing a laser beam off of surfaces and measuring 
the reflection time to determine distance. LiDAR units suffer from two problems: first, they 
are extremely expensive (an autonomous driving grade LiDAR could cost over $80 000); 
secondly, they may not provide accurate measurements under bad weather conditions, 
such as heavy rain or fog.

Cameras are mostly used for object recognition and tracking tasks, such as lane detection, 
traffic light detection, and pedestrian detection. Existing implementations usually mount 
multiple cameras around the vehicle to detect, recognize, and track objects. However, an 
important drawback of camera sensors is that the data they provide may not be reliable 

> $100 000 USD sensing hardware cost

> $30 000 USD computing hardware cost

Millions of USD to create and maintain an HD map
HD Map Production Pipeline

Figure 1.1  Cost breakdown of existing autonomous driving solutions.
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under bad weather conditions and that their sheer amount creates high computational 
demands. Note that these cameras usually run at 60 Hz, and, when combined, can generate 
over 1 GB of raw data per second.

Radar and sonar: The radar and sonar subsystems are used as the last line of defense in 
obstacle avoidance. The data generated by radar and sonar show the distance from the 
nearest object in front of the vehicle’s path. Note that a major advantage of radar is that it 
works under all weather conditions. Sonar usually covers a range of 0–10 m whereas radar 
covers a range of 3–150 m. Combined, these sensors cost less than $5000.

1.2.2  HD Map Creation and Maintenance

Traditional digital maps are usually generated from satellite imagery and have meter‐level 
accuracy. Although this accuracy is sufficient for human drivers, autonomous vehicles 
demand maps with higher accuracy for lane‐level information. Therefore, HD maps are 
needed for autonomous driving.

Just as with traditional digital maps, HD maps have many layers of information. At the 
bottom layer, instead of using satellite imagery, a grid map is generated by raw LiDAR data, 
with a grid granularity of about 5 cm by 5 cm. This grid basically records elevation and 
reflection information of the environment in each cell. As the autonomous vehicles are 
moving and collecting new LiDAR scans, they perform self‐localization by performing a 
real time comparison of the new LiDAR scans against the grid map with initial position 
estimates provided by GNSS [8].

On top of the grid layer, there are several layers of semantic information. For instance, 
lane information is added to the grid map to allow autonomous vehicles to determine 
whether they are on the correct lane when moving. On top of the lane information, traffic 
sign labels are added to notify the autonomous vehicles of the local speed limit, whether 
traffic lights are nearby, etc. This gives an additional layer of protection in case the sensors 
on the autonomous vehicles fail to catch the signs.

Traditional digital maps have a refresh cycle of 6–12 months. However, to make sure the 
HD maps contain the most up‐to‐date information, the refresh cycle for HD maps should 
be shortened to no more than one week. As a result, operating, generating, and maintain-
ing HD maps can cost upwards of millions of dollars per year for a mid‐size city.

1.2.3  Computing Systems

The planning and control algorithms and the object recognition and tracking algo-
rithms have very different behavioral characteristics which call for different kinds of 
processors. HD maps, on the other hand, stress the memory [9]. Therefore, it is impera-
tive to design a computing hardware system which addresses these demands, all within 
limited computing resources and power budget. For instance, as indicated in [9], an 
early design of an autonomous driving computing system was equipped with an Intel® 
Xeon E5 processor and four to eight Nvidia® K80 graphics processing unit (GPU) 
accelerators, connected with a Peripheral Component Interconnect‐E (PCI‐E) bus. 
At  its peak, the whole system, while capable of delivering 64.5 Tera Operations Per 
Second (TOPS), consumed about 3000 W, consequently generating an enormous 
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amount of heat. Also, at a cost of $30 000, the whole solution would be unaffordable 
(and unacceptable) to the average consumer.

1.3  Achieving Affordability and Reliability

Many major autonomous driving companies, such as Waymo, Baidu, and Uber, and several 
others are engaged in a competition to design and deploy the ultimate ubiquitous 
autonomous vehicle which can operate reliably and affordably, even in the most extreme 
environments. Yet, we have just seen that the cost for all sensors could be over $100 000, 
with the cost for the computing system another $30 000, resulting in an extremely high cost 
for each vehicle: a demo autonomous vehicle can easily cost over $800 000 [10]. Further, 
beyond the unit cost, it is still unclear how the operational costs for HD map creation and 
maintenance will be covered.

In addition, even with the most advanced sensors, having autonomous vehicles coexist 
with human‐driven vehicles in complex traffic conditions remains a dicey proposition. As 
a result, unless we can significantly drop the costs of sensors, computing systems, and HD 
maps, as well as dramatically improve localization, perception, and decision‐making algo-
rithms in the next few years, autonomous driving will not be universally adopted.

Addressing these problems, a reliable autonomous vehicle has been developed by us and 
for low‐speed scenarios, such as university campuses, industrial parks, and areas with lim-
ited traffic [11,12]. This approach starts with low speed to ensure safety, thus allowing 
immediate deployment. Then, with technology improvements and with the benefit of 
accumulated experience, high‐speed scenarios will be envisioned, ultimately having the 
vehicle’s performance equal that of a human driver in any driving scenario. The keys to 
enable affordability and reliability include using sensor fusion, modular design, and high‐
precision visual maps (HPVMs).

1.3.1  Sensor Fusion

Using LiDAR for localization or perception is extremely expensive and may not be reliable. 
To achieve affordability and reliability, multiple affordable sensors (cameras, GNSS receiv-
ers, wheel encoders, radars, and sonars) can be used to synergistically fuse their data. Not 
only do these sensors each have their own characteristics, drawbacks, and advantages but 
they complement each other such that when one fails or otherwise malfunctions, others 
can immediately take over to ensure system reliability. With this sensor fusion approach, 
sensor costs are limited to under $2000.

The localization subsystem relies on GNSS receivers to provide an initial localization 
with sub‐meter‐level accuracy. Visual odometry can further improve the localization accu-
racy down to the decimeter level. In addition, wheel encoders can be used to track the 
vehicles’ movements in case of GNSS receiver and camera failures. Note that visual odom-
etry deduces position changes by examining the overlaps between two frames. However, 
when a sudden motion is applied to the vehicle, such as a sharp turn, it is possible that 
visual odometry will fail to maintain localization due to the lack of overlapping regions 
between two consecutive frames.
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The active perception subsystem seeks to assist the vehicle in understanding its 
environment. Based on this understanding and a combination of computer vision and of 
millimeter wave (mmWave) radars to detect and track static or moving objects within a 
50 m range, the vehicle can make action decisions to ensure a smooth and safe trip. With 
stereo vision, not only can objects including pedestrians and moving vehicles be easily 
recognized but the distance to these detected objects can be accurately pinpointed as well. 
In addition, mmWave radars can also detect and track fast‐moving objects and their 
distances under all weather conditions.

The passive perception subsystem aims to detect any immediate danger and acts as the 
last line of defense of the vehicle. It covers the near field, i.e. a range of 0–5 m around the 
vehicle. This is achieved by a combination of mmWave radars and sonars. Radars are very 
good moving object detectors and sonars are very good static object detectors. Depending 
on the current vehicle speed, when something is detected within the near field, different 
policies are put into place to ensure the safety of the vehicle.

1.3.2  Modular Design

In the recent past, designs of autonomous driving computing systems have tended to be 
costly but affordable computing solutions are possible [9]. This has been made possible by 
the application of modular design principles which push computing to the sensor end so as 
to reduce the computing demands on the main computing units. Indeed, a quad‐camera 
module such as the DragonFly sensor module [11] alone can generate image data at a rate 
of 400 Mbps. If all the sensor data were transferred to the main computing unit, it would 
require this computing unit to be extremely complex, with many consequences in terms of 
reliability, power, cost, etc.

Our approach is more practical: it entails breaking the functional units into modules 
and having each module perform as much computing as possible. This makes for a reduc-
tion in the burden on the main computing system and a simplification in its design, with 
consequently higher reliability. More specifically, a GPU SoM (System on Module) is 
embedded into the DragonFly module to extract features from the raw images. Then, 
only the extracted features are sent to the main computing unit, reducing the data trans-
fer rate a 1000‐fold. Applying the same design principles to the GNSS receiver subsystem 
and the radar subsystem reduces the cost of the whole computing system to less than 
$2000.

1.3.3  Extending Existing Digital Maps

Creating and maintaining HD maps is another important component of deployment costs. 
Crowd‐sourcing the data for creating HD maps has been proposed. However, this would 
require vehicles with LiDAR units, and we have already seen that LiDARs are extremely 
expensive and thus not ready for large‐scale deployment. On the other hand, crowd‐sourcing 
visual data is a very practical solution as many cars today are already equipped with 
cameras.

Hence, instead of building HD maps from scratch, our philosophy is to enhance exist-
ing digital maps with visual information to achieve decimeter‐level accuracy. These are 
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called HPVMs. To effectively help with vehicle localization, HPVMs consists of multiple 
layers:

1.	 The bottom layer can be any of the existing digital maps, such as Open Street Map; this 
bottom layer has a resolution of about 1 m.

2.	 The second layer is the ground feature layer. It records the visual features from the road 
surfaces to improve mapping resolution to the decimeter level. The ground feature layer 
is particularly useful when in crowded city environments where the surroundings are 
filled with other vehicles and pedestrians.

3.	 The third layer is the spatial feature layer, which records the visual features from the 
environments; this provides more visual features compared with the ground feature 
layer. It also has a mapping resolution at the decimeter level. The spatial feature layer is 
particularly useful in less‐crowded open environments such as the countryside.

4.	 The fourth layer is the semantic layer, which contains lane labels, traffic light and traffic sign 
labels, etc. The semantic layer aids vehicles in making planning decisions such as routing.

1.4  Modular Design

Before we go into the details of the rest of this book, let us briefly go over the modular 
design methodology and introduce each module. Hopefully with this introduction, readers 
will be able to easily follow the contents of this book.

Figure 1.2 shows a DragonFly Pod [13], a low‐speed autonomous passenger pod built 
utilizing the modular design methodology described in this book. This vehicle consists of 
multiple components, a RTK GNSS module for localization, a DragonFly computer vision 
module for localization (using visual inertial odometry technology) and active perception, 

Planning and Control Module

DragonFly Computer Vision Module

77 GHz mmWave Radar

Sonar

RTK GNSS Module

Chassis

Figure 1.2  Modular design of a DragonFly Pod.
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a mmWave radar and a sonar for passive perception, a planning and control module for 
real‐time planning, and a chassis module. Figure 1.3 shows the architecture diagram of this 
design and shows how the modules interact with each other.

1.4.1  Communication System

First, to connect different modules to form a working system, a reliable communication 
system is needed. The Controller Area Network (CAN) bus is the most widely used 
in‐vehicle communication network today due to its simplicity, and it can be used to connect 
Electronic Control Units (ECUs), sensors, and other components to enable communication 
with each other. Before going into the details of other components, readers should first 
understand how the CAN bus works.

1.4.2  Chassis

The traditional vehicle chassis utilizes mechanical control, such as mechanical cables, 
hydraulic pressure, and other ways of providing a driver with direct, physical control over 
the speed or direction of a vehicle.

However, for autonomous driving to work, we need a drive‐by‐wire‐ready chassis such 
that the chassis can apply electronic controls to activate the brakes, control the steering, 
and operate other mechanical systems. Specifically, the chassis module provides the basic 
application program interfaces for the planning and control module, such that the plan-
ning and control module can perform steer, throttle, and brake actions to make sure that 
the vehicle travels on the planned trajectory.

Computer Vision

CAN Bus

Chassis Sonars Radars

Map

GNSS

Planning and Control

Figure 1.3  Modular design architecture.
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1.4.3  mmWave Radar and Sonar for Passive Perception

For mid‐range obstacle detection, we can apply 77 GHz mmWave radar such that the plan-
ning and control module can make decisions when obstacles are detected. Similarly, sonars 
cover near‐range obstacles and act as the very last line of defense; once sonars detect an 
obstacle, they directly signal the chassis to stop to minimize risks of an accident.

mmWave radar and sonar sensors can be combined and used for passive perception. By 
passive perception, we mean that when obstacles are detected, the raw data are not fed to 
the planning and control module for decision making. Instead, the raw data are directly 
sent to the chassis through the CAN bus for quick decision making. In this case, a simple 
decision module is implemented in the chassis to stop the vehicle when an obstacle is 
detected within a short range.

The main reason for this design is that when obstacles are detected in close range, we 
want to stop the vehicle as soon as possible instead of going through the complete decision 
pipeline. This is the best way to guarantee the safety of passengers as well as pedestrians.

1.4.4  GNSS for Localization

The GNSS system is a natural choice for vehicle localization, especially with RTK capabil-
ity, GNSS systems can achieve very high localization accuracy. GNSS provides detailed 
localization information such as latitude, longitude, altitude, as well as vehicle heading. 
Nonetheless, GNSS accuracy suffers when there are buildings and trees blocking an open 
sky, leading to multipath problems. Hence, we cannot solely rely on GNSS for 
localization.

1.4.5  Computer Vision for Active Perception and Localization

Computer vision can be utilized for both localization and active perception. For localization, 
we can rely on visual simultaneous localization and mapping (VSLAM) technologies to 
achieve accurate real‐time vehicle locations. However, VSLAM usually suffers from 
cumulative errors such that the longer the distance the vehicle travels, the higher the 
localization error. Fortunately, by fusing VSLAM and GNSS localizations, we can achieve 
high accuracy under different conditions, because GNSS can be used as the group‐truth 
data when it is not blocked, and VSLAM can provide high accuracy when GNSS is blocked.

In addition, computer vision can be used for active perception as well. Using stereo 
vision, we can extract spatial or depth information of different objects; using deep learning 
techniques, we can extract semantic information of different objects. By fusing spatial and 
semantic information, we can detect objects of interest, such as pedestrians and cars, as 
well as getting their distance to the current vehicle.

1.4.6  Planning and Control

The planning and control module receives inputs from perception and localization mod-
ules, and generates decisions in real time. Usually, different behaviors are defined for a 
planning and control module and under different conditions, one behavior is chosen.
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A typical planning and control system has the following architecture: first, as the user 
enters the destination, the routing module checks the map for road network information 
and generates a route. Then the route is fed to the behavioral planning module, which 
checks the traffic rules to generate motion specifications. Next, the generated route along 
with motion specifications are passed down to the motion planner, which combines real‐
time perception and localization information to generate trajectories. Finally, the gener-
ated trajectories are passed down to the control system, which reactively corrects errors in 
the execution of the planned motions.

1.4.7  Mapping

A mapping module provides essential geographical information, such as lane configura-
tions and static obstacle information, to the planning and control module. In order to gener-
ate real‐time motion plans, the planning and control module can combine perception 
inputs, which detect dynamic obstacles in real time, localization inputs, which generate 
real‐time vehicle poses, and mapping inputs, which capture road geometry and static 
obstacles.

Currently, fully autonomous vehicles use high definition 3D maps. Such high precision 
maps are extremely complex and contain a trillion bytes of data to represent not only lanes 
and roads but also semantic and locations of 3D landmarks in the real world. With HD 
maps, autonomous vehicles are able to localize themselves and navigate in the mapped 
area.

1.5  The Rest of the Book

In the previous sections we have introduced the proposed modular design approach for 
building autonomous vehicles and robots. In the rest of the book, we will delve into these 
topics, and present the details of each module as well as how to integrate these modules to 
enable a fully functioning autonomous vehicle or robot.

The first part of the book consists of Chapters 2–8, in which we introduce each module, 
including communication systems, chassis technologies, passive perception technologies, 
localization with RTK GNSS, computer vision for perception and localization, planning 
and control, as well as mapping technologies.

●● Chapter 2: In‐Vehicle Communication Systems
●● Chapter 3: Chassis Technologies for Autonomous Robots and Vehicles
●● Chapter 4: Passive Perception with Sonar and mmWave Radar
●● Chapter 5: Localization with RTK GNSS
●● Chapter 6: Computer Vision for Perception and Localization
●● Chapter 7: Planning and Control
●● Chapter 8: Mapping

The second part of the book consists of Chapters 9 and 10, in which we present two inter-
esting case studies: the first one is about applying the modular design to build low‐speed 
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autonomous vehicles; and the second one is about how NASA builds its space robotic 
explorer using a modular design approach.

●● Chapter 9: Building the DragonFly Pod and Bus
●● Chapter 10: Enabling Commercial Autonomous Space Robotic Explorers

From our practical experiences, the capabilities of autonomous vehicles and robots are 
often constrained by limited onboard computing power. Therefore, in the final part of the 
book, we delve into state‐of‐the‐art approaches in building edge computing systems for 
autonomous vehicles and robots. We will cover onboard edge computing design, vehicle‐
to‐everything infrastructure, as well as autonomous vehicle security.

●● Chapter 11: Edge Computing for Autonomous Vehicles
●● Chapter 12: Innovations on the Vehicle‐to‐Everything Infrastructure
●● Chapter 13: Vehicular Edge Security

1.6  Open Source Projects Used in this Book

As you can see, an autonomous driving system is a highly complex system that integrates 
many technology pieces and modules. Hence, it is infeasible and inefficient to build 
everything from scratch. Hence, we have referred to many open source projects through-
out the book to help readers to build their own autonomous driving systems. Also, 
throughout the book we have used PerceptIn’s autonomous driving software stack to 
demonstrate the idea of modular design. The open source projects used in this book are 
listed below:

●● CANopenNode [14]: This is free and open source CANopen Stack is for CAN bus 
communication.

●● Open Source Car Control [15]: This is an assemblage of software and hardware designs 
that enable computer control of modern cars in order to facilitate the development of 
autonomous vehicle technology. It is a modular and stable way of using software to inter-
face with a vehicle’s communications network and control systems.

●● OpenCaret [16]: This is an open source Level‐3 Highway autopilot system for Kia 
Soul EV.

●● NtripCaster [17]: A GNSS NTRIP (Networked Transport of RTCM via Internet Protocol) 
Caster takes GNSS data from one or more data stream sources (Base Stations referred to 
as NTRIP Servers) and provides these data to one or more end users (often called rovers), 
the NTRIP Clients. If you need to send data to more than one client at a time, or have 
more than one data stream, you will need a Caster.

●● GPSD (GPS Daemon) [18]: This is a service daemon that monitors one or more GNSS 
receivers attached to a host computer through serial or USB ports, making all data on the 
location/course/velocity of the sensors available to be queried on Transmission Control 
Protocol port 2947 of the host computer. With GPSD, multiple location‐aware client 
applications can share access to supported sensors without contention or loss of data. 
Also, GPSD responds to queries with a format that is substantially easier to parse than 
the NMEA 0183 emitted by most GNSS receivers.
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●● Kalibr [19]: This is a toolbox that solves the following calibration problems:

–– Multiple camera calibration: intrinsic and extrinsic calibration of a camera system 
with non‐globally shared overlapping fields of view.

–– Visual‐inertial calibration (camera‐IMU): spatial and temporal calibration of an IMU 
with respect to a camera system.

–– Rolling shutter camera calibration: full intrinsic calibration (projection, distortion, 
and shutter parameters) of rolling shutter cameras.

●● OpenCV [20]: OpenCV (Open Source Computer Vision Library) is an open source 
computer vision and machine learning software library. OpenCV was built to provide a 
common infrastructure for computer vision applications and to accelerate the use of 
machine perception in the commercial products.

●● ORB‐SLAM2 [21]: This is a real‐time SLAM library for Monocular, Stereo and RGB‐D 
cameras that computes the camera trajectory and a sparse 3D reconstruction. It is able to 
detect loops and relocalize the camera in real time.

●● libELAS [22]: This is a cross‐platform C++ library with MATLAB wrappers for comput-
ing disparity maps of large images. Input is a rectified grayscale stereo image pair of the 
same size. Output is the corresponding disparity maps.

●● Mask R‐CNN [23]: This is a deep learning model for object detection and instance seg-
mentation on Keras and TensorFlow.

●● Baidu Apollo [24]: Apollo is a high performance, flexible architecture which accelerates 
the development, testing, and deployment of autonomous vehicles.

●● OpenStreetMap [25]: This is a collaborative project to create a free editable map of the 
world. The geodata underlying the map are considered the primary output of the project. 
The creation and growth of OpenStreetMap has been motivated by restrictions on use or 
availability of map data across much of the world, and the advent of inexpensive portable 
satellite navigation devices.
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2

2.1  Introduction

As shown in Figure 2.1, one key component in the modular design architecture is the in‐
vehicle communication network, which allows Electronic Control Units (ECUs), sensors, and 
other components to communicate with each other. Note, the Controller Area Network (CAN) 
bus is the most widely used in‐vehicle communication network today due to its simplicity.

In this chapter, we introduce in‐vehicle communication systems. We first introduce CAN 
bus, which is a high‐integrity serial bus system for networking intelligent devices. Also, we 
introduce FlexRay, a deterministic, fault‐tolerant, and high‐speed bus system developed in 
conjunction with automobile manufacturers and leading suppliers; FlexRay is meant to 
gradually replace CAN as the default in‐vehicle communication network. In addition, we 
introduce CANopen, a communication protocol and device profile specification for embed-
ded systems used in automation, as well as CANopenNode, a free and open source CANopen 
Stack written in ANSI C in an object‐oriented way. We believe this chapter will provide suf-
ficient background for readers to understand in‐vehicle communication networks.

2.2  CAN

A CAN bus is a high‐integrity serial bus system for networking intelligent devices. CAN buses 
and devices are common components in automotive and industrial systems. Using a CAN 
interface device, applications can be developed to communicate with a CAN network [1,2].

In the past few decades, the need for improvements in automotive technology caused 
increased usage of electronic control systems for functions such as engine timing, anti‐lock 
brake systems, and distributor‐less ignition. Originally, point‐to‐point wiring systems con-
nected electronic devices in vehicles. As more and more electronics in vehicles resulted in 
bulky wire harnesses that were heavy and expensive, point‐to‐point wiring was no longer 
scalable.

To eliminate point‐to‐point wiring, automotive manufacturers replaced dedicated wiring 
with in‐vehicle networks, which reduced wiring cost, complexity, and weight. In 1985, 
Bosch developed the CAN, which has emerged as the standard in‐vehicle network.

In-Vehicle Communication Systems
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CAN provides a cheap, durable network that allows the devices to communicate through 
the ECUs. CAN allows the ECUs to have one CAN interface rather than analog inputs to 
every device in the system. This decreases overall cost and weight in automobiles. Each of 
the devices on the network has a CAN controller chip and is therefore intelligent. All 
transmitted messages are seen by all devices on the network. Each device can decide if the 
message is relevant or if it can be filtered.

As CAN implementations increased in the automotive industry, CAN (high speed) was 
standardized internationally as ISO 11898. Later, low‐speed CAN was introduced for car 
body electronics. Finally, single‐wire CAN was introduced for some body and comfort 
devices. Major semiconductor manufacturers, such as Intel, Motorola, and Philips, devel-
oped CAN chips. By the mid‐1990s, CAN was the basis of many industrial device network-
ing protocols, including DeviceNet and CANOpen.

As shown in Figure  2.2, CAN specifies the media access control (MAC) and physical 
layer signaling (PLS) as it applies to layers 1 and 2 of the OSI model. MAC is accomplished 
using a technique called nondestructive bit‐wise arbitration. As stations apply their unique 
identifiers to the network, they observe if their data are being faithfully produced.

If it is not, the station assumes that a higher priority message is being sent and, therefore, 
halts transmission and reverts to receiving mode. The highest priority message gets through 
and the lower priority messages are resent at another time. The advantage of this approach 
is that collisions on the network do not destroy data and eventually all stations gain 
access to the network. The problem with this approach is that the arbitration is done on a 
bit‐by‐bit basis requiring all stations to hear one another within a bit time (actually less 
than a bit time).

Computer Vision

Planning and Control

CAN Bus

Chassis Sonars Radars

Map

GNSS

Figure 2.1  Modular design architecture.



2.2  CA 15

At a 500 kbps bit rate, a bit time is 2000 ns which does not allow much time for trans-
ceiver and cable delays. The result is that CAN networks are usually quite short and fre-
quently less than 100 m at higher speeds. To increase this distance either the data rate is 
decreased or additional equipment is required.

CAN transmissions operate using the producer/consumer model. When data are 
transmitted by a CAN device, no other devices are addressed. Instead, the content of the 
message is designated by an identifier field. This identifier field, which must be unique 
within the network, not only provides content but the priority of the message as well. All 
other CAN devices listen to the sender and accept only those messages of interest.

This filtering of the data is accomplished using an acceptance filter which is an integral 
component of the CAN controller chip. Messages which fail the acceptance criteria are 
rejected. Therefore, receiving devices consume only the messages of interest from the pro-
ducer. As Figure 2.3 shows, a CAN frame consists mainly of an identifier field, a control 
field, and a data field. The control field is 6 bits long, the data field is 0–8 bytes long and the 
identifier field is 11 bits long for standard frames (CAN specification 2.0A) or 29 bits long 
for extended frames (CAN specification 2.0B). Source and destination node addresses have 
no meaning using the CAN data link layer protocol.

Bus arbitration is accomplished using a nondestructive bit‐wise arbitration scheme. It is 
possible that more than one device may begin transmitting a message at the same time. 
Using a “wired AND” mechanism, a dominant state (logic 0) overwrites the recessive state 
(logic 1). As the various transmitters send their data out on the bus, they simultaneously 
listen for the faithful transmission of their data on a bit‐by‐bit basis until it is discovered 
that someone’s dominant bit overwrote their recessive bit. This indicates that a device with 
a higher priority message, one with an identifier of lower binary value, is present and the 
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loser of the arbitration immediately reverts to receiving mode and completes the reception 
of the message. With this approach no data are destroyed and, therefore, throughput is 
enhanced. The losers simply try again during their next opportunity. The problem with this 
scheme is that all devices must assert their data within the same bit time and before the 
sampling point otherwise data will be falsely received or even destroyed. Therefore, a 
timing constraint has been introduced that impacts cabling distance.

2.3  FlexRay

The FlexRay bus is a deterministic, fault‐tolerant, and high‐speed bus system developed in 
conjunction with automobile manufacturers and leading suppliers [3]. FlexRay delivers 
the error tolerance and time‐determinism performance requirements for drive‐by‐wire 
applications.

Many aspects of FlexRay are designed to keep costs down while delivering top perfor-
mance in a rugged environment. FlexRay uses unshielded twisted pair cabling to connect 
nodes together. FlexRay supports single‐ and dual‐channel configurations which consist of 
one or two pairs of wires, respectively. Differential signaling on each pair of wires reduces 
the effects of external noise on the network without expensive shielding. Most FlexRay 
nodes typically also have power and ground wires available to power transceivers and 
microprocessors. Dual‐channel configurations offer enhanced fault tolerance and/or 
increased bandwidth.

Most first‐generation FlexRay networks only utilize one channel to keep wiring costs 
down but as applications increase in complexity and safety requirements, future networks 
will use both channels. FlexRay buses require termination at the ends, in the form of a 
resistor connected between the pair of signal wires. Only the end nodes on a multi‐drop bus 
need termination. Too much or too little termination can break a FlexRay network. While 
specific network implementations vary, typical FlexRay networks have a cabling imped-
ance between 80 Ω and 110 Ω, and the end nodes are terminated to match this impedance. 
Termination is one of the most frequent causes of frustration when connecting a FlexRay 
node to a test setup. Modern PC‐based FlexRay interfaces may contain onboard termina-
tion resistors to simplify wiring.

2.3.1  FlexRay Topology

Unlike CAN, FlexRay supports multiple topologies, including simple multi‐drop passive 
connections as well as active star connections for more complex networks. Depending on a 
vehicle’s layout and level of FlexRay usage, selecting the right topology helps designers 
optimize cost, performance, and reliability for a given design.

●● Multi‐drop bus: FlexRay is commonly used in a simple multi‐drop bus topology that 
features a single network cable run that connects multiple ECUs together. This is the same 
topology used by CAN and is familiar to OEMs, making it a popular topology in first‐
generation FlexRay vehicles. In this topology, each ECU can “branch” up to a small distance 
from the core “trunk” of the bus. The ends of the network have termination resistors 
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installed that eliminate problems with signal reflections. Because FlexRay operates at high 
frequencies, up to 10 Mbps compared with CAN’s 1 Mbit, FlexRay designers must take care 
to correctly terminate and lay out networks to avoid signal integrity problems. The multi‐
drop format also fits nicely with vehicle harnesses that commonly share a similar type of 
layout, simplifying installation and reducing wiring throughout the vehicle.

●● Star network: The FlexRay standard supports “star” configurations which consist of 
individual links that connect to a central active node. This node is functionally similar to 
a hub found in PC ethernet networks. The active star configuration makes it possible to 
run FlexRay networks over longer distances or to segment the network in such a way that 
makes it more reliable should a portion of the network fail. If one of the branches of the 
star is cut or shorted, the other legs continue functioning. Since long runs of wires tend 
to conduct more environmental noise, such as electromagnetic emissions from large 
electric motors, using multiple legs reduces the amount of exposed wire for a segment 
and can help increase noise immunity.

●● Hybrid network: The bus and star topologies can be combined to form a hybrid topology. 
Future FlexRay networks will likely consist of hybrid networks to take advantage of the 
ease‐of‐use and cost advantages of the bus topology while applying the performance and 
reliability of star networks where needed in a vehicle.

2.3.2  The FlexRay Communication Protocol

The FlexRay communication protocol is a time‐triggered protocol that provides options for 
deterministic data that arrive in a predictable time frame (down to the microsecond) as 
well as CAN‐like dynamic event‐driven data to handle a large variety of frames. FlexRay 
accomplishes this hybrid of core static frames and dynamic frames with a pre‐set commu-
nication cycle that provides a predefined space for static and dynamic data. This space is 
configured with the network by the network designer.

While CAN nodes only need to know the correct baud rate to communicate, nodes on a 
FlexRay network must know how all the pieces of the network are configured in order to 
communicate. As with any multi‐drop bus, only one node can electrically write data to the 
bus at a time. If two nodes were to write at the same time, you end up with contention on 
the bus and data become corrupt. There are a variety of schemes used to prevent contention 
on a bus. CAN, for example, used an arbitration scheme where nodes will yield to other 
nodes if they see a message with higher priority being sent on a bus. While flexible and easy 
to expand, this technique does not allow for very high data rates and cannot guarantee 
timely delivery of data.

FlexRay manages multiple nodes with a Time Division Multiple Access (TDMA) scheme. 
Every FlexRay node is synchronized to the same clock, and each node waits for its turn to write 
on the bus. Because the timing is consistent in a TDMA scheme, FlexRay is able to guarantee 
determinism or the consistency of data delivery to nodes on the network. This provides many 
advantages for systems that depend on up‐to‐date data between nodes. Embedded networks 
are different from PC‐based networks in that they have a closed configuration and do not 
change once they are assembled in the production product. This eliminates the need for 
additional mechanisms to automatically discover and configure devices at run time.
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By designing network configurations ahead of time, network designers save significant 
cost and increase reliability of the network. For a TDMA network such as FlexRay to work 
correctly, all nodes must be configured correctly. The FlexRay standard is adaptable to 
many different types of networks and allows network designers to make tradeoffs between 
network update speeds, deterministic data volume, and dynamic data volume among other 
parameters. Every FlexRay network may be different, so each node must be programmed 
with correct network parameters before it can participate on the bus.

Table 2.1 provides a summary of comparisons between CAN and FlexRay [4]. For the rest 
of this chapter, we will focus on CAN as this is still the most popular protocol today and it 
is simple to use.

2.4  CANopen

CANopen is a communication protocol and device profile specification for embedded sys-
tems used in automation. In terms of the OSI model (shown in Figure  2.1), CANopen 
implements the layers above and including the network layer. The CANopen standard con-
sists of an addressing scheme, several small communication protocols, and an application 
layer defined by a device profile [5].

The CANopen communication protocol has support for network management (NMT), 
device monitoring, and communication between nodes, including a simple transport layer 
for message segmentation and desegmentation. The lower level protocol implementing the 
data link and physical layers is usually CAN, although devices using some other means of 
communication (such as Ethernet Powerlink, EtherCAT) can also implement the CANopen 
device profile.

The basic CANopen device and communication profiles are given in the CiA 301 specifi-
cation released by CAN in Automation. Profiles for more specialized devices are built on 
top of this basic profile, and are specified in numerous other standards released by CAN in 
Automation, such as CiA 401 for I/O modules and CiA 402 for motion control.

Every CANopen device has to implement certain standard features in its controlling 
software. A communication unit implements the protocols for messaging with the other 
nodes in the network. Starting and resetting the device is controlled via a state machine. It 
must contain the states Initialization, Pre‐operational, Operational, and Stopped.

Table 2.1  Comparisons between CAN and FlexRay.

CAN FlexRay

Bandwidth 1 Mbps 10 Mbps

Number of channels 1 2

Frame data length 0~8 0~254

Communication Dynamic arbitration TDMA

Complexity Low High

Composability No Yes

Flexibility One topology Many different topologies
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The transitions between states are made by issuing a NMT communication object to the 
device. The object dictionary is an array of variables with a 16‐bit index. Additionally, each 
variable can have an 8‐bit subindex. The variables can be used to configure the device and 
reflect its environment, i.e. contain measurement data.

The application part of the device actually performs the desired function of the device, 
after the state machine is set to the operational state. The application is configured by vari-
ables in the object dictionary and the data are sent and received through the communica-
tion layer.

2.4.1  Object Dictionary

CANopen devices must maintain an object dictionary, which is used for configuration and 
communication with the device. An entry in the object dictionary is defined by:

●● Index, the 16‐bit address of the object in the dictionary.
●● Object name (Object Type/Size), a symbolic type of the object in the entry, such as an 

array, record, or simple variable.
●● Name, a string describing the entry.
●● Type, this gives the datatype of the variable (or the datatype of all variables of an array).
●● Attribute, which gives information on the access rights for this entry, this can be read/

write, read‐only, or write‐only.
●● The Mandatory/Optional field (M/O) defines whether a device conforming to the device 

specification has to implement this object or not.

The basic data types for object dictionary values such as Boolean, integers, and floats are 
defined in the standard (their size in bits is optionally stored in the related type definition, 
index range 0x0001–0x001F), as well as composite data types such as strings, arrays, and 
records (defined in index range 0x0040–0x025F). The composite data types can be subin-
dexed with an 8‐bit index; the value in subindex 0 of an array or record indicates the num-
ber of elements in the data structure, and is of type UNSIGNED8.

2.4.2  Profile Family

CANopen defines a standardized application for distributed industrial automation systems 
based on CAN. The CANopen profile family is based on a “Communication Profile,” which 
specifies the basic communication mechanisms and on a standardized form for describing 
the functionality of devices.

The most important device types such as digital and analog I/O modules, drives, operat-
ing devices, sensors, or programmable controllers are described by so‐called “Device 
Profiles.” In the device profiles the functionality, parameters, and data of standard devices 
of the corresponding types are specified. Based on the standardized profiles, devices of dif-
ferent manufacturers can be accessed via the bus in exactly the same manner. Therefore 
devices of different manufacturers are interoperable and exchangeable.

The key element of the CANopen standard is the description of the device functionality 
by means of an “Object Dictionary” (OD). The object dictionary is divided into two sec-
tions. The first section contains general device information such as device identification, 
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manufacturer name, and so on, as well as communication parameters. The second section 
describes the specific device functionality. A 16‐bit index and an 8‐bit subindex identify an 
entry (“object”) in the object dictionary. The entries in the object dictionary provide the 
standardized access to the “Application Objects” of a device, such as input and output sig-
nals, device parameters, device functions, or network variables.

You can describe the functionality and characteristics of a CANopen device by means of 
an “Electronic Data Sheet” (EDS) using an ASCII format. An EDS must be understood as a 
kind of template for describing all the data and features of device as accessible from the 
network. The actual device settings are described by the so‐called “Device Configuration 
File” (DCF). The EDS and DCF can be provided in the form of a data file, which can be 
downloaded from the Internet or stored inside the device.

2.4.3  Data Transmission and Network Management

Similar to other field bus systems, CANopen distinguishes two basic data transmission 
mechanisms: the access to entries of the object dictionary through “Service Data Objects” 
(SDOs) The exchange of process data through “Process Data Objects” (PDOs). PDOs are 
transmitted according to the producer–consumer principle in the form of broadcast mes-
sages and can be event‐triggered, cyclically transmitted, or requested by a node without any 
additional protocol overhead. A PDO can be used for the transmission of a maximum of 8 
data bytes.

In connection with a synchronization message (“Synchronous PDO”), the transmis-
sion as well as the acceptance of PDOs can be synchronized across the network. The 
mapping of application objects into the data field of a PDO is configurable through a data 
structure called “PDO Mapping” which is stored in the object dictionary. This allows the 
dynamic configuration of a device according to the specific requirements of an 
application.

The transmission of data via an SDO channel is performed in the form of a client–server 
relationship between two nodes. The addressing of an object dictionary entry is accom-
plished by providing the index and the subindex of the entry. Transmitted messages can be 
of very large length. The transmission of SDO messages of more than 8 bytes involves an 
additional fragmentation protocol overhead. Standardized event‐triggered “Emergency 
Messages” of high priority are reserved to report device malfunctions. A common system 
time can be provided through a system time message.

NMT functions such as controlling and monitoring the communication status of the 
nodes are accomplished by a NMT facility. This is organized according to a logical mas-
ter–slave relationship. Two mechanisms for node monitoring (“node‐guarding” and 
“heartbeat‐messaging”) are provided alternatively. The assignment of CAN message 
identifiers to PDOs and SDOs is possible by direct modifications of identifiers in the data 
structure of the object dictionary or, for simple system structures, through the use of 
predefined identifiers. Besides device profiles, a variety of application specific profiles 
developed by several specific interest groups are currently available and a wide variety of 
manufacturers support CANopen by means of CANopen‐based devices, tools for config-
uration, and testing as well as certified CANopen protocol stacks.
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2.4.4  Communication Models

CAN bus, the data link layer of CANopen, can only transmit short packages consisting of 
an 11‐bit identifier, a remote transmission request (RTR) bit and 0–8 bytes of data. The 
CANopen standard divides the 11‐bit CAN frame identifier into a 4‐bit function code and 
7‐bit CANopen node ID. This limits the number of devices in a CANopen network to 127 
(0 being reserved for broadcast). An extension to the CAN bus standard (CAN 2.0 B) allows 
extended frame identifiers of 29 bits but in practice CANopen networks big enough to need 
the extended identifier range are rarely seen. In CANopen the 11‐bit identifier of a CAN‐
frame is known as a communication object identifier, or COB‐ID. In the case of a transmis-
sion collision, the bus arbitration used in the CAN bus allows the frame with the smallest 
identifier to be transmitted first and without a delay. Using a low code number for time 
critical functions ensures the lowest possible delay.

Different kinds of communication models are used in the messaging between CANopen 
nodes. In a master–slave relationship, one CANopen node is designated as the master, 
which sends or requests data from the slaves. The NMT protocol is an example of a master–
slave communication model. A client–server relationship is implemented in the SDO 
protocol, where the SDO client sends data (the object dictionary index and subindex) to an 
SDO server, which replies with one or more SDO packages containing the requested 
data  (the contents of the object dictionary at the given index). A producer–consumer 
model  is used in the Heartbeat and Node Guarding protocols. In the push model of 
producer–consumer, the producer sends data to the consumer without a specific request, 
whereas in the pull model, the consumer has to request the data from the producer.

2.4.5  CANopenNode

CANopenNode is free and open source CANopen Stack is written in ANSI C in an object‐
oriented way [6]. It runs on different microcontrollers, as a standalone application, or with 
a real‐time operating system. Stack includes master functionalities.

CANopenNode implements the following CANopen features:

●● NMT slave to start, stop, reset device. Simple NMT master.
●● Heartbeat producer–consumer error control.
●● PDO linking and dynamic mapping for fast exchange of process variables.
●● SDO expedited, segmented and block transfer for service access to all parameters.
●● SDO master.
●● Emergency message.
●● Sync producer–consumer.
●● Non‐volatile storage.

CANopenNode itself does not have complete working code for any microcontroller. It is 
only the library with the stack and drivers for different microcontrollers. CANopenNode 
contains sample codes, which should compile on any system with a template driver, which 
actually does not access CAN hardware. CANopenNode should be used as a git submodule 
included in a project with specific hardware and specific application.
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Figure 2.4 shows the flowchart of a typical CANopenNode implementation: when the 
program starts, it calls CANopen init, and spawns multiple threads. The CAN receive 
thread listens for any CAN messages and provides fast responses by processing messages 
and copying data to target CANopen objects. The timer interval thread is a real‐time thread 
that wakes up every millisecond to deal with inputs to and outputs from the object diction-
ary. The mainline thread handles the processing of time‐consuming tasks by calling the 
corresponding application code.
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3.1  Introduction

As shown in Figure 3.1, a chassis executes commands issued by the planning and control 
module, and is the “physical body” of an autonomous vehicle or robot. In this chapter we 
introduce chassis technologies for autonomous robots and vehicles. This chapter is divided 
into three parts: first, we briefly introduce the basic chassis technologies, especially drive-
by-wire, required for building autonomous vehicles and robots. Drive-by-wire refers to 
electronic systems that replace traditional mechanical controls [1]. Instead of using cables, 
hydraulic pressure, and other ways of providing a driver with direct, physical control over 
the speed or direction of a vehicle, drive-by-wire technology uses electronic controls to 
activate the brakes, control the steering, and operate other mechanical systems. There are 
three main vehicle control systems that are commonly replaced with electronic controls: 
electronic throttle control, brake-by-wire, and steer-by-wire.​

Secondly, we introduce two open source projects, the Open Source Car Control (OSCC) 
and OpenCaret [2,3]. OSCC is an assemblage of software and hardware designs that 
enable computer control of modern cars in order to facilitate the development of autono-
mous vehicle technology. It is a modular and stable way of using software to interface 
with a vehicle’s communications network and control systems. OpenCaret builds on top 
of OSCC to enable a L3 highway autopilot system for modern cars. Especially, this project 
contains detailed information of converting a Kia Soul EV into an autonomous vehicle 
chassis.

Finally, we introduce a detailed case study, the PerceptIn Chassis Software Adaptation 
Layer, which provides a layer of abstraction for different chassis, so that chassis manufac-
turers can easily integrate PerceptIn’s autonomous driving technology stack to convert 
their chassis into autonomous vehicles.

3.2  Throttle-by-Wire

Unlike traditional throttle controls that couple the gas pedal to the throttle with a mechanical 
cable, these systems use a series of electronic sensors and actuators. As shown in Figure 3.2, 
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in vehicles that use true electronic throttle control (ETC), the gas pedal sends a signal that 
causes an electromechanical actuator to open the throttle.

A typical ETC system consists of an accelerator pedal module, a throttle valve that can be 
opened and closed by an electronic throttle body (ETB), and a powertrain control module 
or engine control module (PCM or ECM). The ECM is a type of electronic control unit 
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Figure 3.1  Modular design architecture.
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Figure 3.2  Electronic throttle control.
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(ECU), which is an embedded system that employs software to determine the required 
throttle position by calculations from data measured by other sensors, including the accel-
erator pedal position sensors, engine speed sensor, vehicle speed sensor, and cruise control 
switches. The electric motor is then used to open the throttle valve to the desired angle via 
a closed-loop control algorithm within the ECM. The throttle valve is a part of the ETB. On 
the vehicles equipped with the throttle controller sensor, the throttle opening is determined 
based on how far the gas pedal was pressed.

3.3  Brake-by-Wire

A brake-by-wire system consists of a spectrum of technologies that range from electro-
hydraulic to electromechanical, and both can be designed with fail-safes in mind. 
Traditional hydraulic brakes make use of a master cylinder and several slave cylinders. 
When the driver pushes down on the brake pedal, it physically applies pressure to the mas-
ter cylinder. In most cases, that pressure is amplified by a vacuum or hydraulic brake 
booster. The pressure is then transmitted via brake lines to the brake calipers or wheel 
cylinders.

Anti-lock brake systems were early precursors of modern brake-by-wire technologies, in 
that they allowed the brakes of a vehicle to be pulled automatically with no driver input. 
This is accomplished by an electronic actuator that activates the existing hydraulic brakes, 
and a number of other safety technologies have been built on this foundation.

Electronic stability control, traction control, and automatic braking systems all depend 
on an anti-lock braking system and are peripherally related to brake-by-wire technology. In 
vehicles that use electro-hydraulic brake-by-wire technology, the calipers located in each 
wheel are still hydraulically activated. However, they are not directly coupled to a master 
cylinder that is activated by pushing on the brake pedal. Instead, pushing on the brake 
pedal activates a sensor or series of sensors.

The control unit then determines how much braking force is required at each wheel and 
activates the hydraulic calipers as needed. In electromechanical brake systems, there is no 
hydraulic component at all. These true brake-by-wire systems still use sensors to determine 
how much brake force is required, but that force is not transmitted via hydraulics. Instead, 
electromechanical actuators are used to activate the brakes located in each wheel.

3.4  Steer-by-Wire

Most vehicles use a rack and pinion unit or worm and sector steering gear that is physically 
connected to the steering wheel. When the steering wheel is rotated, the rack and pinion 
unit or steering box also turns. A rack and pinion unit can then apply torque to the ball joints 
via tie rods, and a steering box will typically move the steering linkage via a pitman’s arm.

In vehicles that are equipped with steer-by-wire technology, there is no physical connec-
tion between the steering wheel and the tires. In fact, steer-by-wire systems do not techni-
cally need to use steering wheels at all. When a steering wheel is used, some type of steering 
feel emulator is typically used to provide the driver with feedback. The control of the 
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wheels’ direction will be established through electric motors which are actuated by ECUs 
monitoring the steering wheel inputs from the driver.

3.5  Open Source Car Control

To learn more about drive-by-wire technologies for autonomous robots and vehicles, OSCC 
is a good starting point [2]. OSCC is an assemblage of software and hardware designs that 
enable computer control of modern cars in order to facilitate the development of autono-
mous vehicle technology. It is a modular and stable way of using software to interface with 
a vehicle’s communications network and control systems.

OSCC enables developers to send control commands to the vehicle, read control mes-
sages from the vehicle’s OBD-II Controller Area Network (CAN) network, and forward 
reports for current vehicle control state, such as steering angle and wheel speeds. Control 
commands are issued to the vehicle component ECUs via the steering wheel torque sensor, 
throttle position sensor, and brake position sensor.

This low-level interface means that OSCC offers full-range control of the vehicle without 
altering the factory safety-case, spoofing CAN messages, or hacking advanced driver-
assistance systems features. Although OSCC currently supports only the 2014 or later Kia 
Soul (petrol and EV), the application program interface (API) and firmware have been 
designed to make it easy to add new vehicle support.

3.5.1  OSCC APIs

Open and close CAN channel to OSCC Control CAN.

oscc_result_t oscc_open( uint channel );
oscc_result_t oscc_close( uint channel );

These methods are the start and end points of using the OSCC. oscc_open will open a 
socket connection on the specified CAN channel, enabling it to quickly receive reports from 
and send commands to the firmware modules. oscc_close can terminate the connection.

Enable and disable all OSCC modules.

oscc_result_t oscc_enable( void );
oscc_result_t oscc_disable( void );

After you have initialized your CAN connection to the firmware modules, these methods 
can be used to enable or disable the system. This allows your application to choose when to 
enable sending commands to the firmware. Although you can only send commands when 
the system is enabled, you can receive reports at any time.

Publish control command to the corresponding module.

oscc_result_t publish_brake_position( double normalized_position );

oscc_result_t publish_steering_torque( double normalized_torque );

oscc_result_t publish_throttle_position( double normalized_position );
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These commands will forward a double value to the specified firmware module. The 
double values are [0.0, 1.0] for brake and throttle, and [−1.0, 1.0] for steering where −1.0 is 
counterclockwise and 1.0 is clockwise. The API will construct the appropriate values to 
send as spoofed voltages to the vehicle to achieve the desired state. The API also contains 
safety checks to ensure no voltages outside of the vehicle’s expected range are sent.

Register callback function to handle OSCC report and on-board diagnostics (OBD) 
messages.

oscc_result_t subscribe_to_brake_reports( void(*callback)(oscc_brake_report_s 

*report) );

oscc_result_t  

subscribe_to_steering_reports( void(*callback)(oscc_steering_report_s  

*report) );

oscc_result_t  

subscribe_to_throttle_reports( void(*callback)(oscc_throttle_report_s  

*report) );

oscc_result_t subscribe_to_fault_reports( void(*callback)(oscc_fault_report_s 

*report) );

oscc_result_t subscribe_to_obd_messages( void(*callback)(struct can_frame 

*frame) );

In order to receive reports from the modules, your application will need to register a 
callback handler with the OSCC API. When the appropriate report for your callback func-
tion is received from the API’s socket connection, it will then forward the report to your 
software.

3.5.2  Hardware

OSCC is based on the 2014 Kia Soul, which ships with steering-by-wire and throttle-by-
wire. Hence the actuators of these two systems can be controlled electronically and these 
systems can be exploited in order to gain full control of the actuators.

However, this vehicle does not have electronically controlled brakes, and a brake-by-wire 
system has to be integrated. The actuators can be added in-line to the Kia brake system in 
order to control brake pressure. To achieve lateral and longitudinal control of the Kia Soul 
it is necessary to control three separate automotive systems, interface with the existing 
Vehicle CAN bus, and power the additional microprocessors and actuators. Each of the 
control modules introduced into the vehicle are built around Arduino controllers.

Hardware gateway: The Kia Soul has a handful of different CAN buses on board. The 
OBD-II CAN network has vehicle state information such as steering wheel angle, 
wheel speeds, and brake pressure. This information is useful for algorithms such as 
proportional–integral–derivative (PID) control and path planning. Rather than sharing 
the vehicle’s OBD-II bus and possibly interfering with the vehicle’s native messages, 
OSCC has its own CAN bus called Control CAN where commands and reports are sent 
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and received. The CAN Gateway acts as a bridge between the vehicle’s native OBD-II 
bus and Control CAN, forwarding relevant OBD-II messages from the OBD-II bus to 
the Control CAN bus, which can be consumed by applications subscribing to the OBD 
messages. The CAN gateway sits on both the Control CAN bus and the OBD-II CAN 
bus but only publishes CAN messages in one direction: toward the Control CAN bus 
from the OBD-II CAN bus.

Hardware steering: The steering system of the Kia Soul is an Electric Power Assisted 
Steering (EPAS) system. The steering column contains a high current DC motor, as well 
as a torque sensor. The torque sensor measures the direction and amount of force on the 
steering wheel and outputs an analog signal to the EPAS microprocessor. The micropro-
cessor then controls the motor to “assist” the vehicle steering.

Hardware throttle: The throttle system of the Kia Soul is an ETC system. Instead of a 
mechanical cable linkage between the throttle body and the accelerator pedal, there is a 
position sensor on the accelerator pedal and a motorized throttle body. The ETC system 
can be controlled by removing the accelerator position sensor (APS) input to the ETC 
microprocessor and injecting spoofed position values. The pedal position sensor uses 
redundant position sensors that both output analog signals.

Hardware brake: Unfortunately, braking in the Kia Soul is a traditional mechanical system, 
the factory standard Soul has no ability to control braking electronically. There are a 
number of models of vehicles with electronically controlled brake systems, notably the 
2004–2009 Prius. This model Prius uses an electronically controlled actuator with no 
microprocessor; it is controlled from the Prius ECU. There are 7 pressure sensors on the 
device, 10 proportional solenoids, an accumulator, a pump, diagnostics components, and 
a pressure relief valve. This unit can be sourced from auto salvage yards and installed 
into the existing Kia brake system without adversely affecting the stock brake system and 
adding by-wire control.

3.5.3  Firmware

The brake firmware is responsible for reading values from the brake pedal sensor, sending 
reports on its state, and receiving brake commands and fault reports from the control CAN. 
When the brake firmware receives a brake command message, it will then output the com-
manded high and low spoof signals onto its connection to the ECU, sending it brake 
requests. Receiving a fault report will cause the brake module to disable.

The steering firmware is responsible for reading values from the torque sensor, sending 
reports on its state, and receiving steering commands and fault reports from the control 
CAN. When the steering firmware receives a steering command message, it will then out-
put the commanded high and low spoof signals onto its connection to the EPAS ECU, 
sending it torque requests. Receiving a fault report will cause the steering module to 
disable.

The throttle firmware is responsible for reading values from the APS, sending reports on 
its state, and receiving throttle commands and fault reports from the control CAN. When 
the throttle firmware receives a throttle command message, it will then output the com-
manded high and low spoof signals onto its connection to the ECU, sending it throttle 
requests. Receiving a fault report will cause the throttle module to disable.
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3.6  OpenCaret

OpenCaret builds on top of OSCC to enable a L3 highway autopilot system for modern 
cars [3]. Especially, this project contains detailed information of converting a Kia Soul EV 
into a drive-by-wire chassis, which we will introduce in this section.

3.6.1  OSCC Throttle

The pedal position sensor uses redundant position sensors that both output analog signals. 
The full range of sensor position values correlate to the full range of throttle from 
“closed throttle” to “wide open throttle.” By injecting the two spoofed position sensor values 
the throttle can be controlled. The Kia ECU implements fault detection on the accelerator 
pedal position sensor by detecting discontinuities in the analog signals coming from the 
sensors. If any discontinuities appear the car will go into a fault state, with the symptom of 
having the mapping of the accelerator pedal greatly reduced. To overcome this  the new 
throttle microprocessor will interpolate between the sensor position values and the spoofed 
values before sensing spoofed positions. A relay is used to switch the input of the ETC 
microprocessor from the stock pedal position sensor and the spoofed positions:

●● Step 1: Locate the accelerator pedal position sensor.
●● Step 2: Disconnect the pedal position sensor and connect the throttle cabling.
●● Step 3: Connect the power unit with the emergency stop power bus.
●● Step 4: Wire the module to the gateway module control CAN bus.

3.6.2  OSCC Brake

The brake module for the Kia Soul EV brake consists of two parts. The first part is the sig-
nals spoof and the second part is the brake light switch. To modify the brake pedal, we need 
to disconnect (i) the brake pedal stroke sensor and (ii) the stop light switch

Installation: The Vehicle Control Module (VCM) controls the open and closing stroke 
sensor for the braking as well with Normally Open (NO) and Normally Closed (NC) relays 
for the brake light switch.

●● Step 1: Remove the brake pedal stroke sensor and stop light switch.
●● Step 2: Install the VCM connector for the pedal stroke and stop light switch.

3.6.3  OSCC Steering

The EPAS motor can be controlled by removing the torque sensor input to the EPAS micro-
processor and injecting spoofed torques. The Kia ECU implements fault detection on the 
torque sensor by detecting discontinuities in the analog signals coming from the sensors. If 
any discontinuities appear the car will go into a fault state, with the symptom of disabling 
the power steering. To overcome this, the new torque spoofing microprocessor will interpo-
late between the torque sensor values and the spoofed values before sensing spoofed signals. 
A relay is used to switch the input of the EPAS microprocessor from the stock torque sen-
sors and the spoofed torques. A Kia Soul drive-by-wire steering system is shown in Figure 3.3.
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3.7  PerceptIn Chassis Software Adaptation Layer

In this section, we provide an example of PerceptIn’s chassis software adaptation layer 
and delve into the details of how PerceptIn manages and interacts with different vehicle 
chassis [4]. Figure 3.4 provides the architecture of PerceptIn’s chassis software adaptation 
layer. Note that the Planning and Control module generates control commands and sends 
them down to the chassis module for execution. Also, the perception sensors, such as 
sonars and radars [5, 6], interact with both the chassis module for passive perception and 
the perception module for active perception.

The core of the chassis module consists of three parts:

●● VehicleControlUnit: This interface provides abstraction for different chassis platforms 
such that the developers do not have to fully understand the details of the CAN 
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Figure 3.3  Kia Soul drive-by-wire steering.
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Figure 3.4  PerceptIn chassis interface.
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communication protocols. Instead, when a developer tries to integrate a new chassis 
platform, he/she only needs to derive a new class from the VehicleControlUnit virtual 
interface and to implement the core functions.

●● Sensors: This interface provides abstraction for the sensors connected to the CAN bus, 
mostly passive perception sensors such as radars and sonars. Using this interface, devel-
opers can easily get perception data without going into the details of how these sensors 
work.

●● PassiveSafety: Developers can implement and adjust their passive perception logics in 
this interface. For instance, a developer can decide to stop the vehicle when radar or 
sonar detects an obstacle 2 m ahead. In this case, the developer should take passive per-
ception sensor data from the Sensors interface and implement this logic in the 
PassiveSafety interface.

Figure 3.5 shows the hardware setup diagram. For simplicity, we can use a two CAN bus 
setup, such that the chassis platform occupies one CAN bus, and the passive perception 
sensors occupy the other CAN bus. Then both CAN buses connect to the control computer 
through a CAN card. Of course, it is acceptable to put all sensors and the chassis on the 
same CAN bus as well, then in this case we have to agree with the chassis provider on what 
CAN ID to use for the chassis.

Figure 3.6 shows the DragonFly Pod software interface. For each new chassis platform, 
we need to implement the virtual interface VehicleControlUnit and its essential functions 
including SetSpeed, SetBrake, SetAngle, GetSpeed, GetBrake, and GetAngle. Note that 
these functions are required for the Planning and Control module to interact with the 
chassis.

Can Card

Can 1 Can 2

Chassis CanBus Sensor CanBus

Figure 3.5  CAN bus connection setup.
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The software interface definitions are:

// error code definitions

enum ErrCode {

  OK = 1,

  CAN_ERR = -1,

  BOUND_ERR = -2,

  TIME_OUT = -3

}

ErrCode SetSpeed (float val)

// this function sets the current speed of the chassis

ErrCode SetBrake (float val)

// this function sets the brake value, ranging from 0 to 100, with 100 

being the strongest brake. 

ErrCode SetSteeringAngle (float val)

// this function sets the steering angle, with positive being left, 

and negative being right. 

float GetSpeed ()

// this function gets the current speed of the chassis.

float GetBrake ()

// this function gets the current brake value

float GetSteeringAngle ()

// this function gets the current steering angle

// the following data structure defines how we store chassis status

ChassisData {

  float speed;

  float angle;

  float brake;

}

Override interfaces

CanBus

DFPodVehicleControlUnit

SetSpeed()

Buffer

SetBrake() SetAngle() ...

GetSpeed() GetBrake() GetAngle() ...

Figure 3.6  DragonFly Pod software interface.
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boost::signal2::connection SubscribeToChassisData(void(ChassisData&) 

call_back)

// this function subscribes chassis data so that every time there is 

an update from the chassis, the subscriber will receive a notification
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4.1  Introduction

In an autonomous driving system, there are usually two different perception systems: 
active and passive. By active perception, we mean that the detected obstacles are sent to the 
planning and control module to aid decision making, and then the planning and control 
module will generate a list of commands based on the perceived environment. By passive 
perception, we mean that when obstacles are detected, the raw data are not fed to the plan-
ning and control module for decision making. Instead, the raw data are directly sent to the 
chassis through the Controller Area Network (CAN) bus for quick decision making. 
In this case, a simple decision module is implemented in the chassis to stop the vehicle 
when an obstacle is detected within a short range. The main reason for this design is that 
when obstacles are detected in close range, we want to stop the vehicle as soon as possible 
instead of going through the complete decision pipeline. This is the best way to guarantee 
the safety of passengers as well as pedestrians.

Hence, in our modular design architecture, there are three layers of protection: computer 
vision (active perception) for long‐range obstacle detection; millimeter wave (mmWave) radar 
for mid‐range obstacle detection; and sonar for short‐range obstacle detection. Note that 
depending on how you design your perception system, mmWave radar can aid active percep-
tion as well. As shown in Figure 4.1, mmWave radar and sonar sensors can be used for passive 
perception. In this chapter, we first introduce the fundamentals of mmWave radar technologies, 
and then explain how we can deploy mmWave radar as well as sonar for passive perception.

4.2  The Fundamentals of mmWave Radar

mmWave is a special class of radar technology that uses short‐wavelength electromagnetic 
waves [1]. In this section we introduce the fundamentals of mmWave radar; for a more 
complete and thorough review, please refer to [2].

Radar systems transmit electromagnetic wave signals that objects in their path then 
reflect. By capturing the reflected signal, a radar system can determine the range, velocity, 
and angle of the objects.

Passive Perception with Sonar and Millimeter Wave Radar
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mmWave radars transmit signals with a wavelength that is in the millimeter range, which 
is considered a short wavelength in the electromagnetic spectrum and is one of the advan-
tages of this technology. As a result, one advantage of applying short wavelength is that the 
size of system components, such as the antennas required to process mmWave signals, is 
small. Another advantage is the high accuracy. A mmWave system operating at 76–81 GHz, 
with a corresponding wavelength of about 4 mm, will have the ability to detect movements 
that are as small as a fraction of a millimeter.

A complete mmWave radar system includes transmit (TX) and receive (RX) radio frequency 
(RF) components; analog components such as clocking; and digital components such as 
analog‐to‐digital converters (ADCs), microcontroller units (MCUs), and digital signal proces-
sors (DSPs).

A special class of mmWave technology is called frequency‐modulated continuous wave 
(FMCW). As the name implies, FMCW radars transmit a frequency‐modulated signal 
continuously in order to measure range as well as angle and velocity [3].

4.2.1  Range Measurement

The fundamental concept in a radar system is the transmission of an electromagnetic 
signal that objects reflect in its path. In the signal used in an FMCW radar, the frequency 
increases linearly with time. This type of signal is called a chirp.

An FMCW radar system transmits a chirp signal and captures the signals reflected by 
objects in its path. Figure  4.2 represents a simplified block diagram of the main RF 
components of an FMCW radar. The radar operates as follows:

Computer Vision

Planning and Control

CAN Bus

Chassis Sonars Radars

Map

GNSS

Figure 4.1  Modular design architecture.
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●● A synthesizer (synth) generates a chirp.
●● The chirp is transmitted by a transmit antenna (TX ant).
●● The reflection of the chirp by an object generates a reflected chirp captured by the receive 

antenna (RX ant).
●● A “mixer” combines the RX and TX signals to produce an intermediate frequency (IF) 

signal. Note that a frequency mixer is an electronic component that combines two signals 
to create a new signal with a new frequency.

The output of the mixer has an instantaneous frequency equal to the difference of 
the instantaneous frequencies of the TX chirp and the RX chirp. Especially, the phase 
of the output is equal to the difference of the phases of the TX chirp and the RX chirp. 
Hence, the initial phase of the output of the mixer is the difference between the phase 
of the TX chirp and the phase of the RX chirp at the time instant corresponding to 
when the chirp was emitted. From the phase of the output of the mixer, we can then 
derive the distance of the detected object.

4.2.2  Velocity Measurement

In order to measure velocity, an FMCW radar transmits two chirps separated by tc. Each 
reflected chirp is processed through FFT (Fast Fourier transform) to detect the range of the 
object; this technique is called range‐FFT. The range‐FFT corresponding to each chirp has 
peaks in the same location but with a different phase. Hence, the measured phase differ-
ence can be used to calculate the velocity of the detected object, vc.

The two‐chirp velocity measurement method does not work if multiple moving 
objects with different velocities are, at the time of measurement, at the same distance 
from the radar. Since these objects are at the same distance, they will generate reflective 
chirps with identical IF frequencies. As a consequence, the range‐FFT will result in a 
single peak, which represents the combined signal from all of these objects at the same 
distance. In this case, in order to measure the speed, the radar system must transmit 
more than two chirps. It transmits a set of N equally spaced chirps. This set of chirps is 
called a chirp frame.

TX ant

Synth

IF Signal
mixer

RX ant

2

3

4

1

Figure 4.2  FMCW radar block diagram: 1, synthesizer; 2, TX antenna; 3, RX antenna; and 4, mixer.
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4.2.3  Angle Detection

An FMCW radar system can estimate the angle of a reflected signal with the horizontal 
plane. Angular estimation is based on the observation that a small change in the distance 
of an object results in a phase change in the peak of the range‐FFT. This result is used to 
perform angular estimation, using at least two RX antennas. The differential distance from 
the object to each of the antennas results in a phase change in the FFT peak. The phase 
change enables us to estimate the angle of a reflected signal.

4.3  mmWave Radar Deployment

Figure 4.3 shows a sample configuration of how mmWave radar sensors can be installed on 
a vehicle. In this case, we place the radar device in the middle of the front of the vehicle for 
it to capture a 15–20 m range in front of the vehicle (Figure 4.4). In the case of an object 
entering the detection range, the radar sensor can easily detect the object and send the 
detection either to the chassis directly for passive perception, or to the main computing 
unit for active perception. Note that for most low‐speed autonomous vehicles, the braking 
distance is less than 1 m; this allows the use of a detection range of 5 m out for active 
perception, and a detection range of within 5 m for passive perception. This threshold can 
be easily configured using our software interface.

Figure 4.5 shows the hardware test set to enable radar. Since by default the radar is 
connected to the CAN bus, we need a USB CAN card to attach the radar to a USB 

Figure 4.3  Sample configuration of mmWave radar.
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Figure 4.4  Detection range of mmWave radar.
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CAN card

USB
interface

Power
supply

Figure 4.5  Hardware set.
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device. We also need a power supply to power the radar sensor. Once the radar sensor 
gets connected to  the CAN card, the CAN card can be connected to your computer 
through USB and start reading detection data. It should be a very smooth five‐minute 
setup.

Figure 4.6 shows the very easy‐to‐understand user interface (UI) of the mmWave radar, 
which projects any detected objects with a bird’s eye view, and on the UI we show the 
distance as well as the orientation of the detected obstacles. These passive perception 
results are what the planning and control module requires to make intelligent motion 
decisions. A demo video of our mmWave radar in action can be found in [4]. Figure 4.7 
shows the hardware specifications of this device [5].

Figure 4.6  Radar detection UI.
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Figure 4.7  Radar hardware specifications.
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The following code snippet shows the simple data structure for radar data, which 
contains the object index; the range, or distance, of the object; the radial velocity of the 
object; the radial acceleration of the object; the Azimuth angle; and the signal strength or 
power. We also provide a very simple software application program interface (API) to 
capture radar data for you to build your own passive or active perception logics.

struct MWR_Data {

  int index; // object index (range: 0 – 63)

  

  float Range; // usually the range is within 30 meters.

  

  float RadialVelocity; // radial velocity

  

  float RadialAcc; // radial acceleration

 

  float Azimuth;  // azimuth angle with clockwise direction.

  

  float Power;  // detection signal strength

  

  MWR_Data(int i, float Rg, float RV, float RA, float Az, float Pw)

      : index(i), Range(Rg), RadialVelocity(RV), RadialAcc(RA), Azimuth(Az),

        Power(Pw) {}

};

MWRadar mwr_radar; 

std::vector<MWR_Data> data;  // data means the radar's data

// Read the latest 10 frame.

mwr_radar.Read(data,10)  

// Read the latest frame

mwr_radar.Read(data,1) 

4.4  Sonar Deployment

Sonar sensors emit sound waves at a high frequency (that humans cannot hear), then wait 
for the sound to be reflected back, and calculate the distance based on the time required. 
This is similar to how radar measures the time it takes a radio wave to return after hitting 
an object.

Sonars can detect certain objects that radar and Light Detection and Ranging (LiDAR) 
may not be able to detect. For instance, radar, or even light‐based sensors, have a difficult 
time correctly processing clear plastic; sonar sensors have no problem with this. Also, sonar 
sensors are unaffected by the color of the material they are sensing. On the other hand, if 
an object is made out of a material that absorbs sound or is shaped in such a way that it 
reflects the sound waves away from the receiver, readings will be unreliable.

Specifically, in our usage scenario, we use sonar sensors for the very last line of defense, 
guarding a 3 m range around the car to make sure the chassis can handle any immediate 
dangers.
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Figure  4.8 shows a sample configuration of how sonar can be installed on a vehicle. 
In this case, we place the sonar device in the middle of the front of the vehicle for it to 
capture a 3–5 m range in front of the vehicle (Figure 4.9). In the case of an object entering 

Figure 4.8  Sample configuration of sonar.

Figure 4.9  Detection range of sonar.
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Figure 4.10  Hardware set.

the detection range, the sonar sensor can easily detect the object for passive perception. 
A demo video of our mmWave sonar in action can be found in [6].

Figure 4.10 shows the hardware test set to enable sonar. Since by default the sonar 
sensor is connected to the CAN bus, we need a USB CAN card to attach the sonar to the 
USB device. Also, we need a power supply to power the sonar sensor. Once the sonar 
sensor gets connected to the CAN card, the CAN card can be connected to your computer 
through USB and start reading detection data. It should be a very smooth five‐minute 
setup.

Figure 4.11 shows the very easy‐to‐understand UI of the sonar. With two detection units, 
the UI projects any detected objects with a bird’s eye view, and on the UI we show the 
distances of the detected obstacles. Figure 4.12 shows the hardware specifications of this 
device [5].

The following code snippet shows the simple data structure for sonar data, which 
contains two detection distances (one for the left detection unit and the other for the right 
detection unit). We also provide a very simple software API to capture sonar data for you to 
build your own passive perception logics.
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Figure 4.11  Sonar detection UI.
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Figure 4.12  Sonar sensor specifications.

struct USR_Data {

  unsigned short left_front; // object range detected by "FB" channel, 
unit in millimeter.
  unsigned short right_front; // object range detected by "FC" channel, 
unit in millimeter.
};

  USR sonar;
  USR_Data usr_data;
  sonar.Read(usr_data);
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5.1  Introduction

Commercial Global Positioning System (GPS) receivers, such as the ones in cell phones, 
usually can provide meter-level accuracy in the best case. However, this is not enough for 
autonomous vehicles, which require centimeter-level localization. One technology to 
achieve centimeter accuracy is the real-time kinematic (RTK) Global Navigation Satellite 
System (GNSS). As shown in Figure 5.1, we introduce localization with RTK GNSS and its 
role in an autonomous driving technology stack in this chapter. We provide an overview of 
GNSS technologies, and then present a step-to-step detailed guide on setting up your own 
RTK GNSS system for high-precision localization (<30 cm). Note that RTK is a technique 
that uses carrier-based ranging and provides ranges (and therefore positions) that are 
orders of magnitude more precise than those available through code-based positioning.

In the rest of the chapter, we first introduce the GNSS technologies in Section 5.2; then 
we discuss RTK-GNSS architecture in Section 5.3; in Sections 5.4, 5.5, and 5.6, we demon-
strate how to setup a cloud server to broadcast base station correction signal, or the Radio 
Technical Commission for Maritime Services (RTCM) signal. When a cloud server is not a 
good option, we also demonstrate how to set up FreeWave radio to broadcast RTCM 
signals. 

5.2  GNSS Technology Overview

The GNSS consist of several satellite systems: GPS, GLONASS (GLObal NAvigation Satellite 
System), Galileo, and BeiDou. Here we use GPS as an example to provide an overview of 
GNSS. GPS provides coded satellite signals that can be processed in a GPS receiver, allow-
ing the receiver to estimate position, velocity, and time [1]. For this to work, GPS requires 
four satellite signals to compute positions in three dimensions and the time offset in the 
receiver clock. The deployment of these GPS satellites is dispersed in six orbital planes on 
almost circular orbits with an altitude of about 20 200 km above the surface of the Earth, 
inclined by 55° with respect to the equator and with orbital periods of approximately 11 h 
58 min.

Localization with Real-Time Kinematic Global Navigation 
Satellite System
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The generated signals on board the satellites are derived from generation of a fundamental 
frequency ƒo = 10.23 MHz [1]. The signal is time stamped with atomic clocks with inaccuracy 
in the range of only 10−13 s over a day. Two carrier signals in the L-band, denoted L1 and L2, 
are generated by integer multiplications of ƒo. The carriers L1 and L2 are bi-phase modulated 
by codes to provide satellite clock readings to the receiver and transmit information such as the 
orbital parameters. The codes consist of a sequence with the states +1 or −1, corresponding to 
the binary values 0 or 1. The bi-phase modulation is performed by a 180° shift in the carrier 
phase whenever a change in the code state occurs. The satellite signals contain information on 
the satellite orbits, orbit perturbations, GPS time, satellite clock, ionospheric parameters, and 
system status messages, etc. The navigation message consists of 25 frames with each frame 
containing 1500 bits and each frame is subdivided into 5 subframes with 300 bits.

The next critical piece of the GNSS system is the definition of the reference coordinate 
system, which is crucial for the description of satellite motion, the modeling of observable 
satellites, and the interpretation of results. For GNSS to work, two reference systems are 
required: (i) space-fixed, an inertial reference system for the description of satellite motion; 
and (ii) earth-fixed, a terrestrial reference system for the positions of the observation sta-
tions and for the description of results from satellite geodesy. The two systems are used and 
the transformation parameters between the space fixed and earth fixed are well known and 
used directly in the GNSS receiver and post processing software to compute the position of 
the receivers in the earth-fixed system. The terrestrial reference system is defined by con-
vention with three axes, where the Z-axis coincides with the earth rotation axis as defined 
by the Conventional International Origin. The X-axis is associated with the mean Greenwich 
meridian, and the Y-axis is orthogonal to both the Z and X axes and it completes the right-
handed coordinate system. GPS has used WGS84 as a reference system and with WGS84 
associated a geocentric equipotential ellipsoid of revolution [2].
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Figure 5.1  Modular design architecture.



5.3  RTK GN S 49

In recent years, the emergence of GNSS receivers supporting multiple constellations has 
kept steady pace with the increasing number of GNSS satellites in the sky. With advance-
ments in newer GNSS constellations, almost 100% of all new devices are expected to sup-
port multiple constellations. The benefits of supporting multiple constellations include 
increased availability, particularly in areas with shadowing; increased accuracy, more satel-
lites in view improves accuracy; and improved robustness, as independent systems are 
harder to spoof.

Ideally, with GNSS, we can get perfect localization results with no error at all. However, 
there are multiple places where error can be introduced in GNSS. Here we review these 
potential error contributors:

●● Satellite clocks: Any tiny amount of inaccuracy of the atomic clocks in the GNSS satellites 
can result in a significant error in the position calculated by the receiver. Roughly, 10 ns 
of clock error results in 3 m of position error.

●● Orbit errors: GNSS satellites travel in very precise, well known orbits. However, like the 
satellite clock, the orbits do vary a small amount. When the satellite orbit changes, the 
ground control system sends a correction to the satellites and the satellite ephemeris is 
updated. Even with the corrections from the GNSS ground control system, there are still 
small errors in the orbit that can result in up to ±2.5 m of position error.

●● Ionospheric delay: The ionosphere is the layer of atmosphere between 80 km and 600 km 
above the earth. This layer contains electrically charged particles called ions. These ions 
delay the satellite signals and can cause a significant amount of satellite position error 
(typically ±5 m). Ionospheric delay varies with solar activity, time of year, season, time of 
day, and location. This makes it very difficult to predict how much ionospheric delay is 
impacting the calculated position. Ionospheric delay also varies based on the radio fre-
quency of the signal passing through the ionosphere.

●● Tropospheric delay: The troposphere is the layer of atmosphere closest to the surface of 
the Earth. Variations in tropospheric delay are caused by the changing humidity, tem-
perature, and atmospheric pressure in the troposphere. Since tropospheric conditions 
are very similar within a local area, the base station and rover receivers experience very 
similar tropospheric delay. This allows RTK GNSS to compensate for tropospheric delay, 
which will be discussed in the next section.

●● Multipath: Multipath occurs when a GNSS signal is reflected off an object, such as the 
wall of a building, to the GNSS antenna. Because the reflected signal travels farther to 
reach the antenna, the reflected signal arrives at the receiver slightly delayed. This 
delayed signal can cause the receiver to calculate an incorrect position.

For a more detailed discussion of these errors, please refer to [3–6].

5.3  RTK GNSS

Based on our experiences, most commercially available multi-constellation GNSS systems 
provide a localization accuracy no better than a 2-m radius. While this may be enough for 
human drivers, in order for an autonomous vehicle to follow a road, it needs to know where 
the road is. To stay in a specific lane, it needs to know where the lane is. For an autonomous 
vehicle to stay in a lane, the localization requirements are in the order of decimeters. 
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Fortunately, RTK and Differential GNSS does provide decimeter level localization accu-
racy. In this subsection, we study how RTK and Differential GNSS works.

The basic concept of RTK is to reduce and remove errors common to a base station 
and rover pair, as illustrated in Figure  5.2. RTK GNSS achieves high accuracy by 
reducing errors in satellite clocks, imperfect orbits, ionospheric delays, and tropo-
spheric delays. Figure 5.1 shows the basic concept behind RTK GNSS. A good way to 
correct these GNSS errors is to set up a GNSS receiver on a station whose position is 
known exactly, a base station. The base station receiver calculates its position from 
satellite data and compares that position with its actual known position, and identifies 
the difference. The resulting error corrections can then be communicated from the 
base to the vehicle.

In detail, RTK uses carrier-based ranging and provides ranges (and therefore positions) 
that are orders of magnitude more precise than those available through code-based posi-
tioning. Code-based positioning is one processing technique that gathers data via a coarse 
acquisition code receiver, which uses the information contained in the satellite pseudo-
random code to calculate positions. After differential correction, this processing technique 
results in 5 m accuracy. Carrier-based ranging is another processing technique that gathers 
data via a carrier phase receiver, which uses the radio carrier signal to calculate positions. 
The carrier signal, which has a much higher frequency than the pseudo-random code, is 
more accurate than using the pseudo-random code alone. The pseudo-random code nar-
rows the reference, and then the carrier code narrows the reference even more. After 
differential correction, this processing technique results in sub-meter accuracy. Under 
carrier-based ranging, the range is calculated by determining the number of carrier cycles 
between the satellite and the vehicle, and then multiplying this number by the carrier 
wavelength. The calculated ranges still include errors from sources such as satellite clock 
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Figure 5.2  RTK GNSS.
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and ephemerides, and ionospheric and tropospheric delays. To eliminate these errors and 
to take advantage of the precision of carrier-based measurements, RTK performance 
requires measurements to be transmitted from the base station to the vehicle.

With RTK GNSS, vehicles determine their position using algorithms that incorporate 
ambiguity resolution and differential correction. The position accuracy achievable by the 
vehicle depends on its distance from the base station and the accuracy of the differential 
corrections. Corrections are as accurate as the known location of the base station and the 
quality of the base station’s satellite observations. Therefore, site selection is critical for 
minimizing environmental effects such as interference and multipath, and so is the quality 
of the base station and vehicle receivers and antennas.

A RTK-GNSS system uses the satellite positioning measurement method of RTK carrier 
phase difference technology to obtain high-precision positioning. Figure 5.3 shows how we 
set up our RTK GNSS system:

●● First, the antenna of the base station (GPS Base) receiver is installed at a fixed position. 
The installation requirements are shown in Figure 5.4.

●● Secondly, setting the base station receiver fixed coordinates by calculating the average of 
the self-positioning over a period of time.
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Figure 5.3  RTK GNSS architecture.

30° 30°

Figure 5.4  GPS antenna installation requirements.



5  Localization with Real-Time Kinematic Global Navigation Satellite System52

●● Thirdly, connecting the base station receiver to the Raspberry Pi (NtripServer) through a 
serial cable, and transmitting the location coordinates of the base station and the received 
satellite information to the cloud server (NtripCaster) in real time.

●● Fourthly, the rover station (GPS Rover) connects the Raspberry Pi (NtripClient) by the 
serial port COM2 to receive the differential correction data from the cloud server, and 
simultaneously receives the satellite signal to solve RTK positioning.

●● Finally, the rover station outputs positioning data by the serial port COM1.

5.4  RTK-GNSS NtripCaster Setup Steps

We assume you are going to set up a NtripCaster on AWS (Amazon Web Services). You can 
use openssh to log in your AWS instance. A sample command is:

sudo ssh -i /path/my-key-pair.pem ec2-user@instance- 
name.compute-1.amazonaws.com

5.4.1  Set up NtripCaster

First, we need to install a NtripCaster using the following commands:

ubuntu@ip-instance:~$ git clone https://github.com/roice/ntripcaster
ubuntu@ip-instance:~$ sudo apt-get install gcc
ubuntu@ip-instance:~$ cd ntripcaster/
ubuntu@ip-instance:~/ntripcaster$ cd ntripcaster0.1.5/
ubuntu@ip- 
instance:~/ntripcaster/ntripcaster0.1.5$ sudo ./configure
ubuntu@ip-instance:~/ntripcaster/ntripcaster0.1.5$ sudo apt-get  
install make
ubuntu@ip-instance:~/ntripcaster/ntripcaster0.1.5$ make
ubuntu@ip-instance:~/ntripcaster/ntripcaster0.1.5$sudo make  

install

Once it is installed, we need to set up the NtripCaster using the following commands:
ubuntu@ip-instance:~/ntripcaster/ntripcaster0.1.5$ cd /usr/local
ubuntu@ip-instance:/usr/local$ cd ntripcaster/
ubuntu@ip-instance:/usr/local/ntripcaster$ cd conf/
ubuntu@ip-instance:/usr/local/ntripcaster/conf$ ls
ubuntu@ip-instance:/usr/local/ntripcaster/conf$ sudo mv  
ntripcaster.conf.dist ntripcaster.conf
ubuntu@ip-instance:/usr/local/ntripcaster/conf$ sudo mv  
sourcetable.dat.dist sourcetable.dat

Next we need to modify the config file with the following commands:

ubuntu@ip-instance:/usr/local/ntripcaster/conf$ sudo vi  
ntripcaster.conf

Then set the following items:

●● location, rp_email, and server_url
●● encoder_password
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●● server_name and port
●● logdir path and logfile name
●● Add mount point. The format is:

example: /mount:user0:123456,user1:123456

mountpoint name user0 name user0 password user1 name user1 password more users

mount user0 123456 user1 123456 …
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ubuntu@ip-instance:/usr/local/ntripcaster/conf$ sudo vi  
sourcetable.dat

At the end of the sourcetable.dat file add new source data in the following format; the 
mount point and the network must be consistent with ntripcaster.conf file’s mount point 
name and user0 name.

In the sourcetable.dat, one row represents a mount point. Each line is separated by a 
semicolon, the meaning of which is shown in the following table:

Number Name Description

1 STR type:STR/CAS/NET

2 mount Mountpoint

3 Shen Zhen identifier

4 RTCM 3.2 Differential data format

5 1004,1008 format-details

6 1 Carrier phase data: 0 – none  1 – Single frequency  2 – Dual frequency

7 GPS Navigation System, e.g. GPS, GPS + GLONASS

8 PI network

9 CHN country

10 22.58 latitude

11 113.93 longitude

12 0 Need to send NMEA: 0 – no need  1 – need

13 0 Base station type: 0 – Single base station  1 – network

14 PI The name of the software that generated this data stream

15 none Compression algorithm

16 B Access protection: N – None  B – Basic  D – Digest

17 N Y/N

18 115200 baud rate

5.4.2  Start NtripCaster

Once you are done with the steps above, we can start the NtripCaster:

ubuntu@ip-instance:~$ cd /usr/local/ntripcaster/bin
ubuntu@ip- 
instance:/usr/local/ntripcaster/bin$ sudo ./ntripcaster
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Log in to the NtripCaster server and check the server status using the following command:

ubuntu@ip-instance:~$ ps -aux | grep ntrip

Start the Ntripcaster command:

ubuntu@ip-instance:~$ cd /usr/local/ntripcaster/bin
ubuntu@ip- 
instance:/usr/local/ntripcaster/bin$ sudo ./ntripcaster

We can then use the following nohup command to have a NtripCaster process running in 
the background:

ubuntu@ip-instance:~$ cd /usr/local/ntripcaster/bin
ubuntu@ip- 
instance:/usr/local/ntripcaster/bin$ nohup ./ntripcaster

5.5  Setting Up NtripServer and NtripClient on Raspberry Pi

5.5.1  Install the Raspberry Pi System

Figure  5.5 shows the Raspberry Pi setup procedure. Raspberry Pi hardware version: 
Raspberry Pi 3 Model B+

●● Download the Raspberry Pi system under Windows system: https://www.raspberrypi 
.org/downloads/raspbian/. Choose Raspbian Stretch with desktop and recommended 
software, and click Download ZIP to obtain the system image file.

Figure 5.5  Raspberry Pi setup.
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●● Figure 5.6 shows the SD/TF (TransFlash) card setup procedure. Download and install 
the TF card formatting tool under Windows system: SD card formatter. Format the 
Raspberry Pi TF card in FAT32 format.

●● Download and install the system image file writing tool under Windows system: 
win32diskimager. Write the Raspberry Pi system image to the TF card.

●● After writing the system image file, open the TF card and create a new txt file in the root 
directory, and rename it ssh without the suffix. This file is for opening the ssh function.

●● Insert the TF card into the Raspberry Pi, then connect the monitor, keyboard, mouse, and 
power on. Set the Raspberry Pi password and connect to WiFi in the boot setup wizard. 
(You can also connect to the network through a network cable).

●● After completing the boot setup wizard, install RTKLIB and create a Raspberry Pi access 
point.

●● Install and compile RTKLIB, open a terminal and run the following command:
git clone https://github.com/tomojitakasu/RTKLIB.git

cd /RTKLIB/app/str2str/gcc
make //Compile and generate the str2str executable file

●● Create a Raspberry Pi access point and run the following command in the terminal:
sudo apt-get install vim

git clone https://github.com/oblique/create_ap
cd create_ap
sudo make install

Figure 5.6  SD card setup.
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sudo apt-get install util-linux procps hostapd iproute2 iw haveged dnsmasq
sudo create_ap wlan0 eth0 access-point-name password//Create a WiFi access point

Note:

	 (a) � When the Raspberry Pi creates a WiFi access point, it must first disconnect its WiFi 
connection, otherwise the command runs incorrectly and prompts: your adapter cannot 
be a station an access point at the same time.

	 (b) � Add (sudo create_ap wlan0 eth0 access-point-name password &) to the /etc/rc.local file, 
and set the Raspberry Pi to automatically create a WiFi access point when it starts. The 
setting example is:

●● After setting up the WiFi access point successfully, you can use your laptop to 
connect the Raspberry Pi WiFi, and then log in to the Raspberry Pi via ssh 
pi@192.168.12.1.

5.5.2  Run RTKLIB-str2str on the Raspberry Pi

5.5.2.1  Running NtripServer on the Base Station Side
Figure  5.7 shows the circuit connection diagram of the base station. The role of the 
Raspberry Pi is to connect 4G terminals and transmit differential signals over the network 
to the NTRIP caster.

After the Raspberry Pi is plugged in the 4G terminal and can access the Internet, run the 
str2str program to send differential signals to the NTRIP caster. The command is as follows:

sudo home/pi/RTKLIB/app/str2str/gcc/str2str -in  
serial://ttyUSB0:115200:8:n:1  \
-out ntrips://:password@IP:port/mountpoint

The result is as follows after successful execution:
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Then write the following command to the Raspberry Pi’s/etc/rc.local file to set the 
Raspberry Pi to run NTRIP server automatically when starting. The setting example is:

nohup  /home/pi/RTKLIB/app/str2str/gcc/str2str -in  
serial://ttyUSB0:115200:8:n:1  \
-out ntrips://:password@IP:port/mountpoint > /dev/null &

5.5.2.2  Running NtripClient on the GNSS Rover
The role of the Raspberry Pi is to connect 4G terminals and receive differential signals over 
the network from the NTRIP caster. After the Raspberry Pi is plugged in the 4G terminal 
and can access the Internet, run the str2str program to receive differential signals from the 
NTRIP caster. The command is as follows:

5V Power
Supply

12 V 1 A
Power Supply

4G
Communication

Raspberry Pi

usb

Figure 5.7  Connecting Raspberry Pi to the GNSS station.
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sudo /home/pi/RTKLIB/app/str2str/gcc/str2str -in \  
ntrip://user:password:@IP:port/mountpoint -out  
serial://ttyUSB0:115200:8:n:1

Then write the following command to the Raspberry Pi’s/etc/rc.local file to set the 
Raspberry Pi to run NTRIP client automatically when starting. The setting format is:

nohup /home/pi/RTKLIB/app/str2str/gcc/str2str -in \  
ntrip://user:password@IP:port/mountpoint -out  
serial://ttyUSB0:115200:8:n:1 >/dev/null &

5.6  Setting Up a Base Station and a GNSS Rover

5.6.1  Base Station Hardware Setup

Figure  5.8 shows the base station setup architecture; Figure  5.9 shows the components 
required for the base station setup; Figure  5.10 shows the base station setup steps; 
Figure 5.11 shows how to connect your base station receiver to a PC; and Figure 5.12 shows 
the proper way to place a base station antenna (in a place with open sky, for example on a 
roof top).

RTCM messages USB

USB

COM2 COM1

ANT1

GNSS
Receiver Module

5V DC power

Antenna

Figure 5.8  Setting up the base station.
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5.6.2  Base Station Software Setup

First enter the following commands:

sudo apt-get install cutecom
sudo cutecom

1 2 3

4
5 6

Figure 5.9  Components: 1, antenna; 2, GNSS receiver module; 3, power supply (5 V); 4, magnetic 
foundation plate; 5, serial to USB connector; and 6, antenna cable (TNC male to TNC male).

1 2 3

4 5 6

Figure 5.10  Setup steps.
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Then check the COM1 serial device number on PC (/dev/ttyUSB0) as shown below, then 
click Open device. Figure 5.13 shows the device setup interface.

Next set the base antenna position.
Input “freset” in the command line and press the “Enter” button. Figure 5.14 shows how 

to input the freset command.
Figure 5.15 shows what will be seen if the “freset” command is executed successfully.

Figure 5.11  Connection to PC.

Figure 5.12  Placement of a GNSS base station antenna.



5  Localization with Real-Time Kinematic Global Navigation Satellite System62

Figure 5.13  Device setup interface.

Figure 5.14  Input of the freset command.
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Enter the following command: gpgga com1 1
//set the output GPGGA frequency 1 Hz. If executed successfully, you will see 

“$command,gpgga com1 1,response: OK * 49” and the GPGGA message [7]. Figure 5.16 
illustrates this.

Enter the following command: mode base time 60 1.5 2.5
//If executed this command successfully will display “$command,mode base time 60 1.5 

2.5, response OK * 78”. Then we need to wait 60 s when the GPGGA fix status is 7, base 
station set ok.

Figure  5.17 shows the “command successful” screenshot and Figure  5.18 shows the 
proper GPGGA fix status.

$GPGGA,045526.002234.79008586,N,11355.59480467,E,7,25,0.6,34.7453,M,-3.7924,M,,*43

Enter the following command: rtcm1006 com2 10
//If successful you will see “$command,rtcm1006 com2 10, response OK * 03”

Enter the following command: rtcm1033 com2 10
//If successful you will see “$command,rtcm1033 com2 10, response OK * 05”

Enter the following command: rtcm1074 com2 1
//If successful you will see “$command,rtcm1074 com2 1, response OK * 36”

Enter the following command: rtcm1124 com2 1
//Set BDS correction message, if command successful you will see “$command,rtcm1124 

com2 1, response OK * 32”

Figure 5.15  Freset command successful.
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Figure 5.17  “mode base time 60 1.5 2.5” command successful.

Figure 5.16  “gpgga com1 1” command successful.
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Enter the following command: rtcm1084 com2 1
//Set GLONASS correction message, if command successful you will see “$command, 

rtcm1084 com2 1, response OK * 39”

Enter the following command: rtcm1094 com2 1
//Set Galileo correction message, if command successful you will see “$command, 

rtcm1094 com2 1, response OK * 38”

Enter the following command: saveconfig
//save config, if command successful you will see “$command,saveconfig, response 

OK * 55”

Note:

If we want to get a more accurate base station signal, a long base time shall be set. For 
example:

mode base time 7200 1.5 2.5. Usually we want to set the base time to be at least two hours 
to get a highly stable base station signal.

If we want to set the base antenna position manually, we could execute the following 
command:

mode base latitude longitude altitude

Figure 5.18  GPGGA fix status.
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Example:

mode base 22.5798755945 113.926580413 34.1254713577

//the base station position is latitude  =  22.5798755945, longitude  =  113.926580413, 
altitude  =  34.1254713577. The units of latitude and longitude are degree, the unit of 
altitude is meter.

If we want to skip the waiting time (mode base time 7200 1.5 2.5) when restarting the 
base station after configured first time, we need to set the base antenna position manually 
after we have obtained the averages of the GPS positions. For example:

By the GPGGA message:
$GPGGA,045526.002234.79008586, N,11355.59480467,E, 7,25,0.6,34.7453,M,-3.7924,M,,*43

In the GPGGA message the format of latitude is ddmm.mm and the format of longitude 
is dddmm.mm. We need to transform the format of latitude and longitude to degree, calcu-
lated as follows:

	Latitude 22 34 79008586 60 22 579834764. / . 	

	Longitude 113 55 59480467 60 113 926580078. / . 	

And then execute the following command:

mode base 22.579834764 113.926580108 34.7453
saveconfig

Connecting to the NtripCaster in Linux:
The str2str module of RTKLIB is used to set up the NtripServer and NtripClient.

Steps to set up NtripServer in Linux:
Compile RTKLIB

git clone https://github.com/tomojitakasu/RTKLIB.git
cd /RTKLIB/app/str2str/gcc
make

Test base station COM2 output to NtripCaster

Check the COM2 serial device number on PC (/dev/ttyUSB1), then execute the following 
command:

sudo /home/perceptin/RTKLIB/RTKLIB- 
master/app/str2str/gcc/str2str   -in  \  
serial://ttyUSB1:115200:8:n:1  -out  
ntrips://:password@IP:PORT/Mountpoint
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If data connected to NtripCaster, you will see:

If base station COM2 output to NtripCaster is successful, we need to plug the COM2 USB 
into the base station Raspberry Pi.

5.6.3  GNSS Rover Setup

5.6.3.1  Rover Hardware Setup
A rover station is composed of two GNSS antenna, which output the position and vehicle 
heading. Figure 5.19 shows the rover hardware setup architecture; Figure 5.20 shows the 
components needed for the rover; Figure 5.21 shows the proper way to set up the antennas 
on a rover; and Figure 5.22 shows the proper cable connection.

RTCM messages USB

USB

COM2

ANT2

5V DC power

ANT1

Antenna

COM1

GNSS
Receiver Module

Figure 5.19  Rover hardware setup.
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5.6.3.2  Rover Software Setup
Connect to GNSS module (Figure 5.23):
(5)	 Connect Rover station COM1 serial to PC.
(6)	 sudo cutecom //Open serial port tool.
(7)	 Check the Rover station COM1 serial device number on PC (/dev/ttyUSB0), then click 

“Open device”.

1
2 3

4
5

6

Figure 5.20  Rover hardware components: 1, GNSS antenna; 2, GNSS receiver module; 3, power 
supply (5 V); 4, magnetic foundation plate; 5, serial to USB connector; and 6, GNSS antenna cable 
(TNC male to TNC male).

Figure 5.21  Rover station antenna installation.
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Set the com1 output frequency
(1)	 Enter command: gpgga com1 0.05

//set gpgga com1 output frequency to 20Hz, if command successful you will see 
“$command,gpgga com1 0.05, response OK * 63”

Figure 5.22  Cable connection.

Figure 5.23  Connecting the GNSS module.
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(2)	 Enter command: gprmc com1 0.05
//set gprmc com1 output frequency to 20Hz, if command successful you will see 
“$command,gprmc com1 0.05, response OK * 7E”

(3)	 Enter command: gphdt com1 0.05
//set gphdt com1 output frequency to 20Hz, if command successful you will see 
“$command,gphdt com1 0.05, response OK * 7A”

(4)	 Enter command: headinga com1 0.05
//set headinga com1 output frequency to 20Hz, if command successful you will see 
“$command,headinga com1 0.05, response OK * 1C”

(5)	 Enter command: saveconfig
//save config, if command successful, you will see “$command,saveconfig, response 
OK * 55”

Connecting to the NtripCaster in Linux:
The str2str module of RTKLIB is used to set up the NtipServer and NtripClient.

Steps to set up NtripClient in Linux:
Connect Rover station COM2 serial to PC, check the Rover station COM2 serial device 

number on PC (/dev/ttyUSB1).

Test Rover station COM2 receive RTCM data from NtripCaster, run the command:

sudo /home/perceptin/RTKLIB/RTKLIB- 
master/app/str2str/gcc/str2str   -in \    
ntrip://:user:password@IP:PORT/Mountpoint  -out  
serial://ttyUSB1:115200:8:n:1

If RTCM data successfully received from NtripCaster, the data size and rate would show on 
the screen, and the COM1 output GPGGA message would display fix status (the value is 4).

If Rover station COM2 receives RTCM data from NtripCaster successfully, we need to 
plug the COM2 USB into the Rover station Raspberry Pi. Figure 5.24 illustrates the rover 
station output on the screen.

Figure 5.24  Rover station output on the screen.
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5.7  FreeWave Radio Basic Configuration

In previous sections, we demonstrated how to set up a cloud server to stream RTK correction 
data from a base station. However, if we do not want to set up a cloud server, we can utilize 
a FreeWave radio to transmit RTCM data.

If we use FreeWave radio to transmit RTCM data, we will not need a cloud server account 
and Raspberry Pi, we simply need to connect the COM2 serial interface of the base station 
and rover station to FreeWave radio. The RTK-GNSS data transmission scheme by FreeWave 
radio is shown in Figure 5.25.

FreeWave 900 MHz or 2.4 GHz radios for use during evaluation of our RTK-GNSS 
receivers. Those radios need to be properly configured. Now we describe configuration 
steps for RTK base and RTK rover radios. Note that radios can be configured using a 
simple serial terminal program or FreeWave Tool Suite. A terminal program is used 
below:

(1)	 Install terminal program for Linux:

   sudo apt-get install gtkterm

(2)	 Radio hardware setup
For configuration, radios should be connected to your computer via the RS-232 port 
using a straight RS-232 cable. If there is no RS-232 port on your computer, use a USB 
to RS-232 adapter. FreeWave radios require a 6–30 V DC power supply. Use the wall 
power adapter included with the radios, or a 12 V battery, to power the radio during 
configuration.

(3)	 Entering radio programming mode
Follow these steps to set the radio in the programming mode:

–– Attach antenna to the radio board. The radio should be never powered without 
antenna attached.

–– Connect the radio’s RS-232 port to the PC, use a USB to RS-232 adapter if 
necessary.

–– Power up the radio.
–– Open terminal program and configure port parameters to 19 200 bps, 8 bits, no 

parity, 1 stop bit, no flow control:
(a)	 In CoolTerm, click on Options button, set the parameters, then click Connect 

button.
(b)	 In GtkTerm, click on Configuration →Port (Shift+Ctrl+s).

–– Press radio Programming Button located next to the Power Input on the radio 
board. All three light-emitting diodes (LEDs) on the board should show solid green 
and you will be presented with a menu on the terminal screen as shown in 
Figures 5.26 and 5.27.

(4)	 Programming radio for RTK base station
Follow these steps to program the radio as a transmitter of RTK base station correc-
tions. This radio will work as a Point-to-MultiPoint Master. It will be able to transmit 
corrections to multiple rovers simultaneously:

–– Enter radio programming mode as described in point (3).
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Figure 5.25  RTK-GNSS data transmission scheme by FreeWave radio.
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–– Press 0 (Set Operation Mode):
(a)	 Press 2 (Point-to-MultiPoint Master).
(b)	 Press Esc to return to the Main Menu.

–– Press 1 (Set Baud Rate):
(a)	 Press 1 (115200).
(b)	 Press Esc to return to the Main Menu.

–– Press 5 (Edit MultiPoint Parameters):
(a)	 Press 0 (Number Repeaters)

●● Press 0
(b)	 Press 1 (Master Packet Repeat)

●● Press 0

Figure 5.26  900 MHz or 2.4 GHz radio programming screen on CoolTerm.

Figure 5.27  900 MHz or 2.4 GHz radio programming screen on GtkTerm.
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(c)	 Press 2 (Max Slave Retry)
●● Press 0

(d)	 Press 6 (Network ID)
●● Enter desired network ID value in range from 0 to 4095 except 255 and press 

Enter (value 255 will enable Call Book instead of Network ID). It is 
recommended to use the last three or four (when lower than 4095) digits of 
the base station Radio Number as the network ID.

(e)	 Press Esc to return to the Main Menu.
–– Optionally, to change radio power output, press 3 (Edit Radio Transmission 

Characteristics).
(f)	 Press 5 (RF Xmit Power).

●● On 900 MHz radio enter the desired power level in the range 0–10 (0 = 5 mW, 
3 = 80 mW, 5 = 230 mW, 7 = 480 mW, 10 = 1 W).

●● On 2.4 GHz radio enter the desired power level in dBm (20 dBm  =  0.1 W, 
27 dBm = 0.5 W).

(g)	 Press Esc to return to the Main Menu.
–– Press Esc to Exit Setup.
–– Power off the radio. Settings are saved in the radio’s non-volatile memory. The radio 

is ready for RTK operation.
(5)	 Programming radio for RTK rover

Follow these steps to program the radio as a receiver of RTK corrections. This radio 
will work as a Point-to-MultiPoint slave. It will not be able to transmit any data (only 
receive it). Use the same radio settings for all rover radios in the system with multiple 
rovers.

–– Enter radio programming mode as described in point (3).
–– Press 0 (Set Operation Mode):
(a)	 Press 3 (Point-to-MultiPoint Slave).
(b)	 Press Esc to return to the Main Menu.

–– Press 1 (Set Baud Rate):
(a)	 Press 1 (115200).
(b)	 Press Esc to return to the Main Menu.

–– Press 5 (Edit MultiPoint Parameters):
(a)	 Press 0 (Number Repeaters)

●● Press 0
(b)	 Press 1 (Master Packet Repeat)

●● Press 0
(c)	 Press 2 (Max Slave Retry)

●● Press 0 (Note: if transmission from rover to base is required, set Max Slave 
Retry to 1).

(d)	 Press 3 (Retry Odds)
●● Press 0

(e)	 Press 6 (Network ID)
●● Enter the same network ID value as set in RTK base station radio above and 

press <Enter>.
(f)	 Press Esc to return to the Main Menu.
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–– Press Esc to Exit Setup.
–– Power off the radio. Settings are saved in the radio’s non-volatile memory. The radio 

is ready for RTK operation.
(6)	 LED indicators

If the radio has been configured correctly, the LEDs should illuminate as shown in 
Figure 5.28.

(7)	 Troubleshooting
For radios to communicate with other radios in the same network, the following five 
settings must match on all radios: Network ID, Frequency Key, RF Data Rate, Minimum 
Packet Size, and Maximum Packet Size. If any of these settings do not match, the 
radios will not link.
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6.1  Introduction

As shown in Figure  6.1, computer vision is an essential part of the modular design 
methodology for building autonomous vehicles and robots. Computer vision provides two 
essential functions: localization, which answers the question of where I am, and percep-
tion, which answers the question of what is around me [1].

In this chapter we review the details of computer vision technologies. In Section 6.2, we 
start with computer vision hardware design and introduce the challenges of building com-
puter vision hardware. In Section 6.3, we introduce the concept of calibration and delve 
into a few calibration techniques. In Section 6.4, we explain how you can use computer 
vision for localization. In Section 6.5, we explain how you can use computer vision for per-
ception. In Section 6.6, we present a case study of PerceptIn’s DragonFly computer vision 
module.

After reading this chapter, readers should be able to understand how to use computer 
vision technologies in their autonomous vehicle and robot designs, as well as how to com-
bine computer vision and other sensors to achieve better localization and perception 
results.

6.2  Building Computer Vision Hardware

Building computer vision hardware to perform both perception and localization tasks is 
extremely challenging as there are many design factors we need to consider. These 
include what kind of image sensors to use, what kind of lenses to use, and whether to do 
computing on device or off device. In this section, we review these design challenges in 
detail.

Computer Vision for Perception and Localization
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Seven Layers of Technologies

Algorithms

Computing Systems
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ISP
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Figure 6.2  Seven layers of technologies to build computer vision hardware.

6.2.1  Seven Layers of Technologies

As shown in Figure 6.2, to build one computer vision hardware device, you have at least 
seven layers of technology choices to consider:

●● Lens: A lens decides how much light to let into to the image sensor. The simplest model of 
a lens is a pinhole model, which is simply a small aperture that blocks most rays of light, 
ideally selecting one ray to the object for each point on the image sensor. The two funda-
mental parameters of a lens are the focal length and the maximum aperture. The focal 
length determines the magnification of the image projected onto the image plane, and the 
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Figure 6.1  Modular design architecture.
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aperture the light intensity of that image. The focal length determines the field of view, 
short focal lengths giving a wider field of view than longer focal length lenses. On the other 
hand, a wider aperture allows a faster shutter speed to be used for the same exposure.

●● Image sensing: An image sensor detects and conveys information used to make an image. 
It achieves this by converting the variable attenuation of light waves into digital signals. 
The waves can be light or other electromagnetic radiation. Cameras integrated in con-
sumer products generally use complementary metal oxide semiconductor (CMOS) sen-
sors, which are usually cheaper and have lower power consumption in battery-powered 
devices than charge-coupled devices (CCDs). CCD sensors are used for high-end cam-
eras, such as those deployed on satellites. One example of adjusting image sensors for 
different usage scenarios is that you can use visible light sensors in day time, and use 
infrared imaging sensing to provide superior vision in the dark,

●● Image signal processor (ISP): An ISP controls demosaicing (a digital image process used 
to reconstruct a full color image from the incomplete color samples output from an image 
sensor), autofocus, exposure, and white balance for a camera system. Especially, pixels in 
an image sensor are sensitive to light between some set of wavelengths, essentially they 
are color agnostic. The way to get a color image out is to put a filter on top, usually a 
Bayer pattern color filter, then interpolate the color of the adjacent pixels. Therefore, 
choosing the correct ISP and its parameters is extremely important for geometric feature 
detection under different lighting conditions.

●● Mechanical design: When you have multiple sensors, such as a pair of cameras, mechani-
cal design is extremely important to ensure the module’s rigidity, even under a wide 
range of operating temperatures as well as vibrations. A great mechanical design reduces, 
if not completely eliminates, the need for system recalibration, which we try to minimize 
for commercial products.

●● Sensor fusion: It is challenging to fuse multiple sensors together, as each new sensor 
would introduce more complexities on the calibration and synchronization of the sys-
tem. Before we can use the fused data, we need to guarantee that data from different 
sensors are spatially and temporally calibrated.

●● Computing systems: Computer vision algorithms are extremely computationally expen-
sive, therefore it is challenging to develop a computing system that delivers high speed 
and good quality. Acceleration of computing workloads can be achieved through differ-
ent techniques, such as parallel processing, hardware acceleration, or offloading the 
computing to a more powerful machine.

●● Algorithms: Once you have your sensor system and your computing system ready, then 
you need to decide what algorithms to run on your computer vision system. Usually, 
computer vision can be used for both perception and localization. For localization, using 
a vision only system, you can use visual simultaneous localization and mapping (VSLAM) 
for localization. With a vision system and an inertial measurement unit (IMU), you can 
perform Visual-Inertial Odometry (VIO) for localization. With a vision system, an IMU, 
and a Global Navigation Satellite System (GNSS), you can perform VIO-GNSS fusion for 
localization, in which GNSS provides ground-truth data with good signal reception. For 
perception, using a stereo camera system, you can perform depth estimation by generat-
ing an accurate disparity map. In addition, with vision, you can perform image segmen-
tation using deep learning techniques.
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6.2.2  Hardware Synchronization

Next, assuming that your computer vision hardware does perform sensor fusion, then we 
need to consider how to synchronize different hardware sensors. For instance, if you need 
to perform stereo vision computation to extract object depth information, then it is essen-
tial that images from both cameras are synchronized. Otherwise, if the left image comes in 
100 ms after the right image, then there is no way you can generate accurate depth informa-
tion, especially when you deploy this computer vision device on a moving vehicle. The 
system design becomes more and more complex as you add more sensors, such as IMU and 
GNSS, to the system.

As shown in Figure 6.3, the latencies between CMOS image sensor and ISP, and ISP and 
CPU, are both roughly 10 ns through the mobile industry processor interface (MIPI). This 
latency number also holds for the IMU data which is triggered through the I2C interface. 
The image pre-processing on ISP takes ~10 ms which is still reasonable, especially the 
latency is consistent with little uncertainty.

The closer to sensor we perform synchronization, the less temporal variations we will 
observe between sensors. For instance, if we have a piece of hardware to directly synchro-
nize the image sensors, we will get ~10 ns latency variation, which is negligible. On the 
other hand, if we perform synchronization at the application level, we may get up to 
~100 ms latency variation, which can be catastrophic.

Therefore for stereo vision, if both image sensors are connected to the same ISP, then one 
efficient and simple way to synchronize the two image sensors is to use the ISP to trigger 
hardware synchronization between the image sensors and to trigger auto exposure and 
image pre-processing to improve image quality.

6.2.3  Computing

Once we are done with synchronization, we get clean sensor data, and then we have to 
consider computing. Computer vision based computing is extremely demanding. Eventually 
it becomes a tradeoff between frame rate and computing power. With commercial off-the-
shelf embedded processors, it is very hard to achieve high frame rates (e.g. >15 frames per 
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second [FPS]) but low frame rates prevent the vehicle moving at a higher speed due to 
safety reasons.

With high-end processors, we can achieve higher frame rates but the cost and power 
consumption become major issues. Note that autonomous vehicles and robots are also 
mobile systems living on a limited onboard energy budget and thus power consumption 
does matter.

There are many software techniques to optimize for performance, the simplest one being 
reducing image resolutions but this would reduce image quality and thus negatively impact 
perception and localization capabilities.

Another software optimization technique is to utilize parallel computing, such as multi-
ple processors, a graphics processing unit (GPU), or a digital signal processor (DSP) [2]. 
This technique involves intensive rewriting of some of the software pieces but fortunately 
there are many well-developed libraries, such as OpenCL [3], ARM Compute Library [4], 
and OpenCV on CUDA [5], etc.

If software optimization still does not satisfy your computing needs, you can try develop-
ing custom hardware, such as reported in [6, 7]. To achieve optimal hardware acceleration, 
you need to first identify the computing bottleneck of your computing pipeline and develop 
specialized hardware to accelerate the critical path of computing. However, this approach 
is extremely costly. A thorough review of the hardware acceleration approaches for autono-
mous driving workloads will be presented in Chapter 11 of this book.

6.3  Calibration

Sensor calibration is the process of determining the intrinsic (e.g. camera focal length in 
the pinhole model) and extrinsic (i.e. position and orientation with respect to the world, or 
to another sensor) parameters of a sensor. Calibration is an essential prerequisite for many 
applications in autonomous vehicles and robots.

For instance, in autonomous vehicles and robots, in order to fuse measurements from 
different sensors, such as fusing cameras and IMU for simultaneous localization and map-
ping (SLAM) computation, all the sensors’ measurements must be expressed with respect 
to a common frame of reference, which requires knowing the relative pose of the sensors. 
In this section, we introduce the basics of sensor calibration, and present an open source 
calibration Kalibr [8, 9]. For those readers who want to delve into the technical details of 
sensor calibration, please refer to [10].

6.3.1  Intrinsic Parameters

Intrinsic parameters are those that do not depend on the outside world and how the sensor 
is placed in it. For instance, in the camera pinhole model, let us use u and v to represent the 
2D projection of a feature point (e.g. a landmark) on the image plane, x, y, and z to represent 
the 3D position of the corresponding point in the world coordinate frame with origin at the 
focal point of the camera, and f to denote the focal length of the camera. In this simple 
model, the focal length f of the camera is an internal parameter which is usually unknown 
or only approximately known. The focal length should be estimated accurately before 
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employing this camera model in any sensor fusion algorithm. This problem is called camera 
intrinsic calibration. Similar to a camera, many other sensors such as wheel encoders, IMUs, 
LiDARs, etc., have internal parameters that must be calibrated before you can use them.

6.3.2  Extrinsic Parameters

Extrinsic parameters are those describing the position and orientation (these two are col-
lectively called a pose) of a sensor with respect to an external frame of reference. When the 
sensor’s pose needs to be determined with respect to a global frame of reference, the prob-
lem of estimating these parameters is often called global localization, and it can be solved 
using efficient algorithms that exist for various sensors [10].

For instance, in 3D camera localization, the 6 degree-of-freedom camera pose can be 
computed from observations of at least four non-collinear landmarks whose positions are 
known in the global frame of reference, or at least three known lines whose directions in 
the 3D space are linearly independent.

Also, in many systems, multiple sensors are rigidly attached to the same device. Fusing 
measurements from multiple sensors may be necessary in order to ensure that the system 
is observable, or to increase robustness against single-sensor failure. Fusion algorithms, 
however, can process measurements corresponding to geometric quantities and provided 
from multiple sensors only if these are spatially related. Therefore, we need to perform 
sensor-to-sensor transformation so as to express all of the measurements with respect to a 
common frame of reference. The process of estimating the sensor-to-sensor transformation 
is called extrinsic sensor-to-sensor calibration.

Consider the case of performing IMU-to-GPS transformation. Often, the IMU is installed 
close to the center of rotation of the vehicle to avoid saturation, while the GPS antenna is 
mounted on the outer body of the vehicle, to guarantee high quality signal reception. This 
setup inevitably results in a large distance between the IMU and GPS. Now, consider the 
case where the vehicle is standing still but rotating around the IMU. In this case the GPS 
measurements indicate nonzero linear velocity, but the integration of the measured linear 
acceleration by the IMU implies zero velocity. If we do not know the transformation 
between the GPS and the IMU, there is no way to resolve this contradiction and any algo-
rithm fusing measurements from these two sensors will fail.

6.3.3  Kalibr

Kalibr is an open-sourced toolbox that solves multiple commonly encountered calibration 
problems in robotics [8, 9]. First, Kalibr can be used for multiple camera calibration, such 
that intrinsic and extrinsic calibration parameters of camera systems with non-globally 
shared overlapping fields of view can be easily generated. Secondly, Kalibr can be used for 
visual-inertial calibration (camera-IMU). Visual-inertial hardware systems are commonly 
used for autonomous vehicle and robot localization tasks; Kalibr is a convenient tool to 
generate spatial and temporal calibration parameters of an IMU with respect to a camera 
system. Thirdly, Kalibr can be used for multiple IMU and IMU intrinsics calibration. 
Therefore, Kalibr is a very useful tool for calibration for visual inertial hardware systems 
widely used in autonomous vehicles and robots.
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6.3.3.1  Calibration Target
Kalibr supports three different calibration targets. It is recommended to use the Aprilgrid 
(Figure 6.4) due to the following benefits: partially visible calibration boards can be used 
such that the pose of the target is fully resolved. The targets are configured using YAML 
configuration files which have to be provided to the calibration tools. Grids can be down-
loaded on the Downloads page or created using the following script:

kalibr_create_target_pdf –h

6.3.3.2  Multiple Camera Calibration
Step 1. Collect images: Create a Robot Operating System (ROS) bag containing the raw 

image data. The camera system is fixed and the calibration target is moved in front of 
the cameras to obtain the calibration images. It is recommended to lower the fre-
quency of the camera streams to around 4 Hz while capturing the calibration data. 
This reduces redundant information in the dataset and thus lowers the runtime of the 
calibration.

Step 2. Run Kalibr: Run Kalibr with the following command. Note that the optimization can 
diverge right after processing the first few images due to a bad initial guess on the focal 
lengths. In this case just try to restart the calibration as the initial guesses are based on a 
random pick of images.

kalibr_calibrate_cameras --bag [filename. bag] --topics 
[TOPIC_0 ... TOPIC_N] --models [MODEL_0 ... MODEL_N] -- 
target [target.yaml]

Figure 6.4  Aprilgrid.
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Step 3. Understand the output: The following output is produced:

report-cam-%BAGNAME%.pdf: report in PDF format, which contains all plots for 
documentation.
results-cam-%BAGNAME%.txt: result summary as a text file.
camchain-%BAGNAME%.yaml: results in YAML format and this file can be used as 
an input for the camera-IMU calibrator.

6.3.3.3  Camera IMU Calibration
Prerequisites: before we can do camera-IMU calibration, the intrinsic parameters of the 
IMU need to be calibrated beforehand and its corrections need to be applied to the raw 
measurements. Also, YAML has to be created containing the following statistical properties 
for the accelerometers and gyroscopes: noise density, bias random walk.

Step 1. Collect images: Create a ROS bag containing the raw image streams and a CSV file 
containing the IMU measurements. The calibration target is fixed in this calibration and 
the camera-IMU system is moved in front of the target to excite all IMU axes. It is impor-
tant to ensure good illumination of the calibration target and to keep the camera shutter 
times low to avoid excessive motion blur. Good results have been obtained by using a 
camera rate of 20 Hz and an IMU rate of 200 Hz.

Step 2. Run Kalibr: Run Kalibr with the following command.

kalibr_calibrate_imu_camera --bag [filename. bag] --cam 
[camchain.yaml] --imu [imu.yaml] --target [target.yaml]

Step 3. Understand the output: The following output is produced:

report-imucam-%BAGNAME%.pdf: report in PDF format, which contains all plots 
for documentation.
results-imucam-%BAGNAME%.txt: result summary as a text file.
camchain-imucam-%BAGNAME%.yaml: results in YAML format, and this file is 
based on the input camchain.yaml with added transformations for all cameras with 
respect to the IMU.

6.3.3.4  Multi-IMU and IMU Intrinsic Calibration
Note that the extended version of Kalibr supports temporal and spatial calibration of sensor 
suites comprising multiple cameras and multiple IMUs. In addition, it allows for estimat-
ing IMU intrinsics as well as the displacement of the accelerometer y- and z-axis with 
respect to its x-axis.

Prerequisites: Before we can do camera-IMU calibration, the intrinsic parameters of the 
IMU need to be calibrated beforehand and its corrections need to be applied to the raw 
measurements. Also, YAML has to be created containing the following statistical properties 
for the accelerometers and gyroscopes: noise density and bias random walk.

Step 1. Collect images: Create a ROS bag containing the raw image streams and a CSV file 
containing the IMU measurements. The calibration target is fixed in this calibration and 
the camera-IMU system is moved in front of the target to excite all IMU axes. It is 
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important to ensure good illumination of the calibration target and to keep the camera 
shutter times low to avoid excessive motion blur. Good results have been obtained by 
using a camera rate of 20 Hz and an IMU rate of 200 Hz.

Step 2. Run Kalibr: Run Kalibr with the following command.

kalibr_calibrate_imu_camera --bag [filename.bag] --cam 
[camchain.yaml] --imu [imu.yaml] --target [target.yaml]

In addition, there are many additional options for the extended framework:

--IMU IMU_YAMLS [IMU_YAMLS ...]: This option now accepts a list of yaml files, one for 
each IMU comprised in the sensor suite. The first IMU will be the reference IMU (IMU0).

--IMU-models IMU_MODELS [IMU_MODELS ...]: This option holds a list of IMU models 
of the same length as the list provided to --IMU.

Currently supported models are calibrated, scale-misalignment, and scale-misalignment-
size-effect. The default is calibrated, which will also be assumed when no model is provided.
Step 3. Understand the output: the following output is produced:

report-imucam-%BAGNAME%.pdf: The report pdf now contains the calibration 
summary in text form as well as result plots. Where residuals are plotted, three 
sigma bounds given the assumed noise process strengths provided in the respective 
yaml files or through the option --reprojection-sigma are displayed to foster an 
intuition about the correctness of the noise parameters and models.
results-imucam-%BAGNAME%.txt: The summary of results now also contains 
results specific to the chosen IMU models. The summary is identical to the one 
found in the pdf.
imu-%BAGNAME%.yaml: IMU calibration results in YAML format. The content of 
this file depends on the models chosen via the option --IMU-models.

6.4  Localization with Computer Vision

VSLAM technologies can be utilized for autonomous vehicle and robot localization tasks. 
VSLAM has been an active research topic for many years because it provides two funda-
mental components for many applications: where I am, and what I see [11]. While the 
theories for SLAM matured over the years, the challenge remains for VSLAM to adapt to 
real-world applications.

6.4.1  VSLAM Overview

VSLAM systems are highly application-specific such that each application may impose a 
different set of requirements. For example, a mobile robot requires mapping and localiza-
tion in a large-scale environment, such as an entire building, which poses challenges for 
loop closing and large-scale optimization. On the other hand, augmented reality (AR) and 
virtual reality (VR) applications require high-precision, jitter-free position tracking with 
low latency to provide immersive user experiences when viewing the virtual contents. For 
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autonomous vehicles, localization using multiple sensors to handle various environments 
is essential, which poses challenges for real-time sensor fusion for tracking. Thus, the chal-
lenges for SLAM to work in real-world applications become the choice of sensors, the 
design of the system for the targeting application, and the implementation details.

SLAM approaches evolve with the development of sensors and computation platforms. 
At first, SLAM was mostly applied on robots equipped with wheel encoders and range sen-
sors. Such a SLAM system uses a Kalman filter [12] with the assumption of a linearly 
approximated model with Gaussian noise to jointly estimate the robot pose and a map (e.g. 
a set of landmarks), or a particle filter [13] to build multiple hypotheses to localize within 
a global map.

Passive sensors, like CCD/CMOS sensors, are becoming cost effective, better in quality, 
and ready for mass production, and therefore, many VSLAM approaches using sparse fea-
tures (e.g. PTAM [14], ORB-SLAM [15]) have been developed. While most VSLAM 
approaches build a sparse point cloud with image features, some use image-to-image align-
ment to directly estimate pose and depth (e.g. LSD-SLAM [16]), which could produce a 
denser map.

VIO is a sensor-fusion method of performing localization tasks. The combination of 
vision sensors and IMUs is especially effective because the IMU provides high frame rate 
pose prediction while cameras provide accurate pose correction and map construction. 
There are two categories of visual-inertial systems: tightly coupled [17] and loosely coupled 
[18]. A tightly coupled system jointly optimizes over both inertial and visual sensor meas-
urements, which provides higher accuracy in both mapping and tracking. A loosely cou-
pled system provides flexibility to the combination of sensors with lower requirement of 
timestamp synchronization, and typically requires lower computational cost.

6.4.2  ORB-SLAM2

ORB-SLAM2 is a real-time SLAM library for monocular, stereo and RGB-D cameras that 
computes the camera trajectory and a sparse 3D reconstruction. It is able to detect loops 
and relocalize the camera in real time [19].

In [20], the authors provide examples to run the SLAM system in the KITTI dataset as 
stereo or monocular, in the TUM dataset as RGB-D or monocular, and in the EuRoC dataset 
as stereo or monocular. The authors also provide a ROS node to process live monocular, 
stereo or RGB-D streams. The library can be compiled without ROS. In addition, ORB-
SLAM2 provides a graphical user interface to change between a SLAM mode and 
Localization mode.

6.4.2.1  Prerequisites
There are a few prerequisites before you can install ORB-SLAM2 on your own system. 
First, ORB-SLAM2 has been successfully run on a system with Ubuntu 14.04 or 16.04. 
Secondly, a C++11 or C++0x compiler is required as ORB-SLAM2 uses the new thread 
and chrono functionalities of C++11. Thirdly, ORB-SLAM2 uses Pangolin for visualization 
and user interface. Fourthly, ORB-SLAM2 uses OpenCV for image and feature processing. 
Fifthly, ORB-SLAM2 uses Eigen3 for matrix computation, which is required by g2o for 
nonlinear optimization. Sixthly, ORB-SLAM2 uses DBoW2 and g2o, which are already 
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included in ORB-SLAM2’s third party folder. Note that the DBoW2 library is for perform-
ing place recognition and the g2o library is for performing nonlinear optimizations.

6.4.2.2  Building the ORB-SLAM2 Library
Next, you can start building the ORB-SLAM2 library locally. First, you can clone the 
repository by using the following command:

  git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2

ORB-SLAM2 provides a very-easy-to-use script build.sh to build the third party libraries 
as well as ORB-SLAM2. Before you build, please make sure you have installed all the 
required dependencies listed in Section 6.4.2.1. Then you can execute:

cd ORB_SLAM2 
chmod +x build.sh 
./build.sh 

These steps will create libORB_SLAM2.so in the lib folder and the executables mono_
tum, mono_kitti, rgbd_tum, stereo_kitti, mono_euroc, and stereo_euroc in the Examples 
folder.

6.4.2.3  Running Stereo Datasets
KITTI is a dataset for algorithm developments in autonomous driving [21]. KITTI contains 
six hours of traffic scenarios at 10–100 Hz using a variety of sensor modalities such as 
high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a 
high-precision GPS/IMU inertial navigation system. The scenarios presented in KITTI are 
diverse, capturing real-world traffic situations, and range from freeways over rural areas to 
inner-city scenes with many static and dynamic objects. In addition, sensor data in KITTI 
is calibrated, synchronized, and timestamped, and both rectified and raw image sequences 
are provided.

In this subsection we show how to run ORB-SLAM2 on KITTI’s stereo image dataset. 
The dataset can be downloaded from the following link:

http://www.cvlibs.net/datasets/kitti/eval_odometry.php

Then you can execute the following command, note that you can change KITTIX.yaml 
to  KITTI00-02.yaml, KITTI03.yaml, or KITTI04-12.yaml for sequence 0–2, 3, and 4–12, 
respectively. Then you can change PATH_TO_DATASET_FOLDER to the uncompressed 
dataset folder, and change SEQUENCE_NUMBER to 00, 01, 02, …, 11.

./Examples/Stereo/stereo_kitti Vocabulary/ORBvoc.txt Examples/Stereo/KITTIX.yaml 
PATH_TO_DATASET_FOLDER/dataset/sequence

6.5  Perception with Computer Vision

In this section, we introduce two techniques for perception using computer vision: 
estimating depth from binocular imagery and object instance segmentation. Using object 
instance segmentation, you can extract semantic information of a detected object, such as 
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a vehicle or a pedestrian. On top of that, with depth estimation, you can extract the depth 
information of the detected objects. Combining these two techniques, you can correctly 
identify spatial and semantic information of all interested objects in your environment, 
which is crucial for the planning and control module to make intelligent decisions in real 
time.

In order to be of practical use for applications such as autonomous driving, binocular 
depth estimation methods should run at a fast speed, e.g. >30 FPS. On the other hand, 
since depth errors increase quadratically with the distance, high-resolution images are 
often needed to obtain accurate 3D representations [22] but high resolution also imposes 
high computation burden. Therefore, the key challenge is to achieve high speed without 
sacrificing depth quality.

Stereo algorithms based on local correspondences are typically fast but require an ade-
quate choice of window size [23]. Hence this leads to a trade-off between low matching 
ratios for small window sizes and border bleeding artifacts for larger ones. As a conse-
quence, poorly textured and ambiguous surfaces cannot be matched consistently. On the 
other hand, dense and accurate matching can be obtained by global methods, which 
enforce smoothness explicitly by minimizing an MRF-based energy function [24]. However, 
global methods are often computationally expensive. Later in this section, we introduce 
ELAS (Efficient LArge-scale Stereo), a binocular depth estimation approach for fast match-
ing of high-resolution images [25].

On object detection, R-CNN is a bounding-box object detection approach to attend to a 
manageable number of candidate object regions and evaluate convolutional networks 
independently on each region of interest (ROI) [26]. Faster R-CNN advanced R-CNN by 
learning the attention mechanism with a Region Proposal Network [27]. In these methods, 
segmentation precedes recognition, which is slow and less accurate. In Section 6.5.2 we 
introduce Mask R-CNN, which is based on parallel prediction of masks and class labels, 
which is simpler and more flexible [28].

6.5.1  ELAS for Stereo Depth Perception

As introduced in [25], ELAS is a generative probabilistic model for stereo matching, which 
allows for dense matching with small aggregation windows by reducing ambiguities on the 
correspondences. ELAS builds a prior over the disparity space by forming a triangulation 
on a set of robustly matched correspondences, named “support points.” Since the prior is 
piecewise linear, ELAS does not suffer in the presence of poorly textured and slanted sur-
faces. Hence, ELAS is an efficient algorithm that reduces the search space and can be easily 
parallelized. The authors of ELAS demonstrated that ELAS is able to achieve state-of-the-
art performance with significant speedups of up to three orders of magnitude when com-
pared with prevalent approaches.

LIBELAS (LIBrary for Efficient LArge-scale Stereo matching) is a cross-platform C++ 
library for computing disparity maps of large images [29]. You can input to a pair of recti-
fied grayscale stereo images of the same size to LIBELAS for it to generate the correspond-
ing disparity map.

Before you can compile LIBELAS, make sure you have installed CMake (available at: 
http://www.cmake.org), which is required to compile LIBELAS using C++. Assuming 
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that you are using a Linux system, you can perform the following steps to compile 
LIBELAS:

Move to LIBELAS root directory

Type 'cmake .'

Type 'make'

Run './elas demo'

The above steps will compute disparity maps for images from the “img” directory.

6.5.2  Mask R-CNN for Object Instance Segmentation

In essence, Mask R-CNN extends Faster R-CNN by adding a branch for predicting segmen-
tation masks on each ROI, in parallel with the existing branch for classification and bound-
ing box regression [28]. Mask R-CNN is simple to implement and train given the Faster 
R-CNN framework, which facilitates a wide range of flexible architecture designs. 
Additionally, the mask branch only adds a small computational overhead, enabling a fast 
system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of Faster R-CNN, yet constructing the 
mask branch properly is critical for good results. Most importantly, Faster RCNN was not 
designed for pixel-to-pixel alignment between network inputs and outputs. Specifically, 
Mask R-CNN proposes a simple, quantization-free layer, called ROIAlign, which faithfully 
preserves exact spatial locations and improves mask accuracy by 10–50%. In addition, Mask 
R-CNN decouples mask and class prediction, such that it predicts a binary mask for each 
class independently, without competition among classes, and relies on the network’s ROI 
classification branch to predict the category.

An open-sourced version of Mask R-CNN can be found in [30], which contains an imple-
mentation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates 
bounding boxes and segmentation masks for each instance of an object in the image. It is 
based on a Feature Pyramid Network (FPN) and a ResNet101 backbone. The code reposi-
tory includes source code of Mask R-CNN built on FPN and ResNet101, training code for 
MS COCO, pre-trained weights for MS COCO, parallel model class for multi-GPU training, 
and evaluation on MS COCO metrics (application processor).

Installation of this code repository can be done with the following steps:

git clone https://github.com/matterport/Mask_RCNN
pip3 install -r requirements.txt
python3 setup.py install
Download pre-trained COCO weights (mask_rcnn_coco.h5) from https://github.com/

matterport/Mask_RCNN/releases

To train or test on MS COCO install pycocotools from https://github.com/waleedka/
coco.
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6.6  The DragonFly Computer Vision Module

As shown in Figure 6.5, the PerceptIn DragonFly system utilizes computer-vision-based 
sensor fusion to achieve reliable localization and perception results to enable outdoor low-
speed autonomous vehicles and robots [31, 32]. Specifically, DragonFly integrates four 
hardware-synchronized high-definition global-shutter cameras (a stereo pair in the front, 
and a stereo pair in the back), an IMU device, and a Jetson TX1 computing module, as well 
as an interface to connect to the GNSS receiver module.

Different from other off-the-shelf computer vision modules, the DragonFly module not 
only provides hardware synchronization for the camera data but for the IMU data as well. 
Thus, it is SLAM ready such that developers can easily perform visual SLAM computations 
with this device. Also, the stereo pairs of the DragonFly module have a baseline of 50 cm, 
which is significantly longer than other off-the-shelf computer vision modules. This allows 
the DragonFly module to perform long-range perception to detect objects as far as 300 m 
away [33]. The multiple sensor and long baseline design makes calibration of the DragonFly 
module difficult. A detailed instruction video on the calibration of the DragonFly modules 
can be found in [34].

6.6.1  DragonFly Localization Interface

Internally, the DragonFly sensor module runs PerceptIn’s proprietary VIO algorithm to 
provide accurate vehicle position and heading in real time. However, VIO suffers from 
cumulative errors, such that the longer the distance the vehicle travels, the more inaccurate 
the position. Hence, VIO alone is not sufficient to provide reliable and accurate position 
updates.

IMU for Visual Inertial
Odometry

GNSS Module Powered by
NVIDIA JETSON

4 HD Global
Shutter Camera

Figure 6.5  DragonFly sensor module.
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To solve this problem, we can perform sensor fusion on real-time kinematic (RTK) GNSS 
and VIO results. When the GNSS signal is good, RTK GNSS provides very accurate position 
updates, and these updates can correct and alleviate the VIO cumulative errors. On the 
other hand, when the GNSS signal is bad and when multipath problems occur, VIO can still 
provide accurate position updates. In the past few years, we have verified the effectiveness 
of this system design.

The following data structure shows how we fuse VIO and GNSS results. VIO continu-
ously provides position (tx, ty, tz) and quaternion updates (qx, qy, qz, qw) relative to the 
starting location. Each time these results are updated, we transform them into Universal 
Transverse Mercator (UTM) format (utm_x, utm_y, heading), which is an absolute coordi-
nate commonly used by GNSS devices.

When we get a good GNSS signal, the GNSS updates are directly fed to the planning and 
control module, and also fed to the extended Kalman filter in the localization module to 
reduce VIO errors. When the GNSS signal is suboptimal, the VIO updates are transformed 
to UTM format and then fed to the planning and control module.

typedef struct PILocalizationVioMsg_

{

 // Sensor module's timestamp, in the unit of second

 double stamp;

 double gstamp; // gps global timestamp

 // position of DragonFly under the world coordinate

 double tx;

 double ty;

 double tz;

 // orientation (quaternion) of DragonFly under the world coordinate

 double qx;

 double qy;

 double qz;

 double qw;

 // UTM coordinates, valid when gnss_fusion is enabled

 double utm_x;

 double utm_y;

 int utm_zone;

 double gheading;     // heading from GPS

 // gnss fusion pos_status

 int fusion_mode;     // 0: gps bypass; 1: vio fusion

 int pos_status;      // position status under gps bypass mode

 int heading_status;  // heading status under gps bypass mode

 double accuracy;      // 0.0 under gps bypass mode; represents 

the accuracy 

                      // under vio fusion mode.

} PILocalizationVioMsg;
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6.6.2  DragonFly Perception Interface

Internally, the DragonFly sensor module runs PerceptIn’s proprietary perception algorithm 
to provide accurate obstacle spatial and semantic information. By spatial information, we 
mean that we use stereo vision to detect the distance of an object relative to the center of 
the front of the vehicle. By semantic information, we mean that we use deep learning mod-
els to extract the types of obstacles (e.g. pedestrians, bikes, vehicles, etc.). By combining this 
information, the perception system can understand the distances of different types of 
obstacles relative to the current vehicle. Then the planning and control system can com-
bine this information, along with the current vehicle status (e.g. speed) to make intelligent 
decisions to guarantee the safety of the vehicle.

In addition, the perception system combines active perception results from the 
DragonFly sensor module, along with passive perception results from radars and sonars 
to provide a comprehensive understanding of the vehicle’s current surroundings.

The Perception application program interface (API) along with the associated data struc-
tures are:

Perception API:

unsigned int GetObstacles(Perception_Obstacles *perceptionObs);

Return value:

The return value is a 32bit unsigned int. The meaning of each type 
in the return data is defined as follows,

reserved   |  sonar       |  radar     |  vision
bit[31-24]  |  bit[23-16]  |  bit[15-8]  |  bit[7-0]

Data structure:

typedef struct _PerceptionObstacle {
 SensorType sensor_type;         // SensorType: Enum Type to represent 
                   // Radar, Sonar, Vision
 int sensor_id;                  // There are multiple Radars/Sonars
 int obj_id;                     // Obstacle id
 double timestamp;
 Pose3D pose;                  // Obstacle position in vehicle
                           // coordinate
 Arc2D arc;                      // Sonar output arc
 Velocity3D velocity;             // Obstacle velocity
 float power;                    // Reflection power of Radar
 ObstacleType obs_type;          // ObstacleType: Enum type to represent 
                   // the class of an obstacle
 double confidence;             // Confidence level of the detection type 
                   // and result in terms of percentage
 std::vector<Point2D> obs_hull;     // 2D Vision detected obstacle

 // ostream operator overload enable std::cout
 friend std::ostream &operator<<(std::ostream &os,
                                 const _Perception_Obstacle &pObs);
} Perception_Obstacle, *PPerception_Obstacle;
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Details of the definitions inside struct Perception_Obstacle:

typedef struct _Pose3D {
  double x;        // unit: meter
  double y;        // unit: meter
  double z;        // unit: meter
  double heading;  // in vehicle coordinate, unit: radian
} Pose3D, *PPose3D;

typedef struct _Arc2D {
  // (x, y) is center of the arc.
  double x;            // unit: meter
  double y;            // unit: meter
  double start_angle;  // unit: radian
  double end_angle;    // unit: radian
  double radius;       // unit: meter
} Arc2D, *PArc2D;

typedef struct _Velocity3D {
  double vel_x;  // unit: meter/s
  double vel_y;  // unit: meter/s
  double vel_z;  // unit: meter/s
} Velocity3D, *PVelocity3D;

enum ObstacleType : char {
  UNKNOWN = 0,
  UNKNOWN_MOVABLE = 1,
  UNKNOWN_UNMOVABLE = 2,
  PEDESTRIAN = 3,  // Pedestrian
  BICYCLE = 4,     // bike, motor bike.
  VEHICLE = 5,     // Passenger car, bus or truck.
};

6.6.3  DragonFly+

To achieve affordability and reliability, we have four basic requirements for the next 
generation of DragonFly:

●● Modular: Independent hardware module for computer-vision-based localization and 
map generation.

●● SLAM ready: Hardware synchronization of four cameras and IMU.
●● Low power: The total power budget for this system is less than 10 W.
●● High performance: DragonFly needs to process four-way 720P YUV images with >30 FPS.
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Note that, with this design, at 30 FPS, it generates more than 100 MB of raw image data per 
second and thus imposes tremendous stress on the computing system. After initial profiling, 
we found out that the image processing frontend (e.g. image feature extraction) accounts 
for >80% of the processing time.

To achieve the aforementioned design goals, we designed and implemented DragonFly+, 
a field-programmable gate array (FPGA)-based real-time localization module [35]. As 
shown in Figure  6.6, the DragonFly+ system features: (i) hardware synchronizations 
among the four image channels as well as the IMU; (ii) a direct IO architecture to reduce 
off-chip memory communication; and (iii) a fully pipelined architecture to accelerate the 
image processing frontend of our localization system. In addition, parallel and multiplex-
ing processing techniques are employed to achieve a good balance between bandwidth and 
hardware resource consumption.

We have thoroughly evaluated the performance and power consumption of our proposed 
hardware, and compared it against a Nvidia TX1 GPU system on chip (SoC), as well as an 
Intel core i7 processor. The results demonstrate that, for processing four-way 720p images, 
DragonFly+ achieves 42 FPS performance while consuming only 2.3 W of power, thus 
exceeding our design goals. In comparison, Nvidia Jetson TX1 GPU SoC achieves 9 FPS at 
7 W and Intel Core i7 achieves 15 FPS at 80 W. Therefore, DragonFly+ is 3× more power 
efficient and delivers 5× the computing power compared with Nvidia TX1 and is 34× more 
power efficient and delivers 3× the computing power compared with Intel Core i7.
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7

7.1  Introduction

As shown in Figure 7.1, in order to generate real‐time vehicle motions, the planning and 
control module combines perception inputs, which detect dynamic obstacles in real time, 
localization inputs, which generate real‐time vehicle poses, and mapping inputs, which 
capture road geometry and static obstacles, and then based on these inputs, generates 
action plans for the vehicle.

As detailed in [1, 2], a typical planning and control system has the following architecture 
(Figure 7.2). First, as the user enters the destination, the routing module checks the map 
for road network information and generates a route. Then the route is fed to the behavioral 
planning module, which checks the traffic rules to generate motion specifications. Next, 
the generated route along with motion specifications are passed down to the motion plan-
ner, which combines real‐time perception and localization information to generate trajec-
tories. Finally, the generated trajectories are passed down to the control system, which 
reactively corrects errors in the execution of the planned motions.

In this chapter, we delve into the planning and control module, and introduce routing 
planning algorithms, behavioral planning algorithms, motion planning algorithms, and 
feedback control algorithms. Also, we present a real‐world case study of Apollo’s Iterative 
Expectation–Maximization (EM) Planner, which was designed for L4 autonomous driving 
passenger vehicles. In addition, we introduce PerceptIn’s planning and control framework, 
which was developed to enable low‐speed autonomous driving in controlled environments, 
such as university campuses, entertainment parks, industrial parks, etc.

7.2  Route Planning

The first submodule is the route planner, which selects an optimal route by checking the 
road network information from the map. Note that representing the road network as a 
directed graph with edge weights corresponding to the cost of traversing a road segment, 
such a route can be formulated as the problem of finding a minimum‐cost path on a road 
network graph.

Planning and Control
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7.2.1  Weighted Directed Graph

In formal terms, a directed graph is an ordered pair G = (V, E), where V is a set whose 
elements are called vertices; and E is a set of ordered pairs of vertices, called directed edges. 
It differs from an undirected graph, in that the latter is defined in terms of unordered pairs 
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Figure 7.1  Modular design architecture.
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of vertices, which are usually called edges. An example of a weighted directed graph is 
shown in Figure 7.3.

Weighted directed graphs can be used to represent road networks, for instance, a vertex 
can represent San Francisco, another vertex can represent New York, and an edge connect-
ing these two vertices records the distance between these two cities. A routing algorithm 
can then be applied to this road network graph to search for the shortest route between the 
two cities.

7.2.2  Dijkstra’s Algorithm

The first shortest‐path routing algorithm we introduce here is Dijkstra’s algorithm  [3], 
which works by visiting vertices in the graph starting with the object’s starting point. It 
then repeatedly examines the closest not‐yet‐examined vertex, adding its vertices to the set 
of vertices to be examined. It expands outwards from the starting point until it reaches 
the goal.
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Figure 7.3  Weighted graph data structure.

Figure 7.4  Dijkstra’s algorithm pseudocode.
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In detail, as shown in Figure 7.4, Dijkstra’s algorithm continuously calculates the short-
est distance beginning from a starting point, and excludes longer distances when making 
an update. Dijkstra’s algorithm consists of the following steps:

1.	 Initialization of all nodes with distance “infinite”; initialization of the starting node with 0.
2.	 Marking the distance of the starting node as permanent, all other distances as temporary.
3.	 Setting of the starting node as active.
4.	 Calculation of the temporary distances of all neighbor nodes of the active node by sum-

ming up its distance with the weights of the edges.
5.	 If such a calculated distance of a node is smaller than the current one, update the dis-

tance and set the current node as antecessor. This step is also called “update” and is 
Dijkstra’s central idea.

6.	 Setting of the node with the minimal temporary distance as active. Mark its distance as 
permanent.

7.	 Repeating steps 4–7 until there are no nodes left with a permanent distance, whose 
neighbors still have temporary distances.

7.2.3  A* Algorithm

Although Dijkstra’s algorithm guarantees to find a shortest path, when there is a large 
graph, Dijkstra’s algorithm can be extremely computationally expensive. A much faster 
algorithm, called the Greedy Best‐First‐Search algorithm works in a similar way: instead of 
selecting the vertex closest to the starting point, it selects the vertex closest to the goal. 
However, Greedy Best‐First‐Search relies on a heuristic function and is not guaranteed to 
find the shortest path.

In this subsection, we introduce the A* algorithm, which combines the benefits of 
Dijkstra’s algorithm and the Greedy Best‐First‐Search algorithm [4]. A* is like Dijkstra’s 
algorithm in that it can be used to find a shortest path. A* is also like Greedy Best‐First‐Search 
in that it can use a heuristic function to guide itself.

Dijkstra’s algorithm wastes time exploring in directions that are not promising. Greedy 
Best‐First‐Search explores in promising directions but it may not find the shortest path. As 
shown in Figure 7.5, the A* algorithm uses both the actual distance from the start and the 
estimated distance to the goal. A great introduction to the A* algorithm can be found in [5].

7.3  Behavioral Planning

After a route plan has been found, the autonomous vehicle must be able to navigate the 
selected route and interact with other traffic participants according to driving conventions 
and rules of the road. Given a sequence of road segments specifying the selected route, the 
behavioral planner is responsible for selecting an appropriate driving behavior at any point 
in time based on the perceived behavior of other traffic participants, road conditions, and 
signals from infrastructure.

For instance, when an autonomous vehicle is reaching the stop line before an intersec-
tion, the behavioral planner will command the vehicle to stop, observe the behavior of 
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other vehicles, bikes, and pedestrians at the intersection, and let the vehicle proceed once 
it is its turn to go.

Real‐world driving, especially in an urban setting, is however characterized by uncer-
tainty over the intentions of other traffic participants. The problem of intention prediction 
and estimation of future trajectories of other vehicles, bikes, and pedestrians has also been 
studied. Among the proposed solution techniques are machine learning based techniques, 
e.g. Gaussian mixture models (GMMs) [6].

The uncertainties in the behaviors of other traffic participants (e.g. generated by GMMs), 
is then commonly considered in the behavioral layer for decision making using probabilistic 
planning formalisms, such as Markov decision processes (MDPs). For instance, the partially 
observable Markov decision process (POMDP) framework can be applied to model 
unobserved driving scenarios and pedestrian intentions explicitly, and generates specific 
approximate solution strategies [7].

Specifically, a POMDP is a generalization of a MDP. A POMDP models an agent decision 
process in which it is assumed that the system dynamics are determined by an MDP but the 
agent cannot directly observe the underlying state. Instead, it must maintain a probability 
distribution over the set of possible states, based on a set of observations and observation 
probabilities, and the underlying MDP.

7.3.1  Markov Decision Process

When we are confronted with a decision, there can be a number of different actions that we 
can choose from, and each leads to a different outcome. Choosing the best action requires 

Figure 7.5  A* algorithm pseudocode.
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thinking about more than just the immediate effects of an action. The immediate effects 
are often easy to see; however the long‐term effects are not always as clear. Thus actions 
with poor immediate effects may have better long‐term ramifications.

MDP can be used to model the decision process so that we can automate this process. By 
using MDP to formalize the decision‐making process, a number of algorithms can be used to 
automatically solve the decision problem. The four components of an MDP model are: a set 
of states, a set of actions, the effects of the actions, and the immediate value of the actions.

●● S: a set of states. The state is the way the world currently exists, and an action will have 
the effect of changing the state of the world. If we think about the set of every possible 
way the world could be, then this is the set of state of the world. Each of these states 
would be a state in the MDP.

●● A: a set of actions. The problem is to know which of the available actions to take in for a 
particular state of the world.

●● T: transitions. The transitions specify how each of the actions change the state. Since an action 
could have different effects, depending upon the state, we need to specify the action’s effect for 
each state in the MDP. Note that in MDP the effects of an action can be probabilistic.

●● R: immediate rewards. If we want to automate the decision‐making process, then we 
must be able to have some measure of an action’s value so that we can compare different 
actions. We specify the immediate value for performing each action in each state.

The solution to an MDP is called a policy and it simply specifies the best action to take for 
each of the states. To derive a policy, we need a value function to optimize for. A value func-
tion specifies a numerical value for each state. Therefore, with MDPs we have a set of 
states, a set of actions to choose from, an immediate reward function, and a probabilistic 
transition matrix. Our goal is to derive a mapping from states to actions, which represents 
the best actions to take for each state.

7.3.2  Value Iteration Algorithm

As shown in Figure 7.6, value iteration is a method of computing an optimal MDP policy 
and its value [8]. The value iteration algorithm computes this value function by finding a 
sequence of value functions, each one derived from the previous one.

The value iteration algorithm starts by trying to find the value function for a horizon 
length of 1. This will be the value of each state given that we only need to make a single 
decision. There is not much to do to find this in an MDP. Recall that we have the immediate 
rewards, which specify how good each action is in each state. Since our horizon length is 1, 
we can simply look at the immediate rewards and choose the action with the highest imme-
diate value for each state.

The next step, which is the second iteration of the algorithm, is to determine the value 
function for a horizon length of 2. The value of acting when there are two steps to go, is the 
immediate reward for the immediate action you will take, plus the value of the next action 
you choose. Conveniently, we have already computed the values of each state for a horizon 
length of 1. So, to find the value for horizon 2, we can just add the immediate effects of each 
of the possible actions to the already computed value function to find the action with the 
best value given that there will be two decisions to be made.
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Now the algorithm iterates again; it finds the horizon 3 value function using the horizon 2 
value function. This iterates until we have found the value function for the desired horizon.

7.3.3  Partially Observable Markov Decision Process (POMDP)

The main difference between a MDP and a POMDP is in whether or not we can observe the 
current state of the process. In a POMDP we add a set of observations to the model. So 
instead of directly observing the current state, the state gives us an observation which pro-
vides a hint about what state it is in.

Note that the observations can be probabilistic such that we need to specify an observa-
tion model. This observation model simply tells us the probability of each observation for 
each state in the model. Since we have no direct access to the current state, our decisions 
require keeping track of the entire history of the process. Specifically, the history at a given 
point in time is composed of our knowledge about our starting situation, all actions per-
formed, and all observations seen.

Maintaining a probability distribution over all of the states provides us with the same 
information as if we maintained the complete history. In a POMDP we have to maintain 
this probability distribution over states. When we perform an action and make an observa-
tion, we have to update the distribution. Updating the distribution involves using the tran-
sition and observation probabilities.

As illustrated in Figure 7.7, a POMDP can be formalized as follows:

●● S, a set of states of the world.
●● A, a set of actions.
●● O, a set of possible observations.
●● P(S0), which gives the probability distribution of the starting state.

Figure 7.6  Value iteration algorithm pseudocode.
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●● P(S′|S, A), which specifies the dynamics – the probability of getting to state S′ by doing 
action A from state S.

●● R(S, A, S′), which gives the expected reward of starting in state S, doing action A, and 
transitioning to state S′.

●● P(O|S), which gives the probability of observing O given the state is S.

7.3.4  Solving POMDP

Before solving a POMDP, let us first understand the concept of a “belief state,” which is a 
probability distribution over all possible model states. Assume that there are only two pos-
sible states, 0 and 1, and the belief state at time t is Pr(s = 0) = 0.75 and Pr(s = 1) = 0.25.

If we are given a belief state, b, for time “t,” and we perform an action “a” and get obser-
vation “z” we can compute a new belief state for time “t + 1” by simply applying Bayes’ rule 
and using the following equation, where S = set of states, A = set of actions, Z = set of 
observations, T(s, a, s′): S × A × S → Pr(s′|s, a), O(s, a, z): S × A × Z→Pr(z|s, a), R(a, s): S × A.
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Figure 7.7  Example of a POMDP.
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Then we could compute exactly how much expected reward we could achieve from any 
given belief state, and for each belief state you get a single expected value, which if done for 
all belief states, would yield a value function defined over the belief space. Then using the 
value iteration algorithm presented in Figure  7.6, we could solve a POMDP. Interested 
readers who want to explore advanced POMDP algorithms, papers, examples, and source 
codes can find more information at www.pomdp.org.

7.4  Motion Planning

When the behavioral layer decides on the driving behavior to be performed in the current 
context, which could be, e.g. cruise‐in‐lane, change lane, or turn right, the selected behav-
ior has to be translated into a path or trajectory that can be tracked by the low‐level feed-
back controller.

The resulting path or trajectory must be dynamically feasible for the vehicle, comfortable 
for the passenger, and avoid collisions with obstacles detected by the onboard sensors. The 
task of finding such a path or trajectory is the responsibility of the motion planning 
system.

Exact solutions to the motion planning problem are in most cases computationally 
intractable. Thus, numerical approximation methods are typically used in practice [1]. 
Among the most popular numerical approaches are variational methods that pose the 
problem as nonlinear optimization in a function space (www.pomdp.org), graph‐search 
approaches that construct graphical discretization of the vehicle’s state space and search 
for a shortest path using graph search methods [9], and incremental tree‐based approaches 
that incrementally construct a tree of reachable states from the initial state of the vehicle 
and then select the best branch of such a tree [10].

In this section, we present rapidly exploring random tree (RRT) and RRT* algorithms, 
both are incremental tree‐based approaches widely used in motion planning.

7.4.1  Rapidly Exploring Random Tree

As shown in Figure 7.8, a RRT is an algorithm designed to efficiently search nonconvex, 
high‐dimensional spaces by randomly building a space‐filling tree. The tree is constructed 
incrementally from samples drawn randomly from the search space and is inherently 
biased to grow towards large unsearched areas of the problem. RRTs can be viewed as a 
technique to generate open‐loop trajectories for nonlinear systems with state constraints. 
A detailed discussion of RRT algorithms can be found in [11].

As shown in Figure 7.9, RRT grows a tree rooted at the starting configuration by using 
random samples from the search space. As each sample is drawn, a connection is attempted 
between it and the nearest state in the tree. If the connection is feasible, this results in the 
addition of the new state to the tree.

With uniform sampling of the search space, the RRT tree preferentially expands towards 
large unsearched areas. The length of the connection between the tree and a new state is 
frequently limited by a growth factor. If the random sample is further from its nearest state 
in the tree than this limit allows, a new state at the maximum distance from the tree along 
the line to the random sample is used instead of the random sample itself.
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The random samples can then be viewed as controlling the direction of the tree growth 
while the growth factor determines its rate. This maintains the space‐filling bias of the RRT 
while limiting the size of the incremental growth.

Note that RRT growth can be biased by increasing the probability of sampling states from 
a specific area. Most practical implementations of RRTs make use of this to guide the 
search towards the planning problem goals. This is accomplished by introducing a small 
probability of sampling the goal to the state sampling procedure. The higher this probabil-
ity, the more greedily the tree grows towards the goal.

7.4.2  RRT*

Although RRT has been shown to work well in practice and possesses theoretical guarantees 
such as probabilistic completeness, it has been proved that RRT may not converge to optimal 

Figure 7.8  RRT algorithm illustration.

Figure 7.9  RRT algorithm pseudocode.
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values. RRT* is an improved version of RRT, which is provably asymptotically optimal such 
that the cost of the returned solution converges almost surely to the optimum [9].

As shown in Figure 7.10, the basic principle of RRT* is the same as RRT, but two key 
additions to the algorithm result in significantly different results [12]. First, RRT* records 
the distance each vertex has traveled relative to its parent vertex. This is referred to as the 
cost of the vertex. After the closest node is found in the graph, a neighborhood of vertices 
in a fixed radius from the new node are examined. If a node with a lower cost than the 
proximal node is found, the lower‐cost node replaces the proximal node. The effect of this 
feature can be seen with the addition of fan‐shaped twigs in the tree structure. The cubic 
structure of RRT is eliminated.

The second difference RRT* adds is the rewiring of the tree. After a vertex has been con-
nected to the lowest‐cost neighbor, the neighbors are again examined. Neighbors are 
checked if being rewired to the newly added vertex will make their cost decrease. If the cost 
does indeed decrease, the neighbor is rewired to the newly added vertex. This feature makes 
the path smoother.

7.5  Feedback Control

In order to execute the reference path or trajectory from the motion planning system a 
feedback controller is used to select appropriate actuator inputs to carry out the planned 
motion and correct tracking errors. The tracking errors generated during the execution of 
a planned motion are due in part to the inaccuracies of the vehicle model.

As shown in Figure 7.11, the role of a feedback controller is to stabilize the reference path 
or trajectory in the presence of modeling error and other forms of uncertainty. Specifically, 
the controller compares measured system output against reference to generate measured 
errors. Based on measured errors, the controller then generates a new system input.

Figure 7.10  RRT* algorithm pseudocode.
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7.5.1  Proportional–Integral–Derivative Controller

A proportional–integral–derivative (PID) controller is a control loop feedback mechanism 
widely used in autonomous driving [13]. As shown in Figure 7.12, a PID controller con-
tinuously calculates an error value as the difference between a desired setpoint and a meas-
ured process variable and applies a correction based on proportional, integral, and derivative 
terms (denoted P, I, and D, respectively).

A common example of a PID controller is the cruise control on a car, where ascending a 
hill would lower speed if only constant engine power is applied. The controller’s PID algo-
rithm restores the measured speed to the desired speed with minimal delay and overshoot, 
by increasing the power output of the engine.

The distinguishing feature of the PID controller is the ability to use the three control 
terms of proportional, integral, and derivative influence on the controller output to apply 
accurate and optimal control. The controller attempts to minimize the error over time by 
adjustment of a control variable such as the opening of a control valve, to a new value 
determined by a weighted sum of the control terms. The pseudocode of PID is shown in 
Figure 7.13 and is self‐explanatory.

7.5.2  Model Predictive Control

Model predictive control (MPC) is an advanced method of control that is used to control a 
process while satisfying a set of constraints [14,15]. As shown in Figure 7.14, MPC relies on 
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Figure 7.11  Feedback control.
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Figure 7.12  A PID controller.
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dynamic models of the process, most often linear empirical models obtained by system 
identification. The main advantage of MPC is that it allows the current timeslot to be opti-
mized, while keeping future timeslots in account. Specifically, MPC has the ability to antic-
ipate future events and can take control actions accordingly, whereas PID controllers do 
not have this predictive ability.

A detailed example of utilizing MPC for an autonomous vehicle can be found in [16], and 
the example contains the following components.

●● Vehicle control interface: The vehicle adjusts the steering and throttle every 100 ms.
●● Cost function: On a high level, the cost function represents the difference between the 

target trajectory point and the actual vehicle trajectory. In detail, the cost function is a 
weighted sum of cross‐track error, heading error, speed cost, steering cost, acceleration 
cost, steering rate change, and acceleration rate change.

●● Constraint: The vehicle wheel cannot be steered more than 25°.

In this example, MPC can be utilized to minimize the cost function while satisfying the 
constraints. At each period (100 ms), MPC reads from the sensors to determine the current 
state of the vehicle including: position of the vehicle (x, y), speed v, heading ψ, the steering 
angle δ, and the acceleration a.

MPC reads sensor inputs to determine the current vehicle state, including position, head-
ing, speed, etc. Then MPC generates possible actions within a short period of time, such as 
one second, based on sensor readings.

Figure 7.13  PID pseudocode.
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Figure 7.14  Model predictive control.
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For example, assume that the optimal plan generated by MPC is to steer the wheel by 20° 
clockwise and then reduces steering by 1° every 100 ms, and these actions are expected to 
minimize the cost function at the end of the one second period.

MPC then applies the first action of stirring the wheel 20°. In the next cycle (100 ms 
later), MPC reads the sensor inputs again. With the new readings, instead of performing 
the remaining actions, MPC recomputes the next optimal actions and repeats this process.

The beauty of MPC is that, instead of simply generating a one‐step action, it repeatedly 
generates the next actions by considering a longer future plan, in this case one second, or 
10 steps ahead. As a result, unlike PID, MPC is less vulnerable to short‐sighted gain in a 
greedy method and therefore leads to a smoother trajectory.

The following steps provide the details of solving this MPC problem:

1.	 Read the current vehicle state, including position (x, y), speed v, heading ψ, the steering 
angle δ, and the acceleration a.

2.	 Use the optimizer to generate throttle and steering actions for the next 10 steps (100 ms 
per step) by minimizing the cost function under defined constraints.

3.	 Execute only the first throttle and steering action.
4.	 Go back to step 1.

7.6  Iterative EM Plannning System in Apollo

In previous sections, we have introduced the basics of path, behavioral, and motion plan-
ning; in this section we present a case study of an open source planning and control system, 
the Apollo Iterative EM Planning System [17]. The planned trajectory is usually specified 
and represented as a sequence of planned “trajectory points.” Each of these points contains 
attributes such as location, time, speed, and curvature. Before we dive into the details of 
our Apollo autonomous driving system, it is important to illustrate some important termi-
nologies in Apollo’s planning system

7.6.1  Terminologies

7.6.1.1  Path and Trajectory
A path indicates the route which is usually represented by a series of “waypoints.” Such 
waypoints depict the shape of a path. The attributes of a path include position, curvature, 
and curvature derivative with respect to the arc. However, a path only describes the shape 
and contains no information regarding vehicle velocity and time.

On the other hand, a trajectory consists of a path, as well as the speed profile along the 
path. Detailed information regarding the data definition of path and trajectory is illustrated 
in Figure 7.15.

7.6.1.2  SL Coordinate System and Reference Line
One of the most significant characteristic of planning is that motion planning for autono-
mous vehicles has to comply with the “road structure.” Since autonomous vehicles are 
running on structured roads rather than on free spaces, the planning module in Apollo 
takes place in the road coordinate system as specified by the high‐definition map.
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Specifically, the road coordinate system is represented by a reference line. Along the 
direction of the reference line is referred to as the “s” direction, while perpendicular to 
the reference line is the “l” direction. While the common‐sense space coordinate system is 
referred to as the “cartesian” space, the sl space coordinate system given a reference line is 
referred to as the “Frenet” frame space [18].

Given a predefined reference line, there exists a bidirectional mapping for any point 
between its Cartesian space representation (x, y) and its Frenet space representation (s, l). 
The most important merit for planning on the Frenet space instead of cartesian space is 
that the sl coordinate system contains semantics. For example, it is very easy to refer to a 
leading vehicle in front, or a vehicle by the left side, in the sl coordinate system, while it is 
very difficult to clearly depict such semantic objects in the xy system.

7.6.1.3  ST Graph
Given the sl coordinate system, the movement along a certain reference path with respect 
to time can be illustrated by a graph called an ST graph, where the x‐axis is the time and the 
y‐axis is the s direction. To understand the use of an ST graph, we can refer to Figure 7.16, 
where our autonomous vehicle is going to make a right turn through a junction. Note, there 
are other vehicles: one already entering the lane that our vehicle wants to enter (vehicle 2), 

Figure 7.15  Path and trajectory definition.
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and the other moving from the lane across the junction (vehicle 1). An example of an ST 
graph is shown in Figure 7.16.

If the autonomous vehicle’s motion is to yield to vehicle 2 and to overtake vehicle 1, the 
speed profile of our vehicle, as shown in the ST graph, will be the dotted trajectory in the 
graph which stays above 1 and below 2. The ST graph is a very useful but simple tool to 
facilitate the computations of speed profile along a given path.

7.6.2  Iterative EM Planning Algorithm

With the concept of the sl coordinate system and the reference line, the planning algorithm 
in Apollo takes place in an iterative fashion in the (s, l, t) space, as shown in Figure 7.17.

The first round of optimization is a Dynamic Programming (DP)‐based approach (DP 
Path and DP Speed), which first generates and optimizes the path (s, l) and then generates 
and optimizes the speed profile (s, t).
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Figure 7.16  ST-graph example.
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Figure 7.17  Modules in the Iterative EM planning.
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The characteristics of the DP‐based approach are interpreted and memorized by the path 
and speed deciders. Then the second round of optimization formulates the problem as a 
Quadratic Programming (QP) problem, where the optimization also happens in first (s, l) 
space for shape and then (s, t) space for speed.

The linear constrains of these QP optimizers are interpreted constraint results from the 
DP speed and path deciders. After these two rounds of iterative speed and path planning, 
the final trajectory is output and published to the downstream control module. We now 
describe these iterative optimizers in more details.

7.6.2.1  Traffic Decider
The traffic decider is responsible for the “traffic rules.” Such traffic rules are usually hard‐
coded rules specified in the traffic laws; for example, if there is a stop sign or pedestrian 
crosswalk. The traffic rule decider will retrieve a stop line from the high‐definition map 
and passes the stop position to the downstream layers.

One way to implement such a hard‐coded stop rule is to create “virtual” objects to the 
path and speed deciders such that the planned trajectory will always stay behind such “vir-
tual walls.” The output of a traffic decider are constraints which have to be obeyed while 
performing the downstream path and speed planning.

Following the traffic decider is the first round of optimization which uses DP. As the first 
step, the DP model samples points along the (s, l) coordinate system. For each two points 
(s1, s1′ = 0, s1″ = 0) and (s2, s2′ = 0, s2″ = 0) at adjacent layers, we can fit a unique quantic 
polynomial S(l) to connect them. Then we use smooth polynomial spirals to connect these 
sampling points in a layer‐by‐layer fashion. For each spiral connecting the sampled points 
in two layers, costs are incurred not only due to the spiral itself but also the points it is 
connecting. Figure 7.18 shows an example of DP‐based path planning in the Iterative EM 
planning algorithm.

To formulate this, let A(i, j) denote the ith point at level j. The function Cost(A(i, j)) repre-
sents the minimum cumulative cost of all the path connecting to the ith point at level j. 
Then Cost(A(i, j)) could be written as:

	Cost Cost Spiral
from level Cost( ) min ( )( , ) ( , ) (A Ai j i j i j A1 1 (( , ) ( , ), )i j i jA1 	

The cost structure of the optimal path connecting to a specific point naturally forms a 
recursive structure which could be solved by the classical DP approach. The cost of each 
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Figure 7.18  DP-based path planning in the Iterative EM planning algorithm.



7  Planning and Control114

spiral is designed to consider two aspects: (i) cumulative lateral distance to the central ref-
erence line; and (ii) static obstacle avoidance. Assuming there are n sampling points per 
layer, and we sample m points at the lateral directions, the DP program could find the opti-
mal solution in O(nm2) time.

The DP path algorithm is mainly to compute a rough path for the autonomous vehicle to 
follow. Only static obstacles are considered in the DP path stage since there is no speed 
information being computed.

The DP speed solves a similar problem, and the only difference is that the problem space 
becomes the (s, t) space since the (s, l) space solution has already been found. The algo-
rithm in DP speed takes place in a (s, t)‐based grid, where some grids are occupied by the 
projections of dynamic obstacles. The goal of the algorithm is also to find a series of spirals 
connecting layer‐by‐layer sampled (s, t) points reaching to a certain desired position.

As shown in Figure 7.19, the results of both DP path and DP speed are interpreted by the 
path and speed deciders. As shown in the figure, the potential actions to avoid a static 
obstacle include “left nudge” or “right nudge” or “stop,” while potential actions for avoid-
ing dynamic obstacles are “yield” or “overtake.”

7.6.2.2  QP Path and QP Speed
Even though the DP‐based path and speed approaches are able to find a safe and collision‐
free path, the smoothness requirements are not specifically addressed and guaranteed.

The QP part mainly addresses the smoothness requirement by formulating the costs into 
a quadratic function and utilizes QP methods to find an optimal and smooth enough 
trajectory. We will use QP path problem formulization as a detailed example. The QP speed 
problem is similar and interested readers can refer to Apollo 2.0’s detailed QP program-
ming documentation [17].
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Figure 7.19  DP path and speed computation results are interpreted as decisions.
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The QP path problem is formulated as l being a function of s:
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And the cost to optimize is the cumulative lateral speed along with its higher order 
derivatives:
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The equality constraints in the QP problem consists of two aspects. First, the starting 
point has to be fixed:

	f s l f s l f s li i i( ) ( ) ( ), , .0 0 0 0 0 0 	

Secondly, strict enforcement of smoothness requires that the poses at the connecting 
knots or joints have to be continuous up to certain degree level, usually:

	f s f s f s f s f s f s fk k k k k k k k k k( ) ( ) ( ) ( ) ( ) ( ), , ,1 0 1 0 1 0 ( ) ( )s f sk k 1 0 	

Now remember that we have already been informed by the DP optimizers how to avoid 
the static obstacles with ether “left nudge,” “right nudge,” or “stop.” And these previous path 
computation results per object can be written as inequality constraints for the QP problem.

More specifically, the evaluated l value at specific s values where the obstacle spans has 
to be “constrained” between the lane boundary and the obstacle boundary, thus forming an 
inequality constraint for the QP problem. Given these equality constraints and inequality 
constraints, the whole QP path optimization problem is similar to the classical QP problem 
of the following form:
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With the QP path algorithm, the planned trajectory will be smooth enough in terms of 
shape. The QP speed is very similar to the QP path, and the whole process takes place in the 
(s, t) space given the previous obtained QP path result. Within both DP and QP optimiza-
tions, we first optimize the path and then optimize the speed given the shape. The process 
is similar to the EM approach to find the posterior maximum, and that is why we name our 
planner an “EM” planner.

7.7  PerceptIn’s Planning and Control Framework

In this section, we introduce PerceptIn’s planning and control framework, which was 
developed to enable low‐speed autonomous driving in controlled environments, such as 
university campuses, entertainment parks, and industrial parks.

Figure 7.20 shows the architecture diagram of PerceptIn’s planning and control frame-
work. It consists of a mission planner, a behavior planner, a motion planner, and a vehicle 
controller:

●● Mission planner: The mission planner defines two basic missions. “A→B” defines the 
mission of traveling from an arbitrary point A to an arbitrary point B, and “parking” 
defines the mission of the vehicle parking itself at a designated parking spot. These two 
simple missions are enough for controlled environments, as in most usage cases, people 
want to use autonomous vehicles to travel from point A to point B, and also expect the 
vehicles to park themselves when needed.

●● Behavior planner: The behavior planner defines all possible behaviors needed to com-
plete a mission. Once a mission is defined, a lane is also generated for the vehicle to travel 
on. The most popular behavior is “lane keeping,” or having the vehicle stay in the desig-
nated lane. If there is a vehicle traveling in front of the current vehicle on the same lane, 
then we can enter the “car follow” behavior to follow the car in front. On the other hand, 
if an obstacle is detected blocking the lane, we can enter the “avoidance” behavior to 
slow down the current vehicle and to go around the obstacle. Once our target destination 
is reached, we transition from “lane keeping behavior” to “mission_complete” behavior, 
which stops the current vehicle.

●● Motion planner: To implement the aforementioned behaviors, we have defined multiple 
motions. First is “attach lane,” which maintains the vehicle on the designated lane. If we 
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detect that the vehicle is out of lane, we apply the motion “closer to lane” to bring the vehi-
cle back on the designated lane. If the current vehicle is about to make a turn, either left or 
right, we apply the motion “turning.” If the target is reached, or if we have to stop the cur-
rent vehicle for any reason, we apply the motion “stop” to pause the current vehicle.

●● Vehicle controller: At the lowest level, to translate the aforementioned motions into con-
trol actions, such as steering, throttle, and brake, we define a vehicle controller, which 
applies MPC and PID algorithms (please refer to previous sections) for vehicle control.

The PerceptIn planning and control framework generates control commands at 10 Hz, 
or each 100 ms, and we keep the end‐to‐end (from perception and localization inputs to 
control outputs) computing latency below 50 ms to ensure safe and reliable real‐time 
planning.
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Figure 7.20  PerceptIn’s planning and control framework.
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8

8.1  Introduction

As shown in Figure 8.1, a mapping module provides essential geographical information, 
such as lane configurations and static obstacle information, to the planning and control 
module. In order to generate real-time motion plans, the planning and control module can 
combine perception inputs, which detect dynamic obstacles in real time, localization 
inputs, which generate real-time vehicle poses, and mapping inputs, which capture road 
geometry and static obstacles.

Hence it is essential to have highly accurate maps to aid autonomous navigation. 
Specifically, the planning and control module projects the real-time vehicle pose (from the 
localization module) onto the map to derive which lane the vehicle is currently on. Also, 
the planning and control module projects detected dynamic obstacles (from the perception 
module) onto the map, and decides whether the vehicle shall keep going, stop, or change 
lane. If the map is not accurate enough, accidents can easily happen.

Currently, fully autonomous cars (such as Waymo’s and Uber’s autonomous cars) use 
high definition (HD) 3D maps. Such high precision maps are extremely complex and con-
tain trillion bytes of data to represent not only lanes and roads but also semantic informa-
tion and locations of 3D landmarks in the real world [1]. With HD maps, autonomous 
vehicles are able to localize themselves and navigate in the mapped area.

In this chapter, we delve into mapping technologies, and we introduce traditional digital 
maps, HD maps, and a case study of enhancing existing digital maps for autonomous driv-
ing applications.

8.2  Digital Maps

Digital maps, such as Google map, Bing map, and Open Street Map (OSM), were devel-
oped for humans instead of for machines, as these digital maps rely heavily on human 
knowledge and observations. For instance, Google map tells you in real time which 
street/road you are on but not which lane you are on, and thus you have to make intel-
ligent decisions based on what you know (e.g. traffic rules) and what you observe 

Mapping
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(e.g. current traffic situation). In this section, using OSM as an example, we introduce 
the details of digital mapping. In Section 8.3, we will discuss details of building HD 
maps.

8.2.1  Open Street Map

OSM is a free, editable map of the whole world that is being built by volunteers largely from 
scratch and released with an open-content license (www.openstreetmap.org). OSM con-
sists of raw geographical data from third-party suppliers, and a suite of software tools for 
creating and sharing map information.

8.2.1.1  OSM Data Structures
First, let us examine the data structures of the OSM data. OSM data are made of the follow-
ing basic elements:

●● Node: Nodes are dots used to mark locations. Nodes can be separate or can be 
connected.

●● Way: Ways are a connected line of nodes used to create roads, paths, rivers, and so on.
●● Closed way: Closed ways are ways that form a closed loop. They usually form areas.
●● Area: Areas are closed ways which are also filled. An area is usually implied when mak-

ing a closed way.
●● Relation: Relation can be used to create more complex shapes, or to represent elements 

that are related but not physically connected. We will not go into this now.

Computer Vision

Planning and Control

CAN Bus

Chassis Sonars Radars

Map

GNSS

Figure 8.1  Modular design architecture.
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All these basic elements can be annotated with tags to give element semantic informa-
tion. A tag is a <key, value> pair describing the element. For instance, mapping a restau-
rant can be done by creating a node, and adding the following tags: shop  =  restaurant. 
name = John’s Mexican Food.

Note that many keys, like Key:building or Key:amenity will make OSM automatically 
assume a closed way when it should be an area. It is relatively uncommon to create an area 
explicitly (using an area = yes tag on a closed way).

There are several important tag keys as follows:

●● Key:highway – For tagging highways, roads, paths, footways, cycleways, bus stops, etc.
●● Key:place – Used for tagging countries, cities, towns, villages, etc.
●● Key:amenity  –  Used for tagging useful amenities such as restaurants, drinking water 

spots, parking lots, etc.
●● Key:shop – Used for tagging shops that you buy products from.
●● Key:building – Used for tagging buildings.
●● Key:landuse – Used for tagging land being used by humans.
●● Key:natural – Used for tagging natural land such as a forest.

8.2.1.2  OSM Software Stack
OSM provides a suite of software tools to import, export, store, modify, render, and visualize 
map data. The architecture of OSM is shown in Figure 8.2, which is divided into five groups:

●● Geodata. This is information about geographic locations that is stored in a format that 
can be used with a geographic information system (GIS). Geodata can be stored in a 
database, geodatabase, shapefile, coverage, raster image, or even a dbf table. For instance, 
a Web Map Service (WMS) is a standard protocol developed by the Open Geospatial 
Consortium in 1999 for serving georeferenced map images over the Internet.

●● Editing. There is a lot of editing software, such as ID, Java OpenStreetMap Editor (JOSM), 
and Vespucci, that can be used to edit OSM. We will introduce JOSM in Section 8.2.2.

●● Backend. The OSM backend consists of a set of tools to store and retrieve geodata. For 
instance, you can store geodata in PostgreSQL, and then use Nominatim to search the 
database. We will introduce Nominatim in Section 8.2.3.

●● Rendering. This is the process involved in the generation of a 2D or 3D image from raw 
geographical data. A suite of rendering tools is provided by OSM.

●● Visualization. The suite of tools to display OSM graphics, the most popular one being the 
OSM website, in which you can navigate through the maps.

8.2.2  Java OpenStreetMap Editor

As shown in Figure 8.3, JOSM is an interactive open source OSM editor that you can use 
to modify and update OSM data (josm.openstreetmap.de). Note that JOSM is an offline 
editor which means everything you do will not be visible for anyone else until you upload 
it to the server. This makes it possible to experiment and repeatedly move, tag, add and 
delete elements without breaking anything. Subsequent actions on a single element will 
go into the database as a single modification when uploaded. You can also find the source 
code of JOSM in [2] in case you want to modify JOSM functionalities.



WMS
Services

Go Map! Vespucci

Geodata

Import
scripts

API

Geodata Editing Backend Rendering

osm-carto
Style-sheet

mod_tile
cache osm2pgsql

PostGIS

Mapnik +
mod_tile

Transport
Renderer

HOT
Renderer

Rendering
databases

etcetera

Nominatim

Overpass API

OpenStreetMap
Database

(PostgreSQL)

Planet dump.
Planet diffs

JOSM ID P2

bing
imagery

Map editing software

GPX traces,
photos and notes

Other
Raster

tiles

Vector
tiles

Visulization

Leaflet

Web maps

OpenLayers

Vector
plugins

Other
web map
libraries

Mobile
SDKs

Map
apps

Front
Page Map

Layers

Figure 8.2  OSM architecture.
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8.2.2.1  Adding a Node or a Way
The first step is to add a node or way to the OSM data. You can add standalone nodes or you 
can add nodes to ways, especially where there is a junction between two ways. To add a node, 
activate “Draw Nodes” mode by hitting the “A” key on the keyboard. Then move the mouse 
cursor over where you want the node, over a way or over your GPS track (if you uploaded 
one) and left click wherever you want to place the node. A red dot (a selected node) should 
appear and a rubber-line spans from that node to the mouse cursor. If you create subsequent 
nodes, the earlier nodes will be shown as yellow nodes. A series of joined nodes forms a way.

8.2.2.2  Adding Tags
Figure 8.4 shows the JOSM user interface of adding tags. Ways or nodes on their own are 
not much use unless they are tagged to provide semantic information (the Map Features 
page shows some popular tags you can refer to).

The first step in adding tags is to be sure the Tags/Membership window is open on the 
right-hand side of JOSM. To edit the properties of a node or way (such as adding a tag) in 
the Tags/Membership window, the way or node must be selected. Enter Select mode by 
hitting the S key. Highlight the way or point you wish to select. A dialog box will appear, 
and you will be asked to select a key and a value for each tag. Type in the key/value pair 
that represents the tag you are creating. For example, for the key you might type “amenity” 
and for the value “fountain” (without quotes). Click OK. You have now tagged your way. 
You can also add several tags to one object.

Figure 8.3  JOSM user interface.
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8.2.2.3  Uploading to OSM
Once you are done with the edits, you can contribute them back to the OSM commu-
nity. If you are happy with all that you have done then you can upload your work to the 
OSM server. Click on the upload button. This will automatically trigger a validation of 
your changes. Review all validation warnings and try to resolve them before you 
upload. This will prevent unfortunate mistakes such as untagged objects or uncon-
nected roads. Note that validator warnings can also be wrong in special cases. Before 
you upload, add a proper changeset comment and specify which source you used. This 
is important as it will show other users who see your changesets what this changeset 
was intended to modify and from where you took the information. Note that in 
Section  8.4 we will show how we use JOSM to construct a map for autonomous 
vehicles.

8.2.3  Nominatim

Nominatim is an OSM tool to search OSM data by name and address (geocoding) and to 
generate synthetic addresses of OSM points (reverse geocoding). An instance with up-to-
date data can be found at nominatim.openstreetmap.org. Nominatim is also used as one of 
the sources for the Search box on the OSM home page. You can find the source code of 
Nominatim in [3] in case you want to modify JOSM functionalities.

8.2.3.1  Nominatim Architecture
Nominatim provides geocoding based on OSM data. It uses a PostgreSQL database as a 
backend for storing the data. There are three basic parts to Nominatim’s architecture: the 
data import, the address computation, and the search frontend.

Figure 8.4  Adding a tag in JOSM.
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The data import stage reads the raw OSM data and extracts all information that is useful 
for geocoding. This part is done by osm2pgsql, the same tool that can also be used to import 
a rendering database.

The address computation or indexing stage takes the data from a place and adds addi-
tional information needed for geocoding. It ranks the places by importance, links objects 
that belong together and computes addresses and the search index. Most of this work is 
done in PostgreSQL via database triggers and can be found in the file sql/functions.sql.

The search frontend implements the actual application program interface. It takes que-
ries for search and reverse geocoding queries from the user, looks up the data and returns 
the results in the requested format. This part is written in PHP and can be found in the lib/ 
and website/ directories.

8.2.3.2  Place Ranking in Nominatim
Nominatim uses two metrics to rank a place: search rank and address rank. Both can be 
assigned a value between 0 and 30. They serve slightly different purposes.

The search rank describes the extent and importance of a place. It is used when ranking 
the search result. Simply put, if there are two results for a search query which are otherwise 
equal, then the result with the lower search rank will be appear higher in the result list. 
Search ranks are not so important these days because many well-known places use the 
Wikipedia importance ranking instead.

The address rank describes where a place shows up in an address hierarchy. Usually only 
administrative boundaries and place nodes and areas are eligible to be part of an address. 
All other objects have an address rank of 0. Note that the search rank of a place plays a role 
in the address computation as well. When collecting the places that should make up 
the address parts then only places that have a lower address rank than the search rank of 
the base object are taken into account.

Search and address ranks are assigned to a place when it is first imported into the data-
base. There are a few hard-coded rules for the assignment:

●● Postcodes follow special rules according to their length.
●● Boundaries that are not areas and railway = rail are dropped completely.
●● The following are always search rank 30 and address rank 0:

–– highway nodes
–– land use that is not an area.

Other than that, the ranks can be freely assigned via the json file defined with CONST_
Address_Level_Config according to their type and the country they are in.

8.3  High-Definition Maps

HD maps provide highly accurate, fresh, and comprehensive geometric information and 
semantics of the driving environment. Since the inception of the Defense Advanced 
Research Projects Agency challenges in the 2000s, HD maps have already been widely used 
for precise localization of autonomous vehicles [4, 5].
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In addition to localization, HD maps contain precomputed data for perception, pre-
diction, motion planning, vehicle control, etc. One example of the precomputed data is 
the 3D locations of traffic lights, thus allowing autonomous vehicles running on the 
road to only examine a small region instead of the whole field of view to efficiently 
detect traffic lights. While there are still debates about the possibility of building a fully 
autonomous vehicle system without using pre-built HD maps, no existing highly auto-
mated driving (HAD) systems we know of are running in urban environments without 
using some kind of HD map.

8.3.1  Characteristics of HD Maps

8.3.1.1  High Precision
As the name suggests, HD maps for autonomous driving systems need to have high 
precision, usually at centimeter level. While there is no standard about what exactly 
the precision should be, it is common to assume HD maps have precisions between 5 
cm and 20 cm.

8.3.1.2  Rich Geometric Information and Semantics
HD maps also contain rich geometric and semantic information of the road network and 
surrounding environment for use by localization, perception, prediction, motion planning 
and vehicle control, etc. The most common content includes lane/road model, 3D locations 
of traffic control devices (mainly traffic lights and traffic signs), and geometry and seman-
tics of other static road elements such as curbs, crosswalk, railway tracks, guardrails, poles, 
bus stops, speed bumps, potholes, and overpass.

8.3.1.3  Fresh Data
HD maps need to be updated with changes in a timely fashion. TomTom estimates about 
15% of US roads change every year in some way. Although not all of those changes are of 
concern for autonomous vehicles, we could infer the order of magnitude of relevant 
changes that need to be updated to ensure the safety of all parties on the roads where 
autonomous vehicles are operating. The industry standard is that HD maps be updated 
weekly. In comparison, traditional digital maps, such as Google map, have an update cycle 
of 6–12 months. Therefore, it is extremely costly to maintain HD maps, as we have to deploy 
a large fleet of data collection vehicles as well as a significant cloud computing infrastruc-
ture to maintain the weekly refresh rate.

8.3.2  Layers of HD Maps

HD maps usually have multiple layers and together they provide a full stack of information 
for autonomous vehicles. On account of the size of all the layers, they are usually being 
served to autonomous vehicles from the cloud [6, 7], and only a few nearby small areas of 
the HD map (called submaps) are downloaded to the vehicle when needed.

Layers of HD maps are quite different from each other and have different representa-
tions, data structures, and purposes. Although HD map builders do not necessarily follow 
the same practice, HD maps usually contain the following four layers.
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8.3.2.1  2D Orthographic Reflectivity Map
The orthographic reflectivity map leverages the fact that different materials (e.g. different 
types of road pavement, road marking paints, etc.) on the road surface have different 
infrared reflective intensities from laser. This layer is a 2D planar view of the road surface 
extracted from Light Detection and Ranging (LiDAR) point clouds. The reflectivity 
map actually may look photorealistic after combining multiple scans of the same area and 
texturing the intensity values onto the points. Visualizations of reflectivity maps can be 
found in [8, 9].

8.3.2.2  Digital Elevation Model
A digital elevation model (DEM) is a 3D model and contains the height information of the 
surface of the driving environment, such as the height of the road curbs, and the grade/
steepness of a ramp or hilly road. It is useful for localization (in situations where the road 
surface is lacking features), motion planning, and vehicle control. An example DEM visu-
alization could be found in [10].

8.3.2.3  Lane/Road Model
The lane/road model is a very important vectorized layer that contains the semantics of 
lane segments and road segments. The road model includes parts of the road that are not 
part of the lanes, such as edges of the road. However, since autonomous vehicle builders 
always try to center the autonomous vehicles in the lane, in reality autonomous vehicles 
only need to deal with the lane model except on rare occasions when they need to travel 
outside the lane boundaries. The lane model contains information on lane geometrics 
(boundaries, width, curvature, etc.), lane type (car lane, bike lane, bus-only lane, etc.), lane 
directionalities, lane marking/divider types (solid vs. dashed, single vs. double, etc.), 
restrictions (e.g. left/right turn only), speed limits, connectivity between lanes, etc. The 
lane/road model is critical for motion planning, vehicle control, etc.

8.3.2.4  Stationary Map
This is a layer that is not well-defined. It is usually a versatile layer that stores the semantics 
of static elements in the driving environment that are not captured in other layers (e.g. traf-
fic lights and their association with lanes, road obstacles, etc.).

8.3.3  HD Map Creation

As shown in Figure 8.5, the HD map creation process can be broken down into four stages: 
data collection, HD map generation, quality control and validation, and update and 
maintenance.

8.3.3.1  Data Collection
Mobile Mapping Systems (MMSs) are usually equipped with multiple sensors including 
LiDARs, cameras, GPS, IMU (inertial measurement unit), and wheel odometer. MMSs 
then go on field trips to collect data and log them into solid-state storage device hard drives 
(or send the data to servers or cloud storage via a cellar network after some kind of process-
ing, filtering, and compression). The data collection process is usually carried out by zones 
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of a city and involves careful route planning as well as optimized data storage and transmis-
sion. Cost of equipment, human labor, data storage and transmission are the major con-
cerns in the data collection process; and overdrive (i.e. re-collection for the same road 
segment) reduction is of great interest to practitioners.

The data collected for HD map creation belong to two categories: (i) HD map data: LiDAR 
point clouds and camera images containing geometries and semantic information that will 
become content of the HD maps; and (ii) auxiliary data: logs of GPS/IMU/wheel odometer 
that are useful for creating the HD maps but not containing the geometric and semantic 
information for the HD maps. The use of the auxiliary data is mainly for pose optimizations 
for the data-collecting vehicles.

8.3.3.2  Offline Generation of HD Maps
This is the back-office work that processes the collected data and generates the HD maps. 
Roughly it can be further broken down into four steps (Figure 8.5).

8.3.3.2.1  Sensor Fusion and  Pose Estimation  Knowing the accurate poses (location and 
orientation) of the MMS vehicles is key to generating HD maps. If the poses of the vehicles 
are inaccurate, it is impossible to produce precise maps. Once we have the accurate poses 
of the data-collecting vehicles, and given we know where the sensors are mounted and 
their relative angles to the vehicle frame, we could infer the accurate poses of the collected 
point cloud and image frames.

Data Collection

HD Map Generation

Sensor Fusion/Pose Estimation

Camera Imagery LiDAR Point Clouds IMU Wheel Odometry GPS

Data Fusion/Data Processing

Object Location Detection

Semantics/Attributes Extraction

Update and Maintenance

Quality Control and Validation

Figure 8.5  HD map creation.
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Although accurate poses could not be acquired directly at runtime due to the limitation 
of GPS, IMU, and wheel odometry, etc., accurate poses can be estimated by utilizing offline 
optimizations such as fusing logs of different sensors with graph-based SLAM (simultane-
ous localization and mapping) [8, 11].

8.3.3.2.2  Map Data Fusion and  Data Processing  Once we have accurate poses, we then 
could perform map data fusion. Map data here mean LiDAR 3D point clouds and camera 
images; note that for HD mapping, the resolutions and qualities of videos are usually not 
satisfactory, and we do not need such a high frame rate from videos, so higher resolution 
images taken in <10 FPS are commonly used. During the data fusion process, multiple 
scans of point clouds are aligned and calibrated to get denser point clouds. Also, point 
clouds and camera images are registered to each other so that we could use the point clouds 
to get the 3D locations of objects and use the registered images to extract semantic 
information. This is because although point clouds provide accurate 3D positions, they do 
not provide semantic information, whereas images do provide accurate semantic 
information.

In addition, other data processing steps are also carried out, including road plane genera-
tion, removal of irrelevant objects (e.g. dynamic objects and objects too far away from the 
road), and texturing to generate photorealistic orthographic images.

8.3.3.2.3  3D Object Location Detection  For road elements whose geometries and precision 
locations are important (e.g. lane boundaries, curbs, traffic lights, overpasses, railway 
tracks, guardrails, light poles, speed bumps, and potholes), we need to map their precise 3D 
locations. LiDAR point clouds provide 3D location information directly and 3D object 
detection on point clouds is performed either using a geometry-based method [12–15] or 
deep learning on 3D point clouds [16–18]. We could also detect 3D object locations without 
using point clouds through triangulation with multiple images of the same objects. One 
such example can be found in [19].

8.3.3.2.4  Semantics/Attributes Extraction  The last and also the most laborious step is to 
extract semantics and attributes from data for the HD maps. The process includes lane/
road model construction, traffic sign recognitions, associations of traffic lights with lanes, 
road marking semantics extraction, and road element (e.g. light poles) detections. There is 
actually other work that needs to be done before a large-scale HD map could be generated 
but the aforementioned steps are the major steps involved.

8.3.3.3  Quality Control and Validation
Once the HD maps are generated, predefined quality metrics must be met, and HD maps 
must be validated by different means including testing on road and verified by using more 
traditional survey methods.

8.3.3.4  Update and Maintenance
This stage is the ongoing work to keep the HD maps updated timely with changes and also 
fixing issues discovered during the use of them.
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8.3.3.5  Problems of HD Maps
Although HD maps bring many benefits, the complexities of building HD maps also pre-
sent several problems. First, to collect raw data, a large number of MMS vehicles need to be 
deployed. These MMS vehicles are equipped with very expensive sensors, such as LiDAR, 
highly accurate Global Navigation Satellite System (GNSS), HD cameras, etc. Each MMS 
vehicle could cost over 0.5 million USD. Secondly, a very powerful cloud computing infra-
structure needs to be deployed to consume the raw data and generate updated HD maps [7]. 
Thirdly, since HD maps need to be updated weekly, HD map providers need to maintain an 
operation team to constantly rescan areas that have already been captured. Note that the 
refresh rate of digital maps, such as Google map, is 6–12 months, whereas the refresh rate 
of HD maps is a week. This adds additional operation costs to the already extremely expen-
sive HD map production costs.

8.4  PerceptIn’s π-Map

As shown in the previous section, HD maps are extremely expensive to construct and 
to maintain, making it extremely hard for ubiquitous deployment. For certain scenar-
ios, such as low-speed (e.g. <20 MPH) autonomous driving in highly structured envi-
ronments (e.g. university campuses, industrial parks), we may not need full-fledged 
HD maps, we can simply extend existing digital maps to provide accurate lane informa-
tion to enable autonomous driving. In this section, we present a case study on 
PerceptIn’s mapping technology, in which existing OSM is extended for autonomous 
robot and vehicle navigation.

To achieve this, PerceptIn have developed a graph-based data structure to represent 
lanes’ topology, and a methodology to construct a map by only using a real-time kine-
matic (RTK) GNSS receiver [20] and the JOSM toolchain (https://josm.openstreetmap.
de). PerceptIn’s map, or π-map, can be easily integrated into the off-the-shell digital map, 
such as OSM, to form a two-layered map. With lanes’ physical information provided by 
the layered map, the planning and control module is able to plan a global route for navi-
gation, and to generate a local trajectory and a series of control commands to maneuver 
the vehicle.

8.4.1  Topological Map

π-Map uses a set of nodes and edges to represent lanes’ structure. Without loss of general-
ity, we use a simplified road model here only for illustrative purposes. A road contains one 
or multiple directional lanes, such that a vehicle can travel on one direction on the lane. 
Figure  8.6 shows a simple map that consists of four nodes and four edges. In practice, 
nodes are physical points centered in a lane, whereas edges between nodes represent the 
connectivity between nodes. For example, the edge between node 0 and node 1 represents 
that node 1 is reachable from node 0.

π-Map uses the following data structure to describe the topology of the above map. Each 
row represents a node. The first row contains information on node 0, the second row con-
tains information on node 1, and so on. In a particular row, the first and second columns 
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are the x and y coordinates (under Universal Transverse Mercator coordinates) of the node, 
respectively, the third column is the number of nodes connected to this node (i.e. adjacent 
nodes of this node), and the rest of the columns list the ID of adjacent nodes.

Column 1 Column 2 Column 3 Column 4 Column 5

Row 1 X1 Y1 2 1 3

Row 2 X2 Y2 2 0 2

Row 3 X3 Y3 2 1 3

Row 4 X4 Y4 2 2 0

Take the first row as an example to explain the data structure:

●● This row contains information on node 0.
●● X1 and Y1 are the x and y coordinates of node 0.
●● 2 represents the number of adjacent nodes,
●● 1 and 3 are IDs of the adjacent nodes to node 0.

8.4.2  π-Map Creation

This subsection illustrates our method of creating a map. As shown in Figure 8.7, we use a 
subarea of the University of California, Irvine campus as an example and create a map of 
roads around the Anteater Recreation Center.

According to maps’ data structures discussed in the previous subsection, to compose a 
map, coordinates of nodes and connectivity among nodes need to be determined. In prac-
tice, we can use a RTK GNSS receiver and JOSM to obtain the coordinates of nodes, and use 
JOSM to draw nodes and edges between nodes.

Figure 8.8 shows the map of lanes around the Anteater Recreation Center as an example. 
To create the map, first, we mount the RTK GNSS module on the PerceptIn DragonFly Pod 
[21]. Then, we drive the DragonFly Pod along the center of the lanes that we want to map, 
and use the RTK GNSS device to obtain the trajectory of the car. Secondly, we load the tra-
jectory into JOSM and draw nodes along the trajectory. Finally, we use JOSM to draw the 
edges between nodes.

0

2

3

1

Figure 8.6  Example of our map’s topology.
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Figure 8.8  The resulting map in the JOSM.

Figure 8.7  The Anteater Recreation Center. The solid line is the lane map that we want to make.
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This generated map, which consists of nodes to represent the topology of the target loca-
tion, is then fed to the planning and control module for operation. For instance, a user can 
click anywhere on the map to call the autonomous vehicle for pick up, and then click a new 
location on the map for drop off.
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9

9.1  Introduction

In this chapter, we provide a thorough case study of PerceptIn’s DragonFly Pod and 
DragonFly bus, which were developed using the modular design approach introduced in 
this book [1, 2]. A few video demos of the autonomous vehicles can be found in [3, 4].

The two‐seater DragonFly Pod was developed for private autonomous driving transpor-
tation services such that passengers can enjoy privacy during their trip. Typical usages of 
DragonFly Pods include entertainment parks, industrial parks, tourist attractions, and sen-
ior living societies. The eight‐seater DragonFly bus was designed for public autonomous 
driving transportation solutions, usually with a distance less than 5 mi. Typical usages of 
DragonFly buses include university campuses, city bus routes, and transportation within 
airports and train stations.

First, we introduce the chassis specifications of these two vehicles, so that readers can 
understand the physical differences of these vehicles. Secondly, we reveal the sensor con-
figurations on these two chassis, so that readers can understand how perception and locali-
zation modules are deployed. Thirdly, we introduce the “anatomy” of the DragonFly system, 
or the software architecture enabling autonomous driving on these vehicles, so that readers 
can understand how different modules work together to form a system. Fourthly, we intro-
duce the “physiology” of the DragonFly system, or the mechanism of the autonomous vehi-
cles, so that readers understand the life cycle of the autonomous driving software. Fifthly, 
we go through the data structures used for communications between different modules, so 
that readers understand how different modules interact with each other. Finally, we show 
how users can interact with the autonomous vehicles through a simple user interface (UI).

After reading this chapter, readers should have a basic understanding of how to build 
their own autonomous vehicles or robots from scratch.

9.2  Chassis Hardware Specifications

Figure 9.1 shows a DragonFly Pod and Table 9.1 lists the details of the chassis specifications. 
A DragonFly Pod is 2.18 m long, 1.38 m wide, and 1.675 m high, weighs 580 kg, and has a 

Building the DragonFly Pod and Bus
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maximum speed of 25 kilometers per hour. While in autonomous driving mode, we typically 
keep the speed around 10 kilometers per hour for safety reasons. Its battery allows the vehicle 
to function continuously for 10 hours at normal speed (10 kilometers per hour). A DragonFly 
Pod chassis is drive‐by‐wire‐enabled, such that the planning and control module can maneu-
ver the vehicle by sending control commands. Also, the chassis is able to provide real‐time 
vehicle status information such as angular speed, linear speed, brake pressure, etc.

Figure 9.2 shows a DragonFly bus and Table 9.2 lists the details of the chassis specifica-
tions. A DragonFly bus is 3.93 m long, 1.51 m wide, and 2.04 m high, weighs 910 kg, and has 
a maximum speed of 30 kilometers per hour. While in autonomous driving mode, we typi-
cally keep the speed around 10 kilometers per hour for safety reasons. Its battery allows the 
vehicle to function continuously for eight hours at normal speed (10 kilometers per hour). A 
DragonFly bus chassis is drive‐by‐wire‐enabled, such that the planning and control module 
can maneuver the vehicle by sending control commands. Also, the chassis is able to provide 
real‐time vehicle status information such as angular speed, linear speed, brake pressure etc.

9.3  Sensor Configurations

Once we understand the chassis capability, we need to figure out how to deploy sensors on 
the autonomous vehicles for perception and localization. Figure 9.3 shows how sensors are 
deployed on a DragonFly Pod. The four major types of sensors we use include the DragonFly 
vision module, GPS receivers, radars, and sonars.

The DragonFly vision module is used for both localization and active perception. It is 
mounted on top of the vehicle, at the center location, in order to get an open field of view 

Figure 9.1  DragonFly two-seater pod.
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to allow it to capture surrounding spatial features. Also, by placing the DragonFly vision 
module at the center of the vehicle, we can easily align different sensors’ coordinates with 
the DragonFly vision module when doing spatial sensor calibrations.

We also deploy two GPS receivers along the horizontal axis. The two GPS receivers form 
a differential pair to provide not only accurate real‐time positions of the vehicle but accurate 

Table 9.1  DragonFly Pod chassis specification.

DragonFly Pod

Suspension (F/R) McPherson independent front suspension: spiral spring + cylinder 
hydraulic shock absorption
Integral rear axle, speed ratio 12.49:1 helical spring damping + cylinder 
hydraulic shock absorption

Frame material Carrier frame structure

Driving method Front wheel steering

Brake (F/R) Front disc rear hub, double tube double circuit hydraulic brake

Parking system Electric park brakes electronic parking and hand brake parking

Control method CAN bus

Length/width/height 2180/1380/1675 mm

Wheelbase Back 1190 mm, front 1170 mm

Ground clearance 145 mm

Minimum turning 
radius

4.4 m

Gradeability 15% ( 8.5°)

Tire 155 65/R13 13

Total weight 580 kg

Maximum speed 25 kilometers per hour

Battery pack type Lead‐acid

Battery capacity 120 Ah

Battery specification 12 V/120 Ah

Number of batteries 4

Charger type External charger

Charging voltage 220 V

Vehicle power output 12 V, 700 W

Urban range 100 km

Recharge time 10 h, 80%

Communication 
method

CAN protocol

Chassis information Angular speed, linear speed, brake pressure, voltage, electric current, 
power

Number of seats 2

Drive type Center motor
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real‐time headings as well. The center of the differential GPS receivers is exactly the center 
of the DragonFly vision module, thus simplifying the spatial calibration process.

Around the vehicle, we deploy six radars and eight sonars to maximize perception 
detection coverage. This way, we can use radars and sonars for passive perception with two 
layers of protection: radar at the mid‐range, and sonar at the close‐range. In addition, 
radars can provide object distance, object speed information, as well as object tracking 
capability, which can be fused with visual perception for more accurate active perception.

Figure 9.4 shows how sensors are deployed on a DragonFly bus, which is very similar to 
the DragonFly Pod deployment except:

●● Due to the length of the vehicle, instead of using six radars and eight sonars, we need to 
deploy eight radars and eight sonars.

●● Due to the length of the vehicle, the DragonFly vision module is placed at the front part of the 
vehicle instead of at the center of the vehicle in order to get an unobstructed field of view.

●● Due to the length of the vehicle, the differential GPS receivers are deployed in the vertical 
dimension to fully utilize the length of the vehicle in order to get more accurate real‐time 
headings.

9.4  Software Architecture

Once we understand the sensor deployment scheme, we can delve into the software stack 
to introduce the “anatomy,” or the software architecture, of the DragonFly system. 

Figure 9.2  DragonFly eight-seater bus.
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Figure 9.5 shows the details of the DragonFly system software architecture. Note that each 
dotted box represents an independent process.

First, let us review the data collection processes. The first process is the GPS Daemon 
process which continuously acquires the latest Global Navigation Satellite System (GNSS) 
data and sends the data to the localization process. Similarly, the image and inertial meas-
urement unit (IMU) dispatcher process continuously acquires the latest image and IMU 
data and sends the data to the localization process and the perception process.

Table 9.2  DragonFly bus chassis specification.

DragonFly bus

Controller InBol electronic control/AC MC3336

Battery Lvtong maintenance‐free battery 6 V/170 Ah * 8 only (3 h rate)

Electric motor Lvtong special AC asynchronous motor 33 V/5 kW

Charger Computer intelligent charger 48 V/25 A, charging time <10 h 
(discharge rate 80%)

DC converter High Power Isolated DC Converter 48 V/12 V, 400 W

Lighting and warning system Front light, turn signal, fog light, reverse light, rear tail light, snail 
horn, reverse voice horn

Steering system Bidirectional rack and pinion steering system, automatic gap 
compensation function: optional electric power

Braking system Front disc and rear hub four‐wheel hydraulic brake + handbrake 
parking: electric vacuum assisted brake system is optional

Front suspension system McPherson independent front suspension: helical 
spring + cylinder hydraulic damping

Rear suspension system Integral rear axle, speed ratio 16:1, steel leaf spring + cylinder 
hydraulic shock absorption

Tire diameter 165/70r13c vacuum tire (diameter 560 mm): 13 steel ring

Length/width/height 3930/510/2040 mm

Number of seats 8

Maximum speed 30 kilometers per hour

Driving mileage km 75–95 km (flat road)

Energy consumption per 
hundred kilometers

9 kWh

Maximum gradation 0.15

In the slope performance 0.2

Minimum turning radius 5.6 m

Vehicle weight 910 kg

Brake stability 1900 mm

Minimum ground clearance 155 mm

Wheelbase Back 1330 mm, front 1300 mm

Communication method CAN protocol
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Figure 9.3  DragonFly two-seater pod sensor configuration.
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The localization process receives image, IMU, and GNSS data and generates real‐time 
localization results. Note that in our design, we use GNSS data as the ground truth, and when 
the GNSS data are not available or not accurate due to multipath problems or other problems, 
then Visual‐Inertial Odometry (VIO) will take over to generate accurate localization results.

The perception process receives image data, as well as radar and sonar data from the 
chassis, and combines these pieces of information to generate real‐time perception results. 
When stereo vision data comes in, the perception process applies a deep learning model to 
extract obstacle semantic information, and applies stereo matching techniques to generate 
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Figure 9.4  DragonFly eight-seater bus sensor configuration.
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obstacle depth information. By combining the obstacle semantics and depths, the percep-
tion process can identify exact obstacle type and distance information. In addition, radar 
provides obstacle speed information, and by fusing radar and vision results, the perception 
process is able to extract obstacle type, distance, as well as speed.

The planning and control process is the most important process and is the “brain” of the 
DragonFly system. It consumes outputs from the perception process and the localization pro-
cess, and generates real‐time control commands through the local planner module, and sends 
these commands to the chassis for execution. Also, a monitor module continuously checks the 
health status of the whole system and stops the vehicle if any module malfunctions. In addition, 
a UI backend continuously sends status data to the UI frontend process to keep riders/operators 
informed of the real‐time status of the system. Similarly, a local logging module also continu-
ously logs system information to a local disk or a remote cloud for debugging purposes.

9.5  Mechanism

After understanding the “anatomy” of the DragonFly system, we delve into the “physiology” 
or the system mechanism. Figure 9.6 illustrates the detailed steps of the DragonFly system 
initialization process.
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Figure 9.5  DragonFly system software architecture.
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One the left‐hand side of Figure 9.6, once a user powers on the system, the system first 
launches the image and IMU collection stream on the DragonFly vision module. If this 
is unsuccessful, then the system aborts and stops execution. Otherwise, the system starts 
the perception process. Next, the system starts the localization process. Once these 
are successful, the system checks the Controller Area Network (CAN) bus to make sure 
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Figure 9.6  DragonFly system mechanism.
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communication with the chassis is acceptable and the chassis’ status is satisfactory. After 
all checks have been passed, the system spins to wait for user commands.

On the right‐hand side of Figure 9.6, once a user task has been initiated (e.g. command 
the vehicle to move from point A to point B), the planning and control module checks to 
ensure that the perception module, the localization module, and the chassis are properly 
functioning and no error code has been raised. If successful, the planning and control mod-
ule continuously issues control commands to drive the vehicle along the designated path. 
If a station is reached, the planning and control module then checks the health of the 
system again and continuously commands the vehicle along the designated path. If 
the destination is reached, the planning and control process terminates and waits for the 
next task command.

9.6  Data Structures

After understanding the “anatomy” and “physiology” of the DragonFly system, in this sec-
tion, we introduce the data structures used in the system so that readers can understand 
what information is provided by each module, as well as how different modules interact 
with each other. Note that all data structures are encoded using Protocol Buffers (Protobuf), 
which is a method of serializing structured data. Protobuf is widely used in developing 
programs to communicate with each other and this method involves an interface descrip-
tion language that describes the structure of some data and a program that generates source 
code from that description for generating or parsing a stream of bytes that represents the 
structured data.

9.6.1  Common Data Structures

First, we introduce the common data structures that are shared between all modules. 
Common.proto defines the common header used in all modules, which includes times-
tamp, a system timestamp used to synchronize all data; module name, the name of the 
current module; sequence number, a counter to keep track of the number of data sent since 
boot time; and a hardware timestamp, which is the timestamp from the sensor that is dif-
ferent from the system timestamp. By keeping track of both the sensor timestamp and the 
system timestamp, we also keep track of the time difference between the system and 
the sensor. 

Common.proto

syntax = "proto3";

package piauto.common;

message Header {
  // message publishing time in milliseconds since 1970. 
  uint64 timestamp = 1;
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Geometry.proto stores commonly used geometries for the perception and the planning 
and control modules. These geometries include 2D points, 3D points, velocity, and poly-
gons (collection of 3D points).

  // module name
  string module_name = 2;

  // sequence number for each message: each module maintains its 
own counter for
  // sequence_num, always starting from 1 on boot.
  uint32 sequence_num = 3;

  // hardware sensor timestamp in milliseconds since 1970
  uint64 hardware_timestamp = 4;
}

Geometry.proto

syntax = "proto3";

package piauto.common;

// A general 3D point, in meter
message Point3D {
  double x = 1;
  double y = 2;
  double z = 3;
}

// A general 2D point, in meter
message Point2D {
  double x = 1;
  double y = 2;
}

// General speed, in m/s
message Velocity3D {
  double vel_x = 1;
  double vel_y = 2;
  double vel_z = 3;
}

// A general polygon, points are counter clockwise
message Polygon {
  repeated Point3D point = 1;
}
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9.6.2  Chassis Data

Chassis.proto stores the enormous amount of data generated by the chassis. These pieces 
of data are continuously sent to the planning and control module, so that the planning and 
control module can combine these pieces of data, along with the pieces of data from the 
perception and localization modules, and generate real‐time control commands. The chas-
sis data are also sent to the UI module to inform riders/operators about the current status 
of the vehicle. The more commonly used pieces of chassis data include error code, vehicle 
speed, vehicle odometer, fuel range, steering angle, and steering velocity.

Chassis.proto

syntax = "proto3";

package piauto.chassis;

import "header.proto";

// next id :31
message Chassis {
    enum DrivingMode {
        COMPLETE_MANUAL = 0;           // manual mode
        COMPLETE_AUTO_DRIVE = 1;       // auto mode
        AUTO_STEER_ONLY = 2;           // only steer
        AUTO_SPEED_ONLY = 3;             // include throttle and brake

        // security mode when manual intervention happens, only  
response status
        EMERGENCY_MODE = 4;
        MANUAL_INTERVENTION = 5;       // human manual intervention
    }

    enum ErrorCode {
        NO_ERROR = 0;

        CMD_NOT_IN_PERIOD = 1;         // control cmd not in period

        // receive car chassis can frame not in period
        CHASSIS_CAN_NOT_IN_PERIOD = 2;

        // car chassis report error, like steer, brake, throttle, 
gear fault
        CHASSIS_ERROR = 3;

        // classify the types of the car chassis errors
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        CHASSIS_ERROR_ON_PARK = 4;
        CHASSIS_ERROR_ON_LIGHT = 5;
        CHASSIS_ERROR_ON_STEER = 6;
        CHASSIS_ERROR_ON_BRAKE = 7;
        CHASSIS_ERROR_ON_THROTTLE = 8;
        CHASSIS_ERROR_ON_GEAR = 9;

        UNKNOWN_ERROR = 10;
    }

    enum GearPosition {
        GEAR_NEUTRAL = 0;
        GEAR_DRIVE = 1;
        GEAR_REVERSE = 2;
        GEAR_PARKING = 3;
        GEAR_LOW = 4;
        GEAR_INVALID = 5;
        GEAR_NONE = 6;
    }

    common.Header header = 1;

    bool engine_started = 3;

    // engine speed in RPM.
    float engine_rpm = 4;

    // vehicle speed in meters per second.
    float speed_mps = 5;

    // vehicle odometer in meters.
    float odometer_m = 6;

    // fuel range in meters.
    int32 fuel_range_m = 7;

    // real throttle location in [%], ranging from 0 to 100.
    float throttle_percentage = 8;

    // real brake location in [%], ranging from 0 to 100.
    float brake_percentage = 9;

    // real steering location in degree, ranging from about -30 to 30.
    // clockwise: negative
    // counter clockwise: positive
    float steering_angle = 11;
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    // applied steering velocity in [degree/second].
    float steering_velocity = 12;

    // parking brake status.
    bool parking_state = 13;

    // battery voltage
    float battery_voltage = 14;

    //battery power in [%], ranging from 0 to 100.
    float battery_power = 15;

    // signals.
    bool high_beam_signal = 16;
    bool low_beam_signal = 17;
    bool left_turn_signal = 18;
    bool right_turn_signal = 19;
    bool flash_signal = 20;
    bool horn = 21;

    bool wiper = 22;
    bool disengage_status = 23;
    DrivingMode driving_mode = 24;
    ErrorCode error_code = 25;
    GearPosition gear_location = 26;

    // timestamp for steering module
    double steering_timestamp = 27; // In seconds, with 1e-6 accuracy

    WheelSpeed wheel_speed = 30;
}

message WheelSpeed {
    enum WheelSpeedType {
        FORWARD = 0;
        BACKWARD = 1;
        STANDSTILL = 2;
        INVALID = 3;
    }

    bool is_wheel_spd_rr_valid = 1;
    WheelSpeedType wheel_direction_rr = 2;
    double wheel_spd_rr = 3;
    bool is_wheel_spd_rl_valid = 4;
    WheelSpeedType wheel_direction_rl = 5;
    double wheel_spd_rl = 6;
    bool is_wheel_spd_fr_valid = 7;
    WheelSpeedType wheel_direction_fr = 8;
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    double wheel_spd_fr = 9;
    bool is_wheel_spd_fl_valid = 10;
    WheelSpeedType wheel_direction_fl = 11;
    double wheel_spd_fl = 12;
}

message License {
    string vin = 1;
}

9.6.3  Localization Data

Localization.proto stores the localization data, which are continuously sent to the plan-
ning and control module for processing. The key pieces of data include the vehicle posi-
tion in Universal Transverse Mercator format (utm_x, utm_y), as well as the vehicle 
heading. Each piece of localization data includes details regarding whether the current 
localization data are generated solely by the GPS or by the fusion of GPS and other 
techniques, e.g. VIO. 

Localization.proto

syntax="proto3";

package piauto.localization;

import "header.proto";

enum LocalizationStatus{
    GPS = 0;                // postion:GPS heading:GPS
    BOTH_FUSION = 1;        // postion:FUSION heading:FUSION
    GPS_FUSION = 2;         // postion:GPS heading:FUSION
    FUSION_GPS = 3;         // postion:FUSION heading:GPS
    INIT=4;
    ERROR=5;
}

enum FusionType{
    ORIGIN_GPS = 0;
    FUSION = 1;
}

enum GPSStatus{
    FLOAT = 0;
    FIXED = 1;
}
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9.6.4  Perception Data

Perception.proto stores the perception data, which are continuously sent to the plan-
ning and control module for processing. The key pieces of data include object position, 
object velocity, and object type. Each piece of perception data includes details regarding 
whether the current perception data are generated by vision, sonar, radar, or the fusion 
of them. 

enum ErrorType{

   // sensor failed

   IMAGE_OPEN_FAILED=0;

   IMU_OPEN_FAILED=1;

   GPS_OPEN_FAILED=2;

   

   // init failed

   GRAVITY_INIT_FAILED=11;

   GPS_INIT_FAILED=12;

   GPS_INVALID_DATA=13;

   // run error   

   CONNECT_FAILED=20;

}

message LocalizationData{

  // header

  common.Header header = 1;

  // position

  double utm_x = 2;

  double utm_y = 3;

  double utm_x_variance = 4;

  double utm_y_variance = 5;

  sint32 utm_zone = 6;

  FusionType position_type = 7;

  GPSStatus gps_position_status = 8;

  // heading

  double heading = 9;

  double heading_variance = 10;

  FusionType heading_mode = 11;

  GPSStatus gps_heading_status = 12;

  // system status

  LocalizationStatus localization_status = 13;  

  ErrorType error_code = 14;

}
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Perception.proto

syntax = "proto3";

package piauto.perception;

import "geometry.proto";
import "header.proto";

message PerceptionObstacle {
  // timestamp
  common.Header header = 1;

  // we assume the basic sensors include radar, sonar, and  
stereo_camera
  enum SensorType {
    UNKNOWN_SENSOR = 0;
    RADAR = 1;
    VISION = 2;
    ULTRASONIC = 3;
    FUSION = 4;
  };

  SensorType sensor_type = 2;

  // identify different sonar and radar
  int32 sensor_id = 3;

  // each obstacle has an unique id
  int32 obstacle_id = 4;
  
  common.Point3D position = 5;

  common.Velocity3D velocity= 6;

  // obstacle semantic type
  enum ObstacleType {
    UNKNOWN_OBSTACLE = 0;
    UNKNOWN_MOVABLE = 1;
    UNKNOWN_UNMOVABLE = 2;
    CAR = 3;
    VAN = 4;
    TRUCK = 5;
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    BUS = 6;
    CYCLIST = 7;
    MOTORCYCLIST = 8;
    TRICYCLIST = 9;
    PEDESTRIAN = 10;
    TRAFFIC_CONE = 11;
    TRAFFIC_LIGHT = 12;
  };

  ObstacleType obstacle_type = 7;

  // confidence level regarding the detection result
  double confidence = 8;

  enum ConfidenceType {
    CONFIDENCE_UNKNOWN = 0;
    CONFIDENCE_CNN = 1;
    CONFIDENCE_STEREO = 2;
    CONFIDENCE_RADAR = 3;
  };

  ConfidenceType confidence_type = 9;

  repeated common.Polygon polygons = 10;

  // traffic light detection result
  enum TrafficLightColor {
    UNKNOWN = 0;
    RED = 1;
    YELLOW = 2;
    GREEN = 3;
    BLACK = 4;
  };

  TrafficLightColor traffic_light_color = 11; 

  // historical points on the trajectory path 
  message TrajectoryPathPoint {
    common.Point3D path_point = 1;

    // in milliseconds since 1970
    uint64 timestamp = 2;
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9.6.5  Planning Data

The planning and control module consumes data from the perception module, the localiza-
tion module, and the chassis module, and generates real‐time control commands. Decision.
proto defines the vehicle behaviors, including to follow a front vehicle, to yield to another 
vehicle, to stop the current vehicle, and to avoid an obstacle. The reasons for stopping the 
current vehicle are defined in Decision.proto as well. 

    // in millisecond by hardware sensor
    uint64 hardware_timestamp = 3;
  }

  repeated TrajectoryPathPoint trajectory_points = 12;

  // confidence level of the trajectory prediction
  double trajectory_probability = 13;

  enum IntentType {
    UNKNOWN_INTENT = 0;
    STOP = 1;
    STATIONARY = 2;
    MOVING = 3;
    CHANGE_LANE = 4;
    LOW_ACCELERATION = 5;
    HIGH_ACCELERATION = 6;
    LOW_DECELERATION = 7;
    HIGH_DECELERATION = 8;
  }

  // estimated obstacle intent
  IntentType intent_type = 14;

  enum ErrorCode {
    OK = 0;
    IMAGE_TIMEOUT_ERROR = -1;
  }

  ErrorCode error_code = 15;
}

message PerceptionObstacles {
  repeated PerceptionObstacle perception_obstacle = 1;
}
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Decision.proto

syntax = "proto3";

package piauto.plannning;

import "geometry.proto";

message EStop {
  // is_estop is true when emergency stop is required
  bool is_estop = 1;
  string reason = 2;
}

message MainEmergencyStop {
  // unexpected event happened, human driver is required to take over
  enum ReasonCode {
    ESTOP_REASON_INTERNAL_ERR = 0;
    ESTOP_REASON_COLLISION = 1;
    ESTOP_REASON_SENSOR_ERROR = 2;
  }
  ReasonCode reason_code = 1;
}

enum StopReasonCode {
  STOP_REASON_HEAD_VEHICLE = 0;
  STOP_REASON_DESTINATION = 1;
  STOP_REASON_PEDESTRIAN = 2;
  STOP_REASON_OBSTACLE = 3;
  STOP_REASON_PREPARKING = 4;
  STOP_REASON_SIGNAL = 5;               // only for red light
  STOP_REASON_STOP_SIGN = 6;
  STOP_REASON_YIELD_SIGN = 7;
  STOP_REASON_CLEAR_ZONE = 8;
  STOP_REASON_CROSSWALK = 9;
  STOP_REASON_CREEPER = 10;
  STOP_REASON_REFERENCE_END = 11;       // end of the reference line
  STOP_REASON_YELLOW_SIGNAL = 12;      // yellow light
  STOP_REASON_LANE_CHANGE_URGENCY = 13;
}

message MainStop {
  StopReasonCode reason_code = 1;

  string reason = 2;

  // when stopped, the front center of vehicle should be at this point.
  common.Point3D stop_point = 3;
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  // when stopped, the heading of the vehicle should be stop_heading.
  double stop_heading = 4;
}

// strategy to ignore objects
message ObjectIgnore {
  string ignore_strategy = 1;
  double distance_s = 2;      // in meters
}

message ObjectStop {
  StopReasonCode reason_code = 1;

  double distance_s = 2;      // in meters

  // when stopped, the front center of vehicle should be at this point.
  common.Point3D stop_point = 3;

  // when stopped, the heading of the vehicle should be stop_heading.
  double stop_heading = 4;

  repeated string wait_for_obstacle = 5;
}

// strategy to follow objects
message ObjectFollow {
  string follow_strategy = 1;
  double distance_s = 2;      // in meters
}

// strategy to yield objects
message ObjectYield {
  string yield_strategy = 1;
  double distance_s = 2;      // in meters
}

// strategy to avoidance objects, such as double-lane changing or  
floating-lane
// avoidance
message ObjectAvoid {
  string avoid_strategy = 1;
  double distance_s = 2;      // in meters
}

message ObjectDecisionType {
  oneof object_tag {
    ObjectIgnore ignore = 1;
    ObjectStop stop = 2;
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    ObjectFollow follow = 3;
    ObjectYield yield = 4;
    ObjectAvoid avoid = 5;
  }
}

message ObjectDecision {
  string id = 1;
  int32 perception_id = 2;
  repeated ObjectDecisionType object_decision = 3;
}

// decisions based on each object
message ObjectDecisions { 
  repeated ObjectDecision decision = 1; 
}

message MainLaneKeeping {
  string lane_id = 1;
  string sec_id = 2;
}

message MainNotReady {
  // decision system is not ready. e.g. wait for routing data.
  string reason = 1;
}

message MainParking {
  // parking_lot 
  string parking_lot = 1;
}

message MainMissionComplete {
  // arrived at routing destination
  // when stopped, the front center of vehicle should be at this point.
  common.Point3D stop_point = 1;

  // when stopped, the heading of the vehicle should be stop_heading.
  double stop_heading = 2;
}

message MainDecision {
  oneof task {
    MainLaneKeeping lane_keeping = 1;
    MainStop stop = 2;
    MainEmergencyStop estop = 3;
    MainMissionComplete mission_complete = 4;
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    MainNotReady not_ready = 5;
    MainParking parking = 6;
  }
}

message DecisionResult {
  // decisions based on task and motion planning
  MainDecision main_decision = 1;

  // decisions based on each object
  ObjectDecisions object_decision = 2;
}

Planning.proto encapsulates decision.proto, and also contains the current vehicle’s con-
trol state as well as vehicle state. These pieces of information can be sent to the UI module 
for display, and also recorded in the log for future debugging needs. 

Planning.proto

syntax = "proto3";

package piauto.plannning;

import "decision.proto";
import "header.proto";
import "geometry.proto";

message Planning {
  common.Header header = 1;
  ControlState control_state = 2;        // control state
  VehicleState state = 3;                // vehicle state

  // decision of the vehicle, lane follow, stop by obstacle and  
etc..
  DecisionResult decision = 4;

  repeated common.Point3D trajectory_point = 5; // predict  
trajectory

  // signal status of the current vehicle
  ADCSignals adc_signals = 6;

  bool autonomous_mode = 7; 
}
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9.7  User Interface

At last, we come to the UI to show how easy it is for users to interact with the autonomous 
vehicles. Figure 9.7 shows the UI when the vehicle is static. On the left‐hand side of the UI, 
users can see the current time, the current speed of the vehicle, the next station, as well as 
the estimated time to the destination. On the right‐hand side of the UI, the map of the 
deployment environment is displayed, as well as the fixed route along with the stations in 
between. Users can interact with the map by choose their destination and then click “Start” 
on the left‐hand side to trigger the vehicle to move.

enum ControlState {
  // attach to current lane
  AttachLane = 0;

  // turning left and right state
  Turnning = 1;

  // no attach lane, need slow down and try to attach lane
  CloserToLane = 2;

  // Stop
  Stop = 3;
}

message VehicleState {
  // Current pose of the vehicle
  common.Point3D pose = 1;
  double body_angle = 2;
  double front_wheel_angle = 3;
  double rear_wheel_speed = 4;
}

message ADCSignals {
  enum SignalType {
    LEFT_TURN = 0;
    RIGHT_TURN = 1;
    LOW_BEAM_LIGHT = 2;
    HIGH_BEAM_LIGHT = 3;
    FOG_LIGHT = 4;
    EMERGENCY_LIGHT = 5;
    HORN = 6;
  }
  repeated SignalType signal = 1;
}
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Figure 9.8 shows the UI when the vehicle is moving. On the left‐hand side of the UI, 
users can see the current speed of the vehicle and detected obstacles will also be projected 
onto the UI. Users can also click the “Stop” button on the UI to stop the vehicle at any 
time.

Figure 9.7  DragonFly UI when the vehicle is static.

Figure 9.8  DragonFly UI when the vehicle is moving.
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10.1  Introduction

In Chapter 9, we presented a case study on building autonomous low-speed electric vehi-
cles (LSEVs). In this chapter, we will explore a very interesting topic, building commercial 
autonomous space robotic explorers. With the recent emergence of commercial space 
exploration companies such as SpaceX and Blue Origin, we envision commercial space 
robotic explorers will become a reality in the near future.

In the past, robots have been sent into space for varied purposes, e.g. taking photographs 
and performing mineral composition analysis. In contrast to manned missions, the appli-
cation of autonomous robots for space exploration missions decreases the safety concerns 
of the exploration missions while extending the exploration distance since returning trans-
portation is not necessary for robotics missions. In addition, the employment of robots in 
these missions also decreases mission complexities and costs because there is no need for 
onboard life support systems: robots can withstand and operate in harsh conditions, for 
instance, extreme temperature, pressure, and radiation, where humans cannot survive.

Most of the space robotic exploration missions today rely on remote control from Earth. 
This method suffers from extremely long communication latencies, leading to lack of effi-
ciency for an operator to receive information, make a decision on how to respond, and issue 
commands to the spacecraft. To improve the efficiency of robotic exploration missions, 
there have been several attempts by NASA to enable autonomous robotic navigation on 
Mars [1].

As shown in Figure 10.1, we envision a future where commercial autonomous robotic 
explorers will explore and construct basic infrastructure on Mars, making it habitable for 
mankind. While there have been a few successful attempts to deliver exploration robots to 
planets such as Mars, how to develop autonomous robots suitable for commercial space 
exploration missions still requires a lot more research.

In this chapter, we explore the autonomous driving technologies, including localization, 
perception, planning, and control, required to enable a commercial space exploration 
robot, as well as how to integrate these technologies into a working system.

This chapter is organized as follows: in Section 10.2 we introduce the environments of 
Mars, and explore the challenges of enabling autonomous robotic explorers on Mars. In 
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Section 10.3, we explore technologies required to enable future commercial autonomous 
space robotic explorers. In Section 10.4, we present one urgent challenge for space explora-
tion mission, namely, computing power. We conclude in Section 10.5.

10.2  Destination Mars

Mars is a potential destination for autonomous space robotic explorers. Currently, the main 
focus of space exploration is Mars, for it is relatively close to the Earth and shares many 
macro level similarities to Earth, such as the existence of atmosphere and the evidence of 
past flowing water.

The purpose of Mars exploration can be categorized into understanding the evolution of 
the Martian environment, examining the current conditions of Mars, and searching for 
past, present, and future potential for life. Mars exploration also lays the foundation for 
potential exploitation of Martian resources and, ultimately, mankind expansion.

Up until now, uncertainties about the Martian environment and the associated high cost 
has prevented human exploration of Mars. Therefore, Mars surface exploration is currently 
accomplished with robot explorers. Explorers collect and send back scientific data on the 
Martian surface and thus pave the way for future human exploration.

The Martian environment is drastically different from that of Earth, especially in terms 
of atmospheric composition, temperature, and geologic features. These differences pose 
potential challenges for robot design.

The Martian atmosphere is 96% carbon dioxide compared with less than 1% on Earth. 
The temperature on Mars can be as high as 70 °F or as low as about −225 °F. Because the 
atmosphere is so thin, heat from the Sun easily escapes this planet, and thus temperatures 
at different altitudes have tremendous variations. In addition, occasionally, winds on Mars 

Figure 10.1  The future of commercial space exploration.
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are strong enough to create dust storms that cover much of the planet. After such storms, 
it can be months before all of the dust settles [2].

The geological features on Mars are generally more extreme than those on Earth. 
For instance, the deepest canyon on Mars is around 7 km in depth whereas on Earth, it is 
1.8 km [3]. Martian soil is also different from soil on Earth; it is composed of fine regolith, or 
unconsolidated rock powder, which lacks traction and also affects visibility during Martian 
storms and that has huge implications for sensors used in autonomous movement.

The extreme geological features combined with low traction soil and low gravity pose 
challenging design questions for autonomous explorers, in terms of both hardware and 
software.

10.3  Mars Explorer Autonomy

The above introduced technologies and methods work well on Earth. However, when 
it  comes to space explorers, the environment in which the vehicle operates in is vastly 
different from the environment on Earth. As a result, autonomous driving and navigation 
methods also have to be modified.

On planets other than Earth, there is no set traffic system nor other maneuverable 
objects. This simplifies the autonomous driving system in the sense that explorers do not 
have to localize at a centimeter level precision and can maneuver without any restriction 
and plan paths without concerns of crashing into another vehicle. However, the underde-
veloped infrastructure in space also poses challenges on the design of autonomous driving 
systems.

In space, there is no available GPS or detailed surface map. The condition of the terrain 
is also much more complex and requires greater consideration compared with driving on 
Earth, for there is no road infrastructure in space.

We shall now examine the autonomous driving technologies and challenges for Mars 
explorers with a focus on perception and decision. This environment is particularly chal-
lenging for localization and path planning of the robot explorers.

10.3.1  Localization

Without the availability of GPS and known maps, localization for a Mars explorer robot is 
keeping track of its motion trajectory while observing the surrounding environment and 
estimating its position in the environment. Mars explorer localization relies on the camera 
and inertial measurement unit (IMU) for localization. One additional sensor that has been 
applied to Mars explorers is a star tracker, an optical device that measures the position of 
stars. There are mainly three methods for localization: vision-based simultaneous localiza-
tion and mapping (SLAM), dead reckoning based on IMU, and star tracking.

The lack of detailed maps of Mars leaves the robot explorer having to navigate in an 
unknown environment while keeping track of its path. SLAM is a method for the robot to 
construct a map of its environment and localizing with regard to its surroundings simul-
taneously. While driving, an explorer can estimate its trajectory with a structure-from-
motion algorithm. This trajectory is then used to create a layout of the environment by 
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incorporating matching and triangulation. This constructed environment layout can then 
in turn be used for further localization with regard to the environment [1].

Specifically, visual odometry is a popular SLAM technique. Visual odometry is the esti-
mation of the motion of the explorer using camera vision. It first detects the salient features 
on the image and then estimates the 3D positions of selected features by stereo matching. 
It tracks the salient features through a sequence of optical images and thus determines the 
change of positions of the explorer. Note that visual odometry has already been applied on 
the NASA Mars Exploration Mission in 2003 with promising results.

The second method to achieve localization on Mars is dead reckoning, the process of 
estimating the explorer’s current position using its previous position and updating based 
on estimated information such as the velocity. IMU and wheel encoder are commonly used 
in dead reckoning [4]. By incorporating a gyroscope and accelerometer, IMU estimates the 
linear acceleration and rotation rate of the explorer. Then through integration over time, 
these measurements are used for dead reckoning and pose estimation. However, since dead 
reckoning relies on integration over time, the accuracy of such a method also decreases 
over time and thus cannot be used for effective localization in long-distance operations. 
Likewise, another dead-reckoning technique, wheel odometry, also has drawbacks when 
operating on Mars. Since the surface of Mars is covered with fine regolith, and since the 
explorer often has to pass through rugged terrain, wheel slip is common, which makes 
wheel odometry inaccurate.

Star tracking is another localization method available for use during planetary explora-
tion [5]. On Mars, the lack of GPS and global magnetic field add to the challenge for deter-
mining the orientation of the explorer. Using the star tracking method, a camera-based star 
tracker identifies the position of a known set of stars and then compares them with the 
absolute known position of stars stored in memory. As many star positions have been 
measured to high accuracy, star tracking allows the explorer to determine its orientation. 
However, star trackers would only work at night and may fail when used in bright environ-
ments, and thus this method fails to enable accurate localization at all times.

10.3.2  Perception

The complex terrain on Mars makes terrain assessment a crucial component of autono-
mous navigation. Similar to the methods applied in autonomous driving on Earth, Mars 
explorers use an obstacle avoidance system that is divided into two layers: proactive and 
reactive.

In the proactive layer, the 3D point cloud generated by stereo vision and triangulation 
constructs the shape of the environment and thus detects obstacles and hazards. With 
robust and efficient onboard processors and the reliable algorithm for perception of haz-
ards of current processors, it is fair to say that the challenge for terrain assessment does not 
lie in the geometry of the terrain, e.g. rocks, but rather in non-geometric aspects where 
hazards are not obvious for detection, such as the load-bearing properties of the terrain.

In the reactive layer, basic level information such as current vehicle tilt and the feedback 
from wheels and suspension are taken into consideration. As the last line of defense, if any 
feedback from sensors is abnormal, the explorer’s emergency response will be immediately 
triggered. For instance, if the discrepancy between wheel odometry and visual odometry 
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exceeds a set limit, the vehicle can conclude that it is experiencing severe wheel slippage 
and thus generate an alternative path.

10.3.3  Path Planning

In order to navigate from one point to another, the explorer generates a series of direction-
oriented waypoints, leading up to the goal destination. Each waypoint is reached by repeat-
ing the process of terrain assessment and path selection.

The basic hazard avoidance capabilities discussed above are sufficient to stop a vehicle 
once it is in a risky situation. However, in order to achieve efficiency and to increase safety, 
terrain assessment is also incorporated into the path planning process.

Various methods have been applied for explorer path planning. One such method trans-
forms the environment information gained from analyzing stereo images into grid cells, 
which cover the area surrounding the explorer and thus building a local traversability map 
stored in the explorer’s memory system.

This map is centered around the explorer and is updated constantly as the explorer moves 
and gains new terrain assessment information. Then, plane fitting is applied to the travers-
ability map to assess how safe the explorer will be at each point in the map. The plane 
models the explorer body, and it is roughly the size of the explorer plus an additional 
margin for safety.

Centered in every grid cell, a set of 3D points representing the explorer plane are sampled 
from the point cloud generated by the stereo image. The 3D data are analyzed for informa-
tion regarding the traversability of the explorer, such as tilt and roughness of the terrain. If 
at a grid cell the explorer plane has excessive tilt, too much residual (indicating that the 
underlying terrain is too rough), or deviations from the best fit (greater than explorer clear-
ance), the grid cell is then marked as impassable.

In ideal conditions, the explorer plane lays flat on the surface. Based on the above-
discussed assessment process, each grid cell is assigned a value that serves as a safety index, 
reflecting the terrain safety there. This method can be visualized as the difference in colors 
of grid cells reflecting a safety index of the environment which is used in path selection 
(Figure 10.2).

Path selection for explorers follows two principles: safety and efficiency. When candidate 
motion paths are generated, they are projected onto the traversability map. Each path is 
assigned an overall safety or traversability evaluation based on the safety index given to the 
individual grid cells in the path. Paths are also evaluated for efficiency. The one directly 
leading to the waypoint is preferred. The efficiency is reduced as the candidate paths devi-
ate from the direct path. By combining safety and efficiency evaluation, the explorer can 
ultimately select the optimal path to reach the goal destination.

10.3.4  The Curiosity Rover and Mars 2020 Explorer

As detailed in [6], Mars robotic explorers were also built using the modular design method-
ology, for instance the Curiosity rover consists of the following basic modules:

Chassis. The rover chassis is a strong, outer layer that protects the rover’s computer and 
electronics (which are basically the equivalent of the rover’s brains and heart). The rover 
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chassis thus keeps the rover’s “vital organs” protected and temperature controlled. The 
warm electronics box is closed on the top by a piece called the Rover Equipment Deck. 
The Rover Equipment Deck makes the rover like a convertible car, allowing a place for 
the rover mast and cameras to sit out in the Martian air, taking pictures and clearly 
observing the Martian terrain as it travels.

Power system. The Curiosity rover requires power to operate. The Curiosity rover carries a 
radioisotope power system that generates electricity from the heat of plutonium’s radio-
active decay. This power source gives the mission an operating lifespan on Mars’ surface 
of at least a full Martian year (687 Earth days) or more while also providing significantly 
greater mobility and operational flexibility, enhanced science payload capability, and 
exploration of a much larger range of latitudes and altitudes than was possible on previ-
ous missions to Mars.

Communication system. The Curiosity rover has multiple antennas that serve as both its 
“voice” and its “ears.” They are located on the Rover Equipment Deck. Having multiple 
antennas provides back-up options just in case they are needed.
Most often, Curiosity sends radio waves through its ultra-high frequency antenna (about 
400 MHz) to communicate with Earth through NASA’s Mars Odyssey and Mars 
Reconnaissance Orbiters. Using orbiters to relay messages is beneficial because they are 
closer to the rover than the Deep Space Network (DSN) antennas on Earth and they have 
Earth in their field of view for much longer time periods than the rover does on the ground.

Curiosity also uses its high-gain antenna to receive commands for the mission team 
back on Earth. The high-gain antenna can send a “beam” of information in a specific 
direction, and it is steerable, so the antenna can move to point itself directly to any 
antenna on Earth.

Figure 10.2  Grid-based traversability map.
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In addition, Curiosity uses its low-gain antenna primarily for receiving signals. This 
antenna can send and receive information in every direction; that is, it is “omni-
directional.” The antenna transmits radio waves at a low rate to the DSN antennas on 
Earth.

Perception system. The Curiosity rover relies on four pairs of engineering hazard avoidance 
cameras (Hazcams) for perception. These black-and-white cameras use visible light to 
capture 3D imagery. The rover uses pairs of Hazcam images to map out the shape of the 
terrain as far as 3 m in front of it, in a “wedge” shape that is over 4 m wide at the farthest 
distance. The cameras need to see far either side because unlike human eyes, the Hazcam 
cameras cannot move independently; they are mounted directly to the rover body.

Localization system. The rover also relies on two pairs of engineering navigation cameras 
(Navcams) for localization. Mounted on the mast (the rover “neck and head”), these 
black-and-white cameras use visible light to gather panoramic, 3D imagery. The naviga-
tion camera unit is a stereo pair of cameras that capture images to support visual SLAM 
algorithms to enable ground navigation planning by scientists and engineers.

The latest Mars explorer project is Mars 2020 by NASA, which is set to launch in July 
2020. The new explorer relies solely on camera-based systems for navigation. As shown in 
Figure 10.3, it is equipped with 23 different cameras responsible for autonomous driving, 
including six Hazcams, mainly for perception purposes, and one pair of Navcams, mainly 
for localization purposes.

With one pair mounted in the back and two pairs mounted in the front, the Hazcams 
monitor the surrounding environment of the explorer. They take stereo images and assess 
the terrain traversability. Hazcams have a broad field of view of 120°. The Navcams have a 
field of view of 45° and are mounted on top of the mast. They also take stereo images but 
are responsible for macro-level observation.

Compared with the previously sent explorer, Curiosity, the Mars 2020 explorer has a 
major upgrade in image processing power, increasing the speed for stereo image and visual 
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Figure 10.3  Mars 2020 explorer.
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odometry calculations. As a result, the explorer will be able to operate at a higher speed, 
around 152 miles per hour, outperforming its predecessors.

10.4  Challenge: Onboard Computing Capability

In multiple space exploration missions, NASA has demonstrated autonomous rover capa-
bilities. As detailed in [7], autonomous navigation not only improved target approach effi-
ciency, it also proved crucial to maintaining vehicle safety. However, onboard autonomy is 
often constrained by processor computing power because of the number of sensor inputs 
that have to be evaluated in real time.

For instance, the Opportunity rover is equipped with an IBM RAD6000, a radiation-
hardened single board computer, based on the IBM RISC Single Chip CPU [7]. For reliabil-
ity reasons, the RAD6000 on the Opportunity rover was implemented on a radiation-hardened 
field programmable gate array (FPGA) and runs only at 20 MHz, delivering over 22 MIPS 
(million instructions per second). In comparison, a commercial Intel Core i7 can easily 
deliver 50 000 MIPS running at 2.7 GHz.

Unfortunately, we cannot use these powerful commercial central processing units or 
graphics processing units for space exploration missions since these fabrics are not radia-
tion hardened and thus cannot operate in the harsh environments in space or on other 
planets. Nonetheless, a few FPGA manufacturers provide radiation-hardened and space-
ready FPGA substrates and we can optimize autonomous navigation workloads on these 
substrates to enable future commercial space exploration missions.

Due to the computing power constraints, only limited autonomous navigation capa-
bilities were turned on in the Opportunity rover. For instance, only low-resolution low-
throughput cameras were used for localization, and each update of rover location would 
take a nontrivial amount of time, up to three minutes for a single location update, as 
opposed to 30 updates per second for autonomous vehicles on Earth, thus leading to the 
average speed of rover autonomous navigation under 0.1 miles per hour.

To make matters worse, in order for the Opportunity rover to make long-distance autono-
mous navigation, ground truth data (e.g. 3D reconstruction of the Mars surface for rover 
localization) on Mars was needed but missing, and this limited the distance the Opportunity 
rover could travel.

To generate the needed ground-truth data for the Opportunity rover, the rover needs to 
collect a large number of images on Mars and then perform surface reconstruction or map 
optimization, an extremely computationally expensive step. As discussed in [8], ground-
truth data reconstruction is achieved through employing structure-from-motion algo-
rithms. However, processing structure-from-motion algorithms is beyond the current 
capabilities of an explorer’s onboard computer. To provide an idea of how much computing 
power it consumes: to reconstruct the city of Rome using 150 000 images would require a 
500-node cluster running fully for 24 hours [9].

As shown in Figure 10.4, what happened with the Opportunity rover was that the rover 
would run for a very short distance (e.g. a few meters) and collect images, then send the 
images back to Earth for further processing. The rover would then wait for the recon-
structed surface map to be transmitted back before it could take the next action.
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This is extremely inefficient, as a one-way communication to Mars has a delay of up to 
20 minutes, depending on the orbital alignment of the planets. In addition, communica-
tion is available only twice per sol (Martian day) due to the limited spacecraft around 
Mars.

We believe the solution lies in developing better computing systems for space explorers. 
It is thus imperative to implement and optimize autonomous navigation algorithms on 
radiation-hardened FPGA systems. One example of radiation-hardened FPGA is the Xilinx 
Virtex-5QV product line.

One such example is presented in [8]: bundle adjustment (BA) is the most computa-
tionally demanding step in 3D scene reconstruction, and the authors developed a BA 
accelerator engine on an embedded FPGA. Experimental results confirm that this design 
outperformed ARM processors by 50-fold while maintaining similar power consump-
tion. As more autonomous navigation workloads are implemented and optimized on 
radiation-hardened FPGAs, we look forward to enabling more autonomous navigation 
scenarios for robotic space explorers.

10.5  Conclusion

Autonomous space exploration robots are still in their infancy. Many challenges are yet to 
be solved. Progress in these areas will definitely increase the efficiency of autonomous 
explorers. The development of autonomous space explorers also opens up exciting possi-
bilities including commercial use, such as exploiting mineral resources on other planets. 
Eventually, hopefully in the near future, we will have commercial autonomous space 
robotic explorers building infrastructures for human settlement on Mars.

In this chapter, we have introduced environments on Mars and explored technologies 
required to enable future commercial autonomous space robotic explorers. Last but not 
least, we have indicated that one of the urgent technical challenges for autonomous space 
explorers is computing power: if we have sufficient computing power onboard, we would 
be able to enable much more efficient robots on Mars. Together, let us build autonomous 
robots for the space exploration age.

Figure 10.4  Mars navigation map generation.
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11.1  Introduction

As indicated in Chapter 10, onboard autonomy is often constrained by processing power 
because multiple sensor inputs have to be evaluated in real time. This is not only true for 
space exploration robots on Mars but also for autonomous vehicles on Earth.

For instance, if an autonomous vehicle travels at 60 miles per hour, and thus with about 
30 m of braking distance, this requires the autonomous driving system to predict potential 
dangers up to a few seconds before they occur. Therefore, the faster the autonomous driv-
ing edge computing system can perform these complex computations, the safer the autono-
mous vehicle.

To summarize, the overarching challenge of autonomous vehicle edge computing system 
design is to efficiently process a massive amount of data in real time, within a limited 
energy budget, and without sacrificing the security of the users.

In the following chapters, we review state‐of‐the‐art approaches in building edge com-
puting systems for autonomous vehicles. In this chapter, we focus on onboard computing 
systems; in Chapter  12, we focus on how vehicle‐to‐everything (V2X) technologies can 
help alleviate stress on onboard computing systems; in Chapter  13, we review security 
problems in edge computing systems for autonomous vehicles.

Particularly, in this chapter, we review the latest progress in the design of edge com-
puting systems for autonomous driving applications. First, we start with benchmark 
suites available for evaluating edge computing system designs. Secondly, we review dif-
ferent approaches in designing computer architectures for autonomous driving work-
loads. Thirdly, we describe the designs of runtime layers for efficient mapping of 
incoming workloads onto heterogeneous computing units. Fourthly, we discuss the 
designs of middleware for binding different autonomous driving functional modules. 
Last, we present real‐world implementations of autonomous driving edge computing 
systems.

Edge Computing for Autonomous Vehicles
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11.2  Benchmarks

To improve a computing system, the most effective tool is a standard benchmark suite to 
represent the workloads widely used in the target applications. The same principle applies 
when it comes to designing and improving edge computing systems for autonomous 
vehicles.

Current research in this area can be divided into two categories: datasets and workloads. 
KITTI was the first benchmark dataset related to autonomous driving [1]. It is composed of 
rich vision sensor data with labels, such as monocular/stereo image data and 3D Light 
Detection and Ranging (LiDAR) data. According to different data types, it also provides a 
dedicated method to generate the ground truth and to calculate the evaluation metrics. 
KITTI was built for evaluating the performance of algorithms in the autonomous driving 
scenario, including but not limited to visual odometry, lane detection, object detection, and 
object tracking.

In addition to KITTI, there are some customized benchmark datasets for each algorithm, 
such as TUM RGB‐D [2] for RGB‐D simultaneous localization and mapping (SLAM), 
PASCAL3D [3] for 3D object detection, and the MOTChallenge benchmark [4] for multi‐
target tracking. These kinds of datasets serve as very good data sources for stressing edge 
computing systems.

Another class of related benchmark suites is designed to benchmark the performance of 
novel hardware architectures and software framework, which usually consists of a set of 
computer vision kernels and applications. The San Diego Vision Benchmark Suite (SD‐
VBS) [5] and MEVBench [6] are both performance benchmark suites for a mobile com-
puter vision system. SD‐VBS provides single‐threaded C and MATLAB implementations of 
nine high‐level vision applications. MEVBench is an extended benchmark based on SD‐
VBS. It provides single‐ and multi‐threaded C++ implementations of 15 vision applica-
tions. However, these two benchmarks are prior works in the field, so they are not targeted 
toward heterogeneous platforms such as graphics processing units (GPUs) and do not con-
tain novel workloads, such as deep learning algorithms.

SLAMBench [7] concentrates on using a complete RGB‐D SLAM application to evaluate 
novel heterogeneous hardware. It takes KinectFusion [8] as the implementation and pro-
vides C++, OpenMP, OpenCL and CUDA versions of key function kernels for heterogene-
ous hardware. These efforts are a step in the right direction but we still need a comprehensive 
benchmark which contains diverse workloads that cover varied application scenarios of 
autonomous vehicles (such as MAVBench [9] for micro aerial vehicle system benchmark-
ing) to evaluate the autonomous vehicle edge computing systems.

CAVBench is a recently released benchmark suite specially developed for evaluating the 
connected and autonomous vehicles (CAVs) computing system performance [10]. It sum-
marizes four application scenarios on CAVs (autonomous driving, real‐time diagnostics, 
in‐vehicle infotainment, and third‐party applications), and chooses six classic and diverse 
real‐world on‐vehicle applications as evaluation workloads (SLAM, object detection, object 
tracking, battery diagnostics, speech recognition, and edge video analysis).

CAVBench takes four real‐world datasets as the standard input to the six workloads and 
generates two categories of output metrics. One metric is an application perspective metric, 
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which includes the execution time breakdown for each application, helping developers 
find the performance bottleneck in the application side. Another is a system perspective 
metric, which is the quality of service–resource utilization curve (QoS‐RU curve). The 
QoS‐RU curve can be used to calculate the Matching Factor (MF) between the application 
and the computing platform on autonomous vehicles. The QoS‐RU curve can be consid-
ered as a quantitative performance index of the computing platform that helps researchers 
and developers optimize on‐vehicle applications and CAVs computing architecture. We 
hope to see more research in the area of benchmarking for autonomous vehicle workloads 
but currently, CAVBench serves as a good starting point to study edge computing systems 
for autonomous driving.

As autonomous driving is still a fast developing field, we hope to see continuous effort to 
incorporate more dynamic workloads and data to cover emerging autonomous driving 
usage scenarios. In addition, standardized scoring methods are required (but still missing) 
to rank different edge computing systems based on different optimization metrics.

11.3  Computing System Architectures

Once we have standard benchmark suites, we can start developing suitable architectures 
for autonomous driving workloads. Liu et al. proposed a computer architecture for autono-
mous vehicles which fully utilizes hybrid heterogeneous hardware [11]. In this work, the 
applications for autonomous driving are divided into three stages: sensing, perception, and 
decision‐making. The authors compared the performance of different hardware running 
basic autonomous driving tasks and concluded that localization and perception are the bot-
tlenecks of autonomous driving computing systems, and they also identified the need for 
different hardware accelerators for different workloads. Furthermore, the authors pro-
posed and developed an autonomous driving computing architecture and software stack 
that is modular, secure, dynamic, high performance, and energy efficient. By fully utilizing 
heterogeneous computing components, such as a central processing unit (CPU), GPU, and 
digital signal processor (DSP), their prototype system on an ARM mobile system on chip 
(SoC) consumes 11 W on average and is able to drive a mobile vehicle at 5 miles per hour. 
In addition, the authors indicated that with more computing resources, the system would 
be able to process more data and would eventually satisfy the need of a production‐level 
autonomous driving system.

Similarly, Lin et al. explored the architectural constraints and acceleration of the autono-
mous driving system in [12]. The authors presented and formalized the design constraints 
of autonomous driving systems in performance, predictability, storage, thermal, and power. 
To investigate the design of the autonomous driving systems, the authors developed an 
end‐to‐end autonomous driving system based on machine learning algorithmic compo-
nents. Through the experiments on this system, the authors identified three computational 
bottlenecks, namely localization, object detection, and object tracking. To design a system 
which can meet all the design constraints, the authors also explored three different accel-
erator platforms to accelerate these computational bottlenecks. The authors demonstrated 
that GPU, field programmable gate array (FPGA), and ASIC‐accelerated systems could 
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effectively reduce the tail latency of these algorithms. Based on these acceleration systems, 
the authors further explored the trade‐offs among performance, power, and scalability of 
the autonomous driving system. Their conclusion is that although power‐hungry accelera-
tors like GPUs can predictably deliver the computation at low latency, their high power 
consumption, further magnified by the cooling load to meet the thermal constraints, can 
significantly degrade the driving range and fuel efficiency of the vehicle. Finally, the 
authors indicated that computational capability remains the bottleneck that prevents us 
from benefiting from the higher system accuracy enabled by higher resolution cameras.

Interestingly, in their pioneering architectural exploration work, the authors discussed 
above both concluded that localization and perception are the computing bottlenecks and 
heterogeneous computing is a feasible approach to accelerate these workloads. For 
localization acceleration, Tang et al. proposed a heterogeneous architecture for SLAM [13]. 
The authors first conducted a thorough study to understand visual inertial SLAM 
performance and energy consumption on existing heterogeneous SoCs. The initial findings 
indicated that existing SoC designs are not optimized for SLAM applications, and systematic 
optimizations are required in the IO interface, the memory subsystem, as well as 
computation acceleration. Based on these findings, the authors proposed a heterogeneous 
SoC architecture optimized for visual inertial SLAM applications. Instead of simply adding 
an accelerator, the authors systematically integrated direct IO, a feature buffer, and a 
feature extraction accelerator. To prove the effectiveness of this design, the authors 
implemented the proposed architecture on a Xilinx Zynq UltraScale MPSoC and this was 
able to deliver over 60 frames per second (FPS) performance with average power less than 
5 W. These results verify that the proposed architecture is capable of achieving performance 
and energy consumption optimization for visual inertial SLAM applications.

Similarly, to solve the localization computing problem, Zhang et al. proposed an algorithm‐
and hardware co‐design methodology for Visual‐Inertial Odometry (VIO) systems, in which 
the robot estimates its ego‐motion (and a landmark‐based map) from onboard camera and 
inertial measurement unit (IMU) data [14]. The authors argued that scaling down VIO to 
miniaturized platforms (without sacrificing performance) requires a paradigm shift in the 
design of perception algorithms, and the authors advocated a co‐design approach in which 
algorithmic and hardware design choices are tightly coupled. In detail, the authors 
characterized the design space by discussing how a relevant set of design choices affects the 
resource‐performance trade‐off in VIO. Also, the authors demonstrated the result of the 
co‐design process by providing a VIO implementation on specialized hardware showing 
that such implementation has the same accuracy and speed of a desktop implementation, 
while requiring a fraction of the power.

Besides academic research, PerceptIn has recently released a commercial production 
SLAM system titled DragonFly+ [15]. DragonFly+ is a FPGA‐based real‐time localization 
module with several advanced features: (i) hardware synchronizations among the four 
image channels as well as the IMU; (ii) a direct IO architecture to reduce off‐chip memory 
communication; and (iii) a fully pipelined architecture to accelerate the image processing 
frontend. In addition, parallel and multiplexing processing techniques are employed to 
achieve a good balance between bandwidth and hardware resource consumption. Based 
on publicly available data, for processing four‐way 720p images, DragonFly+ achieves 42 
FPS performance while consuming only 2.3 W of power. In comparison, Nvidia Jetson 



11.4  ­Runtim 175

TX1 GPU SoC achieves 9 FPS at 7 W and Intel Core i7 achieves 15 FPS at 80 W. Therefore, 
DragonFly+ is three times more power efficient and delivers five times the computing 
power compared with Nvidia TX1, and is 34 times more power efficient and delivers three 
times the computing power compared with Intel Core i7.

For perception acceleration, most recent research has focused on the acceleration of deep 
convolutional neural networks (CNNs). To enable CNN accelerators to support a wide 
variety of different applications with sufficient flexibility and efficiency, Liu et al. proposed 
a novel domain‐specific Instruction Set Architecture (ISA) for neural network accelerators 
[16]. The proposed ISA is a load‐store architecture that integrates scalar, vector, matrix, 
logical, data transfer, and control instructions, based on a comprehensive analysis of 
existing neural network acceleration techniques. The authors demonstrated that the 
proposed ISA exhibits strong descriptive capacity over a broad range of neural network 
acceleration techniques, and provides higher code density than general‐purpose ISAs such 
as x86, MIPS, and GPGPU.

Realizing that data movement is a key bottleneck for CNN computations, Chen et al. 
presented a dataflow to minimize the energy consumption of data movement on a spatial 
architecture [17]. The key is to reuse local data of filter weights and feature map pixels, or 
activations, in the high‐dimensional convolutions, and minimize data movement of partial 
sum accumulations. The proposed dataflow adapts to different CNN shape configurations 
and reduces all types of data movement by maximally utilizing the processing engine (PE) 
local storage, spatial parallelism, and direct inter‐PE communication. Through the CNN 
configurations of AlexNet, evaluation experiments show that the proposed dataflow is 
more energy efficient than other dataflows for both convolutional and fully connected 
layers.

In the near future, as more autonomous driving workloads and usage scenarios emerge, 
we look forward to the designs of more accelerators targeted for these workloads. Also, we 
expect to see more exploration studies on the cache, memory, and storage architectures for 
autonomous driving workloads. In addition, hardware security for autonomous driving is 
of utmost importance. Within a decade, the research community and the industry shall be 
able to come up with a “general‐purpose” architecture design for autonomous driving 
workloads.

11.4  Runtime

With heterogeneous architectures ready for autonomous driving tasks, the next challenge 
is how to dispatch incoming tasks to different computing units at runtime to achieve opti-
mal energy efficiency and performance. This can be achieved through a runtime layer. 
Designing runtime for heterogeneous autonomous driving systems is a whole new research 
area with tremendous potential as most existing runtime designs focus on either mapping 
one algorithm to one type of accelerator, or on scheduling for homogeneous or heterogene-
ous systems with a single accelerator.

Several existing designs focus on mapping one deep learning or computer vision work-
load to heterogeneous architectures: Hegde et al. [18] proposed a framework for easy map-
ping of CNN specifications to accelerators such as FPGAs, DSPs, GPUs, and Reduced 
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Instruction Set Computer (RISC) multi‐cores. Malik et al. [19] compared the performance 
and energy efficiency of computer vision algorithms on on‐chip FPGA accelerators and 
GPU accelerators.

Many studies have explored the optimization of deep learning algorithms on an embed-
ded GPU or FPGA accelerator [20, 21]. There have also been many projects on optimizing 
computer vision related tasks on embedded platforms. Honegger et al. [22] proposed FPGA 
acceleration of embedded computer vision. Satria et al. [23] performed platform specific 
optimizations of face detection on an embedded GPU‐based platform and reported real‐
time performance. Vasilyev et al. [24] evaluated computer vision algorithms on program-
mable architectures. Nardi et al. [25] presented a benchmark suite to evaluate dense SLAM 
algorithms across desktop and embedded platforms in terms of accuracy, performance, and 
energy consumption. However, these designs did not consider the complexity of integrat-
ing the various kind of workloads into a system, and only focus on mapping one task to 
different accelerators.

Other existing designs focus on scheduling for heterogeneous architectures with one 
accelerator that has been broadly studied for single‐ISA multiprocessors, such as asymmet-
ric multi‐core architectures, i.e. big and small cores, and multi‐ISA multiprocessors such as 
CPU with GPU. On the single‐ISA multiprocessor side, much work has been done at the 
operating system level to map workload onto the most appropriate core type in run time. 
Koufaty et al. [26] identified that the period of core stalls is a good indicator to predict the 
core type best suited for an application. Based on the indicator, a biased schedule strategy 
was added to operating systems to improve system throughput. Saez et al. [27] proposed a 
scheduler that adds efficiency specialization and TLP (thread‐level parallelism) specializa-
tion to operating systems to optimize throughput and power at the same time.

Efficient specialization maps CPU‐intensive workloads onto fast cores and memory‐
intensive workloads onto slow cores. TLP specialization uses fast cores to accelerate sequen-
tial phases of parallel applications and uses slow cores for parallel phases to achieve energy 
efficiency. On the asymmetric multi‐core architectures side, Jiménez et al. [28] proposed a 
user‐level scheduler for CPU with a GPU‐like system. It evaluates and records the perfor-
mance of a process on each PE at the initial phase. Then, based on this history information, 
it maps the application on to the best suited PE. Luk et al. [29] focused on improving the 
latency and energy consumption of a single process. It uses dynamic compilation to charac-
terize workloads, determines optimal mapping and generates codes for CPUs and GPUs.

Unlike existing runtime designs, recently, Liu et al. proposed PIRT (PerceptIn Runtime), 
the first runtime framework that is able to dynamically map various computer vision and 
deep learning workloads to multiple accelerators and to the cloud [30]. The authors first 
conducted a comprehensive study of emerging robotic applications on heterogeneous SoC 
architectures. Based on the results, the authors designed and implemented PIRT to utilize 
not only the on‐chip heterogeneous computing resources but also the cloud to achieve high 
performance and energy efficiency. To verify its effectiveness, the authors have deployed 
PIRT on a production mobile robot to demonstrate that full robotic workloads, including 
autonomous navigation, obstacle detection, route planning, large map generation, and 
scene understanding, can be efficiently executed simultaneously with 11 W of power 
consumption.
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The runtime layer connects autonomous driving software and hardware but there are 
several upcoming challenges in the design of runtime systems for autonomous driving. 
First, as the computing system becomes more heterogeneous, the runtime design becomes 
more complicated in order to dynamically dispatch incoming workloads. Secondly, as more 
edge clouds become available, the runtime system needs to be cloud‐aware and able to 
dispatch workloads to edge clouds. Thirdly, the runtime shall provide good abstraction to 
hide all the low‐ level implementations.

11.5  Middleware

Robotic systems, such as autonomous vehicle systems, often involve multiple services, with 
a lot of dependencies in between. To facilitate the complex interactions between these ser-
vices, to simplify software design, and to hide the complexity of low‐level communication 
and the heterogeneity of the sensors, a middleware is required.

An early design of robotic middleware is Miro, a distributed object‐oriented framework 
for mobile robot control, based on Common Object Request Broker Architecture (COBRA) 
technology [31]. The core components have been developed with the aid of Adaptive 
Communications Environment, an object‐oriented multi‐platform framework for OS‐inde-
pendent inter‐process, network and real time communication. Miro provides generic 
abstract services like localization or behavior engines, which can be applied on different 
robot platforms. Miro supports several robotic platforms including Pioneers, the B21, some 
robot soccer robots, and various robotic sensors.

ORCA is an open‐source component‐based software engineering framework developed 
for mobile robotics with an associated repository of free, reusable components for building 
mobile robotic systems [32]. ORCA’s project goals include enabling software reuse by defin-
ing a set of commonly used interfaces; simplifying software reuse by providing libraries 
with a high‐level convenient application program interfaceI; and encouraging software 
reuse by maintaining a repository of components.

Urbi is open source cross‐platform software used to develop applications for robotics and 
complex systems [33]. Urbi is based on the UObject distributed C++ component architec-
ture. Urbi includes the urbiscript orchestration language, a parallel and event‐driven script 
language. In this design, UObject components can be plugged into urbiscript as native 
objects to specify their interactions and data exchanges. UObjects can be linked to the 
urbiscript interpreter, or executed as autonomous processes in “remote” mode, either in 
another thread, another process, a machine on the local network, or a machine on a distant 
network.

Runtime (RT)‐middleware is a common platform standard for distributed object technol-
ogy based robots [34]. RT‐middleware can support the construction of various networked 
robotic systems through the integration of various network‐enabled robotic elements called 
RT‐components. In the RT‐middleware, robotic elements, such as actuators, are regarded 
as RT‐components, and the whole robotic system is constructed by connecting these RT‐
components. This distributed architecture helps developers to reuse the robotic elements 
and boosts the reliability of the robotic system.
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OpenRDK is an open source software framework for robotics for developing loosely cou-
pled modules [35]. It provides transparent concurrency management, inter‐process via 
sockets, and intra‐process via shared memory. Modules for connecting to simulators and 
generic robot drivers are provided.

The above‐mentioned middleware projects mostly focused on providing a software com-
ponent management framework for mobile robots and they were not used in autonomous 
vehicles. On the other hand, the Robot Operating System (ROS) has been widely used in 
autonomous vehicle development [36], mainly due to the popularity of ROS robotic devel-
opers and the richness of its software packages. However, as discussed in Section 11.2, in 
its current state, ROS is not suitable for the production deployment of autonomous vehicles 
as it suffers from performance, reliability, and security issues.

The middleware layer facilitates the communication between different autonomous 
driving services. Here, we summarize several challenges. First, the middleware should 
impose minimal computing overhead and memory footprint, thus making it scalable. 
Secondly, as some autonomous driving services may stay in edge clouds, the middleware 
should enable a smooth edge client and cloud communication. Thirdly, and most 
importantly, the middleware should be secure and reliable to guarantee quality of service 
and autonomous vehicle safety.

Layer Purpose Proposed 
solutions

Research directions

Architecture Hardware computing units 
to execute autonomous 
driving workloads

[11]–[17] Accelerators for various autonomous 
driving workloads; cache and memory 
architecture design; non‐volatile 
storage for critical data; hardware 
security

Runtime Software layer to efficiently 
dispatch incoming tasks at 
run time to different 
computing units

[18]–[30] Scheduler and dispatcher for highly 
heterogeneous computing systems; 
abstraction to hide low‐level details; 
cloud awareness

Middleware Software layer to enable 
complex interactions 
between autonomous 
driving services

[31]–[36] Low overhead and memory footprint; 
edge–cloud interaction; security and 
reliability

Benchmark Tools to evaluate edge 
computing systems

[1]–[10] More dynamic workloads and data to 
cover more usage scenarios; 
standardized, scoring methods to rank 
edge computing systems

11.6  Case Studies

To simultaneously enable multiple autonomous driving services, including localization, 
perception, and speech recognition workloads on affordable embedded systems, Tang 
et  al. designed and implemented Π‐Edge, a complete edge computing framework for 
autonomous robots and vehicles [37]. The challenges of designing such a system include 
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the following: managing different autonomous driving services and their communications 
with minimal overheads, fully utilizing the heterogeneous computing resources on the 
edge device, and offloading some of the tasks to the cloud for energy efficiency. To achieve 
these, first, the authors developed a runtime layer to fully utilize the heterogeneous 
computing resources of low‐power edge computing systems; secondly, the authors 
developed an extremely lightweight middleware to manage multiple autonomous driving 
services and their communications; and thirdly, the authors developed an edge‐cloud 
coordinator to dynamically offload tasks to the cloud to optimize client system energy 
consumption.

OpenVDAP is another real‐world edge computing system which is a full‐stack edge‐based 
platform including a vehicle computing unit, an isolation‐supported and security and 
privacy‐preserved vehicle operation system, an edge‐aware application library, as well as task 
offloading and scheduling strategy [38]. OpenVDAP allows CAVs to dynamically examine 
each task’s status, computation cost and the optimal scheduling method so that each service 
could be finished in near real time with low overhead. OpenVDAP is featured as a two‐tier 
architecture via a series of systematic mechanisms that enable CAVs to dynamically detect 
service status and identify the optimal offloading destination so that each service could be 
finished at the right time. In addition, OpenVDAP offers an open and free edge‐aware library 
that contains how to access and deploy edge‐computing‐based vehicle applications and 
various commonly used artificial intelligence models, thus enabling researchers and 
developers to deploy, test, and validate their applications in the real environment.
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12.1  Introduction

One effective method to alleviate the stress on autonomous driving edge computing 
systems is vehicle‐to‐everything (V2X) technology. V2X communication focuses more on 
the communication infrastructure, while edge computing focuses more on the comput­
ing side, and how to distribute the computing workloads to the V2X infrastructure.

V2X is defined as a vehicle communication system which consists of many types of com­
munication: vehicle‐to‐vehicle (V2V), vehicle‐to‐network (V2N), vehicle‐to‐pedestrian 
(V2P) Vehicle‐to‐Infrastructure (V2I), vehicle‐to‐device (V2D), and vehicle‐to‐grid (V2G). 
Currently, most research focuses on V2V and V2I. While conventional autonomous driving 
systems require costly sensors and edge computing equipment within the vehicle, V2X 
takes a different approach by investing in road infrastructure, thus alleviating the comput­
ing and sensing costs in vehicles.

Meanwhile, more and more autonomous driving applications have started leveraging 
V2X communications to make the in‐vehicle edge computing system more efficient. The 
most representative example is cooperative autonomous driving. The cooperation of auton­
omous driving edge computing system with V2X technology makes it possible to build a 
safe and efficient autonomous driving system [1]. However, the applications of a coopera­
tive system of V2X and autonomous driving are still open research problems.

In this chapter, we discuss the evolution of V2X technology and present several usage 
cases of V2X for autonomous driving: convoy driving, cooperative lane change, cooperative 
intersection management, and cooperative sensing.

12.2  Evolution of V2X Technology

As summarized in Table 12.1, in the development of V2X technology, many researchers 
have contributed solutions to specific challenges of V2X communication protocol. 
The Inter‐Vehicle Hazard Warning (IVHW) system is one of the earliest studied to take the 
idea of improving vehicle safety based on communication. The project is funded by the 
German Ministry of Education and Research and the French government. IVHW is a 
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Table 12.1  Summary of V2X solutions for autonomous driving.

Research Application scenario Proposed solutions
Communication 
protocol

IVHW Safe driving Warning messages are 
transmitted as broadcast 
messages, and vehicle takes a 
local decision‐making strategy

Frequency band of 
869 MHz

FleetNet Safe driving, 
Internet Protocol‐
based applications

Uses ad‐hoc networking to 
support multi‐hop inter‐vehicle 
communications, proposes a 
position‐based forwarding 
mechanism

IEEE 802.11 
wireless LAN

CarTALK 
2000

Cooperative driver 
assistance 
applications

Uses ad‐hoc communication 
network to support cooperative 
driver assistance applications, a 
spatial aware routing algorithm 
which takes some spatial 
information, such as underlying 
road topology, into consideration

IEEE 802.11 
wireless LAN

AKTIV Safe driving Use of wireless LAN technology 
as the latency required for 
safety‐related applications is less 
than 500 ms

Cellular systems

WILLWARN Warning 
applications

Propose a risk detection approach 
based on in‐vehicle data. The 
warning message includes 
obstacles, road conditions, low 
visibility, and construction sites. 
A decentralized distribution 
algorithm to transmit the 
warning message to vehicles 
approaching the danger spot 
through V2V communication

IEEE 802.11 
wireless LAN

NoW Mobility and 
internet applications

A hybrid forwarding scheme 
considering both network layer 
and application layer is developed. 
Also, some security and scalability 
issues are discussed

IEEE 802.11 
wireless LAN

SAFESPOT Safe driving An integrated project which aims 
at using roadside infrastructure to 
improve driving safety. Detects 
dangerous situations and shares 
the warning messages in real time

IEEE 802.11 
wireless LAN

simTD Traffic 
manipulation, safe 
driving, and 
Internet‐based 
applications

Real environment deployment of 
the whole ITS. The system 
architecture of simTD can be 
divided into three parts: ITS 
vehicle station, ITS roadside 
station, and ITS central station.

IEEE 802.11p 
(Dedicated Short 
Range 
Communications)

ITS, Intelligent Transportation System.
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communication system in which warning messages are transmitted as broadcast messages 
in the frequency band of 869 MHz [2]. IVHW takes a local decision‐making strategy. After 
the vehicle receives the message, it will do relevant checks to decide whether the warning 
message is relevant and should be shown to the driver. The majority of the research effort 
has been on the design of relevant check algorithms. However, as IVHW takes a broadcast 
mechanism to share the message, there can be a huge waste in both bandwidth and com­
puting resources.

Compared with the broadcast message in IVHW, ad‐hoc networking can be a better 
solution to support multi‐hop inter‐vehicle communication [3]. FleetNet is another 
research project using the idea of vehicle communication [4], and it is based on ad‐hoc 
networking. In addition, the FleetNet project also provides a communication platform for 
some Internet Protocol‐based applications. FleetNet is implemented based on the IEEE 
802.11 wireless LAN (WLAN) system [5]. For V2V communication, if two vehicles are not 
directly connected wirelessly, it would need some other vehicles to forward the message for 
them. Designing the routing and forwarding protocol can be a major challenge. In order to 
meet the requirements for adaptability and scalability, FleetNet proposed a position‐based 
forwarding mechanism. The idea is to choose the next hop to forward the message based on 
the geographical location of the vehicle.

CarTALK 2000 is a project focusing on applying ad‐hoc communication network to 
support cooperative driver assistance applications [6]. There can be a major challenge for 
ad‐hoc‐based routing in V2V communication because the vehicle network topology is 
dynamic, and the number of vehicles is frequently changing [7]. In order to solve the prob­
lem, a spatial aware routing algorithm is proposed in CarTALK 2000 which takes some 
spatial information, such as underlying road topology, into consideration.

Compared with FleetNet, CarTALK 2000 achieves better performance as it uses spatial 
information as additional input for the routing algorithm. Another similarity of CarTALK 
2000 and FleetNet is that they are both based on WLAN technology. AKTIV is another 
project to apply cellular systems in some driving safety applications [8]. One of the reasons 
that the FleetNet and CarTALK 2000 projects built their system based on WLAN technol­
ogy is that the latency required for safety‐related applications is less than 500 ms. However, 
with the assumption that a Long‐Term Evolution (LTE) communication system can be 
greatly further developed, cellular systems can be a better choice for sparse vehicle 
networking.

Meanwhile, some research projects have focused on warning applications based on V2V 
communication. Wireless Local Danger Warning (WILLWARN) proposed a risk detection 
approach based on in‐vehicle data. The warning message includes obstacles, road condi­
tions, low visibility, and construction sites [9]. Unlike other projects focusing on the V2X 
technology itself, WILLWARN focuses on enabling V2X technology in some specific sce­
narios such as the danger spot. Suppose some potential danger is detected in a specific 
location but there is no vehicle within the communication range that supports the V2X 
communication technology to share the warning message [10]. To share warning messages, 
WILLWARN proposed a decentralized distribution algorithm to transmit the warning mes­
sage to vehicles approaching the danger spot through V2V communication.

The project Network on Wheels (NoW) takes the idea of FleetNet to build vehicle 
communication based on 802.11 WLAN and ad‐hoc networking [11]. The goal of NoW is to 
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set up a communication platform to support both mobility and Internet applications. For 
example, a hybrid forwarding scheme considering both the network layer and application 
layer is developed. Also, some security and scalability issues are discussed in NoW.

As the infrastructure also plays a very important part in V2X technology, some studies 
focus on building safety applications based on cooperation with infrastructure. SAFESPOT 
is an integrated project which is aimed at using roadside infrastructure to improve driving 
safety [12]. Through combining information from the on‐vehicle sensors and infrastructure 
sensors, SAFESPOT detects dangerous situations and shares the warning messages in real 
time. Also, the warning forecast can be improved from milliseconds level to seconds level, 
thus giving the driver more time to prepare and take action. Five applications are discussed 
in SAFESPOT, including hazard and incident warning, speed alert, road departure preven­
tion, cooperative intersection collision prevention, and safety margin for assistance and 
emergency vehicles [13].

In 2007, a non‐profit organization called the Car‐2‐Car Communication Consortium 
(C2C‐CC) was set up to combine all solutions from different projects to make a standard for 
V2X technology. Since 2010, the focus of work on V2X technology has moved from research 
topics to the real environment deployment of the whole ITS. One of the most popular 
deployed projects is simTD [1], targeted on testing the V2X applications in a real metropoli­
tan field. In simTD, all vehicles can connect with each other through Dedicated Short 
Range Communications (DSRC) technology which is based on IEEE 802.11p. Meanwhile, 
vehicles can also communicate with roadside infrastructure using IEEE 802.11p. The sys­
tem architecture of simTD can be divided into three parts: ITS vehicle station, ITS roadside 
station, and ITS central station. Applications for testing in simTD include traffic situation 
monitoring, traffic flow information and navigation, traffic management, driving assis­
tance, local danger alert, and Internet‐based applications.

Cellular vehicle‐to‐everything (C‐V2X) is designed as a unified connectivity platform 
which provides low latency V2V and V2I communications [14]. It consists of two modes of 
communications. The first mode uses direct communication links between vehicles, 
infrastructure, and pedestrians. The second mode relies on network communication, 
which leverages cellular networks to enable vehicles to receive information from the 
Internet. C‐V2X further extends the communication range of the vehicle and it supports a 
high capacity of data for information transmission for vehicles.

12.3  Cooperative Autonomous Driving

Cooperative autonomous driving can be divided into two categories: cooperative sensing 
and cooperative decision [15]. Cooperative sensing focuses on sharing sensing information 
between V2V and V2I. This data sharing can increase the sensing range of autonomous 
vehicles, making the system more robust. The cooperative decision enables a group of 
autonomous vehicles to cooperate and make decisions.

Some studies have focused on the exploration of applications for cooperative auto­
nomous driving. In [15], four use cases including convoy driving, cooperative lane change, 
cooperative intersection management, and cooperative sensing are demonstrated. 
According to the design of AutoNet2030 [16], a convoy is formed of vehicles on multi‐lanes 
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into a group and the control of the whole group is decentralized. The safety and efficient 
control of the convoy requires high‐frequency exchanges of each vehicle’s dynamic data. 
As shown in Figure 12.1, a roadside edge server and a cloud server are used to coordinate 
and manage the vehicles and convoys to go through crossroads safely. One convoy control 
algorithm in [17] only exchanges dynamic information of the nearby vehicle rather than 
for all the vehicles within a convoy. This design makes the algorithm easy to converge.

Cooperative lane change is designed to make vehicles or convoys collaborate when 
changing lanes. Proper cooperative lane change not only can avoid traffic accidents but it 
also reduces traffic congestion [18]. MOBIL [19] is a general model whose objective is to 
minimize overall braking induced by lane changes. Cooperative intersection mangement is 
also helpful for safe driving and traffic control. The World’s Smartest Intersection in Detroit 
[20] focuses on safety and generates data that pinpoints areas where traffic‐related fatalities 
and injuries can be reduced. Effective cooperative intersection management is based on a 
coordination mechanism between vehicles to vehicles and vehicle to infrastructure.

Cooperative sensing increases the autonomous vehicle sensing range through V2X com­
munication. Meanwhile, cooperative sensing also helps in cutting the cost of building 
autonomous driving. As vehicles can rely more on the sensors deployed on roadside infra­
structure, the cost of on‐vehicle sensors can be reduced. In the future, sensor information 
may become a service to the vehicle provided by the roadside infrastructure.

V2X networking infrastructure is also a very important aspect for cooperative autono­
mous driving. Heterogeneous Vehicular NETwork (HetVNET) [21] is an initial work on 
networking infrastructure to meet the communication requirements of the ITS. HetVNET 
integrates LTE with DSRC [22] because relying on the single wireless access network can­
not provide satisfactory services in dynamic circumstances. In [23], an improved protocol 
stack is proposed to support multiple application scenarios of autonomous driving in 
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Figure 12.1  V2X communications in crossroads.
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HetVNET. In the protocol, the authors redefined the control messages in HetVNET to sup­
port autonomous driving.

Similarly, the Vehicular Delay‐Tolerant Network (VDTN) [24] is an innovative communi­
cation architecture which is designed for scenarios with long delays and sporadic 
connections. The idea is to allow messages to be forwarded in short‐range WiFi connec­
tions and reach the destination asynchronously. This property enables VDTN to support 
services and applications even when there is no end‐to‐end path in current VANET. In [25] 
the authors discuss several cooperation strategies for VDTN. The challenge for cooperation 
in VDTN is how to coordinate the vehicle nodes to share the constrained bandwidth, energy 
resources, and storage with one another. Furthermore, an incentive mechanism which 
rewards or punishes vehicles for cooperative behavior is proposed.

In order to support seamless V2X communication, handover is also a very important topic 
for V2X networking infrastructure. Due to the dynamic changing of the networking topology 
and the relatively small range of the communication coverage, the handover mechanism in a 
cellular network is no longer suitable for VANET. Based on proactive resource allocation 
techniques, in [26] the authors propose a new handover model for VANET. With the help of 
proactive handover, cooperative services can be migrated through Roadside Units (RSUs) 
with the moving of the vehicle. Hence, proper designing of proactive handover and resource 
allocation are essential for developing reliable and efficient cooperative systems.

The development of edge computing in the automotive industry is also very inspiring. The 
Automotive Edge Computing Consortium (AECC) is a group formed by automotive compa­
nies to promote edge computing technologies in future automobiles (https://aecc.org). 
According to AECC, the service scenarios include intelligent driving, high‐definition map, 
V2Cloud cruise assist, and some extended services such as finance and insurance. In addi­
tion, the white paper discusses the service requirements in terms of data source, volume of 
data generated in vehicle, target data traffic rate, response time, and required availability.

12.4  Challenges

In order to guarantee the robustness and safety of autonomous driving systems, autono­
mous vehicles are typically equipped with numerous sensors and computing systems, lead­
ing to extremely high costs and preventing ubiquitous deployment of autonomous vehicles. 
Hence, V2X is a viable solution in decreasing the costs of autonomous driving vehicles as 
V2X enables information sharing between vehicles and computation offloading to RSUs. 
There are several challenges in achieving cooperative autonomous driving. The challenges 
and our vision for application scenario of cooperative decision and cooperative sensing are 
as follows:

Cooperative decision: The challenge of cooperative decisions is handling the dynamic 
changing topology with a short‐range coverage of V2X communications. The design of 
VDTN is a good way to solve this challenge. Effective proactive handover and resource 
allocation can be a potential solution. Also, the coming 5G wireless communication [27] 
provides a way to handle this challenge.
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Cooperative sensing: The main challenge of cooperative sensing is sharing the information 
from infrastructure sensors to autonomous vehicles in real time. Another challenge is to 
dynamically trade‐off the cost of infrastructure sensors and on‐vehicle sensors. For the 
first challenge, edge computing technology can be used to solve the problem because 
edge computing enables the edge node (vehicle) and edge server (infrastructure) to con­
duct computation and compression to provide real‐time performance. In addition, the 
trade‐off of cost on infrastructure sensors and on‐vehicle sensors will be determined by 
the automobile market.
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13

13.1  Introduction

The previous chapters reviewed innovations in onboard edge computing and vehicle‐to‐
everything (V2X) infrastructure to make autonomous driving computing more efficient in 
terms of performance and energy consumption. As mentioned previously, each autono-
mous vehicle is equipped with or supported by dozens of computing units in the edge and 
cloud to process the sensor data, to monitor the vehicles’ status and to control the mechani-
cal components, etc. Hence, the security threats against these computing units are of 
paramount concern.

Specifically, the attacks targeting autonomous vehicles could cause terrible traffic 
accidents, threatening both personal and public safety. In this chapter, we review 
recent advancements in the security of autonomous vehicles, including sensor secu-
rity, operating system security, control system security, and communication security. 
These security problems cover different layers of the autonomous driving edge 
computing stack.

13.2  Sensor Security

Autonomous vehicles are equipped with various sensors (camera, Global Navigation 
Satellite System [GNSS], Light Detection and Ranging [LiDAR], etc.) to enable the 
perception of the surrounding environments. The most direct security threats against 
autonomous vehicles are attacks against the sensors. With this attack method, attackers 
can generate incorrect messages or completely block sensor data so as to interfere with 
autonomous driving behaviors without hacking into the computing system. According to 
the working principle of sensors, the attackers have many specific attack methods to inter-
fere, blind, or spoof each of them [1].

A camera is the basic visual sensor in autonomous driving systems. Modern autonomous 
vehicles are usually equipped with multiple cameras with the same or different lenses 
[2,  3]. In general, many autonomous driving perception workloads take camera images 
as inputs; for example, object detection and object tracking. The attackers can place fake 
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traffic lights, traffic signs, and traffic objects (cars or pedestrians) to spoof autonomous 
vehicles and cause them to make the wrong decisions [4]. The cameras can also be inter-
fered with by infrared, so attackers can use a high‐brightness infrared laser to blind the 
cameras, thus preventing these cameras from providing effective images for the perception 
stage [4, 5].

Autonomous vehicles use GNSS and inertial navigation system (INS) sensors to update 
the vehicles’ real‐time locations. Typical attacks against GNSS sensors are jamming and 
spoofing. The attackers could use out‐of‐band or in‐band signals to intentionally interfere 
with the function of the GNSS receiver [6]. They could also deploy a GNSS transmitter near 
the autonomous vehicles to deceive the GNSS receiver by replicating original signals and 
providing false locations [4, 6]. In addition, the INS sensors are sensitive to magnetic fields, 
so an extra and powerful magnetic field could effectively interfere with the INS sensors to 
produce incorrect orientation of the vehicles under attack.

LiDAR provides point clouds of the vehicle’s surroundings to enable 3D perception of 
the environments. LiDAR measures the distance to a target by illuminating the target with 
pulsed laser light and measuring the reflected pulses. A smart surface which is absorbent 
or reflective can deceive LiDAR sensors to miss real obstacles in traffic [1], and a light 
laser pulse illuminating the LiDAR could also manipulate the data sensed by the LiDAR, 
deceiving the LiDAR to sense objects in incorrect positions and distances [4]. For ultra-
sonic sensors and radars, which are mostly used for passive perception and the last line of 
defense for the autonomous vehicles, Yan et al. have successfully spoofed and jammed 
these two kinds of sensors in the Tesla Autopilot system via the specific signal generator 
and transmitter [7].

13.3  Operating System Security

One widely used autonomous vehicle operating system is ROS (Robot Operating System). 
Attackers can target ROS nodes and/or ROS messages. In the ROS running environment, 
there is no authentication procedure for message passing and new node creation. Attackers 
can use the IP addresses and ports on the master node to create a new ROS node or hijack 
an existing one without further authentication [8]. If a service on the node keeps consum-
ing system resources, for example, memory footprint or CPU utilization, it will impact the 
performance of other normal ROS nodes, even crashing the whole autonomous driving 
system. The attackers also can use the controlled ROS node to send manipulated messages 
to disturb other nodes running and output.

As for the attacks on ROS messages, the first security threat is message capture. Attackers 
can monitor and record every ROS message topic via the IP address and port on the master 
node. The recorded data are stored in the ROS bag file; attackers can play the ROS bag file 
to resend some history ROS messages, which will affect current ROS message communica-
tion [8]. The message passing mechanism of ROS is based on socket communication, so 
attackers can sniff the network packets to monitor and intercept the ROS messages remotely 
without hacking into the master node [9, 10]. The attacks on ROS messages do not need to 
start or hijack a ROS node; the security threat level is not lower than attack with the ROS 
node method.
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13.4  Control System Security

In modern vehicles, many digital devices and mechanical components are controlled by 
Electronic Control Units (ECUs). The ECUs are connected to each other via digital buses, 
which form the in‐vehicle network. Controller Area Network (CAN) is the primary bus 
protocol in the vehicle [11]. CAN is the typical bus topology; there is no master/slave node 
concept in the CAN bus, so any node connected to the CAN bus can send a message to any 
other node. Thus, the CAN network usually uses the priority to control access to the bus. 
The CAN network is isolated to the external network but attackers can hack the digital 
devices in the vehicle to attack the CAN and ECUs indirectly, which is very dangerous to 
the vehicle and public.

There are many attack surfaces of the CAN bus. First is the OBD‐II port, which is used 
for vehicle status diagnostics, ECU firmware update, and even vehicle control. The 
OBD‐II port is connected to the CAN bus, so attackers can use the OBD‐II device and 
diagnostic software to sniff the messages on the bus or control the vehicle [12, 13]. 
Attackers can easily gain access to the CAN bus through OBD‐II ports. Second is the 
media player (e.g. CD player) in the vehicle. The media player needs to receive the con-
trol message from the driver and send the status to the screen (user interface), so 
the media player usually has a connection to the CAN. Attackers can easily flash a mali-
cious code to the CD; when the driver plays the CD, the malicious code can attack the 
CAN bus [14].

In addition, attackers can utilize the Bluetooth interface in the vehicle. Modern vehicles 
support Bluetooth connections to smart phones. Attackers can use smart phones to upload 
malicious applications via Bluetooth to take over the CAN bus, or they can sniff the vehicle 
status via Bluetooth. It is important to note that attackers can use this interface to attack the 
vehicle remotely.

Once the attacker hijacks the CAN bus, there are some security threats to the CAN net-
work [12]. The first is broadcast attack. A CAN message is broadcast to all nodes, the attack-
ers can capture and reverse‐engineer these messages and inject new messages to induce 
various actions.

The second is denial of service (DoS) attack. CAN protocol is extremely vulnerable to 
DoS attacks because of the limited bandwidth. In addition to message flooding attacks, if 
one hijacked node keeps claiming highest priority in the network, it will cause all other 
CAN nodes to back off, so the whole CAN network will crash.

The last is no authentication fields. The CAN message does not contain the authenti-
cation fields, which means any node can send a packet to any other node without an 
authentication process, so the attackers can use this to control any node in the CAN 
network.

13.5  V2X Security

With V2X, vehicles can access the Internet to obtain real‐time traffic data (e.g. real‐time 
map and weather data) or leverage the cloud computing for autonomous driving [15], and 
the vehicle also can communicate with other nodes in the V2X network via some emerging 
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technologies (e.g. Dedicated Short Range Communications [DSRC]) [16]. This V2X 
network creates many new application scenarios for connected and autonomous vehicles 
but it also causes more security problems [17–19].

The traditional Internet and ad‐hoc networks suffer from many security threats, which 
may occur in the V2X network but with different manifestations. DoS attack and distrib-
uted denial of service (DDoS) attack are two basic attack methods on the Internet. In V2X 
networks, every node can be an attacker or a victim, causing various traffic problems [20]. 
If the infrastructure is the victim, it cannot provide real‐time service for the nearby 
vehicles. In contrast, if the vehicle is the victim, it cannot receive the messages from the 
infrastructure or cloud, and the DoS attack also can interfere with the performance of 
other tasks on the vehicle, causing unacceptable latency of some autonomous driving 
applications [1].

In V2X networks, attackers can create multiple vehicles on the road with the same iden-
tity or remain anonymous, which we call Sybil attack [21]. The Sybil attack may force the 
vehicles running on the road to make way for the fake vehicles and prevent other vehicles 
driving on this road because they are deceived to think that there is a traffic jam. Information 
forgery is also a common attack; a vehicle can change its identity or send fabricated mes-
sages to V2X networks, thus preventing it from being detected or to shirk some of its 
responsibilities [22]. There are many other traditional network threats, such as replay 
attack and block hole attack, but the attack method is similar to the threats mentioned 
above.

The V2X network brings new types of network nodes, such as the infrastructure and 
pedestrian, so it will have some new threats that are rare in the traditional Internet. The 
first is about privacy. The communication between the vehicle to pedestrian and vehicle to 
infrastructure may be based on some short‐range protocol (Bluetooth Low Energy and 
DSRC); if the access authentication is not strict, the privacy of both drivers and pedestrians 
will be exposed [23]. The second concerns the infrastructure. If the infrastructure (Roadside 
Unit [RSU]) has been attacked and fake traffic information is broadcast, it can influence 
the running state of a nearby vehicle.

13.6  Security for Edge Computing

Security is a critical topic for edge computing, so studies on security in some general sce-
narios may provide solutions for security problems in connected and autonomous vehicle 
scenarios. The related work can be divided into two categories: network in edge and run-
ning environment for edge computing.

Bhardwaj et al. proposed ShadowNet [24], which deploys the edge functions on the dis-
tributed edge infrastructure, and aggregates that information about the Internet of Things 
(IoT) traffic to detect an imminent IoT‐DDoS. ShadowNet detects IoT‐DDoS 10 times faster 
than existing approaches and also prevents 82% of traffic from entering the Internet infra-
structure, reducing security threats. Yi et  al. summarized a method that uses software‐
defined networking to solve edge network security problems  [25], such as network 
monitoring and intrusion detection and network resource access control. This kind of work 
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will help us solve the related network threats in connected and autonomous vehicle 
scenarios.

Ning et al. evaluated several trusted execution environments (TEEs) on heterogeneous 
edge platforms, such as Intel SGX, ARM TrustZone, and AMD SEV, and deployed the TEEs 
on an edge computing platform to efficiently improve the security with a low‐performance 
overhead [26]. KLRA [27] is a Kernel Level Resource Auditing tool for IoT and edge operat-
ing system security. KLRA takes fine‐grained events measured with low cost and reports 
the relevant security warning the first time the behavior of the system is abnormal with this 
device. This kind of work will help us solve the security problems in the operating system 
on connected and autonomous vehicles.

Table 13.1 summarizes the security threats and potential defense mechanisms for auton-
omous vehicles.

Table 13.1  Summary of security threats.

Security 
category Security threats Defense technologies

Sensors Spoofing cameras by fake traffic objects
Jamming GPS receiver by high‐power false 
GPS transmitter
Jamming IMU sensor by powerful magnetic field
Jamming LiDAR by light laser pulse
Jamming and spoofing ultrasonic sensors and 
MMW radars by specific signal generator

Multi‐sensor data fusion: System 
check and correct the sensor data 
from multiple sources

Operating 
system

Hijacking ROS node to consume system 
resources
Hijacking ROS node to send manipulated 
messages
Sniffing ROS message to steal private data
Repeating the intercepted ROS message to 
disturb other ROS nodes

Linux container: Use the 
container technology to throttle 
the resource utilization of each 
ROS node
Trusted execution environment: 
Run the key ROS node in a 
trusted execution environment

Control 
system

Hijacking CAN bus by OBD‐II port
Hijacking CAN bus by media player.
Hijacking CAN bus by Bluetooth
Injecting manipulated messages on CAN bus
DoS attack on CAN bus

Message encryption: Encrypt 
message in CAN bus

V2X DoS and DDoS attack on vehicle and 
infrastructure
Sybil attack by creating multiple fake vehicles 
in road
Sniffing private data by short‐range wireless 
protocol
Broadcasting fake traffic information to nearby 
vehicles

Authentication and certification: 
The node access to the V2X 
network should be authenticated 
and security certificates and keys 
provided
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